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Preface to the Second Edition

first edition o f this book was published in 1998 and we were pleased Uiat it was well received. It has 
h a ln K e d  in over 25 countries as a text for courses ш physics, chemistry and engineering, and it has been 
j****. , ^ ( 0  f-reech. Italian, Japanese, Portuguese and Russian. Therm odynamics as formulated in the 
' " ' t i e t h  century, what we chose to  call 'M odem  Therm odynam ics' is a theory o f  irreversible processes in 
'"n tra s t to nineteeath century thermodynamics, which is a theory o f  states. In the latter, thermodynamics is 
c o n fin e d  to initial and final states, the processes that transform  a state are not central to the theory; they are 
treated as another subject, ‘kinetics’. In M odern Therm odynamics, however, entropy-increasing irreversible 
p ro c e s s e s  are central to the theory. In i t  we find additional tools, such as the rale o f entropy production, to 
c h a ra c te r iz e  and analyze nonequilibrium systems, and new results, such as the Onsager reciprocal relations, 
that are applicable to  the thermoelectric effect, thermal diffusion and other cross-effects.

The context in which thermodynamics i* being taught is rapidly changing. Therefore we have added new 
sections to chapters, which show more applications o f  the subject. The following is a partial list. In C hapter 2 
we have included 'energy flows' in turbines and je t engines, and basics o f renewable enem ies such as soiar and 
wind energy. We have also included a descrip tion  o f the hurricane as a heat engine im C hapter 3. Chapter 11 
now has sections oil nonequilibrium electrom agnetic radiation. In Chapter 19, we have included rates of 
entropy production in dissipative structures. In response to suggestions by users o f  this text, we have included 
a chapter on Statistical Therm odynamics, which m akes this text self-contained by the inclusion o f  derivations 
of heat capacities a t  solids and Planck 's law o f blackbody radiation. Several other changes have been made 
to improve the presentation o f the concept*.

Entropy and entropy-producing irreversible processes are generally thought o f  as agents of disorder. A 
central m essage o f  Ihw book is that, under fstr-from-equilibrium condition», irreversible processes are, in 
fact, the drivers o f  self-organization and order we see all around us in Nature. These em ergent structures, 
called dissipative structures, are distinct from machines and are a good thermodynamic basis on which we 
may begin to build a theory o f b iological organisms. It is an important direction for future developments in 
thermodynamics. We have included a  section on this topic in the final chapter.





Preface to the First Edition 
Why Thermodynamics?

«• fcalfacentury ago. our view o f  Nature has changed drastically. C lassical science em phasized equilibrium 
. N ow  w e  le e  fluctuations, instability, evolutionary processes on all levels from chem istry and 

h" loev to cosm ology. Everywhere w e observe irreversible processes in which time symmetry is broken. The 
distinction between reversible and irreversible processes was first introduced in thermodynamic» through the 
concept o f ‘entropy'. the arrow o f  time, as Arthur Eddington called it. Therefore our new view o f  Nature leads 
to an increased interest in thermodynamics. Unfortunately, most introductory texts are luniled to the study o f 
equilibrium states, restricting thermodynamics to idealized, infinitely slow reversible processes. The student 
does not see the relationship between irreversible processes that naturally occur, such as chem ical reactions 
and heat conduction, and the rate o f  increase o f entropy. In this text, we present a modern form ulation of 
thermodynamics ш which the relation between the rate o f  increase o f entropy and irreversible processes is 
made clear from the very outset. Equilibrium remains an interesting field o f  inquiry but in the present state 
of science, it appears essential to include irreversible processes as well.

It is  the aim of this book to give a  readable introduction to present-day therm odynam ics, stalling with 
its historical roots as associated with heat engines but including also the therm odynam ic description o f far- 
from-equilibrium situations. As is w ell known today, far-from -equilibrium  situations lead to new space-tim e 
structures. For this reason the restriction to equilibrium situations hides, in our opinion, some essential features 
o f the behavior o f matter and energy. An example is the role of fluctuations. The atomic structure o f m atter 
leads to fluctuations. However, at equilibrium  or near equilibrium, these fluctuations are inconsequential.

Indeed a characteristic feature o f  equilibrium  therm odynam ics is the existence o f  extremum principles. 
For isolated systems entropy increases and is therefore m aximum at equilibrium. In other situations (such 
as constant temperature) there exist functions called thermodynamic potentials which are also extrema (that 
is maximum or minimum) at equilibrium. This has im portant consequences. A fluctuation that leads to a 
temporal deviation from equilibrium is followed by a  response that brings back the system to the extremum 
°f the thermodynamic potential. The equilibrium world is also a stable workl. This is no longer so in far- 
Imm-equilibrium situations. Here fluctuations may be amplified by Irreversible dissipative processes and lead 
to new ipace-time structures which one o f us (I. Prigogine) has called ‘dissipative structures' to distinguish 

em from ‘equilibrium ' structures such as crystals. Therefore distance from equilibrium becom es a param eter 
somewhat similar m  temperature. W hen we lower the temperature, we go from the gaseous state to a liquid 
, a s°hd. As we shall see, here the variety is even greater. Take tlx- example o f  chem ical reactions.
DeHna*ln* N* distance from equilibrium  we may obtain in succession oscillatory reactions, new spatial 

structures and chaotic situations in which the time behavior becomes so irregular (hat initially close 
J«ctaries diverge exponentially.

'* coounnn 10 Uiesc nonequtlibrium situations, the appearance o f long-range coherence. 
Of dtrttnet part* become correlated. This is in contrail to equilibrium situations where the range

■ P * 0 ” 8 *s determined by short-range m term olecular forces. As a result, situations that are impossible to
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realize at equilibrium become possible in lar-from-equilibriuni situations. This leads to im portant applications 
in a  variety of field». We can p roduct new materials in nonequilibrium  situations where we escape from the 
restrictions imposed by the phase rule. Algo, nonequilibrium structures appear at all levels in  biology. Wc 
give some simple examples in Chapters 19 and the postfacc, It is now generally admitted that biological 
evolution is the combined result o f  D arw in's natural selection as well as o f  self-orgattiM tion. which results 
from irreversible processes.

Since Ludwig Boltzmann (1844-1906) introduced a statistical definition o f entropy in 1872, entropy 
is associated w ith disorder. The increast o f entropy i* then described as an increase o f  disorder, as the 
destruction o f any coherence that may be present in the initial state. This has unfortunately led to  the view that 
the consequences o f the Second Law are self-evident, are trivial, Ttois is, however, not true even for equilibrium 
thermodynamics, which leads to highly nontrivial predictions, Anyway, equilibrium  thermodynamics covers 
only a small fraction o f  our everyday experience. We now understand that we cannot describe Nature around 
us without an appeal to nonequilibrium situations. The biosphere is maintained in nonequilibrium through 
the flow o f energy coming from the Sun and this flow is itself tlx; result o f  the nonequilibrium situation o f 
our present state o f  the universe.

It is true that the information obtained from thennodynam ic* both for equilibrium and nonequilibrium 
situations is limited to a few general statements. We have to supplem ent them by the equation o f  state at equi
librium or the rate laws, such as chem ical reaction rates. Still the information we obtain from  thermodynamics 
is quit® valuable precisely because o f  its generality.

И

Our book is subdivided into five parts. Т Ы  first. Chapters 1 И 4, deal* with the basic principles. The systems 
considered in thennodynamic» are large system* (the num ber o f  particles /Vis a typical Avogadro number). 
Such systems are described by two typae o f variables:, variables such as pressure o r temperature, which 
are independent o f  the size o f the system and are called 'intensive' variables, and variables such as the total 
energy, which are proportional to  the num ber of particles ( ‘extensive variables’ ). Historically thermodynamics 
started with em pirical observations concerning the relation between these variables (e.g. the relation between 
pressure and volume). This is the main subject o f Chapter 1. However, the two conceptual innovations o f 
thermodynamics are the formnlation o f the ‘First Law’ expressing conservation o f energy (Chapter 2) and of 
the ‘Second Law ' introducing entropy (Chapter 3).

Ignis m utat res. Fire transforms matter; fire leads to chem ical reactions, to processes such as m elting and 
evaporation. Fire m akes fuel burn and release heat. O ut o f all this common knowledge, nineteenth century 
science concentrated on the single fact that combustion produces heat and that heat may lead to an increase* 
in volume; as a re su lt com bustion produces work. Fire leads, thtrefore, to a new kind »(f machine, the heal 
engine, the technological innovation on which industrial society has been founded.

W hat is then the link between ‘heat' and ‘w ork’ ? This question was at the origin of the formulation o f  the 
principle o f  energy conservation. Heat is o f the same nature as energy, In the heat engine, heat is transferred 
into work but energy is conserved.

However, there was more. In 1811 Baron Jean-Joseph Fourier, the Prefect o f  Iscre, won the prize o f the 
French Academy o f  Sciences for his m athematical description o f  the propagation o f heat in solids. The result 
stated by Fourier was surprisingly simple and elegant: heat flow is proportional to  the gradient o f  temperature. 
It is  remarkable that this simple law applies to matter, whether Its state is solid, liquid o r  gaseous. Moreover, 
it rem ains valid whatever the chem ical com position o f  the body, whether it is iron o r gold. It is only the 
coefficient o f  proportionality between the heat flow and the gradient o f  temperature that is specific to  each 
substance.
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. , |a W wa5  the first example describing an irreversible process. There i* a privileged direction of 
heat flows according to Fourier's law, from higher to lower temperature. This is ш  contrast with the 

IW*e o f  N e w to n ia n  dynamics in which the past and future play the same role (time enters only in N ew ton 's law 
Г  second derivative, *o N ewton's law is invariant in respect to time inversion). As already mentioned, 
'  ^  s ccon<) Law of therm odynam ics that expresses the difference between "reversible' and irreversible
11 *S -su es  through the introduction o f  entropy. Irreversible processes producc entropy.
P ^  j,jstojy o f lihe two principles o f thermodynamics is a m ost curious one. Bom in the middle o f 
te c h n o lo g ic a l  questions, they acquired rapidly a cosm ological status. Let us indeed state the two principles 
^ fo rm u la ted  by Rudolph C lausius (1822-1888) in the year 1865:

The energy of the universe is constant.
The entropy of the universe approaches a  maximum.

It was the first evolutionary formulation of cosmology. This was a revolutionary statement as the existence 
of irreversible processes (and therefore o f  entropy) conflicts with the  time-reversible view o f dynamics. O f 
course, classical dynamics has been superseded by quantum  theory and relativity. However, this conflict 
remains because, in both quantum theory and relativity, the basic dynamical laws are time-reversible.

The traditional answer to this question is to emphasize that the systems considered in thermodynamics 
are so complex (they contain a large num ber o f interacting particles) that we are obliged to  introduce 
approximations. The Second Law o f  thermodynamics would have its roots in these approximations! Some 
authors go so tar as to state that entropy is only  the expression o f our Ignorance!

Here again the recent extension o f thermodynamics to situation* far-from-equiiibrium is essential. As we 
mentioned already, irreversible processes lead then to new space-tim e structures. They therefore play a  basic 
consu uctive role. No life would be possible without irreversible processes (see C hapter 19). It seems absurd 
to suggest that life would be the result o f our approximations! We can therefore not deny the reality1 o f  entropy, 
the very essence o f an arrow o f  time in nature, We are the children o f  evolution and not its progenitors.

Questions regarding the relation between entropy and dynamics have received great attention recently but 
they are far from simple. Not all dynamical processes require the concept o f entropy. The m otion o f  the Earth 
around the Sun is an example in  which irreversibility (such as friction due to tides) can be ignored and the 
motion described by time symmetric equations. However, recent developm ents in nonlinear dynam ics have 
shown that such systems are exceptions. M ost systems exhibit chaos and irreversible behavior. We begin to 
be able to characterize the dynam ical systems for which irreversibility is au essential feature leading to an 
increase in entropy,

Let us go back to our book. In our presentation a central role is played by entropy production. As we show 
in Chapter 15, entropy production can be expressed in terms o f  thermodynamic f l o w s a n d  thermodynamic 
forces ,Yr  An exam ple is heat conduction where Jt is the flow of heat and X, the gradient o f  temperature, We 
can now distinguish three stages. At equilibrium  both the flows аш! the forces vanish. This is the dom ain of 
ttaditional thermodynamics. It is covered in Chapters 5 to 11. The reader w ill find m any results fam iliar from 
all textbooks on thermodynamics. However, some subjects neglected in m ost textbooks are treated here. An 
example is thermodynamic stability theory, which plays an im portant role both at equilibrium  and out from 
equilibrium, This forms the second part o f  the  book.

Thermodynamic theory o f  stability and fluctuation, which originated in  the w oA  o f Gibbn, is the subject 
°f Chapters 12 to 14. Here, first we go through the classical theory o f  stability, as Oibba formulated it, 
which depends on «hertnodynamie potential*. We then discuss the theory o f  stability in term* o f the modem
* Jty o f entropy production, which is more general than the classical theory', This gives us the foundation 
° r the study o f stability o f nonequilibrium systems discussed in  the later part of tbe book. We then turn to 

thermodynamic theory o f  fluctuations, which has its origin in E instein 's famous formula that relates the
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probability o f a fluctuation to a  decrease in entropy. This theory also gives us the basic results that w ill later 
lead us to O nsager'* reciprocal relations, discussed in C hapter 16.

The fourth part. Chapters 15 to 17, Is devoted to the neighborhood o f  eqeilibtium , which is defined by 
linear relations between flows and forces (such as realized in Fourier's law). This is a well-explored field 
dominated by O nsager'n reciprocity relations. Indeed in 1911, Lars Onsager discovered the first general 
relations in nonequilibrium thermodynamics for the linear, near-equilibrium region, Tbesc ate the famous 
■reciprocal relations*. In qualitative term», they state that if a force, say ‘o n e’ (corresponding, for example, 
to a temperature gradient), may influence a flux ‘two’ (for exiunple a diffusion process), then force ‘tw o’ (a 
concentration gradient) will also influence the flux ‘o n e’ (the heat flow).

The general nature o f O nsager's relations has to be em phasized  It is immaterial, for instance, w hether the 
irreversible processes take place in a gaseous, liquid or solid m aJiuin The reciprocity expressions are valid 
independently o f  any m icroscopic assumptions.

Reciprocal relations haw  been the first results in the thermodynamics o f irreversible processes to indicate 
that this was not some ill-defined no-matVs-limd but a worthwhile subject o f  study whose fertility could be 
compared with that o f  equilibrium thermodynamics. Equilibrium therm odynam ics was an achievement o f the 
nineteenth century, nonequilibrium thermodynamics was developed in the twentieth century and Onsager’s 
relations mark a crucial point in the shift o f  interest away from equilibrium  toward nonequilbrium.

It is interesting to  notice that now the flow o f  entropy, even close to equilibrium, irteversibility cam no 
longer be identified with the tendency to disorder. We shall give numerous examples in  the text, but let us 
already illustrate this conclusion in a simple situation corresponding to thermal diffusion. We take two boxes 
connected by a cylinder, we heat one box and cool the other. Inside the box there is a mixture o f  two gases, 
say hydrogen and nitrogen, We then observe that, at the steady state, the concentration o f  hydrogen is higher 
in one  box, o f nitrogen in the other. Irreversible processes here cause the flow o f  heat to produce both disorder 
( ‘thermal m otion ') and outer (separation o f  the two com ponents). We see that a nonequilibrium system may 
evolve spontaneously to a state o f  increased complexity. This constructive role o f  irreversibility becom es ever 
more striking in  far-from-equdibrium situations to which we now turn.

The m ain  novelty is that in far-from-equilibrium situations, which correspond to the third stages o f  
thermodynamics, there is in general no longer any extremum principle (Chapters 18 and 19). As a result, 
fluctuations are no longer necessarily damped. Stability Is no longer the consequence o f  the general laws 
of physics. Fluctuations may grow and invade the whole system. As mentioned, we have called ‘dissipative 
structures' these new spatiotemporal organizations, which may emerge in far-from-equdlibrium situations. 
These dissipative structures correspond to a form o f  supram olecular coherence involving an immense number 
of molecules. In far-from-equilibrium situations we begin to observe new properties of m atter that are hidden 
at equilibrium,

We already mentioned the constructive role o f  irreversibility and the appearance o f  long-range correlations 
in far-from-equilibrium systems. Let us add also ‘unpredictability' because the new nonequilibrium states 
of m atter appear at so-called bifurcation points where the system may ill general ‘choose' between various 
slates. We are fer from the classical description o f nature as an automaton.

One often speaks o f ‘self-organization*. Indeed, as there are generally a multitude o f dissipative structures 
available, m olecular fluctuations determine which one w ill be chosen. We begin to understand the enormous 
variety o f structures we observe in the natural world. Today the notion o f  dissipative structures and o f  self
organization appear in a wide range o f fields from astrophysicf up to human sciences and the economy. 
We want to quote a recent report to the European Com m unities due to C.K. Biebracher, G. Nicolis and 
P, Schuster:

The m aintenance o f  the organization in nature is not -  and cannot be -  achieved by central management;
order can only be m aintained by self-organization. Self-organizing systems allow adaptation to the pre
vailing environment, i.e., they react to changes in the environment with a thermodynamic response which
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akes the s y s te m s  extraordinarily flexible and robust against perturbations o f  the outer conditions. We 
01 to point out «he superiority o f self-organizing systems over conventional human technology which 
WaI*f nvavo ids complexity and hierarchically manages nearly all technical processes. For instance, in 
care. ^  chemistry, different reaction steps are usually carefully separated from each o ther and contri- 
ы  • s from the diffusion o f  the reactants are avoided by stirring reactors. An entirely new technology 
will have lo be developed to tap the high guidance and regulation potential o f  self-organizing systems 
for technical processes. The superiority o f  self-organizing systems is illustrated by biological systems 
where complex products can be formed w ith unsurpassed accuracy, efficiency and speed.

(From C.F. Biebricher, G. Nicolis and P. Schuster. Self-OrganioUion in  Ihe Physico-Chem ical and U fe  
Sciences, 1994. Report on Review Studies. PSS 0396, Com m ission o f  the European Communities. 
Director General for Science, Research and Development)

I I I

This book is aimed to be an introductory text. No previous familiarity with thermodynamics is assumed. 
Interested readers are invited to consult m ore specialized texts. Hot this reason we have excluded a num ber 
o f interesting problems often associated with 'extended therm odynam ics'. These are the questions that deal 
with strong gradients or with very long time scales when memory effects have to be included. Every theory 
is based on idealizations, which have a lim ited dom ain o f  validity'. In our presentation the assumption is that 
at least local quantities such as temperature and pressure take well-defined values. More precisely this is 
called the ‘local equilibrium assum ption ', which is a reasonable approximation for the phenom ena studied in 
this book.

Science has no final form and is moving away from a static geometrical picture towards a description in 
which evolution and history plays on esseetiftl role. For this new description o f  nature, therm odynam ics is 
basic. This is the message our book wants to  transmit to the reader,
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Notes for Instructors

The first 11 c h a p te r s  a n d  C hapter 20 (statistical thermodynamics) at* intended for a one-sem ester introductory 
e ra d u a te  c o u rs e  o n  m o d e m  thermodynamics for students in physics, chem istry and engineering. Not 

"Tchariters are meant to be for all the three branches; the instructor may drop a few chapter» to emphasize 
there E x e rc is e s  in  e a c h  chapter are chosen to illustrate applications o f the subject in m any areas. In the 

current re s e a rc h  e n v iro n m e n t ,  interdisciplinary research is becoming increasingly important. It is therefore 
im p o r ta n t  to  make the students aware of a w ktc variety o f applications o f  thermodynamics at a n  early stage.

C h a p te rs  12 to 19 are m eant for an advanced undergraduate o r a graduate course in thermodynamics. 
Fbr th ese  chapters a  good knowledge o f vector calculus is assumed. These chapters do not include worked 
examples. The exercises are designed to gave the student a deeper understanding o f  the topics and practical 
applications.

T h ro u g h o u t  the lent, the reader is encouraged to use M athem atics*  o r M aplef to do tedious calculations 
or look at complex physicochem ical situations. Appendix 1.2 in the first chapter introduces the reader to the 
use of Mathematics.

(Supplementary Online Material]

Full solutions to exercises, PowerPoint slide» o f  all figures. Data Tables and Answers to Exercises, are 
available for instructors as PD F files at:

http://sites.gooile.com /site/m oderntherm odynantics/

These supplementary website files are password protected. Instructors can obtain the password by sending a 
request to Professor Knndepudi at dilip@ wfu.edu. The above website also contains other useful therm ody
namic information related to the book.

toaihemak a к  the repstemd trademark of W'otfnun Renoarch lac 
aPte к  the registered wtKfonarfc <rf Waterloo Maple Inc.

http://sites.gooile.com/site/modernthermodynantics/
mailto:dilip@wfu.edu




List of Variables

van derW aals constant 
activity o f к 
affinity
affinity o f  reaction к 
ran der Waals constant ^ 
concenttation o f x  (mol V~ ) 
standard state concentration 
heat capacity 
molar beat capacity
molar heat capacity at constant pressure 
molar beat capacity at constant volume 
electron charge 
activation energy 
fligaeity
Faraday c o n s ta n t  
Helmholtz e n e rg y
molar Helmholtz energy
acceleration due to gravity
Gibbs free e n e rg y
molar Gibbs (free) energy
Gibbs (free) energy o f  formation
standard Gibbs energy o f  formation
Gibbs (free) energy o f  a reaction
enthalpy o f fusion
enthalpy <jf v a p o r iz a tio n

oansitmn-state Gibbs energy
heat o f reaction per unit '
enthalpy density
enthalpy
molar enthalpy
partial molar enthalpy o f*
enthalpy of fo rm a tio n

standard «nthalpy o f  formation
enthalpy o f a reaction
enthalpy o f  fu s io n  
enthalpy o f  v a p o r iz a tio n
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S
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u
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V

transition-state enthalpy
electric current
thermodynamic flow
rate constant
Boltzmann constant
equilibrium  constant at temperature T
Henry’s constant o f i
molality, concentration (in m oles o f
solute/kilogram o f  solvent)
standard state m olality
m olar mass o f com ponent к
concentration (mol m "3)
molar am ount o f  substance
num ber o f molecules
total m olar amount of к
Avogadro constant
standard state pressure
total pressure
critical pressure
partial pressure o f  к
molecular partition function
total partition function
forward rate o f  reaction к
reverse rate o f  reaction к
entropy density a t x
total entropy
molar entropy
transition-state entropy
temperature
boiling point
critical temperature
melting point
energy density
total internal energy
total molar energy
velocity o f  reaction o r rate o f conversion 
total volume



xxvi List o f  Variables

V voltage or potential difference

Vm m olar volume
Vmc critical m olar volume

Vm* partial m olar volume o f  к

G reek  le tte rs

a isothermal compressibility
9 Stel'an-BoHzmami constant

Ф electrical potential

Фк osmotic coefficient o f  к

r ratio o f  m olar beat capacities

r surface tension

Г к activity coefficient o f
Г* general mobility k  in a field

Hk chem ical potential o f к2 standard chem ical potential o f  к

f ± mean* activity coefficient

M> cx concentration o f x  (mol L-1 )

xk m ole fraction o f к
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z compressibility factor
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n osm otic pressure
p density
z interfacial area
г extent o f  reaction
d f/d t  (v) velocity o f  reaction or rate o f
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extent o f reaction o f reaction к

d sV *  (V,) velocity o f  reaction к  or rate of
conversion к

r  & interaction energy per mole o f  к  due to
potential Ц!
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Basic Concepts and the Laws of Gases

Introduction

A d a m  Smith’s Wealth o f Nations was published in the year 1776, seven years after James Watt (1736-1819) 
had obtained a patent tor his version o f the steam engine. Both men worked at the University o f Glasgow. 
Yet, in Adam Sm ith's great work the only use for coal was in providing heal for workers [1]. 'Die machines 
o f the eighteenth century were driven by wind, w ater and animals. Nearly 2000 years had passed since Н ею  
of Alexandria made a sphere spin with the force o f steam, but still the power o f fire to generate m otion and 
drive machines remained hidden. Adam Sm ith (1723-1790) did not see in coal a buried wealth o f  nations.

The steam engine revealed a new possibility, W hile wind, water and animals converted one form o f  
motion to another, the steam engine was fundamentally different: it converted heat to mechanical motion. 
Its enormous impact on civilization not only heralded the industrial revolution but also gave birth to a new 
science: thermodynamics, U nlike the science o f Newtonian mechanics, which had its origins in theories o f 
motion o f heavenly bodies, therm odynam ics was born out o f a more practical interest: generating motion 
from heat.

Initially, thermodynamics was the study o f  heat and its potential to generate m otion; then it m erged with 
the larger subject o f  energy and its interconversion from  one form to another. W ith time, thermodynamics 
evolved into a theory that describes transformations o f  states of m atter in general, m otion generated by heat 
being a consequence of particular transformations. It is founded on  essentially two fundamental laws, one 
concerning energy and the other entropy. A precise definition of energy anti entropy, as m easurable physical 
quantities, will be presented in Chapters 2 and 3 respectively. In these chapters, we will also touch upon the 
remarkable story behind the formulation o f  these two concepts, b  the following two sections w e will give 
an overview o f  thermodynamics and familiarise the reader with the terminology and concepts that will be 
developed in the re*t o f the book.

Every system is associated w ith an energy and an entropy. W hen m atter undergoes transform ation from  one 
state to another, the total amount o f energy m  the system and its exterior is  conserved; total entropy, however, 
can only increase or, in idealized cases, rem ain unchanged. These two simple-sounding statem ents have far- 
reaching consequences. Max Planck (1858-1У47) was deeply influenced by the breadth o f  the conclusions 

can be drawn from them and devoted m uch of hi* time to the study of thermodynamics. In reading this

в  2oi« From Heat Engines to ОЫ раПре Structures, Second Edition. f>ihp Kontfcpudi and fly» Prigogiiu
John Wiley Si Sans, Ltd. Published 2015 by John Wiley *  Sone, Ltd.
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book, I hope the reader will come to appreciate the significance o f  the following often-quoted opinion of 
Albert E instein (1879-1955):

A theory is more impressive the greater the sim plicity o f Its premises is, the more different kinds of 
things it relutes, and the more extended its area o f  applicability. Therefore the deep impression which 
classical thermodynamics made upon me. It is the only physical theory o f universal content concerning 
which I am convinced that, within the framework o f  the applicability o f  its basic concepts, it w ill never 
be overthrown.

The thermodynamics o f the nineteenth century, which so impressed Planck and Einstein, described static 
systems that were in thermodynamic equilibrium. It w as formulated to calculate the initial! and final entropies 
when a system evolved from  one equilibrium state to another. In this ‘Classical Therm odynam ics' there was 
no direct relationship between natural processes, such as chem ical reactions and conduction o f  heat, and 
the rate at which entropy changed. During the twentieth century. Lars Onsager (1903-1976), Ilya Prigoginc 
(1917-2003) and others extended the fotm alism  o f classical therm odynam ics to relate the rale o f entropy 
change to m tes  o f  processes, such as chem ical reactions and heat conduction. From  the outeet. we will take the 
approach o f  this 'M odern Therm odynam ics' in w hich thermodynamics is a theory of irreversible processes, 
not m erely a theory o f equilibrium state*. Equipped w ith a fonnalism  to calculate the rate of entropy changes. 
Modern Therm odynamics gives us new insight into the role o f irreversible processes in Nature.

1.1 Thermodynamic Systems

A thermodynamic description o f natural processes usually begins by dividing the world into a ‘system 
and its ‘exterior’, which is the rest o f the world. This cannot be done, o f  course, when one is considering 
the thermodynamic nature o f the entire universe; however, although there is no ‘exterior', thermodynamics 
can be applied to the entire universe. The definition o f  a thermodynamic system depends on the existence 
of ‘boundaries', boundaries that separate the system  from it» exterior and determine the way the system 
interacts with its exterior. In understanding the thermodynamic behavior o f  a system, the manner in which ii 
exchanges energy and m atter with its exterior is important. Therefore, thermodynamic systems are classified 
into three types; isolated, closed and open systems (Figure 1.1) according to the way they interact with the 
exterior.

Isolated system s do not exchange energy or m atter w ith the exterior. Such systems are generally considered 
for pedagogical reasons, while systems witih an extrem ely slow exchange o f energy and m atter can be realized 
in a laboratory. Except for the universe as  a whole, truly isolated systems do not exist in Nature,

C losed system s exchange energy but not m atter w ith their exterior. It is obvious thal such systems can 
easily be realized in a laboratory. A closed! flask o f  reacting chemicals that is m aintained a( a fixed temperature 
is a closed system. The Earth, on a time-scale o f years, during which it exchangee nefligible amounts of 
mattei- with its exterior, may be considered a closed system; the Earth only absorbs solar energy and emits it 
back into space,

Open system s exchange both energy and matter w ith their exterior. All living and ecological systems are 
open system*. The complex organization in open systems is a result o f  exchange of m atter and energy and 
the entropy generating irreversible processes that occur within.

In thermodynamics, the state o f a system is specified in term* o f m acroscopic state variables, such »s 
volume, V, pressure, p. temperature, T, and moles, Nk, o f  chem ical constituent k , which are self-evident. These 
variables are adequate for the description o f  equilibrium  systems. W hen a system is not in thermodynamic
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Exchange of Епегщ

Figure 1.1 Isolated, dosed  and open systems, Isolated systems exchange neither energy nor matter with the 
exterior. Closed systems exchange heat and mechanical energy but not matter with the exterior. O pen systems 
exchange both energy and matter with the merior.

equilibrium, more variables, such as the rale o f  connective flow o r o f  metabolism , may be needed to describe 
it. The two laws of thermodynamics are founded on the concepts o f  energy, U, and entropy, S . which, as we 
shall see, are functions o f state variables.

Sinoe the fundamental quantities in thermodynamics are functions o f m any variables, thermodynamics 
makes extensive use o f  multivariable calculus. Functions o f slate variables, such as V  and S, are m ultivariable 
functions and arc called state functions. A  brief sum m ary o f  some basic properties o f functions o f many 
variables is given in Appendix A l . l  (at the end o f this chapter).

It is convenient to  classify thiermodynanuc variable» into two categories. Variables such as volume V  and 
j*n»o»nt of a substance N k (moles), which indicate the size o f ihc «ystem. are called extensive variables.

anables such as temperature Г and pressure/), which specify a local property and do  Dot indicate the system ’s 
8I&‘. are called intensive variables.

the temperature is not uniform, then heat will flow until the entire system reaches a state of unifom t 
emperature. Such a state is the state o f thermal equilibrium . Th* state o f  thermal equilibrium  is a special
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stale towards which all M a te d  systems w ill inexorably evolve. A precise description o f  this state will he 
given later in this book. In the state of thermal equilibrium , the values o f  total internal energy U and entropy
S  ate com pletely specified by the temperature T, the volume V and the amounts of the system 's chemical 
constituents Nk (moles):

V  =  U(T. V, Nk)  or S * S i T , V , N k) ( 1 .1 .1)

The values o f an extensive variable, such as total internal energy V  o r entropy S, can also be specified hy 
other extensive variables:

U  =  U($, V, Nk) or S =■ S (V ,  V, Nk) (1.1,2)

As we shall see in the following chapters, intensive variables can be expressed as derivatives o f one extensive 
variable with respect to another. For exam ple, we shall see that the temperature Г  *  (dl/ Ш ) ym -  The laws of 
thermodynamics and the calculus o f multivariable functions give uk a rich understanding o f  many phenomena 
we observe in Mature.

1.2 Equilibrium and Nonequillbrtam Systems

ft is our experience that if  a  physical system  is isolated, its state ~ specified by macroscopic variables such 
us pressure, temperature and chem ical ctvmposition -  evolve* irreversibly towards a time-invariant slate in 
which we see no further physical or chcmiical change. This is the state o f thermodynamic equilibrium . II is 
characterized by a  uniform temperature throughout the system. 'Ilac state o f equilibrium is also characterized 
by several o ther physical features that we will describe in the following chapters.

The evolution of a  system towards the state o f equilibrium  is due to irreversible processes, such as 
heal: conduction and chem ical reactions, which act in a  specific direction but not its reverse. For example, 
heat always flows from a higher to a lower temperature, never in the reverse direction; similarly, chemical 
reactions cause com positional changes in a  specific direction, not ils reverse (which, as we shall see in Chapter
4, is described using the concept o f  ’chem ical potential’, a quantity sim ilar to  temperature, and 'affinity'. 
a thermodynamic force that drives chemical reactions). At equilibrium, these processes vanish. Thus, a 
nonequilibrium state can be characterized as one in which irreversible processes are taking place, driving the 
system  towards the equilibrium state. In some situations, especially during chem ical transformations, the rales 
at which the state is transforming irreversibly may be extremely umall, and an isolated system might appear 
as if  it is time invariant and has reached 1»  state o f  eq u ilib ria» . N evertheless, with appropriate specification 
o f the chem ical reactions, the nonequilibrium nature o f  the state can be identified.

Two- or more systems lhal interact andi exchange energy and/or m atter will eventually reach the state of 
thermal equilibrium  in which the temperature w ilhin each system is spatially uniform and the temperature 11 
all the systems are the same. If a system A is in therm al equilibrium with system В and if В is in thermal 
equilibrium  with system  C, then it follows that A is in thermal equilibrium with C. This ‘transitivity - "I 
the state o f  equilibrium  is sometimes called the zero th  law. Thus, equilibrium  systems have a w e ll-d e fin e d , 

spatially unifoitn temperature; for such systems, the energy and entropy are functions o f  state as e x p re s se d  
in Equation (1.1.1).

Uniformity o f  tem perature, however, is not a requirem ent for the entropy or energy o f a system to be well 

defined. For nonequilibrium  system s, in  which the temperature is not uniform  but is well defined locally
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can define densities o f thermodynamic quantities such as energy and entropy, Thus, the

uf’/U ) ,  nk(x)) =  internal energy per tw it volume ( 1 ,2 .1)

$ e  defined in term* o f the local temperature T(x) and the ooneentrations

nk(x) =  moles o f constituent к  per unit volume ( 1 ,2 .2 )

. 2,, entropy density s(T, n k) can be defined. (We use a lower case letter for the densities of 
I h a S lv n a m ic  quantities). The atmosphere o f the Harth, shown in Box 1 .1 .b a n  example o f a nonequilibrium 

to n  in which both Я/, and Г  are functions o f position. The total energy I ', the total entropy S  and the total 
Lnount of the substance Nk are

$ =  f  s[T (x),nk( x ) W  ( 1.2 .3 )
J v

( / =  f  u[T(x).nk{ x )W  <1.2.4 )
J v

Nk ~  f  nk{x)dV (1,2.5)
J v

In nonequilibrium (nonuniform) systems, the total energy U  is no longer a function o f  o ther extensive variables 
such as S, V  and Л^. as in Equation (1.1.2), and obviously one cannot define a single tem perature for the 
entire system becaese it may not be uniform. In general, each o f (he  variables, the total energy U, entropy 
S, the amount of substance Nk and the volum e V, is no longer a  function o f  the other three variables, as in 
Equation (1 .1 .2). However, this does not restrict in any way our ability to determine the entropy or energy o f 
a system that is non in thermodynamic equilibrium; we can determine them using the expressions above, as 
long as the temperature is locally well defined,

In texts on classical thermodynamics, it i t  sometimes stated that entropy o f a nonequilibrium  system is not 
defined; it only means that S  is not a function o f the variables U. V‘ and N k . If  the temperature o f the system 
is locally well defined, then indeed the entropy of a nonequilibrium system can be defined in terms o f an 
entropy density, as in  Equation ( 1 .2 .3 ),

B(>x 1.1 f i i e  a t m o s p h e r e  , , f  t h e  E a r t h

Blaise Pascal (1623-1662) explained the nature of atm ospheric pressure. The pressure at any point in the 
B g P b e te  is due to the colum n o f  sir above it. The atmosphere o f the Earth is not in thermodynamic 

Ч Ш и Ь г ш т : temperature is not uniform  and the am ounts o f its chem ical constituents (N j, 0 2. Ar, C 0 2. 
* *  Maintained at a nonequilibrium  value through cycles o f  production and consumption.
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Temperature ("С) Pressure (aim)

1.3 Biological and Other Open Systems

Open systems are particularly interesting because in  them we see spontaneous self-organization. The mosi 
spectacular exam ple o f  self-organization in open systems is life. Every living cell is an open system thai 
exchanges m atter and energy with its exterior. The cells o f a leaf absorb energy from the sun and exchange 
m atter by absorbing C 0 2, H jO  and other nutrients and releasing 0 2 into the atmosphere. A biological open 
system  can be defined more generally: it could be a single cell, an organ, an organism or an ecosystem. Other 
exam ples o f open systems can be found in industry; in chem ical reactors, for exam ple, raw  materials and 
energy are the inputs and the desired and waste products ale the outputs.
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<b>

figure 1.2 (a) In a nonequilibrium system, the temperature T(x) and molar density n t M  may vary with position. 
The entropy and energy o f  such a system maty be described b y  an entropy density s(T, nt ) and an energy density 
u ( l  nk). I  he total entropy S =  / v s[T(xj,ntW)]dV, the total energy V  я  f v u\T[x),nt (x)]dV and the total molar 
amount N t  = f v nt {KKlV. Tor such a nonequilibrium system, the total entropy S is not a function o f U, N k and 
the total volume V. The term d^S/dt is the rate o f change o f  entropy due to chemical reactions, diffusion, heat 
conduction and other such irreversible processes; according to the Second Law, d tS /d t can only be  positive. In 
an open system, entropy can also change due to the exchange o f  energy and matter; this h  indicated b y  the 
term c^S/cfe, which can be either positive or negative, (b) A system In contact with themiai reservoirs o f  unequal 
temperatures is a simple example o f  a nonequilibrium system. The temperature Is not uniform and there is a fh w  
of heat due to the temperature gradient. The term de5/dt is №lated to the exchange o f  heat at the boundaries in 
contact with the heat reservoirs, whereas d,5/d( Is due to the irreversible flow o f heat within the system.

As noted in the previous section, when a  t»ystem is not in equilibrium , processes such as chem ical reactions, 
conduction o f heat and transport o f  m atter take place so as to drive the system towards equilibrium . All o f 
these processes generate entropy in accordance with the Second Law (see Figure 1.2). However, this does not 
mean that the entropy of the system  must always increase: the exchange o f  energy and matter m ay also result 
in the net output o f entropy in such a way that the entropy o f  a system is maintained at a low value.

One o f the most remarkable aspects o f nonequilibrium systems that came to light in the twentieth century 
is the phenomenon <if self-organization. U nder certain nonequilibrhim conditions, systems сад spontaneously 
undergo transition* to organized states, which, in general, are «Hates with lower entropy. For exam ple, 
nonequilibrium chem ical system s can make a transition to a state in which the concentrations o f reacting 
compounds vary periodically, thus becom ing » 'chem ical d o c k '.  The reacting chemicals can  also spatially 
organize into pattern» with great symmetry. In fact, it can be argued that most o f the 'organized ' behavior 
we ‘n Nature it created by irreversible processes that dissipate energy and generate entropy. For these 
reasons, these structures are called dissipative structures [ 1]. Chapter 19 is devoted to this important topic. 
®  active field of current research. In an open system, these organized states coujd be m aintained indefinitely, 

°nly at the expense o f  exchange o f  energy and m atter and incrca»e o f  entropy outside the system.

Temperature, Heat and Quantitative Laws «if C a m

Nat * *̂e !even,ecnth and eighteenth centuries, a fundamental change occurred in our conception o f  Nature, 
nre slowly but surety ceased to  be solely a vehicle o f  G od 's  will, comprehensible only through theology.
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The new ‘scientific' conception o f  Nature based on  rationalism  and experim entation gave us a different 
world view, a  view that liberated the human mind from  the confines o f religious doctrine. In the new view 
Nature obeyed simple and universal tews, laws that hum ans can know and express in the precise language 
o f  mathematics. Right and wrong were decided through experiments and observation. It was a new d ia lo g s  
with Nature. O ur questions became experiment», and N ature's answers were consistent anti unambiguous.

It was during this time o f great conceptual change that a scientific study o f  the nature o f  heat began 
This was prim arily due to the developm ent o f the thermometer, which was constructed and used in scientific 
investigations since the time o f  G alileo Galilei (1564-1642) [2,3]. The im pact o f this simple instrument 
was considerable. In the words o f S ir Humphry Davy (1778-1829), ‘Nothing tends to «he advancement of 
knowledge os die application o f  a new instrument.’

The m ost insightful use o f the therm om eter was made by Joseph Black (1728-1799). a professor o f  medicine 
and chem istry a t Glasgow, Black drew a> clear distinction between temperature, or degree o f  hotness, and 
the quantity o f heat (in term s o f  current terminology, temperature is an intensive quantity whereas heat is an 
extensive quantity). His experiments using the newly developed thermometers established the fundamental 
fact that the temperatures o f  all the substances in  contact with each other will eventually reach the saute 
value, i.e. systems that can exchange heat w ill much a  state o f  thermal equilibrium. This idea was not easily

loseph Black (1728-1799).
(Reproduced with permission from the Edgar fahs Smith Collection, University o f  Pennsylvania library.)
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. Ijjg contemporaries because it seems to contradict the ordinary experience o f  touch, in which 
*cceP*e rne(aj feit colder than a  piece o f  wood even after they had been in contact for a  very long time. 
» Piece ^  thennom eter proved this point beyond doubt. With the thermometer. Black discovered specific 

w resj the general belief o f  b it time that the amount o f heat required to increase the temperature 
hell, ihstance by agiven  amount depended solely on its mass, not specific to its makeup. H e also discovered 

° 1 1 eats of fusion and evaporation o f  water -  the latter with the enthusiastic help from his pupil James 
Watt ( 1736—1819 ) 14 ]-

T h o u g h  the work o f  Joseph Black and others clearly established the distinction between beat and temper- 
Jjjg nature o f heal remained an enigma for a long time. Whether heat was an indestructible substance 

*°tiiout mass, called the ’caloric ', that moved from substance to substance or whether it w as a form of 
■ t r o s c o p i e  motion was still under debate as late as the nineteenth century. After considerable debate ami 

imentation it became clear that heat was a form o f energy that could be transformed to other forms, and 
so the caloric theory was abandoned -  though we still measure the amount o f  beat in ’calories’, in addition 
to using the SI unit» o f  joules.

T e m p e ra tu re  can be measured by noting the change o f a physical property, such as the volume o f a fluid 
(such as mercury), the pressure o f  a gas oar the electrical resistance o f a wire, with degree o f hotness. This 
is an empirical definition o f  temperature. In this case, the uniformity o f  (he unit o f  tem perature depends on 
the u n ifo rm ity  with which the measured property changes as the substance gete hotter. The fam iliar Celsius 
scale, which was iatroduced in the eighteenth century by Anders Celsius (1701-1744), has largely replaced 
the Fahrenheit scale, which was also introduced in the eighteenth century by Gabriel Fahrenheit (1686-1736). 
As we shall see in the following chapters, the development o f  the Second Law o f  therm odynam ics during 
the middle o f the «uneteenth century gave rise to the concept o f an absolute scale o f  temperature  that is 
independent o f  material properties. Thermodynamics is formulated in terms o f the absolute temperature. We 
shall denote this absolute temperaturc by T.

1.4.1 T he Law s o f  tia ses

In the rest o f this section we w ill present *n overview o f the law's o f  gases without going into much detail. 
We assume the reader is familiar with the laws o f ideal gases and some basic definitions are given in 
Box 1.2.

Box 1.2 Bask definitions
Pressure is delined a* the force per unit area. The pascal is the SI unit o f  pressure;

р ш Ы  (P a) =  1 N m ~s

pressure due to  « colum n o f fluid o f  uniform density p aad height h equals hpg, where ft is the 
•eeeleration due to  gravity (9.806 m » J I. The pressure due to the Earth'» atmosphere changes with 
®ca*ton and time. Hit it is often close to 103 l*a at sea level. R ir tin* reason, a unit called tiie b a r  is defined
8B

1 b a r  «= 10* P a =  100 kP a
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The atmospheric pressure a t the E arth 's surface is also nearly «-qua! to  the pressure due to a 760 mm 
column o f  mercury. Fbr thta reason, flic following units ate defined:

torr =  pressure due to 1 .00  nun column o f  m ercury

I utmosplnre (et«i) = 760 torr »  101.315 к Pa

I aim  equals approximately 10 N  cm "1 (1 kg  w eight cm -4 o r IS lb inch*2). The atmospheric pres sun 
decreases exponentially w ith altitude (see Box 1.1).

Temperature is usually measured in  kelvkt (K ), Celsius (*C) o r  Fahrenheit (“Fj. The Celsius and 
Fahrenheit scales arc empirical, whereas (as w e shall) see in C hap ter?) the kelvin scale i t  an absolute seal; 
based on the Second Law o f  thermodynamics: 0 К is  the absolute zero, the lowest possible tem per at ui. 
Temperatures measured in (hene scales are related a* follow*:

T  ( X )  =  (5/9)1 T  (°F ) -  32]. T(K)  *  Г ( 'С ) + 273.15

On the Earth, tlic highest recorded temperature is 57.8 °C, or 136 °F; it was recorded in El Azteia, Libiya. 
in 1922. The lowest recorded temperature is -88 .3  °C, o r -129  *P; it was recorded in Vostok, Antarctica. 
In the laboratory, sodium gas hits been cooled to tem peratures a* low as 10‘9 K. and temperatures as high 
as 10® К h aw  been reached in nuclear fusion reactors.

Heat was initially thought to be alt indestructible substance called the caloric. According to this view, 
caloric, a fluid w ithout man», passed from one body to another, causing changes in temperature. However, 
itv the nineteenth century it w«* established that heal was dot an indestructible caloric burt a form o f  energy 
that can e o m w t to other forms o f energy (w e C hapter 2). Hence. heat is m easured In the units o f  energy 
In this text we shall mostly use the SI units in which heat is measured in Joule», though the calorie is an 
often-used unit o f  heat. A calorie was etiginally  defined as the am ount o f  heat required to increase the 
temperature o f  1 g o f  w ater from 14,5 *C to 15.5 *C. The current practice is to define a thermochemical 
calorie as 4.184 .1.

The gas constant R  appears in the ideal gas law, p V  =  NUT. its numerical values are:

R  =  8.314 J К m ol"1 (or Pa m 3 K_I mol"1) и  0.08314 bar L K> m o l 1

*  0.0821 atm L K_1 mol ' 1

Hie Avogadro number NA =  6.023 x  1023 m ol-1. The ltoltzm ann constant кл  =  R/NA -  1.3807 x 
K) » J  к  -1.

One o f  the earliest quantitative laws describing the behavior o f gases was due to  Robert Boyle (1627-1691) 
an Englishman and a contem porary o f  Isaac N ewton (1642-1727). The same law was also discovered by 
I'Almc M ariotte (1620(?>—1684) in France. In 1660, Boyle published his conclusion in his New  Experiment' 
Physico-mechanicat. Teaching the Spring o f  the A ir  a n d  Its Effects: at a fixed temperature T, the volume Vof 
a  gas was inversely proportional to die pressure p , i.e.:

f  (7^
V a  -------in which f \ ( T )  is som e function o f  the tem perature T (1.4.1)
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Robert Boyle (1627-1691).
(Reproduced ivith pemiission from the Fdgar Fahs Smith Collection, University o f  Pennsylvania Library.)

(Though the temperature that Boyle knew and used was the empirical temperature, as we shall see in Chapter 
3, it is appropriate to  use the absolute temperature T  (in kelvin) in the formulation o f  the law o f ideal gases. 
Го avoid excessive notation we shall use Г  whenever it is appropriate,) Boyle also advocated the view that 
heat was not an  indestructible substance (caloric) that passed from one object to another but was ‘ . intense 
commotion o f the p a r ts . , [ 5],

At constant pressure, the variation o f volum e w ith tem perature was studied by Jacques Charles (1746— 
1823). who established that

у
— *  f 2(p ) > in w hich /2(p) is  a function o f  p  < 1,4.2)

18*1. Amedeo Avogadro (1776-1856) announced hie hypothesis that, under conditions o f  the same 
Perature and pressure, equal volumes o f  all gases contained equal numbers o f molecules, This hypothesis 

У helped in explaining the changes in pressure due to chemical reactions In which the reactants und 
uc,s Were gases. It implied that, at constant pressure and temperature, the volum e o f a gas is proportional



to  the amount o f the gas («Umber o f  m olecules). H ence, in accordance with B oyle’s law (1.4.1), for N  moles
o f в gas:

v -w f i2 2  , in w h ic h /|(D isa ftm c tio n o f T  ( 1,4 <
P
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laeqm s Charles (1746-18231.
(Reproduced with permission from the tdgur f  ahs Smith Collection, University o f Pennsylvania Library.)

A com parison o f  Equations (1.4.1 К (1.4.2) and (1.4.3) leads to the conclusion that / , (T) is proportional to T 
and to  the well-known law o f  ideal gases:

p V ~ N R T  (1.4,4)

in which i? is the gas constant. Note that R  =  8.314 4 t  J K ' 1 m o l4  (or Pa m 3 K”1 m o H )  =  0.083 14 bar 
L К ' 1 m ol4  = 0 .0821  atm L K4  mol*1.

As more gases were identified and isoluted by the chem ists during the eighteenth and nineteenth centimes, 
their properties were studied. It was found that many obeyed B oyle 's law approximately. For most gases, this 
law describes the experimentally observed behavior fairly well foir pressures to about 10 a ta .  As we shall sec 
in the next section, the behavior o f  gases under a w ider range o f pressures can be described by modification- 
of the ideal gas law that take into consideration the m olecular sine and intermolecular forces.

Por a mixture  of ideal gases. We have D alton’s law  o f  partial pressures, according to which the pressure 
exerted by each com ponent o f  the mixture is independent o f  the other com ponents o f  the mixture and each 
com ponent obeys the ideal gas equation. Thus, if  f t  is the partial pressure due to  component k. we have

p k V ~ N kR r  (1.4.5)

Joseph-Louis G ay-Lussac (1778-1850), who m ade important contributions to the laws o f gases, discovered 
that a dilute gas expanding into a vacuum did so w ithout a change in temperature. James Prescott Joule (181K 
1889) also verified this fact in his series o f  experim ents that established the equivalence between mechanical 
energy and heat. In Chapter 2 we will discuss Joule’s work and the law o f  conservation o f  energy in detail 
W hen the concept o f energy and its conservation was established, the im plication of this observation became
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i  expanding into vacuum does not do any work during the processes o f  expansion, its energy
clear s ""P,^ange_ x t e  fact that the temperature does not change during expansion into a vacuum, while the 
does not с 9(ве ^  change, implies that the energy o f  a  given amount o f ideal gas depends only on its 
voliw11- a no( on vo| ume 0r pressure. Also, a change in the ideal gas temperature occurs only when its 
temp613 ch£Ujge£i ^ r(,ugh exchange o f  heat o r mechanical work, These observations lead to the conclusion 
energy  0f  a gjVen amount o f ideal gas is a function only o f  its temperature T. Since the amount o f
th a t ' 11 (heat) needed to increase the temperature o f an ideal gas is proportional to the am ount of the gas, 

js proportional to N, the amount o f  gas in moles. Thus, the energy o f the ideal gas, U(T, N), is a 
ftf  ction only o f the temperature T  and the amount o f  gas N, It can be written as

U (T, N ) = N U J T )  (1,4.6)

• which V  is tolal internal energy per mole, or m o lar energy. For a mixture o f  gases the total energy 
the sum of the energies o f  the components:

loseph4ouk  Cay-Lussac ( 177S-I850).
(Reproduced with permission from the tdgar H hs Smith Collection, University o f  Pennsylvania Library.)

V (T ,N )  •  £  Uka \ N k ) =  £  NkV n)t{T) <1,4.7) 
к к

ln wl|ich the components are indexed by k. I.alcr developments established that

f/m =  cR T  + V Q <1.4.8)

Jj? * goot* approxitnutinn. in which U0 is a constant, Рог m oM took) gases, such as He and Ar, с *  3/2; for 
gases, such as N 2 and O j,  с  «  ,V2. 1Ъе factor с  can be deduced from the kinetic theory o f gases, 

relates the energy V  to the motion o f  a gas m olecules, 
due to eX*’er*ments ofO ay-L u*sac also showed that, at constant pressure, the relative change in volume &V1V 

311 increase in temperature had nearly the same value for all dilute gases; it was equal to  1/273 ”C l .
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Thus, a gas thermometer in which the volume o f  a gas at constant pressure was the indicator o f temperatur e , 
had the quantitative relation

in which а =  1/273 is the coefficient o f  expansion a l constant pressure. In Chapter 3 we will establish the 
relation between the temperature f. measured by the gas thermometer, and the absolute temperature T.

The above empirical laws o f  gases played an im portant part in the developm ent o f  thermodynamics. They 
are the testing ground for any general principle and are often used to illustrate these principles. They were 
also important for developments in the atomic theory o f  matter and chemistry.

For m ost gases, such as C O j, N2 and O j. the ideal gas law was found to be an excellent description of 
the experimentally observed relation between p , V  and T  only for pressures up to about 20 atm. Significant 
improvements in the laws o f  gases did not com e until the m olecular nature o f gases was understood. ]n 
1873, more than 200 years after Boyle published his famous results, Johannes Diderik van der Waals ( 1837- 
1923) proposed an equation in which he incorporated! the effects o f attractive forces between molecules and 
m olecular size on the pressure and volume o f  a  gas. We shall study van der W aals' equation in detail in the 
next section, but here we would like to familiarize the reader wkli its basic form so that it can be compared 
with the ideal gas equation. According to van der W aals, p, V, N  and T  are related by

In this equation, the constant a  is a  m easure of the attractive forces between molecules and b  is proportional 
to the size o f  the m olecules. For exam ple, the values o f  a  and h  for helium are smaller than the corresponding 
values for a gas such as CO : . The values o f the constants « and b  for some o f  the common gases are given in 
Table 1.1. Unlike Khe ideal gas equation, this equation explicitly contains m olecular parameters and it tells us

Table 1.1 Van der Waals constants a m l  b  and critical constants Tc, p c and V„. h r  selected gases.

Gas A (bar 12 m oh2) 8  (L m oH ) Tc (Ю pc (bar/ Knc (L mol ’i

Acetylene (С2Мг) 4.51 6 0.0522 308.3 61.39 0.113
Ammonia (NK,) 4.225 0.0371 405.5 113.5 0.072
Argon (Ar) 1.355 0.0320 150.9 49.55 0.075
Carbon dioxide (СОг) 3.658 0.0429 304.1 73.75 0.094
Carbon m onoxide (CO) 1.472 0.0395 132.9 34.99 0.093
Chlorine (С1Г) 6.343 0.0542 416.9 79.91 0.123
Ethanol (C, t l j  OH) 12.56 0.0871 513.9 61.32 0.167
Helium (He) 0.0346 0.0238 5.19 2 .2 2 0.057
Hydrogen (Hj) 0.245 0.0265 32.97 12.93 0.065
Hydrogen chloride (HC1) 3.700 0.0406 324.7 83.1 0 .0 B1
Methane (CH4) 2.300 0.0430 190.5 46.04 0.099
Nitric oxide (NO) 1.46 0.0289 180 64.8 0.058
Nitrogen (N2) 1.370 0.0387 126.2 33.9 0.090
Oxygen (О,) 1.382 0.0319 154.59 50.43 0.073
Propane (C3Ha) 9.385 0.0904 369,82 42.50 0.203
Sulfur dioxide (SO,) 6.865 0.0568 430,8 78.84 0 .122
Sulfur hexafluorlde <Sf6) 7.857 0.0879 318,69 37.7 0.199
Waiter (HjO) 5.537 0.0305 647.14 220.6 0Л 56

Source-, fa ) extensive listing of van der Vtaals « w a n ts  can be found In D.R. tide (ed.), CRC H u td b o o k  o f  Chemistry and Physics, 75*  «dltloi1 
1994, CRC Press: Ann М ю г, Ml.

V  =  V0( l  + a t) (1.4.9)

(1.4.10)
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В  ,deaj gas pressure and volume are to  be 'corrected ' becam e o f the m olecular size and intermolecular 
bow tb£^ ,e1's[iaii see how van der Waals an ived  at this equation in the next section. At this point, students are 
f o r c e s  ^  ^  pause and to try and derive this equation on their own before proceeding to the next section. 
eIicourajA ̂  ^ h ( (be energy o f  the gas is also altered due to forces between molecules, in  Chapter й

**ш 7ее that the energy o f  a van der Waals gas can be written as

brw ' U tJcal- a ( ^ ) i K (1.4,11)

T b e  v a n  d e r  Waals, equa tion  was a great improvement over the ideal gas law, in tlial it  described the observed 
,  tion o f gases and the fact that, above a certain temperature, called the critical temperature, gases could 

t b e  liquefied  regard less o f the pressure, as we will see in the following section. However, it w as found that 
th e  van der Waals equation  failed at very high pressures (Exercise 3.13). Various improvements suggested by 
C la u s iu s , Bert helo t and others are d iscussed in Chapter 6 ,

1.5 S tates o f  M atter  a n d  th e  van  d er  W aals E q u ation

The am plest transformations o f m atter caused by heat is the melting o f  solids and the vaporization o f liquids. 
In th e rm o d y n am ic* , the various states o f « la tter (solid, liquid, gas) are often rcfeiTed to as phases. Every 
compound has a definite temperature 7 m at which it melts and a  definite temperature Tb at which it boils, 
In fact, this property can be used to identify a  compound or separate the constituents o f  a m ixture. W ith the 
development of the thermometer, these properties could be studied with precisian. As noted earlier. Joseph 
Black and James Watt discovered another interesting phenomenon associated with ihe changes o f  phase: 
at the melting or the boiling temperature, the heat supplied to a system does not result in an increase in 
temperature; it only has the effect o f converting the substance from one phase to another. This heat that lays 
latent' o r hidden w ithout increasing the temperature was called the la tent beat. When a liquid solidifies, for 

example, this heat is given out to the surroundings. This phenomenon is summarized in Figure 1.3.
Clearly, the idea) gas equation, good as it is in describing many properties o f  gases, does not help us to 

understand why gases convert to liquids when compressed. An ideal gas remains a gas at all temperatures and 
its volume can be compressed w ithout limit, In 1822, G ay-Lussac 's friend Cagniard de la Tour(1777~1859) 
discovered that a gas dues not liquefy w hen compressed unless its temperature is below a critical value, called 
the critical tem pera tu re , This behavior o f  gases was studied in detail by Thom as Andrews (1813-1885), 
who published his w ork in 1869. During this time, atomic theory was gaining m ote and m ore ground, while 
Maxwell, Clausius and others advanced tbe idea that heat was related to m olecular m otion and began to Bad 
an explanation of tbe properties o f  gases, such as pressure and viscosity, in  Ihe random  m otion o f  molecules, 
h was in this context that Johannes D idcrik van der Waals (1837-1V23) sought a single equation o f state for 
the liquid and gas phases o f a  substance, to  1873, van der Waals presented his doctoral thesis titled On the 
( ontinuity o f  the G o t and Liquid Stale, in which he brilliantly explained the conversion o f  a gas to a liquid and 
be existence o f critical temperature as the coniequence o f  forces between molecules and m olecular volume, 

and *° ' Vaa*s 11131 two m ain factors modify the ideal gas equation: the effect o f m olecular volume
jWd the effect o f  mtermoleculat forces. Since molecules have a nonzero volume, the volume o f  a gas cannot 

reduced to an arbiw-arily small value by increasing p . The corresponding modification o f  the ideal gas 
®4#*ton would be ( V -  bN ) =  NRTIp, in which the constant b  i* tin- limiting volume o f  1 m ol o f  the gas as 
derV^0 *llC eonstaut som etim es called the 'excluded volum e’. The effect a f  m tetm oleeular forces, ,va£ 

aals noted, is to  decrease the pressure, as illustrated in Figure 1,4. Hence, the above " volume-corrected’ 
R a t io n  is further modified to ’ tX N O L C  GIYA Ш Т Т У Т ? |

NUT ,--------------- S p
V - b N  F

li

REESTRt
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Figure 1.3 The change in temperature o f I m ol o f  H20  venus the amount ot heat, at a pressure o f I a(m 
A t the melting point, absorption o f heat does not Increase the tm pera ture  until all the Ice melts. It takes about 
6 kl to melt I m ol o f  ice, the 'latent heat' discovered by ioseph В1жк, Then the temperature Increases until the 
boiling point is reached, at which poin t it remains constant until all the water turns to steam. It takes about 40 kl 
to convert I m ol o f  water to steam.

О О О 
о

Figure 1.4 Van der Waals considered molecular interaction and molecular size to improve the ideal gas eqti-i- 
Hon. As shown o n  the left, the  pressure o f  a real gas Is less than the ideal gas pressure because Intetmoleculat 
attraction decreases the speed  o f  the  molecules approaching die wall. Therefore, p  =  -  sp. As shown on 
the right, since the molecules o f a gas h a w  a nonzero size, the volume available to molecules is less than 
volume o f  the container, lach  m olecule has a volume around It that is not accessible to other molecules becau>e 
the distance betw een the centers o f  the molecules cannot b e  less than the sum o f  the molecular radii. As aresuh- 
the volume o f the gas cannot decrease below  this 'excluded volume'. Thus, V in  the ideal gas equation is replaced 
with (V  -  bN ) so that as p  -» oo, V - f  bN.
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lohannes ww der Waals (1837-1923).
(Reproduced with permission from the tdgar fahs Smith Collection, University o f  Pennsylvania Library.)

Next, van der Waals related the factor Sp to the m olar density N /V  using the kinetic theory o f  gases, which 
showed how molecular collisions with container walls cause pressure. Pressure depends on the num ber of 
molecules that collide with the walls per unit area, per unit time; therefore, it is proportional to  the molar 
density N/V  (as can be seen from the ideal gits equation). In addition, each molecule that is close to a container 
wall and moving towards it experiences the retarding attractive forces of molecules behind it (see Figure 1.4). 
fhis iorce would also he proportional to m olar density M V: hence. Sp should be proportional to two factors 
w  so that one m ay write Sp =  rtN /V )-. in which the constant a  is a measure o f  the intermolecular forces, 
he expression for pressure that van d e r W eals proposed is

°Г‘ **11 is usually written:

NUT N 2
р т 7 ^ ~ ш  V
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Figure 1.5 The van der Waals isotherms for C 0 2 (Tc =  304.14 Kjf. When T < Tc, them Is a region AA'BB'c in 
which, for a  given value o f p, the van der Waals equation does not. specify a unique volume V; in this region, the 
gas transforms to a liquid. The segment A '8 8 ’ Is an unstable region; stMes corresponding top<7lnis on this segment 
are nor experimentally realizable. Experimentally realizable states are on the dotted line ABC. The observed sute 
follows the patli ABC, A detailed description o f  this region is discussed In Chapter 7.

This turns out to be an aquation o f state for both the liquid and the gas phase. Van der W aals' insight revealed 
that the two phases, which were considered distinct, can, in fact, be described by a single equation. Let us
see how.

For a given T, a p - V  curve, called the p ~ V  isotherm , can be plotted. Such isotherms for the van der 
Waals equation (1.5.1) are shown in Figure 1.5. They show mi im portant feature: the critical tem perature  
Tc studied by Thom as Andrews. I f  the temperature T  is greater ttian Tc then the p - V  curve is always single 
valued, much like (he ideal gas isotherm, indicating that there i» no transition to  the liquid! state. However, for 
lower temperatures, T  < Tc. the isotherm has a maxim um  and a minimum. There are two extrem a because 
the van der Waals equation is cubic in V. This region represents a state in which the liquid and the gas phases 
coexist in thermal equilibrium. W hen T <  T0, on the curve shown in Figure 1 .5, the gas beginB to  condense 
into a liquid at point A; the conversion o f gas to liquid continues until point C, at which all the gas has been 
converted to liquid. Between A and C, the actual state o f the ga* does not follow the path A A 'B B 'C  along 
the p - V  curve because this curve represents an unstable supersaturated state in which the gas condenses to a 
liquid. The actual state o f the gas follows the straight line ABC. which represents states in which the liquid 
and gas states coexist. In f a c t when 7 '<  Т .. the pressure on the van der Waals curve can be negative (Exercise 
1,16), but such states are not physically realized; the physically realized states are on the fine ABC. This line 
called the coexistence line, is such that the area enclosed by the van der Waals curve above it (A A 'B ) equal* 
the area enclosed below it (B B 'C ). The coexistence line w ill be discussed in more detail m C hapter 7.

As T  increases, the two extrema move closer and finally coalesce at T  =  Tc. For one mole o f  a gas. the point 
[p. V) at which the two extrem a coincide is defined as the critical pressure p c and critical m olar vduW e 
Ут с . For Г  higher than Tc. there is no pha«e transition from a gas to a liquid; the distinction between gas and 
liquid disappears. (This does not happen for a transition between a solid and a liquid because a solid is nn’i-
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liquid: the two »tates are always distinct.) Experimentally, the c ritica l constan t*  pc. V ^ . and
aidereJ  1 and they are tabulated (Table 1.1 lists some examples).
f c can tK 111 t|K ^ t i c a l  param eters to the van der Waals parameters n  and b  by the following means. We 

W« canJ Cwc regaid p(V , T) as a  function o f V, then, for T  < TK, the derivative (dpldV)T =  0 at the two 
note lb" 1 ^  second derivatives have opposite signs. As T  increases, at Ihe point where the tw o extrema 
extrema- ^  g(C0IH|  derivative is therefore aero. Hence, at the critical point T  =  Te. p  =  p ( and V =  V ^ ,  we 
С0'ПС> inflection poin t at which the second derivatives o f  a function vanish. Since the first derivative is also 

^ a T t h e  critical point:

■  (*),— (30 , -
Uiin th e se  equations, one can obtain the following relations between the critical constants and the constants 
u and b (Exercise 1Д7):

9 У,; j r , v  , b  = - ig  с SK< 3a m ~RTcVm , b = - 2 Z  <1,5.3)

in which Vm  is the molar critical volume. Conversely, we can write the critical constants in terms o f  the van 
der Waals constant* a  and b (Exercise 1.17):

B >  <IM
Table 1.1 contains «he values o f  «  and b  and critical constants for some gases.

1.5.1 The Law  o f  C orresp o n d in g  S tate*

Eveiy gas has acharacteristic tem perature Гс, pressurepc, and volume V * . which depend on the m olecular 
size and intermoleeular forces. In view o f  this, one can introduce dim ensionless reduced  variab les defined 
by

T' * T ' V' ~ T L - p '  = 7  n ’5 -5)* ft шс г  с

Van der Waals showed that, if  h is equation is rewritten in terms o f  these reduced variables, one obtains the 
following ‘universal equation’ (Exercise 1.18). which is independent o f the constants л  and b:

H  л- йгЬ'Я
llns is a remarkable equation because it implies that gases have coiresponding states: at a  given value o f  
'educed volume and reduced temperature, a ll Rases have Ihe same reduced pressure. This statement is called 
. *w ° f  corresponding sta tes  or p rinc ip le  of corresponding states , which van der W aals enunciated 
ln an 1880 publication. Noting that the reduced variables are defined wholly in terms of the experim entally 
nj** '*edcritical constants./),., and 7'c.lie conjectured that the principle has a general validity, independent 

д *  equation o f Mate. According to the principle of corresponding slates, at a given T, and the reduced 
*®“res p r of all gases should be the sain* (which is not necessarily the value given by Equation (1.5.6)). 

deviation from  ideal gas behavior is usually expressed by defining a com pressibility factor:

7  J j 2_ = E e  
Я Т
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which it the ratio between the actual vohime o f  a gas and that o f  tbe ideal gas at a given Г  and p. Ideal gas 
behavior corresponds to  7 = 1 .  For real gases, at low pressures and temperatures, it is found that Z  < 1, hU( 
for higher pressures and temperature». Z  >  1. It u  also found that there is a  particular temperature, called ц1с 
Boyle temperature, a t which Z  is nearly t and the relationship between p  and V  is close to  that o f  an ideal gas 
(Exercise 1.11). One way to verify the law  o f corresponding state* experimentally is to plot Z as  a function ,,f 
reduced pressure p ,  at a given reduced temperature Tt . The compressibility factor Z  cun be written in terms 
o f the reduced variables: Z  *  (pt Vm./BTe'!)lpt Vm ITI) =  Zc(prV,„)Tr) in w hich <?cV'tnc//?7fc ) •= Zc, The value of 
Zc may not vary m uch from one gas to another. For exam ple, for the van der Waals gas, Zc =  \рсУ ж!Ю  , ) = 
3/8 (Exercise 1.18). If we assume Zc is constant, then Z  is a function o f the reduced variables.

Experimentally, for a given p r and Tr. the value o f  V„,t . and hence Z, can be obtained. Experimental values 
o f Z  for different gases could be plotted as a function o f  p T for a fixed T,. If the law o f corresponding states 
is valid, then a t a given value o f  Tr and p , the value o f  Z m ust fee the same for all gases. The plot shown 
in Figure 1,6 indicates that the validity o f  the law o f  corresponding states is fairly general. Note that this 
experimental verification o f  the law of corresponding states is not based on the validity o f  it particular equation 
o f state.

The van der Waals equation and the law of corresponding states, however, have their limitations, which 
van der Waals him self noted in his 1910 Nobel Lecture:

But closer exam ination showed me that m atters w ere not so simple. To my surprise I realized that the 
amount by which the volum e must be reduced is variable, that in extremely dilute sDate this amount, 
which I notated b. is fourfold the m olecular volum e1 -  but that this amount decreases with decreasing 
external volume and gradually falls to about half. But the law governing this decrease has still not been 
found.

Van der Waals also noted that the experimental value o f 2 C =  lpcVaxIKT'l.) for most gases was not 3/8 = 
0.375, as predicted by bis equation, but was around 0.25 (0,23 for w ater and 0.29 fop Ar). Furthermore, 
it became evident that the van der Waal» constant a  depended on the temperature -  Rudolf Clausius even 
suggested that a  was inversely proportional to T. Thus, the parameters a  and b  might themselves be functions 
of gas density and temperature. As a result, a num ber o f alternative equations have been proposed for the 
description o f real gases. For example, engineers and geologists often use the following equation, known as 
the R ed lich-K w ong equation:

NK T a N 1 KV a  1 f , 57)
P ° V - N b  y /? V ( V  + m ~  Vm - b ~  ^ У т(Ут + Ь)

The constants a  and b in this equation differ from those in the van der Waals equation; they can be related to 
the critical constants and they are tabulated in the sam e way as the van der Waals a  and b. We will d iscus  
other similar equations used to describe real gases in  Chapter 6 .

The limitation o f van der W aals-type equations and the principle o f  corresponding Mates lies in the fad 
that m olecular forces and volume are quantified with ju s t two parameters, a  and b. As explained below, two 
parameters can characterize the forces between sm all m olecules fairly well, but larger m olecules require more 
parameters.
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figure 1.6 Isothetms o f compressibility factor /  (у-axis) as a function o f  reduced pressure p, ( x-axis) for various 
Rases showing the validity o f  the law o f  corresponding states. At very low pressuies, the compressibility factor 
approaches the idetlgas value Z  =  1. (Reproduced with permission from Coug-len Su, Industrial and Engineering
< ministry, ЗЯ (194b}, в03, Copyright 1946, American Chemical Society).

* -5.2 Molecular Forces and the Law o f  Corresponding States

a molecular point o f view, the vim der Waals equation has two parameters, a and b , that describe 
far *CU,ar ôrcc‘ ' 0**e» called the van d e r  W aals forces. These force* are attractive when the molecule» arc 
^  T*** km are repulsive when they com e into contact, thus making the condensed state (liquid or solid) hard 

« ■ p ress. [t ls repulsive core that gives the molecule a nonzero volume. The typical potential energy
,Wo molecules is expressed by the so-called Lennanl-Jone» energy:

1 Molecular volame is Ae actual volume of the molecules (ЛГ^ят^Я for 8 mote o f spherical molecules of radius r).
„ ц И . ь  [ ( £ ) “ - ( £ ) « ; <1.5.8)
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Figure 1.7 lermard-lones '6 - W  potential energy betw een tw om decu les as a function o f the distance betwwn  
their centers. It Is common to specify e in units o f  kelvin using the ratio e/kg, In which ke is the Boluntann const,mi. 
The assumed Lennard-lones parameter vntues for the above curve are e/kB =  197 К (which cortespomls to 
eNa = 1.638 kl m o/ ' 1) and в  a  430 pm . T im e values represent the approximate interaction energy between  (;o , 
molecules.

Figure 1.7 show* a plot o f  this potential energy as a function o f  the distance r  between the centers o f  the 
molecules. As the distance between the molecules decreases, t/ ц  decreases, reaches a minimum, and sh a rp ly  
increases. The decreasing part o f  U u  i» due to the term - io h ’f '-  which represents an attractive force, and 
the sharply increasing part is due to the term (a ir)12, which represents a repulsive core. The Lennard-Joncs 
energy reaches a minimum value o f  - t  when r  2 116a  (Exercise 1.20). The two van de r Waals p a r a m e te r s .  
a  and b ,  are related to t  and a  respectively, the form er being a m easure o f  the m olecular attractive force and 
the latter a  m easure o f  the m olecular size. In fact, using the principles o f statistical thermodynamics, fo r  a 
given e  and с  the value* o f  a  and h  can b* calculated. Such a relationship between the m olecular interaction 
potential and the parameters in the van der Waals equation of statte gives us an insight inoo the limitations ol 
the law o f corresponding states, which depends on just two parameters, a and b. I f  more than two param eters 
are needed to describe the forces between two molecules adequately, then we can also expect the equation 
o f  state to depend on more than two parameters. Lennard-Jones-type potentials that иве two param eters 
are good approximations for small molecules; for larger molecules the interaction energy depends not only 
on the distance between the molecules but also on  their relative orientation and other factors that require 
more parameters. Thus, significant deviation from the law o f  corresponding slates can be observed for larger 
molecules.

1.6 An Introduction to the Kinetic Theory of Gases

W hen Robert Boyle published his study cm the nature o f  the ‘spring o f the a ir' (what we call pressure today I 
and argued that heat was an intense com m otion o f the p arts ', he did not know how pressure in a gas actually 
arose. During the seventeenth century, a gas was thought to be a continuous substance. A century later. D a n te
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• i f  n  70 0 - 1782 ) published the idea that the m echanism  that caused pressure is tine rapid collisions of 
gernou111 ^  ^  wallg o f container [5]. In his 1738 publication, Hydrodyruimioi. Bernoulli presented 
molecu e ^  ^  average force on the container walls due to m olecular collisions and obtained a simple 
his ealeu ^  pressure: p  -  (m nv2^ g/ 3 l  in which m  is the m olecular mass, n  is the number o f  molecules 
express»" ^  js ^  average speed o f  molecules. At that time, no one had any idea how small 
per unit w c r t  o r  h o w  (-a s t  they moved, but Bernoulli’s work was an important step in explaining the 
£at e a s in te rm s of m olecular motion. It was the beginning# o f  a subject that cam e to  be known asQfopcrties ш « ъ
t h e  kinetic theory a t  gases.

The kinetic theory o f  gases was largely developed in the late nineteenth century. Its goal was to explain the 
ijuTfcd properties o f  gases by analyzing the random m otion o f molecules. Many quantities, such as pressure, 

diffusion c o n s ta n t  a n d  the coefficient of viscosity, could be related to the average speed o f  m olecules, their 
gss size a n d  th e  average distance they traversed between collisions (called the mean free p a th ). As we shall 

se* in th is  s e c tio n , th e  names o f  James Clerk Maxwell (1831-1879) and Ludwig Boltzmann (184 4 -1 У 06)are 
associated with some of the basic concepts in  this field, while, as is often the case in science, several others 
contributed to i ts  development [4,5]. In this introductory section we shall deal with some elem entary aspects 
of kinetic theory, such as the m echanism that causes pressure and the relation between average kinetic energy 
and temperature.

1.6.1 K inetic Theory o f  P ressu re

As Daniel Bernoulli showed, using the basic concepts o f  force and randomness, it is possible to relate the 
pressure of a gas to m olecular motion: pressure is the average farce per unit area exerted on the walls by 
colliding molecules.

We begin by noting some aspects of the rundom motion o f  molecules. First, i f  all directions have the 
same physical properties, then we m ust conclude that motion along all directions is equally probable: the 
properties o f molecules moving in one direction will be the same as the properties o f  m olecules moving in 
any other direction. Let us assume that the average speed o f  the gas molecules is v,vg. We denote its x, у  and 
г components by vI0vr vymgi and v:>vg. Thus:

vl y ,* ‘ >Z,vg +  v? m + i m (  <1 6 1 )

Because all directions are equivalent, w e m ust have

v*
v2 = v 2 = i ^  = - i l i  <1 ,6 .2 )X avy yavg г avg ц л

Ilie following quantities are necessary for obtaining the expression for pressure:

Na  =  Avogadro number 

N  =  amount o f  gas in moles

V  =  gas volume 

A# =  m olar muss o f  the gas 

m  =  mass o f  a single molecule =  ,W/iVA 

n -  num ber o f  m olecules per unit volume => NNA/ V

* calcu!ate the pressure by considering the m olecular collisions wilh the wall. In doing so. we will
ate random  m otion o f  molecules with molecules moving with an average speed vn i . (A rigorous

<1,6.3)
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-nrvt

Hgure 1.Й Rapid collisions o f gas molecules with the walls o f the container give rise to pressure. By согпрщ^ 
the average m om entum transferred to the m i l  by  colliding mok>cute$, pressure can be  related to the averag,, I  
the square o f  molecular velocity.

"'S

derivation gives the same result.) C onsider a layer o f  a gas, of thickness Ax, close to die wall o f  the containet| 
(see Figure 1.8). When a molecule collides with the wall, w hich we assume is perpendicular to the x  a x is 1 
the change in momentum o f the molecule ill the x  direction equate 2mvxvig. In the layer o f  thickness Д л  ami 
area A , because o f  the randomness o f  m olecular motion, about half the molecules will be moving tow anJ 
the wall; the rest will be moving away from the wall. Hence, in a time A t = A*/vavg about half the molecules 
in the layer w ill collide with the wall. The num ber o f molecule» in the layer is ( Д л А ) И  and the number o f | 
molecules colliding with the walls is {АхЛ)п/2. Now, since each collision imparts a m omentum 2mvIsvg, in a 
time A t. the total m omentum imparted to the wall is 2mvxavg lAxA)n/2. Thus, the average force F  on the wall 
o f  area» A is

M omentum imparted 2mvXIK„AxA „ mvx m tAxAn
f t  as ..................... ——......  ss — . ..............  — sa ... —....... . s= ftjV * f lA  ( f 6 4 l I

A t A t 2 A x /v x m  '* v£ " ,4 II

Pressure p , which is the force per unit area, is thus

P = f=*vL v |«  (16.5)1

Since the direction л; is arbitrary, it is better to  w rite this expression in terms o f the average speed of the I 
molecule rather than Us .t component. By using Equation (1.6.2) and the definitions (1.6.3), we can write thel 
pressure in terms the macroscopic variables M, V  and IV;

w m c,„ =  ~ M — V: ( l .6 .6) I

This expression relates the pressure to the square o f  the average speed. A rigorous description o f  die random 
motion o f m olecules leads to the same expression for the pressure with the understanding that y2avg is to be 
interpreted a* the average o f  the square o f the m olecular velocity, a distinction that will become clear when 
we discuss tike M axwell velocity distribution.

W hen Daniel Bernoulli published the above result in 1738. he did not know how to relate the m o le c u le  

velocity to temperature; that connection had to wait until Avogadro stated bis hypothesis in 1811 ami the 
formulation o f  the ideal gas law based on tun em pirical temperature that coincides with the absolute tem p e ra tu re  
that w e use today (see Equation (1.4.9)). On com paring expression (1.6 .6 ) with the ideal gas equation, s 
NRT, we see that

^  =  ^ ; vg o - 6 V
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I  itzmann constant jfcB =  J?/iVA =  1.3807 x  l(T2J J К 1 and noting U  -  m N A, we can express 
Usm? *  / 7 и а  relation between the gas m olecule’s kinetic energy and temperature: 
gquati°n ( l '6 ' ' '

^ a v g  =  <!.«■»>

№  w onderful resu lt because it relates temperature to m olecular m otion, in agreem ent with Robert 
This IS ^n |u-tioB I, shows us that the average kinetic energy of a m olecule equals 3fcB772. It is an important 
Boyle . 1  ̂understancjing o f  the m eaning o f  temperature at (he m olecular level.
sK? in£"pnUation <1.6 .8 ) we see that the total kinetic energy o f 1 mol o f  a gas equals 3RT/2. Thus, for 

* * * >  gases, whose atoms coukl be thought o f as point particles that have neither internal structure nor 
monI energy associated with interm olecular forces (He and Ar arc examples), the total m olar energy of 
***« к  entirely kinetic; this implies Vm =  ЗЛ7У2. The molar energy of a gas o f polyatomic molecules is 
Г* er A polyatomic molecule has additional energy in its rotational and vibrational motion . In the nineteenth 
centwy 38 kinetic theory progressed, it was realized that random m olecular collisions result in an equal 
distribution of energy among each o f  the independent modes o f  m otion According to this equ ipa rtition  
theorem, the energy associated with each independent m ode o f  m otion equals % 772. For a  point particle, 
for example, there arc three independent m odes of m otion, corresponding to m otion along each o f  the three 
in d ep en d en t spatial directions x, у  and г. According to the equipartition theorem, the average kinetic energy 
for motion along the x  direction is m v2x ~  k%T/2, and similarly for the у  and г  directions, making the 
total kinetic energy H kb T/2) in agreem ent with Equation (1.6,8), For a diatom ic molecule, w hich we may 
picture as two spheres connected by a rigid rod, there are two independent modes o f rotational m otion in 
addition to the three modes o f  kinetic energy o f the entire molecule, Hence, for a diatomic gas the molar 
energy Um =  5Л772, as we noted in the context o f Equation (1.4.8). The independent m odes o f m otion are 
often called degrees o f freedom .

1.6.2 The M uxwell-Boltzmann Velocity Distribution

A century after B ernoulli's Hydrodynamica  was published, the kinetic theory o f  gases began to make great 
inroads into the nature of the randomness o f  m olecular motion. Surely molecules in  a gas m ove with different 
velocities. According to Equation (1,6.8), the m easurem ent o f  pressure only tell* us the average o f  the 
square of the velocities. It does not tell us what fraction o f  molecules have velocities w ith a particular 
magnitude and direction. In the latter half o f  the nineteenth century, James C lerk M axw ell (1831-1879) 
directed his investigations to the probability distribution o f  m olecular velocity that specifies such details. 
We shall denote the probability distribution o f the m olecular velocity v bv P(v). The m eaning o f P(v) is 
as follows:

(v> dvjdv),4vj, is the fraction o f  the total num ber o f molecules whose velocity vectors have their 

components in the range (v^v* +  <Л»л), ( iy v y +  dvv) and (v{,vt  +• dv2),

dv *П *** I '9 - each point in the velocity space corresponds to a velocity vector, P(y)  dv , dvv 
Point f that the velocity of a m olecule Ues within an elemental volume dv,, dvy and dv, at the

V  vj>' f t* )  1» called the p ro b ab ility  d ensity  in the velocity space, 
by j f nat*lcm a,*eal form o f  P{ v) was obtained by James Clerk M axwell; Ihe concept was later generalized 

Boltzmann (1844-1906) to the probability distribution o f the total energy E  o f the molecule.
8 to the principle discovered by Boltzmann, when a system  reaches thermodynamic equilibrium , the
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dv, dv, dv.

v ,

Figure 1.9 The probability distribution k e  the velocity is defined In the velocity space. P<v)dv, dv,, dv. is th 
probability that the velocity o f  a molecule if within the shown cube.

probability that a m olecule is in  a state with energy E  is proportional to exp(~Е/кй Т). If p(E) is the num 
o f different states in which the molecule has energy E,  then

The quantity p{E) is called the density o f states. Relation (1.6 .У-). called the Boltzmann princip le , is on 
of the fundamental principles o f physics, Using this principle, equilibrium thermodynamic properties of a 
substance can  be derived from m olecular energies E - a  subject called statistical thermodynamics, presented 
in a later chapter. In this introductory section, however, we will only study some elementery consequences of 
this principle.

The energy o f  a molecule E  = £ „ „„  +  EM + E vjb +  E M +  ••• . in which Evml is  the kinetic ene 
of translational motion o f  the whole molecule, is the energy o f  rotational motion. fivib is the energy 6 
vibrational motion, is the energy o f (the m olecule’s interaction with other molecule* and fields such a» 
electric, magnetic or gravitational fields, and so on. According to the Boltzmann principle, the probability th 
a molecule will have a  translational kinetic energy Eams is proportional to e x p (-£ ttara/fcBT) (the probabiliti 
associated with other fo rn s  of energy are factors that multiply this term). Since the kinetic energy due to

the velocity vector v is P(v) dv_, dVj, dv.. According to the Boltzmann principle, this probability is

P(E)  oc p i E ^ ' W <1.6.9

translational motion o f  the molecule is m r /2 ,  w e can write the probability as a function o f the velocity v by 
which we mean probability that a molcculie's velocity is in an elem ental cube in velocity space, as shown Щ

the probability that a m olecule’s  velocity is in an elemental cube o f volume dv^ dvy dvz located at the tip

A v)dvjrdv>dv, =  i e ~ ’m’1/ Jl*r <j|v1 dvy dvJ

in which v2 =  +• vJv +  v2..  Неге, г is the norm alization factor, defined by
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integral1
00

which gives

(1.6 .12)

(S om e integrals that are often used in kinctic theory are listed at Che end of this chapter in Appendix 1.2.) 
With th* normalization factor thus determ ined, the probability distribution for the velocity can  be written 
explicitly as

This is the M axwell velocity d is trib u tio n . Plots o f  this function show the well-known Gaussian or ‘bell
shaped’ curves shown in Figure 1.10a. It must be noted that this velocity distribution is that o f a gas at 
thermodynamic equilibrium, The width o t  the distribution is proportional to the temperature. A gas not 
in thermodynamic equilibrium has a different velocity distribution and the very notion o f  a temperature 
may not be well defined, but such cases arc very rare. In  m ost situations, even if  the temperature changes 
with location, the velocity distribution locally is very well approxim ated by Equation (1,6.13). Indeed, in 
computer simulations o f gas dynamics it is  found that any initial velocity distribution evolves into the M axwell 
distribution very quickly, in the time it take* a molecule to undergo few collisions, which in m ost cases is less 
than 10“® s.

1 h 1 he Maxwell Speed Distribution

)e average velocity of a molecule is clearlv zero because ev&rv illn-.tiL-n n f  Vf,liVUV лпЛ ife imrvw,rt‘ <m>

all possible j Clnc™ " sin e  &  dip dv. the probability is written as /*(v)vJ sin 9 dfl dqt dv. The integral over 
a i r e c t i o n a  is

(1.6.13)

4 xn<?<vj ; 1 .....— w m u M w u  iA»i jjivnwwuiai upwu, *.«?. uiv ртииаисшу шм1 u u iu ia u ic  wnu nave
YfUtUtt ( V. V 4- HtA rottQwlloea n f  /^«nu 'ttnn TUio ЛЙИ L ... jIim *  k«> nxuxM inn

since

я 2a

f  J  Я (*)А /л0 dO dф dv »  4^r/>(v)v2dv
0*Ю >̂ssO

(1.6.14)
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P(v.)

v jn \ S’1 

(a)

<M

figure 1.10 Probability distributions o f  iHtrogen. (a) Maxwell velocity distribution o f the x-component oi thi 
velocity v , at I «= 100 К and 300 K. A t the value o f  P (vJ at which P (vj/P (0 )  =  1/2 or 1/e, the width ol th> 
distribution is proportional to y/T. (b) f(v) versus speed  a tT  = WO К and 300 K.

The quantity 4xP (v )v1 is the probability density fo r the m olecular speed. We shall denote it by/tv). With ibis 
notation, the probability distribution for m olecular speeds can be w ritten explicitly ав

/ \ 3/2 

t - J L L .  
щ т

1.6.15)1



В  m o lar  imas* M  ~  a  and fi =  k ^ N A, tbe above expressions can  also be written as 
gjcau*6

/(v )d v  =  4л  ( — —  ) /  e - ^ V d v
V 2 ,r ,f r ;  (1.6.16) 

8  =  J L
и  2RT

of tbe function/(v) is shown in Figure 1.10b. This graph shows that, at a given temperature, there 
T*16 molecules with very low speeds and a few with large speeds; we can also see that f l v )  becomes 
^  d as '/'increases. Tbe speed v at which f i r )  reaches its m aximum is Ihe most probable speed. 
bI'w 'tb  the above probability distributions w e can calculate several average values. We shall use the notation 

w h ich  the average value o f  a quantity X  is denoted by (X).  The average speed is given by the integral
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up

M  = J >/(v)dv (1,6.17)

For the probability distribution (1.6.15), such integrals can be calculated using integral tables. M alhematica  
or Maple While doing such calculations, it is convenient to w rite Ihe probability f l y )  as

/(v )d v  =  —  e - * V d v

, , ,  (1,6.18)
e = J L  l  =
'  Ш '  z \ 2 л К Т >

Using the appropriate integral in  Appendix 1,2 at the end o f this chapter, the average speed can be obtained 
in terms of T  and the molar m ass M  (Exercise 1.23):

00 _____

/  \  4 *  /  J  -P v 2 1 4 *  1 / 8JK T  .  . . .
(v ) = T / V' e '  d v = T _ = y —  (1.6.19)

0

Similarly, one can calculate the average energy  o f  a  single molecule using m  and кй instead o f  M  and U 
(Exercise 1.23):

М»
/ 1  j \  m4jr f  4 m2/r З у я  3 ,  „
\ 2  )  = I T  1 v e d v =  — 5 ^ 7 5  =  г к* 7 (1 -6 -201

0

^  rigorous calculation of the pressure usiing the M axw ell-B oltom m n velocity distribution leads to the 

nr<>bab|10n *a  which =  { x’2) '  A *-80’ tlle value r,t v *  w hich Д у) has a  maxim um  is the most 
V V im fIf*1*' "* ^ls uan easily be determ ined by selling <j/Mv a  0 , a calculation left m  an exercise, 

р г а р ц Й1с “bovc calculations tell us? First, we see that tlie average speed o f  a m olecule i* directly 
,0  l*lc »quare rool o f  Ihe absolute temperature and inversely proportional lo its molar mass. 

dej)<_ j ° n* 01 ,llc m ost important results o f  tli* kinetic theory o f  gases. Another poim to note is the simple 
the aver ПС< ° ^ t*W *v a °Ke kinetic energy o f  a molecule on the absolute tem perature ( 1.6 ,2 0 ), It shows that

• *t*netic energy o f a  gas m olecule depends only on the temperature and is independent o f  its mass.



32 Modern Thermodynamics

Appendix 1.1 Partial Derivatives 

Derivatives o f M any Variable*

W hen a variable such as energy (ДГ, V, Nk) is a function o f many variables V. Г  and Nk, Us partial derivWn 
with respect to each variables is defined by holding all other vnt-isliles constant. Thus, for example, i f  f / ,  y ’ 
/V) *  (5/2)ЛЧйГ -  a(f f2/V), then the partial derivatives are

f d U \  N *
( a ? V  =  V  (А1-ьз

The subscripts indicate the variables that are held constant during the differentiation. In cases w here tlle 
variables being held constant! are understood, die subscripts are often dropped. The change in U. i.e. the j 
differential d (/, due to changes in A', V  and T  is given by

d £ / = ( i ~ )  d r + ( | ^ )  d V + ( ^ )  dN  ( A l . l . J
V ^ r / r j v  \d V / T M  \d N /v,T  I

For functions o f  many variables, there is a second derivative corresponding to ever? pair o f  variables:! 
d^UldTdV, d2U/dN')V, d^U/dT1, etc. For the 'cross-derivatives’ such as d2U/dTdV. which are derivatives] 
with respect to two different variables, the o rder o f  differentiation does not matter. That is:

d2U  d1V
d T d V  dV dT

(A 1.1.5*

The same is valid for all higher derivatives, such as d) UldTi  r)V\ i.e. the order o f  differentiation d o e s  not 
matter.

Basic Identities

C onsider three variables x , у  and г, each o f  which can be expresw d as a function o f  the o ther two variables,! 
x  =  x(y, г), у  =  у (г, х) and z  -  Z(x, у) (p , V and T  in the ideal ga* equation p V  =  N RT  is  an example). Then 1 
the following identities are valid:

Consider a function o f x  and >’, / = f ix ,  y ), other than г. Then:

(A l l-8) I
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, -у Elementary Concepts in Probability Theory
A p p e » * *

n e e  o f  a determ inistic theory that enables us to calculate the quantities o f  interest to us, one uses
In the aJ'se ^ е ( xk, in which к = I, 2, 3........n. represent all possible « values o f a random  variable
pfobsbiu У ^  деуИ be the num ber o f  molecules at any instant in в small volume o f  1 nm 3 within a gas 
л -1*»' ex “ hej. vjs it,)rs at a  website at any instant o f  time. Let the corresponding probabilities for these n 
ot the num s inc« xk, к  =  1, 2 ........n , represents all possible states:
v a lu e s o t  x  w  '  «>

n

2 > * )  = 1 (А1.2.П
/Ы

Average Values

We shall denote the average value o f a quantity A  by (A).  Thus, the average value o f  л  would be

<*) ■= E xt p <xi> (A l.2 .2 )
t e l

Similarly, the overage value o f  x2 would be

П

(* ? ) = ' £ х 2Р(хк) (A  1,2.3)
Ы 1

More generally, iffix^)  is a function o f x, its average value would be

n

if)  =  ^Дч)Р(Хк)
Ы 1

If the variable x  takes continuous values in  the range (a, b), then tbc average values are written as integrals:

ь b

{x) = J  xP{x KU\ ( f )  =  j  f ( x ) P ( x )dx (A l.2 .4)

« г

1 °r з given probability distribution, s, the ntundard deviation, is defined as

i  *  \ J { ( x - { x ) 9 )  (A l.2 .5)

S,Hne ^ m m o n  P robab ility  D istribu tions

Л я Н Ш Ь п ,  This is the probability distribution associated with two outcomes, H and T (such as a 
J  *“**) with ptvibabilities p  and ( I -  p )  respectively. The probability that, in N  trials, m  are H and (TV -  
"0  are T  is given by

W m) -  1 ~  p f ~ m (A l.2 .6 )

of *n man>’ random  processes the random variable is a num ber n. F!or exam ple, the num ber
•nolecules in a small volume within a gas will vary random ly am und an average value. Similarly, so
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is tbe num ber o f molecules undergoing chem ical reaction in a given volume per unit time, The ргоЬаЬщ, 
o f n  in such processes is given by  the Poisson distribution:

/> (* )»  е - н !  (A 1.2 ,7]

The Poisson distribution has one parameter, a ; it is equal to the average value o f  n, i.e. (» ) •= « .
G aussian ditlribulion. W hen a random variable x  is a sum  of m any variables, its probability distribution j, 

generally a Gaussian distribution. If * U a real num ber in the range ( - 00 , 00) the probability distribution ls 
given by

(Al.2.8)

The Gaussian distribution has two parameters, Хц and a. The average value o f x  is equal to x 0 and the standard I 
deviation equals a .

Some Useful Integrals

0

b.

!)'
0 

00

!  x  e“1“ 2djc *  i

0

о
00 

/ j t V ^ d x  =  • 1
2a 3

M ore generally:

e. ( I ) 1' 2 
J  2 n+la* \ a J
0

f. l j )

Appendix 1 «3 Mathematica Codes

Tbe following M athematica  codes show how to define functions, p lot them using the Plot command, produc* 
dynamic graphics using M an ipu late  command, create numerical text output files using E x p o rt c o m m *1-11 
and do algebraic calculations and evaluate derivatives.
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FVALUATING AND PLOTTING PRESSURE USING TH E EQUATION O F STATE AND 
0 0 * *  5 0  d y n a m i c  p l o t s
ДЦ Д б .д tbe van der Walls pressure (PVW ) and the ideal gas pressure (PID) as shown below as functions 

A d e l in e  ^  j .  The parameters и  and b  are set for C O j. Then, using the defined functions die 
0f V and . у  _  ( 5  L J c  300 К  and Гс are evaluated.
pressures a

„ nt  a  aod b  s e t  f o r  СОЭ i We set  N*1 »)

(* «"в?* <* ь*а.ьыг.«о1*-а*) 
a ' 3 ' . 2 9 . (* ь -m o l* '1*)

S i o i S H  (* *1

pvw[v ,T I -  c***/(v-b>) - <»/(r*a))i
H D [ V _ ,T J -

p X D [l.S '3 ®0 ]
PVW I1-5.300]
T O  ( 8 / 2 7 )  • (« / (* * * > > >

16. €2 

15.4835 

304.027

Using the function» defined above, p ~ V  curves could be plotted using the Plot command. The options 
PlotRange, P lo tS tj le und AxesLahel are also used to format the plot. If these are not specified, M mhemotica  
uses default values, Drawing Tbols under the Graphics m enu could be used to add text and figures to the 
plots. For more options see online manual.

Plot [{PVW [V, 270] , P V W  [V, 304], P V W  (V, 330]}, {V, 0 . 06,0.4},

P l o t R a n g e -> { {0,0.4}, {20,1 5 0 }  },
PlotSfcyl»-s>{{<3ray, Thick}, {Blac k , T h i c k } ,  { G r a y , T h i c k } },

AxeeLabel-s»{V/L, p/bar}]

v
bar



The above plot can also be mwle a dynamic p lo t by using the M an ip u la te  command. Using this c o n ^  
on caftsee  bow the p-V 'curve change» when a , b  and T  are changed. Using the table In the text, appr, ’* 
ranges o f  values are specified for a  acd h. ' u

In tbe cell shown below, the value o f  the param eters are displayed w hen the option A ppearance is gpec.. 
as L ab e led '. W hen the option SaveD»(inUlons*>1Viie Is included, all tbe definitions outside the M anipuV 
command (such as /? =  0.0831) are associated w ith the graphic tbal Is generated. Then the stand-alone gja , 
can be used in a C D F (Computable Document Form al) file withoot the code that generated the graphic.

C l e a r  ta, b , R, T 1 , V] i 

R = 0 . 0 8 3 1 < ( » t , b a r . K " - X . » o l * - l * )

>i=(R*T/ (V-Ь)) - ( * / ( V * 2 ) ) f

M a n i p u l a t e [
P l o t [ P V W | V , T l , a , b ) ,{V, 0,06,0.4},

P l o t R a a g e - > { { 0 , 0 . 4 } , { 2 0 , l S 0 } } ,

P lotSeyl«i-»{Blaclc,rh i o k } , * x e a L a b e l - > { V / L , p / b a r } ] ,

{11,270, 330, A p p e a r a n c e - »“b a b * l e d " } ,

{a, 1.0,10.0, A p p e a r a n c e - » " L a b e l e d " },

{ b , 0.02,0.09, A p p e a r a n c e -» • L a b e l e d“},

S a v e D e f i n  i t i o n e  - > T r  u «  1
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|  ut gles for spreadsheets use the 'E xport' command and die file format 'CSV*. For m ore detail 
Towri1®011 use the help menu and online documentation. In tlie command below, the output

for ЙС ®xpl,j ata t*t. This file can be read by most spreadsheets and graphing software.

|;,k.pja»e t x t ", T a b l e [{ * ,P V W t* ,2 7 0 1 ,PV W tx ,304 ],F V W (x ,3 5 0 1 } ,
B*Po r t [  { x , 0 . 0 7 , 0 . 6 , 0 . 0 0 5 } ] , -CSV-]

л а с а -
Table command, we can also generate a table of values o f V and p, as shown below:

Using ®c
,1 p v w  [*» 300] }, {x, o . Q 6 ,0. X, 0.01}] // T a b l e P o n n  

T a b l e  l l x '

0 . 0 6  « 1 . 7 8 4
0 . 0 7  1 7 3 . 3 9 6
0 . 0 8  1 0 0 . 4 0 5  
O.oJ Ш  7 7 . 6 9 4 4

0.1 7 0 . 8 0 2 5

CODE B: OBTAINING CRITICAL CONSTANTS FOR TH E VAN DER WAALS EQUATION

C l e a r  [ a , b , R , T , V ]  I
p[V , T J  . =  <R*T/(V-b>> - ( a / V - 2 ) ,

(• At th e  c r i t i c a l  p o i n t  t h e  £ i r a t  a n d  s e c o n d  d e r i v a t i v e s  of p  w i t h  r e a p e c t  to 

V a r e  i e r o * l

{* Pirat d e r i v a t i v e  *)
D [p[V ,Tl,V ]

(2 а ) /V 3- (R T >/<-b+V ) 2

< * Second d e r i v a t i v e  *)
DI p ! V ,T ] ,V ,V )

'6 a)/v4) + (a R  T ) / ( - b + V > 3

S o lv « i{ ^ .6 , a ) / v - 4 + (2 . R. T) / ( _ b  * v ) - 3===0(

*«) /V *3  -  ( R * T ) / ( . b  + V ) * 2 = = 0 } , { T , V } ]

(|T-><8 a ) / (27 b  R ) , V - > 3  b}}

° *  we ean *ub*tlitute these values in the equation for p  ami obtain p c.

Р ^ , т Г * ) /< а 7 ’Ь **’ ' V ’  3*b '

*/<J7 fa2)

We bave all the critical variables: pc .  a/(27*b‘2>, Tc « (8*aV(27*b*R). Ve =  3*b.
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CODE Cl THE LAW OF CORRESPONDING STATES 

T .  T r* (8 * al/ (27*b*B)» V - Vr*3*bI pc - a /(2 7 * b "2 )i

(* In  м ш  o f theoe v a r ia b le *  th e  reduced p reeaure  p r  •  p /p c . T h i. can nQW b( 
ca lcu la te d * )

p[V ,T l/po

(27 b5 ( - ( a / (9 b2 Vr2) > + (8 a T r)/(2 7  b (-b+3 b V r ) ) ) ) /a  

F u llS im p lify  [ (27 b* ( - (« /(9  b3 VrJ )) + (8 a T » )/(2 7  b <-b+3 b  V r ) ) ) ) /a ]

-(3 /V r3) + (8 Tr) /  (-1+3 Vr)

Thus we have the following relation for the reduced variables, which is the law of coiroponding states: p , j  
(8*T r)/(J*V r-l))- J/Vr'2.

CODE D: PL0ITIN G  THE MAXWELL-BOLTZMANN SPEED DISTRIBUTION FOR A GAS OF |  
MOLAR MASS M  AT TEMPERATURE T

C lear[a ,b ,R 2 ,T ,V ) i 
H=28.0*10'5) (‘m olar eaea of N2 in  kg*)
R2*=8.314(*J/K.Biol*) I 
b=H/(2»R2) I
p [T _ ,T J  t —(4*0*Pi) (M /(2«Pi*R2*t))va vJ*Exp t (-b*»2) /Т] i 
P lo t t{ p tv ,3001,p [ v ,100]} ,{ v ,0 ,1500},

P lo tS ty le ->{{B lack,T hick}, {Sray, T hick}}]

t ilt I
As in Code A one can also produce adynamic plot o f the Maxwell-Boltzmann velocity distribuiu'"- 1  

Г a* tbe dynamic variable.

C lea r[a ,b b ,R 2 ,T 2 ];
M—28 .0*10 ‘* t  (*molar паев of H2 in  kg*)
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< M /< 2 * P i* R 2 * T )  ) 3/2 v ^ E x p [ ( - b b .

p i » - '* '1 ’ '

P^ g - > { { ° ' 1500}' { 0 - ' 0 ' 004}}1 ' 
{TJ, 100!4 o 0 ^ P P e *r i n c e ' >"L ab ,,le4 ' }1

vs ) /Т ] i
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S am p les

p . Z 1' ! '  11,1 atmosphere consists of 78.1)8% by volume of N2 and 20,95* of 0 2. Calculate the partial 
s due to the two gases.

!i°lution t i ,
ll* « т о л к  'percentage by volume' may be interpreted as follows. If the components of

^ V u t r c  Were ta be separated, at the pressure of 1 aim, the volume occupied by each component is
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specified by the volume percent Thus, if we isolate the N2 in 1.000 L of dry air, at a pressure 0f i a) I  
volume will be 0.7*1 L. Acccmhtig to the ideal gas law, at a fixed pressure and temperature, the а т 0ц ' "* 
gas N  =  Vip/RTy. i.e. the molar amount it proportional to tbe volume. Hence, the percentage by vo|u/ U 4  
the name as the percentage In N, i.e. 1.001) mol of air consists of 0.781 mol of N2. According to D alt^  ^ " 
(see Equation 11.4.5)). the partial prewtu** is proportional to A?; therefore, the partial pressure of N, ,s > 
atm and that of O j is 0.209 atm.

Example 1.2 Using the ideal gas approximation, estimate the change in the total internal energy 0f | 
o fN j at /> =  2.00 atm and /  =298.15 К if its temperature is increased by 10.0 K. What is the energy re4lr 
to heat 1.00 mol of N2 from 0.0 К to 298 K?

Solution The energy of an ideal gas depends only on the amount o f  gas N  and the temperature / p0, 
diatomic gas such as N2 the energy per mole equals (5/2 )HT +  V(r Hence, for N  moles of N: the changed 
energy Д U for a change in temperature from Г, to T2 is

AU =  N(5/2)R(T2 -  T( )

In the above case

Hence:

N  = 2.00 atm x  1.00 L 
0.8211, atm m o r ^ K - '^ e . lS K )

= 8.17 x  10-2  mol

A ( /«  (8.17 X 10" 2 mol) j ( 8 .3 1 4 J m o r1K '1K10.0K) 

«  17.01

(Note the different units of R  used in this calculation.)
The energy required to heal 1.00 mol od N2 from 0 К to 298 К is

(5 /2W  =  (5/2X8.314 3 К - ‘т о Г 1)(298 К) =  6.10 kJ mol

Example 1J  At Г =  300 К, 1.00mol of C 0 2 occupies a volume of 1.50 L. Calculate tlie pressures given 
the ideal gas equation and the van der Waals equation. (The van dier Waals constants n and b can be oh(a 
from Table 11.1.)

Solution The ideal gas pressure is

1,00mol X 0,0821 a tm L m ol- 'K * 1 X 300K  .
p  ^ ----------------------------  « W a rn

The pressure according to the van der Waals equation is

NRT N 2D =s —----—- — Д— .
v  v -  m  V*

Since the van der Waals constants о and b given in Table 1,1 are in units of L2 atm mol 2 and I- ""'M  
respectively, we will use the value or R  “  0.0821 atm L mol' 1 K~l . This will give the pressure in atmospl'1’1 

1.00(0.0821)300 1.00
P = i . 5 o - i . o o ( o .m 2 i ) - 3 J 9 - S 5  = 1 5 3  atm
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j.-jercis**

'  N ,an<fO; and uswg me щ 
°  щ3 »nd tbe»r ик>1® fractions.

; _t.>.«iit'ii' density of interstellar gas clouds is about 10* molecules/ml- The temperature is

jjree orders of magnitude larger.)

. v' Calculate the amount of gas in moles per cubic meter of atmosphere at p  =  1 aim and T  = 298 К 
using tbe ideal gas equation. 

a )  The atmospheric content of C 0 2 is about 360 ppmv ( parts per million by volume). Assuming 
a pressure of 1.00 atm, estimate the amount of C 0 2 in a 10.0 km layer of ihe atmosphere at 
the surface of the Earth. The radius of the Earth is 6370 km. (The actual amount o f CC>2 in the 
atmosphere is about 6.0 x  101* mol.)

(c) The atmospheric content of 0 2 is 20.946% by volume. Using tbe result in part (b), estimate the 
total amount of O j in the atmosphere.

(d) Life on Earth consumes about 0.47 x  1016 mol of O , per year. What percentage of the 0 2 in the 
atmosphere does life consume in ц year?

1.6 'Ihe production of fertilizers begins with the Haber processes which is the reaction ЗНг + N2 - » 2NH3 
conducted at about 500 К and a pressure of about 300 atm, Assume that this reaction occurs in a 
container of fixed volume and temperature. If the initial prewsure due to 300.0 mol H j and 100.0 mol 
Nj is 300.0 *tm, what will the final pressure be? What will the tinal pressure be if initially the system 
contained 240.0 mol H2 and 160,0 mol N2? (Use the ideal gas equation even though the pressure is 
high.)

1.7 The van der Waals constants for N2 are а =  1.3701,2 atm m o l a n d  b = 0.0387 1. m o l1. Consider 0,5 
mol of N2(g) is in a vessel of volume 10.0 L. Assuming that the temperature is 300 K. compare the 
pressures predicted by the ideal gas equation and the van desr Waals equation.
(a) What it tbe percentage error in using the ideal gas equation instead of the van der Waals equation?
(b) Keeping V *= 10.0 L, use Maple/Mitihenuuica to plot p  versus N  for N  =  1 to 100, using Ihe ideal 

gas and the van der Waals equations. What do you notice regarding the difference between the 
pressure predicted by the two equations?

1.8 mol o f  Cl2 in a volume of 2,50 L, calculate the difference in the energy between ^Adeat am* 
v*. What м the percentage difference when compared witto (7(iteal?

Using the ideal ga* equation, calculate the volume of 1 mol of a gas at a temperature of 25 °C 
and a pressure of 1 atm. This volume is called the Avajfodtv volume.

* atWo*phere of Venus is 96.5% 0O 2 (g). The surface temperature is about 730 К and the 
f  *Ге**Ше i* «bout 90 atm. Using the ideal gas equation, calculate tbe volume of 1 mol of CO j (g)

“nder these conditions (Avogadro volume on Venus).
Use MaphlMathematica and the van der Waals equation to obtain the Avogadro volume on 
 Ve" us a°d  compare it (find the percentage difference) with the result obtained using Ihe ideal gas
equation.



42 Modern Themodynamics

1.10 The van der Waals parameter b is a measure of the volume excluded due to the finite su c of I  
molecules. Estimate the sire of a single molecule from the data in Table 1.1. *b*

1.11 For the van der Waals equation, express the pressure as a pcwer series in 1 IVm, Using this express I  
determine the Boyle temperature Тц at which p  *

1.12 For the Redlich-Kwong equation

R T а 1 
P = V » ~ b  y / f V m(Vm + b)

show that there is a critical temperature above which there is no transition to a liquid state.

1.13 Though tbe van der Waals equation was a big improvement over the ideal gas equation, its vaiy 
is also limited. Compare the following experimental data with the predictions o f the van der 
equation for 1 mol of CQj at T *  40 “C. (Source: I. Prigogine and R. Defay, Chemical Thermoclymmfe 
1967, Longmans: London.)

P (atmi Vm (L mol*’)

1 25.574
10 2.4490
25 0.9000
JO 0.3800
80 0.1187
100 0.0693
200 0.0525
500 0.0440
1000 0.0400

1.14 Use MalhemaiicalMapte to plot the van der Waals p -V  curves for Ar. N2 and C3H8 using th Jala 
listed in Table 1.1 (see Appendix 1.3 for sample programs). In particular, compart the van der Waali 
curves for C 02 and He and the ideal gas equation.

1.15 For COi, plot the compressibility factor Z  =  p V J R T  as a function of the reduccd pressure pr for fix®1* 
reduced temperatures Tt =  1.2 and Tt =  1.7. Verify that «he Z-p t curves are the same for all v.m ia 
Waals' gases. (This can be plotted asing Parametric Plots. (

1.16 Show that the pressure given by the van der Waals equation can become negative only when / •* 4  
than the critical temperature Tc.

1.17 (a) From the van der Waals equation, using Equation (1.5.2) obtain Equations (1-, , | ,аи
(1.5.4). (These calculations may also be done using Mathematical М арк ). (b) Show that ZcB 
4>cVBJ R T r_ > =  3/8. a constant for all van der Waals gases.

1.18 Using Mathematical Maple, obtain Equation (1.5.6) from Equation (1.5.5).

1.19 For COi, plot p -V  isotherms for the van der Waals and Redlich-Kwong equation» on the same gr 
for T  = 280 K, 300 К and 330 К and comment on the difference between the two equations, ft*  13

I . me constants a and b for the Redlich-Kwong equation. (Source: J.H, Noggle, Physical 
Harper CoUin».)
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A {bar L2 mol 2 Ku2) В (l m oH )

Ar 16.71 0.0219
c o 2 64.48 0,0296
O, 17.36 0,0221

, 2o  S how  that the Lennard-Jonee energy

has a minimum value equal to -  e at r  »  2 1/6 o.

U l  Estimutc the average distance between molecules at T =  300 К and/) =  1.0 aim. (Hint: consider a cube 
of side 10 cm in which the molecules occupy points on a three-dimensional cubic lattice.)

122 Accoiriing to Graham’s law of diffusion, the rate of diffusion of gas molecules is inversely proportional 
to the square root of its mass. Explain why this is so using the kinetic theory of gases. How would you 
expect the diffusion coefficient to depend on the temperature?

1.23 (*) Using the integrals in Appendix 1.2, obtain the square o f  average speed and compare it with the
average o f v2.

(b) Using the Maxwell probability distribution/(v). obtain the most probable speed of a molecule of 
molar mass M  at a temperature IT.

1.24 Consider Ni at a temperature o f 350 K. Use the Maxwell speed distribution to calculate the fraction 
of molecules that have speeds greater than 600 m/s. You may use Mathematica to evaluate the needed 
integrals.





The First Law of Thermodynamics

The Idea o f E nergy C o n se rv a tio n  A m id st New D iscoveries

ITw concept of kinetic energy, associated with motion, and potential energy, associated with conservative 
force* such a» gravitation, were well known at the beginning of the nineteenth century. For a body in motion, 
ilie conservation o f the sum of kinetic energy and potential energy is a direct consequence of Newton's laws 
(Exercise 2.1). However, this concept had во bearing on the multitude of thermal, chemical and electrical 
phenomena that were being investigated at that time. In addition, during the final decades of the eighteenth 
century and the initial decades of the nineteenth century, new phenomena were being discovered at a rapid pace. 

The Italian physacian Luigi Galvani (1737-1798) discovered that a piece of charged metal could make the 
leg of a dead frog twitch! The amazed public was captivated by the idea that electricity can generate life as 
dramatized by Mary Shelley (1797-1851) in her Frankenstein. Summarizing the results of his investigations 
in a paper published in 1791, Galvani attributed the source of electricity to animal tissue. However, it 
was the physicist Alessandro Volta (1745-1827) who recognized that the 'galvanic effect’ is due to the 
passage of electric current. In 1800, Volta went on to construct the so-called Volta's pile, the first ‘chemical 
battery'; electricity could now be generated from chemical reactions. 'Hie inverse effect, the driving of a 
chemical reaction by electricity, was demonstrated by Michael Faraday (1791-1867) in the 1830s. The newly 
discovered electric current could also produec heat and light. To this growing list of interrelated phenomena, 
the Danish physicist Hans Christian Oersted (1777-1851) added the generation of magnetic field by an 
electrical current in 1819, In Germany, in 1822. Thomas Seebeck (1770-1831) (who helped Goethe in his 
■'Uentifil investigations) demonstrated the 'thermoelectric effect', the generation of electricity by heat. The 
*e 11-known Faraday's law of induction, the generation of an electrical cuirent by a changing magnetic field, 
l-J|ne in i 83 i, ДЦ dijcoyerigj presenied a great web of interrelated phenomena in heat, electricity, 
■'•lynctism and chemistry to the nineteenth century scientists (Figure 2.1).

w‘thin the scientific community that laced this multitude of new phenomena, the idea that all these
[1] T ^ 4" 3' ^presented the transformation of one indestructible quantity, 'the eae tjy '. began to take shape 

i . law °°n*ervatmn of energy и  the First Law of thermodynamics. We will see details of its 
^•nation in the folbwing sections.

v'cw °* nature holds that all energy is ultimately reducible to kinetic and potential energy 
particle». Thus, die law of conservation of energy may be thought of as essentially the law of 

of tiic sum of kinetic and potential energies of all the constituent particles, A cornerstone for the 

~ — —..
20 1J  John rV ^ ° m Нга1 £"& ***10 D M p a tive  Structure*, Second M ttion Difcp Kondcpudi ;tnd Ilva Pngogine
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figure 2.1 Interrelations between various phenomena discovered in the nineteenth сепыгу.

formulation of the First Law is the decisive experiments of James Prescott Joule (1818-1889) of Mancheste J 
a brewer and an amateur scientist. Here № how Joule expressed his view of conservation of energy [2.31: 1

Indeed the phenomena of nature, whether mechanical, chemical or vital, consist almost entirely in a I  
continual conversion of attraction through space,1 living force2 and heat into one another. Thus it is that I  
order is maintained in the universe -  nothing is deranged, nothing ever lost, but Ihe entire machinery, I  
complicated as it is, works smoothly and harmoniously. And though, as in the awful vision of Ezekiel, I 
‘...wheel may be in the middle of w h e e l a n d  everything may appear complicated and involved in I  
the apparent confusion and intricacy of an almost endless variety of causes, effects, conversion, and I  
arrangements, yet is the most perfect regularity preserved -  the whole being governed by the sovereign I  
will o f God.

In practice, however, we measure energy in terms of heat and changes in macroscopic variables, such afl 
chemical composition, electrical voltage and current, not the kinetic and potential energies of moleculeJ 
Energy can take many forms, e.g. mechanical work, heat, chemical energy, and il can reside in elccirid 
magnetic and gravitational fields. For each of these forms we can specify the energy ill terms o f macri pscopic 
variables, and (he changes of energy in each form have a mechanical equivalent.

2.1 The Nature of Heat

Though the distinction between temperature and heat was recognized in the eighteenth century as a re s ii j 
of the work of Joseph Black and others, the nature of heat was not clearly understood until the middle я  
the nineteenth century. Robert Boyle. Isaac Newton and others held the view lhat heat was the microsc»] 
chaotic motion o f particlcs, An opposing view, which prevailed in France, was that heat was an in d e s t n i e t i1 
fluid-like substance without mass that was exchanged between material bodies. This indestructible subst; 
was called caloric and it was measured in 'calories' (see Box 2.1). In fact, such figures as Aittoine-l.au1 
Lavoisier (1743-1794). Jean Baptiste Joseph Fourier (1768-1830), Pierre-Simon de Leplace (1749—1827’ .4 
Simton-Denis Poisson (1781-1840) all supported the caloric theory of heat. Even Sadi Camot < 1796— 1s! 1  
in whose insights the Second Law originated, initially used the concept of caloric, though he later r e j e c t  J  4

‘Potential energy. 
: KiQetk energy
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, ,  Basic definitions 
B<>* *

be meawawl by the change in temperature it causes in a body. In this text we shall mostly use 
HeJl can.. :n wIbcIi heat is measured in joules, though Ihe calorie in an often-used unit o f heat, 
the S iunl

c a lo r ie . Tlie calorie, a word derived from ihe caloric theory of heat. was originally defined as the 
0f t,eat requiredlo increase die temperature of 1 g of water by 1 “C. When it was realized that 

S i  am ount defended on the initial temperature of die water, the following definition was adopted: a 
* V „  js (be amount of heal required to increase the temperature o f 1 g, of water from 14.5 °C «о 15.5 °C 
^  nressure of H bar- The current practice is to  define 1 ealiw4,184.1.In fact, the International Union 
o# pure an<* Applied Chemistry (IUPAC) defines three types of calorie: the thermochemical calorie, 

= 4,184 J: the international calorie, culrr = 4.1868 J; die 15 “C calorie, cala5 »  4.1855 J,
Wark an<l beat' to classical mechanics, when a body undergoes a displacement ds by a force F. the 

m ech an ica l woifc done d l f  =  F«ds. Work is measured in joules. Dissipative forces, such as friction 
between solids in contact, or viscous forces in liquids, convert mechanical energy to heat .loule's 
experim ents demonstrated that a certain amount of mechanical work, regardless of the manner in which 
it i* performed, always produces the same «mount of heat. Thus, an equivalence between work and heat 
wa* established

Heat capacity. The heat capacity С of a body is the ratio of the heat absorbed d(> to the resulting increase 
in temperature <J7’:

For a given Й* change in temperature <1T depend» cm whether the substance In maintained at 
constant volume or at constant pressure. The corresponding beat capacities are denoted by Cv and Cp 
respectively. Ika t capacities are generally functions of temperature.

Molar heat capacity, It is the heat capacity of 1 mol of the substance. We shall denote it by CmV or Cn(p.
Specific heat. It Ы the heat required to change the temperature of a «nit mass (usually 1,0 g or t.O kg) of 

the substance by 1 *C.

ГЬе true nature of heat as a form of energy that can interconvcrt to other forms of energy was established 
‘Her much debate. One of the most dramatic demonstrations of die conversion of mechanical energy to heat 
*as performed by Benjamin Thompson, an American bom in Woburn. Massachusetts, whose adventurous life 

him to Bavaria where he became Count Rumford (1753—1814»14). Rumford immersed metal cylinders 
boUuS T  *J0'es *n tbcm- (he heat produced due to mechanical friction could bring the water to a 

even estimated that the production o f I cal of heat requires about 5.5 J of mechanical work [5]. 
result» of the careful experiment» of James Prescott Joule, reported in 1847, that established 

ener»v **!!**.**“ * *,B91 was not an indestructible substance, that, in fact, it can be transformed to mechanical 
mcc. v*c* vtr*» (5 ,6 ). Furthermore, Joule showed that there is an equivalence between beat and 
n*an* of *ner^  in ^  following sense: a certain amount of mechanical energy, regardless of die particular 
beat aad Converi,lu,>' always produces die same amount of heat (4.184 J pniduce I cal of beal). This meant 
energy- ^ eC mc*l energy can be thought of as different manifestations of the same physical quantity, tlie 

But «ЦЦ wK
convert all i ** ^cat ' ®ne cou'^  *аУ dial physical and chemical processes have a natural tendency to 

H I  other fotnis of energy to heat. In the classical picture of particle motion, it is the kinetic energy
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tomes Prescott loule (Hil№~ f889/.
(Reproduced by coottesy Ы the AIP [mllio Segre W.sw/ Archive, Physics Today Collection.)

associated with chaotic motion, as we saw in Chapter 1. Molecules in inccssar* motion collide and randoinizj 
their kinetic energy and the Maxwell-Boltzmann velocity distribution is quickly established; the averagj 
kinetic energy, which equals MchTt2. generally increases with absorption of heat. However, heat does 11Ч 
change the temperature of the body during phase transformations, but transforms the phase.

That is not all we can say about heat, In additions to particles, we also have fields. The interaction betweeJ 
the panicles is described by fields, such as electromagnetic fields. Classical physics had established th 
electromagnetic radiation was a physical quantity that can carry energy and momentum. So when parties 
gain or lose energy, ю т е  o f it can transform into the energy of the field, The energy associated Wl1 
electromagnetic radiation i* an example. The interaction between matter and radiation also leads to a sUi1' 0 
thermal equilibrium in which a temperature can be associated with radiation. Radiation in thermal equilib11̂  
with matter is called ‘heat radiation’ or ‘thermal radiation'. So heat can also be in the form of radiation 
shall study the thennodynamics of thermal radiation in some detail in Chapter 11.
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о
о

лШ к 2  2 Classical picture o f a gas of molecules (m) at low temperatures in equilibrium with radiation (y).
rifP*

npjnp  the twentieth century, our view o f  particles and fields bas been unified by quantum field theory. 
Acceding to quantum field theory, all particles are excitations of quantum fields. We now know, for example, 
[hut the electromagnetic field is associated with particles we call photons, though it also has a wave nature. 
SimiWy- other fields, such as those associated with nuclear forces, have corresponding particles. Just 
ь photons are emitted or absorbed by molecules undergoing a transition from one state to another (see 
Figure 2.2) -  which in the classical picture corresponded to emission or absorption of radiation -  other 
particles, such as mesons, can be absorbed and emitted by nuclear particles in high-energy processes. The 
energy density of thermal radiation depends only on the temperature.

One of the mast remarkable discoveries o f  modem physics is that every particle has an antiparticle. When 
a particle encounters its antiparticle they may annihilate each other, converting their energy into other forms, 
such as photons. All this has expanded our knowledge of the possible states of matter. As mentioned above, the 
average kinetic energy of particles is proportional to temperature. At the temperatures we normally experience, 
collisions between molecules result ill the emission of photons, but not other particles. Al sufficiently high 
temperatures (greater than Ю10 K), other particles can also be similarJy created as a result of collisions. 
Particle creation is often in the form of pa'ticle-antiparticle pairs (see Figure 2.3). Thus, there are states of 
matter in which there is incessant creation and annihilation of parttele-antiparticle pairs, a state in which the

At tenJ  $is electrons (e~) and positrons (e*) in equilibrium with radiation </) at very high temperatures. 
"И’пЫзг * "  J0'° К particle- апЧраЫФ pair creation and annihilation begins to occur and the total
,aHe<t Л . pan'c^ s fc no longer a conn,int. At these temperatures, electrons, positrons and/>hotons are in a state 

И Р еппа/ radiation. The energy density o f thermal radiation depends only on temperature.



50 Modern Thermodynamics

number of particle* does not remain с а м о м . This Matt: matter is a highly о  ted *tate of a field ]
notion of thcrmodyixmuc equilibrium and a temperature ;l aid apply to such a t  as well.

Field» in thermal equilibrium cau be more generally r tf  ed to as therm al rod thin. One of the v|,..
teristic properties of thermal radiation Is that it» energy t  e ity a  only a functioi i temperature: unlik,
ideal gas. the number of particles of each kind itself <Jep i on the temperature Isckbody radiation
study of which led Max Planck (IS58-IQ47) to the quaniu hypothesis, is them a idlttion associated
Ike electromagnetic field. At high enough temperatures : particles (electrons i I positrons, proton
antiprotons) can exist in the form o f thermal radiation. In  i  Jiately after tiie big i  j ,  when the temper;,
of the universe wa« unimoginably high, (be state of matter 1 lie universe was in tl e rm of thermal radia ,
As the universe expanded and cooled, the photons remain in the state of therm radiation, which ca i
associated with a temperature, but the prollons, electrons an leutrons are no long 31 1 that state. In its pr( ,
state, the electromagnetic radiation that Alls the universe ii an equilibrium state 1 «mperaturc about 2 1

but the observed abundance of elements in the universe not «hat expected in itate of thermodyn; [ 
equilibrium |7J.

2.2 The First Law of Thermodynamics: The Gn .-nation of EnerjM

As mentioned at the beginning of this chapter, though 1 cbtmical energy (km
energy) and its conservation was known from tlie time of f vtorv and Leibnitz, en
;< general and universal quantity until the nineteenth cent и  |5, 8 ].

With the establi«hmciit of die mechanic*! equivalence 0 '  it by Joule, it becam.
of energy that could be converted to work ami vice versa vas in the second b 1
that the concept of conservallan of energy wu* clearly fo i lotedi. Many contrib 1
very much 'in the air' w that time, For example, the lav, ’constant summati. 1
formulated in 1840 by the Russian chemlet Ciermain Hem less (1802-1850). 1
of energy conservation ю chemical reactions. This law. no called Hess’s law, is. 
heats of chemical reactions,

It can be said that the most important contributions to th Jea of conservation 1
of nature came from Julius Robert von Mayer (1814-187 i  tunes Prescott Joule 1
von Helmhcto (1*21-1894). Ttoo of the landmarks in tie  tmuJation of the lav
are a paper by Robert von Mayer titled 'Bermerkungen t b die Krafte der unbe Is
the forces of inanimate nature'). published in 1842, and ; per by Helmholtz titU
Kraft' ('On the conservation of force'), which appeared m 147 |5 ,6).

The law of conservation of energy can be stated and util id entirely in terms 1]
transformation of state may occur due to an exchange of h t, performance of * 1
composition and other such macroscopic processes. Eat 1 the«e processes is 1.
energy, and the First Law of thermodynamics could be sti I as:

When a systein undergoes a transformation of state, ti e gebraic sum of the I
heaiexchanged,workdonc,etc.,ijsin<kpendentofthei 1 lerof the transform t 
only on the initial and final states of the transformation.

For example, as shown in Figure 2.4, when Nk it constai t transformation o f v >
gas mixture from the state О  to the state X may occur via di rent paths, each foil v
volumes ami temperatures. For each path, the total amouni heat exchanged and
will be different. However, as the First Law states, the *111 >f the two will be tic
path. Since the total change iti energy is independent of с path, the infmitesit

с energy plus poteu 
jy was not thought,

xptcd that beat is a i 

f the nineteenth cei 
1 to this idea, which 
f heats of reaction' , j  
was essentially tin 1 Г 
itinely used to calc I

nergy as a universal 1 ( 
18-1889) and Hem. 
conservation of cd 1 

en Natur’ ( ‘Remark 
'Uber die Erhaltun: •

lacmscopic variabli > 
and change in chcn 1 
ciated with a chan: -

;renl energy change 
1. It therefore depen

ne and temperature 
ig different intcrinc 1 
; mechanical work 1 
ime, independent 0 
1 change dU  assoc 1
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Hermann von Helmholtz (1821-1894).
(Reproduced with pennission from the t/dgar Fahs Smith Collection, University o f  Pennsylvania Library.)

