### И.И. Тошев, А.Т. Азимов

# ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА



Учебник для студентов сфери образовании «Инженерное дело»

### МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

БУХАРСКИЙ ИНЖЕНЕРНО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

И.И. Тошев, А.Т. Азимов

# ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА

Учебник для студентов сфери образовании «Инженерное дело»

Бухара-2021 Издательство «Дурдона» 30.18я7 62:004.92(075) Т 64 Тошев И.И.

Инженерная и компьютерная графика. / И.И. Тошев,

А.Т. Азимов/ Учебник для студентов высших образовательных учрежде-ний. –Т.: типография «Садриддин Салим Бухорий» издательство «Дурдона», 2021, 240-стр.

> ББК 30.18я7 УДК 62:004.92(075)

#### Рецензенты:

Собиров Т.Р. – кандидат педогагических наук профессор кафедры «Изоброзительное искуство и инженерной графика» БГУ

Хаитов Б.У.

кандидат технических наук, доцент
кафедры «Начертательной геометрии
и инженерной графика» БИТИ

ISBN-978-9943-7369-8-6

© И.И. Тошев, А.Т. Азимов

### Annotatsiya

Darslikda geometrik figuralarning proyeksiyalovchi tekisligidagi tasvir masalalari, ularning nisbiy holati va ularning kesishgan joylari ko'rib chiqilgan. Talabalarni geometrik, proektsion va texnik rasm chizishning asosiy texnikalari va qoidalari bilan tanishtirish uchun imkoniyat taqdim etiladi. Kompyuter texnologiyalari yordamida darslik rus tilida so'zlashadigan muhitda umumiy texnik fanlarni o'zlashtirishda foydali bo'lgan turli xil tushuncha va atamalarni o'zlashtirishga yordam beradi.

#### Аннотация

В учебнике рассматриваются вопросы изображения на плоскости проекции геометрических фигур, их взаимное расположение и их пересечения. Представлена возможность познакомить студентов с базовыми приемами и правилами геометрического, проекционного и технического черчения. При помаши компьютерных технологии учебник поможет освоить широкий круг понятий и терминов, которые будут полезны при освоении общетехнических дисциплин в русскоязычной среде.

### Annotation

The textbook deals with the issues of images on the projection plane of geometric figures, their relative position and their intersections. The opportunity is presented to acquaint students with the basic techniques and rules of geometric, projection and technical drawing. With the help of computer technology, the textbook will help you master a wide range of concepts and terms that will be useful in mastering general technical disciplines in a Russian-speaking environment.

### **ПРЕДИСЛОВИЕ**

Чертеж является одним из главных носителей технической информации, без которой не обходится ни одно производство. Поэтому умение читать чертежи и знание правил их выполнения являются необходимыми условиями при подготовке специалистов в технических вузах.

Изучая инженерную графику (подготовительный курс), вы познакомитесь с базовыми приемами и правилами геометрического, проекционного и технического черчения, а также освоите широкий круг понятий и терминов, которые будут вам полезны при освоении других общетехнических дисциплин в русскоязычной среде, и в первую очередь университетского курса «Начертательная геометрия. «Инженерная графика».

Учебник составлено в соответствии с требованиями к минимуму содержания и уровню подготовки выпускников факультетов и отделений пред вузовские обучения иностранных граждан (отраслевой стандарт) и адаптировано в соответствии с программой по русскому языку. Его предпочтительно использовать в сочетании с рабочей тетрадью и методическими указаниями (тех же авторов).

Учебник состоит из: введения; четырнадцать глав (1 – правила оформления чертежей; 2 – геометрические построения; 3 – ортогональные проекции геометрических элементов. Геометрические фигуры; 4 – геометрические тела; 5–прямоугольные проекции; 6–аксонометрические проекции; 7 – изображения технических деталей; 8 – эскизы; 9 – типовые соединения деталей; 10 – Настройка рабочей среды. Работа с командной строкой в системе AutoCAD; 11–Задание координат в системе AutoCAD. Объектная и шаговая привязки в системе AutoCAD; 12 – Создание графических

объектов-примитивов; 13 – Редактирование и модификация объектов; 14 – Использование слоев в системе AutoCAD. Простановка размеров в системе AutoCAD. Текст в чертежах AutoCAD. Блоки) и русско-английского словаря новых слов и словосочетаний, понимание которых может вызвать затруднения.

В конце каждой главы приведены вопросы для самопроверки и указания к выполнению упражнений и заданий для самостоятельной работы по закреплению теоретического материала.

Учебник иллюстрировано цветными рисунками. При этом каждый цвет имеет определенное смысловое значение. Черным цветом на рисунке задаются исходные данные. Зеленым выполняются вспомогательные построения. Красным обозначаются результаты геометрических построений, либо выделяются те элементы, на которые следует обратить внимание.

Цвет использован и для оформления текстовой части учебника. Основные термины курса выделены красным цветом, а новые слова и словосочетания синим.

### введение

С древних времен человечеству известен графический язык. Он состоит из линий, цифр и условных обозначений. С их помощью можно начертить любой предмет.

В жизни мы постоянно сталкиваемся с различными чертежами. По чертежам делают игрушки, строят дома, изготавливают различные приборы и механизмы.

Чертежом называется такое изображение предмета, по которому этот предмет можно изготовить. На рис. 1 представлен чертеж детали, которая называется корпус.





Деталь

6

Чертеж детали

### Puc. 1

Первые чертежи, дошедшие до наших времен, относятся к 60-м гг. XVII в. Однако можно предположить, что они существовали и ранее. Появление чертежей связано с практической деятельностью человека – развитием ремесел, строительством городов и укреплений.



Первые чертежи называли планами. Их выполняли в натуральную величину на земле, в том месте, где предстояло построить сооружение. Для выполнения таких чертежей были созданы первые чертежные инструменты (рис. 2) – деревянный циркуль-измеритель, который назывался «кружало», и мерный шнур с узелками, расположенными на одинаковом расстоянии друг от друга, с помощью которого можно было построить угол 90°.

Позже, при строительстве многих укреплений, чертежи-планы стали выполнять в уменьшенном виде на пергаменте, дереве или холсте. На таких чертежах изображали внешние очертания построек, рис. 3. Большинство чертежей выполняли черными чернилами, но иногда применяли и краски. Строительство разрешалось только по чертежам, которые делали «знаменщики».

Но не только архитектурные сооружения создавали по чертежам. На Руси с XVI в. занимались литьем металла и изготовлением оружия. Для этого также использовали чертежи, рис. 4.



Puc. 3

Puc. 4

С развитием кораблестроения в XVII–XVIII вв. потребность в чертежах возросла. Возросла и техника их исполнения. На корабельных чертежах показывали три вида судна: «бок», «полушироту» и «корпус», которые определяли длину, высоту и ширину корабля, рис. 5. Чертежи выполнялись на бумаге с использованием масштаба изображения, с помощью циркуля, гусиного пера и линейки, рис. 6.







Puc. 6

В 1798 г. была опубликована книга «Начертательная геометрия» французского ученого Гаспара Монжа. В ней были установлены единые правила получения изображений на чертеже. Эти правила были положены в основу современного проекционного черчения.

С развитием техники, появлением компьютеров и систем автоматизированного проектирования, современные чертежи, а также процесс их выполнения очень изменились. Однако и в наше время в основе всех графических изображений по-прежнему лежит труд человека, свободно владеющего графическим языком.

R

### ГЛАВА 1. ПРАВИЛА ОФОРМЛЕНИЯ ЧЕРТЕЖЕЙ

Если бы каждый инженер выполнял и оформлял чертежи посвоему, не соблюдая единых правил, то такие чертежи были бы не понятны другим. Чтобы этого не случилось, были установлены общие нормы и правила по разработке, оформлению и обращению конструкторской документации, которые обязательны для всех.

Все эти нормы и правила оформлены в комплекс Государственных Стандартов (ГОСТ), и называется Единой системы конструкторской документации (ЕСКД). Рассмотрим некоторые из них.

### 1.1. Чертежные инструменты и материалы

Чертежи выполняют с помощью чертежных инструментов и материалов. К ним относятся (рис. 1.1): карандаши, линейки, угольники, лекала, транспортир, циркуль, резинка (ластик) и чертежная бумага.

Карандаши (рис. 1.1, а). Карандаши бывают: твердые, мягкие и средней твердости. Марка карандаша указывается буквой на его боковой грани. Для мягких карандашей – буквой М (или В), для твердых карандашей – буквой Т (или Н) и для карандашей средней твердости – буквами ТМ (или НВ). Степень твердости указывается цифрой, стоящей перед буквой, например, 2T (2H), 2M (2B). Чем больше число, тем тверже или мягче карандаш. Для построения чертежа обычно используются карандаши марки Т или 2T, а для обводки чертежа – карандаши марки ТМ.

Циркуль (рис. 1.1, б). Циркуль используется для проведения окружностей и дуг окружностей. Чертежный циркуль имеет одну ножку с иглой, а другую – с грифелем карандаша.

*Резинка* (рис. 1.1, в). Резинку применяют для удаления лишних линий. Для удобства лучше всего использовать

резинку с острым уголком. Это позволяет стирать ненужные линии аккуратно, не повреждая чертеж.

Линейки (рис. 1.1, г). Линейки используются для проведения прямых линий и измерения длин отрезков. Линейки бывают различной длины. Они бывают деревянные, металлические и пластмассовые. Удобнее пользоваться деревянными линейками, так как они не пачкают чертеж. Оптимальная длина линейки для выполнения учебных чертежей – 30 сантиметров.

Угольники (рис. 1.1, д). Угольники предназначены для построения углов и проведения перпендикулярных и параллельных линий. Угольники бывают с углами 30°-60°-90° и 45°-45°-90°. Они бывают деревянные, металлические и пластмассовые. Удобнее пользоваться деревянными угольниками, так как они не пачкают чертеж.

*Транспортир* (рис. 1.1, *е*). Транспортир предназначен для построения и измерения углов.

Лекала (рис. 1.1, ж). Лекала используются для проведения кривых линий.





Рис. 1.1

Чертежная бумага. Для выполнения чертежей используется белая плотная ватманская бумага и бумага, размеченная на клетки в один квадратный миллиметр – миллиметровая бумага. На чертежной бумаге выполняют чертежи деталей. На миллиметровке выполняют эскизы.

У чертежной бумаги одна сторона более гладкая, чем другая. Как правило, карандашом чертят на гладкой стороне, а на более шероховатой рисуют красками.

Все чертежные инструменты и материалы необходимо держать чистыми и исправными, от этого зависит качество чертежа.

### 1.2. Форматы

Для экономного использования бумаги, удобства пользования, хранения и транспортировки чертежи и другие конструкторские документы выполняют на листах чертежной бумаги определенного размера. Лист чертежной бумаги определенного размера называется форматом чертежа.

Основной формат АО (1189 x 841 мм) имеет площадь равную 1 м<sup>2</sup>. Этот формат путем последовательного деления пополам образует другие форматы (А1, А2, А3 и А4), которые также являются основными.

В университете для выполнения учебных чертежей вы будете использовать следующие форматы, установленные Государственным стандартом (таблица 1, рис. 1.2):

|                                  |         |         |         | Таблин  | ца 1 |
|----------------------------------|---------|---------|---------|---------|------|
| Обозначение<br>форматов          | A1      | A2      | A3      | A4      |      |
| Размеры<br>сторон<br>формата, мм | 841x594 | 594x420 | 420x297 | 297x210 |      |



Puc. 1.2

### 1.3. Линии чертежа

Для того чтобы изображение детали было понятным, при выполнении чертежа применяют различные типы линии. Каждый тип линий имеет свое название, назначение, начертание и толщину. Это позволяет легко представить внешнюю и внутреннюю форму детали.

Типы линий, их начертание, назначение и толщину устанавливает Государственный стандарт. В таблице 2 и на рис. 1.3 представлены основные типы линий. Рассмотрим их.



Puc. 1.3

Таблица 2

| Nº | Наименование                 | Начертание | Толщина         | Назначение                       |
|----|------------------------------|------------|-----------------|----------------------------------|
| 1  | Сплошная толстая<br>основная |            | S = 0,5-<br>1,5 | Линия<br>видимого<br>контура     |
|    |                              |            |                 | предмета                         |
| 2  | Сплошная тонкая              |            | S/3 – S/2       | Размерные и<br>выносные<br>линии |
| 3  | Штриховая                    |            | S/3 – S/2       | Линия<br>невидимого<br>контура   |
| 4  | Штрихпунктирная              |            | S/3 – S/2       | Центровые и<br>осевые линии      |
| 5  | Сплошная<br>волнистая        | $\sim$     | S/3 – S/2       | Линия обрыва                     |

Сплошная толстая основная линия. Такую линию применяют для изображения линий видимого контура предмета. На рис. 1.3 линия 1 – сплошная толстая основная линия. Толщину (s) сплошной толстой основной линии выбирают в пределах от 0,5 до 1,4 мм. Это зависит от размеров изображения.

Сплошная тонкая линия. Такую линию применяют для проведения выносных и размерных линий. На рис. 1.3 линия 2 –

сплошная тонкая линия. Толщину сплошной тонкой линии выбирают в пределах от s/3 до s/2.

Штриховая линия. Такую линию применяют для изображения линий невидимого контура предмета. На рис. 1.3 линия 3 – штриховая линия. Штриховая линия состоит из отдельных штрихов. Длину штриха выбирают от 2 до 8 мм, расстояние между штрихами – от 1 до 2 мм (рис. 1.4). Это зависит от размеров изображения. Толщину штриховой линии выбирают в пределах от s/3 до s/2.

Штрихпунктирная тонкая линия. Такую линию применяют для изображения осевых и центовых линий. На рис. 1.3 линия 4 – штрихпунктирная линия. Штрихпунктирная линия состоит из длинных и коротких штрихов. Длину короткого штриха выбирают произвольно. Длину длинного штриха выбирают от 5 до 30 мм, расстояние между длинными штрихами – от 3 до 5 мм (рис. 1.4). Это зависит от размеров изображения. Толщину штриховой линии выбирают в пределах от s/3 до s/2.

Обратите внимание, что штриховая и штрихпунктирная линии должны пересекаться и заканчиваться штрихами. Штрихпунктирная линия должна выходить за контур изображения, но не более чем на 5 мм (рис. 1.5).

Сплошная волнистая линия. Такую линию применяют для изображения линии обрыва изображения. На рисунке 1.3 линия 5 – сплошная волнистая линия. Толщину волнистой линии выбирают в пределах от s/3 до s/2.





Puc. 1.5

Толщина линий одного и того же типа должна быть одинакова для всех изображений на данном чертеже.

### 1.4. Шрифт чертежный

Все надписи на чертежах должны быть выполнены чертежным шрифтом. Чертежный шрифт – это буквы, цифры и знаки на чертеже. Начертание букв и цифр, а также размер чертежного шрифта устанавливает Государственный стандарт.

Размер шрифта (h) – это высота прописной буквы в миллиметрах. Высоту буквы измеряют перпендикулярно к основанию строки. ГОСТ устанавливает следующие размеры шрифта: 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40.

Наклон букв и цифр к основанию строки должен быть 75°. Другие параметры шрифта – высоту строчных букв (с), ширину букв (g), толщину линии шрифта (d), расстояния между буквами (a), между словами (e) и между строками (b), определяют в зависимости от высоты шрифта (рис. 1.6 и таблица 3).

Оформлять чертежи надписями надо аккуратно. Нечетко сделанные надписи или небрежно написанные цифры могут быть непонятными при чтении чертежа. Для того чтобы научиться писать красиво чертежным шрифтом, сначала для каждой буквы чертят сетку, как показано на рис. 1.6. После того, как вы научитесь писать буквы и цифры, можно чертить только верхнюю и нижнюю линии строки. Контуры букв чертят тонкими линиями. Потом, если буквы написаны правильно, обводят их мягким карандашом.



Puc. 1.6

Написание букв русского, латинского алфавитов и арабских цифр показано на рис. 1.7.

Таблица 3

| Параметр                         |   |      | Размеры, мм |     |     |     |
|----------------------------------|---|------|-------------|-----|-----|-----|
| Размер шрифта                    | h | 2,5  | 3,5         | 5,0 | 7,0 | 10  |
| Высота строчных букв             | С | 1,8  | 2,5         | 3,5 | 5,0 | 7,0 |
| Расстояние между буквами         |   | 0,5  | 0,7         | 1,0 | 1,4 | 2,0 |
| Минимальный шаг строк            |   | 4,3  | 6,0         | 8,5 | 12  | 17  |
| Мин. расстояние между<br>словами |   | 1,5  | 2,1         | 3,0 | 4,2 | 6,0 |
| Толщина линий шрифта             |   | 0,25 | 0,35        | 0,5 | 0,7 | 1,0 |

### Ширина букв и цифр (g) для шрифта с наклоном

| IIIwawaa          | Europe                             | Размер шрифта,<br>мм |     |     |     |     |
|-------------------|------------------------------------|----------------------|-----|-----|-----|-----|
| ширина            | руквы и цифры                      | 2,5                  | 3,5 | 5,0 | 7,0 | 10  |
|                   | 1                                  | 0,8                  | 1,1 | 1,5 | 2,1 | 3   |
| Цифр и            | 4                                  | 1,1                  | 1,6 | 2,3 | 3,2 | 4,5 |
| знака №           | 2, 3, 5, 6, 7, 8, 9, 0             | 1,3                  | 1,8 | 2,5 | 3,5 | 5   |
|                   | Nº                                 | 2,5                  | 3,5 | 5   | 7   | 10  |
|                   | Г,Е,З,С                            | 1,5                  | 1,8 | 2,5 | 3,5 | 5   |
| Прописных<br>букв | Б, В, И, Й, К, Л, Н,<br>О, П       | 1,5                  | 2,1 | 3   | 4,2 | 6   |
|                   | Р, Т, У, Ц, Ч, Ъ, Ь,<br>Э, Я       | 1,5                  | 2,1 | 3   | 4,2 | 6   |
|                   | А, Д, М, Х, Ы, Ю                   | 1,8                  | 2,5 | 3,5 | 4,9 | 7   |
|                   | Ж, Ф, Ш, Щ                         | 2                    | 2,8 | 4   | 5,6 | 8   |
|                   | С                                  | 1                    | 1,4 | 2   | 2,8 | 4   |
| Строчных<br>букв  | 3                                  | 1,1                  | 1,6 | 2,3 | 3,2 | 4,5 |
|                   | а, б, в, г, д, е, и, к, л, н       | 1,3                  | 1,8 | 2,5 | 3,5 | 5   |
|                   | о, п, р, у, х, ц, ч, v, ь,<br>э, я | 1,3                  | 1,8 | 2,5 | 3,5 | 5   |
|                   | м, ы, 10                           | 1,5                  | 2,1 | 3   | 4,2 | 6   |
|                   | ж, т, ф, ш, щ                      | 1,8                  | 2,5 | 3,5 | 4,9 | 7   |

Русский алфавит





Puc. 1.8

Рамка ограничивает рабочее поле чертежа. Линии рамки проводят с трех сторон (сверху, снизу и справа) на расстоянии 5 мм, а с левой стороны – на расстоянии 20 мм от границы формата (рис. 1.9). Рамку выполняют сплошной толстой основной линией.

Затем чертят дополнительную графу и основную надпись. Размеры дополнительной графы 70 × 14 мм. Размеры основной надписи 185 × 55 мм. Расположение основной надписи и дополнительной графы показано на рис. 1.9. Для выполнения основной надписи используют два типа линий – сплошную толстую основную линию и сплошную тонкую линию.



Puc. 1.9

Форму, размеры и содержание основной надписи устанавливает ГОСТ. Для учебных чертежей основная надпись выполняется по форме 1, как показано на рис. 1.10.

При этом некоторые графы можно не заполнять или заполнять с некоторыми изменениями. В графах основной надписи указывают:

Графа 1 – наименование детали или задания (шрифт 7).

Графа 2 – обозначение чертежа (шрифт 7):

КГГ1.ХХХХХХ.ОО1, где КГГ – код кафедры начертательной геометрии и графики, 1 – номер работы по порядку,

XXXXXX – классификационная характеристика детали, ОО1 – номер варианта задания.

Графа 3 – материал детали (шрифт 5).

Графа 4 – литеру чертежа «У », т. е. учебный чертеж (шрифт 5).

Графа 6 – масштаб чертежа (шрифт 5).

Графа 7 – порядковый номер листа (шрифт 3,5).

Графа 8 – общее количество листов (шрифт 3,5).

Графа 9 – университет, факультет, группу (шрифт 3,5).

Графа 10 – фамилию студента (шрифт 3,5).

Графа 11 – фамилию преподавателя (шрифт 3,5).

Графа 12 – подпись студента (шрифт 3,5)

Графа 13 – дату выполнения чертежа (шрифт 3,5);



Рис. 1.10

Пример заполнения основной надписи показан на рис. 1.11.

| -         |             |        |        | KEE1.XXXXXX.001 |      |     |        |         |
|-----------|-------------|--------|--------|-----------------|------|-----|--------|---------|
|           |             |        |        |                 | he   | 1   | Масса  | Масытаб |
| ADM. NOCT | Nº daxym    | Rođn   | Gama   | ШРИФТ           |      |     |        |         |
| Разраб    | General A.S | Anal ( | 5 9 05 |                 | 9    |     |        | 1.1     |
| Προδ      | Иванова ЛС  |        |        |                 |      |     |        |         |
|           |             |        |        |                 | Auca | 1   | Aucino | 0       |
|           |             |        |        |                 | 1    | глу | ИМО    | по      |
|           |             |        |        |                 | 1    | руг | na 15  | ГЛЭТ    |

Puc. 1.11

### 1.6. Масштабы

Инженерам приходится выполнять чертежи разных деталей как больших, например, деталей самолета, корабля, автомашины, так и очень мелких, например, деталей часов, некоторых приборов и др. Изобразить их в натуральную величину нельзя. Поэтому при вычерчивании больших деталей изображения уменьшают, а мелких – увеличивают, то есть применяют масштабы.

Масштаб – это отношение размеров изображения предмета к его действительным размерам. ГОСТ устанавливает следующие масштабы и их обозначения:

Таблица 4

| Масштаб     | 2:1; 2,5:1; 4:1; 5:1; 10:1; 15:1; 20:1; 25:1 и    |
|-------------|---------------------------------------------------|
| увеличения  | др.                                               |
| Натуральная | 1:1                                               |
| величина    |                                                   |
| Масштаб     | 1:2; 1:2,5; 1:4; 1:5; 1:10; 1:15; 1:20; 1:25 идр. |
| уменьшения  |                                                   |

Масштаб 2:1 – масштаб увеличения, это значит, что размеры изображения в два раза больше размеров предмета.

Масштаб 1:1 – натуральная величина, это значит, что размеры изображения и размеры предмета одинаковы.

Масштаб 1:2 – масштаб уменьшения, это значит, что размеры изображения в два раза меньше размеров предмета.

Следует помнить, что при любом масштабе изображения размеры на чертеже указываются действительные. На рис. 1.12 представлены изображения детали, выполненные в разных масштабах.



### 1.7. Размеры

Для определения величины изображенной детали или какой-нибудь его части на чертеже наносят размеры (рис. 1.13).



Рис. 1.13

Размеры разделяют на линейные и угловые. Линейные размеры – это длина, ширина, высота, толщина, диаметр или радиус. Угловой размер – это величина угла.

Линейные размеры на чертежах указывают в миллиметрах, но буквы «мм» не пишут. Угловые размеры указывают в градусах с указанием единицы измерения символом <sup>0.</sup>

Общее количество размеров должно быть минимальным, но достаточным для изготовления детали.

Правила нанесения размеров устанавливает ГОСТ. Рассмотрим некоторые из них.

1. Размер на чертеже указывают выносными линиями, размерной линией и размерным числом (рис. 1.14).

Сначала проводят выносные линии. Выносные линии проводят перпендикулярно отрезку, размер которого указывают. Затем проводят размерную линию параллельно отрезку, размер которого указывают. Расстояние между контуром детали и размерной линией – 10 мм. Выносные линии выходят за размерную линию на 2 – 5 мм (рис. 1.15). Выносные и размерные линии проводят сплошной тонкой линией.

Размерную линию ограничивают с двух сторон стрелками. Какой должна быть стрелка показано на рис. 1.16. Стрелки на всех размерных линиях данного чертежа должны быть одинаковые.

Над размерной линией, как можно ближе к ее середине, пишут размерное число. Расстояние от размерной линии до размерного числа 1 – 1,5 мм (рис. 1.15).



2. Размерные линии не должны пересекаться. Поэтому ближе к изображению наносят меньший размер, как показано на рис. 1.17. Расстояния между параллельными размерными линиями 7 мм.



Рис. 1.17

3. Если на размерной линии нет места для стрелок, то размеры наносят, как показано на рис. 1.18.

4. При указании размера угла размерную линию проводят в виде дуги окружности с центром в вершине угла (рис. 1.19). Величину угла указывают в градусах символом <sup>0</sup>.



5. Размер окружности всегда показывают размером диаметра. Для обозначения диаметра перед размерным числом наносят специальный знак <sup>O</sup> – круг, перечеркнутый линией под углом 45°, как показано на рис.1.20. При этом высота знака равна высоте цифр размерного числа.





Если размерное число не помещается внутри окружности, то его выносят за пределы окружности, как показано на рис. 1.21.



Рис. 1.21

6. Размер дуги окружности всегда показывают размером радиуса. Перед размерным числом наносят прописную букву *R*, как показано на рис. **1.22**. При этом высота буквы равна высоте цифр размерного числа.





Если размерное число не помещается внутри дуги окружности, то его выносят за пределы дуги окружности, как показано на рис. 3.23.



7. Если деталь имеет несколько одинаковых отверстий, то на чертеже рекомендуется наносить размер одного из них с указанием общего количества. Например, запись на чертеже «2 отв. Ø 10» на рис. 3.24 означает, что в детали имеются два одинаковых отверстия диаметром 10.



#### Puc. 1.24

8. Если деталь или элемент детали имеет форму квадрата, то перед размерным числом наносят знак @, как показано на рис. 1.25. При этом высота знака равна высоте цифр размерного числа.



Рис. 1.25

9. При изображении плоских деталей в одной проекции толщина детали указывается, как показано на

рис. 3.26. Перед размерным числом ставится строчная буква *s*.



Рис. 1.26

#### Вопросы для закрепления

1. Что такое Государственный стандарт ЕСКД?

2. Назовите инструменты и материалы, необходимые для выполнения чертежей. Объясните, для чего используется каждый из названных вами инструментов?

3. Дайте определение формата.

4. Какие основные форматы вы знаете?

5. Назовите основные типы линий, которые используются при выполнении чертежей. Объясните, для чего используют каждую из названных вами линий?

6. Что такое размер шрифта?

7. Какой угол наклона букв и цифр чертежного шрифта?

8. На каком расстоянии от границы формата проводят линии рамки чертежа?

9. Как располагают основную надпись на чертеже? Назовите ее габаритные размеры.

10. Что называется масштабом?

11. Что означают записи: 1:5; 1:1; 10:1?

12. В каких единицах указывают линейные размеры на чертежах? угловые размеры?

13. Какое расстояние должно быть между контуром изображения и размерной линией? между размерными линиями?

14. Что означает запись: 4отв. Ø 10?

### ГЛАВА 2. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

При выполнении чертежей деталей часто приходится выполнять различные геометрические построения, например, делить на равные части отрезки и окружности, выполнять сопряжения и др. Рассмотрим, как это сделать.

## 2.1. Построение параллельных и перпендикулярных прямых

### 2.1.1. Построение параллельных прямых

Построение параллельных прямых с помощью циркуля выполняется следующим образом (рис. 2.1):

1) Даны прямая, *а* и точка *А*. Точка *А* не лежит на прямой *a*. 2) Отметим на прямой *а* произвольную точку *В*. Из центра *В* проводим дугу радиуса *R*=*AB*. Получаем точку *С* на прямой *a*. 3) Из центра *А* проводим дугу радиуса *R*=*AB*. 4) Из центра *В* проводим дугу радиуса *R*<sub>1</sub> = *CA*. Получаем точку *D*. 5) Через точки *A* и *D* проводим прямую *b*. Получаем *b* || *a*.





### 2.1.2. Построение перпендикулярных прямых

Построение перпендикулярных прямых выполняется следующим образом (рис. 2.2):

1) Даны прямая *b* и точка *A*. Точка *A* не лежит на прямой *b*. 2) Из центра *A* проводим дугу радиуса *R*. Радиус *R* берем произвольно, но дуга должна пересекать прямую *b* в двух точках, например, в точках *K* и *L*. 3) Из центров *K* и *L* проводим дуги радиуса *R*<sub>1</sub>. Радиус *R*<sub>1</sub> берем произвольно, но *R*<sub>1</sub>>*KL*/2. Получаем точку *C*. 4) Через точки *A* и *C* проводим прямую *a*. Получаем *a © b*.



Рис. 2.2

### 2.2. Деление отрезков прямых на равные части

### 2.2.1. Деление отрезка прямой на две равные части

Деление отрезка на две равные части выполняется следующим образом (рис. 2.3):

1) Дан отрезок *AB*. 2) Из центра *А* проводим дугу радиуса *R*. Из центра *B* проводим дугу радиуса *R*. Радиус *R* берем произвольно, но *R>AB*/2. Получаем точки *C* и *D*. 3) Соединяем прямой линией точки *C* и *D*. Получаем *CD*∩*AB=K*. Точка *K* делит отрезок *AB* на две равные части или пополам, *AK=KB*.



Рис. 2.3

### 2.2.2. Деление отрезка прямой на *n* равных частей

Деление отрезка прямой на пять равных частей выполняется следующим образом (рис. 2.4):

1) Дан отрезок АВ. 2) Из точки А проводим луч АМ. Луч проводим произвольно. 3) На луче АМ от точки А откладываем пять равных отрезков. Длину отрезков берем произвольно. Отмечаем точки 1, 2, 3, 4, 5. 4) Точку 5 соединяем с точкой В прямой линией. 5) Через точки 1, 2, 3, 4 проводим прямые, параллельные прямой В5 до пересечения с отрезком АВ. Получаем точки F, E, D, C, которые делят отрезок АВ на пять равных частей, AC=CD=DE=EF=FB.



Таким способом можно разделить отрезок на любое количество равных частей.

### 2.3. Построение и деление углов

### 2.3.1. Построение угла, равного заданному углу

Построение угла, равного заданному углу, выполняется следующим образом (рис. 2.5):

 Даны угол А и точка К. 2) Из точки К проводим луч КL.
Это одна сторона искомого угла. 3) Из центров А и К проводим дуги радиуса R. Радиус R берем произвольно. На сторонах угла А получаем точки В и С, а на луче KL – точку N.
Из центра N проводим дугу радиуса R₁=BC, получаем точку M. 5) Через точки К и М проводим прямую, которая является второй стороной искомого угла. Получаем ∠MKN=∠BAC.



Puc. 2.5

### 2.3.2. Построение биссектрисы угла

Построение биссектрисы угла выполняется следующим образом (рис. 2.6):

1) Дан угол К. 2) Из центра К проводим дугу радиуса R. Радиус R берем произвольно. Дуга пересекает стороны угла в точках M и N. 3) Из центров M и N проводим дуги

радиуса *R*. Дуги пересекаются в точке *L*. 4) Из точки K – вершины угла проводим луч *KL*. Луч *KL* есть биссектриса угла *K*, а  $\angle LKM = \angle LKN$ .



### 2.4. Построение окружности

### 2.4.1. Построение дуги окружности через три точки

Построение дуги окружности через три точки выполняется следующим образом (рис. 2.7):

1) Даны точки A, B, C. 2) Соединяем прямыми линиями точку A с точкой B и точку B с точкой C. Получаем отрезки AB и BC. 3) Проводим перпендикуляры к серединам отрезков AB и BC. Перпендикуляры пересекаются в точке O. 4) Точка O есть центр дуги окружности, которая проходит через точки A, B, C.



Рис. 2.7

### 2.4.2. Построение центра дуги окружности

Построение центра дуги окружности выполняется следующим образом (рис. 2.8):

1) Дана дуга а. 2) На дуге а произвольно отмечаем три точки А, В, С. 3) Проводим хорды АВ и ВС. 4) Проводим перпендикуляры к серединам отрезков АВ и ВС. Перпендикуляры пересекаются в точке О. Точка О есть центр дуги а.



Puc. 2.8

### 2.4.3. Построение центра окружности, описанной вокруг треугольника

Построение центра окружности, описанной вокруг треугольника, выполняется следующим образом (рис. 2.9):

1) Дан треугольник *ABC*. 2) Проводим перпендикуляры к серединам сторон треугольника, например, к сторонам *AB* и *BC*. Перпендикуляры пересекаются в точке *O*. 3) Точка *O* есть центр окружности, описанной вокруг треугольника *ABC*.

