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Preface

This book present! a basic introductory course to the mechanics of materials for students of mechanical
engineering It gives students a good background for developing their ability to analyse given problems
using fundamental approaches. The necessary prerequisites are the knowledge of mathematical analysis,
physics of materials and statics since the subject is the synthesis ofthe above mentioned courses.

The book consists of six chapters and an appendix. Each chapter contains the fundamental theory and
illustrative examples. At the end ofeach chapter the reader can 6n4 unsolved problems to practice their
understanding of the discussed subject. The results of these problems are presented behind the unsolved
problems.

Chapter 1discusses the most important concepts of the mechanics of materials, the concept of stress.
This concept is derived from the physics of materials. The nature and the properties of basic stresses,

i.e. normal. Clearing and bearing stresses; are presented too.

Chapter 2 deals with the stressand strain analyses ofaxially loaded members. The results are generalised

into Hookes law. Stint»Venants principle explains the limits of applying this theory.

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the torsion
ofciicular members and subsequently, the torsion of non-circular members is analysed

In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a member with
at least one plane of symmetry and the applied loads are acting la this plane. We analyse stresses and

strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are two

principal methods presented in this chapter the integration method and Castiglianos theorem.

Chapter 6 deals wtth the budding ofcolumns. In this chapter we | * roduce indents to Euler’stheory in

order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. Pavel

Eksztda, Dr. Michal £ekan. And also we would like to thank our reviewers’ comments and suggestions.

Roland Janto
Branislav Hudko
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1 Introduction - Concept of stress

11 Introduction

The main objective of the mechanic» of materials it to provide engineers with the tools, methods and

technologies for

= anblysuy existing load-bearing structures;
= designing new structure».

Both of the above mentioned tanks require the analyses of stresses and deformation*. In this chapter we
9il] firstly discuss the sties».

12 A Short Review of the Methods of Statics

Let us consider a simple truss structure, see Fig. 1.1. This structure was originally designed to carry a
load of 15kN. It consists oftwo rods; BC and CD. The rod CD has acircular cross-section with a 30-mm
diameter and the rod BC has a rectangular cross-section with the dimensions 20x90 mm. Both rods are
connected by a pin at point C and are supported by pins and brackets at points B and D. Our task is to
analyse the rod CD to obtain the answer to the question: Is rod CD sufficient to carry the load? To find
the answer we ait going to apply the methods of statics. Firstly, we determine the corresponding load
acting on the rod CD. For this purpose we apply the joint method for calculating axial forces n each rod
at joint C, see Fie. 1.2 KM - fo2cwir% equation

11
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IFy=0 Fcd\- 15~*0 (LD

Solving the equations (1.1) we obtain the forces in each member: FK « 20 kNJP9 * 25 kN. The force FK
iscompressive and the force Fa is tensile. At this moment we are not able to make the decision about
the safety design of rod CD.

Secondly, the safety ofthe rod BC depends mainly on the material used and its geometry. Therefore we
need to make observations of processes inside ofthe material during loading.

ACTION w
( Y /h g-wwnnnoc
\Y W DISTANCE
REACTION
ACTION j 9
OOO jyTERAToMIc
DISTANCE
REACTION

R».1]
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It tusconsider acrystalline mesh ofrod material. By detaching two neighbour atomsfrom the crystalline
nKSh. we can make the following observation. The atoms are in an equilibrium state, see Fig. 1.3(@)- Now
we can pull out the right atom from its equilibrium position by applying external force, see Fig. 1.3(b).
The applied force Is the action force. Due to Newton's first law a reaction force Is pulling back on the
atom to the original equilibrium. During loading, the atoms find a new equilibrium state. The action
and the reaction are in equilibrium too. If we remove the applied force, the atom will go back to its
initial position, see Fig. 1.3(a). If we push the right atom towards the left atom, we will observe asimilar
situation; see Fig. 1.3(c). Now we can build the well-known diagram from the physics of materials;
internal force versus interatomic distance, tee Fig. 1.4. From this diagram we can find the magnitudes of
forces in corresponding cases. Now we can extend our observation to our rod CD. For simplicity let us
draw two parallel layers of atoms inside the rod considered, see Pig. 1.5. After applying the force of the
external load on CD we will observe the elongation of the rod. In other words, the interatomic distance
between two neighbouring atoms will inaease. Then due to Newtons fir* law the internal reaction
forces will result between two neighbouring atoms. Subsequently the rod will reach a new equilibrium.

Thus we can write;

IfL, « Fed or E internalforces = externalapplied force (12)

The next task is to determine the internal fortes. Considering the continuum approach we can replace

equation (1.2) with the following one:

Resultantofinternalforces « externalapplied force (1.3)

M»14
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The resultant can be determined by applying the method ofsection. Raising the section at some afbirarv
point Q we get two portions ofthe rod: CQ and DQ, see Fig. 1.6. Since force Fa »2 SkN must be applied
at point Q for both porttom to keep them in equilibrium, we can conclude that the resultant of Internal
forces of 100 kN is produced in the rod CD, when aload oi 15kN is applied at C

The above mentioned method ofsection is a very helpful tool for determining all internal forces. Let us
now consider the arbitrary body subjected to a bad. Dividing the body into two portions at an arbitrary
point Q. see Fig 1.7. we can define the positive outgoing normal n+.the normalforteN ~h the force
component in the direction of poailive normal The force component derived by fuming the positive
normal clockwise about 1 at Q is known as the shearforce » W the moment M (g) about the z-azls
defines the bending moment (the positive orientation will be explain in Chapter 4). The moment I',«)
define* the tonjue with a positive orientation according to the right-hand rule.

b)

R* 1]
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por assessing the safety of rod CD we need to ask material scientists for tbe experimental data about the
materials response When our rod is subjected to teasion. we can obtain the experimental data from a
simple tensile test. A us arrange the following experiments for the rod made of tbe same material. The
output variables are the applied force and the elongation ofthe rod, le. the force vs. elongation diagram

jhe first test is done for the rod of length L. and cross-sectional area A. see Fig 14 (a). The output can
be plotted in Fig L8 (d). seen as curve number 1 For the second test we now detine the rod to have
alength of 21 whle all other parameters remain, see Fig. 1.8 (b). The result is represented by curve
number 2. see Fig. 1.8 (d). It is only natural that the total elongation is doubled for the same load level.
For the third test ~ keep the length parameter L but increase the cross-sectional area to 2A. The result
are represented by curve number 3. see Fig. 1.8(d). The conclusion of these three experiments is that the
load vs elongation diagram is not as useful for designers as one would initially expect. The results are
very sensitive to geometrical parameters bl the samples. Therefore we need to exclude tbe geometrical

sensitivity from experimental data.

13 Definition of the Stresses In the Member ofa Structure

The results of the proceeding section represent the first necessary step in the design or analysing of
structures. They do not tell us whether the structure can support the load safely or not. We can determine
the distribution functions of internal forces along each member. Applying the method of section we
can determine the resultant of all elementary internal forces acting on this section, see Fig. 19. The
average intensity d the elementary force IN over the elementary area LA is defined as JT/0A This
ratio represents the internal force per unit area. Thus the intensity bl internal force at any arbitrary point

can be derived aa

H»l«

intensity (M)
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Whether or not the rod will break under the giwn load dearly depends upon the ability ofthe Maters]
to withstand the corresponding value, tee the above mentioned definition, of the distributed Internal
force*. It isdear that this depend* on the applied load FCD, the cross-section area A and on the natcruj

of the rod considered.
The internal force per unit area, or the Intensity of internal forces distributed over a given cross-sectkenu

area, is called ® rx. The stress is denoted by the Greek letter sigms a. The unit of stress Is caled the

Pascal which has the value N/m 2. Then we can rewrite equation (1.4) into

15)

The positive sign indicates tensile stress In a member or that the member is in tension. The negair-

sign of stress indicates compressive stress in a member or that the member is subjected to compression

The equMion (1.5) is not so convenient to use in engineering design so solving for this equation we get

N =JodA @e)
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I1f we app*Y Slint Venanl* principle, see Section 2.6 for more detail we can assume the uniform stress
jistribut*on function over the cross-section. except in the immediate vicinity of the load* point* of

jpplfcation. thus we have

N = fdA* oA or I=j @.7)

R«.i.ia

N graphical representation is presented in Fig. 1.10. If an internal forte N was obtained by the section
passed perpendk alar to the member axis, and the direction of the internal force N coincides with the
member axis, then we are talking about axially loaded members. The direction ofthe internal force N also
determine* the direction of stress 0. Therefore we define this stress o a* the normal stress. Thus formula
(1.7) determines the aormal stress in the axially loaded member

From elementary static* we get the resultant N of the internal force*, which then must be applied to
the centre of the cross-section under the condition of uniformly distributed stress. This means that
a distribution ofstress is possible only if the action line ofthe applied loads passes through the
centre ofthe section considered, see Fig. 1.11. Sometimes we this type of loading is known as centric
loading. In the caae of an eccentrically loaded member. see Fig. 1.12, the condition is not satisfied,
therefore the street distribution function Is not uniform. The explanation will be done in Chapter 4.

normal force Nc ~ F and the moment Mc —Fd are the internal forces obtained through the

method ofsection

18
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jF
To|———— 1
A i Dr_ (
/C
M Fx n) b)
N«.1.14
A or y =/
™ A dA (18)
ACTION
dine . v
A
R+1.12 1.9

The presented esse of cutting is known as «he shear.

14 Basic Stresses (Axial, Normal, Shearing and Bearing stress)

The cutaway effect can be commonly found in bolts, screws, pins and rivets used to connect various
structural components, see Fig. 1.15(a).IWo platesart subjected to fa tensile force F. The corresponding
cutting stress will develop in plane CD. Considering the method of section in plane CD, for the top
portion of the rivet see Fig. 1.15(b). we obtain the shearing stress according to formula (1.9)

RIVET
n
pa

V-F

b)
In the previousSection %* discussed the case when the resultant ofinternal forces and the resulting*v
normal to the ctoss*section are considered. Now let us consider the cutting process of material e
scissors, see Fig. 1.13. The applied load F is transversal to the axis of the member Therefore the | - NelD»
is called the transversal load Thus we have a physically different stress. Let us pass a section tbr *
\;/Joint C between the spptkaiion points oftwo forces, see Fig 1.14 (a). Detaching portion DC fbrn (1.10)
member we will gpt the diagram of the portion DC shown in Fig. 1.14(b). The mam valued imt«
forces are excluded The resultant of internal forces is onlly the shear force. 15 bTés‘éJ p_erpenﬂ’ﬁfﬁp M~ ** pmdfectiaaed lhe Gf $€ttion in a perpendicular direction to the member axis.
the member axis in the section and is equal to the applied force. The corresponding Hness is ca& Oow c’nsider the axially loaded member CD see F " *, _amnj wewnuiy
shearing stress denoted by the Greek letter tau r. Now we can define the shearing stress as In comp »” 1~ ovtr an angle B between the perpendicular secti!'n
to the normal stress, we cannot assume that the shearing stress is uniform over the cross section shown in F%. 1.17 fan Ihe "k »ecUon. we will get the
proof of thift statement is explained in Chapter 4 Therefore we can only calculate the average v a k  ” 4uni with the axialforte P. Lc P* P Thk ic **TTWUWr ~  that the applied force F is in

20
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Introduction to Mechanics of Materials Parti Introduction (oncapt of
Tb|®lprmal force N and the shear force V represent the resultant of normal forces and shear forces
distributed over the cross-section and we can write the corresponding stresses over the
~KCtlon A,«Alcose at follow.
N Pco* B F 2a
a=1T —lo——T“cos *“ (112)
n cmt
:-L =sP-¥Y* ==8In 0COSO
Tavt 6 (113)
For the perpendicular section, when O * 0, we get <= O”™x * and Tave * O These results
worrespond to the onei we found earlier. In the point ofview of mathematics, tbe magnitudes of stresses
depend upon tbe orientation of the section.
N = PcosG and V = Psin0O (L1
M»l.le
The resultant stress from the normal and shearing stresscomponents is called the axuM stress (the stress in
thedirection oftht axis) and it is denoted asp; see Fig. 1.18. Then iKing elementary mathematics we get
P = VIfl+ Tam»2 (110
The exact mathematical definition of the axial «tress is the same as previously defined stress types, U .
It ap dpP
(1.15)
22
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bolts, or iciews have a lateral contact within the connected member, see Fig. 1.19. They create

Ihe <re* in the connected member along the bearing surface or Hie contact surface. For example let
~ »sxder the boll IK connecting two pines B and C. which are subjected to shear, see Fig. 1.19. The

| It shank exerts a force P on the plate B which is equal to the applied force F. The force P represents
[ resultant of all elementary forces distributed over the half of the cylindrical hole in plate B. see
lig |3vK— The diameter of the cylindrical hole is D and the height is t. The distribution function of the
aioiementioned stresses is very complicated and therefore we usually use the average value of contact

,r bearing sfrws In this case the average engineering bearing stress is defined as

F
- o (1.16)

15 Application to the Analysis and Design of Simple Structures

Let us recall the simple truss structure that we discussed in Section 12. see Fig. L 1. Let us now detach
rod CD for a more detailed analysis, see Pfc. 1.21. The detailed pia connection at point D is presented

in Fig 122 The following stresses acting in the rod CD can be calculated

wvtioort- a am&aAr —e

24
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| dear and precise pn=>blem formication. This formulation should contain the given data and
= The normal stress in the shank of the rod CD:
indicate what information is required,

The normal force acting in the circular shank I» fcp * 25 kN, the corresponding trow, g. Simplified drawing ofa given problem, which indicates ail essential quantities, which should
sectional area bl/1patk * v (y ) = 706,9 mm2 Then we have be included.

iii Free body diagram to obtaining reactions at the supports.

iv Applying method of section in order to obtain the internal forces and moments.

v Solution of problem oriented equations in order to determine stresses, strains, and

deformation*.
« The normal stresses in the flat end of D:

The normal force acting in the flat end is PCD « 25 kN again, the corresponding vro* subsequently we have to check the results obtained with respect to some simplifications, for example
sectional areas are at the section a-a AM * (50 - 20).30 = 900mm2 and at the sectio, boundary conditions, the neglect of some structural details, etc.
b-b Am ~ 50.30 = 1500mm2 Thus ** get
The numerical accuracy depends upon the following items:
- 27B MPa and a» * ~ * 16.7 MPa
« the accuracy of input data;

. . . . = the accuracy of the computation performed.
= The shearing stress in the pin connection O.

