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Preface to the Second Edition

Medical Statistics and Computer Experiments (Chinese version) was rec
ommended as a textbook for graduate students by the Ministry of Education, 
People’s Republic of China. There have been four editions of Chinese ver
sion published by the Shanghai Science and Technology Press in 1997, 
2001, 2006 and 2012. The first English version, whose content was based 
on the third Chinese edition was published by World Scientific in 2005.

The idea of updating the English version was first raised by the pub
lisher. The publisher has been forwarding the reviews of the first edition to 
me timely. I have been inspired whenever I read those reviews. Meanwhile, 
due to the increasing demand of the third edition of the Chinese version, the 
Shanghai Science and Technology Press was also looking forward to a new 
edition. Therefore, we decided to update both the Chinese and English ver
sions simultaneously, and as a result, the fourth edition of Chinese version 
had been published in June 2012.

In order to have a new edition, I decided to update at least 30% of the 
content. For chapters which were essential for the compulsory and elective 
courses of Medical Statistics, and basic for the healthcare related researches, 
we have maintained the fundamental content by “getting rid of the stale and 
taking in the fresh”. For example, “histogram” is essential, but it is hard to 
decide which is superior to the other when two histograms are almost the 
same. In this case, after “deleting some superfluous”, we have included the 
cumulative frequency diagram, which clearly presents two ladder-shaped 
curves, with one sitting above the other.

Furthermore, the core of ANOVA should be the concept on decompo
sition of the total sum of squared deviations according to the sources of 
variation, while the convenience in calculation takes a second role. In the 
new edition, instead of the formulas for hand calculating, we emphasize the
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meaning of the formulas for all kinds of sum of squares, and the fundamental 
difference among various designs. In addition, based on the formula of sum 
of squared errors, the residual analyses are uniformly applied to examine 
the preconditions of all kinds of ANOVA.

Moreover, to serve the demands of new medical researches, some of the 
original content has been enriched with new concepts and knowledge. For 
example, to meet the increasing needs of large-scale clinical trials, the non
inferiority test, equivalence test and interim analysis, which are receiving 
more and more attention, have been introduced and explained in an easy to 
understand way. Again, as the data frequently encountered in practice do not 
typically follow a presumed distribution, the approach of permutation test 
has been provided, which is gradually becoming popular as a supplement 
to the routine tests.

Finally, as modem clinical research pays equal attention to both head- 
to-head comparative trials to investigate clinical effects in the real world 
on the macroscopic aspect, and massive genetic and molecular information 
from the microscopic perspective, two chapters illustrating comparative 
effectiveness research and design and analysis of bioinformatics have been 
newly added, in addition to the improvement of the previous chapters on 
statistical methods of scale research and genetic statistics.

The first Chinese edition recommended the brand-new teaching method 
of “Computer experiments on statistics”. Since then, this method has been 
acknowledged by peers from home and abroad and found its way into more 
and more schools. In this edition, some new experiments related to the 
enriched text have been added. For example, in chapters introducing random 
permutation test, propensity matching and differential item functioning, the 
corresponding SAS programs have been provided, which are helpful in 
dealing with massive genetic data, observational data and multi-center scale 
data. As before, all SAS programs and some SPSS programs are shown and 
are also available at
http://www.worldseientific.eom/r/8981-supp, please register/sign in at the 
website.

The new edition was written mainly during summer vacation. Professor 
Song-Lin Yu worked hard in Wuhan, known as one of the “four furnaces” 
in China, and sometimes even replied my email discussing the text at mid
night. Professor Yong-Yong Xu performed “major surgery” on chapters

http://www.worldseientific.eom/r/8981-supp
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of ANOVA and sequential analysis, dramatically improving the layout. 
Professor Yuan-Tao Hao standardized the content of the appendices, and 
provided template at the same time. Led by director Jin-Xin Zhang and 
Professor Jing Gu, a group of postgraduate students majoring in medical 
statistics and epidemiology in the Sun Yat-Sen University scrutinized the 
text and appendices as readers to find any errors or defects. With profound 
knowledge on the subject, Professor Dong Yi wrote a new chapter on Bioin
formatics based on recent literatures.

Many colleagues such as Prof. Chang-Sheng Chen, Dr. Dan-Hong Liu, 
Prof. Yi Wan and Dr. Chun Hao creatively took part in the arduous revision; 
and as they did before, Shao-Min Wu, Fang-Fang Zeng, and Shu-Min Zhu 
were helpful in graphing, typing and recording the appendices. Here, I 
would like to express my sincere thanks to all the above-mentioned and 
unmentioned colleagues and friends for their great contribution.

With full cooperation of the professors mentioned above, this edition 
has made considerable progress in both the content and form. Due to the 
constraint of time and energy, however, new errors and even mistakes might 
appear inevitably. Criticism and suggestions are always welcome so that I 
will be encouraged to continuously revise in next print or edition.

vii

Ji-Qian Fang 
April 2014





Introduction

This volume consists of three parts: Part I has 11 chapters on basic concepts 
of statistics, Part II includes ten chapters on multi-variate statistics and 
Part III includes 12 chapters on design and analysis for medical research. 
This volume uses basic concepts and commonly used methods on design 
and analysis in medical statistics, incorporating the operation of statistical 
package SAS and 100 computer experiments for the important statistical 
phenomena related to each chapter. Each chapter concludes with a sec
tion on “Practice and Experiments”. All necessary data including reference 
answers for exercises, SAS programs for all computer experiments and part 
of the examples, data documents for 12 medical researches are available at 
http://www.worldscientific.eom/r/8981-supp, please register/sign in at the 
website. Part I of this volume can be used for a required course with 100 
teaching hours or so; the last two parts can be used for a course with 50 
teaching hours for each. This volume can also be used as a reference book 
for related courses in life science, agriculture and forestry.

IX
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Part I

Basic Concepts





Chapter 1

Descriptive Statistics

Statistical analyses in practice usually include two parts: statistical 
description and statistical inference. Statistical description is a kind of fun
damental work for statistical inference, which describes the feature of the 
sample. The main forms for description are tables (such as frequency table), 
plots (such as block plot, histogram) and numerical indices (such as mean, 
standard deviation).

1.1 Variables and Data

1.1.1 Types o f  variables

Variables are used to describe the properties of individuals in statistics. 
Different types of variables have different types of distributions and hence 
the statistical methods being used might be different. It is important to 
identify the types of variables before dealing with the data.

1.1.1.1 Continuous variable

They are the variables whose values can be obtained through measurement 
such as height, weight, blood pressure, pulse and blood count of the individ
uals. Limited by the precision of measurement, the variables such as height 
and weight can take some values of real number but not all indeed, and the 
variables such as pulse and blood count can take values of integral number 
only. However, for the convenience in theoretical study, they are regarded 
as continuous variables taking values in a continuous interval on the axis of 
real number. Sometimes, the observed values of such kind of variables are 
called measurement data.

3
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1.1.1.2 Discrete variable

Some properties can only be described qualitatively with several mutually 
excluded categories, such as gender, occupation and effect of medicine 
(positive or negative). The variable for gender can only take a “value” either 
“male” or “female”; the variable of occupation may take a “value” among 
several categories (worker, farmer, salesman and soldier etc.). This kind of 
variables is called categorical variables or nominal variables.

Example 1.1 The variable for gender can be defined with a binary vari
able X.

1 0 Female,
1 Male.

In general, the variables taking values in a set of countable numbers 
are called discrete variables. Binary variable is the simplest special case 
of it.

The number of individuals within a certain category is often counted, 
and it is called frequency so that the data of discrete variable is sometimes 
called count data.

Example 1.2 In the sample of 108 patients, there are 63 males and 
45 females. If a binary variable X is defined for gender as in Example 1.1, 
the sum of X for the 108 patients is the number of males (63).

In general, the frequency of certain category is equivalent to the sum of 
a binary variable.

1.1.1.3 Ordinal variable

Some measurement can only result in a semi-quantitative outcome. For 
instance,—, ± , + , + + , + + + are quite often used to indicate different ranks 
in clinic. For some properties, there naturally exist ranks among different 
categories. For instance, cure, effective, un-effective and worse are used to 
describe the level of drug effect. An ordinal variable can be defined for this 
kind of properties taking values among 1, 2, 3,... for rank, but not for the 
exact quantitative measurement.

The frequencies of ordinal variable is sometimes called ranked data.
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T a b le  1.1 T h e  p o st-trea tm en t c lin ica l reco rd s o f  100 h y p e rten sio n  pa tien ts .

Systolic Diastolic

No.
Age

(years) Gender Treatment
pressure

(kPa)
pressure

(kPa) ECG Effectiveness

1 37 Male Drug A 18.67 11.47 Normal Prominent
2 45 Female Control 20.00 12.53 Normal Effect
3 43 Male Drug В 17.33 10.93 Normal Effect
4 59 Female Control 22.67 14.67 Abnormal No effect

100 54 Female Drug В 16.80 11.73 Normal Effect

1.1.2 Structure a n d  fe a tu re  o f  data

Any outcome of experiment or observation should be expressed with 
numerical data for statistical analysis. Most outcomes in medical research 
could be expressed through a data structure similar to Table 1.1, where 
7 recorded items of 100 patients are given by a matrix with 100 rows and 
7 columns. This is a basic format for data input in most of the statistical 
software such as SAS, SPSS, etc.

1.1.2.1 Basic observed unit

It is the basic unit for data collection determined by the purpose of research. 
For instance, if the systolic pressure and diastolic pressure are measured at 
a fixed time after treatment, then a patient is defined as an observed unit; 
otherwise, if the systolic pressure and diastolic pressure are measured at 3 
different times after treatment (say, week 1, week 2 and week 4), then each 
patient is regarded as 3 observed units since the condition of each patient 
changes with time.

1.1.2.2 Recording item

The recording items used for statistical analysis usually consist of 3 parts: 
group, response variables and covariates. In Table 1.1, columns 2-8 show 
a 100 x 7 matrix corresponding to 7 recording items, of which treatment 
is a variable for grouping, systolic pressure, diastolic pressure, ECG and 
effectiveness are response variables, and age and gender are covariates.
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1.2 Frequency Table and Histogram

Frequency table and histogram are not only fairly useful for description of 
sample data but also the intuitive foundation of the important concept of 
probability distribution.

1.2.1 F requency table

As mentioned before, in a set of samples, the number of times a certain event 
occurs is frequency. For a complete list of mutually exclusive events, the 
table putting the corresponding frequencies together is called a frequency 
table.

1.2.1.1 Discrete-type frequency table

For a discrete variable, the completely and mutually exclusive events are 
just the possible values or categories of that variable. Based on the data 
of Example 1.2, two frequency tables are given in Tables 1.2 and 1.3,

Table 1.2 The frequency table for gender of 108 patients.

Gender Frequency
Relative 

frequency (%)
Cumulative
frequency

Cumulative relative 
frequency (%)

Female 45 41.7 45 41.7
Male 63 58.3 108 100.0

Total 108 100.0

Table 1.3 The frequency table for occupation of 108 patients.

Occupation Frequency
Relative 

frequency (%)
Cumulative
frequency

Cumulative relative 
frequency (%)

Worker 28 25.9 28 25.9
Farmer 23 21.3 51 47.2
Businessman 24 22.2 75 69.4
Student 18 16.7 93 86.1
Soldier 15 13.9 108 100.0

Total 108 100.0
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where the ratio between the frequency and the total number is called relative 
frequency (if no confusion will arise, it is also called frequency). The sum of 
all relative frequencies must be 100% (in practice, sometimes it is not exactly 
100% due to rounding error). The cumulative frequencies and cumulative 
relative frequencies are the results of successively cumulating the frequen
cies and relative frequencies respectively.

It is similar for ordinal variables. For instance, Table 1.4 is a frequency 
table for the results of certain semi-quantitative test among 150 patients; 
Table 1.5 is a frequency table for the treatment effect after their taking 
certain medicine.

1.2.1.2 Continuous type frequency table

For continuous variable, the general method to establish a frequency table 
could be learnt from the following example.

Table 1.4 The frequency table for the results of a semi-quantitative test among 
150 patients.

Relative Cumulative Cumulative relative
Results Frequency frequency (%) frequency frequency (%)

_ 80 53.3 80 53.3
± 20 13.3 100 66.6
+ 25 16.7 125 83.3
+ + 15 10.0 140 93.3
+  +  + 10 6.7 150 100.0

Total 150 100.0

Table 1.5 The frequency table for the treatment effect of certain medicine.

Relative Cumulative Cumulative relative
Effectiveness Frequency frequency (%) frequency frequency (%)

Cure 65 43.3 65 43.3
Effect 45 30.0 110 73.3
No effect 25 16.7 135 90.0
Worse 15 10.0 150 100.0

Total 150 100.0
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Example 1.3 120 normal male adults were randomly selected from the
residents of a county. Their red blood cell counts (10I2/L) were observed 
and listed as follows:

5.12 5.13 4.58 4.31 4.09 4.41 4.33 4.58 4.24 5.45 4.32 4.84
4.91 5.14 5.25 4.89 4.79 4.90 5.09 4.04 5.14 5.46 4.66 4.20
4.21 3.73 5.17 5.79 5.46 4.49 4.85 5.28 4.78 4.32 4.94 5.21
4.68 5.09 4.68 4.91 5.13 5.26 3.84 4.17 4.56 3.52 6.00 4.05
4.92 4.87 4.28 4.46 5.03 5.69 5.25 4.56 5.53 4.58 4.86 4.97
4.70 4.28 4.37 5.33 4.78 4.75 5.39 5.27 4.89 6.18 4.13 5.22
4.44 4.13 4.43 4.02 5.86 5.12 5.36 3.86 4.68 5.48 5.31 4.53
4.83 4.11 3.29 4.18 4.13 4.06 3.42 4.68 4.52 5.19 3.70 5.51
4.64 4.92 4.93 4.90 3.92 5.04 4.70 4.54 3.95 4.40 4.31 3.77
4.16 4.58 5.35 3.71 5.27 4.52 5.21 4.37 4.80 4.75 3.86 5.69

Try to establish a frequency table for this set of data.

Solution

(1) Range R\ The difference between the maximum and minimum of 
the data set is called the range. In our example, maximum =  6.18, 
minimum =  3.29, the range is /? =  6.18 — 3.29 =  2.89.

(2) Length of sub-intervals i : Divide the whole range into 8-15 sub
intervals. For convenience, take one tenth of the range first, and then 
slightly adjust to an easy number. In our example, R/10 =  2.89/10 =  
0.289 «  0.30, then let i — 0.30.

(3) Work out the list of sub-intervals: First of all, take a number slightly 
less than the minimum as the lower limit of the first sub-interval, say 
3.20, such that its upper limit is 3.20 +  0.30 =  3.50; take 3.50 as 
the lower limit of the second sub-interval such that its upper limit is 
3.50+0.30 =  3.80;.... Due to the fact that the upper limit of the former 
sub-interval is equal to the lower limit of the later one, for convenience, 
the upper limits are open and not shown except the last sub-interval, 
hence the list of sub-intervals are 3.20~, 3.50~, 3 .80~ ,. . . ,  5.60 ~  
and 5.90~6.20 (column 1 of Table 1.6).

(4) Read, mark and count to get frequencies: Read over the data and write 
the five strokes of the Chinese character “IE” one by one to mark and 
count the number of individuals corresponding to each sub-intervals 
(column 2 of Table 1.6).
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T a b le  1.6 T h e  freq u en cy  tab le  based  on  the  d a ta  se t o f  red  b lo o d  cell c o u n ts  o f  120
norm al m ale  adults.

Sub
interval Mark Frequency

Relative 
frequency (%)

Cumulative
frequency

Cumulative 
relative 

frequency (%)

3.20- T 2 1.7 2 1.7
3.50- iE 5 4.2 7 5.9
3.80- JEIE 10 8.3 17 14.2
4.10- jEJEIEiE 19 15.8 36 30.0
4.40- JEjEEiET 23 19.2 59 49.2
4.70- jEJEiEIEiE 24 20.0 83 69.2
5.00- iHiEEE- 21 17.5 104 86.7
5.30- E E - 11 9.2 115 95.9
5.60- IF 4 3.3 119 99.2
5.90-6.20 1 1 0.8 120 100.0

Total 120 100.0

(5) Calculate the frequencies, relative frequencies and cumulative frequen
cies (columns 3-6 of Table 1.6).

1.2.2 F requency p lo t an d  histogram

To present the frequency table intuitively, a frequency plot within a coor
dinate system can be used, where the horizontal axis refers to “various 
situations” of the variable and the vertical axis refers to the corresponding 
frequencies.

1.2.2.1 Frequency plot for discrete variable — bar chart

For a discrete variable, one can use the points on the horizontal axis to 
express different categories or their related values; and plot vertical line 
segments on these points, of which the lengths express the frequencies or 
relative frequencies of the corresponding categories (Figs. 1.1 and 1.2). 
Such kind of frequency plot is called bar chart.

1.2.2.2 Frequency plot for continuous variable — histogram

For a continuous variable, one can use the sub-intervals with equal length 
on the horizontal axis to express the different situations of the variable; and
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Fig. 1.1 The frequency plot for gender of 108 patients, x:  gender, 0: female, 1: male.

Fig. 1.2 The frequency plot for occupation of 108 patients, y: occupation, 1: worker, 2: 
famer, 3: businessman, 4: student, 5: soldier.

plot vertical rectangles on these intervals, of which the heights express the 
frequencies related to the sub-intervals (Fig. 1.3(a)), this is called histogram. 
However, when the lengths of the sub-intervals are not equal (for instance, 
the age intervals 0~, 1~, 5~, 10~, 1 5 ~ ,...), the heights cannot be used to 
express the frequencies.

Alternatively, one would use the areas of the rectangles to express the 
relative frequencies. The height of any rectangle in a histogram is neither the 
frequency nor the relative frequency, but the ratio of the relative frequency 
to the length of the sub-interval. Such kind of histogram is called frequency 
density histogram, of which the total area of all the rectangles is equal to 
1 or 100%. The frequency density histogram can be used regardless of the 
lengths of the sub-intervals.

Both the frequency histogram and the frequency density histogram 
reflect the chances of various values taken by a continuous variable. The 
histograms in Fig. 1.3 appear to be symmetric, higher around the center
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(a) Frequency histogram (b) Frequency density histogram

Fig. 1.3 Flistograms plotted on the basis of the frequency table for the data set of red blood 
cell counts ( 1012/L) of 120 normal male adults.

Fig. 1.4 Frequency histogram of hair mercury for the residents of a city.

and shorter on two sides, which indicate that the red blood cell counts of 
normal male adults, may be higher or lower with about equal chances, but 
mostly around the median level. Many histograms in practical problems 
look like this. However, there are some other types as well. For instance, 
the frequency histogram of hair mercury for the residents of a city is given 
in Fig. 1.4; the frequency histogram of the age for a group of male patients 
with lung cancer is given in Fig. 1.5; and the frequency histogram of the 
scores suggested by a group of patients for the importance of a specific 
item in evaluating the quality of life is given in Fig. 1.6. One can see that 
Figs. 1.4 and 1.5 are higher around center and shorter on two sides but not 
symmetric, of which the shape is usually called skew. The tail on the posi
tive side appears longer in Fig. 1.4 and hence it is called positive skew; and
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Fig. 1.5 Frequency histogram of age for a group of male lung cancer patients.

Fig. 1.6 Frequency distribution of the satisfactory score to an exhibition among the visitors.

the tail on the negative side appears longer in Fig. 1.5 and hence it is called 
negative skew. The histogram in Fig. 1.6 appears shorter around center and 
higher on two sides, of which the shape looks like a hook. Various shapes of 
the histograms are important for us to learn the distributions of continuous 
variables.

1.2.2.3 Frequency plot for ordinal variable — bar chart

The distances between successive ranks of an ordinal variable are usually 
not equal or unknown so that a bar chart instead of a histogram is used for 
frequency plot. For instance, the effect of a treatment can be described with 
four categories: cure, effect, no effect and worse, and the corresponding 
frequencies can be expressed with four bars on the horizontal axis as a bar 
chart for discrete variable.

1.2.3 C um ulative freq u en cy  p lo t

We can also use cumulative frequency plot to show how the frequency 
and percentage of individuals accumulate as the value increases, where
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the horizontal axis refers to “various situations” of the variable and the 
vertical axis refers to the cumulative frequencies. According to Table 1.6, 
column 5 indicates the cumulative percentages at each observed red blood 
cell counts level among 120 normal male adults. We can get the cumulative 
frequency distribution based on the frequency table when using the data 
in column 5 as the values for vertical axes, and the upper limit values in 
column 1 as the values for horizontal axes (Fig. 1.7(a)). We can also get 
the cumulative frequency distribution based on the raw data (Fig. 1.7(b)). 
For example, there were 120 observations in Example 1.3, so each repre
sents 1/120 =  0.83%. The first observation (3.29 x 10I2/L) corresponds to 
a cumulative frequency of 0.83%, the first and second observations to a 
cumulative frequency of 1.67%, and so on. Cumulative frequency distribu
tion is useful in finding the median and other quartiles. We can easily get 
the median, the lower and upper quartiles (25% and 75% quartiles) accord
ing to Fig. 1.7(b). The cumulative frequency distribution is a continuous 
ladder shape curve, say, the vertical jumps correspond to the increases in 
the cumulative frequencies at each observed red blood cell counts level. 
The cumulative frequency curve is steep when there is a concentration of 
values, and shallow when the values are sparse. In Fig. 1.7, the curve is 
steep in the center, and shallow around the low and high values. This means 
the majority of red blood cell counts are concentrated in the center of the 
distribution.

We usually use histograms to compare the distributions of two vari
ables. However, cumulative frequency distribution provides more informa
tion when the histograms overlap extensively. For example, the histograms 
of the outcomes corresponding to the new medication group and control 
group mostly overlap in Fig. 1.8, thus we can hardly describe the difference 
between the two groups simply based on the histograms. In contrast, view
ing at the cumulative frequency distribution, we can find that the change is 
sharper in the control group than that in the new medication group.

1.3 Measurement for Average Level of a Sample

In addition to frequency table and histogram, several numerical character
istics are also used for statistical description. For continuous variables, two 
often used characteristics are the average level and variation.
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Sub-interval red blood cell counts (1012/L) 
(a)

Fig. 1.7 Cumulative frequency distribution of the red blood cell counts (1012/L) of 120 
normal male adults.
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control New medication

Outcome

(b)

Fig. 1.8 Histograms and cumulative frequency distribution of effects outcome of the new 
medication group and the control group.

1.3.1 A rith m etic  m ean

When the histogram looks symmetric, the value that can well represent the 
average level is the arithmetic mean, or mean or average for brief, which 
is equal to the quotient of dividing the sum of observed values by the total 
number of individuals.

1.3.1.1 Raw data based approach

Denote the observed values of the individuals with x\, X2 , . . . ,  xn and the 
arithmetic mean with x, then

X\  +  X i  +  • • • +  x n Е П
i=i x‘x n n

(1.1)



16 Medical Statistics and Computer Experiments

Whenever no confusion arises, xi could be simplified as ]T(. x, or even 
Y2X- Equation (1.1) is an approach to calculate the mean directly on the 
basis of the raw data.

1.3.1.2 Frequency table based approach

When the raw data are not available, the frequency table can be used to cal
culate the mean approximately. Usually the mid-values of the sub-intervals 
are taken as the representative values. If one wants to calculate the mean 
based on Table 1.6, then from Table 1.7, the mean is

x =  3.35 x 0.017 +  3.65 x 0.042 +  • • • +  6.05 x 0.017 
=  0.0569 +  0.1533 +  • • • +  0.1028 =  4.7057.

Obviously, it approximates the mean obtained on the basis of raw data where 
x =4.7167.

The formula for the above approach can be expressed as

x = £ " = i fix, 0 .2)

where f ) and xt are the frequency and the mid-value of the / th sub-interval, 
n is the total sample size. One can see from the process of the above

Table 1.7 The operation of weighted average based on a frequency table.

Sub-interval
(1)

Mid-value
(*)
(2)

Frequency
( / )
(3)

Relative
frequency ( f / n )  

(4) =  (3)/l 20

Mid-value x 
Relative frequency 

(5) =  (2) x (4)

3.20- 3.35 2 0.017 0.0569
3.50- 3.65 5 0.042 0.1533
3.80- 3.95 10 0.083 0.3278
4.10- 4.25 19 0.158 0.6715
4.40- 4.55 23 0.192 0.8736
4.70- 4.85 24 0.200 0.9700
5.00- 5.15 21 0.175 0.9013
5.30- 5.45 11 0.092 0.5014
5.60- 5.75 4 0.033 0.1897
5.90-6.20 6.05 1 0.008 0.0484

Total 120 1 4.6939
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calculation that the mid-value xe =  4.85 is multiplied by a bigger frequency 
f 6/n  =  20.0% hence the contribution of xb is bigger. Such a way that the 
mid-values are not equally dealt with in the process of making average is 
called weighted average, and the result is called weighted mean. The rela
tive frequency fc/n  in (1.2) that reflects the importance of the mid-value xt 
is called weighting coefficient in general. The formula (1.2) is equivalent 
to the statement: the sample mean calculated based on a frequency table 
is a weighted mean of the mid-values with the frequencies as weighting 
coefficients.

1.3.2 G eom etric m ean

“Titer” is a widely applied measurement of concentration in microbiology 
and immunology where the tested material is proportionately diluted so 
that several samples with different concentrations are prepared and titered 
respectively until certain phenomenon appears, of which the corresponding 
diluted proportion is defined as the measurement of the concentration. For 
instance, the concentrations of certain antibody are measured for a set of 
sample and the corresponding titers are 4, 8, 16, 16, 64, and 128, of which 
the arithmetic mean 39.3 is not an ideal representative of the data but the 
geometric mean. The arithmetic mean of the logarithms of the titers is 
calculated firstly,

(log 4 +  log 8 +  log 16 +  log 16 +  log 64 +  log 128)/6  =  1.3045

then the anti-logarithm of it, log-1 1.3045 =  20.16, is the geometric mean 
of the above data set.

In general, if the individual values of the sample are all greater than 
0, denoted with X\,X2 , . . .  ,x n, and the geometric mean is denoted with 
xg, then

(1.3)

or

Xg =  Z]X\X2 ■■■xn. ( 1 .4 )
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When the histogram of the sample is positive skew, if the histogram of 
the logarithms is close to symmetric, then the geometric mean may well 
represent the average level and it is usually less than the arithmetic mean.

1.3.3 M edian

When the histogram of the sample is taller around center and shorter on two 
sides but worse in symmetry, no matter positive skew or negative skew, the 
median, denoted with Md, can be applied to measure the average level.

1.3.3.1 Raw data based approach

Arrange the individual values in the sample from smallest to largest; when 
the number of individuals n is an odd number, the observed value with rank 
(n +  l)/2 is taken as the median; when n is an even number, the average of 
the observed values with rank nil and (n /2 )+ l is taken as the median. For 
example, the median of the data set {1,1,2,2,3,4,6,9,10} is 3, while that of 
{1,1,2,2,3,4,6,9,10,13} is (3 +  4)/2 =  3.5.

1.3.3.2 Frequency table based approach

When only the frequency table is available, the median can be calculated 
approximately according to the following steps:

(1) Calculate the rank corresponding to the median with n II  approximately 
(may not necessarily be an integer);

(2) Find out the sub-interval corresponding to the rank based on the cumu
lated frequencies, and denote with “a ~ b ” of which the length is b -  a\

(3) Find the cumulative frequencies up to the two ends of the sub-interval, 
f a =  the cumulative frequency of the last sub-interval
fb =  the cumulative frequency of the current sub-interval

(4) Estimate the value corresponding to the rank nII through interpolation

Md ^ a  +  -^— ^ - ( 0 .5 и - / a) (1.5)
Jb Ja

Example 1.4 The two columns of Table 1.8 is the frequency table related 
to Fig. 1.4. Calculate the arithmetic mean x, geometric mean xg and median
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Table 1.8 The frequency table of hair mercury ( p  mol/kg) for 
the residents of a city.

Sub-interval Frequency
Cumulative
frequency Mid-value (x )

1- 20 20 2
3- 66 86 ( f a ) 4
5 - ( a —b) 60 146 ( f b ) 6
7 - 48 194 8
9- 18 212 10
11- 16 228 12
13- 6 234 14
15- 1 235 16
17- 1 236 18
19-21 3 239 20

Total 239

Md of hair mercury for the residents of the city approximately on the basis 
of these data.

Solution The 4th column of Table 1.8 is that of mid-values. The individual 
values are approximately equal to these mid-values respectively, and hence

x «  (20 x 2  +  66 x 4  +  60 x 6  +  48 x 8  +  -- - +  3 x  20)/239

=  1598/239 =  6.69(ju mol/kg)

xg ~  log-1 (20 x log 2 +  66 x log 4 +  60 x log 6 +  48 x log 8 +  • • •

+3 x log 20)/239

=  log-' (0.7711) =  5.90 (/г mol/kg)

As for median, the corresponding rank is about

n/ 2 =  239/2 =  119.5

which is located in the sub-interval “5-7”; the cumulated frequency up to 
“5” (the cumulated frequency of the sub-interval “3-5”) is 86; the cumulated 
frequency up to “7” (the cumulated frequency of the sub-interval “5-7”) is 
146; through interpolation,

7 - 5
Md «  5 +

146 -  86
(119.5 — 86) =  6.12 (/( mol/kg).
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1.4 Measurement for Variation of a Sample

In addition to the measure for average level, the measure for variation among 
individual values is also necessary. The four measures frequently used are 
introduced as follows.

1.4.1 R ange R

It has been mentioned before that range is defined as the difference between 
the maximal value and the minimal value in the sample. Obviously, a bigger 
range indicates that the individual values are wider dispersed or higher 
varied. However, this measure depends on the maximal value and minimal 
value only but they often change a lot from sample to sample, and hence, 
R is worse in robustness.

1.4.2 Q3 -  Qi

Arrange the n individual values in the sample from the smallest to largest; 
the value with a rank mostly close to nP% is called P% quartile or P per
centile of the sample, denoted with Xp. As special cases, 50% quartile or 
50th percentile is exactly the median; 25% quartile or 25th percentile is 
called the lower quartile, denoted with QL\ the 75% quartile or 75th per
centile is called the upper quartile, denoted with QU.

The difference between QU and QL is another measure for variation. 
A bigger QU — QL indicates that the individual values are wider dispersed. 
Here the information on ranks of the data is partly used, hence the robustness 
of QU -  QL is better than that of range R.

The raw data based approach for Pth percentile is similar to that for 
median. Arrange the individual values in the sample from the smallest to 
largest. If nP% is an integer, then the value with this integer as rank is taken 
as the Pth percentile. Otherwise, there are two integers closing to nP% 
and hence the average of the two corresponding values is taken as the Pth 
percentile.

The steps of frequency table based approach for Pth percentile are 
also similar to those for median, only that n/ 2  should be changed 
with nP%,

Xp & a +  - j— ~-{nP %  — fa).
Jb Ja

0 .6)
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1.4.3 Variance an d  stan dard  deviation

Both the range and Q3 — Q 1 share the common shortcoming that the individ
ual information cannot be used sufficiently and the inference on variation 
of the population can hardly be performed.

The difference between individual value and the population mean is 
called deviation from the mean. It could be positive or negative though 
its absolute value reflects the variation. The average of squared deviations 
throughout the population is called the population variance, denoted by a 2, 
of which the dimension is square of the variable’s dimension. To make 
the dimension same as that of the variable, square root of the population 
variance is defined as the population standard deviation, denoted with a .

When the population mean is unknown and only the sample data are 
available, the population mean in the definition of deviation is replaced by 
the sample mean. It can be proved that the sum of the squared deviations 
from the sample mean must be less than that of the squared deviations from 
the population mean. To amend such a shortcoming, the sum is divided by 
(n — 1) instead of n, and hence the average sum of squared deviations is 
called the sample variance, denoted with S2,

where n — 1 is called the degrees of freedom. In fact, since the restrain of

among the n terms in the numerator of (1.7), there are only n — 1 deviations 
which could be varied freely.

For convenience in calculation, (1.7) can be expressed as

The readers can easily prove the equivalence between (1.7) and (1.8) with 
elementary algebra.

The square-root of the sample variance is called the sample standard 
deviation, briefly denoted with S or SD, of which the dimension is the same 
as the variable itself. A bigger value of S refers to a greater variation.

(1.7)

П

^ (• * 1  -  x )  =  0

( 1.8)
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1.4.4 C oefficien t o f  variation

Sometimes the variations of two variables with different dimensions need 
to be compared. Obviously, their standard deviations cannot be compared 
directly because their dimensions are different. Then the coefficient of vari
ation (CV), a measure without dimension, is useful, which is defined as

S
CV  =  - .  (1.9)

x

Taking the height and weight of normal young males as an example, 
assume the mean and standard deviation of the height are 170 cm and 6 cm 
and those of the weight are 60 kg and 7 kg; their standard deviations 6 cm and 
7 kg are not comparable while the comparison between their coefficients of 
variation 6/170 =  0.035 and 7/60 =  0.117 shows that the variation of weight 
is greater than that of height.

Mean and standard deviation are two important numerical characters 
for describing continuous variables so that conventionally they are often 
expressed together as x ±  5. For instance, the above-mentioned mean and 
standard deviation of the variable of height could be expressed as 170±6 
(cm), where the symbol “± ” just means “and”.

1.5 Relative Measures and Standardization Approaches

1.5.1 Ratio, freq u en cy  a n d  in tensity

In vital statistics and epidemiology, relative measures are widely used to 
describe the probability and intensity of certain event happening to the 
individuals in the population and often named with “... rate”. However, 
with careful consideration one will find that there are in fact three types of 
relative measures.

1.5.1.1 Ratio

It is simply a ratio of any quantity to another, such as

number of newly born girls
Gender ratio of newly born babies = -----------------------------------

number of newly born boys
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and

Weight 9
Mass index = -------- 7(kg/m ),

Height

where the numerator and denominator may not necessary be counted num
bers nor of the same dimension.

1.5.1.2 Relative frequency

It is a special type of ratio where both the numerator and denominator are 
counted numbers and the numerator is part of the denominator. For a random 
sample, when the denominator is big enough, a relative frequency approxi
mately describes the chance of certain event happening to the individuals in 
the population. For example, if 90 patients were cured among 100 treated 
ones, then

number of cured
Cure rate = ----------------------

number of treated
90

Too =  90%.

There is no dimension for relative frequency, and the value is a percent
age or decimal within the interval of [0,1].

1.5.1.3 Intensity

It is another special type of ratio where the denominator is the total observed 
person-years during certain period, the numerator is a number of cer
tain event happening during the period. For example, the mortality rate 
is defined as

Mortality rate of certain year
number of deaths during the year 

person-years exposure to the risk of death during the year

The dimension of numerator is “person”, that of denominator is “person x 
year” so that the dimension of mortality rate is “person/(person x year)” or 
“ 1/year”. If the denominator is regarded as the “adjusted total number of 
persons x 1 year”, then the mortality rate can be regarded as the adjusted 
relative frequency per year.
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In general, intensity as a type of relative measures could be understood 
as “relative frequency per unit of time”, reflecting the chance of certain 
event happening in a unit of time.

If an inference for a relative measure from sample to population is 
needed, one has to recognize the type of it, whether it is simply a ratio 
or a relative frequency or an intensity, because different type requires dif
ferent statistical method.

1.5.2 Crude death rate and standardization

We will use the mortality rate as an example to show why the crude inten
sities are not directly comparable and how the standardization approaches 
work.

Table 1.9 gives two sets of data for two cities respectively, each of which 
includes several age groups; for each age group, the mid-year population, 
number of deaths during the year and age specific mortality rate are avail
able. Ignoring the age groups and dividing the total number of deaths by the 
sum of mid-year populations, the crude mortality rates can be calculated, 
Pa =  11.1%, Pi, =  23.3%. It seems that the risk of death in city В is higher 
than that in city A. However, in view of the age specific mortality rates, the 
risk of death in city A is higher than that in city В for all age groups. How to 
explain such a fallacy? Obviously, the crude mortality rate is incomparable 
because the distributions of age are not balanced between the two cities; it

Table 1.9 The data of age specific mortality rates for two cities.

City A City В

Age Mid-year Number of Mortality Mid-year Number of Mortality
group population deaths rate population deaths rate
(year) (Ю3) (Ю3) (%) (Ю3) (Ю3) (%)

0~ 400 2 5.0 288 1 3.5
15~ 2000 10 5.0 238 1 4.2
30~ 2000 15 7.5 794 5 6.3
45 ~ 800 8 10.0 2000 18 9.0
60~ 400 16 40.0 2000 70 35.0
75+ 80 12 150.0 300 36 120.0

Total 5680 63 11.1 5620 131 23.3
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is reasonable to compare the mortality rates age group by age group, but the 
variety of results based on separate comparisons can hardly be summarized 
into one conclusion.

A comprehensive measure summarizing the comparison between two 
sets of age specific mortality rates is often expected in applications such 
as comparison between different cities. There exist several methods for 
summary sharing a similar idea — standardization, that is, to adjust the 
imbalance in age distributions by selecting certain “standard” and calculat
ing standardized mortality rates.

1.5.2.1 Direct standardization approach

The main steps of direct standardization are as follows: Select a “standard 
population” firstly; apply the whole set of age specific mortality rates to such 
a “standard population” and calculate the “expected number of deaths” for 
each age group in the “standard population”; calculate the crude mortality 
rate of the “standard population” based on the total expected numbers of 
deaths and call it a direct standardized mortality rate.
Example 1.5 Taking the sum of populations of the two cities in Table 1.9 
as a “standard population”, compare the risk of death between the two cities 
through the direct standardization approach.

Solution Column 2 of Table 1.10 refers to the standard population which 
is the sum of the two populations for each age group; columns 3 and 5 refer

Table 1.10 Direct approach for standardized mortality rates of two cities.

City A  City В

Age
group
(year)
(1)

Standard
population

(Ю3)
(2)

Mortality
rate
(%)
(3)

Expected 
number of 

deaths (103) 
(4) =  (2)x(3)

Mortality
rate
(%)
(5)

Expected 
number of 

deaths (103)
(6) =  (2)x(5)

0 - 686 5.0 3.43 3.5 2.40
15- 2238 5.0 11.19 4.2 9.40
30- 2794 7.5 20.96 6.3 17.60
45- 2800 10.0 28.00 9.0 25.20
60- 2400 40.0 96.00 35.0 84.00
75+ 380 150.0 57.00 120.0 45.60

Total 11298 19.2 216.58 16.3 184.20
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to the age specific mortality rates of the two cities respectively; columns 4 
and 6 refer to the expected number of deaths for each age group if the 
mortality rate were applied to the “standard population” correspondingly; 
dividing the total expected numbers of deaths by the “standard popula
tion”, one can obtain the direct standardized mortality rates for the two 
cities and put in the bottom cells of columns 3 and 5 respectively; and it 
concludes that the standardized mortality rate of city A is higher than that 
of city B. This is consistent with the conclusion obtained by age group 
comparison.

1.5.2.2 Indirect standardization approach

The main steps of indirect standardization are as follows: Select a set of 
“age specific mortality rates” as the “standard” first, apply it to the studied 
population and calculate the “expected number of deaths” for each age 
group of it; calculate the ratio between the total observed number of deaths 
and the total expected numbers of deaths and call it standard mortality 
ratio (SMR); multiplying the crude mortality rate of the “standard” with 
SMR, one can obtain the indirect standardized mortality rate for the studied 
population.

Example 1.6 Taking a set of age specific mortality rates as standard 
(see column 2 of Table 1.11), compare the risk of death between cities 
A and В based on the data in Table 1.9 through the indirect standardization 
approach.

Solution Columns 3 and 5 of Table 1.11 refer to the studied populations of
the two cities; columns 4 and 6 refer to the expected numbers of deaths if the 
standard age specific mortality rates were applied to the studied populations 
respectively; dividing the total observed numbers of deaths (see columns 3 
and 6 in Table 1.9) by the total expected numbers of deaths (see Table 1.11), 
one can obtain the SMRs for the two cities; multiplying the crude mortality 
rate of the “standard” with SMRs, one can obtain the indirect standardized 
mortality rates for cities A and В respectively.
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City A  City В

T a b le  1.11 T h e  ind irec t ap p ro ach  fo r s tan d ard ized  m o rta lity  ra te s  o f  tw o  c ities .

Age
group
(year)
(1)

Standard 
mortality 
rate (%) 

(2)

Mid-year 
population of 
City A  (103) 

(3)

Expected 
number of 

deaths in A  (103) 
(4)=(2)x(3)

Mid-year 
population of 
City В  (103) 

(5)

Expected 
number of 

deaths in В  (103) 
(6)=(2)x(5)

0- 4.3 400 1.72 288 1.24
15- 4.6 2000 9.20 238 1.09
30- 6.9 2000 13.80 794 5.48
45- 9.5 800 7.60 2000 19.00
60- 37.5 400 15.00 2000 75.00
75+ 135.0 80 10.80 300 40.50

Total 17.2 5680 58.12 5620 142.31

City A: SMR =  63/58.12 =  1.084

Indirect standardized mortality rate =  17.2 x 1.084 =  18.64(%)

City B: SMR =  131/142.31 =  0.921

Indirect standardized mortality rate =  17.2 x 0.921 =  15.84(%)

Comparing the SMRs or the indirect standardized mortality rates between 
the two cities, one can find that the risk of death in city A is much higher 
than that in the city В.

1.5.2.3 Nature of crude mortality rate and standardized 
mortality rate

The crude mortality rate is a weighted average of age specific mortality 
rates with the sub-populations of age groups as the weight coefficients. If 
there are higher age specific mortality rates in the age groups with more 
populations, then the crude mortality rate is higher. Table 1.9 shows that the 
structures of populations in the two cities are obviously different, that is, 
more youths in city A but more elderly in city B. Therefore, offering higher 
weights to the higher age specific mortality rates, the weighted average 
results in a higher crude mortality rate of city В than that of city A.

In order to solve the problem of unequal weights, the idea of weighted 
average is still used in the direct standardization approach, but where the
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sub-populations of age groups in the “standard population” are taken as the 
weights. Sometimes, different standard populations selected might result in 
quite different direct standardization mortality rates.

Totally giving up the information on age specific mortality rates, the 
indirect standardization approach keeps that on the numbers of deaths only. 
In fact, it is to calculate a weighted average of the selected standard age 
specific mortality rates with the observed sub-populations as the weights 
first; then SMR and use it to magnify or dwindle on the weighted average. 
Similarly, different sets of standard age specific mortality rates selected 
might result in quite different indirect standardization mortality rates.

The selection of standard populations or standard mortality rates is fairly 
important. Usually populations or mortality rates of the world or the country 
or the province are considered as the standard. If it is intended to compare 
two cities only, then the pool of the two populations or the pooled estimation 
of the age specific mortality rates (sum of the numbers of deaths in the age 
group/the sum of the sub-populations) might be taken as the standard. In 
practice, it is desirable to select more than one standard to see whether the 
results are consistent or not. If it is consistent, then the conclusion might be 
reliable; otherwise, one should be careful.

1.6 Frequently Used Graphs in Statistics

The first step of analysis is often to summarize and display the data, which 
can help us to identify outliers and possible errors in the data. Statistical chart 
is the important tool to display the data, which is intuitively clear by using 
the point-line-plane. There are several frequently used graphs in statistics, 
such as bar chart, percent bar chart, pie chart, line chart, semi-logarithmic 
line chart, box plot, and stem-and-leaf plot.

1.6.1 Layout o f graphs

We can use Fig. 1.9 as an example to illustrate the layout of statistical 
graphs. The whole area for a graph is the chart area; the area within the 
X-axis and F-axis is the drawing area; points and lines represent the origi
nal data. A two-dimensional graph consists of a horizontal coordinate axis 
(X-axis) and a vertical coordinate axis (У-axis). For a three-dimensional 
graph, there is a third coordinate axis named Z-axis. There are scales on the
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Fig. 1.9 Resistance rates of five types of staphylococcus for two kinds of antibiotics.

coordinate axes, and the corresponding numbers on the scales are named 
scale labels which could be real numbers or categories. Axes titles are 
left-aligned along the T-axis and Z-axis or below the X-axis. There is no 
axes title for the pie chart. The basic rules for the layout of graphs are as 
follows:

(1) Make sure that the graph is appropriate for the data and to support the 
main purpose of the study;

(2) The title should be at the bottom of the graph;
(3) Use different colors or different patterns for the different themes in the 

graphs, and put the legends at the appropriate place (at the right of the 
graph, bottom of the graph or top of the graph);

(4) For the graphs which contain coordinate axes (bar chart, line chart, 
etc.), the values assigned for the X-axis should be in ascending order 
from the left to the right, and the values assigned for the Y-axis should 
be in ascending order from the bottom to the top. For the numeri
cal variables, origin of coordinates, units and the appropriate scales 
should be labeled; for the categorical variables, the categories should 
be labeled. To make the graphs clearer, the height-width ratio is usually 
5:7 (so-called “golden proportion”).

There are several kinds of software to create the statistical graphs, such as 
Excel, SAS, SPSS, R, Maple, Matlab. We will list the SAS program for 
Fig. 1.9 in Sec. 1.7.
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1.6.2 Several graphs in statistics

Different situations call for different types of graphs, and it helps to have a
good knowledge of what graphs are available.

(1) Bar chart or bar diagram: In a bar chart the heights of the bars are drawn 
for the frequencies for each category of a set of data. There are two 
kinds of bar chart, simple bar chart (Fig. 1.10) and clustered bar chart 
(Fig. 1.9). The axis of the heights (usually the vertical axis) must begin 
at 0 (Fig. 1.11), or it may mislead the truth from the graphs. For example, 
in Fig. 1.10, if the vertical axis starts at 2, the proportional relationship 
visually appears to be A: В =  2:1, which disguises the fact that the 
proportional relationship of A and В is 4:3. Each bar is in descending 
order of the variable in order to compare, and the space between two 
bars needs to be appropriate with a clear appearance.

(2) Percent bar chart: The percent bar chart is used to display the fre
quency distribution. For example, Fig. 1.12 is plotted with the data 
in Table 1.12, where two bars with length equal to 100% are drawn 
for the two categories (hospitalization <7 days and >7 days) at first

Fig. 1.10 Outpatient amount of the department of general internal medicine in the affiliated 
hospital of one medical university.
*A =  Digestive; В =  Cardiovascular; C =  Respiratory; D =  Endocrinology; E =  
Hematology.
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Occupalion 

Ш Worker 
■  Service 

0  Irtellectral 
И Administrator 

S  Farmer 

□  Others

0 . 00%  50.00%  100.00%

Proportion

Fig. 1.12 The frequency distribution of the occupation of maternity patients with different 
hospitalization days.

step; and they are divided into several parts according to the proportion 
of the percentages of their component respectively in the second step. 
The sub-divided parts are sorted according to professional knowledge. 
If there is no exact sorting orders based on the professional knowledge, 
then they are usually in descending order by the proportion. The “other” 
is usually placed at the end of the bar.

(3) Pie chart: The situation and the sorting orders for the pie chart are the 
same as the percent bar chart. The whole area (and consequently its
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Table 1.12 The frequency distributions of occupations of maternity 
inpatients.

Occupation Hospitalization <7 days Hospitalization >7 days

Worker 15.31 13.09
Farmer 6.79 9.06
Intellectual 13.40 19.46
Administrator 10.78 7.38
Service 15.22 13.42
Others 38.50 37.59

Occupation 

■  Worker 

(S Service 

В  Intellectual 

□  Administrator 

H Farmer 
О Others

Fig. 1.13 The frequency distribution of the occupation of maternity patients.

central angle) of the pie equal to 100%, and the circle is divided into 
sectors to illustrate the according proportions. The proportion of the 
first sector starts at the 12 o’clock position. If there is no professional 
concern, it is usually sorted from large to small value. Figure 1.13 uses 
the data of Table 1.13. It indicates the occupation distribution among 
1402 maternity patients. It is obvious that the percent barchart is better 
than pie chart when comparing proportions between multiple sets of 
data.

(4) Line chart: The lines up and down in the rectangular plane coordinate 
system are used to display trends over time, or the changing process
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Fig. 1.14 The amount of discharged patients of the department of stomatology in the 
affiliated hospital of one medical university from 1994 to 1998.

Table 1.13 The mortalities of diarrhea and whooping cough (1/million) 
(1975-2000).

Diarrhea Whooping cough

Absolute Relative Absolute Relative
decreased decreased decreased decreased

Year Mortality value (%) value (%) Mortality value (%) value (%)

1975 14.5 2.8
1980 9.5 5.0 34.5 1.6 1.2 42.9
1985 3.7 5.8 61.1 0.9 0.7 43.8
1990 1.6 2.1 56.8 0.4 0.5 55.6
1995 0.7 0.9 56.3 0.2 0.2 50.0
2000 0.4 0.3 42.9 0.1 0.1 50.0

subject to the other things sequentially changing. The vertical and hor
izontal axes use the linear scale in the general line chart.

(5) Box plot: It is useful to compare the average level and variation among 
different groups. It displays the minimum value, lower quartile (QL),
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Year

— • —  Diarrhea — O— Whooping cough
16

Fig. 1.15 The mortalities of diarrhea and whooping cough at one place from 1975 to 2000 
(1/million).

180

I
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СГ
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Fig. 1.16 The weight gains after using two kinds of feed with different protein content.

median (M), upper quartile (QU) and maximum value within each 
group. M indicates the average level; the range between minimum and 
maximum values, and the interquartile between QL and QU indicate 
the variation of the data.
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Frequency Stem & Leaf
2.00 5 . 3
9.00 5 . 4555

28.00 5 . 6666667777777
21.00 5 . 8888899999
39.00 6 . 0000000000011111111
51.00 6 . 2222222222333333333333333
82.00 6. 44444444444444445555555555555555555555555
53.00 6 . 66666666677777777777777777
64.00 6. 8888888888888888888889999999999
29.00 7 . 00000000111111
35.00 7. 22222222223333333
28.00 7 . 4444444445555
21.00 7 . 6666777777

6.00 7 . 889
2.00 8 . 0
7.00 Extremes 0=82)

(Stem width: 10.0; Each leaf: 2 case(s))

Fig. 1.17 T h e  w e ig h t d is trib u tio n  o f  477  cesarean  m ate rn ity  pa tien ts .

(6) Stem-and-leaf plot: The stem-and-leaf plot is similar to histogram. The 
stem-and-leaf display is drawn with two columns. The leaves are listed 
to the right, and contain all the last digit of the number; the stems are 
listed to the left, and contain all the other digits. It assists to quantita
tively visualize the shape of a distribution. We can get each value from 
the stem-and-leaf plot. For example, in Fig. 1.17, the two values in the 
first group should be 5 x 10 +  3 =  53 (kg).

1.7 Computerized Experiments

Experiment 1.1 Frequency table, histogram and cumulative frequency 
plot The detailed steps in the software for frequency table (Program 1.1) 
are similar to that in hand operation. Assume that the data in Example 1.4 
have been input into an ASCII coded file “RBC.DAT”, now the software 
(such as Edit) is needed to perform a frequency table with the following 
steps:

(1) Find out the minimum and maximum: Lines 01-05, read the data and 
find out the minimum and maximum.
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(2) Design the subgroups: By calculating the range and deciding the number 
of subgroups, it is obtained as follows:

Subgroup Mid-value Subgroup Mid-value

3.20- 3.35 4.70- 4.85
3.50- 3.65 5.00- 5.15
3.80- 3.95 5.60- 5.75
4.10- 4.25 5.90-6.20 6.05
4.40- 4.55

(3) Organize data and list frequency table: Lines 08-21, each value is 
changed with the corresponding mid-value of its subgroup; lines 
22-25 calculate description statistics such as mean, variance, standard 
deviation and variation coefficient (although the median and quartile 
could be given, they are just the mid-values in their sub-intervals instead

Program 1.1 Frequency table and histogram.

Line Program Line Program

01 DATA RBC; 16 IF X<4.70 & X >=4.40 THEN 
Y=4.55;

02 INPUT X @@; 17 IF X<5.00 & X >=4.70 THEN 
Y=4.85;

03 CARDS; 18 IF X<5.30 & X >=5.00 THEN 
Y =5.15;

04 5.125.13 19 IF X<5.60 & X >=5.30 THEN 
Y=5.45;

05 20 IF X <5.90 & X >=5.60 THEN 
Y=5.75;

06 3.86 5.69 21 IF X>5.90 THEN Y=6.05;
07 \ 22 PROC UNIVARIATE FREQ;
08 PROC MEANS MIN MAX; 23 VARY;
09 RUN; 24 RUN;
10 DATA FRBC; 25 PROC UNIVARIATE;
11 SET RBC; 26 CDF X / NORMAL; RUN;
12 IF X <3.50 THEN Y=3.35; 27 PROC GCHART;
13 IF X <3.80 & X >=3.50 THEN 28 VBAR Y/TYPE=PERCENT;

Y=3.65; 29 VBAR Y/TYPE=CPERCENT;
14

15

IF X <4.10 & X >=3.80 THEN 
Y=3.95;
IF X<4.40 & X> =4.10 THEN 
Y=4.25;

30 RUN;
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of the values obtained by interpolation introduced above) and the fre
quency table is performed.

(4) Histogram and cumulative frequency plot: Lines 25 and 26 work out 
the cumulative frequency plot, and lines 27-30 work out the frequency 
distribution and histogram.

Experiment 1.2 Clustered bar chart The detailed steps in the software 
for clustered bar chart are as follows (Program 1.2):

(1) Data input: Lines 01-09, input the data as the following table: The resis
tance rates of five types of staphylococcus for two kinds of antibiotics

Types of staphylococcus Penicillin (%) Cephalothin V (%)

Golden 81.5 37.7
Epidermidis 81.3 35.1
Saprophytes 80.5 27.5
Haemolyticus 94.5 66.0
Simulans 92.3 62.1

(2) Define the chart’s structure: Lines 10-13 define the X-axis and T-axis. 
X-axis is labeled as “Category of staphylococcus”; T-axis is labeled as 
“RATE”, ranged from 0% to 100%, 10% as the length of interval.

(3) Label the variables: Lines 13-15, Label al-a5 and a, b as the corre
sponding five categories of staphylococcus and two types of antibiotics, 
respectively.

(4) Plot the chart: Line 16 is the plot PROC step; lines 17 and 18 indicate 
that the clustered bar chart should be plot based on the categories of 
staphylococcal bacteria and two types of antibiotics; line 19 defines the 
labels in step (3); lines 20-22 define the shape and the color in the chart.

Experiment 1.3 Pie chart The SAS codes for the pie chart is in 
Program 1.3. Firstly, line 01 sets the background of the chart, lines 
02-12 input the data. Lines 13-15 make the frequency table of the 
dataset named JOB, and output the frequency table to the dataset named 
JOBPCT.
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Program 1.2 Clustered bar chart.

Line Program Line Program

01 DATA ANTIBIO; 13 PROC FORMAT;
02 INPUT BAS ANTIS RATE@@; 14 VALUE $ss al="G " a2="E"
03 CARDS; a3="S" a4="H" a5="SM";
04 al a 81.5 al b 37.7 15 VALUESqq a="penicillin"
05 a2 a 81.3 a2 b 35.1 b="cephalothin V";
06 a3 a 80.5 a3 b 27.5 16 PROC GCHART;
07 a4 a 94.5 a4 b 66.0 17 WHERE ANTI in ("a", "b");
08 a5 a 92.3 a5b62 .l 18 VBAR ANTI/GROUP=BA
09 ' SUMVAR=RATE
10 GOPTIONS RESET=ALL; ATTERNID=MIDPOINT;
11 AXIS1 LABEL=(‘staphylococcus’) 19 FORMAT BA $SS. ANTI $QQ.;

VALUE=(‘H SM G E S’) 20 PATTERN 1 V=L5 C=GRAY;
12 AXIS2 LABEL=(‘RATE’) 21 PATTERN2 V=X5 C=GRAY;

VALUE=(0 TO 100 BY 10); 22 RUN;

Program 1.3 Pie chart.

Line Program Line Program

01 GOPTIONS RESET=ALL 19 PATTERN! V=P3N0 C=GRAY:
CBACK=WHITE BORDER 20 PATTERN2 V=E C=GRAY;
HTITLE=12pt HTEXT lOpt; 21 PATTERN3 V=P3N45 C=GRAY;

02 DATA JOB; 22 PATTERN4 V=P3X45 C=GRAY;
03 LENGTH WORK $8 ; 23 PATTERN5 V=P3N90 C=GRAY;
04 INPUT ID WORK; 24 PATTERN6 V=S C=GRAY;
05 DATALINES; 25 LEGEND1 LABEL=NONE
06 1 workers POSITION=(RIGHT MIDDLE)
07 2 others OFFSET=(,4) ACROSS=l
08 3 intellectual VALUE=(COLOR=BLACK)
09 4 farmers SH APE=B AR(4,1.5);
10 5 services 26 PROC GCHART DATA= JO В PCT;
11 27 PIE WORK/SUMVAR=PERCENT
12 ' SLICE=INSIDE
13 PROC FREQ DATA=JOB; PERCENT=INSIDE
14 TABLES WORK/OUT=JOBPCT; LEGEND=LEGEND1
15 RUN; MIDPOINTS=‘worker’ ‘others’
16 ODS RTF; ‘farmers’ ‘managers’ ‘intellectual’
17 ODS GRAPHICS ON; ‘services’ NOHEADING;
18 TITLE ‘JOB PERCENTAGE’; 28 RUN;

29 ODS GRAPHICS OFF;
30 ODS RTF CLOSE;
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Lines 16 and 17 define the output format of the pie chart as word file. 
Then line 8 defines the title, lines 19-24 define the patterns and the colors for 
each slice: V define THE dark or light and the patterns for each slice, and C 
defines the colors for each slice. Line 25 defines the legends: LEBEL defines 
the names of the legends, POSITION defines the positions of the legends, 
OFFSET defines the distance between the legends and the edge of the chart, 
ACROSS defines the amount of the legends (only one here), COLOR in 
VALUE defines the text color of the legends, and SHAPE defines the size 
of the legends.

Finally, lines 26-28 plot the pie chart based on the new dataset 
JOBPCT. MIDPOINTS define the slices are anti-clockwise ordered (PAT
TERN defines the slices’ pattern according to the anti-clockwise order). 
Lines 29-30 complete the output.

Experiment 1.4 Box plot The SAS codes for the box plot is in Pro
gram 1.4. Line 01 sets the background for the plot; lines 02-07 input the 
data; lines 08-09 define the output format of the plot as word file, line 10 
defines the title of the box plot. Line 11 defines the patterns of the plot: 
INTERPOL=BOXT5 defines the 95% percentile as the upper whisker and 
5% percentile as the lower whisker. WIDTH defines the width of the box.

Program 1.4 Box plot.

Line Program Line Program

01 GOPTIONS RESET=ALL 11 SYMBOL INTERPOL=BOXT5
CBACK=WHITE BORDER 12 W1TDTH= 10; AXIS 1
HTITLE= 12pt HTEXT =  1 Opt; LABEL=NONE VALUE=(T=1

02 DATA PROTEIN; ‘high protein’ T=2 ‘low protein’)
03 INPUT GROUP $ WEIGHT @@; OFFSET= (5,5) LENGTH=50;
04 DATALINES; 13 AXIS2 LABEL= (‘gain
05 A 134 A 146 A 104 A 119 A 124... weight(g)’) MINOR=NONE
06 В 70 В 118 В 101 В 85 В 107...; ORDER= (60 TO 180 BY20);
07 RUN; 14 PROC GPLOT DATA=PROTEIN;
08 ODS RTF; 15 PLOT
09 ODS GRAPHICS ON; WEIGHT*GROUP/HAXIS=AXIS 1
10 TITLE 1 ‘COMPARISON: WEIGHT VAXIS=AXIS2;

BY GROUP’; 16 RUN;
17 ODS GRAPHICS OFF;
18 ODS RTF CLOSE;
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Program 1.5 Program for direct and indirect approaches.

Line Program Line Program

01 DATA STA; 25 A2=P2*SP/1000;
02 INPUT PI D1 P2 D2; 26 CARDS;
03 KEEP SP PI R 1 A1 A2; 27 4.3 400 286
04 R1=DI/P1* 1000; 28 4.6 2000 238
05 R2=D2/P2*1000; 29 6.9 2000 794
06 SP=P1+P2; 30 9.5 800 2000
07 A1=R1*SP/11298; 31 37.5 400 2000
08 A2=R2*SP/11298; 32 135.0 80 300
09 CARDS; 33 ’
10 400 2 286 1 34 PROC PRINT;
11 2000 10 238 1 35 PROC MEANS SUM
12 2000 15 794 5 NOPRINT;
13 800 8 2000 18 36 VAR A1 A2;
14 400 16 2000 70 37 OUTPUT OUT=STAN3
15 80 12 300 36 SUM=STA STB;
16 ' 38 DATA STAN4;
17 PROC PRINT; 39 SET STAN3;
18 PROC MEANS SUM; 40 KEEP STA STB SMRA SMRB
19 VAR A1 A2; SMPA SMPB;
20 RUN; 41 SMRA=63/STA;
21 DATA STA2; 42 SMRB=131/STB;
22 INPUT SP PI P2; 43 SMPA=SMRA* 17.2;
23 KEEP SP PI P2 A1 A2; 44 SMPB=SMRB* 17.2;
24 A1=P1*SP/1000; 45 PROC PRINT;

46 RUN;

Lines 12 and 13 define the vertical and horizontal axis; lines 14-16 plot the 
box plot, finally lines 7-18 complete the output.

Experiment 1.5 Calculation of standardized mortality rate with direct 
and indirect approaches Program 1.2 is the SAS program for reference. 
The first 20 lines are for the direct approach where lines 4 and 5 calculate 
the age specific mortality rates, lines 7 and 8 calculate the age specific 
numbers of deaths, lines 10-17 list the data, and lines 18 and 19 calculate 
the standardized mortality rate.

Lines 21^-6 are for the indirect approach where standardized mor
tality rates and sub-populations are required as input. Lines 24 and 25
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calculate the age specific expected numbers of deaths; lines 27-34 list 
the data; lines 35-37 calculate the two total expected numbers of deaths 
respectively and put into STAN#; lines 41-44 calculate SMR and the 
standardized mortality rate respectively; then line 45 prints out the 
results.

1.8 Practice and Experiments

1. True or false: Which of the following statements are correct?

(1) “The red blood cells in occult blood examination” is a continuous 
variable.

(2) Red blood cell count is a discrete variable.
(3) The arithmetic mean is always greater than the median.
(4) The mean of large sample is always closer to the population mean 

than that of small sample.
(5) The arithmetic mean is always greater than the standard de

viation.
(6 ) A histogram can be used to describe the distribution of the weight 

of a group of newborn babies.
(7) The cumulative frequency curve is a stepwise curve where the 

values are sparse.
(8) The distribution of the days of hospitalization for certain disease 

is higher around center and lower on two sides; the arithmetic 
mean is 10 days and the median is 5 days. One can see that the 
distribution is positive skew.

(9) The dimension of variation of coefficient is the same as that of the 
original variable.

(10) If the sample mean is greater, then the standard deviation must be 
greater.

(11) The range may increase with the increase of sample size.

2. Calculate the sample mean, median, variance, standard deviation and 
coefficient of variation for Example 1.4 on the basis of the raw data and 
the frequency table respectively; then compare and discuss the two sets 
of results.

3. The blood-glucose (mmol/L) is measured for 12 randomly 
selected patients. The data are 5.31,6.12,6.53,6.53,6.65,6.66,6.71,
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6.93,7.05,7.15,7.21,7.35. Calculate the arithmetic mean, geometric 
mean and median; which answer better reflects the average level? Again 
calculate the range, Q3 — Q\ and standard deviation; which answer bet
ter reflects the variation?

4. The daily fat intake (g) of 100 randomly selected adults was surveyed 
with the data as follows:

23 60 78 84 90 104 114 127 130 143
43 69 81 94 97 102 117 120 147 150
52 80 88 96 103 105 114 128 130 153
65 79 89 95 107 108 128 131 139 148
67 75 76 91 102 105 127 138 153 167
70 72 95 103 111 117 128 130 147 142
67 62 72 95 109 111 127 132 144 151
23 37 69 88 99 109 119 139 134 155
30 89 76 96 93 104 117 133 147 151
44 73 83 94 96 107 111 128 131 150

Work out a frequency table, a histogram, box and whiskers plot, 
and stem and leaf plot; calculate the arithmetic mean, variance, stan
dard deviation and coefficient of variation as well as median and 
Q3 —  Qi-

5. Calculate the approximate arithmetic mean and standard deviation of 
red blood cell counts of 120 normal male adults based on the frequency 
table (Table 1.6) and compare with those calculated based on the raw 
data. Through this example, can you summarize the main steps for cal
culating arithmetic mean and standard deviation based on a frequency 
table in general?

6 . It is quite popular to use two different concepts to describe the incidence 
of disease:

Cumulated incidence rate
Number of new patients during the same period 

Total number of persons followed during certain period 
Person-year incidence rate

Number of new patients during the same period 
Total person-years of exposure to the risk during certain period
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Discuss the properties of these two rates; are they ratio, frequency or 
intensity?

7. The data of liver-cancer specific mortality rates for males in two cities 
are collected as follows (Gong Zhiping, 1992):

Age
group
(year)

City A City В

Popu
lation

Number 
Proportion of deaths

Mortality
rate

Popu
lation

Number 
Proportion of deaths

Mortality
rate

0~ 323600 0.6555 24 7.4 364500 0.6949 22 6.0
30- 56800 0.1150 75 132.0 64300 0.1226 75 116.6
40- 42400 0.0859 103 242.9 40100 0.0765 104 259.4
50- 30500 0.0618 87 285.2 28800 0.0549 84 291.7
60- 21300 0.0431 69 323.9 16200 0.0309 54 333.3
70- 19100 0.0387 33 172.8 10600 0.0202 22 207.5

Total 493700 1.0000 391 79.2 524500 1.0000 361 68.8

Compare the risk of liver cancer between the two cities through the
direct standardization approach.
(1) Taking the population of city A as a standard population;
(2) Taking the population of city B a s a  standard population;
(3) Taking the total population of cities A and В as a standard popula

tion;
(4) Compare and discuss the results.

8 . Compare the risk of liver cancer between the two cities through the
indirect standardization approach.
(1) Taking the age specific mortality rates of city A as standard mortality 

rates;
(2) Taking the age specific mortality rates of city В as standard mor

tality rates;
(3) Taking the pooled age specific mortality rates of cities A and В as 

a standard population;
(4) Compare and discuss the results.

9. What are the frequently used graphs in statistics? What are the different
situations for the use of different types of graphs?
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10. Prove or check the following statements. Assume there are observed 
values уи у г , . . . , у п, and denote у =  £"= i f .

1=1

(!) ayi =  a Yh yr’ <2) _  у) =  o;
1 = 1 1 = 1 1 = 1

« n n n

О) J 2 (a + и) = na + Л  и; I ]  0 a) = ° I ]
/=1 i = l  /=1

л n n

(5) < y< +  o>2 =  ^  y i  +  ta  ^ 2  yi +  na2;

ю £ ( У1 - у?  =  ± у1 - ' - ( ± у) 2-,
i =  1 

n
1=1 U ' = l

(7) £  (>>,• -  502 = I > ,2 -  "У2-
i=i i=i

(1st edn. Jiqian Fang; 2nd edn. Chun Hao, Jiqian Fang)



Chapter 2

Probability and Distribution

One of the main tasks of statistics is inference from sample to population. As 
it is inference, there must be risk so that one has to clarify to what degree of 
accuracy their conclusion of inference can reach, but not to use ambiguous 
language such as “probably”. The regular and scientific way of statement in 
statistics is to give the probability P incorporating in the conclusion. How 
to determine the value of P? The probability distributions of various types 
of variables should be studied, which themselves not only have important 
medical applications, but also play the role of theoretical foundation for the 
successive chapters in this book.

2.1 Explanation of Probability and Related Concepts

2.1.1 P robability

After an ideally uniform coin is flipped, either the side with head or with
out may appear equal-likely so that, we may say, the probability of the 
event “head up” is equal to 0.5; after an ideally uniform die with figures 
of 1, 2 , . . . ,  6 is tossed, any one of the figures may appear equal-likely so 
that the probability of the event “3 up” is equal to 1/6. It sounds easy but in 
practice it is not so smooth.

Before a color blindness test, any student might be and might not be 
color blind, not equal-likely or easy to get the probabilities. Usually, after 
a randomly selected group of n students is tested, if m of them are color 
blind, then the frequency min can be regarded as the approximation of the 
probability of color blindness in the population of students.

Besides the model-based probabilities in the problems such as coin 
flipping and die tossing and the frequency-based probabilities in the 
problems such as color blindness, there is alternative kind of so-called

45
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subjective probability. For instance, when a patient feels chest distress and 
pain, the physician may think that the probability of the event “heart disease” 
occurring is 20%. As a matter of fact, the situation, whether with or without 
heart disease, has already been determined so that such a “20%” is just to 
describe the belief of the physician on the event of “heart disease”.

One can see, for the same word “probability” there are various under
standings, which may sometimes lead to confusion. In this volume, we are 
only concerned with frequency-based probabilities.

In general, the possible outcomes of a trial, denoted by £ j , E2, . . . ,  are 
called events. The chance of certain event E occurring in a trial is called the 
probability of the event E, denoted by P(E).  Any probability takes value 
from the interval [0 , 1]; the event with probability 0  is called impossible 
event; the event with probability 1 is called certain event; and the event 
with probability between 0  and 1 is called random event.

For any two events E\ and E2, under the condition that £j occurs, 
the probability of the event E2 occurring is called conditional probability, 
denoted as P(E2 \E\), where £j is the condition and E2 is the event. For 
instance, the probability of “nasopharyngeal carcinoma” of a patient with 
EB virus positive is a conditional probability, denoted as

P(with nasopharyngeal carcinoma | EB virus positive)

2.1.2 Odds

If any two events E\ and E2 are not possible to appear simultaneously, they 
are called exclusive events. As a kind of special cases, if there are only two 
possible events and they are exclusive, denoted with E and E , then they are 
called complementary events, and obviously

P(E) =  1 -  P(E).  (2.1)

The ratio between the probability of any event E and that of its comple
mentary event is called odds,

P{E) _  P(E)  
P{E)  1 — P(E)

(2 .2a)
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An odds greater than 1 indicates that the event E is dominant compared 
to £ ; an odds equal to 1 indicates that the events E and E are nip and tuck.

For example, if the incidence rates of influenza in classes A, В and C 
are 60%, 50% and 40%, then the odds are 1.50, 1.00 and 0.67, respectively. 
Conversely, the probability of E can be derived from its odds as well, based 
on (2 .2a),

P(E) =
Odds 

1 +  Odds
(2 .2b)

2.1.3 B ayes ’fo rm u la

The public is interested to know the relationship between lung cancer (В) 
and smoking (A). Ideally, to study such a topic, it is better to randomly divide 
the subjects into two groups, then invite one group to smoke and forbid the 
other group; follow up year by year to obtain the conditional probability of 
“lung cancer” under the condition of “smoking”, P(B\A).  Unfortunately, it 
is infeasible. Usually, we randomly select a group of patients with lung can
cer and ask about their history of smoking to get a conditional probability 
of “smoking” under the condition of “lung cancer”, P(A\B).  How do we 
derive P(B\ A) (the conditional probability of “lung cancer” under the con
dition of “smoking”) on the basis of P(A\B)  (the conditional probability of 
“smoking” under the condition of “lung cancer”)? It is a significant prob
lem in practice. The following is the key formula to solve such a problem 
(See Sec. 2.6 for the proof)

P(B\A) =
P(B)P(A\B)

P(B)P(A\B)  +  P(B)P(A\B)
(2.3)

It is called Bayes’ formula, where В is the complementary event of В.

Example 2.1 The percentage of people suffering from lung cancer in a 
population is 20 x 10-5. The percentage of “smokers smoke” (A) among 
the patients “with lung cancer” (B) is 80%, but that among normal people 
“without lung cancer” (B) is 16%. What is the probability that a person suf
fers from lung cancer among smokers? What is the odds that a person suffers 
from lung cancer in the population? What is the odds that a person suffers
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from lung cancer among smokers? What is the ratio between the latter and 
the former and what does the ratio really mean?

Solution P(B) =  20 x 10“5, P(A\B)  =  0.8, P{A\B) =  0.16. By (2.3), 
the probability that a person suffers from lung cancer among smokers is

P(B\A) =
(20  x 10_5)(0 .8 )

(20  x 10_5)(0 .8) +  (1 -  20  x 10-5)(0.16)

=  99.92 x 10“ 5

The odds that a person suffers from lung cancer in the population is

P(B)
P(B)

20 x 1 0 -5 
1 - 2 0  x 1 0 -5

=  2.0004 x 10“4.

The odds that a person suffers from lung cancer among smokers is

P(B\A)  
P(B\A)

99.92 x 10~5 
1 -9 9 .9 2  x 10~5

=  10.002 x 10~4.

If there are two odds’ for the same event under different conditions, one 
may use the ratio between the two odds’ to compare the risks under the two 
conditions. In this example, the ratio between the latter and the former is

Odds ratio =
P(B\A)  
P(B\A)

. P(B)  
' P(B)

10.002 x 10-4 

2.0004 x 10- 4

This reflects the risk of smoking leading to lung cancer.
The risk can also be described with another concept called likelihood 

ratio, which is defined as the ratio of two conditional probabilities of the 
same event under the conditions that two complementary events appear 
respectively.

Likelihood ratio =
P(A\B)
P(A\B)

0.8
0 Л6

5.00

This example shows that

O d d s ra tio  =  L ik e lih o o d  ra tio . (2.4)
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In fact, this is a generally held statement and a theoretical foundation of 
retrospective studies. The proof will be given in Sec. 2.6.

2.2 Distributional Characters of Random Variables

2.2.1 P robability  fu n ction  o f  d iscrete random  variable

The outcome of flipping a uniform coin can be regarded as a random vari
able, which takes a “value” either “head up” or “head down” with proba
bilities

P(head up) =  0.50, F(head down) =  0.50.

The outcome of tossing a uniform die can be regarded as a random 
variable, which takes one and only one value out of 1,2, 3, 4, 5, and 6 with 
probabilities

P(1 up) =  P(2 up) =  • • • =  P {6 up) =  - .
6

In general, there are two aspects for a random variable: the possible 
values and the corresponding probabilities. To describe a discrete random 
variable, the possible values should be listed and the probability of each 
value should be given; these two as a whole are called probability function, 
denoted by P(X).

Example 2.2 Taking balls out from a pocket There is a big pocket 
containing many small balls with the same size and weight, of which 80% 
are black and 20% are white. Take out one ball after stirring and mixing 
up, record its color; send it back to the pocket, stir and mix, take one out 
again ... In such a way, after repeating for five times, the total number of 
times of black ball appearing is a discrete random variable. It will be proved 
that the probability function can be shown as Table 2.1 and Fig. 2.1.

Table 2.1 The probability function of the discrete random variable in Example 2.2.

The possible values of X  0 1 2 3 4 5

Probability P ( X )  0.0003 0.0064 0.0512 0.2048 0.4096 0.3277
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Fig. 2.1 The plot of the probability function corresponding to Table 2.1.

f ( x )

Fig. 2.2 Relationship between (a) probability density function and (b) probability 
distribution function.

2.2.2 P robability  density  fu n ctio n  o f  con tinuous random  
variable

For continuous random variables, such as red blood cell counts and hair 
mercury content, the possible values can hardly be listed completely. 
When the sample size is considerably large, the frequency density plot 
can approximately reflect the distributional character; one may imagine, 
when the sample size increases and the length of the sub-intervals decreases 
infinitively, the profile of the frequency density plot will tend to be a smooth 
curve, which is called probability density curve (Fig. 2.2(a)). The related 
function of such a curve is called probability density function, denoted 
by f ix) .
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2.2.3 D istribu tion  fu n ctio n  o f  random  variable

Similar to cumulated relative frequency, there is a concept of cumulated 
probability for any random variable (including discrete one), which is equal 
to the probability of the event that the value of the random variable X is less 
than or equal to x, denoted by

This function will not decrease with the increase of x but reflects how 
the cumulated probability changes with x so that it is called cumulative 
probability function or distribution function. Obviously, any type of ran
dom variables, no matter discrete or continuous or ordinal ones, can share 
the concept of distribution function. This brings much convenience to the 
research and application of mathematical statistics.

Figure 2.2 demonstrates the relationship between probability density 
function and distribution function. Figure 2.2(a) is a plot of a distribution 
function, of which the shape may vary from problem to problem in practice 
but the area under the curve (above the x-axis) is always equal to 1; the area 
of the left tail up to c under the curve (above the x-axis) is just the cumulative 
probability P(X < c), of which the value is equal to F(c), the height of 
the curve at x =  c in Fig. 2.2(b). The difference between F{d) and F(c) in 
Fig. 2.2(b) is equal to the probability of the event that the variable X falls 
in the interval of (c, d), that is, the area of the mid-part between c and d 
under the curve (above the x-axis) in Fig. 2.2(a).

2.2.4 Population m ean an d  popu la tion  variance

Similar to the concepts of sample mean and sample variance, the population 
mean and population variance describe the average level and variation of 
the population, respectively.

To any discrete random variable X, denoting the possible values and 
related probabilities with xi, x-i, . . . ,  x* and p\,  рг, • ■ •, Pk respectively 
(к could be infinity as well), if (2.5) results in a finite number, then it is 
called population mean of X or expectation of X, denoted by E(X),

F(x) =  P(X < x).

к

i= 1
(2.5)
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Similarly, if (2.6) results in a finite number, then it is called population 
variance of X, denoted with Var(X),

к
Var(X) =  ^  Pi(*i — ju) 2 =  er2. (2.6)

i=i

In fact, E(X)  is tantamount to a weighted average of all possible values 
throughout the population; and Var(X) is tantamount to a weighted average 
of all possible squared deviations from the mean ji throughout the popula
tion; the weighted coefficients used are the related probabilities.

To any continuous random variable X, denoting the domain with (a, b) 
and the probability density function with /(x ) , if (2.7) results in a finite 
number, then it is called population mean of X or expectation of X, denoted 
by E(X),

E(X) =  f xf(x)dx =  ц , (2.7)
J a

where dx is tantamount to the length of a sub-interval, f (x)dx  is tantamount 
to the probability of the event that the variable X falls in the interval of 
(x, x +  dx),  the integral sign f b is tantamount to the sign of Xa=i >n (2-5). 
Similarly, if (2.8) results in a finite number, then it is called population 
variance of X, denoted with Var(X),

Cb
Var(X) =  / (x — n) 2 f {x)dx — a 1. (2.8)

J a

In fact, (2.7) is still tantamount to a weighted average of all possible 
values throughout the population, and (2 .8) is still tantamount to a weighted 
average of all possible squared deviations from the mean /t throughout the 
population.

For both discrete and continuous variables, there are several important 
properties of E(X)  and Var(X), which may be useful later.

(1) If a is a constant, then

E{aX) =  aE(X),  

Var(aX) =  ci2 Var(X).

(2.9)

(2 . 10)
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(2) For any two random variables X\ and X2 ,

E(Xl +  X2) =  E( X]) +  E(X2). (2.11)

(3) When and only when X 1 and X2 are independent of each other,

Var(X 1 ±  X2) =  Var{X\) +  Var(X2). (2.12)

(4) For any random variable X,

Var{X) =  E(X2) -  [£(X )]2. (2.13)

2.3 Binomial Distribution

2.3.1 P robability  fu n ction

Let us return to Example 2.2. Table 2.1 gives the probability function of the 
random variable X, which is the total number of times black ball appears 
out of five times of repeated sampling with replacement of ball from the 
pocket. The values of this probability function are calculated in Table 2.2. 
Obviously, they are just corresponding to the terms of the following 
expansion.

(0.2 +  0.8)5 =  Q  (0.2)5 +  Q  (0.8)(0.2)4 +  Q  (0.8)2(0.2)3 

+  Q  (0.8)3(0.2)2 +  Q  (0.8)4(0.2) +  Q  (0.8)5.

Here (”) refers to the number of possible combinations after picking up 
x items from n,

— , 0 ! =  1, k\ =  k ( k -  1) ■ ■ ■ (2) (1), к ф  0 . 
х ) !

In general, if the probability of an event appearing in a trial is n , and 
after n times of independently repeated trials, the total number of times such 
an event appears is a random variable, denoted by X ; then the probability
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Table 2.2 D eriv a tio n  o f  th e  p ro b a b ility  fu n c tio n  in  E x am p le  2.2 .

Total n u m b er 
o f  tim es
b lack  ball P o ss ib le  ou tcom e* P ro b a b ility  o f P ro b a b ility  o f
a p p ea rs  X (p erm u ta tio n ) p e rm u ta tio n c o m b in a tio n  P ( X )

0 O O O O O (0 .2 )5 Q  (0 .2 )5 =  0 .0003

1 X O O O O
O X O O O

(0 .8 )(0 .2 )4
(0 .8 )(0 .2 )4

^  (0 .8 ) (0 .2 )4 = 0 .0 0 6 4

0 0 X 0 0 (0 .8 )(0 .2 )4
0 0 0 X 0 (0 .8 )(0 .2 )4
oooox (0 .8 )(0 .2 )4

2 xxo o o
xoxoo

(0 .8 )2 (0 .2 )3
(0 .8 )2 (0 .2 )3

(0 .8 )2 (0 .2 )3 = 0 .0 5 1 2

xo o xo (0 .8 )2 (0 .2 )3
xooox (0 .8 )2(0 .2 )3

oooxx (0 .8 )2(0 .2 )3

3 x xxo o
xxo xo

(0 .8 )3(0 .2 )2
(0 .8 )3(0 .2 )2 ^  (0 .8 )3 (0 .2 )2 = 0 .2 0 4 8

xxo o x (0 .8 )3(0 .2 )2
xo xxo (0 .8 )3(0 .2 )2

o o xxx (0 .8 )3 (0 .2 )2

4 x x x x o
x x x o x

(0 .8 )4 (0 .2 )
(0 .8 )4 (0 .2 )

^  (0 .8 )4 (0 .2 ) =  0 .4 0 9 6

x x o x x (0 .8 )4 (0 .2 )
x o x x x (0 .8 )4 (0 .2 )
o x x x x (0 .8 )4 (0 .2 )

5 x x x x x (0 .8 )5 (0 .8 )5 =  0 .3 2 7 7

Total 1.0000

O: w h ite  b a ll, X : b lac k  ball.
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of X =  x can be calculated as follows:

P( jc) = Q (  1 - ^ r V ,  x =  0, (2.14)

Since (2.14) is the same as the (x +  l)th term of Newton’s binomial 
expansion

[(1 -  n)  +  n f  =  Q  (1 -  n f  +  Q  (1 -  n f - \

+ Q  (i -  *)"~2*2+• • • + (") о -  * t ~xk x

+  ' "  +  ( п - 1) ( 1 ' 7г)7Г''"' +  ( п ) гГЯ’

it is called the probability function of binomial distribution, and the random 
variable X is called a binomial variable, or a variable following a binomial 
distribution, denoted by

X ~  B(x, n).

Obviously, the distribution function of binomial variable is in the 
shape of

л:

P{X < x )  =  P(0) +  P( l )  +  • • • +  P(x)  =  Р (кУ (2Л5)
k= 0

Example 2.3 The 50% lethal dose (LD50) of certain poison for a kind 
of animals is known. Now five such animals are injected with this dose. 
Denoting the number of deaths with X, calculate the probabilities of the 
events X =  0, 1, 2, 3, 4 and 5, respectively.

Solution 7Г =  0.50, n =  5. With the formula of (2.14),

P(0) =  Q  (0.5)5(0.5)° =  0.03125,

P(  1) =  ф  (0.5)4(0.5) 1 =  0.15625,
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P(2) =  Q  (0.5)3(0.5)2 =  0.31250,

P(3) =  Q  (0.5)2(0.5)3 =  0.31250,

P(4) =  ( 4 )  (0.5)‘(0.5)4 =  0.15625,

P(5) =  Q  (0.5)°(0.5) 5 =  0.03125.

One can see that although the 50% lethal dose is used, it is still possible to 
have none of the 5 animals dying after injection and it is also possible to have 
all the 5 animals dying; the values of probability functions are symmetric 
about the most possible cases X =  2 and X =  3 due to that л =0.50.

2.3.2 P lo t o f  p robab ility  fu n ction

Four plots for binomial distributions are shown in Fig. 2.3. One can see 
that the values of the variable X on the horizontal axis can only be inte
gers 0 , 1, 2 , . . . ,  and the bars are taller around center and shorter on two 
sides. If the sample size n is not very large, the plot shows positive skew 
with a long tail along the positive direction of the axis when the parame
ter л <0.5;  negative skew with a long tail along the negative direction of 
the axis when the parameter к > 0.5; and symmetric when the parameter 
к — 0.5 (See Figs. 2.3(a)—(c)). If the sample size n is very large such that 
both nn and n{ \ — л)  are big enough, the plot shows symmetric though the 
parameter л Ф 0.5 (see Fig. 2.3(d)).

2.3.3 Population  m ean a n d  popu la tion  variance

Let us return to the example of taking balls from a pocket. Each time of 
taking a ball from the pocket is regarded as one trial; the outcome is denoted 
by a random variable Y with two possible values, Y =  I for black ball and 
Y =  0 for white ball; the probability of the event Y =  1 is л and that of 
the event Y =  0 is 1 — л . Due to (2.5) and (2.6), the population mean and
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(a) (b)

(c) (d)

Fig. 2.3 The bar plots for some random variables with binomial distributions (а) ж < 0.5; 
(b) n  > 0.5; (с) к  =  0.5; (d) к  Ф  0.5, n big enough.

population variance of Y are

E(Y) — (1 — гг) • 0 +  ж • 1 =  ж, (2.16)

Var{Y) =  (1 — л: )(0 — л ) 2 +  л{ \  — л ) 2 =  7г (1 — л).  (2.17)

Now independently repeat the same trial for n times, of which the out
comes are denoted with Yl,Y2, . . . ,  Yn respectively and the total number of 
times the black ball appear is denoted by X,

X =  Y\ +  Y2 +  • • • +  Yn.

Due to (2.11) and.(2.12),

E(X) =  E(Xi + X 2 +  --- +  Xn)

=  £ (X ,) +  E(X2) +  • • • +  E(Xn) =  пл,  (2.18)

Var(X) =  Var(Xi +  X2 +  • • • +  Xn)

=  Var(Xi) +  Var(X2) H------h Var(Xn) =  пл(\  -  л).  (2.19)
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(2.18) and (2.19) are indeed consistent with our daily knowledge. If for 
each time, the probability of black ball appearing is ж, then on average, out 
of n times the total times of black ball appearing will be nn. The variation 
of X depends on n and ж . I f  n is large, then the range of X  will be wider; 
if 7Г is closer to 0.5 then the outcome will be more uncertain.

In practice, the relative frequency of black ball appearing in n trials (P) 
is used as the approximation of the probability of black ball appearing in 
any one trial (я:).

P

From (2.9) and (2.10),

£(p) = £(f)

X
n

E(X)
------- =  я:,n

(2.20)

(2 .21)

Var(P) =  War
Var(X) П 7Г(1 — Я ) ж( 1 — ж)

П
(2.22)

The above results are not limited to the problem of taking ball from 
a pocket. In general, for any binomial random variable X ~  B(ж, n), if 
the population mean and population variance of X are denoted by pix and 
a 2, and those of the frequency P =  X/n are denoted by ц р and o 2, then 
we have

P x = n i г, /ир =  ж,

9 ч 9 Ж(\ — Ж)о 2 =  пж(\ -ж) ,  о 2 = ------------, (2.23)
' п

!—  ------ - ж ^ - ж )
Ох =  у/пж{\ -ж),  ор =  ------------.

V п

2.3.4 D iscussion  on cu re rate

Assume the patients meeting certain criteria can be regarded as the 
individuals of a homogeneous population, the outcomes of a treatment 
(cure or not) are independent of each other, and the probability of being 
cured is ж =  0.40 for each. Now randomly select two groups of patients, 
30 patients for each, to accept the treatment; as a result, seven patients in 
group 1 and 14 in group 2 are cured. Why is it that the two groups of patients
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with the “same” condition and same treatment gain so different cure rates? 
Why is it that both of their cure rates 7/30 and 14/30 are not equal to the 
probability n{=  0.40)?

Under the above assumptions, to treat 30 patients in group 1 and another 
30 in group 2 can be regarded as two independent samples of the binomial 
population, that is, the number of cured patients in each group is a random 
variable X ~  В(0.40, 30).

In the first sample, X =  1, the cure rate is 7/30. In fact, the probability 
of such a situation is

P(X =  7) =  (0.40)7(0.60)23 =  ^Щу(0.40)7(0.60)23 =  0.02634.

In the second sample, X =  14, the cure rate is 14/30. The probability of 
such a situation is

P(X =  14) (0.40)14(0.60)16 

(0.40)14(0.60)16 =  0.11013.

When X =  12, the cure rate will be 12/30 =  0.40. The probability of such 
a situation is

P(X =  12) (0.40)!2(0.60)18

30'
-----—(0.40)12(0.60)18 =  0.14738.
12118!

One can see that the situations of X =  7, 14, 12 are all possible. X =  12 
is more likely than others, but P(X =  12) is not equal to 1 so that the 
observed value in sample is not always equal to the population’s cure rate. 
In fact, the cure rate in sample is a random variable; 7/30 in group 1 and 
14/30 in group 2 are the observed values.

The above discussion reminds us that the cure rates in different samples 
may be quite different. In practice, when two different medicines are taken 
by two groups of similar patients respectively, even though the two cure 
rates are quite different, one should not immediately conclude the difference 
sample between the two population cure rates. Whenever we see a difference 
between two samples cure rates, it is important to distinguish two possible
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conditions: whether it is due to the difference between two samples while 
the population cure rates are the same; or it is initially due to the difference 
between two population cure rates.

2.4 Poisson Distribution

2.4.1 P robability  fu n ction

Poisson distribution was developed by a French mathematician S D Poisson 
(1781-1840), which can be regarded as the limit of Binomial distribu
tion В(л,п)  for small л and large n. It is often used to describe the distri
bution of the number of rare “articles” in a plane or space.

Now take the pulse count of radioactive isotopes as an example. Denote 
the average number of pulses recorded during a specified period with X, 
and divide the period into n sub-intervals such that the average number of 
pulses during each sub-interval will be X/n. Assume

(1) n is big enough such that there is either one pulse or no pulse in each 
sub-interval and the chance for two or more pulses in any sub-interval 
is ignorable (large n and 0- 1);

(2) The probability of the event that the pulse appears in each sub-interval 
is X/n (repeated trials and rare event);

(3) The events of pulse appearing or not in different sub-intervals are sta
tistically independent of one another (independency).

Then the total number X of pulses appearing in the n sub-intervals 
follows a binomial distribution B{X/n,n)  with a probability function

which depends on n. It can be proved in mathematics, when n -> оо, the 
limit of Pn(x) will be

where e is a constant approximately equal to 2.718....
Again take the red blood cell count on glass slide as another example. 

Denote the average number of red blood cells recorded within a specified

(2.24)
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glass slide by A, and divide the slide into n grids such that the average 
number of red blood cells within each grid will be A/w. Under three similar 
assumptions of “large n and 0- 1”, “repeat and rare event” and “indepen
dency” as mentioned above, one can also obtain that when n —> oo, the total 
number X of red blood cells observed on the slide follows a distribution 
with a probability function given in (2.24).

In general, if the probability function of a random variable X is (2.24), 
then we say that this variable follows a Poisson distribution with parameter 
A, denoted by X ~  П(А).

For many rare diseases (non-infectivity, non-permanent immunity, non
heredity), the number of patients in the population also approximately fol
lows the above three assumptions. Assume the number of individuals n is 
large enough and any individual is either being attacked or not; the prob
ability of incidence is n , small enough; non-infectivity, non-heredity and 
independency. Then the number of patients X approximately follows a Pois
son distribution П(А), where A =  t in.

Notice that among the above three assumptions “independency” and 
“repeat” are quite easy to be missed, and in fact, without these two the 
Poisson distribution will not hold.

For example, for an infectious rare disease, any individual may either 
be attacked or not. However, people around the patients may have more 
chance to be attacked than those not around the patients, then the incidence 
is not independent of one another and the “trials” are not exactly repeated. 
Although the conditions of “large n” and “rare event” are met, the number 
of patients does not follow a Poisson distribution at all.

Again when the bacteria are clustered, if divide the space into many 
small cubes, then there must tend to have bacteria in the cubes around 
the one with bacteria. Therefore, it is not independent or repeated and 
hence the total number of bacteria does not follow a Poisson distribution 
either.

2.4.2 P lo t o f  p robab ility  fu n ction

When the parameter к is small and n is large, the probability function of a 
binomial distribution B{n, n) will approximately equal to that of a Poisson 
distribution П(А), where A =  nit. One can have some feeling about this 
statement through the following example.
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Table 2.3 The probabilities of X  =  0, 1, 2 chromosome anomalies 
out of 100 newborns.

P ( X )

X B(0.01, 100) n ( l )

0 1° =  0.3660 e-1 (l)°/0 ! =  0.3679

(0.99)100-1 (0.01)1 =  0.3697 e-1  ( l ) 1/! !  =  0.3679

2 (0.99)100-2 (0.01)2 =  0.1849 e-1 ( l)2/2! =  0.1839

Example 2.4 Assume that the probability of chromosome anomalies in 
any newborn is 1 %. Calculate the probabilities of the events that there are 
X =  0, 1 and 2 newborns with chromosome anomalies out of 100 through 
two approaches: binomial distribution and Poisson distribution.

Solution See Table 2.3 for the results. On the basis of the relationship 
between Poisson distribution and binomial distribution, one can imagine 
that the plot of probability function for Poisson distribution also stands 
on the integers 0 , 1, 2 , . . .  etc. of the horizontal axis, taller around cen
ter and shorter on two sides; when A < 5, it shows positive skew, sim
ilar to Fig. 2.1(a); when A > 5, it is approximately symmetric, similar 
to Fig. 2.1(d). In any case, it is impossible to have a plot with negative 
skew. Why?

2.4.3 Population  m ean a n d  popu la tion  variance

We have already known that the population mean and population variance 
of a binomial distribution are

One can imagine, when nn =  A, n сю and к —»■ 0, the population 
mean and population variance of the Poisson distribution П(А) will be

where the population mean and population variance are both equal to A. This 
is a property of the Poisson distribution specifically, with which people often

p x — пи and (7  ̂ =  п к { \ —ж).

p x — A and <t2 - A,
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identify a Poisson distribution by observing whether the sample mean and 
sample variance are approximately equal.

2.4.4 A dditive p roperty

Another special point of the Poisson distribution is the additive property. If 
random variables X\ ~  П(Яi) and A2 ~  11 (Й.2) are independent of each 
other, then

For instance, if the total pulse count of radioactive isotope recorded 
in 10 minutes follows a Poisson distribution П(Л) and two independently 
repeated records are made, denoted by X 1 and A2, then X\ +  X2 ~  П(22).

Note that, if X ~  П(Я), then 2X does not follow П(2Я) and XU does 
not follow П(Я/2 ) either.

For instance, by doubling the pulse count of radioactive isotope within 
10 minutes, the result 2X does not equal to the record made in 20 minutes 
A] +  A2; similarly, half of the pulse count of radioactive isotope within 
10 minutes does not equal to the record made in 5 minutes either.

2.5 Normal Distribution

2.5.1 P robability  density fu n ction

In practice, the shape of frequency density histograms of many continuous 
random variables looks taller around center, shorter on two sides and is 
symmetric. A family of probability density functions is used

to describe such kind of random variables and say that they follow normal 
distributions or Gauss distributions, where exp(-) refers to e{ ). It was tra
ditionally regarded that only such kind of distributions is related to normal 
situations. In fact, it is not true because many probability density functions 
in real life may not be symmetric and even not taller around center and 
shorter on two sides. Therefore, now we can only regard “Normal” as a 
name of a family of distributions, which does not mean a normal situation.

Ai +  X2 ~  П (Ai +  2.2).

(2.25)
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Fig. 2.4 Plots of probability density functions for normal distributions: (a) general situation;

There are two parameters for a normal distribution, ft and сг2. /г is the 
population mean; <r2 is the population variance (always greater than 0 ). 
Any normal distribution is determined by these two parameters so that it 
can be briefly denoted by N(p,  a 2). When р — 0, а 2 — 1, the probability 
density function and distribution function become

Such a normal distribution is called standard normal distribution, 
denoted by A(0 , 1).

From the plots of normal probability density functions (Fig. 2.4), one 
can learn the following properties intuitively:

(1) Symmetric about X =  ft',
(2) Peak at X — ft;
(3) Two inflection points at X — ц ±  a ;
(4) Area under the curve equals 1;
(5) If a 2 is fixed, the location of the curve changes with ft so that // is called 

location parameter;
(6) If ft is fixed, the curve is fatter and shorter for bigger a 1, thinner and 

taller for smaller a 2 so that A  is called shape parameter.

(b) changes with p  and a 2 .

(2.26)
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2.5.2 Area under the normal probability density curve 

To any normal variable X ~  N{p,  a 2), after a transformation

(2.27)
a

one will have Z ~  N(0,  1). (2.27) is called standardization transformation, 
and Z is called standardized normal deviate or Z-value, which in fact is a 
measure for the deviate from the mean ц with the standard deviation a as 
a unit.

A numerical table of the distribution function O(Z) for standard normal 
distribution is usually attached in most textbooks of statistics. Due to sym
metry, given the value of <b(Z), the value of Ф(—Z) can be calculated by

so that this kind of table is often made for Z > 0 or Z < 0 only.
With such a table, one can easily obtain the area under the standard 

normal density curve within any specified interval, that is, the probability of 
the event that the standard normal variable falls in the interval. For instance, 
using Table 1 in Appendix П, the areas under the standard normal density 
curve within intervals (—1, 1), (—2, 2), (—3, 3) are

Ф(2) -  Ф(—2) =  2Ф(2) -  1 =  2(0.997725) -  1 =  0.9545,

Ф(3) -  Ф (-3 ) =  2Ф(3) -  1 =  2(0.99865) -  1 =  0.9973.

The area under a general normal density curve within any specified 
interval can be calculated after standardization. For example, the area under 
the density curve of normal distribution N ( p , o 2) within the intervals of 
(p — 1.96cr, // +  1.96<t) and (p — 2.58rr, p +2.58rr) are

Ф ( - г )  =  l -  Ф (г)

Ф(1) -  Ф (-1 ) =  Ф( 1) — [1 — Ф(1)] =  2Ф(1) -  1 

=  2(0.8413) -  1 =0.6826,

=  Ф(1.96) -  Ф(—1.96) =  2Ф(1.96) -  1 =  2(0.975) -  1 =  0.950,



66 Medical Statistics and Computer Experiments

(
(/u +  2.58 a)  — /л

a
(/и — 2.58<t) — /и

a

=  Ф(2.58) -  Ф(—2.58) =  2Ф(2.58) -  1 =  2(0.995) -  1 =  0.990.

The above results show that although any normal variable may take 
values anywhere in (—oo, +oo), the chance that its value falls in (/t — 
1.96cr, /.i +  1.96(7) is always 95% and the chance that its value falls in 
(/и — 2.58сг, +  2.58cr) is always 99%.

In the applications of normal distribution, the value of a standard normal 
variable is called two-sided critical value Za if the total area under the 
standard normal density curve within the two tails |Z| > Za is equal to a, 
that is

Based on Table 1 in Appendix II, we can have several important critical 
values in Table 2.4, which will be used everywhere in routine statistical 
works.

2.5.3 D eterm ination  o f  reference range

In medical field, towards a useful index (a variable in statistics), researchers 
frequently try to measure a large group of “normal” people to determine 
the reference range or “normal range” of such an index. If someone’s value 
is outside this range, then he or she becomes suspect and intensive atten
tion needs to be paid. The group of “normal” people should be a large 
random sample of the population such that when the frequency density 
histogram looks like a normal distribution the above knowledge could be 
used to estimate the 95% or 99% range of the population by cutting two 
small tails with areas 5% or 1%. However, ц and a are always unknown so

P(\Z\ > Za) =  a.

Table 2.4 Several important critical values for stan
dard normal distribution.

Two-sided Z„  Area of one tail Area of two tails

1.645
1.960
2.576

0.05
0.025
0.005

0.10
0.05
0.01
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that when the sample size is large enough, they can be replaced by sample 
mean x and sample standard deviation s and then the 95% or 99% range 
of the index are approximately estimated with (x — 1.96л-, x +  1.96л) and 
(x — 2.58л, x +  2.58л).

How large should the sample size be? Although there does not exist any 
widely recognized criterion yet, by experience, n should be greater than 100 
and if x and л do not change too much with the increase of sample size, 
then the sample size might be regarded as appropriate.

One must note that, the 95% reference range just tells that the measures 
of 95% of “normal” people are within this range; it does not claim that 
anyone is normal if the measure is in this range; and it does not claim either 
that anyone is abnormal if the measure is not in this range. Therefore, the 
reference range could never be a criterion for diagnosis.

The percentile is used to determine the reference range for the index 
with non-normal distributions or unknown distributions. The 95% infer
ence range of the two-sided index is estimated as the interval of (P2 .5 , 
P97.5); one-sided 95% inference range is (—00 , P95) and (P5, + 0 0 ). Since 
the method of percentile does not adequately use the sample informa
tion, it is more reliable to estimate reference range by the method of 
normal distribution than by percentile if the index follows a normal dis
tribution (or follows a normal distribution after certain transformation of 
variables).

2.5.4 N orm al approxim ation  o f  b inom ia l distribution  
a n d  Poisson distribution

2.5.4.1 Correction for continuity

Both binomial distribution and Poisson distribution are distributions for 
discrete random variables, which can only take values from integers 0 , 1, 
2 , . . . .  In order to borrow distributions of continuous random variables for 
probability calculation, first of all, the probability function should become 
“continuous”: the “bar” in the plot of probability function being reformed 
as a “rectangle”, that is, for any X =  k, the bar there is replaced by a 
rectangle which stands up on the interval (к — 0.5, к +  0.5) with width 1 
and the same height as that of the bar (Fig. 2.5(a,b)); obviously, the area of 
the rectangle and the height of the bar are the same in value, and both are
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Fig. 2.5 D e m o n stra tio n  fo r  c o n tin u ity  co rrec tio n  an d  n o rm al ap p ro x im atio n  o f  b in o 
m ia l d is trib u tio n , (a) B a r p lo t; (b ) h is to g ram  a fte r  c o n tin u ity  c o rre c tio n ; (c) norm al 
a p p ro x im atio n .

Table 2.5 T h e  c o n tin u ity  c o rre c tio n  an d  n o rm al ap p ro x im atio n  fo r  p ro b a b ilitie s  o f  
b in o m ia l d is trib u tio n .

A p p ro x im ate  fo rm u la  
fo r  p ro b ab ility : T h e

P ro b a b ility  o f
b in o m ia l
d istrib u tio n

In terv a l fo r  the 
rec tan g le  

s tan d in g  up

In terva l fo r  th e  a rea  
u n d e r the 

a p p ro x im ate  
n o rm al d en sity  

cu rve

a rea  u n d e r the 
a p p ro x im ate  norm al 
d en sity  c u rv e  w ith in  

th e  c o rre sp o n d in g  
in terval

P ( X  =  k ) (k  — 0.5, к  +  0.5) (k  -  0.5, A: +  0.5) l  к +  0.5 — лгг \  
\  *Jnn{\ —71) )

'Ъ ( к — 0.5 — пк  \  
V-Упж(1 -гг)  /

P ( X  < k ) (0, к  +  0.5) (—oo, к +  0.5) Л, 1 к + 0.5 - т г \
V s/пж (1 -  гг) /

P ( X  > it) I k  -  0.5, n) (it -  0.5, +oo) 1 ф ( Т - 0 . 5 - ш г \  
\ ^ п ж ( \ - ж )  )

P ( k \  <  X  < k 2) (it] -  0.5, k 2 +  0.5) (iti - 0 .5 ,  *2 +  0.5) ф ( t'2 +0.5—лгг ) 
V у/пп(  1 -гг)  /

m f k l —0.5 —лгг) 
V Vnrr(l — гг) /

equal to the probability corresponding to X =  k. This is just the process of 
correction for continuity. After that, P{X =  k), P(X < k), P(X > k) and 
P(ki < X < k2) etc., can be calculated through the areas of the rectangles. 
See column 2 of Table 2.5.
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2.5.4.2 Normal approximation

It can be proved in theory, when n is large such that nn and n{\ — n) are 
big enough, the profile of the plot for the probability function of binomial 
distribution X ~  В (к, n) approximates the probability density curve of the 
normal distribution

Thus, when n is large such that nn and n{ \ — n) are big enough, after 
continuity correction the total area of the rectangles in an interval can be 
replaced by the area under the normal density curve within certain interval. 
See columns 3 and 4 of Table 2.5.

Similarly, since the Poisson distribution is close to a binomial distri
bution when n is large and n is small, it can also be approximated by a 
normal distribution as long as Я is big enough. If X ~  Г1 (Я) and Я are big 
enough,then

Thus, the first three columns of Table 2.5 still hold and the formulas in 
column 4 need to be changed accordingly, that is, the nn in the numerators 
and nn (l — n ) in the denominators are all replaced by Я.

Example 2.5 Suppose the probability of detecting a disease by a screening 
test is 0.005 and randomly selected 10,000 individuals in the population have 
accepted such a test. What is the probability of the event that 55 individuals 
with such a disease are detected completely.

Solution Assume that the individuals in this population can be regarded 
as homogeneous, hence the total detected number can be regarded as a 
random variable following a binomial distribution. Therefore,

X ~  N(nn, nn(\  — n))

and

X ~  А(Я,Я).

(0.995) 10000— £ (0.005)* =  0.2572.
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Or by Poisson distribution with X =  10000 x 0.005 =  50,

i i  £-505o*
P(X > 55) =  1 -  ----- —  =  0.2577.

k = 0

With the above two approaches one will encounter complicated compu
tations. Now turn to normal approximation,

Using the third formula for binomial distribution in column 4 of 
Table 2.5,

=  1 -  Ф(0.638) =  1 -  0.7383 =  0.2616.

Both are close to 0.2572 (which is obtained by direct calculation) with 
relative errors less than 2 %.

2.5.5 P-P plot and Q-Q plot

Normal distribution is very important to statistic analysis, and it is usually 
the basis of choosing the appropriate statistical method. As we mentioned in 
Chap. 1, histogram and stem-and-leaf plot are often used to understand the 
distribution of the data, but they cannot figure out how closely between the 
distribution of the data and a normal distribution. However, the P-P plot and 
Q-Q plot can visually assess whether the data follow a normal distribution.

The P-P plot (Probability-Probability plot) makes a plot with the cumu
lative distribution of the data versus an assumed cumulative distribution 
function to assess how closely the assumed distribution fits the data. To per
form a test for normality, the cumulated frequencies of the dataset are plotted 
on the x-axis, and the expected corresponding cumulated frequencies of the 
standard normal distribution are plotted on the у-axis. If the plot falls on

nit =  50, П7г (1 — n) =  50 x 0.995 — 49.75.

=  1 -  Ф(0.638) =  1 -  0.7383 =  0.2616. 

Using the formula for Poisson distribution,
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adults.

a straight line from (0 , 0 ) to (1, 1), then the data follow a normal distri
bution. Any deviation indicates a difference between the two distributions. 
See Fig. 2.6.

The Q-Q plot (Quantile-Quantile plot) is similar with the P-P plot, the 
only difference is that the Q-Q plot plots the quantile values of the distri
bution of data against those of the expected distribution. To perform a test 
for normality, the quantile values of the dataset are plotted on the x-axis, 
and the corresponding quantile values of the standard normal distribution 
are plotted on the у-axis. Similar to the P-P plot, if the Q-Q plot falls on a 
straight line from (0 , 0 ) to (1, 1), then the data follow a normal distribution. 
See Fig. 2.7.

2.6 Computerized Experiments

Experiment 2.1 Generating random numbers: Generation of random 
numbers is the basis of random sampling, computer simulation and ran
domized trial. In general, there are three ways to get random numbers: table
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Quantile value of dataset

Fig. 2.7 Q -Q  p lo t fo r th e  d a ta  se t o f  red  b lo o d  ce ll c o u n ts  ( 1 0 I2/L ) o f  120 no rm al m ale  
adu lts.

for random numbers, certain functional key of calculator and certain func
tion of computer software. Since true random number is inherently not 
predictable, we usually use computational algorithms to generate relatively 
random numbers, which are completely determined by an initial value, 
known as a seed. These relatively random numbers are often called pseudo 
random numbers. If two sequences of pseudo random numbers are gen
erated by the same seed, the two sequences are the same as well. The 
content for generating pseudo random numbers (we will omit the word 
“pseudo” later for convenience) and related testing in SAS are introduced in 
Program 2.1.

Lines 01-05 generate 100 random numbers from a uniform distribution, 
where UNIFORM(O) is a random function of the uniform distribution and 
X takes value between 0 and 1. Lines 06-10 make a plot of the random 
numbers versus the order of sampling and a frequency histogram to show 
the independency (or not) and the distribution of the outcomes intuitively.

Discuss this experiment: (1) What should the mean and variance be?
(2) How to find the independency among the generated numbers?

Experiment 2,2 Taking balls from a pocket: Assume there are two kinds 
of balls with the same shape and weight but different colors in a pocket, 
of which 20% are black balls and 80% are white balls. Each time one 
ball is taken out of the pocket, record the color and return the ball to the
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Program 2.1 Generating random numbers and related testing.

Line Program Line Program

01 DATA RAN; 07 PROC GPLOT;
02 DO 1=1 TO 100; 08 PLOT X* I;
03 X=UNIFORM(0); 09 PROC GCHART;
04 OUTPUT; 10 VBAR X/MIDPOINTS=0.05
05 END; TO 0.95
06 GOPTIONS DEVICE=VGA; 11 RUN;

Program 2.2 Experiment of taking balls from a pocket.

Line Program Line Program

01 DATA BIN; 09 END;
02 DO J=1 TO 10; 10 PROC FREQ;
03 X=0; 11 TABLE X;
04 DO 1=1 TO 5; 12 GOPTION DEVICE=VGA
05 Z=UNIFORM(0); 13 PROC CHART;
06 IF Z<=0.2 THEN X=X+1; 14 VBAR X/MIDPOINT=0 TO 5 BY 1;
07 END; 15 RUN;
08 OUTPUT;

pocket; after stirring, repeat and count the total number of times black ball 
appears.

Lines 03-07, one trial with n =  5 times of taking balls out of the pocket 
results in a value of X, the total number of times black ball appears out 
of 5; Z in line 05 is a uniformly distributed random variable. Lines 02-
09, 10 trials result in 10 observations of X. Lines 10-15, frequency table 
and plot.

Discuss this experiment: (1) Pool the results of the whole class to observe 
the frequency distribution of X and compare with the probability function of 
the corresponding binomial distribution. (2) Increase n (say n =  10, 20, 30) 
to observe the distribution of X again. (Note: Replace “5” in line 04 with
10, 20, 30 respectively).

Experiment 2.3 P-P plot and Q-Q plot: This is a preparation for plotting 
P-P plot and Q-Q plot based on Example 1.4. Lines 01-04 read the raw data
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Program 2.3 P-P plot and Q-Q plot.

Line Program Line Program

01 DATA RBC; 05 PROC UNIVARIATE;
02 INPUT RBC@@; 06 PROBPLOT RBC/ SQUARE;
03 5.12 5.13 4.58 4.31 4.09 07 RUN;

4.41 4.33 4.58 4.24 5.45 08 PROC UNIVARIATE;
09 QQPLOT RBC/SQUARE;

04 10 RUN;

into SAS. Lines 05-07 plot the P-P plot with the square figure (the default 
figure is rectangle). Lines 08-10 plot the Q-Q plot with the square figure.

2.7 Practice and Experiments

1. A case-control study on the relationship between esophageal cancer and 
pickles was performed on all of the patients with esophageal cancer diag
nosed in a hospital; and the control group was formed with patients with 
other acute diseases during the same period in the same hospital, who were 
matched with the cases according to gender, age and occupation. The indi
viduals in the two groups were interviewed on their intake history of pickles 
with a standard procedure. The results are summarized in Table 2.6.

Estimate the conditional probabilities

P (Frequently taken | Esophageal cancer)

and

P (Frequently taken | Other acute diseases).

Table 2.6 The data on the relationship between esophageal cancer 
and pickles.

Pickles Esophageal cancer Other acute diseases

Frequently taken 537 554
Not frequently taken 639 922

Total 1176 1476
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Can we estimate the conditional probabilities

P (Esophageal cancer | Frequently taken)

and

P (Other acute diseases | Frequently taken)?

How to evaluate the impact of pickles taken on the incidence of esophageal 
cancer?

2. According to the statistics, 30% of the patients with acute abdominal 
pain are suffering from acute appendicitis; 70% of the patients with acute 
appendicitis have their temperature higher than 37.5°C, while only 40% 
of the patients with non-acute appendicitis have their temperature higher 
than 37.5°C. If both “acute abdominal pain” and “temperature higher than 
37.5°C” are taken as the evidence for diagnosis of acute appendicitis, cal
culate the conditional probability /J( Acute appendicitis | Acute abdominal 
pain and temperature higher than 37.5°C).

3. Assume the diastolic pressure of healthy high school students follows 
a normal distribution with mean 9.3 kPa and variance 1.3 kPa. What is the 
percentage of the students whose diastolic levels are in between 8 kPa and 
Ю.бкРа, higher than 12.7kPa and lower than 6.7 kPa respectively?

4. It was required that the missing rate of vaccination among children 
of certain age should not be higher than 5%. To monitor, 20 randomly 
selected children were evaluated within each district. It would be ranked 
as failure if more than one child were missed and excellent if none was 
missed.

(1) If the real missing rate of a district is 1%, what is the probability that 
the district is ranked as failure?

(2) If the real missing rate of a district is 10%, what is the probability that 
the district passes the evaluation by a fluke?

(3) If the real missing rate of a district is 6 %, what is the probability that 
the district is ranked as excellent by a fluke?

5. A board is formed by a net of grids with equal areas. A mass of small 
particles with equal sizes are scattered randomly over the board and hence
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distributed throughout the grids. The possible number of particles in any 
individual grid may be 0, 1, 2 , . . .  although the average is 1.2. Estimate:

(1) What is the percentage of grids not having any particles?
(2) What is the percentage of grids having some particles?
(3) What is the percentage of grids having at least four particles?
(4) What is the percentage of grids having no more than two particles?
(5) What is the relationship between this problem and the basic principles 

of the blood cell counting plate?

6 . Simulate the process of taking balls from a pocket by computer. Assume 
there are many balls with the same shape and weight in a pocket, of which 
20% are black and 80% are white.

(1) Sampling 30 times with replacement, record the value for the “total 
number of times black ball appears”;

(2) Repeating (1) for 200 times and getting 200 values for the “total number 
of times black ball appears”, make a frequency table and a histogram 
accordingly, then observe whether it is symmetric or not;

(3) Calculate the sample means and sample variances for the 200 samples 
in (2 ) accordingly;

(4) Calculate the population mean and population variance based on the 
theory of binomial distribution;

(5) Compare the results of (3) and (4) and discuss.

7. Think of the differences and similarities between the P-P plot and 
Q-Q plot.

(1st edn. Jiqian Fang; 2nd edn. Chun Hao, Jiqian Fang)



Chapter 3

Sampling Error and Confidence Interval

For several samples from the same population, usually the sample means 
are not equal to the population mean and they are different from one another. 
The difference between sample mean and the population mean are called 
sampling error. In this chapter, the variation of sampling error will be dis
cussed, and followed by the concept and calculation of confidence interval 
for the population mean.

3.1 The Distribution of Sample Mean

Let us observe the variation of sample mean through computerized 
experiment.

3.1.1 D istribution  o f  sam ple m ean from  a popu la tion  o f  norm al 
distribution

Sampling from a normal distribution Assume that the red blood cell 
counts of healthy males follow a normal distribution /V(4.6602, 0.57461 2 3). 
Using the program given in Sec. 3.6 of this chapter, 1000 samples with 
sample size n == 5 can be drawn; the sample means of the first 100 samples 
are showed in the second and sixth columns of Table 3.1. The frequency table 
and the corresponding histogram are showed in Table 3.2 and Fig. 3.1(a). 
One can see the following features of sample mean as a random variable:

(1) Any of the sample means is not necessary equal to the population mean;
(2) The differences exist among the sample means;
(3) The distribution of sample means follows certain rule such that more 

in center, less in two ends and symmetry around the center.

77
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Table 3.1 The sample means, standard errors and 95% confidence intervals of the 100 inde
pendent samples with sample size 5, which was randomly drawn from IV(4.6602, 0.57462) 
(unit: 1012/L).

No. 95% No. 95%
of

sample Mean
Standard

error
confidence

interval
of

sample Mean
Standard

error
confidence

interval

i 5.00 0.5688 4.2939, 5.7062 51 4.48 0.4006 3.9827, 4.9773
2 4.72 0.3470 4.2891,5.1509 52 4.32 0.5487 3.6388, 5.0012
3 4.24 0.5763 3.5246, 4.9554 53 4.88 0.3732 4.4167,5.3434
4 4.64 0.5949 3.9014, 5.3786 54 4.68 0.3524 4.2425,5.1175
5 4.60 0.4005 4.1028,5.0972 55 4.80 0.5866 4.0717,5.5283
6 4.80 0.8186 3.7837,5.8163 56 4.52 0.3504 4.0850, 4.9550
7 4.68 0.4502 4.1211, 5.2389 57 4.88 0.6869 4.0272, 5.7328
8 4.32 0.8225 3.2989, 5.3411 58 4.80 0.5232 4.1505, 5.4495
9 4.72 0.5964 3.9796, 5.4604 59 4.80 0.2794 4.4531,5.1469

10 4.40 0.4496 3.8418, 4.9582 60 4.76 0.5823 4.0371,5.4830
11 4.60 0.5683 3.8944, 5.3056 61 4.76 0.7083 3.8807, 5.6394
12 4.60 0.3401 4.1778, 5.0222 62 4.12 0.5793 3.4008, 4.8392
13 4.60 0.6648 3.7746, 5.4254 63 4.72 0.4419 4.1714, 5.2686
14 4.76 0.6274 3.9811,5.5389 64 4.44 0.2818 4.0902, 4.7898
15 4.20 0.6886 3.3451, 5.0549 65 4.92 1.0267 3.6454, 6.1947
16 4.64 0.3091 4.2562, 5.0238 66 4.80 0.7191 3.9073, 5.6927
17 4.96 0.4223 4.4357, 5.4843 67 4.72 0.4361 4.1786, 5.2614
18 4.96 0.4083 4.4532, 5.4669 68 4.84 0.5873 4.1109, 5.5691
19 4.68 0.5875 3.9506, 5.4094 69 4.36 0.4892 3.7527, 4.9673
20 4.84 0.5340 4.1771, 5.5030 70 4.76 0.3353 4.3437, 5.1763
21 4.92 0.2852 4.5659,5.2741 71 4.40 0.4309 3.8650, 4.9350
22 4.60 0.4517 4.0392,5.1608 72 4.68 0.6880 3.8259, 5.5341
23 4.44 0.4333 3.9021,4.9779 73 4.60 0.4301 4.0661, 5.1339
24 4.96 0.3711 4.4993, 5.4207 74 4.48 0.6411 3.6841,5.2759
25 4.64 0.4742 4.0513,5.2287 75* 4.16 0.3927 3.6724, 4.6476
26 4.96 0.5349 4.2959, 5.6241 76 4.52 0.5487 3.8388,5.2012
27 4.48 0.4778 3.8868, 5.0732 77 4.36 0.3930 3.8721,4.8479
28 4.68 0.3818 4.2061, 5.1539 00 * 5.04 0.2052 4.7853, 5.2947
29 4.68 0.6289 3.8992, 5.4608 79 4.56 0.9963 3.3231,5.7969
30 5.28 0.6467 4.4771, 6.0829 80 4.80 0.6243 4.0249, 5.5751
31 4.84 0.6724 4.0053, 5.6747 81* 4.00 0.2090 3.7405, 4.2595
32 4.52 0.3203 4.1224, 4.9176 82 4.64 0.3414 4.2162,5.0638
33 4.76 0.5841 4.0348, 5.4852 83 5.04 0.4050 4.5372, 5.5428
34 4.48 0.2084 4.2213,4.7388 84 4.52 0.5353 3.8555, 5.1845
35 5.04 0.6646 4.2149,5.8651 85 4.44 0.3276 4.0333, 4.8467
36 4.56 0.3912 4.0743, 5.0457 86 4.60 0.3797 4.1287, 5.0713

( Continued)
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Table 3.1 (C o n tin u e d )

No.
of

sample Mean
Standard

error

95%
confidence

interval

No.
of

sample Mean
Standard

error

95%
confidence

interval

37 4.68 0.5183 4.0366, 5.3234 87 4.48 0.2801 4.1322, 4.8278
38 4.80 0.7445 3.8758, 5.7242 88 4.64 0.2473 4.3330, 4.9471
39 4.72 0.7260 3.8187,5.6213 89* 5.32 0.3982 4.8256,5.8144
40 4.68 0.8567 3.6165,5.7435 90 4.92 0.3473 4.4888,5.3512
41 4.56 1.0241 3.2887,5.8313 91 4.72 0.2941 4.3548, 5.0852
42 4.76 0.6786 3.9175, 5.6025 92 4.44 0.4273 3.9096, 4.9704
43 5.04 0.5176 4.3974, 5.6826 93 4.48 0.3594 4.0338, 4.9262
44 4.52 0.3658 4.0659, 4.9741 94 4.92 0.4456 4.3668, 5.4732
45 4.52 0.5944 3.7821,5.2580 95 4.64 0.4758 4.0494, 5.2306
46 4.72 0.5024 4.0963, 5.3437 96 4.76 0.8516 3.7027,5.8173
47 5.12 0.6354 4.3312,5.9088 97 4.64 0.4560 4.0739, 5.2061
48 4.76 0.5837 4.0354, 5.4846 98 4.36 0.3368 3.9419, 4.7781
49* 4.04 0.3595 3.5937, 4.4863 99 4.56 0.6197 3.7907, 5.3293
50 4.52 0.6094 3.7634, 5.2766 100 4.60 0.4566 4.0331, 5.1669

*In fact the confidence interval of this sample did not cover the population mean.

Table 3.2 The frequency table of the sample means, 1000 independent 
samples with n  =  5 were drawn from N (4.6602, 0.57462).

Lower limit of
sub-interval (10*^/L) Frequency

Relative 
frequency (%)

Cumulated relative 
frequency (%)

3.60- 1 0.1 0.1
3.80- 5 0.5 0.6
4.00- 32 3.2 3.8
4.20- 117 11.7 15.5
4.40- 229 22.9 38.4
4.60- 304 30.4 68.8
4.80- 218 21.8 90.6
5.00- 76 7.6 98.2
5.20- 15 1.5 99.7
5.40- 3 0.3 100.0

(4) The range of variation for the sample mean is much narrower than that 
of the initial variable.

One can easily prove in theory: If the random sample with n individ
uals (Xi, X j , . . . ,  X„) is drawn from a normal distribution N(ft, a 2),
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/j=5 /1=10

3.7 4.1 4.5 4.9 5.3 5.7 3.7 4.1 4.5 4.9 5.3 5.7

(a) (b) (c)

Fig. 3.1 The results of Experiment 3.1. The curve is the density of the initial normal distri
bution N (4.6602, 0.57462); the rest are the histograms of the sample means corresponding 
to different sample sizes.

then the sample mean, varying from sample to sample, follows a normal 
distribution

X ~  N(/i,  <t| ) . (3.1)

The histograms of 1000 independent samples with n — 5, 10,30 
respectively are given in Fig. 3.1. It shows:

(5) The range of variation for the sample means tends to be narrow with 
the increase of sample sizes.

To distinguish from the standard deviation of the initial variable (a), 
in convention, the standard deviation of the sample mean (cr*) is called 
standard error of sample mean or simply standard error. It is worthwhile to 
keep in mind that in any case:

. , standard deviation of the population
Standard error of sample mean = ---------------------- —-------------------- ,

Vn

=  4 = ’ (3.2)■Jn

that is, with the cost of n observations, one can only reduce the variation to 
1 /  Jn  times the variation of a single observation.
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In practice, the population standard deviation a is usually unknown, 
and replaced by sample standard deviation S approximately. Therefore, the 
estimate of aj  could be

S y = 4 = -  (3-3)y/n

For convenience, and Sj- can be called theoretical standard error and 
sample standard error, respectively.

3.1.2 D istribution  o f  sam ple m ean fro m  a popu la tion  with 
n on-norm al distribution

Sampling from a positive skew distribution 1000 independent samples 
with sample size n =  5 were drawn from a positive skew distribution 
(Fig. 3.2(a)); their sample means were calculated; the corresponding

1 2 3 4 5 6 7 8 9

(a)

n=5 n=10

j f Thu-,
1 2 3 4 5 7 8  1 2 3 4 5 6 7 8 9

(b) (C)

n=30

n=20

J I I I I I L J llllltk.
1 2 3 4 5 6 7 8 9

(d)
1 2 3 4 5 6 7 8 9

(e)

Fig. 3.2 The results of Experiment 3.2. (a) is the initial distribution, positive skew; the rest 
are the histograms of sample means corresponding to different sample sizes.
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histogram is showed in Fig. 3.2(b). Similarly, for sample sizes n =  10,20 
and 30, the corresponding histograms are showed as Fig. 3.2(c), (d) and (e). 
One can see:

(1) The distribution of sample means tends to be symmetric with the 
increase of sample size; when n =  30, it looks similar to normal distri
bution.

(2) The range of variation for the sample means also tends to be narrow 
with the increase of sample sizes.

Sampling from an asymmetric hook-like distribution 1000 indepen
dent samples with sample size n — 5 were drawn from an asymmetric 
hook-like distribution (Fig. 3.3(a)); their sample means were calculated;

(a)

- r r f T r f f f H f  ЩИМкк̂
1 2 3 4 5 6 7 8 9

11=5 /1=10

/1=20
(b)

illllk
1 2 3 4 5 6 7 8 9

/1=30

Fig. 3.3 The results of Experiment 3.3. (a) is the initial distribution, hook-like; the rest are 
the histograms of sample means corresponding to different sample sizes.
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the corresponding histogram is showed as Fig. 3.3(b). Similarly, for sam
ple sizes n =  10, 20, 30, the corresponding histograms are Fig. 3.3(c), (d) 
and (e). It is interesting to note that:

(1) The distribution of sample means is no longer being hook-like; instead, 
it is quite similar to a normal distribution even when sample size was 
small.

(2) The range of variation for the sample means also tends to be narrow 
with the increase of sample sizes.

The results of Experiments 3.2 and 3.3 reveal a general phenomenon. In fact, 
it can be proved in theory that: For the population with a non-normal distri
bution, the distribution of sample means is not a normal distribution though it 
will be similar to a normal distribution when sample size is big (say, n > 30); 
the standard error is still equal to 1 / times the standard deviation for the 
initial population.

3.2 t  Distribution

3.2.1 S tan dard  n orm al deviate a n d  stan dard  t  devia te

According to (3.1), the standard normal deviate follows standard normal 
distribution, denoted as

N{  0, 1). (3.4)

If a is unknown, S is often used to replace a and Sj  to replace <7*. Then 
obviously, (X — fi)/Sx will no longer follow standard normal distribution. 
Since =  гт/ /̂п is a constant, while Sj  varies with sample, (X — ju)/Sj 
must have more variation than (X — f.i)/oj do. W.S. Gosett (1908) explored 
the distribution of (X — ju)/Sj , named as t distribution and published under 
the name of “student”, that is,

Х - Ц
Sj

~  t dist., v =  n 1. (3.5)

If (X — ju) / ctj is called standard normal deviate, then (X — fi) /Sj  could 
be called standard t deviate, v in (3.5) is called degrees of freedom of t
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Fig. 3.4 O n th e  b asis  o f  1000 in d ep en d en t sam p les w ith  n =  5 d raw n  fro m  
IV(4 .6 6 0 2 , 0 .5 7 4 6 2) an d  th e ir  sam p le  m eans, (a) th e  h is to g ram  o f  th e  s tan d ard  no rm al 
d ev ia tes; (b) th e  h is to g ram  o f  th e  s tan d ard  t dev ia tes.

distribution. Corresponding to different v, the t distributions differ from 
each other. In fact, v is also the degree of freedom of the sample standard 
deviation S.

3.2.2 The probability density and critical values o f t distribution

Standard normal deviate and standard t deviate On the basis of 1000 
independent samples with n — 5 obtained from Experiment 3.1, the standard 
normal deviates and standard t deviates were calculated respectively and 
two histograms can be found in Fig. 3.4.

The two-side probabilities and the corresponding critical values of 
t distribution are given in Table 5 of Appendix II. For instance, when 
the degree of freedom is 20, corresponding to two-side probability 0.05, 
the critical value of t distribution is 2.086, which is greater than 1.96, the 
two-side critical value of standard normal distribution; corresponding to 
one-side probability 0.05, the critical value of t distribution is 1.725, 
which is greater than 1.64, the one-side critical value of standard nor
mal distribution. In general, corresponding to the same probability a, 
the critical value of t distribution is always greater than that of the 
standard normal distribution. For instance the, when degree of freedom 
is 20, corresponding to the critical value of 1.96, the two-side probabil
ity is between 0.05 and 0.10, and the one-side probability is between 
0.025 and 0.05. In general, corresponding to the same value, the proba
bility a of t distribution is always greater than that of standard normal 
distribution.
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3.3 The Confidence Interval for Population Mean of a Normal 
Distribution

Assume a population following a normal distribution N(/u, a 2), where both 
of ft and a are unknown. A sample is drawn from this population randomly, 
of which the mean and standard deviation are denoted as X and S respec
tively.3 The population mean ft is expected to be estimated with an interval.

It has been mentioned that the standard t deviates follows a t distribution. 
Therefore, 95% of the sample means (but not all) meet the inequality

— *0.05 < <  *0.05 > (3.6)

where to.05 is the critical value of * distribution corresponding to the two-side 
probability 0.05. (3.6) can be rewritten as

X — *0.0567 < fi < X +  *o.o56j. (3.7)

Assume there is one sample in hand, if it is subject to the above-mentioned 
“95% of the sample means”, then (3.7) can be used to estimate fi. However, 
we are not sure whether the sample in hand is subject to the “95% of the 
sample means”. If we use (3.7) for any sample in hand, and claim /1 is 
located in such an interval, then, in theory, we might be right about 95 times 
out of 100 times of such way in practice. Therefore, whenever we get the 
values of X =  3c, S =  s and Sy =  sy, substitute them into (3.7), get an 
interval

* -  *0.0557 < И < x  +  *0.0557 (3.8)

we may assume that this is the interval estimate of ju; however, we have to 
emphasize that this interval might not necessary cover /t; the confidence 
level is just 95%. Hence, (3.8) is called 95% confidence interval of the 
population mean ц given a random sample of the population.

In general, given a random sample of the population, if the sample size, 
sample mean and sample standard deviation are denoted as n,x  and s; 
s-j =  s/y/n ; and the * value corresponding to two-side probability a is

a C ap ita l le tte rs  X  an d  S  a re  u sed  to  in d ic a te  sam p le  m ean  an d  stan d ard  d e v ia tio n  in g en era l, 
sm all le tte r x  an d  s a re  u sed  fo r  th e  values o f  a  specific  sam ple . S im ila rly  fo r  o th e r  occasions, 
cap ita l le tte r fo r variab le , sm all le tte r  fo r value o f  the  variab le .
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denoted by ta, then

(x -  taSj, x +  taSj) (3.9)

is called with (1 — a) confidence interval of the population mean fi, (1—a) is 
called confidence level. tas j might be called the precision of the confidence 
interval, which is the half-length of the interval, indicating the distance 
between the two ends and the center x.

When sample size is big enough, ta in (3.9) can be replaced by the critical 
value of standard normal distribution Z„, that is

Confidence interval and confidence level For each sample randomly 
drawn from the normal distribution before, a confidence interval of /и could 
be calculated according to (3.9). The 95% confidence intervals of /2 for the 
first 100 samples can be found in the fourth column of Table 3.1. It was 
easy to find, most (95) intervals had covered the population mean 4.6602, 
but 5 intervals (Nos. 49, 75, 78, 81 and 89) had not covered it. 95% of the 
interval estimates were successful and 5% failure. It shows, when we work 
out an interval estimate based on one set of random sample, the confidence 
level is about 95%.

Example 3.1 Randomly select 20 cases from the patients with certai n kind 
of disease. The sample mean of blood sedimentation (mm/h) is 9.15, sample 
standard deviation is 2.13. To estimate the 95% confidence interval and 99% 
confidence interval of the population mean under the assumption that the 
blood sedimentation of this kind of disease follows a normal distribution.

(x  Z as x ^ x  -f- ’Z jqS x '). (3.9a)

Solution

x =  9.15, s — 2.13, /2 = 2 0 ,

x ±  t0.05Sj =  X ±  /0.0 5 ^  =  9.15 ±  2.093
y/n

—=  =  10.15 and 8.15,
У20

=  10.51 and 7.78.

Hence, of the population mean the 95% confidence interval is (8.15,10.15), 
and the 99% confidence interval is (7.78, 10.51).



Sampling Error and Confidence Interval 87

The above example shows that the confidence interval becomes wider; 
hence the precision drops when the confidence level is promoted from 95% 
to 99%. If both of higher confidence level and better precision are expected, 
then s should be reduced and n should be increased. Usually s is related 
to the variation among individuals so that it is difficult to be reduced, but 
increase of sample size is always effective.

3.4 Four Confidence Intervals for Probability and the 
Difference between Two Probabilities

Confidence intervals for population probability For a random sample of 
a binomial distribution В(л,п),  if the number of times a specified event 
appears is denoted by X, and its frequency is denoted by P =  X/n,  then 
the population probability л can be estimated through P . When sample size 
is small, the 95% and 99% confidence interval of л can be obtained from 
Table 3 of Appendix II; when sample size is big enough, л can be estimated 
by normal approximation for the distribution of P.

It has been known that, for a n large,

N л
7Г (1 — л)

Since л ^  p, where p is an observed frequency from a sample in hand. 
Therefore, approximately

P ~  N P d  - p ) ^

According to (3.9a), the (1 — a) confidence interval of the population prob
ability л can be approximately estimated as

P O - P ) P +  Z0 P d - P ) (3.10)

Here л, p and y/p(\  — p)/n play the role of p, x and s/y/n in (3.9a).

Example 3.2 93 patients with similar condition of a hospital were ran
domly divided into two groups. In the first group, 30 out of 48 cases treated 
with drug A were cured; in the second group, 20 out of 45 cases treated with
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drug В were cured. Calculate the 95% confidence intervals for the recovery 
probabilities of the two drugs.

n  i =  48, jci =  30; «2 =  45, x2 — 20,

p\  =  30/48 =  0.625; p 2 =  20/45 =  0.444;

-  Pi) /«i  =  0.070, y / p 2 ( \  -  P i ) / n 2 =  0.074;

p i ± \ . 9 6 ^ p i ( l  -  p i ) / n { =0.762 and 0.488

P 2 ± \ . 9 6 ^ p 2 ( l  -  p 2) / n 2 =  0.589 and 0.299.

Therefore, the 95% confidence interval of n\ is (0.488, 0.762), and that of 
л-2 is (0.299, 0.589).

3.5 The Sample Size for Estimation of Confidence Interval

3.5.1 Sam ple size fo r  confidence in terva l o f  the m ean o f  n orm al 
popu la tion

From (3.7), the width of the confidence interval depends on the confidence 
level, sample standard deviation and sample size. Inversely, given the con
fidence level (1 — a), the expected width of confidence interval (denoted 
with S) and the assumed value of standard deviation (denoted with л ), the 
sample size can be estimated through

To solve for n. and replace ta with Z„ of standard normal distribution 
approximately, we have

This formula shows that large sample size will be needed if the initial 
population largely varied (big s ), and fine precision (small d"), and high 
confidence level (small a) are expected.

Solution

( З . П )
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Example 3.3 It is learnt from a pilot study that the standard deviation of 
a biochemical index is about ten units. In order to have a 95% confidence 
interval of the population mean, of which half of the width equals to 2.5 
units. What is the sample size needed?

Solution Since s =  10, 3 =  2.5, Z0 05 & 2, the sample size needed is 
about

3.5.2 Sam ple size  fo r  confidence in terva l o f  the p robab ility  
o f  b inom ial popu la tion

From (3.11), the width of the confidence interval depends on the confi
dence level, sample frequency and sample size. Inversely, given the confi
dence level (1 — a), the width of confidence interval (denoted with (5) and 
the estimate of frequency (denoted with /?), the sample size can be estimated 
through

This formula shows that large sample size will be needed if the population 
probability is close to 0.5 (big variation), fine precision (small S) and high 
confidence level (small a) are expected.

Example 3.4 It is learnt from a pilot study that the probability of relapse 
in one year for a disease is about 10%. Now a survey is planned to further 
estimate the 95% confidence interval for the probability of relapse in one 
year, of which the half width is required with 3%. What is the sample size 
needed?

To solve for n,

(3.12)
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Fig. 3.5 The probability densities for standard norma] distribution and t distributions. When 
v  =  oo, the t distribution tends to standard normal distribution.

Program 3.2 Random sampling from populations in Table 3.3 and distribution of sample 
means.

Line Program Line Program

END;01 DATA SAMPLE; 18
02 INPUT К L P1-P8; 19
03 DROP H 1J RAN 

P1-P8 X1-X30 S;
20

04 ARRAY X(30) X1-X30; 21
05 ARRAY P(8) PI-P8; 22
06 DO 1=1 TO 1000; 23
07 S=0; 24
08 DO J=1 TOL; 25
09 RAN=UNIFORM(0); 26
10 X(J)=1; 27
11 DO H=1 TO 8; 28
12 IF RAN>P(H) 

THEN X(J)=H+1;
29

13 END; 30
14 S=X(J)+S; 31
15 END;
16 MM=S/L; 32
17 OUTPUT; 33

CARDS;
I 5 0.15 0.4 0.6 0.75 0.85 0.90 0.95 0.98

1 10 0.15 0.4 0.6 0.75 0.85 0.90 0.95 0.98 
I 20 0.15 0.4 0.6 0.75 0.85 0.90 0.95 0.98
1 30 0.15 0.4 0.6 0.75 0.85 0.90 0.95 0.98
2 5 0.25 0.4 0.5 0.58 0.63 0.67 0.75 0.85 
2 10 0.25 0.4 0.5 0.58 0.63 0.67 0.75 0.85 
2 20 0.25 0.4 0.5 0.58 0.63 0.67 0.75 0.85 
2 30 0.25 0.4 0.5 0.58 0.63 0.67 0.75 0.85

GOPTIONS DEVICE=VGA;

PROC GCHART;
VBAR MM/MIDPOINTS=1.2 TO 8.8 BY
0 .2;

BY KL;
RUN;
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Lines 11-13 are for judgment of the range that the random number falls 
in and assign the number to X (for instance, 3). Line 16 is for calculation 
of sample mean. Line 17 is for output. Lines 30-32 are for the plot of 
histograms of the sample means.

3.7 Practice and Experiments

1. Explain the reason why the following statements hold:

(1) If out of n independent repeated observations from a binomial dis
tribution the number of times a specified event appears is denoted 
as X =  x, and the frequency is denoted as p =  x/n,  then the 
(1 — a) confidence interval of the population mean of X (=  rnt) can 
be approximately calculated according to

np ±  Zay/np(\ -  p).

(2) If the number of times a specified event appears follows a Poisson 
distribution, and the observed value A" =  x is big enough, then 
the (1 — a) confidence interval of the population mean ofX can be 
approximately calculated according to

x ± Z a y /x .

2. If ten random samples were prepared from a water source, 1 ml for each, 
and cultured with plating method under the same condition, the total 
colony counts was 144, estimate the 95% confidence interval of the 
colony counts per ml in the water source.

3. There is a uniform die in both the shape and mass, of which 1, 2, 3, 4, 5 
and 6 points are painted on the 6 planes respectively. Use such a die or 
use computer simulation to perform the following experiments: (might 
collaborate with several students)

(1) Independently throw 3000 times, and record the points;
(2) For the first 500 in the record of (1), calculate a mean for every 5 

values successively such that 100 means are obtained;
(3) For the first 1000 in the record of (1), calculate a mean for every 10 

values successively such that 100 means are obtained;
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(4) For the first 2000 in the record of (1), calculate a mean for every 20 
values successively such that 100 means are obtained;

(5) For the first 3000 in the record of (1), calculate a mean for every 30 
values successively such that 100 means are obtained;

(6 ) Work out frequency tables and histograms with the data generated 
in (1), (2), (3), (4), (5) respectively and observe their features.

(7) Try to summarize some rule on the basis of the phenomena observed 
in (6).

4. One can see the formulae of “ jc ±  5” , “x ±  1.965”, “x ±  1.96s/*/n” 
very often in the literatures. What are they and what are the differences 
among them?

(1st edn. Jiqian Fang; 2nd edn. Chun Hao, Jiqian Fang)



Chapter 4

Hypothesis Testing for Continuous Variables

The construction of a confidence interval introduced in Chap. 3 is to estimate 
the range of a population parameters (such as p and n ) with the measures 
based on sample (such as X and p), called interval estimation, which is 
subject to a kind of statistical inference. This chapter will discuss another 
kind of statistical inference, called hypothesis testing. Hypothesis testing 
and interval estimation are not substantially different in principle, but differ
ent in the ways of consideration. In practice, hypothesis testing and interval 
estimation could be used together.

4.1 Specific Logic and Main Steps of Hypothesis Testing

In Example 3.1, 20 cases were randomly selected from the patients with a 
kind of disease, where the mean and standard deviation of blood sedimen
tation (mm/h) were 9.15 and 2.13 respectively and we were interested only 
in the range of population mean. Instead, if we wanted to know whether the 
population mean was equal to 10.50, then it was one of the typical problems 
of hypothesis testing.

In fact, the 95% confidence interval (8.15, 10.15) has been given in 
Example 3.1. It did not cover 10.50, with which one might reasonably 
exclude the situation that the population mean was equal to 10.50. This 
showed that we might solve the problem of hypothesis testing with confi
dence interval.

Let us try another way of thinking: First of all, assume that there is no 
difference between the population mean and the given constant 10.50; then 
by analyzing the data, one may judge in what extent the data of current 
sample support such a hypothesis; finally make a decision, either to accept

95
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or reject the hypothesis of no difference. This is the specific statistical logic 
of hypothesis testing.

Now let us introduce the main steps of hypothesis testing through the 
above example.

4.1.1 Setup the sta tistica l hypotheses

In Example 3.1, with the current sample mean 9.15, there are two possible 
situations: one, the population mean has no difference with 10.50, from 
which the sample mean 9.15 is different from 10.50 due to the sampling 
error; another, the sample comes from a population whose mean initially 
differs from 10.50. The two situations are all possible, but only one of the two 
is correct. Thus, we have to make a choice between two “hypotheses”: one 
is “#o : p =  10.50”, called null hypothesis; another is “H\ : p ф 10.50”, 
called alternative hypothesis.

There is no way to determine which hypothesis is correct and which 
is not. The feasible way is studying the data to see which hypothesis is 
more contradicting with the data and reject it. H0 is relatively simple and 
clear-cut, under which one can easily find the statistical distribution of the 
sampling error; while H\ includes various unknown circumstances, under 
which one can hardly describe any statistical regulations. Therefore, it is 
focused on whether the sample information considerably contradicts with 
Ho or not. If Ho does contradict with the sample information, then it is 
rejected; otherwise, not rejected.

4.1.2 S elect sta tistics an d  calcu late its cu rren t value

In this example, X follows a normal distribution N( p , o 2), but a 2 is 
unknown. If Hq : p =  10.50 holds, then with the knowledge in Chap. 3, 
the statistics

X -  10.50
t = --------—— ~  t dist., v =  n — 1

S/y/n

can be used. The value of t could be large or small; in most occasions it 
takes value around 0, and sometimes might be far away from 0. This is 
the regulation followed by the statistics under the hypothesis Ho (relatively 
speaking, under the hypothesis H\, the regulations followed by the statistics 
are not so clear and simple).
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Putting X =  9.15, S =  2.13 and n =  20 into the expression of the statis
tics t, the current value of it is

4.1.3 D eterm ine the P -value

In order to see whether the current situation (t =  —2.8345, v — 19) con
tradicts with Hq or not, a so-called P-value corresponding to the current 
value of t needs to be considered. P-value is defined as a probability of the 
event that the current situation and even more extreme situation towards Hq 
appear in the population.

In our example, the “current situation” corresponds to X =  9.15 and t =  
—2.8345, and the “even more extreme situation towards #o” corresponds 
to X further away from ju (10.50), hence t < —2.8345 and t > 2.8345. 
Therefore,

This is the total area of the two tails within t < —2.8345 and t > 2.8345
u n d e r  t h e  p r o b a b i l i t y  d e n s i t y  c u r v e  o f  t h e  t d i s t r i b u t i o n  w i t h  d e g r e e s  o f  

freedom 19. By checking with Table 5 in Appendix II for t distribution, one 
will find that the P-value is in between 0.01 and 0.02 (Fig. 4.1). Note that 
the t distribution is symmetric around 0 , and the two tails corresponding to 
t < —2.8345 and t > 2.8345 are equal.

9.15 -  10.50 
2.13Д/20

=  -2.8345, v = 2 0 -  1 =  19.

P =  P(|f| > 2.8345).

all =0.025

-2.83 -2.09 0 2.09 2.83

Fig. 4.1 D em o n stra tio n  fo r the  c u rre n t va lue  o f  t and  the  P -v a lu e .
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4.1.4 D ecision  a n d  conclusion

An ignorable small probability a should be defined in advance such as 
a — 0.05 (orO.Ol); then the above P-value (in between 0.01 and0.02) could 
be regarded as small or almost zero. In other words, under the condition 
of Ho, the current situation and even more extreme situation are not quite 
possible to appear. That is, a small P-value indicates that the information 
does not support hypothesis Щ.

However, a “not quite possible situation” actually happens to us in one 
sample. Then we have two choices: one, still believe that Я0 is true and 
accept it although we get a “not quite possible situation”; another, believe 
that a “not quite possible situation” is almost an “impossible situation” and 
reject it. Since P-value is very small, the second choice is more reasonable.

In general, the decision is: When P < a, reject Щ; otherwise, not 
reject Hq.

How to report the result of a hypothesis testing? First of all, give the pre
assigned hypotheses and small probability a as well as the calculated values 
of statistics and related P-value; then give the conclusion incorporating the 
background of the problem itself.

For convenience of statement, “reject H0” is often stated as “there is a 
statistically significant difference” or “the difference is statistically signifi
cant”, but it does not mean that the difference is big or obvious; accordingly, 
“not reject Я0” is often stated as “there is no statistically significant differ
ence” or “the difference is not statistically significant”. Note that “not reject 
Ho” means that there is no enough evidence to reject H0 and it does not 
straightforwardly mean to “accept Я0”. If one likes, it might be understood 
as to “accept Hq temporarily” or “the difference is not statistically signifi
cant yet”.

The result of the above example might cover: t =  —2.8345, P < 0.02, 
reject Я0, that is, there is a statistical significant difference between the 
population mean and 10.50 mm/h, which is reported in the literatures. 
Incorporating the background, it is considerable that the blood sedimen
tation (mm/h) of this kind of patients might be lower than 10.50 on average. 
It is obvious that, to reject Я0 will be a mistake. This kind of mistake is 
called with type I error. The P-value is the probability of type I error when 
Ho is true.
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We have introduced the steps and specific logic of hypothesis testing 
through an example. More testing procedures will be introduced following 
such logic in the rest of this chapter and even the whole book.

4.2 The t Test for One Group of Data under Completely 
Randomized Design

The design is called completely randomized design if the individuals to be 
observed are completely randomly selected from the population.

Based on the mean and standard deviation of a sample with n individuals 
randomly selected from a normal distribution N(/.i ,a2), if one wants to 
judge whether the population mean ц is equal to a given constant цо, the t 
test for one group of data under completely randomized design can be used. 
The following are the main steps:

(1) Set up the statistical hypotheses

(2) Select statistics and calculate its current value Based on the available 
knowledge, the statistic t is selected as the test statistic. When Я0 is true,

This kind of statistics is often used for comparison of means, which in fact 
is to measure the difference between two means with the sample standard 
error as a unit (called standard t deviate).

(3) Determine the P-value Put the values of X , S, n and juo in (4.2) to get 
the current value of the test statistic t, and check the table of t distribution 
(degrees of freedom =  n — 1) in Appendix II to get the two tails accordingly

(4) Decision and conclusion Comparing the P-value with the pre-assigned 
small probability a, if P < a, then reject #o; otherwise, not reject Ho. 
Finally, the conclusion can be drawn from the background.

The test used in the example on the blood sedimentation in the last section 
is exactly the t test for one group of data under completely randomized

Ho : H =  Ho, H\ : н Ф Ho- (4.1)

(4.2)

P =  P (|t| >  |current value of statistic r|). (4.3)
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design, where the distribution of the variable blood sedimentation (mm/h) 
is assumed as normality. The test hypotheses are Но : ц — 10.50, H\ : 
ц ф 10.50. The alternative hypothesis H\ includes two sides, ju > 10.50 
and ц < 10.50. In general, a test is called a two-side test if its alternative 
hypothesis includes two sides. When and only when one of the two sides 
is impossible and hence could be reasonably excluded by the knowledge of 
subject matter, the alternative hypothesis could be expressed as

H\ : ц > Ho or H\ : и < но- (4.4)

This is called one-side alternative hypothesis. In general, a test is called a 
one-side test if its alternative hypothesis includes one side only. There is no 
difference between one-side test and two-side test in terms of their logic and 
steps, only but the Я-value needs to be changed. The Я-value for one-side 
test is the single tail corresponding to the current value of t statistic; when 
the current value of t statistic is greater than 0 ,

P =  P(t  > current value of statistic t) (4.5a)

when it is less than 0 ,

P =  Pit  < current value of statistic ?). (4.5b)

Comparing (4.3) and (4.5a) or (4.5b), one can see, for the same data set, the 
Я-value corresponding to a one-side test will be a half of that corresponding 
to a two-side test so that Я0 is easier to be rejected. It should be decided at 
the design stage whether one-side test or two-side test is chosen. Of course, 
to choose a one-side test, one has to provide adequate reason.

Example 4.1 A large scale survey had reported that the mean of pulses 
for healthy males is 72 times/min. A physician randomly selected 25 healthy 
males in a mountainous area and measured their pulses, resulting in a sample 
mean of 75.2 times/min and a standard deviation of 6.5 times/min. Can one 
conclude that the mean of pulses for healthy males in the mountainous area 
is higher than that in the general population?

Solution By experience, the pulses of healthy males follows a nor
mal distribution so that this problem can be analyzed with t test for 
one group of data under completely randomized design. If we consider 
that the pulses of healthy males in the mountainous area would never be
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lower than that in general area on average, then one-side test is adequate. 
Hq : ц — 72, Hi : ju> 72; a =  0.05. t =  2.69 < 0.005 < P < 0.01 so that 
H0 is rejected and hence we can conclude that the mean of pulses for 
healthy males in that mountainous area is higher than that in the general 
population.

4.3 The t  Test for Data under Randomized Paired Design

A design is called randomized paired design if similar individuals in terms 
of several important features are paired and two individuals of any pair are 
randomly assigned to receive two treatments respectively. For instance, two 
animals with the same gender and from the same nest could be paired; any 
specimen could be divided into two parts as a pair; for any individual, before 
and after treatment could be regarded as a pair; the symmetric parts of any 
individual’s body could be regarded as a pair. The special characteristic 
of the data under paired design is one-to-one corresponding so that we are 
concerned with the difference of effects within the pair rather than the effect 
of each individual.

Comparing the completely randomized design (see Sec. 4.4), the advan
tage of the paired design is to weaken the interference due to the variation 
among individuals such that its comparability is better for treatment com
parison, especially when the variation among individuals is considerably 
large.

Example 4.2 The weights (kg) of 12 volunteers were measured before 
and after a course of treatment with a “new drug” for losing weight. The 
data is given in Table 4.1. Evaluate the effectiveness of this drug.

Solution Take a glance at the data, they looked like two groups: before 
treatment and after treatment. As a matter of fact, the effect of the treatment 
is the difference of weights d, as showed in the last column of Table 4.1. 
This set of differences can be regarded as a sample of the effect on weight 
losing. Assume the difference follows a normal distribution, and then a 
zero mean will indicate that the drug is not effective in weight losing. Thus, 
the problem turns to a hypothesis testing based on one set of data under 
completely randomized design on whether the population mean is zero 
or not.
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Table 4.1 T h e  d a ta  o b se rv ed  in  a  stu d y  o f  w e ig h t losing .