31



32

Рис. 2.9

### 2.4.4. Построение центра окружности, вписанной в треугольник

Построение центра окружности, вписанной в треугольник, выполняется следующим образом (рис. 2.10):

1) Дан треугольник *ABC*. 2) Строим биссектрисы углов треугольника, например, углов *A* и *B*. Точка пересечения биссектрис – точка *O* есть центр окружности, вписанной в треугольник *ABC*. 3) Из точки *O* опускаем перпендикуляр на любую сторону треугольника, например, на сторону *BC*. Получаем точку *D*. Отрезок *OD* есть радиус окружности вписанной в треугольник.





### 2.5. Деление окружности на равные части

### 2.5.1. Деление окружности на три равные части

На рис. 2.11 показана деталь, которая имеет отверстие сложной формы. Чтобы выполнить чертеж (рис. 2.12) данной детали необходимо первоначально разделить окружность на три равные части. Деление окружности на три равные части показано на рис. 2.13.











Рис. 2.13



Отмечаем точки, которые являются концами диаметра окружности, например, точки 1 и А. Из центра А проводим дугу радиуса R=AO. Пересечение дуги с окружностью дает две точки 2 и 3. Точки 1, 2, 3 делят окружность на три равные части. Соединяем прямыми линиями точки 1, 2, 3. Получаем правильный равносторонний треугольник.

### 2.5.2. Деление окружности на четыре и восемь равных частей

На рис. 2.14 показана деталь, которая имеет квадратное отверстие и восемь круглых выступов. Чтобы выполнить чертеж (рис. 2.15) данной детали необходимо разделить окружность на четыре и восемь равных частей. Деление окружности на четыре и восемь равных частей показано на рис. 2.16.



Рис. 2.14 Рис. 2.15 Рис. 2.16 Взаимно перпендикулярные диаметры делят окружность на четыре равные части, например, диаметры *AB* и *CD*. Соединяем прямыми линиями точки *A*, *B*, *C*, *D* Получаем квадрат.

Проводим биссектрисы углов АОС и ВОС. Получаем точки 1, 2, 3, 4, 5, 6, 7, 8, которые делят окружность на восемь равных частей. Соединяем прямыми линиями точки 1, 2, 3, 4, 5, 6, 7, 8. Получаем правильный восьмиугольник.

### 2.5.3. Деление окружности на пять равных частей

На рис. 2.17 показана деталь, которая имеет пять отверстий. Чтобы выполнить чертеж (рис. 2.18) данной детали необходимо разделить окружность на пять равных частей. Деление окружности на пять равных частей показано на рис. 2.19.



Рис. 2.17

Рис. 2.18

Рис. 2.19

Отмечаем точку 1, которая является концом вертикального диаметра окружности. Делим радиус OA на две равные части. Получаем точку B. Из центра B проводим дугу радиуса R = B1. Дуга пересекает горизонтальный диаметр окружности в точке C. От точки 1 по заданной окружности откладываем хорды, которые равны отрезку 1C. Получаем точки 2, 3, 4, 5. Точки 1, 2, 3, 4, 5 делят окружность на пять равных частей. Соединяем прямыми линиями точки 1, 2, 3, 4, 5. Получаем правильный пятиугольник.

### 2.5.4. Деление окружности на шесть и двенадцать равных частей

На рис. 2.20 показана деталь, в которой отверстие имеет форму шестигранной призмы и двенадцать одинаковых элементов. Чтобы выполнить чертеж (рис. 2.21) данной детали необходимо разделить окружность на шесть и двенадцать равных частей. Деление окружности на шесть и двенадцать равных частей показано на рис. 2.22.


Отмечаем точки A и D, которые являются концами горизонтального диаметра окружности. Из центров точек A и D проводим дуги радиуса R. Радиус R равен радиусу данной окружности. Получаем точки B, F, C, E. Точки A, B, C, D, E, F делят окружность на шесть равных частей. Соединяем прямыми линиями точки A, B, C, D, E, F. Получаем правильный шестиугольник.

Из центров 1, 4, 7 и 10, которые являются концами двух взаимно перпендикулярных диаметров окружности, проводим дуги радиуса *R*. Радиус *R* равен радиусу данной окружности. Получаем точки 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, которые делят окружность на двенадцать равных частей. Соединяем прямыми линиями точки 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Получаем правильный двенадцатицгольник.

## 2.5.5. Деление окружности на семь равных частей

На рис. 2.23 показана деталь, которая имеет семь отверстий. Чтобы выполнить чертеж (рис. 2.24) данной детали необходимо разделить окружность на семь равных частей. Деление окружности на семь равных частей показано на рис. 2.25.







Рис. 2.25

Отмечаем точку 1, которая является концом вертикального диаметра окружности. Делим радиус ОА на две равные части. Получаем точку В и точку С. Из центра 1 проводим дугу радиуса  $R_1 = BC$ . Дуга пересекает окружность в точке 2. От точки 2 по заданной окружности откладываем хорды, которые равны отрезку ВС. Получаем точки 3, 4, 5, 6, 7. Точки 1, 2, 3, 4, 5, 6, 7 делят окружность на семь равных частей. Соединяем прямыми линиями точки 1, 2, 3, 4, 5, 6, 7. Получаем правильный семиугольник.

## 2.6. Построение касательных

## 2.6.1. Построение касательной к окружности

Построение касательной к окружности через точку, лежащую на окружности, выполняется следующим образом (рис. 2.26):

1) Даны окружность радиуса *R* с центром *O* и точка *E*, которая лежит на окружности. 2) Из центра окружности *O* через точку *E* проводим отрезок *OA*, при этом *EA*=*OE*. 3) Через точку *E* проводим перпендикуляр *BC* к отрезку *OA*. *BC* есть касательная к заданной окружности в точке *E*.



## Рис. 2.26

Построение касательной к окружности из точки, не лежащей на окружности, выполняется следующим образом (рис. 2.27):





Рис. 2.27



Рис. 2.27 (окончание)

1) Даны окружность с центром О и точка А, которая не лежит на окружности. 2) Соединяем прямой линией центр окружности О с точкой А. Получаем отрезок ОА. Разделим отрезок ОА на две равные части. Получаем точку В. 3) Из центра В проводим окружность радиусом R=BO. Получаем на окружности точку С. 4) Соединяем прямой линией точки А и С. Получаем АС – касательную к окружности.

# 2.6.2. Построение касательной к двум окружностям

Касательная к двум окружностям может быть внешняя или внутренняя. Касательная называется внешней, если обе окружности лежат по одну сторону касательной (рис. 2.28). Касательная называется внутренней, если окружности лежат по разные стороны касательной (рис. 2.29).



Построение внешней касательной к двум окружностям выполняется следующим образом (рис. 2.30):

1) Даны окружность радиуса  $R_1$  с центром  $O_1$  и окружность радиуса  $R_2$  с центром  $O_2$ . 2) Из центра  $O_1$  проводим окружность радиуса ( $R_1$ – $R_2$ ). 3) К этой окружности строим касательную  $O_2B$  из точки  $O_2$ . Прямая  $O_1B$  пересекает окружность радиуса  $R_1$  в точке C. Из точки  $O_2$  проводим прямую  $O_2D$  параллельно  $O_1C$ . Точки C и D есть точки касания. 4) Соединяем точки C и D. Прямая CD есть внешняя касательная к двум данным окружностям.

Ri Or Or

D)



Contraction of the second seco



## Рис. 2.30

Построение внутренней касательной к двум окружностям выполняется следующим образом (рис. 2.31):

1) Даны окружность радиуса *R*<sub>1</sub> с центром *O*<sub>1</sub> и окружность радиуса *R*<sub>2</sub> с центром *O*<sub>2</sub>. 2) Из центра *O*<sub>1</sub> проводим окружность радиуса *R*<sub>1</sub>+*R*<sub>2</sub>. 3) К этой окружности строим касательную *O*<sub>2</sub>*B* из точки *O*<sub>2</sub>. Прямая *O*<sub>1</sub>*B* пересекает окружность радиуса *R*<sub>1</sub> в точке *C*. Из точки *O*<sub>2</sub> проводим прямую *O*<sub>2</sub>*D* параллельно *O*<sub>1</sub>*C*. Точки *C* и *D* есть точки касания. 4) Соединяем точки *C* и *D*. Прямая *CD* есть внутренняя касательная к двум данным окружностям.



1









Рис. 2.31 (окончание)

## 2.7. Построение сопряжений

На рис. 2.32 изображена деталь, которая имеет плавные контуры, то есть одна линия плавно переходит в другую. Плавный переход одной линии в другую называется *сопряжением*.

При сопряжении одна линия переходит в другую по дуге окружности. Эта дуга называется дугой сопрягающей

40

окружности. Радиус этой окружности называется радиусом сопряжения. Центр этой окружности называется центром сопряжения. Точка, в которой одна линия переходит в другую, называется точкой сопряжения. Построить сопряжение, значит, найти центр сопряжения и точки сопряжения.



Рис. 2.32

Рис. 2.33

На рис. 2.33 точка *А* и точка *В* – точки сопряжения, точка *О* – центр сопряжения, дуга *АВ* – дуга сопрягающей окружности, радиус *R* дуги сопрягающей окружности – радиус сопряжения.

Бывает сопряжение одной прямой линии с другой прямой линией, прямой линии с окружностью, одной окружности с другой окружностью. Сопряжение одной окружности с другой окружностью может быть внешним, внутренним, смешанным.

Если при сопряжении двух окружностей, их центры лежат вне сопрягающей окружности, то такое сопряжение называется внешним сопряжением (рис. 2.34, *a*).

Если при сопряжении двух окружностей, их центры лежат внутри сопрягающей окружности, то такое сопряжение называется внутренним сопряжением (рис. 2.34, б).

Если при сопряжении двух окружностей, центр одной окружности лежит вне сопрягающей окружности, а центр другой окружности лежит внутри сопрягающей окружности, то такое сопряжение называется смешанным сопряжением (рис. 2.34, в).



Рис.2.34

## 2.7.1. Построение сопряжения сторон угла

При построении чертежей деталей, показанных на рис. 2.35, выполняют построение сопряжения сторон острого угла (рис. 2.35, *a*), тупого угла (рис. 2.35, *б*) и прямого угла (рис. 2.35, *в*), дугой окружности заданного радиуса.



Сопряжение сторон острого угла дугой окружности заданного радиуса выполняют следующим образом (рис. 2.36):



Puc. 2.36

Даны острый угол и радиус сопряжения *R*. 2) Проводим на расстоянии *R* две вспомогательные прямые, параллельные сторонам данного угла. Прямые пересекаются в точке *O*. Точка *O* есть центр сопряжения. 3) Из точки *O* проводим перпендикуляры к сторонам угла. Получаем точки 1 и 2 –

точки сопряжения. 4) Из центра сопряжения О проводим сопрягающую дугу радиуса R от точки 1 до точки 2.

Сопряжение сторон тупого угла дугой окружности заданного радиуса выполняется аналогично (рис. 2.37).



Рис. 2.37

Сопряжение сторон прямого угла дугой окружности заданного радиуса выполняют следующим образом (рис. 2.38):

1) Даны прямой угол и радиус сопряжения R. 2) Из вершины A прямого угла проводим дугу радиуса R. Получаем точки 1 и 2 – точки сопряжения. 3) Из центров 1 и 2 проводим две дуги радиуса R. Дуги пересекаются в точке O. Точка O есть центр сопряжения. 4) Из центра сопряжения O проводим сопрягающую дугу радиуса R от точки 1 до точки 2.



2.7.2. Построение сопряжения окружности и прямой

При построении чертежей деталей, показанных на рис. 2.39, выполняют построение внешнего (рис. 2.39, *a*) и

внутреннего (рис. 2.39, б) сопряжения окружности и прямой дугой окружности заданного радиуса.



Внешнее сопряжение окружности и прямой дугой окружности заданного радиуса выполняют следующим образом (рис. 2.40):

1) Даны окружность радиуса *R*<sub>1</sub> с центром *O*<sub>1</sub> и прямая а. 2) Проводим вспомогательную дугу радиуса (*R*+ *R*<sub>1</sub>) из центра *O*<sub>1</sub>. 3) Проводим на расстоянии *R* вспомогательную прямую *b*, параллельную прямой *a*. Прямая и дуга пересекается в точке *O*. Точка *O* есть центр сопряжения. 4) Проводим прямую *OO*<sub>1</sub>, получаем точку сопряжения *A*. Проводим из точки *O* перпендикуляр к прямой *a*. Получаем точку сопряжения *B*. 5) Из центра сопряжения *O* проводим сопрягающую дугу радиуса *R* от точки *A* до точки *B*.

1)







Рис. 2.40

Внутреннее сопряжение окружности и прямой дугой окружности заданного радиуса выполняют следующим образом (рис.4.41): 1) Даны окружность радиуса *R*<sub>1</sub> с центром *O*<sub>1</sub> и прямая *a*. 2) Проводим вспомогательную дугу радиуса (*R*–*R*<sub>1</sub>) из центра *O*<sub>1</sub>. 3) Проводим на расстоянии *R* вспомогательную прямую *b*, параллельную прямой *a*. Прямая и дуга пересекается в точке *O*. Точка *O* есть центр сопряжения. 4) Проводим прямую *OO*<sub>1</sub>, получаем точку сопряжения *A*. Проводим из точки *O* перпендикуляр к прямой *a*. Получаем точку сопряжения *B*. 5) Из центра сопряжения *O* проводим сопрягающую дугу радиуса *R* от точки *A* до точки *B*.





τ



Сопряжение окружности и прямой, когда прямая пересекает окружность, выполняют следующим образом (рис. 2.42):

1) Даны окружность радиуса *R*<sup>1</sup> с центром *O*<sup>1</sup> и прямая *a*. 2) Проводим вспомогательную дугу радиуса (*R*<sub>1</sub>–*R*) из центра *O*<sub>1</sub>. 3) Проводим на расстоянии *R* вспомогательную прямую *b*, параллельную прямой *a*. Прямая и дуга пересекается в точке *O*. Точка *O* есть центр сопряжения. 4) Проводим прямую *OO*<sub>1</sub>, получаем точку сопряжения *A*. Проводим из точки *O* перпендикуляр к прямой *a*. Получаем точку сопряжения *B*. 5) Из центра сопряжения *O* проводим сопрягающую дугу радиуса *R* от точки *A* до точки *B*.





Рис. 2.42

## 2.7.3. Сопряжение двух окружностей

При построении чертежей деталей, показанных на рис. 2.43, выполняют построение внешнего (рис. 2.43, *a*), внутреннего (рис.2.43, *б*) и смешанного (рис. 2.43, *в*) сопряжения двух окружностей дугой окружности заданного радиуса.



Рис. 2.43

Внешнее сопряжение двух окружностей дугой окружности заданного радиуса выполняют следующим образом (рис.2.44):

1) Даны две окружности радиуса  $R_1$  с центром  $O_1$  и радиуса  $R_2$  с центром  $O_2$ . 2) Проводим вспомогательную дугу радиуса ( $R_1+R$ ) из центра  $O_1$  и вспомогательную дугу радиуса ( $R_2+R$ ) из центра  $O_2$ . Дуги пересекается в точке O. Точка O есть центр сопряжения. 3) Проводим прямую  $OO_1$ , получаем точку сопряжения A. Проводим прямую  $OO_2$ , получаем точку сопряжения B. 4) Из центра сопряжения O проводим сопрягающую дугу радиуса R от точки A до точки B.

1)







Внутреннее сопряжение двух окружностей дугой окружности заданного радиуса выполняют следующим образом (рис. 2.45):

1) Даны две окружности радиуса *R*<sup>1</sup> с центром *O*<sup>1</sup> и радиуса *R*<sup>2</sup> с центром *O*<sup>2</sup>. 2) Проводим вспомогательную дугу радиуса (*R*–*R*<sup>1</sup>) из центра *O*<sup>1</sup> и вспомогательную дугу радиуса (*R*–*R*<sup>2</sup>) из центра *O*<sup>2</sup>. Дуги пересекается в точке *O*. Точка *O* есть центр сопряжения. 3) Проводим прямую *O*<sup>1</sup>*O*, получаем точку сопряжения *A*. Проводим прямую *OO*<sup>2</sup>, получаем точку сопряжения *B*. 4) Из центра сопряжения *O* проводим сопрягающую дугу радиуса *R* от точки *A* до точки *B*.



Рис. 2.45

Смешанное сопряжение двух окружностей дугой заданного радиуса выполняют следующим образом (рис. 2.46):

1) Даны две окружности радиуса  $R_1$  с центром  $O_1$  и радиуса  $R_2$  с центром  $O_2$ . 2) Проводим вспомогательную дугу радиуса ( $R-R_1$ ) из центра  $O_1$  и вспомогательную дугу радиуса ( $R+R_2$ ) из центра  $O_2$ . Дуги пересекается в точке O. Точка O есть центр сопряжения. 3) Проводим прямую  $O_1O_7$ ,

получаем точку сопряжения А. Проводим прямую ОО<sub>2</sub>, получаем точку сопряжения В. 4) Из центра сопряжения О проводим сопрягающую дугу радиуса R от точки A до точки B.



#### Рис. 2.46

# 2.8. Построение эллипса

Построение эллипса по большой и малой оси выполняют следующим образом (рис. 2.47):

1) Даны большая ось эллипса *AB* и малая ось эллипса *CD*. 2) Отмечаем точку пересечения осей эллипса – точку *O*. Из центра *O* проводим окружность радиуса *OA* и окружность радиуса *OC*. 3) Большую окружность делим на двенадцать равных частей. Получаем точки 1, 2, 3, ..., 12. 4) Точки деления окружности 1, 2, 3, ..., 12 соединяем прямыми линиями с центром окружности *O*. При этом, прямые 1 – 7, 2 – 8, ..., 6 – 12 делят малую окружность на двенадцать равных частей. 5) Из точек деления большой окружности проводим прямые,

параллельные *CD*. Из точек деления малой окружности проводим прямые, параллельные *AB*. Точки пересечения вертикальных и горизонтальных прямых есть искомые точки эллипса. 6) Полученные точки эллипса соединяем плавной кривой с помощью лекала. Получаем эллипс.



Рис. 2.47

#### Вопросы для закрепления

1. Какие геометрические построения вам известны?

2. Перечислите этапы деления отрезка на *n* равных частей.

3. Как разделить угол пополам?

4. Как построить центр окружности вписанной в треугольник? описанной вокруг треугольника?

5. Какие прямые делят окружность на четыре равные части?

6. Как разделить окружность на шесть равных частей?

7. Какая касательная называется внешней? внутренней?

8. Что называется сопряжением?

50

9. Что значит построить сопряжение?

10. Как построить сопряжение сторон прямого угла?

# ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ

Изображения предметов состоят из геометрических фигур, которые вам известны из математики. Изучая инженерную графику, вы будете постоянно пользоваться этими элементами графического языка и соответствующей терминологией. Рассмотрим их.

## 3.1. Точка

Точка относится к основным неопределяемым понятиям в геометрии. Точка не имеет размеров, и то, что мы показываем на чертеже точку в виде какой-то площади – кружочком (рис. 3.1, точка *A*) или пересечением двух линий (рис. 3.1, точка *B*), является лишь условным ее изображением. Точки на чертеже обозначаются прописными буквами латинского алфавита – *A*, *B*, *C*, *D*, ..., или арабскими цифрами – 1, 2, 3, 4, ....



Рис. 3.1

### 3.2. Прямая и кривая линии

Всякую линию можно представить себе как траекторию движущейся точки. При этом если направление траектории не меняется, то линия - прямая (рис. 3.2), а если направление траектории постоянно меняется то линия - кривая (рис. 3.3).





Рис. 3.3

Линии (прямые или кривые) обозначаются строчными буквами латинского алфавита – *a*, *b*, *c*, *d*, … . Прямую также можно обозначить указанием двух точек, принадлежащих данной прямой. Например, прямую *a* на рис. 3.2 можно обозначить, как прямая *a*, а слово «прямая» можно заменить круглыми скобками – (*AB*). Запись (*AB*) читается: «Прямая, которая проходит через точки *A* и *B*».

# 3.3. Взаимное положение двух прямых на плоскости

Если две прямые имеют одну общую точку, то они называются пересеклющимися, а эта точка называется точкой пересечения.

На рис. 3.4 изображены пересекающиеся прямые a и b. Точка K – точка пересечения. Пересечение прямых можно записать при помощи символа  $\cap$ . Запись  $a \cap b = K$  читается: «Прямые a и b пересекаются в точке K».

Если две прямые пересекаются под прямым углом (т. е. углом, равным 90°), то они называются *перпендикулярными*.

На рис. 3.5 изображены перпендикулярные прямые *с* и *d*. Отрезок *AB* называется *перпендикуляром* к прямой *c*. Точка *B* называется *основанием перпендикуляра*. Перпендикулярность прямых можно записать при помощи символа *⊥*. Запись *с ⊥d* читается: «Прямая *с* перпендикулярна прямой *d*».







Рис. 3.4



Рис. 3.6

Если две прямые не пересекаются, то есть не имеют общих точек, то они называются параллельными прямыми.

На рис. 3.6 изображены параллельные прямые *е* и *f*. Расстояния между параллельными прямыми по всей их длинне одинаковы. Параллельность прямых можно записать при помощи символа **||**. Запись *е* **||** *f* читается: «Прямая а параллельна прямой *b*».

# 3.4. Отрезок. Луч

Отрезком называется часть прямой, которая лежит между двумя данными точками прямой. Эти точки называются концами отрезка.

Длина отрезка – это расстояние между концами отрезка.

На рис. 3.7 изображен отрезок *AB*, который является частью прямой *a*, точки *A* и *B* – концы отрезка *AB*. Отрезок обозначается указанием его концов. Слово «отрезок» можно заменить квадратными скобками – [*AB*]. Запись [*AB*] читается: «Отрезок прямой, который ограничен точками *A* и *B*».

Лучом или полупрямой называется часть прямой, которая лежит по одну сторону от данной точки прямой. Эта точка называется началом луча или начальной точкой полупрямой.

На рис. 3.8 изображен луч *AB*, точка *A* – начало луча. Луч обозначается начальной точкой луча и еще какойнибудь точкой, которая принадлежит лучу. При этом начальная точка ставится впереди. Слово «луч» можно заменить квадратной и круглой скобками – [*AB*]. Запись [*AB*] читается: «Луч с началом в точке *A*».



Рис. 3.7

B

Рис. 3.8

# 3.5. Окружность

Окружность - это замкнутая плоская кривая линия, все точки которой находятся на одинаковом расстоянии от данной точки. Эта точка называется центром окружности. Отрезок, соединяющий любую точку окружности с ее радиусом окружности. центром, называется Отрезок, соединяющий две точки окружности, называется хордой. которая проходит через центр окружности, Хорда, диаметром окружности. Прямая, которая называется пересекает окружность, называется секущей.

На рис. 3.9 изображена окружность с центром в точке О. Отрезок ОА – радиус окружности, отрезок ВС – хорда окружности, отрезок DE – диаметр окружности. Прямая b – секущая.

Часть окружности называется *дугой окружности*. На рис. 3.10 изображена дуга окружности с центром в точке *O*. Отрезок *OA* – радиус дуги окружности. Дуга, как и отрезок, обозначается двумя буквами и знаком ∪, например, ∪ *AB*, рис. 3.10.

Прямая, которая имеет одну общую точку с окружностью называется касательной к окружности. Эта точка называется точкой касания. Касательная перпендикулярна радиусу окружности, который проходит через точку касания.







Рис. 3.10

Рис. 3.11

На рис. 3.11 прямая *а* – касательная к окружности. Точка *А* – точка касания. Можно сказать, что прямая *а* касается окружности в точке *А*.

Круг – это часть плоскости, которая ограничена окружностью (рис. 3.12). Кольцо – это часть плоскости, которая ограничена двумя окружностями, проведенными из одного центра (рис. 3.13).



Рис. 3.12



Рис. 3.13

# 3.6. Эллипс

Эллипс – это замкнутая плоская кривая (рис. 3.14), для которой сумма расстояний от любой её точки (M, N, ...) до двух точек-фокусов F1 и F2 есть величина постоянная. Она равна большой оси эллипса AB. Например, F1M + F2M = AB; F1N + F2N = AB. На рис. 20 изображен эллипс, у которого AB – большая ось эллипса. CD – малая ось эллипса. Точки F1 и F2 – фокусы эллипса. Большая и малая оси эллипса являются осями симметрии эллипса.



Рис. 3.12

# 3.7. Угол

Углом называется часть плоскости, которая заключена между двумя лучами, выходящими из одной точки. Эта точка называется вершиной угла, а два луча – сторонами угла. На рис. 3.15 изображен угол АОВ, точка О – вершина угла, лучи ОА и ОВ – стороны угла.

Угол обозначается указанием трех точек – вершины и двух точек, лежащих на сторонах угла. Слово «угол» можно заменить символом  $\angle$ . Например, угол на рис. 3.15 можно обозначить, как  $\angle AOB$ . Запись  $\angle AOB$  читается: «Угол с вершиной в точке *O*».

Биссектрисой угла называется луч, который выходит из вершины угла, проходит между сторонами угла и делит угол на две равные части (или пополам). На рис. 3.16 луч ОМ – биссектриса угла АОВ.

Каждый угол имеет определенную градусную меру или величину, отличную от нуля. Величина угла измеряется с помощью транспортира.



#### Рис. 3.15



Рис. 3.16

Угол, равный 90°, называется прямым (рис. 3.17, *a*). Прямой угол на чертеже отмечается дугой с точкой внутри. Угол больше 0° и меньше 90°, называется острым (рис. 3.17, *б*). Угол больше 90° и меньше 180° называется тупым (рис. 3.17, *в*). Угол, равный 180°, называется развернутым (рис. 3.17, *г*).



# Рис. 3.17 3.8. Ломанная

Ломаной называется линия, которая состоит из точек, не лежащих на одной прямой и отрезков, их соединяющих. Эти точки называются вершинами ломаной, а отрезки звеньями ломаной. Ломаная обозначается указанием ее вершин. На рис. 3.18 изображена ломаная А1А2А3...А" точки A1, A2, A3, ..., An – вершины ломанной, а отрезки A1A2, A2A3, ..., An1An – звенья ломаной. Ломаная называется замкнутой, если концы ломаной совпадают (рис. 3.19).



a

Рис. 3.18



Рис. 3.19

## 3.9. Многоугольники

Фигура, ограниченная плоской замкнутой ломанной линией, называется многоугольником. Вершины замкнутой ломаной являются вершинами многоугольника, а звенья ломаной – сторонами многоугольника.

Многоугольник с *п* вершинами и с *п* сторонами называется п-угольником. Например: многоугольник с тремя вершинами и тремя сторонами называется треугольником

(рис. 3.20, *a*); многоугольник с четырьмя вершинами и четырьмя сторонами называется четырехугольником (рис. 3,20, *b*); многоугольник с пятью вершинами и пятью сторонами называется пятиугольником (рис. 3.20, *b*); многоугольник с шестью вершинами и шестью сторонами называется шестиугольником (рис. 3.20, *c*) и так далее.



Рис. 3.20

Многоугольники бывают правильные и неправильные. Многоугольник называется *правильным*, если у него все стороны и все углы равны (рис. 3.21, *a*). Если равенства сторон и углов нет, то многоугольник называется *неправильным* (рис. 3.21, *б*).





Рис. 3.21

Рис. 3.22 3.10. Треугольники

*Треугольник* – это многоугольник, у которого три вершины, три стороны и три угла.

Треугольник обозначается его вершинами. Слово «треугольник» можно заменить символом  $\Delta$ . Запись  $\Delta ABC$ читается: «Треугольник с вершинами *A*, *B*, *C*».

На рис. 3.22 изображен треугольник *ABC*, точки *A*, *B*, *C* – вершины треугольника, отрезки *AB*, *BC* и *CA* – стороны треугольника, углы *A*, *B* и *C* – углы треугольника.

Если все стороны треугольника равны, то такой треугольник называется равносторонним (рис. 3.23, в). Если две стороны треугольника равны, то такой треугольник называется равнобедренным (рис. 3.23, а). Если один угол треугольника прямой, то такой треугольник называется прямоугольным (рис. 3.23, б).



Рис. 3.23

## 3.11. Четырехугольники

Четырехугольник – это многоугольник, у которого четыре вершины, четыре стороны и четыре угла. Четырехугольник обозначается его вершинами.

На рис. 3.24 изображен четырехугольник *ABCD*, точки *A*, *B*, *C*, *D* – вершины четырехугольника, отрезки *AB*, *BC*, *CD*, *DA* – стороны четырехугольника, углы *A*, *B*, *C*, *D* – углы четырехугольника.



Рис. 3.24

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон. Вершины, которые не являются соседними, называются противолежащими. Отрезки, которые соединяют противолежащие вершины, называются диагоналями. У четырехугольника ABCD на рис. 3.24 вершины A и B – соседние, а вершины A и C – противоположные, отрезки AC и BD – диагонали.

К четырехугольникам относятся параллелограмм, прямоугольник, ромб, квадрат и трапеция. Рассмотрим их.

Параллелограмм – это четырехугольник, у которого противолежащие стороны попарно параллельны. Противолежащие углы параллелограмма равны. На рис. 3.25, а изображен параллелограмм ABCD. AD  $\parallel BC$  и AB  $\parallel DC$ ; AD=BC и AB=DC;  $\angle A = \angle C$  и  $\angle B = \angle D$ .

Ромб – это параллелограмм, у которого все стороны равны. Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов. На рис. 3.25, в изображен ромб ABCD. AD || BC и AB || DC; AB=BC=CD=DA; ∠A=∠C и∠ B = ∠D; AC → BD.

*Квадрат* — это прямоугольник, у которого все стороны равны. На рис. 3.25, г изображен квадрат *ABCD*. *AB*  $\parallel$  *DC* и *BC*  $\parallel$  *AD*; *AB* = *BC* = *CD* = *DA*;  $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$ .

Трапеция – это четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны. Параллельные стороны называются основаниями трапеции. Непараллельные стороны называются боковыми сторонами трапеции. На рис. 3.25, д изображена трапеция ABCD, AD || ВС. Стороны AD и ВС – основания трапеции. АВ и DC – боковые стороны трапеции.



#### Рис. 3.25

### Вопросы для закрепления

1. Как обозначаются на чертеже точки? линии?

2. Какие прямые называются параллельными? пересекающимися?

перпендикулярными?

3. Что называется отрезком? лучом?

4. Дайте определение окружности, круга и кольца.

5. Что называется, диаметром окружности? радиусом?

6. Дайте определение угла.

7. С помощью чего измеряется величина угла?

8. Что называется биссектрисой угла?

9. Какой угол называется прямым? острым? тупым? развернутым?

10.Как называется фигура, которая состоит из точек, не лежащих на одной прямой и отрезков, соединяющих эти точки?

11. Что называется многоугольником?

12. Какие многоугольники называются правильными? неправильными?

13. Что называется диагональю четырехугольника?

14. Дайте определение треугольника, параллелограмма, прямоугольника, ромба, квадрата, параллелограмма, ромба и трапеции.

15. Равнобедренный треугольник – это правильный многоугольник или неправильный? Обоснуйте ответ.

## ГЛАВА 4. ГЕОМЕТРИЧЕСКИЕ ТЕЛА

Форма большинства предметов, которые окружают нас в жизни, представляет собой сочетание различных геометрических тел или их частей.

С большинством из них вы уже знакомы. На рис. 4.1 вы видите изображение некоторых геометрических тел, это призма, пирамида, цилиндр, конус и шар.



Каждое из представленных тел имеет свои характерные признаки, по которым мы их отличаем, например, цилиндр от конуса, а конус от пирамиды.

Рис. 4.1

Следовательно, для того, чтобы научиться правильно изображать эти геометрические тела на чертеже, необходимо познакомиться с этими признаками. Рассмотрим их.

# 4.1. Образование простейших поверхностей

Геометрическим телом называется замкнутая часть пространства, которая ограничена со всех сторон поверхностями.

В свою очередь *поверхность* определяется как совокупность всех последовательных положений линии, движущейся в пространстве по определенному закону.

Линия, которая перемещается в пространстве и образует поверхность, называется образующей. Образующая перемещается в пространстве по другой линии, которая называется направляющей.



#### Рис. 4.2

Поверхности обозначаются прописными буквами греческого алфавита – *А*, *В*, *Х*, *Δ*, ...

На рис. 4.2 изображена поверхность  $\Psi$ , которая образована перемещением линии *а* по линии *b*. Линия *a* – образующая, а линия *b* – направляющая. Рассмотрим образование некоторых простейших поверхностей.