The shear force acting in tbe pin is Fcv = 25 kN, the corresponding cross-sectional srvat

< The bearing stress at D:

The contact force acting in the cylindrical hole is F*eeril# = 25 kN, , the corresponding <to»

sectional areais A ~ A~ = 30.30 = 900mm2. Using formula (1.16) w* get

16 Method of Problem Solution and Numerical Accuracy

Every formula previously mentioned and derived has its own validity. Thisvalidity predicts the g>plic4(
area, i.e the limitations on the applicability. Our solution must be based on the fundamental principle*
statics and mechanics of materials. Every step, which we apply in our approach, must be justified on th
basis. After obtaining the results, they must be checked. If there is any doubt in the lesults obtained *
should check the problem formulation, the validity ofapplied methods, input data (material paraSKter*
boundary conditions) and the accuracy of computations

The method of problem solution is the step by step wlutwn This approach consists o fthe following rtcf*

26
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Pot example It It possible that we can get inaccurate material parameters. Lei ua consider an error 0
5% in Younga modulus Then the calculation of ire» contains at least the same error, the explanati, «
can be found in Section 2.5. The accuracy of computation Is tighUy connected with the computati i<

method applied. Wr can apply either the analytical solution or the iterative solution.

17 Components of Stress under General Loading Conditions

R*1J1

Until now we have Limited the discussion to axially loaded members. Let us generalise the results obtainet
in the previous sections. Thus we can consider a body subjected to aeveral forces, see Fig. 1.23. To analy*
the stress conditions created by the loads inside the body, we must apply the method of sections. Letu
analyse stresses at an arbitrary point Q. The Euclidian space todefined by three perpendicular plane
therefore we will pass three parallel sections to the Hudidiaa ones through point Q.

27
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itroNUC
, paly we p* 8 * section parallel to the principal plane yz, see Fig, 1.24 and take into account the left
mn ofthe body. This portion is subjected to the applied forces and the resultants ofall internal forces
these forces replace the effect of the removed part) In our case we have the normal force Nx and the
\yeir foite TI* 1°* er subscript means the direction of the positive outgoing normal The general
near force \& hastwo components in the directions ofy and tie . V* and V/. The superscript indicates
the direction of the shear component. For detemiining the stress distributions over the section we need
t define asmall area LA surrounding point Q. see Fig. 1.24, Then tx corresponding internal forces are

LVX ,A If -Recalling the mathematical definition of stress ia equations (1.5) and (1J), we get
X=Illnu,~07~

rry = 1.17)

Ihese results are presented in Fig.1.25 Remember that the first subscript in ox, Tgy and Ta is used to
indicate that the stresses under consideration are exerted on a surface perpendicular to the x axis. The
second subscript in the shearing stresses identifies the direction of the component. The same results

will be obtained if we apply the same approach for the right side of the body considered, see Fig. 1.26.

28
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Secondly we now pam a section parallel to the principal plane of xz. where w* will get the ~
component» ay. Ty, and Ty, in msimilar way. Thirdly, passing a section parallel to the principal ; 4
of *7, we can also get the stress components: at% Tn and by the same way. Thus the itrews
at point Q is defined by nine stress components With reject to statics. It is astatfcally todetemun,

problem, since we only have six equilibrium equations.

H-W
a, JA
TAXK
ruon
oan LA
Yy
Tw/a |
an
tir AA

To visualise the stress conditions at point Q we can represent point Q as a small cube, see Fig \X
There are only three faces of the cube visible in Fig. 1.27. The stresses on the hidden parallel faces x
equal and opposite of the visible ones. Such a cube must satfcfy the condition of equilibrium. Therefor
we can multiply the stresses by the face area bA to obtain the forces acting on the cnbe faces. Focus*
on the moment equation about the local axis, see Fig. 1.28 and assuming the positive moment in to
counter-clockwise direction, we hav*

EM, *0

rylalj +TjyM | —=T1AAN~A=0 (L1»

we then conclude

*xy @ V (L.1*

29
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fdition obtained shows that the y component of the shearing stress exerted on aface perpendicular
is eﬁual to the x component of the shearing exerted on a face perpendicular to the / axis

io the x a**

Simiuf ** obtained for the rest of the moment equilibrium equations. Le.

and — (120)

T*f
be equations (1.1%) and (1.20) represent the shear law The explanation of the shear law is: if the
hearing stress exerts on any plane, then the shearing stress will also exert on the perpendicular

plane to that one. Thus the stress state at any arbitrary point is determined by six stress components:

ax, Oy, OkTxy <Ta »Tyt

1.8 Design Considerations and Factor of Safety

In the previous sections we discussed the stress analysis ofexisting structures. In engineering applications
we must design with safety as well aseconomical acceptability in mind. To reach this compromise stress
analyses assists us in fulfilling this task. The design procedure consists of the following steps:
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Determination ofthe ultimate stress ofa material. A certified laboratory will make mater 2 StreSS and Strai n _ AXiaI Load i ng

M s In reject to the defined load. For example they can determine the ultimate lensir
stress, the ultimate comprtssive stress and the ultimate shearing stress for a given material s*

Fig. 1.29. 21
Allowable load and allowable stress. Factor ofSafety. Due to any unforeseen loading during I tte previous chapter we discussed the stresses produced in the structures under various conditions,

the structures operation, tbe maximum stress in the designed structure can not be equal to

Introduction

e loading, boundary conditions. We have analyzed the stresses in simply loaded members and we
the ultimate stress. Usually the maximum stress » lessthan this ultimate stress. Low stress  leamed how to design some characteristic dimensions ofthese members due to allowable stress. Another

corresponds to the smaller loads. This smaller loading we call the allowable load or destpi important aspect in the design and analysis ofstructures are their deformations, and the reasons are very

load. *lhe ratio oftbe ukimate load to the allowable load is used to define the Factor ofSafa  Simple. For example, large deformations is the structure as a result of the stress conditions under the

applrd load should be avoided. The design of a bridge can fulfil the condition for allowable stress but

tttiich is:
the deformation (is our case deflection) at mid-span may not be acceptable The deformation analysis
Factor of S afety mF.Si Ulimatr bod (121 isvery helpful in the stress determination too. mainly for statically indeterminated problems. Statically
Allowable - load it is assumed that structure is a composition of rigid bodies. But now we would like to analyse the

An alternative of this definition can be applied to structure s a deformable body.

Factor of Safety * F.Sj Ultimate  itran (i2: 22 Normal Stress and Strain under Axial Loading

= Selecting the appropriate Factor ofSafety. The dpn>prlale Factor of Safety (ES.) for a given
design application requires good engineering Judgment based on many considerations, such

as the foflow'ing:

= TVpe of loading, Le. stalk or dynamic or random loading.

- Variation of material properties. Le. composite structure of different materials.

= Type of failure that fcexpected. Le. brittle or ductile failure, etc.

= Importance of s given member. Le. less important members can be designed with
allowed RS.

- Uncertainty due to tfie analysis method. Usually we use some simplifications in our

analysis. ».1
- The nature of operation. Le. taking into account the properties of our surrounding H
example: corrosion properties.
For the majority of structures, the recommended F.S. is specified by structural Standards and othf
documents written by engineering authorities
Rg.2)
32
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Im

Let us assume ihgi the rod BC of Iﬁg’ch L W|th constant cross-sectional areaA is han%mg onas
point B, see Flg 2.1.1f** apply the bad F wecan observean elongation ofthe rod BC. Both thearn
force and dongation can be measumd. And we can plot the bad vs. elongation, see Pig. 1X

As we mentioned in the previous chapter, we would like to avoid plotting geometrical character™
Le. cross-sectional area and length. We cannot use such a graph directly to predict the rod 4onep,
of the same maerial with different dimensions. Let us consider the following examples:

Mttecharw $of Materials. Part | Stress and Strain - Axial Loading

load F C?\ i»« the dongationeAt The corresponding normal «tress can be found by passing

m endl}}fﬂsr to the axis of the rod (method of sectlons) aﬁplylng this method we obtain
« section perpend

KU| E?’;\A See Fig. 21. If we apply the same bad to the rod of length 21 and the same cross-

nal ares A, we will observe an dongation of 2[l/. wtth the same normal stress ax = F/A. soe
2}

* ok n

meat* the deformation is twice as large as the previous case. But the ratio of deformation
|length is the same. Le. is equd to SU L This result brings us to the concept of strain.

W -tan now define the normal strain s caused by axial loading as the deformation per unit length of
,x rod Since length and dongation have the same units, the normal strain is a dimensionless quantity
Mathematical, we can express the normal «rata by:

AL
‘L (2.1

H».L4

Ihisequation is valid only for a rod with constant cross-sectional area In the case of variable cross sectional

,R j’the normal stress varies over the axis of the rod by Ox — F/ A (Ky lhcn we must define the normal

Mrain * 1,1 «bitrary point Q by considering a small element of undeformed length Ib . The corre~nding
onptton ofthis dement is D (D L), see Fig 2.4. Thus we can define the normal strain al point Q as:

*11144%-2~ = (2.2)

ax

whicj

~  results in adimensionless quantity

34
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23 Stress-Strain Diagram, Hooke's Law, and Modulus of Elasticity

H» 21 MM tatting marhin» «* —1
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Reamed before, plotting load vs. elongation is not useful for engineers and designers due to

JT* strong sensitivity on ** sample geometry. Therefore we explained the concepts of stress and strain
' 13 and Sec 12 in detail. The result is a stress-arain diagram that represents the relationship
-en stress and strain. This diagram is an important characteristic of material and can be obtained
onductii™ * tensile test. The typical specimen can be rfwwn in Fig* 2.5. The cross-sectional area

~t the cylindrical central portion of the specimen has been accurttdy determined and two gage marks
(' ye been made in this portion at a distance Lf from each other. The distance Lt is known as the gage
ntfh (or referential length) ofthe specimen. Tbe specimen is then placed into the test machine seen in
j»g 2.4 which is used for centric load application. As the load F increases, the distance L between gage
narks also increase*. The distance can be measured by several mechanical gages and both quantities (load
iiiJ distance) are recorded continuously as the load increases. As a result we obtain the total elongation
of the cylindrical portion DL=L-LOfor each corresponding load stejx From the measured quantities we
can recakulate the values of stress and strain using equations (15) and (2.1). For different materials
we obtain different tfress-strain diagrams. In Mg 2.7 one can see the typical diagrams for ductile and

brittle materials
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— LOW - CARBON STEEL
— ALUMINUM

STRESSIMPal)

0.0012 a004

(7) DOCTILE MATERAL

R+2.7

Por a more detailed discussion about the diagrams we recommend any book which Is concerned ,,

material sciences lor engineers.

Many engineering appikations undergo small deformations and small strains. Thus the responn
material can be expected in an elastic region. For many engineering materials the elastic respond
linear. Le. the straight line portion in a stress-strain diagram. Therefore we can write:

sEex Vi

This equation is the well-known Hookes law, found by Robert Hooke (1635-1703). #ie English prawu
of applied mechanics. The coefficient E is called the modulus of dastuity for a given materid.

Young* modulus, named after the F.nglish scientist Thomas Young (1773-1*29). Since the strain t»
dimension less quantity, then the modulus ofelasticity £ hasthe same units as the stress o. In Pastils t
physical meaning of the moddus ofelasticity is the stress occurring in a material undergoing a <t*

equal to one. i.e. the measured specimen is elongated from its initial length L,

If the response of the material is independent from the dilection of loading, it is known as
Materials whose properties depend upon the direction of leading are anisotropic. Typical exam f*
anisotropic materials are laminates, composites etc.