W eigh t (kg)

N o. P re -trea tm e n t ( X  \ ) P o s t- tre a tm en t ( X i ) D iffe ren ce  d  =  X  \ — A"2

1 101 100 1
2 131 136 - 5
3 131 126 5
4 143 150 - 7
5 124 128 - 4
6 137 126 11
7 126 116 10
8 95 105 - 1 0
9 90 87 3

10 67 57 10
11 84 74 10
12 101 109 - 8

£ 4 = 1 6

(1) Set up the statistical hypotheses Denote the population mean of the 
variable “difference” d with fid

Hq : nd =  0, H\ : /td ф 0. (4.6)

(2) Select statistics and calculate its current value It is known that when 
Я0 is true, the statistic

d - 0
t =  ——t= ~  t dist., v =  n -  1, (4.7)

S d / y / n

where d and S(t refer to the mean and standard deviation of the variable 
“difference”, respectively.

d =  16/12 =  1.33,

S2d=  E 4 2 - ^ ( I > ) 2 / ( 1 2 -  1) =  62.6061,

Sd =  7.91.

Substituting into (4.7), get the current value of the statistic

t
1.33

7.91/VT2
0.58, v =  1 2 -  1 =  11. (4.8)
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(3) Determine the P-value Check up the table for t distribution with 
degrees of freedom v =  11, get the area of the two tails beyond 0.58 
and —0.58 greater than 0.60, that is, P > 0.60.

(4) Decision and conclusion Since the P value is substantially large, H0 

cannot be rejected, and the drug cannot be thought as effectiveness.
Obiviously, the decision of “not to reject HQ” will be a mistake. The 

mistake is called type II error if the null hypothesis / / 0 is not rejected when 
#o is not really true. Conventionally, the probability of making a type II 
error is denoted by /?, which is not very easy to get accurately. Further 
discussion on this topic will be found in Chap. 5.

The above-introduced method is applicable to the data analysis for ran
domized paired design in general. One point needs to note is that we assume 
the variable “difference” d follows a normal distribution instead of the 
“weight” of pre-treatment X\ or post-treatment X2 respectively.

4.4 The Tests for Comparing Two Means Based on Two 
Groups of Data under Completely Randomized Design

There are two different situations could be understood as “two groups of 
data under completely randomized design”: one, the individuals are ran
domly divided into two groups which correspond to two treatments respec
tively; another, the two groups are randomly selected from two populations 
respectively. Comparing to paired design, this design is simple and easy to 
perform. Especially, this design is often applied when the variation within 
groups is small.

Example 4.3 For the red blood cell counts of males and females, the 
sample mean, sample standard deviation and sample size are X\ =  4.66, 
S\ =  0.47, n i =  20 and X 2 =  4.18, S2 =  0.45, n2 =  15 respectively. 
Judge whether the population means of males and females are equal or not.

Solution Assume the red blood cell counts of males and females follow 
normal distributions N(fi i , of) and N(/u2, a}') respectively, then the task 
of data analysis is to test whether the two population means are equal, that 
is, to test

H0 : P\ =  P2 , Hi : ni ф ц 2. (4.9)
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There are two different procedures depending on whether the two variances 
are equal.

4.4.1 E qu al variances

Let us start from the situation that the variances of two populations are 
equal, a}  =  <r22.

If the two sets of sample mean, standard deviation and sample size are 
denoted with X\, Si, n\ and X 2 , S2 , П2 , then the weighted average of S2 
and S2 can be applied to estimate a 2,

,2 _  (ni -  l)Sf +  (n2 -  1)5| 
ni + n 2 -  2

(4.10)

or as mentioned in (3.10),

n 1 +  n 2 — 2

When Hq \ f.i\ =  [i2 holds, it can be proved,

(4.11)

Substitute the values of X\, X2, S2, n\ and n2 into the left-hand side to 
get the current value of the statistic t; check up the table for t distribution 
to get the corresponding P-value; comparing with the pre-specified small 
probability a, if P < a ,  then reject H0, otherwise, not reject Ho-

The 95% confidence interval for the difference of the two population 
means is (0.16,0.80), which does not cover the value 0 , hence, the difference 
between two population means might not be zero, that is, / / 1 ф ц 2.

In fact, the same question can be solved through a hypothesis test:

(1) Set up the statistical hypotheses

H0 : Hi =  JU2, Hi : Hi ф ц 2-

(2) Select statistics and calculate its current value It is reasonable to 
assume a \  =  a \  because S2 and S\ are close to each other (see next 
section for a critical test). The pooled estimate of the population variance



Hypothesis Testing for Continuous Variables 105

is S~ =  0.2131. Substitute the values into the right-hand side of (4.12), and 
get the current value of the statistic t,

(3) Determine the P-value Check up the table of t distribution, get the area 
of two tails, P < 0.01.

(4) Decision and conclusion Since P < 0.01, reject H{). Thus, the diffe
rence of sample means of the red blood cell counts between males and 
females are statistically significant; incorporating the sample means, one 
may conclude that the population mean of males is higher than that of 
females.

Comparing the above showed procedure of confidence interval and that 
of hypothesis testing, one can see that they are not substantially differ
ent. The former provides an interval for the difference between population 
means, without P-value; the latter provides P-value without an interval for 
the difference. Thus, in practice, most of the statisticians suggest to use 
both and emphasize that three elements should be mentioned in the report: 
decision (reject tf0 or not), P-value (confidence level), confidence interval 
(the estimated range of the parameter). This suggestion is widely applicable 
to various hypothesis tests that will be introduced in the following text.

4.4.2 Unequal variances

When the variances of two populations are not equal, ф o\ ,  there is no 
reason to pool the two sample variances as (4.10) and (4.11) will no longer 
be the approximation of a \  nor that of <r22. 1° such a case, two procedures 
could be used: non-parametric test based on rank and t' test. The former 
will be given in Chap. 7. Now let us introduce the t' test.

The statistic used in t ' test is

70.2131(1/20+ 1/15)

(4.13)

of which the distribution is quite complicated and the P-value is difficult 
to be determined by checking up a simple table of distribution. Fortunately,
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the critical value of t' can be obtained approximately by

W\t\a +  Wit'ig 
U>1 +  U>2

(4.14)

where t\a and b« are the critical values of t distributions with degrees of 
freedom n\ — 1 and П2 — 1 respectively; and Wi =  S\/n\ ,  W2 — S\/ri2 . 
In other words, the critical value of t' approximately equals to a weighted 
average of the two critical values of t distributions. Since erj2 ф a| , the 
degrees of freedom cannot be simply pooled and hence the critical value 
of t' tends to be larger than that of t distribution with degrees of freedom 
v =  П\ +  «2 — 2 .

When the absolute value of the current value of t ’ is greater than or equal 
to the approximate critical value of tr, P-value < a, reject Я0; otherwise, 
P-value > a, do not reject Hq.

Example 4.4 n\ =  10 patients and 112 =  20 healthy people are randomly 
selected and measured for a biochemical index. The mean and standard 
deviation of the group of patients are X\ — 5.05 and Si =  3.21, and those 
of the group of healthy people are X2 =  2.72 and S2 =  1.52. Judge whether 
the two population means are equal or not.

Solution The two population means are denoted by щ  and /1 2 .

(1) Set up the statistical hypotheses

Ho : Mi =  H2, H\ : ц \ ф  14-

(2) Select statistics and calculate its current value First of all, look at 
the ratio of two variances, (3.21 )2/( 1,52)2 =  4.46. By experience, the two 
variances might be different (see next section for a critical test) so that the 
statistic t' is selected.

Calculate the current value of the statistic t'

, 5.05 -  2.72
t =  r—  ... =  2.18.

7(3 .21)2/10+  (1.52)2/20

(3) Determine the P-value Corresponding to the degrees of freedom 
10 — 1 =  9 and 20 — 1 =  19, the two-side critical values of t distribution
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are t\a =  2.26 and tin =  2.09. Thus the approximate critical value of t' is 

, ^ ( 2 .2 6 )  +  И ^(2.09)
° '05 (3.21)2 . (I.52)2

10 T  20

(1.03041)(2.26) +  (0.11552)(2.09) „ „
“  1.03041 +0.11552

Obviously, \t'\ < Iq 05, P > 0.05.

(4) Decision and conclusion Since P > 0.05, do not reject Я(ь and hence 
there is no enough evidence to conclude for this biochemical index that 
the average level of patients is significantly different from that of healthy 
people.

This is a typical example, which deserves to be emphasized. At a first 
glance on the difference of the two sample means, one might think that the 
two population means are likely different. However, the two sample standard 
deviations are quite different from each other that the variation among the 
patients is much larger than that among normal people (this might be a 
popular phenomenon). Thus the critical value 05 must be larger such that 
from a large difference between sample means like 5.05 — 2.72 =  2.33 one 
can still hardly infer that the two population means are different.

4.5 The / ’-Test for Equal Variances of Two Groups of Data 
under Completely Randomized Design

As mentioned in the last section, it is necessary to judge whether the two 
population variances are equal or not before a test for comparing two means, 
where we just roughly judged by experience that if the two sample variances 
were close, then the two population variances were equal, otherwise they 
were not equal. However, what is the criterion for “close”? A test for equal 
variances is needed, which also follows the same logic and steps as the test 
about population means.

For two populations N(ju \ , o f) and o f) to infer whether o f and
of are equal, similar steps should be followed:

(1) Set up the statistical hypotheses

Ho : tT j =  0̂ 2 , Я] '■ cr2 ф- G2 •

Usually a =  0.10 is taken as the small probability.

(4.15)
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(2) Select statistics and calculate its current value Denoting the sample 
variances with S\ and S\, according to the knowledge from mathematical 
statistics, we have

~  F dist., v i - n i 1 , l>2 —  П 2  1 , (4.16)

where V] and v2 are the two degrees of freedom of the F distribution, and 
they in fact are the degrees of freedom of S2 and Sf respectively. v\ is 
called numerator degrees of freedom, and v2 is called denominator degrees 
of freedom. When Я0 : af  =  cr22 holds, (4.16) turns to

S2
VR =  -4  ~  F dist., v \ = r i \  — \, V2 =  ri2 — 1. (4.17)

S2

Thus, the variance ratio (V/?) can be used as the statistics for the test.
In Appendix II of this book, a table is given for the upper critical value 

Fa, which is equal to the area of the upper tail of the F distribution. Notice 
that F distribution is not a symmetric distribution so that the lower critical 
value F'a corresponding to the lower tail with area a does not equal to Fa, but

F'a ,v\,V 2
a ,v i ,V2

(4.18)

Due to this relation, the table for the lower critical values is not needed, 
which can be calculated based on (4.18) easily. See Fig. 4.2.

(3) Determine the P-value The larger variance is always taken as the 
numerator of the statistic V7? for convenience. Thus, to a two-side test,

Fig. 4.2 F  distribution and its two tails.
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given a, one may use a /2  to find the upper critical value Fa/2 of the F 
distribution, and if the current value of VR is greater than or equal to Fa/2 , 
then P < a, otherwise, P > a ; to a one-side test, given a, one may use it 
to find the upper critical value of the F distribution Fa, and if the current 
value of VR is greater than or equal to Fa, then P < a, otherwise, P > a.

(4) Decision and conclusion If P < a, then reject # 0; otherwise, not reject 
H0. Finally, the conclusion can be drawn from the background.

Returning to Example 4.3, where VR= S2 /S 2 =  1-09, v\ =  19, V2 =  14. 
Let a =  0.10, the two-side critical value of F distribution is Fo.10/2 =  
Fo 05 =  2.40. Since VR < /*0.05, not reject H0, hence there is no enough 
evidence to say that the two population variances are not equal.

Returning to Example 4.4, where VR =  S2 /S \  =  (3.12)2/ (1.52)2 =  
4.46, v\ =  9, v2 — 19. Let a =  0.02, the two-side critical value of F 
distribution is F0.02/2 =  F0.01 =  3.52. Since VR > F0.01, reject Ho, hence 
one might say that the two population variances are not equal.

In fact, besides serving the test for comparison of two means, this test 
has its own direct application as follows.

Example 4.5 After stirring, a bottle of test liquid was divided into two 
groups of 10 species each. The two groups were sent to two laboratories 
respectively to have their content measured. As a result, the two sample 
means were equal, but the two sample variances were S2 =  5 and S2 =  3.5. 
Judge whether the precisions of measurement in the two laboratories were 
equal or not.

Solution The problem leads to a test for comparison of two variances, 
H0 : a 2 =  a l  VR =  S2J S 22 =  (5)2/(3.5)2 =  2.04, v, =  v2 =  9. Let 
a =  0.10, the two-side critical value of F distribution is Fo.10/2 =  F0.05 =  
3.18. Since VR < 3.18, P > 0.10, not reject H0, hence there is no enough 
evidence to say that the precisions of measurement in the two laboratories 
were not equal.

Example 4.6 For a measuring procedure used in a multi-center study, 
the criterion for quality control was defined as that the standard deviation 
must not be higher than 1.5U. One of the laboratories divided a bottle of 
test liquid into 10 specimens after stirring, each of which was measured
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independently. As a result, the standard deviation was 2.1U. Judge whether 
the population standard deviation is higher than the criterion for quality 
control.

Solution This is a special application of the test for equal variance, where 
the hypotheses are

Я0 : гг2 =  (1.5)2, Hi : a 2 > (1.5)2.

Although here is only one sample, S2 =  (2.1)2, П| =  10, it is wise to 
regard (1.5)2 as the variance of another sample with sample size oo. Thus, 
Si =  (1.5)2, n2 =  OO. We have VR =  S\/S\ =  (2.1 )2/ (  1,5) 2 =  1.96, 
v\ —9 ,V2 =  o o . Let a =  0.05, the one-side critical value of F distribution 
is F0.05 =  1.88. Since VR > Fo.05, P < 0.05, reject Я0, hence one might 
say that the population standard deviation of this laboratory is higher than 
the criterion for quality control.

4.6 Test for Normality

Normal distribution is one of the most important distributions in statistical 
analyses, as many statistical methods are based on the assumption that the 
data follow a normal distribution. There are many methods to test if the data 
follow normal distribution, such as by graphic interpretation (P-P plot and 
Q-Q plot) as well as by calculations.

4.6.1 M eth od  o f  m om en t

The probability density curve of a normal distribution has certain skewness 
and kurtosis. Skewness measures whether the density curve is symmet
ric and a normal density curve has a skewness of zero. Positive skewness 
indicates that the density curve has a long tail along the right side of the 
axis (positive skew), while negative skewness denotes the long tail along 
the left (negative skew). Kurtosis measures the peakedness of the density 
curve, or the degree of aggregation of the distribution and a normal density 
curve has a kurtosis of zero. Positive kurtosis indicates that density curve 
has a high peak and the distribution is centralized, while negative kurto
sis indicates that density curve has a flat peak and the distribution is not 
centralized.
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Method of moment is a method eliciting skewness gi, kurtosis g2, and 
their standard error as \ and og2 according to the principles of moments. 
Using Z test to test the skewness and kurtosis of a distribution, if the results 
are not statistically significant, the distribution can be regarded as a normal 
distribution.

The steps of hypothesis testing by using moment method are as follows:

H(}: The population follows a normal distribution (both zero for skewness 
and kurtosis of the population);

H\ : The population does not follow a norm distribution (not both zero for 
skewness and kurtosis of the population).

We have

zgI =  - 7 L ,  z * 2  =  f - -  ( 4 - 1 9 )
agl °g2

The calculation of g\, g2, ag] and ag2 are complicated, and it can be 
completed by using the statistical software. According to the calculated Z 
values, if both P values of skewness and kurtosis are greater than 0.1 (usually 
take a =  0 .1), the distribution can be regarded as a normal distribution.

4.6.2 W  test a n d  D  test

W test is also known as Shapiro-Wilk test. It was developed by S. S. Shapiro 
and M. B. Wilk to test the normality of data with a not-too-large sample 
size. D test was developed by D. Agostino to test the normality of data with 
a large sample size. Both methods are specifically for normality test.

When doing W test or D test, data should be sorted: xi < x2 < ■ • • < xn.
In W test, the statistic is the order statistic W:

W =
Ш п/ 2

,_1 <I,[X,I+I_i -
Xi is the ith number after the data were sorted, and a, can be obtained from 
the table of critical values of W test.

In D test, the statistic Y is:

V^(D -  0.28209479)
0.02998598
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In the formula above,

In W test and D test, the null hypotheses are both the data follow a normal 
distribution. When comparing the statistic W and Y with its critical value, 
if P is bigger than 0.1, the data being tested follow a norm distribution.

4.6.3 K -S test

Kolomogorov-Simirnov (K-S) is also called K-S one-sample test. It can be 
used to test whether the data are from a population which follows a specific 
distribution. In K-S test, cumulative frequency of the observed distribution 
is compared with that of the tested specific distribution. If the difference 
between the two sets frequencies is small, the data can be regarded as follow 
the given distribution. In the test of normality, the null hypothesis of K-S 
test is also that the population data follow a normal distribution. We have

D =  max | Tt — At \, (4.20)

where 7) denotes the theoretical cumulative frequency of each category 
of the normal distribution; A, denotes corresponding sample cumulative 
frequency. If the null hypothesis holds, the D value of each sampling should 
not be far away from zero. Hence if the D value is far away from zero (or 
exceed the critical D value), the null hypothesis should be rejected, and the 
data cannot be regarded as following a normal distribution.

4.7 The Z-Test for the Parameters of Binomial Distribution 
and Poisson Distribution (Large Sample)

4.7.1 The Z -test f o r  the popu la tion  p robab ility  o f  b inom ial 
distribu tion  (large n )

It has been mentioned before, if X ~  B{n,n), when both nn and n{ 1 — л) 
are large enough, we have approximately

X  ~  N {m r, n n { \  — n ) ) (4 .21)
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and

N it
7t( 1 — n)

(4.22)

where X is equivalent to the sum of n observations of a 0-1 variable, and 
p  =  X/n  is equivalent to the sample mean. This property can be used in 
hypothesis test for population probability of binomial distribution when the 
sample size is large enough.

4.7.1.1 One sample

Example 4.7 150 physicians being randomly selected from the depart
ments of infectious diseases in a city had received a serological test. As a 
result, 35 out of 150 were positive. It was known that the positive rate in 
the general population of the city was 17%. Judge whether the positive rate 
among the physicians working for the departments of infectious diseases 
was higher than that in the general population.

Solution Assume the number of physicians with positive result follows a 
binomial distribution B(it, 150).

(1) Set up the statistical hypotheses

Ho : л =  0.17, H\ : ж > 0.17.

When H0 holds, substituting n =  0.17 into (4.22), approximately we have

0.17(1 — 0.17)'
N 0.17,

150

or

P -0 .1 7
V(0.17)(l — 0 .17)/150

(V(0 , 1).

(2) Select statistics and calculate its current value The Z is used as 
statistic, of which the current value is

35 /1 5 0 -0 .1 7  
V(0.17)(l — 0.17 ) /150

2.06.
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(3) Determine the P-value Check up the table of standard normal distri
bution, we have the P-value equal to 0 .02 .

(4) Decision and conclusion Since P < 0.05, reject HQ, hence one might 
say that the positive rate among the physicians working for the departments 
of infectious diseases was higher than that in the general population.

The procedure used for the above example could be extended to gen
eral situation. Assume there are n independently repeated trials, and the 
observed frequency of specified event is p. To judge whether the popula
tion probability ж is equal to a specified constant icq, the following tests can 
be applied:

(1) Set up the statistical hypotheses

H0 : ж =  жо, H\ : ж ф л0. (4.23)

(2) Select statistic and calculate its current value The statistic to be 
used is

Z = P - л  о
V ttoO -  Л-Q)/n

(4.24)

After substituting the observed frequency p  into the above expression, one 
can get the current value of the statistic.

(3) Determine the P-value By checking up the table of standard normal 
distribution, the area of the two tails corresponding to the current value of 
Z and its opposite value will be the P -value accordingly.

(4) Decision and conclusion Comparing the P-value with the pre-specified 
a, one may make a decision, either reject Я0 or not. And finally, conclusion 
can be drawn from the background.

When the alternative hypothesis H\ \ ж ф жо is changed to a one-side 
hypothesis H\ : ж > ж$ ox H\ \ ж < ж̂, the statistic will be kept the same, 
but the one-side P-value should be used.

4.7.1.2 Two samples

Example 4.8 To evaluate the effect of the routine therapy incorporating 
psychological therapy, the patients with the same disease in a hospital were 
randomly divided into two groups receiving routine therapy and routine plus
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psychological therapy respectively. After a period of treatment, evaluating 
the same criterion, 48 out of 80 patients in the group with routine therapy 
were effective, while 55 out of 75 in the other group were effective. Judge 
whether the probability of effective were different in terms of population.

Solution Assume the two samples were drawn from two binomial distri
butions B{n\, n | ) and B(n2, n2) respectively, where ti\ =  80 and n2 =  75. 
Then the problem was led to a hypothesis test.

(1) Set up the statistical hypotheses

Ho '■ 7Г1 =  7Г2, H\ : 7ГI Ф K2.

(2) Select statistic and calculate its current value For large samples, from 
(4.22), the statistics approximately follow distributions

7Г, (1 — tti) \  (  n2( \ - n 2)
P\ ~  N  7Г i , -------------------  ) ,  P2 ~  N ( Tt2 ,

n i n 2

Thus,

„ D AT I A ~  ^ l)  , ^ ( l  -  Л4)Pi -  P2 ~  iV 0 , ----------------1----------------
«1 «2 

When #o holds, the pooled sample frequency is

/i] Л +  n2 P2 _  48 +  55 _  103 
P° =  щ + » 2 _  80 +  75 _  TS5

And it can be used for the approximation of it\ and ic2, then

, 103 ,
Pi -  P2 ~  TV ( 0, —  I 1

103\  / J _  J _ \ \
155/ V80 +  7 5 / /

(4.25)

z  =  /J‘ I>2----------- ~  N(0 , 1).

Taking Z as a test statistic, of which the current value is

Z =
48 _  55 
80____75

Ж ) (_L . ± )
155/ V80 ^  75 /

-0.1333 _  -0.1333
л/0.00575914 _  0.0759

-1.76.
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(3) Determine the P-value Checking up the table of standard normal dis
tribution, one can get the two-side P-value accordingly, P =  0.08.

(4) Decision and conclusion Since P =  0.08, do not reject # 0, hence there 
is no enough evidence to say that the effects of the two groups are not equal.

The above procedure is easy to be extended to general situation: for the 
hypotheses (4.25), the statistic used is

When the alternative hypothesis H\ : it\ ф ж? is changed to a one-side 
hypothesis H\ : ж\ > iii or H\ : к\ < я 2 , the statistic will be kept the 
same, but the one-side P-value should be used.

4.7.2 The Z -test f o r  the popu la tion  m ean o f  Poisson  
distribu tion  (large A)

It has been mentioned in Chap. 2 that when A is large enough, the vari
able X of Poisson distribution П(А) will approximately follow a normal 
distribution

The hypothesis testing for population mean of Poisson distribution is just 
based on such a result.

4.7.2.1 Single observation

Example 4.9 The quality control criterion of an instrument specifies that 
the population mean of radioactivity recorded in a fixed period should not 
be higher than 50. Now a monitoring test results in a record of 58. Judge 
whether this instrument is qualified in terms of the population mean.

Solution Assume the radioactivity in the fixed period follows a Poisson 
distribution П(А).

(1) Set up the statistical hypotheses

Z = P1 -  Pi (4.26)

X ~  (V(A, A). (4.27)

Я0 : A =  50, Я, : A > 50.
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(2) Select statistic and calculate its current value From (4.27), when H0 

is true,

X ~  TV(50, 50)

then the statistic could be used is

X - 5 0  
Z ~ ^ / 5 0 ~

and the current value is

(3) Determine the P-value By checking up the table of standard normal 
distribution, one can get P =0.13.

(4) Decision and conclusion Since P > 0.05, do not reject H0, hence there 
is no enough evidence to say that the instrument does not meet the criterion 
of quality control.

The above method can be extended to the general situation: Assume 
a single observation (large enough) is available for the variable X, which 
follows a Poisson distribution П (1). To test the hypotheses

H0 :X =  X0, Нх - Л ф Х  о (4.28)

(or # | : 2 > Д0, °r H\ : Д < Д0) where Д0 is a positive constant, when H0 

is true, due to (4.27)

X ~  N(Xо, До),

Z =  ~  N(0, 1). (4.29)
уДо

Substituting the single observation of X into the expression of the statistic, 
one can get the current value of Z; then find the P-value and conclude.

The interesting thing is that for a Poisson variable, a single observation 
is enough for us to estimate a confidence interval (see Chap. 3) and work out 
a hypothesis testing. This is because the specific characteristic of Poisson 
distribution only depends on one parameter, which is the population mean 
as well as population variance.
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4.7.2.2 Two observations

Example 4.10 The radioactivity of two specimens was measured for 1 
minute independently, resulting in X, =  150 and X2 =  120 respectively. 
Judge whether the two corresponding population means in 1 minute are 
equal or not.

Solution Assume the radioactivity in 1 minute of the two populations all 
followed Poisson distribution and the two observations were sampled from 
Poisson distributions П (Я i ) and П (Я2) respectively. Then the problem leads 
to a comparison between the two parameters X\ and л2.

In general, one has to go through the following steps as usual to solve 
this kind of problem:

(1) Set up the statistical hypotheses The problem leads to a test of

Щ : Я, -  k2, Я, : А, ф k2. (4.30)

(2) Select statistic and calculate its current value In general, the obser
vations can be regarded as two variables denoted with X\ and X2,

X, ~  n(Ai), X2 ~  П(Я2).

When Ho is true and k\ =  Я2 =  Я is large enough, from (4.27) approxi
mately we have

Xi ~  N(k,  2), Х2 ~Х (Я ,Я ).

And hence

X, - X 2 

Xi  - x 2 
sJTx

N (0, 22),

m  1).

By replacing the unknown Я with (Xi +  X2)/2, the test statistic could be 
used is

— x 2 
V %  +  x 2

N (  0 , 1). (4.31)

Substituting the observed values for Xi and X2 into the right-hand side of 
(4.31), one can get the current value of the test statistic.
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(3) Determine the /’-value By checking up the table of standard normal 
distribution, one can get the P-value as before.

(4) Decision and conclusion The decision and conclusion can be made 
after a comparison between the P-value and the pre-assigned a.

Returning to Example 4.10, let us pre-assign a =  0.05. The current 
value of the test statistic is

1 5 0 -  120 
v/150 +  120

=  1.83.

The corresponding two-side P-value is 0.067; since P > a, do not reject 
Ho, hence the evidence is not enough to say that the two corresponding 
population means are different.

4.7.2.3 Two “groups” of observations

Example 4.11 The radioactivity of two specimens was independently 
measured for 10 minutes and 15 minutes respectively, resulting in X\ =  
1500 and X 2 =  1800. Judge whether the two corresponding population 
means in 1 minute are equal or not.

Solution Assume the radioactivity measured in 1 minute of the first spec
imen follows a Poisson distribution П(Я|); the first specimen has been 
measured for 10 minutes resulting in a total of 1500 and 150/min. on aver
age. Assume that in 1 minute of the second specimen follows a Poisson 
distribution П(А2); the second specimen has been measured for 15 minutes 
resulting in a total of 1800 and 120/min. on average. Then the problem turns 
to a hypothesis testing of Ho : Л-i — A2, H\ : A( ф A2.

In general, assume that there are two Poisson distributed variables 
defined in the same time unit, X! ~  П (Я i) and X2 ~  П(А2) respectively, 
where X\ and A2 are big enough. Now they are observed for «1 and n2 time 
units respectively. The sum of the records are denoted with ^"= 1  and 

1 X2i. What we are interested in is the hypothesis test of

Hq ■ A] =  A2, H\ : Aj ф A2. (4.32)

From (4.27), we have approximately

X\ ~  N(X\,  A,), X2 ~ X ( A 2,A2).
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The two means are denoted by

Obviously, due to the theory of normal distribution, we have approximately

And hence,

X2 ~ a ( a2, ^ .

X\ - x 2 ~ ar ( h - h , ~  +  — \
\  «1 «2 /

(4.33)

When H0 is true, X\ — A2 =  0, and replacing A] and A2 with X t and X 2 

respectively, we have approximately,

— — l  X x X2 \
X , - X 2 ~yv  0, —  +  —  . (4.34)

\  n i n 2 f

And hence

Z =  -  _ '  2_=  ~  N(0, 1). (4.35)

M W )

By substituting the sample data into the right-hand side of the equation, 
the current value of the test statistic Z and the corresponding P value can 
be obtained; after comparing with the pre-assigned small probability a, 
decision about whether to reject Ho or not can be made.

Back to Example 4.11, by taking 1 minute as a unit of observation, the 
data of this example can be regarded as the measurements of two groups. 
That is, the measurement of the first specimen can be regarded as the sum 
of U| =  10 times of replication, and that of the second specimen can be 
regarded as the sum of n2 =  15 times of replication. The problem becomes 
a hypothesis test of

Ho '■ A\ =  Я2, H\ : А] ф A2.
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We have
10

Xi  =  Xii/10 =  1500/10 =  150,
i=l
15

X 2 =  ^ X 2i/15 =  1800/15 =  120.
i=l

And the current value of the statistic

1 5 0 - 120
7(150/10) +  (120/15)

=  6.26.

According to the table of standard normal distribution, the P value is almost 
0 so that the two population means of the two specimens can be thought as 
unequal.

4.8 Computerized Experiments

4.8.1 Computer implement of popular hypothesis tests

Experiment 4.1 The t test for data of paired design Find the difference 
within each pair and then test whether these differences come from a pop
ulation with mean 0. Demonstrate through Example 4.2.

In Program 4.1, line 2 reads the data pair by pair; line 3 works for 
difference; line 13 calls for the process MEANS ordering the statistics of 
mean, standard deviation, standard error, number of cases, t and P-value; 
line 14 specifies D as the analyzed variable.

P rogram  4 . 1 T h e  t test fo r d a ta  o f  p a ired  design .

L ine P rogram L ine P ro g ram

01 DATA M _T; 08 101 109

02 IN P U T  X I X 2;
03 D = X 1 -X 2 ; 12
04 C A R D S ; 13 PR O C  M E A N S  M E A N  S T D E R R  N T  PRT;

05 101 100 14 V A R D ;
06 131 136 15 R U N ;
0  T . . .  (see  T ab le  4 .1 )
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Experiment 4.2 The t  test for data of two completely random designed 
groups It includes the t test for equal variances and for unequal variances 
respectively.

Example 4.12 In a district, 11 patients with acute Ke-shan disease and 
13 matched healthy people were recruited and their white phosphorus 
(mmol/L) was measured. Judge whether the average levels of white phos
phorus between the patients with Ke-shan disease and healthy people were 
different on the basis of the following data:

Patient: 0.84, 1.05, 1.20, 1.20, 1.39, 1.53, 1.67, 1.80, 1.87, 2.07, 2.11

Healthy: 0.54, 0.64, 0.64, 0.75, 0.75, 0.81, 1.16, 1.20, 1.34, 1.35, 1.48, 
1.56, 1.87

Program 4.2 The t test for data of two completely random 
designed groups.

Line Program Line Program

01 DATA GT; 06
02 INPUT G X @@; 07 PROC TTEST;
03 CARDS; 08 CLASS G;
04 1 0.84 1 1.05 . . .  1 2.11 09 VAR X;
05 2 0.54 2 0 .6 4 ...  2 1.87 10 RUN;

TTEST PROCEDURE

Variable X

G N MEAN Std Error Min Max

1 11 1.5209 0.4218 0.1272 0.84 2.11
2 13 1.0846 0.4221 0.1171 0.54 1.87

Variances T  DF Prob > | T |

Unequal 2.5239 21.4 0.0196
Equal 2.5237 22.0 0.0193
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For Ho'. Variances are equal, F' =  1.00, DF — (12, 10), Prob > F' =
1.0000.

The last line is for the test of equal variance. When Prob > F' is larger 
than a , the results corresponding to “Equal” are adopted; otherwise, those 
corresponding to “Unequal” are adopted.

4.8.2 E xperim en t on two types o f  error

Experiment 4.3 Type I error Two samples are drawn randomly from the 
same population; the t test for two sample means is performed; if P < a =  
0.05, then reject Ho and count as type I error.

In Program 4.3, lines 03-06 generate a sample with 10 individuals; 
line 4 generates a value of the random variable following N(2, 1); lines 
02-07 perform replication; lines 08-10 work for t test.

Program 4.3 Experiment on type I error.

Line Program Line Program

01 DATA ER1; 07 END;
02 DO J=1 TO 2; 08 PROC TTEST;
03 DO 1=1 TO 10; 09 CLASS J;
04 X=RANNOR(0)+2; 10 VARX;
05 OUTPUT; 11 RUN;
06 END;

Discussion Each student performs five times of this experiment and count 
the times of type I error. After collecting all the counts of the whole class, 
estimate the probability of type I error and discuss the reason.

The type II error Two samples with sizes n\ — «2 =  10 are drawn 
randomly from the populations N(2 , 1) and N(4, 1) respectively; the t test 
for two sample means is performed; if P > a =  0.05, then not reject Щ 
and count as type II error.

In Program 4.4, lines 02-06 of draw from the first group of sample from 
N(2, 1), n i =  10; lines 07-11 draw from the second group of sample from 
N{4, 1), n2 =  10; lines 12-14 perform a t test for the two groups. Each



124 Medical Statistics and Computer Experiments

Program 4.4 Experiment on type II error.

Line Program Line Program

01 DATA ER2; 09 X=RANNOR(0)+4;
02 DO 1=1 TO 10; 10 OUTPUT;
03 J= l; 11 END;
04 X=RANNOR(0)+2; 12 PROC TTEST;
05 OUTPUT; 13 CLASS J;
06 END; 14 VAR X;
07 DO 1=1 TO 10; 15 RUN;
08 J=2;

student repeats five times and counts the number of times that Щ is not 
rejected.

Discussion Dividing the sum of the counts of all the students that # 0 is 
not rejected by the total number of replications, one can get a percentage, 
which is the estimate of the probability of type II error; increase the sample 
sizes n\ =  n2 — n to see the relationship between the probability of type II 
error and the sample size n.

4.8.3 Test o f  norm ality

Experiment 4.4 To test the normality of white phosphorus value in Exam
ple 4.12. In Program 4.5, lines 01-05 read data; line 06 calls for the process 
PROC UNIVARIATE to do statistical description, and calls NORMAL to 
do normality test.

Program 4.5 Test of normality.

Line Program Line Program

01 DATA NORM; 05
02 INPUT X @@; 06 PROC UNIVARIATE NORMAL;
03 CARDS; 07 VAR X;
04 0.54 2 0 .64 ... 2 1.87 08 RUN;
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Results:

Tests for Normality

Test Statistic P Value

Shapiro-Wilk W 0.926209 Pr < W 0.3038
Kolmogorov-Smirnov D 0.202948 Pr> D 0.1471
Cramer-von Mises W-Sq 0.072543 P r>  W-Sq 0.2422
Anderson-Darling A-Sq 0.429717 Pr> A-Sq >0.2500

In the results, four methods were adopted to test the normality of the 
data. In SAS, when the sample size is not more than 2000, we use results 
of Shapiro-Wilk; when the sample size is over 2000, we use Kolmogorov- 
Smimov. Different statistical software may have different requirements of 
sample size. If P value is over 0.1, we accept the hypothesis that data follow 
a normal distribution.

4.9 Practice and Experiments

1. To study the effect of whole body microwave exposure (2450 MHz) to 
tumor growth in rats with breast cancer planted, the experimental results 
were given in Table 4.2:

Table 4.2 The volume of tumors observed at different time points after tumor planting 
with and without whole body microwave exposure (X ±  5 cm3).

Days after tumor planting

Dose (mw/cm2) of rats 18 25 32 39

10 Exposure 8 0.58 ±0.60 2.78 ±2.52 9.42 ±6.26 21.97 ±12.41
Pseudo-exposure 8 0.56 ±0.38 2.27 ±2.06 9.27±7.51 20.43 ±14.61

20 Exposure 8 1.32 ±1.22 6.82±4.80 20.0 ±15.3 46.50 ±32.50
Pseudo-exposure 6 1.61 ±1.07 7.56 ±4.80 23.0 ±  11.7 46.60 ±25.60

40 Exposure 8 0.47 ±0.37 7.36±5.70 16.86 ±9.52 37.90 ±23.00
Pseudo-exposure 8 0.60 ±0.49 7.48 ±5.06 17.1 ±10.4 32.80 ±14.50
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Assume the volume of tumors under the same condition follows a normal 
distribution approximately. Analyze this data set with the knowledge learnt 
in this chapter.

2. To study the protective effect of cobra toxin to oleic-acid-type respiratory 
distress syndrome, 76 mice were randomly divided into two groups. The 
control group (40 mice), caudal vein injection with oleic acid (0.07 ml/kg) 
in 20-30 minutes after intraperitoneal injection of physiological saline 
(200 pd/kg); the experimental group (36 mice), caudal vein injection with 
oleic acid (0.07 ml/kg) in 20-30 minutes after intraperitoneal injection of 
cobra toxin (200p.l/kg). Part of the mice were killed at the end of 1 hour 
after the injection and the rest were killed at the end of 2 hours after the 
injection. The measured data were recorded in Table 4.3 (X ±  S):

Table 4.3 The data on the effect of cobra toxin to oleic-acid-type respiratory distress 
syndrome.

Killing
time Group Weight (g)

Wet 
weight 
of lung 
(mg)

Dry
weight 
of lung 
(mg)

Lung
coefficient Wet/Dry

Water 
content 
of lung

(% )

1 hr. Control (27) 21.8 ±2 .4 397 ±83 63 ±  11 18 ± 4 6.4 ±  1.1 84 ± 4
Experiment (22) 21.9 ± 2 .5 337 ±63 5 4 ±  10 15 ± 3 6.3±0.8 84 ± 4

2 hr. Control (13) 22 ± 3 414±62 6 0 ±  11 19 ±  3 7 .0±  1.3 85.3 ±2.8
Experiment (14) 21 ± 4 340 ± 9 0 57 ±11 16 ±  4 6.0 ±1 .0 82.7 ±2.7

Assume the variable under the same condition follows a normal distri
bution approximately. Analyze this data set with the knowledge learnt in 
this chapter.

3. Since the new therapy is adopted, the ratio between the number of patients 
being cured and the total number of patients receiving this therapy (sample 
cure rate) has increased this year. The hypothesis test shows P < 0.05. 
Which of the following inferences are correct?

(1) If the probability of cure in this year is really equal to that in last year, 
then the probability that the sample cure rate of this year is higher or 
even much higher than last year is less than 5%.
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(2) The probability that the type I error happens is less than 5%.
(3) The probability that the null hypothesis “tf0: The probability of cure in 

this year is equal to that in last year” holds is less than 5%.
(4) The probability that the statement “the above null hypothesis is false” 

does not hold is less than 5%.
(5) P < 0.05 indicates that the improvement of the probability of cure 

is statistically significant so that the new therapy is worthwhile to be 
widely used in clinic.

(6) The statistical test shows that at least the new therapy is not worse than 
the old therapy.

(7) A small P value does not necessary mean a great improvement of 
the probability of cure. In fact, as long as there is some improvement, 
even though very little, one can always make the P value smaller by 
increasing the sample size.

(8) P =  0.05 is not small enough, the smaller the P value, the more the 
clinic significance.

4 . 24 volunteers were recruited for a research project on reducing choles
terol. They were completely randomly divided into two groups with 
12 individuals each. Group A received a special diet and group В received a

Table 4.4 The cholesterol (mmol/L) records before and after the study.

Group A Group В

No. Pre-study Post-study No. Pre-study Post-study

1 6.11 6.00 1 6.90 6.93
2 6.81 6.83 2 6.40 6.35
3 6.48 6.49 3 6.48 6.41
4 7.59 7.28 4 7.00 7.10
5 6.42 6.30 5 6.53 6.41
6 6.94 6.64 6 6.70 6.68
7 9.17 8.42 7 9.10 9.05
8 7.33 7.00 8 7.31 6.83
9 6.94 6.58 9 6.96 6.91

10 7.67 7.22 10 6.81 6.73
11 8.15 6.57 11 8.16 7.65
12 6.60 6.17 12 6.98 6.52
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medical therapy. The cholesterol (mmol/L) of each individual was measured 
before and after the study. The data were showed in Table 4.4.

(1) Judge whether the pre-study cholesterol level for the two treatments are 
equal on average.

(2) Judge whether the two treatments are effective on average respectively.
(3) Judge whether the effects on reducing cholesterol are equal on average.

5. 90 patients with diabetes were recruited as volunteers involved in a 
research project, of which 50 received routine treatment and 40 received 
a new medicine. After a therapeutic period, 15 out of the 50 with routine 
treatment and 18 out of the 40 with new medicine had their quality of life 
improved respectively. Judge whether the probabilities of improving quality 
of life were equal for the patients with the two treatments.

6 . The specified length of time in Example 4.10 was 1 minute. If it was 
regarded as n i =  n2 =  60 seconds and 1 second was taken as the time unit, 
apply the test statistic for two groups of observations to judge whether the 
two population means were equal or not. And comparing with the procedure 
given in the text do you see any difference and connection? Why both 
equations (4.31) and (4.35) are suitable for Example 4.10, while Eq. (4.31) 
is not suitable for Example 4.11?

7. The anxiety levels of 45 randomly selected lying-in women were mea
sured. As a result, the variance of the scores among 25 with their education 
above senior high school was 125, and the variance of the scores among 20 
with their education around senior high school or below was 220. Assuming 
the two groups of lying-in women were balanced on other aspects, can we 
conclude that the variation of anxiety level among low educated lying-in 
women is relatively higher?

8 . Practice the following computerized experiments:

(1) Randomly draw 100 groups of sample from a normal distribution 
A(0, 1) with sample size 10 for each. Given a =  0.05, test # 0 : // — 0, 
H\ : ц ф 0 for the 100 groups respectively and count the number of 
times that Hq Ho is rejected.

(2) Randomly draw 100 groups of sample from a normal distribution 
N( 1, 1) with sample size 10 for each. Given a =  0.05, test Hq : Ц =  0,
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H\ : н ф 0 for the 100 groups respectively and count the number of 
the times that H0 H{) is not rejected.

(3) Keeping all the same as (1) except changing a to 0.01, how is the result 
different from that in (1)?

(4) Keeping all the same as (2) except changing a to 0.01, how is the result 
different from that in (2 )?

(1st edn. Jiqian Fang; 2nd edn. Jing Gu, Jiqian Fang)





Chapter 5

Chi-Square Test for Categorical Variable

The Z test and t test introduced before are used for continuous variable. 
Chi-square test for categorical variable will be discussed in this chapter.

5.1 Chi-Square Distribution and Pearson’s 
Goodness-of-Fit Test

The basic theory of chi-square test for categorical variable is a distribution 
for continuous variable — Chi-square distribution and the goodness-of-fit 
test for categorical variable.

5.1.1 C hi-square distribution

Assume a variable Z distributes as a standard normal distribution with 
values ranging from —oo to +oo. The distribution of Z 2 is different, with 
values ranging from 0 to +oo, high probability for values close to 0 and 
low probability for values apart from 0. The curve of its probability density 
looks like the curve with v =  1 in Fig. 5.1. The distribution of Z2 is called 
X2 distribution with degrees of freedom 1, denoted by Xm- X2 is called as 
chi-square.

Assume there are к independent variables, all follow standard nor
mal distribution, denoted as Z b Z2, . . . ,  Zk, then the distribution of their 
squared sum Z\ +  Z\ +  • • • +  Z\ is called a chi-square distribution with 
v =  к degrees of freedom, denoted as xfk)- Figure 5.1 gives the probability 
density curves of / 23) and / (3). They have a skewed peak and the skew is 
improved when the degrees of freedom increases. When v is very big, the 
X 2 distribution closes to a normal distribution and the population mean of 
X 2 distribution equals its degrees of freedom.

131
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Fig. 5.1 Probability density curves of several y  ~ distributions.

In the Appendix, there is a table for the critical values of chi-square 
distribution with different degrees of freedom, where the area of upper-tail 
is a . When degrees of freedom v is beyond the table, a normal approximated 
equation may be used to estimate the critical value.

Z =  y / l f -  -  V2v -  1 (5.1)

or

/ 2 =  I [ Z 2 +  2ZV2v -  1 +  2v -  1]. (5.2)

For example, when v =  100, given a =  0.05, the critical value of Zoo5(ioo) 
may be estimated by substituting Z0.05 =  1.96 into Eq. (5.2),

xl 05 =  1[1.962 +  2(1.96)V 200- 1 +  200 -  1] =  129.07.

This value is very close to the value Zo05(100) =  124.34 picked from the 
table in the Appendix.

Suppose / (2U|) and / (2n) are two independent variables following y 1 dis
tributions respectively, v\ > V2 . It can be proved that yfvi) +  xf, s t i l l  fol
lows a chi-square distribution with v\ +  V2 degrees of freedom. Similarly, 
xjV[) — X(V2) also follows a y 1 distribution with V[ — v2 degrees of freedom.
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5.1.2 The x 2 test f o r  goodn ess-of-fit (large sam ple)

One important usage of / 2 distribution is to test whether a sample comes 
from a given theoretical distribution or not.

#o: The sample comes from a given theoretical distribution.
H\ : The sample does not come from the theoretical distribution.

Denote the observed frequencies and the expected frequencies (when 
Ho is true) with f  and e, respectively, i — 1 , 2 , . . . ,  k. ( f  — ef) reflects the 
difference between the actual frequency and theoretical frequency. This dif
ference is a non-continuous random variable, but K. Pearson (1899) proved 
that when Я0 is true and the sample size is large enough,

It is called Pearson’s / 2 statistic by convention. In Eq. (5.3a), squaring 
( f i ~ e i ) is equal to deal with the positive difference and negative difference; 
dividing by e, is to evaluate a relative difference; using c, as the denominator 
instead of f  is to make the statistic more robust.

If the parameters of the theoretical distribution are unknown, in order to 
get ej, these parameters should be estimated based on sample data firstly. 
Therefore, the degrees of freedom of the y 2 statistic will deducted accord
ingly, that is

v — к — 1 — number of parameters used in estimating f s .  (5.4)

In theory, large sample means an infinite sample size; but in practice, 
large sample only means a big enough expected frequency. By experience, 
the expected frequency should not be less than 5.

The above introduced y 2 test for goodness-of-fit has no restriction on 
the theoretical distribution thus it has been widely applied. The applications 
of у 2 test in different situations will be introduced in the following sections.

Another statistic called the likelihood ratio y 2 statistic is often used 
accompanied with the Pearson’s Xp■ When Ho is true, it is known as,

(5.3a)

(5.3b)

Its degree of freedom is the same as that showed in (5.4).
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Table 5.1a Data of a binary variable from 
two independent samples.

Binary variable

+ - Total

Sample 1 /11 /1 2 n r \ (fixed)
Sample 2 /2 1 /22 n r2 (fixed)

Total n c 1 n c2 n

Table 5.1b Probability expression 
of the data in Table 5.1a.

Binary variable

+  — Total

Sample 1 n \  \ — k \ 1
Sample 2 n 2 1 -  n 2 1

5.2 The x 2 Test for Comparison between Two Independent 
Sample Proportions

The data of comparing the average levels of a binary response variable 
between two independent samples may be expressed as Table 5.1a. Suppose 
there are nr\ individuals in sample 1 and nr 2  individuals in sample 2, being 
observed independently. For instance, nr\ patients receive a new medication 
and nr 2  patients receive a routine one.

In this kind of data, the variable is binary (+  & - ) ;  the comparison is 
between two independent samples (sample 1 & sample 2); the basic figures 
/и ,  / 12, / 21, /22 are listed in a table with four cells. Therefore, it is usually 
called as data of 2 x 2 contingency table or fourfold table.

In Chap. 4, we used to apply the method of normal approximation to 
solve the above problem, that is, to test H0: n\ =  n2 by statistic
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where n\ and ni are the population probabilities corresponding to the two 
samples; and

/11 /21 nc 1
P\ =  — , Pi =  — , P =  —  

nr 1 иг2 n

When Ho is true and the sample size is big enough, Z will approx
imately follow the standard normal distribution; hence, Z2 will approxi
mately follow a x 2 distribution with 1 degree of freedom. Now let us use 
the above-mentioned x 2 test to solve the same problem.

Example 5.1 Before a clinical trial, 215 patients with pulmonary heart 
disease in a hospital were randomly divided into two groups, of which 164 
patients in group 1 took digitalis and 51 patients in group 2 did not take it. 
Each of them received an ECG examination before the trial starting. The 
results are listed in Table 5.2. The arrhythmia rate in group 1 is 49.38% and 
the arrhythmia rate in group 2 is 37.25% . Now the question is whether the 
two groups of patients can be regarded as “balance in disease condition”, 
or whether the difference of arrhythmia rates in two groups is of statistical 
significance.

5.2.1 Setting up the testing hypotheses

Same as before, it is to test

H0: к\ =  к 2 (Two population probabilities are equal) 
Н\\п\ Ф tz2 (Two population probabilities are not equal)

Table 5.2 Data of patients of pulmonary heart disease with arrhythmia.

ECG
Arrhythmia 

rate (%)Arrhythmia Normal Total

With digitalis 
Without digitalis

81(76.28)
19(23.72)

83(87.72)
32(27.28)

164
51

49.39
37.25

Total 100 115 215 46.51
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5.2.2 C alculating the cu rren t value o f  statistic

5.2.2.1 The expect frequencies

When Щ is true, denote n\ =  ж2 =  ж, the combined estimate of the 
population probability ж will be

«cl

Then the expected frequencies will be

П Г\ П С\ « r l « c 2
е \ \ = п г\ж ы --------, e \2 =  nr\(\ -  ж) %

n n
/1 ,-2«r2« r 2 « c l  ... .

e 2l =  «Г2Л" ^  -----------, ^22 =  « с 2 (1  -  Я-)П П
That is,

i, j  =  1,2, (5.6)

where i and j  represent the numbers of row and column respectively. For 
example

nr\nc 1en % -------
n

164 x 100 
215

76.28.

The figures listed within parentheses in Table 5.2 are the expected fre
quencies. It should be noted that the sum of expected frequencies in each 
row or column must equal to the sum of actual frequencies accordingly.

5.2.2.2 Calculating the value of statistic /}>

(1) Basic formula of Pearson’s /  j, and the special case for 2 x 2 table. For 
2 x 2  table, (5.3a) can be written as

2 2

=  EE
/=! 7 = 1

(fa ~  eu ) 2 (5.7a)

x l =

For example, for Example 5.1, by (5.7a) 

(81
p 76.28

=  2.3028.

76.28)2 (83 -  87.72)2 (19 23.72)2 (32 -  27.28)2
87.72 23.72 27.28
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(5.7a) can be further simplified as

X
2
P

( / n / 2 2  — f \ i h \ Y n
H r \ 4 r 2 f l c \ H c 2

(5.8a)

It can be easily proved that formulas (5.5), (5.7a) and (5.8a) are equiv
alent to each other.

For Example 5.1, by (5.5),

81/164 -  19/51
V(100/215)(l 15 /215)0 /164+  1/51) 

Z2 =  2.3028.

1.5175,

By (5.8a),

(81 x 32 -  83 x 19)2 x 215 
164 x 51 x 100 x 115

2.3028.

(2) Correction for continuity. When n > 40, if 1 < £+ < 5, the value 
calculated by formula (5.7a) and (5.8a) will be larger than the value it ought 
to be, then a correction is needed. It is called the correction for continuity. 
Corresponding to (5.7a), the correction formula is

( I  fu 0.5)2

(=1 j =  1 ~'y

Corresponding to (5.8a), it is

( I/ 1 1 /2 2  -  /1 2 /2 1 1 - n / 2)2nx 2P
П г \ П г2П с\Пс2

(5.7b)

(5.8b)

After correction, the value of Xp is smaller than uncorrected one.
In fact, in such a case, certain correction should also be used for the 

statistic Z: Assume p\ > p2, substituting

P1
/ u + 0 . 5  / 21 - О .5
----------- , P2 =  ------------nr 1 nr 2

into formula (5.5), we may get corrected statistic Z, and the result is equiv
alent to the correction in (5.7b) and (5.8b).
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However, when n < 40 or one of e,j happens to be less than 1, the above 
correction is not enough and then the method of exact probability will be 
more proper (see Sec. 5.8).

(3) Calculation of likelihood ratio statistic / I -  F°r a 2 x 2 table, when 
Ho'. n\ — 7Г1 is true, the formula (5.3b) can be written as

-4 = 2 £ Х > |п( г  )■ ,5-9)
/ = 1  y = l  V  e ‘i  7

For Example 5.1, the x l  is

81 In
/76.284

)
+  83 In

87
~83

.724
i T  )

+  19 In
23.72

19

+  32 In 2.3277.

It is different from x \  =  2.3028. In theory, when the sample size n -»• 
oo, both Xp and xf  tend to the same value. In practice, Xp is preferred and 
Xi as reference.

5.2.3 Calculating degrees of freedom

In order to estimate the expected frequencies e,j, we need to know the values 
of parameters n\ and n2, but they are unknown. As showed before, we used 
marginal sums nri, nr2, nc\ and пс2 to estimate .

However, when n is fixed, only one of nr\ and nr2 is independent, and 
only one of nci and nc2 is independent so that the number of parameters 
used to estimate c(/ is indeed 2. Based on Eq. (5.4), v =  4 — 1 — 2 = 1 .

In general, for a contingency table, we may calculate the degrees of 
freedom by the following formula

v =  (number of rows — 1) (number of columns — 1). (5.10a)

For 2 x 2  table,

v =  (2 -  1)(2 -  1). (5.10b)



Chi-Square Test for Categorical Variable 139

5.2.4 Determine the P value and conclude

Same as other hypothesis test, given a, one can have the critical value of / 2 
distribution if the value of the statistic y f  > then reject the null 
hypothesis, p < a\ or alternatively, having the p value corresponding to 
the value of у 2, if p < a, then reject the null hypothesis. Here the statistic 
у 2 could either be yj, or y[.

For Example 5.1, y 2p — 2.3028, v =  1, / q05 =  3.84, p  > 0.05 so that 
#o cannot be rejected. That is, we are not able to say that the positive rates of 
the two groups are statistically different. Based on the statistic у 1 — 2.3277, 
the conclusion is the same. This makes us more confident to the decision.

Example 5.2 A hypothesis has been proposed that breast cancer in 
women is caused in part by events that occur between the age at menar- 
che (the age when menstruation begins) and the age at first childbirth. In 
particular, the hypothesis is that the risk of breast cancer increases as the 
length of this interval increases. If this theory is correct, then an important 
risk factor for breast cancer is the age at first birth. This theory would explain 
in part why breast-cancer incidence seems higher for women in the upper 
socioeconomic groups, because they tend to have child relatively late.

An international study was set up to test this. Breast-cancer cases 
were identified among women in selected hospitals in the United States, 
Yugoslavia, Greece, Brazil, Taiwan, and Japan. Controls were chosen from 
women of comparable age who were in the hospitals at the same time but 
who did not have breast cancer. All women were asked about their age at 
first birth.

The set of women with at least one birth was arbitrarily divided into two 
categories: (1) women whose age at first birth was < 29, and (2) women 
whose age at first birth was > 30. As Table 5.3 showed the results found 
among women with at least one birth: 683 out of 3220 (21.2%) women 
with breast cancer (case women) and 1498 out of 10245 (14.6%) women 
without breast cancer (control cases) had an age at first birth > 30. How can 
we assess whether this difference is significant or simply due to chance? 
(cited from: Fundamentals of Biostatistics)

(1) Setting up the testing hypotheses

Ho: Jti =  кг (distributions of age at first birth in two groups are 
equal)
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Table 5.3 Age at first birth for case group and 
control group.

Age at first birth

Group > 30 < 29 Total

Case 683 2,537 3,220
Control 1,498 8,747 10,245

Total 2,181 11,284 13,465

Hy\7i\ ф ж2 (distributions of age at first birth in two groups are not 
equal).

(2) Calculating the current value of statistic For 2 x 2  cross tables, we 
could use the special formula (5.8a).

2 (683 x 8747 -  2537 x 1498)2 x 13465
Xp ~  (683 +  2537)(1498 +  8747)(683 +  1498)(2537 +  8747)

=  78.37.

(3) Determine the P value and make conclusion Same as before, the 
degree of freedom for 2 x 2 cross tables is 1.

For this example, / 2 =  78.37, Xo.os =  3.84, p  < 0.05, so that # 0 
can be rejected. That is to say, the distribution of age at first birth in two 
groups are not equal. According to the sample rates 21.2% and 14.6%, we 
could judge that age at first birth >30 was an important risk factor for breast 
cancer.

Besides, we could use odds ratio (OR) as an index to quantify this kind 
of risk:

683/2537 683 x 8747
OR = ----- -------- = ------------------=  1.57.

1498/8747 2537 x 1498

That is to say, the risk of occurrence of breast cancer for women whose 
age at first birth was > 30 was 1.57 times as much as those women whose 
age at first birth was < 29.

Example 5.3 The 169 peptic ulcer patients with similar condition were 
randomly divided into two groups, treated with two drugs losec and
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Table 5.4 The treatment effect after four weeks.

Effect

Treatment Heal Not heal Total

Losec 64 21 85
Ranitidine 51 33 84

Total 115 54 169

ranitidine respectively. The treatment effect after four weeks is listed in 
Table 5.4. Now the question is whether the difference of healing rates in the 
two groups is of statistical significance.

(1) Setting up the testing hypotheses
Hq'. tz i =  Tt2 (the healing rates of peptic ulcer in two groups are equal) 
H\ \ n i ф n2 (the healing rates of peptic ulcer in two groups are not 
equal).

(2) Calculating the current value of statistic

2 (64 — 57.84)2 | (21
X p  —  t z t t . b

+

57.84 
(33 -  26.84)2 

26.84

27.16

4.13.

27.16)2 (51 57.16)2
57.16

(3) Determine the P value and make conclusion For this example, / 2 =  
4.13, X0 0 5  =  3-84, P < 0.05 so that # () can be rejected. That is to say, 
the healing rates of peptic ulcer in two groups are not equal. Because 
the healing rates were 75.29% and 60.71%, we could judge that losec 
has a higher healing rate than ranitidine.

(4) Determine the confidence interval for the difference between the 
two probabilities In order to further describe the difference between 
the effect of two drugs, we can calculate the confidence interval for 
the difference between the two probabilities. Let the two sample rates 
be p\ and p2, if n\p\, n\ (1 — p\) and n2p2, n2(\ — P2 ) are all greater 
than 5, the sampling distribution for the difference between the two 
sample rates is close to a normal distribution. We can use the normal 
approximation to calculate the confidence interval for the difference
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between the two probabilities:

[(Pi P2 ) Za/2Sp\—p2, (pi P2 ) T ^a/2^pi—p2  ̂ (5-11)

where SPI- P2 is the standard deviation, calculated as follows:

(1) When к\ ф л the estimated standard deviation is:

According to (5.11), the 95% confidence interval for the difference 
between the healing rates of losec and ranitidine is equal to (0.0068, 
0.2848).

The difference between the two rates is a percentage. To describe the 
clinical meaning more clearly, people prefer to calculate the inverse of 
the difference:

(75.29% -  60.71%)-' =  (14.58%)-' =  6.86.

The meaning is: To have 1 more patient to be cured, about 6.86 patients 
are needed to shift from the losec group to ranitidine group.

In general, the inverse of the difference between the two rates is 
called the number of cases need to treat (NNT), which is an indicator 
comparing the clinical efficacy of two treatments when the outcome 
is measured by a rate. Obviously, the smaller the NNT, the better the 
clinical efficacy.

5.3 The x 2 Tests for Binary Variable under a Paired Design

A single sample with sample size n can be cross classified into four groups 
according to two binary variables. The data may be listed in the format 
of Table 5.5a, which is also called a 2 x 2 contingency table, where f\j 

is the number of cases belonging to the level i of variable A and level j  
of variable B. For such kind of design, depending on the study purpose,

PiU ~  Pi) P2U ~  P2)

(2) When к } =  7t2, the estimated standard deviation is:



Chi-Square Test for Categorical Variable 143

Table 5.5a 2 x 2  cross classified data.

Variable В

Variable A 1 2 Total

1 f l l / 1 2 n r \
2 /2 1 / 2 2 n r 2

Total «cl n c2 «(fixed)

Table 5.5b Probability expression of
data in Table 5.5a.

Variable В

Variable A 1 2 Total

1 *11 *1 2 * r  1
2 *21 *2 2 * r 2

Total Kc \ * c2 1.0

two kinds of x 2 tests may be used for testing the independence (between 
variables A and B ) and the difference of two proportions (between variables 
A and B) respectively.

5.3.1 The / 2 test for independence between two binary variables

If the probability distribution of variable A is independent to that of vari
able B, we say that these two variables are independent to each other; 
otherwise, there is an association between the two variables.

According to the theory of probability, the term “independence between 
two variables” means that the probability of the joint event equals to the 
product of two marginal probabilities. Corresponding to Table 5.5a we can 
have Table 5.5b.

(1) Setting up the testing hypotheses

Ho'. Variable A depends on variable В 
H\: Variable A is associated with variable В.
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When Ho is true, we will use the same statistics as before:

x2P = J2
k (f i - e t )2 2

(=i
X distribution

Xl =  2 ^  fi In ^ ~  X2 distribution.

(5.3a)

(5.3b)

(2) Calculating the current value of statistic When H0 is true,

Kjj  — 7Zrj7tcj ,  i, j  — 1,2.

By this, we can have the expected frequencies

€ij — tl 71 ij , / , j  —  1, 2.

However, we do not know the real values of яг,у, which depend on nri 
and кcj . Now jtri and nCj can be estimated by the sample data

_  "<-1 _  Пг2 nc\ ПС2
1 ~  — , nr2 «  — , nc\ «  — , ЛС2 % ----n n n n

And then

П Г \ П С \ ^ r 1 ^ c2e n =  177ГИ & 5 g ,9  =  ПТГ\\
n n

П Г \ П С2 nr2nc 2
C|2 =  Г77Г\2 ~ 9

n
e22 — nn22 ~

n

That is,

nrincj
e,j =  njCij «a------4, i, j  =  1,2.

«

This formula is exactly the same as (5.6) before. In fact, the formula 
for the degrees of freedom is also the same as (5.10b).

It is seen that the / 2 test for independence between two binary vari
ables based on the data of cross classified 2 x 2  table has the same formula 
for calculation as those for the comparison between two independent sam
ple proportions. However, the purpose and design of study as well as the 
explanation of results are different indeed.
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Table 5.6 T h e  re su lts  o f  tw o  
im m u n o lo g ica l tests.

В

A + - Total

+ 172 8 180
- 12 68 80

Total 184 76 260

If the null hypothesis is rejected, one may further calculate a Pear
son’s contingency coefficient rP to describe the strength of the association 
between the two variables quantitatively. It is defined by

rp x l
n +  Xp

(5.12)

rP takes value between 0 and 1; /> =  0 means totally independence and 
rP =  1 means a complete association.

Example 5.4 There were 260 serum samples. Each sample was divided 
into two and tested by two different methods of immunological test of 
rheumatoid factor respectively. The results are listed in Table 5.6. Now are 
the results of the two methods independent.

Solution The test hypotheses are

Ho'- A is independent to B, H\ : A is associated with В

Calculate ei} by (5.6)

e\\
nr\tic\

n
184 x 180 

260
127.38.

Use the same way to get en — 52.62, ê \ =  56.62, е̂ г — 23.38.
By formula (5.7a) or (5.8a), x P =  173.74.
The degrees of freedom v =  1, Xoos =  3-84 so that P is much less than 

0.05. Hq is rejected and the results of the two methods might be associated
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to each other. Furthermore,

/ 173/74
r =  J ----------------- =  0.63.V 260 +  173.74

The results suggest a positive association between the results of two 
immunological tests. Since 172 x 68 -  8 x 12 > 0, it means that a positive 
result of A might likely be related to a positive result of B.

5.3.2 The x 2 test f o r  com parison  betw een two depen den t sam ple
proportion s

Paired design is often chosen to compare two different treatments in order to 
control random error due to the variation among individuals. For instance, 
every two similar subjects are paired, of which one is randomly selected to 
receive treatment A and another to receive treatment B\ the reaction to the 
treatment is a binary variable (positive or negative). In general, the results 
are usually listed with the format of Table 5.7a. And accordingly we have 
Table 5.7b.

The purpose of this kind of studies is to compare if the probabilities of 
positive reaction to the two treatments are equal or not, that is, to test

77o* = H \ ' Ttc\ rtri-
Since

Mc\ — Tt\\ +  Л2\, ЛГ\ = 7 Г \ \ + Л \ 2

the test becomes

Щ : л \ 2  =  Л2\, H\\  К\2 ф  2̂1-

Table 5.7a T h e  d a ta  fo rm a t fo r  co m p ariso n  
b e tw een  tw o  trea tm e n ts  u n d e r p a ired  design .

T rea tm e n t В

T rea tm e n t A + - Total

+ /11 / l2 n r 1
— /21 /22 nr2

«cl «с2Total n (fixed)
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Table 5.7b The probability expres
sion of data in Table 5.7a.

Treatment В

Treatment A + - Total

+ 7ГЦ n \ 2 7lr \
— 2Г21 n 22 Tt2 2

Total Лс \ KC 2 1.0

The easiest way to perform such a test is still the goodness-of-fit x 2 test. 
The test statistic to be used is

x l
( / l2

1̂2
£ l2 )2 (/21  —  ^ 2 l ) 2T ■ v =  2 -  1 =  1.

e2i
(5.13a)

When Ho is true,

7ti2 — 7C 21 ^

e\2 =  ПП\2 ~
/12 +  /21 

2
в21 — ПП21 ~

/ l 2  +  / 2 1  

2
Substituting the expected frequencies into Eq. (5.13) and then simplify it,

Xp
(/.2  -  /21)2 v =  2 -  1 =  1. (5.13b)

/12 +  /21
When /12 +  /21 is not big enough, the formula of correction for conti

nuity is

( I / 1 2 - / 2 1 I - I ) 2x 2P
/12 +  /21

v = 2 —1 = (5.13c)

This test is called McNemer’s test. The two figures f u and f 22 are 
not utilized because these two cells do not provide any information on the 
difference between the two treatments when n is fixed; the inference is 
conditioned on the observed frequencies f \ 2 and f 2] so that it is subject to a 
kind of conditional method. There are some non-conditional methods which 
also utilize the information of f\ \ and f 22 but the calculation is relatively 
complicated and beyond the scope of this book.
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Example 5.5 (Cont’d from Example 5.4) Comparing the two methods, 
whether the positive rates of test A and test В are equal in the population?

Solution The equation of (5.13c) is used to calculate the value of y 1.

X2 ( 18-121 -  l )2 
8 + 1 2

0.45.

Since / 2 =  0.45, у^05 =  3.84, P > 0.05, H0 cannot be rejected. We 
may consider that the positive rates of the two methods are equal.

Both Secs. 5.2 and 5.3.2 are concerning with the comparison between 
two sample proportions. What is the difference between them? In Sec. 5.2, 
two independent samples based on a completely random design are com
pared; while in Sec. 5.3.2 there is only one sample based on a randomized 
paired design, of which two dependent sub-samples are compared.

Both Secs. 5.3.1 and 5.3.2 are based on paired design for binary vari
ables, and the similar format of data (Tables 5.5a and 5.7a) are shared. 
In particular, Examples 5.4 and 5.5 have been worked on the same data 
set. What is the difference between the two? Paragraph 5.3.1 is concern
ing about the independence between two binary variables, while paragraph
5.3.2 is concerning about the difference between two proportions. Some
times (not all the times) both tests may be done respectively based on the 
same data set for different purposes, but obviously, the results have different 
meaning.

Incorporating Example 5.4 with Example 5.5, one may conclude that 
the results of the two methods were associated in certain degree; although 
their results might not always be consistent, their total positive rates were 
not significantly different.

5.4 The у 2 Test for R x C Contingency Table

In Secs. 5.1 and 5.3, the y 2 tests for data of 2 x 2 contingency table were 
discussed. In practice, it is frequently faced that the numbers of rows and/or 
columns are more than 2 and this kind of tables is called R x C  contingency 
table. R is the number of rows and C is the number of columns. The 2 x 2  
table is a special case of R x C table. The y 2 test for R x C table includes 
the y 2 test for the whole R x C table and that for split tables.
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5.4.1 The x 2 test for the whole R x C table

As showed before, the formula (5.7a) can be used for comparison between 
two independent sample proportions and for testing independence between 
two binary variables. A straightforward extension of (5.7a) for R x C con
tingency table is

where the meaning of e4 , fij as well as the formulas for f j  and degrees of 
freedom are the same as before, but for i =  1, 2 , j  =  1,2 , , C.  
This formula can be used to compare R independent samples for a discrete 
variable with C categories as well as to test the independence between two 
categorical variables with R and C categories respectively. An equivalent 
formula for the convenience of calculation is

where nri is the sub-total of the ith row, nCJ is the sub-total of the j  th column, 
n is the grand total.

A straightforward extension of (5.9) is

which can be used to calculate xl  for R x C contingency table.

Example 5.6 In a project of medical study, three samples were randomly 
selected from the patients suffering from digestive ulcer, stomach cancer 
and others (control) respectively, of which the blood type of each individual 
was tested. The results are listed in Table 5.8. Show if the distributions of 
blood types are different for different populations.

(5.14a)

i — 1 , 2 , . . . , / ? ,  j  =  1 , 2 , . . . ,  C,

(5.14b)

(5.14c)

Solution The test hypotheses are

Ho'. The proportions of blood types in three populations are the same. 
H\: The proportions are different.
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Table 5.8 Blood types of patient suffering from 
different diseases.

Blood type

Disease status A В 0 Total

Digestive ulcer 679 134 983 1796
Stomach cancer 416 84 383 883
Control 2625 570 2892 6087

Total 3720 788 4258 8766

By formula (5.14b),

X 2p  =  8 7 6 6
6792

1796 x 3720
+  . . .  + 28922

6087 x 4258
=  40.543.

By formula (5.13c)

Xl =  2 679 In +  • • • +  2892 In 40.64,

where the expected frequencies in above equations are calculated by for
mula (5.6).

The degrees of freedom is v =  (3 — 1)(3 — 1) =  4 according to formula 
(5.10), and /fi05 =  9.488 so that P < 0.05 and hence # () is rejected. The 
conclusion is that the three diseases might have different distributions of 
blood type.

5.4.2 The у 2 tests for split R x C tables

In Example 5.6, the results of y 1 test show that people suffering from 
different diseases might have different distributions of blood type. However, 
it does not mean the distributions are different between any pair of disease 
populations. The / 2 tests may be used to decide which pair of populations 
has different distributions of blood type by the following steps:

(1) Calculate the frequency distribution of blood type in each population 
listed in Table 5.9.
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Table 5.9 The blood types of patients suffering from different diseases.

Blood types

Disease status A В О Total

Digestive ulcer 
Stomach cancer 
Control

679 (37.80%) 
416(47.11%) 

2625 (43.12%)

134 (7.46%) 
84 (9.51%) 

570 (9.36%)

983 (54.73%) 
383 (43.37%) 

2892 (47.51%)

1796(100.0%) 
883 (100.0%) 

6087 (100.0%)

Table 5.10 The first split table from Table 5.8: 
blood types vs. disease status.

Blood types

Disease status A В О Total

Stomach cancer 416 84 383 883
Control 2625 570 2892 6087

Total 3041 654 3275 6970

Table 5.11 The second split table from Table 5.8: blood 
types vs. disease status.

Blood types

Disease status A В О Total

Digestive ulcer 679 134 983 1796
Stomach cancer and others 3041 654 3275 6970

Total 3720 788 4258 8766

It seems that the frequency distributions of blood type in the groups 
of stomach cancer and control are relatively close.

(2) Split these two groups from Table 5.9 to generate Table 5.10. The value 
o f / £  forTable5.10is5.636, v = 2 a n d / (, 05 =  5.991. Since P > 0.05, 
the difference between these two groups are not significant, hence we 
consider the distributions of blood type of stomach cancer group and 
control group being the same.

(3) Combine the two groups together and compared in Table 5.11. The value 
of x l  is 34.919, v =  2.Sincexo.o5 =  5.991, the difference is significant.
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Table 5.12 The results of y  ~ tests.

Table X p x i V

Table 5.10 5.636 5.639 2
Table 5.11 34.919 35.001 2

Total 40.555 40.640 4

Table 5.9 40.543 40.640 4

Conclusion is that distribution of blood type among ulcer patients might 
be different from other. Similar conclusion can be obtained by / I  (see 
Table 5.12).

(4) Further analysis may be done to see which type of blood is different in 
the two groups of patients. (Details are omitted)

Attention should be paid to the following points: The purpose of split
ting a table is to find the difference so that the proportions in the cells 
help us to decide the way of splitting the initial table; and only once the 
observed frequency in each cell is allowed to show up in the split tables.

5.4.3 Measurement of association for R x C table

Suppose there are two categorical variables A and B\ A has R categories 
and В has C categories; a random sample is cross classified into an R x C 
contingency table. After a / 2 test for independence between A and В, if the 
null hypothesis is rejected, again, a Pearson’s contingency coefficient rP can 
be calculated by formula (5.12) to describe the strength of the association 
between the two variables quantitatively.

Example 5.7 The treatment effect of a medication had been evaluated 
directly by 170 randomly selected patients to see whether there was any 
association between the effect and their age and what the strength of asso
ciation was (see Table 5.13). The value of Xp for testing independence was 
23.582 and v =  (3 — 1)(3 — 1) =  4. Hypothesis of independence was 
rejected. By formula (5.12), Pearson contingency coefficient was
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Table 5.13 Treatment effect and 
170 patients.

age of

Age

Effect

TotalNo Better Recover

<18 5 32 20 57
18- 30 38 10 78
5 0 - 15 10 10 35

Total 50 80 40 170

The result showed a weak association between the effect of treatment 
and patients’ age.

In x 2 test of R x C table, the expected frequency should be greater than 
or equal to 5. If the expected frequencies in 20% of cells are less than 5 
or any single expected frequency is less than 1, the results of / 2 test will 
be biased. One solution is to combine the row or column of the cell with 
its neighbor row or column to increase the expected frequency in the cell 
until all the expected frequencies greater than or equal to 5. Of course, the 
combination of rows or columns should be reasonable to the knowledge of 
subject matter.

5.5 The x 2 Test for Confirming a Supposed Distribution

In practice, it is required to test if a sample frequency distribution fits a 
theoretical distribution. Usually a goodness-of-fit x 2 test is used.

Example 5.8 There was a break out of bacterial dysentery in a place. In 
order to explore if there was family-clustering in this epidemic, 288 families 
with 4 family members were interviewed. The data are listed in Table 5.14.

Solution If there was no family-clustering, the number of cases in fam
ily would follow a binomial distribution. A x 2 test was used to test the 
goodness-of-fit between the actual frequency distribution and the supposed 
binomial distribution by the following steps:

(1) Test hypothesis

H0: The data follow a binomial distribution В (ж, n).
H\ \ The data do not follow a binomial distribution.
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Table 5.14 Goodness-of-fit test for a binomial distribution.

No. of cases 
per family X

No. of families
f x

Probability
Px

No. of expected 
families ex

Statistic
/ 2

0 167 0.4396 126.59 12.90
1 51 0.4011 115.52 36.04
2 50 0.1372 39.53 2.77
3 17 0.0209 6.01 29.25
4 3 0.0012 0.35

Total 288 1.0000 288.00 80.96

(2) Estimating the parameter n

Number of cases =  0 x  167+1 x51 +  -- - +  4 x 3  =  214 
Number of cases 214

Total number of people 4 x 288
=  0.18576.

(3) Calculating the probabilities and expected frequencies According 
to the theory of binomial distribution,

P(X =  x) =  ( "  ) л: V(1 -  n)n~x.

For example, the probability of the event of no any case in a family is

P(X =  0) (0.18576/(1 -  0 .18576)4-0 =  0.43955

And the expected number of families without any case is

c0 =  nP(X  =  x) ъ  288 x 0.43955 =  126.59.

(4) Calculating / 2 value and degrees of freedom The part of / 2 con
tributed by the cell of X =  0 is

..2 ( f o - e o ) 2 (167 — 126.59)2
*° "  _ 70 "  1Ж59 "  12-90'

The others can be calculated in the same way except the last two cells.
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Since the number of expected families corresponding to X =  4 is 
much less than 5, the cell is combined with that of X =  3. Then

All results are listed in Table 5.14. Finally the total x 2 value is 80.99. 
The number of groups in this example was 4 and a sample incidence 
rate was used as the estimation of ж so that v =  4 — 1 — 1 =  2.

(5) Decision and conclusion Since xlosti) =  5.99, P < 0.05, H{) is 
rejected. We might say that the number of patients per family did not fol
low a binomial distribution; the infection among family members were 
not independent of each other, there might exist family-clustering.

5.6 Hypothesis Testing for Two Standardized Rates

In Chap. 1, to compare two sets of age-specific rates, the methods of stan
dardization were introduced for adjustment of the crude rates. In Exam
ple 1.6, the direct standardized rate was 19.2% at place A and 16.3% at 
place B. Suppose the data came from a sampling study and the purpose 
of the study was to compare the difference of standardized mortality rates, 
a hypothesis testing was needed to see if the difference was of statistical 
significance.

5.6.1 Test for direct standardized rates

Example 5.9 (Cont’d of Example 1.6) Test the two direct standardized 
mortalities at place A and В to see whether there is statistically significant 
difference.

Solution The test hypotheses are

/з =  17 +  3 =  20, e3 =  6.01 +0.35 =  6.36,

(/з -  <?3)2

Я0: The two population standardized mortality rates are equal.
H\ : The two population standardized mortality rates are not equal.



156 Medical Statistics and Computer Experiments

(1) Calculate the combined estimation of the age-specific mortality rates 
of the two places.

d-Ai +  d p i  

KAi +  KBi
(5.15)

where dAi and nAi are the numbers of deaths and the population in 
ith age group of place A; similarly, d B i  and n «, are those of place B .  

n M +  n B i  =  n , ,  d A i +  d B i  =  d { .  These are all listed in Table 5.15.
(2) Calculate the variance of the difference between two age-specific mor

tality rates, denoted by s f .

■v,2 =  P i i X  -  P i )
n A i +  n B i

(5.16)

The results are listed in column 9 of Table 5.15.
(3) Calculate the variance of the difference between two standardized mor

tality rates, denoted by s2.

s2 E, hjsf

( E i h t f
(5.17)

where ht is the standard population in ?'th age group. In Example 1.6, 
the sum of two populations was used as the standard population so that 
column 10 is the same as column 4 in Table 5.15. According to the 
totals of column 11 and 10,

s2 E,
(ЕЛ)2

1205.67
(11298)2

=  9.45 x 10“6.

(4) Calculate the value of Z. As we have known before, the standardized
mortality rates P'Ai and P'Bj are all linear combinations of age specific
mortality rates,

P —r A —
E . h . P Ai

E ;  hi

For large sample, when H0 is true.

P's -  P'n Z =  -

P '  —г в —
ZihjPBi 

E i  hi

N{0, 1). (5.18)



Table 5.15 Calculation on the test for two direct standardized rates.

Age (year)
Population Number of deaths

Pooled Variance Standard
Place A Place В Total Place A Place В Total of difference population (1 0 )2 x  (9)mortality

n Ai n Bi Щ dAi dBi di rate pi (%) s f  x  10“ 4 hi h2s 2n l *1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0 - 4 0 0 286 686 2 1 3 4 .3 7 0 .2 6 686 12.24

1 5 ~ 20 0 0 238 2238 10 1 11 4 .9 2 0 .23 2238 115.20

3 0 - 20 0 0 794 2794 15 5 20 7 .1 6 0.13 2794 101.48

4 5 — 800 2000 2800 8 18 26 9 .29 0 .1 6 2800 125.44

6 0 - 4 0 0 2000 2400 16 70 86 35.83 1.04 2400 599 .04

7 5 - 80 300 380 12 36 48 126.32 17.47 380 252 .27

Total 5680 5618 11298 63 131 194 11298 1205.67

L/l

C
hi-Square Test fo

r C
ategorical V

ariable
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In this example, P'A =  19.2% and P'B =  16.3%

Z -
P' — P'r  A r B

yfs2
0.0192-0.0163
— -..................... =  0.94.

s/9.45 x 10”6

(5) Decision and conclusion. Since Z < 1.96, P > 0.05, H0 is not rejected 
and we might say that the standardized mortality rates in two places are 
different.

5.6.2 Test f o r  SM R  fro m  ind irect standardization

Example 5.10 (Cont’d of Example 1.6) Test the two indirect standard
ized mortalities at places A and В to check whether there is statistically 
significant difference.

Solution A goodness-of-fit x 2 test will be applied for places A and В 
separately. For place A, the test hypotheses are

Hq : The age-specific mortality rates of place A are the same as those of the 
standard population,

H\ : The age-specific mortality rates of place A are different from those of 
standard population.

The actual number of deaths at place A is regarded as the observed 
frequency f A\ and the expected number of deaths estimated by the indirect 
method as the expected frequency eA\\ the actual number of survivors is 
regarded as the observed frequency f A2 =  nA — f A\, and the corresponding 
expected frequency eA2 =  nA — eA2. When #o is true, the statistic

XA =  T  ----- —--------— ~  distribution. (5.19a)tr
Since the standard population is given, rather than estimated by sample 

data, the degrees of freedom v =  2 — 1 — 0 =  1.
In Example 1.6, by (5.19a), f M — 63, eA\ — 58.12; f A2 =  5680 — 63 =  

5617, eA2 =  5680 -  58.12 =  5621.88,

Xa = J 2
( \ f A i - e Ai\ - 0 . 5 ) 2

&Ai
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(163 -  58.121 - 0 .5 ) 2 | (15617 -  5621.881 -  0.5)2
“  58.12 +  5621.88

4.382 4.382 4.382
= -------+ ----------- « -------- =  0.33.

58.12 5621.88 58.12
From the above calculation, one can see that the second term of the 

statistic can always be omitted because the numerator eA2 is always very 
large. Therefore, (5.19a) can be simplified as a single term as follows:

7 (I/л - e A\ - 0 .5 ) 2 ,x \  =  —---------------------~  x~ distribution, (5.19b)
ел

where f A and eA refer to the observed frequency and expected frequency 
of deaths respectively.

In Example 1.6, the x 2 value for the test is less than / (205(|) =  3.84, so 
that H0 is not rejected.

Similarly, we can have the test for place В. Accordingly,

# 0: The age-specific mortality rates of place В are the same as those of the 
standard population,

H\ : The age-specific mortality rates of place В are different from those of 
standard population.

By (5.19b), f B =  131,eB =  142.3,

,2 _  ( \ / в - е в \ ~ 0 . 5 ) 2 _  (|131 -  1 4 2 .3 |-0 .5 )2

The x 2 value is also less than / 005(1) =  3.84 so that H0 is not rejected 
either.

As a summary, the mortality rates at both places A are В are not different 
from the standard population, and hence the two standardized mortality rates 
can be regarded as equal to each other.

5.7 Fisher’s Exact Test for 2 x 2  Table

The x 2 distribution is a continuous distribution. The statistic x 2 defined 
by Eq. (5.7a) only approximate to a x 2 variable when the null hypothesis 
is true. The approximation is not strictly valid when some of the expected 
frequencies are small, such as smaller than 1. By experience, when the
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Table 5.16 T h e  re su lts  o f  trea tm e n t to  th ro m b o an g iitis  
an g iitis  p a tien ts .

G roups R eco v ery N o recovery T otal

N ew  trea tm en t 6 (a ) 1 ( 0 7 ( « r l )
C on tro l 1(c) 4 (4 ) 5(nr2)

Total 7 (« c l) 5 (« C2) 12(a)

total sample size is smaller than 40, the bias cannot be simply adjusted. 
Therefore, in this situation, we may directly estimate the exact probability 
for the occurrence of each possible event conditioning on the given marginal 
frequencies, by the theory of hypergeometric distribution. This method is 
so-called Fisher’s exact test being suggested by R. A. Fisher (1934).

Now we would introduce the Fisher’s exact test through the following 
example.

Example 5.11 12 patients suffering from thromboangiitis angiitis were
randomly divided into two groups, receiving a new treatment and the routine 
treatment (control) respectively. The results is listed in Table 5.16. The 
question is whether the recovery rates of the two groups are significantly 
different.

5.7.1 Setting up the testing hypotheses

Back to the data with the format of Table 5.1a and their probability expres
sion in Table 5.1b, the hypotheses we want to test are still

Hq: 7Г i =  к 2 (Two population probabilities are equal)
H \ .n i Ф к 2 (Two population probabilities are not equal).

5.7.2 The conditional probabilities

The basic idea here is to have the inference conditioning on the given 
marginal sub-totals nr\ ,n r2 ,ncl,n c2. We will introduce the procedures to 
list all the possible events and calculate their probabilities.

(1) List all the possible 2 x 2  tables given the values of nrl,n r2, ncb nc2. 
For Example 5.11, all the possible 2 x 2  tables are listed as follows 

under the condition of nr\ =  7, nr 2  — 5, nc\ =  7, nc2 =  5. One can see
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that there is only one 2 x 2  table corresponding to each value of a , in 
other words, once the value of a is fixed, the values of b, c and d must 
be fixed.

(1) a =  2 (2) a =  3

2 5

5 0

(4) a =  5

5 2

2 3

(5) a  =  6

6 1

1 4

(6) a  =  7

7 0

0 5

(2) Calculate the conditional probability P(fn  =  a\nr\ ,nr2 ,nc\ ,nC2) 
when #o is true.

On the one hand, because Ho means that there is no difference between 
the two groups, among the recovery patients (ncl), any one has the same 
chance to be allocated into the new treatment group or the control group. 
The number of possible ways of allocating f n = a  patients into the new 
group is the number of possible combinations, ("a1). Similarly, among 
the un-recovery patients (nc2), the number of possible ways of allocating 
/12 =  b patients into the new treatment group is the number of possible 
combinations, ("£2).

On the other hand, by randomization, among all the patients (n), the 
number of possible ways of allocating nr\ patients into the new treatment 
group is the number of possible combinations, ). Therefore, the prob
ability of having / 1 1 =  a recovery patients in the new treatment group 
(n,i) is

P(a\nrUnr2 ,ncu n c2)
nr 1! nr2\ nc 1! nc2\ 

a\ b\ c\d \n\
(5.20)

where “!” means “factorial”,

n\ =  n x (n — 1) x • • ■ x 2 x 1.

For Example 5.11,

P(a =  6|nrl - 7, nr 2  =  5, nci =  7, nc2 =  5)

7! 5! 7! 5!
6! 1! 1! 4! 12!

0.044192.
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Table 5.17 Probabilities of all the possible events.

P (a  =  2) P (a  =  3) P (a  =  4) P (a  =  5) P (a  =  6) P (a  =  7) 

0.02651515 0.22095959 0.44191919 0.28515152 0.04419192 0.00126263

This is just a probability of one possible event. In the same way, the 
conditional probabilities of all possible 2 x 2  tables have been calculated 
and listed in Table 5.17, where the conditions of nrl =  6, nr 2  =  1, nc\ =  
1, nC2 =  5 have been omitted for short.

5.7.3 P value and conclusion

According to the definition of P value in general hypothesis testing, it is 
the probability of all possible events, including the current event as well as 
the events that are more extremely departure from the null hypothesis.

For Example 5.11, if it is a one-side test, corresponding to the alternative 
hypothesis H\ \ л \ > n2, the more extreme situation than a =  6 is a =  7 so 
that the P value is

P(a > 6|«r | =  7, nr 2  =  5, nci =  7, nc2 =  5)
=  0.044192 +  0.00126263 =  0.0454545.

Since P < 0.05, the null hypothesis H{): п\ — л 2 is rejected and the recov
ery rate of the new medication is higher than that of the control.

However, if the purpose of study is only to check if the recovery rates of 
the two treatments are different, i.e. H\ : л\ Ф л2, then the “extreme events” 
should include a =  1  as, well as а =  2, because the event of а =  2  (recovery 
rates 2/7 versus 5/5) is also more extremely departure from Но: л\ =  л2 

than а — 6 (recovery rates 6/7 versus 1/5) is. Therefore, the P value of 
two-side test ought to be

P(a =  6) +  P(a =  2 ) +  P(a =  7) =  0.071977

which is greater than 0.05 so that Но: л\ =  л2 is not rejected. This means 
that if we do not have enough evidence to support a one-side test, then 
according to the data alone the difference of recovery rates in the two groups 
is not of statistical significance.

Why we choose “a =  7” and “a =  2” to calculate the probability (P 
value)? In this example, events more extremely are equivalent to increase
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the current value of statistic /  2. That is to say, the difference between expect 
frequencies and theoretical frequencies become larger. When “a =  7” or 
“a =  2”, from the special formula,

2 (ad — bc)2n
X (a +  b)(c +  d)(a +  c)(b +  d)

we know that, / 2 value will be larger than that when “a =  6”, so we could 
use “a =  7” and “a =  2” to calculate the P value.

5.8 Computerized Experiments

Experiment 5.1 The / 2 test for comparing independent samples and 
testing independence between two variables Example 5.6 is used as an 
example. The SAS program is listed in Program 5.1.

In Program 5.1, Line 01 sets 300 lines print out per page. Lines 02- 
OS construct an SAS data set named AAA. Data include two categorical 
variables (A and B) and one frequency variable. Lines 09-13 use the pro
cedure LREQUENCY in SAS to do / 2 test. Line 12 identifies COUNT as 
frequency variable.

Experiment 5.2 The goodness-of-fit x 2 test for binomial distribution
Example 5.8 is used as an example. SAS program is given in Program 5.2.

In Program 5.2, lines 01-11 construct an SAS data set and print it out. 
Lines 12-24 estimate the parameter л in binomial distribution. Lines 25-29 
calculate the probabilities for different values of X. Lines 30-38 calculate 
combination of X — 3 and X — 4. Lines 39—42 calculate the expected

Program 5.1 Comparison of two independent sample proportions and test for 
independence.

Line Program Line Program

01 OPTIONS PS=300; 08
02 DATA AAA; 09 PROC FREQ DATA=AAA;
03 INPUT A В COUNT @@; 10 TABLES A*B/CHISQ NOCOL
04 CARDS; 11 CELLCHI2 NOPERCENT NOCUM;
05 1 1 679 1 2 134 1 3 983 12 WEIGHT COUNT;
06 2 1 416 2 2 84 2 3 383 13 RUN;
07 3 1 2625 3 2 570 3 3 2892
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Program 5.2 The Goodness-of-fit y 2 test for a binomial distribution.

Line Program Line Program

01 DATA A; 25 DATA D E;
02 DO X=0 TO 4; 26 SETC;
03 INPUT FX @@ ; 27 IF X=0 THEN PX 

=PROBBNML(P,4,0);
04 T=X*FX; 28 ELSE PX=PROBBNML(P,4,X)-
05 TOT=4*FX; PROBBNML(P,4,(X-l));
06 OUTPUT; 29 IF X<3 THEN OUTPUT D; 

ELSE OUTPUT E;
07 END; 30 PROC MEANS DATA=E 

SUM NOPRINT;
08 CARDS; 31 VAR FX PX;
09 167 51 50 17 3 32 OUTPUT OUT=F SUM 

=SUMFX SUMPX;
10 ’ 33 DATA G;
11 PROC PRINT; VAR X FX; 34 KEEP X FX PX;
12 PROC MEANS SUM NOPRINT; 35 SET F;
13 VAR T TOT; 36 X=3.4;
14 OUTPUT OUT=B 

SUM=SUMT SUMTOT;
37 FX=SUMFX;

15 DATA P; 38 PX=SUMPX;
16 KEEP X P; 39 DATA H;
17 SET B; 40 SET D G;
18 DO X =0 TO 4; 41 EX=288*PX;
19 P=SUMT/SUMTOT; 42 CHISQ=(FX-EX)**2/EX;
20 OUTPUT; 43 PROC TABULATE DATA=h 

ORDER=DATA;
21 END; 44 CLASS X;
22 DATA C ; 45 VAR FX PX EX CHISQ;
23 MERGE A P; 46 TABLE X ALL, FX PX EX CHISQ;
24 BY X; 47 RUN;

frequencies for different values of X and y 1 values. Lines 43-47 print the 
final results in a table format. The results are listed in Table 5.18.

Experiment 5.3 The goodness-of-fit y 2 test for Poisson distribution The
red blood cell count (RBC) in each view of microscope is recorded and the 
data are listed in Table 5.19. SAS program is given in Program 5.3.

In Program 5.3, lines 01-10 construct an SAS data A. Lines 11-22 
calculate the parameter Я of Poisson distribution. Lines 23-33 calculate the
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Table 5.18 The results of Program 5.2.

X FX PX EX CH1SQ

0 167.00 0.44 126.59 12.90
1 51.00 0.40 115.52 36.04
2 50.00 0.14 39.53 2.77
3.4 20.00 0.02 6.36 29.29

ALL 288.00 1.00 288.00 81.00

Table 5.19 RBC distribution.

RBC 0 1 2 3 4 5 6 7 8 9

Views 11 36 76 80 74 58 38 17 6 4

Program 5.3 The Goodness-of-fit X 2 test for a poisson distribution.

Line Program Line Program

01 DATA A; 21 KEEP X F SUMF LAMDA;
02 DO X=0 TO 9; 22 MERGE A C; BY X;
03 INPUT F @@; 23 DATA E;
04 T=X*F; 24 SETD;
05 OUTPUT; 25 IF X =0 THEN P=POISSON 

(LAMDA.0);
06 END; 26 ELSE IF X <9 THEN 

P=POISSON(LAMDA,X)
07 CARDS; -POISSON(LAMDA,(X-1));
08 11 36 76 80 74 58 38 17 6 4 27 ELSE P=1 -POISSON 

(LAMDA,(X-1));
09 * 28 RETAIN SCHISQ 0 CP 0 ;
10 PROC PRINT ; VAR X F; 29 CP=CP+P;
11 PROC MEANS SUM NOPRINT; 30 T=SUMF*P;
12 VAR T F; 31 CHISQ=((F-T)**2)/T;
13 OUTPUT OUT=B 

SUM=SUMT SUMF;
32 SCHISQ=SCHISQ+CHISQ;

14 DATA C; 33 OUTPUT;
15 KEEP X SUMF LAM DA; 34 PROC PRINT;
16 SET B; 35 VAR X F P T CHISQ ;
17 DO X=0 TO 9; 36 PROC MEANS SUM;
18 LAMDA=SUMT/SUMF; 37 VAR CHISQ;
19 OUTPUT; END; 38 OUTPUT OUT=B 

SUM=SUMCHI;
20 DATA D; 39 RUN;
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Table 5.20 Results of Program 5.3.

X F P T CHISQ

0 11 0.02698 10.7937 0.00394
1 36 0.09748 38.9923 0.22963
2 76 0.17607 70.4299 0.44053
3 80 0.21202 84.8093 0.27272
4 74 0.19148 76.5934 0.08781
5 58 0.13835 55.3387 0.12798
6 38 0.08330 33.3185 0.65778
7 17 0.04299 17.1947 0.00221
8 6 0.01941 7.7645 0.40099
9 4 0.01191 4.7649 0.12278

Total 2.34637

probabilities, expected frequencies and / 2 values for different values of X. 
Lines 34—39 print the results of the test (Table 5.20).

Experiment 5.4 Two types of error in / 2 test Assume a binomial popu
lation with ж i = 0 .3  and another binomial population with n2 =  0.4. 2000 
samples are randomly generated from the first population with a sample 
size n =  60. The x 2 values of 2000 samples are calculated and summa
rized by a histogram; the conclusion of hypothesis testing for each sample 
will be made at a significant level a =  0.05. The SAS program is given in 
Program 5.4.

In Program 5.4, lines 01-09 generate 2000 samples randomly from a 
binomial population (n\ — 0.3, n =  60), and at the same time calculate 
the x 2 values under two binomial distributions 5(0.3, 60) and 5(0.4, 60) 
respectively. Lines 10 and 11 show a histogram of x 2 values. Lines 12- 
15 describe the x 2 values by procedure UNIVERIATE. Lines 16-25 give 
scores for type I error and type II error at a significant level of a =  0.05. 
Lines 26-28 estimate the probabilities of two types of error by procedure 
MEANS. Finally, lines 29-37 calculate and print the results.

5.9 Practice and Experiments

1. In the goodness-of-fit test, why does it only consider the upper tail area 
of chi-square distribution?
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Program 5.4 Sampling experiments of two types of error in test.

Line Program Line Program

01 DATA A; 19 IF CHI 1 >=3.84 THEN 
C O N U Tl=l;

02 DO 1=1 TO 2000; 20 ELSE COUNT 1=0;
03 X=RANBIN(0,60,0.30) ; 21 S l=Sl+C O U N T l;
04 P=X/60; 22 IF CHI2<3.84 THEN 

COUNT2=l;
05 Q =l-P; 23 ELSE COUNT2=0;
06 CHI1=(60*P-18)**2/18 24 S2=S2+COUNT2;

+(60*Q-42)**2/42;
07 CHI2=(60*P-24)**2/24 25 PROC MEANS SUM

+(60*Q-36)**2/36; NOPRINT;
08 OUTPUT; 26 VAR COUNT 1 COUNT2;
09 END; 27 OUTPUT OUT=D 

SUM=TOTALl TOTAL2;
10 PROC CHART; 28 DATA E;
11 HBAR CHI1 CH12/TYPE=FREQ; 29 SETD;
12 PROC UNIVARIATE DATA=A 30 N=60;

PLOT FREQ NOPRINT: 31 ALPHA 1 =TOTAL 1 /2000;
13 OUTPUT OUT=B P95=P951 P952; 32 ALPHA=0.05;
14 VAR CHI1 CHI2; 33 BETA=TOTAL2/2000;
15 DATA C; 34 POWER= 1 -BETA;
16 SETA; 35 PROC PRINT;
17 S1=0; 36 RUN;
18 S2=0;

2. A health care doctor in a factory plans to study the incidence probabil
ities of workers in five workshops. Can the chi-square test be used to 
compare the difference among these five incidence probabilities? Give 
your reasons.

3. There are 6 faces of a dice and each face is marked with a figure of 1, 
2, 3,4, 5 and 6. Toss 60 times of this dice repeatedly in an experiment. 
The results are listed in the following table. How to evaluate if this dice 
is even or not?

Figure 1 2  3 4 5 6
Frequency 8 8 5 10 14 15
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Table 5.21 The frequency distribution of industrial accidents in 
10 years period.

Accidents Frequency Accidents Frequency
per month of months per month of months

0 2 6 10
1 10 7 6
2 15 8 2
3 30 9 1
4 28 >10 1
5 15

Table 5.22 The frequency distribution of numbers of bacteria in
100 samples.

No. of bacteria Frequency No. of bacteria Frequency
per sample of samples per sample of samples

0 15 4 5
1 30 5 4
2 25 6 1
3 20 7 0

Table 5.23 The positive rates of a test for two groups of children.

Group Total Positive Positive rate (%)

Urban 58 18 31.0
Rural 147 26 17.7

4. The numbers of industrial accidents were recorded monthly in a hospital 
in the past 10 years (Table 5.21). Does the monthly frequency follow a 
Poisson distribution?

5. A sampling inspection of the products in a food factory reported the 
results of 100 samples in Table 5.22. Does the number of bacteria per 
sample follow a Poisson distribution?

6. A test was used for examination of two groups of children randomly 
selected from urban and rural areas of a city respectively. The results 
are listed in Table 5.23. Are the positive rates of two groups of children 
significantly different?
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Table 5.24 The eye vision in different age groups 
of population.

Vision

Age group (year)

Total5-10 11-20 21—40 41-

<0.6 4 9 39 147 199
0.7-0.9 11 37 22 94 164
1.0-1.2 143 317 182 139 781
>1.5 411 1183 355 160 2109

Total 569 1546 598 540 3253

Table 5.25 The results of a paired case-control 
study of Ml and smoking.

MI

Control Smoking Non-smoking Total

Smoking 88 19 107
Non-smoking 69 24 93

Total 157 43 200

7. Table 5.24 lists the distribution of age and vision. Try to analyze whether 
there is a relationship between age and vision and calculate the contin
gency coefficient.

8. Suppose that {Xb X2, . . . ,  Xn} is an independent random sample from 
a normal distribution N(/x,a2). Let the sample mean X — ^ Xi/n 
and sample variance S2 =  ^(Х,- — X)2/(n — 1). Try to prove that 
(,n — 1 )S2 / о 2 has a chi-square distribution with (n — 1) degrees of 
freedom.

(Hint: (« —1)S2 =  ^ [ ( Х ,  - / г ) - (Х - /г ) ]2 =  £ ] (X ,- / r ) 2- n ( X - / t ) 2.)

9. Table 5.25 is the data from a paired case-control study of the relationship 
between myocardial infarction (MI) and smoking. The frequencies in 
the table are the numbers of pairs. The questions are if MI patients 
have a higher probability of smoking than controls do and if there is an 
association between MI and smoking.
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10. In order to evaluate the effect of a sensitivity enhancer of radiation, 21 
nude mice with tumor were randomly assigned to two groups. Ten mice 
in the first group received radiotherapy only and other 11 mice in the 
second group received radiotherapy with sensitivity enhancer. After a 
period of treatment, three in the first group and six in second group 
were effective. Try to answer if the effect of sensitivity enhancer is of 
statistical significance?

(1st edn. Qing Liu, Jiqian Fang; 2nd edn. Yuantao Hao, Те Deng, 
Yong Huang, Jiqian Fang)



Chapter 6

Further Discussion on Hypothesis Test

As we know, if a hypothesis test miss concludes with “the difference is 
statistically significant” when # 0 is true, then we say a type I error is made 
and the probability of type I error is less than or equal to a , the level of 
the test; if a hypothesis test miss concludes with “the difference is not 
statistically significant” when H\ is true, then we say a type II error is made 
and the probability of type II error is denoted with /?, and accordingly, the 
probability of correctly recognizing the difference, 1 —/?, is called the power 
of the test. It is not unusual in clinical trials to conclude with “the difference 
is not statistically significant” so that it is necessary to evaluate the power 
of the test.

The power of a test is closely related with the sample size so that the 
researchers need to take care of the sample size at the stage of design. The 
sample size depends on the purpose of the study and the characteristics of 
the problem, rather than on “convenience”. For instance, in clinical trials a 
common tendency is the sample size being too small such that the superiority 
of some new medications can hardly be revealed. To estimate the sample 
size in advance is really important.

The estimation of sample size at the design stage and the evaluation of 
power after a test are closely linked to each other. The related concepts and 
algorithm will be introduced in this chapter.

With the development of modem society, the traditional methods of 
hypothesis testing and statistical inference are not enough to meet the needs 
of clinical trials. The commonly used newly developed statistical inference 
methods for the clinical trials will be introduced in this chapter as well, 
including the non-inferiority test, equivalence test and permutation test.

171
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6.1 Two Types of Error and Power

6.1.1 The probab ilities o f  tw o types o f  error

In fact, the hypothesis test is to decide between the null hypothesis Я0 and 
the alternative hypothesis H\, to which sometimes mistake may inevitably 
happen.

For example, to test the effectiveness of a new medication for high 
blood fat, n patients were randomly selected among volunteers with similar 
conditions, of whom the values of decrement in blood fat were measured 
respectively. Suppose the average decrement of blood fat with routine med
ication was po- To check if the new medication was better, one turned to 
the hypothesis test

H0 : p =  p о, Hi : p > po- (6.1)

Assume the decrement in blood fat X follows a normal distribution 
N(p,  o 2). When a is known, the statistic

can be used. When H0 is true, Z ~  N(0, 1). Given the level of the test a , 
denote the one-sided critical value Za of the standard normal distribution 
corresponding to the area of the upper tail a. Substitute the sample mean 
X, о and n into Eq. (6.2) to calculate the value of Z. The decision rule is: 
When Z > Za, reject Я0, otherwise, not reject Я0.

One may have two types of error: type I error is to claim the new med
ication better than the routine one when both effects are equal. That is, to 
reject Ho when H0 is true (to reject a true Я0); type II error is to claim the 
new medication equivalent to the routine one when it is really better, that 
is, not to reject H0 when H\ is true (not to reject a false Я0).

Usually the possibilities of these two types of error are measured with 
two probabilities:

Probability of type I error =  P(reject Я() | Ho is true) < a, (6.3)
Probability of type II error =  P(not reject Я0|Я] is true) < /?, (6.4a)
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or

Probability of type II error =  P(not reject is false) < [L (6.4b)

If the diagnosis of certain disease is also regarded as a problem of hypoth
esis test,

#o : The condition is not different from normal (without disease),
H\ : The condition is different from normal (with disease),

then the false positive rate is controlled to be below a, and the false negative 
rate is controlled to be below /Т

In hypothesis test, the value of a is given in advance, say a =  0.05 or 
0.01, sometimes a — 0.10. However, it is not allowed to give the value 
of a at one’s own will. Instead, it should be determined according to the 
imperilment of type I error. Back to the example of clinical trials, type I error 
may lead us to inappropriately regard the new medication as innovation and 
give up the routine one and put into production for nothing. It is impossible 
to make a =  0. The acceptable size of a should be determined incorporating 
the background of the problem.

In theory, the value of p  also needs to be determined in advance. 
Unfortunately, it is often ignored in practice. In fact, at the design stage, 
without the value of /3 the sample size can hardly be estimated. The accept
able size of p  should be determined according to the imperilment of type 
II error. For example, in clinical trial, type II error may lead us to neglect 
a better medication so that it cannot be produced and utilized. It is impos
sible to make p  =  0. The acceptable size of P should also be determined 
incorporating the background of the problem.

6.1.2 Power

To a hypothesis test, if the probability of type II error is controlled to be 
below p, then the power of this test in finding out the difference will be 
above 1 — p , that is,

The power of the test =  P (reject H0\H\ is true) > 1 — p. (6.5)
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In clinical trials, the power is the probability of a good medication being 
recognized; in the problem of diagnosis, the power is the probability of a 
disease being diagnosed.

6.2 The Four Elements Affecting the Power

The power of a hypothesis test is affected by at least four elements: the 
real difference, the variation among individuals, sample size and the test 
level a .

For convenience of illustration, let us still take the clinical trial of a new 
medication for high blood fat as an example.

From (6.2), Z > Za is equivalent to

\
 

*

IV N (6.6)

— a
X > po +  Za— 

y/n
(6.7)

In other words, the decision can be changed as follows: if (6.7) holds, 
then reject Щ\ otherwise, not reject H0.

Now let us discuss qualitatively the effect of the four elements to the 
power through the distributions of sample mean X.

6.2.1 L arger difference leadin g  to larger p ow er

If X follows a normal distribution N { p , a 2), then the sample mean

When H0 is true.

X ~  N [ p

X ~ N \ p Q

When H\ is true,

<j-
X ~ N  //o *5, —

where 3 is the real difference between и and //q.

(6 .8)

(6.9)

(6 . 10)
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Fig. 6.1 Larger difference leading to larger p o w e r, (a) small , (b) larger <%•

The upper plots of Fig. 6.1 are the density functions of X when Ho is 
true, the lower plots are the density functions of X when Я, is true; the 
vertical lines at X =  p 0 +  Zaa / J n  show the dividing points. According 
to the decision rule, the areas of the right tails with shadow in the upper 
plots are all equal to a, the probability of type I error; and the areas of 
the right “tails” without shadow in the lower plots are the powers. The 
difference between (a) and (b) of Fig. 6.1 is the size of 3, 5\ < Зг and
1 -  A  < 1 -  p2.

One can see, when the other elements keep the same, the larger exist
ing difference leads to a larger power, that is, more chance to detect the 
difference.

6.2.2 S m aller variation or larger sam ple size leading to larger  
p o w er

In Fig. 6.2, the standard deviation of X in (a) is larger than that in (b) such 
that the density function in (a) looks shorter and fatter than that in (b), and 
the dividing point in (a) is farther from p 0 than that in (b). One can see, when 
the other elements keep the same, the smaller standard deviation makes a 
less overlap between the two density functions of X under HQ and H\.

From (6.8), when the standard deviation is smaller or the sample size 
is larger, the standard deviation of sample mean will be smaller, and hence 
the power will be larger.
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Fig. 6.2 Smaller variation or larger sample size leading to larger power, (a) larger variation 
or smaller sample size, (b) Smaller variation or larger sample size.

6.2.3 L arger a leadin g  to larger p o w er

From (6.7), the distance between the dividing point and p 0 is proportional 
to Za; when a is larger, Za will be smaller and the dividing point will be 
close to p 0. The differences between (a) and (b) in Fig. 6.3 are a, < a 2 and 
1 — P\ < 1 — /?2- One can see, when the other elements keep the same, if 
the limitation on the probability of type I error is loosen, there will be more 
chance to detect the difference.
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6.3 The Quantitative Relation between Power and the Four 
Elements

6.3.1 The test f o r  single sam ple m ean

Now let us derive the relation between the power and the four elements 
quantitatively for the test of (6.1) and the statistics (6.2) through any plots 
of Figs. 6.1-6.3. Say, (a) of Fig. 6.3 is used by regarding a.\ and /3\ as a 
and f>. First of all, the upper plot shows that the dividing point is located at 
p 0 +  Zaa/«Jn to ensure the upper tail equal to a, where Za is the upper 
critical value of the standard normal distribution corresponding to a. The 
lower plot shows, the dividing point divides the area under the density 
function of normal distribution N (//0 +  8, a 2/n)  into two parts.

To the lower plot, after the distance between the dividing point and 
p 0 +  8 being standardized, the dividing point is just the critical value of 
the standard normal distribution corresponding to the area of the upper tail 
equal to 1 — /?

(jug +  Zao / y/ n ) -  (po +  <?)
o/y/n

=  Z \ - p . (6. 11)

Hence

Zl_p =  ^ -  +  Za. (6.12)
a

Notice that when Z\^p is smaller, 1 — f) will be larger and when Za is 
smaller, a will be larger. One can see, (6.12) is consistent with the conclusion 
obtained from the qualitative discussion, that when 8 is larger, a is smaller, 
n is larger and a is larger, Z\-p  will be smaller, hence the power 1 — /У will 
be larger.

Although the above formula (6.12) is derived for a one-side test, it in 
fact also holds for a two-side test, as long as Za is regarded as the two- 
side critical value of the standard normal distribution corresponding to a. 
In practice, if a t test is applied for small sample, (6.12) can still be used to 
have a slightly optimal estimate for the power.

The first application of the formula (6.12) is to evaluate the power of a 
test with known values of <5, a , n and a. The values of 8 and a, which are 
usually not available in practice, have to be estimated based on professional 
knowledge or pilot study.
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Example 6.1 The length of effective period of a medication was initially 
six hours on average. It is said recently that the new product has prolonged 
the effectiveness seven hours. However, on the basis of 25 observed cases, 
a hypothesis test results in a non-significant outcome (P > 0.05) such that 
one cannot conclude the new product having the effectiveness longer than 
six hours on average. What is the problem?

Solution The hypothesis test is

The statistics is

Ho : ju =  6, H\ \ ц > 6 .

Z =
X - 6  
ОI  s f n '

where n =  25. To evaluate the power of this test, the values of S and a are 
needed. Obviously, д =  1. The value of a can be estimated through the 25 
observed cases and, say, according to the former experience, a = 2 .  Given 
a =  0.05, the one-side Z0.05 =  1.64. Put all these into (6.12), we have

—Jnd  —V25 x 1
Zi-« = ---------- \- Za =  ------—-------- f Z0.05 =  —0 .86 .

Check the table for standard normal distribution with Z =  —0.86

1 — p =  0.8051.

It indicates that the power of the test is only 80.51%. In other words, if 
the new product really has the effectiveness prolonged to seven hours, then 
it may be missed by chance of 19.49%.

In order to promote the power of the test, the only choice is to increase 
the sample size.

6.3.2 The test for two sample means

For convenience, let both of the sample sizes in two groups equal to n, and 
assume the two random variables follow normal distributions N(p\,cr2) 
and N (p 2, er2) respectively, where the variances of the two populations are 
assumed equal and known. To test

Но- p  \ -  P2 , H\ : p\  > p 2 (6.13)



Further Discussion on Hypothesis Test 179

or

H0 :ju i — //г =  0 , Н \ \ ц \ ~ Ц2 >  0  (6 .14)

the statistics to be used is

X\ ~  %2 
a J 2 /n

(6 .15)

Given a, the decision rule is:

When Z > Za, reject #o; otherwise, not reject H0.
The condition Z > Za can be rewritten as

X, - X 2 > Zaayj lfn .

For convenience, the alternative hypothesis in (6.14) can be written as

H\ : Hi — Ц2 =  <5- (6.16)

The upper plot of Fig. 6.4 is the density function of Xj -  X2, 
N(0, 2a2/n),  when Я0 is true; the lower plot of Fig. 6.4 is the density 
function of X\ -  X2, N(S, l a 2In), when H\ is true; the vertical line stands 
on the dividing point ZaOyj2/n, where Z„ is still the upper critical value 
of the standard normal distribution corresponding to a. The area of the part 
with shadow in the upper plot is a , the area of the part without shadow in the 
lower plot is the power 1 — /?. To the lower plot, after the distance between 
the dividing point and 5 being standardized, the dividing point is just the

Fig. 6.4 A  d em o n s tra tio n  o n  th e  te s t fo r  co m p ariso n  b e tw ee n  tw o  m eans.
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critical value of the standard norml distribution corresponding to the area 
of upper tail equal to 1 — /?,

Zaо у/2/п — 8 
a s/2/п

=  Z \-ft

or

Z\-p  — ------------ 1- z a.

(6.17)

(6.18)

Similar to (6.12), (6.18) shows, when 8 is larger, a is smaller, n is larger 
and a is larger, Z\-p  will be smaller, hence the power 1 — f> will be larger. 
In fact, (6.18) also holds for a two-side test, as long as Za is regarded as the 
two-side critical value of the standard normal distribution corresponding to 
a. In practice, if a t test is applied for small sample, (6.18) can still be used 
to have a slightly optimal estimate for the power.

Example 6.2 In a clinical trial on a hypotensor, there were two random 
samples with 15 cases respectively who were similar in disease condition 
and other important factors. One group was treated with the routine med
ication and another was treated with a newly developed medication. After 
a t test with a — 0.05, the difference of the effectiveness between two 
groups were not significant statistically. How to understand such a matter? 
(Comparing to the routine medication, the new medication is not worth
while to be applied in clinic unless the difference of the average decrement 
in blood pressure is larger than 0.8 kPa; by experience, the variance of the 
decrement in blood pressure within each group is about 1 kPa.)

Solution Since the difference was not significant statistically, one had to 
see the power of the test. Put 8 =  0.8, a =  1, n =  15 and the one-side 
Zo.05 =  1-64 into (6.18),

Zi-p
-0.8УИ72

1.64 =  -0.5509.

By checking the table of standard normal distribution with -0.5509, 1 — /? =  
0.7088.

One can see that if the average decrement on blood pressure of the new 
medication was larger than that of the routine medication by 0.8 kPa, the 
test just had a chance of 70.88% to detect it. The key was that the sample 
size was too small.
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6.3.3 The test for two frequencies (large sample)

Assume that there are two groups of sample, n \ =  tij =  >u the occurrence 
frequencies of a specified event are Pi and P2, and the probabilities of that 
in the population are л\ and To test

# 0  : л\ =  7Г2, H\ : 7t\ > П2 - (6.19)

The above-mentioned test for two group means can be applied on the 
basis of normal approximation for large samples, when the statistic is similar 
to (6.15), but g should be replaced by

'  — [ 7 T i  ( 1  -  Л  \ )  +  7 T 2 ( 1  -  7T 2 ) ] .

Hence (6.18) becomes

Z\-p
—dy/n

V^i( i  — n \) +  ^2(1 — я  2)
+ (6.20)

where S =  л \ — Л2 .
Similar to (6.18), (6.20) shows, when d is larger, k \ and л 2 are close to 

0.5, n is larger and a is larger, Z\_p will be smaller, hence the power 1 — /? 
will be larger. In fact, (6.20) also holds for a two-side test H\ : л\ Ф л 2 , as 
long as Za is regarded as the two-side critical value of the standard normal 
distribution corresponding to a .

Example 6.3 Two groups of normal adults, 30 each, were randomly 
selected for a research project on the preventive effect of vitamin C. Group A 
was treated with vitamin C, and Group В was treated with placebo. The fre
quencies of bad cold were observed and compared for a fixed period of time. 
As a result, there were three and six persons getting bad cold during this 
period respectively. A test with a =  0.05 resulted in that the difference 
in frequencies was not significant statistically. How to understand such an 
outcome?

Solution By experience of the researcher, the probability of getting a bad 
cold was about л\ =  20%. Assume vitamin C may reduce the probability 
to Л2 =  10% or even less. Put the estimated values of л\, Л2 , n =  30 and
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a — 0.05 into (6.20),

Z\-p =
-0.10>/30

V0.20(l - 0 .2 0 ) +  0.10(1 -0 .1 0 )
+  1.645 =  0.5446.

Hence \ ~ p -  0.2929.
One can see that the power of this study is only 29.29%. In other words, 

if vitamin C were able to reduce the probability of getting bad cold to 
ж2 — 10%, the chance to find such a difference by this study was only 
29.29%, and there was about 70% chance to report a statistically non
significant result.

6.4 Estimation of Sample Size for the Tests in Common Use

The estimation of sample size is just the opposite of the calculation for 
power, that is, they share the same formula, but exchange the position of 
the known and unknown variables.

6.4.1 The te s t f o r  single sam ple m ean

To test for one group mean, we have had a formula in (6 .12), which has 
been applied in Example 6 .1 to evaluate the power of a test. Now rewrite 
(6 .12), we have

where Zp =  —Z\_p. Then, given the specified values of a and /(, and an 
appropriate guess of 8 /o , the sample size n can be easily estimated.

Example 6.4 To well demonstrate the new medication in Example 6.1, 
what should the least sample size be?

Solution In order to make the chance of claiming a trivial medication 
as an excellent one less than 5%, take a =  0.05; in order to make the 
chance of claiming an excellent medication as a trivial one less than 1 %, 
take (I =  0.01. According to Example 6.1, keep 8 =  I and о = 2 .  From 
the table for standard normal distribution, the one-side Z0.05 =  1.64 and
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Zq.oi =  2.33. Put all these values into (6.21), we have

n —(
Zo.05 ___ у

0.5 /) =  63.0436 % 63.

This shows, if the difference between the two means is one hour, to expect 
a one-side test at a level of a =  0.05 to identify such a difference with a 
probability 99%, the sample size should at least be 63. Obviously, if the 
difference between the two means is greater than one hour, the power under 
such a sample size will be higher than 99%; contrarily, if the difference 
between two means is less than one hour, the power under such a sample 
size will not be able to reach 99%.

In addition, (6.21) is based on the condition of known a . When a is 
unknown, it could be replaced by the sample standard deviation S. However, 
the revised statistic in (6.2) will follow a t distribution when H0 is true; Za 
should be replaced by tn, the critical value of t distribution; and Zp should 
be replaced by t%, which is the critical value of a non-central t distribution. 
All of them depend on the sample size n. Then we are falling in a loop: the 
sample size is unknown, how can we get ta and tpl In theory, one can put 
Za and Zp into (6.21) to get a value for n\ then get ta and tjj by degrees 
of freedom n — 1; put ta and tp into (6.21) again to get an updated n; . . .  
in such a way, by iteration, one may get a final result for the sample size. 
In practice, it is not necessary to be so fancy. By experience, one may get n 
by Za and Zp first, and then add an extra term 0.5Z~ to it. Say, the sample 
size for Example 6.3 could be

This looks similar to (6.21), but the sample size is doubled. It is because 
the variance of the difference between the two sample means is doubled.

In case that the value of a comes from a pilot study with small sample, 
then the sample size needs to be added with an extra term 0.25Z2a.

n =  63.0436 +  0.5(1.64)2 =  64.3884 % 65.

6.4.2 The test f o r  two sam ple m eans

Similarly, rewrite (6.18), we have

(6 .22)
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Non-inferiority

Equivalence
< r  *

- л  о A //, —//2

Fig. 6.5 N o n -in fe rio rity  tes t an d  eq u iv a len ce  test.

If p < a, reject H0, then we could conclude that new medication group is 
non-inferior to the standard group. When the new medication group is worse 
than the standard group, and the difference is over Д, the probability to make 
the false conclusion of “new medication is non-inferior to the standard one” 
is less than a (Fig. 6.5).

Suppose the data come from a large sample of a normal distribution; 
d =  X i — Xi  is the difference between the mean of new medication group 
and the mean of the standard group; Sd is the standard error of d, then the 
statistic for the non-inferiority test

d +  A
Z = --------

Sd

follows the standard normal distribution when the null hypothesis holds. 
If the p-value is less than a, then we could conclude that the new medication 
is non-inferior to the standard one with a significance level a.

We can also use the confidence interval for a non-inferiority test:

(1) To calculate the (1 — a) confidence interval of ju\ — цг as (a, b)\
(2) If the lower boundary a is larger than — Д, then we could also con

clude that the new medication is non-inferior to the standard one with 
a significance level a.

6.5.2 Equivalence test

The equivalence test is to test whether the effect of the new medication is 
equivalent to that of the standard medication. Similar to the non-inferiority 
test, we need to determine a positive number Д as the margin according
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to the professional knowledge at first. After that, we need to conduct two 
non-inferiority tests (with significance level a j 2 for each):

Я ш : цх -  Ц2 < - A ,  H\a : — [1 2  > — A (6.25a)

(whether the new medication is non-inferior to the standard one)

and

Я20 : Ц2 ~ Ц\ < - A ,  H2a : fi2 -  Mi > - A  (6.25b)

(whether the standard medication is non-inferior to the new one).

If both H10 and H2o are rejected, both H\a and H2a are accepted. Then we 
could conclude that the new medication and the standard medication are 
equivalent. When the difference between the two medications is over Д 
(including smaller than — Д and larger than Д), the probability to make the 
false conclusion of “the new medication and the standard medication are 
equivalent” is less than a (Fig. 6.5).

Suppose the data come from a large sample of a normal distribution; 
d =  X\ — X2 is the difference between the mean of new medication group 
and the mean of the standard group; Sj is the standard error of d; then both 
statistics for the equivalence test

2,
d +  Д 

Sd
and Z2 (6.26)

follow the standard normal distribution when both of the null hypotheses 
hold. If both of the /?-values are less than a , then we could conclude that 
the new medication is equivalent to the standard one with a significance 
level a.

We can also use the confidence interval for an equivalence test:

(1) To calculate the (1 — a) confidence interval of p, \ — [i2 as (a, b);
(2) If the lower and upper boundaries is in between (—Д, Д), then we 

could also conclude that the two medications are equivalent with a 
significance level a .

Example 6.7 There was a trial to test whether the effects of angiotensin II 
receptor antagonists (experimental group, T) was non-inferior to the stan
dard medication of angiotensin converting enzyme inhibitors (control group,
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C) in treating mild to moderate hypertension. 240 subjects who met the 
inclusion criteria were randomly sampled and allocated to Г or C group. 
The main outcome was supine diastolic blood pressure (SDBP, mmHg). 
The results showed that SDBP decreased 14 mmHg and 12 mmHg in the 
T and C groups, respectively. The difference value d — 2 mmHg, and 
the S,i =  1.033 mmHg. Previous clinical trials reported the minimal aver
age reduction of SDBP was 10 mmHg. According to the clinical and statis
tical concern, we used A =  3 mmHg (30% of effect size) as the margin for 
non-inferiority test.

Solution

(1) One-side hypothesis testing:
Establishing the hypothesis:

Hq fii — P2 — —3, H\ : ц\ — hi > —3; a =  0.05.

Calculating the statistic:

d +  A
Z = --------

Sd
Since

Z =  4.84 > Z0 os =  1.645, p  < 0.05.

Making conclusion:

Ho was rejected, the effect of angiotensin II receptor antagonists 
was non-inferior to the standard medication of angiotensin converting 
enzyme inhibitors in treating mild to moderate hypertension.

(2) Confidence interval:
The lower boundary of the confidence interval was:

2 -  1.645 x 1.033 =  0.301 > -3 .

Therefore, the conclusion was the same as the hypothesis testing that the 
effect of angiotensin II receptor antagonists was non-inferior to that of 
angiotensin converting enzyme inhibitors in treating mild to moderate 
hypertension.

If we need to conduct an equivalence test for this example, two one- 
side hypothesis tests as below should be performed:

2 +  3 
1.033

=  4.84.
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Establishing the hypotheses:

#io ■ Ml ~  М2 < - 3 ,  # i fl : Mi ~ М2 > - 3 ,  a =  0.025. 
#20 : М2 ~ M\ < - 3 ,  # 2o : М2 ~ M\ < - 3 ,  я =  0.025.

Calculating the statistic:

Z, =
d +  A 2 +  3

Z2 =

Sd

A - d

1.033

3 - 2

4.84,

0.97.
Sd 1.033

Since Z\ =  4.84 > Z0.025 =  1-96, therefore p\ < 0.025; whereas, 
Z2 =  0.97 < Zo.o25 =  1-96, p2 > 0.025.

Making conclusion:

#io is rejected, the effects of angiotensin II receptor antagonists was 
non-inferior to that of angiotensin converting enzyme inhibitors on 
treating mild to moderate hypertension; However, # 20 could not be 
rejected and we could not conclude that the effect of standard medi
cation of angiotensin converting enzyme inhibitors was non-inferior to 
that of angiotensin II receptor antagonists on treating mild to moderate 
hypertension. Therefore, the equivalence test has failed.

6.6 Permutation Test1

In Chap. 4, we know that t test is used for small samples of data which 
follow the normal distributions. However, if we use t test for the data which 
do not follow a normal distribution, the power of the t test will decrease.

The permutation test is more flexible than t test when we have insufficient 
information about the distribution of the data. Statistical inference is carried 
out based on the data characteristics and the logic of traditional hypothesis 
testing. Fisher had proposed the idea of permutation test in the 1930s, but 
no enough attention was paid due to the complicated calculation. With the 
development of the statistical softwares, SAS, S-Plus and R etc. can be used

lWe refer to Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R. B oo tstrap  
M eth o d s a n d  P erm uta tion  Tests, 2nd edn. New York: W. H. Freeman, 2005, for this section.
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to implement this new approach. Nowadays the permutation test is widely 
applied in the multi-center clinical trials and genetic researches.

Now we take the comparison between two population means by inde
pendent samples as the example to interpret the principle of permutation 
test.

(1) Establish the hypotheses:
H0: Two population distributions are the same;
Hi : Two population distributions are different; 
a =  0.05 (two-side test)

(2) Choose a statistic that measures the effect, D.
In this example, we use the difference between two sample means as 
the statistic: D =  X\ — X 2\

(3) Calculate the observed value of the statistic.
In this example, D(Obs) =  x\ — x2.

(4) Under the condition that Ho is true (two samples are from the same 
population), we pooled the two samples together, randomly assign the 
individuals into two groups (with the sample sizes consistent with those 
of the original samples), and calculate the new sample means X x, X 2 
and the statistic D' =  X, — X2.

(5) Repeat step (4) for n times, we can get n values of /)', of which the 
distribution is called a permutation distribution.

(6) Calculate the p-value: under the condition that H0 is true, the p-value 
is defined as the probability when the statistic D is equal to or greater 
than the actually observed D{Obs):

4I number(\D'\ > |D(OAs)|)
P =  P(\D\ > \D(Obs)\) * ----------  ~ -----— , (6.27)

n
where the denominator n is the repeated times of the permutation resam
pling, the numerator is the times of \D'\ > \D{Obs)\ among the n 
permutation re-samples;

(7) Making the conclusion according to the p-value.

Example 6.8 We would like to know whether the new “directed reading 
activities” improve the reading ability of elementary school students, as 
measured by the scores of their Degree of Reading Power (DRP)? A study 
assigned the fourth-grade students at random to either the new method 
(Treatment group, 21 students) or the traditional teaching methods (Control
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Table 6.1 Degree of reading power scores for fourth-graders.

Group Scores

Treatment 24 61 59 46 43 53 43 44 52 43 57 49
58 67 62 57 56 33 71 49 54

Control 42 33 46 37 62 20 43 41 10 42 53 48
55 19 17 55 37 85 26 54 60 28 42

group, 23 students). The DRP scores at the end of the study are listed in 
Table 6.1:

The procedure of permutation test is as follows:

(1) Pooled the two samples together, and use the simple random sampling 
method to select 21 of 44 from the mixed sample and assign them to 
the treatment group, the rest are assigned to the control group. This is 
the process of permutation resample.

(2) Calculate the mean DRP re-sample score in each group, using the indi
vidual DRP scores in Table 6.1. The difference between these means is 
OUr Statistic: D =  X treatment 2fcontrol-

(3) Repeat this re-sampling from the 44 students for 1000 times. The dis
tribution of the statistic from these 1000 re-samples is the permutation 
distribution (Fig. 6.6).

(4) Calculate the D(Obs) =  51.476 -  41.522 =  9.954.
(5) Locate this value on the permutation distribution to get the p-value.

The differences between permutation test and t test are as follows:

(1) Hypotheses: The hypotheses for the t test are H{) : ц\ — рг =  9, 
H i  : f t  i — / и  2  ф  0; Whereas the hypothesis of permutation test is 
whether two populations’ distributions are the same.

(2) Statistics: The t statistic in the t test comes from the difference of the 
sample means. We used the same statistic in the permutation test here, 
but we could also use other statistic, such as the 25% trimmed means. 
Therefore statistic for permutation test is more flexible.

(3) The calculation of statistic: The t test statistic is based on standardizing 
the difference of means in a formula to get a statistic. The permutation



192 Medical Statistics and Computer Experiments
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Fig. 6.6 The permutation distribution of the statistic D  =  treatment — ^control based on 
the DRP scores of 44 students.

test directly gets the difference of means or some other statistics, and 
no formulas are necessary.

(4) The calculation of /7-values: The t test gives accurate /7-values under 
the pre-condition of normal distribution. The permutation test gives 
approximate /7-values even when the sampling distribution is not close 
to normal.

Permutation test is a “gold standard” for assessing two-sample t tests. If 
the two p-values of permutation test and /test differ considerably, it usually 
indicates that the pre-conditions for the method of two-sample t test are not 
suitable for these data.

6.7 Computerized Experiments

Experiment 6.1 On the power of t  test for single sample mean Assume 
the average effect time of the medication in Example 6.1 following a nor
mal distribution N{1, 22). Randomly draw a sample from this population 
(sample size equals 25), and perform a t test at level a =  0.05 to see whether 
one can conclude the population mean significantly different from 6 or not; 
repeat such a process for 100 times to count the number of times for correct 
conclusion and compare the percentage with the power 80.51% calculated 
in Example 6.1.
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Program 6.1 Power of t test for single sample mean.

Line Program Line Program

01 DATA TEST; 09 BY I;
02 DO 1=1 TO 100; 10 OUTPUT OUT=A
03 DO J=1 TO 25; MEAN=MEAN STD=SD
04 X=7+2*RANNOR(0)-6; STDERR=SE T=T PRT=P;
05 OUTPUT; 11 OPTIONS PAGESIZE=66;
06 END;END; 12 PROC PRINT DATA=A;
07 PROC MEANS NOPRINT; 13 WHERE P> 0.10;
08 VAR X; 14 RUN;

In Program 6.1, line 04 is to generate a random number following 
N{1, 22), and subtract 6 from it; lines 02-06 generate 100 random sam
ples with sample size 25 for each; line 07, t test on whether the population 
mean equals 6 or not for the 100 samples respectively; lines 12 and 13 select 
the results of no rejection on the null hypothesis and print the corresponding 
sample.

Experiment 6.2 By changing the distribution in Experiment 6.1 to 
N( 8 ,22), or changing the sample size to 49, or changing the a level to
0.2, repeat the experiment and compare the outcomes with that obtained 
from Experiment 6.1.

Experiment 6.3 Equivalence trials Example 6.7 is used as example. In 
Program 6.2, line 01, to construct a SAS data set named “equaltest”; lines 02

Program 6.2 Equivalence trials.

Line Program Line Program

01 DATA EQUALTEST; 11 T2=(U—D)/SD;
02 NT=120; 12 P l=PR O B T (-T l,
03 NC=120; NT+NC-2);
04 MEANT=14; 13 P2=PROBT(—T2,
05 MEANC=12; N T+N C -2);
06 L = —3; 14 PROC PRINT;
07 U=3; 15 VART1 PI;
08 D=MEANT=MEANC; 16 RUN;
09 SD= 1.033; 17 PROC PRINT;
10 T1=(D—L)/SD; 18 VAR T2 P2;

19 RUN;
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Program 6.3 Permutation test.

Line Program Line Program

01 DATA PERM; 07 PROC MULTTEST
02 INPUT XTRT@@; PERMUTATION NSAMPLE= 1000
03 CARDS; SEED=23;
04 24 2 61 2 5 9 2 4 6 2 4 3  253 2 08 TEST MEAN(X);
05 09 CLASS TRT;
06 ; 10 RUN;

and 03, to define the sample size of both experimental and control groups; 
lines 04 and 05 define the means of both experimental and control groups; 
lines 06 and 07 define the upper and lower limits; lines 10 and 11 calculate 
t\ and t2, lines 12 and 13 calculate the total amount of probability measure 
to the left of —1\ and —12; lines 14-19 print the value of t\, pi, t2 and p2.

Experiment 6.4 Permutation test Example 6.8 is used as an example. 
Lines 01-05 read the scores and groups of 44 students; lines 07-09, to 
conduct permutation test for two groups based on the seed 23, and re-sample 
999 times.

6.8 Practice and Experiments

1. It is said that the average body temperature of normal people in a nation 
is higher than 37°C. To check, a sampling survey is planned. Suppose 
an increase of 0.1 °C is significant; the standard deviation of body tem
perature of normal people is about 0.2°C; the probabilities of type I and 
type II errors are limited by a =  0.05 and /? =  0.05. Estimate the 
necessary sample size, and confirm by computerized experiment.

2. Someone did not estimate the sample size for the above-mentioned sur
vey and decided to take n =  25. Calculate the power and confirm it by 
computerized experiment.

3. To screen hypotensors, it is decided that only when its decrement of blood 
pressure is more than 2 kPa, the medication can be kept as one of the 
candidates for the next run of study. Now a pilot study for a medication 
has been completed for ten animals, as a result, the standard deviation of
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the decrement of blood pressure is 0.5 kPa. What is the adequate sample 
size for the formal study?

4. To compare the dissolution rates of two types of tablets, randomly select 
ten tablets for each type and measure their dissolved amount in 5 minutes 
respectively, then perform a t test at a level of a — 0.05. According to 
a pilot study, the standard deviation of both types of tablets is about 
6 units, and the difference of their average 5-minute dissolution is also 
about 6 units. Evaluate the power of the above test. In order to reach a 
power of 95%, what is the adequate sample size?

5. The departments of inner medicine of two hospitals A and В have ran
domly selected 30 inpatients respectively, among which 20 in hospital 
A and 23 in hospital В are satisfied with the service they received. After 
a test, there is no statistically significant difference for satisfaction rate 
between two hospitals. In order to explore whether the difference on 
satisfaction rates between two hospitals is more than 10%, at least how 
many inpatients should be observed?

6. The above satisfaction rates in two samples are 20/30=67% and 
23/30=77% respectively. The difference of them seems not small, but 
the statistical test can hardly reject the null hypothesis of equal satis
faction rates. Suppose the sample sizes were extended to 300 for each, 
and the sample satisfaction rates were still 67% and 77% respectively, 
then the same test resulted in a rejection of the null hypothesis. How to 
understand such a phenomenon? Explain from the point of power.

7. There is an equivalence trial to treat frequent urination, urgent urination, 
and urinary incontinence. The main outcome is the frequency of urination 
during the last 24 hours. The average reduced times of urination are a 
and b in the experimental group and control group, respectively. ±  A 
is defined as the threshold value. Conduct a hypothesis testing on this 
equivalence trial; and discuss under what conditions is the experimental 
group equivalent with the control group?

8. Let us perform a permutation test by hand for a small random subset of 
the DRP data (Example 6.8). Here are the data:
Treatment group: 24 61 
Control group: 42 33 46 37

(1) Calculate the D : the actually observed difference value between two 
groups;
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(2) Resample: mix the two groups together, then simple randomly (use 
die etc.) select two persons as the treatment group, and the rest four 
persons are assigned to the control group. After that, calculate the 
difference value between two groups.

(3) Repeat step (2) for 20 times to get the permutation distribution;
(4) What proportions of the 20 statistics values are equal to or greater 

than the actually observed £>?

(1st edn. Jiqian Fang; 2nd edn. Chun Hao, Jiqian Fang, Xiaoyu Zuo)



Chapter 7

Single-Factor Analysis of Variance

Single factor design has only one treatment factor with G levels (G > 2 ). 
If there are no control factors, it is completely random design; if one control 
factor exists, it is randomized complete-block design; if there are two control 
factors, it is Latin-square design. The completely random design, random
ized complete-block design and Latin-square design are the fundamental 
methods of experiment design, whose results data are usually analyzed by 
analysis of variance (ANOVA). This chapter is to introduce single-factor 
analysis of variance, and the multi-factor analysis of variance can be seen 
in Chap. 22.

7.1 One-Way Analysis of Variance: Completely Random 
Design

7.1.1 The com pletely random  design

For the completely random design, there is only one treatment factor with 
G (>2) levels. The term level refers to the possible status planned for the 
treatment factor. In other words, a total of G treatment groups are planned 
in the experiment. For example, in a clinical trial the factor may be the 
drug, the treatments could be different drugs or different dosages of the 
same drug. N experimental units are randomly assigned into G treatment 
groups. N is known as sample size, which is the total number of units in G 
treatment groups. The sample sizes in different treatment groups are noted as 
П\ ,П2 , ■ ■ ■, nG, which may or may not be equal. It is called a balanced design 
if sample sizes are equal and N — Gn \ otherwise, it is called an unbalanced

197
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Table 7.1 R an d o m ized  g ro u p in g  result.

U n it n u m b er 1 2 3 4 5 6 7 8 9 10 11 12

R an d o m  n u m b er 39 90 22 00 66 82 89 08 92 72 36 60
R an k  (R ) 5 11 3 1 7 9 10 2 12 8 4 6
G ro u p in g  resu lt 2 3 1 1 2 3 3 1 3 2 1 2

design. The efficiency of balanced design is better than that of unbalanced 
design given the same N. The completely random allocation usually results 
in an unbalanced design, which is the simplest and fundamental design. The 
main task of data analysis for this kind of experiments is to compare means 
of the G independent treatments.

Example 7.1 Randomly assign 12 laboratory blood specimens (experi
ment units) into three groups with four blood specimens in each group.

Solution Assign numbers 1 to 12 to the experiment units in a convenient 
manner, for instance, consecutively by certain characteristics of the exper
iment units such as the order of animal’s weights or the order of patients 
visiting a clinic. In the example showed in Table 7.1. blood samples are 
given a number in the order they are collected; then select 12 two-digit 
random numbers from a random number table, a statistical calculator or a 
computer; sort the random numbers and rank them from 1 to 12 (the /?’s in 
Table 7.1); assign blood specimens with R =  1-4 to group 1, R — 5-8 to 
Group 2, and R =  9-12 to group 3. Table 7.1 shows that units 3, 4, 8 , and 7 
have been assigned to group 1, etc.

Note:

1. The digits of the random number must be more than that of N, and skip 
those random numbers that appear more than once.

2. If the sample sizes required for different groups are proportional, then the 
allocation needs to be adjusted accordingly. In Example 7.1, suppose you 
need five blood specimens in group 1, four blood specimens in group two, 
and three blood specimens in group 3, you can assign R =  l-5 togroupl, 
R =  6-9 to group 2, and R =  10-12 to group 3. If N is bigger (say 
N > 30), computer software may be used to create random numbers and
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get the ranks by sorting the random numbers. For instance, randomly 
allocate 50 patients into three groups, n \ =  n2 =  20, «3 =  10, one can 
create the ranks from 1 to 50, and assign the patients with rank 1 to 20 
into the first group, those with rank 21 to 40 into the second group, and 
those with 41 to 50 into the third group.

7.1.2 The underlying concepts of AN OVA

Example 7.2 12 blood specimens are randomly assigned into three groups
according to Table 7.1. Group 1 receives the treatment of anticoagu
lant A; group 2 receives anticoagulant B; and group 3 receives antico
agulant C. For each blood specimen, the erythrocyte sedimentation rate 
(ESR) after receiving the treatment is measured. The aim is to test whether 
the three mean ESRs are significantly different. The results are showed in 
Table 7.2.

There are three kinds of variations in Table 7.2. The first is the total sum 
of squared deviations from the overall mean, denoted as SSj, which repre
sents the deviation of any observation from the “grand mean” X =  12.2. 
The second is the within-group sum of squared deviations, or error sum of 
squared deviations, calculated from the sum of squares of each observation 
about its own group mean, denoted as SS ,̂ which represents the deviation 
of any observation in each group from the “group mean” A,-, 16.0, 11.3 
and 9.3. The third is the between-group sum of squared deviations, calcu
lated from the sum of squares of the deviations of each group mean about 
the grand mean, denoted as , which represents the deviation of group 
mean A, from the “grand mean” X. The three kinds of the sum of squares

Table 7 .2  E ry th ro cy te  se d im en ta tio n  ra te  (E S R  m m /h).

A n ti
c o ag u lan t E S R  f t i j )

G roup
m eans

C* /)

W ith in
g roup

m ean s (sj)

Total 
m ean  (x)

C o m bined
variance

C^c)

A 17 16 16 15 16.0 0 .67
В 10 11 12 12 1 1 .3 0 .9 2 12.2 3.17

C 11 9 8 9 9 . 3 1.58
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can be written as

G  л /

Total s s t =  J 2 Y , ( x u ~ x )2-
i=1 7 = 1

(7.1)

Between-group
G

SSB =  J 2 n> ( X i - X ) 2-
i - 1

(7.2)

Within-group
G  n,

^  =  E E ^ - ^ ) 2' (7.3)
i= 1 7 = 1

For the above example,

G ni

s s t =  E £  (xg - * )2
1=1 7=1

=  [(17 -  12.2)2 +  (16 -  12.2)2 +  (16 -  12.2)2 +  (15 -  12.2)2]

+  [(10 -  12.2)2 +  ( 11 -  12.2)2 +  (12 -  12.2)2 +  (12 -  12.2)2] 

+  [ (1 1 -  12.2)2 +  (8 -  12.2)2 +  (8 -  12.2)2 +  (9 -  12.2)2]

=  105.67,
G

s s B ^ J ^ m C X i - x )2
i = i

=  4 (1 6 .0 -  12.2)2 +4(11.3 -  12.2)2 +  4(9.3 -  12.2)2 =  96.17,
G n,

SSE =  EE (Xjj — X i)2 — SSea + SSeb + SSec
i = 1 7=1

=  [(17 -  16.0)2 +  2 x (16 -  16.0)2 +  (15 -  16.0)2]

+  [ (1 0 -  11.3)2 +  (11 -  11.3)2 +  2 x ( 1 2 -  11.3)2]
+  [ (1 1 -  9.3)2 +  (8 -  9.3)2 +  2 x (9 -  9.3)2] =  9.50.

One can see that 105.67 =  96.17 +  9.50.
In general, it can be proved that

SST = S S e + S S b. (7.4)
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Denote v as degree of freedom accordingly,

V f  —  \>e  +  V B . (7.5)

Then the mean squares or variances will be

Within-group MSe — SSe/ ve- 

Between-group MSB =  SSb/ vb.

(7.6)

(7.7)

The basic calculation of analysis of variance is to divide the total variance 
into within-group variance and between-group variance, and compare the 
two variances by the test statistic F

If F is greater than a given critical value at significant level a , it is 
reasonable to use it as evidence that differences exist and the differences 
are larger than what random variation can explain. If F is less than the 
critical value, it indicates different groups may be equally effective, and the 
differences among sample means may be resulted from random variation.

The above is the main idea of the analysis of variance. If G =  2, it is 
exactly the same as the two-sample t test. In fact, the value of t is the positive 
square root of the value of F, that is, t =  \J~F when G — 2.

7.1.3 Assumptions on analysis of variance and residual analysis

The analysis of variance of a completely random design is also called a 
one-way analysis of variance. The basic assumptions underlying one-way 
analysis of variance are:

(1) Independence, that is, the measurement results are independent 
from one another;

(2) Normal distribution, that is, Xjj follows normal distribution

(3) Homogeneity of variances, crj1 2 3 =  =  • • • =  Oq.

To investigate if results accord with the above assumptions, residual 
analysis can be performed after establishment of analysis of variance model.
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Fig. 7 .1  S c a tte r  p lo t fo r  ch ec k  o f  in d ep en d en ce  assu m p tio n .

For a completely random design, residual can be defined as:

c,j =  Xij -  Xi (7.9)

that is, difference between investigation values and group mean. The group 
mean is the predicted value. e,j can be presented as plots of residuals in 
three modes for residual analysis.

(1) Residuals plot for independence assumption
Take the group mean as horizontal axis and residual as vertical axis to 
draw scatter plot. If the experiment results accord with the indepen
dence assumption, scatter plot is equally distributed above and below 
the horizontal line of zero, see Fig. 7.1.

(2) Residuals plot for check of normal distribution
Residuals can be drawn as Q — Q plot (Q — Q plot, see Chap. 2). If 
the experiment results are normally distributed, Q — Q plot is almost a 
line, and residuals bigger or less than zero are equally distributed, see 
Fig. 7.2.

(3) Residuals plot for check of homogeneity of variances
To take the group number as horizontal axis (for example, three anti
coagulants are given the continual number of 1,2, 3) and residual as 
vertical axis to draw scatter plot. If the experiment results accord with
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Fig. 7 .2  Q—Q p lo t fo r ch eck  o f  n o rm al d is trib u tio n .

Fig. 7.3 S ca tte r p lo t fo r  c h ec k  o f  h o m o g en e ity  o f  variances.

the homogeneity of variances assumption, the distribution of residuals 
for each group is similar, see Fig. 7.3.

In practice, the judgment of residuals is mainly dependent on the 
researchers’ experience, especially when the number of sample in each 
group is less.
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7 .1.3.1 Bartlett’s test

There are many ways to test equality of the variances. The commonly used 
is Bartlett’s test

2 2 2 2 2 2 Ho ■ crj =  a  ̂ — • ■ ■ — (Tq , H i  • 0) ,  о2 , ■ ■ ■, <?q

are not all equal.
A test statistic defined by Bartlett in 1937 is

X , v =  G —

(7.Ю)

where

m 1 +
1

3 (G  -  1) П i  -  1E —^  17. —
1

£ ( « ,  -  0 .

When Ho is true, this statistic is approximately distributed as a / 2 distribu
tion with degrees of freedom G — 1.

If the P-value is less than 0.05 or 0.10, H() is rejected; otherwise H() 
cannot be rejected, that is, there is no enough evidence to say the variances 
of G populations are not equal.

Example 7.2 (Cont’d) Test the homogeneity of variances for the three 
populations in Table 7.2.

Solution Я0:сг2 =  =  ct32, H\ . a \ , a \  and cr32 are not all equal a =  0.05.
From Table 7.2, G =  3, n\ =  щ =  щ =  A, S\ =  0.67, S\ =  0.92, 

S\ =  1.58, S2 =  3.17. Compute with (7.9)

m =  1 +
1

3 ( 3 - 1 ) E 1
£ ( 4 - i ) _

1.148,

X2 1
1.148 E<4-»' In

3.17'
Е Г

- ( 4 -  l)(ln 0.67 + In 0.92 + In 1.58)

=  0.50, v =  3 -  1 =  2.
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Referring to x 2 critical values in Table 7 of Appendix II, x l 10 2 =  4.61, 
P > 0.10, H0 cannot be rejected.

By experience, if the ratio of the maximal sample variance to the 
minimal variance S^in among all the groups is greater than 2.5, one may 
consider that the variances are not equal without homogeneity test.

7.1.3.2 Test for transformations

If the experiment results are not accord with at least one of the assump
tions through residual analysis, some transformations of the scale of 
measurement may improve the departures from normality as well as 
the heterogeneity of variances. The following transformations are often 
used:

Y =  log(X +  a), (7.11)

Y =  VX, (7.12)

Y =  sin-1 yfp. (7.13)

(7.11) is used for positive skew continuous variable, where a is a con
stant; (7.12) is used for Poisson variable; (7.13) is used for a variable of a 
proportion greater than 0 and less than 1 where sin-1 is the function arcsine 
with a unit of radian.

7.1.4 H ypothesis test o f  m eans (one-w ay analysis o f  variance)

Example 7.2 (Cont'd) Table 7.2 shows three sample means about the 
effects of anticoagulant A, В and C, X| =  16.0, Xi  =  11.3, X3 =  9.3. Test 
if there are any differences among the population means of erythrocyte 
sedimentation rate (ESR) corresponding to the three anticoagulant A, В 
and C.

Solution It is a typical statistical inference to make a decision if the three 
anticoagulants A, В and C are differently effective to ESR for all blood 
specimens rather than just the 4 individuals in each group of the experiment. 
It is statistically reasonable to believe that the population means of ESR is the 
same before applying the three anticoagulants because the blood specimens 
were randomly assigned into three groups.
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Table 7.3 The table for one-way analysis of variance.

Source D F SS M S F

Between groups G  -  1 S S B M S  B =  S S B /(G —  1) M S  в IM S  E

Within groups 
(Errors)

N  — G  S S E  = S S T — S S  ft M S  £ =  S S E /(N  - G )

Total N  -  1 S S T

Let ц i, Ц2 and /t3 be the population means after the treatments. Now 
we would test

Hq : ц\ =  Ц2 =  H\ '■ /А, И2 and ^ 3 are not all the same,

a =  0.05.

The values of F and degrees of freedom can be calculated according 
to Table 7.3 for one-way analysis of variance. There the SSB is the same 
as that in (7.3), but for convenience of calculation, (7.3) could be written as 

In Table 7.3, source means the source of variance, DF means degrees 
of freedom, SS means the sum of squares of the deviations, MS means the 
mean squares of deviations,

Based on the data in Table 7.2, an ANOVA table can be obtained.

3  4

SST =  “  12'2)2 =  105-67’
i= 1 j = 1

G

SSB =  : - X ) 2
;=i

=  4 x (16.0 -  12.2)2 +  4 x (11.3 -  12.2)2 +  4 x (9.3 -  12.2)2 

=  96.17,

SSE =  SST -  SSB =  9.50, 

vB =  3 -  1 =  2, MSB =  96.17/2 =  48.09, 

vE =  1 2 - 3  =  9, MSB =  9.50/9 =  1.06,

F  =  48.09/1.0 =  45.37.



Single-Factor Analysis of Variance 207

T a b le  7 .4  T able  o f  on e -w ay  A N O V A  fo r the  e ffec ts  o f  the  a n tico ag u lan ts .

Source D F S S M S F P

Between the anticoagulants 2 96.17 48.09 45.37 <0.05
Errors 9 9.50 1.06

Total 11 105.67

Table 7.5 Defervescence time of patients with type-B encephalitis in three 
groups (days).

Groups Defervescence time ( x , j ) x s2 Xj s f

A 0, 2, 0, 0, 5, 9 2.67 13.4667
В 3 2 ,1 3 ,6 ,7 ,1 0 ,2  7.05 55.30 11.6667 113.0667
C 0, 11, 15, 11,3, 1 6.83 39.3667

The results are listed in Table 7.4. Referring to F critical values in 
Table 6.1 of Appendix II, /'0.05,2,9 =  4.26. Since 45.37 > Tb.05,2,9> P <
0.05, Ho is rejected and alternative hypothesis Hi is accepted. That is to 
say that there may exist differences among different population means.

Example 7.3 18 patients with acute encephalitis В in a clinic were ran
domly allocated into three groups. Each group accepted different treatment, 
say treatment A, treatment В and treatment C; and the days with fever were 
measured as the effects of treatments, see Table 7.5. Make an inference 
from the differences of means of days fever with among the three groups 
whether the treatments had different effects.

Solution (1) Calculate descriptive statistical values, see Table 7.5.

(2) Residual plot for check of independence, see Fig. 7.4.

(3) Residuals plot for check of normal distribution, see Fig. 7.5.

(4) Residuals plot for check of homogeneity of variances, see Fig. 7.6.