# 4.1.1. Призматическая и пирамидальная поверхности

Призматическая поверхность – это поверхность, которая образована перемещением прямой (образующей) по ломанной (направляющей). При движении прямая остается параллельной своему первоначальному положению.

На рис. 4.3 даны прямая а и ломаная линия ABCD. Прямая а (образующая) движется по ломаной ABCD (направляющей), оставаясь параллельной своему первоначальному положению. В результате получаем призматическую поверхность.



Рис. 4.3



Рис. 4.4

Пирамидальная поверхность – это поверхность, которая образована перемещением прямой (образующей) по ломанной (направляющей). При движении прямая постоянно проходит через некоторую неподвижную точку, которая называется вершиной пирамидальной поверхности.

На рис. 4.4 даны неподвижная точка *S*, прямая *a* и ломаная *ABCD*. Прямая *a* (образующая) движется по ломаной *ABCD* (направляющей), постоянно проходя через точку *S*. В результате получаем пирамидальную поверхность.

## 4.1.2. Цилиндрическая и коническая поверхности

Цилиндрическая поверхность образуется по тому же закону, что и призматическая поверхность, только направляющая линия не ломаная, а кривая.

Цилиндрическая поверхность – это поверхность, которая образована перемещением прямой (образующей) по кривой (направляющей). При движении прямая остается параллельной своему первоначальному положению.

На рис. 4.5 даны прямая *а* и кривая линия *ABC*. Прямая *а* (образующая) движется по кривой *ABC* (направляющей), оставаясь параллельной своему первоначальному положению. В результате получаем цилиндрическую поверхность.

Коническая поверхность образуется по тому же закону, что и пирамидальная поверхность, только направляющая линия не ломаная, а кривая.







Рис. 4.5

Рис. 4.6

Рис. 4.7

Коническая поверхность – это поверхность, которая образована перемещением прямой (образующей) по кривон (направляющей). При движении прямая постоянно проходит через некоторую неподвижную точку, которая называется вершиной конической поверхности.

На рис. 4.6 даны неподвижная точка *S*, прямая линия *a* и кривая линия *ABC*. Прямая *a* (образующая) движется по кривой *ABC* (направляющей), постоянно проходя через точку *S*. В результате получаем коническую поверхность.

# 4.1.3. Сферическая поверхность

Сферическая поверхность – это поверхность, которая образована вращением окружности вокруг неподвижной осн, проходящей через диаметр окружности.

На рис. 4.7 дана окружность *ABCD* и неподвижная ось *I* – *J*, которая проходит через вертикальный диаметр *AB* окружности. Окружность *ABCD* вращается вокруг оси *I* – *J*. В результате такого вращения образуется сферическая поверхность.

## 4.2. Призма

Призма – это геометрическое тело, которое ограничено замкнутой призматической поверхностью и двумя пересекающими ее взаимно параллельными плоскостями.

Например, на рис. 4.8 призму образуют замкнутая призматическая поверхность *Ч* и взаимно параллельные плоскости *H*<sup>1</sup> и *H*<sup>2</sup>.







Замкнутая призматическая поверхность, которая образовывает призму, называется боковой поверхностью призмы. Две параллельные плоскости, пересекающие призматическую поверхность, называются основаниями призмы (рис. 4.9).

Боковая поверхность призмы состоит из плоскостей, которые называются гранями призмы (рис. 4.9). Линии пересечения граней призмы называются ребрами призмы (рис. 4.9). Ребра призмы разделяются на боковые ребра и ребра основания.

Призмы бывают прямые и наклонные. Призма называется прямой, если боковые ребра перпендикулярны основанию (рис. 4.10, *a*). В противном случае призма называется наклоннои (рис. 4.10, *б*).



Рис. 4.10

По форме основания призмы бывают треугольные (рис. 4.11, *a*), четырехугольные (рис. 4.11, *b*), пятиугольные (рис. 4.11, *b*) и т. д.



0D

а



Рис. 4.11

Призмы бывают правильные и неправильные. Призма называется правильной, если основания призмы правильные многоугольники. В противном случае призма называется неправильной.

Призма, у которой все грани и основания – квадраты, называется кубом (рис. 4.12, а). Неправильная четырехугольная призма называется прямоугольным параллелепипедом (рис. 4.12, б).



## 4.3. Пирамида

Пирамида – это геометрическое тело, которое ограничено замкнутой пирамидальной поверхностью и пересекающей ее плоскостью. Например, на рис. 4.13 пирамиду образуют замкнутая пирамидальная поверхность  $\Psi$  и плоскость H.









Замкнутая пирамидальная поверхность, которая образовывает пирамиду, называется боковой поверхностью пирамиды. Плоскость, пересекающая пирамидальную поверхность, называется основанием пирамиды (рис. 4.14). Боковая поверхность пирамиды состоит из плоскостей, которые называются гранями пирамиды (рис. 4.14). Линии пересечения граней пирамиды называются ребрами пирамиды (рис. 4.14). Ребра пирамиды разделяются на боковые ребра и ребра основания. Боковые ребра сходятся в одной точке, которая называется вершиной пирамиды (рис. 4.14). Перпендикуляр, опущенный из вершины пирамиды на плоскость основания, называется высотой пирамиды (рис. 4.14).



Рис. 4.15

Пирамиды бывают прямые и наклонные. Пирамида называется прямой (рис. 4.15, *a*), если высота пирамиды перпендикулярна её основанию и проходит через его центр. В противном случае пирамида называется наклонной (рис. 2.15, *б*). Пирамиды бывают полные (рис. 4.15, *а*) и усеченные (рис. 4.15, *в*). У усеченной пирамиды два подобных основания.

По форме основания пирамиды бывают треугольные (рис. 4.16, *a*), четырехугольные (рис. 4.16, *b*), пятиугольные (рис. 4.16, *b*) и т.д.



Рис. 4.16

a

Пирамиды бывают правильные и неправильные. Пирамида называется правильной, если основание пирамиды – правильный многоугольник. В противном случае пирамида называется неправильной.

# 4.4. Цилиндр

*Цилиндр* – это геометрическое тело, которое ограничено замкнутой цилиндрической поверхностью и двумя пересекающими ее взаимно параллельными плоскостями.

Например, на рис. 4.17 цилиндр образуют замкнутая цилиндрическая поверхность 4′и взаимно параллельные плоскости *H*1 и *H*2.

Замкнутая цилиндрическая поверхность, которая образовывает цилиндр, называется боковой поверхностью цилиндра (рис. 4.18). Две параллельные плоскости, пересекающие цилиндрическую поверхность, называются основаниями цилиндра (рис. 4.18).



Рис. 4.17

Рис. 4.18

Цилиндры бывают прямые и наклонные. Цилиндр называется прямым, если образующие цилиндрической поверхности перпендикулярны плоскости основания (рис. 4.19, *a*). В противном случае цилиндр называется паклопным (рис. 4.19, *б*).

## Рис. 4.19

# 4.5. Конус

а

Конус – это геометрическое тело, которое ограничено замкнутой конической поверхностью и пересекающей ее плоскостью.

Например, на рис. 4.20 конус образуют замкнутая коническая поверхность  $\Psi$  и плоскость *H*.

Замкнутая коническая поверхность, которая образовывает конус, называется боковой поверхностью конуса (рпс. 4.21). Плоскость, пересекающая коническую поверхность, называется основанием конуса (рис. 4.21). Образующие конуса сходятся в одной точке, которая называется вершиной конуса (рис. 4.21). Перпендикуляр, опущенный из вершины конуса на плоскость основания, называется высотой конуса (рис. 4.21).



б





Конусы бывают прямые и наклонные. Копус называется прямым, если высота конуса проходит через центр основания (рис. 4.22, *a*).

В противном случае конус называется наклопным (рис. 4.22, б).

Конусы бывают полные (рис. 4.22, *а*) и усеченные (рис. 4.22, *в*). У усеченного конуса два подобных основания.



Рис. 4.22



Шар – это геометрическое тело, которое ограничено сферической поверхностью (рис. 4.23).




Все точки шара находятся на одинаковом расстоянии от некоторой точки О. Точка О – это центр шара (рис. 4.23). Огрезок, который соединяет две точки на поверхности шара и проходит через его центр, называется диаметром шара. На рис. 4.23 отрезок AB – вертикальный диаметр шара. Отрезки CD и EF – горизонтальные диаметры шара.

На поверхности шара выделяют линии – параллели и меридианы. Параллель – это окружность, которая лежит в плоскости, перпендикулярной вертикальному диаметру сферы. Самая большая параллель называется экватором. На рис. 4.23 окружность *CEDF* – экватор шара. Меридиан – это окружность, которая лежит в плоскости, проходящей через вертикальный диаметр сферы. На рис. 4.23 окружности *ACBD* и *AEBF* – меридианы шара. Верхняя и нижняя точки вертикального диаметра шара называются полюсами. На рис. 4.23 точки *A* и *B* – полюсы шара.

#### 4.7. Анализ геометрической формы предметов

Представить форму предмета, который имеет очертания простого геометрического тела, достаточно легко. Например, детали ось (рис. 4.24, *a*) и шпонка (рис. 4.24, *б*) имеют самую простую форму. Ось имеет форму цилиндра, а шпонка – форму параллелепипеда.

Сложнее разобраться в форме предмета, если он образован несколькими геометрическими телами, например их суммой, разностью или сочетанием суммы и разности. Для этого проводят анализ его геометрической формы.



Рис. 4.24

Анализом геометрической формы предмета называется мысленное расчленение предмета на отдельные части, которые имеют форму простых геометрических тел.

Приведем пример анализа геометрической формы трех деталей: пробки (рис. 4.24, в), втулки (рис. 4.24, г) и опоры (рис. 4.24, д).

Пробка (рис. 4.24, в) образована суммой усеченного конуса А, цилиндра Б и куба В. Пробка = Усеченный конус А + Цилиндр Б + Куб В

Втулка (рис. 4.24, г) образована вычитанием цилиндра Б из цилиндра А. Втулка = Цилиндр А – Цилиндр Б Опора (рис. 4.24, д) образована: суммой прямоугольного параллелепипеда A и цилиндра Б; вычитания из параллелепипеда слева и справа двух полуцилиндров B; вычитанием из суммы прямоугольного параллелепипеда A и цилиндра Б правильной четырехугольной призмы Г. Опора = ((Параллелепипед A – 2 Полуцилиндра B) + Цилиндр Б) – Призма Г

#### Вопросы для закрепления

1. Что называется, геометрическим телом?

2. Какие геометрические тела вы знаете?

3. Дайте определение поверхности.

4. Как образуется призматическая поверхность? ппрамидальная? цилиндрическая? коническая? сферическая?

5.В чем отличие призмы от пирамиды? Цилиндра от конуса?

6. Перечислите элементы следующих геометрических тел: конуса, цилиндра, пирамиды, призмы.

7. Назовите существенные признаки куба.

8. Какие линии выделяют на поверхности шара?

9. Что называется, анализом геометрической формы предмета?

10. Для чего нужен анализ геометрической формы предмета?

#### ГЛАВА 5. ПРЯМОУГОЛЬНЫЕ ПРОЕКЦИИ

Все предметы, которые окружают нас в жизни, имеют три измерения: длину, ширину и высоту. Однако инженер должен уметь изображать предметы на плоскости (на листе бумаги), которая имеет только два измерения: длину и щирину. Рассмотрим, как это сделать.

#### 5.1. Методы проецирования

#### 5.1.1. Общие сведения о проецировании

Рассмотрим изображение точки (рис. 5.1). Для этого возьмем в пространстве произвольную точку *A* и какуюнибудь плоскость *H* (*aul*). Через точку *A* проведем прямую так, чтобы она пересекла плоскость *H*. Получаем точку *a* – изображение точки *A* на плоскости *H*.



#### Рис. 5.1

Построение изображения точки (предмета) на плоскости называется проецированием.

Точка а называется проекцией точки А. Плоскость H, на которой получается проекция называется плоскостью проекций. Прямая Aa, с помощью которой точка A проецируется на плоскость H, называется проецирующим лучом.

Таким образом, проекция точки – это точка пересечения проецирующей прямой, которая проходит через заданную точку, с плоскостью проекций (рис. 5.1).

#### 5.1.2. Центральное и параллельное проецирование

В технике применяют два метода проецирования: метод центрального проецирования и метод параллельного проецирования.

Если проецирующие лучи, с помощью которых строится проекция предмета, исходят из одной точки, то проецирование называется центральным (рис. 5.2). Полученная при этом проекция называется центральной проекциен, а точка, из которой исходят проецирующие лучи – центром проецирования.



Рис. 5.2

Построение проекций методом центрального проецирования показано на рис. 5.2. В пространстве даны точки *A*, *B*, *C* и плоскость проекций *H*. Построим проекции точек *A*, *B*, *C* на плоскости *H*. Для этого за центр проецирования примем произвольную точку *S*. Из точки *S* проведем проецирующие лучи через точки *A*, *B*, *C*. При пересечении проецирующих лучей с плоскостью проекций *H* получаем точки *a*, *b*, *c* – центральные проекции точек *A*, *B*, *C*.

Если проецирующие лучи параллельны друг другу, то проецирование называется *параллельным* (рис.5.3), а полученная проекция – *параллельной*.

Построение проекций методом параллельного проецирования показано на рис. 5.3. В пространстве даны

точки A, B, C, D и плоскость проекций H. Построим проекции точек A, B, C, D на плоскости H. Для этого вместо центра проецирования примем направление проецирования, которое на рисунке показано стрелкой m. Через точки A, B, C, D проведем проецирующие лучи параллельно направлению проецирования. При пересечении проецирующих лучей с плоскостью проекций H получаем точки a, b, c, d – параллельные проекции точек A, B, C, D.

Параллельное проецирование может быть косоугольным и прямоугольным. Если направление проецирования не перпендикулярно плоскости проекций, то параллельное проецирование называется косоугольным (рис. 5.3). Если направление проецирования перпендикулярно плоскости проекций, то параллельное проецирование называется прямоугольным или ортогональным (рис. 5.4).



Рис. 5.3



Именно этот метод широко используется для построения изображений на чертежах.

Сначала рассмотрим процесс построения прямоугольных проекций точки, так как, зная правила построения проекций точки, мы сможем построить проекции любого предмета.

#### 5.2. Прямоугольные проекции точки

### 5.2.1. Проецирование точки на одну плоскость проекций

Построение прямоугольной проекции точки на одной плоскости проекций показано на рис. 5.5.



Рис. 5.5

Рис. 5.6

В пространстве даны точка *А* и плоскость проекций *Н*. Найдем проекцию точки *А* на плоскости *Н*. Для этого примем направление проецирования, перпендикулярное плоскости *H*, которое на рисунке показано стрелкой *m*. Через точку *А* проведем проецирующий луч параллельно направлению проецирования. При пересечении проецирующего луча с плоскостью проекций *H* получаем точку *a* – прямоугольную проекцию точки *A*.

Однако одна проекция не определяет положение точки в пространстве. Например, известна точка a – проекция точки A на плоскости H (рис. 5.6). Можно ли определить положение точки A в пространстве (относительно плоскости H)? Из чертежа видно, что a – это проекция многих точек ( $A_1$ ,  $A_2$ ,  $A_3$  и т.д.). Все эти точки лежат на одном проецирующем луче, поэтому мы не можем определить, где находится точка A.

Этот недостаток можно устранить, если построить не одну, а две прямоугольные проекции точки на двух взаимно перпендикулярных плоскостях проекций.

## 5.2.2. Проецирование точки на две плоскости проекций

Построение прямоугольных проекций точки на двух взаимно перпендикулярных плоскостях проекций показано на рис. 5.7.

Даны перпендикулярные плоскости лве взаимно проекций Η И V(83). Плоскость Н расположена горизонтально И называется горизонтальной плоскостью проекций. Плоскость Vрасположена вертикально Ιĩ называется фронтальной плоскостью проекции. Плоскости Н и V пересекаются по прямой x (икс), которая называется осью проекций.

Найдем проекции точки A на плоскостях H и V. Для этого из точки A проведем перпендикуляр к плоскости H и отметим точку a – точку пересечения перпендикуляра с плоскостью H. Точка a называется горизонтальной проекциен точки A. Величина отрезка Aa – это расстояние от точки A до плоскости проекций H. Из точки A проведем перпендикуляр к плоскости V и отметим точку a' (a штрих) – точку пересечения перпендикуляра с плоскостью V. Точка a'называется фронтальной проекцией точки A. Величина отрезка Aa' – это расстояние от точки A до плоскости проекций V.



Рис. 5.7



Две проекции точки определяют положение точки в пространстве. Например, известны горизонтальная *a* и фронтальная *a*' проекции точки *A* (рис. 5.8). Можно ли определить положение точки *A* в пространстве (относительно плоскостей *H* и *V*)? Из проекции *a* проведем перпендикуляр к плоскости *H*, а из проекции *a*' проведем перпендикуляр к плоскости *V*. Эти перпендикуляры пересекаются в одной точке – точке *A*. Следовательно, по двум проекциям *a* и *a*' мы определили положение точки *A* в пространстве.

Однако бывают случаи, когда и двух проекций недостаточно, чтобы однозначно определить геометрическую форму предмета. Например, при проецировании на две плоскости проекций двух предметов, представленных на рис. 5.9, на плоскостях проекций получаются абсолютно одинаковые изображения.

Очевидно, что двух проекций недостаточно, для того чтобы однозначно сказать, какую форму имеет каждый предмет. Необходимо построить третью проекцию. Для этого вводят еще одну плоскость проекций W (дабл ю), которую располагают перпендикулярно плоскостям V и H (рис. 5.9).



Рис. 5.9

# 5.2.3. Проецирование точки на три плоскости проекций

Построение прямоугольных проекций точки на трех взаимно перпендикулярных плоскостях проекций показано на рис. 5.10.

Третья плоскость проекций – плоскость W называется профильной плоскостью проекций. Её располагают перпендикулярно плоскостям H и V. Линия пересечения плоскостей V и W называется осью проекций z (зет). Линия пересечения плоскостей H и W называется осью проекций у (игрек). Оси проекций x, y, z пересекаются в одной точке O.

Опустим перпендикуляр из точки *A* на плоскость *W* и отметим точку *a*<sup>''</sup> – точку пересечения перпендикуляра с плоскостью *W*. Точка *a*<sup>''</sup> называется профильной проекцией точки *A*. Величина отрезка *Aa*<sup>''</sup> – это расстояние от точки *A* до плоскости проекций *W*.





Рис. 5.10

Рис. 5.11

#### 5.2.4. Эпюр точки

Однако пользоваться пространственной моделью плоскостей проекций, показанной на рис. 5.10, для отображения прямоугольных проекций предмета неудобно.

Во-первых, из-за громоздкости, а во-вторых, из-за того, что происходит искажение формы и размеров проецируемого предмета. Поэтому вместо изображения пространственной модели плоскостей проекций используют чертеж, который называется комплексным чертежом или эпюром.

Преобразование пространственной модели в эпюр осуществляется путем совмещения плоскостей H и W с фронтальной плоскостью проекций V, которая остается неподвижной. Для этого горизонтальную плоскость проекций H поворачивают вокруг оси x, а профильную плоскость проекций W – вокруг оси z, на 90° так, чтобы они совпали с фронтальной плоскостью проекций V (рис. 5.11).

На полученном эпюре (рис. 5.12) ось у изображена два раза: на плоскости *H* и плоскости *W*. Обозначим изображение оси у на *H* – ун; изображение оси у на *W* – уw.

Границы плоскостей проекций на эпюре, как правило, не показывают и сами плоскости не обозначают. На рис. 5.13 дан эпюр точки без границ плоскостей проекций.





Рис. 5.13

Рассмотрим эпюр точки A(a, a', a''). Проекции a и a'лежат на одном перпендикуляре к оси x. Проекции a' и a''лежат на одном перпендикуляре к оси z. В этом случае говорят, что точки a и a', a' и a'' расположены в проекционной связи, а прямые aa' и a'a'' называют линиями связи. Проекции a и a'' также расположены в проекционной связи. Линия связи  $aay_{\#}$  перпендикулярна оси ун, и линия связи  $a'ay_{\#}$  перпендикулярна оси уw.

Таким образом, эпюр точки – это плоский чертеж, на котором изображены прямоугольные проекции точки, расположенные в проекционной связи.

### 5.2.5. Построение третьей проекции точки по двум данным проекциям

По двум проекциям точки всегда можно построить ее третью проекцию. Рассмотрим построение третьей проекции точки на следующем примере. Задана точка *A* (*a*, *a*'). Требуется построить *a*'' – профильную проекцию точки *A*.

Для этого через a' проведем линию связи  $a' a_z$ , а через a -линию связи  $aay_p$  (рис. 5.14). Затем измерим расстояние от O до  $ay_p$  по оси  $y_H$  и отложим его на оси  $y_w$ , так как  $Oay_H = Oay_w$ . На оси  $y_W$  получим точку  $ay_w$ .

Проведем через *ау*<sub>w</sub>. линию связи вверх до пересечения с продолжением линии связи *a*'*a*<sub>2</sub>. В пересечении линий связи отметим точку *a*'' – профильную проекцию точки *A*.



При построении также можно воспользоваться или дугой окружности, проведенной из точки *O* (рис. 5.15), или биссектрисой угла *унОу*w (рис. 5.16).



Рис. 5.15

Рис. 5.16

Однако рассмотренный нами ранее способ построения третьей проекции предпочтителен как более точный.

#### 5.2.6. Прямоугольные координаты точки

Чтобы определить положение точки в пространстве относительно координатных плоскостей проекций, надо знать расстояния от точки до координатных плоскостей проекций. Эти расстояния называются координатами *точки*. Существуют три координаты: координата *х* (абсцисса), координата *у* (ордината), координата *z* (аппликата).

Координаты измеряются по осям x, y, z или по линиям, параллельным осям. Записывают координаты точки так: B(x, y, z). На первом месте стоит координата x, на втором – y, на третьем – z.

Горизонтальная проекция точки определяется координатами x и y - b (x, y). Фронтальная проекция точки определяется координатами x и z - b' (x, z). Профильная проекция определяется координатами y и z - b'' (y, z).

Построение эпюра точки В (20, 15, 25) по координатам представлено на рис. 5.17.



Рис. 5.17

От точки O по оси x откладываем 20 мм ( $x_B = 20$ мм), отмечаем точку  $b_x$ . От точки O по оси  $y_H$  откладываем 15 мм ( $y_B = 15$ мм), отмечаем точку  $b_{y_B}$ . Через точку  $b_x$  проводим линию связи вниз от оси x. Через точку  $by_n$  проводим линию связи влево от оси  $y_H$ . Точка пересечения этих линий связи b – горизонтальная проекция точки B.

От точки *O* по оси *z* откладываем 25 мм ( $z_B = 25$ мм), отмечаем точку  $b_z$ . Через точку  $b_z$  проводим линию связи влево от оси *z*. Через точку  $b_x$  проводим линию связи вверх от оси *x*. Точка пересечения этих линий связи b' – фронтальная проекция точки *B*.

Профильную проекцию точки *В* – точку *b*', находим с помощью одного из способов, рассмотренных в параграфе 5.2.5. Например, с помощью дуги окружности, проведенной из точки *О*.

Следовательно, по трем координатам точки можно построить эпюр точки и определить положение точки в пространстве.

## 5.2.7. Положения точек относительно плоскостей проекций

Если точка не лежит ни на одной из плоскостей проекций, то она называется *точкой общего положения*. Ни одна координата точки общего положения не равна нулю. Например, точка *A* на рис. 5.13 и 5.16.

Если хотя бы одна координата точки равна нулю, то точка называется *точкой частного положения*. Рассмотрим некоторые примеры точек частного положения.

Если одна координата точки равна нулю, то точка лежит на плоскости проекций. Например, координата z точки В равна нулю (рис. 5.18). Это значит, что расстояние от точки В до плоскости проекций H равно нулю, поэтому точка В лежит на плоскости проекций H и совпадает со своей горизонтальной проекцией b. Слово «совпадает» обозначают знаком «=» и записывают следующим образом: B-b.



Рис. 5.18

Из эпюра точки В видно, что фронтальная проекция b'лежит на оси x и совпадает с точкой  $b_x$  ( $b' * b_x$ ). Профильная проекция b'' лежит на оси y и совпадает с точкой  $b_y$  ( $b'' * b_y$ ). Следовательно, если точка лежит на плоскости проекций, то две проекции точки лежат на осях проекций. На рис. 5.18 кроме эпюра точки *В* даны эпюры точек частного положения *С* и *D*. Координата у точки *С* равна нулю, следовательно точка *С* лежит на фронтальной плоскости проекций. Координата *х* точки *D* равна нулю, следовательно, точка *D* лежит на профильной плоскости проекций.

Если две координаты точки равны нулю, то точка лежит на оси проекций.

Например, координаты y и z точки E равны нулю (рис.5.19). Это значит, что расстояния от точки E до плоскостей проекций H и V равно нулю, поэтому точка Eлежит на оси x и совпадает со своей горизонтальной e и фронтальной e' проекциями (E=e=e'). Профильная проекция e'' совпадает с началом координат O (O=e'').

На рис. 5.19 кроме эпюра точки *E* даны энюры точек частного положения *M* и *N*, которые соответственно лежат на осях у и *z*.

Если три координаты точки равны нулю, то точка лежит в начале координат.

Например, координаты x, y, z точки K равны нулю (рис. 5.19). Это значит, что расстояния от точки K до плоскостей проекций H, V, W равны нулю, поэтому точка K лежит в начале координат O и совпадает со всеми тремя проекциями точки K (O=K=k=k'=k'').





#### 5.3. Прямоугольные проекции отрезка прямой

### 5.3.1. Проецирование отрезка прямой на плоскости проекций

Положение прямой в пространстве определяется двумя точками. Поэтому чтобы построить прямоугольные проекции прямой, достаточно построить проекции двух ее точек.

В пространстве дан отрезок *AB* прямой (рис. 5.20). Найдем проекции отрезка *AB* прямой на плоскости проекций *H*. Для этого из точек *A* и *B* проведем перпендикуляры на плоскость проекций *H*, получим горизонтальные проекции *a* и *b* этих точек. Соединим точки *a* и *b* прямой линией, получим горизонтальную проекцию *ab* отрезка *AB*. Аналогично находим фронтальную *a'b'* и горизонтальную *a''b''* проекции отрезка *AB* прямой на плоскостях проекция *V* и *W* соответственно.

|ab| < |AB|, |a'b'| < |AB|, |a''b''| < |AB|.







## 5.3.2. Положение прямой относительно плоскостей проекций

Прямая, которая не параллельна ни одной из трех плоскостей проекций (т. е. наклонена ко всем плоскостям проекций под углами, отличными от прямого), называется прямой общего положения (рис. 5.20). Все проекции отрезка прямой общего положения меньше, чем натуральная (действительная) величина отрезка.

Прямые, параллельные одной или двум плоскостям проекций, называются прямыми частного положения. Прямые, параллельные одной плоскости проекций, называются прямыми уровня. Одна проекция отрезка прямой уровня равна натуральной величине отрезка.

Прямых уровня три. Прямая *CD* на рис. 5.21 параллельна горизонтальной плоскости проекций *H* и наклонена к фронтальной *V* и профильной *W* плоскостям проекций. Такая прямая называется *горизонтальной прямой*. Проекция *c' d'* параллельна оси *x*, а проекция *c'' d''* параллельна оси *x*, а проекция *c'' d''* параллельна оси *y*. Проекция *cd* равна натуральной величине отрезка *CD*.



 $|cd| = |CD|, \ |c'd'| < |CD|, \ |c''d''| < |CD|.$ 

Рис. 5.21

Прямая *EF* на рис. 5.22 параллельна фронтальной плоскости проекций V и наклонена к горизонтальной H и

профильной W плоскостям проекций. Такая прямая называется фронтальной прямой. Проекция ef параллельна оси x, а проекция e'f' параллельна оси z. Проекция e'f' равна натуральной величине отрезка EF.

|ef| < |EF|, |e'f'| = |EF|, |e''f''| < |EF|.



Рис. 5.22

Прямая *KL* на рис. 5.23 параллельна профильной плоскости проекций *W* и наклонена к горизонтальной *H* и фронтальной *V* плоскостям проекций.

Такая прямая называется профильной прямой. Проекция mn параллельна оси y, а проекция k' l' параллельна оси z. Проекция k'' l'' равна натуральной величине отрезка KL.

|kl| < |KL|, |k'l'| < |KL|, |k''l''| = |KL|.







Прямые, перпендикулярные одной плоскости проекций, называются проецирующими прямыми. Они параллельны двум другим плоскостям проекций. Две проекции отрезка проецирующей прямой равны натуральной величине отрезка.

Проецирующих прямых тоже три. Прямая *MN* на рис. 5.24 параллельна фронтальной *V* и профильной *W* плоскостям проекций, следовательно, перпендикулярна горизонтальной плоскости проекций *H*.

Такая прямая называется горизонтально-проецирующей прямой. Проекция тп – точка, так как т<sup>#</sup>п. Проекции т'п' и т''п'' параллельны оси z, и равны натуральной величине отрезка MN.





Прямая PQ на рис. 5.25 параллельна горизонтальной H и профильной W плоскостям проекций, следовательно, перпендикулярна фронтальной плоскости проекций V. Такая прямая называется *фронтальнопроецирующей прямой*. Проекция p'q' – точка, так как p'=q'. Проекции pq и p''q'' параллельны оси y и равны натуральной величине отрезка PQ. p'q', |pq|=|p''q''|=|PQ|.



Прямая ST на рис. 5.26 параллельна горизонтальной H и фронтальной V плоскостям проекций, следовательно, перпендикулярна профильной плоскости проекций W. Такая прямая называется профильнопроецирующей прямой. Проекция s''t'' – точка, так как s''=t''. Проекции st и s't' параллельны оси x и равны натуральной величине отрезка ST.

s''=t'', |s't'| = |st| = |ST|.



Рис. 5.26

#### 5.3.3. Точка на прямой

Если точка принадлежит прямой, то проекции точки лежат на соответствующих проекциях этой прямой. На рис. 5.27 дана прямая *АВ* и ее проекции.



Puc. 5.2/

На прямой *AB* возьмем произвольную точку, например, точку *C*. Горизонтальная проекция *c* точки *C* лежит на горизонтальной проекции *ab* прямой *AB*. Фронтальная проекция *c'* точки *C* лежит на фронтальной проекции *a'b'* прямой *AB*. Профильная проекция *c''* точки *C* лежит на профильной проекции *AB*. Про точку *C* говорят, что она принадлежит прямой *AB*. Выражение «точка принадлежит прямой» записывают так:

#### $C \in AB$ .

Точка D (рис. 5.27) не принадлежит прямой AB, потому что фронтальная проекция d' точки D не лежит на фронтальной проекции a'b' прямой AB. Точка E (рис. 5.27) не принадлежит прямой AB, потому что фронтальная проекция e' и горизонтальная проекция e точки E не лежат на фронтальной и горизонталной проекциях ab, a'b' прямой AB.

> •C ∈  $(AB) \Rightarrow (•c \in ab)u(•c' \in a'b')$ •D ∉  $(AB) \Rightarrow (•d \in ab), a(d' ∉ a'b')$ •E ∉  $(AB) \Rightarrow (•c ∉ ab)u(•c' ∉ a'b')$

### 5.4. Прямоугольные проекции плоскости 5.4.1. Изображение плоскости на комплексном чертеже

Плоскость на чертеже может быть задана несколькими способами



 проекциями трех точек, не лежащих на одной прямой (рис. 5.28, *a*);

 проекциями прямой и точки, не лежащей на этой прямой (рис. 5.28, б);

проекциями двух пересекающихся прямых (рис. 5.28, в);

проекциями двух параллельных прямых (рис. 5.28, г);

- проекциями любой плоской фигуры (рис. 5.28, ∂);
- следами плоскости (рис. 5.28, е).

### 5.4.2. Положение плоскости относительно плоскостей проекций

Плоскость может занимать общее и частное положения относительно плоскостей проекций.

Плоскость, которая не перпендикулярна и не параллельна ни одной из плоскостей проекций (то есть, наклонена ко всем плоскостям проекций под углами не равными 90°), называется плоскостью общего положения.

Фигура, лежащая в плоскости общего положения, не проецируется в натуральную величину ни на одну из плоскостей проекций.

На рис. 5.29 дана плоскость общего положения *Q*, заданная треугольником *ABC*.



Рис. 5.29

Плоскости, перпендикулярные или параллельные плоскостям проекций, называются плоскостями частного положения.

Плоскость перпендикулярная одной плоскости проекций, называется *проецирующей*.

Фигура, лежащая в проецирующей плоскости, проецируется в отрезок на ту плоскость проекций, которой перпендикулярна проецирующая плоскость.

Проецирующих плоскостей три: горизонтальнопроецирующая, фронтально-проецирующая и профильнопроецирующая.

