
м max

bookboon
The eBook company





Roland Jan£o & Branislav Hucko

Introduction to Mechanics of Materials
Parti

2

Download free «Books at bookboon oorr



Introduction to Mechanics of Materials: Part I

ISBN 97&-87-403-0364-3

O R O  M l- J
•_0 Gi ■ ! ITU * i|

s/m
___У

Download ft—  «Books at bookboon com



luction to Meehan «os of Materials: Part I Contents

Contents

Lilt O f Symbols 8

Preface 10

1 Introduction - Concept of stress I I
1.1 Introduction 1 11 
12 A Short Review of the Methods of Sttfics 11
1.3 Definition of the Stresses in the Member of a Structure 16
1.4 Basic Stresses (Axial, Normal, Shearing and Bearing streaa) 19
1.5 Application to the Analysis and Design of Simple Structures 24
1.6 Method of Problem Solution and Numerical Accuracy 25
1.7 Components of Stress under General Loading Conditions 27
1.8 Design Considerations and Factor of Safety 30

2 Stress and Strain - Axial Loading 32
2.1 Introduction 32
2.2 Normal Stress and Strain under Axial Loading 32

4



Introduction to Mechanics of Materials: Part I

ISBN 978-87-403-0364-3

O R O  M U *
L O G h s *  m o T IT U T i

REl ф ъ

Down»o*d tr—  tBooks at bookboon с



„«rod uctk>n to Meehan i s of Materials: Part I Contents

Contents

Last O f Symbols 8

Preface 10

1 Introduction - Concept o f stress I I
1.1 Introduction 1 11
12 A Short Review of the Methods of Suites 11
1.3 Definition of the Stresses in the Member of a Structure 16
1.4 Basic Stresses (Axial, Normal, Shearing and Bearing stress) 19
1.5 Application to the Analysis and Design of Simple Structures 24
1.6 Method of Problem Solution and Numerical Accuracy 25
1.7 Components of Stress under General Loading Conditions 27
1.8 Design Considerations and Factor of Safety 30

2 Stress and Strain - Axial Loading 32
2.1 Introduction 32 
12 Normal Stress and Strain under Axial Loading 32

4



Introduction to Meehan to of Materials: Part I Content

2.3 St less-Strain Diagram. Hooke's Law. and Modulus of Elasticity 35
2.4 Poisaonfs Ratio 38
2.5 Generalised Hooke's Law for Multiaxtal Loading 40
2.4 Saint Venant's Principle 44 
2.7 Deformations of Axially Loaded Members 47
2.1 Problems Involving Temperature Changes 51
2.9 Trusses 54
2.10 Hxsmpies, Solved and Unsolved Problems 55

3 Torsion 86

3.1 Introduction 86

3.2 Deformation in a Circular Shaft 88

3.3 Stress in the Elastic Region 94
3.4 Angk of Twist in the Elastic Region 97
3.5 Statically indeterminate Shafts 98
3.6 Design of Transmftsaion Shafts 100
3.7 Torsion of Non-Circular Members 100
3.1 Thin-Walled hollow Members 106
3.9 Examples, Sokrd and Unsolved Problems 110

S



introduction to M*ch«.ni s of Materials: Part I Contents

4 Bending of Straight Beam» Part II
4.1 Introduction Part II
4 2 Support» and Reactions Part II
4.3 Bending Moment and Shear Force Part II
4.4 Shear and Bending Moment Diagrams Part 11
4.5 Relations among Load. Shear, and the Bending Moment Part II
4.6 Definition of Normal and Sheariag Stresses Part II
4.7 Design of Straight Prismatic Beams Part II
4.8 Examples, Solved and Unsolved Problems Part II

5 Deflection of Beams Part II
5.1 Introduction Part 11
5 2 Integration method Part 11
5.3 Using a Singularity Function to Determine the Slope and Deflection of Beams Part II
5.4 Cast igliann» Theorem Part II
5.5 Deflections by Castiglianos Theorem Part II
5.6 Statically Indeterminate Beams Pv t II
5.7 Examples, solved and unsolved problems Part II

6



Introduction to Machanks of Materials: Part I Content

6 Columns Part П
6.1 Introduction Part II
6J  Stability of Structures Part II
6.3 Eulers formulae for Columns Part II
6.4 Design of Columns under a Centric Load Part II
6.5 Design of Columns under an Eccentric Load Part II 
6Jb Examples, solved and unsolved problems Part II

Appendix 135
A. 1 Centroid and first moment of areas 135
A.2 Second moment, moment of areas 138
А.Э Parallel axis theorem 143
A.4 Product of Inertia. Principal Axes 151
Л.5 Strain energy for sample loads 152

Reference* 159

7



introduction to Meehani t of Materials: Part I List Of Symbols

List Of Symbols
A Area
b width
a c buckling coefficient
D diameter
E modulus of elasticity, Young's modulus

A shearing factor
F extern *1 force
ES. factor of safety
G modulus of rigidity
h height

second moment, or moment of inertia, of the area A respect to the z or у axis

/. polar moment of inertia of the area A
L length
DL elongation of bar
M bending moment, couple
N normal or axial force

first moment of area with respect to the z or у axis

f. radius of gyration of area A with respect to the z axis
R radius

reaction at point 1
s length of centreline
T torque
t thickset*
AT change of temperature
и strain energy density
U strain energy
V volume
V transversal force
w uniform load
yoo deflection

A area bounded by the centerline of wall cross-section area
a coefficient of thermal expansion (in chapter 2)
a parameter of rectangular cross-section in torsion
Y shearing strain
с strain
♦ angle of twist

dope at point i
T shearing stress
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allowable shearing stress 
stma or normal sire»* 
allowable normal stress 
maximum normal stress 
von Misses stress 
normal or axial stress
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rttrodix tion to Mechani s of Materials: Part I Preface

Preface
This book present! a basic introductory course to the mechanics of materials for students of mechanical 
engineering It gives students a good background for developing their ability to analyse given problems 
using fundamental approaches. The necessary prerequisites are the knowledge of mathematical analysis, 
physics of materials and statics since the subject is the synthesis of the above mentioned courses.

The book consists of six chapters and an appendix. Each chapter contains the fundamental theory and 
illustrative examples. At the end of each chapter the reader can 6n4 unsolved problems to practice their 
understanding of the discussed subject. The results of these problems are presented behind the unsolved 
problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept of stress. 
This concept is derived from the physics of materials. The nature and the properties of basic stresses, 
i.e. normal. Clearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are generalised 
into Hookes law. Stint »Ven ant s principle explains the limits of applying this theory.

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the torsion 
of ciicular members and subsequently, the torsion of non-circular members is analysed

In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a member with 
at least one plane of symmetry and the applied loads are acting la this plane. We analyse stresses and 
strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are two 
principal methods presented in this chapter the integration method and Castiglianos theorem.

Chapter 6 deals wtth the budding of columns. In this chapter we I*  roduce indents to Euler’s theory in 
order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. Pavel 
Eksztda, Dr. Michal £ekan. And also we would like to thank our reviewers’ comments and suggestions.

Roland Janto 
Bran i slav Hudko
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1 Introd uction - Concept of stress
1.1 Introduction
The main objective of the mechanic» of materials it to provide engineers with the tools, methods and 
technologies for

• апЫузщ  existing load-bearing structures;
• designing new structure».

Both of the above mentioned tanks require the analyses of stresses and deformation*. In this chapter we 
%vil] firstly discuss the sties».

1.2 A Short Review of the Methods of Statics

Let us consider a simple truss structure, see Fig. 1.1. This structure was originally designed to carry a 
load of 15kN. It consists of two rods; BC and CD. The rod CD has a circular cross-section with a 30-mm 
diameter and the rod BC  has a rectangular cross-section with the dimensions 20x90 mm. Both rods are 
connected by a pin at point С and are supported by pins and brackets at points В and D. Our task is to 
analyse the rod CD to obtain the answer to the question: Is rod CD sufficient to carry the load? To find 
the answer we ait going to apply the methods of statics. Firstly, we determine the corresponding load 
acting on the rod CD. For this purpose we apply the joint method for calculating axial forces n each rod 
at joint C, see Fie. 1.2 км- fo2cwir% equation

11
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npoduc tion to Meehan» s of Materials: Part I Introduction - Concept of stress

L :

= 0

l F y = 0  Fcd\ -  1 5 ^ * 0 (1.1)

Solving the equations (1.1) we obtain the forces in each member: FK • 20 kNJP9 *  25 kN. The force FK  
is compressive and the force Fa  is tensile. At this moment we are not able to make the decision about 
the safety design of rod CD.

Secondly, the safety of the rod BC depends mainly on the material used and its geometry. Therefore we 
need to make observations of processes inside of the material during loading.
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introduction to Mecham * of Materials: Part I Introduction - Concept of stress

It t us consider a crystalline mesh of rod material. By detaching two neighbour atom s from the crystalline 
nKSh. we can make the following observation. The atoms are in an equilibrium state, see Fig. 1.3(a)- Now 
we can pull out the right atom from its equilibrium position by applying external force, see Fig. 1.3(b). 
The applied force Is the action force. Due to Newton's first law a reaction force Is pulling back on the 
atom to the original equilibrium. During loading, the atoms find a new equilibrium state. The action 
and the reaction are in equilibrium too. If we remove the applied force, the atom will go back to its 
initial position, see Fig. 1.3(a). If we push the right atom towards the left atom, we will observe a similar 
situation; see Fig. 1.3(c). Now we can build the well-known diagram from the physics of materials; 
internal force versus interatomic distance, tee Fig. 1.4. From this diagram we can find the magnitudes of 
forces in corresponding cases. Now we can extend our observation to our rod CD. For simplicity let us 
draw two parallel layers of atoms inside the rod considered, see Pig. 1.5. After applying the force of the 
external load on CD we will observe the elongation of the rod. In other words, the interatomic distance 
between two neighbouring atoms will inaease. Then due to Newtons fir* law the internal reaction 
forces will result between two neighbouring atoms. Subsequently the rod will reach a new equilibrium. 
Thus we can write;

If L ,  «  Fcd or E  in te rn a l fo rce s  = ex ternal app lied  fo rce  ( 1.2)

The next task is to determine the internal fortes. Considering the continuum approach we can replace 
equation ( 1.2) with the following one:

R esu ltan t o f in te rn a l fo rces  «  ex terna l app lied  fo rce  ( 1 .3)

П»14
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Introduction to Mechanics of M at* tali. Part I Introdt ction - Concept of str*-.

The resultant can be determined by applying the method of section. Raising the section at some afbirarv 
point Q we get two portions of the rod: CQ and DQ, see Fig. 1.6. Since force Fa »2SkN  must be applied 
at point Q for both porttom to keep them in equilibrium, we can conclude that the resultant of Internal 
forces of 100 kN is produced in the rod CD, when a load o i 15kN is applied at С

The above mentioned method of section is a very helpful tool for determining all internal forces. Let us 
now consider the arbitrary body subjected to a bad. Dividing the body into two portions at an arbitrary 
point Q. see Fig 1.7. we can define the positive outgoing normal n+.the normal fo rteN ^h  the force 
component in the direction of poailive normal The force component derived by fuming the positive 
normal clockwise about 1 at Q is known as the shear force » W  the moment M (g) about the z-azls 
defines the bending moment (the positive orientation will be explain in Chapter 4). The moment Г,«) 
define* the tonjue with a positive orientation according to the right-hand rule.

b)

R* 1J

IS
Download froo eBooks at boofcboon oom



„(reduction to Mechani s of Materials: Part I Introduction - Concept of stress

por assessing the safety of rod CD we need to ask material scientists for tbe experimental data about the 
materials response When our rod is subjected to teasion. we can obtain the experimental data from a 
simple tensile test. I A  us arrange the following experiments for the rod made of tbe same material. The 
output variables are the applied force and the elongation of the rod, le. the force vs. elongation diagram 
jhe first test is done for the rod of length L. and cross-sectional area A. see Fig 14 (a). The output can 
be plotted in Fig L8 (d). seen as curve number 1. For the second test we now detine the rod to have 
a length of 21 whle all other parameters remain, see Fig. 1.8 (b). The result is represented by curve 
number 2. see Fig. 1.8 (d). It is only natural that the total elongation is doubled for the same load level. 
For the third test keep the length parameter L but increase the cross-sectional area to 2A. The result 
are represented by curve number 3. see Fig. 1.8 (d). The conclusion of these three experiments is that the 
load vs elongation diagram is not as useful for designers as one would initially expect. The results are 
very sensitive to geometrical parameters Ы  the samples. Therefore we need to exclude tbe geometrical 
sensitivity from experimental data.

1.3 Definition of the Stresses In the Member of a Structure
The results of the proceeding section represent the first necessary step in the design or analysing of 
structures. They do not tell us whether the structure can support the load safely or not. We can determine 
the distribution functions of internal forces along each member. Applying the method of section we 
can determine the resultant of all elementary internal forces acting on this section, see Fig. 1.9. The 
average intensity d  the elementary force IN  over the elementary area LA is defined as ДЛГ/ДА. This 
ratio represents the internal force per unit area. Thus the intensity Ы  internal force at any arbitrary point 
can be derived aa

н » 1.« 

intensity (M )

16
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Introduction to Mechanics of Material' Parti Introduction Concept of str*,*

Whether or not the rod will break under the giwn load dearly depends upon the ability of the Maters] 
to withstand the corresponding value, tee the above mentioned definition, of the distributed Internal 
force*. It is dear that this depend* on the applied load FCD, the cross-section area A and on the natcruj 
of the rod considered.

The internal force per unit area, or the Intensity of internal forces distributed over a given cross-sect k>n и 
area, is called Фгж. The stress is denoted by the Greek letter sigms a. The unit of stress Is caled the 
Pascal which has the value N/m 2. Then we can rewrite equation (1.4) into

The positive sign indicates tensile stress In a member or that the member is in tension. The negai г.- 
sign of stress indicates compressive stress in a member or that the member is subjected to compression

The equMion (1.5) is not so convenient to use in engineering design so solving for this equation we get

(15)

N = Jod A (16)
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If we арр*У Slint Venanl* principle, see Section 2.6 for more detail we can assume the uniform stress 
jistribut*on function over the cross-section. except in the immediate vicinity of the load* point* of 
jpplfcation. thus we have

N = f  dA * oA or <r = j  (1.7)

R«.i.ia

Л graphical representation is presented in Fig. 1.10. If an internal forte N was obtained by the section 
passed perpend к alar to the member axis, and the direction of the internal force N coincides with the 
member axis, then we are talking about axially loaded members. The direction of the internal force N also 
determine* the direction of stress o. Therefore we define this stress о a* the normal stress. Thus formula 
(1.7) determines the aormaJ stress in the axially loaded member

From elementary static* we get the resultant N of the internal force*, which then must be applied to 
the centre of the cross-section under the condition of uniformly distributed stress. This means that 
a distribution of stress is possible only if  the action line of the applied loads passes through the
centre of the section considered, see Fig. 1.11. Sometimes we this type of loading is known as centric 
loading. In the caae of an eccentrically loaded member. see Fig. 1.12, the condition is not satisfied, 
therefore the street distribution function Is not uniform. The explanation will be done in Chapter 4.

normal force Nc ^ F  and the moment Mc — Fd  are the internal forces obtained through the 
method o f  section

18
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1.4 Basic Stresses (Axial, Normal, Shearing and Bearing stress)
The presented esse of cutting is known as «he shear.