(5) Test for transformations

The residuals in Fig. 7.4 showed sector distribution, that is, the bigger 
the group means, the bigger the residuals, which does not accord with 
the independence assumption. The Q—Q plot of residuals in Fig. 7.5
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Predicted Value for X

Fig. 7.4 Scatter plot for check of independence assumption for Table 7.5.

Fig. 7.5 Scatter plot for check of normal distribution for Table 7.5.

showed obvious curvilinear relationship, which does not accord with the 
assumption of normal distribution (for professional consideration, defer
vescence time may be positive skewness distribution). In Fig. 7.6, residuals 
in groups A and C showed a distribution between —10 to 10, however, 
residuals in group В was between - 1 0  to 20 , which might not accord 
with the assumption of normal distribution. Figure 7.6 also showed positive
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Fig. 7.6 Scatter plot for check of homogeneity of variances for Table 7.5.

Table 7.6 Square root transformation for data in Table 7.5.

Treatment groups у  =  V* — ?
У sc

— 2 
У1 s i

A 0, 1.414, 0, 0, 2.236,3 l . i i 1.73
В 5.657, 3.606, 2.449, 2.646, 3.162, 1.414 2.16 2.05 3.16 2.05
C 0, 3.317, 3.873, 3.317. 1.732, 1 2.21 2.36

proportion between group mean and variance. The maximum variance 
113.0667 was approximately 10 times of minimum variance 13.4667. 
Through Bartlett’s test, x 2 — 4.76, P <0.10, it showed heterogeneity of 
variance. In Table 7.6, square-root transformation in (7.10) was performed, 
and the residuals plots are in after transformation are in Figs. 1.1-1.9.

After transformation, sector distribution of residuals was obviously 
improved (Fig. 7.7); the scatter in Q -  Q plot was equally distributed 
(Fig. 7.8); the distribution ranges for grou A, В and C were similar (Fig. 7.9). 
The ANOVA table can be obtained by putting description statistics from 
Table 7.6 into Table 7.3 (Table 7.7).

Conclusion: At the level of a =  0.05, there has no statistical significance 
for the difference among the three groups.
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Predicted Value for у

Fig. 7.7 Scatter plot for check of independence assumption for Table 7.6.

Fig. 7.8 Scatter plot for check of normal distribution for Table 7.6.

7.1.5 Multiple comparisons

When G > 2 and the null hypothesis HQ : p\ =  p 2 =  ■ ■ ■ =  Pc  is rejected 
by a one-way ANOVA, the experimenters still do not know whether the 
differences of means between any pair of groups exist? Multiple compar
isons will solve the problem and sometimes do not rely on the result of
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Fig. 7.9 Scatter plot for check of homogeneity of variances for Table 7.6.

Table 7.7 Analysis of variance for data in Table 7.6.

Source D F S S M S F P

Between groups 2 12.5965 6.2983 3.08 >0.05
Errors 15 30.6700 2.0447

Total 17 43.2665

ANOVA table. There are at least two situations to form the null hypotheses 
for multiple comparisons.

1. To examine whether two specified means are equal or not. The null 
hypothesis is # 0 : //, =  fij(i ф j).  The probability of type I error when 
H0 is rejected is called comparison-wise error rate (CER). The tests can 
be performed without doing ANOVA in advance.

2. To examine whether all the means of comparison groups are equal. Я0 : 
Hi =  fij(i < j , i ,  j  — 1 , 2 , . . . ,  G). Usually the tests are performed 
after rejecting H0 by the analysis of variance to show more details of 
differences between every pairs of means. The probability of type I error 
in rejecting # 0 is called experiment-wise error rate (EER).

There are various methods of multiple comparisons in statistics. Here, 
some frequently used methods are introduced which are used to control 
CER and EER.
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7.1.5.1 LSD-t test (least significant difference t test)

Make an inference if Hi and и j are different based on the selected 
experiment result djj =  X, — X r  dq has special meaning in the experi
ment, e.g. the difference between jth  treatment group and the control group 
with treatment i. Using MS E in the table of analysis of variance, compute 
the standard error of dq

S~dij =  j M S E{\/n,  +  l /n j )  (7.14)

and compare |X(- — Xj\ with the critical value ta,vSdij.
Hq: Hi =  nj  is rejected if

\ X , - X j \  > ta,vS2ij, (7.15)

where ta<v is the critical value of t distribution with degrees of freedom v, 
which is the DF of error or DF within groups in the table of analysis of 
variance.

Example 7.2 (Cont’d) For the anticoagulant experiment, X | =  16.0, 
X2 — 11.3, X3 =  9.3 are listed in Table 7.2, and v=9, MSE =  1.06 have 
been presented in Table 7.4. Compare the effect of anticoagulant A with В 
and A with C.

Solution n i =  n2 =  n3 =  4, MSE — 1.06. Compute with (7.13), Sdr =  
Sj.. — 0.73. Given a =  0.01, v — 9, referring Table 5 of Appendix II, 
U.03,9 =  3.25. Compute with (7.14), Sdj. =  3.25 x 0.73 =  2.37.

Hq : m  =  Hi, |X, -  X2| =  16.0 -  11.36 =  4.70 > 2.37, P < 0.01, 
reject HQ.

H q : hi =  Fm |X2 -  X3| =  11.3 -  9.3 =  2.00 < 2.37, P > 0.01, do 
not reject H q .

It is concluded that the effects of anticoagulant A and anticoagulant В 
are different at significant level a =  0.01. But that of anticoagulant В and 
anticoagulant C are not statistically different.

7.1.5.2 SNK-q test (Student-Newman-Keuls q test)

Make all possible comparisons among all group means in an exper
iment after the analysis of variance rejecting the null hypothesis 
Hq : hi =  P2 =  ■ ■ ■ =  Fg- Using MSE in the table of analysis of variance,
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compute the standard error of mean for each group if n\ =  «2 =  • • ■ =
nG =  n,

SY =  y/MSE/n.  (7.16)

If n’s are not equal, substitute n into (7.15) with

n

All means should be sorted from the smallest to the biggest to 
form contrasts. Each contrast may contain a means, a =  2, 3, , G.  
In Example 7.2, the means of three groups are sorted as 9.3, 11.3 and 16.0; 
if 9.3 and 11.3 are selected to form a contrast, a =  2; if 9.3 and 16.0 are 
contrasted, a =  3, because 11.3 is included in the range and the contrast 
9.3-16.0 contains three means; if 11.3 and 16.0 are contrasted, a =  2 as 
well. With the parameters a and v, the critical value qa,a,v of SNK-г/ test 
can be found from Table 7 of Appendix II. H0 : /<,• =  /и j is rejected if

\ X i - X j \ > q a^ vSxir (7.17)

Example 7.2 (Cont’d) From Table 7.4, HQ : ц\ =  ц 2 — Мъ was rejected 
by the analysis of variance. That is to say that there were at least two group 
means different among the three. Do all comparisons among means to find 
out if any difference exists among the anticoagulants.

Solution From Table 7.2, X| =  16.0, Хг =  11.3, Хт, — 9.3. And from 
Table 7.4, v =  9, MSE =  1.06. Three comparisons may be performed, 
they are, the comparisons between A and B, A and C as well as В and C. 
Compute the standard error of mean with formula (7.15) for equal sample 
sizes n =  4 and Sy =  0.51. Then sort the means in ascending order, 
Xc =  9.3, Хв =  11.3, XA =  16.0. Given a =  2, 3 and a =  0.01, refer to 
Table 7 of Appendix II, compute the critical values gtt,a,vSy.

For ci =  2, <70.01,2,9 =  4.60, <7 0 .0 1 ,2 ,9 ^ 7  =  4.60 x 0.51 =  2.35.
For a =  3, <70.01,3,9 =  5.43, <70.01,3,9*57 =  5.43 x 0.51 =  2.77.
To test #0 : Mb =  Me> with a — 2, and the critical value <70.01,2,9 S j  =  

2.35, XB — Xc =  11.3 — 9.3 =  2.0 < 2.35, P > 0.01, # 0 is not rejected.
To test H0 : m a  =  M b , =  16.0 - 1 1 . 3  =  4.7 > 2.35,

P < 0.01, He is rejected.
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Anticoagulants С В A
Means of ESR 9.3 11.3 16.0 
Grouping (С. B) (A)

Fig. 7.10 The grouping of the effects of the three anticoagulants.

To test Hq : ha =  Be, with a =  3, and the critical value <70.01,3,9%  =  
2.77, XA - X C =  16.0 -  9.3 =  6.7 > 2.77, P < 0.01, HQ is rejected.

All comparison results can simply be demonstrated in Fig. 7.10.
Figure 7.10 implies that the effects of the three anticoagulants to ESR can 

be divided into two classes, one is (С, B), and another is (A). In conclusion, 
there is no statistically significant difference between anticoagulant В and 
anticoagulant C, but anticoagulant A has different effect on ESR comparing 
with anticoagulant В and anticoagulant C.

7.1.5.3 Bonferroni test

Bonferroni pointed out that for each test, the test level is a ' , if total m compar
isons were performed, when H0 is true, the cumulated probability for type I 
error < та'. This is the famous Bonferroni inequality. For example, after 
analysis of variance, the difference among the four samples has statistical 
significance. Then multiple comparisons between any two of the groups are 
needed. If there are three comparisons, m =  3 and a' =  0.05, the probabil
ity of none of type I error for the three comparisons is (1 — 0.05)3 =  0.857, 
and the cumulated probability for type I error is 1 — 0.857 =  0.143. Hence, 
if the cumulated probability for type I error after multiple comparisons is 
limited by a, the above Bonferroni inequality a =  та' can be used to 
ascertain the test level

for each test.
m

\ X j ~ X j \

S X i - X j

\ X i - X j \
V —  terror*

(7.18)

(7.19)

Basically, Bonferroni test is the adjustment of test level, so it is called 
Bonferroni adjustment method. The method is suitable for all comparison 
of two groups, including multiple comparisons of means and probabilities.
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Table 7.8 Analysis table of f-test for multiple comparison of 
data in Example 7.2.

Comparison
groups

Mean difference 
( X t  - X j ) S E t P

A vs. В 4.75 0.726 6.543 <0.0167
A vs. C 6.75 0.726 9.298 <0.0167
В vs. C 2.00 0.726 2.755 0.067

Bonferroni test is the most conservative comparison method. When the 
time of comparisons (m) is less, the effect is better. However, if the time of 
comparisons (m) is more (for example, m > 10), the conclusion might be 
less conservative. Therefore, Sidak (1967) used

a' =  1 -  (7.20)

as the test level for each comparison.

Example 7.2 (Cont’d) Multiple comparison for the three anticoagulants.

Solution The Я() was rejected in analysis of variance in Table 7.4, which 
indicated at least two groups had difference. (7.19) was used to perform 
/-test. According to Bonferroni test, the test level for each comparison is

m
0.05
~T~

0.0167

and the comparison results are listed in Table 7.8.
When a' =  0.0167, the result of Bonferroni test showed statistical sig

nificance between A and B, A and C. However, no statistical significance 
was found between В and C.

7.2 Two-Way Analysis of Variance: Randomized 
Complete-Block Design

7.2.1 The ran dom ized  com plete-block design

There are n blocks and each block contains G experimental units to receive 
G treatments randomly. The total number of observations is N =  nG. The 
object of grouping the experimental units into n blocks before delivering 
treatments is to have the units in the same block as uniform as possible so
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that the variability among different blocks will be greater than that within 
the blocks. The advantage of this design comparing with the completely 
random design is to reduce the effect of the variation among the exper
imental units if the difference among blocks was a main source of vari
ation. The disadvantage is that all the sizes of different blocks (or say, 
the numbers of experimental units in different blocks) should be equal to 
the number of treatments, otherwise, the statistical analysis will be dif
ficult. The principle of the randomized complete-block design has been 
used in paired /-test in comparison of two treatments with paired observa
tions mentioned in Chap. 4, where each block contains only two units, that 
is, G =  2.

Example 7.4 12 mice have been grouped into four blocks according to
their birth litters and each block has 3 mice. Randomly assign 3 kinds of 
feed to the 3 mice in each block.

Solution Number the 3 mice in each block in some convenient manner, 
say, assigning 1 to 3 to the mice according to the orders of their weights in 
each litter. The treatments are also numbered, for instance, feed A, feed В 
and feed C are represented by 1, 2 and 3 respectively. Then determine 
the numbers of treatments by the ranks of random numbers and repeat 
the procedures for each block. The results of randomization in this example 
are listed in Table 7.9.

7.2.2 Two-way an alysis o f  variance

The observations after experiment, denoted as Х ц , can be listed in the format 
as Table 7.10. There X,j means the reading in /th block, y'th treatment; /?, 
is the sum of the readings in /th block; 7) is the sum of the readings in /'th

Table 7.9 Random allocation of the randomized complete-block design.

Block Unit No. Random No. (Rank) Unit No. (Treatment)

1 1 2 3 28(1) 65(3) 62 (2) 1 (A) 2(C) 3(B)
2 I 2 3 79 (3) 21(2) 05(1) 1 (C) 2(B) 3(A)
3 1 2 3 81 (2) 51 (1) 94(3) 1 (B) 2(A) 3(C)
4 1 2 3 19(1) 90 (3) 76 (2) 1 (A) 2(C) 3(B)
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Table 7.10 The observations of the randomized complete-block design.

Block 1

Treatment 

2 ... к Mean (block)

1 X n X i2 ■ XU x.l
2 X 21 X n • x 2k x.i

n Xnl X , a  ■ ■■ x nk X.n

Mean (treatment) x.l x.l x.k X

Table 7.11 The table of analysis of variance for randomized complete-block design.

Source D F S S M S F

Treatment к -  1 S S B i M S  в  I - S S B \ / ( k  -  1) M S  B i / M S  E

Block n  — 1 S S b i M S B2 =  S S B 2/ ( n -  1) M S B 2 / M S E

Error (Jfc -  1)(л — 1) S S e M S E = S S E / ( k - \ ) ( n  -  1)

Total k n  — 1 S S T

treatment. Other calculations to form the table of analysis of variance are 
shown in Table 7.11.

(7.21)—(7.24) show the variance analyzing for two-way analysis of vari
ance.

п к

SS for total =  E E  (Хи -  X)2
; = i  j = l

=  sum of square for difference between experiment 

results and total mean, (7.21)
П

SS for blocks =  ^ k ( X ,  — X)2
i=l

=  weighted sum of square for difference between each

(7.22)block mean and total mean
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of which, к is the experiment units number represented by mean of each 
block.

к
SS for treatment groups =  У^ n (X j  — X)2

7=1

=  weighted sum of square for difference between 

each treatment mean and total mean (7.23)

of which, n is the experiment units number represented by mean of each 
treatment group.

SS for error =  SS for total — SS for blocks — SS for treatment groups.
(7.24)

Then, table of analysis of variance can be obtained. In Table 7.11, there 
are two F values which can be calculated for treatment and block respec
tively. Similarly, when к =  2, F\ is equivalent to t value in paired 7-test. 
In fact, the paired 7 is the positive square root of F\, that is, paired 
t — s/~F\-

Example 7.5 The riboflavin concentration of three groups of broccoli 
leaves was measured under four conditions: А, В, C and D . The experiment 
results were listed in Table 7.12. Is there any statistical significance among 
the four conditions?

Solution There are three blocks for the three groups, n =  3, к =  4, nk =  
3 x 4 =  12. The descriptive statistical values ofTable7.12 are (7.21)—(7.24)

Table 7.12 T h e  rib o flav in  co n ce n tra tio n  o f  b ro cco li leav es (pg/g).

M e a su rem e n t c o n d itio n s 
-------------------------------------------  B lo ck  m eans

G roups A В C D (* ;.)

1 27 .2 24 .6 39.5 38 .6 32.5
2 23 .2 24 .2 43.1 39.5 32.5
3 24.8 22.2 45 .2 33 .0 31.3

M ean  (3c. j ) 25.1 23 .7 42 .6 37 .0 32.1 (7 )
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for variance analyzing.

3 4

SS for total =  J 2  J 2  ~  32 1)2 =  81837 •
<=1 7 =  1

3

SS for blocks =
i=i

=  4 x (32.5 -  32.1)2 + 4  x (32.5 -  32.1)2 

+  4 x (31.3 -3 2 .1 )2 

=  3.76.
к

SS for treatment groups =  ^ ^n(X  j  — X)2
3 =  1

=  3 x (32.5 -  32.1)2 +  3 x (32.5 -  32.1 )2 

+  3 x (31.3 — 32.1)2 +  3 x (31.3 — 32.1)2 

=  765.53.

SS for error =  818.37 -  3.76 -  765.53 =  49.08.

(Notes: The calculation results of SS for blocks and for treatment groups are 
just for demonstration. We only kept up to two decimal points, the results 
might different from that in Table 7.13 for rounding error.)

Then the table for two-way analysis of variance can be obtained 
(Table 7.13). The conclusion is that the difference among the four mea
surement conditions has statistical significance (P < 0.01), and difference 
among the three groups has no statistical significance.

Table 7.13 T able fo r tw o -w ay  an a ly s is  o f  variance.

S ource DF SS MS F P

M easu rem en t c o n d itio n s 3 765 .53 2 55 .18 31 .20 <0.01
G roups 2 3.76 1.88
E rro r 6 49 .08 8.18

Total II 818.37
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Residual analysis: using means of treatment groups as horizontal axis, the 
independence, normal distribution homogeneity of variances are shown in 
Figs. 7.11-7.13 respectively. It shows the experiment results accord with 
the basic assumption of two-way analysis of variance.

К  -2 .0 0 -

Predicted Value for x

Fig. 7.11 Scatter plot for check of independence assumption for Table 7.12.

O bserved Value

Fig. 7.12 Scatter plot for check of normal distribution for Table 7.12.
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2.00

X 0.00 

О

15э■OиV
CC -2.00

-4.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

treat

Fig. 7.13 Scatter plot for check of homogeneity of variances for Table 7.12.

The results for multiple comparison (Bonferroni test) of treatment 
groups (measurement conditions) are listed in Table 7.14 (from statistical 
software).

7.3 Three-Way Analysis of Variance: The Latin-Square Design

7.3.1 D esign o f  Latin  squares

Example 7.6 To compare the effects of three feeds to the weight of mice. 
There are three litters of mice and they have different weight initially.

Solution Refer to Fig. 7.14, in which the treatments are feeds denoted by 
A, В and C, and the mice are blocked by two systems, the rows represent 
litters the mice belonging to, and the columns represent the orders of weight 
in each litter.

In Fig. 7.14: 3 x 3 =  9 mice in total need to be observed; according to 
the order of weight, 3 mice in litter 1 are fed by A, В and C; 3 mice in 
litter 2 are fed by В, C and A; and 3 mice in litter 3 are fed by C, A and B.

Figure 7.14 is called 3 x 3  Latin square, where each row as well as each 
column has A, В and C appearing once and only once. In general, for any 
integer k  one can have at least one к  x к  Latin square, in which each row
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Table 7.14 Multiple comparison for treatment 
groups in Table 7.12.

Comparison
groups

Mean difference 
(Xi ~ X j ) S E P

A  vs. В 1.40 2.34 1.000
A  vs. C -17.53 2.34 0.002
A  vs. D -11.97 2.34 0.013

В  vs. A -1 .40 2.34 1.000
В  vs. C -18.93 2.34 0.001
В  vs. D -13.37 2.34 0.007

C  vs. A 17.53 2.34 0.002
C  vs. В 18.93 2.34 0.001
C  vs. D 5.57 2.34 0.327

D  vs. A 11.97 2.34 0.013
D  vs. В 13.37 2.34 0.007
D  vs. C -5 .57 2.34 0.327

The order of weights

I II III

1 A В c
Litter 2 в c A

3 c A В

Fig. 7.14 An example of 3 x 3 Latin square.

as well as each column has different Latin letters appearing once and only 
once. The design based on Latin square is a straightforward generalization 
of the randomized block design.

Example 7.7 Five subcutaneous injections with different dosages are 
injected into the bodies of rabbits on test their effects to the blister on 
the rabbits’ skin. Make an experimental design with a Latin-square and test 
the differences among drugs.

Solution Take the positions of injection as experimental units, which can 
be simultaneously blocked in two ways, rabbits and positions in each rabbit. 
Selecting a basic 5 x 5  Latin-square from Table 7 of Appendix II, take five 
subcutaneous injections as treatments denoted by А, В, C, D and E, the
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row blocks represent the rabbits labeled with 1,2, 3, 4 and 5, the column 
blocks as the positions of injection labeled with I, II, III, IV and V. The 
procedures of random permutation of rows and columns of the basic 5 x 5  
Latin-square table are demonstrated as follows.

7.3.1.1 Randomly permute the rows

Get four two-digit random numbers, say 66, 05, 32, 88, and rank them, 
R =  3, 1, 2,4; exchange the third row with the first row, and exchange the 
second row with the fourth row.

A В C D E
rows 

3 ** 1

c D E A В
rows 

2 4

c D E A В

В C D C A в C D E A D E A В c
C D E A В A В C D E A В C D E

D E A В C D E A В C В C D E A
E A В C D E A В C D E A В C D

7.3.1.2 Randomly permute columns

Get another four random numbers and their ranks, say 53,85,39,06, R =  3, 
4,2, 1; exchange between columns 3 and 4 and between columns 2 and 1.

C D E A В C D A E В

D E A В c Columns D E В A С

A В C D E 3 «*4 A В D C E
В C D E A В C E D A
E A В C D E A C В D

D C A E В
E D В A С
В A D C E
C В E D A
A E C В D

The final experimental design is listed in Table 7.15.
Another way of randomization in the Latin-square design is just ran

domly assign t treatments into t Latin letters in the basic Latin square when 
t is relative large, say t > 6.

7.3.2 A nalysis o f  variance

The observations of Latin-square design could be listed as Table 7.16. 
Descriptive statistics x, is the mean of Xy in row /, and Xj is the mean of 
Xjj in column j ,  xk is the mean of Xy under the treatment k.
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Table 7.15 5 x 5  Latin-square design.

Number of injection position

of rabbit I 11 III IV V

1 D C A E D
2 E D В A C
3 В A D C E
4 C В E D A
5 A E C В D

*Five subcutaneous injections denoted as 
A, B , C ,  D  and E

Table 7.16 The experimental results of Latin-square design.

Column

Row 1 2 t Mean (row)

1 X n X n . . .  x u x \ .

2 X 2\ X22 . . .  x 2t x 2.

T X ,l X ,2 . . .  X tt Xt.

Mean (column) x.i X.2 x . t X

Mean (treatment) A В

Total *1 x 2 X,

Equations (7.25)—(7.29) give the variance analyses for design of Latin 
squares.

t t
SS for total =  E E <*« ̂  *>2

f = 1 7 = 1

=  sum of square for difference between experiment results 
and total mean (7.25)

t

SS for row =  E t ( X , - X ) 2
i= 1

=  weighted sum of square for difference between each row 
mean and total mean (7.26)
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of which, t is the experiment units number represented by the mean of each 
row.

к

SS for column =  E t(X.j -  X )2 
j = i

=  weighted sum of square for difference between each 
column mean and total mean (7.27)

of which, t is the experiment units number represented by the mean of each 
column.

t
SS for treatment =  ^  r(X; — X)2

k=\

— weighted sum of square for difference between each 
treatment mean and total mean (7.28)

of which, t is the experiment units number represented by the mean of each 
treatment group.

SS for error =  SS for total — SS for row — SS for column

— SS for treatment. (7.29)

Then, table of three-way analysis of variance can be obtained. In 
Table 7.17, there are three F values, which represent mean differences 
among treatments, rows and columns, respectively.

Example 7.8 In order to compare the effect of the seven kinds of drugs, 
seven diastasis intestine tracts of animals were used to receive the treatments 
of seven drugs for each intestine tract. The measurements were scores of

Table 7.17 The ANOVA table for Latin-square design.

Source D F S S M S F

Treatment t -  1 S S B i M S B \ = S S B \ / { t - \ ) M S  в  1 / M S  e

Row t -  1 S S b i M S B2 =  S S B 2/ ( t  -  1) M S B 2 / M S E

Column t -  1 S S B 3 M s B 3 =  s s B 3 / ( t - D M S B 3/ M S E

Error (f -  l)(r -  2) S S e M S E = S S E / ( t - \ ) ( t - 2 )

r2 -  1 S S TTotal
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Table 7.18 T h e  d e s ig n  an d  th e  m easu red  sco res o f  re sp o n se  in tensity .

O rd e r o f  trea tm e n ts
____________________________________  M e a n  (row )

In te s tin e  trac t 1 2 3 4 5 6 7 ( x t )

1 A21 В 19 CO DO £ 5 £ 5 G 2 7.4
2 В  25 £ 4 A3 GO £1 D 2 СО 5.0
3 CO £ 7 GO f i l l D 7 A 6 £ 4 5 .0
4 D IO G 4 £ 7 £ 7 CO В 17 А 7 7.4
5 £6 DO B 9 CO A 1 G 4 £ 5 3.6
6 F I CO D IO A l l G 3 £6 В 15 7.4
7 G 3 A 6 £ 3 £12 В 26 СО D 6 8.0
M ean  (co lu m n ) 10.3 5.7 4 .6 5 .9 6.1 5.7 5 .6

M ean  (trea tm en t) A В C D £ £ G 6.3 (7 )

(xk) 55 122 0 35 44 35 16

response intensity. Randomly assign seven drugs to be treatments denoted 
as А, В, C, D , E, F, G, and took intestine tracts as row block, the order of 
receiving the treatments as column block. A 7 x 7 Latin-square design was 
applied and the results were showed in Table 7.18. Judge whether there is 
any difference for the average scores of response intensity among the drugs.

Solution According to (7.25)—(7.29), we have

7 7

Total SS =  J 2  J 2  (X'7 -  63)2 =  2019-55-
<=1 7=1

7

Row SS =  x (*«. -  * )2
i=l

=  7 x (7.3 -  6.4)2 +  7 x (5.0 -  6.4)2 +  7 x (5.0 -  6.4)2

+  7 x (7.4 -  6.4)2 +  7 x (3.6 -  6.4)2

+  7 x (7.4 -  6.4)2 +  7 x (8.0 -  6.4)2

=  122.69.
7

Column SS =  7 x (X j  -  X f
7=1

=  7 x (10.3 -  6.4)2 +  7 x (5.7 -  6.4)2 +  7 x (4.6 -  6.4)2
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+  7 x (5.9 -  6.4)2 +  7 x (6.1 -  6.4)2

+  7 x (5.7 -  6.4)2 +  7 x (5.6 -  6.4)2

=  142.12.
7

Treatment SS =  ^  7 x (X* — X)2
k= 1

=  7 x (7.9 -  6.4)2 +  7 x (17.4 -  6.4)2 +  7 x (0 -  6.4)2 

+  7 x (5.0 -  6.4)2 +  7 x (6.3 -  6.4)2

+  7 x (5.0 -  6.4)2 +  7 x (2.3 -  6.4)2

=  1298.12.

Error SS =  2019.55 -  129.69- 142 .12- 1298.12 =  456.62.

(Notes: We only keep up to two decimal places for the results of SS for row, 
column and treatment groups, the results might be different from that of 
statistical software for rounding error.)

Then the table of analysis of variance can be obtained (Table 7.19). The 
conclusion is that the difference among the drugs has statistical significance 
(P < 0.01), and difference among the samples and orders has no statistical 
significance.

The Latin-square design can greatly reduce the experimental units, and 
especially suitable for animal or laboratory experiment. The disadvantage 
of this experimental design is that most experiments, for instance in clinical 
trials, could not meet the condition of the equal numbers of treatments, row 
blocks and column blocks.

Table 7.19 T h e  A N O V A  tab le  fo r  7 x  7 L a tin -sq u are .

S ource D F S S M S F P

A m o n g  d ru g s 6 1298.12 216.35 14.21 < 0.01
A m ong  sam ples 6 122.96 20.45 1.34 > 0 .0 5
A m o n g  orders 6 142.12 2 3 .69 1.56 > 0 .0 5
E rro r 30 4 56 .62 15.22

Total 48  2019 .55
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Residual analysis: using means of treatment groups as horizontal axis, 
independence, normal distribution and homogeneity of variances can be 
shown in Figs. 7.15-7.17, respectively. Figure 7.15 shows sector trend. 
Fig. 7.16 shows some scatters departure from the line. The residual analysis
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Fig. 7.17 Scatter plot for check of homogeneity of variances for Table 7.18.

Treatment (drugs) C  G  D  F  E  A  В
Mean of intensity score (I class) 0 2,29 5.0 5.0
Mean of intensity score (II class) 2.29 5.0 5.0 6.29 7.8ft
Mean of intensity score (III class) 17,43

Fig. 7.18 Categories for different intensity of drugs effect.

after transformation can be used to improve the independence and normality 
(see Sec. 7.5 in this chapter).

The results of multiple comparisons (SNK test) for treatment groups can 
be found in Fig. 7.18 (from statistical software). There are three categories 
for the seven drugs: no effect or low effect (class I), middle effect (class II), 
and strong effect (class III).

7.4 Computerized Experiments

Experiment 7.1 Randomization with random numbers In Program 7.1, 
N is the number of objects in an experiment, and given 50 in current 
experiment. Table 7.20 shows the output of SAS program. Lines 03-06 
in Program 7.1 create random numbers from a uniform distribution, noted
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Program 7.1 Program for complete randomization.

Line Program Line Program

01 DATA DS; 08 PROC SORT; BY RAND;RUN;
02 N=50; 09 PROC RANK;
03 DO UNIT=1 TON; 10 VAR RAND;
04 RAND=RANUNI( 12345); 11 RANKS R;
05 OUTPUT; 12 RUN;
06 END; 13 PROC PRINT NOOBS;
07 DROP N; 14 TITLE TH E TREATMENT 

ALLOCATION TABLE’;
15 RUN;

Table 7.20 The treatment allocation.

UNIT RAND R UNIT RAND R

32 0.02057 1
40 0.05069 2 10 0.76408 40

41 0.76474 41
23 0.35052 20 42 0.78983 42

35 0.35687 21
1 0.36292 22 34 0.98701 50

as ‘RAND’; the number 12345 in line 04 is called seed, which can be 
transferred to any five-digital number. Line 08 is a procedure to create ranks 
of random numbers; lines 09-12 present ranked serial numbers named ‘R \ 
Lines 13 and 14 control the output. From the output in Table 7.20, the exper
imenters can write their own allocation table, for example, the units with 
numbers of 32 , 40 , . . . ,  23 and ranks 1-20 are allocated to group 1, the units 
with numbers of 35, 1 , . . . ,  10 and ranks 21^-0 to group 2, the units with 
numbers of 41 , 42 , . . . ,  34 and ranks 41-50 to group 3.

Experiment 7.2 One-way analysis of variance (completely randomized 
design) Program 7.2 is a program to analyze data with completely ran
domized design in Example 7.3. Line 03 in Program 7.2 could be Y1=X 
(no transformation) or Y1=SQRT(X+1). Lines 09 and 10 control the
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Program 7.2 Program for analyzing Example 7.3.

Line Program Line Program

01 DATA FEVER; 09 PROC MEANS;VAR X Y l;
02 INPUT TREAT $X  @@; 10 CLASS TREAT; RUN;
03 Y1=SQRT(X); 11 PROC ANOVA;
04 CARDS; 12 CLASS TREAT;
05 A 0 A 2 A 0 A 0 A 5 A 9 13 MODEL Y1=TREAT;
06 В 32 В 1 3 B 6 B 7 B  10B2 14 MEANS TREAT/SNK;
07 C 0 C 1 1 C 1 5 C 1 1 C 3 C 1 15 RUN;
08

printing mean and standard deviation. Lines 11-13 control the printing of 
ANOVA table. Line 14 indicates the method of multiple comparisons, where 
SNK could be replaced by LSD (the least significant test) if necessary.

Experiment 7.3 Residual analysis Program 7.3 is a program for resid
ual analysis after yi =  J x  transformation for Example 7.3. Lines 09-13 
use the GLM to fit complete randomized analysis of variance model and 
create GMEANS and residual ERR. Lines 14-16 keep the basic data set 
of residual analysis which have three analysis variables: treatment group

Program 7.3 Program for residual analysis for Example 7.3.

Line Program Line Program

01 DATA FEVER; 14 DATA ResidualPlot;
02 INPUT TREAT $X  @@; 15 SET Residual (KEEP=TREAT
03 Y1=SQRT(X); GMEANS ERR);
04 CARDS; 16 RUN;
05 A 0 A 2 A 0 A 0 A 5 A 9 17 PROC PLOT DATA=ResidualPlot;
06 B 3 2 B 1 3 B 6 B 7 B 1 0 B 2 18 PLOT ERR*GMEANS=' *'
07 C 0 C  11 С 15C 11 C 3 C  1 ERR*TREAT=' *' / vref =  0 vpos=25
08 ‘ hpos=60;
09 PROC GLM; 19 RUN;
10 CLASS TREAT; 20 PROC CAPABILITY DATA
11 MODEL Y1=TREAT; 21 =ResidualPlot;
12 OUTPUT OUT=Residual QQPLOT ERR/ NORMAL (mu=0

predicted=GMEANS residual=ERR; sigma=l color=blue);
13 RUN; 22 RUN;
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Program 7.4 Program for analyzing Example 7.7.

Line Program Line Program

01 DATA LATIN; 13 5 4 C 0 5 5 A 1 5 6 G 4 5 7 F 5
02 INPUT R C TREAT $ X @ @; 14 6 1 F 7 6 2 C 0 6 3 D  10
03 CARDS; 15 6 4 A 1 1 6 5 G 3 6 6 E 6 6 7 B  15
04 1 1 A21 1 2 B 19 1 3 C 0 16 7 1 G 3 7 2 A 6 7 3 F 3
05 1 4 D 0  1 5 E 5  1 6 F 5 1 7 G 2 17 7 4 E  12 7 5 B 2 6  7 6 C 0 7 7 D 6
06 2 1 B 25 2 2 E 4 2 3 A 3 18 ’
07 2 4 G 0 2 5 F 1 2 6 D 2 2 7 C 0 19 PROC ANOVA;
08 3 1 C 0 3 2 F 7 3 3 G 0 20 CLASS R C TREAT;
09 3 4 B  11 3 5 D 7 3 6 A 6 3 7 E 4 21 MODEL X =  R C TREAT;
10 4 1 D 10 4 2 G 4 4 3 E 7 22 MEANS TREAT/LSD;
11 4 4 F 7 4 5 C 0 4 6 B  1 7 4 7 A 7 23 RUN;
12 5 1 E 6 5 2 D 0 5 3 B 9

TREAT, Fitting value GMEANS, residual ERR. Lines 17-20 are used to 
show residual plot for check of independence (ERR*GMEANS), and for 
check of homogeneity of variance (ERR*TREAT). Lines 21-23 are used to 
make Q—Q plot for check of normality (QQPLOT).

Experiment 7.4 Three-way analysis of variance (Latin-square design)

Experiment 7.5 Two-way analysis of variance (the randomized 
complete block design) Line 17 in Program 7.5 can be rewritten as MODEL 
X=TREAT without BLOCK. Readers can compare the difference in the 
outputs.

Program 7.5 Program for analyzing Example 7.5.

Line Program Line Program

01 DATA RBK; 11 PROC MEANS;
02 INPUT BLOCK TREAT $ X @@; 12 VARX;
03 CARDS; 13 CLASS TREAT;
04 1 A 27.2 1 В 24.6 14 RUN;
05 04 1 C 39.5 1 D 38.6 15 PROC ANOVA;
06 2 A 23.2 2 В 24.207 16 CLASS BLOCK TREAT;
07 2 C 43.1 2D  39.5 17 MODEL X=BLOCK TREAT;
08 3 A 24.8 3 В 22.2 18 MEANS TREAT/SNK;
09
10

3C  45.2 3 D 33.0 19 RUN;
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7.5 Practice and Experiments

1. To compare the difference of G population means, why is it that some
times we use complete randomized design and sometimes we use random
ized complete-block design or Latin-square design? When to use SAS to 
analyze the result of experiment? What is the difference among the three 
designs in data formats, model selections and the methods of multiple com
parisons?

2. To randomly assign 28 rabbits into four treatment groups A, B ,C  and 
D, and each group has equal number of samples, try to write a grouping 
process and give a result of grouping (with reference to Program 7.1 for 
complete randomized design given N — 28).

3. To study the influence of four feeds A, B ,C  and D to the weight of mice 
which can be grouped by 8 litters with 4 mice, which experiment design 
should be chosen? Try to write the process of randomization, grouping result 
and the source of variations in ANOVA table.

4. To compare the curative effect of a control, two Chinese traditional 
medicines and two Western medicines, they were applied to treat five 
infectious skin areas of each rabbit, what experiment design should be cho
sen? Try to write randomization procedure, allocation table and the source 
of variations in ANOVA table.

5. To perform the arc-sine of square root transformation for experiment 
results of Example 7.8, use residual analysis to compare the independence, 
normality and homogeneity of variance before and after the transformation.

6. Test the effects of estrogen with three dosages on the weights of uterus 
of female rats according to the observations in Table 7.21.

7. To compare the skin herpes size (mm2) of the rabbit after injecting six 
types of drugs А, В, C, D, E, F. Six rabbits were selected and six different 
positions of the rabbits were injected in the study according to a Latin- 
square design. The experimental design and results are listed in Tables 7.22 
and 7.23, respectively analyze the data.
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Table 7.21 The weights of uterus of female rats (g).

Rats

Injection dosage of estrogen (/rg/100g)

0.2 0.4 0.8

A 106 1 16 145
В 42 68 115
C 70 111 133
D 42 63 87

Table 7.22 Random allocation result of Latin-square design.

Injection position 
(row)

Rabbit (column)

1 2 3 4 5 6

1 A В E F C D
2 В A D C F E
3 C E F В D A
4 E F C D A В
5 D C В A E F
6 F D A E В C

Table 7.23 The result of the skin herpes size (mm2) of rabbit with the injection of six 
drugs.

Injection position 
(row i )

Rabbit (column j )

1 2 3 4 5 6 £  X i  X i

1 73 83 73 58 64 77 428 71.3
2 75 81 60 64 62 75 417 69.5
3 67 99 73 64 64 73 440 73.3
4 61 82 77 71 81 59 431 71.8
5 69 85 68 77 85 85 469 78.2
6 79 87 74 74 71 82 467 77.8

T , X j 424 517 425 408 427 451

X j 71.7 86.2 70.8 68.0 71.2 75.2

Drug (*) D E C A В F

Z * k 428 467 439 459 420 439 X  = 73.7

X k 71.3 77.8 73.2 76.5 70.0 73.2
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8. To perform residual analysis after square root or logarithm transforma
tion for Example 7.8, and check if the independence and normality are 
improved.

(1st edn. Yongyong Xu, Yi Wan, Jiqian Fang; 2nd edn. Yongyong Xu, Yi 
Wan, Jiqian Fang)
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Chapter 8

Nonparametric Test Based on Ranks

The statistical tests we have discussed up to now, with one exception, are 
classified as the parametric statistics. These tests have two features: we have 
the knowledge of distribution of the population from which the samples were 
drawn, providing the basis for the inference; and our interest was focused on 
testing a hypothesis about one or more population parameters. An example 
of a parametric statistical test is the Student-? test. In order to use this test, the 
sampled population or populations are to be at least approximately normally 
distributed. One exception is the chi-square test, as a test of goodness-of-fit 
and as a test of independence.

In practice, the conditions for Student-? test are not always satisfied. For 
example, sometimes we are not sure if the samples come from normal dis
tributions, or sometimes the distribution of sampled population is unknown. 
Therefore, the inference methods which are not depending on the distribu
tion of population and the tests which are not focused on the hypotheses 
about the parameters of the populations will be considered. Those types of 
statistical inference procedures are called nonparametric statistics. As we 
will learn, the procedures that we discuss in this chapter either are not con
cerned with population parameters or do not depend on the knowledge of the 
sampled population. Since we do not make any specific assumption about 
the sampled population, those kinds of statistical inference procedures are 
also called distribution-free statistics.

The above discussion implies the following advantages of nonparametric 
statistics:

(1) They could be widely used for different kinds of data because they do 
not depend on the distribution of sampled population and the testing 
hypotheses are not a statement about the population parameter.

237
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(2) Nonparametric tests could be used when the form of the sampled pop
ulation is unknown.

(3) Nonparametric test procedures tend to be easier in computation and 
consequently more quickly applied than the parametric procedures.

(4) Nonparametric tests could be applied for ordinal variables or continuous 
variable given with rank only.

Although the nonparametric tests retain a number of advantages, their dis
advantages must also be recognized. The use of nonparametric test with 
data that can be handled with a parametric test may result in a waste of 
some information of the data, which means a reduction of testing power.

There are a variety of nonparametric procedures. In this chapter, we will 
only focus on the nonparametric tests based on ranks.

8.1 Wilcoxon’s Signed Rank Test

8.1.1 The test for small sample

The Wilcoxon’s signed rank test (1945) is applied fortesting if a population 
median equal to certain value or zero as well as for testing the difference of 
pairwise designed data.

Suppose that there is a matched sample of random variables X and Y 
with m pairs of individuals. The z'th pair of individuals have the measured 
values (x/, y,) and the difference d, =  x, — y,, i =  1 , . . .  , m .  The median 
of D =  X — Y is denoted by Md(D).

The hypotheses to be tested are

H0: Md(D) =  0 Я ,: Md(D) ф 0. (8.1)

The following steps are usually followed:

(1) Calculate the differences dt — jq — у,- for i =  1,2 , . . .  ,m  and ignore 
all the pairs with zero difference, say, resulting in n pairs with nonzero 
difference.

(2) Rank the absolute values of nonzero ri, s from the smallest to the largest 
so that each \dt \ is ranked; if two or more of the |c/, |s are equal (we 
say there is a tie), each of the tied value should share the average rank 
accordingly. For example, the three smallest \dj\s are equal, initially
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Table 8.1 Decision rules of Wilcoxon signed rank test.

Two-side test One-side test (1) One-side test (2)

Test hypotheses Hq: M d [ D ) =  0 
H \ : M d ( D )  ф  0

Hq: M d { D )  =  0 
H \ :  M d ( D )  > 0

Hq: M d ( D )  =  0 
H\ : M d ( D )  < 0

Statistical decision:
Small sample size, check I f  T * < T a / 2 (n), I f  T -  < Ta {n),

V
I

ft<4-

the table Hq is rejected Hq is rejected Hq is rejected
Large sample size, I f  1Z | > Z a / 2 , I f | Z |  > Z a , I f | Z |  > Z a ,

normal approximation Hq is rejected Hq is rejected Hq is rejected

they may get rank 1, 2 and 3, but due to tie, finally each of the three 
should share a rank of (1 +  2 +  3)/3 =  2.

(3) Assign the initial signs of <7,s to their ranks.
(4) Find the sum of the ranks with positive signs and denote by T+\ find 

the sum of the ranks with negative signs and denote by 71. Let T* =  
min(T+, 71).

(5) Given the value of a, find the critical value Ta/2 of the statistic from 
Table 10 in Appendix II. If T* < Ta/2(n), H q is rejected.

For one-side tests, one can decide according to the rules given in
Table 8.1.

8.1.2 The test for large sample (normal approximation)

When n > 50, Table 10 in Appendix II cannot be used. Then we turn to 
the normal approximation. In fact, it can be proved that if H q is true, when 
n is large enough, the distribution of statistic T* will close to a normal 
distribution with

рт
n(n +  1) 

4
( 8 .2)

and

Oj
n(n +  l)(2n +  1)

24
(8.3)

If there is no tie, the statistic

\T* — рт\ — 0.5Z =
(7 j

\T* — n(n +  1)/4| — 0.5 
y/n(n +  1)(2 n +  1)/24

(8.4)
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Table 8.2 In te llig en ce  sco res  o f  12 pa irs  o f  tw in  b ro th ers .

P a ir 
N o. i

S en io r Ju n io r

У1

D iffe ren ces 
4 ; =  >', -  Xj

R an k s o f  

\d i\R i
R an k s w ith  

s ign  ± R j

1 86 88 2 3 3
2 71 77 6 7 7
3 77 76 - 1 1.5 - 1 . 5
4 68 64 - 4 4 - 4
5 91 96 5 5.5 5.5
6 72 72 0 — —

7 77 65 - 1 2 10 - 1 0
8 91 90 - 1 1.5 - 1 . 5
9 70 65 - 5 5 .5 - 5 . 5

10 71 80 9 9 9
11 88 81 - 7 8 - 8
12 87 72 - 1 5 11 - 1 1

will follow a standard normal distribution. “0.5” in Eq. (8.4) is just the 
correction for continuity. The decision rules are also listed in Table 8 .1.

If there are ties, Lehmann (1975) adjusted formula may be used for the 
statistic

z  __ \ T * - n ( n +  1)/4| — 0.5

y / \ n ( n  +  1 ) (2 n  +  1) -  0.5 £ ( f 3  -  tp ) } / 2 4

where tp is the number of individuals in the pth tied subgroup.

Example 8.1 In order to study the difference of intelligence of twin broth
ers, the intelligence scores of 12 pairs of twin brothers were measured. The 
results are listed in Table 8.2.

Solution ( 1) Calculate the differences <7, =  X/ — yh i =  1 , . . . ,  12, and 
ignore the sixth pair with zero difference, resulting in n — 11 pairs with 
nonzero difference, listed in column 4 of Table 8.2.

(2) Rank the absolute values of nonzero r/, s from the smallest to the largest 
in column 5 of Table 8.2; the difference of sixth pair is zero and is ignored 
from ranking. The differences of the third and eighth pair are equal and the 
average rank (1 +  2)/2 =  1.5 is shared by them, similar situations for the 
fifth pair and ninth pair.

(3) Assign the initial signs of r/, s to their ranks. See column 6 of Table 8.2.
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(4) Calculate the sum of positive ranks and negative ranks respectively.

T+ =  3 +  7 +  5.5 +  9 =  24.5,
71 =  1.5 +  4 +  10+  1.5 +  5.5 +  8 +  11 =41.5 .

We may check the calculation by

T+ +  T-
n(n +  1) 

2
In this case, T+ +  71 =  66  =  11(11 +  l)/2 , the ranking and calculation 
are correct. Choose the test statistic T* =  min(7+, 71) =  24.5.

(5) Given the value of a =  0.05, find the critical value Г0.05/2 =  H  from 
Table 10 in Appendix II. Since T* > T0 .05/2 , P > 0.05, HQ is not rejected.

Since n =  11 in this example, not a large sample, normal approximation 
is not proper. However, in order to show the calculation procedure of normal 
approximation, we just demonstrate the calculation of Z statistic here.

In this example, there are two values with ties. By Eq. (8.5),

Z ,=
24.5 -  (11)(12)/4  — 0.5

\/[(l 1)(12)(23) — (0.5) {(23 

8 .5 -0 .5  8

У(3036 - 6 ) /2 4  11.2361

2) +  (23 -  2)}]/24

=  0.7120.

If the ties are not adjusted, by (8.4), Z will equal to 0.7112. One can 
see that the difference between Z and Zc is very small and the value of Z 
increases after adjustment.

By checking the table of standard normal distribution, P =  0.4756, # 0 
is not rejected.

8.1.3 Construction of the table for critical values

In order to explain how to construct Table 10 in Appendix II, let us work 
out an example.

Suppose there are n — 4 pairs of observations and their differences are 
not zero nor equal so that the ranks of the differences are 1,2, 3,4. When 
Ho is true and the signs of dts are totally random, there are 24 =  16 combi
nations with the same probability P =  1/16 =  0.0625. The distribution of 
all possible combinations and their rank sums are listed in Table 8.3. From 
Table 8.3 one can see that if n = 4 , there is no value corresponding to the
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Table 8.3 A ll p o ss ib le  ra n k  sum s an d  the  d is trib u tio n  o f  T *  w hen  n =  4.

Positive
rank

N egative
rank

P o sitiv e  rank  
sum  T+

N eg ativ e  ran k  
sum  T -

S ta tis tic
T * P ro b ab ility

1 , 2 , 3 , 4 — 10 0 0 0 .0625
2 , 3 , 4 1 9 1 1 0 .0625
1 ,3 ,4 2 8 2 2 0 .0625

1 , 2 ,4 3 7 3 3
0 .1 2 5 0

3 ,4 1 ,2 7 3 3 J
1 ,2 ,3 4 6 4 4

0 .1 2 5 0
2 ,4 1 ,3 6 4 4  J
1 ,4 2 ,3 5 5 5

0 .1 2 5 0
2 ,3 1 ,4 5 5 5 J
1 ,3 2 , 4 4 6 4

0 .1 2 5 0
4 1 ,2 ,3 4 6 4  J
1 ,2 3 ,4 3 7 3

0 .1 2 5 0
3 1 ,2 ,4 3 7 3 J
2 1 ,3 ,4 2 8 2 0 .0625
1 2 , 3 , 4 l 9 1 0 .0625
— 1 ,2 ,  3 ,4 0 10 0 0 .0625

cumulative probabilities 0.05, 0.025, 0.01 and 0.005. This is the reason why 
there is no critical value for n — 4.

In fact, for any other values of n > 4, one can work out the distribution 
of the statistic T* in the similar way and find the values of T* corresponding 
to the cumulative probabilities 0.05, 0.025, 0.01 and 0.005.

8.2 Wilcoxon’s Rank-Sum Test for Comparing the Locations 
of Two Distributions

8.2.1 The test for small sample

The t test has been introduced for testing the difference of two population 
means in Chap. 4. When the assumptions underlying this technique are not 
met, that is, when the sampled populations are not normally distributed 
with equal variance or when the data for analysis consist only of ranks, a



Nonparametric Test Based on Ranks 243

nonparametric alternative to the t test may be used to test the hypothesis of 
equal location parameters.

Assume that two independent samples with sample size n \ and «2 are 
drawn respectively from two populations and the shapes of their distribu
tions are similar. The medians of the two distributions are denoted by Md\ 
and Md2.

The hypotheses to be tested are

H0: Md\ =  Md2 H\: Mdx ф Md2.

The steps usually followed are:

(1) Combine the two samples and rank all observations from the smallest 
to the largest while keeping track of sample to which each observation 
belongs. If there is tie, the average rank is shared by each.

(2) Calculate the sum of the ranks for the two samples, denoted by R\ and 
R2 respectively.

If Щ is true, R i and R2 ought to be roughly proportional to their 
sample sizes; otherwise, they are not. However, in any case,

R i +  R2 —
n(n +  1) 

2
(3) Determine the statistic T*. When ri\ < n2, let T* =  R\; and when 

и i =  n2, let T* =  min(f?i, R2).
(4) Determine the critical values. Given the value of a , one can find the 

critical values and ТЦ from Table 11 in Appendix II by n\{< n2) 
and n2 — n\.

(5) The decision rules are: If T* < Tf  or T* > , P < a, Hq is rejected;
otherwise, if < T* < Tjf, P > a, H0 is not rejected.

8.2.2 The test for large sample (normal approximation)

It can be proved that when sample size is big enough, the distribution of the 
statistic T* closes to a normal distribution with

n fn  +  1)
Рт* — (8.6)

n 2n 2(n +  1) 

V2~
U tl tp) (8.7)
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Table 8.4 Survival times of cats and rabbits without oxygen (min).

Cats Rabbits

Survival time Rank Survival time Rank

25 9.5 15 1.5
34 15 15 1.5
44 17 16 3
46 18.5 17 4
46 18.5 19 5

21 6.5
21 6.5
23 8
25 9.5
27 11
28 12.5
28 12.5
30 14
35 16

n i = 5 R \  = 78 .5 «2 =  14 R 2 =  111.5

Here the part within brackets is the adjustment for ties. 
Therefore, when H0 is true, the test statistic

Z = | T * - n x(n +  1)/2| — 0.5
( 8.8)

will follow a standard normal distribution. Same as before, “0.5” plays 
the role of correction for continuity. Given the value of a , after checking 
the table of standard normal distribution, if the P-value corresponding to 
the value of Z is less than a, H0 can be rejected.

Example 8.2 Without oxygen, the survival time (minute) of four cats and 
14 rabbits are listed in Table 8.4. Now we try to compare the difference of 
survival times of cats and rabbits in the environment without oxygen.

Solution ( 1) Combine the two samples and rank all observations from 
smallest to largest in columns 2 and 4. There are two individuals taking 
the same value 15, of which the corresponding ranks are 1 and 2 so that the 
average rank (1 +  2)/2  =  1.5 is shared by each of them; again, there are 
two individuals taking the same value 25, of which the corresponding ranks
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are 9 and 10 so that the average rank (9 +  10)/2  =  9.5 is shared by each of 
them.

(2) Calculate the sums of ranks for the two samples, denoted by R\ and R2 
respectively.

It confirms the calculation.

(3) Determine the statistic T*. Since t i i—5 < n 2 =  14, let T* =  R\ =78.5.

(4) Determine the critical values. From Table 11 in Appendix II, by n\ = 5
and n2 — n ] =  9 we have 70L0] =  22, Г0и01 =  78.

(5) Since T* =  78.5 > 78 =  Г0У01, P < 0.01, Щ is rejected. It concludes 
that the survival times of cats and rabbits in the environment without oxygen 
might be different.

In this example, n , and n2 are small, normal approximation is not suit
able. However, in order to demonstrate the basic steps of normal approxi
mation, let us work out the calculation as follows:

Ri =  9.5 +  15 +  17 +  18.5 +  18.5 =  78.5 
R2 =  1.5 +  1.5 +  ••• +  14+  1 6 =  111.5,

T* =  78.5 /.it* =
n i(n -t-l)  5 (19+ 1) =  50,

2 2
T* — fiT* =  78.5 - 5 0  =  28.5

n2n2(n +  1) " _  (fk -  lk) 
12 » 3 — n

(5)(14)(19 +  1) 
12

(23 -  2) x 5 
193 -  19

[0.995614035] =  116.1549708

2 8 .5 -0 .5
=  2.5980.

V 116.1549708

Since Z =  2.598 > Z0.oi =  2.58, P < 0.01, H0 is rejected.
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Tabic 8.5 20 possible combinations and their rank sums in the first group when n  i =  
П2 =  3.

Rank 1 ,2 ,3  1 ,2 ,4  1 ,2 ,5  1 ,2 ,6  1 ,3 ,4  1 ,3 ,5  1 ,3 ,6  1 ,4 ,5  1 ,4 ,6  1 ,5 ,6
R \  6 7 8 9 8 9 10 10 11 12

Rank 2 ,3 ,4  2 ,3 ,5  2 ,3 ,6  2 ,4 ,5  2 ,4 ,6  2 ,5 ,6  3 ,4 ,5  3 ,4 ,6  3 ,5 ,6  4 ,5 ,6
Rl 9 10 II 11 12 13 12 13 14 15

Table 8.6 The distribution of the rank sums in the first group when n \  =  n j  =  3.

R \  6 7 8 9 10 11 12 13 14 15
P { R \ )  0.05 0.05 0.10 0.15 0.15 0.15 0.10 0.10 0.05 0.05

8.2.3 The construction of the table for critical value

In order to explain how to construct Table 11 in Appendix II, let us also 
work out an example.

Suppose n\ — 3 and «2 =  3, when H{) is true, the data can be pooled. 
For the data in the first group, there are ( 3) = 2 0  possible combinations 
of the ranks 1, 2, 3, 4, 5 and 6 . The combinations and their rank sums are 
listed in Table 8.5.

The probability of each possible combination is equal to 1/20 so that the 
probability distribution of the rank sums can be summarized as Table 8 .6 .

From this distribution, we may find the critical value Tf05 — 6 , Г0и05 =  15. 
These are exactly equal to those listed in Table 11 in Appendix II corre
sponding to = 3  and П2 — n\ = 0 .

8.2.4 The comparison of ranked data

The Wilcoxon’s rank-sum test for two independent samples is also useful 
for determining whether the values of one sample are higher than that of 
another sample even when the response variable was ordinal.

Example 8.3 In order to evaluate whether the improved-vaccine can 
enhance immunity of body, 200  volunteers were recruited and randomly 
divided into two groups, of which 100 subjects in group 1 was immu
nized by traditional vaccine (TV) and 100 subjects in group 2 received the 
improved-vaccine (IV). The antibody levels were detected one month after
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Table 8.7 The comparison of antibody levels of the two groups.

Antibody
level

TV
(1)

IV
(2)

Total 
(1) +  (2)

(3)

Range 
of ranks

(4)

Average
rank
(5)

Sum of ranks

Pre
(1) x (5)

Post
(2) x (5)

_ 18 3 21 1-21 11 198 33
± 20 10 30 22-51 36.5 730 365
+ 46 14 60 52-111 81.5 3749 1141
+ + 11 50 61 112-172 142 1562 7100
+  +  + 5 23 28 173-200 186.5 932.5 4289.5

Total 100 100 200 — — 7171.5 12928.5

the final injection, and the result was showed in Table 8.7. Now the ques
tion is whether the difference of the antibody levels in the two groups is of 
statistical significance.

Solution (1) The test hypotheses are

# 0: The medians of antibody level in the two populations are equal.
H\ \ The medians of antibody level in the two populations are different. 

a =  0.05.

(2) Compute the ranks for the data. First gather all of them with the same 
antibody level in two groups, as shown in Table 8.7. There are 21 with 
antibody level ” who have a rank range of 1-21 and are assigned an 
average rank of (1 + 21)/2  =  11. There are 30 for the two groups combined 
with the antibody level “± ”. The rank range for this group is from (1 +  21) 
to (30 +  21) =  22 to 51. Thus all people in this group are assigned the 
average rank =  (22 +  51)/2 =  36.5, and similarly for the other groups. By 
doing so, we can get the average ranks for the rest of antibody levels, 81.5, 
142.5, 186.5.
(3) Calculate the sums of ranks. The rank sum for each group is equal to 
the sum of the product of the combined sample size and average rank of the 
same antibody level. For group 1,

R{ =  (18 x 11) +  (20 x 36.5) +  (46 x 81.5)
+  (11 x 142) + (5  x 186.5)

=  198 +  730 +  3749+ 1562 +  932.5 =  7171.5.
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For group 2,

R2 =  (3 x 11) +  (10 x 36.5) +  (14 x 81.5)
+  (50 x 142) +  (23 x 186.5)

=  33 +  365 +  1141 +  7100 +  4289.5 =  12928.5.

(4) Determine the critical values. In this case, rt\ =  100, n2 =  200, the 
sample size is large enough, and normal approximation can be used here. 
According to Eq. (8 .8), Z =  7.264, P < 0.001 (two-side), H() is rejected. 
And as =  7171.5/100 =  71.715 < R2 =  12928.5/100 =  129.285, we 
can conclude that the improved-vaccine is better than the traditional one.

8.3 Hypothesis Testing for the Locations of More Than 
Two Populations

Here we will introduce the Kruskal-Wallis test for the data from a com
pletely random design and the Friedmam test for the data from a randomized 
block design.

8.3.1 K ru ska l-W allis  test f o r  the data fro m  a com pletely  
random  design

The one-way analysis of variance may be used to test the null hypothesis that 
several population means are equal when the variables follow normal dis
tributions with equal variances. If the assumptions underlying the ANOVA 
are not met, or if the data for analysis consist only of ranks, a nonparamet- 
ric alternative to the one-way analysis of variance may be used to test the 
hypothesis of equal location parameters. The one-way analysis of variance 
by ranks proposed by Kruskal-Wallis is the best known of these procedures.

Suppose that there are к independent samples drawn from к populations, 
and the sample sizes n \,n 2, . . .  , n* may not be equal. The total sample size 
is n. The data may be listed as the format in Table 8 .8, where xl} refers to 
j th observation in sample i. We assume that the shapes of к distributions 
are similar and then test the hypotheses

Ho'. Md\ =  Md2 =  • • • =  Л/г/д.
H\ : Md\ , Md2, . . . ,  Md/c are not all equal.
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Table 8.8 The data format for com
pletely random designed samples.

Number of groups

1 2 к

X I 1 *21 Xk\

*12 *22 x k2

x \n\ X2fl2 x knic

The main steps are:

(1) Combine the к samples and rank all observations from smallest to 
largest while keeping track of sample to which each observation 
belongs. If there is tie, the average rank is shared by each.

(2) Calculate the rank sums for the к samples, denoted by Rj, i =
1, 2 , ,k  respectively.

n;
Rj =  nj i — 1, 2 , . . . Д .

; = i

(3) Calculate the test statistic.
When H0 is true, the expectation and variance of the rank sum in 

sample i are

Mr, =
Hj(n +  1)

п,(п — fli)(n +  1) 
12

The test statistic

« = £
[Ri -  fiRi l2

i=i ’ Ri

[Ri -  nM  +  1 )/2 ]2

)(n  +  1)/12
LA r n i

^  пЛп — ni= 1

(8.9)

( 8. 10)

(8. 11)
will approximately follow a chi-square distribution with к -  1 degrees 
of freedom.
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Equation (8 .11) can be simplified as
к

\ Z
H 3(n -  1).

n(n +  1)

If there are ties, the formula should be further adjusted as

Hc =

( 8. 12)

H
1 £  (*J ~  * p ) / ( " 3 -  ’

(8.13)

where tp is the number of individuals within pth tied subgroup.
(4) Determine P value and make decision.

Given the value of a, after checking the table of / 2 distribution with 
degrees of freedom к — 1, if the P-value corresponding to the value of the 
statistic is less than a , H0 can be rejected, otherwise, it cannot be rejected.

Example 8.4 14 newborn infants were grouped into four categories
according to their mother’s smoking habit. (A: smoking more than 20 
cigarettes per day; В: smoking less than 20  cigarettes per day; C : ex-smoker; 
D: never smoke). Their weights are listed in Table 8.9. Now we try to com
pare the differences of weights in the four groups.

Solution Assume that the shapes of four population distributions are 
similar.

H0\ The medians of weights of newborn infants of four categories of moth
ers with different smoking habits are equal.

Table 8.9 The weights and ranks of newborn infants and 
their mothers’ smoking habit.

Weights Xij (kg) Ranks ri j

A В C D A В C D

2.7 2.9 3.3 3.5 3 4 7 11
2.4 3.2 3.6 3.6 2 5.5 12.5 12.5
2.2 3.2 3.4 3.7 1 5.5 9 14
3.4 3.4 9 9

n; 4 3 4 3
Ri 15 15 37.5 37.5
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Ht : The medians of weights of newborn infants of four categories of moth
ers are not all equal.

(1) Combine the four samples and rank all observations from smallest to 
largest. The average rank is shared by each individual in the tied sub
group (see the right of Table 8.9).

(2) Calculate the rank sums for the four samples, denoted by i =  
1, 2, 3, 4 respectively (see the lower part of Table 8.9).

(3) By (8.12), the test statistic

H =
12

14(14 +  1) 
9.375.

152 152 37.52 37.52 \
i "  +  x  +  “  +  ~ )

- 3 ( 1 4 + 1 )

There are three tied subgroups: one with two 3.2, one with three 3.4 
and one with two 3.6. The adjusted statistic is

Hr =
9.375

[(23- 2 ) + ( 3 3- 3 ) + ( 2 3- 2 ) ]  
143—14

=  9.5018.

(4) Determine P value and make decision.

In this case, к =  4, Hc — 9.5018 > Zo.os(3) =  7.815, then P < 0.05. Ho 
can be rejected at the level of a =  0.05. We may conclude that the mothers’ 
smoking habit might influence the development of the infants.

8.3.2 Comparison of ordinal data

When the outcome variable is ordinal, the Kruskal-Wallis test for к inde
pendent samples is also appropriate for comparing the average levels among 
groups.

Example 8.5 Alopecia was one of the serious side effects of chemother
apy for cancer. Before a clinical trial, 206 patients with cervical carcinoma 
were randomly divided into three groups, of which 60 patients in group 1 
were planned to take treatment A and 53 patients in group 2 were planned 
to take treatment В, while 93 patients in group 3 were planned to take treat
ment C. The degree of hair loss was assessed for each subject after the 
treatments. The results are listed in Table 8.10. The question is whether the



252 Medical Statistics and Computer Experiments

Table 8.10 Comparison of the degree of hair loss in the three groups.

Degree of 
hair loss A В C Total

Range 
of ranks

Average
ranks

Sum of ranks

A В C

Normal 2 4 13 19 1-19 10 20 40 130
Mild 17 15 22 54 20-73 46.5 790.5 697.5 1023
Moderate 30 28 51 109 74-182 128 3840 3584 6528
Severe 11 6 7 24 183-206 194.5 2139.5 1167 1361.5

Total 60 53 93 206 — — 6790 5488.5 9042.5

differences of the degree of hair loss in the three groups are statistically 
significant.

Solution (1) The test hypotheses are

# 0: The degree of hair loss of the three groups is the same.
H\ : The degree of hair loss of the three groups is not all the same, a =  0.05.

(2) Compute the ranks for the data. First collect all subjects with the same 
antibody level in the three groups, as shown in Table 8.10. There are 19 with 
“normal” degree of hair loss who have a rank range of 1-19 and are assigned 
an average rank of (1 +  19)/2  =  10, and similarly for other groups. By 
doing so, we can get the average rank for the rest of degrees of hair losses, 
46.5, 128, 197.5.

(3) Calculate the sums of ranks for the three groups, see in the last few 
rows of Table 8.10. The sum of ranks for each group equals the sum of 
the products of the total number and average rank of each degree of hair 
loss. Ra =  6790, Rb =  5488.5, Rc =  9042.5. According to Eqs. (8.12) 
and (8.13),

H =
12 "67902 5488.52 9042.52

206(206+ 1) V 60 
=  2.606,

+
53

+
93

3(206 +  1)

Hc
2.606

i (193- 1 9 ) + ( 5 4 3- 5 4 )+ ( 1 0 9 3—109)+ (243—24)
2063—206

3.134.
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(4) Statistical decision and conclusion. Since Hc — 3.134, v =  к — 1 =  
3 — 1 =  2, P — 0.209 > 0.05, Ho will not be rejected. We can conclude 
that the differences of degree of hair loss among the three groups are not 
statistically significant.

8.3.3 Friedm an test f o r  the data  fro m  a ran dom ized  block design

Just as we need a nonparametric test analog to the parametric one-way 
analysis of variance, we may find it necessary to have a nonparametric test 
analog to the parametric two-way analysis of variance. Such a need may 
arise when the assumptions necessary for parametric analysis of variance 
are not met, as the measurement scale employed is not very accurate. A test 
frequently employed under these circumstances is the Friedman two-way 
analysis of variance for ranks. This test is appropriate whenever the data are 
arranged in a two-way classification as is given for the randomized block 
experiment. Let xi;- be the observation in ith block of y'th treatment group 
i =  1,2 , ,b,  j  =  1,2 , , k and the data format is listed in Table 8.11.

The hypotheses to be tested are

Ho: The medians of effects in к treatment populations are equal.
H\ : The medians of effects in к populations are not all equal.

The basic steps are as follows:

(1) Rank the observations in each block (row) from smallest to largest. If 
there is a tie, they will be dealt with as before.

(2) Add up the ranks in each treatment group.

Table 8.11 Data format for the data 
from a randomized block design.

B locks

T rea tm en ts

1 2 к

1 *11 *12 * U
2 *21 *22 *2 к

b *61 *62 x bk
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(3) Calculate the test statistic.
Let rtj be the rank of the / th treatment group in /th block. The rank 

sum of the ith block is
к

E
j =i

k(k +  1) 
2

Let Rj  be the rank sum of the j  th treatment group. The total rank sum 
of all observations is

к

E*>
bk(k +  1) 

2
(8.14)

When H0 is true, the expectation and variance of Rj are

b(k +  1) 
1lRj ~  2 

2 __ b(k2 -  1)

(8.15)

(8.16)

It can be proved that when sample size is large enough, the test statistic

(8.17)

approximately follows a standard normal distribution. But with the con
straint of formula (8.14), Z j ( j  — 1 , 2 , ,  k) not independent from 
each other, which means that J2j=\ Z2 does not follow a / 2 distribu
tion, then calculate the weighted sum of Z 2,

r2 ( k ~ Mz2 _ V  [Rj ~ b{k + 1)/2]2
к )  j kb(k + 1)/12

(8.18)

It can be proved, when Ho is true, that this statistic follows a / 2 distri
bution with к — 1 degrees of freedom.

(4) Statistical decision and conclusion. Given a value of a, if the C-value 
is less than a, then H() can be rejected; otherwise, it cannot be rejected.

Example 8.6 The riboflavin were tested in three samples of cabbage under 
four test conditions (A, В, C and D). The results are listed in Table 8.12.
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Table 8.12 The Riboflavin in cabbages (pg lg) .

Sample
Test conditions

A В C D

1 27.2(2) 24.6(1) 39.5(4) 38.6(3)
2 23.2(1) 24.2(2) 43.1(4) 39.5(3)
3 24.8(2) 22.2(1) 45.2(4) 33.0(3)

R j 5 4 12 9

Now the question is if the test results are different under different kinds of 
test conditions.

Solution To test the hypotheses

H0: The medians of riboflavin under four test conditions are equal.
H\ : The medians of riboflavin under four test conditions are not all equal 

a =  0.05.

(1) Rank the observations in each block (row) from smallest to largest. 
If there is tie, the average rank is shared by each (see the figures in 
parentheses in Table 8.12).

(2) Add up the ranks for each test condition (see the last row of Table 8.12).
(3) Calculate the test statistic, b =  3, к =  4,

X
2

к

£
IRj -» №  +  i)/2]1 2

kb(k +  1)/12
12

bk(k +  1)
Rj -  3b (k +  !)

7=1

-------------- (52 +  42 +  122 +  92) -  3(3)(4 +  1) =  8.2,
3(4) (4 +  1) 7

v — к — 1 =  3.

(4) Statistical decision and conclusion. Since j „ 05 =  7.815 < 8.2 and P <
0.05, Ho is rejected. We conclude that the results under different con
ditions are not all equal.

8.3.4 M ultiple com parisons o f  m ean ranks in к groups

Like in parametric test for more than two populations, the results of Kruskal- 
Wallis test or Friedman test only help us to conclude that the locations of
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к populations are not all equal but do not help to decide which pairs of 
populations are different. For latter, multiple comparisons should be done.

For the data of completely randomized design, let Rj and Rj be the 
mean ranks of group i and j . The difference between them is R, — Rj and 
its variance is

n (n +  1) Г 1
12 Hi

(8.19)

In Eq. (8.19), n is the total sample size of к groups, n, and n f are the sample 
sizes of group i and j  respectively. The test hypotheses are

Я0: The medians of group i and j  are equal.
H\ \ The medians of group / and j  are not equal.

The test statistic is

- j 1- . (8.20)
a R i - R j

Suppose one intends to perform c times of comparison, given the total 
significance level a , the significance level for each comparison should be 
adjusted by Bonfferoni method. That is

If the p-value corresponding to the value of | Z(/1 is less than a *, then H0 
can be rejected; otherwise, it cannot be rejected.

Example 8.7 Perform multiple comparisons for Example 8.4, take the 
group of non-smoking mother as the reference group.

Solution The mean ranks of observations in the four groups are

Ri =  15/4 =  3.75, 

7?3 =  37.5/4 =  9.38,

R 2 =  15/3 =  5.00,

R4 =  37.5/3 =  12.50.

In this case, c =  3. Given the total a =  0.05, then the significance level for 
each comparison should be

* _  a _  0.05
a

c 3
-  0.0167.
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And the corresponding one-side critical value of the standard normal dis
tribution is Zo.oi67 =  2.12. By (8.20)

Zl,4

^2,4

^3,4

—2.74,

— 2 .20,

-0.98.

Since \Z\^\ and |^ 2,41 are greater than Z0.0187 =  2.12, we conclude that for 
smoking mother, the weights of then infants are significantly different from 
that of non-smoking mothers.

The same procedure may be used for the data from a randomized block 
design and the only difference is the calculation of variance of the difference 
between two means of ranks, that is, Eq. (8.19) should be replaced by

R-.-R

k(k +  1) 
6b '

( 8.21)

8.4 Computerized Experiments

Experiment 8.1 Nonparametric test for the data of paired design The
procedure is introduced through Example 8.1.

Lines 01 to 08 in Program 8.1, input the data to S AS database NPAR1 and 
calculate the difference (D) and absolute difference (BASD). Lines 10 to 19 
rank the differences, attach their original signs and print the ranking results. 
Lines 22 and 23 calculate the test statistic by procedure UNIVARIATE in 
SAS. If the f-test is used for this example, the results are t =  —0.9281, 
P =  0.3733. By Wilcoxon’s signed-rank test, the test statistic is —8.5, 
P =  0.4756.

Experiment 8.2 Comparison between parametric test and nonparamet
ric test through the data from a normal distribution Two samples are
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Program 8.1 Wilcoxon’s signed-rank test.

Line Program Line Program

01 DATA NPAR1; 12 RANKS ABSR;
02 INPUT X Y @@; 13 DATA B;
03 D=Y-X; 14 SET RA;
04 IF D =0 THEN ABSD=.; 15 IF D<0 THEN DRANK=-ABSR;
05 ELSE ABSD=ABS (D ); 16 IF D=0 THEN DRANK=. ;
06 CARDS; 17 IF D>0 THEN DRANK=ABSR;
07 86 88 71 77 77 76 68 64 91 96 72 72 18 PROC PRINT DATA=B;
08 77 65 91 90 70 65 71 80 88 81 87 72 19 VAR X Y D ABSD ABSR
09 ; DRANK;
10 PROC RANK DATA=NPAR 1 20 PROC UNIVARIATE;

TIES=MEAN OUT=RA; 21 VAR D;
11 VAR ABSD; 22 RUN;

Program 8.2 T-test and rank-sum test for comparison of two samples.

Line Program Line Program

01 DATA NPAR2; 11 VAR X;
02 INPUT GRP $ X @@; 12 PROC RANK DATA=NPAR2 OUT=A
03 CARDS; T1ES=MEAN;
04 A 25 A 34 A 44 A 46 A 46 

В 15 В 15 В 16В 17
13 VARX;

05 В 19 В 21 В 21 В 23 В 25 
В 27 В 28 В 28 В 30

14 RANKS RANKX;

06 В 35; 15 PROC PRINT DATA=A;
07 PROC UNIVARIATE 

PLOT NORMAL;
16 PROC NPAR 1 WAY DATA=NPAR2 

ANOVA WILCOXON MEDIAN;
08 VARX; 17 VARX;
09 PROC TTEST COCHRAN; 18 CLASS GRP;
10 CLASS GRP; 19 RUN;

drawn from the same normal distribution and then parametric and nonpara- 
metric procedures are used to test the null hypothesis: the population means 
are equal.

In Program 8.2, Lines 01 to 06 input the data of Example 8.2 into SAS 
database NPAR2. Lines 07 and 08 test the normality condition and the 
results of test are wA =0.8257, PA =0.1292; wB =0.9461, PB =  0.5024. 
Lines 09 to 11, perform a r-test for two independent samples and the results



Nonparametric Test Based on Ranks 259

Program 8.3 Generate skew distributed data and compare parametric and non
parametric tests.

Line Program Line Program

01 DATA A; 11 VAR X;
02 DO 1=1 TO 40; 12 PROC TTEST DATA=A
03 X=EXP (RANNOR (286455)) ; COCHRAN;
04 IF I <21 THEN GRP=’A’; 13 CLASS GRP;
05 ELSE G RP=’B’; 14 VARX;
06 OUTPUT; 15 PROC NPAR1WAY DATA=A
07 END; 16 ANOVA WILCOXON MEDIAN;
08 PROC PRINT; 17 VAR X;
09 PROC UNIVARIATE DATA=A 18 CLASS GRP;
10 PLOT NORMAL; 19 RUN;

are t =  4.3982, P =  0.0004. Lines 12 to 15 calculate the rank sum and 
print the results. Lines 16 to 19 perform a nonparametric test and the results 
are Z =  2.5980, P =  0.0094.

Experiment 8.3 Comparison between parametric test and nonpara
metric test through the data from a skewed distribution population In
Program 8.3, lines 01 to 07 produce 40 values from an exponential dis
tribution, and divide them into groups A and В . Lines 09 to 11, test the 
normality condition. Lines 12 to 14, perform a f-test and lines 15 to 19, 
perform a Wilcoxon’s rank-sum test.

Experiment 8.4 Nonparametric procedures for comparison among 
multiple samples In Program 8.4, lines 01 to 09 input the data of Exam
ple 8.3 into SAS database NPAR1. Lines 10 to 12 perform an analysis of 
variance by SAS procedure NPAR1WAY and lines 13 to 15 calculate the 
Kruskal-Wallis test statistic, H =  9.50, P =  0.0233. Lines 16 to 18 rank 
the observations and then perform multiple comparisons.

8.5 Practice and Experiments

1. When will the nonparametric methods be adopted? When will the para
metric methods be adopted? Why? What are the advantages and the 
disadvantages of the nonparametric methods?
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Program 8.4 Rank-sum test for the data from completely randomized designed exper
iment.

Line Program Line Program

01 DATA NPAR1; 15 CLASS GRP;
02 INPUT NO GRP$X@@; 16 PROC RANK DATA= NPAR 1
03 CARDS; 17 OUT=A;
04 1 1 2.7 2 1 2.4 3 1 2.2 18 VARX;
05 4 1 3.4 5 2 2.9 6 2 3.2 19 RANKS R;
06 7 2 3.2 8 3 3.3 9 3  3.6 20 PROC TABULATE;
07 10 3 3.4 11 3 3.4 12 4 3.5 21 CLASS GRP NO;
08 13 4 3.6 144 3.7 22 VAR X R;
09 ’ 23 TABLE GRP*NO, X R;
10 PROC NPAR 1 WAY ANOVA; 24 PROC ANOVA ;
11 CLASS GRP; 25 CLASS GRP;
12 VAR X; 26 MODEL R=GRP;
13 PROC NPAR 1 WAY WILCOXON; 27 MEANS GRP/BON;
14 VARX; 28 RUN;

Table 8.13 The serum total cholesterol pre- and post-treatment (mmol/L).

No. of cases Before After No. of cases Before After

1 560 223 2 975 220
3 550 205 4 720 235
5 742 236 6 470 220
7 450 230 8 460 240
9 422 190 10 276 198

11 280 220 12 170 198
13 250 190 14 426 188
15 210 240 16 260 186
17 230 254

2. 17 cases of chronic nephritis patients receive in a period of time, hormone 
and immunosuppressant. Before and after treatment, their serum total 
cholesterol (mmol/L) is measured. The results are listed in Table 8.13. 
Try to evaluate the effect of the treatment on serum total cholesterol.

3. The serum albumin (g/L) of 14 normal adults and 13 in-patients are 
measured. The results are listed in Table 8.14. Do you think that the 
difference of medians of serum albumin between the two groups is sta
tistically significant? And why?
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Table 8.14 The results of serum albumin test of 14 normal adults and 13 in-patients (g/L).

Normal 24 35 31 40 42 34 45 30 32 35 38 39 40 35
In-patient 15 20 34 17 20 38 35 15 18 20 15 13 31

Table 8.15 The analgesic effect of Neiguan and Zusanli.

Acupuncture
Effect

Very good Good Median Bad Very badpoint

Neiguan 25 20 16 12 10
Zusanli 28 30 44 33 30

Table 8.16 The survival days of rats without 
hypophysis with different doses of ACH.

Dose A  
(no ACH) Dose В Dose C Dose D

3 2 4 12
2 1 3 13
1 3 4 7
2 5 4 6
3 7 6 8
5 14 5 19
4 8 4 20
2 15 3 5
2 3 5 2
3 4 5 12

4. In order to compare the analgesic effects of two acupuncture points 
(Neiguan and Zusanli), a clinical trial was conducted in a hospital of 
traditional Chinese medicine. The results were listed in Table 8.15. Now 
the question is which acupuncture point has a better analgesic effect.

5. The rats are taken off their hypophysis and then are randomly assigned 
into four groups to receive different doses of adrenocortical hormone 
(ACH). The survival days of rats in different groups are listed in 
Table 8.16. Try to test the hypothesis that the survival time of the rats 
without hypophysis is independent of the level of ACH.
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Table 8.17 The days with different air qualities in three cities.

Air qualities

Cities Good Moderate
Unhealthy for

sensitive group Unhealthy Very unhealthy

A 9 15 42 60 74
В 32 29 55 36 48
C 69 46 33 21 31

Table 8.18 Reaction rates (%) of 8 subjects to different audio frequency stimula
tions.

No. of subjects Frequency A Frequency В Frequency C Frequency D

1 8.4 9.6 9.8 11.7
2 11.6 12.7 11.8 12.0
3 9.4 9.1 10.4 9.8
4 9.8 8.7 9.9 12.0
5 8.3 8.0 8.6 8.6
6 8.6 9.8 9.6 10.6
7 8.9 9.0 10.6 11.4
8 7.8 8.2 8.5 10.8

6. According to the data in Table 8.17, try to apply certain hypothesis tests 
to compare the air qualities of three cities.

7. The experimental subjects are exposed to four different audio frequency 
stimulations respectively under the same laboratory condition. The reac
tion rates of them are listed in Table 8.18. Now try to analyze the differ
ence of reaction rates to different frequency stimulations.

(1st edn. Qing Liu, Jiqian Fang; 2nd edn. Jinxin Zhang, Jiqian Fang)



Chapter 9

Simple Linear Correlation

In the previous chapters, some statistical methods dealing with a continu
ous variable have been introduced. Very often we need to study the rela
tionship between two random variables, such as blood pressure and body 
mass index. If the two variables vary together without differentiation of 
dominant and subordinate, the analysis of simple linear correlation may be 
useful, which will be introduced in this chapter. If we assume one variable 
as the response variable (dependent variable) and another as an explanatory 
variable (independent variable), the regression method is more suitable, 
which will be introduced in the next chapter.

9.1 Concept of Correlation

9.1.1 In depen den t random  sam ple o f  a  b ivaria te norm al 
distribution

Let {(*1, yi), ( X 2 , У 2 ) ,  • • • , (x „ , У п ) }  be an independent sample from ajoint 
distribution of a pair of variables (X, Y). In practice, X and Y may be the 
measures of two characteristics of the same individual (like the age of a 
person and his systolic blood pressure), or may be the same variable of 
paired individuals (like the IQ scores of twins). The question here is the 
association between X and Y. If larger values of Y tend to correspond to 
larger values of X, we say that X and Y are positively correlated; otherwise, 
if larger values of Y tend to correspond to smaller values of X, we say that 
X and Y are negatively correlated.

Example 9.1 To explore the linear correlation between systolic blood 
pressure and diastolic blood pressure, the systolic and diastolic blood pres
sures of 665 girls aged from 6 to 10 years were recorded (mmHg).

263
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Table 9.1 Heights (cm) of 20 pairs of father and son.

No. 1 2 3 4 5 6 7 8 9 10

Father’s height, X 150 153 155 158 161 164 165 167 168 169
Son’s height, Y 159 157 163 166 169 170 169 167 169 170

No. 11 12 13 14 15 16 17 18 19 20

Father’s height, X 170 171 172 174 175 177 178 181 183 185
Son’s height, Y 173 170 170 176 178 174 173 178 176 180

Here the diastolic blood pressure and systolic blood pressure of the same 
person can be regarded as two random variables X and Y, and if the 665 
girls were randomly selected from a population, then their records can be 
used to explore the association between the two measures.

Example 9.2 To explore the linear correlation between the heights of 
father and son, 20 graduate male students were randomly selected from 
a name list in a high school. The heights (cm) of fathers and sons were 
measured, and given in Table 9.1.

The above description of Example 9.2 has mentioned that the gradu
ate male students were “randomly selected”. However, if there were close 
relatives, brothers, and even twins being included in the sample, then it 
will not be an independent sample for analysis of linear correlation. Here 
we assume that before sampling, those possible relatives and brothers have 
been removed from the name list. Then the individuals in the sample can 
be regarded as independent.

9.1.2 S ca tter diagram

The most simple and intuitive way to explore correlation between two 
random variables is to plot a scatter diagram, where two variables are 
expressed by two coordinate axes; n pairs of observed data were expressed 
by n points in the coordinate plane.

The n — 665 records in Example 9.1 can be plotted in the X — Y plane 
as in Fig. 9.1, where X refers to diastolic pressure, Y refers to systolic 
pressure, and each point refers to one girl. We can see that larger X values 
tend to associate with larger Y values and vice versa. We say that diastolic 
pressure and systolic pressure are positively correlated.
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Fig. 9.1 Scatter diagram of systolic and diastolic blood pressures (mmHg) of 665 girls 
aged within 6-10 years old.
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Fig. 9.2 Scatter diagram for Example 9.2.

The scatter diagram for the 20 pairs of the height data is given in Fig. 9.2. 
One can see that it is not necessary that a taller father with have a taller son, 
but as a whole taller fathers tend to have taller sons.

Several typical patterns of scatter diagrams are showed in Fig. 9.3(a) 
and (c) show a linearly increasing tendency of Y with the increasing of X, 
which is subject to positive correlation; While (b) and (d) show a linearly 
decreasing tendency, which is subject to negative correlation; (e), (f) and 
(g) show that there is no any association between X and F; (h) shows a 
tendency of curvilinear association between X and Y. (e), (f) and (g) as
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Fig. 9.3 The typical scatter diagrams.

well as (h) are all subject to “not linearly correlated”. Therefore, whenever 
people speak of “none of linear correlation”, it is necessary to clarify 
whether there is “no any association” or there is actually “curvilinear asso
ciation”.

9.2 Correlation Coefficient

9.2.1 Population correlation coefficient

It is desirable to have a measure for the association, with its sign indicating 
whether the association is negative or positive and its absolute value between 
0 and 1 indicating the strength of association. There are other properties that 
we require on such a measure. We like it to be invariant of (i.e. not affected 
by) the general level of the variables of X and Y, nor the measurement 
scale of X and Y. Naturally, we start searching for a coefficient based on 
the standardized variables (X - p x) /ax and (Y - p y) /a y, where p x and p y 
are the means of X and Y, ax and ay are the standard derivations of X 
and Y. The mean of product of the two standardized variables is called 
the Pearson’s product-moment linear correlation coefficient, or population 
correlation coefficient, denoted by

(9.1)
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(9.1) can also be written as

E[(X -  p x)(Y -  p y)] 
P  = -------------------------—axo у

where the numerator

n xy

ax о у
(9.2)

^  =  Ш Х  -  fix)(Y -  fiy)] (9.3)

is called population covariance between X and Y.
If p =  0, it is called no linear correlation or null correlation between 

X and Y\ p > 0, positive correlation; p < 0, negative correlation; p =  1 or 
p =  — 1, complete correlation, which is extremely rare in real life.

9.2.2 Sample correlation coefficient

Given an independent sample {(xi, yi), (хг, у г),. ■ ■, (x„, y„)} with sample 
means x and y, replacing the numerator and denominator on the right-hand 
side of (9.2) with their sample estimators, one can get the sample correlation 
coefficient, denoted with r,

where Sxy is the sample covariance between X and Y,

E"= l f a  -  * ) fa  -  У)
n — 1

(9.4)

(9.5)

To an individual, a positive product (x,- — x) (y, — y) implies that both X 
and Y of this individual are located in the same direction against the means 
x and y; a negative product (*,■— x)(y,-—y) implies that X and Y of this 
individual are located in different directions against the means x and y.

A positive sum of the product (х, —x)(y,—y) implies that most of the 
individuals having their X and Y located in the same direction against 
the means x and у such that we say X and Y are positively correlated. 
Similarly, a negative sum of the product (х, —x)(y, —y) implies that most of 
the individuals having their X and Y located in different direction against 
the means x and у such that we say X and Y are negatively correlated. 
Contrarily, a zero sum of the product (х, —x)(y, —y) implies that about half 
of individuals having their X and Y located in the same direction against the 
means x and y, and another half of individuals having their X and Y located
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in different directions against the means x and y, that is, as a whole, the 
locations of X and Y against the means x and у  vary randomly such that 
we say X and Yare not linearly correlated.

9.2.3 Calculation of  sample correlation coefficient 

Denote

/=1
Ixx  =  CXi -  x ) 2, l yy =  (У> ~  >’) 2,

i =  1 
n

lXy =  (Xi ~  х К у‘ ~ у У

Since

/=1

c2  l *x  „2 h y  о  1%У
^ X  i ’ --  , > X x y  --  ,n — 1 r /7 — 1 /7 — 1

the sample correlation coefficient can be calculated by

lxr = *xy

I x x l y y

(9.6)

For convenience, lxx, lvy and lxy can be calculated by the following 
formulas

=  ± ( *  -  i ) 2 =  £  X,2 -  l- ( ±  x, V =  £  X ?  -  / 7 i 2 ,

i=  1 i=l

lry = £ o»i - y)2 = £:»2 - - (£?« j = £ ^ 2 - ny

1=1 /  1=1
>, \ 2

/=1 i=i \  i=i

l x y  =  £  {Xl ~  X ^ y ‘ ~ y  l  =  £ X <>’i ~  -  ^££ j ( ^ - £ '

i= 1

n  \ / n

n

=  £ х ,у ,-  -  /7 Х У - (9.7)
i=i

Example 9.3 (Cont’d of Example 9.2) Calculate the sample correlation 
coefficient between the heights of father and son.



Simple Linear Correlation 269

Solution £"=i Xi =  3376, >7 =  3407, л =  20, X7=i xf =
571728, E"=i yf =  581081, E /= , W  =  576161. By (9.7),

33762
ixx =  -  -  ( E x ' ) =  5 7 1 7 2 8  -  ~ 2 Q ~  =  1859-2

1= ] 4  =  1

' W =  E r f - r  £ »  = 5 8 1 0 8 1 -
1 =  1 4  =  1

34072
20

698.55,

^  = ( l >
i=i 4 = 1  / \  | =  1

(3376) (3407)
=  576161 -  --------------- -  =  Ю59.4,

r = ■r>'

20 
1059.4

V l859.2 x 698.55
0.9296.

9.3 Inference on Correlation Coefficient

In practice, the population variances cr2, cr2 and population covariance axy 
are unknown. Thus the sample correlation coefficient r is only an estimate 
of the population correlation coefficient p. Usually the sample correlation 
coefficients based on different samples are different from each other. This 
shows that the sample correlation coefficient is a random variable in nature, 
denoted by R, while the calculated value r is just one observation of R. 
In order to clarify whether the population correlation coefficient is really not 
zero and to estimate the actual level of the population correlation coefficient 
with a confidence interval, it is necessary to work out statistical inference 
right after a sample correlation coefficient r is obtained.

It has to be noted that the following inference is based on the assumption 
that X and Y follow a bivariate normal distribution. While for the definition 
and calculation of correlation coefficient, this is not necessary.

9.3.1 H ypothesis test

First we need to know whether the population correlation coefficient p is 
equal to zero or not. If p ф 0, we say X and Y are linearly correlated.
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However, г ф 0 does not necessarily mean p ф 0, because even a sample 
comes from a population with p =  0, it is still possible to have a sample 
correlation coefficient г ф 0. Therefore, we need to test

Ио : P =  0, Hr. р ф  0.

When sample size n < 52, one can use Table 8 in appendix II to find a 
p-value corresponding to the sample correlation coefficient r directly.

Usually, a t test is also available for this inferential analysis. When H0 
is true, the statistic

where

0? —  ~  t dist. v =  n — 2, 
Sr

(9.8a)

S r (9.9a)

is the standard deviation of sample correlation coefficient R, it is also called 
standard error of R.

Example 9.4 (Cont’d of Example 9.3) After getting r =  0.9296, it is 
required to test whether r is statistically significant.

Solution To test # 0 : p =  0, H\ : p ф 0, by (9.8a) and (9.9a), we have

1 -  0.92962 
2 0 - 2  !

t _  r_ _  0.9296
S r 11-0 .92962/ 1 —0.92t

V  20-2

=  10.7.

From the table for t distribution, we have to.ooi.is =  3.922. Obviously, 
\tr \ > 3.922, P <0.001 so that Я0 is rejected at the level of a =  0.001. It 
could be concluded that there is positive correlation between the heights of 
father and son.

In fact, if Table 8 in Appendix II is checked directly, we have r0.ooi,i8 =  
0.679, |r\ > тo.ooi,i8» P < 0.001, resulting in the same conclusion.



Simple Linear Correlation 271

9.3.2 In terva l estim ation

The hypothesis test for Ha : p =  0 is only to answer the question whether 
the linear correlation exists. Once Ho is rejected, one would further like to 
know the strength of the correlation, that is, a confidence interval of the 
correlation coefficient p is required.

It is known that when # 0 is true, the statistic

Z =  tanh-1 r (9.10)

approximately follows a normal distribution

N (tanh-1 p, . — ).
V ^  7 ( ^ 3 j )

Therefore, the (1 — a) confidence interval of tanh-1 p is approximately 

tanh-1 p : ftanh-1 r — Z« .= , tanh-1 r +  Z« —- =  J (9.11a)
V 2 -  з 2 л/и - 3 /

or

tanh 1 p : tanh" r ±  Z« -----=.
■ \Jn — 3

(9.11b)

Taking a transformation of tanh(*) for (9.11), one can get a (1 — a) 
confidence interval for p without difficult.

Remark. The function tanh(*) is called hyperbolic tangent, and tanh- l (*) 
is its inverse which is defined as

tanh-1 R =  In (9-12)

and

exp(2Z) — 1 
tanh Z =  (— -.

exp(2Z) +  1
(9.13)

Example 9.5 (Cont’d of Example 9.4) After getting r =  0.9296, find a 
95% confidence interval for the population correlation coefficient p.
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Solution By (9.12),

tanh 1 r =  -  In
1
2

\ + r  
1 -  r

1 +0.92964
=  -  In ,

2 V 1 -  0.9296 )
=  1.6554.

By (9.1 lb), the 95% confidence interval of tanh 1 p is

tanh 1 r ±  Z«
1

=  1.6554+ 1.96-
1

1 s/n -  3 ‘ " ' 'V 2 0 - 3

Take a transformation of tanh(*) for it,

=  (1.1800, 2.1308).

, , exp(2 x 1.1800) — 1
tanh 1.1800 =  —---------------- ------ =  0.8275,

exp(2 x 1.1800) +  1

exp(2 x 2.1308) -  1
tanh 2.1308 =  — ---------------- ------ =  0.9722.

exp(2 x 2.1308) +  1

Finally, we conclude that the 95% confidence interval of correlation 
coefficient between the heights of father and son is (0.8275, 0.9722).

9.4 Rank Correlation

The above-mentioned inference on Pearson’s product-moment linear 
correlation coefficient requires a pre-requisite of bivariate normal distri
bution. However, in practical researches the raw data might not follow a 
normal distribution, or even the distribution is unknown, or sometimes the 
data are not precisely measured (for instance, limited by the sensitivity of the 
instrument, the concentration of certain ion is reported as “< 0.001 /rg/ml”), 
or X and/or Y themselves are ordinal variables. In those cases, the rank 
correlation can be used to describe the association between two random 
variables, including strength and direction. It is a kind of non-parametric 
statistical methods based on rank. Here we would only introduce the com
monly applied Spearman’s rank correlation coefficient.

9.4.1 S p ea rm a n ’s ran k  correla tion  coefficien t

Assume X and Y are continuous variables or ordinal variables and a ran
dom sample with n pairs of observations (xj, yi), (x2, yf) , . . . ,  (x„, yn) are 
available.
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Rearrange the queues of x \ ,  x%,. . ., xn and v, , у 2, , yn respectively 
according to their values from minimum to maximum getting the rank p t 
fo rx, and q, for y ,, i =  1 ,2 , ,n.  (In case there is a tie, the average rank 
will be shared. See Example 10.1). Denote dj =  p, — cp. The Spearman’s 
rank correlation coefficient is defined as

r. =  1 —6E;vf
n{n2 — 1)

(9.14)

Similar to the Pearson's product-moment correlation coefficient, rs can 
reflect the association between two random variables; it is a sample estima
tion of the population rank correlation coefficient ps \ both ps and rs are free 
of unit, and take values between -1  and 1.

From (9.14), one can see that the basic idea of rank correlation is focused 
on the extent of consistency between p, and qt, which is indicated by dt =  
Pi — <7/. Since di could be positive as well as negative, we rather like to 
use Y  df to reflect the extent of un-consistence between p , and qt rather 
than Y d i-  If Y d f  =  0 , they are positively correlated with an extreme 
strength; if Y  df reaches maximum, they are negatively correlated in either 
an extreme strength; the value of Y  df is related to the strength of correlation 
as showed in (9.14).

Similarly, after calculating the rank correlation coefficient, we also need 
to work on a hypothesis test

H0 : ps =  0, Hi : ps ф 0.

When the sample size n  < 50, Table 9 in Appendix II can be used directly 
to get the critical value for rs. If n > 50, (9.8a) and (9.9a) can still be used 
as long as the R there being replaced by Rs. That is, when H0 : ps =  0 
is true,

tp — —  ~  t dist. v — n  — 2, (9.8b)
Sr

where

Sr (9.9b)

Example 9.6 In an etiology study on liver cancer, data on liver-cancer- 
specific death rate (T, 1/105) and the relative content of aflatoxin (X) in
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Table 9.2 C a lc u la tio n  o f  ra n k  co rre la tio n  co effic ien t fo r  E x am p le  9.6.

L ive r-can cer-sp ec ific  
A fla tox in  d eath  ra te

No.
(1)

X

(2)
Rank p

(3)
Y  (1/105) 

(4)
Rank q  

(5)
d  =  p - q  

(6) =  (3) -  (5)
d 2

(7) =  (6):

1 0.7 1 21.5 3 - 2 4
2 1.0 2 18.9 2 0 0
3 1.7 3 14.4 1 2 4
4 3.7 4 46.5 7 - 3 9
5 4.0 5 27.3 4 1 1
6 5.1 6 64.6 9 - 3 9
7 5.5 7 46.3 6 1 1
8 5.7 8 34.2 5 3 9
9 5.9 9 77.6 10 -1 1

10 10.0 10 55.1 8 2 4

T otal 42

certain food for ten countries have been collected, which are given in the 
columns (2) and (4) in Table 9.2. Calculate the rank correlation between the 
two variables.

Solution The test Hq : ps =  0, H\ : ps ф 0 can be worked out from 
Table 9.2. The raw data for X and Y are put in columns (2) and (4), their ranks 
are listed in columns (3) and (5). Columns (6) and (7) are the calculations 
for dj =  pi — q, and df. Put the total of column (7) into (9.14), we have

6 E " = i df =  , 6(42)
n(n2 -  1) 10(102 — 1)

0.7455.

From Table 14 in Appendix II, we have 0.01 < P < 0.02 so that Щ is 
rejected at the level of a =0.05. It can be concluded that there is positive 
correlation between the liver-cancer-specific death rate and the content of 
aflatoxin in certain food.

9.4.2 When there are more ties in rank

There is an alternative way to calculate rs. Putting the ranks p, and q, into 
formulas (9.6) and (9.7) to replace the raw data x,■ and y,-, as a result, the 
product-moment correlation coefficient based on p, and q, can be regarded
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as the rank correlation coefficient rs. In fact, when there is no tie among 
X\,X2 , . . .  , xn and among y\, У2 , ■ ■ ■, Уп, the result through such a way 
is exactly equal to that through (9.14). When there are more ties among 
X], x2, . ■ •, xn and уиУ2 , ■ ■ ■, Уп, formula (9.14) will no longer work well 
and this alternative method is recommended.

9.5 Caution in Analysis of Linear Correlation

9.5.1 The importance of scatter diagram

Before any analysis of linear correlation, a scatter diagram is always plotted, 
which might provide valuable guide for further appropriate analysis.

First of all, the association between two variables is not always subject 
to a linear association. For instance, people with higher blood pressure and 
with lower blood pressure tend to have higher death rates, while those with 
medium blood pressure tend to have lower death rates, hence the scatter 
diagram between death rate and blood pressure looks like (h) of Fig. 9.3 
and it reminds us that the analysis of linear correlation is inappropriate for 
such case.

Secondly, if the scatter diagram shows that the distribution of X and 
Y does not look like a bivariate normal distribution, the rank correlation 
should be considered rather than the product moment correlation.

Furthermore, one should be careful when a few outliers appear in the 
scatter diagram like that in (a) of Fig. 9.4. In case it is possible, some 
replication in sampling around the outliers is helpful in exploring the data 
structure; at least, the preliminary records should be doubly checked. It is 
not allowed to revise or remove any figures unless there is strong evidence

(a) (b) (c) (d)

Fig. 9.4 Caution in analysis of correlation, (a) Outlier; (b), (c) and (d) Stratified situation.
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to show that the outliers are surely due to a mistake. The rank correlation 
can help to reduce the impact of “outliers” without any change of the 
records.

9.5.2 No correlation for non-random sample

In some occasions, one variable randomly varies but the values of another are 
set by the researcher. For instance, to explore the dose response relationship, 
к dosages are given by the researcher according to the research protocol; 
and again, to explore the appropriate temperature for the yield of a chem
istry reaction, the к temperatures are selected by the researcher according 
to the research needs. In such cases, although people can still calculate by 
the formula of correlation coefficient, the result does not well represent the 
population correlation coefficient because the data are not a random sam
ple. In fact, the result will vary with the range of values selected by the 
researcher.

9.5.3 Caution about pooling data

As showed in (b) of Fig. 9.4, the two variables do not correlate in each of 
the two strata, but after pooling, people are misled to a correlation by feint; 
in (c) of Fig. 9.4, the two variables do correlate in each of the two strata, 
but after pooling, people are misled to a null correlation by feint; in (d) 
of Fig. 9.4, the two variables positively correlate in each of the two strata, 
but after pooling, people are misled to a negative correlation by feint. In 
general, pooling is rational only when the relationships in each of the strata 
would not be distorted after pooling, otherwise, the stratified analyses are 
recommended.

9.5.4 Interpretation o f simple correlation

The result of a correlation analysis should be interpreted by incorporating 
with the knowledge of the subject matter. It is dangerous to conclude a 
relationship between any two variables simply based on the calculated value 
of simple correlation coefficient.

Here is a story recently happened. A man got a son at the autumn 
of his life. He planted a small tree to accompany his son and measured 
both the heights of his son and the tree every month, denoted with x, and
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y h  i =  1, 2, . . .  respectively. After n months, he calculated a correlation 
coefficient and a hypothesis test showed that the correlation coefficient 
is statistically significant so he told us that there is a strong relationship 
between his son and the tree. Is it true? In fact, the two heights have no 
relationship; the correlation coefficient was caused by their links with the 
factor of “time”.

Even though sometimes the correlation between two variables is ratio
nal in terms of the subject matter, rather than causation, it is just a kind of 
numerical association and the two variables are not at dominant versus sub
ordinate positions. Because of this, the correlation discussed in this chapter 
is called simple correlation.

9.6 Computerized Experiments

Experiment 9.1 Sampling experiment for null correlation Randomly 
generate 100 independent “observations” from a normal distribution 
N (0,1); every two successive ones form a pair such that we can have 50 pairs 
of the “data” for X and Y. Plot a scatter diagram, calculate a correlation 
coefficient and test whether the population correlation coefficient is zero. 
Repeat the above process (not including the scatter diagram) for 100 times. 
Sum up the total number of rejecting the null hypothesis, and discuss the 
indication of this summarized number.

Program 9.1 Sampling experiment for null correlation.

Line Program Line Program

01 DATA A; 07 PROC GPLOT;
02 DO 1=1 TO 50 BY 1; 08 PLOT Y*X;
03 X=RANNOR(0); 09 PROC CORR;
04 Y=RANNOR(0); 10 VAR X Y;
05 OUTPUT; 11 RUN;
06 END;

Lines 02-06 form a cycle to generate 50 pairs of random number, where 
lines 3 and 4 generate normal variables X and Y respectively, and line 
5 outputs the “data”. Lines 07 and 08 plot a scatter diagram. Lines 09 
and 10 calculate the correlation coefficient and test the hypothesis of null 
correlation.
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Experiment 9.2 Sampling experiment for nonzero correlation Ran
domly generate the values of X from the normal distribution N(0, 1), and 
then generate the corresponding values of Y from the normal distribution 
N(X,  1) so that the distribution of Y depends on the value of X. Repeatedly 
generate 30 pairs of values for X and Y; plot a scatter diagram, calculate 
the correlation coefficient and test whether the population correlation coef
ficient is zero. Repeat the above process (not including the scatter diagram) 
for 100 times. Sum up the total number of rejecting the null hypothesis, and 
discuss the indication of this summarized number.

Program 9.1 can still be used, only line 02 is changed as “DO 1= 1 TO 
30 BY 1”, and line 04 is changed as “Y=X +  RANNOR(O)”.

9.7 Practice and Experiments

1. To explore the relationship between the level of blood sugar (mmol/L) 
and that of insulin (mU/L), 20 patients with diabetes were recruited from 
a hospital in Taiyuan, getting a correlation coefficient r =  — 0.523 (two- 
side, 0.01 < P < 0.02); and meanwhile 60 patients with the same type of 
diabetes were recruited from several hospitals in Guangzhou, getting a cor
relation coefficient r =  -0 .456  (two-side, P < 0.001). Based on the size of 
P-values, the researcher concluded that the population correlation among 
the patients in Guangzhou was rather stronger than that in Taiyuan. Give 
comments on this.

2. If someone would like to work on pooled data for the above study, taking 
the plots in Fig. 9.4 as reference, discuss what should be considered.

3. If the liver-cancer-specific death rates (T) in Table 9.2 were ranked from 
the maximum to the minimum, what will happen to the rank correlation 
coefficient? If one directly calculates the product moment correlation based 
on the ranks, what will be the possible result?

4. After calculating the product moment correlation based on the ranks, is 
it allowed to use the Table 8 of Appendix II for product moment correlation 
coefficient to find the critical value?

5. Randomly selected 18 students from a high school, the intelligent quo
tients (IQ) were measured at the end of the year. The results are given in
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Table 9.3 The IQs and scores of mathematics and literatures of 18 high school students.

No. 1 2 3 4 5 6 7 8 9

Score of mathematics, X 78 84 61 52 93 89 98 98 65
Score of literature, Y 83 76 70 58 82 78 89 95 61
IQ , Z 95 100 100 75 105 97 110 120 76

No. 10 11 12 13 14 15 16 17 18

Score of mathematics, X 73 48 45 67 75 95 88 99 81
Score of literature, Y 75 53 43 70 78 97 92 92 88

IQ , Z 92 61 60 88 96 125 113 126 102

Table 9.3 incorporating their scores of mathematics and literature of that
year.

(1) Calculate the correlation coefficients between the score of mathematics 
and IQ, between the score of literature and IQ, and between the scores 
of mathematics and literature;

(2) Work out hypothesis tests to see if the population correlation coefficients 
are significantly different from 0;

(3) Can we say that good at mathematics might be caused by good at 
literature, vice versa?

(1st edn. Jiqian Fang, Kai Ng; 2nd edn. Jinxin Zhang, Jiqian Fang)





Chapter 10

Simple Linear Regression

The concept of linear correlation introduced in Chap. 9 is used to describe 
the extent of linear association between two random variables X and Y, of 
which both play an equal role, indifference in dominant and subordinate. 
Furthermore, the researchers may be rather interested in how the value of 
one variable is affected by that of the other such as how the death rate of 
animal depends on the drug dosage. The statistical method to explore lin
ear dependence quantitatively between two continuous variables is called 
simple linear regression, or simple regression for short. Here the two vari
ables play different roles. One is called independent variable or explanatory 
variable, usually denoted by X,  of which the values could be set by the 
researcher or could be a random variable; another is called dependent vari
able or response variable, usually denoted by Y, of which the values could 
randomly follow certain rule once the value of X is given. If the “rule” is 
described as an equation, one can predict the value of Y corresponding to 
the given value of X such as predicting the infant weight by age in months 
or predict the body surface area by height.

10.1 Statistical Description of Linear Regression

10.1.1 Linear regression equation

English geneticist Francis Galton (1889) and his students K. Pearson and 
A. Lee (1903) noticed an interesting phenomenon, so-called “regression to 
the mean”, that the sons of taller fathers tend to be tall, and the sons of shorter 
fathers tend to be short, but their heights tend to be closer to the average 
level of their fathers. It is indeed imaginable. Otherwise, the height will be 
further away from the average level generation by generation, resulting in a

281
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Fig. 10.1 A sketch map for regression.

polarization. Galton called this phenomenon “law of universal regression”. 
The term “regression” has been used in statistical sciences with thoroughly 
different meaning.

The relationship between two variables is always studied on the basis of 
paired sample data. If the values of X and Y are definitely one-to-one cor
responding, their relationship can be described by an appropriate equation. 
However, due to the existence of variation among individuals and mea
surement error, one-to-one correspondence has never happened to the real 
data. If the paired sample data are plotted in a scatter diagram as showed 
in Fig. 10.1, although there is a linear tendency, the points do not exactly 
locate on a straight line. Based on the linear tendency, we may assume that 
corresponding to the values of X, the trace of the population mean of Y, 
denoted by piy\x, can be located on a straight line. Such a linear relation 
between juy\x and X is called linear regression, which can be described with 
a linear regression equation as follows:

Hy\x =  a +  pX , (10.1)

where a is the intercept, which is the average level of Y when X takes value 
0; p  is the slope of the line, which is the increment of the average level of 
Y corresponding to increment of X by a unit. When p  > 0, ц у\х increases 
with X , the regression line ascends; when p  < 0, ц у\х decreases with X,
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the regression line descends; when /; =  0. ц у\х is independent of X, the 
regression line is parallel to the X-axis.

In general, the regression equation can only be obtained from sample, 
which is called sample regression equation or empirical regression equation. 
If we denote the sample estimate of fiy\x as Y, the sample regression equation 
can be expressed as

Y = a  +  bX, (10.2)

where Y, a and b are the estimates of fiy\x, a and /?.

10.1.2 Regression coefficient and its calculation

As showed in Eq. (10.2), once a and b are obtained from a sample, the 
sample regression equation is uniquely determined.

Viewing at the scatter diagram, to find a and b is equivalent to finding 
a straight line to best fit the points. In Fig. 10.1, the difference between 
the observed value у and the estimated value by the regression line у 
is called a residual. The residuals could be positive as well as negative, 
of which the sum does not really reflect the discrepancy of the scat
ter points from the regression line. Therefore, in convention the sum of 
squared residuals are used to describe the fitness of the regression line; 
and one would like to find a straight line that minimizes the sum of 
squared residuals. This is so-called “principle of least squares”. Under 
such a principle, it is easy to get the formulas for a and b by calculus as 
follows:

, _  lxy_ _  E ”=i ~ ^)(У/ ~  У)
Ixx E"=l (*| -  *)2

£ ? - .  з д  -  ( E L ,  * )  ( (10.3)
E L  * ? - ( £ ? - ,  * ) 2 /»

a =  у — bx. (Ю.4)

Putting the values of a and b into (10.2), one can get the linear regression 
equation. More than this, one may plot the regression line on the scatter 
diagram as an intuitive statistical description. Such a line must go through 
the point of (x, y), and cross the vertical axis at a.
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This is the part that has not been explained by the regression equation 
so it is called sum of squares for residuals or sum of squared deviations for 
errors.

(3) The regression makes the sum of squared deviations decline from .S\S'Totai 
to SSResiduab the contribution of the regression is

•^Regression =  3.V Total 3 5  Residual • (10.7a)

It can be proved that

П
^Regression =  ^  (9i ~  .У)2 =  Ыху. (10.7b)

i=l

This is called sum of squares for regression. And its degree of freedom is 

^Regression =  ' io la l  ^Residual =  1- (10.7c)

Obviously, the above steps showed a partition of the total sum of squared 
deviations and its degree of freedom:

33"rotal =  33Regression ~b 33Resjduab (10.8)
VTotal =  R̂egression T  R̂esidual-

(4) To test Я0: The contribution of regression is 0, a F-statistic is used,

„  3 5 R egression/^Regression ^^R egressionr =  ----------------------------- —  ----------------. (10.У)
3 3  Residual /  ̂ Residual 4 7 3  Residual

Here MSRegression and Â.VResjdLiai are called the mean sum of squares for 
regression and mean sum of squares for residuals respectively.

When HQ is true, this F-statistic will follow a F-distribution with degrees 
of freedom V\ =  1 and V2 =  n — 2. If the F-value is smaller than a pre
assigned a, then H0 can be rejected at the level of a, and it is concluded 
that the regression is significant.

Finally the whole process can be summarized in a table of ANOVA 
(Table 10.2).
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Table 10.2 Analysis of variance for regression.

Source S S D F M S F  P

Regression ^Regression ^Regression —
, ^Regression '^R egression
1 ^ R e g r e s s io n -  , M SResidua,

Residual ^Residual ^Residual — n
™ ^R esidual2 Mo Residual —

n  — 2

Total S^Total rTotal =  n ~  1i

Fig. 10.3 P o ssib le  sam p le  w hen  /? =  0.

10.2.1.2 The t-test for regression coefficient

Figure 10.3 is a sketch showing /? =  0, ц у\х always stands on a horizontal 
line for any value of X. In such a case, ц у\х does not depend on X so that 
we say the regression equation is not statistically significant.

However, even if /? =  0 is true, it is not definitely impossible to have a 
sample like the blank circles in Fig. 10.3, then one may obtain a nonzero 
regression coefficient b. Therefore, when ft =  0 is true, the difference 
between b and 0 is small, it is reasonable due to the existence of sampling 
error.

Contrarily, if the difference between b and 0 is fairly large, we may think 
that it is not very likely to have such a large b under the hypothesis of ft =  0 
and reject hypothesis H0. How large between b and 0 would we reject the 
hypothesis of f  =  0? We need the following t  test:

H0 : p  =  0, Hi : /3 ф 0.
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When H0 is true, the statistic

( 10.10) 

( 10.11)

tb = -------~  t dist.,
Sh

v =  n — 2,

where

Sb =

s = T  (у,- -  У/)2
n — 2

Residual 

n  - 2  ’

( 10.12)

(10. 13)

s  is called standard error of residuals and S b  is called standard error of 
regression coefficient. Equation (10.12) reminds us that the estimate of 
the regression coefficient will be more robust when the values of X are 
spread out.

Same as before, by the table of t distribution, one can get the corre
sponding p value and decide to reject Щ or not.

When both of the variables X and Y follow a bi-variable normal dis
tribution, we can have correlation coefficient between Y and X as well as 
regression coefficient of Y on X. For the correlation coefficient p, we used 
to introduce a t test with a statistic tr; and now for the regression coefficient 
/?, we also have a t test with a statistic ?/,. It can be proved that these two t 
tests are equivalent, i.e. tb =  tr.

Example 10.2 Work out a test for the regression in Example 10.1.

Solution (1) ANOVA The hypotheses to be tested are 
H0: The contribution of the linear regression is 0,
H\ : The contribution of the linear regression is not 0.
Calculate the total sum of squared deviations and its degree of freedom

SSxotal =  J 2  {У‘ -  y f  =  6 9 8 -5 5 ’ 
(=1

Ihotal =  n -  1 =  20 -  1 =  19.
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Calculate the sum of square for residuals, its degrees of freedom and the 
mean square for residuals

П
^Residual =  ( У '  ~  >’' ) 2 =  9 4 '9 2 ’

^Residual

^^R esidual

i=l
=  n — 2 =  20 — 2 =  
_  Residual _  94-92

^Residual 18

18,

=  5.27.

Calculate the sum of square for regression, its degree of freedom and 
the mean square for regression

^R egression  =  5 5 T„tal — ^R esid u a l =  698.55 — 94.92 =  603.63,

^Regression =  ^Total ^Residual =  1s

^Regression 603.63
Aggression =  8 =  — —  =  603.63.

^Regression 1

Calculate the ratio

p  _ ^^Rggression _ 603.63 _ j ^  ^
37 ̂ Residual 5.27

Check the table for /•'-distribution with v \  =  1, V2 =  18, corresponding to 
F =  114.54, the F-value is less than 0.01.

Therefore, reject H0 at the level of 0.01, and conclude that the regression 
of the son’s height on the father’s height is statistically significant.

Finally, summarize all the above results into a table of ANOVA 
(Table 10.3).

Table 10.3 Analysis of variance for regression in Example 10.1.

Source S S D F M S F P

Regression 603.63 1 603.63 114.54 <0.01
Residual 94.92 18 5.27

Total 698.55 19
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(2) t test The hypotheses to be tested are

H0 : /3 =  0, РФ  0.

By (10.13)

' E  O'; -yi)2 ssResidual 94.92
~18~

=  2.2964.

By (10.12)

By (10.11)

2.2964
V1859.2

0.05326.

b -  0 
h  — -------

Sb
0.5698

0.05326
10.7, у =  2 0 - 2  = 1 8 .

Check up the table for t distribution with v =  18, corresponding to 
t b  =  10.68, the P  value is less than 0.001.

Therefore, reject Щ at the level of 0.001, and also conclude that the 
regression of the son’s height on the father’s height is statistically significant.

Reviewing the test for correlation coefficient in Example 9.4, one will 
find that th — tr =  10.7.

In addition, tb =  10.72 =  114.54, which is just equal to the F value 
in Table 10.3 obtained by the approach of ANOVA. This is not by chance. 
In theory, when the degree of freedom for numerator is equal to 1, the critical 
value of F distribution is equal to the square of that of t distribution,

(10.14)

This shows the fact that the conclusion of t  test for regression coefficient 
/3 =  0 is consistent with that of ANOVA for regression equation. A slight 
difference between these two approaches is that t  test could be used for 
both one-side and two-side situations, but ANOVA for two-side only. How
ever, the idea of ANOVA can be easily extended to the cases of nonlinear 
regression and multiple regression.
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10.2.2 Determination coefficient 

From Table 10.3,

SS Regression =  603.63, SSrotal =  698.55.

We have
SSRegression

•Ŝ Total
603.63
698.55

0.8641.

At the same time, we have

r2 =  0.92962 =  0.8641.

This is not by chance either. In fact,

SSRegression

SS-Total
Ыxy

УУ

/2
x y

I x x l y y

In general, the ratio between ^Regression and SSrotai is called determina
tion coefficient or correlation index, denoted by R2,

R-
SSRegression

^Total
(10.15)

R2 is a dimensionless quantity and 0 < R2 < 1. It reflects that the percent
age of the total sum of squared deviations can be explained by the regression. 
Example 10.2 shows that 86.41% of the variation among the sons’ heights 
can be explained by the information of their fathers’ heights, while 13.59% 
of the variation cannot be explained yet.

In practice, it is suggested to report the value of determination coeffi
cient after an analysis of regression to describe how good the regression is. 
Why? Here is a story: Once upon a time, one psychologist had a survey on 
the relationship between an index Y for liver function and a score for psy
chological status X through a group of patients with hepatitis B, resulting in 
a correlation coefficient r =  0.2 and a regression coefficient b =  0.01, and 
both were statistically significant. Although the psychologist had written in 
his report: “the index for liver function can be improved by psychological 
consultation”, one year later he found that the effect of his psychological 
consultation was not as good as what he imagined. What is wrong? As a 
matter of fact, the determination coefficient here is only 0.22 =  0.04. That



292 Medical Statistics and Computer Experiments

is, among the variation of the index for liver function, there is only 4% being 
determined by the score for psychological status.

10.2.3 C onfidence in terva l f o r  fi

Based on the t test for regression coefficient, one can easily get a (1 — a)- 
confidence interval for the population regression coefficient /?

b ±  ta v (10.16)

If this interval does not cover 0, we can also conclude that the population 
regression coefficient is not equal to 0 at a significant level of a . This is an 
alternative way to perform the hypothesis test.

Example 10.3 (Cont’d of Examples 10.1 and 10.2) Work out a confidence 
interval for the population regression coefficient in Example 10.1.

Solution From Examples 10.1 and 10.2, we have

b =  0.5698, 5 =  2.2964, lxx =  1859.2.

By the table of t distribution we have f0.05,i8 =  2.101. By (10.16), the 
95% confidence interval for the population regression coefficient f  is

5 2 2964
b ±  ta v—=  =  0.5698 ±  2.101 ; ......-VC VT85922

=  0.5698 ±0.1121 =  (0.48,0.86).

10.3 Applications of Linear Regression and the Pre-requisites

10.3.1 Two in terva l estim ations

10.3.1.1 Confidence interval for ц у\х

Given X =  xq, by regression equation (10.2) one can get

Y0 — a +  bx0. (10.17)
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This is not the population mean ц y\XQ, only an estimate based on a sample. 
To varies with the sample, of which the variation can be measured by a 
standard error

< l 0 1 8 >

From this formula, one can see:

(1) The standard error of T(l is proportion to 5, the standard deviation of 
residual after regression;

(2) When xo =  x, the corresponding SE(Yq) reaches the minimum

SE(Y0) =  - L .
V й

(3) The larger the distance |xo — x|, the larger the standard error SE(Y0) 
is. Based on (10.18), given x0 =  x, we have the (1 — a)-confidence 
interval of цу\хо as

where ra-v, is the two-side critical value of t distribution with degree of 
freedom v — n — 2 corresponding to a . The belt formed by the two dot- 
curves in Fig. 10.4 is the geometric expression of (10.19). The belt takes 
the regression line as axis; it is the most narrow when xo =  x, and wider 
when |x0 — x| is larger.

10.3.1.2 Prediction interval for Y

Given X =  xo, the corresponding individual value of F0 will vary around 
Hyî o. We have a confidence interval for цу\хо so that the possible range of 
T0 will be wider than the interval. In fact, it can be proved that the standard 
deviation of Tq is

(x0 -  x)2 
(X i  -  x ) 2 '

S(Y0) »  5 ( 10.20)
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Fig. 10.4 The sketch map for the confidence interval of p  y \x  (Cl) and the prediction interval

Therefore, given X =  xo, the (1 —a)-prediction interval of the individual 
value of Tq is

The belt formed by the two solid-curves in Fig. 10.4 is the geometric 
expression of (10.21). This belt also takes the regression line as axis, and it 
is most narrow when x0 =  x, wider when |jc0 — Jc | is larger; but it surrounds 
the above-mentioned confidence interval of ц у\хо.

Example 10.4 Given the father’s height X =  165.8cm, apply the regres
sion equation of son’s height on father’s height in Example 10.1 to estimate 
the 95% confidence interval for the average level of all the possible sons’ 
heights and the 95% prediction interval for the specific son’s height.

Solution From Examples 10.1 and 10.2, a =  74.17, 6 =  0.5698,

of Y  (PI).

( 10.21)

x =  168.8, s =  2.2964, lxx =  1859.2, f0.05.i8 =  2.101. By (10.17), when 
Xo =  165.8,

T0 =  74.17 +  0.5698 x 165.8 =  168.64.
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By (10.19),

-  / 1  ( x 0 — x ) 2
Yo i  ta vs — |-

n ' E  (+ -  x )2

, 1 (165.8 — 168.8)2
=  168.64 +  2 .101(2 .2964),/- +  -̂-----1859 2

=  168.64 ±  1.1299 =  (167.51, 169.77).

By (10.21), the 95% prediction interval for the specific son’s height is

- / 1 (xo — x)2Y0 ± t a,vs l  1 +  -  +
n  ' E (Xi -  x)2

, 1 (165.8 -  168.8)2
=  168.64 ±  2.101(2.2964),/1 +  -  + -------— ------

=  168.64 +  4.9553 =  (163.68, 173.59).

The above example shows that given X =  xo, we can use the regression 
equation to estimate or predict the average level of To and the range of T0. 
It has to be noticed that in general the estimation or prediction through the 
regression equation should be limited in the range of X that the regression 
equation comes from. In such a case, the estimation or prediction is called 
interpolation; otherwise, it is called extrapolation. If there is not enough rea
son to ensure that the relationship between the two variables keeps the same 
beyond the range that the regression equation comes from, extrapolation is 
not allowed.

10.3.2 Whether two data sets can be pooled for regression?

10.3.2.1 Are they parallel?

Assume that there are two samples

( X U , 3 + ) ’ 1 ~~ 1? 2 ,  . . . , П\ ( X 2 i , У2/)? 1 1 , 2 , . . . ,  U2-
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Work out two linear regressions respectively, we have 

Y =  Q\ -|- b\ X, Y — й2 b2X ,

where (a \,b \) and (a2, b2) are the estimates of the parameters (a\, fi\) and 
(a2, Pi) of the two linear models respectively,

fly\x = a \ + PlX, Иу\х =  a1 +  P2X.

Sometimes we need to explore whether the two straight lines in the 
population are parallel, that is, to test

H q : f t i  =  p 2 , Н х : р х ф Р г .

After the two regressions, denote the two sums of squares for residuals
by SS Residual, 1 ar)d A.S”Residual,2 ! and

Hi П2
lx x ,\  — ^  ' (a I/ X \ )  Ix x ,2 =  ^  't(X 2 i S 2 )  ■

i= l  /=1

Since

sb 1 —
AA Residual, ss

X X ,  1
Sh2 —

Residual, 2

/xx,2

we have

Sbl-b2
I SS Residual, 1 ^  ^ R e sid u a l,2

lxx,\ l xx,2

where 5*1-62 is the standard deviation of b\ — b2.
It can be proved, when H0 is true, that the statistic

b\ -  b2
t = --------- ~  t dist.

5*1-62

( 10.22)

(10.23)

(10.24)

Given a, check the table of t distribution with degree of freedom v =  
n\ +  n2 — 4, if P < a, reject Я0; otherwise, do not reject, hence the two 
lines can be regarded as parallel to each other.
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10.3.2.2 Can be pooled?

When the two lines are regarded as parallel, if the two lines can be further 
regarded as superposition, then the two sets of data can be pooled to have a 
unique regression equation.

The test hypotheses are

Ho : The two lines are superposition in the population,
H\ : The two lines are not superposition in the population.

On one hand, when Ho is true, pooling the two data sets, one can have 
a regression equation Y — a +  bx and denote the sum of squares for 
residuals with SSResidual • On the other hand, when Я, is true, working out two 
linear regressions respectively, we have two sums of squares for residuals 
SS Residual, 1 and •S.S’Res[cjua]2 -

Then calculate a statistic
_ [^Residual ~(^Residual,j +SSResidual.l ) V v 1

SSResidual/("l+«2-2) ’ (10 25)

0 [ =  2 , t >2 =  «1 +  «2 — 2 .

Given a, check the table of F distribution with degrees of freedom iq 
and v2, if P < a, reject H0; otherwise, do not reject.

Example 10.5 Another school in northern China randomly selected 
20 male students following the way of Example 9.2 to measure the heights 
(cm) of them and their fathers. The data are showed in Table 10.4. Work out 
a regression equation of Y on X with this data set. Suppose both Tables 10.1 
and 10.4 come from a same collaboration project, can we pool the two data 
sets to have a unique regression equation?

Table 10.4 Heights (cm) of 20 pairs of father and son in a school of northern China.

No. 1 2 3 4 5 6 7 8 9 10

Father’s height, X 154 159 166 168 170 172 174 176 178 179
Son’s height, Y 158 168 167 173 168 175 170 171 179 180

No. 11 12 13 14 15 16 17 18 19 20

Father’s height, X 179 180 181 181 182 182 185 186 188 192
Son’s height, Y 174 181 175 181 175 183 176 183 185 180
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Solution Based on Table 10.4, it is easy to get a regression equation

Y =  67.63 +  0.6085X

and $l2 =  12.46, lXXy2 =  1726.8 and Ŝ ResiduaU =  224.28. With a hypoth
esis test, it is concluded that this regression is statistically significant.

(1) Are they parallel?
To answer whether the two data sets can be pooled, we starts from 

the test

Ho'. P\ — /?2, H\ : /?, ф Pi-

Incorporating the results we have from Example 10.1: b\ =  0.5698, 
s lx =  5.27, lxx,i =  1859.2 and SSResiduai,i =  94.86, we have the statistic

0.5698 -  0.6085
t =  -----=  -0.3860.

/  5.27 , 12.46
V 1859.2 1726.8

Check the table of t distribution with degree of freedom v =  n \ + n 2—4 =  36, 
we have P > 0.7. H{) cannot be rejected so that the two lines can be regarded 
as parallel.

(2) Can be pooled?
Now let us test

Hq : The two lines are superposition in the population,
H\ : The two lines are not superposition in the population.

With the pooled data set, we get a regression equation

Y =  70.58 +  0.5914X (10.26)

and

^Residual =  320.72.

By (10.25), we have

[320.72 -  (94.86 +  224.28)]/2 
~  320.72/38

0.0936.

Check the table of F distribution with degrees of freedom v \ = 2  and 
у2 =  38, we have P > 0.10, H0 cannot be rejected so the two sets can be 
pooled and (10.26) is valid.
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10.3.3 Linear regression through origin

In some specific applications, we are sure that Y must be 0 when X =  0. 
Then the model for regression is

as if x and у in Eq. (10.3) were replaced by 0.
The linear regression through origin is a special case of general linear 

regression. The content in Secs. 10.2 and 10.3 are still valid as long as x 
and у in the formulas are replaced by 0 and the degrees of freedom change 
from n — 2 to n — 1.

10.4 On the Basic Assumptions and Analysis of Residuals

10.4.1 On the basic assumptions

The regression model (10.1) as well as (10.27) is subject to a kind of para
metric models to describe the linear relationship between the two variables. 
If the basic assumptions are satisfied and able to get the support of the actual 
data, then the regression model can be used as guide for medical research. 
The basic assumptions for statistical inference related to this kind of models 
include the following four aspects:

(1) There exists a linear tendency between the dependent variable Y and 
the independent variable X (“linear” for brief);

(2) The individual observations are independent (“independent” for brief);
(3) Given the value of X, the corresponding Y follows a normal distribution 

(“normal” for brief);
(4) The variances of Y for different values of X are all equal, denoted by 

er2 (“equal variances” for brief).

As a summary, the basic assumptions could be expressed with “LINE” 
for brief. Failure to meet the basic assumptions might lead to a worse 
result, at least might affect the accuracy and precision of the estimates

M y\ x  —  f i X . (10.27)

The least square estimate of /7 is

(10.28)
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and the validation of the P value. The assumption of linearity is essential 
that using a linear model to describe a curvilinear relationship is obvi
ously inappropriate; the assumption of independency is also essential that 
one have to turn to more advanced approaches for dependent data; the 
violation to the assumptions of normal distribution and equal variance 
might not seriously affect the least square estimates though all the intro
duced formulas for statistical inference might not be valid. Once the 
assumptions (1), (3) and (4) are violated, it is worthwhile to try some 
transformations.

10.4.2 Analysis of residuals

In practice, one may use scatter diagram of residuals to observe whether 
the basic assumptions are met. Residual is defined as the corresponding Y 
minus the fitted value Y predicted by regression model, i.e. e =  Y — Y . The 
examination of residual plots is a simple and effective method for detecting 
deficiencies in regression analysis.

The scatter plot of the residual e versus the fitted values Y can be used 
to check the assumptions of linearity and equal variances. If the linear 
assumption does not hold, the plot may look like a curve. If the assump
tion of equal variances does not hold, the plot may look like the shape 
of a trumpet. The normal probability plot of the residual e or histogram 
of e can be used to check normality. The scatter plots of the residual 
against the predictor variable can be used to check dependency. If the plot 
shows a specific structure, the dependency may be violated. The Durbin- 
Watson statistics (DW) can also be used to check dependency. The value 
of DW is around 2 under this assumption; otherwise it will be close 
to 0 or 4.

Under the standard assumptions, the residual plot of residuals e versus 
the fitted values Y should look like Fig. 10.5(a) which indicates that a linear 
model may be reasonable.

The scatter plot in Fig. 10.5(b) or (c) suggests a nonlinear model. One 
may build a curve model by nonlinear regression.

The scatter plot in Fig. 10.5(d), (e) or (f) shows that the residuals change 
with the fitted values indicating the assumption of equal variances is vio
lated. One may estimate the model parameters by the way of weighted least 
squares method.
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Fig. 10.5 Scatter plots of residuals versus the fitted values.

The scatter plot in Fig. 10.5(g) or (h) shows that the residuals change 
with the fitted values and has a curve shape which indicates linearity and 
equal variances are violated simultaneously.

If the assumptions of normality or equal variances dose not hold, one may 
make some transformations to variables such as logarithmic transformation, 
square-root transformation, and reciprocal transformation etc. It is worth 
noting that these transformations can be applied to independent variables 
but not the response variable.

10.5 Non-linear Regression

In medical practice and research, one may find that the relationship between 
two variables does not always appear in a linear pattern. When there exists 
a nonlinear relationship between the dependent variable Y and independent 
variable X, how to estimate the average level of Y corresponding to a given 
value of XI This is the problem of nonlinear regression or curve fitting.

10.5.1 Through linear regression

As mentioned before, a scatter diagram is helpful to illustrate the possible 
relationship between two variables. Figure 10.6 demonstrates several curves 
often encountered in practice with the corresponding functions and their
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(a) Power function (b) Lob. function (c) Exponencial function (d) Logistic function 
Y=aX±h Y=a±b\ n(X) Y=ae±hx F=l/(l+ac±M)

1п(У)=1п(а)±Ып(Х) In (Y)=a±bX 1п(У)=1п(а)±ЫГ 1п[У/(1-У)]=-1п(я)±йХ

Fig. 10.6 Several curves often encountered in practice.

linearization form. Referring to Fig. 10.6, on the basis of scatter diagram, 
one may try various transformations to see which function may be chosen 
to fit the data.

Steps through linear regression:

(1) Plot a scatter diagram for Y versus X\
(2) Attempt some appropriate transformations:

K* -  f (Y) ,  X * =  g(X)  (10.29)

to lead the scatter diagram for Y* versus X* close to a straight line;
(3) Perform a linear regression of Y* on X*\
(4) Substitute Y* =  f (Y) ,  X* =  g(X)  into the linear regression equation 

to obtain an equation for Y and X.

Facing a new situation, people prefer to solve the question by an old 
method first. To fit a curve round about a linear regression is just an example. 
It is feasible for some cases, but not all.

10.5.1.1 Linear regression after transformation ofX

Example 10.6 The Department of Microbiology, Shanghai Medical 
University worked out an experiment of rocket electrophoresis to mea
sure the rocket altitudes corresponding to given concentrations X of 
immunoglobulin A (IgA, /rg/ml). The data are listed in Table 10.5. Try 
to fit a nonlinear regression equation for Y versus X.
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Table 10.5 Data of an experiment of rocket electrophoresis.

IgA(/<g/ml)
X

Rocket altitudes 
(mm) Y X '  =  ln X Y

0.2 7.6 -1.60944 7.22742
0.4 12.3 -0.91629 12.61907
0.6 15.7 -0.51083 15.77239
0.8 18.2 -0.22314 18.00972
1.0 18.7 0 18.74512
1.2 21.4 0.18232 21.16304
1.4 22.6 0.33647 22.36188
1.6 23.8 0.47000 23.40036

/301 / 3 0

20 20
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Fig. 10.7 Scatter diagram for Example 10.6. (a) /  ~  X ,  (b) Y  ~  ln X .

Solution

(1) Plot a scatter diagram for Y versus X. As showed in Fig. 10.7(a), has it 
looks like a curve.

(2) Attempt the Logarithm function in Fig. 10.7(b). After a transformation 
of X* =  ln(X), a scatter diagram of Y versus X* shows that it is linear.

(3) Regression of Y on X*

Y =  19.980704588 +  7.639362628X*. (10.30)

The analysis of variance for linear regression shows a statistical signif
icance with a determination coefficient R2 — 0.9922.
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(4) Substitute X* =  ln(X) into (10.30). We obtain

Y =  19.980704588 +  7.639362628 In X. (10.31)

It should be noted, in the above process, that we have not implied any 
transformation to F so that among all possible equations with the shape 
of У =  a ±  b\n{X),  (10.31) is the one minimizing the sum of squares of 
residuals (Xi ~ X )2, hence it is the best answer following the principle 
of least squares.

10.5.1.2 Not recommended for any transformation to Y

Example 10.7 To study how the volume of sarcoma F(cm3) increases 
with time X (day) for mice S78-3, a set of data has been collected and 
showed in Table 10.6. Try to fit a nonlinear function for the data through 
linear regression.

Solution

(1) Plot a scatter diagram for Y versus X. As showed in Fig. 10.8(a), it 
looks like a curve.

(2) Attempt the exponential function in Fig. 10.6(c). After a transformation 
of Y* =  ln(F), a scatter diagram of F* versus X in Fig. 10.8(b) is linear.

(3) Regression of Y* on X

Y* =  -4.27468874 +  0 .156203483X. (10.32)

The analysis of variance for linear regression shows a statistical sig
nificance with a determination coefficient R2 =  0.9517. It implies that 
more than 95% of the variation of Y* can be explained by X. We could 
say that the linear regression is satisfied.

(4) Substitute Y* =  ln(F) into (10.32)

Y =  0.013916379c0,156203483X. (10.33)

Putting any value of X into Eq. (10.33), we can get the estimate of F, 
denoted with F). Column 3 of Table 10.6 gives all the values of F( cor
responding to the observed value of X. One can see from Table 10.6 that 
regression of F* on X seems satisfied by the way of least squares method 
but that of F on X not. We will discuss it in Sec. 10.5.2.
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Table 10.6 Data on volume of sarcoma K(cm3) and time X  (day) for mice S78-3.

Time
(day)
X

Volume of 
sarcoma 

(cm3)
Y

Linear regression Nonlinear regression

Estimate 
of Y

Y\

Estimate of 
residuals 

e ,  = Y - Y X Y * =  In У Y*

Estimate 
of Y

h

Estimate of 
residuals 

e 2 =  Y - Y 2

0 0.0042 0.0139 -0.0097 -5.4753 -4.2747 0.1609 -0.1567
6 0.0308 0.0355 -0.0047 -3.4809 -3.3375 0.2693 -0.2385
9 0.0614 0.0568 0.0046 -2.7901 -2.8689 0.3484 -0.2870

11 0.0744 0.0776 -0.0032 -2.5985 -2.5565 0.4136 -0.3392
13 0.1028 0.1060 -0.0032 -2.2750 -2.2440 0.4911 -0.3883
15 0.1516 0.1449 0.0067 -1.8863 -1.9316 0.5831 -0.4315
17 0.2101 0.1981 0.0120 -1.5601 -1.6192 0.6922 -0.4821
19 0.3390 0.2707 0.0683 -1.0817 -1.3068 0.8219 -0.4829
21 0.5201 0.3699 0.1502 -0.6538 -0.9944 0.9758 -0.4557
23 1.1020 0.5056 0.2567 -0.2714 -0.6820 1.1586 -0.3963
25 1.1020 0.6910 0.4110 0.0971 -0.3696 1.3756 -0.2736
27 1.5690 0.9444 0.6246 0.4504 -0.0572 1.6332 -0.0642
29 2.0214 1.2907 0.7307 0.7038 0.2552 1.9391 0.0823
31 2.7661 1.7641 1.0020 1.0174 0.5676 2.3023 0.4638
33 3.4289 2.4110 1.0179 1.2322 0.8800 2.7335 0.6954
35 4.1425 3.2951 0.8474 1.4213 1.1924 3.2454 0.8971
37 4.1593 4.5034 -0.3441 1.4254 1.5048 3.8532 0.3061
39 4.8590 6.1549 -1.2959 1.5808 1.8172 4.5749 0.2841
41 5.0037 10.4120 -5.4083 1.6102 2.1297 5.4317 -0.4280
43 6.3052 11.4967 -5.1915 1.8414 2.4421 6.4490 -0.1438
45 7.3461 15.7127 -10.3666 1.9942 2.7545 7.6568 -0.3107

10.5.2 L east squ ared  estim ate f o r  n on lin ear regression

In general, the nonlinear regression model can be expressed as

M Y \X  =  f ( h , P 2 , . . . , P p , X ) -  (10.34)

Here X refers to the independent variable(s); f \ , f 2, ■ ■ ■, P p  referto the 
population regression coefficients; Y refers to the dependent variable, of 
which hy\x is the population mean given X; / ( • )  is a nonlinear function
o f  P \ , p 2 , . .  . , p P .

The basic assumptions of nonlinear regression model are all the same 
as those mentioned for the linear regression in Sec. 10.4.1 except the lin
earity. Therefore, we can still use the principle of least squares to estimate
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Fig. 10.8 Scatter diagram for Example 10.7. (a) Y  ~  X, (b) In Y  ~  X .

the sample regression coefficients, that is, to find suitable b\, £2, . . . ,  bp to 
minimize the sum of squared residuals

П

Q =  £ > , -  -  %).
i = 1

Since the expression of the nonlinear function / ( • )  might be compli
cated, we usually cannot get the explicit solution for the regression coef
ficients and hence numerical algorithms, such as the Newton-Raphson 
method, are used to get the estimates by iterations. The readers can eas
ily find them from the commonly used statistical software.

In order to speed up the iteration, the most important thing is to assign 
a set of appropriate initial values to the unknown parameters. Referring to 
Sec. 10.4.1, if one can work out a linear regression without any transforma
tion of Y, then the iteration for nonlinear regression is not necessary; if the 
scatter diagram can be turned to a linear pattern through a transformation 
of Y, then it is of no harm to get a set of initial values through a linear 
regression.

Example 10.8 Work out a nonlinear regression under the principle of 
least squares for the data in Example 10.7.

Solution Adopting the model of exponential function and using the 
Newton-Raphson method in statistical software SAS we can have the sam
ple regression equation

Y =  0 .160892e0085836* .  (10.35)
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Substituting the values of the observed X into this equation, the estimated 
values of Y are denoted with Y2 and listed in column 7 of Table 10.6; the 
estimated residuals are denoted by e2 and listed in the last column 8 of 
Table 10.6.

Comparing the two sets of estimates Y2 and Y\ incorporating the 
observed values of Y, one will find that for X <21,  the estimate Y\ seems 
better than Y2, and for 23 < X < 45, Y2 is much better than Y\. Why is that? 
It is mainly because the linear regression of Y* on X is just responsible to 
Y*, that is, the “least square” for Y* does not guarantee the “least square” 
for Y.

From the success of Example 10.6 and the failure of Example 10.7, we 
know that: If the linear relationship can be performed by certain transfor
mation of X only, then the result of linear regression might be satisfied; 
otherwise, the result of linear regression might be misleading if the linear 
relationship is performed by any transformation of Y.

How to compare the goodness-of-fit comprehensively for the nonlinear 
relationship?

10.5.3 Goodness-of-fit for nonlinear regression

Usually people use a determination coefficient R2 to evaluate the result of 
regression for it is quite intuitive. The definition of it has been introduced 
in Chap. 8, that is, the proportion of the sum of squares contributed by 
regression to the total sum of squares of deviations, SSRegression/SSrotai or

1 S S R e s id u a t /S -W
However, this definition will fail to apply to nonlinear situations such as 

Example 10.7. In fact, based on column 2 of Table 10.2, we have the total 
sum of squares of deviation

SSTotai =  -  Y)2 =  108.796321.
i

And based on columns 2 and 3, we have

SSResidual =  -  Yu)2 =  114.709638.

If it is the case,

R2
114.709638
108.796321

-0.0543522.
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What a surprise! After regression, how can the sum of squares of 
residuals be greater than the total sum of squares of deviations before 
regression?

As we have seen by comparing columns 2 and 3 in Table 10.6, Eq. (10.33) 
is not as worse as nothing. The fallacy is caused by the definition of deter
mination coefficient given in linear regression which is not appropriate for 
the situation of nonlinear regression.

We have mentioned in Chap. 9,

r2_ [ Е № - Ю № - Ю ]2
E № - x ) 2 E № - f ) 2 '

Substituting the regression equation f, — Y — b{Xt — X ) into the above 
equation, we have

1[E£№ - Wi-F)]f
[ 2

i-----1<N•C1 EW -Y)2]
[ Е й - а д - у )]2 

E  (Yi - У)2 E  (Yi -  Y)2 ~ Гу’9
(10.36)

Thus, the determination coefficient R2 is also a correlation coefficient 
between the observed Y and the estimated Y in linear regression. Now 
we extend this to the situation of nonlinear regression as the definition of 
determination coefficient:

R2 =  [Cor(Y, Y)]2. (10.37)

For Example 10.6, it is a linear regression without transformation of Y 
so that the determination coefficient calculated according to Eq. (10.37) is 
still equal to 0.9922.

For Example 10.7, according to (10.37), the determination coefficient is 
the square of correlation coefficient between columns 2 and 3,

R2 =  [Cor(Y, f ,) ]2 =  0.9283.
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For Example 10.8, according to (10.37), the determination coefficient is 
the square of correlation coefficient between columns 2 and 7,

R\ =  [Cor(Y, Y2) f  =  0.98572 =  0.9715.

Comparing R\ and R\, one can see that the result of nonlinear regression 
is much better than that of linear regression after a transformation to Y. 
This is not surprising because the result of nonlinear regression is the best 
fitted one under the principle of least squares for Y rather than for any 
transformed Y.

In some old statistical literatures, the way of linear regression after trans
formations of X as well as Y to fit a curvature relationship were introduced, 
because it can be performed without the help of computer. Nowadays as 
the statistical software is quite popular, whenever the data cannot be well 
fitted by linear regression after transformation of X only, the least square 
estimation for a nonlinear model is recommended.

10.6 Computerized Experiments

Experiment 10.1 Linear regression Program 10.1 is used for linear 
regression analysis of Example 10.1.

Lines 02-14 of Program 10.1 generate a data set named A with two 
variables л: and y. Lines 15 and 17 are to draw a scatter plot. Lines 18

Program 10.1 Linear regression analysis.

Line Program Line Program

01 DATA A; 13
02 INPUT X Y@@; 14
03 CARDS; 15
04 150 159 153 157 16
05 155 163 158 166 17
06 161 169 164 170 18
07 165 169 167 167 19
08 168 169 169 170 20
09 170 173 171 170 21
10 172 170 174 176 22
11 175 178 177 174 23
12 178 173 181 178 24

183 176 185 180

PROC GPLOT;
PLOT Y*X;
RUN;
PROC CORR;
VAR X Y;
RUN;
PROC REG;
MODEL Y=X/R CLB CLI CLM DW; 
SYMBOL 1 I=RL;
RUN;
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P ro g ram  10.2 T h e  reg ress io n  lin es an d  th e ir  d is trib u tio n  a fte r rep ea ted  sam p lin g .

L ine P rogram L ine P ro g ram

01 DATA A ; 09 E N D ;
02 D O  1=1 T O  20; 10 P R O C  R E G ;
03 X = R A N N O R (0 )* 2  +  170; 11 M O D E L  Y 1 = X ;
04 A R R A Y  Y (10) Y 1 -Y 1 0 ; 12 S Y M B O L 1 I= R L ;
05 D O  J = 1  T O  10; 13 P R O C  G P L O T ;
06 Y (J )= R A N N O R (0 )* 2  +  X * 0 .6  +  70; 14 P L O T  (Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7
07 E N D ; Y 8 Y 9 Y 1 0 )* X  =  1/O V ER LA Y ;
08 O U T P U T ; 15 R U N ;

and 20 work for correlation analysis. Lines 21 and 22 work for regression. 
Line 23 is to plot a regression line.

Experiment 10.2 The distribution of sample regression lines Assume 
the father’s height X follows a normal distribution А(170, 21 2), and the son’s 
height Y follows a normal distribution TV(70 +  0.6X, 22), that is, there is a 
“known” linear relationship between the population mean of the sons’ height 
and the father’s height, ц У\х =  70 +  0.6Z.

(1) Randomly generate 20 pairs of the heights of fathers and sons, and work 
out a linear regression on such a data set;

(2) Repeat (1) for ten times independently and obtain ten straight lines 
respectively;

(3) Plot the ten lines on the same coordinate system;
(4) Observe the distribution of these lines and discuss about the shape of 

the profile.

Lines 02-07 of Program 10.2 form a cycle to generate ten samples with 
20 pairs of “observed values” for each. Lines 10 and 11 work for regression. 
Lines 12-15 plot regression lines of F1-F10 versus X.

Experiment 10.3 Outcome of data-pool without consideration of 
confounding Let Z is a confounder affecting both the heights of father 
and son. Assume the father’s height follows a normal distribution A(170 +  
10Z, 42) and the son’s height follows a normal distribution A (70+0.6(X  — 
10Z), 42).

(1) Randomly generate three “samples” with 20 pairs of “father and son”
corresponding to Z =  — 1,0, 1 respectively;
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P ro g ra m  10.3 O b serv e  th e  o u tco m e  o f  d a ta -p o o l w ith o u t co n sid era tio n  
o f  co n found ing .

L in e P rogram L ine P ro g ram

01 DATA A; 09 P R O C  PLO T;
02 D O  1 =  - 1  T O  1; 10 P L O T  Y *X ;
03 D O  J = 1  T O  20; 11 PR O C  R E G ;
04 X = R A N N O R (0 )* 4  +  170 +  10*1; 12 M O D E L  Y = X ;
05 Y = R A N N O R (0 )* 4  +  0 .6  +  70 ; 13 B Y  I;
06 O U T P U T ; 14 P R O C  R E G ;
07 E N D ; 15 M O D E L  Y = X ;
08 E N D ; 16 R U N ;

(2) Work out linear regression for the three samples respectively;
(3) Pool the three data sets into one, and work out a linear regression;
(4) Observe the difference between the results of (2) and (3), why?

Lines 02-08 in Program 10.3 generate three “samples” corresponding to 
/  =  —1,0 and 1. Lines 09 and 10 are to plot scatter diagram. Lines 11-13 
work out linear regression for three “samples” respectively. Lines 14 and 
15 work out regression and plot for the pooled data.

Experiment 10.4 Nonlinear regression Program 10.4 is used for multi
nomial logistic regression analysis of Example 10.6.

Lines 02-10 of Program 10.1 generate a data set named A with two 
variables X and Y. Lines 13 and 18 work for nonlinear regression of Y 
on X.

P ro g ra m  10.4 N o n lin ea r  reg ress io n  by  lea s t sq u a res m ethod .

L ine P ro g ram L ine P ro g ram

01 DATA A; 10 41 5 .0037  43  6 .3 0 5 2  45 7.3461

02 IN P U T  X  Y @ @ ; 11 ;

03 C A R D S ; 12 R U N ;
04 0  0 .0 0 4 2  6 0 .0308 13 PR O C  N L IN ;

05 11 0 .0 7 4 4  13 0 .1028  15 0 .1516 14 PA R M S B 0 = 0 .0 1 3 9 1 6 3 7 9

06 17 0.2101 19 0 .3 3 9  21 0.5201 В 1 = 0 .1 5 6 2 0 3 4 8 3 ;

07 23 0 .7623  25 1.102 27 1.569 15 M O D E L  Y = B 0 * E X P (B 1 * X );

08 29 2 .0 2 1 4  31 2.7661 33 3 .4289 16 O U T P U T  O U T = B  P = Y H A T  R = R ;

09 35 4 .1425  37 4 .1 5 9 3  39  4 .859 17 R U N ;
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Experiment 10.5 Comparison linear regression after transformation 
of Y and nonlinear regression Generate a set of data, of which the mean 
follows an exponential function ц У\х =  e-a5x, and the residual follows 
a normal distribution, then fit an exponential function by linear regression 
after transformation of Y and nonlinear regression respectively and finally 
compare the results.

The detailed steps are the follows:

(1) Calculate the values of e~05x for X =  0, 1, 2, 3, 4;
(2) For each value of X, generate 20 values of Y from the normal population

N(e~05X, 0 .12);
(3) Plot a scatter diagram for Y versus X and observe the distribution of Y 

for different values of X ;
(4) Plot another scatter diagram for In Y versus X and observe the distri

bution of In Y for different values of X;
(5) Compare (3) and (4);
(6) Estimate the parameters a and /? for the model ц У\Х — ae~Px through 

a linear regression of In Y on X;
(7) Estimate the parameters a and /? for the model ц У\х =  ae~^x through 

a nonlinear regression of У on X;
(8) Compare the results of (6) and (7) to check which is closer to the initial 

equation juY\x =  e~05X.

P ro g ram  10.5 L in e a r  reg ress io n  a fte r tran sfo rm a tio n  o f  Y  an d  n o n lin e a r  reg ress io n .

L ine P ro g ram L ine P ro g ram

01 DATA A ; 14 P L O T  (E Y  Y f  X /O V E R L A Y ;
02 D O  X = 0  T O  4  B Y  1; 15 P R O C  G PLO T;
03 D O  1=1 T O  20  B Y  1; 16 P L O T  (L E Y  L Y )*X /O V E R L A Y ;
04 Y = E X P (-0 .5 * X ); 17 P R O C  N L IN ;
05 E Y = E X P (-0 .5 * X ) + R A N N O R (0 )* 0 .1 ; 18 PA R M S B 0 = 0 .9  T O  1.1 B Y  0 .05
06 L E Y = L O G (E Y ); В 1 = 0 .4  T O  0 .6  B Y  0 .01 ;
07 L Y = L O G (Y ); 19 M O D E L  E Y = B 0 * E X P (-B  1 *X );
08 O U T P U T ; 20 D E R .B 0 = E X P (-B  1 *X );
09 E N D ;E N D ; 21 D E R .B  1 = -B 0 * X * E X P (-B  1 *X );
10 P R O C  P R IN T ; 22 P R O C  R E G ;
11 VA R E Y  LEY ; 23 M O D E L  L E Y = X ;
12 B Y  X; 24 R U N ;
13 P R O C  G P L O T ;
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Lines 02-09 of Program 10.5 form two cycles to generate the 
“observed values” of Y from the normal population N(e~0 5X, 0.12) for 
X =  0, 1,2, 3, 4, denoted with EY; lines 06 and 07 take logarithms for Y 
and EY, denoted with Ly and LEY Lines 10 to 12 print the generated data. 
Lines 13-16 plot the scatter diagrams of Y, EY, LY and LEY versus X 
respectively. Lines 17-21 estimate the parameters by nonlinear regression 
based on X and EY; line 18 defines the range of the parameter to be esti
mated; lines 20 and 21 define the partial derivatives for the two parameters. 
Lines 22 and 23 estimate the parameters by linear regression based on X 
and LEY.