На рис. 5.30 плоскость *T*, заданная треугольником *ABC*, перпендикулярна горизонтальной плоскости проекций. Такая плоскость называется горизонтально-проецирующей.



Рис. 5.30

Проекция треугольника *ABC* на плоскости проекций *H* – отрезок *ab* 

(линия abc). Проекции треугольника ABC на плоскостях проекций V и W – треугольники a'b'c' и a''b''c'', не равные натуральной величине треугольника ABC.

На рис. 5.31 плоскость *R*, заданная треугольником *DEF*, перпендикулярна фронтальной плоскости проекций. Такая плоскость называется *фронтально-проецирующей*.



Рис. 5.31

Проекция треугольника DEF на плоскости проекций V – отрезок d'f'. Проекции треугольника DEF на плоскостях проекций H и W – треугольники def и d''e''f'', не равные натуральной величине треугольника ABC.

На рис. 5.32 плоскость *P*, заданная треугольником *KMN*, перпендикулярна профильной плоскости проекций.



Рис. 5.32

Такая плоскость называется профильно-проецирующей. Проекция треугольника *KMN* на плоскости проекций *W* – отрезок *k''m''*. Проекции треугольника *KMN* на плоскостях проекций *H* и *V* – треугольники *kmn* и *k'm'n'*, не равные натуральной величине треугольника *KMN*.

Плоскость, параллельная одной плоскости проекций (и перпендикулярная двум другим плоскостям проекций), называется плоскостью уровня.

Фигура, лежащая в плоскости уровня, проецируется в натуральную величину на ту плоскость проекций, которая параллельна заданная плоскость. Две другие проекции – отрезки прямых параллельные осям проекций.

Плоскостей уровня три: горизонтальная, фронтальная и профильная.







На рис. 5.33 плоскость *T*, заданная треугольником *ABC*, нараллельна горизонтальной плоскости проекций и нернендикулярна плоскостям проекций *V* и *W*. Такая плоскость называется горизонтальной.

Проекция треугольника *ABC* на плоскости проекций *H* – треугольник *abc*, равный натуральной величине треугольника *ABC*. Проекции треугольника *ABC* на плоскостях проекций *V* и *W* – отрезки *a'b'* и *a''b''*, параллельные соответственно осям проекций *x* и *y*.

На рис. 5.34 плоскость *R*, заданная треугольником *DEF*, параллельна фронтальной плоскости проекций и перпендикулярна плоскостям проекций *H* и *W*. Такая плоскость называется *фронтиальной*.





#### Рис. 5.34

Проекция треугольника *DEF* на плоскости проекций V – треугольник *d'e'f'*, равный натуральной величине треугольника *DEF*. Проекции треугольника *DEF* на плоскостях проекций *H* и *W* – отрезки *df* (линия *def*) и *f''e''* (линия *d''e''f''*), параллельные соответственно осям проекций X п z.



На рис. 5.35 плоскость *P*, заданная треугольником *KMN*, параллельна профильной плоскости проекций и перпендикулярна плоскостям проекций *H* и *V*. Такая плоскость называется профильной.

Проекция треугольника *KMN* на плоскости проекций *W* – треугольник *k''m''n''*, равный натуральной величине треугольника *KMN*. Проекции треугольника *KMN* па плоскостях проекций *H* и *V* – отрезки *km* и *k'm'* (липии kmn, *k'm'n'*), параллельные соответственно осям проекций *y* и *z*.

#### 5.4.3. Прямая и точка в плоскости

**Прямая принадлежит плоскости, если** она проходит через **две точки, которые принадлежат плоскости**.

На рис. 5.36 дана горизонтальная *abc* и фронтальная *a'b'c'* проекции плоскости *Q*(*ABC*) и фронтальная проекция *m'n'* прямой *MN*.

Построим горизонтальную проекцию *mn* прямой *MN*, если известно, что прямая *MN* принадлежит плоскости *Q*.

1/1



Фронтальная проекция *m'n'* пересекает прямые *a'b'* и *a'c'*. Отметим точки их пересечения 1' и 2'. Из вспомогательных точек 1' и 2' проведем линии связи до пересечения с соответствующими горизонтальными проекциями *ab* и *bc*. Отметим точки 1 и 2. Через эти точки проведем прямую линию 1-2. Из точек *m'* и *n'* проведем линии связи до пересечения с прямой линией 1-2. Отметим точки *m* и *n*. Получаем горизонтальную проекцию отрезка *mn* прямой *MN*.

Прямая *MN* принадлежит плоскости *Q*, так как имеет две общие точки с плоскостью.

 $MN = Q(ABC) \Rightarrow m \in ab, m' \in a'b' \bowtie n \in ac, n' \in a'c'.$ 

Точка принадлежит плоскости, если она лежит на прямой, которая принадлежит плоскости.

На рис. 5.37 дана горизонтальная *abc* и фронтальная *a'b'c'* проекции плоскости *Q*(*ABC*) и горизонтальная проекция *m* точки *M*. Необходимо найти фронтальную проекцию точки *M*.





Для этого через точку плоскости В (горизонтальная проекция b) и точку M (горизонтальная проекция m) проводим прямую B1 (рис. 5.37, a), принадлежащую плоскости Q. Точка 1 принадлежит стороне AC плоскости треугольника, из вспомогательной точки 1 проводим липпю связи до пересечения с соответствующей фронтальной проекцией a'c', находим фронтальную проекцию точки 1(1'). Проводим фронтальную проекцию точки M (рис. 5.37, б).

#### $M \in Q(ABC) \Rightarrow m \in ac, m' a'c'.$

#### 5.5. Прямоугольные проекции геометрических тел

Форма большинства предметов представляет собой сочетание различных геометрических тел или их частей. Следовательно для чтения чертежей необходимо знать, как изображаются геометрические тела.

#### 5.5.1. Проекции призмы

На рис. 5.38 изображена прямая правильная треугольная призма.

Призмой называется многогранник, у которого основания - равные многоугольники с соответственно параллельными сторонами. Боковые грани призмы - параллелограммы. Если ребра боковых граней перпендикулярны основанию, то призму называют прямой. Для задания призмы достаточно задать одно ее основание и боковое ребро. У прямой призмы все грани будут являться проецирующими плоскостями.



Рис. 5.38

Точка принадлежит поверхности, если она принадлежит какойнибудь линии, принадлежащей поверхности. Линия принадлежит поверхности, если она проходит через точки, принадлежащие поверхности. На рисунке 5.39 показаны две проекции прямой призмы.

Точка *М* заданная проекцией *m*' принадлежит поверхности призмы. Нужно найти горизонтальную проекцию точки *М*. Так как грань *BC* представляет собой проецирующую плоскость, следовательно все точки расположенные в этой грани будут расположены на линии основания призмы *bc* (рисунок 5.39).



#### 5.5.2. Проекции пирамиды

Пирамида представляет собой многогранник, у которого одна грань - основание (произвольный многоугольник *ABCD*). Остальные грани (боковые) - треугольники с общен вершиной *S*, называемой вершиной пирамиды. Для задания на чертеже пирамиды достаточно задать ее основание и вершину. На рис. 5.40 показаны две проекции прямой пирамиды.



Рис. 5.40

Чтобы построить проекции точки на поверхности пирамиды, нужно через эту точку провести прямую. Например, если задана фронтальная проекция точки *M*, принадлежащей грани *SAB*, то для построения горизонтальной проекции нужно через эту точку провести прямую *S1*. Также через точку *N* заданную фронтальной проекцией мы проводим прямую 2–3 параллельную стороне треугольника основания пирамиды *BC*. Находим горизонтальную проекцию прямой 2–3, а затем определяем недостающую горизонтальную проекцию точки *N*.

#### 5.5.3. Проекции цилиндра

Цилиндром называется тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, – образующими цилиндра.

На рис. 5.41 изображен цилиндр. Круги с центрами О и Ог являются его основаниями, АА1, ВВ1, СС1 – его образующие. Цилиндр называется прямым, если его образующие перпендикулярны илоскостям оснований. На рис. 5.42 изображен наклонный цилиндр. Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований.



#### 5.5.4. Проекции конуса

Копусом называется тело, которое состоит из круга – основания копуса, точки, не лежащей в плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Огрезки, соединяющие вершину конуса с точками окружности основания, называют образующими конуса. Поверхность конуса состоит из основания и боковой поверхности. На рис. 5.43 изображен круговой конус. S – вершина конуса, круг с центром в точке O – основание конуса, SA, SB, SC – образующие конуса.



Рис. 5.43

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.

#### 5.5.5. Проекции шара

Шаром назывется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. На рисунке 5.44 изображен шар с нентром в точке О и радиусом *R*.



Рис. 5.44

Точки А, В, М и О принадлежат данному шару. Граница шара называется шаровой поверхностью или сферой. Отрезок, соедшияющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар образуется при вращении полукруга вокруг его днаметра как оси. Плоскость, проходящую через ось поверхности вращения, называют меридиальной. Линию ее пересечения с поверхностью меридианом. Меридиан, параллельный фронтальной плоскости проекций, называют главным меридианом (рис. 5.45). Наибольшая окружность, лежащая в плоскости, перпендикулярной оси вращения называется экватором.



### 5.6. Сечение геометрических тел плоскостями5.6.1. Понятие о сечениях геометрических тел. Сечение пирамиды плоскостью

Фигура, по которой плоскость пересекает тело, называется сечением. Плоскость, с помощью которой получается сечение, называются секущей плоскостью.

На рис. 5.46 показано сечение пирамиды фронтальнопроецирующей плоскостью *Q*.



Рис. 5.46

Фигурой сечения является треугольник *KMN*. Вершины треугольника – это точки пересечения ребер пирамиды с секущей плоскостью *Q*. Например, точка *M* – точка пересечения ребра *SA* с плоскостью *Q*. Стороны треугольника – это липия пересечения граней пирамиды с секущей плоскостью *Q*. Например, сторона *MN* – линия пересечения грани *CSB* с плоскостью *Q*.

Рассмотрим построение проекций сечения.

Так как секущая плоскость *Q* является фронтальнопроецирующей, то на фронтальную плоскость проекций она проецируется в прямую. Отметим точки *k'*, *m'*, *n'* – фронтальные проекции точек пересечения ребер пирамиды с плоскостью *Q*. Линия *k'm'n'* – фронтальная проекция сечения.

Затем от точек k', m', n' проведем линии связи до пересечения с соответствующими горизонтальными

проекциями ребер. Отметим точки *k, m, n* и соединим их прямыми линиями. Треугольник *kmm* – горизонтальная проекция сечения.

При пересечении пирамиды плоскостью в сечении могут получаться следующие фигуры:

 многоугольник, подобный основанию, если секущая плоскость параллельна основанию пирамиды;

• многоугольник, не подобный основанию, если секущая плоскость наклонена к основанию пирамиды;

• треугольник, если секущая плоскость проходит через вершину пирамиды.

#### 5.6.2. Сечение призмы плоскостью

При пересечении призмы плоскостью в сечении могут получаться следующие фигуры:

 многоугольник, равный основанию, если секущая плоскость параллельна основанию призмы (рис. 5.47, а);

 многоугольник, не равный основанию, если секущая плоскость наклонена к ребрам призмы (рис. 5.47, б);

 прямоугольник, если секущая плоскость параллельна боковым ребрам призмы (рис. 5.47, в).




## 5.6.3. Сечение цилиндра плоскостью

При пересечении прямого цилиндра плоскостью в сечении могут получаться следующие фигуры:

• круг, если плоскость параллельна основанию цилиндра (рис. 5.48, *a*); ⊚ прямоугольник, если секущая плоскость параллельна оси цилиндра (рис. 5.48, *б*);

• фигура, ограниченная эллипсом, если секущая плоскость наклонена к оси цилиндра (рис. 5.48, в)





## 5.6.4. Сечение конуса плоскостью

При пересечении прямого конуса плоскостью в сечении могут получаться следующие фигуры:

круг, если секущая плоскость параллельна основанию конуса (рис. 5.49, *a*);

•треугольник, если секущая плоскость проходит через вершину конуса (рис. 5.49, б);

•фигура, ограниченная эллипсом, если секущая плоскость пересекает все образующие конуса (рис. 5.49, в)

• фигура, ограниченная дугой параболы и отрезком прямой, если секущая плоскость параллельна одной образующей конуса (рис. 5.49, г);

• фигура, ограниченная дугой гиперболы и отрезком прямой, если секущая плоскость параллельна двум образующим конуса (рис. 5.49, *д*).





Рис. 5.49

## 5.6.5. Сечение шара плоскостью

При пересечении шара любой плоскостью фигурой сечения является круг. Если секущая плоскость параллельна какой-либо плоскости проекций, то круг проецируется на эту плоскость в натуральную величину.

На рис. 5.50 шар пересечен фронтально-проецирующей плоскостью *Q*. Она перпендикулярна плоскости проекций *V*, по наклонена к плоскостям проекций *H* и *W*.



Рис. 5.50

Сечением шара является круг, который на плоскости проекций *H* и *W* проецируется в фигуры, ограниченные эллипсами (рис. 5.51).



Рис. 5.51

Построение проекций фигуры сечения начинаем с определения характерных точек. Точки 1 и 2 находятся на главном меридиане, это самые высокая и самая низкая точки. Точки 4 и 3 находятся на экваторе и определяют видимость на горизонтальной плоскости проекций. Точки 5 и 6 находятся на профильном меридиане и определяют видимость на профильной плоскости проекций. Точки 7 и 8 принадлежат концам большой оси эллипса. Для точного построения линии сечения необходимо найти несколько дополнительных точек.

#### Вопросы для закрепления

1. Как на чертеже может быть задана плоская фигура?

2. Какая прямая называется прямой общего положения?

3. Какая прямая называется проецирующей?

4. Какая прямая называется прямой уровня?

**5. Какая плоскость называется плоскость**ю общего положения?

6. Какая плоскость называется проецирующей?

7. Какая плоскость называется плоскостью уровня?

8. При каком условии точка принадлежит поверхности?

9. Какие линии получаются при пересечении цилиндра плоскостями?

10. Какие линии получаются при пересечении конуса плоскостями?

1.1.1

## ГЛАВА 6. АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

## 6.1. Общие сведения

Для получения более наглядного изображения предмета, которое создавало бы о нем непосредственное представление, используется система аксонометрических проекций, или аксонометрия. Аксонометрия (от греч. axon ось и metreo – измерять) измерение по осям.

Предмет располагают определенным образом относительно взаимно перпендикулярных координатных осей *X*, *Y*, *Z*, чтобы его главные направления не были проецирующими, и вместе с ними проецируют его на произвольную плоскость *P*. Тогда на проекции предмета выявятся, хотя и с искажениями, все три его измерения (Рис. 6.1). Плоскость *P* называют плоскостью аксонометрических проекции, а проекции координатных осей *x*, *y*, *z* – аксонометрическими осями.



Puc. 6.1

В зависимости от угла наклона проецирующих лучей к аксонометрической илоскости проекций аксонометрия может быть косоугольной или прямоугольной (направление аксонометрического проецирования перпендикулярно к аксонометрической плоскости проекций).

## 6.2. Аксонометрия точки

На Рис. 6.2 изображены система декартовых координат и точка A, отнесенная к этой системе. Точка A связана с системой координатных осей с помощью трех звеньев – координатной пространственной ломаной линии  $oa_xa,A$ , у которой отрезки  $oa_x = x_A$ ,  $a_xa = y_A$  и  $aA = z_A$  соответствуют натуральным координатам точки A.

При проецировании этой системы на аксонометрическую плоскость проекций пространственные координатные оси изобразятся аксонометрическими осями координат, а пространственная ломаная – плоской ломаной.



Puc. 6.2

Принцип построения изображения предмета в системе аксонометрических проекций заключается в том, что точка *А* (рис. 6.2) сначала прямоугольно проецируется на координатную плоскость, а потом вместе с проекцией *a*, на основную плоскость – аксонометрическую плоскость проекций.

На аксонометрической плоскости проекций точки *А* и *а*, изобразятся своими проекциями. Аксонометрическая проекция точки *а*<sub>1</sub>, – называется вторичной проекцией точки *А*. С помощью аксонометрической проекции точки и ее

вторичной проекции можно восстановить положение точки в системе координатных осей, к которым отнесена эта точка.

Однако аксонометрические проекции декартовой системы координат еще не позволяют проводить измерения по осям, поскольку натуральные координатные отрезки при проецировании искажаются.

Прямые οхι, представляют собой OY1 И OZ1AI координат. Точка аксонометрические оси аксонометрическая проекция точки А; а1 – вторичная проекция точки а. От начала координат откладываем по осям отрезок е, который равен натуральной единице измерения. Проекции этих единиц на плоскости Q изобразятся отрезками ех, еу и ег, которые при общем положении осей относительно плоскости Q не равны между собой. Отрезки ex, еу, ег будут представлять собой аксонометрические единицы измерения, или аксонометрические масштабы. С помощью этих масштабов на аксонометрическом изображении уже можно проводить измерение по осям и направлениям, им параллельным.

Для установления действительных размеров предмета пользуются так называемыми коэффициентами искажения по координатным осям, которые представляют собой отношение аксонометрических координат к натуральным. Числовое выражение коэффициентов искажения показывает, во сколько раз увеличиваются или уменьшаются отрезки по осям в своих аксонометрических изображениях. Обозначим эти коэффициенты:

по осн х

по оси у

по осн 2

Доказано, что сумма квадратов коэффициентов искажения удовлетворяет уравнениям:

для косоугольной аксонометрии –  $m^2 + n^2 + k^2 = 2 + ctg^2$   $a_i$ ;

для прямоугольной аксонометрии – *m*<sup>2</sup>+*n*<sup>2</sup>+*k*<sup>2</sup>=2.

Коэффициенты искажения по всем трем осям могут быть одинаковыми, такая аксонометрия называется изометрией (m = n = k.), при равенстве лишь двух коэффициентов искажения – диметрией ( $m = k \neq n$  или  $m = n \neq k$ ); и, наконец, при разных коэффициентах искажения – триметрией ( $m \neq n \neq k$ ).

## 6.3. Прямоугольная изометрическая проекция

Прямоугольная изометрическая проекция – наиболее простой вид прямоугольной аксонометрии, при котором все координатные оси наклонены к аксонометрической плоскости проекций под одинаковыми углами, и, таким образом, имеют одинаковые значения коэффициентов искажения: m = n = k. Будем называть ее изометрическая проекция пли изометрия<sup>1</sup>1 (рис. 6.3).



Рис. 6.3 Числовое значение коэффициента искажения легко установить. Поскольку m = n = k, то на основании формулы

<sup>1</sup> Изометрия – равные измерения.

прямоугольной аксонометрии ( $m^2 + n^2 + k^2 = 2$ ) можно записать, что  $3m^2 = 2$ , и тогда  $m = n = k = v^2/3 \approx 0.82$ .

Однако дробные коэффициенты искажения не удобны для практических целей, поэтому чаще всего пользуются так называемыми приведенными коэффициентами искажения (в данном случае приведенными к 1). Для этого линейные размеры изометрии увеличивают во столько раз, во сколько сокращены ее основные размеры при проецировании.

При использовании приведенных коэффициентов искажения аксонометрическое изображение пропорционально увеличивается в 1,22 раза по сравнению с построенным с помощью точных коэффициентов искажения (1/0,82= 1,22).

Углы между осями в прямоугольной изометрии = 120°.

На рис. 6.4 показано построение осей в прямоугольной изометрии с помощью транспортира или циркуля.





Puc. 6.5

На рис. 6.5 изображена прямоугольная изометрия куба, три грани которого совпадают с координатными плоскостями. В грани куба вписаны окружности, которые в изометрии изображаются тремя одинаковыми эллипсами. Большие оси этих эллипсов перпендикулярны K аксонометрическим осям, перпендикулярным к плоскости эллипса. При построении прямоугольной изометрии с коэффициентами искажения, равными 0,82, большая ось эллипса будет равна натуральной величине диаметра окружности, а малая ось равна 0,58 этого диаметра. При построении с приведенными коэффициентами искажения, равными единице, большая ось эллипса будет равна 1,22 диаметра окружности, а малая ось – 0,7.

На рис. 6.6 показан в прямоугольной изометрии шар с вырезанной одной восьмой частью с помощью горизонтальной, фронтальной и профильной плоскостей, проходящих через центр шара и параллельных координатным плоскостям. Эти плоскости пересекают поверхность шара по окружностям, которые в изометрии изображаются тремя одинаковыми эллипсами, имеющими такое же соотношение осей, как и на рис. 6.5.



Puc. 6.6

## 6.4. Прямоугольная диметрическая проекция

Диметрические прямоугольные проекции получаются на плоскости аксонометрических проекций в том случае, если она наклонена под одинаковыми углами не к трём главным направлениям, а только к двум. Будем называть ее кратко диметрическая проекция или диметрия<sup>2</sup> (рис. 6.7). Обычно принимают такое положение плоскости проекций, при котором одинаковые искажения получатся по направлениям длины и высоты проектируемого предмета. Искажение по направлению глубины в этом случае получается вдвое большим, чем по направлению длины и высоты, и равно 0,47 Коэффициент искажения по натуральной величины. направлению длины и высоты равен 0,94. И в этом случае коэффициентами пользуются приведенными часто искажения. Значение коэффициента искажения округляют до 1 (если он равен 0,94) и до 0,5 (если он равен 0,47). Изображение, построенное с приведенными коэффициентами искажения, будет увеличено в 1,06 раза по сравнению с диметрией, построенной с помощью точных коэффициентов искажения (1/0,94 = 0,5/0,47 = 1.06).



Рис. 6.7

<sup>2</sup> Диметрия — двойное измерение.

Проекции координатных осей X и Y будут наклонены к горизонтальной прямой, первая на 7° и вторая на 41° (рис. 6.8). Построение этих же осей можно выполнить упрощённо. Они определяются построением уклонов 1:8 для оси X и 7:8 для оси Y, соответствующим углам 7 и 41°.



В прямоугольной диметрии все окружности, вписанные в грани куба, изображаются эллипсами (рис. 6.9), большие оси которых перпендикулярны к свободным от построения осям координат, а малые – перпендикулярны к большим осям. Отметим, что на передней (и задней) грани главные оси эллипса совпадают с диагоналями ромба. В боковых, верхней и нижней гранях большая ось эллипса не совпадает с диагональю параллелограмма, но ее положение можно точно определить, так как она перпендикулярна к соответствующей координатной оси (X, Y или Z). Так как ось Z вертикальна, то большая ось верхнего (или нижнего) эллипса должна быть всегда расположена горизонтально.



В этом виде прямоугольной аксонометрии коэффициенты искажения *m* и *k* равны между собой, а третий – *n* – не равен им и может принимать разные значения. Однако, как указывалось ранее, наиболее распространенное числовое значение этого коэффициента искажения равно 1/2 *m* или 1/2 *k*.

#### Вопросы для закрепления

1.В чем суть способа аксонометрического проецирования?

2. Сформулируйте основную теорему аксонометрии.

3. Что называется коэффициентами искажения?

4. Как связаны между собой коэффициенты искажения?

5. Как разделяются аксонометрические проекции в зависимости от направления проецирования и от сравнительной величины коэффициентов искажения?

6. Как определяется направление большой и малой осей эллипсов, являющихся изометрической и диметрической проекциями окружности?

7. Какая линия является очерком аксонометрической проекции шара?

8. Чему равны коэффициенты искажения в косоугольной фронтальной изометрии?

9. Назовите коэффициенты искажения в косоугольной фронтальной диметрии.

10. Как строятся оси в косоугольной аксонометрии?

## ГЛАВА 7. ИЗОБРАЖЕНИЯ ТЕХНИЧЕСКИХ ДЕТАЛЕЙ

## 7.1. Общие сведения об изображениях

В основу построения изображений предметов положен метод прямоугольного проецирования. Однако нередко при создании чертежей деталей трех плоскостей проекций *V*, *H* и *W* оказывается недостаточно. Поэтому за основные плоскости проекций принимают три взаимно перпендикулярные плоскости *V*, *H* и *W*, и три параллельные им плоскости.

Эти плоскости образуют грани куба.

Предмет мысленно помещают внутрь куба и проецируют на внутренние поверхности его граней (шесть основных плоскостей проекций). При этом проецирующие лучи направлены от наблюдателя к граням. Шесть граней куба совмещают с плоскостью чертежа вращением вокруг их линий пересечения. Получают чертеж, состоящий из шести проекций (рис. 7.1).



Puc. 7.1

Изображение, получаемое на фронтальной плоскости проекций, принимают за главное. Поэтому предмет надо располагать так, чтобы главное изображение давало наиболее полное представление о его форме и размерах.

В зависимости от содержания изображения разделяют на виды, сечения и разрезы. По изображениям, которые называются видами, мы можем судить о внешней форме предмета. Чтобы была понятна внутренняя форма предмета, необходимы изображения, которые называются сечениями и разрезами. Рассмотрим эти изображения.

## 7.2. Виды

Вид – это изображение видимой части поверхности предмета, обращенной к наблюдателю.

Количество видов на чертеже должно быть наименьшим, но достаточным для полного понимания формы и размеров предмета. На видах допускается показывать невидимые части предмета с помощью штриховых линий (рис. 7.2). Расстояния между видами принимают таким, чтобы было достаточно места для нанесения размеров.









Рис. 7.2 Виды разделяются на основные, дополнительные и местные.

#### Основные виды

Виды, получаемые на шести основных плоскостях проекций называются основными видами и имеют следующие названия (рис. 7.3): вид спереди (или главный вид), вид сверху, вид слева, вид справа, вид снизу и вид сзади.



Основные виды на чертеже располагают в определенном порядке, как показано на рис. 7.3. Если виды располагаются в данном порядке и в проекционной связи друг с другом, то они не обозначаются. Если проекционная связь не сохранена, то направление проецирования обозначают стрелкой. Около стрелки ставят прописную букву русского алфавита. Вид отмечают той же буквой (рис. 7.4).



#### Рис. 7.4

#### Дополнительные виды

Дополнительным видом называется вид, который получается на плоскости, не параллельной основным плоскостям проекций. Применяют дополнительные виды в тех случаях, когда какая-либо часть предмета не может быть изображена ни на одном из основных видов без искажения (рис. 7.5).



Рис. 7.5

Если дополнительный вид располагают в проекционной связи с соответствующим изображением, то его не обозначают (рис. 7.6). Если проекционная связь не сохранена, то направление проецирования обозначают стрелкой (рис. 7.7). Около стрелки ставят прописную букву русского алфавита. Дополнительный вид отмечают той же буквой рис. 7.7.

Допускается дополнительный вид поворачивать, но сохраняя положение, принятое для данного предмета на главном изображении. Обозначение вида при этом должно быть дополнено условным графическим обозначением «повернуто» –  $\mathfrak{O}$  (рис. 7.8).



## Местные виды

Местным видом называется изображение отдельного ограниченного места на поверхности предмета. Его применяют в том случае, когда требуется показать форму и размеры отдельных элементов детали. Применение местного вида позволяет уменьшить объем графических работ и сэкономить место на поле чертежа.

Местный вид на чертеже должен быть ограничен линией обрыва, которую проводят от руки. Располагают местный вид на свободном поле чертежа или в проекционной связи с другими изображениями (рис. 7.9).



Рис. 7.9

Если местный вид располагается не в проекционной связи, то его необходимо обозначить. Обозначают местный вид, так же как и дополнительный, стрелкой и буквой русского алфавита (рис. 7.10).



Рис. 7.10

Обратите внимание! Не следует путать местный и дополнительный виды. Местный вид получается на одной из основных плоскостей проекций, а дополнительный – на дополнительной плоскости, не параллельной ни одной из основных плоскостей.

## 7.3. Разрезы

Назначение, изображение и обозначение разрезов Если деталь простая, понять ее внутреннюю форму с помощью штриховых линий нетрудно. Однако в большинстве случаев детали имеют сложную внутреннюю форму, и большое количество штриховых линий делает чертеж непонятным. Чтобы ясно представить внутреннюю форму детали, применяют разрезы.

Разрез – это изображение, которое получается при мысленном рассечении предмета плоскостью (или несколькими плоскостями). При этом на разрезе показывают фигуру, которая получается в секущей плоскости и ту часть предмета, которая расположена за секущей плоскостью.

При разрезе внутренние линии контура, изображавшиеся на чертеже штриховыми линиями, становятся видимыми и выполняются сплошными основными линиями.

Если секущая плоскость совпадает с плоскостью симметрии детали и разрез расположен в проекционной связи, то разрез не обозначают. В остальных случаях разрезы обозначаются так же, как сечения, рис. 7.11.



Рис. 7.11

Положение секущей плоскости указывают на чертеже разомкнутой линией. Стрелками указывают направление взгляда. Их располагают у внешних концов разомкнутой линии. И с внешней стороны стрелок наносят одинаковые прописные буквы русского алфавита. Над разрезом пишут те же буквы через тире.

Разрезы подразделяются в соответствии с рис. 7.12:





В зависимости от числа секущих плоскостей разрезы делятся на простые (при одной секущей плоскости) и сложные (при нескольких секущих плоскостях).

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы делятся на горизонтальные, вертикальные и наклонные.

Разрезы называются продольными, если секущие плоскости направлены вдоль длины или высоты предмета,

и поперечными, если секущие плоскости перпендикулярны длине или высоте предмета.

На всех примерах, приведенных ниже, условно принято, что предметы – металлические, и для графического обозначения материала в сечениях детали делается штриховка тонкими линиями с наклоном под углом 45° к линиям рамки чертежа Штриховка на всех изображениях одной детали выполняется в одном направлении (с правым или левым наклоном).

## Вертикальные и горизонтальные разрезы

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы делятся на вертикальные и горизонтальные.

Если секущая плоскость перпендикулярна горизонтальной плоскости проекций, то разрез называется вертикальным. На рис. 7.13. изображен вертикальный разрез.



Рис. 7.13

Рис. 7.14

Если секущая плоскость параллельна горизонтальной плоскости проекций, то разрез называется горизонтальным. 7.14 изображен горизонтальный разрез. В рис. Ha зависимости OT положения секущей плоскости относительно фронтальной и профильной плоскостей проекций вертикальные разрезы делятся на фронтальные и Если секущая плоскость профильные. параллельна фронтальной плоскости проекций, то разрез называется фронтальным. На рис. 7.15 изображен фронтальный разрез.



Рис. 7.15

Если секущая плоскость параллельна профильной плоскости проекций, то разрез называется профильным. На рис. 7.16 изображен профильный разрез.



Рис. 7.16

#### Наклонный разрез

Если деталь имеет наклонно расположенные полые элементы, применяют наклонный разрез.

Наклонным разрезом называют разрез плоскостью, которая составляет с горизонтальной плоскостью проекций угол, отличный от прямого. Наклонный разрез проецируют на дополнительную плоскость, параллельную секущей, совмещая ее с плоскостью чертежа.

Пример наклонного разреза приведен на рис. 7.17. Положение секущей плоскости отмечается линией сечения со стрелками, указывающими направление взгляда. Наклонные разрезы должны располагаться в соответствии с направлением взгляда, указанного стрелками на линии сечения (рис. 7.17). Допускается располагать наклонные разрезы на любом месте поля чертежа (рис. 7.17) вне проекционной связи с видом, но с учетом направления взгляда. Обозначение разреза при этом должно быть дополнено условным графическим обозначением «повернуто» – Ю.



Рис. 7.17

#### Простые и сложные разрезы

В зависимости от количества секущих плоскостей разрезы делятся на простые и сложные.

Если разрез выполнен одной секущей плоскостью, то разрез называется простым. На рис. 7.15, 7.16 изображен простой разрез.

Если разрез выполнен двумя или более секущими плоскостями, то разрез называется сложным.

В зависимости от взаимного положения секущих плоскостей, сложные разрезы делятся на ступенчатые и ломаные.

Если секущие плоскости в сложном разрезе параллельны, то разрез называется ступенчатым.

При выполнении ступенчатого разреза секущие плоскости совмещают в одну плоскость, и ступенчатый разрез оформляется как простой. Линии, разделяющие два сечения друг от друга в местах перегибов на ступенчатом разрезе, не указываются.

На рис. 7.18 показан пример фронтального ступенчатого разреза, выполненного тремя секущими плоскостями, положение которых отмечено на виде сверху ступенчатой линией сечения (рис. 7.19).

Допускается сложные разрезы располагать вне проекционной связи с другими изображениями.





131

Если секущие плоскости в сложном разрезе пересекаются, то разрез называется ломаным.

В этом случае одна секущая плоскость условно поворачивается вокруг линии пересечения секущих плоскостей до совмещения с другой секущей плоскостью, параллельной какой-либо из основных плоскостей проекций, т. е. ломаный разрез размещается на месте соответствующего вида.