37
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(a) ASSUMED ROD
Rg.2 4

(b) UNIT CUBE

Aswe can see in the previous section! (2.2 and 2.3) the normal stress and strain have the same direction
NN lotg bI ~ assume L, * the homogenous and isotropic rod is axially loaded by a force F as

in 2. Then the corresponding normal stressis x =*“ $f*= F/A and applying Hookes law we obtain:

23

h  naturalto ***ume that normal stresses on the faces ofa unit cube which represents the arbitrary point
fare aero. oymot »Q. This could convince one to assume that the corresponding atrains  etare zero too.
b not our case. In many engineering materials the elongation in the direction of applied load is
nn

botropfc materials. Le. mechankal properties are independent of position and direction. Therefore
havee>ﬂ m’btl\rl\l*;tcommon value is called the lateral stum Now we can define the important material

-Mn

an] N «contraction in any transversal direction, see Fig 2.9 We are assuming homogeneous

3a
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lateral itram
uHal arum

«l o (]

Mote that the contraction in the lateral direction means that the reduction of lateral dimension ;t U.
negative value of strain and a positive value of Poissons ratio. Usually Poissons ratio has a value
the interval of (0.-) for common engineering materials like sted. iron, brass, alumimum, etc. Ifwe”

Hookes law and e<f (2.5) we will obtain the following strains:

and ., I 4 @

Ft+2.10 Optnfoam

to Mechanics of Materials: Part |

i Stress and Strain - Axial Loading
production

there exW tome material*, with a negative value of Poissons ratio. Ihese materials are known

Le- foarm» honeycombs Instead of contraction, they elongate in the lateral direction

is ceuui»* L i ; .

of these materials is presented in Fig. 2.t0. Par more information see any book written by
lhe unsure
u, (jib»n MF fM j

- Generalised Hooke's Law for Multiaxial Loading

Until now we have discussed slender members (rods, bars) under axial loading alone. This resulted
in a stress state at any arbitrary point of Q. ax = ~,ay = a, » 0. Now let us consider multiaxial
loading acting in the direction of all three coordinate axes and producing non-zero normal stresses:

ax*oy *ar * 0.seeFig. 111.
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-
U t usconsider that our material Is isotropic and homogeneous. Our arbitrary point Q it represent™
a unit cube (where the dimensions of each side are a unit of the length), aee Fig. 2.12. Under the
mukuuia] loading the unit cube U deformed into a rectangular parallelepiped with the followinp
1 ee,),(l oty\ (1u-ta), where tt are strains In the directions of the coordinate axe» y*L,
Fig. 2.12(b). h is necessary to emphasis that the unit cube U undergoing the deformation motion ,,,,
with no rigid motion (translation). Then we can express the strain componentsr, € ftin terms Of
stress components ~  For this purpose, we will first consider the effect ofeach stress compon*
separately. Secondly we will combine the effects of aU contributing stress components by flying *
principle of superposition. This principle states that the final effect ofcombined loading can be obtsi*
by determining the effects for individual loads separately and subsequently these separate effcxu*

combined into the final result.

In cur case the si rain componentsare caused bythe stresscomponenta :inthexdirection tx = ox/E is
in the vand zdirections Cy = tt * - wIx/Freeailing eq(2.6). Similarly, the stresscomponent 5 uu*
* Wt = - \ayll

= </E andis:

the strain components: in the y direction £) = oy/E and In x and 2 directions
And inally the stress component stcauses the strain components: in 2 direction

and y directions Ex * = —\VOg/ E . These are separate effects of individual street components Tk

final strain components are then the sums of individual contributions. Le.

“tx+c; +e; lt

** 2.1

The equation (2.7) are known as a part ofthe generalised Hookes law or a part ofthe elasticity equate

for homogeneous and isotropic materials.

41
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Rf. 214

Until now. Aearii* stresses have not been Involved in our discussion. Therefore consider the more
“eneraMeed stress «ate defines with six stress components Ox,ay tai XSy tXx ttXyS, see Fig. 2.13. The
shearingstresses Tgy, Xa , Ty, have no direct efleet on normal straias, aslong as the deformations remain
smelL In this case there is no effect on validity of equation (2.7). The occurrence of shearing stresses is
dearly observable Since the shearing stresses tend to deform the unit cube into aoblique parallelepiped

42
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For simplicity, let us consider a unit cube of material which undergoes a simple shear in the xy pie*
see Fig.2.14. The unit cube is deformed Into the rhomboid w»h tides equal to one, *ee Pig. 2.15. In dht
words, shearing stresses cause the shape changes while normal stresses cause the volume changes Ld,

focus on the angular changes. The four angles undergo a change in their values. Two of them reduce

their values from ” to ” —y” while the other two increase from ~ to ” —ygy. This angular ,huaf
¥xy (measured in radians) defines the hearing strain in bodi directions x and y. The shearing strain!
positive if the reduced angle is formed by two faces with the same direction as the positive x and vne

see Fig, 2.15. Otherwise it is negative

In a similar way as the normal stressstrain diagram for tensile test we can obtain the shear stresvstm
plot for simple shear or simple torsion, discussed in Chapter 3. Prom a mathematical point of view*

can write Hooke’ law for the straight part of the diagram by:

Cyx, (2

The material constant 6 Is the shearmodulus for any given material and has the similar physical mein*

as Young4 modulus.

If we consider shear in the xzand yt planes we will get similar solutions to Eq. (18) for stresses in tb*

planes. Le.

Cya of

Finally we can conclude that the generalised Hooke's law or elasticity equations for the generalistJ
state ait written by:

43
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h E E E
E E E (210
Yy =
Yx*
AL
Yy G

The validity of these equations is limited to isotropic materials, the proportionality limit sires? that can
not be exceeded by none of the stresses, and the superposition principle. Equation (2.10) contains three
material constants f, C, v that must be determined experimentally. In reality we need only two ofthem,
because the following relationship can be derived

9

1 2(1«e) (2.11)

26 Salfltvenant's Principle
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B®. 217

Until now we have discussed axially loaded members (bars, rods) with uniformly distribute : «it
over the cross-section perpendicular to the axis of the member. This assumption can cause errors inl
vicinity of load application. For simplicity let us consider a homogeneous rubber-lke member thai
axially loaded by a compressive fore* F, see Fig. 2.16. Let us make the following two experiments | N

we draw a squared mesh over the member, see Fig. 2.17(a). Then we apply the compressive load throuf
two rigid plates; we Fig. 2.17(b). The member is deformed ill such a manner that It remains straight b
the original square dement change into a rectangular dements, see Fig. 2.17(b). 'Che deformed e
is uniform; therefore the strain distribution over a perpendicular cross-section is also uniform If!
strain is uniform, then we can conciude that the stress distribution is also similarly uniform descrfr
by Hookes law. Secondly we apply the compressive force to the same meshed member throughout *
sharp points, see Fig. 2.1S. This is the effect ofa concentrated load. We can observe rtrong deform**
in the vicinity of the load application point At certain distances from the end of a member the s
is again uniform and rectangular. Therefore we can say that there are large deformations and <tre*
around the load application point while uniform deformations and stresses occur farther from this p<*
In other words, except for the vicinity of load application point, the stress distribution function ntfTr
assumed independently to the load application mode. This statement which can be applicable to*
type ofloading is known as Saint- Venants principle, after Adfcmar Bart de Saint-Venant (1797-1**

45
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fpnto ft**"

a*n

Rf.2.18

While saint-venants principle makes H possible to replace actual loading with a simpler one for

computational purposes, we need to keep in mind the following:

= The actual loading and loadii* used to compute stresses must be statically equivalent.
Stresses cannot be computed in the vicinity ofload application point. In these cases
advanced theoretical and experimental method must be applied for stress determination.
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27 Deformations of Axially Loaded Members

Let us consider a homogeneous botropk member BC of length L, cross-sectional area A,,
Youngs modulus E subjected to the centric axial force F, see Fig. 2.1*. If the resulting normal *
ax~ N(*)/A * F/A docs not exceed the proportional limit stress and applying Saint-Venant's priaq
we can then apply Hooke's law

B*, or

And substituting lor tht normal stress Ox = N(x)/A » F/A we have

135 < ~ga
v

Recaiing the definition of normal strain, equation (2.1) we get

AL * esL

and aibstituting equation<2 13) into equation (2.14) we have

AL ="

EA ~ EA

a7
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Now W can<onclude that the application of this equation: Equation (2.15) may be used only if the rod
foniagencous (constant EX has a uniform cross-sectional area A, and is loaded at both ends. If the
is loaded it any other point or is composed from several different homogeneous parts having
“irfeient cross-sec* 011*1areas we must apply the division into parts satisfying tbe previous conclusion
De oted Nkx). ™ . A«, U theinternal normal force. Youngs modulus,cross-sectional area and length

ponding to the part i respectively lhen the total elongation is the sum of individual elongations

(prindpte Off4 *1)>"tfion):

AL= 271U, =1I-1 (2.16)
In thecak ofvariable cross-sectional area, asin Fig. 2.4. the strain depends on the position ofthe arbitrary
point Q. therefore we must apply equation (2.2) for the strain computation. After some mathematical
manfHihtfion we have the total elongation of the member

AL=/.
(1

!EAId X (2.17)
Until now we could solve problems starting with the free body diagram, and subsequently determine the
reactions from equilibrium equations. Recalling the method ofsections in (chapter 2.2) we can compute
internal forces at any arbitrary section, allowing us to then prt>ceed with computing stresses, strains

and deformations. But many engineering problems can not be solved by the approach of statics alone.

r B B
E. A
D t D Ll
¥
T
Ftx21*

For
~ consUlcr a Simple problem, see Fig. 2.19 Using statics we cannot solve the problem
reacti @ jﬁ )

quations. The main difficulty in this problem is that the number of unknown

Pr ‘hlenr* x*xxxx N W| *** num*>a  equilibrium equations. From a mathematical point of view the
* FO-conditinning For our cak we obtain on€ eguilibrium equation as

+R. *0
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XK

B
TRANSFORMATION
I, A
STATICALLY SO - CALLED STATICALLY
IMOTTERMINATED DETERMINATED PROBLEM
PROBLEM WITH UNKNOWN REACTION
(@) ®)
A9.210

There are two unknown reaction* In equation (2.I1B). Problem* of this type ire called staticd

indeterminate problems.
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2.
-
.1 E,A
1
D
F 1
AL,
i
C i
Uc =0
Rf.2-21

To overcome the static indeterminacy we need to complete the system of equilibrium equations with
relations involving deformations by considering the geometry ofthe problem. These additional relations
are called deformation conditions. For practical solution let us consider the following transformation in
Fig. 2.20. The problem presented is exactly the same as the problem in Pig. 119. This problem is statically
indeterminate to the first degree. Removing the redundant support at point C and replacing it with the
unknown reaction R we obtain the so-called statically indeterminate problem with unknown reaction,
w  Fig. 2.20(b). Now our task is to receive the same response for the statically indeterminate problem
as in the original 4 atlcally indeterminate problem. To get the same response of the structure we need
to impose the deformation condition for point C, that the displacement for this point * equal to vero,
see Fig. 2.21, or mathematically

uc =0 119)

lhiscondition (2.19) coincides with the total dongation ofthe member also equal to zero. We then have:

Ut=AL-"° (220)

I1* member presented in Fig, 221 can be divided into two homogeneous parts. Therefore the total
ton*ation is a sum of Individual elongation, equation (2.16), Le. AL = AL} + AL2. Then we have

(121)

0
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Both normal force* N1(t) » -K(,V2(]) mF - Rc are function* of unknown reaction Solvn RIGID PLATES
equation (2.21) we obtain the value of reaction RC. We can then continue by solving In the usual
for statically determinate problem*.
28 Problems Involving Temperature Changes
|
R9.2J)

In this case there I* no stress in a rod. We can prove this very easily by g>piying the method of sections

AT
and writing equilibrium equations.