The cutaway effect can be commonly found in bolts, screws, pins and rivets used to connect various 
structural components, see Fig. 1.15(a).IWo plates art subjected to f a  tensile force F. The corresponding 
cutting stress will develop in plane CD. Considering the method of section in plane CD, for the top 
portion of the rivet see Fig. 1.15(b). we obtain the shearing stress according to formula ( 1 .9)

RIVET
л

In the previous Section %* discussed the case when the resultant of internal forces and the resulting*v 
normal to the с toss* section are considered. Now let us consider the cutting process of material e 
scissors, see Fig. 1.13. The applied load F  is transversal to the axis of the member Therefore the I - 
is called the transversal load Thus we have a physically different stress. Let us pass a section tbr * 
point С  between the spptkaiion points of two forces, see Fig 1.14 (a). Detaching portion DC fbrn
member we will get the diagram of the portion DC shown in Fig. 1.14(b). The zeru valued in-

‘ ‘  '  - ■* *- -*---* — 4*«-чЬ

pa
V - F
b)

N«.1.1»

( 1.10)

perpendicular direction to the member axis.

V ------
member we will gpt the diagram of the portion DC shown in Fig 1.14(b). The wro valued mt«
forces are excluded The resultant of internal forces is only the shear force. It is placed perpendictil П<4* ̂  ** bmdfectiaaed lhe Gf $€ttion in a
the member axis in the section and is equal to the applied force. The corresponding Hness is ca& Oow c°nsider the axially loaded member CD see F  
shearing stress denoted by the Greek letter tau r. Now we can define the shearing stress as In comp » ^  1 ^  ovtr an angle в between the perpendicular sect i !n

r  *. —• m n j »« w n u iy

to the normal stress, we cannot assume that the shearing stress is uniform over the cross section shown in F%. 1.17  f a n  lhe "  *** »ecUon. we will get the
proof of thlft statement is explained in Chapter 4 Therefore we can only calculate the average v a k ^ ^ 4uni with the axial forte P. Lc P *  P  Thk i с **ТЛГШ Wr ^  that the applied force F  is in

19
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ТЫ®'l0rtnal force N and the shear force V represent the resultant of normal forces and shear forces 
distributed over the cross-section and we can write the corresponding stresses over the 

^ K C tlo n  A, « A Jcose  at follow.

N P со* в F 2 a
a  = т т —Jo— — T“ cos “

^ cmt

Tavt :-L  =s Р-У * = ~ S ln  0 COS0>40

(112)

(113)

For the perpendicular section, when 0 *  0, we get <7 = O^x *  and Tave *  0 These results 
worrespond to the onei we found earlier. In the point of view of mathematics, tbe magnitudes of stresses 
depend upon tbe orientation of the section.

N = PcosG and V = Ps in0
(1.1!

П»1.1в

The resultant stress from the normal and shearing stress components is called the axuM stress (the stress in 
the direction of tht axis) and it is denoted asp; see Fig. 1.18. Then iKing elementary mathematics we get

P  = V f f l+ T«»»2 (110

The exact mathematical definition of the axial «tress is the same as previously defined stress types, U .

I t  ap  dP
(1.15)

21
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lhe <re*

bolts, or iciews have a lateral contact within the connected member, see Fig. 1.19. They create
in the connected member along the bearing surface or Hie contact surface. For example let

~ »ns»der the boll IK  connecting two pines В and C. which are subjected to shear, see Fig. 1.19. The
I It shank exerts a force P  on the plate В which is equal to the applied force F. The force P represents
[ resultant of all elementary forces distributed over the half of the cylindrical hole in plate B. see

i Ж The diameter of the cylindrical hole is D and the height is t. The distribution function of the I ig. l.av-
aioiementioned stresses is very complicated and therefore we usually use the average value of contact 
,r bearing sfrws In this case the average engineering bearing stress is defined as

Ob
F_
Dt (1.16)

1.5 Application to the Analysis and Design of Simple Structures
Let us recall the simple truss structure that we discussed in Section 12. see Fig. L I. Let us now detach 
rod CD for a more detailed analysis, see Pfc. 1.21. The detailed pia connection at point D is presented 
in Fig 1.22. The following stresses acting in the rod CD can be calculated

_  wvtioort -  a ам & яг — e

« Я
1

япГит b ■ГТ # 4
A * '

I111
p n j

>. u i
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• The normal stress in the shank of the rod CD:
I  dear and precise pn>blem formication. This formulation should contain the given data and

The normal force acting in the circular shank I» fcp *  25 kN, the corresponding trow, 

sectional area Ы Л,ьатк *  v  ( у )  = 706,9 mm2. Then we have

indicate what information is required, 
g. Simplified drawing of a given problem, which indicates ail essential quantities, which should

be included.
iii Free body diagram to obtaining reactions at the supports.
iv Applying method of section in order to obtain the internal forces and moments.
v Solution of problem oriented equations in order to determine stresses, strains, and

deformation*.
• The normal stresses in the flat end of D:

The normal force acting in the flat end is PCD «  25 k N  again, the corresponding vro* subsequently we have to check the results obtained with respect to some simplifications, for example 
sectional areas are at the section a-а AM *  (50 - 20). 30 = 900mm2 and at the sectio, b o u n d a r y  conditions, the neglect of some structural details, etc. 
b-b Am ~ 50.30 = 1500mm2 Thus ** get

The shear force acting in tbe pin is Fcv = 25 kN , the corresponding cross-sectional srva t

• The bearing stress at D:

The contact force acting in the cylindrical hole is F*eeril# = 25 kN,, the corresponding <.го» 
sectional area is A ^ ^  = 30.30 = 900mm2. Using formula (1.16) w* get

1.6 Method of Problem Solution and Numerical Accuracy
Every formula previously mentioned and derived has its own validity. This validity predicts the q>plic4( 
area, i.e the limitations on the applicability. Our solution must be based on the fundamental principle* 
statics and mechanics of materials. Every step, which we apply in our approach, must be justified on thi 
basis. After obtaining the results, they must be checked. If there is any doubt in the lesults obtained *  
should check the problem formulation, the validity of applied methods, input data (material paraSKter* 
boundary conditions) and the accuracy of computations

The method of problem solution is the step by step wlutwn This approach consists of the following rtcf*

-  27В  M Pa and a »  *  ^  *  16.7 M Pa
The numerical accuracy depends upon the following items:

• The shearing stress in the pin connection O.

• the accuracy of input data;
• the accuracy of the computation performed.

2S
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Introduction - Concept of stress

Pot example It It possible that we can get inaccurate material parameters. Lei ua consider an error 0 
5% in Young’a modulus Then the calculation of Иге» contains at least the same error, the explanati, • 
can be found in Section 2.5. The accuracy of computation Is tighUy connected with the computati ,n< 
method applied. Wr can apply either the analytical solution or the iterative solution.

1.7 Components of Stress under General Loading Conditions

R * 1J 1

Until now we have Limited the discussion to axially loaded members. Let us generalise the results obt ainet 
in the previous sections. Thus we can consider a body subjected to aeveral forces, see Fig. 1.23. To analy* 
the stress conditions created by the loads inside the body, we must apply the method of sections. Let u 
analyse stresses at an arbitrary point Q. The Euclidian space to defined by three perpendicular plane 
therefore we will pass three parallel sections to the Hudidiaa ones through point Q.

27
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, paly we p* 8 * section parallel to the principal plane yz, see Fig, 1.24 and take into account the left 
■ n of the body. This portion is subjected to the applied forces and the resultants of all internal forces 

these forces replace the effect of the removed part) In our case we have the normal force Nx and the 
\yeir foite T l* l °* er subscript means the direction of the positive outgoing normal The general 
h e a r  force Vx has two components in the directions of у and t ie . V* and V/. The superscript indicates 

the direction of the shear component. For detemiining the stress distributions over the section we need 
t define a small area LA surrounding point Q. see Fig. 1.24, Then tx  corresponding internal forces are 

LVX , A lf  - Recalling the mathematical definition of stress ia equations (1.5) and ( 1J ) ,  we get

<JX = lln u „~0 7 ^  r ry = (1.17)

Ihese results are presented in Fig. 1.25 Remember that the first subscript in ox, Tgy and Ta  is used to 
indicate that the stresses under consideration are exerted on a surface perpendicular to the x axis. The 
second subscript in the shearing stresses identifies the direction of the component. The same results 
will be obtained if we apply the same approach for the right side of the body considered, see Fig. 1.26.

У
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Download traa «Books at bookboon oom



Introduction to Mechanics of Mat* ials: Part I Introdt n o n  -  Concept с f*4

H-W

Oy ДЛ

а, ДА 
т^ Х К

I

Гц О Л

Ц д Л

Тщ Да |

У

д л
tjr ДА

toMacham s of Materials: Part I Introduction - Concept of stress

Secondly we now рам a section parallel to the principal plane of xz. where w* will get the ^  
component» ay. Ту, and Гу, in ■ similar way. Thirdly, passing a section parallel to the principal ; |4 
of *7, we can also get the stress components: at% Tn  and by the same way. Thus the it re vs 
at point Q is defined by nine stress components With reject to statics. It is astatfcally todeternun, 
problem, since we only have six equilibrium equations.

fdition obtained shows that the у component of the shearing stress exerted on a face perpendicular
is equal to the x component of the shearing exerted on a face perpendicular to the / axis io the x a** 1

.'imiUf ** obtained for the rest of the moment equilibrium equations. Le.

T*f and — (1.20)

be equations (1.1$) and (1.20) represent the shear law The explanation of the shear law is: if the 
hearing stress exerts on any plane, then the shearing stress will also exert on the perpendicular 

plane to that one. Thus the stress state at any arbitrary point is determined by six stress components: 

ax, Oy, Ож,Тху • Ta »Tyt

1 .8 Design Considerations and Factor of Safety
In the previous sections we discussed the stress analysis of existing structures. In engineering applications 
we must design with safety as well as economical acceptability in mind. To reach this compromise stress 
analyses assists us in fulfilling this task. The design procedure consists of the following steps:

To visualise the stress conditions at point Q  we can represent point Q as a small cube, see Fig \X 
There are only three faces of the cube visible in Fig. 1.27. The stresses on the hidden parallel faces x 
equal and opposite of the visible ones. Such a cube must satfcfy the condition of equilibrium. Therefor 
we can multiply the stresses by the face area ЬА to obtain the forces acting on the cnbe faces. Focus* 
on the moment equation about the local axis, see Fig. 1.28 and assuming the positive moment in tb 
counter-clockwise direction, we hav*

E M , * 0  Гу1ДЛ j  + T jy M  l - т ^ Д Л ^ = 0 ( 1.1»

we then conclude

**y e  V  (1.1*
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Determination of the ultimate stress of a material. A certified laboratory will make mater 
M s  In reject to the defined load. For example they can determine the ultimate lensir 
stress, the ultimate comprtssive stress and the ultimate shearing stress for a given material s* 
Fig. 1.29.
Allowable load and allowable stress. Factor of Safety. Due to any unforeseen loading during 
the structures operation, tbe maximum stress in the designed structure can not be equal to 
the ultimate stress. Usually the maximum stress » less than this ultimate stress. Low stress 
corresponds to the smaller loads. This smaller loading we call the allowable load or destpi 
load. *Ihe ratio of tbe ukimate load to the allowable load is used to define the Factor of Safa 
tttiich is:

Factor o f Safety ■ F. S.i UUimatr bod (12 1
Allowable load

An alternative of this definition can be applied to

Factor o f Safety *  F.Sj
Ultimate it гаи

2 Stress and Strain - Axial Loading
2.1

Introduction

In tte previous chapter we discussed the stresses produced in the structures under various conditions, 
e loading, boundary conditions. We have analyzed the stresses in simply loaded members and we 

learned how to design some characteristic dimensions of these members due to allowable stress. Another 
important aspect in the design and analysis of structures are their deformations, and the reasons are very 
simple. For example, large deformations is the structure as a result of the stress conditions under the 
applrd load should be avoided. The design of a bridge can fulfil the condition for allowable stress but 
the deformation (is our case deflection) at mid-span may not be acceptable The deformation analysis 
is very helpful in the stress determination too. mainly for statically in determinated problems. Statically 
it is assumed that structure is a composition of rigid bodies. But now we would like to analyse the 
structure as a deformable body.

(i 2: 2.2 Normal Stress and Strain under Axial Loading

• Selecting the appropriate Factor of Safety. The фрп>рг1а1е Factor of Safety (ES .) for a given 
design application requires good engineering Judgment based on many considerations, such 
as the foflow'ing:

• TVpe of loading, Le. stalk or dynamic or random loading.
- Variation of material properties. Le. composite structure of different materials.
• Type of failure that fc expected. Le. brittle or ductile failure, etc.
• Importance of s given member. Le. less important members can be designed with 

allowed RS.
- Uncertainty due to tfie analysis method. Usually we use some simplifications in our 

analysis.
- The nature of operation. Le. taking into account the properties of our surrounding Hr 

example: corrosion properties.

For the majority of structures, the recommended F.S. is specified by structural Standards and othf 
documents written by engineering authorities

► 1.1

Rg.2J
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Introduction to Mechanics of Materials: Part I

I м  ,ka, as i___ ,u > л ^  load F  ca i»« the dongation At. The corresponding normal «tress can be found by passingLet us assume that the rod BC, of length L with constant cross-sectional area A. is hanging on а я T h e . . . . . . . . .
.. c. , . . . .  с . . . . . . ^  ^  ^menditulsr to the axis of the rod (method of sections) applying this method we obtainpoint B, see Fig, 2.1 . If **  apply the bad F wecan observe an elongation of the rod BC. Both the annj. « section perpend»*-111 -n

. . . . . “  Kui c/A see Fig. 2.1. If we apply the same bad to the rod of length 21 and the same cross-force and dongation can be measumd. And we can plot the bad vs. elongation, see Pig. IX  ZitXs F /A *"*  t .
nal ares A, we will observe an dongation of 2Д/. wtth the same normal stress ax = F/A . soe

As we mentioned in the previous chapter, we would like to avoid plotting geometrical character^ 2 }  meat* the deformation is twice as large as the previous case. But the ratio of deformation
Le. cross-sectional area and length. We cannot use such a graph directly to predict the rod 4опед **  . ^  |ength is the same. Le. is equd to SU L  This result brings us to the concept of strain.
of the same maerial with different dimensions. Let us consider the following examples:

W - tan now define the normal strain s caused by axial loading as the deformation per unit length of 
,}x. rod Since length and dongation have the same units, the normal strain is a dimensionless quantity 
M athem atical, we can express the normal «rata by:

Mttecharw $ of Materials. Part I Stress and Strain - Axial Loading
Stress а лд Strain - Axial i ^

t .  A

2ДII

AL
‘ L (2.1)

H».L4

1 his equation is valid only for a rod with constant cross-sectional area In the case of variable cross sectional 
,R j’ the normal stress varies over the axis of the rod by Ox — F  / A (Ky Ihcn we must define the normal 
Mrain * 1,1 «bitrary point Q by considering a small element of undeformed length lb . The corre^nding 
onptton of this dement is D(DL), see Fig 2.4. Thus we can define the normal strain al point Q as:

*1 1 1 4 4 *- *^  = (2.2)ax ax

whfcjj ~ results in a dimensionless quantity
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2.3 Stress-Strain Diagram, Hooke's Law, and Modulus of Elasticity

Introduction to Mechanics of Material*: Part I Stress and Strain

Н »  2 Л  МП tatting marhin» «»* . — 1
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Stress and Strain - Axial Loading

Reamed before, plotting load vs. elongation is not useful for engineers and designers due to 
Л* strong sensitivity on *1*  sample geometry. Therefore we explained the concepts of stress and strain 
' 13  and Sec 12 in detail. The result is a stress-a rain diagram that represents the relationship 

-en stress and strain. This diagram is an important characteristic of material and can be obtained 
onductii^ * tensile test. The typical specimen can be rfwwn in Fig* 2.5. The cross-sectional area 

 ̂t the cylindrical central portion of the specimen has been accurttdy determined and two gage marks 
( ye been made in this portion at a distance Lf from each other. The distance Lt is known as the gage 

ntfh (or referential length) of the specimen. Tbe specimen is then placed into the test machine seen in 
j »g 2.4 which is used for centric load application. As the load F increases, the distance L between gage 
narks also increase*. The distance can be measured by several mechanical gages and both quantities (load 
iii J  distance) are recorded continuously as the load increases. As a result we obtain the total elongation 
of the cylindrical portion DL=L-L0 for each corresponding load stejx From the measured quantities we 
can recakulate the values of stress and strain using equations (15) and (2.1). For different materials 
we obtain different tf ress-strain diagrams. In Mg 2.7 one can see the typical diagrams for ductile and 
brittle materials
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STRESSIMPaJ —  LOW - CARBON STEEL
—  ALUMINUM

ou !
Ou !