На рис. 7.20 рычаг рассечен двумя пересекающимися секущими плоскостями, одна из которых является фронтальной плоскостью. Секущая плоскость, расположенная правее, мысленно поворачивается вокруг линии пересечения секущих плоскостей до совмещения с фронтальной секущей плоскостью. Вместе с секущей плоскостью поворачивается расположенная в ней фигура сечения детали. На главном виде дано изображение рассеченной детали после выполнения указанного поворота. На рис. 7.20, в для наглядности нанесены линии связи и положение части детали после поворота. Эти построения на чертеже не показывают.

Ломаный разрез может быть получен при сечении тремя пересекающимися плоскостями. Направление поворота секущей плоскости может не совпадать с направлением взгляда.





6



#### Рис. 7.20

В отличие от простых, сложные разрезы на чертежах всегда обозначаются разомкнутой линией, стрелками и буквами.

#### Полные и местные разрезы

В зависимости от полноты разреза, разрезы делятся на полные и местные. Если секущая плоскость полностью пересекает деталь, то разрез называется полным. Во всех рассмотренных выше примерах показаны полные разрезы.

Однако в некоторых случаях бывает необходимым показать внутреннее строение формы предмета в отдельном, ограниченном месте.

Разрез, который служит для выяснения устройства детали в отдельном ограниченном месте, называется местным.

Для получения местного разреза небольшой по величине участок формы изделия мысленно удаляется. При этом секущая плоскость проходит вдоль оси отображаемого элемента (рис. 7.21).

Местный разрез не обозначается. На виде местный разрез выделяется стандартными линиями. Это может быть сплошная тонкая линия с изломом или волнистая. Линии подобного назначения не должны совпадать с другими элементами чертежа.



Рис. 7.21

## 7.4. Сечения

Сечение – это изображение фигуры, которое получается при мысленном рассечении предмета плоскостью. На сечении показывают только то, что находится в секущей плоскости.

Основное назначение сечений – показать на чертеже поперечную форму детали или элементов детали (рис. 7.22).



Рис. 7.22

#### Типы сечений и их расположение на чертеже

По расположению на чертеже сечения разделяются на наложенные и вынесенные.

Наложенные сечения располагают непосредственно на виде. Контур наложенного сечения чертят сплошной тонкой линией (рис. 7.23, *a*).



#### Рис. 7.23

Вынесенные сечения располагают вне контура детали, либо в разрыве между частями одного и того же вида, либо на продолжении линии сечения, либо на свободном месте поля чертежа. Контур вынесенного сечения чертят сплошной толстой основной линией такой же толщины, как и линия видимого контура изображения (рис. 7.23, б).

Предпочтительней использовать на чертежах вынесенные сечения.

#### Обозначение сечений

Если сечение вынесенное, то, как правило, проводят разомкнутую линию. Стрелками указывают направление взгляда. Их располагают у внешних концов разомкнутой линии. С внешней стороны стрелок наносят одинаковые прописные буквы русского алфавита. Над сечением пишут те же буквы через тире (рис.7.22, 7.24 (сечение А-А)).

Каждое сечение чертежа имеет свое буквенное обозначение.

Если сечение представляет собой симметричную фигуру, то его можно расположить на продолжении линии сечения, которая в этом случае задается штрихпунктирной линией. В этом случае стрелок и букв не наносят (рис. 7.24).



#### Рис. 7.24

#### Особые случаи выполнения сечений

Если секущая плоскость проходит через ось цилиндрической или конической поверхности, ограничивающей отверстие или углубление, то их контур на сечении показывают полностью.

Если секущая плоскость проходит через сквозное некруглое отверстие и сечение получается состоящим из отдельных самостоятельных частей, то следует применять разрезы. Наклонные сечения получаются от пересечения предмета наклонной плоскостью, составляющей с горизонтальной плоскостью проекций угол, отличный от прямого. На чертеже наклонные сечения выполняют по типу вынесенных сечений. Наклонное сечение предмета нужно строить как совокупность наклонных сечений составляющих его геометрических тел. Построение наклонных сечений основано на применении способа замены плоскостей проекций.

При вычерчивании наклонного сечения нужно определить, какие поверхности, ограничивающие предмет, рассекаются секущей плоскостью, и какие линии получаются от пересечения этих поверхностей данной секущей плоскостью. Чтение формы наклонного сечения упрощается, если построить горизонтальную проекцию наклонного сечения как наложенное сечение.

## 7.5. Условности и упрощения

#### Соединение половины вида и половины разреза

Чтобы показать внешнюю и внутреннюю форму детали, надо начертить необходимые виды и разрезы. Однако для деталей, которые симметричны по внешней и внутренней форме относительно одной и той же плоскости, вводят упрощение. Вместо двух изображений – вида и разреза, строят одно, соединяя часть вида и часть разреза.

При выполнении изображений, содержащих соединение половины вида и половины разреза, необходимо соблюдать следующие правила:

1) Половина вида и половина разреза разделяются осевой линией.

2) Разрез на чертеже располагают справа от оси симметрии или под ней.  На половине вида штриховые линии, которые показывают внутреннюю форму детали, не чертят.

4) Размерные линии, которые относятся к элементу детали вычерченному только до оси, проводят несколько дальше оси и ограничивают стрелкой с одной стороны. Размер указывают полный.

Если линия контура детали совпадает с осью симметрии, половина вида и половина разреза разделяются сплошной волнистой линией.

Сплошная волнистая линия проводится справа от оси симметрии, если эта линия контура относится к виду. Сплошная волнистая линия проводится слева от оси симметрии, если эта линия контура относится к разрезу.

#### Тонкие стенки и спицы на разрезе

В технике часто можно встретить детали, содержащие такие конструктивные элементы, как тонкие стенки, ребра жесткости, спицы. При изображении их в разрезах приняты следующие правила:

1. Если секущая плоскость проходит вдоль тонкой стенки, ребра жесткости, спицы, то на разрезе их показывают нерассеченными.

2. Если секущая плоскость проходит поперек тонкой стенки, ребра жесткости, спицы, то на разрезе они показываются рассеченными.

Если секущая плоскость проходит вдоль тонкой стенки типа ребра жесткости или вдоль спиц колес и маховиков, то на чертеже их показывают рассеченными, но не заштрихованными.

#### Вопросы для закрепления

1. Какие изображения используются для выявления внутренней формы изделия?

2. Дайте определение понятию «разрез».

3. Какие разрезы называются простыми?

4. Назовите простые разрезы.

5. С какой целью применяют сечения?

6. Какие изображения называются сечениями?

7. Какие сечения называются наложенными, а какие вынесенными?

8. Как на чертеже может быть показана линия сечений?

9. Как обозначаются вынесенные сечения?

10.В каких случаях вынесенные сечения не обозначаются?

11. Как выделяют на чертеже фигуру сечения?

12. Какие особые случаи выполнения сечений вы знаете?

13.В каких случаях соединяют часть вида с частью разреза? Какой линией их разделяют?

14.В каких случаях соединяют половину вида с половиной разреза? Какой линией их разделяют?

15.Когда не допускается совмещать половину вида с половиной разреза?

16. Дайте определение местному разрезу.

17. Какой линией ограничивают местный разрез?

18. Какие правила следует соблюдать при выполнении изображения, содержащего соединение половины вида с половиной разреза?

## ГЛАВА 8. ЭСКИЗЫ

#### 8.1. Общие сведения

Эскиз - это чертеж, предназначенный для разового использования в производстве, выполненный «от руки (без применения чертежных инструментов)», в глазомерном масштабе, с соблюдением пропорций изображаемого предмета, по правилам прямоугольного проецирования и содержащий все данные для изготовления изделия. Если эскиз используется многократно, то по эскизу выполняют чертеж.

Эскизы деталей, как правило, выполняются в следующих случаях: 
о при разработке конструкции повой детали;

 при необходимости доработки конструкции деталей в опытном варианте;

 для изготовления детали в случае выхода ее из строя в процессе эксплуатации.

На производстве часто приходится непосредственно по эскизу изготовлять деталь, поэтому к нему следует относиться как к важному техническому документу. Эскиз требует тщательной проработки, и соблюдения всех правил выполнения чертежей деталей, установленных стандартом. Эскиз выполняется карандашом с мягким грифелем на бумаге в клетку, линии должны быть ровными и четкими. Дуги окружностей можно проводить циркулем, а потом обвести от руки. Все надписи выполняют чертежным шрифтом. Пропорциональность определяется на глаз, однако размеры на эскизе должны соответствовать действительным размерам детали. Каждый эскиз сопровождается основной надписью.

#### 8.2. Последовательность выполнения эскиза

Приступая к выполнению эскиза, прежде всего, необходимо внимательно ознакомиться с деталью: по возможности выяснить ее назначение, четко уяснить общую геометрическую форму детали, форму ее отдельных составных частей. При этом полезно мысленно разделить деталь на части, имеющие форму простых геометрических тел. Установить соотношение длины, ширины и высоты детали.

Затем следует установить, сколько видов необходимо для полного выявления формы и размеров детали, выбрать главный вид.

140

Он должен давать отчетливое и наиболее полное представление о форме детали.

Строят изображение детали на эскизе в такой последовательности. Чертят на листе выбранного формата внутреннюю рамку и основную надпись. Определяют, как лучше разместить изображения на поле чертежа с помощью габаритных прямоугольников так, чтобы между ними вместились размерные линии (рис. 8.1).



Рис. 8.1

Затем на эскизе проводят осевые и центровые линии наружные и внутренние очертания контуров детали (рис. 8.2).



После этого изображают необходимые разрезы и сечения, чтобы показать внутреннее устройство детали, и обводят линии контуров (рис. 8.3).



Puc. 8.3

Затем проводят выносные и размерные линии. Обмеряют деталь, наносят размерные числа и в случае необходимости надписи. Заполняют основную надпись, где указывают название детали, материал, из которого она изготовлена (рис. 8.4).



Рис. 8.4

Проверяют правильность выполнения эскиза. При этом необходимо убедиться, что: а) изображения построены правильно и в проекционной связи; б) главный вид детали выбран удачно; в) изображений достаточно, для того чтобы выявить форму детали; г) размеры нанесены правильно; д) сделаны необходимые поясняющие надписи; е) правильно заполнена основная надпись.

# 8.3. Измерительные инструменты и приемы измерения деталей

Для определения размеров отдельных элементов деталей и размеров деталей в целом применяются измерительные инструменты и приспособления, которые по характеру осуществляемых с их помощью измерений разделяют на: универсально-измерительные и контрольноизмерительные.

Универсально-измерительные инструменты:

• для измерения длин – линейки, штангенциркули, микрометры, микрометрические нутромеры;

для измерения углов – угломеры.

Контрольно-измерительные:

для измерения длин – скобы предельные, пробки предельные;

для измерения резьбы – резьбомеры;

• для измерения углов, радиусов скруглений – шаблоны.

Контрольно-измерительные инструменты дают возможность измерять только определенные размеры, при этом видно, между какими предельными размерами находится действительная величина измеряемого размера.

Приспособления для фиксирования размеров применяются в тех случаях, когда при отсутствии необходимого измерительного инструмента нет возможности непосредственным замером определить требуемый размер. Приспособлением фиксируется замеряемый размер и затем прикладыванием к его концевым точкам универсального измерительного инструмента определяется величина
искомого размера в необходимых единицах измерения. К числу простых приспособлений, фиксирующих расстояния между измеряемыми элементами, относятся кронциркуль и нутромер.

На рис. 8.5. показаны приемы определения межосевого расстояния отверстий. Если отверстия одинакового диаметра, то можно измерить линейкой расстояние *mn*, которое равно межосевому расстоянию. При разных диаметрах отверстий линейкой измеряются отверстия *ek* между ближайшими точками отверстий и к нему прибавляется сумма размеров радиусов большего и малого отверстий (рис. 8.5). Линейка совместно с угольниками позволяет измерить длины частей деталей, имеющих ступенчатую форму (рис. 8.6).



Рис. 8.5



Рис. 8.6

На рис.8.7 показан замер размеров с помощью контрциркуля, нутромера, линейки. Криволинейная форма ножек с загнутыми внутрь концами позволяет удобно измерять диаметры поверхностей вращения.



Рис. 8.7

На рис. 8.8 показаны приемы замера размеров радиусов закруглений при помощи радиусомера, представляющего собой набор пластинчатых шаблонов. Для измерения радиуса закругления детали к ее поверхности прикладывают закругленные части шаблонов и просматривают на просвет место их соприкосновения.





Рис. 8.9

Для определения профиля и шага резьбы применяется резьбомер (рис. 8.9), представляющий собой набор металлических шаблонов с пилообразными вырезами. При определении резьбы из набора шаблонов выбирают такой, который своими зубьями плотно входит во впадины резьбы.

#### Вопросы для закрепления

1. Что называется, эскизом?

2. Каким требованиям должен удовлетворять эскиз?

3. Чем отличается чертеж от эскиза?

4. Из каких основных этапов складывается работа по снятию эскиза с натуры?

5. В какой последовательности выполняется эскиз?

6. Какие инструменты используются при обмере деталей?

# ГЛАВА 9. ТИПОВЫЕ СОЕДИНЕНИЯ ДЕТАЛЕЙ

Большинство изделий вокруг нас, например, мебель, машины, механизмы и другие, имеют составные части. У одних изделий составные части соединены неподвижно, а у других – подвижно. Одни изделия можно разобрать, не повредив их составные части, а другие нельзя. Все это возможно благодаря различным видам соединений. Соединения, которые наиболее часто применяются в различных механизмах, называются типовыми.

Соединения деталей разделяют на разъемные и неразъемные. Разъемные соединения – это такие соединения, которые можно разобрать, не повредив деталей, их составляющих, и затем снова собрать. Неразъемные соединения – это соединения, которые нельзя разобрать без разрушения деталей, их составляющих.

Рассмотрим некоторые типовые разъемные и неразъемные соединения.

# 9.1. Неразъемные соединения

К неразъемным соединениям относятся: сварные, клепаные, паяные, клееные и сшивные соединения.

# 9.1.1. Сварные соединения

Сварка представляет собой соединение стальных деталей путем расплавления их кромок и наплавления металла, который образует после затвердевания сварной шов в местах соприкосновения деталей (рис. 9.1).



Рис. 9.1

Взаимное расположение свариваемых деталей может быть разным. В зависимости от этого соединения подразделяют на стыковые (С), тавровые (Т), угловые (У), нахлесточные (Н). При стыковом соединении детали расположены в одной плоскости или на одной поверхности (рис. 9.2). При угловом соединении две детали располагаются под прямым углом и свариваются в месте примыкания их краев (рис. 9.3). При тавровом соединении к боковой поверхности одной детали примыкает торцом и приваривается другая деталь (рис. 9.4). При нахлесточном соединении кромка одной детали накладывается и приваривается к кромке другой детали (рис. 9.5).



Рис. 9.5

По протяженности сварные швы могут быть сплошными и прерывистыми, то есть с промежутками по длине (рис. 9.6).



У прерывистого шва промежутки могут располагаться по обеим сторонам стенки один против другого – это цепной шов или напротив сваренных участков – это шахматный шов.

Условные изображения и обозначения швов сварных соединений устанавливает ГОСТ 2.312-72. Видимый шов сварного соединения изображается сплошной тонкой линией, а невидимый шов – штриховой линией (рис. 9.7). Для обозначения шва применяют линию-выноску с односторонней стрелкой. Обозначение видимого шва пишут над полкой линии выноски, невидимого – под полкой. В него входят все данные, необходимые сварщику для выполнения шва.



#### Puc. 9.7

Структура условного обозначения стандартного шва согласно ГОСТ 2.312-72 приведена на рис. 9.8.



Структура условного обозначения предусматривает:

1. Вспомогательные знаки шва по замкнутой линии и монтажного шва.

2. Номер стандарта на тип и конструкцию шва.

3. Буквенно-цифровое обозначение шва по указанному стандарту на его конструкцию.

4. Условное обозначение способа сварки (допускается не указывать для ручной электродуговой сварки).

5. Знак 🛆 и размер катета шва в мм.

6. Размеры шва (длина провара, диаметр точки и др.).

7. Вспомогательные знаки по дополнительной обработке шва.



| <i>Nзнака</i> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---------------|---|---|---|---|---|---|---|---|
| знак          | / | Z | Q | ~ | 6 | 0 |   |   |

№ 1 – для прерывистого шва с цепным расположением провариваемых участков с указанием длины участка *l* и шага *t*;

№ 2 – для прерывистого шва с шахматным расположением провариваемых участков с указанием размеров *l* и *t*;

№ 3 – если требуется снять усиление шва с указанием или без указания шероховатости обработанной поверхности шва;

№ 4 – когда требуется наплывы и неровности шва обработать с плавным переходом к основному металлу;

№ 5 – когда требуется указать размер катета поперечного сечения шва;

№ 6 – при выполнении шва по замкнутой линии;

№ 7 – при выполнении шва по незамкнутой линии, поясненной на чертеже;

№ 8 – когда сварку осуществляют при монтаже изделия.

# 9.1.2. Клепаные соединения

Клёпаное соединение – это соединение, которое выполняется с помощью заклёпок (рис. 9.9). Заклёпка – это стержень круглого поперечного сечения с головкой на конце. Эта головка называется закладной головкой заклёпки.



Клёпаное соединение получается следующим образом. Две соединяемые детали накладываются одна на другую. Затем в деталях делают отверстие, диаметр d1 которого немного больше диаметра d заклёпки, d1@d. В отверстие вставляют заклёпку. Плотно прижимая закладную головку заклёпки к соединяемым деталям, ударами пресса расклепывают выступающую часть стержня, получая замыкающую головку заклёпки. Заклёпка сжимается и заполняет отверстие в деталях. Заклёпки, расположенные в ряд, образуют заклёпочный шов (рис. 9.10).



Рис. 9.10

Форма закладной головки у заклёпок может быть разная. Наибольшее распространение получили заклёпки с полукруглой головкой, потайной и полупотайной головками (рис. 9.11).



Puc. 9.11

Чертеж клёпаного соединения представлен на рис. 9.12. Чтобы заклёпки были видны, применен простой фронтальный продольный разрез. Соединяемые детали заштрихованы в разные стороны. Заклёпка на разрезе показывается не рассеченной.



Puc. 9.12

Клёпаные соединения применяют в соединениях деталей, которые плохо поддаются сварке или при соединении металлических деталей с неметаллическими. Например, при изготовлении металлоконструкций мостов, кроме сварных соединений, иногда применяют клёпаные соединения (рис. 9.13).



Рис. 9.13

# 9.1.3. Паяные, клееные и сшивные соединения

Паяные соединения получаются при помощи расплавленного припоя. Клееные соединения получаются при помощи клея.

Чертежи паяного и клееного соединений представлены на рис. 9.14. В обоих случаях швы на чертеже соединения изображают одинаково, с помощью утолщенной сплошной линии толщиной 2s.

Для обозначения шва применяют линию-выноску со стрелкой. На линии-выноске наносят условный знак пайки в виде полуокружности (рис. 9.14, *a*) – для паяного соединения, и условный знак склеивания (рис. 9.14, *б*) – для клееного соединения. Знаки изображают сплошной толстой основной линией толщиной *s*.



Рис. 9.14

Если в паяном или клееном соединениях шов выполняется по замкнутому контуру, то на конце линиивыноски изображают окружность диаметром 3 – 4 мм. Окружность изображают сплошной тонкой линией толщиной s/3 – s/2.

Сиивные соединения получаются при соединении деталей с помощью ниток или подобного материала.

На чертеже соединения шов изображают с помощью сплошной тонкой линии толщиной s/3 – s/2. Для обозначения шва применяют линию-выноску без стрелки. На линии-выноске наносят условный знак сшивания (рис. 9.15).

Знак изображают сплошной толстой основной линией толщиной *s*.



Рис. 9.15

## 9.2. Разъемные соединения

Разъемные соединения можно разделить на *резьбовые* соединения, то есть образование при помощи резьбы, и нерезьбовые соединения. К резьбовым разъемным соединениям относятся: болтовое, шпилечное, винтовое и трубное. К нерезьбовым разъемным соединениям относятся:

шпоночное и штифтовое соединения.

# 9.2.1. Общие сведения о резьбе

В технике широко применяются разъемные соединения, в которых крепление деталей осуществляется с помощью стандартизированных крепежных изделий на резьбе. Они представляют собой детали с поверхностями вращения, на которые наносятся резьбы.

Резьба на детали представляет собой винтовые канавки, полученные после прохождения резца определенного профиля вдоль поверхности вращения детали. В зависимости от применяемого оборудования возможны различные варианты движения детали и резца в процессе нарезания резьбы: вращение детали и поступательное (прямолинейное) движение вдоль оси резца; вращение и одновременно поступательное движение детали при неподвижном резце; движение резца при неподвижной детали и т.д. В итоге на детали в соответствии с формой рабочего профиля резца остается нарезная часть в виде резьбовых канавок. Контур сечения нарезной части плоскостью, проходящей через ось детали называется профилем резьбы. В зависимости от формы различают: треугольные, прямоугольные, трапецеидальные, круглые профили. Резьба называется правой, если образована контуром, вращающимся по часовой стрелке, и левой, если образована контуром, вращающимся против часовой стрелки (рис. 9.16).



Рис. 9.16

При резьбовом соединении двух деталей одна из них имеет наружную, выполненную на наружной поверхности (рис. 9.17, *a*), а другая – *внутреннюю*, выполненную в отверстии (рис. 9.17, *б*).





Шагом резьбы P называется расстояние между соседними одноименными боковыми сторонами в направлении, параллельном оси резьбы. Ходом резьбы  $P_h$  считается расстояние, между ближайшими одноименными боковыми сторонами профиля, принадлежащими одной и той же винтовой поверхности, в направлении, параллельном оси резьбы. Ход резьбы - величина относительного осевого перемещения винта (гайки) за один оборот. Резьба может быть однозаходной и многозаходной. При этом число заходов обозначают буквой n, а сам ход многозаходной резьбы обозначают буквой  $P_h$ . Кроме того, указывается шаг резьбы Pпри одном полном обороте характерной точки винтовой линии (рис. 9.18).



Рис. 9.18

Таким образом, для многозаходных резьб их ход  $P_h$  равен произведению шага P на число заходов n:  $P_h=n\times P$ . У однозаходной резьбы длина шага и ход резьбы совпадают (рис. 9.19).







Резьбы делятся на крепежные – для неподвижного соединения и ходовые – для преобразования вращательного движения в поступательное, а также для передачи вращательного движения. К крепежным резьбам обычно относится резьба треугольного профиля: метрическая, дюймовая, трубная. К ходовым резьбам относятся: прямоугольная, трапецеидальная, круглая и упорная.

Метрическая резьба имеет профиль в виде равностороннего треугольника, с углом 60° при вершине (рис. 9.20). Профиль и основные размеры метрической резьбы устанавливает ГОСТ 9150–81. Основными параметрами метрической резьбы являются наружный диаметр *d* и шаг *P*. Метрическая резьба выполняется с мелким и крупным шагами. Каждому диаметру метрической резьбы соответствует один крупный и несколько мелких шагов.



Puc. 9.20

В условное обозначение метрической резьбы с крупным шагом входит буква *M* и номинальный (наружный) диаметр резьбы в миллиметрах. Например, *M56* означает, что резьба метрическая с крупным шагом, номинальным диаметром 56 мм (величина шага не указывается). В условном обозначении метрической резьбы с мелким шагом дополнительно указывают шаг резьбы в миллиметрах, например: *M56×3*. Правое направление резьбы не указывается. Если резьба имеет левое направление, в условном обозначении указываются буквы *LH*, например: *M56×3LH*. Дюймовая резьба имеет профиль равнобедренного треугольника с углом при вершине  $55^{\circ}$ . Вершины треугольника плоско срезаны. Наружный (номинальный диаметр) дюймовой резьбы указывают в дюймах (1''=25,4 мм). Дюймовая резьба применяется только при замене пришедших в негодность деталей, имеющих дюймовую резьбу. При обозначении дюймовой резьбы указывается ее наружный диаметр в дюймах. Например, дюймовая резьба диаметром d = 1/2'' обозначается 1/2''.

Трубная цилиндрическая резьба применяется для соединения труб, арматуры трубопроводов и соединительных частей (фитингов) ГОСТ 6357–81. Трубная резьба имеет треугольный профиль с углом α = 55° со скругленными вершинами и впадинами (рис. 9.21).



#### Puc. 9.21

Профили наружной и внутренней резьб полностью совпадают. Это обеспечивает герметичность в резьбовых соединениях. Измеряют трубную резьбу в дюймах. Номинальный диаметр резьбы в дюймах – величина условная, так как ее значение не соответствует внешнему диаметру резьбы, как это принято для всех остальных резьб, а равно величине условного прохода  $d_y$  (внутреннему диаметру трубы). В условное обозначение трубной цилиндрической резьбы входит буква G, указывающая тип резьбы, и обозначение размера резьбы. Условное обозначение для левой резьбы дополняется буквами LH, которые указываются после размера резьбы. Например: G1½ LH – трубная цилиндрическая резьба размера 1½′′′, левая. Обозначение

трубной цилиндрической резьбы и конических резьб указывают на полках линий-выносок, которые проводятся от изображения резьбовой поверхности.

Трубная коническая резьба применяется в соединениях труб при больших давлениях и температуре, когда требуется повышенная герметичность соединения. По ГОСТ 6211–81 имеет треугольный профиль с углом  $\alpha = 55^{\circ}$  и закругленной вершиной. Ее нарезают на конических поверхностях деталей с той же конусностью 1:16 (рис. 9.22).



#### Puc. 9.22

Размеры резьбы в основной плоскости соответствуют размерам трубной цилиндрической резьбы. В условном обозначении трубной конической резьбы указывают тип резьбы (буквой R - для наружной резьбы, буквой Rc - для внутренней резьбы) и обозначение размера резьбы (условный диаметр в дюймах). Например,  $R1^{1/2}$  - трубная коническая наружная резьба с условным диаметром  $1^{1/2}$ ".

Трапецеидальная резьба применяется на винтах, передающих возвратно-поступательное движение. По ГОСТ 9484—81 имеет профиль резьбы в виде равнобочной трапеции с углом 30° между боковыми сторонами. Для каждого диаметра предусмотрено, как правило, три шага (рис. 9.23).





Рис. 9.23

158

В условном обозначении одноходовой трапецеидальной резьбы указывают буквы Tr, наружный диаметр и шаг, например:  $Tr 32 \times 6$ . Многозаходная трапецеидальная резьба обозначается буквами Tr, номинальным наружным диаметром резьбы, числовым значением хода и в скобках буквой P и числовым значением шага. Между номинальным диаметром и значением хода резьбы ставят знак «×», например:  $Tr20 \times 4(P2)$ . Обозначение левой резьбы дополняют буквами LH, например:  $Tr32 \times 6LH$ ,  $Tr80 \times 40(P10)LH$ .

Упорная резьба применяется на винтах, подверженных односторонне направленным усилиям, например в домкратах. По ГОСТ 10177– 82 имеет профиль в виде неравнобочной трапеции с углом 3° рабочей стороны и 30° нерабочей (рис. 9.24). Впадины профиля закруглены.



#### Рис. 9.24

Как и трапецеидальная, упорная резьба при одном диаметре может иметь различные шаги. В условное обозначение упорной резьбы входят буква S (указывающая тип резьбы), номинальный наружный диаметр и шаг, например:  $S50 \times 8$ . Для левой резьбы после условного обозначения размера резьбы указывают буквы LH, например:  $S 50 \times 8LH$ . Условное обозначение многозаходной резьбы содержит букву S, номинальный наружный диаметр, значение хода, в скобках букву P и значение шага, например:  $S 50 \times 24(P8)$ .

Резьба прямоугольная (квадратная) не стандартизована применяется в соединениях, где должно быть

самоотвинчивание под действием приложенной нагрузки. Так как профиль этой резьбы не стандартизован, то на чертеже приводят все данные, необходимые для ее изготовления (рис. 9.25).





#### Рис. 9.25

# 9.2.2. Изображение резьбы на чертежах

изображения резьбы Правила на чертежах устанавливает ГОСТ 2.311-68. Все резьбы изображаются одинаково. На стержне резьба (наружная) изображается сплошными основными, толстыми линиями - по наружному диаметру и тонкими линиями - по внутреннему. На виде, где стержень с резьбой проецируется в окружность, контур его сплошной толстой основной линией. а вычерчивают изображают внутренний контур дугой окружности, линией приблизительно на 3/4 проведенной тонкой окружности, у которой разрыв может располагаться в любом месте, но концы дуги не разрешается располагать на осях (рис. 9.26).



#### Puc. 9.26

Тонкую сплошную линию при изображении резьбы проводят на расстоянии не менее 0,8 мм от сплошной толстой основной линии и не более, чем на величину шага резьбы. Резьбу в отверстии в продольном разрезе изображают сплошными тонкими линиями по наружному диаметру и сплошными толстыми линиями по внутреннему диаметру. Границу резьбы показывают сплошной толстой основной линией (рис. 9.27). На виде, где отверстие с резьбой проецируется в окружность, проводят по наружному диаметру резьбы тонкой линией дугу окружности, приблизительно равную <sup>3</sup>/4</sup> окружности, разомкнутую в любом месте (концы дуг не рекомендуется располагать на осях). Внутреннюю окружность, диаметр которой равен внутреннему диаметру резьбы, проводят сплошной толстой основной линией.



#### Рис. 9.27

Если отверстие с резьбой глухое (не сквозное), то его показывают так, как на рис. 9.28. Длина части глухого отверстия без резьбы на чертежах принимается равной половине наружного диаметра резьбы. Конец отверстия изпод сверла имеет форму конуса с углом при вершине, равным 120°. На чертежах величину этого угла не наносят. Фаски на стержне с резьбой и в отверстии с резьбой, не имеющие специального конструктивного назначения на плоскости, перпендикулярной оси, условно не изображаются.



Puc. 9.28

Чертеж резьбового соединения слагается из изображений составляющих его деталей. На рис. 9.29 представлены две детали: стержень с резьбой и деталь с глухим резьбовым отверстием. На этом же рисунке детали показаны в соединении (в разрезе).



Считается, что стержень с резьбой закрывает резьбу в отверстии, поэтому резьбу в отверстии показывают только там, где она не закрыта концом стержня. Сплошные толстые основные линии, соответствующие наружному диаметру резьбы на стержне, переходят в сплошные тонкие линии, соответствующие наружному диаметру резьбы в отверстии. И наоборот, сплошные тонкие линии, соответствующие внутреннему диаметру резьбы на стержне, переходят в сплошные толстые основные линии, соответствующие внутреннему диаметру резьбы в отверстии. Особое внимание следует обратить на штриховку: линии штриховки доходят до сплошных толстых основных линий как на стержне, так и в отверстии.

# 9.2.3. Резьбовые соединения

Болтовое соединение (рис. 9.30) состоит из болта, гайки, шайбы и соединяемых деталей. Болт представляет собой цилиндрический стержень, имеющий головку под ключ на одном конце и резьбу для навинчивания на другом. Гайка – крепежная деталь с отверстием и резьбой для навинчивания на болт и шпильку. Шайба – подкладка под гайку в виде кольца или квадрата с отверстием, которая защищает опорную поверхность детали от повреждений при затягивании гайки и увеличивает опорную поверхность гайки. Для предотвращения самоотвинчивания крепежных деталей от вибрации применяются пружинные шайбы.





Болтовое соединение как большинство резьбовых соединений на чертежах изображают с применением разреза. Гайки, шайбы и стержни болтов, попадающие в разрез вдоль осей, не штрихуют. Соединяемые детали штрихуют на разрезах в разных направлениях. На сборочных чертежах крепежные детали вычерчивают по размерам, заданным по отношению к диаметру стержня болта. Шестигранные гайки и головки болтов рекомендуется изображать на сборочных чертежах и общих видах упрощенно, без фасок.

Суммарный зазор на чертеже между стержнем болта и отверстием детали должен быть 1 мм при диаметре стержня до 24 мм. Если диаметр стержня свыше 24 мм, зазор должен быть по 1 мм с каждой стороны стержня. Зазор между стержнем болта и отверстиями деталей иногда можно не

показывать. Основным размером в условных соотношениях является наружный диаметр *d* резьбы болта. Длину болта определяют в зависимости от суммы толщин соединяемых деталей (*H*1+*H*2), толщины шайбы *S*, высоты гайки *H* и размера минимального выхода конца болта из гайки *K*. Полученную путем сложения общую длину стержня сравнивают с данными соответствующего стандарта и берут ближайшую большую стандартную длину.

Шпилечное соединение (рис. 9.31) состоит из: шпильки, гайки, шайбы и соединяемых деталей.