10.7 Practice and Experiments

1. True or false? Why?

(1) The linear regression equation does not change even though the units 
of X and Yare changed.

(2) “Least square” means that the sum of the differences between the 
observed values and the values calculated with the regression equation 
is minimized.

(3) For the same sample, when b =  0, there must be r =  0; and when 
b — \, there must be r =  1.

(4) The linear regression equation requires that both X and Y should 
follow normal distribution respectively.

(5) If two regression lines are of superposition in the population, then the 
two correlation coefficients must be equal.

(6) The larger the determination coefficient, the better the regression is.
(7) If the regression equation of high school student’s height Y (m) on 

their age X (year) is Y — 0.5 +  0.06Y, then the average height of 
newborn is 0.5 because Y — 0.5 when X =  0.

(8) In the hypothesis test for regression coefficient # 0 : p  =  0, the smaller 
the P value, the larger the \p\ is.

(9) If one can predict Y by X, there must be causal relationship between 
X and Y.

(10) It is easy to get a P < 0.05 in the test for regression when n is big 
enough so that as long as the sample size increases we can always find 
a variable severely affected by another.
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2. It is reported that the correlation coefficient between X and Y is r — 0.90, 
the sample means and standard deviations of them are x — 50, у =  100, 
sx =  sy =  10. Can you quickly write the regression equation based on the 
information? When both X and Y are random variables, can you find out 
the relationship between correlation coefficient and regression coefficient 
from the formulas for r and bl

3. Given a random sample of X and Y, (jq, y,), i — 1,2, . . . , /? ,  denote the 
sample means and standard deviations of them with x , y , s x ,sy,  and the 
standardized variables with X* and Y*. It can be proved that the regres
sion coefficient of the regression of Y* on X* must be equal to the cor
relation coefficient between X and Y. Observe this rule from the data of 
Example 10.1.

4. Based on the data of problem 5 in Chap. 9, answer the following questions:

(1) Work out a regression equation for the score of mathematics (Z) on 
the intelligent quotient (Z); then calculate the correlation coefficient 
between the residual X — X and Z. What does the result mean?

(2) Work out a regression equation for the score of literature (Y) on the intel
ligent quotient (Z); then calculate the correlation coefficient between 
the residual Y — Y and X — X. What does the result mean?

5. Work out the formula of the 95% confidence interval for the regression 
coefficient /3 in Example 10.5; given a father’s height x() =  175 cm, estimate 
the 95% confidence interval for the average level of all the possible sons’ 
heights and the 95% prediction interval for the specific son’s height.

6. If every value of Y in Example 10.5 is added by 10 cm, what change will 
happen to the regression equation? After adding 10 cm to every value of Y, 
whether such a new data set can be pooled with the data in Example 9.2 to 
have a unique regression equation?

7. Give an example of testing the parallelism of two regression lines from 
your field of subject matter. What is the real meaning of “parallelism” in this 
example? What is the real meaning of “not superposition” in this example?

8. Summarize the methods forjudging if the regression equation is signifi
cant or not?
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Table 10.7 A se t o f  da ta  on  the  a ttack  ra te  o f  m easles  vs. tim e.

T im e X 1 2 3 4 5 6

A ttack  ra te  (% ) Y 34 .3  65 .5 76.8 85.2 90.3 94.1

9. Summarize the points to be noticed in linear regression analysis.

10. Briefly summarize the relationship and distinguish between linear 
regression and linear correlation.

11. Yibei Ling (1987) reported a set of data from a project on the attack rate 
of measles versus time as showed in Table 10.7. Use two models (exponen
tial and logarithm) to fit the data by two procedures (linear regression after 
transformation and nonlinear regression) respectively.

(1) For each model, is there any difference between the results obtained by 
the two procedures?

(2) For each procedure, which model is more appropriate to this data set? 
(From Peihuan Jin, China Flealth Statistics, 1987, 4(4).)

12. Table 10.8 is the census data of the US population (excluding Flawaii 
and Alaska). Peal, Reed and Kish had fitted a logistic model for the data 
from 1790 to 1940 as follows:

“ 1 +66.69(10-° 1398* )'

From the column for residual in Table 10.8, one can see that the fitness is 
really good. However, when it was used to predict the populations of 1950 
and 1960, the residuals were terribly large. Why? What do you think about?

13. A survey on 2557 primary and high school students in a city for their 
HbsAg infectious situation resulted in a set of data showed in Table 10.9. 
Fit an exponential model for this data set by both linear regression after 
transformation and nonlinear regression respectively, and compare their 
goodness-of-fit. (From Gen Lu, China Health Statistics, 1993, 10(1)).

14. A survey on the costs for hospitalization per inpatient in a hospital dur
ing the period from 1977 to 1989 resulted in a data set given in Table 10.10.
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Table 10.8 T h e  p o p u la tio n s o f  the  U S (no t inc lude  H aw aii an d  A lask a) an d  the  e stim a tes.

P o p u la tio n  (m illio n ) R e s j,ju a ] P o p u la tio n  (m illio n ) p e s jcj u a |

Y ear A c tu a l W E stim a te  W W - W Y ear A c tu a l W E stim a te  W W -  W

1(1790) 3 .9 3 .7 + 0 .2 10(1880) 50 .2 5 0 .2 0 .0
2 (1800) 5.3 5.1 + 0 .2 11(1890) 62 .9 62 .8 + 0 .1
3 (1810) 7 .2 7 .0 + 0 .2 12(1900) 7 6 .0 76 .7 - 0 . 7
4 (1 8 2 0 ) 9 .6 9.5 + 0 .1 13(1910) 9 2 .0 9 1 .4 + 0 .6
5 (1830) 12.9 12.8 + 0 .1 14(1920) 105.7 106.1 - 0 . 4
6 (1840) 17.1 17.3 - 0 . 2 15(1930) 122.8 120.1 + 2 .7
7 (1 8 5 0 ) 23 .2 2 3 .0 + 0 .2 16(1940) 131.4 132.8 - 1 . 4
8(1860) 31 .4 30 .3 +  1.1 17(1950) 150.7 143.7 + 7 .0
9 (1870) 38 .6 39.3 - 0 . 7 18(1960) 178.5 152.9 + 2 5 .6

Table 10.9 In fec tio n  ra te s  o f  p rim a ry  and  h ig h  sch o o l s tu d en ts  in a  city.

G rad e  X 1 2 3 4 5 6

In fec tio n  ra te  (%) Y 3.57 4 .1 4 3.25 4 .1 4 5 .44 3 .82

G ra d e  X 7 8 9 10 11
In fec tio n  ra te  (% ) Y 4 .1 9 5 .12 6.15 5.93 6.77

Table 10.10 T h e  co sts  fo r h o sp ita liza tio n  pe r in p a tien t in a  h o sp ita l (1 9 7 7 -1 9 8 9 ).

Y ear 1(1977) 2 (1978) 3 (1979) 4 (1980) 5 (1 9 8 1 )

C o s t p e r  in p a tien t (Y uan) 36 .32 37.15 38 .14 4 1 .2 0 4 4 .39

Y ear
C o st p e r  in p a tien t (Y uan)

6 (1982)
43 .48

7 (1983)
6 4 .79

8(1984)
127.01

9 (1985)
177.68

10(1986)
2 2 1 .3 0

Y ear
C o st p e r in p a tien t (Y uan)

11(1987)
2 96 .24

12(1988)
47 7 .1 4

13(1989)
6 34 .49

Fit the data by both nonlinear regression and segmental linear regression 
respectively; compare the results and discuss the potential problem of pre
diction. (From Lanhua Chen and Binhui Wang, China Health Statistics, 
1992, 9(2)).

(1st edn. Jiqian Fang; 2nd edn. Jinxin Zhang, Jiqian Fang)



Chapter 11

Statistical Principles for Design 
of Interventional Study

In the design of medical studies, researchers develop protocols based on 
professional knowledge and statistical theory to investigate specific med
ical problems. A good research protocol can lead to reliable results and 
conclusions with limited time and resources. According to whether patients 
receive interventions from the researchers, medical studies can be classified 
into interventional study and observational study.

Interventional study, in which the investigator determines to give spe
cific treatments to some objects and control treatments to others, is widely 
used in pre-clinical medicine, clinical medicine, preventive medicine and 
so forth. The results reflect the effects both from the controllable treatment 
factors and some uncontrollable non-treatment factors. For example, in a 
clinical trial, curative effect of a drug is not only affected by the drug itself, 
but also affected by the route and time of administration, patients’ phys
ical condition, even psychological conditions of patients and doctors, etc. 
Since many non-treatment factors, of which some can be controlled but 
others cannot, affect the outcome, we must pay enough attention to a good 
research design before hand. Research design is a comprehensive plan with 
meticulous care for the allocation of treatments, determination of the mea
surement and analysis of data, to guarantee the balance of non-treatment 
factors between contrast groups so that the outcome may have better com
parability and well-controlled error to obtain the reliable conclusion from 
not too large sample.

317
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Observational study is also known as survey study. It is a survey of 
specific populations without interventions. Through objective observation 
and recording, researchers can describe the results and analyze the 
relationships between factors and outcome(s). Comparing with interven
tional study, observational study proceeds in a most “natural-like” status, 
with all factors and levels of factors of a patient being decided naturally, not 
by researchers or randomly. According to different study design, the types 
of observational study include cross-sectional study, cohort study and case- 
control study.

In this chapter, some basic concepts and rules in research design, espe
cially, in design of interventional study will be introduced. As the most 
commonly used methods in clinical trial, randomized controlled trial will 
also be introduced in this chapter.

11.1 The Essential Concepts of Design

11.1.1 Three elements of  a medical research

There are three elements in a medical research, namely treatment, subject 
and effect. For instance, to evaluate the effect of a hypotensor, using the 
hypotensor or not is the treatment, the hypertensives are the subjects, and 
the decline of blood pressure is the effect.

1 1.1.1.1 Treatment

According to research purpose, the researcher wants to observe the direct 
or indirect effects of some factors, which act on the individual unit. These 
researcher-defined factors are named as treatment.

In medical research, besides the effect of treatment factors, some 
non-treatment factors can also affect the outcome. For example, the con
dition of making substrate, the location and duration of placed substrate 
can confound the effects of the treatment factor. In order to determine the 
treatment effect, we should try our best to find the important non-treatment 
factors that influence the research result so that we can remove or weaken 
their effects.

Treatment factors should be kept standardized, in other words, the treat
ment should be consistent during the whole study.
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11.1.1.2 Subject

Based on different purposes, the research subject can be a person or animal 
and even a certain organ, serum, cell, etc. If the research subject is a patient, 
one may call the research as clinical trial, otherwise experiment.

The valid range or condition of research subject must be predefined 
explicitly so as to ensure the homogeneity. All research subjects satisfying 
those conditions are called a population, and the subjects included in the 
study are called samples. The conclusion can be generalized if the samples 
are valid and the characteristics of the population are met.

11.1.1.3 Effect

The “effect” is the outcome after the treatment and often expressed by a few 
relevant indices (variables). The selecting matter on indices and measure
ments have great influence on the validity of a research and always relies on 
the subject matter knowledge. Here we just mention some essential criteria: 
valid, precise and sensitive.

11.1.2 E rrors a n d  th eir characteristics

11.1.2.1 Random error and its characteristics

Random error results from a great deal of exiguous and incidental errors that 
are hard to control one by one. Although we cannot estimate the random 
error by only one observation, under a number of repetitions, the random 
error presents certain regulation, and generally obed the normal distribution 
with zero as the mean. One of the important missions of the research is to 
help researches make use of the regulation of random error and reveal the 
objective by statistical analysis.

11.1.2.2 Non-random error and its characteristics

Non-random error, also named as bias or systematic error, occurs due to the 
conditions other than the treatment and makes the result deviated from the 
truth systematically. Different from random error, without well prevention 
from the systematic error, one cannot simply make use of the statistical anal
ysis to make any inference. Another important mission of research design 
is to lower or eliminate the bias within the result.
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Bias can come from every stage of the research process. According to 
its sources, bias can be classified into the following types:
(1) Selection bias It occurs at the early stage of research. Due to the inap
propriate choice of the research subjects, the groups lose comparability and 
the results contain bias. For example, in a clinical trial, when the physicians 
do not restrictively comply with the inclusion and exclusion criteria of pro
tocol, say, assigning patients to different groups according to the patients’ 
wills may produce bias to the results.
(2) Information bias It is also called metrical bias and occurs at the moment 
the subjects are measured. This bias happens when the measuring instru
ments have not yet been calibrated, the criterion of the operation is not 
standardized or subjective preference exists during the analysis of results. 
It also includes the gross error resulting from falsely recorded data.
(3) Confounding bias Confounding occurs when the non-treatment factors 
affect the results unfairly to the compared groups. As we know, the sequel 
of a disease not only attributes to the treatment function of a medicine, but 
also relates to its natural development, accessory treatment and patient’s 
constitution. If ones only notice the association between medicine and dis
ease, and neglect the balance of other factors among the compared groups, 
the confounding bias would lead to a wrong conclusion.

In summary, the non-random error or the bias may take place in each 
stage of medical research and affects the conclusion to some extent. Once 
the bias occurs, we can hardly rectify or make up after that. Therefore, the 
researcher must carry on the study cautiously at each stage to avoid bias or 
lower down its influence on the conclusion.

11.1.3 The sta tistica l p rin c ip les f o r  research  design

In order to control the random error of a study, avoid or reduce the non- 
random error preferably, meanwhile obtain more reliable information by 
observing less subjects, we should fulfill the following three statistical prin
ciples during the design stage.

11.1.3.1 Control

Discrimination is always based on a rational comparison. A “nice” con
trol group must be established within an interventional study in order to 
manifest the effect of treatment (see Fig. 11.1).
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Treatment Group Treatment + N o n -tre a tm e n t ^  T re a tm e n t  4- Non-treatment
Factor Factor Effect Effect

Control Group N o n -tre a tm e n t Non-treatment
EffectFactor

Comparative Result Treatment
Factor

Treatment
Effect

Fig. 11.1 A sketch of the function of control group.

The balance between control and treatment groups is the premise that 
ensures the right manifestation of effects of the treatment. Balance means 
that among the compared groups, only the treatment factors are different, 
the distribution of those important and controllable non-treatment factors 
should keep consistent as long as possible. For example, the research sub
jects within different contrast groups should keep consistent on the distri
butions of gender, age and health condition at the beginning. For a clinical 
trail, we should consider for every patient the seriousness and the course of 
disease and other treatments that one had accepted etc.

In medical research, the constitution of control group must meet three 
conditions:

(1) Equity Except for treatment factors, the control group must have the 
same non-treatment factors as the treatment groups do.

(2) Synchronization Once the control and treatment groups set up, we 
should guarantee that the whole research process for both groups take place 
in the same time and space.

(3) Specificity The control group is established exclusively for the relevant 
treatment groups on study. We should not use other’s results or fall back on 
literatures as the control for the current study.

These three conditions guarantee the balance between control and 
treatment groups, thus the function of control group can be completely 
implemented. After establishing the control group, we should com
pare the base line conditions of all compared groups to examine their 
balance.

The principle of “control” is also important to observational studies 
because comparison is the soul of any study and comparability should 
always be concerned.
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11.1.3.2 Randomization

“Randomization” is a kind of statistical operation in order to enhance the 
consistency of distributions of many uncontrolled non-treatment factors 
among all the compared groups. Randomization should be carried out during 
the process of sampling, grouping and executing:

(1) Random sampling All the subjects who meet the fixed criterion have 
the same opportunity to be included, in other words, any individual within 
the population has the same probability to be taken into the sample;

(2) Random allocation Any included subject has the same probability to be 
assigned to each of the compared groups;

(3) Random treated orders In some design, if the sujects do not receive the 
treatment at the same time, then any subject has the same probability to 
receive the treatment early or later.

Here, random sampling guarantees to get representative sample and 
makes the experiment conclusion holds for the population; random grouping 
enhances the balance and comparability among compared groups; random 
experiment orders eliminate the influence from the order of receiving the 
treatment. The method for randomization can be found in Sec. 11.3.

The principle of “randomization” is also important to observational 
studies except that of “random allocation” because the researcher in obser
vational study cannot allocate the treatment to the subject, but observe what 
occurs in the “real world”.

11.1.3.3 Replication

“Replication” means that we take a number of observations under the same 
experimental condition so as to improve the reliability and validity of an 
experiment result. On the broad sense, replication implies:

(1) The replication of whole experiment.
(2) Carry out the experiment with more experiment units.
(3) The repeated observations on the same experiment unit.

Here, (1) makes the experiment replicable and improves its reliability; 
any result not being replicable cannot be scientific. (2) avoids taking specific 
as universal or taking coincidence as necessity; through certain amount of
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repetition we can make the conclusion reliable. (3) aims to enhance the 
precision of the measurement, for example, the blood pressure is generally 
measured three times, and the average is taken as the final observation value.

From probability theory, we know that the more repetition of experi
ment unit, the closer between parameter and sample statistics, say, sample 
frequency or sample mean etc. However, too many observations will waste 
resource, and even make researchers fail to control the experimental con
dition efficiently, thus lower the reliability of experiment result. From the 
computation of standard error, we notice that if the sample size extends up 
to 100, theoretically the standard error only reduces to the 1/10 of its original 
value. Obviously, the loss cannot compensate for the gain. One purpose of 
statistical design is to estimate adequate sample size to make the statistical 
conclusion reliable and avoid unnecessary waste.

In addition to previously mentioned conditions, the determination of 
sample size involves many other factors. For instance, the sample size 
needed for quantitative index is less than that for qualitative index; under 
the same test level and test power, the sample size needed for one-side test is 
less than that for two-side test; if the numbers of individuals in the contrast 
groups are the same, the total sample size needed is less.

R. A. Fisher firstly suggested the must-be-fulfilled three principles above 
in 1935. Since then, many other design methods or techniques have been put 
forward by statisticians, but the basic ideas are all comply with the principle 
of control, randomization and replication, just the appearances may vary.

11.2 Statistical Principle in Clinical Trials

Clinical trial is a kind of prospective researches aims at evaluating a clinical 
intervention by comparing effect of this intervention and that of the control 
treatment. Different from animal experiment, in clinical trial human patient 
is the research object. Researchers cannot absolutely dominate the patients’ 
actions in a clinical trial, they can only request the patients to avoid some 
actions disturbing experiment results, therefore, the patients’ compliance 
and ethnic problem must be considered. Once the new drug has been con
firmed harmful to patients, the trial must be terminated. When there is a drug 
of which the curative effect for the disease under study is validated, using 
placebo contrast is inappropriate. When emergency situation happens, the
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patient must receive additional treatment. Thereby in a clinical trial, much 
more problems exist and need more restrict and specific request in design.

Clinical trail for a new drug is divided into four phases: Phase I clinical 
trial includes the initial introduction of an investigational new drug into 
humans, preliminary clinical pharmacology and safety evaluation, which 
is designed to observe the pharmacokinetics and pharmacological actions 
of the drug in humans, provide basic information for further prescription 
scheme; phase II clinical trail is a randomized, blinded, controlled study 
aiming to obtain some preliminary data on the effectiveness and safety 
of the drug for a particular indication and recommend clinical dosage; 
phase III clinical trial is an extended multi-center experiment with ran
domization and control, which makes further evaluation on effectiveness 
and safety; phase IV clinical trail aims to monitor the curative effects and 
inverse effects, especially rare inverse effects, under the extensive use after 
the new drug came into the market. In this chapter, we mainly discuss the 
statistical requirements of phases II and III clinical trails.

Example 11.1 The physicians notice that after the acute myocardial 
infarction (AMI) happens, infarct expansion and left ventricular remod
eling often lead to left ventricular augmentation and cardiac dysfunction. 
In order to evaluate the effect of long-term Captopril after AMI, one needs 
to design a clinical trial and the following questions should be considered 
in the design.

11.2.1 The choice o f  the ou tcom e variables

11.2.1.1 Primary outcome variable and secondary outcome 
variable

The primary outcome variable, also called target variable, can provide reli
able evidence on the purpose of the clinical trial. Generally there is only 
one primary outcome variable that should be objective, easy to measure and 
widely accepted in related research field. The secondary variable refers to 
the additional variable related to the main purpose of the trial, or variable 
related to the secondary purpose. Both kinds of variables should be explic
itly defined and the reasons being chosen explained in the design protocol. 
The determination of sample size, evaluation of the effectiveness and safety 
should be based on the primary outcome variable.
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11.2.1.2 Compound outcome variable

When there are many variables related to the main purpose of a clinical trial, 
it is difficult to choose one single primary variable. Here we can choose 
some computation techniques in advance (say, sum or weighted sum, etc.), 
or incorporate many variables into one variable. For instance, take “stroke 
or hospitalization due to cardiac disease” as a compound outcome variable.

11.2.1.3 Global assessment outcome variable

This sort of variables is synthesized from some objective variables and 
researcher’s total impression on the patients’ condition and is usually a scale 
of ordered categorical ratings. Therefore, if it is indeed needed, one should 
explain explicitly in the protocol that it is relevant to the main purpose for 
the trial, it has adequate and reliable reason to be chosen and there exist 
unambiguous rules to judge the grade. The global assessment variable 
with better objectivity should be considered alone as one of the primary 
variables.

In Example 11.1, the main purpose is to appraise benefits from Capto- 
pril for the pumping capacity of the left ventricle; hence the primary out
come variable should be the capacity of left ventricle and ejection fraction 
measured by Doppler echocardiography. The secondary outcome variable 
could be the left ventricular filling rate. There exist more than one variable 
to appraise the capacity and filling rate of left ventricle, when inconsis
tent results come forth, it is difficult to get a unique conclusion. Therefore 
one can aggregate several variables into one compound variable for sta
tistical analysis. In this example, the main purpose of the research is to 
evaluate the protective function of Captopril to the heart so that an ordered 
categorical variable reflecting heart function would be a global assessment 
variable.

11.2.2 The choice o f  the con tro l groups

In clinical trial, the only difference between control and treatment groups 
is that the patients in treatment groups accept the new drugs, but those in 
control groups accept the contrast drugs (or placebo).

It is requested that both treatment and control groups come from the 
same population. An ideal setup would be a similar baseline at the beginning
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and consistent conditions along the progress of the trial for both groups. 
In clinical trail, the usual setup of control groups involves the following 
three types:

11.2.2.1 Placebo control

The placebo is a kind of fake drug. Its attribute, such as the form of appear
ance, size, color, weight, smell and taste etc., all keep unanimity with that 
of experimental drug as much as possible, but does not contain any active 
ingredient of the experimental drug. The purpose of placebo control lies on 
removing the bias evoked from the psychological factors of the physicians, 
the patients and other participants in the trial, and isolates the real effects 
and inverse effects caused by the drug. The placebo can be used in parallel 
or crossover setup.

11.2.2.2 Active control

It refers to an effective drug that has been authorized to go into the market. It 
must be legal, safe, and generally accepted as most effective for the disease 
under investigation. It can be used in parallel or crossover setup.

11.2.2.3 Dose-response control

In this setup, researches devise the dosage of the experimental drug into 
several segments, and the patients are arranged into different dosage groups 
at random. There, the placebo contrast, namely the zero-dose group, can be 
involved or not. This setup is mainly used for illustrating the relationship 
between the dosage and the curative effect or the inverse effect, or just the 
former. The kind of control redounds to the approval of the dosage.

In Example 11.1, the patients suffering from AMI are not suitable to 
take the placebo control, therefore they should take the routine treatment 
as an active control, say, the conventional clot-dissolving drug, aspirin etc. 
The treatment group should take the routine treatment plus Captopril.

According to the practical situation, more than one control groups could 
be established in a clinical trial. When placebo, active control and the trial 
drug groups present at the same time, it is called three-arm study. In a placebo 
control experiment, according to medical ethics considerations, a standard
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drug is simultaneously added to treatment group and placebo group, this 
setup is called placebo-standard study.

11.2.3 The im portan t sk ill f o r  avoiding bias — blinding m eth od

The blinding method aims at prevent participants in the clinical trial, includ
ing the sponsor, investigator, medical personnel, monitor, data manager and 
statistical analyst, from knowing which patient accepts what treatment, thus 
avoid the impact of their subjective judgments to the result. There are two 
states of blinding, namely double blind and single blind, and the former 
is always recommended, especially when the primary outcome variable is 
apt to subjectively interfere. Only when the condition does not permit, one 
should adopt the single blind or open label design; if this happens, one 
should state the reason in the protocol.

Double blind scheme prevents all the participants in the trial from know
ing the treatment assigning procedure in advance. When the primary out
come variables are evaluated subjectively (such as pain, cognitive function, 
obstacle grades), and the scale used is extremely apt to produce bias due 
to subjective factors, double blind scheme must be applied. Even if the 
primary outcome variable (such as biochemical index, blood pressure) is 
objective, in order to decrease the selection bias or subjective tendency in 
filling the case report, double blind scheme should be adopted. In a dou
ble blind clinical trial, both placebo and active control need to have testing 
reports form drug control authority, meanwhile all the contrast drugs should 
be in accordance with the experimental drugs in type, shape etc.

Sometimes the form or other aspects of experimental drugs and control 
drugs are different (often under an active control setup), say, experimental 
drug as tablet, and active drug as capsule; or the forms are the same but the 
dosages of administration are different (say, b.i.d. and q.i.d. respectively). In 
order to fulfill double blind scheme, double dummy method should be used. 
Under this circumstance, the sponsor needs to prepare a placebo that has the 
same appearance or dosage of administration with the experimental drug, 
called the placebo of experimental drug, and another placebo that has the 
same appearance or dosage of administration with the control drug, called 
the placebo of control drug. Accordingly, patients in treatment group accept 
both the experimental drug and the placebo of control drug; those in control 
group accept both the control drug and the placebo of experimental drug.
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Therefore, the forms of the drugs, the times and slices of taking amount 
every day are the same for all the patients in the trial. This guarantees the 
implementation of double blind scheme.

To meet medical ethics consideration, in double blind trail, emergency 
letters corresponding to each patient should be prepared, and its content is 
the group number which the patient is assigned at random. Both the sealed 
envelopes and the corresponding drugs are sent to the directors of each 
clinical center. Only under the emergency circumstances the director of the 
center is allowed to open the emergency letter (such as when the serious 
inverse effect occurs, or the patient needs to rescue, physicians must know 
which kind of treatment the patient has received). Once the letter is opened 
and read, this case is deemed as drop out and removed from curative effect 
analysis, but should be included in safety analysis if the inverse effects 
occur. All the emergency letters should be called back with the case report 
at the end of the trial. The double blind state must be kept throughout the 
whole trial, including making the scheme, producing the random number 
and blind code, assigning the drugs, recording the case reports, checking the 
case reports by monitor, managing the data and performing the statistical 
analysis. Only after statistical analysis can the blind code be revealed. Any 
reason to reveal the blind code before the analysis is called breaking the 
blindness.

The double blind scheme needs strictly standard operational procedure 
and any unnecessary impartation of blind code is prohibited. If the propor
tion of breaking the blindness is too large (say, exceeds 20%), the trial will 
be regarded as invalid.

In Example 11.1, the double blind method is adopted so that the patient 
does not know whether he or she has accepted the extra Captopril treatment, 
even the physicians and the statisticians do not know the truth either. In order 
to guarantee the double blind state, the double dummy simulation technique 
is implemented, namely the patients in control group take the placebo that 
holds the same appearance as Captopril.

11.2.4 D ata m anagem en t

The rudimental request of a clinical trial is to guarantee that the original data 
and the documents are factual, scientific, normative and intact. The purpose 
of data management is to put the patients’ data into report and database fast,
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integrally and inerrably. The data management includes a series of standard 
operation on the case report form (CRF) that is devised according to the 
protocol. The physician is the first executor to fill the data; the monitor 
verifies the data; the data manager checks and confirms the data from CRF, 
and inputs the data into computer integrally and inerrably; the statistician 
checks the logic rationality of the data, locks the data, performs statistical 
analysis and writes the statistical analysis report.

11.2.4.1 Database

The data manager should prepare the database structure before getting the 
first CRF. The database needs very strong privacy and reliability. After 
the first CRF arrives, data manager should try to run and check the database, 
and make further modification if necessary.

11.2.4.2 Further check of CRF

The data is checked on the date of study, selection criterion, exclusion 
criterion, drop out, missing value etc. If there is any suspicious, a data query 
form should be passed through monitor to investigator; the investigator 
should fill in the data query form, and pass it back through monitor to data 
manager. The data query form should be kept properly as a sort of document 
in clinical trial. The content of data query form includes date of trial, title 
of the trial, name of center, case identification number, patient’s name, etc. 
The main content is the question from data manager or monitor and the 
investigator’s answer. The person who fills the data query form must sign, 
so as to keep evidences that can prove the revising of CRF and database, 
and avoid revising data artificially and arbitrarily.

11.2.4.3 Double input

Data from every CRF must be input into a computer database by two dif
ferent persons independently; then compare the two independent data files 
with software package; if they are not consistent, then refer back to the 
primitive CRF, find out the reason and make modification. Double input 
can improve and enhance the consistency between the data from database 
and that from CRF.
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11.2.4.4 Visual checking

When necessary, after the double input, we can print the variables in database 
and make a visual verification with the data in the CRF. This can further 
improve the complete consistency between the data of database and that of 
CRF.

11.2.4.5 Computer checking

The computer checking is implemented by a software routine written by the 
data manager or statistician. This check focuses on inclusion and exclusion 
criteria, visiting date, drop out, protocol violator, bad accident and inverse 
effect etc.

To make further quality control for the database, one can select at random 
some 5% records from all cases (when the number of all cases is less than 
100, at least five cases should be selected), and then perform the visual 
check with CRF. If there are more than 15 errors in 10,000 data, visual 
checking should be implemented to all data in the database.

11.2.5 D u ty a n d  task  o f  statistician

11.2.5.1 Duty of statistician

The statistician must be familiar with the relevant regulations and the stan
dard operational procedures in the clinical trial. They should cooperate 
closely with the investigators to finish the design and statistical analysis 
task, guarantee the implementation of the relevant statistical requirements 
and guidelines in the clinical trial. The statistician should take part in the 
whole course of the clinical trial from the beginning to the end. The main 
tasks are:

(1) Help the investigator perfecting and revising the research protocol, 
designing the CRF, deciding the statistical design method.

(2) Perform randomization, double blind design and data management etc., 
according to the standard operation procedures.

(3) Prepare the statistical analysis plan, finish the statistical analysis of 
all data, and write the statistical analysis report. Help the investigator 
perfecting the final report of the clinical trial.

All statistics related works that are involved in the clinical trial 
should be presided by qualified biostatisticians. The so-called qualified



Statistical Principles for Design o f Interventional Study 331

biostatisticians refer to the professional personnel majored in medical 
statistics who have accepted special training and had abundant experience. 
They also have the ability to cooperate the investigators of the clinical trial, 
and to implement guidelines of clinical trial.

11.2.5.2 Prepare statistical analysis plan

The statistical analysis plan should be worked out by statistician and 
investigator together. It is more detailed than that prescribed in research 
protocol.

In the statistical analysis plan, the following material should be on the 
list: the choice of dataset used in statistical analysis, primary outcome vari
able, secondary outcome variables, possible data transformation method, 
statistical analysis method and statistical model, appraisal method for cura
tive effect and safety, and expected statistical analysis results in the form of 
statistical table, etc.

The statistical analysis plan is worked out according to the protocol and 
CRF. Its first draft should be formed after the protocol and CRF completed. 
In the process of clinical trial, it can be revised, renewed and made perfect. 
These can be done again while blind review is going. But one must confirm 
it in the documentary form before the first revealment of the blind code and 
cannot change anymore.

11.2.5.3 Statistical analysis of the data

Statistical analysis methods depend on the research purpose, the research 
protocol and the nature of observed data. According to the statistics prin
ciple, one decides to adopt the parametric analysis or the non-parametric 
analysis. According to the request of statistical analysis plan, statistician 
compiles software routines.

Theoretically, we should do statistical analysis to all the cases ran
domized into the group, called intention to treat (ITT). To the incomplete 
observed cases, who should have experienced the whole treatment process, 
we carry forward the last observed data to the final result, and then do the 
statistical analysis.

All the data come from the patients with good compliance with the proto
col compose the qualified dataset, called Per-Protocol (PP) set. The protocol 
violators, as the result of bad compliancy, censoring or using prohibited
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11.3.2 R andom  sam pling, R andom  grou pin g  an d  random  
ordering

11.3.2.1 Random sampling

“Random sampling” means taking a certain amount of individuals from a 
finite population to a sample.

Example 11.2 There are 4600 students in a school. If we want to esti
mate the myopia rate, we will investigate a sample of 5% (230) students.

Firstly, we get a numbered list for the whole school students from 1 
to 4600; secondly, we generate 230 random numbers between 0 and 1 by 
computer, multiply 4600 and take integers, abandon the repeated number 
if any and re-sample; finally, the investigator may select the corresponding 
students in the numbered list and constitute the sample.

11.3.2.2 Random grouping

Example 11.3 20 animals are included in an experiment. How to assign
them at random to group Л or 6?

Firstly, number animals from 1 to 20 according to their weights; 
secondly, set the seed numbers as 25683 and generate 20 different ran
dom numbers by SAS (release 6.12); the first ten numbers correspond to 
group A, else to group fi; then, map the animals’ serial number to the rank of 
the random numbers above (see Table 11.1); finally, arranging the animals’ 
serial number with the corresponding groups, get the allocation decision 
(see Table 11.2).

11.3.2.3 Random ordering

Example 11.4 There are five animals in an experiment, apply the random 
ordering method to determine the order for them to accept the treatments.

Firstly, number the experiment animals: 1, 2, 3, 4 and 5. Set the 
seed number as 8888 and generate five random numbers in the SAS 
(release 6.12): 0.94732, 01485, 0.63843, 0.53516 and 0.20371; then match 
1, 2, 3, 4 and 5 with the rank of 0.94732, 01485, 0.63843, 0.53516 and 
0.20371, the order for the animals 1, 2, 3, 4 and 5 to accept the treatments 
is 2, 5, 4, 3 and 1 respectively.
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Table 11.1 20 animals’ random Table 11.2 20 animals’ random
allocation. numbers.

Experiment 
objects’ numbers Group Group

Random
numbers

Ranks of 
random 
numbers

1 A A 0.79989 19
2 В A 0.79228 17
3 В A 0.48209 9
4 A A 0.63182 15
5 В A 0.79402 18
6 В A 0.00467 1
7 В A 0.61974 14
8 В A 0.51783 12
9 А Arranged by A 0.11899 4

10 В ranks of random A 0.51161 11
11 А numbers В 0.16158 5
12 А В 0.49511 10
13 В В 0.19743 6
14 А В 0.10744 3
15 А В 0.96165 20
16 В В 0.54952 13
17 А В 0.44437 8
18 А В 0.68038 16
19 А в 0.06685 2
20 В в 0.40640 7

11.3.2.4 Stratified randomization

Generally speaking, the randomization allocation can enhance the balance 
among the contrast groups but does not necessarily guarantee the distribu
tions of important confounding factors balanced among the contrast groups. 
Sometimes we should stratify the important confounding factors that may 
have important impacts on the experiment results, and then carry on ran
domization in each stratum. This method is called stratified randomization. 
For example, in order to guarantee the same gender proportion between 
treatment and control groups, we should carry on randomization for male 
and female respectively. Another example in multi-center clinical trails is 
that after the patients being stratified by center, the randomization allocation 
is performed within each center. One more example, sometimes the entire 
duration of a clinical trial, from the beginning till the entering of all the 
patients, needs more than half a year. Under this situation, accounting for
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Table 11.3 Allocation scheme 
of block randomization.

Treatment

Block A В C D E

1 5 1 3 2 4
2 4 1 5 2 3
3 4 3 5 1 2
4 3 2 5 4 1
5 2 4 3 5 1
6 3 2 1 5 4

possible impact of seasonal factor, we should apply stratified randomization 
in each time interval to improve the balance between contrast groups in 
terms of entering time.

In block design, the experiment subjects are randomized within blocks. 
For example, if there are 30 experiment subjects, who have been equally 
divided into six blocks, according to an important confounder, then one can 
randomly assign the subjects in each block into five treatment groups by 
the above-mentioned random ordering method (see Table 11.3).

In order to ensure the reliability of experiment, one should document 
randomization method, random numbers, seed number and the program 
routine for generation of random numbers. If one gets the random num
bers from a random number table, he or she should describe the source 
of the random number table used, the starting row, column and page etc. 
In the clinical trial for new drugs, the random numbers should be replica
ble. The parameters and program routines for generating random numbers 
should be sealed up with blind code together. If the random numbers are 
generated by computer, one should explain and declare the software, pro
gram and seed number etc.

11.4 Randomized Controlled Trial

11.4.1 D efinitions an d  characteristics

Randomized controlled trial (RCT) is a type of clinical trials using prospec
tive method to determine the treatment effect by comparing the outcome of 
intervention group and control group. RCT is applied not only in the field of
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clinical research, but also in behavioral intervention, evaluation of screening 
programs and so on. In RCT, various known or unknown confounders can 
be balanced by randomization, so that the average difference in baseline 
can be lower or even eliminated.

In addition to randomization, RCTs have more important characteristics:

(1) Intervention: RCT is often performed for a comparison through inter
vention. The intervention group in a RCT could receive a predesigned 
measure of therapy or prevention, while the control group only receives 
a placebo; or the intervention group receives a most concerned inter
vention while the control group receives another intervention or some 
standard measure.

(2) Prospective: RCT is a special kind of prospective researches. It does 
not require each subject to be followed up starting from the same point 
as long as the starting and ending points of the follow-up being clearly 
defined.

(3) Data analysis: After randomization, if the baseline values of important 
variables other than the treatment between the compared groups are 
overall balanced, uni-variate statistical methods can be used for data 
analysis. Otherwise, if the baseline values between the two groups are 
somewhat unbalanced, stratified analysis or adjusted analysis should 
be adopted, which should be specified in the statistical analysis plan in 
advance. A principle of intention-to-treat (ITT) should be followed in 
data analysis for efficacy that all subjects’ data should be analyzed 
in accordance with the initial grouping by randomization, regardless 
of whether the subjects accept any other interventions. If the anal
ysis for efficacy is conducted only based on the data of those sub
jects, who actually follow the allocation by randomization, which is 
called per-protocol analysis, one has to clarify and explain in the 
report.

(4) Ethical issues: Similar to other researches involving human subjects, 
signed informed consent should be obtained before the trial starts. 
Subjects may be randomly allocated to intervention group or control 
group. The treatments for compared groups should meet the principles 
of uncertainty and equipoise that the real pros and cons of each treat
ment cannot be determined by the individual researcher and the medical 
organizations. Otherwise, the RCT will offend the ethical standards.
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11.4.2 Classification

RCTs can be divided into different categories based on different focus of 
classification. As mentioned in Sec. 11.2, RCTs can be divided into four 
phases of clinical trials according to the stage; RCTs can be divided into 
A of 1 trial, sequential trial and fixed trial according to the design; and 
according to the purpose, RCTs can also be divided into explanatory trial 
and effectiveness trial.

N o f l  trial is a special kind of RCTs. By using single case, multi-round 
crossover trial is repeatedly tested on the same individual to evaluate the 
difference of individual effects caused by it.

For a sequence trial, there is no need to determine the sample size in 
advance. The subjects enter the study in sequence, and the statistical analysis 
is continuously conducted with the size increasing until the conclusion is 
obtained. Opposite to this, the trials which have sample size decided during 
design stage are known as fixed trials.

The explanatory efficacy trial, also known as efficacy trial, aims at 
understand whether the treatment/intervention is effective. It tries to remove 
all bias and confounding factors though the treatment effect obtained in such 
ideal condition may not reflect the real effectiveness in clinical practice.

Pragmatic trial is also known as effectiveness test. It tries to investigate 
if the treatment/intervention is effective in clinical practice and to estimate 
its actual effect size. The implementing condition of the trial is identical to 
that of the real clinical practice; hence, the finding on the treatment effect 
can be referenced for clinical decision-making in the practical settings.

The detailed difference between explanatory trial and pragmatic trial 
can be seen in Table 11.4.

11.4.3 Quality assessment

Since RCT can provide the strongest evidence for causal association com
paring with other trials, and the results of RCT often influence the health 
decision-making, both quality and quantity assessment of RCT are very 
important. Quality of RCT includes methodological quality and reporting 
quality. Methodological quality explains whether the study design, imple
mentation and analysis can avoid or reduce the occurrence of bias as much 
as possible. It also reflects how the design and implementation match to
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Table 11.4 The difference between explanatory trial and pragmatic trial.

Explanatory trial Pragmatic trial

Objectives To evaluate efficacy To compare effectiveness
Filed sites The environment similar to 

laboratory; to control the 
background factors as much as 
possible

Actual environment; similar to the 
real situation in clinical or 
community setting as much as 
possible

Subjects Strict inclusion and exclusion 
criteria; high homogeneity and 
low catholicity; allow small 
sample size

Include from the actual target 
population with weak exclusion 
criteria; low homogeneity and 
high catholicity; large sample size

Intervention A particular treatment which 
should be implemented strictly

Conventional treatment which can 
be adjusted according to subjects’ 
status

Control Placebo as control in order to 
explore the efficacy of the 
intervention

Conventional treatment as control 
to find the optimal strategy

Blinding Usually use double blinded 
method

No requirements on blinding, but 
the confidentiality of random 
allocation should be ensured. If 
subjectivity exists in data 
collection, people who report or 
collect data should be kept blind 
of allocation.

analytical
method

Intention to treat analysis Pre-protocol analysis

outcomes Sole laboratory measurement 
with high specificity

Multiple outcomes which reflect the 
actual status of subjects

Follow-up
period

Short Long

the study objectives. Reporting quality focuses on whether the design, 
implementation and analysis are reported appropriately. The inadequate 
research report will affect the interpretation and application of the results. 
The commonly used assessment tools include Jadad socres, Delphi list and 
Cochrane bias scale et al. These assessment tools give a score to each ques
tion, and determine the level of test quality by the total score.

Jadad score is a tool used independently to evaluate the methodological 
quality of clinical trial. It judges the quality of the research design by grading 
the situation of randomization, blind and withdraw/lost (J Clin Epidemiol.
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1998;51:1235-41; http://www.cochrane-handbook.org/). Similar to Jadad 
score, Delphi list and Cochrane bias scale adopt scoring method to judge 
the quality of the experimental design (J Clin Epidemiol. 1998;51:1235-41; 
http://www.cochrane-handbook.org/).

11.4.4 Report

In order to standardize the reports of RCTs, to increase transparency 
in reporting methods and results, and to guide the design of RCTs, the 
CONSORT (Consolidated Standards of Reporting Trials) working group 
(which consists of experts in clinical trials, statistians, clinical epidemi
ologists, and biomedical experts and so on) proposed a “CONSORT 
STATEMENT” in 2001, and updated in 2010 with the accumulation of 
new methodological evidence and experience.

The content of CONSORT 2010 STATEMENT included a checklist 
and a flowchart. The checklist contains 25 items and made requirements 
on title, abstract, methods, results, discussion and sponsorship, etc. The 
flowchart requires the researchers to report sample size in every step of 
the trial (including subject recruitment, randomization, follow-up, and data 
analysis) and to explain the reason of changes in sample size. CONSORT 
2010 STATEMENT, although focuses on the parallel randomized controlled 
trials, can also be referenced by other types of randomized controlled trials. 
More information of the STATEMENT can be obtained from the CONSORT 
website: http://www.consort-statement.org.

11.4.5 Registration

In 2004, the ICMJE (International Committee of Medical Journal Editors) 
declared that since July 1,2005, any RCT, of which the findings are intended 
to be published in the journals of the ICMJ should register before the first 
case is recruited. This requirement aims to reduce publication bias caused 
by less publication of negative results.

RCTs can be registered through the website established by the U.S. 
National Institutes of Health (NIH) via National Library of Medicine (NLM) 
(http://clinicaltrials.gov), the website (http://www.who.int/ictrp/en/) estab
lished by International Clinical Trials Registry Platform (ICTRP) or

http://www.cochrane-handbook.org/
http://www.cochrane-handbook.org/
http://www.consort-statement.org
http://clinicaltrials.gov
http://www.who.int/ictrp/en/
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the website (http://isrctn.org) established by International Standard 
Randomized Controlled Trial Number (ISRCTN).

11.4.6 The subject’s preferences

According to the principle of informed consent, the subjects of RCTs should 
be informed about the procedures on allocation, treatment and others before 
they join the study. However, in practice, the participants may have their 
preference on certain treatment. Some qualified subjects may refuse to 
receive conventional or experimental treatment when they know that they 
will be allocated randomly. This selective refusing caused by treatment 
preference would affect the comparability of the treatments.

If these subjects with preference are randomly allocated without blind
ing, larger bias would be generated. If the subjects are allocated to the group 
which they do not want to join, the subjects may have poor compliance 
because of inner discontent. Such negative attitude may lead to worse treat
ment effect when comparing with those without preference. In contrast, if 
the subjects are allocated to their preferring group, their compliance and the 
treatment effect may be better than those without preference. Considering 
the problem caused by preference, researchers proposed several different 
study designs.

(1) Comprehensive cohort design When subjects who accept random
ization accounted for a relatively small proportion of all eligible subjects 
(e.g. <30%), all subjects should undergo follow-up. Whether or not accept 
randomization can be treated as one of the covariates in data analysis. Hence, 
the external validity and the extent to which the results can be generalized 
can be assessed. However, it should be noted that, such design cannot take 
the place of RCT design; moreover, the sample size should be large enough 
to ensure the statistical power.

(2) Patient-preference design Some researchers suggested that the prefer
ences of subjects should be known before randomization, and subjects with 
preferences can be allocated to their preferred group, while subjects without 
preference can be allocated to the group according to randomization. When 
comparing the effects of treatment A and B, four parallel groups (preferred 
group A, randomized group A, preferred group В, randomized group B, 
Fig. 11.2) should be followed up, respectively.

http://isrctn.org
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Fig. 11.2 Grouping diagram of patient preference design.

However for such kind of design, there is no sophisticated statistical 
analysis method available currently. The data from randomization groups 
can be analyzed directly, but it is not suitable to analyze the data of those pre
ferred groups directly. For example, in a comparative study of termination 
of pregnancy surgery, the pregnant women who met the inclusion crite
ria can select the ways of termination of pregnancy (mifepristone drugs or 
vacuum aspiration) according to their preference. In 363 pregnant women, 
about half (168) selected different ways according to their preference; the 
remaining 195 women who had no preference were randomly allocated 
into two groups. A follow-up survey was conducted to study the acceptabil
ity of the two methods. Researchers found that for group with preference, 
there is no statistically significant difference in the acceptability between 
medication method and vacuum aspiration. However, for the group without 
preference (randomized group), the results was statistically different. Only 
two women in the vacuum aspiration group would choose the other method 
in future but 21 in the medication group wanted to select the other method 
in future. With the help of patient preference design, the information which 
could not be discovered in conventional RCT was reported.

11.5 Comments on Some Medical Examples

Example 11.5 An article entitled Prim ary observation o f  735 cases o f  
cesarean section com bined with implantation o f  intrauterine device syn
chronously (from Chinese Journal of Gynecology and Obstetrics, 1985;
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20(1): 49-50). In the article, the author collected 1562 cases undergone 
cesarean section. Among them, 735 cases acted as experimental group, 
which were implanted intrauterine device synchronously with cesarean sec
tion, and all of the 735 cases met the following indications: rupture of mem
branes and total stage of labor were no more than 24 hours, no infection 
(no positive signs were found and peripheral blood routine examination 
showed normal), and acquired the agreement of the parturient. The other 
827 cases were treated as control group without implantation of intrauter
ine device during the labor procedure. The bleeding condition, the time of 
lochia stopping, the adverse effects and other variables after operation were 
compared.

In this study, not only the treatments on the two groups were different 
but the baselines of the two groups were evidently unbalanced, the experi
mental group was better, and the control was worse. These two groups were 
incomparable.

This kind of mistakes is common in clinical trials. The problem is that 
the authors divide the well-conditioned consenter into experimental group, 
and gather the patients to the control group who are unwilling to accept 
the new therapy, or have no indications for the treatment, or cannot afford 
the cost, so as to make the two groups own the different baseline, and 
become incomparable. In this example, the author should randomize the 
735 cases of female who had the stated indications into two groups, and 
implant the intrauterine device to the cases of one group and do not to those 
of another group.

Example 11.6 In another article entitled Study on the risk factors of breast 
cancer (from Chinese Journal of Epidemiology, 1981,2(4): 253), the author 
recruited 607 pairs of case and control according to the requirement that 
the difference of ages within the pair was under five years. And then, with
out hypotheses testing, the author thought that the age distribution of the 
two groups were similar. But by comparing the age distributions of the 
two groups (Table 11.5), we conclude that they are significantly different 
(X2 =  17.25, P =  0.004).

This kind of mistake is common in the field study and laboratory study. 
Although the matching requirements were considered and strictly pre
scribed, the case and control groups were still incomparable because of the 
systematic error in the executing procedure, or because the requirements
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Table 11.5 Age distribution of 607 
pairs of subjects observed.

Age No. of cases No. of control

20 3 6
30 72 84
40 193 244
50 228 199
60 101 67
70 10 7

were not strictly met, and led to the unbalance in the two groups. Now the 
difference of the age distributions in two groups has already been signifi
cant. To solve the problem, method of adjusting age difference is needed in 
the analysis, such as the Mantel Haenszel stratification analysis or multiple 
logistic regression.

Example 11.7 A clinical trial was to study the effect of injection A on 
inflammation with injection В as control. The researcher chose genitouri
nary infection and dental inflammation as indications. Three groups were 
planned, one is experimental group, another is control group, and the third is 
open group. The researcher collected 60 cases for the experimental and con
trol group respectively, among which there were 30 cases of genitourinary 
infection and 30 cases of dental inflammation; but the open group contained 
28 cases of surgical infections and 15 cases of trichomonas vaginitis. To 
increase the sample size for the treatment of injection A, the researcher 
combined the experimental group and the open group, and compared them 
with the control group.

Between the experimental group and control group, the case number and 
disease type were well matched, but the number of cases in the experimental 
group was insufficient. In the open group, although the injection was the 
same as experimental group, the disease type was different from both the 
experimental and control groups. If there are no cases of the same kinds of 
diseases as in the open group, the control group failed to play the role of 
control. In the same way, it could not be compared to the combination group.

This kind of design is a common mistake in the clinical trials for new 
drug. On the one hand, a large sample size is required; on the other hand, in 
order to improve the marketing of the new drug, more indications should be
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included and so the open group is applied. In fact, the method of combination 
is rarely used except for extremely special variables such as adverse effect 
rate.

In all the three examples above, the assigning of control group was 
problematic, and the key point is the balance among the groups. To correct 
the mistakes, in Example 10.7 the open group should be eliminated; in 
Example 10.6 age should be regarded as a confounder and its effect needs 
to be adjusted by statistical technique; however, Example 10.5 was un
repairable.

11.6 Computerized Experiments

Experiment 11.1 Generating ten random numbers between 0-999 The
software SAS supplies the function RANUNI() to generate random num
bers, by putting a seed in the bracket. Different seed produces different 
series as the following program shows.

In program 11.1, lines 01 to 10 generate data AAA; lines 02 and 03 
appoint two different random seeds, lines 05 and 06 generate different ran
dom number series based on the above seeds respectively, lines 07 and 08 
take the integer of (random number x 1000), line 09 delivers the output to 
data AAA, lines 04 and 10 repeat ten times of lines 05-09 to generate two 
series of ten random numbers. Lines 11 and 12 print the data AAA.

Experiment 11.2 Randomized Grouping Assigning 20 animals into 
groups A and В randomly.

In program 11.2, lines 01-05 generate 20 random numbers, X with id 
numbers 1 to 20, in data AAA. Lines 06-08 generate SAS dataset BBB,

Program 11.1 Generating random number.

Line Program Line Program

01 DATA AAA; 07 Y 1 =INT(X 1 * 1000);
02 SEED 1=20000720; 08 Y2=INT(X2* 1000);
03 SEED2=20041012; 09 OUTPUT;
04 DO 1=1 TO 10; 10 END;
05 X1=RANUNI(SEED1); 11 PROC PRINT;
06 X2=RANUNI(SEED2); 12 RUN;
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Program 11.2 Completely randomized grouping.

Line Program Line Program

01 DATA AAA; 10 SET BBB;
02 DO ID=1 TO 20; 11 UNIT=RX;
03 X=RANUN1(26853); 12 IF ID<=10 THEN TRTMENT=‘A';
04 OUTPUT; 13 ELSE TRTMENT=‘B’;
05 END; 14 KEEP UNIT TRTMENT;
06 PROC RANK OUT=BBB; 15 PROC SORT;
07 RANKS RX; 16 BY UNIT;
08 VARX; 17 PROC PRINT NOOBS;
09 DATA CCC; 18 RUN;

in which all the variables in data AAA and the ranks of random variable 
X, namely variable RX, are included. Lines 09-14 generates data CCC and 
assigns the 20 experiment subjects randomly into two treatments: line 10 
copies all the variables in data BBB into data CCC; line 11 makes RX equal 
to UNIT; lines 12 and 13 assign 20 random numbers into two treatments 
according to their IDs; line 14 drops out other variables except for UNIT 
and TRTMENT. Lines 15 and 16 sorts data CCC. Lines 17 and 18 print data 
CCC sorted by UNIT.

Experiment 11.3 Randomized block grouping Assign the 30 subjects 
into six blocks according to their similarity, each block includes five 
subjects.

In program 11.3, lines 01-07 generate 30 random numbers into six 
blocks with five numbers in each block in data AAA. Lines 08 and 09

Program 11.3 Randomized block group design.

Line Program Line Program

01 DATA AAA; 10 PROC RANK OUT=BBB;
02 DO BLOCK=l TO 6; 11 RANKS TRTMENT;
03 DO UNIT=1 TO 5; 12 VARX;
04 X=RANUNI(37277); 13 BY BLOCK;
05 OUTPUT; 14 PROC SORT;
06 END; 15 BY BLOCK TRTMENT;
07 END; 16 PROC PRINT NOOBS;
08 PROC SORT; 17 RUN;
09 BY BLOCK;
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Program 11.4 Plan for stratified randomization design.

Line Program Line Program

01 DATA AAA; 13 PROC RANK OUT=BBB;
02 CENTER=3; 14 RANKS RX;
03 B=4; 15 VARX;
04 T=2; 16 BY STRATA BLOCK;
05 DO STRATA=1 to CENTER; 17 DATA CCC;
06 DO BLOCK=l toB; 18 SET BBB;
07 DO TRTMENT=1 to T; 19 NUMBER= _n_;
08 X=RANUNI(37277); 20 IF RX=1 THEN GROUP=‘A’;
09 OUTPUT; 21 IF RX=2 THEN GROUP=‘B’;
10 END; 22 KEEP STRATA BLOCK NUMBER GROUP;
11 END; 23 PROC PRINT NOOBS;
12 END; 24 RUN;

sort data AAA by block. Lines 10-12 generate data BBB, in which the 
ranks of every five random numbers in each block are stored into variable 
TRTMENT. Lines 14 and 15 sort data BBB according to BLOCK and TRT- 
MENT. Line 16 prints the result with every unit corresponding to different 
treatment within each block.

Experiment 11.4 Stratified Randomized Grouping Divide 24 subjects 
into three strata, each stratum comprise four blocks, each block has 
two paired subjects, to whom the two treatments are randomly assigned 
respectively.

In program 11.4, lines 01-12 generate 24 random numbers with three 
strata, each stratum comprising four blocks, each block having two paired 
subjects, into data AAA. Lines 13-16 generate data BBB, in which the 
ranks of every two random numbers in each block and stratum are stored 
into variable RX. Lines 17-21 assigns every two subjects in each stratum 
and block into group A and group В according to their ranks. Line 22 drops 
out temporary variables and lines 23 and 24 prints the result.

11.7 Practice and Experiments

1. How many types of experiment errors are there, what are they? How to 
control the experiment errors during the stage of experiment design?
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2. What are the purposes of assigning control group, replication and ran
domization respectively?

3. What are the advantage and disadvantage of randomized block design? 
What are the differences between completely randomized design and ran
domized block design? In what kind of situations are they suited?

4. An institute organized a clinical trial on a new drug. There were in total 
200 patients in this trial, now to equally divide them into two groups for 
the new drug and control respectively, how many possible designs can we 
choose? Perform the corresponding designs by computer.

5. Suppose there are 24 male rats with similar weights, try to divide them 
into three groups by completely randomized design.

6. Suppose there are six nests with five animals each. Try to divide them 
into five groups by randomized block design.

7. 100 patients took part in a clinical trail, according to their order of hospi
talization, the first 50 patients were assigned into group A, and the following 
50 patients were assigned into group B. What do you think of this design, 
does it violate the statistical principles? Give your reason.

8. (Continued of 7) If the first hospitalized patient was assigned accord
ing to certain randomization schedule, say, into group A, then the second 
patient must goes to group В , the third patient to Group A, fourth patient to 
Group B . .. and so on. Do you think that this design is in agreement with 
relevant statistical principles? Why?

9. In order to study the effect of Lysine (Lys) on children’s growth, the 
researchers plan to add Lysine in nursery children’s bread as intervention.

(1) In this study, how to set up a control group?
(2) What are the observational indices?
(3) Which non-treatment factors should be controlled? How?

(1st edn. Tong Wang, Qinghai Liu, Zhen Yang, Jiqian Fang; 2nd edn. Jing 
Gu, Jiqian Fang)
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C h a p te r  12

Multiple Regression and Correlation

In medical research, like in all other areas, the response variable may depend 
on more than one variable. For example, a person’s blood pressure depends 
not only on the person’s age, but also on the person’s gender, workload, 
eating and drinking habits, smoking and family history, etc. The extension 
of the simple regression, where there is only one independent variable in 
the regression equation, to a regression equation that delineates the depen
dence of the mean of a random dependent variable F on several indepen
dent variables, Xi, X2, . . . ,  Xp, is called “multiple linear regression”, or 
simply “multiple regression”. If the values of the independent variables 
are not by design, but concomitant with Y, we use multiple regression to 
find the conditional mean of Y given X \ , , Xp, which is a linear func
tion of X \ , . . . ,  X ,,, or apply multivariate methods to the (p +  1) variables 
(F, X j , . . . ,  Xp), such as multiple correlation and partial correlation.

12.1 Basic Procedure of Multiple Regression

12.1.1 The m odel

Given p independent variables, X\,  X2, . . . ,  Xp and the dependent variable 
F, the extension of the simple regression to the present situation is the 
following multiple regression equation:

My\xi,x2,...,xp =  a +  P\X\ +  /?2X2 +  • • • +  PpXp, (12.1a)

where a has the same meaning as that in the simple regression and is called 
the constant term, or the intercept, of the regression equation. /?i,/?2, . . .  ,PP 
are the partial regression coefficients or simply regression coefficients. /?,• 
is the increment in the mean of F per unit increase in X, when other
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independent variables are fixed. We further assume that the conditional 
variance of Y given X\ , . . . ,  Xp is a constant, not depending on the values 
of the X variables:

a Y\Xi... x , , — 17'-  (12.1b)

For a sample of n individuals with measurements {xa, Xj2 , . . . ,  x,p, y(), 
i =  1,2, . . . ,  n, we have the fitted equation

Y — a +  b\X\  +  b2X2 +  ■ • ■ +  bpXp,  (12.2a)

where b0, b{, . . .  , bp are the estimates of /?0, Pi , . . . ,  pp. These esti
mates are obtained from the least-square method, such that the choice of 
bo, b \ , . . . ,  bp will make the sum of squares of differences between the 
observed у,- and the fitted y, attaining the minimum. Unlike the simple 
regression, the computation for multiple regression is more tedious and 
nowadays we can rely on computing software.

Very often, the variables are not commensurable, because of different 
levels of measurement scale or different nature of measurements. In such 
cases, the regression coefficients are not directly comparable, hindering 
comparative interpretation of the regression coefficients. One way out is to 
standardize all the variables, i.e. let Y' =  (Y — Y)/Sy and X\ =  (X,— X,)/5,-, 
and fit the regression equation. The estimates thus obtained are denoted by 
a', b\ , b ’2, . . . ,  called the standardized regression coefficients. As the means 
of standardized variables, Y and X’\ , X '2, . . . ,  X'p are all zero, we have

a’ =  Y - b \ X x--------- b'pX'p =  0.

The corresponding equation is

Y' =  b\ X\ +  b'2X'2 +  • • • +  b'pX'p. (12.2b)

The relationship between b, and b\ is

bi =  b'lSy/Si, b' =  b.Si/Sy.

The standardized regression coefficients can be directly compared to 
show which independent variable has the greatest effect, etc.
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Table 12.1 Data from the second hospital of Chong Qing medical 
university 1970-1989.

Year
In-patients

Y
Out-patients 

(10K) X]
Bed-usage

(%) X2
Turnaround

*3

1970 6349 49.8 94.25 19.84
1971 6519 38.1 98.50 20.37
1972 5952 36.6 89.86 18.80
1973 5230 36.0 86.00 16.34
1974 5411 32.3 83.29 16.91
1975 5277 37.8 77.88 18.07
1976 3772 34.1 92.62 17.96
1977 3846 42.2 86.57 18.31
1978 3866 38.1 84.29 18.41
1979 5142 39.5 89.29 20.61
1980 7724 55.8 97.63 21.72
1981 8167 63.0 96.53 23.33
1982 8107 65.2 93.43 21.91
1983 7998 66.1 94.45 21.05
1984 7331 65.4 93.03 19.96
1985 6447 60.1 91.79 18.81
1986 4869 56.9 88.94 15.82
1987 5506 57.7 91.79 16.01
1988 5741 53.4 99.03 16.59
1989 5568 48.7 94.93 19.09

Average 5941 48.8 91.21 18.99

12.1.2 B asic p rocedu re  with an exam ple

Example 12.1 Shi Lei (1991) published the annual number of out
patients Xi, percentage of bed usage X2, bed turnaround X3 and number 
of in-patients Y in Table 12.1 in his hospital during 1970-1989, and fit a 
regression equation for Y in terms of X\,  X2, X3. Here we use the data to 
illustrate the multiple regression analysis using SAS.

Let us first look at the analysis of variance table for the regression model, 
generated by the SAS output as given in Table 12.2. One can see from the 
table that the partition of degrees of freedom and the sum of squares is sim
ilar to the simple linear regression where p — 1. The Corrected Total Sum 
of Squares (5 5 Totai) is just the sample sum of squares corrected for the mean 
for the values of Y and hence S5Totai/(” — 1) is an unbiased estimate of the
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Table 12.2 Analysis of variance for regression.

Source D F S S M S F Pr > F

Model 3 27066405 9022135 15.26 <0.0001
Error 16 9461837 591365

Corrected Total 19 36528242

marginal (unconditional) variance of Y. The conditional mean of Y given 
by (12.1a) is a random variable as a function of the X variables and thus 
has a marginal variance, denoted by Var(p y\x )- which will become zero if 
all the coefficients of the X variables in (12. la) are zero. Now the marginal 
(unconditional) variance of Y is a sum of two parts: Var(pY\X) and a 2, 
the conditional variance in (12.1b). Thus the expected value of SSTotai is 
(n — \ ) (Var(pY\x) +  o’2)- The expected value of the Sum of Squares of 
Error (SSError) is (n — 1 — p )cj2, and hence the expected value of the Regres
sion Model Sum of Squares (^Regression) is (n -  1) Var(pY\X) +  per2. The 
Ŝ En-or is the same as the least-square that has been achieved when min
imizing the sum of squares of deviations between the observed and the 
fitted values of Y in order to obtain the least-square estimates of the regres
sion coefficients, hence also called residual sum of squares denoted by 
^Residual — ^Eiror- In the table, all the Mean Squares equal the Sum of 
Squares divided by the corresponding DF (degree of freedom). Thus the 
Mean Square for Error (MSEnm) estimates a 2 and the Mean Square for 
the regression model (/V/.S’RegrcssK)n) estimates a 2 +  (n — 1) V ctr{pY\x)/P- 
If the conditional mean of Y does not depend on the X variables, or equiv
alently if the following null hypothesis is true,

Щ:Рх=Р2---=Рр = 0 ,

then MSRegression and MSEn-or will have the same expected value and thus 
the ratio F =  M.S'Regression/^Trror will be very close to one. As a random 
variable, this ratio has an F distribution with v, =  p and v2 =  (и — 1 — p) 
degrees of freedom under the null hypothesis. If the observed F statistic is 
larger than the tabulated F critical value, or if the p-value of the statistic 
is smaller than the chosen significance level, we have doubts about the F 
distribution and hence reject the null hypothesis. In this particular example, 
we have F =  15.26, much larger than one; indeed much larger than the
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Table 12.3 Parameter estimates and tests.

Variable D F
Parameter
estimate

Standard
error t Pr > |f|

Standardized
estimate

intercept 1 -4848.94404 3128.70698 -1 .55 0.1407 0
X, 1 55.88633 18.00125 3.10 0.0068 0.47781
*2 1 21.92976 39.81302 0.55 0.5894 0.08708
*3 1 319.04673 96.59315 3.30 0.0045 0.48403

critical value, 3.24, from the F table with v\ =  3, V2 =  16 (n — 20, p  =  3). 
Equivalently, the p- value from the SAS printout is less than 0.0001, which in 
turn is less than any commonly used significance level (a =  0.01, a =0.05, 
or a =  0.10). So we reject the null hypothesis. That is, at least one of the 
regression coefficients is not zero, but we do not know which one.

Next we look at the estimates of regression coefficients and their standard 
errors given in Table 12.3. According to the table, the fitted regression 
equation is

Y =  -4848.94 +  55.89X, +  21.93X2 +  319.05X3. (12.3)

The t statistic and its p-value for testing the corresponding regression 
coefficient are also given in Table 12.3. At the usual level, a =  0.05, 
the effects of the number of out-patients (p  =  0.0068) and frequency of 
bed turnaround (p =  0.0045) are statistically significant in predicting the 
number of in-patients, but the percentage of bed-usage (p =  0.5894) is 
not. The Standardized Estimates in the last column of the table show the 
direction and relative magnitude of the impact of the independent variables 
on Y, the larger the absolute value the more the impact. In this case, all 
independent variables will have positive impact on the value of Y, with bed- 
turnaround (0.48403) the most influential, closely followed by the number 
of out-patients (0.47781). The percentage of bed-usage (0.08708) has very 
little effect. It should be noted that the p-value is not meant to indicate the 
impact of an independent variable on Y like what the standardized estimate 
does, but only the amount of risk involved in judging that the impact is real 
and not merely by chance.

There are two statistics that indicate the goodness-of-fit for the equation 
to the data, the root mean square error (RMSE) and the multiple deter
mination coefficient, denoted by s and R2 respectively. The smaller the s,
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the better the fit. As a natural estimate of a , s is also called the residual 
standard deviation. It always decreases when we add more X variables in 
the equation, here in this example s =  V591365 =  769. The R2 equals the 
square of the simple correlation coefficient between the observed and the 
fitted values of Y. It is interpreted as the proportion of the variation of Y 
values that the model can explain, because it can be expressed as

d 2 -''■^Regression A =  -------------.
6'6'Total

Here R2 =  0.7410, meaning that about 74% of the variability of Y 
is attributed to its dependence on the number of out-patients, hospital 
bed-usage percentage and turnaround frequency, pertaining to the quantity 
Variety|x) in the discussion on Table 12.2.

As in the simple linear regression, the S AS output provides the predicted 
value of Y, its standard error, the confidence limits and prediction limits for 
all sets of values of the independent variables which have been used in the 
model fitting as given in Table 12.4. If there is a missing value of Y cor
responding to a complete set of values for the independent variables, the 
SAS will still provide prediction for the missing value of Y. This feature of 
SAS allows automatic prediction of Y for any given sets of values of the 
independent variables. In Table 12.4, the first line means that for X] =  49.8, 
X'i — 94.25 and X j =  19.84, the estimated conditional mean and the pre
dicted value of Y are both 6331, but the 95% confidence interval for the 
conditional mean is (5893, 6769), while the 95% prediction interval for a 
particular year is (4643, 8019). We can predict with 95% confidence that 
for X] =  49.8, X2 =  94.25 and X3 =  19.84, the number of in-patients is

Table 12.4 Confidence intervals and prediction intervals of Y.

Predicted Std error Lower 95% Upper 95% Lower 95% Upper 95%
No. VarL value of mean of mean of mean predicted predicted

1 6349 6331 206.5591 5893 6769 4643 8019
2 6519 5939 451.5272 4982 6897 4049 7830

19 5741 5600 467.8839 4608 6592 3692 7508
20 5568 6045 226.1359 5566 6525 4346 7744
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Table 12.5 Correlation matrix for Example 12.1.

CORR X i * 2 x 3 Y

X i 1.0000 0.5317 0.4065 0.7209

* 2 0.5317 1.0000 0.4570 0.5623
x 3 0.4065 0.4570 1.0000 0.7181
Y 0.7209 0.5623 0.7181 1.0000

between 4643 and 8019. Note that the prediction interval is wider in gen
eral because the prediction of Y equals the estimated conditional mean plus 
a prediction from a normal distribution with zero mean and an estimated 
o 2 =  591365.

12.2 Multiple Correlation

We shall consider correlation analysis only when X \ , . . .  , X p and Y jointly 
follow a multivariate normal distribution.

12.2.1 Simple correlation coefficient

When data are given for the variables X \ , . . .  , X p and Y, we can compute 
as before the simple correlation coefficient between any pair of the (p +  1) 
variables and arrange the simple correlation coefficients in the form of a 
correlation matrix. The correlation matrix for Example 12.1 is given in 
Table 12.5.

Note that the diagonal elements in the correlation matrix are all ones 
and all other elements are symmetric about the diagonal. So we can either 
retain the upper diagonal part or the lower diagonal part of the matrix. We 
observe that the simple correlation between X\ and T, 0.7209, is the largest 
and the next largest is between X3 and Y, 0.7181. Thus the simple linear 
regression of Y on X3 gives R2 =  (0.7181)2 =  0.5157 =  52% and that 
of Y on X\ gives R2 =  (0.7209)2 =  0.5197 =  52%, the two answers are 
quite close.

12.2.2 Multiple correlation coefficient

The linear association between a random variable Y and a set of random 
variables (Xj , . . . ,  Xp) is measured by the so-called multiple correlation
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coefficient. Let the fitted regression equation be

Y — a -\- b \ X i +  bjXz +  • • • +  bpXp.

The multiple correlation coefficient is defined as the simple correlation 
coefficient between Y and Y, which is invariably positive; that is,

R =  corr (Y, Y).

Thus the squared multiple correlation coefficient equals the multiple deter
mination coefficient, which is defined in the previous section.

12.2.3 P artia l correla tion  coefficien t

In Problem 5 of Chap. 9, we have considered the simple correlation coef
ficients of the scores in language X, mathematics Y and IQ Z. Generally, 
students with higher IQ would tend to do better in language and mathe
matics. How would X and Y associate after removing the effects of Z? In 
Fig. 12.1, (a) shows the simple correlation between X and Y, quite strong;
(b) and (c) show the regressions of X and Y on Z and the corresponding 
residuals respectively; (d) shows the simple correlation between the two sets 
of residuals, very little correlation indeed. The simple correlation coefficient 
between the two sets of residuals is called the partial correlation coefficient 
between X and Y after removing (or adjusting or controlling) the effect of 
Z, denoted by rXy z-

Fig. 12.1 Partial correlation between language score (X) and mathematics score ( Y )  after 
removing the effect of IQ (Z): (a) simple correlation between X  and Y;  (b) regression of 
X  on Z and its residual; (c) regression of Y  on Z and its residual; (d) partial correlation 
between X  and Y  adjusting for Z, represented as simple correlation between residuals X  — X  
and Y  — Y .
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There are two explicit formulas for calculating the partial correlation 
coefficient between X\ and X2 after adjusting for X3:

fl2 — r \3r23
^ 12,3 =  у

V^1 - Гп)(1 - г1з)
(12.4)

and
p  2

1(2,3) -  R1(3)
12,3 p  2

K l(3)
(12.5)

Formula (12.4) can be used recursively to find the partial correlation 
coefficient between X i and X2 after removing the effects of more than one 
variable, say X2 and X4 as follows. We first find the first order partial corre
lation coefficients, removing the effects of X3, for all three pairs of X \ , X 2 

and X4. Then we can use these first order partial correlation coefficients as 
if they were simple partial correlation coefficients in formula (12.4) to get 
the second order partial correlation coefficients Г12.34.

Despite the loss of sign information, (12.5) allows calculation in terms 
of multiple correlations and provides a meaning to the magnitude of a par
tial correlation coefficient in a way analogous to R2. It says that the squared 
partial correlation coefficient between X\ and X2 adjusting for X2 is the 
proportion of variability of X \ which can be explained jointly by X2 and X3 
but not singly by X3, relative to the total portion that cannot be explained 
singly by X3. By symmetry, we have an alternative but equivalent formula 
by swapping the roles of X\ and X2 in (12.5), and the entailed interpreta
tion. The higher order partial correlation coefficients can be computed in a 
similar way:

r 2 _
1 2 ,3 4  —

p  2 _ p  2
A 1 (2,3,4) A  1(3,4)

1 _ p2
1(3,4)

( 12.6)

Example 12.2 Denote Y by X4 in Example 12.1. We can find the partial 
correlation coefficient between X\ and X4 after removing the effect of X 2 

as follows. Since Г14 =  0.7209, r\2 =  0.5317, Г24 =  0.5623, we have

Г\4 -  Г\2Г24
f  14,2 — 1 =

V ( 1  —  Г122 > ( 1  —  Г2 4 )
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0 .7209 - (0.5317) (0.5623) 
7(1 — 0.53172)(1 -  0.56232)

0.4219
0.7004

=  0.6024.

This means that there is still considerable linear correlation (0.6024) 
between the numbers in-patient 7 and out-patient after removing the 
effect of percentage bed-usage. Similarly, r34.2 =  0.6269, ri3.2 =  0.2171. 
The second order partial correlations can then be calculated using the 
ones of the first order, П4.23 =  0.6131, Г34.12 =  0.6367. These two sec
ond order partial correlations show that the out-patient number and the 
turnaround frequency each still has considerable association with the in
patient number after removing the effects of the two remaining inde
pendent variables. However, Г24.13 =  0.1364 is very small, meaning that 
after removing the effects of in-patient number and turnaround frequency, 
only (0.1364)2 =  0.0186 =  1.86% of the variation of out-patient number is 
attributed to its dependence on the percentage of bed-usage.

12.2.4 Test o f  correlation

The significance test for the simple correlation coefficient is given by for
mula (9.8) of Chap. 9. The test for a zero partial correlation is similar to 
the t-test for a simple correlation except for an adjustment of the degrees 
of freedom.

Let the population partial correlation coefficient after removing the 
effects of q variables be P(~q) and the sample counterpart be Г(_9). We 
can test the following hypothesis.

HQ. P(—q) — 0, H\. p(—q) 7̂  0

by the t statistic

t r{—q)*Jn -  q -  2
DF =  n — q — 2 (12.7)

in the same way as before.
The test for the multiple correlation between Y and X \ , . . .  , X P being 

zero is the same as the F test in ANOVA that tests the regression of Y on 
X u . . . , X p.
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12.3 Selection of Independent Variables

We have seen in Example 12.1 that not all variables have statistical sig
nificance in predicting Y. A natural dictum in model building is to build a 
parsimonious model without excluding those variables that can contribute 
significantly to the prediction power of the model. On the other hand, in 
some studies, the model is meant to be a platform based on which effects of 
various variables are to be compared and analyzed to get an understanding 
of a problem, and in such circumstances we may wish to keep variables 
with />-values as large as 0.15 for a wider scope of the problem and for not 
inflating the error sum of squares. Therefore, there is no universal approach 
for variable selection that can fit all purposes of studies. The criteria and 
algorithms introduced in this section should only be used as tools, not pur
poses, in applications. The adoption of a method should be coupled with 
the subject matter knowledge in a particular application. Sometimes, cer
tain otherwise important variables are not included in the model because of 
their high correlation with some variables already in the model (hence well 
represented by those variables), or because their ranges of variability are 
not sufficiently represented in the data set.

12.3.1 C riteria fo r  com paring  m odels

12.3.1.1 Squared multiple correlation R2

Large value of R2 corresponds to small value of Ŝ Error anc* thus the two 
statistics are equivalent with regard to comparing models. With the same 
number of variables in the models, the model having the largest R2 (or the 
smallest SSError) is the best. But if we are comparing two models where one 
is a reduced model of the other, the bigger model always has a larger R2 

and hence we have to judge by experience whether the increase in R2 is 
large enough to justify having the additional variables in the bigger model. 
For example, we deem that a change from 0.8065 to 0.8124 in R2 does not 
justify adding a variable to the model to achieve that little improvement. If 
a formal test is required to decide whether the increase in R2 is significant 
enough, we may use the partial F test based on the R2 for the reduced model 
with q variables, R%, and the R2 for the bigger model with к variables, R2:

( 12.8)
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with у i =  k — q,V2 =  n — k — 1. This is the same test for the null hypothesis 
that all those regression coefficients which are included in the bigger model 
but not in the reduced model are zero.

12.3.1.2 Adjusted R2 or MS^nor

The MSei-гог is the best unbiased estimate of о 2 if the model is correct 
and, unlike the SSei-гог, has taken into account the number of variables in 
the model. The adjusted coefficient of determination, or adjusted multiple 
correlation squared is a monotone function of MSpnor:

J T/.Sj.jTor _ | 3'Sj.jror ( o  P  1)

MS-Total SSjotal/ ifl 1)

1 -  (1 -  R2) (12.9)
n — p — \

The criterion is: the larger the /?2dj (or the smaller the MSE), the better 
the model, regardless of the number of variables in the model.

12.3.1.3 Mallows’ Cp

The statistic is meant to be an estimate of the number of regression coeffi
cients that should be in the model. Suppose o 2 is known. If the entertained 
model with p independent variables is correct, the Error Sum of Square 
of this model SSehoAp ) has the expected value (n — p — 1)cr2. Hence an 
unbiased estimator of (/? -E 1), the number of regression coefficients, is

------ -------- (n -  p -  1) +  (p +  1) = ---------------- n +  2(p +  1).
( T z  c r z

Since о 2 is not known, some estimate of cr2 which is not based on the 
entertained model would be more desirable. A commonly used estimate of 
o’2 is the mean square error (МЗеп-ог) when all independent variables in the 
scope of study are put in the model, leading to the following statistic,

C p =  - n + 2 ( P +  \). ( 12.10)
M  b  Error

Mallows (1973) recommends to focus on the model having the smallest 
Cp and those that are closest to (p +  1).
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12.3.2 A lgorith m s fo r  variable selection

Once we have adopted a criterion or more, the next step is to have an
algorithm for evaluating models.

12.3.2.1 All possible subsets

Compare all (2P — 1) possible subsets of the variables according to the cho
sen criterion statistic and selected the optimal ones.

12.3.2.2 Backward elimination method

(Bl) Starting with the full model (include all independent variables in the 
scope of studies and the intercept).

(B2) Remove the most insignificant variable in the model according to the 
t test in the parameter estimates table or in the ANOVA table, i.e. the 
variable with the largest /;-value that is larger than the pre-assigned 
significance level for removing a variable.

(B3) Repeat (B2) until no variable in the model with a p-value larger than 
the significance level for removal.

12.3.2.3 Forward selection method

Use the same test as in Backward Elimination.

(FI) Starting with the model having no independent variable (i.e. having 
intercept only).

(F2) Add the most significant variable into the model, i.e. add the vari
able with the smallest p-value which is smaller than the pre-assigned 
significance level for entry.

(F3) Repeat (F2) until no significant variable can be added.

12.3.2.4 Stepwise selection method

It is a hybrid of the above two methods.

(51) Start with the model having no independent variable as in (FI) above.
(52) Add a variable into the model as in (F2) above.
(53) Remove a variable as in (B2) above.
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(S4) Repeat (S2) and (S3) until no variable outside the model can be added 
and no variable in the model can be eliminated.

Note that not all the methods give the same solution. The researcher 
should consider the solutions from all methods and see which one(s) make 
more sense according to the subject matter knowledge, in addition to the 
criterion.

Whenever feasible, comparing all possible subsets of the independent 
variables based on the chosen criteria is most desirable. About 30 years ago, 
textbooks shy away from this method because of the lack of both computing 
power and efficient computing algorithms to fit a total of (2 P—1) regression 
models. Nowadays, the exponentially growing computing power is easily 
accessible and there are computing algorithms, such as leaps and bounds, 
that can find the optimal subsets efficiently for a large number of variables. 
For example, with ten variables and 100 observations, the SAS procedure 
REG can finish in a split second with a desk-top PC if one wants to see the 
criteria of R2, , MS^rmr and Cp for the five best subsets for each value
of p. We therefore recommend using the results of all possible subsets as the 
road map and see where the Backward Elimination and Stepwise selection 
solutions stand in the road map before making a decision.

Example 12.3 Consider variables selection for Example 12.1.

Solution The results of all possible subsets are given in Table 12.6.
The largest adjusted R2 and the smallest Cp criteria clearly choose the 

model with X\ and X3. The increase in R2 (from 73.6% to 74.1%) is too 
small to justify adding X2 in the model of X\ and X3. Indeed, this increase

Table 12.6 S ta tis tics  o f  a ll p o ss ib le  subsets.

N u m b er 
in m odel i?-square

A d ju sted
Л -square c p

V ariable  
in  m odel

1 0 .5197 0 .4 9 3 0 13.6697 X ,
1 0 .5 1 5 6 0 .4887 13.9206 * 3
1 0 .3162 0 .2782 26 .2368 * 2
2 0.7361 0 .7 0 5 0 2 .3034 W  x 3
2 0 .5849 0.5361 11.6384 X 2 * 3
2 0 .5 6 4 4 0.5131 12.9098 X, x 2
3 0 .7 4 1 0 0 .6924 4 .0 0 0 0 X ,  x 2 x 3
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Table 12.7 S u m m ary  o f  b ack w ard  e lim ina tion .

V ariable N u m b er P artia l M odel
S tep  rem o v ed vars in Л -sq u a re  Л-:square C p F P r > F

1 x 2 2 0 .0 0 4 9  0.7361 2 .3 0 3 4  0 .3 0  0 .5 8 9 4

Table 12.8 S u m m ary  o f  s tep w ise  se lec tion .

V ariab le  V ariab le  N u m b e r P artia l M odel
S te p  e n te red  rem o v ed  v ars  in  Л -square Л -square Cp F  P r  > F

1 X i 1 0 .5197 0 .5197 13.6697 19.47 0 .0003
2 X 3 2 0 .2164 0.7361 2 .3034 13.94 0 .0017

Table 12.9 E stim a tes  in  th e  final m odel.

P a ram e te r S tandard S tan d ard ized
V ariab le  DF estim a te e rro r t p r  >  id e stim a te

In tercep t 1 -3 3 6 9 .5 3 9 9 2 1571 .50137 - 2 .1 4 0 .0468 0
X i 1 60 .10741 15 .95140 3 .77 0 .0015 0 .5 1 3 9 0

* 3  1 33 5 .6 0 5 4 9 8 9 .8 9 5 6 0 3.73 0 .0017 0 .50915

in R2 is not statistically significant, as indicated by the F test for X2 in 
Table 12.7, which summarizes the Backward Elimination results.

The stepwise selection also gives a model with Xi and X3, as shown 
in Table 12.8. Note that the forward selection should give the same model 
from the stepwise selection since there is no removal after each variable 
enters the model, as shown in Table 12.8. Thus for this example all methods 
give the same solution. The estimates of the model are given in Table 12.9 
and the regression equation is

Y =  -3369.5 +  60. IX, +  ЗЗ5 .6 Х3.

12.4 Further Topics in Multiple Regression

Multiple regression has become a vast subject in statistics and is still 
growing. In this section we briefly introduce some of the related topics. 
Researchers are referred to specialized books in regression, or statisticians 
for details.



366 Medical Statistics and Computer Experiments

12.4.1 Model diagnostics and remedies

12.4.1.1 Model assumptions

In multiple regression we assume the conditional distribution of Y given 
the X variables to be a normal distribution with a conditional mean being 
a linear function of X variables and a constant conditional variance not 
depending on X variables. We also assume that n observations from this 
conditional distribution are independent. We abbreviate the four conditions 
of linearity, independence, normality and equal variance as the “LINE” 
condition. The residuals of the regression, e, — y( — yh i =  1 ,  are 
the key quantities for checking the LINE condition.

Suppose the subscript of the observations represents the time order 
of data collection, or an ordering according to some factor like location, 
the condition of independence may be checked by a plot of the residuals 
against the subscript. Independence implies that the residuals display a ran
dom pattern above and below the zero line when the subscript increases. 
If there are clearly runs of residuals either above or below the zero line so 
that there are only a few crossings of zero line by the line that joins the 
points in the subscript order, we suspect that the independence condition is 
violated.

If the independence assumption holds, the Durbin-Watson statistic will 
give

П П

i=2  i= 1

If DW ^ 0 ,  the consecutive pairs of residuals are strongly correlated 
in the positive direction; if DW ^  4, they are strongly correlated in the 
negative direction. The independence assumption can also be tested by the 
non-parametric test for randomness based on runs.

Under the conditions of linearity and constant variance, the scatter plot of 
residuals against the predicted values would form a horizontal band of uni
form width symmetrically around the zero line (see Fig. 12.2(a)). If linearity 
is violated, the band of points will be curved, instead of being horizontal, 
and there is not symmetry around the zero line (see Fig. 12.2(b) and (c)). In 
this case, some nonlinear functions of the X variables should be considered 
in the model, including quadratic or cubic terms of the X variables. The



Multiple Regression and Correlation 367

Fig. 12.2 R esid u al p lo ts  fo r c h ec k in g  assu m p tio n s: (a) lin ea rity  an d  c o n stan t variance ; 
(b) n o n lin ear; (c) no n lin ear; (d ) n o n -co n stan t variance; (e) n o n -co n stan t variance; (f) n o n 
c o n s tan t variance ; (g) n o n lin e a r  an d  n o n -co n stan t variance ; (h) n o n lin e a r  and  n o n -c o n stan t 
variance .

plots of residuals against individual X variables might indicate which of 
the X variables needs nonlinear terms in the model.

If the residual plot against the predicted value is basically symmetric 
about the zero line, but the width of horizontal band changes as Y moves 
from left to right, it is a sign of unequal variance when the values of the X 
variables change. The most common patterns are the right and left opening 
megaphone (see Fig. 12.2(d) and (e)), but in some cases, the cluster of 
points may look like an olive (see Fig. 12.2(f)). Common remedies for non
constant variance are transformation of variables and weighted least-square 
estimation.

The normality assumption can be checked by the Q-Q normality plot 
and normality test for the residuals. A common remedy is transformation 
of variables.

The violations of linearity, constant variance and normality may appear 
in tandem or together. For example, if the residual plot shows a curved band 
with non-uniform width, both linearity and constant variance are violated 
(see Fig. 12.2(g) and (h)). The Box-Cox (1964) method for finding a trans
form of Y satisfying all three conditions may be useful in the circumstances.
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12.4.2 Multi-collinearity

If the X variables in the model are linearly dependent, each of the variables 
is a linear combination of the remaining ones. In this case, the regression 
model is not unique, or the regression parameters are not identifiable. This 
is the original meaning of the multi-collinearity problem. In practice, we 
refer to the situations when the X variables are nearly linear dependent; that 
is, when they are highly correlated. Under the circumstances, the estimates 
are unstable and the standard errors are extremely large, leading to false 
insignificance of the X variables. In model building, fortunately, the vari
able selection process will automatically eliminate the multi-collinearity 
problem by keeping out those variables that are highly correlated with the 
variables already in the model. Keep in mind that in such situations the vari
ables in the model are not necessarily more sensible, according to the sub
ject matter knowledge, than the highly correlated ones outside the model. 
This is one of the reasons why we have recommended using the results 
of all possible subsets as a road map for variable selections. In so-called 
confirmatory analysis where the interest is not on model building, but on 
testing certain theories within the prescribed framework, we may face the 
multi-collinearity problem. In such circumstances, we can detect the prob
lem by computing the squared multiple correlation between each of the 
X variables with the remaining ones. If any of the squared multiple cor
relations is very large, say larger than 0.9, it is an indication of a multi- 
collinearity problem. An alternative way is to see if the smallest eigenvalue 
of the correlation matrix of the X variables is near zero. If indeed there is the 
multi-collinearity problem, then we have to make a choice between (a) dis
carding some variables that are statistically insignificant or their proxies, 
and (b) keeping all X variables in the scope and doing multiple regression 
on some special linear combinations of all the X variables, which are called 
“principal components” and will be considered in Chap. 17.

12.4.3 Outliers and influential observations

All the problems or issues in the above discussion are concerned with the 
dependent or independent variables, or both. There are potential problems 
for the observations too. There could be errors or even blunders in the 
process of data collection, or contamination in data generation process.
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A few observations so obtained may make the model assumptions violated 
or may be overly influential on the estimates of the parameters. They are 
called “outliers” and “influential observations” respectively.

There are ways to detect outliers and influential observations and here 
we only consider some of them. Let у(() be the predicted value using the 
multiple regression model which has been obtained without the г th obser
vation, called the /th jackknifed predicted value, and e(n =  у,- — y(i) the cor
responding residual. The /th Studentized jackknifed residual (available as 
RSTUDENT in the SAS procedures REG and GLM) is Г(р =  в(р/SE(e(i)). 
As a rule of thumb, the /th observation is an outlier with respect to the 
Y values if |r(,-)| > 3, not an outlier if |r(i)| < 2, and undetermined case if 
2 < |r(,)| < 3. The “leverage” of the /th observation, or the /th leverage is 
defined as hn =  x j  (X 'X)~‘x,-, where X; is the /th row of the matrix X, with 
the property that =  P +  L The /th observation is considered as
an outlier with respect to the independent variables if hp > 3(p +  1)/« , not 
an outlier if hp < 2(p +  1 )/n,  and undetermined if it is in between. Cook 
and Weisberg (1982) propose measuring the influence of the / th observation 
on estimation of the regression coefficients by the displacement of the esti
mates when the /th observation is not used. The statistic, called Cook’s D, 
is defined as

Di =  0 -  p (i))T(XTX)~x0  -  k ) ) / ( P  +  1 )MSEnor, (12.11)

where //(,) is the vector of estimates without the /th observation. The dis
tribution is close to F(p +  1, n — p — 1). As a rule of thumb, we declare 
the /th observation as influential if Д  is larger than the 50th percentile of 
F(p +  1 , n — p  — 1), not influential if smaller than the 20 th percentile, 
undetermined if in between.

12.4.4 Interaction effects

When the optimal linear combination of independent variables cannot fully 
explain the variability of Y, we might need interaction terms in the model. In 
a multiple regression, the interaction effects of two variables say X , and X2, 
are usually indicated by their product X, X2. We may treat the product terms 
as ordinary variables in the multiple regression.

In judging whether the interaction effects should be considered in a 
model, the subject matter knowledge should play a primary role. When
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Table 12.10 Percentage of positive 
residuals, close to 50%.

Xi

*2

Low Middle High

Low 40 51 50
Middle 50 48 51
High 51 50 49

Table 12.11 Percentage of positive 
residuals, varying from row to row.

*1

*2

Low Middle High

Low 20 30 40
Middle 35 50 68
High 52 65 80

such knowledge is not available, we may first consider a model without 
interaction and examine the residual plots against individual X variables 
to see whether the linearity condition is violated. If so, higher order terms, 
including the cross products, may be needed.

The following is also a useful way to detect the need for interaction terms 
between two continuous variables after we have done a multiple regression. 
Divide the values of each variable into three groups, Low, Middle and High. 
Calculate the percentage of positive residuals for each of the 3 x 3 =  9 cells 
of the cross-classified two-way table of the value groups of X i and X2 . For 
examples, in Table 12.10, all percentages are around 50%; there is no need 
for interaction effects between X\ and X2 in the model; but in Table 12.11, 
the percentages are quite different row to row, suggesting that we should 
add the cross-product terms such as X1X2, X\Xn,  or X\X\ .

12.4.5 D u m m y variables f o r  grou ps o f  data

Very often we have data for both genders and wonder whether we can pool 
them together in doing multiple regression. If there is no gender difference, 
pooling the data will yield better estimates of the parameters. And if there
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is a difference, we want to estimate the difference with standard error and 
confidence limits. These two questions cannot be answered by separate 
regression analyses for the genders. A “dummy variable”, which equals to 
either zero or one, may be used if we want to study two groups of data 
simultaneously. A dummy variable is also called an indicator variable. Let 
Z be a dummy variable so that Z =  1 if the observation is from the first 
group and Z =  0 if from the second group. We create p more variables, 
XiZ, i  — 1 whi ch are the products of X, and Z and also called 
interaction effects between X, and Z as in previous section, and then we 
may have a regression equation

Y =  a +  bZ +  b\X\  +  b2 X 2 +  • • • +  bpXp +  bp+\X\Z

+  bp+2 X2Z +  --- +  bp+pX„Z (12.12)

for the model of

P y \X\,...x p =  о +  PZ +  P\X\ +  p2X2 +  ■ ■ • +  PpXp +  Pp+\X\Z

+  Pp+2 X2Z +  • • • +  Pp+pXpZ. (12.13)

To answer the above two questions, we need to test

Ho'P  =  Pp+ 1 =  Pp+2 — ■ ■ ■ =  Pp+p =  0;

H\: The full model corresponding to (12.13) is true. (12.14)

If ff0 is not rejected, the two sets of data can be pooled to get a unique 
regression equation; otherwise, they cannot be pooled, and two separate 
regression equations are needed.

However, in practice, we often test the above hypotheses by two steps.
Firstly, we test (note that p  is absent)

Ho-Pp+1 - PP+2 — ■ ■ ■ =  P2p =  0;

H\ : The full model corresponding to (12.13) is true. (12.15)

This is the same as the “parallelism assumption” in analysis of covariance 
where the primary interest is comparing the group means after adjusting 
for the (common) effects of covariates (the independent variables in our 
context), and can also be regarded as testing the interaction effects between
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Xj and Z in (12.13). The test statistic is

„ (ssEmr(H0) -  ssEn0IWi))/P „„F = ------------------------------------- , (12.16)
SSEnorW i ) / ( n  -  2 (p  +  1))

where SSErrm(Ho) and SSEnor(Hi) are the SS for error after fitting models 
under #o and H\ respectively.

If F < Fa(p,n — 2(p +  1)), the parallelism condition holds (all the 
coefficients corresponding to interaction effects in model (12.13) are zero), 
and the conditional full model turns to be

P y \X i ,...,x p =  «  +  P Z  +  P\X\  +  P 2 X 2  +  • • • +  P p X p -  (12.17) 

Accordingly the regression equation will be

Y =  a +  bZ +  bi Xi +  b2 X2 +  • • ■ +  bpXp. (12.18)

Now, as the higher older interaction term (say, A, Zs) is statistically 
insignificant, we can test the main effect term (say, Z or A,s). Then as the 
second step, under the condition of parallelism we can further test

H 0 : p  =  0;

H\ : The full model corresponding to (12.17) is true. (12.19) 

The test statistic is
(SSError Wo) -  SSE rror Wi) ) /PF = ( 12.20)

SSError(tf,)/(«  - P - 2) 
which has a distribution of F(p, n — p  — 2) when H0 is true.

If F < Fa(p, n — p — 2), we can pool the two groups to get a unique 
regression equation in the form of (12.21).

P y \x x,...,x p =  a  +  fi\X\ +  p2X2 +  • • • +  PpXv ( 12.21)

Otherwise, I f / 7 > Fa(p, n—p —2), underthe parallelism condition in the 
preceding paragraph, the difference in group means can be estimated within 
the model (12.17). The sample coefficient of Z estimates the difference 
between the mean of the first group and that of the second group.

For к groups of data, we need к—1 dummy variables, say Z ; =  1 for 
the y'th group, and 0 otherwise. Note that the kth group (the last group) 
is identified by Z ; = 0  for j  — 1 , . . .  , k  — 1. So we don’t need к dummy
variables. We next form the p(k—\) product terms, X, Z, \ , . . . , p
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and j  =  1, ,k — 1. The coefficient of Zj  is the increase in intercept of 
the jth  group relative to the Ath group, and the coefficient of X, Z ; is the 
increase in the coefficient of X, for the / th group relative to the Ath group. 
Thus if there is a natural reference group, it is more convenient to label it 
as the last group. The estimates and tests are analogous to the case of two 
groups.

12.5 Path Analysis

In some applications, we have good reasons to think of causal relations 
among the variables in a more complex structure than just one dependent 
variable and the remaining ones being independent variables. In the cir
cumstances, we need to make use of subject matter knowledge to draw a 
so-called path diagram to delineate the hypothetical causal structure among 
the variables concerned. We first consider an example.

Example 12.4 In a study about births (Shao-Xian Wang, 1983), the 
researchers randomly took a sample of 2,000 cases from 11,309 married 
women in west Beijing, who have participated in the study. The following 
six variables were considered: Age in years (X]), education (X2 =  0 for 
illiterate, 1 for primary school, etc.), age in years when first married (X3), 
number of pregnancy (X4 =  1,2, etc.), live birth rate in percentage (X5) 
and number of live births (Y =  1,2, etc.). The aim is to study the possible 
causal structure among the X variables and their effects on Y.

The first thought would be a multiple regression of Y on all X variables, 
all in standardized form. The regression equation is:

Y =  0.3415*! -0.0941x2 -  0.1921x3 +0.4585x4 +  0.2688x5-

The coefficients are standardized so that direct comparisons are legiti
mate. The direct effects of the X variables are represented by the coefficients 
in a straightforward way. For instances, the higher the education level or the 
older the age of first marriage, the less live births; the larger the other three 
variables, the more live births. Education has very small direct effects.

We anticipate that education has effects on the age of first marriage and 
on the number of pregnancy, and hence should have indirect effect through 
these two intermediate variables. A path analysis based on the so-called 
structurally related equations is beyond the scope of this book. Here we
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illustrate the simple approach of effects accounting based on regression and 
correlation analysis.

Step 1 Draw a path diagram
Draw an initial path diagram with the aid of professional knowledge about 
the nature of variables, progression order of outcomes of variables, etc., 
according to the following rules:

(a) An arrow is drawn to a “resultant variable” (or endogenous variable) 
from each of its “causal variables” (or exogenous variables).

(b) To each resultant variable there is also an arrow originated from an 
unobservable error variable (or residual variable) which represents all 
those possible factors that may have effects on the resultant variable but 
not identified.

(c) A double-headed arrow connects each pair of causal variables that are 
thought to be correlated but not resultant to each other.

The initial path diagram for Example 12.4 is given in Fig. 12.3. There 
are two purely causal variables, age (X | ) and education (X2), which are 
not resultant to each other. The number of live births (T) is the only purely 
resultant variable that is not viewed as causal variable to any other variable. 
The age of first marriage (A3), pregnancy number (A4) and live birth rate 
(X5) are intermediate variables that are both causal and resultant variables.

Fig. 12.3 In itia l p a th  d iag ram  fo r  live b irth  study.
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For example, X3 is a resultant variable of X 1 and X2 plus error e3, but also 
a causal variable to Y, while X4 is a resultant variable of X j, X2 and X3 
plus an error e4, but also a causal variable of Y, etc.

Step 2 Find the path coefficients

The path coefficients for the paths to a resultant variable from all its causal 
variables are the respective standardized regression coefficients that are 
statistically significant in a multiple regression of the resultant variable on its 
causal variables. For the path to the resultant variable from its error variable 
we show 1 — R2, in rounded percentage, to indicate the proportion of the 
variability that is not accountable by the existence of the causal variables. 
For a double-headed arrow, the path coefficient is the simple correlation 
coefficient.

For Example 12.4, we have to fit the following four multiple regressions 
in standardized form, where P7* are the standardized regression coefficients, 
preferably all statistically significant:

X3 =  F31X 1 +  P32X2 +  e3,

X4 =  P4 \X\ +  F42X2 +  F43X3 +  e4,

X5 =  F51X1 +  E52X2 +  E53X3 +  C5,

Y — Py\X\ +  РугХг +  Py 3X3 +  /V4X4 +  PysXs +  ey.

Using Backward Elimination with a significance level at a =  0.05, we 
obtain the following standardized regression coefficients together with the 
coefficient of multiple determination for each regression equation:

X3 =  0.6095Х2(/?з =  0.3715)

X4 =  0.6719Xj -  0.0711X2 -  0.2622X3(/?4 =  0.5014)

X5 =  0.4608X] -  0.0325X2(tff =  0.1923)

Y =  0.3415X] -  0.0941X2 -  0.1921X3 +  0.4585X4

+  0.2688X5(X^ =  0.8298)

The path coefficients are put in place as shown in Fig. 12.4.
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Fig. 12.4 S ta tis tica lly  s ig n ifican t pa ths.

Table 12.12 E ffec ts  o f  in d ep en d en t v a riab le s  th ro u g h  all p o ss ib le  ro u tes to  Y.

C ausal D irec t
In d irec t e ffec t th ro u g h  in te rm ed ia te  variab les

variab les e ffec ts x 3 x 4 x 5 X 3 . X 4 x 3, x 5 S u b to ta l Total

X | A ge 0.3415 0 0.3081 0.1239 0 0 0.4320 0.7735
X i  E d u ca tio n -0.0941 -0.1171 -0.0326 -0.0087 -0.0733 0 -0.2317 -0.3258
X.3 1st -0.1921 N A -0.1202 0 N A N A -0.1202 -0.3123

M arriag e
A ge

X 4 P reg n an cy 0.4585 NA N A NA N A N A N A 0.4585
N o.

X 5 L ive  B irth 0.2688 N A N A N A N A N A N A 0.2688
R ate

Step 3 Construct the effects table

The direct and indirect effects of the independent variables on the dependent 
variables through all possible routes to Y are summarized in Table 12.12. 
Those routes that are not included in the original path diagram (Fig. 12.3) 
are indicated by NA (for not appropriate/available). The routes that have 
been proposed but later deleted because of statistical insignificance will
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be given a zero value. For example, the path from X \ to X3 is canceled; 
hence the indirect effects of X\ via X3, via X3 and X4 and via X3 and 
X5 are all zero. The standardized regression coefficients in the regression 
equation for Y measure the direct effects of all independent variables. The 
indirect effect of an independent variable through intermediate variables is 
represented by the product of the corresponding path coefficients along the 
route to Y. For example, the indirect effect of education X2 on Y through 
X3 is 0.6095 x (—0.1921) =  —0.1171, and through X3 and X4 is 0.6095 x 
(-0.2622) x 0.4585 =  -0.0733.

Step 4 Interpret the results

(a) Pregnancy number (X4) has the largest immediate effect (0.4585), and 
second in total.

(b) Age (Xi) has the second largest immediate effect (0.3415) but the 
largest indirect effect (0.4320), giving a total (0.7735) larger than preg
nancy number (X4).

(c) Education (X2) has the smallest direct effect (—0.0941, ignoring the 
sign) but second largest indirect effect (—0.2317).

(d) Directly or indirectly, education (X2) and age of first marriage (X3) 
have negative effects, while the other three variables have positive 
effects.

(e) The total effects of education (—0.3258) and age of first marriage 
(—0.3123) are about the same, the former having less direct effect but 
more indirect effect.

(f) For indirect effects through first marriage age (X3), education (X2 with 
—0.1171) is more influential than age (Xj with 0). But for indirect 
effects through X4 or X5, age is more influential than education (0.3081 
versus —0.0326 and 0.1239 versus —0.0087).

(g) Education has slightly larger effect than age through the composite 
route of X3 and X4 (-0.0733 versus 0). If we look at the subtotal, age 
has the largest indirect effect (0.4320); the next is education (—0.2317) 
and then ageof first marriage (—0 . 1202).

(h) Given the large proportions of the variability due to residual variables 
of education (63%), pregnancy number (50%) and live birth rate (81%), 
there may be important causal variables that have not been identified in 
the study.
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12.6 Computerized Experiments

Experiment 12.1 Computation for Example 12.1 Assume that the data 
of year, Y, X | , X2, X2 are stored in the text file named “exl4-l.dat” in a 
floppy disk. The results contained in Tables 12.2-12.8 can be reproduced 
by the following SAS codes:

All keywords in the program are in capital letters for easy reference, 
but not essential. In program 12.1, line 02 points to the location of the data 
file and line 03 reads the data. The first 3 lines create the dataset named 
“inpatients” with five variables and 20 observations. The first MODEL 
statement additionally requests standardized regression coefficients (STB), 
confidence limits for the mean (CLM) and individual predicted values (CLI), 
residuals and their standard errors, Studentized residuals and Cook’s D. The 
second MODEL statement requests statistics of criteria R01 2 03 04 05 06 07 08, , MSError and
Cp for all possible subsets regression. The third MODEL statement is for 
Backward Elimination with a =  0.05 and the last MODEL statement is 
for stepwise selection with a =  0.10 to enter a variable and a =  0.05 for 
removing a variable.

Experiment 12.2 Impact of normality Simulate Xj as N(10, 32), X2 as 
the square of a variable from N(10, 32), X2 as the cube of a variable from 
N(10, 32) and E from N(0, 1). Then defined Y\ =  X\ +  X% 4- X 3 +  E 
and Y2 =  X\ +  X2 +  X3 +  E2. Generate a sample of size 30 for the 
variables (X\, X2, X3, E, Y\, Y2). Separately carry out regression of T, and

P ro g ram  12.1 C o m p u ta tio n  fo r  E x am p le  12.1.

L ine P rogram

01 D A TA in p a tien ts;
02  I N F I L E ‘a: \ e x l 4 - l .d a t ’;
03  IN P U T  y e a r у x l-x 3 ;
0 4  P R O C  R E G ;
05 M O D E L  y = x l - x 3 /  S T B  C L M  C L I R;
0 6  M O D E L  y =  x I-x3  /  S E L E C T IO N =  R S Q U A R E  A D JR S Q  M S E

07  M O D E L  y =  x l-x 3  /  S E L E C T IO N = B  S L S = 0 .0 5 ’;
08  M O D E L  y =  x 1 -x3  /  S E L E C T IO N = S T E P W IS E  S L E = 0 .1 ’ 

S = 0 .0 5 ;
Q U IT ;09
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P ro g ram  12.2 Im pac t o f  norm ality .

L ine P ro g ram L ine P rogram

01 DATA A ; 11 P R O C  R E G ;
02 D O  1=1 T O  30; 12 M O D E L  Y 1 = X 1  X 2  X 3/R ;
03 X 1 = R A N N O R (0 )* 3 + 1 0 ; 13 O U T P U T  O U T = R E G l R = R E S D 1 ;
04 X 2 = (R  A N N  O R (0 ) * 3 + 1 0 )  * *2 14 M O D E L  Y 2 = X 1  X 2 X /R ;
05 X 3 = (R A N N O R (0 )* 3 + 10)**3 15 O U T P U T  O U T = R E G 2  R = R E S D 2 ;
06 E = R A N N O R (0 ); 16 DATA R E G ;
07 Y 1 = E + X  1+ X 2 + X 3 ; 17 S E T  R E G  1 R E G 2;
08 Y 2 = E * * 2 + X 1  + X 2 + X 3 ; 18 P R O C  U N IV A R IA T E  N O R M A L ;
09 O U T P U T ; 19 VAR R E SD 1 R E S D 2 ;
10 E N D ; 20 R U N ;

P ro g ra m  12.3 Im p ac t o f  co llinearity .

L ine P ro g ram L ine P rogram

01 DATA A ; 07 E N D ;
02 D O  1=1 T O  30; 08 P R O C  R E G ;
03 X 1 = R A N N O R (0 )* 3 + 10; 09 M O D E L  Y = X 1  X 2;
04 X 2 = R A N N O R (0 )+ X  1 *2; 10 M O D E L  Y = X 1  Х 2/

05 Y = R A N N O R (0 )+ X 1 * 3 + 1 S E L E C T IO N = F O R W A R D ;
06 O U T P U T ; 11 R U N ;

12 Q U IT;

Yi_ on X], X2 and X3. Compare the regression coefficients with the true 
values (1, 1, 1). Use the residuals to check the model assumptions. In the 
SAS codes below, lines 01-10 create the data, lines 11-15 are for regression 
analysis and output the residuals to dataset REG 1 and REG2, lines 16 and 17 
merge the two datasets into one containing both sets of residuals, and lines
18-20 test the normality of both sets or residuals.

Experiment 12.3 Collinearity Program 12.3 simulates a sample of size 
30 for the variables (Xj, X2, Y) and carry out regressions analysis for 
f  on I |  and X2 and forward selection of variables, where X { is from 
7V( 10, 32), X2 — 1X\ +  e, e from N(0, 1), and Y from N(3Xt +  1,1). 
Repeat the experiment 20 times. Compare the parameter estimates and vari
able selection results for the 20  samples and discuss how does the correlation 
between X\ and X2 affect the results.
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Table 12.13 D ata  on  m an p o w er an d  w o rk lo ad  fo r  17 ho sp ita ls .

i X i * 2 Y 3 X 4 * 5 Y

1 15.57 2463 4 7 2 .9 2 18.0 4 .4 5 5 6 6 .5 2
2 4 4 .0 2 2048 1339.75 9 .5 6 .92 5 9 6 .8 2
3 2 0 .4 2 3940 6 2 0 .2 5 12.8 4 .2 8 1033.15
4 18.74 6505 5 68 .33 36 .7 3 .90 1603 .62
5 4 9 .2 0 5723 1497 .60 35 .7 5 .5 0 1611 .37
6 4 4 .9 2 11520 1365.83 2 4 .0 4 .6 0 1613.27
7 5 5 .48 5779 1687 .00 43 .3 5 .63 1854.17
8 5 9 .28 5969 1639.92 4 6 .7 5.15 2 1 6 0 .5 5
9 9 4 .3 9 8461 2 8 7 2 .3 3 78 .7 6 .18 23 0 .5 8

10 128.02 2 0 106 36 5 5 .0 8 180.5 6.15 35 0 5 .9 3
11 9 6 .0 0 13313 2 9 1 2 .0 0 6 0 .9 5 .88 3 5 7 1 .8 9
12 131.42 10771 3 9 2 1 .0 0 103.7 4 .8 8 3 7 4 1 .4 0
13 127.21 15543 3 8 6 5 .6 7 126.8 5 .5 0 4 0 2 6 .5 2
14 2 5 2 .9 0 36194 7 6 8 4 .1 0 157.7 7 .0 0 10343.81
15 4 0 9 .2 0 34703 12446.33 169.4 10.78 11732 .17
16 4 6 3 .7 0 39204 14098 .40 3 3 1 .4 10.78 15414 .94
17 510.21 86533 15524 .00 3 7 1 .6 6.35 18854.45

12.7 Practice and Experiments

1. Yu and Xiang (1993) collected data on the following variables of man
power and workload for 17 hospitals (see Table 12.13)
X\ =  Number of in-patients per day 
X2 =  Number of patients X-rayed per month 
X3 =  Occupied bed-days per month 
X4 =  Population size in thousands targeted for service 
X5 =  Number of days in hospital per in-patient 

Y =  Man-hour deployed per month.

(1) Find the regression equation for Y on all five X variables and report 
the ANOVA result.

(2) Use all variable selection methods and see whether the results are 
the same. Make a recommendation based on the results.

(3) For the model you have recommended in (2), present the ANOVA, 
estimates and R1 2 3 4. Are there any outliers or observations, which are 
overly influential?

(4) If there are outliers and overly influential observations in (3), delete 
them and do the regression again according to the model in (3).
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Table 12.14 D ata  o f  a  hosp ital 
d u rin g  1 9 7 6 -1 9 8 6 .

Y ear Y W *2

1976 4 1 .5 6 2 .704 30 .89
1977 4 7 .6 8 2.888 32 .20
1978 5 3 .0 6 2 .746 36.87
1979 7 3 .68 2 .813 39 .09
1980 125.35 3 .072 4 4 .14
1981 167.53 3 .310 48.11
1982 215.21 4 .005 51.41
1983 244 .55 4 .166 52 .93
1984 3 15 .32 4 .429 59.61
1985 41 3 .0 7 4 .862 6 7 .00
1986 42 5 .2 7 5 .176 68 .98

2. Wang (1993) reported the data of a certain hospital during 1976-1986 
for the following variables: (see Table 12.14)

Y — Income in thousand dollars (RMB)
X i =  Number of discharged patients in thousands 
Xi  =  Actually occupied bed-days (in thousands)

(1) Find the regression equation of Y on Xj and X2 and report the anal
ysis of variance results.

(2) Find the partial correlation coefficient between X \ and Y removing 
the effect of X2.

3. Perform a regression analysis for mathematics score (X) on language 
score (Y) and IQ (Z) in Problem 5 of Chap. 9. Find the partial correlation 
coefficient between X and Y controlling the effects of Z. Comparing 
the partial correlation coefficient with the simple correlation coefficient, 
what do you see?

4. For Example 12.1, add the variable X4 =  X2X3 and carry out a regres
sion of У on Xi, X2, X3 and X4 and test whether there is statistically 
significant interaction effect between X2 and X3.

5. Carry out a path analysis in Problem 1, only for the variables X \ , X2, X5 
and Y.

(1st edn. Kai Ng, Tong Wang, Jiqian Fang; 2nd edn. Jinxin Zhang, 
Jiqian Fang)





C h a p ter  13

Measures of Multi-variate Data and Multi-variate 
Analysis of Variance

The observations in a medical research usually include three types of 
variables: variable for group, response variables and covariates. In most 
cases, especially in clinical studies, the observations may include more than 
one response variable. For example, when measuring the blood pressure of 
a patient both systolic pressure and diastolic pressure are noted; the growth 
status and physical development of a child are usually measured with more 
than ten or 20 variables, such as height, weight, head circumference, chest 
circumference, etc. In such circumstances, although ordinary statistics such 
as mean, standard deviation, and standard error can be used for description 
purposes, and statistical inference such as hypothesis testing can be car
ried out for each variable separately, there are substantial disadvantages as 
discussed below:

1. Overall information of multi-variable cannot be fully used.
2. No integral conclusion can be made when the results of the hypothesis 

testing for each variable disagrees with each other.
3. The relationship among variables cannot be examined.

To avoid the drawbacks of applying uni-variable analysis to multi-variable 
data, multi-variate statistical procedures should be used.

13.1 Multi-variate Statistical Description

Example 13.1 Five patients with high serum lipid were treated with a 
drug, and the observations after the treatment are listed in Table 13.1. We will 
use these data to demonstrate how to calculate multi-variate statistics. 
(Note: A sample with five observations is usually not large enough for

383



384 Medical Statistics and Computer Experiments

Table 13.1 Lowering blood lipid after treatment.

Subject ( j )
Decrease of 

cholesterol (mg %)
Decrease of 

triglyceride (mg %)

1 16 - 4
2 21 46
3 57 -4 0
4 -1 4 107
5 17 86

X 18.2 39.0
744.7 3743.0

scientific research; this can only be used as a hypothetical example to 
illustrate the method of obtaining multi-variate statistics.)

13.1.1 Mean vector

There are two response variables, X\ and X2, the observations for the first 
subject ( / =  1) in Table 13.1 can be described by a two-dimensional vector

Xi =  ( * " )  =  № ,  W  =  (16 - 4 ) ' .

When j  =  2, the observations can be written as

Хз =  (Й)= (Xi2 X22),= (21 46)'-

In general, the j  th observation can be described as

In this example, the mean of X\ is 18.2, and that of X2 is 39.0, which can 
also be described by a mean vector:

X = ( ^ ‘ ) = {x,  X2)' =  (18.2 39.0)'.
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More generally, if there are n observations, and each of them has p 
response variables X\, X2 , . . . ,  Xp, the observed data of the first subject 
is Хц, X2), . . . ,  Xpi and can be described by a vector of p dimensions as 
Xi — (Xu X2| • • ■ Xp\)', and that of the / th subject having measure
ments X\j ,  X2j , . . . ,  Xpj can be presented using a vector of p dimensions

Xj =  (Xij X2j ••• Xpj)'.

Consequently, the means of p variables for all observed subjects is a vector 
with p dimensions:

X =  (X, X2 ••• Xp)'. (13.1)

The sample mean of i th variable is

X,- =
I
n T . x 'i

j = 1

13.1.2 C ovariance m atrix

The variances of response variables X] and X2 in this example are 5ц =  
S] =  744.7 and S22 =  S\ — 3743.0 respectively, and the covariance of X\ 
and X2 is

j П __ __

S12 =  S21 =  ——  J 2  (X'J ~ X ^ X2j -  * 2)
П j = 1

=  ^-*-j-[(16 -  18.2)(—4 -  39) +  • • • +  (17 -  18.2)(86 -  39)]

=  -1401.25.

The variances and the covariance of two variables are the elements in the 
following 2 x 2 matrix

2 = / S n  Si2\ /  744.7 -1401.25\
\ S 21 S22)  y —1401.25 3743.0 )

which is called a variance-covariance matrix or covariance matrix in 
brief.
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Generally, if there are p response variables Xi, X2, . . . ,  Xp, the 
variance-covariance matrix of the sample is a p x p matrix, labeled as

S2 =

( Su Sn  ••• Slp\  
S2\ S22 ■ ■ ■ s2p (13.2)

\ S P\ SP2 ■■■ Sppj

The diagonal of the matrix consists of the variance of each variable

1 " _
Su =  S f = ------- V  (Xi j  -  X ^ 2 i =  l , 2 , . . . , p .n —

j = 1

The elements on each side of the diagonal are the covariance between 
variables.

Sik
1 ^  -  -  i  ф  к

=  Ski = ------- > (Xu -  Xi)(Xki -  Xk)
n -  1 ^  7 1 ’ i , k  =  1 , 2 , . . . ,

S  is a symmetric matrix if S ik  =  S k , .

13.1.3 C orrelation  m atrix

The correlation coefficient of X\ and X2 in this example is

П 2  =  r2\
S\2

\ /S\ \S22
-0.8393.

The correlation coefficient between any variable and itself is 1, that is r\ 1 =  
r2i — 1 • All correlation coefficients are jointly expressed as in the following 
2 x 2 matrix, called a correlation matrix.

/  1 -0.8393 \
У-0.8393 1 )

Generally, if there are p  response variables X\,  X2, . . . ,  Xp, we have a 
p x p correlation matrix by summarizing all the correlation coefficients in
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one matrix.

/  1 rn ••• rXp\ 
Г2 \ 1 r2p

\ r p  1 r p2 r pp /

(13.3)

Sjk i ф к
Г:к — Г и — ;.........

Д а  =

where rik{i ф к) is the sample correlation coefficient of X, and Xk. R is 
also a symmetric matrix if rik =  rki.

13.1.4 M ulti-varia te norm al distribution

Let p represent the population mean vector which can be expressed as 
follows, corresponding to the sample mean vector shown in Eq. (13.1).

p  =

I p  i \
И 2

\ P p  J

=  ( P \  P 2  P p ) ' - (13.4)

Let X2 be the population variance-covariance which can be expressed as 
a p x p covariance matrix, corresponding to the sample covariance matrix 
showed in Eq. (13.2).

( CT\\ о  12 • • •  <У\р ^

021 022 02  p

\ 0 p l  0 p 2  ' '  ' 0 p p  /

(13.5)

where cr„ is the population variance of the ith response variable and 
гг,/; (г ф к) the population covariance of the /th and /cth response variables. 
We assume in this chapter that n observed vectors of a sample of X follow
ing a p-dimensional multi-variate normal distribution Xp(p, X2), whose
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density function is

/(X ) = ---------l— =----exp[—(X — p,)'X“2(X — p,)/2], (13.6)
(2л-К/21X "I1/2

where | X 21 is the determinant of matrix X2 and X ~2 is the inverse of X2. 
It is easy to verify that Eq. (13.6) is just the density function of a univariate 
normal distribution when p =  1.

13.2 Comparison between Two Mean Vectors — Hotelling’s 
T2 Test

13.2.1 Test fo r  single m ean vector \i =  |x0

We are familiar with univariate hypothesis testing under the assumption that 
observed variable X follows a normal distribution N ( p , o 2). To test the null 
hypothesis Щ p =  po based on the sample mean X,  the appropriate test 
statistic is t

t _  X  -  M.Q

The ^-statistic can also be expressed as

T =  y/n(X — P q)S~] . (13.7)

Taking squares on both sides of Eq. (13.7) and making slight changes, 
we have

r 2 =  n (X - |io ) S - 2(X-Lx0). (13.8)

When there are more than one response variable, we can replace X with sam
ple mean vector X, and sample variance S2 with sample variance-covariance 
matrix S2, then T 2 is generalized as Hotelling’s T2. That is

T2 =  n(X — p.0) S _2(X — |i0), (13.9)

where S2 is a matrix and S ' 2 is its inverse matrix.
When there is only one response variable, i.e. p =  1 and Щ : f t  ~  p о 

is true, we have F — t2. As an extension, the relationship of F and
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Hotelling’s T2 is

n -  P T2 v i = p  
(n — \ )p  ’ Vi =  n — p

(13.10)

which can be used to test the null hypothesis H0 : p =  |л0 based on 
mean vector X and then compared with critical values of F. When n is 
large enough, F approximately follows a y 2 distribution with p  degrees of 
freedom.

Example 13.2 Conduct a statistical inference of whether the drug has the 
effect on lowering blood lipid with the data showed in Table 13.1.

Solution We know from the data that there are two response variables 
presenting the effect of blood lipid changes. If the mean vector in population 
is not equal to po =  (0 0 ), we can conclude that the drug significantly 
affect the change of blood lipid.

/  744.7 - 140L25l  s-2 = /0.0045 0.0017 \
l -1401.25 3743.0 )' 1 0.0017 0.0009 j

Compute Hotelling’s T2 with Eq. (13.9) and the value of F in (13.10):

=  26.4697,

F =  П~ Р T2 =  — — ------ (26.4697) =  9.9261,
{ n - \ ) p  (5 — 1) x 2 V

v\ = 2 ,  V2 =  3.

For F =  9.9261, P =  0.0476, Я0 : p,0 =  (0 0)' should be rejected at the 
significant level 0.05. If any element of p, (the mean of changes) is different

By calculation,
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from 0 , then we can say that the drug is effective in lowering blood lipid. 
However, if we work out two times of univariate t  test / i  \ =  0 and //2 =  0 
respectively, we will have t — 1.4913, v =  5 — 1 = 4 ,  P =  0.2101 for X\,  
and t — 1.4254, u =  5 — 1 = 4 ,  P — 0.2272 for X2, the null hypothesis 
could not be rejected. This example shows that Hotelling’s T2 test is more 
powerful than univariate t test.

13.2.2 Test for two mean vectors p.| =  p,2

Example 13.3 A sample of 18-year-old men in a country of Shaanxi xi 
province, China was randomly selected and their heights, weights and chest 
circumferences were measured. The results are listed in Table 13.2. Find 
out whether the difference between the measurements of 18-year-old men 
in rural area and urban area is statistically significant.

It is assumed that the observations of a variable, say height, in the 
two groups were distributed according to univariate normal distributions 
N(iu\,(j2) and respectively. To test Hq : /.ц =  /t2 using the
sample means of X , and X2, we use the statistic

X, - X 2
t =  - Д = - ^ =- ( i3. i l )

n 1 + И 2  c2  
У П\П2

Table 13.2 P h y s ic a l m easu rem en ts  o f  18 -year-o ld  m en  in a  c o u n ty  o f  S h aan x i p ro v in ce .

R ural a rea U rban  area

Sub. H e ig h t W eigh t
C h est

c ircu m fe ren ce  Sub. H eigh t W eigh t
C hest

c irc u m fe re n ce

1 163 51 7 0 .00 1 165 65 7 1 .50
2 159 50 71 .00 2 167 60 7 4 .50
3 162 51 7 2 .00 3 166 58 7 9 .00
4 161 62 7 5 .00 4 174 52 7 5 .00
5 170 57 81 .50 5 178 66 87 .00
6 164 55 7 4 .00 6 163 55 6 9 .2 0
7 168 57 7 7 .00 7 169 56 7 5 .0 0
8 175 52 88 .00 8 164 55 7 2 .0 0
9 166 54 7 6 .00 9 169 69 8 0 .00
10 157 43 69 .00 10 171 56 8 1 .00
11 170 59 7 3 .00
12 167 57 7 8 .00
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Taking squares on both sides of Eq. (13.11) and making slight changes of 
the elements, we have

t2 =  -  X 2)'S;2 (X, - X 2). (13.12)
n 1 +  n2

If the number of response variables is greater than 1, replace the two sam
ple means in Eq. (13.12) by the mean vectors Xi and X2, and the pooled 
estimated variance S2 with the variance-covariance matrix S2, which is a 
weighted average of the variance-covariance matrices of the two samples. 
Then T2 is generalized as Hotelling’s T2, that is

T2 =  - ^ _ ( X j  -  X2)'S“2(X i -  X2), (13.13)
П] +  n2

where

S2 = ---- - ----- -[(и , -  1)S2 +  (n2 -  1)S2]. (13.14)
П] + n  2 - 2

Under the null hypothesis #0 : p\  =  Ц2, a relationship between T 2 and F 
value is

n  1 + n 2 -  p -  1 2 v i = p

(nl + n 2 - 2 )p v2 =  n\ +  n2 -  p -  1.
(13.15)

When the value of n\ +  n2 is large enough, the statistic F follows a / 2 

distribution with p degrees of freedom.

Solution In this example, there are three response variables, height, 
weight and chest circumference, representing the growth status of young 
men in this county. We will infer if the mean vectors p,, for the rural and 
p 2 for the urban are different in this county.

H 0 : Мч =  P 2, : щ  Ф  p 2

n\ =  12, n2 =  10, p =  3
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/165.1 4 / 168.6 \  / - 3 . 5 \
X i - X 2 =  53.9 -  59.1 =  -5 .2  ,

\  75.4 /  \  76.4 /  \  —1.0/

Si

/26.915 11.695 23.585\  
11.695 25.201 9.259 ,

V 23.585 9.259 28.597/

S2
/22.142 4.842 19.842 \

4.842 30.755 13.366 ], 
V 19.842 13.366 28.442/

T2 =  - ^ 2- ( x ^  - X 2y s ; ' ( x  1 - X 2) =  10.45, 
n i +  n2

F (n | +П 2 -  p -  1) 2
(«, + n 2 -  2 )p

—  x 10.45 
60

=  3.14, Vi =  3, v2 — 18.

With P =  0.051, Ho cannot be rejected at the significant level 0.05. We can 
conclude that the growth status of young individuals in rural and urban areas 
of this county cannot be considered statistically different.

Consider another situation when we test the differences between the 
rural and the urban for each response variable separately by repeating 
the t test, the t values for height, weight and chest circumference will 
be 1.63, 2.32 and 0.46 with corresponding P values 0.119, 0.031 and
0.653 respectively. The test for height is rejected, but the tests for weight 
and chest circumference are not. Then we can recognize that the univari
ate t test can be a supplement to the test of mean vectors rather than a 
replacement.

13.3 Comparisons among Several Multi-variate 
Means-Multi-variate Analysis of Variance

Example 13.4 Three groups of data involving two response variables are 
showed in Table 13.3. Find out if the difference of treatment effects among 
these three groups is statistically significant.
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Table 13.3 The effect scores with two response variables.

Treatment I Treatment II Treatment III

Xi xk Xi xk Xi Xk

8 2 2 5 3 8
7 4 3 1 2 7
6 3 1 6

Table 13.4 Decomposition of variation for MANOVA.

Source D F Sum of squares (Matrix)

Between group G  -  1 H =  Z ^ n g(Xg - X) ( Xg - X Y

Within group -  G E  =  E g = i E " i i  (X*/ -  X g ) ( X g j  -  x g y

=  Y , g = \ ( n g -  i)s g

Total 5Zg=in s  ~  1 H  +  E

For a single response, to compare the effect of G (>2) groups, 
we employed a univariate analysis of variance (ANOVA) introduced in 
Chap. 12. Similarly, now we would use multi-variate analysis of variance 
(MANOVA) when there are more than one response variables. The idea 
of MANOVA is basically the same as that of ANOVA. The total sum of 
squares of observed effect SSr is decomposed into two parts, SSB and 
SSW, representing the variation between and within treatment groups. The 
only difference between these two methods is that SSj,  SSB, and SSw in 
multi-variate analysis are matrices instead of single numbers. In addition, 
another test statistics A* will be introduced.

13.3.1 Decomposition of variation (matrix)

Table 13.4 shows the decomposition of total variation. The items are similar 
to ANOVA: n g is the number of observations in group g .  X gJ represents 
the observed vector of the jth  subject in group g, Xg for the mean vector 
of group g and X for the mean vectors of all observations. H (between
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groups) and E (within group) correspond to SSp and SSw respectively 
in ANOVA. (•••)(••• У represents the multiplication of row and column 
vectors, resulting in a matrix of dimension p  x p.

For the data in Table 13.3, we have

n i = 3 ,  «2 =  2, П3 =  3; X| =

-1/8 +  7 +  6  +  24-3 +  3 +  2 + 1 4  _  / 4 . 04  
8 \ 2  +  4 +  3 +  5 +  l +  8 +  7 +  6 y — V4.5

xt -  x =

H = 3 (-L) < 3 + ->-5)
+ з ( ^ ) ( - 2  2.5)

_ /43.5  - 2 4 \
_  \  —24 30 ) '

The covariance matrix of each group is

з
E = J^(ng - l ) S l  = 2

8=  1

1 -0 .5  4 /0 .5  - 2 4
-0 .5  1 )  +  V -2  8 )

+2

H +  E /43.5 —244 /4 .5  - 1 4  /  48 -2 5 4
\ —24 30 ;  +  \ - l  12 у \ —25 42 ) ’

Arranging all these results in the format of Table 13.4, we have Table 13.5
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Table 13.5 MANOVA of data in Table 13.2.

Source D F Sum of squares (matrix)

Between groups 2
- (

43.5 -2 4  \  
-2 4  30 )

Within group 5 E  -  1
f t  * )

Total 7 H  +  E  =
/  48 -2 5  \  
\  -2 5  42 )

13.3.2 Wilks’ A*

It is a generalized variance ratio and named Wilks’ Lambda statistic pro
posed by Wilks.

A* \E\

\ H + E \ '
(1 3 .1 6 )

where the numerator and denominator are both determinants. A very small 
A* implies that the between groups variation H is larger than that of random 
effect E, indicating that the null hypothesis Щ : щ  =  p,2 =  ■ • • =  |XG 
is suspectable. The critical point of A* can be obtained by transforming 
the distribution of A* to a distribution of F following the rules showed in 
Table 13.6.

We can see from Table 13.6 that when mean vectors of the two groups 
are to be compared, we can use either Hotelling’s T2 or MANOVA, which 
is just the same situation with t test and ANOVA in univariate analysis. 
Although the calculation of MANOVA is considerably cumbersome, sta
tistical packages such as SAS can make it easy. Moreover, the difference 
between the mean vectors can be analyzed under the multi-variate design. 
Within the output of SAS procedure. A* can be transformed into F under 
some commonly appearing conditions. The calculation of A* using the data 
in Table 13.5 is

A* \E\
\H +  E\

4.5 -1  
- 1  12

48
-2 5

-2 5
42 =  53/1391 =  0.0381.
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Table 13.6 Distribution of Wilk’s Lambda.

No. of No. of 
variables groups

p  =  1 G  >  2

p = 2 G > 2

Transformation between F  and Л*

/ £ " *  - 0 \  / 1 — A*\
V G — 1 A A *  /

/ £ " * - 0 - 1 \  / 1 - / л * \
V 0 - 1 A  s/A* i

D F

«1 = G -  1,

v 2 = J2 nS ~ G

di = 2( G - 1),

°2 = 2 (X "«  -  о

»1 = p,

°2 = Y l ' lS -  P -  1

01 = 2p,

02 =  2(/tg — p  — 2)

Referring to Table 13.5, p =  2, G =  3, and get F value

F = \/A*
V a *

8 — 3 — 1 \  /  1 — /0.0381 
3 - 1  / I  >/0.0381

=  8.2463,

v i = 2 ( G - l ) = 4 ,  v2 =  2 ( j ^ n g - G -  l )  =

Then, we have the corresponding P value from the F  table, P =  0.0061. 
Since P < 0.01, the null hypothesis of #o : p , =  p 2 =  Рз is rejected, and 
the effectiveness scores of these three therapies are considered significantly 
different.

If *i and jc2 were analyzed separately with ANOVA, F  =  24.17, F =  
0.0027 forxi,  and F  =  6.25, P =  0.0436 for *2 would be obtained. Thus,
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we cannot reach an overall conclusion about the difference among the three 
treatments.

13.4 Computerized Experiments

Experiment 13.1 Hotelling’s T2 test for H0 : p =  0 Program 13.1 is 
applied to examine the effect of lowering blood lipid of the drug in Exam
ple 13.2. The hypothesis to be tested is Я0 : p  =  (0 0)'. Hotelling’s T2 
is generated by the procedure GLM in SAS. The value of F defined in 
Eq. (13.10) is obtained by transforming the statistics listed below:

(1) Wilks A* Wilks’ Lambda =  \E\/\H +E\
(2) Pillai trace Pillai’s trace =  trace (H(H +  E)~')
(3) Hotelling-Lawley trace Hotelling-Lawley trace =  trace (E~1II)
(4) Greatest root of R Roy’s greatest root of E~1H.

Note that the values of F  derived from each of the four transformations 
above may not be identical.

С =  1 in line 03 implies that there is only one group. Data in line 05 
is the observed data in Table 13.1. Lines 07-11 are the statement GLM 
to perform the analysis. In line 09, jt| and X2 are placed on the left-hand 
side of equitation to indicate that it is a multi-variate model; the option 
NOUNI instructs the program not to display univariate ANOVA results on 
the response variables jtq and X2 separately. Line 10 instructs SAS to test 
whether the population mean vector is equal to zero. LSMEANS in line 11 
asks the computer to display the mean, standard error and P value for testing 
whether the population mean is zero. Lines 12 and 13 perform the procedure

Program 13.1 Test for a zero mean vector.

Line Program Line Program

01 DATA НОТЕ; 08 CLASS C;
02 INPUT XI X2 @@; 09 MODEL XI X2=C/NOUNI;
03 C = l; 10 MANOVA H = INTERCEPT;
04 CARDS; 11 LSMEANS C/STDERR PDIFF;
05 16-4 21 46 57 -40-20 107 17 86 12 PROC CORR COV OUTP=A;
06 * 13 VAR XI X2;
07 PROC GLM; 14 PROC PRINT; RUN;
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Table 13.7 Result of MANOVA.

Statistic Value F Num D F Den D F Pr> F

Wilks’ Lambda 0.131278 9.9261 2 3 0.0476
Pillai’s Trace 0.868722 9.9261 2 3 0.0476
Hotelling-lawley Trace 6.617427 9.9261 2 3 0.0476
Roy’s Greatest Root 6.617427 9.9261 2 3 0.0476

Table 13.8 Result of t tests of univariate xj and X 2-

*1
LSMEAN

Std Err 
LSMEAN

P r>  |t|
H0:LSMEAN=0

*2
LSMEAN

Std Err 
LSMEAN

P r > | / |
H0:LSMEAN=0

18.2 12.2040977 0.2101 39 27.3605555 0.2272

Table 13.9 Basic multi-variate statistics.

OBS _TYPE_ _NAME_ X \ *2

1 COV *1 744.70 -1401.25
2 COV *2 -1401.25 3743.00
3 MEAN 18.20 39.00
4 STD 27.29 61.18
5 N 5 5
6 CORR *1 1 -0 .84
7 CORR *2 -0 .84 1

CORR to produce multi-variate statistics such as mean vectors, covariance 
matrix and correlation matrix of X,- and Хь introduced in Sec. 13.1. The 
main results are showed in Tables 13.7, 13.8 and 13.9.

Experiment 13.2 Testing the difference of mean vectors of multi-group 
observations Program 13.2 is used to infer the statistical difference of 
mean vectors of G (>2) groups. The value of F is defined in Eq. (13.15) 
and Table 13.6 is also derived from transformations mentioned in Experi
ment 13.1. AREA, H, W and В in line 02 represent the grouping variable 
area as well as the variables to be investigated, namely, body height, weight 
and chest circumference. Lines 04-14 show the observed data. Lines 16- 
19 perform the test of mean vectors between the rural and the urban. Line
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Program 13.2 Test for mean vectors of multi-groups.

Line Program Line Program

01 DATA GROWTH; 13 T 169 56 75.0 T 164 55 72.0
02 INPUT AREA$H W B  @@; 14 T 169 69 80.0 T 171 56 81.0
03 CARDS; 15 \

04 R 163 51 70.0 R 159 50 71.0 16 PROC GLM; CLASS AREA;
05 R 162 51 72.0 R 161 62 75.0 17 MODEL H W B=AREA/NOUNI;
06 R 170 57 81.5 R 164 55 74.0 18 MANOVA H=AREA/PR1NTE PRINTH;
07 R 168 57 77.0 R 175 52 88.0 19 LSMEANS AREA/STDERR PDIFF;
08 R 166 54 76.0 R 157 43 69.0 20 PROC SORT; BY AREA;
09 R 170 59 73.0 R 167 57 78.0 21 PROC CORR COV OUTP=A;
10 T 165 65 71.5 T 167 60 74.5 22 VAR H W B; BY AREA;
11 T 166 58 79.0 T 174 52 75.0 23 PROC PRINT; RUN;
12 T 178 66 87.0 T 163 55 69.2

18 represents the test of mean vectors between subjects of individuals in 
different areas by MANOVA, with the options of PR1NTE and PRINTH 
requiring the display of vector H and E respectively. When there are more 
than three treatment groups, the statement LSMEANS in line 19 provides 
the results of comparisons among the means of all treatment groups and zero,

Table 13.10 Results of MANOVA (extract).

Statistic Value F Num D F Den D F Pr > F

Wilks’ Lambda 0.66146388 3.07 3 18 0.0542

Table 13.11 Results of uni-variate analysis and multiple comparison (from statement 
LSMEANS).

VAR AREA LSMEAN
Std Err 

LSMEAN
p r > m

H0:LSMEAN=0

Pr > IГ | 
H0:LSMEAN1 
=LSMEAN2

H R 165.166667 1.431879 <0.0001 0.1216
T 168.600000 1.568545 <0.0001

W R 54.0000000 1.5297059 <0.0001 0.0329
T 59.2000000 1.6757088 <0.0001

H R 75.3750000 1.5418313 <0.0001 0.6526
T 76.4200000 1.6889916 <0.0001
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Table 13.12 General statistics (from procedure CORR).

AREA _TYPE_ _NAME_ H W В

R COV H 26.69697 11.72727 23.34091
R COV w 11.72727 25.09091 9.409091
R COV в 23.34091 9.409091 28.59659
R MEAN 165.1667 54 75.375
R STD 5.166911 5.009083 5.347578
R N 12 12 12
R CORR H 1 0.453114 0.844753
R CORR w 0.453114 1 0.351263
R CORR в 0.844753 0.351263 1
T COV H 22.04444 4.866667 19.83111
T COV w 4.866667 31.73333 13.65111
T COV в 19.83111 13.65111 28.44178
T MEAN 168.6 59.2 76.42
T STD 4.695151 5.633235 5.333083
T N 10 10 10
T CORR H 1 0.184003 0.791989
T CORR w 0.184003 1 0.454393
T CORR в 0.791989 0.454393 1

and all pairwise comparisons with exact P values displayed. There are only 
two groups in this example so that this statement will give the results of two t 
tests, showed in Tables 13.10 and 13.11. In order to acquire the correspond
ing mean vector, covariance and correlation matrixes of each group, sort 
the observations by SORT statement in advance and then obtain the general 
multi-variate statistics illustrated in Sec. 13.1 by applying procedure CORR 
in lines 21-23. The mean vectors, covariance matrix and correlation matrix 
of H, W, В of each area group are showed in Table 13.12.

13.5 Practice and Experiments

1. Analyze the laboratory results on ferrohemoglobin and RBC of patients 
with anemia presented in Table 13.13 (from Shi Bingzhang, Yang Qi, Med
ical Multi-variate Analysis, People’s Medical Publishing House, 1990).

(1) Compute multi-variate statistics for each patient group A, В and C, and 
make brief descriptions about the differences among the groups and the 
relationships among response variables.



Measures of Multi-variate Data and Multi-variate Analysis of Variance 401

Table 13.13 Ferrohemoglobin and RBC of patients with anemia.

Group A  (n i =  12) Group В  (n 2 =  10) Group С  («з =  8)

ferrohemoglobin
(g/L)

RBC
(1012/L)

ferrohemoglobin
(g/L)

RBC
(1012/L)

ferrohemoglobin
(g/L)

RBC
(1012/L)

39 2.1 48 2.7 44 2.5
42 1.9 47 1.8 37 3.0
37 2.4 54 2.3 29 2.4
40 1.7 45 2.4 45 3.3
44 2.2 46 2.7 33 2.3
52 2.3 44 2.2 45 1.9
27 1.6 59 2.9 38 2.7
24 2.6 55 2.2 37 3.1
36 2.4 43 2.9
55 1.8 51 3.1
29 2.0
33 3.0

(2) Infer the difference among patient groups with MANOVA.

2. Test the difference among the treatment effects of the three groups of 
patients in Example 13.4 by modifying procedure 13.2. If the statement in 
line 19 of program 13.2 is replaced by MANOVA H =  A/PRINTE PRINTH 
(note: A is the name of the variable defined by your self), SAS will pro
vide the within group (error) sum of squares matrix E  and between groups 
(treatment effect) sum of squares matrix H. Compare this output with that 
in Table 13.5, think and discuss the similarities and differences between 
ANOVA and MANOVA.

3. Analyze the laboratory results on the improvement of immune globulin 
after treatment of thymosin presented in Table 13.14 (from Shi Bingzhang, 
Yang Qi, and Medical Multi-variate Analysis. The People’s Health Press, 
1990).

(1) Use univariate procedures to test the improvement after treatment on 
IgG, IgA and IgM respectively.

(2) Are there any disadvantages or weaknesses if this data are analyzed by 
univariate statistics?

(3) Consider the three measurements of each patient as a vector, calculate 
the mean vector and covariance matrix.
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Table 13.14 Improvement of immune globulin after 
treatment of thymosin.

No.of patient IgG (g/L) IgA (g/L) IgM (g/L)

1 -1 .56 -5 0 0 -490
2 -1 .76 -5 0 -140
3 -0.63 -120 -210
4 -1.28 -7 0 0 90
5 0.07 150 -1 8 0
6 -1 .42 -620 190
7 -1 .04 740 -240
8 -1.95 110 -4 0
9 -4 .20 -5 4 0 160

10 -2 .36 -600 -3 8 0
11 -2 .14 -880 -220
12 -1 .39 110 -220
13 -0.71 90 110
14 -1 .56 -310 -4 0
15 -0 .49 -5 0 -2 0 0

(4) Infer the effect of thymosin in improving immune globulin with 
Hotelling T2 test.

(1st edn. Yongyong Xu, Jiqian Fang, Danhong Liu; 2nd edn. Yongyong Xu, 
Danhong Liu)



C h a p te r  14

Discriminant Analysis

Discriminant analysis is a technique for classifying subjects into differ
ent groups according to the measured covariates. In clinical research, doc
tors make differential diagnosis based on the symptoms, laboratory results, 
pathological tests, and imaging reports. Sometimes, doctors want to further 
classify a patient into different subtypes or disease stages. All these prob
lems can be resolved using discriminant analysis. In addition, a discriminant 
analysis can estimate relative contributions of covariates.

14.1 Basic Ideas of Discriminant Analysis

In the next section, we will use an example to illustrate the basic idea of 
discriminant analysis. We will use microspectrofluorophotometry to ana
lyze cells from subjects with cancerous tumor and control subjects with 
no cancerous tumor. For each subject, we have three measures: the
score of triploids, X 2 the score of octalpoids, and X3 the score of ane- 
uploids. Based on observed data (or a training sample), a discriminant 
function Y =  X\ +  10X2 +  ЮХ3 is developed. For a subject with values 
of (Xi, X2, X3), we can substitute these values to derive the corresponding 
values of discriminant function Y. If Y > 100, the subject is classified as 
cancer subject; otherwise, for Y < 100, the subject is classified as no cancer
ous tumor. This discriminant function and the corresponding decision rule 
need to be further validated based on another real data. When the accuracy 
of the decision rule meets the clinical requirements after validation, it can 
be used in clinical practice.

403
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Table 14.1 Data structure of training data.

Subject
Id

Explanatory variables
Classification 
variables (У)*2 . . .  Xj  . . . X p

1 *11 *12 . . .  X\j  . . . *1 p *1
2 *21 *22 . . .  x 2j . . . *2 p *2

i * il *i2 . . .  x u Xip Yi

n *nl *n2 . . .  x nj . . . Xnp Yn

In discriminant analysis a discriminant function is used to discriminate 
subjects. A training sample is used to establish such a discriminant func
tion. The goal of the discriminant analysis is to identify and evaluate per
formances of different and possible discriminant functions in the training 
sample. Thus, the quality and the size of the training sample are critical to 
establish useful discriminant rules. The classification of each subject in the 
training sample should be known according to the “gold standard.” Multiple 
explanatory variables, denoted as variables X ,, X2, . . . ,  Xp, that are related 
by chance into different classes are collected. These variables have to be 
measured accurately and the number of subjects should be sufficiently large.

Table 14.1 gives the data structure of a training sample with Y indicating 
the classes from 1 , 2 , . . . ,  g; and Xj, X2, . . . ,  Xp, as explanatory variables. 
We use the subscript i to indicate data from the ith subjects.

Several discriminant analysis methods are available. The common ones 
are the following:

(1) Maximum likelihood method: This method evaluates the likelihood of 
being in each group among possible choices. It is suitable for parametric 
and semi-parametric models.

(2) Fisher’s discriminant method: This method is commonly used to dis
criminate two groups. In the example of Table 14.1 Fisher’s discriminant 
method is used.

(3) Bayesian discriminant method: This method required multivariate nor
mal distributions of explanatory variables and is used to discriminate 
two or more groups.

(4) Logistic discriminant method: This method is commonly used to 
discriminate two groups. It does not require normal distribution
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assumptions. Instead of modeling the chance of falling into one of the 
two groups, this method can also be used for ordinal or binary explana
tory variables.

This chapter focuses on the introduction of Fisher’s and Bayes discrim
inant methods, two most widely used methods.

14.2 Fisher’s Discriminant Analysis

Let us assume that there are two explanatory variables: X \ (temperature) 
and X2 (protoheme counts) that are used to discriminate two diseases A 
and B. In Fig. 14.1(a), each point represents a subject. If we compare the 
temperature between two disease types, the difference is minimal. Similarly, 
minimal difference is observed in protoheme counts. However, combining 
two variables makes it relatively easy to separate the two groups. If we can 
project our observations to a direction that the projected values can easily 
separate the two groups, we can use the projected values to make decisions. 
For a new subject, we can based on the projection of the temperature and 
protoheme counts to determine the disease status of the subject. What is the 
best projection direction? If we use the principle of the analysis of variance, 
we want to maximize the ratio of the between-class variation to the within- 
class variation. This is the basic idea of Fisher’s discriminant function.

14.2.1 D iscrim ination  o f  two grou ps

Suppose that we want to separate populations k \ and ni- We assume 
the covariance matrices of explanatory variables are the same for the

z
(a) (b)

Fig. 14.1 A sketch map for Fisher disriminant analysis (a) two-dimensional scatter plot: 
less overlap along the direction, (b) the distribution of Z and the cutoff point.
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populations к i and k2- We randomly select individuals, several from each 
population, as the training sample. Fisher (1936) proposed to use coeffi
cients a\, a2, . . . ,  ap to construct a score Z:

Z — ci\ X] +  CI2 X 2 +  • • • +  QpXp  (14.1)

which maximizes the distance between mean scores of the two groups,

r,2 ( Z ,  -  Z 2) 2

s2
(14.2)

Here, Z\ and Z2 are sample means of Z from two populations and S | is 
the pooled estimation of sample variances. D2 is also called Mahalanobis 
distance.

Once we find coefficients a\ ,a2, . . . ,  ap that maximize D2, the corre
sponding function Z in (14.1) is called discriminant function. The coeffi
cients are called discriminant coefficients. The discriminant function is the 
weighted average of all explanatory variables with the weight of discrimi
nant coefficients, which maximally separate the two groups. Thus, multiple 
explanatory variables are reduced into a univariate function Z.

Classifying a subject into one of the two groups from a univariate func
tion Z is not difficult. We only need to determine a threshold value C, such 
that all subjects with Z < C are classified as one group and subjects with 
Z > C are in another group.

To determine the threshold C, we can use the histograms of Z from two 
populations (Fig. 14.1(b)). Depending on clinical problems, we can decide 
the threshold with corresponding false classification probabilities, a and (3, 
in Fig. 14.1(b). For example, if we take benign tumors as A and malignant 
tumors as B, the probability of false classification for disease A, a could be 
relatively larger and the probability of false classification rate for disease B, 
P, should be small. On the other hand, if the consequences of misclassifying 
disease A to disease В is comparable to misclassifying disease В into A, a 
and P can be equal.

14.2.2 D iscrim ination  o f  m ultip le grou ps

When we have more than two groups, we are still looking for a linear com
bination of explanatory variables such that overlaps of projected values 
from these groups are minimized. The overlap is measured by the ratio of
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between group variance over the within group variance. When the number 
of explanatory variables is more than the number of groups, i.e. P > g, 
there are g — 1 discriminant functions. Similar to two groups situation, 
these discriminant functions only provide discriminant scores, not the dis
criminant rules. We have to determine the classification rules according to 
clinical properties of these groups. As it is easier for multiple groups to 
overlap with each other, discriminant analysis of multiple groups is usually 
less efficient than the classification of the two groups.

14.3 Bayesian Discriminant Analysis

14.3.1 B ayesian  criterion

Assume that there are g populations к\, K2 , . . . ,  ng and the explanatory 
variables in each population, X\,  X 2 , . . . ,  X p follow multivariate normal 
distributions. For each subject with observations of p  variables, we want to 
determine which of g populations the subject belongs to.

When we make a classification decision, we inevitably make errors of 
misclassification. Let the probability of misclassifying a subject in class i 
into class j  as P(i \ j )  and the loss due to the misclassification as C(j\i).  
The Bayesian criterion is to minimize the expected misclassification loss. 
The discriminant rule based on this criterion is the Bayesian discriminant 
analysis.

14.3.2 C lassification  fu n ction

The Bayesian classification function is as follows:

Y\ — Сю +  СцХ] +  C12X2 +  • ■ ■ +  C\pXp,
T2 =  C20 +  C i \ X \  +  C22X2  +  • • • +  C 2p X P,

(14.3)

Yg =  C go +  C g]X\ +  Cg2 ^ 2  +  • • • +  CgpXp.

There exist g linear equations with each linear equation for one of the 
populations. Here, Cj0, C j \ , . . . ,  Cjp(j  =  1 , 2 , . . . ,  g) are the parameters 
to be estimated and Yj is positively related to the probability of being in 
the jth  population. SAS procedure DISCRIM can estimate these coeffi
cients. After classification functions are established, the discriminant rules
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are developed by substituting the observed values of explanatory variables 
into Eq. (14.3). A subject is classified into population /  that gives the largest 
У value.