'X' is change of energy Ux during a transformation from a normal or reference state 'O ' to the state
17 i e n ^ ' /enl manner o f transformation. In the figure, the state o f  a system is specified by its volume
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with any transformation must depend solely on the initia 
«sertion is that in every cyclic process (closed path) that ч 
the energy change is /его:

d final states. An al1- itive way of stating 
.ires the system to it. tial state, the lntegi |

/ d U

Equation (2.2.1 > may also be considered a statement ol I 
of the transformation puti, its change from a fixed state (> 
state X of many systems is specified by the state variable 
the state О is arbitrarily defined as U0. then У is a functx t

First Law. Since ch э 
any final slate X is ч  
V and /Vj.. For such :j 
f the state X:

U «= V(T, V ,^ ( Hf/0

If more variables (such as electric or magnetic fields) a 
will be a function of those variables as well. In this forrnu 
!*bitrary additive constant. Its absolute value cannot be S|* 

Yet another way of stating the First Law is as an 'imp > 
processes. For example, in Max Planck's treatise [9], the F

,,. if in in no wuy possible, either by mechanical, therm  J  
motion, i.e. it is impossible to construct an engine wh с 
wort, or kinetic energy, from nothing (author's italics

It is easy to see that this statement is equivalent to the al 
We note again that this statement iscntlrcly in mucroscopii. 
to the microscopic structure of ma«er. The process de«i r
kind.

For a closed system, the energy exchanged with its e t 
dQ, the amount of heat. and. dW, tlse amount of mechanii 
the quantities dQ  and dlV are not independent of the marm 
simply by knowing the initial and final states because tlu 
causes the energy exchange. Hence, it is not possible to li 
tmd final states, i.e. heat is not a state function. While ev a 
of energy U,. tbe same cannot be said of heat Q or work t 
i»noun< of heat exthanged in a particular transformation I 
us to specify dQ a< the heat exchanged in a time interval 1 

Most introductory texts on dientiodynatnics dt> not me li 
fotmations of state as idealized, infinitely «low changes. In 
a>time interval dt  because (he transformation does not occt 
does not contain time at all. This point is clearly stated in t  
and Silfcey [10]: ‘Thermodynamics is concerned with eqmj 
time.’ It is a theory based solely on slates with no expli i 
conduction. This poses a problem: because Q  is not a slate fi 
specified by Initial and final states. To overcome this dil li 
represent the heat exchanged in a transformation, a quant 
the path of transformation. In our approach we will avoii 
described by processes that occur at a finite time and, with 
the heat exchanged <iQ n  a time dr is well defined. The s

needed to specify tl t 
ion, the energy V  с u 
lied.
bility’. a restriction n 
t Law is stated thu‘

Hemkal, or other dtv, 
will work in a cycli ;

its formulation sumi i 
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; irreversible proce. s 
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well-known physical 
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Ity, an 'imperfect dif 
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л и -Щ ;

figure 2.5 The law o f conservation o f energy: the total energy o f an isolated system U remains a constant. The 
change in the energy dU o f a system, in a time d t can only be due to exchange o f  energy deU with the exterior 
in the form of heal mechanical work d W and through the exchange o f matter d(/ The energy chanee o f the 
system Is equal and opposite to that o f the exterior. s

slow  reversible processes still remain useful for some conccptual wasons and we will use them o ccasio n a l 
but we will not restrict our presentation to reversible processes as many texts do 

The total change in energy dU  o f a closed system in a time d/ is

d f/ =  d £  + dlV <2.2.3)
The quantities dQ  and dW can be specified In terms of the rate law* for heat transfer and the forces that do 

the work. For example, the beat supplied in a time d/ by a heating coil o f resistance R carrying a current /  is 
given by d(> =  V7 dr =  {PR)dl, in which V is the voltage drop across the coil.

For open systems there is an additional contribution due to the flow of matter (Figure 2.5):

d t '  = dQ +  d W +  d ( 'nla„M <2 .2 .4 )

Also, for open systems we define the volume not as the volume occupied by a fixed amount of substance 
but by the boundary of the system, e.g. a  membrane. Since the How o f matter into and out o f the system 
can be associated with mechanical work (as. for instance, the flow o f molecules into the system through a 
'^impermeable membrane due to excess external pressure), dVV is not necessarily associated with changes in 
■he system volume, The calculation of changcs in energy d f / in open systems docs not pose any fundamental 
difficulty. In any process, if changes in Т. V  and Nt  can be computed, then the changc in energy can be

l usted. The total changc in die energy can then be obtained by integrating IHT. V, Nk) from the initial 
state A to the final state B:

/ d U =  UB -  UA <2,2.5)

V  is a state function, this integral is independent of the path.
Cl,nsklcr some specific examples of exchange of energy in forms odier than heat.

• t  .

s3'stcnil“. if d IV is the mechanical work due to a volume change, then wc may write

1 *hicl;
dlV, -pdV'

( Pressure at the moving surface and dV is the change in volume (see Box 2 .2 ).
(2 .2 .6 )



• For transfer of charge dy «cross a potential difference <i

= j  )

•  For dielectric systems, the change o f electric dipole m л ет  d /’ in the presi ri 
associated with a change o f energy
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dt/.elect d/>

For magnetic systems, the change of magnetic dipole n nem diW in the prex i
associated with a change of energy

d U,m»g AM

• For a change of surface area d£ w i*  an associate I terfacial energy j  Л
area)

df/surf -  к

In general, the quantity dVV is a sum of all the various ms of ‘work’, each l 
intensive variable and a differential of an extensive variab),

Thus, in general, the change in the total internal energ ■ ty he written as

d ( /« d y - /> d V ' + ? d  -£ (№ + •••

Thin change of energy » nyslem it * function of *tut>' riaMes such as T. V a

<:) Щ

of an electric field , I

I
: of «magnetic field, I

I
Tfacial energy per ,, I

<2.2 ! |i | 

n being a product of 1

Nk-

a .:  1 1

Box 2 2  Mechanical work due to a changi volume
Mechanical work: dVV =  F«ds

dv
/>dr

The force on the piston of area A due to a pressui; is pA. An expandin,
its energy decreases. The dectease in the energy when ti gas pressure move
dx is

dlV =  - p A d x  = pdV

in which dV is the change in volume of the gas. The вс.:; v* sign is used to erm
gas tJecreases when V' increases. By considering small <H; lacements of the su I

;as dbes work: ben ‘1  
i piston by an am'1 ' 1

that the energy 1,1 I  
; of a body at pres* I
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m tbe fight), the above expression for the work done by a gas taut be shown to be generally

■

Vol»»»* Chens*
V  a gas in contact with a reservoir at temperature T  and slowly changing its volume, a constant- 

В У » *  or isothermal process can be realized. l;or such a pmcess. the change in the energy of the gas 
^ S T th "  isothermal work given by the expression:

Work =  j  - p d V  »  j  ~ ^ < i V  = -N K T  In j

П v,

llie pegative sign indicates that an expanding gas transfers its energy to the exterior. During an isothermal 
sponsion, flow of heat from the reservoir to the gas keeps T  constant.

por systems undergoing chemical transformations, the total energy U =  U(T. V, A/t ) may be expressed 
as a function of T, V  and the molar amounts of the constituents Л*. As a function of T, V and Nk. the total 
differential o f V can be written as

d r +  ( ~ )  d V + Y ( ^ i )  dN* 
\ S T h n k \ d V J Tjit  Т \ Щ / у ; м и ,

- d e + d W  + d t 'nelt(r (2 .2 .12)

The exact form o f tlie function U(T, V, JVj) for a particular system is obtained empirically. One way of 
obtaining the temperature dependence of V  is the measurement of the molar heal caf)acit\ Cmy at constant 
volume (see Box 2.1 for basic definitions o f  heat capacity and specific heat). At constant volume, since no 
A, |rk is performed, d (J = dQ. Hence:

CmV(7 \V i=  = ( t t )  (2.2.13)
\ d^ / v « o n *  W ' V J W

11 Сщу is determined experimentallv (Box 2.3), then the internal energy V (l\  10 is obtained throuah 
Migration of CmV:

T

U(T, V .N ) -  V(T0. V ,N ) = N  j  CmV(T, v*17 (2.2.14)

To
Щ WIjiqU 71 .

Vn'ume 18 * snPem ure a геТсгсЕюе state. If, for example. CmV> is independent of temperature and
- ак is the ea«c for an ideal gas, thea we have

+ V» (2.2.15)
^  which (/ i
constf^ p  0 Ш1 ^bitrary additive constant. As noted earlier, V  can only be defined up to an additive 

ideal monatomic gases CmV *  (3/2)/? and for diatomic gases C ^v  =» (5/2 )/?.
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Bos 2 3  Calorimetry
Calorimeter. Ifcal evolved от absorbed during a transf/ 1 .lion, such as a cbemi, I reaction, is me;,4U I

uxfiig a calorimeter The transformation o f interest i , nude to occur insi. с chamber that i„ „ I
insulated from the environment to keep heat loss to a minimum, 'lb measure ш heal generated ь I
process, Knit the heat capacity o f  the ««lorimeter, Ce  tuld be determined. Tl »U<tene by noiln„ 1
increase in the temperature of the calorimeter due t.i process for which Пи с i t  «volved is km,,,, j
Tbe heat produced by a current-cirrying resistor. for «pie. is known to b  ¥ joules per sec. ikj Д
which I  is the current in amp» and R i* the resistance u, lain», (Using Ohm's I;, ,V m lR ,  in which \ 1
the voltage across tbe resistor in volt», the heat gene a I per second may al «- с written as VI. ■ и .1
heiu capacity Сд| ofthc calorimeter ««known, then oi с ily needs to note tin с utge in the tempi i :,i J
of the calorimeter to determine the heat generated by ? mce*s.

d t

S

d g

Calorimetry is widely used in present-d*y laboratories.

Bomb calorimeter. The heatof combustion of a compoi ir. is determined in a bent
calorimeter, the combustien takes place in a chambet i jssurized to about 20 
ensure that the combustion is complete.

Isotherm al calorimeter. In this type of calorimeter, tl t tmplie that absorbs > я
physicochemical process is maintained at a constant I. perature using a set isi
can record the amount olf heat exchanged. This teclu i |UC is highly develr •
to measure enthalpy chaages as low as a few nan. j lee. Й is a method iv 
thermodynamics of biological system,!.

The notion of total internal energy is not restricted to amogeneous systen s i which quantities
as temperature are Uniform. Hor many Systems, temper:'tit ( is locally well del tv. I but may vary w '<4
position x  and time r. In addition, tbe equations of state nut remain valid in every , m en ta l volume <> Щ
in a email-volume element defined appropriately at every p. it x) in which all the ы e variables are 'I4  1
as densities. For example, corresponding to the energy 0<'! / . Nt ) we may defin • I ; energy destiny “ 1
energy per unit volume, at tlie point x  at time /. which can I' expressed as a funci in of the local |С111|̂ Д
Их, t) and the molar density nk(x, I) (moles of it per и in «ilume, also called tti nber density ). " 11 1  
general are functions of both position x and time f.

ЩХ.1)  =  u(T(x,n t (x, / ) )

calorimeter In a K -:|| 
П with pure oxygen».

encrates heat due t |
ve heat exchanger t l  
and sensitive en<'U|. 

lely ased to study j
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K*Con«am
p  ■* Constant

t  t t  t
I leal Heat

f ig u r e  2.6 Molar heat capacity at constant pressure is larger than that at a constant volume.

The law of conservation of energy is a local conservation law. tbe change in energy in a small volume can 
,,nly he due to a flow of energy into or out of the volume. Two spatially separated regions cannot exchange 
iktsy unless the energy passes through the region connecting the two parts.5

2 J  E lem entary  A p p lic a tio n s  o f  th e  F irs t  L aw  

2J.I Relation between C alp and  CmV

The First Law of thermodynamics leads to many simple and useful conclusions. It leads to a relation between 
the molar heat capacities at constant pressure С[Щ1 and at constant volume (Figure 2.6 and Table 2.1). 
Consider abne-co«nponent substance. Then, using Equations (2.2.3) and (2.2.6), and the fact that V  is a 
tunciion of the volume and temperature, tlw change in the energy ЛИ can be written as

(2.3.1)

1 wm this it follows that the heat exchanged by the gas can be written as

<2.3.2)

11 t h e  gas IS  heated at a constant volume (licit. 
‘У duc to the heat supplied. Therefore;

since no work is done, the change in the energy of the gas

<2.3.3)
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Table Z f  Molar heat capacities С„м <1C ,^ for some sub",; :es 
at T *  298. IS К and p ж I bar.

Substance

Ideal m enatom ic 
Ideal d ia tom ic
'Jo b le  gases (He, N e, Ar, Kr, Xe)
Njlg)
O , lg) 
c o ; ig;

CHjOH*
C ,H 4(I)
Cu!s)
Pel's)

Source; P.J. Linslron, and W .C . Matlard (eds), ,N> 

dard Reference й ли Ь лч г Num ber 69, June 2 0 D . 

Technology, Gaittersburg, M D  (http;//webboci.n

On the other hand, it' the gas is heated at constant pres; u 

Comparing Equations (2,3.3) and (2.3,4), we see that < ’•

C„,
юН K~’> 0 mol 1

:5/2iR
:7/2jR <S/.!><
20.8 12.5
29.17 20  8.
29.43 21.0
37.44 28.9
28.83 20.3
75.33
31.21
132.9
24.47
25.09

' Chemtitry WebBook, ft/1 ■<
>lAtiorial InHllute of Stand.ml
JOVj,

, then from E quatiu  i ;

d V \  
dT Ip

md Cp are related by

fd V 1 l d V \IIuI&

Р + Ь  Г] ( d r ) p

The right-hand side of Equation (2.3,5) is equal to tie 
temperature in a constant-prcssure, or 'isobaric’, proceii 
expansion o f the volume.

Relation (2.3.5) is generally valid for all substances. 1' 
mentioned in Chapter 1 ( see Equations (14.6) and (1.4.8)). 
and is independent of the volume. Henc*. in Equation ( : 
since pV  = RT. the remaining term p(dV/r>T)p =  R. There■£ 
reduces to tbe simple relation

in-
nd

idditional amount of I 
з compensate for the

an ideal gas, it redu
* energy V  is only л ft 
‘,5). <dUtdV)r  =  0: f. 

for the molar heat c;

.3.2) we have

(2 .L

(2 .1.

:at required to raisep
nergy expended dus

8 to a simple I ■ 'li® ^ 
ction of tlie temperatt 
1 mol of an ideal g- 

acities, Equation (21

,2.3

2J.2  Adiabatic Processes in an Idea) Gas

In an adiabatic process, the state of a system changes w liout any exchange it eat. Using the ^  
dU -  dQ -  p  dV, we can write

d Q  =  d U  +  p d V = ( ^ )  d 7  
V 01 /  V

~ )  d V '+ p d V -O  
0 V  /  г
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ideal gas. “ псе ^  *s a funct*on °* temperaXure but not of volume, and because (dUldT)v  »  NCmy,

t f t h e f c b a n g e i  

have

C'inV/Vd7'-t-/)dV' =  0

u t
CmVd r + y d V  = 0

(2.3.8)

(2,3.9)

,r rapid changes in volume, the relation between p. V and 7' may deviate from the ideal gas law.)

(2,3.10)

rapid Changes in volume, шс reiauon otiween p. v ami i may uevia:
^ <*M  since R *  ('ey -  c raV tor an idc*l Sas- wc can wnic Equation (2.3.9) as Howr

<tr (-Пip
■ +  — ~— ——d v  =  0

CmvV

Integration of Equation (2.3.10) gives

TV^r~l> -  constant where
c mV

Using pV  = NUT. the above relation can be transformed into

pY* =  constant Trp l~r s= constant

(2.3.11)

(2.3,12)

Thus, the First Law gives us Equations (2.3,11) and (2.3.12), which characterize adiabatic processes in an 
ideal gas. Ttiblc 2.2 lists the ratio of heal capacities у for some gases. We shall discuss adiabatic processes in 
real gases In Chapter 6 ,

2.3.3 Sound PropuHution

Ал example of an adiabatic process in nature is the rapid variations of pressure during the propagation of 
sound. The«e pressure variations, which are a measure of the sound intensity, are small. A measure of these 
pressure variations is p ^ ,  the root-mean-square value of the sound pressure with respect to Ihe atmospheric

Table 2.2 Ratios of mvlar heat capacities and upped of sound 
at I *  298.15 К and p  «  7 bar.

Gas
Сц»

() mol"' K '1) (Jmol- 1 K-’) Г *  Ст/С„й-
Qouiid
(m s-’)

Artg) 20.83 12.48 1.669 321.7
CO,(g) 37.44 28.93 1.294 268.6
H,ig) 28.83 20.52 1.405 1315
Ht>lg) 20.78 12.47 1.666 1016
N,(g) 29.17 20.Я2 1,401 352.1
0 ..(g) 29.43 21.07 1,397 328.7

Sowre: t.W. U m m o n , M.O. M clm do n and D .C . Wend, Tlwmxiphytfcal pro bities  d  
*)«em s. In N15 J Chemistry WebBook. N IS T SundArd fMervnce D a U tm e  Number 

W , p.J. Ltnrtrom and W .C . Mallard leds), Jar*1 2005, National InHitrte ol Standards and 

eehnology, Carthersburg, Mt)<htt(E//webbook.nlst.gQv).
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pressure, i.e. pm  is tbe square root of the average value o! (i - рыт  )J . The unit f< r t :asurmg sound..- .rnn, . . ------ ,----------------i--------- .  ----------------------  --------4 i
U the M  (B, named in honor of Alexander Graham Belli fhc usual practice i t .  t  express the intent 1
units of decibels tdB). The decibel can be expressed *  logarithmic measur the pressure ’’ 1 
ilefined by

i variai J

/  ж lOlogio (; f)
in which the refei*ence pressure *  2  X 10~8 kPa (=  i  ( 10“ 10 bar) roughly 
threshold in humans -  an asloundingly k w  threshold. w ii, i in units o f energy ir( 
110” 12 W m "2. The logarithmic scale is u#ed because it с >r spoixls roughly to Uk 
normally encounter sound whose intensity is in the range I -lOOdl), correspond 
in tlie range 6 X 10~w to 2 X 1 0 '' bar. These small v a i ons of pressure for ai 
frequency range 20 Hz-20 kHz (music being in the rang . I -4000 Hz).

Owing to the rapidity of pleasure variations, hardly tn; heat is exchanged 1 у 
undergoing the pressure variations and II» surrounding is essentially an a.li 
approximation, we may assume that the ideal gas law is v.Ji for these rapid chan 
texts it is shown that the speed of sound C№uniJ in a medi Jti depends on the bull; it 
p according to the relation

СtIOUnd 5 — inwhidi В «• —6V /V

irresponds lo audit Я  
nsity equals a mcre j l  
ensitivity of the eat и
to a> pressure variai 1  

lible sound oceui it, I

le volume of air t|, J 
■atic process. As a it 
In introductory phyjj 

idulus 8  and the derlj

(2-4

The bulk modulus В relates the relative change in the voh ie o f a medium iW V\l : to «change in ptvsl
йp; the negative sign indicates that for positive 6p  the chat с 6V is negative. If it  propagation of soua
an adiabatic process, in the idteal gas approximation, then 1. .»changes in volume d pressure arc suchU
p V  ж constant. By differentiating this relation, one can et.t ly see that the bulk ni lulu* В lor an adiaM 
process is

В - / ±
dV

(2J 1:

For an ideal gats o f density p and molar mass M, we ha

P
NRT

V
N M R  

V 1
ptiT

M

Hence:

B =
у р П

Using this expression in the relation (2-3 .14) we arriw the conclusion that, if te propagatio 
is an adiabatic process, the velocity С is given by

' aound
i  a

urfH®

a A

Experimental measurements of sound confirm this coi cl non to a good appr xi lation. The veloe1 
sound in some gases are listed in Table 2.2.
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j f j io c h e m b tiy :  C o n se rv a tio n  o f  K netyy in C hem ica l R eactions

Urst half of tbe nineteenth century, chemists mostly concerned themselves with the analysis of 
[WriM t**f '  ^ jn tc a l  reactions and paid little attention to the heut evolved or absorbed in a chemical 
< ^ l ’̂ T w !u g h  tb« early work of Lavoisier (1743-1794) and Laplace (1749-1827) established that heat 
геасп<’°^ chemical reaction was equal »o the heat released in the reverse reaction, the relation between 
* & ^ ^ K L m ic a l reactions was not investigated very much. Tbe Russian chemist Germain Henri Hess 
be* , g«;m was rather an exception among the chemists of his lime in regard to Ins interest in the heat 
1 * * « 5  absorbed by chemical reactions [ 11 ]. Hess conducted a series of studies in neutralizing acids and 
relea**V ,  ,1k; heats released (see Box 2.4). This, and several other experiments on the heats of chemical 

kd  Hess to his 'law of constant summation', which he published in 1840. 2 years before tbe 
jeaiuons. _ ober( von Mayer s paper on the conservation of energy:
appearance

_  amount of beat evolved during the fonnation of a given compound is constant, independent of 
uhether the compound is formed directly or indirectly in one or in a series of steps [ 12].

liox 2.4 The experiments of Germain Henry Hess
Hess conducted a series o f studies in which he first diluted sulfuric acid with different amounts of water 
jid then neutralized the acid by adding я solution of ammonia. Heat was released in both steps. Hess 
Ibund that, depending on the amount o f water added during the dilution, different amounts of heat were 
released during tbe dilution and the subsequent neutralization with ammonia. However, the sum o f tlie 

и. rclebed in ttie two processes was fiiund to be the same 1111. The following example, in which АИ  
ai ihe heats released, illustrate* Hess’s experiments:

DUutiatn _ NHiJK>luil<tn
|  1 L of 2M H2SO4 -----------—-* 1.5M H2S 0 4 — ------- —► 3 L Neutral solution

Д//| Дп]

I __  Dilution NHjwIuUon
I  1 L of 2M H2S 0 4 -------------- • I .OM H2SO4 -------------- ► 3 L Neutral solution

Дrfx Щ

Hess found that Д//, +  Д / / ,  =  Л // ' + Д //' to a good approximation.

Hess s work was not very well known for miiny decades after its publication. The fundamental contribution 
Tr ,CSS.I0  tentochcm isii у was made known to chemists largely through Wilhelm O sw ald 's (1853-1932) 

Chemistry, published in 1887. The above statement, known as H m 'i  law. was amply 
л, ln detailed work of Mercellui Herthel.n (1827-1907 I and Julius Thompsen (1826-1909) [ 13|. 
“ nvtBieiul **C ^ ° ' v. ^ c,s 8 *aw ‘s “ consequence of the law of conservation of energy and is most 

Mess^Mh m,ululctl ln tenns ° f  a state function called enthalpy.
#uebcofut' ^ 1,1 heal evolved 111 a chemical reaction under constant (atmospheric) pressure. Under 
'fthertk  "  * РаГ1 ° f t*)e *°ег8 У released during tin.' reaction may be am  verted ki work IV = / v' ! -/1  dV 
l*a( evo*4j*1̂ n®e *n Vo*umc *'x’m ^1 to V2- Using the basic equation of Ihe First Law. d f / »  d{̂ > -  V <S/>, the 

during a chemical transformation at a constant pressure con be written as

V, v2
*Q P = j i U +  j p d V ^ i V t - U ^ + p i V t - V O  

6, i (24.1)
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In a condensed phase (solid or liquid), the standai 1 
component of & mixture, ts the stale of the pure subsia

ate Ы  a substance, a;-, 
f  in the liquid cir *■:•]

pressure P'-.
1Ъг a wilut* in e solution* the standard state is a hy| с 
at the standard p r e s s u r e ■ Notationused to indies - ic standard state: ai 

electrolyte in water, ao  *  undissociated compound in *  a  ;

phase at the MUnd |  

,'ttCid ideal solution ci itsnderd coticentJ

’Since the energy of an ideal gas depends only on the U n 
o f a ga* depend only on the temperature. This implies i, 
tbru- standard slate; tlieit energies and enthalpies diff. i 
temperature. Й »  a ie a l gm, at a temperature Г  and png,-. 
Д М T), in wtoicto &V(T) в  tbe ttirrretkxvduc to the norne 
energy imperfection'. Similarly, the enthalpy of a real 
ИШ] IT) ~  + Л /П П  The corrections, А1Л7 :i
calculated using tbe equation of state such as the van d< r

Box 2.6 Basic definitions used in thermocl*
Standard  reaction en lM pieg  at a specified lemperatui 
and products arc in their standard states.

S tandard m olar enthalpy of formation Д W('[X] of i 
enthalpy o f formation of Uie compound X from its co r ;l
the examplt where X = CQj(g):

iruture. the standard: 
it real gases at a p r 
am chat of the stan I 
к  a f  1 bar. the ene ; 
ility o f tlic gas; it i* \-js> 
i at a temperature i '
I A rt(D . are small, 1 
uals equation.

iiiKtry

ire reaction enthalpit.

mpottnd X. at a spe i 
icnt elements in the r

at I
«»nvp4etclv dis*,cl, |

le energy and cn ihaJ
ire of 1 bar arc m,| Я
! stale of a gas a  , 1

V (r)lS*,(r1ctirws called МмеггЛ 
d pressure of I bar I  
vever, and they can J

in wfcich the reactajl

d temperature T. is 
indafd stale. Consi<H

Дй? К о )1
C(s) 4  0 2(g )------ — • —* COjtg)

The enthalpies offormation o f  elements in their stand i: Male are defined to !r
ТЪда, the enthalpies of forniatkm 1 I Д/ ^ ’tFe] aredefin tl

atures.
Tbe consistency of the above definition is based on tl fact that in ‘chemi al

not transform among them sdres, i.e. reactions between .'ilicnls do not resul' ii 
elements (though energy is conserved it» such a reactioi :

w afanyiem /irniiuf; 
) be zero at all temp*

«actions' element*?' 
Ihe formation ot o t*

Standard enthalpies of formation of compounds can be V md in tables of therm . ynaraic data (14| U j
these tables and Hess's law. tlic standard enthalpies of re u ins can be compute 11 viewing the reactijB
'd is m a n t l in g 'of the reactants to their constituent elem ent; ; d recombining them t. orm the products M
the enthalpy for the dismantling step is the negative o f the et balpy of formation, Ih.. enthalpy o f  the read*

aX  + b Y  -+ cty 1-d Z  (2'4 '’

for example, can be written as

a h ;  *  -rtAHj’pC] -  6ДН ?IY AH?[W] +  d & r f m

Enthalpies o f  various chemical transformations are dis ii ed in detail in later < It; iters and in the L u  r \j
at tbe end of this chapter. A

Thoagh it i» most useful in thermochemistry, the e*tli;dj H. as defined in Equ. on (2.4,3) . 16 3 1 "
of state that has a wider applicability. Few example, we see that the constant | essure heat c a p 11 1



, jn ,erms of H  as follows. Sincc the beat exchanged in a process that takes place at constant
- >n ** ̂ e ^ u a l  W the change in the system’s enthalpy,
press*»*151 “  <jQp = d U + p d V  = dHf  (2 .4 .6 )

gubseripts denote a constant-preseure process. If the system consists o f 1 mol of a substance, 
which 1 c b in (£ГОреташге due to the exchange of heat is d r . then it follows that 

and****11'1"'" / Л[)\  ( d H \

В »  eneral the change in enthalpy in a chemical reaction (not necessarily <Kcurring at constant 
Also. m f>'

_t<sure) can be written as
1 ДН, = / / , - / / ,= •  (I/, -  {/,) + (PtV , - P .V J

<2,4.o)
=  ДУг +  (р ,^г - й У,)

which the subscripts 'i' and ‘f ’ denote the initial and final slates. In ail isothermal process occurring at 
in Г. if aU the gaseous componeBti in the reaction can be approximated to be ideal gases and if the
hinge in volume of the nongaseous components can be neglected, then the changes o f enthalpy and energy 

are related by
ДЯ, =  Щ  + A,Vr/f/' <2,4.9)

in which ДЛ', is the change in the total molar amount of the gaseous reactants, a relation used in obtaining 
enthalpies of combustion using a bomb colorimeter.

2.4.1 Variation of Enthalpy with Tem perature

Being a state function, enthalpy is a function of T. Using the relation (2.4.7), the dependence of enthalpy on 
7 can be expressed in terms of the molar heat capacity Cln/>:

T

H (T .p ,N ) -  IHT0,p ,N ) = N j  Cnv(T)<iT (2.4.10)

П
■hough the variation of f  with temperature is generally small, the following equation, culled the Shorn ate 

equation, is often used:

Сщ, = A + ВТ + CT~ + DT* + —  (2.4.11)

Allies Of the coefficients А, В. C, D  and К  for some gases are shown in Table 2.3.

of constants А, В. С, О and I In Equation (2.4. f I) for some gases. The range o f validity is 300 
__ 1 * 'p  «= J bar).

ш *  В С О  f
j m o l  'tx-i) (io-> J m o l - ' ( l O - ^ l m o l - '  K>) (10-4 ) m oh1 К “) (10* |п ю М  К 5)

The First Law of Thermodynamics 65

-1 .186 0,0958 -0.2197
-1.976 0,1592 0.0444

__________________ -33.69 7,948 -0,1366
....  ........................................... .............  ■ ...........

ЫгЬВоок, NISJ SUnduil ttoWrence CUubdse Nmb<*69, lune JOOS, National 
ana iKHnology, Caltlwrsbitrg, M P  <1wpt//w«bbock.nl«.gov).
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From Equation* (2.2,14) anti (2.4.10) it is d e a r  that *1 temperature depetci-, ,oe wf the total inU|.
energy U and enthalpy H  of any particular gas can be ob ai id  if its heat capacity known as a fUnui('
temperature. Sensitive calorimetric methods are available i>. measure heat сарасш, experimentally

Using the relation (2.4.10), if tbe reaction enthalpy at a j «sure p0 (which eoul. )e the standard pa,s
fp  m ] bar) is known at one temperature Г0, then the геэ, nn enthalpy at any л ,т temperature 7
obtained if the molar heat capacities, C ^ .  for the react nt and the products a i : I xiwtt. Tlie emha|Pk
reactants or products X at the temperatures 7" and T0 are it  I ed according to the n: tlon (2.4.10) as

Г

Hx iT ,p c„Hx > -H x (T0.p B, v x  * N x J c mp{ r SdT  а л

in which tbe. subscript X identifies the reactants or proditci Then, by subtract» g te sunn of the enthalj 
of reactants from the sum of «be enthalpies of the p r o d u : м  «town in Equation S.43W) we arrive » 
following relatkin between the reaction enthalpies ДHr ('." ,) and ДHr (T0,p 0)

АН1( Т ,р ъ ) -А Н г(Г0,р 1.) /  A C ,(T )dr (2.4

/
in which ДCp is the difference in the heat capacities o f n ; ««ducts and the reaot; u . Thus, АН, (Г, p
tiny arbitrary temperature T  can be obtained knowing ДHr T0, p(!) at a reference tmperature T0. Rel;.ii
(2.4.13) was first noted by Gustav Kirchfeoff (1824-181-7 wd is sometimes call 1 KlrchhofTs law
change in reaction enthalpy with temperature is generally # all.

2.4 J  V ariation o f Enthalpy with Pressure

Hie variation o f H  with pressure, at a fixed temperature. l be obtained from In definition H = V
Generally. H  and V  can be expressed as functions of p, 2" at I N. For changes in jf e have

ДЯ =  Д£/ +  Д >V) <2.4 ■

At constant Г0 and N, in the ideal gas approximation £JI - 0 for gases. This l; h :ause V  and the pro I»
p V  are functions only of temperature (see Chapter 1); lit e  H  =  U +  pV  is a I nction only ot T ari
independent o f pressure. The change in H due to a change i p  is mainly due to in m olecular forces a *
becomes significant only for large densities. These charm in H  can be calcul; n for example, using 
van der Waals equation.

For most solids and liquids, at a constant temperatui; lie total energy V  dei, not change m u ch  *
pressure. Since the change in volume is rafter small unle s e changes in pressuie e very large, (he ofc11
in enthalpy Д H  due to a change in pressure Ap can be ap it iimsted by

А Н  а  V I ,  |

A more accurate estimate can be made from a knowle. g rf tbe compressibili v f the compound
Hie First Law thus provides a powerful m eans o f  undt st iding the heats of cl e ical reactions It en< ’

us to compute the heats of reactions of an enorm ous m tn ir  o f reactions usin г с heats of forinau1
compounds at a standard temperature andpressure. The tahl ntitled 'StandardThst odynamic Proper1**
the end of the book lists the standard beats of formation о t si ne compounds. In ai cl i on, with a knowlee j
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I  . .  ^  compressibilities, the heats of reactions at any temperature and pressure can be calculated 
beat еаРаС'1“'Д  reference temperature and pressure.
£ven*°sea“

Computation l,f bH r  Using Bond Enthalpies

^  I  p. 0f a chemical bond gives us a  better understanding o f (lie nature of a chemical reaction: it is 
The t | j e  brewing and making of bonds between atoms. The heat evolved or absorbed in a chemical 
cs*enuauy^ ^  obtained by adding the heat absorbed in the breaking o f bonds and the heat evolved in the 
^асиов bon(js тцс heat or enthalpy needed to break a bond is called tlie bond enthalpy, 
making ^01)1аг ibond, such as а С—H bond, the bond enthalpy varies from compound to compound, but 

meaningfully use an average bond enthalpy to estimate the enthalpy of a reaction. For example, the 
"^tioB 21hlg) + Gj(g) -* 2H>0(g) can be written explicitly indicating the bonds as

2(H—H) + 0 = 0  -> 2(H—О —H)

This shows that tbe reaction involves the breaking o f two H—H bonds and one 0 = 0  bond and the making of 
four O -H  bonds. If the bond enthalpy of the H—H bond is denoted by ДДЩ—H], etc., the reaction enthalpy 
д Hr may be written: as

AHr =  2Д Я |Н -Н ] +  Д Я [0 > 0 ]  -  4 Д # [0 —H]

This is a good way of estimating the reaction enthalpy of a large number o f reactions using a relatively 
small table of average bond enthalpies. Table 2.4 lists some average bond enthalpies which cam be used to 
estimate the enthalpies of a large number o f reactions.

Table 2.4 Average bond entlialpies for some common bonds.

H
c isingle)
< idouble)
( ‘triple)
‘ ‘aromatici 
N Single)
N idouble)
N 'triple)
О single)
О idouble)

Bond enthalpy (k! tn o l 'j

Cl Br

436
412

388

463

348
612
811
518
305
613
890
360
743

163
409
945
157 146

497
Cl s«<s 484 270 185 155
Br 431 338 200 203 254 252
1 366 276 219 193
s 2W 238 210 178 151
p ЗЗЯ 259 250 212 264
SI 322 172

318 374 176

. ft* Нмиге of the Chemical Bond. 19Й0, Cornell University Pnees: Ithaca NY.



Ьв Modern Тhemodynamics

2.S Extent of Reaction: A State Variable for Cliei ical Systems

In each chemical i<eaction. the changes in the mole n iu n la  Nk are related throe gl the stoichiometry r
«action, In fact, only one parameter is requited to spc-ii tlie changes in Nt  я tiling from a p„ni(
chemical reaction. This can he seen as follows. Consider tl elementary chem idl action:

Hj(g> +  I2( e ) f f l ( S )  Q

which is of (he form

A +  B = *Ji

hi this case the changes in the molar amounts dMA,dN {i ; d dNc  of the compo n .» A, В and С are rcl L| 
by the stoichiomei»y, We can express this relation as

‘W b 4 ' ■
T f  I f  “  '  ' I

in which we have introduced single vari«*led 'that expi ek я  all) the changes in hi nole numbers due u «
chemical reaction. This variable f  introduced by TheopUl - 1 : Donder 115,16] is bu ; for the thertm>dyn; щ
description of chemical reactions and is called the exten reaction or degree ol idvancement The
of conversion (or reaction velocity) is the rate at which I u xtent of reaction ch.m :# with time:

d{Rate of conversion (or i w t i  a velocity) =  —  (2 5 J

If the initial values of N* are written as N then the x iH « of all Nk during the actions can be specifin 
by the extent of reaction f :

N „ ~ N to - ' .  ,* t f . J

in which vk is the stoichiomctric coefficient of the react n: component Nk\ vt  i... i gative for reactants a j
positive for products. In this definition (  =  0 for the initi; 1 ; Me.

If tbe changes in Nk in a system an: due to chemical гг;, ions, then the total in rnal energy U of sl 41
system can be expressed in terms of the initial N ^ ,  which a e instants, and the ext. nl of reaction define IЯ
each of the reactions. For example, consider a system com ting of three substar с. A, В and С undergo!
a single reaction (see Equation (2.5.2)). Then the m olir mounts can be exp i ed as: NA =  N.v - J
iVB ж jVgj -  Z and Nc  =  tilco +  2£. Tbe value o f  |  a n  letely specifies all iht motor amounts N.\ -’’I
and jVc . Hence, die total energy V  may be regarded as a mction U(T, V, ( )  >vi the understanding ft]
the initial molar amounts N ^„  NK  and <Va) are const; m in the function U. If tore than one chen “i
reactbn is involved, then an extent of reaction is defi.№ for each independe it action i and each n»'j
number is specified in terms of the extents of reactio i ' all the chemical le. lion» in which it 1 •‘■j
part. Clearly, the !, are stale variables and internal enein , ;an be expressed a  ; , unction o f Т. V a r  
ГДТ. V.

In terms o f  the slate variables T, У and i , ,  the total dif);: itial of U becomes

<ш =  ( — ) d r + f ^ )  d i + T  f ^  
\ д т К А  \ d V ) U t f \ d i j



The Fiistl avofThermocfy'namics 69

t Law. the partial derivatives of U can be rotated to 'thermal coefficients’, which characterize 
Using 1 ' l ^ n s e  to heat under various conditions. Consider a system with one chemical reaction. We 

,1*  s ^ ’^ n t o f  reaction (■ Then, by using Ihe First Law:

ae-nv-M S)v,{dT+(f)r,dV+(f)rvdi <257)
have0"*

*bicb can be written a*

the partial derivative (dUldT)v has the physical meanieg o f being the heat capacity at constant 
С  the other derivatives, called thermal coefficients, can be related to experimentally measurable 

volume derivatjvc Гт у = (dl!/d()V T. for example, is the amount of heal evolved per unit change in
4U ,><|t 0f  reactBin (one equivalent of reaction) at constant V and T. If it is negative, then the reaction is 
** L r n c -  if it is positive, then the reaction is endothermic. Just as we derived the relation (2.3.6) between the 
thermal coefficient» Cp and Cv, several interesting relations can be derived between these thermal coefficients 

consequence of the First Law [17].
Also, since the extent of reaction is a state variable, the enthalpy of a reacting system can be expressed as 

a function of the extent of reaction:

H ^ H ( p ,T ,( )  <2.5.9)

The heat of reaction per unit change o f f ,  which we shall denote as hpj ,  is the derivative of H  with respect 
tof:

H f L (2.5.10)

2.6 Conservation of Energy in Nuclear Reactions and Some Genera) Remarks

' t  terrestrial temperatures, transformations of states of matter are mostly chemical, radioactivity being an 
exception. Just as nsoleeules collide and react at terrestrial temperatures, at very high temperatures that exceed 
ltf> K, typical of temperatures attained in tlic stars, nuclei collide and undergo nuclear reactions. At these 
klllPeraturcs, the electrons and nuclei of atoms are completely torn apart. Matter turns into a state that is 
un,JJntliar to us and the transformations that occur are between nuclei, which is why it is called ’nuclear 
ОДщйЬу

All the elements heavier than hydrogen on our and other planets are a result of nuclear reactions, generally 
into1*1*to 88 ̂ '^ y n t h e s i s .  which occurred in stars [18]. Just as we have unstable molecules that dissociate 
Jis" “* сг ®°*e stable molecules, some o f the nuclei that were *ynlhesized in tlic star* arc unstable und
* hich l^est * *  ,*le 'radioactive' element*. The energy released by radioactive elements turns m u  heal. 
B$U a 2a “ Wee of heat for the Earth' s interior. For example, the natural radioactivity in granite due to m V, 
tKlvv' _  ^  *id 40 К produces a small amount of heat equal to about 5 jical per gram of granite per year;

* Г’ IW e w ta io t, of such lieat over billions of years in the interior of the Earth makes a significant 
lnbW*iii to geothermal energy.
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Under special circumstances, nutlear reactions can oc.;n an the Earth, as in tin
wanium and in the nuclear fusion of hydrogen in spec! 1 actors. Nuclear rea, ti
amounts of energy than chemical reaction*. The energy rd  ted in a nuclear rea. tii
the difference in tlie rest mass of the reactants and the p* <li t« using the famous r.
derived by Einstein, in which В  is the total energy of a  pa «le, p  is its momer ti
the veliocily of light in vacuo. If the tolal rest mass o f tlie roduets is lower than
reactants, then the difference in energy due to change in i i rest mass turns in о
products. This excess kinetic energy turns into heat due h * lisitms. If the differ' t„
the reactants and products is negligible, then the heat rek «. d Д0 «  in vl
in the rest mass between tlie reactanu and the products t nuclear fusion, tw< .|
combine to form a helium nucleus. ’He, and a neutron, в i: cleased:

JH +  2H -*  't  + n

Д»и,, =  2(m3«s of 2H) -  (m ii: )f 3He + mass of n)

•= 2(2.0141) amu -  (3 0 0  4- 1.0087) amu 

=  0,0035 amu

where amu stands for atomic mass u n it Since 1 amu == 6605 X 10-27 kg, vl
produce 1 mol of sHe and 1 mol of n, the difference in bis Дщ  =  3.5 x  10~6 kj: 
released is

ДE *  &m0c2 =  3.14 x Э* Ы mol-1

If a nuclear process occurs at constant pressure, then 11. teat released is equa I. i
thermodynamic formalism that applies to the chemical re; it i ins also applies to m ti
say. in accordance with the First Law. Here’s law of addi i , у of reaction enthal(>i>: 
reactions.

ise o f nuclear (jSsu 
is release vastly g ' 
i can be ca lcu late! 
ition J?2 ж n :
, m0 its rest mast 
*  total rest mass 0) 
is lUnetic energy (>j 
In the k in e tie  enen .

:h Am,, is the differ — 
uterinm nuclei, гц  <

П 2 mol of -H r e a j  
The corresponding J

the enthalpy and a lii 
tr reactions. Necdlct«] 
is also valid for nudj

2.6.1 General Rem arks

Thermodynamically, energy is only defined up to an a j  ive constant. In phv al processes, it is Л
the change in energy (Equation (2.2.11)>that can be nua red. which leaves the tisoliate value of en*
undetermined. With the advent of the theory of relativity, v. ich has given us the i>, ition between rest mas
momentum and energy, f?  = p 2c2 + m2(*. the definition я ;nergy has become it bsolute as tlie Jelinie
of mass and momentum. The absolute value o f  the e n e i i f  elementary partitk; can be used to Jcscf l
matter in the state of thermal radiation that we discussed in ection 2 . 1.

The conservation of energy has become the foundii si rinciple of physics 1 iring the early Jayjl
nuclear physics, studies of P radiation, or 'p  decay’ as ii i: iften called, show© i tially that the cneig.j
tlie products was not eepal to the energy of the initial n к us. This resulted in s> le reexamination >’ 1
law o f conservation of energy, witli some physicists wen. ring if it could be ■ ii ned in some рп^‘ !Я
Asserting the validity o f the conservation of energy, Wull m g Pauli (1900-195$ suggested in
the missing energy was carried by a new particle that inter ted extremely weal 1;. vith other particle» J
tence, was difficult to detect. This particle later acquired Ui name neutrino. Раи i is proven ngli1 - ft • J
later. Experimental confirmation of the existence of tlie nei ino came in 1956 fioi the careful e*lx'r"nl
conducted by Frederick Reine s ami ( the now late) Clyde C;n n. Since then our fa i Hi i the law o f c o n s t r '* ■
of energy has became stronger than ever. Frederick Re г received the Physi ■ loble Prize i n '  I
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o f  the elusive neutrino; for the interesting history behind the discovery o f  the neutrino, see 

l i f e * * * 1191.

Energy Л е т  and Organized States

й the role o f  energy is much more than just a conserved quantity: energy flows are crucial to life. 
In NaW**' human activity that we call ‘economy’. It could be said that energy flows have a creative 
eC°Sy**dbal out of these flows emerge complex processes that range from global biogeochemical cycles 
role Ш vntfietic bacteria. In this section, we present a brief introduction to energy flow and some of its
10 S p e n c e s .  We will discuss more about nonequilibrium systems that became organized spontaneously in

Chapter 19.

2.7.1 S elf-o rg an iza tio n

\t ihe outset we must note that what is o f interest to us in a thermodynamic system is not only its stale 
hut Jso the processes that take place in ii and the way the system interacts with its exterior. The state of 
ihcrmodynamic equilibrium is static, devoid o f processes; in this state there is no flow o f  energy or matter from 
oik point to another and no chemical change takes place. When a system is driven out of equilibrium by energy 
and matter flows, however, irreversible processes begin to emerge within the system. These processes are 
■irreversible’ in tliai the transformations they cause have a definite direction. Heat conduction is an example 
of an irreversible process: heat always flows towards a region at a lower temperature, never in tbe opposite 
direction. The concept of entropy, which will be introduced in the following chapters, makes the notion of 
irreversibility more precise; but even without the concept of entropy, one can see through simple examples 
how irreversible processes can create structure and organization to a system. One such example involving 
heat flow is illustrated in Figure 2.7. It consists of a fluid placed between two metal plates. The lower plate is 
maintained at a temperature /'h, which is higher than that of the upper plate temperature Tc. The temperature 
difference will cause a flow of heal through the fluid. If the difference in the temperature ДT  =  (Th -  T,c) 
is increased, there is a point at which a well-organized pattern of convection cells emerges. The threshold 
value of Д Г depends on the fluid properties, sueb as the thermal expansion coefficient and viscosity. What is 
remarkable about tb s  familiar convection pattern is that it emerges entirely out of chaotic motion associated 
with heat. FWthermorc. the fluid's organized convection pattern now serves a 'function': it increases the rate 
’I heat flow. This it an example in which the energy flow drives a system to an organized state which in turn 
increases the energy flow.

Heel flow

!"ч,вс1 from ^ (WS Cdn caU5e selforgtnlttd  patterns to emerge. Л fluid is placed between two plates and 
A T  is №mPe'‘»ulp difference ДТ »  Г* -  Г, between the two plates drives a heat flow, (a)

°'ganized cnn. ^eM ̂ °w ,s due Ю conduction and the fluid Is static, (b) When Д T exceeds a critical value. 
И  есв'ж  patterns emerge spontaneously.
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The convection pattern exists as long as there is heat low ; the beat flow is stop x
to equilibrium anti the pattern disappears. Sucb patterns ш onetnilibrium syst ш
from pattern» that we might see ш a system in equilibru/ 1 uch as layers of imim
differences in density. Organized states in nonequilibrium «terns are maintained
matter atld, as we shall see in later chapters, production« f ittolpy.

In tlie formulation of modem thermodynamic*, flows of utter and energy arc it
laws that govern them van be formulated in tbermodynai rn terms, as described in
laws governing heat flow and radiative cooling have been low» for centuries, v
are summarized in Box 2.7. These laws can be used to ai al te heat flows in vari jij

then the system c v, I  
should be distinj.,, ,1
iible fluids separ;iU. j |  
! the flow of energy J
rfflodynamic ft„Ws J 
ater chapters H m ^ l  
te commonly used ]  
systems.

Box 2.7 Laws of heat flow
Heat flow or beat current J q i.s defined ae tlie amount oi 1, 4 flowing per unit sni !e area per unii tm,( j

ik

Т + 6 Г

J4 * A)

Conduction

.lean Baptiste Joseph Fourier (1761-1836) proposed a j  ul law of heat condn< i m in his 1807 men* ir 
which stales that tlie heat current is proportional to the «п lient of temperature

dT , t  d T \
Ja =» -ifV r = —<r 11— - J - r  + b - r  4 \  d : dy  dz )

in which Jfc K-1 ) is ilie thermal conductivity ar I j and ft are unit veci i The SI unhs o l . l . , f l

W o r 3.

Convection

A law of cuoling due to convection, attributed to Newt n tates that the rate oi h it kws d(?/d/ ol а b ®  
al temperature T  surroanded by a fluid at temperature J proj»rtional to the , ii ге п с е(Г - I ■> Щ 
body's surface area A:

a e
dr Г0)

in which h (W m ' 2 K_ l) is the heat tramfer coefficient ! is law is a good app i mation when I'1 '1 
is mainly due to convection aid I bit due to radiation c;, t ignored.
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l^di»li«n
К __ i equilibrium between matter and radiation (Chapter 12) is analyzed, it is found that heat

a body at temperature T  is proportional to T* and tlie heat radiation absorbed from the 
rod*3*6 ^ 4( (emperature T0 is proportional to 'Г*. The net radiative heat loss is equal to

jS jh  g  =  5.67 10"s w  m " 2 K- 4 is the Slefan-Boltemann constant, A is the surface area of the body 
in ^  body's emissivity (the maximum e *  1 for a blackbody), At high temperatures. the cooling of 

e»*i* due to convective and radiative heat losses.

2.7.2 Process Flow*

An importani application of the First Law it to the analysis of energy flows associated with fluids in industrial 
' esseg and engines. Energy flows in lb s  case include the kinetic and potential energies of the fluid in 
nldition to the thermodynamic internal energy U. The First Law applies to the total energy

E * U + ± A 1 v 2 + f  <2.7.1)

in which M is the mass of the system and 4* is its potential energy. In describing energy flows, it is convenient 
ti. use energy and mass densities:

Internal energy density и (J m~3)
Mass density p (kg m "5)

When the change in potential energy is insignificant, the energy flowing in and out o f a system is in the 
lorm of heal, mechanical work, kinetic energy and internal enetyy of matter (Figure 2.8), Let us assume 
iliat matter with energy density щ is flowing into tlie system under a pressure and velocity Vj, Consider a 
Щ ш Ш ш  <Ц =  Vj dr of the matter flowing in through an inlet with area of cross-scotion A,. in tune dr 
(see Figure 2.8). The amounts of the various forms of energy entering Ihe systam through the inlet due to this 
displacement are:

Internal energy: м Д  <Ц 

Kinetic energy: jpvjUj dv.
Mechanical work: /у ! ( сЦ

,ns t^ l  y I1Ŝ CKUl<’,b aPP*> f°r the energy flowing through the outlet, for which we use the subscript ‘o' 
output dW&L *Wtion, we assume, in time dr. tlial tliere is a ik'I heat output d(? and mechanical energy 
mPut). T * | ft0‘ IKSOC‘aU:ti w,,h mauer flow (which are positive for a net outpu( and negative for a net 

W « e  all these into consideration, we see that the total change in energy d t/  in a time dr is

l - d l V - d C  + M ^ d * , +  i PjvfAjd*, +  ftA ,d*, -  n A 'b o  -  ~ P qA 0 <k> <2.7.2)
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d«o

dv,

-E-: 1

SYSTliv

к. й  v,
A,

figure 2.8 energy flow thmugli a system. The subscripts I i, i 
respectively: p is tbe pressure, A is the area o f cross-section, 
Is the flow velocity. The change in the energy of the systen, i; 
Is the enthalpy density.

о identify the variable 
It th« energy density 
> tlrm dt is given by

эr the inflow and out /J 
i the mass density ,,„,1 
itlon (2.7.3), in ЫлгЛ

By defining enthalpy per unit volume й =  и + p , and >y mting that dx; =  Vjdt 
expression can be written as

d d*0 ш v0d/. the al с

AU
At

dtv
'  dt

d £
df IIn many situations, the system may reach a steady s>at in which all its th<m idvnamic quantitie i

constant, i.e A t)tit =  0, Also, in such a state, the mass ot it tier flowing into tbe sj tcm is equal to the nutl
flowing out. Since the mass of matter flowing into and o u t t h e  *ystem in time с t i ( p p ^ A t  and (/»„v Л i
dr respectively, we have IPjVjAj) At »  (Pov„A0) dt for а акт • etate. Hence, we ct n write (2.7.3) as

dlV d<2 \(h' 1 ^dt At * V' 2) я  + *г\1 dmКь 2)\ dt
(2.7,

in which dm/At =  piVjAj = P^^Ao  >8 tbe mass flow rate. In 
smd d()/d< is the rate o f  heat output. ThiB, we obtaitv a re) 
change of enthalpy densities and the kinetic energy o f thi 

Hiis general equation can toe applied to various situat и  
the system at a high pressure and temperature and leav. s 
delivering its energy to the turbine, which converts it to ir et 
is negligible. We then have

lis expression, dlVALr the rate of work »t Г 
ton between the w<ul md heat output am t 
ittcr flowing througl 11 ; system.
.. In a steam turbine, { r example, steam ei В 
ie system at a lowc ■ j- :sseie and temperai 
anical energy. In this sc tlie heat output d< >:

dW
dt

(2 7

The ratio hip is the spec ilk  enthalpy (enthalpy per in mass) and its valie it a given pressure 
temperature are tabulated in ‘steam tables*. The term A w  t (kg a"1) is the rat mass flow throug1 
system in the form o f steam aad, in many practical situauo «, the term (v^ -  »*) i ; mall compared witl

fc  • Equation (2,7.5). Thus, the rate of work output in a turbine is related to the rate of steam flow 
,!,cr Hfc’L enthalpy through the simple relation

m m
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s * .
dr

(2.7.6)

M iH steam tables, the expected work output can be calculated. Note that if there are heat losses, i.e. 
0 ~ t h e n  jbe work output dW/df is correspondingly lest. Explicit examples of the application of 

if iQW  > ^ 4) m  given at the end of thit chapter, 
gquatfcP

, 7 J  Solar Energy How
jtT.  energy flows, it is useful to have a quantitative idea of the energy flows on a global scale. 

*” 2 9 summarizes the flows that result from the solar energy incident on the Earth. The energy from 
p a r s e s  ISO X №6 b n  (93 million miles) before it reaches the Earth's atmosphere. The amount of 

ta S w g y  reaching the Earth, called the 'total solar radiance', it about 1300 W m -2, which amounts to a 
Ttal of about 54.4 X 10® kJ year” 1. About 30% of tliis energy i* reflected back into space by clouds und 
Ihcr reflecting lurfaces, such as snow. A significant fraction of the solar energy entering the Earth's surface 

‘ to (jnve the water cycle, the evaporation and condensation as rain (Exercise 2.20). Of the solar energy 
not lost due to reflection, it is estimated that only a small traction, about 0,08 X 10* kJ year-1 , or 0.21%. 
ocs into the biosphere through photosynthesis. The energy consumed by human economies is estimated to

t nitt; lO'kJ/умг

Human energy use Q.MIJ7 
Wind energy 0.11

t'JKigy in the water cycle U.5 
Geothermal heat flux: tU)l

Я ®  2.9 Annual soijr energy flow through the Earth's atmosphere and the surface. (Numerical Data from____. ........................... ...........  _ . „
l[4  NJ.)

л  , • "■••MW <V W  irw n  UM'SUff ii uic. uu  / и t j  « « n w ^ r m v  en w  m v  n « »r«v t.. \I w n i v i r -41 '-'VI MJ ■ I «л 11
tov jj™0  M d W.M. Stlgfiani, Chemistry of tfw> Invironment, second edition, 2003, Prentice Hall: Upper Saddle
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4
Solar energy f  \
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figure 2.10 tnergy flow tin: %h the biosphere.

be about 0.0037 x  IQ20 k) year-1 , which is about 5% of ic energy that flows it э photosynthesis. ’r J I
there is ample solar energy to run human economies. 1b. interior of the Eartl n о  has a vast anmu„ f l
geothermal energy that flows to tlie surface at a rate o f  ab>u 1.01 X Ш20 kJ year" he solar energy enw j l
the Earth system к  ultimately radiated back into space, at tlie total energy со it; ricd in the crusi and 11
atmosphere is essentially in a steady state, which is not i te o f thermodynam с |uilibrium. This |)о .Л
38.1 x  Ю20 kl year' 1 drives the winds, cneates rains and di 'es the cycle of life.

2.7.4 Energy Flows in Biological Systems

Ih e  process of life is a consequence o f  energy flow. E ret у enters the biosphrrt hrough photosynthsj
which results in tlie production o f biochemical compounds jch as carbohydrate:,. jm C 0 2, HjO and th •
sample compounds containing nitrogen and other elemei t. ’hotosynthesis rele; к  ( )2 into the atinospfl |
while removing C 0 2 (Figure 2.10). The solar energy is с lured in the btomob-i cs. which contain n i l
energy than the compounds from which they are synthei r. I. The 'high-energy )■ duct» of phoinsynthet
are in turn tlie energy source for organism* that feed on tb. t. Photosynthesis, ti e imary source of t'ofl
drives a complex food chain that sustains ‘higherorganisrttt- ind ultimately a comp! t ecosystem. The etwi j
flow in higher organisms is through the conversion of ca: b  lydrates back to 0 0 2 id H / i ;  this How driA I
life processes: feeding, reproducing, flying, running, etc. V, tile living cells do not tist in a steady state k j
go through a cycle of life and death, the ecosystems as a lole could be in a s :lt -ustaining 'steady «Ш I
on a long timescale. As energy flows through the biospbr it is converted to Ы t and is returned to 4 I
atmosphere. The metabnlic processes in a human, for e*at pie, |enerate about Ц J s-1 of heat I lie ■
generated in the biosphere is ultimately radiated back ini' > ace.

Let us look at some quantitative aspects of energy cap m d in photosynthesis V icn a plant grows, it»
only synthesises compounds but alfco absorbs water, f t  • i, is reason, to estim.i e is amount ol substtj
produced in photosynthesis it is necessary to separate the <1 mass' from the wat ;i ly measuring Uk cn‘*l
in the dry mass generated in the presence of a known fl r. if radiation, the effi :ii cy of photosyntliesj
various conditions could be estimated. When the dry m i : is combusted, it is ,’erted back to its i™4
reactants, COj. H20  and other small compounds, and It energy captured in pi itosynthesis is relesj
Combustion o f carbohydrates releases about 15.6 kJ mol 1 Totems about 24 kJ tn -1 and fats 39 kjI
(20]. Plant cells contain many other compounds that yield I * energy upon cotnbu ion. On the whole- Я
dry mass yields about 17.5 k) m ol"1. Under optimal condih ns rapidly growing: I ts could produce а г Д
SO g ni ' 2 day-1, which equals 875 kJ m~2 day"1. Durin; his observed p lan t; p. th. the amount о
energy that was incident on the plants averaged about 2 )  103 kJ m " 2 day-1 . 1 nn these figures * ' ^
estimate that plants capture solar energy with an efficient/ about (875/29 xl0-‘ ) 0,03. a rather low v‘* l
A much larger fraction, about 0.33, of solar energy that em я  he Earth's atmosph. r. joes into the WJltr ̂  ’■
(see Figure 2.8). A part of the reason for such a low effici- n of photosynthetic ca| ure of solar energy ^
low amounts o f  COi in the atmosphere (about 0.04% by о me). Plants grow fa ;t< at higher levels о 1
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Ц  of pbotosyntbesis depends on «he intensity of incident radiation. 1 (W m -2). In a leaf exposed
’ft* raK' ° f  intensity /, the rate of photosynthesis could be measured in terms of the energy captured P 

f '  ° П low intensities P  increases with I  but at high intensities P  reaches a saturation value Рт х  (see 
in" 1 emptrical relationship between P  and /  could be expressed as [20]

Bo**'81' ,

*. is a constant and is approximately 200 W m~2. A representative value of Pmx is about 
i„ wbB*_2 )S (oumj that Яш  depends on the temperature and the CO, concentration. On a bright 
25 *  *  . jooO W m ': . Using Equation (2.7.7) one can estimate the photosyntbetic efficiency at various 
sunny day I ~ 
intensit*es-

Ii(lX 2.X Photosynthesis
S t f e l l i t e  measurements of solar rad ian t flux just outside the atmosphere give a value of 1370 W  m " 2 
i traaperpendicuUi to the flux). The maximum radiation reaching Earth's surface is about 1100 W m~2. 
For the purposes of estimation, tlie maximum flux at the ground surface during a clear day 
k800 W m“2-

. it i$ estimated that 90% of photosynthesis takes place in the oceans in algae, bacteria, diatoms and 
other organisms. Approximately 4.7 X Ю15 mol of 0 2 is generated per year by photosynthesis. 
Microorganisms In the oceans and soil consume over 90% of all the oxygen consumed by life.

• The energy captured, Л  by phutosynffecM» v,vies with the incident solar energy intensity, I, according 
to the approximate equation shown below.

•he rate of photosynthesis is considered to be primary production, It is quantified as either energy 
eapturcj or new biomass formed. Gross primary production is the rate at which biomass is being 
synthesized. Che process of respiration degrades biomass into COj. Net primary production is the 
“jnwence between the rate at which biomass is being synthesized and the rate at which it is being 
“ graded into carbon dioxide; it is the rale at which biomass is accumulating. For example, sugarcane 
Powth corresponds to about 37 g m "2 d a y '1.

R.M. Alexander, Energy fo r  Animals, 1999, Oxford University Press: New York.

and captured by plants moves up tlie food chain, sustaining the process o f life at the micro level
° n **>e maer"  level Ultimately this ‘food’ reacts with O , and turns into CO ; and H2t). thus 

“*  cycle. The cycle, however, has tin awesome complexity, which is the process of life Finally.
^ И 8*П1ЯП ‘dies’ its complex constituents are converted to simpler molecules by bacteria.
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Figurt2.11 Wind flctwingiiHO a turbine at speed vh tram/e , tomeofits energy tout blades of the imhinA
(fowes out at a velocity y„m. The area swept by tire turbine k> ies I t A. At steady siiir the wind flowing
the turbine has a larger cross-sectional area A  and lower ij< td vM . tnergy Is era к, 'red to the turbine J
■wлтл 'ч / f / '  l i y j n r /  .■1 |Л»i.л . w »  / i f  I. i: Уaverage wind speed v. '(V in + K J /2.

2.7 S  Wind Ей*П{у und «he Betz L»w

A part o f the solar energy that the BarA receives соп л 
temperature that ал- caused by tlie location-dependent be itj 
few decades, there lias been a steady increase using wind с 

The amount of energy flowing into a wind turbine when 
Consider wind flowing at a speed into a wind turbine ( F i 
density of air ij p. tlie kinetic energy curried by a unit volui 
of volume Avn will be incident on the wind turbine. Hen.x-

Л п “ M * .

Because the wind delivers some of its energy to the tui n  
be lower and its area o f cross-section will also increase to 
in to tlie turbine equals Che mass flowing past it. This leads

) to wind energy. Щ  
jt and cooling cause tli 
sfgy tor generating v 1-: 
e wind speed is v can 
are 2 .11) whose area;: 
i wind is p v ^ /2. hi at; 
te incident power on i

rentes in pressure ajj 
flow of wind. Ill the 1, 
lie  power.
3 determined as Гойи 
sross-scction isA. Ii't 
second, a column of 
: turbine is

(2.7.

: blades, its velocity, v ,, behind th e  bhiJMtj 
, so that, at steady s at . the mass of air flcw it 
i tlie mass balance t  :qi,: tion:

Her* we have assumed that the density of air, which dept ils on its pressure, d >. 
as it flows past the turbine; and A ' depend on the des;if, of the blades.

The kinetic tnergy transferred to the Wind turbine per in volume of air is

(2.7;

not change siginficam

<4
at of power that can I 
'in to *W as it 'loW' p 
rate at w h ic h  cti«£>

Albert Betz, a German physicist, noted that there is m  pper limit to the arm
extracted from wind. This cam be seen as follows. Since tin find slows down firm,
the turbine, the average speed of the wind vavg =  (vh  4  v, ,)/2. Hence the uvci i. 
delivered to the turbine for power generation is

<■ ,+ v « ) / 4

As Equation (2.7,9) indicates, the ratio o f wind speeds (Vvin> depends on the esign and the
of the turbine blades, which capture the wind energy. Let n assume that

( 2 . П

, iricHfl

P =  W ' v



В  ^  p aram ete r fi, the power P  can be written as 

IateflBS< P = A / » l ( l - p 2) ( l+ f i ) /4  (2.7.12)

can determ ine the maximum value Г  as function of the parameter ̂ 3. It is easy to see th a t P readies 
N^imura value when /> =  1/3. which it

_____________  4  (2.7.13)
see that (be maximum power a wind turbine can capture from the incident wind power is given by

I1,US f |^/27. wbx-’h is about 59%. This result is called tlie Bet/, law The energy transferred to the turbine 
d* <*^erted w electrical energy with further losses. Cuirently, Ihe overall conversion efficiency of wind power 
|S power is about 40%. Wind turbines in the diameter range 20-120 m are available commercially.
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its /> =  (16/27) (1 /2 )A V

Appendix 2.1 M athem atica  C odes

CODE А: М АГНЕМАТ1С CODE FOR EVALUATING WORK DONE IN AN ISOTHERMAL EXPAN
SION OF A GAS

While evaluating integrals. Marhemalica assumes that the parameters in the integral and limits could he 
complex numbers. Therefore the output may loolc complex, as shown below. This can be avoided by using 

Assumptions option as shown in the commands below

In teg ra te  [1 /x , { x * x l/x 2 } l

?nd i t io n a lB x p re e 6 io n [ -L o g (x l ]+ L o g [x 2 1 , ( ( Im tx l l  >«Im(x2] Ь41т[х2)
Re[xl]<-Imlxl) Re[x2I)  | | Um[x2] R e [x i ]» » Im [x l )
Re[x2]fc&Im(xl] <«Itn[x2|) )&b( (Re [ x i /  (-xl+x2)I »-0&&х1г lax l x2) | | x l /  (xl-x2)
Reals | I Re [X I/ (Х1-Х2) I »«1) J

Integrate [1/x, { x ,x l,x 2 } . As sum ption»-»{xl>0,x2>0}]

'^nd i t io n a lE x p reee io n lL o g [x 2 /x l l  ,x l<x2]

sing the Assumptions command we can now calculate the work done in an isothermal expansion of a van 
der Waals gas.

Clear ( р ,у ,т #а ,Ы
P,V -* J  >- (R*T/(V-b)) - (»/V“2) |

-nt* j r a te [p [ v ,T ] ,{ V ,v l,v 2 ) ,  A B »um ptions->{vI>0,v2»0,b>0,a>0}l 

" '•tiitionalB xpreeeion I
'  ^ / v l )  +l / v 2 i  +RT (-Log [ -b+vl)  +Log [~b+v2l ) ,

V1' ' ' 2 « ( b<. v l | | b > . v 2 ))

PPendix 2.2 Energy Flow in the USA for the Year 2011

arm Т Ц ,  w* ^  ®**®htial for economies and ecosystems. The figure below shows the estimated electricity 
or ft’°lrn vannUk source» m the United Slates for the year 2011 in units of quadrillion Btu/year
il|()8-2Qn ’ еаГ' * ®tu = 10SS ^  ^  estimated total energy flow for 2013 is 97.4quads/year. 14>r the years 

^  »eh t0t** ener*!' ^ow was 111 range 99-94 quads/year. Flow charts such as this muy be found 
|  ° f  Lawrence Livermore National Labs: https://flowcharts.llnl.gov.

https://flowcharts.llnl.gov


US Electricity Flow, 2011

Blast furnace gas, propane да », and other manufactured and waste gases d e w e d  from 
fossil fuels

* Batteries, chemicals. hydrogen, pilch, purchased steam. suffur. miscellaneous technologies, 
and non-renewable waste (municipal so)id waste from non-biogenic sources and tire-derived 
fuels).

3 Data collection frame differences and nonsampling error Derived for the diagram by  
subtracting the "T  & D  Losses” estimate from *T & D Losses and Unaccounted for’  derived from 
Table 8.1.

' Bectnc energy used n  the operation o4 power plants.
r Transmission and distribution tosses {electricity fosses that occur between the point cf

депеггвюп and delivery to the customer) are estimated as 7 percent Ы  gross generation.
* U se of electricity that ts 1)  self-generated, 2 ) produced by either the sam e entity that 

consumes the power or an affihate, and 3 )  used m direct support d  a  service or ndustnal 
process located within the sam e facifty or group of facilities that house the generating equip
m e nt Direct use ie «(e lu sive  of station use  

Notes: • Data are preliminary. • See Note, “Electrical System  Energy Losses," at the  
end of Section 2  • Ne< generation of electricity includes pumped storage facility production 
m n u s energy used forpum phg. ♦ Values are derived from source data prior to rom ding for 
publication • Totals m ay not equal sum of components due to  independent rounding 

Sources; Ta b le s S 1 & 4 a . 8 5, A 6 /column 7 ).  and  U S  Energy Information 
Administration. Form EIA-923. "Power Rant Operations Report"

US Energy Row , 2011

* Includes 0.01 quadrillion Btu of coal coke net niporta.
K  indudes 0.13 quadrillion Btu of electricity net imports.
"  Trta l energy consumption, which is the sum d  primary energy consumption, electricity retail 

sates, and electrical system energy losses. Losses are allocated to toe end-use sectors r  
proportion to  each sector s share of total electncty retail sales S e e  Note. “Electrical Systems 
Energy Losses," at end of Section 2

Notes: • Data are preSmnary • Values are derived from source data prior to  rounding for 
pafcication. • Totale m ay not equal sum of ccmpcnents due to rtdependertf гош<*пд.

Sources: Tables 1.1. 1 Д . 1 Д  1.4. and 2 .1a

1 Includes lease condensate
2 Natural gas plant liquids
4 Conventional hydroelectric power, biomass, geothermal soian^hotcvoltatc. and w nd .
4 Crude ой and petroleum products Includes imports into the Strategic Petroleum Reserve
5 Natural дав, coat coal coke, biofuels. and electricity.
e Adjustments. lasses, a nd unaccotntod for
7 Natural gas only, excludes supplemental gaseous fuels
* Petroleum products, including natural gas plant hgu ids, and crude oil burned as  fuel

Data Source: Lawrence Livermore National Laboratories and the Department o f  Energy.
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E xam ples

Example 2.1 A bullet of mass 20.0 g moving at a speet if 350.0 m s-1 is led: d into a block of« >■ 
How many calories of heat art generated in this process'

Solution In this process', the kinetic energy (KE) o f tbt 1ч let is converted to h :i

KE-bullet = m vJ /2  = (1 /2 )2 0 .0 x 1 0  g X <350 m s ' 1)2 =  1 5 J

1225 J =  1225 J /4 .184 J cal" 1 =  29. Seal

Example 2.2 Calculate the energy A V  required to in. :ase the temperatuie f 2.50 mol 1 1 an H
monatomk gas from 15.0 ”0  и  65.0 °C.

Solution Since the specific heat Cv  *  (dUldT)v , we set l| it

t,

A t/ =  J  Cv d T =  < (Г , - Г , )

r1

Since Cy  for a monatomic ideal gas is (3/2)R:

V  = (3/21(8.314 J п о Г 1 K -‘X2.5 11, )(65,0 -  15.0) К =  1.4 ) J

velocity o f sound in CH4 at 41.0 °C was found to be 466.0 m s~ '. Calculate the value of 
I . - « S S  spedfte heats, at this temperature.

i  Co lion (2-3.17) gives tbe relation between у and the velocity of sound: 
ulitrn ' ̂

M C ^  16.04 X 10-3 kg X (466 m s - 1)2

* *  ~ W ~  ------------ П й Т Ш й с ------------- 133
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j  4 1 mol of N2(g) at 25.0 °C and a pressure o f 1.0 bar undergoes an isothermal expansion to a 
1 ' “"ip! of 11132 bar. Calculate the work done.

F01 an isothermal expansion:
ScJutiO" *

Work =  -N R T  

an ideal gas, at constant T. p t Vj =  p fVf. Hence: 

Work = -N R T  ln

*№)

= -N R T In (  — ) *  -1 .0 (8314  J КГ1) ln ( )  *  -5 .03  kJ 
\P (  J  Л 0.132 b a r /

Kxample 2.5 Calculate the heat of combustion of propane in the reaction at 25 °C:

C3H*(g) +  5 0 2(g) -  3COj(g) +  4HjO(l)

From the table of heats of formation at 298.15 К we obtain

AH1’ -  -ДН®[С3Н8] -  SA/^tOo] + З Д /^К 'О ;]  + 4Д //;'|Н 20)

= -(-1 0 3 .8 5  k.T) — (О) + 3(—393.51 kJ) +  4(-285.83 kJ) = -2220  kJ

1 'ample 2,6 Far the reaction Nj(g) + 3H2(g) -* 2NH3(g). at T  = 298.15 К tlie standard enthalpy of 
«•action is -46.11 kJ m ol"1. At constant volume, if 1.0 mol of Nj(g) reacts with 3.0 mol of H2(g), what is

c«rgy released.’

*tandard enthalpy of reaction is the heat released al constant pressure of 1.0 bar. At constant 
lln«. since no mechanical work is done, the heat released equals tlie change in internal energy At/. From

(2.4.9) we see that

ДHr => At/, + ДА',/»’

aboVe reaclion, AN, =  -2 . Hence:

Ac/r -  AH, -  ( -2 ) / r r  »  -46.11 kJ + 2(8.314,1 K '11298.15 *  -41.15 kJ

 ̂ ^ e i p l e  j  7
*b°v»,1 m App.y ihe energy flow equation to a thermal power station for which tbe energy flow is 1 

ogure below. The power station takes in beat to run an electrical power generator.

http://weblx%3e'
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Solution A thermal power plant may be considered as a ,stera with the follow g properties: heat t i ]
into the system, a  part of it Ш converted to mechanical t-n. gy that rune an elect al power generator, I
the unused beat is expelled. There is no flow of matter. A jj ,’ing Equation (2.7.4 ( I this jystem, we S(x. 1
dm/dr *  ft Mid we are left with dWIdt я  - d Q/dt. Since c£:< It is the net outflow of «at, a negative valu l
dQUt means that die inflow of heat i# lafger than the out ! w, U . part of the Ья* flowing into the Jj(
is converted to mechanical energy that runs the power gei rator. What fraction о the beat energy flov| j
into die system is converted to mechanical energy depeo Is l the efficiency of tl e >wer plant. In Chaptl
we will discus» Sadi Carnot's discovery that conversiori < heat to mechanical ж j y  l»as limitations; 1
impossible to convert 100% of the heat flowing into the sy tn into mechanical i -n gy.

Example 2.* N j is Bowing into a nozzle with a velocity *  35.0 m  s ' 1 at T  - 0 .0  K. The tempera*
of the gas flowing*out of tlie nozzle is 280.0 K. Calculate e velocity of die ga < f iwing out of the no, j) 
(Assume the ideal gas taw for the flowing gas.)

Snlutian  F o r flow through n nozzle, there is no net ot) ju of beat or work. А я  ,'ing Equation (2.7Л1 
this system. we see that dlV/cU *  0 and dQ/df =  0. Hence

in which the subscripts 'i ' and 'o ' denote the quantities f > iflow and outflow r. si ctively. Using the g *
values of T  for tbe flows, the specific enthalpies hip of i 5 gas flowing in an 1 it o f  tlie nozzle can
calculated as follows. For an ideal gas, enthalpy H  = V  t V m cNRT + NKT » .; +  IfftTN  (f = -3
diatomic gas such as N2 ). If tlie molar ma*s of the gas is M hen

Ш Ш Ш ш  i

Pi 2 f ,  2

h (c +  :))
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«diatom ic gas Nj, с  =  5/2. We have v, = 35.0 m s-1 , M  = 28 x  I0*s kg mol 1] m 300.0 К and 
^ g O O  К Using t îes* va ûes' vo 030 *** calculated: v0 *  206 m s " 1.

2 9 A steam turbine operates under the following conditions: steam flows into a turbine through 
6‘* *J *;«■ of radius 2.50 cm, at a velocity 80.0 m s*1, a tp  =  6.0 MPa and T  =  450.0 °C. The spent steam 
an in*ct ^'a[ p  0.08 MPa and T  =  93.0 °C through an outlet pipe of radius 15,0 cm. Assuming steady-state 
' "j* bons ca*tu *alt l**c P°w tr outPut us“ g the following data from steam tables

- 6 0  MPa. T  -  450.0 °C. the specific volume lip  =  0.052 m 3 kg-1 and hip =  3301.4 kJ kg-1 .
^  _ 0 08 MPa. / ’=93 .0  °C, the specafic volume lip — 2.087 m3 kg-1 and hip = 2665.4 kJ kg-1 .

ju fo n  At steady state, the mass flowing in must equal the mass flowing out (mass balance). Hence, 
S° л  "  A v Po' Using this equation and the given data, we can calculate the velocity of the steam in the 
Ai>i ^  ’ 
outlet

*(0.025 mV®(19.2 kg m-3 )
v„ ---------------------- --------------7-80.0m s  ш 89.0m  s

*(0,15 m)2(0479 kg m )

The rate of mass flow is

—  ■= AK\\p, =  *(0.015 m)2(19.2 kg m~3)80et Г 1 =  3.01 kg s’ 1

Now we can apply Equation (2.7.4) to calculate tlie power output. In this case, mechanical energy is the 
utput and we may assume negligible heat losses, i.e. dQldt -  0. We then have

Н И Н Н ) ]
d/n
dr

Using the steam table data, we see that Aj/p( = 3301.4 kJ kg ' 1 and h jp 0 =  2665,4 kJ kg-1 . Thus, the power 
output is

^  =  [(3301.4 -  26654)10* +  0.5(80.02 -  8У.0‘ )]3.01 =  1915 kJ s' 1 =  1.9 MW

Exercises

For a conservative force F -  -dV(xydxt in which V(x) is the potential, using Newton's laws of motion, 
show thal the sum of kinetic energy and potential energy is a  constant.

How many joules of heat are generated by the brakes of a Ю00 kg car when it is brought to rest from 
a speed of SO ktnh"1? If we use this amount of heat to heat 1.0 L o f  water from an initial temperature 
° f 30 *C, estimate ihe final temperature assuming that the heal capacity o f water is about 1 cal mL~1 
<1 ca | =  4 , |» 4  J),

^  The manufacturer of a beater coil specifies that it is a 500 W device.
J*) At a Vcdtage o f 110 V, what is the current through the coil?

. . fW  Given that the latent beat of fusion of ice is about 6.0 kJ mol-*, how long will it take for this 
heater to melt 1.0 kg of ice atO ®C.
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2.4 Use the relation dW  *  -p  dV to show that:
(a) [lie work done to an isothermal expansion of 

tbe final volume К  *s Work •  -AWT tn(V'f/V'11
<b) For 1 mot of art Weal gax, calculate the woifc 

Vj в  ]o,0 L to Vf =  20.0 L at temperature Г  =
(с) Repeat the calculation of pan (a) using the ' 

equation and show that

)+aN2(vrv<)
2.5 Given that for the gas Ar the heat capacity Cy =  ■ 3, 

of sound in Ar at T  »  298 К using the ideal-gas relit 
which Cv *» 20.74 J K~l m ol"1.

2.6 Calculate tlie sound velocities of He, N2 and C< t 
Table 2.2 aixd compare them with the experiments ];>

2.7 Tbe human ear can detect an energy intensity of a) 
whose output is 100 W. At what distance is its intern

2.8 A m onatowic ideal gas is initially B tr=  300 К, V-- 
to V  <= 4 0  L. what will its final T  be?

2.9 We have se«n (Equation (2.3.5)) that, for any sysfc t)i

ч-<*-И ЯК??),
For the van der Waals gas the energy = f ’y  j -  nIN IVfV , in whi i U ^ at =  CVNT 4  ( 
(Equation (2.2.15)). Use these two-expressions ai d its van der Waals equs on to obtain an explii 
expression for the difference between Cp and Cv h r  van der Waals gas,

2.10 Far nitrogen al p =  1 atm and T  »  298 K, calculate le change in tempei ai e when ii undergo® 
adiabatic compression to a pressure of 1.5 atm; у = 404 for nitrogen.

2.11 Using Equation (2.4.11) and Table 2.3, calculate the hange in enthalpy o ' I I moll of C 0 2(g) WM| 
is heated from 350,0 К to 450.0 К at p  =  1 bar.

Z12 Using the Standard Thermodynamic Properties tab]., it the back of the boof which contains lieai»1 
formation of compounds at T  =  298.15 К, calcul ii, he standard heats of t action for the loll0®  
reactions!
(*) H2(g) +  Fj(g) -* 2HF|g;
(b) C7Hie(l) + 110 ; (g> -  7COj(J) + 8H 2CKI)
(c) 2NH3(g) + 6N(Xg) -  ЗН2Ог(1) +  4N2(g)

2.13 Gasoline used as motor fuel consists o fa  mixture o i tl hydrocarbons hepfcm C7H16), octanel( 
and nonane (CjHyj). Using the bond energies in ТЛ  2.4, estimate the entli py of com busting  ̂
of each of these fluids. (In a combustion reaction, a. irganic compound r a .  s with 0 2(g )10 I' 1
C 0 2(g) and HjO(g).)

’2) »  12.47 J К.” 1 к о  I *, calculate the vcIm 
in between Cp and C,. Do the same for N̂ j

wing; Equation (2.3.1 and! the values of ,1 
neaswed velocities sit vn in the same tabls, 1

ait 2 X 10~12 W  it " Consider a light soiu. I
у equal to 2 x  10'

)L ,andp = l.O bar.Il it > expanded adiabatica]

moles of an ideal g la «№, initial vn|u,ne . I

otte iii an isotherm: 1 (pension of ] m()) 1  
i(> K,
i der Waals eqUatkm i plcicc of the ,l(ea| j
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, ujate the amount of energy released in the combustion of 1 g of sucrose and compare it with tbe 
j,l4 c  hanjcal energy needed to lift 100 kg through 1 m. (Combustion of sucrose: C 12̂ 22^11 ^  12C>2

; ,Н гО + 12С0 2.)

C onsider the reaction CH4(g) +  2(); (gi -+ C 0 2(g) +  2H,(X1). Assume that initially there are 3.0 mol
2-15 C I,4 jud 2.0 mol 0 2 ami that the extent of reaction (  = 0. When the extent of reaction £ =  0.25 mol, 

ehat are the amounts o f the reactants and the products ? How much heat is released at this point? What 
((к value of (  when all the 0 2 has reacted?

The sun radiates energy approximately at a rate of 3.9 x lfl36 1 s” 1. What will be tbe change in its 
mass w 1 million years if it radiates at tins rate?

, 17 Calculate the energy released in the reaction

2’Н +  2 п -И Н е

given the following masses: mass of йН = 1.0078 amu. mass of n =  1.0087 amu, mass of 4He =  4.0026 
amu (1 amu «= 1.6605 X 10“27 kg).

, jg 0 2 is flowing into a nozzle with a vdocity V; =  50.0 m s " 1 ait T -  300.0 K. The temperature of the gas 
flowing out o f  the nozzle is 270.0 K. (a) Assume the ideal gas law for the flowing gas and calculate 
the velocity of the gas flowing out « f the nozzle, (b) If the inlet diameter is 5.0 cm. what is the outlet 
diameter?

2,19 A steam turbine has the following specifications: inlet diameter 5.0 cm; steam inflow is at p  = 4.0 MPa, 
at T *  450.0 °C at a velocity of =  150 m s_ I. The outlet pipe has a diameter of 25.0 cm and 
the steam flows out at p  -  0.08 MPa, T  = 93.0 °C. (a) Assuming steady-state conditions, calculate 
the output power using the data given below from steam table*, (b) Show lhat the change in kinetic 
energy between the inflow and the outflow is negligible compared with the change in the specific 
enthalpy.

Data from steam tables:

M p  =  4.0 MPa. 450,0 °C, the specific volume lip  =  0.080 m3 kg-1 and hip =  3330.1 kJ kg” 1.
At p  =  0.08 MPa. T  = 93 .0  °C, the specific volume 1 Ip = 2.087 m ? kg~' and h i p -  2665.4 kl kg” 1.

-20 The amount o f solar energy driving the water cycle is approximately 12,5 X 10JU kJ year*1. Estimate 
•he amount o f water, in moles and liters, evaporated per day in the water cycle.

“ U Find OW how much solar energy reaches the surface of the Earth per square meter per second. 
(This is called tbe 'solar constant", Maps of average solar energy per day per o r  can be found at 

I  http://www.nrel.gov/gis/solar.btml, )
0>) The pt««ent cost o f  electricity in tbe United States is in the range SO. 12-0.18 kW b " 1 (1 kW bour = 

103 x  3600 J). Assume that tlie efficiency o f commercial solar cells is only about 10%, that they 
can last 30 years and that they can produce power for 5 h day-1 on average. How much should 
1 m2 of solar cells cost so lhat (he total energy it can produce amounts to about $0.15 kW t r 1 
(Make reasonable estimates of quantities not specified,)

* r*8i<’n in which the average wind speed is 9 km b "1. Assume wind turbines whose diameter 
capable of generating electric power with an efficiency of 40%. How many wind turbines are 

ta a wind farm that can produce 1.0 MW of average power? (Air density = 1.2 kg/m3.) Assume 
# ?}*  these turbines are arranged in a square array, with a turbine-to-turbine distance of 5 diameters. 

^BFtculate the amount of power that can be obtained per m^ in such a wind farm.

http://www.nrel.gov/gis/solar.btml
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2J J  Show t o t  the power extracted by a wind turbine ; e« by Equation (2 ? ) reaches its 
when b *  Ы .

2.24 Using die energy flow chart» in Appendix 2.2 ca ci 
energy in kW h and die average flow rate in kW in tl

2.25 (a) Calculate the residential electrical energy CcY
States using tbe electricity flow chart in App. ii 
wfoat is the yearly cost of electricity per pers: m

(b) Ihe areragc solar power in a city in the Uniiai 
average in Miami). Assume solar panels with 
are needed per person in this city? If the ■» 
approximately4 $700/m \ what is the cost < if 
installed, a solar panel will produce power fcr

ate the per capita (pel lerson) consumptl(1 
United States.

h) per person per da> 
x 2.2. If the cost o f Л

itatc* is 200  W m~ i 
12% efficiency. H ov 
of installing and me 

re solar panels per p. 
>eriod of 20  years. Wl

xinsumed in tin- n  .
t t ic w y is s o .u k w

is is a 24-hour. З65 Л  
any m2 of solar ' 
itairwng solar pan,i,, 
ion. Assume that. J  
t is  the cost p e ry ea jj j

4lJstflg aso tar e ilcu litur h4p^/www.tmdsotar.convmdex.plip?page=Ti ;,l 1 rate  gives 14 m2 со* aft- им 10K.
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T he Second Law of Thermodynamics and 
the Arrow of Time

,1  The B irth  o f th e  S econd  L aw

736-4819)'the most famous o f J°sePh black 's pupils, obtained a patent for his modifications of
4 n n n  th i s in x f f i t in h  h m im h t  i in i in n v in M  iviw*»r an fl s n t^ dJanes Watt 0 7; . engine in the year 1769. Soon, this invention brought unimagined power and speed

11>oinas Newcomcn s ̂  ̂  ,гаП5рог1а1̂ п. agriculture and industry. This revolutionary generation of motion 
toev*rythi"S; thc British Isles quickly crossed tlic EngliA  Channel and spread throughout Hurope.

la m e s  W a tt  0 7 3 6 - 1 3 ( 9 ) ,
« tep ro d u r ( w ith  peimlsslon fro n t th e  td g a r  Fahs S m ith  C o lle c tio n , U m vcrsH y o f  P e n n sy lv a n ia  Library.)

' и '» П е гтпЛ»„ат1а From Heal Engine, к  P t u tp a i "  S m c w r a .  f c c a s l  EA0<* D iipK ondqH K t.addlly .P ngogm e. 
' J0>5 lohn Wiley *  & Ш . Lid. Pubtehed 2015 by John Wiley Л  Sons. Ltd.
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Nicnlaa I ionard  Sadi Carnot (1796-1832). a brillian "rencb military enjiut
inJustnalizing Europe. ‘Everyone knows,' he wrote in i : memoirs, ‘that beat ,
li possesses vest motive-pnweT no one can doubt, in tb day» when tlie «team
well known’ [1. p- 3] ’Л *  яа те  Carnot is well km »,n i France, Sadi Car.m
(1753-18231, held many high positions during and a t1 he French Revoluh m
contributions to mechanics and mathematics. LazareC. i I had a strong mlln :n
had their scientific roots in engineering, and both had a < p interest in gener; I ,
of Ihe French Encyclopedists. It was liis interest in gen. principles that led S
analysis of heat engine*. Carnot pondered: over the princi|, that governed the \ m
and identified the Jbw  o f hem m  tlie fundamental p ro c t; equired for the genet :
work' in today's termirobgy. He analyzed the fundam i I processes that untkt

that performed mechanical work through the flow of fceai. d realized that then v,
the amount o f work generated from the flow o f a given : i unt of heat. Carnot ; ,
limit was independent erf the machine ami the manner in v tch work was obtains:
tempei atures that caused the flow o f  heat. As explained it i| ■ following sections ft
principle resulted in the formulation of the Second Law . f erm«dynamics.

*  tived b  this U  
I pwducc
" # i*  *  evet>.4. J  
« *а<Ь.‘г, l.a/arc c l
Wd Was known 
! on his Son \;1(J| ■  
inciples in the 
i Carnot u> his -Д  
■ing of (Ik- steam e j j  
on o f 'motive p,,w"
•' he» ' «ngines enjj,,
• a fundamental Кщ, 
cat insight was t^i# Bj

it depended only on,)
her development of J

Sadi Carnot (17) 1832).
(Reproducer! with permission from the Edgar fahs Smi. I oUection, University » ennsylvania libraty I

Carnot described his general analysis of heat engines i .is only scientific put. :ation. Reflexion* 'Ш
Puissance Metrics du Feu, et sur les Machines Pmpres Vveiopper cette Pi,is tnce (Reflect!'arts с 1
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L . o f Fin’ and ™ the Machines Filted to Develop that Power) [1]. Six hundred copies of this work 
tfcti** ̂ ^ h e d  in 1^24. at Carnot's own expense. At that time, Camot was a well-known name in the French 
were Lg^fnunity due to the fame of Sadi's father, (.агате Camot. Still. Sadi Carnot's book did not attract 

u  ,n at tbe time of its publication. Fight years alter the publication of Ins Reflexions. Sadi Camot 
„job »*,еП|ега Д year later. Emile Clapeyron (1799-1864) was to come across Carnot's book and realize its 
,y j  . jmporlance and make it known to the scientific community.
lU tiJ^"^ ^„alysis proceeded as follows. First, Camot observed. 'Wherever there exists a difference of 

C*®01* motive force can be produced' (1, p. 9]. Every heat engine that produced work from the flow 
icrnt*1* (ej  between two heat reservoirs of unequal temperatures. In the processes of transferring heat 

l>ealhot to a cold reservoir, the engine performed mechanical work (sec Figure 3.1). Camot then specified 
llowing condition  for the production of maximum woik [1. p. 13):

jecessary condition of the maximum (work) is that in the bodies employed to realize the motive 
ower of heat there should not occur any change o f temperature which may not be due to a change 
(volume- Reciprocally, every time that this condition is fulfilled the maximum will be attained. This 

principle should never be lost sight of in the construction o f a heat engine; it is its fundamental basis. If 
[t cannot be strictly observed, it should at least be departed from as little as possible.

Thus, for maximum work generation, all changes in volume -  such us Ihe expansion o f a gas (steam) that 
pishes a piston -  should occur with minimal temperature gradients so that changes in temperature are almost 
all due to volume expansion and not due to the flow of heat causcd iby temperature gradients. This is achieved 
in heat engines that absorb and discard beat during very slow changes in volume, keeping their internal 
temperature as uniform as possible.

Furthermore, in «he limit of infinitely slow transfer of heat during; changes o f volume, with an infinitesimal 
temperature difference between the source of heat (the ‘heat reservoir’) and the engine, the operation o f 
such an engine is a reversible process, which means that the series of states the engine goes through can be 
retraced in the exact opposite order. A reversible engine can perform mechanical work W  by transferring heat 
from a hot to a cokl reservoir or it can do the exact reverse by transferring the same amount of heat from a 

Id reserv oir to a fcot reservoir by using the same amount of work W,
(lie next idea Camot introduced is that of a cycle: during its operation, the heat engine went through a 

‘•ycle of slates so that, after producing work from the flow o f heat, it returned to its initial state, ready to go 
through the cycle once again. A modern version of Carnot’s reversible cycle will be discussed later in this 
section.

( arnot argued that tbe reversible cyclic heal engine must product- Ihe maximum work ( ‘motive force '), but 
^  did so using the «aloric theory o f heat, according to which heal was an indestructible in ass less substance, 

any engine could produce a greater amount of work Ilian that produced by a reversible cyclic heal engine, 
. Itn 11 Was possible to produce work endlessly by the following means. Begin by moving heat from the hot 

?v ° * t0 a cold reservoir using the more efficient engine. Then move the same amount of heat back to 
®2*eservoir using Ihe reversible engine. Because the forward process does more work than is needed lo 

w»s rim reverse process, there is a net gain in wurk. In this cycle of operations, a certain amount of heat 
®Уге№^ movct* ^le '*nt lo reservoir and back to the hot reservoir, with a net gain of work.
,1' a t ^ atlnV t*1*8 СУС*С-an unlimited amount of work can he obtained sun ply by moving a certain amount of 

tt and forth between a hot and a cold reservoir. This, Carnot asserted, was impossible:

Cj - ' VoiJld be not only perpetual motion, bul an unlimited creation of motive power without consumption 
or of any other agent whatever. Such a creation 1) entirely contrary to ideas now accepted, 

s of mechanics and of sound physics. It is inadmissible [1, p. 12].
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Figure 3.1 the upper figure shows a schematic of ,i steari fine. The lower figmr ows the essential рю
that governs heat engines, engines tfrat convert heat to won1. Illustrates the fundi', M l observation mail
Sadi Carnot: Wherever there exists a difference o f temperai ; motive force can be f iuced' II, p. 91. llw
engine absorbs heat Q, from a hot reservoir (heat source>. w ere  p a n  o f it to iv W and discards hea
to a cold reservoir (heat sink). The efficiency if is given by И i/Q, (according to h ? aloric theory of heat
Camot used, Q, = Q,, but an analysis consistent with the ! i law  gives W = Q, - { i.

Hence, tvvenible cyclic engines must produce the maxit,r amount o f  work. А с Шагу of this conclu
is that all reversible cyclic engines must produce the sann mount of work regai> ss of their construe!
Furthermore, and most importantly, sine* all reversible . mes produce the sa. i amount of work lr<
given amount of heat the amount of work generated by a u rsiblt heat engine if. i ependent of the mat.
properties off the engine: it can depend only on the tempci res o l the hot and col, jservoirs. This brinf
to the most important of Sadi Carnot's conclusions [ l ,p  . :

The mobve power of heat i* independent of the agents i >toyed to realize it; il uaMity is fixed sob'
by tbe temperatures Ы  the bodies between which is efk  d, finally, the transi f caloric.

Carnot did not derive u mathematical expression for tbe aximum efficiency il
engine in te rm  of the temperatures between which it opt ed. This was done In
the importance o f his conclusion. Camot did. however. I I a way of calculate
сап be generated. For example, he concluded that ‘1000 i s o f heat passing fr< t:

ned by a reversible 
by others who real 

he maximum work 
i body maintained -1
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hire of 1 degree to another body maintained at zero would produce, in acting upon the air, 1,395 units 
< S U r '  ll .p .4 2 ],

ah S»di Carnot used the caloric theory of heat to reach his conclusions, Inis later scientific notes reveal 
y ^ l L i n n that the caloric theory was not supported by experiments. In fact, Camot understood that heat 

In® urted to mechanical work and even estimated the conversion factor to be approximately 3.7 I с а Г 1 
iscon<>re accurate current value being 4.18 J ca T 1) [1-3], Unfortunately, Sadi Carnot's brother, Hippolyte 
,llie who was in possession of Sadi's scientific notes after his death in 1832, did not make them known 
( „cientific community until 1878 Щ . That was the year in which Joule published his last paper. By 
10 the equivalence between heat and work and the law of conservation of energy were well known through 
* * *  of Joule, Helmholtz, von Mayer and others (1878 was also the year in which Gibbs published his 
t.*ie wor]t On the Equilibrium o f  Heterogeneous Substances).
'' SJ |  Carnot's brilliant insight went unnoticed until fonile Clapeyron (179<M8ft4) came across Carnot's 
book in 1833• Realizing its importance, he reproduced the main ideas in an article that was published in the 
journal de I ’Ecole Polytechnique in 1834. Clapeyron represented Carnot’s example of a reversible engine 
m terms of a p -V  diagram (which is used today) and described it with mathematical detail. Clapeyron's 
,riicli5 was later read by Lord Kelvin and others who realized the fundamental nature of Carnot's conclu- 
,ions and investigated its consequences. These developments led to the formulation of the Second Law of 
tl)aIDodynamics as we know it today.

To obtain the eflkicncy of a reversible heat engine, we shall not follow Carnot’s original reasoning because 
it considered heat as an indestructible substance. Instead, we shall modify it by incorporating the First law , 
Рог the heat engine represented in Figure 3.1, the law of conservation o f energy gives W = Ql -  Q2. This 
means, a fraction it of the heat absorbed from the hot reservoir is converted into work W, i.e. ti =  W/Qt . 
The fraction 7 is called the efficiency o f  the heat engine■ Since IV я* (Q: -  Q2) in accordance with the first 
law, 1 = (£>! -  QiVQi •= (1 -  Q JQ \ )■ Carnot's discovery that the reversible engine produces maximum work 
amounts to the statement that its efficiency is maximum. This efficiency is independent of the properties of 
tlie engine and is a function only of the temperatures o f tlie hot and the cold reservoirs:

4 *  1 - ^  =  1 - / ( f , / 2> <3,1.1)
У1

in which/(fi, t2) is  a function only of ihe temperatures t t and (3 of the hot and cold reservoirs. The scale of 
'he temperatures and t2 (Celsius or other) is not specified here. Equation (3.1.1) is C arno t’s theorem . In 
t a ,  as described below, Carnot’s observation enables us to define an absolute scale of temperature that is 
'“̂ pendent of the material property used w  measure it.

'■t'l Efficiency of a Reversible Engine

Now we tum to the task of obtaining the efficiency o f  reversible heat engines. Since the efficiency of a 
гГВ'Ь*е ^eat engine *• tbe maximum, all of them must have the same efficiency. Hence, obtaining the 
,._С|£ПСУ of one reversible engine will luftice. The following derivation also makes it explicit that the 

^ency of Carnot’s engine is only a  function of temperature,
< ^ F ol’s reversible engine consists of an ideal gas that operates in it cycle between hot and cold reservoirs, 
( ®WPeratmes 0 , ami в 2 respectively. Until their identity is established below, we shall use в  for tlie 

perature that appears in the ideal gas equation and T  for tlie absolute temperature I which, as we shall 
the next section, is defined by the efficiency of a reversible cycle). Thus, the ideal gas equation is 

as veT*М ^  *  ATM, in which 0 is the temperature measured by noting tlie change o f some quantity such 
Of jr"® *  or pressure, (Note that measuring temperature by w>lum< expansion is purely empirical; each unit 

^P era tu re  is simply correlated with a certain change in volume.) In the following, the work done by the
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Figure 3.2 The Carnot cycle. The upper pert shows the fc: teps o f the Carnot cyt during which the ел?.
absorbs heat from the hot reservoir, produces work and ran s heat to tbe cold ne. r iIr. The l o w e r  part she
the represensation o i this process in a p-V diagram used ty  * oeyron in his exposi.v of C arnot’s work. 1

gas will be a positive quantity and the work done on the will be a negative q .1 Jty, *o that the net v1'
obtained in a cycle is positive for a net heat transfer fron  e hoi to tlie cold re s t >ir. The reversible t • 
we consider consists of llie following four steps (Figure

Step /
The gas has an initial volume of VA and is in contact with hot reservoir at tetri]'
temperature в { due to its contact with tlie reservoir, the idergoes an infinite!',
(as Camot specified it) to tlie state B, of volume VB. The > It done by the gas du

ituretf,. A U h e ^ rJ
:)W reversible exf><^
g this expansion Ы



H i .  feothermel processes, heat is absorbed from the reservoir. Since the internal energy of an ideal 
ijurutf oniy OB Ibe temperature (see Equations (1.3.8) and (2.2.15)». there is no change in the energy of 
, 0  d*?®. absorbed equals the work done. Hence, the heat absorbed is
L  гав: * е

Саб =  ^ ab (3.1.3)

SKP 2 g r f  step, the gas is thermally in sta ted  from the reservoir and the environment and made to undergo 
'" ^ Iw iic  expansion from stale В to a state 0 , resulting in a decmase of temperature from to 02- During 
& r  (,a(K process, work is done by (he gas. Noting Ilial on the tdiabal BC we have p V ’ = p u V'' = P( Vrv , 
^ ^ u l a t e  ihe amount of work done by the gas in this adiabatic expansion:
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vc ve

-  P cvc - P b V a  
1 - Г

lsini p y  = NM, tbe above equation can be further simplified to

m o ,  -  e2)
W bc  «= ?■■■ <3.1.4,

in which 9, and f>2 are Ihe initial and final temperatures during the adiabatic expansion.

Slip}
In the third step, (he gas is in contact with (he reservoir of temperature and it undergoes an isothermal 
compression to the point D. at which the volume Vf> is such that an adiabatic compression can return i< to 
the initial state A. (VD can be specified by linding the point of intersection of the adiabat through the point A 
and the isotherm at temperature 02.) During this isothermal process, the work done on the gas is transferred 
j. heat g CD to the reservoir (since the eneigy of the ideal gas depends only on its temperature):

I'd Vd

^ cd =  У  p d V - y ’ ^ d V = M ? S j l l n ^ ) = . - e CD <3.1.5)

Step 4

•” the final step, an adiabatic compressioe takes the gas from tlve slate D to its initial state A. Since this 
Process is similar to step 2, we can write

W « , - f t )
Ц р л ~  <3.i,6)

Wor't done in this reversible Carnot cycle in which heat Oab w*as absorbed from the reservoir at a 
Perature of $l ^  heat q cd was transferred to the reservoir at temperature (h  is

W ~  ^AB + WK  + WcD + W0A “  <?AB "  OcD
<3.1.7)

The
■ency rf = W/yAB can now be written using Equations (3.1.2). (3,1.3) and (3.1.7):

J L - i  NRfJ< ln<vc / v P ) . . . . . .
Cab ~ MW, ln(VrB/v A) {ЗЛЛ)
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For the two isothermal processed, we havepA VA =  рв VB an. 
we have Pbv r  *  Л  vc а т 1/ 'л уА ~ P o v ,y  Using these re 
Using *iis relation in Equation (3,1.8 ), we arrive et a aim

W

<?AB
1

I* this expression for the efficiency, 6 i* tbe temperatmre J 
nl a constant pressure) and we assume that it is (he temp' 
measured by any other empirical means, such as measut 1 
в  can fee expressed as a function o ff, i.e, 6(1). Thus, the о 
to в  =  ff(t), measured by another means. In terms o f any :j 
complex frutn. hi terms of the temperature в  that obeys tin 
reversible heat engine takes a particularly simple form sin

c Vc = p DVDandfoi I 
ins, incan easily be si 
expression for the t :1

«I

ned by one particul.u 
ii№ In the ideal gas 
the volume of men 
perature f measured 
t  temperature t. the < 
leal gas equation, h n 
l in Equation (3.1.9

c Prtjo J
!hat<Vc/VDu (V''
ency;

•operty {such as W(, I  
itiori, Ihe temjx'ratm»
, is related to «; lha( I  
one means <̂»nx“spf* I 
ciency may take a tin I  
ter. the efficiency ot

3.2 The Absolute Scale i»f Temperature

The fact than the efficiency o f  a reversible heat engine is r pendent o f  the phy;-
the engine has ал important consequence, which was note .1 Lord Kelvin (Williai
Following Carnot's work. Lord Kelvin introduced the <u lute scale o f  temp< i
reversible heat engine is a function only of the temperal j  of tlhe hot and cok 
the material properties a t the engine. Furthermore, the eflii ney cannot exceed tit
First Law. These two feels can be used to define an abso  n scale o f temperature 
male rial properties.

and chemical nature j 
rhomson (1824—19CC J 
ire. Tlie efficiency о ■ 
•ervitirK. inde|vndM 1 
■. ln accordance wift j 
'Jl is independent oft j

William Thomson/lord fc ) (1S24-1907).
fReproduced with permission from the Edgar fahs Smhi Ы1ес11оп, University > erinsylvania l lbl 1
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. [,y considering two successive Carnot engines, one operating between /, and and the other operating 
J T l  /> and  tj. we can see that the function ДГ2, »,) in liquation (3.1.1) is a ratio of a functions of f ,  and 
"f й  ** ^  **eal exe*lan®ct*at ten ,r>eratuI'e l1. then we can write

...........  Qi QyQ ' .. . . . .
<3.2.1)

This
tW

, relation, along with/(r. t) =  1, implies that we can write the functionjtr2, f , ) as the r a t i o / d ^ ; , ). Hence, 
efficiency of a reversible Camot engine can be written as

Qi m <3.2.2)

. mc can now define a temperature T  s f i t )  based solely on the efficiencies o f  reversible heat engines. Ia terms 
I ,|,js tem perature scale, the efficiency of a  reversible engine is given by

, . i - £ . i - 2k 
Qi T, <3.2.3)

in wbich Г, and T2 are the absolute temperatures of the cold and hot reservoirs respectively. An efficiency of 
unity defines the absolute zero of this scale. C arno t's theorem is the statement that reversible engines have 
ihe maximum efficiency given by Equation (3.2.3).

Comparing expression (3.2.3) with (3.1.9). we see that the ideal gas temperature coincides with the absolute 
,mperature and. hencc, we can use tlie same symbol, i.e. T, for both.1

In summary, for an idealized, reversible heal engine that absorbs heat (), from a hot reservoir at absolute 
temperature 7 | and discards heat Q, to a cold reservoir at absolute temperature TV we have, from Equation 
(3.2.3), "

C l Qi
<3,2.4)

ЛИ real heat engines that go through a cycle in finite time must involve irreversible processes such as flow of 
at due to a temperature gradient. They ure less efficient. Their efficiency ц' is less than the efficiency of a 

“ «wble heat engine, i.e. = 1 -  (Q JQ l ) < 1 - ( T / t \ ). This unplies T2/T { < Q2IQ{ whenever irreversible 
j™*sses are .involved. Therefore, while tbe equality (3.2.4) is valid for a reversible cycle, for the operation 

irreversible cycle that we encounter ш reality we have the inequality

e .
r ,

Qi
<3.2.5)

Дз i . .

A * *  elt>w' irreversibility in Nature, or a sense of an 'arrow of time", is manifest in this inequality, 
kinetic en . **«nple of a ‘heat engine' in Nature is the hurricane, hi a hutrieane, heat is converted to 

■ by us*1*  r '*** *wrrlcane w*n<*' A* summarized in Box 3.1 and described in mote detail in Appendix 
И " 0* Carnot’s theorem one can obtain an upper bound to the velocity o f the hurricane wind.

3-1

Ь* V l ' of « 8“  Н и м ш т  » A'thwd 1Ьг.чц* the ncrMwavalUMUcamumiwnMeUw Equation (1.4.9)y.
ГмШ1,,|и| “  * (1/273) '  С '1. From this e fia u o n H  feUowaftM d V T V -e  do t I + o (l. O n the odiw hand 

^ w l e4M ,K,nrV * NRT . we have, at constant p, dV7V = dT/T T h u  еяаЬк» us to relale the ahsolute lemperature Г  to the 
Г*У T * ( \  •+ at)/a  *  (273 +  rji nn which t is in Celsius,
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Box 3.1 The hurricane as a heat engine
The mechanism t 'f  a hurricane in essentially thal of a he il iglne, a* shown in the (lire below in t)K. 
ABCD. 11» maximum intensity o f  * hairlcane, i.e. the i itnum hurricane win peed, can be preiiu 
using Carnot's theorem for the efficiency of a heat eng 1

TropopaiMC 15 Kill Tj 200 К

0 50 100

In « hurricane, a* ill* Windlnpinili inwurd* toward» tb  at low pressure, eni I >y (beat) in absorbe, ; I
tbe w e m остнмц» Lnierfais*In m iemntiaUy boUwroin «се**: water vupon md mixes wuh tin i l
««tying will» il (lie enthalpy of vaporization (negmcnt > i. When Ihi* moist •» caches the liumcan Я
eyewall, it ri»cs rapidly to about IS km along the ey. I, Since the press» icrcswen with alum Д
it expands adlahuticidllv and cool» (segment BC). As tin wing moist air's tern| ature drops, the « Я
vapor in il condenses и* rain, releasing the enthalpy o f  fixation (latent heai i t  o f which is radia Я
ifto outer space In a real hurricane, the air at the hi г r altitude flows out > the weather \vsu >1
Theoretically, in order to close tbe Carnot cycle, it со be assumed that tb lhalpy of vapon/at Л
is lost in an isothermal process (segment CD). The la. «p (legment DA) о s cycle is an aJiab Я
compression o f dry aiir. During tlie cycle, part of the ei I (py mbsorbed from I i «eon is converted i I  
mechanical energy of the hurricane wind.

Tbe 'humcane beat engine'operates between the o t surface tcmperatun (about 300 КI ami1
lower lemperalute T: ubout 200  К | at the higher allitu lose to tbe upper N kuy of the (горо-Г1"
(tropo pause). The conversion of the heal of vaporizatio i inechanica! energy i he bairicanc wind с
now be analyzed. In a time dr, if d y ( is «he heal absorb" I tbe ocean surface, u is the heat radiated 1
the higher altitude and dW' is the amount of heat convi r I to mechanical enei of the hurricane wii 
then, according to Carnot's Jhenrem:

AW (  ? d<?,

dT V 'r
Appendix 3.1 shows that the use of this expression in an ulysisof theenergc i of a hurricane lead*

the following estimate for the maximum hurricane win I ;ed l»1Ilelil:

2 - i r - k )
\  > 2  - D
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я  _ c  C0 ere constants. Л‘ is the specific enthalpy (enthalpy per unit mass) o f  the air saturated 
{>-slur<; close to the ixean surface and h is the «pecific enthalpy o f dry wind above the occan surface 

tbe figure above). All tbe terms on the right-hand side are experimentally measured or theoretically 
Tbe ratio Ct ICu к  I . Kerry hmamial, the originator of the above theory, ha* deint'nxlrated tliat 

* j ! o v e  expression for i lead» u> remarkably good estimates of die hurricane wind speeds |4 |. More 
W j j j  еда be found in Appendix 3.1 and in the cites! articles.

3 t  T he S econd  Law  a n d  th e  C o n c ep t o f  E n tro p y

IV fe -reaching import of the concepts originating in Carnot's Reflexions on the Motive Force o f  Fire was 
^glizedin the generalizations made by Rudolf Clausius (1822-1888), who introduced the concept of entropy. 
i new physical quantity as fundamental and universal as energy.

Clausius began by generalizing expression (3.2.4) that follows from Carnot’s theorem to an arbitrary cycle. 
Ilus was done by considering composites o f Camot cycles in which the corresponding isothemns differ by 
an infinitesimal amount AT, as shown in Figure 3.3a. Let Q i be the heat absorbed during the transformation

У

(a)

P

V

r_w
cytk Clausius 's generalization o f Carnot cycle, fa) Two Carnot cycles can be combined to obtain a larger 

в   ̂Лпу closed path can be thought oi'as a combination o f a large number o f infinitesimal Carnot cycles.
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from A lo A '. at temperature T t , and let £>| be the heat ab 
(7\ +  &Tl  Similarly, we define &  and Q2 for the trato 
Тг + &T and T} respectively. Then the reversible cycle /  
reversible cycles AA'C'DA and A 'BCC'A ' because the 
second cycle, C 'A '. For the rewrsible cycle AA'BCC'D 1

0 .  . 3
Tj Г, + Д Г

Qi
b

'ihe above composition o f cycles can be extended to an 
considering it as a combination of a large number of inli 
if heat is absorbed by tbe system and i Q  < 0 if it is dis< 
arbitrary closed path gives

/  f

‘d during the transfi r 
tations CC* and C 'l) 
BCC'DA can be thou 
batie work A 'C ' in <u 
can therefore write

, + Д Г

ttrary closed path (as 
simal Carnot cycles 
ed, tbe generalizati< i

ition A'B at t c tn p ^ f j
cw nng o t t e m p J I i  
t of a , a suln nf ■ 
cyck cancels ,ha in ® j

<3fc

.own in Figure .'v.tbi 
'ith the notation dQ | 
f Equation (3.3.1) of

(3.3

Rudolf Clausius ( I
(Reproduced with permission from t/)e (dgar Fahs Smi

This equation has an important consequence: it mean, 
representing a revetsible process from a state A to a si 
independent of the path, as described in Figure 3.4. Thus

oiiection, University ennsylvania

it th* integral of the . .ntity dQfl 
В depends only on states A and  ̂  ̂( 
ausias saw that one с define a fund10 4
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Hurt З 4 Any differential, such as dQ /7  in liquation (3.3.2), whose Integral over any closed path is zero can 
■Tused Ю define a Amctioti of state can be teen as follows. Since the total integral for a closed path from A ti> H

Alont I and from В to A along 2 is zero, it follows that ф dQ/dT = /  dQ / T + I  dQ /T  = 0. Now  we
У /< \р тЫ  У в.р»м

.«Ite that I  d Q / T * - I  dQ/Т  along paths 1 or 2. Hence, j  dQ /Т  -  j  dQ/Г, i.e. the integral o f  
Уа У В У A p»tM У ApathS

dQ/Т from point A to point В is Independent o f the path; it dependt only on the points A and B. Hence, If the 
'niijl reference state is fixed, the integral, which is a function only o f the final state, is a state function.

depends only on the initial and final stales o f  a reversible process (Figure 3.4). If ,УЛ and S& are the values ot' 
ihis (uiction in tl» states A and B. then we can write

s h ~ S *  = J  y o r d S = ^  <3,3.3)
A

By defining a reference state ‘O ’, the new function o f state S could be defined for any state X as the integral 
1 for a reversible process transforming the state О to the state X.
1 bueius introduced this new quantity S  in 1865. stating ‘1 propose to call the magnitude S the entropy of 

к body, from the Greek word rpoer\, transformation,' [5. p. 357|. Tlic usefulness of the above definition 
®P**d«on the assumption (hat any two states can be connected by a reversible transformation. 
. Щ Ъ п т ,  remains fixed, then it follows from (3.3,3) that, for a reversible flow of heat Q. the change 
,1.. №QtT. In terms of entropy. Carnot's theorem (3.2.3) is equivalent to the statement that the sum of 

f »  changes in a reversible cycle is zero:

I n ,

Gi
rt ~ r2 <3.3.4)

tXcb«W«rf**,*e Proc*s»«. since the temperatures of the system and the reservoirs are the same when heat is 
*be change of entropy o f the reservoir in any part of the cyclic process is the negative o f the

* of the system.
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In a less efficient irreversible cycle, a smaller fraction of Q , (the heat absorbed from the hot reservo 
converted into woik. This means that the amount of heat delivered to the cold reservoir by an trrever, 8 
cycle Q Y  is greater than Q2 Therefore, we have lh|

< 0 (3.3

Since the cyclic engine returns to its initial state whether the process is reversible or irreversible, there ,
change in its entropy. On the other hand, unce the beats transferred to the reservoirs and to the Inevei

5)

no

engine have opposite sign, the total change o f  entropy o f  the reservoirs is ‘Msible

■ > 0 (3.3 6)

if the reservoir temperatures can be assumed to be the same as the temperatures at which tbe engine operate, i 
In fact, for heat to Bow at a nonzero rate, tbe reservoir temperatures T[ and r j  must be sudh that T[ > /  ,
7^ < Тг . In this case, the increase in entropy is even larger than (3.3.6),

Generalizing the above result, for a system that goes through an arbitrary cycle, with the equalities hoklj- 
for a reversible process, we have

/
d Q
—  SO  (system) (3.3.7)

For the ’exterior' with which the system exchanges beat, since dQ has the opposite sign, wc then have

<3 3.8)

At the end of the cycle, be it reversible or irreversible, there is no change in the system’s entropy because 
it has returned to its original state. For irreversible cycles this means that the system exjpels more heat to 
the exterior. This is generally a conversion of mechanical energy into heat through irreversible process: 
Consequently, the entropy of the exterior increases. Thus, the entropy changes in a cyclic process may be 
summarized as follow»;

Reversible cycle: dS =  ^  ~  = 0 (3.3

Irreversible cycle: d 5 > ^ .  d S m (X ^ ^ - = < 0  (3.3.1

As we shall see in «he following section, this statement can be made more precise by expnessmg the entra 
change dS as a sum o f two parts:

(3.3.11)

Here, deS is the change of the system’s entropy due to exchange of energy and matter and dj.S is the c h a n g e  И  

entropy due to irreversible processes within the system. For a closed system that doe* not exchange matt* 
d t S ш d Q/T. The quantity dcS could be positive or negative, hut d |J  can only be equal to or greater tbar. л 'г0.
In a cyclic process that returns the system to It* initial state, since the net change in entropy must be zero, 
have

/ d S = deS + diS = 0 (3-3.1»
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j 5  > 0 we must have /  d,5 > 0. For a closed system, from Equation (3.3.12) we immediately obtain 
SX , V «  result (3,3.10):

£  de5 — £

|lljs  m e a n s  that, for the system to return to its initial state, tbe entropy ф d,.S' generated by the irreversible 
jioccsses within the system has to be discarded through the expulsion of heat to the exterior. There is no real 
[’vjiem in nature that can go through a cycle of operations and return to its initial state without increasing 
I t  entropy of the exterior, or more generally the ‘universe1. Every process in Nature increases the entropy, 

establishing a distinction between the past and future. The Second Low establishes an arww o f  time: the 
increose o f enltvpy distinguishes the future fm m  the past.

t j  1 Statements of the Second Lew

fle  limitation to the convertibility of heat to woric that Carnot discovered is one manifestation of afundamental 
limitation in all natural processes: it is the Second Law of thermodynamics. The Second Law can be formulated 
in many equivalent ways. For example, it can be a statement about a macroscopic impossibility, without any 
reference to the microscopic nature of matter:

It *  impossible to construct an engine which will work in a complete cycle, and convert all the heat it 
absorbs from a reservoir into mechanical work.

This is a statement p e rfec tly  comprehensible in macroscopic, operational terms. A  cyclic engine that converts 
all heat to work is shown in Figure 3.5. Since tlie reservoir or the ‘exterior*, at temperature T, only loses heat, 
inequality (3.3.8) is clearly violated. Such an engine is sometimes called a perpetual motion machine o f  the 
second kind and the Second Law is the statement that such a machine i« impossible. The equivalence between 
this statement and Carnot's theorem can be seen easily and is left м  an exercise for the reader.

Another way of stating the Second Law is due to Rudolf Clausius (1822-1888):

Heat cannot by itself pass from a colder to  a hotter body.

* • > *  3.5 a  perpetual motion machine of the second kind absorbs heat Q  and converts all of It to work W.
* machine, though consistent with the First Law, is Impossible according to thtt Second Law. The existence 

a machine would violate the inequalities (3.3.7) arid (3,3,8).
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if heat eoukl pass spontaneously from a coldcr body to a hotter body, the» a perpetual motion 
of the second kind can be realized by simply making the heat Q2 expelled by a cyclic beat engine t„ .T* 
colder reservoir pass by itself to the hotter reservoir. The result would be the complete conversion of the | '  
(6 1 - 6 2 ) to work. 'eat

As we have seen above, any real system that goes through a cycle of operations and returns to its mit I 
state does so only by increasing the entropy of its exterior with which it is interacting. This also means t( I 
in no part of the cycle can the sum of entropy changes of the system and its exterior be negative becauw 
if it were so, we could complete the rest of the cycle through a reversible transformation, which does noj I 
contribute to the change of entropy. The met result is a decrease of entropy in a cyclic process. Thus ц* 
Second Law may allso be stated as:

The sum of the entropy changes of a system and its exterior can never decrease.

Thus, the universe as a whole can never return to its initial state. Remarkably. Carnot’s analysis of |K.at 
engines has led to Ihe formulation of a cosmological principle. The two laws of thermodynamics arc best 
summarized by Rudolf Clausius thus:

The energy o f  the universe is a constant.
The entropy o f the universe approaches a maximum.

3.4 Modern Formulation of the Second Law

The usefulness of the concept o f entropy and Ihe Second Law depends on our ability 10 define entropy fu r  
a physical system ill a calculable way. Using Equation (3.3.3), if  the entropy Sa of a reference or standard 
state is defined, then tlie entropy of an arbitrary state Sx  can be obtained through a reversible process that 
transforms the state О to the state X (see Figure 3,6):

X

о

(In practice d g  is measured with the knowledge o f the heal capacity using dQ  =  С  dT.) In a real system, j 
the transformation from the state О to the *tatc X occurs in a finite lime and involves irreversible processes 
along the path I. la thin process, the entropy of the system, and hence the universe, increases. In ckssicd  
thermodynamics it is assumed that every irreversible transformation that a system undergoes can also I* 
achieved through a reversible transformatfanfor which Equation {3,4,1/ is valid. In other words, it is assumed 
that every irreversible transformation that results in acertain change in Ihe entropy of the system can be cxat tty 
reproduced through a reversible process in which the entropy change is solely due to the exchange of heat. 
Since the change in cnlropy o f  the system depends only on the initial and final stales, Ihe change in entropy 
calculated using a reversible path will lie equal to the entropy change produced by the irreversible p r o c e s s e s .  

However, itmust be uotcd that a reversible transformation from an initial stateO lo the final Male X (Figure 3.6) 
may give the right value for the change in entropy of the system, but it leaves Ihe entropy of the univer** 
unchanged; in a reversible process, the change in entropy of the system is compensated hy the орры,е 
change in the entropy of the exterior, leaving the entropy o f the universe unchanged. On tile other b 1I,J' 
the naturally occurring irreversible transformation from О to X increases Ihe entropy of tbe universe S'”11* 
authors restrict the above assumption to transformations between equilibrium states; this restriction exclude
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figure 3.6 Reversible and irreversible processes, (a) The system reaches the state X from the standard state
0  through a path I involving irreversible processes. It is assumed that the same transformation can be achieved 
ihmugh a reversible transformation R. (b) An example o f an irreversible process is the spontaneous expansion 
olagas into a vacuum, as shoivn in the upper pan. The same chartge can be achieved reversibly through an
1 “thermal expansion of a gas that occurs infinitely slowly so that the heat absorbed from the reservoir equals the 
work done on the piston. In the latter case, ф е change in entropy can be calculated using dS = dQ/Т.

A nneal reactions, ш which the transformations are often from a nonequilibrium state to an equilibrium state
Chapters 4 and 7),
process is reversible only in the limit of infinite slowness: as perfect reversibility is approached, the 

4*ed of the procets approaches zero. A* Max Planck notes in hi* treatise [6, p. 86). ‘Whether reversible 
P a s s e s  exist in nature or not. is not n priori evident or demonstrable.' However, irreversibility, if it exist*. 
“ * to he universal because a spontaneous decrease o f  entropy in one system could be utilized to decrease 
f *  entropy ,if any other system through appropriate interaction; a  spontaneous decrease o f entropy of one 
'У чет implies a spontaneous decrease of entropy of all systems. Hence, either all systems are Irreversible, 
nri ‘n e  are, as Max Planck emphasized [6].



\rnin of an idealized reversible path provides a convenient w ay lo r  calcu lating  entropy changes. How- 
evt lacking in providing the real connection between physical processes and entropy. A ddressing 
th ii^i his 1943 monograph The Nature o f  Thermodynamics. P.W. Bridgm an w rote [7. p . 133]:

liilitolist always emphasized that thermodynamics is concerned w ith reversible processes and equ ilih  
4n*es and that it can have nothing lo do with irreversible processes o r  system s out o f  equilibrium  
liny change» arc progressing al a finite rate. The reason for the im portance o f  equilibrium  sta tes js 
^ e n o u g h  when one reflects that temperature itself is  defined in term s o f  equilibrium  states. But 
Hussion of general impotence in the presence o f  irreversible processes appears on  reflec tion  to be 
inking thing. Physics does not usually adopt sMch an attitude o f  defeatism .

Todjj jiost text» on thermodynamics, an irreversible transform ation is usually  identified by the C lau siu s

цщегп Thermodynamics

(3 .4 .2 )

I______ i _ l
w4  и saw in the last section. However, the fact that C lausius considered irreversib le processes as an 
m iiiijijrt о formulating the Second Law is generally not m entioned. In  h is ninth m em oir, C lausius 

,ire\ersibte processes explicitly iato the formalism o f  entropy and rep laced  the inequality  (3 .4 .2) by

“ * i# l* .p .3 « .e q .(7 1 )] :
N ~ S - S 0 - / y i  (3.4.3)

Пн’ entropy o f the final state suid S0  is the entropy o f  the initial sta te . H e identified the  change 
uinyvdue to tbe exchange o f heat will) the exterior by the term  tSQ/T (w hich  is com pensated  by  equal 

of heat by the exterior). Clausius wrote: T h e  m agnitude /V thus determ ines the uncom pensated  
rovrfKW (uncompensirte Venandlnng)[». p. 363]. It is  the entropy p roduced  by  irreversible processes 
i s y s t e m .  While dQcan be positive or negative, the C lausius inequality (3 .4 .2 ) im plies that the changc

V  due 10 “reversible processes can only be positive:

N  * > S - S 0 - J  ̂ Я - Х )  (3.4.4)

< K d s o  stated the Second U w  as: ’Uncompensated transform ations can o n ly  be positive ' [8. p . 247 |. 
in>^j ^  ausiu* ^ lped l0, but d‘d provide a m eans o f  com puting the  entropy N  a sso c ia ted  with

w e proeewe*. Nineteenth century thermodynamics rem ained in the restric ted  dom ain  o f  idealized 
n](K transformation and without a theory that related entropy explicitly to irreversible processes. Some 

Re ItH ' Г *  l l̂al enlroPy ‘s a Physical quantity that is  spatially  d istributed  and transported (e.g. set 
Чет* I >' but still no theory relating irreversible processes to entropy w as form ulated in ihe nineteenth

ceiy\%l»g the importance of relating entropy to irreversible procennes. PieiTe D uhem  (1 8 61-1916) began «' 
omv nun In his extensive and difficult two-volume w ork titled E a erg M q u e  110], D uhem  explicitly 

^expressions for the entropy produced in processes involving heat conductiv ity  and  v iscosity  [1 11 
%jioc8c ideas of calculating the ‘uncompensated heat’ a lso  a p p e a r e d  in the w ork  o f  tbe P o lish  r e s e a r c h  i 

-■ ,* i n |  I and Ihe Viennese school led by G. Jaumann 113-15], where the notions o f  entropy flow at"1

production were developed.
w lation o f a theory o f entropy along these lines continued during the tw entieth century, and today " c 
<1, i eory и  which the entropy change can be calculated in terms o f  the variables that eh aracten/c tl»’
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,reversible processes. It is a theory applicable to all systems in which the temperature is well defined at every 
Н ш о я . For example, the modern theory relates the rate of change of entropy to the rate of heal conduction

the rates chemical reaction. To obtain the change in entropy, it is not necessary to use infinitely slow 
° ' f rsible processes.

With reference to Figure 3.6, in the classical formulation o f entropy it is often stated that, along the 
hjtversible path I, the entropy may not be a function o f the total energy and the total volume and hence it 
. po, defined. However, for a  large class o f  systems, the notion o f local equilibrium makes entropy a  well- 
defined quantity, even if it is not a function of the total energy and volume. We shall discuss the foundations 
0f  this and other approaches in Chapter 15, For such systems, entropy, which represents irreversibility in 
nature, can be related directly to irreversible processes.

In bis pioneering work on the thermodynamics of chemical processes, Th&>phile De Donder (1872-1957) 
[16-18] incorporated the 'uncompensated transformation' or 'uncompensated heat' of Clausius into the for
malism of the Second Law through the concept of affinity (which is presented in Chapter 4). Unifying all these 
Jfevelopmcnts, Ilya Prigogine (1917-2003) formulated the 'modem approach' incorporating irreversibility 
into the formalism o f the Second Law by providing general expressions for computing entropy produced by 
iireversible processes [19-21], thus giving the 'uncompensated heat' of Clausius a sound theoretical basis. 
Thus, thermodynamics evolved info a theory of irreversible processes in contrast to classical thermodynamics, 
which is a theory of equilibrium states. We shall follow this more general approach in which, along with 
thermodynamic stales, irreversible processes appear explicitly in the formalism.

The basis of the modem approach is the notion o f local equilibrium. R ir a very large class of systems 
that are not in thermodynamic equilibrium, thermodynamic quantities such as temperature, concentration, 
pressure and internal energy remain well-defined concepts locally, i.e. one could meaningfully formulate 
a Ihermodynamic description of a system in which intensive variables such as temperature and pressure 
are well defined in each elemental volume, and extensive variables such as entropy and internal energy are 
replaced by their corresponding densities. Thcrmodynamic variables can thus be functions of position and 
time. This is  the assumption o f local equilibrium. There are. of course, systems in which this assumption is 
not a good approximation, but such systems are exceptional. In most hydrodynamic and chemical systems, 
local equilibrium is an excellent approximation. Modem computer simulations of molecular dynamics have 
shown that if initially the system is in such a state that temperature is not well defined, then in a very 
short time (few molecular collisions) the system relaxes to a state in which temperature is a well-defined 
quantity [22].

The modern formalism begins by expressing the changes in entropy as a sum of two parts [19]:

iS  — dfS + djS <3,4.5)

in which deS is the entropy change due to f a  exchange of matter and energy with tbe exterior and d>S is the 
entropy change due to uncompensated transformation', the entropy produced by the irreversible processes 
in the interior of the system (Figure 3.7).