0.0012 a004

(я) DOC TILE MATERIAL

Stress and Strain - Axial Loading

Ож

(a) ASSUMED ROD
Rg.2 Я

(b) UNIT CUBE

R+2.7

As we can see in the previous section! (2.2 and 2.3) the normal stress and strain have the same direction 
Рог a more detailed discussion about the diagrams we recommend any book which Is concerned „  ^  ̂  |ot(J ы  ^  assume ц *  the homogenous and isotropic rod is axially loaded by a force F as
material sciences lor engineers. in 2.g. Then the corresponding normal stress is <jx = “ Sf* = F/A  and applying Hookes law we obtain:

Many engineering appikations undergo small deformations and small strains. Thus the responn 
material can be expected in an elastic region. For many engineering materials the elastic respond 
linear. Le. the straight line portion in a stress-strain diagram. Therefore we can write:

(2.3)

s Eex Vi

This equation is the well-known Hookes law, found by Robert Hooke (1635-1703). #ie English рюш 
of applied mechanics. The coefficient E is called the modulus of dastuity for a given materid. 
Young* modulus, named after the F.nglish scientist Thomas Young (1773-1*29). Since the strain t » 
dimension less quantity, then the modulus of elasticity £ has the same units as the stress o. In Pastils t  
physical meaning of the moddus of elasticity is the stress occurring in a material undergoing a <r* 
equal to one. i.e. the measured specimen is elongated from its initial length L ,

If the response of the material is independent from the dilection of loading, it is known as 
Materials whose properties depend upon the direction of leading are anisotropic. Typical exam f* 

anisotropic materials are laminates, composites etc.
h natural to
Qane

***ume that normal stresses on the faces of a unit cube which represents the arbitrary point
^  aero. oy ■ ot »Q. This could convince one to assume that the corresponding at rains et are zero too.

b not our case. In many engineering materials the elongation in the direction of applied load is
an J ^ ll1^  • contraction in any transversal direction, see Fig 2.9 We are assuming homogeneous

botropfc materials. Le. mechankal properties are independent of position and direction. Therefore 
have e я ж tv l.> *• In*t common value is called the lateral strum Now we can define the important material

-Пп

37

Download free eBooks at bookboon oom

за
Download tree «Books at bookboon oom



Introduction to Mechanics of Materials: Part I Stress and Strain - Axial t

V * -
lateral itram 
шHal arum

«1 •• (U

■«S

and • У * *  I  f>4

Ft+ 2.10 Optn foam

production to Mechanics of Materials: Part I Stress and Strain - Axial Loading

there exW tome material*, with a negative value of Poissons ratio. Ihese materials are known
Le- foam» honeycombs Instead of contraction, they elongate in the lateral direction 

is ceuui»* . . .  i . _ .of these materials is presented in Fig. 2.Ю. Par more information see any book written byIhe unsure
u, (jib»n M F f M j

Mote that the contraction in the lateral direction means that the reduction of lateral dimension ; t Ur. 2.5 
negative value of strain and a positive value of Poissons ratio. Usually Poissons ratio has a value 
the interval of (0.-) for common engineering materials like sted. iron, brass, alumimum, etc. If we ̂  
Hookes law and e<f (2.5) we will obtain the following strains:

Generalised Hooke's Law for Multiaxial Loading

(24

Until now we have discussed slender members (rods, bars) under axial loading alone. This resulted 
in a stress state at any arbitrary point of Q . ax = ~ ,a y = a , »  0. Now let us consider multiaxial 
loading acting in the direction of all three coordinate axes and producing non-zero normal stresses: 
ах * о у * а г *  0. see Fig. 111.



Introduction to Mechanics of Materials: Part I Stress a id Strain - Axial
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to fllK h ark J of Materials: Part I Stress and Strain - Axial Loading

U t us consider that our material Is isotropic and homogeneous. Our arbitrary point Q it represent̂  
a unit cube (where the dimensions of each side are a unit of the length), aee Fig. 2.12. Under the 
mukuuia] loading the unit cube U deformed into a rectangular parallelepiped with the followinp ^  
(1 ♦ e ,) ,( l ♦ ty\  (1ч- ta), where t t are strains In the directions of the coordinate ахе» ч*ц, 
Fig. 2.12(b). h is necessary to emphasis that the unit cube U undergoing the deformation motion „„ 
with no rigid motion (translation). Then we can express the strain components r ,  €/ f t in terms 0f ̂  
stress components ^  For this purpose, we will first consider the effect of each stress compon* 
separately. Secondly we will combine the effects of aU contributing stress components by fly in g  * 
principle of superposition. This principle states that the final effect of combined loading can be obtsi* 
by determining the effects for individual loads separately and subsequently these separate effcxu* 
combined into the final result.

In cur case the si rain components are caused by the stress component a  : in t he x direction tx = ox/E is 
in the v and z directions Cy = t t *  -  v<7x/Free ailing eq( 2.6). Similarly, the stress component 5 uu* 
the strain components: in the у direction £J = oy/E  and In x and 2 directions *  Vt = -  \ауЦ 
And inally the stress component stcauses the strain components: in 2 direction = <*t / E  and is: 

and у directions Ex *  = — VOg/ E . These are separate effects of individual street components Tk 
final strain components are then the sums of individual contributions. Le.

Rf. 2.14

Until now. Aearii* stresses have not been Involved in our discussion. Therefore consider the more 
êneraMaed stress «ate defines with six stress components Ox,ay tai ,XSy tXx ttXyS, see Fig. 2.13. The 

shearing stresses Tgy, Xa , Ту, have no direct efleet on normal straias, as long as the deformations remain 
smalL In this case there is no effect on validity of equation (2.7). The occurrence of shearing stresses is 
dearly observable Since the shearing stresses tend to deform the unit cube into a oblique parallelepiped

-tx + c ; + e ; 1 ft

(У

* * 2.11

The equation (2.7) are known as a part of the generalised Hooke’s law or a part of the elasticity equate 
for homogeneous and isotropic materials.
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tx

h E E E

E  E E (2.10)

v = Xj3L Уху с

Ух*

Уу . J L
G

For simplicity, let us consider a unit cube of material which undergoes a simple shear in the xy pie* 
see Fig.2.14. The unit cube is deformed Into the rhomboid w»h tides equal to one, *ee Pig. 2.15. In otht 
words, shearing stresses cause the shape changes while normal stresses cause the volume changes Ld, 
focus on the angular changes. The four angles undergo a change in their values. Two of them reduce 
their values from ”  to ”  — y^  while the other two increase from ~ to ”  — ygy. This angular ,huaf 
Уху (measured in radians) defines the hearing strain in bodi directions x and y. The shearing strain! 2.6 Salflt Venant'S Princip le 
positive if the reduced angle is formed by two faces with the same direction as the positive x and v ле 
see Fig, 2.15. Otherwise it is negative

The validity of these equations is limited to isotropic materials, the proportionality limit sires? that can 
not be exceeded by none of the stresses, and the superposition principle. Equation (2.10) contains three 
material constants f, С, v that must be determined experimentally. In reality we need only two of them, 
because the following relationship can be derived

g
! 2(1 «♦) (2.11)

In a similar way as the normal stress strain diagram for tensile test we can obtain the shear stresvstm 
plot for simple shear or simple torsion, discussed in Chapter 3. Prom a mathematical point of view* 
can write Hooke’s law for the straight part of the diagram by:

СУх, (2J

The material constant 6  Is the shear modulus for any given material and has the similar physical mein* 
as Young4 modulus.

If we consider shear in the xz and yt planes we will get similar solutions to Eq. (18) for stresses in tb* 
planes. Le.

Cya of

Finally we can conclude that the generalised Hooke's law or elasticity equations for the generalist J 
state ait written by:
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B®. 2.17

Until now we have discussed axially loaded members (bars, rods) with uniformly distribute : «it 
over the cross-section perpendicular to the axis of the member. This assumption can cause errors in I  
vicinity of load application. For simplicity let us consider a homogeneous rubber-Ike member thai 
axially loaded by a compressive fore* F, see Fig. 2.16. Let us make the following two experiments I N  
we draw a squared mesh over the member, see Fig. 2.17(a). Then we apply the compressive load throuf 
two rigid plates; we Fig. 2.17(b). The member is deformed ill such a manner that It remains straight b 
the original square dement change into a rectangular dements, see Fig. 2.17(b). ’Che deformed me 
is uniform; therefore the strain distribution over a perpendicular cross-section is also uniform If! 
strain is uniform, then we can conciude that the stress distribution is also similarly uniform descrfr 

by Hookes law. Secondly we apply the compressive force to the same meshed member throughout * 
sharp points, see Fig. 2. IS. This is the effect of a concentrated load. We can observe rtrong deform** 
in the vicinity of the load application point At certain distances from the end of a member the ms 
is again uniform and rectangular. Therefore we can say that there are large deformations and <tre* 
around the load application point while uniform deformations and stresses occur farther from this p<* 
In other words, except for the vicinity of load application point, the stress distribution function ntfTr 
assumed independently to the load application mode. This statement which can be applicable to * 
type of loading is known as Saint- Venant’s principle, after Adfcmar Вагт* de Saint -Venant (1797-1**

F

a*л

I&
F

Rf.2.18

While Sain t-V enan ts principle makes H possible to replace actual loading with a simpler one for 
computational purposes, we need to keep in mind the following:

• The actual loading and loadii* used to compute stresses must be statically equivalent.
. Stresses cannot be computed in the vicinity of load application point. In these cases 

advanced theoretical and experimental method must be applied for stress determination.
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2.7 Deformations of Axially Loaded Members

•L Mfch,^1 * of Materials: Part ISt res* а лд Strain - Axial. rĵ  10M#Ĉ
Stress and Strain - Axial Loading

B*, or

And substituting lor tht normal stress Ox = N(x)/A »  F/A we have

| 2 « « - LSk
EA EA

Recaiing the definition of normal strain, equation (2.1) we get 

AL *  esL

and aibstituting equation<2 13) into equation (2.14) we have 

AL = ^  = i iEA EA
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Now we can<conclude that the application of this equation: Equation (2.15) may be used only if the rod 
foniagencous (constant EX has a uniform cross-sectional area A, and is loaded at both ends. If the 

is loaded it  any other point or is composed from several different homogeneous parts having 
"irfeient cross-sec* 011*1 areas we must apply the division into parts satisfying tbe previous conclusion 
De oted Nkx). ^  . A«, U  the internal normal force. Young s modulus,cross-sectional area and length 

ponding to tbe part i respectively Ihen the total elongation is the sum of individual elongations

(prindpte of f4 *IJ>°tfion):

AL =  27-1 U , = 1Г-1 (2.16)

In the сак ofvariable cross-sectional area, as in Fig. 2.4. the strain depends on the position of the arbitrary 
point Q. therefore we must apply equation (2.2) for the strain computation. After some mathematical 
manfHihtfion we have the total elongation of the member

Let us consider a homogeneous botropk member BC of length L, cross-sectionaJ area A ,, 
Young’s modulus E subjected to the centric axial force F, see Fig. 2.1*. If the resulting normal *  
аж ~ N(*)/A *  F/A docs not exceed the proportional limit stress and applying Saint-Venant 's priaq 
we can then apply Hooke's law

AL = /. !b ld x  
( I )  EA (2.17)

(21

(U

Until now we could solve problems starting with the free body diagram, and subsequently determine the 
reactions from equilibrium equations. Recalling the method of sections in (chapter 2.2) we can compute 
internal forces at any arbitrary section, allowing us to then prt>ceed with computing stresses, strains 
and deformations. But many engineering problems can not be solved by the approach of statics alone.

j .r  в в

E. A

D t D

1*
С С

Li

T-
Ft* 2.1*

For
^  m consUlcr a Simple problem, see Fig. 2.19 Using statics we cannot solve the problem 
reacti e<*u***,rtuin equations. The main difficulty in this problem is that the number of unknown 
Pr ‘hlenr** ****** ̂ ,WI *** num*>cr equilibrium equations. From a mathematical point of view the

* Ю-conditinning For our сак we obtain one equilibrf equilibrium equation as

+ R. *0
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—ЖВ
TRANSFORMATION

I ,  A

STATICALLY
IMOTTERMINATED

PROBLEM
(a)

SO - CALLED STATICALLY 
DETERMINATED PROBLEM 

WITH UNKNOWN REACTION
(b)

A9.2JO

There are two unknown reaction* In equation (2.IB). Problem* of this type ire called staticd 
indeterminate problems.
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В 2.
•>1

i E,A

D
F 1 .

AL,

С
i
i

Uc =0

Rf. 2-21

To overcome the static indeterminacy we need to complete the system of equilibrium equations with 
relations involving deformations by considering the geometry of the problem. These additional relations 
are called deformation conditions. For practical solution let us consider the following transformation in 
Fig. 2.20. The problem presented is exactly the same as the problem in Pig. 119. This problem is statically 
indeterminate to the first degree. Removing the redundant support at point С and replacing it with the 
unknown reaction R we obtain the so-called statically indeterminate problem with unknown reaction, 
w  Fig. 2.20(b). Now our task is to receive the same response for the statically indeterminate problem 
as in the original 4 atlcally indeterminate problem. To get the same response of the structure we need 
to impose the deformation condition for point C, that the displacement for this point *  equal to иего, 
see Fig. 2.21, or mathematically

Uc = 0 (119)

I his condition (2.19) coincides with the total dongation of the member also equal to zero. We then have:

U t = A L - °  (2.20)

I*  member presented in Fig, 2.21 can be divided into two homogeneous parts. Therefore the total 
ton*ation is a sum of Individual elongation, equation (2.16), Le. AL = ДЦ + Д L2. Then we have

(121)
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Both normal force* N1(t) »  -K( , V2(I) ■ F  -  Rc are function* of unknown reaction Solv  ̂
equation (2.21) we obtain the value of reaction Rc. We can then continue by solving In the usual 
for statically determinate problem*.