14.3.3 P rior p robab ility

A prior probability of the subpopulation У,, <7(Ei), is the probability of 
randomly selecting a sample of y'th subpopulation from the whole pop
ulation. For example, of all patients of appendicitis, 50% are contiguity, 
30% are abscess, 10% are gangrene, and 10% are peritonitis. Therefore, if 
we randomly select a patient with appendicitis, the probability of a patient 
from these four types are about 0.5, 0.3, 0.1, and 0.1, respectively. Classi
fication function (14.3) did not consider the prior probability. When these 
prior probabilities are considered, the classification functions become the 
following:

Y\ =  Сю +  C\\X\  +  C12X2 +  • • • +  C\pXP +  1п(д(У))),
У2 =  C20 +  C2 \X\ +  C2 2X 2 +  • • • +  C2pXp +  1п(<7(Уг)),

(14.4)

Yg =  C g0 +  C g\X[ +  Cg 2X2 +  ■ ■ ■ +  CgpXp +  ln(^(y^,)).

The only differences between (14.3) and (14.4) are the additions of 
1п(<7(У,)).

By including the prior probabilities, the sensitivity of discriminant anal
ysis can be improved. However, the prior probability is often unknown and 
difficult to estimate. If the training samples are randomly selected from the 
whole population, instead of stratified samples from each subpopulation, 
we can use the observed frequency of the subpopulation of Yj, Q(Y,), to 
estimate the prior probability of q(Yj). When there is no information about 
prior probability and the frequencies of subpopulations Q(Y,) cannot be 
used to estimate q(Yj),  a conservative approach is to set equal prior, i.e. to 
set q(Yj) =  1 /g.

14.3.4 P osterior p robab ility

A posterior probability of a sample is the probability of a sample belong
ing to subpopulation Yj after observing values .S, of the explanatory vari
ables Xj. It is often denoted as P  (У,-1S1, .S2, . . . ,  Sp).
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Once we observed the explanatory variables X\ , X2, .. ■, Xp of a sam
ple, we can calculate the posterior probability for subpopulation Yj. Thus, 
we have a quantitative indicator about how likely the sample belongs to a 
specific subpopulation. By substituting observed values S2, .. ■, Sp into 
classification function (14.4), we can calculate Y\, Y2, • • •, Yg. The posterior 
probabilities are calculated using the following formulas:

exp(Fj)
P (ls t|S b S2, . . . ,  Sp) = Ej=i exp (Yj) 

exp (T2)
P(2nd|Sb S2 , . . . ,  s p =

E j= 1 exp (Yj) (14.5)

p , IC c о \ _ exp(Tg)
P(gt  1 2’ • • • ’ P) Ц =1ехр(Т7) '

When Yj is too small or too large, we may experience numerical floating 
errors. To avoid this problem, we can add or substract a constant from all 
Yj’s. For example, by subtracting Y* =  max(Ti, Y2, , Yg) and recalcu
lating the posterior probability, the equations in (14.5) become

P(;'th|5i, S2 , . . . , S P)
exp (Yj -  Y*) 

E5=i exp (Yj -  Y*)
j  =  1,2, . . . , g .  (14.6)

Classification of a sample based only on the values of posterior prob
abilities is insufficient. For example, when the posterior probabilities of a 
sample from three subpopulations are 0.95, 0.03, and 0.02 respectively, the 
confidence of classifying the sample to subpopulation 1 is reasonably higher. 
Flowever, when the posterior probabilities are 0.4,0.3, and 0.3, respectively, 
the confidence of classifying the sample to subpopulation 1 is low. In clin
ical diagnosis for samples with questionable confidence, we can assign the 
samples as to be determined. The PROC DISCRIM procedure in SAS can 
define a threshold of posterior probabilities. When the highest posterior 
probability is above the threshold, we can make classification decisions. 
Otherwise, the sample will be classified as others for further determination.

Example 14.1 To study the retinopathy severity (mild, moderate, and 
severe) among diabetic patients, researchers collected patients age (age),
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disease duration in years (time), glucose level, vision, the peak time (at) 
and the amplitude (av) of a-wave, the peak time (bt) and amplitude (bv) 
of b-wave, and the peak time (qpt) and amplitude (qpt) of qp-wave from 
an electro-retinography. The goal of the study was to use these variables to 
establish a three-level severity index of retinopathy. A total of 131 diabetic 
patients were examined. The inclusion criteria include no previous diag
nosed eye diseases other than retinopathy due to diabetes. The data was 
given in Appendix III. The severity of retinopathy was named as “group”. 
We used this group of 131 patients as training sample to discriminate sever
ity groups according to age, vision, at, bt, and qpv. The question is for 
Mr. Smith, who is 38 years old with vision of 1.0, a t=  14.25, bv =  383.39, 
and qpv =  43.18, which is his most likely severity group?

Solution Suppose the 131 patients were random samples from the target 
population: diabetic patients with retinopathy. As random samples can be 
used to approximate the population, we can estimate the prior probability. 
Using PROC DISCRIM procedure of SAS package, we have the following 
classification function:

Yi =  —181.447 +  0.473(age) +  60.369(vision)

+  17.708(at) +  0.048(bv) +  0.364(qpv),

Y2 =  -165.830 +  0.472(age) +  49.782(vision)

+  17.658(at) +  0.034(bv) +  0.325(qpv),

Y2 =  -189.228 +  0.178(age) +43.974(vision)

+  20.447(at) +  0.040(bv) +  0.265(qpv).

According to the observed measures of Mr. Smith, the classification 
functions are Y\ =  183.36, Y2 =  180.58, and Y3 — 179.66. Yx is the largest 
among the three. Thus, we will place Mr. Smith into the mild severity 
group.

Although the values of Tb Y2 and T3 are quite similar, a decision based 
only on the values of classification functions ignores the relative differences 
between these values. Estimation of the posterior probability will provide 
a better picture of his classification. In order to avoid numerical problem in 
computation, we let Y* =  180. The posterior probability can be calculated



Discriminant Analysis 411

as follows:

F(lst |Xb X2, . . . , X 5)
exp(183.36 — 180)

“  exp( 183.36 -  180) +  exp( 180.58 -  180) +  exp( 179.66 -  180) 
=  0.9202.

Similarly,

P(2n&\X{ X2, . . . ,  Xs) =  0.0571,

P(3rd|Xi,X2, . . . , X 5) =  0.0227.

Thus, we can confidently assign Mr. Smith to the mild diseased group.

14.4 Stepwise Discriminant Function

The multiple regression analysis already taught us that the increased num
ber of independent variables in a regression equation does not necessary 
corresponding to a better model. Insignificant variables will not help in 
explaining the dependent variable but rather introducing more noise to the 
model. Similarly, in a discriminant analysis, it is not always true that the 
more variables there are, the better the discriminant function is. On the con
trary, we want to avoid explanatory variables that make minimum contribu
tions and keep only those explanatory variables that can address the most 
differences between groups. Similar to the stepwise regression, stepwise 
discriminant analysis is likely to select significant explanatory variables 
into the model and keep insignificant variables away from the final dis
criminant model. The level of importance of an explanatory variable can 
be tested using an F-test. The null hypothesis of this test is that the con
tribution of this variable to explained variations between groups is zero. 
A small F-value will reject the null hypothesis and suggest that the variable 
contributes significantly to account for the differences between groups. In 
Example 14.1, we have ten variables. Their F-statistics and F-value of the 
F-test is given in Table 14.2.

If we use the significance level of 0.05, six of the ten variables have 
P-values above this. Therefore, we should use stepwise procedure to deter
mine which variables are necessary for discriminant analysis.
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Table 14.2 C o n trib u tio n  o f  ten  variab le s  in  th e  d isc rim in an t analysis.

V ariab les F -s ta tis tic s P -v a lu e s

A ge 2 5 .338 0.0001
D u ra tio n  o f  d iseases  (year) 1.211 0 .3 0 1 6
G lu co se 1.255 0 .2 8 8 9
V ision 4 5 .9 5 6 0.0001
at 2 0 .3 1 0 0.0001
av 0 .2 1 9 0 .8 0 3 7
bt 0 .9 5 0 0 .3 8 9 8
bv 6 .0 1 2 0 .0 0 3 3
qpt 0.971 0 .3 8 1 8
qpv 1.989 0 .1 4 1 4

PROC STEPDISC in S AS can perform stepwise selection of explanatory 
variables. Its step and procedure are similar to stepwise regression. First, 
we need to select the significance level to select and remove variables (i.e. 
type I error level), denoted as P\ for the selection and P2 for the removal. 
P\ and P2 can be equal or different, such as 0.05, 0.1, or 0.15. In a case 
that P\ and P2 are different. P\ is usually smaller than P2. The smaller P\ 
is, the fewer variables are included into the discriminant function. Further, 
the selection of inclusion variables is also step by step. In each step, we 
always select the variable of the smallest P-value that is smaller than P\. 
When a new variable is included, we will revisit the discriminant function to 
examine the significance of all variables already in the model. If one or more 
variables have P-values greater than P2, these variables will be removed 
from the discriminant function. When there are no more variables to enter 
and no more variables to remove, the stepwise procedure is complete and 
the final stepwise function is derived.

Example 14.2 Using training samples in Example 14.1 to run the PROC 
STEPDISC of SAS, we have five variables retained in discriminant function 
using both P\ and P2 as 0.05. The results are summarized in Table 14.3.

From Table 14.3, the five variables: age, vision, at, bv, and qpv were 
significant variables for discriminant purpose. After the inclusion of age, 
the other five variables had no significant contributions and therefore, were 
excluded from the discriminant function. Finally, we can use SAS procedure



Discriminant Analysis 413

Table 14.3 R esu lts  o f  s tep w ise  d isc rim in an t func tion .

In c lu d ed  in d isc rim in an t fu n c tio n  E x clu d ed  in d isc rim in an t fu n c tio n

V ariables F -va lue P -value V ariab les F -va lue P -value

A ge 2 8 .8 1 8 0.0001 D ura tion 0.891 0 .4127
V ision 46.491 0.0001 G lucose 0 .793 0 .4548
at 2 4 .9 6 4 0.0001 av 0 .397 0 .6730
bv 9 .387 0 .0002 bt 0.421 0 .6 5 7 2
qpv 3 .829 0 .0243 qvt 1.016 0 .3 6 4 9

DISCRIM to recalculate classification functions using age, at, bv, and qpv 
(Example 14.1).

14.5 Decision Tree

Decision tree-based method is a kind of nonlinear discriminant analysis. 
With a set of partition rules, the probability distribution of all possible out
comes is expressed by a decision tree, in order to predict or classify the 
individuals’ categories as accurate as possible. The main applications of 
decision tree in the medical field throughout medical diagnosis to resource 
allocation and much wider with the rapid development of information 
technology.

14.5.1 B asic idea o f  decision  tree approach

Before introducing the methods of decision tree, let us have the definition 
of a “Tree” first. A tree is a nonempty set of nodes, which consists of three 
kinds: root nodes, internal nodes and leaf nodes (also called terminal nodes). 
Root node is the top node of a tree, and each internal node represents an 
attribute, while each branch corresponds to one output of the attribute and 
each leaf node represents one category.

Numbers of layers for a decision tree are diverse under different circum
stances. Generally, one decision tree has only one root node, which can be 
considered as an internal node or a parent node. One parent node will be 
divided into two daughter nodes, which are called left daughter node and 
right daughter node, respectively. Figure 14.2 is an example of tree includ
ing four layers: three internal nodes (including the root node) with label 1,
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3, 5 (circled) and four terminal nodes with label 2, 4, 6 , 7 (square). Each 
internal node is connected with its own daughter nodes, and so terminal 
nodes have no offspring (means daughter node). Besides, a tree diagram 
might be asymmetric because a daughter node may be internal node or ter
minal node. See Fig. 14.2, node 2 is a terminal node while node 3 is internal 
nodes, both of them are the daughter nodes of node 1. It depends on the 
splitting rule to divide parent node into two daughter nodes accurately.

Fundamental principle of decision tree method: Start from a root note to 
construct each layer of a tree by a top-down splitting rules. Firstly, the 
observed sample (training sample) will be divided into several disjoint 
subset based on a cutoff of one attribute which has highest information 
gain. All subjects in each subset have the similar attribute values in the 
selected attribute, and each subset represents one daughter node for the 
tree. Secondly, select new attribute to divide each daughter node into sec
ondary daughter nodes, and repeat this process for each subtree until the 
specified criterion is fulfilled that each terminal node represents one cate
gory. The path from the node of the attribute to each daughter node cor
responds to the relationship between each testing node and each specific 
category.

There are many kinds of classification rule for decision tree method. 
Based on the functions, decision tree can be divided into survival tree, 
classification tree and regression tree; while based on the numbers of cate
gories, there are binomial classification tree and multinomial classification 
tree. Due to the characteristics of readability and popularity for binomial 
classification tree, and one can obtain multinomial classification tree by 
repeating binomial classification tree. This chapter will mainly focus on 
binomial classification tree, non-terminal nodes fot the binomial classifica
tion are only allowed to have two daughter nodes.
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14.5.2 C lassification a n d  regression  tree (CRT)

Although the process of constructing a classification tree is complex, there 
are generally three major issues needed to solve: 1) What are the nodes? 
That means to determine the root node, internal nodes and erminal nodes of 
a tree. 2) How to divide the nodes? That is how to use the training sample 
to construct a tree from the root node. 3) How to stop a tree growing, which 
means how to select a best tree based on a training sample.

14.5.2.1 The growth of the tree (Splitting Rule)

A tree starts growing from divided a root node into two daughter nodes, and 
then the daughter nodes are divided into sub-daughter nodes using the same 
rule, and iterate this process to grow the tree. The variation of variables 
used to split sample in each internal nodes will be smaller than those corre
sponding parent nodes. The independent variables have different splitting 
methods when there are more than one variable, so evaluation criterion are 
essential to judge the purity of the node and then make best decision. For 
ordinal variables, there are (к — 1) methods to divide the variable, where 
к denotes the number of the possible values. For binomial data, there is 
only one decision method. But for categorical data with к levels, 2k — 1 — 1 
methods are available. For example, seven decision methods are available 
for ABO blood types. The results are shown in Table 14.4.

The decision tree is called classification tree when the outcome vari
ables are categorical variables. Three splitting rules can be applied, entropy 
method, Gini index method and Pearson chi-square test. The following

Table 14.4 A ll p o ss ib le  d ec is io n  m eth o d s 
fo r  b lo o d  type.

L e ft d a u g h te r  nodes R ig h t d a u g h te r  nodes

A B, A B , О
В A , A B , 0

AB А , В, 0
A , В A B , 0

A , AB B , 0
B , AB A , 0

A , B, A B О
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T a b le  14 .5  C ro ss  c la ss ifica tio n  tab le  o f  th e  n odes and  d ep en d en t variab le .

D a u g h te r  node C u to ff  value N O Y E S A ll

L eft d a u g h te r  node U i ) Xj  K  C n  11 «12 « 1 .
R ig h t d a u g h te r no d e  (tR) X j > c «21 «22 « 2 .

P a ren t node (f) — « .1 n %2 « . .

example is applied to explain algorithm of these three approaches. Let c 
denotes the cuttoff point of a continuous variable x, and dependent vari
able у is a binomial variable (0 =  NO, 1 =  YES). The results are shown in 
Table 14.5.

a) Entropy reduction
The entropy impurity for left daughter nodes is defined as

E(tL) =  log
« 1.

« 11 
Ли

«12

Ли
log «12

«1.
(14.7)

While the entropy impurity for right daughter nodes and parent nodes 
are calculated by

. «21  . / « 2 1  \ « 2 2  . / « 2 2  E{tR) = ------ log — -------- log —
« 2. \ « 2. /  « 2. \ « 2.

E(t) =  log )  -  —  log ( —
« .. \ « . . /  « .. \«M

then we can get the reduction of entropy by Eq. (14.9).

Д E(t) =  E(t) -  P(tL)E{tL) -  P{tR)E(tR),

(14.8)

(14.9)

where

P(tL) =  — , P{tR) =  —
« .. « ..

represent the probability of tL and tR, respectively. The entropy reduction 
Д E(t) is an index of goodness of split (also called Information Gain), which 
represents that the degree to which impurity is reduced due to dividing the 
parent node into two daughter nodes. Usually we choose the cutoff point of 
the variable with the largest entropy reduction. If the dependent variable has 
multiple levels, add corresponding category to the equation. For instance, if
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there are к levels for independent variable, and the ratios for each category 
is pi(i =  1 , 2 , ,  k), then

E(tL) =  - ^ 2  pi In ph (14.10)

b) Gini Impurity
The value of Gini index for a completely pure node is 0, and Gini index 

will approach 1 with the growing of the internal classification of a node. 
The larger reduction of Gini index, the better the decision is.

The Gini index for left daughter node is

G(tL) =  1 -

and for right daughter node and parent node is

G(tR) =  1 -  

G(t) =  1 -

The reduction of Gini index can be calculated with

(14.11)

(14.12)

A Gini =  G(t) -  P(tL)G(tL) -  P(tR)G(tR). (14.13)

If the dependent variable has multiple levels, add corresponding category 
to the equation. For instance, if there are к levels for independent variable, 
and the ratios for each category is pt {i =  1 , 2 , . . . ,  k), then

G(1l) =  1 - £ > , 2. 04.14)

c) Pearson chi-square test
The Pearson y 2can be calculated with Table 14.5, P value of y 2 test 

can be used as the criterion of classification. The smaller the P value, the 
better the fitness is.

When the response variable is numerical, the decision tree is named 
as regression tree. F test and variation reduction method can be used as a 
splitting rule (refer to related materials for more information).
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14.5.2.2 Pruning the tree

A root node is divided into some daughter nodes, and the daughter nodes 
are divided into sub-daughter nodes, repeating the process until the tree 
is full.

The daughter node becomes a terminal node when: (1) the daughter 
nodes cannot be divided because there is only one subject in each of the 
daughter nodes; (2 ) the nodes are pure.

One of the questions that arise in decision tree algorithm is the optimal 
size of the final tree. A full tree is too large to make reasonable statistical 
inference due to over fitting the training data and to generalize a new sample. 
So it is necessary to prune the constructed tree. Pruning is a technique that 
reduces the size of decision trees by removing sections of the tree that 
provide little power for classification.

A criterion should be set up before constructing a decision tree, and the 
splitting will stop when the criterion is met. There are several options, (1) set 
up an external limit on the number of levels in the maximal tree; (2) Limit 
a minimum number of individuals in nodes ( 1% of the total sample size or 
simples require at least five individuals in nodes); (3) make regulation on 
the tolerant threshold value of the impurity function.

First, we grow up a full tree, and then prune away the daughter nodes 
from the last level (i.e. the terminal nodes). There are lots of pruning meth
ods, according to the different methods, a number of child trees were gen
erated as candidates for the appropriately-fit final tree, which was chosen 
by comparing the qualities of those child trees. No matter the objective is 
classification or prediction, the quality of a tree depends on the terminal 
tree while internal nodes only work as the intermediate factors.

14.5.2.3 Cross validation

In cross validation, the training sample is randomly split into N (such as 10) 
subsets with same sample size. N — 1 subsets are combined to build a full 
tree. Then prune this full tree to generate several child-trees. And use the left 
subset sample to fit each child-tree and calculate the percentage of incorrect 
classification. Repeat this process for each subset sample and the child-tree 
with minimum or approximately percentage of incorrect classification will 
be the final decision tree.
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Example 14.3 Department of Obstetrics and Gynecology wants to build 
a classification tree to discriminate pregnancy outcomes based on the fac
tors including age and alcohol. The outcome variable has two levels: 
premature delivery or not. 42 pregnant women were recruited and the 
data were collected, including the outcome (0  =  non-premature delivery, 
1 =  premature delivery), two continuous covariates which are x\ for age 
(Yrs) and JC2 for alcohol intake (50 gram/day). The data are shown in 
Table 14.6.

Solution We select с =  1.5 as a cutoff point for independent variable л'2, 
and the classification result is shown in Table 14.7.

Table 14.6 Data on premature delivery and age, alcohol intake.

Age
(Yrs)

Alcohol intake 
(50 gram/day)

Premature
delivery

Age
(Yrs)

Alcohol intake 
(50 gram/day)

Premature
delivery

14 1.2 0 18 1.4 0
16 0.6 0 15 1.7 0
18 0.2 1 15 2.5 0
19 0.7 0 21 1.5 0
20 0.4 0 18 1.9 0
21 1.0 0 23 1.8 1
22 0.8 1 17 2.9 1
24 0.3 0 20 2.6 0
25 0.9 0 23 2.9 0
31 0.8 0 24 2.1 1
29 0.3 0 25 2.5 0
28 0.6 0 28 2.1 1
34 1.0 0 29 1.6 1
36 0.5 0 35 1.7 1
37 1.1 0 32 2.6 1
38 0.7 0 34 2.3 1
39 0.2 0 44 2.1 1
45 0.4 0 37 2.7 1
43 1.0 0 38 2.3 1
45 0.8 0 39 1.6 1
26 1.3 0 42 2.8 1

Notice: The data is adapted from S P S S  a n d  S ta tis tica l A n a ly s is , Chuan Hua Yu as 
the chief editor. Electronic Industry Press, Beijing, 2007.
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Table 14.7 Cross table of nodes and dependent variable.

Daughter nodes Conditions
Non-premature

delivery
Premature
delivery Total

Left daughter node ( t p) X2 < 1.5 20 2 22
Right daughter node ( t p ) x 2 > 1.5 7 13 20

Parent node (t ) — 27 15 42

According to Eqs. (14.7)—(14.9), we can get the entropy value and 
entropy reduction value:

„ 2 0 , /20
E(tL) = ----- In ( —

22 \22

7 / 7
E(tR) = ----- In —

20 V 20

2
22

13

E( t )
27 /27

—  In — 
42 1 42

-  —  In ( —  ) =  0.304636,

2 0 l n l i l=a647447-
15 /1 5 ',

-  —  In —  =  0.651757,42 42

AE(t) =  0.651757 -  

=  0.183877.

22
42

19
x 0.304636 -  I — ) x 0.647447

In this example, alcohol intake X2 is a continuous variable, whose range 
is 0.2-2.9 (50 gram/day), and there are 25 possible value, so there are 24 
possible cutoff points. Similarly, we can calculate the entropy reduction 
value, Gini reduction index and — In P value for each cutoff point. The 
result shows that the goodness-of-fit is the best with the largest entropy 
reduction value 0.183877 when alcohol intake X2 is 1.5 (50 gram/day), 
while the largest entropy reduction value is 0.031313 when age is equal to
26.5 years old. As the entropy reduction of alcohol intake is larger than that 
of age, alcohol intake is firstly selected as the independent variable to divide 
the root node into daughter nodes.

EM (enterprise miner) in SAS can help us to construct a proper decision 
tree. The procedures include Sample, Explore, Modify, Model, and Assess, 
which is denoted as SEMMA.

Example 14.4 EM program in SAS was used to analysis the training 
sample in Example 14.3, and the classification results is shown in Fig. 14.3.
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Fig. 14.3 Classification tree.

There are 27 (64.3%) non-premature delivery pregnant women and 15 
(35.7%) premature pregnant women in the root node. Based on the alcohol 
intake, if the alcohol intake *2 > 1 -5, then it is classified to Node 3; otherwise 
Node 2. The result shows that Node 2 is a pure node, so that no more splitting 
is needed; but in Node 3 there are 35.0% of non-premature delivery pregnant 
women and 65.5% of premature delivery pregnant women, so that more 
splitting is needed. If age x\ > 26.5, the pregnant women would be classify 
to Node 7; otherwise Node 6 . Here Node 7 is pure and Node 6 is up to our 
pre-set criterion. This tree has three layers.

Table 14.8 shows the cross table of actual observations and predic
tive outcomes. The last column indicates that 27 non-premature deliv
ery pregnant women were incorrectly classified to non-premature delivery 
group; ten premature delivery pregnant women were incorrectly classified
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Table 14.8 Outcome of predictive classification.

Predictive outcomes

Observed outcomes
Non-premature 
delivery group

Premature 
delivery group Total

Non-premature delivery group 27 0 27
Premature delivery group 5 10 15

Total 32 10 42

to premature delivery group. And the total incorrect classification rate is 
5/42=11.90%.

14.6 Retrospective and Prospective Validation

Once a discriminant function and a classification rule are established, we 
have to validate them. Validation is to apply this classification rule to all 
samples and calculate the false positive and negative rates, overall accu
racy, and the ROC curves. There are two types of validations, retrospective 
and prospective, depending on the selection of validation samples. Retro
spective validation is also called internal validation. It used the training 
samples to estimate the false positive rate, false negative rate and overall 
misclassification rate. However, such validation tends to underestimate the 
true errors. For practical use, prospective validation is necessary. We will 
use the rule in clinical applications only when we are satisfied with the 
performance of the classification for the prospective samples. Therefore, to 
establish a classification rule, we need both training samples and validation 
samples. Validation samples should also be classified according to the gold 
standard. They should be collected with care, including the quality assur
ance for the accuracy of data and large enough sample sizes. In clinical 
research, we can divide collected data into two groups, one for training and 
one for validation. Samples can be randomly selected into one of the two 
groups.

Besides calculating the error rates using prospective validation, we can 
use jackknife or cross-validation techniques to estimate the error rates. 
Suppose that we have n samples in our training data, we can take the first 
sample out and use the rest n -  1 samples to develop the classification
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rule. We then apply the classification rule to the first sample and determine 
whether we have the correct classifications. We then rotate the sample to be 
validated by the classification rule of the rest samples. These classification 
rules may be different because of the exclusion of different samples. After 
we exhaust all possible exclusion of samples, we can calculate the predic
tion errors based on the prediction of every sample. This method is the 
jackknife validation or leaving one out (LOO) validation. It approximates 
the prospective uses of the classification rule to new data.

Jackknife can still be conservative. If sample size is reasonable, we can 
group data into к subgroups. We then evaluate prediction results of one of the 
к groups based on the classification rule of the rest к — 1 groups. After altered 
all к groups as the predicted dataset, we can evaluate overall prediction 
errors. Usually к is in the range of 5 to 20, depending on the sample sizes. 
This method is called к-fold cross-validation method. It is usually a better 
approximation to prospective validation than jackknife validation.

Example 14.5 We examined the performance of the classification rule 
in Example 14.1 using three different approaches: retrospective validation, 
jackknife validation, and prospective validation using 31 newly collected 
samples. The results are given in Tables 14.9-14.11. Among them, the ret
rospective validation gave the most optimistic picture (lowest classification 
error), which demonstrated its potential bias of underestimating classifi
cation errors. The total error rates are similar, but the rates for individual 
groups are quite different between the jackknife and the prospective classi
fications. When sample size of training data is large enough, the difference 
between jackknife and prospective validations is negligible.

Table 14.9 Classification error from retrospective validation.

Classification by discriminant analysis _
Original ________________________________  Error
group 4 i 42 4 з Total rate (%)

A i 62 4 2 68 8.82
42 1 41 1 43 4.65
4з 1 0 19 20 5.02

Total 64 45 22 131 6.87
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Table 14.10 Classification error from jackknife validation.

Original
group

Classification by discriminant analysis

Total
Error 

rate (%)At A 2 A 3

M 60 6 2 68 11.76
a2 2 40 1 43 6.98
Аз 1 0 19 20 5.00

Total 63 46 22 131 9.16

Table 14.11 Classification error from prospective validation.

Original
group

Classification by discriminant analysis

Total
Error 

rate (%)At a 2 Аз

A i 14 1 0 15 6.67
a 2 1 9 1 11 18.18
A 3 0 0 5 5 0.00

Total 15 10 6 31 9.68

14.7 Considerations in Applications

14.7.1 The quality o f  tra in in g  data  is the key fo r  a g o o d  
discrim in an t analysis

The classification rule developed by a discriminant analysis can be trusted if 
the classifications of the training data are correct, the explanatory variables 
are appropriately selected, the values of explanatory variables are accu
rately measured, and the sample size of training data is large enough. Using 
inaccurate and unreliable information will inevitablly result in unreliable 
classification rules: Garbage in, garbage out!

14.7.2 The m ore groups, the less accurate o f  the classification  
ru les

When some variables good in separating two groups are included for dis
criminating more than two groups, the efficiency might decrease. At this 
time, we may want to perform multiple binary classifications conditioning
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on the previously used classification results. The recursive partitioning 
algorithm, also known as classification and regression tree (CART) tech
nique, uses the conditional consecutive binary classifications to discriminate 
multiple groups.

14.7.3 F ish er’s a n d  B ayesian d iscrim inations are the sam e  
f o r  tw o-class classification

For two-class discriminant analysis, we can derive a discriminant func
tion based on the difference between two Bayesian classification functions. 
When the difference is used, the Bayesian classification function is equiv
alent to the Fisher’s discriminant function.

14.7.4 D ecision  tree

The foothold of this method is to divide the parent node such as root node into 
two daughter nodes. Appropriate partition rules and optimal cutoff points 
can have certain influence on the effect of decision trees. Compared to the 
traditional methods, decision trees have definite merits in various aspects. 
On one hand, it can tackle all kinds of data and no particular requirements 
are made for the distribution of the data. On the other hand, the hierarchical 
structure of the decision tree is clear as variables are analyzed in the order 
of their relative importance. And simultaneously, the fitting effect of the 
tree can be evaluated. However, selecting the optimal decision index and 
the process of pruning the tree are so complicated that the application is 
relatively restricted.

14.7.5 P rospective validation

All classification rules developed through discriminant analysis should be 
validated prospectively before their use in clinical practice. Some researches 
failed to use the prospective validation because they cannot collect enough 
samples. Even though the retrospective validation shows good performance, 
the outcomes cannot guarantee their future performance. This is like testing 
students with problems that answers were given. Even though the students 
have the perfect results, it does not indicate that students know the materi
als well.
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14.8 Computerized Experiments

Data of 131 diabetic patients with measurements of 11 explanatory variables 
and the 31 diabetic patients for prospective validation are stored in the file 
EYE 1 .DAT and EYE2.DAT respectively in the Example 11 of Appendix IV. 
Using these two data files, you are asked to perform the following tasks.

Experiment 14.1 Conducting a stepwise discriminant analysis with both 
PI and P2 (entrance and staying significant levels) of 0.05.

Commands from line 01 to line 03 in Program 14.1 illustrates how to 
input data for training samples. Line 07 calls the SAS procedure PROC 
STEPDISC to analyze the EYE1 data. The method used to select variables 
is STEPWISE and significance levels of being selected into the model and 
of staying in the model are all 0.05. Line 08 lists all explanatory variables 
available to build the discriminant function. Line 09 specifies the variable 
of the classification using the gold standard. Line 10 tells computer to run 
the program. The results of this program should select five variables: age, 
vision, at, bv, and qpv.

Program 14.1 Stepwise discriminant analysis.

Line Program

01 DATA EYE 1;
02 INPUT AGE TIME GLUCOSE VISION AT AV ВТ BV QPT 

QPV GROUP $;
03 CARDS;
04 49 2 191 1.5 12.25 235.4 52.5 417.57 78.5 27.43 A1

05 60 1 134 0.4 15.5 393.64 54 541.13 76.5 17.96 A3
06 ;
07 PROC STEPDISC DATA=EYE I METHOD=STEPWISE 

SLENTRY=0.05 SLSTAY=0.05;
08 VAR AGE TIME GLUCOSE VISION AT AV ВТ BV QPT QPV;
09 CLASS GROUP;
10 RUN;

Experiment 14.2 Conducting a validation of the classification rule of
Experiment 14.1. Commands from line 01 to line 03 of Program 14.2 are
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used to input data and set up data file EYE2.DAT for validation samples. 
Data for training samples have been set up in Program 14.1. Line 04 calls the 
SAS procedure DISCRIM to perform discriminant analysis. In this proce
dure, we select DATA=EYE1, the training data, and TESTDATA=EYE2, 
the validation data. Option LIST requests the display of the retrospective 
validation results. Option CROSSLIST requests the display of jackknife 
results. Finally, option TESTLIST requests the display of prospective vali
dation results. If we are interested only in summary of the numbers of cor
rect and incorrect classifications, but not individual patient results, we can 
change the above options to LISTERR, CROSSLISTERR, and TESTLIS- 
TERR. If we are interested only in the false positive and false negative rates 
as well as the misclassification rate, we need only to call CROSSVALI- 
DATE to calculate these results of jackknife validation. Line 05 defines the 
class variable. Line 06 gives the list of explanatory variables to be used in 
the model. Line 07 submits the program.

Program 14.2 Validation of the classification rule.

Line Program

01 DATA EYE2;
02 INPUT AGE TIME GLUCOSE VISION AT AV ВТ BV QPT QPV GROUP $;
03 CARDS;
04 54 10 137 0.7 13.75 275.94 55.5 492.3 77.5 35.32 A1

05 52 18 296 0.5 15.25 258.36 51.25 439.06 80.5 7.89 A3
06 ;
07 PROC DISCRIM DATA=EYEI TESTDATA=EYE2 LIST CROSSLIST 

TESTLIST;
08 CLASS GROUP;
09 VAR AGE VISION AT BV QPV;
10 RUN;

Experiment 14.3 Classification tree building The data in Example 14.3 
is in Appendix V. Save the data in file A.DAT as training sample. First run 
program 14.3 to establish dataset A, and then use Enterprise Miner in SAS 
to build the classification tree (see Program 14.3).
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Program 14.3 Classification tree building 
(establish dataset).

Line Program

01 DATA A;
02 INPUT xl x2 y@@;
03 CARDS;
04 14 1.2 0 18 1.4 0
05 16 0.6 0 15 1.7 0
06
07 26 1.3 0 42 2.8 1

RUN;

Solution
analysis
enterprise miner
Open EM in SAS, establish the decision tree by running the module, the 

process is shown as follows:

TOE LA 

▼

In s ig h t

Data Set Data
A t t r i b u t e s  P a r t i t i o n

Assessment R epor te r

14.9 Practice and Experiments

1. Use the data in Example 14.1 (EYE1.DAT in Lab Experiment) to classify 
mild and severe patients.

(1) Using stepwise discriminant analysis to select significant explanatory 
variables (both PI and P2 are 0.05).

(2) Using the selected variables to develop two classification functions 
(using the ratio of sample size of two groups as the prior probability).
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(3) Assigning a patient into the group that has larger value of the classifi
cation functions. Using this rule to perform retrospective validation (or 
internal validation).

(4) Taking the differences between two classification functions to generate 
a new discriminant function. How to use the discriminant function to 
classify patients such that the results are the same as (c).

2. (Cont’d from 1) Define a dependent variable Y. When a patient has mild 
disease, set Y =  the number of mild patients/the number of mild and severe 
patients, or the proportion of mild patients among mild and severe patients. 
When a patient has severe disease, set Y =  the proportion of patients with 
severe disease among mild and severe patients.

(1) Using the stepwise regression procedure in the previous chapter to select 
significant variables in the regression equation (using proper thresh
olds for Fin and Fout). Compare the results with the above discriminant 
analysis.

(2) Compare the regression coefficients with the coefficients in the discrim
inant function. Are they similar or different?

3. Perform similar discriminant analysis as in Exercise 1 and stepwise 
regression analysis as in Exercise 2 for two groups of mild and moder
ate, and two groups of moderate and severe. Compare the results in Exam
ple 14.1 with all three two-group comparisons. Are they similar or different 
and how?

(1st edn. Ying Lu; 2nd edn. Jinxin Zhang, Jibin Ui, Jiqian Fang)





Chapter 15

Logistic Regression

Multiple regression is used to analyze the relationship of a dependent 
variable with several independent variables. The purposes of analysis 
include adjustment of confounding factors, selection of significant covari
ates related to the dependent variable and prediction of the value of 
dependent variable. In multiple linear regression, Y is a continuous ran
dom variable and it is usually required to have a normal distribution given 
the values of independent variables. In medical practice, people often need 
to deal with the situation in which the dependent variable only has two 
possible values, such as ill and healthy, death and alive, recover and not 
recover. In this situation, logistic regression is considered.

15.1 Logistic Regression Model

15.1.1 B asic con cep t o f  logistic regression  m odel

Example 15.1 (cross-sectional study) In a study of risk factors related to
emergency treatment of acute myocardial infarction (AMI), in five years 
200 AMI cases from a hospital were collected with their disease history 
and treatments recorded. Now define the dependent variable Y, Y =  0 
means success (i.e. survive) and Y =  1 means failure (i.e. death). Three 
risk factors were analyzed. They are X\ {X\ =  1 refers to shock before 
rescue and X\ =  0 otherwise), X2 (X2 =  1 refers to heart failure before 
rescue and X2 =  0 otherwise) and X3 (X3 =  1 refers to no treatment 
in 12 hours after AMI and X3 =  0 otherwise). The data of risk factors 
and treatment results were collected (see Table 15.1). By regarding the 200 
AMI cases as a random sample of all AMI cases, this study was subject to 
a cross-sectional study.

431
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Table 15.1 The outcomes and related risk factors of 200 AMI cases.

Y =  0 Y  = 1

X i X 2 *3 N X i *2 *3 N

0 0 0 35 0 0 0 4
0 0 1 34 0 0 1 10
0 1 0 17 0 1 0 4
0 1 1 19 0 1 1 15
1 0 0 17 1 0 0 6
1 0 1 6 1 0 1 9
1 1 0 6 1 1 0 6
1 1 1 6 1 1 1 6

The purpose of this study is to analyze the risk factors related to the failure 
of emergency treatment and to build up a model to predict the probability 
of failure, P. If a linear regression is used, the model will be

p  — Po +  P\X\ + P2X2 +  №

and the regression equation estimated by sample will be

P — b() -(- b\ X 1 T  b2X2 T  b2X2.

In the linear regression model, X U X2, X3 may take any values in 
the interval (—00 , 00) and the estimates of Po, Pi, P2 , Рз are not con
strained. Thus, there is no guarantee that the value of P should fall in 
the interval [0, 1]. But a probability cannot be bigger than 1 or less than 
0, if it is, the result cannot be explained in practice. In order to have a 
restricted range of [0, 1] for the probability P , it is suggested to employ a 
transformation (see Fig. 15.1)

Here P/(l  -  P) is so-called odds, the left side of (15.1) is the logarithm 
of odds, called “logit of P”. Then set up a linear regression model for W, 
that is,

W — Po + P iX  1 + P2X2 +  P3X3
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or

or

In ^ =  /?o +  P\Xi +  f i X 2 +  РъХ2 (15.2a)

logit(P) =  ySo +  /?i X| +  Д2Х2 +  /?з^з- (15.2b)

Here the log(odds) or logit of P is  a linear function of the explanatory 
variables X\, X2, X2. To express the relationship between P andX |, X2, X 2 

directly, (15.2a) can be rewritten as

or

еР<)+Р\Хх+ргХ2+РъХъ 
1 +  e P o + P \ X \ + P lX i+ P iX i

(15.2c)

P =
1

] e -(Po+P\X \ +P2X2+P3X3)'
(15.2d)

In general, if there are к explanatory variables X i , X2, . . . ,  X̂ , the model 
of logistic regression can be expressed with the following four equivalent 
forms:

 ̂ — fio +  P\X\  +  • (15.3a)

logit(P) =  A) +  P\X\  +  •■ ■ +  fikXk, (15.3b)

efo+P\Xx + - + A X *
D (15.3c)\ -|_ (>Pq+P\ X\+- •4'PkXk 9

1
D (15.3d)‘ 1 _|_ e-(Po+P\X\+-+PkXk) ■

15.1.2 P aram eter estim ation  o f  logistic regression

The maximum likelihood method is often used for parameter estimation of 
logistic regression.

Likelihood function is defined as the probability of that a random trial 
results in the current situation in theory, which depends on the parameters 
of the assumed theoretical model. For Example 15.1 according to the model
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Fig. 15.1 The relationship between P  and W  in Eq. (15.1).

(15.2c), given the values of (т,1,х /2,т<з), the / th individual’s probabilities 
of failure and success are

P(Yi =  1) =
ePa+P\л, i +p2xi2 + / b - U 3

1 -f-  g P o + P \X il+ p 2 X i2 + P 3 X i3

and

P(Yi =  0) =
1

1 -j- gPo+P\ X, 1 +P2̂ i2 +Рз V,-3

respectively. The two equations can be pooled as

P(Yi) =
eh+faXi\+P2Xn+PbXn Yi 1

J -)- ePo+P\Xi\+fi2Xi2+fl3Xi3 1 -)- gPo+P\ V /l +PlXii+P3Xi3

Then the likelihood function and the log-likelihood functiuon of 
Example 15.1 can be written as

p \ , /?2, Д0

200 г

= П
i= l ь

p P o + filX n  + P lX i2+ P 3X i3  

l  _|_ e P o + P lX il+ P 2 X i2 + p 3 X i3

Yi r 1 1-k

1 g P o + P l X i \ + p 2 X i2 + P 3 X i3
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Solution The values of explanatory variables of patient A are X i =  0, 
X2 =  1 and X3 =  0. By Eq. (15.4d)

1
A ~  1 _)_ e —(—2.0858+ 1 .1098X i + 0 .7 0 2 8 АГ2+ 0 .9 7 5 1AT3)

=  ] _|_ g —(—2.0858+0.7028) —  ^ — OO.

Those of patient В are Xi =  1, X2 =  1 and X3 =  1. By Eq. (15.4d)

1
B j  i e - ( -2 .0 8 5 8 + 1 .1 0 9 8 X i+ 0 .7 0 2 8 X 2+ 0 .9751X 3)

j _|_ ^-(-2.0858+1.1098+0.7028+0.9751)

15.1.3 The hypothesis testing for logistic model

After the estimation of regression coefficients, it is necessary to test the 
significance of model and if the population coefficient is zero.

15.1.3.1 The test for goodness-of-fit

Usually the value of log-likelihood function shows the goodness-of-fit of 
the model. The larger the value of log-likelihood function, the better the fit. 

The hypotheses to be tested are

Ho : The model fits the data

H\ : The model does not fit the data

Denote the maximum log-likelihood with In L. It can be proved, for a 
large sample, when H0 is true, —2 In L follows a chi-square distribution 
with degrees of freedom v =  N — k — 1. Here N is the sample size, к is the 
number of explanatory variables in model.

When —2 In x 2 > X«,v> the nuN hypothesis H0 is rejected. It means 
the model does not fit the observed data and is not suitable to use for predic
tion. For example, the third column in Table 15.3 lists the values of —2 In L 
for four models. The —2 In L of model 1 is 244.246, v = 2 0 0  — 0 —1 =  199, 
P =  0.02, Ho is rejected, which means model 1 does not fit the data. While 
for model 4, P =  0.09, H0 cannot be rejected, which means model 4 fits 
the data.
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15.1.3.2 The likelihood ratio test

This test could be used to test whether the fitness of two models are the 
same. The hypotheses to be tested are

The statistic being used to describe the difference in terms of fitness 
between the two models is

Here —2 In L refers to model 1 with k\ variables, —2 In L' refers to model 
2 with k2 variables, k\ < кг.

It can be proved, for large sample, when H0 is true, G follows a chi- 
square distribution with degrees of freedom v =  кг — k\.

Given the value of a, if the P-value is less than a, then / / 0 is rejected, 
which means the two models are significantly different in terms of fit
ness so that it is worthwhile to take the model with more variables. 
Otherwise, H0 is not rejected, which means the model with less variables is 
acceptable.

In Table 15.3, comparing to model 1, the model 2 has one more variable 
X u —2 In L =  244.346, -2 1 n L ' =  236.736, G =  7.610, v =  1 - 0  =  
1, P <0.01. It means the goodness-of-fit is significantly improved when 
including X\ into the model and model 2 has a better prediction effect than 
model 1. By the same procedure, one can see that including X2 and X3 also 
improves the goodness-of-fit significantly so that model 4 is the best model 
for predicting the treatment result of AMI.

15.1.3.3 The score test 

The hypotheses to be tested are

Ho : The two models are the same in goodness-of-fit 

H\ : The two models are different in goodness-of-fit

G =  - 2  In L -  ( - 2  In L') =  - 2  In (15.5)

H0 : Some of the coefficients equal zero 

H\ : These coefficients do not equal zero
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Table 15.2 R esu lts  o f  pa ram e te r  e s tim a tio n  an d  W ald  te s t fo r  E x am p le  15.1.

V ariable p S E  ф ) W ald x 2 Я -value O R

In te rcep t - 2 .0 8 5 8 0 .3513 3 5 .2632 0.0001
X i 1.1098 0 .3485 10.1422 0 .0 0 1 4 3 .034

X 2 0 .7028 0 .3292 4 .5587 0 .0328 2 .019

X 3 0.9751 0 .3 4 4 0 8.0365 0 .0046 2.651

Table 15.3 T h e  m o d els  fitted  fo r  th e  d a ta  in E x am p le  15.1.

M odel P a ram e te r —21n L G S core

1 Po 24 4 .3 4 6 — —

2 Po, Pi 2 36 .736 7 .610 7 .854

3 Po, P\, Pi 2 27 .200 9 .536 6 .898

4 A). P\, Pi, Ръ 2 22 .616 4 .583 5 .309

After setting up a likelihood function or logarithmic likelihood function, 
one could use the statistical software to find the values of parameters which 
maximize the likelihood function or log-likelihood function. Based on 
the data in Example 15.1, the results of logistic regression are listed in 
Tables 15.2 and 15.3.

In Table 15.2, column 2 gives the estimates of the intercept and coeffi
cients in the model of logistic regression,

Д, =  -2.0858, Pi =  1.1098, Д, =  0.7028, fo =  0.9751.

Therefore, the logistic regression equation can be expressed as any of 
the following four equations:

= -2 .0 8 5 8  +  1.1098X, +  0.7028X2 +  0.9751X3,

(15.4a)

Logit (P) =  -2.0858 +  1.1098X, +  0.7028X2 +  0.9751X3,
(15.4b)
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£ —2.0858+1.1098X, +0.7028X2+0.9751X3

1 _j_ g —2 .0 8 5 8 + 1 ,1 0 9 8 X |+ 0 .7028Х 2+ 0 .9 7 5 1 Х з
(15.4c)

l  _|_ (—2.0858+1.1098Xj+0.7028X2+ 0.975 IX3) '

From (15.4a), one can see that /?0 =  -2.0858 is the ln(odds) when all 
the independent variables take values zero;

is the odds of failure for the individual without shock, heart failure and 
delay before treatment. When the probability of failure is very low and the 
probability of success closes to 1, this value closes to failure rate.

is the “odds ratio” between with shock and without shock before treatment 
when other conditions (heart failure and delay of treatment) are kept the 
same. Odds ratio is an important measurement introduced in Chap. 2. When 
the failure rate is low, it closes to a relative risk of failure for patients with 
shock before treatment comparing to those without shock.

In general, when P refers to the probability of failure, if the regression 
coefficient is positive p  > 0 , hence > 1, then the corresponding variable 
is a risk factor; otherwise, it is a protective factor. In this example, the 
coefficients of three variables are all positive so that shock, heart failure and 
delay before treatment are all risk factors.

A logistic model may be used for forecasting.

Example 15.2 Patient A with heart failure and without shock was sent 
to the hospital in five hours after AMI symptom appearing. Patient В with 
heart failure and shock was sent to hospital 18 hours after AMI symptom. 
Estimate their probabilities of failure respectively.

e Po _  £ -2 .0 8 5 8  =  0.1242

Pi ^  In (oddswith shock) ln(oddswjthout shock)

Therefore,

eP\ _  £ r  10 9 8  =  з  0 3 3 8
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As the first step, we work out a logistic regression under the condition 
of Ho, and then calculate a statistic, which is called score,

Score =  S'(COV)S. (15.6)

Here S is a vector consists of all the first order partial derivative of 
log-likelihood function on the estimators of the parameters, COV is the 
variance-covariance matrix of the estimators of the parameters. When sam
ple size is large enough, this statistic (score) approximately follows a chi- 
square distribution with a degree of freedom equal to the difference between 
the numbers of estimated coefficients.

For example, to test

H0 : Po Ф О, Pi ф 0 but p 2 =  0  (model 2)

H\ \ Po ф 0, P\ ф 0 and y?2 Ф 0 (model 3)

the data are fitted under Ho (model 2), and then calculate the statistic, 
Score =  6.898, v =  1, P < 0.01 so that tf0 is rejected, which means model 
3 is worthwhile to try. Again to test

H0 : Роф  0, Pi ф 0 , р 2 ф 0  but P i - 0  (model 3)

Hi : Роф  0, Pi ф 0 , р 2 ф 0  and ръ ф 0 (model 4)

the data are fitted under H0 (model 3), and then calculate the statistic, 
Score =  5,309, v =  1, P < 0.05 so that H0 is rejected, which means model 4 
is worthwhile to try.

One can see that the advantage of the score test is to fit a model with less 
parameters and decide whether the complicated model is needed. Obviously, 
it is useful in forward selection of variables.

15.1.3.4 Wald test

The hypotheses to be tested are also

Ho : Some of the coefficients equal zero 

H\ : These coefficients do not equal zero
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In particular, the most popular situation is to test for whether one of the 
coefficients equals zero or not, that is

H0 : = 0  Hr- pi ф 0

Different from the score test, as the first step, we work out a logistic 
regression under the condition of H\, and then calculate a statistic, which 
is called Wald / 2,

Xt
A

SECPi)
(15.7)

Here, Pi is an estimated value of the regression coefficient SE is the 
standard error of Д . When Я0 is true, if the sample size is large enough, 
then the statistic approximately follows a chi-square distribution with one 
degree of freedom. In Table 15.2, the Wald % 2 for X , (shock) is

X
2 "1.109812 

0.3485
10.1422.

P < 0.01, Ho is rejected so that the population coefficient for X \ is not 
equal to zero.

One can see that the advantage of the Wald test is to easily find the 
insignificant variables after fitting a model with all the variables. Obviously, 
it is useful in backward selection of variables.

It can be proved, under H0 the three test statistics of likelihood ratio test, 
score test and Wald test are asymptotically equivalent. For large sample size 
n, the values of the three test statistics will tend to be close to each other. 
For medium or small sample size, their differences can be more serious, the 
results may not be consistent. In practice, among the three, likelihood ratio 
test is preferred and its result is more robust. When sample size is not large, 
the distribution of score is closer to chi-square distribution so that it is more 
sensitive. Wald test is easy to calculate but more conservative.

15.1.4 More examples

Example 15.3 (cohort study) In order to study the relationship between 
coronary heart disease (CHD) and endogenous catecholamine (CAT), two 
populations with high CAT and low CAT were followed up respectively
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Table 15.4 D ata  o n  co ro n ary  h eart d isease  an d  en d o g en o u s  ca te 
cho lam ine .

S tra tu m

C A T  = 1 (h igh) C A T  = 1 (low )

C ase N o rm al C ase N orm al

A G E  <  55, E C G  =  0 1 17 7 257
A G E  <  55, E C G  = 1 3 7 14 52
A G E  > 5 5 ,  E C G  =  0 9 15 30 107
A G E  > 5 5 ,  E C G  =  1 14 5 44 27

Total 27 44 95 443

Table 15.5 R esu lts  o f  log is tic  reg ress io n  fo r  th e  d a ta  in T ab le  15.4.

M odel* V ariable P SE{p) W a l d / 2 7’-value O R

1 C o n stan t - 1 .5 3 9 6 0.1131 185 .4328 0 .0000 —

C A T 1.0512 0 .2693 15.2331 0.0001 2 .8612

2 C o n stan t - 3 .3 7 2 5 0 .2588 169.8494 0 .0 0 0 0 —
C A T 0 .6 3 9 0 0.2621 4 .2 7 3 5 0 .0387 1.9328
A G E 2 .0 5 5 0 0 .2430 61.4541 0 .0 0 0 0 7 .8072

E C G 1.8785 0 .2588 5 9 .7407 0 .0000 6 .5 4 4 0

* F o r m odel 1, —21nL =  5 9 5 .9 1 3 ; fo r  m odel 2, —21nL =  4 4 5 .9 2 0

during a seven-year period. The incident cases of CHD occurred in two 
populations were counted. Considering the confounding of age and abnor
mal of electrocardiogram (ECG), the data were stratified by these two factors 
in Table 15.4.

This is a cohort study. The outcome is described by a binary variable 
Y, Y =  1 refers to suffering from CHD and Y =  0 otherwise. A logistic 
regression model for P(Y =  1) on CAT, age and ECG has been constructed. 
The results are listed in Table 15.5.

The results on model 1 show that the odds ratio related to CAT is 
gi.o512 _  2.8612. It means that people with high CAT have almost 3 times 
higher risk of CHD comparing to people with low CAT before adjusting for 
age and ECG. When age and ECG are adjusted in model 2, the OR becomes 
0̂.639 __j 9328, suggesting that the higher OR before adjusting is partly due 

to the confounding effect of age and ECG. Comparing to model 1, model 2
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Table 15.6 D a ta  on  sa lte d  v eg etab le  in take  a n d  e so p h a g ea l cancer.

A g e  g roup

C ase C o n tro l

In take N o  in take In take N o  in take

1 (2 5 -3 4 ) 1 0 8 98
2 (3 5 -4 4 ) 4 6 24 186
3 ( 4 5 - 5 4 ) 25 22 32 148
4  (5 5 -6 4 ) 56 38 28 139
5 ( 6 5 - 7 4 ) 19 36 18 88
6  (7 5 + ) 5 8 0 31

Total 110 110 110 690

has a significant improvement of goodness-of-fit, G =  149.993 and v =  2, 
P < 0.001. The final model is

Logit (P) =  -3.3725 +  0.6390CAT +  2.0550AGE +  1.8785ECG.

This model may be used for predicting the risk of CHD.

Example 15.4 (group case-control study) The data of a case-control 
study on esophageal cancer and salted vegetable intake are given in 
Table 15.6. Analyze the relationship between esophageal cancer and salted 
vegetable intake by adjusting confounding effect of age.

In the case-control study, research purpose is to analyze the relationship 
between disease and risk factors. Odds ratio is a common measure of this 
relationship. If the confounding effect of age is not considered, the OR of 
esophageal cancer related with salted vegetable intake may be calculated 
directly,

110 x 690 
110 x 110

6.273. (15.8)

If the confounding effect of age needs to consider, the OR should be 
estimated by stratification method. However, in Table 15.6, the numbers in 
some strata are very small and even there is zero in the strata age 25-34 and 
75+ so that the OR cannot be well estimated directly stratum by stratum. 
The logistic regression model may solve such kind of problems and utilize 
the information from all strata sufficiently. It is convenient to adjust for 
several confounding factors and to estimate the adjusted OR.
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Let us use a binary variable X for salted vegetable intake that X =  1 
refers to salted vegetable intake and X =  0 otherwise. The results of logistic 
regression on salted vegetable intake only are

logit (P) =  -1.8362 +  1.8362X, (15.9)

OR =  <?L8362 =  6.273. (15.10)

Note that the result in (15.10) is exactly the same as that in (15.8) because 
both are the unadjusted OR.

If age is considered as a categorical variable, five binary variables Age 2, 
Age3, Age4, Age5, Age6 may be used to present age group 35-44,45-54, 
55-64, 65-74 and 75+. Say, if one’s age is in group 35-44, his Age2 =  1 
and all others =  0; if one’s age is in group 25-34, all five dummy variables 
equal zero. Taking these dummy variables into the logistic model, the results 
are

logit(P) =  -4.9806 +  1.5186 Age2 +  3.0502 Age3 +  3.7888 Age4

+3.8808 Age5 +  3.8822 Age6  +  1.7163X, (15.11)

OR =  e u m  =  5.564. (15.12)

It shows that after adjusting for age, the OR is lower than that in (15.8) 
and (15.10), suggesting the existence of a little confounding effect of age.

It needs to pay attention on that the ratio between the sample sizes for 
cases and controls does not represent the actually ratio between the num
bers of patients and healthy persons in general population so that the inter
cept given by the regression is not the estimated prevalent rate in the 
population.

In fact, from Eq. (15.9), Intercept — —1.8362. We have

«—I-8362 =  Q. 1594 % — . (15.13)

The left-hand side is the “odds ratio” when X =  0, while the right-hand 
side is the ratio between the number of cases and number of controls in the 
data set of Table 15.6.

Again, from Eq. (15.11), Intercept =  —4.9806. We have

■-4.9806 0

98'
=  0.0069 (15.14)



444 Medical Statistics and Computer Experiments

Now the left-hand side is the “odds ratio” when X =  0 and Age2 =  Age3 
=  AgeA =  Age5 =  Age6 =  0, while the right-hand side is the ratio between 
the number of cases and number of controls in the age group 25-34 of 
Table 15.6.

Obviously, neither (15.13) nor (15.14) reflects the real situation in the 
population. Therefore in the logistic model for case-control study, the inter
cept in the regression equation reflects the situation in the case-control 
sample only, it does not make sense to the population and this equation can
not be used for prediction. The explanation of the resulted logistic equation 
would be focused on the regression coefficients.

If one really wishes to use a logistic model from a case-control study for 
prediction, the real prevalence rate P0 in the population should be known 
and the intercept Д) in the regression equation should be replaced with the 
adjusted intercept /}(j

^  =  1п ( т з т г )  - ( №  + №  +  • • • + № ) .  (15.15)

Here X ], X 2 , ■ . . ,  Xk are the sample means of X \ , X 2, . . .  , X k.
For Eq. (15.9), suppose in a population of age over 30 the prevalent rate 

of esophageal cancer is 0.00058, the alcohol drinking rate is 0.015(= X), 
the adjusted intercept is

^ = ta( l 3 k ) - < №
(  0.00058 \

=  "  ( ь Г (Ш Ю 5 8 )  "  (1 '8362 x  ° '015> =  -TA54

Replacing the intercept in Eq. (15.9) with this value, the model could be 
used for prediction is any of the following four equations:

log it(F) =  —7 .4547 +  1.8362X, 

.4547 +  1.8362*,

7.4547+1.8362X
------------------------  P — ---------------------------
1 q_ £ - 7 .4 5 4 7 + 1 .8362X ’ J q_ g - ( - 7 .4 5 4 7 + 1 .8 3 6 2 X ) '
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Table 15.7 Values of three daily life factors.

Variables Values

Diet habit (X[) 
Salted food ( X 2) 
Mental status (V3 )

0,1,2,3,4 (0 =  good, 4 =  poor)
0,1,2,3,4 (0 =  non, 4 =  frequently) 
0  =  poor, 1 =good

Table 15.8 Data of 50 pairs of stomach cancer cases and controls.

No.

Case Control

Xi * 2 *3 Xi * 2 *3

1 2 4 0 3 1 0

2 3 2 1 0 1 0

3 3 0 0 2 0 1

4 3 0 0 2 0 1

5 3 0 1 0 0 0

49 1 2 1 0 0 I
50 2 0 1 0 3 1

(The complete data will be given in Experiment 15.2)

15.2 Conditional Logistic Regression

Example 15.5 (1:1 matched case-control study) The relationship of stom
ach cancer and three daily life factors was studied in a city. The study chose 
a paired design. A healthy control was chosen according to the gender, age 
and living place for each case. The daily life factors and their values for 
different categories were listed in Table 15.7. In total 50 pairs of case and 
control were recorded. The data are listed in Table 15.8.

In this study, the case is comparable with his control in each pair in the 
sense that they have same gender, age and living place. However, the case 
is not comparable with the controls in other pairs. Therefore, the logistic 
model is built on the basis of the disease status and exposure in each pair 
of subjects.

In any pair, the case is indicated by A and the control is indicated by B, 
Y =  1 refers to suffering disease and Y =  0 otherwise. The probability of



4 4 6 Medical Statistics and Computer Experiments

only one within the pair suffering from the disease is 

/’(either Уд =  1 or YB =  1)

=  P(Ya =  1 )P(YB =  0) +  P(Ya =  0 )P(YB =  1). (15.16)

Under the condition that only one within the pair suffering from the 
disease, the probability of A suffering from the disease is

P(Ya — 11 either YA =  1 or YB =  1)

P(Ya =  \ )P(YB =  0)
(15.17)

'  P(.Ya =  l )P(YB =  0) +  P{Ya =  0)P(YB =  1)'

Let

e{fia+P\X*+p2X$+-+pkx£) 
P(Ya =  1) = ----------------т------

1 +  e(Po+plxf+P2X*+-+fax*) (15.18a)

gifio+filX? ---\-fikXl)
P(YB =  1) =  я

1 +g(A+/»lX?+/82Xf+--+ftXj?)’
(15.18b)

P{Ya =  0) = ---------------- r -----г--------- T-,1 +  e(Po+P\Xt+fi2X*+-+ptx£) (15.18c)

P(YB =  0) =  - 1 .1 + e U3o+frX?+p2X?+-+/3kxB) (15.18d)

Substitute the above four equations into Eq. (15.17), and simplify it as

P(Ya =  11 either YA =  1 or YB =  1)

e(P\X$+P2X$+-+pkx*)
— _____________________________________  /]5 19a)

e(PiX*+hx*+-+pkxA) +  elP\Xf+fox%+-+pkx*) '  ’

or

P(Ya =  11 either YA =  1 or YB =  1)

1

~  1 +  еШХ$-х?)+Рг(Х$-х$)+---+Рк(Х*-х к)\'
(15.19b)

Equation (15.19a) or (15.19b) is a conditional probability so that this 
model is called conditional logistic model. To avoid confusion, the logistic
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Table 15.9 Conditional logistic analysis for screening the risk factors.

Variable p S E ( p ) Wald x 2 P-value O R

X i 0.9445 0.2935 10.3549 0.0013 2.572
X 2 0.8820 0.3242 7.4037 0.0065 2.416

model introduced in the last section is called non-conditional logistic model. 
One can still use the software to get the maximal likelihood estimates
P\,Pi, Д .

In the right-hand side of Eq. (15.19a) or (15.19b), the constant flo has 
been canceled from both of the numerator and denominator so that we are 
not able to get the estimate /i0 and hence fail to get regression equations 
(15.18a)—(15.18d). And in fact, (15.19a) or (15.19b) is a conditional prob
ability, which itself is not helpful in predicting the risk of suffering from 
disease. However, the estimates of coefficients Д . . . ,  Д  and accord
ingly e-8', e 2̂, . . . ,  e k̂ have the same meaning as before and can still be 
used to describe the risk of variables.

For example, a conditional logistic regression was used to screen the risk 
factors related with stomach cancer at the level of a =  0.05, two factors 
were selected into the model by stepwise method. The results are listed in 
Table 15.9.

Among three variables, X3 has not been selected into the model because 
P > 0.05. The results suggest that the dietary habit (X\) and salted food 
(X2) have a relative close association with the occurrence of stomach can
cer. Both coefficients of X 1 and X2 are positive, i.e. OR > 1, and of statistical 
significance, suggesting that they might increase the risk of suffering from 
stomach cancer. However, the mental status (X3) is not significantly asso
ciated with the risk of stomach cancer.

Example 15.5 is a 1:1 matched case-control design. In principle, the 
conditional logistic model can be extended to 1 :m matched design or other 
stratified design. However, the calculation will dramatically increase when 
m increases.

15.3 Multinomial Logistic Regression Model

The logistic regression model introduced in Sec. 15.1 is for a binary depen
dent variable. However, the variables with more possible outcomes are
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frequently faced in medical practice. They may be an ordinal variable such 
as the outcome of clinical treatment may be described as effective, improve
ment and not effective; or they may simply be a categorical variable such 
as pathohistological types of lung cancer are described as squamous-cell 
carcinoma, adanocarcinoma, small cell carcinoma and alveolar cell carci
noma. In this section, the logistic regression models for these two kinds of 
outcome variables will be introduced.

15.3.1 Ordinal multinomial logistic model

Example 15.6 In a study, the effects of two medications to certain dis
ease are compared. The outcome of treatment is categorized as effective, 
improvement and not effective. The data are listed in Table 15.10 strati
fied by gender. An ordinal multinomial logistic model has been used to 
analyze the relationship between the outcome of treatment and gender, 
medication.

There are many types of logistic models for ordinal multinomial vari
ables and most popular one is the cumulative logistic regression model. 
Assume that there are c possible categories of Y, then c — 1 logistic func
tions are used to describe the relationship between the outcomes and the 
explanatory variables:

logit[P(K < 1)] =  /?q +  X[ +  p 2 X 2 +  • • • +  Pk^k 

logit[P(T < 2)] =  p™ +  yffiX, +  p 2 X2 +  • • • +  PkXk

logit[Р(У < c — 1)] =  /?oC_1) +  fi\X\ + p 2 x 2 +  - - - + p kXk. (15.20)

Table 15.10 Data on the impact of gender and medication on certain disease.

Effect) У)

Gender Medication
Effect 

(У =  1)
Improve
(У =  2)

No effect 
(У =  3) Total

Woman New ( X 2 =  О 16 5 6 27
( * 1  =  1) Old ( X 2 =  0) 6 7 19 32
Man New ( X 2 =  1) 5 2 7 14
№  = 0 ) Old ( X 2 =  0) 1 0 10 11
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Table 15.11 Results of cumulative logistic regression analysis for data in Table 15.10.

Variable Parameters Standard error Wald / 2 P-value

Intercept

Intercept
w

w

-2.6672

-1.8128

0.5997

0.5566

19.7809

10.6072

0 .0 0 0 1

0 .0 0 1 1

* 1 fa 1.3187 0.5292 6 .2 1 0 2 0.0127

2(2 fa 1.7973 0.4728 14.4493 0 .0 0 0 1

Looking at the right-hand side of (15.20), one will find that among 
the c — 1 equations, the only difference is the intercept term. The statis
tical software can help to get the maximum likelihood estimates of the 
commonly shared parameters f}\, / L , . . . ,  Pk and the specific parameters 

/?q2), . . . ,  Pq _l) and related hypothesis tests.

Solution The model has been used for the analysis of the data in 
Table 15.10. The results are listed in Table 15.11.

The results show that the coefficients of gender and medication are big
ger than 0 with small P values, i.e. women and new medication have a 
better outcome of treatment. The results may summarized as two logistic 
equations:

logit[P(T < 1)] =  -2.6672 +  1.3187X, +  1.7973X2, 

logit[P(y < 2)] =  -1.8128 +  1.3187X, +  1.7973* 2-

These two equations can be applied to predict the prognosis of a patient. 
For example, suppose a female patient receives a new medication, we have

P ( Y  < 1) =  e(-2.6672+l.3187+1.7973) =  Q 61>

P(V < 2) =  £(-1-8128+1.3187+1.7973) _  q уд

It means the probability of being effective is 0.61, improved is 0.18 and 
not effective is 0.21 so that the physician may predict her prognosis is not 
too bad.

15.3.2 M u ltin om ial logistic m odel

Example 15.7 To study the relationship between the histological types 
of malignant tumor and cell differentiation and cell staining, a set of data
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Table 15.12 Cell differentiation, cell staining and histological types of malignant tumor.

Histological types of malignant tumor ( Y)

Differentiation
(AT,)

Staining
( X 2)

Squamous 
( T =  1)

Adeno
(Y =  2)

Alveolar cell 
(T =  3)

I(X , =  1) +  ( X 2 =  1) 10 17 26
-  ( X 2 =  2) 5 12 50

II (A, = 2 ) +  (X2 =  1) 21 17 26
-  ( X 2 =  2) 16 12 36

III(Xi = 3 ) +  ( X 2 =  1) 15 15 16
-  ( X 2 =  2) 12 12 2 0

was collected (Table 15.12). Apply the multinomial logistic regression to 
analyze the data.

Here, the histological types of malignant tumor have three categories: 
squamous, adenous and alveolar cell, denoted by Y — 1,2, 3 respectively. 
Since the three categorie, Y is not an ordinal variable. A multinomial logistic 
model can be used to analyze this kind of data.

Assume that there are c possible categories of Y, then Eq. (15.3a) for 
traditional logistic regression should be extended to c — 1 logistic functions 
in order to describe the relationship between the c — 1 possible outcomes 
and the explanatory variables,

In

In

P ( Y =  1)' 
P(Y =  c).

P(Y =  2)' 
P(Y =  c)_

= p ^  +  PY>xl +  ... + pil’xk?d) a ) ’

=  /?<2) +/?|P X l + : - + f f ’Xk,(2b

In
P{Y =  c -  1)

-  $ ~ l) +  P i ~ l)X i +  • • • +  Pk~l)*k- (15.21a)P(Y =  c)

Accordingly, Eqs. (16.3c) and (16.3d) are extended as 

P(Y =  1)

1 +  e ( ^ ' )+Af1)2 t , + - + ^ l)XH + ____ |_ e (p£~i)+fi\C~') x i+-+Pp l)xk) '
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P(Y =  2)

1 +  e( $ )+f)[l)xl+ - + $ )xk) _|____ h e(A$~l)+/>i~l)Xt+-+f>P~l)Xk)

P(Y =  c — 1)

Same as those in (15.20), we have c — 1 equations in (15.21a); but 
instead of the logarithm of odds for P(Y < m), the left-hand side here are 
the logarithm of relative risks, which are the ratios between P(Y — m) and 
P(Y =  c),m =  1 , 2 , . . . ,  c — 1. The right-hand side of (15.21a) shows that 
the number of parameters in (15.21a) is much more than that in (15.20), 
besides the intercepts /3q \  /?q2), . . . ,  /?q ~11. the regression coefficients are 
also different for different equations. We have so many parameters to esti
mate in this model just because that the different categories of Y may be 
quite different in nature. However, as long as the sample size is big enough, 
the statistical software can still help us to get the maximum likelihood esti
mates of the unknown parameters.

Solution The above model has been used for the analysis of the data in 
Table 15.12. The results are listed in Table 15.13.

By (15.21a), two equations are used to describe the relationship between 
squamous cancer and alveolar cell cancer and between adenocarcinoma and 
alveolar cell cancer. They are

e (P(o~')+P,f~X)xt+-+Pp~')xk)

P(Y — c)

Xi +-+p^~X)xk)
(15.21b)

=  t i2) +  /з \2)х 1+ р ? )х 2.



452 M e d ic a l  S ta t is t ic s  a n d  C o m p u te r  E x p e r im e n ts

Table 15.13 Multinomial logistic regression analysis for Example 15.7.

Variable Parameter Standard error Wald x ~ P-value R R  =  exp(/?)

Intercept W -0.9826 0.5707 2.96 0.0851

ДР -0.3461 0.5413 0.41 0.5226

Xj A(1) 0.6281 0.1799 12.19 0.0005 1.874

№ 0.3454 0.1728 4.00 0.0456 1.413

X2 № -0.6494 0.2833 5.26 0.0219 0.522

№ -0.6352 0.2725 5.43 0.0197 0.530

The maximum likelihood estimates of the parameters are listed in 
Table 15.13.

For the test of goodness of fit we have G =  7.39, P-value is 0.2864 
so that the multinomial logistic model fits these data. The last column of 
Table 15.13 shows that one grade increase of cell differentiation will cause 
the relative risk of squamous cancer and alveolar cell cancer becoming 
1.874 times as much as that before increasing, and the relative risk of ade
nocarcinoma and alveolar cell cancer becoming 1.413 times as much as 
that before increasing; while negative staining may cause both of the rel
ative risks becoming 0.522 and 0.530 times as much as that for positive 
staining. In other words, it tends to be squamous cancer or adenocarcinoma 
if the differentiation is higher; and it tends to be alveolar cell cancer if the 
staining is negative.

By (15.21a), the results may be summarized as

=  -0.9826 +0.6281 X, — 0.6494X2,

=  -0.3461 +  0.3454X, -  0.6352X2

or by (15.21b)

P(Y =  3)
1

—  \ _|_ g ( —0.9826+0.6281 X ) —0.6494X2) _|_ g (-0 .3 4 6 1 + 0 .3 4 5 4 X ,+ -0 .6 3 5 2 X 2) ’

In

In

P ( Y =  1) 
P(Y =  3).

P(Y =  2)' 
P(Y =  3)
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Pr(K =  2)

g ( —0.3461+0.3454XjH— 0.6352X2)

] _j_ g (-0 .98 26 +0 .62 81X i-0 .649 4X 2) _|_ g ( -0 .3 4 6 1 + 0 .3 4 5 4 X i+ -0 .6 3 5 2 X 2) ’

P(Y =  3)

1
_  1 e (-0 .9 8 2 6 + 0 .6 2 8 1 X | —0.6494X 2) _|_ e ( - 0 .3 4 6 l+ 0 .3 4 5 4 X |+ - 0 .6 3 5 2 X 2) '

15.4 Two-Level Logistic Mixed Effects Regression Model

Both in epidemiological study and clinical research, we often encounter 
with data which has hierarchical structure. The general example is stratified 
random sampling by area and individuals, in such a sample we have two 
levels area and individual. In fact, lots of experimental design can produce 
hierarchical structure data, such as the centers and subjects in multicenter 
clinical trials, the nest and animals in toxicology study. The characteristics 
of hierarchical structure is that the effects between groups is larger however 
the effects within groups is smaller, in other words, the data have certain 
cluster effect. When we get a data with hierarchical structure, the traditional 
logistic regression model is not suitable any more for the data do not meet 
the assumption of independence. If we ignore the hierarchical structure of 
data and use traditional logistic regression model, there may be bias and get 
a wrong conclusion.

Now we will use a medical service survey data which comes from the 
book The Multilevel Statistical Model in Medical and Public Health edited 
by Yang Min and Li Xiao-Song to illustrate the two-level logistic regression 
model.

Example 15.8 For screening the factors which affect the health services 
demand in poor rural areas, a stratified random sampling was used, first 
we select 832 families as our object families then we randomly choose 
2369 residents aged 15 years or older who come from the selected fam
ilies as our participants. The dependent variable is “uncomfort”, which 
refers to suffering diseases within two weeks; other variables in the data are 
dealt as independent variables. The variables and their values are listed in 
Table 15.14.
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Table 15.14 Variable names and its assignment.

Variable Labels Assignment

discomfort Diseases within two weeks
chronic Chronic diseases
gender Gender
agegroup Age(year)
marriage Marriage

edu Education

occup Occupation

smoke Smoke
drink Drink
water Drinking water type
geography Geography type
id Individual level
family Family level

0=NO 1=YES 
0=NO 1=YES 
0=Male l=Female 
0=15 1=45 2=65
0=Single l=Married 2=Divorce 3=Lose 

partner
0=  Illiteracy or semi-illiteracy l=Primary 

2=Middle school or higher 
0=Workers l=farmers 2=Student 

3=Retired 4=Unemployed 
0=NO 1=YES 
0=No or little l=Frequent 
0=Tap water 1 =Non Tap water 
0=Mountain area 1 =Non mountain area 
Level 1 
Level 2

As age, marital status, education and occupation are polytomous vari
ables, we assign them by dummy variables with value zero as reference for 
contrast:
Age 1: “45”, Age 2: “65”
Marriagel: married, Marriage2: divorce, Marriage3: lose partner 
Edul: primary school, Edu2: middle school or higher 
Occupl: farmer, Occup2: student, ОссирЗ: retire, Occup4: unemploy 

If we ignore the fact that the individuals come from different fam
ilies then (15.3a) is an appropriate model of this example. However, 
when the variation among families is larger than the variation within 
families, we cannot view the 2369 residents as coming from the same 
population anymore. When we study the sampling error, because every 
family contains a number of individuals, we call the variation among 
individuals within family with level 1 variation, and call the variation 
among families with level 2 variation. If we take the variation among 
families into account, the logistic regression model should be extended 
to (15.22)

logit (P) — 00 + /?iXi +  • • • +  PkXk +  «0» (15.22)
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where uQ refers to the family effect, which contributes to logit(P). We may 
assume uo follow a normal distribution м0 ~  Я (0 , <тД).

A statistical test is needed for

Я0 : < = 0  Я, : < ^ 0 .

If it cannot be rejected, then the effect at level 2 can be ignored, other
wise not.

For comparing which model is more suitable to Example 15.8, we con
struct an empty model which contains no explanatory variables to estimate 
if the family effect is ignorable.

After running the SAS Program 15.5 at the end of this chapter, we get 
the results in Table 15.15, from which we conclude that the family effect in 
the empty model is not zero (P < 0.001).

Then we put the explanatory variables into the empty model step by 
step to explore which factors affect the health services demand in poor rural 
areas. The results are showed in Table 15.16.

Table 15.15 The empty two-level model for diseases within two weeks.

Variables Parameters Values SE t P

Fixed effect
Intercept Ao -1.272 0.072 -17.59 <0 .0 0 1

Random effect
Variance at level 2 1.104 0.240 4.60 <0 .0 0 1

Table 15.16 The random effect model for diseases within two weeks.

Variables Parameters Values SE t P

Fixed effect
Intercept Ao -2 .659 0.163 -16.34 < 0 .0 0 1

Age (Year) 45- 0.612 0.149 4.11 < 0 .0 0 1

65- 0.846 0.197 4.29 <0 .0 0 1

Gender 0.400 0.132 3.04 0 .0 0 2

Chronic diseases 2.843 0.188 15.11 <0 .0 0 1

Drink 0.506 0.239 2 .1 2 0.034
Random effect
Variance at level 2 2

< 1.258 0.347 3.630 0.003
Random coefficient (Drink) 0.443 1.135 0.390 0.696
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From Table 15.16 we know that, the factors affect the health services 
demand in poor rural areas is age, gender, chronic diseases and drink. The 
health services demand rate for “45” and “65” groups is higher than group 
“15”; women higher than man; have chronic diseases within half year 
higher than non-chronic diseases within half year; drinking higher than 
non-drinking.

Since the p value is 0.003, the test for H0 : cth2o =  0 can be rejected, 
which reminds us that the health services demand varied sharply at family 
level.

15.5 Application of Logistic Regression

Recently logistic regression model has been widely used in all fields of med
ical research, including data analysis of cohort study and case-control study 
in epidemiology and etiology, discriminant model in clinical diagnostic 
test and evaluation of treatment effect in clinical study. The applications of 
logistic regression model may be summarized as the following three aspects.

15.5.1 S creen in g  o f  d isease-rela ted  risk  fa c to rs

As the development of medicine, it is emphasized by different approaches 
to explore the causes of disease. As discussed before, logistic regression 
model has its advantage in multiple factor analysis of disease etiological 
study. It is suitable to screen disease-related risk factors from many potential 
factors, as well as to analyze the interaction between different risk factors. 
Example 15.3 is a typical case of risk factor screening.

15.5.2 A dju stm en t o f  confounding fa c to rs

In the studies of clinical medicine and epidemiology, there are confound
ing impacts of some non-study-interest factors on study factors frequently. 
For example, age, gender, status of disease and stage of disease, etc. may 
bias the evaluation of treatment effect and age, occupation and income, 
etc. may affect the analysis for the relationship between disease occur
rence and living habits. There are two methods to deal with the influence of 
confounding effect. One is to control in study design, such as applying strat
ified sampling, matched design or randomized block design to balance the 
confounding factors between experiment group and control group. Another
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is to control in statistical analysis, like classical method of Mantel-Haenszel 
stratified analysis. However, Mantel-Haenszel method can only deal with 
data of 2 x 2 x AT table so that it is not proper when study factors have 
multiple levels or there are many confounding factors. It is very conve
nient to control the confounding factors and to estimate the odds ratio and 
confidence interval by logistic regression model. Especially when there are 
many confounding factors, logistic regression model may sufficiently use 
the information within data. Examples 15.2 and 15.3 are typical cases of 
confounding control.

15.5.3 P rediction  a n d  discrim ination

Same as other regression analysis, logistic regression model may be used 
for prediction. Logistic regression model is a probability model and the 
probability of an event occurring under certain condition can be calculated 
as in Examples 15.1 and 15.3. More than that, it can be applied in differential 
diagnosis in clinical medicine.

15.5.4 A ttention  sh ou ld  be p a id

In the logistic analysis, we should pay attention to the following situation:

15.5.4.1

Sometimes a logistic regression may include several or more than 20 inde
pendent variables. As the increase of number of independent variables, the 
number of cross categorized levels between variables will increase rapidly 
so that an enough sample size is needed to ensure the stability of parameter 
estimation. Otherwise, the estimated value of parameter might be very large 
or very small and difficult to explain.

15.5.4.2

The screening of risk factors should not totally depend on computer and a 
fixed significance level. Clinical or epidemiological meanings and explana
tion of results are more important. The users may choose some important 
risk factors into the model by themselves based on their clinical or epidemi
ological knowledge.
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15.5.4.3

The independent variables in logistic regression model may be categorical 
variable, ordinal variable and continuous variable. If the independent vari
able is a multi-level categorical variable, we may use several dummy 
variables to replace it and make the final results more easy to explain. The 
regression coefficient of continuous variable is also difficult to explain so 
that it is often transformed into an Ordinal variable.

15.5.4.4

The intercept of the model is meaningless in many cases and do not need 
to explain its meaning or test its significance. Only in cohort study and 
cross-sectional study, the frequency of the event in sample is close to the 
probability in general population, the intercept of model is meaningful. 
In conditional logistic regression model, the intercept has been canceled so 
that it cannot be used for prediction.

15.6 Computerized Experiments

Experiment 15.1 Nonconditional logistic regression model The SAS
Program 15.1 is for the logistic regression analysis of Example 15.2. 
Lines 04 to 15 are the data: the first column is for the values of dependent 
variable Y ; the second column is for the values of independent variable 
SVEG (salted vegetable intake); the third to seventh columns are for the

Program 15.1 Non-conditional logistic regression model.

Line Program Line Program

01 DATA A; 12 0 1 0 1 0 0 0 2 9 0 0 0  1 0 0 0  138
0 2 INPUT Y SVEG A 1 A2 A3 A4 A5 13 0 1 0 0 1 0 0 2 7  0 0 0 0 1 0 0  138

COUNT@@; 14 0 1 0 0 0 1 0  18 0 0 0  0  0 1 0  8 8

03 CARDS; 15 01 0 0 0 0 1 0 0 0 0 0 0 0 1  31
04 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 16
05 1 1 1 0 0 0 0 4 1 0 1 0 0 0 0 5 17 PROC LOGISTIC
06 1 1 0 1 0 0 0  25 1 0 0 1 0 0 0  21 DESCENDING;
07 1 1 0 0 1 0 0 4 2  1 0 0 0 1 0 0  34 18 FREQ COUNT;
08 1 1 0 0 0 1 0  19 1 0 0 0 0 1 0  36 19 MODEL Y=A1 A2 A3 A4 A5
09 1 1 0 0 0 0 1 5 1 0 0 0 0 0 1 8 SVEG;
1 0

11

0 1 0 0 0 0 0 9 0 0 0 0 0 0 0  106
01 1 0 0 0 0  26 0 0 1 0 0 0 0  164

2 0 RUN;
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five age dummy variables; column 8 is for the frequency. Line 17 runs the 
procedure of logistic regression. Line 18 defines the frequency weighting 
variable and fine 19 defines the model structure.

Experiment 15.2 Conditional logistic regression model The SAS
Program 15.2 is used for the conditional logistic regression analysis of 
Example 15.4.

Program 15.2 Conditional logistic regression model.

Line Program

01 DATA A;
02 INPUT NO Y XI X2 X3@@;
03 CARDS:
04 1 0 2 4 0 1 1 3 1 0  26 0 2 2 0  26 1 1 1 0
05 2 0 3 2 1 2 1 0 1 0  27 0 2 0 1  27 1 0 2 1
06 3 0 3 0 0 3 1 2 0 1  28 0 1 1 1  28 1 3 0 1
07 4 0 3 0 0 4 1 2 0 1  29 0 2 0 1  29 1 4 0 0
08 5 0 3 0 1 5 1 0 0 0  30 0 3 1 0  30 1 0 2 1
09 6 0 2 2 0 6 1 0 1 0  31 0 1 0 1 3 1 1 0 0 0
10 7 03  1 0 7  1 2 1 032 0 4 2  1 32 1 1 0 1
11 8 0 3 0 0 8 1 2 0 0  33 0 4 0 1  33 1 2 0 1
12 9 0 2 2 0 9 1 1 0 1  34 0 2 0 1  34 1 0 0 1
13 100 1 0 0  10 1 2 0 0 3 5 0  1 2 0 3 5  1 2 0  1
14 1103 0 0  1110  1 1 3 6 0 2 0  036  1 2 0  1
15 1 2 0 3 4 0  12 13 2 0 3 7 0 0  1137  1 1 1 0
16 130 11 1 13 1 2 0 0 3 8  0 0 0  1 38 1 4 0 0
17 1 4 0 2 2 1 1 4 1 0 2  1 3 9 0 3 0 1 3 9  1 0 1 0
18 15 0 2  3 0  15 1 2 0 0  4 0 0 2 0  140 1 3 0 1
19 1 6 0 2 4  116 1 0 0  1 4 1 0 2 0 0 4 1  1 1 0 1
20 170 1 1 0  17 1 0 1 1 4 2 0 3 0 1 4 2  1 0 0  1
21 1 8 0 1 3  1 1 8 1 0 0  1 43 0 2  1 1 43 1 0 0 0
22 19 0 3 4 1 19 1 2 0 0 44 0 2 0 1 44 1 1 0 0
23 20 0 0 2 0 20 1 0 0 0 45 0 1 1 1 45 1 0 0 1
24 21 0 3  2 1 2 1 1 3  1 0 4 6 0 0  1 1 4 6 1 0 0 0
25 22 0 1 0 0 22 1 2 0 1 47 0 2 1 0 47 1 0 0 0
26 23 0 3 0 0 23 I 2 2 0 48 0 2 0 1 48 1 1 I 0
27 24 0 1 1 1 24 I 0 I 1 49 0 1 2 1 49 1 0 0 1
28 25 0 1 2 0 25 1 2 0 0 50 0 2 0 1 50 1 0 3 I
29 ;
30 PROC PHREG;
31 MODEL Y=X 1 X2 X3/SELECTION=STEPWISE SLENTRY=0.05;
32 STRATA NO;
33 RUN;
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Program 15.3 Ordinal multinomial logistic regression model.

Line Program

01 DATA A;
0 2 INPUT YXl X2COUNT@@;
03 CARDS;
04 1 1 1 16 1 0  15
05 2  1 1 5 2 0  1 2

06 3 1 1 6 3 0  17
07 1 1 0 6 1 0 0  1

08 2 1 0 7 2 0 0 0

09 3 1 0 19 3 0 0  10
10 ’
11 PROC LOGISTIC;
12 FREQ COUNT;
13 MODEL Y=  XI X2/SCALE=NONE AGGREGATE;
14 RUN;

Experiment 15.3 Ordinal multinomial logistic regression model model
Program 15.3 is used for ordinal multinomial logistic regression analysis 
of Example 15.5. In Program 15.2, NO is the number of pairs. Procedure 
PHREG is used for analysis of proportional hazards model and statement 
STRATA tells the computer that NO is a variable of strata. Computer devel
ops conditional probability model according to the value of stratum variable. 
In the options of the statement MODEL, SELECTION defines the method 
for variable screening (here is stepwise method) and SLENTRY defines the 
significance level of variable screening (here is 0.05).

Experiment 15.4 Multinomial logistic regression model Program 15.4 
is used for multinomial logistic regression analysis of Example 15.6.

Experiment 15.5 Two-level Logistic regression model Taking Example
15.8 as an example, master the computer manipulation and SAS procedures 
for two-level logistic regression model (run SAS procedure GLIMMIX 
needed SAS9.2 or higher version).

In Program 15.5,01-10 lines were Proc NLMIXED procedures for con
structing two-level empty model and estimate if there is any high level 
effects also called the statistical test for erM2o and ICC. Lines 12-17 were 
Proc GLIMMIX procedures for constructing the ultimate two-level random 
effect model and proving the primary parameter estimate. Lines 19-34 were 
Proc NLMIXED procedures for constructing the ultimate regression model.
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Program 15.4 SAS program of multinomial logistic regression model.

Line Program

01 DATA A;
0 2 DO X l =  l TO 3;
03 DO X 2=l TO 2;
04 DO Y=1 TO 3;
05 INPUT COUNT@@;
06 OUTPUT;
07 END;END;END;
08 CARDS;
09 10 17 26 5 12 50 21 17 26 16 12 26 15 15 16 12 12 20
10 ‘
11 PROC CATMOD ORDER=DATA;
12 DIRECT XI X2;
13 WEIGHT COUNT;
14 MODEL Y=X1 X2;
15 RUN;

Program 15.5 Two-level Logistic regression model.

Program

title “Two level Logistic regression empty model”;
Proc NLM1XED data=health;
PARMS B0=0 V_u0= 1 ; 

logodds=BO+uOj; 
odds=exp( logodds);
P=  odds/( 1 +odds);
model uncomfor~bi nary(P);
random uOj ~normal(0.V_u0) subject=family;
estimate ‘ICC’ V_u0/(V_u0+3.289);
run;

title “Two level Logistic regression model initial Coefficients”;
Proc GLIMMIX data=health method= RSPL; 
class family;
Model uncomfor (event=‘l ’) =AGEGROUl AGEGROU2 gender chronic drink 

marrigel marrige2 marrige3 edul edu2 OCC1 OCC2 ОССЗ ОСС4/ s dist =  
binary link =logit DDFM=BW; 

random int / subject=family s cl; 
nloptions tech= NRRIDG;
Run;
title “Two level Logistic regression random effect model”

( C o n tin u e d )
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Program  15.5 (C o n tin u e d )

Line Program

19 Proc NLMIXED;
20 PARMS B0=-3 B l=0.5 B2=0.9 B3=0.3 B4=2 B5=0.5 tl 1=0.7 t22=0.3 tl2=0;
21 Z=BO+B1*AGEGROUI+B2*AGEGROU2+B3*gender+B4*chronic+

B5*drink+(u0j+u 1 j*drink);
22 if(uncomfor=l) then P=1/(1+EXP(-Z));
23 ELSE P=1-(1/(1+EXP(-Z)));
24 LL=LOG(P);
25 V_uO=tll*tll;
26 cov_u0 1 = tl l* tl2 ;
27 V_ul=tl2*tl2+t22*t22;
28 model uncomfor~general(LL);
29 random uOj ulj~normal([0,0],[V_u0,cov_u01,v_ul]) subject=family;
30 estimate ‘ICC’ V_u0/(V_u0+3.289);
31 estimate ‘VAR(uO)’ V_u0;
32 estim ate‘cov(u0,ul)’cov_u01;
33 estimate‘VAR(ul)’v_ul;
34 run;

Table 15.17 The values of age in Example 15.3.

Age 2 5 - 3 5 - 4 5 - 5 5 - 6 5 - 75+

AGE 1 2 3 4 5 6

Al 0 1 0 0 0 0

A2 0 0 1 0 0 0

A3 0 0 0 1 0 0

A4 0 0 0 0 1 0

A5 0 0 0 0 0 1

15.7 Practice and Experiments

1. In Example 15.3, the values of age have been given by two different ways 
as show in Table 15.17.

If AGE is adopted into the logistic regression model, what is the mean
ing of the regression coefficient? If Al, A2, A3, A4, A5 are adopted 
into the logistic regression model, what are the meaning of the regression 
coefficients? What is the difference and relation between these two sets of 
regression coefficients for age? Which way is better? Why?
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2. When there are data from a 1:1 pair-designed case-control study, what 
will influence the results if non-conditional logistic regression is used?

3. In a study on the relationship between disease occurrence and XI, X2, 
when X 1 or X2 is included into the model respectively, both of the two logis
tic regressions are of significance but when both of them are included into 
the model simultaneously, the logistic regression is not significant. Why?

4. Try an experiment by yourself with the data of Example 15.2: calculate the 
difference of exposure values of case minus that of control within each pair; 
regard each pair as a “case” with the difference as the value of explanatory 
variable X and with Y — 1 as the “outcome” of the “case”. Perform a non
conditional logistic regression analysis on such a “dataset”. Are the results 
different from that obtained by a conditional logistic regression?

5. In a cohort study of 1000 workers in a factory, 194 workers have a 
white blood cell reduction among 900 workers exposed to the risk factor 
benzene and only 21 workers have the same symptom among 100 workers 
not exposed to the risk factor. In another cohort study of 1000 workers in 
another factory, 6 have symptom among 100 exposed workers and 29 among 
900 non-exposed workers. The data are pooled in Table 15.18.

Try to use the classical M-H method to estimate the odds ratio of the 
benzene exposure and to do a chi-square test; and then use logistic regression 
to estimate the odds ratio of the benzene exposure and to do a score test. 
Compare the results of two different analyses and discuss how to deal with 
the difference of results when analyze these data separately and pooling 
together.

Table 15.18 Pooled data of the two factories.

E+ E - Total

D+ 200 50 250
D - 800 950 1750

Total 1000 1000 2000

(1st edn. Qing Liu, Jiqian Fang; 2nd edn. Jinxin Zhang, Weidong Li, Jiqian 
Fang)





Chapter 16

Cluster Analysis

Cluster analysis is a kind of methods to group individuals or variables with 
similar properties. It is used widely in biology and medical field for classi
fications. For example, according to the morphology, size, and numbers of 
bones, cluster analysis can group the evolution process into several periods; 
health administrator classifies the hospitals into different grades according 
to their diagnostic accuracy, treatment capacity etc. To restore ears, doctors 
classify normal ears into different categories according to the length, width 
and some distances, etc., and then find several standardized ears for patients 
with impaired ones.

16.1 The Meaning of Clustering

16.1.1 C om parison o f  clu ster analysis a n d  d iscrim in an t analysis

Cluster analysis differs from the discriminant analysis in the following 
sense. In a discriminant analysis, there is a gold standard that defines 
the belongings of all study subjects. The discriminant rule is built based 
on the knowledge of true classifications of training dataset (supervised). 
On the other hand, the number of groups and their labels/characteri- 
stics are unknown and there is no known class variable in cluster 
analysis (unsupervised). In some cases, we call the discriminant analy
sis supervised learning and the cluster analysis unsupervised learning. 
In other cases, we combine two methods in applications: we first use 
cluster analysis to classify the subjects into several different groups and 
then use discriminant analysis to find the classification rules for future 
observations.

465
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Table 16.1 Data structure for cluster analysis.

Individuals

Variables

* 1 * 2 - X J - *m

1 * 1 1 * 1 2 ■ * 1  m
2 * 2 1 * 2 2 • • • * 2  j - • * 2  m

i * /l * ( 2  • X i m

n *n 1 *n 2 • • X n m

Mean * 1* 2 -- . X j  . . .  X m
Standard Deviation S,S2 . . . S j . . .  s m

16.1.2 C luster analysis

The data for cluster analysis should be organized in the form showed in 
Table 16.1.

There are a few approaches for cluster analysis, which are all based on the 
same principal of grouping data according to their closeness or similarity. 
Here are some commonly used methods:
(1) Hierarchical cluster, used for cluster analysis of small number of indi

viduals or variables.
(2) Fast cluster, used for large number of individuals or variables.
(3) Cluster of variables.
(4) Cluster of ordered individuals, used to group individuals in the 

order that an individual will group only with individual next to 
him/her.

16.1.3 C luster sta tistics

The kind of statistics that measure the closeness of individuals or variables 
are called cluster statistics. The most commonly used cluster statistics are 
the distance and correlation coefficients.
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(1) Distance: Distance is used to cluster individuals. For any two individuals 
i and k, their Euclidean distance is defined as

dik = у / t e i  -  x k ])2 +  ( x i2 -  x k2) 2 H-------1- ( x im -  x km) 2

- 1 1/2

Xd XkĴ
7=1

Here, Xij and xkj are the values of the j  th variable for the ith and klh 
individuals, respectively. Sometimes we also use the square of Euclidean 
distance dfk.

In order to remove the unit of variables, we should standardize the vari
ables before we calculate the distance. A common way is to replace all 
variables in the unit of standard deviations, i.e., use the transformed variable

X U

where xj and Sj are the sample mean and sample standard deviation for the 
7 th variable. The standardized variable should have sample mean zero and 
sample standard deviation 1. The distance calculated using the standardized 
variable will not change by the alteration of the measurement unit.

(2) Correlation coefficients: Correlation coefficients are used for variable 
cluster analysis. For variables Xt and Xk, the correlation coefficient rik is

П к  =
£ " = i ( X j i  -  X i ) { x jk -  x k )

£ " = ] ( X j t  -  *<)2] [E " = i ( x J k  -  ^ ) 2]

16.2 Hierarchical Cluster

Hierarchical cluster is a commonly used method. The basic idea is the 
following. First, we define the distance between individuals and clusters. At 
the beginning, each individual is a cluster. We combine the two clusters with 
the minimum distance into a new cluster and then recalculate the distances 
between new cluster and all the other clusters. We, again, combine the two 
clusters with the minimum distance into one cluster and recalculate the
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new distances. Each time we repeat this procedure, the cluster number is 
reduced by 1 until all individuals are in one cluster. The whole process can 
be displayed by a tree graph with branches representing the clusters. Using 
different definitions of distances one may result in different trees and, thus, 
different set of clusters. In practice, we can use several distances to generate 
several trees; then compare these trees and use the background knowledge 
to select one that is most biologically reasonable.

SAS procedure PROC CLUSTER can be used to perform individual 
cluster analysis. It has 11 different distances to choose from, and displays 
the resulting trees.

Suppose we have two individuals from cluster A, as A\ and A2, respec
tively in Fig. 16.1. We also have three individuals, B\, B2, and B2, from 
cluster B.

The single linkage uses the smallest Euclidean distance between individ
uals from cluster A and individuals from cluster В as the distance between 
the two clusters. In Fig. 16.1 it is the distance between A2 and B\.

The complete linkage uses the largest Euclidean distance between indi
viduals from cluster A and individuals from cluster В as the distance 
between two clusters. In Fig. 16.1 it is the distance between A2 and fi3.

In the centroid method, the distance between two clusters is defined as the 
(squared) Euclidean distance between their centroids or means. In Fig. 16.1, 
it is calculated as the (squared) Euclidean distance between the midpoint of 
Ai and A2 and the centroid of B\, B2, and 5 3.

In average linkage the distance between two clusters is the average 
squared Euclidean distance between pairs of individuals, one in each 
cluster. In Fig. 16.1, it is the average of (squared) Euclidean distance

B 2

A2 *

* B i A i
* *

B 3.
*

Fig. 16.1 Illustration of several definitions of distance between two clusters.
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between A\ and B\, A\ and B2, A\ and B2, A2 and B\, A2 and B2 and 
A2 and B2.

In addition, there are other methods, such as median method, flexible- 
beta method, McQuitty’s similarity analysis, Ward’s minimum-variance 
method, EML method, density linkage and two-stage density linkage, etc.

Example 16.1 This study intended to use bacteria total fatty-acid mea
sured by gas chromatogram to analyze and cluster several types of bacteria. 
24 bacteria species were collected, including eight types of vibrio jejuni 
(denoted as J1-J8), three types of vibrio colon (denoted as CC1-CC3), nine 
types of spirobacteria pylorus denoted as (HP1-HP9), and four other enter
obacteria denoted as XX1-XX4. For each bacteria species, 12 fatty acid, 
denoted as X l-X  12 were recorded. The goal was to classify the 24 bacteria 
species using variables X l-X  12.

In this study, the number of individuals was only 24, which was small 
enough to use hierarchical cluster method. Using 11 distance methods in 
the SAS PROC CLUSTER, we obtained 11 trees. Most algorithms made 
three clusters. Among them, the results of average linkage, EML, and Ward’s 
minimum-variance methods had reasonable cluster results, which were sim
ilar to the clusters using other microbiologic methods.

Now we use the average linkage method as an example. The resulted 
tree is given in Fig. 16.2. In a tree, the objects that are clustered, either 
individuals or variables, are leaves', the cluster containing all objects is the 
roof, a cluster containing at least two objects but not all of them is a branch-, 
the general term for leaves, branches, and roots is node. If a cluster A is 
the union of clusters В and C, then A is the parent of В and C, and В and 
C are children of A. A leaf is thus a node with no children, and a root is a 
node with no parent. If every cluster has at most two children, the tree is a 
binary tree.

Figure 16.2 is a horizontal tree where the name of the individuals is dis
played on the vertical axis and the distance between individuals is displayed 
on the horizontal axis. The root is on the left and leaves on the right. Individ
uals are grouped from right to left. Every observed individual is a leaf in the 
most right column. If a sample has not yet been combined with others into a 
branch, we denote it as “O”. Once it is combined with others into a branch 
(i.e. a cluster), we use the notation “X”. Two clusters are separated by an 
empty row. As you look up from the right of the diagram, individuals and
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Fig. 16.2 Cluster tree using average linkage method.

clusters are progressively joined until a single, all-encompassing cluster is 
formed on the left (or root) of the diagram. Clusters exist at each level of the 
diagram. For example, the unbroken line of Xs at the top three rows of the 
0.3 level indicates that the two bacteria HP1 and HP6 have formed a cluster. 
The next cluster is between HP1, HP6, and HP5, at distance 0.85, etc. This 
tree plot is different from the tree diagrams presented in the literature. With 
the high resolution graphics option in S AS PROC TREE or based on the tree 
plot in Fig. 16.2, we can construct a tree using the horizontal and vertical 
lines to clearly display the process, like Fig. 16.3 in our example.
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Fig. 16.3 Tree diagram of average linkage method.

In Fig. 16.2, we can see that when the distance equals 2.2, there are three 
clusters with 9 HP bacteria, 8 CJ and 3 CC bacteria, and 4 XX bacteria. 
This cluster classification can be confirmed by other methods and therefore 
can be accepted with reasonable confidence. Using other methods can also 
generate three clusters with similar results.

16.3 Fast Cluster

When sample size is very large, the computational burden of the hierarchi
cal cluster method is heavy and the tree diagram can be too complicated to 
understand. Therefore, we can use SAS PROC FASTCLUS to save compu
tation time for large sample cluster. Because FASTCLUS procedure does 
not automatically standardize variables, if the variables used to cluster indi
viduals are all measured in the same unit, it should be fine; otherwise, if 
the variables are not measured in the same unit, they should be standard
ized before their uses in this procedure. The FASTCLUS procedure uses 
Anderberg’s nearest centroid method. It first selects a few starting clus
ter seeds and uses them as the centroids for the clusters; then it calculates 
all the distances between any individual and these centroids and clusters
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the individual to the cluster corresponding to the nearest centroid. This 
generates temporary clusters.

Based on these temporary clusters, the algorithm calculates the new 
centroids and, then, reclassifies the individuals based on updated centroids. 
The algorithm iterates this procedure until there is no change in clustering 
of the individuals.

The cluster seeds can be selected based on biological knowledge and 
clinical information or by the procedure FASTCLUST without human input. 
If we have prior knowledge and ideas about the number of clusters, we 
can select representative individuals as the cluster seeds. We can compile 
these seeds into a separate data file and read them into the program using 
the FASTCLUST option of “SEED=” the name of data file. If we decide 
to let the program automatically select the cluster seeds, we can use the 
option “MAXCLUSTERS=” to a reasonable number of maximum clusters. 
Different maximum initial numbers can give different clustering results. 
Therefore, the selection of initial maximum number should accord to all 
information available to your specific problem.

Example 16.2 The rehabilitation clinic of a hospital measured 300 nor
mal ears in order to develop some standards of normal ears. These stan
dards would be used as the references for ear repairing of ear trauma 
patients. For these 300 normal ears, they measured ear length (EC), ear 
width (EK), distance between helix and anthelix (EZ), ear shape (EX), and 
length of earlobe (ECX). In addition to these direct measures, they also 
used derived parameters: the ear index (EI)=(EK/EC) x 100% and Anthelix 
index (AI)=(EZ/EW)x 100%. The goal was to find representative clusters 
of normal ears.

Solution As 300 ears were too large for hierarchical cluster method, we 
should use the fast cluster method. After using the SAS procedure PROC 
STANDARD to standardize the measures, the PROC FASTCLUST was 
used to perform a cluster analysis. The initial cluster seeds were selected by 
the procedure. According to a survey of clinicians, the number of clusters 
should not be more than four. The clusters resulted from this analysis were 
given in Table 16.2. In this table, the means of four clusters were listed. 
They represented the average directions of each cluster with regard to the 
overall means in the unit of standard deviation. The original scales could 
be calculated backwards by multiplying the standard deviation and then
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Table 16.2 The frequencies and means of the four clusters in Example 16.2.

Cluster Frequency EC EK EZ El A1

1 128 0.15978 -0.22088 0.73193 -0.37862 0.77430
2 8 6 -0.79436 -0.18128 -1.02319 0.62456 -0.87649
3 12 -0.93105 -2.51375 -0.31450 -1.95620 1.33677
4 74 0.79778 1.00037 -0.02600 0.21386 -0.53748

adding the mean for each variable. In addition, PROC FASTCLUST could 
generate a list of observed individuals and their belongings to one of the 
four clusters.

16.4 Variable Cluster

When we want to group variables into different clusters, we use their corre
lation coefficients as the index of closeness. For example, in human genetics, 
people from different ethnicity and/or countries are studied. The individu
als can be the genotypes and the cluster analysis will cluster the genotypes 
based on the “distance” between people’s genetic profiles. The SAS proce
dure PROC VARCLUS is a tool to perform such analysis. Its principle is the 
same as the FASTCLUS. Once we standardized the variables, we can treat 
these variables as “individuals” and calculate their “distance” according 
to their similarity, which is measured by correlation coefficients. Once we 
have a cluster of more than one variable, we take average, either weighted or 
unweighted, of these variables in the cluster. These representative averages 
are the “centriods” of variables in their corresponding clusters. We can then 
perform the variable cluster again on these averages by treating them as 
new variables. Based on this principle, it is not difficult to understand the 
following processes.

(1) To set initial seeds by assigning the number of clusters k\
(2) To calculate the representative averages;
(3) To assess the closeness of the к representative averages and update the 

number of clusters, k \ ;
(4) To replace k\ as к in (1) and repeat steps (2) and (3), until no more 

improvement exists.
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In SAS PROC VARCLUS, selecting option CENTROID means to 
use simple (unweighted) average of all variables in a class as its repre
sentative average. If no option is selected, the principal factor is taken 
as the representative average. Also, there are options to limit the com
putation, such as MAXC that specifies the maximum number of clus
ters. If MAXC is not chosen, the maximum number of clusters is the 
number of variables. PROPORTION specifies the minimum percentage 
of the variance of cluster among the overall total variance, which also 
eliminates the small clusters. If it is not chosen, the minimum propor
tion is 1. MAXEIGEN specifies the allowance of the second eigenval
ues. Beyond this level, the cluster should be broken into two clusters. This 
will assure the principal factor to represent the cluster. MAXEIGEN is 1 
when PROPORTION and MAXC are not specified and 0 otherwise. When 
the method of centriod is chosen, you should not use the MAXEIGEN, 
because the centriod uses the average and the latter uses the principal 
factor.

PROC VARCLUS can be used to develop cluster levels like hierarchical 
cluster analysis by choosing the specification of HIERARCHY. The output 
can be obtained using OUTTREE and a specification of an SAS dataset. 
Then PROC TREE can be used to plot the tree diagram.

Example 16.3 Using data in Example 16.1 to perform a variable cluster 
analysis.

Solution Using PROC VARCLUS without selecting specific options, it 
will invoke the default principal factor method and the second eigenvalue 
cannot be larger than 1. After clustering, the 12 bacteria family becomes 
three clusters: X4, X5, X8 and X I1 are in the first cluster, XI, ХЗ, X7, 
X9, X10, and X12 are in the second cluster, X2 and X6 are in the third 
cluster.

16.5 Computerized Experiments

Experiment 16.1 Hierarchical cluster analysis Using the data in 
Example 16.1, we want to run a hierarchical cluster analysis based on com
plete linkage, single linkage, average linkage, flexible-beta, and Ward’s 
minimum-variance methods. We want to compare the cluster results.
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Program 16.1 Hierarchical cluster using flexible-beta method.

Line Program

01 DATA A;
02 INPUT NAME $ X 1 -X 12;
03 CARDS;
04 HP1 0.12 25.42 0.00 7.72 0.00 0.00 0.00 29.06 25.92 0.00 11.76 0 .00 ..........
05 XX4 3.85 6.76 0.19 38.95 10.10 0.00 12.24 2.47 18.95 0.00 6.40 0.10
06 ;
07 PROC CLUSTER DATA=A OUTTREE=B METHOD=FLEXIBLE; VAR XI-
08 X12;VAR X1-X12;
09 ID NAME;
10 RUN;
11 PROC TREE DATA=B PAGES= 1 SPACES= 1;
12 ID NAME;
13 RUN;

Lines 01 to 06 in Program 16.1 read the data into the SAS dataset 
A. The variable NAME is the assigned indicator of bacteria types. 
Line 7 calls the program PROC CLUSTER. In the option, we selected 
OUTTREE=B to output cluster analysis results to SAS data hie B. We 
selected METHOD=FLEXIBLEto suggest the use of flexible beta method. 
Other possible choices include COMPLETE for complete linkage, SINGLE 
for single linkage, AVERAGE for average linkage, and WARD for Ward’s 
minimum variance, etc. The choice of STD standardizes the variables by 
subtracting the mean and then divided by the standard deviation. Line 08 
lists the variables to be clustered, i.e., XI to X12. Line 09 specifies using of 
bacteria type (NAME) as the identification (ID) in the output. Without this 
specification, the results would be named as OB 1, OB2,.. .,OB12. Line 11 
of the program calls the PROC TREE to print the cluster analysis results. 
By selecting PAGES=1, the size of the tree diagram is limited to one page. 
Selection of SPACES=1 made the space between two individuals by one 
empty line. Usually, the tree is displayed in a vertical format with roots on 
the top and leaves at the bottom. If we add the option HORIZONTAL, the 
tree will be displayed in a horizontal format with root on the left and leaves 
on the right.

Experiment 16.2 Fast cluster analysis Using data in Example 2 of 
Appendix III to classify the normal ears into no more than four clusters.
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Program 16.2 Fast cluster analysis.

Line Program

01 DATA A;
02 INPUT EC 2.1 EK 2.1 EZ 2.1 EX 1.0 ECX 1.0;
03 EI=EK/EC* 100; A1=EZ/EK* 100;
04 CARDS;
05 663519531 ..........
06 653215524
07 ;
08 PROC STANDARD DATA=A OUT=B MEAN=0 STD= 1;
09 VAR EC EK EZ El AI;
10 PROC FASTCLUS DATA=B MEAN=C I OUT=C2 MAXC=4 DISTANCE;
11 VAR EC EK EZ El AI;
12 RUN;
13 PROC PRINT DATA=C 1;
14 PROC PRINT DATA=C2;
15 RUN;

Experiment 16.3 Variable cluster analysis Using the data in Experiment
16.1 to perform a variable cluster analysis. In this example, we use VAR- 
CLUS to cluster the 12 fatty acid variables. We did not select any options 
and therefore, the default principal factor approach was used with the default 
constrains that the second eigenvalue within a cluster should not be more 
than 1.

Program 16.3 Variable cluster analysis.

Line Program

01 DATA A;
02 INPUT NAME SX1-X12;
03 CARDS;
04 HPI 0.12 25.42 0.00 7.72 0.00 0.00 0.00 29.06

25.92 0.00 11.76 0.00 ..........
05 XX4 3.85 6.76 0.19 38.95 10.10 0.00 12.24 2.47 

18.95 0.00 6.40 0.10
06 ;
07 PROC VARCLUS DATA=A;
08 RUN;
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Principal Component Analysis

When several parameters are measured from a subject, multiple ran
dom variables are involved, which reflect different aspects of the subject. 
Although there is no preference among these variables when they are col
lected, the amount of information provided by these variables are not nec
essary the same. If we do not know how to summarize these variables, the 
principal component analysis can be used.

17.1 The Basic Concepts of Principal Component Analysis

17.1.1 Search ing f o r  the sum m ary variable

Example 17.1 The development indices of urban young adults
Table 17.1 listed the average values of several development indices of 

young adults of Han ethnicity obtained by 1985 Chinese Health Census, 
aged 19 to 22, from 28 provinces and cities in China with the numbers
1 , 2 , . . . ,  28 representing Beijing, Tianjing, Hebei, . . . ,  etc., Hainan was 
part of Guangdong at that time. There were no data from Tibet in this table.

We consider the data in Table 17.1 as a representative sample of past 
and future of similar measurements in young adults. The six indices varied 
among provinces and their pairwise correlations were different. We would 
want to have a single or a few variables to summarize most of the information 
provided by the six development indices. Thus, we can use one or few 
variables instead of all six variables in application.

In addition to reliability and accuracy, a useful index for development 
should have variation ranges to reflect differences in the population. If an 
index is always the same for different individual subjects, it does not provide 
any information to separate them. Therefore, an index with a large between- 
subject variation is a good summary index.

479
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Table 17.1 Average development indices of Han young adults (Age 19-22) in 1985 Chi
nese census.

Height
Province# (cm) Xj

Sitting 
height 

(cm) X 2

Weight 
(kg) X3

Chest 
size (cm)

x 4

Shoulder 
width 

(cm) X5

Pelvic
width

(cm) X6

1 173.28 93.62 60.10 86.72 38.97 27.51
2 172.09 92.83 60.38 87.39 38.62 27.82
3 171.46 92.78 59.74 85.59 38.83 27.46
4 170.08 92.25 58.04 85.92 38.33 27.29
5 170.61 92.36 59.67 87.46 38.38 27.14
6 171.69 92.85 59.44 87.45 38.19 27.10
7 171.46 92.93 58.70 87.06 38.58 27.36
8 171.60 93.28 59.75 88.03 38.68 27.22
9 171.60 92.26 60.50 87.63 38.79 26.63

1 0 171.16 92.62 58.72 87.11 38.19 27.18
11 170.04 92.17 56.95 88.08 38.24 27.65
12 170.27 91.94 56.00 84.52 37.16 26.81
13 170.61 92.50 57.34 85.61 38.52 27.36
14 171.39 92.44 58.92 85.37 38.83 26.47
15 171.83 92.79 56.85 85.35 38.58 27.03
16 171.36 92.53 58.39 87.09 38.23 27.04
17 171.24 92.61 57.69 83.98 39.04 27.07
18 170.49 92.03 57.56 87.18 38.54 27.57
19 169.43 91.67 57.22 83.87 38.41 26.60
20 168.57 91.40 55.96 83.02 38.74 26.97
21 170.43 92.38 57.87 84.87 38.78 27.37
22 169.88 91.89 56.87 86.34 38.37 27.19
23 167.94 90.91 55.97 86.77 38.17 27.16
24 168.82 91.30 56.07 85.87 37.61 26.67
25 168.02 91.26 55.28 85.63 39.66 28.07
26 167.87 90.96 55.79 84.92 38.20 26.53
27 168.15 91.50 54.56 84.81 38.44 27.38
28 168.99 91.52 55.11 86.23 38.30 27.14

17.1.2 Definition o f the principal components

First, we should standardize all variables. Let X, and S,■ be the sample mean 
and sample standard deviation for i = 1, 2 , . . . ,  6. Let

Хи -  Xi 
xu = -----------------

S,
(17.1)
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16.6 Practice and Experiments

1. Both the cluster analysis and discriminant analysis are the classification 
techniques for multivariate data analysis. How are they different? What 
kind of problems do they solve respectively? Give examples to illustrate 
your points.

2. If we have already known the cluster of Example 16.1 results that HP 
bacteria form one cluster; CJ and CC are in the second cluster; and the 
rest four enterobacteria forms the third cluster. Using X1-X12 to perform 
a discriminant analysis. Are the discriminant results reasonable?

3. Using the data in Example 16.1 and perform a fast cluster analysis with 
MAXC=2, 3, and 4. Compare the results with Figs. 16.2 and 16.3 to see 
their differences from the clusters by average linkage method in the cluster 
sizes of 2, 3 and 4.

4. Using the variables of EC, EX, EZ, El and AI in Example 16.2 to perform 
a hierarchical cluster analysis via centriod method. Through this exercise, 
how do you think about the use of hierarchical cluster analysis for large 
sample data?

5. In Chap. 14, we discussed discrimination analysis of retinopathy severity 
based on the data from an electro-retinography. Use the training samples 
with ten variables in the data set to perform a fast cluster analysis to form 
three severity groups. Compare the severity groups with the three groups 
given in the training data and see if they agree with each other.

6. An orthodontic clinic wanted to study the erupted wisdom tooth. 
50 patients with early erupted wisdom tooth were used as study individ
uals. Every patient had a head X-ray film and from which 25 quantitative 
measurements were derived. Data are given in Appendix III.

(1) Try to use these 25 quantitative measures to define hierarchical clusters 
of individuals using different distance metrics. Cluster the data based on 
the tree diagram to arrange the 50 patients into three clusters. Compare 
the cluster results against the classification results by experts based 
on morphology of bone and tooth. Which distance metric is the best 
method to generate clusters that is most similar to those suggested by 
orthodontic experts?
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(2) Use 25 measures, various distance metrics, and initial cluster seeds 
based on experts’ classifications to perform fast cluster analyses of 50 
patients. The maximum number of clusters is fixed at 3. Compare your 
cluster results with the orthodontist classifications.

(1st edn. Ying Lu; 2nd edn. Yuanto Hao, Weiyang Su, Jiqian Fang)
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with j  — 1 , 2 , . . . ,  28, representing the averages from 28 provinces and 
cities. Obviously, the sample mean and sample standard deviation of Xjj 
were 0 and 1, respectively. We use x , ,  i =  1, 2 , . . . ,  6, to denote the stan
dardized variables. We can search for summary indices one by one by the 
following steps.

(1) Denote the first summary index as C\. C\ is selected from linear com
bination of x i , X2 , . . . ,  Хб- That is

C i =  a \ \ X \  +  Я12-К2 +  • • ■ +  Я]бХб. (17.2)

We do not care about the scales of a\\, a n , . . . ,  « 1 6  as long as they change 
proportionally. The between-subject variation is proportional to the scales. 
Thus, we can simply put the constrain

an T  ai2  T" й?з +  af4  -T af5 +  af6  — 1. (17.3)

To make C, the best, we want it to have the maximum variation among 
samples than any other linear combinations. That is Var(C 1) is maximized 
among all linear combinations with constrains of (17.3).

(2) We can also search for the second best index. It should be another linear 
combination of X\, X2 , . . . ,  Xf,.

C2 =  d2 \X\ +  0 2 2 * 2  +  ' ' ' +  Й26Х6- (17.4)

In order to effectively represent information from original variables, 
there is no need to include any information represented by C\ in the second 
index C2. Thus, besides the constraints of (17.3), the vector of coefficients 
for C2, denoted by (я2ь  «2 2 , • ■ ■, a2(>), should be orthogonal to the vector 
of coefficients for C\. There are many such choices and we want to use the 
best linear combination such that Var{C2) is maximized among all possible 
choices.

(3) We can continue to search for the next summary index. As there are 
only six original variables, the maximum independent indices is not more 
than six.

In general, suppose that we have p random variables X\, X2, . . . ,  Xp, 
and have obtained their sample means X \ ,X 2, . . .  , X P and sample standard 
deviations 5 b S2, . . . ,  Sp. After performing standardization as in (17.1), we
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have the following definitions:

(1) For all linear combinations

C i  —  a\\X\ +  a\2 x 2  +  • • • +  a\pXp

with the constraint that

a n  +  a ?2 -̂------ ^ ° 2\ p  ~  1

the first principal component is the linear combination that has maxi
mum variance Var(C\).

(2) For all linear combinations

C 2 =  Cl2\X\  +  а 22Х 2 +  ‘ ‘ ‘ +  « 2 p Xp

with the constraints that

(i.e., the coefficients for C\ and C2 are orthogonal to each other), the 
second principal component is the linear combination that has maxi
mum variance Var(C2).

(3) We can similarly define the third, fourth,. . up to /rth principal com
ponents.

17.1.3 P roperties o f  p r in c ip a l com ponen ts

Principal components C\,C2, . . .  ,C P have the following properties.

(1) Principal components are uncorrelated. That is, for any pair i and j , the 
correlation coefficient between C, and Cj is zero.

p

i = i

Corr(Ch Cj) = 0 .

(2) Coefficients (an , ai2, . . . ,  aip) are unit vector, i.e.,

a n  ----------- F  a ?P =  1 •

(17.5)

(17.6)

(3) The variances of principal components decrease, i.e.,

Var(C,) >  Var(C2) > > Var(Cp). (17.7)
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(4) The total variance of principal components is the same as the total 
variance of the original variables, i.e.,

Var{C\) +  Var(C2 ) +  • • • +  Var(Cp)

=  Var{x{) +  Var(x2 ) +  ■ ■ • +  Var(xp)

=  p .  (17.8)

This property reveals that principal components are formed by reorga
nizing the original variables. They do not gain or lose any information from 
the original variables.

17.2 Computation and Interpretation of Principal 
Components

17.2.1 Computational procedures

Although from their definitions, the principal components seem to be cal
culated stepwise, the actual computation procedure is not stepwise.

Let R be the correlation matrix of X\, X2 ,...,XP.

/ 1 П 2 ••• r,p\
П 2  1 ••• r2p

\ r iP r2p ••• 1 /

(17.9)

We can prove that the combination coefficients for the ith principal com
ponent ац, an, . . . ,  aip are the solution for the following linear equations 
based on the definition of principal components.

(1 — Я ,)а ,1  +  Г12Й/2 +  +  f  1 p a ip —  0>

f i2 @i i +  ( 1  — ^i)d2  +  • • • +  r2 paip =  0 ,
(17.10)

r \ p a i\ +  r 2pa i2 +  ' ' ' +  (1 — ^ i ) a i p — 0 .

Here, / 4  is the ith eigenvalue of the correlation matrix R,

kx >  Я2 >  ••• >  >  0 (17.11)



484 Medical Statistics and Computer Experiments

Table 17.2 Correlation matrix of data in Table 17.1.

X\ * 2 *3 X4 *5 * 6

X i 1 .0 0 0 0 0.9557 0.8539 0.4140 0.1815 0.1004
X 2 1 .0 0 0 0 0.8073 0.4041 0.2471 0.2362
*3 1 .0 0 0 0 0.5326 0.2416 0.0581
x 4 1 .0 0 0 0 -0.0541 0.3302
*5 1 .0 0 0 0 0.4358
* 6 1 .0 0 0 0

and (an, a,2 , . . . ,  aip) is the corresponding eigenvector. Furthermore, the 
eigenvalue A, is the variance of the /th principal component. All the cor
relation coefficients between principal components and initial variables for 
Example 17.1 are given in Table 17.5.

Var(Ci) =  U. (17.12)

Thus, we can use the following procedures to calculate the principal 
components:

(1) Calculate the correlation matrix R of X j, %2 , • ■ •»Xp.
(2) Calculate the eigenvalues of R.
(3) Calculate the corresponding eigenvectors for the eigenvalues.

Example 17.2 Calculate all principal components according to the data 
in Table 17.1.

Solution First we obtain the correlation matrix as in Table 17.2. Based 
on the matrix in Table 17.2, we can obtain the eigenvalues in Table 17.3.

The second column in Table 17.3 presents the / th eigenvalue, which 
is the variance of the г th principal component, i =  1 , 2 , . . . ,  6. The third 
column shows the differences between the variances of two consecutive 
principal components, i.e., the magnitudes of decreases. The fourth column 
reflects the contribution of /th principal component, and the fifth column, 
the contribution up to the /th principal component, / =  1 , 2 , . . . ,  6. The 
coefficients for the principal components, i.e., the eigenvectors, are given 
in Table 17.4.



Principal Component Analysis 485

Table 17.3 Eigenvalues of correlation matrix for data in Example 17.1.

Principal
components Eigenvalues

Differences 
between two 
eigenvalues

Percentage
variations

Cumulative
percentage
variations

1st 3.17310 1.85631 0.52885 0.52885
2 nd 1.31678 0.38000 0.21946 0.74831
3rd 0.93679 0.51650 0.15613 0.90445
4th 0.42028 0.29894 0.07005 0.97449
5th 0.12135 0.08965 0.02023 0.99472
6 th 0.03170 0.00528 1 .0 0 0 0 0

Table 17.4 Eigenvectors for the eigenvalues in Example 17.1.

Variables 1st 2 nd 3rd 4 th 5th 6 th

* 1 0.522252 -0.195699 -0.189953 -0.253741 0.226568 0.732908
* 2 0.525559 -0.080164 -0.167681 -0.388390 0.304015 -0.667812
*3 0.511208 -0.181857 -0.103986 0.334729 -0.758103 -0.089540
x 4 0.345993 -0.046978 0.741653 0.456060 0.346103 -0.015969
*5 0.188783 0.656595 -0.470338 0.498021 0.252640 0.013219
* 6 0.185358 0.699199 0.392072 -0.465521 -0.312900 0.091793

17.2.2 The n um ber o f  p rin c ip a l com ponents

We have previously pointed out that p random variables produce p prin
cipal components. As the total variance remains the same for the original 
variables and the principal components, the first few principal components, 
such as C\ and C2, account for more variation than the last few principal 
components, such as Cp-\ and Cp. In our example in Table 17.3, Var(C\) — 
3.17310, Vbr(C2) =  1.31678, but Var(Ce) =  0.03170, Var(C5) =0.12135. 
Therefore, only the first few components play the role of “principal” ones. 
We always keep the first few principal components and drop the rest in 
practice.

How many principal components to keep and how much should be suffi
cient depend on the cumulative variance explained by these components. In 
applications, we can roughly decide the percentage of variance we want to 
retain and thus to decide how many principal components to keep. If retain
ing a principal component adds only slightly to the cumulative variance,
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this principal component should be dropped. In Table 17.3. the first three 
principal components account for 90.45% total variation, which is the major
ity of information we are interested in so that keeping the first three principal 
components is appropriate.

Another general rule is that a principal component is worth consider
ing if the corresponding eigenvalue is above one. Using this rule to the 
above example, the third principal component should be dropped because 
its eigenvalue is less than 1. If that is the case, the first two principal compo
nents explained 74.8% of the total variance. Therefore, how many principal 
components to keep depends on the satisfaction of the researchers with the 
information explained by principal components.

17.2.3 C orrelation  betw een p r in c ip a l com ponen ts a n d  variables  

Let C, be the / th principal component,

Cj = a , i * i  + a i2 x2 -\------- b aipxp. (17.13)

The relationship between C, and xj can be described by their correlation 
coefficient:

Corr(Cj,Xj) =  a,j^Var(C,) =  aUy/Ti. (17.14)

In Table 17.4, we underlined the j th element of the /'th eigenvector that 
the absolute value of the correlation coefficient C o rr(C ,, Xj) is greater than 
0.5. For example

Corr{Cu *,) =  0.522252V3.17310 =  0.930298,

Corr(C2,x ,) =  -0.195699V 1.31678 =  -0.224567.

Thus, the first element of the first eigenvector (0.522252) was underlined, 
but the first element of the second eigenvector (—0.195699) was not.

There are no eigenvectors underlined for the fourth to sixth principal 
components because their correlations with original variables are all small.

For the first three principal components, the underlined elements of the 
eigenvectors suggest stronger correlation between the principal components 
and these variables. It helps to interpret the principal components. For exam
ple, the first principal component mainly reflects the body size because it 
correlates highly with the variables height, sitting height, weight, and chest
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Table 17.5 Correlation between principal components and variables.

Cl Cl c 3 C4 c 5 c 6

X\ 0.9303 -0.2246 -0.1839 -0.1645 0.0789 0.1305
* 2 0.9362 -0.0920 -0.1623 -0.2518 0.1059 -0.1189
*3 0.9106 -0.2087 -0.1007 0.2170 -0.2641 -0.0159
x 4 0.6163 -0.0539 0.7178 0.2957 0.1206 -0.0028
*5 0.3363 0.7535 -0.4552 0.3229 0.0880 0.0024
* 6 0.3302 0.8023 0.3795 -0.3018 -0.1090 0.0163

size. The second principal component correlates more with the shoulder 
width and pelvic width and hence reflects the body width. However, not 
all components can be easily interpreted, such as the fourth to the sixth 
principal components.

In summary, the principal component analysis is useful to summarize 
data. However, not all components have clear interpretations.

17.3 Principal Component Analysis in Regression

Principal component analysis is often not an end in itself, but rather a means 
to achieve the goals. They can be used as the intermediate step in multivariate 
regression, cluster analysis and discriminant analysis, etc. The goal of this 
subsection is to introduce the principal component analysis in regression.

As we pointed out in the previous chapter of multiple regression analysis, 
the regression coefficients can be highly unstable when the independent vari
ables are strongly correlated. Sometimes, we have uninterpretable counter 
intuitive results. In such cases, we can use the principal component analysis 
to reorganize the original variables into several principal components. The 
strongly correlated variables will most likely be represented by the same 
principal component and different principal components are uncorrelated. 
As long as we keep enough principal components, we will retain most 
information of the original variables. Using the principal components as 
independent variables in regression analysis will avoid the problem of col
inearity. When we drop the last few principal components in the regression 
model, we can get reasonable results. Of course, if we use all p principal 
components, the regression will be the same as the use of all original 
variables.
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Example 17.3 Dr. Chen (Chinese Health Statistics, Vol. 8 , Issue 1, 
1991) reported an example of principal component analysis in regression. 
In the study, 22 fetuses were observed for their age since fertilization 
(T weeks) and morphology, such as their height (Xi, cm), head circum
ference (X2 , cm), and weight (X3 , g). The goal was to derive a regression 
equation of Y on variables X i, X2 and X3 . The data are given in Table 17.6.

Solution If we directly perform a regression analysis using independent 
variables X i, X2 and X3 , we had the following regression equation:

Y =  11.0117+ 1.6927X] -  2.1588X2 +  0.0075X3. (17.15)

Table 17.6 The age since fertilization and the morphology measures of 22 fetuses.

No.

Height
(cm)
* 1

Head
circumference (cm) 

* 2

Weight (g) 
*3

Weeks since 
fertilization 

Y

1 13.0 9.2 50.0 13.0
2 18.7 13.2 1 0 2 .0 14.0
3 2 1 .0 14.8 150.0 15.0
4 19.0 13.3 1 1 0 .0 16.0
5 2 2 .8 16.0 2 0 0 .0 17.0
6 26.0 18.2 330.0 18.0
7 28.0 19.7 450.0 19.0
8 31.4 22.5 450.0 2 0 .0

9 30.3 21.4 550.0 2 1 .0

1 0 29.2 20.5 640.0 2 2 .0

11 36.2 25.2 800.0 23.0
12 37.0 26.1 1090.0 24.0
13 37.9 27.2 1140.0 25.0
14 41.6 30.0 1500.0 26.0
15 38.2 27.1 1180.0 27.0
16 39.4 27.4 1320.0 28.0
17 39.2 27.6 1400.0 29.0
18 42.0 29.4 1600.0 30.0
19 43.0 30.0 1600.0 31.0
2 0 41.1 27.2 1400.0 33.0
21 43.0 31.0 2050.0 35.0
2 2 49.0 34.8 2500.0 36.0
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Table 17.7 The correlation matrix of Example 17.3.

X i *2 *3 Y

1 .0 0 0 0

X 2 0.9975 1 .0 0 0 0

*3 0.9441 0.9470 1 .0 0 0 0

Y 0.9525 0.9430 0.9701 1 .0 0 0 0

Table 17.8 Principal component analysis of Example 17.3.

Ci c 2 C3

X i 0.58057 -0.41852 0.69841
x 2 0.58107 -0.38789 -0.71547
* 3 0.57034 0.82121 0.01799
Var 2.9261 0.0714 0.0025
%  variation 97.54 2.38 0.08
Cumulative % variation 97.54 99.92 100

Here, the regression coefficient for head circumference was negative, 
which was counter intuitive as we expected the positive relationship between 
fertilization age and head circumference. It was easy to see the reason of 
such negative coefficients because of high correlation between the three 
independent variables as shown in Table 17.7. For example, the correlation 
coefficient between X\ and X2 was 0.9975. The other two correlation coef
ficients were also high. There was a strong colinearity of the three variables. 
Thus, the regression coefficients of X\ and X2 in (17.15) reflected not only 
their contribution to Y but also the contribution of X2 to Y. Thus, a negative 
coefficient of X2 was necessary to compensate the over contribution of X\ 
and X3 .

A principal component analysis was performed, and the results were 
summarized in Table 17.8.

As Уаг(Сз) «а 0, we only kept the first two principal components C\ 
and C2. The regression equation of Y on C\ and C2 was

Y =  23.72727 +  3.882227C, +  3.099072C2
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with

X, -  33.04549 X2 -  23.26364
C, =  0.58057 —  +  0.58107-

+  0.57034

9.710168 
X3 -936.9091 

690.3048 ’

6.857498

X, -  33.04549 X2 -  23.26364
C2 =  -0 .41852 ________—  +  0.38789-

+  0.82121

9.710168 
X3 -  936.9091

6.857498

690.3048

Replace C\ and C2 by the above expressions, the new regression equation
was

Y =  10.43671 +0.09854X ! +  0.15366X2 +  0.00689X3

which had a positive regression coefficient for X2. The numerical confusion 
caused by the direct regression using X\, X2 and X3 was resolved.

Similar idea can be used for discriminant analysis. When the indepen
dent variables are strongly correlated, using them directly in discriminant 
analysis will face the same colinearity problem. The problem can be avoided 
by performing the principal component analysis first and then use the prin
cipal components to perform discriminant analysis. This approach is also 
applicable to in Chaps. 28 and 29 for logistic and Cox regression analysis.

17.4 Computerized Experiments

Experiment 17.1 Sampling experiment of principal component analysis
Let us generate a value from standard normal distribution N(10, 1), denoted 
as X b then generate a value from N (2X\, 1), denoted by X2; further gen
erate a value from N (30,4), denoted by X3, then generate a value from 
N(3X 3 , 4), denoted by X+ gathering these four values as a vector. Repeat
ing this experiment 100 times creates a “sample” of (Xi,  X2, X3, X4) with 
100 “individuals”. Perform the following analyses:

(1) Calculate the variance of four variables and the total variance;
(2) Draw histograms of the four variables;
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(3) Calculate the correlation matrix of four variables and summarize their 
characteristics;

(4) Calculate four principal components C\, C2, C3 and C4 , their contribu
tions to total variance, and the variables they represent;

(5) Calculate C\, Ci, C3 and C4 for each individual;
(6 ) Calculate the variances of Cj, C2 , C3 and C4 and their total variance. 

Compare the total variance with (1);
(7) Draw histograms for C\, C2 , C3 and C4 and compare them with (2);
(8 ) Calculate correlation matrix of С] , С 2 ,Сз and C4 and compare it 

with (3).

Program 17.1 Sampling experiment of principal component analysis.

Line Program Line Program

01 DATA A; 17 VBAR X2/MIDPOINTS= 15 TO 25 BY 0.5;
0 2 DO 1=1 TO 100; 18 PROC GCHART;
03 X 1 =RANNOR(0)+10; 19 VBAR X3 / MIDP01NTS=24 TO 36 BY 1;
04 X2=RANNOR(0)+X 1 *2; 2 0 PROC GCHART;
05 X3=RANNOR(0)*2+30; 21 VBAR X4 / MIDPOINTS=84 TO 96 BY 1;
06 X4=RANNOR(0)*2+X3*3; 2 2 PROC PRINCOMP OUT=B PREFIX=C;
07 OUTPUT; 23 VAR XI X2 ХЗ X4;
08 END; 24 PROC MEANS;
09 PROC MEANS; 25 VAR Cl C2 СЗ C4;
10 VAR XI X2 ХЗ X4; 26 PROC CORR;
11 PROC CORR; 27 VAR Cl C2C3 C4;
12 VAR XI X2 ХЗ X4; 28 PROC GCHART;
13 GOPTIONS DEVICE=WIN; 29 VBAR Cl /LEVELS=12;
14 PROC GCHART; 30 PROC GCHART;
15 VBAR XI /MIDPOINTS=7 31 VBAR C2 /LEVELS=10;

TO 13 BY 0.5; 32 RUN;
16 PROC GCHART;

Lines 02 to 08 of Program 17.1 generate 100 “individuals” and assign 
them to dataset A. Lines 09 to 10 calculate the mean and standard deviations 
of the four variables. Lines 11 to 12 calculate correlation matrix. Lines 13 
to 21 draw four histogram charts. Readers may adjust the midpoints and 
ranges to display a better figure. Lines 22 and 23 perform a principal com
ponent analysis and store the output into SAS dataset B. The levels are
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specified as 12 and 10 respectively. Readers can adjust the levels to see the 
changes.

Experiment 17.2 Principal component analysis in regression of 
strongly correlated variables Let X\ as a random value from IV (10, 1) and 
X2 as random value from N(X 1, 1); further generate X3 as a random value 
from N(X 1 —X2 , 1) and X4  as a random value from N(X\ +  X2 — X3, 1 ).Y 
is a random value from N(X\ +  2X2 +  ЗХ3 +  4X 4, 1); gathering these four 
values as a vector. Repeating the “sampling” procedure 100 times generates 
a study “sample” of (Xi,  X2 , X3 , X4).

(1) Perform a regression of Y on X 1 , X2, X3, X4;
(2) Perform a principal component analysis for X b X2, X3, X4, and keep 

some principal components to maintain 95% of total variations;
(3) Perform a regression of Y on the retained principal components;
(4) Replace the principal components by the original variables 

X\, X2, X3, X4 using the relationship between them;
(5) Compare the results (1) and (4) with the expected relationship that 

M y \x  =  X, +  2 X2 +  ЗХ3 +  4X4.

Program 17.2 Principal components analysis in multiple regression.

Line Program Line Program

0 1 DATA A; 09 END;
0 2 DO 1=1 TO 100; 10 PROC REG;
03 X1=RANNOR(0)+10; 11 MODEL Y=X1 X2 ХЗ X4;
04 X2=RANNOR(0)+X 1; 1 2 PROC PRINCOMP OUT=B
05 X3=RANNOR(0)+X 1-X2; PREFIX=C;
06 X4=RANNOR(0)+X 1+X2-X3; 13 VAR XI X2 ХЗ X4;
07 Y=RANNOR(0)+X 1 +X2*2+ 14 PROC REG;

X3*3+X4*4; 15 MODEL Y=C1;
08 OUTPUT; 16 RUN;

The first half of the program is similar to Program 17.1, which generates 
Y andX| ,  X2, X3, X4. In program 17.2, lines lOand 11 perform a regression 
analysis. Lines 12 and 13 perform a principal component analysis. Lines
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Table 17.9 Data of 25 controls and 25 CHD patients.

Patients G  =  1 Controls G  =  2

ID X i X2 *3 *4 *5 ID * 1 * 2 *3 X 4 *5

1 61 170 198 8 8 93 26 63 1 0 0 154 44 83
2 6 6 130 233 2 0 0 1 0 0 27 55 130 195 124 1 0 0

3 64 190 205 50 1 0 2 28 64 104 216 1 0 0 1 1 0

4 73 140 186 133 106 29 59 150 229 175 85
5 59 140 294 250 1 1 0 30 40 1 2 0 128 67 1 0 0

6 6 6 140 225 144 92 31 59 150 229 175 85
7 55 144 181 44 96 32 56 1 0 0 134 1 0 0 85
8 47 1 2 0 167 142 87 33 53 138 206 40 8 6

9 83 170 158 133 85 34 57 1 00 181 50 97
10 81 124 188 1 0 0 91 35 45 1 1 0 186 67 79
11 73 180 223 150 90 36 60 1 20 154 1 0 0 95
12 76 170 198 163 99 37 60 150 167 89 8 8

13 6 6 178 223 83 98 38 70 132 191 344 118
14 67 166 109 56 96 39 59 1 2 0 187 140 87
15 75 166 218 89 96 40 72 1 2 0 186 150 8 8

16 70 1 0 0 259 83 104 41 58 150 155 89 72
17 75 176 233 167 90 42 58 130 124 78 75
18 71 1 2 0 179 1 00 168 43 41 1 2 0 217 344 111

19 75 230 174 67 157 44 47 90 184 74 90
2 0 6 6 176 191 80 8 8 45 62 146 134 56 85
21 61 156 178 2 0 0 97 46 69 150 2 1 1 1 0 0 93
2 2 72 170 160 1 0 0 8 8 47 45 96 131 78 108
23 63 140 198 78 1 0 0 48 61 130 163 67 94
24 73 150 2 1 2 1 22 190 49 53 1 0 0 183 50 94
25 58 150 132 150 95 50 80 170 165 67 104

14 to 16 perform a regression analysis on the first principal component. 
Readers should try to add second and third principal components.

17.5 Practice and Experiments

1. Pan (Chinese Health Statistics, 9(4), 1993) provided a data set of 25 
normal controls and 25 patients with cardiovascular heart disease (CHD), 
which is now given in Table 17.9.

In Table 17.9, X] is age in years; X2 is systolic blood pressure in unit 
of mmHg, X3 is cholesterol level in unit of mg/100ml; X4  is triglyceride 
level in unit of mg/lOOml.
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Table 17.10 Observed data of 15 male infants.

ID X ]  (cm) * 2  (kg) Y  (cm2)

1 54.0 3.00 2446.2
2 50.5 2.25 1928.4
3 51.0 2.50 2094.5
4 56.5 3.50 2506.7
5 52.0 3.00 2 1 2 1 .0

6 76.0 9.50 3845.9
7 80.0 9.00 4380.8
8 74.0 9.50 4314.2
9 80.0 9.00 4078.4

10 76.0 8 .0 0 4134.5
11 96.0 13.50 5830.2
12 97.0 14.00 6013.6
13 99.0 16.00 6410.6
14 92.0 11.00 5283.3
15 94.0 15.00 6101.6

(1) Perform a binary discriminant analysis to generate a discriminant 
function;

(2) Perform a principal components analysis and use the principal compo
nents to generate a discriminant function; compare the results with (1).

2. Zhen and Wang (Chinese Health Statistics; 11(3), 1994) reported a 
dataset of height (Xi, cm), weight (X2, kg), and body surface area (F, cm2) 
from 30 infants. We use a subset of it with 15 male infant data in Table 17.10.

(1) Make a scatter plot of X | and X2;
(2) Perform a principal component analysis for X\ and X2,
(3) Draw the vector of principal components in the scatter plot (1), and 

discuss the interpretation of the two principal components;
(4) Perform a regression analysis of F on the first principal component;
(5) Perform a regression analysis of Y on the second principal component;
(6) Perform a regression analysis of F on both principal components;
(7) Compare the regression results of (4), (5) and (6).

3. Using the 1995 functional data of Han ethnicity young adults aged
19-22 from 28 Chinese provinces/cities displayed in Table 17.11 to perform 
a principal component analysis.
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Table 17.11 Functional data of Han ethnicity young adults aged 19-22.

ID of
province/
cities

Pulse
Yi

(/min)

Systolic BP 
* 2

(mmHg)

Diastolic BP 
(Sounds 

muffled) Yj  
(mmHg)

Diastolic BP 
(Sounds 

disappear) F4  

(mmHg)

Lung
capacity У5 

(ml)

1 75.3 117.4 61.8 61.8 4508
2 76.7 1 2 0 .1 6 6 .2 6 6 .2 4469
3 75.8 1 2 1 .8 65.4 65.4 4398
4 76.1 115.1 61.3 61.3 4068
5 72.9 119.4 67.1 67.1 4339
6 72.7 116.2 59.3 59.3 4393
7 76.5 117.9 68.3 68.3 4389
8 75.2 115.1 63.2 63.2 4306
9 74.7 117.4 68.3 68.3 4395

10 73.2 113.2 51.0 51.0 4462
11 77.8 116.9 65.6 65.6 4181
12 76.4 113.6 65.6 65.6 4232
13 76.4 116.7 61.2 61.2 4305
14 74.9 113.1 61.2 61.2 4276
15 78.7 112.4 61.4 61.4 4067
16 73.9 118.4 62.3 62.3 4421
17 75.7 116.3 51.8 51.8 4284
18 72.5 114.8 55.1 55.1 4289
19 76.7 117.5 51.6 51.6 4097
2 0 77.0 117.9 52.4 52.4 4063
21 76.0 116.8 58.0 58.0 4334
2 2 74.2 115.4 60.4 60.4 4301
23 76.2 110.9 56.8 56.8 414)
24 77.2 113.8 57.5 57.5 3905
25 74.5 117.2 63.8 63.8 3943
26 74.3 112.3 50.2 50.2 4195
27 77.5 117.4 63.6 63.6 4039
28 77.7 113.3 52.8 52.8 4238

(1st edn. Ying Lu, Jie Yan; 2nd edn. Yuanto Hao, Yan Chen, Jiqian Fang)
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Factor Analysis

Chapter 17 introduces the principal component analysis that organizes the 
original variables into several principal components via linear combination 
of the original variables. We can use fewer number of principal components 
to retain the most information of the original variables. In this chapter, we 
will define factors to decompose original variables into several more clearly 
defined common components and, thus, to better understand the relationship 
among original variables.

18.1 Factor Model

Let X\, X2, . . . ,  Xp be p random variables with sample means 
X UX2, . . . ,  Xp and sample standard deviations Si, S2, . . . ,  Sp. For i =  
1, 2 , . . . ,  p let Xi be the standardized variable, i.e.,

Suppose there are m (m < p) different variables F\, F2, . . .  ,Fm with 
zero means and unit variances, i.e., for г =  1, 2 , ,m

Fi =  0, Var(Fi) =  1, (18.2)

F\, F2, . . . ,  Fm are linear combinations of X \, X2, . . . ,  Xp and should con
tain most information of them. These F\, F2, , Fm are called common 
factors of Xy, X2, . . . ,  Xp.

We want to express x, in terms of F\, F2, . . . ,  Fm. Thus, x, can be 
expressed as the linear combination of these common factors plus infor
mation of individual variables that are not explained by these common 
factors. Let individual factor be et. By definition, e, is uncorrelated with

4 9 7
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F\, F2, . . . ,  Fm. We have the following linear equations:

x\ — L \\F \ +  L \2F2 +  ■ ■ ■ +  L \mFm +  e \,  

x2 =  F 21 F\ +  L 22F2 +  • • • +  L2m Fm +  в2, (18.3)

x p ~  L p\F\ +  L p2 F2  +  • • • +  L pmFm +  ep.

Ljj is the factor loading of the variable xt on factor Fj. Therefore, the 
variance of xt can be expressed as follows:

Var(xj ) =  Var(Ln F\ +  L/2T2 +  • • • +  L(mFm) +  Var{ei).  (18.4)

As the left of above equation is 1, it can be expressed as the sum of 
common variance (for commonality) and specific variance (for variable 
uniqueness). Let

Based on this decomposition, we have to solve the following three tasks 
in a factor analysis

(1) Find the common factors F\, Fo, . . . ,  Fm(m < p);
(2) Calculate the factor loadings L
(3) Interpret relationships among the original variables.

hj — Var(Li\F\  +  L / 2F 2 +  ■ • • +  LimFm), 

u] =  Var(ei).

(18.5)

(18.6)

Thus

(18.7)

18.2 Derivation of Factors

There are two commonly used methods for deriving factors: the principal 
component method and iterative principal component method.



Factor Analysis 499

18.2.1 P rincipal com pon en t m eth od

Using principal component analysis, we can get p principal components 

C i =  a\\X\ +  a i 2 * 2  +  • • • +  o\pXp,

C 2 —  <221*1  +  022X2  +  '  '  '  +  0-2pXp ,

: i : : (18.8)
C p  — й р \ Х \  ~b Op2X2  H------- +  O ppXp

with afx +  aj2 H-------h afp -  1 and for any pair i ф j , Yfk=\ a>kajk =  0 .
When we view (18.8) as simultaneous linear equations, we can obtain 

the inverse solution that

x\ = a\\C\ + a2 \C2  + • • • + ap\C p,

X2 =  Я12С1 +  ^22^2 +  • • • +  a p2 C p ,

: : : : (is.9)
xp =  a\pC 1 +  a2pC2 +  • ■ • +  appCp.

Here, the coefficient matrix is the transpose of the coefficient matrix of 
(18.8). After standardizing the principal components C\, C2, . . . ,  Cp, we 
have the initial factors

F j =  j  =  l , 2 , - . P -  (18.10.)
V Var(Cj)

Obviously, Fj — 0, Var(Fj) =  1.
Substituting

Cj =  Fjy/V ar{C j) (18.10b)

into Eq. (18.9), we have

X] =  (а\\у/Var{C\))F\ +  (a2 iy/Var(C2 ))F2 4-----

+(am\y/Var(Cm))Fm +  ■ • • ,
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x2 — (a\2 \/Var(Cx))F\  +  (a22y/Var {C 2 ))F2 H-----

+  (am2 yJVar(Cm))Fm 4-----,

i : : i (18.11)

xp =  {aipy/Var{C\))F\  +  {a2py/Var (C 2 ))F2 4-----

+  (ampy/Var (Cm))Fm +  ■■■ .

We denote

Lij =  cijiy/Var(Cj) i =  1, 2 , . . . ,  p; j  =  \ , 2 , . . . , m  (18.12)

and make all terms after m as e\ , e2, . . . ,  ep, then we can obtain the factor 
model in (18.3).

As expressed in (17.14) in Chap. 17, Ly is the correlation coefficient 
between the / th variable and the / th principal component:

Lij — Corr(Xi, Cj) = Corr(Xj, Fj ).

Using (18.5) and (18.6), we have

hj — V ar(Li\F\  +  L i2F2 +  • • • +  L,-mF,„)

=  L 2n Var{Fx) + L 2i2Var(F2) +  • • •  +  L2imVar(Fm)

= L 2n + L 2i2 + -.- + L 2im 

=  a w ( U  i )  +  a2iVar(C2) +  • • • +  a2niVar(Cm), 

e f = l ~ h 2.

Example 18.1 (Continued from 17.1) Using the development indices of 
1985 Chinese Han young adults aged 19-22 from 28 provinces/cities to 
perform a factor analysis.

Solution From Example 17.1, we have information of principal compo
nents and eigenvalues, which we display here again in Table 18.1.

Using formula (18.10a) and Table 18.1, we can derive coefficients for 
common factors, displayed in Table 18.2 (read in columns), and the common 
factors in Table 18.3 (read in rows).
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Table 18.1 Coefficients (in columns) of four principal 
components and their variances.

Cl c2 c3 C4

x \ 0.522252 -0.195699 -0.189953 -0.253741

x2 0.525559 -0.080164 -0.167681 -0.388390

x3 0.511208 -0.181857 -0.103986 0.334729

x4 0.345993 -0.046978 0.741653 0.456060

x5 0.188783 0.656595 -0.470338 0.498021

x6 0.185358 0.699199 0.392072 -0.465521
Var 3.17310 1.31678 0.93679 0.42028

Table 18.2 Coefficients of common factors.

F\ f2 F3 Fa

x \ 0.29318 -0.17054 -0.19626 -0.3914

x2 0.29504 -0.06986 -0.17325 -0.59910

x3 0.28698 -0.15848 -0.10744 0.51633

x4 0.19423 -0.04094 0.76627 0.70348

x5 0.10598 0.57219 -0.48595 0.76821

x6 0.10406 0.60932 0.40508 -0.71808

Table 18.3 Common factors and common variances.

L\ l 2 L3 L a *?

xl 0.93030 -0.22457 -0.18385 -0.16450 0.97675

x2 0.93619 -0.09199 -0.16230 -0.25179 0.97465

x3 0.91062 -0.20868 -0.10065 0.21700 0.93000

x4 0.61632 -0.05391 0.71783 0.29566 0.98546

x5 0.33628 0.75345 -0.45523 0.32286 0.99225

x6 0.33018 0.80234 0.37948 -0.30179 0.98785

18.2.2 Iterative p r in c ip a l com pon en t m eth od

The principal component method in the above section is the first step in the 
iterative principal component method, which provides the common variance 
for each variable, i.e., h\, h\ , . . . ,  h2p.



502 Medical Statistics and Computer Experiments

Replacing the common variances to the diagonal “1” in the correlation
matrix, the new matrix R* is the following:

"A? П 2 U3 • • • r\p
r 12 h\ r23 ■ ■■ r2p

R* =

r\p r2P гзр •• ■ K _

Using this modified matrix R* to calculate the eigenvalues and eigen
vectors, the m new principal components C*, C2, , C* can be obtained. 
Using (18.10) and (18.12), we can derive new common factors and factor 
models. From the new model, we can again derive new common variances 
/г*2, h*2 , . . . ,  h*2. Up to now, we have just finished the first iteration.

Continue to repeat the above iteration many times until the updated 
common factors do not change from the previous iteration.

Iterative principal component method is commonly used in psychol
ogy and other social sciences. Many mathematical statisticians use only 
one-step principal component analysis because it has unambiguous math
ematical properties. When original variables follow multivariate normal 
distributions, we can use the maximum likelihood method to perform a fac
tor analysis. Many software packages have an option to use the maximum 
likelihood method. However, it is not easy to have multivariate data that 
follow a multivariate normal distribution.

18.3 Factor Pattern Plot and Factor Rotation

18.3.1 F actor pa ttern  p lo t

By dropping the individual factor in (18.3), we can approximate the original 
variables by linear combinations of factors

x\ =  L\\F\ +  L 12F2 +  • • • +  L\mFm, 

x 2 =  ^21 F\ +  L2 2F2 H-------b L2mFm,

x p —  Lp\F\ - ) -  L  p2 F 2 +  • • • - ) -  Z. pm Fm.