I  The task now is I» obtain explicit expression* for dcS and d(S in terms o f experimentally measurable quan
tities, Irreversible processes can in general be thought of as therm odynam ic forces driving thermodynamic 
Bows The thermodynamic flows are a consequence o f the thermodynamic forces. For example, the temper- 
ature gradient is the thermodynamic force  that causes an irreversible Jtow of beat; similarly, a concentration 
gradient is the thermodynamic force that causcs the flow of matter (Figure 3.8). In general, the irreversible 
change dtS is associated with a flow dX of a quantity, such as heal or matter, that has occurred in a time di, 
For tbe flow o f  heat. dX =  d Q, Ihe amount o f heat that flowed in time d/; for the case of matter flow, dX = dN, 
moles o f  the substance that flowed in time df, In each case, the change in entropy can be written in the form

djS =  FdX (3.4.6)
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d,.V

Figure 3.7 Cntropy changes in a system consist of two pans: d|S due to Irreversible processes and dei  d u e ,f|p 
exchange of energy and matter According to the Second Law, the change d,S can only be positive. The cmnH,v 
change deS can be positive or negative.

in which F  is  the thermodynamic force. Hie thermodynamic forces are expressed as functions of thermo
dynamic variables such as temperature and concentrations. In the following section we shall see that, for 
the flow of heat shown in Figure 3.8, the thermodynamic force Hikes the form F  = (VTmU ~ l/TlyA) For a 
continuous variation of T,

For the flow of matter, the corresponding «hemodynamic force is expressed in terms of affinity, which, as 
noted above, is  a ooneept developed in Chapter 4. A ll irreversible processes can be described In terms of 
thermodynamic force* and thermodynamic flows. In general, the irreversible increase in entropy d,,V is the 
sum of all the increases due to irreversible flows dXk .We then have the general expression

or (3.4.7)

High «me. Low  craic,

Figure 3.8 Flow Ы  heat and diffusion of matter are examples of irreversible processes.
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Глий***( a modem statement o f the Second Law of thermodynamics. The rate of entropy production 
Z ,  to each irreversible process is a product ot the corresponding them*.dynamic forcc F k and the flow J, = 
jT / j i and can only be positive. *

entropy exchange with the exterior 4..Л' is expressed intermsof the flow of heat and matter. For isolated 
jydlen**'SUKX t*ieK '* 1,0 excbange of energy or matter,

dtS*=0 and d,S^O (3 4 g)

for <*>«‘‘1 systents which exchange energy but not matter,
d Q AV +  p iV  

= y  = ------ f ------ and d ,j£ 0  (3.4.9)

In this expression. JO is the amount of heat exchanged by the system in a timed/. (By defining do m this 
way. we avoid the -imperfect differentials' used in classical thermodynamics.)

[br open systems, which exchange both matter and energy:

. .  d U + p iV
e f  + (df SW lcr and d jS > 0  (3.4.10)

where (djS),,̂ ,,,., is the exchange of entropy due to matter flow. Thus term can be written in terms of chemical 
potential, a concept that w ill be developed Chapter 4. When there is a flow of matter, as discussed in 
Section 2.7, dU + p  dV Ф dQ. because tbe internal and kinetic enemies of the matter flowing through the 
system must be included.

Whether we consider isolated, closed or open systems, d,S > 0. I, is the statement of the Second Law in 
its most general Iото. 1 here is  another important aspect to this statement: it is  valid for all subsystems not 
ju t for the enure system. For example, if  we assume that the entire system is divided mto two subsystems 
we not only have 3 ’

= djS1 + > 0 (3.4,11)

in which d,S‘ and d^2 are the entropy productions in each of the subsystems, but we also have

dl̂ 1 0 djS2 ^0 (3.4.12)
We cannot have, for example,

djS1 > 0, djS2 < 0 but d(5 = d ji1 + d,5:  ^ 0 (3.4.13)

Th is itatement is stronger and more general than the classical statement that the entropy of an isolated system 
can only increase.

In summary, for closed systems, the First and the Second Laws can be stated as

df/ = dO + dW (3.4.14)

<IS = d,S + d,.S in which d,S £  0. £ <JQ/T (3.4.15)

ff|transfonnaiion of the state is  assumed ю take place through a reversible process, d ,S -  0 and the entmov 
change is  solely due to the flow of heat. We then obtain the equation

(3.4,16)M * T < iS  +  <iW = T < lS - p W

which is found in text» that confine the formulation of thermodynamics to idealized reversible processes.
open systems, the changes in energy und entropy have additional contributions due to the flow of matter,

1,1 this case, though the definition of heat ami work needs careful consideration, there is  no fundamental 
BP&culty in obtaining d ll and dtS.
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Finally, we must note that the above formulation enables us to calculate only the changes of entropy j ( 
does not give us a way to obtain the absolute value of entropy. In this formalism, entropy can be known onl 
up to an additive constant. However, in 1906. Walther Nemst (1864-1941) formulated a law that stated ti)a, 
the entropy o f all systems approaches zero as the temperature approaches zero [23]:

S -+ 0 as T  -* 0 (3.4.17)

’ il l  v  а

\

W ither Nernst <1864-1940.
(Reproduced with permission from Ihe Idgar Fahs Smith Collection, University of Pennsylvania library.)

Th is law is  often referred to as the Third I.mw of thermodynamic» or the Nernst heat theorem. Its validity 
has been well verified by experiment 

The Third  Law enables us to give the absolute value for the entropy. The physical basi» of this law lies in 
the behavior of matter at low temperatures that can only be explained by quantum theory. It is rem arkable 
that the theory of relativity gave us means to define absolute values of energy and quantum theory enables us 
to define absolute values of entropy.

The concept of entropy has its foundation in macroscopic procenei. No mention has been made about u» 
meaning at a molecular level. In order to explain what cntropy is al a molecular level. Ludwig Boltzmann 
(1844-1906) introduced the statistical interpretation of entropy. Box 3.2 gives an introduction lo this topic; a 
more detailed discussion of this topic is  given in Chapter 20,

Box 3.2 Statistical interpretation of entropy
As we have seen m tliis  chapter, the foundation of the concept of cntropy as a state function is entirely 
macroscopic. The validity of the Second Law is rooted in the reality of irreversible processes In su ik 
contrast to the irreversibility of processes we see all around us. Hie laws of both classical and quantum 
mechanics posses* no such irreversibility. Classical and quantum laws of motion are time «ymmetric: 1
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a sysl£in can evolve from a state A to a state В then its limc-revemd evolution, from В to A. is  also 
-jBHSsiWc. The law* of mechanics make no distinction between evolution into the future and evolution 
into Л* Palil P°r «ample, the spontaneous flow of gas molecule» from a location al higher concentration 

location at lower concentration and its reverse (which violates Ihe Second Law) are both in accord 
with the laws of mechanics. Processes lhal are ruled impossible by tlie Second Law of thermodynamics do 
№1( violate the laws of mechanics. Yet all «reversible macroscopic processes, such as the flow of heat, are 
the consequence of motion of atoms and raolccules that are governed by the laws of mechanics; the flow 
of heat is a consequence of molecular collisions that transfer energy. How can irreversible macroscopic 
accesses emerge from the reversible motion of molecules? What is  Ihe relation between entropy and the 
jpicroscopit constituents of matter? The energy of a macroscopic system is the sum of the energies of its 
microscopic constituents. What about entropy? Addressing these questions, Ludwig Boltzmann (1844- 
1906) proposed an extraordinary relation; entropy te a logarithms measure of the number of microscopic 
slates that correspond to the macroscopic state:

S = kb\nW

in which W is  the number of microstates corresponding to the macrostate whose entropy is  5. (We shall 
discuss this relation in detail in Chapter 20.) The constant is  now called the Boltzmann constant;* 
*B =  1.381 x  10~a J К '1. The gas constant R  =  kBNA, in which NA is (he Avogadro number. The 
following example w ill illustrate the meaning of W. Consider the macrostate of a box containing a gas 
with N ! moleculc» in one half and N j in the other (see the figure below). Each molecule can be in one half 
or the other, The total number of ways in which the (TVj + N2) molecules can be distributed between the 
two halves such that Л', moleculcs arc in one and f f 2 molecules in the other is equal to W The number of 
distinct ‘micmstate»' with Ny molecules in  one half and N2 in the other is

W m < K + m
JV,W2!

Bccording to Boltzmann, macrostates with linger IV are more probable. The irreversible increase of entropy 
theij corresponds to tlie evolution to states of higher probability in the future. Equilibrium state* are those 
for which W Is a maximum. In tlie above example, it can he shown that W reaches a maximum when 
f l “ N2.

], Ter Од,,, „„к* that It was Max Planck who introduced kH in tbe above form; Planck also determined Us 
Wtaericul value (D. ter Haar. The Old Quantum Theory, 1967, Pergamon Press: I .on don, p. 12.)
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To illustrate how entropy changes are related to irreversible processes, we shall consider some x in ^  
examples. The examples we consider are 'discrete systems' m which the system consists of two parts that ^  
not mutually in equilibrium. An example of a continuous system i* presented in Appendix 3.2,

3.5.1 Heat Conduction

Consider an isolated system, which we assume (for simplicity) consists of two parts, each part having ,  
well-defined temperature, i.e. each part is  locally in equilibrium. Let the temperatures of the two parts be 
Г  j and T 2 (as shown in Figure 3.9), with Г , being greater than T 2. Let d Q be the amount of heat flow f jom 
the hotter part to the colder part in a time dt. Since this isolated system does not exchange entropy with tlic 
exterior, deS =  0. Also, since the volume of each part is  a constant, d IV = 0. The energy change in each part ' 
is due solely to the (low of heat: dUt — dQif i  я  1,2. In accordance with the F irst Law, tbe beat gained by one 
part is  equal to the (beat lost by the other. Therefore, ~dQt =  dQ2 m dQ Both parts are locally in equilibrium 
with a well-defined temperature and entropy. The total change in eetropy d,S of the system is  the sum of the j 
changes of entropy in each part due to the flow of heat:

d(2 d(?
d,5— 3  +  36  de (3.5.1,

Since the heat flow* irreversibly from the hotter to tbe colder part. dQ is positive if  Г , > T } . Hence, djS > 0.1 
In expression (3.5.11), dQ and (1/T| — l/ T2) correspond to dX anil Г  respectively in Equation (3.4.6). In terms j  
of the rate of flow of heat dQ/dt. the rale of entropy production can be written as

3 H * - * ) *  ]
Now the rate of flow of heat or the heat current J q  = dQ/dt is given by the laws of heat conduction. For ; 
example, according lo the Fourier law of beat conduction. Jq =  а (Г, -  T 2), in which a is the coefficient of 
heat flow (it can be expressed in terms of the coefficient of heat conductivity and the area of cross-section), j  
Note that the 'thermodynamic flow’ J q  is  driven by the ‘thermodynamic force’ F  =  (1I T 2 -  1 IT\). For the 
rate of entropy production we have, from Equation (3.5.2),

,2
= f  1  -  1 )  a(T, -  T 2) =  a {Ti  ~ I 2l  >  Q (3.5.3)

d l \ T2 T j  1 2> T XT j

r,

dy/d/

T,

figure 3.9 fntropy production due to heat flow. The irreversible flow of heat between parts of unequal 1 
perature results in an Increase in entropy. The rate at which entropy Is produced, d,S/dt Is given by l4 “-w 1
(3.5.3).



The Second Law o f Thermodynamics and the Arrow of Time 113

d.S'd/ S

Д Д
<*) (b)

figure 3.1° Two equivalent properties that characterize the state o f equilibrium, (a) The entropy production 
ratt d^/dt 35 a function of the difference in temperatures Д s  (T, - T }) of the two parts o f the system shown In 
figure 1.9. At equilibrium, the entropy production rate is zero, (b) Atequilibrium the entropy reaches Its maximum 
value. Both properties can be used to identify a system in equilibrium.

Owing to the flow of heat, the two temperatures eventually become equal and tbe entropy production ceases. 
This is  the state of equilibrium. Entropy production must vanish in the state o f equilibrium, which implies that 
the force Fand the corresponding flux Jq both vanish. In fact we can deduce the properties of the equilibrium 
slate by stipulating that all entropy production must vanish in that *tate.

Prom Equation (3.5.3) we see that the entropy production rate d,.V/d( is a quadratic function of the deviation 
Д e  (Г) -  T 2). In the state of equilibrium, the cntropy production rate takes its minimum value equal to zero. 
This is  indicated graphically in Figure 3.10a.
■Khonequilibrium state in which Г , Ф T j  evolves to the equilibrium state in which f\ ^ T \ ~ T  through a 
continuous increase of cntropy. Therefore, iic  cntropy of the equilibrium state must be larger than the cntropy 
of any nonequilibrium state. In Chapters 12 and 14, we w ill see explicitly that for a small deviation Д = 
(T{ -  T i)  from the state of equilibrium the corresponding change ДS  is a quadratic function of Д, attaining a 
maximum at Д ж 0 (sec Figure 3.10b).

Th is example illustrates the general assertion that the state of equilibrium can be characterized either by 
the principle of the minimum (equal to zero) rate of entropy production or the principle of maximum entropy.

3.5.2 Irreversible Expansion of a Gas

In a reversible expansion of a gas, the pressure of the gas and that out the piston are assumed to be the same. If  
we consider an isothermal expansion of a gas that has a constant temperature T  by virtue of its contact with a 
heat reservoir, the change in entropy of the gas deS  =  dQ/T, in which dQ is  the heal flow from the reservoir to 
4* gas that is necessary to maintain tlie temperature constant. Th is is  an ideal situation. In any real expansion 
° f a gas that takes place in a finite time, the pressure of the gas is  greater than that on the piston. If  />gas is  the 
Pressure of the gax and p^am that the pressure on the piston, tlie difference -  ррШт) is  the force per 
uml area that move* the piston. The irreversible increase in entropy in this case is  given by

щ Р Г  WV '*  т  Vga, -  I 1 piston 1 И . ш и »  case u i an lueai gas, since ше energy в  ош у a runcuon OI l . me
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initial and final eneigie» of the gas remain Ihe same; the heat absorbed is  equal to the work done in movu, 
the piston PpjMon dV. For a given change in volume, tbe maximum work is obtained for a reversible proCe ® 
in which pgu = р рШп.

3.6 Kntropy Changes Associated with Phase Transformations

In this section we w ill consider a simple example of an entropy exchange <̂ 5. Changes in the phase of a system 
from a solid to a liquid or a liquid to vapor (as shown in Figure 1.3), provide a convenient situation because' 
at the melting or boiling point, the temperature remains constant even when heat is  being exchanged. Ilcnce 
in the expression for the entropy change associated with the heat .exchange, dCS  =  dQ/Г, Ike temperature / 
remains constant. The total entropy change AS due to the exchange of heat ДQ is  now easy to determine |n 
a solid-to-liquid transition, for example, if  the melting temperature is T m, we have

AS

дQ

I f -J 'm
AG
T m (3.6.1)

As discovered by Jiweph Black, the heat absorbed, ‘the latent heat', converts the solid to a liquid at a fixed 
temperature. Generally, this change happens at a fixed pressure and, hence, we may equate AQ to All, the 
enthalpy change associated with melting. The enthalpy associated with the conversion of 1 mol of the so lid  
to liquid is called Ihe molar enthalpy of ftisilon ДH fm. The eonresponding change in entropy, the molar 
entropy of fusion can now be written as

ASfus =
AH.fun

( 3 . 6 . 2 )

Water, for example, has a heat of fusion of 6,008 kJ mol-1 and a molting temperature of 273.15 К at a pressure 
of 1.0 atm. When 1 mol of ice turns to water, tbe entropy change ASf(1# =  21.99 J K "1 mot"1.

Sim ilarly, if  the conversion of a liquid to vapor occurs at a constant pressure at its bailing point T b. 
then the molar entropy of vaporization ДA’vllp and the molar enthalpy of vaporization Д//vap are related 
by

A l lv*p (3.6.3)

The heat of vaporization of water is  40.6S kJ то Г * . Since the boiling point is  373,15 К  at a pressure of
1.0 atm. from the above equation it follows Owl the molar entropy change A5vap = 108.96 J K * 1 m ol"1, about 
five times the entropy change associated with the melting of ice. Since entropy increase» with volume. tl,c 
large increase in volume from about 18 mL< volume of 1 mol of water) to about 30L (volume of 1 molof steam 
at p = I atm) is  partly responsible for this larger change. The molar enthalpies of fusion and vaporization of 
some compounds are given in Table 3.1. (Thermodynamic data may be accessed using tbe N IST Chem ist 
WebBook at http://webbook.nist.gov/chemistiy.)

http://webbook.nist.gov/chemistiy
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- jf/ f t l  Enthalpies of fusion of anil vaporization at p = 101.325 kPa = 1.0 atm and the corresponding 
K m  tempiiitures.

jUbsianc T„ {Ki ДН». (k| mol-') ГЬ(К) ДН ф  (к) mol*')

273.15 6.01 373.15 40.65
175.5 3.18 337.7 35.21
159.0 5.02 351.4 38.56
90.69 0.94 111.7 8.19

250.15 3.28 349,9 29.82
195.4 5.66 239.8 23.33
7»* = 194.65 4 H«b
161.6 4.40 319.1 26.74
63.15 0.71 77,35 5.57
54.36 0.44 90,19 6.82

= 25.13

Source: D.R. Llde <ed.), QRC Hindbook of Chemistry aixj Phytics, 75th edition, 1994, ORC Press; Ann Arbor, Ml.

3.7 Entropy of an Ideal Gas

In tliis section we w ill obtain the entropy of an ideal gas. Being a stale function, entropy of an ideal gas 
can be expressed a* a function of its volume, temperature and the amount in moles. For a closed system in 
which the changes of entropy are only due to the flow of heat, if  we assume that the changes in volume V and 
ttjmperature T  lake place so as to make d,S = 0, then we have seen that (see Equation (3.4.16)) d£/= T d S  + 
dW. If  dW =*- p  dV, and if  we express dlJas a function of V and T . we obtain

TdS <3.7.1)

For an ideal gas, (dU!dV)T  =  0, because tlie energy U  is  only a function of T  -  as was demonstrated in 
tie experiments of Joule and Gay-Lussac and others (see Section 1.4, Equation (1.4.6)). Also, by definition 
(idU/dDv =  jVC’mv. in which CmV is  the molar heat capacity at constant volume, which is  found to be a 
constant. Hence Equation (3.7.1) may be written as

as ■ Zd V  +  NCmVf

U sing the ideal gas law, pV = NKT, (3.7.2) can be integrated to obtain

S(V, T. N) =» S0( V0. T 0.N) + NR \n(V/V0) + NCmVta(T/T0)

0 .12 )

<3.7.3)

in which S0 in the entropy of the initia l state (V0, Г 0). Since U  =  CmVNT + l/0 for an ideal gas. entropy car 
also be written as st function of V, N and V. As described in Box 3,3. entropy is  an extensive function. In 

Expression (3.7.3). (he cxtensivity of S as a function of V and N is not explicit because Sn(V0, TQ, N) contains 
terms «bat make S extensive. The require me nl that entropy is  extensive, i.e. <Uft V, T. N) = SUV. T. IN), cau 

used to show (Exercise 3.10) that the enttopy of an ideal gas ha* the form

S(V. T .N )«. N1J0 + R  In (V/ЛГ) + r mV IrKD ] (3.7.4)

in Which *q is  a constant. In this form, the extensivity of S is explicit and it is  easy to verify that iS(U, T. N) = 
*Ut/, T, AN).
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Box 3.3 Extensivity of energy and entropy
At a fixed pressure and temperature, if  the amount of substance N  is changed by a factor Л, the voiunil
V also changes by the same factor. In many cases, the system’s entropy S and energy U  also changt l, v 
the same factor X. Th is property is  called extensivity. Entropy is  an extensive function of V, V and ,V: s 
S(U. V, N). That entropy is  an extensive function can be expressed mathematically as

XS(ll, V .N) =  S (W ,X V , W )

Sim ilarly, energy >» о function of S. V and ,Y: U  «= U(S, V. N) and

Xb\S. V,N) =  V(jLS,AV,M)

Physically, extensiivity implies that combining X identical systems results in a larger system whole entropy 
is i  times die entropy of each of the systems. Th is means that the processes of combining X identical 
systems is reversible with no entropy or energy change. Here is  an example. Initia lly, two identical com 
partmentalized subsystems contain an ideal gas. both at the same p and Г  (see the figure below). The process 
of removing (he wall between the two subsystems and creating a system that is twice as large requires 
neither work nor heal. Hence, the energy of ihe larger system is Ihe sum of the energies of the subsystems

A l*». since the wall dees not contribute to entropy, the process i*  reversible with no entropy uliangt; dt,V 
d(S=0, Therefore, we deduce that the initia l entropy, which is tbe sum of the entropies of die two identical 
systems, equals tbe entropy of Ihe linal larger system. In this *cn« the entropy and energy of most systems 
can be assumed in be extensive functions.

On the other hand, entropy and energy are not extensive functions as expressed in the equations above 
when the process of combining identicul systems to create a larger system involves a change In energy ami 
entropy. Such is  (he ease for very small systems, whose surface energy anti entropy cannot be ignored as 
they can be for large systems. When two umall drops of liquid are brought into contact, for example, the> 
spontaneously co»lesee to form a larger drop (see the figure above). Because the surface itf the larger drop 
is not equal to the sum of tbe surfaces of tlie two initia l drops, tlie energy of the larger drop does not equal 
the sum of energies of the two smaller drops. As we shall sec in laler chapters, Ц(Л’ > 0 in this process 
Note also that it requires work to break the bigger drop into two smaller drops. Hence, neither entmp' 
nor energy obey tbe atove equations. However, there is  no fundamental difficulty in taking the energy an J 
entropy of the surface into account and formulating the thermodynamics of small systems.

3.8 Remarks about the Second Law and Irreversible Processes

< r .\  r  I  V 
1 V

As was emphasized by Planck [24|, the statement of the Second Lew and the concept of entropy can I*  
made entirely macroscopic. Tb is is  perhaps why Einstein was convinced that for thermodynamics, • witlu°
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В  K^gjework of applicability of its basic concepts, it w ill never be overthrown’. Many modern expositions 
■ell the Second Law and entropy starting w ith their microscopic definitions based on the probabil ity that 

P1*. independence from microscopic theories of matter.
Second Law is universal. In fact, its universality gives us a powerful means to understand the thcrmo- 

K ,_ 2inic aspects of real systems through the usage of ideal systems. Л classic example is Planck's analysis 
Irradiation in thermodynamic equilibrium with matter (tlic 'black-body radiation') in which Planck con- 
f f j ercd idealized simple harmonic oscillators interacting with radiation. Planck considered simple harmonic 
oscillators, not because they are good approximations of molecules, but because the properties of radiation in 
thermal equilibrium with matter are universal, regardless of the particular nature of matter that it is  interacting 
with. The conclusions one arrives at using idealized oscillators and the laws of thermodynamics mast also lie 
valid for all other foraw of matter, however complex.

In the modem context, the formulation summarized in Figure J.7 is fundamental for understanding ther
m o d y n a m ic  aspect* of self-organization, evolution of order and We that we sec in Nature. When a system 
it  isolated, deS  = 0. In this case, the entropy of the system w ill continue to increase due to irreversible 
pocesses and reach tbe maximum possible value, the state of thermodynamic equilibrium. In the state of 
e q u il ib r iu m , all irreversible processes cease. When a system begins to exchange entropy with die exterior, 
then, in general, it is  driven away from equilibrium and the entropy-producing irreversible processes begin 
Ю operate The exchange of entropy is  due to the exchange of heat and matter. The entropy flowing out of 
the system is  always larger than the entropy flowing into the system, the difference arising due to entropy 
produced by irreversible processes within the system. As we shall see in the following chapters, systems that 
exchange entropy with their exterior do not simply increase the entropy of the exterior, but may undergo 
dramatic spontaneous 'self-organization'. The Irreversible processes that produce entropy стае these orga
nized states. Such self-organized states range from convection patterns in fluids to life. Irreversible processes 
are the driving force that creates this order.

Appendix 3.1 The Hurricane as a Heat Engine

The mechanism of a hurricane is  essentially that of a heat engine, as shown in Figure A3.1 in the cycle 
ABCD. The maximum intensity of a hurricane, i.e. the maximum hurricane wind speed (Table A3.1), can be 
predicted using Carnol's theorem for the efficiency of a heat engine.

In a hurricane, a* the wind spirals inwards towards the eye at low pressure, enthalpy (heat) is absorbed 
at the warm ocean-air interface in an essentially isothermal process: water vaporizes and mixes with the 
air, cairying with it the enthalpy of vaporization (segment AB). When this moist air reaches the hurricane’s 
eyewall. ii rises rapadly about 15 km along ihe eyewall. Since the pressure decreases with altitude, it expands 

fpdiabatkally and cools (segment BC), As the rising moist a ir's temperature drops, the water vapor in it
■ condenses as rain, releasing the enthalpy of vaporization (latent heat), a part of which is  radiated into outer 
•pace. In a real humcime, the air at the higher altitude flows out into the weather system. Theoretically. in 
wier to close the Carnot cycle, it could be assumed that the enthalpy of vaporization is lost in an isothermal 
Process (segment CD). The last step (segment l)A) of the cycle is  an adiabatic compression of dry air. During 

■ P * cycle, a part of the enthalpy absorbed fmm the ocean is converted into mechanical energy of the hurricane 
wind.

E T h e  hurricaue heat engine’ operates between the ocean surface temperature T\ (about 300 K) and tbe 
“ wer temperature T j (about 200 K ) at the higher altitude, close to the upper boundary of the troposphere 

■popopausc). Let us look at the relationship between tbe heat absorbed at the ocean surface and the mechanical 
*®ergy of the hurricane wind. In  a time df, if  d i s  the beat absorbed at the ocean surface, (\Q2 is the heat
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Tropopau»: 15 km h  200 К

« 50 IIKI

Figure АЗ. 1 The hurricane operates as a heat engine, converting part of the heat absorbed ax the ocean surface 

to mechanical energy of the hurricane wind.

radiated at the higher altitude and dW is the amount of heat converted lo mechanical energy of the hurricane 

wind. Thus, according lo the F irst Law,

d(*i dW { dQ2 
dr dt dt

Furthermore, according to Carnot's theorem:

d/ S  V  T j  dt

In a hurricane, the mechanical energy in the wind is  converted to heat due to wind friction, almost all ot it 
at Ihe ocean surfaoe. Th is heat in turn contributes to dQ^ldl, the rate at which heat is  absorbed at the ocean 
surface. When the hurricane is  in a steady state, i.e. when all the flows are constant, all the mechanical energy 
entering the system as wind motion is  converted to heal at tbe ocean surface: the rale of heat generation due

Table A3.1 The SafflrSimpson hurricane intensity scale.
Maximum sustained wind speed

- i rnpb
Category Minimum central pressure (to») _______^_s

— -------  ”  м м  74-95
1 > 9 M  ” ;;1q 96-no
2 97.9-96.5 £ 4 9  Ш  130
3 96.4-94.5 Ы - Ц  131 155 
A 94.4-92.0 59-69

(A3.1.1)

(A3.1.2)
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К, wind friction is  equal to dWIdt. Thus, the rate at which heal enters the Camot cycle, d(2,/dr. consists of 
,#0 parts

+  (A3.1.3)
dt dt dt

wheiv dQwldl is the rate at which heat enters the system in the absence of heating due to wind friction. Using 
gquauon (A3.13) in  Equation (A3.1.2), it is  easy to see that

dW ( T\ -  T2 \  dC10
1 T S 1 — ) s r  <A 3U )

д detailed study of the physics of tbe hurricane wind shows that tlie rate of beat generation per unit area of 
the ocean surface (i.e. vertically integrated healing) is equal to CDplvl3, in which CD is a constant, p is  the 
air density and v is <the wind velocity. The total amount of heat generated is  obtained by integrating over the 
circular surface of radius R  (from the center of Ihe eye to the outer edge of the hurricane), which is  ihe area of 
contact between the hurricane wind and the ocean. At steady state, since this integral equals dWIdt, we have

R

j « 2 *  j  CDp |v|3 rd r (А ЗЛ 5)
о

The term d(2]0/df is  Ihe rate at which enthalpy enters the inflowing dry air (segment AB). Th is energy 
is essentially the enthalpy of vaporization. It is proportional to the difference between specific enthalpies 
(enthalpies per unit mass) of the air saturated with moisture very close to the ocean surface h' and the 
enthalpy of the inflowing dry air h (see Figure A3.1); it is also proportional to the wind velocity at the ocean 
surface. Thus, the enthalpy entering tlie system per unit area is  Сл0 (ft* -  h) Ivl. T lie  total amount of enthalpy 
dfiio/d/ entering the hurricane system in this process equals the integral of this expression over the circular 
surface of radius R:

к^ « 2 к j  C*/)(ft* -  Л) |Ц| rd r (A3.1.6)
0

in which Ch is constant. Combining Equations (A3.1.4), (A3.1.5) and (A3.1.6) wc obtain 
R '  R

j  CDp |v|3 rd r S  j  chp(h' -  A) |v| rd r
0 1 0 

tf we assume that the dominant contribution to this integral comes from the region where the velocity is 
Ptimum, we can write

cdf> |vn»x|J S  (  ~ 7\ Г ~  ^ lvmu|

^hus, we arrive at ihe result

|ут«|3«(^ р )§ (А‘~Л) <A3U)
'H ille r and Emanuel (251 have shown that the above result can be obtained through a more rigorous calculation.

the terms on the right-hand side are experimentally measured or theoretically estimated. A comparison 
°f theory and experimental data suggests that the ratio ChICa is  in the range 0.75-1.5 |2ft|. Kerry Emanuel,
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the originator of the above theory, has demonstrated that (A3.1.7) leads to remarkably good estimates of t|K 
hurricane wind speeds (4,27].

When the system is  m a steady state, the heat converted into mechanical energy of the hurricane Wmd 
balances the conversion of the wind energy back to heat. Under these conditions, if  expression (АЗ, 1.3) is  USC4) 
in (A3.1.1) we obtain tiQyJdl = d(Vdt. which implies that heat of vaporization absorbed by the hurricane 
wind at the ocean surface is  released at higher altitudes where the water condenses. Th is beai is ultknatelj 
radiated out of Earth's atmosphere. Thus, abe vaporization and condensation of water vapor is a mechanism 
that transports heat from the oceans to higher altitudes where it is radiated into outer space. If  this mechanism 
did not exist, the heat would be transported entirely through air currents, currents that would be very intense

Appendix 3.2 Entropy Production in Continuous Systems

We consider a nonequilibrium situation in which a heat-conducting material is  in contact with a hot reservoir 
on one side and a oold reservoir on the other (see Figure A3.2). We further assume that the conductor is 
insulated in such a way that it exchangee heat only with the heat reservoirs. After going through an initial 
transient change in temperature, such a system w ill settle into a steady state in which «here is a uniform 
temperature gradient ntvJ a steady flow of heat. We w ill calculate the rate of entropy production at this steady 
state.

As each elemental quantity of heat d£> flows through the system the entropy increases. A l a steady state, 
there is  a steady flow of heat Jq , which is Ihe amount of heat flowing per unit area per second (J m "2 s '1) 
Since only one space direction is involved in this problem, we shall ignore the vectorial aspect of Jq. H« 
simplicity, we «hall assume that the conductor lias a unit area of cnnss-section. In this case the rate of flow of 
heat dQ/dt m J„. For continuous systems, the entropy production due to the flow of heat given by Equation 
(3.5.2) should be replaced by the cntropy production due to the flow of heat through each infinitesimal 
segment of the hc»t conductor of width dx. 'Hie corresponding entropy production per unit volume at the 
point x is  denoted by n{x). The quantity (1(T, -  I I T 2) is  now replaced by the change of the quantity l/ T  over 
the length йх, nameily {tildx'frXITyix. Combining all these terms, we can now write the cntropy production for 
flow of heat across a segment dt:

e (x ) ix ^ jQ  ( j^ ) d *  (A3.2.1)

According to the Fourier law of heat conduction, Jq = -  к(дТ1дх), in which к is the heat conductivity.
Substituting this expression into Equation (A3.21) we can obiain

(Hxfcix “  e i  ( - r -  )  dx £ 0 (A3.2.2)
Г 2 V дх I

Hot
Jv

Hot

Г, |d y Ti
1 - 1

dr

figure A3.2 The continuous flow of heat is associated wth entropy production.



The Second Law o f Thermodynamics and the Arrow of Time 121

The above expression gives the entropy production at each location *, i.e. the local entropy production. It is 
[(|t entropy produced per unit time due to the flow of heat Ihrough the segment of width d* at the location 
г. A« required by the Second I.aw. it is  positive. At steady state, tbe temperature of the segment is  constant. 
Hence, the entropy of the segment itse lf is  not increasing; the entropy increase is  due to the flow of heat down 
a temperature difference d r across the segment.

To obtain the total rate of entropy produrtion due to the flow of heat from one end of the conductor to the 
other, we integrate the expression (A3.2.1) over the length I of tbe conductor:

¥ “/* )* -A  (Sf)d* (A323)
<0 0

When the system has reached steady state, sincc J q is  constant, we can integrate this expression and rearrange 
terms to obtain

Jq J q cLS
т Г т Т  + i  (A32-4)

This result shows that the outflow of entropy equals the sum of enlropy entering the system and the entropy 
produced due to the heat flow.
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Examples

Example 3.1 Draw the S  versus T diagram for the Carnot cycle.

Solution During the reversible adiabatic changes the change in entropy is zero. Hence, the S - T graph is  as 

shown:

X

Example 3 J  A hem pump is  used to maintain the inside temperature of a house at 20.0 *C when the outside 
temperature is  3.0 *C. What is  the minimum «mount of work necesKary to transfer 100X) J of heat to the 
inside of the house?

Solution The ideal heat pump is the Carnot'• engine running in neverne, i.e. it uses work *o pump heat from 
a lower temperature to a higher temperature. For an ideal pump, QyfT] = Q^Ttj. Thus, if  <= 100.0 J and 
T 2 =  293.0 K. we have Г , = 276.0 K:

Q, =  276.0 K( 100.0 J/293.0 K ) «  94.0 J

Thus, the heat pump absorbs 94.0 J from the outside and delivers 100,0 J to the inside. Form the F irst Law it 

follows that the necessary work W »  f it  -  *  100 0 J -  94.0 J «  6.0 J.

Example 3 J  The heat capacity of a solid is  Cp =  125.48 J K~*. What is  the change in its entropy i f 11 ** 
heated from 273.0 К  to 373.0 K?
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Solution Th is is a simple case of heat transfer, where dcS = dQIT. Heace:

r! r<
final -  •’ initial :

. f  4Q _  f  cpd T  r  . / Т Л  

■■ 125.48 I K -1 ln(373/273) -  39.2 J K " ‘

Exam ple 3.4 A container with N  mole» of ideal gas with an initia l volume V{ is  in contact with a beat 
^tervim at Г0 К. The gas expands isothernially to a volume V(. Calculate: (a) the amount of heat absorbed 
by the gas in this expansion: (b) the increase in the entropy of the gas.

I  1

Solution The energy of an ideal gas depends only on its temperature. Hence, the heat absorbed Q must 
equal the work done W by the gas. The work done by the gas is

W

r, v,

-- f  pdV f
v, ^

NRT,
■dV =  NRT,

Since the process occurs isothermally, the change in entropy is

s' - s" l  f (3)
*i

Note that the change in entropy can also be cumulated using liquation (3.7.4).

; Exercises

3.1 (a) For the Camot cycle shown in Figure 3.2, show that Vp/Vo = VB/VA.
(b) Show (he equivalence between a perpetual motion machine of die second kind and Carnot’s 

theorem,

3-2 A refrigerator operating reversibly extracts 45.0 kJ of hea* from a thermal reservoir and delivers 
67.0 kJ as heat to a reservoir at 300 K. Calculate the temperature of the reservoir from which heat was 
«moved.

3-3 What is  the maximum work that can be obtained from 1000.0 J of heat supplied to a steam engine with 
a high-temperature reservoir at 120.0 *C if  the condenser is  at 25.0 *C?

3-4 Using the data shown in Figure 2.9. estimate the amount of entropy radiated by the Earth per hour.



3.5 The beat of combustion of gasoline is  approximately 47 kJ g_1. If  a gasoline engine operated between 
1500 К  and 750 K, what is tbe maximum height that 1.0 kg of gasoline can lift  a small aircraft ц,„ 
weighs 2000 kg?

3.6 Tbe heat capacity Cp of a substance is  given by

Cf —a +  b T

where a = 2035 J K -1 and ft =  0.2 J K - *. Calculate tbe change in entropy in increasing the temperature 
of this substance from 298.15 К  to >04.0 K.

3.7 When 0.5 J of heat passes between two large bodies in contact at temperatures of TO °C and 25 V  
what is the change of entropy? If  this occurs in 0.23 s. what is  the rate of change of entropy djS/df >

3.8 What is  the entropy of 1.00 L  of N2(g) at Г  =  350.0 К  and p = 20.25 atm given that the standard 
ip =  1.00 bar, T  = 298.15 K) molar entropy 5°m =  191.6 j  K _1 mol-1? (Calculate the molar amount 
of N2 using the ideal gas equation.)

3.9 Which of the following are not extensive functions:

S, »ЧЛУУ)[5ч> + Су 1 п 7 > Я 1 п Ц  

S j «  iV[S0 + Cy In Г  + R  1« V/N)]

S} *  N 2[S0 + Cv In Г  + Я ln( V/N)]

3.10 Apply the condition S(iV , T . AN)»  AS(V, T , N) to

S (V ,T .N )  = 5o(V0,Г0, AT) + NR  ln( V/V0) + NCV 1п(Г/Г0)

differentiate it with respect to <t, set Л «  1, solve the resulting differential equation for S0 and show 
that

S (K  Г, N) •  N[s0 + R  In (V/N) + CmV ln(D]

3.11 In an isolated container, at a temperature T, N  moles of a gag of volume V irreversibly expands into 
another chamber of equal volume, reaching a final volume 2V. What is the irreversible increase in 
entropy?
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4
Entropy in the Realm of Chemical Reactions

4.1 Chemical Potential and A ffin ity : The Thermodynamic Force fo r Chemical Reactions

Nineteenth century chemist* did not pay much attention to the developments in thermodynamics, while 
experiments done by chemists -  such as Gay-Lussac’s on the expansion of a gas into vacuum -  were taken 
up and discussed by physicists for their thenmodynamic implications. The interconversion of heat into other 
forms of energy was a matter of great interest, mostly to physicists. Among the chemists, the concept of heat 
as an indestructible caloric, a view supported by Lavoisier, largely prevailed [1]. As we noted in Chapter 2, 
the work of Ihe Russian chemist Germain Hess on heats of reaction was an exception.

Motion is explained by the Newtonian concept of force, but what is the 'driving force' that was responsible 
for chemical change? Why do chemical reactions occur at all and why do they stop at certain points? 
Chemists called the ’force’ that caused chemical reactions affinity, but it lacked a clear physical meaning and 
definition. For the chemists who sought quantitative laws, defining affinity, as (precisely as Newton's defined 
mechanical force, was a fundamental problem. In fact, this centuriee-old concept had different interpretations 
at different times, 'It  was through the wotk of the thermochemists and the application of the principles of 
thermodynamics at) developed by the physicists', notes the chemistry historian Henry M. Leicester, 'that a 
quantitative evaluation of affinity forces was finally obtained' [1, p. 203]. The thermixlynamic formulation of 
affinity as we know it today is  due to Thfophile De Donder (1872-1957), the founder of the Belgian school 
of thermodynamics,

De Donder’s formulation of chemical affinity [2,3] was founded on the concept of chemical potential, one of 
the most fundamental und far-reaching concept» in thermodynamics, which was introduced by Josiah Willard 
Gibbs (1839-1903), There were earlier attempts: in the nineteenth century, the French chemist Marccllin 
Berthelot (1827-1907) and the Danish chemist Julius Thompson (1826-1909) attempted to quantify affinity 
using beats of reaction. After determining tlic beats of reactions lo r a large number of compounds, in 1875 
Berthelot proposed a 'principle of maximum work', according to which 'a ll chemical changes occurring 
without intervention of outside energy tend toward the production of bodies or of a system of bodies which 
liberate more heat’ 11. p. 205]. However, this suggestion met with criticism from Hermann Helmholtz and 
Walther Nemst (1864-1941). who noted that the principle coukl not apply to spontaneous endothermic 
chemical changc that absorbed heat. The controversy continued until the concept of a chemical potential 
formulated by Gibb* (who was a professor at Yale University) became known in Europe. Later, it became 
clear that it was not the heat of reaction that characterized tbe evolution to the state of equilibrium but another

Modem Thermodynamical From Heat Engines toDlsMpative Structures, Second Edition. Dibp Kondepudi and Ilya Prigogine. 
® 2015 John Wiley & Sons. Ltd. PuWjshed 2015 by John Wiley & Sons, Ltd.
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thermodynamic quantity called 'free energy'. As we shall describe in this chapter. De Donder gave a preci,s< 
definition of affinity using the concept of chemical potential and, through his definition of affinity, оЫаиад 
a relation between the rate of entropy change and the chemical reaction rate. In De Donder's formulation 
the Second Law implies that chemical reactions drive tbe system to a state of thermodynamic equilibrium щ 
which the affinities of the reactions equal aero,

IWillard Gibbs (1839-1903).
(Reproduced with /Krmission from the tdgat Fahs Smith Collection, University of Pennsylvania library. )

4.1.1 Chemical Potential

Josiah Willard Gibbs introduced the idea of chemical potential in hi# famous work titled On the Equilibrium of 
Heterogeneous Substances, published in 1*75 and 1*78 [4-6). Gibbs published his work in the Transactions 
of the Connect kut Actulemy o f Sciences, a journal that was not widely read. Th is fundamental work of Gibb* 
remained in relative obxcurity until it was translated into Goman by Wilhelm Ostwald (1853-1932) in 18У2 
and into French by Henri Le ChStelier (1155-1936) in 1899 [ 1 ] . Much of the present-day presentation of 
classical equilibrium thermodynamics can be traced back to this important wotk of Gibbs.

Gibbs considered a heterogeneous system (Figure 4.1) that consisted of several homogeneous parts, each 
part containing various substances s,. s2, . . . ,  s„ of masses mv m2. . , . , m„. H is initia l consideration did n(*<



frit ropy in the Realm of Chemical Reactions 127

figure 4.1 A heterogeneous system considered by Gibbs in which substances идае exchanged between 
the parts I  U ^  Ш- The change in energy dU of any part when natter was exchanged reversibly is given by 
equation (4.1.1).

include chemical reactions between these substances, but was restricted to their exchange between different 
homogeneous parts of a system. Arguing that the change in energy df/of a homogeneous part must be propor
tional to reversible changes in Ihe masses of the substances, dmj. dm ;,... ,dm„. Gibbs introduced Ihe equation

d ll  =  Td S - p4V +  / / j d my +  ^  d m2 +  +  p„ d m„ < 4 , 1 . 1 )

for each homogeneous part. The coefficients are called the chemical potentials. The heterogeneous 
systems considered included different phases of a substance that exchanged matter. The considerations 
of Gibbs, however, were restricted to transformations between states in equilibrium. Th is restriction is 
understandable from the viewpoint of the classical definition of entropy, which required the system to be in 
equilibrium and the transformations between equilibrium states to be reversible so that dQ -  T  dS. In the 
original formulation of Gibbs, the changes in the masses dmk in Equation (4.1.1) were due to the exchange of 
the substances between the homogeneous parts, a situation encountered when various phases of a substance 
exchange matter and reach equilibrium.

It is  more convenient to describe chemical reactions by the change in the molar amounts of the reactants 
rather than the change in their masses, because chemical reaction rates and the laws of diffusion are most 
easily formulated in terms of molar amounts. Therefore, we shall rewrite Equation (4.1.1) in terms of the 
molar amounts Nt of the constituent substances, redefining the chemical potentially accordingly:

d[/ = T  dS -  pdV + ft, dNy +  <W2 + + pn dN„

i.e.

d C / .rd S -p d V + i^ t lJ V * <4,1.2)

The above equation implies that V  is  a function of S, V and Nk, awl that the coefficients of dS. dV and dNt  
are the corresponding derivatives:

<4.1.3)

4.1.2 Chemical Rettctions

Although Gibbs did not consider irreversible chemical reactions, Equation (4.1.1) that he introduced contained 
what was needed for the fomuilation of thermodynamics as a theory of irreversible processes in chemical 
systems. Using the chemical potential, the rates of entropy production due to chemical reactions can be
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computed. By making tlie important distinction between the entropy change d̂ S due to a reversible exchange 
of matter and energy with the exterior and an iireversible increase of entropy d ,i due to chemical reaction* 
De Donder formulated Ihe thennodynamics of irreversible chemical transformations [2.3]. U sing the concept 
of chemical potential, De Donder took tbe ’uncompensated heat' of Clausius in the cootext of chemical 
reactions and gave it  a clear expression.

Let us look at Equation (4.1.2) from the point of view of reversible entropy How deS and irreversible 
entropy production djS that were introduced in the previous chapter. To make a distinction between irreversible 
chemical reactions *nd reversible exchange with the exterior, we express the change in tfie molar amounts
dNk as a sum of twt> parts: ............................

dJVt = djJV* + dj/Vj (4.1.4)
in which djNk is  the change due to irreversible chemical reactions and JcNk is  the change due to the exchange 
of matter with the exterior. In Equation (4.1.2), Gibbs considered tlie reversible exchange of heat and matter. 
Because this corresponds to deS, we may write (see liquation (3.4.10))

Я

л г , ,v  ^ ^  do,V* dt' + p A V  ]
-------- =-----------------=------  (4.1.5)

Thtophile Oe Оогфг (1872-1957) (third rav, fifth Лот the left) at the historic 1927 $olv#y Conference. His 
book, I'A ffinity was published the same year.
first га*. I  to R: I. Ungmuir, M. Planck, Mme. Curie, HA. Lorenu, A  f.Instein, P. Langevin, Ch. (. Cuye, C.T.R 
Wilson, O.W. Richardson.
Second row, I to R: P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.AM СХгас, A.H, Compton, L. de Broglie, 
M. Bom, N. Bohr.
Thitd row, I to R: A. Piccard, (. Henrht, P. Ehrenfest, Cd. Herzen, Th. De Donder, f . SchiMnger, E. Venchaffeh 
W. Pauli, W. Heisenberg, R.H. fowler, L. Brillouln. (Reproduced by courtesy of the International Solvay Institutes 
Brussels, Belgium.)
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pe pc*der recognized that, in a closed system, if  tbe change of molar amounts diV(; were due to irreversible 
chemical reactions, then the resulting entropy production d|5 can be written as

d,J = <4.1.6)

T h is  i s  the ‘uncompensated beat' of Clausius in the realm of chemical reactions. The validity of this equation 
lies in the fact that chemical reactions occur in such a way that d(S is  always positive in accordance with the 
Second Law, Fbr tbe total change in entropy dS we have

d S ^ S  + djS <4.1.7)

in which

Jn  d U + p d V  . . .  
— j ---------

and

<4,1.8)

<4.1.9)

For a closed system, which by definition does not exchange matter, dcNk ~  0, Since tbe rales of chemical 
reaction specify dNt /dl. tbe rate of entropy production can be written us

d»S * V  «W* „
I T — T > 0

dN„

I f  we sum Equations (4.1.8) and (4.1.9) we recover (4.1.2):

(4.1.10)

(4.1.11)

burthcr development of this theory relates chemical potential to measurable system variables such as p. T  
and Nt . The pioneering work of [Je Donder established a clear connection between entropy production and 
irreversible chemical reactions: the rate of entropy production djA’/dr is  related directly to the rates of chemical 
reactions that specify dJVt/dr. In a closed system, if  in itia lly the system is  rot in chemical equilibrium, then 
chemical reactions w ill take place that wilJ irreversibly drive the system towards equilibrium. According to 
the Second Law of thermodynamics, this w ill happen in such a way that Equation (4.1.10) is  satisfied.

4-1.3 Affinity

De Donder also defined the infinity of a chemical reaction, which enables us to write expression (4.1.10) in 
™ elegant form, as the product of a thermodynamic force and a thermodynamic flow. The concept of affinity 
ean be understood through the following simple example.

In a closed system, consider a chemical reaction of the form

X + Y *=22 (4.1.12)
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Figure 4.2 The changes in entropy d,S due to Irreversible chemical reactions is formulated using the concent of 
affinity. For the above reaction, the affinity A я  ^  + Иу -  2щ, in which и is the chemical potential.

In this case the changes in the molar amounts cWx , <WY and dJVz  o f the components X , Y  and Z  are related 
by the reaction stokhiometry. We can express this relation as

d«v tWY m ,

in which d£ is  the change in the extent of reaction £, which was introduced in Scction 2.5. Using Equa
tion (4.1.11), the total entropy change and the entropy change due to irreversible chemical reactions can now 
be written as

dS
dlZ + pdV' l 

-------- у ----- + y(/<x + ~ (4.1.14)

d,S = + :  2^ d« > 0 (4.1.15,

For a chemical reaction X  +  Y  s* 2Z, De Donder defined a new stale variable called affinity os [1, p. 203,2]

Л *  flx  +  fly -  1ц% (4.1.16)

Th is affinity is  the driving force for chemical reactions (see Figure 4.2). A nonzero affinity implies that the 
system is  not in thermodynamic equilibrium and that chemical reactions w ill continue to take place, driving 
the system towards equilibrium. In terms of affinity A, the rate of increase of entropy is  written as

d,S (J
A- ) d’ > o

dt Vr ) d t > 0 (4.1.17)

As in the case of emropy production due to [heat conduction, the cnlwpy production due to a chcinical reaction 
is a product of a thermodynamic force АГГ and a thermodynamic flow d£/dl. The flow in this case is  the 
conversion of reactants to products (or vicc versa), which is  caused by the force AIT. We shall refer to the 
thermodynamic flow d£/df as the velocity of reaction or rale of conversion.

Though a nonzero affinity means that there is  a driving force for chemical reactions, the velocity, d'/di. 
of the chemical reactions is  not specified by the value of affinity Л. The velocities of chemical reactions arc 
usually known through empirical means: there Is no general relationship between the affinity and the velocity 
of a reaction.

At equilibrium, Ihe thermodynamic Bow* and, hence, the entropy production must vanish. Th is implies 
(hat in the state of equilibrium the affinity o f a chemical traction А ш 0. Thus, we airive at the conclusion 
that, at thermodynamic equilibrium, the chemical potential» of the compounds X, Y  and Z  w ill reach values 
such that

A & flx + fty — 2ц% *  0 (4.1.18)
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F 9  which is  devoted to the thermodynamics of chemical processes, we w ill see how chemical 
Ip С■ ? " £ ̂  ^  CTpt«ssed in terms of experimentally measurable quantities such as concentrations and 
p0*1" ' 1 ’ e Equations such as (4.1.18) are specific predictions regarding the states of chemical equilibrium.

uolls tove been amply verified by experiment and today they are routinely used in chemistry. 
Th^  genera) chemical reaction of the form

fllA j +O2A2 + a} A} + + (j„A„ < ’ fc,B, + й2В ; + t 3B } + ■■■ + (4.1.19)

H :  in the molar amounts of the reactants At and the products B* are related in such a way that a change
^ F m o la r amount of one of the species (reactants or products) completely determines the corresponding 

Ranges in all the other species. Consequently, there is  only one independent variable, which can be defined

A'  dNA dN. dN . dNBt dNB, djVB
= = ------- = = ------------^ = d #  (4.1.20)

-d\ - a j  - a ,  bt bj bm

The affinity A of tbe reaction (4.1.19) is  defined as

Л е У в ^ 'Х ^ в .  (4-1 21)S i  ы\
in which fi\ is  the chemical potential of the reacting species A*. etc. If  several simultaneous reactions occur 
in a closed system, then an affinity A, and a degree of advancement can be defined for each reaction and 
the change of entropy Is written as

d +  (4.1.22)

di-S *= £  yd?, > 0 (41-23)
1

For the rate of entropy production we have the expression

(4.1.24)

At thermodynamic equilibrium, the affinity A and the velocity d{/d< of each reaction are /его. We w ill consider 
explicit examples erf entropy production due to chemical reactions in Chapter 9.

In summary, when chemical reactions arc included, the entropy is a function of the energy U. volume V and 
the molar amounts Nk,S  =* S(U, V,Nk). For a closed system, following Equation (4.1.22), it can be written as 
a function of и. V and the extent of reaction S =  S(U, V, ( t ).

We conclude this section with a historical remark. In Chapter 5 we w ill introduce a quantity called the 
Gibbs free energy. The Gibbs free energy of 1 mol of X  can also be interpreted as the chemical potential of 
X. The conversion of 11 compound X  to a compound Z  causes a decrease in the Gibbs free energy of X  and 
an increase in the Gibbs free energy o fZ. Thu», the affinity of a reaction. Х + У »  2Z, defined as A s  (fix  + 
My -  2 fi?J .  can be mteipreted as the negative of the change in Gibbs free energy when 1 mol of X and 1 mol of
Y  react to produce 2 mol of Z . Th is change in Ihe Gibbs free energy, called the 'Gibbs free energy of reaction', 
is  related to affinity A by a simple negative sign, but there is a fundamental conceptual difference between the 
two: affinity is a concept that relates irreversible chemical reactions to митру, wliereas the Gibbs free energy 
и primarily used in connection with equilibrium states and reversible processes. Nevertheless, in many texts 
•he Gibbs free energy is used in the place of affinity and no mention is made about the relation between



132 Modem Thermodynamics

entropy and reaction rales (for comments on this point, see Gerhart! [7]). Leicester, in his well-known book. 
The Historical Background o f Chemistry [J, p. 206], traces the origin of this usage to the textbook [8] by 
Gilbert Newton Lewis (1875-1946) and Merle Randall (1888-1950);

The influential textbook of G.N. Lewis <1875-1946) and Meric Randall (1888-1950) which presents 
these ideas has led to the replacement of the term ’affinity' hy the term ‘free energy’ in much of the 
English-speaking world. The older term lias never been entirely replaced in thermodynamics literature, 
since after 1922 the Belgian school under Theophile De Dondor (1872-1957) has made the concept of 
affinity s t ill more precise,

De Donder’s affinity has an entirely different conceptual basis: it relates entropy to irreversible chemical 
processes that occur in Nature. It is  clearly a more general view of entropy, one that does not restrict the idea 
of entropy to infinitely slow < ‘quasi-static'} reversible processes and equilibrium states.

4.2 General Properties o f A ffin ity

The affinity of a reaction is  a state function, completely defined by the chemical potentials. In the following 
chapters we w ill see htiw the chemical potential of a substance can he expressed in term# of utate variables 
such as pressure, temperature and concentration. Thus, affinity can be expressed as a function of p, T  and Nk 
or it can also be expensed as a function of V, T  and Nk. For a closed system, since all the eharges in Nk can 
only be due to chemical reactions, it can be expressed in terms of V, T , (k and the initial values of the molar 
amounts Nk0, We w ill now note some general properties of affinities that follow from the fact that chemical 
reactions can be interdependent when a substance is  a reactant in more than one reaction.

4.2.1 Affinity und Direction of Reaction

fhe sign of affinity can be used to predict 1he direction of reaction, Consider the reaction X  + Y  ^  2Z. The 
affinity is  given by A * *  цк + Y -  *>8П ° f <he velocity of reaction d£/dt indicates tlie direction of
reaction, i.e. whether the net conversion is  from X  -I- Y  to 2Z or from 2Z to X  + Y. From the definition of 
i  it follows that if  d£/d( > 0 then the reaction 'proceeds to the right': X  + Y  -* 2Z; if  dj/d/ < 0 then the 
reaction 'proceeds to Ite left': X  + Y *- 2/„ The Second Law requires that A(d'/d/) > 0.Thus, we arrive at 
the following relation between the sign of Л and the direction of tit* reaction:

• If  A >  0, tlie reaction proceeds to the right.
• If  A < 0, the reaction proceeds to the left.

4.2.2 Additivity of Affinities

A chemical reaction can be the net result of two or more successive chemical reactions. For instance:

2C(«) +  02(g) t* 2CO(g), 

2CO(*) + O j(g)?*2CO,(g), A:  

2[C(s) +  0 2(g)^C 0j(g)J, 2A3

<4.2.1)

<4.2.2)

(4.2.3)
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wbich shows that reaction (4.2.3) is  the net result or ’sum' of the other two. By definition the affinities of the 
above three reactions are

A] “  2^c + /iOj ~ 2/ico (4.2.4)

A j = 2^co + Mo2 ~ IPcO} (4.2.5)

Аз и /<с +  Mo2 ~ Kco, <4,2.6) 

From these definitions it is easy to see that

Л !+ А 2 =2А3 (4.2.7)

Clearly this result can be generalized to many reactions. We thus have the general result: the sum o f affinities 
of a sequence of reactions equals the affinity o f the net reaction.

The rate of entropy production for the dbove reactions (4.2.1) and (4.2.2) is the sum of the rates at which 
entropy is  produced in the two reactions:

M  = <4.2.8)
dt T  dt T  dt

in which £, and f 2 lhe corresponding extents of reactions. Note that for the net reaction (4.2.3). because 
the net conversion from (С + Oa) to C02 gees through the intermediate CO, d/Vc ф dAfa^.the loss of carbon 
is due to its conversion to CO and COj. not just C02. As a consequence, the corresponding extent of reaction 
d£3 it  not well defined and we cannot write -d Nc »  dNc 0 . Therefore, tlie rate of total entropy production 
cannot be written a* (A3/7)(d£3/df) in general, However, if  tlie reaction velocities d^/dr and dij/dr are equal, 
then the total rate of entropy production (4.2.8) may be written as

<4.2.9)
di  T  dt T  dt T  dt 

in which d|3/df s  2(dJi/df). the reaction velocity of reaction (4.2,3), The condition d£,Idt = d£2/dr means 
the rate of production of the intermediate CO in reaction (4.2.1) is  balanced by the consumption of CO in 
reaction (4.2.2). i.e. N(;0, the amount of CO. remains constant. When the production of a substance X is 
exactly balanced by it* consumption, it is  said to be in a steady state (which can be expressed mathematically 
as dVx /dr = 0). In many chemical reactions, the intermediate reactants are often in a steady state or nearly so. 
In a series of reactions in which intermediate compounds are produced and consumed, if  all the intermediate* 
are in a steady state, then it is possible to define an extent of reaction for the net reaction and write the rate of 
entropy production in terms of the affinity and the velocity of the net reaction.

4Л3  Coupling between Affinities

In reactions coupled to each о (her through common reactants, it may appear as if  one reaction with positive 
entropy production its compensating for the negative entropy production of the other in such a way that the 
total entropy production is  positive, in accord with the Second Law. Consider the following example:

X  +  Y ^ Z  + W. A ,>() (4.2.10)

for which, as indicated, the corresponding affinity A4 is  assumed In be positive. We then expect the reaction 
to proceed to the right so that d£4/dl > 0. It is  possible to drive the reaction 14.2.10) effectively lo tbe left, 
making d.|4/dt < 0, by 'coupling' it to another reaction:

T ^ D .  Л3 > 0 ,  Aj(d£5/d *)> 0 (4.2.11)
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Figure 4.3 Entropy production in coupled reactions. The left and right panels show different ways of represent
ing the same net reaction Z  + W + T -» X + Y + D resulting from two reaction steps. The left panel shows a 
reaction scheme and the corresponding chetnictl potentials in which entropy production ofl>oth reaction steps 
are positive. The right pmel shows a reinterpretadon of the same net reaction when tite Intermediate Z  that cou
ples the two reactions Is in a steady state. In this case, the entropy production of one reaction Is positive and the 
other is negative, but their sum, the total entropy production, remairv, positive.

The two reactions (4.2.10) and (4.2.11) could be coupled so that (heir total entropy production A4(d£4/dr) + 
As(df5/df) > 0 but A^d^/d/) < 0. An example of a mechanism that makes such reaction reversal possible is 
(see Figure 4.3)

Z  + T i Z '  + D, A6 >  0, Ae(d^/dr) > 0 (4.2.12)

Z* +  W j*  X  + Y, A7> 0, A7(d£7/d() > 0 (4.2.13)

Z  + W + T = * X  + Y + D, Л > 0, A(d£/d!) > 0 (4.2.14)

Once again, as indicated, the affinities and velocities of reactions <4.2.11) to (4.2.13) arc assumed positive. 
The net reaction Z  + W + T ^ X  + Y + D isa n  effective reversal of X  +- Y  ** Z  + W accompanied by 
T  j*  D. Th is way of interpreting the net reaction can be expressed in terms of the affinities by noting that

A =  <46 +A 7 = -A ,+ / ts (4.2.15)

For ihe net reaction Z  + W + T ^ X  + Y  + D, as discussed above, the corresponding velocity of reaction 
d'/dr can be defined only when the intermediate Z* is  in a steady stale, i.e. d '6/df«  d̂ 7&l/ »  d£/d/. Under 
these steady-state conditions, we w ill now show (hat the rale of entropy production can be written as if  it is 
due to two coupled reactions Z  + W ^  X  + Y  and T  D, each piocecdmg with velocity 

The total rate of entropy production due to tbe two coupled reactions (4.2.12) and (4.2.13) is



Now if  d?6№  ~  = df/df, expression (4.2.16) can be rewritten in terms of tbe affinities A4 and Л5 of 
reactions (4.2.10) and (4.2.11) using tbe equality (4.2.15):

^  = A g 4 ^ d £ = _A4d£ A$d# (4.2.17)
dt T  i t  T  i t  T  At ~

In this expression, the affinities Л4 and are positive and. since we (have assumed that the net reaction 
(4 2.14) proceeds to the right. d(ldt > 0. Thus, the first term on the right-hand side of (4.2.17) is  negative but 
the second term is  positive. It  can easily be seen that the steady-state condition d£ft/dr = df7/dt = df/dr also 
implies tliat -d(4/dt ж d£5/d/ = df/df, which enables us to rewrite (4.2.17) as

5 И 3 4 * * * — * * * < — » > •  « »
The entropy production at every reaction step in the actual mechanism, however, is  positive as indicated in 
(4 ,2 .12)—(4.2.14). Such coupled reactions are common in biological systems.
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4 J  Entropy Production Due to Diffusion

The concepts of chemical potential and affinity not only describe chemical reactions but also flow of matter 
from one region of space to another. Witb the concept of chemical potential, wc »re now in a position to 
obtain an expression for the entropy change due to diffusion, an example of an irreversible process we saw in 
Chapter 3 (see Figure 3.8). The concept of etiemical potential turns out to have a wide reach. Other irreversible 
processes that can be described using a cbcmical potential w ill be discussed in Chapter 10. Here, we shall 
see how it can be u#ed to describe diffusion.

When chemical potentials of a substance in adjacent parts of a system are unequal, diffusion of that 
substance takes place until the chemical potentials in the two parts equalize. Tbe process is sim ilar to the How 
of heat due to a difference in temperature. Diffusion is  another irreversible process for which we can obtain 
the rate of increase in entropy in terms of chemical potentials.

4.3.1 Discrete Systems

For simplicity, let m  consider a system consisting of two parts Ы  equal temperature T , one with chemical 
potential f i t and molar amount N\ and the other with chemical potential and molar amount N2, as shown in 
Figure 4.4. The flow of particles from one part to another can also be associated with an ’extent of reaction', 
though no real chemical reaction is  taking place here:

-d N x *A N 2 =  Ai (4,3.1)

figure 4.4 The irreversible process of diffusion can be described thermodynamically using the chemical poten
tial. The variation of chemical potential with location corresponds to an affinity that drives a flow of matter. The 
corresponding entropy production is given by liquation (4.3.4).
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Following Equation (4.1.14), the entropy change for this process can be written as

(4.3.2)

e d W  + Ad{ (433)

in which the corresponding affinity A = -  Ц} . If  iU = d V = 0. then the transport of particles results in the 
change of entropy given by

d|5 = - ~~--d «  > Q (4.3.4)

The positivity of this quantity required by the Second Law implied (hat particle transport is  from a region o f 
high chemical potential to a region of low chemical potential. Th i* is, of course, the process of diffusion of 
particles from a region of higher concentration to a region of lower concentration in many cases, but it must 
be emphasized that the driving force fo r diffusion is the gradient o f chemical potential, not the gradient of 

concentration as is  often stated (see Appendix 4.1).

4.4 General Properties o f Entropy

Entropy, as formulated in this and the previous chapter, encompasses all aspects of transformations of matter: 
changes in energy, volume and composition. Thus, every system in Nature, be it a gas. an aqueous solution, 
a living cell or a neutron star, is  associated wilh a certain entropy, ju st as we associate an energy. We shall 
obtain explicit expressions for entropies of various systems in the following chapters and study how entropy 
production is related to irreversible procesies. At this stage, however, we shall note some general properties 
of entropy as a function of state.

The entropy of a system is a function of its total energy U, volume V and molar amounts of its 
constituents:

$ m S (U ,V ,N U N2...... NK) (4.4.1)

As a function of variables V, V and Л*, the differential dS can be written as

d5=(!£) dy + (l§) dV+(lf') щ ( 4 A 2 )  \ d U ) v . N k \ d V l u . N t \  <>Nk J  ц  v  N<u

Furthermore, from the general relation (4.1.2)
П

д 1 Г*ГМ -/> < 1 У  +  £ щ Щ  
*=1

it follows that

d s « i  W  +  <4.4.3)

(Here we have combined the change in Nk due to chemical reactions and the change due lo exchange with 
the exterior.) Comparing Equations (4.4.2) and (4.4.3) we immediately see that

/ dS'\ = i
\dV,’m  r \dV/1 £ « . ( £ )  - f t  (4-4.4)

Uffk T  \ T



I  rite change in malar amounts Nt  is  only due to a chemical reaction, then llrc entropy can also be expressed 
Us afi»cuoti of и, v and (  (nee Example 4.1). Then one can show that

(4.4.5)
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fd S \  =  A
U / k k  T

In atklWon, for any function of many variables, the ’cross-derivatives’ must be equal, i.e. we must have 
.-dualities of the type

d2S a Js
dVdU ~ dUdV

(4.4.6)

R e la tio n s  (4.4.4) then imply that

/ J L I )  = ( — £ )  (4.4.7)
X d V T / u  \ d U T > v

Many such relatione can be sim ilarly derived because entropy is a function of state.
For homogeneous systems, we have seen in Chapter 3 (Box 3.3) that entropy u an extensive variable. 

M athem atically , this means that entropy S  as a homogeneous function of the variables U, V and Nk, i.e. it has 
the following property:

S («/ , XV, Щ . М г ...... AY,) = XS(U, V, , №>........N,) <4.4.8)

Differentiating (4.4.8) with respect to Д and setting X = 1. we obtain the well-known Euler’s theorem for 
homogeneous functions:

s = ( !£)  u + (%u) v + x ( ^ - )  N* <4A9)V dll )vjtt V bV >vjit ~  \ Щ /  uyjnm

Using relations (4.4.4) we can write this relation as

5 « £  + ^ _ У  Оф . (4,4.10)
т т у  т

In Equations (4.4.9) and (4.4.10), we have expressed entropy as a function of (J. V and Nk. Since U  can be 
expressed as a function of T, V and Nk, entropy can also be expressed as a function of Т . V and Nk: S -  
Х(Г, V, Nk). (The temperature and volume dependence of the energy V and endbalpy H  of each component is  
obtained by using the empirical values of Che heat capacity as described in Chapter 2.) Since T , V and Nk are 
directly measurable state variables, it is  often more convenient to express thcrmodynamic quantities such as 
entropy and energy as functions of these state variables.

As a function of Г , Vand Nk, the derivatives of entropy can be obtained by expressing dU  in relation (4,4.3) 
as a function of V, T  and Nk:

T d S ^ d lU p d V - J ^ ^ d N ^  
к

I



In Equation (4.4.11), since tbe coefficient of iV  must equal (dS/dV)TJy,, etc., we can make the follow 
identification:
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v̂ v/rjv, rVav/ ♦ f

(d S\  = 1 (d U \  
VdTVyл  “  Г  U r /

c v
г

Wing I

(4.4.12) j

(4.4.13)

(4.4.14)

Sim ilar relations can be derived for U  as a function of T , V and Nt .
The above relations are valid for homogeneous systems with uniform temperature and pressure. These 

relations can be extended to inhomogeneous systems as long as one can associate a well-defined temperature 
to every location. The thermodynamics of an inhomogeneous system can be formulated in terms of entropy 
density if f ix ) , nt(x)), which is  a function of tile temperature and die molar densities nk(x) (mol m~5) at the 
point x. I f  «(x) is the energy density, then following (4.4.4) we have the relations

\dul«k T lx ) \дпк] и
/<(■')
ru )

(4.4.15)

in which the positional dependence of the variables is  explicitly shown.
An empirically more convenient way is to express both entropy and energy densities as functions of the 

local temperaturc TXx) and molar density n*(x). both of which can be directly measured:

и m u{T (k ), nt (x)) and s = s(T(x), rtk(x)) (4.4.16)

The total entropy and energy of the system arc obtained by integrating the corresponding densities over the 
volume of the system:

S =  /  s(T(x), n„(x))dV. U  =  /  u(T(x)>nk(x))dV 
Jv  Jv

(4.4.17)

Since the system as a whole is  not in theamodynamic equilibrium, the total entropy S  in general is not a 
function of the total energy V  and the total volume V. Nevertheless, a thermodynamic description is  s t ill 
possible as long as the temperature is well defined at each location x.

Appendix 4.1 Thermodynamics Description of Diffusion

Expression (4.3.4) can be generalized to describe a continuous system in which fi and T  are functions of the 
position vector r  and S  is replaced by the entropy density s (the entropy per unit volume):

d ji(r) . - v i z < 2 Y
\ T ( r ) J

d((r) (A4.1.1)
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direction of the flow of particles (<1N per unit area) is indicated by the vector ds“. From Equation 
jn which the1 entropy production per unit volume due to diffusioncan be written in terms of the particle

2 S !5 —  jbs. ^ u
A  \ 7 (r)/  *

a l  article current is a response to tbe gradient V(/<(r)/T(r)). As we saw in Section 3.4, the entropy 
The P t on Jy j to each irreversible process in general has the above form of a product of a current or flow’ 
f°anda 'force', soch as the gradient V(p(r)/T(r)).
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Example

Example 4.1 If  tbe change in molar amounts is  entirely due to one reaction, show that entropy is  a function 
of V, U  and (  and that

( d S \  = A 

\ * t ) u .v  Г

Solution Entropy is  a function of U. V and Nk: S(U, V, Nk). As shown in Section 4.4 (see Equation (4.4.3)), 
for the change in entropy dS we have

d i'^ d tZ + ^ d V - ^ y d * *

If  {  is the extent of reaction of the single reaction that causes changes in Nk. then

cW * ** vi d £ ,  к  = 1 , 2 , . . . , *

in which vt is the stoichiometric coefficient of ihe s species that participate in the reaction; v* is  negative for 
the reactants and positive for the products. For tbe species that do not participate in the reaction vt  =  0. The 
change in entropy dS can now be written at

d S - ± d l/ + ^ d V - £ ^ d {
4 1 km 1 1

Now. the affinity of the reaction A = -  T  (note that vt Is nejtutive for the reactants and positive for
•he products). Hence:

d S ^ j d U + ^ d V + j d t
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Th is shows that S  is  a function of U, V and f  ant! that

if  N l(J is  the molar amount of the reactant к at time ( =  0, etc.. and if  we assume J = 0 at t =  0, then the 
molar amounts at any time i are Nl0 +  vk$(S\ Nk  + v^(l\  , . . ,  Wj0 +  v„£(f), with all the other molar amounts 
being constant. Thus, .V = S(U, V, Nw +  N%) +  v2f  (0. • • •, Nt0  +  vs{(0)- Thus, for a given in itia l molar 
amount Nw, the entropy of a closed system with a chemical reaction is  a function of V, V and £.

Exercises

4.1 In a living cell, which is  an open system that exchanges energy and matter with the exterior, the entropy 
can decrease, i.e. dS < 0. Explain how this is possible in terms of d„5 and djS. How is  the Second Law 
valid in this cage?

4.2 In S I units, what are the units of entropy, chemical potential' and affinity?

4.3 Consider a reaction A -> 2B in the gas phase (i.e. A and В arc gases) occurring in a fixed volume V at 
a fixed temperature T . In the ideal g#s approximation, at any tune I, if  NA and JVB ar« molar amounts:
(a) Write an expression for the total entropy.
(b) Assume; that at time I = 0, ,VA<0) «  NM , Nb(0) = 0 and the extent of reaction £(0) *  0. At any 

time I, express the concentrations NA(I) and N &(t) in terms o f £(f).
(e) At any time t, write the total entropy as a function of T, V  and £(r) (and N K0, which is  a constant).

4.4 Consider the series of reactions:

X  + Y  2Z (1)

2[Z +  W i?  S + T3 (2)

Net reaction : X  + Y  + 2W s* 2S +  2 T (3)

Determine the conditions under which the rate of entropy production can be written in  terms of the net 
reaction, i.e. d|S/df =  (Aj/TXdfo/dfJ in which A3 and are; die affinity and the extent of reaction of 
the net reaction (3),

4.5 For the reaction scheme

Z  +  T a  Z* + D, A6 > 0 , A f.ld^/d r) > 0

Z* + W в* X  + Y, A7 > 0, AT(d£7/d r)> 0

(a) Bxpres» dAydf for each of the «actants and products, Z ,  T , Z * , D, etc:, in terms of the extents of 
reaction velocities df6/dl and d|7/dt. 

flb) For the steady state of Z*, i.e. dA/g’/dr = 0, show that dj*/dt  =  d£7/d/ and that
(c) tlie tataH entropy production d|S/df can be written as

= d i l l i  + d i!i!£ l >  о  
df Г  df T  d t £

in which quantities with subscripts 4 and 5 refer to tbe affinities and extents o f reaction of tlie 
reactions X  + Y  =  Z  + W and T  D respectively.

4.6
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( ,)  Using the fact that S  is  a function of V, V and Nh  derive the relation

( ± H )  + ( - 2 - £ ^  = 0
\dV T  >u#t \dNk T } y ll

(b) For an ideal gas. show that

( Л * * )  _ _ я
\dV T  )uj/t V

(c) Fbr an ideal gas. show that (dS/S V)rjv  = nR in which и is  molar density (moles per unit volume).

*
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5
Extremum Principles and General 

Thermodynamic Relations

Extremum Principles in Nature

For centuries we have been motivated by the belief that the laws of Nature are simple, and have been rewarded 
amply in our search for such laws. The laws of mechanics, gravitation, electromagnetism and thermodynamics 
can all be stated simply and expressed precisely with a few equations. The current search for a theory that 
unifies all the known fundamental forces hetween elementary particles is very much motivated by such a 
belief. In addition to simplicity, Nature also seems to 'optimize' or 'economize': natural phenomena occur in 
such a way that some physical quantity is  minimized or maximized-or to use one word for both, ‘extremized'. 
The French mathematician Pierre Fermat (1601-1665) noticed that tlic change of direction of rays of light as 
they propagate through different media can all be precisely described using one simple principle: light /ravels 
fm m  one point to another along a path that minimizes the time o f travel. I-ater it was discovered that all the 
equations of motion in mechanics can be obtained by invoking the principle of least action, which states that 
if  a body is  at a point л, at a time r, and art a point д:;  at time t2. then the motion occurs so as to minimize a 
quantity called the action. (An engaging exposition of these topic;* can be found in Feynman’s Lectures on 
Physics [1].)

Equilibrium therniodynamics. too, has its extremum principles. In this chapter we w ill see that the approach 
to equilibrium under different conditions is  such that a thermodynamic potential is  extremized. Following 
this, in preparation for the applications of flierraodynamics in the subsequent chapters, we w ill obtain general 
thermodynamic relations that are valid for al) systems.

5.1 Extremum Principles Associated with the Second Law

We have already seen that all isolated systems evolve to the state of equilibrium in which the entropy reaches 
its maximum value or. equivalently, the rate o f entropy production it  zero. Th is is  the basic extremum principle 
of equilibrium therniodynamics. However, we do not always deal! with isolated systems. In many practical 
situations, ihe physicul or chemical system under consideration is  subject to constant pressure or temperature 
or both. In these situations, the positively Ы entropy change due to irreversible processes, i.e. d,S > 0, implies

Modern Thermodynamics: Froln Heal Engines lo Dissipative Structures, Second Edition Dilip Kondepudi and Ilya Prigogine 
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Ihe evolution of certain thermodynamic functions to their minimum values. Under eacb constraint, such 
as constant pressure, constant temperature or both, the evolution of the system to the state of equilibrium 
corresponds to the extrcmization of a themiodynamic quantity. These quantities are the Gibbs energy, the 
Helmholtz energy and enthalpy (which was introduced in Chapter 2). which, as we shall see in this chapter, arc 
functions of state. They are also called thermodynamic potentials, in analogy with the potential» associated 
with forces in mechanics, whose minima ate also points of stable mechanical equilibrium. The systems we 
consider are either isolated o r closed.

5.1.1 Maximum Entropy

As we have seen in Chapter 4, owing to irreversible processes the enlropy of an isolated system continues 
to increase (djS > 0) until it reaches the maximum possible value. The state thus reached is the state of 
equilibrium. Therefore, it may be stated that, when U  and V are constant, every system evolves to a state of 
maximum entropy.

An equivalent statement is that, when V  and V are constant, every system evolves to a state such that rate 
of entropy production d|5/dr approaches zero. The latter statement refers to irreversible processes, whereas 
the former refers to the state. When processes are extremely slow, as may be the case for some chemical 
transformations, the system could be considered to be in 'equilibrium' with respect to all the irreversible 
processes whose rates have reduced to zero.

5.1.2 Minimum Energy

The Second Law also implies that, ar constant S  and V, every system evolves to a state o f minimum energy. 
Th is can be seen as follows. We have seen that, for closed systems, dU = dQ- р  dV= T  d eS~ p  dV, Because 
the total entropy change dS = dc5 + d(.V we may write d U  =  T  dS -  p dV -  T  djS. Since S  and V are constant. 
dS = dV = 0. Therefore, we have

dlJ == - T d.S < 0 (5.1.1)

Thus, in systems wthone entropy is maintained at a fixed value, driven by irreversible processes, the energy 
evolves to the minimum possible value.

To keep the enttupy constant, the entropy d(S produced by irreversible processes has to be removed from 
the system. If  a system is maintained at a constant Т . V and Nt . the entropy remains constant. The decrease in 
energy df/ => —T djS is  generally due to irreversible conversion of mechanical energy to heat that is  removed 
from the system lo keep the entropy (temperature) constant. A simple example is  the falling of an object to the 
bottom of a fluid (Figure 5.1). Here, df/ => - T d|5 is  the heat produced #s a result of fluid friction or viscosity. 
If  this heat is  removed rapidly so as to kocp (he temperature constant, the system w ill enalve to a state of 
minimum energy, Note that, during the approach to equilibrium, dU = - T d,5 < 0 for every time interval 
dr. Th is represents a continuous conversion of mechanical energy (kiflctic energy plus potential energy) into 
heat; at no time doe* Ihe conversion occur in the opposite direction.

5.1.3 Minimum Helmholtz, Energy

In closed systems maintained at constant Г  and V, a thermodynamic quantity called the Helmholtz energy 
or Helmholtz free energy evolves to its minimum value. The term 'free energy’ has been in use because



\
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A S >  0

Q

1

L l

'/'«nd Г constant

Figure 5.1 A simple illustration of the principle of minimum energy. In this example, i f  T  and V are constant 
then the entropy S is constant. At constant 5 and V the system evolves to a state of minimum energy.

the Helmholtz energy is the energy that is  'free', available to do work in an idealized reversible process (see 
Example 5.1). Helmholtz energy, denoted by /■'. is defined as

|F =  C /-rs|  <5.1.2)

At constant Г  we have

dF = dV  -  Г  dS =  dU  -  T d 'S  -  T i i S

’• d Q -p iiV  - T deS -  Г  d|S

If  V is also kept constant, then dV = 0, and for closed systems. Г deS = dQ. Thus, at constant Tand V. we 
obtain the inequality

d F ^ - T d iS iO  <5.1.3)

as a direct consequent's of tbe Second Law. Th is tells us that a system whose temperature and volume are 
maintained constant evolves such that the Helmholtz energy is minimized.

An example of the minimization of F  is  a chemical reaction, such as 2H2(g) + 0 2(g) ч* 2H20(1), that takes 
place at a fixed value of T  and V (see Figure 5,2a). To keep T constant, the heat generated by the reaction has 
to be removed. In ttais case, following De Bonder's identification of the entropy production in an irreversible 
chemical reaction (4.1.6), we have T  d(i  «= -  d(A/t = -d f £  ft.

Another example is the natural evolution of the shape of a bubble (Figure 5.2b) enclosed in a box of fixed 
and T. In the absence of gravity (or if  the bubble is small enough that the gravitational energy is  insignificant 
compared with other energies of tlie system), regardless of its initial shape, a bubble finally assumes the 
shape of a sphere of minimal size. The bubble's size decreases irreversibly until the excess pressure inside the 
bubble balances the contracting force of the surface. During this process. Vtve Helmholtz energy decreases with 
decreasing surface area. As tlie area of the bubble decreases irreversibly, the surface energy is  transformed 
into heat which escapes to the surroundings (thus T  is  maintained constant). The entropy production in this 
irreversible process is given by Td\S = -d f. Generally, Helmholtz, energy increases with an wcrease in surface 
area (but not alway*) because molecules at the surface have higher energy than (hose below the surface. Th is 
excess surface energy If is  usually small, of ihe order of 10-2 J m "2. For water, у = 7.275 x  10~2 1 m~J. Tbe 
thermodynamic drive to minimize the Helmholtz energy can be seen in the tendency of the surface to shrink, 
resulting in a ‘surface tension' (force per unit length) whose numerical value equals y. We w ill consider 
surface energy in more detail at the end of the chapter.

J



148 Modem Thermodynamics

z _  ____ | / /
2Hj(f)+0}(f)^2ll,0(g)

d^*-rd ,5 iO
L  .......... /

0 - 0 f
/'ami Г  constant

(a) b)

figure 5,2 Bxampies of minimization of the Helmholtz free energy F. (a jlfV  and T  are kept as a fixed value, then 
a chemical reaction will progress to a state of minimum F (but S is riot a constant). In this case the irreversible 
production of entropy T d,5 = -Хкик dNk a - d f > 0. (b) Similarly, the contraction of a bubble enclosed in a 
box of fixed V and T is an example. The contracting force on the bubble's surface decreases the bubble's radius 
until it  reaches a point at which the excess pressure in the bubble balances the contracting force of the surface. 
In this case, we can identify dF - - T  d,i" <j 0 and detemiine the excess pressure in the bubble at equilibrium 
(see Section 5.6).

The minimization of Helmholtz energy in a very useful principle. Many interesting features, such as phase 
transitions and tlie formation of complex patterns in equilibrium «ystcms [2], can be understood using this 
principle.

That Helmholtz free energy is  a state function follows from its dellnition (5.1.2). We can «how that F  is 
function of Т. V and ,V* and obtain its derivatives with respect to these variables. From Equation (5.1.2) it 
follows that dF = df/ -  T  dS -  S  dT. Far the change of entropy due lo the exchange of energy and matter we 
have T  dcS — dll +pd V- dtNk. For the change of entropy due to an irreversible chemical reaction wc 
have T  djS «* -Хкщ d|Л*. For tbe total change in entropy, we have T  dS *  T  dtS + T dtS. Substituting these 
expressions for d,V on the expression for dF  wc obtain

dF = d U - T dU + pdV i v
J  J  ^  c k

pdv -  SdT + £  + djty)

- -S d T
(5.1.4)

Since dNk =  deNk + d,Nk we may write liquation (5.1.4) as

d f ж -p d V - SdT +  Y  HkdNk (5.1.5)

Th is shows that F  is a function o fV .T  and NK. It  also Heads to the following identification of the derivatives 
of F( V. T, Nk) with respect to V, T  and Л^:1

U v  /rj\ i dT >v#t " *  (Юг,' : Ик (5.1.6)

It is  straightforward to include surface or other contributions to the energy (see Equations (2.2.10) and
(2.2.11)) into the expression for F  and obtain sim ilar derivatives.

'In this and the following chapters, for derivatives wrtH respect to Nk. we assume ihe subtcript Nt * k n  wderstood tmd drop tfs explicit
use.



„  changes in ЛГ* are only due to a chemical reaction, then f  is  a function of T, V and the extent of 
^action “■ Then it can easily be shown that (Exercise 5.2)
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( £ )  = _ (5.1.7)

51.4 Minimum Gibbs Energy

I f  both the pressure and temperature of a closed system are maintained constant, then ihe quantity that it  
minimi»^1 al equilibrium is  the Gibbs energy, also called Gibbs free energy. We shall denote this quantity 
by G. As in the case of Helmholtz free energy, the term 'free energy' is  used to note the fact that G is  the 
maximum energy available for doing work (through an idealized reversible process). Gibbs energy is defined 
as the state function

(5.1.8)G s  U + p V - T S ~ H - r s

where we have used the definition of enthalpy H  = U  + pV. Just as F  evolves to a minimum when T  and
V are maintained constant. G evolves lo и minimum when Ihe pretsuir p and temperature T  are maintained 
constant. When p and T  are constant, dp = d f *= 0 and we can relate dG to djS as follows:

dG = AU +  p <iV +  Vdp -  T  dS -  5 dT

= d g -/ )d V  + />dV + V ' d p - r d .S - r d i S - S d r (5.1.9)

where we have used the fact that T  dCS  = 4Q tor closed systems and dp -d T*>  0,
The Gibbs energy is mostly used lo describe chemical processes because the usual laboratory situation 

corresponds to constant p and Г. The irreversible evolution of G to its minimum value can be related to 
the affinities Л* of the reactions and the reaction velocities d jt/df (in which the index к identifies different 
reactions) using lajuation (4,1.23):

f  , - г ^  = - У л * ^ < г °  
df df * dr

(5.1.10)

dG = -£ A *d & < ;o (5.1.11)

in which the equality on the right-hand side holds at equilibrium. Equation (5,1.11) shows that, at constant 
P  and Г, G is  a function of tbe state variables d£t , the extent of reaction for reaction k. It also follows that

-A t (5.1.12)

In view of this relation, calling the affinity, which is a derivative of Gibfcs energy, tbe 'Gibbs free energy of 
reaction', as is  commonly done in many texts, is inappropriate. Bor a chemical reaction shown in Figure 5.3a, 
as shown in Figure 5.3b, at constant p and T .  the extent of reaction* d{, w ill evolve to a value that minimizes
<*?*./>. r>.

Note that G evolves to its minimum value monotonically in accordance with the Second Law. Thus, 
i  cannot reach its equilibrium value, as a pendulum does, in aa oscillatory manner. For this reason, an
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(»)

(b)

Figure 5.3 Minimization of the Gibbs energy C. (a) Under conditions of constant p and temperature T, irre
versible chemical reactions will drive the system to a state of minimum C. (b) The extent of rtntctlon (  evolves to 
*щ, which minimize* C.

oscillatory approach to equilibrium in a chemical reaction is  impossible. Th is does not mean thut concentration 
oscillations in chemical systems are not possible, as it was once widely thought. As we w ill see in later chapters, 
m systems that are tar from equilibrium, concentration oscillation* cun occur without violating the second 
law; in fact these otcilltitions are accompanied by continuous entropy production.

We showed above that F  i* function of V, T  and Nk. In a sim ilar manner, it  is  straightforward to show that 
(Excercise 5.3)

dG * V d p -S d r-f

Th is expression show» that G is  function Ы p. T  and Nk and that

(?) = v.
m (§)

(5,1.13)

(5.1.14)

One very useful property of the Gibbs free energy U it» relation ю the chemical potential. From a homogeneous 
system we have shown that (Equation (4,4,10)) U  -  T S - p V  +  XkftkNk. Substituting this into the definition 
of G (Equation (5.1.8)) we obtain

F? (5,1.15)
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pure compound. G «= ;iN. Therefore, one might think o f the chemical potential ft м  the Gibbs energy 
ntoleofapure compound. For a multicomponent system, dividing Equation (5.1.15) by N, tbe total molar 

we see that the molar Gibbs energy

= (5 U 6 ) 
"  к

■ which xk are the mole fractions. Since G must be an extensive function, we see that G(p, T, Nk) = 
G(p T- xkN) = NGm(p, Г, xk\ that is  Gm is  a function of p, T  aid the mole fractions xk. From Equation 
(5 1 16) it then follows that in a multicomponent system the chemical potential is a Junction o f p, T  and the 
mole fractions xk\ >t* = Vt-ip. T , xk). (When we apply these general concepts to particular systems, we w ill 
obtain exp lic it expressions for Gibbs energies and chemical potentials. For example, in Chapter 8 we w ill see 
that for mixtures of compounds that interact very weakly with each other, what are called ideal mixtures, the 
chemical potential of a component can be written in the form pk(p, T . xt ) = (p. T) +  R T  In xk. in which 
цк'(р, T) is the chemical potential of the pure compound.)

Furthermore, as *hown in fix  am pie 5.3, at constant p and T , we have the differential relation

«JG m V .T^X^cU* (5.1.17)
к

In this relation the dt* are not all independent because X.txt  =  1 for mole fractions xk.

S.1.5 Minimum Enthalpy 

In Chapter 2 we introduced tlie enthalpy

H s U  +  pV (5.1.18)

Like the Helmholtz energy F  and the Gibbs energy G. the enthalpy is  also associated with an extremum 
principle: at fixed entropy S  and pressure p, the enthalpy H  evolves to In  minimum value. Th is can be seen as 
before by relating the enthalpy change dtfto drV. Since we assume that p is  constant, we have

d H *=dU  +  pdV =  dQ (5.1.19)

For a closed system. dy = 7’d,.i' = 7\dS -d ,S), Hence. dH =  T d S - T ^ S .  However, because the total entropy 
S is fixed, d.V = 0. Therefore, we have the relation

M ^ - T d iS S Q  (5.1.20)

in accordance with the Second Law. When irreversible chemical re actions take pl»ce, we normally do not 
encounter situatioas in which the total entropy remains constant. For illustrative purposes, however, it is 
possible to give an exumple.

Consider the reaction

Hj(g) +  C lj(g )*2H C l(*>

In this reaction, the total number of molccmlen does not change. A* we have seen in Section 3.7, the entropy 
of an ideal gas S(V, T . N) = N\s() + R  InlW/V) + Cv ln(/)|. Although there is  a considerable difference in 
the heat capacity of molecules with different numbers of atoms, the difference in the heat capacity of two 
diatomic molecule» it  relatively small. The difference in the lenn s,;. is also small for two diatomic molecules. 
If  we ignore these small difference in the entropy between tlie three species of diatomic molecule*, then 
the entropy, which depends on Nk, V' anti T, w ill essentially remain constant if  Г  and V arc maintained 
constant At the same time, since the number of molecules does not change, tbe pressure p remains constant



(assuming ideal gas behavior). Since «his reactio n is  exothermic, the removal of heat produced by the reaction 
is  necessary to keep T  constant Under these conditions, both p and S  remain constant as the (reaction proceeds 
and the enthalpy reaches its minimum possible value when the system reaches the state of equilibrium. For 
an arbitrary chemical reaction. V and T  have to be adjusted simultaneously so as to keep p and S  constant, 
which is  not a simple task.

Just as we derived dF = -p dV -  S  dT + dNk. it  can easily be shown that (Exercise 5.4)

d H ’x r d S  +  V d p + '£ j l tkdNk (5.1.21)
к

Th is equation shows that H  can be expressed as a function of S, p and Nk. The derivatives of // with respect 
to these variables are

($ )„ -*  ( f U - r- (S )* -*
Once again, if  the change in Nk is  only due to a chemical reaction, then H  is a function of p, S and j ,  and we 
have
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(5.1.23)

5.1.6 Extremum Principles and Stability of the Equilibrium State

In thermodynamic», the existence of extremum principles have an important consequence for the behavior of 
microscopic fluctuations. Since all macroscopic systems are mode of a very large number of molecules that 
are in constant random morion, thermodynamic quantities, such as temperature, pressure end concentration, 
undergo small fluctuations. Why do these fluctuations not slowly drive the thermodynamic variables from 
one value to another, just as small random fluctuations in the positions of an object slowly move the object 
from one location Jo another (a phenomenon called Brownian motion)? The temperature or concentration 
of a system in thermodynamic equilibrium fluctuates about a fixed value but does not drift randomly. Th is 
is  because the stale o f equilibrium is stable. A* we have seen, irreversible processes drive the system to tlie 
equilibrium state in which one of the potentials is  extremized. Thu», whenever a fluctuation drives the system 
away from the slate of equilibrium, irreversible processes restore the state of equilibrium. The tendency of 
the system to reach and remain at an extremum value of a thermodynamic potential keeps tlie system stable. 
In this way the stability of the equilibrium state is related to the existence of thermodynamic potentials,

The state of a system is not always stable. There are situations in which fluctuations can drive a system from 
one state to another. In this case the initial slate is said to be thermodynamically unstable. Some homogeneous 
mixtures become unstable when the temperature is  decreased: driven by fluctuations, they then evolve to a 
state in which the components separate into two distinct phases, u phenomenon called 'pha« separation'. We 
shall discuss thermodynamic stability more extensively in Chapter* 12.13 and 14.

In addition, when a system is far from tbennodynamic equilibrium, tlie state to which the «ystem w ill evolve 
is, in general, not jovemed by an extremum principle; there is nol an identifiable thermodynamic potential 
that is  minimized due to the Second Law. Furthermore, the irreversible processes that assure the stability of tlie 
equilibrium slate may do just the contrary and make the system unstable. The consequent itwiability under far- 
from-equilibrium systems drives the system to stales with a high level of organization, such as concentration 
oscillations and spontaneous formation of spatial patterns. We shall discuss far-from-equilibrium instability 
and the consequent 'self-organization' in Chapters 18 and 19.
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Table 5. f Legendre transforms in thermodynamics.

ms, V, Nt) -  F(T, V, N„i = U - T S  S replaced by = T

U(S, V. N„) -  HIS, p, Nt i = V  + pV V replaced by { ^ ) sn * ~P

Sreplaced by ( Щ )  = T  
U(S, V, Nk) C(T, p, Nk) . U + p V -  TS *

and V replaced by ( —  j  ^ = -p
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5.1.7 Legendre Transformations

The relations between the thermodynamic functions F (T , V. Nk). G (T, p. Nk) and H(S, p. Nk) and the total 
energy U(S, V. Nk), expressed as a function of S. Vand Nk (which follows ifrom Equation (4.1.2) introduced by 
Gibbs), are particular instances of a genera) class of relations called Legendre transformations. In a Legendre 
transformation, a ftmction U(S, V. Nk) is transformed to a function in which one or more of the independent 
variables S, V. and Nt are replaced by the corresponding partial derivatives of V. Thus. F ( T , V, Nk) is  a 
Legendre transform of U  in which S  is  replaced by the corresponding derivative (dV!dS)V Sk =  T. Sim ilarly, 
G(T,p, Nk) is a Legendre transform of U  in which S and V are replaced by their corresponding derivatives 
(dU/dS)VM =  T  and (dU/dV)vj *  = -p. We thus have the general table of Legendre transforms shown in 
Table 5.1.

Legendre transforms show us the general mathematical structure of thermodynamics. Clearly, not only are 
there more Legendre transforms of U{S, V,Nk) that can be defined but also of S(U, V, Nt ). and indeed they are 
used in some situation#. A detailed presentation of the Legendre transforms in thermodynamics can be found 
in the text by Herbert fallen [3]. (Legendre transforms also appeir in classical mechanics: the Hamiltonian 
is  a Legendre transform of tbe Lagrangian.)

5.2 General Thermodynamic Relations

As Einstein noted (see Introduction in Chapter 1), it is  remarkable that the two laws of thermodynamics are 
simple to stale, but have a wide range of applicability; they help us understand many different phenomena 
in systems ranging from gases to galaxies. Thermodynamics given us many general relations between state 
variables that arc valid for any system in equilibrium. In this section, we shall present a few important general 
relations. We w ill apply these to particular «ystems in later chapters. As we shall see inCh*pters 15 to 17, the 
applicability of these relations can also be extended to nonequilibrium systems that are locally in equilibrium.

5J.I The Giblis-Ouhem Equation

One of the important general relations is  the Gibbs-Duhem equation, named after Josiah Willard Gibbs 
(1839-1903) and Pierre Dubem <1861—1916). It shows that the intensive variable* T, p and )ik are not all 
independent. The Gibbs-Duhem equation is  obtained from the fuedmnentul relation (4.1.2). through which 
Gibb» introduced the chemical potential

d t/= Т М - р М + ^ ^ Щ  
к

(5 .2.1)
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and relation (4.4.10), which can be rewritten as

U  =  TS  -  pV tikNk (5.2.2)

We recall the latter follows from the assumption that entropy is an extensive function of U. V and Nk and the 
use of Euler's theorem. Tbe differential of <5.2.2) is

iU «  T dS +  SdT -  V dp -  p dV + £  ( *  dNk + Nk ditt )
к

Th is relation can be consistent with (5.2.1) only if

S d T - V  ф + Y jV jd / i* * 0

(5.2.3)

(5.2.4)

Th is equation is с «lied the Gihbs-Duhem equation. It shows thal changes in the intensive variables T. p 
and i it  cannot ail be independent. We shall see in Chapter 7 that the Oibbs-Duhem equation can be used to 
understand the equilibrium between phase* and the variation of boiling point with pressure as described by 
the Clausius-Clapeyron equation.

At constant T  and p, from Equation (5.2.4! it follows that Х,^к(йрк)рт  = 0. Since the change in the 
chemical potential is  (dnk)p!- =  ’£i(dpk/dNJ)dNi, we can write this expression as

(5.2.5)S ' d b ’ f  ? ( l t f
Since dNj are independent and arbitrary variations. Equation (5.2.5) can be valid only if  the coefficient of 
every dN, is  equal to zero. Thus, we have Z k(dpk/dN i )p 7N k =  0 , Furthermore, since

\ = ( _ £ g _ \  ( M \  
\Щ/р,т \ щ щ ) р.т V iNJ P.T

we can write

(5.2.6)

Equation (5.2.6) is  an important general retull that we w ill use in later chapters.

5.2.2 The Helmholtz Equation

The Helmholtz equation gives us a useful expression to understand how the total energy V  changes with tlie 
volume V at constant T, We have seen that tlie entropy S  is  a state variable and that it can be expressed as a 
function of Т. V and Nk. The Helmholtz equation follows from the feel that, for a function of many variables, 
the second 'cross-derivatives' must be equal, i.e.

d2S d2S . . ,
dTdV “  dVdfT

For closed systems in which no chemical reactions take place, the changes in entropy can be written as

dS= у  d U + f c v (5.2.8)



Extremum Principles and General Thermodynamic Relations 155 

Sine* V  аа  ^  exPresse<  ̂®* a function of V and T, we have

™ - ( Ш )  d V + ( ^ )  dT\dV J t  V д Т  /V 
Using tins expression in Equation (5.2.8) we obtain

(5.2.9)
= [i('^\ +£|dV + i ( ~ )  dr 

I r v a W r  т  1 t \a t ) v
The coefficients of AV and ЛТ can now be identified as the derivatives (dS/dV)r  and (dSldT)v respectively. As 
expressed  in Equation (5.2.7), since the second ‘cross-derivatives’ must be equal, we have

Ш  Ш 1($И 1Ь-Ш М 5Ш ,
It is a matter of a simple calculation (Exercise 5.6) to show that (5.2.10) leads to the Helmholtz equation:

- f l l L L ] I
l- dV  I t  \ d T T h

(5.2.11)

Th is equation enables us to determine the variation of the energy with volume if  tbe equation of state is 
known. In  particular, it can be used to conclude that, for an ideal gas. the equation pV = N U T  implies that, at 
constant Г. the energy V  is  independent of the volume, i.e. (dUldV)T  -  0.

5.2.3 The Gibbs-Helmholtz Equation

The Gibbs-Helmholtz equation relates (he temperature variation of the Gibbs energy G to the enthalpy H. 
It is useful for understanding how the state of chemical equilibrium responds to a change in temperature; in 
addition, it  provide* us with a way to determine enthalpies of chemical reactions using data on the variation of 
Gibbs energy changes with temperature. The Gibbs-HelmliolW equation is  obtained as follows. By definition, 
G = H -  TS. F irst, we note that S  =  -{d G liT)pj^  and write

V AT In
G - H + i

’ p*t
(5.2.12)

It is easy to show (Exercise 5.8) that this equation can be rewritten a»

\ T  / r J
(5.2.13)

When considering a chemical reaction, thi* equation can be written in terms of the changes in G and И  that 
accompany the conversion of reactants to products. I f  the total Gibbs energy and the enthalpy of Ihe reactants 
“re G, and H , respectively and those of the products are Gp and Ht  respectively, then tbe changes due to the 
reactions w ill be AG »G p-C r and Д// *  l l f  -  H,. By applying Equation (5.2.13) to the reactants and the 
Products and subtracting one aquation from the other, we obtain

i , f &9 ) _  л н
s f { T P

(5.2.14)

In Chapter 9 we w ill see that a quantity called the ’standard ДО’ of a reaction can be obtained by measuring 
equilibrium concentrations of the reactants and products. If  the equilibrium concentrations (and hence
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Д G) are measured al various temperatures, Iben the data on the variation of AG with Г  cam be used to obtain 
Д H, which is  (he enthalpy of reaction. Equations (S.2.13) and (5.2.14) are referred to as the G ihbtt-Htlrnhnltj 
equations.

5.3 Gibbs Energy o f Formation and Chemical Potential

Other than beat conduction, every irreversible process -  e.g. chemical reactions, diffusion, the influence of 
electric, magnetic and gravitational fields, ionic conduction, dielectric relaxation -  can be described in terms 
of suitable chemical potentials. Chapter lOts devoted to some of the processes described using the concept of 
a chemical potential. A ll these processes drive the system to the equilibrium state in which the corresponding 
affinity vanishes. Because of its central role in the description of irreversible processes, we w ill derive a 
general expression for the chemical potential that facilitate its application.

As already noted, ц Is the molar Gibbs energy o f a pure compound. In general, the Gibbs energy and the 
chemical potential are related by

\ щ )
Щ (5.3.1)

P.T

Th is equation does not give us a means to relate the chemical potential directly to experimentally measurable 
quantities such as heat capacities. As we have seen in Chapter 2. enthalpy can be related to heat capacities: 
therefore, we seek an expression that relates chemical potential to enthalpy. To this end, we differentiate tlic 
Gibbs-Helmholtse equation (5.2.13) with respect to Nk and use Equation (5.3.1) to obtain

± (  St),
d T \ T ) K mг г  (5-3-2)

in which Hmh is  called the partial molar enthalpy of the compound k.
If  the value of tbe chemical potential t)ipu. T 0) at a reference temperature T 0 and pressure pr) is  known, 

then by integrating Equation (5.3.2) we can obtain the chemical potential at any other temperature T  if  the 
partial molar enthalpy H ^ p ,,. T)  is  known as a function of V.

T) iiljh.Tp) , f+ f  (5.3.3)

As was shown in Chapter 2 (see Equation* (2.4.10) and (Z4 .U )). the molar enthalpy of a pure compound 
Um tiD  can be obtained using the tabulated values of Г). tlie molar heal capacity at constant pressure. 
Ffer ideal mixtures. //nl* is  the same as that of » pure compound. For nonideal mixtures, a detailed knowledge 
of the heat capacities of the mixture is  needed to obtain H „lt . As noted earlier, the chemical potential of a 
component к is  not only a function of its mole fraction, % , but *bo » function of mole fractions of other 
components Xj, The chemical potential of a component к depends on how it interacts with other components 
in the mixture.

For a pure compound, knowing ц(р0, 7) at a pressure p0 and temperature Г, the value of flip, T) at any other 
pressure p can be obtained using the expres»ion d// = -S m dT+Vmdp, which follows from the Gibbs-Duhem
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ation  (5.2.4), where ihe molar quantities Sm = SIN  and V'm = V/N. Since Г  is  fixed, AT = 0. and we may 
integral this expression with respect top to obtain

p
„(р.T) -= Mft,,T)  +  J Vm(p', Tjdp' <5.3.4)

Po

Thus, i f  the value of the chemical potential p{p0< T0) is  known al a reference pressure p0 and temperature 
T0, Equations (5.3.3) and (5.3.4) tell us that a knowledge of the molar volume V„(/>, T) (or density) and 
the m olar enthalpy Hmip. T) of a compoiud w ill enable us to calculate the chemical potential at any other 
p re s su re  p and temperature T. An alternative and convenient way of writing Equation (5.3.4) is due to
O N. Lewis (1875-1946), who introduced the concept of activity щ of a compound к [4]. The activity is 
defined by the expression

pk(p, T )  = ptipn, T )  +  R T  ln ak = i»l + R T  In ak <5.3.5)

in which p? = ptlpo. T). When we write Hie chemical potential in this form in terms of activity ak, it turns 
out that activity hat a direct relationship to experimentally measurable quantities such as concentration and 
pressure. As an illustration, let us apply Equation (5.3.4) to the case of an ideal gas. Since Vm = RT/p, we 
have

P

p i

=> (̂jno, T) + R T  In(p/p0) = ft0 +  R T  ln a

which shows that Ae activity a = (p/pa) in the ideal gas approximation. In Chapter 6 wc w ill obtain the 
expression for the activity of gases when tbe molecular size and molecular forces arc taken into account, as 
in the van der Waals equation.

5-3.1 Tabulation of Gibbs Energies of Compounds

The formalism presented above does not give us a way to compute the absolute values of Gibbs energies 
of compounds. Hence, the convention described in Box 5.1 is  usually used for tabulating Gibbs energies. 
Computation of Gilbbs energy changes in chemical reactions arc based on this convention. Here, the molar 
Gibbs energy of form«lion of a compound k, denoted by ДС °̂|£]. in de lined. Since chemical thermodynamics 
assumes that there is no interconvereion between elements, the Oifcbs energy of elements may be used to 
define the 'zero' with respect to which the Gibbs energies of all o4her compounds are measured. The Gibbs 
energy of formation of H20 , written as Лбу '[Н20|, for example, is the Gibbs energy change AG in the 
reaction

H ju i+ io jO o -H jo m

The molar Gibbs energies of fomution of compounds AG^tJ *  ^ T<j) are tabulated generally for 
^  = 298.15 K. We shall consider the use of &G°f in more detail in Chapter 9. which is devoted to the 
thermodynamics of chemical reactions. Prom these values, Ihe chemical potentials of compounds can be
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Box 5.1 Tabulation of Gibbs free energies of compounds
To compute tbe changes in the Gibbs enragy in a chemical reaction, the molar Gibbs energy iilp,,, T )  of 
a compound in it* standard state (its stale at pressure p0 = 1 bar) at temperature /’, may be defined using 
the Gibbs energy of format ion, AGfik, ? j, as follows:

A(j£[k,'/'] = 0 for all elements k, at a ll temperature* T
T\ m standard molar Gibbs energy of formation of cotnipound к at 

temperature J
*  Gibbs energy of formation of I mol of tlie compound from its 

constituent element», all i& (heir standard states, at temperature T

Since chemical thermodynamics assumes that there is  no intercooversion between the elements, the Gibbs 
energy of formation of elements may be used to define the ‘zero’ with respect to which the Gibbs energies 
of all other compounds are measured.

The molar Gibbs energy at any other p and T  can be obtained using Equations (5.3.3) and (5.3.4) (or
(5.3.7)), as shown in the figure below.

calculated as explained in Box 5.1. We conclude this section by noting that substitution of Equation (5.3.3) 
into (5.3.4) gives ш a general expression ffiqr tlie computation of the chemical potential:

Thus, once the reference chemical potential //(/>,„ T (1) is defined using some convention, the chemical potential 
of a compound can be computed using the above formula if  the molar volumes Vm and molar enthalpy H m 
arc known as function» of p and Г. These quantities are experimentally measured and tabulated (e.g. see the 
N IST  Chemistry Webbmtk at http://webbook.nist.gov/chemistry).

//!/•>. /.,i* /Л/* . t )
I *|»l I

P T

(5.3.7)

http://webbook.nist.gov/chemistry
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Maxwell Relations

iaws of thermodynamics establish energy and entropy as functions of state, making them functions of 
v variables- As we have seen, U - U ( S ,  V.fl*)andS = S(<7. V.AT*) are functions at the indicated variables. 

E  e* Clerk Maxwell (1831-1879) used the rich theory of multivariable functions to obtain a large number 
o f1 r e la tio n s  between thermodynamic variables. The methods he employed are general, and the relations U iu n  

btamed are called the Maxwell relations.
jn A ppend ix  1.1 we introduced the following result: if  three variables x, у and z are such that each may be 

e x p re s s e d  as a funation of the other two, x *  x{y, z). у = y(x, г) and г  «  Я *. Л  then the theory of multivariable 
fu n c tio n s  gives us dhe following fundamental relations:

d2x _  d2x 
dydz dzdy

1

( I) ,-d )  

( f  ) .© .( » ,

<5.4.1)

<5.4.2)

<5.4.3)

Also, if  we consider two functions of л and у. г = г(-г, у ) and w = w{x. у), then the partial derivative {дг!дх\,, 
in which the derivative is evaluated at constant w, is  given by

Щ .  ( !) .-( !)/  (I), (I).
We have already seen how Equation (5.4.1) can be used to derive the Helmholtz equation (5.2.11) in which 
entropy S was considered as a function of T  and V. In most case», Equations (5.4.1) to (5.4.4) are used to 
write thermodynamic derivatives in a form that can easily be related to experimentally measurable quantities, 
For example, using the fact that the Helmholtz energy F(V, T )  is a function of V and T . Equation (5.4.1) can 
be used to derive the relation (dS/dV)T  = {dp/dDy in which the derivative on the right-hand side is clearly 
more easily related to the experiment.

Some thermodynamic derivative» are directly related to properties of materials that can be measured 
experimentally. Other thermodynamic derivatives are expressed in terms of these quantities. The following 
are among the most commonly used physical properties in thermodynamics:

Isothermal compressibility: KT  s  -  -p ^  ̂ <5.4.5)

Coefficient of volmne expansion: a & — ( ~  ) (5.4.6)

Now the pressure coefficient idpldT)v, for example, can be expressed in term* of *rr  and cr as follow*. From 
Equation (5.4.3), it follows that
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Now, using Equation (5-4.2) and dividing the numerator and the denominator by V we obtain

(dp\ V \ S T t f  «

\ 0 * 7 v  KT  <" 4 '7>
dp ) т

54.1 General Ktlation between Cnf) aed CmV

As another example of the application of Maxwell’s relations, we w ill derive a general relation between С 
and CmV in terms of or, k t , the molar volume Vm and T  -  all of which can be measured experimentally. We 
start with the relation we have already derived in Chapter 2, i.e. Equation (2.3.5):

<5A8)
where we have used all molar quantities, as indicated by the subscript ‘m‘. The first step is to write the 
derivative (dU/dV)r  in terms of the derivatives involving p, V and T. so that we can relate itto * and kt . From 
the Helmholtz equation (5.2.11), it is easy to see that (dU/dV)r  + p ж T(dp/r)T)v. Therefore, we can write 
Equation (5.4.8) as

\ 3 T  J v
С т ,- С юу =  Т ( £ )  cVm (5.4.9)

m which we have used the definition (5,4.6) for a. Now, using the Maxwell relation (dp/ST)y = (а/кт) (see 
Equation (5,4.7)) in Equation (5.4.9) we obtain the general relation

m̂p ~ = “ ‘ (5.4.10)
KT

5.5 Exte nsiv ity w ith Respect to N  and Pa rtia l M olar Quantities

to multicomponent systems, thermodynamic functions such as volume V. Gibbs energy G and all other 
thermodynamic functions that can be expressed as functions of p, T  and are extensive functions of Nk. 
Th is extensivity Ind* to general thermodynamic relations, some od'which we w ill discuss in this section.

Consider tlic volume of a system as a function of p, / and Nk'. V(p, T ,  Nk). At constant p and T , if  all 
the molar amounts were increased by a factor k, the volume V w ill also increase by the same factor. Th is is 
the property of extensivity. In mathematical terms, we have

V>, Т. Щ )  = lV(p, T . Nk) (5.5.1)

At constant p and /. ming Euler's theorem as was done in Section 4.4. we can arrive at the relation

It is  convenient to define partial molar volumes as the derivative*

<5.5.3)



w \

. ,his definition. Equation (5.5.2) can be written as 
Osmg •*' ■

(5.5.4)
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I  . j  m0)ar volumes are intensive quantities. As was done in the case of the Gibbs-Duhem relation, we can 
a relation between die by noting that at constant p and Г

(dV) <5.5.5)

• which we have explicitly noted that the change dV is at constant p and T. Comparing <iV obtained from 
Equations (5.5.4) and (5.5.5), we see that XkNk{dV^)p T  «  0. Now (d V ,*)^  = we
obtain

In this equation. dV’, are arbitrary variations in Nt; consequently, tbe above equation can be valid only when 
the coefficient of each Щ  equals zero, i.e. ^(V^V^/tW ,) = 0. Finally. using the property (dV^ldN,) = 
(d2VldNidNk) *  (dVmi/dNk) we arrive at the final result:

<5,5.6)

Relations sim ilar to Equations (5.5.4) and (5.5,6) can be obtained for all other functions that are extensive in 
Nk. For Gibbs energy, which is  an extensive quantity, the equation corresponding to (5.5.4) is

<5.5.7)

in which we recognize the partial molar Gibbs energy' as the chemical potentials /<*. The equation 
corresponding to (5.5.6) follows from the Gibbs-Duhem relation (5.2,4) when p and Г  are constant:

Similarly, for the Helmholtz energy F  and ihe enthalpy H, we can obtain the following relations:

F - T F i M
к ? » (% )„ -

И Ж 7 -

<5.5.8)

(5.5.9)

(5.5.10)

tn which the partial molar Helmholtz energy F n̂  = (6F!dNk )f T  and the partial molar enthalpy Wnl* = 
(W ldNk)f  T , Sim ilar relations can be obtained for entropy S and tije total internal energy V.
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Figure 5.4 To minimize the interfacial Helmholu energy, a liquid drop shrinks its surface area to the least possible 
value. Л* a result, tfie pressure p" inside the drop is larger than tbe external pressure p'. The excess pressure 
(p" -p 't  = 2y/r.

5.6 Surface Tension

We conclude this cfcuptcr by considering some elementary thermodynamic relations involving interfaces [5). 
Since molecules at дп interface are in a different environment from molecules in the bulk, their energies and 
entropies are different: Molecules at a hqutd-air interface, for example, have a latter Helmholtz energy than 
those in the bulk. At «(instant V and T, since every system minimizcn its Helmholtz energy, the interfaciai 
area shrinks to it* minimum possible value, thus increasing the pressure in the liquid ( Figure S.4).

The thermodynuanK'k of such a system can be formulated as follows. Consider a system with two parts, 
separated by an interface of area £  (Figure 5,4). For this system wt- have

dU =  T d S - p " d V " - p 'd V ' +  r 6Z  <5.6.1)

in which p' and V  «re the pressure and the volume of one part and p "  and V" are the pressure uiid the volume 
of the other, 1  is the interfaciai area and the coefficient у is  called Ihe surface tension. Since <iF' =  dU -  
T  d.V -  5 d7. using liquation (5.6.1) we can write dF as

dF = - S d T  - p "  dV" - p ' iV '  +yd S (5.6.2)

From this it follow» that

( - )  - r\ d X lr,V ',V "

Thus, surface tension у is the change of Fp e t unit extension of the interfaciai area at con*tainl T, V  and V". 
This energy is  «mall, usually of the order of IQ "2 J m_J,

Tlie  minimusticm of Helmholtz, energy tSrives the interface to cuniriict Uke an elastic »bect, The force per 
unit length that the interface exerts in its tendency to contract is al»o equal to y. Th is can be «sen as follows. 
Since enlarging tin intcrfacial area incrnaiic» its Helmholtz energy, work needs to be done. As shown in 
Figure 5,5, this mean* a force/is needed to stretch tbe surface by an amount d*. i.e. the interface behaves 
like an elastic sheet, The workdone,/dr, equals the increase in (he surface energy, у dE dr), in which I 
is  the width of the surface (Figure 5.5). Thus, J ilt  = yl dt, or the force per unit length /II -  y. For this reason, 
у is  called the ‘surface tension’.
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Figure S.S Energy is required to enlarge a surface of a liquid. The force per unit Imgth is y.

5,6.1 Excess Pressure in a Liquid Drop

In the case of the liquid drop in air shown in Figure 5.4, the difference in the pressures (p" -  />') =  Дp is  the 
excess pressure inside Ihe liquid drop. An expression for the excess pressure Csp in a spherical liquid drop 
can be obtained as follows. As shown in Section 5.1, if  the total volume of a system and its temperature are 
constant (hen the irreversible approach to equilibrium is  described by -  T  d,S = dF ^ 0. Now consider an 
irreversible contraction of the volume V " of the liquid drop to its equilibrium value when the total volume 
у =  V  + V " and Гаге constant. Setting d r «  0 and dV* = -d V" in Equation (5.6.2) we obtain

I
For a spherical drop of radius r. dV" = (4*/3)3r dr and dX = 4 ir2 r dr, hence, the above equation can be 
written as

-  7 ' i -  =» •= [-(//' -p'ybrr2 уЪлг\ — <5.6.5)
d/ df d/

We see that this expression is  a product of a -themiodynamic force' -  ip " -  p'\x4r1 + y&xr that causes the 
'flow rate’ dr/d/. Art equilibrium, both must vanish. Hence. -  (p" - p ’ y ix r  + уНлг =  0. Th is gives us (he 
well-known equation for Ihe excess pressure inside a liquid drop Ы  radius r.

&p =  [p" -/> ')=  у <5,6.6)

Th is result is  called the Laplace equation because i i  was first derived by the French mathematician Pierre- 
Simon Laplace (1749-1827),

5.6.2 Capillary Rise

Another consequence of surface tension is  Ihe phenomenon of 'capillary rise’: in narrow tubes or capillaries, 
most liquids rise to a height h (Figure 5,6) that depends on the radius of the capillary. The smaller Ihe radius, 
the higher tlie rise. The liquid rises because ail increase in the area of the liquid-glass interface lowers the 
Helmholtz energy The relation between the height A, the radius r  and the surface tension can be derived as 
follows. As shown m Figure 5.6c, Ihe force of surface tension of «he liquid-air interface pulls the surface 
down while the force nt the liquid-glass interface pulls the liquid up. Let the 'contact angle’, i.e. Ihe angle 
M which Ihe liquid is in contact wilh the wall of the capillary, be 0. When «hese two forces balance each 
other along the vertical direction, the force per unit length generated by the liquid-glass interface musl be 
/cos S. As the liquid moves up, the liquid-glass interface is  increasing while tbe glass-air interface is 
decreasing; /cos в is  tbe net force per unit length due to these two factors. The force per unit length is equal
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у cos в

(с)

Figure 5.6 Capillary rise due 10 surface tension, (a) The height h to whkh the liquid rises depends on the contact 
angle в, the surface tension у and the radius r. (b) The contact angle в s/>eclfies the direction in which the force 
due to the liquid-air interface acts, (c) The vertical component of the force due to the liquid-air interface balances 
the net force due to the liquid-glass and glass -air Interfaces.

to the interfaciai energy per unit area: thus, as the liquid moves up, the decrease in the interfaciai energy is 
ycosO per unit are». Hence, as the liquid moves up and increases the area of the glass-liquid interface, the 
decrease in Helmholtz energy is ycosff per unit area. On the other hand, as the liquid rises in the capillary, 
there is  an increase in the potential energy of the liquid due to gravity. A liquid layer of thickness dh and 
density p has the nvass [pnr2 dh) and its potential energy at a height h is equal lo (рлг2 dh)gh. R>r the entire 
liquid column, this expression has to be integrated from 0 to Л. The change in the Helmholtz energy A F  as 
the liquid rises is tbe sum of the potential energy and glass-liquid interfaciai energy:

h

AF(h) = j  ghpxr1 dll -  2nrh(y cos S) = -■ -  2nrh(y cos в) (5.6.7)
о

The value of h that minimizes F  is  obtained by setting d(AF(h)ldh) *  0 and solving for h. Th is leads to the 
expression

2/cosfl
Pgr

(5.6.8)

The same result can also be derived by balancing the forces of surface tension and the weight of the liquid 
column. As shown in Figure 5.6b. the liquid column of height ft is  held at the surface by the surface tension. 
The total force due to the surface tension of the liquid along tlie circumference is  2ягу cos 9. Since this force 
holds the weight of the liquid column, wc have

2ягу cos в =  pghxr2 (5.6.9)

from which Equation (5.6,8) follows.
The contact angle 0 depends on tlx: interface (see Table 5.2). For a glass-water interface the contact angle 

is  nearly zero, as it is for many, though not all, organic liquids. Ib r  a glass-kerosene interface, в -  26*. The 
contact angle can be greater than 90”, as in the case of a me»cury-g]a»s interface, for which в is about 140°, 
or a paraffin-water interface, for which it it  about 107°. When 9 is  greater than 90°, the liquid surface in the 
capillary is  lowered.
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1J>le 5.2 Examples o f surface tension and contact angles.

у\Ю~2j n r2 or 10'J N in •’) Interface Contact angle (”)

Met turn1’1Methanol

Mercury
Soap solution

Glass-wate*
Glass-fnamy organic liquids' 
Glass-kerosene 
Glass-mercury 
Paraffin-water

0
0

26
140
107

Mercury ■*
Soap solution 2,3 (approximate)

• Not a llo ig an ic  liquids have » contact angle value of 0“, «  U clear in the case of kerosene,
More extensive data may b* found in D A  Lide (**), < Ж  Htndbook Ы  Chemlttry ind fk y tk t . 7Sth edition, 1 «94, CRC Press: Ann Mtrar. Ml.

1 Feynman. R.P., Leighton, R.B.. Sands, М.. The Feynman Lectures on Physics. Vol. 1, Chapter 26, Vol. 2. Chapter 19. 
1964, Addison-Wesley: Reading, MA.

2. Seul. М., Andeliram. I) , Domain shapes and patterns: the phenomenology of modulated phases. Science. 267 (1995), 
' 476-483.

3. Callen, H.B., Thermodynamics, second edition. 1985, John Wiley & Sous, Inc.: New York,
4. Lewis, G.N., Randall, М.. Thermodynamics and Tree Energy of Chemical Substances. 1925. McGraw-Hill: New York.
5. Defay, R„ Prigogine. I.. Bellemans, A., Surfuie Tension and Adsorption, 1966, John Wiley &  Sons, Inc.; New York.

Example 5.1 Show that the changc in Iho value of the Helmhota free energy F  corresponds to the work 
done when T  and Nt  are constant, thus justifying the name ‘free energy' (available for doing work).

Solution As a specific example, consider a gas in contact with a thermal reservoir at temperature T .  By 
expanding this gas, work can be done. We can show that the change of F  corresponds to the work done at 
constant T  and Nk as follows. F  =  U  -  TS. Prom this it follows that (see Equation (5.1.5))

References
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T

dF  ta - p iiV -  S d T  +  2  »k<Wk
t

At constant T  and W*. JiF ■= - p  dV. Integrating both sides, we see «lain

which shows that the change in F  is  equal to Ihe work done by the gas. The same w ill be true for any other 
system.



Example 5,2 For a closed system with one chemical reaction, show that v = -«4.

Solution The change in f  is  given by (see Equation (5.1.5))

d f »  -p  d V -  S  d T + £  nt  dNk 
к

Since the system is  closed, the changes in Nk are due to a chemical reaction: hence, we have dV, =  Vt
d£ in which vk are the stoichiometric coefficients (which are negative for the reactants and positive for the 
products). Thus:

d f *  -p  dV -  S d T  + £  vkttk dv* 
к

Since Zkvkpk =  -  A wc have

d f =  - p d V - S d T - A 4 i  

When F  is  considered as a function of V, T  and ’, then

M l  ( !)„■ «
and we see that (dFld$)r  v =  -A .

Example 5 J  Using the Gibbs-Duhem relation show that, at constant p and T , (dGm) . j  <= X.kpkdxk (which 
is Equation (5.1.17}).

Solution The molar Gibbs free energy <rm в  £кркхк in which xk is  the mole fractioa of component k. 
Hence:

dG n. =  S  d**^* +  £  ** 
к к

The Gibbs-Duhem relation is

S d T - V 4 p + y N kdnk ~Q
к

Since p and T  are constant, d7' = dp = 0. Furthermore, xk ж Nk/N in which N  is the total number of moles. 
Dividing the Gibbs-Duhem equation by N  and setting dp = d f=  0. we have L kxk dfik = 0. Using this result 
in the expression for dGm above, for constant p and T  we see that

<dGK)t J  =  £ / t kdxk 
it

(Note that Ъ л к =» & and, hence, xk are not all independent. Hence, the above equation doc# not imply that
(дст /ахк)р т шкк >

Exercises

5.1 Use the expression T djS = -  y <M and T  dt S  =  dV +  p dVin the general expressions for the F irst and 
the Second Laws and obtain d U ^ T d S - p d V + y d A  (assuming d Nk — 0).
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« 2  (a) In an isothermal expansion of a ga» from a volume V, to Vt. what is  the change in the Helmholtz free 
energy F I  (b) For a system undergoing chemical transformation at constant V and T , prove Equation

(5.1.7).
g j  Use the relations dU =  dQ -  p dV. Td cS =  dQ and T d,S = -X kiik dNk to derive

d G tz V d p - S d p + ^ m  dNk 
к

which is  Equation (5.1.13).
5.4 Use the relations dU = dQ-p dV, T  dtS  = dQ and T d,S =  -£*/(* dJV* to derive

d H -T d S +  Vdp+'£i (ikdNk

which is  Equation (5.1.21).
5.5 For an ideal gas. in an isothermal process, show that the change in the Gibbs energy o f a system is  

equal to the amount of work done by a system in an idealized reversible process.

5.6 Obtain the Helmholtz equation (5.2.11) from (5.2.10).
5.7 (a) Use the Helmholtz equation (5.2.11) to show that, at constant T, the energy of an ideal gas is

independent of volume.
(b) Use the Helmholtz equation (5.2.11) to calculate (dU/iV)f for N moles of a gas using the van desr 

Waals equation.

5.8 Obtain Equation (5.2.13) from Equation (5.2.12).
5.9 Derive the following general equation, which is  sim ilar to the Gibbs-Helmhottz equation:

I d_ ( F \ _ U m
I  d T V T !  T*

5.10 Assume that Д//changes little with temperature, integrate tbe Gibbt-Helmboltz equation (5.2.14) and 
express AGy at temperature i\ in terms of ДH. the initia l Д(», and the corresponding temperature T r

5.11 Obtain an explicit expression for the Helmholtz energy of tin ideal gas as a function T, V and N.

5.12 The variation of Gibbs energy of a substance with temperature is given by G = o T + b + сГТ. Determine 
the entropy and enthalpy of this substance as a function of temperature.

5.13 Show that Equation (5.4.10) reduces to C™ -  CmV = Я  for an ideal gas.

S I4  Consider a reaction X  2Y in which X  and Y  are ideal gases.
(a) Write (lie Gibbs energy of this system as a function of the extent of reaction $ so that {  is  the 

deviation from the equilibrium amounts of X  and Y, i.e. /Vx = ;  and Ny = + 2{ in 
which Л!хл| and NYeq are the equilibrium amounts of X  and Y.

(b) Through explicit evaluation, show that (дО/д$)р Т  ж - A  *  (2»iy -  /ix )-

s-15 (a) By minimizing the free energy ДЯЛ) given by Equation (5.6.1) as a function of ft. obtain the 

expression
, l y  coa 9
ft — '|ГГ ...lrrr

Pgr

for the height h of capillary rise due to surface tension.
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(b) Assume that the contact angle в  between water and glass is nearly zero and calculate the heig),i 
of water in a capillary of diameter 0.1 mm.

5.16 (#) Owing to surface tension, the pressure inside a bubble is  higher than the outside pressure. Let this
excess pressure be Дp. By equating the work done, Дp dV, due to an infinitesimal increase Ar in 
tbe radius r  to tbe increase in surface energy у dA, show that Дp -  2ytr.

(b) Calculate the excess pressures inside water bubbles of radius 1.0 mm and 1,0 ц т.

5.17 What is  the minimum energy needed to convert 1.0 mL of water to droplets of diameter 1.0 цт?

5.18 When the surface energy is included we have seen that

AU ж T  AS -  pdV +  pdN + ydA

in which у is the surface tension and dA is  the change in the surface area. For a small spherical liquid 
drop of a pure substance, show that the above expression can be written as Alf = TAS - p  dV + ц\Г) 
iIN  in which it'(r) = /i + (2ylr)Vm, a size-dependent chemical potential.



6
Basic Thermodynamics of Gases, 

Liquids and Solids

Introduction

The formalism and general thermodynamic relations that we have seen in the previous chapters have wide 
applicability. In this chapter, we w ill see how thermodynamic quantities can be calculated for gases, liquids, 
solids and solution* using general methods.

6.1 Thermodynamics o f Ideal Gases

Many thermodynamic quantities, such as total internal energy, entropy, chemical potential, etc.. for an ideal 
gas have been derived in the preceding chapters as examples. In this section, we w ill bring all these results 
together and lis t the thermodynamic properties of gases in the ideal gas approximation. In the folbwing 
section, we w ill see how these quantities cam be calculated for ‘real gases' for which we take into account the 
molecular size and intermolecular forces,

61 1 The Equation of State

Our starting point is  the equation of state, ibe ideal gas law.

<6 .1.1)pV =  N R T

А» we saw in Chapter 1, this approximation is  valid for most gases when their densities are less than about
1 mol L * 1. At this density anti temperature of itbout 300 K, for example, the pressure of N2(g) obtained using 
the ideal gas equation is 24.76 atm, where;» that predicted using the more accurate van der Waals equation 
is 24.36 atm. a difference of only a few percent.