2.8 Problems Involving Temperature Changes

I

RIGID PLATES

IAT

s --- " '

R9.2JJ

In this case there I* no stress in a rod. We can prove this very easily by q>piying the method of sections 
and writing equilibrium equations.

In the previous disc unions we assumed constant temperature as the member was being loaded Let* 
now consider a homogeneous rod BC  with the constant с ids*-sectional area A and the initial lenp 
L  aee Fig. 222. If the temperature of the rod grows by AT then we will observe the elongation of й» 
rod by АЦ, see Fig. 2.22. This elongation is proportional to the temperature increase AT and the into 
length L. Using basic physics we hase

ALt = a(AT)L (2Я

where a is the coefficient of thermal expansion. The thermal strain er is associated with the aforeimn' to* 
elongation АЦ. Le. *  ALj-/L. Then we have

eT *  вг(АГ) (2JJ

Si
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R»2J4

By modify the previous rod by placing It between two rigid plates and subjecting К to a temperatur 
change of ДТ we will observe no dongation because of the fixed simports at its ends. We know that tk 
problem is statically indeterminate due to the supports at each end. Let us then transform the proble 
into the so-called statically determinate problem. Removing the support at point С and replace it* 
unknown reaction Rc. Now we can apply the principle of superposition in the (blowing way f irfli 

we heat the rod by AT. see Fig. 2.34(a), then we can observe the dongation ALr = « (A T )L .e  
Fig. 2.24(b). Secondly, we push the *>d by the reaction Rr back to its initial length, see Fig. 2J4(c). 1b 
effect of pushing is the opposite of dongation A L^ . Applying the formulas (2.22) and (115) we hi*

OldA L r  =  f f (A T )L

Impressing the condition that the total elongation must be aero, we get 

A L  = A l^  + A L *  =  в(Д7-)Ь + =  О 

This equation represents the deformation condition. And we can compute the reaction as 

Rc *  -EA<r(A7*)

and corresponding stress

ax »  s  а(АГ)

Trusses

trod||Ctk>n ,o Meehan, s of Materials: Part I Stress and Strain - Axial Loading

19

The truss is a structure consisting of several slender members (rods, bars) that are subjected to axial 
loading only. The mple truss structure la presented in Fig. 2.25. Ih ls truss consists of two bars of the 
same cross-sectional area A and Young’s modulus £  The truss is loaded by a vertical force F. Our task is 
to compute the vertical and horizontal displacements of joint C. Applying the methods of statics we can 
determine axial foKes In each bar. Nj *  F/tin  в , N2 = F/tan0. Consequently*, we can determine 
elongations for individual bars using equation (2.15)

A L ,» * b l« - £ ± L .
1 EA EAMnO «id А1* м <12§)

(2J4

o f

( if

•be deformed configuration can be founded by drawing two circles with centres at joints В and D with 
the following radii, see Fig. 2.26
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b a r  has the following dimensions: * * 100 mm, b = 50 mm. L = 1500 mm, shown in Fig. 2.28. 
A axial force of F * 90 kN is applied to the bar, determine the change in its length and the change in
11 0f ц*cross-section after the load is applied Assume that the material behaves elastically.
' h nr the Youngs modulus for steel is E = 200 GPa and Poisaons ratio v * 0.32.

The deformations are relatively »таЛ. therefore we can replace the circles with tangents perpendKui
to the undeformed bars, see Fig. 2.27. One can then compute the horizontal and vertical dtaplacenit| in tue bar is

The normal stress in u>
as follows:

f l 2
BA  taa20

0 « I .  -L .  - * * 1Q,_)__N—  .1 6  0m 10*Pa -16 0 MPa
* A  ab (0 1 ШХ0.05 m)

0*
The itrain in the x direction is

--80x10*.
E 200*I0’P*

The axial elongation of the bar then becomes

AL, -(80x10^)м1 Зт - 120цт
E ahE

2.10 Examples, Solved and Unsolved Problems 
1 2.1
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Introduction to Mechanics of Materials: Part I
fifltch an i s of Materials: Part I

Stress a %d Strain - An.- ltrod**tlon

Using Eq. (2-6) for the determination of Pofcson's ratio, where v - 0.32 u  given for Med. thecontrw 4trtss end b  I ,,r 1
strain in the у and z direction ait

BC

f , -0.33(10 К1 0 — 256 firnm

Thus the changes in the dimension» of cross-section are given by

E(aL>

Д Ц .-^ .4 2 .3 6  H-

ALf - a.L,--Hs,b - -vb ^

Solution of normal (axial) load N,

£ F . «0: F-N, - 0 =* N ,-F-20kN

Stress in the part BC

N. F 4F 4 x 30000N 1
я  я  —*■ * --- r  m - ~ T  *  *  ^ ж н . а

Problem 2 i

40 J |
F -1
a 1 С 12

if
_ i

if
2 С, T

*

A| j O 1 «D* *DJ
4

lufiakbhwn and stress in part CG 

x9* 0L 2L )

I >:

♦20 N„

Mutton of normal (axial) load N„

A composite rted bar shown in Fig. 2.29 is made from two segments. BC and CH. havingdicuUr cp* e °  P “ ^ -^ -N B -0 => N ,-0
section *4th a diameter of - D and = 2D. Determine the diameter D. If we have an a1K>w»̂
stress of o M = 147 MPa and tbe applied load is F  ̂ 20 kN. S|Pe*e in рщ

So lotion

We can divide the bar into three parts (B C  CG and GH) which have constant cross-section a»e* * 
constant loading.

57
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Stress and Strain - Axial Loading
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Eqidkbrium of part m d stress w part GH  

« .• (2 L3 L )

Introduction to Mechanics of Materials: Part I Stress and Stoain - Axial.

fU

К
Solution of normal (axial) load N,

F F 3_ 3IF . . - » :  F - I - I - i F- |F - N . - 0

N . - -3F - -Зк 20000 N - -90000 N

N .--3F

„roduc«o"‘°

Stream
N . -3F 3F 3 * 20000N innftAi£ IЛ ■ —*- » ----- - * ----- -------- ;---«-1909Н.6—7

° m A . «2 P ): a tf *D D*

glichani s Ы  Materials: Part I

in part CD

Stress and Strait - A "*  Loading

For 41 parts, draw the diagram of normal force and «tress. Ihe maximum stress is in tflC 1“ *  P111 *BC)’ 
which we can compare with the allowable stress and obtain the parameter D

4F ^*mx - °i

D г <4 ж 20000 N 
V * 147 MPa

l>*

D 2 13.21

Problem 2 3

R f  2 JO

name the eton^uon of a conical bar shown in Ffc 2.30 at point В without cone*ac™ S  ** *****

59 60
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Introduction to Mechanics of Materials: Part I #л Meehan, s of Materials: Part IStress a \d Strain - AxUi _

Stress and Strain - Axial Loading

Given by maximum tone diameter of D. length L  modulus of elasticity E and applied force F. Deicr^ ****** ̂
the maximum stress in the conical bar.

The problem is divided into two parts. 

Equilibrium of tht fin t part

We determine the normal force N, and normal sties» a v 

Normal force N,:

JF ^ - O : N^ > - 0  =* N ,(« ,> -0

Calculate angle p from the geometry of the cone given by diameter D, at position x,

D ЖЦж,)
trnflm -lm  . . I .. ^  D,(xl )- b .D  

L Xj L

Croes-sectional area (function of poakion) in the first part ia 

Normal streat o, is as blows

We determine the oorraal force N„ and normal stress 1 

Normal force N̂ :

T ¥k 9 °  Nb(x ,)- F-0  =* N,(*
x .)» F



Introduction to Mechanics of Materials: Part I Stress a x l Strain - Axial ^

Calculation of angle b from geometry and diameter DB at рос It ion xB

D РЦ Х,) 
ton /»-■£-— 2—

L *•

Croat-sect ion area (function of poaftton) in second pait la

Л.(хв )- ^ £ - ^ Г Ь .о 1  - — i .4 4 { l  )  4 L*

Normal area «  la then

-  ̂ N jtx .) F 4FL1o .(x _)■ ■ *  — —j-» ■— ■ . 
Ав( ч )  иР’жГ *D4J

л 1

F% 2 J1

The graphical result of the normal force and strrsa is shown in the Fig. 2.31.

Elongation is found by summing the elongation of each part using integration, because cross-«ed* 
area ia a function of position in all parts, which is given by



^-Мдл Г 1— s of Materials: Pa»t I Stress Str**n '  A” *  Loading

p,,***2-4

L l
»

I

JL

H flU

Г Л ' Т Я Г ? С  Ч * ' ЫСГОа “  * -  * *  «  * ,  вгеие,  in portion Be: and cx; 
JoeU„he appUcaHon of bad F -  po.n, С in %  23Z The we,8„  of(hc b<ir U  n e ste d  О * * ,  Ok

Z Z Z ° ?  f° r ,Kf *“  S,r“  *-ngth L. modulus ofda-tcuy К and
applied force F art known Problem ш ы ^ у  ,nde,cmnna,e

v>luboa

I

1

R » U J

at point В and define a reaction at its location, whki* ^  ** foi,ied the

n’C^ n 1, dlvWcd,Wa
two solution» part BC and CG.

64
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Introduction to Mechanic! of Materials: Part I

Frtt-body Щщрыт on portion I (pari BCJt

Stress and St ain - Axl*|.

1

From the equiibrium equation in the fint part we obtain 

£ F. , * 0: *,О ц )-*-0  =» N ,(x,)-R

Solution of cross-icction area it given From Pythagoras theorem where we determine the side Iq, 
of the square

(2D^ - a*-fa*
A ,-a* => 4DJ -2a* s» A ,-2D 1

2D1 . a*



ч а и » * ''*  '„ГО ***""

„portion вс 1.

Acs of Materials: Part I

Strt**
. R W .- J L  

« ^ ’ "X O O  2D 1

body *< &*'”  M  *ЮГП‘т  "  <par‘ ° СУ:fret 

4 .(L * >

Stress and Strain - Axial Loading

J l

From the equilibrium equation in the second part, we obtain

I F . . - *  N.Cx.H F - R - O  =* NB(xn)» R - F

Sum in portion CG is

A ,(4 ) *D: *D‘

Uc the unknown reaction from the deformation condition, total elongation (movement of
P°tat B) is equal to aero:

^*■ 0  =» AL.-AL.+ALe-O => ДЦ+Д^-О 

town Miich we have

Й ^ ^ - о  о  _5L + i< M > L .o  
" Л  E.An E201 EhD1

« ♦ X R - D .O  =» r . J L
Я-ft
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Introduction to Mechanics of Materials; Part I Stress a k J Strain - Axihi

R » 2 J 4

We insert the solved reaction into the result of parts BC and CG,

N,(xl )- R -  — -0 72F s+l

О,0ц)» . — £ — .0.36—  
A,(x,) <x+ftj2D* D*

n  ж в
ICS of Materials: Part I Stress and Strain - Axial Loading

H f .2 J S

In FI* 2.35, a bar of length 2L with uniform circular cross-section area and made of the same material 
with a modulus of elaaticity E. la subjected to an applied force F. determine the stress in the bar. Consider 
the weight of bar (density p anJ gravity g are known).

Ne(xe)- R - F - i^ - F » - —  «-0 Л Р  
*♦» я+8

and draw the diagram of normal ibices and stresses for both portions, which is shown in the Fig. 23 

Design of parameter D

The maximum (absolute value) of stnesaes is the same for both portions, we compare them w*b* 
allowable stress and we get the designed parameter D:

«MAX - 0365T iO A.

67
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Introduction to Mechanics of Materials: Part I

Solution

Stress aid  Strain - Axial t,

o U
F

«M • 0

Problem it statically indeterminate and for the solution we use the deformation condition at point I 

First step of solution is lo substitute an unknown reaction at point В (see Fig. 136):

Because the problem is In pure tension, the reaction R and moment M are zero, reaction R is non-» 

Solution of this problem is divided Into two parts.

Equilibrium of first part

£ F h i- f: N ,(« ,K R - 0 ,- 0  =э К ,(х ,)-0 , -R

where G, is gravitational load of first part, defined by 

Q, -m g-pVg-pgM ,
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IQ j##ctv r s o# Materials: Part I

. and •««» IS gi'bcrcd by

Stress and Strain - Axial Loading

141(х1) в,Л *»х|

0l̂  A,(X|) \  A

6(U2L)

I циШЬгНип at the aecond part, is given by

J X - 0  Nl (xe)-fP-R-G1-0 =» N,(xi )-F+O i -R

Normal force and * r t*  is as follows

Na(s1)-r + ffA 1x,-R-F+f>eAxa -R

*' •' A,<«,) A A A

information condition at point A

K*al dongation at point A is equal to xero, which is consisting of the first part of the bar ДЦ and second 
P"t ЛЦ. For solution of each part we used the integral form because normal force is a function of 
P'̂ km. Unknown reaction R after calculation becomes

Д1*л ■ AL, + AL, «О => J i!x  + J i h . . о 
E A  E.A .

^ |A I^ F- 2 R  => R-PgAI. + jj

70
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Introduction to Mechanics of Mat* lals Part I . - 1a Mectv г s of Materials: Part I
Stress a id  Strain - Axial L f

Stress and Strain - Axial Loading

R*2J7

We insert the mull of reaction R iato the function of normal force and stress for both parts i 
diagram for force and stress is 4iown in Fig. 2.37.

N ,< *.> -«*4- (« A l. + lj-p tA ix , - L )- |

\<*,> A, ^  ' 2A 

N,(x,)-F+p*Ax,-R - F +жЛх,-^p*AL* | j -  j+«A<xt -L)

. [nfjfli
folte y, die rod and in the tube is denoting by Nb4) and NM , respectlvrfy. wc draw a fret

ЦаГда**"1 for **rigid р1ле ta * * 2У*

R f .2 J S

^ Fe * 0 : Ntv* *  ̂ K® “ F » 0  ^nje + (i)

The problem isstatkally indeterminate However, the geometry of the problem shows that the deformation 
DL^ and D L ^  of the rod and tube must be equal:

A U .- A L * * Nn’« 4 m  ■ Njg4sg .
Ftvss^w»  ЕдоАцоо

it£> (b)

Problem 2.6 Equation (a) and (b) can be solved simultaneously for Ыюр and NM by:

N . а^я
W iV i

4%±H-f
N“ -77--- 1---[EnrnV* +

V ^ю Д и»

A rod of length L  cross -sec Uonal area A,, and modulus of elasticity E, has been place inside л 
the same length L  but of differing cross section area A, and hkhIuIun t*T elasticity £a (Hg 2.^X 
I» u r «мпиииип of the rod and tube when F is applied to the end ol the piate ж  shown'

\ Гм« Ь ш АТУН----- 1-----
+\)

t E— A—  !



Introduction to Mechanics of Materials: Part I

2.7

.» * * *

Stress * лд Strain - Axi, , ̂  * °
I*ech«r s of Materials: Part I Stress and Strain - Axial Loading

of the bar must be aero at point B, from which we have the following deformation

1 thia we obtain

N * * a  AT EA.

Determine the value of stress in the steel bar shown on Fig. 2.40 when the temperature change oft 
bar ia ДТ - 30 41 Assume a value of E - 200 GPa and a • 12 x 10* 1ГС for steel.