Factor Analysis 503

If we treat F \, F2, . . . ,  Fm as orthogonal axes and the loadings of each 
factor (L,i, Li2 , . . . ,  Lim) as the coordinates of the corresponding axes, 
we can plot observed points x, according to the coordinating system of 
F \, F2, . . . ,  Fm. The plot of x \ , x2, . . .  , xp in this system is called fac
tor pattern plot. As we cannot plot more than two dimensions simulta
neously, we plot them into pairwise combinations of their common factors. 
Figure 18.1 shows some two-dimensional factor pattern plots for the results 
in Table 18.3. We can see that xi, x2 and X3 are close to each other. The 
pattern of other variables is not clear.

As the closeness of variables can only be expressed in higher dimensions, 
it is not easy to see it with two-dimensional plots. A possible approach is 
to use the cluster analysis to calculate distance between x, and xj based on 
their distance in terms of factor loadings.

d2(xi,Xj) =  ( L , j  — L j \ ) 2 +  (Li2 — L j2y  +  • • • +  ( Ljm ~  L jm)~.

l
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Fig. 18.1 Factor pattern plots for Example 18.1.
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Fig. 18.2 V ariab le  c lu s te r  b a se d  o n  c o m m o n  facto rs.

For example, in Example 18.1, the distance between x \  andx2 is

d2{x , , x2) =  (0.93030 -  0.93619)2 +  [(-0.22457) -  (-0.09199)]2 

+[(-0.18385) -  (—0.16230)]2 

+[(-0.16450) -  (—0.25179)]2 

=  0.025696.

Using the distances and single linkage, we can obtain a cluster graph as 
shown in Fig. 18.2. One can see that the six variables can be divided into two 
main classes, [ х ь  x 2 , х 2, Х 4 } and {X5 , x в},  or three classes as [ x i ,  x 2 , x 2, X4 ) ,  

{X5 }, and {хб } , or even four classes as [ х ь  x 2 , X 3 }, {X4 }, {X5 } and [ х б [ .

18.3.2 Factor rotation

Like principal components, the interpretation of initial factors may not be 
clear. Because they are the common factors, we hope to have the fac
tors providing clear interpretation of background information. It is most 
important for some disciplines, such as psychology, psychiatry, and social 
sciences.

When we study the principal components, we want to have them repre
sent most of variance of the original variables. In factor analysis, we want the 
factors to have clear interpretations. However, there is a trade-off between
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maximizing the variance and getting clear interpretations. Factor rotation, 
a procedure to rotate F\, F2, . ■., Fm, can be used to achieve both goals.

18.3.2.1 Varimax orthogonal rotation

From Fig. 18.1 or Table 18.3, X[, X2 and X3 have heavy loading on F\, 
but not much on other factors. Can we make F\ as the factor explaining 
variation only in body heights? As other variables have also considerable 
loading on F\ , we cannot ignore the loadings of chest size, shoulder width, 
and pelvic width. Similarly, X5 and X(, have heavy loadings on F2, but they 
also have considerable loadings on other factors. Therefore, F2 does not 
represent all variations in these “sizes”.

To create new factors that have clear interpretations, we want each 
variable to maximize its loading on one factor and minimize its loading 
on the other factors. Meanwhile, in order to keep all factors uncorrelated, 
we have to keep them orthogonal with each other. This can be achieved 
by orthogonal rotation of the factors, which is called varimax orthogonal 
rotation. Statistical software packages provide the solutions including the 
transformation matrix, new factors after rotation, and loadings of variables 
on the new factors. By rotating the factors in Example 18.1, we get the 
new factors in Table 18.4 (reading in columns). The variables’ loading on 
the new factors are given in Table 18.5 (reading in rows), Comparing with 
Table 18.3, the common variance has not changed after the rotation if we 
ignore small differences due to roundup effect.

Figure 18.3 is a two-dimensional factor plots for Table 18.5. Comparing 
to Fig. 18.1, the relationship between the variables and the factors became 
clearer. F[ is mainly related to X \, X2 and X3, and can be called with height

Table 18.4 C oeffic ien ts  o f  varim ax  ro ta ted  fac to rs  in  E x am p le  18.1.

К f 'r 2 F f f 'r 4

x\ 0 .4 6 3 8 8 - 0 .2 3 9 6 2 0 .0 6 8 4 4 - 0 .1 7 1 6 5

X2 0 .4 8 6 7 4 - 0 .3 4 7 6 6 0 .2 6 3 3 8 - 0 .2 3 1 7 4

*3 0 .1 8 9 6 7 0 .3 3 8 0 8 -0 .3 8 6 3 3 0 .2 9 3 4 2

x4 - 0 .2 2 4 2 0 1.03209 - 0 .0 6 9 8 0 0 .0 3 3 2 6

x 5 -0 .1 2 4 0 1 0 .0 8 6 2 3 - 0 .1 9 2 9 4 1.05113

*6 0 .0 0 1 1 8 - 0 .1 1 9 1 8 1.00848 - 0 .1 7 4 8 6
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Table 18.5 Factor pattern after varimax rotation for Example 18.1.

n
F f
t 2

F f F 'r 4 /г?i

XI 0.97579 0.14777 0.02761 0.04439 0.97675
x 2 0.96221 0.10651 0.17923 0.07301 0.97465
*3 0.82942 0.41639 -0.14046 0.22125 0.93000
X4 0.27265 0.92843 0.20268 -0.08977 0.98546
x 5 0.13893 -0.06927 0.23452 0.95559 0.99225
x 6 0.04566 0.17267 0.94799 0.23929 0.98785
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Fig. 18.3 New factor pattern plot of Fig. 18.1 after varimax orthogonal rotation.
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factor; F,' is mainly related to X4, can be called with chest width factor; F3 
and F'a are related to X(, and X5, respectively and can be called pelvic size 
factor and shoulder width factor. In summary, rotation of the factors can 
make the new factors more clearly related to their corresponding variables 
without changing the total common variance.

For illustration purposes, Example 18.1 has only a few variables so 
that some of the rotated factors only represent one variable, which is not 
practically meaningful. When the number of variables increases, one factor 
may represent information of many variables, then the number of factors 
may significantly reduce. In such cases, we can use only a few factors to 
perform a regression or discriminant analysis to obtain reliable results.

18.3.2.2 Oblique rotation

To make the new factors clearly associate with a few variables only, the 
non-orthogonal rotation can be a choice, which allows the factors to be 
correlated with each other. The new factor may go through the cluster of 
variables in the factor pattern plot, thus, the factor may only represent these 
variables.

Note that the new factors after non-orthogonal rotation might still have 
the colinearity problem. Therefore, it is not commonly used, and most 
people prefer the varimax orthogonal rotation.

18.4 Factor Score and Application of Factor Patterns

18.4.1 Factor score a n d  p rin c ip a l com ponen ts

Factor score is similar to principal component, which reflects the amount 
of information carried by the factor. If the factors are extracted from the 
principal components, the factor scores are exactly the scores of standard
ized principal components before rotation. Through varimax rotation, they 
no longer maximize the variances along their directions, but they are still 
orthogonal to each other. The gain of the rotation is to make the interpreta
tion of factors more precise.

Many statistical software packages provide the coefficients to express 
the final factors as linear combinations of original variables. Using 
Example 18.4 for an illustration, we can express the factors F{, F'2, F3
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and F'a in linear combinations of original variables, such as

F\ =  0.47268*, +  0.49639*2 +  0.17444*3 -  0.23584*4 
-0.12558*5 +0.00185*6,

F { =  -0.24267*, -  0.35181*2 +0.36635*3 +  1.00877*4 
+  0.09411*5 -0.14130*6.

Here, * i , *2, . . . ,  *6 are the standardized variables.
We can use the software package to calculate the factor scores for each 

individual and use them in further statistical analysis. Therefore, factor 
analysis is an extension of principal component analysis, which can achieve 
the goals of the principal component analysis in terms of summarizing the 
variables into a few comprehensive scores.

18.4.2 C om m on fa c to rs  a n d  la ten t variables

When we treat the common factors F\ , F2, • ■ ■, Fm as latent variables that 
we cannot directly observe, the factor scores based on the observed values 
ofXi,  X 2, . . . ,  X p can improve our understanding of the underlying bio
logical processes. This is part of the reason that we like the factors to have 
clear interpretations.

18.4.3 F actor analysis a n d  structure validity

Suppose there are two sets of questionnaires A and B. A is an existing 
acceptable instrument, while В is newly developed. To illustrate that the 
questionnaire В measures the same underlying structure as A, we may 
collect the mesurements by both questionnaires simultaneously from a 
proper sample; then perform factor analysis for both sets respectively and 
compare their factor structures, including their variances and interpreta
tions. If the common factors of A and В have similar structures, we can 
conclude the structure equivalence between В and A.

18.5 Confirmatory Factor Analysis

The previous introduced methods are subject to exploratory factor analy
sis (EFA) because we do not have prior knowledge of the factor structure
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of the original variables, do not know the number of factors, the specific 
relationship between factors and variables. The answer is only available 
after the analysis.

Confirmatory factor analysis (CFA) is different from exploratory factor 
analysis. We use the following example to introduce the CFA and explain 
the differences between CFA and EFA.

Example 18.2 (Byrne (1994)) Maslach Burnout Inventory (MBI) is a 
psychological measure for “burnout.” The term “burnout” is related to 
a situation increasingly arising with stress levels that impairs people’s 
normal function level. According to its design, MBI measures decreases 
in emotional exhaustion (EE), depersonalization (DP), personal accom
plishments (PA). EE measures feelings of being emotionally over extended 
and exhausted by one’s work. DP measures an unfeeling and impersonal 
response toward recipients of one’s service, care treatment or instruction. 
PA measures feelings of competence and successful achievement in one’s 
work. There are a total of 22 questions, 9 for EE, 5 for DP, and 8 for PA. 
(From Byrne (1994).)

In its design, research prospectively assumed that the questions to be 
asked reflected the latent factor structure of EE, DP and PA. However, one 
did not know if the questionnaire could achieve the expected goal in practice,
1. e., if the answers of questions could be attributed into these three factors. 
372 male middle school teachers were invited to answer the MBI questions. 
The structure validity of the questionnaire needed to be confirmed based on 
this dataset of real responses.

First, according to the design of MBI, the factor pattern plot should be 
similar to Fig. 18.4, This figure assumed that (1) there should be three fac
tors; (2) each question should have nonzero loadings for the corresponding 
factors; (3) the three factors are related (with bi-direction arrows); (4) the 
responses to different questions should be independent (with only one arrow 
from a factor).

Meanwhile, the author proposed an alternative structure of factor in 
Fig. 18.5. In the new model, question 12 should have nonzero loadings 
in both PA and EE factors. In addition, the responses to questions 1 and
2 , 6 and 16, as well as 10 and 11 were correlated (see the bi-direction 
arrows).
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Fig. 18.4 F ac to r p a tte rn  p lo t 1 o f  M B I.
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Fig. 18.5 Factor pattern plot 2 o f MBI.
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Using the factor structure in Fig. 18.4, one could derive the following 
factor model:

x i =  L\\F\ +  0F2 +  0F3 +  Ex 

X 2 =  L,2 \ F\ +  0F2 +  OF3 +  e 2

X5 =  OF] +  F 52F2 +  OF3 +  F 5 

X10 =  OF] +  L 10,2F2 +  0F3 +  F 10

X4 =  OF] +  0 F2 +  F43F3 +  E4 

x-] =  0F| +  0F2 +  F73F3 +  Е-/

Xg =  OF) +  0F2 +  F 93F3 +  Eg

X12 — OFi +  0 F2 +  L 12,3F3 +  F j2

0  • • 0  "

0  =

0
a 2  •

• 0

_  0 0  • =1 1___
__

__
__

where x\, x2f.. ■, x22 were standardized variables related to the questions 
ITEM 1, ITEM 2 , . . .  ДТЕМ 22. 0  is the covariance matrix of the variables. 
Because the structure, Fig. 18.4, assumed the variables to be uncorrelated 
each other, 0  is a diagonal matrix.

The factor pattern of Fig. 18.5 was different. For example, comparing 
to the above equations, the equation for X \2 should be changed to

*12 =  ^ 12,1^1 +  0F2 +  Ь\2^Ръ +  F i2

and the covariance matrix 0  was no longer a diagonal matrix. Instead, the 
covariance at the first column and second row should be a X 2 and that at the 
sixth column and 16th row should be 06,i6-

After the factor models were specified, one could perform a 
goodness-of-fit test to compare the two models with the observed data. The
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computational processes of goodness-of-fit test is complicated and beyond 
the intended level of this book. There are specialized software packages to 
perform such analysis, such as LISREL and EQS. The indices for goodness- 
of-fit are x 2 statistics and goodness-of-fit index (GFI). / 2 statistics is sen
sitive to the sample size and deviations from the assumption of normal 
distribution. Therefore, it is suggested to use x 2 statistics as a measure 
rather than a test statistics for how good the model fits the data. When the 
degrees of freedom are the same, the model with a larger value of the x 2 

statistics fits data better than the model with a smaller value of the x 2 statis
tics. Usually, we take difference of two x 2 statistics when the degrees of 
freedom are different. The GFI is the value of change in x 2 statistics relative 
to change in degrees of freedom and it takes values between 0 and 1. Usu
ally, GFI should be above 0.9 to indicate a reasonable model. GFI is not a 
function of sample size, which is more robust when the distributions deviate 
from multivariate normal distributions. Thus, it is often used to measure the 
goodness-of-fit.

As shown in Table 18.6, in our example, for the model in 
Fig. 18.4, the goodness-of-fit was measured by a / 2 statistics of 
693.849 with degrees of freedom 206, and GFI =  0.848. According 
to the standard by experience (0.9 or larger), the model could be 
considered unsatisfied. For the model in Fig. 18.5, the x 2 statistics 
reduced to 445.219 and degrees of freedom was 202, a reduction of 
4 from Model 1. The GFI was 0.924. Thus, Model 2 fitted the data 
better.

Example 18.2 demonstrated the difference between EFA and CFA. 
On one hand, any variable could have loadings on all possible factors in 
EFA, and the loadings become known only after the analysis. On the other 
hand, variables in CFA could have loadings only on the assumed factors 
and the loadings on other factors are set to zero before analysis.

Table 18.6 Results of goodness-of-fit for two factor models.

Models X 2 statistics Degrees of freedom GFI

Model 1 693.849 206 0.848
Model 2 445.219 202 0.924
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Detailed theory and methods of confirmatory factor analysis can be 
found in books of Byrne (1994) and Ke et al. (1992).

18.6 Computerized Experiments

Experiment 18.1 Calculations on exploratory factor analysis Using 
data of 1985 Han male young adults (aged 19-22) from 28 Chinese 
provinces/cities to calculate all the latent factors.

Lines 01 to 06 of Program 18.1 read data into SAS dataset A. Line 
05 is not SAS language, it is a short notation to skip listing of all records. 
Line 07 asks program to calculate correlation matrix. Lines 08 to 12 perform 
a factor analysis. The option METHOD=P specifies the use of princi
pal component analysis. Other choices are PRINIT for iterative princi
pal factor analysis and ML for the maximum likelihood factor analysis. 
Option ROTATE specifies the rotation method with choices of V for vari- 
max method and PROCRUSTES for non-orthogonal rotations. PREPLOT

Program 18.1 Factor analysis.

Line Program

01 DATA A;
02 INPUT XI-X6;
03 CARDS;
04 173.28 93.62 60.10 86.72 38.97 27.51

168.99 91.52 55.11 86.23 38.30 27.14
05 ;
06 PROC CORR DATA=A OUT=CORREL;
07 PROC FACTOR DATA=CORREL PREPLOT SCREE METHOD=P 

ROTATE=V PLOT;
08 PROC FACTOR DATA=CORREL PREPLOT SCREE METHOD=PRINIT 

PRIORS=R ROTATE=V PLOT;
09 PROC FACTOR DATA=CORREL PREPLOT SCREE METHOD=ML 

HEYWOOD ROTATE=V PLOT;
10 PROC FACTOR DATA=CORREL PREPLOT SCREE METHOD=P 

ROTATE=PROCRUSTES;
11 PROC FACTOR DATA=CORREL OUTSTAT=FACT METHOD=P 

ROTATE=V SCORE;
12 PROC SCORE DATA=A SCORE=FACT OUT=SCORES;
13 PROC PRINT DATA=SCORES;
14 RUN;
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asks to plot factor pattern plots before they are rotated. PLOT asks for 
factor pattern plots after rotations. Lines 13 and 14 calculate the factor 
scores. Factor scores can also be derived by changing option on line 13 
OUTSTAT=FACTOR into OUT=SCORES. In this case, line 14 can be 
skipped.

Experiment 18.2 Principal components and common factors Use data 
of Experiment 17.1 to perform an exploratory factor analysis; observe and 
discuss the factor model and factor pattern plot; examine the possible rela
tionship between the common factors and the principal components.

Experiment 18.3 Factor score regression and principal component 
regression Using data of Experiment 17.2 to perform an exploratory factor 
analysis and regression analysis of factors to obtain factor scores. Compare 
your results with the results of Experiment 17.3.

Readers can use SAS programs in Chap. 17 and SAS Program 18.1 to 
develop their own programs for these two exercises.

18.7 Practice and Experiments

1. Using the 1985 Chinese young Han adults (19-22 years old) functional 
data in the exercises of Chap. 17 to perform an exploratory factor 
analysis.

2. Combining both functional and body development data of 1985 
Chinese young Han adults (19-22 years old) from 28 Chinese 
provinces/cities to perform a factor analysis. Discuss your results, in 
particular, the relationship between development variables and func
tional variables.

3. Perform a cluster analysis based on the factors derived from the above 
problem, and compare with the results of factor plot based on the factor 
analysis. Comment on their similarities and differences and explore the 
possible reasons.

4. For a dependent variable Y and p independent variables 
X\, Xz, • • •, Xp, should we use a factor analysis to perform stepwise 
selection of independent variables? Use the data in Chap. 23 to compare 
the variables selected based on the use of multiple regression versus 
the factor analysis.
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5. Suppose that you have observed a sample of variables X \ , Xi, . . .  , X p 
and you already have the coefficients (eigenvectors) and variances 
(eigenvalues) of p principal components. Can you use a calculator 
to derive the common factors F\, F2, . . . ,  Fp and their corresponding 
factor loadings for all variables? Use your answer to discuss the rela
tionship between factor analysis and principal component analysis.

(1st edn. Ying Lu; 2nd edn. Yuanto Hao, Lifen Feng)



C h a p te r  19

Canonical Correlation and Correspondence
Analysis

In Chap. 9, the simple correlation between two random variables Y and X 
is introduced. The multiple correlation between a random variable Y and 
a set of random variables X\,X2 , . . . ,  Xp is discussed in Chap. 12. In this 
chapter, we will discuss canonical correlation between two sets of random 
variables, Y\,Y2, . . . ,  Y4 and X | ,X2, . . . ,  Xp, as well as the correspondence 
analysis of contingency tables.

19.1 Canonical Correlation

In medical research, we often need to analyze the correlation between one 
set of p  indices and another set of q indices. A simple approach is to calcu
late pq pairwise correlation coefficients, to describe correlations between the 
two sets of variables. This approach however is somewhat tedious, and more 
importantly, does not solve the main problem. A more efficient approach is 
to consider, as in principal component analysis, linear combinations of vari
ables in each set. From these two sets of linear combinations, we look for the 
“most” correlated combinations. Thus the correlation between the two sets 
of variables can be described by two comprehensive scores, which reveals 
the best concise relationship. This is the main idea behind the canonical 
correlation analysis. Furthermore, similar to the relationship between sim
ple correlation and simple regression, and between multiple correlation and 
multiple regression, canonical correlation can also lead to the regression of 
one set of variables on another set of variables.

Example 19.1 Correlation between morphology indices and function 
indices Let us go back to the 1985 survey of physical data of male students

517
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from 28 Chinese cities. Let X\, X2, . . . ,  Xe denote the morphology indices, 
and Yi,Y2 , . . . ,  У5 denote the function indices (see Chap. 17 for the orig
inal data). We wish to investigate the correlation between the two sets of 
variables.

Prior to any multivariate analysis, we usually summarize the data by 
descriptive statistics like mean, standard deviation, and correlation coeffi
cients. Varying from one to another, each variable has a specific measure
ment unit and its range. Therefore, the first step is usually a standardization 
of the variables.

A first description of the correlation between morphology and function 
indices is the correlation matrix Table 19.1. Here, the upper right block 
is just the correlation between X \ , X2, . . . ,  A6 and Y\,Y2, . . . ,  Ys. Under
scored values are tested significant correlation coefficients. Theoretically, 
only when this block of correlation coefficients is all non-significant, can 
we say X \ , X2, . . . ,  X& and Y\, Y2, . . . , Y5 are not correlated. However, it is 
sometimes too cumbersome to describe the correlation between two sets of 
variables with a correlation matrix. Moreover, it is hard to assess the impact 
of one significant correlation coefficient on the correlation of two sets of 
variables. A more comprehensive measure of correlation is thus desired.

If we partition the correlation matrix of (X[, X2, ■ ■., X p, Y\, Y2, . . . ,  Yq) 
into three submatrices, upper left, upper right, and lower right, correspond
ingly denoted by Rxx , Rxy and RYy, then the above matrix can be expressed 
as follows:

where Rxx and RYy represent the correlation matrices of variables X and 
variables Y respectively, and RXY is the correlation matrix between X and Y.

19.1.1 Definition of  canonical correlation variables

Suppose there are independent variables X\, X2, . . . ,  Xp and dependent 
variables Y\,Y2, . . . ,  Yq (p =  6 , q =  5 as in the example).

(1) Standardize all the variables, and denote the standardized variables by
xu x2, • • • , x p and y u y2, , yq.

(19.1)



Table 19.1 Correlation coefficients among variables.

X i X 2 * 3 * 4 * 5 * 6 ^ 1 ^ 2 Г з y4 * 5

X i l 0.9557 0.8539 0.4140 0.1815 0.1004 -0.2001 0.3225 0.5318 0.3900 0.7555
x 2 1 0.8073 0.4041 0.2471 0.2362 -0.1517 0.3752 0.5416 0.4046 0.7086
Х з 1 0.5326 0.2416 0.0581 -0.4141 0.4561 0.5562 0.4069 0.7696
X 4 1 -0.0541 0.3302 -0.3767 0.0711 0.3567 0.4676 0.4862
X 5 1 0.4358 -0.1022 0.3967 0.2318 0.0807 0.0940
X(, 1 0.0054 0.4203 0.2713 0.3395 0.1218
Y\ 1 -0.0609 -0.0051 0.0649 -0.4632
Y2 1 0.6582 0.4743 0.3368
Y3 1 0.7532 0.3764
Y4 1 0.2178
y 5 1

C
anonical C

orrelation and C
orrespondence A

nalysis 
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(2) Identify the first pair of canonical variables by finding the appropriate 
coefficients («и, a i 2 , . . . , «i?) and {b \\, b\2 , . . . ,  b\p) such that

W\ — a\\y\ +  a\2y2 H-----+  a\qyq, (19 2)
Vi =  b\\X\ +  /212X2 +  • • • +  b\pXp,

and their correlation coefficient Corr{W\t, V\) is maximized.
W\ and Vi are called the first pair of canonical correlation variables, 

or simply canonical variables. Corr(V\ , W\) is called the first canonical 
correlation coefficient, denoted by /?i Ca)i.

From Chap. 9 we know that linear transformation does not change 
the correlation among variables. Therefore, there are infinitely many lin
ear coefficients that satisfy the above conditions. To make the coefficients 
(an,  «12, . . . ,  a\q) and(Z?n, b n , , b\p) unique, we put a further restriction

a'lRxxai =  1, bjRyybi =  1. (19.3)

Here, vectors a' =  (an, ai2, . . . ,  alq), b' =  (bu , b \2, . . . ,  bip). Thus, the 
aforementioned process is to maximize R\x:an — Corr{W\, Vi) under the 
conditions ofa |R^xai  =  1, b'lR/ybi =  1.

(3) Identify the second pair of canonical variables. First we find a second 
set of linear coefficients (a2i ,a22, . . . ,  a2?) and (fe2i ,/>22, • • ■» b2p), such that

W2 =  a2iу 1 +  a22y2 4-------h a2qyq,
F2 =  b2 \X\ +  b22x2 +  ■ • • +  b2pxp.

And

(i) W2 is uncorrelated with VT| and V\ ;
(ii) V2 is uncorrelated with W\ and V);

(iii) R2'Can =  Corr(W2, V2) is maximized under the conditions of 
a2Rxxa2 =  1, b2Ryyb2 =  1.

(4) Identify the A’th pair of canonical variables. As we proceed 
above, Wk,Vk are linear combinations of y t , y2, . . . ,  yq and x\, x2, . . . ,  xp 
respectively, which are uncorrelated with canonical variables 
Wu Vi,W2 ,V2, . . . ,  Wk- i,14-i, and Rk'Can =  Corr(Wk, Vk) is maximized
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under the conditions of

a^RxA:&k =  1, =  1.

Continuing this process, we can identify at most .s pairs of canonical 
variables, s =  min(p, q). Obviously,

Corr(Wu Vi) > Corr(W2, V2) > • • • > Corr(Ws, V,). (19.4)

The calculations above are all based on the correlation coefficient matrix. 
Therefore, strictly speaking, the canonical variables thus obtained should 
be called standardized canonical variables. If the calculations are based on 
variance-covariance matrix, the canonical variables will be called canoni
cal variables, without the modifier “standardized”. Note that the canonical 
variables obtained based on the two matrices are different in general. Most 
authors prefer using the correlation matrix to obtain standardized canonical 
variables. Therefore the adjective “standardized” is usually omitted.

19.1.2 Calculations of canonical correlation coefficients 
and linear combination coefficients

In actual computations, correlation coefficient matrix (19.1) of (X |, 
X2, . . . ,  XP,Y\,Y2, ■ ■ ■, Yq) is obtained first. Finding canonical correla
tion coefficients reduces to the singular value decomposition of matrix 
Rva-Rx^Rkk’ which is to be expressed as,

R ^ R x r R K r  =  v s w  (19.5)

where S is a diagonal matrix of eigenvalues, and V and W are orthogonal 
matrices of the column eigenvectors. From the z'th eigenvalue A,-, we can 
obtain the following z'th canonical correlation coefficient Rj,can,

R i,Can  —

Its approximate standard error is

A;
1 +  А,-

5 £ [ ^ ; , C a n ]  =
1 ~  Ч сап

s/n  — 1 (1 +  A ;)V « — 1

The eigenvectors are just the linear combination coefficients. Further
more, the magnitude of each eigenvalue as a percentage of the sum of
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eigenvalues represents the percentage of correlation information of each 
canonical variable.

By definition, all canonical correlation coefficients are between 0 and 1. 
Since the canonical correlation coefficients measure the correlation between 
two sets of variables to the maximum, the first canonical correlation coef
ficient is no less than the absolute value of any individual correlation 
coefficient, i.e.,

* i,a»  > max(|Corr(x,, y; )|).

From the data in the example above, we can obtain Table 19.2 for eigen
values, percentage of information, and canonical correlation coefficients, 
and Table 19.3 for linear combination coefficients. From Table 19.2, one

Table 19.2 E igenvalues and  c an o n ica l co rre la tio n  coeffic ien ts .

E igenvalue P ercen tag e
C u m u la tiv e
p e rcen tag e

C an o n ica l co rre la tio n  
coeffic ien t

A p p ro x im ate  
s tan d ard  e rro r

1 3 .2422 0 .6 5 4 6 0 .6 5 4 6 0 .874228 0 .0 4 5 3 6 6
2 1.1912 0 .2405 0.8951 0 .7 3 7 3 1 2 0 .0 8 7 8 2 9
3 0 .3533 0 .0713 0 .9665 0.510941 0 .1 4 2 2 0 9
4 0 .1 4 3 6 0 .0 2 9 0 0 .9955 0 .3 5 4 3 6 9 0 .1 6 8 2 8 3
5 0 .0235 0 .0045 1.0000 0 .14 8 2 0 7 0 .1 8 8 2 2 3

Table 19.3 L in e a r co m b in a tio n  co effic ien ts  fo r  s tan d ard ized  c an o n ica l c o rre la tio n s.

V i v 2 y 3 V4

* 1 0 .5 8 5 2 - 1 .1 4 4 3 0 .7 8 2 3 0 .0 3 5 2 - 0 .8 2 9 8
* 2 - 0 .2 1 7 5 0 .0 1 8 9 0 .6 0 3 2 0 .1 2 8 9 1.5590
* 3 0 .5 2 8 8 1.6213 - 0 .7 3 7 0 - 0 .4 0 6 6 - 1 .1 7 0 4

* 4 0 .1 8 9 0 - 0 .9 8 7 4 - 0 .7 7 5 3 0 .1 2 2 9 0 .6 9 8 8

* 5 - 0 .1 1 9 3 - 0 .0 6 2 6 - 0 .2 5 0 9 - 0 .5 8 6 0 1.0488
* 6 0 .1 9 4 8 0 .8 1 0 8 0 .1 4 6 7 0 .9 5 2 3 - 0 .5 1 4 0

W\ w2 W3 W4 W5

Yi - 0 .0 8 3 8 - 0 .1 3 2 5 1.0807 0 .3 7 5 0 - 0 .0 3 7 6
У2 - 0 .0 8 7 8 1.2688 0.0701 0 .2 4 7 6 - 0 .3 3 4 2
Y3 0 .2 1 4 7 - 0 .3 3 0 1 0 .2 2 1 8 - 1 .0 8 6 3 1 .4100
y 4 0 .2 9 2 0 - 0 .2 3 9 2 - 0 .5 7 6 5 1.3368 - 0 .2 9 4 2
y 5 0 .7 6 0 7 - 0 .2 9 9 5 0 .6 5 3 2 - 0 .0 0 1 7 - 0 .6 9 0 5
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can conclude that first two pairs of canonical variables contain about 90% of 
all correlation information, together with the third pair, they contain 96.65% 
of correlation information. The first two canonical correlation coefficients 
are relatively high at 0.8743 and 0.7373, and even the third canonical cor
relation coefficient has reached 0.5109.

The first canonical variables are

W i =  —0.0838yi -  0.0878.У2 +  0.2147y3 +  0.2920y4 +  0.7607y5,

V, =  0.5852x, -  0.2 175jc2 +  0.5288x3 +0.1890x4 -  0.1193x5 

+  0.1948x6.

The second canonical variables are

W 2  =  -0.1325yi +  1.2688y2 -  0.3301y3 -  0.2392y4 -  0.2995ys,

V2  =  — 1.1443x, -  0.0189x2 +  1.62133 -  0.9874x4 -  0.0626x5 

+  0.8108x6.

19.1.3 Canonical correlation structures

The canonical correlation coefficients quantitatively describe the linear cor
relation between two sets of variables. We now turn to the relationship 
between the canonical variables and their original variables. In fact, this rela
tionship has much to do with the original correlation coefficients between 
the variables and the linear combination coefficients. Using software pack
ages, it is not hard to calculate correlation coefficients between the variables 
and their corresponding canonical variables, and the correlation coefficients 
between the variables and the canonical variables of the other set.

It is worth noting that the correlation coefficient between an original 
variable and a canonical variable of the other set is the product of the cor
relation coefficient of the variable with its own canonical variable and the 
canonical correlation coefficient. Formally,

C o r r ( x i ,  W j )  -  R j 'C a n C o rr(Xj, V j ) ,

C o r r { y i ,  V j )  =  R j , Ca n C o r r ( y i ,  Wj ) .

Table 19.4 displays the correlation coefficients between the original vari
ables and their canonical variables (underscored values are greater than 0.5).



Table 19.4 L o a d in g s  o f  o rig in a l variab les on c an o n ica l variab les (i.e ., c o rre la tio n  co effic ien t b e tw ee n  th e  o rig in a l v a ria b le s  and  
th e  can o n ica l v a riab le s).

V i v 2 T3 V4 v5 W\ W2 W2 W4 W5

X \ 0.9050 - 0 .0 8 0 6 0 .3 7 7 7 - 0 .1 4 8 7 0 .0887 0 .7 9 1 2 - 0 .0 5 9 4 0 .1 9 3 0 - 0 .0 5 2 7 0 .0 1 3 2
x 2 0 .8 6 1 6 0 .0 1 1 2 0 .4 1 5 2 - 0 .0 3 6 0 0 .2412 0 .7532 0 .0083 0 .2121 - 0 .0 1 2 8 0 .0 3 5 7

* 3 0.9361 0 .1655 -0 .0 4 7 1 - 0 .2 9 3 3 -0 .0 2 4 7 0 .8 1 8 4 0 .1 2 2 0 - 0 .0 2 4 0 - 0 .1 0 3 9 - 0 .0 0 3 7
x 4 0 .6958 - 0 .3 1 8 9 - 0 .5 3 8 2 0.3191 0 .1354 0 .6083 - 0 .2 3 5 1 - 0 .2 7 5 0 0.1131 0.0201

* 5 0 .1 3 5 6 0 .5 3 2 9 - 0 .0 3 2 1 - 0 .2 3 7 6 0 .7389 0 .1185 0 .3 9 2 9 - 0 .0 1 6 4 - 0 .0 8 4 2 0 .1095

*6 0 .2 4 3 3 0 .4 4 1 2 - 0 .0 4 0 5 0 .7478 0.3908 0 .2127 0 .3253 - 0 .0 2 0 7 0 .2 6 5 0 0 .0 5 7 9

Yi - 0 .3 6 1 0 - 0 .0 6 2 5 0 .3757 0 .1605 0 .0410 - 0 .4 1 3 0 - 0 .0 8 4 8 0 .7353 0 .4 5 3 0 0 .2 7 6 4

y 2 0 .3 9 6 3 0 .6 2 3 2 0 .0495 0 .0508 0 .0332 0 .4533 0 .8 4 5 2 0 .0 9 6 8 0 .1433 0 .2 2 4 0

Y3 0.5801 0 .1568 0 .0378 0 .0287 0 .1050 0 .6 6 3 6 0 .2 1 2 7 0 .0 7 4 0 0 .0 8 1 0 0 .7087

Y4 0 .5 0 0 3 0 .0 2 9 6 - 0 .0 8 3 7 0 .2339 0.0677 0 .5723 0 .0401 - 0 .1 6 3 8 0 .6 6 0 0 0 .4565

y 5 0 .7 9 9 4 0 .0 0 9 4 0 .0685 - 0 .0 7 4 3 -0 .0 4 7 3 0 .9 1 4 4 0 .0 1 2 8 0 .1341 - 0 .2 0 9 8 - 0 .3 1 9 0
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These correlations are referred to as the loadings of the original variables 
on the canonical variables. The upper left and lower right blocks represent 
the correlation among original variables and their corresponding canonical 
variables, providing basis for explanation of the canonical variables; the 
upper right and lower left blocks are the correlation between the original 
variables and the canonical variables of the other set of variables, providing 
basis for prediction (regression) of the original variables from the other set.

The upper left block in Table 19.4 indicates, for example,

X! =  0.9050Vi -  0.0806V2 +  0.3777V3 -  0.1487V4 +  0.0887V5,

x2 =  0.8616V7! +  0.0112V2 +  0.4152 V3 — 0.0360 V4 +  0.2412V5.

From these loadings, we can see that canonical variable V\ mainly rep
resents the variables of standing height X\, sitting height X2, body weight 
X3, and chest circumference X4: while V2 mostly represents the variable 
of shoulder width X5\ V3 represents chest circumference X4; V4  represents 
pelvic diameter Xe; and V5 also represents shoulder width X 5 .

The lower right block in Table 19.4 indicates, for example

у, =  —0.4130IT, -  0.0848VF2 +  0.7353 W3 +  0.4530W4 +  0.2764tT5, 

y2 =  0.4533 IT, +  0.84521T2 +  0.0968W3 +  0.1433VF4 +  0.2240 VT5.

Also we can see that the canonical variable W\ mostly reflects the vari
ables of diastolic pressures T3, T4 and lung capacity Y5; W2 mainly represents 
systolic pressure F2; VF3 represents pulse Y\ ; W4 mostly represents diastolic 
pressure (vanishing sound) T4; IV5 represents diastolic pressure (changing 
pitch) Y3.

The relationships among the canonical variables are clearly revealed 
by the apparent representation of individual variables in Table 19.5 below. 
For instance, the first canonical correlation coefficient 0.8742 reflects the 
positive correlation between standing height, sitting height, body weight, 
chest circumference and diastolic pressure, lung capacity, meaning that the 
larger body frame implies higher diastolic pressure and larger lung capacity. 
Also, the third canonical correlation coefficient 0.5109 mainly reflects the 
negative correlation between chest circumference and pulse, i.e., the smaller 
the chest size, the faster the pulse rate. In general, Table 19.5 agrees well 
with the physiological principles.
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Table 19.5 Interpretation of canonical variables.

V W Corr(V, IT)

1 standing height, sitting height, body 
weight, chest circumference

diastolic pressure, lung capacity 0.8742

2 shoulder width systolic pressure 0.7373
3 chest circumference (-) pulse 0.5109
4 pelvic diameter diastolic pressure (sounds 

disappear)
0.3544

5 shoulder width diastolic pressure (sounds 0.1482
muffled)

19.1.4 R otation  o f  can on ica l variables a n d  ad ju sted  can on ica l 
correla tion  coefficien t

Similar to the cases in factor analysis, if the canonical variables Vj, 
V2, . . . ,  W\, W2, . . .  do not provide practical interpretation, we may choose 
to sacrifice the maximization requirement of Corr(VFi,Vi), СопХИ^^гХ • • • 
etc., by obtaining more meaningful new variables V(, V2, . . . ,  W[, Wf . . .  
via orthogonal rotations. The new correlation coefficients Corr(W/1/,V|/), 
Corr(IVj, У2') etc. are called adjusted canonical correlation. In the above 
example, the adjusted correlation coefficients are 0.8256, 0.6634, 0.3728, 
0.2854 and 0.0970.

19.1.5 R edu ndan cy o f  can on ica l variables

Just as the total variance remains unchanged in factor analysis, in canon
ical analysis, the total variance also remains unchanged if the number of 
canonical variables is the same as that of the original variables. In the above 
example, for instance, the number of original variables Tj, Y2 , . . . ,  T5 is the 
same as the number of canonical variables W\, W2, . . . ,  W5. Therefore,

Var(W\) +  Var(W2) +  • • • +  Var(W5)

=  Var{Y\) +  Var(Y2) +  • • • +  Var(Y5) =  5. (19.6)

However, if the number of canonical variables is less than that of the 
original variables, the total variance will be somewhat reduced. In the exam
ple above, the number of canonical variables V\, V2, . . . ,  V5 is less than the
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Table 19.6 Percentage of the variances explained by the canonical variables.

X u x 2 , X 3, x 4, x 5 , x 6

Explained by V\,V2, ■ ■ . ,  Vg Canonical Explained by W \ ,W 2, . . . ,  VV5

Canonical Cumulative correlation Cumulative
variable Percentage percentage coefficient Percentage percentage

1 0.4999 0.4999 0.7643 0.3821 0.3821
2 0.1024 0.6023 0.5436 0.0557 0.4377
3 0.1016 0.7039 0.2611 0.0265 0.4643
4 0.1378 0.8417 0.1256 0.0173 0.4816
5 0.1306 0.9724 0 .0 2 2 0 0.0029 0.4844

Ti, y 2 , y 3 , y 4 , y 5

Explained by W \,W 2 , . . . ,  VV5 Explained by V\,V2, . . . , V5

1 0.3960 0.3960 0.7643 0.3027 0.3027
2 0.1537 0.5497 0.5436 0.0836 0.3863
3 0 .1 2 0 1 0.6698 0.2611 0.0313 0.4176
4 0.1424 0.8122 0.1256 0.0179 0.4355
5 0.1878 1 .0 0 0 0 0 .0 2 2 0 0.0041 0.4396

number of variables X\, X2, . . . ,  X^,  therefore,

Var(Vi) +  Var(V2) +  • • • +  Var(V5)

<  V a r ( X  1) +  V a r { X 2)  +  ■ ■ ■ +  V a r ( X в )  =  6 . (19 .7)

The percentage of variance explained by a canonical variable is defined 
as the variance of the canonical variable as a percentage of the total number 
of the original variables. Table 19.6 displays the percentages of variances 
of the original variables explained by the canonical variables. This is so- 
called redundancy analysis. The percentages of variances explained by the 
original variables’ own canonical variables are Var(Vi)/p and Var(Wj)/q 
respectively. The percentages explained by the other canonical variables 
are the products of Var(Vi)/p,  or Var(Wj)/q,  with the squared canonical 
correlation coefficients. Hence, V\, V2, . . . ,  V5 do not quite contain all the 
information of the X  variables. Whereas, Wi, W2, . . . ,  W 5 contain all the 
information of the Y variables. Only 48.44% of the information of X  vari
ables is contained in W\, W2, . . . ,  W5; and only 43.96% of the information 
of Y variables is contained in V b  V2, ■ ■ ■, V5.
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19.1.6 R egression  on can on ica l variables

Back to Table 19.4, the upper right block is the matrix of correlation coeffi
cients between X variables and W\ ,W2, ... .  If we perform a multiple regres
sion of Xj on W\,W2 , . . . ,  the determination coefficient will be the sum of 
corresponding squared correlation coefficients. For example,

X ! ~ W i  R2 =  (0.7912)2 =  0.6260
X i ~ W i ,  W2 R2 =  (0.7912)2 +  (—0.0594)2 =  0.6296
Xi ~  Wu W2, W3 R2 ~  (0.7912)2 +  (-0.0594)2 +  (0.1930)2 

=  0.6668

etc. Correspondingly, the lower left block of Table 19.4 is the matrix of 
correlation coefficients between Y variables and V\,V2, . . . .  Similarly, if 
we perform a multiple regression of Yj on Vt,V2, , the determination 
coefficient will be the sum of corresponding squared correlation coeffi
cients. Table 19.7 gives the determination coefficients of the regressions of 
the original variables on the first m canonical variables of the other set of 
variables.

19.2 Correspondence Analysis

Correspondence analysis was first proposed by French mathematician J.P. 
Beozecri in 1970. It is primarily used to analyze the correspondence

Table 19.7 The determ ination coefficients using canonical variables o f 
another set to explain the original variables.

W \ w { w 2 W iW 2 W 3 W \W 2 W3 W4 W iW 2 W 3 W4 W 5

* 1 0.6260 0.6296 0 .6 6 6 8 0.6696 0.6697
* 2 0.5674 0.5674 0.6124 0.6126 0.6139
*3 0.6697 0.6846 0.6852 0.6960 0.6960
X4 0.3701 0.4253 0.5010 0.5138 0.5142
*5 0.0141 0.1684 0.1687 0.1758 0.1878
* 6 0.0452 0.1511 0.1515 0.2217 0.2251

Ft V iV 2 V ,V 2 V3 V1 V2 V3 V4 F1 F2 F3 F4 F5

Y X 0.1303 0.1342 0.2754 0.3012 0.3028
y 2 0.1571 0.5454 0.5479 0.5505 0.5516
Y3 0.3366 0.3612 0.3626 0.3634 0.3745
y 4 0.2503 0.2512 0.2582 0.3129 0.3175
Y5 0.6390 0.6391 0.6438 0.6493 0.6516
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Table 19.8 Summary of the data on the color eyes and that of the hair for 
5387 pupils.

Color of the hair

Color of the eyes Fair Red Medium Dark Black Total

Dark 98 48 403 681 85 1315
Medium 343 84 909 412 26 1774
Blue 326 38 241 1 1 0 3 718
Light 6 8 8 116 584 188 4 1580

Total 1455 286 2137 1391 118 5387

Source: Michael J. Greenacre. Theory and Applications of Correspondence 
Analysis. Academic Press, 1984, pp. 256-259.

relationship between two categorical variables, in a two-dimensional 
contingency table.

Example 19.2 Relationship between color of the eyes and that of one 
hair Table 19.8 was a summary of color of the eyes and color of one hair of 
5387 pupils from the Caithness County in northern Scotland. The objective 
was to study the correspondence relationship between the two. This was a 
4 x 5  contingency table, used by Fisher in 1940 when he firstly introduced 
canonical analysis of contingency table data.

19.2.1 C om putation  P rocedure

Suppose we have an R x C contingency table. Its rows and columns repre
sent two categorical variables with R levels and C levels respectively. Let 
X =  {Xjj} be the cell frequency in the table.

(1) Data transformation First we transform the original contingency table 
data into

Z i j i =  1 , 2 , - . . ,  R : j  =  1, 2 , . . . , C . (19.8)

Here*, is the sum of /throw, and x , j  is the sum of j  th column, x is the grand 
total. By using x 2-test, we know that jcy is the observed frequency, x t x j / x .. 
is the expected frequency under the null hypothesis that two categorical 
variables (row and column) are independent and the standardized residual
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Table 19.9 Transformed values of Zij from Table 19.8.

Color of the hair

Color of the eyes Fair Red Medium Dark Black

Dark -13.6444 -2.6129 -5.1964 18.5325 10.4736
Medium -6.2167 -1.0496 7.736 -2.1505 -2.0624
Blue 9.4828 - 0 .0 2 2 0 -2.5982 -5.5341 -3.2074
Light 12.6462 3.5083 -1.7101 -10.8920 -5.2038

Table 19.10 Color of the eyes (row effect) factor loadings.

Color of 
the eyes First factor Second factor

Raito of two factor 
loadings

Dark -0.70274 0.13391 -5.24790
Medium -0.03361 -0.24500 0.13718
Blue 0.40030 0.16541 2.42005
Light 0.44071 0.08846 4.98203

Zij is essentially there,

Observed frequency — Expected frequency 
^Expected frequency

Data transform of the example yields the following Table 19.9.

(2) Calculation of two correlation matrices Utilizing transformed R x C 
data matrix Z =  { Z i j } ,  we calculate the correlation coefficients between any 
two rows to obtain a correlation coefficient matrix A. Likewise, we calculate 
the correlation coefficients between any two columns to obtain a correlation 
coefficient matrix B. It can be shown that A and В have identical nonzero 
eigenvalues, but different eigenvectors. The example showed here has three 
nonzero eigenvalues, 0.1992, 0.03009 and 0.0008595. Their corresponding 
percentages of contribution are 86.56%, 13.07% and 0.37%.

(3) Perform a factor analysis based on A, we can get the row effect’s fac
tor loadings. The example here uses a two-factor model. The results are 
displayed in Table 19.10, where the last column is the ratio of two factor 
loadings.
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Table 19.11 Color of the hair (column effect) factor loadings.

Color of 
the eyes First factor Second factor

Raito of two factor 
loadings

Fair 0.54400 0.17384 3.12930
Red 0.23326 0.04828 4.83140
Medium 0.04202 -0.20830 -0.20173
Dark -0.58871 0.10395 -5.66340
Black -1.09439 0.28644 -3.82070

Table 19.12 The optimal correspondence of the contingency Table 19.8.

Color of the hair

Color of the eyes Dark Black Medium Fair Red Total

Dark 681 85 403 98 48 1315
Medium 412 26 909 343 84 1774
Blue 1 10 3 241 326 38 718
Light 188 4 584 6 8 8 116 1580
Total 1391 118 2137 1455 286 5387

(4) Perform a second factor analysis based on B, we can get the column 
effect’s factor loadings. The current example again uses a two-factor model. 
The results are displayed in Table 19.11, where the last column is the ratio 
of two factor loadings as well.

Thus we have showed computations of correspondence analysis. Such 
analyses help reveal correspondence relationship between row and column 
effects.

19.2.2 The use o f  correspondence analysis

(1) Optimal correspondence Rearrange the order of each level in row and 
column effects according to the order of their factor loading ratio, from 
the highest to the lowest. In current example, the order of color of the eye 
remains unchanged, however, the effect level of color of the hair should be 
rearranged to Dark, Black, Medium, Fair, and Red. The optimal correspon
dence is therefore as in Table 19.12.
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Fig. 19.1 Color of the eyes and color of the hair correspondence analysis of 5387 pupils.

Table 19.12 most effectively reveals the correlation between the color 
of the eyes and color of the hair, namely the color of the eyes from dark to 
light, corresponds to the color of the hair from dark to fair.

(2) Factor loading plot Analogous to factor loading plots in factor analysis, 
we plot the first factor against the second factor in a Cartesian system with 
factor loadings as the coordinates. In the plot, each level of row and column 
effects is identified to reveal correspondence relationship. Figure 19.1 is 
the factor loading plot for the above example, where the dots represent the 
color of the eyes (row effect), and the squares represent the color of the hair 
(column effect). It is easy to see that dark and black hair correspond to dark 
eyes, fair and red hairs correspond to blue and light eyes, and medium hair 
corresponds to medium eyes.

19.2.3 A pplica tion  — A nalysis o f  con traceptive m ethods  
u sed  by various grou ps o f  peo p le

Example 19.3 Wang Shaoxian surveyed 11,764 married women aged 
between 20 and 40 years in 1986 from nine cities in China, regarding 
their marriage, reproduction, and contraceptive uses, the summary data are 
showed in Table 19.13.

Make a transformation of (19.8), then calculate matrices A and B, 
to obtain four nonzero factors, with four eigenvalues 0.2686, 0.07685,
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Table 19.13 Contraceptive methods frequency in nine cities (including urban and rural 
areas) in 1983.

Contraceptive method

Intrauterine Male
Area device (IUD) Oral condom Sterilization Other Total

Urban Beijing 153 33 165 40 40 431
Jilin 346 10 15 76 1 0 457
Chengdu 241 38 134 21 35 469
Changsha 184 21 106 64 60 435
Dalian 367 18 129 11 25 550
Xi’an 703 55 130 69 83 1040
Zhengzhou 248 12 113 60 30 463
Chongqing 296 2 0 87 36 26 465
Wuhan 476 79 113 82 91 841

Rural Beijing 320 75 43 62 18 518
Jilin 249 6 10 119 8 392
Chengdu 278 38 2 2 141 36 515
Changsha 73 4 13 323 1 0 423
Dalian 209 43 6 6 1 0 0 7 425
Xi’an 288 4 0 418 1 711
Zhengzhou 141 6 1 294 1 443
Chongqing 435 1 2 73 2 513
Wuhan 364 164 4 277 16 825

Total 5371 627 1153 2266 499 9916

0.05063, and 0.01328. Their percentages of contribution are 65.62%, 
18.77%, 12.37% and 3.24%, respectively. The first two factors contribute 
more than 80%. The factor loadings are showed in Tables 19.14 and 19.15.

Both row and column effects’ on the first and second factors are plotted 
in Fig. 19.2. We could see, “sterilization” was far from urban groups, indi
cating urban residents’ dislike of the method; “Male condom” and “Other” 
short term methods were far from rural groups, indicating the rural residents’ 
preference. In Changsha, Zhengzhou, and Xi’an’s rural area, “sterilization” 
was more popular than other cities’ rural areas; other rural areas mostly used 
“IUD” and “oral contraceptive” methods. Furthermore, the plot character
izes different patterns of contraception use between urban and rural areas. 
The factor loadings form two data groups: the big ellipsis encompasses all 
rural areas, which contains “sterilization”, “oral”, and “IUD” three methods; 
the smaller ellipsis encompasses all urban areas, which contains “oral”,
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Table 19.14 Region (row effect) factor loading.

Region

Urban Rural

First factor Second factor First factor Second factor

Beijing 0.58482 0.66163 0.17327 -0.23431
Jilin 0.01999 -0.40534 -0.26735 -0.23758
Chengdu 0.56762 0.28204 -0.15591 -0.10461
Changsha 0.36027 0.40746 -1.19380 0.43462
Dalian 0.54516 0.01763 0.00283 0.07944
Xi’an 0.35924 -0.15586 -0.88458 0.05227
Zhengzhou 0.34615 0.23350 -1.03567 0.17254
Chongqing 0.38568 -0.01185 0.02638 -0.56771
Wuhan 0.32447 -0.00822 -0.35968 -0.15070

Table 19.15 Contraceptive method (Column effect) factor 
loading.

Contraceptive method First factor Second factor

IUD 0.15997 -0.21894
Oral 0.14711 -0.06410
Male condom 0.70451 0.57905
Sterilization -0.89268 0.17539
Other 0.51924 0.30274

“IUD”, “male condom”, and “other” short term contraceptive methods. 
These two ellipses intersect with each other, indicating that “oral” and 
“IUD” were popular in most areas, whereas “sterilization” was used less in 
urban areas. In rural areas of Changsha, Zhengzhou, and Xi’an, “steriliza
tion” was observed more; and in all considered rural areas, “male condom” 
and “other” short term methods were less popular.

19.2.4 R elationsh ip  betw een correspon den ce analysis  
a n d  can on ica l correlation  analysis

Canonical correlation analysis can also be applied to the data in 
Example 19.2. Table 19.8 is a contingency table, but not a multivariate 
data matrix, i.e., it is not a matrix with rows as observations and columns 
as variables. We first transform Table 19.8 into an n row an nd (R +  C) 
column data matrix, as showed in Table 19.16. Here, the first R columns 
represent row effects (X variables), the next C columns represent column



Canonical Correlation and Correspondence Analysis 535

Zhetigzhou^ra^ sterilization

Д  Changsha rural

W - n e n g z n p u

Д  Xi’an rural
tiraH'bcal Chongqing 

O X i> n
Chengdu

Wuhan rural Д
Д

Jilin rural Beijing rural’’ 
OJilin

Д rural О  urban ■  method

Fig. 19.2 Results of the correspondence analysis for Example 19.3.

effects (7 variables). The original ijth entry ntj becomes, in this new data 
matrix, a “1” in the * th X variable, and a “1” in yth Y variable, the rest are 
all “0”, with a frequency of n,j. For instance, n u =  98, in transformed data 
matrix becomes, X\ =  1 ,Y\  =  1, and the rest variables are all 0 , with a 
frequency of 98. Likewise, n2з =  909 becomes X2 =  I, K3 =  I, the rest 
are all 0, with a frequency of 909.

After transforming the data into a data matrix Table 19.16, we can per
form canonical correlation analysis on X variables (row effects) and Y 
variables (column effects). Such an analysis leads to three canonical correla
tion coefficients 0.446368, 0.173455 and 0.029317. The squared correlation 
coefficients are 0.199245, 0.030087 and 0.000859, which are just the eigen
values in the correspondence analysis. In fact, factors in correspondence 
analysis are the same as those in canonical correlation analysis. The main 
difference between the two is that canonical correlation analysis emphasizes 
on the canonical variables and canonical correlation coefficients, while cor
respondence analysis attempts to interpret the structure of contingency table.

19.3 Canonical Discriminant Analysis

Suppose there are к samples from к > 2 populations. Each sample con
tains observations from X\, X2, . . . ,  Xp, p > k, with samples size n,,
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Table 19.16 Canonical correlation analysis of Example 19.2.

Color of the eyes Color of the hair

No.
Dark
W

Medium
* 2

Blue
*3

Light
x4

Fair
Y \

Red
* 2

Medium
L3

Dark
L4

Black
l5

Frequency
/

1 1 0 0 0 1 0 0 0 0 98
2 0 1 0 0 1 0 0 0 0 343
3 0 0 l 0 1 0 0 0 0 326
4 0 0 0 1 1 0 0 0 0 6 8 8

5 1 0 0 0 0 1 0 0 0 48
6 0 1 0 0 0 1 0 0 0 84
7 0 0 1 0 0 1 0 0 0 38
8 0 0 0 1 0 1 0 0 0 116
9 1 0 0 0 0 0 1 0 0 403

10 0 1 0 0 0 0 1 0 0 909
11 0 0 1 0 0 0 1 0 0 241
12 0 0 0 1 0 0 1 0 0 584
13 1 0 0 0 0 0 0 1 0 681
14 0 I 0 0 0 0 0 1 0 412
15 0 0 1 0 0 0 0 1 0 1 1 0

16 0 0 0 1 0 0 0 1 0 188
17 1 0 0 0 0 0 0 0 1 85
18 0 1 0 0 0 0 0 0 1 26
19 0 0 1 0 0 0 0 0 1 3
2 0 0 0 0 1 0 0 0 0 1 4

Table 19.17 Definition of indicator variables.

Group Y \ y 2 Y k - 1

1 1 0 0

2 0 1 0

к  — 1 0 0 1

к 0 0 0

i =  1 , 2 , . . . ,  k. We wish to use these samples as our training sample, 
to derive a discriminant rule. This is a generalization of two-population 
discrimination problem.

Define к—1 indicator variables Y\ , Y2, , T*_i, which take values 0 or 
1 according to Table 19.17.
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For each individual, in addition to X \ , X 2, . . .  , X P, there are 
“observations” Y\,Y2, . . . ,  Yk_\. Therefore, we can derive the first pair of 
standardized canonical variables

W\  =  a \ \ Y \  +  «12^2 +  • • • +  a i ti c - \ Y k - i ,

V\ =  b\\X\ +  b\2 X2 +  ■ ■ ■ +  b\pXp.

V\ is called the first standardized canonical discriminant function, 
because it has the highest correlation with the indicator variables.

Similarly, we can obtain W2 and V2. V2 is called the second canonical 
discriminant function, which is uncorrelated to Vi.

Proceeding accordingly, we can obtain Vj,V4 , . . . ,  Vk-\ ,  a total of к— 1 
canonical discriminant functions. When k — 2, there is only one discrim
inant function, which is commonly referred to as Fisher’s discriminant 
function. It can be showed that the canonical discriminant functions are 
multi-population Fisher’s discriminant functions.

Similar to two-population problem, we have only obtained discriminant 
functions without a discriminant rule, in general, we derive discriminant 
rules based on the values of V|,V2, . . . ,  Vk-\ .  The simplest approach is to 
use the following minimal distance discrimination procedure.

(1) Calculate the values of Vb V2, . . . ,  Vk-\  for each individual;
(2) Within each sample, calculate the mean value of V\, V2, . . . ,  V*_i, as 

its gravity center;
(3) Calculate new observation’s (of unknown group) discriminant function 

values, denoted by V*,V2* ,. . . ,  Vk*_,.
(4) Calculate the Euclidean distances of discriminant function values of (3) 

from each of the к gravity centers in (2). The individual is allocated to 
the group, of which the gravity center has the shortest distance to it.

The discrimination may be improved, if we use a weighted Euclidean 
distance instead of the Euclidean distance in (4). The weight w, can be the 
reciprocal of the variance of V, ’s within a sample. That is,

l

Wi =  [ v a r M ) ] - 1, d )  =  £  W i( V *  -  V , )2.
i= 1

Here d 2 is the (squared) distance between V*, V2*, . . . ,  Vk_ x and the z'th 
gravity center (Уч , V2j , V i-ij).
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19.4 Computerized Experiments

Experiment 19.1 Canonical correlation analysis Using the 1985 phys
ical survey data of male students from 28 Chinese cities (ages 19-22) to 
perform a canonical correlation analysis.

Program 19.1 Canonical correlation analysis.

Line Program Line Program

01 DATA A; 07 77.7 113.3 72.1 52.8 4238
02 INPUT X1-X6 Y1-Y5; 08 '
03 CARDS; 09 PROC CORR OUT=CORREL;
04 173.28 93.62 60.10 86.72 38.97 

27.51
10 PROC CANCORR DATA= 

CORREL ALL;
05 75.3 117.4 74.6 6108 4508 11

12
VARX1-X6; 
WITH Y1-Y5;

06 168.99 91.52 51.11 86.23 38.30 27.14 13 RUN;

In Program 19.1, lines 01-08 are data entry. Line 09 does correlation 
analysis among the variables, and stores correlation matrix into dataset 
CORREL. Lines 10—13 do canonical correlation analysis, analyzing rela
tionship between variables XI through X6 and Y1 through Y5.

Experiment 19.2 Correspondence analysis Perform a correspondence 
analysis on the example of pupils’ color of the eyes and color of the hair 
relationship. Data are in Table 19.8.

Program 19.2 Correspondence analysis.

Line Program Line Program

01 DATA A; 11 VAR Fair Red Medium Dark Black;
02 INPUT eye $ Fair Red Medium Dark 12 ID eye;

Black; 13 RUN;
03 CARDS; 14 PROC PLOT DATA=result;
04 Lighteye 688 116 584 188 4 15 WHERE eye NE
05 Blueeye 326 38 241 110 3 16 PLOT DIM2*DIM1="*" $ eye
06 Mediumeye 343 84 909 412 26 /BOX VAXIS=-.3 TO .3 BY . 1
07 Darkeye 98 48 403 681 85 HAXIS=-1.2 TO 1 BY .2;
08 ; 17 RUN;
09 RUN;
10 PROC CORRESP OUT=result;
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Lines 01-09 in Program 19.2 are again for data entry. Lines 10-13 
perform correspondence analysis. Lines 14-17 make plots.

19.5 Practice and Experiments

1. The data on 1985 male students (19-22 years of age) from 28 Chinese 
cities are summarized in Table 19.18 (the city numbers are the same as those 
used previously). Using morphology indices and function indices described 
in Chap. 17 to perform the following tasks:

Table 19.18 The physical ability data of male students (19-22) from 28 Chinese cities.

City

50 meters 
sprint (sec.) 

Zi

Stationary 
jump (cm)

z2

Pull-up
(times)

z 3

Standing forward 
bending (cm) 

Z4

100 meters 
sprint (sec.)

z 5

1 7.48 225.3 5.9 8.01 248.21
2 7.63 218.0 3.9 10.25 248.51
3 7.49 226.1 7.7 13.56 235.08
4 7.83 216.2 6.2 9.98 257.53
5 7.46 232.7 7.4 14.14 228.07
6 7.42 232.7 7.6 12.91 226.81
7 7.58 220.4 7.9 12.61 236.56
8 7.32 229.8 7.5 10.51 237.78
9 7.30 229.5 8.3 11.78 229.88

10 7.62 223.4 7.5 12.56 238.65
11 7.59 216.5 6.7 13.23 247.43
12 7.73 219.0 6.4 9.83 246.49
13 7.43 225.7 7.4 12.61 242.96
14 7.57 224.6 7.7 13.62 245.92
15 7.39 227.8 7.6 7.14 246.10
16 7.23 231.6 9.0 11.45 228.73
17 7.34 227.8 8.3 12.05 233.06
18 7.64 218.3 7.1 12.75 237.52
19 7.46 222.7 6.7 9.34 242.39
20 7.36 239.1 10.3 11.70 225.13
21 7.53 225.0 9.4 13.53 237.37
22 7.41 233.0 8.1 11.09 234.12
23 7.57 227.1 9.0 13.22 231.09
24 7.15 228.1 9.5 9.77 223.09
25 7.35 237.5 10.4 13.20 224.34
26 7.43 225.2 7.7 10.06 236.67
27 7.69 218.9 7.7 12.15 243.67
28 7.37 224.1 7.4 11.27 245.32
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(1) Canonical correlation analysis of X2, . . . ,  X6 and Z b Z2, . . . ,  Z5;
(2) Canonical correlation analysis of Fb T2, . . . ,  У5 and Z b Z2, . . . ,  Z5;
(3) Canonical correlation analysis of X\, X2, . . . ,  X6, Y\ ,  F2, . . . ,  F5 and

Z\, z 2, . . . ,  z 5.
(4) Discuss the difference between performing (1) and (2) separately versus 

a combined analysis of (3). In your opinion, which is preferred and why?

2. Suppose there are two sets of variables X\, X2 , . . . , X p and Fb 
Y2, . . . , Y q .

(1) When p  — q — 1, can you use canonical correlation analysis to obtain 
the simple correlation coefficients and simple linear regression?

(2) When q =  1, can you use canonical correlation analysis to obtain the 
multiple correlation coefficients and multiple linear regression?

3. Use canonical correlation analysis programs to solve Problem 2 in Exer
cises of Chap. 18. Then compare the results.
4. Use principal component analysis to find the principal components of X 
and Y variables in Problem 1 above. Then compute correlation coefficients 
between the principal components of X and Y variables. Compare and 
discuss the results with that of Problem 1.

5. Combine morphology data in Table 18.1 and functional data in Table 18.8 
to perform a factor analysis. Use the factor model obtained to identify highly 
correlated X  and Y variables. Compare with Table 19.5, and discuss.
6 . Table 19.19 is a summary of the analgesic effect of pain relievers. Perform 
a correspondence analysis on the data.

Table 19.19 Data on the analgesic effect of pain relievers.

Analgesic effect

Drug Poor Fair Good Very good Excellent

A 5 1 10 8 6
В 5 3 3 8 12
C 10 6 12 3 0
D 7 12 8 1 1

Source: Michael J. Greenacre. Theory and Applications of 
Correspondence Analysis. Academic Press. 1984, 263.

(1st edn. Fei Lin, Ying Lu, Jie Yan; 2nd edn. Yuanto Hao, Nanqiao Cai, 
Jiqian Fang)



Chapter 20

Survival Analysis

To determine the prognosis circumstance of diseases, we must not only look 
at the final outcome being stand or fall, but also observe the time length 
for experiencing this kind of final outcome. For example the prediction 
that in Table 20.1, patients Nos. 2, 4 and 5 all die, but the lengths of life 
time are different, and namely the prognosis of these three patients are 
different. Generally such data are collected by follow-up, and the begin 
time is the diagnosis date, treatment date etc. The clearest definition of the 
final outcome is death, but in addition, is the relapse, the deformity, recover 
from illness etc. The data of follow-up is often incomplete because of lost 
to visit, and hence a kind of specialized methods is needed for statistical 
analysis, which are usually called survival analysis or analysis of life data. 
Survival analysis is also suitable to the research to track factors of diseases 
(occurring disease as positive), or to track clinical curative effect (recover 
from illness or remarkable effect as positive), or to the animal examination 
(disease or death as positive) etc.

It is worthy to note that using percentage index, such as cure rate, effec
tive rate, fatality rate or disability rate to evaluate clinical effect is not very 
ideal. For example, a doctor treats 50 gastric ulcer patients by using the herb 
and the routine medicine respectively, and the recovery rates from illness 
are 90% in both cases. It seems that the curative effect for these two kinds of 
drugs is the same. But the assistant of that doctor discovers that the gastric 
ulcer disappeared in 20 days on average for the group with herb, and is 
30 days on average in another group, so it seems that the herb is better than 
the routine medicine. This shows that the curative effect described only by 
percentage is unilateral and crude. The time factor must also be consid
ered when analyzing curative effect. The survival analysis is the method to 
evaluate the curative effect completely and accurately.

541
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Table 20.1 F o llo w -u p  d a ta  o f  5 cases w ith  liv e r cancer.

C o v aria tes  O b serv ed  reco rds

N o. N am e
G en d er 

( M =  1)
G ro u p B eg in

date
E n d
date

O u tco m e 
(d ead  =  1)

S urv ival
days

1 M S L 1 0 98-0 7 -1 2 98 -1 1 -2 9 0 140
2 L S L 0 1 98-07-01 98-12-08 1 160
3 Z X J 1 1 98-0 7 -1 4 98-12-31 0 170
4 W Y Q 0 0 9 8-08-22 9 8 -1 1 -2 9 1 99
5 W JS 1 1 98-1 0 -2 0 9 8-11-25 1 36

1. MSL
2. LSL

4. WYQ
5. WJS

7 8 9 10 11 12

month (1998)

Fig. 20.1 S ketch  m ap  o f  su rv ival tim es in  o rig in a l reco rd s (th e  “ + ” m ean s still liv ing , the 
sam e  as fo llow s).

20.1 The Basic Concept of Survival Analysis

20.1.1 The record  o f  fo llow -u p  data (data construction)

Example 20.1 The follow-up data of five cases are showed in Table 20.1,
where the records include the beginning date to observe, terminal date, final 
outcome and covariates (study factor and confounder). The characteristics 
of this kind of data are:

(1) Two dependent variables, namely the survival time (days) and the final 
outcome (death or not);

(2) The survival time my be observed incompletely, therefore we do not 
know how long the patient will actually live, such as patients Nos. 1 
and 3 in Table 20.1. In order to reflect the effects of prognosis, the 
correct method must incorporate the final outcome with survival time 
by survival analysis.
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days

Fig. 20 .2  S ketch  m ap  o f  su rv ival tim es b e ing  sorted .

20.1.2 S urviva l tim e com plete data, cen sored  date

The survival time means the length of survival time observed, such as 140, 
160, 170, 99, 36 days in Table 20.1. There are two kinds of survival time as 
follows:

(1) The complete data: The time from beginning time to the time of death, 
namely survival time of death cases, such as 160, 99 and 36 days in 
Table 20.1.

(2) The censored data: Because of failure to follow up, changing the plan of 
treatment or ending the research etc., some patients cannot be followed 
to their death, which is called with censoring or being censored. The 
time length from beginning point to censoring point, namely the survival 
time of the survivor, is called censored data, such as 140, 170 days in 
Table 20.1, customarily recorded as 140+, 170+.

The complete data provide the accurate times of survival, and they are 
the basis of analysis. The censored data also provide some information that 
the patient still survive at the censored time.

20.2 The Product-Limit Method for One Group 
of Survival Data

This method directly uses the multiplication of survival probabilities cor
responding to the complete death times to estimate the survival function so 
that it is called the product-limit method. It was proposed by Kaplan-Meier 
(1958). This is a kind of non-parameter method in nature.
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20.2.1 S u rv iva l fu n ctio n  a n d  su rviva l curve

Example 20.2 A set of survival data (days) is given as follows:

90,150,210, 540, 150, 270+

Now introduce the product-limit method to estimate the survival function
and plot the survival curve by incorporating Table 20.2 step by step:

(1) Sorting the observed time points (t). List the completed times in increas
ing order (Column 2); not including the censored data (such as “270+”); 
if there is a tie, the same value appears just once (such as “ 150”).

(2) Record the number of deaths at each time point (Column 3).
(3) Record the number of censored ones at the observed time point right 

before the censored time (Column 4). For example, for the censored 
time 270+, we count it into the point of 210, for 210 < 270 < 540.

(4) Calculate the number of cases right before the time point t  (Column 
5). In this case, the number of cases right before the first time point 90 
is n0i =  6 ; for other time points, one may get the number of cases by 
subtraction, such as

«02 =  «oi — d\ — Ci =  6 — 1 — 0 =  5 

«оз =  «02 -  d2 -  c2 =  5 -  2 -  0 =  3.

Alternatively, the number of cases right before the last time point is 
«04 =  1; for other time points, one may accumulate backward to get 
the number of cases, such as

«03 =  «04 +  Й?3 +  c 3 — 1 +  1 +  1 =  3 ,

«02 =  «03 + f i ? 2 + c 2 =  3 +  2 +  0 =  5.

(5) Calculate the probability of death and probability of survive at each 
time point (Columns 6 and 7).

qk = ~ ,  Pk = l~qk- (20.1)
«or

(6 ) Calculate the survival function at each time point (Column 8).

S ( t k) =  P ( T  > t k )  =  p \ p 2 - - - P k .  (20 .2 )



T a b le  20 .2  C a lcu la tio n  o f  su rv iva l fu n c tio n  b y  K a p la n -M e ie r  m ethod .

No.
( 1)

Time to 
death

(2 )

Number 
of deaths 

at t
(3)

Number of 
censored 

atr
(4)

Number of 
cases right 

before t 
(5)

Probability 
of death 

at t 
(6 )

Probability 
of survive 

at t
(7)

Survival function
(8 )

Standard 
error of 

S ( t )  
(9)

0 0 0 0 6 0 1 1

1 90 1 0 6 1/6 5/6 (5/6) =  0.833 0.152
2 150 2 0 5 2/5 3/5 (5/6) (3/5) =  0.500 0.204
3 2 1 0 1 1 3 1/3 2/3 (5/6) (3/5) (2/3) =  0.333 0.193
4 540 1 0 1 1/1 0/1 (5/6) (3 /5 )(2 /3 )(0 /1) = 0 0

Survival A
nalysis 

545
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1.0
5(0

0.8

0.6

0.4  -

0.2 -

0.0
0  90  180 270  360 450  540

t (day)

Fig. 20.3 Survival curve made by K-M method and its median (M d  =  180 days).

(7) Calculate the standard error of the survival function (Column 9). The 
formula was proposed by Greenwood (1926)

(8) Plot the survival curve according to columns 2 and 8 (Fig. 20.3).

For product-limit method, the survival function is estimated at each time 
point of death, and assumed as a right continuous step function. Therefore 
its graph looks like a stair. The value of survival function at time point t 
is at down a step, such as 5(90) =  0.8333 in Fig. 20.3, instead of 1. If 
there is no case censored at the last time point, the curve will end with 
the x-axis (disadvantage). When both the sample size and the number of 
death time points are large, the stair-form of the survival curve will not be 
obvious.

Based on survival curve, we can estimate the median-lifetime and quar- 
tile range (Fig. 20.3).

20.2.2 The basic requirements by K-M method

(1) A random sample with big enough sample size is available;
(2) The number of deaths should not be too small (say, > 30);
(3) The proportion of the censored data should not be too large.

к

(20.3)
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Table 20.3 The relapse times (month) for children with rhabdosarcoma after treatments*.

Control 2 3 9 10 10 12+ 15 15+ 16 18+ 24+ 30 36+ 40+ 45+
Treatment 9 12+ 16 19 19+ 20+ 20+ 24+ 24+ 30+ 31+ 34+ 42+ 44+ 53+

59+ 62+

*“+ ” means no relapse yet.

20.3 The Log-Rank Test and Breslow Test for Comparing 
Two Survival Data Sets

In this section, the tests for comparing two groups of survival data will 
be emphasized. The null hypothesis Ho is that the two survival functions 
are exactly the same although the whole process of test generally does not 
estimate the survival function.

Example 20.3 There are two sets of relapsed times (month) for children 
with rhabdosarcoma after treatments as shown in Table 20.3. The control 
group is “extirpate -f actinotherapy”, and treatment group is “extirpate +  
actinotherapy +  chemotherapy”. Whether the chemotherapy on the basis 
of “extirpate +  actinotherapy” can increase the remission rate? (similar to 
survival rate).

Now let us introduce two tests for this kind of problems incorporating 
Example 20.2. The two remission curves in Fig. 20.4 are estimated with 
the above introduced product-limit method. The difference between them 
needs to be tested with the following hypotheses:

Ho'. The two remission curves are the same in population 
# i : The two remission curves are not the same in population

First, uncensored relapse time points are sorted by mixing the data of two 
groups, shown in columns 1-5 in Table 20.4. The table consists of many 
fourfold tables, each of which corresponding to a time point of relapse. 
Promising for the / th fourfold table, the total numbers of exposed, relapse 
and non-relapse are denoted with Nj, Dj and Sj respectively, and for the 
control (or the treatment) group, the number of exposed and relapse are 
denoted with nj and dj respectively. When Ho is true, the cij in the fourfold
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S(t)

Fig. 20.4 Comparison between the two remission curves for the treatment group and the 
control group.

table is a random variable (the rest are determined by aj, N j  and Dj),  of 
which its expected number and variance are

DJв; — П j ---
1 1 Ni

DjSj t i j iNj  -  nj)
N ] ( N j  -  1)

When there are enough number of such kind of fourfold tables, we have the 
sum of the expected frequencies ej, the sum of the observed frequencies 

cij and the corresponding variance ^  vj.

20.3.1 The log-rank test

The statistics of log-rank test is

( l a r - l e r f

Xl
(20.4)

when Ho is true, this statistic follows a y}  distribution with one degree of 
freedom.



T a b le  20 .4  C a lcu la tio n  fo r  lo g -ran k  te s t an d  B reslo w  test.

j

Time to 
relapse
(month) Contr. Treat. Sub total e  — а  дг „ 2  _  D Sn(N~n) 

~  N 2( N - 1) N a N e  — n D N 2v 2

1 2 l(a , e) 0 1(D) 0.469 0.249 32 15 254.976
14 7 31 (5)

15 (n ) 17 ( N  - n )  32 ( N )

2 3 1 0 1 0.452 0.248 31 14 238.328
13 17 30

14 17 31

3 9 1 1 2 0.867 0.474 30 26 426.600
12 16 28

13 17 30

4 1 0 2 0 2 0.857 0.472 56 24 370.048
1 0 16 26

12 16 28

5 15 1 0 1 0.375 0.234 24 9 134.784
8 15 23

9 15 24

L/l

(Continued)

Su
rviva

l A
n

a
lysis



Table 20.4 (C o n tin u e d )

Time to 
relapse

j (month) Contr. Treat. Sub total e  -  a  N
2 _  DSn(N-n) 

v  -  N 2 ( N - 1) N a N e  — n D N 2 v 2

6 16 1 1 2 0.636 0.413 2 2 14 199.892
6 14 2 0

7 15 2 2

7 19 0 1 1 0.263 0.194 0 5 70.034
5 13 18

5 14 19

8 30 1 0 1 0.333 0 .2 2 2 12 4 31.968
3 8 11

4 8 12

Total 8 3 4.252 2.506 207 111 1726.630

i : ° j E f f j a j Z N j e j Z N j v f
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Example 20.4 Perform a log-rank test for the data of Example 20.3. 

Solution Referring to Table 20.4,

X fl; = 8’ XIе; = 4'252’
Substitute into (20.4)

2 (8 -  4.252)2
Xl ~  2.506

According to the x 2 distribution with one degree of freedom, P =  
0.0179. Ho is rejected so that it can be concluded that the remission 
rate might be increased by chemotherapy addition to “extirpate +  actino- 
therapy”.

] T  vj =  2.506.

20.3.2 B reslow  test

For j  =  1,2, . . . ,  if aj is weighted by exposed number Nj at the jth  fourfold 
table, then Breslow’s statistic is

2 (LNjaj  —  UNjej)2 
X b  — IJV?»]

(20.5)

When H0 is true, this statistic follows a y 2 distribution with one degree of 
freedom.

Example 20.5 Perform the Breslow test for the data of Example 20.4. 

Solution Referring to Table 20.4,

X  N >a J =  207, X ^  =  m >

Substitute into (20.5)

2 (207 - 111)2

Xb ~  1726.630

According to the x 2 distribution with one degree of freedom, P =  0.0209. 
H0 is also rejected so that it can be concluded that the remission rate might 
be increased by chemotherapy addition to “extirpate +  actinotherapy”.

=  1726.630.
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20.4 The Cox Regression

20.4.1 A  b r ie f  in troduction

The Cox regression is one of the most important methods for the analysis 
of life data. The primary applications are prognostic analysis of tumor and 
other chronic diseases, and cohort study to explore causes of diseases.

20.4.1.1 The Cox model

Suppose there are p covariates X i , X2, . . . ,  Xp, the hazard function of death 
at time t is assumed as

/z(0 =  M O  expOS, X, +  p 2 X2 +  --- +  ppXp). (20.6)

Here M O  is the baseline hazard function depending on time t only. This 
model is proposed by Cox (1972), and also called proportional hazards 
model, which means that the hazard is proportional to M 0> and the ratio 
between hit) and M O  is e l̂Xl+ 2̂X2+"'+ P̂xP or exp(/?|X, +  /32 X 2 +  • • • +  
PpXp), depending on the individual’s values of X\, X2, . . . ,  Xp.

To illustrate the model in detail, the data of four cases of liver can
cer are listed on the left of Fig. 20.5, and the value of hazard function is 
demonstrated on the right of the figure. One can see that the hazard func
tion varies with the individual’s values of covariates given on the left-hand 
side, and also varies with time for the same individual. The Cox regres
sion model is subject to a semi-parametric model because only the part of

Name
o f

patient

Group

x,

Gender ~ 
(M=l) ^

x 2 t

Issue
(D=l)

d

Hazard function 
(different from  one 

to another)
/ iw = w M * i+№

Value o f  hazard (vary with t)

36 days 99 days 140 days 180 days

A 1 1 36 1 л„(ЗбИ*л

В 0 0 99 1 K h ) M36) К  (99)

C 0 1 140 0 W e 11’ М36)ел j М99)еА +

D 1 0 180 1 K h )e p' Л„(36)/' ;Л0( 99)еА Л„(180И

Fig. 20.5 The sketch map about the model of Cox regression (four cases of liver cancer).
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exp(y5|X| +  /?2Х2 +  .. - +  PpXp) is specified as an exponential function 
with parameters ft\ , /?2, • • • , Pp - but /?0(/) is not specified.

20.4.1.2 Estimation and test for regression coefficients

Because the form of ho(t) is not specified, the traditional maximum like
lihood estimation does not work for Cox regression. Cox (1972, 1975) 
proposed a partial likelihood function which is the product of conditional 
mortality probabilities at the points that deaths happened; he suggested to 
estimate the parameters by maximizing this partial likelihood function; and 
to perform the tests for the parameters by score test, Wald test and likelihood 
ratio test. The optimal properties of the estimates and the rationale of the 
tests have been studied by many statisticians since then. Here the theory 
of parameter estimation is skipped and the algorithm can be performed by 
statistical software, which will be introduced later.

20.4.2 Application of Cox regression

We would introduce the main steps of the application of Cox regression 
incorporating with an example as follows:

Example 20.6 The curative effect of variola powder to chorion carcinoma 
has been studied. 16 nude mice, who were successfully inoculated with 
chorion carcinoma at their body surface, were randomly divided into four 
groups to accept four treatments respectively (none, variola powder, drug A 
and drug B). The data are showed in Table 20.5. Work out the statistical 
analysis by Cox regression.

20.4.2.1 Data structure

As those in Table 20.5, the data required by Cox regression include at least 
four parts: begin date, terminal date, outcome (dead or not), covariates. The 
first three are necessary.

20.4.2.2 Preliminary screening of the covariates

Although the number of covariates is unlimited, if it is too much or the 
quality of data on covariates is not good, a preliminary screening of covari
ates is necessary. In general, eliminate the covariates with more missing
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T a b le  2 0 .5  T h e  cu ra tiv e  e ffec t o f  va rio la  p o w d er to  ch o rio n  carc in o m a .

C ovaria te  (fac to r) O b serv a tio n s

D ay s S ize  Surv ival
w ith o f V ario la D ru g D ru g V itam in B eg in E nd tim e

tu m o r tu m o r po w d er A В C date date D eath (days)
N o. td vO tr l trl tr3 vitC dateO d a te l d day

1 19 25 0 0 0 1 8 9-05-20 8 9-05-28 1 8
2 17 16 0 0 0 1 89-0 5 -2 0 8 9-05-29 1 9
3 19 37 0 0 0 1 89-0 5 -2 0 8 9-05-28 1 8
4 16 19 0 0 0 1 89-0 5 -2 0 89-05-28 1 8
5 14 25 1 0 0 1 89-0 5 -2 0 89-06-07 0 18
6 13 18 1 0 0 1 89-0 5 -2 0 8 9-06-06 1 17
7 16 25 1 0 0 1 8 9-05-20 89-06-03 1 14
8 9 10 1 0 0 1 8 9-05-20 89-0 6 -0 4 1 15
9 9 22 0 1 0 1 89 -0 5 -2 0 8 9-06-04 1 15

10 10 25 0 1 0 1 89 -0 5 -2 0 89-05-31 1 11
11 14 25 0 1 0 1 89 -0 5 -2 0 89-06-02 1 13
12 12 37 0 1 0 1 89 -0 5 -2 0 89-06-01 1 12
13 17 37 0 0 1 1 89 -0 5 -2 0 8 9-05-29 1 9
14 14 29 0 0 1 1 89-05-20 89-06-01 1 12
15 13 13 0 0 1 0 89-05-20 89-06-01 1 12
16 17 31 0 0 1 1 89 -0 5 -2 0 89 -0 5 -3 0 1 10

values or with too small variability (such as vitC in Table 20.7), because 
these covariates provide less information and might cause big trouble in 
computation.

Then each covariate is analyzed independently by Cox regression model 
with single covariate only. Eliminate those covariates that the correspond
ing P values are too big, because their coefficients in the model might be 
zero.

20.4.2.3 Cox regression model with multiple covariates

Take over all the statistically significant covariates in the above step into 
the Cox model to perform a Cox regression with multiple covariates.

Similar to the procedures for selection of variables in multiple linear 
regression, the forward or backward methods are in common use. Some 
times, the preferential method can be used as well, that is, the important
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covariates could be selected into or kept staying in the model according to 
the professional knowledge.

Solution (of Example 20.6) Table 20.6 gives the results of the analysis for 
the data in Table 20.5 on the basis of Cox model with single covariate. The 
first column lists the covariates; columns 2 to 6 are the statistical descriptions 
for the covariates, including number of cases, maximum, minimum, mean 
and standard deviation; columns 7 to 9 are the tests for the Cox model with 
single covariate, whether each of the coefficients is zero or not; columns 7 
and 8 list the values of test statistic / 2 and the degrees of freedom; column 
9 lists the P values, of which the larger values indicate the coefficients in 
the model might be zero or the corresponding covariates are not statistically 
significant. It shows that the covariates td and tr 1 are statistically significant 
while tr2, tr.3 and vO are not.

Table 20.7 gives the results on the basis of Cox model with two covariates 
td and tr 1. Columns 2 and 3 are the estimated coefficients and their standard 
errors; columns 4 to 6 are the tests for the Cox model with two covariates, 
whether each of the coefficients is zero or not. It shows that both td and 
trl are significantly different from zero. Therefore, we conclude that the 
curative effect of variola powder to chorion carcinoma is to decrease the 
hazard of death and increase the survival time, but the days with tumor 
might increase the hazard of death.

Table 20 .6  T h e  re su lts  by  C ox  reg ress io n  w ith  s in g le  covariate .

T est fo r m odel w ith
S ta tis tica l d esc rip tio n  sing le  co v aria te

Covar.

(1)

C ase
(2)

M ax.
(3)

M in.

(4)

M ean

(5)

SD
(6)

X 2
(7)

df
(8)

P
(9)

d 16 0 .0 0 1.00 0 .9375 0 .2 5 0 0

day 16 8 .0 0 18.00 11.9375 3 .2139

td 16 9 .0 0 19.00 14.3125 3.2191 4 .7033 1 0.0301

tr l 16 0 .0 0 1.00 0 .2 5 0 0 0 .4 4 7 2 6 .6318 1 0 .0100

tr2 16 0 .0 0 1.00 0 .2 5 0 0 0 .4472 0.0091 1 0 .9238

tr3 16 0 .0 0 1.00 0 .2 5 0 0 0 .4472 1.1985 1 0 .2 7 3 6

vO 16 10.00 3 7 .0 0 2 4 .6 2 5 0 8 .2694 1.4238 1 0 .2328
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T a b le  20 .7  T h e  re su lts  by  C o x  reg ress io n  w ith  m u ltip le  covariates.

T est fo r  m odel w ith
P a ra m e te r  m u ltip le  co v aria te s  S tan d ard  p a ram e te r

C ovar. C oeffic ien t SE * 2 df P R isk  ra tio C oeffic ien t SE
0 ) (2) (3) (4) (5) (6) (7) (8) (9)

td 0.4201 0 .1 6 3 0 6 .6467 1 0 .0099 1.5221 1.3524 0 .5 2 4 6
tr l - 2 .9 3 9 9 1.0714 7 .5297 1 0.0061 0 .0529 - 1 .3 1 4 8 0 .4 7 9 0

20.4.2.4 Risk ratio

Column 7 in Table 20.7 gives the risk ratio of each covariate. It is defined 
as how risk it will be while the covariate increases by one unit.

Let us take the risk ratio of X\ as an example:
For X i =  x i, X2 =  x2, • • •, Xp =  xp, the hazard function is

MO = MO exp(/?iXi + p2x2 H-----b Ppxp).

For X\ =  x\ +  1, X2 =  x2, . . . ,  Xp =  xp, the hazard function is

M O  =  M O  exp[/i, Oi +  1) +  p 2x2 + -----1- J3pXp\.

Comparing the two hazard functions, one has

hi(t) _  MO e*p[/?i (xi + 1) + /32х2 H-----h fipXp] _
MO MO expOMi + p2x2 4-----------b fJpXp) 6X P  ’

Therefore, when the value of X\ changes from jct to JC| +  1, the hazard 
becomes exp(/?i) times of that before changing.

In general, for the i th covariate, we denote such a risk ratio with

R R i = e x  p(A). (20.7)

If X, is a binary variable, obviously, the risk ratio is exactly the same as 
the relative risk comparing the condition of X\ =  1 to that of X\ = 0 . 

Column 7 in Table 20.7 are calculated by (20.7),

RR2 =  exp(/?2) «  exp(—2.9399) =  0.0529,

RRi =  exp(/?i) «  exp(0.4201) =  1.5221.
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20.4.2.5 Standard coefficient

Columns 8 and 9 in Table 20.7 are the standard regression coefficient b\ and 
its standard error SEiffi) for ith covariate. As for the relationship between 
the regression coefficient b, and b\, we have

b\ =  biS(Xt), SE{b\) =  SE(bi)S(Xi).  (20.8)

Here S(Xi) refers to the standard deviation of the covariate X,.
Same as that in multiple linear regression, the standard regression coef

ficient b'l can be used to compare the contributions of different covariates 
free of the problem of units. From column 8 of Table 20.7, one can see that 
the contribution of the two covariates td and tr\ are about the same, while 
is not obvious from column 2 .

20.4.3 The estimation of survival function

After the regression coefficients being estimated, one can go further to 
estimate the survival function by the method proposed by Breslow.

First of all, let us estimate the baseline survival function at ith death 
time tj, denoted with Soft)

Soft) =  П  
i=i

1 -
T,k\tk>tj expCftxj*0 +  b2x[k) + ■ bpxp(kU

(20.9)

Here dj is the number of deaths at /'th death time tj\ , x ^ \ ..., x ^ ]) 
refers to the kth individual’s values of covariates; J2 k \ tk>ij» refers to a sum' 
mation over all the patients who survived at the moment right before tf, 
[~['/=] refers to a product over t \ , t2, .. ■, tj.

Comparing (20.9) to (20.1) and (20.2), one will find that, the only dif
ference is that instead of simply the number of patients who survived at the 
moment right before tj, here in the numerator is the sum of the “weights” 
of exp(«).

Obviously, under the assumption of (20.6), the survival function of a 
specific individual with X\ =  x*, Хг =  x%, ■ ■ ■ , Xp =  x* is equal to

=  [ 5 0 ( f ) ] exP№ J:*+/?2-rf~l---- h/?2*p 4 ( 2 0 . 1 0 )
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Since [1\ ъ  b\, fa ^  b2, . . . ,  /?р я» bp, on the basis of (20.9), we have the 
estimate of the survival function for this specific individual

5(f) «  [So(f)]exp(*i*f+i2' 2*+" t i2JCJ). (20.11)

20.5 Computerized Experiments

Experiment 20.1 Kaplan-Meier estimate and log rank test The data 
come from Table 20.4. ID =  1 means failure to follow up, and ID =  0 means 
death. Line 23 is for Kaplan-Meier method, and line 24 is for log rank test.
Experiment 20.2 The estimation and test related to Cox model The data 
come from Table 20.5, and Y =  0 means failure to follow up, and Y =  1 
means death.

20.6 Practice and Experiments

1. Calculate the two remission functions based on the data of Example
20.2 in Table 20.3 by Kaplan-Meier method and plot the two remission 
curves.

2. The relapse times of the patients with leukemia in the 6 -MP treatment 
group and the control group are given in Table 20.8. Compare the two 
groups by log-rank test and Breslow test.

Program 20.1 Kaplan-Meier estimate and log rank test.

Line Program Line Program

01 DATA LIFE; 14 24 1 1 34 1 2
02 INPUTT ID GROUP@@; 15 30 0 1 42 1 2
03 CARDS; 16 36 1 1 44 1 2
04 20 1 12 1 2 17 40 1 1 53 1 2
05 3 0  1 1602 18 45 1 1 59 1 2
06 9 0  1 1902 19 9 0 2 62 1 2
07 100 1 19 1 2 20 ’
08 10 0 1 20 1 2 21 PROC PRINT;
09 12 1 1 20 1 2 22 PROC LIFETEST METHOD =  PL;
10 15 0 1 24 1 2 23 TIME T*ID(1);
11 15 1 1 24 1 2 24 STRATA GROUP;
12 16 0 1 30 1 2 25 RUN;
13 18 1 1 31 1 2
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T a b le  20 .8  T h e  re lap se  tim es  o f  pa tien ts  w ith  leu k e m ia  in  tw o  g roups.

Group Relapse time

6-MP 6 6 6 6+ 7 9+ 10 10+ 11 + 13 16
17+ 19+ 20+ 22 23 25+ 32+ 32+ 34+ 35+

Control 1 2 2 3 4 4 5 5 8 8 8
8 11 11 12 12 15 17 22 23

Program 20.2 Cox regression.

Line Program Line Program

1 DATA a; 21 12370 1 0 1 12
2 INPUT td vO trl tr2 tr3 у day; 22 17 37 0 0  1 1 9
3 v01=0;v02 =  0; 23 14 2 9 0 0  1 1 12
4 tdl =0;td2 =  0; 24 13 13 0 0  1 1 12
5 IF v0> 18 and v0<30 

THEN vOl =  1;
25 1731 0 0  1 1 10

6 IF v0> =  30 THEN v 0 2 = l; 26
7 IF td>  12 AND td < 17 

THEN tdl =  1;
27 PROC PHREG;

8 IF td > =  17 THEN td2 =  1; 28 MODEL day*y(0)
9 CARDS; =  trl tr2 tr3 tdl td2 vOl v02;

10 19 25 0 0 0  1 8 29 PROC PHREG;
11 17 1 6 0 0 0  1 9 30 MODEL day*y(0)

=  trl tr2 tr3 tdl td2;
12 1 9 3 7 0 0 0  1 8 31 PROC PHREG;
13 16 1 9 0 0 0  1 8 32 MODEL day*y(0)

=  trl tr2 tr3 vOl v02;
14 14 25 1 0 0 0  18 33 PROC PHREG;
15 13 18 1 0 0  1 17 34 MODEL day*y(0) =  trl tr2 tr3 vO;
16 16 25 1 0 0  1 14 35 PROC PHREG;
17 9 10 1 0 0  1 15 36 MODEL day*y(0) =  trl tr2 tr3 td;
18 9 22 0 1 0 1 15 37 PROC PHREG;
19 10 25 0 1 0 1 11 38 MODEL day*y(0) =  trl tr2 tr3;
20 14 250  1 0 1 13 39 RUN;
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3. Work out Cox regressions with single covariate and multiple covariates 
for the data in Table 20.5.

4. For the data in Table 20.5, taking the variable day as dependent variable, 
the others as independent variables, work out a multiple linear regres
sion, and compare the results with those obtained by Cox regression.

5. Keep all the data in Table 20.7 unchanged but let the terminal date 
change to May 30, 1989. Work out a Cox regression, and compare the 
results with those in Table 20.7.

(1st edn. Futian Luo, Jiqian Fang; 2nd edn. Zhang Jinxin, Jiqian Fang)



Chapter 21

Log-Linear Model for Contingency Table 
and Poisson Regression

Log-linear models have wide applications. This chapter focuses on their 
applications for analysis of contingency table and Poisson regression.

21.1 Log-Linear Models for Contingency Table

Example 21.1 There are two (one conventional and one experimental) 
treatments for a disease. Patients can be classified into success or failure 
according to the treatment results as well as severe or non-severe according 
to their original disease severity. A summary of data is listed in Table 21.1. 
We want to know which treatment is more effective.

If we ignore the original three-dimensional data structure and com
bine data into Table 21.2, we can use a %2-test to evaluate the association 
between treatments and their results. The / 2 =  2954.534 with degrees 
of freedom 1. The p-value is less than 0.0001. Thus, we can conclude 
that the two treatments have different efficacy. Furthermore, we can use 
odds ratio to determine which treatment is a better choice. The odds ratio 
OR =  1084 x 6871/(5300 x 9130) =  0.1539, which implies that the 
conventional treatment is more effective.

If we further examine Table 21.1 conditioning on disease severity, we 
will see that the experimental treatment is more effective than conventional 
one for non-severe patients with an OR =  98x5820/(5x5251) =  21.7239. 
Similarly, it is more effective than conventional treatment for severe patients 
with an OR =  986 x 1051/(9125 x 49) =  2.3177.

Therefore, we can see that it is incorrect to ignore disease severity. As 
there are 99% of patients having severe disease in the experimental treat
ment group and only 9% for the conventional treatment group, ignoring the

561
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Table 21.1 A three-dimensional 2 x 2 x 2  contingency table.

Disease severity (Z)

Treatments (X) Treatments results (У) Non-severe Severe

Experimental Success 98 986
Failure 5 9125

Conventional Success 5251 49
Failure 5820 1051

Table 21.2 Combining Table 21.1 by 
ignoring disease severity.

Treatment results ( Y )

Treatments (X ) Success Failure

Experimental 1084 9130
Conventional 5300 6871

disease severity introduce bias and cannot properly evaluate the treatment 
efficacy.

From this example, we learn that we cannot arbitrarily combine data 
from high dimensional contingency tables into two-dimensional contin
gency tables. While it is possible to evaluate relationship between treatment 
and efficacy from a high dimensional table conditioning on other variables, 
it will be difficult when the dimension is high. Each cell tends to have a 
small or even zero count of patients in high dimensional contingency tables. 
An effective method to deal with this kind of data is to use a log-linear 
model.

21.1.1 L og-lin ear m odels f o r  three-d im en siona l con tingency  
tables

Example 21.2 To study the age and gender distributions of Colles’ frac
ture in different years, a retrospective review of medical records was con
ducted in Tianjing Hospital and summarized in Table 21.3. The goal was 
to determine the effect of year (X), gender (T), and age (Z) on the fracture 
frequencies.
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Table 21.3 Frequencies of Colles’ fractures in 1980 and 1981*.

Year
( X )

Gender
0 0

Age Z (year)

0-9 10-19 20-29 30-39 40^49 50-59 60-69 70-79 80-

1980 M 7 82 113 35 37 39 38 13 5
F 6 14 21 2 0 57 104 57 32 6

1981 M 19 121 174 57 49 57 31 17 6

F 10 31 56 31 57 134 99 43 11

*Results from Cao Xiutang: Chinese Health Statistics, 1992, 9(5); 30

Table 21.4 Log-linear models and goodness-of-fit for data in Table 21.3.

Model structure d f G2 P-value Pearson у  2 P-value

1. Mutual Independence 25 389.9990 < 0 .0 0 0 1 367.2081 < 0 .0 0 0 1

(X , Y,  Z )
2. Partial independence (X, Y  Z ) 17 23.0782 0.1467 22.8258 0.1550
3. Partial independence (Y,  X Z ) 17 380.9824 < 0 .0 0 0 1 359.7271 < 0 .0 0 0 1

4. Partial independence (Z, X Y ) 24 389.8811 < 0 .0 0 0 1 367.8406 < 0 .0 0 0 1

5. Conditional independence 16 380.8644 < 0 .0 0 0 1 359.6620 < 0 .0 0 0 1

( X Y ,  X Z )
6 . Conditional independence 16 22.9602 0.1148 22.7309 0 .1 2 1 1

( X Y ,  Y Z )
7. Conditional independence 9 14.0615 0 .1 2 0 2 13.9477 0.1242

( X Z ,  Y Z )
8 . Homogeneous Association 8 11.7856 0.1610 11.7442 0.1630

(XT, XZ, Y Z )
9. Saturated ( X Y Z ) 0 0 .0 0 0 0 0 .0 0 0 0

Using PROC GENMOD in SAS, we can fit nine possible models for 
this 2 x 2 x 9  three-dimensional contingency table (Table 21.3). There are 
several goodness-of-fit statistics for each model, including commonly used 
parameters of deviance, G2 and Pearson y 2. We summarize the results in 
Table 21.4.

The first column of Table 21.4 is the model structure. Nine possible 
models are listed with the most complete model as the saturated model. 
When some of the terms in the saturated model are set as zeros, we have 
other possible models.

In an / x J x К contingency table, let Pi,s,k be the expected fre
quency in the cell of the /th level of X(i =  1, 2 , . . . , / ) ,  the j th level of
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Y( j  =  1, 2 , . . . ,  J), and the kth level of Z(k — 1 , 2 , . . . ,  K).  In a saturated 
model XYZ,  the expected frequency is decomposed as

In n ijk =  X +  Xf  +  XY +  Xk +  Х*у +  Xfz +  XYZ +  (2 1 .1 )

Here, X is the constant term. Xf is the main effect of X at the / th level. 
The larger Xf  is, the higher is the corresponding expected frequency /q-д . To 
facilitate comparisons, Xf =  0. Similarly, Xf and Xf are the corresponding 
main effects of Y and Z. XfY, Xfz and XYjf are the first order interaction 
effects at the corresponding levels. Again, to facilitate comparisons, we 
make zero interactions when X is at the 7th level or Y is at the ,/th level or 
Z is at the К th level. That is XfY — XfJ =  Xfz =  Xf^ — Xff  =  XYf  — 0. 
Xfjlz is the second order interaction effects of X, Y and Z at levels of i, j  
and k. We again make XfYZ =  XfJz — XfYKz — 0.

When we fit a contingency table to a saturated model, the expected 
frequencies in all cells should be identical to the observed frequencies. This 
is because we simply change the expression of the contingency table using 
a set of different parameters. Therefore, a saturated model has no practical 
use. If there is no simpler model than the saturated model, the data cannot 
be analyzed by a log-linear model.

Homogeneous Association Model: When all second order interaction effects 
are zero (XfYkz =  0), the model in (21.1) becomes a homogeneous associ
ation model and is denoted by (XY, XZ,  YZ).  This notation indicates that 
the associations of any two variables at any given levels of the third variable 
are always the same.

Conditional Independent Model: If not only all second order interaction 
effects are zero (XfYkz =  0), but also the first order interaction effects 
between X and Y are zero (XfY =  0), the model (21.1) becomes a condi
tional independent model denoted by (XZ,  YZ)  when not all the first order 
interaction effects between X and Z as well as Y and Z are zero (Xfz ф 0 
and XYZ ф 0, for some i, j ,  and k). In such a model, X and Y associate 
with Z. However, for any given level of Z, X and Y are independent. Similar 
conditional independent models include (XY, XZ)  and (XY, YZ).

Partial Dependent Model: If the second order interaction effects and the 
first order interaction effects between X and Z as well as Y and Z are all 
zero (XfYkz =  Xfz =  XYZ =  0) but not all the interaction effects between
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X and Y are zero (A*Y ф 0, for some i and j ) ,  the model (21.1) becomes a 
partial independent model denoted by (Z, XY).  X is independent of Z and 
so is Y in this model. But X and Y depend on to each other. Other partial 
independent models are (X, YZ) and (T, XZ).

Mutual Independent Mode: The simplest model for three-dimensional con
tingency table is the mutual independent model denoted by (X, Y, Z). In 
this model, there are only main effects and all interactions are zero. All 
variables are independent of each other.

The log-linear models are hierarchical, in the sense that when higher 
order interaction effects are contained in a model, the lower order interac
tion effects and the main effects are also contained. For example, a model 
that has z should include all first order interactions A*y, A(*z , Ayz and 
the main effects of A*, Ay, and Az . Therefore, the notation of XYZ  can 
appropriately represent the model structure in (21.1). Another example is 
the model (XT, YZ),  which does not include the second order interaction 
and the first order interaction effects between T and Z, and only has the 
main effects as well as the first order interactions between X and T and the 
first order interactions between X and Z.

Columns 3 and 5 of Table 21.4 are statistics for the goodness-of-fit of 
the models. They are

Here, Ojjk are the observed frequencies in Table 21.3 and E/д are the 
expected frequencies under assumed models. The degrees of freedom of 
these two statistics are given in the second column.

d f  =  total number of cells—number of independent parameters.

The numbers of independent parameters of these models are given in 
Table 21.5. For example, the total number of cells in Table 21.3 is 2 x 2 x 9  =  
36 and the number of degrees of freedom in a mutual independent model in 
Table 21.3 is 1 +  (2 -  1) +  (2 -  1) +  (9 -  1) =  11. Thus the corresponding 
number of degrees of freedom is 25. For a saturated model, the total number
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Table 21.5 Degrees of freedom for models in an 
/  x J  x К  contingency table.

Parameters Number of independent parameters

4 1

¥ I  -  1

J J  -  1

% К  -  1

( /  — 1)(У — 1)
2 X Z  
Zik ( /  — i ) ( x  — 1)
} Y Z
l j k ( J  — \ ) { K  — 1)
2 X Y Z  
Aijk ( /  — 1)(У — 1)(ЛГ — 1)

Total П К

of independent parameters is /  x J x К , which is the same as the number 
of cells; thus, the number of degrees of freedom is 0 .

In Table 21.4, when the p-values are relatively larger, the models fit the 
data better.

We can choose models based on the change in goodness-of-fit statistics 
between two hierarchical models, which is denoted by AG2 and called 
deviance, and their difference in the degrees of freedom Adf.

In Table 21.4, the deviance AG2 between model (X Z , Y Z ) and 
(XY , XZ, FZ )is 14.0615—11.7856 =  2.2759 and the difference in degrees 
of freedom is Adf  =  9 — 8 =  1. The corresponding F-value for а dis
tribution is 0.1314. Thus, the two models are not significantly different from 
each other. As the model (XZ,  YZ) is simpler than (XY, XZ,  YZ),  it is a 
better choice of the two. However, the deviance between models (X, Y Z) 
and (XZ,  YZ)  is AG2 =  23.0782 -  14.0615 =  9.0167 and Ad f  =  8 . 
The corresponding p-value is 0.3409, and because (X, YZ)  is the simplest 
model, therefore, it is chosen as the best model. According to this model, the 
differences in frequencies of Colles’ fracture between males and females 
(Y) were different for different age groups (Z), i.e., the interaction between 
age and gender was significant. For different years (X), the interactions 
were the same. Therefore, we can pool data across decades to reduce the 
problem to a two-dimensional contingency table.
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Table 21.6 Estimated model parameters for (X , Y  Z) .

Parameter Estimate SE Wald/ 2 P-value

Я 2.3121 0.2434 90.2552 0.0001
I f -0.3799 0.0495 58.7858 0.0001

-0.4353 0.3870 1.2656 0.2606

Af -0.0606 0.3483 0.0303 0.8618

Az 0.9734 0.2847 11.6922 0.0006

Azл3 1.5106 0.2680 31.7765 0.0001
1.0986 0.2801 15.3886 0.0001

Af 1.9030 0.2600 53.5739 0.0001

^6 2.6391 0.2510 110.5054 0.0001
Af 2.2166 0.2554 75.3215 0.0001
Az
Z 8 1.4843 0.2686 30.5317 0.0001
Arz/tll 0.9208 0.5007 3.3823 0.0659

Ayzл , 2 1.9419 0.4206 21.3184 < 0 .0 0 0 1

) Y Z
z 13 1.7510 0.4077 18.4471 <0 .0 0 0 1

л 14 1.0253 0.4245 5.8332 0.0157

Z15 0.1535 0.4125 0.1384 0.7098

z 16 -0.4726 0.4054 1.3590 0.2437

/ J7 -0.3804 0.4131 0.8482 0.3571
i YZЛ18 -0.4810 0.4432 1.1779 0.2778

To further illustrate the gender difference in Colles’ fracture cases for 
different age groups, we can fit data to the model (X, YZ)  and derive 
estimations of the 19 parameters in Table 21.6. As illustrated previously, 
we force Af =  Af =  Af =  0, and Aff =  Af2z — ■ • ■ =  Af9z — A[z — 0 .

From Table 21.6 , we can see that the p-value for i f  is small, suggesting a 
significant difference in the total number of fractures between 1980 and 1981 
(686 and 1003). The P-value for gender difference X\ is large, suggesting 
an insignificant difference in the total number fractures between males and 
females (900 and 789), P-valuesfor Af, Af, Af, Af, Af, Af, Af are all small 
except Af, suggesting a significant difference in total number of fractures 
between age groups (42, 248, 364, 143, 200, 334, 225, 105 and 28).
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The P -values for the effects of interactions in Table 21.6 
Д -  a ]2  , A[3Z, are small. This means that the gender differences in
fracture numbers were significantly different among age groups 0-9,10-19,
20-29 and 30-39 (male: 26, 203, 287 and 92; female: 16, 45, 77 and 51). 
Because of the positive interaction effects, the male had higher number of 
Colies’ fracture than females in these age groups. Also, the effects of inter
actions a |6Z, Af7z , are negative, suggesting more female fractures than
males in these age groups 50-59, 60-69 and 70-79 years. However, these 
differences did not reach statistical significance.

While goodness-of-fit statistics measure the global agreement between 
data and model, further understanding the differences between data and 
model in each cell of a contingency table is called residual analysis. To 
study the residuals of the data in Table 21.3 fitted by (X , YZ), we use the 
procedure PROC GENMOD in SAS to obtain the output of the Pearson’s 
residuals and standardized residuals in Table 21.7.

In Table 21.7, columns 3 and 7 are the observed frequencies (О ) and 
the columns 4 and 8 are the expected frequencies (E) according to the 
model (X , YZ). Columns 5 and 9 are the Pearson’s residual for each cell in 
Table 21.3.

О -  E
Pearson’s Residual =  — = —.

s/E
When the expected frequency is large enough, Pearson’s residual follows 

a normal distribution with zero mean. The Pearson’s / 2 statistics is the 
sum of all the squared Pearson’s residuals. When one of the Pearson’s 
residuals has its absolute value greater than 2 , the observed frequency in the 
cell may be an outlier. If several cells have Pearson’s residuals above 2 in 
absolute values, the model is likely inappropriate for the data. Contrary, if 
all Pearson’s residuals of a model have absolute values below 2, this model 
is likely to be appropriate for the data.

In addition to Pearson’s residuals, GENMOD in SAS also provides a 
standardized Pearson’s residual. Its absolute value is usually larger than 
Pearson’s residual. When the expected frequency is large, the standard 
residual follows a standard normal distribution with mean 0 and variance 1. 
Therefore, the standardized residual is preferred over the Pearson’s residual. 
Similarly, we can use the absolute residual of 2 as the standard for outliers. 
When many of the standardize residuals have absolute values greater than 2,



T a b le  21 .7  E x p ec ted  freq u en c ies and  re s id u a ls  fo r  T ab le  21 .3  fitted  by  (X , YZ).

Gender Age (year)

1980 1981

0 E
Pearson’s
residuals

Standard
residuals О E

Pearson’s
residuals

Standard
residuals

M 0-9 1 10.5601 -1.0955 -1.4327 19 15.4399 0.9060 1.4327

M 10-19 82 82.4500 -0.0496 -0.0686 121 120.5500 0.0410 0.0686

M 20-29 113 116.5672 -0.3304 -0.4706 174 170.4328 0.2732 0.4706

M 30-39 35 37.3665 -0.3871 -0.5166 57 54.6335 0.3202 0.5166

M 40-49 37 34.9295 0.3503 0.4666 49 51.0705 -0.2897 -0.4666

M 50-59 39 38.9911 0.0014 0.0019 57 57.0089 - 0 .0 0 1 2 -0.0019

M 60-69 38 28.0249 1.8843 2.4967 31 40.9751 -1.5583 -2.4967

M 70-79 13 12.1847 0.2336 0.3058 17 17.8153 -0.1932 -0.3058

M 80- 5 4.4677 0.2518 0.3278 6 6.5323 -0.2083 -0.3278

F 0-9 6 6.4985 -0.1956 -0.2550 10 9.5015 0.1617 0.2550

F 10-19 14 18.2771 -1.0004 -1.3159 31 26.7229 0.8274 1.3159

F 20-29 21 31.2741 -1.8372 -2.4403 56 45.7259 1.5194 2.4403

F 30-39 2 0 20.7140 -0.1569 -0.2067 31 30.2860 0.1297 0.2067

F 40-49 57 46.3020 1.5722 2.1127 57 67.6980 -1.3002 -2.1127

F 50-59 104 96.6655 0.7460 1.0444 134 141.3345 -0.6169 -1.0444

F 60-69 57 63.3606 -0.7991 -1.0884 99 92.6394 0.6608 1.0884

F 70-79 32 30.4618 0.2787 0.3700 43 44.5382 -0.2305 -0.3700

F 80- 6 6.9047 -0.3443 -0.4490 11 10.0953 0.2847 0.4490

L
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Tabic 21.8 An artificial 
example of a 2  x  2  x 2  

contingency table.

X Y 1

Z

2

1 1 4 3
2 6 36

2 1 6 70
2 9 840

the model is inappropriate. Otherwise, the model fits data well. In Table 21.7, 
six out of 36 cells had standardized residuals between 2 to 2.5. Overall, the 
model fits the data well.

21.1.2 C om bin ing con tingency tables

Example 21.3 Table 21.8 is an artificial example of a three-dimensional 
2 x 2 x 2  table. Calculate the conditional odds ratios to determine whether 
the data follow a log-linear model and also provide plans to reduce the 
dimension by combining some variables.

Solution For Z =  1 and 2, the odds ratio of X and Y is

4 x 9  , л п  3 x 840
C R x y \z =\  — 7 — 7  =  O R x y  \Z= 2  =  Г7-----77Г =  1-6 x 6 36 x 70

Conditional odds ratios O R X y \z =\  —  O R X y \z =2  =  1 implies the two vari
ables X and Y independent of each other given Z(2*K =  0).

However,

O R y z  |x= i
4 x 36
— — —  —  8,  O R Yz \x =26 x 3

6 x 840 
9 x 70

O R X z \y =\
4 x 70 
6 x 3 15.5556, O R X z \y =2

6 x 840 
9 x 36

15.5556.

The conditional odds ratio greater than 1 implies that given X,  the two 
variables Y and Z correlated with each other; and given T, X and Z corre
lated with each other. Therefore, the data should be fitted with a conditional 
independent model of (XZ,  YZ).



Log-Linear Model for Contingency Table and Poisson Regression 571

Table 21.9 Da t a  o f  a  2 x  2 x  2 
t abl e f r o m a  part i al  i ndependent  
model .

Z

X  Y_________1_________ 2_

1 1 9  3
2 6 2 

2 1 6  2
2 54 18

For such models, we can combine tables of X and Z at different levels of 
Y to study the relationship between X and Z in a lower dimensional table. 
We can also combine tables of Y and Z over X to study the relationship 
between Y and Z. For example, combining tables of two Y levels, the odds 
ratio between X and Z is 15.5556; similarly, combining tables of two X 
levels, the odds ratio between Y and Z is 8 . As Z is the condition for X 
being independent of F, we should not combine the tables across levels of 
Z to study the relationship between X and Y.

Example 21.4 Table 21.9 is a dataset following a partial independent 
model. Through computing the conditional odds ratios to understand this 
kind of models and to provide plan to combine tables.

Conditional odds ratios are

O R x y \z =\  

O R y z \x =\  

O R x z \y = i

9 x 54 
6 x 6

3 x 18
13.5, O R x y \z =2  =  9  x  2  ~

9 x 2
6 x 3
9 x 2
6 x 3

O R y  Z \ X=2  

O R x Z\Y=2

6 x 1 8  
54 x 2 
6 x 18 
54 x 2

13.5,

Therefore, the correct model is (Z, XT). We can combine the tables 
across two levels of Z to study the relationship between X and Y. Then, we 
have

O R x y \z  =
(9 +  3) x (54+  18)

13.5.
(6 +  2) x (6 +  2 )
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Tables 21.8 and 21.9 are the artificial examples to help understanding the 
conditional independent model and partial independent model. When we 
fit Table 21.8 to model (XZ,  YZ)  and Table 21.9 to model (Z, XY ), the 
goodness-of-fit statistics should be zero, indicating these models being per
fectly fit the data. It can be verified using the same procedures in the com
puter experiments.

21.1.3 M odel selection  f o r  h igh er d im en sion a l con tingency tables

In Table 21.4, we demonstrated that there are a total of nine possible models 
to fit the data. However, when there are four categorical variables to study, 
there are many more possible models. We now use the following four
dimensional contingency table to illustrate the procedures to find the best 
model.

Example 21.5 The data presented in Table 21.10 contained the 
information of a group of pregnant women and their new-born infants. 
There were four variables: X for smoking or no-smoking of the mother; 
Y for the use of a contraceptive medicine prior to the pregnancy; Z for 
normal or abnormal status of infants; and W for the age of mothers. The 
levels of these variables were 7(7 =  1 , . . . ,  7) for X, J (j  =  1 , . . . ,  J) for

Table 21.10 R ela tio n sh ip  b e tw een  sm o k in g , u se  o f  c o n tracep tiv e  and  
a b n o rm a lity  o f  infants.

P rio r  use  o f  
co n tracep tiv e  
m ed ic in e  ( Y )

In fan t sta tu s (Z )

A g e  (y ear) ( W ) S m o k in g  (A ) N orm al A b norm al

< 2 9 Yes Yes 204 58
N o 330 67

N o Yes 1051 2 1 0
N o 1014 178

3 0 - 3 4 Yes Yes 125 31
N o 180 42

N o Yes 582 144
N o 4 8 9 85

> 3 5 Yes Yes 35 20
N o 35 10

N o Yes 158 53
N o 119 31

* D ata  fro m  L i J and  Shi B ., C h in ese  H ea lth  S ta tis tics , 1988, 5 (6 ):33 .
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Y, K(k =  1 , . . . ,  K)  for Z, and L(l =  1 , . . . ,  L) for W. The goal was to 
evaluate whether smoking and contraceptive medicine affect the chance of 
abnormal development of infants.

Solution This i s a 2 x 2 x 2 x 3  contingency table. For such a high dimen
sional model, we can firstly fit a mutual independent model (X, Y, Z,  VT). 
Using the computer package to calculate the goodness-of-fit test statistics 
G2 =  107.0507, Pearson * 2 =  110.5091, d f  =  18, P < 0.0001. This 
model has too large of residuals and is not sufficient to describe the data.

As the second step, we try to fit for conditional independent model 
based on the first order interaction terms (XT, XZ, XW, YZ,  YW, ZW).  
Then, we have the goodness-of-fit test statistics G2 =  6.8836 and Pearson 
y 2 =  6.9821 with d f  =  9, and the P-value is between 0.6492 and 0.6390. 
The model seems reasonable.

The question now is to select an optimal model between (X, T, Z, W) 
and (XT, XZ, XW, Y Z, Y W,  ZW)  that fits the data better.

We can start from mutual independent model (X, T, Z, W) and add 
one of the interactions X Y , X Z , X W , Y Z , Y W  and ZW to the model. The 
corresponding G2’s are 57.0446, 101.6260, 105.8828, 97.1512, 91.8399, 
89.4464, with degrees of freedoms 17, 17, 16, 17, 16, 16, respectively. 
Among them, adding XT has the largest change in G2 — 107.0507 — 
57.0446 =  50.0161, and the change in degrees of freedom is 1. The P- 
value is <0.0001. All these suggest that adding XT will result in the most 
improvement of model. The candidate model is now (W, Z, XT).

Based on the last model, we can add one more of the interactions 
XZ, XW,  YZ,  WY, WZ  to it. The corresponding G2 are51.6199, 55.8767, 
47.1451,41.8338, 39.4403, with degrees freedom 16, 15, 16, 15, 15, respec
tively. The maximal change in G2 is due to the interaction WZ,  which has 
AG2 =  57.0446 -  39.4403 =  17.6043, A d f  =  17 -  15 =  2 and P- 
value =  0.0002. Therefore, the better model is (XT, WZ).

Consequently, we can add the term of WY(P  =  0.0005)

AG2 =  39.4403 -  24.2294 =  15.2109, Adf  =  15 -  13 =  2 

and add the term of YZ(P =  0.0033)

AG2 =  15.6017, Adf  =  1
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and add the term of XZ( P — 0.0079)

AG2 — 7.9066, Adf  =  1.

But, the term WX cannot be added because the gain in goodness-of-fit test 
statistics is insufficient.

Thus, the best model is (XT, XZ, TZ, YW, ZW)  with the log-linear 
model expressed as

log /lijki — x +  x f  +  xY +  xz +  x'f +  x f Y

+  4 Z +  ^ Z +  4 W +  4 W- (21.2)
Re-examining the model by excluding any of the parameters will result 

in a large change of goodness-of-fit. Therefore the final model is (21.2). 
The terms Xfkz , XYZ, Xklw in (21.2) represent that infant status (Z) depends 
on smoking (X), prior use of contraceptive medicine (T), and age of preg
nancy (IT).

It is worthwhile to notice that by stratifying the data into six groups 
according to smoking and age of pregnancy, the / 2 statistics for asso
ciation of abnormality infant (Z) and prior use of contractive medicine 
(T) are X\ =  2.842 (for age <29 smoking mothers), / I  =  1-362, x l  — 
0.053, x l  =  5.580, x l  =  2.357, x l — 0.973. This seems to suggest that 
the infant abnormality is not associated with mother’s prior use of contracep
tive medicine. However, considering the overall test effects of the interaction 
terms XYZ, such association cannot be ignored because the model without 
this interaction has a large change in G2(AG2 — 18.7032 — 8.5477 =  
10.1555, A d f  =  12— 11 =  1, P =  0.0014). Therefore, in the presence 
of other factors and their interactions, the influence of mother’s prior use 
of contraceptive medicine cannot be ignored. Separate analysis in six 2 x 2 
tables result in smaller sample size for each analysis and therefore, reduce 
the power to derive significant conclusions. The log-linear model can use 
all observations in the contingency table and has a better statistical power.

21.2 Poisson Regression

Example 21.6 Using a retrospective cohort design to study the data of 
occupational exposure and 5-year survival, Yu etal. (Chinese Health Statis
tics, 1996; 13(1):6) collected all 9572 workers who worked from August 18,
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1966 to December 31,1991 in a factory of Hubei province. The total number 
of person-years was 114,488 years. There were 159 deaths in the cohort. 
The goal was to determine whether the occupational exposure and age affect 
the mortality rate.

The numerator of morality rate (the number of deaths) was small and 
the denominator (person years) was large. Therefore, the estimated overall 
mortality rates were small. If we assume the deaths among different people 
are independent, the number of deaths should follow a Poisson distribution 
(see Chap. 2). Poisson regression analyzes the number of events and the 
rate of the event in association with covariates under the assumption of 
Poisson distribution using a log-linear model. For example, let us assume 
two covariates X and Y, the model can be defined as

lnP„ = l n ^ -  =  2 +  2* +  2*. (21.3)
nu 1

Here, the subscript i j  indicates the cell of /th level of X and j  th level of 
Y; nij is the expected frequency of deaths in the cell, and я у is the observed 
person-years. The expected mortality rate Py =  цц /ntJ; 2 is the constant 
term in the model; 2* represents the effect of the /th level of X and 2 j 
represents the effect of the y'th level of Y. If there are interaction between 
X and Y, 2*r can be added to make a saturated model. Reorganize (21.3) 
can derive an alternative format of the model:

In fijj — 2 +  2 f  +  2 j +  In n ij. (21.4)

Except the In «у from data in the right-hand side of equation, (21.4) is 
similar to (21.1). Therefore, we can use the same goodness-of-fit approaches 
in the previous sections to look for the optimal model that fits the data 
best.

Let X (i =  1 , 2 , . . . ,  5) and Y (j  =  1,2) be age and occupational expo
sure in Table 21.11. Using GENMOD in SAS to fit (21.3) and other possible 
models, we have summarized goodness-of-fit results in Table 21.12.

Model 2 has X effect only and Model 4 contains both effects of X 
and Y. Both of them have P-values above 0.05, suggesting they fit the data 
well. Which model should be chosen? The deviance of two models were 
AG2 =  7.8617-2.4927 =  5.3690 with Adf  =  5 - 4 = 1  and a P-value of 
0.0205. There is a significant difference between the two models. Therefore,
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Table 21.11 D eath s fro m  all c au ses  in  a  fac to ry  o f  H u b e i p rov ince* .

A g e  (Y ear)

U n exposed E x p o sed

N u m b e r 
o f  deaths

P erson
y ears

M o rta lity
ra te

N u m b e r 
o f  deaths

P erson
years

M o rta lity
ra te

< 4 0 39 59141 0 .0 0 0 6 5 9 30 34995 0 .000857
4 0 - 4 9 14 6621 0 .0 0 2 1 1 4 33 9241 0.003571
5 0 - 5 9 3 650 0 .004615 25 3115 0 .0 0 8 0 2 6
6 0 - 6 9 0 54 0 12 595 0 .02 0 1 6 8
> 7 0 0 9 0 3 67 0 .0 4 4 7 7 6

* D a ta  fro m  Yu Z . et al. , C h in ese  H ea lth  S ta tis tics , 1996; 13(1):6.

Table 21.12 G o o d n e ss-o f-fit re su lts  fo r  all p o ss ib le  P o isso n  reg ress io n  m odels.

M odel df G 2 /-’-value P e a rso n  X2 P -  value

1 .2 9 167 .6069 < 0 .0 0 0 1 4 0 9 .6 2 6 9 < 0 .0 0 0 1
2.1 +  1 *

3 . 1  +  Л

4 .1  + i f

5 7 .8617 0 .1 6 4 0 6 .2 6 8 7 0 .2 8 0 9
8 133 .9757 < 0 .0 0 0 1 2 5 8 .9 7 7 6 < 0 .0 0 0 1

+ Я1
4 2 .4 9 2 7 0 .6 4 5 9 1.5422 0 .8191

5 . 1 +  i f 0 0.0000 0.0000

it is worth to have Model 4 with an additional parameter in comparison to 
Model 2.

To interpret the model parameters, we can calculate the relative risk 
(RR) of mortality between exposed and unexposed subjects using formula 
(21.3), which is

Pi2 _  ехр(Я +  kf  +  X\) 
~  exp(A +  X? +  X\)

=  ехрСЯт — X\) .

Similarly, we can derive relative risks for all age groups against a ref
erence age group. For categorical variables, GENMOD in SAS forces the 
parameter of the last level of a categorical variable as zero and use the esti
mated parameters to calculate the conditional relative risks. For example, 
the occupational exposure has two levels. The program makes the parameter 
X\ — 0. Therefore, the RR =  exp(—2[).

We can express the categorical variable as a binary indicator, named 
“expose”, with expose =  1 for exposed group and expose =  0  for unexposed
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group. Also, we can define dummy variables for age groups, namely age 
4, age 5 age 6 , and age 7, for age groups 40-49, 50-59, 60-69, and >70 
years, respectively; when all age dummy variables are 0 , the subject age is 
<40 years. We can reformat Model 4 in Table 21.12 as follows:

In P — p0 +  /?i exp ose +  /frnge 4 +  P^age 5 +  P^age 6 +  P^age 7.
(21.5)

The regression parameters are the natural logarithm of the relative risks, 
i.e., RRk =  exp(/?*) for к =  1, 2 , . . . ,  5.

Using GENMOD to fit (21.5), we have the estimated regression coeffi
cients and corresponding RR values in Table 21.13.

Here, the Wald/ 2 =  [ft/SE.(P)]2 follows a / (2n and can be used to test 
whether the corresponding Д  should be zero. Because all the P-values in 
Table 21.13 are less than 5%, all parameters make significant contributions 
to the model.

The relative risk of exposed to unexposed group RR =  1.5, suggests a 
50% increase in mortality rate for exposed subjects. Compare to subjects 
younger than 40 years old, the subjects with increments in age of 10, 20, 
and 30 years have elevated mortality rates 3.71, 8.50 and 20.48 times of 
the rate of young people respectively. The predicted mortality rates and 
the standardized residuals are showed in Table 21.14. The absolute values 
of standardized residuals are less than one in all ten cells, indicating a 
successful fit of the Poisson regression model.

When the expected frequency, such as deaths, is large and P,; is small, 
the Poisson distribution behaves very similar to a binomial distribution, and

Table 21.13 Estimated regression coefficients and R R .

R R

Variables Parameter 0 S E ( p ) Wald x 2 P-value (95% confidence interval)

00 -7.3903 0.1469 2531.5753 < 0 .0 0 0 1

expose 01 0.4086 0.1787 5.2300 0 .0 2 2 2 1.50 1.06, 2.15
age 4 02 1.3110 0.1927 46.2929 < 0 .0 0 0 1 3.71 2.53, 5.39
age 5 P i 2.1401 0.2356 82.5225 < 0 .0 0 0 1 8.50 5.29, 13.34
age 6 04 3.0195 0.3239 86.8824 < 0 .0 0 0 1 20.48 10.41, 37.11
age 7 05 3.7902 0.5950 40.5564 < 0 .0 0 0 1 44.27 10.93, 117.08
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Table 21.14 Predicted mortality rates and residuals.

Unexposed Exposed

Observed Predicted Observed Predicted
mortality mortality Standardized mortality mortality Standardized

Age rate (%) rate (%) residuals rate (%) rate (%) residuals

<40 0 .6 6 0.62 0.8973 0 .8 6 0.93 -0.8973
40-49 2 .1 1 2.29 -0.4417 3.57 3.45 0.4417
50-59 4.62 5.25 -0.2492 8.03 7.89 0.2492
60-69 — 12.71 0.8596 20.17 19.02 -0.8596
>70 — 27.64 0.5194 44.78 41.06 -0.5194

therefore, the relative risk and odds ratio are similar numerically. 

log(P,7) % log j '  =  logit(Pij).
1 “ij

In applications, the estimated regression coefficients of a logistic regres
sion analysis can be used as approximations to regression coefficients of the 
Poisson regression analysis under these conditions. It is up to the readers to 
verify this using computer experiments.

21.3 Computerized Experiments

GENMOD in SAS can be used to establish the generalized linear models. 
The code for MODEL selection can specify many kinds of models through 
proper link functions according to the types of variables and assumptions 
on their distribution. For example, to continuous explanatory variables, 
the option “LINK =  identify DIST =  normal” deals with continuous vari
able with normal distribution in regression analysis (Chaps. 8 and 13). 
If the explanatory variables are categorical variables, this option specifies 
ANOVA models (Chaps. 11 and 14). If the explanatory variables are mixed 
with continuous and categorical variables, ANOCOVA will be performed. 
If the option is “LINK =  logit DIST =  binomial”, the program will perform 
a logistic regression analysis (Chap. 16). In this chapter, we use the option 
“LINK =  log DIST =  Poisson” to ask for log-linear regression analysis.

Experiment 21.1 Program 21.1 establishes a log-linear model for data 
in Table 21.3 using the model (X , Y Z ). The “MODEL =  POI” is the
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Program 21.1 Log-linear model for the data in Table 21.3.

Line Program Line Program

01 OPTIONS L S =  70 
PS =  MAX NOCENTRE;

08 19 121 174 57 49 57 31 17 6

0 2 DATA LOGL1N; 09 1031 5631 57 134 9943 11
03 DO X=1 TO 2;DO Y=1 

TO 2;DO Z =  1 TO 9;
10

04 INPUT F@@; 
OUTPUT;END;END;END;

11 PROC GENMOD; CLASS X Y Z ;

05 CARDS; 12 MODEL F =  X Y|Z /LINK =  LOG
06 7 82 113 35 37 39 38 13 5 13 DIST =  POI
07 6  14 21 20 57 104 57 32 6 14 OBSTATS RESIDUALS; 

RUN;

same as “MODEL =  POISSON.” By adding requests of “OBSSTATS” 
and “RESIDUALS”, the program will give outputs of observed frequen
cies and expected frequencies (Pred), Pearson residuals (Reschi), and stan
dardized residuals (StReschi). To get goodness-of-fit statistics for models 
(X, Y, Z), (F, XZ),  (Z, XY),  (XY, XZ),  (XY, YZ),  (YZ,  XZ)  
and (XYZ)  in Table 21.4, we only need to change the codes of line 12 from 
“X F |Z ” to “X F Z ”, “Y X \Z ”, to “Z X |F ”, “X |F X |Z ”, to “X |F F |Z ”, 
“X | Z F | Z ” to “X |F |Z .”

Note that CATMOD can also perform the analysis of log-linear models. 
However, the exported model parameters of CATMOD are different from 
GENMOD. This is because CATMOD specified that the sum of regression 
parameters should be zero for categorical variables and GENMOD specified 
the regression coefficient of the highest level of a categorical variable to be 
zero. Relative results of the two procedures, however, are the same.

Experiment 21.2 Analysis of high dimensional contingency tables
Program 21.2 performs a log-linear regression for the data in Table 21.10. 
Lines 01 to 10 read data of Table 21.10 into a SAS dataset 
MUTILOGL. Lines 11 to 20 use PROC GENMOD to find mutual inde
pendent model (X, F, Z, IF), first order conditional independent model 
(XY, XZ,  X IF, YZ,  Y IF, Z W) and second order conditional independent 
model, (XYZ,  XYW,  XZW, YZW)  respectively, and finally the log-linear 
model of (21.2). Similar codes can be used to fit other models.
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Program 21.2 Selection of log-linear models for high dimensional contingency tables.

Line Program Line Program

01 DATA MUTILOGL; 13 RUN;
0 2 DO W =  1 TO 3;DO X =  1 TO 2; 14 PROC GENMOD; 

CLASS X Y Z W ;
03 DO Y = 1  TO 2 ;D O Z = l TO 2; 15 MODEL F =  X|Y|Z|W 

@2/ LINK=LOG
04 INPUT F@@; DIST=POI; RUN;
05 OUTPUT;END;END;END;END; 16 PROC GENMOD; 

CLASS X Y Z W;
06 CARDS; 17 MODEL F =  X|Y|Z|W 

@3/LINK =  LOG DIST =  POI;
07 204 58 330 67 1051 210 1014 178 RUN;
08 125 31 180 42 582 144 489 85 18 PROC GENMOD; 

CLASS X Y ZW ;
09 35 20 35 10 158 53 119 31 19 MODEL F=  X| Y X|Z Y|Z 

Y|W Z|W/LINK=LOG
10 DIST=POI OBSTATS 

RESIDUALS;
11

12

PROC GENMOD;
CLASS X Y Z W;
MODEL F =  X Y Z W /  
LINK =  LOG DIST =  POI;

2 0 RUN;

Experiment 21.3 Poisson regression analysis Lines 01 to 12 of Pro
gram 21.3 read the data in Table 21.11 to the program. Line 03 derives an 
offset variable LNN. Lines 04 and 05 create dummy variables of AGE4, 
AGE5, AGE6 and AGE7. Lines 13 to 14 calculate goodness-of-ht for var
ious models, including G2 and Pearson’s / 2 statistics. To save the space, 
the program only the Model 4 in Table 21.12. Models 1, 2, 3 and 5 can 
be fitted by the same codes except changes “EXPOSE AGE” in line 14 to 
nothing, “EXPOSE”, “AGE”, and “EXPOSE|AGE.” Lines 17 and 18 fit the 
model of (21.5) and obtain estimates in Table 21.13 as well as the expected 
mortality rates and residuals. Lines 17 and 18 use the offset variable LNN 
to derive predicted mortality rates. The results are the same as the output 
from Lines 15 and 16.

To obtain the results of logistic regression, the MODEL statement should 
be changed to “LINK =  LOGIT DIST =  BIN”. Lines 19 to 21 are for the
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Program 21.3 Poisson regression analysis for data in Table 21.3.

Line Program Line Program

01 DATA POISSON; 14 MODEL Y/N =  EXPOSE AGE7/ 
LINK =  LOG;

0 2 INPUT AGE $ EXPOSE N Y@ @; DIST =  POI;RUN;
03 LNN =  LOG(N); 15 PROC GENMOD;
04 AGE4 =  ( AGE = '40-49 '); 

AGE5 =  (AGE = ' 50-
16 MODEL Y/N =  EXPOSE 

AGE4-AGE7/LINK =  LOG
05 59'); DIST=POILRCI OBSTATS 

RESIDUALS; RUN;
06 AGE6  =  (AGE=' 60-69'); 

AGE7 =  (AGE='> =  70');
17 PROC GENMOD;

07 CARDS; 18 MODEL Y =  EXPOSE 
AGE4-AGE7/LIN К =  LOG

08 <40 0 59141 39 <40 1 34995 30 DIST =  POILRCI 
OBSTATS RESIDUALS;

09 40-49 0 6621 14 40-49 1 9241 33 OFFSET =  LNN; RUN;
1 0 50-59 0 650 3 50-59 1 3115 25 19 PROC GENMOD;
11 60-69 0 54 0 60-69 1 595 12 2 0 MODEL Y/N =  EXPOSE 

AGE4-AGE7/
12 > = 7 0 0 9 0  > =  70 1 67 3 LINK =  LOG DIST =  POILRCI 

OBSTATS
13

PROC GENMOD; CLASS 
EXPOSE AGE

21 RESIDUALS;
RUN;

logistic regression analysis. Because EXPOSE, AGE4 to AGE7 were all 
specified as 0-1 binary variables, there is no need to use CLASS option.

Adding LRCI behind MODEL statement gets the confidence intervals 
of the estimated regression coefficients. Using the natural exponential func
tions, we can derive the limits of confidence intervals for relative risks.

21.4 Practice and Experiments

1. The data in Table 21.15 were collected to evaluate the effectiveness of 
a traditional Chinese medicine regimen to treat chronic bronchitis. In 
this dataset, patients were grouped according to treatment results (X), 
smoking (T), and duration of diseases (Z). Use a log-linear model to 
analyze this data.
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Table 21.15 Data for evaluation of a traditional Chinese medicine for chronic bronchitis.

Disease duration (Z)

Treatment ( X ) Smoking (F) <5 years 6 - 1 0  years 1 1 - 2 0  years > 2 1  years

Success Yes 2 0 16 14 5
No 29 23 16 6

Failure Yes 16 14 2 0 12

No 10 12 14 11

Table 21.16 The age specific mortality rates of esophageal cancers in two countries.

Country A Country В

Age group Population Number of deaths Population Number of deaths

<40 2001839 12 2015117 25
40-49 251678 91 250480 125
50-59 206947 307 191204 344
60-69 143893 460 114355 371
>70 90270 292 51670 170

2. What do parameters Xf , 2 j, Xf, XjjY, Xfkz , XYZ, and mean in
a log-linear model? What are the relationship between the saturated 
model, the homogenous association model, the conditional indepen
dent model, the partial independent model, and the mutual independent 
model in a three-dimensional contingency table? How are they repre
sented by the log-linear regression coefficients?

3. Table 21.16 presents the age specific mortality rates of esophageal can
cers in two countries. First calculate their crude cause-specific death 
rates. Then calculate their age adjusted cause-specific death rates using 
Poisson regression models. What are the predicted numbers of deaths 
caused by esophageal cancers in these countries? Which country has 
higher death rate? Are the age adjusted death rates similar to the crude 
death rates? Is the difference between countries statistically significant? 
What are the relative risks (RR)  for country A versus B1

(1st edn. Ying Lu, Jie Yan; 2nd edn. Yuantao Hao, Qi Zhu, Jiqian Fang)
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Design and Analysis for Medical Research





Chapter 22

Multi-Factor Analysis of Variance

Experiments may be designed as a single-factor experiment or a multi-factor 
experiment according to the number of factors. The single-factor design 
has only one treatment factor with G levels (G > 2), such as completely 
random design, randomized complete-block design and Latin-square design 
(see Chap. 7). The multi-factor design has more than two factors, such as 
factorial design and split-plot design. One of the important issues in multi
factor design is to analyze the interaction effect, which is different from 
single-factor design. This chapter is to introduce several methods of analysis 
of variance used in multi-factor designs.

22.1 Factorial Experiments and Analysis of Variance

22.1.1 Introduction

The distinct characters of multi-factor design from the single factor design 
are that the G treatment groups are formed by the combinations of two or 
more than two factors, and each factor has at least two levels. When the G 
treatment groups are formed by all possible combinations of all levels of all 
factors, the design is called a complete factorial design. Taking a nutrition 
experiment as an example, supposing that factor A stands for protein in 
food, factor В stands for fattiness, and each factor has two levels, normal 
or absence, there will be G =  22 =  4 treatment groups in the experiment,

585
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which is called 22 factorial design. The treatment groups can be laid out as 
follows:

F actor  A  ( I  =  2)

F actor  В  ( J  =  2) N o r m a l  (aj) A b s e n c e  (a 2)

N o r m a l  { b \ ) a \ b \  a 2b\
A b s e n c e  (b 2) a \ b 2 a 2b 2

If the complete factorial design is chosen, N experiment units should 
be randomly assigned into four groups, formed by two levels of A and 
B, (ai b\), (a2 h\ ), (a, b2) and (a2 b2). The experiment results can be 
shown as

xijkt i =  1; 2 , j  =  1, 2 , к =  1 , 2 , ,  Пц. (2 2 .1)

To test the differences among the four groups, the method of ANOVA 
for completely randomized design introduced in Chap. 7 can be used, but 
for further analysis, ANOVA for a complete factorial design, introduced in 
this section, should be used, say analyzing the simple effect, main effect or 
interaction between factors etc.

22.1.1.1 Simple effect

Simple effects are the difference among different levels of the same fac
tor when levels of other factors are fixed. Taking the result of 22 factorial 
experiment in Table 22.1 for example, when factor В is fixed at level 1, the 
simple effect of factor A is 2; when factor В is fixed at level 2, the simple 
effect of factor A is 8 . Meanwhile, when factor A is fixed at level 1, the

Table 22.1 Example of 22 factorial experiment design (mean).

Factor A Factor В  ( J  =  2)

(1 =  2) b \ b 2 Mean effect x,- Simple effect

a \ * 11 . = 3 0 * 12. =  36 *1 II O-» * 12. — * 11 . = 6

a i *2 1 . =  32 *2 2 . =  44 x 2 =  38 *2 2 . — *2 1 . =  12

Mean effect x j x  i =  31 x.2 . =  40 x =  35.5
Simple effect *2 1 . ~  * 11 . = 2  x 22. -  * 12 . =  8
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simple effect of factor В is 6 and when factor A is fixed at level 2, the simple 
effect of factor B is 12.

22.1.1.2 Main effect

The main effect is the average of all simple effects over all levels of given 
factor. In a 22 factorial experiment, the main effects of factors A and В are

^  =  - [ ( * 2 2 .  — *12 .) +  (*21. — * n . ) L  ( 2 2 .2 )

В =  ~ [(*22. ~  *21.) +  (*12. -  * 11.)]- (22.3)

In Table 22.1, A =  (8 +  2)/2 =  5, В =  (12 +  6)/2 =  9.

22.1.1.3 Interaction

When simple effects of factor A quite differ over the levels of factor B, 
then this difference is called interaction between the two factors; and when 
simple effects of factor В quite differ over the levels of factor A, then this 
difference is also called interaction between the two factors; it can be proved 
that the above two differences are equal. In a 22 factorial experiment, the 
interaction between the two factors A and В can be calculated as follows:

AB -  ^[(*22. -  * 12.) -  (*21. -  * 11.)] (22.4a)

or

BA =  -[(* 22. -  *21.) -  (*12. -  * 11.)] 

AB =  BA.
(22.4b)

Like the main effects, here 1/2 means average on per-unit basis. For the 
data in Table 22.1,

AB =  ^ [8  — 2] =  3, B A = X- \  12 — 6 ] =  3.

The four means in Table 22.1 can be illustrated by Fig. 22.1, where the 
two un-parallel lines indicate the interaction of factors A and B. On the 
contrary, if the two lines are parallel, then there is no interaction between 
the two factors.
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25 ----------------------------------------------------
(C )

Fig. 22.1 Illustration of interaction of 22 factorial experiment.

If the statistical analysis indicates that the interaction exists, the sim
ple effects of factors must be calculated separately. Otherwise, if there is 
no interaction, the responses to the two factors are independent of each 
other, then the main effect of a factor could be taken as the treatment 
effect of the factor. There are two factors being involved in the above- 
mentioned interaction so that it is called two-factor interaction or first-order 
interaction.

When the interactions between factors A and В quite differ over the 
levels of factor C, then we say the three-factor interaction or second-order 
interaction exists. It is much more difficult to illustrate the meaning of high- 
order interaction than the illustration in Fig. 22.1 for 22 factorial design.

Obviously, the factorial design can provide more information than the 
single factor design, especially reflecting the synergetic effect or antagonis
tic effect which is meaningful in medical researches on screening the best 
therapeutic regime, drug formula, experimental condition, etc. The disad
vantage of factorial design is that when there are more factors (for instance 
more than three), the required number of treatments and experimental units 
will increase rapidly. Thus, if there are more factors being considered in an 
experiment, the orthogonal design is recommended to have initial screen
ing first. Readers may refer to other books or references for the orthogonal 
design.
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22.1.1.4 Experimental design

Taking all possible combinations of the levels over the factors to form treat
ment groups, the number of treatment groups is G. The most popular way 
is to assign the candidate experimental units into G treatment groups ran
domly. For instance, in a 22 factorial design the treatments can be regarded 
as a single factor treatment with four levels as follows:

However, it must be noticed that the factorial experiment with randomized 
complete design requires the numbers of units in different treatment groups 
to be all equal and more than two for replication; otherwise, the interaction 
among factors cannot be analyzed.

2 2 .1.1.5 Analysis of variance

Let / and J represent the levels of factor A and factor В, X,.. (7 =  1,
2 , . . . ,  7) is the ith group mean of factor A, Xj. (j  =  1 , 2 , . . . , / )  is the 
j'th group mean of factor B, and n,j is the sample size of the treatment 
group with / th level of factor A and y'th level of factor B. The total number 
of treatment groups is G =  1J, and X represents the total mean. Then we 
define the sum of squared difference between all experiment results and the 
total mean as the Total SS

and the weighted sum of squared difference between IJ of group means and 
the total mean as the treatment SS

treatment 1 =  (a\ b\), 

treatment 2 =  (a\ b o ) ,  

treatment 3 =  (ao b \), 

treatment 4 — («2 b2).

(22.5)
i=l j=l k= 1

I  J

SS,treatment — Е Е » в ( * « . - * ) г (22.6)
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and the difference between Total SS and Treatment SS as the Error SS

SS E =  SS totai — SStreatment • (22.7)

The treatment SS can also be decomposed as follows (to simplify thing, let
ti ij  =  H i) :

(1) SS for main effect of A, that is, the weighted sum of squared differ
ence between mean of each level of factor A and the total mean

/
SSA = У  Jn(Xj -  X)2,frf (22.8)

vA =  I - l

where Jn is the number of units represented by the mean of each level of 
factor A.

(2) SS for main effect of B, that is, the weighted sum of squared differ
ence between mean of each level of factor В and the total mean

j
SSB =  У  In(X j -  X)2,

(22.9)
vB =  J — \,

where In is the number of units represented by the mean of each level of 
factor B.

(3) SS for interaction effect between A and B, that is, the extra effect in 
addition to that of the main effects of A and В

SSAB =  SSU -  SSA -  SSB,

vAB =  ( /  -  1)U  -  1).

Therefore,

treatment — SS A +  SS B +  SSAB,

t̂reatment =  T  V В T h4B = IJ 1.

From (22.7),

( 22. 10)

SS E — 5S|0tal +  t̂reatment- (22.1 1)

The above equations are summarized in columns 1-3 of Table 22.2. The 
4th column MS is the mean square of error obtained by SS/DF. The three
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Table 22.2 Analysis of variance for two factors factorial experiment.

Source D F SS M S F

Between 1J -  1 ^between
groups

A I  -  1 S S A M S A = S S A / ( I -  1) f a  =  m s  A / m s  e
в J  -  1 S S B M S B = S S B / U -  1) F B =  M S b / M S e

A B ( /  -  1)(У -  1) S S a b M S ,\B  =  S S A B / Ba b  =  M S a b / m S e

(/ -  1) ( J  - 1)
Error I J (n  -  1) s s e M S E =  S S E / I J ( n  -  1)

Total I J n  — 1 AS'ictal

Table 22.3 Passing rates of rabbit’s axon after the operation of neural suture (%).

A  (operation)

В  (examination time 
after suture)

Adventitia suture ( a \ ) Fasciculus suture (0 2 )

1st month ( b \ ) 2 nd month ( b f ) 1st month (b 1) 2 nd month (6 2 )

10 30 10 50
10 30 2 0 50
40 70 30 70
50 60 50 60
10 30 30 30

Xjj (treatment) i l l  =  24 i l 2 =  44 -*21 =  28 i 22 =  52
x L  (factor A) i p  =  34 *2 .. =  40
i  ; (factor B) x  \ = 2 6 i  2 . =  48

F values in the 5th column indicate whether the main effects A, В and the 
interaction AB are statistically significant.

The principle of decomposing DF and SS for factorial design with more 
than two factors is similar to that in Table 22.2, but it is very difficult to calcu
late by hand and better to use statistical software to create an ANOVA table.

Example 22.1 Analyze the result of 22 factorial experiment in Table 22.3, 
where 20 rabbits were used as the experimental units and randomly assigned 
into four groups. The treatment groups were formed according to all possible 
combinations of the method of the operation (factor A, two levels) and the 
examination time after suture (factor В , two levels).
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Solution The example is 22 factorial experiment, n =  5.
2 2 5

“S^total =  E E D 1 ' » - 37»2 ' ™ '
i= 1 y = l k= 1

2 2

s s treatment £  E 5 x  ( % - 3 7 )2
<=1 r = i

=  5 x (24 -  37)2 +  5 x (44 -  37)2 +  5 x (28 -  37)2 

+  5 x (52 -  37)2 =  2620,
2

SSa =  J 2  2 x 5 x (X,-.. -  37)2
i=i

=  10 x (34 -  37)2 +  10 x (40 -  37)2 =  180,
2

SSb =  ^  2 x 5 x (X у. -  37)2
7 = 1

=  10 X  (26 -  37)2 +  10 x (48 -  37)2 =  2420,

=  SStreatment -  SSA -  SSB =  2620 -  180 -  2420 =  20,

t e r r o r  — S S  total treatment — 7420 2620 — 4800.

The above results can be summarized into an ANOVA table for 22 factorial 
experiment (see Table 22.4).

The conclusion is that only main effect of time after suture, factor B, 
is statistically significant (P < 0.05). The main effect of factor B, sutured

T a b le  2 2 .4  The ANOVA table for the data in Table 22.2.

Source D F S S M S F P

Between groups (3) (2620)
A 1 180 180 0.60 >0.05
В 1 2420 2420 8.07 <0.05
A B 1 20 20 0.07 >0.05
Error 16 4800 300

Total 19 7420
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T a b le  22 .5  R esid u al tab le  fo r  re su lts  o f  the  fac to ria l ex p erim e n t w ith  tw o  facto rs.

A  (suture methods) Adventitia suture (a \  ) Fasciculus suture (a2)

В  (examination time 1st month 2 nd month 1 st month 2 nd month
after suture) ( b \ ) (b2 ) (*l) (*2 )

-1 4 -1 4 -1 8 - 2

-1 4 -1 4 - 8 - 2

16 -1 4 2 18
26 26 2 2 8

-1 4 16 2 - 2 2

Treatment mean (x,y_) 24 44 28 52

after two months, is

B =  k ( x 2 2 .- i2i.) +  (Jc,2.—in .)] =  ^[(44 —24) +  (52 —28)] =  22(%).
z,

Residual analysis is used to check the independence, normal distribution, 
and homogeneity of variances assumptions of analysis of variance model. 
The calculated residuals are listed in Table 22.5. The related residual plots 
can be drawn according to these data for check of the basic assumptions 
such as the independency, normality and homogeneity of variance for the 
observations.

If the above residual analysis fails to support the basic assumptions of 
ANOVA, then since the outcome measure of this experiment is the passing 
rates of rabbit’s axon (%), ranging from 0  to 1, the arcsine of square root 
(formula (7.13) of Chap. 7) can be tried for variable transformation; after an 
ANOVA for the transferred data, the residual analysis can again be used to 
check the basic assumptions of independence, normality and homogeneity 
of variance for the transferred data.

22.2 Split-Plot Designs and Analysis of Variance

22.2.1 In troduction

To learn what the split-plot design is, let us show an example first.

Example 22.2 Ten domestic rabbits were randomly assigned into two 
groups, the rabbits in one group were injected with antitoxin drug (щ),
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Table 22.6 Diameters of skin-injured 
range of domesticated rabbits (mm).

Rabbit group 
(whole-plot)

Skin position 
(subplot)

Left Right

I 1 (fll) (by) (b2 )
4 (a i ) (b2 ) (by)
6  (aj) (b2 ) (by)

7 (at) (by) (b2 )

to  (m ) (by) (b2 )

II 2 (a2 ) (b2 ) (by)

3(02) ( b2 ) (by)

5 (o 2) (by) (b2)

8 (0 2 ) (by) ( b2 )

9(02) (b2 ) (by)

those in another group were injected with saline as control (a2). Then, 
the symmetric skin positions on two legs of each rabbit (denoted with L 
(left) and R (right)) were chosen to inject certain toxin with low dose (by) 
and with high dose (b2) respectively. The diameters of the injuries on both 
legs of each rabbit were measured and the average injuries diameters were 
compared between the two groups, antitoxin drug versus saline. The design 
is given in Table 22.6, where the rabbit was the experimental unit for drugs 
(ai versus a2), called whole-plot, and the skin area was the experimental unit 
for injury (bi versus b2), called subplots. It seems that the subplots were 
“split” from a whole-plot so that such kind of design is called split-plot 
design.

What is the difference between split-plot design and factorial design? In 
fact, in factorial design, different levels of factor A and different levels of 
factor В all act on the same basic experiment units; but in split-plot design, 
different levels of factor A act on the whole-plots, while different levels of 
factor В only act on the subplots, a part of the whole-plot. The split-plot 
design is widely used in medical researches, especially in clinical medical 
studies. The flaw of split-plot design is that the efficiency of testing for main 
effect of factor A is usually lower than that for factor В.
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22.2.2 E xperim en ta l design

In general, assume factor A is the factor with I levels ay, a2 , , « /, applied 
to the whole-plots, factor В is the factor with J levels b\ , b^, • • •, b j , applied 
to the subplots, there are rl whole-plots (r > 2 ), each of which splits into 
J subplots.