*1  -2 The Total b ittrna l Energy

Through thermodynamics, we can see that the ideal gas law (6J■ 1) implies that the total internal energy
V is independent of the volume at fixed T , i.e. the energy of an ideal gas depends only on its temperature.

Mod, rn Thermodynamics: From Heal Engines to Dtlrtpalvf Structures. Second Edition Dilip Konifcpudi andltyi Prigogine 
John Wiley & Sons, Ltd. Published 2015 by John Wiley *  Sons, Ltd.
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One arrives at this conclusion using tbe Helmholtz equation (see Equation (5.2.11)), which is  valid for all 
thermodynamic systems:

(6 .1.2)_  - . . ч  r J Г
(We remind the reader that the Helmholtz equation is  a consequents of the fact that entropy is  a state function 
of V. T  and Л?к.) Since the ideal gas equation implies that the term p/T -  NR/V is independent of T, it 
immediately follows from Equation (6.1.2) that (dl/fdV)T  -  0. Thus. the total internal energy C/(7', V. N) of 
N  moles of an ideal gas is  independent of the volume at a fixed T , We can get a more explicit expression for 
U. Since CmV. ж (d(fmldT) v is  found to be independent of T , we can write

т

îdcel ~ N U f +  N j  CmVA T ж +  CmVD  (6.1.3)
о

(The constant U<s is  not defined in classical thermodynamics, but. using the definition of energy that the theory
of relativity gives tut, we may set N U0 = MNc3, in which M  is  the molar mass, N  is  the molar amount of tlic
substance and с is  the velocity of light. In thermodynamic calculations of changes of energy, U0 does not 
appear explicitly.)

6.1.3 Heat Capacities and Adiabatic Processes

We have seen earlier that there are two molar heat capacities: (  mV and C„v , the former at constant volume 
and the latter at constant pressure. We have also seen in Chapter 2 that the F irst Law gives u« the following 
relation between mnlffl' heat capacities:

For an adiabatic pmcgss, the F irst Law also gives us the relation

j y r '-t * constant or pVr =  constant 1

(6.1.4)

(6.1.5)______________i v '
in which у ж CmfICmy, In an adiabatic process, by definition d eS  ж d Q fl'-d . I f  the process occurs such that 
dtS  «  0, then the eBtnipy of tbe system remain» constant because dS *  djS +  deS,

6.14 Entropy and Thermodynamic Potentials

We have already seen that the entropy S( V, Г . Л') of an ideal gas is  (see Equation (3,7.4))

S  = /V[,r<, + CmV In (Г) +  Д1п( V/N)\ (6.1.6) ■ r T- i
From the equation o f slate (6.1.1) and the expressions for and S  it is  straightforward to obtain explicit 
expressions for the enthalpy //= (/  +  pV. the Helmholtz energy f « ! / -  T S  and the Gibbs energy G  = V  -  
T S  + pV of an ideal gas (Exercise 6.1).

6.1.5 Chemical Potential

For tbe chemical potential of an ideal gas, we obtained the following expression in Section J. J (see Equation 
(5.3.6)):

ц(р,Т) = p(p0, D  + RTln(p/p0) (6.1.7)

X

p0r a mixture ° f 'deal gases the total energy is  the sum of the energies of all its components. Tbe same is  true 
for the entropy. The chemical potential of a component к can be expressed in terms of the partial pressures pk
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pk(j>k, Г )  ж рк{р0, T )  +  R T  ln(p*/po)

Alternatively, if  is  the 
written as

(6 .1.8) 

bemole fraction of the component k. since pk = xkp, the chemical potential can

(6,1.9)цк (p, T ,  xk) ж /tat (p ,T) +  R T  !n(.v*)

in which ju£(/>, T ) = pk(Po, T\ +  RT\n(p/p0) is  the chemical potential of a pure ideal gas. Th is form of die 
chemical potential is  generally used in the thermodynamics of multicomponent systems to define an 'ideal

mix hire'.

6.1.6 Entropy of Mixing and the Gibbs Paradox
Using the expression for the entropy of u i ideal gas. we can calculate the increase in its entropy due to 
irreversible mixing of two gases. Consider two nonidentical gases in chambers o f volume V separated by 
a wall (Figure 6.1), The entire system is  isolated. Let us assume thnt the two chambers contain the same 
amount, N moles, of the two gases. The total initia l entropy of the syntem is  the sum of the entropies of the

two gases:
StaU -  М *01 +  crnvi 1п(Г) t  R In(V/N)] +  N\s<a +  CmV2ln(D  + R\n(V/N)] (6.1.10)

Now i f  the wall separating the two chambers is removed, the two gases w ill mix irreversibly and the entropy 
will increase. T and/i remain constant. When the two gases have completely mixed and the system has reached
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1 The entropy of mixing two nonidentical gases is given by equation (6.1.12), howev 
9 between the gases. I f  the two gases are identical, then there Is no change In the entropy.
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a new state o f equilibrium, each gas would be occupying a volume o f 2 V. Hence, tbe total final entropy after 
the mixing is

■Sfln =  (V[»m + CaVI 1 п (Г )+ Л  In (2v /ЛГ)] + / ф OJ +  CmV2 In (Г) +  «In  (2 V fK )\ (6.1.U )

The difference between Equations (6.1.10) and (6,1.11) is the entropy of mixing =  Sjtn -®wt- It is easy  
to see that

A ?mix =  2NR In 2 (6.1.12)

The generalization o f  this result to unequal volumes and molar amounts is left as an exercise. It can be shown 
that if initially the densities of the two gases are the same. i.e. (N l/V l ) = (/V2/V2), then the entropy of mixing 
can be written as (Exercise 6,2)

AS„ii* *  ~RN U \ ln .t, +  *2 tn.Cj) (6.1.13)

where xt and x2 are the mole fractions and N m N x +  N2.
Gibbs noted a curious aspect of this result. If the two gases were identical, then the states of the gas before 

and after the removal of the wall arc indistinguishable except for the wall; by replacing the wall, the initial 
state can be restored. This means that there is no irreversible process mixing the two gases. Hence, there is no 
change in entropy because the initial and final states are the same. For two nonidentical ga*es, however small 
the difference between them, the change of entropy is given by Equation (6.1.12). Generally, in most physical 
systems, a small changc in one quantity result» in a small change in another dependent quantity. Not so with 
the entropy of mixing; even Ihe smallest difference between two gases leads to an entropy difference of 2NR 
In 2. If the difference between the two gaws vanishes, then ifcruptly drops to zero. This discontinuous 
behavior of the entropy of mixing is often called the Gibbs paradox,

The entropy o f mixing (6.1.13) can also be obtained using the statistical formula 5 =  In W introduced 
in Chapter 3 (Box 3.1). Consider a gas containing (Л̂ х +  N2) moles or (Л', + N2 )NA molecules (ZVA is the 
Avogadro number). For this gas, interchange of molecules does not correspond to distinct roiemstates because 
the molecules are indistinguishable. However, if N 2 moles of the gas are replaced by another gas, then an 
interchange of moleculcs of tlie two different gases corresponds to a distinct microstate. The», the gas mixture 
with /V] moles o f one ^as and N2 of another gas has additional imcnistatcs in comparison with (ЛГ, + N2) 
moles of one gas. Thai these additional mkmstates when used in the formula S =  In W give the entropy 
of mixing, Equation (6.1.13), can be seen »s follows. The number of additional microstatc» in the mixture is

( A M  + N aN2) 1

“ “  г а д ) I ( а д »
Using the Stirling approximation ln(Afl) и N  In N  ~ N .i l  can easily be shown that (Exercise 6,2)

д 5 т *  =  *в In =  - ¥ a W  + Л'гКЛа In *j + x2 In x2) (6.1.15)

in which .v, and xx are mole fractions. Equation (6.1.15) is identical to (6.1,13) because R =  kb fr/A and 
N  — +  N2. Thte derivation shows that expression (6.1.13) tor the entropy of mixing is not dependent 
on the interactions between the gas molceules: it is entirely a consequence of distinguishnbility of the two 
components o f the system.

6.2 Thermodynamics of Real Gasw

Useful though it might be, ihe ideal gas approximation ignores the finite size of the molecules and tlie 
intermolecular forces. Consequently, as the gas becomes denser, the ideal gas equation do«s not predict the
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H ^ f p o  between the volume, pressure and temperature with good accuracy: one has to use other equations 
slate that provide a better description. If «be molecular size and forces are included in the theory, then one 

refer» to  it as a theory of a ’real gas-.
As a result of molecular forces, the total internal energy V, the relation between the molar heat capacities 

c  and c my. the equation for adiabatic processes and other thermodynamic quantities will differ from those 
t j t b e  ideal gas. Io this section, we shall see how tlie thermodynamic quantities of a real gas can be obtained 
from an equation ol' state that takes molecular size and forces into account.

Tbe van der Waals equation, which takes into account tlie intennolecular forces and molecular size, and 
the c ritica l constants pc. V^. and Tc, were introduced in Chapter h

(p+t ) (V m - b )  =  KT (6.2.1)

Tib*
. V ^ = i b , T c

8n 
27 Wf

in  w hich  Vm is the molar volume. Since the van der Waals equation also has its limitations, other equation» 
have been  proposed for gases. Some of the other equations that have been proposed and the corresponding 
critical constants are as follows:

The Berthelol equation.

The D ielerici equation'.

p .
RT

Vm - b
a

T V l

P c'
1 ( 2 a R \ l' : 

12 \  3 p )  ’
■3b. T, 2 I 2a \ 1/a

3 \  W )

M e -a/KlVm

(6 .2 .2)

(6.2.3)

Pc : • Vmc =  2b- Tc ~ 4 Rb

The R edlich-Kwonn equation'.
RI1 

Vm - b J f V m(Vm + b )
(6.2.4)

0.42748 H2T2/  0.08664 RT',
. ft =

Pc

in which a  and ft arc constants similar to the van der Waal# conrtants. which can be related to the critical 
constants as shown.

Another equation that is often used is the vlrial equation, proponed by Kamerlingh Onnes (1853-1926). 
It expresses the pressure as a power series in the molar density p »  NlV:

i + щт)!~ +  C(T) «]
i

(6.2.S)

in which B(T) and С(Г) are functions of temperature, called the viriul coefficients: they are experimentally 
measured and tabulated. For example, it is found that experimental data for the virial coefficient can be
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Table 6.1 An empirical function for the second virial coefficient B(T) «  а -  p exp(y/T).

Gas a (ml m ol'1) fi (ml m oh1) r< Ю Range of validity (

Ar 154,2 119.3 105.1 80-1024
N, 185,4 141.8 88.7 75-700
o3 152.8 117.0 108.8 90-4 (X)
CH, 206,4 159.5 133.0 110-600
C2H„ 267,3 191.5 256 210-500

Source: Online Kaye & Latoy Tables of Physical and Chemical Constants at the National Physical Laboratory, UK (http://wvvYv.kayelaby. 
npl,co.uk/chem Istry).

approximated by the function BCD =  <* — /? n p i/IT ),  in which ct, fi and у are constants and T  is the 
temperature in keivin.1 Values of these constants for a few gases are shown in Table 6.1.

It is also found (fiat a better fit for experimental data can be obtained by dropping (AW)3 and higher odd 
powers from the virial expansion (6J2-5). As expected. Equation (6.2.5) reduces to the ideal gas equation at 
low densities. The van der Waals constants a  and b  can be related to the virial coefficients B(T) and C.(T) 
(Exercise 6.4); conversely, the virial coefficients can be calculated from the van der Waals constants. Since 
the ideal gas equation is valid at low pressures, the virial equation may also be written as

р  =  Л Г ^ [1 + В '(Г )Р +  С'(Г)рг  +  - ]  (6.2.6)

Comparing Equations (6.2.5) and (6.2.6). it can be shown that В ~ B'RT, to a first approximation.

6.2.1 Total Internal Energy

For real gases, due to the molecular interaction, the energy is no longer only a function of the temperature 
Because the interaction energy of the molecules depends on the distance between the molecules, a change 
in volume (at a fixed T) causes a change in energy, i.e. the term (d llldV )T does not vanish for a real gas. 
Molecular forces have u short range. At low densities, since molecules ore far apart, the force of interaction is 
small. As the density approaches zero, the energy of real gas approaches the energy of an ideal gas t/ i<Jea] 
We can obtain an explicit expression for through the Helmholtz equation, (dU!dV)T «  T 'W ptT )ldT \v. 
which is valid for all systems (not only for gases). Upon integration, this equation yields

v

t W r ,  V, N ) -  и ы (Т, V0, N ) +  j  T2 ( ± ^ ) v dV

Vo
To write this expression in a convenient form, first we note that, for a fixed N. as V„ -* op, the density 
approaches zero, and, as noted above, (7rMi approaches the energy of an ideal gas given by Equation
(6.1.3). Hence. Equation (6.2.6) can be written as

V

Um l(T, V. N) » C W r, N) + I Tl ( ~ j ) v AV (6.2.7)
CO

‘The values o f the constants a, fi and у and the ranges o f  T  for which the empirical formula is valid can be found at http://www.kayelaby 
npl co.uk/cheimiitr>'/3_5/3„3.html of the National Physical Laboratory, UK.

http://wvvYv.kayelaby
http://www.kayelaby
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f a(BID IdT )\ can be calculated using an equation o f  state, then explicit expressions for could be 
д 5 an example, let us consider the van der Waals equation of state. From (6.2.1) it is easy to see that 

pjftjfV -  Nb) -  a iN IV fd lT ). Substituting this expression into (6.2.7) we obtain the energy of a van der

Waal* gas Uw  ■
v 

U „ (T ,  V. N )  =  и ^ ( Г ,  N ) +  / * ( » ) 2dV
00

E v a lu a tio n  o f  the integral gives

U ^ ( V . T . N ) ^ U M - a { ^ ) \  (6.2.8)

W riting the energy in this form shows us that the energy due to molecular interactions is equal to -  a(NIV)- 
per unit volume. As expected, as the volume increases. f/vw approaches ЧиШ

6.2.2 M olar Heat Capacities CnlV and C „r

If the molar internal energy Um of a gas w known, then the molar heat capacity at constant volume CmV = 
(dl/a /dT)y can be calculated. For a real gas, we can use Equation (6.2.7) to obtain the following expression 
for the molar heat capacity CmV:

00

which upon cxplicil evaluation of the derivatives in the integral gives

v
C mV, real *  С taV, ideal +  j  T  ^  ̂d V  (6.2.9)

oo

Given an equation o f  state, such as the van der Waals equation, the above integral can be evaluated to obtain 
an explicit expression for Сюу. Equation (6.2.9) shows that, fo r  any equation o f  slate in which p  is a  linear 
function ofT, CmvГи1 = CmViд о .  This is true for the case of the van der Waals equation. The energy due 
to the molecular interactions depends on tbe intermolecular distance or density NIV. Because «his does not 
change at constant V, the value of CmV is unaffected by the molecular forces. С'шу is Ihe chaige in kinetic 
energy of the molecules per unit change in temperature.

Also, given the equation of state, the isothermal compressibility K t  and the coefficient of volume expansion 
a  (which are defined by Equations (5.4.5) and (5.4.6) respectively) can be calculated. Then, using the general 
relation

(6 .2 .10)

(see Equation (5.4.10)), C ^  can also be obtained. Thus, using Equations (6.2.9) and (6.2.10). the two molar 
heat capacities of a real gas can be calculated using its equation of state.



For an ideal gas, we have seen in Chapter 2 that in an adiabatic process T V ' 1 =  constant or pV r =  constant 
(see Equations (2.3.11) and (2.3.12)), in which у  =  Сщ^/Сщу. One can obtain a similar equation for a real 
gas. An adiabatic proccss is defined by dQ  =  0 *  dV  +  p  d V. By considering TJ as a function of V and T, this 
equation can be written as

( I v ) r d V + ( w ) v d r + p , i V ~ 0  (6-2 u >

Since (dU!dT)y =  VCmi/, where N  is the molar amount of the gas, this equation becomes

[{w)r+p\dV- NĈ T (6212)
By evaluating the derivative on the right-hand side of the Helmholtz equation (5.2,11), it is easy to see 
that [(dUldV)x +  />!! =  Цдр/дТ)у. Furthennorc, we have also see» in Chapter 5 (see Equation (5.4.7)) that 
(др/дТ)у =  а!кт. Using these two relations, Equation (6.2.12) can fee written as

=  -N C mV dT  (6.2.13)
KT

To write this expression in terms of the ratio у  -  Сщ .ТС^  we use ithe general relation:

C ^ - C mV =  I ^ »  (6,2.14,
KT

in which Vm is the molar volume. Combining liquations (6,2.14) and (6.2.13) we obtain

N  =  -N C mV dT  (6.2.15)

where we have made tlie substitution Vm =  V/N for the molar volume. Dividing both sides of this expression 
by CmV and using the definition у =  С ^ /С т1. we obtain the simple expression

r~ d V  =  - a d T  (6,2.16)

Generally, у varies little with volume or temperature, so it may be treated as a constant and Equation (6.2.16) 
can be integrated to obtain

(y  -  l ) ln  V =  -  J  orCT) d T  +  С (6.2.17)

in which we have written a  as an explicit function of Т. С  is the integration constant. An alternative way of 
writing this expression is
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6.2 J  Adiabatic Processes

y t - \ ч(Т)ЛТ _  соп^а^ (6,2.18)

This relation is valid for all gases. For an ideal gas, « =  (VV)(dV/HT)e =  1 IT. When this is substituted into 
Equation (6.2,18) we obtain the familiar equation T V ' 1 m constant, If p i s  a linear function of T. as is tlie 
case with the van d ir  Waals equation, since СвУла| »  CmV №.a, , from Equation (6.2.14) it follows that

T « 2Vm
r -  1 =  -p.------- —  (6.2.19)

c mV.ide*l»‘' r



; . .guation of state of a real gas is known, then a and /  can be evaluated (numerically, if no* analytically) 
a  fu n c t io n  of T, ami the relalion (6.2.18) between К and Г can be made explicit for an adiabatic process.

6 H elm holtz end  Gibbs Energies

The method used to obtain a relation (6.2.7) between and can also be used to relate the correspond- 
. Helmholtz and Gibbs energies. The main idea is that the thermodynamic quantities for a real gas approach 
those of an ideal g asa* /> -+ O o rV '-+ o o . Let us consider the Helmholtz energy F. Since (dF ldV У,- =  - p  
(see Equation (5.1 A)) we have the general expression

V

F(T, V, N ) =  F(T, V0, N ) -  j  p  dV  (6,2.20)

Vo

The difference between the Helmholtz energy of a real and an ideal gns at any T, V and N  can be obtained as 
follows. Writing Equation (6.2.20) for a real and an ideal gas. and subtracting one from the other, it is easy 
to see that

v

F ^ T ,  V .N ) -  V .N ) = FM i(T, V0,N ) -  F ^ i T ,  V0.N ) -  J  ,)dV  (6,2.21)
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Now, since limVo-ie |7-rcl|(V0, T. N) -  fy „ ,(V 0, T, Ы)] = 0. wo can write tlie above expression as

Fm i (T , V .N k) -  F M  (T, V, Nk) - - f ( p m i -  W d V ' (6 .2.22)

where we have explicitly indicated the fact that this expression is valid for a multicomponent system by 
replacing N  with Nk . Similarly, we can also show that

СгЫ(Г. p , Nk) - G ^ l T ,  p , Nk) =  /  (V ^, -  ) d/>
0

(6.2.23)

As ад example, let us calculate F  using tbe van der Waals equation. Rir the van der Waals equation, we have 
Pm\ =Pmw =  [ЛМУ( V -  bN\] -  (oAfyV4). Substituting this expression for p!cf] into liquation (6.2.22) and 
performing the integration one can obtain (Exercise 6.10)

F w <7\ V, ЛО- W r .  V, N ) - 0  ( | ) J V - N R T  In { Ц ^ )

where

(6.2.24)

fu«iu ** t-'kJtiU ~ rSld.al
-  ~  TN[s0 +  CmV In (Г) + R  In (V/ЛГ)] 

Substituting liquation (6.2.25) into Equation (6.2,24) and simplifying we obtain

Fn . m U u r t - a i N / V f Y - T N l s o  + C v v ln C n  + H H W - m / N ) )

=  U „ -  TNIsq +  CmV 1п(Г) +  *ln[(V  -  N b)/N ]}

(6.2.25)

(6.2.26)



178 Modern Thermodynamics

where we have used the expression Uvw(V, T ,tf)  =  и„ы  -  a{N IV tV  for the energy of a  van der Waals gas 
(see Equation (6.2.8)). Similarly, the Gibbs energy o f  a real gas can be calculated using the van der Waals 
equation.

6.2.5 Entropy

The entropy o f  a real gas can be obtained using expressions (6.2.7) and (6.2.21) for and FKal because 
/'real =  ^re«i ~  ЩъЦ- Using the van der Waals equation, for example, the entropy Sw  of a real gas can be 
identified in Equation (6.2.26):

SW (T , V, JV) =  A'(s0 +  CmV ln (T ) +  R  lnJfV -  Щ /К ] }  (6.2.27)

A comparison of Equation (6.2.27) with tbe entropy of an ideal gas (6.1.6) shows that, in the van der Waals 
entropy, the term (V -  Nb) takes the place of V in the ideal gas entropy.

6.2.6 Chemical Potential

The chemical potential for a real gas can he derived from the expression (6.2.23) for the Gibbs free energy. 
Since the chemical potential of the component * is pk =  (dGldN)l)p j ,  by differentiating Equation (6.2.23) 
with respect to JVt  we obtain

p

Pk.ntl p) -  Kk.ideal (T> P )m J  ( ^ m l . r e a l  ~  id ea l>d p  (6.2.28)
0

in which =  (W ldN k)p j  is the partial molar volume of the component к by definition. For simplicity, let 
us consider a single gas. To compare the molar volume o f the ideal gas =  RT/p with that of a real gas
'm.reai- a compressibility factor Z is defined as follows:

^m.rcal “  Z R T /p (6.2.29)

For an ideal gas Z  *  1: a deviation of tbe value of Z from 1 indicates nonideality. In terms of Z, the chemical 
potential can be written as

p

K m l? ’ p )  =  ^  (Г, p )  + RT j  ( Ц 1 j  ф

0
p

=  » и ы  T) +  R T b  ( ^ )  + Л Г  j  ( ^ ) ф

(6.2.30)

in which we have used expression лИс,,(/>.Г)«  /i(p0,T) + RT  Inipfjp0) for the chemical potential of an ideal 
gas. The chemical potential is also expressed in terms o f a quantity called fugaclty / ,  whidi was introduced 
by G.N. Lewis, a quantity similar to pressure 11]. To keep the form of the chemical potential of a real gas 
similar to (hat of the ideal gases, G.N. Lewis introduced the fugaclty / through the definition

Areai </>. T ) »  Ииы (p. T) +  RT
'■ 6) (6.2.31)
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,  wg must bave liwp^ 0(//p )  =  1 to recover tbe expression for tbe ideal gas at a very low pressure 
ЩВ”  . С jeviation o f /fro m  the pressure of an ideal gas is a measure of the •nonideality' o f tbe real gas 

S p a r in g  Equations (6.2.30) and (6.2.31). we see that

In(± !M i <6.232)

I t is p ossib le  to obtain Z  explicitly for various equations such as the van der Waals equation or the virial 
equation  (6.2.5). For example, if we use the virial equation we have

г  = ^  *  [i +  Bf(T)P + C c n p 1 + •••]
KT

(6.2.33)

1 + - » ( Т ) ( £ )  +  С ( Г ) ( ! ) '
N \ 1 +  •••

S u b s titu tin g  this expression in Equation (6,2.33) in Equation (6.2.32) we find that, to the second order in p: 

In fC\ •  B f(T)p  +  +  ... (6.2,34)

G.N, Lewis (1 в7 5 -1 Ш ),
(Reproducetl by  courtesy o f  tho AIP Imilio Segre Visual Aifhlve, photo by Hands Simon.)

Generally, terms o f the order p2 are small and may be ignored. Them Equation (6.2.34) can be used (for the 
chemical potential o f a real gas given by liquation (6.2.31) and cun be written as

Ит \(Р> П  ■ /W i O’. T) + КГ In (6.2,35)
1 ( р .Г )  +  К Г ( В ' ( Г ) Р + - )
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This expression can also be written in terms of the virial coefficient* of Equation (6.Z5) by noting the relation 
RT. to a first approximation. Thus, the chemical potential in temis of the virial coefficients is

0™» =  /'td«i0’.7') +  t y  +  -  (6.2.361

Similarly, expressions for ц can be obtained using the van der Waals equation.
We can also obtain explicit expressions for ц using (dF//)N)TV ж fi. Using the van der Waals equation, for 

example, we can write the chemical potential as a function o f the molar density n = JV/Vimd temperature J 
(Exercise 6,9):

м(п,Т)ш«/а - 2 0 , ) +  +  R T - T  [*o +  C mV In Г  -  Д  In ( j ~ ) ]  (6.2.37)

6.2.7 Chemical Affinities

Finally, to understand Ihe nature o f chemical equilibrium o f real gases it is useful to dbtatn affinities for 
chemically reacting real gases. The affinity of a reaction A =  -  1̂ . vkpk, in which vk are the stoichiometric 
coefficients (which are negative for reactants and positive for products), For a real gas this can be written 
using the expression (6.2.28) for the chemical potential:

p

=  ^  ideal ~~ У ,  vk J  (K n .n a l .*  ~  ^m,Ideal, *) 4 P  (6.2.38)
* 0

This expression can txs used to calculate the equilibrium constants for reacting real gases. The partial molar 
volume k is RI'/p. Hence, the above expression becomes

p

Awl = Adc« ~  £ vt  J  m i.*" j  Ф  (6.2.39)

With the above quantities, all the thermodynamics of real gases can be described once the real gas parameters, 
such as the van der Wauls constants or tlie virial coefficients, are known.

6.3 T h e rm o d y n am ics Q u an titie s  fo r P u re  L iq u id s a n d  Solids

6.3.1 Equation of State

For pure solids and liquids, jointly called am densedphases, the volume is determined by the molecular size 
and molecular forces and it does not change much with a change in p  and T. Since the molecular size and 
forces are very specific to a compound, tlie equation o f state is specific to that compound, A relation between 
V, T  and p  is expressed in terms of the coefficient of thermal expansion a  and the isothermal compressibility 
k t defined by Equations (5.4-5) and (5.4.6}. If we consider V as a function o f  p  and T, V{p, T), we can write

dV= ( Ц ) / 7-4 ( f j r )  4Pm*W T-*TV4p  (6.3.1)

The values of a  and K f  are small for solids and liquids. For liquids, the coefficient of thermal expansion a 
is in tbe range 10'* to I O'4 K "1 and isothermal compressibility *> in about 1 0 '5 a tm '1. For solids, a  is in 
the range К Г 5 to 10~e K '1 and k t is in the range КГ® to 1СГ7 atm-1. Table 6.2 lists the values of a  and kt 
for some liquids and solids. Furthermore, the values of a  and к  j  are almost constant for T  variations o f  about



\

lias iс Thermodynamics of Cases, liquids and Solids 181

Table 6.2 List of coefficient o f  thermal expansion a and isothermal 
compressibility к т for some liquids and solids.

Compound « no-4 K-’ ) *rr (10'6 atm ')

Water 2.1 49.6
Benzene 12.4 92.1
Mercury 1.8 38.7
Ethanol 11.2 76.8
Caibon tetrachloride 12.4 90.5
Copper 0.501 0.735
Diamond 0.030 0.187
Iron 0.354 0.597
Lead 0.861 2.21

100 К and pressure variations of about 50 atm. Therefore, Equation (6.3.1) can be integrated to obtain the 
following equation of state:

V (p. T ) - V  (/r0, r 0) expld (T  -  T0) -  к т[р -  p0)] ?

* ''(ft). T0) [» + «(Г -  To) -  к г  (p -  p0>)

6.3.2 Thermodynamic Quantities

Thermodynamically, tlie characteristic feature of solids and liquid* is that p , S  and H  change very little with 
pressure and, hence, they are essentially functions of T  for a given N, If entropy is considered as a function 
of p  and T, then

d S-- '(8), "-(I?),*
The first term, (dSMT)» =  N C ^ IT , which nelates dS to the experimentally measurable C ^ .  Tbe second term 
can be related to a as follows:

With these observation*, we can now rewrite liquation (6.3.3) as 

Upon integration, this equation yields

NC
AS « - ~ Z < iT  -  aV dp  (6.3.5)

T c

S{pt D * S < 0 v 0 )+ tf  I  - Л Т - S  j  « M p  (6.3.6)
о 0

where we have used V = NVm. (That S(0. 0) is well defined is guaranteed by (lie Nernst theorem.) Since 
''m and a <Jo not change much with p, the third tenn in Equation (6.3,6) can be approximated lo NaVvj>. For 
P = 1-10 atm, this tenn is small compared with the second term. For example, in the case of water, Vm m
18.0 x  Ю "6 m5 т о Г 1 and a = 2.1 X 1 0 '4 K ~ ’ . For p  =  10 bar =  10 x  105 Pa. the term aVBj> i t  about
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3,6 X 10-3 )  K_1 mol"1. The value of C0I#1. on the other hand, is about 75 J K-1 m o l '1. Though С 
approaches zero so thal S is finite as Г -* 0, the molar entropy of water at p =  1 bar and T  ж 298 К is about 
70 J K-1 . Thus, it is clear that the third term in Equation (6.3.6) that contains p  is insignificant compared with 
the second term. Since this is generally true for solids and liquids, we may write

r  c
SIp , T )  =  S (0 ,0 >  +  n J  d T  (6.3.7)

0

where we have written Cmp explicitly as a function o f T. A knowledge of C ^ T )  will enable us to obtain 
the value of entropy of a pure solid or liquid. Note that the integral in Equation (6.3,7) is ( 7  de.V because 

dT/T) =  dQ/Т  »  d,S.
The chemical potential of condensed phases can be obtained from the Gibbs-Duhem equation d p  = 

~^m dT +  Vm dp (see Equation (5.2.4)). Substituting the value o f  molar entropy into «he Gibbs-Duhem 
equation and integrating, we get

r  p

и(р. T) = MO, 0 ) - f s m ( T ) d T + f v mdp з
0 0 

=  щ(Т)+ v inp  S  » ° ( Т ) + Я Т  In а

where we assumed that Vm is essentially a constant. Once again, it can be shown that the term containing p is 
small compared with the first term, which is a function o f T. For water, Vtt]p  =  1.8 J mol-1 when p  =  1 atm, 
whereas tlic first term is of the order 280 W mol"1. Following the definition o f activity a, if  wc write VIrj)  ~  
RT ln(a), then wc see that for liquids and salids ihe activity is nearly equal to unity.

In a similar manner, one can obtain other thermodynamic quantities such as enthalpy H  and Ihe Helmholtz 
free energy F.

6.3.3 Hea« Capacities

From the above expressions it is clear that one needs to know the molar heat capacities of a substance as a 
function of temperature and pressure in order to calculate the entropy and other thermodynamic quantities. A 
theory of heat capacities of solids, which requires statistical mechanics and quantum theory, is presented in 
chapter 20. Here we shall only give a brief outline o f Debye's theory o f molar heat capacities of solids, which 
provides an approximate general theory. The situation is more complex for liquids because for liquids there 
is neither complete molecular disorder, as m  a gas. nor is there a long-range order as in Ihe case of a solid. 

According to a theory of solids formulated by Peter Debye, the molttr heal capacity CmV of a pure solid is 
of the form

С„у =  ЗД О (Г/«) (6.3.9)

in which TXT/в) is a  function o f the ratio T№. The parameter в  depends mainly on the с hemic id composition 
of the solid and, to a very small extent, varies with Ihe pressure. As the ratio ТЮ increases, the 'Debye 
function' 1Х Ш )  tends to unity, add molar heat capacities of all solids CmV =  ЗЯ, The fact that the heat 
capacities of solidB tend to have the same value had been observed long before Debye formulated a theory of
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capacities: it is called the law of Dulong and Petit. Debye theory provided an explanation for tlie law of 
pidong and Petit. At very low temperature», when Т/в <0.1:

■  (f)3 
Thus D e b y e 's  theory predicts that the molar heat capacities at low temperatures will be proportional to the 
(jjird power of the temperature. Experimentally, this was found to be true for many solids. Quantum theory is 
required to explain this result.

Once CmV is known, can be obtained using the general expression (Ц , -  CmV =  7У к а 1!кт, More 
detail on  this subject can be found in texts on condensed matter. Tlie thermodynamics of liquid and solid 
m ixtures is discussed in Chapters 7 and 8.

Reference

1. Lewis, G.N., Randall, М., Thermodynamics and Free Energy o f Chemical Substances. 1925. McGraw-Hill: New York.

Examples

Example 6.1 Show that CmV for a van der Waals gas is the same as that of an ideal gas.

Solution The relition between CmV for real and ideal gases is given by Equaition (6.2.9):
v

Сту ,ы  + f T  ( ^  ] dV'-m V .real 35 '-m V .real 

For 1 mol of a van tier Waals gas:

RT  1
P ° v ^ - b  4

Since this is a linear function of T  the derivative (d2pldT2)v  = 0. Hence, the integral in tlie expression relating 
^mVrfeei and ( is zero. Hence, я  С v.uieai ■

Example 6.2 Calculate the total internal energy of a real gas using the Berthelot equation (6.2.2).

Solution The internal energy o f a real gas can be calculated using the relation (6.2.7):
V

t w r .  v, W - t f k w  ( T ,N )  +  j Т г ( ± t ) v  dV
CO

For the Berthelot equation:

m
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In this case, the integral

/ 7-2 ijffi dV = - / dK * / *Г FdV
OO OP 00

2oN2
TV

Hence:

I U ( T .  V . w - V * *  <r, -V ) ' J ~

Exercises

6.1 For an /cfeoi obtain the explicit expressions for the following:
(a) F(V, T, N) & U -  TS as & function of V, T and N.
(b) G — U  ~ TS +  p V  as a function of/). T  and N.
(c) Use the relation /< =  (dF/dN)Vj .  to obtain an expression for p as a function o f the molar density 

N /V  and T. Also show that fi =  ft!\T )  +  RT  ln(plpo). in which р'ЧТ) is a function of T.

6.2 (a) Obtain » general expression far the entropy of mixing of two nonidentical gases of equal molar
densities N/V. with molar amounts ;V, and N 2. initially occupying volumes and Vij. Also show 
that tbe entropy of mixing can be written as A5nlix =  -  RN(xt ln x { +  x j In -5г23ч where дг, and .v2 
are the mole fractions and N  ж N t + N2.

(b) Using ithe Stirling approximation :V! и  N  ln N  -  N, obtain Equation (6.1.15) from Equation 
(6.1.14».

6.3 For Щ  the critical values are p c ~  33.5 atm, Tc =  126.3 К and Vmc =  90.1 x  10~3 L m o l'1. Using 
Equations (6,2.1) to (6.2.3), calculate the constants a and b  for the van der Waals, Berthelot and 
Dieterici equations. Plot the p -V m curves for the three equations at Г  = 300 К, 200 К and 100 К on 
the same graph in the range V,n =  O i L to 101, and comment on the differences between the curves.

6.4 Using the van der Waals equation, write the pressure as a function of the molar density N/V. Assume 
that the quantity b(N/V) is small and use the expansion 1/(1 -  .1) =  1 +  л +  r 2 +  .v3 +  • • •, valid for x 
< 1, to obtain an equation similar to the virial equation

Comparing tbe two series expansions for p, show that the van der Waals constants 1) iffld h and the 
virial coefficient» B(T) and С(Г) are related by В = й -  (alBT) and С = b2.

6.5 The Boyle (anperature is defined a> the temperature ai which the virial «efficient B (D  =  0. An 
empirical function used to fit experimental data is B(T) • > « - / )  ехр(у/Г), in which a, P and у are 
constants tabulated in Table 6.1.
(*) Using the data in Table 6,1, determine the Boyle temperatures o f N2. 0 2 and CH4,
(b) Plot B(T) for N2, O j and CH4 00  one graph for an appropriate range of T.



6 .6  ( a )  Assume an ideal gas energy V ldeai =  C mVN T . where C mV, =  28.46 J K " 1 for C O  в п Л i .

b etw een  and V „  f o r * -  1, r l  300 К a, V = 0 .5  L

(b) UseM aple/M aihem alica  to obtain a three-dimensional plot of Д £//{/.. , for i mo, n f r n  . 
volume range V = 22-00 L «> 0 5 0  L for Г =  200 К to 500 К. ^  “  " *

6.7 Obtain Equation (6.2.9) from  Equation (6.2.7) and the definition CmVtM| =  (dV rcilB T tv

6.8 For C 0 2, using the van d e r  W aals equation:
(a) Obtain an expression for the compressibility factor Z  At T  =  300 К and f vr , 

M athematicalMaple, plot Z  as a  function o f V from V -  22 01 , to 0  5 I. ** ' usm®
(b) «phcit expression fo r ( fw - F  , fo r , motofCOj as a function of /an d  V,„ which 

tf r  n  Ю Kelvin and V is in liter», then -  ̂ ) U m joules.
6.9 Show that for a van der VVaals gas:

/.w ( n . T ) . ( U 0 - 2 a n ) + ^  +  T ± - j . Sj  RT - T  [j0 +  CmV In T - R  In ( ~ ) J  

in which n =  N/V. (Hint: it can be obtained from F w .)

6.10 Obtain Equation (6.2.24) from (6.2.22) and Equation (6.2.26) from (6.2.24) and (6.2.25)
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Thermodynamics of Phase Change

Introduction

T ra n s fo rm a tio n s  from a liquid to a vapor phase or from a solid to a liquid phase are caused by heat. The 
eighteenth century investigations of Joseph Black revealed that these transformations take place at a definite 
temperature: the boiling point or the melting point. At this temperature the heal absorbed by the substance 
d o e s  n o t  increase its temperature but is ‘latent' or concealed; the heat’s effect ia to cause the change from 
one phase to another, not to increase the substance's temperature. Joseph Black, who clarified this concept, 
measured the ‘latent heat’ for the transformation of ice to water.

Under suitable conditions, the phases of a compound can coexist in a state of thermal equilibrium, The nature 
of this state o f thermal equilibrium and how it changes with pressure and temperature can be understood 
using the laws of thermodynamics. In addition, at the point where the phase transition takes place, some 
thermodynamic quantities, such as molar entropy, change discontinuously. Based on such discontinuous 
changes of some thermodynamic quantities, such as molar heat capacity and molar entropy, phase transitions 
in various material* can be classified into different 'orders’. Then: ure general theories that describe phase 
transitions of each order. The study of phase transitions has grown to be a large and interesting subject, and 
some very important developments occurred during the 1960s and the 1970s. In this chapter, we will only 
present some of the basic results. For further understanding o f phaie transitions, we refer the reader to b o o b  
devoted to this subject [1-3].

7.1 Phase Equilibrium and Phase Diagrams

The conditions of itemperature and pressure under which a substance exists in different phases, i-e. gas, 
liquid or solid, are «ummarized in a phase diagram . A simple phase diagram is shown in Figure 7,1. Under 
suitable conditions o f  pressure and temperature, two phases may coexist in thermodynamic equilibrium. The 
thermodynamic study of phase equilibrium leads to many interesting and useful resufts. For example, it tells 
us how the boiling point or freezing point of a substance changes with changes in pressure. We shall see how 
the thermodynamic formalism developed in the previous chapters enables us to obtain expression that relates 
the boiling point of a liquid to its pressure.

Modem Thermoitynamics: From Heat Engines to Dtucipaiive Structures, Second Edition. D ikp Koadepudi und Пул Pngogine. 
©2015 John Wiley & Sods. l td . Published 2013 by John Wiley St Sons, Ltd-
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Figure 7.1 (a) Phase diagram for a one<om ponent system showing equilibrium p~T curves (defined by  the 
equality o f the chemical potentials), the triple point T and the critical point C. Tc is the critical temperature above 
which the gas cannot b e  liquefied b y  increasing the pressure, (b) A liquid In equilibrium with In vapor. The affinity 
for the liquid-vapor transformation A =  /ц -  “  0. An infinitely slof,v expansion in the system's volume results is 
a 'reversible' transformation o f  the liquid to gas at an affinity А «  0.

We begin by looking at the equilibrium thetween liquid and gas phases, as shown in Figure 7.1b. When a 
liquid is in a closcd container, a part of it will evaporate and till Ihe space above it until an equilibrium is 
reached. The system under consideration is closed and consists only of the liquid in equilibrium with its vapor 
at a fixed temperature, In Figure 7.2, the p~V  isotherms of a vapour-liquid system are shown, The region of 
coexistence o f the liquid and vapor phases corresponds to the flat portion XY of the isotherms. When T >  7C. 
the flat portion does not exist; there is no distinction between the gas und the liquid phase*. The flat portion

Figure 7.2 p-V  isotherms o f a gas showing critical behavior. Tc is the critical temperature above which the gas 
cannot be  liquefied by Increasing the pressure. In the flat region XY, the liquid and the gas phases coexist



] ^  itt Figure 7.2 corresponds to a point on the curve TC in Figure 7.1a; as the temperature
“C a c h e s  Tc. we approach the critical pomt C.

a thermodynamic analysis of the equilibrium between liquid and gas phases of a suhstance let ue 
ije r a heterogeneous system in which the two phases coexist and can interconvert, thus changing the 

' f a JDc o f each phase, Under these conditions, the liquid convert* irreversibly to vapor, or vice versa, until
V iiibrium between tbe two phases is attained. The exchange of matter between die two phases may be 
considered a ‘chemical reaction', which we may represent as

l ^ g  (7,1.1)

Let the chemical potential of the substance к  in the two phases be and ju], with the superscripts ‘g ' for gas 
and ‘1’ for liquid. At equilibrium, the entropy production due to every irreversible process must vanish, This 
implies that the affinity corresponding to liquid-vapor conversion must vanish, i.e.

A =  T) -  )>l (p< T ) m 0

i.e.
T) =  /<*(/>, T) <7,1.2)

in which we have made explicit that the two chemical potentials are functions of pressure and temperature. 
The pressure of the vapor phase in equilibrium with the liquid phase is called the saturated vapor pressure. 
The equality o f the chemical potentials implies that, when a liquid is in equilibrium with its vapor, the pressure 
and temperature are not independent. This relationship between f> and Г, as expressed in liquation (7.1.2), 
gives the coexistence curve TC in the phase diagram shown in Figure 7.1a.

A liquid in equilibrium with its vapor is •  good system to illustrate the idea of a "reversible" transformation 
for which d|S = 0 (Figure 7.1b). Let us assume that initially the system is in equilibrium with A  = 0. If the 
volume of the system is increased slowly, the chemical potential o f the gas phase will decrease by a small 
amount, making the affinity for the liquid-to-gas transformation positive. This will result in the conversion 
of liquid to gas until a new equilibrium is established, In the limit o f  an 'infinitely slow’ increase of volume 
such that the transformation takes place at an arbitrarily small A, ije. A «  0, virtually no entropy is produced 
during this transformation because dj5 = A d {  к  0. Therefore, it it a reversible transformation. A reversible 
transformation, of course, is an idealized process taking place at an infinitely slow rate, In any real process 
that occurs at a повгего rate. djS =  A d£ > 0, but this change can be made arbitrarily small by slowing Ihe 
rate of transformation.

Clearly, equality o f chemical potentials a* in Equation (7.1.2) must be valid between any two phases that 
are in equilibrium. !f there are P  phases, then we have the general equilibrium condition:

I tl(p , T) »  Г) =  (p. Г) =  •“ ■ /tj (p, T) <7,1.3)

The phase diagram Figure 7.1a also shows another interesting feature: the critical point С at which the 
liquid-vapor coexistence curve TC terminates, If the temperature of the gas is above Tc, the gas cannot be 
liquefied by increasing Ihe pressure. As the pressure increases, the density increases but there is no transition 
to a condensed phase -  and no latent heat. In contrast, there is no critical point for tlw transition between solid 
and liquid due to tbe fact that a solid phase bus a definite crystal structure that the liquid phase does not have. 
Owing to the definite change in symmetry, the transition between a solid and Liquid is always well defined.

A change o f phase of a solid is not necessarily a transformation to л liquid. A solid may exist in different 
phases. Thermodynamically, a phase change u  identified by a sharp change in properties such as the heat 
capacity. In molecular terms, these changc* correspond to different arrangements of the atoms, i.e. different 
crystal structures. For example, at very high pressures, ice exists in different structures, and these are the 
different solid phases of water. Figure 7.3 shows the phase diagram of water.

Thermodynamics of Phase Change 189
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P'
Water

200 300 400 7Ж 200 300 77K

(a) (b)

figure 7.3 (a) The phase diagram o f water at ordinary pressures (not to scale), (b) At high pressures, the solid 
phase (ice) can exist In different phases, as shown on the right. The triple point o f water Is at p  = 0.006 bar. 
T *  273.16 K. The critical point is a tp t = 2 13 bar, Tc =  647.3 K.

7.1.1 The Clapej ron Equation

At a given pressure, tlie coexistence cure specifies the temperature at which the two phases cun coexist. It is 
the temperature al which one phase begin» to convert to the other; in the case of a liquid-vapor coexistencc 
curve, the temperature corresponds to the boiling point at the given pressure. Thus, if we obtain an explicit 
relation between the pressure and the temperature that defines the coexistence curve, then we can know how 
the boiling point or freezing point changes with pressure. Using the condition for equilibrium (7.1.2), we can 
arrive at a more explicit expression for the coexistence curve. Let u* consider two phases denoted by 1 and 2. 
Using the Gibbs-Duhem equation, Ap =  -  Sm AT + Vm dp, one can derive a differential relation between p  and 
Г of the system as follows. From Equation (7,1.3) it is clear that, for a component k. d p 'm  A pj. Therefore, 
we have the equality

in which the molar quantities for the two phases are indicated by ihe subscripts 'm l ' and ‘m2’. From this it 
follows that

in which we have expressed the difference in tbe molar entropy between the two phases In terms of the 
enthalpy of transition: Sml -  =  (АНаюн1Т), where is the molar enthalpy of the transition (vapor
ization, fusion nr sublimation). Molar enthalpies of vaporization aifcj fusion of some substances are listed in 
Table 7.1. More generally, theii, we have the equation called the Clapeyron equation:

-  Smi d r  +  t'mldp =  -•Sm2d7' +• Vmjd p (7.1.4)

dP ж Ут1  ~  _  A / / lr«r»

'IT Knl -  ^  TlV ml -  Va2)
(7.1.5)

АТ ГДУЮ
(7.1.6)
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фI е 7 * Enthalpies of fusion o f  and vaporization at p  = I bar ■■ 

7„(K) 4 * 4 »  M  m o)-')

105 Pa = 0.987 atm.

Substann1

He
Hj
Oj
N,
Ar
C H ,
c , h 5o h

CS.
C H jO H
N H 3
c o 2
Hg
CCI4
HjO
Ca
Ag
Cu

1ь(Ю ДН^р (к) moH)

0.95' 0.021 4.22 0.082
14.01 0.12 20.28 0.46
54.36 0.444 90.18 6.820
63.15 0.719 77.35 5.586
83.81 1.188 87.29 6.51
90.68 0.941 111.7 8.18

156 4.60 351.4 38.56
161.2 4.39 319.4 26.74
175.2 3.16 337.2 35.27
195.4 5.652 239.7 23.35
217.0 8.33 194.6 25.23
234.3 2.292 629.7 59.30
250.3 2 5 350 30.0
273.15 6.008 373.15 40.66
302.93 5.59 2676 270.3

1235.1 11.3 2485 257.7
1356.2 13.0 2840 306.7

Source: D.R. Llde (ed), CftC Handbook of Chemistry and Ptiyiics, 75th edition,, 1994, GRC Press; Aon Arbor, Ml. 
•Under high pressure,

Here, AVm is the difference in the molar volumes of the two phase». The temperature T  in this equation 
is the transition temperature, i.e. boiling point, melting point, etc. This equation tells us ihow the transition 
temperature changes with pressure. For example, for a transition from a solid to a liquid in which there is 
an increase in the molar volume {A V  > Ot. the freezing point will increase (dT  > 0) when the pressure is 
increased (dp  >  0); if there is a decrease in the molar volume, then the opposite will happen -  as is the case 
when ice melts and becomes liquid water.

7.1.2 The Clausius-Clapeyron Equation

For the case o f liquid-vapor transitions, the Clapeyron equation can be further simplified. In this transition 
v mi <  Vmg Therefore, we may approximate by V . In this case the Clapeyron equation <7,1.6)
simplifies to

dp A^vap
d r  TV,

<7.1.7)

As a first approximation, we may use the ideal gas molar volume УЦ = RT/p. Substituting this expression 
in the place of and noting thatdp ip  *  d(lnp), we arrive at the following equation, called the C lausius- 
Clapeyron equation:

dllnp) p

d r RT1
(7.1.8)
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p,

1

. . L
t
i

A tm ospheric pressure: p e%t

Figure 7.4 Equilibrium between liquid and vapor ph n es. {a) An Isolated system, which contains a liquid in 
equilibrium with its vapor. The pressure of the vapor p .  is called the saturated vapor pressure, (b) W ien the 
liquid subject to  a pressure p„, (atmospheric pressure) is heated, bubbles of its vapor can form when p t  i  
and the liquid begins to 'boil', (c) The vapor in the bubble is the saturated vapor in equilibrium with the liquid, 
as in the case o f an isolated system (a).

This equation is abt< applicable to a solid in equilibrium with its vapor (e.g. I2). since the molar volume of 
the vapor phase is much larger than that of the solid phase. For a «olid in equilibrium wilh its vapor, Д Н ^  
takes the place of AH,,. At times. Equation (7.1,8) is also written in its integrated form:

ln p 2 -  In />,
AH.щ

(7,1.9)

As illustrated in Figure 7A, Equations (7.1.8) and (7.1.9) tell us how the boiling point of a liquid changes 
with pressure. When a liquid subjected loan  external pressure, p a l , is heated, bubbles containing the vapor 
(in equilibrium with the liquid) can form provided that the vapor pressure p g >  />„, The liquid then begins lo 
‘boil’. If the vaporpretsure p  is less t h a n t h e n  the bubbles cannot form: they ’collapse’. The temperature 
at which p  = p n , is what we call the boiling point 7'b. Hence, in Equations (7.1.8) and (7.1,9) we may interpret 
p  as the pressure to which the liquid is sutyccted and T  is the corresponding boiling point. It tells us that the 
boiling point o f a liquid decreases with a decrease in pressure p txl.

7.2 The Gibbs Phase Kule and Dubem's Theorem

Thus far we have considered the equilibrium between two phases o f a single compound. When many 
compounds or components and more Iliac two phases are in equilibrium. Ihe chemical potential of each 
component should be the same in every phase in which it exists. When we have a single phase, such as a 
gas, its intensive variables, i.e. pressure and temperature, can be varied independently. However, when we 
consider equilibrium between two phases, such as a gas and liquid, p  end Г  arc no longer independent. Since 
the chemical potentials of the two phases must be equal, /i‘(/>. Г) *• pHp, T). which implies that only one of 
the two intensive variables is independent. In the case of liquid-vapor equilibrium of a smgle component, p 
and T  are related according to Equation (7.1.%). The number of independent intensive variables depends on 
the number o f  phases in equilibrium and the number of components in tbe system.
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Tbe independent intensive variables that specify a state are called its degrees of freedom. Gibbs observed 
that there is a general relationship between the number of degrees o f freedom/ ,  the number o f phases P  and 
the number of components C:

/ ж С - Р  +  2  <7.2.1)

This can be seen a» follows. At a given T, specifying p  is equivalent to specifying the density as modes per 
unit volume (through the equation of state). For a given density, tbe mole fractions specify the composition 
of the system. Thus, for each phase, p, T  and the С mole fractions fin which the superscript indicates 
the phase and the subscript the component) are the intensive varisfhles that specify the state. Of the С mole 
fractions in each phase i. there are ( C -  1) independent mole fractions because j j a l . I n a  system 
with С  components and P  phases, there are a total of P(C  -  J) independent mole fractions Si, These, together 
with p  and T. make a total of P(C  -  1) +  2 independent variables. On the other hand, equilibrium between 
the P  phases o f  a component к requires the equality o f chemical potentials in all the phases:

(p, T ) =  ц \[р , T ) =  |v \ (p, Г) =  ■■■ =  (p. T) <7.2.2)

in which, as before, the superscript indicates the phase and the subscript the component. These constitute 
(P  - 1 )  constraining equations for each component. For the С components, we then have a total of CIP - 1) 
equations between «he chemical potentials, which reduces the number of independent intensive variables by 
C(P - 1). Thus, the total number of independent degrees of freedom is

/ =  P ( C - 1) + 2 - C ( P - 1) -  C - P  +  2

If a component 'a ' does not exist in one of the phases pb ', then tbe corresponding mole fraction .tj « <), thus 
reducing the number of independent variables by one. However,this also decreases the number o f constraining 
equations by one. Hence, there is no overall change in the number o f degrees of freedom.

As an illustration o f  the Gibbs phase rule, let us consider the equilibrium between the solid, liquid and gas 
phases of a pure substance, i.e. one component. In this case wc have С =  1 and P  =  3, which g iv e s /*  0. 
Hence, for this equilibrium, there are no free intensive variables; there Is only one pressure and temperature at 
which all three phases can coexist. This point is called the triple point (see Figure 7.1). At the triple point of 
H20 , T  =  273.16. iC = 0.01 °C and p  = 611 Pa =  6.11 x  1Q~} bar. This unique condition for the coexistence 
of the three phases may be used in defining the kelvin temperature scale.

If the various components of the system also chemically react through Я independent reactions, then, 
in addition to Equation (7.2.2), for the chemical equilibrium, the R  affinities. A*, of each of the chemical 
reactions must equal zero:

A ,= 0 ,  Л2 = 0, A3 =  0 , 4 „  =  0 <7,2,3)

Consequently, the number of degrees o f freedom is further decreased by R  and we have

<7.2.4)■ C - R - P + 2

In older statements of the phase rule, the term 'number of independent components’ is used to represent 
~ In » reaction nuch as A В +  2C, if the amount В and С  is entirely a result of decomposition of 

A. then the amount of В and С  is determined by the amount o f A that has converted to В and C; in this case 
e mole fractions of В and С are related, «  2 rB. This additional constraint, which depends on the initial 

Preparation 0f  the system, decreases the degrees of freedom by one.
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In addition to the phase rule identified by Gibbs, there is another general observation lhat Pierre Duhem 
made in hie treatise Truite Ё Ут епш ге de Mechanique Chimique, which is referred to as Duhem’s theorem 
It states:

Whatever the number of phases, components and chemical reactions, if the initial molar amounts Nk o f  
all the components are jpecified, the equilibrium stale of a closed system is completely ipecitied by tw o 
independent variables.

The proof o f this theorem is as follow*. The state of the entire system i* specified by the pressure 
temperature T  and the molar amounts Л^, in which Ihe superscript indicate* the P  phase» and the «ubscripi 
the С  component -  a total of CP  molar amount* in P  [iiases. Thus, the total number of variables that specify 
a system is CP +  2, Considering the constraints on these variables, for the equilibrium of each component к 
between the phases we have

p lk(j>. T ) = /ik<p. T) = (p. D  = -  = / к (р. T) (7.2.5)

a total of (P  - 1 )  equations for each component, a total of C(P -  1) equations. In addition, since the total molar 
amount, say Â _total. o f each component is «specified, we have J ? ,  M  =  NkMt\ for each component, a total 
of С equations. Thus, the total number of constraints is C(P  -  1) +  C. Hence, the total number of independent 
equations is C P  +  2 -  C(P - 1) -  C  =  2.

The addition o f ahemical reactions does not change this conclusion because each chemical reaction a  adds 
a new independent varittble its extent of reaction, to each phase and at the same time add* the constraint for 
the corresponding chemical equilibrium A ,  <• 0. Hence, there is no net change in the number of independent 
variables.

Comparing the Gibbs phase rule and tbe Duhem theorem, we sec the following. The Gibbs phase rule 
specifies the total number of independent intensive variables regardless of the extensiw variables in the 
system. In contrast. Duhem's equation specilles the total number of independent variables, intensive or 
extensive, in a closed system.

7 J  B inary a nd  Ternary Systems

Figure 7.1 shows (be pha»e diagram for a single-component system. The phase diagram» for systems with 
two and three components are more complex. In this section we shall consider examples «if two- and three- 
component systems.

7.3.1 Binary Liquid Mixtures in Equilibrium with the Vapor

Consider a liquid mixture of two components, A and I), in equilibrium with their vapors. This system contains 
two phases and two components. The Gibbt phase rule tells us that each a system has two degrees of freedom. 
We may take these degrees of freedom to he the pressure and Ihe mole fraction jca  of component A. Thus, 
if we consider a #y*«em in which the vapor pressure is to be set at a given value, for each value of the mole 
fraction л"д, there it a corresponding temperature at which Ihe pressure will reach tbe set value: al this point 
the two phases are in equilibrium. For example, if the vapor pressure is to be 0.5 bar, for the liquid to be in 
equilibrium with it* vapor the temperature T  must be set at an appropriate value (T equal* the boiling point 
at 0.5 bar).

If the applied pressure is the atmospheric pressure, then the temperature correspond» to the boiling point. 
In Figure 7.5, the curve I is the boiling point as a function of the mole fraction xA; the boiling points of Ihe two
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figure 7.5 The boOing point versus composition of a mixture o f two similar liquids, such as benzene and toluene.

c o m p o n e n t  A and В are TA and Тй respectively. Curve II shows the composition of the vapor al each boiling 
temperature. If a mixture with composition corresponding to the point M is boiled, then the vapor will have 
the composition corresponding to the point N; if this vapor is now collected and condensed, then its boiling 
point and composition will correspond to the point O. This process enriches the mixture in component B, For 
such systems, by continuing this process a mixture can be enriched in the more volatile component, which 
has the lower boiling point; the liquid at M is enriched in the component with the higher boiling point.

7 4 2  Azeotrope*

The relation between the boiling point ami the compositions of the liquid amd tlie vapor phases shown in 
Figure 7.5 is not valid for all binary mixtures, For many liquid mixtures Ihe boiling point curve is as shown 
in Figure 7.6. In Ibis case, there is a value of xA at which the composition of the liquid and the vapor are 
the same. Such systems are called azeotropcs. The components of an azeoitrope cannot be separated by 
distillation. For example, in the case of Figure 7.6a, starting at a point to the left of the maximum, if the 
mixture is boiled and the vapor collected, then the vapor will be enriched in component В while the remaining

(a, (b)

figure 7.6 The boiling point versus composition o f liquid and vapor phases o f binary mixtures called azeotm pes. 
Azeotmpes have a point at which the vapor and the liquid phases have the same composition. A t this point the 
boiling point is either (a) a maximum or (b) a  minimum.



196 Modem Thetmodynamici

Table 7.2 Examples o f  azeotropes.

Boiling point Г О

Pure compound Azeotrope Azeotrapic wt %

Azeoiropes formed with water at p  = 1 bar
Boiling point of water *  100 “C

1 lyckogen chloride (HCI) -85 108.58 20.22
Nilric acid (HNQ}) 86 120.7 67.7
Ethanol (С,Н5ОМ) 78.32 78.17 96

Azeoiropes formed with acetone at p  =  1 bar 
Boiling point o( acetone (tCH3)2CO) = 56.15 “C

Cyclohexane (C6H U! 80.75 53.0 32.5
Methyl acetate (CH3COOCH,) 57.0 55.8 51.7
n-Hexane (Q H U) 68.95 49.8 41

Azeoiropes formed with methanol at p  = 1 bar 
Boiling point of meehanol (CHjOH) = 64.7 “C

Acetone ((CH,) 2CO) 56.15 55.5 68
Benzene (C6H6) 80.1 57.5 60.9
Cyclohexane (CtH u ) 80.75 53.9 63.6

Source; D.R. tide ipd.j, GRC Hmtbook o( Chemistry JtlrfWlylfcs, 7Stb edition, 1994, QRC Press! Ann Arbor, Ml.

liquid will be richar in component A and move towards the azcotropic composition. Thus, (successive boiling 
and condensation results in pure В and n mixture with azcotropic composition, not pure A and pure B. The 
azeotropic composition and the corresponding boiling points for binary mixtures arc tabuluted. One may 
notice in Figure 7.6 that the boiling point corresponding to the azeotropic composition occurs at an extremum 
(maximum or minimum). That this must be so for thermodynamic reasons has been noted toy Clibbs and later 
by Konovalov and Duhem. This observation is called the Glbbs-Konovalov theorem [4], which states that:

At constant pressure, in an equilibrium displacement of a binary system, tlie temperature of coexistence
passes through an extremum if the composition of the two phases is the same.

We shall not discuss the proof of this theorem here. An extensive discussion of this and other related 
theorems may be found in the classic text t>y Prigogine and Defay [4]. Azeoiropes are an important class of 
solutions whose thermodynamic properties we shall discuss in more detail in Chapcer 8. Some examples of 
azeoiropes arc given in Table 7.2.

7.3 J  Solution in Equilibrium with Puns Solids: Eutectks

The next example we consider is a solid-liquid equilibrium of two components, A and B, which are miscible 
in the liquid state but not in tbe solid stale. This system has three phases in all, the liquid with A + B, solid 
A and solid В .

We can understand the equilibrium of tuch a system by first considering the equilibrium of two-phase 
systems, the liquid and one of the two solids, A or B, and then exlending it to three phases. In this case, the 
Gibbs phase rule tells us that, with two components and two phases, the number o f degrees of freedom equal# 
two. We can take these two degrees o f freedom to be the pressure and composition. Thus, if the mole fraction 
xA and the pressure are fixed, then the equilibrium temperature is also fixed. By fixing the pressure at a given
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*л

Figure 7.7 The phase diagram of a two-component system with three phases. The system has only one degree 
of freedom. For a fixed pressure, the three phases (the liquid, solid A and solid R) are at equilibrium at the 
e u te c t ic  point f. Along the curve ME, solid в  is In equilibrium with the liquid and along the curve NE, solid A h 
in equilibrium with the liquid. The point o f intersection E specifies the equilibrium composition and temperature 
when all three phases are In equilibrium. At a fixed T, If the system is Initially at point P it will m ove towards the 
equilibrium curve ME. Below the eutectic p a n t the solid is a mixture o f  solid A and solid B.

value (nay the atmospheric pressure) one о м  obtain an equilibrium curve relating T  and xK. The two curves 
corresponding to solid A in equilibrium with the liquid and solid В in equilibrium with the liquid are shown 
in Figure 7.7, In this figure, along the curve EN. the «olid A is in equilibrium with the liquid; along the curve 
EM. eolid В is in equilibrium with the solution. The point of intersection of the two curves, E, is called the 
eutectic point, and the corresponding composition and temperature are called the eutectic composition and 
the eutectic tem perature.

Now, if we consider a three-phase system, the liquid, solid A and solid B. all in equilibrium, then the 
Gibbs phase rule tells us that there is only one degree of freedom, If wc take this degree of freedom to be the 
pressure and fix it »t a particular value, then there is only one point (T. jsa ) at which the three phases are in 
equilibrium. This is the eutectic point. This is tbe point at which the chemical potentials of solid A and solid 
В are equal to their corresponding chemical potentials in the liquid mixture. Since the chemical [potentials of 
solids and liquids do not change much with changes in pressure, «he cutectic composition and temperature 
are insensitive to variations in pressure,

7.3.4 Ternary Systems

As was noted by Qtbbs, the composition of a solution containing three components may be represented by- 
points within an equilateral triangle whose sides have a length equal to one. Let us consider a system with 
components A. В and C, As shown in Figure 7,8, a point P may be used to specify the mole fractions лл , *B 
and .if. as follows. From the point P, lines are drawn parallel to the «ides of the equilateral triangle. The length 
of these lines can be used to represent the mole fractions jtA, дв and xc . It is left a* an exercise to show that 
such a  construction ensures that JtA +  хй + «= 1. In this representation o f the composition, we see that:

1 The vertices A. В and С  correspond to pure substances.
2, A line parallel to a side of the triangle corresponds to a series of ternary systems in which one of the mole 

fractions remains fixed.



198 Modem Thermodynamics

С

Figure 7.8 The composition o f a ternary system consisting o f  components А, в  and  С can b e  represented on 
a triangular graph because xA + xB + xc = S. The composition is represented as a point P inside an equilateral 
triangle whose side has a length equal to one. The mole fractions are the lengths of the lines drawn parallel to the 
sides o f the triangle. Showing that Pa + Pb + Pc «= I for any point P is left as an exercise.

3. A line drawn through one of the apexes to the opposite side represents a set of systems in which the mole 
fractions o f  two components have a fixed ratio. As the apex № approached along this line, the system 
becomes increasingly richer in the component represented by the apex. The variation of some property 
of a three-component solution can be shown in a threedimensional graph in which the base is the above 
composition triangle; the height will then represent the property.

As an example, let us consider three components, A, В and C, in two phases: a solution that contains A, В 
and C, and the other a «olid phase of В in equilibrium with tlic solution. This system has three components 
and two phases and. hence, has three dejarees of freedom, whidb may be taken as the pressure and the 
mole fractions and At constant prejsurc. every value of *A and .iB has a corresponding equilibrium 
temperature. In Figure 7.9a, the point P show* the composition o f the solution at a temperature T. As the 
temperature decrcanee, the relative values of .r* and remain the same while more of В turns into a solid. 
According to the observations in point (3) above, this means that the point moves along the line BP as shown by 
the arrow. As the temperature decreases, a point Pf is reached at which the component С begin* to crystallize. 
Ihe system now baa two solid phases and one solution phase and. hence, has two degrees of freedom. 
The composition o i  Ihe system is now confined to the line P'E. With a further decrease in the temperature, 
component A also begins to crystallize at point E. which corresponds to the eutectic temperature. The system 
now has only one degree of freedom. At the eutectic temperature and composition, all three components will 
crystallize out in the eulectic proportions,

7.4 Maxwell’* Construction and the Lever Rule

The reader might have noticed that the isotherms obtained from an equation of state, such as Ihe van der Waals 
equation, do not coincide with the isotherm* shown in Figure 7.2 at the part of the curve that Is flat. Le. where 
the liquid and vapor phases coexist. The flat part of the curve represents what is physically realized when
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SuluIKH!
A+B + C

Solution
A + B  + C

1 « . . j в

Eutectic 
A + B + C

(») (b)

Figure 7.9 (a) The phase diagram of a ternary system showing the composition o f  the solution as it is cooled. 
At the point P the system consists o f  tw o phases: the solution (A + B + C) in equilibrium with solid B. As the 
temperature decreases, the composition moves along PF*. A t P' the component С begins to  crystallize and the 
composition moves along P'F until it reaches the ternary eutectic point £, at which all components begin to 
crystallize, (b) The composition o f the system at points P, P  and [.

a gas is compressed at a temperature below tbe critical temperature. Using tbe condition that the chemical 
potential of the liquid and the vapor phase» must be equal at equilibrium. Maxwell was able to determine the 
location of the flat part of the curve.

Let us consider a van der Waals isotherm for T  < 7'c (Figure 7.10), Imagine a steady decrease in volume 
starting at the point Q. Let the point P be such that, at this pressure, the chemical potentials of the liquid and 
the vapor phases are equal. At this point the vapor will begin to condense and the volume can be decreased 
with no changc in the pressure. This decrease in volume can continue until all the vapor bos condensed to 
a liquid at the point L. If the volume is maintained at some value between P and L, then liquid and vapor 
coexist. Along the line PL the chemical potentials of the liquid and ibc  vapor are equal. Thus, the total change 
in the chemical potential along the curve LMNOP must be equal to zero:

/ d ft =  0 <7.4.1)

LMNOP

Now, since the chemical potential is a function of T  and p. and situ* the path is an isotherm, it follows from 
•he Gibbs-IXihcm relation that d /i ■» Vm dp. Using this relation we may write the above integral as

о  N м L

f  U p  + j  VmdP + /  Vm*P+ j  Mp -  0
P О N M

<7.4.2)
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Figure 7.10 Maxwell's construction specifies tlie physically realized flat pan IP with respect to the theoretical 
isotherm given by an equation o f  state such as the van der Waals equation. At equilibrium, the chemical potential> 
at the points L and f  must be equal. As shown In the text, this implies that the physically realized states lie on a 
line IP that makes rnea I equal to area II.

The area I shown in Figure 7.10 is equal lo

о о

f  Vm * P -  j  VuAP =  J  Vmd p  +  J  Vmd p

P N P О

which is same as the Brut two integrals in Equation (7.4.2). Similarly, the sum of the second two terms equals 
the negative of area II.

Thus, Equation (7.4,2) may be interpreted as

Area I -  Area II =  0 (7.43)

This condition specifies how to locate or oonstmct a flat line on which the chemical potentials of the liquid 
and the vapor arc equal, tbe one that is physically realized. It is called Ihe Maxwell construction.

At point P the substance is entirely in the vapor phase with volume Vg; at the point L it is entirely in the 
liquid phase with volume Vj. At any point S on the line LP, if a fraction x  of substance is in the vapor phase, 
then the total volume Vs of the system is

It follows that
Vs «= xVt  +  (1 - jt)V , 

.  VS -V !
V , - Vj

SL
LP

(7.4.4)

(7.4.5)

From this relation it can be shown that (Exercise 7.10) the mole fraction x  of the vapor phase and (I -  x) of 
the liquid phase satisfy

<7.4.6)j (SP)* = (SLK1 - x )

This relation is called the lever rule, in analogy with a lever supported at S, in equilibrium with weights Vt
and Vg attached to either end.
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7 5 phase Transitions

phase t ra n s i t io n s  are associated with many interesting and general thermodynamic features. As described 
ujiow based on some of these features, phase transitions can be classified into different 'orders'. Thermo- 

namic behavior in the vicinity of the critical points has been o f  much interest from the point o f view 
of tliennodynamie stability and extremum principles, discussed in Chapter 5. A classical theory of phase 
dansitions was developed by Lev Landau; however, in the 1960e, experiments showed that the predictions of 
this theory were incorrect. This resulted in the development o f the modem theory of phase transitions during 
the 1960s and the 1970s. The modem theory is based on the work of C. Domb, M. Fischer. L. Kadanoff, G.S. 
R u sb b ro o k , В, W kbtn. K. Wilson and others. In this section we wilkwly outline some o f  the main results of the 
th e rm o d y n a m ic s  of phase transitions. A detailed description o f tlie modem theory of phase transitions, which 
uses the mathematically advanced concepts o f renormalization-group theory, is beyond the scope of this book, 
For a better understanding of this rich and interesting subject we refer the reader to books on this topic [1—3].

7.5.1 General Classification of Phase Transitions

When transition from a solid to a liquid or from a liquid to vapor tifces place, there is a discontinuous change 
in the entropy. This can clearly be seen (see Figure 7.11) if we plot molar entropy Sm =• -  (dG mHT)p as 
function of T, for fixed p  and N. The same is true for other derivatives of Gm, such as Vm =* (dGmldp)r. The 
chemical potential changes continuously, but its derivative is discontinuous. At the transition temperature, 
because of the existence of latent heat, the molar heat capacities iAQIATt have a ‘singularity’ in the sense 
they become infinite; i.e. heat absorbed A Q  causes no change in temperature, i.e. A T  =  0. Trunsations of this 
type are classified us flrst-order phase transitions.

The characteristic features of second-order phase transition* are shown in Figure 7.12. In this case, 
the changes in the thermodynamic quantities are not so drastic: changes in Sm and Vm are continuous, but 
their derivatives are di«continuous. Similarly, for the chemical potential it is the second derivative that is 
discontinuous; the molar heat capacity does not have a singularity, hut it has a discontinuity. Thus, depending 
on the order of the derivatives that are discontinuous, phase transitions are classified as transitions of first or 
second order,

7.5.2 Behavior near the Critical Point

The classical theory of phase transitions was developed by Lev Landau to explain the coexistence of phases 
and the critical pomt at which the distinction between the phases disappears. Landau's theory explains tbe

У  '  •«

s i

1
1•1«

1 \  
•1•
•

A
Ttm. Г r r . T

figure 7 .11 The change of thermodynamic quantities in a first-order phase transition that occurs a t the temper- 
ature T,lm. x is a molar extensive quantity such as Sm or V„, that changes discontinuous!}'.
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Figure 7.12 The change o f thermodynamic quantities in a second-order phase transition that occurs at the 
temperature Tm„. X is a molar extensive qutntity such as Sm or Vm whose derivative changes discontinuously.

critical behavior m terms of the minima of the Gibbs free energy. According to this theory, as shown in 
Figure 7.13, in the coexistence region, for a given p  and T, G  as a function o f  V has two minima. As the 
critical point is approached, the minima marge into one broad minimum. The classical theory o f Landau makes 
several predictions regarding the behavior of systems near the critical point. The prediction* of ihe theory are. 
in fact, quite general, valid for large classe» of systems. Experiments done in the 1960s did not support these 
predictions. We shall lint below some of the discrepancies between theory and experiment* using the liquid- 
vapor transition as an example, but the experimental values are Ihose obtained for many similar systems. 
Also, all the classical predictions can be verified using the van der Waals equation of state as an example.

• For the liquid-vapor transition, as the critical temperature was approached from below (T <  Tc), the theory 
predicted that

~  -  T ? ,  =  1/2 (7.5.1)

However, experiments showed that fi was in the range 0.3-0.4. not equal to 0.5.

Figure 7,13 Classical theory o f  phase transitions is based on the shape of the Cibbs energy as a function ofV. 
The Cibbs energies associated with the points А, В, С and D are shown In the insets. As the system moves from 
A to D , the Cibbs energy changes from a curve with two minima to a  curve with one minimum, as shown in the 
small Figures,
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Along the critical isotherm, as tbe critical pressure p c is approached from above, the theory predicted

Ущ - У ы с с < р - р с р * , 6 » 3  (7.5.2)

Experiments place the value of 6 in the range 4.0-5.0.
When the gas can be liquefied, it is easy to see that the isothermal compressibility k t  *  -  (llV% dVM p)T 
d iv e rg e s  during the transition (the flat part of tbe p -V  isotherm). Above the critical temperature, since there 
is  no transition to liquid there is no divergence. According to  classical theory, as the critical temperature 
is a p p ro a c h e d  from above, the divergence of KT should b e  according to

K joc ( J -  Tc)~r, у  =  1 (7.5.3)

E x p e r im e n ta l  value» of у were found to be in the range 1.2-1.4.
• We have seen in Chapter 6 that the values o f molar heat capacity CmV for real and ideal gases are tbe same 

if the pressure is a linear function of the temperature. This means that the value o f CmV does not diverge 
(though the value of Cp diverges). Thus, according to classical theory, if

ot (Г -  Tc)~° then в  mO (7.5.4)

Experimentally, the value of a  found was in the range -0 ,2  to +0,3.

The failure of tbe classical or Landau theory initiated a reexamination of the critical behavior. The main 
reason for the discrepancy was found to be the role of fluctuations. Near the critical point, due to the flat nature 
of the Gibbs energy, large long-range fluctuations arise in the system, and these were not properly included 
in Landau’s theory. Kenneth Wilson incorporated these fluctuations into the theory through the development 
of new mathematical techniques and the theory of the renorm alization group. The modem theory of critical 
behavior not only predicts the experimental values of the exponents a , f) ,y  and 6 more successfully than the 
classical theory but it also relates these exponents, For example, the modern theory predicts that

„ 2 - a  ,  ( а - 2 Х 1 - г »
,  =  and r -  , + y

Since a detailed presentation of the theory o f  the renormalization gtoup is beyond tbe scope o f this book, we 
will leave the reader with only this brief outline of the limitations of the classical theory and accomplishments 
of the modem theory.
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E xam ples

bxumple 7.1 A chemical reaction occur» in CCI4 at room temperature, but it i» very slow. To increase 
its speed to a desired value, the temperature needs to be increased to 80 *C. Since CC14 boils at 77 °C at 
P *= 100 atm. the pressure has to be increased ю thatCCl4 will boil at a temperature higher than 80 “C. Using 
the data in Table 7.1, calculate the pressure at which CC14 will boil at 85 *C.



Solution  firom the Clausius-Clapeyron equation we have

p  m (1.00 atm)eo a  a  12.6 atm

Kxample 7.2 If » system contains two immiscible liquids (such as CCI4 and CH3OH), how many phases 
are there?

Solution  The system will consist of three layers. A layer rich in CC14, a layer rich in CH3OH and a layer 
of vapor o f CCl* and CH3OH. Thus, there are three phases in this system.

Kxample 7 J  Determine the numberof degrees of freedom o f a two-eomponent liquid mixture in equilibrium 
with its vapor.

Solution  In this case С - 2 ,  P -  2. Hence, the number of degrees of freedom / = 2 - 2  +  2 =  2. These two 
degrees o f freedom can be, for example. T  and the mole fraction of one o f the components. The pressure 
of the system (vapor phase in equilibrium with the liquid) is completely specified by Л| and T.

Example 7 4  How many degrees of freedom does an aqueous solution of the weak acid CH3COOH have? 

Solution  The ackl decomposition is

CH3COOH *  CHjCOO" +  H*

The num berof components is С  =  4(water. CH3COOH, СНэСОО* and H+X The number of phases is f  — 1 
There is one chemical reaction in equilibrium; hence R  =  1. However, since the concentration* of CH3COO" 
and H + are equal, the degrees of freedom arc reduced by one. Hence, the number o f degrees of freedom 
f = C - R - P  +  2 - l  = 4 - 1 - 1  + 2 - 1  * 3 .
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Exercises

7.1 H ie heat of vaporization of hexane is 30.8 kJ mol-1 . The boiling point of hexane at a pressure of
1,00 atm is 68,9 °C. What will the boiling point be at a pressure of 0.50 atm?

7.2 The atmospheric pressure decrease» with height. The pressure at a height h above sea level is given 
approximately by the barometric formula p  =  р 0е~и »к1КГ, in which. p 0 is the pressure at sea level. 
M  =  0.0289 kg m o l'1 and g -  9.81 m s '2. Assume that the enthalpy of vaporization of water is 
ДНУof m 40.-S kJ mol-1 and predict at what temperature water will boil at a height o f 3.5 km.

7.3 At atmospheric pressure, C 0 2 turn» from solid to gas. i.e. il sublimates. Given dial the triple point of 
C O i is at V<* 216.58 К and p  = 518.0 kPa, how would you obtain liquid C 0 2?

7.4 In a two-component system, what it the maximum number o f  phases that can be in equilibrium?

7.5 Determine the n umber of degrees o f  freedom for the following systems:
(a ) solid OOj in equilibrium with COj gas;
(b) an aqueous solution of fructose;
(c) Fe(s) + HjO(g) -  FeO(s) +  H5(g).
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7 6 Dww qualitative figures of T  versus дл curve* (Figure 7.6) for the azeottopes in Table 7.2.

7 7  to Figure 7.8, sbow that Pa +  Pb + Pc = 1 for any point P.

7 8  to the triangular representation of the mole fractions of a ternary solution, show that along the line 
joining an apex and a point on the opposite side, the ratio of two of the mole fractions remains constant 
while the mote fraction of the third component changes.

7,9 On triangular graph paper, mark points representing the following compositions:
(■) лА = 0.2. Д[*=* 0.4. Ac =0.4 
(b) aa  =  0.5. x t  =» 0, Xq = 0.5 
(«) *A ”  0.Э, ■ 0-2. Ac = 0.5
(d) aa  =  0. ab ■= 0, Ac =  1.0.

7.10 Obtain the lever rule (7.4.6) from (7.4.5).

7.11 When the van der Waals equation is written in terms of the reduced variables p r  Vt and Tt (see Equation 
(1.4.6)), the critical pressure, temperature and volume are equal to one. Consider small deviations from 
the critical point, p , =  1 +  bp and Vr =  1 + S V on the critical isotherm. Show that & V is proportional 
to (6p)113. This coiresponds to the classical prediction (7.5.2).
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Thermodynamics of Solutions

8.1 Ideal and Nonideal Solutions

Many properties of solutions can be understood through thermodynamics. For example, we can understand 
how the boiling and freezing points o f  a solution change with composition, how (he solubility of a compound 
c h a n g es  with temperature and how the osmotic pressure depends on the concentration.

We begin by obtaining the chemical potential of a solution. As noted in Chapter 5 (Equation (5 3 .5 ) ) ,  the 
general expression for the chemical potential of a substance may be written as fi(p. Г) »  ^°(Po> T) + KT 
In a, in which a is the activity and /4° is the chemical potential e f the standard stale in which a -  1, Par 
an ideal gas mixture, in Equation (6.1.9) we saw that the chemical potential of a component can be written in 
term» of its mole fraction xk in the form fi^p . T, xt ) =  p°<Po. Л  + RT  In xk. Wc shall see in this section that 
properties of many dilute solutions can be described by a chemical potential of (he same form. This has led 
to the following definition of an ideal solution as a solution for which

p k(p, T txk)*= $ ( р , Т )  +  НТ 1 nAfc (8 .1. 1)

where ц°(р, D  is the chemical potential o f a reference state that is independent of x*. We stress that the 
similarity between idea! gas mixtures and ideal solutions is only in the dependence of the chemical potential 
on the mole fraction; Ihe dependence on the pressure, however, is entirely different, as can be seen from the 
general expression for Ihe chemical potential of a liquid (Equation <6,3.8)).

In Equation (8.1 J ), if the mole fraction o f the solvent’ x , is nearly equal to one, Le, for dilute solutions, then 
for the chemical potential of the solvent the reference state $ ( р ,  T) may be taken to be u'k (p. T), the chemical 
potential of the pure solvent. For the other components, xk <*: 1; as we shall see below. Equation (8.1.1) is still 
v*lid m a small range, but in general the reference state is not рЦ р, T). Solutions for which (8.1.1) is valid 
for all values of ,<cfc are called perfect solutions When xk =  1, since we must have p t  = (p. T), it follows 
that for perfect solutions

Ик(р.Т,Ц) * И*к(р.Т) + Win-»*. V*, •(8.1,2)

© 2 n i«  From Heat Engines to DtKtpative S lru n u m , Second Edition. Dikp Koaifepudi and Ilya Prigogine.
John Wiley & Sons, Ltd. Published 2015 by M m  Wiley St Sons, Ltd-
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Figure S. 1 Equilibrium between a solution audits vapor.

The activity o f nonideal solutions is expressed as ak =  y f y  in which y t  is the activity coefficient, a quantity 
introduced by G.N. Lewis. Thus, the chemical potential of nonideal solutions is written as

pk{p. T, Jtj) = fi'/(p, T ) +  RT  1пл*
(8.1.3)

=  р Ц р ,Т ) +  RT\vtykxk)

The activity coefficient r k -* 1 as xk -» 1.
Let us now look at conditions under which ideal solutions arc realized. We consider a solution with many 

components, whose mole fractions are in equilibrium with its vapor (see Figure 8.1), At equilibrium, 
the affinities for the conversion o f the liquid lo the gas phase are zero for each component I: i.e. for each 
component the chemical potentials in the two phases are equal. If we use the ideal gas approximation for the 
component in the vapor phase we have

#£,<*,.П  +  Л П и *  = n'ljPo. T ) + R T \n (p ,/p 0) (8.1.4)

in which the subscript* I and g indicate tbe liquid and gas phases. Tbe physical meaning of the activity al can 
be seen as follows. Consider a pure liquid in equilibrium with its vapor. Then p, =  p ‘ . tlie vapor pressure of a 
pure liquid in equilibrium with its vapor. Since a, is nearly equal u> one for a pure liquid, 3ii(cj:) «  0. Hence, 
Equation (8.1.4) ca« he written as

«и(Ро.Г) -  *2,(Po. T) + RTlMpl/Po)  <8.1.5)

Subtracting Equation (8.1.5) from (8.1.4) we find that

W in  a, *  RT ln i p j p ‘ ) or (8 .1.6)

i.e. tbe activity ii the ratio of the partial vapor pressure p t of the component in a solution and iu  vapor pressure 
p ’ when it is a pure substance. By measuring the vapor pressure of* substance, its activity can be determined. 

For an ideal solution, Equation (8.1.4) takes the form

fi°i </>• T) + RT Inw,)  = n f jp a ,  T \+ R T  Ы р ,/р и) (8.1,7)
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Figure 8 .2  The vapor pressure diagram o f perfect binary solution for which Equation (8.1.1) h  valid for all 
values o f the mole fraction x ,. Here p \ and p \  are the vapor pressures o f the pure substances, p, and p ,  are the 
partial pressures of the two components in the mixture and p is  the total vapor pressure.

From ibis equation it follows that the partial pressure in the vapor phase and the mole fraction of a component 
can be written as

As indicated, the term Kt(p, T) is, in general, a function o f p  and T, but since the chemical potential o f  the 
liquid n°ix {p .T )  changes little with p .  it in essentially a function o f  Т. K, has the dimensions of pressure. 
For any component, when x, =  1, we must have K(p". T) =  p*. tlie vapor pressure of the pure substance 
(Figure 8.2). (This is  consistent with Equation (8.1.9) because when we set p  e f 0 *=/>*, because tbe vapor 
and the liquid are in equilibrium, the exponent ti°AT,p, ) ~  fi'^T .p’ ) в  a )  At a given temperature T, if я  
1 for a particular component, which is called the solvent’ or the major component, then, since the change of 
K, is small for changes in pressure, we may write

Experiments conducted by Francois-Marw Raoult (1830-1901) in the 1870s showed that if the mole 
fraction of the solvent linearly equal to unity, i.e. for dilute solutions, then Equation (8.1,10) is valid. Fortius 
reason, (8.1 .JO) is called R aoult's lew. The chemical potential o f the vapor phase o f tbe solvent ti4 lp ,, ’Г) =  

T) +  RT In4>Jpq) can now be re lie d  to its mole fraction in the solution, л , ,  by using Raouk’s law 
and by setting p 0 =  p*:

Pi m  Ki*i (8,1.8)

in whidh

(8.1.9)

^ i p ' . T f  +  R T in x , 
. ^ ( П  +  Я Л п *

(8.1.11)
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Iable 8.1 Henry's law constants a t 25  °C for atmospheric gases.

Gas К (104 atm) Volume in the atmosphere (ppm)

Njttf 85 780 900
4.3 209 500

Artg) 4Д 9 300
COjig) 0.16 380
c a g ) 5.7 -

Metg) 13.1 5,2
Нг(» 7Я 0,5
CH4(g) 4.1 1.5
C,H;.(g) 0,13 -

fource: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, ;5th edition, 1994, CRC 
iPre*»: Ann Arbor, Ml.

For a minor component of a solution, wben its mole fraction xk <  1, Equation (8,1.10) is not valid bat 
Equation (8.1.8) is still valid. This relation is called H enry’s law after William Henry (1774-1836), who 
studied this aspect for the solubility of gases [1]:

Pi -  * A . x, «  1 (8 .1. 12)

The constant K{ is «ailed Henry's constant Some values of Henry's constants are given in Table 8.1. In the 
region where Henry 's law is valid, Kt is not equal to the vapor pressure of the pure substance Tbe graphical 
representation of Henry’s constant is shown in Figure 8.3. Also, where Henry's law is valid, in general, the 
chemical potential of the reference state is not the same as the chemical potential of the pure substance.

figure 8.3 The vapor pressure diagram of a binary solution. W/ien the m ob  fraction is very small or nearly 
equal to one. vw /live Ideal behavior. The minor component obeys Henry's law, while the major component 
obeys Raouft's law. Here pj and p ’ are the vapor pressures o f  the pure substances, p , and p ,  are the partial 
pressures o f the t m  components in Ihe mixture and p  is the total vapor pressure. The deviation from the partial 
pressure predicted by  Henry's law or Raoult's law can be  used to  obtain the activity coefficients.
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for a perfect solution do we have AT,- =  p* when x, <K 1, but such solutions are very rare. Many dilute 
lu tio n s  obey Raoult's and Henry’» law» lo  a good approximation.

9° When the solution is not dilute, the mmideal behavior is described using the activity coefficients. y t, in 
the chemical potential:

*?</>,Г) +  ЯЛп<ГЛ) (8.1.13)

The factor y t quantifies the deviation from Raoult's or Henry’s law. For nonideal solutions, as an alternative 
to the activity coefficient, an osmotic coefficient ф1 is defined through

K iQ P.r.jf,)- ^ , n  +  * « n » W  (8.1.14)

As we will see in the following section, the significance of the osmotic coefficient lies in the fact that it is 
the ratio of the osmotic pressure to that expected for ideal solutions, From Equations (8.1.13) and (8.1.14) it 
is easy to see that

(8.1.15)

Thermodynamics of Solutions 2 ) I

8.2 Celligative Properties

By using the chemical potential of ideal solutions we can derive several properties of ideal solutions that 
depend on the total number o f  the solute pan icles  and not on the chemical nature of the solute. (For example, 
a 0.2 M solution of NaCl will have colligative concentration of 0.40 M due to the dissociation into Na+ and 
СГ.) Such properties are collectively called colligative properties.

8.2.1 Changes in Boiling and Freezing Points

Equation (8.1.11) could be used to obtain an expression for the increase in tlie boiling point and the decrease 
in the freezing point o f solutions (Figure 8.4). As we noted in Chapter 7, a liquid boils when its vapor pressure 
P *=pt a , the atmospheric (or applied external) pressure. Let 1* be «he boiling temperature of tbe pure solvent 
and Г the boiling temperature of the solution. We assume tlutr the m ole fraction o f  the solvent is x 2 and that 
o f the solute is . We also assume that the solute is nonvolatile so that the gas phase in equilibrium with the

Figure ft.4 Tfe vapor pressure of a solution with a nonvolatile solute it less than that o f  a pure solvent. Conse
quently, the boiling point of a solution increases with the solute concentration.
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solution is purely the solvent. At equilibrium, the chemical potential of the solvent in the liquid phase arxl 
that of the pure solvent gas phase (which we denote by /j") must be equal:

212 Modem Themodyntmia

( 8 .2 .1,

Using Equation (8.1.U ), and noting that is essentially independent o f p , we can now write tins 
equation as

r ) = Xj,|(P«t. T, ъ )  = /ii,|(П + KT ln(-*2)

Since the chemical potential o f a pure subUance ц = Gm, the m o l*  Gibbs energy, we have 

T) -  4 ,(Г ) д6т днт -  ГД5т
RT RT F T

= In ДСг

( 8.2 .2 )

(8.2.3)

in which Д denote» the difference between the liquid and the gas phase. Generally, AWm does not vary much 
with temperature. Therefore, ДHm(T) =  ДЯт ( Г )  =  A //Vap Also, Д5т  »  &Нщу(Т У Г  and хг =  (1 - * i ) ,  in 
which •« 1 is the mole fraction of the sodutc With these observntions we can write Equation (8.2.3) as

ln(l г ч ЛЯУ«Р ( I  _  I  \ (8.2.4)

If the difference T  -  V  >= Д7' is small, then it is easy to show that the terms containing T  and V  can 
be approximated to -Д Г/7*г. Furthermore, since ln(l -  jf,) и  -  *, when jc, «  1, we can approximate 
Equation (8.2.4) by the relation

Д Г  = RT"
A/A -*t

vap
(8.2.5)

which relates the increase in boiling point <o the mole fraction of tbe solute. In a similar way. by considering 
a pure solid in equilibrium with the solution, one can derive the following relation for the decrease in freezing 
point Д П п  terms a f  the enthalpy o f fusion Д //(ц,, the mole fraction of the solute and the freezing point 7* 
of the pure solvent:

a tДT  =  -<t
M l,fus

(8.2.6)

The change in the boiling point and the freezing point are often expressed in terms of molality. i.e. moles of 
soluteAilogriim o f  solvent, instead of mole fraction. For dilute solutions, the conversion from mole fraction 
x to molality m  i* easily done. If Mt  is the molar mass of the solvent in kilograms, then the mole fraction of 
the solute

N, N, (  JV, \

~ н Г Щ * г Г Г м ' ( w J  m M °m i

Equations (8.2.5) and (8.2.6) are often written os

Д T  — К(Ш\ +/Й2 +  *" +• mt ) (8.2.7)
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table 8.2 Ebullloscopic and cryoscopic constants.

Compound ^  ГС kg m ol'1) rb <° o К, (“С kg m ol'1) Г, ("О

Acetic acid, CH3COOH 3,07 118 3.90 16.7
Acetone. (CH3)2CO 1.71 56.3 2.40 -45
Benzene, C6H, 2,53 80.10 5.12 5.53
Carbon disulfide, CS2 2.37 46.5 3.8 -111.9
Carbon tetrachloride, CCI4 4.95 76.7 30 -23
Nitrobenzene, C6H5N 0 2 5.26 211 6.90 5.8
Phenol, C6H5OH 3.04 181.8 7.27 40.92
Water, H jO 0.51 100.0 1.86 0.0

Source; C.W.C. LayeandT.H. lafcy leds/ UMts of Physical and Chemical Constants, 19S6, Longmans: london.

in which the molalities of all the ‘s' species of solute particles is »bown explicitly. The constant К  is called 
the «bullioscopic constant for changes in boiling point and the cryoscopic constant lor changes in freezing 
point. The values of ebullioscopic and cryoscopic constants for some liquids are giver in Table 8.2.

8.2.2 Osmotic Pressure

When a solution and pure solvent are separated by a semipermeablc membrane (see Figure 8.5a), which 
is permeable to the solvent but not the sokile molecules, the solvent Hows into the chamber containing the 
solution until equilibrium is reached. This process is called osmovis ttnd was noticed in (lie mid-eighteenth 
century. In 1877, a botanist named Pfeffw made a careful quantitative study o f it. Jacobus Henricus van't 
Hoff (1852-1911), who was awarded the first Nobel Prize in chemistry' in 1901 for his contribution» to 
thermodynamics and chemistry [1], found that a simple equation, similar to that of an ideal gas. could 
describe the observed data.

As shown in Figure 8.5, let us consider a solution and a pure solvent separated by a membrane that is 
permeable to the solvent but not the solute. Initially, the chemical potentials of the solvent on the two sides of 
the membrane may not be equal, the chemical potential on the solution side being smaller. Unequal chemical

Solution

Silk cis

<») (b)

figure a .s  Osmosis: (a) the pure solvent flows towards the solution through a semipenneable membrane (b) the 
flow stops when chemical potentials of the solvent In the two chambers are equal.
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potentials will cause a flow of the solvent from a higher to a lower chemical potential, i.e. a flow of pUI4, 
solvent towards the solution. The affinity driving this solvent flow is

lacobus van 't H off (1 8 5 2 -1 9 )1 ),
(Reproduced by courtesy o f  the AIP Iwilio Segne Visual Archive, Brittle Book Collection.)

Л - . * > , П - Л ( р ' , 7 ' , * г)  (8.2.8)

in which .«j it the mole fraction of the solvent, p' is the pressure of the solution and p  is the pressure o f the pure 
solvent. Equilibrium in reached when the cfaetnical potentials become equal and the corresponding affinity 
(8.2.8) equals «го. А» noted above, for an ideal solution, the chemical potential o f the major component 
(solvent) is given by p(p', T) =  n ' t f .  T) + K T  In x2. in which p ’ is the chemical potential o f the pure solvent. 
Hence the affinity of this system can be written as

A -  D  -  Л V ,  T ) ~ R T  In.Vj (8.2.9)

When p  =  p ‘. the affinity takes the following simple form:

A = - ltT \n x 2 (8.2.10)



X

Df  the sotvent into tbe solution can generate a pressure difference between the solvent and the 
■flf (Figure 8.5b). The flow continues until the difference between solvent pressure p  and solution 

яи* p ' uMkc'* Л т О . When A <= 0, the pressure difference (p' -  p) *  n is called the osmotic pressure. 
^"The experimental setup shown in Figure 8.5b, the liquid level in the solution rises to a height к  above the 

.s o lv e n t  level when equilibrium is reached. The excess pressure in the solution ж =  Нрц, in which p is 
Resolution density and g  is tlie acceleration due to gravity. At equilibrium, from Equation (8.2.9) it follows

that

A =  0 = p ‘ ( p . T ) -  p*(p +  tc .T )~  W i n *2 (8.2.11)

At constant temperature, the change in the chemical potential with pressure Лц -■ (др!др)т<\р ш Vm dp, where
V is the partial molar volume. Since the partial molar volume of a liquid changes very little with pressure, 
we may assume it to be a constant equal to Vm. the solvent molar volume (because when p  =  p * . Vm »  V^). 
Hence, we may write
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р + я  p + tt

p*(p + K ,D *  f ( p . n +  J  dp = р*(р<Г)+ j  V^dp
(8 .2 .12)

■ p ' ( p . T )  +  V m x

Also, as we noted before, for dilute solutions, lnlJ^) =  ln(l -  .t() ot - X \ .  If N t is the molar amount of the 
solute and N2 is the molar amount of the solvent, then, since N2 »  N \, we see that ,<t *  N t/(N t +  N2) «  
Ni/N2. Hence, we see that lnU2) «  -  N lfN i , Using Equation (8,2.12) and die fact that In(Jtj) «  -JVjW2, 
Equation (8.2.11) can be written as

N.
КГт г = K *

HTNi «= V2V** =  Vx  (8.2.13)

in which V m N2 V", is nearly the volume o f the solution (the correction due to the solute being small). This 
shows that the osmotic pressure к  obeys an ideal-gas-like equation:

•̂olution
(8.2.14)

:n which [S] is the molar concentration Ы  the solution. This is the v im ’t Hoff equation for the osmotic 
pressure. The osmotic pressure is as if an ideal gas consisting of the solute particles is occupying a volume 
equal to the solution volume. By measuring the osmotic pressure, ooe can determine tbe molar amount 
of a solute. Thus, if the mass of the solute t* known, then its molar mass can be calculated. The measurement 
of osmotic pressure in used to determine the molar mass or molecular weight of large biomolecules for which 
semipenneable membranes can be easily found (Exercise 8.10).

Table 8.3 shows a comparison between experimentally measured osmotic pressures and those calculated 
Using the van 4 Hoff equation (8.2.14) for an aqueous solution of sucrose. We see that for concentrations up to 
about 0.2 M the van 't Hoff equation agrees with experimental values. Deviation from the van 4  Hoff equation
*  •** necessarily due to deviation from ideality. In deriving the van ' t Hoff equation, we also assumed a dilute
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Table 8 .3  Comparison between theoretical osmotic pressure calculated using van 't Hoff's 
equation and the experimentally observed osmotic pressure for an aqueous solution of sucrose at 
tw o temperatures.

F n 273 К F = 333 К

я (awn) * (atm)

Concentration (mol 1 1) Experiment Fheory Concentration (mol I -1!) Experiment Theory

0.029 22 0.65 0.655 0.098 2.72 2.68
OXJ58 43 1.27 1.330 0.1923 5.44 5.25
0.131 5 2.91 2.95 0,370 1 10.87 10.11
0.273 9 6.23 6.14 0,533 16.54 14.65
0.532 8 14.21 11.95 0.685 5 22.33 18.8
0.876 6 26.80 19.70 0,827 3 28.37 22.7

Source: I. PrlgoglW and R. Defay, Chemlcat Thermodynamics, 4th edition, 1967, Longmans: London.

solution. Using Equations (8,1.11) and (8.2,12), it is easy to see that the osmotic pressure can also be written 
as

-K T  In Jh
*|<Ы = — 7 ^  (8.2.15)

m
where is the mole fraction of the solvemt. Here we have indicated explicitly that the osmotic pressure in 
this expression in valid for ideal solutions. This formula was obtained by J.J. van Larr in 1894.

For nonideal solutions, instead of un activity coefficient y, an osmotic coefficient ф is defined through

l i lp ,T ,x 2) =  ц’ ( р ,Т ) +  ф К Т \пх2 (8.2.16)

in which м’  is ihe chemical potential of the pure solvent. At equilibrium, when the affuiity vanishes and 
osmotic pressure is к  we have the equation

//'(/>, Г> =  иЧ р +  я .Т )  +  ф К Г Ь х2  (8.2.17)

Following the same procedure as above, wc arrive at the following expression for the osnnotic pressure of a 
nonideal solution;

—фКГ  In Jt-i 
*<= -

V>
(8.2.18)

Equation (8,2.18) was proposed by Dorman and Guggenheim in 1932. From Equations (8.2.15) and (8.2.18) 
it follows that ф =r s/к^ , Hence, the name 'osmotic coefficient' is used for ф. We can also relate the affinity 
to the osmotic pressure When the solution anti the pure solvent are at the same pressure the affinity is A =  
li’ (p. T )~  11* (р ,Т )~  ф!(Т In .t2 =  -ф ВТ  In * j. Using this in Equation (8.2.18) we see that

when р кШж  - ( 8 . 2 . 1 9 )
r n

Another approach for the consideration of nonideal solutions it similar to that used to obtain the virial 
equation for real gases, In this case the osmotic pressure is written as

я  = { S W d  + B(3T)(S] +  ■••) (8.2,20)
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in which Ms is the molar mass o f the solute. With this equation, a plot o f xf[C] versus fCJ is expected to 
he linear with an iotercepl equal to RT/M ,. From the intercept, the molar mass can he determined. From the 
slope, equal to BRT/M*. the ‘virial constant' В can be obtained.

8 J  S olub ility  E quilibrium

The solubility of a solid in a solvent depends on the temperature. Solubility is the concentration when the 
solid solute is in equilibrium with the solution: it is the concentration at saturation. Thermodynamics gives 
us a quantitative relation between solubility and temperature. In considering the solubilities of solids one 
must distinguish between ionic solutions and nonionic solutions. When ionic solids, such as NaCl, dissolve 
in polar solvents, such as water, the solutions contain ions. Na+ and Cl". Since ions interact strongly even in 
dilute solutions, the activities cannot be approximated well by mole tractions. Rw nonionic solutions, such as 
sugar in water or naphthalene in acetone, tbe activity of tlie dilute solution can be approximated by the mole 
fraction.

8.3.1 Nonionic Solutions

For dilute nonionic solutions, we may assume ideality and use the expression (8.1.1) for Ihe chemical potential 
to analyze the conditions for thermodynamic equilibrium. Solutions of higher concentrations require a more 
detailed theory (as can be found, for instance, in the classic text by Prigogine and Defay [2]). Recall th a t as 
it does for liquids, the chemical potential of a solid varies very little with pressure and so it is essentially a 
function only of the temperature. If /I*(Г) is tlie chemical potential of Ihe pure solid in equilibrium with the 
solution, then we have (using Equation (8.1.1))

in which tlie fil is the chemical potential of the solute in tlie solution phase (liquid phase), /(* is the chemical 
potential of the pure solute in the liquid phase and л, is the mole fraction of the solute. Since Д б '^ Г )  = 
**\ ~ К  ls the molar Gibbs energy of fusion al temperature Г, the above equation can be written in the form

b  this form the temperature dependence of the solubility is not explicit because Д(/(ш is itself a function of Г. 
his expression can also be written in terms of the enthalpy o f fusion Д by differentiating this expression 

With respect to T  and using the Gibbs-Helmholtz equation d< M iJ lM T  *  -  (Д///Т2) (Equation (5.2.14)). 
Thus:

иЦ Т ) »  Щ(Т) =  и Ц Т У + Я Г Ы хО <8,3.1)

<8,3.2)

din(*i) _  l  ДНцц
d r  ~  R T 2

(8.3.3)



218 Modem Thermodynamics

Since Д //Гц5 does not change much with T, this expression can be integrated to obtain a more explicit 
dependence o f solubility with temperature.

8.3.2 Ionic Solutions

Ionic solutions, also called electrolytes, are dominated by electrical forces, which can be very strong. To get 
an idea of the strength of electrical forces, it is instructive to calculatc the force of repulsion between two 
cubes of copper of tide 1 cm in which one in a million Cu atoms is a Cu+ ion, when the two cubes are 10 cm 
apart. The force is sufficient to lift a weight of 16 X 10*5 kg (Exercise 8.13).

Owing to the enormous strength o f electrical force*, there is almost no separation between positive and 
negative ions in a soiution; positive and negative charges aggregate to make the net charge in every macroscopic 
volume nearly zero. i,e. every macroscopic volume is electrically neutral. Solutions, and iadeed most matter, 
mamtain electroneutrality to a high degree. Thus if ck (mol L-4 ) are the concentrations of positive and 
negative ions with Ion numbers (number of electronic charges) z*. itfce total charge carried by an ion per unu 
volume is Fzkck, in which F — eNA is the Faraday constant, equal to the product o f the electronic charge 
e *  1.609 x  10"19 С and the Avogadro number .VA. Since electroneutrality implies that the net charge is zero, 
we have

2 * V t = °  (8.3.4)
к

Let us consider the solubility equilibrium of a sparingly soluble «lectrolyte AgCl in water:

AgCl(s) Ag+ +  С Г  (8.3.5)

At equilibrium:

Ллца "  ^ a 8+ + hC\-> (8.3.6)

In ionic systems, since the positive and negative ions always come in pairs, physically it is not possible 
to measure the chemical potentials /jAg+ m d separately; only tlieir sum can be measured. A similar 
problem arises for the definition of enthalpy and Gibbs energy of formation. For this reason, for ions, these 
two quantities are defined with respect to a new reference state based on the H+ ions, as described in Box 8.1. 
For the chemical potential, a mean chemical potential is defined (by

$(***+ +  * C r)  (8.3.7)

so that Equation (8.3.6) becomes

^AgCi =  (8.3.8)

to general, for the decomposition of a neutral compound W into positive and negative ion», Az+ and Bz ~ 
respectively (with ion numbers Z+ and Z~ J, we have

W *= v+Az+ +  v_Bz_ (8.3.9)

in which v+ and v_ are the stoichiometric coefficients. The mean chemical potential in this ease is defined as

»*■ v+ +  v_ V+ +  v„
(8.3.10)

in which fiail & v+j<+ + v / i .  Here, wc have written the chemical potential o f  the positive ion Az+ as /j+ 
and that of the negative ion Bz~ as p_
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Box Я.1 Enthalpy and the Gibbs free energy of formation of ions
^ h e«  jonie solution* form, the ions occur in pair»; therefore, it is not possible to isolate the enthalpy of 
form alin of a positive or negative ion. Hencc, we cannot obtain the beats of formation o f  ions with the 
usual elements in their .standard state as the reference state. For ions, Ihe enthalpy of formation is tabulated 
by defining the ДU t of formation o f H+ zero at all temperatures. Thus

A //l(’[H+(aq)] =  0  at all temperatures

With this definition it is now possible to dbtain the Д //( of all other ions. For example, to obtain the heat of 
fonnation ofCI-Ou)), at a te m p e ra tu re th e  enthalpy of solution o f  11C1 is measured. Thus. Д//}'[СГ (aq)] 
is tbe heat of solution at temperature T  of the reaction

HC1 -» H +<»q) +  C |- (* tf

The tabulated value» of enthalpies arc based on this convention. Similarly, for tlie Gibbs energy,

ДС?[Н+(аЧ>] = 0  at all temperatures

For ionic systems, it has become customary to use the molality «cult (mol kg-1 solvent). This scale has 
the advantage that the addition of another solute does not change «he molality o f  a given solute. The values 
of Д 0° and Щ  for the fonnation o f ion* in water at T  =  298.15 К are tabulated for the standard state 
of an ideal dilute twlution at a concentration of 1 mol kg-1 , Thi* standard state it given the subscript 'a o \  
Thus, the chemical potential or the activity of an ion is indicated by ‘no’. The chemical potential o f an 
ionized salt. Я and the corresponding activity are demited with tlie subscript a i \

The activity coefficients у of electrolytes arc defined with respect to ideal solutions. For example, the mean 
chemical potential for AgCl is written as

м* ш 1 ["aj’ +ЛГ1п<)'А|^А|+) + /^ 1- +ffMn(ra -.xa -)J

=  /t° +  ЙТ  In т/ум + га * л 1+ ха-

(8.3.11)

where = 1/2 +  / 'c c ) ’ One® again, «ince the activity coefficients of the positive and negative ions 
cannot be measured individually, a mean activity coefficient y t  is defined by

r± -O v rc r> ,/a <8-312)
In the more general case of Equation (8.3.9), the mean ionic activity coefficient is defined as

III" J-* -  (r+’ r : - ) ' /(V*+V- > <8.3.13)

where we have used y + and у _ for the activity coefficients of the positive and negative km*.
The chemical potentials of dilute solutions may be expressed in terms of molality mk (moles of solute per 

kilogram of solvent) or molarities r t  (moles o f solute per liter o f solution1) instead of mole fraction* xt . In 
electrochemistry, it is more common to use molality mk. For dilute solutions, since xk = Л*//Уш1уеп, , we have 
the following convention formulas for the different units:

X/, ■» щ М , and .V» m Vmcit (8.3.14)

The molarity of i  is «lsn expresneil as | 4
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in which Me is the molar mans of the solvent in kilograms and V№  the molar volume of the solvent in liters 
The corresponding chemical potentials then are written as

1?к *  + ЛГ1п<7*д*)

=  + R T \n M s +Wln()>(t«i|)

« 4 " ° + л п . ( 2 5 г )

(8.3.15)

(8.3.16)

\ Ш0 /

lfk = ltf  + m n V „ + H T \ tt (r lfit)

= < + ^ ' > " ( т г )  = ^ + ^ ' п ( ^ !)
(8.3.17)

in which the definitions of the reference chemical potentials //” °and n f  in each concentration scale are 
self-evident. The activity in the molality sc*le in written in the dimetislonless form as щ  — f t nik/m(>, in which 
m° is the standard value of molality equal to  I mol o f solute per kilogram of solvent. Similarly. Ihe activity 
in the molarity scale is written as a* =  у ^ с 0. in which c° equals 1 mol per liter of solution. For electrolytes 
the mean chemical potential ц ± is usually expressed in tlie molality scale; the tabulation of AGfand АЩ  for 
the formation of ioes in water at T  = 298,15 К is usually for the standard state of an ideal dilute solution at a 
concentration of 1 mol kg-1 . This standard state is given the subscript ‘ao’.

In the commonly ueod molality scale, the solution equilibrium o f AgCl expressed in Equation (8.3.8) can 
now be written as

^A gC I +  ^  I "  e A*CI =  2 ^  + KT ln
(m ° );0>2 (8.3.18)

Since the activity of a solid is nearly equal to one, aAgC1 «  1. Hence, we obtain the following expression for 
the equilibrium constant2 for solubility in the molality scale;

m — (nW—  = flA*+aa- = exp (8.3.19)

Tbe equilibrium constant for electrolytes is also called the solubility product For sparingly soluble 
electrolytes such as AgCl, even at saturation tlie solution is very dilute and y ± «  1. In this limiting case, the 
solubility product

*S P  e  '"A g * n >Cl-

in which we have out explicitly included n i'. which has a value equal to one.

t

(8,3.20)

8.3 J  Activity, Ionic Strength and Solubility

A theory of ionic solutions developed by Peter Debye and Erich Hticket in 1923 (which ii based on statistical 
mechanics) provides wi expression for tbe activity. We shall only state tbe main result of this theory.

2A general definition of tbr equilibrium constant is discussed in Chapter 9.
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f which wor^ s We^ ^0Г ^*ule electro'y tes The activity depends on a quantity called the ionic strength /
defined by

M Z # " *  <8-3-2 l >
1 к

Tbe a c tiv ity  coefficient o f an ion k in the molality scale is given by

logi0( r* ) - - /U ? V / <8.3.22)

in which

,  _  .  .1/2
№32S)2.3026

w here pt is the density of the solvent, e  in the electronic charge, e0 = 8.854 X 19"12 C2 N_1 m-2 it  the 
permittivity o f a vacuum and e r the relative permittivity of the solvent (er =  78.54 for water). For ions in 
water, at T =  298.15 K. we find A =  0.509 kg1/2 w o\~M . Thus, at 25 °C the activity o f ions in dilute solutions 
can be approximated well by the expression

logl0(r*) = -0.509^  V? (8.3.24)

The Debye-HUckel theory enables us to understand how solubility it  influenced by ionic ttrength. Fbr 
example, let us look at the solubility of AgO. If the mAg+ = и  S, the solubility, we may write the 
equilibrium constant K „  as

KJT) m r lm ^ m c r  = r2S2 (8.3.25)

The ionic strength depends not only on the concentration of Ag* and Cl* ions, but also on all the other 
ions. Thus, for example, the addition of nitric acid, HNOj. which adds H+ and NOJ ions to the system, will 
change the activity coefficient y ± . However, the equilibrium constant, which is a function of T  only (as is 
evident from Equation (8.3.19)), remains unchanged if T  is constant. As a result, the value of m  (or solubility 
in molal) will change with the ionic strength /, If the concentration of H N 03 (which dissociates completely) 
is m!(N03, then the ionic strength of the solution is

/ ^ {тл у  + **ci- + mu- + тм о,-) ■ S + whnOj (8-3.26)

Using Equation (8.3.12) for y± for AgCl and substituting Equation (8.3.24) in (8.3.25) we can obtain the 
following relation between the solubility S of AgCl and the concentration of HNOs:

log,0(S) = \  1о8ю(Кт(Г)) + 0.509v/ s  + wIjNO, (8.3.27)

If S «  тт п > . then the above relation can be approximated by

log,«(S) -  j  1овю(*«(Л) + 0.509 (8.3.28)

Thus, a  plot of log S versus yWiHN0, should yield a straight line, which is indeed found to be the case 
experimentally. In fact, such plots can be used to determine the equilibrium constant and the activity 
coefficients



8.4 Therm odynam ic Mixing and  Excess Functions

8.4.1 Perfect Solutions

A perfect solution is one for winch the chemical potential of the form uk(p, T, xk) =  ц*к(p, T) +  RT  ln(.vt ) к  
valid for all values o f  the mole fraction xk. The molar Gibbs energy of such a solution is
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If each o f the components were separated, then the total Gibb* energy tor the components is tbe sum 
0'm = = £*•>*/<*. in which we have used the fact that, for a pure substance, GJ*. the molar G ibbs
energy of k, is equal to tlie chemical potential /<{. Hence, the chaege (decrease) in the molur Gibbs energy 
due to the mixing of the components in the solution is

where ASm i is the molar entropy of mixing. This shows that, during the formation of a perfect solution from 
pure components m a fixed temperature, the decrease in G is AG,,,* *  - T A S ^ .  Since ДС =  AH -  TAS. we 
can conclude that, for the formation of a perfect solution at a fixed temperature, AH  =  0. This can be verified 
explicitly by noting that the Helmholtz equation (5.2.11) can be used to evaluate the enthalpy. For G  given 
by Equations (8.4.2) and (8.4.3) we find

Thus, the enthalpy o f  tlie solution is the same as the enthalpy of the pure components and there is no change 
in the enthalpy of u perfect solution due to mixing. Similarly, by noting that VB =  (r)Gmld p \r , tl is easy to see 
(Exercise 8.16) that there is no change in (be molar volume due to mixing, U .  4 ^ ,  =  (>, the total volume is 
the sum of the volumes of the components in the mixture. Furthermore, since Д U  *= A H -p A V ,  we see also 
that Af/nlil *  0. Thus, for a perfect solution , the molar quantities for mixing are

(8.4.[|
к к *

(8.4.2)
к

and

(8.4.3)
к

Since the molar entropy =  -  (дО т1дТ)у it follows from Equations (8.4.2) and (8.4.3) that

(8.4.4)
it

(8.4.5)
к

(8.4.6)

(8.4.7)
к

(8.4.8)
к

(8.4.9)

(8.4.10)

дг/юх ■= 0 (8.4.11)
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I nerfect solution, the irreversible process of mixing of the components at constant p  am! 7 is entirely due 
r ц,е7псгеа*с in entropy; no heat is evolved or absorbed.

8.4.2 Ideal Solution*
I „  goiutions may be ideal over a small range of mole fractions In this case the molar enthalpy Hm and 

d *  m o la r  v o lu m e  may be a linear function of Ihe partial molar enthalpies / / „ „  and partial molar volumes 
V^.Thus:

Я *  =  2 > Д ы  and (M -12)
i i

H owever, tlic partial molar enthalpies Hm, may not be equal lo Ihe anolar enthalpies of pure substances if the 
c o rre s p o n d in g  mole fractions are small. The same is tnie for the partial molar volumes. On the other hand, if 
x is nearly equal to one, then 11^ will be nearly equal to the molar enthalpy of Ihe pure substance. A dilute 
s o lu tio n  for which Equation (8.4.12) is valid will exhibit ideal behavior, but it may have a nonzero enthalpy 
o f  mixing. To see this more explicitly, consider a dilute (jt1 »  x2) binary solution for which / Г ,  and 7/V, are 
the m olar enthalpies of the two pure components. Then, before mixing, the molar enthalpy is

+ v c *  <8-4 л э >

After mixing, since for the major component (for which .Vj »  l)w e have Н*л *  Wml. the molar enthalpy will 
be

* . - * . 4 , + * * » « , (8-414)

The molar enthalpy o f mixing is then the difference between the * o v e  two enthalpies:

Д И - и - Я т - Ч - М Ч в - Ч в )  (М Л 5)

In this way, an ideal solution may have a nonzero enthalpy o f mixing. The same may be true for the volume 
of mixing.

8.4.3 Excess Functions

For nomideal solutions, the molar Gibbs energy of mixing is

ДОй , - Д Г £ * 1 | | ( г Л )  (8.4.16)
i

The difference between the Gibbs energies of mixing of perfect and nonideal solutions is called the excess 
Gibbs energy , which we shall denote by From Equations (8,4.7) and (8.4.16) it follows Slat

4U3|s lo r, (8-4.17)
I

Other excess functjone. such a» excess entropy and enthalpy, can be obtained from A<JE. For example:
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40 Г
TASe

-20

figure 8.6 Thermodynamic excess function for a solution o f n-heptane (component 1) and n-hexadecane (com
ponent 2) at 20 -С. I ho graph shows molar excess functions as a function of the m ole fraction x, of n-hexadecane.

Similarly ДHB can be obtained using the relation

These excess function* can be obtained experimentally through measurements of vapor pressures and heals 
of reaction (sec Figure 8.6 for an example o f  an excess function),

8 .44 Regular and Atherm al Solutionis

Nonideal solutions may be classified into two luniting cases. In one limiting case, called regular solutions. 
AGg я  Д/fgt i.e. mod of the deviation from ideality is due to Ihe excess enthalpy o f mixing, Since ДОЕ » 
ДЯЕ -  M S E, it follows that for regular solutions AS,. «  0. Furthermore, since ДХБ a  -(d A G ^ /d T ^ , from 
Equation (8.4.17) fc follows that the activity coefficients

For regular binary *olutions, tbe activities may be approximated by the function ук = aurjj/УЙГ).
The other luniting case of nonideal solutions is when ДС?Е «  -  7 'Д %  in which case the deviation frain 

ideality is mostly due to Ihe excess entropy of mixing and Д //К «  11 In this case, using Equation (8.4.17) 
in (84.19), wc see (hut In / ,  are independent of T. Such solutions are called atherm al solutions. Solutions 
in which the component molecules are of nearly the same size but differ in intermolecular forces generally 
behave like regular solutions. Solutions whose component molecules have very different sizes but do not 
differ significantly in iheir intermolecular forces, as in the case of monomers and polymere, art examples of 
athermal solutions.

(8.4.19)

(8.4.20)
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8.5 Azeotropy

In Chapter 7 we discussed azeotropes briefly. We shall apply the thermodynamics of solutionis that was 
jiflgrntH in tbe previous sections of this chapter to azeotiopes. For an azeotrope in equilibrium with it* 
£ V  ,hc composition of the liquid and the vapor phases are the same. At a fixed pressure, a liquid mixture is
V azeotrope at a particular composition called the azcotropic composition. In a closed «yetem, an azeotropic 
t r a n s f o r m a t i o n  is one in which there is an exchange of matter between two phases without a change in tlie 
composition. In this regard, an azeotrope is similar to the vaporization of a pure substance. This enables us to 
obtain the activity coefficients o f azeotropes ju«t as can be done for a pure substance.

Let us consider a binary azeotrope. As we have seen in Section 8.1, the chemical potentials of Ihe 
c o m p o n e n ts  can be written in the form щ {Т .р .х к) =  $ ( T ,p )  + R T \M rkxt ), in which activity coefficient 

quantifies the deviation from ideality. If Yt,\ and ykg are the activity coefficients of component к in the 
liquid and gas phases respectively, then by considering an azeotropic transformation it can be shown that 
(Exercise 8,17)

in which AHvapJt i« the heat o f vaporizatioe of component к and Д is the change in the molar volume of 
the pore component between tlie liquid and the vapor phases. 7* is the boiling point of the pure solvent at 
pressure p*. If we consider an azeotropic transformation at a fixed pressure, e.g. p  =  p ’ =  I atm, then since 
ДЯ™  generally does not change much with T. we obtain

For the activity coefficient of the vapor pb»se. if we use the ideal gas approximation, yk i  w  1. This gives us 
an explicit expression for the activity coefficient of the liquid phase:

With this expression, the activity coefficient of a component of an azeotrope can be calculated, and it gives a 
simple physical meaning to the activity coefficient. Molecular theories of solutions give us more insight into 
the relation between the intermolecular force» and the thermodynamics of azeotrope* |3J.
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Examples

<8.5.2)

<8,5.3)

Example 8.1 In the oceans, to a dept hot'about 100 m the concentration of 0 2 is about 0.25 X 10-3 mol L "1. 
Compare this value with the value obtained using Henry's law assuming equilibrium between the atmospheric 
oxygeo and the dissolved oxygen.
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Solution The partial pressure of 0 2 in the atmosphere is p 02 »  0.2 atm. Using Henry's law constant щ 
Table 8.1 we have, for the mole fraction of tbe dissolved oxygen Jtoj,

Po2 -  ^ 0 2-*0j
Hence:

P<h 0 .2atm
Xrt, — 7 ~  =» —--------- :------- =  4 .0  X 10

^o, 4.3 x 104 atm

i.e. there are 4.6 x  10~6 mol o f 0 2 per mole of H20 . Noting that 1 L of H20  is equal to 55.5 mol, the above 
mole fraction of 0 2 can be converted into a concentration in moles per liter:

Co, =  4.6 X КГ* x  55.5mol L~‘ =  2.5 X ИГ4 mol L*1

which is equal to the measured concentration of 0 2 in the oceans.

Example 8.2 In an aqueous solution of NH3 at 25.0 °C, the mole fraction o f N il, is 0.05. For this solution, 
calculate the partial pressure of water vapor assuming ideality. If tlie vapor pressure is found to be 3.40 kPa. 
what is the activity a of water and what is its activity coefficient y?

Solution If /»* is the vapor pressure of pure water at 25.0 °C, then, according to Raoult's law (8.1.10), 
the vapor pressure o f the above solution is given by p  =  x HjC)P ’  =« 0.95p*. The value of p* can be obtained 
as follows. Since water boils at 373.0 К at /> =  1.0 atm = 101.3 kPtu we know that its vapor pressure is
101.3 kPa at 373.0 K. Using the Clausi*w-Clapeyron equation, wc can calculate the vapor pressure at
25.0 °C =  298.0 K;

With p 2 =  1 atm, T2 *  373,0, Г, =  298.0, ДЯуар =  40.66 kJ m ol*1 (see Table 7.1). the vapor pressure. 
Pi (atm), can be computed:

lny>1/atm ) =  -3.299

i.e,

P\ -  exp(-3.299) atm =  0,0369 atm = 101.3 X 0.0369 kPa 

=  3.73 kPa =  p*
<

Hence, the vapor pressure p ‘ of pure water at 25 °C is 3.738 kPa. For the above solution in which the mole 
fraction of water is 0.95, the vapor pressure for an ideal solution according to Raoult's law should be

p  - 0 ,9 5  X 3.73 IcPa =  3,54 kP»

For an ideal solution, the activity a  is the im c  as the mole fraction X[. As shown in Fxiuation (8,1.6), in the 
general case tlie activity a = p l p ' ■ Hence, if the measured vapor pressure is 3.40 kPa. then the activity

a, -  3.40/3.738 »  0.909

The activity coefficient is defined by a* =» Hence, / i  m <*Ai -  0.909/0.95 =  0,956,

Kxample 8 J  Living cells contain water with many ions. The osmotic pressure corresponds to that of an 
NaCl solution of about 0.15 M. Calculate the osmotic pressure at T  = 27 °C.
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ЧлШшп Osmotic pressure depends on tbe 'colligative concentration’, i.e. the number of particles per unit 
volume Since NaCl dissociates into Na+ and Cl" ions, the colligative molality of the above solution is 
0 jo  M. Using the v an ’t Hoff equation (8.2.14). we can calculate Ihe osmotic pressure x:

я  »  ЛЛ-Л =  (0.0821 L atm К '1т о Г 1ХЗОО.ОКХО.З(>то1 [ , - ')  =  7.40 aim

I f  an animal cell is immersed in water, then the water flowing into tbe cell due to osmosis will exert a pressure 
o f  about 7.4 atm and causes the cell to buret. Plant cell walls are strong enough to withstand this pressure.

К sample 8.4 A t/) = 1 atm, the boiling point of an azeo tropic mixture of CjH jO H  and ССЦ is 338.1 K. 
Tbe heat of vaporization of C2H5OH is 3858 kJ т о Г 1 and its boiling point is 351.4 К . Calculate the activity 
coefficient of ethanol in the azeotrope.

Solution This can be done by direct application of Equation (8.5.3), where Д //|ЛЧ, *  38.58 kJ m ol"1, 
T *  338.1 К and Г* *  351.4 K:

, ,  , 38.5 x 1 0 s t  1 1 \  л « ,„
rw “  Т И Т "  ( m i  “  Ш а )  ”

i.e.

Ут =  1.68
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E xercises

8.1 Obtain Equation (8.1.8) from Equation (8.1.7).

8.2 14.0 g of NaOH is dissolved in 84.0 g of H20 . The solution has a density of 1,114 X 103 kg m~3, Far 
the two components, NaOH and HjO . in this solution, obtain (a) the mole fractions, (b) the molality 
and (c) molarity.

8-5 The composition of the atmosphere is shown in Table 8.1. Using Henry's law constants, calculate the 
concentrations of N2. 0 2 and C 0 2 in a lake.

8.4 Obtain Equation (8,2.5) from Equation (8.2.4) for small changes in the boiling point of a solution.

8.5 (a) The solubility of N2(g) in water is «bout tbe same as in blood serum. Calculate the concentration
(in mol I.-1) of N2 in the blood,

(b) The density of seawater is 1.01 g m b '1. What is the pressure at a depth o f 100 m? What will the 
blood serum concentration (in mol L '1) o f N2 be at this depth? If divers rise too fast, then any 
excess N 2 can form bubbles in the blood, causing pain, paralysis and distress in breathing.

Assuming Raoults law holds, predict the boiling point of a 0,5 M aqueous solution of sugar. Do (he 
same for NaCl. but note that the number of particles (ions) per molecule is twice thal o f a nonionic 
solution. Raoult's law is a colligatiw property that depends on the number of solute particles.

*•7 Ethylene glycol (OH—CH2—CHj—OH) is used as an antifreeze. (Its boiling point is 197 *C and 
freezing point in -17.4 •С .)
(a) Look up the density of ethylene glycol in the CRC Handbook or other tables and write a general 

formula for the freezing point o f a mixture o f X mL of ethylene glycol in 1.00 L of water for X 
in the range 0-100 m b.



(b) If the lowest expected temperature is about -1 0  °C, what is the minimum amount of ethylene 
glycol (milliliters ethylene glycol per liter o f H jO ) you need in your coolant?

(c) What is the boiling point o f the coolant that contains 300 mL of ethylene glycol per liter of watci

8.8 What will be the boiling point of a solution o f 20.0 g of urea ((NH2)2CO) in 1.25 kg of nitrobenzene 
(use Table 8.2).

8.9 A 1.89 g pellet of an unknown compound was dissolved to 50 mL of acetone. The change in the boiling 
point was found to be 0.64 °C, Calculate the molar mass o f the unknown compound. The density 0f 
acetone is 0.7851 g m L "1 and the value of the ebullioscopic constant Kb may be found in Table 8.2.

8.10 A solution of 4.00g of hemoglobin in 100 mL was prepared and its osmotic pressure was measured. The 
osmotic pres#ure was found to be 0.0130 atm at 280 K. (a) Estimate the molar mass of hemoglobin, (b) If
4.00 g o f N aOI is dissolved in 100 mL of water, what would the osmotic pressure be? (Molecular weights 
of some proteins: ferricytochrome C. 12 744; myoglobin, 16 951; lysozyme, 14 314; immunoglobulin 
O, 156 000; myosin, 570 000.)

8.11 The concentration of the ionic constituents of seawater are:
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Ion Cl" Na* so „J- Mg>’ CaJt K* HCO,"

Concentration (M) 0.55 0,46 0.028 0.054 0,010 0.010 0.0023

Many other ton* arc present in muck lower concentrations. Estimate the osmotic pressure of seawater 
due to its ionic constituents.

8.12 The concentration of NaCI in seawater is approximately 0,5 M. In the process Ы reverse osmosis, 
seawater is forced through a membrane impermeable to the ions to obtain pure water. The applied 
pressure has to be larger than the osmotic pressure.

Membrane

3
(a) At 25 'C , what is the minimum pressure needed to achieve reverse osmosis? What is the work 

done in obtaining 1.0 L of pure water from seawater?
(b) If the east of 1 kW h o f electrical power is about $0.15, what would be the energy cost of 

producing 100 L of water from seawater through reverae osmosis if the process is 50% efficient 
in using the electrical power to obtain pure water?

(c) Suggesit another process to obtain pure water from seawater.

8.13 Consider two cubes of copper o f sidr 1 cm. In each cube, assume that one out of a million Cu atoms is 
Cu+, Using Coulomb's law, calculate the force between the two cubes if they are placed at a distance 
of 10 cm.