In the previous discunions we assumed constant temperature as the member was being loaded Let*
now consider a homogeneous rod BC with the constant cids*-sectional area A and the initial lenp
L aee Fig. 222. If the temperature of the rod grows by AT then we will observe the elongation ofi®
rod by AL, see Fig. 2.22. This elongation is proportional to the temperature increase AT and the into
length L. Using basic physics we hase

ALt = a(AT)L (2
where a is the coefficiento fthermalexpansion. The thermal strain er is associated with the aforeimn'to*

elongation ALL. Le. ~ * ALj-/L. Then we have

eT * Br(Al) (2

Si
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By modify the previous rod by placing It between two rigid plates and subjecting K to a temperatur
change of 4T we will observe no dongation because ofthe fixed simports at its ends. We know that tk
problem is statically indeterminate due to the supports at each end. Let us then transform the proble
into the so-called statically determinate problem. Removing the support at point C and replace it*
unknown reaction Rc. Now we can apply the principle of superposition in the (blowing way firfli
we heat the rod by AT. see Fig. 2.34(a), then we can observe the dongation ALr = «(AT)L.e
Fig. 2.24(b). Secondly, we push the *>d by the reaction Rr back to its initial length, see Fig. 2)4(c). b
effect of pushing is the opposite of dongation AL~ . Applying the formulas (2.22) and (115) we hi*

ALr = ff(AT)L old 4
Impressing the condition that the total elongation must be aero, we get

AL =AM +AL* = B(A7-)b+ =0 of
This equation represents the deformation condition. And we can compute the reaction as

Rc * -EA<r(A7*) (if

and corresponding stress

ax » S a(Arl)

S3
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Trusses
19

The truss is a structure consisting of several slender members (rods, bars) that are subjected to axial
loading only. The mple truss structure lapresented in Fig. 2.25. Ihls truss consists of two bars of the
same cross-sectional area A and Young's modulus £ The truss is loaded by a vertical force F. Our task is
to compute the vertical and horizontal displacements ofjoint C. Applying the methods of statics we can
determine axial foKes In each bar. Nj * F/tin 8 ,N2= F/tan0. Consequently*, we can determine
elongations for individual bars using equation (2.15)

ALl,»*b|«—£iL. «id

EA EAMNO Al* M <128)

<ke deformed configuration can be founded by drawing two circles with centres at joints B and D with
the following radii, see Fig. 2.26

4
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bar has the following dimensions: * * 100 mm, b =50 mm. L = 1500 mm, shown in Fig. 2.28.

r.-1.+ab,-y(l+eb ) A axial force of F * 90 kN is applied to the bar, determine the change in its length and the change in

n Of u*cross-section after the load is applied Assume that the material behaves elastically.
rz* 12- al2=1j (i -57™7) . . )
' h nrthe Youngs modulus for steel is E =200 GPa and Poisaons ratio v * 0.32.
The deformations are relatively »ta/l. therefore we can replace the circles with tangents perpendKui
to the undeformed bars, see Fig. 2.27. One can then compute the horizontal and vertical dtaplacenit| in tue bar is
The normal stress in u>
as follows:
O «l .-L. - **1Q)N— .16 om10*Pa -16 0 MPa
* A ab (0 1WWX0.05m)
f12 o0*
BA 2820 The itrain in the x direction is

--80x10*.
E  200*l0’P*

The axial elongation of the bar then becomes

AL, ~(80X10™MML 3T - 120uT
E ahE

210 Examples, Solved and Unsolved Problems

121

56
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BC
Using Eq. (2-6) for the determination of Pofcson's ratio, where v - 0.32 u given for Med. thecontrw  4trtss end b 1 ,,rl

strain in the y and z direction ait
E(aL>

f, -0.33(10K1 0 — 256 fimm

Thus the changes in the dimension» of cross-section are given by

AL .-~.42.36 H- Solution of normal (axial) load N,

£F. «0: F-N,-0 = N,-F-20kN

ALf-a.L,--Hsb--vb ~
Stress in the part BC

N. F 4EI_ , 4 x30000N

A —m —rm *AXKH.a
Al jO1 «D* *DJ 1>
4
Problem 2 i
lufiakbhwn and stress in part CG
o , 902
F -1
a;c 12
i
if if
2 g T
*
0 Nn
Mutton of normal (axial) load N,,
A composite rted bar shown in Fig. 2.29 is made from two segments. BC and CH. havingdicuUr cp* e’ pP“N-~-NB-0 = N,-0
section *4th a diameter of - Dand =2D. Determine the diameter D. If we have an alkaw®
stress of oM = 147 MPa and tbe applied load is F ~ 20 kN. SlPe*e in puy
Solotion
We can divide the bar into three parts (BC CG and GH) which have constant cross-section a»e**
constant loading.
58
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Eqgidkbrium ofpart md stress w part GH in part CD
~ . . .
«.=(2L3L) n owNe, SF_. _3F __ 3720000N ., JUgAE |
‘m A. «2P): atf *D D*

Solution of normal (axial) load N,

F F 3_ 3
IF..-»: F-I1-I1-1F-|F-N.-0 N.--3F

i il isi e *| ’
N. - —3F - 3k 20000N - ~90000N For 41 parts, draw the diagram of normal force and «tress. Ihe maximum stress is in tfIC 1* P111*BC)

which we can compare with the allowable stress and obtain the parameter D

4F N

*mx - i I>*
<hr20000 N
Dr D21321
V* 147 MPa
Problem 23

R f 20

name the eton”*uon ofa conical bar shown in Ffc 2.30 at point B without cone*ac™ S ** **x**

60
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Fkkkrk A

Given by maximum tone diameter of D. length L modulus ofelasticity E and applied force F. Deicr™

the maximum stress in the conical bar.

The problem is divided into two parts.

Equilibrium ofthtfint part

We determine the oorraal force N,, and normal stress 1
Normal force N

X.)»F
T % 9° Nb(x,)-F-0 = N,(*

We determine the normal force N, and normal sties» av
Normal force N,:
JFA-0: N~>-0 = N,(«,>-0
Calculate angle p from the geometry of the cone given by diameter D, at position X,

D XKibk)

trnfim-Im ..I .. n D,xI)-b.D
L Xj L

Croes-sectional area (function of poakion) in the first part ia

Normal streat o, is as blows
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Calculation of angle b from geometry and diameter DBat pocltion xB

D PUX,)
ton/»-mE-—— 2—
L o d

Croat-section area (function of poaftton) in second pait la

n.(xg)-"£-~rb.ol -— 1i.
4  4{l ) 4 1

Normal area « lathen

5.(x_jm NI F . JFLL
ST AB(u) MP’)id' Y
n

F%2J1

The graphical result of the normal force and strrsa is shown in the Fig. 2.31.

Elongation is found by summing the elongation of each part using integration, because cross—ed*

area ia a function of position in all parts, which is given by



A-Mgnl 1—

Py 1***24

L1

H flU

s of Materials: Pa»t | Stress Sstren' A’ * Loading

“ ox * * « *, Brewue, inportion Be: and cx;

rn'T 4ar 2 Cc4 * 'bICrOa -
JoeU,he appUcaHon ofbad F - po.n, C in %

zZ Z7Z °? fr Kf x S,re
applied force F art known Problem w bl ~y ,nde,cmnna,e

v=>luboa

R»UJ

at point B and define a reaction at its location, whki* ~  ** foi,ied

nCN n 1 divWed,Wa i
two solution» part BC and CG.
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Frtt-body LLiwipsrr on portion | (pari BClt 1

From the equiibrium equation in the fint part we obtain

£F,*0: *0u)-*-0 = N,(x,)-R

Solution of cross-icction area it given From Pythagoras theorem where we determine the side I,
of the square

(2D - a*-fa*
A,-a* = 4D) -2a* s» A,-2D1
2D1. a*
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ro *dAM

Jportion Bc 1

. Rw .-JL
«”N"XO0O0 2D1

fret body*<&*™ M *#OTI'T " <par °® CY:

4 . (L*>

From the equilibrium equation in the second part, we obtain

IF..-* N.Cx.HF-R-0O = NB(Xxn)»R-F

Sum in portion CG is

A,(4) *D: D

Uc the unknown reaction from the deformation condition, total elongation (movement of
P°tat B) is equal to aero:

A*m0 = AL.-AL+ALe-O = JU+A"-0O

toan Miich we have

M ~~r-0 o 5 +i<M>L.o
"N E.An E201 EhD1
«# XR-D.O = r.JL
A-ft
66
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R»2J)4

Hf.23S
We insert the solved reaction into the result of parts BC and CG,

N.(xI)- R 072F InFI* 2.35,a bar oflength 2L with uniform circular cross-section area and made of the same material
XD-R- — -
s+l witha modulus ofelaaticity E. la subjected to an applied force F. determine the stress in the bar. Consider

the weight of bar (density p anJ gravity g are known).

0.36—

0,0U')» . —_ £_— B
A,(x,)  <xHtDr D*

Ne(xe)-R-F-i*-F»-— «-0/1P
*&» a+8

and draw the diagram of normal ibices and stresses for both portions, which is shown in the Fg 23

Design ofparameter D

The maximum (absolute value) of stnesaes is the same for both portions, we compare them w*b*
allowable stress and we get the designed parameter D:

«<VAX - 0365TiO A

&
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Solution

o U «Me0

Problem it statically indeterminate and for the solution we use the deformation condition at point!

First step of solution is lo substitute an unknown reaction at point B (see Fig. 136):

Because the problem is In pure tension, the reaction R and moment M are zero, reaction R is non-»

Solution ofthis problem is divided Into two parts.

Equilibrium of first part

£Fhi-f: N,(«,KR-0,-0 = K,(x,)-0, -R

where G, is gravitational load of first part, defined by

Q,-mg-pVg-pgM,
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.and e ««» ISgi'bcred by

M(x1) BJ1*» X|
o~ AMXD \ A
6(U2L)

| uyllbrHvn at the aecond part, is given by

JX-0 NI(xe)-fP-R-G1-0 = N,(xi)-F+O0i -R

Normal force and *rt* is as follows

Na(s1)-r+ffA 1x,-R-F+f>eAxa-R

* et A<«) A A A

information condition at point A

K*al dongation atpoint A is equal to xero, which is consisting ofthe first part ofthe bar AL} and second
P"t /L. For solution of each part we used the integral form because normal force is a function of

P*Akm. Unknown reaction R after calculation becomes

nmAL, +AL, «O = Jilx Hih ..o
EA E.A.

AJAINF-2R = R-PgALl +ijj
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Download free «Books at boofcboon oom



Introduction to Mechanics of Mat* lals Part |

R*2J7

We insert the mull of reaction R iato the function of normal force and stress for both parts i
diagram for force and stress is 4iown in Fig. 2.37.

N,<*.>-«*4-(«Al. Hlj-ptAix, -L)-|

\<*,> A A 2A

N,(X,)-F+p*AXx,-R - F+x/JIX,-"p*AL*|j- j+«A<xt -L)

Problem 2.6

A rod of length L cross-secUonal area A,, and modulus of elasticity E, has been place inside n
the same length L but of differing cross section area A, and hkhlulun tTelasticity £a(Hg 2.~X

»ur «mnunmmn ofthe rod and tube when F is applied to the end ol the piate »x shown'

Stress aid Strain - Axial L

. —1aMectv r sofMaterials: Part | Stress and Strain - Axial Loading

f

. [nfjfli
folte y, die rod and in the tube is denoting by Nb4) and NM , respectivrfy. wc draw a fret

7R i et - -

Rf.2JS

NFe*0: Ntv** " K®"“F»0 ~nje + @
Theproblemisstatkally indeterminate However, the geometry ofthe problem shows that the deformation

DL~ and D L~ ofthe rod and tube must be equal:

Nn'«4 m mNg4sg.
Fevssw»  EOOAU00

AU .-AL**

Equation (a) and (b) can be solved simultaneously for bltop and NM  by:

N. ansa
W ivi

A%-+H-f

G et
V2o An»

\ M« b W ATYH-——— I—

+\)
t E— A— !
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2.7

Determine the value of stress in the steel bar shown on Fig. 2.40 when the temperature change oft
baria AT - 3041 Assume a value ofE - 200 GPa and a = 12 x 10* 1I'C for steel.

Solutioa

We first determine the reaction at the support. Since the problem is statically indeterminate, we deu

the bar from its support at B

B» 241

The corresponding deformation from temperature exchange (Fig. 2.41) is

ALt =0 AT L

Applyiag the unknown force N ) at the end of the bar at B (Fig. 2.41). We use eg. (2.15) to o™

the corresponding deformation AL

NM
EA

AlLe
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*0

of the bar must be aero at point B, from which we have the following deformation

D FEE

1 thia we obtain

*a AT EA.

Sue* inthe bar is then given by

N.. |BATEA sa AoTE*12x!0~° ~"Cx30~CXxrOOxt'Pa*72MPa
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Problct 1J1

AT

H* 22

Determine tile stress of the aluminum bar L - 500 mm rfww* in Pig. 2.42. when Its temperature ch*
by T =5041 Use the value E m 70 GPa and a * 22.2 k Ifr4 1/1C for ahiminum.

Solutioa

We determine the elongation of the bar from temperature exchange from the following equation

X« (0.L)

R»241

AL» AL* ma IT L » 22.2* K4 1/71Cx40 €Cx500 mm =0.444 nun

We divide Ac b«r Into one component part shown in Fig. 2.43. From equilibrium equation in tiMf
we find the unknown normal forte

E£Ffc-0: N(x)-0

Stress in the aluminum bar we describe by

8+ Nu 0 pa
A A
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—MBc™ s°* VitefJ s Pat 1

L, - 1.5m

rklinkage in Fig. 244 is made ofthree 304 stainless member* connected together by pins, each member
fmg;r)())ai—sectk_njél area of A * 1000 mm\. If a vertical force P - 250 kN is applied to the end of the

B»
meberft D, Determine the stresses of all members and the maximum stress a

SoMftea

Li «2m
(o]

f ®290kn
Fig. 2-45

dtoconnccial the member CD and draw a free-body diagram (shown in Fig. 2.45) We then
v fartfatforce N by the toUowing cg-Uibraim equation

3 m 03
= Kg, mF * 250kN

£F,-0: NA~-F-0

mer normal forces and NK we determined from equilibrium * point C (shown in Fig. 2.46),

by.
L glom

ta* —
Lt 15m

»0.666 a -33 69*
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In the x direction

-0: -Na wia+Nfemu«=0 = -N~ &N* -0

In the y direction

JTF~-0: Naasa-+N*.eosa-N*, «0

Nr - —— W m13023kN

IN"ooea -Ne -F = ]
2cosa 2co« 33.69*

N~ - N ... 15023kN

Stresses In the members are

N*  1S07310N |5854fpa
A 1000 mml

NK 150.2310*"N  ieA~ . _
NTYHE EL

Maximum value of stress is at link CD

0», «<,, -250 MPa
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Pf A

Thc assembly conswts of two titanium rods and a rigid beam AC in Pig. 2.47. The croaa section area is

60nunland Aqg, ¢ 45 mnr The force ia applied at a =0.5 m. Determine the stress at rod GB and

cD; tfathe vertical force is equal to F - 30 kN.
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Stress and Strain - Axial 1 Q*xx"
Sohition ~ BD b supported by two links AC and CD in Fig. 149. Link CH is made of aluminum
N 9 GPa) aad has a cross-section area A, 14 mm} link DG ta made of aluminum (E~  6i.9
Ho n ~  gcross-W-tbm of AN, - 2 2K) mm* For the uniform load w « 9 kN/m. determine
N

* point D and stresses in the link CH and DG.