Solutioa

We first determine the reaction at the support. Since the problem is statically indeterminate, we deu 
the bar from its support at В

Sue* in the bar is then given by

N .. | в Д Т Е А  я а  д тЕ*1 2 х !0 ~ ‘ ^СхЗО ^СхгО О хЮ ' Pa*7 2 M Pa

В »  2.41

The corresponding deformation from temperature exchange (Fig. 2.41) is 

A L t = о  A T  L

Applyiag the unknown force N _)___ at the end of the bar at В (Fig. 2.41). We use eq. (2.15) to cxpr**
the corresponding deformation AL

ALe
NM

EA

73

Download free eBooks at bookboon oom

74



Introduction to Mechanics of Materials: Part I

Р го Ы ст  1Л

Stress a sd Strain -Axi4 —Mac**̂ ’ s °*Matef,J,s: Pa,t 1 Stress and Strain - Axial Loading

AT

A. £

H*.2A2

Determine tile stress of the aluminum bar L - 500 mm rfww* in Pig. 2.42. when Its temperature ch* 
by ЛТ = 50 41 Use the value E ■ 70 GPa and a  * 22.2 к lfr4 1ЛС for ahiminum.

L, - 1.5m

гк linkage in Fig. 244 is made of three 304 stainless member* connected together by pins, each member 
has a croas-sect kmal area of A * 1000 mmJ. If a vertical force P - 250 kN is applied to the end of the

Solutioa
в»**»"1 ---

We determine the elongation of the bar from temperature exchange from the following equation member ft D, Determine the stresses of all members and the maximum stress a

x « (0. L)
SoMftea

Li • 2m

R»24I

AL »  AL* ■ а ДТ L  »  22.2* КГ4 1ЛСх40 eCx500 mm =0.444 nun

.Г v

О
f • 290 kN

Fig. 2-45

dtoconnccial the member CD and draw a free-bod у diagram (shown in Fig. 2.45) We then 
We divide Ac b«r Into one component part shown in Fig. 2.43. From equilibrium equation in t iM  far tfat force N by the toUowing cq-Uibraim equation 
we find the unknown normal fo rt*  3 ■ 03we find the unknown normal force 

£ F fc-0: N(x)-0

Stress in the aluminum bar we describe by

£ F ,- 0 : N ^ -F-O  => Кд, ■ F * 250kN

n̂ er normal forces and NK we determined from equilibrium *  point С  (shown in Fig. 2.46), 
by.

л N 0 о * — * — *0 Pa A A _ L 1.0 mla *  —  ■ ——— ж 0.666 
L t 15m

a -33 69*
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In the x direction

-0: -Na w ia + Nfcmu«=0 => - N^ ♦ N*, - 0

Introduction to Mechanics of Materials: Part I Stress a id Strain - Axial i

я

In the у direction

JTF^-0: Na а яа -f N*. eosa-N^, «0

IN^ooea - Ne  -F  =» Nr  - — —  ■ W  ■ 130.23 kN
2 cosa 2co« 33.69*

N ^ - N ... 150.23 kN

Stresses In the members are

N *  150^310*N |влл1кт----r  «13023 MPaA 1000 mm1
NK 150.2310*N ieA~ . _  

Nm 250 I0*N^т-̂шш̂ ?ш:а0МРш
Maximum value of stress is at link CD

о » , «<>„, -250 MPa
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Download froa eBooks at bookboon oom

Г s of Materials: P a 't I Stress and Strain - Axial Loading

p*-***2-10

F*f. 2AJ

Tbc assembly conswts of two titanium rods and a rigid beam AC in Pig. 2.47. The croaa section area is
• 60 nun1 and Aq, c 45 mnr The force ia applied at a = 0.5 m. Determine the stress at rod GB and 

CD; tf a the vertical force is equal to F - 30 kN.



Introduction to Mechanics of Materials: Part I

So hit i on

Stress and Strain - Axial l „о * * * "
■ fra eh "  * of Matenals: Part I Stress and Strain - Axial Loading

Hco

The unknown normal forces in the ttUnium rod are found from the equilibrium equation of rind 
GC in Fig. 2.4ft. given by

2 F t .O : Ne  ♦ Ne  - F • 0

-0: N<„38 -Fa • 0 =» N^ - £• .  Ю kN

Ne  »F- N a,*30kN-10 LN ■ 20kN 

Ne -20kN

Stress in rod AB and CD is given by the following 

_ Ne  20000 N
Am 601 ■ 13JJ MPa

Ng, 10000 N
° c* " C “ « w ‘ 222J2MP*

Problem 2.11

^  BD b supported by two links AC and CD in Fig. 149. Link CH is made of aluminum 
f̂ 9 GPa) aad has a cross-section area A,̂  14 mm1; link DG ta made of aluminum (E ^  6i.9 

^  ^  § cross-w-tbm of A^. - 2 2Ж) mm* For the uniform load w « 9 kN/m. determine
^ *  point D and stresses in the link CH and DG.

R* 2, so

f ̂ uiHbrium equation of moment at point В in the bar BC (Fig  2.50). is expressed as 

X M *- 9 : N^Lama + N^aL-wZLL-O

N «Y< - 2N .u - 2wL,
(•)

tan or-1-I a-45*

m «quMion ia) we have two unknown* We need a second equation for the solution of normal forces in 
the lmks from the Jcformatktn condition in Fig. 231, from the similar triangles
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Introduction to Mechanics of Materials Part I Stress and Strain - Axial i

ABDD* % ДВСС

un p- —
BD BC la m  2L

In the* triangles the angle p are the a  me from which we have the following equation

•  => C C - ^ 3 *
c c  «n a

с  - N g b .- N « V a -
^at^ai EA

al„ .  М°9Ч»?. * а Ь  
Е-Лоо 2ЕЛ

i b L . " »  ^
L ana 2 L EAV2 2EA N„ .И л

4



to Mechanics of M- labials: Part I 

^ .fo rd *  «r*tem l>f*4lu,i,,n* <») •*"<! <b). wt gciJin ™

N * l^ +2K110-2*L => Nd 2wl

Stress aid  Strain - Axial Loadirv

4 2 F )
0.92wL

Nn  - 0.92wL - 0.92 300N m lm - 276 N 

Nm  wL 092w L--0.23wL

Ne  * 0.23wL *  0.2Э 300N'm lm-69N

stress ill link CH is

Nn, 69 N
ea * - r *Ao! 14 mm2

Stress in link DG is

NM 276 N

-4.93 MPa

• 9.86 MPa
"  А к, 281

Deflection Ы  point D is given by the following

ли N ^ ,  0 92*1 L 0.92 300X m (lm )*
'  2ЕА ~ 2 68 9 10*P. 14 10*W

Л Ц о -143 10*^-0.143 mm 

Lntoh-wl problems

Ч и з

82
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Production to Meehanl s of Materials: Part I

Problem 2.12

*r#s» and Strain - Ax ,

N

Both portion» of rod GBC in Fig. 2.52 are made of aluminum for which E = 70 GPa. Knowing 
magnitude of P ia 4 kN. determine (a) the value of F, ю  that the deflection at point A is 2er4 ^ 
corresponding deflection of point B. (c) the value of atiesa for each portion.

IP, = 32Л kN; ЛЦ = 0.073 nun, <тш - 12.73 MPa; * 10 .191^

Problem 2.13

Link DB in Fig. 2.53 i» made of aluminum (E  * 72 GPa) and ha» a cross sectional area of 300 щ  
Link CG is made of brass (E  * 105 GPa) and ha» a cross-sectional area of 240 mm2. Knowing that tfc, 
support rigid member HBC, determine the maximum force F that can be applied vertically at рощ ц 
if the deflection of H cannot exceed 0.35 ram.

№ * 16.4 kK

Problem 2.14

In Fig 2.54 a vertical load F is applied at the center В of the upper section of a homogeneous conk* 
frustum with height h. minimum radius a, and maximum radius 2a. Youngs modulus for the matca 
is denoted by E and we can neglect the weight of the structure determine the deflection of point R

Ы -2Л Л  M »2 JS  Re- 2.S7

Problem 2.15

Determine ibe reaction at D and В for a «led bar loaded according to Fig. 2.55, assume thrf * 4*  
mm clearance exists between the bar and the ground before the load is applied. The bar »* ** 
(E  * 200 GPa)»

IRD = 430.§kN, Rt * * * * *

83
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Stress a id Strain - Axial Loadinc

ргоЫе**
j«  centric force of N ** 1000 N Is appfted at both end» of the assembly ehown in Fig 2.56 by

СП* РЫе* lo w in g  that E ^  - 200 GP« and ^шлт1иы = 70 GPa. determine (a) normal
***** in the »teel core and the aluminum shell, (b) the detection of the assembly.«tresses u>

1°ли>шт* - 3 32 МГ* a m u  9.55 MPa; M  - 4.74x10 * mm|

РгоЫеЯ2-17
Two ejttndrte») rod* in Ftg. 2.57, one made ol steel (Еэти - 200 GPa) and the other of bras. ( E ^  - 
|i)5 GP«). аж Joined at В and restrained by supports at G and С  For the given load, determine (a) the 
reaction rt G and С  (b) the deflection of point R.

IR,, = 134 kN; Rc = 266 kN; DL, - - 0.3 mm]



Production to Meehan ks of Materials: Part I *res$ and Strain - Ax: a ^
*S

Problem 2.12

Both portions of rod GBC in Fig. 232 arc made of aluminum for which E * 70 GPa. Knowing th* ̂  
magnitude of F is 4 kN. determine (a) the value of F, so that the defection at point A is aero, (b) ̂  I 
corresponding deflection of point B. (c) the value of stress for each portion.

[F, = 32 J  kN; АЦ - 0.073 mm; <тф  - 12.73 MPa; a K  • 10.19 I

Problem 2.13

Link DB in Fig. 233 Is made of aluminum (H = 72 GPa) and has a cross-sectional area of 300 ^  I 
Link CG is made of brass (E  = 105 GPa) aad has a cross-sectional area of 240 mm2. Knowing that tb* I 
support rigid member HBC, determine the maximum force F that can be applied vertically at point H, I  
if  the deflection ofH  cannot exceed 0.35 mm.

№ r 16 4 kN;

Problem 2.14

In Fig 2.54 a vertical load F is applied at the center В of the upper section of a homogeneous tonic* 
frustum with height h. minimum radius a, and maximum radius 2a. Youngs modulus for the materid 
is denoted by E and we can neglect the weight of the structure determine the deflection of point &

* * * * *  H g.2.5* R *  2.57

Problem 2.15

Determine the reaction at D and В for a Med bar loaded according to Fig. 235, assume th* * 
mm clearance exists between the bar and the ground before the load is applied. The bar is 
(E  = 200 GPa).

IRj, = 4Э0.8 kN. = 769-2**
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Stress a id Strain - Axial loadlnr

Q0j m I "  cenlri<’ *orce ^ "  1000 N *  •rp**cd *  both ends of the assembly shown in Fig 2.56 by 
„^titfof crK* KnoWtng that - 200 GP* and E4lwniM = 70 GP*. determine (a) normal 

№ the steel core and the Aluminum shell, (b) the deflection of the assembly.die*®*

“  ,  J2 MP,; 'V n  9 55 MP*' U  - 4-74X10 > шш|

probkeM ?
T*o  cy lin d rica l rods in Fig. 2.57, one made of sted ( E ,^  * 200 GPa) and the other of brass «
105 GPi). adjoined at В and restrained by supports at G and С  For the given load, determine (a) the 
|t#ctjon at G and C  (b) the deflection of point B.

[R0 - 134 kN; Rc * 266 kN; DL, - - 0.3 mm)



Production to MKhani s of Materials: Part I 4m s and Strain - Ax. a ^

Problem 2.19
Li ■ 13m

Ы-2-ЪЯ

The rigid bar HBC it supported by a pin connection at the end of roj CB wheb has a cross-settiom 
area of 20 mm- and is made of aluminum (E  - 68.9 GPa). Determine the verbal deflection of the bar 
at point D in Fig. 2.58 when the following distributed load w=300N/a is applied.

(AL, - 12.1 пт,

Problem 2.19

The bar has length L and cross-sectional area A. (see Fig. 2.59) Detcrmlse Its doogation d ir to the 
F and its own weighL The material has a specific weight у (weight / volume) and a modulus of elasticityE-
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In the previous chapter we discussed axially loaded members and we analyzed the stresses and sir^ 
In these members, but we only considered the internal force directed along the axis of each rnen^ 
without observing any other internal force Now we arc going to analyse tfrrucs and «trains in nicmb  ̂
subjected to twisting couples or torques T and Г . see Fig. 3.1. Torfues have a common magnttudt 4. 
opposite sente and can be represented either by curved arrows or by couple vectors, see Fig. 32.

R q. J J  Alternative rt p»t icnutiont of tofQwvt

Members in torsion are encountered in many engineering applications and are primarily used to transmi 
power from one point to another. These shafts play important roles In the automotive and power indu*ry. 
Some ^plications are presented in Fig. 3.3.

“г** t----“—п ffrmrrnmifliiriî —-—1

There is a parallelism between an axially loaded member and a member in torsion Both vector» ti 
applied force F and applied torque f  act in the direction of the member axes, see Fig. 3.4. Further **• 
will see the results of a deformation analysis speak more about thb parallelism.

•7
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F

Ih» chapter contains two different approaches in solving torsion problems. Firstly we will present the 
theory for members with circular cross-sectional areas (circular members in short) and secondly we will 
extend our knowledge of this theory for application on non-circular members.

3.2 Deformation in a Circular Shaft

88
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Let us consider a circular shaft fixed to s support at point В while the other end is fiee, see Fig. 3.5 ^  

shaft is of length L with constant circular croas-sectional area A. If  the torque T is applied at po^ 
(free end of shaft), then the shaft will twist. I.e. the free end will rotate aboul the shaft axis through * 
angle of twist f  and the shaft axis remains straight after applying the load.

Before applying the load, we can draw a square mesh over the cylindrical surface of the shaft as wrl| 
varying diameters on the front circular surface of the shaft, see Fig. 3.6(a). After applying the load a„. 

under the assumption of a small angle of twist (less than 5#) we can observe the distortion in Fig З.од,

1. All surface lines on the cylindrical part rotate through the same angle у
2. The frontaJ cross-sections remain in the original plane and the shape of every circle remain* 

11лdistorted as well.
3. Diameters on the front face remain straight.
4. The distance* between concentric circles remain unchanged.

89
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Thee experimental observation* aDow a* to conclude the following hypotheses

1. Allcross-sectional areas remain in the original plane after deformation.
2. Diameter* in all с rose-sec tions remain straight.
У "The diRtam.es between any arbitrary cross-sections remain unchanged

^ ««p u b lljn  of these hypotheses is proven by experimental results. The aforementioned hypotheses 
111 n<> *rain along the member axis. Applying equation (2.5) for isotropic material, we get

ct *  0 (3.1)

90
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T

Fig. 1.7

Using equations of elasticity (2.10) we have ox = 0. Equation (3.1) means that the edge dimensiomof I
the unit cube are unchanged, but the shape of unit cube is changing. This can be proven with a mull I
experiment. Let us imagine a circular member composed of two wooden plates which represent the taus I
on the front of the member. Now consider several wooden slats th* are nailed to theae plates and make I 
up the cylindrical surface of the member, see Pig. 3.7. Let us make two markers on each neighbouring
slat, tee Fig 3.7(a). These markers rep reseat the top surface of the unit cube. After applying a load, the I
markers will slide relative to each other, see Fig 3.7(b). The square configuration will then be deformed I 
into a rhombus which proves the existence of a shearing strain.