8.14 Calculate the ionic strength and the activity coefficients of a  0,02 M solution of CaCL.

8.15 The solubility product of AgCl is 1.77 x  10~w. Calculate the concentration of Ag+ ions inequlibrium 
with solid AgCl.
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0 1 6  Show that for a perfect solution tbe molar volume of mixing «  0 .

g,j7 Consider a binary azeotrope. The chemical potentials of a component, say 2, in the gas and the liquid 
phases can be written as

»Xi(T .p ,x )  ■= n'2 i CT,p) + RT

and

Рц(Т.р.х)  = нут ,р )  + NT'Iniy^Xi)

in which It* is the chemical potential o f the pure substance. Nole that the mole fraction is the same in 
the two phases. Use Equation (5,3.7) to derive the relation (8.5.1).

8.18 A regular solution is one for which Hie excess entropy ДSB = 0. Show that this implies that In y t a  l /T  
in which Yi is the activity coefficient
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Thermodynamics of Chemical 

Transformations

9.1 Transformations of M atter

Transformations Ы matter take place in many ways, through chemical, nuclear and elementary particle 
reactions. We shall speak of 'chemical transfoimations' in this broader sense. Though thermodynamics was 
founded in our daily experience, its reach is v e t. ranging from the most simple changes like the melting of 
ice, to the state of matter during the first few minutes after the 'big bang-, to the radiation that fills the entire 
universe today.

Let us begin by looking at the transformation that matter undergoes at various temperatures. Box 9.1 gives 
an overview of the reactions that take placc at various temperatures, ranging from those during the fiist 
few minutes after flie 'big bang’ [1] to terrestrial and interstellar temperatures. All these transformations or 
reactions can be as*ociated with enthalpies of reaction and an equilibrium characterized by the vanishing of 
the corresponding affinities.

Our present knowledge of the universe is based on the radiation emitted by galaxies that we can detect 
and on the motion of galaxies due to gravitational forces exerted by matter that is visible and invisible. 
Astrophysical dataon observable gravitational effects indicate that only about 4% of the energy density in the 
universe is in the form of the protons, neutrons and electrons that make up ordinary matter in all the visible 
galaxies. Of the rest, 74% is in an unknown form spread diffusely throughout the universe; this is called dark 
energy. The remaining 22% is matter in galaxies that is not visible and is called dark  m atter; its presence 
is inferred through the gravitational effect* it has on visible matter. The universe is also filled with thermal 
radiation1 at a temperature of about 2.73 К (usually called cosmic microwave background) and particles 
called neutrinos, which interact only very weakly with protons, neutrons and electrons.

The small amount of matter that is in the form o f stars and galaxies is mot in thermodynamic equilibrium. 
The affinities for the reactions that are currently occurring in the stars are not zero. The nuclear reactions in 
ll№ stars produce all the known elements from hydrogen (2-4]. Hence, the observed properties, such as the 
abundance iif elements in stars and planet», cannot be described using the theory o f chemical equilibrium.

precise thetmodynaniK nature of thermal nuliuUotj U discussed in Chapter U

^ °? ern Th&ntodynamictt: From Hear Engines to Ditxipafive Structures, Second Edition. Dilip Kondepudj and Ilya Prigogine.
John Wiley & Son*, U d  Published 2015 by John Wiley St Sore, Ltd.
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Box 9.1 Transformation »f matter at various temperatures
Temperature >W l" K. This was the temperature during the fin* few minutes of the universe after the 

‘big bang'. At this temperature, the thermal motion of the protons and neutrons is so violent that even 
Ihe strong nuclear forces cannot bind (hem as nuclei of elements. Electron-posuron pair# appear and 
disappear spontaneously and are in thermal equilibrium with radiation. (The threshold for electron- 
positron pair production is about 6 x l t f  K.)

Temperature range 10*-107 K. At about 109 K. nuclei begin Do form and nuclear reactions occur in 
this range. Temperatures as high as 1()9 arc reached in stars and supernova, where heavier elements 
are synthesized from H and He. The binding energy per nucleon (proton or neutron) is in the range 
(1.0-1.5) X 10” IJ J и  (6,0-9.0) X 10s eV. which corresponds to (6 .0-90) x  10s kJ в ш Г 1.

Temperature гаоще 10*—It»4 K. In this range. electrons bind I» nuclei to form atoms, but the bonding 
Ibices between atoms are not strong enough to form stable molecules. At a temperature of about
1.5 X 10* K. hydrogen atoms begin lo ionize. The ionization energy of 13.6 eV corresponds to 
1310 kJ m ol"1. Heavier atoms require larger energies for complete ionization. Complete ionization 
of carbon, for example, requires 490 «V of energy, which corresponds to 47187 kJ m ol"1.* Carbon 
atoms will be completely dissociated at T «  5 X Ю6 К into electrons and nuclei. In this temperature 
range, matter exists as free electrons and nuclei, a state o f matter called plasma.

Temperature ra*j;e 10—104 K. Chemical reactions take place in this range. The chemical bond energies 
are of the order o f 103 kJ mol-1. The С —H bond energy is about 414 kJ m ol"1, Al и temperature of 
about 5 X 10* K. chemical bonds will begin to break. The Bitermoleculnr forces, «itch as hydrogen 
bonds, are of the order 10 kJ mol*1. The enthalpy of vaporisation of water, which i* essentially the 
breaking o f hydrogen bonds, is about 40 kJ mol ' 1.

*1 eV =  1,6 X 10"19 J =  96.3 kJ mol-1 ; / ’= (Energy in J m o l '1 я  (Energy in J ) /iB.

A knowledge of the rates of reactions and the history of the star or planet is necessary lo understand the 
abundance o f elements.

When a system reaches thermodynamic equilibrium, however, its history is of no importance. Regardless 
of the path leading to equilibrium, the state of equilibrium can be described by general laws. In this chapter 
we shall first look at the nature o f chemical reactions and equilibrium; then we study the relation between 
entropy production and the rates chemical reactions that drive the system to equilibrium.

9.2 Chemical Reaction Rates

In studying chemical reactions and their evolution to equilibrium, il I» also our purpose to look explicitly at 
the entropy production while the reactions are in progress, In other words, we would like to obtain explicit 
expressions for the entropy production d|Slit in terms of the rates o f reaction». The introduction of reaction 
rates takes us beyoud ihe classical thermodynamics of equilibrium states that was formulated by Gibbs 
and others.

In general, the l*ws of thermodynamics cannot specify reaction rates. Though affinity it the driving force 
of chemical reactions, the rates are not determined solely by affinities, but depend on many factors, such as 
tlie presence of catalysts which does not change the affinity. However, as we shall see in later chapters, close 
to the thermodynamic equilibrium -  called the 'linear regime’ -  thermodynamic formalism can be used to



Thermodynamics of Chemical Transformations 233

. w ц,а1 rales are linearly related to the affinities. The genera) topic of specifying tlie rates of chemical 
hat become a »ubject in itself and goes by tbe name of 'chemical kinetics'. Kinetic equations express 

„ tee  as functions of state variables. Some basic aspects o f chemical kinetics will be discussed in 
thjg section.

We have already seen that the entropy production due to a chemical reaction may be written in the form 
(see Equation (4.1.16))

i £  =  d ^ £  <9,2.i)
d/ Tdi

in which J  is the extent of reaction introduced in Section 2.5 andA is the affinity, expressed in terms of the 
chemical potentials. The time derivative o f (  it related to tbe rate o f reaction. The precise definition of the 
rate of reaction is given in Box 9.2. For the following simple reaction2:

Cl(g> +  H2(g) ^  HCl(g) +  H(g) <9,2.2)

Box 9.2 R eaction ra te  and  reaction  velocity

The reaction rate is defined as the number of reactive events per Mjoond per unit volume. It is usually 
expressed as mol I ." 1 s*1. Chemical reactions depend on collisions, In most reactions, only a very small 
fraction of the collision» result in a chemical reaction. For each m etin g  specics, since the number of 
collisions per unit volume is proportional to its concentration, tlie rate* »re proportional to the product 
of the concentration!», A renction rate refer» lo conversion of Цк- rcuctanu to the product» or vice versa. 
Thus, for the reaction

01(g) +  H2 (g)=<*HCl(g) +  H (g)

the forward rale Rt «= i,[CT][H2] and the reverse rate R, =  Ar[JK'l|IHJ, in which and t ,  are tlie rale 
constants. In a reaction, both forward and reverse reactions take pdac« simultaneously. For thermodynamic 
consideration*, we define the velocity at a reaction as the rat» of net conversion of the reactants to 
products. Thus:

Reaction velocity v = Forward rate -  Reverse rale

= *t[Cl][H2J-M HCl][H]
= R , - R r

In a homogeneou* syrtem. the reaction velocity v is given in term* of the extent o f reaction:

in which V is the volume of Ihe system. In practice, monitoring the progress of a reaction by noting the 
*angc in some property (such as spectral absorption or refractive index) of the system generally amounts 
to monitoring the change in Che extent of reaction

a detailed *tlkh of Йш reaction, see Scltnce. 273 (I <196). 1519



the affinity A and the extent of reaction i  are defined by
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A *  Иа + ~  ^HO ~ PH (9.2.3)

d*rcl « ^ 4  <WHC1 dA'H
d f -  — — = *  —r - (9.2.4)

As explained in Box 9.2, Ihe forward reaction rale is t({Cl][H2]. in which the square brackets indicate 
concentrations and Jtf is the forward rate constant, which depends on temperature. Similarly, the reverse 
reaction rate is ^[HCI][H]. The time derivative of £ is the nel role o f  conversion of reactants Cl and H2 to the 
products HC1 and H due to the forward and reverse reactions. Since (he reaction rates are generally expressed 
as functions of concentrations, it is more convenient lo define this net rate per unit volume. Accordingly, wc 
define a reaction velocity v as

Note that this equation follows from Equation (9.2.4) and the definition of the forward and reverse rates. 
For example, in a homogeneous system, the rate of change of «he concentration of Cl is d(Na /V) dI = 
-k t [C1][H2] +  к, [НСЩН]. More generally, if R, and Rr are the forward and reverse reaction rates.

The reaction velocity units are mol L-1 s'*.
In the above example, the rate of reaction bears a direct relation to the stoichiometry of the reactants, but 

this is not always true. In general, for a reaction such as

in which it is a tempenilure-dependeot rate constant and the exponents a and b are not necessarily integers. 
The rate is said to be of order a in [X] and of order b in [Y], The sum of all tlie orders of tbe reactants, a + b. 
is the order of the reaction. Reaction rate» can take complex forme bccause they may be Ihe result of many 
intermediate steps with widely differing rales that depend on the presence of catalysts. If all the intermediate 
steps are known, then each step is called an elementary slep. Rate» of elementary step» do bear a simple 
relation to the stoidhiometry: the exponent» equal the stoichiometric coefficients. If reaction (9.2.7) were an 
elementary step, for example, then its rate woukl be *(X]2[Y|.

In many cases, tbe temperature dependence of the rate constant is given by tlie Arrhenius equation

(9.2.5)

we have

(9.2.6)

2X +  Y -* Products. Rate = Л[Х|в|У]* (9.2.7)

к *Л^,е"£*/яг (9.2.8)
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Svante August Arrhenius (1859-1927).

Svante Arrhenius (1859-1927) proposed U in 1889 and showed its validity for a large number of reactions
(5,6]. The teitn *o «called the pre-expontiMlal factor and £a the activation епегяу Рог the forward reaction 
of Equation (9.2.2). Cl + H2 -» HCI +  H, we have, for example, *0 = 7.9 x  10w L m ol'1 s ' 1 and E , =  23 
у  т о Г 1 • When Г varies over a wide range, the Arrhenius equation was found to be inaccurate in predicting 
die variation o f the rate constant, though it is quite useful for many reactions.

A more recent theory that is based on statistical mechanics and quantum theory was developed in the 
1930s by Wigner, Ptlzer, Eyring, Polyani and Evans. According to this theory, the reaction occurs through 
a transition state (see Box 9.3). We shall discuss transition slate theory in some detail later in this chapter. 
The concept of a transition state leads to tbe following expression for the rate constant:

* = *- ( * 2 p j  е-Ч4*»-Г4*»)/*Г „  r  e-*aV»r <9,2>9)

in which ks  »  1.381 x  Ю*231 K '1 is the Boltmann constant and h is Planck's constant. The terms Д//1 und 
* c  the transition-state enthalpy and entropy respectively, as explained briefly in Box 9.3. The term r  is 

'Mali, o f the order of unity, which is characteristic of tbe reaction. A catalyst increases the rale o f  reaction by 
“Ilf ring the transition slate such that (&H1 -  T&Sf ) = ДО* decreases.
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Box 9 3  Arrhenius equation and transition state theory

According to the Arrhenius equation, the rate constant of a chemical reaction is of the form

к я  k:, e~E*/Kr

The rate constant к ha» this form because. for the reactant» u> convert to products, the collisions must have 
sufficient energy to overcome an energy barrier. As shown in the above figure, the tnmsfomiittion from the 
reactants to the products is schematically represented with tt 'reaction coordinate' und the energy of the 
molecules undergoing the reaction.

According to the transition stale theory, the reactants X and Y tovcrsibly form a transition state (XY)f. 
The transition state then irreversibly transforms to the products, The difference in the enthalpy and entropj 
between the free jmolecules X and Y and the transition state are denoted by AT/ 1 and ЛЛ respectively 
The main result irf the transition state theory (which is obtained using principles of statistical mechanics 
and quantum mechanics) is that the rote constant is of the form

к *  к (kBr / h ) ехр[-(Д fP  -  TASl)/RT\ = i1 (finf / h ) exp[-ДО +/ЯЛ1

in which jfcB и  1,381 x 1023 J K "1 is the Boltzmann constant and А »  6,626 x 10-341 s is Wanck's constant: 
к is a term of the order of unity that is characteristic of the reaction,

A catalyst increases the rate o f reaction by altering the tramitkm Slate such that (Д/Т* -  ТД5*) =  4 G* 
decreases.

9.2.1 Rate Equations Using the Extent of Reactions

Reaction rates are generally determined empirically. The mechanisms of reactions, which detail all the 
elementary steps, are usually a result of long and detailed study. Once the reaction rate laws are known, 
the time variation of tbe concentration can be obtained by integrating the rale equations, which are coupled 
differential equations. (Box 9.4 lists elementary first- and second-order reactions.) For example, if we have 
an elementary reaction of the form

tc
X ^ 4 -^ 2 Y (9.2.10)
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n the c o n c e n tr a t io n s  are governed by the following differential equations:

_ 1 Ё » 2 Ш  = - ы х ] + * , т :! <9 '2 U >Vdf dr ( '

2 I ^  «  £ 0  =  2jfcf[X] -  2A,[Y]2 (9.2.12)
V q/ dr

Box 9.4 Elementary reactions
To obtain an explicit analytic expression Cor the concentrations of the reactants and products as a function 
of time, we must solve differential equation* such as (9.2.11) and (9.2.12). Generally, this is possible only 
in the case of simple reactions. For more complex reactions, one can obtain numerical solutions using a 
com puter. Two elementary reactions for which we can obtain explicit expressions for the concentrations 
as functions of time are given below.

First-order reaction. For a decomposition reaction X -» Products, in which the reverse reaction rate is 
so small that it can be neglected, we have the differential equation

d[Xl t r x .—  . - а д х  |

It is easy to see that solution of this equation is

[XKO *  [X]0«-V

in which (X]ij to the concentration al tune l => 0. This is the well-known exponential decay; in a given 
amount of time. (X) decreases by the same fraction. In particular, Ihe time it takes for any initial value 
of [X] to decrease by a factor of 1/2 it* the half-life. It is usually denoted by fw , The half-life can be 
computed by noting that exp(-iffle ) = 1/2, i.e.

ln(2) 0.6931

Second-order reaction. For the elementary reaction 2X -* Piroducts, if die reverse reaction can be 
neglected, the rate equation is

^  =  -2 * r|Xl>

The solution it obtained by evaluating
1X1

//№Ч«*
which gives us

ixi - Щ  ~2k,t
Qhen [X|,, at t = 0 and kt. this expression gives us the value [X] at any time t.



Without lost of generality, we may assume V =  1 and simplify the notation. These two 
independent, tn foci, there it  only one independent variable { for every independent reaction. If [X]0 anj 
[Y]0 are the values of the concentrations at I = 0, then by assigning ’ (0) ж 0 and using df »  -d[X] and 2df -  
d[Y] it is easy to sec that [XI = [X]0 -  f and [Y| *  [YJ0 + 2 t  Subitituting these values into Equation (9,2 , \ , 
we obtain

^  -  М Р П о - ^ - ^ а П П о - ^ ) 2 (9.2.13)

In this equation, the initial concentrations (X]0 and [Y]0 appear explicitly and f(0) *  0 for all initial 
concentrations. The solution f(/) of such an equation can be used to obtain the rate of entropy production, as 
will be shown explicitly in Section 9.5. Differential equations such as these, and more complicated system 
of equations, can b e  solved numerically od  a computer, e.g. using software such as Mathematica or Maple 
(sample programs ire provided in Appendix 9.1). Furthermore, in describing reactions involving solid phases, 
concentration cannot be used to describe the change in the amount of a solid phase; the extent of reaction ', 
which represents the change in the total amounts o f  a reactant or product, is a convenient variable for this 
purpose.

When many reaction» are to be considered simultaneously, we will have one f for each independent reaction, 
denoted by ( k. and the entire system will be described by a set of coupled differential equations in Only 
in a few cases can we tind analytical solution* lo such equations, but they can be readily solved numerically 
using Muthematica. M<iple or other software that is designed specifically for solving rate equations.
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9.2.2 Reaction Itate* and Activities

Though reaction rates are generally expressed in terms of concentrations, one could equally well express them 
in terms of activities. In fact, we shall sec w the following sections that the connection between affinities and 
reaction rates can be made more easily if the reaction rates are expressed in terms of activities. For example, 
for tbe elementary reaction

X + Y ^ 2 W  (9.2.14)

the forward rate Rt and the reverse rate R, may be written a£

Rt ж and Rt = kra^  (9.2.15)
(

The rate constants t f and k, in Equation (9,2.15) will have unit» of mol L_1 s ' 1; their numerical values 
and units differ from those of the rate constants when Rf and Rr are expressed in terms of concentrations 
(Exercise 9.И).

Experimentally, we know that reaction кие» do depend on the activities; they are not speeilicd by concen
trations alone. For example, at fixed values of temperature and concentrations of the reactants, it is well known 
that the rates of ionic reactions can be altered by changing the ionic strength of the solution (usually known 
as the "salt effect'). litis change in the rale it due to a change in the activities. It has become general practice, 
however, to exprest the reaction rates in terms of the concentration» «nd to includc the effects of changing 
activities in the rale constants. Thus, the rale constants are considered functions of the ionic strength when 
rates are expressed in terms of concentrations. Alternatively, if the rates are expressed in terms of activities, 
then tbe rate constant is independent of the ionic strength; a change ш rate due to a change in ionic strength 
would be because activity depends on ionic strength.



Thermodynamics of Chemical Transformations 239

X + Y** 2Z <9.3.1)

at equilibrium we have

<9.3.2)

or

l>X +  /*Y =  2 « S <9,3.3)

The condition that «be ‘thermodynamic farce', affinity A, equals zero implies that the ccffresponding 'ther
modynamic flow', i.e. the reaction velocity d|/dr, also equals zero. The condition A »  0 means that at 
equilibrium the ‘stoichiometric sum’ of the chemical potentials of ihe reactants and products are equal, as in 
liquation (9.3.3). This result can be generaiized to an arbitrary chemical reaction of the form

in which the ак ак  the stoichiometric coefficients of the reactants A* and the l‘t  arc «he stoichiometric 
coefficients of the products Bt . The corresponding condition for chemical equilibrium will then be

Such equalities of chemical potentials are valid for all reactions: changes of phase, and chemical, nuclear and 
elementary particle reactions. Just as a difference in temperature driven the flow of heat until the temperatures 
difference vanishes, a nonzero affinity drives a chemical reaction until the affinity vanishes.

To understand the physical meaning of the mathematical conditions such as Equation (9.3.3) or (9.3.5), we 
express the chemical potential in terms of experimentally measurable quantities. We have seen in Section 5.3 
(Equation (5.3.5)) that the chemical potential in general can be expressed as

in Which ak is the activity and ^ ’(Г0) = ДС/^[*,Г] is «he standard molar Gibbs energy of formation (Box 5.1), 
the value of which may be found in data tables. This being a general expression, for gases, liquids and solids 
we have the following explicit expressions:

• Ideal gas-. ak * />*//)„, where p k is the partial pressure.
• Heal gases', expressions for activity can be derived using Equation (6.2.30). as was shown in Section 6.2-
• Pure solids and liquids : ak я  1.
• Solutions: ak a  where yk is the activity coefficient and xk is the mole fraction.

For ideal solution». yk = 1. For nonideal solution», yk is obtained by various means, depending on the 
type of solution. Tbe chemical potential can also be written in terms of the concentrations by appropriately
redefining //*.

fljAj + я 2А2 + аэАз + + anh n bjBj + ^3% + ••• + <9.3.4)

“t + “2 ^ 2  +  Дэ/'л, + "• +o„^a„ =  *1 Лв, + + *з/*ва +  >•• +  bmn B<> <9.3.5)

MP- T) *  М*(Г) +  RT 1 n at <9.3.6)



We can now use Equation (9.3.6) to express Ihe condition for equilibrium (9.3.3) in terms of the activities, 
which are experimentally measurable quantities:

lPx(T) + К ' 1п(ах.„> +  Ю  ln<aY.cq) *  2 f $ T ) + П  ln(°z,«,)] (9-3.7)

where the equilibrium values of the activities are indicated by the uubscript *eq\
This equation can be rewritten as
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4 е ч

aJte)a*<4
* exp

t%(T) + ft'y(T) -  2p f y r i

RT
=  K(T) (9.3.8)

K(T), as defined above, is called the equilibrium constant. It is a function only of temperature. That the 
equilibrium constant as defined above is a function of Tonly is an important thermodynamic result. It is called 
the law of mass action. p\(T ) = ДС{?[*. 71 is the standard molar Gibbs energies of formation of compound к 
at a temperature T. The 'Standard Thermodynumic Properties' tabic at the end of the book lists this quantity 
at T =  298.15 K. It is convenient and conventional to define the Gfbb» energy of reaction ДС, as

ДСг°(Г) = ~{mU T )  + л “(Г) -  2 4 (D )
, „ <9-3-9 ) 

= 2AG«(Z, 71 -  AG°[X, 71 ~  д с°[у ; Ц  

The equilibrium constant is then written as

ЛГ(Г)»«ф(-ДС?/*Г>

-  ехр[-(ДН® -  ГД5*)УЛГ)

in which Д(3®, A H fm i  ASj1 are respectively Ihe standard Gibbs energy, enthalpy and entropy of the reaction 
at temperature T. fltough their temperature dependence is usually not explicitly indicated. The activities in 
Equation (9.3.8) can be written in terms of partial pressures pk or mole fractions xk. If reaction (9.3.1) were 
an ideal-gas reaction, then ak =  р/,1р0. With p„ *  1 bar and pk measured in bars, the equilibrium constant 
takes the form

..P- - ~  ш K J T ) = ехр(-Д CfjR T) (9.3.11)

At a given temperature, regardless of tbe initial partial pressures, the chemical reaction (9.3.1) will irreversibly 
evolve towards the state of equilibrium in which the partial pressures will satisfy Equation (9.3.11). This is 
one form of the law o f  mass action. Kp is tbe equilibrium constant expressed in terms of the partial pressures 
Since in an ideal gas mixture pk — (NkIV)Rl m [k\RT (in which R i* in units of bar L mol~1 K"1), the law of 
mass action can also be expressed in terms of the concentrations of the reactants and product*:

[Z |.

[X]«,[Y]4
in which Kc is the equilibrium constant expressed in terms of the concentrations. In general, for a reaction of 
the form, aX +  bY ==■ ('Z it is easy to obtain the relation Kc *  {RI'fKp. where a =  a  + b  -  с (Exercise 9.14). 
In the particular ewe of reaction (9,3,1) я happens to be zero.

If one of the reactants were a pure liquid or a solid, then the equilibrium constant will not contain 
corresponding ‘concentration’ terms. For example, let us consider the reaction

Oj(g) +  2C(») ** 2CO(g) (9.3.13)



^  я  1 for the solid phase, the equilibrium constant in this case is written as 
Sit** ';**

j b » m ' £ a mKJ r >  (9.3.14)
а0Ьч4,ея Роич

u ai io n s  (9.3.9) a»1*) (9.3.10) provide us with the means of calculating tlie equilibrium constant f t '/') using 
I Zgijbolated value* of AGj|/t]. If the activities are expressed in terms of partial pressures, then we have A'p, 

Some examples are sliown in Box 9.5.

Box 9.5 The equilibrium constant
A basic result of equilibrium chemical thermodynamics is that the equilibrium constant KCT) is a function 
of only temperature II can be expressed in terms of the standard Gibbs energy of reaction ДCf (Equations
(9.3.9) and (9.3.10)):

*Г(Г) = ехр[-ДО?/ЙЛ

I For a reaction such an 0 2(g) + 2C(s) 2C0(g) the equilibrium constant at 298.15 К can be calculated 
using the tabulated values of standard Gibbs energy of formation ДО^ al 7'= 298.15 K:

ДС? =  2AGj[CO) -  2ДGj[C] -  AG°|Oj)

«  -2(137.2) kJ m ol'1 -  2(0) -  (0) -  -274,4kJ mol"1

Using thin value ini the expression K(T) я  е*р[-ДС®/ДГ] wc can eakwlai* A’lT) at / '»  2*)?. 15:

K(T) -  ехр[-ДО®/ЛГ) -ex|>[274.4 x 103/(8.314 X 298,I5)J -  1.18 x 104*

Similarly, for the reaction CO(g) + 2H2(J) ** CH3OH(g). at T *  298.15 K,

ДО1;  -  ДС?[СН3ОН] -  AG/ICOI -  2AG°[H2)

*  -161.96 kJ mol-1 -  (-137.2 kJ mol-1) -  2(0) =  -24.76 к3 mol"1

Ihe equilibrium constant is

K(T) m ехр[-ДС?/ЯГ| «  exp[24.76 x  10}/(8.314 X 298.15)] =. 2.18 X Ю4.

9-3.1 Relation between the Equilibrium Constants and the Rjite Constants

Chemical equilibrium can also be described a* a state in which the forward rate of every reaction equals its 
reverse rate. If the reaction X + Y =  27. il an elementary step, ami if we express the reaction rates in terms 
of the activities, then when the velocity of the reaction is zero we have

k f O ^ a y ^ k , ^  (9.3.15)

From a theoretical viewpoint, writing the reaction rales in terms of activities rather than concentrations is 
better because the state of equilibrium is dircclly related to aciivitie», not concentrations.

Comparing Equation (9.3.15) and the equilibrium constant (9.3.8), we see that

K(T) = ^  (9.3.16)
a x a Y k,
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which results in tbe not reaction X + Y r* 2Z. According to the principle of detailed balamce, at equilibrium 
we must have

°w = *■ a^ ° x  -  *£b -  к' / о  A  «_  = — —  = —  = Kb (9-4.51
4  4 ,

in which the subscripts a and b stand for reactions (9.4.3) and (9.4.4) respectively. Tbe thermodynamic 
equation for equilibrium о^/а^ау = K(T) can now be obtained as the product of Ka and Kt :

KaK* = =  <9A 6>d^a^ay axaY

From this derivation it is clear that this result will be valid for an arbitrary set of intermediate reactions.
The principle of detailed balance is a very general principle, valid for all transformation». It is in fact valid 

for the exchange of mutter and energy between any two volume elements of a system in equilibrium. The 
amount of matter and energy transferred from volume element X *o volume element Y exactly balances the 
energy and matter transferred from volume element Y to volume element X (see Figure 9,1), The same can 
be said of the interaction between the volume elements Y and Z  and X and Z. One important consequence 
of this type of balance is that the removal or isolation of one of the volume elements from the system, say 
Z, does not alter the states of X or Y or die interaction between them. This is another way of saying that 
there is no long-range correlation between the various volume elements. As we shall see in later chapters, 
the principle of detailed balance is not valid in nonequilibrium systems that make a transition to organized 
dissipative structure*. Consequently, the removal or isolation of a volume element at one part will alter the

<

(«)

figure 9.1 Ihe principle of detailed balance. (*) The equilibrium bHWten three intstconverting compounds A, 
В and С is a result of 'limited balance' between each pair of compounds. lb) Though a cyclic em ersion froni 
one compound to another as shown can aha m ult in concentrations thm remain constant in time, such a state 
is not the equilibrium state, (c) The principle of detailed balance has a more general validity. The exchange of 
matter (or energy) between any two regions of i  system is balanced in detail; the amount of matter going from X 
to V is balanced by exactly tbe reverse process.
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of g volume element located elsewhere. It is then said to have long-range correlations. We can see this 
if we compare a droplet of water that contains carbon compounds in thermal equilibrium and a living 

U that >s ‘n 30 ore aniret* staU‘ far fr°m tbermodynamic equilibrium. Removal of a small part of tlie water 
T  let does not change the state of other parts of the droplet, whereas removing a small part of a living cell 
*7шсе1у to have a drastic influence on other parts of the cell.

9  5  Entropy Production due to Chemical Reactions

The fo rm alism  of the previous sections can now be used to relate entropy production to reaction rates more 
explicitly- In Chapter 4 we saw that the entropy production rate due to a chemical reaction is given by

M  = >0
i t  T dt ~

<9.5.1)

Our objective is to iwlate the affinity A and tif/dl to the reaction rates, so that the entropy production is written 
in terms of the reaction rates. In order to do this, let us consider the reaction that we have considered before:

X + Y ^ 2 Z  <9,5.2)

Assuming that this is an elementary step, we have for tbe forward and reverse rates

R( == tfOxay and ft, = /^.oj <9,5.3)

Since the forward and reverse rates must be equal at equilibrium, we have seen from Equation <9.4.2) that

K(T) = -1 <9,5.4)

The velocity o f reaction v. which is simply the difference between the forward and reverse reaction rates, is 
related to d£/d/ as *hown in Equation (9.2,6). The reaction rates Rf and ftr can themselves be expressed as 
functions of the exlent of reaction {, as was shown in Section 9.2:

1 2 £ -  
V d/ '

[«,<{)- f t r(f)) <9,5.5)

To obtain the velocity of reaction as a function of time, this differential equation has to be solved. An example 
is presented below.

Turning now to five affinity A, we can relate it to the reaction rates in the following manner. By definition, 
the affinity of the reaction (9.5.2) is

A*> /ix +  Ич ~  2 Hz 
»  /1°<Г) + К Г ln(ax ) +  ц \(Т )  + R T ln«iY) -  2[л®(Г) + Kl ln«jz )]

-  Ь£(Г) + <400 -  + к г  ln(ox ) + err ln(dY > -  Ш In(aj,)

Since [ ̂ ( f )  + (У) -  20 ®<Г)] = - ДО 1̂ *  ЛГ In К(Т), the above equation can be written as

A =  RT\nK{T) + R T l n ^ p ^ j

<9,5.6)
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This is an alternative way of writing the affinity. At equilibrium, Л =* 0. To relate A to the reaction rates. ^  
use Equation (9.5.4) and combine the two logarithm terms;

This leads us to the relations we are seeking if we use the expressions in (9.5,3) to write this expression щ 
terms of the reaction rates;

(9.5.9)

Clearly, this equation is valid for any elementary step because the rates of elementary steps are directly related 
to the stoichiometry. Now we can substitute Equations (9.5.5) and (9.5.9) in the expression for the entropy 
production rate (Equation (9.5.1)) and obtain

i< Ji£  _  1 A<1£ 
V df ° V T 0 I

; ft(ftf - f t r )ln(ft(/ f t , ) £ 0 (9.5.10)

which is an expression that relates entropy production rate per unit volume to the reaction rates. (Note that 
ft is the gas constaat.) Also, as required by the Second Law. the right-hand side of this equation is positive, 
whether ft( > ft, or ft, > ft,. Another point to note is that in Equation (9.5.10) the forward and reverse rates 
Rf and ft, con be expressed in terms of concentrations, partial pressures of the reactants or other convenient 
variables; tlie reaction rates need not be express'd only in terms of activities, as in Equation (9.5,3).

The above equation can be generalized to several simultaneous reactions, each indexed by the subscript k. 
Tbe rate of total entropy production per unit volume is the sum of the rates at which entropy is produced in 
each reaction:

V d t T <1/
(9.5.11)

in whicdi Rki and ft*, arc the forward and reverse reaction rates of the А-th reaction. This expression jseful for 
computing the cntropy production rate in terms of the reaction rates, but It is valid only fo r  elementary steps 
whose reaction rates urr specified by the stoichiometry. This is oot a serious limitation, however, becausc 
every reaction is ultimately the result of many elementary steps. If the detailed mechanism of a reaction is 
known, then an expression for the entropy production rate can be written for any chemical reaction.

9.5.1 An Example

As an example of entropy production due to an irreversible chemical reaction, consider the simple reaction:

L * s D  (9.5.12)

which is the interconversion or 'racemization' of molecules with mirror-image structures. Molecule* that are 
not identical to their mirror image are said to be chiral and the two mirror-image forms are called enantiomers.
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eOtbc concentrations

(9.5.13)

(9.5.14)

К  , ,  , |,e jiie concentrations of the enantiomers of a chiral molecule. If at time f 
|^ t[ l)  ш1() jDj p (t, and «(0) = 0, then wc have Ihe following relations:

d W _ d [D ]  d£
- 1  +1 V

[L] = ii, -  ( ( / V) .  (D) = D0 +  ( { / V )

totions (9.5.14) are obtained by integrating (9.5.13) and using the initial conditions. For notational conve- 
we assume V= 1. At the end of Ihe calculation we can геш1пч1исс Ihe V factor. Raceimzation 

n® '“  an elemental first-order reaction for which the forward ami reverse reactions arc

X , = JtfL] = H l o  -  Ц  « r =  * [D  J = *(D0 +  J) (9-5.15)

Note that the rate constants for the forward and reverse reactions are the same due to symmetry: l  must 
convert to d  w ith the same rate constant as v  to L. Also, from Equations (9.5.15) and (9.5.9) one can see that 
the affinity is a function of the state variable * for a given set of initial concentrations.

To obtain the entropy production as an explicit function of time, wc must obtain fif and R, as functions of 
time. This can be done by solving the differential equation defining the velocity of this reaction:

<4 as 2k

k d o - o - k W o  + i )

№ - 0 (9.5.16)

This lirst-order differential equation can be easily solved by defining x »= [(i^ -  Op У 21 - f  so that the equation 
reduces to dt/d/ ~  -2kx. The solution is

Lq ~  Do,( V ) ’ (9.5.17)

With this expression for £(/), the rates in Equation (9.5.15) can be written as explicit functions of time:

(9.5.18)H,Lq + D0) , № o -  Ih )  .5fa 
*r = ------2 + ------2------e

„  W o  + Do) _2д,К  = 11 " ■—1 ................... 'С
2 2

(9.5.19)

With Equations (9.5.18) and (9.5.19), we can now also write ihe rate of entropy production (9.5.10) as an 
explicit function of time:

=Л(Яг - Л г)1п(Л,/йг)

=m k{Lo  - f> 0)c-a '] In 

oo. the system reaches equilibrium, at which

А» -  Д)

( i fl +  D0) +  (/<l- O 0)e-a '
( ^ + О 0) - ( ^ - О 0) е -»

and It],
, n , A) + 0 0 

'•ч -  *  — —

(9.5.20)

(9.5.21)

The volume term can be reintroduced by replacing by ‘t4!V.
In Chapter 5 (see Equation (5.1.12)) we noted the relation between affinity A and the Gibbs energy G: A = 

-(dG td f)p r . Both A and G  are function» of state, which can be expressed as functions of (  and the initial
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G
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I 
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~ Z  Г

Figure 9.2 Racpini/atkm of enantiomers as an example of a chemical reaction. The associated entropy produc
tion, the time variations of A, are shown In faj and (b). State functions A and С as functions of £ are shown in 
(c) and (d).

molar amounts of reactants and product*. As { approaches its equilibrium value s%q. the Gibbs energy reaches 
its minimum value and tbe affinity A goes lo zero, as shown in Figure 9.2,

The entropy production for more complex reactions can be obtained numerically using computers. Moth- 
emat'ica codes for the above example arc given in Appendix 9.1. The student is encouraged to expand these 
codes for more complex reactions.

9.6 E lem entary Theory o f Chemical Reaction Rates

The rales of chemical «actions depend on several factors. In previous sections we discussed the dependence 
of rates on concentrations and introduced the Arrhenius and transition-state rate constants. According to the 
AtThemus theory, the rate constant has the form *q ехр(-£,/ЯГ), whereas transition-state theory gives a rate 
constant ol the fora» к,-, ехр(-ДG^lftT). In this section we will introduce tbe reader to the theoretical basis 
that leads lo these expressions.
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I  ,  The A rrh en iu s  Theory of Rates 
9,6,1 1
\  the molecular nature of compounds became established, theories of rates of chemical reactions began 
When That molecules were in incessant and rapid chaotic motion was established by the kinetic theory of 
toCI11 д  natural consequence was a view that chemical reactions were a oonsequence of molecular collisions. 
*aSCI molecules collide, somehow an atomic rearrangement occurs and Ihe products are formed. I lowevcr, 

B r i e r y  collision between reacting molecules results in the formation of products. In fact, quantitative 
1101 ° te s  indicated (hat only a very small fraction of tire collisions were 'reactive collisions'. This naturally 

^question  as to why only certain collisions between reactant molecules resulted in Ihe formation of

**Qae of the first successful theories of reaction rate* is due to the Swedish chemist Svante Arrhenius (1859- 
1927) but il is noted that others, especially van't Hoff, also made important contributions to this theory [5,6). 
The success of the Arrhenius theory is mainly in explaining the temperature dependence of reaction rates. 
To explain why only a small fraction of molecular collisions resulted in reactions, the concept of 'activation 
«ergy- was introduced. This is the idea that the colliding molecules must have sufficient energy to activate tlie 
reaction, i.e. the breaking of bonds and formation of new bonds. That only a small fraction of molecules have 
the required activation energy was proposed by the German chemist L„ Pfundler, To compute the probability 
that the collision has the required activation energy, the Boltstmatm principle is taken as a guide. We recall 
that, according to tbe Maxwell-Boltzmann probability distribution, the probability that a molecule has energy 
£  is proportional to expl-E/RT). Using this principle, it could be argued that if a certain activation energy Ea is 
required in a collision between reacting molecules to generate the product, this will happen wilh a probability 
proportional to cxpl-EJFT). Thus, ihe reaction rate must be proportional to a factor exp{-E t/RT)\ that te. of 
all the collisions that occur in a unit volume in unit time, a fraction Je,, exp(-EJRT) will be reactive collisions. 
Thus, the Arrhenius rate constant

where k0 is called the pre-exponen*ial factor,
The next step is to compute the number of collisions that occur in unit time in a unit volume. For gases, 

this can be done using the Maxwell-Boltzmimn distribution (Section 1.6). Let us consider the reaction 
A + В -» Products, Let гл and rB be Ihe radii of tlie A and В molecules respectively . For small molecules, 
radii can be estimated from tabulated bond length#. Figure 9.3 shows «he path of  a molecule of A as it 
undergoes collisions with molecules in its path. An observer located on the molecule A will observe a stream 
of molecules; collision* with molecule* of В occur when the distance between the center of A and the center 
of a streaming В is equal to or less than tlie sum rA + rB. Consider u cylinder of radius rA +  rB wilh the 
path of the molccuJe A as its axis. Molecule A will collide with all В molecules in such a cylinder. From 
the viewpoint of an observer on A, molecules will be streaming at an average speed vr, which is equal to Ihe 
average relative vedoeity between A and В molecules. Thus, in twit time, on the average, a molecule of A 
will collide with all В molecules in the volume я(гА + rb f v v  The term д(гА + r j) J is called tbe collision 
cross-section [f nb is the moles of В molecules per unit volume, f a n  a single A molecule will collide with 
* ( rA + Гв^гИв^л molecules of В per unit lime. Thus, tlie avctuge total number of collisions between A 
and В molecules per unit volume per unit time, called the eollfelot frequency ;AH, equals

Jab ш л<га + rb )2v,nbnAh'l <9.6.1)
in which nA is the moles of A molecules per unit volume. Using the Maxwell-Boltzmann distribution it can 
be shown that the average relative velocity between A and В molecules is given by

, г = ж у ' г m which (9.6.2)
V /  « A + n *B
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'Ч + 'в

Figure 9.3 The elementary bimolecular reaction A + B-> Products is a result of collisions between the molecules 
of A and B. Approximating the molecule's shape to be spherical, we assume the radii of molecules of A and 8 
are rA and rB respectively. As shown, on average, in unit time, a molecule of A (filled sphere) will collide with all 
molecules in the cylinder of cross-section + rs)! and length vr

where mA and mB are the masses of moleculcs A and В respectively. The factor fi is called the reduced 
mass. Of all the collisions, only a fraction exp(-EJST) are reactive collisions that result in the formation of 
products. Hence, Ihe reaction rate (number of reactive collisions per unit time per unit volume) equals

To specify the rate in moles per unit volume per unit time, we divide the above expression by NA:

in which all quantities are in SI units. If the unit of length is taken to be decimeters, then the concentrations 
will be molarities [AJ and [B] and the rate will be in the units of moles per liter. We can now identify the 
pre-exponential factor *o in the Arrhenius rate;

At T =  300 K, the value of k(> is of the order of 10s m5 mol-1 a-1 «  1011 L mol-1 s"1. The changes in t 0 
due lo changes in T are small compared with the corresponding changes in the exponent!*! factor in the rate 
constant.

A number of other expressions were also s uggested to explain the temperature dependence of reaction rates, 
as I.aidler notes (6), but they found less and 1ем support as experimental data were gathered. 1л addition, the 
expression suggested by Arrhenius had a strong theoretical basis that the other expression* lacked.

Rate =  гАв e*P( -E J R T )

(9.6.3)

(9.6.4)

(9.6.5)
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£ 2  The Transition State Theoiy
■i n state theory postulates the existence of a transition state which is in equilibrium with the reactants,

Kfrtansition state has an unstable mode that results in conversion lo products. For a reaction X + Y -*
P ?  w & e transition-state mechanism is 
L '

X + Y <=£ (XY)* — > Z + W (9,6.6)
Ь,

rale of product formation is *3 [ХУ*|. The assumption that the transition state ii in equilibrium with Ihe 
reactants implies that

[(XY)t ]/[X](Yl =  * „ /* „  =  А",(Г) =  ехр(-Д О */*Г) (9.6.7)

in which Кi(T) is the equilibrium constant and ДО* is the Gibbs energy of reaction. The reaction rate can 
now be written as

Rate = JfcjfKXY)*] = *у К,<ПХ]| Y) <9.6.8)

The use of statistical thermodynamics and quantum mechanics to calculate Ihe rate constant gives k% = 
*(ЛВ77Л). in which «r is a teim of the order of unity and h is the Planck’s constant (see Box 9.3). Therefore, 
the rate constant has the form

j  exp(~A<;V*n <9.6,9)

In contrast to the Arrhenius theoiy, the transition elate theory has a themodyrumlc basis and predicts Ihe 
existence of a iransition state. The pre-exponential factor it predict* is proportional lo T\ this is in contrast to 
the Arrhenius theory, which predicts a Tm  dependence. The transition state theory predicts a change in Ihe 
rale of reaction due to factor* that might change ДО*. One such factor i* the effect of solvents. In solutions, 
if the reactants are ionic, then it is observed that the reaction rale depends on the dielectric constant of the 
solvent. This effect, called the ‘solvent effect', can be explained by noting that a change in the dielectric 
constant changes the value of ДО*. In general, the transition state theory gives more insight into the nature 
of a chemical reaction than the Arrhenius theory and is widely used.

9-7 Coupled Reactions and Flow Reactors

In the previous sections we discussed some basic aspects of chemical kinetics. In this section, we shall look at 
more complex reactions. Box 9.4 summarise the maiin aspects of first- and second-order reactions. In these 
cases, the reverse reactions were not considered, but in many cases the reverse reaction cannot be ignored. 
We shall now consul*r some examples below,

*• •̂1 Zero-Order Reactions

In certain conditions, Ihe rate of a reaction can be essentially independent of the concentration of the initial 
reactants. For example, a reaction such as

X -* Y (9.7.1)

k£
h
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could have a rate of product formation that is given by
a m  .
- 3 T = *  (9.7.2)

in which к is a constant, Such a reaction may be said to be of 'iero order' in the reactant X. Such a 
rate law clearly indicates that the reaction mechanism that controls the conversion of X to V depends on 
the concentration of another oompound and that increasing the amount of X does not increase the rate of 
conversion to Y. For example, let us assume that the formation of Y depends on X binding to a catalyst (’ 
form a complex CX and that the complex CX converts to С and Y:

X + С CX —2» Y +  С (9.7.3)

The rate of product formation depends on the amount of the complex CX. If all the catalyst is bound to the 
reactant X, then increasing the amount of X does not increase the rate of product fonnation. If [C^r is the 
total amount of C, then the rate of reaction when the complex is saturated is

df Л  
(9 7.4)

Such rates can be observed in reactions catalyzed by solid catalysts and in enzymes. The solution to Equation 
(9.7.2) is [Y ]= (Y l3 +fo.

9.7.2 Reversible First-Order Reaction

In general, the forward and die reverse rate constant* are not equal and the rate equations are of the form

A i= iB  (9.7.5)
К

*  -Jtf + RT =  —*t[A] +АДВ] (9.7.6)

in which Rs and R, are the forward and reverse reactions rates. Let [ A]0 and [B]0 be the initial concentrations, 
hi the above reaction, tlie total concentration, which we shall denote as T =  [A] + [BJ = [A]0 + [B]0. remains 
constant. Hence, the above rale equation can be rewritten as

^  + k,(T  -  lA]) = -(* t +  *ДА] + (9.7.7)

The solution to this equation is

( A i ^ r ^ t A J o - ^ r ) » - ^  (9-7.8)

The reaction could also be described in terms of the extent of reaction (, as was done in Section 9.5 for the 
racemization reaction L s* D. This is leftus an exercise for the student.

9,73 Consecutive First-Order Reactions

Sequential conversion of compounds is quite common in natural and industrial processes. Sequential trans
formations in Nature more often than not are cyclical. Let us consider a very simple example: convention of 
A to В to C, in which the reverse reactions have negligible rates:

kg
A - A B - i c  (9.7.9)



F assume dial all ihe rales sire first order and that, at f = 0, [A] =  (Alo, [B) «t 0 and (C] = 0, The kinetic 
^nations for tbe concentration of A, В and С are

%  -  i i f[A]. Ла »*2,[В] (9.7.10)

*= -R \t  =  -* tf [A] (9.7.11)

^  -  %  ~ R2i = *if[A] -  t M(B] (9-7.12)

^ • = * 2 t  =*2f[B] <9-7.13)

This set of coupled equation* can be solved analytically. The solution to Equation (9.7.11) is

С A] = [ A]0 exp(-*lff) (9.7.14)

This solution can bo substituted into the equation for [B], (9.7.12); W« get

^ 5 1  ♦JfcjdB] = *lf[A]0 exp(-*1(r) (9.7.15)

This is a first-order differential equation of the form (dX/dr) +  cX in which с is a constant and J[t) is a 
function of time. Tbe general solution to such an equation is

i

X(l) m XiCHe~cl +  e~a j  (9.7.16)
0

Using this general solution, we can write the solution to Equation (9,7.15) and show that

[B] «  i . lf[.Aj°  (с~*ч' -  e_t*') (9.7.17)
%  *  *tr

in which we have u»cd |B]0 = 0. If the initial concentration [C]0 mi), then the total amount [A] + [BJ + [C] = 
[A]0. Using this relation, one can obtain the time variation of [C]:

|C] =  [A]0 — I A] -  [B]
(9,7.18)
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: [AJo 1 _  e-fcnr --------!L _ (e-*i«' _ е~*а')
fcjf -  *lf

Alternatively, the rsUe equations can be written and solved in terms of the extents of reaction f j  and {2 of 
ihe two reactions (9.7.9). For simplicity, and without loss of generality, we shall assume «he system volume 
, /«= 1 so that concentrations and { values call be related without explicitly including V. The extent of reaction 
for the two reactions and the corresponding changes in concentrations are related by

W . i a . d f e  <9.7,19,
-1  +1 1 -1  +1 2

*n which Ihe subscripts indicate changes due to the first and second reactions in the consecutive reactions
(9.7.9). The total change in the concentration of A is only due to the reaction A -* В and that of С is only 
due to В -* С, i.e.

d[A] -  d[A,] ■= -d{ , or [A ]= lA )o -£ , (9.7.20)
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and

d[C] =d[C 2] = + d {2 or [C] = (C]0 + ( t  (9-7.21)

where we have assumed {  = 0 at I =  0 (the subscript 0 indicates values at I = 0). Since the changc in tin 
intermediate IB] is due to both reactions, we write:

d[B] = d[B,] + d[B2] » d f!  - d f 2 or iB) = [B]o + { i - ? 2 (9.7.22)

The velocities of the two reactions are

= R it -  * lr «  Jfclf [A] = t,f([A]0 -  { ,) (9.7.23)

^  -  S j ,  -  Jfcj, [B] =  * j f  ( P I #  + < l ~  (2 ) (9.7-24)

These two first-order linear differential equations could be solved using the methods outlined above. By 
substituting the solutions (I) and £2(r)into Equations (9.7.20) to (9.7.22). the time variation of concentrations
[А]. [B] and [C] can be obtained (Exercise 9,20). Describing the kinetics of reactions using extents of reaction 
has some notable aspects:

• Each extent of reaction is an independent variable and the number of independent variables in a set of 
reactions is equal to the number of extent» of reaction. The time variations of all reacting species are 
expressed in terns of these independent variables.

• The initial values of all reactants appear explicitly in the equations and the initial values of all extents of 
reaction may be assumed to be zero.

• The rate of entropy production can be conveniently expressed in terms of the velocities d£t/d/ and the 
chemical potentials of the reacting species,

9.7.4 The Steady-State Assumption

In many chemical reactions, the concentration of an intermediate compound orcomplex may be approximated 
to be constant. Take, for example, the following Michaelis-Menten mechanism, which describes enzyme 
reactions:

E + S ^ t  ES-^UP + E (9.7.25)
*u

Enzyme E complexes with the substrate S to form the complex ES. which in turn transform» to product P 
and the enzyme. The complexation of E and S to form ES occurs very rapidly and reversibly. In contrast, the 
conversion of ES to P and E happens relatively slowly, Tbe rapidity of the reaction E + S 5* ES keeps the 
concentration of F,S essentially a constant close to iu equilibrium value: any decrease in [ES] due to product 
formation is quickly compensated by the production of ES. Henoe, we can assume that |ES] is in a steady 
slate, i.e. its time derivtttive is zero. Taking «he two steps of the reaction (9.7.25), the steady-state assumption 
can be expressed as

—  -  *h№|[S] -  t lrIES] -  *2,IBSJ -  0  (9.7.26)

In the above reaction, the total concentration of enzyme [E0], in the free and complex form, is a constant:

[E]+[ES] = [Eo] (9.7.27)
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Lpmfciaing Equations (9.7.26) and (9.7.27# we can write *lf([Eo] -  [ES])[S] -  i^IESJ -  Aa  [ES] *  0. From

(ыТк f«lloWS thaI

1  H - i 3 № 5  * l m
_ e rat£ 0f fonnation of the product P is ^(EiS] and is usually written in the following form:

Ti к 1ES1 r- ‘ " I  -  (П7ГМ
is M E S ] i s j + (* „ + * » )/« ! ;  ( s j T ^  0 1 2 9 )

in w hich Rmu  =  is the maximum rate of product formation and Km -  ( i lr +  къ )/к1(. It can be seen
from liquation (9.7.29) that the rate at which P is generated has the following properties:

.  When [S] «К Kn , the rate is proportional to [S].
• When [S] »  Кю. the rate reaches its maximum value and is independent of [S].
.  When [S] =» Km. that rate reaches half the maximum value.

9.7.5 Flow Reactors

Many industrial chemical reactions take place in a flow reactor ieto which reactants flow and from which 
products are removed. The kinetic equation* for such systems mtwt consider the inflow and outflow. To see 
how the kinetic equations are written for a flow reactor, let us consider the following reaction, which we 
assume requires a catalyst:

A -^» B -^+ C  (9.7.30)

We assume that the reaction takes place № a solution. The solution containing A flows into tbe reactor 
(Figure 9.4) of volume V. In the reactor, activated by a catalyst, Ihe conversion from A to В and 0  takes 
place. The fluid in the reactor is rapidly stirred so that we may assume fliat it is homogeneous. The outflow 
is a solution containing В. С and unconverted A. If the objective is to produce В and C, then the reaction 
should be rapid enough so that very little A is in the outflow. We consider a flow rate of/liters per second of a 
solution of concentration [AJfa, mol L '1. Mole* of A flowing into the reactor per second equals [A lt /  Hence, 
the rate at which the concentration of A increases due to the inflow into the reactor of volume V is [AJj^/V, 
Similarly, the rate of decrease in concentrations of A, В and С  due lo the outflow are [A]/?V, [B]f!V and 
[C-W respectively. The term f/V  has units of s"1. Its inverse. V/fm r, is called the residence time (because

j p p = >  Л.В.С

figure 9 .4  Д fjow rM(tor iIUo which fluid containing A flows. Owing to a catalyst in the manor, conversion 
of A в  -> С takes plate in the reactor. The outflow consists of unconverted A and the products В and C. The 
amount of fluid flowing Into the reactor per unit time is f. The inflow rate equals the outflow rate at steady state.
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it roughly corresponds to the time the flowing fluid resides in the reactor before it flows out). Taking the 
into consideration, the kinetic equations for the reactor can be written as

^  = lA J ^ /V )  -  *lf[A) -  [A)(f/V )  (9.7.31)

^  „  *1([A] -  *2f[BJ -  [B](f/V) (9.7.32)

^ l = * 2f[B ]-[C ](f/V ) (9.7.33)

This set of linear couplcd equations can be wived for steady states by setting d[ A]/d/ =  d[B ]/d( = d[C']AJ/ = 0. 
If. initially, tbe reactor contains no A, В or C, then the flow will result in an initial increase in the concentration 
of the three reactants and then the reactor will approach a steady state in which the concentrations are constant 
The steady states, which we identify with a subscript ‘s’, are easily calculated:

rat = — — /9  7  з<;.
к ц  + l f / V)

[C]s = (9.7.36)

If the rate constant* fclt and k2l are large compared with f/V. then the steady-etate concentrations [A]s and
[В]. will be small and |C], will be large, ’№is corresponds to almost complete conversion of A into product 
C, which will flow out of the reactor. On file other hand, if the flow rote is high, then tbe conversion in the 
reactor will only be partial. Because they are coupled linear equations, (9.7.31) to (9.7.33) can also be solved 
analytically: generally, however, chemical kinetics leads to coupled nonlinear equations, which cannot be 
solved analytically. They can, of course, be solved numerically.

The above simple example illustrates how kinetic equations tor a reactor can be written. Generalizing it 
to reactions more complex than Equation (9.7.30) is straightforward. The purpose of some reactors is to 
combust fuel and generate heat. At the steady slate, beat is generated al a constant rale. If the enthalpies of the 
reactions arc known, then at a steady slate, ihe rate al which heal is generated in the reactor can be calculated.

Appendix 9.1 Mathematica Codes

In Mathematica, numerical solutions to the rate equation can be obtained using the NDSolve command. 
Examples of the use of this command in solving simple rale equations are given betow. The results can be 
plotted using the Plot oommaod. Numeric»! output can be exported to graphing software using the Export 
command.

CODE A: UNEAR KINETICS X -  PRODUCTS 

(• bin*»* K in«tic»  •)

k = 0 ,1 2 l

4



w

\
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1b1=NDSo1v« [<»' ttl=~ -k»X[t], X[0]==J.0},X,{t,0,10)1

j (X.> in te rp o la t in g F u n c t io n I{ (0 . ,  10.}},<>]}}

Th above output indicates that the solution as an interpolating function has been generated. The solution can
l,e plotted using the following command. Here ' /.Sobi 1 ’ specifies that the values of JH'I are to be calculated 
using the interpolation function generated by Solnl.

plot [Evaluate [X [t] /. Solnl] ,{t,0,10}, 
plotStyl»-*{{Black, Thick}},
AxeeJ,abel->{Time, • [X]-}1

fXl

Time

Го write output files for spreadsheets use athe Export" command and tlie file format List. For more detail 
see the MathemotUu help file for the Export command. In the command below, the output filename it: 
datal.txt. This file «an be read by most spreadsheets and graphing software. The command -X[tl/.Solnr 
specifies that ЛЭД w to be evaluated using Solnl defined above. Table Form outputs data in a convenient 
form.

Export [ - d a t a l . t x t " .  Table [{ t ,X [fcJ / .So ln l} ,  { t ,  1 ,1 0 } ) / /T ab leP o m , “Lis t» )  

d a t a l . t x t

To obtain a table of I and X(f) the following command can be used.

Table [ { t , X [ t] / . 8 0 ln l} , { t , 1 , 5} 1 / /tab leF e™

1.773*4 
l.3712« 
1.39535 
1.237S7 
1.09762



CODE B: Mathemalica CODE FOR TH E REACTION X + 2Y 2Z 
In writing codes fo r kinetic equations, we shall define the forward and reverse rates. R{ and Kr respectively 

and use these in the rale equations. Thus wc avoid typing the same expression many times.

(* R eac tion  X+2Y ** 2* *) 

k t=0 .5 )k r=0 .0S»
Rti=kf*X[t]  * <Y£t] '2 )  i Rr s=kr*Z [ t l  ‘ 2i

Soln2=NDSolvet{ X1 It]  =  -Rf+Rr/
у i [ t ] = =  2*(-Rf+Rr),

[ t ] = =  2* (Rf-Rr) ,
X[0]=*2.0,Y(0)==3.0,Z[0]=»=0.0},
{X,Y,*},{t,0 ,3}1

{ {X -> In te rpo l» tingFunc t ion[{{ 0 . ,3 . ) } ,< > ] ,
Y - i I n te r p o la t in g P u n c t io n [{ { 0 , ,3 . ( ) ,< > ] ,
Z -> In te rp o la t in g F u n c t io n [{ { 0 3  .}} ,< »]}}

The above output indicates that the solution as an interpolating function has been generated. The solution can 
be plotted using the following command:

P lo t  [Evaluate I{X [t] , Y [ t j ,  Z It] } / .  8oln2] , { t ,  0, 3) ,
AxesLabe1 >{Time, C oncentra t ions} ,
P lo tS ty l»-*{{B lack ,Thick) ,  {OrayLevel[ . 5 ] ,T h iek ) ,
{Daahad,Oray,Thick}}]
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Concentrations
3.0

2.0

2.5

1.0

1.5

0.5

0.5 1.0 2.0 —i- Time
3.0

As shown in Code A, the data could be written to an output file A at graphing software can read using the 
Export com m and,



I  У с  Mathematica CODE !<)R RACEMEATION REACTION U U  AND CONSEQUENT 
g K o P Y  PRODUCTION

g . eMnl« » t lo o  K in e t i c s i  L f i B ' l

k f = 1 .0 ) k r = l - 0 ;
Rt, = k f * x U t l )  Kr i >=kr*XD [t] г

eoln3 =NDSolve [{ XU‘ [ t l= =  -R W lt ,
XD‘ [ t ) = =  Rf-Rr,

»  [01 = > = 2 .0 ,XD[0] = = 0 . 0 0 1 } ,
{)tt. ,XC},{t,0,3}]

{(XL->ln terpo l* t ingFunction[{ { 0 . ,3 .} ) ,<  >],
X D -> In terpo l» tingF unction [{{0 .,3 .}} ,<>]}}

Tbe output indicates an interpolating function has been generated. As before, the solution can be plotted.

p lo t[E v a lu a te [{XL[t l  * XD[ t]  } / . 8 o ln 3 ]#{ t ,0 ,3 } , 
p io t8 ty le-> {{B lack , Thick}, {Or»y,Thick}}]
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The rate of entropy production can be obtained from the interpolating functions and the first equation in
(9.5.20), Note: in Mathematica, log is In.

(♦0 * lcu l» tio e  o t  en tropy  p ro d u e tio n  •*igma“*)
*=8-314, «igina—R»(R£-Rr) »Log[Rf/Rr] ) 
r i ° t (E v a lu a te [e ig m a / . S o l n 3 l ,{ t ,0 ,0 .5 } ,

*,lotS tyle->{T hick},A xesL abel-»{"T im e», "dS /dt*}l
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dS/dt
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Examples

Example 9.1 At a temperature T. the average energy hv of a thermal photon is roughly equal to k'l. As 
discussed in Chapter 2. at high temperatures electron-positron pairs will be spontaneously produced when 
the energy of photons ii larger than rest energy 2/nr2 of an electron positron pair (where m is the mass of the 
electron). Calculate tbe temperature at which electron-positron pair production occurs.

Solution For pair production:

hv -  t BT *  2me2 =  (2 x  9.10 x  KT3'  kgX3.0 x  10s m s-1)2 = 1.64 x  1 0 '13 J 

Hence, the corresponding T =  {1.64x 10"15 J)/(1 38 x 10*23 JK*1) * 1.19х Ю10 K.

Example 9,2 Contttler a second-order reaction 2X -* Products whose rate equation is d[Xj / d /»  -2*({X|2 = 
-i[XJ- in which we set к ~ 2kf. (a) Show that Ihe half-life for this reaction depends on the initial value of 
[X] and is equal to 1/(|X]0*). (b) Assume that к = 2.3 x 10“ * M '1 S*1 and obtain the value of [X] at a time 
t = 60.0 s if the initial concentration [X]Q *  0.50 M.
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As shown in Box 9 4, the solution to tbe rate equation is
j ___i_ = to
[X] tX ]0

Multiplying both sides by [X]0 we obtain

Since at I =  t\n  the ratio [X]0/[X] =  2, we must have [X]0to\n “  1 or tu2 = l/([X]0i). 
If the initial concentration [X]0 = 0.50 M, t  =» 0.23 M-1 S '1 and t — 60.0s we have

Г  Щ  ~ o 5 ) =  0,23 x 60 mol L"‘

Solving for [XJ we get [X] = 0.063 mol L~1.

Example 9.3 For the water dissociation reaction H20  OH" + H+ the enthalpy of reaction 4 H, = 
55.84 kJ mol*1. At 25 *C, the value of the equilibrium constant К m 1.00 x 10"14 and pH is 7.O. At 50 °C, 
what will the pH be?

Solution Given K(T) at one temperature , its value at another temperature 7\ can be obtained using the 
vantHoff equation (9,3.19):

1пДГ(Г,)-1пАГ(Г2) = ( J r - j r j  

For this example, we have, for К at 50 *C.

Щ  ln*  -  ln(1.0x l0-W) _ ( ~ - ~ ) *  -30.49

Hence. К at 50 *C is equal to exp(-30.49) «  5.73 x  10-14. Since the equilibrium constant К = [OH'][H+] 
and because [OH*] a» [H+], we have

pH = -  log[H+] =  -log tV *) = -  j  logl5.T3 X J0~M] *  6.62

Exercises

®>1 When the average kinetic energy of molecules is nearly equal to tlie chemical bond energy, molecular 
collisions wiH begin to break the bonds, (a) Ihe C-H bond energy is about 414 kJ tnol“ 1. At what 
temperature will the C-H bonds in methane begin to break? 0b) The average binding energy per nucleon 
foeutron or proton) is in tbe range (6.0-9.0)x 106 eV or(6.(V9,0) X 10* kJ mol-1. At what temperature 
<1° you expeel nuclear reactions to take place?

*•2 For the reaction Cl + H2 HC1 + H, the activation energy Я, = 23.0 kJ mol*1 and k0 -  7.9 x Ю10 
mol"' L I"1. What is Ihe value of the rate constant at Г = 300.0 К? If [Cl] *  1,5 x 10"4 mol L_l and 
[Hj] m 1.0 x  1Q~5 mol L_1, what is the forward reaction raK al Г <= 350.0 K7
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9.3 For the decomposition of urea in an acidic medium, the following data were obtained for rate constants 
at various temperatures:

(a) Using an Arrhenius plot, obtain the activation energy £ a and the pre-exponential factor to.
(b) Apply the transition state theory to the same data, plot In(faT) versus 1 IT and obtain Л//+ and 

Д&  of the transition state.

9.4 Consider the dimerization of the triphenylmethyl radical Ph?C \  which can be written ан the reaction

The forward and reverse rate constants for this reaction at 300 К are found to be kf =  0.406 s-1 and 
Jtr =  3.83 X 10* mol-1 L s*1. Assume that this reaction i£ an elementary step. At t *  0 the initial 
concentration of A and В arc [A]0 =0.041 м and [B]0 =0.015 и.
(a) What is the velocity of the reaction at t =  0?
(b) If is the extent of reaction al equilibrium ( ‘ = 0 at r = 0), write the equilibrium concentrations 

of A and В in terms of (A ] 0. |B1(J and
(c) Use (b) to obtain the value of ^  by solving the appropriate quadratic equation and obtain the 

equilibrium concentrations of [A] and [В].

9.5 (a) Write She rute equations for the concentrations of X, Y and Z in the following ireaetion:

(b) Write the rute equation for the extent of reaction J.
(c) When the system reaches thermal equilibrium, { = If [X]0, [Y]0 and [Z]0 are the initial 

concentrations, write the equilibrium concentrations in terms of tlie initial concentrations and { .

9.6 Radioactive -decay is a first-order reaction. If N  is the number of radioactive nuclei at any time, then 
iN ldl m -kN, WC is radioactive with a half-life of 5730 year*. What is the value of к1 For this process, 
do you expect к to change with temperature?

9.7 If d[A]/df = -  *|A]*, show that the half-life is

, _  2"-' -  1 
1/2 ( « -  l)*[A]--‘

9.8 Find an analytical solution to the reversible reaction [L] j r i  [U], in which i  and D arc enantiomers. 

Enantiomeric excess (EE) is defined as

Temperature ("Cl 
Rate constant к (10-® s_l)

50 55 60 65 70 
2.29 4.63 9.52 18.7 37.2

A ^ 2 B

X + Y ?*2Z

If the initial EE = 1.0, how long does it take for it to reach 0.5? (Amino acid racemization is used in 
dating of biological samples,)
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к,
I  f OI the bitrolecular reaction A + В —+ P the rate equation is

~  = -t,[A #B ]

When [A]0 and [BJ0 are the initial concentrations, show that

, I  m
fflo -IA k VlBMAIo; f 

(b) Write (he above rate equation in terms of the extent of «action £ and solve it.

9 10 The chirping rate of crickets depends on temperature. When the chirping rate is plotted against 1/7’ it 
I  '  is observed to follow the Arrhenius law (see K.J. Laidler, J. Chem. Ed.. 49 (1972), 343). How would 

you explain this observation?
9.Ц Consider the reaction X + ¥  s± 2Z in the gas phase. Write the reaction rates in terms of the concentra

tions [X], (Y) and [Z] as well as in terms of the activities. Find (he relation between the rate constants 
in the two ways of writing the reaction rates.

9.12 When atmospheric C 02 dissolves in water it produces carbonic acid H2COj (which causes natural rain 
to be slightly acidic). At 25.0 °C the equilibrium constant Кл for the reaction Н2СОз HCOJ + H+ 
is specified by pKa =  6.63. The enthalpy of this reaction M l, «= 7.66 kJ mol"1. Calculate the pH at 
25 °C and at 35 *C. (Use Henry's law to obtain [H2CO?].)

9.13 Equilibrium constants can vary over an extraordinary range, as tbe following examples demonstrate. 
Obtain the equilibrium constants for the following reactions #t T -  298.15 K, using the (ables for

(a) 2N02( * ) « N 20 4(g)
(b ) 2CO(g) + 0 2(g) 5* 2 C O j( g )
(c) N ,(g )+ O j(g )^ 2 N O (g )

9.14 (a) For a reaction of the form «X + bY cZ, show that the equilibrium constants Kc and K. are
related (by Kc *= (Jff)“ ATp where a  = а +  b  -  c.

(b) Using the definition of enthalpy H =  U +pV . show that the van't Hoff equation for a gas-phase 
reaction can also be written as

dlnKc _  Щ  
dT = M l

in which Kc is the equilibrium constant expressed in terms of concentrations.

*■15 Ammonia may be produced through the reaction of N2(g) with H2(g):

N2 (g) + 3H2 (g) =* 2NHj (g)

(a) Calculate the equilibrium constant of this reaction at 25 °C using (lie thetmodynamic tables.
(b) Assuming that there is no significant change in the enthalpy of reaction Д#г  use the van’t Hoff 

equation to obtain the approximate AGr and the equilibrium constant at 400 °C.

*•16 2-Butenc is a gas that has two isomeric forms, cis and traits, For the reaction:

cis -  2 -  butene Ф m m  - 2 -  butene. ДО1,’ =» -2 4 1  kJ mol*1

calculate the equilibrium constant at /  = 298.15 K. If Ihe total amount of butene is 2.5 mol. then, 
assuming ideal gas behavior, determine the molar amounts of each isomer.
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9.17 Determine if tbe introduction of a catalyst will alter the affinity of a reaction or not.

9.18 For the reaction A Z—t B, write the equation for the velocity of reaction d(Ш  in terms of the initial 

values [A(,] and [B0] and obtain the solution f(().

9.19 For the reaction X + 2Y ^  2Z, write explicitly the expression for the entropy production in terms of 
the rates and as a function of f,

^If ^2f9.20 As shown in Section 9.7. for the reaction A — * В — > С the extents of reaction obey the equations

d£i
—  = Л к  -  « i ,  -  i) f [A ]  -  £ 1(([AJo -  5 t)

=  *2f _  *2r =  *2f[B] =  *2fdB)o +  Jl -  i 2)

Solve these equations with initial conditions £, = | 2 =  0 at t  = 0, Assume [A] = [A]0. [B] = 0 and
[C] =  0 and show that

[C] =  [A]0 f 1 -  8 -“**' -  ■ * ’*- (с '* » ' -  e-*»‘)
L If

9.21 Write the complete set of rate equations for all the species in the Michaelis-Menten reaction mecha 
■ism:

E + S ES- Д р + Е  
kk

Write MШhfjtuUkaJMaple code to #olve them numerically with the following numerical values for 
the rate constant* and initial values (assuming all quantities are in appropriate units?: кц =* IX) x  102, 
klt ш 5.0 X 109, t j ,  = г о  x  Ю3 and, at t *  0, IE] *  3.0 X jo-*, [S] =  2 X 10-г, [ES) = 0, [P] *  0. 
Using the numerical solutions, check the validity of the steady-state assumption.

9.22 Calculate ka for the reaction between H 2 and 0 2 at T =  298 К using the bond lengths 74 pm for H -H  
and 121 pm for 0 = 0 .
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10
Fields and Internal Degrees of Freedom

The Many Faces of Chemical Potential

The concept o f  chemical potential is very general, applicable to almost any transformation of matter as long as 
there is a well-defined temperature. We have already seen how the condition for thermodynamic equilibrium 
for chemical reactions leads to the law of mass action. We shall now see how particles in a gravitational 
or electric field, electrochemical reactions and transport of matter through diffusion can all be viewed as 
'chemical transformations’ with associated chemical potential and affinity.

10.1 Chemical Potential in a Field

The formalism for the chemical potential presented in Chapter 9 can be extended to electrochemical reactions 
and to systems in a field, such as a gravitational field. When a field is present, tlie energy due to a field must 
be included in the expression for the system's energy. As a result, the energy of a constituent depends on its 
location.

We start with a simple system: the transport of chemical species that carry electrical charge from a position 
where the electrical potential is ф1 to a position where the potential is ф2. For simplicity, we shall assume that 
our system consist* of two parts, each with a well-defined potential, while the system as a whole is closed 
(see Figure 10.1). 1Ъе situation is as if the eyirtem consists of two phases and transport of particles dNk is а 
‘chemical reaction' For the corresponding extent of reaction d |t  we have

in which cLVu. and dWji are the changes ia the molar amount in each part. The change in energy due to the 
transport of tlie iomt is given by

Modem Thermodynamics: Pfom Hear Engines to DMptttive Structures, Second Edition. Dilip Kondepudl and Пул Prigogine. 
® 2015 John Wiley & San?, ltd . Published Ж15 by John Wiley *  Sons, Ltd.

(10,14)
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#1 Al

/Vt

01 th

--

Figure 10.1 A simple situation illustrating the thermodynamics of a system in the presence of an electric field. 
We consider two compartments, one with associated potential ф, and the other ф. .It is as if there are two phases. 
ions will be transported from one to the other until the electrochemical potentials are equal.

in which zt  is Ihe charge of ion к and F is the Faraday constant (the product of the electronic charge e and 
the Avogadro number NA: F = eNA = 9.5485 X 104 С т о Г 1). Using Equation (10.1.1), the change in the 
entropy dS can now be written as

T dS =  dU + p  dV -  2  W $ \ zk + P a) -  (РФг*к + (10.1.3)
к

In this expression, we sec that the introduction of a potential ф associated wilh a field is equivalent to adding 
a term to the chemical potential. This makes it possible to extend tbe definition of the chemical potential to 
include the field. Tbue, the electrochemical potential fi. which was introduced by Guggenheim |1] in 1929, 
is defined as

fik =  14 +  ЪкФ (10.1.4)

Clearly, such a formalism can be extended to any conservative field to which a potential may be associated. If 
4/ is the potential associated with the field, then the energy of interaction per mole of the component Ic may be 
written in the form rktp■ The ‘coupling constant’ for the electric field rt  -  Fzk and for the gravitational field 
rk =  Mk, where Mk is the molar mass. The corresponding chemical potential, which includes the poCential у  
associated with the field, is

(10.1.5)

The affinity A k for electrochemical reactions can be written just as it was done for other chemical reactions:

A k =  jixk - й я т l(F<t>iZk +  и \к) -  №ф2ц  +  / i j* ) ]  ( Ю .1 .6 )

The increase in entropy due lo the transfer of charged particles from one potential to another can now be 
written as

^  =  <l 0 1 -7 >

At equilibrium:

Л* =  0 or p xk -  P2k •  ~1к(Ф{ ~ <fa) (10.1.8)

The basic equation* of equilibrium electrochemistry follow from Equation (10.1.8).
As noted in Section 8.3 (and Exercise 8.13), electrical force» are very strong. In ionic solutions, tbe 

electrical field produced by even small changes in charge density results in very strong forces between tbe 
ions. Consequently, in most cases tbe concentrations of positive and negative ions are such that the net cbargc 
density is virtually zero; i.e. electroneutniiity is maietained to a high degree. In a typical electrochemical



\

I  ost 0f  the potential difference applied to the electrodes appears in the vicinity of the electrodes and
I a small traction of the total potential difference occurs across the hulk of tbe solution. Tlie solution 

• 'e l e c t r i c a l l y  neutral tc an excellent approximation. As a result, an applied electric field does not separate 
18 siUVt. negative chargee and so does not create an appreciable concentration gradient.
^When we consider the much weaker gravitational field, however, an external fiekl can produce a concea- 

do« gradient. As noted above, for a gravitational field, the coupling constant rt is the molar mass Mk. For 
»a« in a uniform gravitational field, for example, iff = gh. where g is the strength of tlie field and h is the 

height. Using Equation (10.1.8) we see that

*(*)■= * (0 )-М Д О  (10.1.9)

For an ideal-gas mixture, using fik(h) = ji*(T) + RT\n\pk(h)/p0] in tlie above equation, we obtain tlie well- 
Itnown barometric formula:
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p k(h) =» pk(0)e Mttl’/RT (10.1.10)

Note how this formula is derived assuming that the temperature T is uniform, i.e. the system is assumed to 
be in thermal equilibrium. The temperature of the Earth’s atmosphere is not uniform: in fact, as shown in 
l-'igurc 10.2, it varies between -60 °C and +20 °C in the troposphere and stratosphere, the two layers in which 
almost all of the atmospheric gases reside.

10.1.1 Entropy Production in a Continuous System

In considering thermodynamic systems in a field, we often have to consider continuous variation of the 
thermodynamic fields. In this case, fi is a function of position and entropy has to be expressed in terms of 
entropy density s ( r ) ,  i.c. entropy per unit volume, which depends on position r. For simplicity, let us consider 
a one-dimensional system, ix. a system in which the entropy and nil other variables, such as f i ,  change only 
along one direction, say x (Figure 10.3). Let six) be the entropy density per unit length. We shall assume that 
the temperature is constant throughout the system. Then the entropy in a small volume element between x 
and x + & is equal to s(x)S. An expression (for affinity in this small volume element can be written as

Ak =  fit {x)~ fik(x +  6) ~  f e w  -  f w * )  +  ^ j r * J  (Ю .Ш )

The velocity of the reaction d j t /d/ for this elemental volume is the flow of particles of component к, i.e. tlie 
particle current of к , We shall denote this particle current of к  by . Then by writing expression (10.1.7) for 
the rale of entropy production in this elemental volume we obtain

dj(j(*)<5) ф  v  1 \  r di* /ln  , i n
- * — L j 1 [  =  - L t  \ - Ш Г ~ £  (K U U )

«mpWying this expression and using the definition JNk m d{kldt. the following expression for entropy 
Production p er unit length due to particle flow is obtained:

4W *» _ V  1 (  
dt ~ L f \ d x ) 'Nk (10.1.13)
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Temperature (*C) Pressure (Atm)

Figure 10.2 The actual state of the Earth's atmosphere is not in thermal equilibrium. The temperature varies 
with height as shown. At themial equilibrium, the concept of a chemical potential that includes a field leads to 
the well-known barometric formula p(h) = .

X x +  6

Figure 10.3 An expression for the entropy pniduction in a continuous system can be obtained by considering 
M o adjacent cells separated by a small distance S. The entropy in the region between x and x + S is equal to 
s(x)S. The affinity, which is the difference in the chemical potential is given by Equation (10.1.11).
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To understand the physical meaning of expression (10.1.13). let us consider the flow of electrons in a 
conductor- In a conductor in which the electron density and temperature arc imiform. the chemical potential 
of the electron (which is a function of the electron density and T\ is constant. Also, for elections. z* =  -I . 
Therefore, the derivative of the electrochemical potential is

дК  d ,

10.1-2 Entropy Production Due «о Electrical Conduction and Ohm’s Law

,  -  -  РФ) =  - ~ { Р ф )  
дх дх дх

(10.1.14)

Since (lie electric field E =  -дф/дх and the conventional electric current / = -FJC, using (10.1.14) in expression 
(10 1.13)we obtain the following expression for the entropy production:

S i
d t т

а
T

(Ю.1.15)

Since the electric field is the change of potential per unit length, it follows that Che integral of E over the entire 
length L of the system is the potential diflfcrcrce V across the entire system. The total entropy production 
from jt = 0toJt = Lis

И t  _________ 1
dS
dr ■/(*)—/

El
d r • YL

r
<10.1.16)

Now it is well known that the product VI, of potential difference and the current, is the heat generated per 
unit lime, called the ohmic heat. The flow of an electric current through a resistor is a dissipative process 
that converts electrical energy into heat. For this reason we may wrate VI -  dQ/Jt. Thus, for a flow of electric 
cutTent, we have

dj S VI 1 d<>
dt T Г dt

(10.1.17)

This shows that the entropy production is equal to the dissipative heal divided by Ihe temperature.
We noted in Chapter 3 that the entropy production due to each irreversible process is a product of a 

thermodynamic force and the flow it drives (see Equation (3.4.7)). In the above case, the flow is the electric 
current; the corresponding force is the term V/Г, Now it is generally true that, when a system is dose to 
thermodynamic equilibrium, the flow is proportional to the force. Hence, based on thermodynamic reasoning, 
we arrive at the cor,elusion

00 . 1.18)

in which Le is a comstant of proportionality for the electric current. Is called the Unear phenomenological 
eoefecient. Relations such as (10.1.18) arc the basis of linear noitequilibrium thermodynamics, which we 
shall consider in more detail in Chapter 16, We see at once tliat this corresponds to the familiar Ohm's law, 

IK, where К is the resistance, if we identify

A, = |  (10.1.19)
A

This is an elementary example of how the expression for entropy production can be used to obtain linear 
relations between thermodynamic forces and flows, which often turn out to be empirically discovered laws 
*uch as the Ohm's law. In Section 10.3 wc shall see that a similar consideration of entropy production due to 
diffusion leads to another empirically discovered law called pick's law of diffusion. Modem thermodynamics 
enables a* to incorporate many such phenomenological laws into one unified formalism.
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10.2 Membranes and Electrochemical Cells

10.2.1 Membrane Potentials
Just as equilibrium with a semipenneable membrane resulted in a difference in pressure (the osmotic pressure) 
between the two sides of the membrane, equilibrium of ions across a membrane that is permeable to one ion 
but not another results in an electric potential difference. As an example, consider a membrane separating 
two solutions of KC1 of unequal concentrations (Figure 10.4). We assume that the membrane is permeable to 
K+ ions but is impermeable to Ihe larger Cl" ions. Since the concentrations of the K+ ions on the two sides of 
the membrane arc unequal, K+ ions will begin to flow to the region of lower concentration from the region 
of higher concentration. Such a flow of positive charge, without a counterbalancing flow of negative charge, 
will cause a change in the potential difference that will oppose the flow, Equilibrium is reached when the 
electrochemical potentials of K+ on the two sides become equal, at which point the flow will stop. We shall 
denote the two sides with superscripts a and /3. Then the equilibrium of the K* ion is established when

/ £  = / £  (10.2.1)

Since the electrochemical potential of an ion к is Цк -  цк + гкТф *  fPt  + RT ln ak + гкРф. in which ak is (In
activity and zk the ion number (which is +1 for K+), the above equation can be written as

+/ГГ\па*К , + Р ф а = ii°Kt + R T  lna£+ (10.2.2)

From this equation it follows that the potential difference, i.e. tlie membrane potential -  ф1 across the 
membrane, can now he written as

7 '" ( i l )  a02,)
In electrochemistry, the concentrations are generally measured using the molality scale, as was discussed in 
Chapter 8. In the simplest approximation, the activities may be replaced by molalities m j+, i.e. the activity 
coefficients are assumed to be unity. Hence, one may estimate the membrane potential with the formula
0“ - ^ '= ( / r r / f ) t i i ( t f 4 +/ » ^ ) .

10.2.2 Electrochemicl Affinity and Electromotive Force

In an electrochemical cell, the reactions at the elecmodes that transfer eleclrons can generate an electro
motive force(EiMF). An electrochemical cell generally has different phases that separate the two electrodes

а

0.1 molky1 1.0 mol kg !
Cl

K*
1̂ t l  
Kf

Figure 10.4 A membrane potential is generated when a membrane permeable to K* but not to C t separates 
two solutions o f KCI of unequal concentrations. In this case, the flow of the permeable K+ ions is counterbalanced 
by the membrane potential.
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Oiidation К с due4»oo

Figure IO.S An electrochemical cell conshting of many phases that generate an EMF due to  hali-reactions at 
the electrodes. The etectrode reactions are an given in Equations (10.2,4) and (10.2.S). Upon closing the circuit, 
chemical reactions occurring within the cell will generate an EMF that will drive a current. Cells such as this are 
represented by a cell diagram denoting the various phases and junctions, In a cell diagram: the reduction reaction 
is on the right

(Figure 105). By considering entropy production due to the overall reaction and the electric current flowing 
through the system we can derive a relationship between the activities and the EMF. In an electrochemical 
cell, the reactions л  the two electrodes can be generally written as

X + n e "-* X red 'reduction' (10,2.4)

Y -» YM + nc~ ‘oxidation’ (10.2.5)

Each is called a half-reaction: the overall reaction is

X + Y -► X*,, +  Y „ (10,2.6)

For example, the half-reactions

CuJ+ + 2e* -+ Cu(s)
Zn(«) -> Zii2+ + 2e-

at the two electrodes result in the overall reaction

Cu2+ + Zn(s) -> Zn2+ + Cuts)

(Thus, a zinc rod placed in an aqueous solution of 0uSO4 will dissolve and metallic copper will be deposited.)
Reactions at the electrodes may be more complicated than those indicated above, bust tbe main idea is 

•he same: at one electrode, electrons arc transferred from the eleclmdc: at the other electrode, electrons are 
transferred to the electrode. In representing electrochemical cells diagrumatically. it has become a convention 
to place the ‘reduction' half-reaction on the right. Thus, the electrode on the rigbt-hand side of the diagram 
supplies the electrons that reduce the reactants.
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Since the reaction» al the electrodes may occur at different electrical potentials, we must u«e the electro 
chemical affinity to foimulate the thermodynamics of an electrochemical cell. If A is the electrochemii ,| 
affinity and (  is the extent of reaction, the entropy production due to such a reaction is

dfS ; id f
dt ~  T dr 00-2.7)

Since each mole of reacting X transfers n moles of electrons (see Equation (10.2.4», and since d£/dt is the 
velocity of the reaction, the relation between the current I (which is the amount of charge transferred per 
second) is

df
,  =  nF-ft (10.2.8)

in which F  is the Faraday constant (the amount of charge carried by a mole of electrons). Substituting Equation
(10.2.8) in Equation (10.2,7) we find

di S  i Д
l t ~ T n F  <10'2'9»

Comparing this expression with Equation (10.1.17) we obtain the following relation between the voltage and 
the associated electrochemical affinity:

V=£nF
(10.2.10)

in which л is the number of electrons transferred in the oxidation-wrduction reaction. For a given Д, the larger 
tl» number of electron* transferred, the smaller the potential difference.

Using the electrode reactions (10.2.4) and (10.2.5), the above expression can be more explicitly written m 
terms of the chemical potentials:

X + ne" -* X^fright), AR = (/<£ + n/i* -  nFtff-)- (10.2.11)

Y -* YQI + ne~ (left), AL =  ^  -  (n t f  -  nFi>L + (10.2.12)

in which the superscripts indicate the reactions at the right and letft electrodes. The electrochemical affinity 
of the electron in the left electrode is written as Дс = -  Ftp1, and similarly for the electrons in the right 
electrode. The overall electrochemical affinity A, which is the sum of the two affinities, can now be written as

A = AR + AL = (*£ + $  -  £  -  .Ну. > +  «</£ ~ Pe) -  "F(Фл ~ ФL) (10.2.13)

If the two electrodes are identical, then £  = £  and the only difference between the two electrodes is in 
their electrical potential Ф- By virtue of Equation (10.2.10), we can now write tlie voltage V associated with 
the above electrochemical affinity as

V “  5 ?  = + ~ " L  ~ -  * L> (10.2.14)

Now let us consider tlie 'terminal voltage' «  фк -  ф1, the potential difference between the terminals 
for which А и 0, It is the open-circuit condition with zero current, similar to tbe osmotic pressure difference
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at zew
„ее

affinity- Th*s terminal voltage is called the EMF of the cell. From Equation (10.2.14) we

(10.2.15)

L  nonzeio Д. i.e for nonzero current, tbe terminal voltage is Iем than the EMI '. On the other hand, if the 
tentials of the two electrodes are equalized by shorting the two terminals, then фK -  ф1 =* 0. and Ihe flow of 

1X1 ^  I m nF(d£/df) i* limited only by the rate of electron transfer al the electrodes. Under these conditions 
thTvoltage in Equ*»on (10.2.14). V =  A /nf' is also equal to the right-hand side of Equation (10.2.15),

It is more convenient to write the cell EMF (Equation (10.2.15)) in terms of the activities by using tbe 
LeiKTal expression nt  «  $  + RT lna* for (he reactants and products. This leads to the well-known Nernst
equation

where
-AG?

nF

(10.2 .16)

<10.2.17)

Equation (10.2.16) relates tbe cell potential to the activities of (be reactants. As we expect. V is zero at 
equilibrium and the equilibrium constant of tlie electrochemical reaction can be written as

9n AT -
- a O'I

r t '
nFV0
RT

(10.2.1*)

10.2 J  Galvanic and Electrolytic Cell»

A cell in which a chemical reaction generates an electric potential difference is called a galvanic cell; if 
an external source of electric voltage drives a chemical reaction, then it is called an electrolytic cell. Such 
electrochemical cells are represented by cell diagrams, as described in Box 10,1.

Box 10.1 Electrochemical cells and cell diagrams
When there is tw external flow of current, there must be a compensating current within the cell. This cun 
be accomplished An many ways, each defining a type of electmchcmica] cell. The choice of eleclrodcs 
is also decided by the experimental condition,» and the need to u«c an electrode without undesirable side 
reactions. Electrochemical cells often incorporate salt bridge* und liquid junctions

Liquid junction»: When two different liquid» are in contact, utstully through a porous wall, it is called a 
liquid junction. The concentrations of inn* and their electrochemical potentials on either side of a liquid 
junction are generally not equal; the electrochemical potential difference causes a diftunional flow of 
i°ns. If the rales of flow of the dStfercet Ions are unequal, then a potential difference will be generated 
across the liquid junction. Such a potential is called the liquid junction potential. The liquid junction 
potential may be reduced by the use of a «alt bridge, in wliidh the flows of the positive and negative 
ions are nearly equal.
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Salt bridge. Л commonly used salt bridge consists of a solution of Ш  in agarose gel. In this medium.
tbe flow of K+ and Cl are nearly equal.

Cell diagrams. An electrochemical cell diagram is drawn adopting the following conv entions:
• Reduction neaction occurs at the electrode on the right.
• The symbol I indicates a phase hound«ry, such as the boundary between a solid electrode and ;i

• The symbol ' | ’ indicates a liquid junction, such as a porous wall separating a solution of CuS()4 
and C ud.

• The symbol j| or ■ :. indicates a salt bridge, such as KC1 in agarose gel.
For example, the cell in Figure 10.6 is represented by the following cell diagram:

Let us consider a simple reaction. When Zn reacts with an acid, Hj is evolved. It is a simple electron-transfer 
reaction:

The reason why the electrons migrate from one atom to another is a difference in electrical potential: that is. 
in the above reaction, when an electron move» from a Zn atom to an H+ ion, it is moving to a location of 
lower potential energy. An interesting possibility now arises: if the reactants are placed in a ’cell’ such that 
the only way an electron transfer can occur is through a conducting wire, then we have a situation in which a 
chemical affinity drive* an electric current. Such a cell would be a galvanic cell, as shown in Figure 10.6, in 
which the sum of the electrode half-reactions U Equations (10.2.19) and the flow of electrons occurs through 
an external circuit. Conversely, through an external EMF, the electron transfer can be reversed, which is the 
case in an electrolytic cell.

solution.

Zn(s)lZn2+1 |H+ |Pt(s)

Zb(s) + 2H+ -+ Zn2+ + Hj (10.2.19)

e

Figure 10.6 An example of a galvanic cell that Is driven by the reaction Zn(s) + 2H* -* Zn3* + H2. The two 
electrode chambers are connected through a salt bridge that allows for the flow of current without introducing a 
liquid junction potential.
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Figure 10.7 A concentration difference can generate an FMF. Two beakers containing AgNO, solutions at differ
ent concentrations are connected by a KNO, salt bridge. A silver elec trode Is placed in each cell. Tbe difference 
in concentrations generates an EMF.

The EMF generated by a galvanic cell, as shown above, is given by the Nemst equation. In Hie above 
example, the cell EMF is given by

V = V0 -  Ц :  In (  У 1-'— - - )  (10.2.20)0 * WaJ
10,24 Concentration Cell

Ihe affinity generated by a concentration difference can also generate an EMF. A simple example of an 
AgNO} concentration cell in which a concentrtmon-driven EMF can be realized is shown in Figure 10.7. The 
two beakers are linked by a KNOj salt bridge (a gel containing KNOj solution). A silver electrode is placed 
in each beaker. If tfce two electrodes are connected by a wire, the difference in electrochemical potential of 
Ag+ ions causes a ftow of electrons from one silver electrode to another, absorbing Ag+ in the beaker that 
has a higher concentration and releasing them in the beaker that has a lower concentration.

The reactions at the two electrodes are

Ag* + e" -* AjHsM/!) and Ag(s)-» Ag+ + е '(д )  (10.2.21)

which amounts to transfer of Ag+ ions from a higher concentration to a lower concentration. Electronewtrolity 
is m aintained in both beakers by the migration of K+ and NO,' ioM through the salt bridge. For such a cell 
Vo in the Nernst etjuation equals zero because the reaction at one electrode is tlie reverse of the reaction at 
the other and the standard states of reactants and products are the same Thus, for a concentration cell:



276 Modem Thermodynamics

10.2.5 Standard Elect rod* Potentials

Just as the tabulation of the Gibbs energies of formation facilitates the computation of equilibrium constants 
the tabulation of standard electrode potentials facilitates the computation of equilibrium constants for 
electrochemical reactions. A voltage is assigned to each electrode half-reaction with the convention that 
the voltage of the hydrogen platinum electrode, H+|Pt, is zero, 1Ъа1 is. the electrode reaction H+ + e 
i  Hi(g) at a Pt electrode is taken lo be the reference and the voltages associated with all other electrode 
reactions are measured with respect to it. The standard electrode potentials are the potentials when activities 
o f all the reactants and products equal one at T  =» 298.15 K. For any cell, the voltages of the eoiresponding 
standard potentials are added lo obtain the cell potentials. Since these potentials correspond lo the situation 
when all the activities are equal to one, it follows from the Nemst equation that the standard cell voltage is 
equal to V0.

Example 10.3 stove how an equilibrium constant may be computed using the standard electrode potentials. 
A list of some of the commonly used standa-d electrode potentials it given in Table 10.1. In using the standard 
potentials, one must note that: (a) changing the stoic biometry does not change V0 and (b> if the reaction is 
reversed, then the sign of V0 also reverses.

Table 10.1 Standard electrode potentials.

Electrode reaction Ц, (V) Electrode

jA uJ* +« 1 e~> 
t 1.S0 Au3+|AU

|  Cl,(g) + •* -  cr 1.360 C|-|Clf(g)|Pt
Ag+ + e~ Ag(s) 0.799 Ag-’IA*
Cu* + e‘ ч ■ Cu(s) 0.521 CuMUi
j  C u ^ * e " -+ jCu(s) 0.339 Cu!*|Cu
AgCl + e* -* Ag + a 0.222 C|-|AgCI(s)|Ag
CuJ*+ e- - C u + 0.153 CuJ*|Cu+|Pt
H++ e ~ . jH 2(g) 0.0 Н*|Н,КР|

ip b J* + e-

It -0.126 Pb,+ |Pb(s)

jSnJ* +e~ •* jSn(s) -0.140 SnJ+|Sn(s)

I ni^ + c -  jNi(s) -0.250 NIJ*|Nlts)

j  Cd1’ в -* |cd(s) -0.402 Cd^lCtKs)

jZ nJ* +*- -* jzn(s) -0.763 Zn>+|Zn(s)
Na* + e- -» Na(s) -2.714 Na’ IMat»)
L I* + e--. ills) -3.045 U*|Ll(w
Non. (ai Clanging the aokttoniary does not diange Ц,.|Ь)» Ле inaction is reverted, Ihe sign of vt alio «verses.
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isothermal Diffusion

y/e have already seen in Section 4.3 that the flow of particles from a region of high concentration to a region 
0f  lower concentration is a flow driven by unequal chemical potentials. For a discrete system consisting of 
two pals of equal temperature T, one with chemical potential /i, and molar amount /V, and the other with 
c h e m ic a l  potential р г and molar amount N? we have the following relation:

-  dNi  =  <Wj >  df (10.3.1)

Tbe entropy production that results from unequal chemical potentials is

djS «  -  (  )  d* =  f d (  >  0 (40.3.2)

the positiv ity  of this quantity, required by the Second Law, impbes that particle transport is from a region 
of higher chemical potential to a region of lower chemical potential. It is the diffusion of particles from a 
region of higher chemical potential to a region of lower chemical potential. In most situations this is a flow 
of a component from a higher concentration to a lower concentration. At equilibrium, the concentrations 
become uniform, but this need not be so in every case. For example, when a liquid is in equilibrium with 
its vapor or when a gas reaches equilibrium in tbe presence of a gravitational lield, the dhemical potentials 
becomes uniform, uol the concentrations. The tendency o f the thermodynamic forces that drive matter flow is 
to equalize the chemical potential, not the concentrations.

103.1 Diffusion in  « Continuous System and Pick’s Law
lixpression (10.3.2) can be generalized to describe a continuous system, as was done for the general case of a 
field in Section 10.1 (Figure 10.3). Let us consider a system in wliich the variation of the chemical potential 
is along one direction only, say x. We shall also assume that T  is uniform and does not change with position. 
Then, as in Equation (10.1.13), the rate of entropy production for diffusion is

(10.3.3)d,si.v)
df -IK S)'»

For simplicity, let us consider the flow of a single component k:

dr
(10.3.4)

We note, once again, that the entropy' production is the product of a thermodynamic flow and the force, 
that drives it. The identification of a thermodynamic force and the corresponding flow enables 

us to relate the two. Near equilibrium, the flow is linearly proportional to the force. In the above case, we can 
write this linear relation as

(10.3.5)

The constant of proportionality, L*. is the linear phenomenological coefficient for diffusion al flow. We saw 
cafher 'hat. in an ideal fluid mixture, the chemical potential can be written as ii[p. T. xt ) = ц(р, T) + 

to in which Xff is the mole fraction, which in general is a function of position. If л,,* is the total molar 
density and n* is the molar density of component k. then the mole fraction xt  = л*/ли„ We shall assume 
“W the changc of пю, due lo diffusion is insignificant, so that <fln x^dx *= din nk!dx, Then, substituting



Table 10.2 Diffusion coefficients of molecules In gases and liquids.
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Compound, in air Solute, in water
(p = l01.325 m ,  Trn 293.15 К) 0(10“* m *r') (T*298.15 K) О (1 0 ^ т 2 5

CH. 0.106 Sucrose 0.52
Ar 0.148 Glucose 0.67
СОг 0.160 Alanine 0.91
CO 0.208 Ethylene glycol 1.16
h ,o 0.242 Ethanol 1.24
He 0.580 Acetone 1.28
H, 0.627

Source: D.R. Lida (ed). CtfC Handbook of Chemistry and Physics, 75th edition, 1994, CtfC Press; Ann Arbor, Ml.

It (p. T, xk) = fHp. T) + RT In xk into Equation (10.3.5), we obtain the following thermodynamic relation 
between the diffusion current Jm  and the concentration:

™ nk dx

Empirical studies of diffusion have led to whilt is called Pick's law. According to Pick's law:

'Nk -D ,
дщ
dx

(10.3.6)

(10.3.7)

in which Dk is the diffusion coefficient of the diffusing component Typical values of the diffusion coefficients 
for gases and liquids arc given in Table 10.2. Clearly, this expression Is the same as liquation (10.3.6) if we 
make the identification

LkR
"k

(10.3.8)

This gives us a relation between the thermodynamic phenomenological coefficient Lk and the empirical 
diffusion coefficient.

An important point to note is that the thermodynamic relation (10.3.5) is valid in all cases, whereas Ficks 
law (10,3.7) is not. Fur example, in the ease of a liquid in equilibrium wilh its vapor, since the chemical 
potential is uniform. (d/i*/t>jr) =  0 and (10.3.5) correctly predicts Л * - 0; but (10.3.7) doe* not predict Л* = 
0 because (dnktdx) Ф 0. In general, if we write (10.3.5) as JNk = - i  1.кП"Иdii)JdnkMдп^дхЪ then we see that, 
depending on the sign of (дцк!дпк), can be positive or negative when (dnk/dx) > 0. Thus, (he flow is toward 
the region of lower concentration when (d/it /dnt )> 0, but the flow con be to the region of higher concentration 
when ldftt /(ink) < 0. The latter situation arises when a mixture of two components is separating into two 
phases: each component flows from a region of lower concentration to a region of higher concentration. As 
we shall see in later chapters, the system is "unstable' when 1дцк1дпк) < 0.

10.3.2 The Diffusion Equation

In the absence of chcmlcal reactions, the only way the molar density nk(x, I) can change with time is due to 
the flow JNk- Consider a small cell of size S at a location x  (Figure 10.8). The molar amount in this cell is 
equal to nt (x, 1)6 . The rate of change of the molar amount in this cell is d(nk(x. t)6 )ld t. This change is due to
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x  x+ S

figure 10.8 In the absence o f chemical reactions, the change in the molar amount of a substance in a small cell 
ofsize >5/aI d location x, equals the net flow, the difference in the flow lNk into and out o f  the cell. The number of 
moles in the cell o f size i  is nt6. The net flow Into the cell o f size 6 is given by equation (10.3.9). This difference 
in the flow will cause a net rate o f change in the mole amount dfn^x, 0&)/dt. On equating the net flow to the 
rate of change o f the molar amount, we obtain the equation dnk(x, t)/d * -df^/dx.

the Mit flow, i.e. the difference between the inflow and the outflow of component к  in the cell 
into the cell of size 5 is equal to

/  OV.j \  dim
4 W  -  JNkU+ <5> = -  (•*»(*) + ~ SJ  = — 5 7 s

Equaling the net flow to the rate of change of tlie molar amount, we obtain the equation

г)Пк (Х, I) _  d J f q  

dt dx
Using Fick’s law (10.3.7), we can write this equation entirely in term* of n^x. I) $s

. The net flow 

(10,3.9)

(10.3.10)

*•*(*>*) г, ^Щ (х- 0  L*l
dt dx1

(10.3.11)

This partial differential equation for n*(jrf is the diffusion equation for the component k. It is valid in a 
homogeneous system. In a homogeneous system, diffusion tends Ю eliminate concentration differences and 
equalize the concentrations throughout the system. However, it must be home in mind that, in general, the 
thermodynamic force tends to equalize the chemical potential, not ihe concentrations.

10,3.3 The Stokm-Einstein Relation

The viscous force on a particle in a fluid and its diffusive morion are both results of random molecular 
collisions. A partide diffuses due to random collisions it undergoes with the fluid molecules, and it can also 
transfer its momentum to the fluid molecules during these collision*. The latter process appears as the viscous 
force on a macro level, Through thermodynamics one can see that the diffusion coefficient and the coefficient 
of viscous force or 'friction' must be related -  a reflection of the fact that both are the result of molecular 
collisions. This relation is called the Stoke*~Klnstein relation.

Rck's law gives us the diffusion current in the presence of a concentration gradient. In the presence of a 
field, there is also a current, which is proportional to the strength of the field. For example, in the presence of 
a» electric field E, mi ion carrying a charge will drift al constant speed proportional to the magnitude of 
the force e:t |E |. This happens because the force due to the field (whose magnitude equals «* |E | for
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ions) accelerates tbe ion till the opposing viscous or frictional force, which is proporliomal to the velocity 
balances When the ion move* at a speed v, the viscous force equals yt v, in which yk is the coefficient 
of viscous force. When the two forces balance, y*v = f tekJ and the ion will drift with a terminal velocity i 
Hence, the terminal or drift velocity can be written as

(10.3.12)
П

Since the number o l ions that drift is proportional to the concentration n*. the ionic drift gives гше to tlie 
following particle current density Ik due to the component к along tine x axis:

ezt dd>
lk = V* ‘ "  7 к ’'*Ех = ~ Г*"‘ Л* (10.3.13)

in which the constant Г* «= eztJxtis called tlie ionic mobility of the ion к and Ex is the л-component of К 
(Note that the total electric current density due to all the ions /  = '£kezth-'> Similarly, a molecule of mass 
mk, falling freely in the atmosphere, or any fluid, will reach a 'terminal velocity' v = where ?; is the
acceleration due to gravity. In general, for any potential 4/  associated with a conservative field, the mobility 
of a component к it defined by

Jf* k t= -IV » t J  (10.3.14)

Linear phenomenological laws of nonequilibrium thermodynamics lead to a general relation between mobility 
Tt and the diffusion coefficient Dt , This relation can be obtained as follows. The general expression for the 
chemical potential nn a field with potential у  is given by jik = /t* + гкч/, in which rk is the interaction energy 
per mole due to tbe field (10.1.5). In the simplest approximation of an ideal system, if wc write the chemical 
potential in terms of the concentration nk, Aen we have

fik «= tl'k + RT ln(nt ) + x t f  (10.3.15)

A gradient in this chemical potential will result in a thermodynamic flow

where we have used d In хк!дх = d In nkldx. In liquation (10,3.16), the first tcim on the right-hand side is the 
familiar diffusion current and the second term is the drift current due to the field. Comparing this expression 
with Fick’s law (10.3.7) and expression (10.3.14) that defines mobility, we see that

—  (10.3.17)
nt I

From these two relations it follows that the diffusion coefficient Dk and the mobility I \  have the following 
general relation:

F ¥ 1  (ia3iei
This relation was first obtained by Einstein and is sometimes called the KlnMein relation. For ionic systems, 
as we have seen in Section 10.1 (see Equation (10.1.5)), r* ж Fik -  еР/Ац  and Г4 =  ezk!fk. Since R = k bNA-
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wbicb *s ^ l 1211101111 constant and A'a  the Avogadro number, Equation <10.1,18) for ionic mobility
in
jp̂  bcxx>ines

£ l =  -2 i-  =  —  =
Dk ykOk RT kBT

(103.19)

which leads to tbe following general relation between the diffusion coefficient Dt  and the friction coefficient 
of a molecule or ion k, called the Stokes-Einstein relation:

keT
(103.20)

10.4  Chemical Potential for an Internal Degree o f  Freedom

The notion of a chemical potential can also be extended to transformations in an internal degree of freedom 
of molecules such a* orientation of a pofar molecule with re sped to an external field (Figure 10.9) or 
deformation of a macromolecule due to flow and similar phenomena [2) Thi* can be done by defining an 
internal coordinate в just as we define an ‘external coordinate' such a* tbe position x. In this section, we 
shall only consider the orientation of an etectric dipole of a polar molecule with respect to an electric field 
(generalization to outlier situations being straightforward). In this case. 9 is tbe angle between tbe direction of 
the field and the dipole, as shown in Figure 10.9. Just as we defined a concentration as a function of position, 
we can also define A concentration n(0) as a function of в.  Just as electrochemical potential is a function of 
position and the potential of a field, for an internal coordinate II. tbe chemical potential of component * is a 
function of Й and the potential:

& W ,r>»/i*(0.r) + **0«9) (Ю.4.1)

in which £*<£(0) is the interaction energy per mole between the field and the dipole. If the dipole moment per 
mole is pk and the electric field E, then

&ф(0) * - |р | |Е |  coe((9) (10,4.2)

in which we may identify gk =  |p| and ф{в) я  -  |E| cos(S).

figure to. 9 Chemical ixitentiai ц(в> can be defined for an internal decree o f  freedom such as the orientation of 
aP°lar molecule with twpectto an electric field t. fhe electric dipole moment is denoted by p. The energy o f an 
electric dipole in field С is given by ~p>(. A water molecule is an example of a molecule with a dipole moment. 
**■*' the oxygen atom tends to accumulate negative charge, there is a slight charge separation giving rise to an 
electric dipole moment.
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J(fl-89)

п«Ъбв) n(8)

в+86

Figure 10. 10 Reaction scheme for a continuous internal degrees o f freedom.

Other quantities, such as concentration n*(0), entropy density jt0l. and the ‘flow’ in the $ space can he 
defined as a function of 0, just as they wens defined as functions of x. However, in spherical coordinates, on 
a unit sphere, since the area of the segment between 0 and в + d9 is equal to 2ж sin 0 dfi dф, we use the 
following definitions:

.1(в) 2 л  sin 0 d0 =  entropy of molecules with an internal coordinate between 0 and 0 +  d(t 
n(0) 2 л  sin 0 d6  = molar amount of molecule» with an internal coordinate between в  and $  + d0 
Jg 2 л  sin 0 d(> =  tlie molar amount of molecules whose orientation is changing from в  to в  +  d# per unit time 

(see Figure 10.10)

For simplicity we consider a unit volume and only one species and drop the subscript к of w.
With these definitions it is clear that all (he formalism that was developed in Section 10,1 lor the position 

x  can be directly converted to в by formally replacing .* with 0, Accordingly, we are led to the equation:

for the 'reaction' «(£?) ^  п(в + <50) with the corresponding extent of reaction f(0). The velocity of this

(10.4,3)

which is similar to Equation (10.1.13), In the above equation we can identify the affinity as

(10.4.4)

reaction JN(t9) = dffOJ/dl (see Figure 10.10) is the number of molecules being transformed from 9 to Й + 
dB. With these definitions, the rate of entropy production can also (be written as

(10.4.5)

For a system with an internal coordinate such as 0, the total rate of entropy change is given by

d S  1 d U  , p d V  1 [ д ц ( 8 ) Л Ц 9 ) Лп 
d i ~  T I F  Т 1 й  ~  T J f , ~ )  З Г

(10.4,6)

For the total entropy production the Second Law implies that

(10.4.7)
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. fonnalism presented above, we have a more restrictive statement of the Second Law expressed in 
•«ton (10.4,5). Wbe" * е  system reaches equilibrium, sinoe the affinity becomes гею, we have

d$
(10.4.8)

Writing £be chemical potential more explicitly, we may then conclude that at equilibrium:

№  = /Iq(,T) + RT l»[a(0)J + цф<в) m С (10.4.9)

n which C is a constant and о(в) is tbe activity for the molecules with orientation 0 with respect to tbe field 
E (see Figure 10.9). Also note that, in the absence of a field, since all orientations arc equivalent. fi0 should 
be independent of <?, As we have noted before, the activity of an ideal mixture can be approximated by tbe 
mole fiction. For wi internal degree of freedom, each value of в may be taken as a species and. by analogy, 
we may define an ideal activity by а(в) -  п 0 ) /п ы  in which is (he total number of dipoles. It is now a 
m a t t e r  of elementary calculation to show that, at equilibrium:

in which F(T) is a function of T. expressed in terms of fi0(T) and С (Exercise 10.8$, and in which we bave

10.4.1 The Deby* Equation for Electric Dipole Relaxation

Since the only possible way in which п(й) can change is due to the current У^в), we have a situation analogous 
to diffusion, as illustrated in Figure 10.10, A* noted earlier, in spherical coordinates we use the following 
definitions:

п(в)2я  sin вйв =  molar amount of molecules with internal coordinate between 0  and в +  <10
]f)2x  sin Odd -  molar amount of molecules whose orientation is changing from в to в  +  dfl per unit time

From these definitions, It follows that the conservation equation for the dipoles is

As we did in tbe case of diffusion, by looking at the entropy production (10.4,3), we can identify the force 
corresponding to the flow J#(0) as -1 /Т (д (К в)/д 0 ). When the system is near equilibrium, there exists a 
linear relation between tbe flow and the fotse, which can be written as

* 0 ) =  ntQlF(D e-!*w,/RT = nt0,/r(7’)elpl|B|K’e9'w ’ <10.4.10)

*
used Equation (10.4.2), Note also that F(Ti should be such that /  *(0)sin(0)d0 *  %i-

0

dt
djf/iff) siivl0) 

дв
<10.4.11)

(10.4.12)

(10.4.13)



Substituting Equation (10.4.13) into Equation (10.4.12), we obtain

7^ ) =  " ^ ^ +  r IP l|E |^ COSe ( Ю.4.14)

In analogy with onlinary diffusion, we may define a rotational diffusion in the 9-space, for which expression
(10.4.14) corresponds to Pick's law. A rotational diffusion coefficient De may now be identifled as

„ L Jt
D° =  m  ( Щ 4 Л 5 >

With this identification, the flow J^B) given by Equation (10.4.14) can be written as

W )  (10.4.16)
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^ * n(9,(D̂  + [§,p||EIH"W) (10'4' 171

Finally, substituting this expression in Equation (104.11) gives 

dn(ff) 
dl sin(ff) дв

This is the Debye equation for the relaxation of dipoles in an electric field. It has been used for analyzing 
the relaxation of dholes in an oscillating electric field.
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Examples

Example 10.1 Use the barometric formula to estimate the pressure al an altitude of 3.0 km. The temperature 
of the atmosphere in not uniform (so it is not in equilibrium). Assume an average temperature T -  270.0 K,

Solution The pressure at an altitude ft is given by the barometric formula p(h) =  p(0)e"*WM(r. Fbr the 
purpose ol estimating, nince 78% of the atmosphere consists of Nj. wc shall use the molar mass of N2 for M. 
The pressure at an altitude of 3.0 km will be

p ti  km) = (1 atm)exp (9.8m s-2X28.0x lO'^kgт о Г ‘)3.0х 105m
(8.314J K~lmol",X270K) 

=  (1 ata)exp(-G,366)
= 0.69 atm

Example 10.2 Calculate the membrane potential for the setup shown in Figure 10.4.

Solution ln this case, Ihe expected potential difference across the membrane is
R T , /1 .0 )V =  ф* -  ^  e  SLln^Jpj!^ == 0.0257ln(10) 

= 0.0592 V
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I je j 0 3  Calculate the standard cell potential V0 for the cell shown in Figure 10.6. Also calculate the 
f S S i u m  constant for the reaction Zn(») +  2H+ -» H2(g) + Zn2* .
^ C o n s id e r in g  the two electrode reactions, we have

2H+ + 2 e ' ->H2(g), 0.00 V 
Zn(s) -* Zn2+ +  2e~, +0.763 V
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tbe total cell potential is 

and the equilibrium constant is

V0 =  0 + 0.763 V = 0.763 V

К  = exp

> exp

'2FV0

RT )
2 X 9.648 x

8.314 
■ 6.215 X 1025

x 1СУ* x 0.763 \  
x 298.15 )

Exercises

10.1 Use the chemical potential of an ideal gas in Equation (10.1.9) and obtain the barometric formula 
(10.1.10). U*e the barometric formula to estimate the boiling point of water at an altitude of 2.50 km 
above sea level, Assume an average T »  270 K.

10.2 A heater сой is run at a voltage of 110 V and it draws 2.0 A current. If its temperature is equal to 
200 °C, whal is the rate of entropy production due to this coil?

10J  Calculate the equilibrium constants at 7 = 25.0 °C for the following electrochemical reactions using 
the standard potentials in Table 10.1;
(a) CMg) +  2I.i(s)-*2Li+ + 2CT 
<Ъ) Cd(s) + Cu2+ -» Cd2+ + Cu(«)
(c) 2Ag(s) +  Cl2(e) -  2Ag+ + 2СГ
(d) 2Na(s) +  Cljte) -» 2Na+ + 2CS"

10.4 If the reaction Ag(s) + Fe3+ + B r  -* AfBr(s) + Fe3+ is not in equilibrium it can be used generate an 
EMF. The 'half-cell’ reactions that correspond to the oxidation and reduction in this cell are

Ag(s) + Br" «♦ AgBr(s) +  e", V0 m -0,071 V 
Fe3+ +  e* -* Fe2+, V0 = 0.771V

(a) Calculate Vo for this reaction.
(b) What is tbe EMF for the following activities at T = 298,15 K: = 0,98; •* 0.30; afci, «

aoi.
<c) What will be the EMF al T «  0,0 *C?

10.5 The K+ concentration inside a nerve cell is much larger than the concentration outside i l  Assume that 
the potential difference across the cell membrane is 90 mV. Assuming that the system is in equilibrium, 
estimate the ratio of concentration of K+ inside and outside the cell.
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10.6 Verily that

n ( x , t ) =

2 \jx D l

is the solution of the diffusion equation (10,3.11). Using Mathemalica or Maple, plot this solution ft* 
various values of t for one of the ga«s listed in Table 10.2, assuming n(0) =  1. This gives you an idea 
of how far a gas will diffuse in a given time. Obtain a simple expression to estimate the distance a 
molecule will diffuse in a time (, given its diffusion coefficient D.

10.7 Compute the diffusion current comsponding to the barometric distribution

n(x) ~

10.8 Using Equation (10.4,9) and the ideal activity а(в) = ЩвУНы for tbe dipole oriestation, obtain the 
equilibrium expression (10.4.10). Give an explicit expression for Ию function F(T) In terms of /<„ 
and C.

10.9 The electric dipole moment of water molecules is 6.14 X 10”® Cm. In an electric field of 10.0 V m>. 
find the fraction of molecules oriented with respect to the field in the range 10° < в  < 20° when 
T  = 298 K,
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Thermodynamics of Radiation

Introduction

E lectrom agnetic radiation, which interacts with matter, also reaches the state of thermal equilibrium with a 
definite temperature. This state of electromagnetic radiation is called thermal radiation, also called heal 
radiation in earlier literature. In fact, today we know that our universe is filled with thermal radiation at a 
temperature of abou* 2.73 K.

It has long been observed that heat transfer can take place from one body to another in the form of radiation 
with no material contact between the two bodies. This form of heat was called ‘heat radiation’. When it was 
discovered that motion of charges produced electromagnetic radiation, the idea that heat radiation was a form 
of electromagnetic radiation was taken up. especially in the works of Gusitav Kirchhoft'( 1824-1887), Ludwig 
Boltzmann (1844-1906), Joseph Stefan (1835-1893) and Wilhelm Wien (1864-1928), and its thermodynamic 
consequences were investigated [1],

11.1 Energy Density and Intensity o f  Thermal Radiation

We begin by defining basic quantities required to study the properties of thermal radiation (here we follow 
the classic work of Planck on thermal radiation [1]). Radiation is associated with energy density «.which is die 
energy per unit volume, and specific intensity or radiance. I. which in defined as follows (Figure 11.1a): the 
energy incident per unit timeon a small area, do, due to radiation form u solid angle d ti (=sin 9 dfl dip), which 
makes an angle в with the surface normal and equals /cos в  dQ do.  The total amount of radiation incident on 
one side of the area do  (Figure 11.1 b) is equal to I  cos /  cos 8  si n в de dip = *7.
The quantity я I is called the radiation intensity or irradiance or radiant Них density, Electromagnetic 
radiation has two independent states of polarization. The above quantities can be defined tor each independent 
state of polarization, For unpolarized light, an in the case of thermal radiation. Ihe total intensity is the sum 
of the intensities of the two independent state» of polarization, A similar definition can be used for radiation 
emitted from a small surface area do,  in which case x l  is the per unit area of the surface, called radiation 
intensity or irradiance.

The energy density и and radiance /  could also be defined as functions of frequency for each imle/ienden 
slate o f polarization at:
“(v)dv к  spectral energy density of radiation in the frequency range v and v + dv (J m "3 H z '1)

Modem Thermodynamics: From Hear Engines to Dittipative Structures, Second Edition. Difcp Kwutepudi and fly* Pngoguw 
2015 John Wiley & Sons. Ltd Published 2013 by John Wiley St -Souk, Ltd-
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do
(a)

*/(Г, v)
(b)

figure 11.1 (a) Definition of spectral radiance l(T, v). The energy №ux Incident on the area dement do, from a 
solid angle dU = sin в dO dip, is given by l(T, v) cos в d a  da. Here в is the angle between the normal to do and 
the incident radiation, lb) The total amount o f radiation incident on da fют one side, the Intensity of radiation, 
equals *I(T, v). For electromagnetic radiation, tbe spectral intensity sl(T, v) contains two independent states of 
polarization.

/(v) dv =  spectral radiance in the frequency range v and v +  dv (W Hz-1 sr"1 m-J) 
л /(v) dv = spectral Intensity or spectral irradiance in the frequency range v and v + dv (W  Hz-1 ro“2)

There is a simple relationship between the spectral radiance /(v) of radiation propagating at a velocity с and 
its energy density (it):

m(v) .
4л/(v)

(11.1.1)

This relation it not particular to electromagnetic radiation: it it valid for any quantity that fills space 
homogeneously and propagates with velocity с in all directions. In addition to intensity, electromagnetic 
radiation has two independent states of polarization. For each independent state of polarization (11.1.1) is valid. 
For unpolarized thermul radiation, the specific intensity /(v) consist* of two independent states of polarization

Gustav Kirkchoff (1824-1887).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)
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„oted by Gu»tav Kircbhoff (1824-1887), thermal radiation liiat is simultaneously in equilibrium with 
f veial substances should not change with the introduction or removal of a substance.

*  Hence /(v) and K(v) associated with thermal radiation must be functions only of the temperature T, 
•„dependent of the substances with which it is in equilibrium. We shall therefore write thermal spectral 
' d e n s i t y  and radiance as »(Г, v) and KT, v) respectively.

A body  in thermal equilibrium wilh radiation is continuously emitting and absorbing radiation. Spectral 
b so rp tiv ity . ak(T. v). of a body к is defined a* the fraction of the incident thermal spectral radiance HT, v) 

that is absorbed  by the body к in the frequency range v and v + dv al a temperature T. The thermal radiation 
absorbed by the bodiy in the solid angle dQ equals а^Г, v)I{T, vjdfl. Let It (T. v) be the spectral radiance 
o f the body  k. Then the power emitted per unit area into a solid angle dO equals 1*(Г, vKlU- At thennal 
equilibrium , tlie radiation absorbed by the body к in the solid angk dO must equal the radiation it emits in 
that solid  angle. It then follows that

М г 1 - / ( 7 »  (11, U )a*(7\v)
As noted above. ЦТ, v) thermal spectral radiance must be independent of substances with which it is in 
equilibrium . Hence the ratio of a body's radiance to its absorptivity. lk(T. vУа*(Г. v). is independent of the 
substance к and function only of temperature T and frequency v. This fundamental observation is called 
K lrc h o fP s  law (see Box 11.1).

Box 11.1 KirchhofFs law

Kirchhoffs law states that, at thermal equilibrium, the ratio. /*('f. v)/at (T, v), of emissive radiance 
lk(T, v) of a body к lo its absorptivity ак(Т, v) is independent of the body and is equal to tlie radiance of 
theimal radiation !(T, v):

= KT, v)rtj(r.v)
For a perfectly absorbing body. <ij(7'. v) *  I Such a body In o iled  и hbefchody: it* spectral radiance 
is equal to the thermal spectral radiance t\T , v), Kmisslvity. й body к in defined и* ihe ratio uf its 
spectral radiance to that of a blackbody: ek *  lk\T, v)ll(T. v). TIkis KirchofTs Inn can also be stated as: 
at thermal equilibrium,

Hmuiivtly ek =  Absorptivity oj

The emissive power of a body к is the power emitted per unit area into all directions in a hemisphere. It 
equals лг/,(Г>. Hraissivitics of some materials arc shown below:

Material EmM vlty
Lampblack 0.84
Polished copper 0,013
Cast irau 0.60-0.70
Polyethylene black plastic 0.92
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For a perfectly absorbing body, ak(T, v )=  J, Such a body is called ablackhody: spectral radiance is equal 
to the thermal spectral radiance ЦТ. v). In this context, another parameter called emissivity. et , of a b o d y  * 
is defined as the ratio of its spectral radiance, lt (T, v \  to that of a black body, i.e. ek = Ik(T, v)/l(T, v). Thus 
Klrchoffs law (11.1.2) can also be stated as: at thermal equilibrium

Emissivity ek = Absorptivity ak

At the end of the nineteenth century, classical thermodynamics f»ced the challenge of determining tbe exact 
functional form of u(T. v) or /(Г. v). None of the deductions baeed an the laws of physics that were known at that 
time agreed with experimental measurements of u(T, v). This fundamental problem remaiaed unsolved until 
Max Planck (1858—1947) introduced his revolutionary quantum hypothesis. With the quantum hypothesis, 
according to which matter absorbed and emitted radiation in discrete bundles or 'quanta', Planck was able to 
derive die following expression, which agreed well with the observed frequency distribution u(T, vy.

. .  8*Av3 dv u(T, v)dv =- (e*v/*er _  J) (11.1.3)

Here h (= 6.626 X10"34 J s) is the Planck’s constant and kB 1.381 X  10-23 J K"1) is the Boltzmann 
constant. The expression for the energy density includes the two independent states of polarization. The 
derivation of this formula, which requires Hie principles of statistical mechanics, can be found in Chapter 20. 
Finally, we note that total energy density of thermal radiation is

CO

u(T)*z J  u(T, v)dv (11.1.4)
о

When functions м(». T) obtained using classical electromagnetic theory were used in this integral, the total 
energy density. u(T. v), turned out to be infinite. The Planck formula (11.1.3), however, gives a finite value 
for u(T. v).

Max Planck (1850 1947).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archive.)
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tl-2 The Equation of Slate

[t was clear, even from the classical electromagnetic theory, that a field which interacts with matter and 
energy and momentum must itself carry energy and momentum. Classical expressions for the energy 

and momentum associated with the electromagnetic field can be found In texts on electromagnetic theory. 
For tbe purposes of understanding the thermodynamic aspects of radiation, we need an equation of state, i.e. 
3D equa tion  that gives the pressure exerted by theimal radiation anti it» relation to the temperature.

Using classical electrodynamics it can be shown (I J that the pressure exerted by electromagnetic radiation 
is related to the energy density и by

u (11.2.1)

This relation follows from purely mechanical considerations of force exerted by electromagnetic radiation 
when it is reflected by the walls of a container. Though it was originally derived using the classical elec
trodynamics, Equation (11.2.1) can be more easily derived by treating electromagnetic radiation filling a 
container as a gas of photons (shown in Box 11.2). We shall presently see that when this equation of state is 
com bined with the equations of thermodynamics, we arrive at the conclusion that the energy density и(Г, v) 
(and hence ЦТ, v)) is proportional to the fourth power o f the temperature, a result that is credited to Joseph 
Stefan (1835-1893} and Ludwig Boltzmann (1844-1906) and caled the Stefan-Boltzmann law. The fact 
that energy density u(T) = / 0°° и(Т, v)dv Ы  thermal radiation is only a function of temperature, independent 
of the volume, implies that in a volume V the total energy is

U = Щ Т )  (11.2.2)
Though thermal radiation is a gas of photons, it has features that are different from that of ui ideal gas. At 

a fixed temperaturc T. us the volume of thermal radiation expand*, the total energy increases (unlike in the 
case of an ideal gas in which it remains constant), As the volume increases, the ‘heat’ that must be supplied 
to such a system to keep its temperature constant is thermal radiation entering the system. This heat keeps 
the energy density constant. The change in entropy due to this heal (low is given by

deS »  dQ/Т  =  (dt/ + p d V ifT  (11.2.3)

Once we assign an entropy to the system in this fashion, all the thermodynamic consequences follow. Consider, 
for example, the Helmholtz equation (5.2.1H) (which follows from (he fact that entropy is a state function and 
therefore d?S/dT д V =  fS /d V  dT:

Using Equation (11.2.2) and tbe equation of state, p  =  и/3, in this equation we can obtain (Exercise 11.1):

В  4«(П =  Г ^ ^ Р )  (U .2 J)

Upon integrating this equation, we arrive ait the Stefun-Bolttmanm law:

( 11.2 .6)ЩТ) m flT*

ln which p it a constant The value of fi m 7.56 X 1 0 '16 J m 'J K"4 is obtained by measuring the intensity of 
N ation  emitted by a blackbody at a temperature T. The above energy density includes the two independent 
states of polarization.
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For a heuristic derivation o f the pressure o f a photon gas. let «(v) be the number of photons per unit 
volume with frequency v. The momentum of each photon is (hv/c). 1Ъе radiation pressure on the walls is 
due to photon collisions. Each collision imparts a momentum 2ihv/c) to the wall upon reflection. Since 
the photons are in random motion, at any instant tlie fraction of the photons that will be moving in the 
direction of the wall equals 1/6. Hence the number of photons that will collide with a unit area of the wall 
in one second is (n(v)c/6). The total momentum imparted to an unit area of the wall per second is the 
pressure. Hence we have;

, /n (v )r\2 A v  «(v)Av«"-(-Г ) т ж —
Now, since Ihe energy density m(v) •» mvjftv, we arrive ш the result:

A more rigorous derivation, talcing all tbe directions of the photon momentum into consideration, also 
gives the same result. For photons of all frequencies we can integrate over the frequency v:

V» 00

/ . , .  f  M(V) IIp(v)dv =  j  -^ -d v  «a -

о 0
where и is the total energy due to photons of all frequencies and p  is the total pressure. Note that a similar 
derivation for the ideal gas gives p  = lu li. in which и = MmvJ /2), where n is tlie nurrther of molecules 
per unit volume und f«v*vg/2) is the average kinetic energy of a molecule.

The Stefan-Boltxmann law can also be written in terms of irradiancc of a blackbody. By integrating Equa
tion <11.1.1) over all frequencies v, we arrive at u(T) = 2 X 4xl(T)lc. where we have explicitly indicated that 
the intensity l(T) is the intensity due to each independent state of polarization. In this notation, experimentally 
measured total radiance equals 2ЦТ). The corresponding irradiancc #2/(7) (which is the power emitted per 
unit area in all directions in a hemisphere) «art now be written as

*(2/) *  M(I>/4 = (pc/4)T* maT* (11.2.7)

in which the constant a = 5.67 x 1СГ8 W m~3 K~4 is called the Stefun-Boltzmann constant.
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Usieg Equation (П  .2.6), we can eow write the pressure, p  = и/3, as function of temperature:

p(T) =  pT*t3 ( 1 1 .2 .8 )

p  nations (11.2.6) and (11.2.8) are the equations of state for thermal radiation. For temperatures of order 
^0? К or lcss- * е radiation pressure is small, but it can be quite large for stellar temperatures. In Hie interior of 
^ fs , where the temperatures can be 107 K. we find, using liquation (11.2.8), that the pressure due to thermal 
Radiation is about 2 52 X 1012 Pa «  2 X 107 atm!