The unknown normal forces in the ttUnium rod are found from the equilibrium equation of rind
GC in Fig. 2.4ft given by

2Ft .O: Ne eNe -F=0

R* 2,50
-0: N<38-Fa<0 = N~-£fe . IOKN
fuiHbrium equation of moment at point B in the bar BC (Fig 2.50). is expressed as
Ne »F-Na,*30kN-10 LN m20kN
XM*-9: N~Lama-+N~alL-wZLL-O
Ne -20kN
N«Y<-2N.u-2wL, )
Stress in rod AB and CD is given by the following
-Ne N w1 3]) MP:
a
Am 601 nor-1-1 a-45*
Ng, 10000N

‘¢t "C "« w f22212MP* m«guMion ia) we have two unknown* We need a second equation for the solution of normal forces in

the Imks from the Jcformatktn condition in Fig. 231, from the similar triangles
Problem 211

*
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ABDD* % ABCC

unp- —
P BD BC lam 2L

In the* triangles the angle p are the a me from which we have the following equation

- = CC-~3*
cc «na

¢ -Ngb.-N«Va-
Natai EA

al,, . MOU»?.*ab
E-loo 2EN

ib L ."» n
M
Lana 2L EAV2  2EA N, -
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Jirll\T'Mfo rd * «r*tem Bf*41u,i,,n* <) <*4 <b). wt gei

N * [N +2K1I0-2*L = Nd 2wl 0.92wL

4 2 F )
Nn -0.92wlL -0.92300Nm Im - 276 N

Nm wlL 092w L——O.23WL

Ne *0.23wL * 0.20 300N'm Im-69N

stressill link CH is

Nn, GON

N -493MPa
e A8 wmm2
Stressin link DG is
NM 276N
“086MPa
Ak, 281

Deflection bl point D is given by the following

v N ~ 092*1 L 0.92 300X m (Im)*
' 2EA  ~ 2689 10*P. 14 10*W

NU4o-143 10*"-0.143 mm

Lntoh-w problems

Yns
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N

Problem 2.12

Both portion» of rod GBC in Fig. 2.52 are made of aluminum for which E =70 GPa. Knowing
magnitude of P ia 4 kN. determine (a) the value of F, 1o that the deflection at point A is2er4

corresponding deflection of point B. (c) the value of atiesa for each portion.

IP, =32/1 kN; /1L, =0.073 nun, <w - 12.73 MPa; *10.191N

Problem 2.13

Link DB in Fig. 253 i» made of aluminum (E * 72 GPa) and ha» a cross sectional area of 300 w
Link CG is made ofbrass (E * 105 GPa) and ha» a cross-sectional area of 240 mm2 Knowing thet tft,
support rigid member HBC, determine the maximum force F that can be applied vertically at poL,
if the deflection ofH cannot exceed 0.35 ram.

Ne * 164KK

Problem 2.14

In Fig 254 a vertical load F is applied at the center B of the upper section of a homogeneous cork*
frustum with height h. minimum radius a, and maximum radius 2a. Youngs modulus for the matca
is denoted by E and we can neglect the weight ofthe structure determine the deflection of point R

bl-21N1 M»2JS Re- 2.57

Problem 2.15
Determine ibe reaction at D and B for a «led bar loaded according to Fig. 2.55, assume thrf * 4*

mm clearance exists between the bar and the ground before the load is applied. The bar » **
(E * 200 GPa)»

* Kok kK

IRD=430.8kN, Rt

83
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proble*™
j« centric force of N * 1000 N Is appfted at both end» of the assembly ehown in Fig 2.56 by

Cr*Pble* lowing thatE ~ - 200 GP« and ~wntlnel =70 GPa. determine (a) normal

**x%% jn the »teel core and the aluminum shell, (b) the detection of the assembly.
«reses u>

1 m=>wt* - 3R MIM* amu 955 MPa; M - 4.74x10 * mm|

Probled 247
Two ejttndrte») rod* in Ftg. 2.57, one made ol steel (Eatn - 200 GPa) and the other of bras. (E ~ -
)5 GP«). ax Joined at B and restrained by supports at G and C For the given load, determine (a) the

reactionrt G and C (b) the deflection of point R.

IR,, =134 kN; Rc =266 kN; DL, - -0.3 mm]
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*S
Problem 2.12

Both portions of rod GBC in Fig. 232 arc made of aluminum for which E * 70 GPa. Knowing th*
magnitude of F is 4 kN. determine (a) the value of F, so that the defection at point A is aero, (b) ™ |
corresponding deflection ofpoint B. (c) the value of stress for each portion.

[F, =32) kN; AL, - 0.073 mm;<wth - 1273 MPa; aK < 10.19 I

Problem 2.13

Link DB in Fig. 233 Is made of aluminum (H =72 GPa) and has a cross-sectional area of 300~ |
Link CG is made of brass (E = 105GPa) aad has a cross-sectional area of 240 mm2 Knowing that tb* |
support rigid member HBC, determine the maximum force F that can be applied vertically at pointH |
if the deflection ofH cannot exceed 0.35 mm.

Ner 164K\

Problem 2.14

In Fig 254 a vertical load F is applied at the center B of the upper section of a homogeneous tonic*
frustum with height h. minimum radius a, and maximum radius 2a. Youngs modulus for the naterid
is denoted by E and we can neglect the weight ofthe structure determine the deflection of point &

AR Hg.2.5% R* 257
Problem 2.15

Determine the reaction at D and B for a Med bar loaded according to Fig. 235, assume th* *
mm clearance exists between the bar and the ground before the load is applied. The bar is
(E =200 GPa).

IRj, =4320.8 kN. =769-2**
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QOj m " cenlri<’ orce  ~ " 1000N * ermp**cd * both ends of the assembly shown in Fig 2.56 by
JStitfof crk* KnowWtng that - 200 GP* and E4lwniM =70 GP*. determine (a) normal
. Ne the steel core and the Aluminum shell, (b) the deflection of the assembly.

“*,J2 MP,;;'Vn 95 MP* U -4-74X10>ww|

probkeM?

T*o cylindrical rods in Fig. 2.57, one made of sted (E ,~ * 200 GPa) and the other of brass «
1BGPI). adjoined at B and restrained by supportsat G and C For the given load, determine (a) the
|tfcjonat G and C (b) the deflection of point B.

[RO- 134 kN; Rc * 266 kN; DL, - -0.3 mm)
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Problem 2.19

Li m13m

bI—2—'|:H

The rigid bar HBC it supported by a pin connection at the end of roj CB wheb has a cross-settiom
area of 20 mm- and is made of aluminum (E - 68.9 GPa). Determine the verbal deflection of the ker
at point D in Fig. 258 when the following distributed load w=300N/a is applied.

(AL, - 121 nT,

Problem 2.19

The bar has length L and cross-sectional area A. (see Fig. 2.59) Detcrmise Itsdoogation d ir to the
F and its own weighL The material has a specific weight y (weight /volume) and amodulus of elasticityE-
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In the previous chapter we discussed axially loaded members and we analyzed the stresses and sir”™
In these members, but we only considered the internal force directed along the axis ofeach rnen”
without observing any other internal force Now we arc going to analyse tfrrucs and «trains in nicmb”™
subjected to twisting couples or torques T and I . see Fig. 3.1. Torfues have a common magnttudt 4
opposite sente and can be represented either by curved arrows or by couple vectors, see Fig. 32.

Ra.JJ Alternative rtp»ticnutiont of tofQuvt

Members in torsion are encountered in many engineering applications and are primarily used to transmi
power from one point to another. These shafts play important roles In the automotive and power indury.

Some ~plications are presented in Fig. 3.3.

“pRxteetp S ——1

There is a parallelism between an axially loaded member and a member in torsion Both vector ti
applied force F and applied torque f act in the direction of the member axes, see Fig. 3.4. Further *=

will see the results of a deformation analysis speak more about thb parallelism.

-7
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Ih» chapter contains two different approaches in solving torsion problems. Firstly we will present the
theory for members with circular cross-sectional areas (circular members in short) and secondly we will
extend our knowledge of this theory for application on non-circular members.

32 Deformation in a Circular Shaft

88
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Let us consider a circular shaft fixed to s support at point B while the other end is fiee, see Fig. 3.5 *
shaft is of length L with constant circular croas-sectional area A. If the torque T is applied at po”

(free end of shaft), then the shaft will twist. l.e. the free end will rotate aboul the shaft axis through *
angle of twist ¥ and the shaft axis remains straight after applying the load.

Before applying the load, we can draw a square mesh over the cylindrical surface of the shaft as wi|
varying diameters on the front circular surface of the shaft, see Fig. 3.6(a). After applying the load a,.
under the assumption ofa small angle of twist (less than 5% we can observe the distortion in Fig 3.0a,

1 All surface lines on the cylindrical part rotate through the same angle y

2. The frontal cross-sections remain in the original plane and the shape of every circle remair*
lindistorted as well.

3. Diameters on the front face remain straight.

4. The distance* between concentric circles remain unchanged.



mL”ronto Mechanics JIV. - uie Haft Torsioi

R »li
Thee experimental observation* aDow a* to conclude the following hypotheses
1 Alicross-sectional areas remain in the original plane after deformation.
2 Diameter* in all crose-sections remain straight.

Yy "The diRtam.es between any arbitrary cross-sections remain unchanged

~N««publljn ofthese hypotheses is proven by experimental results. The aforementioned hypotheses

Tn<¥*rain along the member axis. Applying equation (2.5) for isotropic material, we get

a*0 31)

0
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Fig. 1.7

Using equations ofelasticity (2.10) we have ox = 0. Equation (3.1) means that the edge dimensiomof |
the unit cube are unchanged, but the shape of unit cube is changing. This can be proven with a mull |
experiment. Let usimagine acircular member composed oftwo wooden plates which represent the taus |
on the front of the member. Now consider several wooden slats th* are nailed to theae plates and nde |
up the cylindrical surface of the member, see Pig. 3.7. Let us make two markers on each neighbouring
slat, tee Fig 3.7(a). These markers represeat the top surface ofthe unit cube. After applying a load, tre |
markers will slide relative to each other, see Fig 3.7(b). The square configuration will then be deformed |
into a rhombus which proves the existence of a shearing strain.

a
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We can now determine the shearing strain distribution in a circular shaft, see Fig. 3.5, and which |u
been twisted through the angle f , see Fig. 3[(a). Let us detach the inner cylinder ofradius p ,p € <0
from the shaft. Now lets consider a small square element on its surface formed by two adjacent circlesa®¥d.
two adjacent straight lines traced on the surface ofthe cylinder before any load is applied, see Fig 3",
Now subjecting the shaft to the torque T. Che square element becomes deformed into a ihombus 4

stress In the Elastic Region

Fig. 3.8(c). Recalling that, in section 2.5, the angular change of element represents the shearing str’™

This angular change must be measured in radians.

=N

From Fig. 3.8(c) one can determine the length ofaic EE using basic geometry: EE =Ly or EE =

Then we can derive

where y. spare both considered to be in radians. From equation (3i2) tt is clear for a given point on the
shaft that the shearing strain varies linearly with the distance p from the shaft axis.

Due to the definition of inner radius p the shearing strain reaches its maximum on the outer surface of
the shaft, where p * R. Then we get

Using equations (3.2) and (3.3) we can eliminate the angle of twi*. Then we can expra» the «hearii*
strain y it an arbitrary distance form the rtiaft axis by the followir”:

Rgs.10
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Let us consider i section BC ofthe circular shaft with constant di*neter D along Hs length L, sub”™ied
to torques T and T* at Its ends, see Fig. 3.9. Applying the method of sections, we can divide the shah
two arbitrary portions BQ and QC at any arbitrary point Q. In order to satisfy conditions ofequilibria
for each part separately, we need to represent the removed part with internal forces. In our case, |r,1{
the equilibrium equations, we get non-zero values only for the torque T(x), see Fig. 3.10(a)
torque represents the resultant of all elementary shearing forces dF exerted on a section at point Q,
Fig. 3.10 (b). If the portion BQ is twisted, we can write

fpd? =T(9) &5)

where p is the perpendicular distance from the force dF to the shah axis. The shearing force dF can ke
expressed as follows dF = TdA, then substituting into equation (3.5) wre get

/ prdA « T
P (IS @8
Recalling Hookes law from Section 2.5 we can write
Cy 67
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N *q.l*‘ﬁ,n J>** g*
Cf = %c " ux (i)
i
= 3.9)

lhis equation show» that the shearing stress also varies linearly with the distance p from the shaft axis,
aslongu the yield Mies* it not exceeded. The distribution factions of shearing «res* are presented in
g 3.11(a), for a tolid cirde, and In Pig. 3.11(b) for a hollow cirde (p «(1?,, R2)Y Por the Utter case we

canwrite
(3.10)

Theintegral equation (3.6) determines the relationship between the resultant ofinternal forces T(x) and
theshearing stress r. Substituting r from equation (3.9) into (3.6) we get

ife) * ale-f p2dA (3.12)

Ib* integral in the last member represents the polar moment of inertia / with respect to its centre O,
** more detail see Appendix A. Then we have

or 3.13)
diluting equation (3.*) into (3.13) we get
rw bl .