Download too «Books at bookboon oom
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We can now determine the shearing strain distribution in a circular shaft, see Fig. 3.5, and which |u 
been twisted through the angle f , see Fig. ЗД(а). Let us detach the inner cylinder of radius p , p € <o 
from the shaft. Now lets consider a small square element on its surface formed by two adjacent circles an<1 
two adjacent straight lines traced on the surface of the cylinder before any load is applied, see Fig 3j^, 
Now subjecting the shaft to the torque T. Che square element becomes deformed into a ihombus 4 
Fig. 3.8(c). Recalling that, in section 2.5, the angular change of element represents the shearing str^ 
This angular change must be measured in radians.

From Fig. 3.8(c) one can determine the length of aic E E  using basic geometry: E E  = Ly  or E E  = ^  

Then we can derive

where y. <p are both considered to be in radians. From equation (3i2) tt is clear for a given point on the 
shaft that the shearing strain varies linearly with the distance p from the shaft axis.

Due to the definition of inner radius p the shearing strain reaches its maximum on the outer surface of 
the shaft, where p * R. Then we get

Using equations (3.2) and (3.3) we can eliminate the angle of twi*. Then we can expra» the «hearii* 
strain у it an arbitrary distance form the rtiaft axis by the followir^:
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Let us consider i  section BC of the circular shaft with constant di*neter D along Hs length L, sub̂ xied 
to torques T  and T* at Its ends, see Fig. 3.9. Applying the method of sections, we can divide the shah 
two arbitrary portions BQ and QC at any arbitrary point Q. In order to satisfy conditions of equilibria 
for each part separately, we need to represent the removed part with internal forces. In our case, |r,1!1( 
the equilibrium equations, we get non-zero values only for the torque T(x), see Fig. 3.10(a) 
torque represents the resultant of all elementary shearing forces dF exerted on a section at point Q, ̂  
Fig. 3.10 (b). If the portion BQ is twisted, we can write

fp d ?  = T(g) &5)

where p is the perpendicular distance from the force dF to the shah axis. The shearing force dF can be 
expressed as follows dF = TdA, then substituting into equation (3.5) vre get

/ prdA «  T(<*> (3.6)

Recalling Hookes law from Section 2.5 we can write

Cy (5.7)
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^  *qu*‘ti,n <J «> ** s* 

C f  =  %с Г’ шх
(i.t)

r  = ; T™ (3.9)

Ihis equation show» that the shearing stress also varies linearly with the distance p from the shaft axis, 
as long u  the yield Mies* it not exceeded. The distribution factions of shearing «res* are presented in 
F̂g. 3.11(a), for a tolid cirde, and In Pig. 3.11(b) for a hollow cirde (p «(I?,, R 2)Y  Por the Utter case we 
can write

(3.10)

The integral equation (3.6) determines the relationship between the resultant of internal forces T(x) and 
the shearing stress r. Substituting r from equation (3.9) into (3.6) we get

Jfc ) *  ~a!6~ f  p 2dA (3.12)

lb* integral in the last member represents the polar moment of inertia / with respect to its centre O, 
** more detail see Appendix A. Then we have

or (3.13)

d ilu tin g equation (3.*) into (3.13) we get

Г ш Ы . (3.14)
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(production to Mechani s of Materials: Part I
N

Ax

When observing the deformation of a circular shaft subjected to a torque T, see Fig. 3.12, we can *  
the rotation of the free end С  about the shafts axis or angle of twtst f . The entire shaft remains in tb 
elastic region after applying the load. The considered shaft has a constant, circular cross-section with, 
maximum radius К  and a length of I .  Now we can recall equation (3.3) where the maximum chearû  
strain Ymax and the angle of twist are related by the following

We are assuming that there is elastic response, therefore we can apply Hookes law for simple shea 
Ymax =  *m ax/G -  After substituting equation (3.13) into Hookes law, and knowing thst Г (х )*Г 
T (x ) = T  along the whole axis of the shaft, we get

(US

Equating the right-hand members of equations (3.3) and (3.15), and solving for f  we have

The obtained formula shows that the angle of twist is proportional to the applied torque within the ela** 
region. If we compare the results of equation (2.15) from chapter 2. one can conclude the foDe^l 
parallelism: Д1 *  p , N (,) ± J ^  E  ± C , A ± J .  This equation is valid only if the shaft t* ' 
homogenous material (constant G). has a uniform cross-sectional area (constant f), and is loaded at its

If the shaft is composed from several different parts, each indlvidurfly satisfying the validity of*!0-** 
(3.16), we can extead formula (3.16) using the principles of superposition as follows:

<p = ГГ-, <pi = ZT-i <” я
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g Lg , G| * li • U  *  the internal torque, rfiear modulus, polar moment of Inertia and length

***Lond'4 10 lbc

of variable cros»-sectional area along the shaft, as in Fig.3.12. the strain depends on thethe case
of the arbitrary point Q. therefore we must apply a similar equation to (2.2) for the computation 

^ ^ lea rin g  strain After some mathematical manipulation the total angle of twist of the member is

3 5 Statically indeterminate Shafts
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Rf.S.11

Until now, we have discussed statically determinate problems. But there art some situations, vvhertthe 
internal torques can not be determinated using statics alone. For simplicity, let us consider a sinqfc 
problem, see Fig. 3.13. In this caae we cannot solve the problem through equilibrium equations fro. 
statics alone. The main difficulty in this problem is that the number of unknown reactions is greater tbai 
the number of equflibrium equations From a mathematical point of view, the problem is ill-con ditioud 
For our caae we obtain one equilibrium equation to be

Z T x = 0 :  T c - T  + TB (3.11)

This problem is ЛШicalty indeterminate. To overcome this difficulty we must use the same approach at 
in (Jiapter 2, Section 2.7 , Le. to add deformation conditions. In our case the angle of twfc« at point С 
is equal to zero, and corresponds to the total angle of twist

<p = (pc = £2U P i = o (З.И)

Using equation (3.17) we obtain

Both internal forties 7ц,) « f - f j ,  Тця) ж ATC functions of unknown reaction Tc. Sohrtef
T. We can then continue by solvinf *equation (3.20) we obtain the value of reaction Tc 

the usual way (for statically determinate problems)
_ - llH

V ih 4 \ li)

99

Download tree eBooks st bookboon oom



qtsign of Transmission Shafts
tranami.vsii>n shafts lb* principal specification# that must be satisfied ire the power to be

*  the vdoclty of rotation. Our task now ■ to select the mMeriaJ and the type and the si/e
Ion to satisfy the strenjdh condition. Le. the maximum shearing stress will not exceed the 

догаЫ» ̂ waring «tress r «a* ^ TAii, when the shaft is transmitting the required power at the specified 
Recalling elementary physka we have

p ж To) = 2nfT  (3.21)

Vibat f  Is the transmitted power, л  is the angular velocity, and /Is the frequency of rotation. Solving 
(3.21) for T obtains the torque exerted on our shaft which is transmitting the required power 

РЛ «frequency of rotation/

T n l .  (3.22)
# i n f

Now we can apply the strength condfcion using equation (3.13) as follows

W B ^ To« (3.23)

toMochanics H M« Part I Tortior

Substituting equation (3.22) into (3.23) we get

—  * £ T elf or t  ( j j 4 )

The value IfM represents the allc*vaMe minimum. This variable is known as the section modulus and can 
be found in any common section standards.

37 Torsion of Non-Circular Members
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Applying the methods of mathematical theory of efcuticity for the bar with rectangular ‘>ross-Secl̂  
bxh. we will get the stress distribution functions presented in Fig. 3.17. The corner stresses *rt t 
zero We can find tbe two local stresses which are largest at point I and 11 (Roman numerals) l)enoti
I  as the length of toe bar, b and h as the narrow and wide side of bar cross-section respectively , 
as the applied torqise. see Fig. 3.18, we have

T' = T~ *  Я Т Ь  and Т» Х Р Т"  (}J7)

The coefficient a,p  depend only upon the rtfio h/b. The angle of twist can be expressed as

^  -̂21)

The coefficient у alao depends only upon the ratio h/b. All coefficients а.Д у are presented in the following 
Tab. 3.1.

h/b 1Д0 I.S0 1.75 2.00 1*0 3.00 4,00 6,00 800 iaoo c e l

a a » i 0231 *239 0,246 a  258 0,267 0.282 0299 0.307 0313 0333

P 1JX>0 0859 0.820 0.7% Cl 776 ft753 0745 Л743 0.742 0742 0742

r 0.141 ai96 а гм 0.229 a249 0,263 0281 0.299 0.307 0313 0333

T«kS.1
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It* stress dtotribution function om  the non circular сто s»-section can be visualised by the membrane 
*dogy. PWly- wb«l this analogy mean? TVo processes are analogous if both сш be describe by the 
one type of equations. In our caae we have the twisting of a non-circular bar and tbe deformation of a 
tfis membrane subjected to internal pressures, see Fig. 3.19. Both processes are determined by the same 
type  o f  differential equations. Secondly, we need to determine the analogous variable». In our case we have

T * volume bouded by the deformed membrane and horizontal plane
value o f shearing strain  A tangent o f maximum slope (3.29)
direction o f shearing strain  A horizontal tangent

я с т я т Щ  | ggsvprmrT

Л
INTERNAL PRESSURE

R»UO

representation of thesr equations is presented in Fig. 3 JO.

*** ••ibiane analogy can be efficiently applied for members whose cross-section can be unrolled into 
^bulc pectang|e hxh, see Fig. 3.21. Another application of the membrane analogy is for members with 
C* “Meak>« composed from several rectangles, see Fig. 3.22 Ihese cross-sections cannot be unrolled 
 ̂ * *  »impie rectangle bxh For this case we can assume tlut the total vt>lumc of deformed membrane 

*be sum of individually deformed membranes. see Fig. 3.23. If the torque is analogue to the 
volume, and then we can write

104
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E S S

n»M1

’* t, + r ,f...+ r ,
1= <px = fm  -  «  |p„ (330)

ler simple aithematical manipulations of these equations we determine that the total torsional «МГое* 
equals to tk sura of individual torsional stiffness’ of each rectangle, Le.

rW  = ZT-i r t M ?

xequently the largest stress corresponding to each rectangle can be found by

Ш Ш Ф

(331)

(3.33)

.(Ion to Machanks of M« t «rials: Part I

fbln-Walled hollow Members

Torslor

In the previous section we diitussed members with open non-circular cross-section* subjected to 
toftional loading. The results obtained in the previous section required advanced theory of elasticity. 
For thin-walled hollow members we can apply some simple computations to obtain results.
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R « .U S

Let us consider the thin-wailed hollow member of non-circular croM'tection, see Fig. 3.24 The ^  
thickness varies within the transverse section and remains very smal in comparison to other dimension 
Let us detach a small coloured portion DE. This portion is bounded by two parallel transverw section» 
by the distance Ax and two parallel longitudinal planes. Focusing on tbe equilibrium of part DF. in the 

longitudinal direction x, the shear law says that the shear forces PD, Fg are exerted on fates D and E, 
see Fig. 3.25. We then get the correspondiag equation

£ F X = 0 : F d - F s  = 0 (334)

The longitudinal ibear forces FD, Fg are acting on the small faces of areas AxtD and Axtt Ihia*e 
can express the force as a product of shearing dress and area, Le.

Fp = грАр = tdAxtD t Fg *  тgAg = TgAxtg (335)

Substituting equation (3.35) into (3.34) we get 

тDAxtD - t £AxtE = 0

or (330

TDtD *  Tgtf

Since tbe selection of portion DE is arbitrary, and then the product rt is constant throughout the member 
Denoting this product by q we get

(337)q = rt *  constant
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Thte new variable describes the shear flow in the member. The direction of shearing stress is determined by 
the direction of riiear forces and the application of the shear kw as one can see in Fig. 3.26 and Fig. 327.

let us consider a small element ds which is a portion of the wall section, see Fig. 3.2*. The 
COfreP°nding a nr a is dA  ̂ Ids. The resultant of shearing stresses exerted within this area is denoting
4dFor

d f = tdA = Ttds *  qds (3 .3$)

^  foment dM , of this force about the arbitrary point С la

dM r  = p d F  = pqds »  qpds (3.39)

108
Download И в  • Books at bookboon oom



1

Production to M#ch*ni :s of Materials: Part I T

N f lJ I

Where p is the distance of С to the action line of dF. The action line passes through the centre of the 
element and the product pds represents the doubled area dA, see Pig. 129. We then have

dMc = q ld A
(3.40)

In a mathematical point of view, the integral of moments around the wall section represents the resulting 
moment that is in equilibrium with the applied torque T. Thus we have

T = ф<Шс = фд2(Ш (3.41)

J
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^  thr dw v flow ie const ant. wr get 

7* ж q ф 2cLA = ц2Л (3.42)

Whew A  tsthe area bounded by the centreline of the section, see Fig. 3.30. From the previous equation 
we can easily derm the formula for calculating the shearing stress

21И (3.43)

ТЫ corresponding angle of twist can be derived by using the method of strain energy, see Appendix 
A. 4.2. We then get

(3.44)

If the section can be built from several parts of constant thicknesses tt is known to be piecewise constant, 
equatioa (3.44) can then be simplified

^  Examples, Solved and Unsolved Problems
fcobfct* J.l

(3.45)
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For the sted shaft with applied torque T = 2400 Nm shown in Fig. Э Л  (G * 77 GPa), determine (a) 
maximum and minimum shearing stress in the shaft, (b) the angle of twist at the free end The shafts 
the following dimensions: L » 500 mm. D, ■ 40 mm. D, = 50 mm

Solution

H fU ]

The shaft in Fig 3.32 consists of one portion, which has uniform cross-scction area and constant internal 
torque. From the free body diagram in Fig 3.33 we find that:

-0: T(x) + T ■ 0 

T(x) * -T ■ -2400 Nm

The polar moment of inertia (see Appendix A.2) Is

*>*
32 32

*(50 mm)* *(40  mra)‘
32 362265 nun*

ihnrm g Я л л  Ob «he ouUr w rfke. wc h ««

T TD_,m 2«OxlO’ Nnmi 50mm 
T~  "  7 P" “  "  J  2 “  362265 mm4 * 2 

■ 165.5 MPa

tfutvnum bearing stress. The stress is proportional to its distant* from the axis of the shaft

1 1 1
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r* i B Tmm

Tor*»  T ,

“ l „
=> r

D j D,

2

•165 6  MPa 40 mm
50 mm

D,

132.5 MPa

Another way th determine this is by:

*- , X л T Цки> 2400x 10* Nmm 40 mm 
J  T ~ 2 ^  “  “ 362265 mm4

r .  -132 5 MPa

Graphically we can «how shearing stress in Fig. 3.34 and the diagram of torque along the length of tbe 
shaft is shown in Fig. 335.

Angle of twiM.