#### Рис. 9.31

Шпилька – это цилиндрический стержень, оба конца которого имеют резьбу. Конец, который ввинчивают в деталь, называют посадочным (l1), а второй конец (стяжной) с резьбой (l0) предназначен для гайки и шайбы. Длина посадочного резьбового конца зависит от материала соединяемых деталей. Под длиной шпильки l понимается длина стержня без посадочного конца. Граница резьбы посадочного конца шпильки в шпилечных соединениях совпадает с линией разъема деталей. Гайку и шайбу, как и в болтовом соединении, изображают упрощенно, т. е. без фасок. В нижней части глухого отверстия, не занятого шпилькой, сплошные основные линии изображения резьбы шпильки переходят в тонкие линии изображения резьбы отверстия. Очерковые образующие конуса отверстия должны отходить от основных линий цилиндрического отверстия. Штриховку в разрезе доводят до основных линий резьбы на шпильке и в гнезде.

Винтовое соединение состоит из винтов и соединяемых деталей. Винт представляет собой стержень с головкой и резьбой. Винты с резьбой, полученной резанием, называют точеными, а со штампованной и накатанной резьбой – накатанными. Форма винта зависит от его назначения. Различают винты с головкой под отвертку полукруглой, цилиндрической, винтовой и под ключ (рис. 9.32).



#### Puc. 9.32

Длина винта зависит от его назначения. Длина ввинчиваемой части должна быть не менее 1,25 d, а зазор зазор между винтом и глухим гнездом под винт – не менее 0,5 d. Шлиц винта – прорезь для отвертки – допускается изображать одной основной толстой линией, равной 1...1,5 S, расположенной пол углом 45 ° к рамке чертежа.

Винты ввинчивают в базовую деталь. Отверстие под винт может быть глухим или сквозным. Определяющими размерами соединения служит толщина скрепляемых деталей и диаметр стержня винта.

Глубина завинчивания винтов и шпилек в аналогичный материал примерно одинакова. Размеры винтов, диаметры их резьб, а также формы головок выбирают из соответствующих стандартов в каждом отдельном случае в зависимости от характера соединяемых деталей.

# 9.2.4. Нерезьбовые соединения

Шпоночное соединение одно из наиболее распространенных разъемных соединений деталей. Шпонка – это деталь, закладываемая одновременно в тело вала и в паз сидящей на нем детали (шкивом, зубчатым колесом, маховиком и др.) для передачи вращения (рис. 9.33).



Puc. 9.33

Чтобы шкив вращался вместе с валом, в них прорезают пазы (шпоночные канавки), в которые закладывают шпонку. Шпонки бывают крепящими и направляющими. По конструкции они делятся на призматические, клиновые и сегментные.

Призматические ипонки бывают обыкновенные, выполняемые по ГОСТ 23360-78, и направляющие – по ГОСТ 8790-79. Наиболее широко применяются призматические шпонки, выпускаемые в трех исполнениях. Боковые грани у этих шпонок – рабочие. Сечение шпонки зависит от диаметра вала, длина – от передаваемого крутящего момента и конструктивных особенностей соединения. Каждая шпонка имеет условное обозначение.

Например, запись Шпонка 2 – 18×11×100 ГОСТ 23360-78 означает, что призматическая шпонка 2 исполнения, с размерами 18 – ширина шпонки, мм; 11 – высота шпонки, мм;100 – длина шпонки, мм.

На рис. 9.34, *а* дано наглядное изображение соединения призматической шпонкой. На рис. 9.34, *б* дан сборочный чертеж соединения призматической шпонкой. На сборочном чертеже шпонка показана нерассеченной.



## Puc. 9.34

Клиновые шпонки выпускают по ГОСТ 24068-80 в четырех исполнениях (рис. 9.35). Применяют их в тихоходных механизмах. Рабочие поверхности – верхняя и нижняя грани. Между боковыми гранями шпонки и паза – зазоры. Форма клиновой шпонки – скошенная с одной стороны призма с уклоном 1:100. В обозначении клиновых шпонок указываются такие же параметры, как и в призматических шпонках. Шпонка 4 – 18@11@100 ГОСТ 24068-80, где 4 – исполнение шпонки; 18 – ширина, мм; 11 – высота, мм; 100 – длина, мм.



Рис. 9.35

Шпонки сегментные выпускают по ГОСТ 24071-80 в двух исполнениях (рис. 9.36). Применяют при передаче небольших крутящих моментов (так как глубокий паз ослабляет вал) на концах валов небольших диаметров ( $d \le 55$  мм).



Puc. 9.36

Штифтовое соединение широко распространены в промышленности и применяются для неподвижного соединения двух деталей и точной фиксации их друг относительно друга. На рис. 9.37, а показано наглядное изображение, а на рис. 9.37, б сборочный чертеж штифтового соединения.



#### Рис. 9.37

Штифты на сборочных чертежах в разрезе, как и другие непустотелые детали, показывают нерассеченными, если секущая плоскость проходит вдоль их оси.

Штифты представляют собой цилиндрические или конические стержни рис. 9.38.





В обозначение штифта входит его название, размеры и номер стандарта, например: Штифт цилиндрический 5×30 ГОСТ 3128-70. Это значит, что цилиндрический штифт имеет следующие размеры: диаметр 5 мм, длина 30 мм.

#### Вопросы для закрепления

1. Какие виды соединений вы знаете? Приведите примеры.

2. Какие соединения относятся к разъемным и неразъемным соединениям?

3. В чем состоит различие между разъемными и неразъемными соединениями?

4. Что называется резьбой?

5. Какие виды соединений относятся к резьбовым?

6. Назовите основные параметры резьбы.

7. Как обозначается метрическая резьба на чертежах?

8. Какие виды неразъемных соединений вы знаете?

9. Чем различаются паяное и сварное соединения?

10. Приведите примеры разъемных соединений.

11.В каких случаях используют резьбовые соединения?

12. Какие условности используются при выполнении чертежей разъемных соединений?

# 10. Настройка рабочей среды. Работа с командной строкой в системе AutoCAD

Программа AutoCAD представляет собой систему автоматизированного проектирования, относящуюся к классу так называемых CAD-систем (Computer Aided Design System) – систем, предназначенных для проектирования моделей объектов и разработки конструкторской документации. Разработанная американской компанией Autodesk, система является многофункциональной и позволяет выполнять чертежи любой сложности. Данное методическое пособие предназначено для студентов младших курсов технических специальностей и основывается на официальной русской и английской версиях AutoCAD. Кроме того, данное пособие подходит для изучения нескольких версий AutoCAD (2005-2013).

# 10.1 Рабочая среда AutoCAD

Произведя установку всех необходимых компонентов и выполнив запуск системы AutoCAD, пользователю открывается основное окно программы. Начиная с версии 2010, рабочее пространство имеет характерный ленточный интерфейс. На рис. 10.1 представлено рабочее пространство AutoCAD 2013.

В зависимости от целей использования рабочая среда имеет различную компоновку. Всего в системе AutoCAD реализовано четыре вида рабочих пространств:

2D Drafting & Annotation – двумерное моделирование;

AutoCAD Classic - классический AutoCAD;

3D Modeling - трехмерное моделирование;

*Initial Setup Workspaces* – рабочее пространство начальной настройки.

Переход между рабочими пространствами осуществляется выбором из раскрывающегося списка на панели инструментов Workspaces (Рабочие пространства) (рис. 10.2.).

Данное методическое пособие предназначено для работы с рабочим пространством *AutoCAD Classic* (*Классический AutoCAD*) (рис. 10.3.).



Рис.10.1 Рабочее пространство AutoCAD 2012 по умолчанию



Рис. 10.2 Панель инструментов Workspaces (Рабочие пространства)



Рис. 10.3 Рабочее пространство AutoCAD Classic

# 10.2 Графическая зона

Графическая зона – пространство (по умолчанию черного цвета) в середине рабочего окна, в котором производятся все построения.

В левом нижнем углу размещена пиктограмма пользовательской системы координат (ПСК), две стрелки указывают положительное направление соответствующих осей координат.

Ниже ПСК располагаются текущие значения координат курсора. В AutoCAD графическая зона представляет собой пространственную систему координат, в которой пользователь может задавать координаты точек как произвольно с помощью мыши, так и с заданной точностью с помощью клавиатуры.

# 10.3 Строка состояния

В самом низу рабочего пространства AutoCAD располагается строка состояния, в левой части которой отображаются текущие координаты курсора, а также размещены кнопки, задающие режимы



Рис.10.4 Строка состояния системы AutoCAD

Режим ОРТО – включение режима ортогональных построений, что упрощает начертание прямых горизонтальных и вертикальных линий. Отображение сстки – отображение вспомогательной сетки из точек с заданным шагом.

Шаговая привязка – включение режима привязки к определенным точкам, равномерно отстоящим друг от друга с некоторым интервалом. Точки шаговой привязки и вспомогательной сетки могут не совпадать.

Объектная привязка – включение режима объектной привязки к характерным точкам объектов на чертеже.

Отображение линий в соответствии с весами – включение режима отображения толщины линий на чертеже.

# 10.4 Установка панелей инструментов

По умолчанию при первом запуске системы AutoCAD на экране не отображены основные панели инструментов, необходимые для работы. Для получения списка плавающих панелей необходимо щелкнуть правой кнопкой мыши по пространству установленных панелей.

Закрепление вызванных панелей инструментов на рабочем столе осуществляется в строке состояния (в правой нижней части рабочего стола) щелчком кнопкой мыши по значку Ф. В открывшемся контекстном меню выбрать All (Bce) -> Locked (Блокирован). Значок приобретает вид: Ф -

панели закреплены. Выбор пунктов All (Bce)-> Unlocked (Разблокирован) открепляет панели на рабочем столе.

# 10.5 Командная строка. Особенности работы в системе AutoCAD

Зона командной строки – это небольшое встроенное прямоугольное окно внизу рабочего пространства. В AutoCAD команда может быть задана как с помощью панели быстрого доступа, так и непосредственным вводом в командную строку. Над командной строкой располагается AutoCAD Text Windows (Текстовое окно AutoCAD), оно представляет собой протокол последовательности выполнения команд.

При каждом вызове команд в командной строке появляется запрос, характерный только для данной команды. Запрос поясняет, что нужно сделать, чтобы выполнить указанную команду. Если для выполнения команды требуется несколько параметров (например, для построения отрезка нужно указать две точки), то последовательно будет отображено несколько запросов.

Часто в конце запроса имеется значение (признак), стоящее в скобках

Это значение по умолчанию. Если оно подходит пользователю, то можно просто нажать «Enter».

Все команды в системе AutoCAD состоят из одного слова. Ввод команды можно осуществлять либо заглавными, либо строчными буквами, как на английском, так и на русском языке. При вводе команды на английском языке перед названием команды необходимо указать символ «\_».

ПО ОКОНЧАНИИ ВВОДА КОМАНДЫ НЕОБХОДИМО НАЖАТЬ «ENTER».

Также начинающему пользователю следует помнить следующее:

1. Все действия в AutoCAD выполняются с помощью команд;

2. Каждая команда может быть вызвана тремя способами:

- щелчком левой кнопки мыши по соответствующей кнопке на панели инструментов;

- выбором из строки меню;

- вводом ее имени в командную строку;

3. Использование каждой последующей команды возможно только после завершения предыдущей.

10.6 Диалоговое окно Options (Настройки) Настройка параметров рабочего пространства в системе AutoCAD осуществляется в диалоговом окне Options (Настройки) (рис. 10.5), вызов которого можно осуществить следующими способами:

из строки меню Tools (Инструменты) -> Options (Настройки);

| куший профит с«Профиль без имени»»                                                                                                                                                                                                                                                                                                                                                                                                  | Такущий чертеж Чертех 1 Мар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Файлы Экран Открытия/Сохранение Печать/Публ                                                                                                                                                                                                                                                                                                                                                                                         | икация   Система   Пользовательские   Построения   3( •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Элементы окна<br>Шектовая соема: Темпая •<br>Полосы прокуутки<br>Опображать строку состояния чертежа<br>Крутные коноткої для пачелей задоч<br>Стандартные размеры для значков лянты<br>Вельновахаціче подсказкої<br>Вельновахаціче подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої<br>Расшкрезные подсказкої | Экранное разрашение<br>1000 Спакиеание дл и окружностея<br>44сло солмонтов в дл ак поллянный<br>Спакиеание визуализированных<br>объектов<br>3 Число образующих в поверяностих<br>Производитольность агображения<br>Пак/Зум с растр и зображения<br>Пак/Зум с растр и зображения и ОLE<br>С Подавеннаять только гранкцы растра<br>Пак/Зум с растр и зображения<br>Пак/Зум с растр и зображения<br>Пак/ |  |  |  |  |
| Писты<br>Гакладки "Модель" и "Пист"<br>Границы области печати<br>Годохость заданный осрикат<br>Гакь рокруг границ<br>Гакь рокруг границ<br>Гаклениер паранетров для новых листов<br>Газдавать видовые экраны на новых листах                                                                                                                                                                                                        | Управление затонением<br>Отобратизние вившиних ссылок<br>Го<br>Контекстикое редактирование и аннотативные<br>поредставления<br>Го                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

вводом в командную строку \_options (НАСТРОЙКА);

Рис. 10.5 Диалоговое окно Options (Настройка)

## Задание 1.1

Установить рабочее пространство *AutoCAD Classic* (*Классический AutoCAD*). Закрепить на рабочем столе следующие панели инструментов: - Порядок прорисовки;

- Рабочее пространство;
- Редактирование;
- Рисование;
- Свойства;
- Слои; Стандартная; Стили.

В результате рабочее пространство должно выглядеть как на рис 1.3.

## Задание 1.2

В диалоговом окне *Options* (*Настройка*) на вкладке *Display* (Экран) в области *Window Elements* (Элементы окна) установить флажки:

- **Display scroll bars in drawing window** (Отображать полосы прокрутки);

- Display Drawing status bar (Отображать строку состояния чертежа);

- Display screen menu (Экранное меню);

- Use large buttons for Toolbars (Крупные кнопки для панели задач).

В области Window Elements (Элементы окна) щелкнуть по кнопке Colors (Цвета), в диалоговом окне Drawing Window Color выбрать из раскрывающегося списка Color (Цвет) цвет рабочего поля чертежа. Предлагаемые упражнения рекомендуется выполнять на черном фоне.

В области *Crosshair size* (*Размер перекрестья*) установить размер перекрестия (в процентах от размера экрана) – 20%.

В области *Display resolution* (Экранное разрешение) установить следующие значения:

- Arc and Circle smoothness (Плавность дуг и кругов) - 500;

- Rendered objects smoothness (Плавность тонированных

объектов) - 5;

- *Contour lines per surface* (Число образующих в поверхностях) - 40.

В диалоговом окне на вкладке Open and Save (Открытие/Сохранение) в области File Safety Precautions (Меры предосторожности при сохранении) установить флажок в поле Minutes between saves (Время между сохранениями), установить интервал между сохранениями в минутах - 20.

#### Задание 1.3

Используя командную строку, определить границы чертежа – команда \_limits (ЛИМИТЫ). Задать координаты левого нижнего угла и правого верхнего (0,0) и (500,500) соответсвенно.

Осуществить показ поля чертежа, выбрав из строки меню: *View* (*Bud*) *>Zoom* (*Зумирование*) *-> All* (*Bce*).

Используя команду *Line* (*Отрезок*), построить в видимой области чертежа произвольный замкнутый треугольник.

11. Задание координат в системе AutoCAD. Объектная и шаговая привязки в системе AutoCAD

# 11.1 Способы задания координат

Как уже отмечалось раннее, графическая зона в системе AutoCAD представляет собой пространственную систему координат, в которой пользователь может задавать координаты точек с помощью клавиатуры.

Всего в AutoCAD предусмотрено пять способов задания координат:

- интерактивный метод;
- метод абсолютных координат;
- метод относительных прямоугольных координат;
- метод относительных полярных координат;

задание направления и расстояния;

В интерактивном методе пользователь осуществляет задание координат щелчками мыши в пространстве чертежа. Недостаток такого метода – недостаточная точность.

Метод абсолютных координат заключается в непосредственном вводе координат X и Y в командную строку через запятую. В основе данного метода лежит стандартная прямоугольная система координат.

Метод относительных прямоугольных координат отличается от метода абсолютных координат тем, что координаты (Х,Ү) задаются заданной относительно последней точки (рис.11.1). При вводе относительных координат используется символ @.

*Метод полярных координат* подразумевает указание двух параметров:

- расстояния от исходной точки;

 угла между нулевым направлением полярной системы отсчета и вектором, направленным от начала координат к искомой точке.

При задании относительных полярных координат используется два специальных символа: @ и <.



#### Рис. 11.1 Задание относительных координат

На рис. 11.2 показан отрезок, построенный в относительной полярной системе координат.



Рис. 11.2 Задание относительных полярных координат 11.2 Шаговая и объектная привязки

Шаговая привязка – режим рисования, являющийся вспомогательным средством черчения. В режиме шаговой привязки курсор будет перемещаться только между узлами прямоугольной координатной сетки с заданным шагом. Установка режима Snap Mode (Шаговая привязка)

осуществляется нажатием кнопки В строке состояния или нажатием клавиши F9. Изменение шага прямоугольной сетки можно выполнить в диалоговом окне Drafting Settings (Режимы рисования) (рис. 11.3), вызов которого можно выполнить в строке меню Tools (Сервис).

В открывшимся диалоговом окне на вкладке Snap and Grid (Шаг и Сетка) необходимо установить флажок Snap On (Шаг Вкл.). Следует обратить внимание на то, что параметры в области Snap spacing (Шаг привязки) имеют значения, равные 10 мм. Также необходимо проследить, чтобы в зоне Snap type & style (Тип и стиль привязки) был включен переключатель Rectangular snap (Ортогональная) для того, чтобы привязка осуществлялась в двухмерной проекции.
| Шаг Вкл (F9)                                                                                                   | Г Сетка Вкл (F7)                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Шаг привязки<br>Шаг привязки по X: 10                                                                          | Стиль сетки<br>Область отображения точечной сетки<br>С 20 поостранство молели                                                               |
| Шаг привязки по Y: 10                                                                                          | Г Редактор блоков<br>Г Листы                                                                                                                |
| Полярная привязка                                                                                              | Шаг селки по Х: 10<br>Шаг селки по Х: 10<br>Шаг селки по Y: 10                                                                              |
| Тип привязки                                                                                                   | Основная линия через: 5                                                                                                                     |
| <ul> <li>Шаговая привязка</li> <li>Ортогональная</li> <li>Изометрическая</li> <li>Полярная привязка</li> </ul> | Режим сетки<br>Настройка сетки<br>ГРазрешить дробление мельче<br>шага сетки<br>ГЛоказать сетку за личитами<br>Г. Следовать динамической ПСК |



*Режим объектной привязки* – это режим, в котором AutoCAD автоматически осуществляет точную привязку задаваемых мышью точек к характерным точкам объектов, имеющимся на чертеже. Установка данного режима

осуществляется нажатием кнопки в строке состояния или нажатием клавиши F3. Настройка режима осуществляется в диалоговом окне *Drafting Settings* (*Режимы рисования*) во вкладке *Object Snap* (*Объектная привязка*) (рис. 11.4). В данном окне содержится перечень переключателей, соответствующих различным типам объектной привязки.

При работе с чертежом удобнее использовать *Меню* объектной привязки, вызвав его при помощи комбинации клавиши «Shift» и щелчка правой кнопки мыши.

180

| 7 O6       | POK      | ная привязка Вкл (F3)                                                  | Г                           | 0                   | бъектное отслеживание Вкл (F11)                                                                   |
|------------|----------|------------------------------------------------------------------------|-----------------------------|---------------------|---------------------------------------------------------------------------------------------------|
| Реж        | имы<br>Г | объектной привязки                                                     | -                           | -                   | Таставки Выбоать все                                                                              |
| ~          | 2        | Середина                                                               | h                           | Г                   | Нормаль Очистить вс                                                                               |
| 0          | 1        | Центр                                                                  | 0                           | -                   | Касательная                                                                                       |
| Ø          | <b>[</b> | Узел                                                                   | X                           | Г                   | Блискайша я                                                                                       |
| $\diamond$ | r        | Квадрант                                                               |                             | Г                   | Кажущееся пересечение                                                                             |
| $\times$   | 2        | Пересечение                                                            | 4                           | Г                   | Параллельно                                                                                       |
| -          | 1        | Продолжение                                                            |                             |                     |                                                                                                   |
| 5          | 5        | Чтобы начать отслежие<br>При дальнейшем перем<br>отмены отслеживания в | iahing,<br>ioutehi<br>shogs | 380<br>61 NM<br>380 | ержите курсор над точкой привязки<br>юявится пиния отслеживания. Для<br>ержите курсор над точкой. |

Рис. 11.4 Диалоговое окно Drafting Settings (Режимы рисования)

#### Задание 2.1

В диалоговом окне Drafting Settings (Режимы рисования) на вкладке Snap and Grid (Шаг и Сетка) установить шаг сетки равным 20 мм по осям X и Y соответственно. Включить отображение сетки и шаговой привязки соответственно.

Используя команду \_line(OTPE3OK), построить прямоугольник со сторонами 60 и 20 мм.

#### Задание 2.2

В диалоговом окне Drafting Settings (Режимы рисования) во вкладке Object Snap (Объектная привязка) установить следующие режимы объектной привязки:

- Конточка; - Пересечение; - Касательная.

Активировать режим объектной привязки.

Построить 2 окружности с радиусами 20 и координатами центров (100,200), (150,200).

Используя команду \_line (ОТРЕЗОК) и объектную привязку, соединить точки касания и центры окружностей. Результат приведен на рис. 11.5.



Рис 11.5 Результат выполнения задания 2.2

## 12. Создание графических объектов-примитивов

## 12.1 Построение прямолинейных отрезков (линий)

Команда \_line (OTPE3OK) – наиболее часто употребляемая команда. С ее помощью можно построить ломаную линию, состоящую из отдельных отрезков. При этом каждый отрезок будет рассматриваться как отдельный объект.

Команда \_line (ОТРЕЗОК) может быть вызвана одним из следующих способов:

- щелчком мыши по кнопке

- вводом в командную строку: \_line (OTPE3OK);

- из строки меню Draw(Pucoвание) -> Line(Отрезок).

После вызова этой команды нужно указать первую точку. Сделать это можно с помощью мыши или введением значения координат с клавиатуры.

В ходе выполнения команды *Line(Ompesok)* доступны следующие опции: - **Undo** (Отменить) – отменяет задание последней точки;

- *Close* (Замкнуть) - замыкает построение, соединив последнюю и первую точки отрезков.

## 12.2 Разметочные (вспомогательные) линии

В процессе работы над чертежом часто необходимо построить вспомогательные линии. В системе AutoCAD существует специально предназначенный для этого тип линий, задаваемый командой \_xline (ПРЯМАЯ). Данная команда может быть вызвана следующими способами:

- щелчком мыши по кнопке К на панели инструментов Draw

(Рисование);

- вводом в командную строку: \_xline(ПРЯМАЯ);

- из строки меню **Draw** (Рисование) -> **Construction Line** (Прямая).

После вызова этой команды нужно либо задать первую точку прямой, либо выбрать одну из опций, приведенных в командной строке:

- *Hor* (*Гор*) – используется для построения горизонтальных вспомогательных прямых;

- Ver (Bep) - используется для построения вертикальных вспомогательных прямых;

- Ang (Угол) - опция предназначена для построения вспомогательных прямых под определенным углом к горизонтали или параллельно некоторым линиям на чертеже;

- Bisect (Биссектриса) — позволяет построить вспомогательную прямую, которая будет биссектрисой некоего угла;

- Offset (Omcmyn) – позволяет провести вспомогательную прямую параллельно любому отрезку на чертеже на заданном расстоянии.

Чтобы зафиксировать прямую, необходимо задать вторую точку, через которую она должна проходить. После этого выполнение команды не закончится, вам будет предложено создать еще одну прямую, имеющую ту же опорную точку.

# 12.3 Построение вспомогательных лучей. Команда гау (ЛУЧ)

Луч создается командой \_тау (ЛУЧ) и представляет собой прямую, ограниченную с одной стороны.

Вызвать команду *Ray*(Луч) можно одним из следующих способов:

- вводом в командную строку: \_ray (ЛУЧ);

-из строки меню **Draw**(*Pucobahue*) - > **Ray**(Луч).

После вызова команды нужно указать первую точку. Указанием второй точки задается направление построения луча. Последующие построения лучей будут производиться из первой точки.

## 12.4 Построение кругов

В системе AutoCAD черчение

окружностей производится

командой\_circle (КРУГ), которая может быть вызвана следующими способами:

- щелчком мыши по кнопке <sup>(1)</sup> на панели инструментов

Draw(Pucobahue);

- вводом в командную строку: \_circle(КРУГ);

- из строки меню Draw(Pucoвание) -> Circle(Круг).

В AutoCAD предусмотрено шесть способов построения окружностей: - *Center, Radius* (Центр, Радиус) – по центру окружности и радиусу;

- Center, Diameter (Центр, Диаметр) – по центру окружности и диаметру;

-2 points (2 точки) – по двум точкам, задающим месторасположение и диаметр окружности (расстояние между точками – диаметр окружности); - 3 points (3 точки) – по трем произвольным точкам;

- Tan, Tan, Radius (2 точки касания, Радиус) – по двум касательным и радиусу окружности. При этом на чертеже указываются два объекта, которых должна касаться окружность, и радиус;

- Tan, Tan, Tan (3 точки касания) – по трем касательным.

Приведенные способы построения доступны из меню Draw(Pucobanue) -> Circle(Круг), а также в качестве опций после вызова команды\_circle (КРУГ).

Простейший способ построения окружности – «по центру и радиусу». Центр окружности задается вводом координат в командную строку или произвольно с помощью мыши. Значение радиуса также вводится в командной строке или указывается при помощи мыщи.

#### 12.5 Построение прямоугольников

Вычерчивание прямоугольников в системе AutoCAD осуществляется с помощью команды \_rectang (ПРЯМОУГ), которая может быть вызвана:

- щелчком мыши по кнопке — на панели инструментов

Draw(Рисование);

- вводом в командную строку: \_rectang (ПРЯМОУГ);

- из строки меню **Draw** (Рисование) -> **Rectangular** (Прямоугольник).

В AutoCAD предусмотрены следующие возможности при построении прямоугольников:

- Chamfer (Фаска) – построение прямоугольника со срезанными углами. После выбора данной опции необходимо последовательно ввести два значения, которые будут срезаться с двух сторон каждого из углов прямоугольника;

- Fillet (Сопряжение) – построение прямоугольника со скругленными углами. После выбора данной опции необходимо ввести радиус сопряжения углов прямоугольника;

- Width (Ширина) – задание толщины линии, посредством которой строится прямоугольник;

- *Thickness* (*Высота*) и *Elevation*(*Уровень*) – опции, применяемые для трехмерных построений.

На рис.12.1 приведены варианты построения прямоугольников в системе AutoCAD.

После вызова команды необходимо указать правый нижний и левый верхний углы прямоугольника или выбрать одну из опций.







Прямоугольник с фасками на углах. Опция Chamfer (Фаска)

Рис.12.1. Варианты построения прямоугольников в системе AutoCAD

# 12.6 Построение многоугольников

С помощью команды \_polygon (МН-УГОЛ) в AutoCAD можно быстро вычерчивать правильные многоугольники. Способы вызова:

- щелчком мыши по кнопке  $\lor$  на панели инструментов *Draw* (*Pucosahue*);

- вводом в командную строку: \_polygon (МН-УГОЛ);

- из строки меню **Draw** (Рисование) -> **Polygon** (Многоугольник).

В системе AutoCAD предусмотрены следующие опции построения многоугольников:

- *Edge* (*Сторона*) – построение по длине одной стороны и ее положению;

- *Circumscribe* (*Bnucannas окружность*) – построение по центру многоугольника и радиусу вписанной окружности;

- *Inscribed* (Описанная окружность) – построение по центру многоугольника и радиусу описанной окружности.

После вызова команды необходимо указать количество сторон многоугольника и выбрать режим построения – «по одной стороне» или «по центру многоугольника»

В случае построения в режиме «по одной стороне» потребуется последовательно указать две точки – начало и конец одной из сторон. На этом построение будет завершено.

При указании центра многоугольника необходимо выбрать тип окружности, по которой будет осуществляться дальнейшее построение, и, указав радиус окружности, завершить построение.

# 12.7 Дуги и их построение на чертеже

Дуга – это геометрическая фигура, представляющая собой часть окружности. В системе AutoCAD построение дуг осуществляется с помощью команды \_arc (ДУГА). Вызов

команды осуществляется одним из следующих способов:

целчком мыши по кнопке на панели инструментов *Draw* (*Pu*-

сование);

вводом в командную строку: \_arc (ДУГА); - из строки меню *Draw* (*Pucobanue*) -> *Arc* (Дуга).

#### Способы построения дуг:

- *3 points* (*3 точки*) – задаются начальная, промежуточная и конечная точки, не лежащие на одной прямой;

-Start, Center, End (Начало, центр, конец) – задаются начальная точка, центр дуги и конечная точка. Первые две определяют радиус дуги;

- Start, Center, Angle (Начало, центр, угол) – радиус дуги определяют начальная точка и центр. Положительное направление угла отсчитывается против часовой стрелки и определяет внутренний угол воображаемого сектора, которому принадлежит дуга;

- Start, Center, Length (Начало, центр, длина) — задаются начальная точка, центр и длина хорды, соединяющей начальную и конечную точки дуги;

- Start, End, Angle (Начало, конец, угол) – задаются начало, конец и угол между двумя радиусами воображаемого сектора, которому принадлежит дуга;

-Start, End, Direction (Начало, конец, направление) – задаются начальная и конечная точки дуги, и указывается направление касательной к начальной точке;

- Start, End, Radius (Начало, конец, радиус) – последовательно задаются начальная, конечная точки дуги и ее радиус.



Рис.12.2 Параметры дуги в системе AutoCAD

# 12.8 Построение полилиний

В системе AutoCAD предусмотрено создание таких универсальных объектов, как полилинии (команда \_pline (ПЛИНИЯ)), имеющих ряд особенностей:

возможность изменения толщины по длине;

 могут включать в себя несколько сегментов, при этом все сегменты задаются одной командой и воспринимаются как единый объект;
 полилинии могут включать в себя дуги.

Вызов команды \_pline (ПЛИНИЯ) можно осуществить следующими способами:

- щелчком мыши по кнопке 🛩 на панели инструментов Draw (Pu .

сование);

- вводом в командную строку: \_pline (ПЛИНИЯ);

- из строки меню Draw (Pucosanue) -> Polyline (Полилиния).

При построении полилиний доступны следующие опции:

- Arc (Дуга) – позволяет перейти в режим построения дуговых сегментов;

Close (Замкнуть) – замыкает полилинию, соединяя первую и последнюю точки;

Width (Ширина) – толщина линии построения последующих сегментов полилинии. При этом задается начальная и конечная ширина (рис. 3.3);

- Halfwidth (Полуширина) – задаются начальные и конечные значения полуширины полилинии;

- Length (длИна) – данная опция позволяет задать длину следующего сегмента полилинии, который будет автоматически построен в том же направлении, что и последний сегмент;

- Undo (Отменить) - удаление последнего сегмента.

Начальная ширина



Рис. 12.3 Параметры опции Width(Ширина)

После вызова команды и указания начальной точки построения система предложит выбрать одну из опций или указать следующую точку посредством использования последних заданных параметров.

Способы построения дуговых сегментов полилиний аналогичны способам построения дуг командой \_arc (ДУГА).

#### Задание 3.1

Построить произвольную замкнутую кривую, используя команду \_line (OTPE3OK). Замыкание осуществить, используя опцию

Close(Замкнуть).

#### Задание 3.2

Используя команду xline (ПРЯМАЯ), провести через одну точку три пересекающиеся под углом 45<sup>0</sup> прямые.

#### Задание 3.3

Используя команду \_circle (КРУГ), построить 2 окружности по центру и радиусу со следующими параметрами:

- окружность №1: координаты центра (250, 250), радиус 30;

- окружность №2: координаты центра (200,150), радиус 50; Построить третью окружность по 2 точкам касания и радиусу, равному 20.

Точки касания выбрать на окружностях, построенных ранее.

#### Задание 3.4

Используя команду \_rectang (ПРЯМОУГ), построить прямоугольник, произвольно указав координаты вершин.

Построить прямоугольник со скошенными углами, приняв катет фаски равным 10.

Построить прямоугольник со скругленными углами, указав радиус скругления равным 10.

#### Задание 3.5

Используя команду \_polygon (МН-УГОЛ), построить квадрат по известной стороне.

Используя команду \_polygon (МН-УГОЛ), построить пятиугольник, вписанный в окружность с радиусом 50. Центр многоугольника указать произвольно.