(3.14)
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34 Angle of Twist in the Elastic Region
AX

When observing the deformation of a circular shaft subjected to a torque T, see Fig. 3.12, wecan™*

the rotation of the free end C about the shafts axis or angle of twtst f . The entire shaft remains intb
elastic region after applying the load. The considered shaft has a constant, circular cross-section with,
maximum radius K and a length ofI. Now we can recall equation (3.3) where the maximum dearu™

strain Ymax and the angle of twist are related by the following

We are assuming that there is elastic response, therefore we can apply Hookes law for simple shea
ymax = *max/G- After substituting equation (3.13) into Hookes law, and knowing thst I (x)*I
T(x) =T along the whole axis of the shaft, we get

(s

Equating the right-hand members of equations (3.3) and (3.15), and solving for f we have

The obtained formula shows that the angle oftwist is proportional to the applied torque within the ela**
region. If we compare the results of equation (2.15) from chapter 2. one can conclude the foDe”
N(,) =17

homogenous material (constant G). has a uniform cross-sectional area (constant f), and is loaded at its

parallelism: A1 * p, E + C, A =*]. Thisequation isvalid only if the shaft t*

If the shaft iscomposed from several different parts, each indlvidurfly satisfying the validity of*!0-**
(3.16), we can extead formula (3.16) using the principles of superposition as follows:

P=TIT-,<g= ZT-i 2 q
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gLg, G| *li= U * the internal torque, rfiear modulus, polar moment of Inertia and length
*+ ond'4 Dlkc

the e of variable cros»-sectional area along the shaft, as in Fig.3.12. the strain depends on the

ofthe arbitrary point Q. therefore we must apply asimilar equation to (2.2) for the computation

A~Nlearing strain After some mathematical manipulation the total angle of twist of the member is

35 Statically indeterminate Shafts
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RfS.11

Until now, we have discussed statically determinate problems. But there art some situations, whertthe
internal torques can not be determinated using statics alone. For simplicity, let us consider a singfc
problem, see Fig. 3.13. In this caae we cannot solve the problem through equilibrium equations fro.
statics alone. The main difficulty in this problem is that the number of unknown reactions is greater thai
the number ofequflibrium equations From a mathematical point ofview, the problem is ill-conditioud

For our caae we obtain one equilibrium equation to be

ZTx=0: Tc-T +TB @1)
This problem is /1lWicalty indeterminate. To overcome this difficulty we must use the same approach a
in (Jiapter 2, Section 2.7, Le. to add deformation conditions. In our case the angle of twfc« at pointC
is equal to zero, and corresponds to the total angle of twist

o= (c =£2UPi =0 1))

Using equation (3.17) we obtain

Both internal forties 7u,) « f- fj, Tuys) x ATC functions of unknown reaction Tc. Sohrtef
equation (3.20) we obtain the value of reaction Tc -1IH T. We can then continue by solvinf *

. . “Vih4\li)
the usual way (for statically determinate problems)
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qtsign of Transmission Shafts

tranami.vsii>n shafts Ib* principal specification# that must be satisfied ire the power to be
* the vdoclty of rotation. Our task now mto select the mMerialJ and the type and the si/e
lon to satisfy the strenjdh condition. Le. the maximum shearing stress will not exceed the
porabl» Mwaring «tress r«a* N TAii, when the shaft is transmitting the required power at the specified

Recalling elementary physka we have
p xTo) = 2nfT (3.21)

Vibat f Is the transmitted power, n is the angular velocity, and /1s the frequency of rotation. Solving
(3.21) for T obtains the torque exerted on our shaft which is transmitting the required power

PN «frequency of rotation/

Tnl. (3.22)
# inf

Nowwe can apply the strength condfcion using equation (3.13) as follows
w B~ To« (3.23)

Substituting equation (3.22) into (3.23) we get

— *E£Telf or t (jji4)

Thevalue IfM represents the allc*vaMe minimum. This variable is known as the section modulus and can

befound in any common section standards.

37 Torsion of Non-Circular Members
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>1
Applying the methods of mathematical theory of efcuticity for the bar with rectangular >ross-Sed™
bxh. we will get the stress distribution functions presented in Fig. 3.17. The corner stresses *rt t
zero We can find tbe two local stresses which are largest at point | and 11(Roman numerals) l)enct

| as the length oftoe bar, b and h as the narrow and wide side of bar cross-section respectively
as the applied torqgise. see Fig. 3.18, we have

T=T-* A4Thb and T» XPT w7)

The coefficient a,p depend only upon the rtfio h/b. The angle of twist can be expressed as

~2)

The coefficient yalao depends only upon the ratio h/b. All coefficients a./] yare presented in the folloning
Tab. 3.1

h/b 110 1.50 175 2.00 1*0 300 4,00 6,00 800 iaoo cel
a a»i 0231 *239 0,246 a 258 0,267 0.282 0299 0.307 0313 fecee)
p x>0 0859 0820 0.7% car7ze 753 0745 n743 0.742 0742 o2
r 0141 aig6 arm 0.229 a249 0,263 0281 0.299 0.307 0313 33

T«kS.1



M*chan,< , ,iM -.li- «ift Tocsio»

AcTATL | ggsvprmrT

J1
INTERNAL PRESSURE

It* stress dtotribution function om the non circular ctos»-section can be visualised by the membrane
*dogy. PWly- wh«l this analogy mean? TVo processesare analogous if both clu be describe by the
one type ofequations. In our caae we have the twisting of a non-circular bar and tbe deformation of a
tfis membrane subjected to internal pressures, see Fig. 3.19. Both processes are determined by the same

type o f differential equations. Secondly, we need to determine the analogous variable». In our case we have

T * volume bouded by the deformed membrane and horizontal plane
value of shearing strain A tangent of maximum slope (3.29)

direction o f shearing strain A horizontal tangent

R»UO
representation of thesr equations is presented in Fig. 310.

** e ejbiane analogy can be efficiently applied for members whose cross-section can be unrolled into
~bulc prtangle hxh, see Fig. 3.21. Another application of the membrane analogy is for members with
C “Meak>« composed from several rectangles, see Fig. 3.22 lhese cross-sections cannot be unrolled
A ** »impie rectangle bxh For this case we can assume tlut the total vt=lumc of deformed membrane

*pbe sum of individually deformed membranes. see Fig. 3.23. If the torque is analogue to the

volume, and then we can write
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T fs
ESS
n»M1
o, +r,fo+r,
I=9x=fm - « |p, (330)

lersimple aithematical manipulations ofthese equations we determine that the total torsional «Mroe*
equals to tk sura of individual torsional stiffness’ ofeach rectangle, Le.

rW =ZT-irtM ?

(331)

xequentlytre largest stress corresponding to each rectangle can be found by

B33
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fbin-Walled hollow Members

In the previous section we diitussed members with open non-circular cross-section* subjected to
toftional loading. The results obtained in the previous section required advanced theory of elasticity.

For thin-walled hollow members we can apply some simple computations to obtain results.
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R«.US

Let us consider the thin-wailed hollow member of non-circular croM'tection, see Fig. 324 The
thickness varies within the transverse section and remains very smal in comparison to other dimension
Let us detach a small coloured portion DE. This portion is bounded by two parallel transverw sectior»
by the distance Ax and two parallel longitudinal planes. Focusing on tbe equilibrium of part DF. in the
longitudinal direction x, the shear law says that the shear forces PD, Fg are exerted on fates D adE,
see Fig. 3.25. We then get the correspondiag equation

E£EFX=0: Fd-Fs =0 339

The longitudinal ibear forces FD, Fg are acting on the small faces ofareas AxtD and Axtt |hia*e

can express the force as a product of shearing dress and area, Le.

Fp = rpAp = tdAxtD t Fg * TgAg = TgAxtg (335
Substituting equation (3.35) into (3.34) we get

TDAXtD - t EAXtE = 0
or (330

TDtD * Tgtf

Since tbe selection ofportion DE isarbitrary, and then the product rt is constant throughout the menter
Denoting this product by q we get

g =rt * constant 330
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R»U7

Thenewvariable describes the shear flow in the member. The direction ofshearing stress is determined by

thedirection of riiear forces and the application of the shear kw as one can see in Fig. 3.26 and Fig. 327.

let us consider a small element ds which is a portion of the wall section, see Fig. 3.2*. The
QOfreP°’nding anra is dA ~ Ids. The resultant of shearing stresses exerted within this area is denoting
4dFor

df =tdA = Ttds * qds (3.3%)

~ foment dM, of this force about the arbitrary point C la

dMr = pdF = pqds » gpds (3.39)
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N flI

Where p is the distance of C to the action line of dF. The action line passes through the centre of the
element and the product pds represents the doubled area dA, see Pig. 129. We then have

dMc =qldA
@40

In a mathematical point ofview, the integral of moments around the wall section represents the resuiting

moment that is in equilibrium with the applied torque T. Thus we have

T = do<llic = pa2(LW 341
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~  thrdwyv flow ie constant. wr get

7% g ¢ 2cLA = y2n (3.42)

Whew A tsthe area bounded by the centreline ofthe section, see Fig. 3.30. From the previous equation

we can easily derm the formula for calculating the shearing stress

21 (3.43)

Thbl corresponding angle of twist can be derived by using the method of strain energy, see Appendix
A42 We then get

(3.44)
Ifthe section can be built from several parts of constant thicknesses tt is known to be piecewise constant,
equatioa (3.44) can then be simplified

(3.45)

N Examples, Solved and Unsolved Problems
fobfet* J.1
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For the sted shaft with applied torque T =2400 Nm shown in Fig. 3 /1 (G * 77 GPa), determine (a)
maximum and minimum shearing stress in the shaft, (b) the angle of twist at the free end The shafts

the following dimensions: L » 500 mm. D, m40 mm. D, =50 mm

Solution

HfU]

The shaft in Fig 3.32 consists of one portion, which has uniform cross-scction area and constant intermal

torque. From the free body diagram in Fig 3.33 we find that:

-0: T(x) +T =m0
T(X)* -T m-2400 Nm

The polar moment of inertia (see Appendix A.2) Is

*>*
32 32

*B50 mMm*  *(40 mra)*
( ( ) 362265 nun*
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Download fr«« «Books at bookboon oom

» M«th«n.is of Mat®ia

ihnrmg Ann Ob «he ouUr wrfke. wc h««

T TD_,m 2«OxIO’ Nnmi 50mm
T~ "7P" ") 2 * 362265mm4 * 2
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tfutvnum bearing stress. The stress is proportional to its distant* from the axis of the shaft

Torsion
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Dj D, = F*i BTm
2
4
=165 6 MPa 0 mm 132.5 MPa
50 mm

Another way th determine this is by:

= X n T Ukn>  2400x10* Nmm 40 mm
J T~27 """ 362265 mm4

r. -1325MPa

The vertical shaft AC is attached to a fixed base at C and sheeted to a torque T shown in Fig. 3.36.
Determine the maximum shearing stress for each portion of the shaft and the angle c4twist at A. Portion
AB is made of sted for which G - 77 GPa with a diameter o fD ,~ - 30 mm. Portion BC is made of
brass for which G - 37 GPa with a diameter of D ,~ * 50 mm Parameter L b equal to 100 mm

Solution

Graphically we can «how shearing stress in Fig. 3.34 and the diagram of torque along the length of the
shaft is shown in Fig. 335. The complete shaft consists oftwo portions, AB and BC (see Fig. 3.37). each with uniform cross-section

*»d conttant internal torque.
Angle oftwiM.

Using Eqg. (3.16) aw! recalling that G - 77 GPa for the shaft we obtain x,e(0,L)

2400x10* N mm > 500 mm
AN O ] * 77x10* N/mm* x 362265 mm4

<pm0.043 rad -2 465°
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To'«won

Solution ofportion /1B

Passing a section though the shaft between A and B and using the free body diagram rfiown Fig. 3
we And

£M,=0: T,(X)+T « OT,(X)» -T

Ro.Ue

The maximum shearing stress is on the outer surface, we have

32

16T 6T ||/'I’\x
F" A A weoo- |tte>10T
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pj”~ram of the shearing stress atrow the cross-aection area is shown in Fig. 3.39.

fplutuM ofportion BC

x,€(L,2L)

Now passing a section between B and C (see Fig. 3.40) we obtain

14 - «0: TBX)+T-2T*0Ts(X) =T

Again, the maximum shearing itreaa is on the outer surface, found by the following

r Ne P UuLIW
* " J M\l ) 2 « P~ 2
32
TTB=£?2- m - - — -4074xI0°T
«Dluass ran)
Til xqn e T

~phkalh', the shearing stress is shown in Fig. 341
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When we compare the results from both portions the maximum shearing stress is in portion AB, whit™
compares with the allowable stress. From this inequality, He have the unknown torque T.