Using Eq. (3.16) аш! recalling that G - 77 GPa for the shaft we obtain

2400x10* N mm ж 500 mrn 
^ O J *  77x10* N/mm* x 362265 mm4

<p m 0.043 rad -2 465°
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The vertical shaft AC is attached to a fixed base at С and sheeted to a torque T shown in Fig. 3.36. 
Determine the maximum shearing stress for each portion of the shaft and the angle c4 twist at A. Portion 
AB is made of sted for which G - 77 GPa with a diameter o fD ,^  - 30 mm. Portion BC is made of 
brass for which G - 37 GPa with a diameter of D ,^  * 50 mm Parameter L b equal to 100 mm

Solution

ТЬе complete shaft consists of two portions, AB and BC (see Fig. 3.37). each with uniform cross-section 
*»d conttant internal torque.

x, e(0,L)
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Solution of portion ЛВ
Passing a section though the shaft between A and В and using the free body diagram rfiown Fig. 3 ^ 
we And

£ M „= 0 : T,(x) + T « 0 T,(x)» -T

R9.U e

The maximum shearing stress is on the outer surface, we have

32

16 T 16 T , |Л^х
______ Г- " Д  ^ w - |tt6>l0T
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pĵ ram of the shearing stress at row the cross-aection area is shown in Fig. 3.39. 

fplutuM of portion BC

x,€(L,2L)

Now passing a section between В and С (see Fig. 3.40) we obtain 

1 4 -  «0: TB(x) + T-2T*0 Тв(х) =T

Again, the maximum shearing itreaa is on the outer surface, found by the following

r № P ____U L I W
* "  J  ГтшяШ J  2 « P ^  2

32 

тят B *= - £ ? -  m - Г - —  -  4.074 x lO ’T 
«DJuass ran)

T i l  X ||I  •  T

^phkalh', the shearing stress is shown in Fig. 3.41.
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When we compare the results from both portions the maximum shearing stress is in portion AB, whlt  ̂
compares with the allowable stress. From this inequality, не have the unknown torque T.

=7s:̂
T £ ^g*P»iek - '50 MPa ««x(30mm): g Nlltn 

16 16 

T *  795215,6 Nm

Choosing the torque T * 795 kNm. We cm graphically represent the torque along the length of shaft 
in Fig 3.42.

Angle of fwtsf

Using Eq. (3.17), we have

r i f i ,

.  l a  LJ«  + TK  L K  
J * o u  V O , ,

m m— — +__ L s Ja s ___
* J W  q  * °и * а  о  

32 "  32 

32tm l «  з г т ^ и .
<PK Я -- ^  +--г̂ 4 У ' "  48

^  ITHL Ав *  ^ И А И ^ Г
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РгоЫ«» u

R g J4 3

А 101Ч«т Lapp» w  at shown in Fig. 3 43 to a solid tap«ed shaft 
stress and ahow, by integration, that the angle of twist at A is

7 T L  
9a “ l 2 * O c 4 '

The radius c. length L. modulus of rigidity G and applied torque 1 ,en

L
118
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Solution

Weonly have one part ю from free body diagram  (see Fig. 3.44), we fiad 

^ М .- О : T(x)-T  =0 => T(x) = T

Ftfl 3-45

Tor«on It

The maximum of tearing is onthe oUer M ir  fact* The radius c(x) at location x la found from siniiUf*? 
of triangles. Fig. 3.43.

tan

n to Mechanics of Me teriais: Part I

^  diameter IX *) *  location x la

D (x) = 2c(x) r> D(x) = 2 с H)
Moment (if Inertia at location x is

*x) «Р(х)‘ m1
3 2  3 2  

Ihe maximum shearing stress at position x on the outer surface is

— 1 '  Jfxi Jf*> 2
16 T

Angle oftwtat Is determined from the definition of the angle of twist Eq. (3.18). and we have

V TOO ^  f 32T И Т  l, 1fe * L:l l *t i2o«e*
In the %  3.46 is a graph of the torque along length L  

Problem IA

U 0 X . ___ U(

L-.L L

Rf.SwS7

A Circular 4iaft BH is attached to ft»d supports at both ends with a torque T applied at the midaection 
3.47). Determine the torque exerted on the shaft by each of the supports and determine the 

*ttknunt «bearing stress.

kngth U modulus of rigidity G and applied torque T. are given.
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Solution

В ? s .____ I

-  1. - L -

R»s.4a

The problem is M lcaDy indeterminate. The support at point H is replaced by an unknown sî p()rt 
reaction TH (horizontal and vertical reactions are equal to zero, because this is a problem of pure torsion) 
The solution is divided into two part (see Fig. 3.4S).

Frtt-body diagram on portion I (part HC): 

x ,« (0.L )

T , ,* )
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tbt equilibrium equation of the first part, we obtain

£ m „ *0 T,(x,) + TH-0 =э T.Cx,)--!,,

fBt-body diagram Mi portion I I  (part CB):

«. « ( L 2L)

r __________

t — L — 1

From the equilibrium equation of the second part, we obtaia

X м - .  = 0 :  T , ( x , ) - T - * .T „ = 0  => T i ( x „ )  =  - T „ - T

The unknown reaction is determined from the deformation condition, that the total angle of twist of 
•Mt BH must be кто, since both of its ends are restrained.}, and J;denote the angle of twist for portions 
AC and CB lespectivdy. we write

Vh = 0  =* Ф н - ^ + * , = 0  => * + * ь = 0 . 

from which we have

I k +L k i , 0
<V, O .J,

***re Gj ■ G, - G, I, * J, * I and - L because both parts of shaft are made from same material,
b*'* the same cross-section area, and the same length. Then solving for Т я. we have

‘Ц<Х,)+Т1 (Ха) - 0 -T.-T.+T-0 => Ти « у
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Substituting the results for each part, we obtain

T,(x,)— TB- |  Tn(x,) = -TH-T = - I- T  — I

The diagram of torque is shown in Fig. 3.49.

XL___ *

L-. L
57 ----

L

f ig . 3.50
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Tii m - T/l

R » U 2

fraction at point B.

Drawing a frec-body diagram of the ihaft and denoting the torques exerted by supports Te and (see 
Fig. 3-50) we obtain the equilibrium equation

2 X - 0 :  T.+T.-T-O => T.-T-TH- I  

Ibe maximum shearing stress at part HC (outer surface) is

I HE,l Г  2 D 16T 8T_____ ___ л n . = -—f  — ■----------r * --- -
”  J ,  " e I  i D 4 2 2 к Г У  * D >  

32
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The maximum shearing stress at part BC (outer surface) is 

T
fr .l 2 _ D  8 T

Pmm* K kD *  2 = *D*
32

The diagram of shearing stresses for each part is shown in the Fig. 3.51and Fig. 3.52.

Problem 3.5

I k
H fU )

The bars in Fig. 3.53 hive a square and rectangular с rots-sect km area. Knowing that the magnitude of 
torque T is 800 Nra determine the maximum bearing stress for each bar.

The dimensions art given by L ■ 400 mm. t  * 50 mm and b = 35 mm

Solution

For a bar with square cross-section area (tee Fig. 3.53a) and bar with rectangular cross-teuton areа (же 
Fig. 3.53b). the maximum shearing stress is defined by Eq. (3.27)

а  л Ь 1

where the coefficient all obtained from tab. 3.1 in section 3.7. We have

* 1 =э o r *0.208 for square crost sectiona _ 50 mm 
b 50 mm

and

s 50 ma 
b 30 mm в 1.43 =э a  *  0.231 for rectangular croat wet Ion.
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Bpfcm* 1 'hearing stress for squanr croaa-iectton in Fig. 3.53a is 

T 800 Nm
Tmm ' a  a b: 0.208* 0 050 m * (0.050 m)

• 30.77 MPa

jtlnimuni shearing stress tor rectangular cross-section In Fig. 3.53b is 

T 800 Nm
a  a bJ 0208 к 0.050 m * (0.035 m)2

.198 MPa

P roblem  ЗА

4 W 4

TWn shafts of the same length and made by the same materials is connected by I  wrfckd rigid beam. On 
the ends of the rigid beam amoment couple given by force f  is «pplied. Ooss iection area of the shaft 
Is in Fig, 3.54. Design parameter D If wearegiven an allowable stress oft^ » 150 MPa.

Ghen F - 1000 N. с * 200 mm. a - 2D, t - 0. ID. L - 400 mm

Ш м

Fmm the giwm force, we find the total magnitude of the torque T applied to both 4afts

T *F c  *I000N X 0.2 m * 200 Nm

Thb torque will then be dived on both shafts and from the equilibrium of the rigid beam, we have

T*T,+T, (a)

•k haw two unknowns torques T f and so we need a second equation, which js found from the 
^PRttatton condition

J l L K J z L
O J, G J 2 * (b)
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where angle of twtot for the first cross-section area is 

4Л’ 4(1 9Dxl 9D)1 52 1284LJ*

Г* VO ID o.id J
and for the second cross-section is 

I %D*
J ’ =l Г

inserting (c) and (4) into (b). we get 

T, *6.998 T,

Solving the system of equations (a) and (0. ** give

T, « 0.875T *= 0.875 F с - 0.875 ж 200Nm =175 Nm 

T,*0.I25T = 0 125Fc«0! 25 x 200Nm =25 Nm
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U«rinnim ^hearing strew In the hr ft cross-section is

T. 0.175 Fe  l75Nm 242.4 „  т s --- 1—  = - - .........  « ------- * ----- Nm 
2 A t .  2x(l.9D) O.ID 0.7221? D’

Hljxiniuni «hearing stress in the second cross-section it

T2 16 T. 16x25Nm 127.3 K.Г - = — »-r * ---f  ■ ----- ---  ----r- JSfcll
№ l rf) 5 *D  nD3 D*

16

To design parameter D. we get the maximum shearing stress (from all parts), which compare with the 
dfowablc stress, we then get

242 4 K. _ _  /242.4 Nm I 242.4 Nm
'~ r p ~  N“ s , «  =

D * 0.012 m 

Problem 3.7

R » IiS

A torque T -- 850 Nm is ̂ iplied to a hollow shaft with uniform wall thickness t « 6 mm shown in Fig. 3.55. 
Neglecting the effect of stress concentration, determine the bearing stress at points a and b. Determine 
*be angle of twist at the end of 4>aft when L is 200 mm and the modulus of rigidity is G = 77 GPa.

Given: R » 30 mm. t *  6  mm. Ц = 60 mm. L = 200 mm.
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Solution

r°'*m

: , T x  
—  1

\Ш
^  3 54

J  U -PT_;______!________

I
R»U7

From the definition of maximum shearing atrcss for thin-walled ho Dow shafts, we have

T
Г-  2 A t,* *

where A is the area bounded by the centerline of wall cross-section area (Fig. 3.56 - hatching area), we have

A-rtf+JR.L.-nja+l) +2^R+^|l,

I he shearing stress at point a and b ia

T 850000 Ninm
2A te  2x6mmx7381J9mm4 96 MPa

The angle of twiat of a thin-walled shaft of length L and modulus of rigidity G is defined

TL<pz
G J

n to Mechanics of M. (ria ls: Part I

4AJ
*twrt the moment of inertia la J  *  —

i

r i] j  ‘ - is computed along the centerline of the wall section and we get 
i ^
t *  = i +h +!i + L  ,  *H IE .  + “ "51 + i ” J2E+® I5E  = 54 5575

t 1 t t 6mm 6mm 6mm 6mm

4A 1 4x(738l.l9m m : )J
J  = = — i----------- ■ 3994460 65

5155,5
mm

Angle of twiat at the end of the shaft is given by the following

<p = I k  =___ 850000Nmmx200mm---a 5 527x 10 4 rad=*0032°
r  G J 7 7 xIO3 MPax 3994460.65m m 4
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Unsolved problem*

Problem 3.8

A torque T - 750 Nm is applied to the hollow shaft shown in the Fig. 3.58 that has a uniform wall thickness 

of t = 8 mm. Neglecting the effect of stress concentration, determine the shearing stress at points a and b.

|te- t>- 16.1 MPa]

Problem 3.9

The composite ahaft in the Pig. 359 is twisted by applying a torque T at its end. Knowing that the 

maximum shearing stress in steel is 150 MPa. determine the corresponding maximum «hearing stress 

in the aluminum core. Use G = 77 GPa for sted and G * 27 GPa for aluminum.

ft . - 39.44 MPa. T - lOJlkNm)

Problem 3.10

A statically indeterminate с ire ular shaft BH consists of length L and diameter D (portion CH) and length 
L with diameter 2D (portion BC). The shaft ia attached by fixed supports at both ends, and a torque T 
is applied at point С (see Fig. 3.60). Determine the maximum shearing stress in portion BC and CH. 
and reaction at the «ipport in point H.

Г- T 32T I6 T 1
[ "  l7' r“ *c 'l7 «D > ' "  17* J
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I
_ л Т  %

u . - L - f c q T

R » S JO

H »U 1

Э. 1 1

Using - 150 MPa, determine the largest torque T that may by applied to each of toe sted bars and to 
M r sted tube shown in Fig. 3.61.Given is a 50 mm, b - 24 mm, t 8 mm and L ■ 200 mm.

((a) T = 531.2 Nm. (Ь) T - 4233.6 Nm|

Problem 3.12
A 1.25 m long angle iron wtth L cross-section (shown in Fig. 3.62). Knowing that the allowable shearing 
«revs \a  .  60 MPa and modulus of rigidity G = 77 GPa and ignoring the effects of stress concentration, 
(afr determine the largest magnitude of torque T that may by applied, (b) the corresponding angle of 
twist at the free ends. The dimensions are h - 50 mm. b - 25 mm, t * 5 mm and L » 200 mm.

Ш  l(t) T = 35kNm. (b) J = Ы 2  rad)
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Appendix
A.1 Centroid and first moment of areas

Consider an area A located in the zy plane (Fig. A .l). The first moment of area with respect to the z 
axis is defined by the Integral

Q,-fy<u
I  (A.1)

Similarly, the first moment of area A with respect to the у axis is

& - !/ < “  (A.2)

If we use SI unite are uaed. the first moment of Q, and Qy are expressed in mJ or mm\

The centroid of the area A is defined at point С of coordinates у  and I  (Fig. A.2). which satisfies the 
relation

jydA
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j i  d4
(A.3)

С

R * A.3

When an area possesses an axis of symmetry, the first moment of the area with raped to that axis ls K w

Considering an area A. such as the trapezoidal area shown in Fig. A.3, we may dividethe аГ*а into 
simple gvometrk shapes Ihe solution of the first moment of the area with respect to the z can 
be divided iato components A,. A,, and we can write

Q, = J  У = J  .иМ+J  уЛА = Y .  У Л
A A | i y

(A.4)

Solving the centroid for compodlt area, wt write

(A5)

Example A.01

R«. ал

the triangular area in Fig. A.4. determine (a) the first moment Q  of the area with respect to the i  
**1», (b) the у  ordinate of the centroid of the area.

136
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Solutioa

(a) First moment Qj

We selected an dement area in Fig. A.5 with a horizontal length u and thickness dy. From thesimilarity 
in triangles, we have

± A z l  
b h

u = b ^ - 2L 
h

and

<L4 = u d} ' * b——-̂ -dy 
h

using Eq. (A.1) the first moment is

Q. * fy  * If/fa -У') <*>'

e*e J[hV-T]4bh’
(b) Ordinate of the caotroid

Recalling the first Eq. (A.4) and observing that A  = -  bh , we get

Q.-AY => - ibh’ - ibhY =* F - Ih
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д.2 Second moment, moment of areas
Consider «gain an area A located In the zy plane (Fig. АЛ) and the element of area dA of coordinate у 
and x. The second moment, or moment of inertia, of area AwHh respect lo the z -axto it defined as

f , mf y 2 <u (A.6)
A

Example A.02

Locate the centroid С of the area A shown in Fig. A.6

* . _ i L

ft 9. A.4
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Solution

Sdecting the coordinate system shown in Fig. A.7. we note that centroid С must be locked on the y 
axis, since this axis is the axis of symmetry than ?  * 0 .