11J  Entropy and Adiabatic Processes

For thermal radiation, tbe change in entropy is entirely due to heat Dow:

oS m d,5 = ----- - -----

Considering V  as a function of V and Г, this equation can be written as
1dV\ , J  JT,  , 1 f i V  \

(11.3.1)

(11,3.2)
i d V h  ' Г T U T ) v  

Since U =  Vu = VpT* and p  = (iP /3  we can obtain the explicit differential expression

dS »  ( )  d V +  (4/1VT2) d7-

This expression cnnible* us to identify the derivatives of S with respcct to T and V;

К (i)r“^r3 (§)vmAfiYr2
By integrating these two equations and setting .S' =» 0 at T = 0 and V m 0, it is easy to see (Exercise 11.3) that

4 ,

(11.3.3)

(11.3.4)

5 = | / О Т 3 (11.3.5)

The above expression for entropy and the equations of state (11.2.6) and (11.2.8) are basic; all other thermo
dynamic quantities for thermal radiation ram be obtained from them. Unlike other thermodynamic systems 
we have studied so far, the temperaturc T  is sufficient to specify all the thermodynamic quantities of thermal 
radiation: the energy density u(T), the entropy density s(T) *  S(T)/V and all other thermodynamic quantities 
arc entirely determined by IT. There is no w m  involving a chemical potential in the expressions for S or U, 
If we consider the particle nature of thermal radiation, i.e. a gas o t  photons, the chemical potential must be 
assumed lo equal zero - a point that we will dUcuss in detail in Section 11.5.

In an adiabatic process the entropy remains constant. From the expression for entropy. Equation( 11.3.5), 
the relation between the volume and temperature in an adiabatic process immediately follows:

VT3 -- constant (11,3.6)

The radiation filling the universe is currently at about 2.7 K. Tbe effect of the expansion o f the universe on 
the radiation that tills It can he approximated as an adiabatic prooe*». (During the evolution of the universe 
its total entropy is not a constant. Irrevcrwblc processes generate entropy, but tbe increase in entropy of 
radiation due to these irreversible processes is small.) Using liquation (11.3.6) and tbe cutrem value of T, one 
'an compute the temperature when the volume, for example, is one millionth of the present volume. Thus 
tooinodynamics gives us the relation between the volume of the uaiver&e and the temperature of the thermal 
radiation that fills it.



In a manner similar to the total entropy S of thermal radiation, entropy density tf 'T) с »  also be obtamed 
using the fact that the energy density w D  is entirely heat. We can thus write:
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d*(D =
du(D * fiP d T

(1 1.3.7)

in which we have used expression u(T) = 
this equation, and Dating that s iD  =  0 at T

T T

fil* for the energy density that was obtained earlier. Integrating 
=» 0 K, we obtain

4 ,
s(T) = (H.3.8)

which is in agreement with the expression for the total entropy of thermal radiation obtained above.
As was noted by Max Planck [1, p. 89], tbe expression (11.3.7) i$ also valid for every frequency c o m p o n e n t  

of thermal radiatk*. This observation enables us to obtain the entropy density, s(v, T), as a function o f  t h e  

frequency v and tempera turf T, an expression analogous to the Planck energy distribution u(v, T). Writing 
the fundamental expression (11.3.7) for each frequency component of thermal radiation, we have

di(7\ v )*>
M T , у) 1 du(T, v)

dT (11.3.9)T T dT
The partial derivative ()u(v, T)/dTcan be evaluated using the Planck distribution (11.1.3). Upon s u b s t i t u t i n g  

this derivative in Equation (11.3.9) and integrating, we obtain the expression

8л/iv3 f  еа' т 1
s{T, v) ■■ 5 f  

■a J  i - d f  m which a = Av/AB
[t“IT -  1)2 V

The integral can be evaluated (analytically or using Mathematica) and we obtain the expression

s(T, v )  ‘
Sxv2ka J m ( i + _____L

kbT \  ( t“ / V - l )
^ - l n  (e*v/ V - l ) (11 .3 .10)

The Planck distribution for energy density and the above analogous expression for the entropy density are 
the fundamental equations of thermal radiation.

It is clear that thermal radiation not only carries energy, it also carries entropy. Just a* wc can associate 
specific intensity or spectral intensity, /(v), with thermal radiation, we can also associate a specific spectral 
entropy intensity, The definition of U.v) is similar to /(v). o»ly it is in the context of entropy flow:

The entropy incident per unit time on a small area, da, in the frequency range v and v + dv, due to 
linearly polarized radiation from a solid angle, dii =  sin6 dO dtp, which makes an angle в  with the 
surface normal equals l,(v) cos в d ti do dv.

Following the same line of reasoning that leads to the relation m ( v )  = 2 x  4л l(v)lc for thermal radiation a t  a  

given T (in which the factor 2 takes into consideration two independent states of polarization), we can arrive 
at the relation

JKv) =  2— U v )  (11,3.11)
с

We note that this relation is valid whenever the entropy intensity, £<v), is isotropic and the entropy density, 
j(v), is uniform, for thermal as well as nontbermal or nonequilibrium radiation, i.e. radiation not In equilibrium 
with matter. For nonthermal radiation, expression (11.3.10) is not valid. In Section 11.8 expressions for the 
entropy density and intensity for nonequilibrium radiation are obtained.
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the end of the nineteenth century, one of the most outstanding problems was the frequency dependence of 
nectral energy density и (7\ v). Wilhelm Wien ( 1864-1928)inade an importanl contribution in his attempt 

f o b ta in  u(T, v). Wien developed a method with which he could analyze what may be called the microscopic 
10 .gguences of the laws of thermodynamics, He began by considering adiabatic compression of thermal 

diation. Adiabatic compression keeps the system in thermal equilibrium but changes the temperature so 
Jbat VT3 =  constant (Equation (11.3.6)). Ob a microscopic level, he analyzed the shift of each frequency v to 

? new frequency v' due to its interaction with the compressing piston. Since this frequency shift corresponds 
to a change in temperature such that VT3 = constant, be could obtain a relation between how *(Г, v) changed 
with v and T. This led Wien to the conclusion that u(T, v) must have the following functional form (for more 
details see Reference [1]):
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l l  4 Wien's Theorem

u(T,v) m v3/ ( v /D  = r 3( v / n 3/ ( v / n-------- ------- - __________  (11.4.1)

i e, u(T, v) is a function of the ratio (v/Г) multiplied by Iе , This conclusion follows from the laws of 
thermodynamics. We shall refer to Equation (11.4.1) as Wien’s theorem. Note that Equation (11.4.1) is in 
agreem ent with Plaiick's formula (11.1.3).

Experimentally il was found that, for a given T. as a function of v, ti(T, v) has a maximum, l .ct vDBI be the 
value of v at which u(T, v) reaches its maximum value. Then, because u(T, v)IT* is a function of the ratio 
(vTT). it follows that u( v/T) reaches its maximum at a particular value of the ratio (v/Г) =  C ,. So for # given 
T, u(T. v) reaches its maximum at vm l when (vnal/T) = Ct . In other words.

—  = C, (11,4.2)
vmax

Tbe spectral energy density u(T, v) can be expressed as a function of the wavelength Я by noting that 
v » c/X and dv = -  (сИ.г )йХ. Using Equation (11,4.1) we can write u(T, v)dv «= - T9(dXT)}ftc/XT)(c/X2 idX, 
By combining all terms except T5 as a function, g(XT), we can replace the right-hand side of Ihe equation 
with PgiXTyiX, Now we can identify the expression T*g(XTriX = u(T, X К1Я as the spectra) energy density as 
a function Я.К is a function of the product XT multiplied by T6, The function и(Г, ЯУГ5 reaches its maximum 
for a particular value of the product XT =  Cj. Hence, for a given T, if u(T. Я) i* plotted as a function of Я, its 
maximum will occur at Xm l  such that X ^ T  *= C2. The values of the constants Cj and Cj can be obtained 
using Planck's foimulu (11.13). Generally Ihe value of Cj is used. We thus have what is called Weln's 
displacement law. It tells us how tlie maximum of и (Г, Я) is displaced by changes in T:

■■ 2.8979 X 1СГ3 m К (11,4.3)

As T increases, Я1№ decreases proportionately. This conclusion is entirely a consequence of the laws of 
thermodynamics

The above method of Wien is general and can be applied, for example, to an ideal gas. Here the objective 
would be to obtain the energy density и as a function of the velocity v and the temperature. It can be shown 
that (see Reference |2 |) u(T, v) =  v  ̂fiv^/T). which shows us that using thermodynamics we can arrive at the 
conclusion that the velocity distribution is a function of (v2/T). 'Ibis is consistent with the Maxwell velocity 
distribution (1,6,13), Wien's approach shows us bow thermodynamic# can be used to investigate microscopic 
aspects of systems such as energy or velocity distributions.

'Men's analysis and all other classical attempts to obtain the form of и(Г, v) for thermal radiation gave 
tesults that not only did not agree with experiments but also gave infinite values for u(T. v) when all frequencies
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v (0 to oo) Were included, It is now well known that it was to solve this proWem that Planck introduced his 
quantum hypothesis in 1900.

11.5 Chem ical Potential o f T herm al Radiation

The equations of state for thermal radiation are

P = 5* u =  (11.5.1)

where и is the energy density and p  is the pressure.
If all the material particles in a volume are removed, what was classically thought to be a vacuum is not 

empty but filled with thermal radiation at the temperature of the walls of the container. There is no distinction 
between heat and such radiation in the following sense. If we consider a volume filled with thermal radiation 
in contact with a heat reservoir (Figure 11.2), then if the volume is enlarged, the temperaturc, T, and hence 
the energy density, u, of the system are maintained constant by the flow of heat into the system from the 
reservoir. The heat itliat flows into the system is thermal radiation.

From the particle point of view, thermal radiation consists of photons, which we shall refer to as thermal 
photons. Unlike in an ideal gas, the total number of thermal photons is not conserved during isothermal 
changes of volume. The change in the total energy. U =  uV, due to the flow of thermal photons from or to the 
heat reservoir must he interpreted as the flow of heat. Thus, for thermal radiation, in a reversible expansion 
at constant T  we h»ve ilv «= deS = dQ/T,

d t/» d C > -/’dV = r d S - ? d V  (11.5.2)

This equation remains valid even though die number of photons in the system is changing. Comparing this 
equation with the equation introduced by Gibbs, dU  — dQ - p d V  +  fidN, we conclude that the chemical 
potential ft — 0. The state in which fi *  0  /j a state in which the partial pressure or the particle densitу 
is a function only o f  the temperature. Indeed, in the expression for Ihe chemical potential, fit =  $ ( T )  + 
KT Ы рк/р а]. if we set pk =  0 we see that the partial pressure pk i* only a function of T.

11.5.1 Two Level Atom in Equilibrium with Radiation

With the above observations that the chemical potential of thermal radiation is zero, the interaction of a 
two-level atom with blitckbody radiation (which Einstein used to obtain the ratio of the rates of spontaneous

f A л д

T  ( mm
I f t .  . . . . .  . . I

\  \ \ J
Figure 11.2 Heat radiation in contact with <i heat reservoir. The energy entering or leaving such a system is 
thermal radiation. Though the number of photons is changing, dU m dQ -  p dK



, gjjjnulated radiation) can be analyzed in a somewhat different light, If A and A* are the two states of 
hs atom and rm »  e thermal photon, then the spontaneous and stimulated emission of radiation can be 
written as

A* ;* A + ( 1 1 . 5 . 3 )

A* + у* s* A +  2 ^  (11.5.4)

From die point of view of equilibrium of a chemical reaction, the above two reartions are tbe same. The 
condition for chemical equilibrium is

>'a*=A'a +  X>' (11.5.5)

since t,r =  0. we have /iA. =  /iA. As we have seen in Chapter 9, if we use tbe expression iik -  + 
KT blp t/Po) f°r tbe chemical potential, and note that tbe concentration is proportional to the partial pressure, 
the law of mass action takes the form:

Ж  = K (T )  (11.5.6)
[A*]

On the other hand, looking at the reaction» (11.5,3) and (11.5.4) us elementary chemical reactions, we may
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write

If t l f o 1 = K \T )  (fl 1.5.7)
[A*]

However, because [/к,] is a function of temperature only, it can be Absorbed in tbe definition of the equilibrium 
constant so that if wc define K(T) s  K'(T)/\r<h] we recover the equation (11.5.6), which follows from 
thermodynamics.

Similarly, we may consider any exothermic reaction,

A + В 2C + Heat (H 1.5.8)

from the viewpoint of thermal photons, and write this reaction as

А +  В ^ г С  +  у* (11.5.9)

The condition for equilibrium can now be written as

Ял + Ий = 2яс +  h  (UJ.IO)

Since ny == 0, we recover the condition for chemical equilibrium derived in Chapter*?. For this reaction also, 
one can obtain K!(T) similar to that defined in liquation (11.5.7),

U .6  M atter-A ntim atter in E quilibrium  wilh T herm al R adiation: The State of Zero 
Chemical Potential

Wben we consider mterconversion of matter and radiation, as in the cane of particle-antiparticle pair creation 
“^  annihilation, the chemical potential of thermal photons becomes more significant (see Figure 11.3). 
Similar thermodynamic analysis could be done far electron-hole pair production by radiation. Consider 
thermal photons in thermal equilibrium with electron-positron pair»:

2y e+ + e" (11.6.1)
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figure 11.3 Creation of particle-antiparticle pairs by thermal photons.

At thermal equilibrium we have

f l e + + / < e -  =  2  Иг ( И . 6 . 2 )

For reasons of symmetry between particles and antiparticles, we may assert that . Since цг =  0 we
mast conclude that for particle-antiparticle pairs that can be created by thermal photons pt <, m /ic- = 0.

It is interesting to further discuss this state of matter for which ft =  0. For simplicity, let us consider /i = 0 
state in an ideal mcmatomic gas mixture for which 

Uk - T S k+ P kV
Nk

NkU 3 /2 W  +  и у  -  TNkR l(3/2) In Г + kt(V/Wt ) +  , 0) +
---------------------------------------------------------------------------------------------  (11.0.3)

in which we used tke internal energy Uk m Nk[(i/2 )RT + ] of component к of the ideal gas mixture and ils 
entropy Sk = N^RlO/2) In T +  In(V/Nk) + »,,| and the ideal gas equation pkV = NkRT, As wc have already 
noted in Chapter 2. the theory of relativity gives us the absolute value of energy E2 я  p 2c2 +  m V . The 
momentum p  =* 0 at T ■ 0 leaves the rest energy as E = me2. The term Wk is the rest energy of one mole of the 
particles: Wt = МцГ1, in which Mk is the molar mass of component k. (Quantum theory gives us the entropy 
constant i0 in the expression for entropy.) Using Equation (11.6.3) we can write the molar density (Лу V) as

~  ■= ^ T )e^ -M̂ )/RT (11 6.4)

in which z(Tj is a (unction of temperature only (in Chapter 20 we cm see that it is cloiely related to the 
partition function of an ideal gas). When the process of particle-antiparticle pair production is in thermal 
equilibrium, since (t я  0 the thermal particle density is given by

(11.6.5)
th

The corresponding partial pressure is given by

ГЫ  я  KTz{T)t~MkC*lKr (11.6.6)

The physical menntng of the above equations can be understood »s follows: just a» photons of energy 
hv are excitations of the electromagnetic field, partides of energy E = \/т г<А + p 2c~ arc also excitations 
of a quantum field. In the nonrelativistie approximation, E a  me2 + p 2/2m. According to the Boltzmann 
principle, in a field the probability P(E) of an excitation of energy E is given by the proportionality:

P(E) oc p(,E)c~B/kT = f(E)e~lmc2*<fi,2m',]/kBT (11.6.7)
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Д . , |)1ГГ p(E) is the density of states of energy E (see Chapter 20). If we approximate the statistics of these 
—cilations by classical Boltzmann statistics, the density of particles of mass m can be obtained by integrating 
Puliation (П-6.7) over all momenta/). Wc then obtain an expression of the form (11.6.5) in which Ihe molar 
m«ss Mh ~  ^Ami- ^ lus Equations (11.6.5) and (11.6.6) give the density and partial pressure due to particles 
di*t appear spontaneously at temperature T as thermal excitations of quantum fields. In this state, in which 

с  о, there is no distinction between heat and matter, just as it is for thermal photons, the particle density is 
entirely determined by ihe temperature.

At ordinary temperatures, the thermal particle density obtained above is extremely small. Nevertheless, 
fjom the point °f view of thermodynamic formalism after the advent of quantum field theory, it is important 
to  consider this stale in which the chemical potential vanishes. It is a state of thermal equilibrium that 
matter could reach: indeed matter was in such a state during the early part of the universe. Had matter 
stayed in thermal equilibrium with radiation, at the current temperature of the universe. 2.73 K. the density 
o f protons and electrons, given by Equation (11.6.5) or its modifications, would he virtually zero. Indeed, 
the very existence of particles in tlie universe at the present temperatures implies that tlie universe is in a 
nonequilibrium  stale. As a result of the particular way in which tlie universe has evolved, matter was not able 
to convert to radiation and stay in thermal equilibrium with it.

From Equation (11,6.4) we see that assigning a nonzero value far the chemical potential is a way of fixing

I
 the particle density at a given temperature. Since we have an undemanding of tbe absolute /.его of chemical 
p o te n tia l, we can write the chemical potential of an ideal gas particle as

К
in which p ktl is tbe thermal pressure defined above. In principle, one may adopt this scale of chemical 
potential for all ideal systems.
11.7 Chemical [Potential o f  R adiation not in T herm al Equilibrium  w ith M atte r

From the above discussion we see how a «onzero chemical potential may be associated with 'nonthernial' 
electromagnetic radiation, иг. radiation that is not in thermal equilibrium with matter with which it is 
interacting. In discussing thermal and nonnhermal radiation, one musl keep in mind ihe distinction between 
thermal energy density, given by Planck's formula (11.1.3), and the thermal spectrum of the radiation emitted 
by the an object at temperature T. Consider a bi llow sphere at a temperature T that is well above tlie ambient 
temperature. The radiation filling the space within the sphere and m thermal equilibrium with the sphere will 
have an energy deesity given by the Planck formula. If we now make a small hole in the sphere through 
which this thermal radiation can propagate to the space outside the sphere, that radiation will have a thermal 
spectrum whose shape is given by the Planck formula, bet the energy density of this radiation depends 
°n the location al which the radiation is received and it will not equal the Planck energy density. It is not 
“«common ю refer со radiation emitted by an object at temperature T as ‘thermal radiation', by which it 
is meant that the radiation has a thermal spectrum but it Is clear that its energy density te not the thermal 
energy density given by the Planck formula. Thus the radiation from Ihe Sun reaching the Earth has a thermal 

coimpondmg Sun's surface temperature, but its energy density at the Earth’s surface will 
not ^  equal to Planck * energy density at T ^ .  Such radiation may be referred to as thermal radiation' but 
°ne must keep in mind that it Is not in thermal equilibrium with matter on the Earth, which is at a different
S t a t u r e  W
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Let us consider matter at a temperature T, interacting with radiation whose energy distribution ix not the 
Planck distribution (11.1.3) at the same temperature T. For electromagnetic radiation of frequency v, whether 
it is in thermal equilibrium or not, the pressure associated with the energy density t»(v) is

P(v) =  m( v) / 3  (11.7.1)

Also, as noted in Section 11.1, for any radiation that homogeneously fills space, far each independent state 
of polarization, the spectral energy density M(v) is related to the spectral radiance /(v):

k(v) =  4 x l(v )/c  (11 .7.2)

As before, we shall refer to u(v) as ‘nontbermal’ or ‘nonequilibrwm' radiation and, to distinguish thermal 
radiation density from it, we shall write Planck energy density as, u^(T, v) and the associated pressure and 
intensity as p^(T, v) and 1 (̂2", v) respectively, with a subscript ‘ЙГ emphasizing that it is ‘thermal radiation. 
Following Equation (11.6.8). we can write the chemical potential of nonthermal or nonequilibrium radiation 
as

"О"''m  "  t £ i )  ■ ■m Ш » )  -* 1 "  (йШ
When the radiation reaches equilibrium with matter at temperature Г, m ( v )  = ил (Т. v) and the chemical 
potential will equal zero.

An example of nonequilibrium or nonthermal radiation is the *olar radiation that reaches the Earth. As 
discussed above, solar radiation is sometimes said to be ‘thermal' by which it is meant it has a thermal 
spectrum. Tbe radiation has the Planck energy density, v). al the solar surface, corresponding to tlie
solar surface temperature Tm  «  5800 K. As radiation propagates through space from the Sun's surface, the 
energy density decreases by a factor ( r^ /r )2 in which r is the distance from the center of the Sun and rsun is 
the radius of the Sun. When solar radiation arrives at the Earth's surface, which is at an average temperature. 
^ earth и  287, its spectrum it that of Tm  but «he energy density is much smaller than v). This radiation
is not in thermal equilibrium with matter on the surface of the Earth. Using (11.7.3 ) its chemical potential 
can be written as

Mv) ш Я Г ъ (  (г" - / г ^ (Г>»‘ v).\  (11.7.4)
V «thffUnh.V) /

in which r is the radius of Earth's orbit. This nonzero chemical potential drives photosynthesis. Ultimately 
solar radiation absorbed by the Earth reaches thermal equilibrium with matter at the Earth's temperature dearth 
and is radiated back into space as thermal radiation at ■Tartly

11.8 Entropy o f N onequilibrium  Radiation

For nonequilibrium radiation, the spectral radiance /(v) is not ■derived from Planck's distribution; it is 
arbitrary. However, we can still associate a temperature, T[ v), to each frequency, v, such that the thermal 
spectral intensity nfeuch independent state of polarization at that temperature equals /(vf. i.e. we choose T 
such that

/(v) -  S L * v ,  T ) =  — ........ J - ,.... (11.8.1)
8jt c 2 (e*v/*er  -  1)

In other words, we assume that each frequency component of the nouequilibrium radiation is at a different 
temperature; in contrast, for thermal radiation with Planck's energy density or thermal spectrum, all tlie
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[ components of the radiation are at the same temperature. We assume that the nonequllibrium
Ehation is in a cavity with homogeneous energy distribution and isotropic intensity. A small hole in this 

tv will emit radiation with spectral intensity /(v). The temperature associated with each frequency of 
^K'uuilibrium radiation is thus defined by [3]

c2 _  1
nonet)'

■  /<v)

We can now write i 
tbe above equation:

*v3 (e*v/»Br  _  ])

We can now write Г explicitly in terms of (he frequency v and the noncquilibrium intensity /(v) by inverting

- J — = ^ ( ln (^ /(k )+  l)-ln(/W(v))] inwhich Д “  7 -т (11.8 .2 )
T(v) hv hv’

Now the specific spectral entropy intensity associated with this radiation may be defined as

d£(v) =  *  -Г  [ln(/)/(v) + 1) -  Lu(/3/(v))|d/(v) (11.8.3)
T Av

in which we have used liquation (11.8.2) for OT. By defining x  =5 the above equation can be integrated 
to obtain, for each independent state of polarization, the following specific entropy intensity U v ) in terms of 
Hv), which we assume is given:

knЦу) 8  J L -  [(x + 1) ln(* +  1) -  x  Inx] (II ,8.4) 
c2

in which

В  *c^ /<v)
As before, taking the two independent states of polarization into consideration, the associated total entropy 
density can be written as

»(v) =  2— U y )  (11.8.5)
с

The above result can also be obtained using quantum statistics of Bosons [4]. With this expression, given 
/(v). we can compute the entropy flux associated with nonequilibrium radiation. For example, the solar 
radiation arriving at the Earth s surface has a spectral distribution given by the Planck distribution at the solar 
surface temperature Tm , which is close «о 5800. However, only at the surface of die Sun is the intensity 
l(v) с  (о/8*)и(5800. v). As the solar radiation propagates through «pace. the inteaiity decreases in proportion 
to the inverse square of the distance from its origin. If /sun(v) is die intensity at the surface of the Sun and 
'■««, is the radius of the Sun, then from the conservation of energy we see that ithe intensity /(v) at a distance 
r  from the center of the Sun are related by /«„(v) r j , ,  =  l ( v ) r  (we assume r  > гл п ). Thus

/<»') = ( ' i n / r ’lW v )  = ( 4 , / г Хс/&*)«(58Ш. v)

This expression fur Ц v)can be »sed in Equation ( 11.8.4) to compute the specific entropy intensity at a distance
■ 'h im  the center of «he Sun. Finally, we note that the expression for the entropy density of tbermal radiation, 

“ )uaUun (Ц  J.iO). can also be written in the more general form of Equation (U.8.4) using the substitution

1
41"  (е*/*вГ _  j ,
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Exam ple

Example 11.1 Using the equation of state, calculate the energy density and pressure of thermal radiation at 
6000 К (which is approximately the temperature of tbe radiation from the Sun). Abo calculate the pressure 
at T -  Ю7 K.

Solution The energy density is given by the Stefan-Boltzmann law, и = fi'I4. in Which /3 = 7.56 x 
10"16 J m“3 K~4 (see Equation (11.2.6)). Hence tlie energy density is at 6000 К is

и (6000 К) =  7.56 x  Ю*16 J m~3 K~4 (6000 K)4 => 0.98 J m"3

Tbe pressure due to thermal radiation is given by p  = m/3 = (0.98/1) J m"3 = 0,33 Pa и  3 X W~6 atm.
At T  = 107 К the energy density and pressure are

и =  7.56 x  10-16 } m‘ 3 K~* (107 K)4 = 7.56 X Ю12 J m '3

p  =  u p  =  2.52 x  10n  Pa = 2.5 x 107 atm

Exercises

11.1 Obtain Equation (Ц.2.5) using Equ»tians (11.2.1) and (11.2,2) in the Helmholtz equation (11.2.4).

11.2 Using Plant*’* formula (11.1,3) for u(\, T) in Equation (11.1.4), obtain the Stefan-Boltzmann law
(11.2.6) and an expression for the Stefan-Boltzmann constant fi.

11.3 Show that Equation (11.3.5) follows from Equation (11,3.4).

11.4 At an early stage of its evolution, the universe was filled with thermal radiation at a very high 
temperature. As the universe expanded tidiabatically, the temperature of the radiation decreased. Using 
the current value of T = 2.73 K. obtain the ratio of the present volume to the volume of the universe 
when Г =  Ш10 K.

11.5 The thermal spectral radiance l(T, A)dA is defined as the wdiance in the wavelength range A and 
A + dA of thermal radiation at temperature T.
Ob) Show tlhat:

/(Г, A)d/l r- 2Hc' d ijjS 1

(b) The surface temperature of tlie Sun is 6000 K. Plot /(6000, A), a function of A, and verify that 
Ади, »  483 nm for the solar thermal radiation.

(«) What will A ^ , be if the Sun's surface temperature is 10 000 K ?
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К  nie  total energy of the Earth is in a steady state. It means the flux of solar radiation absorbed by the
6 l irth  equals that emitted as thermal radiation, (a) Assuming that the average surface temperature of 

die Earth is about 288 K, estimate the amount of thermal radiation emitted by the Earth per second. 
A,(Assuming that the temperature of the solar radiation is 6000 K, estimate the total rate of entropy 
due to the thermal radiation flux through the Earth.

Estimate the chemical potential of solar radiation at the surface of the Earth where matter is al 
1 temperature T =  295 K.



Part III
Fluctuations and Stability
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12
The Gibbs Stability Theory

12.1 Classical Stability Theory

The random motion of molecules causes all thermodynamic quantities such as temperature, concentration 
and partial molar volume to fluctuate. In addition, due to its interaction w«tb the exterior, the state of a 
system is subject (a constant perturbation». The stale of equilibrium must remain stable in tbe face of all 
fluctuations and perturbations.. In this chapter we shall develop a theory of stability for isolated systems in 
which the total energy V. volume V and molar amounts are constant. The stability of the equilibrium 
state leads us to conclude that certain physical quantities, such as heat capacities, must have a definite sign. 
This chapter is an introduction to the theory of stability as developed by Gibbs. Chapter 13 contains some 
elementary applications of this stability theory. In Chapter 14, we shall present a more general theory of 
stability and fluctuations based on the entropy production associated with fluctuations. The more general 
theory is applicable to a wide range of systems, including nonequilibrium systems.

For an isolated system, the entropy reaches its maximum value at equilibrium; thus, any fluctuation can only 
reduce the entropy. In response to a fluctuation, entropy-producing irreversible processes spontaneously drive 
the system back to equilibrium. Hence, the state of equilibrium is stable to  any perturbation that results in a 
decrease in entropy. Conversely, if fluctuations can grow, the system is not in equilibrium. The fluctuations in 
temperature, volume, etc., are quantified by their magnitudes, such as ST and 6V The entropy of the system is 
a function of these parameters. In general, tbe entropy can be expanded as a power series in these parameters, 
so we have

S « S M+ S S + i e 2S,+ -  (42.1.1)•4 2

In such an expansion, the term SS represents tbe first-order terms containing ST. SV, -etc., the term S'S 
represents tlie secottd order terms containing (4Г)*, (<5V>2, etc., and so on. This notation will be made explicit 
in the examples that follow. Also, as we shall nee below, since the entropy is a maximum, tbe first-order term 
S* vanishes, The change in entropy is due to the second- and hlgher-order terms, the leading contribution 
coming from the second-order term 62S.

We shall look at the stability condition» associated with fluctuations in different quantities such as temper
ature, volume and molar amounts in an isolated system in which U, V and Nk are constant.

Modem Thermodynamics: fhtm Heat Engines to Dissipative Structures. Second Edition Dilip Kondepudl and IK'it Prigogine. 
® 2015 John Wiley &  Sen*, l td Published 2015 by John Wiley St Sons, Ltd.
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Figure 12.1 Thermal fluctuations in tbe equilibrium state. We consider a fluctuation that results In a flow of  
energy SU from one pan to the other, causing the temperatures to change by a small amount iT.

12.2 T herm al Stability

For the fluctuation* in temperature, we shall consider a simple situation without kiss of generality. Let us 
assume that the fluctuation occurs in a small part of the system (Figure 12.1). Due to the fluctuation there is a 
flow of energy, SU, from one part to the other, resulting in a small temperature fluctuation. ST. in the smaller 
part. The subscript* 1 and 2 identify the two parts of the system. The total entropy of the system is

5 = 5 ,+ 5 2 (12.2.1)

Here entropy S1 is л function of t/,. Vj, etc., and S2 is a function of V2, Уг> etC- И we express S as a Taylor 
serie* about its equilibrium value. S,-, we can express the change in entropy, AS, from its equilibrium value 
as

S - 5„ = A5 = ( £ L )  ,V v

(  d * S A  ( i U t f  (12.2.2)

+W  "  + '
2

where all the derivatives are evaluated at the equilibrium state.
Since the total energy of the system remains constant, SUt = - S U 2 -  SU. Also, recall that (dS/dU)v N = 

UT. Hence Equation (12.2.2) can be written as

d i a i
w ,  T, -

+ (12.2.3,
J l  4  a u i ‘ 2 i  2

We can now identify the first and second variations of entropy, 6S and S2S, and write them explicitly in terms 
of the perturbation SU i

* 5 я { т 1 ~ к ) * и  t l U A )

1 62S x \ J - ±  + _ L ± ]  (12.2.5)
2 [«/, Г, dU2 r2J П Г  1

At equilibrium, since all thermodynamic forces must vanish, the entire system should be at the same tem
perature. Hence Г, *  T2 and the first variation of entropy 55 *  0. (If it is taken as a postulate that entropy



X

njaxjItlUin at equilibrium, then the first variation should vanish. One then conclude* that Г] = Г2.) Tbe 
lS. ee in ennropy diie to fluctuations in (be equilibrium stale are due to tbe second van alum d25 (the smaller 
u T b e r-o rd e r terms in tbe Taylor series are neglected). At equilibrium, since 5 is a maximum, fluctuations can 
“^ v decrease  5, i.e, <52.S < 0. and spontaneous, entropy-increasing iireversible processes drive the system back 
J ^ th e  state  o f  equilibrium Now let us write Equation (12.2.5) explicitly in terms of tlie physical properties 
o f the system  and «ее what ihe condition for stability implies. First we note that, at constant V,

<12.2.6)
d U T  T*dV  P  Cv

in which Cy is the beat capacity. We shall use (V, for the heat capacity of the smaller part and Cy: for the heat 
capacity of the larger part, If the change in the temperature of the smaller is ST then we have SVt  = CV| (6T). 
Using Equation (12.2.6) for the two parts in Equation (12.2.5). writing 6U = Cy^ST) and noting that all the 
derivatives are evaluated at equilibrium, so that Tj = Тг = T, we obtain

1 , Cy (ST) 2 I  CVl\
« ----- '— r—  ( 1 + ) (12.2.7)

2 2 Г* \  CVJ

If system 1 is small compared to system 2. CV| «  Cv„ so that the seoond term in the parentheses can be 
ignored. In general, then, for stability of the equilibrium stale of a subsystem imbedded in a much larger 
system, we have

i r .J A T #
( 12.2 .8 )
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1 Cy(6T?
2 2Г2

This condition requires that the heat capacity Cv >  0. Thus, the state o f  equilibrium is stable to thermal 
fluctuations became the heal capacity at constant volume is potitlve. Conversely, if the heat capacity is 
negative, the system is an unstable nonequilibrium state.

12 J  M echanical Stability

We now turn to stability of tlie system with rcnpect to fluctuations in its volume with N remaining constant,
i.e. fluctuations in five molar volume. As in the previous case, consider a system divided into two parts (Figure 
12.2), but this time assume there is a small change in volume 6 V| of system 1 and a consequent small change

Figure 12.2 Fluctuation in volume V of a subsystem with a fined N.



&V2 of system 2. Since tbe total volume of the system remains fixed, &VX =  -  SV2 = SV. To compute 
change in entropy associated with such a fluctuation, we can write an equation similar to (12.2.3), Wlt)l ’f, 
taking the place of V. Since (dS/dV)L, N = p/T, a calculation similar to that in Section 12.2 (Exercise 12 2 
leads to
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6S> &v (12.3.1,

2
f d Pi iS V f

К  П dV2 T2 J 2 (12.3.2)

Because the derivatives are evaluated at equilibrium p,ITj = Р 2ГТ2 = p/T. The first variation 6S vanishes (as 
it must if S is a maximum at equilibrium). To understand the physical meaning of the conditions for stability. 
S2S < 0, the second variation can be written in terms of the isothermal compressibility, The isothermal 
compressibility к? is defined by к г  = -  (1/V) (dVtdp). We assume that T  remains unchanged when the 
fluctuation in V occurs. With these observations it is easy to see that Equation (12.3.2) can be written

Ткт V, (12.3.3)

As before, if one part is much larger than another, V2 »  V,, this expression can be simplified and the condition 
for stability can be written as

«2S*=~ J - ( S V f
Тку

<0! (12.3.4)

where we have used V for the arbitrary volume V,. This is valid when r T > 0. Thus the stale o f equilibrium 
is stable to volume or mechanical fluctuations because the isothermal compressibility is positive. If к T < 0. 
the system is in an unstable nonequilibrium slate.

12.4 Stability and Fluctuations in

Fluctuations in the molur amounts, Nt , of tbe various components of a system occur due to chemical reactions 
and due to transport, such as diffusion. We shall consider each case separately.

12.4.1 Chemical Stability

These fluctuations can be identified as the fluctuations in the extent of reaction f about its equilibrium value. 
Considering a fluctuation S(, the change in entropy is

-U.«♦ |Л. ( | ) и(« 4 ( 0 ) ^  «!>• (.!.«>
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figure 12.3 Fluctuations In Nk of a subsystem can occur due to chemical reactions (change in () and exchange 
o f  molecules with the rest of the system. The state of equilibrium is stable if the entropy change associated with 
fluctuations Is negative.

Me have seen in Cbaplcr 4 that (dS/d£)v у = AIT, Hence Equation (124.1) can be written as

(12.4.2)

(Tis constant). In dtus equation the identification of the first and second variations of entropy are obvious. At 
equilibrium, tbe affinity A vanishes, so th#t once again 6S =  0. For the stability of tbe equilibrium state, we 
then require the second variation 62S to be negative:

5 ‘ ’s - 5 r  ( S ) „ ( W , < 0

Since T > 0, the condition for stability of (he equilibrium state is

it

(I) <°V ^ / c q

(12,4.3)

(12,4.4)

When many chemical reactions take place simultaneously, condition (12.4.3) can be generalized to the 
following statement [1,2]:

(12,4.5)

12.4J! Stability W> Fluctuations Due to Diffusion

The Suctuatkms in Nk considered so far were only due to chemical reactions. The fluctuation in mole number 
can also occur due lo the exchange of matter between a part of a system and tbe rest (Figure 12.3). A* in the

condition can be used to derive toe Le Chatelwr-Braun principle discussed in Section 9.3.
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case of exchange of energy, we consider tbe total change in entropy of the two parts of the system (indicai -̂ 
as before by subscripts 1 and 2):

У  dNudNu
f f [  \d N ltdItv )  2 + \ d N ^ N 2j)

SNySNy

(12.4.6,

(12.4.7)

Now we note that &N{k =  -  SN^ -  SNk andl (dS/dNk) =  -Цц/Т. Equation (12.4.7) can then be written so that 
the first and second variations of the entropy can be identified:

A c rc, ,  S2S  V  /  v  (  , d /*2i\ tN/SNj
as=ss+-  = Z(t ~t ) щ - £ { ц т +щ т ) ~ t~ (12-4-8)

As before, if tbe derivatives are evaluated at the state of equilibrium, the chemical potentials of the two parts 
must be equal. Hence the first term vanishes. Furthermore, if system 1 is small compared to system 2, tlie 
change in the chemical potential (which depends on tbe concentrations) witb respect to Nj, of system 2 will 
be small compared to the corresponding change in system 1. That is,

\ Щ  T }  \ d N j T j

if system 1 is much smaller than system 2. We then have

62S-- V  (  d  1>\i\ 
т )

S Nt 6Nj < 0 (12.4.9)

as the condition for the stability of an equilibrium state when fluctuations in Nk are considered.
In fact, this condition is general and can be applied to fluctuations due to chemical reactions as well. By 

assuming the fluctuations 6Nk = vk S(. in which vk is die stoichiometric coefficient, we can obtain (Exercise 
12.4) condition (12.4.5). Thus a system that is stable to diffusion is also stable to chemical reactions. This 
is called tlie DiiheBi-Jougeut theorem [3.4]. A more detailed discussion of this theorem and many other 
aspects of stability theory can be found in the literature [2].

In summary, tbe general coadition for Hue stability of the equilibrium state to thermal, volume and mole 
number fluctuation» can be expressed by combining Equations (12,2.8), (12.3.4) and (124.9):

i 2S--
CV(6T)2 i («V)2

Г- Tkt V
SN,SNj < 0 (12.4.10)

Here Cv  is the heat capacity of the system with arbitrary volume V and chemical potential ftj.
Though we have derived tbe above results by assuming 5  to be a function of U, V and jV*. and a system 

in which V, V and N are constant, the results derived have a more general validity in that they are also valid 
for other situations in which p  and/or T are maintained constant. The corresponding results are expressed in
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s Of Ihe enthalpy Я Helmholtz free energy f  and Gibbs free energy G. In fact, a more general theor, 
_f stability that is valid tor a Wide range of condition» can be developed using tbe entropy production d S Z  
йе basis. This more general approach will be presented in Chapter 14. The Gibbs stability theory is valul 
0nlv for well-defined boundary conditions such as Г  =  constant. In contrast, the approach of Chapter 14 i 
in d ep e n d e n t of such conditions; it depends on irreversible processes inside the system.
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В  Exercises

12.1 For N2 at equilibrium at Г = 300 К and p =  1.0 atm. using the ideal gas approximation, calculate t|,v 
change in entropy due to a fluctuation of 8T  = 1.0 X 10 '3 К in a volume V =  1.0 x  10"6 ml..

12.2 Obtain expressions (12.3.1) and (12J.2) for the first- and second-order entropy changes due to flucti, 
ations of volume at constant N.

12 J  Explain the physical meaning of condition (12.4.4) for stability with respect to a chemical reaction,

12.4 In expression (12.4.9) assume that the change in mole number i» due to * chemical reaction and obt.,. 
expression (12.4.3) and generalize it to (12,4.5). 1





13
Critical Phenomena and Configurational 

Heat Capacity

Introduction

In this chapter we shall consider applications of stability theory to critical phenomena of liquid-vapor 
transitions and the separation of binary mixtures. When the appbed pressure and temperature are altered, 
systems can become unstable, causing their physical state to transform into another distinct state. When the 
pressure on a gas is increased, for example, it may lose its stability and make a transition to a liquid. Similarly, 
when tlie temperature of a two-component liquid mixture (such as hexane and nitrobenzene) changes, tbe 
mixture may become unstable to changes in its composition; the mixture then separates into two phases, each 
rich in one of the components. In Chapters 18 and 19 we shall see that, in far-fiom-equilibrium systems, loss of 
stability can lead to a wide variety of complex nonequilibrium states. In equilibrium systems, loss of stability 
leads to phase separation, In this chapter, we shall also look at tbe response of a system that can undergo 
internal transformations to quick changes in temperature. This leads u» to the concept of configurational 
heat capacity.

13.1 Stability and  C ritical Phenomtm»

In Chapters 1 and 7 we looked briefly at tine critical behavior of a pure substance. If its temperature is above 
the critical temperature TQ then there is no distinction between the gas and the liquid states, regardless of the 
pressure. Below th*> critical temperature, at low pressures the substance is in Ihe form of a gas. but liquid 
begins lo form as tbe pressure is increased. We can understand thi» transformation in terms of stability.

As shown in Figure 13.1 by the arrows, by using an appropriate path it is possible to go from a gaseous 
state to a liquid state in a continuous fashion. This was noted by James Thomson, who also suggested that 
the isotherms below tlie critical point were also continuous, as shown in Figure 13.2 by the curve IAJKLBM, 
This suggestion was pursued by van der Waals, whose equation, as we saw in Chapter 1, indeed gives tlie 
curve shown. However, the region JKL in Figure 13.2 cannot be physically realized because it is an unstable 
region. i.e. it is not mechanically stable. In Section 12.3 we saw that Ihe condition for mechanical stability

Modern Thermodynamics: f>om Heal Engines to DUtipcthve Structures, Second Edition. Dilip Kondepudi nod lly» Pngogine 
* 2 0 1 5  John Wiley & Sooa, Ltd. Published 2015 by John Wiley Л  Sons, Ltd.
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P \

D

V

Figure 13.1 The critical behavior of a pure substance. Below the critical temperature, at a fixed temperature, a 
decrease in volume results in a transition to a liquid state in the region AB in which the two phases coexist The 
envelope of the segments AB for the family of isothenns has the shape [CD. Above the critical temperature Tc 
there is no gas-liquid transition. The gas becomes more and more dense, there being no distinction between the 
gas and the liquid phases. By following the path shown by the arrows, It is possible to go from a gas to a liquid 
state without going through a transition.

is that the compressibility kt  = -(1  /V){dV/Ap) > 0. In Figure 13.2. this implies that the system is stable 
only if

a condition that is »»ti»tied for the segments 1A and BM and for all tbe isotherms above the critical temperature 
These regions represent stable regions. For the segment JKL we se« that (dp/dV)T >  0. which means that this 
state is unstable. Is this unstable state, if (he volume of the system is kept fixed, then small fluctuations in

V '

Figure 13.2 The stable, metastable and unstable regions for a llquld-vapor transition are indicated. In the region 
IKL, idp/dV)j > 0, which shows that the system If unstable.

(13.1.1)

P
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gmc depending on die initial state, will cause either the vapor lo condense or the liquid to evaporate. The 
I*** wll| oollapsc to a point in the segment AB, where liquid and vapor coexist. As shown in Section 7.4, 
* :- unt of the substance in the two phases is given by the ‘lever rule’,
*** region BL of Figure 13.2, the system is a supersaturated vapor and may begin ki condense if  nucleatkm 

I o n  occur. This is a metastable state. Similarly, in the region AJ we have a superliealed liquid that will 
jf [fcerc 1» nucleation of the vapor phase. The stable, metastable and unstable regions are indicated m 

‘« и в  13-2- Finally, at the critical point C. both the first and second derivatives of p  with respect to V equal 
Here, the stability is determined by the higher-order derivatives. For stable mechanical equilibrium at 

the critical point we have

which is an inflection point. The inequality (d3pOTS) < 0 is obtained by considering terms of higher order 
than 62S.

13.2 StabiUty and  Critical Phenom ena in B inary Solutions

In solutions, depending on the temperature, the various component* con segregate into separate phases. For 
simplicity, we shall only consider binary mixtures. This is a phenomenon similar to the critical phenomenon 
in a liquid-vapor transition, in that in one range of temperature the system is in one homogeneous phase 
(solution), but in an another range of teretfiernture the system becomes unstable and the two components 
separate into two phases. The critical temperature that separates these two ranges dependson the composition 
of the mixture. This call happen in three ways, as illustrated by the fallowing examples.

At atmospheric pressure, liquids n-hexane and nitrobenzene are miseible in all proportions when the 
temperature is above 19 °C, Below 19 *-C, the mixture separates into two distinct phases, one rich in 
nitrobenzene and the other in n-hexane. The corresponding phase diagram is shown in Figure 13.3a. At about
10 °C, for example, in one phase the mole fraction of nitrobenzene is 0.18, but in the other phase the mole 
fraction is about 0.75, As the temperature increases, at T = «he two liquid layers become identical in 
composition, indicated by the point C. Point С is called the critical solution point or consolute point and its 
location depends on the applied pressure. In this example, above the critical temperature the two liquids are 
miseible in till proportions. Hence, the system is said to have an upper critical temperature. However, this 
is not always the case, as shown in Figure 13.3b and c. The critical temperature can be such that below Tc the 
two components become miseible in all proportions. An example of such a mixture is that of diethylamine 
and water. Such a mixture is said to have a lower critical solution temperature. A binary system can have 
both an upper and a  lower critical solution temperature, as shown in Figure 13,3c. An example of such a 
system is a mixture of «-toluidine and glycerol.

Let us now look at the phase separation of binary mixtures from the point of view of stability, The separation 
°f phases occurs when the system becomes unstable with respect Ho diffusion of the two components: that 
is. if the separation of the two components results in an increase in entropy, then the fluctuations in Nt  
due to diffusion in e given volume grow, resulting in the separation of the two components. As we saw in 
Section 12.4, the condition for stability against diffusion of the components is
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TI°C

(a) (b)

(c)

Figure 13.3 Three types of phase diagram showing the critical phenomenon in binary solutions: (a) a mixture 
of hexane and nitrobenzene; (b) a mixture of diethylamine and water; (cj a mixture o f m-toluldlne and glycerol.

At a fixed T, for binary mixtures this can be written in the explicit form

ип(Щ)г + и22(Щ)г + t a W X W j J + f a t W j X e W j )  > о
in which

дЦ\
1 , 1 1 - щ -  м * - щ -

дц2 дНг i
■j " 2 1 "  щ -  " ij -  щ

(13.2.2)

(13.2.3)

Condition (13.2.2) is mathematically identical to the statement that the matrix with elements fi,j is positive 
definite. Also, because

dfb д д в  d dO  
Mli m щ  “  av , s n 2 ~  dN2 W t  "  ^ 2

this matrix is symmetric. The stability of tbe system is assured if the symmetric matrix

/<11 /<12
/*21 /<22

(13.2.4)

(13.2.5)
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I ■ definite. The necessary and sufficient conditions for the positivity of (13.2.5) are 
jepO»l4vt

Pll >  0. fl22> 0 ' МиМтг ~ Ml\Mu > 0  (13.2.6)

are not satisfied, tlicn condition (13.2.2) will be violated and Ihe system becomes unstable. Note that 
ilKj ( 13.2 .6 ) imply that / i i2 =  Mu < 0 lo  assure stability for all positive values of ;in and 

'  f • have an explicit expression for the chemical potential, then the conditions (13.2.6) can be related to 
J  .,.4iv coefficients of the system. This can be done, for example, for a class of solutions called strictly 

I r  solutions, which were studied by Hildebrandt and by Fowler and Guggenheim in 1939. The two 
, *^n ,ents of strictly regular solutions interact strongly and their chemical potentials are of the form

^ (Г .р .х ,,.х г ) =  /1°(Т.р) +  ЛГ +  (13.2.7)

Mi(T,p,x^,Xi) =  i fy j .p )  + КГ laf-tj) +  ax* (13.2.8)

x ' - l $ s 2- * - 1 $ 7 Г 2 ( ,3 -2-9)

are mole fractions. The factor a is related to the difference in interaction energy between two similar molecules 
(two molecules of component 1 or two molecules of component 2) amd two dissimilar molecules (one molecule 
of component 1 and one of component 2). For solutions that are nearly perfect, * is nearly zero. From these 
expressions it follows that activity coefficients are given by K l In/ ,  -  and RT  In уг =* ял*. We can now 
apply the stability conditions (13.2.6) to this system. By evaluating the derivative we see that the condition
A,, =  (dfil /d N i ) > 0 becomes (Exercise 13.5)

£ £ - * , ( ! - * , ) > ( )  (13.2.10)
2d

For nearly perfect solutions, since a -* 0, this inequality is always satisfied.
For a given composition specified by x )f if R!2a is positive, then for sufficiently large T this condition will 

be satisfied. However, it can be violated far smaller T. The maximum value oif X[(l -  .v,) is 0.25, Thus, for 
RT/2a < 0.25 there must be a range of.*, In which the inequality <13.2.10) is not valid. When this happens, 
the system becomes unstable and separate* into two phases. In this case we have an upper critical solution 
temperature. From 113.2.10), it follows that the relation between tl» mole fraction and the temperature below 
which the system becomes unstable is

Kl'
^ -л .(1  - * , )  =  0 (13.2.11)
2a

•bis gives us the plot of 7^ as a function of л(, shown in Figure 13,4, It is easy to see that the maximum of 
occurs at X] = 0,S. Thus, the critical temperature and mole fractions are

<*,)„« 0 A  (13-2.12)

H £ e  equation T  »  (2a/R)Xi (1 -  л, (gives the boundary between the xnetastable region and the unstable region.
*  boundary between the stable region and the metastable region is the coexistence curve. The coexistence 
JjJp’e of the two phases can be obtained by writing the chemical potentials ><, and tt2 in both phases and 
g a t in g  them This is left as an exercise.
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Figure 13.4 The phase diagram for strictly regular solutions.

13 J  Configurational Heat Capacity'

The thermodynamic slate of chemically reacting systems may be specified hyp, T and the extent of reaction (. 
For such a system, the heat capacity must also involve changes in f  due to the change in temperature. For 
example, we may consider a compound that may exist in two isomeric forms. Then the extent of reaction ’ 
specifies the molar amounts of each form given the initial amounts, The heat absorbed by such a system 
may change not only/) and Г but also {, because the system will relax to its equilibrium with respect to the 
transformation when p  and '/ change. If the system is in equilibrium with respect to the extent of reaction £, then 
the corresponding affinity A -  0. Now, since the heat exchanged d£>»  d U - p  dV = dH -  V dp. we can write

(13.3.1)

(13.3.2)

(13.3.3)

(13.3.4)

in which
dQ ш (Лг . -  V) dp +  Cp , d r  +  hTf d( 

• * - ( ? ) „ •  «*-(*)
At constant pressure, we can write the heat capacity Cp =  CpmN a.

'  p 4 '  p 
Now for an equilibrium transformation, it can be shown (Exercise 13.6) that

( I )
it can I 

(*)

: C t>,f +  h T.p (S).

(-)
W r ,

By substituting liquation (13.3.4) into Equation (13.3.3) we obtain ihe following result for a system that 
remains in equilibrium as it ia receiving heat:

\ * ! ) т А д Т К л -о
(13.3.5)

However, we have seen in Section 12.4 that the condition for the stability of a system with respect to chemical 
reactioas is IdAldf} <  0. Hence, tlie second tom on the right-hand side of Equation (13,3.5) is positive.
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The
№ l u x a t i ° n  u .  ■■

const*'1' comp

n ul „ie transformation represented by { is very slow. In tins case, we measure the heat capacity at a 
composition This leads us to the following general conclusion:

I  The h e a t  capacity at a constant composition is always less than the heat capacity of a system that remains 
in equilibrium with respect to £ as it receives beat,

I ^  ttrm h f^ d f/d T )  is called the configurational heat capacity, because it refers to the heat capacity 
U) the relaxation of the system to the equilibrium configuration. The configurational heat capacity can 

observed in  systems such as glycerin aear its crystalline stale, where the molecules can vibrate but nol 
i tote finely as they do in the liquid state. This restricted motion is called libmtion. As the temperature is 
in creased , a greater fraction of the molecules begin to rotate. For this system, f  is the extent of reaction far 
Eg libration-rotatinn transformation. For glycerin, there exists a state called the vitreous state an which the 
Ubratjon-rotation equilibrium is reached rather slowly. If such a system is heated rapidly, the equilibrium is 
not maintained and the measured heat capacity will be Cp which is lower than Ihe heat capacity measured 
th ro u g h  slow heating during which the system remains in equilibrium.
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13.1 Using the Gibbs-Duhem equation at constant p  and T, and the relation d/i* ■= ( d ^ / d N ^ f  d/V,,

This equation implies that the determinant of the matrix with elements /t*, = (dut/dNf) is equal to 
zero. Consequently, one of the eigenvalues of the matrix (13.2.5) is zero.

13.2 Show that, if the 2 X 2 matrix (13.2.5) has a negative eigenvalue, then the inequality (13.2.2)-can be 
violated.

13 J  Show that ifithe matrix (13.2.5) ha* positive eigenvalues, then fin > Oand > 0,

•3.4 in a strictly binwy solution, assuming that the two phases are symmetric, i.e. the dominant mole 
fraction in both phases is the same, obtain the coexistence curve by equating the chemical potentials 
in the two phases.

Using Equations (13.2.7) and (13.2.9), show that the condition mu = > 0 leads to Equa
tion (13.2.10),

13.6 Fbr an equilibrium transformation, show that

Exercises

show that
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Entropy Production, Fluctuations 

and Small Systems

14 l Stability und Entropy Production

In Chapter 12 we considered fluctuations in an isolated system in which U, V and Nk are constant and we 
obtained condition* for the stability of the equilibrium state. The»e conditions, in fact, have a more general 
validity in that they remain valid when other types of boundary condition are imposed on the system. For 
example, instead of constant U and V, we may consider systems maintained at constant Г and V, constant p  
and S or constant Г and p. The main reason for the general validity of the stability conditions is that all of 
these conditions are a direct consequence of the fact that for all natural processes d,5 > 0. As we have seen in 
Chapter 5, when each of these three pairs of variables is held constant, one of the thermodynamic potentials 
F, H ot G is minimized In each case we have shown that, in accordance with the Second Law,

dF  = -7" d|S < 0 (Г, V = constant) (04.1.1)

dG = - T  djS < 0 (T ,p — constant) (114,1,2)

dH m - T djS < 0  (S,p =  constant) (14.1.3)

Through these relations, the change of the thermodynamic potentials ДF, AG or ДII due to a fluctuation 
can be related to tbe entropy production Д;5. The system is stable to all fluctuations that result in Д,5 < 0, 
because irreversible processes that arise as at result of the fluctuation increasing the entropy restore the system 
to its equilibrium state. From the above relations it is clear how one could also characterize stability of the 
equilibrium state by stating that the system is stable to fluctuations for which AF >  0, AG  > 0 or A ll »  0, 
For fluctuations in the equilibrium state, ttoesc conditions can be written more explicitly in terms of the 
second-order variations 6‘F >  0, bl G  > 0 and л2/ /  > 0, which in turn can be expressed using the second- 
onler derivatives Ы these potentials. The conditions for stability obtained in this way are identical to those 
obtained in Chapter 12,

A theory o f stability that is based on the posltlvity of entropy product fan in natural processes is more general 
than the classical Gibbs-Duhem theory o f  stability [1.2], which is limited to the constraints expressed in 
Equations (14.1.1) to (14,1.3) and the asweiated thermodynamic potentials. In addition, stability theory 
based on entropy production can also be used to obtain conditions for the stability of nonequilibrium states.

Q°?ern Thermodynamics: From Heat Engines to Ditfipauve Structures, Second Edition. Difcp Komlepudi and Itye Pngogme.
2° t5  John Wiloy &  Sow , Ltd. Published 2015 by M m  Wiley f t  Sons, Ltd-



In our more genera] approach, the main task is to obtain an expression for the entropy production, д  $ 
associated with a fluctuation. A system is stable to fluctuations if the associated AtS < 0. In Chapter i 
have seen that the rate of entropy production due to irreversible processes takes the quadratic form

in which the Fk are the ‘thermodynamic forces' and where we have represented dXkl&  as the ‘flow’ llr 
‘current’ Jk. Thermodynamic forces arise when there is nonunifonmity of temperature, pressuie or chemical 
potential. If we denote the equilibrium state by E  and the state to which a fluctuation has driven the system 
by /, then the change in entropy in going from E to I is

4 iS '  / f ,( i iS =  / <141'5)

In this section we shall present simple examples of the calculation of &,S and defer the more general theory 
to later chapters in which we consider the stability of nonequilibrium states.
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14.1.1 Chemical Stability

Let us look at entropy production associated with a fluctuation in a chemical reaction specified by a change 
in the extent of reaction (Figure 14.1). In Chapter 4 we have seen that entropy production due to a chemical 
reaction is

d,S =  £d{ (14.1,6)

At equilibrium, the affinity Ac4 = 0. For a small change a = ( (  ~  in the extent of reaction from the 
equilibrium state, wc may approximate A by

the fluctuation can be calculated by niThe entropy production Д|5 due to the fluctuation can be calculated by noting that d l = d«:

(14.1.7)

(14.1.8)

I U+a* J

(a)
©

(b)

Figure 14.1 (a) A local fluctuation in the extern of reaction; the entropy change associated with such a fluctu
ation can be calculated using Equation <14.1.9»). (b) A local fluctuation in temperature; the astociated enfro/w 
change can be calculated using Equation (14.1.11),
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Tbe
stability condition A,S < 0 now takes the form

to identical to Equation (12.4.3). If we consider r chemical reactions, we have

(14.1.9»)

(14.1.9b)

I

i

U«ing *e relation between the affinities Л, and the corresponding chemical potentials fik and the relation 
between (j and the molar amounts Nk, the above equation can be written as (Exercise 12.4)

Д* S = i i / Ы  Щ Щ < о (14.1.9c)

It is important to note ihal we arrived at this condition for stability by only assuming that fo r spontaneous 
processes A|S > 0; consequently, it is independent o f the boundary conditions imposed on the system.

14.1.2 Thermal Stability
As a second example, let us consider thermal fluctuations. Ixt the temperature of a local region of interest be 
Тщ + a, where Г*, is Ihe equilibrium temperature and or is a small deviation. As we have seen in Chapter 3, 
the entropy production due to heat flow is

(14.1.10)

For small changes in temperature, we can write d0  = C y  dot where C y  is the heat capacity at constant volume. 
Then for a temperature change of 6T, we have

f iT  . f iT  Cv ,  Cv*5mh ASmi 4Cv (S T f  
2

P ile  condition for thermal stability can now be written as

n ,  2

(14.1,11)

(14.1.12)

whieh is identical to condition (12.2.8). As before, we conclude that this condition is satisfied only if Cy > 0.
Similarly, the probability of entropy production associated with the fluctuation of the volume of a 

s*system at a fixed pressure and molar amount Nk of its constituents can be shown to be equal to
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AtS «= - ( t / T ^ T .M i V ^ V  in which kt = -^/У Ц дУ /дрУ р  is the isothermal compressibility. Combining 
the above results, for fluctuations in Г, iV* and V we arrive at

A .S -  А« = f‘ZF̂
Je Je к 

Cy(ST?  I (<5V>2 у  /  d * , \  Щ

i f  \Щ  T / 2

(14.1.13)

2T2 Tkt 2V

Finally, we note that this entropy term is second order in the perturbations 6T, SV and &Nk, consistent wiih 
the theory of Chapter 12.

In expression (14,1.13), the independent variables are T, V and M The following more general expression 
through which the entropy change is due to any other set of independent variables can be derived from
(14.1.13):

a - ; - 1525- " 1 
‘ 2 ~ 2 T

6 T 6 S -5 p & V + '£ l 6)ii6Ni < 0 (14.1.14)

In Equation (14.1.13) in tlie first term Cv ST/T  =  SQ /T  =  SS; similarly, in tlie second term 6V /kt V = -Sp; 
and in the third term \ j ( d f t i/dNj)iN j =  6щ. Using these relations it is easy to see that (14.1.13) can be 
written in the form <14.1.14).

That the entropy production should be second order in the perturbation follows from the fact that the forces 
Fk and fluxes Jt  vanish at equilibrium. If $Jk *  (dXy/dt) and &Fk are forces and fluxes associated with the 
fluctuation close to equilibrium, entropy production takes tlie form

(14лл5)
From this expression it is clear that the leading contribution to the entropy change due to a fluctuation in the 
equilibrium state is of second order and w* may make this explicit by using 62SI2 in place of Д,5. In terms 
of S2S/2, Equations (14.1.14) and (14.1.15) can be written as

S2S <  0 1 d62S .
2 dr

^ 5 F k S h > 0 (14.1.16)

in which the second equation is the Second Law. These two equations express the essence of stability of the 
equilibrium state: the fluctuations decrease ihe entropy whereas the irreversible processes restore the system 
to its initial stale. Thete equations are specific cases of a more general theory of stability formulated by 
Lyapunov, which we will discuss in Chapters 17 and 18.

14.2 T herm odynam ic Theory o f Fluctuations

14.2.1 The Probability Distribution

hi the previous section* we have discussed the stability of a thermodynamic state in the face of fluctuation» 
However, the theory that we presented does not give us the probability of a fluctuation of a given magnitude 
ТЪ be sure, our experience tells us that fluctuations in thermodynamic quantities art extremely small in 
macroscopic systems cxcept near critical points; still we would like to have a theory that relates these 
fluctuations to thettnodynamic quantities and gives us the conditions under which they become important.
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K t  an effort to uederstand the relation between microscopic behavior of matter, which was in the realm 
К  m e c h a n i c s ,  and macroscopic laws of thermodynamics. Ludwig Boltzmann (1844-1906) introduced his 
f  *ous relation that rotated entropy and probability (see Box 3.1):

(14.2.1)

I  bich *b =  '-3* x »0-MJ K"1 is the Boltzmann constant and W is the nwnber of microscopic states 
® esponding to tbe macroscopic thermodynamic state. The variable W is called thermodynamic probability 
( « s u g g e s t e d  by Мал Planck) because, unilike the usual probabilily, il it a number larger than one -  in fact 
it is a very large nwnber, Thus, Boltzmann introduced the idea of probability into thermodynamics -  a 
c o n tro v e rs ia l idea whose true meaning could only be understood through the modern theories of unstable 
dynamical systems :[3'J.

Albert Einstein (1879-1955) proposed a  formula for the probability of a fluctuation in thermodynamic 
quantities by  using Boltzmann's idea in reverse; whereas Boltzmann wed 'microscopic’ probability to derive 
therm odynam ic entropy, Einstein used thermodynamic entropy to obtain the probabilily of a fluctuation 
thiough the following relation:

Pi AS) =  Z -’e4*/*» (14,2.2)

in which ДS is the entropy change associated with the fluctuation from the stale of equilibrium and Z  is a 
normalization constant that ensures the sum of all probabilities equals one. Though relations (14.2.1) and 
(14.2.2) may be mathematically close, it is important to note that conceptually one is tlie opposite of the other. 
In Equation (14,2.1) the probability of a state is the fundamental quantity and entropy is derived from it; in 
Equation (14.2.2) entropy as defined in thermodynamics is the fundamental quantity and the probability of a 
fluctuation is derived from it. Einstein’s formula shows that from thcrmodynamic entropy we can also obtain 
the probability of fluctuations.

To obtain the probability of a fluctuation, we must obtain the entropy change associated with it (Fig
ure 14.2). The basic problem then is to obtain AS in terms of the fluctuations ST, bp. etc. However, this has

figure 14.2 ТЫ' entropy change AS associated with л fluctuation (ruin an equilibrium state f t о a nonequi- 
librium state I, Ш ору  S is shown as a function of a thermodynamic variable X. The flix tuadon that decreases 
entropy drives the system to the state I. We compute the entropy chitngi' AS associated with such a fluctuation 
by computing the entropy produced, AfS, as the system relaxes back to the equilibrium s m ip  [  from I. In classical 
formalisms that do not use d,S, the entropy change AS is calculated by first determining an equilibrium state £' 

has the same entropy as the state I and then by computing the entropy change along a reversible trajectory 
 ̂of equilibrium states.
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already been done in the previous section. Expression (14.1.13) gives us the entropy associated with a 
fluctuation:

Д S =
CV(6T)2 1 (SV)2

2 T2 2Ткт V ХЦг)
6N, SN)

(14.2.3)

This expression can be made more explicit it' the derivative of the chemical potential is expccgied in terms of 
the molar amounts Nk. For ideal gases this can easily be done because the chemical potential of a component 
к is

hk = Мцо(Т) + RT Щ>к/Ри)
(14.2.4)

- ^ ( Т )  +  ЛГ1п(ЛГ*ЛГ/1>о)
in which pQ is the standard pressure (usually 1 bar). Substituting this expression into Equation (14.2.3), we 
obtain

AS--
Су<6Т)г

2r2
1 (SV)2 v  R W ?

Tkt 2V 2N:
(14.2.5)

Here Cv is ihe heait capacity of the ideal gas mixture. In this expression the are expressed in moles. By 
multiplying them by the Avogadro number NA. they can be converted lo numbers of molecules The same 
expression can be derived for an ideal system for which fy  = /4^(71 +  RT In л*, in which xk is the mole 
fraction (Exercise 14.2). Now using the Einstein formula (14.2.2), the probability of a fluctuation in T, У and 
fjj can be written at.

W l \  6У .Щ )  = Z -‘ ехр(Д5'Ав)

= 7-~i exp
CV(ST)2 1 (SV)2 (& V
2kHT2 2кь Ткт V 2N,

(14.2.6)

in which we have replaced R in Equation (14,2.5) by kbNA. In this expression the normalization factor Z is 
defined as

I  m U f p u . , . Zjd-rdyA; (14.2.7)

The probability distribution is a Gaussian in each of the independent variables 6T.SV  and Sflk. The integral 
of a Gaussian is given by

f  e r^ t‘ ix  = \f tia  
J  -O P

(14.2.8)

With this formula, the probability can be explicitly written and the foot mean square value of the fluctuations 
can be obtained (fbtereise 14.3). A more general form of the probability distribution can be obtained from 
Equation (14,1.14) in which the changc od' entropy due to fluctuation is expressed in terms of products ol 
pairs of variables:

P *  Z~l exp s2s ‘
2*9.

- Z - ’ exp 2 j ± ( / i T S S - i p S V + y 6 t o S N k) (14.2.9)

in which Z is the norm ablation constant. Bor any set of independent variables Yk, Equation (14.2.9) can be 
used to obtain the probability distribution for the fluctuation of these variables by expressing ST, SS, etc., in
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f tbe fluctuations in Vt . For notational convenience, let us denote the deviations of the independent
i0  , .. __ :________ _ 'П..................  s2 e ,.„1! K, a nt\<xArai'\n fnnrtinn in >v. ■

и
2

(14.2.10)

in v*W> *e gjj are appropriate coefficientB and gy -  g / .  tlie negative sign is introduced only to empbatize 
ihe fact that S2S is a  negative quantity. For a single a, the probability A  a) =  \ /{g /2  якв ) exp(-g«2/2*B). In 
•be more general case, the coiTesponding probability distribution can be written explicitly as

I det [g]
.......“" ) ' V ? 2 ^ e,‘P

<14.2.11)

in which det (gj is the determinant of tlie matrix In the rest of this section we shall derive some important 
general results that we will use in Chapter 16 for deriving a set of fundamental relations in nonequilibrium 
thermodynamics, tbe Onsager reciprocal relations.

14.2.2 Average Values and Correlatbmi

In general, given a probability distribution for a set of variables <it . one can compute average values and 
correlations between pairs of variables. Wc shall use the notation (/) to denote tbe average value o f any 
function/(» [ , « j.......an) of the variables ; it is computed using Ihe integral

<f) = j /<«t .«2....... <tm)P{av a2........« .Id a , dnr2 -  da„

The correlation between two variables /an d  g  is defined as

<fg) *  f /< « i-« 2 ........2.............................. ® <п)Лв|.вг .........« „ Id a ,  d a .

We shall soon give a general expression for tbe correlation (at<Xj) between any two variables <r, and ay. but 
first we shall calculate other correlation functions that will lead us to the result.

We have seen earlier that the entropy production (14.1.15) associated with a small fluctuation from 
equilibrium can he written a*

<14.2.12)

<14.2.135

<14.2.14)

in Which the Fk are thermodynamic forces that drive the flows Jk *  dXt /dr. both of which vanish at equilib
rium. Now if we compute the time derivative of the general quadratic expression (14.2.10), since gq -  gjj, we 
obtain

d»iI M -s  _  у
I T T  — *w

icrmodynamic fli 
Ihe term

F j * - Y j g i )  <4

<14.2.15)

и  we identify the derivative <da; /dt) as a "thermodynamic flow' (SJj close to equilibrium), comparison of 
Equations (14.2.14) and (14.2.15) shows that the term

(14.2.16)
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will be the corresponding thermodynamic force. Furthermore, diw to the Gaussian form of the pmbabii 
distribution (14.2.11), we also have the relation

F i = k  в
din P 
да:

We will first show that

(Fflj) =  - k B6,j

(14.2.171

(14.2.18)

in which Sjj is the 'Kronecker delta’: 6y =  0 if i J=j and Stj  =  1 if i =  j .  This shows that each fluctuation is 
correlated to its cotresponding force but not to other forces. By definition

№<*;) = j  FitijP da, da2 •••<*»„ 

Using Equation (14.2.17) this integral can be written as

< * > / >  = f  *  в ( ” j ~ )  a / d a t d « 2  ••• d «m  

=  / *B ( ^ )  */dei de2*'*de»>

Which, on integration by parts, gives

(Fi<xj) =  kBPaj “ * »  J  ^ « i  d«2  -  d a m

The first term vantslien because lima_,±lx, <tjP(«j) =  0. The second term vanishes if i ф j  and equals - k B il' 
i = j.  Thus we arrive al the result (14.2.18).

Also useful is the following general result. By substituting Equation (14.2.16) into Equation (14.2.18) we 
arrive at

(*>;> = X  Sikak“} j  = ~ :

which simplifies to

X  **<**“./>= *вг(,'

This implies that the matrix (a t c i j) /k h is the invense of the matrix

(14.2.19)

(14.2.20)

One particularly interesting result is the average value of the entropy fluctuations associatod with the m 
independent variable# «,•:

( V )  = " y X
\  /  * »>1 * цк1

. m

- 4 z <

(14.2.21)

. 4,- *  -
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Tl>us we see that tilt average value o f  entropy fluctuations due to m independent variables is given by tbe
expression

< A , S >  =  - (14.2.22)

. y,jependent process that contributes to entropy is associated with a fluctuation - i B/2 at equilibrium.
■ result it analogou» to tbe equipaitition theorem in statistical mechanics, which states that each degree 

't f re e d o m  carries with it an average energy of kbT/2.
As a simple example, let us consider entropy flucUiations due *э r chemical reactions. As was shown in 

Bquiion (14.1.9), we have

(14.2.23)

in w h i c h  w e  have made tbe identification g^ •~ (1 /Т )(д А 1/д ( ) )щ. From the general result (14.2.22) wc sec 
that the average value of the entropy fluctuations due to r chemicsil reactions is

(  Д ‘■'Vhcfn) Г ” (14.2.24)

This shows how fluctuations in decrease entropy. In Chapter H6 we shall use Equations (14.2.1-6) and
(14.2.20) to derive the Onsager reciprocal ablations.

14J  Small Systems

Fluctuations discussed in the above two «ections are clearly important when considering small systems, 
However, thermodynamics of small systems lias features not considered in previous chapters. We shall 
discuss them in this section.

Pioneering work in formulating the thermodynamics of small sy stems was done by Terrell НШ (4] in the 
early 1960s. It could be applied to many small systems that we encounter in nature: small particles in the 
atmosphere called aerosols (which include *m#ll droplets of water containing dissolved compounds), crystal 
nuclei in supersaturated solutions, colloids, small particles in interstellar space and ‘nanosystems'. Important 
as it was, thermodynamics of small systems has taken on a new significance due to the development of 
nanoscience, the production and study of particles in the size range 1-100 run. 1’hermodynamics applied lo 
particles in the 'nano range’ is called nanuthtrrmody namies. but, because we do not limit our discussion to 
this size range, we call ihis topic thermodynamics of small systems.

The laws of thermodynamics arc univertal, valid for all system*. However, depending on the system being 
considered, various approximations are made. Care is necessary in applying thermodynamics to systems 
that are very small. First, it must be ensured that theimodynamic variables that were used for large systems 
have a clear pbynkal meaning when used to describe small systems. Due to random molecular motion, 
thermodynamic variables will fluctuate about their average values, We need a clear understanding of the 
magnitude of these fluctuations relative to the average values and If and why the system is stable when 
subjected to them. Second, quantities, such a* interfacial energy, that could be neglected for large systems 
must be taken into consideration. In Chapter 5, we have already seen how intcrfacial energy could be included 
in the thermodynamic description o f a system. We shall extend thi* formalism to understand why some 
Properties, such as solubility and melting point, change with size. In general, properties of very fine powders
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Figure 14.3 Chemical potential of a small tpherical particle or liquid drop depends of the radius r, where у is 
the interfaciai energy or surface tension (I m '1). The energy of the interface equals 4xr3 y.

could be significantly different from those of it bulk substance -  hence the current interest in nanotechnology 
We shall begin by discussing the thermodynamic formalism that includes interfaciai energy.

14.34 Chemical Potential of Small Systems

Chemical potential in wi important variable that enables us to understand how the properties of a system may 
change as its size decreases to microscopic dimensions. In this section, we will derive an expression for the 
chemical potential tus a function of size.

In Chapter 5 (Section 5.6) we noted that molecules at an interface have different energy and entropy 
compared to molecule# in the bulk. This interfaciai energy or surface tension, y.  is generally of the order 
of 10-1 -  10-J J m~J . Whether interfaciai energy can be neglected or not depends on the size of the system, 
more precisely on the area-to-volume ratio. If Um is the molar energy, for a sphere of radius r, the ratio of 
interfaciai energy to bulk energy is 4лгг//[(4лг, /ЗУт )(7т ] =  3yVm/rUm, in which Vm is the molar volume. 
If this quantity is w y  small, the interfaciai energy can be neglected and as r -* oo it becomes zero. If this 
ratio is not small, then we include the interfaciai energy term in the expression for dU. For a pure substance:

in which X is the interficial area. The last two terms can be combined to express the chemical potential as a 
function of the size of the system. For simplicity, we shall assume that the system is a sphere of radius r. Then 
the molar amount N m (4я/^/3 Vm). The interfaciai term dS *  d(4jr^) »  8дг dr can be written in terms of dN 
by noting that dN  = 4л r  dr/Vm =  (r/2Vm)iZ. Thus we can substitute {2Vmlr)dN for dX in Equation (14.3.1) 
to obtain

Using this equation we see that, for a pure substance, we can assign an effective chemical potential that 
depends on the system’s radius (Figure 14.3). We shall write this potential as

dV m TdS -  p dV  + ti dN  + r  dX (14.3.1)

(14.3.2)

(14.3.3)
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К  . ^  ^  is the chemical potential as r  -» a>; it is the bulk chemical potential' that has been used in the 
'П "  i!!us c h a p te r s  when interfacial energy could be ignored, tb e  Gibbs energy of the system is

Г  C ~ * J V  + r£  <14.3.4)

. simple calculation shows that UK',!dN)f  T в  ц = ^  + (2yVmlr).
The above equation can also be understood in terms of the excess pressure in a small system. In Chapter S, 
have seen that surface tension (or interfacial tension) increases die pressure in a small spherical system by 

an amount Ap = 2y/r (see Equation (5.6.6)). Expression (14.3.3) is the chemical potential under this higher 
pressure. This can be seen by noting that

p+bp ^  

p(p + &p,T) =  >t(p,T) +  J  dp = H<.p.T)+ J  Vmdp, Д о»  у

p T P

where we have used the relation (dG Jdp)T m (дц/др)т = Vm. For solids and liquids the molar volume Vm 
docs not change much with changes in pressure and hence we could write the above expression as

/<(/) + Др.T) *  p{p,T) + Vmb p  ж in p ,T )+  1 (14.3.5)

which is Equation (14.3.3). Therefore the increase in chemical potential of a small system by a term (2/Vm/r) 
is a consequence of an increase in the pressure due to surface tension.

14.4 Size-Dependent Properties

Using the chemical potential (14.3.3), several size-dependent properties can be derived. Wc shall consider 
solubility and melting point. As noted above, small systems have > higher chemical potential due to the fact 
that they are under a higher pressure, This otuses a change in their solubility and melting point.

14.4.1 Solubility

We consider a solid solute Y in equilibrium with its solution. The chemical potentials of Y in the solid and 
solution phases are equal. At equilibrium, the concentration of the solution is the saturation concentration 
called the solubility: we shall denote it by [Y]^. We shall denote the solid and solution phases with the 
subscripts 's’ and ‘Г respectively.

As shown in Equation (8.3.17), in the molarity scale, tlie equilibrium chemical potential of the solute in 
the solution phase is ■= /i°J + RT ln f^fY l^ /lY )0), in which / y is the activity coefficient of Y (not to 
be mistaken for the interfacial energy y) and |Y]° is the standard concentration equal to 1,0 M. For solute 
particles of radius r in equilibrium with the solution, -  /<Y,r which gives

/ 't l  = + ** (  (Yl0*4 )  =  ^Yj “  ^v',co + (14.4.1)

in which we have used Equation (14.3.3) for the chemical potential of the solid phase. The quantity -  
ИУлоо -  AGjui is the molar Gibbs energy o f solution (defined for large particles r-*aa), Hence tlie above 
equation can be written as
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If we denote the equilibrium concentration for solute particles of radiue r by [Y lr)^  and assume that ц 
activity coefficient у у does not vary much in the concentration range of interest. Equation (14.4.2) can be 
simplified to the following relation :

or, more generally,

ГУМ],*, »  [Y( <»))*, exp
/ 2 /Vm\
V *r

ау (г)щ = a Y(<»)„<, exp | ' W m \ 
гЯГ j

(M.4.3a)

(14.4.3b)

in which ay is the activity of Y. These equations give solubility I'Yfr)]^ as a function of the particle size 
They tells us that the saturation concentration will be higher for smaller particles: that it smaller particles 
have higher solubility. It is generally called the Gibbs-Thompson equation but some authors also call it the 
Ostwald-Kreundlkfa equation. The solubility of AgCl, AgBr and Agl particles whose size is in the range 
2-20 nm can be satisfactorily explained usang the Gibbs-Thompson equation (Figure 14.4).

The higher solubility of smaller particles has an interesting consequence. As shown in Figure 14.5, consider 
a supersaturated sodution containing solute particles of different size or radii. Supersaturation means that the 
chemical potential of the solute in the solution phase is higher, щ >  /i8. Therefore the solute will begin to 
precipitate out and deposit on the solid particles. A* tlie chemical potential in the solution phase decrease-, 
due to solute deposition on the solid phase, there will come a point at which the solution is in equilibrium 
with the smaller рш-ticles, щ а  АЛтаи)' but its chemical potential is still higher than that of the larger 
particles, )i\ >  Hence solute from the solution begins lo deposit on the larger particles, causing a
reduction of concentration in the vicinity of the larger particles. A concentration gradient is thus established, 
with higher concentration near smaller pirticles and lower concentration near lai-ger particles. The solute 
then begins to flow from the vicinity of the smaller particles towards the larger particles, A consequent drop 
in concentration in the vicinity of tlie smaller particles causes them to dissolve while the larger particles 
continue to grow. As tlie smaller particles dissolve, their solubility increases, causing them to dissolve even 
faster and they ultimately disappear. Such growth of larger particles al the expense of smaller ones is called 
Ostwald ripening. It к  a very slow process but it can be observed.

14,4.2 Melting Point

The higher chemical potential of small particles also has the effect of reducing their moiling point. Let us 
consider a solid particle of radius r in equilibrium with the melt. Let Tm be the melting point for the bulk 
substance; it is the temperature at which large particles are in equilibrium with the melt. For small particles of 
radius r, due to their higher chemical potential, let us assume that the melting point is 3"m + 47', The chemical 
potential of a pure substance, ц(р, Г), is a function of p  and Г, Using Equation (14.33) for the chemical 
potential of the solid particle, we see that tbe solid-melt equilibrium for large particles al Tm implies

М,Х Ф<ТШ) =  (14.4.4)

and the same for small particles at Tm+  ДГ implies

2vV
M,(p, Г„ + AT) = + ДТ) + - i - S  = н (р , Tm + ДГ)

Г (14.4.5)
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Figure 14.4 (a) Experimental data relating tht solubility ratio S  = 1У(г)1 /̂ГУ(ов)1щ to the particle size r for 
AgCl at 298 K. (b) Phi of\n(S) versus Ur is a straight line in agreement with Equation ( 14.4.3a) (Data source: 
SugimotoJ., Shiba, f., |. Phys. Chem. B, 103 11999), 3607).

figure u . s  Ostwald ripening. Smalt particles have a higher chemical potential than larger particles. As a con- 
sequence. in a saturated solution, small particles dissolve while larger particles gray. The difference in chemical 
potential results In the effective transport of the solute.
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In this equation we can use tbe relation
Г.+4Г

ft(p,Tm +  AT) = !t(p,Tm) + /  (» ,* ГО
d r

and write it as
Г„+Д7-

Asoe(P’ ̂ m) /  ( » ,  * ra
d r + ^  =  M p .rn )7 ( dr

Using Equation (14.4.4) and noting that (dp/dT)p -  ~Sm, the molar entropy, we can simplify this equation to

T„+&r

j  tfrt-Sire) d r + ^ - S  = 0

The difference in molar entropies between «lie liquid and the solid state (5^ - S m ) ^  АНЫ/Т . The enthalpy 
of fusion AHtm does not change much with T and may be assumed to be constant. With this approximation, 
the integral can be evaluated and we obtain

л и „ ь ( . ч - 0  +  ^ . . о

Since AT/Tm «  1, wccan approximate ln(l +• A T/Tm) oc A T /T m. If we write the melting point of particles 
of radius as Tm(r) »  Г„,(ао) + AT, in which we have used Гт (оо) in place of Tm. the above equation can be 
rearranged to

(14.4.6)

(14.4.7)

Sometimes this equation is written in the parametric form:

in which p is expressed in nm. For many inorganic materials, p is in the range 0.2-1.7 nm, Also for metals, 
the solid-melt interfacia! energy can be estimated using the formula [5]

0.59Л7'
oNa

in which Tm is the melting point and a is die area occupied by a single atom on the surface (approximately 
equal to the square of the diameter).

14.S N uckation

The transition from a vapor lo a liquid phase occurs when the corresponding affinity is positive, Le. liquid 
will condense from a vapor when the chemical potential of tlic liquid is lower than that of the vapor and 
similarly for the transition from a liquid to a solid phase. The condensation of vapor into liquid must take 
place through clustering of molecules that eventually grow .into liquid drops. However, as we have seen, the



и

B .  potential o f a small system increases with decreasing radius. Hence, tbe affinity is higher for larger 
d'®®1'’ 1 | j  indeed, can be negative for very small cluster». We can see this clearly by writing the affinity 
c*us^ ran,fonnatioH from a vapor to a liquid cluster of radius r, which we write as Cr:

Transformation: 1 -» C,
(14.5.1)

Affinity: A = y«g -  (л ,„ +  2yVm/r )  *  A h -  2 y V J r

bich ihe subscripts g and 1 stand for vapor and liquid respectively. Activities for nuclealion of a solute 
■П solution or •  solid from a melt will also have the same form as Equation (14.5.1). In each case. Aft is 
Indifference between the chemical potentials of the two phases. For crystallization from solution. Afi ls tlie 
Inference between tbe solution and the solid solute; in the case of solidification of a melt, it is the difference 
between the chemical potentials of the melt and the solid. To reflect the generality of expression (14.5.1), we 
Jm consider a phase transition from the initial phase a that nucleates to phase fi and write the affinity for a 
phase transformation as

A = Ha -  Ov* + 2r v j f )  = Д/t -  2yV Jr  (44.5.2)
Wr assume that initially An =  -  fie„  > 0. that is phase a is a supersaturated vapor »r a supersaturated 
solution or a supercooled melt.

Equation (14.5.2) implies that the affinity A is positive only when r is larger than a critical value, r*. i.e. 
A > Oonly when r >  f  (Figure 14.6). It is easy to see that

/  ~ ^  (J 4.5.3)
ц„ -  цРж Д ц

where r* is called Ihe critical radius. Due to random molecules motion, the molecules in a phase form 
clusters of fi phase of various sizes. However, most clusters of racliuH r < r* will evaporate or dissolve and 
return to the « phase. Only when a cluster's radius reaches a value г  й  r* would a fi phase have "nucleated’; 
since the affinity (14,5,2) is positive for such nuclei, they will gruw. It is through the growth of nuclei into 
liquid drops or solid particles that phase a «inverts to phase fi. The formation of nuclei of radius r > r ’ takes 
place through random energy fluctuations. It is the process of nudeatlon. the gateway for the transition from 
phase a to phase fi. As is clear from Equation (14.5.3), the critic»! radius r* decreases with increasing Д/<; 
that is the critical radius decreases as the sepersaturation increase».

The above understanding of affinity for the formation of clusters and the corresponding changes in the 
Gibbs energy enables one to formulate a theory of nucleation rate. The theory we present here is the classical 
theory of nucleation. In small systems, which could be subsystems of larger systems, random fluctuations 
in Gibbs energy occur, Since Gibbs energy reaches its minimum v»lue at equilibrium, fluctuations in systems

Штору Production, Fluctuations and Small Systems 337



338 Modem Thermodynamics

in equilibrium can only increase its Gibbs energy. The clustering of molecules in the a phase to form иц,ац 
clusters of p  phase takes place through fl uctuations because the Gibbs energy change for such transform^ ion 
is positive. If the Gibbs energy of the random fluctuations is large enough, a critical nucleus of radius г* Wj|| 
form and begin to grow, thus initiating a phase transition. We therefore need to know the laws that govern 
fluctuations to understand the dynamics of nucleatiou. To this end. we can use the elegant thermodynamics 
theory of fluctuations discussed in Section 14 2. Following this theory, we can combine Equations (14.2 2) 
for tlie probability of fluctuations expressed in terms of the change in entropy AS. and Equation (14.1.2) 
for the change in Gibbs energy associated with a change in entropy, to obtain the probability P(AG) of a 
fluctuation in Gibbs energy of magnitude AG:

/ЧДС) = 2Г1е-до^ г (14.5.4)

Here Z-1 is die noumalization factor such that f *  P(AG)i(AG) =  1 and is the Boltzmann constant |.tl 
AG(r’ ) be the increase in Gibbs energy needed to form the critical nucleus. We can obtain the probability 
for the formation of a critical nucleus by substituting AGtr*) into Equation (14.5.4). The rate of nucleation 
is clearly proportional to P(iG(r*)]. Henoe the rate of nucleation, J  (the number of nuclei formed per unit 
volume per unit time), can be written as

J з* ^0ехр[-ДО(г*)ДвГ] (14.5.5)

in which J0 is the pre-exponential factor; it depends on the particular process being considered. The Gibbs 
energy of a nucleus of radius r* of the fi phase, containing N moles of substance, is 0*(г*) «= +
уАя(г*)2. The corresponding Gibbs energy in the a  phase is G„ =  fiaN. The change in Gibbs energy for this 
transformation from the a phase to the fi phase, ДС(г*) =  (G^(r*) — G„). This can be written as

A G (r')  ж  1 A ft +  ( 1 4 . 5 . 6 )

* мп
Substitution of the expression (14.5.3) for the critical radius i* into Equation (14.5.6) gives

A ^ r*)= ! ^ L l j E  (14.5.7)
3 Д ft-

Thus, tlie nucleation rate (14,5.5) can be written as

J  *  JQ exp 16л r 'V j  
Sk^T A ft1

(14.5.8)

This expression «hows how the nucleation rate depends on the interfaciai energy Г and the supersatu
ration expressed through A/j. Experimentally measured nucleation parameters for silver salts are shown 
in Table 14.1. The pre-exponential factor J(1 depends on the details of the kinetics of nucleation and it is

Table 14.1 experimentally measured interfaciai energies of AgCl, Agtir and Agl particles In water and their 
molar and molectilaf volumes V„.

Compound r at 10 °C (m| n r 2) у at 40 "C (rot m~J) VV, (ml moh’) Molecular volume (mi)

AgCl 104 100 25.9 4,27 x 10~IJ
AgBr 112 102 29.0 4.81 x 1 0 25
Agl 128 112 41.4 6.88x10-”

Source: Swgirooto, Т., SNt», f ,  / Phys Chem. B, 103 (tШ ) .  3607.
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II difficult to estimate its value. Reported values of J0 are in the range lO^-lO30 for salts that are
soluble. Equilibrium between the a  phase and the fi phase implies ^  + RT In no eq. Since 

^^bem ical potential of the a phase. /<„ = /<“ + RT In a„, it follows lhait

Afi = ft, -  He* =  OT ln (a ,/aeit) (14.5.9)

Ле equilibrium activity aeq is the activity at saturation in die case of vapors and solution and. for 
kTdincaticn of a mell il is the activity of (he liquid phase (melt) Kt the melting point. If the vapor ar is 
30 ' Jered an ideal gas. then A f t  =  K l I n h i which р ш  is the saturated vapor pressure. Similarly, 

ideai solution of solute Y. A fi = RT  ln([Y]/[Y]s ), in which [Yls is the saturation concentration. Far 
W'diflcation from a  melt, the dependence of the chemical potential on 7'musl be considered. It can be shown
tbat (Exercise 14.9) Ар  =  1 — l j l x,).

In the above theory, ihe nudeation rate (number of nuclei formed per unit volume per unit time) is inde- 
^ndent of position; it is the same everywhere in the system. It Is therefore called homogeneous nucleation, 
Jpcording to this theory. ш a supersaturated vapor or solution, we should observe nudeation in all parts o f the 
-vstcm with some uniformity -  albeit with expected statistical fluctuations. However, most of the lime wc do 
not find this to be the case. Instead, we find that nucleation occurs on small impurity particles or on the walls 
of the container, indicating that nucleation occurs at higher rates at particular sites. Such nucleation is called 
h e te ro g e n e o u s  nucleation. It happens because, on impurity particle» or the walls, the interfacial energy у  is 
lower. The expression (14,5.8) is fundamentally correct but the value of у (or more generally the nudeation 
Gibb* energy G*) depends on the site where Ihe nucleation take* place. At these sites (called nucleation 
sites) the rate of nucleation is higher. ТЫ» is the reason why when crystals are grown from a solution, 
nucleation does not occur homogeneously throughout the system, hut occurs heterogeneously at certain sites.

E/Шору Production, fluctuations and Small Systems 339

References

1. Gibbs. J.W.. The Scientific Papers of J. WilUrnl Gibbs, Vol. 1: Thefmortynamics. 1961, Dover: New York (also 
Longmans, (ireen and Co., 1906).

2. Cailen. H.B.. Thermodynamics. second edition. 1985. lohn Wiley & Sent, Inc.: New York.
3. Petrosky, T„ Prigogine. I„ Time symmetry bteuklttg in classical and quantum mechanics. Chaos. SoUums and Fractals,

7 (1996). 441-497.
4. Hill, Т., Thermodynamics of Small Systems. Parts land II. Reprinted I» 2002, Dover: New York.
5. Laird, B.B., The solid-liquid interfacial free energy of dose-packed metal,«: hard-spberw and the Turnbull coefficient. 

J. Che.m. Vhys.. US (2001), 2887.

Example

Example 14.1 Consider an ideal gas at Г — 298 К and p  m 1.0 atm. Calculate the molar amount N, o f gas 
ln a spherical volume of radius 1.0 um (the average value) and the magnitude o f fluctuations in concentration
«tyVit.

Soju,iun N  ш  Ш { . =  Ю1 kpa x  <4/гщ 1Х) *  10-в)} m3/ (8.314 Д К '1 т о Г 1 X 298 К ) -  
mol.

The average concentrations (Nl/V1) »  40.76 mol m“3.
«11*  magnitude of the fluctuation» Sfl ш =  1,02 X 104,

R equation m concentration* = 'Jk \rfAfN AV] mol m~3 «4.02 X I0~3 mol m"3.
Ж  magnitude of )/<JV,JVA/V )l =  ™ 10 X 10~*.
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Exercises

14.1 By considering the change &2F, obtain the condition for stability with respect to thermal fluctuations 
when Wj. and V are constant.

14.2 Obtain the expression
Cy(bT)2 i ( 6 У ) 2 у  Д( МГ,) 2 

1 "  2 P  Ткт 2V * f  2N, 

for an ideal system, where цк =  + ЯГ 1вхк.

14J  (a) Evaluate the normalization constant Z for Equation (14.2.6).
(b) Obtain tlie probability PiST) for the fluctuations of the one variable ST.
(c) Obtain average values for the square of the fluctuations by evaluating /  “x (6T)2P(ST)d(6T).

14.4 Obtain Equation (14.2.17) from Equation (14,2.11).

14.5 Consider an ideal gas at a temperature T and p  =  1 atm. Assume this ideal gas has two components 
A and В in equilibrium with respect to interconversion, А B. In a small volume <5V, calculate the 
number of molecules that should convert from A to В to change the entropy by kb in the considered 
volume. Equation (14.2.24) then gives the expected fluctuations.

14.6 Using the expression G = nx N  + /X. show that (dG/dN)pj  ~  + (2yVmlr).

14.7 Using the parameters in Table 14.1, determine the size of AgBr particles whose saturation concentration 
|У(г)]с<| = 13 [Y(oo)J. At T =» 4() °C. estimate the number of AgBr molecules in these particles.

14.8 N  moles of tlie phase a  form a fi phase cluster of radius i*. Fat this process, assume that G„ = ii„N 
and Gf m Hf&N +  Y 4*(r*)2 and show that

Gr C . = ^ i  = y ^
in which Л/i = /<„ -  itfce.

14.9 For solidification from a melt, from tbe liquid phase or to the solid phase fi, the chemical potential as a 
function of temperature must be analyzed. Assume T = T m ~ ДГin which (Д77Г) «  1 and show that 
Дн =  » < , - ? ! *  Дtffus( 1 -  T /T m).
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Exercises

14.1 By considering the change S2F, obtain the condition for stability with respect to thermal fluctuaii. 
when Nk and V are constant.

14.2 Obtain the expression

Д ,S = ~
C V(6T)2 i (ЙУ)2 „  m sN /)2

2 P  Tkt 2 V  ~ 2 N t  

for an ideal system, where щ =  ii^ T )  + RT \nxk.

14 J  (a) Evaluate the normalization constant Z for Equation (14,2.6).
(b) Obtain the probability Р(6'Г) for the fluctuations of the one variable ST.
(c) Obtain average \alues for the square of the fluctuation* by evaluating /  “x (ST)2P(,ST)d(,ST).

14.4 Obtain Equation (14.2.17) from Equation (14.2.11).

14.5 Consider an ideal gas at a temperature T and p  = 1 atm. Assume this ideal gas ha* two components 
A and В in equilibrium with respect to interconversion, A s* B. In a small volume iV, calculate the 
number of molecules that should convert from A to В to change the entropy by kB in the considered 
volume. Equation (14.2.24) then gives the expected fluctuations.

14.6 Using the expression G = /(^/V + pE show that (dG/dN)p T = p + (2yVmlr).

14.7 Using the parameters in Table 14.1, determine the size of AgBr particles whose saturation concentration 
[K(r)jeq = 1.? [Y(oo)). At T ~ 40 °C, estimate the number of AgBr molecules in these particles.

14.8 N  moles of the phase a form a fi phase cluster of radius r*. For this process, assume that G . = 
and Of = Hf^N +  у 4лг(г*)г and show that

16*G ,-G „  = A G ( r * ) = - ~ - £ - f

in which Д/< »  ца -  iifcc.

14.9 For solidification from a melt, from the liquid phase a to the solid phase fi. the chemical potential as a 
function of temperature must be analyzed. Assume T -  Tm -  AT in which (AT/T) «  1 and show that 
Д/' =  -  Pf «  д / w  1 -  T/Tm).
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15
Nonequilibrium Thermodynamics: 

The Foundations

1S.1 Local Equilibrium

Ait emphasized earlier, we live in a worlil that is not in thermodynamic equilibrium. The 2.8 К cosmic 
microwave background thermal radiation that tills the universe is not in thermal equilibrium with the matter in 
the galaxies. (Jn a smaller scale, the Earth, it» atmosphere, biosphere and the oceans are all in a nonequilibrium 
state due to the constant influx of energy from the Sun. In the laboratory, most of the time we encounter 
phenomena exhibited by systems not in thermodynamic equilibrium, while equilibrium systems are the 
exception.

Yet, thermodynamic» that describes equilibrium states is of great Importance and extremely useful. This 
is because almost all systems are locally in thermodynamic equilibrium. For alrnosl every macroscopic 
system we can meaningfully assign a temperature and other thermodynamic variables to every 'elemental 
volume’ Д V' hi most situations we may assume that equilibrium thermodynamic relations are valid fo r  the 
thermodynamic variables assigned to an elemental volume. This i» the concept of local equilibrium. In the 
following paragraphs we shall make this concept of local equilibrium precise. When this is done, we have a 
theory in which all intensive thermodynamic variables, T.p and ft. 'become functions of position x and time r:

(In some formulations the extensive quantise» are replaced by entropy, energy and volume per unit mass.) 
The Gibbs relation dt'' = T < \S -p  dV+ J U f td ty ls assumed to be valid for small volume elements. With 
И -  «V' and S = ,\V'% follows that relation» sueh as

T = T(x, t) , p  = p(x. t), i i ( x ,  t)

The extensive variables are replaced by densities s, и and nt :

six, I) = entropy per unit volume 
u(x, t) = energy per unit volume 

nk(x, I) = moles per umt volume of reactant к
(15.1.1)

(15.1.2)

•  Tktrmcxtynamtrs: Ftom Heal Engines lo DMpativr Structures. Second Edition DAp Kontlcpudi and Ilya Pngogine 
2415 J®hn Wiley & Sans. Ltd. Published 2015 by J o ta  Wiley *  Sons, Ltd.
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for the densities are valid (Exercise 15.1) at every position x and time t. In these equations tbe volume does 
appear because s. и and nk are densities. Tbe entire system is viewed as a collection of systems character^'”] 
by different values of T, it, etc.. which are interacting with each other.

Let us look at the physical conditions that make local equilibrium a valid assumption. First we must look 
tlie concept of temperature. From statistical mechanics it can be seen that when the system is in equilibrium 
tlie velocity distribution is Maxwellian, with a well-defined temperature. As discussed in Chapter 1. according 
to the Maxwell distribution o f velocities, the probability A  v) that a molecule has a velocity » is given Ц

(15.1.3)

(15.1 4)

In this expression, the temperature is identified through relation (15.1.4), in which m is the mass of the 
molecule and kb ts the Boltzmann constant. In practice, only under very extreme conditions do we find 
significant deviations from the Maxwell distribution. Any initial distribution of velocities quickly becomes 
Maxwellian due to molecular collisions. Computer simulations of molecular dynamics {have revealed that 
the Maxwell distribution is reached in lea* than 10 times the average time between collisions, which in a 
gas at a pressure of 1 atm is about 10~8 s [1]. Consequently, physical processes that perturb the system 
significantly from flic Maxwell distribution have to be very rapid. A detailed statistical mechanical analysis 
of the assumption of local equilibrium can be found in Reference [2],

Chemical reactions are of particular interest to us. In almost all reactions only a very small fraction of 
molecular collisioos produce a chemical reaction. Collisions between molecules that produce a chemical 
reaction are culled reactive collisions. For a gas at a pressure of 1 atin the collision frequency is about If)31 
collisions per liter per second. If nearly every collision produced a chemical reaction, the resulting rate would 
be of the order of 10® mol I."1 s”1! Reaction rates that approach such a large value are extremely rare 
Most of the reaction rates we encounter indicate that reactive collision rates are several onlere of magnitude 
smaller than overall collision rates. Between reactive collisions tbe system quickly relaxes lo equilibrium 
redistributing the change in energy due to the chemical reaction. In other words, any perturbation of the 
Maxwell distribution due to a chemical reaction quickly relaxes back to the Maxwellian with a slightly 
different local temperature. Hence, on the timescale of chemical reactions, temperature Is locally well 
defined. (Small collections to tbe rate laws due to small deviations from the Maxwell distribution in highly 
exothermic reactions can be theoretically obtained [3-6]. These results have been found to agree well with 
the results of molecular dynamics simulations done on modem computers [7].)

Next, let us look at the sense in which thermodynamic variables, such as entropy and energy, may be 
considered functions of position. As wc have seen in Chapters I I  and 14, every thermodynamic quantity 
undergoes fluctuations. For a small elemental volume Д V we can meaningfully associate a value for a 
thermodynamic quantity Y only when the t u t  of the fluctuations, e.g, the root mean square (mis) value. SY 
is very small compared to Y. Clearly, if &V is loo small, this condition will not be satisfied, liom Equation
(14.2.6) it follows that if N is the number of particles in tbe considered volume, then the rms value of the 
fluctuations i $ rau я  As an example, let us consider an ideal ga* for which N = ft/N x =  (p/KT)&V. 
For a given Д V it i« easy to compute the relative value of tbe fluctuation йА'г1т/ #  ж l/fit1/ », ТЪ understand 
how small ДУсап be, we considera gas at» pressure/» = 1 atm and Г »  298 K, and compute (be fluctuations in 
the number of parities# in a volume ДК* (1 цт)3 *= 10~15 L. We find that а  4 x  10'7. For liquids
and solids the same value of < 5 # ^ /$  will correspond to an even smaller volume. Hence it is meaningful to 
assign a molar density to a volume with a characteristic size of a micrometer. The same u  generally true for 
other thermodynamic variables. If we are lo assign a molar density to a volume. Д V, then the molar density 
in this volume should be nearly unifatm. This means that tbe variation of molar density with position on
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fcale  of a т ‘СПиЛС'СГ Sh° " ld ** vcry « “ ‘У zcro- a condition satisfied by most macro.copic systems.
Biilarty 

a |Uilibrium i

ig  0 1  a  u u v i « 4 ‘- —  — - —  ---------* * - —— — ~ »
^  m i  tbe fluctuations in T at the scale of pm is very small. This shows that a theory based on local 
sitn>lJI ’ _ . ,_„|ц~яЫс to a wide ran lie of macroscopic systems.

15.1 I

i is applicable to a wide range of macroscopic systems. 

E x ten d ed  Thermodynamics

In tbe above approach, an implicit assumption is that the thermodynamic quantities do not depend on the 
.pdjcnb in the system: i.e. it is postulated that entropy s is a function of the temperature T and the molar 
Jensity nk. but not Ibcir gradients. However, flows represent a level of organization. This implies that tlic 
local entropy in a nonequilibrium system may be expected to be smaller than the equilibrium entropy. In the 
recen tly  developed formalism of extended thermodynamics, gradients are included in the basic formalism 
and there appears a small correction to the local entropy due to the Hows. We shall not be discussing this more 
advseced formalism. For a detailed exposition of extended thermodynamics, we refer the reader to some 
recent books f8-UJ. Extended thermodynamics finds application in systems where there are large gradients, 
<uch as in shock waves. For almost all systems that wc encounter, thermodynamics based on local equilibrium 
bat excellent validity.

15.2 Local Entropy Production

As we noted in the (previous section, the Second Law of thermodynamics must be a local taw. If we divide a 
system into r parts, then not only is

djS « d,S' + djSJ + ••• + d ,^ i  0  (15.2.1)

in which djS* is the entropy production in the ktb part, but also

djS* > 0 (15.2.2)

for every k. Clearly, this statement thut tbe entropy production due to irreversible processes is positive in 
every part is stronger than the classical statement of the Second Law that the entropy of an isolated system 
can only increase or remain unchanged. Tlic modem formulation of the Second Law. as stated by (15.2.2), 
does not require the system to be isolated. ft is valid fo r all system , regardless o f the boundary conditions.

There is a general point to note about the local nature of the First Law and the Second Law. To be compatible 
with Ihe principle of relativity, that is be valid regardless of the observer's state of motion, these laws must be 
local. Nonlocal laws of energy conservation or of entropy production are inadmissible because the notion of 
simultaneity is relative. Consider two parts of a system spatially separated by a nonzero distance. If changes 
in energy and 6«2 occur in these two parts simultaneously in one frame of reference so that •» 0,
the energy is conserved. However, in another frame of reference that is in motion with respect to ihe first, the 
two changes in energy will not occur simultaneously. One changc, say &ut . will occur before the other. Thus, 
d u n n g  the time interval between one change of и and the other, the low of conservation of energy will he 
violated Similarly, (he entropy changes in л system, 65) and 6S2 al two spatially separated ports of a system 
must •» independently positive. It is inadmissible to have the siirwltaneous decrease of one and increase of 

other so that their sum is positive.
@be local increase of entropy in continuous systems can be defined by using the entropy density j(x, /). As 
w*s the case for the total entropy, ds = d(j  des. with d,s > 0. Wc define local entropy production as

(15.2.3)



Nonequilibrium thermodynamics is founded on the explicit expression for a  in terms of the irrevc 
processes that we can identify and study experimentally. Before we begin deriving this expression, ho^ '**■ 
we shall write the explicit local forms of balance equations for enetgy and concentrations. 4r’ 1

15.3 Balance Equation for Concentration

The balance equation for the molar density. nk(\), can easily be obtained using the general balance equate 
described in Box IS. 1. For notational simplicity we shall not always explicitly show nt as a function of \  т Ьс 
changes in nt  are due lo the transport of particles, through processes such as diffusion and convection, j  „ 
and due to chemical reactions, dj/»*; the total change dnk = dcnk + d,nt . Denoting by vt (*, r) the velocity of 
the kth component at location x at time t, tbe balance equation can be written as

5  =  ^  +  ^  =  +  (15.3.1,
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Box 15.1 Differential form of the balance equation

Consider a quantity Y whose density is denoted by у The change in the amount of Y in « volume V is 
the sum of the net flow of Y into the volume V and the production of Y within that volume. If J Y is 
the current density (flow through the unit are» that is perpendicular lo J Y per unit time), then the changi’ 
in Y due to the flow я  Ja  J Y • da) in which d<o is the vector representing an area element, us illustrated 
The magnitude of da) equals the area of the element; its direction is perpendicular to the urea pointing 
outwards If /'[Y) is the amount of Y produced per unit volume per unit time, we have the change in К due 
to production *= f v P\Y]dV. Then the balance equation for the change in Y in the considered volume can be 
witten as

/Д§) dV - /  '■I’'»1''- • 0»
The negative sign in the second term is becuuse da» points outwards,

According to the Gauss theorem, for any vector field J;

^ J . d ®  = ^ ( V .J )d V  

Applying this theorem to the surface integral of J Y in the balance equation, we see that

Щ  ) < v - / W d V - / v ( V ,J ' )dV
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и  relation should be valid for any volume, we tan equate Ihe integrands. This gives u« the 
Skfrclit'al form of the balance equation for Y:

(  Q '' 
\ T l )

+ ( V . J Y) = m i

• jrtich /'(«*) >s production of the component к  per unit volume, per unit time, due to chemical reactions, 
could be positive or negative. As we have seen in Chapter 9, if v* is the stoichiometric coefficient 

of Ibe reactant * in a particular reaction (y* is negative for rcacta»ts and positive products), the moles of к 
Induced per unit lime per unit volume is given by vt i l / V M ( / i i )  in which (  is the extent of reaction. If 
there are several reactions, we can identify them by a subscript j .  The velocity of the /th reaction is

1 «Ц/ 
vl = y - £  (И .ЗЛ

Ihe velocities of reaction Vj are specified by empirical laws, as discussed in Chapter 9. The production of 
component к can now be expressed in term* of the reaction velocities Vj and the corresponding stoichiometric 
awfficicnts

/1"*] = X  w  <l5 -3-3)

Ihe balance equation for nk can now be written as

< 4  '*»% fijWb _  X-,

1 Г  = 1 Г  + 1 Г  = - у , я л ^ ^  ( ,5 3 -4)

Convective flow is the motion of the center of mass whereas the flow with respect to the center of mass aocounts 
for transport, such as diffusion, that is apart from convection. The center of mass velocity v is given by

X м кЩ*к
Iv a  --------
Z Mt”*i

(15,3.5)

in which Mk is the molar mass of component k. The nonconvectiw flow or diffusion flow of component 
к it then defined as1

Jt m n*(vt -  v) (15,3.6)

J** term (vt - v )  is (he velocity of component к relative to the center of mass, called the barycentric velocity. 
^  eonvectkinal and diffusional parts of tlie tkiw can be made exp) irit by using Equation» (15.3,6) in (15.34):

^  - - V • Jk- V . («»»)+У  V ;  (*5-3.7)

l,n tb* *«nnodynM nii o f  (iiperftuiJs и в  more coaveiucM lo keep the motion* of * e  component» tep a m r Abo. M b o o a  tk.w witfi 
*!4*C1 U) mean votume velocity, defined by replacing Mk lo Equation (15.5.5) with specific volume. к  also tn«l.
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By virtue of their definitions, the nonconvective flows J t must obey the relation

2 > tj * = o <15.3.8)
к

i.e. these flows should not result in center of mass motion. Thus the J t are not all independent, a point that 
we shall return to in Chapter 16 while considering coupling between different flows. Abo, based on i|H 
definition of dcnk and dtnk, we can make tbe identification

In the presence of an external field, such a* a static electric field. Jt may have a part that depends on the 
field. When no field is present, J t  is entirely due to diffusion. In Chapters 18 and 19 we shall study such 
diffusion-reaction systems under far-from-equilibrium conditions in some detail.

15.4 Energy Conservation in Open Systems

In Chapter 2 we saw the foundations of Hie concept of energy and its conservation. We have also noted ho» 
this conservation l»w must be local. We cam express the local form of the law in a differential form. The total 
energy density e is a sum of the kinetic and the internal energies:

in which (Mknk) is the mass per unit volume and v* is the velocity of component*. Equation (15.4.1) may be 
considered as the definition of the internal energy u, i.e. energy not associated with bulk motion. Using the 
center of mass velocity v defined by Equation (15,3.5), Equation (15.4,1) can be written as

in which the density /> = The term j  £  k(Mknk)(vk -  is sometimes referred to as the kinetic
energy of diffusion 112]. Thus the total energy density is the sum of the kinetic energy associated with 
convection and diffusion, and the internal energy. In some formalisms, the sum of the last two terms is defined 
as the internal energy 112]. in which case tbe internal energy includes the kinetic energy of diffusion.

When an external field is present, the energy of interaction 2  in which t k is the 'coupling constant'
per mole and ty is the potential, should also be considered. This eneijy can be introduced either tu an additional 
term in Equation (15.4.1) or assumed to be included hi the definition of « [12). Folbwing our formalism in 
Chapters 2 and 10, we «hall assume that the term '£ кткпьЧ1 is included in the definition of the internal energy u.

Since energy is conserved, there is no source term in the balance equation. Therefore the formal differential 
form for the conservation of energy is

In the absence of convection, the flow is entirely J*. We then have

(15.4.1)

(15.4.2)

(15.4.3)



Nonequilibrium Thermodynamics: The foundations 349

1  j  ls |he energy cuirent density. In order to make this expression more explicit in terms of the 
,n *** to the system, we begin by looking al the change in u. Being a function of T  and nt . the change in 

density u(T, nk) i»

= cv <3T +  £ « *  dn,
(15.4.4)

^ H ||ic b  uk s  (ди/дпк)г is *I1C partial molar energy of the irth component and cv  •* A* constfint-volume heat 
Ш aeity per unit volume. For the time variation of the internal energy density we can write

du dT \ y  dty
* “ Cy¥  + . f  “‘ Т

Using the nk balance equation ( 15.3.10), we can rewrite this equation as 

d̂ = c v ~  + £ u t vkivj - ' £ u kV . l k

(15.4.5)

(15,4.6)

The quantity ~ T ,t( ‘>u/<lnk)Tvh) ** (l>e change in the internal energy per unit volume, at constant
T, due to the yth chemical reaction. It is the beat of reaction of the )th reaction at constant volume and 
temperature; we shall denote it by (Гуг),. For exothermic reaction# (ryT)j is negative. Furthermore, to 
relate Equation (15.4,6) to the conservation equation (15.4.3), we can make use of the identity ukV • ,l4 =
V • («*J*> -  J* • (Vut l and rewrite Equation (15.4.6) as

f - < V S  + T < I V ^  + ^  (15,4.7)

Using Equations (15.4.2) and (15.4.7) the Cinergy conservation equation (15.4.3) can be more explicitly written

g - v f  + I (гкт)П  + X h  • I  + |<KE) 

» = -V .Je

in which (KE) is tlic kinetic energy associited with convection and diffusion: 

( K E ) s ^ 4 i ] j > * « * ( v * ~ i - / j  

The energy flow J ,  cat) now be identified by defining a heat flow J f :

-V  .  J ,  S cv g  + £  (rv,r )yv; + £  J* • (V»t ) +  £(KEj

(15.4.8)

(15.4.9)

(15.4.10)

Final 1 у. substituting Equation (15.4.10) into Equation (15.4.8), wc cun identify the energy flow as



The definition of beat flow (15.4.10) lead* to a physically appropriate interpretation i 
change the internal energy and the temperature. Using Equation (15.4.7) in Equation (15.4.10) we obtain
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th*,

- V .J „ du
dt

+ V • ( $ % * )

which can be rewritten as

where

<15.4.12)

(15.4.13)

This is the balance equation for the internal! energy. It shows that the internal energy as defined above m ay  be 
associated with a flow J„ = ( 2  kukJk + J ? ) and a source term on the right-hand side of Equation (15.4. 12). 
which is the rate at which the kinetic energy is dissipated. Equation (15.4.12) shows that the changes in и arc 
a result of heat flow J ? and matter flow and is due to dissipation of kinetic energy o f the bulk m o tio n  
The dissipation of kinctic energy can be related to viscous forces in the fluid. (Note that though J , and Ju art 
the same, the total energy e is conserved but u is not because dissipation of kinetic energy generates h e a t and 
acts as a source of «. Since J ,  is a barycenlric cutTent defined with respect to the center of mass, it d o e s  not 
contain a term due to Ihe motion of the entire system.)

The definition of heat flow (15.4.10) also gives an equation for the change in temperature

+ V .J ,  = Phew (15.4.14)

Лк», = "  X  <г*Г>Л "  X  J* * "  I f ® »  (15.4.15)
i *

Equation (15.4.14) is an extension of the Fourier equation for heat transport with the addition of a heat source 
РЬий. It is useful to note that the term = Y ,^ 'iuk /^ ni ^ nt + {duk/dT)V T . For ideal systems, in the 
absence of temperature gradients, since the partial molar energy uk ie independent of nk, this term will vanish , 
it is the heat generated or absorbed due to molecular interaction when the molar density, л*, of a nonidcal 
system changes. In the following chapters, we «hall not consider systems with convection. In addition, we will 
only consider situation» in which the kinetic energy of diffusion remains small, so the term d(KE)/d t 0.

Definition (15.4.10) of J ,  is one of the many equivalent ways oj'defining the heat flow. Depending on the 
particular physical conditions and the experimental quantities that ate measured, different definitions of Jq are 
used. A more extensive discussion of this aspect may be found in the literature [12], The various definitions 
of J q. of course, give the same physical results.

When an external field is present, as noted earlier (Chapter 10), the energy of interaction YikzknkV, in 
which rk is the ’coupling constant’ per male шк1 ^  is the potential, should also be included in и so that

и(Г, пк)ш и°(Т , л * ) + Х " ‘т**' (15.4.16)

where и°(7", nt ) is the energy density in the absence of the field. For an electric field r t = f t t , where F  is the 
Faraday constant and г* is the ion number, у  is the electrical potential ф. For a gravitational field rt  = Mk,
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L i r mtfs: V  the gravitational potential. For (he time derivative of u, in place of Equation (15.4.5) we 
tltf® ,

П°Л  ̂ du .  dT , v 1 ,..o . _ .**nkdu dl , v 1 / о . >ont_ = f v _ + £ („o+ w ) _ _ (15.4.17)

„о _  (dtp/ (ink )T. Equation (15,4.17) differs from Equation (15.4.5) only in that the term uk is 
laced by («J + w ) -  This means that the corresponding expressions for ,I,( and J ,  can be obtained by 

Cpiyitplacing uk with («J + хкч>). Thu« we arrive at the conservation equation

(15.4.18)^ + V . J f = 0  
dr e

(15.4.19)

In this case the heat current is defined by

-  V • J, * cvf  + £  (rKT)jVj + £ Jk • (Vuk) + X  rkJk .  S/ч, + L (KE) (15.4.20)
J f  *

Comparing Equation (15.4.20) with Equation (15,4.10) we see the following. The term. Vy, is the negative 
of the field strength. In the case of an electric field, the last term hccomes -  [ • F, in which E = -  V> is 
the electric field and I •= £  *rtJ t is the total current density; I • E la the ohmic heat produced by an electric 
current For the baluncc equation of u, in place of Equation (15.4.12) we have

^ ♦ V . J ,  = - ! - ( K E )  + I . E  
al ol

(15.4.21)

in which J„ = + J r  Similarly, liquation (15.4.14) is modified such that ihe source of heat will now
contain an additional term due to the ohmic heat:

* v f  + V • J ,  = Pi**

Яы. = -  I  (rv.Tty, -  2  h  *<V«») -  !<KB> + 1 • E

(15.4.22)

(15.4.23)

In this text we will only consider systems in mechanical equilibrium in which the kinetic energy of diffusion 
is small.

The Entropy Balance Equation

Jbe balance equation for entropy can be derived using the conservation of energy and tbe balance equation 
or the concentratimi.v This gives us an cxjxlieit expression for entropy production о  -  which can be related 

irreversible processes such as Ik at conduction, diffusion ami chemical reactions -  and the entropy current 
*• The formal entropy balance equation is

I T ----------------------1
(15.5.1)
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To obtain the explicit forms of and a, we proceed as follows. For simplicity, we shall consider a »ystc I 
with no dissipation of kinetic energy due to convection or diffusion, and no external field. From the eiihh* 
relation Г di = du -  dn* it follows that

dx j .  _  v
i t ’‘ T i l  L  T  dt <IS 5 2)

Now using the nk balance equation (15.3.10) and the balance equation (15.4.12) for the internal energy win, 
<J(KE)/df = 0, expression (15.5.2) can be written as

This equation can be simplified and written in the form (15.5.1) by making the following observations ],-lrst 
the affinity of reaction J is

Ai *  ~ Z  l>"* 
к

Second, if g is a scalar function and J  is a vector, then

V .ts J )  = J .(V « ) + * (V .J)  (15.5.5)

Through an elementary calculation using Equations (15.5.4) and (15.5.5), we can rewrite Equation (15.5.3) 
to arrive at the following equation for the entropy balance:

+ V (  h . _  v  i d l A  
\ t  T  T )

(15.5.6)

By comparing this equation with Equation <15.5.1), we can make the identifications

and

= J U*V

(15.5.7)

(15.5.8)

where we have emphasized the Second Law, a > 0.
As was done earlier, we identify the heat current through the relation J„ = J ,  + £  Then, using 

the relation «* = *.* + Tst  (Exercise 15.2). where i t  = ( d s /d n ^  is the partial molar entropy density of 
component k, the entropy current J v can be written as

( И ^ М И - л ) (15.5.9)

As was the case for the energy current, the expression for the entropy current consists of two parts, one diK 
to heat flow and the other due to matter flow.
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ext6rnal 6eld with potential ly is included, from the Gibbs equation T  <Ls = du -  £  tftdn»-
tt follow* Hat

Их Au ж-i fht^
r g . g - T b  + v , # (15.5.10a)

ipd
ds
dt

><k + h v V .J t I Щ (15.5.10b)

Comparing Equation (15.5,2) with Equations (15,5.10), we see that the only difference is that the chemical 
poiential ftk is replaced by the electrochemical potential (fik + r*|p). Correspondingly. (lie enlropy current 
(u.5.7) and the enlropy production (15.5.8) now become

. Ai

(15.5.11)

(15.5.12)

in which J„ = J  j  + X <Jt' where wj is the partial molar energy in Ihe absence of the field. /  = £  i>J* and Д 
к к 

the electrochemical affinity. For a static electric field E, we have -V<|/ = К and I = £  *i is the total current

Jensity.
Expression (15.S.12) for the entropy production is fundamental to nonequilibrium thermodynamics. It 

Jiows that entropy production a has the bilinear form

I u (15.5.13)

of forces Fa and currents or flows J„. It is through this expression that we identify the thermodynamic forces 
and the flows ihey drive. For example, the force V(l/7‘) drives the Bow J„; the chemical affinities Ay drive the 
chemical reactions with velocities t .̂ These forces and the corresponding flows are identified in Table 15.1. 
A transformation that leaves a  invariant and alternative forms of writing a are discussed in Appendix 15.1.

Table 1S.I Table o f itiermodynamic forces and flows.

Force F, Flow (current) 1,

Heat and matter flow Internal t-nufgy flow |„

Diffusion Diffusion current J*

Eltctrical conduction -V*/ f
7

Ion current densities 1,

Chemical reactions Ai
7

Velocity of reaction Vj = 1 <4
V dt



A15.1.1 Transformation that Leaves a  Invariant

The entropy production remains invariant under certain transformation*. One theorem [13] states that: under 
mechanical equilibrium, a is invariant under the transformation

J* J* = J t + (Al5.l i )

in which the J t  are the matter currents, nk is the concentration of component к and V is an arbitrary velotitj 
This statement implies that a uniform 'drift velocity' imposed on all the components of the system leaves the 
entropy production unchanged.

To prove this theorem, we first obtain a relation that the chemical potentials must satisfy in a system ai 
mechanical equilibrium. If nkft is the force acting on component k. then for mechanical equilibrium we have

X  ~  Vp  =  0  (A15.1.2)
к

This condition can be written in terms of the chemical potential usjng the Gibbs-Duhem equation:

s i T - d p  +  X  nk^l ,k (A15.1.3)
к

Since

dp = (Vp)»dr and d^t  = (V^t )»dr (A15.1.4)

under isothermal conditions (d7' = 0). substituting liquation (A15.1.4) into Equation (A15.1.3) we obtain the 
relation

V/t> = X n*v " t  (A15.1.5)
к

Using this expression, condition (A15.1.2) for mechanical equilibrium can now be written in terms of the 
chemical potential as

£ ( n ktk- n k4/ik) = 0 (A15.1.6)
T

With this result, the invariance of entropy production о under the transformation (A15.ll. 1) can be shown 
as follows. In the presence of an external force tk per mole, acting on the component k. under isotheimal 
conditions and no chemical reactions, the entropy production per unit volume (15.5.12) can be written by 
identifying lk »  - ц У у .  This takes the simple form

< г » У т , <Г* - у "*> (AI5.1.7)
7  1

The transformation (A 15.1.1) implies that J4 »  J'k -  \'n k. If we substitute this expression into (A15.I.7), the 
entropy production becomes

j '
а = Ъ 4  *<f* -  V"*>- V * £  <”i f* -  " tVA> (A15.1.8)

к 1 к
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Appendix 15.1 Entropy Production



W (0(1,е condition for mechanical equilibrium (A15.1.6), the second summation on the right-hand side is 
Puc ,r^us wc have the invariance theorem, according to which 
is*'-

® = X  7 • (% -  V**) = X  7  ,<f‘ "  V*>  (A15.1.9)
к 1 к 1

•Пцз ̂ jeorcm remains valid when chemical reactions and temperature gradients are include.

Д15.1.2 Alternative forms for Entropy Production
Different definitions of the heat current ,li( give somewhat different expressions for в . We have defined the 
heat current i q through the relation J„ = J f + uki t . However, ичгк authors define J„ as the heat current; 
then the flow associated with V(l/T) will be the heat current [12].5

A nother tonn of a arises when the force associated with the matter flow J, is written as -V/jt instead 
0f -Ч(ЦкГГ). By separating the gradient df  from the gradient of (1/7*), it i* straightforward to show that 
Equation (15.5.12) can be rewritten as

-  j ;  • v ±  -  X  X  k l T ^ + X  T -  (A15-U 0 ) 1 к 1 к j

in which
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= J u -  X  f lA  =  •*«+ X  l“i  “  ~ + X

It is useful to write the expression for the entropy production. (5.5.12). in terms of (V^t )r , the gradient of 
/4 at constant T. Tim cun be done by noting that

dx "  \  дТ »x Y  \c(Nt ) r  ix  

Since this is also true for the у  and the г derivatives, it follows that

V ^ * = ^ V r  + (V ^ V  (A15.1.U)

where (V/it )r  = '£.j(i)Pk/dnl )TVnJ. As a consequence of Equation (A1S.1.11), we have

T
v i  + i ^

(A15.1.12)

where once again we have used the relation i/̂  a  (d tf  /dn^Yf = + 7i* »  /1* -  Ti^fi/r)T)t l - Substitution 
°f Equation (A15.1,12) into Equation (15.5.12) give*

r .  v i  -  £  b ^ k  + £  +  £  &  (A15.1.13)

(We can establish the relation between the heat cu rren t in this text end those used in the clastic text of de Groat and Mezur 
W2J: *  jDm л  jJDM щ wiuch the superscript DM indicates the quantity used by de Groat and Mazur.
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Exercises

15.1 Assume that tlie Gibbs relation d t/ = T A S - p  dV + £ kftk dNk is valid for я email volume ele
ment V. Show the validity of the relation T  dj = du -  J) fik dnk in which s = (S /V i. и = (U /V )  and

"*  =  (Nk/V).

15.2 (a) Using the Helmholtz energy density/ and an appropriate Maxwell relation, show that

“*И(19Г"Л+П*ш* '7'(1г)%
in which

(b) We have seen that in the presence of a field и = н° + Y>kxknkV~ Show that f K *  (/<t  + rky )  and

15.3 Using the law of conservation of energy (15.4.3) and the concentration balance equation (15.3.10), 
show that the current as defined by Equation (15.4,11) satiifles the energy conservation equation
(15.4.8),

15.4 From Equations (15.4.16) and (15.4.17) obtain Equations (15.4.18) and (15.4.19).

15.5 Obtain Equations (AlS.l.lOa) and (A15.1.10b) from Equation (15,5.12).
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Nonequilibrium Thermodynamics: 

The Linear Regime

16.1 L inear Phenomenological Laws

When a system is close to equilibrium, a general theory based on linear relations between forces and flows 
could be formulated. In the previous chapter we have seen that tbe entropy production per unit volume, a, 
can be written as

in which l  \  are forces, such as the gradient of (1/D, and Jk are flows, such as the heat flow. The forces drive 
the Hows; a nonva*ishing gradient of (IIT) causes the flow of beat. At equilibrium, all the forces and the 
corresponding flows vanish, i.e. the flows Jj, depend on forces Fk such that they vanish when Fk =  0. Though 
the flows are drive» by the forces, they are not entirely determined by them; the flows can depend on other 
factors such as the presence of catalysts. Bor * fixed value of the affinity, the corresponding flow, the rate of 
a chemical reaction, can be altered by the presence of a catalyst.