=N

T £ "g*P»iek - '50 MPa ««x(30mm): g Nlitn
16 16

T* 795215,6 Nm

Choosing the torque T * 795 kNm. We cm graphically represent the torque along the length of sheft
in Fig 342

Angle of fwtsf

Using Eq. (3.17), we have

rifi,

. la Ll« +TK LK

J*ou VO,,
m m— — +__Lslas___
*JW g **m*a o
D "

32tm 1« 3r7™\m.
q-- AN 4P Y " " 48
n ITHL AB * "\NAUNAT
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Probl«» u

RQJ43

A101Y«T Lapp»w at shown in Fig. 343 to a solid tap«ed shaft
stress and ahow, by integration, that the angle of twist at A is

7TL
QA 12*x0c4

The radius c. length L. modulus of rigidity G and applied torque 1 .en
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Solution
~  diameter IX*) * location X la
x,e(0,L)
D(x)=2¢c(X) r> D(x)=2c H )
Morment (if Inertia at location X is
«P(x)" ml
ry PO
32 32
Ihe maximum shearing stress at position x on the outer surface is
Weonly have one part to from free body diagram (see Fig. 3.44), we fiad 16T

— 1" Mxi > 2
AM.-0: Tx)-T=0 = TX=T

Angle oftwtat Is determined from the definition of the angle of twist Eq. (3.18). and we have

nT | 1

fe* L™t e

Inthe % 3.46 is agraph of the torque along length L

Problem 1A
Ftfl 3-45
Uo X.__
L-.L L
Rf.SWS7
ACircular 4iaft BH is attached to ft»d supports at both ends with a torque T applied at the midaection
347). Determine the torque exerted on the shaft by each of the supports and determine the
*ttknunt «bearing stress.
The maximum of tearing is onthe oUer M ir fact* The radius c(x) at location x la found from siniiUf*? kngth U modulus of rigidity G and applied torque T. are given.
of triangles. Fig. 343.
tan
119
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Solution

R»s.4a

The problem is MIcaDy indeterminate. The support at point H is replaced by an unknown si”*p(rt

reaction TH(horizontal and vertical reactions are equal to zero, because this is a problem ofpure torsion)
The solution is divided into two part (see Fig. 3.4S).

Frtt-body diagram on portion | (part HC):

X ,«(0.L)

T,,%)
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tbt equilibrium equation of the first part, we obtain

£m, *0 T,(x)+TH-0 = T.Cx,)--!,,

fBt-body diagramMi portion |1 (part CB):

«. «(L2L)

From the equilibrium equation ofthe second part, we obtaia

X M-, =0: T,(x,)-T-*T,=0 = Ti(x,)=-T,-T

The unknown reaction is determined from the deformation condition, that the total angle of twist of
=Mt BH must be kT0, since both ofits ends are restrained.}, and J;denote the angle of twist for portions
AC and CB lespectivdy. we write

Vh =0 =*  OH-~+*,=0 = *+ *p=0.

from which we have

Ik +L ki, 0
<V, 0.],
***reGmG, -G, |,*J, * land - L because both parts of shaft are made from same material,

b*"* the same cross-section area, and the same length. Then solving for T #. we have

U<X,)+T1(Xa) -0 -T.-T.+T-0 = Tu«y
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Substituting the results for each part, we obtain

T,(X)—TB-] TnXx,)=-TH-T=-1-T —

The diagram oftorque is shown in Fig. 349.

fig. 3.50
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Tiim -T/I

R»U2

fraction at point B.

Drawing a frec-body diagram of the ihaft and denoting the torques exerted by supports T eand (see
Fg. 3-50) we obtain the equilibrium equation

2X-0: T.A4T.-T-O = T.-T-TH- |

Ibe maximum shearing stress at part HC (outer surface) is

_an'.:—f'l ...... 16T, + 8T
I, “el iD 4 2 2klry *D >
32
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The maximum shearing stress at part BC (outer surface) is

T
fr.l 2_D 8T
Pmm* K kD* 2 =*D*

X

The diagram of shearing stresses for each part is shown in the Fig. 3.51and Fig. 3.52.

Problem 3.5

| k

HfU)

The bars in Fig. 3.53 hive a square and rectangular crots-sectkm area. Knowing that the magnitude of
torque T is 800 Nra determine the maximum bearing stress for each bar.

The dimensions art given by L m400 mm.t * 50 mm and b =35 mm

Solution

For a bar with square cross-section area (tee Fig. 3.53a) and bar with rectangular cross-teuton area (xe
Fig. 3.53b). the maximum shearing stress is defined by Eq. (3.27)

a nbl

where the coefficient all obtained from tab. 31 in section 3.7. We have

a_ 50mm .
- *1 =35 or*0.208 for square crost section
b 50mMm
and
s 50ma

B 143 = a * 0.231 for rectangular croat wetlon.
b 30mMm
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Bpfcm* 1 ‘hearing stress for squanr croaa-iectton in Fig. 3.53ais

T 800 Nm
T =30.77 MPa

a ab: 0.208*0 050 m*(0.050 m)

jtinimuni shearing stress tor rectangular cross-section In Fig. 3.53b is

T 800 Nm 198 MPa
aabl 0208k0.050 m*(0.035 m)2

Problem 3A

4W 4

TWh shafts of the same length and made by the same materials is connected by | wrfckd rigid beam.On

the ends of the rigid beam amoment couple given by force f is «pplied. Ooss iection area of the shaft
Isin Fig, 354. Design parameter D If wearegiven an allowable stress oft™ » 150 MPa.

Ghen F - 1000N.c* 200 mm.a - 2D,t - 0.ID. L - 400 mm

w m
Fmm the giwm force, we find the total magnitude of the torque T applied to both 4afts

T*Fc *IOOON x 0.2 m* 200 Nm

Thb torque will then be dived on both shafts and from the equilibrium of the rigid beam, we have
T*T,+T, @

<k haw two unknowns torques T f and so we need a second equation, which js found from the
~PRttatton condition

JIL Klz L
OoJ, Gl2* (®)
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where angle of twtot for the first cross-section area is

471’ 41 9DxI 9D)1 52 1284LF

M= VOID o.id]J

and for the second cross-section is

I %D*

inserting (c) and (4) into (b). we get

T, *6.998 T,

Solving the system of equations (a) and (0. ** give

T, « 0.875T =0.875F ¢ - 0.875>200Nm =175 Nm

T,*0.125T =0 125Fc«0!25x200Nm =25 Nm
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U«rinnim “hearing strew In the hrft cross-section is

v os— = OlBFe - I7SNm, 2424,

2At. 2x(.9D) O.ID 0.7221? D’

Hljxiniuni «hearing stress in the second cross-section it

T2 , 16T, 16x25Nm 1273 ﬁfc
—=— i * of BT — - S-If- Il
Nel rf)5 *D nD3 D*
16

To design parameter D. we get the maximum shearing stress (from all parts), which compare with the

dfowablc stress, we then get

2424 K. _ _ /2424 Nm | 2424 Nm
'~rp~ N“ s,« =

D*0.012m

Problem 3.7

R » iS
Atorque T —850 Nm is “iplied to a hollow shaft with uniform wall thicknesst « 6 mm shown in Fig. 3.55.
Neglecting the effect of stress concentration, determine the bearing stress at points a and b. Determine

*pe angle of twist at the end of 4=aft when L is 200 mm and the modulus of rigidity is G =77 GPa.

Given: R» 30 mm. t* 6 mm. Ll =60 mm. L =200 mm.
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Solution

— 1

N 354

TP

R»U7

From the definition of maximum shearing atrcss for thin-walled hoDow shafts, we have

-
- 2At*,

'*m nto Mechanics of M. (rials: Part |

. . 4A]
*twrt the moment of inertiala J * —

ri] j ‘- is computed along the centerline of the wall section and we get

i N

t* =i +t1 Hi+L , *HIE. +* "51+i " J2E+®I5E =54 5575
t t

t 6mm 6mm 6mm 6mm

4A' 1 4x(738lLI19mm:)]
J = =— m———————— m 399446065 mm

Angle oftwiat at the end of the shaft is given by the following

$=lk =__ 850000NmMmMx200mm---a 5 527x10 4rad=*0032°
r GJ 77xI03MPax3994460.65mm4

where A is the area bounded by the centerline ofwall cross-section area (Fig. 3.56 - hatching area), we have

A-rtf+JR.L.-nja+l) +2"R+M|1,

Ihe shearing stress at point a and b ia

T 850000 Ninm

96 MPa
2A te 2X6mmx7381J9mm4

The angle of twiat of a thin-walled shaft oflength L and modulus of rigidity G is defined

TL
Gl

<pz
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Unsolved problem*

«9.35*

Problem 3.8
AtorqueT - 750 Nm is applied to the hollow shaft shown in the Fig. 3.58 that has a uniform wall thickness
oft =8 mm. Neglecting the effect of stress concentration, determine the shearing stress at pointsa and b.

|te- t>- 161MPa]

Problem 3.9

The composite ahaft in the Pig. 359 is twisted by applying a torque T at its end. Knowing that the
maximum shearing stress in steel is 150 MPa. determine the corresponding maximum «hearing stress
in the aluminum core. Use G =77 GPa for sted and G * 27 GPa for aluminum.

ft . - 3944 MPa. T - IOJIkNm)

Problem 3.10

A statically indeterminate cireular shaft BH consists oflength L and diameter D (portion CH) and length
L with diameter 2D (portion BC). The shaft ia attached by fixed supports at both ends, and a torque T
is applied at point C (see Fig. 3.60). Determine the maximum shearing stress in portion BC and CH.
and reaction at the «ipport in point H.

- 7 32T 6T 1
[ "17' r *'I7«D>" "1Tx )
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nT %

u.-L-fcqg T
R»SIO
H»U1
3.11
Using - 150 MPa, determinethe largest torque T that may by applied to each of toe sted bars and to

M r sted tube shown in Fig. 361.Givenisa 50mm, b -24mm,t 8 mm and L =200 mm.

((@) T =53L.2 Nm. (b) T - 4233.6 Nm|

Problem 3.12

A 125 mlong angle iron wtth L cross-section (shown in Fig. 3.62). Knowing that the allowable shearing
«revs \a . 60 MPa and modulus of rigidity G =77 GPa and ignoring the effects of stress concentration,
(afr determine the largest magnitude of torque T that may by applied, (b) the corresponding angle of

twist at the free ends. The dimensions are h - 50 mm. b- 25mm, t * 5 mm and L » 200 mm.

w I(t) T =35kNm. (b) J =bl 2 rad)
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Appendix

Al Centroid and first moment of areas

Consider an area A located in the zy plane (Fig. A.l). The first moment of area with respect to the z
axis is defined by the Integral

,—fy<u
Q |y (A1)
Similarly, the first moment of area A with respect to the y axis is

&-1/<* (A.2)

If we use S| unite are uaed. the first moment of Q, and Qyare expressed in mJ or mm\

The centroid of the area A is defined at point C of coordinates y and | (Fig. A.2). which satisfies the
relation

jydA
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ji d4
(A.3)

R* A3
When an area possesses an axis of symmetry, the first moment of the area with raped to that axis Is Kw
Considering an area A. such as the trapezoidal area shown in Fig. A.3, we may dividethe al*a into
simple gvometrk shapes Ihe solution ofthe first moment  of the area with respect to the z can

be divided iato components A,. A,, and we can write

Q =y =1 UMb yna=y.vn A4)

A Al iy

Solving the centroid for compodlt area, wt write
(A5)

Example A.01

R«. an

the triangular area in Fig. A.4. determine (a) the first moment Q of the area with respect to the i
**1», (b) the y ordinate of the centroid of the area.
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Solutioa

(a) First moment Qj

We selected an dement area in Fig. A.5 with a horizontal length u and thickness dy. From thesimilarity
in triangles, we have

| u=b~n-2L

o 4
o N
oy

and
d4=ud} * b—"dy
h
using Eq. (A.1) the first moment is

Q. *fy *f/fa-yy &

eel[FV-THAl

(b) Ordinate of the caotroid

Recalling the first Eq. (A.4) and observing that A =- bh , we get

Q.-AY = - ibh’-ibhY = F-1h
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a2 Second moment, moment of areas

Consider «gain an area A located In the zy plane (Fig. AJ1) and the element of area dA of coordinate y

and x The second moment, or moment of inertia, of area AwHh respect lo the z -axto it defined as
f,mfy 2<u (A.6)
A
Example A.02

Locate the centroid C of the area A shown in Fig. A.6

ft9. A4
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Solution

Sdecting the coordinate system shown in Fig. A.7. we note that centroid C must be locked on the y
axis, since this axis is the axis of symmetry than? * 0 .