н is:

aHJ
| Yt ■>

ti-7 t

R » JL 7

Dividing A into its component parts A, and A;. determine the у ordinate of the centroid, uaing Eq. (A.5)

T T  £ 4  4 + Л ,

. AJ, + A J ,  (2t«8t)«7t»(4l»6t)x3t 184t*
4  + 4  2t*8t ♦ 4t*6t 40tJ

Similarly, the second moment, or moment ef inertia, of area A with respect to tbe у axis is

(AT)
a

We now define the polar moment of inertia of area A with respect to point О (Fig. A.8) as the Integral 

J 0 » j p 2 dA , (A .I)
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where ,»is the dial алее from О to the element dLA. Ifweuae SI units. the momenta of inertia arc expreased 
in m4 or mw4

An important relation may be eataNiahed between the polar moment of inertia /. of a given area and 
the moment of inertia 1 and I  d  the same area. Noting that P*  ■ y 2 + , we write

J 9mf P l  &A *  J(y* ♦ i, )«L4 « Jy1 d A + jz 7 dA
A A A A

or

(A.9)

The rmiiu< of gyration of area A wttll reaped to the 2 alia la defined as the quantity r|t that satisfies the
lion

!ЛШ1?А => r.r . - f i  <A10>

In a aimilar way. we defined the radius of gyration with respect to the у  axis and origin O. We then have

ГГ
=»

Subsi

I A

PГ (A. 12)

ituting for l f and lg in term» of its corresponding rail of gyration in Eg. (A.9), we observe that

(А1Э)
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Example A.OJ

For the rectangular area in Fig. A.9. determine (a) the moment of inertia / of the area wth respcu to 
the centroid*] axis, (b) the corresponding radius of gyration r .

У

Rg.a.9

Solution

(a) Moment of inertia / . We select, as an element area, a horizontal strip with length b and thickness 
dy (see Fig. A. 10). For the solution we use Eq. (A.6), where dA - b dy, we have



i> tton to Mechanics of Mr («rials: Part I Appeodi

♦Л/2 ♦#/2 I
/,«J/d4 = }  y*(bdy)-b J  y’ dy Зт[у*]‘"

4 -a/i -a/J J

R»A.ie

(b) Radiut of gyration r . From Eq. (АЛО). we have

Example A 04

[ Par the circular cross-section in Fig A. 11 Determine (a) the polar moment of inertia (b) the moment 
of inertia /f and lf

V

I I

R»A.11
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Solution

(a) Polar moment of Inertia. We select, as an element of area, a ring of radius p and thickness dp (F,g 
A. 12). Using Eq. (A J), where dA - 2 np dp. we have

mi I* i
d4 *  J  p l 2xpdp = 2x  J  p *d p ,

A 0 •

j . * 2 L .# 32

R*.<L12

(b) Moment of Inertia. Because of the symmetry ofa circular area lt - /и Recalling Eg. (A.9), wecan write

J .- / ,+ / ,- 2 /e =* /,«

i D 4 

2 2

Л-V arD4 i " ■—
64

A.3 Parallel axis theorem
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ng the moment of Inertia lt of ал area A with respect to an arbitrary z axis (Fly. A. 13). Let us 
pow draw the сxMrokial s'axit, Le., the axis parallel to the z axis which pastes though the areas centroid 
С Denoting the distance between the element dA and axis peases though the centroid O y  / , we write 
уж  /  ♦ d Substituting for у  In Eq. (A.6 ), we write

/, * J y *  d 4 = J(y4 < /)‘ dA ,
A A

I t » f y a dA + 2 d fy* <L4 + d 3f  d A ,
A A  i A

l , » T r + Q ,+ A 4 *  (A. 14)

when* Tt. Is the aieas moment of inertia with respect to the centroidal z axis and Q, is the first moment 
of the area wtth respect to the z axis, which Is equal to zero ilnce the centroid С of the area is located
oo that axis. Finally, from Eq. (A.14)we have

l,~Tl. + Adt (A. 15)

uction oMechanfcsof Material»: Parti Appendix
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A similar formula may be derived, which rdatcs the polar moment of inertia |e of an area to an arbitrary 
point О and polar moment of inertia Jc of the same area with reject to its centroid С  Denoting tj* 
distance between О and Cby d, we write

J t = Jc + A d 2 (A. 16)

Example A.05

Determine the moment of inertia I§ of the area shown in Fig. A. 14 with respect to the centroida! z axis.

У

e

A
2t2t 4t

R9.A.14

Solution

The first step of the solution is to locate the centroid С of the area. However, this has already been done 
in Example A.02 for a given area A.

We divide the area A Into two rectangular areas A, and A, (Fig. A. 15) and compute the moment of 
inertia of each area with respect to the 1  axis. Moment of inertia of the areas are

where 1л is the moment of inertia of A, wfch respect to the z axis. For the solution, we use the parallel- 
axis theorem (Eq. A .  13). and write

/ .,«  Г. b .h J+ b M

/, 1 “  81 x(2t)*+8lx2lx(7l-4 6t)J 

/.,-97 5 И
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In * similarly way. we find the moment of Inertia /й of A, with respect to the z axis and write

x4t * (6*)‘ +4t x 6 tx (4 6 t-3 t)J 

/„-133.414

The moment of inertia I, of the area ihown in Fig. A. 14 with respect to the centroidal z axis is

/, + / „ -97 V  +133 41* -2309»*.

Example Л.06

a
r» a.is

Determine the moment of inertia I t of the area shown in Fig. A. 14 with respect to the centroidal z axis 
and the moment of inertia ly of the area with respect to the centroidal у axis
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RfrA.17

Solution

The first step of the solution is to locate the centroid С of the area. This area has two axis of symmetry, 
the location of the centroid С is in the intersection of the axes of symmetry.
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C-C,

n»a.ie

We divide the area A into three rectangular areas A|t A, and A,. The fir* w,n divide area A c‘ A  can 
be seen In Fig. A.17, a second way can be seen In Fig A .li.

Solution the division of area A by Fig. A.17 (the first way) them omen t of**

..-196»*.

1 . , - l+ A d  ш ± Ъ * \ + Ъ ’Ь А - . . . ш З & \

... = 196t4./ „ - r j . +A,d,3 = lb ,h | +bshJd j.

Resulting In

Л  =  L  +  + Л >  *  1 9 6 »*  + 3 6 « 4 +  1 9 Ы 4 = 42«*

i For the moment of inertia ly we have

/> = ly\ + Л* + 1,* '

where

i

^ - 7 , - 1Ъ |цЬ1’ - 1 к 21х (6»), .3614.
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/ j* * П Ь,ь; - ^ x 2 t x ( « t ) ’ - 3 6 t \

Resulting in

If = \A ♦ / „ +/„ = 36t4 + 4t4 + 36t4 = 76t4 

The solution for the divlnon of area A according to Fig. A. IS (by the second way) the moment of Inertia I is

Л * Л» — Л1 “  Лэ»

where

L mT.-•jljb1h1, =^x6tx(|Ot), «500t\

/ „  -  Г, -  ^ b,hJ = ^ x 2t X(6<)’ = 36»*,

I„-T. m±Ъti-±xЛx(&), ШЭ&У

Resulting in

/ .« / „- / „- / a *  500t4-36l4-36t4=428l4.

For the moment of inertia 1̂ we have

(r  в ( и “ Л |  *(>>»•

where

Л. - ^h,b,’ - ± *  101 x(6»)’ - 1801\

Л : -  “  ^ h 2b | + h ^ j  -  1 x 6 1  X (2t)’ +61X 2t X (2 t)' = 5 2 t\
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•*-6tx2lx(2t)' -52t*.

Rtsuhmji In

I , * hi -1,г “  I»  * 18014 -52t4 - 52t4 = 76l4.

Example A. 07
jr
к

I с L

•i____

R»A.1*

150



Production to Mechanics of Materials: Part I Apptndfc

In order to solve the torsion of a rectangular cross-section in Fig. A.I9, we defined (See S.P. Thlmoshcn k,.
and |.N. Goodier, Theory of Elasticity. 3d ed. McGraw-Hill New Yoik. 1969. sec. 109) the following 
parameters for b>k

J my b s h  (A. 17)

b*h, (A i8)

S2* f lb  h*, (A.19) 

where parameters a, p and у are in Tab. A.1.

The shearing stresses at point 1 and 2 are defined as

T T
f i s r « e ^ '  Г* (A 20 )

where T is the applied torque.

Tab. A.1

h/b 1 1.2 1.5 2 3 5 10 >10
a 0.208 0.219 0.231 0.246 0.267 0.291 0.313 1/3

P 0208 0 196 0180 0.155 0118 0.078 0042 0

r 0.1404 0 166 0196 0.229
_ _

0.263 0.291 0.313 1/3

A.4 Product of Inertia, Principal Axes
Definition of product of inertia is

tm~ j y t dA (A204)
A

in which each element of area dA is multiplied by the product of its coordinates and integration is 
extended over the entire area A of a plane figure If a cross-section area has an axis of symmetry which 
is taken for the у or г axis (Fig. A.19), the product of inertia is e^ual to zero. In the general case, for 
any point of any crota-section area, we can always find two perpendicular axes such that the product 
of inertia for these vanishes. If this quantity becomes zero, the axes to these directions are called the 
principal axes Usually the centroid is taken as the origin of coordinates and the corresponding principal 
axes are then called the centroidal principal axes

1S1
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Re-A.1**

If the product of Inertia of a cross-section area is known for axes у and z (Fig. A .l *») thought the centroid, 
the product of inertia for parallel ажs y' and i  can be found from the equation

The coordinates of an element dA for the new axes are

y ’*y+n; z ' * z  + m

(A.20b)

Hence.

1^. - Jy V cW  =J(y+n)(z+m)dL4 ■ Jyzd4 + J  mn dA + J  ym dA Jnz dA.

The last two integrals vanish because С is the centroid so that the equation reduces to (A.20b).

A.5 Strain energy for simple loads

YS2
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Consider a rod BC of length L and uniform cross-section area A, attached at В to a fixed support ihv 
rod is subjected to a slowly increasing axial load F at С ( Fig. A.20). The work done by the load F as it  ̂
slowly applied to the rod must result in the increase of some energy aeociated with the deformation 0f 
the rod. This energy Is referred to as the straw energy of the rod. Which is defined by

Strain  energy ^ J J F  dx (Л2|)

Dividing the strain energy U  by the volume V  - A L of the rod (Fig. A.20) and using Eq. (A.21), we have

U  Г  ¥ A
V  «  A L <A-22)

Recalling that F/A represents the normal stress Of in the rod. and x/L represents the normal itrain tf, 
we write

U  r
7 в 1о<Г« <к* (A. 23)

The strain energy per unit volume, C//V, is referred to as the strain-energy density and wiB be denoted 

by the letter u. We therefore have

1S3
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| det (A.24)

A.5 1 Elastic strain energy for normal stresses

la a m*diiiw part with non-uniform strcm» distribution, the strain energy density u can be defined by 
considering the strain energy of a small element of the m Aerial with the volume A V. writing

o r « «  — . ( A . 2 S )

for the value of ag within the proportional limit, we may set at - E tt in Eq. (A.24) and write 

1 ^ ,  1 <
2 2 * '  2E* (Ae26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by substituting 
Eq. (A2ft) iato Eq. (A.25). to get

I  (A. 27)

Elastic strain energy under axial loading

When a rod is acted on by centric axial loading, the normal stresses area t = N/A from Sac. 2.2. Substituting 
for at into Eq. (A-27), we have

u * or* «««mg dr - A dr, V * dr (A.28)

If the rod haaa uniform croas-sectioe and is acted on by a constant axial force R we then have

П  /  А  Л П \I/-—  (A.»)

Bestic strain energy in Bending

The normal Presses for pure bending (neglecting the с flee tt of shear) iso, = Aly//from Sec. 4. Substituting 
for ot into Eq. (A J7 ), we have

' 2E J  2E/: (A .30)

Setting dV - dA dx. where dA irpresenU an dement of cross-sectional area, we haw
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(A.31)

Example A.08

RfrA.31

Determine the strain energy of the prismatk cantilever beam in Fig. A.21. taking into account the effects 
of normal stresaesonly.

Solution

The bending moment at a distance x from the free end is M » - F x .  Substituting this expression into 

Eq. (A.31), we can write

A5 2  Elastic strain energy for shearing stresses

When a material is acted on by plane shearing ftresses the strain-energy density at a given point can 

be expressed as

where is the shearing strain corresponding to For the value of within the proportional limit, 
we have ■ G and write

Substituting E4  (А.ЭЭ) into Eq. (A.25). we have

(A. 32)
о

(A. 34)
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Elastic strata caetfy in Torsion

The shearing stresses for pure torsion arrt^ = Tp / / from See. 3. Substituting for into Eq. (A.27), 
we have

*3 тЗ* •
V *  f-*- dF = f 4-IU dr (A.35)

'  2 0  J 2 G E / 2

Setting d V - dLA dx, where dA le presents in element of the cross-sectional area, we have

l/“ !2 & 7 ^ p,<M)<b‘ = {^ 7 dX (A-S6)

In the сак of a Aaft of uniform croas-sectionacted on by a constant torque T, we have

5Г ^
Elastic strata energy in transversal loading

If the internal shear at section xlsV, then the shear stress acting on the volume element, having a length 
of dx and an area of dA, la т * V Q111 from Sec. 4. Substituting for т into Eq. (A J7 ), we have
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(A .38)

'Ihe integral in parentheses is evaluated over the beam's cron-sectional area. To simplify this expression 
we define the form factor for shear

dA (A. 39)

Substituting Eq. (A.39) into Eq. (A.38). we have

i  у 2

v ■  1 ' ‘ Ш *
(A. 40)

W1

ь/a

• N.A

Ft*. A-22

The form factor defined by Eq. (A.39) is a dimension less number that is unique for each specific cross- 
section area. For example, if the beam has a rectangular cross-section with a width b and height h. as 
in Fig. A.22, then

t = b. A  = bh.

h

У + <h -k h

Substituting these term» into Eq. (A.39), we get

bdy (Л.41)
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Example A O*

Append!

Г

L

R»/U)

Determine I he strain energy in the cantilever beam due to shear if the beam has ж rectangular cross- 
tection and is subject to a load R Fig. A.23. assume that E l and G are constant.

Solutioa

From the free body diagram of the arbitrary section, we have

energy is

3¥*L
5  0 A * h’ E  

и . - .  ~ f v  я  10 L* G 
6 E /

Since G • E / 20+n) and я * 03. then E = 3G. so

It can be seen that the result of this ratio will increasing aa L decreases. However, evtn for rfiort beams, 
where, say L - 5 h. the contribution due to shear strain energy is only 3.6%  of the bending strain energy. 
For this reason, the shear strain energy stored in beams is usually neglected in engineering analysis.

V(x) *  F.

Using the results of Example A. 08, with A = b h. / = — b h *. the ratio of the shear to the bending strain

1S8
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