For a small deviation in the forces from their equilibrium value of zero, the flows can be expected to be 
linear functions of the forces. (In other words, the flows are assumed to be analytic functions of the forces, 
as is the case with most physical variable*.) Accordingly, the following relation between the flows and the 
forces is assumed:

v ) (16.1.2)

I

Here th« coefficient* /*• are constants called phenomenological coefficients Note how Equation (16.1.2) 
'mplie* that not only can a force, such as the gradient of (1/7"), drive the flow of heat but it can also drive other 
flows, such as a How of matter or an electrical current. The thermoelectric effect is one such cross-effect, in 
which a thermal gradient drives not only a beat flow but also an electrical current and vice versa (Figure 16.1). 
Another example in cross-diffusion, in which a gradient in the concentration of one compound can drive

Thermodynamics: Fivm Heal Engines loDiuipatwe Structures. Second Edition. Ilikp Kondepudi :«id Пун Prigogine 
® 2015 John Wiley & Sons, Ltd. P rttah ed  2015 by John Wiley fc Sons, Lid.
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(a) The Seebeck effect 

i * / 4 T

lb) The Pettier effect

n « j , / i

Figure 16.1 The thermoelectric effect is a 'cross-effect' relating thermodynamic forces and flcM'S. (a) In the 
Seebeck effect, two dissimilar metal wires are joined and the junctions are maintained at different temperatum 
As a resultan CMF is generated. The EMFgeneratt<d is generally o f the order o f 10~5 VK-' of temperature difference 
and it may vary from sample to sample, (by In the Peltier effect, the two junctions are maintained at the same 
temperature ami an electric current is passeti through the system. The electric current drives a him  flow lq from 
one junction to the other. The Peltier heat current is generally of the order o f 10~i I s~' per amp / II.

a diffusion current of mother. Such cross-effects were known long before thermodynamic» of irreversible 
processes was formulated. Each cross-effect was studied on an individual basis, but without a unifying 
formalism. For example, the thermoelectric phenomenon was investigated in the 1850s and William Thomson 
(Lord Kelvin) [2) gave theoretical explan«ttons for the observed Seebeck and Peltier effect* (Figure 16.1). 
(Kelvin's reasoning wus later found to be incorrect.) Similarly, other ctoss-effects were observed and studied 
in the nineteenth centuiy. Neglecting the cmss-effects, some of the well-established phenomenological law» 
are a* follows:

Fourier's law of heat conduction: 1 , «  - kVT(x ) (16.1.3)
Kick's law of diffusion: I t  -  ~DkVnk(x) (16,1.4)

Ohm s law of electrical conduction: 4 (16.1.5a)

Alternative Conn of Ohm's law: i . !
P

(16.1.5b)

In these equations, к  It the heat conductivity, i* the diffusion coefficient of compound k and л* is the 
concentration of compound k  Ohm’s law a  usually stated as (16,1,5a) in which /  is the electrical current, H 
is the resistance and V u the voltage. It can *1*0 be stated in terms of the electric current density I, the electric 
field E and the retiiirtivity p (resistance per unit length per unit area of cross-section). Other quantities in the 
above equations are as defined in Table 15.1.
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I As a specific example of the general relation (16.1.2). let us consider the thermoelectric phenomenon 
entiorH.’d  above (Figure 16.1). The equations that describe thermoelectric cross-coupling are1

E 1
cr -i> eq 'p

(16.1.6)

(16.1.7)

in which Lp- **«•■ correspond to in liquation (16.1.2). Experimentally these coefficients can he 
m easured lor various conductors. We shall discuss tins and other examples in detail in later sections of this 
chapter. Phenomenological laws and Ihe cross-effects between the Bows were independently studied and. until 
the formalism presented here was developed in the 1930s. there was no unified theory of all the cross-effects. 
Relating the entropy production to the phenomenological laws is the first step in developing a unified theory. 
F o r  conditions under which the linear phenomenological laws (16.1.2) arc valid, entropy production (16.1.1) 
takes the quadratic form

F:Fl > 0 (16,1.8)

i this expression, if Fk are vectors, the product F;Fk is a scalar product. The forces Ft  can be positive 
or negative, A matrix l.]k that satisfies the condition (16.1.8) is said to be positive definite, Tbe properties 
of positive definite matrices are well characterized. For example, a two-dimensional matrix is positive 
definite only when the following condition* are satisfied (Exercise 16.1):

/.ц > 0, /*22 ^  O’ (̂ *12 ^  ^21И < 4L\\L}2 (16,1.9)

In general, the diagonal elements of a positive definite matrix mud be positive. In addition, a necessary and 
sufficient condition for a matrix Ljj to be positive definite is that its determinant and all the determinants of 
lower dimension obtained by deleting one or more rows and column* must be positive. Thus, according to 
the Second Law, the 'proper coefficients' Ly. should be positive; the 'cross coefficients' (i Ф k) can be of 
either sign. Furthermore, as we shall see in the next section, the elements I.)k also obey the Onsager reciprocal 
relations Ljk =  Lu. The positivity of entropy production and the Onsuger relations form the foundation far 
linear nonequilibrium thermodynamics.

16-2 O nsager Reciprocal Relations and the Sym m etry Principle

That reciprocal relations, LtJ = Ljj. were associated with cross-effect*. which was noticed by William Thomson 
(Lord Kelvin) and uchcrs even during the last century. The early explanations of the reciprocal relations were 
hased on thermodynamic reasoning that was not on a firm footing. For this reason. William Thomson and 
others negardcd the reciprocal relations only a» conjectures. A well-founded theoretical explanation for these 
relations was developed by [.are Onsager (190M 976) in 1931 (3). Onsager's theory is based on the principle 
of detailed balance or microtcopk reversibility that is valid for systems at equilibrium .° f deal

r - ~
‘N«e that ,Iu ж,1? w|*„ j,
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Lars Onsager (1903-1976),
(Reproduced with permission from the Esnlllo Segr? Visual Archives o f the American Institute of Physics.)

*

В

The principle of detailed balance or microscopic reversibility U formulated using the general thermody
namic theory of equilibrium fluctuations that we discussed in Seotion 14.2. A summary of tbe main results 
of this section is as follows.

• Tbe entropy &tS associated with fluctuations a, can be written as

(16-2 .1)
г ij  1 *

in which

<)Д( S
JF‘ “  1 ^ 7  <l6-2-2)

is tbe conjugate thermodynamic force for the thermodynamic flow d a/d t.

»
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( f o rd in g  io the Einstein formula (14.2.2), the entropy associated with the fluctuations gives the following
* probability disttibubon for the fluctuations:

Жa ,,« 2, ... ,аи ) »  Z~* exp (Д,5/Ав) m Z-1 exp (16.2.3)

in which kH is the Boltzmann constant and Z is the normalization constant.
. As was shown in Section 14.2, using the probability distribution (16.2.3), the following expressions for 

correlations between /', and aj can be obtained:

< * > ,) = - M (16.2.4) 

(16,2 5 )

in which (g~l \  is Ihe inverse of the maft-ix gy.

These are the basic results of the theoiy of fluctuations needed to derive the reciprocal relations Llt = Lkr

16,2.1 The Onsajjer Reciprocal Relations

Onsager's theory begin* with the assumption that, where linear phenomenological laws are valid, a deviation 
Ш decays according to the linear law

J

which, by virtue of Equation (16.2.2), can also be written as

Л  -  “  X  = I  W*e‘ (16.2.6b)
J.i >

in which the matrix A/{1 is the product of the matrices Lkj and gp. Tlie equivalence of liquations (16.2.6a) and 
(16.2.6b) shows that phenomenological equations for the flows lhait are usually written in the form (16,2.6b) 
can be transformed into (16.2.6a) in which the flows are linear functions of the force* Ft .

As we shall see, according to the principle of detailed balancc, the effect of a; on the flow (da^/d/) is the 
same as the effect of art on the flow (dr»(/*lf). This condition can be expressed ill terms of the correlation 

dak/d i)  between a< and (da^/dI) as

I Ш 1 Ш
In a way, this correlation isolates that part of the flow (de*/*) ttoat depends on the variable Once tlie 
validity of Equation (16.2.7) is accepted, the reciprocal relations directly follow from Equation (16.2.6a). 
Multiplying (16.2.6a) by a, and taking the average, we obtain

(16,2.7)

( a t f j )  =  -* в  £  V j>  " - V * (16.2.8)
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where we have used ~  - к ь 6̂ . Similarly,

(** drO  = 2  M j* e  “ W e
'  '  i J

If the equality (16.2.7) is valid, we immediately obtaia the Onsager reciprocal relations
-fl

(16.2.9)

Aa *  La (16.2.11))
We are then naturally led to ask why Equation (16.2.7) is valid. Onsager argued that this equality is valid 
because of microscopic reversibility, which, according to Onsager, is:

... the assertion that transitions between two (classes of) configurations A and В should take place 
equally often in «lie directions A -* B an d B -> A n ia  given time r  [3, p. 418].

This statement is tbe same as the principle of detailed balance that was discussed in Chapter 9. According 
to this principle, if at has a value «ДО at time I, and if at time / + r a correlated variable ak has a value 

+ r). then the time-reversed transition should occur equally often. This means that

<a,(f )«*(/ + r)> = <a*(t)«j(' +■ r)> (16.2.11)

Note that Equation (16,2.11) remains unchanged if т is replaced by-  т.
From this equality, relation (16.2.7) can be obtained by noting that

^  +  t )  -  at (t) 
dI r

so that

( “' I t )  = |  -  - * ~ ~ - а*(П |  j  =■ ^  ( ч О Ы Г  + T ) -  «id) «t »)) (16.2.12)

/  daA /  f  a>(t + r) -  a,(t) Л \  l
\^ а Г /  v  \ ------- 7------- j  >=•-<•*(/)«(<»+ 0 - «»(/)«,(*)> (16.2.13)

If we now use the relation (a,{t) ak(t + r)> *  («*(/) «f(r + т)> and use the fact that (»,(0«*<0) = («*(0 «,(')> 
in Equations (16.2.12) and (16.2.13), equality (16.2.7) follows.

Thus we see that the principle o f detailed balance or microscopic reversibility, expressed as 
<«,(f) »*(/ + r)) ■ <«*(() <*,(f +  r)), leads to the reciprocal relations Ly = L^.

162.2 The Symmetry Principle

Though forces and flows are coupled in general, the possible coupling is restricted by a general symmetry 
pinciple. This principle, which stales that macroscopic causes always have few er or equal symmetries than 
the effects they pnnlucr, was originally stated by Piern Curie [4] but not in tbe context of thermodynamics. 
Pngogine (SJ introduced the principle into noncquilibrium thermodynamics because it enabbes us to eliminate 
the possibility of coupling between certain forces and flows on the basis of symmetry. We shall refer to this 
principle as the symmetry principle: in some texts it is also called the Curie principle. For example, a scalar 
thermodynamic force such as chemical affinity, which has the high symmetry of isotropy, cannot drive a heat

2 In Hie presence of a magnetic field B. may be functions of В In ibis case l ie  reciprocal relations lake tbe fo ra  L u  (В )« 1» (-B).
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В ■ whicb has lower symmetry because of its directionality. As an explicit example, let us consider a 
in which there in heat transport and chemical reaction. The entropy production is (with J .  = J q)

e- = j „ . v l + £ v  (16.2.14)

ц с  general linear phenomenological laws that follow from this aw

(16.2.15)

v - t< * £  + v 4  <16216>

According to the symmetry principle, the scalar process of chemical reaction, due lo its higher symmetry 
o f isotropy and homogeneity, cannot generate a heat current that has a direction -  and hence is anisotropic. 
Another way of starting this principle is that a scalar cause cannot produce a vectorial effect. Therefore =
0. As a consequence of the reciprocal relations, we have = Lcf = 0, In general, irreversible processes of 
different tensorial character (scalars, vectors and higher-oraer tensors) do not couple to each other.

Because of the symmetry principle, the entropy production due lo scalar, vectorial and tensorial processes 
should each be positive. In the above case, we must have

J t * v i ^ 0 .  i v i #  (16.2.17)

(Also, the entropy production due to chemical reactions in each phiwc should he separately positive.) Thus, the 
symmetry principle provides constraints for the coupling of, and the entropy production due to, irreversible 
processes.

In Ihe following sections we shall present several cross-effects in detail to illustrate the experimental 
implications of Oneager's reciprocal relations.

16.3 Therm oelectric Phenomena

As a first illustration of the theory presented in the last two sections, let us consider thermoelectric effects 
that involve the flow of heat and electric current I,, in conducting wires (the subscript e indicates that the 
flow coiresponds to the flow of electrons^. The entropy production rate per unit volume due lo these two 
irreversible processes and the linear phenomenological laws associated with it are

‘ .L • V (?) k l £
r

(16.3.1)

(16,з а )

(16,3.3)

where E is the electric field. For a one-dunen»ional system, such »» a conducting wire, the vectonal aspect
0 J , and I, ie unimportant and both may be treated as scalars, lb  relate the coefficients and L„  with
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the heal conductivity *r and resistance Я, we can write Equations (16.3.2) and (16.3.3) in a one-dinx-n
system as

— L /  i . r i /  £  
' Тг ‘" д х  Iе T

- l E  1 “ Le*T -J*2

smnjj

(16.3,4) ! 

<16.3.5,
Fourier's law (16.1.3,of heal conduction is valid when the electric field £' = 0. Comparing tbe heatconducts 
term Jq = - ( \ / T 2 )Lqf,dT /dx  to Fourier’s law (16.1.3) leads to the identification

fw
p . (16.3.6)

We can now specify more precisely what is meant by the near-equilibrium linear regime. It meam thal 
Leg, etc.. may (be treated as constants. Since T(x) is a function of position, such an assumption is strictly 

not valid. It is valid only in the approximation that the change in Г from one end of the system to another is 
small compared to the average T, i.e. if the average temperature is Tt 4 , then |7\л:) -  r avgj /T „ g «  1 for all 
x. Hence we may approximate T2 и  7'*vg and use KTfvg in place of k P .

To find the relation between Lee and the resistance R, we note fliat V ^ ~ A ф = /,!, E  dv in which / is the 
length of the system. The current Ie is independent of x  At constant temperature (dT/dx = 0), the current is 
entirely due to the electrical potential difference. Integrating Equation (16.3.5) over the length of the sy stem, 
we obtain

^  E d x  or Ц ш Ь  
T Jo '  T

Comparing this equation with Ohm's law (16.1.5a), we make the identification
T  T

R /l

(16.3,7)

(16.3.8)

in which r is the resistance per unit length. As noted in Equation (16.1.5b), Ohm’s law can also be stated in 
general as

(16.3.9)

in which p is the specific resistance, I is tbe current density and E is the electric field. Comparing Equation
(16.3.3) with Equation (16.3.9) we have the general relation

La  = -  (16.3.10)

When we consider a one-dimensional system, p is replaced by r, resistance per unit length.

16.3.1 The Seebeck Effect

Tbe cross-coefficient# and can also be related to experimentally measured quantities. In the Seebeck 
effect (Box 16,1), a temperature difference between two junctions of dissimilar metals produces an EMI 
This EMF ie measured at zero current. Far thi* system. Equations (16.3.4) and (16,3.5) may be used. Setting 
Ie =  0 in Equation (16.3.5) we obtain

0 L ^ E T  -  L ^ j - T  (16.3.11)
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• may now be integrated to obtain a relation between tbe temperature difference ДГ and tbe EMF 
,0 Л к temperature difference. Ьф = -  / Е  d t  ln dorng this integration, we shall assume that 

„ 1110п ДT 1» small and make tbe approximation { T E  dr ж T  J E  dv »  - T  Дф. This gives us die 
a J H » 'vana
relatkni

■ . - v t s L
. _(д^/Д Г)/и0, called the thermi»#leetric power, is experimentally measured. Some typical values 

Tttomoelectric power are shown in Table 16.1; its sign may be positive or negative. Using Equation 
Л6 3 12). 'he coefficient Leq can be related to the measured quantities.

Box 16.1 Onsager reciprocal relations in thermoelectric phenomena

Лф

(a) H ie  Seebeti. effect

Лф/ЛТ

(b) Tbe Peltier effect

n * j , / i

т  t

Table I«, i Some vxpivummial data confirming Ons»ger rvdpnxnl  

Ihemnx-ouph. T f C ) I l / T  (mV  К 'i щ У К 1)

24 3.1 0.77
18.6 20.0 0.930
20.2 20.7 0.976
10.16 —10,15 1,000
71 -66 1 0»
33.1 31.2 106
16.72 16.66 '004

Wtemtvedat# be found in Reference |1J.

■ <льМ  (5.8
KCu-Ni о
B'Cu-Ni 14
■  Cu-Fe 0
■  Cu-BI 20 
В  fe-Nli ](,
f  Fe-H g 1 BA
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16.3.2 Th« Peltier Effect

In the Peltier effect, the two junctions are maintained at a constant temperature while a current / is pas4 j 
through the system (Box 16.1). This causes a flow of heat from one junction to another. Tbe two junctions ^  
maintained at the same temperature by removing heat from the junction receiving beat and thus maintain,nj, 
a steady heat flow Under these conditions, the ratio called the Peltier beat

- f t ) (16.3.13)

can be measured. Some typical values of (1П/Л are shown in Table 16.1. The phenomenological coefficient 
L p  can be related to the Peltier heat as follows. Since there is no temperature difference between the two 
junctions. дТ/дх — О. and Equations (16.3.4) and (16.3.5) become

Jq ”  L p J  (16.3.14)

h  -  (16.3.15,

Dividing one equation by the other and using Equations (16.3.8) and (16,3.13), we obtain

Lqt m П£«, = П -щ! = П I  (16.3.16)

In this manner, the phenomenological coefficients l.r  and Lei) can be related to the experimental parameters 
of the cross-effects.

Having identifiod all the linear phenomenological coefficients in terms of the experimentally measured 
quantities, we can now turn to the reciprocal relations, according to which one must find

(16.3.17)

Upon using Equation (16.3.12) for Leq and Equation (16.3.16) for we find 

- U T (& )-*• * -(S)-¥ (16.3.18)

Experimental data verifying this predictioB for pairs of conductors arc shown in Table 16.1.

16.4 Diffusion

In this section we will apply the theory of linear nonequilibrium thermodynamics to the process of diffusion 
When several species are simultaneously diffusing, it is found that the Sow of one species influences tbe flow 
of another: i.e. there are cross-effects between diffusing species. The entropy production per unit volume 
associated with simultaneous diffusion of several species is

( f )  <16.4.1)

in which J* is the matter current and цк is the chemical potential of species k. Under isothermal conditions, 
the associated linear laws are

J i ’ - X j V f t  (16.4.2)
Jt *
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showing cross'effects in a moften silicate solution.*

D„ (mJ »“') D„ (m1 r ’) O j,  (m2 $-') Du  (m; «”')

(6.8 ± 0.3) x 10 "  
(1.0 ± 0.1) X 10 '0 
(1.8 ± 0.2) X 10 10

(-2.0 ± 0.5) X 10 " 
(-2.8 ±0,8) X 10“ " 
(-4.6 ± 0,6) X 10-"

(-3.3 ±0.5) x  10-" 
(-4.2 ±0.8) x  10 " 
(-6.4 ±0.5) X 10 "

(4.1 ± 0.7) x  Ю-’1 
(7.3 ± 0.4) x  10-" 
(1.5 ± 0 .1 )x 10-'°

I ^ j n p o s i t i o n  of the **llcate Is 40% CaO, 20%  А1г0 3 arxi *0% SJO by weitf* (6,71

Our first task is to Delate the linear coefficients L# to the experimentally measured diffusion coefficients 
For simultaneous diffusion of several species (under isothermal conditions), a 'generalized! Pick’s law’ may 
be written as

J i “ - £ D* Vn* (x) (16.4.3)

in which nk(x) i6 the concentration of the component к at position x. As an example, diffusion coefficients 
Dij in a molten silicate solution of C a0-A b03-S i02 at various temperatures [6.7] are shown in Table 16.2. 
(Diffusion coefficients for some gases and liquids are given in Chapter 10.) Let us consider a system with two 
com ponents. Tbe Gibbs-Duhem relation tells us that the chemical potentials, and hence the forces - V(ftkJT), 
ait not all independent. For a two-component «ystem when T  and arc constant, we have

«1 d^j + n2 d/t2 = 0 (16,4.4)

Since dfik = d r • Vtik for an arbitrary dr. Equation (16.4.4! leads to the following relation between the 
gradients of tbe chemical potentials:

+П2^Мг -  0 (16,4.5)

This shows that the thermodynamic forces arc not all independent Nor arc all the flows J t  independent. In 
most physical situations, the relation between the flows is more conveniently expressed as the condition for 
‘no volume flow‘[l]. For a two-component system, this is expressed as

J ,v , +  J2v2 =  0  (16,4.6)

in which the vk are partial molar volumes. For notahonal simplicity we use vk for the partial molar volume 
instead of Vm k. This equation is the statement that tbe diffusion flaws d a  not result in any change in volume 
(Figure 16.2).

As a consequence of Equation (16.4.5 ). tbe entropy production dee to diffusion under isothermal conditions 
can be written (Exercise 16.4) as3

•H’. » V*, (16.4.7)

Now, using conditi»4i (16.4.6) for no volume flow, the expression tor entropy production can be written a»

-7 (‘ v}n2 /

A l shown Щ A ppendix 15,1, even if there is a constant volume flow, a  remains unchanged.
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figure /6.2 Diffusion in a two-component system. In most physical situations the flow of the components dl№ to diffusion does not produce a change in volume.

The linear phenomenological law that relates the flux J! to the conjugate force in Equation (16.4.8) is

J l = _ ^ l t^  + *^1 (16.4.9)

We can relate thi* equation to pick's law, usually written as J |  = - D l Vnl , by noting that V/i, = We then have

•*> = - Ч ( 1 + й ) ( ^ ) у',,я'01УЯ1 064101
From this it follow* thut the relation between the phenomenological coefficient Lu  and tbe diffusion coefficient is

/ _  t>iT

v vl«2 /  \  /
(16.4.11)

For diffusion of a solute in a solution, n2 in the concentration of tbe solution and nt tbe coiicctl-ration of the 
solute. For dilute ideal solutions recall that /<, = fi0 ip. T) +- RT hi x,. in which ,V[ =  п ^ и , + n2) «  п:/п: . 
and also that n, «  n2, These conditions simplify the relation between Llt and D\ to

° i« t
(16.4.12)

This is the relation we saw in Chapter 10 between the usual diffusion coefficient and ihe corresponding phenomenological coefficient.

To verify Onsager'» reciprocal relation* we need at least three components. For three-component isotherm al 
diffusion, the entropy production per unit volume is

(16.4.13)
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• c o m p o n e n t  system, the corresponding Oibbs-Duhem equation and the condition for no volume
F°r 3 *.Г̂  follows (Equations (16.4.5) and (16.4.6)):
flow

+  n2Wfl2 +  H jV jtj я  0

JjVi + J 2v2 + J 3V3 = 0

(16.4.14)

(16.4.15)

I  assume that J ,  and /i3 are the variables for the solvent while J , ,  /(, and J 2. /ь tlie variables of two 
jjglfs w hose diffusion cross-effects are of interest. Using Equations (16.4.14) and (16.4.15), J i  and р ъ can 
heeUminated from the expression for the entropy production. The entropy production can then be written m 

of only the variables J , .  yi, and J 2, ц г of the two solutes (Exercise 16.5):

(7 8= Fj • Ji +  F2 • J2

which the thermodynamic forces I', and F; are

v /(1 + ^ v , 1 + ^ v , 2
n3v3 n}v}

* *  + •??**» + ? ? * *  n3V3 fljVj

The associated phenomenological laws then take the form

Jt l=£'ii*'i + £ 12F2 

,L = + L22^ i

To verily the reciprocal relations, we must now relate Lik and tbe experimentally measured diffusion coeffi
cients of the generalized Kick's law:

(16.4.16)

(16.4.17)

(16.4.18)

(16.4.19)

(16.4.20)

J t rn -D u  Vlli — £>12 Vb3 

J 2 *  — 0 21 Vn, - /)v.

(16.4.21)

(16.4.22)

" * 2  =0, note how these equations imply that a constant flow, Jj a  constant, due to a concentration gradient 
ln «i, will produce л concentration gradient in я2 ■ Let us assume llwt the flow and concentration gradients are 
along only one direction, say x, so that all the gradients correspond in derivatives with respect to x. (Extending 
•he following calculation to three dimensions I* straightforward,) We «an write (lie forces Ft  in terms of the 
gradients of the two diffusing components because the chemical potentials fik are functions of я*. Thus

dx
dfli tty, dn2 

г)Л( дх дп2 дх
(16,4.23)

л similar relation can be written for the gradient of /i2. Using these relations in Equation» (16.4.17) and 
I  M .ig) and substituting diem in Equations (16.4.19) and (16.4.20), the flows J^ can be written in terms
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of the gradients of nk. After some calculation (Exercise 16.6) the following relations between the Jn'|u 
coefficients and the linear Onsager coefficients can be obtained:

h \  =  T -

dP  Ц -  bD 
a d -  be

-<a>a  -  bDx 
a d - b c

12

in which

_aD i,. т—

£а = Г-
a d - b c

)
l +  a s .
1 ”зуз ( * ) •

ь = ( и Щ  ( p )  
V " 3 va /  \ d ” i J

1 + 5 2 »
" 3 l 3 m

) m
I + S l l1 n3v3 m -

+ Щ  ( p )
\ "3  v3 /  \ дп2/

i + a s
n3v3 (£)

(16-4.26)

>.4.27)

(Note that tlie only difference between Equations (16.4.26) and (16.4.27) is that the derivative dldnx is 
replaced by d/dn2.) These relations can be written more compactly in matrix notation (Exercise 16.7). From 
these relations it is easy to see that the implication of the reciprocal relations Lu  =  L̂ \ >s

ciPД2 ■f bD — cP  л + dP22 ’21 (16.4.28)

Experimental data for several three-component systems is summarized in Tables 16.3 and 16.4. Often 
the relations between the chemical potential and the concentration are not known precisely and accurate 
measurement of diffusion coefficients is rather difficult. Nevertheless, we see that within experimental error 
the reciprocal relation* seem to hold very well.

Table 16,3 Experimental data on cross-diffusion In molten sikates and verification of Onsager's reciprocal 
relations II, 6, 71.

System 0,, (m2 s-’) 01г(П1г $-') 0 3| !mJ S' ') D„ (fn3 s"') / 1 ;^ ;i T (Ю

CaO-AIjO, SiO, 6.8 X 10 " -2 .0x10-”  -3.3x10- "  4.1 X 1 0 " 1.46 ±0.44 1723
СаО-А1гОг -SiO, 1j0 x 10-'° -2 .8x10-" -4.2 x 10-"  7.3 x 10 " 1.46 ±0.44 1773
CaO-AI,Oj SiO; 1.8 X 10 ,0 -4.6 X KT" -6.4x10- "  1.5x10-'° 1.29 ±0.36 1823

Table 16.4 Ixperimental diffusion coefficients for the toluene-chlorobenzene-bromobenzene system at
T =■= 30 °C and verification o f Onsager's reciprocal relations 1Щ.

D„/10-* o„ /io -9 Dj|/10"* 0„/1Г»
*? XI (mJ s '1) ( т г s ' ) im1 *-’ ) (m! r ' J *12^1
0.25 0.50 1.848 -0.063 -ОЛ52 1.797 1.052
0.26 0.03 1.570 -0.077 -0.012 1.606 0.980
0.70 0.15 2.132 0.051 -0.071 2.062 0.942
0.15 0.70 1.853 0.049 -0.068 1.841 0.915

•X, -  mote fraction of toliw)#; X2 -  mote fraction of cWorobenzene.
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throug

C h e m ic a l Reactions
16 -̂

L section we shall look at the meaning of linear phenomenological laws in the context of chemical 
In this » ^ in which tlie principle of detailed balance or microscopic reversibility i s  incorporated

^ ^ E k t b e  condition that forward rates of every elementary step balance the corresponding reverse rate, the 
ltirD»er ^ ^ c i t y  is implicit. No additional relations can be derived for the reaction rates i f  in is assumed 
^^ eq u ilib riu m  each elementary step in balanced by its reverse. Therefore, the mam task in  this section 
jM »e to relate the Onsager coefficients Ц  ami the experimentally measured reaction rates. In our formalism 
h O n s a g e r  reciprocal relations will be automatically valid.

The entropy production due to chemical reactions is

in which we have written vt for the velocity of the fcth reaction. In this case the thermodynamic forces are 
/г = (Л/Г) and the flows Jk = vk. In Chapter 9 we have seen that fo r  и chemical reaction that c a n  be identified 
as an elementary step, the velocity v and the affinity A can be related to the forward and re-verse reactions 
through the following relations:

in which Rt( and are forward and reverse rates of the kth reaction and R is the gas constant. Using Equation
(16.5.3) in Equation (16.5,2). we can write the velocity vk as

( l - c - ^ r ) (16,5.4)

a useful expression for discussing the linear phenomenological laws near thermodynamic equilibrium. It is 
important to keep in mind that Equation (16.5 4) is valid only for an elementary step. Ni»le that Equation
(16.5.3) incorporates the principle of detailed balance or microscopic reversibility according to which the 
forward and reverse reactions of every elementary step balance each other at equilibrium (w hicli leads to the 
Onsager reciprocal relations). Also, the limit A,. -* ao implies that the velocity is entirely d ue  to the forward 
reaction

Equation (16.5.4} does not give the reaction velocity Vj. as a function of the affinity Ak. because the term Ktf 
has to be specified. There is no general thermodynamic expression relating velocities and affinities. Reaction 
iel°c*t,es depend on many noBtherm odynam ic factors such  as the presence of catalysts. (A catalyst does not 
“Ve адУ effect on the state of equilibrium; also, because a catalyst changes the forward and  reverse rale by 

same factor, it doss not alter the affinity cither.) Close to thermodynamic equilibrium, however, there 
J*®|eneral linear relation between the two quantities. In this context, the general postulate of the linear 
P cl*'inenological laws takes the form

yt-ZL4 msi)
Efficients can be related to tbe experimental quantities such as reaction rales, as shown below.



For simplicity, lei us consider a single reaction that is an elementary step. Then Equation (16.5.4) be«>i

v * « f(l - е ~ л,ят) (к

At equilibrium A = 0. Let us denote the equilibrium value of Ihe forward reaction rate by Л(и). Away fmm 
equilibrium, A has a nonzero value. By 'close to equilibrium' we mean that

|й = | « 1  (16.5.7)

When A is small compared to RT and Rf = Rf cq + ДR,, we can expand Equation (16.5.6) to obtain a linear 
relation between v and A:

V=*f,«q £ f  + " ' (16.5.8)

to the leading order by ignoring smaller terms such as products of ДД( and A. Comparing Equation (16.5.8) 
with the phenomenological law v = LA/T, we make the identification

,  fyeq  *r,eq
' = «  ~R~ 9)

where the last equality follows from the fact that the forward and reverse reaction rates of every elementary 
step are equal at equilibrium.
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16.5.1 Single Reaction

16.5.2 Many Reactions

When the system ci>n»i»ts of many reacting species and reactions, not all the reactions are independent. Take, 
for example, the following reactions:

Oj(g) + 2C(s)^2CO(gJi (16.5.10)
Ojiig) + 2CO(g) ** 2COj(g) (16.5.11)
202(g) + 2 C (s)^ 2 C 0 2(*) (16.5.12)

The third reaction is the sum of the first two reactions. Therefore not all three are independent reactions. 
Thermodynamically this means that the affinity of the third reaction can be written as the sum of the firsl 
two. We have seen in Chapter 4 that the affinity of a sum of reactions is the sum of the affinities. Since the 
phenomenological relations are written in It mm of independent thetmodynamic forces, only the independent 
affinities are to be wed. Also, without loss o f generality we may consider affinities o f  elementary steps only 
because all reactions can be reduced to elementary steps.

If all the chemical reactions in the system are independent, then, close to equilibrium, each velocity vk is 
dependent on only (he corresponding affinity and the equilibrium reaction rale, as in Equation (16.5.8). There 
are no cross-coupling terms. In the general formalism, cross-terms for chemical reaction* appear when the 
total number of reactions is not the same as the number of independent reactions. In this case, some of the 
affinities can be expressed as linear functions of others. Let us look at an example. For simplicity but without 
loss of generality, we consider a simple set of unimolecular reaction», all of which are elementary. We denote 
their corresponding rates Rkl and Rtr. affiraue» Ak and velocities Vj as shown:

W - X  й |( ,Я1г,А„ v, 
X ч* Y i?2f,
W т* Y

(16.5.13a)
(16.5.13b)
(16.5.13c)



SBbscrip«s f and r stand for forward and reverse reaction rates, respectively. Only two out of the 
* i* a c tio n s  are independent, because the third can be expressed as the sum of the other two. Consequently, 
j^C|uive th* relation

Ai + A2 “ A3 (16.5Д4)

flie entropy production per unit volume due to these reactions is

<* = vi y  +■ v2 y  + v3y  (16.5.15)

Using *e  relation between the affinities (16.5.14), this expression can be written in terms of two independent
affinities Al and Аг:

A t A i
о = (v , + v3) —  + (Vj + v3)

л (16.5.16)
■  - ^ + * £ > 0

wbete = v'! + Vg and v'2 = v2 + v3. In iterms of these independent velocities and affinities, the linear 
phenomenological laws may be written as {9]

v’l » t i , y + I « Y  (16.5.17)

+ < » « -» )  

The relation between the phenomenological coefficients Ly, mid the experimentally measured reaction rates 
can be obtained by using the general relation (16.5.4) between the velocities vt and the affinities At . For 
example, close to equilibrium, i.e. when IД*/Й'Л -«c 1. we can write v' as

vj =  v, +  v3 = Я 1((1 -  t -A ' ,R r ) + fl3f( l  -  e~ 'V *r )

R}f.oq A2 (16.5.19)
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О А 1 л. U Д > ^ l f . e q  А { | К?Ы
lfeqRT +Ri<^ B T  *  V Я )  Т  R Т

using the fact that near equilibrium we have Rit к  ЯИ а). the forward reaction rate at equilibrium. Comparing 
Equation (16.5.19) with Equation (16.5.17). wc see that

L n  .  and (165'20)

Similarly, it is straightforward to show that

* )  ^  (16.5.21)

Thus one can relate the phenomenological coefficients to the «action rates at equilibrium. We see that 
^15 ■= l*2\ . Since tlie principle of detailed balance or microscopic reversibility is incorporated into tlie 
fornialism through Я)( »  R3r = the Onsuger reciprocal relation* are automatically valid.

16,5 J  Alternative Forms for а

F*>m the above considerations it is clear thal the entropy production can be written in tenns of A, and 
43 instead of A, and A2. There is no unique way of writing the entropy production. In whatever way the
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independent affinities and velocities are chosen, tbe corresponding linear phenomenological coefficients 
be obtained. The entropy production о can be written in terms of different sets of independent react*, 
velocities and affinities: ,

<’ “ X ,'‘ T  = Z vt - f > 0  (16-S-22)к к

Equations (16.5.15) and(16.5.16) are examples. The number of independent reactions, and therefore the utln,, 
ties, is constrained by the number of reacting species. In homogeneous closed systems in which the change 
in the concentrations of all the reacting species is only due to chemical reactions, we may choose the extents 
of reaction f k to define the state of a system instead of tlie concentrations nk. The chemical potentials /ik 
then functions of ( t , p  and T. However, since an extent of reaction relates the change in at least two reacting 
species, in a system consisting of r  reacting species there are at most ( r -  1) independent extents of reaction 

Thus all of r chemical potentials can be expressed as /^ (i], ( г, £,_i, p. T). Prom this it is clear
that, al any given pressurep  and temperature T. there are only ( r -1 )  independent chemical potentials Since 
the affinities Ak are linear functions of the chemical potentials, in a system with r reacting species, there curi 
be at most ( r -  1) independent affinities. (Sometimes this fact is derived using the "conservation of mass jn 
chemical reactions. Although this may be valid in ordinary chemical reactions, since mass is not conserved 
in nuclear reactions, the argument is not general. In fact, mass is incidental to chemical reactions whose main 
consequence is the change in the number cuf molecules of the various reacting species.)

16,54 Linearity In Coupled Reaction!)

We have seen that the linear phenomenological laws are valid for chemical reactions with affinity A if the 
condition 14/Л7’| «  I is satisfied. However, if the overall chemical reaction

X ->Y  (16.5.23)

consists of m intermediates, W,, W2...... Wm, one may still be justified in using the linearity even if \A/H'I\
<CL 1 is not valid. Tb see how this might happen, let us suppose that the overall reaction (16.5.23) goes through 
the following series of reactions:

(l)  t t)  (J) <»+l)
X ^ W , 5*W2 ?*W j-"W m у  (16.5.24)

The entropy production for this set of (m + 1) reactions is

To =/4,v, + A2v2 + ••• +Am+4vm+1 (16.5.25)

If the intermediate components Wt interconvert rapidly, then the reaction velocity of each of these reactions 
is essentially detennined by tbe rate of the slowest reaction, which is called the rate-determining step. Let 
us assume that the last step W„ Y is the slow rate-determining step. The rale equations for this system arc

d[X] 
dr

= - v t

d[W,J
. vt -  Vj

f f l = „ 2 -V 3 <16-5-26>

dt
IIVVj

df

a m
dr = v„

«-cause of * e гаРк* interconversion, we may assume that a steady state is established for [Wt | so that 
i/d/ »  0. (Such an assumption is used!, for example, in obtaining the Michaelis-Menten rate law for

Жртре kinetics.) This implies
v, = Vj = ... = vm+1 = V (16.5.27)

цеп  the entropy production for the system becomes
Та = (Л, + л 2 + ••• -M m+1)v =  Av (16.5.28)

in Which tlie overall affinity
A »  A[ + Л 2 +  ••• +  Am+i (16.5.29)

Now if \A);IRT\ 1 for each of the (m + 1) reactions, we are still in the region where the linear laws are

valid, so from Equation (16.5.8) we have

Vi = *3 »  .......v„tl »  <16.5.30)

which is tbe forward equilibrium reaction rate of reaction (I) in the scheme (16,5,24), etc.

In the above case, even i f
m+1

■  |A| =  £ л *  > RT
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Hthe linear phenomenological laws will be valid. A simple calculation (Exercise 16.9) using Equations 

(16.5.27), (165.28} and (165.30) shows that
= IbgA  <16.5.31)

V R T '

in which the ‘effective reaction rate' RcK it given by
J L  =  _ L _  + _ i _  + - i _  + ... +  _ _ J ----- <165.32)
*eff ^lf.eq ^ 2f,eq 3̂f,eq *(«+ lfceq

Since tihe overall inaction is not an elementary step but a result of many elementary steps, the relation
v * ^effU ~ c ~ A/Rr) jg not valid.

Though we considered a coupled set of untmolecular reactions (16.5.24) to obtain liquation (16.5.31), the
result is more generally valid. Thus, the linear phenomenological taw is valid fo r  an overall chemical reaction
*f\A/RT\ <£ j fo re w ry  elementary step in $№ traction, and i f  concentrations o f  all thfi reaction intermediates

Пи1У be assumed to be in a steady state,

16.6 Heat Conduction in Anisotropic Solids

I  h  an anisotropic solid, the flowof heat J ,  may not be in the direction of tbe temperature gradient; a temperature 
©*adicnt m one direction can cause the heut to flow in a different direction. Tlie entropy production rate is

d <X\  (16,6.1)



in which i, are *b« Caitewan coordinates. The phenomenological laws for this system are

J* “  ( I )  = X  ( ^ )  J |  (16.6.2)

For anisotropic solids the heat conductivity к is a tensor of the second rank. The empirical Fourier law щ 
heat conduction is then written as

l V  . 0 Г
*'«' “  ~ 2 j  ** (16.6.3)

Comparison of Equations (16.6,2) and (16.6.3) leads to

L* = T2**  (16.6.4)
Reciprocal relations L:ll = I.h then imply that

Kik = ки (16.6.5)
i.e. the heat conductivity is a symmetric tensor. However, for many solids, if the symmetry of the crystal 
structure itself implies that кл  = ки , experimental verification of this equality would notconfirm the reciprocal 
relations. On the odhcr band, solids with trigonal (C,, C3l), tetragonal (C4, S4, C4h) and hexagonal (C6. CV 
C№) crystal symmetries imply that

*■12 =  ~*ii (16.6.6)
If the reciprocal relations are valid, then

*12 = * 21= ° (16.6.7)

Equation (16.6.6) implies that a temperature gradient in the x direction causes heat to flow in the positive 
у  direction but a gradient in the у  direction will cause heat to flow in the negative * di»ection. Onsager's 
reciprocal relations Imply that this is not possible. One method of experimental verification of this relation is 
due to Voigt and Curie (Figure 16.3). Another method may be found in an article by Miller J1], For crystals of 
apatite (calcium phosphate) and dolomite (CaMg(COj)2) it was found that ( к 12/ к п ) < 0.0005 [1 J, in accord 
with the reciprocal relations.
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Figure 16.3 The nnethod o f Curie and Voigt to verify the reciprocal relations for anisotropic heat conduction 
An anisotropic solid whose crystal symmetry implies *ru  .-*•*, Is placed in contact with two heat reservoirs of 
temperature Th and T » jhe reciprocal relations are valid then k u = *„ = 0. If this is true, the Isotherms should 
he perpendicular to she direction x„ i.e. $ should be 90*.
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(a)

. Цл,r i  г
■Q>

(■>)

Figure 16.4 Electtokinetic phenomena. Two chambers containing electrolytes are separated by a porous wall 
or capillary, (a) An applied potential V' generates a pressure difference bp, called the electro-osmotic pressure. 
(b) If the fluid is made to flow from one chamber to another through an applied pressure gradient, it generates 
an electrical current I called the streaming current.

16.7 Electrokinetic Phenomena and the Saxen Relation»

Electrokinetic phenomena are due to the coupling between the electrical current and matter flow. Consider two 
chambers. 1 and 2, containing electrolytes and separated by a porous wall. If a voltage V is applied between 
the two chambers (Figure 16.4), a current will flow until a pressure difference Дp is established at die steady 
state. This pressure difference is called the electro-osmotic pressure. Conversely, if a fluid flow J  from one 
chamber to another is achieved by a piston, an electric current /, e»lled the streaming current, flows through 
the electrodes. As before, the thermodynamic description of these effects begins with the expression for the 
entropy production under the conditions specified above. In this ease we essentially have a discontinuous 
system in which there we no gradients but differences in chemical potentials between the two chambers. F’txr 
discontinuous systems the entropy production per unit volume a is replaced by the total entropy production 
djS/dz. Furthermore, the entropy produced by the flow from chamber I to chamber 2 may be formally thought 
°f as a chemical reaction for which the difference in the electrochemical potential becomes the affinity, Thus 
we have

d£
dr

in which

A* = (Mt + z / V ) -

-<Ц ‘ H

(16.7.1)

(16.7.2)

(16.7.3)
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In these equations, the superscripts refer to the two chambers, where Zt is the ion number of He сощрОП(; L 
k, F 18 the Faraday constant and ф is the electrical potential. For a relatively small difference in the press J  
between the two chambers, since [dfiLJdp)  =  Vj,. the partial molar volume, we may write

-  Ф  <= V /AP  (16.7,

Equation (16.7.1) may now be written as

djS

4 )

(16.7.5) I

in which Аф = фх -  ф2 and lk = ^ f d ^ /d r ,  the electric cummt due to the flow of component k. Combining 
all the matter flow terms and the ion flow terms. Equation (16.7.5) can now be written in the compact form

where

d ,i JAp 1Аф
dT + _f

^  dn?
J =  -  У , Vfc-r-is the ‘volume flow* 

к ™

/  = - ] £ / *  is the electric current

The phenomenological equations that follow from Equation (16,7,46) are

/  я  L, Д ф
1Г + ь Л

,  ,  Ь ф . ,  bp
j  *  - j r  + i-2Z —

The reciprocal relations are

L12 = 1̂ 21

Experimentally, the following quantities can be measured:

The streaming potential

• Electro-osmosis

Electro-osmotic pressure

Streaming current

(А ф \ _  _ Ц г
b P /i:

( - )  = —V /  / д/>=о Lj j

( 5 L ~

(5)

2̂1 
£23

-  h i
0 Lq2

(16.7.6) I

(16.77)

(16.7.8)

(16.7.9)

(16.7.10)

(16.7.11)

(16.7.12)

(16.7.13)

(16.7.14)

(16.7.15)
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5 of the reciprocal relations L12 *  Ljj, we see from Equations (16.7.12) to (16.7.15) that

(16.7.16)

(16.7.17)

two relations, called the Saxen relations, were obtained originally by kinetic considerations for particular
hv virtue of the formaUsm of noneauilibrium thermodyniunics we see their general validiiy. 

s y i to n s ,  d u i  J

|6 8 Thermal Diffusion

T ie  mleraction between heal and matter flows produces two effects, the Soret effect and the Dufour effect. 
In  the Soret effect, heat flow drives a flow of matter. In the Du four effect, concentration gradients drive a 
tad flow. The reciprocal relations in this context can be obtained by writing the entropy production due to 
diffusion and heat flow:

- w
(16,8.1)

This expression, however, does not quite separate the thermal and concentration gradients as we would like, 
because the term Vfik contains the gradient of T  (due to the fact that щ  is a function of T, nk and p). The 
explicit form of V д  can be written using tlie relation

in which

d,<‘ = (d̂ r+(^)„dr+(̂ )„,.rdP (16.8.2)

is u variation due to concentration only.
In the following, g and ft are Gibbs enei^y and enthalpy densities corresponding to G and W respectively. 

In Ule above, the term

, W / . ar

we see that liquation (16.8.2) can be written a*

d/»* =  (dfik)f ,T  ~ T *P (16.8.3)
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in which the partial molar entropy sk я  (d s/dnk)Pi j- (Section 5.5). In this section we will consider systems jn 
mechanical equilibrium for which dp =■= 0. Since the variation of any quantity Y  with position can he w rincn 
as d К = (V У) • dr. it follows that using liquation (16.8.3) we can write

Here we have used the fact that dp = 0 because the system is assumed to be in mechanical equilibrium. 
Substituting Equation (16.8.4) into Equation (16.8.1) we obtain

Now, using the relation g я  ft -  Ts, it is easily seen that И/с +  Tst  = ft*, where ht  — (dh/dnk )p ;■ is the partial 
molar enthalpy. With this identification, a heat current that takes into account matter current can be defined 
as

In a closed system under constant pressure, the change in enthalpy due to a change in composition is equal 
to the heat exchanged with the exterior. In an open system of a fixed volume, the heat exchanged is the 
difference between the change in energy and the change in enthalpy due to the matter flow. The vector , |? 
defined in Equation (16.8.6) is called the reduced heat flow. In terms of J ,  the entropy production m ay be 
written as

For simplicity, we shall consider a two-component system so that w ж 2. As we noted in Section 16.4 
on diffusion, because of the Gibbs-Duhem relation at constant /> and T, the chemical potentials are not 
independent. From Equation (16.4.5) we have the following relation:

As when obtaining Equation (16.4.8), relations (16.8.8) and < 16.8.9) can be used in Equation (16.8.7) to give

Thus, in place of two matter flows, J 1 and J2, we have only independent matter flow J , . We can now write 
the phenomenological laws for the flows of heat and matter:

V *  ^(Vi4k)fiT- s t \ T  

Ж (V i (16.8.4)

(16.8.5)

W
(16.8.6)

(16.8.7)

"l(V/<lVr + n2(V/'2V,r ** ^
In addition, for no volume flow, we have, firom Equation (16.4.6), the condition

JjV, + J 2v2 * 0

(16.8.8)

(16.8.9)

(16.8.10)

(16.8.11)

(16.8.12)



late the terms in this expression to the Fourier law of heat conduction and Fick’s law of diffusion, we 
'Write the gradient» as Vji, = ldfi}/ d n l ) V n l and V ( i / T )  »  -(1 /Т 1) VT. »o the two flow* become
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-V T vi” i \  £ *
V iftj)  r)n,

Vn,

J i = - ^ V T - £ «*(■♦£) S ’*

(16.8.13)

<16.8.14)

' T2

VVe can now identify the diffusion coefficient and the heat conductivity:

D , . | »  ( l  + r f f i )Г \  У;,Л2/  (J/I,

and we have the reciprocal relations

( L41 = L i4

The cross-flow ~ (1 .ц /Т 2)'УТ is usually written as -П[ D jV T, In which is the coefficient of thermal 
diffusion. so that tbe flow of matter is proportional ton,. The ratio of the thermal diffusion coefficient to the 
ordinary diffusion coefficient is the Soret coefficient:

<16.8.15)

<16.8.16)

O'г q
: d[ ~ o,r2«,

<16.8.17)

In a closed system with a temperature gradient (Figure 16.5) a concentration gradient is set up due to the heat 
flow. The stationary state concentration gradient can be obtained by setting J t »  0;

J, - - s f V T - D ,  Vn,Г2

Since £ |?/ r J = Л|/>р the ratio of the two gradients is

V T
" iP r

0 .

<16.8.18)

(16.8.19)

The Soret coefficient has the dimensions of T~l . It is generally small, in the range 10"2 to 10”’ K"1 
for electrolytes, nonelcctrolytee and gases [10), but it might become larger in polymer solutions. Thermal 
diffusion has been utilized to separate isotope» [11].

figure i t . ;  Thermal diffusion: a temperature gradient and the consequent flow of heat causes a concentration 
Stadient.
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Tbe heat current carried by a flow of matter is identified by the Dufour coefficient D(1. Since ihc 
carried by the matter flow is proportional to tbe concentration nl , the Dufour coefficient is defined by 11

n'D*=ii' H,+S)£j (16.8.20)

Since Z-! J t 1 = njAj, the Onsager reciprocal relation* £ 1? = Lql predict the relation

for the ratio of the Dufour and thermal diffusion coefficients. This prediction has been confirmed experimen
tally.

Thus nonequilibrium thermodynamics gives a unified theory of irreversible processes. Onsager reciprocal 
relations are general, valid for all systems ui which linear phenomenological laws apply.
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Exercises

161 Ff>r a positive definite 2 x 2  matrix, show that Equation (16.1.9) must be valid.
. * 2  Give examples of the equality (16.2. U ) hypothesized by Onsager, Give examples of situations in which 

it is not valid.
16 J  Estimate the cross-diffusion current of one component due to a gradient of another from the data given 

in Table 16.2 for reasonable gradients.

16.4

16.5

Obtain Equation (16.4.7) from Equations (16.4.1) and (16.4,5) and generalize it to many components. 

For diffusion in a three-component system, show that the entropy production is

л  *= F, «J} -fF} • 

in which the thermodynamic forces F) and F2 are

F,

and

v*+??v*+??v*«зП

n3v, n,v3
16.6 Fbr diffusion in a three-component system, show that the phenomenological coefficients are given by 

Equations (1Й.4.24) to (16.4.27). (You can obtain this using Malhemalica or Maple.)

16.7 For diffusion in a three-component system, write Equations (16.4.17) to <16.4.27) in matrix notation.

16.8 For the chemical reaction (XXg) + 2Hjig) ^  CH3OH(g), *pecify die conditions in which the linear 
phenomenological laws may be used.

**•9 Using Equations (16.5.27), (16.5.28) and (16.5.30) show dial a linear phenomenological relation 
v = (НеК1Ш'\А (Equation (16.5.31 ))-can be obtained in which the "effective reaction rate” Sc(( is given 
by

_L = JL_ 4- _i_ X _i_ 4. ... 4- -- !--
1̂1*U,eq п 2(гец *Keq ’'(OT+tjf.eq
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17
Nonequilibrium Stationary States and Their 

Stability: Linear Regime

17.1 Stationary States under Nonequilibrium Conditions 
p& x: * •

A system  can be maintained in a nonequilibrium state through a flow of energy and matter. In the previous 
chapter, we have seen some examples of nonequilibrium systems in tlie linear regime. In this section, we 
will s tudy some of these systems in more detail to understand tbe nature of the nonequilibrium states. In 
general, a system that is not in thermodynamic equilibrium need not be in a stationary Mime-independent) 
state. Indeed, as we shall see in Chapters 18 and 19, systems that are far from equilibrium, for which tbe linear 
phenom enological Jaws are not valid, can exhibit very complex behavior, such as concentration oscillations, 
propagating waves and even chaos. In the linear regime, however, all systems evolve to stationary states in 
which there is conslant entropy production. Let us consider some simple examples to understand the entropy 
production and entropy flow in nonequilibrium stationary states in tlie linear regime.

17.1.1 Thermal Gradients

Let us consider a system of length I  in contact with a hot thermal reservoir at a temperature Th at one end 
and a cold thermal reservoir at temperature Te tit the other (Figure 17.1). In Section 3,5, and in more detail in 
Chapter 16, we discussed the entropy production due to heat flow' but we did not consider entropy balance 
in detail, Here we assume that the conduction of heat is the only irreversible process. For this system, using 
Table 15.1 for the flows and forces, we see that the entropy production per unit volume is

e r = J , . v i  (17,1.1)

If we assume that tbe temperature gradient is only in the л direction, a per unit length is given by

< , , d 1 . 1  Щ » )
a ( x )m W x m m ~ ]^ i r  (l7 'U )

Thermodynamics. Рют Heal Engines lo О Ш рвйк Structures, Second M ttM l. DAp Komfepudi and Ilya Pngogme 
® 2015 John Wiley & Sens. Ltd. Published 2015 by John Wiley St Sons, Ud.
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f

J,

f 7 . 7

lb I«

0
/

Figure 17.1 A simple thermal gradient maintained by a constant flow of heat. In the stationary state, the e n t r o p y  

current 1, 0U1 = djVdl + 1, in. The stationary state can be obtained either as a solution of the Fourier equation lor 
heat conduction or try using the theorem of minimum entropy production. Both lead to a temperature T(x) Hut 
is a linear function o f the position x.

The total entropy production

Such a system will reach a state with stationary temperature distribution and a uniform heat flow J?. (A 
stationary temperature T(x) implies that the heut flow is uniform; otherwise there will be an accumulation or 
depletion of heat, resulting in a time-dependent temperature.) The evolution of the temperature distribution 
can be obtained explicitly by using the Fourier law of heat conduction;

Cf - " V ’ J  r =  (17.1.4)

in which С is the beat capacity per unit volume ami к  is the coefficient of heat conductivity. The first of 
these equations expresses the conservation of energy when the change m energy is entirely due to heat flow 
(For Fourier, who supported the caloric theory, this equation expressed the conservation of caloric.) For a 
one-dimensional system, these two equations can be combined to obtain

<$-■3
It is easy to see that the stationary state, dT/dt *  0, is one in which T(A)is a linear function of s  (Figure 17.1) 
and =e constant, A stationary state also implies that all other thermodynamic quantities such as tbe total 
entropy S  of the system are constant:

d r i r + d T  =  0  ( 1 7 1 6 )
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» n total entropy can be constant only when the entropy flowing out of the system is equal to the entropy 
f fljg system plus the entropy produced in the system. Thi» can be seen explicitly by evaluating the 

‘"'^ral (17.1.3) (in which Jf  is a constant):

(17.1.7)

. now identify <7 /̂7 )̂ as the entropy flowing into the system. and U 4tTc) as the entropy flowing 
oet of the system. / , ли). The entropy exchanged with the exterior » d cS7d/ = [(7,(Я ’Ь) -  (J /F 0)]. Note (hat the

Since i,Sldt > 0, tbe entropy exchanged with the exterior is iicS/dt и  (./,.„ -  Jt ,m ) < 0. The nonequilibrium 
state is maintained through a net outflow of entropy into the outside world; the system discards the entropy 
produced by the irreversible processes.

17.1.2 Open Chemical Systems

In an open chemical system that exchange* mutter and energy with the exterior, we can identify the energy 
and entropy flows «ssociated with the exchange of matter and energy. Using the kinetic equations, we can 
obtain the stationary state. As an example, let us consider a chemical system undergoing a monomolecular 
reaction such as isomerization:

in which Ak and v^ik  •» 1,2) are the affinities and velocities of the two reactions respectively. As we discussed 
in Section 9.5. if Rtr u  the forward reaction rale and HiT is the reverse reaction rate, then

poeitivity of the enttopy production requires that Jq be positive. Thus we have the entropy balance

(17,1.8)

A (117,1.9)

Tbe associated entropy production per unit volume is

(17.1.10)

(17.1.11)

We shall assume that the system is well mixed lo maintain homogeneous concentrations and temperature. As 
illustrated in Figure 17.2, this system is in contact with tlie reservoir with chemical potentials A and ftjt , and 
the heat of reaction is compensated by a heat flow that keeps the system at a constant temperature.

h  a stationary suntc. Ihe total entropy of the system remains constant, i.e.

^  = ^  + ^ я 0  where
dt dt i l  dt Jy

which means that the entropy exchange with the exterior must be negative:

(17.1.12)
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Figure 17.2 An open chemical system in which the chemical potentials цл and iib are maintained at a gjVen 
nonequilibrium value by an inflow o f component A and an outflow of component B. In this system the concen-1 
tration ofX is maintained at a nonequilibrium value. The system is ako maintained at a constant temperature by 
removal o f the heat o f reaction.

We can obtain a more explicit expression for the entropy flow 6 cSldl by integrating the entropy balance 
equation ds/dt = -  V • J , + a  over the volume of the system:

We can now identify the first term on the right-handside of the above equation as de5/dr. In Section 15.5 
(Equation (15.5.7)) we have seen that the entropy current J, is given by

in which J„ is the energy flow. Now using the Gauss divergence theorem we can write

~  в  -  <j, J , .d a  = - ~  j s  J „ .d a  + £ i  j ,  JA .d a  + ^ £ J B«de (17.1.15)

in which the integral» indicate integration over the surface enclosing tlie system.
From Equation 05,5.9) the entropy current can also be written as J , = i q/ T  +■ in which the

partial molar entropy is St  = (dj/dnj )j and J r( is the heat flow. Using Ihe expression for tbe entropy current. 
dei7dr can be written as1

i  £  J ,  »da+ <j> SAJ A »d« + у  SBJ B *d* < 0 (17.1-16)

This means that he*t and chemical species flowing out of the system must carry more entropy than tlie species 
entering the system. If the reaction is exothermic, there is a net heat flow out of the system. If the enthalpy 
of reaction is very small, then the entropy of the species flowing out of the system must be larger than the 
entropy of the species flowing into the system.

1 Note that the units of SA and SB are entropy m ol-1 .
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T ^ L  etation;iry value of [X] is easily obtained from Ihe kinetic equations:

-Li с  v, -  v2 = (Я1( - Я ,г)~ (Яя  -Я * )  ( )7 )
= *u |A ] - * lrt X ] - t 2f[X] + <:2riB]

L  h it is more common to write the kinetic equations (17.1.17) in terms of concentrations, writing them in 
velocities is more general -  for it dues not presume a rate law -  and more convenient for formulating 

J J J J tn n o d y n a m ic s  of chemical reactions. The stationary state solution, d|X|/dr *  0. for (17.1.17) is simply

v, = v2 (17,1.18)

M A ]+ *2r[B)
fX ] =  ~ -------f — - (17.1.19)

lr + k2l
[f we have a series of coupled reactions:

1 2  3 я
X 5=± W, ?=± W2 7=* ... W„.j ?z£  Y (17.1.20)

with an inflow of M  and an outflow of jV, the above result for the steady state can be generalized to 
(Exercise 17.4)

v, =  v2 = -  <= v„ (17.1.21)

in which the vk arc velocities of the indicated reactions.

17.1.3 Entropy Production in Electrical Circuit Elements

The irreversible conversion of electrical energy into heat in cicatrical circuit elements, such as resistors, 
capacitors and inductances, also leads to entropy production. The thermodynamic formalism of circuit 
elements can be developed by considering the changes in the energies associated with them. Section 10.1 
showed that in the presence of a field wc h#ve

dU = T  dS -  p  dV + £  цк dNk+ £  F irfi, Щ  <17,1.22)
к к

in which F is the Faraday constant and г* (he ion number; Fzt dNt represents the amount of charge transferred, 
“fi If Ihis charge is transferred from a poten tial ф1 to a potential ф2 by an irreversible process within a system, 
•he entropy production is

d,S | Г  Щ  <ф2 - ф , )  v  Щ
Т  = --------

/J. A. \ (17,1.23) 
~ ---------------

Г  df

V* first term is tbe entropy production due (tt chemical reactions, which can he  dropped when considering 
P*y electrical circuit elements. For a resistor und a capacitor, (ф, -  ф}) in the second term may be identified 
ПК** VD*ta8e V across the element and dQk\l as the electric current I. If Я is (be resistance, according to 

11111» law, the voltage across the resistor VR *  (4>j -  ф2) »  /Я. 1Ъе enlropy production is
4,5 VRI  /г/2



390 Modem Themxxlynarnks

In this expression RJ2 is the well-known ohmic heat produced per unit time by a current passing thru 
resistor. The entropy production is simply the rate of ohmic heat generation divided by the lemperatun ' '  ■  

For a capacitor with capacitance C, the voltage decreases by dVc with the transfer of charge dQ „ , 
by dVc = - d Q/C. The entropy production is therefore "

d j£ = VW ^ Ё £  = _ С  dVb
<1/ Г '  Г dl T  c  dl

(17.1.25)1 4 / CVc \  1 d ( Q * \  
T d t \  2 J  T d t \ 2c )

> 0

where the term CV~/2 = & /2 C  is the electrostatic energy stored in a capacitor. The entropy production ,s 
the rate of loss of tbs energy divided by its temperature. An ideal capacitor, once charged, will keep its charge 
indefinitely. Within such an ideal capacitor there is no dissipation of energy or entropy production. However 
all real capacitors will eventually lose their charge and reach equilibrium; Equation (17.1.25) corresponds to 
the entropy production due to this irreversible process. ( The internal discharging of a capacitor is the reaction j 
e~ + M+ -> M, in which M are the atoms that carry the charge. Note also that the flow of charge into a ! 
capacitor by the application of an external voltage corresponds to dt S.)

The entropy production due to an inductance can be written in a similar manner, by noting that the energy 
stored in an inductance I  carrying current /is  equal to LI2/2 and the voltage across it is VL = - l .  d//d/ (Exercise
17.5). This energy is stored in the magnetic field. The entropy production associated with the dissipation of 
this energy is

diS _  i d  ( U 2\  Lidl  Vt l  
dl ~ ~ ? d t  \  2 T  dt *  T (17.1.26)

As in the case of an ideal capacitor, in an ideal inductance there is no loss of energy; a currciu once started 
will continue to exist indefinitely, as if in a perfect superconductor. In real inductances, however, the current 
decays with time. The entropy production for this irreversible process is given by Equation (17.1.26).

The entropy production in circuit elements (Equations (17.1.24} to (17.1,26)) is in the form of a product 
of a thermodynamic force and a flow. In each case we can write tbe following linear phenomenological law 
relating the flows and tbe forces:

II S' -И
,? (17.1.27) *

JtII (17.1.28)

T
(17.1.29)

in which JLr . Ц- and /4 are linear phenomenological coefficient*. In the case of the resistor, we identify’ 
(Lr/T) with the resistance (1/A), in accordance with Ohm's law. Fur the capacitor we may think of an 
internal resistance!^. я  (Г//*.) that represents the slow dissipation of the charge, liquation < 17.1.28) may be 
represented by an equivalent circuit (Figure 17.3). By replacing /  with iQ/dt in Equation (17,1,28) we obtain 
a differential equation for the decay of the charge in the capacitor. Similarly, for the inductance, we identify 
the internal resistance by /fL ■ (77/^). Equation (17.1.29) represents the irreversible decay of current in an 
inductance. In all three cases the entropy production is equal to the product of the voltage and the current 
divided by the temperature.
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figure 17-3 Elementary circuit elements, such «  a res/stor ft a capacitor С and an inductance L, also dissipate 
energy and produce entropy. In the thermodynamic formalism there am no ideal circuit elements with no dissipa
tion of energy, linear phenomenological lam give expressions for the rale o f entropy production and dissipation 
of energy.

17.2 The Theorem  of M inimum  Entropy Production

In the previous section we have seen some examples of nonequilibrium stationary states in which one or more 
thermodynamic t'oices were maintained at a nonzero value. In the case of heat conduction, using Fourier’s 
law of heat conduction 117.1.5), we found that the stationary state corresponded to a constant heat flow, ln an 
open chemical system (17,1.9) in which the concentrations of A and В were maintained constant, using the 
kinetic equation (17.1.17) we found that in the stationary stale tlie velocities of the two reactions were equal. 
This result could be extended to the case of many intermediates (17.1,20), in which case all tlie velocities of 
the reactions will be equal in the stationary stole.

In terms of a general formalism, in the previous chapter we have decn how different flows ,/t , k<= 1.2..... n,
are coupled lo the thermodynamic forces Fk in the linear regime. A system may be maintained away from
equilibrium by constraining some forces F/,, к «= 1, 2....... s. to be at a fixed nonzero value, while leaving the
remaining forces f*, к = s + 1,__ я, free, til such systems, one often iinds that the flows corresponding to the
constrained forces reach a constant, Jk = constant, k =  1,2.......s, whereas the unconstrained forces adjust so
as to make their corresponding flows «го, V* «0 , к — з  + 1.......я. An example is thermal diffusion in which
the stationary state corresponds to zero matter How and constant heal flow (Figure 16,5). In the linear regime, 
where the Onsager reciprocal relations arc valid, all stationary states in which unconstrained thermodynamic 
flows vanish are characterized by the following general extremum principle [1.2]:

In the linear regime. Ihe total entropy pmtluelion in a jystem tuhject to flow o f energy and matter.
d|S/dr - }  a dV. reaches a minimum value ut the nonequillbritan stationary state.

Such a general criterion was souglil by l.onl Rayleigh, who suggested a 'principle of least dissipation of 
energy- [3 ], Lars Onsager (1903-1976), in hi» well-known articlc on the reciprocal relations, comments on 
this principle and suggests that ‘the rate of increase of entropy play* the role of a potential’ [4]. The general 
formulation and the demonslration of the validity of Ibis principle is due to Prigogine [1 J. Let us look at tbe 
Proof of this theorem and some examples that demonstrate Us application.



For the case of coupled forces and flows, the principle of minimum entropy production can be demonstrate| : 
as follows. Consider a system with two forces and flows that are coupled. For notations! convenience >A 
shall represent the total entropy production per unit time by P. Therefore,

P  S  ~ j?  ”  /  <F\J\ +  FtJitfV (17.2.1, j

Let us assume that «he force Ft is maintained at a fixed value by a suitable nonequilibrium constraint (contaci 
with a reservoirs, for example). Using kinetic equations that relate the rate of change of state variables to цк. 
flows close to equilibrium, one generally (tads that in the stationary state 7, = constant and J2 = 0; i.e. fo r  a 
fixed value of F t, F3 adjusts so that J2 is zero. We now show that Ibis stationary state corresponds to the stau 
in which the entropy production P  is minimized.

The linear phenomenological laws give

J\ = L u F i + ^ 12^2 and У2 ~  Fi + ^22^2 (17.2.2)
Substituting Equations (17.2.2) into Equation (17.2.1 (and using the Onsager reciprocal relations 1Л2 = Л,,, 
we obtain

p  = J  (/n lf?  + 2L12F 1F2 + t 2!FJJ)dV' (17.2.3)

From Equation (17.2.3) it follows that, for a fixed F ,, P  as a function of F2 is minimized when

^  = У  2(L22f 2 + L21f,)cIV = 0 (17.2.4)

Since this equation is vulid for an arbitrary volume, the integrand must equal zero. By noting that J2 - L 2i F] + 
L22F2, we sec at once that the entropy production is minimized when

/ 2 »  l^ \F \ + L22F2 — 0 (17.2.5)

That is, P  s  djS/df is minimized when the flow J2 corresponding to the unconstrained force F2 vanishes 
This result can easily be generalized to ao arbitrary number of forces and flows. The stationary state is 
the state of minimum entropy production in which the flows Jk, corresponding to the unconstrained forces, 
are zero. Although minequilibrium stationary states are generally obtained through kinotic considerations, 
minimization of entropy production provides an alternative way.

We shall now present examples to illustrate the general applicability of the theorem of minimum entropy 
production.

17.2.1 Example I: Stationary States in Chemical Systems

Consider the chemical system (17.1.9) discussed in the previous section (Figure 17.2):
1 2

A =r— (17.2.6)

As before, the flow* of A and В keep the chemical potentials /<A and Цц fixed, which implies that the sum of 
the affinities has a Sxed value, A, not one of the two affinities:

Л) +A2 = (iia -  Лх) + (Ях~ ® Я = constant (17.2.7)
In the previous section, by using kinetic», we have already seen that the nonequilibrium stationary state is 
completely specified by Equation (17.1.18):

— 4
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v, =  v2 (17.2.8)
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,liall now show how this condition may also be obtained using the principle of minimum entropy 
ppdocfion. The enfropy production per unit vdume for this system (which we assume is homogeneous) i»

1 dt*' P  A, 4-j— —— sa — = а  = ---V. + —-vs
v  dr v  т 1 T 2 (17.2.9)

A, (A — A,)
= y v ,  + ----- ----V{

in which V is the system volume and in which we have included the constraint A. which is constant. The 
value of the chemical potential (or concentration) of X in the stationary state determines the value of Л ,, and 
hence the value of uhe entropy production (17.2.9). We will now minimize the entropy production and obtain
(1 7 .2.8). In the linear regime, since the two reactions are independent, we have

vi = i n y - ' v2 - h ^ Y  ~ Lv .t,A f A,l) (17.2.10)

in  which we have used Equation (17.2.7). Substituting Equations (17.2.10) into Equation <17.2.9) we obtain 
a  as a function of Aj:

A? (A -  A. )J 
-’(A ,)» /., l ^ + L v - J T -

This function reaches its minimum value when

■ ~ -2 (A  -  Ax') «= 0 (17.2.12)

0 (17.2,13)

In the linear regime, the entropy production is minimized at the nonequilibrium stationary state.
Alternatively, we may describe the system with the following set of affinities and velocities: A'i = (Ai + 

Л}У2 ,A '2 = (Ai -А 2У2, v'[ = (vj + v2)/2, v'2 = (v, - v 2V2. The rate of entropy production in terms of these 
affinities and velocities is а = 2( A' i + A'2 v^), In this case, A \  is constrained and the flow corresponding
lo the affinity A'2 will be zero at steady state: | / j  =• (vj -  v2y2 = 0 (us was the case in the proof of the theorem 
presented above).

We have expressed n as a function of Aj. It is not necessary to express a in terms of ihe affinities of the 
system, though it is convenient; о can also be expressed in terms cf tlie concentration [XJ. The value of [X] 
fl»t minimizes а ц the stationary state. W« shall outline the main steps in this alternative demonstration of 
the principle, leaving some details as exercise*.

In Section 9.5 we have seen that the entropy production per unit volume for tlie two reactions (17.2.6) can 
alsi> be written as

~  ш в  = /?((/?if — M|t) ln(/f|(/Ai,) + (Ajj — A jlln tA ^/A j)) (17.2.14)

m which Rit  and Й*, are the forward and reverse reaction rates of reaction <' and R  is the gas constant. Now 
*f these forward and reverse reaction rates are written in terms of ihe concentrations, we have an expression



for о in terms of tbe concentrations. Assuming reactions in (17.2.6) are elementary
written as Ме4 4 * « | И

Al t = t lf[Al. « „  = *lr[X], йи  *  *2f[X], Лгг ==*2,1111 *'*УЬ'

At equilibrium, each reaction U balanced by its reverse. The equilibrium concentrate, 117.2 ц
[В Ц  are easily evaluated using the principle of detailed balance: °f [A| > 1

РЧч -  7 ~ |Ai«q = г 1Щч (l74lelWe now define small deviations in concentrations from the equilibrium state: 1

«А = [A] -  [A]*,. <5x * [X] -  [XJeq, 4в « [ В ] - [ В Ц

The deviations in [A] and IB] are due to die inflow of A and the outflow of B. so й , * 3 я  '2'17* 
tlie flows. Only tbe concentration i x is determined by the chemical reactions. Usin.' p ^  ** fixed by 
in Equation (17.2.14), the entropy production о to the leading order in deviations (17 -> ft,® ю,ь 'l^-Hjk 
(Exercise 17.8) as 1 ' "rttea

394 Modem Thermodynmki 'щ ш I

, =  * { (*1ГЙА ~ ^ lA ) 2 . -  къ.й'в)2
< j(6 v )  =  i ?  < — 11- Я -------- ,  ___________

X '  A k I A ] ^  ]  (17.2.18)

By setting да/д&х »  0, the value of <5* that minimizes a can easily be shown to be

t *ИгА + *Лг̂ В
** * „  +  * *  (17.119)

(This is another way of expressing Equation (17,2.8)). That Sx  given by Equation (17.2.19) is identity* 
the stationary value can easily be verified. The kinetic equation for [X] that follows from the two reaction
(17.2.6) is

= i’i|-[A] -  *lr[X] -  tj,[X] + *a.[B] (17.2.20)

Substituting Equations (17.2.17) into Equation (17.2.20) gives the stationary state

“  кЧ6Л ~*2r^X +fcJr(5B 3  0 (П -2^В

The solution йх of this equation is identical to Equation (17,1.19). Thus the stationary value of <5X is alsotbj 
value for which tbe cntropy production is minimized.

17.2.2 Example 2: A Sequence of Chemical Reactions

The principle of minimum entropy production can easily be demonstrated for more complex chemical systet^B 
Example 1 can be generalized to an arbitral)' numberof intermediates:

l t  « ,,7 2 22)’
~ W; V -l I ‘ Y

The entropy production in this case is

1 ^  1 ,  x „ „ , (17.2.23)
_ _  + vj A j  +  " .  +  vbA„)
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i  h o m o g e n e o u s ,  so w e  m ay assum e the volum e V =  I w ltlioul loss o f g e n e ra lly  • •
H. dial lb* „o n  X»=*=*Y » Ihe sum «f ,l>e aflimties of the constituent reactions:

1 A = ^ A t <17.2.24 Д )
•:ж i - 1

Df у  keeps Л at a fixed nonzero  value, keeping the system  aw ay from iherm iK ly^v 

r L  nomquilibrnmi constraint can be made explicit by writing A„ = (A -  £ £ }  Ak) anx.id 
lllt. cquilibri1™ . n (17.2,23). W e then have a  as a function of (л -  1) independent affinities A*;

/
I  » ■= f  + Vj* 2 + + + v« ( *  ~ ^  A* j  j  <17.2.2 S 5 )

Ae imearphenomenological laws, щ, = /.и <Л,/А in this equation, we obtain

/■ /  *-»

Г-
i l l ^ l  + '̂22^2 "*■ + ^1n-t)(n-tHn-l '(5- H (17.2.2S6)

An eionnitary calculation shows that the condition for minimum entropy production daldAk = 0 leads to vtAjt = 
Since this IS valid for all k. we have the following generalization of Equation (17.2.8):

v, 3« v2 *= = V_i = v,, (17.2.^127)

since the kinetic equations for (17.2.22) are

3 2 t ! . v t - » * +1 <17.2._-28>

it is clear that the stationary states d[Wt |/dr * 0 are  identical to the states that minimize entropy product!?Arm.

^  Kxample 3: Coupled Chemical Reactions

an example of a chemical reaction in which one of the affinities is unconstrained by the nonequilibr ium 
litions. let tu consider the synthesis of 11 Hr from II, and Hr. In this case we expect the velocity ot»I the 
«strained reaction lo equal zero at tbe stationary state. We assume that the affinity of the net reactio on

H2 + Br2? = i2 H B r <17.22.29)

f al ,* ****! fonzcro value by a suitable inflow of II . and Hr. ,uid removal ofl llir Ihe intermed liaies
rea«->n. H and Br, appear through the reactions

^ У  of the,

B r j^ = ;2 B r (17.12.30)

a r + H j^ = iH B r  + H (17.: .2.31)

Br2 + H>?===±HBr + Br (17—2.32)

is

A j+ A 3 = A (17 .2.33)



for о in terms of the concentrations. Assuming reactions in (17.2.6) are elementary steps, the rate* m 
written as 1

Й|Г=*1([А1, R k  = Alr[X], = *2f[XJ, Лаг = *2гГВ] (17.2.15)1

At equilibrium, each reaction ie balanced by its reverse. The equilibrium concentrations of [A| |X]
[B]^ are easily evaluated using the principle of detailed balance:

W k - ^ I A U - j k w b ,  (17.2.16)

We now define small deviations in concentrations from the equilibrium state:

*A = [A] -  [A]*,. Sx *  [X] -  [ХЦ, 4B -  [В] -  [ВЦ (17.2.17)

The deviations in [A] and [B] are due to She inflow of A and the outflow of B, so Sд and <5B are fixed by 
tlie flows. Only the concentration &x is determined by the chemical reactions. Using Equations (17,2.17) 
in Equation (17.2.14), the entropy production о to the leading order in deviations (17.2.17) may be written 
(Exercise 17.8) as

By setting до/д6х  *= 0, the value of <5X that minimizes a can easily be shown to be

(17.2.19,
*tr + *2f

(This is another way of expressing Equation (17,2.8)). That <5X given by Equation (17.2.19) is identical to 
the stationary value can easily be verified. The kinetic equation for [X] that follows from the two reactions
(17.2.6) is

= i lfIA) -  *,r [X] -  *a(X) + **[B] (17.2.20)

Substituting Equation» (17.2.17) into Equation (17.2.20) gives the stationary state

= *tf^A ~ _ *2r^X + *Sr̂ B 3 0 (17.2.21)

The solution <5X °f ‘hi* equation is identical to Equation (17,1.19). Thus the stationary value of йх is also the 
value for which tbe entropy production is minimized.

17,2.2 Example I: A Sequence of Chemical Reactions

The principle of minimum entropy production can easily be demonstrated for more complex chemical systems. 
ЕхатрЗе 1 can be generalized to an arbitrary' number of intermediate*:

l 3 n
X;^==iW . n m » = « W _ , Y  (17,2.22)
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The entropy production in this case is

1 diS 1
v T  = ° f (V̂ ,  + М г  + ■ + V»A») (17.2.23)



l  me that the system is homogeneous, so wc may assume the volume V = 1 without loss of generality. 
\V’e д of the net reaction X , Y is the sum of the affinities of the constituent reactions:
•jl e да'1111-

П
A = (17.2.24)

fc=l

X L  inflow o f X  and outflow of Y keeps A at a fixed nonzero value, keeping the system away from thermody- 
y e .  jquilibrium This nonequilibrium constraint can be made explicit by writing A„ = (A -  S L !  Л»)and 
T ^ wting it in Equation  (17.2.23). We then have n as a function of (л -  1) independent affinities A*:

" “  f  ( Vl'4' + V2* 2 + " +v»-l/4”- t  +v* ^ А* ) )  (17.2.25)

pjow using the linear phenomenological laws, щ — £** (Ak/T), in this equation, we obtain
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( -  V '
^2 ^ lH l +^22^2 + •" + Ап-1)(»-|Ил-1 + Ая ГЛ ~  )

к

(17.2.26)

An elementary calculation shows that the condition for minimum entropy production dnldAk = 0 leads to vk = 
vn. Since this is valid lor all k. we have the following generalization of Equation (17.2.8):

v , -  v2 В  . . .  «  V„_, »  V, (17.2.27)

Since the kinetic equations for (17.2.22) aw
d[W*J
- ijJi - = v t - v t+1 (17.2.28)

it is clear that the stationary states d[Wk]/dr »  0 are identical to the states that minimize entropy production.

17.2.3 Example 3: Coupled Chemical Reactions

As ao example of ■ chemical reaction in which one of the affinities is unconstrained by the nonequihbrium 
conditions, let us consider the synthesis of HBr from H; and Br,. In this case we expect the velocity of the 
unconstrained reaction to equal zero at tlie stationary state. We assume that the affinity of «he net reaction

Hj + Br25=±2HBr (17.2.29)

is maintained at a fixed nonzero value by a suitable inflow of H2 and Br2 und removal ofHBr. The intermediates 
of the reaction, H and Br, appear through the reactions

t
Bra T ‘ 2Br (17 7.30)

Br + H2^=L iH B r + H (17.231)

Br2 + Н ч = ^ Н В г  + Br (17.2.32)

The affinity of the act reaction (17.2 29) is

A2 + A3 — A (17.2.33)



which we assume is kept at a nonzero value. The alinity A, of reaction (17.230) is not constrained 
entropy production per unit volume for this system it *

0=1  J  (vjAi + VjA2 + VjA5)

1 /  / — W (17.2.341
= f  (  4- v2A2 + v3 (A -  A jJJ

Again we shall assume a homogeneous system with V = 1, so that minimizing a is equivalent to minimum 
the total entropy production P. As was dome above, using the phenomenological laws vk = (At //'\ anJ 
setting да/дА)- = 0 for the two independent affinities A1 and A; , we see that tbe entropy production к 
extremized when

«*,=0 and v2 = v3 (17,2.35)

This must also be the stationary state. Turning lo the kinetic equations for H and Br. we have

d[H]
—jj- = v2 -  v3 (17.2.36)

d[Br] ^
—j — «  2V) -  vj + v5 (17.2.37)

The stationary states of these equations are the same as Equations (17.2.35).

17.24 Example 4: Stationary States in Thermal Conduction

As an example of a continuous system, let vs look at stationary states in heat conduction using the system we 
considered in Figure 17.1, For a one-dimen sional system the entropy production is

( ,7 -2-38)
Using the linear phenomenological law n  Lm д(1ПУдх, the above expression can be written as

<17-2-39>
Among tlie possible functions T(x). our goal is to identify the function that minimizes the entropy production 
P. This can be done using the following basic result from the calculus of variations. The integral
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= (  \{ f(x \f(x ) )d x  (17.2.40)
/о

in which the integrand \{ f(x \,f(x )). a function o f f  and its derivative /  = d f/d x  (for notattonal convenient* 
we shall use/ in place of df/dx). is extremists! when the function/Ц) ie a solution of the following well-known 
Euler-Lagrange equation in the calculus of variations:

In applying this result to the entropy production (17.2.39), we ideetify/with (1 /Т) so that A = I .^ J 2 Also, 
as was discussed in Section 16.3 (Equation (16.3.6)), in this calculation we assume that m кТ '  к  кТ*, 
(in which *• is the thermal conductivity and f Ivg is the average temperature) is approximately constant in
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J q = constant

(B)

V, I, -----  v. I , -------------------- V, u  ------

-----------------------------  V ---------------------------

Ii = l i=  ... - 1„

(C)

Figure 17.4 For a nonequilibrium system consisting o f a series o f coupled subsystems, the entropy production 
in the linear regime is minimized when all the flows are equal. It Is aim the stationary state.

is usually imposed on the system because wc do not observe any charge accumulation iin any part of the 
system. In elcctricad systems the relaxatio* to Ihe stationary state of uniform I is extremely rapid, and hence 
nonuniform or discontinuous /  are not observed.

Examples 2, 4 and 5 illustrate a common feature implied by the principle of minimum entropy production 
(Figure 17.4): in a series of coupled systems, entropy production i* extremized when tlie flow* are equal. In 
a chemical reaction it was the velocity vt ; [hr heat conduction it was the heat flow ,/?; for an elcctric circuit it 
is the electric currant /*.

17 J  Time Variation of Entropy Production and the Stability of Stationary States

In ihe previous section we have seen that the stutionai-у states in the linear regime are also states that extremizc 
die internal entropy production. We shall mow consider the stability of these state* and abo show that the 
entropy production is minimized. In Chapter 14 we saw that the fluctuations near the equilibrium state decrease 
the entropy and that the irreversible ргосеме» drive the system back to the equilibrium slate of maximum 
entropy. As the system approaches the state of equilibrium, the entropy production approaches zero. The 
approach to equilibrium can be described not only as a steady increase in entropy to its maximum value but 
also as a steady decm ue in entropy production to zero. It is this latter approach that naturally extends to the 
linear regime, close to equilibrium.
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To see that Equation (17.3.5) is negative, we turn to the stability conditions in Chapter 14, in particul 
following condition (14.1,9b) for stability with respect to fluctuations Ц , in the extents of reaction- ^ ' ,lle

. n . J

Since S(k can be positive or negative, coedition (17.3.6) for stability of tbe equilibrium state implies u 
the matrix (дА ^д^)  must be negative definite. In a neighborhood of the equilibrium state, (dA,/d‘ j W(>ujj ; |  
retain its negative definiteness. Then, in this neighborhood, expression (17.3.5) must also be negative definiie 
Hence in the neighborhood of equilibrium we have the inequalities

(17.3.7)

(17.3.8,

close to the equilibrium state (Figure 17.5). At the stationary state, P has its minimum value. If a fluctuation 
drives P to a higher value, irreversible processes drive P back to its minimum stationary value. The result 
dP/dl < 0 for nonequilibrium states can be more generally proved [7]. The two conditions (17.3.7) and
(17.3,8) constitute the ‘Lyapunov conditions’ for the stability of a state, a topic we will discuss in detail in 
the next chapter.
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Exercises

17.1 (e) Using the Hiurier law J? “  -  k VT. obtain the time-dependent equation for heat conduction:

c d-L  m r v Jr
at

in which С is the beat capacity per unit volume.

/* > 0

dP 2  v  ( dAi \

ЗГ-г£(жГ'',<0
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17.5 Consider an ideal capacitor С in series with an inductance L

L

С

The voltage across the capacitor is Vc = -QIC; the voltage acroes the inductance is VL =
For the shown circuit, the sum of these two voltages must be zero, ie. Vc + VL = ft Using this fact 
write a differential equation for Q and show that the quantity (Lfil2 + Q2I2C) is constant in time. (The 
conservation of energy here is similar to that of a simple harmonic oscillator.) If a resistor R is added 
to the circuit, show that the equation df//dr = -  VR/  leads to the well-known equation L d2Qk\t + ц 
dg/df +  QIC = 0 of an LCR circuit

17.6 Using Equations (17.1.28) and (17.1.29) obtain the time variation of /(/) and Q(t) in a real capacitor 
and a real inductance. Using these expressions in Equations (17.1.25) and (17,1.26)ebtain the entropy 
production ai any time ( in these circuit elements with initial current /„ and initial charge Q0.

17.7 Demonstrate the theorem of minimum entropy production for an arbitrary number o f constrained and 
unconstrained thermodynamic force».

1 2
17.8 Consider the chemical reaction Ач=»=«Ху=. -В.

(e) Show Chat the entropy production per unit volume ts

in which SA = [A] -  [АЦ, %  = IB] -  ГВЦ, «х »  tXJ -  [ХЦ.
<b) Show that n attain» a minimum value for

г *if5A +
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far-from-equilibrium nonlinear regime, there is no such general fiinciple for determining the state of ци 
system. Far-from-equilibrium states can become unstable and evolve to new organized states and we win 
identify the thermodynamic conditions under which this may happen.

We begin by noting some general properties of the total entropy production P. These are statements 
regarding the time evolution of change 6Pdue to small changes in the force» SFk and the flows SJk. Let \> ^  
the entropy production in a nonequilibrium stationary state. Since P -  f v о  dV = / v Fk Jk dV, the rate o f  
change in P can be written as

d pP  dj p  
dt dl

dV
(18.2.1)

in which dpP/dt is tbe change due to the changes in Fk and dj / ’/dr i* the change due lo the changes in Jk Two 
general properties can now be stated [1-3]:

a  In the linear regime:

! й р  й У
(18.2.2)

dF P d, P 
dl ~ dl

b. For time-independent boundary conditions, even outside the linear regime:

(18.2.3)<ЬР n
I T 5 0

(dp/’/df = 0 al the stationary state).

In contrast to the variation dG in the Gibbs free energy G. dpP  is not a differential of a stale function. Hence 
the fact that dFP can only decrease does not tell us bow the state will evolve.

The first of the above relations follows from the linear relations Jk = J \  l.tiFt and the Onsager reciprocal 
relations Lkj = l .^ . First we note that

X  =  I  V »  = I  W k U ) F i  -  £ * №  <18'24)
к id Id i

Using this result in ihe definitions of dpP and djP in Equation (18.2.1), we immediately see that

f  £ » '
The general property (18.2.3) when applied to Equation (18.2.5) gives us the result we have seen in the 
previous chapter:

AP dp P
-т* ж 2-т”  < 0  in the linear regime (18.2,6)Ш CU

This shows, once again, that a perturbation in the total entropy production P from its stationary state value 
will monotonically decrease lo its stationary state value, in accordance with the principle of minimum entropy 
production. A simple proof of Equation (18.2.3) is given in Appendix 18,1.
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Box 18.1 Kinetic equations and Lyapunov stability theory: an example
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Consider the open chcmical system shown above with the following chcmical reactions:

*iS + T—-*A
kl

S + A - ^ B

a  +  b - A p

For simplicity, we assume (hat the reverse reactions can be ignored. If the system is subject to an inflow 
of S and I and an outflow of P such thal the concentrations of these species are maintained constant, wt 
have the following kinetic equation* for the concentrations of A «ml B:

X, 2  [А]. X2 m [B] 
dX,

= * i [ S ]  [T l- t jIS IX , - * 3X,X2 s / ^ l X j .  [SJ, (TI)

dX,
~  =  *j[S] X, -* ,X ,X 2 = Z2(Xj. [SJ. [T|l

In this system, [SJ and [T] correspond to (he parameters Xj in Equation (18.3.1). Fora given value of these 
parameters, the stationary states X„ and Хл  ure easily found by telling dX ,/dr =  dX; /d r «  0 :

v  * » m  a2(S]

The stability of this WWionary state is determined by examining the evolution of tlie perturbations Щ  and 
SX2 from this stationary state. A possible Lyapunov function L. btr example, is

U S X u  fX i)  -  [ ( « i )2  + (W j)1] > 0  

If il can be shown that cUL (SX,. 6X2 )/d t  <  0 . then the stationary «lute (Xs, . X ^ ) is stable.

Tbe stationary state X,k is the solution to (l*e set of coupled equations 

dXj
~  X ^ . . . .  ’Xv \ Xj) =  0  (k = 1,2........r) (18.3.2)
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Expressions (18.3.S) and (18.3.6) would define a Lyapunov functional. L =  -S 2S/2 if the stationary S| , 
were such that > 0- Thus, a nonequilibrium stationary stale is stable if

5 7 ’/vfw > 0  (1837> j
If this inequality is violated, it only means that the system may be unstable; i.e. SFk SJk < Qis aruressur, 
but not a sufficient condition for instability.

4

18.3.3 Using the Stability Criterion

Since 6 2S < 0  under both equilibrium and nonequilibrium conditions, the stability of a stationary sta te  is 
assured if

Ъ Т Ш f y Z SFk6JidV>0 (,8Л8>
Let us apply this condition to simple chemical systems to understand when a nonequilibrium system muv 
become unstable.

First, let us consider the following reaction;

*f
A +  B ,= iC  +  D (18.3.9)

К
Assuming these reactions are elementary step», we write the forward and reverse rates as

R( =  <rr[A] |B] and R, = Ц С ] [D] (18.3.10)

We assume this system is maintained out of equilibrium by suitable flows. As we have seen in Section 9.5. 
for a chemical reaction the affinity A and the velocity of reaction v are given by A = RT ln( Rt/R, ) and v = (ft, 
-R ,) . The time derivative of S2S, the 'excess entropy production- (18.3.8). can be written in terms of SF = 
SAIT and SJ =  Sv. For a perturbation <5[B] from the stationary state, it is easy to show that (Exercise 18.4)

JT'/v?"* SF,dV ’ U  b~?SV ̂ f v  SS (6tB,)2dV'51 ° °8-31 U 
in which the subscript s indicates the nonequilibrium stationary state values of the concentrations. Since 
dS2S/<3t is positive, the stationary state is stable.

The situation is different, however, for an aulocatalytic reaction such as

•
2X +  Y t=±3X (18.3.12)

which appears in a reaction scheme called Ihe ‘Brusselator-, which we will consider in the next chapter. For 
this reaction, we can consider a nonequilibrium stationary state in which the concentration* arc [X], and | Y|„ 
and a perturbation SX. Using the forward and reverse rates R, = <r,[X]*[Y] and Rr =  <:r|X |3 in Ihe expressions 
A<=RT 1п(Л|/7?г) and v =  {R, -  Rr\  we can once again calculate flic excess entropy production to obtain

5 Т Г  =  I v  Y 6 v iV  -  / у О Ы Х и ? Ъ  -  JtrlX lJ) —  a v  (18.3.13)

The excess entropy production can now became negative, particularly if »  *r. Hence «he stability is no 
longer assured and the stationary state may become unstable.
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18.4 Lin trStabilityAnalysi

In general, i ; rate equations of a li nogeneous chemical item, take the gener 1 rm:

^ ( „ l i , )  (1* )

where tbi ; correspond toconcin itions, such as [X) а и  Y] in Equation (18. s.i ). and Xj conespom s
<*>ncentra i s that are maintained i l  constant nonequili n m value. We begin by xuming that a stations 
solution y't f Equation (18.4,1) s lowtl. This means

г к(Х°у.......Л£. , 1 - 0  0 8  4

we woui l I e to know if this sir nary solution will In table to small peitii I ions jj .  Linear slat di
^alysis po ides the answer in tt t  'llowing way. Con*i li a small perturbation j

X j - X j  +  Jt, ') (1* t
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Now the Taylor expansion of Zk (X, ) gives

Zt (X® +Xf) =  3t(X?) + ^  ( й д г )  л; + "' (18.4.4)

in which the subscript 0 indicates that the derivative is evaluated at the stationary state X?. In linear stability 
analysis, only the Jinear terms in Xj are retained: tbe higher-order terms are neglected by assuming the i 
are small. Substituting Equation (18.4.4) into Equation (18.4.1). since X® is a  stationary state, wc obtain for 
xk(t) the linear equation

in whicb ЛkJ(A) » idZk!dX] )tt is a function of the parameter X. In matrix notation, Equation (18.4.5) can be 
written as

in which the vectors ■ ....... л„) and Ajy are the elements of the matrix Л. The matrix Л is sometimes
referred to as the Jacobian matrix.

The general solution of Equation (18.4.i6) can be written if the eigenvalues and the eigenvectors of the 
matrix A are knowa. Let a>k be the eigenvaflues and yik the correspond mg eigenvectors:

In general, for an n-dimensional matrix there are n eigenvalues and n eigenvectors. (Note that ч<4 is a vector 
and the subscript к indicates different vectors.) If the eigenvalues a>k and the eigenvector* 41* are known, ii 
is easy to see that, corresponding to each eigenvector and its eigenvalue, we have the following solution to 
Equation (18.4.6):

This can be easily seen by substituting Equation (18.4.8) into Equation (18.4.6). Since a linear combination 
of solutions of a linear equation is also a solution, the general solution to Equation (18.4.6) can be written as

in which the coefficients ck are determined by x at r =  0. Now the question o f  stability depends on whether 
the perturbation x will grow or decay with time. Clearly, this depends on the eigenvalues tut : if one or more 
of the eigenvalues Iheve a positive real part, the associated solutions (18.4.8) will grow exponentially. Tbe 
corresponding eigenvectors are called unstable modes. Since a random perturbation will be of the form
(18.4.9), which includes the unstable modes, the existence of a single eigenvalue with a positive real part is 
sufficient to make tbe perturbation grow wilh time. If all the eigenvalues have negative resd parts, any small 
perturbation x in the vicinity o f the stationary solution will exponentially decay or regress lo /.его. (This need 
not be true for large perturbations x for which Ihe approximation ((8.4.5) is not valid.)

Thus, a necessary and sufficient condition for the stability o f a stationary state is that ajl eigenvalues of 
the associated Jacobian matrix. A, have negative real parts. An eigenvalue with a positive real part implies 
instability.

The example given below illustrates the application of the linear stability theory to a chemical system. As 
we have seen in the previous section, thermodynamic considerations lead us to the conclusion that instability

(18.4.5)

(18.4.6)

АЦ** = (18.4.7)

(18.4.8)

(18.4.9)
к
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Tbe stationary state (18.4.12) becomes unstable when the real parts of the eigenvalues of (184.13) becoi„c 
positive. The eigenvalue equation o t the characteristic equation of a matrix Л, whose solutions are tl» 
eigenvalues, is

in which ‘Det’ stands for the determinant, For a 2 x  2 matrix such as (18.4.13) it is easy to see that the 
characteristic equation is

in which Л,г are the elements of the matrix Л. If all the matrix elements A,y are real, as is the case for chemical 
systems, the solutions of the characteristic equation must be complex conjugate pairs because coefficients in 
the equation are real. For the matrix (18,4,13) we shall consider the ease of a complex conjugate pair. We 
shall look at these solutions as functions of the concentration [B] and investigate whether their real parts, 
which are initially negative, can become positive due to an appropriate change in [В]. The point at which the 
real parts reach zero will be the point of transition from stability to instability.

For Equation (1#,4,15), since the coefficient of the linear term is the negative of the sum of the roots 
(Exercise 18.7), if are the two roots, we have

If the real parts of this complex conjugate pair, Л±, are negative then Л2[В] -  k4 -  A3[X|* < 0; if they arc 
positive then A’2[B] -  kt  -  fc3[X]J > 0 .1 Thus the condition that requires positive real parts for the onset of 
instability leads to

where we have used Equation (18.4.12) for IX |5. Thus, fora fixed value of [A], as the value of [B| i.L;reases, 
when condition (18.4.17) is satisfied, the stationary state (18.4.12) becomes unstable. In the next chapter we 
will see that this inrtability leads to oscillation».

Linear stability' analysis does not provide a means of determining how the system will evolve when a state 
becomes unstable. To understand the system’s behavior fully, the M l nonlinear equation ha* to be considered. 
Often we encounter nonlinear equations for which solutions cannot be obtained analytically. However, with 
the availability' of powerful desktop computer» and software, numerical solutions can be obtained without 
much difficulty, To obtain numerical solutions to nonlinear equation# considered in the following chapter, 
Mathematica code» are provided at the end of Chapter 19,

DetfA-Л /] =  0 (18.4.14)

(18.4.15)

Я+ + Д. =  (Ац +  Aj2 ) =  *2[B] -  кл -  *3[XJS2 (18.4.16)

or

(18.4.17)

1If Xt  are real roots, Л+ ♦  Л_ >  0 implies that al least one of the roods is positive.
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Combining Equations (A18.1.7), (A18.1.5) and (A18.1.4), we arrive at 

ф Я
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■r/ ? £  № )(*)"«
The right-hand side of this expression is negative because

is valid for systems in local equilibrium (Equation (12.4.9)). The general validity of Equation (18.2.3) is 
proved in the literature [1].

Appendix 18.2 General Expression for the Time Derivative of & S

The relation

s r / v? sf' ^  (A18-2»
can be obtained as follows. We begin by taking the time derivative of d2S/ 2 as defined in (Equation (18.3.4) 
For notational simplicity, we shall denote tbe time derivatives of a quantity x  by* =  dx/dt. The time derivative 
of 62S  can be written a*

s*s=f [(0) 26um+2Z{£k) {u&n>+6u6̂
1 ч л* (A l8.2.2)

+ 2l ( ^ ) 6̂ \ « V
in which the factor 2 appears in the last term bccause we used the relation

d2s _  d2s 
дщдпк дпкдщ

Next, noting that ( i i / rf«)„( =  1 /Т  and (ds/dnk)u =  - ц к/Т ,  we can write liquation (Al^.2.2) as

dK

(A18.2.3)

dV

[ O  *•<">* I Ш)"**
ik

We now observe that, since и and arc independent variables, we can write

+ <AI8-2-4> 
г(гЬ£(^г)г"*+(з!;т)гы (A18-2-5)
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Exercises

18.1 Calculate the affinities of the following reaction systems for a range of concentrations (or partial 
pressures) of the reactants and the products and compare them with RT at T  =  298 K. Determine the 
ranges in which the system is thermodynamically in the linear regime using appropriate data from 
tables.
(a) Racemnalion reaction L DU. and D are enantiomere).
(b) Reaction N20 4(g) ^  2N 02(g) <with partial pressures P ^ a n d  PNo2).

18.2 (a) What factors would you identify to conclude that the Earth's atmosphere is not in thermodynamic
equilibrium?

(b) Through an appropriate literature search, determine whether the atmospheres of Mars and Venus 
are in chemical equilibrium.

18.3 For the chemical reaction A ^  B. verify the general property dFP <  0.

18.4 (a) Obtain inequality (18.3.11) for a  perturbation 5[B] from the stationary states of reaction (18.3.9). 
(b) Obtainthe 'excess entropy production' (18.3.13) for a perturbation 6[X] from the stationary states

of reaction (18.3.12).

18.5 Obtain the exces* entropy production and analyze the stability of the stationary state» for the following 
reaction schemes:
(a) W ч* X 5=» Z, in which the concentrations of W and Z are maintained fixed at a nonequilibrium 

value.
(b) W + X =* 2X, X Z, in which the concentration» of W and Z are maintained fixed at a 

nonequilibrium value.

18.6 Show that thi) stationary states of Equations (18.4.10) and (18.4.11) are Equations (18,4.12/

18.7 For a polynomial equation of the type n/‘ +  Ахтп Л + A2a f "2 + • • • +  A„ ж 0 show that coefficient 
A, *  -  (Я,+ + A3 +  • • ♦ +  A„) and coefficient A„ =  (-1)* ( / j  Л2 A, • • • Л„), where Xk are roots.

18.8 For the following equations, obtain the stationary states and analyze their stability an a function of the 
parameter Л assuming A, В and С arc positive:

(a) — = -A *’ +  C ix  да
(b) ^  »  -A f} +  Bx2 +  C t e

Ш
d r dv(c) — -  Zxy, — = - у  + xy

(d) ^  = -5д:+бу +  х2 - З л у +  2У2, ~  =  - Л * -  14y +  2л2 -  5ду +  4y2 
At of
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t« 4  Ccu ter tbe reaction scbe tn 
Г  A +  X IX

Y + X * 2Y
Y «*K

Fai I tn equilibrium, we >i / keep the forward re lion* and we assume 
the li ear stability theory, si <w that the perturtMi is around the nonet ui 
to os llatfcms in [X] and |V as was discussed in ■: otion 18.2. This mi dt 
\fo tv u to describe the ‘slru jle of life’ ( see V. Vi irra. Theorie Matht.n,- 
Vie, I 31, Gauthier Villarj; | ris). Here X is the p -c :lainb) and Y is the 
o f h  wey-predator interne I n shows that the pojut lion* X and Y w ilkxl
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19
Dis iipative Si ructures

19.1 Tin Ztastructtve Rok Irreversible P lw e  es

O n eo flb  i «I profound lesson* i! onequilibrium there i namics is the dual ri h f  irreversible process*
asdestro\;i jf  order near equilib i  i 1 and! as creators o f ( г г far from equilibrium or far-from-equtlibii
systems, ib-. J arc no general ex r , lum principles that pr Net the state to whict it will evolve. The at
of extremu principles that unii|u у predict the state t> vhicb a nonequilibii i system will evolve
a fundanun J aspect of nonequ li ium systems. In sti rl contrast to equilibria systems. which **»]'
to a state li minimizes a free enei y. nonequilibrium s m s  can evolve un|*-cl lably; their state carm
always b tu t ^uely specified by n a . >scopic rate equations his I* because, fora gi :n sctof nonequilibriu
condition.,! is often possible to iia' more than one state ", и result of random fl u. lations, or other iranlo
factors su'tb «small inhomogenc i : ; or imperfections, tl e stem evolves to on to  l he many possible st; к
Which one ' these states a partjei it system will evolve is, in general, not ч. Uctable. The new stai.
thus attain are often 'ordered м tes’ that possess sja  temporal organizai ci Patterns in fluid f c
inhomogrm ies in concentration, tiibiting geometrical | tern» with great synim ry or periodic variat cm
of concert ::r one are examples of si h  ordered states. Bim tc of its fundamental к aracter, we shall ref. r
the gener d tenomenon of a nor < i tilibnum system evt 1 ig to an ordered stale - a result of fluctuai о
as o rd e r lb i tUgh fluctuations [ 1, S

In nont (|t librium systems. o;-ci iting concentrationi d geometrical conc:n ation patterns can be
result of i h. lical reactions and d f I lion, the same dissip at t  processes that, in m olated system, wip< <■
inhomogtm ies and drive the s) it, 1 to a stationary, tin el is homogeneous sta e Г equilibrium. Since H
creation t n. maintenance of orgi ri ;d nonequilibrium s ti t lines are due to diMij itive processes, they
called di»; itiv* structures (3].

Thetw », ncepts of (flssipafiV , vctunes and order thi * igh fluctuations encip late the main aspecls i
ronequili Ini ш order that we desoi l « in lliis chapter.

№•2 L i of Stability, Hifui < ion and Symmet v Ireoking

Intheptv i, s chapter we have л  с t hat the stability of ti e ermodynamic bram h no longer assured v.b
® system is * iven far from equilil'i i m. In Section 18.3 v i ave seen how a nec. st: -y condition (18.3.7 Ь

Modern Then tynatnics: From Heat i to Dissipative Structure cond Edition. Dilip K cn'lq  Ji and Ilya Prigogine. 
® 2015Jotit,\\ ву & Sons, Ltd. Publish,d 115 by John Wiley & Sort, A.
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a system to bccome unstable can be obtained by using the second variation of entropy, 62S. Beyond this p0jll[ 
we are confronted with a multiplicity of states and unpredictability. To understand the precise conditions for 
instability and the subsequent behavior of a system, we need to use the specific features of the system, such as 
the rates of chemical reactions and the hydrodynamic equations. There are, however, some general feature's 
of far-from-equilibrium systems that we will summarize in this section. A detailed discusnon of diKsipaijVc 
structures will be presented in Che following sections.

The loss of stability of a nonequilibriutn state can be analyzed using the general theory of stability for 
solutions of a nonlinear differential equation. Here we encounter the basic relationship between the l0ss 
of stability, multiplicity of solutions and symmetry. We also encounter the phenomenon of 'bifurcation- or 
"branching’ of new solutions of a differential equation from a particular solution. We shall first illustrate these 
general features for a simple nonlinear differential equation and then show how they are used to describe 
far-from-equilibrium systems.

19.2.1 An Elementary Example of Bifurcation and Symmetry Breaking

Consider the equation

~ = - а г +  Ха (1 9 .2 .1 )
at

in which X is a parameter. Our objective is to study the stationary solutions of this equation as a function of X 
Equation (19.2.1) possesses a simple twofold symmetry: it remain» invariant when a is replaced by -a . This 
means that if or(f) is a solution, then - a(l) ii also a solution. If a(t) Ф -a ( t \  then there are two solutions to the 
equation. In this way. symmetry and multiplicity of solutions arc related.

The stationary Stilton of this differential equation are

a «= 0, a =  ± V J  (19.2.2)
Note the multiplicity of solutions related to symmetry. When a solution does not possess the symmetries of 
the differential equation, i.e. when a ^  -a , it is said to be a solution with a broken sy mmetry or a solution that 
has broken the symmetry. In this case, the solution a =  0 is invariant when a is replaced by -a , but the solution 
a -  ±  \f~X is not Hence a =  ±  yfx is said to have broken the symmetry of the differential equation. (Though 
this idea may seem rather trivial in this simple case, it has a rather Important and nontrivial significance for 
nonequilibrium system».)

Let us assume that, for physical reason», wc are seeking only real solutions of Equation (19.2.1). When 
X < 0  there is only one real solution, hut when Л > 0 there are three solutions, as shown in Figure 19.1. TU* lew 
solutions for X > 0 brunch or bifurcate from the solution a = 0 . The value of X at which new solutions bifurcate

Figure 19.1 The bifurcation of solutions a *  0 tnd  a & ±-\{x to Equation (19.2.1) as a function of the parametei 
X. The dashed line represents an unstable solution.
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then the stationary state is stable. This generally happens when Л is less than a ‘critical value’ Ac. When 
exceed* Лс it may happen that the perturbations 6k, instead of decaying exponentially, grow exponential!" 
thus making the stale X,* unstable. Precisely at new solutions to Equation (19.2.4) will appear. As we wLn 
see in detail in the following sections, in the vicinity of Дс, the new solutions often take the form

in which АТ,((.ЯС) it the stationary state when Л = Ae.<tk are a set o f 'amplitudes' that are lo be determined 
and v k(r. I) are functions that can be obtained from Zk in Equation < 19.2.4). The general theory of bifurcation 
provides a means of obtaining the time evolution of the amplitudes at through a set of equations of the typ<. 
(see Reference [4] and references therein)

These are called the bifurcation equation*. In fact, though Equation (19.2.1) is an equation in its own right, 
it is also a bifurcation equation for system* that break a twofold symmetry. The multiplicity of solutions to 
Equation (19.2.6) corresponds to the multiplicity of solutions to the original equation (19.2.4).

In this manner, instability, bifurcation, multiplicity of solutions and symmetry are all interrelated. We shall 
now give a few detailed examples of instability of the thermodynamic branch leading to dis*ipative structures

19 J  Chiral Symmetry Breaking and Life

The chemistry of life an we know it is founded on a remarkable asymmetry. A molecule whose geometrical 
structure is not identical to its mirror image is said to possess clilrality, or handedness. Mirror-imagc 
structures of a chiral molecule are called «nantiomerv Just as wc distinguish the left and the right hand. iIh 
two miiror-image structures are identified as L- and D-enantiomer* (L for ‘levo‘ and D for 'dextro'; R and S 
is another convention of identifying the two enantiomers). Amino acids, the building blocks of proteins, and 
deoxyribose in DNA are chiral molecules. In the entire biosphere, almost all amino acids that take part in the 
chemistry of life are L-amino acids (Figure 19.2) and the riboses in DNA and RNA are D-riboses (Figure
19.3). As Francis Crick noted in his book Life llsetf ‘The first great unifying principle of biochemistry is that 
the key molecules h im  the same hand in all organisms.’ This is *li tlie more remarkable because chemical 
reactions show equal preference for the two miiror-image forms (except for very small differences.‘‘■te to 
parity-nonconservmg clectroweak interactions (5-7]).

Biochemistry's hidden molecular asymmetry was discovered by Louis Pasteur in 1857. Nearly 150 years 
later, its true origin remains elusive and it is a subject of active research. Nevertheless, we can see how such a 
state might be realued in the framework of dissipative structures. First, we note that such an asymmetry can

Xk(r,t; Л )*Х ^(Л с) +  о д а (М ) <*9.2.5)

(19.2.6)

СН}

Figure 19.2 Proteins ire made exclusively of L-amino acids. Tbe amino *cid s/town Is i-alanine. In other l-amino 
acids, different groups ol atoms take the place of CH3.
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S + T ssXl S + T + XLfcs2Xi.
S + T ^ X d S + T + Xd *5 2Xo

XL + X Di ; P

a « (X ,-X „ )/2 X -[S ||T I

Figure 19.4 A simple autocatalytic reaction scheme in which X, and X0 are produced with equal preference. 
However, in an open system, this leads to a dissipative structure in vWWc/l XL ^  XD, a state of broken symmetry. A 
bifurcation diagram shows some general features of transitions to dissipative structures.

It is easy to see that, at equilibrium, the system will be in a symmetric state, i.e. [Xt ] «  [XD] (Exercise
19.3). Now let us consider an open system into which S and T are pumped and from which P is r&.. >ved 
For mathematical simplicity, we assume that tbe pumping is done in such a way that tbe concentrations [S| 
and [T] are maintained at a fixed level, and that due to removal of P the reverse reaction in (19.3.5) may he 
ignored. Such an approximation does not limit its conclusions in any significant way -  as can be seen in ihe 
numerical simulation* using the Molhematica codes that include (be reverse reaction (see Appendix 19.1) 
The kinetic equations of this system are

> *,f[S][T] -  U X L] + M x L][s im  —*2,|Хц]2 -  *3[XL1[XD]

. *lf[S]lT] -  *„ 1[X|,l + *2, |X D][S][T] -  *j,|XD]2 -  t 3 [XL]IXD|

(19.3.6)

(19.3.7)

Since the equilibrium constants of the direct reaction and the catalyzed reaction should be (he same; the rate 
constants must be wxb that (kn /klT) m (k^/k^). To make the symmetric and asymmetric stale» explicit, it is 
convenient 10 define tbe following variable*:

(XLI - [ X D]
2

[XL] + [XP1
2 (193,8)
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For small values o f Д the «table stationary state is

“‘ =  °  09.3.11)1

2*гЛ  + + Ч къ +  * э> М
к ъ + к 3

in which
k ^ X -k j,

2*2,
This is a symmetric solution in which [X(J = [XD] (as indicated by the subscript s). Using the stability 
analysis described in the previous chapter, it can be shown that ttiis symmetric solution becomes unstable 
when Л is greater than a critical value Лс. The value of Лс is given by

' ----------- 3 P ---------- ( Ш л з >2f
where

Ate- /tjr
а ш 2кяки +  -  -£ — ■ (19.3.14)

*3 ~  *2r
For the system of equations (19.3.9) and (19.3.10) it is possible to obtain an asymmetric stationary solution 
analytically:

ku i
T— T  (19.3.15)
% ~*2r

kvX  — k\T
fi, *  (19.3.16)

«2r
in which the subscript a stands for asymmetric. (We recommend the reader to use Mathematica ck-^e A in 
Appendix 19.1 to verify all these properties of the system.)

The simplest process that demonstrates odiirnl symmetry breaking is in the crystallization o f NaClO, under 
far-fmm-equilibrium conditions [9]. During the last two decades, other chirally autocatalytic reactions were 
discovered through the mechanism of caulysi» in these systems but are not as simple as Ihe one presented 
in the above model 110]. These chirally autocatalytic reactions are capable of amplifying extremely small 
initial asymmetries. The simple model, however, leads to interesting conclusions regarding the sensitivity of 
bifurcation discussed below.

19.3.1 Entropy Production Is Chirul-Symmetry-Breaking Transitions

Dissipative structure* are generated anil т ё п  tamed through irreversible processes that cortinuously generate 
entropy. Let us took ul the entropy generation in the model system studied above. Wc assume each of the 
reactions (19.3.1) to (19.3.5, is an elementary step so that we can use the formula (1/VXS/d/ = R(K, -  Rr) 
1п(Я,/Лг). which give» the rate of entropy generated per unit volume by that reaction (see Hqualion (9.5.10); 
here Rf and R, are the forward and reverse reaction rales and R is the gas constant. Though in the theoretical 
analysis we have ignored the reverse reaction (19.3.5), we shall include it in calculating the rate of entropy 
production to make the affinity of this reaction finite.
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<x

Figure 19.6 A symmetry-breaking transition or bifurcation in the presence of a small bias that favors one of the 
bifurcating branches. It can be analyzed through the general equation (19.3.17) and the probabilily of the systim 
making a transition to the favored branch is given by Equation (19.3.18).

in which the coefficients А, Я and С depend on the concentration» of the reactants and on the reaction rates 
(Figure 19.6). The parameter g is a small systematic bias, such as due to the electrowesik force [6, 14) or 
other systematic chiral influences such as spin-polarized electrons that emerge from radioactive decay 117], or 
circularity polarized electromagnetic radiation emitted by certain stars that might fill large regions of space ti >r 
long periods of time [11). The systematic influence appears in the fomt of the rates of production or destruci it >n 
of one enantiomer being larger than that of ihe other. The term \fiJU) represents random fluctuations with the 
root-meon-square value \ f t .  Since the assumptions about rates of production for biomoleculcs. their catalytic 
activities and their concentrations determine tlie coefficients A. В and C. rather than the details of the chemical 
reaction scheme, the model is constrained by our general understaading of the prebiotic chemistry. Equation
(19.3.17) provides a way to assess whether a given prebiotic model can produce and maintuin the required 
asymmetry in a rea*onable amount of time,

Furthermore. liquation (19.3.17) can also give us a quantitative measure for the systematic chirii ..lfluence 
g. Detailed analysis (16,18) of this equation ha* shown that the sensitivity of the bifurcation to Ihe systematic 
influence depend» on the rate at which the system moves through the critical point Лс; i i ,  we assume that 
Я *= ^  +  yt. so thal the initial value of ̂  U less than Лс, but that X gradually increases to * value larger than 
Xc at an average rate y. This process may correspond, for example, lo a slow increase in the concentrations 
of biomolecules in the oceans. It has beee shown (16, 18] that the probability P of the system making a 
symmetry-breaking transition to the asymmetric stale favored by tbe syttematic chiral influence g is given by

Although derived in ihe context o f biomotecutar handedness, this formula is generully valid for a m  system 
that breaks a twofold symmetry, such as mirror inversion. Using this formula, it is possible lo understand the 
extraordinary sensitivity of bifurcation to m all systematic biases (hut favor one enantiomer by increasing it* 
production rate. Calculations show that I.-amino acids have a lower ground-state energy [ I4|. ib r  example, it 
can be estimated that I lie chiral asymmetry of the electroweak interaction can create differences of the order 
of one part in 1017 between the production rates of the enawtomers, Application of the above theory shows 
that if the autocatalytic production rate of ihe chiral molecules is faster than the racemizaiion rates, then for 
a period in the range I04 to 105 years, the enantiomer favored by Ihe electroweak force will dominate [16).

where (19.3.18)
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Otic can easily verity (Exercise 19.5) thal Ihe stationary solutions. [X], and f Y]s, to these equations are

«9.4.?)
rv i * 'i* i  (v i *4*2 I B )  I X 1 . - - I A ] ,  m .  -  щ щ

As was explained in Section 18.4. the stability of Ihe stationary stale depends on the eigenvalues of 
Jacobian matrix

(19.4.8)

evaluated at the stationary state (19.4.7). The explicit form of the Jacobian matrix that was derived in Chapter 
18 is (see Equation (184.13)):

■ az , az , ■
d[X] a m
dZj Щ

. а д a m -

M B ] - i 4 M X ]; 
~*2[B] - * 3IX],2

■ M (19.4.9)

The example in Section 18.4 shows how Ihe stationary state (19.4.7) becomes unstable when a complex 
conjugate pair of eigenvalues of the matrix M  cross the imaginary axis: for the Brusselator this happens when

k4 *,*?
^ l A ] * (19.4.10)

The system makes и transition lo an oscillatory state and tbe resulting oscillations are shown in Figure 19.7. 
The steady states and Ihe transition to oscillations can easily be investigated using the Maihemaiuu aides 
provided in Appendix 19.1.

v..

A ------ ► X
B + X -------► Y + D
2X + Y -------»3X
X ------ *E

A, В
_j X  Y 

Л В

figure 19.7 Brusselator model, model flaw reactor and oscillations in 1X1 and IY] obtained using Mathematics 
in Appendix 19.1.
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B o x  19.1 T h e  B e lo u s o v -Z lw  but in sk v  r e a c t io n  a n d  th e  F K N  m o d e l

The Field-Kiiros-Noyes (FKN) model of the Bclousov-Zhabotinsky reaction consists o f the follow,,,, 
steps with A m BrOj- , X = HBrO,. Y => Br , Z «= Ce4+, P = HBrO and В = Org. In modeling the reacting 
[H+] is absorbed in the definition of the rate constant.
• Generation of НВЮ2 : Л + Y -* X + P

ВгОз' + В Г + 2 H + -Н В Ю 3 + НВЮ (1)

• Autocatalytic production of НВЮ2 : A + X 2X +  2Z

B rO j- + НВЮ2 +  H+ -> 2BrOi + H20  (2 j

ВЮ2 + Ce3+ + H+ HBrOj + Ce4+ (3,

The net reaction. (2) +  2(3), is autocatalytic in НВЮ2. Since tlie rate-determining step is (2). the
НнчСв**

reaction is modeled as ВЮ3~ + НВЮ2----------* + 2Ce + 2HUr02
• Consumption of НВЮ2 : X +  Y -> 2P and 2X -» A +  P

HBtOj +  Br" +  H+ -  2HBrt> (4) 

2HBrO} -» B r03‘  + HBtO + H+ (5)

• Oxidation of Bic organic reactant*: В +  Z - » (fl2)Y

CH2(COOH), + Br2 -♦ BrCH(COOH)2 + H+ + Br- (6)

CH4+ +  i  [CH2(COOH)j + BrCII(COOH)j -* J Br- +  Ce3+ +  Products (7)

The oxidation of tlhe organic species is a complex reaction. It is approximated by a single rate determining 
step (7). In tlie FKN model, concentration [B] of the organic species is assumed to be constant. The value 
of the effective stoichiometric coefficient f  it a variable parameter, Oscillations occur i f / in  in the range 
0.5-2.4.

The corresponding (ate equations are

=  *ilA][Y] + У А Ц Х ] - * 3IXUY] -  2*4[X]2 (19,4.161

~  “  -* t  tA«Y] -  *3[X][Y] +  ^M B ][Z ] (19.4.17)

3 2 1  =  2*: [AJ(X] - t 5[B)[Z] (19.4.18)

Stationary states of thi* equation can be found after a little calculation (Exercise 19.7). To study its stability 
involve* analyzing the roots of a third-degree equation. There are many analytical methods |25] to analyze 
tlie oscillatory behavior of such a system, but these details are outside our main objective of giving examples 
of oscillating chemical lystems. The oscillatory behavior of these equations may be numerically studied quite
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19.4.2 Other Oscillating Reactions

During the last two decades, many more oscillating chemical reactions have been discovered. Indeed ln  
Epstein and coworlcers in the United States (27-29J and De Kepper and Boissonade in France (30] develo "!* 
a systematic way o f  designing oscillating chemical reactions. In biochemical systems, one of the 
interesting oscillating behaviors is found in the glycolytic reaction. A recent monograph by Albert Goldbe't'c' 
[31 ] summarizes the vast amount of study on oscillatory biochemical systems.

19.5 Turing Structures and Propagating Waves

From the delicate beauty of the butterfly to the ‘fearful symmetry’ of the tiger. Nature if full of wondrous 
patterns, both animate and inanimate. How do these patterns arise? Dissipative processes in systems far from 
thermodynamic equilibrium may provide at least a partial answer.

The emergence of biological morphology during embryonic development -  with hands and feet and eyes all 
in the right place -  is a fascinating subject <a popular account of this subject is Lewis Wolpcrts's Triumph of 
(he Embryo, 1991, Oxford University Press). What mechanism produces the morphology of living organisms ’ 
In 1952 the British mathematician Alan Turing suggested a mechanism based on the processes of chemical 
reactions and diffusion [32]. He showed, by devising a simple model, how chemical reactions and diffusion 
can work in consonance to produce stable stationary patterns of concentrations. Turing proposed it to explain 
biological morphogenesis. Today we know that biological morphogenesis is a very complex process, too 
complex to be explained entirely by the processes of diffusion and chemical reactions. However. Turing's 
observation has gained much attention since the 1970s due to the great Interest in theoretical and experimental 
study of far-from-equilibrium chemical systems. In this section we will briefl^ ^escribe a ’Hiring structure 
or a stationary spatial dissipative structure, using the Brusselator of Section 19.4.

For simplicity, we shall consider a system with one spatial dimension, with coordinate r. in which diffusion 
occurs (Figure 19,10), We assume the system extends from -L  to f-L  We must also specify spatial boundary 
conditions; the usual boundary conditions are that either the concentrations of the reactants or their flows 
are maintained at a constant value al the boundaries (or even a combination of both). For our example, wc 
shall assume that dbe (lows of the reactants are zero at the boundaries. Since diffusion flow is proportional 
to tlie derivative дС/tir  (in which С is the concentration), the no-flow boundary conditions imply thal the 
derivatives of the concentrations are zero ail the boundaries.

When diffusion in included as a transport process, the kinetic equations (19.4.5) and (19.4,6) become

in which Dj{ and О у are the diffusion coefficients and r is  Ihe spallial coordinate. As before, we assume that 
[A] and [B] arc maintained al a fixed uniform vslue along the entire system (an assumption thal simplifies the 
mathematics but which is difficult lo achieve In practice). Diffusion usually homogenizes the concentration 
in a system, but when coupled with autocatalytic chemical reactions under far-from-equilibrium conditions, 
it actually generates inhomogeneities or patterns, for pattern formation, the diffusion coefficients must be 
di fir rent If the diffusion coefficients are nearly equal, then diffusion does not cause an instability; diffusion

(19.5.2)

(19.5.1)

The boundary conditions are

d
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figure 19.11 Stability diagram showing the value of IB] and the corresponding value of K2 that will boa,,,, 
unstable and grcuv. The values of К that are consistent with the boundary conditions are discrete modes. h 
acteri/ed by an integer m. As IB] increases, when it is just above IBI„n, the mode m that becomes unstable 
grows into a spatial structure.

19.6 Dissipative Structures and Machines '

Having studied some examples of dissipative structures, it is interesting to compare them with 
machines/computers or designed structures, for there are some notable and interesting fundamental dif 
ferences that have been insightfully noted by Robert Rosen [34].

First, we note that most designed structures are based on time-reversible mechanics, classical or quantum;
i.e. their mathematical description is based on the reversible dynamical processes. The idealdesigned structure

figure 19.12 Traveling waves in the Belousov-Zhabotinsky reaction.
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could aMoc i te a n ’algorithm'foi i i behavior, that too on* late» from within.

Finally t1 rmodynamic stability, dissipative structur, - :ans dissipative pro, с is restore the structn v
itispeituib, o r ‘damaged'-witldi munds, of course. Tlu «stows them with tli г opertyof'self-healniH
This is cl. :u 1 not the case with nu,. tines or computers.

From tl,c observations, one t i ;, turmiselhatdissipair- nructures are more ,1- to biological organm,
than are к a- lines and computers | e machine paradigm i oappropriate as a then of biological organ s,
Thisaspcvt ill be discussed furl i in the concluding С i:i er 2 li.

19.7 Str< tural Instability ii I Biochemical Evoli tion

We conduct, this chapter with •  fev. emaikson anotherkii, of instability often t al d ‘structural instabi it
anditsrele ace to biochemical cv utioe. In the previon «ctwns we have seen stabilities giving rise
organized ы tes. fhese instabilit e, irose in a given set >j hemeeal reactions, ln aneqiuilibrium chen i>
systems, n ihility may also an*- <y the introduction ol i new chemical spec,. : that gives rise to ь
reactions: t| *e new reactions m :у «stabilize the system d drive it to a new stu of organization. In tli
case the ;n ;ture‘ of the chemic il laction network is it * subject to changes. 1; h new species alters fl
reaction liit, ics and this may drat .ally alter the state of be system; i.e. due x. le  appearance of a ik
chemical :ies (he system may b nme unstable and eve, t  to a new state.

ThistyiH f structural instabilit - ti be seen most easib, i he evolution of self- ц icatieg molecules w tli
steadysujf, of monomers. Let in , nsidtr a set of autoc i vtic polymers that ar; pabl* of self-replicad,
through a t> iplatemechanism.ini к cate, each new pi, Г er is a new autocall 1 ; species. Let us fuidt -
assume that tie self-replication i:;. jjectt to random em  in r mutations. Each n ui ion of a self-replkatii
molecule it! iiduees a new species nd new chemical re: it ins. Thus if we wriie set of kinetic equal c,
for such a s tein, each time a rand, i  mutation occurs. Hit ;t of equations itselI v, 1 change. Under a g v
set of non tlibrium conditions oi mvironment'some (o «rhaps most) of the n: lations may not proi n .
apolyme: v, oee rate of self-repl с on i# larger than thi s ,f others. The appea % ж of such a new spc;i,
waycaus. ., mall change in the p, >|, lation of various pol /n rs but no significant c| tige will arise. Howtv.
some of tic tutations might give п to a polymer with a hi t rale of self-replica: ii, This would correspot
to fluctui, i, to which the systein . unstable. The new j lymer may now dot n ite the system and ill
the popul ti я significantly. Thb- i course corresponds t , )arwinian evolution the molecular level. 11
paradigm cm he 'survival of tbe litl ,1 ’. Many detailed slu, i* of such structural ii labilities and molecul
evolution li e been conducted | l  Ю]. These models ,u beyond the scope o f I is text but we will nu
an intern; i, thennodynamic featu summarized in Fig л 19.13. Each new sti r, iral Bistability general
Mcreases tl, dissipation or the 1; t tf entropy production the system becaus, i ncreases the numbi r ,
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Nonequilibrium
^ Threshold Instability

through
structural
fluctuations

_ _ _ _ _  Increased ._______
dissipation

figure 19.13 Structure instabilities during molecular evolution give rise to new processes that tend to incrpdM, 
entropy production. '

reactions. This is iu contrast to the near-equilibrium situations discussed in Chapter 17 in which the entropy 
production tends to a minimum. Structural instability may progressively drive far-from-e<fjilibrium systems 
to higher rates of entropy production and higlier states of order. Needless to say, biochemical evolution and 
the origin of life ia a very complex process that we are only beginning to understand. However, now we 
see instability, fluctuation and evolution to organized states as a general nonequilibrium process whose most 
spectacular manifestation is the evolution of life.

A ppendix  19,1 M athematica  C odes

The following code» give the numerical solutions for the kinetic equations for the system* discussed in this 
chapter. As in Chapter 9, NDSolve is used to obtain numerical solutions. The results can be plotted using the 
Plot oommand. Numerical output can be exported to graphing software using the Export command.

CODE A: CHIRAL SYMMETRY BREAKING

(•Code to  show o h ir a l  *ymmetry breaking. K in e t ic  conetant*  are 
chosen such  that  the equ il ibr ium  con stan t ,  (k £ /k r ) ,  for  d i r e c t  and 
c a ta ly z e d  react ion»  are equal»)

k l f « 0 . 5 ; k l r - 0 , 2 ik 2 f« 0 . 5 ; k 2 r « ( k l r / k l f ) *k2f !k 3 f -1 .6 ik 3 r . lO * -3 ;
S-1 .25jT .8»P »0-5)

R if i -k l t* S * T )R lr i .k lr * X L tt ]i
S2 f x ,y 2 f B » T X H t] iR 2 f . . y . 2 i» { y iL M )~ 2 >
R3 £ : -klf*8*T (R »rl .k lr*X D [t]i  
R 4 f . ,k 2 f* 8 * T * » [ t ]  jR4r!.k2r*(XDCt] )*2i 
R5f!.k3e*XLtt)*XSIt] ;R5r:.k3r*»l

(* I n i t i a l  value* o f  XL and XD are s e t  a t  ateady M a te  va lue*  for  * -0 .5  *)

Solnl-NDSolva[{XL' It).«Rl£-Rlr+R2f-R2r-RS£+R5r,
1Ш1 [ t l  «*wR3f-R3r+Mf-JR4r-R5f+R5r,
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Х Ы 0 1 - .0 .: !  1 ,X B [0 ]..0 .2 5 0 0 }  X b ,ja> } ,{ t, 0 ,200! ,
M a x S te p e - j ]  100]

p lo t t* '*  * t« [{ X L (t]  ,XDtU / .B e ln l l  , { t , 0 , t r  ) ,
Ax* 1 iJ i[X D ]“ >,
Аж» ty l« -»D ir«c tiv<  la c k ,14) ,
Р1э ty la -»{{B lack ,T }  :k},{Qray,Thick} PlotRanga->All]

({XL-»I i  r p o l a t i n g F u n c t j c  | ({ O ' . , 2 0 0 0 . } } ,
XD->I l  r p o l a t i n g F u n c t j c  ({{O'. , 2 0 0 0 .  } ) ,< >  )

PCIJ&[XI)]

To write n 
the Math, > 
This file 

The con 
outputs Jill

ut files for spreads!* 
'ica help file for the E 
>e read by most spr a 
and X[t]/.Solnl sp< t 
ti a convenient form.

. use the Export com 
ЮГ1 command. In ths 
heels and graphing и 
es that X[r] is to bt

and and the file forms 
immand below, the . i  
ware.
aluated using Solnl ■

ast. For more detail ■ 
ut filename is: data] .1

lined above. Table! э

E x p o r t  [" t » l . t x t " , T a b l e  •! , { X b [ t ]  , X D [ t l } / .  Ш 1 } ,  { t , 1 , 50}J , ,,
t a b l e P c  с “L i s t * )

d a t a l . t s

Tb obtain з ible of t versus X(f) J following command i i be used.