Используя команду \_polygon (МН-УГОЛ), построить шестиугольник, описанный около окружности с радиусом 30. Центр многоугольника указать произвольно.

#### Задание 3.6

Используя команду \_pline (ПЛИНИЯ), построить объект аналогично рис. 12.4. Задать длину сегмента 1–2 равной 30 с начальной и конечной шириной равной 1, длина сегмента 2–3 равна 20, начальная ширина – 10, конечная ширина – 0.



Рис. 12.4 Объект, построенный с использованием команды \_pline (ПЛИНИЯ)

## 13. Редактирование и модификация объектов

## 13.1 Окно-панель Properties(Свойства)

Окно-панель *Properties* (*Свойства*) (рис. 13.1) является универсальным средством быстрого доступа к основным свойствам объекта.

Вызвать данное окно можно следующими способами:

- щелчком правой кнопки мыши на объекте, свойства которого необходимо изменить, в контекстном меню выбрать соответствующий пункт *Properties* (*Свойства*);

-кнопкой 🕒 на панели инструментов Стандартные аннотации.

Содержимое окна *Properties* (*Свойства*) существенно зависит от выбранного объекта. Рассмотрим структуру данного окна для простейшего объекта *line* (*отрезок*).



Рис. 13.1 Окно-панель Properties(Свойства)

Как видно из рисунка, в данном окне пользователь может изменять основные свойства объекта. В системе AutoCAD также предусмотрено изменение смежных свойств различных объектов.

## 13.1.1 Копирование свойств

В AutoCAD предусмотрена возможность присвоения (копирования) свойств одного объекта другому. Данная функция осуществляется с помощью команды\_matchprop (КОПИРОВАТЬСВ), вызвать которую можно:

- щелчком мыши по кнопке — на панели инструментов *Modify*(*Pedakmupoвaнue*);

- вводом в командную строку: \_matchprop (КОПИРОВАТЬСВ); - из строки меню Modify (Редактировать) -> Match Properties (Копирование своиств);

После вызова команды необходимо указать объект, свойства которого будут скопированы. Далее необходимо указать целевой объект – объект или объекты, которым будут назначены перечисленные свойства.

| сновные свойства    |                    |   |              | IT OK   |
|---------------------|--------------------|---|--------------|---------|
| Uper                | ПоСлою             |   |              | UK      |
| J Cuon              | 0                  |   |              | Отмена  |
| Freed INT           | ReCnoic            |   |              | Справка |
| Macurat mina numui  | 1                  |   |              |         |
| Bec ment            | ПоСлою             |   |              |         |
| Продрачность        |                    |   |              |         |
|                     | 0                  |   |              |         |
| 7.())==m=r=         | Ποζποιο            |   |              |         |
| пециальные свойства |                    |   |              |         |
| Pasmep Pa           | ekct               | P | Штрисковка   |         |
|                     | <u>і</u> ўкран     |   | Таблица      |         |
|                     | ากลึกสารคณอส รอเอร | N | Мультиныстка |         |

Рис. 13.2. Диалоговое окно

*Property Settings*(*Hacmpoùka свойств*) Параметры свойств, которые необходимо скопировать, можно изменить в дналоговом окне *Property Settings* (*Hacmpoùka свойств*) (рис.13.2). Его вызов можно осуществить, выбрав опцию *Settings* (*Hacmpoùku*) при выполнении команды \_matchprop (КОПИРОВАТЬСВ).

# 13.2 Свойства объектов чертежа

В системе AutoCAD для задания и изменения свойств объектов чертежа можно использовать панель инструментов *Properties*(*Свойства*) (рис. 13.3).



# Рассмотрим параметры панели инструментов Properties (Свойства).

Для изменения текущего цвета построений используется раскрывающийся список *Color Control* (Цвета). По умолчанию в системе AutoCAD используются 7 цветов. Для использования оттенков необходимо выбрать в раскрывающемся списке пункт *Select Color* (Выбор цвета). В открывшемся диалоговом окне задается нужный цвет.

Раскрывающийся список *Line Type* (*Тип линий*) служит для задания типов линий. В системе AutoCAD предусмотрено использование необходимых типов линий в соответствии с выбранными стандартами (ГОСТ, ISO и пр.). В диалоговом окне *Linetype Manager* (Диспетчер типов линий), вызвать которое можно, выбрав в раскрывающемся списке пупкт Other (Другой) -> Load...(Загрузка...), пользователь может добавить нужный тип линии (рис. 13.4).

| The second research        | -            | -                 | [ Borgupette. ] | YAARA          |
|----------------------------|--------------|-------------------|-----------------|----------------|
| LIGHTSTIN HCO NOT ANY A    |              |                   | T own years and | Вка подробноти |
| Текуший тип льений. Послою |              |                   |                 |                |
| Teer statement             | Domasont man | Crammon.          |                 |                |
| (toc.novo                  |              | -                 |                 |                |
| LJOQ13046A                 |              | The second second |                 |                |
|                            |              |                   |                 |                |
|                            |              |                   |                 |                |
|                            |              |                   |                 |                |

#### Рис. 13.4 Диалоговое окно Linetype Manager (Диспетчер типов линий)

*Line Weight* (*Bec линий*) – задает толщину линии из раскрывающегося списка. Для отображения чертежа с учетом толщины линий необходимо включить отображение линий в

соответствии с весами, нажав кнопку 🛄 в строке состояния.

После выбора заданных параметров все дальнейшие построения будут производиться линиями данного типа.

# 13.3 Способы выбора объектов

Выбор объектов на чертеже можно осуществить как до вызова команды редактирования, так и после. В том случае, если необходимо выделить несколько объектов, нужно щелкнуть на каждом из них без зажатия каких-либо дополнительных клавиш. Исключить объект из группы выделенных можно щелчком левой кнопки мышп, удерживая при этом клавишу «Shift».

## 13.4 Удаление объектов

Удаление объектов в системе AutoCAD производится с помощью команды Erase (Стереть), вызов команды производится одним из следующих способов:

- щелчком мыши по кнопке — на панели инструментов Modify (Pedacmuposanue);

- вводом в командную строку: \_erase (СТЕРЕТЬ);

- из строки меню *Modify* (*Pedakmuposamb*) -> *Erase* (Стереть).

После вызова команды необходимо указать объекты, подлежащие удалению.

### 13.5 Перемещение объектов

Перемещение объектов в системе AutoCAD осуществляется с помощью команды *Move* (*Перенести*), вызвать которую можно:

щелчком мыши по кнопке на панели инструментов

Modify(Pedakmuposahue);

вводом в командную строку: \_move (ПЕРЕНЕСТИ);

из строки меню *Modify* (*Pedakmuposamb*) -> *Move* (Перенести).

В AutoCAD предусмотрены два метода перемещения:

- Перемещение по координатам – смещение указывается в координатах (Х,Ү) относительно изначального положения объекта. Сдвиг осуществляется по каждой из координат;

Метод «базовая точка/вторая точка» указывается произвольная (базовая) точка чертежа, а затем – положение, которое она должна занять после перемещения. Объекты будут перемещены в зависимости от того, как будет указана базовая точка (рис.13.6).



Рис.13.6 Режим перемещения объектов

## 13.6 Копирование объектов

Копирование объектов в системе AutoCAD осуществляется с помощью команды *Сору* (*Копироватиь*), вызвать которую можно:

- щелчком мыши по кнопке на панели инструментов Modify

(Редактирование);

- вводом в командную строку: \_сору (КОПИРОВАТЬ);

- из строки меню *Modify* (*Pedakmuposamb*) -> *Copy* (*Konuposamb*).

Методика использования данной команды аналогична методики работы с командой *Move* (Перенести).

## 13.7 Поворот объектов

С помощью команды *Rotate* (*Поворот*) можно поворачивать объекты на определенный угол вокруг некоторой точки. Вызвать команду можно:

- щелчком мыши по кнопке  $\bigcirc$  на панели инструментов *Modify* (*Pedakmuposahue*);

вводом в командную строку: \_rotate (ПОВЕРНУТЬ);

- из строки меню *Modify* (*Pedakmuposamb*) -> *Rotate* (Поворот).

После вызова команды система попросит указать базовую точку, вокруг которой будет осуществляться поворот, и значение угла в градусах. В системе AutoCAD положительное направление угла отсчитывается против часовой стрелки.

# 13.8 Масштабирование объектов

Масштабирование в AutoCAD выполняется с помощью команды *Scale* (*Масштаб*). Ее вызов осуществляется стандартными способами:

- щелчком мыши по кнопке — на панели инструментов *Modify* 

(Редактирование);

- вводом в командную строку: \_scale (МАСШТАБ);

- из строки меню *Modify* (*Редактировать*) -> *Scale* (*Масштаб*).

Выбор объектов, подлежащих редактированию, осуществляется до или после вызова команды.

Одним из основных элементов масштабирования является указание базовой точки – точки, не изменяющей своего местоположения после завершения команды. Значение коэффициента масштабирования подбирается пользователем в зависимости от необходимого результата – увеличения или уменьшения объектов.

Режим *опорный отрезок* – масштабирование выбранного набора по отношению к другим объектам.

# 13.9 Подрезание объектов

При построении очень часто необходимо обрезать лишние фрагменты отрезков. Для этого в системе AutoCAD предусмотрена специальная команда *Trim* (*Обрезать*).

Вызвать команду *Trim* (*Обрезать*) можно одним из следующих способов:

- щелчком мыши по кнопке — на панели инструментов *Modify* 

(Редактирование);

- вводом в командную строку: \_trim (ОБРЕЗАТЬ);

- из строки меню **Modify** (Редактировать) -> **Trim** (Обрезать).

Подрезание осуществляется путем указания фрагмента объекта, который нужно подрезать, и режущей кромки, служащей границей подрезания.

После вызова команды необходимо указать одну или несколько режущих кромок. Затем нажать Enter (или правую клавишу мыши) и выбрать подрезаемый фрагмент (рис.13.7). Режущая кромка



Удаляемый фрагмент Рис. 13.7 Выполнение команды Trim (Обрезать)

# 13.10 Зеркальное отображение объектов

Очень часто приходится чертить объекты, симметричные относительно некоторой оси. Для упрощения работы в системе AutoCAD существует команда *Mirror* (*Зеркало*). Пример ее использования показан на рис. 13.8



#### Рис 13.8 Команда Mirror (Зеркало)

Вызвать команду *Mirror* (*Зеркало*) можно одним из следующих способов:

- щелчком мыши по кнопке Да на панели инструментов *Modify* 

(Редактирование);

вводом в командную строку: \_mirror (ЗЕРКАЛО);

[99]

из строки меню *Modify* (*Редактировать*) -> *Mirror* (Зеркало).

После вызова команды и выбора объектов необходимо задать ось, относительно которой будет выполнено отражение. Осуществить это можно путем указания двух точек, либо с помощью мыши, либо введя координаты с клавиатуры.

По умолчанию в среде AutoCAD отражаемые объекты не подлежат удалению. Данную опцию можно изменить, введя соответствующий ответ на запрос системы.

## 13.11 Построение подобных объектов

Команда *Offset* (Подобие) предназначена для создания подобной конии выбранного объекта.

Важно запомнить: выбор объектов следует осуществлять после вызова данной команды!

Вызвать команду *Offset* (Подобие) можно одним из следующих способов:

- щелчком мыши по кнопке — на панели пострументов *Modify* 

(Редактирование);

- вводом в командную строку: \_ offset (ПОДОБИЕ);

- из строки меню *Modify* (*Pedakmupobamb*) -> *Offset* (Подобие).

После вызова команды следует указать величину смещения, введя численное значение с клавиатуры, после чего выбрать объект для смещения и сторону смещения (последняя указывается щелчком мыши в области чертежа относительно объекта).

В общем случае смещение откладывается по нормали к выбранному объекту (рис. 13.9).



Рис. 13.9 Пример построения подобных объектов

# 13.12 Построение фасок

Построение фасок осуществляется в системе AutoCAD с помощью команды \_chamfer (ФАСКА) и представляет собон срез между двумя прямыми. На рис.4.10 показано изображение объекта до и после снятия фаски.

До снятия фаски:

После снятия фаски:





#### Рис.13.10 Построение фаски в AutoCAD

Вызвать данную команду можно одним из следующих способов:

- щелчком мыши по кнопке — на панели инструментов *Modify* 

(Редактирование);

- вводом в командную строку: \_chamfer (ФАСКА);

- из строки меню *Modify* (*Pedakmuposamb*) -> *Chamfer* (Фаска).

201

Рассмотрим параметры построения фаски в системе AutoCAD:

- Distance (Длина) – задает размеры снимаемых фасок;

- *Angle* (Угол) – переходит в режим построения по одному катету и углу фаски;

- *Trim* (*оБрезка*) – указывает на обрезку концов отрезков за фаской. По умолчанию обрезка включена;

- *Polyline* (*полИлиния*) – устанавливает режим, в котором при построении фаски на одном из углов полилинии она автоматически будет построена на всех углах полилинии.

В общем случае построение фаски осуществляется в два шага. На первом шаге задаются параметры фаски (рис. 13.11): две длины, которые должны быть срезаны на каждом из двух отрезков (катеты фаски), или задается одна длина и угол фаски. На втором шаге задаются два непараллельных отрезка, между которыми будет осуществляться построение.



Рис.13.11 Параметры фаски в системе AutoCAD

#### 13.13 Построение плавного сопряжения

Плавное сопряжение заключается в скруглении острого угла, образованного при пересечении двух объектов, и осуществляется с помощью команды \_fillet (СОПРЯЖЕНИЕ) (рис. 13.12) вызвать которую можно одним из следующих

способов: - щелчком мыши по кнопке — на панели инструментов *Modify* 

(Редактирование);

- вводом в командную строку: \_fillet (СОПРЯЖЕНИЕ);

- из строки меню *Modify* (*Pedakmuposamb*) -> *Fillet* (*Conpяжение*).

Рассмотрим параметры построения сопряжения в системе AutoCAD:

- Radius (раДиус) – позволяет задать радиус скругления;

- *Polyline* (*полИлиния*) – устанавливает режим, в котором при построении фаски на одном из углов полилинии она автоматически будет построена на всех углах полилинии;

- *Trim* (*оБрезка*) – указывает на обрезку концов отрезков за фаской. По умолчанию обрезка включена.



Рис. 13.12 Построение спряжения в системе AutoCAD

Построения сопряжения в системе AutoCAD аналогично построению фаски. На первом шаге задается раднус скругления, на втором - указываются отрезки, между которыми будет осуществляться построение.

# 13.14 Создание упорядоченной группы объектов

Часто пользователю приходится создавать группы одинаковых объектов, расположенных в определенном порядке. Для создания нужного количества копий объекта и расположения их в заданном порядке служит команда Array (*Maccub*). Начиная с версии AutoCAD 2012, используется интерактивный метод построения. Для более точного построения массивов рекомендуется использовать команду ArrayClassic, которая становится доступной после установки обновления Service Pack 1.

Вызов команды ArrayClassic (Классический массив) осуществляется вводом в командную строку: \_arrayclassic.

Рассмотрим создание прямоугольных и круговых массивов двумя методами - интерактивным и классическим (рис. 13.13).



## Рис. 13.13 Пример создания массива.

## 13.14.1 Интерактивный метод создания массива

Для построения массива в интерактивном режиме рекомендуется вызвать нужный массив:

- из строки меню *Modify* (*Pedakmuposamb*) -> Array (*Maccus*); - введя в командную строку: \_array (MACCИВ).

Указав нужный тип массива (прямоугольный или круговой), необходимо выбрать объекты, подлежащие редактированию. После этого щелчком мыши указать итоговое количество элементов массива и зафиксировать нужную компоновку. Задав расстояние между объектами с помощью мыши, завершите создание массива.

Впоследствии, щелкнув на созданном массиве, пользователь может перейти в режим редактирования.

## 13.14.2 Прямоугольные массивы

После вызова команды ArrayClassic открывается диалоговое окно Array (Массив) (рис. 13.14). Для создания прямоугольного массива необходимо установить переключатель в положение Rectangular Array (Прямоугольный массив). После чего необходимо осуществить выбор объектов: кнопка Select Object (Выбор объектов) и указать параметры самого массива:

- количество строк и столбцов; - расстояние между рядами и столбцами;

| Массне                   |                                                                 | Lut Be             |
|--------------------------|-----------------------------------------------------------------|--------------------|
| Прямоугольный массив     | Круговой массив                                                 | Выбор объектое     |
| Pagos 4                  | сц Столбиле                                                     | Выбрано объектов О |
| Расстояния и направле    | 648                                                             |                    |
| Между ряданни            | 1                                                               |                    |
| Межді столбцами          | 1                                                               |                    |
| Угол повората            | 0                                                               |                    |
| По умолна расстояни      | нию при отрицательном<br>измежду рядами они                     |                    |
| столбыниет<br>столбыниет | ся вниз. При<br>ьном расстояний между<br>гони добавляются влево | Отнена             |
|                          |                                                                 |                    |
|                          |                                                                 | Спраека            |

угол поворота (по умолчанию он равен 0).

Рис. 13.14 Диалоговое окно Rectangular Array (Прямоугольный массив)

#### 13.14.3 Круговые массивы

После вызова команды ArrayClassic открывается дналоговое окно Array (Массив) (рис. 13.15). Для создания прямоугольного массива необходимо установить нереключатель в положение Polar Array(Круговой массив). После этого необходимо осуществить выбор объектов кнопка Select Object (Выбор объектов), затем указать параметры самого массива:

- центр окружности, относительно которой будет осуществлен поворот (рекомендуется делать это указанием мыши);

- способ построения;
- параметры построения массива.

| Maccoui                                    |                               |                 | ( ) = ×            |
|--------------------------------------------|-------------------------------|-----------------|--------------------|
| Прямоугольный массия                       | а Круговой                    | марсия          | Выбор объектов     |
| Центр Х 30                                 | Y. 0                          | _¥}             | Выбрано объектов 1 |
| Способы значения                           |                               |                 |                    |
| Способ построения                          |                               |                 |                    |
| Число элементов и угол за                  | полнения                      | -               | Line in the second |
| Число элементов                            | 4                             |                 |                    |
| Угол заполнения                            | 360                           | 12              |                    |
| Угол между элементами                      | 100                           |                 |                    |
| I Положительное зна<br>соответствует повој | чение угла за<br>оту против ч | асовой<br>•     | ОК                 |
| Совет соответствует повој                  | роту по часов                 | е<br>ой стрелке | Отмена             |
|                                            |                               |                 | Просмотр «         |
| Ловорачивать элементы н                    |                               | ольше ¥         | Справка            |

Рис. 13.15 Диалоговое окно Polar Array(Круговой массив).

# 14. Использование слоев в системе AutoCAD. Простановка размеров в системе AutoCAD.

# Текст в чертежах AutoCAD. Блоки

# 14.1 Слои и их свойства

Для удобства работы в системе AutoCAD предусмотрено использование слоев. Каждый слой представляет собой как бы «прозрачную пленку», накладываемую на лист чертежа. По умолчанию в любом новом чертеже автоматически создается слой с именем 0, и этот же слой по умолчанию является текущим. В AutoCAD принято объекты одного типа размещать в одном слое.

Важно знать следующие особенности использования слоев:

каждый слой имеет свое персональное имя;

- для каждого слоя можно установить цвет, тип и толщину линии;

- можно управлять видимостью слоев;

можно заблокировать слой;

- для каждого слоя можно установить свои параметры печати.

Основной командой работы со слоями является команда Layer (Слой). Вызвать ее можно одним из следующих способов:

- щелчком мыши по кнопке — на панели инструментов *Layers* 

(Слои); вводом в командную строку: \_ layer (СЛОЙ).

В результате на экране появится диалоговое окно *Layer Properties Manager* (Диспетчер свойств слоев) (рис. 14.1), в котором приведены настройки всех имеющихся на чертеже слоев. Рассмотрим некоторые параметры каждого слоя: - Status (Статус) – указывает тип элемента: фильтр слоя, используемый слой, пустой слой или текущий слой;

- *Name* (Имя) – указывает имя слоя;

- *Оп*(*Вк*л) – указывает состояние слоя: включен/выключен;

- *Color* (*Цвет*) – указывает цвет, который будет использоваться для всех объектов в данном слое.

- *Line type* (*Tun линии*) – задает тип линии для слоя; - *Line weight* (*Bec линии*) – указывает толщину линии.

Все построения в системе AutoCAD осуществляются на слое, который указан как текущий. Переключение слоев осуществляется в раскрывающемся списке *Layers* (*Слои*) (рис. 14.2).

| Servery Index Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |         | -      | _          |       | and the second s | and a speed of |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|---------|--------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEXE              | -     | d.      |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| n ha<br>Januaran anarata<br>Tanana anar D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i imi -           | E. 9. | 1. (24) | Teran. | Dec hannel | Cres. | 8. 3. home<br>5. 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| h /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-490R            |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Let 1 Martin Cuche 1 Pop 0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |       |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Theorem and the second se | the second second | 0.00M |         |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

Рис. 14.1 Диалоговое окно Layer Properties Manager (Диспетчер свойств слоев)

| VQ.   | ഫ് ∎ 2        | • |
|-------|---------------|---|
| VO    | ₫ 🔲 0         | * |
| 90    | d 🖬 1         |   |
| Q Q . | a 🕯 🔳 2       |   |
| 20    | 💣 🔳 Defocints |   |

Рис. 14.2 Раскрывающийся список Layers(Слои).

## 14.2 Использование диспетчера размерных стилей

В разных странах приняты различные стандарты и требования по нанесению размеров. Рассмотрим пример создания размерного стиля в системе AutoCAD. Для этого нужно воспользоваться диалоговым окном Dimension Style Manager (Диспетчер размерных стилей). Вызвать данное окно можно одним из следующих образов:

- щелчком мыши по кнопке и на панели инструментов *Dimension* 

(*Размер*); вводом в командную строку: \_dimstyle (РЗМСТИЛЬ).

В результате на экране появится соответствующее диалоговое окно

(рис. 14.3).



Рис. 14.3 Диалоговое окно Dimension Style Manager (Диспетчер размерных стилей).

Для создания нового стиля нажмите на кнопку *New...(Новый...).* Далее в появившемся окне можно задать имя нового стиля и стандарт, на основе которого будет сделан новый стиль (рис 14.4).

| Имя нового стиля |         |
|------------------|---------|
| Учебный          | Далее   |
| На основе:       | Отмена  |
| ISO-25 •         |         |
| Аннотативные з   | Справка |
| Размеры:         |         |
|                  |         |

Рис. 14.4 Окно создания нового стиля.

После нажатия на кнопку *Continue* (Далее) появится окно нового размерного стиля (рис 14.5). В этом окне и происходит настройка параметров нового стиля. Рассмотрим некоторые вкладки:

- *Lines* (Линии) – содержит настройки размерных, выносных и осевых линий;

- Symbols and Arrows (Символы и стрелки) – предназначена для настроек внешнего вида размерных стрелок;

- Text (Текст) — содержит настройки внешнего вида и размещения надписей, используемых в размере;

- *Fit* (*Размещение*) — задает параметры размещения стрелок и размерных надписей в стесненных местах чертежа;

- Primary Units (Основные единицы) – содержит настройки формата представления основных единиц для линейных и угловых размеров.

Закончить создание нового размерного стиля, нажав на кнопку «ОК». Созданный размерный стиль будет относиться только к текущему чертежу.

| Canado San a                                                                                    | CODATION TENCOT PAGE-ITU                                     | erter ( | Concernie equivage   Amit. e.ge                                      | ware flory    | 044        |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|----------------------------------------------------------------------|---------------|------------|
| Passespesie mese                                                                                |                                                              |         | 14.11                                                                |               |            |
| Liver                                                                                           | Πισδιέσικγ                                                   |         |                                                                      |               |            |
| Tier mean:                                                                                      | Rodeoxy                                                      |         |                                                                      | 1             |            |
| Bec /view                                                                                       | - Поблоку                                                    |         | 2                                                                    | XY            | 2          |
| Annual and date                                                                                 | Churt D                                                      |         | 1 203                                                                | 1             | 7          |
| Ular a Setumor per                                                                              | amapan: 3.75                                                 | 18      | st '                                                                 | -2            | -          |
|                                                                                                 |                                                              |         |                                                                      |               |            |
| No parter (C)                                                                                   | ter PD 📃 2no PD                                              |         |                                                                      |               |            |
|                                                                                                 | tee PD 200 PD                                                |         | 1 *                                                                  |               |            |
| Danmer (1)                                                                                      | tee PΩ 2ee PΩ                                                |         | Yggebeene in generationer.                                           | 1.8           | 1          |
| Durnicoust server<br>Quer<br>Line T<br>Tart buenosciol                                          | ter Pri 2 so Pri                                             | • •     | Yanimete la promotive<br>Denne si obserte                            | 1.25          | (A)<br>(A) |
| Подалити: С<br>Палтистику талиан<br>Цанат<br>Талт выпоссной<br>талт выпоссной<br>талт выпоссной | I notinowy<br>                                               |         | Удлинина за разнирние<br>Отступ от объексе                           | 1.8           | **         |
| Durnicoust tensor<br>User:<br>Ten teaction<br>Ten teaction<br>Ten teaction                      | Indexesy     Todexesy     Todexesy     Todexesy     Todexesy |         | Удлините за разнирные<br>Отступ от объекта<br>Пангорные панал ангора | 1.25<br>0.525 | 10 IN      |

Рис. 14.5 Редактирование нового размерного стиля.

## 14.3 Простановка размеров

В системе AutoCAD простановка размеров автоматизирована. Это означает, что пользователю нужно указать только тип размера и точки, по которым размер будет построен. При этом системой будет определено и отражено значение размера. В дальнейшем при изменении объекта, для которого проставлен размер, будет происходить изменение значения размера.

Очевидно, что размер в AutoCAD имеет сложную структуру и воспринимается как единый объект, состоящий из выносных линий, размерной линии со стрелками и численным значением размера (рис.14.6).



Рис 14.6 Структура размера в AutoCAD.

Нанесение размеров и управление ими производится через раздел меню *Dimension* (*Размеры*). Основные используемые размеры – это:

- Linear (Линейный) – размер параллелен одной из осей координат;

- Aligned (Параллельный) – размер параллелен измеряемому участку;

- Arc Length (Длина дуги) – размер определяющий длину дуги;

- *Radius* (*Paduyc*) и *Diameter* (*Диаметр*) для измерения радиусов и диаметров кругов и дуг;

- Angular (Угловой) – для измерения углов;

- Continue (продолжение) – нанесение цепочки размеров;

- Leader – выносной текст, выноска.

Наиболее часто применяемые размеры, Linear и Aligned, проставляются тремя щелчками мыши (начальная точка измерения, конечная точка измеряемого участка, положение размерной линии).

Рассмотрим основные правила нанесения размеров, регламентированные по ГОСТ 2.307:

1. Первая выносная линия должна находиться на расстоянии 10 мм от контура объекта.

2. Расстояние между параллельными размерными линиями должно составлять 7-10 мм.

3. Выносные линии должны выходить за концы стрелок размерной линии на 1-5 мм.

4. Размеры следует наносить таким образом, чтобы ближе к изображению детали был расположен меньший размер.

5. Размерный текст наносится над размерной линией как можно ближе к ее середине. Для величин, размерная линия которых расположена вертикально, размерный текст пишется и читается слева. 6.В том случае, если на чертеже имеется несколько одинаковых элементов, размер рекомендуется наносить лишь для одного из них, при чем с указанием общего количества таких элементов.

7. При вычерчивании плоской детали в одной проекции ее длину можно указывать с помощью английской буквы l, а толщину – с помощью буквы s.

8. Осевая линия должна выходить за контур детали на 2-3 мм.

9. Если окружность изображена полностью, то для нее наносят диаметральный размер. Для дуг наносят радиальный размер.

10. При нанесении размера радиуса перед размерным числом помещают прописную букву R.

11. Размерные линии и сами размеры предпочтительно располагать за контуром изображения.

12. Необходимо избегать пересечения размерных и выносных линий, а также пересечения размерных линий между собой.

13. Каждый размер наносят на чертеже только один раз.

14. Размерный текст не разрешается пересекать или разделять другими линиями чертежа. В месте нанесения размерного числа осевые, центровые линии и линии штриховки прерывают.

# 14.4 Нанесение штриховки

При разработке достаточно большого количества чертежей на них выполняются различные разрезы и сечения. По принятым нормам черчения та часть объекта, которая попадает в секущую плоскость, должна быть заштрихована.

Чтобы приступить к штриховке, необходимо выполнить одно из следующих действий:

щелчком мыши по кнопке 44 на панели

инструментов Draw (Ри-сование);

вводом в командную строку: \_bhatch (КШТРИХ). В результате появится диалоговое окно *Hatch and Gradient* (Штриховка и градиент) (рис. 14.6).

На вкладке *Hatch* (Штриховка) в раскрывающемся списке *Type* (*Tun*) вы можете выбрать тип штриховки:

- *Predefined* (*Стандартный*) – использование стандартных образцов штриховки;

- User Defined (Из линий) – созданий образца штриховки на основе текущего типа линий;

- *Custom* (Пользовательский) – использование раннее созданного образца штриховки.

В поле Angle and Scale (Угол и масштаб) можно изменить угол наклона решетки, масштаб линий штриховки и расстояние между ними. Для задания границ штриховки в AutoCAD предусмотрены 2 метода: указание точки внутри замкнутой области и указание объектов, которые ограничивают область штриховки.

Чтобы воспользоваться первым методом, следует в окне Hatch and Gradient (Штриховка и Градиент) на вкладке

Штриховка (Hatch) щелкнуть мышкой по кнопке *Points* (Добавить: точки выбора) и щелчком мыши задать замкнутые области, которые необходимо заштриховать.

Нажав на кнопку Select Objects (Добавить: выбрать объекты), необходимо указать объекты, которые своими границами зададут область штриховки. Объекты должны быть выбраны таким образом, чтобы область штриховки была замкнутой.

| THEOREM TON    | ALBARATT ]                           | Контуры                |
|----------------|--------------------------------------|------------------------|
| THT IN MECCARE |                                      | Todamath proce         |
| Tim            | Cranalionnad                         | - moopa                |
| Qópaseu        | ANGLE +                              | - Douserts apoets      |
| Lingti         | Использовать тек; • 2 •              | De Hoong mo-           |
| Структура      | LEELLEELEELEE                        | 109 1                  |
|                |                                      | a nex                  |
| Yron H Macun   | a6                                   | Hacrostea              |
| YEAH           | Mgcurreo                             | Г Аднолатичная (1)     |
| 0              | 3 P 3                                | П Ассоциаливная        |
| E himine       | and the financial property           |                        |
| rtrea - co     | 11                                   | Порадок прорысовки     |
| TATION I ATTO  | 170                                  | За контуром *          |
|                |                                      | Cnog                   |
| Искодная точ   | KIII LUTDHOLOBIKM                    | Использовать текущую 🔳 |
| Nonenasa       | вать текущую искодную точку          | Прозрачность           |
|                | R MORODANER TONICE                   | Использовать текущуто  |
| Г Указанна     | CONTRACTOR DESCRIPTION OF THE OWNER. | 0                      |
| Указанна       |                                      |                        |
| Указанна       | Terrent Terrent                      | 1 Caral                |
| Vicasarria     |                                      | С. Копирование свойств |



# 14.5 Ввод и редактирование текста

Выполнение надписей на чертежах – одна из самых важных функций в черчении. В системе AutoCAD для этих целей предусмотрено создание двух видов текстов – однострочного и многострочного. Рассмотрим каждый из них.

# 14.5.1 Однострочный текст

Приступить к созданию однострочного текста, можно выполнив одно из следующих действий:

выбрав из строки меню *Draw* (*Pucosanue*) -> *Text* (*Tekcm*) - > *Single* 

Line Text (Однострочный текст);

вводом в командную строку: \_text (TEKCT).
После вызова команды необходимо указать точку вставки текста (например, щелчком мыши в поле чертежа), затем нужно указать размер шрифта и угол наклона текстовой строки по отношению к оси Х. По умолчанию эти значения 2.5 и 0 соответственно.

После этого системой будет предложено ввести текст (непосредственно в поле чертежа). Чтобы закончить ввод текста в строку и завершить выполнение команды, необходимо два раза нажать «Enter». В случае нажатия клавиши «Enter» один раз будет осуществлен переход на следующую строку. Главная особенность этой команды заключается в том, что каждая новая строка определяется как отдельный блок.

# 14.5.2 Многострочный текст

Для создания многострочного текста на чертеже в системе AutoCAD используется команда *MText*(*MTeксm*). Вызвать ее можно одним из следующих способов:

щелчком мыши по кнопке на панели инструментов Draw (Pucosanue);

вводом в командную строку: \_mtext.