The split-plot design can be a completely randomized design as well 
as a randomized complete block design according to whether a complete 
block is formed for the whole-plots or not. Now introduce the main steps 
of these two designs respectively.

22.2.2.1 Completely randomized split-plot design

Step 1 Randomly assign the rl whole-plots into /  groups (with r whole- 
plots for each) which will receive the treatment ay, й2> • • ■ > at of factor A 
respectively.

Step 2 Randomly assign the J subplots of each whole-plot to receive 
the treatment b \, b2 , . . . ,  bj of factor В respectively.

In Table 22.6, /  =  2, J =  2, r =  5. As the first step, rabbits 1,4, 6 , 7 
and 10 were assigned antitoxin (treatment ay), and the rest were assigned 
saline (treatment «2)- As the second step, the left positions of rabbits 1, 5, 
7, 8 and 10 were assigned to receive the low dose toxin (treatment b\) and 
their right positions were assigned to receive the high dose toxin (treatment 
bi)\ the assignment for the rest of rabbits is just the opposite. Looking at 
the first two columns of Table 22.6, it is a completely random design for 
factor A; while looking at the last two columns of the table, it is a random 
block design for factor B, where each rabbit is regarded as a block.

22.2.2.2 Randomized complete-block split-plot design

Step 1 Group all the whole-plots into r blocks, each of which contains I 
similar whole-plots.

Step 2 For each block, randomly assign the /  whole-plots to I treatments 
of factor A respectively.

Step 3 For each whole-plot, randomly assign its J subplots to ./ treat
ments of factor В respectively.

Example 22.3 Suppose there were five litters of rabbits, from each of 
which, two rabbits with similar weight were picked out for the experiment.
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Table 22.7 A randomized complete-block 
split-plot design for Example 22.3.

Litter
(block)

Rabbit
(whole-plot)

Skin position 
(subplot)

Left Right

1 1 (at) ( b i ) ( b i )
2 (вг) ( b ,) ( b i )

2 3(02) (*l) ( b i )
4 (o ,) ( b \ ) ( b i )

3 5 (a l ) ( i n ) ( b i )
6  (a,) ( b \ ) ( b i )

4 7 (a,) ( b \ ) ( b i )
8  (a2) ( b \ ) ( b i )

5 9 (o2) ( b \ ) ( b i )
1 0  (oi) ( b \ ) ( b i )

For every two rabbits from the same litter, randomly assign one being 
injected with antitoxin, and another being injected with saline as control. 
For every rabbit, randomly select comparable skin positions on both legs 
(denoted with left and right) being injected with the low-dose and high-dose 
of toxin respectively.

This design is given in Table 22.7. As the first step, all the rabbits (whole- 
plots) are grouped into r =  5 blocks according to the litter of them, each 
block contains 1 — 2  rabbits; as the second step, every two rabbits in the 
same block are randomly assigned to antitoxin and saline (two treatments 
of factor A) respectively. As the third step, the two positions of each rabbit 
(subplots) are randomly assigned to low-dose and high-dose of toxin (two 
treatments of factor B) respectively. Looking at the first two columns of 
Table 22.7, it is a randomized complete block design for factor A; while 
looking at the last two columns of the table; it is another random block 
design for factor В, where each rabbit is regarded as a block.

Comparing the design in Example 22.2 and that in Example 22.3, the 
only difference is the way of assigning the whole-plots to the treatments 
of factor A. In Example 22.2, it is a completely randomized design; while 
in Example 22.3, it is a randomized complete-block design. In fact, this
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reflects the main different between completely randomized split-plot design 
and randomized complete-block split-plot design.

22.2.3 Analysis of variance

The ANOVA table for the data of split-plot design consists of two parts. 
The first part is used to test the main effects of factor A ; the second part is 
used to test the main effect of factor В and interaction of A and B.

22.2.3.1 Completely randomized split-plot design 

Assume that the experiment results are:

Xijk, i =  1 , 2 , I, j  =  1 , 2 , J, к =  1 ,2 , . . .  ,n (22.12)

of which. / is the total number of levels of factor А, У is the total number 
of levels of factor В, n is the repeated number for each level of factor A, 
and I x n is the total number of experiment units as the whole-plots.

(22.13)—(22.15) are the formulas related to the variance decomposition 
for the whole-plots:

(1) Total SS for whole-plots, that is, the weighted sum of squared difference 
between the mean of whole-plot experiment unit (Xi k) and the total 
mean (X)

/  n

^^whole-plots =  j 2 J 2 j ( * i . k - x ) 2 , ( 2 2 - 13)
i = l  k=\

of which, J is the total number of subplot units represented by each 
mean of whole-plot experiment unit.

(2) SS for the main effect of A, that is, the weighted sum of squared differ
ence between the mean of each level of factor A (X, ) and the total mean

/
SSA =  J^Jn(Xi.. -  X ) 2 (22.14)

i=i

of which, Jn is the number of subplot units represented by means of 
each level of factor A.
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Table 22.8 Analysis of variance for the whole-plots in completely randomized design.

Source D F S S M S F

A
Error ( E i )

I  -  1

l ( n  -  1)
S S A

S S E i
M S  A =  S S A / ( I  -  1) 

M S EX = S S E i / l ( n - X )
M S  A / M S  Ex

Whole-plots total (7)) In  — 1 ^whole-plots

(3) The SS for whole-plots error, that is, difference between the above two.

SSei =  SSWhoie-piots — SSa- (22.15)

The decomposition of DF and SS are listed in Table 22.8.
(22.16)—(22.19) are the formulas related to the variance decomposition 

for the subplots:

(1) Total SS for subplots, that is, the sum of squared difference between 
each observed value (X^) and the total mean

/  J n

‘̂ subplots =  EEE<X» - X ) 2 (22.16)
i= l j = 1 k =l

of which, J is the number of subplot units represented by means of 
whole-plots experiment units.

(2) SS for the main effect of B, that is, the weighted sum of squared differ
ence between the mean of each level of factor В and the total mean

j
SS в =  J 2  H X .j.  -  X ) 2 (22.17)

7 =  1

of which, /„ is the number of subplot units represented by means of 
each level of factor В.

(3) SS for effect of A and В, that is, the weighted sum of squared difference 
between the mean of treatment group and the total mean

i  j

ssAandB =
<=i j =l

of which, n is the number of whole-plots units represented by means 
of treatment groups.
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Table 22.9 Decomposition of DF and SS for the subplots.

Source D F S S M S F

В J  -  1 s s B M S  в  =  S S B / ( J  -  1) m s b / m s E2

A B ( /  -  1)(У — 1) S S a b M S a b  =  S S a b /
[ ( / -  1) ( / -  1)1

M S A B / M S e 2

Subplots 
error ( E f )

7(r -  1)(У -  1) S S e i M S E2  = s s e 2 /  
[ H r  -  1) 0 /  -  1)]

Subplots total r IJ  -  1 •^subplot

(4) SS for interaction of A and B, that is, the extra effect in addition to that 
of the main effects of A and В

SSab =  SSAandB — SSa — SSb- (22.18)

(5) SS for sub plots error

SSe2 =  ^subplots ~  ^whole-plots — SS в — SSab ■ (22.19)

The decomposition methods of DF and SS of the second part are listed 
in Table 22.9.

Example 22.2 (Cont’d) The data obtained under the design in Exam
ple 22.2 are showed in Table 22.10. The measurements were the diameters 
(mm) of skin-injured range. Analyze the data by ANOVA.

Solution The example is completely randomized split-plot design. The 
rabbits are the whole-plot units and the injection sites of the rabbits are the 
subplots. So there are ten whole-plot units and 20 subplot units.

(1) Analysis of variance for the first part

2 5

s s whole-Pio,s =  E  E 2  x  № •*  - 1 9 -6 8 ) 2
/=1 k = l

=  2 x (17.38 -  19.68)2 +  2 x (20.25 -  19.68)2 

+  2 x (18.13 -  19.68)2 +  2 x (21.63 -  19.68)2 

+  2 x (17 .00 - 19.68)2 +  2 x (23.13 -  19.68)2
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Table 22.10 Diameters of skin-injured range of domesticated rabbits (mm).

Injected 
drugs ( A )

No. of 
rabbits

Toxin strength (В )

Total ( U k )Low strength (b  i) High strength (6 2 )

Antitoxin 1 15.75(1) 80.25 19.00(7?) 98.75 34.75 179.0
(at) 4 15.50(7?) СП) 20.75(L) (72) 36.25 (Ai)

6 15.50(7?) 18.50(7.) 34.00
7 17.00(7.) 20.50(7?) 37.50

10 16.50(7,) 20.00(7?) 36.50

Saline 2 18.25(7?) 98.75 22.25(7.) 115.75 40.50 214.5
(«2 ) 3 18.50(7?) (?3) 21.50(7,) (74) 40.00 (A2)

5 19.75(7.) 23.50(7?) 43.25
8 21.50(7.) 24.75(7?) 46.25
9 20.75(7?) 23.75(L) 44.50

Total 10 179.00(Bi) 214.50(B2) 393.50

+  2 x (18.75 -  19.68)2 +  2 x (22.25 -  19.68)2

+  2 x (18.25 -  19.68)2 +  2 x (17.38 -  19.68)2

=  81.0125,
/

SSA =  £ > ( * , .  -  19.68)2
( = i

=  2 x 5 x (17.90 -  19.68)2 +  2 x 5 x (21.45 -  19.68)2 

=  63.0125,
SSEi =  55whoie-piots -  SSA =  81.0125 -  63.0125 =  18.0000.

From Table 22.8 (or using statistical software), results of DF. MS and 
F values are listed in the first part of Table 22.11.

(2) Analysis of variance for the second part
2 2 5

Subplots =  E E -  19‘68>2 =  146' 1375’
i= l  j = 1 k = l  

2

SSB = E  2 x 5 x (X.j. ~  19-68)2
7=1
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Table 22.11 The table of ANOVA for the data in Table 22.26.

Source D F SS M S F P

Injected drugs (A)
Rabbits’ error (within whole-plots) 
Rabbits’ total (whole-plots total)

1

8

(9)

63.0125
18.0000

(81.0125)

63.0125
2.2500

28.01 < 0 .0 1

Toxin dosage ( B )
A B
Skin-place’ error (within subplots) 
Skin-place’ total (subplots total)

1

1

8

( 1 0 )

63.0125
0.1125
2 .0 0 0 0

(65.1250)

63.0125
0.1125
0.2500

252.05
0.45

< 0 .0 1

>0.05

Total 19 146.1375

=  2 x 5 x (1 7 .9 0 - 19.68)2 
+  2 x 5 x (21.45 -  19.68)2

=  63.0125,
2 2

S S AB =  5 x (Xi j .  -  19.68)2 -  S S A -  S S B

i=i j =l

=  5 x (16.05 -  19.68)2 +  5 x (19.75 -  19.68)2 

+  5 x (19.75 -  19.68)2 +  5 x (23.15 -  19.68)2 

-63.0125 -63.0125 =  0.1125,

S S  —  .S'.S'sUb p |o i s  5 2 V h o l e  p lo ts  S S  в  S S Ab

=  146.1375 -  81.0125 -63.0125 -0 .1125  =  2.0000.

From Table 22.9 (or using statistical software), results of D F ,  M S  and 
F  values are listed in the second part of Table 22.11.

The conclusion is that no statistical significance was found for inter
action effect between A  and B .  The main effects of drugs ( A )  and toxin 
dosage (B) are statistically significant to the diameters of skin-injured range 
(P <0.01). The antitoxin might be able to protect the rabbits’ skin from the 
injuries with mean diameter of 17.9 mm, which decreases 3.6 mm compared 
to the control group of 21.5 mm.
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Table 22.12 ANOVA for the whole-plots in randomized complete-block design.

Source D F S S M S F

Between blocks n  -  1 S S p i M S B \ = S S BX/ ( n -  1) M S  B i / M S  El
A I  -  1 S S A M S  A — S S A / ( I  — 1) M S  A / M S  El
Whole-plots /(n-l) S S e  1 M S  El  = s s E l / ( r -  1) U - 1)

Error ( E  i)

Whole-plots In — 1 ^whole-plots
total (7))

22.2.3.2 Randomized complete-block split-plot design

To randomized complete-block split-plot design, the repeated number (n) of 
factor A in (22.12) is the block number. An SS for whole-plot blocks (22.20) 
is added to the analysis of variance of the first part of whole-plots units in 
Table 22.8, and the first part is shown in Table 22.12. The decomposition of 
variance for subplots in the second part of analysis of variance is the same 
as that of completely randomized split-plot design (22.16)—(22.19), and the 
table of analysis of variance is the same as in Table 22.9.

(1) SS for whole-plot blocks, that is, the weighted sum of square of differ
ence between means of each block and total mean

П
^w hole-p lo t blocks =  I J ( X  .k — X ) “ ( 2 2 .2 0 )

k=l
of which, IJ is the number of subplots units represented by means of each 
block.

Example 22.3 (Cont’d) Suppose an experiment was carried out under the 
design in Example 22.3, and the data were shown in Table 22.13. Analyze 
the data by ANOVA.

Solution As known before, it is a randomized completely complete-block 
split-plot design. There are five blocks, each block has two rabbits; the rab
bits are whole-plots with two injection places for each as the subplots. Block 
number n =  5, treatment number, /  — 2, J =  2. Descriptive statistics are 
calculated for experiment results in Table 22.13, and the statistics to show 
the whole-plots variance include rabbits mean, blocks mean (Table 22.13); 
main effect for factor A, main effect for factor B, group means of four
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Table 22.13 Diameters of skin-injured range (mm).

Blocks

Rabbits
(whole-plot

unit)

Skin positions (subplot unit)
Rabbit
mean

Block
meanLeft Right

1 1 15.75(ai b \ ) 19.00(oi />2 ) 17.38 18.81
2 18.25(02 b \ ) 22.25(02 b 2 ) 20.25

2 3 18.50(02 b \ ) 21.50 (a2 b2) 2 0 .0 0 19.06
4 15.50(0] b \ ) 20.75(oi b 2 ) 18.13

3 5 19.75(02 b i ) 23.50 (o2 b 2 ) 21.63 19.31
6 15.50(0! b \ ) 18.50 (0 ) b 2) 17.00

4 7 17.00(oi b \ ) 20.50 (a, b 2) 18.75 20.94
8 21.50(02 b \ ) 24.75 (o2 b 2 ) 23.13

5 9 20.75 (o2 bi) 23.75 (o2 b 2) 22.25 20.25
10 16.50 (oi b \ ) 2 0 .0 0  ( a \ b 2 ) 18.25

* 1  i =  16.05 * 12. =  19.75 *.i. =  17.9 * 2 . = 21 .5 * 1  =  17.9 *2 .. = 21 .5
*2 ]. =  19.75 *2 2 . =  23.15 * =  19.68

Table 22.14 The first two columns of the 
ANOVA Table.

Source D F

Injected drugs (A) 1
Between blocks 4
Rabbits error (within whole-plots) 4
Rabbits total (whole-plots total) (9)

Toxin dosage ( В)  1
A B  1
Skin-place error (within subplots) 8

Skin-place total (subplots total) (10)

Total 19

treatment groups. Then the table of analysis of variance can be obtained 
from Tables 22.12 and 22.9 (or from statistical software). Compared to 
Table 22.8, a block variance is added to the whole-plots SS, meanwhile, a 
DF of 4 is lost (see Table 22.14). If the block SS is big which can decrease 
whole-plots error to increase the power of factor A. Otherwise, the block 
SS can be combined to whole-plots error.
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22.3 Cross-Over Design and Analysis of Variance

22.3.1 In troduction

Example 22.4 In order to detect the effect of a sedative, a clinical trial is 
designed such that the objects are insomnia patients in a clinic. A placebo 
denoted as a\ is taken as control, the treatment with the sedative denoted as 
Й2- Assuming the patients could receive a { and an respectively during two 
periods of time, and the patients are randomly assigned to the two groups, 
a cross-over design can be laid out as follows:

Two periods of time

Treatment group I Washout II

1st group a \  No treatment a i
2 nd group 02 No treatment ai

A notable characteristic of cross-over design in a clinical trial is that the 
experimental time can be divided into two periods; the objects are able to 
receive two treatments at different periods with different sequence. Some 
patients receive the treatments in the order a \ and an, others with the opposite 
order аг and ci\ . Though the treatment of cross-over design is a single factor 
treatment, another two factors may also influence the result of experiment. 
They are the sequences of treatment and the phases of periods. Therefore, 
cross-over design is actually a multi-factor experiment with three factors: 
the treatment, expressed as factor A; the sequences of treatment, expressed 
as factor B \ and the phases of periods, expressed as factor C. However, the 
main purpose of cross-over design is to test the main effect of factor A under 
the assumption that there is no interaction among the three factors A, В and 
C. As the difference of treatments in cross-over trial is compared within 
objects, the variation among individuals can be avoided. It is especially 
suitable to the clinical trail to control the difference among individuals. 
A strict requirement is that the treatment effect in phase I would not transit 
to phase II, that is to say, there is no carry-over effect when a treatment 
stop, or the carry-over effects of both treatments are equal. To ensure this 
assumption, some “washout periods” may be set up before a treatment, and 
between two phases of treatment. During the washout periods, all drugs or 
treatments should be stopped to wait for the carry-over effect to disappear.
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In clinical trials, cross-over design is usually used in comparing the effect 
of a drug or a therapeutic with the routine one for remission of symptoms, 
for instance, relieving pain, sedation, reducing blood pressure and resisting 
rheumatism, etc.

22.3.2 Two p h a se  cross-over design

The design is quite simple for the cross-over design with only two treat
ments, a\ and th, two phases of periods, I and II, which called two phase 
cross-over design. Just randomly assign N objects into two treatment 
groups, the individuals in the first group receive the treatment a\ in phase 1 
and «2 in phase II, those in the second group receive a2 in phase I and a\ in 
phase II. Notice that it is better to keep two treatment groups with the same 
number of cases during randomization for making the statistical analysis 
simpler.

22.3.3 A nalysis o f  variance

To assume i as subject, j  as experiment phase, the experiment result of the 
к treatment is

xijk, i =  1 , 2 , . . . , IV, j  =  1,2, k =  1,2. (22.21)

The experiment results of completely randomization two phases cross
over design are listed in Table 22.15.

Similarly, we have to calculate a series of “Sum of Squares” for analysis 
of variance:

(1) SS for total, that is, the sum of squared differences between all observed 
values and the total mean

sst o t a l £ ( % -^)2+ e e  -  *)2-
1 =  1 7 =  1 7t=l

k=j
i=n+l /=1 k=\ кф]

(22.22)

(2) SS for subjects, that is, the weighted sum of squared differences between 
the subject means (X,..) and the total mean

N

SS subject =  J 2  2^ ' -  "  * ) 2’
i ' = l

(22.23)
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Table 22.15 Experiment results of two phases cross-over design.

Treatment
order

Subject 
number after 

randomization

Experiment phases
Subject 

mean(i,- )I о

1 -^122 *1..
A 2 *211 X222 X2..

(oi ->• a 2)
n X „ u X n22 Xn..

* 1 1 *.22

n +  1 ^„+ 1 ,12 ^n+1,21 Xfl + 1..
В n +  2 X n+ 2 , 1 2 X n + 2 , 2 l x „ + 2 ..

(«2 -► «1)
N X N , 12 *N21 XN ..

* 1 2 * 2 1

Phase mean ( x i ) X.l . X.2.
Treatment mean ( x  k ) X.A X..2
Total mean JC.

where 2 is the number of the observed values represented by each sub
ject mean.

(3) SS for experiment phase, that is, the weighted sum of squared difference 
between the mean of two phases (Xj.) and the total mean.

2

SS phase =  J 2  N(Xj .  -  X)2, (22.24)
7 = 1

where N is the number of the observed values represented by each 
phase mean.

(4) SS for treatment, that is, the weighted sum of squared difference 
between the means of two treatment (X..k) and the total mean

2

■̂ treatment =  N(X..k -  X)2, (22.25)
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Table 22.16 Analysis of variance for two phases cross-over design.

Source D F S S M S F

Patients N  -  1 ^subject ^^subject =  ^subject/C^ — 1) ^ 3 subject / M S  E
Phases 1 •SSphase phase =  phase/1 M S ph a&e/ M S  e
Treatments 1 ^Treatment ^^Treatment =  ^ T rea tm en t/^ M^treatment/ M S  £
Error N - 2 S S E M S E =  S S e / ( N  -  2)

Total 2 N  -  1 ^Total

where N is the number of the observed values represented by each 
treatment mean.

(5) SS for Error

SSE — ■'fS'total — ^ s u b je c t  — -'v1' phase — ^ tr ea tm en t- (22.26)

Put the above results to Table 22.16 to calculate and complete analysis of 
variance for two phases cross-over design.

Example 22.5 To compare the effects of two drugs a\ and a2 on losing 
weight, through a two-phase cross-over design, 12 objects with obesity were 
randomly divided into two groups, the first group used drug a\ in phase I 
and drug «2 in phase II; the second group used drug a2 in phase I and drug 
a\ in phase II. Phases I and II lasted four weeks respectively. The results of 
observation are listed in Table 22.17, analyze the data.

Solution Calculate descriptive statistics, including subjects mean, phase 
mean and treatment mean (Table 22.33). Put them into the formulas (22.22)- 
(22.26).

12 2

3*3'to la] =  ~  2 ‘3 4 2 ) 2 =  1 0 9 -7 4 6 2  5 5 total

/=1 M
12 2

=  2̂ ~  2-342)2 =  109-7462,
i = i  j = i
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Table 22.17 Losing weights (kg).

Drug sequence No. of subjects Phase I Phase 11 Subject mean ж,-

1st group 1 6.129 -0.454 2.838
( a l -> a 2) 2 2.497 0.908 1.703

3 4.313 0.454 2.384
4 4.540 2.724 3.632
5 1.498 1.135 1.317
6 8.172 4.313 6.243

2 nd group 7 4.449 2.043 3.246
(a2 -*■ a \ ) 8 4.994 1.816 3.405

9 0.454 0.136 0.295
10 0.227 1.271 0.749
11 1.589 1.271 1.430
12 0.136 1.589 0.863

Phase mean x  j 3.250 1.434 2.342 ( x )

Treatment mean it j 2.940 1.744

12

«subject =  J 2 2 X № . . -2 .3 4 2 )2
1=1

=  2 x (2.838 -  2.342)2 +  2 x (1.703 -  2.342)2 
+  2 x (2.384 -  2.342)2 

+  ••• +  2 x (1.430 -2 .3 4 2 )2

+  2 x (0.863 -  2.342)2 =  60.5631,
2

55phase =  N(X.j. -  X )2
j =i

=  12(3.250 -  2.342)2 +  12(1.434 -  2.342)2 =  19.7871,
2

^treatment =  £  ЩХЛ -  2.342)2
1=1

=  12(2.840 -  2.342)2 +  12(1.744 -  2.342)2 =  8.5753,

66 E —  6'6’tHtal ^ s u b j e c t  6 ‘S* phase SSu

=  109.7462 -  60.5631 -  19.7871 -  8.5753 =  20.8207.
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Table 22.18 ANOVA table for losing weights.

Source D F s s M S F P

Among objects 11 60.5631 5.5057 2.64 > 0.05
Between periods 1 19.7871 19.7871 9.50 < 0.05
Between treatments 1 8.5753 8.5753 4.12 > 0.05
Error 10 20.8207 2.0821
Total 23 109.7462

Program 22.1 Program for analyzing Example 22.1.

Line Program Line Program

01 DATA FE; 09 PROC MEANS;
0 2 INPUT А В X @ @; 10 VARX;
03 CARDS; 11 CLASS A B;
04 1 1 10 1 1 10 1 1 40 1 1 50 1 1 10 12 RUN;
05 1 2 30 1 2 30 1 2 70 1 2 60 1 2 30 13 PROC ANOVA;
06 2 1 10 2 1 20 2 1 30 2 1 50 2 1 30 14 CLASS A B;
07 2 2 50 2 2 50 2 2 70 2 2 60 2 2 30 15 MODEL X =  A В A*B;
08 16 RUN;

Using Table 22.16 (or statistical software) to create ANOVA table for 
two-phase cross-over design (Table 22.18).

From the P-values in Table 22.18, it cannot be concluded that the dif
ference between the two drugs a\ and a2 is statistically significant, but the 
losing weights at phase I is much more than those at phase II (P < 0.05).

This section only concerns with the comparison between two treatments. 
The comparison among three treatments or more than three treatments needs 
to use multi-phase cross-over design, for which readers with interest can 
refer to other textbooks or references.

22.4 Computerized Experiments

Experiment 22.1 Two-way analysis of variance for 2 x 2 factorial 
experiment with complete randomized design (see Program 22.1).

Experiment 22.2 Analysis of variance for completely randomized 
split-plot design In Program 22.2, R, A, В and MM represent numbers 
of replications, levels of the factor for whole-plots, levels of the factor for
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Program 22.2 Program for analyzing Example 22.2.

Line Program Line Program

01 DATA SPLIT; 13 5 2 1 20.75 5 2 2 23.75
0 2 INPUT R А В MM @@; 14 '
03 CARDS; 15 PROC MEANS;
04 1 1 1 15.75 1 1 2 19.00 16 VAR MM;
05 2 1 1 15.50 2 1 2 20.75 17 CLASS A B;
06 3 1 1 15.50 3 1 2 18.50 18 RUN;
07 4 1 I 17.00 4 1 2 20.50 19 PROC ANOVA;
08 5 1 1 16.50 5 1 2 20.00 2 0 CLASS R A B;
09 1 2 1 18.25 1 2 2 22.25 21 MODEL MM =  A R*A В A*B;
1 0 2 2 1 18.5022221.50 2 2 TEST H =  A E =  R*A;
11 3 2 1 19.75 3 2223.50 23 RUN;
12 4 2 1 21.504 2 2 24.75

Program 22.3 Program for analyzing Example 22.4.

Line Program Line Program

01 DATA CROSS; 13 10 1 2 0.227 10 2 1 1.271
0 2 INPUT P TIME TREAT 

WEIGHT@@;
14 11 1 2 1.589 112 1 1.271

03 CARDS; 15 12 1 2 0.136 12 2 1 1.589
04 1 1 1 6.129 1 2 2-0.454 16 ‘
05 2 1 1 2.497 2 2 2 0.908 17 PROC MEANS;
06 3 1 1 4.313 3 2 2  0.454 18 CLASS TIME TREAT;
07 4 1 1 4.540 4 2 2 2.724 19 VAR WEIGHT;
08 5 1 1 1.498 5 2 2  1.135 2 0 RUN;
09 6  1 1 8.172 6224 .313 21 PROC ANOVA;
10 7 1 2 4.449 7 2 1 2.043 2 2 CLASS P TIME TREAT;
11 8  1 2 4.9948 2 1 1.816 23 MODEL WEIGHT =  P 

TIME TREAT;
12 9 1 2 0.454 9 2 1 0.136 24 RUN;

subplots and the observations of the treatments respectively. Note that fac
tor A and whole-plots error must be indicated in line 22. Program 22.2 can 
be modified for randomized complete-block split-plot design by changing 
line 21 as MODEL MM =  R A R*A В A*B.

Experiment 22.3 Analysis of variance for two-phase cross-over design 
(see Program 22.3).
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22.5 Practice and Experiments

1. In medical study, the experiment factor usually has two options, such as 
“operation” and “no operation”, “chemotherapy” and “no chemother
apy”. Try to design a 22 factorial experiment and explain the positive 
interaction (cooperation effect) and negative interaction (opposition 
effect).

2. How to use completely random design, randomized complete-block 
design and Latin-square design to arrange factorial treatment.

3. Take 22 factorial designs as examples to figure out the head of anal
ysis of variance table (source and DF) for completely random design, 
randomized complete-block design and Latin-square design.

4. Perform residual analysis after square root or logarithm transformation 
for Example 22.1, and check if the independence and normality have 
improved.

5. State the relation and difference between factorial design and split-plot 
design.

6 . Study the breath resistance in different loads (factor A) and different 
aviation oxygen supply device (factor B). Factor A has three levels, 
sitting quietly, 250 and 600kg/min body force load; factor В has two 
levels, YX-1 and YX-2 oxygen supply systems. There are 12 objects, 
each of which can only receive one treatment. How to design the exper
iment? If in a period of time, each person can receive repeatedly all the 
treatments, how to design the experiment? Try to write the randomized 
group result.

7. Compare the repair effect of three constitutional drugs (factor A) for 
the neural lesion and two neural suture methods, the experiment objects 
are 12 dogs; two persons can help to measure the neural lesion. How to 
design the experiment? And write down a randomized allocation table.

8 . It is the result of completely randomized factorial design in Table 22.19, 
in which factor A is the exposure frequency of millimeter waves, and 
factor В is the exposure time, and 7j (k =  1 , 2 , . . . ,  15) is the sum of 
each treatment group. Try to work out the statistical analysis.

9. Ten moderate hyperthyroid patients were randomly divided into two 
groups, and methidathion and methidathion plus inderal were used 
to cure them respectively. The measuring results of heart rate before 
therapy and four weeks after therapy were given in Table 22.20.
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Table 22.19 Contents of DNA in liver cells of mice (r =  5) (AU,  absolutely unit).

Factor B(7 =  5)

Factor A ( I  =  3)

Factor В  total (B,)36.04 GHz 50.05 GHz Control

Instant 2.203 5 (TO 1.938 0 (7 6) 2.182 0(7! 0 6.323 5 (BO
1 d 1.915 5 (72) 1.914 0 (7у) 1.987 5 (712) 5.817 0 (B 2)
3d 1.970 5 (73) 1.663 0 (7 8) 1.882 5 (7 t3) 5.516 0 (B 3)
5 d 1.912 0 (74) 1.981 0(71,) 2.061 5 (714) 5.954 5 (B4)
7 d 1.924 0 (75) 1.975 5 (Г, о) 1.909 0 ( 7 15) 5.808 5 (B15)

Factor A  total ( A , ) 9.925 5 ( A j) 9.471 5 (A 2) 10.022 5 (A3) 29.419 5 (]C X)
Sum of squares )T X 2 =  11.7074

From: XiaoJuan Wang. Study about the effect of millimeter waves to liver of little rat. Disi
Junyi Daxue Xuebao (J of Fourth Military Med University), 1990, 11(2): 92.

Table 22.20 Heart rate before and after therapy of hyperthyroid
(time/min).

Curing methods Before therapy Four weeks after therapy

Methidathion 115 91
1 2 0 94
124 8 8

116 82
114 96

Methidathion +  inderal 117 83
1 1 0 80
118 92
119 85
1 2 2 84

Disassemble variances and analyze main effect of treatment method 
and time, and their interaction.

10. To analyze the block SS of the first part of whole-plots units of split-plot 
design in Table 22.3, and provide table of analysis of variance for the 
completely randomized split-plot design.

11. To compare the measurement results of oxygen consumption between 
two devices A and В (treatment factor), 14 healthy persons with sim
ilar condition were tested. The objects and sequence of test were two 
important none-treatment factors. Each person was tested by the two
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T a b le  22 .21  R esu lts  o f  ox y g en  co n su m p tio n  be tw een  d ev ices A an d  В (m l/h ).

Objects
number

Phase I Phase II

Device Oxygen consumption Device Oxygen consumption

1 A 1 237 В 1256
2 В 1 387 A 1348
3 A 1179 В 1275
4 В 1025 A 1 0 2 2

5 В 1225 A 1226
6 A 1 0 0 0 В 981
7 В 1050 A 1026
8 A 1295 В 1387
9 A 1218 В 1187

10 В 1050 A 1031
11 A 1138 В 1175
12 В 1387 A 1298
13 В 1150 A 1108
14 A 971 В 1 0 1 2

From: Shuqin Yang, Zuchao Guo. China Medicine Encyclopedia (medical 
statistics), 1985.

devices in order. The 14 persons were paired according to their sim
ilarity of conditions; randomly selected one person of the pair to use 
devices A first and then B, and the counterpart to use in the other way. 
Work out a statistical analysis for the data in Table 22.21.

(1st edn. and 2nd edn. Yongyong Xu, Yi Wan, Jiqian Fang)





Chapter 23

Analysis of Repeated Continuous-Type 
Measurements

Repeated measure data refer to multiple measurements of the same variable 
taken from the same experimental unit or subject (human being, animal, 
equipment, etc.) at different times. The response variable from repeated 
measures may be continuous, discrete or binary. Analysis of discrete and 
binary data requires advanced statistical methodology like generalized esti
mating equations, GEEs. Interested readers can refer to other referential 
materials. In practice, continuous type repeated measurements are com
mon. In this chapter we will discuss some statistical methods for analyzing 
continuous type repeated measure data.

23.1 Examples of Repeated Measurements

The experiment with repeated measurements usually concerns both treat
ment and time factors. The following lines should be directed towards the 
design: subjects are assigned to different treatment groups at random, and 
it is better to use parallel control group; the time points are designated in 
advance; the measurements at time 0 , i.e., the time point just before the 
treatment be administered, is used as baseline; and each subject receives 
measures regularly.

Example 23.1 A nutrition experiment was conducted to explore the effect 
of test food on serum cholesterol. Seven rabbits in each of the two groups 
were fed with normal-food and test-food, respectively. The serum choles
terol concentration (mmol/L) was measured just before and after five,

6 1 5
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Table 23.1 Logarithmic-transformed serum cholesterol concentration (mmol/L) from a 
nutrition experiment.

Treatment group (Test food) Control group (Normal food)

Rabbit
Before

experiment
5 weeks 

after
1 0  weeks 

after Rabbit
Before

experiment
5 weeks 

after
10  weeks 

after

1 0.744741 2.013341 2.621341 8 0.375741 0.667841 0.569941
2 0.904141 2.054141 1.628441 9 0.994741 0.584441 0.461241
3 0.357641 1.137841 2.196741 10 0.598841 0.955541 0.598841
4 1.077741 1.948741 2.239241 11 0.719741 1.354241 1.032441
5 0.584441 1.668441 0.985041 12 0.157041 0.246141 0.613041
6 0.985041 1.926241 2.915641 13 0.861241 0.882941 0.757041
7 1.050841 1.638641 1.225541 14 0.872141 0.555041 0.540041

From: Xu Y. (1987). Journal of Chinese Preventive Medicine. 21(1 ):34.

Table 23.2 Blood concentration (// mol/L) of two drug forms at four time points.

Old form New form

Subject
0

hour
4

hours
8

hours
12

hours Subject
0

hour
4

hours
8

hours
12

hours

1 90.53 142.12 65.54 73.28 8 70.53 97.38 1 1 2 .1 2 58.50
2 88.43 163.17 48.95 71.77 9 68.43 95.27 133.17 56.90
3 1 0 0 .0 1 144.75 86.06 80.01 10 57.37 78.43 83.16 48.34
4 46.32 126.33 48.95 39.54 11 105.80 120.54 136.33 84.03
5 73.69 138.96 70.02 60.89 12 80.01 104.75 114.75 65.61
6 105.27 126.33 75.01 83.66 13 56.32 75.27 96.33 47.52
7 86.32 121.06 78.95 70.24 14 53.69 1 1 0 .0 2 138.96 45.44

15 85.27 1 1 0 .0 1 126.33 69.47
16 66.32 115.27 129.06 55.29

ten weeks of experiment. The logarithmic-transformed data are listed in 
Table 23.1.

Example 23.2 A pharmaceutical study was conducted to explore the 
metabolic difference between two dosage forms, old and new, of a drug. 
Blood concentration of the drug were measured at 0, 4, 8 and 12 hours 
after administration on 16 subjects, 7 for old form and 9 for new. Data are 
listed in Table 23.2. The question is whether there is a significant difference 
between the dose-time curves.
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Fig. 23.1 Blood cholesterol changes of rabbits with time in two groups.

Fig. 23.2 Drug concentration changes with two for two forms.

From one data in Tables 23.1 and 23.2, Figs. 23.1 and 23.2 have been 
drawn. In these graphs the horizontal axis represents the time scale and 
the vertical axis represents the response level. Each curvilinear represents 
a time trend of responses for one subject. Different types of lines are used 
to discriminate different groups. This graph can give a rough imagination 
of the differences between groups and the changes of response with time 
individually.
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Fig. 23.3 Logarthmic means and standard deviations of blood cholestrerol concentrations 
in rabbits for different groups ( P  < 0.01).

23.2 Imperfect Analysis and its Origins

A common mistake to handle repeated measure data is to treat then as 
independent observations: the mean and standard deviation of observations 
for each time point are calculated separately; the successive mean points are 
linked with lines, and the “errors” are marked with vertical sticks; and the 
f-test or Mann-Whitney U-test is used to make hypothesis testing for each 
time point as showed in Fig. 23.3 for data in Table 23.1. In other words, this 
is not the correct way to interpret one data.

The reasons why it is not correct are as follows. First, the method linking 
the successive mean points with lines will obscure the feature of the location 
and shape of individual curves showed in Fig. 23.1. Second, the shape of the 
curve formed by the mean points may be relevant to individual’s curvilinear 
shapes. Third, Fig. 23.3 depicts the corresponding standard deviation for 
each time point to show that the two bunches of curves are located closely 
around their means respectively and to reflect that the two bunches of curves 
are separated greatly because the two sticks representing standard deviations 
do not overlap. But it is not true. Finally, the method mentioned above does 
not reflect the fact that the measurements at different time points come from 
the same individual and are correlated to each other (Tables 23.3 and 23.4).

Table 23.4 shows that the correlation coefficient is 0.507 between the 
measures before and five weeks after experiment. And the value is 0.777 
between the measures five and ten weeks after experiment.
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Table 23.3 Variance-covariance matrix of measure
ments between time points (from data in Table 23.1).

Before 5 weeks 10  weeks

Before 0.081 0.090 0.065
5 weeks 0.386 0.411
1 0  weeks 0.723

Table 23.4 Correlation coefficients of measurements
between time points (from data in Table 23.1).

Before 5 weeks 1 0  weeks

Before 1 0.507 0.269
5 weeks 1 0.777
1 0  weeks 1

In fact, the final reason is the key for repeated data analysis. Repeated 
measures in each subject correspond to a matched experiment with oneself 
as control. These repeated measurements for the same subject have fine 
comparability. Due to the correlation between repeated measurements col
lected from the same subject, one should account for this when analyzing. 
Otherwise the statistical conclusion may be doubtable. In other words, the 
core to analyze repeated measurements is how to handle such feature of 
correlation ingeniously.

23.3 Approach with Summary Measures

To avoid the correlation among repeated measurements, a new set of fewer 
independent measures can be taken to summarize as much as possible infor
mation existing in the correlated original repeated measurements. Then the 
univariate statistical methods like r-test, ANOVA or Mann-Whitney U-test 
can be used directly to the new set of independent measures for compari
son among groups. The methodology is known as the summary measures 
approach or derived variable approach. Through the summary measures 
approach is easy to carry out, the selection of summary measures is not 
easy. So the summary measures should have clear-cut clinical or biological 
significance and should be specified in design stage.
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Table 23.5 The common used summary measures of repeated measurements for choice.

Data type Topic of interest Summary measures

Peak Are there differences between 
treatment groups?

Means (equal time intervals); Areas 
under curves (Unequal time 
intervals)

Peak Is there difference in maximum 
(or minimum) responses between 
treatment groups?

Maximum (or minimum) value

Peak Is there difference between times 
achieving maximum 
(or minimum) responses?

Time to achieving maximum 
(or minimum) responses

Growth Are changing rates in different 
treatment groups equal?

Regression coefficients

Growth Are final results of treatment groups 
equal?

End value of response; difference of 
end value from start value; 
changing rate between end value 
and start value.

Growth Are response rates of different 
treatment groups equal?

Waiting time arriving at a specific 
value (for example, time from 
baseline to a specified times of 
baseline value)

The data of repeated measurements in practice mostly include two types, 
peak (peak value) type and growth (monotone increase or decrease) type 
according to the trend of repeated measurements with time. Based on the 
trend and topic of interest, the researchers often select the summary mea
sures as listed in Table 23.5.

From the data in Table 23.1 every subject has a mean which is the average 
of original measurements over three time points. For example, the mean 
of rabbit 1 is (0.7447 +  2.0133 +  2.6213J/3 =  1.7931. By using t- test to 
compare the two sets of summary measures, the results show that the means 
of treatment and control groups are significantly different (p < 0.001). The 
results are listed in Table 23.6.

23.4 Analysis of Variance for Repeated Measurements

The method introduced to deal with the data in Table 23.1 is a common 
technique, where the mean of measurements on each subject is used as a 
characteristic for comparison between groups. In general, if we only want 
to compare the differences between two or more group means, the mean



Analysis of Repeated Continuous-Type Measurements 621

Table 23.6 Summary measures and results of r-test for data in Table 23.1.

Group
Summary measure 

(Mean for each rabbit) Grand mean t -value d f P-value

Treatment 1.79314
1.07931

1.52891
1.94231

1.23074
1.30501

1.75524
1.5192

5.6295 12 0.0001
Control 0.53784

0.33874
0.68014
0.83374

0.71774
0.65574

1.03547
0.6856

or sum of repeated measurements may be used as a summary measure for 
univariate hypothesis testing. But in doing so, the possible differences in 
time trends between groups cannot be revealed. In view of this, we introduce 
the analysis of variance for repeated measurements here.

Data in Table 23.1 look like a randomized block design. But the dif
ference from random block design is that the measurements are arranged 
with time order, not arranged randomly as in the random block design, and 
the readings at different time points are correlated to each other in some 
degree. Generally, the degree of correlation varies with the distance between 
the two measured time points. It is necessary to take action according to the 
correlation type.

A statistical model for the data as showed in Table 23.1 is

У git =  ll +  ag +  î(g) +  Pt +  (aP)gt +  (23.1)

Ygi. is the measurement of response variable at time t(t =  1, . . . ,  q) on the 
ith (i =  1, , ng) subject in the group g(g — 1, . . . , /и); ng is the total 
number of group g; /t is the expectation of its population; ag is the treatment 
effect for group g; 8 ця) is the effect associated with subject i in group g; 
P, is the effect at time t. (afi)gl is the interaction of GROUP*TIME for 
group g with time t; t:Klt is the random error associated with the ith subject 
assigned to group g at time t.

If the estimate of the parameter (a/3)gl is statistically significant, it 
reflects the fact that the response strength varies with group and time point. In 
other words, the analysis of variance model for repeated measurement data 
is the sum of effect components resulted from different sources, especially 
for time effects which include the main effect of time /?, and the interac
tion
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However, it can be proved that if the correlation matrix meets certain 
special conditions, the idea of ANOVA for random block design can still 
be applied to the analysis of repeated measurements data. The commonly 
used precondition is the so-called “sphericity”. For example, suppose there 
are t observed time points, if the correlations between the readings at time 
points 1 and 2 , 2 and 3, , t  — 1 and t, t and \, . . .  , are kept the same, 
then the property of “sphericity” holds.

23.4.1 Test f o r  sphericity  o f  varian ce-covarian ce  m atrix

The variance-covariance and correlation matrices for data in Table 23.1 
are listed in Tables 23.3 and 23.4 respectively. We use statistical software 
to test the “sphericity” of the variance-covariance matrix. As there may 
exist auto-correlation between measurements within the same subject, i.e., 
dependence among measurements. This can affect the reliability of statisti
cal inference. Let X represents the variance-covariance matrix, I represents 
a unity matrix, the hypothesis is expessed as:

Я0 : Х = с т 2/, H\ : Y ф  o 2I.

Mauchly’s test is used for “sphericity”. If the P-value of the test is large 
(for example, greater than 0.05), the null hypothesis of sphericity will not 
be rejected. In this situation we can deal with the time as a single variable, 
each time point as a level of the time variable. The uni-variate f-test or 
variance analysis may be valid. When the sphericity assumption is false, 
it is still possible to use the ANOVA but with adjusted P-values by G-G 
(Greenhouse-Geisser) procedure or H-F (Huynh-Feltd) procedure.

The test statistic for sphericity of data in Table 23.1 is / 2 =  5.1628 
approximately with 2 degrees of freedom and the corresponding F-value is
0.0757, leading to that the “sphericity” hypothesis would not be rejected. 
Thus time can be treated as a single variable and a unit-variate ANOVA can 
be applied.

23.4.2 U nivariate analysis o f  variance

Suppose that we have m treatment groups and q time points. ng is the sample 
size of group g(g =  1 , 2 , ,  m), the total subjects

m

n =  J 2 ntr
«=1
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Let ygi. be an observation on subject /(/ =  1 , 2 , ,  ng) at time point 
t(t =  1 , . . . ,  q) for group g. We can obtain the following averages:

Grand mean:

( m ng q

E E X >*«' )/"•
g=i ,=i f=i

\«=i i=t  

Mean at time t for group g:

(23.2)

Treatment mean for group g:

yg = ^ E E y«‘̂ j  j ( q x "*)> g = U - , m .  (23.3)

Mean of individual i in group g:

Mg) = j 4 ’ i =  1. - M g\ g  = 1, - , m .  (23.4)

Mean at time t:

f m "s \  \
E E % "  /  Е и* • f =  (23.5)

у St -  ( E ^ '  ) /  t = g =  (23.6)
w= 1

From these averages calculated above, the parameters in the model can be 
estimated. For example:

E(yg ~ y ) = a g, E(yi(g) -  yg) =  di(g), E(yt -  y) =  fa,

E ( y gt ~  y g ~  Ъ  +  У )  —  (a f i ) gt> E ( s g it) =  у g it —  y i(g ) —  y gt +  y g -

According to the principle of analysis of variance, under the condition 
that

m ng q m q

£  «* = £  aw = £  a = £  wo» = E wo«<=0
«=i i=t f=i «=i *=t

the partitioning of the total variation is accomplished by separating the total 
sum of squares SSr for the observed data. The total degrees of freedom can
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also be partitioned according to its source. The mean square (MS) values 
are the sum of squares divided by the corresponding degrees of freedom. 
Various sum of squares of the differences from its mean and ANOVA Table 
are showed in Table 23.7.

The SS in column 3 of Table 23.7 is acronym referring to the sum of 
squared differences from its mean.

Different from the general ANOVA, which has only one error term 
( S S s b j ) ,  here Table 23.7 for repeated measurements gives two error terms, 
error between subjects and error within subject. The latter is the error cor
responding to time and the interaction between treatment and time, denoted 
with “treatment x time” for short.

Example 23.3 By using formulas showed in Table 23.7, the data in 
Table 23.1 are dealt with univariate analysis of variance.

Solution We have n =  14, m =  2, q =  3, L =  mq -- 6 and ng =  
n ] =  я 2 =  r — 1. Ui, Gg,Tt, and GT/ are the sums of measurements for 
individual i, for group g, for time point t and for subgroup / respectively 
(see Table 23.8). By computer software, we have the results showed in 
Table 23.9.

From Table 23.9 the E-statistic for differences between treatment and 
control groups is 31.69 with degrees of freedom 1 and 12, corresponding to 
a E-value of 0.0001; the E-statistics for time is 11.93 with degrees of free
dom 2 and 41, corresponding to a E-value of 0.0003; and the E-statistics 
for the interaction of group x time is 10.57 with degrees of freedom 2 and 
41, corresponding a E-value of 0.0005. The results show a significant inter
action between food and time, that is, the food of interest has significant 
effect on the time trend of blood cholesterol concentration.

23.4.3 Analysis o f variance for data with orthogonal 
transformation

The software SAS usually gives two results for sphericity test. Sometimes 
the two results may be different. If the first result gives a E-value greater 
than 0.05, the univariate analysis of variance can be applied for the original
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Table 23.8 Natural logarithmic transformation of blood concentration (mg%) of the 
rabbits.

Rabbit Treatment Rabbit Control

O') Before 5 weeks 10 weeks Ui 0 ) Before 5 weeks 10 weeks Ui

i 0.744741 2.013341 2.621341 5.379424 8 0.375741 0.667841 0.569941 1.613524
2 0.904141 2.054141 1.628441 4.586724 9 0.994741 0.584441 0.461241 2.040424
3 0.357641 1.137841 2.196741 3.692224 10 0.598841 0.955541 0.598841 2.153224
4 1.077741 1.948741 2.239241 5.265724 11 0.719741 1.354241 1.032441 3.106424
5 0.584441 1.668441 0.985041 3.237924 12 0.157041 0.246141 0.613041 1.016224
6 0.985041 1.926241 2.915641 5.826924 13 0.861241 0.882941 0.757041 2.501224
7 1.050841 1.638641 1.225541 3.915024 14 0.872141 0.555041 0.540041 1.967224

G Ti 5.704589 12.38739 13.81199 31.90397 4.579489 5.246189 4.572589 14.39827

Gi =  5.704589 +  12.38739 +  13.81199 =  31.90397
g 2 =  4.579489 +  5.246189 +  4.572589 =  14.39827

T \ = 5 .7 0 4 8 9  +  4.579489 = 10.28408 T2 =  12.38739 +  5.246189 = 17.63358
T3 =  13.81199 +  4.572589 =  31.90397

Table 23.9 Univariate analysis of variance table.

Source D F S S M S F P

Group 1 7.2964 7.2964 31.69 0 .0 0 0 1

Error between subjects 12 2.7628 0.2302
Time 2 2.8618 1.4309 11.93 0.0003
Group x time 2 2.5342 1.2671 10.57 0.0005
Error within subjects 24 2.8781 0.1199

Total 41 18.3333

observations. If the first result gives a P-value less than 0.05 and the second 
result gives a P-value greater than 0.05, then some orthogonal transforma
tion for the original observations is needed before carrying out the univariate 
analysis of variance.

There are four kinds of commonly used orthogonal transformations:

1. Polynomial transformation. It is often used when the intervals of time 
points are not equal, such as weeks 1, 2, 5, 10 at which repeated mea
sures are done. This transformation can reflect whether there is a linear, 
quadratic, or cubic trend of measurements with time.
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Table 23.10 Results of testing trend with polynomial contrast.

Contrast variable: WEEK_1 (Linear) Contrast Variable: WEEK_2(Quadratic)

Source D F S S F P D F S S F P

Mean 1 2.3435 13.87 0.0029 1 0.5183 7.31 0.0192
Group 1 2.3515 13.92 0.0029 1 0.1827 2.58 0.1343
Error 12 2.0275 12 0.8506

2. Helmert transformation. It is used to compare the mean of a measure 
at a time point to the means of subsequent measures. It is useful when 
determining a stable time point.

3. Contrast or simple transformation. A time point is selected in advance 
as a control level, against which the others are compared. Usually, 
researches take the baseline as a control level.

4. Profile transformation. It is used for comparison between two adjoining 
time points. This transformation is often used when polynomial trans
formation is unreasonable.

Now we use a polynomial transformation for the data in Table 23.1 to test 
whether there appears a linear or quadratic trend with time and whether 
there is any difference in time trend between the two groups. The num
ber of time points are 3 thus we can fit up to a second-degree (3—1 =  2) 
polynomial time trends of serum cholesterol concentration for each of the 
two groups. The results of the test are shown in Table 23.10. In the table, 
the “Contrast Variable: WEEK_1” represents linear trend, and the “Con
trast Variable: WEEK_2” quadratic trend. The test for “Mean” is referred 
to test if the means under the trend are equal to zero, which is equivalent 
to evaluation of the effect of time. It is showed that the “Mean” for both 
linear and quadratic contrasts are statistically significant (p =  0.0029 and
0.0192 respectively). The test for “Group” is really to test the interaction 
between group and time. It is showed that the linear contrast is significant 
(p =  0.0029) but quadratic contrast is not (p  =  0.1343). These testing 
results indicate that there is a significant difference in linear trend, but none 
in quadratic contrast between the two groups.

Table 23.11 shows the means in different time points for treatment group 
and control group. We can see that there is an ascending trend for the 
treatment group, but no such trend for the control group.
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Table 23.11 Means at different time points for two groups.

Group Before experiment 5 weeks 1 0  weeks

Treatment 0.8149 1.7696 1.9731
Control 0.6542 0.7495 0.6532

23.4.4 Multivariate analysis of variance

The multivariate analysis of variance can be used to handle the repeated 
measures data regardless of sphericity condition. The method deals with 
each time point as an independent variable, and deals with a set of measure
ments over time points for one subject as a vector. Four test statistics are 
used for multivariate hypothesis testing. They are Wilks’ Lambda, Pillai’s 
Trace, Hotelling-Lawley Trace, and Roy’s Greatest Root (see Chap. 14). 
Table 23.12 shows the results of multivariate analysis of variance for the 
data in Table 23.1, which are summarized based on the output of the SAS 
program.

For the effect of time, four test statistics are equivalent in F = 19.0622 
with degrees of freedom 2 and 11, with a P-value of 0.003. Consequently, 
in view of the small value of P, we conclude a significant change of blood 
cholesterol concentrations with time for both treatment and control groups. 
The very small P-value of 0.0010 for interaction between time and group 
leads to a conclusion that the time trend of blood cholesterol concentration in 
the treatment group is significantly different from that in the control group.

As showed above, the three different methods (summary measures, uni
variate analysis of variance, and multi-variate analysis of variance) are 
applied to the data in Table 23.1, and reach the same conclusion. In general, 
the approaches of summary measures and multi-variate analysis of vari
ance can be applied to any continuous repeated measurements. But when 
sphericity condition is satisfied (P-value for sphericity testing greater than
0.05), it is advisable to adopt univariate analysis of variance.

In fact, not all data can be dealt with univariate analysis of variance. For 
data in Example 23.2 (Table 23.2), the approximate/  2 statistic of sphericity 
testing is 27.0284 with degrees of freedom 5, leading to a P-value o f0.0001. 
The results show that the univariate analysis of variance is inferior to multi
variate analysis of variance for dealing with such a dataset.
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Table 23.12 Multivariate analysis of variance for data in Table 23.1.

Effect Statistic Value F
Num
D F

Den
D F P r  > F

Time Wilks’ Lambda 0.2239 19.0622 2 11 0.0003
Pillai’s Trace 0.7761 19.0622 2 11 0.0003
Hotelling-Lawley Trace 3.4658 19.0622 2 11 0.0003
Roy’s Greatest Root 3.4658 19.0622 2 11 0.0003

Time x Group Wilks’ Lambda 0.2862 13.7157 2 11 0 .0 0 1 0

Pillai’s Trace 0.7138 13.7157 2 11 0 .0 0 1 0

Hotelling-Lawley Trace 2.4938 13.7157 2 11 0 .0 0 1 0

Roy’s Greatest Root 2.4938 13.7157 2 11 0 .0 0 1 0

23.5 Computerized Experiments

Experiment 23.1 The t test for means as summary measures In pro
gram 23.1, lines 01-19 read the data into SAS dataset REP; among them 
line 03 is to compute the mean of repeated measurements for each subject 
and is named YBAR. Lines 05-18 are original data in Table 23.1. Lines 
20-22 invoke TTEST procedure to perform a r-test for variable YBAR. If 
more than two treatment groups are to be compared, the procedure GLM can 
be invoked to perform an analysis of variance, the procedure NPAR1WAY 
can also be used to perform a nonparametric test. The output from program
23.1 is listed in Table 23.6.

Program 23.1 Analysis of summary measures for data in Table 23.1.

Line Program Line Program

01 DATA REP; 13 2 0.994741 0.584441 0.461241
0 2 INPUT GROUP Y1-Y3; 14 2 0.598841 0.955541 0.598841
03 YBAR =  MEAN(OF Y1-Y3); 15 2 0.719741 1.354241 1.032441
04 CARDS; 16 2 0.157041 0.246141 0.613041
05 1 0.744741 2.013341 2.621341 17 2 0.861241 0.882941 0.757041
06 1 0.904141 2.054141 1.628441 18 2 0.872141 0.555041 0.540041
07 1 0.357641 1.137841 2.196741 19 ;
08 1 1.077741 1.948741 2.239241 2 0 PROC TTEST;
09 1 0.584441 1.668441 0.985041 21 CLASS GROUP;
10 1 0.985041 1.926241 2.915641 2 2 VAR YBAR;
11 1 1.050841 1.638641 1.225541 23 PROC PRINT;RUN;
12 2 0.375741 0.667841 0.569941
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Program 23.2 General linear model for data of repeated 
measurements.

Line Program

01 PROC GLM DATA =  REP;
02 CLASS GROUP;
03 MODEL Y1 -Y3 =  GROUP/NOUNI;
04 REPEATED WEEK 3 (0 5 10 ) POLYNOMIAL
05 /SUMMARY PR1NTE PRINTM;
06 LSMEANS GROUP/PDIFF;
07 RUN;

Experoment 23.2 General linear models for repeated measurements
Program 23.2 carries out the sphericity testing, univariate analyses of 
variance and multi-variate analyses of variance, which are introduced in 
Sec. 23.4 for the data in Table 23.1. Line 01 invokes the procedure GLM 
and specifies SAS dataset REP, which is created by program 23.1. Line 02 
specifies GROUP as a categorical variable. Line 03 defines the model. Fol
lowing MODEL statement, the response variables Y1-Y3, are put on the 
left of the equal sign, and independent variable GROUP (and other inde
pendent variables, if any) on the right of the equal sign. Option NOUNI 
suppresses the individual variance analysis of Y l, Y2 and Y3. In lines 04 
and 05, the REPEATED statement handles the repeated measures design; 
WEEK is the name of a factor associated with the dependent variables; 3 is 
the number of levels of WEEK factor; the numbers in the parentheses are the 
values corresponding to the levels of WEEK factor. The option POLYNO
MIAL defines the transformation. The default in SAS is the transformation 
CONTRAST; one can optionally specify an ordinal value of reference level 
in the parentheses for contrast following CONTRAST. The option SUM
MARY prints the results of analysis of variance for transformed variables 
showed in Table 23.10, PRINTE asks sphericity test for transformed con
trast, PRINTM asks to print the transformation matrix that defines the con
trasts in the analysis, which is helpful in understanding the contrast. Line 06 
asks to print the group means by time points (showed in Table 23.11). The 
sphericity test prints out two results, the former is for the original data, and 
the latter is for the orthogonal transformed components labeled “Applied to 
Orthogonal Components”.
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Table 23.13 Symptom scores recorded on 20 patients at different time points.

Patient Group
Before

treatment

Days after treatment

1 0  days 60 days 1 2 0  days 180 days 270 days

1 1 0.60 0.67 2.84 2 .1 0 2 .0 0 1.60
2 1 1.42 3.40 4.10 2.92 2.65 3.40
3 1 0.90 2.30 2.70 1.70 1 .1 0 1.30
4 1 1 .1 0 1.40 1 .0 0 2.60 0.90 2 .1 0

5 1 2.30 2 .2 0 3.80 3.50 2.50 1.80
6 1 0.81 1 .2 0 1 .1 2 1.61 1.49 1.61
7 2 1 .2 0 1 .1 0 1.13 3.49 1.57 1.54
8 2 2.71 2.04 2.61 2.17 2.15 1.81
9 2 1 .0 2 1.43 1.61 1.70 2.82 1.55
10 2 1.71 1.71 1.21 0.90 0.61 1 .6 6

11 2 1.16 0.78 0.51 0.85 0 .8 8 0.49
12 2 0.85 1.25 1 .6 6 2.13 1.04 0.62
13 2 0.60 2.50 2 .2 0 1 .2 0 1.11 1 .0 0

14 2 0.90 0.80 0.70 1 .0 0 0.80 0.60
15 2 3.40 3.30 3.40 3.40 2 .1 0 1.50
16 2 1 .1 0 1 .2 0 1.50 2.40 1.50 3.20
17 2 4.60 1 .2 0 3.20 2.30 2.30 1.50
18 2 1.60 0.90 1.80 2 .1 0 1.30 1 .1 0

19 2 0.40 0.96 1 .01 0.71 0.59 0.60
2 0 2 1.80 1.40 1 .0 0 1.30 2.40 2.40

From: Data adapted from Crower, MJ and Hand, DJ. Analysis of repeated measures. 
(Chapman and Hall, 1990).

23.6 Practice and Experiments

1. In the analysis of repeated measurements by univariate ANOVA, what 
is the precondition when univariate hypothesis test is applied?

2. 20 patients were randomly assigned to one of the two treatment groups 
with six patients in group 1 and 14 patients in group 2. The patients in 
the same group received the same drug. Symptom scores were taken for 
each patient at the time points of before treatment and 10, 30, 120, 180, 
270 days after treatment. The data are showed in Table 23.13.

(1) Draw a curvilinear graph with different types of lines represent
ing the two groups. Time is used as horizontal axis and symptom 
scores as vertical axis. Observe whether there might be a statistically
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significant difference between the two groups, and whether a linear 
trend with time exists in the two groups.

(2) By using the mean as a summary measure, test if the two groups are 
significantly different in their means.

(3) Analyze the data by univariate analysis of variance.

3. An experiment was conducted to study the effects of two nutritional ele
ments on body weight. 16 mice were randomly divided into two groups. 
Mice in group A were fed with nutritional ingredient A, and those in 
group В with nutritional ingredient B. Their body weights (grams) were 
scaled at 0,14, 28, 42, 49 and 63 days after the experiment had begun. 
The data are showed in Table 23.14. Compare the effects of the two 
ingredients for weight increments.

4. Try to analyze data in Table 23.2 with single variate and multivariate 
ANOVA models. Find the difference between the results from the two 
methods. Decide which of the results should be adopted.

Table 23.14 Body weights (grams) at different days for 16 mice in two groups.

Group Mouse No. 0  day 14 days 28 days 42 days 49 days 63 days

A 1 240 255 262 266 265 278
A 2 225 230 240 243 238 245
A 3 245 250 262 267 264 269
A 4 260 255 265 270 274 275
A 5 255 255 270 274 276 280
A 6 260 270 275 278 284 281
A 7 275 260 273 276 282 284
A 8 245 260 270 265 273 278
В 9 410 425 438 442 456 478
В 10 405 430 448 258 475 496
В 11 445 450 455 451 462 472
В 12 555 565 590 595 612 628
В 13 470 475 487 493 507 525
В 14 535 530 535 525 543 559
В 15 520 530 543 538 553 548
В 16 510 520 530 535 550 569

(1st edn. Songlin Yu; 2nd edn. Songlin Yu, Jiqian Fang)



Chapter 24

Design and Analysis of Cross-Sectional Studies

A cross-sectional study, also called a prevalence study or survey, adopts 
momentary observational methods to obtain information about the preva
lence of disease infection and the exposure level of relevant factors in an 
effort to describe the relationship between a disease and important factors.

The goals of this type of studies are:

(1) To find out how widely an existing disease prevails in different geo
graphical areas, among different populations, and at different times, 
and what factors it is associated with, in order to determine who are 
at risk of contracting the disease. This provides evidence for further 
etiological studies.

(2) To detect patients for early treatment and to prevent the disease from 
progressing.

24.1 Design of the Study

If both disease (D ) and exposure (E) are dichotomous variables, a cross- 
sectional design model can be shown as the chart below:

-----  ED  (exposed, d isease)

W->W,-»
-----  E D  (unexposed, d isease)

-----  E D  (exposed, non-disease)

-----  E D  (unexposed, non-disease)

where N  denotes the population, Ne number of qualified individuals used 
in the study, E exposed to study factor, Ё unexposed to study factor, D with 
interested disease, and D without interested disease.

633
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A cross-sectional study usually consists of the following components:

(1) Purpose of the study. One should point out clearly the reason of con
ducting the study. The purpose is usually to explore the relationship 
between a disease and certain risk factors. For example, a study might 
be carried out “to discover the relationship between coronary heart dis
ease and cholesterol level in blood serum”.

(2) Subjects and sample size of a study. The subject refers to the target 
population being studied. Subjects are usually selected according to 
the goal and approach of the research. For example, in a study which 
tries to find out the relationship between coronary heart disease and 
the cholesterol level in blood serum, two different approaches may be 
adopted. One approach is to compare the cholesterol levels in patients 
with coronary heart disease with those in healthy people; another is to 
study the different incidences of the disease in people with different 
cholesterol levels.

The sample size estimation is discussed in Sec. 24.3. The standard 
diagnostic criteria of disease should be adopted before the study in order 
to avoid diagnostic error.

(3) Variables to be observed. In practice, quantitative variables should be 
used as far as possible, because they are more accurate than qualitative 
ones.

If the variables are physiological or biochemical factors, they should be 
examined in the same way; if they are psychological or behavioral ones, 
standardized questionnaires or scales should be used. Diagnosis of disease 
should be based on well-defined criteria.

There are two main types of variables: disease-related variables and 
exposure or factors-related variables. In addition to these, other variables 
should also be set up to account for the confounding.

24.2 Sampling Methods and Estimation of Population 
Parameters

We will introduce some commonly used sampling methods. They are sim
ply random sampling, systematic sampling, stratified sampling and cluster 
sampling. A population with finite number of individuals is called finite
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population; in contrast, a population with infinite number of individuals 
is called infinite population. Formula of parameter estimation varies with 
sampling method. Under the same sampling frame the formula of parame
ter estimation differs for finite population from infinite population. A finite 
population, from which the sample size is much smaller than the total 
number of the population, is approximately treated as infinite population 
sometimes.

24.2.1 Simple random sampling

24.2.1.1 Sampling method

For example, if we want to obtain a random sample of 300 students from 
all the 3000 elementary school students in an area in order to study their 
prevalence of roundworm infection, we may assign a set of ID numbers to 
all the 3000 students; write each number on a piece of paper, and mix them 
in a box; then 300 numbers are drawn randomly such that those 300 students 
corresponding to these numbers form a random sample of our study.

We can also use a computer or calculator to generate random numbers. 
In the above example, we may instruct the computer to generate more than 
300 4-digit numbers randomly such as 1716, 1818, 7650, 8619, Some of 
these numbers will be less than 3000, while others are larger than 3000. 
Those ranging from 1 to 3000 are kept unchanged; those above 3000 are 
changed into numbers that are less than or equal to 3000. This is done by 
subtracting 3000 from numbers ranging from 3000 to 6000, or subtracting 
6000 from those ranging from 6000 to 9000. Those above 9000 are invalid 
numbers and discarded. We keep doing this until 300 different numbers are 
obtained such that the students corresponding to those numbers form our 
sample.

In simple random sampling, it is required for all the members of an 
interested population to be numbered, which makes this method less feasible 
if the number of individuals is huge.

24.2.1.2 Calculation o f sample means and proportions

With simple random sampling, the calculation of sample mean and propor
tion is simple. See the first 10 chapters of this book.
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24.2.1.3 Calculation o f standard errors

As we mentioned before, the standard error of sample mean and proportion 
for a finite population would be calculated differently from that for an infinite 
population.

If n denotes the sample size, N the total number of individuals in a finite 
population, S standard deviation, p  sample proportion, and q — 1 — /?, then 
for an infinite population the standard error of sample mean is

S x  =  4  (24.1)s/n

and the standard error of sample proportion is

(24.2)

For a finite population the standard error of sample mean is

and the standard error of sample proportion is

S P = x

(24.3)

(24.4)

In the above example, we are taking a sample of 300 students from a 
population of 3000 students, which is a finite population. Therefore, we 
should use formula (24.4) to calculate the standard error of the sample 
proportion. If the infection proportion is 0.1, the standard error of the sample 
proportion would be

SP =
0 . 1(1 - 0 . 1) 

3 0 0 -  1
0.01046 or 1.05%.

All the populations we discussed in chaps. 1-10 of this book are infinite 
populations, and the readers should already be familiar with formulas (24.1) 
and (24.2). Notice that they can also be considered as the limits of formulas 
(24.3) and (24.4) when N  -» oo.
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24.2.1.4 Population parameters and confidence intervals

Population parameters are statistical indicators for a specified population. 
We use p to represent the mean of a population, and n to represent the 
probability of a population. We can use sample mean or proportion and 
their standard error to estimate the confidence interval of population mean 
or proportion. For the confidence interval of the mean of normal distribution, 
refer to Sec. 3.3 of chap. 3.

For the population probability л: of a binomial distribution, if it is neither 
close to 0% nor close to 100.0%, and the sample size is sufficiently large, 
the confidence intervals can be estimated by a normal distribution approxi
mately introduced in Chap. 3. When the population probability л  is close to 
either 0 or 100.0%, or the sample size is less than 50, the confidence interval 
can be calculated directly by means of the theory of binomial distribution, 
which we have discussed in Sec. 2.3 of Chap. 2. Since this calculation can 
be quite complicated, one can refer to Table 3 of Appendix II.

24.2.2 Systematic sampling (mechanical sampling)

24.2.2.1 Sampling method

With this method, observational units are selected mechanically with a fixed 
interval according to certain order.

For example, to find the patients’ degree of satisfaction with an outpatient 
department, we plan to take one tenth of the patients seeing the doctors as 
our sample. The systematic sampling is used to select one for every 10 
outpatients for the survey. Before carrying out the research we randomly 
select a digit from 0 to 9 (e.g. 6) as a starting number. Then the 6th, 16th, 
26th, 36th, etc. Are selected in sequence as the subjects of the sample.

It is easy to conduct Systematic sample. In general, there is less sampling 
error in systematic sampling than in simple random sampling.

24.2.2.2 Calculation o f standard error

The sampling error of systematic sampling varies with the characteristics 
of the population and the length of the sampling interval, and the formula is 
rather complicated. Since the error is usually smaller than that in a simple 
random sampling, the formula for simple random sampling is often used
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as a substitute. Of course, as a result, the estimated standard error is larger 
than the naive one.

24.2.2.3 Estimation o f confidence intervals o f population parameters 

The estimation methods are the same as those in simple random sampling.

24.2.3 Stratified sampling

24.2.3.1 Sampling method

When the stratified sampling method is used, the population should firstly 
be divided into several parts or blocks, called strata, according to certain 
characteristics that may have influence on the population parameters; then 
a simple random sampling is carried out within each stratum. In the same 
example of roundworm infection, a number of students could be randomly 
taken out from each of the grades. There are two ways to do this. One way, 
called proportionate stratified random sampling, is that the same proportion 
of subjects are taken from every stratum, e.g. 15% of students are taken 
from each grade; the another, called optimal assignment stratified random 
sampling, is that the sample size in each stratum is determined by the formula 
(24.34) or (24.36) in the following section, which will result in a smallest 
sample standard error.

When a population is divided into strata, they should be exhaustive 
and mutually exclusive; the differences among different strata should be 
as large as possible, and the differences among the individuals within each 
stratum should be as small as possible. If the proportionate stratified random 
sampling is chosen, the total number of individuals in each stratum should 
be known; if the optimal stratified random sampling is chosen, the standard 
deviations within each stratum should also be known.

24.2.3.2 Calculation o f sample mean and sample proportion

Suppose there are к strata, the sample mean and the total number of indi
viduals of the ith stratum are X t and /V, respectively, i =  1,2 
N\ + N2 + . . .  Nk = N. Then the formula to calculate sample mean is

(24 .5 )
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and the formula to calculate sample proportion p is

?  =  E (24.6)

24.2.3.3 Calculation o f standard errors

(1) For stratified random sampling For an infinite population, the standard 
error of sample mean is

S a (24.7)

where n, and Sf, i =  1, 2 , . . .  , k  are the sample size and sample variance 
in the /th stratum; the standard error of sample proportion is

(24.8)

where p, and q, =  1 — p, , i — 1, 2 , . . .  , k  are the sample proportions in the 
/th stratum.

For a finite population, the standard error of sample mean is

=

N

the standard error of sample proportion is

(24.9)

NE(£) 2 ( ^ ) ( - i )  <24'io)
(2) For proportionate sampling of an infinite population, the standard error 
of sample mean is

S i  — E £2
M ;=i

N i_

Nn
(24.11)
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where n is the total sample size, n — n \ +  и2 +  • ■ ■ +  « ь  the standard error 
of sample proportion from is

S P =

N
IZ pM
i =  1 Nn

(24.12)

For a finite population, the standard error of sample mean is

S-x =

the standard error of sample proportion is

Sp =

(24.13)

(24.14)

24.2.3.4 Estimation o f population parameters and confidence 
intervals

The same methods are used as those for simple random sampling.

24.2.4 Cluster sampling

24.2.4.1 Sampling methods

к clusters or groups are randomly selected from a population with К clusters 
or groups, and all the individuals or units in the selected clusters are taken 
as our sample. For instance, in a study on the prevalence of myopia among 
middle school students in an area, к — 2 schools are randomly selected from 
К =  4 schools, and all the students in the selected schools are surveyed. 
This is a cluster sampling. If two classes are further selected from each of 
the two schools, and all students in those two classes are surveyed, then this 
is a two-stage cluster sampling. Since it is relatively easy to perform, cluster 
sampling is widely adopted in large scale surveys. However, sampling errors 
can be quite large due to the large differences that might exist among the 
clusters.
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24.2.4.2 Calculation of sample mean and proportion 

The formula of sample mean is

(24.15)

where Y  X is the summation of all observations in the sampled clusters. 
mi is the number of individuals in cluster i and Y  m, is the summation of 
all individuals in the sampled clusters.

The formula of sample proportion is

where Y  ai is the summation of all positive individuals in sampled clusters. 

24.2.4.3 Calculation of standard errors

Suppose x, is the sample mean of cluster i, p, is positive proportion of 
cluster i, and m =  Y mi/к-

(1) If the numbers of individuals in each sampled cluster are the same 
For an infinite population, the standard error of sample mean is

(24.16)

(24.17)

and the standard error of sample proportion is

(24.18)

For a finite population, the standard error of sample mean is

(24.19)

and the standard error of sample proportion is

(24.20)
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(2) If the numbers of individuals in each sampled cluster are not the same 
For an infinite population, the standard error of sample mean is

S; = (-F - * ) 2 
m2k (к — 1)

and the standard error of sample proportion is

SP
Y ,m j ( P i  -  P )2

m2k (к — 1)

(24.21)

(24.22)

For a finite population, the standard error of sample mean is

Si =
x)2l'E mI (■*/

m2k {к — 1)
к

1 ------
К

and the standard error of sample proportion is

(24.23)

' X > f  (Pi -  p )2
m2k (к — 1)

(24.24)

Multi-stage cluster random sampling is widely used in cross-sectional stud
ies, and sometimes it is followed by a stratified sampling. For example, to 
study the prevalence of hypertension among the residents in a large area, 
several countries in the area are selected; then several towns or villages 
within each country are selected; finally several communities or neighbor
hoods are selected; and all the residents living in those selected communities 
or neighborhoods become our subjects.

24.3 Estimation of Sample Size

In a cross-sectional study, it is often necessary to make sure that the esti
mation of a parameter is within a tolerance error and to know the effective 
minimum sample size. As stated in the previous text, three quantities must 
be predetermined in order to estimate the sample size.

First, the maximal tolerable error d, that is, the allowable maximal 
difference between sample statistics and population parameter should be
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predetermined. It will usually be half of the width of the desired confidence 
interval.

Second, the standard deviation cr or probability n of the population in 
question should be predetermined, which can be obtained from existing 
knowledge or by doing pilot studies.

Third, the confidence level 1 — a should be predetermined, which is 
usually taken as a =  0.05. In principle, the smaller the a is, the larger the 
sample size will be.

A desired sample size can be obtained either by looking up specific 
tables or by using certain formulas. Although tables are convenient to use, 
they have certain limitations. Formulas, which are very widely used, may 
vary according to what sampling method you are using. Generally speak
ing, cluster sampling results in the largest standard error, simple random 
sampling follows, then comes systematic sampling, and stratified sampling 
produces the smallest standard error. Thus, the sample size needed for sim
ple random sampling will be less than that needed for cluster sampling 
and more than that needed for systematic and stratified sampling. There is 
no single formula for the sample size of systematic sampling as different 
sampling intervals result in different standard errors.

In this section, we will discuss how to estimate the sample size for cluster 
sampling, simple random sampling, and stratified sampling.

24.3.1 Sam ple size in clu ster sam pling

24.3.1.1 Sample size needed for estimating population proportion

In formula (24.25) below, k0 is the number of clusters selected from an 
infinite population, ky is the observed number of clusters in pilot study, m, 
and pi are the observed number of individuals and the proportion of positive 
events respectively in cluster i, which is obtained from a pilot study; 8  is 
the tolerance error; Za is the two-tail critical value of standard normal 
distribution and it is commonly taken as a =  0.05.

For an infinite population, the sample size needed for estimating popu
lation proportion is

(24.25)
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For a finite population, the sample size needed for estimating population 
proportion is

In formula (24.26), k\ is the number of clusters which should be selected 
from the population, k0 is calculated by formula (24.25), and К is the total 
number in population.

24.3.1.2 Sample size needed for estimating population mean 

For an infinite population, the sample size is

In (24.27) and (24.28), meanings of k0, k\, K, ky, a, a, Za, m,-, fh are the 
same as in formulas (24.25) and (24.26). x-, is the sample mean in cluster i 
which is obtained from a pilot study, jc is the mean of ky clusters, X is to 
take a summation over all clusters.

Example 24.1 Cluster sampling is going to be used in a study to inves
tigate the prevalence of hypertension among people aged 40 and above in 
a city that has 55 communities. A pilot study has been done in two ran
domly selected communities, that 1060 cases among 4180 individuals are 
observed in the first community and 720 cases among 4970 individuals are 
observed in the second community; the hypertension proportion is 0.2536 
and 0.1449 respectively. How many clusters should be taken as the sample 
to meet the need of the study (a =  0.05, 8  =  0.1)?

Solution For this example, two-tail critical value of standard normal dis
tribution is Z0.05 =  1.96, the tolerance error is 8  =  0.1, m =  (4180 +  
4970)/2  =  4575, p =  (1060 +  720)/(4180 +  4970) =  0.1945, ky =  2,

(24.26)

(24.27)

For a finite population, the sample size is

(24.28)
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and К =  55. By using Eq. (24.25) we have

k0 =  (\.96)2
(4180)2(0.2536 -  0.1945)2 +  (4970)2(0.1449 -  0.1945)2 

( 2 -  1) (4575)2 (0.1)2
=  2.19 % 3.

As a result, three communities would be needed if the city had infinite 
clusters. But in this example the city serves as a finite population with 
К — 55 clusters. Therefore, the formula (24.26) must be used to adjust ко. 
The adjusted number of sampled clusters is

Ik, =  3 2.84 «  3.

That is, three communities are needed for the study.

24.3.2 Sam ple size  in sim ple random  sam pling

24.3.2.1 Sample size needed for infinite population

As we have already known, if the probability is within a range of 0.2-0.8 , 
the sample size needed to estimate the population probability is

n о
7 2 A) ( 1 -  Po) 

(p -  Po) 2 ’
(24.29)

where p is the sample proportion, p0 is the population probability, p — po 
is the tolerance error, and Za is the two-tail critical value of the standard 
normal distribution.

If the probability is smaller than 0.2 or greater than 0.8, a square root 
transformation is needed for data of proportion (in decimal fraction), where 
angles are expressed as radians. The sample size is calculated by

n о
Z

4 (sin 1 yfp — sin
(24.30)

When the population mean is estimated, the sample size is calculated by 
the following formula:

n о (24.31)
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24.3.2.2 Sample size needed for finite population

Sample size needed for a finite population is given by

m = « o ( l - ^ ) ,  (24.32)

where nQ is calculated from formula (24.29), (24.30) or (24.31), N is the 
number of units or individuals of the finite population.

Example 24.2 A survey is planned to find the prevalence rate of myopia 
among sixth grade students of elementary schools. The observed rate was 
8.0% from a pilot study done in 1992. The expected rate is about 10.0%. 
How many students are required given a =0.05?

Solution p =  0.08, po =  0 .1, a =  0.05, Z0.05 =  1.96, sin '-ч/ОЛ =
0.321751, sin~l V0.08 =  0.286757, using formula (24.30) we have

(1.96)2
n о

4 (sin" 1 VoTT -  sin-1 >/0Г08)“
784.

That is, a sample of 784 students is needed.

Example 24.3 We want to investigate the mean level of hemoglobin of 
healthy adults in an area, with an error of not more than 0.2(g/l). The standard 
deviation is about 1.5(g/l) according to literature. How many subjects are 
needed with a =  0.05?

Solution Given two-tail critical value Zo.os =  T96, d =  0.2, a =  1.5, 
using Eq. (24.31) we have the sample size required given by

2 (1.5)2
" 0 =  {1-9 6 ) ^ = 216Л " Ш .

That is, a random sample with 217 healthy adults is needed for the study.

24.3.3 Sam ple size in stra tified  sam pling

24.3.3.1 Sample size needed to estimate population probability 

This is given by

_  ( E  Vfiyfpiq7)2
П ~  I/ I V  WiPiq; » (24.33)
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where W, — Nj/N\ Ni, p, and q, are the number of individuals, the propor
tion of positive events, and the proportion of negative events with q, =  I — pt 
for stratum i respectively; N is the total number of population; V is the esti
mated variance of the proportion, it is common to take V =  (d/Za)2\ 5 
is the tolerance error; Za is the two-tail critical value of standard normal 
distribution.

The estimated sample size n is then allocated into strata. The sample 
size tij of stratum i is estimated by

nNjJpiqi
Y.NiyfPiTi

(24.34)

Here the meanings of all notations are the same as above. Example is 
omitted.

24.3.3.2 Sample size needed to estimate population mean 

This is given by formula

E W f s f / W j  

V  +  E  Wjsf/N ’
(24.35)

where VT, =  N JN , wi — NiSif E  MS), Nt is the number of units in 
stratum i, Sf is the sample variance of stratum i, N is the total number of 
units in the population, V is the required variance taken as V — {d/Za ) 2 

in common, <5 is tolerance error, Za is two-tail critical value of standard 
normal distribution.

The estimated sample size n is then allocated into the selected strata. 
The sample size и,- needed in stratum i is given by

nNiSi t'lA ^И/ =  = n  x 10,. (24.36)E N i S j

Example 24.4 A research is designed to evaluate the current mean weights 
of boys aged 2 to 4 years in a city by stratified sampling. Table 24.1 shows 
the mean weights and standard deviations of boys aged 2 to 4 years in this 
city measured in 1990. How many boys are needed for the study given 
a =  0.05 and 5 =  0.2 kg? How many boys are needed for each age group?
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Table 24.1 Sample size for the study on body weight (kg) of boys (stratified sampling).

Age
i

Number
N; Wi

Mean
X i

SD
Si

NiSi 
(2) x (5)

Wi

(6 )/E  (6) W f s f / W i W i S f
Щ

n  x (7)

(и (2 ) (3) (4) (5) (6 ) (7) (8 ) (9) ( 1 0 )
2 - 3773 0.2791 11.51 1.48 5584.04 0.2542 0.6712 0.6113 64
3 - 5324 0.3938 13.93 1.89 10062.36 0.4580 1.2095 1.4067 115
4 - 4422 0.3271 15.60 1.43 6323.46 0.2878 0.7602 0.6689 72

Total 13519 1 .0 0 0 0 21969.86 1 .0 0 0 0 2.6409 2.6869 251

Solution In this example Z0.05 =  1.96, 8  =  0.2, V =  (0.2/1.96)2 =
0.0104. Using formula (24.35), the total sample size n is given by

E W f s f / W i  

V + E  Wisf/N

2.6409

0.0104 +
2.6860
13519

=  249.26 =  250.

That is, a total of 250 boys are needed.

The number of boys needed in each age group n, can be found in column 
10 of Table 24.1, which is computed with formula (24.36). The sum of them 
is 251, slightly different from 250 due to rounding up.

24.4 The Current Life Table

There are two major types of life tables: the cohort life table and the current 
life table.

A cohort life table records the actual mortality experience of a particular 
group of individuals from the birth of the first member to the death of the 
last member of the group. It is useful in the analysis of prospective studies 
and clinical follow-up trials.

A current life table is formed on the basis of age-specific death rates 
prevailing in a particular population in certain period of time (say, certain 
year) obtained from a cross-sectional study. It is widely used in calculating 
life expectancies. As life expectancies based on the current life table are not 
affected by the age structure of a population, and the life expectancies of 
different populations can easily be compared. Let us suppose that a hypo
thetical generation of individuals were bom at the same time and died later
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on following the current age-specific death rate until the whole generation 
disappears. We can use the method of current life table to compute several 
life indices such as age-specific probability of death, the number of peo
ple dying, the number of people surviving longer than a certain age, and 
life expectancy, etc. These indices reflect the life process of a hypothetical 
generation of individuals with a series of given age-specific death rates.

A current life table may be a complete one or abridged one. In a com
plete life table the functions are computed for each year of life; whereas 
an abridged life table deals with age intervals greater than one year except 
for the first year of life. A typical set of intervals is 0 to less than 1 year of 
infant period, 1 to less than 5 years and every 5 years there after, i.e., 5 to 
less than 10 years, 10 to less than 15 years, and so on.

In the current life table x represents the starting age and n represents 
age span.

24.4.1 Construction and formulas of abridged current life table

Table 24.3 shows the format of abridged current life table. The columns are 
explained below:

24.4.1.1 Age-specific death rate (column 4)

It is the average death rate of the individuals in an age interval of one year. 
We can calculate it with the following equation

where Dx is the number of deaths and Px is the average population for the 
age interval (x , x +  n).

In theory, Px should be the mid-year population, which is difficult 
to obtain. Therefore, an averaged population, (population at beginning +  
population at end)/2, is usually used instead. Because the death rate of the 
age group 0-1  varies greatly, the corresponding cell of the column is often 
left blank.

24.4.1.2 Age-specific probability of death qx (column 5)

It is the conditional probability of a person alive at age x dying in the 
subsequent n years. Survival probability of a person, who is alive at age x,
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still survives during the next n years, is

P x  =  1 -  4x  • (24.38)

There is a functional relationship between the age-specific probability of 
death and the age-specific death rate. When the age interval is small, the 
functional relationship can be expressed as:

2 nmx 
2 +  nmx

(24.39)

As an exception, for the age group 0-1, we can use the death rate of infants 
as an estimate of the death probability.

24.4.1.3 Number of survivors, lx (column 6 ) and number 
of deaths, dx (column 1 )

Let us assume that there were Zo individuals born at the same time. Z0 is called 
the fife table population, which can be any number set by the question of 
interest. In column 6 , it is given that Z0 =  100, 000. lx denotes the number 
of individuals still alive at age x. dx is the number of individuals who died 
during the age interval (x, x +  n). The relationship among lx, dx and qx is

dx = l xqx, (24.40)
lx+n — lx — dx. (24.41)

24.4.1.4 Number of person-years lived in the interval (x, x +  n) 
Lx (column 8)

This number is contributed by the individuals alive exactly at x and is given 
by

L, =  " (24.42)

Number of alive person-years for infant group, L0, can be computed by

Lo — h +  aodo, (24.43)

where а(} is the average fraction of the year lived by infants who die during 
the first year of life. Value of a0 may be obtained from Table 24.2 provided
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Table 24 .2  D e a th  ra te s  o f  in fan ts  and  c o rre sp o n d in g  oq values.

In fa n t’s d ea th  ra te  (% ) < 20 2 0 - 4 0 - 6 0 -

ao 0 .09 0.15 0.23 0 .3 0

by World Health Organization (WHO) for infant death rate and homologous 
ao values. These are empirical constants.

Number of person-years lived by individuals aged 80 years and over is 
given by equation

Lso+ =  — . (24.44)
™80+

24.4.1.5 Total number of person-years lived beyond age x, Tx
(column 9)

This is the sum from x to the oldest age group,

Tx =  =  Lx +  Tx+n. (24.45)

24.4.1.6 Life expectancy at age x, ex (column 10)

It is the average years to be lived by a person at age л\ Since the total 
number of years of life remaining to the lx individuals is Tx, the estimate of 
life expectancy at age x is

ex =  j - -  (24.46)
‘'X

Example 24.5 In an area, the numbers of residents and deaths by age 
group for males are listed in columns 1 to 3 of Table 24.3. To work out an 
abridged current life table on the basis of the data.

Solution The results computed with the above equations are listed in 
columns 4 to 10 of the table.

mx (column 4) denotes the average death rate of age interval (x,x +n), 
which is computed by Eq. (24.37) with 6 decimal places. For example m\ 
is calculated as

m i B i
P\

841
207327

0.004056.



Table 24.3 Abridged life table for males living in a city, in 1990.

Age group
X -

(1 )

Average
population

Px
(2 )

Number 
of deaths 

D x
(3)

Death
rate
m x
(4)

Probability 
of death 

in
( x , x + n )

4x
(5)

Number of 
alive at x

lx
(6 )

Number 
of deaths 

in
( x ,  x  +  n)  

dx
(7)

Person- 
years 

lived in
( x , x + n )

L x
(8 )

Person- 
years 
lived 

beyond x
T x
(9)

Life
expectancy

ex
( 1 0 )

0- 52087 2531 — 0.048592 1 0 0 0 0 0 4859 96259 6772352 67.7235
1- 207327 841 0.004056 0.016095 95141 1531 377501 6676093 70.171(0)6
5 - 428534 523 0 .0 0 1 2 2 0 0.006084 93610 569 466624 6298593 67.2858
10- 502742 391 0.000778 0.003881 93040 361 464297 5831969 62.6824
15- 437832 423 0.000966 0.004819 92679 447 462278 5367671 57.9168
2 0 - 296355 392 0.001323 0.006592 92232 608 459642 4905393 53.1852
25- 413410 563 0.001362 0.006786 91624 622 456567 4445751 48.5215
30- 311755 502 0.001610 0.008019 91003 730 453188 3989184 43.8360
35- 249108 557 0.002236 0.011118 90273 1004 448855 3535996 39.1701
40- 230522 725 0.003145 0.015603 89269 1393 442864 3087141 34.5824
45- 207893 982 0.004724 0.023342 87876 2051 434254 2644277 30.0909
50- 185145 1457 0.007870 0.038588 85825 3312 420846 2210023 25.7500
55- 144344 1747 0.012103 0.058738 82513 4847 400450 1789177 21.6830
60- 115751 2375 0.020518 0.097585 77667 7579 369385 1388727 17.8800
65- 84700 2707 0.031960 0.147976 70088 10371 324509 1019342 14.5430
70- 55797 2748 0.049250 0.219254 59716 13093 265849 694832 11.6356
75- 33289 2418 0.072637 0.307369 46623 14330 197290 428984 9.2011
80- 20893 2912 0.139377 1.000000 32293 32293 231694 231694 7.1748
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The value 0.048592 for qQ (column 5) is the actual infant’s death probability 
by other investigation, rather than by calculation with the above equation. 
All other qx are computed by Eq. (24.39), such as

2(5)(0.001220) 
2 +  5(0.001220)

0.006084

lx (column 6) and dx (column 7), except do, are computed by Eq. (24.40) 
and (24.41) respectively. Suppose that a hypothetical 100,000 individuals 
were bom at the same time, do is computed by Eq. (24.40),

dQ =  l0qo =  100000 x 0.048592 =  4859.

According to Eq. (24.41), we have

/, = l 0 - d 0 =  100000 -  4859 =  95141, 
di =  hqi =  95141 x 0.016095 =  1531, 
ls =  l l - d l =  95141 -  1531 =  93610, 
d5 =  l5q5 =  93610 x 0.006084 =  570.

Others are computed in the similar way.

Lx (column 8) is computed by Eq. (24.42) -  (24.44). Infant death rate 
is 48.592%, and ao is 0.23 from Table 24.2. By using Eq. (24.43), we have

L0 =  h+aodo  =  95141 +0.23(4859) =  96259.

For all other age groups, Lx is computed by Eq. (24.42) as

L5 =  5 (/5 +  ho)/2 =  5(93610 +  93040)/2  =  466624.

Others are computed similarly.
L8o+, number of person-years lived at age 80 and over, is computed by 

Eq. (24.44) as
32293

0.139377
=  231694.

Tx (column 9) is computed by Eq. (24.45) upwards as

780 =  231694,
Г75 =  L75 +  T80 =  197290 +  231694 =  428984, 
Г70 =  L70 +  T15 =  265848 +  428984 =  694832.

Others are computed similarly.
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ex (column 10) is the expectation of life at age x, computed with 
Eq. (24.46) as

To
eo =  y  

‘0 
T\

" ' =  77

Others are computed similarly.

24.4.2 Analysis of life table

In a life table, the probability of death, the number of survivors, the number 
of deaths and the life expectancy are the main indices available for analyzing 
and evaluating life status of a population.

6772351
100000

6676093
95141

=  67.72, 

=  70.17.

24.4.2.1 Age-specific probability of death qx

A U-shaped curvilinear diagram is displayed by drawing the age-specific 
death probability qx of a life table on a semi-logarithmic scaled paper 
(Fig. 24.1). One can look at the height of the starting point of the curve, 
which reflects the magnitude of infant death rate; one can also look at the 
width of the bottom part of a curve and lowest point, of which the lowest

Fig. 24.1 Curve of age-specific death probability (male, 1981).



Design and Analysis of Cross-Sectional Studies 655

□ 2] 40 ОТ ED

A g e  ( y e a r s )

Fig. 24.2 Curve of life table survivals (male, 1981).

point usually occurs around the age group 10-  before rising gradually; start
ing from age group 50-, the curve usually goes up sharply, which indicates 
the fast increasing death rates. Finally, we should pay attention to the tail 
of the curve: the more steep the slope is, the more rapidly the probability 
of death rises.

24.4.2.2 Number of survivals lx

The number of survivals reflects the life process of a hypothetical generation 
of individuals experiencing current age-specific death rate. Usually a dia
gram is drawn and its height and curvature reflect the process of decreasing 
the number of survivals (Fig. 24.2). The lower the age-specific death rate 
is, the higher the curve is, and vice versa. The ratio between the numbers of 
two age groups, lx+n/lx, describes the health status in view of survivorship. 
The median survival age Md{x)  is used to describe the health status from 
another perspective, at which half of the population are expected to survive.

Md(x) is estimated by interpolation. For example, in Table 24.3, we 
find the age group where survivors account for half of the hypothetical 
population (50,000). Since the age group 70- has 59,716 survivors, and the 
age group 75- has 46,623 survivors, the Md(x)  is located in the interval of
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70 to less than 75 years of age. The Md(x) is calculated with interpolation 
method as

75 -  70 Md(x)  -  70
59716-46623 ~  59716-50000 '

We have

Md(x) =  70 +  — ■716) =  73.7103 (years).
13093 J

That is, based on the age specific death rates for males in 1981, half of 
the male newborns of a hypothetical generation would have survived till 
73.7103 years of age.

24.4.2.3 Number of deaths dx

As oppose to the number of survivors, the number of deaths describes the 
death process of a hypothetical generation of individuals experiencing the 
current age-specific rates of death. The data can be used to draw histogram. 
The heights of the bars reflect the amount of deaths in each age group 
(Fig. 24.3).

A g e  ( y e a r s )

Fig. 24.3 Curve of death number by life-table (male, 1981).
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A g e  ( y e a r s )

Fig. 24.4 Curve of life expectancy (male, 1981).

24.4.2.4 Life expectancy ex

Life expectancy, or expectation of life, summarizes the mortality experience 
of people surviving beyond age x in the population. c0, or the life expectancy 
of newborns, reflects the average length of life that the individuals in the 
hypothetical generation born at the same time would live, ê  is influenced 
by the mortality rates of all the age groups.

Life expectancy can be presented in a plot (Fig. 24.4). It is important 
to examine the starting point of the curve. If the age-specific death rate 
decreases, the starting point of the curve would be higher, and so does the 
curve as a whole. Since life expectancies are not affected by the age structure 
and can serve as a representative of the overall mortality rates of the whole 
population, those of different geographic areas, or different times can be 
compared side by side. ex (x ф 0) is the remaining years of life expected to 
be lived by a person at age x. It is a good reference in the field of insurance 
and social welfare.

24.5 Computerized Experiments

Experiment 24.1 Computation of abridged current life table The SAS
code showed in Program 24.1 is to compute abridged current life table for 
data in Example 24.4.
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Program 24.1 Computation of abridged current life table.

Line Program Line Program

01 OPTIONS LS =  100; 29
0 2 DATA LIFE; 30
03 INPUT GRPS N PX DX; 31
04 A0 =  0.23; 32
05 RETAIN I 0;
06 1 =  1+ 1 ; 33
07 CARDS; 34
08 0- 1 52087 2531 35
09 1-4 207327 841 36
10 5- 5 428534 523 37
11 10-5 502742 391
12 15-5 437832 423 38
13 20-5 296355 392
14 25-5 413410 563 39
15 30-5 311755 502 40
16 35-5 249108 557 41
17 40- 5 230522 725 42
18 45-5 207893 982 43
19 50-5 185145 1457 44
2 0 55-5 144344 1747 45
21 60-5 115751 2375 46
2 2 65- 5 84700 2707 47
23 70- 5 55797 2748 48
24 75-5 33289 2418 49
25 80-5 20893 2912 50
26 * 51
27 DATA LIFE 1; 52
28 SET LIFE; 53

FORMAT MX 8 .6  QX 8 .6 ;
MX =  DX/PX;
IF GRP =  ‘0-’ THEN QX =  DX/PX;
ELSE IF GRP NE ‘80-’
THEN QX =  2*N*MX/(2+N*MX);
ELSE QX =  1;
RETAIN LX 100000 DO;
LX =  LX-D;
D =  LX*QX;
IF GRP EQ ‘0-’
THEN L =  LX-( 1 -A0)*D;
IF GRP NE ‘80-’
THEN L =  N*LX-0.5*N*D;
ELSE L =  LX/MX;
OUTPUT;
PROC SORT;
BY DESCENDING I;
DATA LIFE2;
SET LIFE 1;
RETAIN TX 0;
TX =  TX+1;
EX =  TX/LX;
OUTPUT;
PROC SORT;
BY I;
PROC PRINT;
VAR GRP PX DX MX QX LX D L TX EX; 
RUN;

In the above program, line 01 sets the width of the output by specifying 
LS =  100 in order to print a complete table; lines 02 to 26 are to create a 
new SAS data set LIFE; line 03 specifies the variables: GRP$ represents 
the age groups, N  represents the intervals of age groups, PX  represents the 
averaged population by age group, and DX represents the actual numbers 
of deaths; line 04 gives a value of 0.23 for a®', line 05 sets the initial value 
of /  as 0 for each age group, and line 06 adds 1 to I when the age group 
goes up to the next one, in this case, /  increases by 1 each time the age 
increases; lines 27-40 are to create a new dataset LIFE1 from LIFE; line 29 
specifies the format of output for MX and QX as 8-digits numbers with
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six decimal places; line 30 computes the death rate of each age group; 
lines 31-33 compute the death probabilities; line 34 gives the initial values 
LX  =  100000 and D =  0; lines 35 and 36 are to compute the survivor 
numbers LX  (i.e., lx) and the death numbers D (i.e., dx)\ lines 37-39 are 
to compute the numbers of person-years lived (i.e., Lx)\ line 40 is to output 
the results to data set LIFE1; lines 41^12 are to sort data by /  in descending 
order; lines 43-44 are to create a data set LIFE2 from data set LIFE 1; line 45 
sets the initial value of total person-years lived beyond age x as Tx =  0; lines 
46^4-7 are to compute the total person-years lived beyond age jc, Tx and the 
life expectancy ex \ line 48 outputs the final results to data set LIFE2; lines 
49-50 are to resort I by ascending order; lines 51-53 print all the results of 
the life table. The results might be a slightly different from Table 24.3 due 
to rounding.

24.6 Practice and Experiments

1. Identify which sampling method is used in each of the following cases.

(1) A group of students are asked to draw lots, and two of them who get 
number 1 or 2 are selected.

(2) We randomly pick ten pages from a telephone book, and all the 
numbers listed on those pages are to be called during our telephone 
survey.

(3) 803 is a 3-digit number randomly generated by computer, and we 
pick those drivers whose driver license numbers end in 803.

(4) By rolling a dice, one soldier is picked out of six to carry out a task.

2. We want to study smoking habits of 2000 male workers in a factory. In 
a sample of 50 workers, 23 smokers have been found. Try to estimate 
the 95% confidence interval of the proportion of male workers who are 
smokers. If this is a pilot study, how many male workers would be needed 
if half length of the 95% confidence interval (5 is required not to be more 
than 3%?

3. Myopia rates among middle school students in three school districts of 
a country, which has a total of 50 school districts, are measured to be 
15%, 18% and 23%, and their total numbers of students are 180,250 and 
270 respectively. Try to estimate the 95% confidence interval of myopia 
prevalence in the country. If this is a pilot study, how many districts are
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Table 24.4 Numbers of individuals and deaths by age group for a male population
in 1993.

Age
group

Averaged
population

Number 
of deaths

Age
group

Averaged
population

Number 
of deaths

0 36813 517 45- 131043 534
1- 110489 143 50- 104152 738
5 - 130692 117 55- 79966 1088
10- 191877 139 60- 60040 1581
15- 236564 2 0 2 65- 45111 1956
2 0 - 225728 269 70- 23132 1814
25- 245295 269 75- 11004 1320
30- 195609 247 80- 3950 756
35- 132978 241 85- 1009 310
40- 119047 306

required given half length of the 95% confidence interval d less than or 
equal to 3%?

4. Table 24.4 lists the numbers of individuals and deaths by age group for 
a male population in 1993. Construct an abridged current life table and 
report the life expectancy ex.

5. From Table 24.3, the life expectancy was 67.72 years at the age zero for 
male in 1981. It is suggested that the life expectancy would increase 5 
years in the period of coming 5 years. Is it possible to reach the goal 
if all the death rates {mxs) would decline 5.0% in 5 years? What about 
10.0% or even 20.0% in 5 years? Make use of the SAS Program 24.1 to 
do this.

(1st edn. Songlin Yu; 2nd edn. Songlin Yu, Jiqian Fang)



Chapter 25

Design and Analysis of Prospective Studies

Prospective study is also called cohort study or follow-up study. In this 
type of study subjects exposed to different levels of possible etiological 
factors are followed over a period of time to observe who develop disease in 
question. The information is used to analyze the association between disease 
and exposure. Prospective approach involving looking forward from causes 
to effects is commonly adopted in clinical medicine, preventive medicine, 
and etiological studies. The main disadvantages of this kind of study are that 
large sample size and long period of observation are required. Therefore it 
needs more resources and expenditure, and it is difficult to follow up and 
prone to loss of subjects or censoring because of migration, secession from 
observation, and death from un-relevant disease, etc.

25.1 Study Design

For prospective study the exposure factor can be natural existence (e.g., 
smoking behavior or occupational exposure), or added by investigators 
(e.g., therapeutic drug in clinical trials or interfering measures in prevention 
medicine). As it is a kind of field study for which subjects are human beings, 
ethical issues should be taken note of in every step. The study should also 
follow statistical principles.

25.1.1 Study population

For source of subjects, the investigator should consider some special aspects 
like compliance, feasibility of communication, and completeness of medical
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records of subjects, etc. There are three sources of subjects
(1) General population Prospective study is carried out based on commu

nity. The Framingham Heart Study is a good example of this type of study. 
It was initiated in 1948 by the United States Public Health Service in order 
to study the relationship of a variety of factors to the subsequent occurrence 
of heart disease. The area of Framingham, Massachusetts, was chosen for 
its population stability, incorporating prior studies, availability of a com
munity hospital and proximity to a large medical center. The population in 
30-60 age group was approximately 10,000 and a final sample of 5000 and 
more persons free from atheroscherosis heart disease were selected. After 
the first examination, each person was re-examined at two-year intervals for 
a 20-year long period. It was found that blood pressure, serum cholesterol, 
and cigarette smoking etc. were related to heart disease.

(2) Special population Doll and Hill’s study on cigarette smoking and 
lung cancer is an example. In their study all physicians on the British Med
ical Register who were living in the United Kingdom were selected as 
subjects because they were much concerned with their own healthy sta
tus and maintained contact with several professional organizations. Infor
mation was available at the General Medical Council or British Medical 
Association.

(3) Hospitalized population Niswander and Gorden selected 5400 preg
nant women as subjects, who had received antenatal examination and 
induced abortion in 12 cooperative hospitals. They were followed up 
until they delivered newborn during 1959-1966. The goal of the study 
was to evaluate the relation of prenatal mortality rate, infant mortality 
rate and morbidity rate of newborn to antenatal examination and induced 
abortion.

25.1.2 Control population

In order to determine the effect of exposure factor on disease occurrence, a 
control population is required as baseline for comparison. There are three 
types of control population.

(1) A group of people with no or lowest exposure may be selected from 
the same study population as control population. This type of control is 
called internal reference.
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(2) Control individuals are selected from non-exposed population. They 
are comparable to exposed group with age, gender, and healthy status, etc.

(3) General population in the same area and the same time period as 
exposed subjects is selected as control. This type of control is called external 
reference.

In occupational epidemiology workers in duty are usually selected by 
passing through some special physical examination. Their health status may 
be better than, and their morbidity and mortality rates may be less than that 
of common population. Control group should be selected to be compara
ble to exposed group in order to avoid so-called “healthy worker effect” 
phenomenon.

25.2 Measures of Disease Occurrence

The frequency of a disease indicates the strength of a disease occurring in 
a population. There are two measures to describe frequency of a disease 
according to data resources: cumulative incidence probability and person
time incidence rate.

25.2.1 Cumulative incidence probability

25.2.1.1 Approximation of the Incidence probability

Let n denotes the size of total population followed up, and d denotes the 
number of new cases diagnosed during the study period. The incidence 
probability can be calculated approximately by

d
q =  ~. (25.1)n

This is a proportion of subjects, who develop the disease during the study 
period, to the population, who are disease-free at the beginning of the study. 
It reflects the possibility of disease occurrence for a person without disease 
previously. (25.1) can be used as an estimate of probability of disease occur
rence provided n is large enough. For example, 1000 workers were exposed 
to the dust in work environment; in the period of 20 years afterwards, 200 
new cases of silicosis were diagnosed. The incidence probability of silicosis
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in 20  years is about

q = ------=  0.20  =  20%.
H 1000

For its ease in calculating and clear in meaning, the incidence probability is 
often available for data with short research period. If the loss in the number 
of persons follow up during the period is c, then (25.1) may be adjusted to

When research period is long, subjects enroll and withdraw so frequently at 
different time that the length of time followed-up for different individuals 
varies substantially and the probabilities of incidence may not keep constant 
for the whole period of follow-up, which means that Eqs. (25.1) and (25.2) 
cannot be used efficiently.

It is wise to divide the research period into several consecutive intervals 
(k , k+ l ) , k  =  0 , 1, 2 , . . . ,  m, in each of which the incidence probability can 
be estimated by (25.1) or (25.2); the cumulative incidence probability can 
be obtained by integrating the incidence probabilities calculated in those 
intervals. This is just the basic idea of the method of cohort life table, which 
is also called actuarial method.

For the Ath interval, let n* be the number of subjects at the beginning of 
the interval, d* be the number of patients occurring in the interval, cy be the 
number of subjects lost to follow up in the interval and be the incidence 
probability in the interval, which can be calculated by

The probability of disease-free in the interval (к, к +  1) is 1 — q The 
cumulative probability of disease-free for a person over the m intervals is

d (25.2)Я = c  *

25.2.1.2 The method of cohort life table for cumulative 
incidence probability

(25.3)

m— 1

k= 0
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Fig. 25.1 Diagrammatic illustration of five year follow-up of 12 subjects by calendar year.

Then the cumulative incidence probability from time 0 to time m is

m —  1

Q0,m =  i J~1 О Як)- (25.4)
k= 0

In fact, this is the estimate of probability for a person developing the 
disease over the whole study period.

Example 25.1 (Hypothetic) Consider a cohort study lasting for five years 
from the first day of 1985 to the end of 1989. 12 subjects are admitted into 
the cohort at the beginning of the corresponding year, and followed up until 
1990. The results are plotted in Fig. 25.1.

For subjects 5 and 10, observations are cutoff at the end of 1989 because 
the study terminates. The two subjects are treated as censored. Figure 25.1 
displays the original data by calendar year and Fig. 25.2 is resorted by 
observed years (end time-start time).

Solution Column 6 of Table 25.1 lists the incidence probabilities in the 
intervals calculated by Eq. (25.3). The rightmost column of the table lists 
cumulative incidence probabilities from к =  0 to к =  m by Eq. (25.4). The 
process from column 6 to column 7 is demonstrated in Table 25.1a. It is 
showed that cumulative incidence probability is a non-decreasing function. 
It goes up as observational time extends.
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Fig. 25.2 D ia g ram m a tic  illu s tra tio n  o f  five y e a r fo llo w -u p  o f  12 su b jec ts  by  o b se rv atio n  
years.

Table 25.1 C a lc u la tio n s  o f  in te rv a l an d  c u m u la tiv e  in c id en ces  o f  a  c o h o rt w ith  12 sub jects.

N u m b e r o f C u m u la tiv e
N u m b e r o f N u m b er o f sub jec ts A d ju sted In c id en ce in cid en ce

T im e cases  in c en so re d  in free  fro m nк p ro b ab ility p ro b a b ility
in terval in terval in te rval d isease  a t к 4  = in  in terval up to  к +  1

k ~ k  +  \ dk Ck >4 Як Я0,к+1
(1) (2) (3) (4) (5) (6) (7)

0 - 1 1 12 11.5 0 .087 0 .087
1 - 1 2 10 9 .0 0.111 0 .188
2 - 1 4 7 5 .0 0 .2 0 0 0.351
3 - 1 0 2 2 .0 0 .500 0 .675
4 - 0 1 1 0.5 0 .000 0 .675

25.2.2 Person-time incidence rate

In etiological studies of chronic diseases, follow-up period may sustain 
for a long time such as several years, ten more years, or even decades. 
Furthermore, as the subjects enroll and withdraw quite often, the length 
of time being followed-up may be different from one another. These may 
affect the estimate of probabilities in the intervals calculated by Eq. (25.3). 
Person-time incidence rate is another choice of measures. If we use year 
as measurement unit of time, and thus call it person-year incidence rate
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Table 25.1a The process from column 6  to column 7 in Table 25.1.

Time 
interval 
k - k  +  1 

0 )

Incidence 
probability in 

interval
4k
(6 )

Probability of 
non-incidence 

in interval 
Pk =  l ~  4k 

(6 )'

Cumulative 
non

incidence 
probability 
up to к  +  1 

P0 ,k +1 =  
Р0 Р 1 ■■ Pk 

(6 )"

Cumulative 
incidence 

probability 
up to A: -I- 1
40 ,Ш  

1 -  P0 ,k+ \ 
(7)

0 - 0.087 0.913 0.913 0.087
1- 0.111 0.889 0.812 0.188
2 - 0 .2 0 0 0.800 0.649 0.351
3- 0.500 0.500 0.325 0.675
4 - 0.000 1.000 0.325 0.675

instead. Person-year incidence rate /  is calculated by

f  =  j ,  (25.5)

where T is the amount of person-years observed, d is the number of disease 
occurrences.

If a subject has exposed for a year, he or she contributes 1 year to the 
denominator of (25.5). If a subject has exposed for ten years, he or she 
contributes ten years to the denominator. The rate is often multiplied by 103 
or even 105 to keep the significant digits. It is called the rate per 103 person- 
years or the rate per 105 person-years. For example, the total of person-years 
contributed by 12 subjects in Example 25.1 is

T =  2.5 +  3.5 -1-----+  1.5 -b 1.5 =  25 (person-years)

and the number of disease occurrences is d — 4. The incidence rate is 
/  =  4/25 =  0.16 cases/person-year, or 160 cases per 1000 person-years. 
The result shows that during the 5 years, 160 new cases of the disease would 
occur for every 1000 person-years on average.

One can see that the person-year incidence rate is not simply a measure
ment of probability in nature. In epidemiology as well as medical statistics, 
it is subject to the concept of intensity. In fact,
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Person-year incidence rate

_  P(new case occurring in(r, t +  Д) | disease-free at t)
A—>0 Д

^  P(new case occurring in(r, t +  A) | disease-free at t)
A

^  number of new cases occurring in(r, t +  A)
(number of persons disease-free at t) A

The last two approximations exist when A is small.
In a way similar to the calculation of incidence probability in a long 

period, the whole period can be divided into several consecutive short inter
vals; the person-year incidence rate can be calculated for each of these short 
intervals. Then the person-year incidence rate of each interval is translated 
into incidence probability under an assumption of exponential distribution 
(that is, assuming the Ath person-year incidence rate keeps constant in the 
Ath interval).

qk =  1 - e x p ( - /* A t ), (25.6)

where Ak is the time span of the Ath short interval.
This process is illustrated with Example 25.1 as follows:
Step 1: In Ath interval, the person-year incidence rate f i can be translated 

into the incidence probability qk by the Eq. (25.6).
In Table 25.2 all time spans of the short intervals are 1 year. The incidence 

probabilities translated from the person-year incidence rates are listed in 
Column 6 of Table 25.2.

Step 2: Person-year cumulative incidence rate is obtained by using 
Eq. (25.4) similar to those in Table 25.1a. The results are listed in the 
rightmost column of Table 25.2.

25.2.3 Age-specific person-time rate

Many diseases are closely associated with age. In a long period of follow
up study, subjects are getting older as time increases as shown in Fig. 25.3. 
Subject 1 entered into the cohort at the beginning of 1980 when he was 30 
years old and was ill in the middle of 1988 when he was 38.5 years old; he 
contributed 5 person-years to the age group 30-35 and 3.5 person-years to 
the age group 35-40; to the latter age group he became a new case. Subject 2
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Table 25.2 Calculation of incidences for data of Example 25.1.

Number Person-
of subjects Number Number year Cumulative
free from of cases of person- incidence Incidence incidence

Time disease at occurred years rate in probability probability
interval к in interval followed interval in interval up to к  +  1

k - k + l ик dk n h Чк <70,fc+l
( 1) (2 ) (3) (4) (5) (6 ) (7)

0 - 12 1 1 1 .0 0.091 0.087 0.087
1- 10 1 8.5 0.118 0 .1 1 1 0.188
2 - 7 1 4.0 0.250 0 .2 2 1 0.367
3- 2 1 1.5 0.667 0.487 0.675
4 - 1 0 0 0 .0 0 0 0 .0 0 0 0.675

Fig. 25.3 Ages of subjects are getting older as time increases.

entered into the cohort at the beginning of 1983 when he was 30 years old 
and ended the observation at the end of 1989 when he was 37 years old; 
he contributed 5 person-years to 30-35 age group and 2 person-years to 
the age group 35-40. But he was not a new case in either of the two age 
groups. Subject 3 entered into the cohort at the beginning of 1980 when 
he was 34 years old and ended the observation at the age of 44 years; he
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Table 25.3 Person-year incidence rates by age groups from Fig. 25.3.

Age group
Number 

of person-years
Number

of new cases
Rate per 

person-year

30- 1 1 .0 0 0

35- 12.5 1 0.08
40-45 8.5 1 0 .1 2

Total 32.0 2 0.06

Table 25.4 Person-years calculated by age-year group.

Age group

Calendar year 

1980-1985 1985-1990 Summation of person-years

30- 8 .0 3.0 1 1 .0

35- 7.0 5.5 12.5
40-45 3.0 5.5 8.5

contributed 1, 5, and 4 person-years to the age groups 30-35, 35-40 and 
40-45, respectively. Subject 4 entered into the cohort at the beginning of 
1980 at the age of 38 years; then he was ill in the middle of 1986 when he 
was 44.5 years old; he contributed 2 person-years to the age group 35^10 
and 4.5 person-years to the age group 40-45; and he was a new case to 
the latter age group. Table 25.3 lists the numbers of person-years and the 
person-year incidence rates by age groups, based on Fig. 25.3.

25.2.4 Two-dimensional person-year rate by age-period cross
classification

The person-year rate can be calculated by age-period two-dimensional clas
sification provided the number of subjects is large enough. For example, the 
numbers of person-years by age-year cross classification, from Fig. 25.3, are 
shown in Table 25.4. It is obvious that the summation by row is the number 
of person-years calculated by age group only, e.g., the numbers listed in the 
second column of Table 25.3. In the same way as Table 25.4, the number of 
developing disease in each cell can be calculated. Then the person-year inci
dence rate by age-year group can be calculated for every cell in a two-way 
table. In occupational epidemiology, as an example, work environment,
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strength and duration of exposure differ in different time, etc. such that the 
person-year incidence rate changes frequently. The two-way classification 
method here can be applied to find the pattern of disease occurrence.

25.3 Analysis of Data from Prospective Studies

Prospective studies are used to investigate the etiology or treatment effect of 
a disease. In order to analyze the association between disease and exposure 
factor, it is necessary to compare disease frequencies of different exposed 
groups. The indices used for comparative analysis are relative risk (RR), 
attributable risk (AR), population attributable risk (PAR), and dose-response 
relationship, etc. When there are confounders in addition to the exposure 
factor, both stratified analysis and multivariate analysis are often used to 
control the confounding effects.

25.3.1 Relative risk

Relative risk is a ratio of disease frequency for exposed group (q\ or f\)  
divided by disease frequency for control or reference group, which is used as 
baseline (r/() or / 0). R R =  1.0 means disease frequency for exposed group is 
the same as that for control group. RR— 1 means the increased (or decreased) 
fraction for exposed group than for control group. For example, RR =  2.5 
means disease frequency for exposed group is 2.5 times as many as that for 
control group, e.g., the frequency for the former is 2.5—1 =  1.5 times higher 
than that for control group; RR =  0.60 means the frequency for exposed 
group is 0.6 times as many as that for control group, and 0.6 — 1 =  —0.4 
means frequency for exposed group is 0.4 times lower than that for control 
group.

The estimate of relative risk in terms of incidence probability is

RR =  —, (25.7a)
qo

where q\ and q0 are the incidence probabilities in the exposed group and 
non-exposed group respectively.

The estimate of relative risk in terms of person-year incidence rate is

(25.7b)
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Table 25.5 Data layout of prospective study.

Factor

Follow-up results Exposed Non-exposed Total

Number of disease occurrences a b m \
Number of disease-free c d m o

Total « 1 « 0 n

where / j  and /о are the person-year incidence rates in exposed group and 
non-exposed group respectively.

In order to avoid the effect of sampling error on inference, it is necessary 
to work out a statistical test

tf0 : RR =  1.0, H\ : RR ф 1.0.

We will introduce two methods with examples for illustration. The choice 
of methods is based on statistical characteristics of the data.

25.3.1.1 Mcintel-Hcienszel x 2 test
A

It is applied to RR calculated with cumulative incidence probabilities as 
(25.7a). The layout of data is shown Table 25.5. The Mantel-Haenszel 
statistic / 2 is

2 (n — 1) (ad — be) 2 

n\n0m\m0
(25.8)

where the meaning of symbols are explained in Table 25.5. Obviously, / 2 in 
Eq. (25.8) is similar to the statistic o fx~ for the test in 2 x 2 table of Chap. 6 , 
except the numerator, which is (/? -  1) in Eq. (25.8) not n in Eq. (6 .8a). 
When n is sufficiently large, both equations are equivalent.

Based on the knowledge introduced in Chap. 6 , under 7/0, the statistic 
X2 is distributed as / 2[} when n is large enough. According to the value of 
X 2 a statistical decision can be made.

The 95% confidence interval of RR can be calculated by

(25.9)
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Table 25.6 Data from prospective study on association between 
CAT and CHD.

Level of blood catecholamine

Follow-up results High Low Total

Occurrence of CHD 27 44 71
Non-occurrence of CHD 95 443 538

Total 1 2 2 487 609

Example 25.2 A prospective study was designed to investigate the asso
ciation between the subsequent coronary heart disease (CHD) and the blood 
serum catecholamine (CAT) level. CAT was regarded as an exposure fac
tor with two categories (high, low). 609 male adults had enrolled into 
the study and their blood CATs were examined. Then the subjects were 
divided into two groups according to their CAT levels. After seven years of 
follow-up, 71 new cases of CHD had been identified. The data are listed in 
Table 25.6.

The relative risk of high level blood CAT group comparing to low level 
group using (25.7a) is:

a ^  0.221
RR =  Щ- = -------=  2.45 (times).

w  0 0 8

By using Eq. (25.8), when H0 is true, the test statistic is

, (609 -  1)(27 x 443 -  44 x 95)2
л 122 x 487 x 71 x 538

Referring to the table of x 2 distribution, the critical value with one degree 
of freedom is X0 0 5  ~  3.84 < 16.22. The null hypothesis is thus rejected 
and the incidence probabilities for the two groups are significantly differ
ent. The incidence probability for high level group is 2.45 times as many 
as that for low level group. The 95% confidence interval of RR using 
Eq. (25.9) is

( l j ---- L96 \
2.45 =  (1.58,3.79).
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Table 25.7 Data layout of person-years for calculating rates.

Follow-up results

Factor

Exposed Non-exposed Total

Number of occurrences a b m
Amount of person-years T\ To T
Rate per person-year f \ / 0 f

25.3.1.2 Method based on binomial distribution and normal 
approximation

A
It is applied to RR calculated with person-year incidence rates as (25.7b). 
The layout of the data is showed in Table 25.7. Under the two rates would 
be equal to each other. Let the amount of person-years for exposed and non- 
exposed groups be 7) and To, respectively. The total amount of person-years 
is Г =  T\ T  7q. The proportion of person-years for exposed group in the total 
amount is p  — T\/T. The proportion of the disease occurrences for exposed 
group in the total disease occurrences alia +  b) should also be p under H0. 
We use p as the estimate of the probability of event occurrence. Then the 
number of disease occurrences follows a binomial distribution B{m, p), 
where m =  (a +  b). When exposure is a harmful factor, the alternative 
hypothesis is H\ : RR > 1. Under the null hypothesis H0 the probability 
P(a < x < m) can be calculated by the law of binomial probability

P(a < x < m) =  j h  ( ' ” У ( 1  -  p)m~x, (25.10)
x = a  '  '

where x is a random variable representing the number of disease occurrences 
in the exposed group.

If the probability is equal to or less than a, the null hypothesis Ho is 
rejected and the relative risk is significantly greater than 1.0 .

When m is large enough, the probability calculated by Eq. (25.10) can 
be approximated with a normal score as

7  _  \ a - m p \  -0 -5  
sjmp (1 -  p)

(25.11)
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Table 25.8 Data from a prospective study for possible asso
ciation of obesity with death.

Body weight status

Results of follow-up Obesity Non-obesity Total

Number of deaths 
Amount of person-years 
Rate per person-year

30
699

0.043

36
1399

0.026

66
2098
0.031

And then compare with a one-side critical value of the standard normal 
distribution.

When the exposure is a possible protective factor, the alternative hypoth
esis is H[ : RR < 1.0. In this situation it is necessary to calculate the prob
ability P(0 < x < a). The only change in (25.10) is that the summation on 
the right-hand side should be from 0 to a for x, instead of from a to m . The 
normal approximation still keeps the same as (25.11).

Example 25.3 In a study of association between death and obesity, a 
number of women aged 60-75 years old were assigned into either obesity 
group or non-obesity group. After follow-up for 8 years, the numbers of 
deaths and person-years for the two groups were obtained as showed in 
Table 25.8.

By using Eq. (25.7b), the relative risk in terms of person-year incidence

The proportion of the amount of person-years for obesity group in the total 
person-years is p =  699/2098 =  0.333 and 1 — p  =  0.667. With a =  30 
and m =  66 , the probability P(a < x < m)for random event x with 
a < x < m in obesity group is obtained by using Eq. (25.10) as

A

rates is RR =  0.043/0.026 =  1.67 (Times). 
The null hypothesis is

H0 : RR =  1, H\ : RR > 1.

=  0.0270.
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The probability is less than the given level of a =  0.05. The null hypothesis 
Ho is thus rejected. It is concluded that the relative risk of death in obesity 
women is significantly greater than that in non-obesity women.

By Eq. (25.11), the testing statistic is approximately equal to

|3 0 - 6 6  x 0 .3 3 3 |-0 .5  
Z =  —  =  1.960.

V 66 X  0.333 X  (1 -0 .333)

Referring to the table of standard normal distribution, the correspond
ing one-side probability is 0.0250. Here, the discrepancy between normal 
approximation and binomial probabilities for the data is only 0 .002 .

Relative risk is a comparative indicator. Its importance in public health 
varies with the disease frequency in control group. With the same level 
of relative risk, the higher the disease frequency in control group, the more 
importance the public health. More people could be protected by eliminating 
the exposure factor for the disease with high frequency in control group than 
for that with low frequency in control group.

25.3.2 A ttribu table risk

The attributable risk is defined as the difference of disease frequencies 
between exposed group and non-exposed group. It reflects the change of 
disease frequency caused by the exposure factor. It is sometimes called 
excess cumulative incidence probability or excess person-year incidence 
rate. With the same notations as above, the attributable risk in terms of 
cumulative incidence probability is estimated by

AR =  q\ — qo (25.12a)

and the attributable risk in terms of person-year incidence rate is esti
mated by

AR =  /1 — /о- (25.12b)

Sometimes attributable risk may be expressed as a percentage and is 
called attributable risk fraction. It is estimated by

AR{%) =  - --- -  x 100% (25.13a)
<7i
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and

AR(%) = / 1 - / 0
/1

x 100%. (25.13b)

For the data in Example 25.2 (Table 25.6) the attributable risk and 
attributable risk fraction are estimated by Eqs. (25.12a) and (25.13a) as

AR =  0.221 -0 .0 9 0  =  0.131

and

AR(%) =
0.221 -0 .0 9 0  

0.221
x 100% =  59.2%.

For the data in Example 25.3 (Table 25.8) the attributable risk and 
attributable risk fraction are estimated by Eqs. (25.12b) and (25.13b) as

AR =  0.043 -0 .0 2 6  =  0.017

and
0.043 -  0.026

AR{%) =  ------------------x 100% =  40.0%.
0.043

25.3.3 Population attribu table risk

The population attributable risk is defined as the difference of disease fre
quencies between the whole population and that in the control population. 
The estimate in terms of incidence probability is

PAR =  g — go, (25.14a)

where g is the incidence probability in the total population, go is the inci
dence probability in control population. Population attributable risk can be 
expressed by percentage as

PAR(%) =  — -  x 100%, (25.14b)
<7

where PAR(%) is called the population attributable risk proportion.
q0 and q in (25.14a) and (25.14.b) can be substituted by person-year 

incidence rates /0  and / .  Thus we can obtain the corresponding population 
attributable risk and its proportion in terms of person-year incidence rate.
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For the data in Example 25.2, ifwe use m i /  n as the estimate of incidence 
probability in total population, e.g., q =  71/609 =  0.117, by Eqs. (25.14a) 
and (25.14b), the population attributable risk and related proportion (%) are 
estimated as

PAR =  0.117 -  0.090 =  0.027,
0 .117-0 .090

PAR(%) = ------------------  x 100% =  22.5%.
0.117

The results show that comparing with the normal condition, the increase 
of the incidence probability of coronary heart disease in total population 
(27.0%) may be attributed to the high level of catecholamine in blood serum, 
or the proportion of 22.5% of CHD in the total population may be attributed 
to the high level of CAT. If the high level of CAT could be eliminated, the 
incidence of CHD in total population could have a net decrease (27.0%) or 
a relative decrease (22.5%) for the incidence probability.

For the data in Example 25.3, we use /  =  66/2098 =  0.031 (or 31.0%) 
as person-year incidence rate in total population and /о =  0.026 as the 
substitutions for q and qo respectively, the population attributable risk and 
related proportion (%) are estimated as

PAR =  0.031 -  0.026 =  0.005 (or 5%)
0 .031-0 .026

PAR(%) = ----- ------------  x 100% =  18.20%.

25.3.4 Analysis o f dose-response relationship

It is not unusual in practice that an etiological factor can be divided into 
several levels in terms of dosage from the lowest to the highest in order to 
uncover the dose-response relationship between disease and exposure. The 
layout of data is showed in Table 25.9 for this type of analysis. The column 
with subscript 0 is the information of non-exposed or lowest exposed group 
as control or reference group.

Table 25.9 can show if there is some trend of incidences with levels of 
exposure factor. However, to avoid the effect of sampling error on statistical 
inference, we have to work out a hypothesis test for trend.

H0: There is no linear trend between incidence and dose 
Hi : There is a linear trend between incidence and dose.
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Table 25.9 T h e  lay o u t o f  da ta  fo r  d o se -resp o n se  analysis.

E x p o su re  level 
S co re О

 
О e\

x t
e2 ■ ' 
x2 ■■

■ 4

4 Total

N u m b e r o f  cases « 0 a\ a2 ■■ ■ ak m\
N u m b e r o f  no n -cases bo b\ b2 ■■ ■ bk mo
Total n u m b er o f  sub jec ts n0 n 1 n2 ■■ ■ n k n

In c id en ce  o f  d isease Я0 Я\ q2 ■■ ■ Як

The statistic for trend test is

(E /= o a ‘x ‘ ~ f -E t = o  n ‘x ‘ )
X

m 1 n4) 
n2(n— 1) E t o  n ‘x ? -  (Е/=о«л)

(25.15)

where x, is the score for exposure level i. If the exposure levels are equally 
spaced, the values of x,-, i =  1, 2 , . . .  can be changed as the integers in the 
natural order, 0 , 1, 2 , . . .  and use the midpoints of the exposure levels as the 
scores. It can be proved, under the null hypothesis the statistic / 2 follows 
a x 2 distribution with one degree of freedom. Based on the value of / 2, 
the decision whether the null hypothesis H0 should be rejected or not can 
be made. In essence, the process is to calculate the correlation coefficient 
between incidence frequency and dose and test the null hypothesis that the 
correlation coefficient equals to zero.

Equation (25.15) is also available for analyzing the relationship between 
person-year rate and exposure level.

Example 25.4 A prospective study was carried out to assess the rela
tionship between a disease and sanitary situation. The data showed in 
Table 25.10 show the trend that the increase of disease incidence is accom
panied by the decrease of sanitary situation. A trend test is worked out as 
follows.

Given m\ = 7 2 , mo =  1326, and n =  1398, from part two: calculation 
(at the bottom of Table 25.10) the sums are

^ a ,x , -  = 7 7 , ^ n ,x ,-  =  1175, ^ E z ,x ,2 =  1761.
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Table 25.10 H y p o th e sis  tes tin g  fo r  re la tio n sh ip  b e tw ee n  d isease  
an d  san ita ry  situation .

S an ita ry  situ a tio n e, G ood F a ir B ad
S core 0 1 2 Sum

N u m b e r o f  cases Oi 19 29 24 72
N u m b e r o f  n o n -cases bi 497 560 269 1326
Total m 516 589 293 1398
In c id en ce 9/ 0 .037 0 .049 0 .082

R e la tiv e  risk R R i 1.00 1.34 2 .22

P a rt tw o: c a lcu la tio n <*i*i 0 29 48 77
nj Xj 0 589 586 1175

2n ix i 0 589 1172 1761

By Eq. (25.15), the for testing trend is

[77 — x 1175]-
X2 = 1398

72x1326 
13982(1398—1) [1398 x 1761 -  11752]

=  7.19. (25.16)

Referring to the table o f / 2 distribution, it shows P < 0.01. The null hypoth
esis is rejected. There is significant linear relationship between disease and 
sanitary situation.

25.3.5 Stratified analysis

In some circumstances the statistical conclusion from overall analysis as 
above does not reflect the truth due to confounding effects. We will explain 
this with example.

Example 25.5 Subjects in an area were followed up for 9.5 years to 
explore the relationship between death from esophageal cancer and early 
symptoms in esophagus. The data are listed in Table 25.11. The overall or

crude relative risk is RR =  2.717/1.616 =  1.68.

By Eq. (25.11) for testing the null hypothesis Ho : RR =  1, we have 
Z =  4.11, which is significant at a =  0.05. Now we consider the possible 
confounding effect of age on the association between death of esophageal 
cancer and early symptoms in esophagus. The data are further stratified with 
age group showed in Table 25.12.
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Table 25.11 Data from a prospective study on association between 
esophageal cancer and early symptoms in esophagus.

Symptoms
in esophagus

Yes No Total

Number of deaths from esophageal cancer 108 153 261
Amount of person-years 39756 94692 134448
Death rate per 1000 years 2.717 1.616 1.941

Table 25.12 Data stratified by age group for analyzing association between esophageal 
cancer and early symptoms in esophagus.

Age stratum 30-years 50-years 70-years

Early symptom Yes No Total Yes No Total Yes No Total

No. of death 16 17 33 82 115 197 10 21 31
Person-year 22031 46149 68180 14814 39898 54712 2911 8645 11556
Death rate * (/;) 72.62 36.84 553.53 288.23 343.52 240.91

A
R R 1.97 1.92 1.43

* Death rate per 100,000 person-years.

As comparison, the relative risks of the groups of 30-years and 50-years
Л

are greater than the crude relative risk RR — 1.68; and that of 70-years is
A

lower than the crude relative risk RR =  1.6 8 . This shows that there is some 
confounding by age group. In order to reflect the effect of early symptoms 
in esophagus, one may perform a stratified analysis. The procedure for 
stratified analysis is illustrated below.

25.3.5.1 Mantel-Haenzel stratified /  2 test

The null hypothesis is Я0: No association between esophageal cancer and 
early symptoms in esophagus in view of stratification; The alternative 
hypothesis is H\ : there is some association between the cancer and early 
symptoms. Under H0, the test statistic

X 2 = n iu T u T p i

T?
(25.17)
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is distributed as X(\y The symbols а,-, тц denote the number of deaths 
and the total number of deaths from esophageal cancer in ith stratum; Tu, 
Tot and 7} denote the person-years for exposed group, non-exposed group, 
and both groups in ith stratum respectively; denotes the summation over 
strata. The decision whether to reject the null hypothesis or not will be made 
according to the magnitude of x 2 value.

With stratified x 2 test, the results of Example 25.5 by Eq. (25.17) are 
below: The numerator is

108 -
33 x 22031 

68180
197 x 14814 31 x 2911 ]2

54712 11556
1309.52.

And the denominator is

33 x 22031 x 46149
681802 + ' 

31 x 2911 x 8645 
+  115562

197 x 14814 x 39898 
547122

=  51.96.

Substituting these values into Eq. (25.17), we have

X
2 1309.52

51.96
25.20

the corresponding P < 0.05 such that H0 is rejected. It concludes that there 
is significant linear relationship at the level of a =  0.05 between esophageal 
cancer and early symptoms in esophagus.

The reasoning of Eq. (25.17) is explained as follows:
Under, #o the numerator in Eq. (25.17), т ц Т ц / T i, is the theoret

ical mean of a,, and the denominator, m u T u T0i/ T j.2, is the theoretical 
variance of a,. Thus J2(m uTu/Tj) is the theoretical mean of J2ai, and 
^(тпцТиТы/Т?) is the theoretical variance of J2a‘- Under the condition 
that H0 is true, for a large sample, we have

[ E  !
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following N(0, 1). Immediately, the square of the above fraction follows a 
X2 distribution with one degree of freedom.

25.3.5.2 Adjusted relative risk, RRa

The Mantel-Haenszel method is used to estimate the adjusted relative risk 
for stratified data,

Л
RRr, = ^  Tj

E ^ ’
(25.18)

where bt is the number of deaths of non-exposed group in / th stratum.
By applying Eq. (25.18) to calculate the adjusted relative risk, the results 

for the data of Example 25.5 are as follows: The numerator is

£
a,T0/ 16 x 46149 82 x 39898 10 x 8645

H-------------------1- ____  =78.11
Tj 68180

and the denominator is

54712 11556

biTu 17 x 22031 115 x14814 21 x 2911
\  -E E  =  --- 7^777;----- 1------ 777Г77------ 1___ ____  =  41.92.Tt 68180 54712

Then the adjusted relative risk is
TV-

78.11

11556

Л

RRa =
E ^______T j_

E bj T i

Ti
41.92

=  1.86.
This value is different from the crude relative risk RR =  1.6 8 . This reflects 
that age group has a confounding effect on the relationship between 
esophageal cancer and early symptoms in esophagus.

The meaning of (25.18) is explained as follows: The estimate of relative 
risk in /th stratum is

RRi =
aJm

Tj

b iT u  '

The adjusted relative risk is the pooled estimate over strata, that is, the ratio 
of the sum of numerators over strata divided by the sum of denominators 
over strata.
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Table 25.13 Records of 12 subjects in a prospective study.

Subject
i

Time entering into 
the study tm

Time exiting from 
the study tout

Result
event

i 85-01-01 87-06-31(0) 1

2 85-01-01 88-06-31(0) 1

3 85-01-01 86-06-31(0) 0

4 8 6 -0 1 -0 1 88-06-31(0) 0

5 8 6 -0 1 -0 1 89-12-31 0

6 8 6 -0 1 -0 1 86-06-31(0) 1

7 87-01-01 87-06-31(0) 0

8 87-01-01 89-06-31(0) 0

9 87-01-01 89-12-31 0

1 0 8 8 -0 1 -0 1 89-12-31 0

11 8 8 -0 1 -0 1 89-06-31(0) 1

12 8 8 -0 1 - 0 1 89-06-31(0) 0

25.3.5.3 Confidence interval for adjusted relative risk 

The 95% confidence limits estimated by Eq. (25.9) are

1.8б(‘±^ о )  =  (1.46,2.37).

25.4 Computerized Experiments

Experiment 25.1 Computation of interval cumulative incidences The
SAS Program 25.1 is to compute the interval and cumulative incidences for 
data of 12 subjects in a prospective study showed in Table 25.13.

In Program 25.1, variable EVENT is an indicator of disease occurrence, 
coding 1 for case and 0 for non-case; WITHDRAW, FAIL and COUNT 
denote the number of withdrawals, the number of cases and the number 
of subjects in an interval respectively. TOTAL denotes the total number of 
subjects. Lines 01-23 are to create SAS data set INCID1 with the original 
data listed in Table 25.13 and to print. Date variables TIN and TOUT in 
lines 02 and 03 are defined as SAS date format, e.g., YYMMDD8 . and 
YYMMDD9. FORMAT in line 04 is used to convert the format of YYM- 
MDDw. to DATE7., where w. is the field length of date variable. Line 05 
is to compute PERIOD, e.g. the length followed up. Lines 06-08 are to cut 
subject’s PERIOD into INTERVALS. The corresponding output is showed
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Program 25.1 Computing interval incidence and cumulative incidence.

Line Program Line Program

01 DATA INCID1; INTERVAL’;
02 INPUT OBS TIN YYMMDD8 . 28 DATA INCID2;

TOUT 29 SET INCIDI;
03 YYMMDD9. EVENT; 30 DROP OBS TIN TOUT PERIOD K;
04 FORMAT TIN DATE7. TOUT 31 BY INTERVAL;

DATE7.; 32 IF FIRST.INTERVAL THEN
05 PERIOD=(TOUT-TIN)/365; 33 IF FIRST.INTERVAL THEN

PUT PERIOD; COUNT=0;
06 DO K=0 TO 4; 34 COUNT+1 ;FA1L+EVENT;
07 IF K <=PERIO D<(K +l) THEN 35 TOTAL+1;

INTERVAL=K; 36 DROP EVENT;
08 END; 37 IF LAST.INTERVAL THEN DO;
09 CARDS; 38 WITHDRAW=COUNT-
10 1 85-01-01 87-06-30 1 FAIL;C=0;FREQ=FAIL;
11 2 85-01-01 88-06-30 I 39 OUTPUT;
12 3 85-01-01 86-06-30 0 40 WITHDRAW=COUNT- FAIL;
13 4 86-01-01 88-06-30 0 C = 1 ;FREQ=WITHDRAW;
14 5 86-01-01 89-12-31 0 41 OUTPUT;
15 6  86-01-01 86-06-30 1 42 END;
16 7 87-01-01 87 06-30 0 43 PROC PRINT DATA=INCID2;
17 8  87-01-01 89-06-30 0 44 TITLE 'INTERVAL';
18 9 87-01-01 89-12-31 0 45 DATA INCID3;
19 10 88-01-01 89-12-31 0 46 SET INCID2;
20 11 88-01-01 89-06-30 I 47 KEEP FAIL WITHDRAW FREQ
21 12 88-01-01 89-06-30 0 INTERVAL C;
22 * 48 PROC LIFETEST DATA=INCID3
23 PROC PRINT; 49 INTERVALS=(0 TO 4)
24 PROC SORT DATA=INCID 1; METHOD=ACT;
25 BY INTERVAL; 50 TIME INTERVAL*C( 1);
26 PROC PRINT; 51 FREQ FREQ;

FAIL=0; 52 RUN;
27 TITLE 'SORTED DATA BY

in Table 25.14. Lines 24-26 are to sort data INCID1 by (the number of) 
INTERVALS. The sorted results are showed in Table 25.15. Lines 28-42 
are to resort data INCID1 for calculating the incidence probability of dis
ease in the next step. The resorted dataset is named INCID2 and listed in 
Table 25.16. The code DROP in line 30 is to delete the variables which 
will be redundant in the later computation. Lines 31^12 are to sum up by 
intervals (line 33), to sum up the total (line 34) and to sum up the number
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Table 25.14 SAS data set INCID1 created from the data in Table 25.1.

Subject
OBS

Entering 
time Tin

Exiting 
time Tout

Result
EVENT PERIOD INTERVAL

1 01JAN85 30JUN87 1 2.49315 2

2 01JAN85 30JUN88 1 3.49589 3
3 01JAN85 30JUN86 0 1.49315 1

4 01JAN86 30JUN88 0 2.49589 2

5 01JAN86 31 DEC 89 0 4.00000 4
6 01JAN86 30JUN86 1 0.49315 0

7 01JAN87 30JUN87 0 0.49315 0

8 01JAN87 30JUN89 0 2.49589 2

9 01JAN87 31DEC89 0 3.00000 3
10 01JAN88 31DEC89 0 2 .0 0 0 0 0 2

11 01JAN88 30JUN89 1 1.49589 1

12 01JAN88 30JUN89 0 1.49589 1

Table 25.15 Sorted results of data INCID1.

OBS Tin Tout EVENT PERIOD INTERVAL

6 01JAN86 30JUN86 1 0.49315 0

7 01JAN87 30JUN87 0 0.49315 0

3 01JAN85 30JUN86 0 1.49315 1

11 01JAN88 30JUN89 1 1.49589 1

12 01JAN88 30JUN89 0 1.49589 1

1 01JAN85 30JUN87 1 2.49315 2

4 01JAN86 30JUN88 0 2.49589 2

8 01JAN87 30JUN89 0 2.49589 2

10 01JAN88 31 DEC 89 0 2 .0 0 0 0 0 2

2 01JAN85 30JUN88 1 3.49589 3
9 01JAN87 31DEC89 0 3.00000 3
5 01JAN86 31DEC89 0 4.00000 4

of cases (line 35). Lines 32 and 33 set FAIL =  0 and COUNT =  0 at 
the beginning of each interval (use FIRST.INTERVAL to identify). Lines 
37-39 are to compute the number of withdrawals at the end of each inter
val (use LAST.INTERVAL to identify). A new variable C is used as an 
indicator of FREQ. C =  0 if FREQ represents FAILs or С =  1 if FREQ 
represents WITHDRAWS. Lines 39 and 41 are to print the new dataset. 
Variables C and FREQ are prepared for LIFETEST procedure. Line 43 is 
to print dataset INCID2 showed in Table 25.16. Lines 45-52 are to invoke
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Table 25.16 Resorted data set INCID2.

OBS INTERVAL FAIL COUNT TOTAL WITHDRAW c FREQ

1 0 1 2 2 1 0 1
2 0 1 2 2 1 1 1
3 1 1 3 5 2 0 1
4 1 1 3 5 2 1 2
5 2 1 4 9 3 0 1
6 2 1 4 9 3 1 3
7 3 1 2 11 1 0 1
8 3 1 2 11 1 1 1
9 4 0 1 12 1 0 0

10 4 0 1 12 1 1 1

Table 25.17 Data of 10 workers from a retro-prospective study.

Subject
number

Gender
sex

Birth date 
h4

Date entering 
h8

Date exiting 
si

Disease occurrence 
h 15

1 i 40-10-25 72-03-15 89-01-27 1

2 i 27-03-18 75-03-22 85-03-15 1

3 2 49-08-24 72-02-15 76-05-15 1

4 2 52-01-15 72-07-15 81-12-31 1

5 2 65-01-12 84-09-15 91-12-31 1

6 2 54-12-15 76-01-15 91-12-31 0

7 1 55-01-21 76-09-15 91-12-31 0

8 1 49-08-15 72-01-15 75-08-15 1

9 2 50-12-28 72-03-26 91-12-31 1

10 2 52-01-15 72-02-23 91-12-31 1

LIFETEST procedure. Since we choose METHOD =  ACT, the life table 
method or actuarial method is required to compute cumulative incidence of 
disease development. Data set INCID3 with INTERVALS =  (0 TO 4) is 
for the computation.

Experiment 25.2 Calculation of person-year incidence rates by age-time 
two way categories Data of 10 workers resulted from a retro-prospective 
study are showed in Table 25.17. (Л4) denotes the birth date, (h8) denotes 
the date entering into the factory, {s 1) is the date of disease occurrence with 
a dummy variable (h 15) as an indicator of disease occurrence by coding 
h\ 5 =  1 indicating disease and h 15 =  0 indicating non-disease. In addition,
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P ro g ra m  2 5 .2  C re a tin g  SA S  p e rm a n en t d a ta  se t fro m  d a ta  in T ab le  25 .17 .

Line Program Line Program

01 LIBNAME A A A ’C:’; 10 5 2 65-01-12 84-09-15 91-12-31 1
0 2 DATA AAA.JXSJ; 11 6  2 54-12-15 76-01-15 91-12-31 0
03 INPUT NUMBER SEX H4 12 7 1 55-01-21 76-09-15 91-12-31 0

YYMMDD8 . H8  YYMMDD9. 
SI YYMMDD9. H15;

13 8  1 49-08-15 72-01-15 75-08-15 1

04 FORMAT H4 DATE7. H8 

DATE7. SI DATE7.;
14 9 2 50-12-28 72-03-26 91-12-31 1

05 CARDS; 15 10 2 52-01-15 72-02-23 91-12-31 1
06 1 1 40-10-25 72-03-15 89-01-27 1 16 '
07 2 1 27-03-18 75-03-22 85-03-15 1 17 PROC PRINT DATA=AAA.JXSJ;
08
09

3 2 49-08-24 72-02-15 76-05-15 1
4 2 52-01-15 72-07-15 81-12-31 1

18 RUN;

the gender of workers are also recorded by coding sex =  1 if male and 
sex =  2 if female. (In the table, date is expressed as YY-MM-DD type.)

The computation is completed in the following three steps:

Step 1: Use Program 25.2 to create SAS permanent dataset named 
AAA.JXSJ. Date variables H4. H8 , and S 1 are input with the format 
yymmddw, where w is the width of entry. The system automatically 
converts the input date to SAS date. In line 04, the format date7. is 
defined to output the format dd-mm-yy.

Step 2: Run MACRO Program 25.3, which is composed by SAS Macro 
language, by click F10 key to create a MACRO statement in SAS 
system. The program begins with “%MACRO PRYEAR (MACRO 
variable 1, MACRO variable 2, ...)”, and ends with “%MEND”. 
PRYEAR is the name of the MACRO program, which closely fol
lows %MACRO.
Variables in parentheses of line 01 are defined as follows: 
MINAGE=lower limit of age, MAXAGE=upper limit of age, 
SIZEAGE=interval of age group, MIN YEAR=lower limit of time, 
MAXYEAR=upper limit of time, SIZEYEAR=time span of time 
group, EVENT =  indicator of disease occurrence. These variables 
will be valued in the step 3.

Step 3: Use Program 25.4 to Invoke MACRO Program 25.3 for computing 
age-time grouped person-years and disease occurrences by gender.
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Program 25.3 MACRO program for calculating person-years.

Line Program

01 %MACRO PRYEAR(MINAGE=, MAXAGE=, SIZEAGE=, MINYEAR=, 
MAXYEAR = , SIZEYEAR=,EVENT=);

02 %IF &MINYEARA=  AND &MINAGEA=  %THEN %DO;
03 %LET NAG=%EVAL((&MAXAGE-&MINAGE)/&SIZEAGE);
04 %LET NYR=%EVAL((&MAXYEAR-&MINYEAR)/&SIZEYEAR);
05 %DO 1=1 %TO &NYR;
06 ARRAY PER&I.(J) PER&I.XP1-PER&1.XP&NAG;
07 %END;
08 %IF &EVENT NE %THEN %DO;
09 %DO 1= 1 %TO &NYR;
10 ARRAY &EVENT.PER&I.(J) PER&I.&EVENT. 1 -PER&I.&EVENT&NAG;
11 %END;
12 %END;
13 %END;
14 ARRAY TOTAL(P) PER l-PER&NYR;
15 %IF &EVENT NE %THEN %DO:
16 ARRAY T&EVENT.(P) &EVENT.PER I -&EVENT.PER&NYR;
17 %END;
18 NYIN=FLOOR((YIN-&MlN YEAR)/&SIZEYEAR)+1:
19 NYDG=FLOOR((YDG-&MINYEAR)/&SIZEYEAR)+l;
20 NAGEIN=FLOOR((AGEIN-&MINAGE)/&SIZEAGE)+l;
21 NAGEDG=FLOOR((AGEDG-&MINAGE)/&SIZEAGE)+l;
22 DO J=NAGEIN TO NAGEDG;
23 DO P=NY1N TO NYDG;
24 TOTAL=MIN(AGEDG,&MINAGE+J*&SIZEAGE, (MDY(12,31,I900+
25 &MINYEAR+P*&SIZEYEAR)-BIRTHDT)/365.25)-MAX(AGEIN.
26 &MINAGE+(J-1 )*&S1ZEAGE (MDY( 1.1.1900+&M1NYEAR-KP-1 )*
27 &SIZEYEAR)-BlRTHDT)/365.25);
28 IF TOTAL<=0 THEN TOTAL=0;
29 END;
30 END;
31 DO J=1 TO &NAG;
32 DO P=1 TO &NYR;
33 IF TOTAL <0 THEN TOTAL=0;
34 %IF &EVENT NE %THEN %DO;
35 IF (&MINAGE+(J-1)*&SIZEAGE<=AGEDG<&MINAGE+J*&SIZEAGE)
36 AND (&MINYEAR+(P-1)*&SIZEYEAR<=YDG<&MINYEAR+

(Continued)
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Program 25.3 (C o n tin u e d )

Line Program

37 P*&SIZEYEAR) AND EVENT= 1 THEN T&EVENT= 1; ELSE T&EVENT=0;
38 %END;
39 END;
40 END;
41 %MEND;

Program 25.4 Invoking MACRO program to compute person-years and disease occur
rences by age-time grouping.

Line Program

01 LIBNAME AAA ’C:’;
02 DATA AAA.PPY;
03 SET AAAJXSJ;
04 BIRTHDT=H4;ENTRYDT=H8 ;EVENTDT=S I;
05 AGEIN=(ENTRYDT-BlRTHDT)/365;AGEDG=(EVENTDT-BIRTHDT)/365;
06 YIN=YEAR(ENTRYDT)-1900; YDG=YEAR(ENTRYDT)-1900;
07 %PRYEAR(MINAGE= 10.M AXAGE=90,SIZEAGE= 10,
08 MINYEAR=60,MAXYEAR=95,SIZEYEAR=5,EVENT=H 15)
09 PROC MEANS SUM;
10 CLASS SEX;
11 RUN;

Lines 02-06 in Program 25.4 are used to create new SAS permanent 
data set AAA.PPY from AAAJXSJ by renewing variable names. 
AGEIN is the age entering the factory. AGEDG is the age of disease 
occurrence (S 1 =  1 ) or the age withdrawal from observation (S 1 = 0 ). 
YIN and YDG are entering year and disease developing year respec
tively with 1900 as start point. Line 07 invokes MACRO pro
gram %MACRO PRYEAR. The closely followed variable names in 
parentheses should be kept consistent with the line 01 in MACRO 
program 25.3 in order to assign values to these variables. For value 
assignment it is required that all intervals of age groups are equal 
and all spans of time groups are equal. Moreover, the upper limits, 
lower limits and differences between upper and lower limits are 
integer times of the interval or span. If only values are assigned to 
MINAGE=, MAXAGE=, and SIZEAGE=, then the MACRTO
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can only compute the person-years and disease occurrences by 
age grouping of one-way classification, and not by time group
ing. In the same way, if only values are assigned to variables 
MINYEAR=, MAXYEAR= and SIZEYEAR=, the MACRTO 
can only compute the person-years and disease occurrences by 
time grouping, and not by age grouping. Invoked by Program 25.4, 
the MACRO program %MACRO PRYEAR yields 131 variables. 
Among them there are 56 variables, which record the person-years 
of every subject contributed to each combination of age-time group
ing, named PER1XP1, PER1XP2, . . . ,  PER1XP8,..., PER7XP1, 
. . . ,  PER7XP7, PER7XP8. The numbers as suffix of PER indicate 
the year group in 5-year span, and the numbers as suffix of XP 
indicate the age group in 10 years interval. Accordingly, the 56 
variables named PER 1H 151, . . . ,  PER 1H 158, PER2H1 5 1 ,... and 
PER7H158 record the number of disease occurrences by age-time 
combination. Lines 09 and 10 take sum for each variable by gender.