HIS

ti-7t
| Ytme>

R»IL7

Dividing A into itscomponent parts A, and A ;. determine the y ordinate ofthe centroid, uaing Eq. (A.5)

T T £ 4 4+,

AL HAY, (te8t)«7»(41»61)x3t  184tF
4 +4 2t*8t ¢4t*6t 40t

Similarly, the second moment, or moment ef inertia, of area A with respect to tbe y axis is
(AT)
a

We now define the polar moment ofinertia of area A with respect to point O (Fig. A.8) as the Integral

10»jp 2dA, (A1)
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where ,»is the dialanee from O to the element d A Ifweuae Sl units. the momenta of inertia arc expreased

in mdor mw4

An important relation may be eataNiahed between the polar moment of inertia /. of a given area and

the moment of inertia 1 and | d the same area. Noting that P* my2+ , we write

Jonfrei ea* J(y* & i, )4 «Jylda+jz7da

A A A A
or
(A.9)

The miiu< ofgyration ofarea A wttll reaped to the 2 alia la defined as the quantity r|tthat satisfies the
lion

VIW?A = ., - fi 410>
In a aimilar way. we defined the radius of gyration with respect to the y axis and origin O. We then have

rr
1A

A

Subsiituting for  If and Igin term» of its corresponding rail of gyration in Eg. (A.9), we observe that

(A.12)

(A13)
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Example A.OJ
For the rectangular area in Fig. A.9. determine (a) the moment of inertia / ofthe area wth respcu to

the centroid*] axis, (b) the corresponding radius of gyration r .

y

Rg.a.9

Solution
(a) Moment of inertia / . We select, as an element area, a horizontal strip with length b and thickness

dy (see Fig. A. 10). For the solution we use Eq. (A.6), where dA - b dy, we have



> tton to Mechanics of Mr(«rials: Part |

12 2 [
/,«l/d4 =} y*(bdy)-b J Yy’ dy3T[y*]"
4 fl J

-a/i -a/.

R»A.ie

(b) Radiut of gyration r . From Eq. (AJ10). we have

Example A 04

[ Par the circular cross-section in Fig A.11 Determine (a) the polar moment of inertia
of inertia /Aand If

R»A.11
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Solution

(a) Polar momentof Inertia. We select, as an element of area, a ring of radius p and thickness dp (F,g
A.12). Using Eq. (A J), where dA - 2 np dp. we have

mi I*i
d4* ] pl2xpdp =2xJ p*dp,
A 0 -
j.r2 L.
# R
R*<L12

(b) Moment of Inertia. Because ofthe symmetry ofa circulararea It - AMRecalling Eg. (A.9), wecan write

iD 4
l-/,+/,-2/e = [«
2 2
n-vieE
64
A3 Parallel axis theorem
143
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ng the moment of Inertia It of an area A with respect to an arbitrary z axis (Fly. A.13). Let us
pow draw the xMrokial s'axit, Le., the axis parallel to the z axis which pastes though the areas centroid
C Denoting the distance between the element dA and axis peases though the centroid O y /, we write
yx /& d Substituting fory In Eq. (A.6), we write

/,*ly* da=)(y4</) dA,

A A

It » fya dA+2dfy* <4+d3f dA,

A A i A

I,»>Tr+Q,+A4* (A.14)
when* Tt. Is the aieas moment of inertia with respect to the centroidal z axis and Q, is the first moment
of the area wtth respect to the z axis, which Is equal to zero ilnce the centroid C of the area is located

oo that axis. Finally, from Eq. (A.14)we have

|,~Tl.+Adt (A.15)
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A similar formula may be derived, which rdatcs the polar moment of inertia |eofan area to an arbitrary
point O and polar moment of inertia Jc of the same area with reject to its centroid C Denoting tj*
distance between O and Cby d, we write

Jt=Jc+Ad2 (A.16)

Example A.05

Determine the moment of inertia | §of the area shown in Fig. A. 14 with respect to the centroida! z axis.

Yy

xa 4 2

R9.A.14

Solution

The first step of the solution is to locate the centroid C ofthe area. However, this has already been done

in Example A.02 for a given area A.

We divide the area A Into two rectangular areas A, and A, (Fig. A.15) and compute the moment of
inertia of each area with respect to the | axis. Moment of inertia of the areas are

where 1n is the moment of inertia of A, wfch respect to the z axis. For the solution, we use the parallel-

axis theorem (Eq. a. 13). and write

/., «T. b.hJ+bM
/1" 8l x(2t)*+8Ix21x(71-4 6t)]
/.,-97 51
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In * similarly way. we find the moment of Inertia /A4 of A, with respect to the z axis and write

X4t *(6*)" +4tx6tx(46t-3t)]

/,-133.414

The moment of inertia |, of the area ihown in Fig. A. 14 with respect to the centroidal z axis is

/, +/, -97 V +13341* -2309»*.

Example /1.06

r» a.is

Determine the moment of inertia It of the area shown in Fig. A. 14 with respect to the centroidal z axis

and the moment of inertia ly ofthe area with respect to the centroidal y axis
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RfrA.17

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis of symmetry,
the location ofthe centroid C is in the intersection of the axes of symmetry.
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n»a.ie

We divide the area A into three rectangular areas At A, and A,. The fir*w,n divide area Ac* A can

be seen In Fig. A.17, a second way can be seen In Fig A .li.

Solution the division of area A by Fig. A.17 (the first way) themoment of**

.=196»*.
1.,-1+ Ad wxb*\+bbA - .. .w3&\
/,-rj.+Ad3=1b ,h|+bshidj. ...=196t4.

Resulting In
no=L + +N> * 196»* +36«4+ 19b4 =42«*

For the moment of inertia lywe have

[>=W\ 1% + 1%

where

A7 ,-1blubl- 1 «21x(6%), .3614.
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lj* %M b,b; - Ax2tx («t)"-361\

Resulting in

If =NA e/, +/, =36t4+4t4+36t14=76t4

The solution for thedivinon ofarea A accordingto Fig. A. IS (by the secondway) the moment of Inertia | is

N* b 'y
where
L mT.-<jliph1="~x6tx(|Ot), «500t\
I, - T, -~ bhl=" x 2t X(6<)" = 365,
l,-T. mxbti-=x/1x(&), L&Y
Resulting in

/.«/,-/,-/a* 500t4-3614-36t4=428l4.
For the moment of inertia Twe have
(re(un“Nj|*=»

where

N.-  ~hb, -=* 101x(6») - 1801\
N:-  “Ahd|+h A j - 1x61 X(2t)" +61X2t X(2t)' =521\
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=*-6tx2IX(2t) -52t*.

Rtsuhmji In

I, *hi-1,r“ I» * 18014-52t4- 52t4=7614

Example A.07

-_.

R»A.1*
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In order to solve the torsion ofa rectangular cross-section in Fig. A.19, we defined (See S.P. Thimoshcnk,.
and |.N. Goodier, Theory of Elasticity. 3d ed. McGraw-Hill New Yoik. 1969. sec. 109) the following

parameters for b>k

J mybsh (A.17)
b*h, (Ai8)
S2*flb hx, (A.19)

where parameters a, pand y are in Tab.A.1.
The shearing stresses at point 1and 2 are defined as

T T

fisr« en’ r* (A20)
where T is the applied torque.

Tab.Al
b 1 12 15 2 3 5 10 =10
a 0208 0219 0231 0246 0267 0291 0313 13
p 0208 019 0180 0.155 0118 0.078 0042 O
r 01404 0166 0196 0.229 0.263 0291 0313 1/3

A4 Product of Inertia, Principal Axes

Definition of product of inertia is
tm~jy t dA (A9
A

in which each element of area dA is multiplied by the product of its coordinates and integration is
extended over the entire area A ofa plane figure If a cross-section area has an axis of symmetry which
is taken for the y or r axis (Fig. A.19), the product of inertia is e~ual to zero. In the general case, for
any point of any crota-section area, we can always find two perpendicular axes such that the product
of inertia for these vanishes. If this quantity becomes zero, the axes to these directions are called the
principal axes Usually the centroid is taken as the origin of coordinates and the corresponding principal

axes are then called the centroidal principal axes
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Ifthe product of Inertia of across-section area is known for axesy and z (Fig. A .1*») thought the centroid,

the product of inertia for parallel axsy' andi can be found from the equation
(A.20b)
The coordinates of an element dA for the new axes are
y’*y+n; z'*z +m

Hence.

1™ -JyVeW =)y+n)(z+m)dL4 mlyzd4 +) mndA+) ymdA Jnz dA

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).

A5 Strain energy for simple loads

YS2
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Consider arod BC of length L and uniform cross-section area A, attached at B to a fixed support ihv
rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work done by the load F as it
slowly applied to the rod must result in the increase of some energy aeociated with the deformation Of
the rod. This energy s referred to as the straw energy of the rod. Which is defined by

Strain energy ~JIF dx (nzy)

Dividing the strain energy U by the volume V - A L ofthe rod (Fig. A.20) and using Eq. (A.21), we have

U r ¥ A
vV « AL <A22)

Recalling that F/A represents the normal stress Cf in the rod. and x/L represents the normal itrain tf,

we write

U r
7 B lo<dw <k* (A.23)

The strain energy per unit volume, C//V, is referred to as the strain-energy density and wiB be denoted

by the letter u. We therefore have

1S3
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I det (A.24)

A5 1 Elastic strain energy for normal stresses

la a m*diiiw part with non-uniform strom» distribution, the strain energy density u can be defined by

considering the strain energy of asmall element of the mAerial with the volume A V. writing

or«« — . (A.25)

for the value of agwithin the proportional limit, we may set at - E tt in Eq. (A.24) and write

i~ 1 <

2 2 *' 2E* (Pe26)

The value of strain energy U ofthe body subject to uniaxial normal stresses can by obtain by substituting
Eqg. (A2ft) iato Eq. (A.25). to get

(A.27)

Elastic strain energy under axial loading

When arod is acted on by centric axial loading, the normal stresses areat =N/A from Sac. 2.2. Substituting
for atinto Eq. (A-27), we have

u* a«crgdr -adr, V* dr (A8
If the rod haaa uniform croas-sectioe and is acted on by a constant axial force R we then have

1/— D)

Bestic strain energy in Bending

The normal Presses for pure bending (neglecting the cfleett ofshear) iso, =Aly//from Sec. 4. Substituting
for ot into Eq. (AJ7), we have

' 2F 1 2E/: (A.30)

Setting dV - dA dx. where dA irpresenU an dement of cross-sectional area, we haw
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(A.31)

Example A.08

RfrA.31

Determine the strain energy of the prismatk cantilever beam in Fig. A.21. taking into account the effects

of normal stresaesonly.

Solution

The bending moment at a distance x from the freeend is M » - F x . Substituting this expression into
Eqg. (A.31), we can write

A52 Elastic strain energy for shearing stresses

When a material is acted on by plane shearing ftresses  the strain-energy density at a given point can
be expressed as

(A.32)
o

where is the shearing strain corresponding to For the value of  within the proportional limit,

we have uG and write

Substituting E4 (A.393) into Eq. (A.25). we have

(A.39

1SS
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Elastic strata caetfy in Torsion

The shearing stresses for pure torsion arrt™ =Tp / / from See. 3. Substituting for into Eq. (A.27),
we have

*3 T3*-
v+ f*—dF=f4-1U dr (A35)
20 J] 2GE/2

Setting dV - dAdx, where dA lepresents in element of the cross-sectional area, we have

I/“12& 7" pMB S~ 7 dX A~

In the cak ofa Aaft of uniform croas-sectionacted on by a constant torque T, we have

5_ N\

Elastic strata energy in transversal loading

If the internal shear at section xIsV, then the shear stress acting on the volume element, having a length
ofdx and an area ofdA, laT* V Q111 from Sec. 4. Substituting for T into Eq. (AJ7 ), we have
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(A.38)

'Ine integral in parentheses is evaluated over the beam'scron-sectional area. To simplify this expression
we define the form factor for shear

dA (A.39)
Substituting Eq. (A.39) into Eq. (A.38). we have
i y2
v o= 1 w * (A.40)

W1

b/a

Ft*. A-22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each specific cross-
section area. For example, if the beam has a rectangular cross-section with a width b and height h. as
in Fig. A.22, then

t=h. A =bh.

<fh K h

Substituting these term» into Eq. (A.39), we get

bdy (n.41)
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Example A O*

R»/U)

Determine | he strain energy in the cantilever beam due to shear if the beam has x rectangular cross-
tection and is subject to a load R Fig. A.23. assume that EI and G are constant.

Solutioa

From the free body diagram ofthe arbitrary section, we have

V(X)* F.

Using the results of Example A.08, with A =bh. / =— b h*. the ratio ofthe shear to the bending strain

energy is
3¥*L
5 0 A * h E
n.-. ~ fv 410 L* G
6E/

Since G = E /20+n) and s * 03. then E =3G. so

It can be seen that the result of this ratio will increasing aa L decreases. However, evtn for rfiort beams,
where, say L - 5 h. the contribution due to shear strain energy is only 3.6% ofthe bending strain energy.
For this reason, the shear strain energy stored in beams is usually neglected in engineering analysis.
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