Далее следует определить область, в которую будет вписан многострочный текст, путем указания координат двух противоположных углов. После указания области на ленте инструментов появится вкладка текстового редактора, с помощью которой можно будет задать или изменить настройки внешнего вида текста. Набор, редактирование и форматирование многострочного текста производится только в рамках заданной области (рис. 14.7).



Рис. 14.7 Многострочный текст в системе AutoCAD

# 14.6 Блоки

## 14.6.1 Создание блока

В AutoCAD возможно создание так называемых блоков – объектов или набора объектов, имеющих определенное имя и воспринимаемое системой как один объект (рис. 14.8).



Рис. 14.8 Пример блока в системе AutoCAD

Блоки можно сохранять в виде отдельных файлов и использовать для дальнейшей работы в других проектах.

Перед тем как начать создание блока необходимо убедиться, что на чертеже построены все объекты, которые войдут в данный блок.

Приступить непосредственно к созданию блока можно одним из следующих способов:

- щелчком мыши по кнопке <sup>60</sup> на панели инструментов Draw (Pucoвание); вводом в командную строку: \_block (БЛОК); из строки меню Draw (Pucoвание) -> Block (Блок) -> Make (Cosdamb).

После вызова команды на экране появится диалоговое окно *Block Definition* (*Определение блока*) (рис.14.9).

| Определение блока                                        |                     |                                                                   |
|----------------------------------------------------------|---------------------|-------------------------------------------------------------------|
| heg.                                                     | -                   |                                                                   |
| Базовая точка                                            | Объекты             | Поведения                                                         |
| Г Указать на экране<br>[С] Указать<br>х: 0<br>у 0<br>z 0 | Г Указать на экране | Г Аннотатиеныя<br>Г одинаковыя масштаб<br>Г Разрашить расчленение |
| Настройки<br>Единицы блока<br>Импличетры •               | Описание            | <u>ــــــــــــــــــــــــــــــــــــ</u>                       |
| Гиперссылка                                              | ОК                  | Отмена Спрак                                                      |



В поле *Name* (Имя) необходимо ввести имя блока. Щелкнув по кнопке , выбрать объекты при помощи мыши. Далее пользователю необходимо указать базовую точку – точку на текущем построении, которая при вставке блока будет совпадать с точкой вставки. Это можно сделать, введя координаты с клавиатуры, или, нажав на кнопку указать базовую точку при помощи мыши. Кнопка "ОК" – завершить создание блока.

# 14.6.2 Вставка блока

Вставить блок в какое-либо место чертежа можно одним из следующих способов: щелчком мыши по кнопке панели инструментов *Draw* (*Pucosahue*); вводом в командную строку: \_insert (ВСТАВИТЬ); - из строки меню *Insert*  (Вставить) -> Block (Блок). После этого на экране появится диалоговое окно Insert (Вставка блока) (рис 14.10). Выбор нужного блока осуществляется в поле Name (Имя). В данном поле доступны только блоки, созданные в текущем чертеже. Также в данном окне пользователь может указать масштаб блока по осям X,Y,Z и указать угол поворота блока при вставке.

| MR. ASCOOFBIEDA                    | • Обзор                        | 1 10                                 |
|------------------------------------|--------------------------------|--------------------------------------|
| уть_                               |                                | 10                                   |
| all and the second second          | Manuff Part Country            |                                      |
| Точка вставки<br>Указать на экране | Масштаб<br>Г Указать на экране | Угол поворота<br>Г Указать на экране |
|                                    | X                              | Yron.                                |
|                                    | Y 1<br>Z 1                     | Единицы блока<br>Едизм Миллиметры    |
| 1                                  | Равные масштабы                | Коэфф. 1                             |
| Расчленить                         | OK                             | Отнина Справка                       |

Рис. 14.10 Диалоговое окно Insert(Вставка блока).

Разбиения блока на составляющие объекты пользователь может осуществить следующими способами:

- щелчком мыши по кнопке <sup>чир</sup> на панели инструментов *Modify* (*Редактирование*);

вводом в командную строку: \_explode (РАСЧЛЕНИТЬ).

Данную команду следует использовать после выделения блока, который необходимо расчленить.

Используя средства инженерной графики и систему AutoCAD выполнить чертеж приведенных значения размеров должны соответствовать каждый тип линии должен быть задан в соответствующем слое; все отверстия сквозные;

чертеж должен быть выполнен по правилам ЕСКД.

# РУССКО-АНГЛИЙСКИЙ СЛОВАРЬ

A

Абстрактное мышление Абсцисса Аксиома Аксонометрические проекции

Алгоритм

Аппликата

Б

#### База

- вспомогательная
- измерительная
- конструкторская

технологическая
 Базовая поверхность
 Биссектриса
 Биссекторная плоскость
 Болт
 Бороздка
 Буртик

## B

Вал Вектор Величина Вентиль Вертикальная плоскость Вертикальный разрез Вершина Вид Видимость Винт Винтовое движение Винтовая линия Abstract thinking Abscissa, x-coordinates Axiom Axonometric projections

Algorithm z-axis, z-coordinates

#### Base

auxiliary
 measuring
 design
 technological
 Datum surface
 Bisector
 Bisectrix plane
 Bolt
 Groove
 Bead, collar, shoulder

Shaft Vector Size Valve Vertical plane Vertical section (al) view Vertex View Visibility Screw Screw motion Spiral staircase (screw, helical line)

Винтовая поверхность

Screw (spiral) surface

| Винтовое соединение        | Screw joint                        |
|----------------------------|------------------------------------|
| Вогнутый                   | Concave                            |
| Восстановить               | Restore a representation           |
| Восстановить               | Construct a perpendicular          |
| Перпендикуляр<br>Вписанный | Inscribed                          |
| Вращать                    | Rotate, revolve, turn              |
| Вращение                   | Rotation                           |
| Вспомогательный            | Auxiliary                          |
| Вторичная проекция         | Secondary projection               |
| Втулка                     | Bush, sleeve                       |
| Выносной элемент           | Extracted element                  |
| Выполнять (завершать)      | Complete, to carry out to (finish) |
| Выполнять                  | Carry out geometrical              |
| геометрическое строениео-  | construction                       |
| Выпуклый                   | Convex                             |
| Высота                     | Height                             |
| Г                          |                                    |
| Габаритные размеры         | Overall dimensions                 |
| Гайка                      | Nut                                |
| Галтель                    | Fillet                             |
| Геликоид                   | Helicoids                          |
| Гелиса                     | Helices                            |
| Геометрия                  | Geometry                           |
| Гипербола                  | Hyperbola                          |
| Гиперболоид                | Hyperboloid                        |
| Гипотенуза                 | Hypotenuse                         |

Главное изображение Гладкий Горизонт **Горизонталь** Горизонтальная плоскость уровня Горизонтальнопроецирующая плоскость Горизонтальнопроецирующая прямая Горизонтальный разрез Горло Градус Грань Граница Графа График Графика Графическое изображение Д Данные Дано Движение Двугранный угол Действие Действительный размер Декартова система координат Деление Делить Деталь Диагональ Диаметр Диметрия Длина Доказательство

Main representation

Smooth

Horizon

Horizontal

Horizontal plane of level

Horizontal-projection plane

Horizontal-projection straight

#### line

Horizontal section (al) view Gorge circle Degree Side, (face) Boundary Column Plot, chart, graph

Drawing, graphic Graphical representation

Data Given Motion Dihedral angle Operation, action Actual size, real size Cartesian coordinate system Division Divide Detail Diagonal Diameter Dimetrical Length Proof Документ Документация Дуга *Д*юйм E Единица Единичный отрезок Единственный 3 Зависимость Загибать Заголовок Заготовка Задание Задача Зазор Заклепка Замена плоскостей проекций

Запись Заточить (карандаш)

#### И

Изгиб Изделие Изменение Измеритель Изображать Изображение Изометрия Индекс Интервал Искажение Исключение Искомый К Document Documentation Arc Inch

Unit Unit length Unique

Dependence Bend Title, Blahk Task Problem Clearance Rivet Substitution of planes of projections Record To sharp a pencil

> Bend Product, item Change Measurer Measure Represent The image, representation Isometry Index Interval Distortion Exception, exclusion To be required

Картинная плоскость Касательная Касаться

Катет Квадрат Количество изображений

Кольцо Комплекс Комплексный чертеж Компоновка чертежа Конические сечения Конурирующие точки Конур Конус Координата Координата Координатные оси Коэффициент искажения Кривая линия Круг Куб Крышка

Pictorial plane Tangent To be tangent (ial) to...(touch to...) Leg, side Square Quantity of drawing representations Ring Complex Complex drawing Arrangement of drawing Conic sections **Concurrent** points Contour, out-line Cone Coordinate Coordinate axes Distortion factor (ratio) Curve Circle Cube Cover

#### Л

Лекальные кривые Лекало Линейка Линейчатая поверхность Линия винтовая связи уровня Лист Луч проецирующий М Масштаб Irregular curves French curve Ruler Ruled surface Line - spiral line - projection line - level line Sheet Projection line

Scale

Материал Межцентровое расстояние Меридиан Местный Механизм Миллиметровая бумага Многогранник Многоугольник Модель Моделирование Н Наглядность Надпись Наименование

Наклон Наклонное сечение Направляющая Начало координат Начертательная геометрия Номер Нумерация О Обводка чертежа Обозначение

Образец Образующая Обратимость чертежа Обрыв Объект Овал Окружность Октаэдр Определение Ордината Ортогональные координаты Material Spacing on centres Meridian Detail view, local view The mechanism Cross-section paper Polyhedron Polygon Model Modeling

Evidence Inscription Name Inclination Inclined section Directing Origin of coordinates Descriptive geometry Number Number

Inking of drawing Notation, identification

Example, model Generating line, (generator) Reversibility of a drawing Break Object Oval Circle Octahedron Definition Ordinate, y- coordinate Orthogonal coordinates

Осевая линия Основание Основная надпись Основной вид Основные плоскости проекции Ось

вращения

– координаг

- проекций

Отверстие

Отрезок

Отсек плоскости Очерк поверхности

Очерковая линия

## Π

Парабола Параболоид Параллелепипед Параллелограмм Параллель Параметр Пересекать Пересечение поверхностей Периметр Периендикуляр Пирамида План Плоскость общего

положения

Плоскость проекций Плоскость уровня Плоскость частного положения Площадь Поверхность

Centre line, (axis) Basis Title block Principal view The basic planes projections Axis of rotation of coordinate of projection Hole Segment Plane compartment Outline of surface Outline

of

Parabola Paraboloid Parallelepiped Parallelogram Parallel Parameter Intersect Intersection of surfaces Perimeter Perpendicular Pyramid Plan Plane Plane of general position

Plane of projection Level plane Plane of particular position

Area Surface

Поверхность гранная Поверхность винтовая Поверхность вращения Поверхность коническая Поверхность пирамидальная Поверхность призматическая Поверхность сферическая Поверхность тора Поверхность торсовая Поверхность цилиндрическая Поворот Подобие фигур Положение точки Полюс Посредник (поверхность, плоскость) Предмет (объект) Призма Проекции Проекции аксонометрические Проекции вторичные Проекции прямой Проекции прямоугольные Проекции точки Проецирование Проецирование параллельное Проецирование центральное Профильная прямая Прямой угол Прямая Прямые общего положения

Polyhedral surface Spiral surface Surface of rotation Surface of cone Surface of pyramid

Surface of prism

Surface of sphere Surface of tore Surface of torso Surface of cylinder

Turn Similarity of figures Position of a point Pole Auxiliary (a surface, a plane)

Subject (object) Prism Projection Projection of axonometric

Projection of secondary Projection of line Orthographic projection Projection of point Projection Parallel projection

Central projection

Profile line Right angle Straight line Straight line of general position

Прямые частного положения Прямые параллельные Прямые пересекающиеся Прямые скрещивающиеся Прямоугольник Пучок прямых

#### P

Рабочая поверхность Равен Равенство Равнобедренный Равнозначный Радиус Разбивать Разбивать Разброс точек Разделять Размер Размещать Размещать Разпость Разомкнутый

Разрез Разрыв Разрывать Рамка Располагать Расстоложение Расстановка Расстояние Ребристый Ребро Резинка (ластик) Результат Решать Рисунок Straight line of particular position Parallel straight lines Intersecting straight lines Skew straight lines Rectangle Pencil of straight lines

Working surface Is equal to... Equality Isosceles Equivalent Radius Lay out, divide Scatter of points Divide Dimension Mark off Place Difference Disconnected, disengaged Section view Interruption Lacerate, break, tear Small frame Arrange, set, place Arrangement, location Arrangement Distance Ribbed, gilled Edge ,rib Eraser, (rubber) Result Solve Drawing

open

# Ромб Ряд С Сектор Секущий Семейство кривых Сечение Сечение конуса Сечение пирамиды Сечение цилиндра Сечение шара

# Сетка Система координат Скрещивающиеся прямые Скругление След След плоскости След прямой Смещение Снаружи Совпадение Соосные поверхности Сопряжение Способ Способ замены плоскостей проекций Способ конкурирующих точек Сравнивать Стандарт Сторона Стрелка Сфера Т Тангенс

Тело

Тела вращения

Rhombus Row, file, range

Sector Secant, cutting Family of curves Section Section of cone Section of pyramid Section of cylinder Section of ball

Grid Coordinate system Crossed straight lines Rounding Trace Trace of plane Trace of straight lines Displacement On the outside Coincidence Coaxial surfaces Coupling Way, method, procedure Way of replacement of planes of projections Method concurrent points

> Compare Standard Side Arrow-head Sphere

Tangent Body Body (solid) of revolution

Теорема Тетраэдр Толщина Тор Торец Торс Точка Точность Точной Траектория Трапеция Требуемый Треугольник Триангуляция Триметрия

Увеличивать Угловой размер Углубление

Угольник Узкий Уклон Уменьшение Упрощение Уравнение Усеченный Условие Участок

Фаска Фигура Фокус Форма Формат Format Фронталь Frontal Theorem Tetrahedron Thickness Tore Face plane Torso Point Accuracy Exact Trajectory Trapezium Required Triangle Triangulation Trimetric

## У

Increase Angular size Pit Yroa Angle Triangle Narrow Incline (gradient) slop, taper Reduction Simplification Equation Truncated Condition Section

## Φ

Facet, chamfer Figure Focus Form

x

| Характеристики геометрические Characteristics geometrical |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Характерная точка                                         | Typical point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Хорда                                                     | Chord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                           | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Центр проецирования                                       | Projection Centre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Цилиндр                                                   | Cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Циркуль                                                   | Compasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Цифра                                                     | Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                           | Ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Части                                                     | Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Частичный                                                 | Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Часть                                                     | Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Чертеж                                                    | Drawing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Чертеж точки                                              | Drawing of point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Чертеж отрезка прямой                                     | Drawing of line-segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Чертить                                                   | Draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Черчение                                                  | Drawing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Четверть                                                  | Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Число                                                     | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                           | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                           | Шаг Pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                           | Шар Ball surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Шестигранник                                              | Hexahedron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Ширина                                                    | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Шрифт                                                     | Prints lettering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Штриховать                                                | Shade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Штриховая линия                                           | Short dashes line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Штриховка                                                 | Shading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Штриховка в аксонометрии                                  | Shading in an axonometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Штрихпунктирная линия                                     | Dot-dash line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                           | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Экватор                                                   | Equator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Элемент                                                   | Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Эллипс                                                    | Ellipse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Эллипсоид                                                 | Ellipsoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Эшор Монжа                                                | Epure of Monge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Эскиз                                                     | Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                           | Manager and a second state of the state of t |  |

# Литература

1. Тимофеев В.Н., Пакулин А.П. и др. Инженерная графика (в двух частях). Учебное пособие.- М.: МГИУ, 2011

2. Чекмарев А.А. Инженерная графика – 4-е изд. стер. – М.: Высшая школа, 2002. – 365 с.: ил.

3. Боголюбов С.К. Инженерная графика – 3-е изд., испр. и доп. – М.: Машиностроение, 2006. 392 с.: ил.

4. Инженерная графика. Общий курс: рек. Министерством образования Рос. Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по техническим специальностям / В. Г. Буров [и др.]; под ред. В. Г. Бурова, Н. Г. Иванцивской .Изд. 2-е, перераб. и доп М.: Логос, 2006 231 с.

5. Полещук Н.Н. AutoCAD 2007. Самоучитель / Н. Н. Полещук, В. А. Савельева .СПб.: БХВ-Петербург, 2007 624 с.

6. Жарков Н. В. AutoCAD 2013.Н. В. Жарков . СПб.: Наука и техника, 2007 620 с

7. Шипова Г.М., Хрящев В.Г Моделирование и создание чертежей в системе AutoCAD: Учебное пособие. ИРМ2, 2003, 224 с.

8. Соколова Т. Ю. AutoCAD. Легкий старт / Т. Ю. Соколова. — СПб. и [др.]: Питер, 2006 — 158 с.

# оглавление

| ПРЕДИСЛОВИЕ4                                            |
|---------------------------------------------------------|
| ВВЕДЕНИЕ                                                |
| ГЛАВА 1. ПРАВИЛА ОФОРМЛЕНИЯ ЧЕРТЕЖЕЙ                    |
| 1.1. Чертежные инструменты и материалы9                 |
| 1.2. Форматы11                                          |
| 1.3. Линии чертежа12                                    |
| 1.4. Шрифт чертежный15                                  |
| 1.5. Рамка и основная надпись чертежа17                 |
| 1.6. Масштабы20                                         |
| 1.7. Размеры21                                          |
| Вопросы для закрепления                                 |
| ГЛАВА 2. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ                      |
| 2.1. Построение параллельных и перпендикулярных прямых  |
|                                                         |
| 2.1.1. Построение параллельных прямых                   |
| 2.1.2. Построение перпендикулярных прямых               |
| 2.2. Деление отрезков прямых на равные части            |
| 2.2.1. Деление отрезка прямой на две равные части       |
| 2.2.2. Деление отрезка прямой на <i>n</i> равных частей |
| 2.3. Построение и деление углов                         |
| 2.3.1. Построение угла, равного заданному углу          |
| 2.3.2. Построение биссектрисы угла                      |
| 2.4. Построение окружности                              |
| 2.4.1. Построение дуги окружности через три точки       |
| 2.4.2. Построение центра дуги окружности                |
| 2.4.3. Построение центра окружности, описанной вокруг   |
| треугольника                                            |
| 2.4.4. Построение центра окружности, вписанной в        |
| треугольник                                             |
| 2.5. Деление окружности на равные части                 |
| 2.5.1. Деление окружности на три равные части           |

| 252 JOIOUWO OKONYKUOCTA US NOTUDO A BOCOMI DEBULIX US                                                                                                                                                                                                                                                                     | стой                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2.5.2. Деление окружности на четыре и восемв равных ча                                                                                                                                                                                                                                                                    | 24                                                             |
| ······                                                                                                                                                                                                                                                                                                                    | 34                                                             |
| 2.5.3. Деление окружности на пять равных частей                                                                                                                                                                                                                                                                           | 35                                                             |
| 2.5.4. Деление окружности на шесть и двенадцать ран                                                                                                                                                                                                                                                                       | вных                                                           |
| частей                                                                                                                                                                                                                                                                                                                    | 35                                                             |
| 2.5.5. Деление окружности на семь равных частей                                                                                                                                                                                                                                                                           | 36                                                             |
| 2.6. Построение касательных                                                                                                                                                                                                                                                                                               | 37                                                             |
| 2.6.1. Построение касательной к окружности                                                                                                                                                                                                                                                                                | 37                                                             |
| 2.6.2. Построение касательной к двум окружностям                                                                                                                                                                                                                                                                          | 38                                                             |
| 2.7. Построение сопряжений                                                                                                                                                                                                                                                                                                | 40                                                             |
| 2.7.1. Построение сопряжения сторон угла                                                                                                                                                                                                                                                                                  | 42                                                             |
| 2.7.2. Построение сопряжения окружности и прямой                                                                                                                                                                                                                                                                          | 43                                                             |
| 2.7.3. Сопряжение двух окружностей                                                                                                                                                                                                                                                                                        | 46                                                             |
| 2.8. Построение эллипса                                                                                                                                                                                                                                                                                                   | 49                                                             |
|                                                                                                                                                                                                                                                                                                                           |                                                                |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ                                                                                                                                                                                                                                                                                           |                                                                |
| ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКИ                                                                                                                                                                                                                                                                                   | ⁄1E                                                            |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ                                                                                                                                                                                                                                      | 1E                                                             |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | <b>1E</b><br>51                                                |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКИ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | <b>1E</b><br>51<br>51                                          |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | <b>4E</b><br>51<br>51<br>52                                    |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка<br>3.2. Прямая и кривая линии<br>3.3. Взаимное положение двух прямых на плоскости<br>3.4. Отрезок. Луч                                                                                                                 | <b>4E</b><br>51<br>51<br>52<br>53                              |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | 4E<br>51<br>51<br>52<br>53<br>54                               |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | <b>4E</b><br>51<br>52<br>53<br>54<br>55                        |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка                                                                                                                                                                                                                        | <b>4E</b><br>51<br>52<br>53<br>54<br>55<br>56                  |
| ГЛАВА 3. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ         ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКИ         ФИГУРЫ       3.1. Точка         3.2. Прямая и кривая линии       3.3. Взаимное положение двух прямых на плоскости         3.4. Отрезок. Луч.       3.5. Окружность         3.6. Эллипс       3.7. Угол.         3.8. Ломанная     | 4E<br>51<br>52<br>53<br>53<br>54<br>55<br>56<br>57             |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка<br>3.2. Прямая и кривая линии<br>3.3. Взаимное положение двух прямых на плоскости<br>3.4. Отрезок. Луч                                                                                                                 | 4E<br>51<br>52<br>53<br>53<br>54<br>55<br>56<br>57<br>57       |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка<br>3.2. Прямая и кривая линии<br>3.3. Взаимное положение двух прямых на плоскости<br>3.4. Отрезок. Луч.<br>3.5. Окружность<br>3.6. Эллипс<br>3.7. Угол.<br>3.8. Ломанная<br>3.9. Многоугольники<br>3.10. Треугольники. | 4E<br>51<br>52<br>53<br>53<br>54<br>55<br>56<br>57<br>57<br>58 |
| ГЛАВА З. ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ<br>ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ. ГЕОМЕТРИЧЕСКІ<br>ФИГУРЫ<br>3.1. Точка<br>3.2. Прямая и кривая линии<br>3.3. Взаимное положение двух прямых на плоскости<br>3.4. Отрезок. Луч                                                                                                                 | 4E<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>57<br>58<br>59 |

# ГЛАВА 4. ГЕОМЕТРИЧЕСКИЕ ТЕЛА

| 4.1. Образование простейших поверхностей          | 62 |
|---------------------------------------------------|----|
| 4.1.1. Призматическая и пирамидальная поверхности | 63 |
| 4.1.2. Цилиндрическая и коническая поверхности    | 64 |

| 4.1.3. Сферическая поверхность                             |
|------------------------------------------------------------|
| 4.2. Призма                                                |
| 4.3. Пирамида                                              |
| 4.4. Цилиндр                                               |
| 4.5. Конус                                                 |
| 4.6. Шар                                                   |
| 4.7. Анализ геометрической формы предметов                 |
| Вопросы для закрепления                                    |
| ГЛАВА 5. ПРЯМОУГОЛЬНЫЕ ПРОЕКЦИИ                            |
| 5.1. Методы проецирования                                  |
| 5.1.1. Общие сведения о проецировании                      |
| 5.1.2. Центральное и параллельное проецирование            |
| 5.2. Прямоугольные проекции точки                          |
| 5.2.1. Проецирование точки на одну плоскость проекций78    |
| 5.2.2. Проецирование точки на две плоскости проекций79     |
| 5.2.3. Проецирование точки на три плоскости проекций81     |
| 5.2.4. Эпюр точки                                          |
| 5.2.5. Построение третьей проекции точки по двум данным    |
| проекциям                                                  |
| 5.2.6. Прямоугольные координаты точки                      |
| 5.2.7. Положения точек относительно плоскостей проекций 86 |
| 5.3. Прямоугольные проекции отрезка прямой                 |
| 5.3.1. Проецирование отрезка прямой на плоскости проекций  |
|                                                            |
| 5.3.2. Положение прямой относительно плоскостей проекций   |
|                                                            |
| 5.3.3. Точка на прямой92                                   |
| 5.4. Прямоугольные проекции плоскости                      |
| 5.4.1. Изображение плоскости на комплексном чертеже94      |
| 5.4.2. Положение плоскости относительно плоскостей         |
| проекций94                                                 |
| 5.4.3. Прямая и точка в плоскости                          |
| 5.5. Прямоугольные проекции геометрических тел101          |

| 5.5.1. Проекции призмы                                                                                                                                                                                   | 101                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 5.5.2. Проекции пирамиды                                                                                                                                                                                 | 103                                                               |
| 5.5.3. Проекции цилиндра                                                                                                                                                                                 | 103                                                               |
| 5.5.4. Проекции конуса                                                                                                                                                                                   |                                                                   |
| 5.5.5. Проекции шара                                                                                                                                                                                     | 105                                                               |
| 5.6. Сечение геометрических тел плоскостями                                                                                                                                                              | 106                                                               |
| 5.6.1. Понятие о сечениях геометрических тел.                                                                                                                                                            | Сечение                                                           |
| пирамиды плоскостью                                                                                                                                                                                      | 106                                                               |
| 5.6.2. Сечение призмы плоскостью                                                                                                                                                                         | 107                                                               |
| 5.6.3. Сечение цилиндра плоскостью                                                                                                                                                                       | 108                                                               |
| 5.6.4. Сечение конуса плоскостью                                                                                                                                                                         | 109                                                               |
| 5.6.5. Сечение шара плоскостью                                                                                                                                                                           | 110                                                               |
| ГЛАВА 6. АКСОНОМЕТРИЧЕСКИЕ ПРОЕКІ                                                                                                                                                                        | ции                                                               |
| 6.1. Общие сведения                                                                                                                                                                                      | 112                                                               |
| 6.2. Аксонометрия точки                                                                                                                                                                                  | 113                                                               |
| 6.3. Прямоугольная изометрическая проекция                                                                                                                                                               | 115                                                               |
| 6.4. Прямоугольная диметрическая проекция                                                                                                                                                                | 118                                                               |
| ГЛАВА 7. ИЗОБРАЖЕНИЯ ТЕХНИЧЕСКИХ ДЕ                                                                                                                                                                      | ГАЛЕЙ                                                             |
| 7.1. Общие сведения об изображениях                                                                                                                                                                      |                                                                   |
| 7.2. Виды                                                                                                                                                                                                | 122                                                               |
| 7.3. Разрезы                                                                                                                                                                                             | 126                                                               |
| 7.4. Сечения                                                                                                                                                                                             |                                                                   |
| 7.5. Условности и упрощения                                                                                                                                                                              |                                                                   |
| ГЛАВА 8. ЭСКИЗЫ                                                                                                                                                                                          |                                                                   |
| 8.1. Общие сведения                                                                                                                                                                                      |                                                                   |
|                                                                                                                                                                                                          | 140                                                               |
| 8.2. Последовательность выполнения эскиза                                                                                                                                                                | 140<br>140                                                        |
| <ul><li>8.2. Последовательность выполнения эскиза</li><li>8.3. Измерительные инструменты и приемы и</li></ul>                                                                                            | 140<br>140<br>измерения                                           |
| 8.2. Последовательность выполнения эскиза<br>8.3. Измерительные инструменты и приемы и<br>деталей                                                                                                        | 140<br>140<br>измерения<br>143                                    |
| <ul> <li>8.2. Последовательность выполнения эскиза</li></ul>                                                                                                                                             | 140<br>140<br>азмерения<br>143<br>ІЕЙ                             |
| <ul> <li>8.2. Последовательность выполнения эскиза</li> <li>8.3. Измерительные инструменты и приемы и деталей</li> <li>ГЛАВА 9. ТИПОВЫЕ СОЕДИНЕНИЯ ДЕТАЛ</li> <li>9.1. Неразъемные соединения</li> </ul> | 140<br>13мерения<br>143<br>1ЕЙ<br>146                             |
| <ul> <li>8.2. Последовательность выполнения эскиза</li></ul>                                                                                                                                             | 140<br>                                                           |
| <ul> <li>8.2. Последовательность выполнения эскиза</li></ul>                                                                                                                                             | 140<br>140<br>измерения<br>143<br>ІЕЙ<br>146<br>146<br>150        |
| <ul> <li>8.2. Последовательность выполнения эскиза</li></ul>                                                                                                                                             | 140<br>140<br>измерения<br>143<br>ІЕЙ<br>146<br>146<br>150<br>152 |

| 9.2. Разъемные соединения153                              |
|-----------------------------------------------------------|
| 9.2.1. Общие сведения о резьбе                            |
| 9.2.2. Изображение резьбы на чертежах160                  |
| 9.2.3. Резьбовые соединения162                            |
| 9.2.4. Нерезьбовые соединения166                          |
| 10. Настройка рабочей среды. Работа с командной строкой в |
| системе AutoCAD170                                        |
| 10.1 Рабочая среда AutoCAD171                             |
| 10.2 Графическая зона172                                  |
| 10.3 Строка состояния172                                  |
| 10.4 Установка панелей инструментов173                    |
| 10.5 Командная строка. Особенности работы в системе       |
| AutoCAD174                                                |
| 10.6 Диалоговое окно Options (Настройки)175               |
| 11. Задание координат в системе AutoCAD. Объектная и      |
| шаговая привязки в системе AutoCAD177                     |
| 11.1 Способы задания координат177                         |
| 11.2 Шаговая и объектная привязки179                      |
| 12. Создание графических объектов-примитивов182           |
| 12.1 Построение прямолинейных отрезков (линий)182         |
| 12.2 Разметочные (вспомогательные) линии                  |
| 12.3 Построение вспомогательных лучей184                  |
| 12.4 Построение кругов                                    |
| 12.5 Построение прямоугольников185                        |
| 12.6 Построение многоугольников187                        |
| 12.7 Дуги и их построение на чертеже187                   |
| 12.8 Построение полилиний189                              |
| 13. Редактирование и модификация объектов192              |
| 13.1 Окно-панель Properties(Свойства)192                  |
| 13.1.1 Копирование свойств                                |
| 13.2 Свойства объектов чертежа194                         |
| 13.3 Способы выбора объектов195                           |
| 13.4 Удаление объектов                                    |

| 13.5 Перемещение объектов 1                          | 196 |
|------------------------------------------------------|-----|
| 13.6 Копирование объектов 1                          | 197 |
| 13.7 Поворот объектов 1                              | 197 |
| 13.8 Масштабирование объектов 1                      | 197 |
| 13.9 Подрезание объектов 1                           | 198 |
| 13.10 Зеркальное отображение объектов 1              | 199 |
| 13.11 Построение подобных объектов 2                 | 200 |
| 13.12 Построение фасок 2                             | 201 |
| 13.13 Построение плавного сопряжения                 | 203 |
| 13.14 Создание упорядоченной группы объектов 2       | 204 |
| 13.14.1 Интерактивный метод создания массива 2       | 204 |
| 13.14.2 Прямоугольные массивы 2                      | 205 |
| 13.14.3 Круговые массивы 2                           | 206 |
| 14. Использование слоев в системе AutoCAD. Простанов | вка |
| размеров в системе AutoCAD 2                         | 207 |
| 14.1 Слои и их свойства 2                            | 207 |
| 14.2 Использование диспетчера размерных стилей 2     | 209 |
| 14.3 Простановка размеров 2                          | 211 |
| 14.4 Нанесение штриховки 2                           | 213 |
| 14.5 Ввод и редактирование текста                    | 215 |
| 14.5.1 Однострочный текст 2                          | 215 |
| 14.5.2 Многострочный текст 2                         | 216 |
| 14.6 Блоки                                           | 217 |
| 14.6.1 Создание блока                                | 217 |
| 14.6.2 Вставка блока 2                               | 218 |
| РУССКО-АНГЛИЙСКИЙ СЛОВАРЬ 2                          | 220 |
| Литература                                           | 232 |

И.И. Тошев, А.Т. Азимов

# ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА

| Редактор:   |           |
|-------------|-----------|
| Технический | редактор: |
| Верстник:   |           |

Г. Мурадов Г. Самиева А. Каландаров

Разрешено к печати: 05.07.2021. Формат: 60/84 <sup>1</sup>/<sub>16</sub>. Усл.печ.лист:15 . Заказ № 92. Тираж 100. Цена договорная.



Издательство "ДУРДОНА". г.Бухара, ул. М.Икбол, 11.



Отпечатано в типографии ООО "Шарк-Бухоро". г.Бухара, ул.Узбекистон Мустакиллиги, 70/2. Тел. (0365) 222-46-46