* a b l a | { t  X L( t)  ,X D [ t ]  }/.£!c  i l } , { t , l , 5 } ) / / Т а  eFrann

1 0 . 7 7  93 0 .773908
2 0 . 8 ;  58 0 .860593
3 0 . 8 ;  4 0 .869178
4 0 . 8 7  07 0 .869924  
s 0 . 8  7 58 0 .869922



I

The rate of entropy production due to each of the reactions in the above scheme can be calculated 
following code. The Plot command plots the total rate of entropy production. The Table command 
table of the rates of enlropy production for each reaction at the last three time points.

RR-8.3141
Sigll-RR*(Rlf-Rlr)*Log(Rlf/Rlr];
Sig2i.RR*<R2£-R2r)*I.og[B2f/R2r] I 
Sig3s.RR*(R3f-R3r)*I.og[R3f/R3r] I 
Sig4. -RR* (R4£ -R4*) *Log[R4f /R4r) i 
SigSi.RR*(RSf-RSr)*Log[R5f/R5rl)
SigTot:«8igl+Sig2+8ig3+Sig4t «igSi

Plot[Evaluate[*igTot/.8olnl], {t,10,tmax},
A x e s b a b e l - » { » t i m * “ , “ [Xb]*(XD]»},
Axee8tyle-»Directive[Black,141,
PlotStyle->{Black, Thick}, PlotRange->All)

ТаЫ» [TableForm [{Evaluate [{t, SigTot, Sigl, Sig2, Sig3, 81g4, Sig5}
/.Solnl)}], {t, tmax-2,tmax}]
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[XL]&[XD]

98
8 0 .4 3 5 2
0 .7 6 5 3 9 5
2 .0 5 2 8 2
1 7 .4  965
3 .92293
5 6 .1 9 7 6

99
8 0 .4 3 5 2
0 .765395
2 .0 5 2 8 2
1 7 .4 9 6 5
3 .92293
5 6 .1 9 7 6

100
8 0 .4 3 5 2
0 .765393
2.052(2
1 7 .4 9 6 5
3 .9 2 2 9 3
5 6 .1 9 7 6

Using
' ,UIP U tjg
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jsselator. Since по к  rse reactions are le t cd, we shall not use i 
ih) r for the reaction r * and rate constant

„ р ,1 IE BRUSSliLATOl 
folio v t  U fee code for th. 

„jbscriP1

a im  i 1 K ln a t ie e i  Tin »»u*«i»l»tor *)

* 1 .1 .0 /  ■!•#> * 3 - 1 .0 ,  ):< 1 .0 ,  A . l  .0 )  B .3  .
gl" .kX*A R 2 t . k 2 t B * X I t I )  f ; . k 3 * ( X [ t ] " 2 > » Y [  j
s 4 : .k4*K 1»

8о1п2- Ю  l v « [ { X '  [ t l — И1 - 1+H3-R4,
Y1 [ t l — Si i ,
X [ 0 ) - «  1 . 0 , 1  I j w l . O ) .
{ X , Y } , { t , 0 ,  ) } ,
M a x B tep e - : !  )1

t  { {X - > I : i  r p o la t in g F u n c t r ic  [ ( { 0 .  , 2 0 . } } ,< > ]  ,
Y -> l3  « rp o la t in g F u n c t j c I { { 0 .  , 2 0 . } } ,  <>1 }

P l o t [S v i  » t « [ { X t t ] } / . S o l i  I , { t , 0 , 2 0 } , P l o t s  g « - > { 0 , 4 } ,
Р1э t y l « - » { B l a c k , T ) d  t ) ,
Ахэ » b « l - » { “ t im e , J ,
Axe ty l« - > D i r e c t i v c <  l a c k , 1 4 ] ]

* lo t(B v i a t*  [ {X  I t]  , Y [ t]  ] у )o la2] , { t , 0 ,  20} , 
И з  ty la -» { { B la c k , 1 ie k } , {G ray ,T hick
ЛХ5 a b a l-» { " t im a * ) .
Ax э ty la - > D ire c t iv «  la c k , 14]]
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T a b l e  [ { t ,  E v a l u a t e  [{X [ t l  , Y [ t ]  > /  , * o ln 2 ]  } ,  { t ,  0 , 1 0 , 1>] 
/ / T a b l e F o r m

0 1 . 1 .
1 0 .3 3 6 8 0 6 2 ,1 3 4 7 3
2 0 .316947 2 ,8 3 6 7 9
3 0 .3 4 4 1 9 7 3 ,48043
4 0 .389963 4 ,0 6 9 5
5 0 .4 7 6 0 1 2 4 ,5 5 6
6 0 .7 6 6 3 3 5 4 ,6 8 4 3
7 3 .45 3 6 3 0 ,851828
8 1 .3 6 8 3 6 1 ,6 4  96
9 0 .5 2 6 0 3 5 2 ,6 3
10 0 .3 7 3 2 6 5 3 ,36134

CODE C: THE В ELUSOV-ZHABOTINS ICY REACTION 
The following it tbe FKN model of the Belousov-Zhabotinsky reaction. Since no reveree reactions are 

involved, we shall not use the subscripts f and r for tbe reaction rates and rate constants.

(* T he B e lo u e o v -H ia b o t in a k y  R e a c t io n /FKN M odel *}

(* X-HBrOJ V .B r-  Z»Ce4+ B .O rg  А-ВгОЗ- •  )

Ы .-1 .2 8 )  k 2 » 8 .0 )  к З » 8 .0 П 0 ‘ 5) k 4 « 2 * 1 0 "3 j k S . l .O i  
A .0 .0 6 ;  B .0 .0 3 l t« 1 .5 !

R11 »kl*A*Y I t )  j M 2i»k2*A »X(t) i  Я ) i»k3 »X [ t ]  *Y I t )  i 
R 4 i.k 4 » X tt]“2 | *5i.k5*B*S!U ) I

S o ln 3 » N D S o lv e t{ X 'I t )» »  R l+R 2-R 3-a#R 4,
У  I t ) . .  -R l-R 3 + (£ /a )» R 5 ,



у-»1»
Z->In

p l o t [*»■» 
P lo  
P lo  
Ax i

3 C H > ]» .2*10 '-7 ,}  ) ] . « 0 , 00 0 0 2 , ZIO] 
{X , t , Z } , ( t , 0 , l C  ) ) ,  M ax8t*ps->2J

pol-HtlngFuncticr ((О.ДООО.}},«»1
p o t » t  in g P u n c tlo r  
p o l* t  in g F u n c tio r

( 0 , ,1 0 0 0 .}},<») 
( 0 . ,1 0 0 0 .}},«>)

0 .0 0 0 1 ) ,
1

»S« t { Z [ t )  , 1 0 * X l t  ) / , 8 o l n 3 ) ,  ( t , 0 ,  9
* n g « - > { 0 . 0 , 1 . 5 » 3  ’ - 3 ) ,
t y l * ~ > { ( B l a c k ,  1 i e k } , { O r a y ,T h i c <
t y l * - > D i r e c t i v c  I Lack, 14 ) ]
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192  Write a Mathematica or Maple code to obtain the solutions of the equations in Exercise 19.1. Plot 
these solutions as a function of tim* for various initial conditions and show explicitly that the solutions 
evolve to stable stationary states,

193 For the reaction scheme (19.3.1) lo (19.3.5), using the principle of detailed balance, verify that the 
concentrations o f XL and X D will tee equal at equilibrium.

194 Using the variables or, p and Я defined in (19.3.8), show thart the kinetic equations (119.3.6) and (19.3.7) 
can be written in the forms of (19.3.9) and (19.3.10).

19.5 Show that liquation (19.4.7) are the stationary states of tlie kinetic equations of the Biusselator equations
(19.4.5) and (19.4.6).

19.6 (и) Write the kinetic equations fot [X] and [YJ. assuming that [A] and [B] are fixed, for Ihe following
scheme (called the Lotka-VoUerra model):

(b) Obtain its steady states and analyze their stability as a function of the parameters [A] and [В]. 

• 9 .7  ( a )  Using the ditnensionless variables defined by

Exercises

19.1 Analyze the stability of solutions *  *= 0 and a =  ± y / l  for Equation (19.2.1) and show explicitly that 
when Л > O'the solution a  =  0 becomes unstable whereas the solutions a =  ± \ { l  are stable.

A 4  X -  2X, X +  Y 2Y,

[X] [X]
V У Y0 •

in which

v  M A] „  *2[A] (tjlA J)2 1



450 Modem Thermodynamics

show that the kinetic equations (19.4.16) to (19.4.18) can be written as

in whtdh

A* . 4
e cFr = ©’- л 5’ +  д*1 - * )  

,dx ,
e  d r  =  ~ ({У ~ x y ^ ^ z

dz
z = x ~ z

**(B] , 2*5*4[B] 2 *,*4

£ = W v  ^  = Ш  and Я = Ж
(See Tyson, J.J.. Scaling and reducing the Field-Koron-Noyee mechanism of the Belousov- 
Zhabotinsky reaction, J, Phys, Chem,, 86 (1982), 3006-3012.)

(b) Find the stationary states of this set of equations.

19.8 Using Malhe/nalica Code С in Appendix 19.1, obtain the range of values for the parameter / in which 
oscillations occur. Also plot the relation between the period of oscillations and the value o f /

19.9 Show that the minimum of Equatioe (19.5.14) occurs at the values given by Equation (19.5.15).
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Elements of Statistical Thermodynamics

Introduction

In the kinetic theory of the nineteenth century, the idea* Daniel Bernoulli published a century earlier in his 
ttydmdymtmicn came to fruition. When the atomic nature of matter became evident James Clerk Maxwell. 
Ludwig Boltzmann and others began to formulate the kinetic theory of gases. Kinetic theory demonstrated 
how random molecular motion gives rise to pressure in accordance with the ideal gas taw, pV = N/ГГ (as 
discusscd in Section 1.6). It gave us the precise relationship between temperature and molecular motion: 
the average kinetic energy of a molecule is directly proportional to the temperature. (mv~/2 ) =  0 /2 )kbT. 
The concepts introduced through kinetic theory could also explain other properties of gases, such as heat 
conductivity, diffusion and viscosity 11 ], «he so-called transport properties. Once the connection between 
the temperature and energy of an Individual molecule was established, the relation»hip between energy as 
formulated in thermodynamics and mechanical energy of a molecule became clear. The thermodynamic 
energy of a system is the sum of all the energies of tlie molecules. Random molecular motion disUibutes 
the total energy of the system into all possible modes of motion, i.e. translation, rotation and vibration, 
and the amount of energy in each mode of motion depends on the temperature. If the average energy of 
a single molecule is known, then the total energy of the system can be calculated; in turn, the average 
energy of a molecule is related to the system's temperature. Ttte success of these developments still left 
one big question unanswered: what is the microscopic explanation of entropy? What is the relationship 
between entropy and molecular properties? Boltzmann's answer to that question, which has already been 
introduced in earlier chapters, is S в  ka lrv W. This fundamental formula opened the way for the formulation 
of statistical thermodynamics, a theory that relates thermodynamic quantities to the statistical properties 
of molecules.

In this chapter, we introduce the reader to the basic formalism of statistical thermodynamics and illustrate 
how thermodynamic properties of some simple systems can be related to statistical properties of molecules. 
We will begin by giving the reader a brief overview of the theory,

In previous chapters the thermodynamic quantities were written as functions of motes N and gas constant 
Д. In this chapter, it is more convenient to use molecular quantities. /? the number of particles and the 
Boltzmann constant kK. Conversion to N and R may be done by noting that /V = NNA and R = NAkb. Also, 
when discussing general statistical thermodynamic concepts that are valid for electrons, atoms or molecule, 
We shall use the term 'particles’ .

Thermodynamics: From Heal Engines lo Dissipative Structures, Second Edition. Dihp Kofldepudi and Ilya Prigogine. 
® 2015 John Wiley & Sons. Lid Published 2015 by John Wiley & Sons, Ltd.
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Ludwig Boltzmann (1844-1906).
(Reproduced by courtesy of the AIP ImiHoSegre Visual Archives, Segre Collection.)

20.1 F u n d am en ta ls  an d  O verview

On the one hand, quantum mechanics describes the behavior of electrons, atoms and molecule» with remark 
able success through the concepts of quantum states, quantized energies and energy eigenstates. On the 
other hand, an equally successful thermodynamics describes the macroscopic behavior of matter in terms 
of variables such as entropy 5, Helmholtz energy F and chemical potential /<. Statistical thermodynamics 
relates these two theories. It enables us to calculate thermodynamic quantities, such as the Helmholtz energy 
F. given all the energy itates of constituent particles: electrons, atoms or molecules as the case might be.

In quantum theory, particles such as eloetrons. atoms or molecules are described by their quantum states 
I*/). Among these slates are energy eigenstates, states with definite energy. Statistical thermodynamics uses 
these 'energy eigenstates' I#*), associated with an energy Ek, in which the subscript * = 1.2, 3 ,.. .  indexes 
the quantized energies. There could be several etates that have the same energy; the energy level is then said 
to be 'degenerate'. A microstate of a system is the detailed specification of the state o f every particle in 
the system. For a given total energy V there are a large number of different ways in which that energy can 
be distributed among the particles in the lystcm. In general, there are a large number of microstates that 
correspond to a given thermodynamic state. Boltzmann's fundamental postulate is that enlropy is related lo 
the number of micmstules W through

S =  *B In W (20.1.1)

in which the constant kg in now named after Boltzmann. IV и sometimes called the thermodynamic proba
bility. a term introduced by Max Planck. In Chapter 3 (Box 3.2) we considered simple examples to illustrate 
how IV is calculated. We will discuss more such examples in the following sections. For a brief overview
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.BLtfntical thermodynamics, we shall focus on two basic relations that follow when Equation (20.1,1) is 
pplied to system» in theimodynamic equilibrium.

I  statistical thermodynamics uses the concept of statistic»! ensembles. a large collection of Л identical 
puflcles or entire systems, to calculate average values. There is an alternative way of expressing Equation
(20.1.1). Ptif ая ensemble of particles or systems, if l \  is the probability that the particle or system is in 
state k. then in Section 20.4 we show that 5 can also be written as

,  When a system is in thermodynamic equilibrium at a temperature T, the probability Л £ ,)  that a particle 
will occupy a «ate with energy E, Is

is the normalization constant: it is introduced so that H Et) = 1, as required by the very definition 
of probability. Expression (20.1.3) for the probability of a state к is called the Boltzmann probability 
distribution. In many situations, it is found that several distinct slates have the same energy. If g(Et) is the 
number of states having the same energy Et, then the probabilily that a particle has an energy E, occupying 
any one of the g(Ej) states is

and g(Ej) is called the degeneracy of die energy level Et.

Statistical thermodynamics of equilibrium systems is based on the fundamental expressions (20.1.2) and
(20.1.3). Thus, given the quantum energy levels Ek, and their degeneracies g(Ek), tlie average value of the 
energy of a single particle, which we shall denote by (£), is calculated using Equation (20.1.3):

To calculate the average energy of a system of fit particles, an ensemble of systems is used (the reason for 
using an ensemble of systems is explained in Section 20.4). In this case, the total energy of all the particles 
Vt takes the place of E, in Equation (20.1.6), in which is tlie corresponding probability. The ensemble 
average {U) ж У is the energy of the system. The entropy of the system can be calculated using Equation 
(20.1.2). From these two quantities, the Helmholtz energy F ж U  -  TS and other thermodynamic quantities 
can be obtained.

In the following sections we shall see that thermodynamic quantities can be obtained from q defined in 
Equation (20,1.4). Because of its importance, it is given a name, the partition function.1 To be more precise

*ТЬе letter z is also used fo r tlie partition function, because in G erm an the sum  t2 0 .1 .4 ) is  called Zm tandsum m e (wh*:h m eans ‘state

(20.1.2)
*

9
(20.1.3)

The term
,  =  £ e - W (20.1.4)

P{Ej) =  -g(E^e~B‘/k»T , where <f~ 'V^g(Ei) trB>lkbr
4 i

(20.1.5)

m
(E) = £ E,P(Et) (20 .1.6 )

*mi.
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with terminology, q defined above is called the single-particle canonical partition function'. The РВДШовfunction of a system of Й particles is usually denoted by Q. For/?identical noninteracting particles, q 
have the following relation: 1

Q = W'. ( 2 0 l7 >

For interacting particles, Q is a more complicated function of T, V and A  Expressing Q as a function „t 
V, T and /?, and using Equation (20.1.2), one can derive the following general relation between Q and цк 
Helmholtz energy F:

f  »  -k$T  In Q (V ,T ,fl) (20.1.8)

From the Helmholtz, energy, other thermodynamic quantities can be calculated:

P =  - ( dI ,  S —  (20.1.9,

Statistical thermodynamics of a system usually begins with the calculation of the partition function Q. If Q 
can be obtained in a convenient analytic form, then all thermodynamic quantities can be calculated from it. 
This is the basic framework of equilibrium statistical thermodynamics. In the following sections we develop 
this formalism and present illustrative applications.

20.2 Partition Function Factorization

When the total energy of a particle can be written as a sum of independent energies with independent quantum 
numbers, the partition function can be expressed as a product of partition functions. The total energy of a 
molecule consists of energies of translation, rotation, vibration and the energies in the electronic and nuclear 
states. We can write the total energy Я as tbe sum

g _ + grot + gvib + £*i« + jpnuc (20 21)
in which the superscripts stand for translation, rotation, etc. Each of the energies is quantized and has 
independent quantum numbers. (Depending on the conditions, the energies may also depend on external 
factors, such as gravitational and electromagnetic fields, but those terms are not included in the above 
expression.) The above expression assumes that energy of each type of motion is independent of another. 
Though this may be a good approximation in many situations, it is not strictly true. For example, the rotational 
energy of a molccuk m»y depend on its vibrational state; in such situations, one could deal with the combined 
vibrational-rotational energy levels. For simplicity, we shall assume that energy levels of each type of motion 
have independent quantum numbers. In thwcaie. the single molecule partition function can be factorized:

« = £

( 2 0 ' 2 ' 2 )
j к I m n

For each molecule, quantum theory gives us the energy levels of each mode of motion. As shown in Box 20.1. 
the spacing of energy levels increases from translation to rotation to vibration. Translation^ energy levels are 
very closely spaced compared with the average thermal energy of a molecule, which is of the order of кйТ. 
Tbe electronic energies generally have a much larger spacing than vibrational energies. If the ground-state 
energy is taken to be zero, then the electronic partition function is close to unity.
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go* 20.1 Energy levels associated with different types of motion

Energy level* of tt molccule are given for various types of motion. Translational tnergy levels are very 
closely spaced compared with rotational energies. which are more closely spaced than vibrational energies. 
The energy level spacing shown is not to scale: these are juit meant to give a qualitative idea.

Translational Rotational Vibrational

ENERGY LEVELS

Translational energy levels of a particle of mass m in a box of sides lx, ly and /г (volume V = lxlyl.)  are 
specified by quantum numbers nx, n}. and nt :

и?h2 (п1ЛЛ\
v , 2 ц  pJ ’

£ «iJу ч  =  ( ,2 +  12 + tl ) ’ "*л Г пг -  l ' 2- 3 - - -  

in which ft *  6.626 x  10"94 J s is Planck’s constant.
Energy levels for rotation about an axis with moment o l  inertia I are specified by the quantum 
number L:

El  = ~ U L +  1), I  « 0 ,  1 .2 ,3 , . . . ,  g(£i.) =  2 / - + l  and ft =  И/2я

Vibrational energy levels of a diatomic molecule with reduced mass ц = + « 2 ) and force
constant к are specified by the quantum number v:

E„ =  f c » ( v + i ) ,  w = ][ ~ '  v =  0, 1 ,2 ,3 ,. . .
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'Пк energy of the nucleus is also quantized and the spacing i« so large that transition from an excn 
state to the ground state is through the emission of high-energy у rays or the ejection of a or p particles i 
latter being electron» or positrons). Transitions between nuclear states do not occur as a result of therm!j 
collisions between atoms and molecules, so wc can assume that the nuclei are in their ground states icxi 
for radioactive nuclei). However, at temperatures that are encountered in the interior of stars, transitu,,, 
between nuclear stales must be considered. Box 20.1 lists commonly used expressions for the energy itVl K 
in molecules. With these energy levels, the corresponding partition functions can be calculated.

203  The Boltzmann Probability Distribution and Average Values

To illustrate the use of the Boltzmann probability distribution (20.1.5) let us consider f? particles whose
energy can be any of the m passible values Et , E2, ... ,E m. At equilibrium, let , N2......./?„, be the nuinbe,
of particles in these energy levels, which implies /V =  +  /?2 +  — +  Л,„. The probability that we will find 
a particle in energy level Et  is proportional to the number of particles in that state. According to the 
Boltzmann principle:

g{Et )c-f:t / V  $
--------=  J  (20.3.1)

flk is often called the occupation num ber of the state with energy £*. From Equation (20.3,1), it follows that 
the relative number of particles in energy states Ek and E, is

J t . g w . ~ w

Thus, tlie ratio of occupation numbers is a function of the difference in the energies and tlie ratio of the 
corresponding degeneracies.

The average value of a variable or physical property can be calculated using the Boltzmann probability 
distribution. We shall denote the average value of a quantity X by {X). Thus, the average energy of a single 
particle (£) is

i** .
<£■) *  i l L _ _  =  £ EkPiEk) (20.3.3)

The total energy o f all particles is U =
More generally, the average values of any physical property X  can be calculated if its value in the state 

\Ek). which we denote by Xk, is known:

2M „
(X) -  H L —  = £  Xt/Щ )  (20.3.4)

N t» l
The average value of any function of X.J(X). can similarly be calculated using

£ / < * » Л
у д а>  = *=i— ------ =  £ / ( X * ) f t£ t ) (20.3.5)



m

(E2) = Z EkP(E*> (2 0 3 6 )
to)

flje standard ilovietion in E is defined as (AE)2 s  ((B — An elementary calculation shows that

(HE? s  ( ( f i -  (E))2) =  (£ J> -  {E) 2 (20.3.7)

In this manner, statistical quantities such as the average and standard deviation o f physical variables associated 
with an equilibrium system can be calculated. When an ensembk of systems is considered, the energy Ek is 
replaced by the total energy U,.

20.4 Microstates, Entropy and the Canonical Ensemble

^macroscopic thermodynamic state of a system corresponds to a large number of 'micro states', For instance, 
if the total energy of an ensemble of f i particles (molecules, electrons, etc.) in a volume V is specified, then 
this energy can be distributed among the f i particles in a number of ways. Each distinct distribution of the 
energy among the f i  particles corresponds to a microstate. We now show how expression (20.1.2) is derived 
from the fundamental formula

S =  JfcB lntV (20.4.1)

in which W is the number of microstates corresponding to the given thermodynamic state (also called a 
macrostate). To illustrate how IV is calculated, let us consider an ensemble of fi particle» each of which can 
be in any one o f tbe m states. These couldl be 'numbered particles’ on a crystal lattice. A microstate specifies 
the energy stale of each particle. As in the previous sections, we assume fit  particles are in a state with energy 
Ek. The number of microstates W is the number of distinct ways in which the fi particles can be distributed 
in m states. Vi can be calculated as follows (Figure 20.1). First, we note that if a particle, say particle 26. is

_______________________ £m
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рог sam ple . the average value of (E 1) is

*3
i  »  t ________________________ £3

f>2
•  • • • • • • ___________ f.2

fit
•  • • • • • • • »  El

figure 20.1 An ensemble of N particles distributed in m energy levels. Nk particles are in the energy level [ k 
*nd Pk = Nk/N Is the probability that a particle will occupy a state with energy [ k. The entropy of the system 
S = -fc*.
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in energy state £ 5 and another particle, say panicle 14, is in energy state E2, then an interchange uf ц, 
two particles gives a different microstate; but if both particles 26 and 14 are in the same energy stai^ ^  
E; . then interchanging them does not give a new microstate. Thus, only permutations that do not corrc.sp,^ 
to an interchange of particles with the same energy Ek correspond lo distinct microstates. The number 
possible permutatioas is /?! The number of permutations of particles with the same energy Ek is lik< n lu ' 
the total number of microstates W is given by

u/ # !
<204 ' 2)

The entropy S is

5 . t Bl n W - t B. n ( 5p ^ ! _ g_ )  (20A3)

We assume flk is lange. Then, for the term bi(/*?*!) we can use Stirling's approximation (see Appendix 20.1)

l n ( a l ) » a l n a - a  (20.4 .4)

Using this approximation one can show that (Exercise 20.1)

Since fli/f l  = Pk, tbe probability of occupying a state with energy £*. we immediately see that

5 =  *B In W = - i g #  ~kbR Y P k In Pk (20.4.6)

which is Equation (20,1.2) if we replace P(F.k) with Pk. We derived (20.4.6 ), the relationship between entropy 
and probability, from Equation (20.4.1) without any assumption about the system being in equilibrium. 
Hence, this definition of entropy is valid for nonequilibrium systems us well. Sometimes it is considered tlie 
definition of statistical entropy and used in contexts other titan thermodynamics, such as information theory.

In Chapter 5 we noted that the entropy reaches its maximum value when the energy o f a system U is 
constant. Now. we «how that the Boltzmann equilibrium distribution (20.1.3) maximize* S when the total 
energy is constant. In other words, we show (hat, with the constraint of fixed total energy, $  will reach its 
maximum value when Pk ос . This result can be obtained by using Lagrange's melhod of finding the 
maximum of a function subject to constraints. Our constraints are the constancy of total energy E and the 
total number of particlcs Л’. They can be expressed as

Ek(Slk/Sl) EkPk (20.4.7a) 
к к к

(20,4.7b)
к

in which we have used Pk = #*/#. Lagrange's method now stipulate» that, to maximize -  Pk In Pk with 
the constraint* (20.4.7), one needs to maximize the function

/  = -  £  Pk ln Pt  + A ( e  -  f l  £  + { ( t i  -  £  / Л  (20.4.8)
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mbicb Я and £ are arbitrary constants whose values can be determined by additional requirements. Now it 
^Egjgbtforw ard to see that the condition dlldPk = 0  leads tn the relation

1пЯ* -  -ДЛЯ* + 1 -  {

Д, a function of Ek. we can now write

Pk =  Ce-**» (20.4.9)

ia which С =  exp 1 -  {)  and p =  Xf). Thi* is essentially the Boltzmann distribution (20.12) once we identify
I = lftH/'. That fi must be llkBT can be deduced by calculating the average kinetic energy of a particle and 
equating it to 3k^T/2. us required by kinetic theory. Since =  I, we see that С «» Vq by comparing 
Equation (20.4,9) with Equation (20.1,3), Equation (20.4.9) is valid for every state that has energy Ek. Taking 
into account (lie degeneracy g(Ek), the probability that the system will occupy any one of the %(Ek) states 
with energy Ek cam be written as

/*(£() =  (204.10)

If each state with energy Et is counted separately, then the degeneracy factor need mot be included. In 
expression (20,4.6) the Pk values are the probabilities of occupying a particular state witb energy Ek.

204.1 The Canonical Ensemble

In the following ucctions we will sec that thermodynamic quantities of a system are calculated using the 
concept of a statistical ensemble. In deriving Equation (20.4.10) tt was assumed that the number of particles 

occupying « state к is large. This in a good assumption for rotational and vibrational Mates of molecules, 
but it is not valid for the occupation of translational states. Translational energies are very closely spaced. 
At ordinary temperatures, the average kinetic energy 3kaT/2 Is much larger than the energy spacing of the 
translational quantum states. For example, if we assume T =  29S K. then a simple calculation for N2 gas in 
a cube of side 10 cm shows (Example 20.1) that there are roughly 1029 states with energy less than ЗкйТ12. 
At ordinary pressures, this is much larger than the number of Ni molecules; hence, mose translational states 
are unoccupied. I’hus. we cannot assume chat Nk is large. In such eases we use the concept of an ensemble of 
systems. The energy U of each system in the ensemble is itself subject to fluctuations, and in that respect is 
similar to the energy of a single particle. The system's energy can take values C/j, J / j , ... with probabilities 
P\, P2- ; i.e. tbe probability P(Uk) that the total energy V of a system in the ensemble has a particular 
value Uk can be defined just as P(Ek) was defined for a single particle, Л is assumed that the thermodynamic 
properties of a single system are the same as the average properties of the ensemble.

One such ensemble is the canonical «ensemble shown in Figwe 20.2. It consists of a  large number f i  of 
identical systems in contact with a thcmial reservoir at a temperature T. In this figure, is the number 
of systems (not particles) with total energy Uk. Each system's energy can take values Vt  with probabilities 
P(Uk)- The thermodynamic energy of a system is the average energy calculated using this ensemble. With 
this formalism, we see that all the calculations done above for a single particle could be carried out for the 
canonical ensemble with the following result;

e « 5 y w  (204.U )
Q T

We note here that t/, is the total energy of al) the particles of the system al a given temperature T. Ih e  partition 
function Q of a canonical ensemble is called the canonical partition function The entropy of a system is

■S =  -fcB ^ k P<Uk)\nPtVk) (20.4.12)
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Figure 20.2 A canonical ensemble is a large set of N identical systems In contact with a temperature reservoir.
The system's total energy U can take many possible values, Uu U,...... Um. At any instant, tlie ensemble ы
systems is distributetl among the possible energy states, Nk systems with energy Uk. Pk = Nk/H Is the probability 
that a system's energy will be Uk. The entropy of the system S =  -N kB £ ,  Pk In Pk.

In the following section, we shall see how thermodynamic quantities can be obtained from these two 
expressions.

20.5 Canonical Partition Function and Thermodynamic Quantities

There is a general procedure for calculating thermodynamic quantities from the partition functions. The 
partition function for a system of ft particles is

in which we have introduced a convenient notation P = УкъТ. ГЬе total energy U{ =  in which
is the number of nvolccules in state к with «inergy Et . The superscript i indexes a particular set of whose 
total energy adds uji U) Ur  The value of each ft‘k can vary fiom 0 to ft, the total number of molecules in the 
system, but A'J «* ft. The entropy of tbe system is

(20.5.1)

S  -  - * B  £  W , )  l n / W | )  -  - * B £  P tU ,№ *~ >v'/Q )

-  - * B £  m X - P V ,  -  In Q) =  kbp  £  P(U,W, + *B •” Q X  (20.5.2)

V
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where we have use J  V »  HM^U,  and P{Uj) m 1, Prom Equation (20.5.2), it follow» that F  ш V  ~ T S -
t  r ln  Q- When we compute Q explicitly in the following nectttms, we will we that Q is a function of the 
® volume v . the temperature T and ft. Making this explicit, we write,у*1<да

F ( V ,r . f l ) = - k RTlRQ{V,T.Ft) (20.5.3)

The total energy V can also be calculated directly from the partition function Q. It is easy to verify that

(20.5.4)U =  -
d l n Q

dfi

Using Equations (20.5.3) and (20.5.4), other thermodynamic quantities could be calculated. For example, the 
chemical potential /< =  (dFldN)yT and p  = ~(dF/dV)N T.

20.6 Calculating Partition Functions

For simple systems, such as an ideal gas of noninteracting particle» and the vibrational and rotational states 
of a diatomic molecule. the partition functions can be calculated without much difficulty. In these cases, 
the partition function Q of tlie entire system can be related to Ше partition function o f a single particle or 
molecule. The calculation of the translatwnal partition function i» done as follows.

20.6.1 Translational Partitions Function

For a gas of $  identical noninteracting particles the total energy U, = Ff'yEk, in which £# is tlie translational 
energy of state and N'k are the number of particles in that state. We have already noted (Section 20.4) that 
translational states are sparsely occupied. Therefore, most of tbe are zero and tbe partition function for 
the translational states is a sum that looks like 

Q
«tram I f  (20.6.1)

g— 1+0«С2 + 1#Ез+1*£4+*‘*) ...

Tbe terms in this sum can be interpreted as terms in a  single-particle partition function. Eacbof the factors e_№  
is a term in the single-particle partition function q = J)* e"^* . Since the number of available translational 
states is much larger than the number of particles, an overwhelming number of terms correspond to only one 
particle in a translational state. Hence, the right-hand side of Equation (20.6.1) can be approximated as the 
(noduct of f)  partition functions q «= £  j. e~№' . However, as explained in Box 20.2, such a product will have 
Permutations between particles that are not in Omra- The overcounting is corrected by dividing q^ by fl\. 
This leads to the relation

(20,6.2)
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Box 20.2 Relation between q and Q

The approximation С^ащ = ¥ ? „ „ /# !  сев be made clear by considering 100 translational states occupy, t 
by two identical particles. Every pair of energy states that the iwo particles occupy correspond-, tl 
state of the system. In identifying distinct system states, every pair o f energies should be counted onh 
once; exchanging (he two particles docs oot result in a different system state because the particles ail 
identical.

E100

E99

♦ -----------------E34

---------------------- E,

-------------- U,
♦ ---------------Ej

------------------E,

(a)

Fw two paiticlex and 100 states, there are lOOx 90/2! «  4500 nyslcm states in which the two particles 
occupy different energy states, but there *re only 100 in which both particles are in Ihe ш п е system state. 
The corresponding terms in Q are

mo wo 100
Q  = T  T  +  У  ' - f i b

i>* Ы) Ы1

In the first term. I > к assures that each pair of energy states i* included only once. Tbe single-particle 
partition function q =  . Comparing Q with

100 100 too 100
q' st e -№  с~ ^  £~№i+Ek>

Ml k ~ l  i » \  k * \

we see thut, when i ф kt each pair of and occurs twice шп but only once in Q. In <p. exchange
ol particles if шип ted as a different system state. We compeiasate for this overcounting by dividing <7* 
by 2 ! and get

(b) g2 ,  m  100 . 100t, •  *'*•' ,vv *w ixJy/ , *w
57 = 5 X 2 У * е^ >  -  i  f

<=1 *»1 i?k *»l 2 Ы\
t  omparing (а) and (b), we set that they differ only in the second lerin, which correspond» to two particles 
in the same energy state. Since such states are far fewer than those in which (he two particle» are indifferent 
energy states, Ihe difference between (a) and (b) U not significant. The above argument can be extended 
to Ш particles by replacing 2! with Thus, when tlie number of available states far exceed» the number 
of particle», Qtmt =  <fa,ms/ ^ ' ls a ver>' good approximation.
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' our task now is to calculate the single-particle translational partitions function qttBm. As shown in Box 20.1, 
(br a IS®* °* particles with mass m in a cubical box of sides lt , ly , lv  the translational Xtates are specified by 
[he quantum numbers nt , ny. nt with energies

e -  i i**V< 8/«

Xo obtain ibe following sum is to be evaluated:

Щ Ь т . = X X X = £  t-W'tx/lx? £  e-fCtfi,/!,? £  e-W b /tz?
(«у»1 Л-»1 n ,« l lf,«l

in which С = Ir/Sm. Each of these sums can be approximated by an integral because the energy level spacing 
is very small. The sum over nx can be written as the integral (winch is evaluated using the table of integrals 
in Appendix 20.ly.

£  z~DCin.ll,)1 
n ,= l

, / e « > 4  -  \  '  -  |( 2 * « k Br )W

When similar integrals for ny and яг are evaluated, the partition f unction can be written as

tftraa. = ~ - ( 2 я т к вТ )3/2 =  ~ (2хт кнГ)3̂ 2 

in which the volume of the system V я  lxlyl.. The translational partition function of the gas is thus

(20.6.3)

(20.6.4)

This expression can be given another interpretation leading to another form in which 0 Tiins is often written. 
Since the average kinetic energy of a gas particle is 3*B772, the average momentum of particles at temperature 
Т 'щ (3mkBT)K . Tbe de Broglie wavelength (A =  hip) associated with this momentum equals h/(lmkh T)112. 
For this reason, a thermal wavelength A =  h/(2itmkbT)1!2 is defined (replacing 3 with 2я). In terms of A, 
the partition function Qnim can be written in the following simple form:

Str»» : I
fill La3 J

(20.6.5)

20-6.2 Thermodynamic Quantities

Fw particles that have no internal structure or for particles whose internal energy at the temperature of interest 
can be neglected, all the energy is translational (kinetic energy). A monatomic ideal gas is an example. The 
Helmholtz energy of a gas of such particles is

F(V, T ,R )  =  - * Br  Inmans =  - * в ^ 1 п  [ р ( 2я/пА-в Г)3/ 2] +  А:вП п/?!



Using Stirling's approximation. Inf#!) =  f l  In #  -  f), (he above expression can be written as 

F(V,T.Fl) =  - * ВГ { tf ln  [^ ( 2 * т * в Г)}/2] -  Я  In #  + Я }

= - к ьЯ Т  |  In |  J L ( 2* ,r fB7>V2j +  1}

Since the gas constant R = kbNA and amount in moles N  =  R/NA, (he above F can be expressed as
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F{V, T,N) — -RNT  | ln [ _ Z _ , 2̂ BD ^ ]  + 1 J

(20.6.6)

(20.6.7)

Other thermodynamic quantities can now be obtained from F. For example, since p  =  ~[dF/dV)T it follows 
that

(20 .6.8 )

which is the ideal gas equation. Similarly, since entropy S =  - ( dFldDvji> a simple calculation shows that 
the ideal gas entropy is

NNAh?
(2 лтп*в Г)3/г

5 R \  
' 2 /

(20.6.9)

This expression was obtained in 1911 by 0 .  Sackur and H. Tetrode in the early stages of the development 
of quantum theory. It is called the Sackur-Tetrode equation for the entropy of an ideal gas. It shows us 
that quantum theory (Planck's constant being its signature) gives the absolute value of entropy without any 
arbitrary constants. In Chapter 3 we derived the following expression for the entropy of an ideal gas:

S( V, Г, N ) »  N  [i0 + Я 1 n (  ̂  ) + Cv  ln r ]  

iparing Equati

\ 2яткь ? , г

(20.6.10)

in which s0 was an undetermined constant. Comparing Equations (20.6.9) and (20.6.10), we see that Cv -  
3R/2 and

j0 = J? 1 n 5R

We have noted that tlie energy U  of the system can be obtained from Q using relation (20.5.4), U = 
- (d in  Q /dfi\ in which /5 =  UkBT. Because ln Q  «= -F/k^T, using Equation (20.6,6), Q can be expressed in 
terms of p thus:

ln g  = ft | I n  |~ j ( 2 j r m /£ ) , ''2J + 11  

From Ihis. it follows that the energy of an ideal gas of particles whose energy is entirely translational is

0  = -  f # * Br  -  -NRT  (20.6.11)

From the fundamental quantities V  and S. all thermodynamic quantities of an ideal gas of structureless 
particles are obtained.
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j^roioleculen, we must consider energy and entropy associated with rotational motion. At ordinary tempera- 
pjcs, a large number of rotational states *bove the lowest energy *tatc are occnpied by molecules (this can be 
(jcn by comparing кйТ with rotational energy levels). For simplicity, we consider a diatomic molecule whose 
*toms have masse» mt and m2. as shown in Box 20.1. Since the n national energies arc *  ih2/2 I )H l  + 1) 
with degeneracy g(EL) m 2L +  1 , the single-molecule partition function is

0rot =  2 {2L + l)e - ',,"J/2f* <z'+l) (20.6.12)
IM)

For diatomic molecules with masses ntj and m2, the reduced mass // is delined as

20.6.3 Rotational Partition Function

(20.6.13)
m, + m2

If the distance between the two nuclei (bn»id length) is Л, then the moment of inertia /  is given by

/  =  pR2 (20.6.14)

To compare tlie rotational energy-level spacing with kBT, a characteristic temperature eM =  л2/2 Л в is 
defined. Then the rotational partition function qM is written ая

qm = £  (2 L +  1) t-U + M /T  (20.6.15)
Lm0

Using bond length data, and assuming ЛГ equals the bond length, the moment of inertia /  and ®rot can be

»
 calculated For Нг it is found that вю, *  87.5 К and 9tol =  2.1 К tor 0 2. At very low temperatures, i.e. when 
T «  0rot, this sum can be approximated by

=  I +  3 e '2e« / r  +  5 e 'M« / r  +  -  (20.6.16)

At high temperatures, i.e. when T ■» 0^,, the sum (20.6.15) may be approximated by the following integral:

Я м *  J  ttL + iy * ~ Uf* WmfT&L 

0<*
к  у  c - i a + w r j j ^  +1)] =  I

(20.6.17)
Г _  2 Л £  

h2

For diatomic molecules with identical atoms, such as H2 or N2. the quantum theory of identical particles 
•’ Stipulates thal oniiy half the rotational states are allowed. Hence, a factor of 2 has to be introduced in the 
№ denominator of live above expression. In general, when identical atoms are present in a molecule, a symmetry 

number a must be included in the expression for the partition function. Thus, tlie general expression for the 
Partition function for a rotation around a given axis with moment of inertia I is

f a ,  =  (20.6.18)

The symmetry number ry for a  larger molecule is determined by the symmetries of the molecule. It is equal 
to the number of proper rotations, including the identity', in the symmetry group of the molecule.



Molecules also haw vibrational motions that stretch and bend bonds. Each vibration is associated л lt!) 
frequency v =  со/2ж. Box 20.1 lists expressions for the energy levels for the vibrational motion:
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20,64 Vibrational Partition Function

• ho> ( v + i ) .  v =>0,1.2,... (20.6.19)

Using this expression, the partition function for vibrational energies can easily be calculated because n, 
energy levels are equally spaced. We shaE assume that the degeneracy of the energy levels is 1. Then, tin 
vibrational partition function is

<?vib =  f y
v=0 S a

where * =  e"^ft“ . Since x <  1, the series on the right-hand side сая be summed:

Thus, the single-molecule vibrational partition function is

9 i .b = e - W 2 _ _  ( 2 0 6 2 0 )

At ordinary temperatures, the level spacing between vibrational energy states is generally larger than the 
thermal energy kBT, Hence, only very few energy states higher than the ground state are occupied by 
molecules. As wa# done for rotational states, this aspect can be quantified by defining u characteristic 
vibrational temperaturc 0v(b =  hm/kR. Than the partition function (20.6.20) can be written as

^ - e - W 2r _ _ l _ _  (20621)

The characteristic vibrational temperatures for some diatomic molecules are:2

H2 N3 0 2 Cl2 HCI CO NO 
вф<К) 6210 3340 2230 810 4140 3070 2690 WU6 )

Thus, at T  in the range 200-400 K. only a  few of the lowest vibrational states are occupied. The charac 
teristic temperatures for electronic states are even higher, so electronic states are mostly in their lowest or 
ground state.

Combining all the partition functions far a diatomic molecule, wc can write

4 “  «tranWmttfvb =  ^(2*mfcBn 3/2~ ^ е - а« ь / г г / f  and Q »  ^  (20.6.23)

From this partition function, thermodynamic quantities V, p. fi, etc., can be calculated (see Exercises). The 
total energy of the isy«lem is the sum of energies in each mode of motion U =  f/№ s + (7го' + {Л* +  U**. 
The heat capacity Cv m (dUIST)v. By expressing V as the sum of energies, we can know the contribution of 
each o f tbe modes of motion, i-e translation, rotation, vibration, etc,, to the heat capacity Cv.

2Source: TL- Hill. hunxluctlim lo Siotlsika! ThermoitfHamict, I960, AddKon-Weatey: Reading. MA.
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20.7 Equilibrium  Constants

the formalism of statistical thermodynamics can also be used I» relate equilibrium constant* of chemical

дг equilibrium, the chemical potential» o/X and Y are equal. We use the subscripts X and Y  to represent the 
quantities for the two species. The chemical potential of X  is fix M t^ x ^ x lr.v ^  and since Fx — -k^T\n Qx, 
in which Qx “  $  we 0311 establish a relationship between the ifx and /ix Here, /? is the number of 
molecules and N is the amount in moles. Since Q is expressed a* a function of fl, we mute that nx = ld/-’x/ 
AVX)= (dFxMfixydflx/dN) = NA(dFxftfx).

When considering a system of reactants and products that interconvert, care must be taken to Use the same 
scale of energy for all molecules when computing partition functions. In the calculations of q presented in 
the previous sections, generally the zero of energy was taken to be the lowest energy ‘>r ground state of that 
molecule. When more than one molecule is involved, their energies must be measured using a common zero. 
The lowest energy of a molecule can then; have a nonzero value with respect to the common zero. As shown 
in Figure 20.3. the lowest energy states of X  and Y  can be different. We shall use £* and £y to represent the 
lowest energies of X  and Y. respectively, in the common energy scale. This means that th* energies of X  will 
all get an additive term and this in turn adds a factor exp(-^E^) to qx. Thus, with respect to the common 
zero of energy:

(20.7.2)

The Helmholtz energy F  is

Fx -  —kRT\nQx ** ~кйТ (ftx ln <7X - Flx In # x + - /Wx£^ ) (20.7.3)

and a simple calculation shows thatshows that

(20.7.4)

E,

X

figure 20.3 tnergy levels of two molecules X and Y on a single energy scale, £j and i °  are the ground states on 
single energy scale.



This expression relates the chcmical potential to the partition function and the number of molecul, 
can invert this equation and write
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К Чх*
*-ArA£®)/*r

or in units of mole* of X:

in which t/ox = NAf t .

= I *  e<*-f/* )/R7'
" a

les ^  We 

<20.7. J

<20.7.6)

As a side remarft. we note here that for a monatomic ideal gas qx ~ (У’/*3Х2«»Лв Г )зд. Using this 
expression in Equation (20.7.6), we find

NAh> (20.7.7)

Thus, the molar density is related to the chemical potential. Equation (20.7.7) is the same as relation (12.6,4) 
if we identify ziT) in (12.6.4) with (1 /Л?д Л 1 and t/0 with M ĉ .̂ When the chemical potential is zero, the 
molar density is a function of Г  only.

For the reaction X  Y, let us assume when equilibrium is reached that the moles of X  and У are Nx 
311(1 ^Y.eq respectively, Using Equation (20,7.4) and equating the chemical potentials of the two species, we 
obtain

w - -и h f e )  -« I -"—и K if e )  - «?
This expression can be rewritten as

N.V.«)
Vx,«,

, ‘/ 1 ^ л е~<Рп-иак»/ЯТ
4x/NA

(20.7.8)

in which C/ox =Л'Д£^ and (/0Y = NAPy, Since the equilibrium concentrations [Х Ц  =JVX /Vand (Y |cq = 
we can relate the equilibrium constant K„ a  lY l^/J X ]^  to the partition functions:

= " W ?  _ 4\/N\v sUb/Rr 
[ Х )« ,  NXm/V qx/NAV (20.7.9)

in which ДU0 = Ugy -  t/ox is the difference in the ground-state energies of the reactants and products. The 
above result can be generalized to the reaction

eX + ftY ^ c Z  + rfW

AT = .  < fe / W < « w W '- u u n
C KIJ.IY]*, iqx/NxVn<ty/NAVf

(20.7.10)

(20.7.11)

in which ДС/0 *  (cU<xt. + ~ at/nx - bUw ). Thus, if tbe partition functions and the ground-state 
energies of the reacting molecules are known, the equilibrium constants can be calculated. The term&V0 is 
very nearly the heat released in the reaction; l.e. it is essentially the reaction enthalpy.
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20.Л Heat Capacities of Solids

к  Chapter 6 we noted that the heat capacities of solids at low temperature* are proportional to P . This 
experimentally established. At high temperatures, experiments showed that the molar heat capacities of 

^ s t  solids were nearly the same, close to 3R. The latter i» called the law of Dulong and Petit, after the 
nineteenth century physicists who proposed it. Classical theories of solids could not explain the behavior at 
low temperatures Only the use of quantum theory was able to explain why the molar heat capacity of a solid 
(jjcreased when tbe temperature decreased. During tbe early years of quantum theory, the first explanation 
of the observed low temperature behavior of heat capacities using the then new ideas o f energy quantization 
дате from Einstein. Einstein’s theory was a big step toward theoretically explaining experimentally observed 
behavior at low temperatures. However, it»predictions did not agree very' well with experiments because of the 
simplifying approximations Einstein made. An improved theory was formulated by Peter Debye (1884-1966) 
which was able tc  explain the low temperature '73 behavior’. We shall look at both theories.

20.8.1 Einstein's Theory of Solids

Solids have a crystalline lattice structure in which atoms are arranged as a regular crystal array. The kinetic 
energy of each atom is in its vibrational motion about its position in the lattice. Tb understand tlie heat 
capacity, we need to calculate the energy of the crystal; i.e. we need to calculate the total vibrational energy 
of all the atoms in the solid. Einstein made the simplifying assumption that all atoms vibrate at the same 
frequency v and that energy levels of the vibrational motion are that of a simple harmonic oscillator:

E„ m hvfn + 1/2)- "  = 0.1,2...... (20.8.1)

Since the probability of an atom’s energy being E „ is proportional to ехр[-£„ЛвГ|, the partition function, 
Qx, for vibration along the x axis is given by the expression:

Q  _  e-W *v/J) у  t - fH rm  _  e-tf*v/2)---- 1---- 1 P  =  J —  (20.8.2)
1 -  кйТ

Tlie same expression holds for the partition functions Qy and Qr for vibrations along th* у and zdirections. 
The total partition function Q = Qx £>v Q.. The average energy V  of an atom, vibrating with a frequency v 
can now be obtained using the general relation (20.5.4):

U a  + - Jjfr '.-  (20.8.3)
dp 2 eW  -1

to a solid consisting of one mole of atoms, the total energy is jVA(/. The molar heat capacity CmV = NA(dU/dT)y 
can now be calculated. The result is

- v  (M \  „  3* vihv/kbT2* * *  3R(hvp)2 
А \д Г/у  A (e * ^ - l)2 "  (ek»W2 _  e-(rv//2)2

in which we have used JVAikB = R  and rewritten the denominator so that the final expression can be written in 
the form:

CmV(D  = 3 R (20.8.4)
mV |sinh(liv/2A-BD F

It is easy to see that CmV 0 as T -» 0, in agreement with experimental observations. For very large values 
of T, the value of CmV approaches 3R in accord with the law of Dulong and Petit.
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20.8.2 Debye’s Theory of Solids
Though Einstein's theory shows that Ihe quantization of the vibrational energy is behind the observed |„w 
temperature behavior of the molar heat capacity, the assumption that all atoms vibrate with Ihe same frequcn 
is not physically realistic. In fact, the atoms vibrate with a range of frequencies given by the norma] 
of the large vibrating solid. The normal vibrational modes in a solid are collective motion of atoms in wln^' 
the atom positions have a wave form. When the volume of the solid is finite, standing vibrational modes щ 
established such that the waves have zero amplitude at the boundaries. For simplicity we shall consider 
rectangular solid of sides lx, ly and lv 

Tbe standing waves can be represented by a function W as

W ^ . ^ s i .  ( ^ ) v i n  ( ^ ) ^ n  ( x )

The boundary conditions that W must be zero at л = 0 and x = and similarly for у and z. implies that

Я, Ay A
lx ■ ly B  ny~2 and lz s* nz j  (20.8.5)

in which nx, nv and и., are positive integer*. The product of the wavelength A and the frequency v equals ihe 
velocity С  of the sound wave in the solid in a particular direction, Vibrational motion in solids, however, has 
three independent modes: two transverse modes, in which tlie vibration is perpendicular to tlie direction of 
wave propagation, and one longitudinal mode, in which the vibration is parallel to the direction of propagation 
In general, the transverse and longitudinal modes have differing velocities, which we shall denote as C, and 
C; respectively. I laving made a note of this, let us calculate Ihe number of states in the frequency range v and 
v + dv for each mode.

From (20.8.5) it follows that the vibrational states are characterized by frequencies
С С С

Vjr = "* 2Г ' УуЖПу2Г and vt mn^2T (20.8.6)

С being the velocity. С, or C(. Note that the frequencies representing each standing mode are positive numbers 
We may visualize these frequencies as points in a three-dimensional lattice with one lattice point in a volume 
equal to — (C*/8V), in which V is the volume of the solid. We shall write the number of states in
the frequency range v and v + dv as p(v]dv, in which p(v) is the density of states. The term />(vKiv can be 
computed as the number of lattice points in the spherical shell of radius v and width dv:

, . , 1 4 л  i  j  rtv)dv =* --
8 (C 3/8V)

The 1/8 factor is included because vt , Vy and v. should be positive. For the two transverse and one longitudinal 
modes, the total density of states of the solid is

p(v)d* «  4 * V  j  —  + —  ) t/2 dv (20.8.7)

In a solid of N atoms, there is an upper bound to the frequency, which we shall denote by vI)>x. For a solid 
with N atoms, there are a total of 3N independent modes of oscillation*. Hence:

-22» =3 N



jjsing this relation, we can rewrite (20.8.7) in terms of

В  Mv)dv= -^Lv^dv (20.8.8)
VL

•fc calcu late  the total energy distributed ii* all the modes of vibration of the N atoms, we begin by noting that 
average energy in each mode of frequency v is equal to one-third of the expression (20.8.3) (which is for

torce independent modes):
... . hv , Av U (v ) ж —  + ■
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2 T eM _ i

The total energy f/tol in all the available modes is therefore obtained by integrating this expression using the 
density of modes given in Equation {20.8.8). Thus

{ т  + Ж г У ^  (20-8-9)
max J

As before, an expression for the molar beat capacity can be obtained by taking the derivative of UM with 
respect to T:

It is easy to see that this expression can b« rewritten as
fihvma),

I  г  W * k* Г **dx
I E  mV~U>h^x>' j  ( ^ - e - V 2)2»

It is not possible «о express this integral in a closed from, but we can see that it is a function of Phvms. For 
solids, a characteristic temperature called the Debye temperature is defined as

e D = — EES. (20.8.12)
%

By combining all terms in Equation (20,8.11) involving the heat capacity is written in terms of 0 D
®d a Debye (unction D (&0/T):

CmY ж З Ш в ц Т Г )] (20.8.13)

w a * b  /  * 4 dx (2 0 .8 .1 1 )

In which

3 /  X*d*
0 (в о / Г ) = * (^ V|mi)3 J (e*/2_e-*/2)2'

Tbd properties o f the Debye function have been studied and it can be shown that it has the following limiting 
[behaviors:
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A s(0d/D  -> 0, D (B0/T) -* 1
and

A . ( « W D  -  00, Di&o/T) -* ( i - )  o o .8 . j 4 )

This limiting behavior of the Debye function implies that, at high T, ihe heal capacity CmV approach,.. ,jlc 
Dulong and Petit value of 3R; for low T. however, it decreases as T9. It is this latter ' I е law' that 4as 
in close agreement with the experimentally observed values of heat capacities. It is sometimes called the 
l)ebye T3 law.

20.9 Planck’s Distribution Low for Thermal Radiation

In radiation in thermal equilibrium with matter, the energy is distributed among all Ihe frequencies, which 
range from zero to infinity. According to classical electromagnetic theory, each of these modes must have 
some energy. An increase in the temperature T would imply an increase in the energy of ad the modes. Since 
the frequencies range from zero to infinity, this impUes that the energy density of radiation must be infinite, 
as must the heat capacity. It was to address this problem that Max Planck introduced the quantum hypothesis 
In doing so, Planck used one of the most powerful aspects of thermodynamics: its univen-ality regardless of 
the complexity or simplicity of the system. Radiation in thermal equilibrium with matter at a temperature T 
w ill have the same properties regardless o f Ihe type of molecules ills  interacting with. Hence, any deductions 
made about thermal radiation interacting with idealized oscillators will also be valid for radiation reacting 
with complex molecules. Thus. Planck assumed that the oscillators absorbing and emitting radiation were 
simple harmonic and introduced the quantum hypothesis that the energy absorbed or emitted is in quanta 
of energy E  = hv. It became clear from later development of quantum theory that electromagnetic radiation 
itself is quantized afld that it had particle properties, the particles we call photons.

To calculate the energy density of thermal radiation, the well-known Planck distribution, we shall assume 
that the radiation i* in a rectangular box as standing waves. Mathematically we may treat these standing 
waves just as we treated the vibrational modes in a solid. Thus, tbe number of frequencies in the range v and 
v + dv for each independent mode is given by the expression

Vdjr ,
p(v) dv *  —— v d v  (20.9Л)

c3
in which V is the volume of the box and с is the velocity of light. Since electromagnetic waves are transverse 
waves, there are two independent modes corresponding to two independent states of polarization. Hence, for 
thermal radiation wc must use

VRjtp(v) dv *= —r-v2 dv (20.9.2)
c3

Using energy levels of a simple harmonic oscillator, Av(l/2 + n), for the eneigy of the eachmode of radiation, 
we can write the partition function for the mode with frequency v:

0C
q  = e-<**v/J> V  t ~fhm = --- L _ ,  fi m - L  (20.9.3)

1 - e * " v kBT
As was done in the case of Einstein's theory of solids, we can calculate the average energy in each mode of 
frequency v, obtaining the expression:

... . Л1п( 0  hv hv*/ (V ). (20.9.4)
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f a  gut term is tbe zero point energy, which does not contribute to thermodynamic properties of radiation 
taougb it is real and its presence can be seen in physical phenomena). We shall lher«fore drop It in the 

K jres«ion  fr* the energy. Combining Equation* (20,9.2) and (20.9.4}. we can now write the energy density,

J(v ) *  t/(vyV,« ( ---------
g/th v3civ 

M(v)dv f  -
(20.9.5)

Tbis is the celebrated expression Planck derived for the energy density of tbermal radiation. The quantum 
Wpothesis makes the energy density finite because the modes of higher frequencies require higher energy 
quanta to increase their energy. Hence most of the very high frequency modes are in their ground state. This 
is in contrast to classical theory in which the energies of mode of all frequencies can be increased equally

with heat.The properties of thermal radiation that were discussed in Chapter 11, such as the Stefan-Boltzmann law 
and Wien’s displacement law can be derived from the Planck distribution. R>r example, the total energy

density over the eetire spectrum of frequencies is
L 00 <X>Щ j  "(v)dv = 7Г  /  ̂ T T dv (2a96)

The integral can be evaluated by defining x = fihv and rewriting the integral in terms of x. The result is

“ tot
7 ««к I  _ il_ d x  (20-97)

■ / M(v)dv = T m ? /  o' - 1

The integral over x can be evaluated in clesed from (using tables or Mathematica). It equals (*4/15). Thus, 

the above expression becomes
-■  / лх a Л *

«,« = /  u<v>dv = V 15 / 15 c h ~
о

which shows that the total energy density of thermal radiation ii proportional to Г*, which is the Stefan- 

Boltzmann law,To derive Wien's displacement law from the Planck distribution, we first write the energy density in terms 

of the wavelength A = c/v.
■  «(A)d A - t a k - g " -  (20.9.9)

This expression can be written as a function of TX by defining у  = TX. writing the energy density as a function 

of y:

К м(у) «= 8 x h c T -------elx/h t -  1

This function reaches its maximum value at a particular value o f y, say yms, independent of the value of T  
(thougb the value of the function at tbe maximum depends on T). That is the maximum is reached when

I :  П т и - У т и  (20.9.10)
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which is Wien's displacement law. The value o (ym i = 2.8979 x Ю" 3 m K. Similarly, other thermody,, 
properties of thermal radiation can be derived from the partition function using the methods оойпы'"'’' 
this chapter. 1 ln

Appendix 20.1 Approximations and Integrals 

A20.1.1 Stirling's Approximation

When N is a large number. N'. is a very large number. One can estimate the value of У? using Stirlm.. 
approximation: b

N\« NNe~N'/Zxn (A 2 0 .1 . , ,

Using this approximation, we see that

InM  = ЛМпЛГ-А'-|-(1/2)1п<2л'ЛГ) (A20.1.2)
For large N. the last term in Equation (A20.1.2) is small compared with the other two terms and it can be 
neglected. The resulting expression InNlat N\nN - N has been used in this chapter. One could also arrive 
at this result by using the approximation

f1пЛН= £ l n i «  / lnydy=  (y ln y- y )|* ' =*N\dN - N  + 1 (A20.1 1)
M  {

in which the sum i< approximated by an integral, an approximation valid for large N.

A20.1.2 Integrals used in Statistical thermodynamics

о
00

f  xe-^dx .  i  
J  а
о

(a)

(b)

<d)

Mare generally;

(e)

<f) j

00

f  jr’e '^ d r *  ~
J  2a2
о

00

J  2"+,a’  \a>о
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p im p le

Example 20.1 № r the gas N2 in a cube of side 10.0 cm, at T = 298 K, estimate the number of translational 
states that are bekiw 3kbTI2 and compare this with the number of molecules in this cube at p = 1.0 bar.

Solution The translational energies for a cube (lx = ly = lz =* 1) are given by (Box 20.1)

В   ̂ £"*V<  = Щ 2  ( " ? + "v + "z )

The value of n1 «  n j + « J + n* for which the energy is 3kaTI2 is

2 3*B7~
”  н у ш 2

I  Substituting value» къ = 1.38 x Ю' 23 J К -1. T = 298 К, h = 6.626 X lO' 34 J s, m = (28 X 10~3W A) kg and 
/ = 0.1 m, we find n: = 5.2 x 1019. That means all quantum states in the sphere of radius n have energies less 
than 3 iB772. Since only positive values оi  nx, ny and nz must be included:

Total number of states with energy E  < is i ^ n 3 =* ^ — (5.2 X 1019)^ ' я  1.96 x 1029
2 о 3 о 3

.  N tjtV  x 1.0 x  105Pax  10~3 m3 
Number of molecules ft = ~ ---------Д x 298~K------- = X

This calculation shows that the number of available translationall states is much higher than the number of 
f particlcs in a gas at ordinary pressure* and temperatures.

Exercises

20.1 Obtain liquation (20.4.5) nsing Stirling's approximation.
20.2 Using an H -H  bond length of 74 pm and an ( X )  bond length of 121 pm, calculate the characteristic 

rotational temperatures for H i and 0 2.
20.3 Using ?vib = e-^*°/2[l/ (l - е'-,Ии')] show that
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(Г * ь) = ho> (  - + ..■ )\2 1_ е-л®/*вг /
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20.4 In earlier chapters we have expressed the chemical potential of an ideal gas ц = ца(Т ) + fri k .
(in which p0 is Ihe pressure of the standard slate). In expression (20.7.4) the chemical potentif ■l) 
expressed in terms of the partition function and other molecular quantities. For a monaton,, 18 
rewrite (20.7.4) in the form ц = /Д Г) + Нрф о) and identify A T ) as a function of T.

20.5 The bond length of H2 is 74 pm. <a) Calculate the moment of inertia and express the rotatio 
partition function as a function of T. (b) Obtain an expression for its molar eneigy as a function ■ >
(c) Calculate 4hc molar heat capacity.

20.6 Calculate the equilibrium constant for the reaction H2 ^  H + H.



21
Self-Organization and Dissipative 

Structures in Nature
\

21.1 Dissipative Structures In Diverse Disciplines

21.1.1 Limitations of the Local Equilibrium Assumption

Before presenting the diverse situations in which dissipative structures are known to appear, let us note the 
limitations of our method. The method based on local equilibrium that we followed i* satisfactory in a large 
domain of experimentation and observation. Still there are situations where some extension and modification 
are necessary. Let us enumerate a few of them.

To begin with, wc have rarefied media where the assumption of local equilibrium is not valid. The 
average energy at each point depends on tfce temperature at the boundaries. There are important situations in 
astrophysics that belong to this category.

We then have Che case of strong gradients where we expect linear laws, such as the Fourier law for 
heat conduction, lo fail. Experiments in these situations are difficult to perform and a general theoretical 
description, as in the case of the Fourier law, does not exist. Attempts to introduce such nonlinear out
comes into the thermodynamic description lead to the ‘extended thermodynamics; [1] already mentioned 
in the text.

Finally, we hav* very interesting memory effects that appear for long times (as compared to characteristic 
relaxation times). This field started with important numerical simulations by Alder and Wainright [2), who 
showed that nonequilibrium processes may have 'long-time tails’. In other words, the approach to equilibrium 
is not exponential as it was generally thought to be but polynomial (e.g. f-3/2), which is much slower. To 
understand this effect, consider a molecule we set in motion with respect to tlie medium; its momentum is 
transmitted to the medium, which in turn reacts back on the molecule. This leads to memory effects, which 
are discussed in many papers [3,4). As a result nature has a much longer memory of irreversible processes 
than it was thought before. Again this shows that local equilibrium is an approximation, albeit a very 
good one.

However, already the formulation of nonequilibrium thermodynamics as used in this book has led to 
innumerable applications in most diverse fields. To whet the appetite of the readers, we «hall quote a few of 
them, but the list is far from being extensive.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi sen! Ilya Prigogine.
® 2015 John Wiley A Sons, Ltd. Published 2015 by John Wiley & Sons, Lid.
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21.1.2 Material Science

Concepts such as fluctuations, dissipative structure and self-organization play an essential role in import;,,,, 
advances in this field. A good introduction is given by Walgraef [5,6]. Through new technologies (laser a„,| 
particle irradiation, ion implantation, ultra fast quenches) it is now possible to produce materials in highl\ 
nonequilibrium conditions - and thus escape from the tyranny of the equilibrium phase diagram. Here are 
some examples studied in Walgraef s book::

• Materials such as quasi-crystals, high Tsuperconductors, semiconductor heterostrucmre* and superlatticcs 
are typical examples of nonequilibrium materials.

• It is now possible to produce complex structures or composites that simultaneously satisfy very divers 
requirements. Tfo do so, one has to control the material on length scales that vary from the atomic to the 
micrometcr level. Self-oiganization is a precious ally for the design of such materials.

• Many materials arc used in very hard conditions: they are submitted to deformations corrosion, inadiation 
and so on. In such conditions, their defect populations acquire complex behaviors described well by 
reactlon-diffusion equations, and may Iherefore become organized in very regular structures that affect 
their physical properties. It is also clear now that instabilities and patterns occur all the time in materials 
science. They affect the properties of the materials and, hence, need to be understood end controlled.

• It is well known that defects play an important role in determining material properties. Point defects play 
a major role in till macroscopic material properties that are related to atomic diffusion mechanisms and 
to electronic properties in semiconductors. Line defects, or dislocations, are unquestionably recognized 
as the basic elements that lead to plasticity and fracture. While the study of individual solid-state defects 
has reached an advanced level, tlie study of collective behavior of defects, which arises in nonequilibrium 
conditions, is still in its infancy. Nonetheless, significant progress has been made in dislocation dynamics 
and plastic instabilities over the past several years, and the importance of nonlinear phenomena has also 
been assessed in thin field. The dislocation structures have been observed experimentally.

Curiously, the instabilities and self-organization that occurs in far-from-equilibrium systems as a result of 
basic physical processes, such as chemical reactions and diffusion, also occur at a much more complex level 
of living systems. A mathematical modeling of these complex systems also consists of irreversible nonlinear 
equations. A basic feature in all these systems is the possibility of amplification of small fluctuations 
under certain conditions, which makes the system unstable. These systems undergo instabilities often due 
to autocatalytic processes and make a transition to states with distinctly different organization. Thus the 
paradigm of ‘order through fluctuations’ also holds here.

21.1.3 Multicellular Systems

One example of pattern fonnation in complex systems occurs in the life cycle of the Dktytostelium dis- 
coideum. Figure 21.1 describes the life cycle of this species. In (a), the amoebas are at the unicellular stage 
They move in the sumiunding medium; the)' feed on such nutrients as bacteria and proliferate by cell division 
Globally speaking they constitute a uniform system, inasmuch as their density (number of cells per square 
centimeter) is essentially constant Suppose now that the amoebas ше subjected to starvation; in the laboratory 
this is induced deliberately, in Nature il may happen because of less favorable ambient conditions. This is 
tlie analog of applying a constraint in a physical or chemical experiment Interestingly, the individual cells 
do not die. Rather, they respond to the constraint by aggregating (b) toward a center of attraction. The initial 
homogeneity is broken; space becomes strtictured. The resulting multicellular body, the ptaamodium (c). is 
capable of moving, presumably to seek more favorable conditions of temperature and moisture. After this
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(a)
Isolated Ameba

migration the body differentiates (d) and gives rise to two kinds of cells, one of which constitutes the stalk 
and the other u fruiting body within which spores are formed. Eventually the spores arc disseminated (e) in 
the ambient medium, and if the conditions arc favorable they germinate to become amoebae and the life cycle 
begins again.

Let us investigate the aggregation stage in more detail. The following phenomena are observed during 
this process. First, after starvation some of the cells begin to synthesize and release signals of a chemical 
substance known as cyclic adenosine monophosphte (cAM P) in the extracellular medium. The synthesis and 
release are periodic, just as in the chcmical clock of the BZ system, with a well-defined period for given 
experimental conditions. The cAMP released by the ‘pioneer' cells diffuses in the extracellular medium and 
reaches the surface of the neighboring cells. Two types of events are then switched on. First, these cells 
perform an oriented movement called chemotaxis toward the regions of higher concentration of cAMP, i.e. 
toward the pioneer cells. This motion gives rise to density patterns among the cells that look very much like 
the wave patterns in the BZ  reagent <Fig*e 21.2). Second, the jwocess of aggregation 1» accelerated by the 
ability of sensitized cells to amplify the signal and to relay it in the medium. This tnaMes the organism to 
control a large territory and form a multicellular body comprising come 105 cells.

Thus, the response to the starvation constraint gives rise to a new level of organization resulting from 
the concerted behavior of a large number of cells and enabling the organism to respond flexibly to a hostile 
environment. What are the mechanisms mediating this transition? Let us first observe that tlie process of 
chemotaxis leads lo an amplification of the heterogeneity formed initially, when the pioneer cells begin to 
emit pulses of cAMP. Because it enhance* the density of cells near the emission center, chemotaxis enhances 
movement of die other cells toward it. This constitutes what one usually call» a feedback loop, very similar 
to chemical autocatalysis.

As it turns out, a second feedback mechanism is present in Dktyosielium discoideum that operates at the 
subcellular level and is responsible for both the periodic emission of cAMP and the relay of the chetnotactic
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Figure 21.2 Concentric and spiral wave patterns of aggregating Dictyostelium discoideum cells. Periodic pro
duction of cAMP (shewn in Figure 21.3) causes this pattern formation.

signal. This mechanism is related to the synthesis of cAM P by the ccll. cAMP arises from I he transformation 
of another important ccllular constituent, adenosine triphosphate (ATP), which (through it* phosphate bond) 
is one of the principal carriers of energy within living cells. The ATP -* cAMP transformation is not 
spontaneous however: • catalyst is needed lo accelerate it to a level compatible with vital requirements. In 
biological systems, the tasks of catalysis is assumed by enzymes. Some enzymes have a single active site that 
the reactants must reach in order lo transform into products. However, in many cases there are cooperative 
enzymes, which have several sites; some of the sites are catalytic and others are regulatory. When special 
effector molecules Ibind to the latter sites, the catalytic function it considerably affected. In some cases the 
molecules reacting with or produced from die catalytic site may also act as effector molecules. This will 
switch on a feedback loop, which will be positive (activation) if the result is the enhancement of the rate ol 
catalysis, or negative (inhibition) otherwise. The enzyme that catalyzes ATP -* cAMP conversion is called 
adenylate cyclase and is fixed at the interior of the cell membrane, Il interacts with a receptor fixed at the 
exterior phase of the membrane in a cooperative fashion. The cAMP produced diffuses in the extracellular 
medium through tlie cell membrane and can bind to the receptor and uctivate it, as shown in Figure 21.3. In 
this way it enhance* its own production, thereby giving rise to a feedback loop capable of amplifying signals 
and of inducing oscillatory behavior.

21.1.4 Geological Systems

Hiere have also been promising application* of ideas of sctf-organlzation to geology (7] In numerous 
geological deposit* spectacular regular mineralization structures are observed at a variety of space scales 
metamorphlc layer» millimeters to meters thick, granites of centimetcr-*cale structure, agate» with millimeter 
to centimeter-wide bands, and others. Figure 21.4 shows an example of patterns in geological formulation The 
traditional interpretation attributes these structures to sequential phenomena, tracing the effect of su cce s s iv e  

environmental or climatic changes. It appears, however, that a more satisfactory interpretation would be to 
attribute them to symmetry-breaking transitions induced by nonequilibrium constraints.

J
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figure 21.3 OscHlatory synthesis ofcAM P In slime mold Dk:tyostclium discoideum and its diffusion out of 
the cell.

\  1 /  
cAMP

figure 21.4 Geological pattern formation.
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A n t Nest

Figure 21.5 Bifurcation in the behavior of social insects such as ants can be seen in their choice of a path to ti*. 
food source.

21.1.5 Soda! Insects

Many other examples may be found in the literature. Bifurcations can be found in the behavior of social 
insects as well (8—11 ], Suppose we realize the following situation. There is a nest and food sources with two 
identical bridges of equal distances leading from the nest to the food source (Figure 21.5). At first, the same 
number of ants are traveling on the two bridges. After some time, practically all are found on the same bridge 
due to the chemical substance 'pheromone*' and their catalytic effects. Note that which bridge will be used 
is unpredictable. This corresponds to a typical symmetry-breaking bifurcation.

21.1.6 Periodicity In Climate

The climatic condition» that prevailed in the last two or three hundred million years were extremely different 
from those of the present day. During this period, with the exception of the Quaternary era (our era. which 
began about two million years ago), there wo* practically no ice on the continents and the sea level was about 
80 meters higher Ihan at present. Climate was particularly mild and the temperaturc differences between 
equatorial (25—30 NC) und polar (8-10 °C ) regions were relatively lower.

It was during the Teritary era, some 40 million years ago, that a sharper contrast between equatorial and 
polar temperatures hegiin to develop. In the relatively short time of 100 000 years, the sea temperature south 
of New Zealand dropped by several degree*, This was probably tbe beginning of the Antarctic current, which 
reduces the exchange of heat between high and k>w latitudes and contributes to a further cooling of the masse s 
of water ‘trapped’ in this way near the polar regions. Once again, wc see a feedback mechanism In action.

At the beginning of the Quaternary era this difference was suffictently important to allow for the formation 
and maintenance of continental ice. In the northern hemisphere a series of glaciations took place in an 
intermittent fashion, sometimes pushing the glaciers as far as the middle latitudes. These climatic episodes 
present an average periodicity of about 100 000 years, though with considerable random-looking variations, 
as shown m Figure 21.6.

The last advance of continental ice in the northern hemisphere attained its maximum some 18 000 years 
ago. and its relics arc still with us. While the amount of continental ice today is about 30 million cubie 
kilometers, confined essentially to Antarctica und Greenland, there was at that time about 70 to 80 million 
cubic kilometers covering, in addition, much of North America and Northern Europe. Because of the huge 
quantities of water trapped in Ihe glaciers, the sea level was some 120 meters lower than today. Since then a 
large part of the ice has melted, thus defining tbe coastlines and most of the other features of the present-dav 
landscape. The fact that our ecosystem is unstable makes il difficult to separate the ’anthropic signal' from 
the spontaneous evolution of the system.
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Global Ice Volume (proxy record)

figure 21.6 Variation of global ice volume during the last I mlWon years, inferred from oxygen isotopes.

In conclusion, we cannot escape the feeling that we live in an age of transition, an age that demands a better 
understanding of our environment. We must find and explore new resources and achieve a less destructive 
coexistence with Nature. We cannot anticipate the outcome of this period of transition, but it is clear that 
science and especially nonequilibrium thermodynamics is bound to play an increasingly important role in 
our effort to meet the challenge of understanding and reshaping cur global environment.

21.2 Towards a Thermodynamic Theory of Organism*

In the previous section, we have seen bow wide spread structure» created by dissipative processes are in N ature. 
However, we do not have a satisfactory thermodynamic understanding of the most spectacular dissipative 
structure of all: the biological organism. In Section 19.6, we have noted a few fundamental differences 
between dissipative structures and designed structures, the Utter referring to machines or computers. Upon 
reflection, it is clear that Newtonian science, based on reversible laws, has put us on the path to Ihe world of 
machines that we inhabit - a world that is very different from that of organisms. ’Ihe difference, arguably, is the 
difference between reversible mechanics and irreversible thermodynamics. Let us explore this fundamental 
difference in some detail.

The organization of a machine, its structure and function, come* from processes external to it. So when we 
encounter a machine that we have never encountered before, taking it apart and analyzing how its components 
are made and arranged also gives us a way to build one - assuming we have the necessary external processes 
we call ‘technology'. Not so with organisms, as noted by the theoretical biologist Robert Rosen [12], We have 
been analyzing the structure and organization of a living cell for well over a century, and J  though we have an 
immense knowledge of its makeup, all the way down to the molecular level, we do not know how to build a 
living eell or eve* one that vaguely resembles one. Why this difference between machines and organisms? It 
is because the processes that bring about an organism are not a part of our technology. Organisms are based on 
sdf-organization brought about by internal irreversible processes. The organization of machines comes from 
ptocesscs external to it, and ideal machines are reversible. We have not yet developed a technology based on 
■reversible processes and self-organization that can emerge from it. Tbe study of dissipative structures that
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Table 21.1 A comparison of designed structures and dissipative structures.

Designed structures (machlnesfcomputers) Dissipative structures (nonequilibrium systems and orgatii<j,ls

Based on irreversible processes and the law of 
thermodynamics
Structure arises spontaneously through entropy generating 
dissipative processes
Dissipative processes are essential to the system; without 
them the structure ceases to exist 
Structure and function cannot always be dearly 
differentiated.
Context-dependent function arises because ol structure 
Self-healing

• Based on the reversible laws of mechanic»
• Structure designed and assembled through 

processes external to the system
• Dissipative processes limit the efficiency of 

the system
• Structure and function are clearly 

differentiated in в!» design
• Sttucture designed to perforin a certain 

function
• Generally not seK-healing

began over 50 year* ago has yet to give us insight Into processes that produce organisms, it is a challenge for 
the future. How might we meet this challenge?

To lay a conceptual framework, we may begin by looking deeper into the differences between dissipative 
structures anti madunes. Table 21.1 gives a list of differences, some of which we have already discussed in 
Section 19.6. In addition to these differences, in organisms we see both structure and function resulting in 
behavior that seem» directed towards a particular end. such as seeking food or avoiding adverse conditions. 
Organisms interact with their environment and respond in ways that enable them to react a particular end 
From a thermodynamic point of view, wc may interpret it as end-directed evolution, by which we mean that 
the system may lakr several different paths, but reach the same final state. End-directed evolution is a familiar 
concept in thermodynamics; after all. according to the Second Law, systems evolve to states of maximum 
entropy or minimum Gibbs or Helmholtz energy. We might not know the mechanism or the path a system 
will take to its final extremum state, but we can be sure that it w ill reach that state. In this case, the final state 
is an equilibrium state in which there is no entropy production. It it possible that end-directed evolution may 
also be a property' of far-from-equilibrium systems. The studies of dissipative structures to date, however, 
have mostly been done on structures and the processes that product and maintain the structure. End-directed 
evolution in dissipative structures have not been investigated much.

End-directed evolution has two aspects; the state to which it w ill evolve and tbe stability of that state 
Regarding the former, it has been hypothesized that a nonequilibrium system will evolve to a state in which 
the rate o f entropy pnxtuction is maximized (13-19]. According to this hypothesis, the great diversity of 
behavior we see in organisms and tlie evolution of life is a result of nature evolving to states of an ever 
increasing rate of entropy production, ln Section 19.7, we have commented on structural instability caused 
by the emergence c t a new catalyst in a system. In general, whenever a catalyst enters a system, it will 
increase the rate of entropy production by increasing the velocity of reaction if the corresponding affinity 
is not significantly lowered. Such observation* are in accord wilh this hypothesis, However, the maximum 
entropy production hypothesis is a subject of much debate: while many studies have indicated its validity 
there are others that have indicated otherwMe. Indeed, close to equilibrium, in fte linear regime, wc have seen 
in Section 17.2 that the rate of entropy production in minimized, not maximized. Yet, the hypothesis has been 
a useful tool to predict some far-from-equilibrium steady states [15—18]. Peihape there is a set of condition 
that need to be fulfilled for Us validity that ha* not yet been identified; perhaps there is a different principle, 
or more than one principle depending on the system being studied. Future studies w ill shed light on tbis line 
of thought.
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К  le t os turn to the second aspect, stability of the end state, This means that, when perturbed, the system 
,«11 find a path to return to the end suite. In other words, if the end slate is perturbed due to a change in the 

Environment, ihe system will find a mean* to restore the end Mate. The diversity of paths that the system is 
capable of taking to reach the end state may toad to interesting behavior, which к м Ы ш  those we see in
o rg a n ism s.

As an example, tel us consider a spatial dissipative structure that is maintained by the inflow of energy/matter 
al one location. Let us further assume that the structure maximizes a thermodynamic» quantity Y (such as 
the rate of entropy production) and it» form depends on the location at which the energy/matter flows into 
the system. Now if Ihe location of the energy/matter source is moved, the system is no longer in a state that 

,Vmaximizes Y. In response to this perturbation, the system will evolve to a new state in whtch Y is maximized. 
This type of end-directed evolution resembles the response of an organism to a change ill the location of 
the source of its ‘food'. To be sure, an organism is much mow complex; nevertheless, studies of dissipative 
structures will give us thermodynamic principles on which the behavior of organisms are founded.

There are several other traits of oiganisms, such as collective behavior, in which we see that functional

f differentiation might also appear in much simpler dissipative structures that interact with each other. Here one 
may introduce the concept offunctional symmetry breaking, Consider JV identical elements in a nonequilibrium 
system that interact with each other. When the mutual interaction is weak - because N is small, for example 
- one might expect the behavior of the iV elements to be identical or functionally symmetric, i.e, statistically 
their properties are identical. When the interaction strength increases - due to increasing N, for example - 
the system might peach a transition point above which the elements no longer have identical behavior; they 
might show cooperative behavior in which elements have a distinctly different behavior resulting in breaking 
o f functional symmetry. Such transitions might also be in accord with a general ex trcm izuiion principle. 

<, Examples of functional symmetry breaking in interacting dissipative structures can already be found in recent 
studies [20]. More examples are likely to emerge due to a growing interest in such studies.

Clearly, the above concepts and examples are but the tip of the iceberg of a thermodynamic theoiy of 
j; organism. However, we can see in it the potential of concepts such as end-directed evolution, thermodynamic
i - stability and functional symmetry breaking in formulating a thermodynamic theory of origin of the behavior 

we see in organisms.
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Epilogue

In the preface We remarked that science has no final formulation. So it is with thermodynamics. There are 
more laws to be discovered that involve non-equilibrium quantities such as thermodynamic forces, fluxes and 
the rates of entropy production. It has much to contribute to our understanding of living organisms, ecology 
and our place in the web of life. The primacy of irreversible processes in Nature is indisputable. Yet, we have 

\ been steeped in a world view of classical end quantum mechanics which posits that change, and the processes 
that bring about ciiangc. are reversible, that irreversibility it merely a property of large systems which we can 

E ooly describe using probability, that it is a consequence of necessary approximations we must make, that it 
К  it essentially an illusion. But, wc see everywhere in nature change that is irreversible, and organization, and 

life itself, bom oul of irreversible processes. It makes one wonder: is mechanics a convenient approximation 
of natural processes that are fundamentally iireversible and not Ihe converse, as the cuirent dogma holds? 
Why is it difficult to see that, because we ignore irreversible aspects of change in formulating the laws of 

S classical and quantum mechanics, we arc left with idealized reversible change, and a world without an arrow 
of time? Why is this idealized reversible world real and the arrow of time, manifest in irreversible processes 
that bring about life itself, an illusion? However we see the relationship between Nature and time-reversible 

[ mechanics, il is a fact that whenever wc describe a natural process, wc must always include some aspects of 
irreversibility and thermodynamics for a complete description of that process.

Nature has a hiitory - for long time the ideal of physics was geometry, as implied il* Einstein's general 
( relativity. Relativity is certainly one of the great achievement of the human mind. But th* geometrical view 

is incomplete. Now we see that narrative elements play also a basic role. This leads to a different concept of 
nature in which the arrow of time is essential. After all, this arrow appears as the feature which is common to 
all objects in the expanding bubble which is our universe. We all age in the same direction, all stars, all rocks 
age in the same direction even if the mechanism of aging is different in each case.

Time, better the direction of time, is the fundamental existential dimension of human life. We discover 
now that the flow of time is universal, it i* not an illusion that separates us from nature.

H y—— -- -— ........—1—  .....  ....... '
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Physical Constants and Data

Avogadro constant 
Boltzmann constant 
Gas constant

Faraday constant 
Stefan-Boltzmann constant 
THple point of wtrter*
Zero of Celsius scale*
Molar volume of ideal gas at 1 bar anti 273.15 К 
Permittivity of vacuum*
Permeability of vacuum*
Speed of light in vacuum*
Planck constant 
Elementary charge 
Electron rest mas*
Proton rest mass 
Neutron rest mass 
Gravitational «instant 
Standard gravitational acceleration*
Mass of the Earth 
Average radius of the Earth 
Average Earth-Sun distance 
Radius of the Sun
Sun's energy incident at the top of the atmosphere 
About 31 %  of thi» energy is reflected back into

{

space.
---------------

I ‘Exact values by definition.

Na =» 6,022137 x 1023 mol' 1 
i B =. 1.38066 x lO’ 23 Д K -1 
R = 8.314 J  mol-1 K " 1 = 0.08205» atm L т о Г 1 К ” 1 

= 1.9872 cal mol" 1 K “ *
F  =9.6485 X Iff* С  т о Г 1
e = (c/t/4) = 5.6705 x К Г 8 J m 'J K~* s' 1
Г^СНгО)* 273.16 К
Г<0°С)« 273.15 К
V0 = 22.711 L  т о Г 1
«0 = 8.854187816 x 10'12 C2 N' 1 m' 2
/to =» 4x x 1Ю" 7 N A-2
с = 2.99792458 X 10® m s“ ‘
A = 6.62607 X 10-34 J s
* = 1.6021# X  lO' 19 С
me =. 9.10939 X 10-31 kg = 5.486 X  10~4 u
m,, »  1.67262 x 10-27 kg = 1.00728 u
m„ =» 1.67493 x 10' 27 kg = 1.00867 u
G  = 6.6726 X l 0 'M Nm 2 kg"2
g -  9.80665 m s’ 2 = 32.17 ft s' 2
5.98 X lO^kg
6.37 x 103 km
1.495 X 10* km
6.96 x Ю5 km
1340 J m~2 s-1 = 0.032 cal cm-2 s' 1

Modtrn Thermodynamics: f  rom Heal Enginei V OJsuptitnr Structures, Second Edition. Dilip Kondepudi ant  Ilya Pngogme
О 2015 John Wiley & Sons. Ltd. Published 2015 by John Wiley Jt Sons, Ltd.
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Conversion Factors

Bar
Standard atmosphere*
Torr (mm Hg)
Calorie*
Erg
Gauss
Debye
Atomic mass unit 
Electron volt 
Metric ton 
Pound
Gallon (U.S.)
Gallon (British imperial)

1 bar = 105 Pa 

1 atm = 1.01325 x Ю3 Pa 
1 Torr = 133.322 Pa 
1 cal = 4.184 J 
1 erg = 10~7 J  
1 G = К Г 4 T
1 D = 3.33564 x 10-»Cm  
1 u = 1.66054 x K T27 kg 
1 eV *  1.60218 x JO- '9 }  = 96.4853 kJ m ol'i 
1 metric ton = 1000 kg 
1 lb = 16 oz ж 0.45359 kg 
1 gal = 4 quarts = 3.78541 L 
1 gal = 4 quarts = 4.545 L

“E xact values by definition



Standard Thermodynamic Properties

The standard «late pressure is №0 kPa (1 bar). An entry of O.Ofor ДfH ° for an element indicates the reference 
state of that element.

Molecular
formula Name State

Д,Н° 
k| mol"’

Д,С° 
kJ mol"1

S°
| то ГЧО 1

Cp
) mol' 1 K_1

Compounds not containing carbon
Ac Actinium gas 406.0 366.0 188.1 20.8
Ag Silver cry 0.0 0.0 42.6 25.4
AgBr Silver bromide cry -100.4 -96.9 107.1 52.4
AgBrO, Silver bromate cry -10.5 71.3 151.9
AgCl Silver chloride cry -127.0 -109.8 96.3 50.8
AgCIO, Silver chlorate СГу -30.3 64.5 142.0
Al Aluminum cry 0.0 0.0 28.3 24.4

gas 330.0 289.4 164.6 21.4
А1В,Н,г Aluminum borohytfride liq -16.3 145.0 289.1 194.6
AIBr Aluminum bromide (AlBn gas -4.0 -42 X) 239.5 35.6
AICI Aluminum chloride (AICI) gas -47.7 -74.1 228.1 35.0
AIO, Aluminum trichloride cry -704.2 -628.8 110.7 91.8
AIF Aluminum fluoride (AIF) gas -238.2 -283.7 215.0 31.9
AIF, Aluminum trifluoride cry -1510.4 -1431.1 66.5 75.1
All3 Aluminum triiodide cry -313.8 -300.8 159.0 98.7
a io 4p Aluminum phosphate ay -1733.8 -1617.9 9® .8 93.2

(A#>04)
AIS Aluminum sulfide (AIS) gas 200.9 150.1 230.6 33.4
Al;0 Aluminum oxide (AI2OJ gas -130.0 -159.0 2S9.4 45.7
AljQj Aluminum oxide (Al20 3l cry -1675.7 -1582.3 50,9 79.0
Ar Argon gas 0.0 154.8 20.8
As Arsenic (gray) cry 0.0 35.1 24.6
AsBr, Arsenic tribromlde gas -130.0 -159.0 363,9 79.2
AsCI, Arsenic trichloride gas -261.5 -248.9 327.2 75.7
AsF, Arsenic trifluoride lip -821.3 -774.2 181.2 126.6
As, Arsenic (As?) gas 222.2 171.9 239.4 35.0
Au Gold cry 0.0 0.0 47,4 25.4
Aull Gold hydride (AuH) gas 295.0 265.7 211.2 29.2
e Boron cry (rhombic) 0.0 0.0 5.9 11.1
BCI Chloroborane (BCI) gas 149.5 120.9 213.2 31.7

(continued)
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492 Standard Thermodynamic Properties

Molecular
formula Name State

Д,//1 
W moM

AfG° 
k| mot-'

5°
1 m o l'K-1 J tnof 1 к ;

BCI3 Boron trichloride liq -427.2 -387.4 206.3 106.7
BF Fluoroborane (BF) gas -122.2 -149.8 200.5 29.6
BH3O, Boric acid (FI3BO3) cry -1094,3 -968.9 88.8 81.4
BH4K Fbtassium borohydride cry -227.4 -160.3 106.3 96.1
ВНД1 Uthjum borohydride cry -190.8 -125.0 75.9 82.6
BH4Na Sodium borohydride cry -188.6 -123.9 101.3 86.8
BN Boron nitride (BN) cry -254,4 -228.4 14.8 19.7
вг Boron (Bj) gas 830,5 774.0 201.9 30.5
Ba Barium cry 0,0 0.0 62.8 28.1

gas 180,0 146.0 170.2 20.8
BaBr; Barium bromide cry -757.3 -736.8 146.0
ВаС|; Barium chloride cry -858,6 -810.4 123.7 75.1
Baf, Barium fluoride cry -1207,1 -1156.8 96.4 71.2
BaO Barium oxide cry -553.5 -525.1 70.4 47.8
Ba04S Barium sulfate cry -147S.2 -1362.2 132.2 101.8
Be Beryllium cry 0.0 0.0 9.5 16.4
BeClj Beryllium chloride cry -490.4 -445.6 82.7 64.8
Bef2 Beryllium fluoride cry -10246.8 -979.4 53,4 51.8
BeH2Oj Beryllium hydroxide cry -902.5 -815.0 51.9
Be04S Beryllium sulfate cry -1205.2 -1093.8 77.9 85.7
Bi Bismuth cry 0.0 0.0 56.7 25.5
BiCI3 Bismuth trichloride cry -379.1 -315.0 177.0 105.0
Bi,0 , Bismuth oxide (Bi20 3) cry -573.9 -493.7 151.5 113.5
Bi2S3 Bismuth sulfide (BijS,) cry -143.1 -140.6 200,4 122.2
Br Bromine gas 111.9 82.4 175Л 20.8
BrF Bromine fluoride gas -93.8 -109.2 229Л 33.0
BrH Hydrogen bromide gas -3<6,3 -53.4 198.7 29.1
BrH4N Ammonium bromide cry -270.8 -175.2 113.0 96.0
BrK ftjtassium bromide cry -393,8 -380.7 95.9 52.3
BrKOj Fbtassium bromate cry -360,2 -217.2 149,2 105.2
BrLi I ithium bromide cry -350.2 -342.0 74.3
BrNa Sodium bromide cry -3611.1 -349.0 86.8 51.4
Br2Ca Calcium bromide cry -682.8 -663.6 130.0
Br,Hg Mercury bromide (FlgBr;) cry -170.7 -153.1 172/0
Br.,Mg Magnesium bromide cry -524.3 -503.8 117.2
Br2Zn Zinc bromide cry -328.7 -312.1 138.5
Br4Tl Titanium bromide (TlBr4) cry -616.7 -589.5 243,5 131.5
Ca Calcium cry 0.0 0.0 41.6 25.9
CaCI, Calcium i-hloride cry -795.4 -748.8 108.4 72.9
CaFj Calcium fluoride cry -1228,0 -1175.6 68,5 67.0
СаНг Calcium hydride (CaH; ) cry -181,5 -142.5 41.4 41.0
СаНг0 2 Calcium hydroxide cry -985.2 -897.5 83.4 87.5
CaN,06 Calcium nitrate cry -938.2 -742.8 193.2 149.4
CaO Calcium oxide cry -634.9 -603.3 38.1 42.0
Ca04S Calcium sulfate cry -1434.5 -1322.0 106.S 99.7
CaS Calcium sulfide cry -482.4 -477.4 56.5 47.4
CajOgPj Calcium phosphate cry -4120,8 -3884.7 236.0 227.8
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Ь,Н ° Д,С°
formula Name Slate kl mol'* U mol' 1 ) moh’K*’ J rnoM K 1

Cd Cadmium cry 0.0 0.0 51.8 26.0
CdO Cadmium oxide cry -156.4 -228.7 54.8 43.4
CdC)4S Cadmium sulfate cry -933.3 -822.7 123.0 99.6
Cl Chlorine gas 121.3 105.3 165.2 21.8
ClCu Copper chloride (CuCI) cry -137.2 -119.9 86.2 48.5
CIF Chlorine fluoride gas -50.3 -51.8 217.9 32.1
CIH Hydrogen chloride gas -92.3 -95.3 186,9 29.1
CIHO Hypochlorous acid (HCK'I) gas -78.7 -66.1 236.7 37.2
CIH4N Ammonium chloride cry' -314.4 -202.9 94.6 84.1
CIK Potassium chloride (KCI) cry -436,5 -408.5 82.6 51.3
CIKO, fbtassium chlorate (KCIOj) cry -397.7 -296.3 143.1 100.3
ciko4 Itotassium perchlorate cry -432.8 -303.1 151.0 112.4

(КСЮ4)
59.3 48.0CILi 1 llhium chloride (LICI) cry -408.6 -384.4

ClNa Sodium chloride (NaCI) cry -411.2 -384.1 72,1 50.5
CINa02 Sodium chloride (NaCIOj) cry -307.0

123.4ClNaO, Sodium chlorate (NaCIOj) cry -365.8 -262.3
33.9Cl2 Chlorine (Clj) gas 0.0 0.0 223.1

CI2CU Copper chloride (CuCI2) cry -220,1 -175.7 108.1 71.9
CIjMn Manganese chloride cry -481.3 -440.5 118,2 72.9

(MnClj)
159.0 102.5CI3U UranNam chloride (UCI3) cry -866.5 -799.1

CI4Si Silicon tetrachloride llq -687,0 -619.8 239,7 145.3
Co Cobalt cry 0.0 0.0 30.0 24.8
CoH2G2 Cobalt hydroxide (Co(OH)2) cry -539.7 -454.3 79.0

55.2CoO Cobalt oxide (CoO) cry -237.9 -214.2 53.0
Co30 4 Cobalt oxide (Co30 4) cry -891.0 -774.0 102.5 123.4
Cr Chromium cry 0.0 0.0 23.8 23.4
CrF3 Chromium fluoride (CrF3) cry -1159.0 -1088.0 93.9 78.7
Cr2Fe04 Chromium iron oxide cry -1444.7 -1343.8 146,0 133.6

(FeCr20 4)
118.7cr2o , Chromium oxide (Cr20 3) cry -1139.7 -1058.1 81.2

Cs Cesium cry 0.0 0.0 85.2 32.2
CsF Cesium fluoride cry' -553.5 -525.5 92.8 51.1
Cs20 Cesium oxide (Cs2OI cry -345.8 -308.1 146.9 76.0
Cu Copper cry 0.0 0.0 33.2 24.4
CuO Copper oxide (CuO) cry -157.3 -129.7 42.6 42.3
Cuo4s Copper suliate (CuSO,) cry -771.4 -662.2 109.2

47.8CuS Copper sulfide (OuS) cry -53.1 -53.6 66,5
Cu2 Copper (CUj) gas <84.2 431.9 241.6 36.6
Cli;0 Copper oxide (Cu20) cry -168.6 -146.0 93.1 63.6

[ Cu2S Copper sulfide (Cu;S) cry -79.5 -86.2 120.9 76.3
Fj Fluorine |F2) gas 0.0 0.0 202.8 31.3
F Fluorine gas 79,4 62.3 158.8 22.7
FH Flydrogen fluoride gas -273.3 -275.4 173.8

49.0FK Potassium fluoride (KF) cry -567.3 -537.8 66.6
H i LitWum fluoride (UF) cry -616.0 -587.7 35.7 61.6

(■continued)
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Molecular Д ,M°' д ,с ° S ° c „
formula Name Stale kJ mol' 1 к) rooh1 J moh'K-' 1 mol 1 к

FNa Sodium fluoride (NaF) cry -576.6 -546.3 51.1 46.9
FjHK Potassium hydrogen fluoride 

(KHFj)
cry -927.7 -859.7 104.3 76.9

F2HNa Sodium hydrogen fluoride cry -920.3 -852.2 90,9 75.0
(NaHFj)

FjMg Magnesium fluoride cry —1124,2 -1071.1 57.2 61.6
f2o 2u Uran>4 fluoride cry -1648,1 -1551.8 135.6 103.2
F2Si Olfluorosilylene (SiF2) gas -619,0 -628.0 252,7 43.9
FjZn Zinc fluoride cry -764,4 -713.3 73,7 65.7
FjOP Phosphoryl fluoride 8*> -1254,3 -1205.8 285.4 68.8
F3P Phosphorus trifluoride gas -958,4 -936.9 273.1 58.7
f4s Sulfur fluoride (SF4) gas -763,2 -722.0 299,6 77.6
F6S Sulfur fluoride (SF6) gas -1220,5 -1116.5 291,5 97.0
F6U Uranium fluoride (UF6) cry -2197,0 -2068.5 227.6 166.8
Fe Iron ciy 0,0 0.0 27.3 25.1
Fe04S Iron sulfate (FeS04) cry -928,4 -820.8 107.5 100.6
FeS Iron sulfide (FeS) cry - 100.0 -100.4 60,3 50.5
FeS2 Iron sulfide (FeS2) cry -178.2 -166.9 52.9 62.2
Fe20, Iron « id »  (Fe20 3) cry -824,2 -742.2 87,4 103.9
pejo 4 Iron wide (Fe30 4) cry -1118,4 -1015.4 146,4 143.4
H2 Hydrogen (H2) gas 0.0 0.0 130.7 28.8
H Hydrogen gas 218,0 203.3 114.7 20.8
HI Hydrogen iodide gas 2*.5 1.7 206.6 29.2
HKO Fbtassiuril hydroxide cry -424,8 -379.1 78.9 64.9

(KOH)
H li Lithium hydride (LiH) cry -90.5 -68.3 20.0 27.9
FINOj Nitrous add (HONO) gas -79.5 -46.0 254.1 45.6
HNOa Nitric 4dti llq -174,1 -80.7 155.6 109.9
HNa Sodium hydride cry -56,3 -33.5 40.0 36.4
HNaO Sodium hydroxide cry -425.6 -379.5 64,5 59.5

(NaOH)
HO Hydroxyl (OH) gas 39.0 34.2 183.7 29.9
HO, Flydroperoxy (HOO) gas 10,5 22.6 22 9Л 34.9
H2Mg Magnesium hydride cry -75.3 -35.9 31.1 35.4
HjMgOj Magnesium hydroxide cry -924,5 -833.5 63.2 77.0
н2о Water llq -285.8 -237.1 70.0 75.3
H ,0 , Hydrogen peroxide liq -187,8 -120.4 109,6 89.1
HjOjSn Tin hydroxide (Sn(OH)j) cry -561.1 -491.6 155,0
H j02Zn Zinc hydroxide cry -641 .9 -553.5 81.2
h 2o 4s Sulfuric add llq -814.0 -690.0 156.9 138.9
HjS Hydrogen sulfide ga* -20.6 -33.4 205,8 J4.2
H,o4P Phosphoric acid cry -1284.4 -1124.3 110,5 106.1

llq -1271.7 -1123.6 150.8 145.0
H,P Phosphinn ga* 5.4 13.4 210,2 37.1
h 4in Ammonium Iodide cry -201.4 -112.5 117.0
h 4n . Hydrolne llq 50.6 149.3 121J 98.9
h4n,O j Ammonium nitrate cry -365.6 -183.9 151,1 139.3
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t Molecular 
' formula Name State

H4Si Sllame gas
H ,N j04S Ammonium sulfate cry
He Helium gas
Hgl , Mercury iodide (Hgl2) cry

(red)
HgO Mercury oxide (HgO) cry

(red)
HgS Mercury sulfide (HgSi cry
Hg? Mercury (Hg2) gas
Hg20 4S Mercury sulfate (Hg2S04) cry
I Iodine gas
IK Potassium iodide cry
IK03 Potassium lodate cry
ILi I ithium iodide cry
INa Sodium iodide cry
INaO, Sodium lodate cry
К Potassium cry
KMnO., (btassium permanganate cry
KNO, ibtassium nitrite cry
KNOj Ibtassium nitrate cry
K20 4S Potaisium sulfate cry
K2S Ibtassium sulfide (K2S) cry
li I Ithiom cry
lij Lithium (Lij) gas
li20  Lithium oxide (Ll20) cry
Li20 3Si Lithium metasilicate cry
Li20 4S Lithium sulfate cry
Mg Magnesium cry
MgN;0 6 Magnesium nitrate cry
MgO Magnesium oxide cry
Mg04S Magnesium sulfate cry
MgS Magnesium sulfide cry
Mn Manganese cry
MgNa2D4 Sodium pemianganate cry
MnO Maganese oxide (MnO) cry
MnS Manganese sulfide (MnSI cry
Мп2Оэ Manganese oxide (Mn2Oj) cry
Mn20 4Si Manganese silicate cry 

(Mn2Si04>
N2 Nitrogen (N2) gas
N Nitrogen gas

j  NNa02 Sodium nitrite cry
I  NNaO, Sodium nitrate cry
| NO, Nitrogen dioxide gas
j N30 Nitrous oxide gas
[  N20 3 Nitrogen trioxide liq

л,н °
kl moM

Д,С° 
ktnral 1

S»
J mol' 1 K~'

34.3 56.9 204.6 42.8
-1180.9 -901.7 220.1 187.5

0.0 126.2 20.8
-105.4 -101.7 180.0

-90.8 -58.5 70.3 44.1

-58.2 -50.6 82.4 48.4
108.8 68.2 288.1 37.4

-743.1 -625.8 200.7 132.0
106.8 70.2 180.8 20.8

-327.9 -324.9 106.3 52.9
-501.4 -418.4 151.5 106.5
-270.4 -270.3 86.8 51.0
-2*7.8 -286.1 98.5 52.1
-481.8 92.0

0.0 0.0 64.7 29.6
-837.2 -737.6 171,7 117.6
-369.8 -306.6 152.1 107.4
-494.6 -394.9 133.1 96.4

-1437.8 -1321.4 175.6 131.5
-380.7 -364.0 105.0

0.0 0.0 29.1 24.8
215.9 174.4 197.0 36.1

-597.9 -561.2 37,6 54.1
-1648.1 -1557.2 79.8 99.1
-1436.5 -1321.7 115,1 117.6

0.0 0.0 32.7 24.9
-790.7 -589.4 164.0 141.9
-601.6 -569.3 27.0 37.2

-1284.9 -1170.6 91.6 96.5
-346.0 -341.8 50.3 45.6

0.0 0.0 32.0 26.3
-1156.0
-385.2 -362.9 59.7 45.4
-214.2 -218.4 78.2 50.0
-9S9.0 -881.1 110.5 107.7

-1730.5 -1632.1 163.2 129.9

0.0 OX) 191.6 29.1
472.7 455.5 1S3.3 20.8

-358.7 -284.6 103.8
-467.9 -367.0 116.5 92.9

33.2 51.3 240.1 37.2
82.1 104.2 219.9 38.5
50.3

(continued)
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Molecular
formula

n2o 5
Na
NaO*
Na2
Na20
Na,Oj
Na20 4S
Ne
Ni
Ni04S
NiS
О
OP
0 2Pb
OjS
OjSi
OjU
O,
OjPbSi
0 3S
0 4SZn
P

Pb
PbS
ft
PtS
PtS2
s

Name Stale M mol-i
AfC0 5°

k) mol-1 I mol-'K"' Cp 
) m ol1 к

Sj
SI
Sn

Zn

Nitrogen pentoxide 
Sodium
Sodium superoxide (Na02) 
Sodium (Na2)
Sodium oxide (Na20)
Sodium peroxide <Na20 2)
Sodium sulfate
Neon
Nickel
Nickel sullate (NiSO„) 
Nickel sulfide (NiS)
Oxygen
Phosphorus oxide (PO) 
Lead oxide (P02)
Sulfur dioxide 
Silicon dioxide (e-quartz) 
Uranium oxide <U02) 
Ozone
Lead metasilicate (PbSiOj) 
Sulfur trioxide 
Zinc sulfate 
Phosphorus (white) 
Phosphorus (red)
Lead
Lead sulfide (PbS)
Platinum
Platinum sulfide (PtS) 
Platinum sufide (PtS2)
Sulfur
Sulfur

Sulfur (S2)
Silicon 
Tin (white)
Tin (gray)
Zinc

Compounds containing carbon

CAgN
CBaOj
CBrN
CCaOj

cci2f2

Carbon (graphite)
Carbon (diamond)
Silver cyanide (AgCN) 
Barium carbonate (BaCOs) 
Cyanogen bromide 
Calcium carbonate (calclte) 
Calcium carbonate 

(aragonite) 
Dlchkvodlfluoramethane

cry -43.1 113.9 178.2 143.1
cry 0.0 0.0 51.3 28.2
cry -260.2 -218.4 115.9 72.1
gas 142.1 103.9 230.2 37.6
cry -414.2 -375.5 75.1 69.1
cry -510,9 -447.7 95.0 89.2
cry -1387,1 -1270.2 149.6 128.2
gas 0,0 146.3 20.8
cry 0.0 0.0 29,9 26.1
cry -872,9 -759.7 92Л 138.0
cry -82,0 -79,5 53,0 47.1
gas 249,2 231.7 161.1 21.9
gas -26.5 -51.9 222.8 31.8
cry -277,4 -217.3 68.6 64.6
gas -2%,8 -300.1 248.2 39.9
cry -910,7 -856.3 41.5 44.4
cry -1085,0 -1031.8 77Л 63.6
gas 142.7 163.2 238.9 39.2
cry -1145.7 -1062.1 109.6 90.0
gas -395,7 -371.1 256,8 50.7
cry -982,8 -871.5 110,5 99.2
cry 0.0 0.0 41.1 23.8
cry -17.6 22.8 21.2
cry 0.0 0.0 64,8 26.4
cry -100,4 -98.7 91.2 49.5
cry 0,0 0.0 41.6 25.9
cry -811.6 -76.1 55.1 43.4
cry -108,8 -99.6 74.7 65.9
cry' (rhombic) 0,0 0.0 32,1 22.6
cry 0.3
(monoclinic)
gas 120,6 79.7 228,2 32.5
cry 0.0 0.0 18.8 20.0
cry 0,0 51.2 27.0
cry -2,1 0.1 44,1 25,8
cry 0.0 0.0 41.6 25.4
gas 130,4 94,8 161.0 20.8

cry 0.0 0.0 5.7 8.5
cry 1,9 2.9 2,4 6.1
cry 14Л.0 156.9 107,2 66.7
cry -1216.3 -1137.6 112.1 85.3
cry 140.5
cry -1207,6 -1129.1 91,7 83.5
cry -1207.8 -1128.2 88.0 82.3

gas -477.4 -439.4 300.8 72.3
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liar
form»1-» Name State

CCI,F Trichilarofluoromethane liq
CCuN Copper cyanide (CliCN) ay
CFt'j Iron carbide !FesO ay
CFeOj Iron carbonate (feCO,) cry
CKN Pota*slum cyanide (KCN) cry
CKNS Pota»slum thiocyanate cry

CK,03
(KSCN)

Ibtassium carbonate (KCO}) co-
CMgO, Magnesium carbonate cry

CNNa
iM sco,)

Sodium cyanide (NaCN) cry
CNNaO Sodium cyanate ay
CNa2Os Sodium carbonate (NaCOj) cry
CO Carbon monoxide gas
CO; Carbon dioxide gas
COjZn Zinc carbonate (ZnC03) cry
CS, Carbon disulfide llq
CSi Silicon carbide (cubic) ay
CHBr, Tribromomethane llq
CHCIt, Ch lorodl fluorometha ne gas
CHCI, TricMoromethane liq
CHN Hydrogen cyanide liq
CH; Methylene gas
CH2I2 Dliodomethane liq
с н 2о lorneldehyde gas
с н 2о 2 Forroic acid liq
CH, Methyl gas
CHjCI Chloromethane gas
CH,NO, Nltromethane liq
CH. Methane gas
c h 4n 2o Ureai cry
c h 4o . Methanol liq
C; Carbon (C2) gas
C2Ca Calcium carbide ay
CjCIF, Chlorotrifkioroethylene gas
C2CI4 letrachloroethylene liq
C2CI4I 2 1,1,1,2-Tetrad! loro-2, gas

C2H2
2-difluoroethane

Acetylene gas
c2n 2a 2 1,1 jDichloroethyletie liq
c2h 2o Ketene gas
c 2h 2o 4 Oxalic acid cry
C2HjCI, 1,1,1-Trichlorotbane liq

c 2h3n Ace*onitrile
gas
liq

A,H° Д,С° 5°
kl moh1 к) mol' 1 Imol-’K-1 J mol-’ K' 1

-301.3 -236.8 225.4 121.6
%.2 111.3 84,5
25.1 20.1 104.6 105.9

-740.6 -666.7 92.9 82.1
-113.0 -101.9 128.5 66.3
-200.2 -178.3 124.3 88.5

-1151.0 -1063.5 155.5 114.4
-1095.8 -1012.1 65.7 75.5

-87.5 -76.4 115.6 70.4
-405.4 -358.1 96.7 86.6

-1130.7 -1044.2 135.0 112.3
-110.5 -137.2 197.7 29.1
-393.5 -394.4 213.8 37.1
-812.8 -731.5 82.4 79.7

89.0 64.6 151.3 76.4
-65.3 -62.8 16.6 26.9
-28.5 -5.0 220.9 130.7

-482.6 280.9 55.9
-134.5 -73.7 201.7 114.2

108.9 125.0 112.8 70.6
390.4 372.9 194.9 33.8
66.9 90.4 174.1 134.0

-108.6 -102.5 218.8 35.4
-424.7 -361.4 129.0 99.0

145.7 147.9 194.2 38.7
-81.9 234.6 40.8

-113.1 -14.4 171.8 106.6
-74.4 -50.3 186.3 35.3

-333.6
-239.1 -166.6 126.8 81.1

831.9 775.9 199.4 43.2
-59.8 -64.9 70.0 62.7

-555.2 -523.8 322.1 83.9
-50.6 3.0 266.9 143.4

-489.9 -407.0 382.9 123.4

228.2 210.7 200.9 43.9
-23,9 24.1 201.5 111.3
-47.5 -48.3 247.6 51.8

-821.7 109.8 91.0
-177.4 227.4 144.3
-144.6 323.1 93.3

31.4 77.2 149.6 91.4

{continued)
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Molecular
formula Name state

A,W° 
kl mo) 1

Д fj>  
kJ mol' 1

S°
) mol-’K "’

c ,
1 m ol1 к i

CjHjNaOj Sodium acetate cry -708,8 -607.2 123jO 79.9
C2H4 Ethytene gas 52.5 68.4 219.6 43.6
C2H4CI3 1,1-Oichloroethane liq -158.4 -73.8 211.8 126.3

gas -127,7 -70.8 305.1 76.2
C2H40 2 Acetic acid liq -484,5 -389.9 159.8 123.3

gas -432,8 -374.5 282.5 66.5
C2H5I lodoethane liq -40,2 14.7 211.7 115.1
с гн„ Ethaiie gas -83.8 -31.9 229A 52.6
с гн 6о Dimethyl ether gas -184,1 -112.6 266.4 64.4
c 2h 6o Ethanol liq -277,7 -174.8 160.7 112.3
c 2H6s Ethattethlol liq -73.6 -5.5 207Л 117.9
c 2h 7n Dimethylamine gas -18,5 68.5 273.1 70.7
c 3h 7n Cyclopropylamine liq 45.8 187.7 147.1
c 3H, Propane gas -104,7
c 3h ,o 1-Propanol liq -302,6 193.6 143.9
c 3h ,o 3 Glycerol liq -668,5 206.3 218.9
c4h4o Furam Hq -62.3 177X) 115.3
c4h4o 4 Fumaric acid cry -810,7 168.0 142.0
Q H 6 1,3-Butadiene liq 87,9 199.0 123.6
c4H„o2 Methyl acrylate liq -362,2 239-5 158.8
C4H„ Isobutene liq -37,5
C4H, Cyclobutane liq 3.7
c 4H ,o Butaitial liq -23»,2 246j6 163.7
c4h ,o Isobutanal liq -247,4
c 4h8o 2 1,4-Dioxane liq -353,9 270.2 152.1
c4h „o 2 Ethyl acetate liq -47»,3 257.7 170.7
С4Н,йО 1 -Btwnol liq -327,3 225j8 177.2
с4н ,0о 2-Bt»tanal liq -342,6 214.9 196.9
C4H12Si letrarmtfhylsilane liq -264,0 -100.0 277.3 204.1
C5HB Cyclop» ntene liq 4,4 20U 122.4
CSH,„ 1-Pentene liq -46,9 262Л 154.0
c 5H,0 Cyclop* mane liq -105,1 204.5 128.8
CsH ,i Isopentane liq -178,5 260.41 164.8
CSH,2 Neqpenfane gas -168,1
c 5h ,2o Butyl m«hyl ether liq -290,6 295.3 192.7
Q H 6 Beiweiw liq 49,0 136.3
ctH „o Phenol cry -165,1 144j0 127.4
C7H„ Toluene liq 12,4 157.3
c 7H ,o Berwyi alcohol liq -160,7 216.7 217.9
C7HI4 Cyctoheptane liq -156,6
c 7H,4 Ethytcydopemane liq -163,4 279.1
c 7H,4 1-Hepffflte Hi) -97.9 327.6 211.8
c eH,6 cydooctane Hq -167.7
QHja Octane liq -250.1 254.6

gas -208.6
c 9H20 No пале liq -274,7 284.4
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Molwiil.ir
formula Name State

С,НжО 1-Nonanol l«q
CI0H, Naphthalene cry
C,0H „ Decane liq
С|гН|Л Biphenyl cry
C,jH3(1 Dodecane liq

t y f  Д,С" SP Cp
Wwot"’ k| mol"’ Jm oMK' 1 ) т о Г 1 К 1

-456.5
77.9 167.4 165.7

-300.9 314.4
99.4 209.4 198.4

-350.9 375.8





Energy Units and Conversions

Metric units:
103 kilo (к) 10® mega (M ) 

Million

Energy conversion table

10s giga (G ) 
Billion

1012 tera (T) 
Trillion

1015 peta (P ) 
Quadrillion

1018 exa(E) 
Quintillion

Energy kWh Btu Calorie (103 cal) loule (I)

kWh 1 3412 860 3.6 X106
Btu 2,93 X 10-* 1 0.252 1054
Calorie (10s call 1.16 X10' 3 3.97 1 4.18 X 103
Joule 0) 2.78 X10-7 9.5 X 10"s 0.24 X 10-3 1
Therm 29.31 100 000 25 200 105.5 x IO 6
MeV 1.6 x 10-19)
TOE (tonne of oil equivalent] 1.16X104 3.97 X 10? 1.00 X 107 41.85 X 10» )

Quad = lO1’ Btu 
CCF = 100 cubic feet

Energy content of fuels

Coal 25 million BTU/ton (short ton = 907.18 kg, ton = 1016 kg, metric ton = 103 kg)
Crude oil 5.6 million BTU/barrel (a barrel — 42 gallons = 158.97 L )
Oil 5.78 million BTU/barrel = 1700 kWh/barrel
Gasoline 5.6 million BTU/barrel (a barrel = 42 gallons = 158.97 L ) = 1.33 tberms/gallon = 

39 kWh/gal =» 103 kWh/L
Natural gas liquids 4.2 million BTll/barrel
Natural gas 1030 BTU/cubic foot
Wood 20 million BTU/cond

Other unit conversions

1 HP = 0.746 kW
1 gallon = 3.785 L  1000 L  = 1 m5 1 barrel = 42 gallons = 158.97 L

Modem Thermodynamics'; From Heat Engines 10 Dissipative SIructHKs, Second Edition. Dilip Kondepudi ani Ilya Pngogine. 
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Answers to Exercises

Exercise 1.1 The pressure exerted by a gas depends on both the mass and the average speed of the molecules. 
At a given temperature, the heavier molecules have a lower average speed in jusl Mich a way that the 
pressures of two gases are equal if (NIV) is the same!

Exercise 1.3 (a) 40.9 mol, (b) About 7 X 1016 mol, (c) 4.3 x Ю 1*  moL (d) 9100 years 
Exercise 1A 150 atm and 180 atm 
Exercise 1.5 (a) 0.08%
Exercise 1.6 f/(ideal) -  {/(vw) = 263 J =4.2% of {/(ideal)
Exercise 1.7 (a) 24.5 L, (b) 1.174 L, (c) The Avogadro volume uring the V W  equation is 1.178 L.
Exercise 1.8 2.5 Ж 10~w m
Exercise 1.12 Gas Tc (K) pc (atm) V’ni(, (L)

C 0 2 303.4 72.9 0.128 
H2 33.1 12.7 0.0798 
CH4 189.7 45.5 0.128 

Exercise 1.13 The Malhematica code is in Appendix 1.2. Code C.

Chapter 1

Chapter 2
Exercise 2.2 Knergy turned to heat = 23.05 kcal; change of 2'of 1.0 L  of water = 23.0 К 
Exercise 2.3 (a) 4.54 amp, (b) 11.6 min 
Exercise 2.4 (a) See Box 2.2. (b) 2.02 kJ
Exercise 2.5 Sound velocity for argon = 320 m s "'; for nitrogen = 352 m s-!
Exercise 2.6 He: у = 1.667, Af = 4.00 x 10-s kg, C = 972 m s" 1 (965 m s '1)

C 02: у = 1304, Af = 44.01 x К Г 3 kg, С = 259 m/s (259 m/s)
N2:‘ >-= 1.404, Af = 28.01 x 10~3 kg, С = 337 m s' 1 (334 m/s)

Exercise 2 Я  Final T — 334 К
Exercise 2.9 Eintbalpy change = 4.22 kJ
Exercise 2.10 (a) -542.2 kJ, (b) -4817.2 kJ, (c) -1030 kJ
Exercise 2.11 Note that these values are only estimates and are not very accurate. Combustion enthalpy of 

С7НИ =-3672kJ mol-1; of C8H18 = -4168 kJ mol*1; of С9НЖ = -4664 kJ mol-1. Divide these values 
by the molecular weight of the corresponding compound to obtain the enthalpy per gram.

Exercise 2.12 Combustion energy of 1.0 g of sucrose = 16.8 kJ. Energy needed to lift 100 kg wt through 1 m 
is 980 J. With 16.8 kJ. the 100 kg mass can be lifted (16.8 kJ/O.98 kJ m '1) = 17.1 m!

Modem Thermodynamics: Frvrn Heat Engines to Dissipative Structures. Second Edition. Dibp Kondepudl aad Ilya Pngogme.
® 2015 Jobn Wiley & Sons, Lid. Pubfcbed 2015 by Jolm Wiley & Sons, Ltd.
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Exercise 2,13 When £ *  0.25 mol, tbe amount of CH4 = 2.75 mol, 0 2 = 1.5 mol, C02 = 0.25 mol, H20  =
0.5 mol. The amount of heat released = 222 kJ. When all the 2.0 mol of 0 2 (which is the limiting reactant i 
has reacted £ -  1.0 mol.

Exercise 2.14 Change in the mass of the Sun in 1 million years = 1,37 x  Ю23 kg (for comparison: mass nf 
the Earth 5.98 x  H)w kg. Present mass of the Sun = 1.99 X 1030 kg)

Exercise 2.15 2.72 x 1012 J

Exercise 3.2 201 К 
Exercise 3.3 242 J
Exercise 3.4 (a) Maximum efficiency = 0.952. (b) Maximum energy available = 97 J 
Exercise 3S  30 m 
Exercise 3.6 1.6 J/K
Exercise 3.7 Change in entropy = 2.2 x  К Г 4 J/K. Rate of change «  9.6 x  10-4 J K~‘ s~*
Exercise 3.8 Entropy m 13.1 J  K-1
Exercise 3.9 Maximum power = 1.2 kW m "3, Solar cells that cost about $540 n r 2 produce power at a cost 

of about $0.15 per kW h.

Exercise 4.1 In a living cell, which is an ojpen system, dS = d,.S' + dt,S. The entropy dcS due to the exchange- 
of matter and energy can be negative, but according to the Second Law d;S > 0. Thu», though djS > 0, 
since deS < 0, the total dS < 0; this does not violate the Second Law.

Chapter 3

Chapter 4

Exercise 4.2 Quantity
Entropy, S

Units
IK ' 1

Chemical potential, /i J mol' 1 
Affinity, A Jm ol-1

Exercise 4.3 St and S j are not extensive.
Exercise 4.4 (c) S  at any time t is given by

Jm ol-1

S(t) = (NM  -  { )  S0A + CVA, In T + №  (  ~ V , \ 1 + 2Й 1) [tSVm ■+• Cun In Г--

Chapter S

Exercise 5.9For at) ideal ga*F = Щ и() + CVT) - W [.v0 + C y ln f + filnfVyiV)] 
Exercise 5.10 4’ ■> ~  - a and Я  =■ b + ~
Exercise 5.12 (b) h = 3.1 cm 
Exercise 5.13 (b) 1.5 atm
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Chapter 6 

Exercise 6.1

(a) F(V. Г. N ) = N(u0 + С уГ ) -  77Y|j0 + Cv In Г  + «  ln (V /N )]
(b) G(p, Г, N ) *  N(m0 + Cvr  + К Г > - ZVr[i0 + Cv  ln Г  + J? In (ОТ)] + NRT ln p
(c) Thus ̂ T , n) = (и0 + CVT ) - T{s„ + Cv In T - R ) + RT ln (и),

where я и {N/V)
Exercise 6.2 ®an der Waals: a = 0.816 aUn L 2 mol"2, b «* 30.0 x 10" 3 Lm o l"1, 

Bert he kit: a = 80.0 atm L 2 К т о Г 2, b = 30.0 x  10" 3 L  mol*1, 
Dieterici: a = 2.00 atm L 2 mol-2, ft = 45.0 X 10-3 Lm o l"1,

Exercise 6.6 (a) (/(ideal) = 8.54kJ, {/(ideal) - t/(vw) = 0.728 kl 
Exercise 6,8

(a) Z- a 1

0» F „  - FM  - - 3'59X/ -1--J - (8.314 J  K - * )r  ln (-

Chapter 7

Exercise 7.1 DP of hexane at 0.5 atm = 48.3 °C
Exercise 7.2 At an altitude of 2 miles water boils at about 87 'C
Exercise 7.4 Number of phases = 4

Chapter 8 

Exercise 8.2

(a) Mole fractions: NaOH: 0.07, H2(> 0.93
(b) Molality >=4.17 mol kg" 1
(c) Molarity «= 4.0 M

Exercise 8 J

(a) Ю 2 = 0.21 atm, PN j = 0.78 atm. etc.
(b) Concentration of C>2 in lakes ж 2,7 x 10"4 M

Exercise 8,4

(a) Concentration of N2 in blood = 5.1 x 10"4 M
(b) At a depth of 100 m N2 concentration in blood = 5.5 X 10"4 M

Exercise 8.5

(a) [N j] = 5,1 X Ю"4 M
(b) [N2] = 5.5 X 10"3 M
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Exercise 8,6 Boiling point of sugar solution «* 373.28 К  
Boiling point of NaCl solution «  373.46 К

Exercise 8.7

(a) Tt = [273 - (0.032 V)! К  in which V  is in ml. per liter of water
(b) V -  312 mLperliter of water for a decrease of 10 °C  in freezing point
(c) 7b = 102,67 °C

Exercise 8.8 Гь of nitrobenzene = 212.68 К  
Exercise 8.9 X  = 128.7 g/mol 
Exercise 8.10

(a) Molecular weightt of hemoglobin is about 70 000
(b) ж = 31 atm

Exercise 8.11 Osmotic pressure of sea water *  27 atm 
Exercise 8.12

(a) Pressure needed for reverse osmosis m 24 atm. Work = 2.4 kJ L _J
(b) Energy cost tor 100 L  is about $0.02
(c) Evaporation using sunlight

Exercise 8.13 1.66 x 10s N = 1.7 X 107 kg wt 
Exercise 8.14 /q j, «• 0.317, ya - = 0.750 
Exercise 8.15 wAg. =» 1.33 X 10-S m

Chapter 9 

Exercise 9.1

(a) At about T •  33 000 the С—H bond will break due to collisions.
(b) At about 5,6 X 1010 K, avg K E equals nucleon binding energy. So we may expect nuclear reactions 

to take place at this temperature.

Exercise 9.2 At Т »  300 I t ,  i  = 7.81 X Ю6 M' 1 C 1.
At T *  350 K, Rf = 4.38 x 1Г 2 M s’ 1.

Exercise 9.Э £ , m 1.33 X 10n  s '1, Д/ft ,  125.6 kJ mol" 1 and A Jt _  -2.891 K *1 m ol'1.
Exercise 94

(a) Reaction velocity = -0,069 M/s
(b) [A ]_- [A J0- f 4, ® ]4 - P lo  + 2«4
(c) [А Ц  »  0,0*5 M, [B ]^  - О.Й07 M

Exercise 9.6 к • .3.83 X W 12 s' 1
Radioactive decay is unaffected by temperature.

Exercise 9.7 Chiiping depends on a rate-limiting step that obeys th* Arrhenius law.
Exercise 9.9 At 25 *C, pH = 5.77 and at 35 °C , pH = 5.75
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(a) К  *  6.74
(b) К  » 1.32 к 10*

|‘ (с) К  ж 4.53 х 10~J1

Exercise 9.12

(a) AT *  5,80 X 105 at 7"= 25 °C
(b) К  *  6.3 X И Г4 at T ■ 400 °C  and = 41.24 kJ/mot 

Exercise 9,13 К  »  2.6, At equilibrium Num  =1.8 mol; Ncie ■ 0.7 mol

Exercise 9.10

Chapter 10
Exercise 10.1 Using the molar mass of NSj the pressure at 2.5 km is 0.73 atm 

Boiling point of water = 911.1 *C 
Exercise 10.2 0.46 J  K -1 s-1 
Exercise 10 J

(a) A: = 8.31 X 1014*
(b) К  = I.12X1025 
(e) К «  9,24 X Ю,|!
(d) К  - 5,36 X Ю1*7

Exercise 10.4

(a) 0.70 V
(b) 0.79 V
(c) 0.78 V

mt+Exercise 10.5 — ~ = 33.2 
т ы

Exercise 10.7 
Exercise 10.8 F (T ) =
Exercise 10.9 Fraction of dipoles between 10° and 20° = 2.26 x 10-2

Chapter 11

. „ /■ SjtA / \ 4 
E x e r c * .l l J/ ? ~ y  — {j)  ^TTT)

0
Exercise 1M  — «  4.5 X 1028 

y K)l0K
Exercise 11.5 Л1™ 0 = 290 nm



Exercise U .«  « U  Г * U  -  7

Exercise 11.7 ^  = 6.58 X Ю14 J IT 's " 1 
dr

508 /Inswers to Exercises

Chapter 12

Exercise 12.1 -c 3.7 X 10" 23 atm L K ' 1 =» -c  3.7 x 10" 21 J K _l

Chapter 13

No numerical answers

Chapter 14

No numerical answers

Chapter 15

No numerical answers

Chapter 16
Exercise 16 J For this system, we see fliat the cross-diffusion#! current could be of the order of 2 x 

10~9 mol m' 2 (T l

Chapter 17

No numerical answers

Chapter 18 

Exercise 18.1

(a) A .  = in ~  «  1 in which .rL and *0 lire mole fractions. This will be true when *L nearly equals xD. 
К Г  Xn
i.e. when tbc two concentrations аю nearly equal.

(b) For notatiomal simplicity we use x »  N ;04 and у = NOz.

A -4.71 kJ mol' 1 
RT  C KT

When T «  » 8  K, A  = -1.9 + In Ц  R f p i

In the linear regime, near equilibrium (Л1ЯГ) с  1 implies In 

in bars. At equilibrium, if px = 1.0 bar. py =0.38 bar.
**" 1 wblc*1 !> ® measun'41
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Chapter 19

No numerical answers

Chapter 20
Exercise 20.2 Rotational temperature for H2 is 88 K, for 0 2 it is 2.06 К
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