The amount of person-years and the numbers of disease occur
rences for the data in Table 25.17 are computed and shown in 
Table 25.18. Based on these values, the person-year incidence rates 
can be obtained easily.

Table 25.18 Person-years and disease occurrences by age-time grouping.

Time grouping 
(5-year span)

Age grouping (10-year interval)

Agel (10-) Age2 (20—) Age3 (30—) Age4 (40-) Age5 (50-60)

yrl (1970—) 0 3.029
(11.296)

2.859 0 0

yr2 (1975-) 0 3.998
(20.661©)

5.081 1.956 2.873

yr3 (1980—) 0

(0.312)
5.055

(10.053Ф)
0.845

(7.270)
4.268 5.084

yr4 (1985-) 0

(0.030)
0.053

(5.051)
5.028

(15.244)
4.104© 0.240©

yr5 (1990-95) 0 0

(2.014©)
2 .0 2 1

(5.033©)
(1.036©)

N ote: (1) In the cells, the upper values are for male and the lower values in parentheses 
are for female. (2) The symbol © placed at the end of values indicates 1 case of disease
occurrence.
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Table 25.19 Leukemia cases among patients sufferring from polycythemia 
vera and receiving different radiotherapy.

Treatment group Number of patients Number of leukemia cases

Non treatment 133 1

X-ray treatment 79 7
P32 treatment 228 25
X-ray +  P32 treatment 72 12

Total 512 45

Table 25.20 Data from a historical prospective study on relationship between asbestos and 
death from lung cancer.

Workers exposed to asbestos Workers non-exposed

Deaths Rate per Deaths Rate per
from 1 0 ,0 0 0  from 1 0 ,0 0 0

lung person- lung person-
Years worked Person-years cancer years Person-years cancer years

10- 89462 36 4.02 74395 14 1 .8 8

2 0 - 51925 164 31.58 62528 8 6 13.75
30- 17001 177 104.11 19360 96 45.59
40- 8465 109 128.77 7236 41 56.66

Total 166853 486 29.13 163519 237 14.49

25.5 Practice and Experiments

1. Table 25.19 shows the data from a follow-up study on leukemia cases 
among patients suffering from polycythemia vera and treated with different 
radiotherapy. Analyze incidences probabilities and relative risks of leukemia 
in different treatment groups.

2. Table 25.20 shows the data from a historical prospective study on 
relationship between lung cancer and asbestos. Try to explore the effect of 
asbestos on death from lung cancer by using stratified method, and compare 
the adjusted relative risk with crude relative risk.

3. Analyze the data in Table 25.20 again for exposure group to explore 
whether there is an increased trend of death rate from lung cancer with the 
increase of age.

(1st edn. and 2nd edn. Songlin Yu, Jiqian Fang)



Chapter 26

Designs and Analysis of Case-Control Studies

Case-control study is well known as a retrospective study. Based on the 
occurrence of disease the method makes inference about the possible factors 
that cause the disease. The study follows a paradigm that proceeds backward 
from disease to exposure, e.g., “from result looking back to cause”. Two 
kinds of individuals are needed in the study, those with the disease of interest 
called “cases” and those without the disease called “controls”. The ratio of 
exposure proportion in the past among cases to that among controls can 
offer some evidence for the association between disease and exposure. The 
association provides clues for further pragmatic study. It is widely used 
in etiological research for chronic diseases and investigation for causes of 
disease outbreak.

26.1 Designs of Case-Control Studies

26.1.1 Types of designs

There are two types of designs in case-control studies.

26.1.1.1 Design for group comparison

A group of patients who have a specific disease is selected as the case 
group, and a group of people who do not have the disease serves as the 
control group. The histories of individuals in the two groups are compared. 
For instance, Goldsmith et al. selected 8 8  diagnosed patients of bladder 
cancer as a case group and 258 healthy people as a control group, and the

693
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authors found that the level exposed to hydride of heavy metal and organic 
accelerator was higher in the case group than in the control group. This type 
of design is simple and easy to carry out. Its disadvantage is that the result 
is influenced easily by confounding factors and thus leads to instability. 
When more variables are to be considered, methods of stratified analysis or 
multivariate regression models may be applied to control the effects from 
confounding factors.

26.1.1.2 Design for matched comparison

In order to eliminate the effects of confounding factors on investigated 
results, each case is individually matched to a set of controls (usually one 
or two, but sometimes more), which have similar values as the cases do for 
several important confounding variables such as gender, age, race, occupa
tion, personal or family history of disease and so on. The analysis is based 
on such matched sets to promote statistical power. When one case matches 
one control only, it is called 1:1 matched design or paired design. When 
one case matches two controls, it is called 1:2 matched design. One case 
can match as many as four controls, but if the number of controls in each 
set exceeds 4, the statistical power increases slightly. As data from matched 
design cannot provide any information about the variables used for match, 
attention as to be paid when selecting matched variables. Non-confounding 
factors should not be selected as matched variables in order to avoid the 
so-called over matching.

26.1.1.3 Case-crossover design

The case-crossover design was introduced in 1991 by M. Maclure (Am. 
J. Epidemiol. (1991) 133, 144—153) to study effects of transient short
term exposure on the risk of acute events, including rare acute-onset 
disease. The design involves exposure levels of cases and the exposure 
ones of their own when they do not fall in any case. Each case serves 
as his/her own control. In comparison of exposure level of event onset 
with the level of event absence, we can obtain the information about the 
difference between the two levels associated with different event onset 
situation.
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Backward control Forward control

2 1 days back 14 days back 7 days back 0 day 7 days ahead 14 days ahead 21 days ahead

Fig. 26.1 A 1 : 6  bi-directional case-crossover design with control period of 7 days for each.

This design bears resemblance to both a classic crossover study and a 
matched case-control study. For the former each subject serves as his/her 
own control. For the latter, the inference is based on a comparison of expo
sure distribution rather than the disease.

In case-crossover study, cases serve as their own controls and therefore 
the design eliminates confounding by stable individual characteristics. The 
potential bias may come from two sources in time series study. The first is 
the trend and seasonality. Because the design is to compare exposure levels 
at different time points, trend or seasonality can confound the comparison. 
The second is the effect overlap. If the time span selected for comparison 
between case and control is too short, the control may still stay in the hazard 
period, so that the exposure effect may be under estimated.

Several approaches may be available for selecting the control period. 
Unidirectional selection uses time period before the event occurs; and the 
bi-directional selection uses both time periods before and after the event 
occurs. In each direction selection 1:1 (1 case : 1 control) matching, or 
1: M(1 case: M (M  > 1) controls) be used. As an example, if we conduct a 
study on the relationship between air pollution and death, the case-crossover 
design applies a 1:3 bi-directional approach and control period equals 7 
days. Each death serves as case and backward 7, 14 and 21 days as ret
rospective controls, as well as forward 7, 14 and 21 days as prospective 
controls. The mode can be found in Fig. 26.1.

It is showed from Fig. 26.1 that with bi-directional 1:6  matching design 
and control period of 7 days, each case matches 3 control periods in either 
direction. The total time span is 21 x 2 +  1 = 4 3  days, 21 days backward 
and 2 1  days forward, and 1 day belongs to case itself.



696 Medical Statistics and Computer Experiments

26.1.2 Determination of sample size

The basic principles on estimating sample size have been seen in Chap. 5. 
Here we recommend some formulas to estimate the sample size used in 
case control study.

26.1.2.1 Sample size for group comparison

Estimation is completed in two steps. The first step is to calculate N' by 
using the formula

[Z«V(1 + C )P Q  +  ZPJP ,Q , +  P0QoCf
/V =  ---------------------- ------------- ----------------------- , (zo.l)

( P , - P o ) 2

where C =  ratio of the number of cases to the number of controls is given 
by investigator in advance. For example, if equal sample sizes in both case 
and control groups are planned then C — 1.0; If the number of individuals 
in case group is half that in control group, then C — 0.50.

P) is the estimated proportion of individuals exposed to risk factor in the 
control population. Qo =  1 — P0  is the proportion of individuals without 
exposure in the control population;

[1 +  P0(P P  -  1)]

is the estimated proportion of cases exposed to risk factor in the case pop
ulation. Q 1 =  1 — P\ is the proportion of cases without exposure in the 
case population; RR is the estimate of relative risk under the alternative 
hypothesis; and

P = Pi +  P)
Q  =  l - P .

Let Za be the standard normal deviation with the probability of type I error a . 
It is usual to give a =  0.05, thus the one-side value is Z0.05 =  1.645, and 
the two-side value is Z0.05 =  1.96. Zp is the standard normal deviation with 
the probability of type II error f .  It is usual to give one-side /? =  0.10, thus 
Z0.1 =  1-282.
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The second step is to calculate sample size N for case group. The for
mula is

where d — \ Pi — Pq \.

Example 26.1 A case-control study is planned to explore the association 
between chronic obstructive disease of lungs and smoking. The proportion 
of smokers in the control population is about 48%. The null hypothesis is 
H0: RR =  1.0, i.e., there is no association between chronic obstructive 
disease of lungs and smoking. The alternative hypothesis is H i: RR =  3.0,
i.e., there is some positive association between the disease and smoking. 
Let a =  0.05, /? =  0.10, and C =  1.0, the process to estimate the sample 
size is illustrated as follows:

Solution Pq =  0.48, Q0  =  0.52, RR =  3.0, C =  1.0, Z0.05 =  1.645 and 
Z0.i =  1.282, we have

=  61.09

N' and S =  0.7347 — 0.48 =  0.2547 are substituted into Eq. (26.2) and the 
sample size N is

(26.2)

Q\ =  1 -0 .7 3 4 7  =  0.2653,

P =  (0.5X0.7347 +  0.48) =  0.6073 
(7 =  1 -  0.6073 =  0.3927.

According to Eq. (26.1) we have

[ 1.645V (1 +  1)(0.6073)(0.3927)

N '  =
+ 1 ,282V (0.7347)(0.2653) +  (0.48)(0.52)]2

(0.7347 -  0.48)2

68.72 ^  69.

That is, 69 cases and 69 controls are required for the study.
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If we choose C =  0.50, i.e., the number of subjects in case group is half 
that in control group, from Eq. (26.1) we obtain

[ 1.645V 0 +0.50)(0.6073)(0.3927) 

лг, _  + 1 ,282V(0.7347)(0.2653) +  (0.48)(0.52)(0.50)]2
(0.7347 -  0.48)2

=  45.01

N' and 8  are substituted into Eq. (26.2), the number of cases is

45.01
N = -------

4

Therefore, 53 cases and 53 x 2 =  106 controls are required.

1 +
45.01 x 0.2547

=  52.57 ^  53.

26.1.2.2 Sample size required for matched comparison

Let N represent the number of matched sets. For 1:1 matched design the 
formula for estimating N is

N %
M

Pt)Q\ +  Ei Qo
(26.3)

where PQ is the proportion of exposed individuals in control population, 
and the corresponding non exposed proportion is Qo= 1 — Po- P\ is the 
proportion of exposed cases in case population, and the corresponding non- 
exposed proportion is Q\ =  1 — P\. The calculation of P\ is explained in 
Eq. (26.1). M, the number of matched sets in which the case and the control 
are discordant in exposure, is calculated by

[(0.50)Za +  Zp^J E(1 — E ) ] 2 

(P -  0.50)2
(26.4)

where P is estimated by

P
R R

1 +  RR' (26.5)

When m > 1, i.e., 1 : m matching, at first we have N by Eq. (26.3), then 
the adjusted number of matched sets N' is estimated by

N{\ +m )
2m

(26.6)
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We again use Example 26.1 of a case-control study on exploration of the 
association between smoking and chronic obstructive disease of lungs to 
illustrate the calculation of sample size for matched design. If 1:1 matched 
design is adopted, the procedure of sample size needed is calculated as 
follows:

3.0
P = --------- =  0.75,

1 + 3 .0
[(0.50)1.645 +  1.282V(0.75)(0.25)]2 =  ^  ^  

(0.75 -  0.5) 2

By Eq. (26.3), the number of cases as well as controls needed is

22.042
N  = _  43.21 % 44.

(0.48X0.2653) +  (0.7347)(0.52)

If 1:2 matched design is adopted, the number of cases needed is

. 4 4 (1 + 2 )
ЛГ =  33.

2 x 2

Since each case is matched with two controls, 6 6  controls are needed.

26.1.3 Selection of cases and controls

Before proceeding a case-control study, consideration must be given to the 
diagnostic criteria for defining the disease of interest and the eligibility crite
ria for selection of cases and controls in order to avoid selecting individuals 
without the disease as cases or selecting individuals with latent or untypical 
disease of interest as controls. There are two main approaches of cases and 
controls. One is based on hospitalized patients; patients with the disease 
concerned are grouped into the case group, and some of the patients with
out the given disease are grouped into the control group. Another approach 
is based on local population; all new patients, or a random sample from 
them, collected from disease registry or medical network within a period 
of time serve as cases; controls are selected randomly from disease-free 
individuals in the population. The latter strategy is available only for the 
areas with integrated medical services system and disease registration or 
report system. Otherwise it is difficult to collect all new cases.
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26.1.4 Bias and Avoidance

Since case-control study is retrospective, it is possible that in the whole 
process of the study various biases may be introduced into the study and 
finally the reliability of the ultimate results can be influenced. Often the 
situations, where biases may possibly occur, are

1. When resource is based on hospitalization, the admission rate of patients 
with the same symptoms may have different disease. Therefore, spurious 
association of disease and the characteristics may occur. This bias is 
called Berkson fallacy.

2. With ambiguous diagnostic criteria, patients without that disease might 
be wrongly taken into the case group, or reverse, patients with the 
latent, light, or untypical disease might be wrongly taken into the control 
group.

3. In the phase of information collection, bias might be introduced into the 
data because of the differences in time, in place, in mode of observers, 
or dim memory of subjects when the field investigation is carried out.

In implementation of a case-control study one should deliberate the 
source of subjects, rigorously hold eligibility criteria of cases and controls, 
provide unified investigation method and the order of questioning for inter
view. If it is possible the blinding method could be applied, which leads to 
field investigators knowing nothing about who is case and who is control; 
in such a way some effects from investigator’s subjective factors can be 
eliminated.

26.2 Analysis of Data from Design for Group Comparison

Data from case-control studies cannot be used to calculate the incidence 
probability or incidence rate and relative risk, which should be based on 
the data from prospective studies. The odds ratio {OR), sometimes denoted 
with у/, is an essential indicator used to reflect the difference of exposure 
between cases and controls, and to establish the association between disease 
of interest and the exposure. In this section we will discuss the methods used 
to analyze the data from the design for group comparison. In the next section
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T a b le  26 .1  2 x 2  table (data layout of 
dichotomized exposure for case-control study).

Exposure

Group Presence Absence Total

Case a b n \ +
Control c d «0+

Total n + 1 n+ o n

we will discuss the methods used to analyze the data from the design for 
matched comparison.

Analysis of data for group comparison usually begins with a simple 2 x 2  
table related to single factor; then succeeds to stratified methods related to 
multiple factors, and dose-response relationship, etc.

26.2.1 Analysis of data for a single 2 x 2  table

For a case-control study if the exposed history can be dichotomized as 
present/absent or high/low among cases and controls, and the subjects can 
be regarded homogeneous in other aspects, then the data can be organized 
as a single 2 x 2  table showed in Table 26.1.

26.2.1.1 Calculation of odds ratio

As discussed before, the odds is the ratio of the probability of an event 
occurrence to the probability of an event non-occurrence. We use the ratio of 
exposed proportion to non-exposed proportion in each group as an estimate 
of odds for the event of exposure. For example, the estimate of exposed 
odds in case group is

a

«1 +

The estimate of exposed odds in control group is
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The ratio of the exposed odds for case group to the exposed odds for control 
group is defined as the estimated odds ratio, denoted by у/. We have

oddi _  f  
odd0  2

ad
be

(26.7)

It has been proved that the ratio of two odds of exposure for different 
disease status from case-control study equals the ratio of two odds of disease 
occurrence for different exposures from prospective study. In addition, when 
the probability of disease occurrence is low (for example, less than 1 %), 
the odds ratio approximates to the relative risk. Both of these two points 
are the essential theoretical basis why case-control study can be widely 
used for etiological research and why odds ratio is so important in medical 
statistics.

Example 26.2 In a case-control study on relationship between cardiac 
infarction and use of oral contraceptive drug, 234 cases with cardiac infarc
tion and 1746 controls were investigated about their current use of oral 
contraceptive drug. Data are showed in Table 26.2. Analyze them.

Solution The odds ratio is estimated by Eq. (26.7) as

ad 29 x 1607 
~bc ~  205 x 135

1. 68 .

It is showed that the odds of current use of oral contraceptive drug in the 
case group is 1 . 6 8  times as much as that in the control group.

T a b le  26.2 Data from case-control study 
on relationship between cardiac infarction 
and current use of oral contraceptive drug.

Current use of oral 
contraceptive drug

Group Yes No Total

Case 29 205 234
Control 135 1607 1742

Total 164 1812 1976
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26.2.1.2 Hypothesis testing for odds ratio

The odds ratio estimated from sample у/ exists sampling variation. Statis
tical inference for relationship between disease and exposure can be made 
only after consideration of sampling error. The hypothesis test for odds ratio 
is

Яо : yj =  1.0, H\ \ у/ ф 1.0.

The test statistic is the same as Mantel-Haenszel y 1 2 statistic in Chap. 25. 
That is

2 (n — 1 ){ad — be)2
П\+ Щ + П +  \П+ о

(26.8)

Under the null hypothesis, this / 2 statistic follows / 2 distribution with one 
degree of freedom. For Example 26.2, the / 2 statistic is

2 (1976 -  1)(29 x 1607 -  205 x 135)2 
164 x 1812 x 234 x 1742

5.84

the value is greater than 3.84, the upper side critical value of у  2  distribution 
with one degree of freedom given a =  0.05. The null hypothesis is thus 
rejected at the level of a =  0.05. The result shows that the odds ratio is 
significantly different from 1 .0 , there exists significant relationship between 
cardiac infarction and current use of oral contraceptive drug.

26.2.1.3 Confidence interval for odds ratio

Exact estimation of the confidence interval for odds ratio is rather com
plicated. We discuss here two simple methods to estimate the confi
dence interval approximately, which are accurate enough for most practical 
situation.

(1) Woolf’s method As у/ is ranged between (0, oo), by logarithmic trans
formation, In yj is ranged between (—oo, oo) and approximately fol
lows a normal distribution, of which the mean is 0  and the variance is 
given by

1 1 1 1
Var(In y/) =  -  +  -  H------b - .

a b e d
(26.9)
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The 95% confidence limits for In у/ are approximated as

In yj ±  1.96У  Var{In y/) (26.10a)

thus the 95% confidence limits for yr are estimated as

у/ exp ^ ± 1 .9 6 ^ Var(In . (26.1 Ob)

For Example 26.2, the variance of In у/ is

1 1 1 1
Var(In w) = ---- 1--------- 1---------1-------- =  0.0474.

29 205 135 1607

Substituting 0.0474 into Eq. (26.10b), we obtain the estimates of 95% 
confidence limits for у/ as

(1.68) exp (±1.96V0.0474) or (1.10,2.57).

(2) Miettinen’s method Substitute the / 2 statistic directly calculated by 
Eq. (26.8) into the following equation to yield the 95% confidence 
limits for

y/\ ) . (26.11)

For Example 26.2, the odds ratio is i// =  1.68 and the test statistic 
is x 1 =  5.84. Substituting these values into Eq. (26.11), result in the 
approximate 95% confidence limits

(1.68)(1±^ )  or (1.10,2.56).

26.2.1.4 Population attributable risk

Calculations of population attributable risk are given in Eqs. (25.14a) 
and (25.14b) of Chap. 25 for data from prospective design. Let D denotes 
dichotomous disease variable (with D and D representing presence and 
absence of the disease respectively) and a dichotomous exposure variable 
E (with E and E representing exposed and unexposed levels respectively).



Designs and Analysis of Case-Control Studies 705

It is not difficult to prove that

_  P - P 0 P ( D ) - P ( D | E )  , P ( D \ E )PAR _  _ _ _  _  —  _  i _  _ _ _ _ _

= j ____________ P ( D \ E ) __________=  1
P ( D  | E ) P ( E )  +  P ( D  | Ё ) Р ( Ё )  ( R R ) P ( E )  +  Р ( Ё )

P ( E ) ( R R  -  1) +  Г

If the control group is a random sample selected from the general pop
ulation, then we use the exposed proportion in the control group c/tio+ as 
a substitution for the exposed probability P ( E )  in population, and use у/ 
as a substitution for relative risk RR. Thus, the equation for calculating 
population attributable risk in case-control study is

PAR =  1
-i-i

1) +  1 =  1
bn0+
dn\+

(26.13)

With the data listed in Table 26.2 for Example 26.2, we have b =  205, 
n0+ =  1742, d — 1607 and ni+ =  234. By Eq. (26.13) the estimated 
population attributable risk is

PAR =  1
bno+ | 205 x 1742
dri\+ 1607 x 234

0.050.

It shows that 5% of the new cases of cardiac infarction in the population is 
attributable to the recent use of oral contraceptive drug.

26.2.2 A nalysis fo r  stra tified  2 x 2  tables

When data from case-control study are stratified by possible confounding 
factors, under the condition that the exposure is a dichotomous variable, the 
whole dataset can be divided into к strata, and there is a 2 x 2 table for each 
strata. The layout of 2 x 2 table in stratum i ( i  =  1 ,2 , . . .  ,k )  is showed in 
Table 26.3.

Example 26.3 For the data in Example 26.2, the odds ratio was calculated 
as yj =  1.68 from a crude 2 x 2  table shown in Table 26.2. To eliminate the 
possible confounding effect of age on the odds ratio, the data are stratified
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Table 26.3 Data layout of 2 x 2 
table in stratum i.

Exposure

Group Yes No Total

Case Щ bi « 1/
Control Ci di " 0 /

Total m u m oi

by age group into five subsets of 2 x 2 tables showed in the first part of 
Table 26.4. Calculate the 5 odds ratios and see what happen.

Solution Most yji are greater than the crude odds ratio у/ =  1.68 except 
that of age group 35-39. The results show that age has some confounding 
effect on the association between cardiac infarction and current use of oral 
contraceptive drug. It leads to the crude odds ratio much lower than stratified 
odds ratios.

A comprehensive analysis for data in stratified 2 x 2  tables includes 
estimating adjusted odds ratio, hypothesis testing and confidence interval. 
T w o w id ely  used  m e th o d s are in tro d u ced  below .

26.2.2.1 M—H adjustment

The method is suggested by N. Mantel and W. Haenszel (1959). Adjusted 
odds ratio i//m  _ h  is estimated by

4> =
Hi ( t )

EL
The M-H testing statistic for stratified analysis has the form

(26.14)

/м -н ■sr̂ k /
4 - ^ = 1  \  (h ,• — !)« ?

(26.15)

Under H0, the s ta tis tic ian  follows / 2 distribution with one degree of 
freedom. The decision to whether reject H0 or not is made based on the 
magnitude of the value of Xm- h-
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The 95% confidence interval for odds ratio is

(26.16)

Data in Example 26.3 are further divided by age groups and showed in 
Table 26.4 for M-H stratified analysis. The lower part of the table lists the 
quantities ready for stratified analysis.

The adjusted odds ratio is

23.7060
5.9714

3.97.

The value is greater than the crude odds ratio (у/ =  1.68). It shows that after 
eliminating the confounding effects of age, the association between cardiac 
infarction and current use of oral conceptive drug appears more obviously.

For testing the null hypothesis Hq : yj =  1.0, by Eq. (26.15) the Xm- h 
statistic is

i f  M - H

17.73462
9.2641

33.95.

It is greater than the critical value x(205(1) =  3.84. The null hypothesis is 
therefore rejected. The conclusion is that there is significant association 
between cardiac infarction and current use of oral contraceptive drug.

Using Eq. (26.16), the 95% confidence limits for the adjusted odds ratio 
yj are

м ■ 1.96 ,
3 .9 7 (1 ± v W  or (2.50,6.31).

26.2.2.2 Logarithmic transformation adjustment 

The equation for calculating adjusted odds ratio is

E l t s i n  ¥ i \у/ =  exp
EL i wt

(26.17)

where IT,, the weight for stratum i , is the reciprocal of variance for stratum i . 
The formulas for W, is

Щ =
1 1 1 1
~ +  7  H----- ba b e d

(26.18)



Table 26.4 D a ta  o f  ca rd iac  in fa rc tio n  and cu rren t u se  o f  o ra l co n tracep tiv e  d ru g  (s tra tified  by  a g e  g roup).

A g e  g ro u p  (y ear)

C u rre n t u se  o f  o ra l 
c o n tra ce p tiv e  d ru g

2 5 -2 9 3 0 -3 4 3 5 -3 9 4 0 -4 4 4 5 -4 9

Totald c T otal d c  Total d c T otal d c  Total d c Total

U sers 4 62  6 6 9 33 42 4 26 30 6 9 15 6 5 11

N o n -u sers 2 2 2 4  226 12 390  402 33 330 363 65 362  427 93 301 394

Total 6 2 8 6  292 21 423  444 37 356 393 71 371 442 99 3 0 6 405

(1) Vi 7 .23 8 .8 6 1.54 3.71 3 .88

( 2 ) a j d i / n j 3 .0685 7 .9054 3 .3588 4 .9 1 4 0 4 .4 5 9 3 2 3 .7 0 6 0

(3 ) b j C j / n i 0 .4 2 4 7 0 .8919 2 .1832 1.3235 1.1481 5 .9 7 1 4

(4 ) (a id i - b j C j ) / n j 2 .6 4 3 8 7 .0135 1.1756 3 .5905 3 .3 1 1 2 17.7346
/5 4  nunQimumoi 1.0316 1.7174 2 .3692 2 .1646 1.9813 9.2641(n,—-l)n?
(6 ) In Щ 1.9782 2 .1815 0 .4318 1.3110 1.3558

(7 ) Wj 1.2977 4 .3992 3 .1076 3 .3 7 9 2 2 .6265 14.8102

( 8 ) Wj In \j!j 2 .5671 9 .5972 1.3418 4 .4 3 0 2 3 .5615 21 .4 9 7 8

N ote : d  d e n o te s  th e  n u m b e r o f  cases , c  the  n u m b er o f  con tro ls.
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The 95% confidence limits for adjusted odds ratio i// is

1.96
(26.19)у/ exp I ±

VeLov.
As illustration, the logarithmic transformation method is applied to the 

data in Example 26.3. Quantities prepared for calculating у/ are listed in 
rows (6 ), (7) and (8) of Table 26.4. By formula (26.17) the adjusted odds

The 95% confidence limits for у/ are

4.27exp (  ±  . = ) or (2.57,7.11).
V V14.8102/

Notice that the confidence interval here is similar to the result of M-H 
adjustment.

26.2.3 Analysis of dose-response for several exposure categories

When exposure has several ordinal categories, it is possible to test if dose- 
response relationship appears, i.e., the higher (or lower) the exposure level, 
the greater (or less) the odds ratio. The null hypothesis is

#o: There is no dose-response relationship 
H\: A linear dose-response relationship exists.

The test statistic is

where к is the number of ordinal exposure categories, x, is the ordered value 
for each category. Under H0, the statistic y 2 follows y 2 distribution with 
one degree of freedom. Based on the value of y 2, a decision whether the 
null hypothesis H0 should be rejected or cannot be made.

ratio is

X
2 (26.20)
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Tabic 26.5 D ata  fro m  a  case-co n tro l study  on  a ssess in g  a sso c ia tio n  b e tw ee n  p y re ticos is  
an d  am o u n t ea ten  o f  raw  c o tto n  seed  oil.

C a te g o ry  o f  am o u n t 
e a ten  (k g /y ear) 
O rd e red  value

<  6  

0

7 -8
1

9 -1 0
2

>  И
3 Total

case: щ 15 53 44 24 136 ( n i )
co n tro l: b( 63 168 104 26 3 6 1 (n 0 )

T otal n u m b er o f  sub jects: m,- 78 2 2 1 148 50 497  {n)

odd: Sj 0.2381 0 .3155 0.4231 0.9231
O d d s ra tio : i/y, 1.0 1.30 1.75 3.82

C a lcu la tio n : ajXj 0 53 88 72 213 ( £ > ; * / )

niiXj 0 2 2 1 296 150 6 6 7  ( J 2 m ix i)

2m iX f 0 2 2 1 592 4 5 0 1263 ( T , m ix f  )

Example 26.4 The data from a case-control study on assessing the associ
ation between pyreticosis and the intake amount of cotton seed oil are listed 
in Table 26.5. Judge whether there is a linear dose-response relationship.

Using Eq. (26.20) the / 2 statistic is

2 [ 2 I 3 - U f ( 6 6 7 ) f

X  |497)” w 7 - l | t4 9 7  X 12 6 3  -  < « W l
12.68.

The value of / 2 =12.68 is greater than Xoosu) =  3-84. We conclude that 
there is a significant dose-response relationship between pyreticosis and the 
amount of cotton seed oil taken.

26.3 Analysis of Matched Data

26.3.1 Analysis o f data with 1:1 matching

When one case is matched to one control and the exposure under study is 
dichotomous, n matched sets can be categorized to one of the four possible 
exposure combinations showed in Table 26.6.

The display of four combinations of exposure and disease status in 
Table 26.6 can be reorganized to the 1:1 matched data layout shown in 
Table 26.7 for easy understanding.
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Table 26.6 F o u r p o ss ib le  co m b in a tio n s  o f  d ich o to m o u s 
e x p o su re  fo r 1 :1 m atch ed  data .

E x p o su re  c o m b in a tio n

(1) (2) (3) (4) Total

C ase + + _ —

C ontro l + - + -

N u m b e r o f  m atch ed  sets a b C d  n

Note : +  d en o tes ex p o sed , — den o tes non-exposed .

Table 26.7 D a ta  lay o u t fo r  1: 1 m atch ed  design .

C a se ’s e x p o su re  s ta tus

C o n tro l’s e x p o su re  sta tu s

+ Total

+ a b a +  b

- c d c  +  d

Total a  +  c b +  d n

It is showed from the two tables above that the terms a and d denote the 
numbers of sets in which both of the case and control were accordantly 
exposed (+ + ) or non-exposed (— ) to the study factor respectively. Those 
accordant sets can bring no information to the relationship of disease and 
exposure. While the terms b and c denote the numbers of sets in which 
only the case or only the control was exposed and symbolized as (-1— ) 
or (—|-). Those discordant sets bring on information to the relationship 
between disease and exposure.

The estimate of the odds ratio, conditional on the matched design, is

(26.21)

As with the / 2 square test for matched data in Chap. 6 , for the hypothesis 
test

H 0 : y f  =  l ,  H i  : yr ф  1
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Tabic 26 .8  D a ta  o f  303 m atch ed  se ts fro m  a 
1:1 m atch ed  case-co n tro l s tudy  o n  re la tio n sh ip  o f  
leu k e m ia  and  o c cu p a tio n a l e x p o su re  to  benzene.

C o n tro l’s e x p o su re
h isto ry  to  b en zen e

C a se ’s ex p o su re
h is to ry  to  b e n ze n e Yes N o Total

Yes 2 30 32
N o 12 259 271

Total 14 289 303

the statistic used is

2 (\ b - c \ - l )2
X = ----- T—-------b +  c

(26.22)

Under the null hypothesis, the statistic follows x 2 distribution with one 
degree of freedom. According to the value of / 2 statistic, a decision can be 
made whether the null hypothesis should be rejected or not.

The 95% confidence interval of у/ is estimated by

(26.23)

Example 26.5 The data of 303 matched sets showed in Table 26.8 were 
resulted from a 1:1 matched case-control study on the relationship of 
leukemia and occupational exposure to benzene.

By Eqs. (26.21)—(26.23), the odds ratio and test statistic are

« 30
12
( | 3 0 -  121 -  l )2

¥

..2

2.5,

3 0 + 1 2
=  6 . 88,

P < 0.05 so that there is a significant association between leukemia and 
the history of occupational exposure to benzene. The 95% confidence limits 
for y) are

Л , _L96 \
2.5 or (1.26,4.96).
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Table 26.9 Possible outcomes for matched 
set i (i =  1 , 2 , . . .  , k )  in 1 :m matched design.

Exposed Unexposed Total

Case Yi 1 ~ Y i 1

Control X i m  — X j m

26.3.2 Analysis o f data with 1 :m matching

The layout of data for the design of 1 case matched by m controls 
appears complicated. Let к denotes the number of matched sets, the 
possible outcomes in ith matched set (/ =  1, 2 , . . . ,  k) are displayed in 
Table 26.9.

In Table 26.9, F, is an indicator, F, =1 if the case is exposed, and F, =0 
if not. Xj represents the number of exposed, and (m-X, ) the number of 
non-exposed among m controls, к matched sets are regarded as к strata. By 
using Eq. (26.14) the odds ratio is

~ =  E l ,  Yi(m ~  Xj)

" E / = i  а д  -  Y d '
(26.24)

For test

Ho : V =  1, H\ : Ч> Ф 1

as Eq. (26.15), the test statistic is calculated by

2 =  (E ^ - E *.-)2
F m - h  ^  (1 +  m ) ( X l  +  Yi)  -  E №  +  Yi)2'

(26.25)

Example 26.6 In order to explore the possible association of development 
of infectious hepatitis with taking meals in public restaurants within 40 
days before the disease occurrence, a 1:4 matched design was adopted. One 
case was matched with four controls in gender, age group, and no hepatitis 
patient in control’s family. The data of 18 matched sets are listed on the left 
of Table 26.10. Work out the analysis.



Table 26.10 Data from a 1:4 case-control study on the association of infectious hepatitis with meals in public restaurants.

Part one: Raw data Part two: Quantity for calculating odds ratio

No. 
of set 

i

Exp. 
of case

Yi

Exp.
of control

No.
of control 

m i m,- E, 1 -Е,- x , ( 1 - e,) rn, -  X, X / K - X / ) X/ +  Yi
(1 + M j )
(X,- +  E,) (X/ +  Y i)

1 0 0 4 0 1 0 4 0 0 0 0

2 1 1 4 4 0 0 3 3 2 10 4
3 1 0 4 4 0 0 4 4 1 5 1

4 0 0 4 0 1 0 4 0 0 0 0

5 0 1 4 0 1 1 3 0 1 5 1

6 1 0 4 4 0 0 4 4 1 5 1

7 1 0 4 4 0 0 4 4 1 5 1

8 0 0 4 0 1 0 4 0 0 0 0

9 1 2 4 4 0 0 2 2 3 15 9
1 0 1 1 4 4 0 0 3 3 2 1 0 4
11 1 2 4 4 0 0 2 2 3 15 9
12 0 0 4 0 1 0 4 0 0 0 0

13 1 4 4 4 0 0 0 0 5 25 25
14 l 1 4 4 0 0 3 3 2 10 4
15 1 1 4 4 0 0 3 3 2 10 4
16 1 1 4 4 0 0 3 3 2 10 4
17 0 0 4 0 1 0 4 0 0 0 0

18 1 2 4 4 0 0 2 2 3 15 9

Total 12 16 72 48 6 1 56 33 28 140 76

N ote: Yj =  1 if case is an exposed, K, =  0 if case is a non-exposed. X ,• denotes the exposed number among controls in the ; th set.
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Solution The basic quantities prepared for further use are listed on the 
right of Table 26.10. By Eq. (26.25) the value of the testing statistic is

2 (48 -  16)2
/ m_h ~  140 -  76

16.0.

It is greater than /q0|(|) =6.63. Then H0 : у/ =  1 is reject at a =0.01, and 
the conclusion is that the development of infectious hepatitis significantly 
associates with taking meals in public restaurants within 40 days before the 
disease occurs. Using Eq. (26.24), the estimate of odds ratio is

- = EL, У , ( ш  -  X , )

T „ ,  X ,(1  -  ¥ , )

By Eq. (26.23), the 95% confidence limits for ц/ are

33 or (5.95, 183).

26.3.3 Analysis o f data with 1 : m, matching

In matched design, it is usual that 1 case matches a fixed number, ra, of 
controls for all sets in the study. But it is not unusual that 1 or more controls 
may be lost in some sets. This results in unequal number of controls. Let га,- 
denotes the number of controls in ith set. The sets with the equal number 
of controls can be put together for analysis.

Example 26.7 Suppose that in Example 26.6 we have additional data 
which consist of five sets with 1:1 matching and eight sets with 1:3 matching. 
The supplementary data are listed in Table 26.11, where га,- =  1 or 3. We 
assemble the two parts of data in Tables 26.10 and 26.11 as a whole to 
calculate the odds ratio.

Having combined two parts of data, by using Eq. (26.25),

2 (48 +  21 — 16 — 9)2 л<с 1
Хм—ы 140 +  6 0 - 7 6 - 3 4

It is greater than / j 05(l) =  3.84, P < 0.05. We reject Hq : у  =  1 at a — 0.05. 
It shows that there is a significant association between developing infectious 
hepatitis and taking meals in public restaurants within 40 days before occur
rence of the disease.



Table 26.11 Supplementary data to Example 26.6 shown in Table 26.10.

No. 
of set 

i

Part one: Raw data Part two: Quantity for calculating odds ratio

Exp.
of case

Yi

Exp.
of control

Ъ

No.
of control 

m i m j Y j 1 - Y t X i (  1 - 275 3 1 Y t ( m ,  -  X i ) X i  +  Yi

(1 + Щ )
( X i  +  Y t ) (■X i  +  Y i ) 2

19 1 0 1 1 0 0 1 1 1 2 1
2 0 1 0 1 1 0 0 1 1 1 2 1

21 1 1 1 1 0 0 0 0 2 4 4
2 2 0 1 1 0 1 1 0 0 1 2 1

23 0 1 1 0 1 1 0 0 1 2 1

24 1 1 3 3 0 0 2 2 2 8 4
25 1 1 3 3 0 0 2 2 2 8 4
26 1 1 3 3 0 0 2 2 2 8 4
27 1 1 3 3 0 0 2 2 2 8 4
28 1 2 3 3 0 0 1 1 3 12 9
29 1 0 3 3 0 0 3 3 1 4 1
30 0 0 3 0 1 0 3 0 0 0 0
31 0 0 3 0 1 0 3 0 0 0 0

Total 9 9 29 21 4 2 2 0 14 18 60 34
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Program 26.1 Computation of adjusted odds ratio for data stratified 2 x 2  tables shown 
in Table 26.4.

Line Program Line Program

01 DATA STRATIFY; 09 4 62 2 224 9 33 12 390 4 26 33 330
0 2 DO 1=1 TO 5; /* age group */ 10 6  9 65 362 6  5 93 301
03 DO A=1 TO 2; 11 ;
04 DO B=1 TO 2; 12 PROC FREQ;
05 INPUT F @@; 13 WEIGHT F;
06 OUTPUT; 14 TABLES A*B/ALL NOCOL;
07 END; END; END; 15 TABLES I*A*B/ALL NOCOL;
08 CARDS; 16 RUN;

Using Eq. (26.24), the odds ratio is estimated as 

» 33 +  14
¥ 1 + 2

15.67.

Using Eq. (26.23), the estimated 95% confidence limits for yj are 

15.67(1±v70T) or (4.90,50.13).

26.4 Computerized Experiments

Experiment 26.1 Computation of odds ratio for stratified 2 x 2  Tables
Program 26.1 computes odds ratio adjusted for age with the data in 
Table 26.4, which are stratified to 5 2 x 2 Tables.

In Program 26.1, lines 09 and 10 are the data listed in Table 26.4. Line 14 
computes the crude odds ratio. Line 15 computes the age-stratified odds 
ratios and age-adjusted odds ratio. Table 26.12 lists part of the output from 
the program.

Experiment 26.2 Computation of odds ratio for data from 1:1 matched 
design In S AS software there is no special procedure to compute odds ratio 
and corresponding variance for matched data. PROC logistic can be used 
to compute the odds ratio instead. The odds ratio for data in Example 26.5 
can be obtained by SAS Program 26.2.

Variables XI and X2 in line 2 of Program 26.2 denote the exposed 
levels of case and control respectively, with 1 if the subject is exposed and 
0 if not. Variable F denotes the cell frequency. Line 03 creates a constant
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Table 26.12 Output from program 26.1 for data listed in Table 26.4.

Age-stratification i
Odds 

ratio i//i

95% confidence 
interval

Mantel-Haenszel
P-value

1 7.226 1.293-40.374 6.776 0.009
2 8.864 3.482-22.565 28.642 <0 .0 0 0 1

3 1.538 0.506-4.667 0.583 0.445
4 3.713 1.278-10.783 6.583 0 .0 1 0

5 3.884 1.159-13.016 5.533 0.019

Age-adjusted 3.970 2.510-6.280 34.723 < 0 .0 0 0 1

Crude 1.684 1.104-2.570 5.841 0.016

Program 26.2 Computation of odds ratio and corresponding standard error for 
data of Example 26.5 with 1:1 matched design.

Line Program Line Program

01 DATA MATCHING; 06
02 INPUTXI X2F@@; 07
03 Y =  1; X =  XI - X 2 ;  OUTPUT; 08
04 CARDS; 09
05 1 1 2 1 030  0 1 120 0259 10

PROC LOGISTIC; 
MODEL Y =  X/NOINT; 
WEIGHT F;
RUN;

Table 26.13 Criteria for assessing model fit.

Criterion Without covariates With covariates Chi-square for covariates

—2 log L  420.047 
Score —

412.077 7.970 with 1 DF (P =  0.0048) 
7.714 with 1 D F(P =  0.0055)

response variable Y to satisfy mechanical operation. Variable X in the same 
line is used to compare the odds of (1,0) and (0,1). Results are showed in 
Tables 26.13 and 26.14.

In Table 26.13, - 2  log L =  420.047 -412.077 =  7.970 is the likelihood 
ratio x~ statistic with P =  0.0048; Score =  7.714 is the value of / 2 statistic 
for score test with P =  0.0055. The two P-values are closed to each other. 
These test statistics show that the odds of exposure in case is significantly 
differentfrom that in control. Parameter estimate is 0.9163 (see Table 26.14),
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Table 26.14 Analysis of maximum likelihood estimates.

Variable
Parameter
estimate

Standard
error Wald x 2 P r>  X 2

Standardized
estimate

X 0.9163 0.3416 7.1965 0.0073 1.865984

Table 26.15 Data of bladder cancer and smoking history.

Smoking history

Group Exposed unexposed Total

Cases with bladder cancer 192 129 321
Controls 156 181 337

Total 348 310 658

and its standard error is 0.3416, odds ratio is exp(0.9163) =  2.50. That
means the odds of exposure in cases is 2.5 times as large as that in controls.
The 95% confidence limits are exp(0.9163 ±  0.3146) or (1.280, 4.883).

26.5 Practice and Experiments

1. Table 26.15 fisted below is the sorted outcome from a case-control study 
on association between bladder cancer and smoking history. Analyze the 
data.

2. Table 26.16 is the sorted outcome from a case-control study on asso
ciation between myocardiac infarction onset and alcohol consumption 
pre-onset. Compute the odds ratio and test for trend.

3. Derive Eqs. (26.24) and (26.25) in Sec. 26.3 from Eqs. (26.14) 
and (26.15) in Sec. 26.2.

4. In Sec. 26.2, we set two propositions. The first one is that in case-control 
study, the ratio of two odds of exposures in different disease status equals 
the ratio of two odds of disease occurrences in different exposures. And 
the second is that when the probability of disease occurrence is low (for 
example, less than 1%), the odds ratio approximates the relative risk.

(1) Let D and D denote case and control respectively, E and Ё 
denote exposure and non-exposure respectively. Use the conditional
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Table 26.16 Distribution of amount of alcohol consumption 
of 391 myocardial infarction Patients and 418 controls.

Amount of alcohol Patient suffering from
consumption per day (g) myocardial infarction Control

0 136 110
0-100 202 238
100-200 42 46
250+ 11 24

Total 391 418

Table 26.17 Data from a 1:1 matched case-control study on 
relationship of breast cancer and breast-feeding history.

Breast-feeding history for

Breast-feeding history patient with breast cancer

for control Yes No Total

Yes 27 65 92
No 23 43 66

Total 50 108 158

probabilities P{E \ D), Р(Ё \ D ), P(E  | Ь), Р{Ё  | D), P(D \ E), 
P{D  | E), P(D  | Ё) and P(D \ Ё) to express the two propositions.

(2) Use Bayse’ formula to prove the equivalence between the above 
mentioned two types of odds ratios.

(3) Prove that under the condition of low disease incidence, the odds 
ratio approximates the relative risk.

5. Table 26.17 is the sorted outcome from a 1:1 matched case-control study 
on relationship between breast cancer and breast-feeding history. Com
pute the odds ratio to explore the effects of breast feeding history on 
breast cancer occurrence. If the data would be treated as if they were 
come from a design for group comparison, what value would be the 
odds ratio?

(1st edn. and 2nd edn. Songlin Yu)



Chapter 27

Design and Analysis of Diagnostic 
and Screening Tests

The main purpose of clinical diagnosis and epidemiologic screening is to 
detect at early stage if a person has a related disease. Some medical stud
ies therefore aim at finding out or creating better strategies for diagnostic 
or screening test. Problems arising in this kind of studies include: How to 
design? How to analyze the data? How to evaluate the usability of a diagnos
tic test or screening test? How to compare the difference among diagnostic 
tests or screening tests? We will deal with these problems in this chapter.

27.1 Design and Data Layout

Subjects should be those with or without a certain disease confirmed by gold 
standard, which is the evidence obtained by more refined methods such as 
results from biopsy, surgical operation, pathological anatomy or autopsy, 
X-ray film, CT scan, long-term following up, or other convincing tests. Case 
and control subjects were recruited, respectively, from the population with 
the disease and without the disease. The sample sizes for each group should 
be larger than 20 (Youden, 1950). Test results can be expressed as Table 27.1.

27.2 Measures Frequently Used in Diagnostic Test

Example 27.1 113 prostate cancer patients were diagnosed by radioim
munoassay of prostate acid phospholipase (R1A-PAP), and 217 patients

721
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Table 27.1 R e su lt o f  a  d iag n o s tic  test.

T est re su lts

T rue  d ise ase  sta tu s Positive  (7 + ) N eg ativ e  ( T - ) Total

C ase  ( D + ) A В A  +  В
C o n tro l (£>_) C D C  +  D

Total A  +  C B  +  D N

Table 2 7 .2  R IA -P A P  d iag n o ses  p ro s ta te  cancer.

R IA -P A P  resu lts

T rue  d isease  s ta tus + - Total

C an ce r 79 34 113
N o  can c e r 13 204 217

T otal 92 238 330

without prostate cancer were taken as controls. Table 27.2 shows the diag
nostic test results. The prevalence of prostate cancer in community is 
35/100000. Compute relevant measures of diagnostic test to assess the 
results in the table.

The following are the measures frequently used in evaluation of diag
nostic test:

27.2.1 Sensitivity

The definition of sensitivity is the probability of positive testing result if the 
disease is present, also called true positive rate (777?), and denoted as Sen.

Sen — P(T+ | D+) — А / (A +  B) =  TPR. (27.1)

The standard error is

SESen =  \ lAB/(A  +  £ ) 3 =  ^  Sen( 1 -  Sen)/(A +  B).

For Example 27.1, Sen =  79/113 =  0.6991, i.e., true positive rate TPR =  
0.6991. Among the patients with prostate cancer, 69.91% are positive; its
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standard error is

S E s e n  =  v/0.6991 (1 -0 .6 9 9 1 ) /113 =  0.0431 =  4.31%.

27.2.2 Specificity

Specificity is defined as the probability of negative testing result if the 
disease is absent.

S p e =  P ( T - \ D - )  =  D/(C +  D). (27.2)

The standard error is

SESpe =  y/CD/{C +  D )3 =  JSpe( \  — Spe)/(C +  D).

For the example, Spe — 204/217 =  0.9401, i.e., among the patients with
out prostate cancer, 94.01% are negative; its standard error is

S E Spe =  \/0.9401(1 — 0.9401)/217 =  0.0161 =  16.1%.

From Table 27.1 we can get the probability of a false negative fi =  1 — 
Sen =  B/(A +  B) and the probability of a false positive a — 1 — Spe =  
C/{C +  D). a is also called false positive rate (EPR).

For Example 27.1, the probability of a false negative is estimated as 
fi =  1 — Sen =  1 — 0.6991 =  0.3009; the probability of a false positive, or 
false positive rate is a =  1— Spe =  1—0.9401 =  0.0599, or FPR =  0.0599. 
The relationship between sensitivity and specificity is displayed in Fig. 27.1, 
where the cross point between the middle vertical line and the horizontal axis 
is called the cutoff point. Using the critical point, subjects can be classified 
as positive or negative.

The value of sensitivity or specificity ranges from 0 to 1. The closer 
to 1 the value, the better is the accuracy of a test. When we compare two 
diagnostic tests, and use the two measures sensitivity and specificity only, 
it may occur that one test has higher sensitivity and lower specificity and 
the other has lower sensitivity and higher specificity. In this case, we could 
not determine which one is better. Therefore, other measures that combine 
sensitivity and specificity, such as Youden’s index, positive likelihood ratio, 
and negative likelihood ratio, are suggested for evaluating a diagnostic test.
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27.2.3 Youden’s index

Youden’s index is the difference between true positive rate (TPR) and false 
positive rate (FPR).

J — TPR — FPR =  Sen -  (1 -  Spe). (27.3)

The standard error is

SEj =  у/ AB/{A  +  B)3 +  CD/(C  +  D )3

=  y/Sen( 1 -  Sen)/(A +  B) +  Spe( 1 -  Spe)/{C +  D).

The value of Youden’s index ranges from 0 to 1. The closer to 1 the value, 
the better is the accuracy of a test.

In Example 27.1, J =  0.6991 — 0.0599 =  0.6392, i.e., Youden’s index 
is 0.6392; its standard error is

SEj =  -y/0.6991(1 — 0.6991)/113 +0.9401(1 -0.9401)/217 =  0.0461.
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27.2.4 Positive likelihood ratio

Positive likelihood ratio is the ratio of true positive rate (TPR) to false 
positive rate (FPR).

TPR Sen 
FPR ~  1 - S p e '

(27.4)

In Example 27.1, LR+ =  0.6991/0.0599 =  11.67.
The range of LR+ values is from 0 to oo. The larger the value is, the 

stronger is the ability of a test to confirm a disease.

27.2.5 Negative likelihood ratio

Negative likelihood ratio is the ratio of false negative rate to true negative 
rate, i.e., the ratio of missed diagnosis rate to specificity.

1 -  TPR 1 -  Sen 
1 -  FPR ~  Spe

(27.5)

In Example 27.1, LR_ =  (1 -  0.6991)/(1 -  0.0599) =  0.32.
The values of LR_ also range from 0 to oo. The smaller the value is, 

the stronger is the ability of a test to confirm a disease.

27.2.6 Positive predictive value

Positive predictive value is the probability that a person actually has the 
disease when the test is positive.

PV+ =  P(D+ \T+) =
_________ P(D+)P{T+ \D +)_________
P(D+)P(T+ | D+) +  P(D^)P(T+ | D_)

PoSen
PoSen+  (1 -  P0)(l -  Spe)’

(27.6)

where Pq =  P(D+) denotes the population prevalence,

P(D .)  =  1 -  P(D+) =  1 - P 0.
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For Example 27.1, P0 =  0.00035, Sen =  0.6991, Spe =  0.9401, 
substitute them into Eq. (27.6), we have

PV+ =  P(D+ \T+) =  

=  0.0041

0.00035 x 0.06991
0.00035 x 0.6991 +  (1 

1/246.
0.00035) (1 -0 .9401)

If the whole population is diagnosed by RIA-PAP, a patient, whose test 
result is positive actually has prostate cancer among 246 patients. It reflects 
the worthiness of the prediction when the test result is positive.

27.2.7 Negative predictive value

Negative predictive value is the probability that a person actually is disease- 
free given that the test is negative.

PV_ =  P(D_ | 71)
P(D _)P(71 | D_)

~  P(D_)P(T„ | D_) +  P(D+)P{T_ | D+)

(1 -  PQ)Spe— ------------------ -----------------  127 7)
(1 -  P0)Spe+ P0( 1 -  Sen)

Substitute P0 =  0.00035, Sen =  0.6991, Spe =  0.9401 into Eq. (27.7), 
we have

PV_ =  P(D_ | 71)

(1 -0.00035) x 0.9401
~  (1 -  0.00035) x 0.0401 +0.00035 x (1 -  0.0991)
=  0.9999.

Among 10,000 patients whose test results are negative, 9999 patients actu
ally do not have prostate cancer, i.e., only 1 patient has the disease. It is taken 
as an indication of the worthiness of the prediction when the test result is 
negative.

Note that only when the sample prevalence P\ =  (A +  B)/N  is equal to 
the population prevalence P<) =  P(D+), then Eq. (27.6) can be reduced to

PV+ =
A

A +  C
(27.8)
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and Eq. (27.7) can be reduced to

PV_ =
D

В +  D
(27.9)

In Example 27.1, according to Eqs. (27.8) and (27.9), we can get PV+ =  
79/92 =  0.86, =  204/238 =  0.86. They are very different from
the results of Eqs. (27.6) and (27.7). This is because the sample prevalence 
P\ — (Л -f B)/N  =  113/330 =  0.34 is not equal to the population preva
lence Po =  0.00035. In this case, to compute the predictive value, one 
should use Eqs. (27.6) and (27.7), and not Eqs. (27.8) and (27.9).

In other words, if the case and control groups are a random sample 
from the population, rather than two samples from disease and disease- 
free subpopulation respectively, we can substitute the sample prevalence 
Pi =  (A +  B)/N  for population prevalence. In such a case, Eqs. (27.8) 
and (27.9) are suitable. Otherwise, Eqs. (27.6) and (27.7) must be used.

The values of P V+ and P V- range between 0 and 1. When the prevalence 
of the population is fixed, the closer to 1 the value is, the better is the accuracy 
of a test.

27.3 Analysis of ROC Curve

It must be noted that the values of true positive rate (TPR) and false positive 
rate (FPR) depend on the cutoff point for a diagnostic test based on con
tinuous variable. To evaluate comprehensively the accuracy of a diagnostic 
test, all possible cutoff points should be considered.

ROC curve is the abbreviation for “receiver operating characteristic 
curve” or “relative operating characteristic curve”, originated from telecom
munications for evaluating the quality of receiving signal. Since the ’80s, 
ROC curve analysis has been widely applied to evaluate the performance 
of a diagnostic test in medicine. Through changing the diagnostic cut
off points, pairs of TPR and FPR can be obtained. Taking FPR as pr
axis, TPR as у-axis, a ROC curve can be obtained from plotting TPR 
against FPR for all possible cutoff points. The area under the curve 
denoted as AUC is a new measure to assess the usability of a diagnostic
test.



728 Medical Statistics and Computer Experiments

Table 27.3 H y p o th e tica l d a ta  o f  a  c o n tin u o u s  variab le .

G o ld  stan d ard T est re su lts

C ase  g roup 15.90 13.35 12.87 10.22 5.01
C o n tro l g ro u p 8.29 6 .2 4  4.61 1.77

27.3.1 Calculating ROC operating point

The variables for ROC curve analysis can simply be classified into two types, 
continuous variable and ordinal variable. Roughly speaking the variables 
measured by laboratory tests are continuous, while those of clinical image 
diagnosis and psychological evaluation are ordinal.

Example 27.2 A study on diagnostic test has five patients in the case 
group and four patients in the control group. The test results are shown in 
Table 27.3. Calculate all possible TPR and FPR (note that the sample sizes 
are too small).

Solution Rank the nine values from large to small and use the first eight 
values (do not include the smallest value 1.77) as diagnostic cutoff point. 
The test result is positive if the value is larger than or equal to the cutoff 
point, otherwise negative. The results are shown in by the following eight 
fourfold tables:

c u to ff  p o in t = 15.90 c u to ff  p o in t =  13.35 c u to ff  po in t =  12.87 c u to ff  p o in t =  10.22

T est Test T est Test

G ro u p  + - G roup + G ro u p + G roup +

C ase  1 4 C ase 2 3 C ase 3 2 C ase 4  1
C o n tro l 0 4 C ontro l 0  4 C on tro l 0  4 C ontro l 0  4

c u to ff  p o in t = 8.29 c u to ff  po in t =  6 .24 c u to ff  po in t =  5.01 c u to ff  p o in t =  4.61

Test Test Test Test

G ro u p  + G roup + G roup + G roup +

C ase  4 1 C ase 4  1 C ase 5 0 C ase 5 0
C o n tro l 1 3 C o n tro l 2 2 C on tro l 2 2 C on tro l 3 1
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Table 27.4 FPR and  TPR fo r  th e  da ta  in  T ab le  27 .3 .

D iag n o stic  c u to ff  p o in t

15.90 13.35 12.87 10.22 8.29 6 .24 5.01 4.61

FPR 0 0 0 0 1/4 2 /4 2 /4 3/4
TPR 1/5 2/5 3/5 4/5 4/5 4/5 5/5 5/5

Table 27 .5  D iag n o stic  c a teg o rie s  o f  109 C T  film s.

C T  resu lts

G o ld  standard 1 2 3 4 5 Total

A bnorm al 3 2 2 11 33 51
N orm al 33 6 6 11 2 58

For each of the above fourfold tables, we can calculate a pair of (FPR, 
TPR) which is called operating points (or coordinate points) of a ROC (see 
Table 27.4). If there are same values (ties) among the test results, we only 
need to keep one value among the tie as the cutoff point.

Example 27.3 Among 109 films of CT, 51 films were diagnosed as abnor
mal, 58 films were diagnosed as normal by a gold standard. A radiologist 
classified the whole set of films into grade 1, 2, 3, 4 and 5 according to 
his confidence degree to abnormal. The results are shown in Table 27.5. 
Calculate all possible (FPR, TPR).

Solution Rank the results from large to small and use the first four cat
egories (do not include the smallest value 1) as diagnostic cutoff points 
respectively. The CT result is positive if a category value is larger than or 
equal to the cutoff point, otherwise, negative. Similar to Example 27.2, the 
results can also be expressed in fourfold tables. From all fourfold tables 
with different operating points, FPR and TPR can be calculated which are 
shown in Table 27.6.

Table 27.6 it is assumed that larger test result indicates more positive. If 
smaller test result indicates more positive, we should rank the test results 
from small to large and assume it is positive if a value is smaller than or 
equal to the cutoff point, otherwise, negative.
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Table 27.6 FPR  an d  TPR fo r  the  da ta  in T able 27 .5 .

C u to ff  p o in ts  (ca teg o ry  values)

5 4 3 2

FPR 0 .0345 0.2241 0 .3 2 9 6 0 .4 3 1 0
TPR 0.6471 0 .8627 0 .9 0 2 0 0 .9412

TPR

FPR

Fig. 27.2 T h e  e m p irica l ROC cu rve  fo r  the  d a ta  in T able 27 .5 .

27.3.2 Plottting ROC curve

Let FPR be x-axis, TPR be у-axis, an empirical ROC curve can be con
structed by plotting all operating points and joining the adjacent points by a 
straight line. Any ROC curve certainly includes the points (0. 0) and (1, 1). 
The two points correspond to the operating point of Sen =  0, Spe =  1 and 
of Sen — 1, Spe =  0 respectively.

For the data in Table 27.5, the empirical ROC curve is shown in Fig. 27.2. 
In theory, a worthless diagnosis, TPR =  FPR, is a diagonal line from the 
origin to the top right corner which is usually called chance line. ROC curve 
usually lies over the chance line. The farther ROC curve is from the chance 
line, the better is the accuracy of a diagnostic test. An almost perfect test 
shows that its ROC curve goes straight up from the origin to nearly the top 
left comer, and then moves to the top right corner.
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27.3.3 Calculating the area under ROC curves

The area under ROC curve denoted with AUC or A z , can reflect the accuracy 
of a diagnostic test. Its value ranges from 0.5 to I . For a worthless test, Az =  
0.5, for a perfect test, Az =  1. In general, Az =  0.50-0.70, indicates a poor 
accuracy; 0.70-0.90, a good accuracy; above 0.90, an excellent accuracy 
(Swets, 1988). There are mainly three algorithms for Az  and its standard 
error, one parametric method of bi-normal model and two nonparametric 
methods. Among them, the nonparametric method (Hanley and McNeil, 
1982; 1983) is simpler and easier to understand. By a numerical example 
the method is introduced as the follows:

Suppose that there are na subjects with the values xa. (г =  1 , 2 , . . . ,  nu) 
in the abnormal group and n„ subjects with the values xnj (j  =  1,2 , ,n„) 
in the normal group. It can be proved that the area under ROC curve (Az) is 
the probability that the test result in the abnormal group is larger than that 
in the normal group. The expressions are

A z  = n„n, ^ 2 ^ 2 ¥ ( x a i , x n j ) ,

7=1 < =  1

V  ( х щ i x n j )  —

1 xaj > x„j, 
0.5 xaj — Xnj * 
0  хщ < xnj.

(27.10)

(27.11)

Equation (27.11) means that comparing each value xai in the abnormal 
group with each value xnj in the normal group, if the former is larger than 
the latter the score is 1; if equal, the score is 0.5; otherwise the score is 0 . 
Equation (27.10) gives the average score which is obtained from na x n„ 
comparisons, i.e., Az (Noted that if smaller test result indicates more abnor
mal, we should exchange the signs and < in (27.11)).

The standard error of Az can be estimated by

SE(AZ)

Az(l  — Az ) +  (na — 1)(<2 A |)  +  (n„ 1 )(Q2 -  A |)
nan„

(27.12)
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where Q i is the probability that two randomly chosen subjects in abnormal 
group have larger test result than one randomly chosen subjects in nor
mal group and Qi is the probability that one randomly chosen subject in 
abnormal group have larger test result than two randomly chosen subjects 
in normal group (assume that larger test result indicates more abnormal). 
The estimating method for Q\ and Q2 are displayed in Example 27.4.

By a hypothesis test

H0 : Az — 0.5, H\ : Az > 0.5.

We can determine whether the difference between an obtained area under 
ROC curve and the area under chance line is statistically significant. The 
test statistics is

Az  — 0.5Z =  — -------- .
SE(Az)

When H0 is true, it will approximately follow a standard normal distribu
tion. The asymptotic (1 — a ) confidence interval for Az can be constructed 
according to

Az ± Z aSE(Az ).

Example 27.4 41 persons with certain disease (abnormal group) and 193
persons with disease-free (normal group) were diagnosed by expert consul
tation. A research panel had used film data as a diagnostic test to all these 
subjects. They classified the film data into grade 1,2,3,4,5 according to their 
confidence degree to abnormal. The results are displayed in lines 1 and 2 
of Table 27.7. How much is the accuracy of such a diagnostic approach?

Table 27.7 C a lc u la tin g  A z an d  its  s ta n d a rd  e rro r  re la ted  to  the  d a ta  o f  c a teg o ric a l variab le .

C a teg o ries

C o n ten t 1 2 3 4 5 Total

1. A b n o rm a l (xa ) 2 3 8 16 12 41 =  na
2. N o rm a l (xn ) 35 68 49 29 12 193 =  nn
3. xa >  C a te g o ry  (ya ) 39 36 28 12 0
4. xn <  C a teg o ry  (y „ ) 0 35 103 152 181
5. xn ya + x nxa /2 1400 2550 1568 580 72 6170
6 - xn (Уа +  УаХа +  x j/ 3 )  5601 1 9 5 676 50437 12219 576 2 14919
7- *а(У „  + У п Х„  + x % / 3 ) 817 15439 131651 4 44677 4 1 9 7 7 2 1012356
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Solution From Table 27.7 we can obtain the related parts for calculating 
the area under ROC curve Az and its standard error. Row 3 of Table 27.7 is to 
calculate the number of abnormal him above a category (i.e., the difference 
between the number of abnormal him (41) and the sum of frequency for the 
category and below). Row 4 is to calculate the number of normal him below 
a category (i.e., the sum of frequency below the category). The Rows 5, 6 ,7 
are calculated with the formulas listed in the hrst column of rows 5, 6 , 7 
accordingly. For example, the value for the cell of row 6 and category 2 is 
equal to

68(362 +  36 x 3 +  32/3) =  95676,

Total of row 5
A- = -----------------

nnna
Total of row 6

nnn2a

6170 
193 x 41 

214919 
193 x 412

0.7797,

= 0.6624,

<2 з
Total of row 7

n2nna
1012356 

1932 x 412
=  0.6629.

Substitute the values of Az, Q\, Qi, nn and na into (27.11), we have

SE(AZ) =  {[0.7797(1 -  0.7797) +  (41 -  1)(0.6627 -  0.77972) 

+  (193 -  1)(0.6629 — 0.77972)]/(41 x 193)}1/2 

=  0.0403.

The test statistics Z =  (0.7797 -  0.5)/0.0403 =  6.9304, P =  0.0000. 
The 95% conhdence interval for Az is equal to 0.7797 ±  1.96 x 0.0403 
or (0.7006, 0.8588), which does not include 0.5. Those results suggest that 
the accuracy of the him diagnosis is signihcantly different from 0.5.

Example 27.5 Calculate the area under ROC curve and its standard error 
for hypothetical continuous data in Table 27.3.

Solution For continuous ROC data, rank the test results for all subjects 
in two groups, make the test results as cutoff points (only use one value if 
there is a tie). The above method of calculating Az and its standard error 
can be applied. Table 213  is sorted into rows 1 and 2 in Table 27.8. Rows
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Table 27.8 C a lc u la tin g  A z  an d  its  s tan d ard  e rro r  re la te d  to  the  d a ta  o f  c o n tin u o u s  variab le .

C u to ff  po in ts

C o n ten t \ . l l 4.61 5.01 6.24 8.29 10.22 12.87 13.35 15.90 Total

1. C ase  (xa ) 0 0 1 0 0 1 1 1 1 5 - n a
2. C o n tro l (xn ) 1 1 0 1 1 0 0 0 0 4  =  n„

3. xa > cu to ff 5 5 4 4 4 3 2 1 0
p o in t (y fl)

4 . x n <  c u to ff 0 1 2 2 3 4 4 4 4
p o in t (y „ )

5. x„ ya + x nxa /2 5 5 0 4 4 0 0 0 0 18

6 - хп (Уа + 25 25 0 16 16 0 0 0 0 82
УаХа +  X2 /3 )

7. Xa (у 2 + 0 0 4 0 0 16 16 16 16 68
УпХп +  Х2 /Ъ)

3-7 in Table 27.8 can be obtained imitating those in Table 27.7.

Az -  

Qi  =  

<22 =

Total of row 5 18
n„na 4 x 5

Total of row 6 82
n„n2a 4 x 52

Total of row 7 68
n2nna

=  0.9,

=  0.82, 

=  0.85.
42 x 5

Substitute the values of Az , <2i, £h, nn and na into (27.11), we have

SE{AZ)
/0.9(1 -  0.9) +  (5 -  1)(0.82 -  0.92) +  (4 -  1)(0.85 -  0.92)

5 x 4

=  0.1118.

The test statistic Z =  (0.9 — 0.5)/0 .1118 =  3.5777, P =  0.0003. The 
95% confidence interval for Az is (0.6809, 1), which does not include 0.5.

Note that: (1) The upper limit value of 95% confidence interval is written 
as 1 although it is 1.1191 from the calculation, which exceeds the possible 
maximal value 1; (2) In practical application of ROC analysis, the sample 
sizes for each group should be larger than 2 0 , while the sample sizes of the 
above example for normal and abnormal groups are just 4 and 5 respectively, 
which is only for the convenience of demonstrating.
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27.3.4 Comparing the areas under ROC curve

Assume there are two independent samples and hence two ROC curves and 
two areas under them. The following will introduce the comparison between 
the two areas under ROC curves.

To test the hypothesis of //(): the areas under two ROC curves are equal, 
firstly, the two areas under ROC curves and their standard errors should be 
calculated using Eqs. (27.11) and (27.12), denoted with AZr AZz and SEi 
and SE2 respectively; then use the following test statistic for comparison

^  _  Az\ — AZ2 
yj SE\ +  SE*

When Ho is true, it follows the standard normal distribution.

(27.13)

Example 27.6 For two diagnostic tests, the values of AZ{, AZl, SE\ and 
SE2 are 0.8828, 0.9302, 0.0326 and 0.0264, respectively. Assume they are 
independently sampled. Is the difference between the two areas under ROC 
curves statistically significant?

Solution From Eq. (27.13), we have

0.8828 -0 .9302  ,
z =  . =  =  —1.1299.

V0.03262 +  0.02642

The corresponding P value is 0.2585. This result suggests that the difference 
between the two areas under ROC curves is not statistically significant.

As for comparing the areas for two correlated diagnostic tests, one needs 
to estimate the correlation between two compared areas. The computation 
is rather complicated, and is not in the scope of this book.

27.4 Decision Making on Diagnostic and Screening Test

To assess whether a reliable and valid diagnostic test is cost-effective when 
it is put into practice, decision analysis is required to examine the charac
teristics of the test population, cost of the test, correct diagnostic benefit, 
risk of miss diagnosis, etc. The result of diagnostic or screening test can 
provide useful information for decision analysis.
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Table 27.9 C lin ica l sc reen in g  fo r  sku ll frac tu res  
fo r  em erg en cy  p a tien ts  w ith  h ead  traum a.

S creen in g

T rue  sta tus Positive N egative Total

S ku ll frac tu res 99 23 122
N o sku ll frac tu res 2423 3305 5728

Total 2522 3328 5850

Example 27.7 The Royal College of Radiologists of UK conducted a 
study of 5850 patients with head injury and receiving skull radiography 
(Royal College of Radiologists, Costs and benefits of skull radiography for 
head injury. Lancet (1981) 2, 791-795). A clinical screening was done for 
each patient with the presence or absence of symptoms and signs pos
sibly indicating the underlying brain damage before skull radiography. 
If some symptoms and signs were present, the patient was described as 
“clinical positive”. Skull fractures were confirmed by skull radiography. 
Table 27.9 shows 2522 clinical positives, with 99 skull fractures including 
vault fractures, depressed fractures, basal fractures and frontal, ethmoidal, 
or sphenoidal fractures; 3328 clinical negatives, with 23 skull fractures. 
A decision needs to be made whether a simple clinical screening is worth
while for the patients with head injury or simply take all head injury patients 
radiographed.

Figure 27.3 shows a proposal expressed with a tree where only the 
patients with positive result in clinical screening are recommended to 
receive skull radiography. And as a contrast, Fig. 27.4 shows another deci
sion tree where all patients are recommended to receive skull radiography. 
Decide which proposal is better.

Solution

(1) Assumptions To simplify the process, let us make some assumptions 
first:

(i) For head injury without intracranial hematoma, mortality was zero.
(ii) Regardless of skull fracture, it is possible that patient has intracra

nial hematoma.
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sku ll fracture

99/2522
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0

93/5850

0

1/5850

0

2422/5850

intracranial
negative

3328/5850
hematoma

1/3328

0.5/5850

0.5/5850

no intracranial dead 0/3327 0
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3327/3328 Lalive 3327/3327 3327/5850

5850/5850

Fig. 27.3 The decision tree where only clinical screening positive patients receive skull 
radiography.

3/5850

3/5850

0

115/5850

0.5/5850

1.5/5850

0

5727/5850

5850/5850

Fig. 27.4 The decision tree where all patients receive skull radiography.
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(iii) Just one uncertain death with screening negative and intracranial 
hematoma in Fig. 27.3; no skull fracture and intracranial hematoma 
in Fig. 27.4 had a probability of 0.5 for dead.

(iv) The costs of individual item are defined as: screening =  1, skull 
radiography =  9, intracranial hematoma =  1000, dead =  50000.

(2) Fill in the probabilities for all the boxes in Figs. 27.3 and 27.4 based 
on the data from the survey; and calculate the probabilities p, for all 
possible terminal outcomes by multiplying the probabilities along the 
paths.

(3) Calculate the total cost c, for the /'th terminal outcome by summing up 
the losing along the path, i =  1,2, . . . .

(4) Calculate the average losing (L) for Figs. 27.3 and 27.4 respectively,

L = J 2 P 'd -  (27-14)

In Fig. 27.3, the probability of the first terminal outcome is 3/5850 =  
0.0005, the total cost is C] =  1+9+1000+50000 =  51010; The probability 
of the second terminal outcome is 3/5850=0.0005, the total cost is C2  = 
1 +  9 +  1000 =  1010. For the probabilities of other terminal outcomes 
the total cost с,- and /7,c, are shown in Table 27.10.

Table 27.10 The probabilities and costs for all 
ramifications in Fig. 27.3.

Terminal (i) Probability//?,-) Cost (q  ) PiCi

1 0.0005 51010 26.1590
2 0.0005 1 0 1 0 0.5179
3 0 .0 0 0 0 50010 0 .0 0 0 0

4 0.0159 1 0 0.1590
5 0 .0 0 0 0 51010 0 .0 0 0 0

6 0 .0 0 0 2 1 0 1 0 0.1726
7 0 .0 0 0 0 50010 0 .0 0 0 0

8 0.4140 10 4.1402
9 0 .0 0 0 1 51001 4.3591

10 0 .0 0 0 1 1001 0.0856
11 0 .0 0 0 0 50001 0 .0 0 0 0

12 0.5687 1 0.5687
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Table 27.11 The probabilities and costs for all ramifications in Fig. 27.4.

Terminal ( i ) 1 2 3 4 5 6 7 8

Probability ( p i ) 0.0005 0.0005 0 .0 0 0 0 0.0197 0 .0 0 0 1 0.0003 0 .0 0 0 0 0.9790
Cost ( f j ) 51009 1009 50009 9 51009 1009 50009 9
Pit'i 26.1585 0.5174 0 .0 0 0 0 0.1769 4.3597 0.2587 0 .0 0 0 0 8.8108

From Eq. (27.14), the average loss for Fig. 27.3 is

h  = 26.1590 +  0.5179 +  ••• +  0.5687 =  36.16. (27.15)

Similarly, for each of the terminal outcomes in Fig. 27.4, the probability pi? 
the total cost с,- and p,ct are shown in Table 27.11.

From Eq. (27.14), the average loss for Fig. 27.4 is

L2 =  26.1586 +  0.5174 +  ••• +  8.8108 =  40.28.

Comparing the average losses L | and L2, the proposal that only the patients 
with positive results in clinical screening receiving skull radiography is 
slightly better than the proposal that all patients receiving skull radiography 
without clinical screening. In fact, the cost of skull radiography considered 
above includes only the economic expense, the X-ray irradiation damage 
has not been taken into account. In addition to the low average lose, the 
proposal in Fig. 27.3 avoids X-ray irradiation for 3328 patients. From this 
viewpoint, the proposal in Fig. 27.3 is obviously better than the contrast 
proposal.

27.5 Computerized Experiments

Experiment 27.1 The relationship between PV+, P VC and population 
prevalence Program 27.1 demonstrates the relationship between P V+, P F_ 
and population prevalence (P0), when given sensitivity Sen and specificity 
Spe. In the program, Sen =  Spe =  0.95;Po =  0.1, 0.01,0.001 andO.0001, 
respectively; Lines 06 and 07 calculate the positive predictive value PV+ 
and negative predictive value P V_ using Eqs. (27.6) and (27.7), respectively. 

By running the program, we can get the results in Table 27.12.

Experiment 27.2 The area under ROC curve and its standard error 
for ordinal variable Program 27.2 is the SAS codes for Example 27.4.
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Program 27.1 The relationship between P V + ,  P V -  and population prevalence.

Line SAS languages and procedures Line SAS languages and procedures

01 DATA PREDICT; 07 PVNEG=SPE*( 1-P0)/
(SPE*(1-P0)+(1-SEN)*P0);

0 2 S SEN=0.95; 08 OUTPUT;
03 S SPE=0.95; 09 END;
04 DO 1=1 TO 4; 10 DROP I;
05 P0 = 1 0 **(—I); 11 PROC PRINT;
06 PVPOS=SEN*P0/ 12 RUN;

(SEN*P0+( 1 -SPE)*( 1-P0));

Table 27.12 The results of Experiment 27.1.

OBS SEN SPE P0 PVPOS PVNEG

1 0.95 0.95 0 .1 0.67857 0.99419
2 0.95 0.95 0 .0 1 0.16102 0.99947
3 0.95 0.95 0 .0 0 1 0.01866 0.99995
4 0.95 0.95 0 .0 0 0 1 0.00190 0.99999

For similar ordinal data, the program should be modified according to: 
(1) The data in lines 31 and 32: lines 31 and 32 are the frequencies of abnor
mal group and normal group, and sorted by categories from small to large 
respectively; (2) The number of categories К in line 02; (3) The program 
assumes that larger category indicates more positive test; if smaller category 
indicates more positive test, we should modify “YN(I)+LAG(XN(J));” to 
“YA(I)+LAG(XA(J));” in line 14; “YA(I)=NA-NA1(I);” to “YN(I)=NN- 
NN1(I);” in line 16; and “IF YN(I)=. THEN YN (I) =0;” to “IF YA (I) =. 
THEN YA (I) =0;” in Line 17. The program will output basic data, area 
under ROC curve, its standard error and 95% C l, Z  test statistic, and other 
related middle results.

Experiment 27.3 The area under ROC curve and its standard error for 
continuous variable Program 27.3 displays partial SAS codes for Exam
ple 27.5. The aim of the program is to transform the layout of continu
ous data into ordinal data. To complete the calculation, lines 06 to 29 and 
line 34 in Program 27.2 should be appended to the end of this program.
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Program 27.2 SAS codes for R O C  analysis of ordinal variable.

Line SAS languages and procedures

01 OPTIONS LINESIZE=70 PAGESIZE=MAX NODATE;
02 %LET K=5;/*** К  is the  n u m b er of categories ****************/
03 DATA F(KEEP=XN1-XN&K NN XA1-XA&K NA AREA 

Q1 Q2 SE_AREA Z P LCL95_A
04 UCL95_A YN1-YN&K YA1-YA&K

AREAS 1 -AREAS&K Q 1S 1 -Q1 S&K Q2S1 -Q2S&K);
05 INPUT ХА 1 -XA&K XN1 -XN&K @ @;
06 ARRAY XN(*) XN1-XN&K; ARRAY XA(*) XA1-XA&K;
07 ARRAY NN 1 (&K); ARRAY NA 1 (&K);
08 ARRAY YN(&K); ARRAY YA(&K);
09 ARRAY AREAS(&K);
10 ARRAY Q1SI&K); ARRAY Q2S(&K);
11 NN=SUM(OF XN 1 -XN&K); NA=SUM(OF ХА 1 -XA&K);
12 DO 1=1 TO &K; DO J=1 TO I;
13 NN1(I)+XN(J);NA1(I)+XA(J);
14 YN(I)+LAG(XN(J)); /* YA(I)+LAG(XA(J));***************/
15 END;
16 YA(I)=NA-NA 1 (I); /* YN(I)=NN-NN1(I);****************/
17 IF YN (I) = . THEN YN (I) =0; /*IF YA (I) = . THEN YA(I)=0;********/
18 AREAS(I)=XN(I)*YA(I)+1 /2*XN(I)*XA(I);
19 Q 1 S(I)=XN(I)*(YA(I)**2+XA(I)*YA(I)+1/3*XA(I)**2);
20 Q2S(I)=XA(I)*(YN(I)**2+XN(I)*YN(I)+1/3*XN(I)**2);
21 AREA=SUM(OF AREAS 1 -AREAS&K)/(NN*NA);
22 Q 1 =SUM(OF Q 1S 1 -Q 1 S&K)/(NN*NA**2);
23 Q2=SUM(OF Q2S1 -Q2S&K)/(NA*NN**2);
24 END;
25 SE_AREA=SQRT((AREA*( 1 - AREA)+(NA-1 )*(Q 1 - AREA**2)+
26 (NN-1 )*(Q2-AREA**2))/(NA*NN));
27 Z=(AREA-0.5)/SE_AREA; P=(l-PROBNORM(Z))*2;
28 LCL95_A=AREA-PROBIT(0.975)*SE_AREA;
29 UCL95_A=AREA+PROBIT(0.975)*SE_AREA;
30 CARDS;
31 23  8 16 12
32 35 6 8  49 29 12
33 ;
34 PROC PRINT; RUN;

Modification of the program is similar to that of Experiment 27.2. Note that 
К in Program 27.3 denotes all possible cutoff points. To get the correct К 
value, we can first let K =  the sample sizes of the diagnostic test, then run 
the SAS program and find the К value in the LOG window.
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P ro g ra m  27 .3  P a rtia l SA S  co d es  fo r  ROC an a ly s is  o f  co n tin u o u s  variab le .

Line SAS languages and procedures

01 OPTIONS LINESIZE= 6 8  PAGESIZE=MAX NODATE;
02 DATA ROC; INPUT GP $ NUMS;
03 DO 1=1 TO NUMS; INPUT VALUE@@;
04 OUTPUT; END;
05 CARDS;
06 CASE 5
07 15.90 13.35 12.87 10.22 5.01
08 CONTROL 4
09 8.29 6.24 4.61 1.77
10 ;
11 PROC FREQ ORDER=FORMATTED PAGE;
12 TAB LES GP* VALUE /NOPRINT SPARSE OUT=A ;
13 DATAB;
14 SET A NOBS=KK; K=KK/2; PUT K=;
15 %LET K=9; /****** К is the number of cut-off point *******/
16 IF G P=’CONTROL’ THEN XNN=COUNT; ELSE XAA=COUNT;
17 PROC MEANS NWAY NOPRINT; VAR XNN XAA;CLASS VALUE;
18 OUTPUT OUT=C SUM=S 1 S2 ;
19 PROC TRANSPOSE DATA=C OUT=D PREFIX=XN: VAR SI ;
20 PROC TRANSPOSE DATA=C OUT=E PREFIX=XA; VAR S2 ;
21 DATA F; DROP _NAME_ NN1 1-NN1&K NA11-NA1&K I J;
22 SET D; SET E;

27.6 Practice and Experiments

1. To evaluate the accuracy of scrip method, which is a new method testing 
coli-group, zymotechnics is used as gold standard. The test results of 
a random sample from the population are given in Table 27.13. Cal
culate the sensitivity, specificity, Youden’s index, positive (negative) 
likelihood ratio, and positive (negative) predictive value.

2. A hospital used marrow puncture as the gold standard for diagnos
ing iron deficiency anemia. The diagnostic results of blood assay for 
100 patients in each of the case and control groups are displayed in 
Table 27.14. A researcher obtained the positive predictive value as 
66/77 and the negative predictive value as 89/123 using Eqs. (27.8) and
(27.9), respectively. Is his calculation method correct? Why? Calculate 
the predictive value if the population prevalence is 10%.
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Table 27.13 The result for evaluation 
of the scrip method.

Scrip method

Zymotechnics + - Total

+ 91 8 99
- 5 36 41

Total 96 44 140

Table 27.14 The diagnostic results of 
blood assay for iron deficiency anemia.

Blood1 assay

Marrow puncture + - Total

Case 6 6 34 1 0 0

Control 11 89 1 0 0

Total 77 123 2 0 0

3. Ventricular fibrillation (VF) is the primary reason for death of coro
nary heart disease. If ventricular premature beat (VPB) can be detected 
by cardiogram examination, VF can be prevented. VPB is tested by 
standard cardiogram (testing time is 1 minute). The “gold standard” was 
24-hour cardiogram monitoring. 924 male patients with coronary heart 
disease received the test, and the results are displayed in Table 27.15 
(Weiss NS, Clinical Epidemiology: The Study of the Outcome of Ill
ness, Oxford Univ Press (1986), 28).
Let us define, for 24-hour cardiogram monitoring, VPB per hour < 10 as 
low risk for VF, and > 10 as high risk; for standard cardiogram screening 
method, VPB =  0 as negative, and VPB > 1 as positive. Perform the 
following calculations:

(1) Calculate the sensitivity and specificity for standard cardiogram 
screening method and interpret their significance.

(2) Calculate the positive predictive value and negative predictive value 
for standard cardiogram screening method and interpret their sig
nificance.
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Table 27.15 Test results on V PB  by standard cardiogram 
screening.

24-hours cardiogram 
(VPB per hour) Frequency

Standard cardiogram

VPB>1 VPB=0

0 444 0 444
1-9 247 12 235
10-49 1 2 0 40 80
> 50 113 79 34

Total 924 131 793

Table 27.16 The measures on mean corpuscular volume (MCV) of red blood cell for the 
patients and normal people.

Spinal
puncture Mean corpuscular volume (MCV) of red blood cell

abnormal 52 58 62 65 67 6 8 69 71 72 72 73 73 74 75 76 77 77
78 79 80 80 81 81 81 82 83 84 85 85 8 6 8 8 8 8 90 92

normal 60 6 6 6 8 69 71 71 73 74 74 74 76 77 77 77 77 78 78
79 79 80 80 81 81 81 82 82 83 83 83 83 83 83 83 84
84 84 84 85 85 8 6 8 6 8 6 87 8 8 8 8 8 8 89 89 89 90 90
91 91 92 93 93 93 94 94 94 94 96 97 98 1 0 0 103

See: J.R. Beck, E.K. Shultz, Arch Pathol Lab Med. 1986.

(3) Calculate Youden’s index and likelihood ratio and interpret the sig
nificance of the positive likelihood ratio.

4. According to the above test results, assume that the mortality of VF is 
10.0%, and let the cost be defined as: standard cardiogram= 1, 24-hours 
cardiogram=30, death due to VF = 1000. Generate decision trees for 
the two VF prevention projects below and compare their average losses.

Project 1: 24-hour cardiogram monitoring for patients with positive 
result of standard cardiogram.
Project 2: 24-hour cardiogram monitoring for all patients with coro
nary heart disease.
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5. Marrow diagnosis was used as the gold standard to confirm the diagnosis 
that 34 (out of 100) patients had iron deficiency anemia (abnormal 
group), while the other 66 patients were without iron deficiency anemia 
(normal group). The mean corpuscular volume (MCV) of red blood cell 
for patient was tested in advance, and shown in Table 27.16. Use ROC 
analysis to evaluate the accuracy of MCV in diagnosing iron deficiency 
anemia.

(1st edn. Yonyong Xu, Chuanhua Yu; 2nd edn. Yongyong Xu, Yi Wan)





Chapter 28

Design and Analysis of Sequential Experiments

28.1 Introduction

28.1.1 D esign  o f  sequ en tia l experim ent

The experimental methods discussed in previous chapters have a common 
feature, that is, all of them have to determine the number of subjects (N) in 
advance, then assign subjects randomly to different groups and perform a 
statistical analysis after the data of all subjects are collected. This kind of 
experimental scheme pertains to those with fixed sample sizes. However, 
sequential trial has a different scheme, i.e., the number of subjects does 
not have to be pre-determined. In sequential trials, statistical analysis is 
performed when data of each subject are gathered. Once the conclusion 
of rejecting or not rejecting the null hypothesis is reached, the experiment 
could be stopped. This type of design is called sequential trial or experiment 
with unfixed sample size and the corresponding statistical analysis is called 
sequential analysis.

The sequential trials have three advantages. Firstly, it is more reasonable 
to treat sample size as a variable than as a constant because the sample sizes 
are decided by the total number of cases of certain diseases in the population 
and the entrance speed of subjects in clinical trials and epidemiological 
studies. Secondly, sequential analysis can make conclusions more quickly 
if the difference between treatment groups is substantial. Thus sequential 
trials potentially need fewer subjects and take shorter time than other types 
of experiments. Thirdly, since sequential trials perform statistical analysis 
at every time when the newly entered subjects have completed the trial, they 
can be immediately stopped once the difference between groups is found. 
In this sense, the sequential trials could be much more ethical than the trials 
with fixed sample sizes.

747
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28.1.2 G roup sequ en tia l design  a n d  interim  analysis

The disadvantage of typical sequential trials is that they can only be applied 
to experiments in which the responses can be quickly measured and the 
entering time intervals are relatively short between two consecutive sub
jects. Thus, in recent years, researchers have paid more attention to group 
sequential design, which can be applied to the trials with mid-term or long
term follow-up times. The group sequential design provides the total number 
of stages (the number of interim stages plus a final stage) and a stopping 
criterion to reject, accept, or either reject or accept the null hypothesis at 
each interim stage. At each interim stage, all the data collected up to that 
time are analyzed, and the statistics and their associated standard error are 
computed. The test statistic is then compared with the critical values gen
erated from the sequential design, and the trial is stopped or continued; in 
case a trial continues to the final stage, the null hypothesis is either rejected 
or accepted.

Interim analysis is also called “data-dependent stopping” or “early stop
ping”. Interim analyses are most often used to find convincing enough evi
dence to say that there is a statistically significant treatment difference, and 
that the difference is convincing enough to stop the trial at a time earlier 
than planned. In fact, the ethical and economic reasons are also taken into 
consideration to stop the trial early.

28.2 Design and Analysis of Sequential Trials

28.2.1 The qualita tive responses

In this section we will discuss the Armitage scheme of sequential trial 
for quantal responses. Assuming that there are two treatments a\ and a2, 
each subject receives the two treatments randomly. There are three possible 
results:

A: a 1 is superior to «2,
В : йт is superior to a\,
C: a i equals 0 2 -

A and В are so-called preferences whose frequency of occurrence makes 
up n. Let я \ be the response rate (e.g. efficacy rate) of a\ and к 2  be the
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Table 28.1 The boundaries of sequential trial with qualitative responses (6\ =  0.85, 
a  =  p  =  0.05).

No. 
of test

No. of
of preferences (n )

Upper
boundary (U)

Lower
boundary (L)

False positive rate 
for individual test

1 7 7 - 7 0.016
2 11 9 - 9 0 .0 2 2

3 14 10 - 1 0 0.028
4 17 11 - 1 1 0.033
5 2 0 12 - 1 2 0.037
6 24 14 -1 4 0.038
7 26 14 -1 4 0.041
8 27 13 -1 3 0.047

response rate of a2, then we define a conditional probability as

в  =
я - iO  ~  кг)

7 T l ( l  -  7Г2) +  7Г2 (1  -  Ж \ ) ‘
(28.1)

When к i — 7Г2, в =  0.5; when л\ > n2, в  > 0.5; and when п\ < ж2, 
в < 0.5. Thus, when we want to confirm whether or not ct\ is superior to a2, 
the hypothesis should take the form of Ho : в — 0.5, H\ : в =  в\(Ф 0.5). 
For a two-sided test a =  /3 =  0.05, we can plot the bound lines U, L, m' 
and m” of the sequential trial diagram according to f)\ and the number of 
unequal pairs n from Table 19 of Appendix II.

Example 28.1 Assuming a\ is a certain kind of cough suppressants and 
a2 is a placebo, we administer the two treatments to every patient in ran
domly. The effect of releasing cough is evaluated through the feelings of 
patients. Make an arrangement of the trials with sequential design when the 
accumulating data are analyzed at every new observation, and analyze the 
overall observations showed in Table 28.2.

Solution H0 : в =  0.5; H\ : \6 — 0.51 =  0.35. Given two-sided signifi
cance level: a — 0.05, [3 =  0.05, we can work out a sequential trial diagram 
(Fig. 28.1) using Table 28.1 from Table 19 of Appendix 1.

The boundaries in Table 28.1 refer to critical values of eight repeated 
significance tests based on binomial distribution for overall level a =  0.05. 
As the significance test is repeated, the false positive rate is going to increase, 
because the chance of mistaking a real effect for a large statistical fluctuation 
increases. For example, if one plans to have several repeated tests with a
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Fig. 28.1 The boundaries of sequential trial (9  =  0.85, a  =  p  =  0.05).

planned alpha level of 5% for the observations from normal distribution, 
then the false positive rate would be changed to 8% for the second test, and 
11% for the third test, 13% for the fourth test, 14% for the fifth test, 19% 
for the tenth test, and 37% for the 100th test. This example demonstrates 
that a is spending with the number of repeated tests. So that the nominal 
significance value is used to reduce the a ’s spending for individual test, see 
the right of Table 28.1.

In Fig. 28.1, the horizontal axis represents the number of preferences 
and the vertical axis represents the difference between the numbers of pref
erences for a\ and сь- The upper boundaries on line U, the lower boundaries 
on line L, the line m' and m" are all worked out using the arithmetic function 
(n, U), (n, L) and (n , y) according to Table 19 of Appendix I. We mark the 
result of each preference one by one in the diagram, i.e., starting a zigzag 
line at the origin and moving the unit to the right and upwards for each 
ci\ preference, or one unit to the right and downwards for each сь prefer
ence. On one hand, H\ : в =  0.85, a\ is superior to ci2 , should be accepted 
when the zigzag line reaches the upper boundary line. On the other hand, 
H \ : в  — 0.35, 02 is superior to a\, should be accepted when the zigzag 
line reaches the lower boundary line. If the zigzag line reaches the line tri 
or m", then H{) : 0 =  0.5 should be accepted.
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Table 28.2 Data of sequential trial for comparison of cough suppressants (a \ ) and 
placebo (a i) -

No. n Efficacy d  =  A -  В

wII No. n Efficacy d  =  A -  В V =

1 _ 0 0 23 14 В -1 9
2 1 В -1 -1 24 15 A 1 10
3 - 0 25 16 A 1 11
4 2 A 1 1 26 17 A 1 12
5 3 A 1 2 27 - 0
6 - 0 28 - 0
7 - 0 29 - 0
8 - 0 30 18 A 1 13
9 4 A 1 3 31 19 A 1 14

10 5 A 1 4 32 - 0
11 - 0 33 20 В -1 13
12 - 0 34 21 A 1 14
13 - 0 35 22 A 1 15
14 6 A 1 5 36 - 0
15 7 В -1 4 37 23 В -1 14
16 - 0 38 - 0
17 8 A 1 5 39 24 A 1 15
18 9 A 1 6 40 25 A 1 16
19 10 A 1 7 41 26 A 1 17
20 11 A 1 8 42 27 A 1 18
21 12 A 1 9 43 - 0
22 13 A 1 10 44 - 0

45 28 В -1 17

Note-. “A” represents preference for a  \ , “B ” represents preference for a i ,  represents no 
difference between two treatments.

In this example (Table 28.2), the zigzag line reaches the upper boundary 
line at the 26th patient, i.e., the 17th preference. H\ should be accepted and 
the conclusion should be made that the efficacy of cough suppressants is 
superior to that of the placebo. The sequential observations of the trial were 
plotted in Fig. 28.2.

28.2.2 Q uantitative responses

In this section, we will introduce the Schneiderman-Armitage method 
which deals with quantitative responses in sequential trials. Quantitative 
response refers to the difference between the output measurements from
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Fig. 28.2 Diagram of sequential trial for Table 28.2 (в  =  0.85, a  =  /? =  0.05).

two treatments, i.e., dt ф 0(г =  1 , 2 , ,  n).  In this kind of sequential 
trial each subject receives two treatments randomly, or each matched pair 
of patients receives one of the two treatments randomly. The hypothesis for 
this kind of design is

Ho : fid — 0> H i V\fid\ =  d, 5 >  0 .

The parameters S and ad should be estimated from historical information, 
or be worked out as S & \d\/Sd and ad «a Sd using d and Sd derived 
from pilot experiment. 5 = \fid\/od is known as standardized effect size. 
Given a =  p  — 0.05 and the value of S, we can obtain the values of c\, 
b and in', y') from Tables 20 and 21 of Appendix II, and then work out 
the upper and lower boundary lines and the right boundary line M for the 
diagram of sequential trial shown in Fig. 28.3. In Fig. 28.3, the horizontal 
axis represents the number of measurement pairs and the vertical axis rep
resents the cumulative sum of differences between measurement pairs, i.e., 
У = d. The upper and lower boundary lines are determined by Eqs. (28.2)
and (28.3).

U : у = C\ad +  bnad,

L : у — —C\od — bnad.

(28.2)

(28.3)
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Fig. 28.3 Diagram for quantitative response sequential trial.

The right boundary line M is determined by Eq. (28.4).

M : (n =  п'/д2, у =  y'crd/S). (28.4)

In Eq. (28.4), (,n / )  can be obtained from Table 21 of Appendix II.
To draw the diagram of sequential trial, we start a zigzag line from 

the origin according to the difference between the two measurements of 
each treatment pair, then connecting the points (n, d). If the zigzag line
reaches the upper or lower boundary line, H0 would be rejected and it can be 
concluded that a\ is superior or inferior to сь. Otherwise, if the zigzag line 
reaches the right boundary line, HQ would not be rejected and it should not 
be concluded that the difference between a\ and a2 is statistically significant.

Example 28.2 To compare the effects in releasing pain after operations, 
two patients were matched in the same operation on the same day by gen
der, nearest age, and allocated each patient with drug A and drug В ran
domly after operation. The response was pain score measured from 0-10. 
Plan a trial with sequential design and analyze the observations shown in 
Table 28.3.

Solution Set H0 : /id =  0, H\ : \pid\ =  2, the overall two-sided signifi
cance level a — 0.05, /? =  0.05, ad =  1.2, Refer to Table 20 and Table 21 
in Appendix II, ci =  3.03, b — 0.60

U : у =  c\od +  bnad =  3.03 x 1.2 +  0.6 x 1.2 x n =  3.6 +  0.7 x n,

L : у =  —c\od — bnad

=  -3 .03 x 1.2 - 0 .6  X  1.2 x и =  - 3 .6 - 0 .7  x n.
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Table 28.3 Data of pain score in a sequential trial.

Days d  =  A -  В

"S3Wи Days d  =  A  — В y  =  ' E d

1 0 0 11 - 1 -1 4
2 - 2 - 2 12 - 5 -1 9
3 - 2 - 4 13 0 -1 9
4 0 - 4 14 - 3 - 2 2

5 - 2 - 6 15 1 - 2 1

6 - 1 - 7 16 - 5 -2 6
7 0 - 7 17 - 3 -2 9
8 - 3 - 1 0 18 0 -2 9
9 - 3 -1 3 19 - 2 -31

10 0 -1 3 2 0 - 3 -3 4

Fig. 28.4 Diagram for quantitative response sequential trial for Table 28.3 ( o j  =  1.2, 
a =  A =  0.05).

Using Eq. (28.4) by setting S' ^  1 .5/1.2 =  1 and (n', y ’) in Table 21 of 
Appendix II, M in Fig. 28.4 was determined.

The differences of pain scores between the two measurements in each 
pair are listed in Table 28.3. Taking the operation days as the horizontal 
axis, у  —  d  as the vertical axis represents the zigzag line was plotted in 
Fig. 28.4. In this example the zigzag line reached lower boundary at day 
19, Ho was rejected. The conclusion was that drug В would be better than 
drug A.
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28.3 Group Sequential Schemes

In earlier sections of this chapter, we have discussed two typical sequential 
designs in which the subjects must be paired and enter the experiment 
sequentially. It could not be determined whether the experiment should be 
ended or continued until results of the present pair are obtained and ana
lyzed. If it takes a long time to obtain the results for each subject, e.g. sev
eral weeks or several months, these kinds of sequential trials would become 
inappropriate. On other occasions, it is not practical to perform statistical 
analysis every time when results of each pair are obtained, so that what 
should be done is to perform statistical analysis when results are obtained 
during a certain period of time. For example, in a large multi-center clinical 
trial, experiments are performed simultaneously in several different regions 
but just one statistician is responsible for statistical analysis. The director 
of the trial wants to do statistical analysis, say every three months. In this 
case, group sequential trial methods can be useful. Group sequential trial, 
in which it is not essential for subjects to enter the experiment in pairs, can 
be employed where the collection of experiment results takes much longer 
time or statistical analysis must be repeatedly performed for several separate 
periods during the entire experimental process. Since group sequential trial 
has those advantages and can be applied with interim analysis, a term fre
quently appeared in the literatures, it could be widely used in clinical trials.

Group sequential trial was originally proposed by S. J. Pocock in 1977. 
The scheme is that the whole experiment is divided into a series of N 
stages. In each stage 2n subjects have been selected and are assigned to 
two treatment groups randomly, each of which has n subjects. Statistical 
analysis is performed for all the results from the first stage to the z'th stage 
once the z'th stage of experiment is completed, where i =  1, 2 , . . . ,  k. If the 
null hypothesis is rejected in z'th stage, the experiment can be terminated. 
Otherwise the experiment continues to the next stage. If the null hypothesis 
could not be rejected even in the last (Arth) stage of the experiment, it should 
then be accepted.

28.3.1 N om in al significance leve l an d  test boundary

During the process of group sequential trial, repeated hypothesis testing 
is employed, which can increase the probability of type I error, i.e., the 
probability of incorrectly rejecting the null hypothesis could become larger.
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In order to keep the type I error rate below the predetermined a, we must 
specify a lower a for the individual test at each stage. The significance 
level for each stage is so-called the nominal significance level and denoted 
by a'. Listed in Table 28.5 are a series of a ' for different values of К when 
performing two-sided test for a normal distribution variable with known 
variance and significance level of 0.05. The critical value when a' is given 
is called test boundary. Also given in Table 28.5 are the test boundaries (Z') 
correspond to different a ’s from Pocock design.

The test boundaries frequently used in group sequential trial to test 
the efficacy of treatment A and treatment В are Pocock design, O’Brien- 
Fleming design and Peto design. Assuming they are normal distributions 
N(jua, o 2) and N(juB, <x2), and the overall significance level a =  0.05, the 
test boundaries are determined as follows:

Pocock: B, =  ± Z 'ч

O’Brien-Fleming: Bt =  ± Z a/2

(28.5)

i =  1, 2 , . . . ,  к (28.6)

Peto: B; = j ± 3
1 ± Z a/2

i < k, 
i =  k,

(28.7)

where Z' is Pocock boundaries when given a nominal significance level 
in Table 28.5, Za/2 is the standard normal deviate.

Among the above three methods for interim analysis, Pocock design 
requires the largest sample size to achieve specified power at the beginning 
of the study. O’Brien-Fleming design is very conservative, because the 
boundaries seem too large during the first stage. Peto design is in the middle 
between the other two, but more similar to O’Brien-Fleming design.

Example 28.3 The boundaries of interim analysis with two-sided test 
{k =  4, a — 0.05) are given in Table 28.4.

28.3.2 C ontinuous responses

Supposing two treatments, A and В , are to be compared in a group sequential 
trial, the response variable is в  (e.g. в could be the difference between 
two population means), which follows a normal distribution with known 
variance o 2. For a two-sided test, the null hypothesis is Щ : p. =  0, i.e.,
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Table 28.4 The boundaries and nominal significance levels of interim 
analysis with two-sided test (k  =  4,  a  =  0.05).

Pocock O’Brien-Fleming Peto

No. of stages (к ) Bi a ' B i a ' Bi a '

1 2.36 0.0182 3.92 0 .0 0 0 0 3 0.0026
2 2.36 0.0182 2.77 0.0056 3 0.0026
3 2.36 0.0182 2.26 0.0238 3 0.0026
4 2.36 0.0182 1.96 0.500 1.96 0.0500

the efficacy of two treatments are equal, and the alternative hypothesis is 
H\ : ц — 3{ф 0) or Hi : pi =  —3, of which 3 is the difference between the 
expected value of the response variable and 0. The significance level can be 
specified as a — 0.05, and the test power 1 — /?. Given a and К , we can 
obtain a' using Table 28.5. Given the relationship

Д =  s/пЗ/ст

the sample size n for each stage can be worked out for different values of a 
and N.

Equation (28.8) shows a generalized equation about Д. When the ith 
stage of experiment is completed, the estimate of в ,  i.e., 0  and its variance 
VAR(6 )can be obtained, and we can then compute Д as

Д =  / ----- (28.8)
V iVAR(6 )

In group sequential trials of comparing two sample means with known 
variances, we further assume that the effects of two treatment groups A and 
B, i.e., xa and Xp, follow normal distributions. Their conjunct variance a 2 is 
known but the corresponding population means, p t A and pi в ,  are unknown. 
The response variable can be specified as the difference between the two 
means, i.e., в  —  pi л — Ц в - Then the cumulative difference between the two 
means at ith stage is

6  =  di =  xAi -  xBi, (28.9)

and

VAR(0) =  l a 2 /{in).
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Table 28.5 P aram ete rs  fo r  d e s ig n  o f  g ro u p  se q u en tia l tria l (a  =  0 .05 ).

S tag es o f  
e x p erim e n t (к )

N o m in a l s ign ificance  
level (a ')

C ritical 
value ( Z 7)

Д =  ^fnS/a

1 -  P  =  0 .9 0  1 - f) =  0 .95

2 0 .0294 2 .178 2 .404 2 .664
3 0.0221 2 .289 2 .007 2.221
4 0 .0 1 8 2 2.361 1.763 1.949
5 0 .0158 2 .413 1.592 1.759
6 0 .0142 2 .453 1.464 1.617
7 0 .0 1 3 0 2 .485 1.364 1.506
8 0.0120 2 .512 1.282 1.415
9 0.0112 2 .535 1.214 1.339

10 0 .0 1 0 6 2 .555 1.156 1.275

According to the two equations above and Eq. (28.8), we can derive

so that we can compute n as

(28.10)

n = (28.11)

When the experiment goes into ith stage (i =  1 ,2 , . . .  ,1c), and denotes 
the cumulative difference between the two sample means as dj, statistical 
analysis can be performed using Z test.

Z, = (28.12)

When Z, > Z7 (Z7 can be obtained from Table 28.5), the null hypothesis 
should be rejected, i.e., we can conclude that the effects of two treatments 
are different, and the experiment can be stopped. Otherwise the experiment 
should be continued. If the null hypothesis cannot be rejected even at the 
end of the Ath stage, we cannot reject the null hypothesis for the whole 
experiment and should conclude that the effects of the two treatments are 
equal.

If the population variance is not known, the sample size of each stage of 
experiment, i.e., n, can be worked out through Eq. (28.11) using estimated 
variance in designing the experiment. On this occasion, t test should be
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used to perform the statistical analysis and the degrees of freedom should 
be 2in—2. The null hypothesis should be rejected and the experiment should 
be stopped when we obtain the result of P, < a'.

The method mentioned above can be generalized to studies with bino
mial outcome variables.

Example 28.4 In a clinical trial comparing the efficacy of curing 
schizophrenia using a new drug A and a normal drug B, the difference 
in the total brief psychiatric rating scale (BPRS) score was used to evaluate 
the efficacy of the drugs. Given that the standard deviation of this variable 
for drug В was known to be 11, we expect that the score for drug A is 
higher than drug В by 4 units on average. To deal with this problem, we 
can perform a group sequential trial.

Solution What we should do first is to determine how many stages should 
we divide the whole experiment. For this example we specify N =  5, i.e., at 
most five times of repeated hypothesis tests will be performed, including 4 
interim analyses and 1 analysis at the final stage. Second, we determine the 
confidence level of two-sided test for the whole experiment as a — 0.05, 
and the power of test as 1 — /? =  0.95. Then we can obtain the necessary 
parameters using Table 28.5, i.e., a' =  0.0158, Z' =  2.413, Д =  1.759. For 
this example, a — 11,4 =  4. According to Eq. (24.7), we can calculate the 
sample size for each stage, n =  2(11 x 1.759/4)2 =  46.80. As 47 subjects 
are needed in each group for each stage, the total sample size required is 
47 x 2 x 5 =  470.

Results at each stage for this example are listed in Table 28.6. The 
difference of sample means d, can be worked out by subtracting sample 
mean of group В for each stage X /i( from that of group A XAi. Subsequently, 
Z, can be worked out using Eq. (28.12).

Z) =  V l x 47 x 3.39I4/(V2 x 11) =  1.495,

Z2 =  V2 x 47 x 2.9014/(x/2 x 11) =  1.808,

Z3 =  V3 x 47 x 3.8720/(^2 x 11) =  2.956.

According to Table 28.5, Zi (1.495) and Z2(l .808) in the first two stages
are all less than Z'(2.413). Thus the null hypothesis # 0 should not be 
rejected and the experiment should be continued to the next stage. In the
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Table 28.6 R esu lts  o f  g ro u p  seq u en tia l tria l co m p arin g  tw o  sam p le  m ean s w ith  k n o w n  
variance .

S tage  (i)
C u m u la tiv e  
sam p le  size xAi XBi di z, R esu lts

1 94 37 .3 8 9 4 33 .9 9 8 0 3 .3914 1.495 N o t re je c t H q , 

ex p erim en t shou ld  
be  c o n tin u ed

2 188 36 .1179 33 .2165 2 .9014 1.808 N o t re je c t Ho, 

e x p erim e n t shou ld  
be  c o n tin u ed

3 282 36 .3 3 9 6 32 .4 6 7 6 3 .8720 2 .956 R e jec t Ho, 
e x p erim e n t shou ld  
be  s to p p ed

third stage we obtain Z3(2.956) > Z'(2.413) such that the null hypothesis 
H0 is rejected and the experiment should be stopped. At this time, we can 
conclude that the new drug A is preferable to drug В in terms of total BPRS 
score. The total sample size eventually used is 282.

The following equation can be used to calculate the sample size if we 
employ the parallel design method in this example.

nA -  nB ( Z l - a / 2  +  Z\-p)o -,2

Given 67 =  11, (5 — 4, a =  0.05 and 1 — /? =  0.95, we obtain nA = n B =  
2[( 1.960 +  1.645) x 11/4]2 я» 196, i.e., 196 subjects in each group and a 
total of 392 subjects are needed. Though the upper bound of the sample size 
for group sequential trial is bigger than the sample size for parallel design 
(e.g. 470 for the previous one and 392 for the latter one in this example), 
the actual sample size for group sequential trial is often smaller than that of 
parallel design if the two groups are different. Given К =  5, a =  0.05 and 
1 — P =  0.95, the sample size for group sequential trial is 31,3(rr/r))2 on 
average. For this example, the actual sample size is 31.3 x (11 /4 )2 =  237, 
with a reduction of 40% from that of the parallel design.

If the population variance is unknown in the previous example, we might 
estimate it at first in the stage of experiment designing. Assuming that 
a 2 =  112 , we can work out the same estimates of sample sizes as before.
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Table 28.7 R esu lts  o f  g ro u p  sequen tia l tria l co m p arin g  tw o  sam ple  m eans w ith  unknow n 
p o p u la tio n  variance .

S tage  (i)
C u m u la tiv e  
sam p le  size (S Ai ) X B i ( S B l) H Pi R esu lts

1 94 37 .39
(11 .65 )

34 .00
(11 .19)

1.4394 0 .1534 N ot re jec t Ho, 
e x p erim e n t shou ld  
b e  c o n tin u ed

2 188 36 .12
(11 .77)

33 .22
(11 .43)

1.7142 0 .0882 N o t re jec t Ho, 
e x p erim e n t shou ld  
b e  c o n tin u ed

3 282 36 .34
(10 .92)

32.47
(11 .24 )

2 .9346 0 .0036 R e jec t Ho, 
e x p erim e n t shou ld  
b e  s topped

The results for all stages are listed in Table 28.7, in which the t test for 
comparing two sample means is used to work out the P-values. As we can 
see in the table, the P-values for the first and second stages, i.e., Pi (0.1534) 
and Pi(0.0882), are greater than a'(0.0158), so that the null hypothesis 
could not be rejected and the experiment should be continued. In the third 
stage, P3(0.0074) < ec'(0-0158), so that the null hypothesis is rejected and 
the experiment should be stopped.

28.3.3 Discrete responses

Given the population probabilities for two treatment groups, A and В, be 
л a and л в, the response variable can be defined as the difference between 
two population probabilities, i.e., в =  тс a — л  в- With л =  (лА +  л в )/2, о 
in Eq. (28.10) can be replaced by [?f (1 — 7r ) ]1/2. Thus we can obtain

s f n i j l A  -  Л В )

s / i a  ( i  — л )

Consequently, we can obtain

2л (1 — л) A2

{ Л a  -  Л В ) 2

(28.13)

(28.14)

When the experiment reaches the i th stage (/ =  1, 2 , . . .  ,k), a test based on 
approximate normal distribution can be used to test the difference between
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the two sample rates.

(Рм ~  Рвд-Яп 
У2/3, (1 -

(28.15)

For the equation above, PAl and PBi are cumulative sample frequencies for 
the two groups respectively, and P, =  (PAi +  Рщ)/2 is the pooled frequency. 
The null hypothesis can be rejected when Z, > Z', and the experiment can 
be stopped.

Example 28.5 The efficacy rates for a certain disease are to be compared 
between a new drug A and a normal drug B. The efficacy rate for drug В is 
already known as 0.7, we expect the efficacy rate for drug A could be raised 
to 0.85. Group sequential trial method can be used to solve the problem.

Solution What we should do first is again to determine the parameters, 
in this example к =  5, a =  0.05 and 1 — [1 =  0.95. From Table 28.5 we 
obtain a' =  0.0158, Z' =  2.413 and A =  1.759 and we can use Eq. (28.14) 
to estimate n when comparing two sample rates.

In this example, nA =  0.85, nB =  0.7, к =  (0.85 +  0.7)/2 =  0.775 
and from Eq. (28.13) we obtain

n =  2 x 0.775 x (1 -  0.775) x [ 1.759/(0.85 -  0.70)]2 =  47.96.

Therefore, each of the two groups needs 48 subjects in each stage and the 
upper bound of the total sample size is 48 x 2 x 5 =  480. For the ith stage 
(i =  1 , 2 , . . .  ,k), Eq. (28.15) can be used to test the difference between 
the two sample rates. The results of all stages of this example are listed in 
Table 28.8.

We see from Table 28.8 that at stage 2Z2(3.346) > Z'(2.413), the 
experiment can be stopped and we can conclude that the efficacy rate of

Table 28.8 R esu lts  o f  g ro u p  seq u en tia l tria l c o m p a rin g  tw o  sam p le  ra te s .

S tage  ( i)
C u m u la tiv e  
sam p le  s ize P m P e i z, R esu lts

1 96 0 .8333 0 .6875 1.674 N o t re jec t Ho, e x p erim e n t to 
be con tin u ed

2 192 0 .8854 0 .6875 3 .346 R e je c t Ho, ex p erim e n t to  
b e  stopped
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drug A is higher than that of drug B. The actual sample size for this example 
is 192. If we use the parallel design method with 7Гд =  0.85, тс в =  0.7, 
a =  0.05 and 1 — /? =  0.95, each group needs 199 subjects and the total 
sample size is 398, which is larger than the actual sample size of group 
sequential trial.

As for the determination of stage number k, factors such as time needed 
in clinical trials and how the subjects are selected should be taken into 
account. However, the stage number should not be larger than 10 because 
increasing к scarcely reduces the average sample size for stopping the exper
iment. In fact, the average sample size is not apparently reduced when 
increasing the stage number if it is larger than 5. Therefore, the stage num
ber is usually set to be smaller than 5 unless the expected difference between 
the two treatment groups is much larger and the experiment is expected to 
end in early stages.

Although values of a ' and A in Table 1 of Appendix II are derived from 
normal distribution with known variance, they can also be used in other 
cases such as normal distribution with unknown variance or binary variable 
etc. for which the error is very small.

28.4 Computerized Experiments

Experiment 28.1 Simulating experiment for group sequential trial To
investigate the effect of extra vitamin intake of pregnant women on blood 
calcium density of newborn babies, we divide participating pregnant women 
into two groups, one given extra vitamin D and the other as control. In this 
study we divide the whole experiment into six stages. Based on clinical 
knowledge, the effect is regarded as clinically significant when the average 
rise of blood calcium density of the drug group from that of the control group 
is 0.3 mg% or higher. We also know that the standard deviation of blood 
calcium density of newborn baby is 1.2mg%. Using the above parameters, 
Program 28.1 simulates a group sequential trial with a quantitative response 
and performs a Z-test on it.

Using a computer program, we generate two groups of equal number 
of blood calcium density measurements of newborn babies from two nor
mal distributions respectively. The parameters used are /V(0.8, 1.22) and 
N(\A,  1.22), and a Z-test is also performed. The value к in line 02 of
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Program 28.1 Simulation experiment for group sequential trial.

Line Program Line Program

01 DATA GSEQU; 2 0 DDD=DDD+DD;
0 2 K = 6 ; 21 D=DDD/I;
03 SD=1.2; 2 2 Z=(SQRT(I*N)*D)/(SQRT(2)*SD);
04 M 1 =0.8; M2= 1.1 ;M=M2-M 1; 23 OUTPUT;
05 ARRAY GSSPT(27) Z2-Z10 

AL2-AL10 DE2-DE10;
24 IF ABS(Z)>Z0 THEN STOP;

06 INPUT Z2-Z10 AL2-AL10 
DE2-DEI0@@;

25 END;

07 Z0=GSSPT(K-1);
ALPHA=GSSPT(K+8 );

26 CARDS;

08 DELTA=GSSPT(k+17); 27 2.18 2.29 2.36 2.41 2.45 2.48
09 N=CEIL(2*(SD*DELTA)**2/

M**2);
28 2.51 2.54 2.56 0.0294 0.0221

10 NN=2*N; 29 0.0182 1.0158 0.0142 0.0130
11 SUM 1 =0;SUM2=0;DDD=0; 30 0 .0 1 2 0  0 .0 1 1 2  0.0106 2 .6 6  2 .2 2

12 DO 1=1 to K; 31 1.95 1.76 1.62 1.51 1.42 1.34 1.28
13 DO SUBJECTS TON; 32 *
14 X 1 =M1 +SD*NORMAL(0); 33 PROC PRINT NOOBS;
15 SUM1=SUM1+X1; 34 TITLE ’AN EXAMPLE 

OF GROUP
16 X2=M2+SD*NORMAL(0); SEQ U EN TIA L D E SIG N ’;
17 SUM2=SUM2+X2; 35 VAR К NN I SD D Z Z0 ALPHA;
18
19

END;
DD=(SUM 1 -SUM2)/N;

36 RUN;

Program 28.1 can be changed to any value between 2 and 10 depending on 
how many stages the trial has. In the output (Table 28.9), “к” is the total 
number of stages in the experiment, “MV” is the sum of sample sizes of two 
groups, is the order of the experiment, “SD” is the population standard 
deviation, “D” is the average difference between the two groups at the гth 
stage in Eq. (28.11), “Z” is the value of statistic of Z-test calculated by 
Eq. (28.12), “Z0” is the bound of the statistic for statistical significance and 
“ALPHA” is the nominal significance level a'.

28.5 Practice and Experiments

1. In Fig. 28.1, what are the basis in drawing the upper and lower bound 
line U and L, line m1 and m". Given the hypotheses Ho:0 =  0.5,
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Table 28.9 An example of group sequential design.

К N N I S D D Z ZO ALPHA

6 168 1 1 .2 -0.15748 -0.85047 2.45 0.0142
6 168 2 1 .2 -0.26084 -1.99222 2.45 0.0142
6 168 3 1 .2 -0.46250 -4.32631 2.45 0.0142

H\ : \6 — 0.51 =  0.25, draw a diagram of sequential trial, including the 
bound lines U, L,m', m". Then use this diagram to perform a sequential 
trial for the data in Table 28.2 and observe the similarities and differences 
between the results of this and those of Fig. 28.2.

2. According to a pilot experiment, the average difference between the 
observed values of two different treatments on the same subjects is d «
1.5 and the standard deviation is ad ^  1.25. Given significance level of 
two-sided test a =  0.05 and =  0.05, draw a diagram of sequential 
trial of quantitative response including the upper and lower bound line 
and the right bound line M. If d % 1.75 and ad — 1.25, what will be the 
difference between the diagrams of sequential trial drawn in this case 
and the previous ones? Why?

Table 28.10 Results of sequential trial comparing the effects of two 
combinations of barium meals in the barium meal exam.

No. 2 of Shanghai with BCS No. 2 of Shanghai with BL

Patient No. Effects evaluation Patient No. Effects evaluation

1 Preferable 1 Preferable
2 Preferable 2 Preferable
3 Preferable 3 Preferable
4 Preferable 4 Preferable
5 Preferable 5 Inferior
6 Preferable 6 Preferable

7 Preferable
8 Preferable
9 Inferior
10 Inferior

S o u rce : Yang Shuqin, Guo Zuchao, Chinese medical encyclopedia 
(medical statistics).
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Table 28.11 Measurements of blood cholinesterase activities of patients of a certain 
chronic disease and normal people (international units).

No. of 
matched 
pairs (n)

Cholinesterase 
activities 

of patients ( jq )

Cholinesterase
activities

of normal people (*2 )
Differences 

(d  =  x \  -  *2 ) 4; II M a-

1 43.28 42.36 0.92 0.92
2 52.60 52.40 0 .2 0 1 .1 2

3 33.32 32.40 0.92 2.04
4 42.72 42.52 0 .2 0 2.24
5 52.38 53.04 - 0 .6 6 1.58
6 53.64 52.64 1 .0 0 2.58
7 52.98 52.56 0.42 3.00
8 34.40 32.40 2 .0 0 5.00
9 42.54 42.29 0.25 5.25

10 43.00 42.51 0.49 5.74

3. To compare the effect of barium meal exam using two different com
binations of barium meals, i.e., No. 2 of Shanghai with BCS (Bares- 
coat-s) and No. 2 of Shanghai with BL (Barytgende Luxe), we perform 
a matched comparison after administering the two interventions to the 
same subjects. Given 0\ — 0.95 and two-sided significance level of 
a =  p  =  0.05, compare the effects of two combinations of barium 
meals in the barium meal exam by drawing a diagram of sequential trial 
for the data listed in Table 28.10. If the effects are different, which is 
preferable?

4. The following table contains measurements of blood cholinesterase 
activities of patients of a certain chronic disease and normal people 
using slip semi-quantitative method. Draw a diagram of sequential trial 
according to the results of the study given in Table 28.11 and briefly 
explain the results.

5. Design a group sequential trial with 9 stages (к —9) to solve the problem 
in Experiment 28.1.

(1st edn. Yongyong Xu, Fubo Xue; 2nd edn. Yongyong Xu, Yi Wan)



Chapter 29

Systematic Review of Medical Research 
and Meta-Analysis

The systematic review on medical research is a basic and important step in 
medical studies. A good piece of review which summarizes the results of 
medical researches on a certain topic during a period, can evaluate the signif
icance of the results, find some problems in those studies, and point out the 
further direction of investigation. With the development of evidence-based 
medicine, the synthesized investigation of medical researches becomes a 
bridge, by which the outcomes of medical researches in literatures can be 
well transformed into clinical practice by doctors. Traditional review of 
medical researches mainly depended on the authorities, who summarized 
and reviewed over the studies according to their own cognition in certain 
realm and their own understanding of the related courses. Different data 
collected by researchers with different experiences and different subjec
tive perceptions might sometimes lead to totally different conclusions on 
the same topic. Obviously, traditional synthesized investigation of medical 
literatures lacks objectivity, and can hardly synthesize the outcomes of major 
researches quantitatively. In 1976, G.V. Glass developed methods for sys
tematic review of research based on the mergence of reported statistics, and 
named as meta-analysis. Now meta-analysis has become a powerful tool 
for systematic review, especially for evidence-based medicine.

29.1 Basic Notions

29.1.1 The definition o f  m eta-analysis

Example 29.1 In clinical practice of hospital management, there was a 
debate on whether it was necessary to use psychological treatment to reduce

767
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Table 29.1 Five clinical studies for the number of days stay in hospital.

Study
no.

Treatment Control
Combined

•9
Effect

di t P-value«1; *1/ *1/ «2/ *2/ s2i

i 13 5.00 4.70 13 6.50 3.80 4.27 0.351 0.895 0.380
2 30 4.90 1.71 50 6.10 2.30 2.10 0.571 2.474 0.016
3 35 22.50 3.44 35 24.90 10.65 7.91 0.303 1.269 0.209
4 20 12.50 1.47 20 12.30 1.66 1.57 -0.127 -0.403 0.689
5 8 6.50 0.76 8 7.38 1.41 1.13 0.779 1.554 0.143

the number of days stay in hospital. Research results from the literatures 
were not consistent. Part of the results showed that using psychological 
treatment could reduce the number of days stay of patients in hospital; the 
other results showed that psychological treatment had no statistical signif
icance (Table 29.1). The problems that the systematic reviews of medical 
researches need to answer were: (1) whether the psychological treatment 
was able to reduce the number of days stay of patients in hospital? How 
great the effect was? (2) When would it work well in reducing the number 
of days stay in hospital?

Example 29.2 In clinical practice of pediatrics, there was a debate on 
whether it was necessary to use glucocorticoid to prevent neonate from 
ARDS. Research results from the literatures were not consistent. Part of 
the results showed that using glucocorticoid could prevent neonate from 
ARDS and lower the neonatal mortality rate; the other results showed that 
the decline of mortality rate had no statistical significance (Table 29.2). 
The problems that the systematic reviews of medical researches need to 
answer were: (1) whether the glucocorticoid was able to raise precautions 
against neonate ARDS and lower the mortality rate? How great was the 
effect? (2) When would it work well in raising precautions against ARDS 
to neonate?

Traditional review of medical literatures would only draw a conclusion 
about whether “there is statistical significance”. In Example 29.1, tradi
tional review of medical literatures might report that only 1 out of 5 studies 
demonstrated statistical significance, which could not show the validity of 
psychological treatment; and it might also report that 4 out of 5 showed
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Table 2 9 .2  14 c lin ica l tria ls  fo r  p rev en tin g  n eo n a te  fro m  A R D S .

R esearch  N o. bi c i dt O R * 2 P -v a lu e

1 36 496 60 478 0 .5782 6 .299 0 .012
2 1 68 5 56 0 .1647 3 .348 0 .067
3 14 117 20 117 0 .7 0 0 0 0 .925 0 .336
4 3 64 7 52 0 .3482 2 .343 0 .126
5 8 48 10 61 1.0167 0.001 0 .974
6 3 61 12 46 0 .1885 7 .225 0 .007
7 1 70 7 68 0 .1388 4 .423 0 .035
8 4 77 11 52 0 .2456 5 .955 0 .015
9 32 339 34 338 0 .9384 0.061 0 .805

10 5 44 4 27 0 .7 6 7 0 0 .139 0 .710
11 7 114 13 111 0 .5243 1.804 0 .179
12 0 23 1 21 0 .0913 1.069 0.301
13 9 31 11 31 0 .8 1 8 2 0.151 0 .697
14 6 89 9 85 0 .6367 0 .687 0 .407

A m oun t 129 1641 204 1543 0 .5 9 5 0 19.759 0.000

Note: a j , hj , Cj, dj a re  e lem en ts  in i th  fou rfo ld .

reductive effect on the number of days stay in hospital, only one showed 
opposite effect. Also in Example 29.2, only 4 out of 14 studies demon
strated statistical significance, which could not show the validity of gluco
corticoid; and it might also report that 13 out of 14 showed protective effect, 
only one showed harmful effect. There existed serious contradiction on the 
effect of interest factor indeed. Obviously, traditional ways could not solve 
the above-mentioned debate, and provide a quantitative synthesized result. 
The synthesized researches should have different reliabilities in informa
tion separately, but traditional ways would synthesize medical literatures 
taking equal weight mechanically, regardless of experimental condition 
or sample size. Thus meta-analysis could be used to answer these ques
tions and provide a quantitative synthesized result on the effect of interest 
factors.

The initial meaning of meta-analysis is to collect enough research results 
through the literatures, then sum up after statistical analyses. In 1985, 
L. V. Hedges defined meta-analysis as the rubric used to describe quan
titative methods by combining evidence across studies. Another definition 
of meta-analysis given by Hugue in 1988 is: “the term ‘meta-analysis’ refers
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to a statistical analysis which combines or integrates the results of several 
independent clinical trials, considered by the analyst to be ‘combinable’” . 
Obviously, the last definition is reasonable, because it not only clearly 
defines the analytic purpose of meta-analysis as to combine or integrate 
the existing results of independent researches, but also explains that meta
analysis specifically requires the data to be “combinable”. This working 
definition clarifies an ambiguous thinking that one can use meta-analysis 
for any data.

29.1.2 Effect magnitude

In order to answer the question on the treatment effect in meta-analysis, 
we should define the effect magnitude at first. The great contribution of 
G. V. Glass’ to meta-analysis is the induction of "effect size" (ES), which 
replaces the method of merging the P-values or of voting for whether “there 
is statistical significance”, making a big step in the synthetical investigation 
of research literatures. Since “effect size” is easily thought as a common 
noun, some scholars propose to replace it with “effect magnitude”, and take 
it as a proper term of statistics. Effect magnitude is a standardized statistic 
for reflecting the degree of relationship between treatment and its effect for 
each investigation.

< 0 negative effect

Effect magnitude =  0 no treatment effect 

> 0 positive effect.

Several statistics of effect magnitudes have been commonly used such as the 
standardized difference between the experimental group and control group 
(the difference across two means divided by standard deviation of the control 
group), odds ratio and coefficient of correlation. As relative measures, the 
statistics of effect magnitude are not affected by different unit scales used in 
different studies such that the effect magnitudes from different researches 
can be contrasted and/or combined. In Example 29.1, the effect magnitude 
is the standardized difference across two mean hospital stay (the difference 
between control group and the psychological treatment group divided by 
the combined standard deviation across the two groups). In Example 29.2, 
the effect magnitude is the logarithm of odds ratio.
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29.1.3 Homogeneity test, fix effect model and random 
effect model

As the first step of a meta-analysis, a homogeneity test among results from 
different studies should be carried out. If the homogeneity holds (such as the 
standardized differences across two mean hospital stay from five different 
studies trend consistently in Example 29.1, and the logarithms of odds ratio 
from 14 different studies trend consistently in Example 29.2), we would 
choose a fixed effect model to combine the effect magnitudes ignoring the 
demographic difference among studying populations (such as the patient 
characteristics from different studies in Examples 29.1 and 29.2). If the 
homogeneity does not hold, it is necessary to double check the research 
reports on their design, object and handling measures, and find out the 
factors that might influence the results, and make correction to the fac
tors according to practical situation. For example, some studies having 
excessive drop-out patients should not be included in meta-analysis; or one 
can use stratified meta-analysis according to the characteristics of research 
populations etc. The random effect model is a popular choice to estimate 
the size of heterogeneity with corrected standard error to the final effect 
size, and followed by a weighted combination of effect size over different 
studies.

29.1.4 The design and plan o f a meta-analysis

Just like any other medical researches, meta-analysis is not simply a tech
nique of looking for several literatures and making statistical analysis to 
obtain the result. We must make a design strictly at the beginning of the 
study, establish research project in detail, and make sure the research results 
are reliable, repeatable and scientifically sound. A meta-analysis as a whole 
includes several aspects showed below:

29.1.4.1 Definition of the problem

The problem to be investigated should be clearly defined at first; the scope 
should not be too wide and too complicated. Several related details should 
also be considered such as whether there are disputes about some prob
lems, and is there any hint to further research directions and practical 
significance. Back to Examples 29.1 and 29.2, the problem is whether
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psychological treatment can reduce the number of days stay of patients 
in hospital and whether the glucocorticoid can prevent neonate from 
ARDS, of which the purpose is just for prevention, not diagnosis nor 
treatment.

After clearly defining the research problem, one needs to specify both 
inclusion and exclusion criteria (such as including only randomized control 
clinical trials, or also including non-randomized control clinical trials), the 
indices used for describing the results (such as the mean hospital stay or the 
difference across two mean hospital stay in Example 29.1, the death rate or 
death odds ratio in Example 29.2), effect magnitudes to be used (such as the 
standardized difference across two mean hospital stay in Example 29.1, the 
logarithm of odds ratio in Example 29.2), statistical methods and models 
(such as the method of combining odds ratio, random effect model), and 
how to report the results etc.

29.1.4.2 Retrieval strategy

In the design of meta-analysis, the retrieval tactics should be specified in 
advance, which consists of the keywords and their order, retrieval meth
ods (by electronic literature database or by hand), literature types (only 
include treatise or still include personal correspondence without publica
tion of data). In the interest of obtaining more comprehensive data, we 
would better search through all the available electronic literature databases. 
In Examples 29.1 and 29.2, the retrieval tool was an electronic database, 
and the scope of retrieving only covered the articles published in its 
collection.

29.1.4.3 Assessing research literatures

Meta-analysis is not bringing the collected literatures into analysis without 
choice. In order to obtain the appropriate weight, the validity and reliability 
of the literatures need to be evaluated one by one. There are many items 
concerned with validity, such as the representative of the sample, grouping 
of randomization, using of “blinding”, setting of placebo, appropriateness 
of statistical methods applied etc. There are also many items concerned 
with reliability, such as the accuracy of measuring methods, sensitivity and 
specificity of indices for effectiveness, quality control in data collection etc.
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29.1.4.4 Data analysis

The methods of statistical analysis need to be specified in the design stage, 
including the choice of effect magnitude, synthesis of effect, estimation of 
confidence interval, homogeneity test and the choice of models etc.

29.1.4.5 Interpretation of the result and prospect of further 
research

The purpose of meta-analysis is to get a certain conclusion by synthesizing 
enough results. In Example 29.2, the purpose is to answer the question 
from clinical doctors: Can we use the glucocorticoid to prevent neonate 
from ARDS? How much of the neonatal mortality rate might be lowered 
after using glucocorticoid. If the result of meta-analysis can not make a 
definite judgment yet, further investigation direction and prospect of that 
field should be advised.

29.2 Statistical Methods Commonly Used in Meta-Analysis

29.2.1 Collecting and arranging the data

First of all, meta-analysis is entirely based on the data collected through 
literature review. Due to the influence of individual reviews and under
standing of the reviewer, the results collected could show great divergence 
from different reviewers. According to the requirement of meta-analysis, the 
measurement indices for continuous variables should at least include sample 
mean, standard deviation or variance, and sample size of every treatment 
group; the frequency-type indices for discrete variable should include odds 
ratio or relative risk, frequency, standard error of frequency or total number 
of individuals and cases or deaths in each group. The data of odds ratio 
or relative risk can also be represented by regression coefficients and their 
standard errors of logistic regression, Cox regression or Poisson regression.

In collecting such data, it is best to get the original data from authors 
and basic frequencies listed in literatures. As this is not always possible, the 
results reported in literatures should sometimes be rearranged to meet the 
needs of meta-analysis proposed.

For example, sometimes only means of two groups and the P -value 
of hypothesis test are reported in the literature and no standard deviations
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or standard errors being required by effect size directly. Given the sample 
size of each group under comparison and the exact P -value, we can use 
the equations below to estimate the standard error and the corresponding 
variance.

C  *1 -  * 2
bX\-X2 ~  »

l p , V

(29.1)

Si -
c 2  _  X \ - X 2  

0 C  1 , 1 * (29.2)
Л I Л 2

In analogy, we can estimate the standard error of the frequency.
If the literature gives only the mean (or odds ratio) and confidence 

interval, but no standard error, and the size of the sample is big enough, 
we can use Eq. (29.3) to estimate the standard error,

_ Pu ~  Pi 
~  2 x 1.96’

(29.3)

where pi and ц и are the lower limit and upper limit of the confidence 
interval. In the same way we can get the standard error of odds ratio.

Some literatures collected might not report the results with the impor
tant confounding factors or biases being adjusted. Effect magnitude in these 
literatures needs to be adjusted in principle. However, this will not be intro
duced in detail here.

29.2.2 Data presentation in meta-analysis

Frequency tables and proper plots on the results of each research would 
give a complete impression to the whole profile. Through these intuitive 
approaches, readers may discover easily heterogeneity between the different 
research results. For example, research results in Examples 29.1 and 29.2 
can be plotted as Figs. 29.1-29.4, respectively.

Figure 29.1 is a histogram of weighted frequency for d's of five 
psychological treatment clinical studies. The weighted frequency equals 
to the weighted sum of frequency /, , that is, ш, /,  , where w, is the same 
as that in Table 29.3. Figure 29.1 shows that most of сГs are 0.2-0.8 with a 
peak at 0.35. The frequency distribution has not shown obvious heterogene
ity between different studies. Figure 29.2 shows that since most sample sizes 
are small, and the confidence intervals are wide, the overall negative result
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d

Fig. 29.1 W eig h tin g  freq u en cy  d istrib u tio n  fo r  d ’s o f  five p sy ch o lo g ica l trea tm en t c lin ica l 
studies.
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Fig. 29.2 95%  co n fid en ce  in te rv als  fo r  d ’s o f  five p sy ch o lo g ica l trea tm e n t c lin ica l stud ies.
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O R

Fig. 29.3 W eig h tin g  freq u en cy  d is trib u tio n  fo r  O R 's  o f  14 c lin ica l tra ils .

OR

Fig. 29.4 95 %  co n fid en ce  in te rv als  fo r  O R ’s o f  14 c lin ica l tra ils .

is obtained. Most 95% confidence intervals for d 's include 0, implying no 
effect of psychological treatment on hospital stay.

Figure 29.3 is a histogram of weighting frequency for ORs of 14 clinical 
trials. The weighted frequency equals the weighted sum of frequency /, , 
that is, Wifi, where ш,- is the same as that in Table 29.5. Figure 29.3 shows 
that most of ORs are below 1, and a peak at 0.6. The frequency distribution 
has not shown heterogeneity between different studies. Figure 29.4 shows 
that since most sample sizes are small, and the confidence intervals are
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wide, the overall negative result is obtained. Most OR’s values are smaller 
than 1, implying a preventive effect of glucocorticoid.

29.2.3 Mergence of effect magnitudes

29.2.3.1 Weighted combination

In k(>2) researches, the means and variances of control group and exper
imental group in the z'th study are denoted with x u , x2<, s\t and s|. respec
tively; the combined variance of the two groups is denoted as s f ; and the 
effect magnitude is defined as

X l i  —  X u
di =  —------- ,  z =  1 , 2 , . . . ,  it. (29.4)

Si

Suppose that the true effect for the z'th study population is 8 , and the random 
effect is e, , the observed effect size d, can be expressed as the sum of the 
two in the following random effect model,

dt =  5j +  ei, z =  1,2, . . .  Д . (29.5)

The estimate of the average effect size is

E  M ; 
E Wj

(29.6)

where it>, is the weighting coefficient. Usually if there is no other informa
tion for the weight, the sum of sample size can be used as the weighting 
coefficient, ш,- =  «г; +  пц.

The observed variance of effect size among studies can be disentangled 
into two parts, the true variance of effect size and the variance of random 
error:

Var(z/,) =  s2d = s] +  s] 

and s% can be estimated as

2 E  w i (d i -  d )2 E  w id f  -  d 2 E  w i

Sd~  E “>/ “
(29.7)
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Theoretically, the variance of random error can be calculated with the 
following formula

s2
e (29.8)

29.2.3.2 Homogeneity test

This is to compare the magnitude of the true variance of effect size with 
that of the variance of random error. The test result can lead to the choice 
of fixed effect model or random effect model. The null hypothesis is

H0 : S\ =  S2 =  ■ • • =  Sk.

We can calculate the following statistic

X
2 (29.9)

Under Ho, it follows a y 2 distribution with к — 1 degrees of freedom. Based 
on the value of y 2, a P-value may be obtained. If P < a, then Ho is 
rejected, and a random effect model should be applied. Otherwise, a fixed 
effect model is applied.

29.2.3.3 The 95% confidence interval of mean effect magnitude

For a fixed effect model, the 95% confidence interval of mean effect 
magnitude is

8 \d ± \ .9 6 s j ,  (29.10)

where Sj is the standard error of d,

S3~ 7 t '
For a random effect model, the 95% confidence 
magnitude is

E(S) : d ± \ .9 6 s s, (29.12)

(29.11)

interval of mean effect

where
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Table 29 .3  F ive c lin ica l s tu d ies fo r the  n u m b er o f  day s stay  in hosp ita l.

T rea tm en t C o n tro l , W eigh ted  c o m b in a tio n
---------------------  ----------------------------  C o m b in ed  E ffec t __________________

S tudy
N o.

«1 i
(1)

*1»
(2)

H i
(3)

«21
(4)

* 2i
(5)

s2i
(6) (7)

di
(8)

Щ

(9)

Wjdi

(10)
W idf

( П )

1 13 5 .0 0 4 .7 0 13 6 .5 0 3 .80 4 .27 0.351 6 .5 0 2 .2 8 2 0.801
2 30 4 .9 0 1.71 50 6 .1 0 2 .3 0 2 .10 0.571 18.75 10.706 6 .113
3 35 2 2 .5 0 3 .44 35 2 4 .9 0 10.65 7.91 0 .303 17.50 5 .303 1.607
4 20 12.50 1.47 20 12.30 1.66 1.57 - 0 .1 2 7 10.00 - 1 .2 7 0 0.161
5 8 6 .5 0 0 .7 6 8 7 .3 8 1.41 1.13 0 .779 4 .0 0 3 .1 1 6 2 .427

T otal 5 6 .7 5  2 0 .1 3 7  11.109

Example 29.3 In the synthetic investigation of medical literatures that 
were designed to study the association between psychological treatment and 
hospital stay, five clinical results were collected (Table 29.3). The reciprocal 
of combined variance for each study is used as the weighting coefficient. 
Work out a pooled weighted mean of effect magnitude based on the five 
studies.

Solution In Table 29.3, column (8) is the effect magnitude of various 
studies. Using Eq. (29.6) we calculate columns (9)-(l 1) to obtain ю, =  
56.75, J 2 widj =  20.137, wid]2 =  11.109. Using Eqs. (29.6) and (29.7),
we have, d =  0.355 and s2d =  0.0697. With к  =  5, we substitute them into 
Eq. (29.8) to obtain the error variance

, 4 x 5
s~ =  -------
e 56.75

1 +
0.35521

8
0.358.

Use Eq. (29.9) to carry out a homogeneity test, which results in / 2 =
(5)(0.0697)/0.358 =  0.973, v =  4, P > 0.50. Therefore, we do not reject 
the hypothesis of 8 \ — 8 j, =  ■ ■ ■ — 8 ,̂ and choose the fixed effect model for 
estimating the mean effect magnitude and the confidence interval.

By Eq. (29.11), standard error sd =  0.2676 is obtained; and by 
Eq. (29.10), the 95% confidence interval of mean effect magnitude is
0.355 ±  1.96 x 0.2676 =  (—0.17,0.88), which includes 0. Therefore, 
we do not reject the test hypothesis. It is concluded that the influence of 
psychological treatment on hospital stay could not be confirmed yet.
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T a b le  2 9 .4  V ariation  p ro p o rtio n  o f  bo n e  m in e ra l d e n sity  in  ten  stud ies.

D ru g  A D ru g  В „  , „„„  W eigh ted  c o m b in a tio n
_______ _________ ________  C o m b in e d  E ffec t --------------------------------------

S tudy
No.

n и 
0 )

4 i
(2)

Mi
(3)

n2i
(4)

hi
(5)

Mi
(6)

V
(7)

dt
(8)

Щ
(9)

Wi dj 
(10)

widi
(П)

1 26 2 .60 0 .474 29 8 .73 1.587 1.199 5 .114 55 2 8 1 .2 9 6 1438 .682

2 27 2.41 0 .639 32 3 .9 4 1.541 1.216 1.259 59 74 .2 5 8 93 .4 6 2

3 28 1.40 0 .639 27 6 .2 0 1.574 1.193 4 .023 55 221.281 8 9 0 .2 7 6

4 21 3.58 0 .144 23 5 .3 9 1.209 0.881 2 .055 44 90 .4 3 5 185 .874

5 26 2.22 0 .277 22 7 .5 4 1.246 0 .866 6.141 48 2 9 4 .7 7 4 1810 .249

6 27 1.48 0.671 31 3 .98 1.606 1.261 1.982 58 114.965 2 2 7 .8 7 6

7 25 3.24 0 .603 28 4.51 0 .416 0 .513 2 .478 53 131 .319 3 2 5 .3 7 0

8 20 0 .44 0 .523 20 3.81 1.787 1.317 2 .560 40 102 .385 26 2 .0 6 5

9 20 3 .74 0 .773 33 10.62 1.233 1.085 6 .343 53 33 6 .1 7 5 2 1 3 2 .3 3 3

10 28 1.89 0 .942 30 6 .7 0 1.132 1.045 4 .604 58 2 6 7 .0 3 9 1229.481

Total 523 1913 .927 8595 .6 6 8

Example 29.4 In the synthetic investigation of medical literatures that 
were designed to evaluate curative effect for osteoporosis between drug 
A and drug В , ten clinical RCT results of curative effect were collected 
(Table 29.4). The course of treatment was 12 months. The outcome vari
able is variation proportion of bone mineral density, which is a continuous 
variable. The standardized effect size is chosen as the effect magnitude. 
Sample size of each study is used as weighting coefficient. Work out a 
pooled weighted mean of effect magnitude based on the ten studies.

Solution In Table 29.4, column (8) is the effect magnitude of various 
studies. Using Eq. (29.6) we calculate columns (9)-(l 1) to obtain wi =  
523, £  mdi — 1913.926, ]>]to,r/ 2 =  8595.668. Using Eqs. (29.6) and 
(29.7), we have, d — .6595 and sj =  3.0433. With к =  10, we substitute 
them into Eq. (29.8) to obtain the error variance

s2 4 x 1 0  Г 3.65952"
--------  1 -|------------

523 8
0.2045.

Use Eq. (29.9) to carry out a homogeneity test, which results in / 2 — 
(10)(3.0433)/0.2045 =  148.8056, v =  9, P < 0.01. Therefore, we reject
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the hypothesis of (5i =  8 2  =  • • • =  &, and choose to use the random 
effect model for estimating the mean effect magnitude and the confidence 
interval.

By Eq. (29.13), sj =  s2d- s 2e =  3.0433 -  0.2045 =  2.8388 is obtained, 
that is sg =  1.6849; and by Eq. (29.12), the 95% confidence interval of 
mean effect magnitude is 3.6595 ±  1.96 x 1.6849 =  (0.3572, 6.9618). It is 
concluded that the average proportion of improving bone mineral density 
by drug В is significantly higher than that by drug A, and is in the range of 
0.36-6.96 times of standard error.

29.2.4 Mergence o f odds ratio

29.2.4.1 Weighted combination 

Suppose there are к studies, the /th result is

Uncover factor
+ —

Case a. bt
Control c« d;

OR, =  Ц

y, = \ n ( O R , )

Let Hi and e, be the population effect and random effect of y, in the i th 
study respectively, and the random effect model is

V
! II + £ (29.14)

The weighted mean yw and its variance s2 are

2 to,y(-
У 10 г '  ? 

l , W j

(29.15)

s2 -  1 
y "Lwi ’

(29.16)

where ш, is the weighting coefficient,

/ 1  1 1 l y 1
m ,  =  ( --------1- —  H----------- ( t  •

\ a i  b j  C i  d i j

(29.17)
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29.2.4.2 Homogeneity test

Ho : S\ =  8 2  =  • • • =  Sk,

Q = Y.wi (>'/ -  Ую)2 =  E  щу} ~ у1 E  «4 • (29.18)
Under the null hypothesis, the statistic Q has a x 2 distribution with к — 1 
degrees of freedom. If P < a, we choose the random effect model. Other
wise, we choose the fixed effect model.

29.2.4.3 The 95% confidence interval of OR

For the fixed effect model, the point estimate of OR and the 95% confidence 
interval of OR are

ORc =  ехр(уш). (29.19)

For the random effect model, the weight to, should be revised with w*,

w* =  (29.20)
£  +  sl

where sjt is the estimated variance of //,(/ =  1, 2 , . . .  ,k)

s2
м

Q -  k +  l

1 ю, —
(29.21)

Using Eqs. (29.15), (29.16), (29.19) and (29.20), we re-calculate the 
weighted mean yw* and variance sj. The point estimate of OR and the 
95% confidence interval of OR are showed in Table 29.5.

Solution (of Example 29.2) Let us use the above procedure to analyze the 
data of Example 29.2 given in Table 29.2.

In Table 29.5, E  wi — 68.4886, and then we have E  w,2 =  780.45. 
By substituting y, and ш, from Table 29.5 into Eqs. (29.15), (29.16) and 
(29.18), we get yw =  -0.4833, sj =  0.0146, Sy =  0.1208, Q =  13.9504, 
v =  13, P > 0.30, so the fixed effect model may be chosen.

Based on the 14 studies, the point estimate of OR and the 95% confidence 
interval of OR are as follows:

ORc =  exp(—0.4833) =  0.6167,

95% Cl of OR =  exp(—0.4833 ±  1.96 x 0.1208) =  0.49-0.78.
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Table 29 .5  M eta-an a ly s is  o f  14 c lin ica l tra ils .

R esearch  N o. ai bi c; d, O R i Vi Щ

1 36 4 9 6 60 478 0 .5782 - 0 .5 4 7 8 20 .5 9 6 2
2 1 68 5 56 0 .1647 - 1 .8 0 3 6 0 .8113
3 14 117 20 117 0 .7000 - 0 .3 5 6 7 7 .2 1 9 0
4 3 64 7 52 0 .3 4 8 2 - 1 .0 5 4 9 1.9568
5 8 48 10 61 1.0167 0 .0 1 6 5 3 .8135
6 3 61 12 46 0 .1885 - 1 .6 6 8 5 2 .1 9 8 8
7 1 70 7 68 0 .1388 - 1 .9 7 4 9 0 .8 5 3 4
8 4 77 11 52 0 .2456 - 1 .4 0 4 2 2.6801
9 32 339 34 338 0 .9384 - 0 .0 6 3 6 15.0217

10 5 44 4 27 0 .7670 - 0 .2 6 5 2 1.9617
11 7 114 13 111 0 .5243 - 0 .6 4 5 7 4 .2 0 9 4
12 0 23 1 21 0 .0913 - 2 .3 9 3 6 0 .0 9 0 2
13 9 31 11 31 0 .8182 - 0 .2 0 0 7 3 .7518
14 6 89 9 85 0 .6367 - 0 .4 5 1 5 3 .3247

Total 129 1641 204 1543 0 .5 9 5 0 -0 .5 1 9 1 6 8 .4 8 8 6

Example 29.5 Work out a meta-analysis of ten case-control studies based 
on the data given in Table 29.6 (Zhao Ning et a l, Modern Preventive 
Medicine (1993) 20(1)).

Solution Substituting у,- and ш, from Table 29.6 into Eqs. (29.15) 
and (29.18), we obtain yw — 2.1741, Q =  19.3323, v =  9, P < 0.05, 
Therefore, the random effect model is chosen in this case.

Using Eqs. (29.21) and (29.20), we have s~ =  0.3484 and wf listed in 
Table 29.6. Substituting у,- and w* from Table 29.6 into (29.15) and (29.16), 
we obtain yw* =  2.3130, s? =  0.0679, Sy =  0.2606.

Based on the ten studies, the combined point estimate of OR and the 
95% confidence interval are

ORc =  exp(2.3130) =  10.11,

95% Cl of OR =  exp(2.3130 ±  1.96 x 0.2606) =  6.06-16.84.
The above analytical method not only carries out homogeneity test and 

weighted combination of ORs in case-control study, but also carries out 
weighted combination of relative risk RR in clinical RCT or cohort study, 
for example, a, and b, are the numbers of subjects with positive outcome 
and with negative outcome in the trial group, and c, and d, are those in
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Table 29.6 M eta-an a ly sis  fo r th e  s tud ies on a sso c ia tio n  b e tw een  liver c an c er and  
H B V  in fec tio n  rate .

a / bi с,' di O R i У1 Щ w *

1 105 62 2 45 38 .1 0 4 8 3 .6403 1 .8252 1.1157
2 91 58 8 41 8 .0409 2 .0845 5 .6 3 0 0 1.9010
3 51 27 5 48 18.1333 2 .8978 3 .6 0 3 9 1.5977
4 97 85 5 17 3 .8 8 0 0 1.3558 3 .5 6 0 0 1.5890
5 97 79 9 27 3 .6835 1.3039 5 .8 4 4 0 1.9248
6 38 41 8 51 5 .9085 1.7764 5 .1 2 0 0 1.8392
7 27 19 3 41 19.4211 2 .9 6 6 4 2 .2 3 5 2 1.2566
8 67 96 2 42 14.6563 2 .6849 1.8210 1.1141
9 110 66 2 46 38 .3 3 3 3 3 .6463 1.8316 1.1181

10 51 35 3 17 8.2571 2.1111 2 .2 7 1 0 1.2678

Total 734 568 47 375 158 .4190 2 4 .4 6 7 4 3 3 .7418 14.7241

control group respectively, while the positive rates (or negative rates) of the 
two groups are very small, RR can be estimated approximately by a,d, jb tc, , 
and then homogeneity test and weighted combination can be carried out.

29.3 Notes

29.3.1 Mergence o f effect magnitude

The statistics of effect magnitude are not affected by different unit scales 
used in different studies such that the effect magnitudes from different 
researches can be contrasted and/or combined. The basic idea of meta anal
ysis is that the results (for example, the difference between two means, 
the difference between two rates, correlation coefficient, OR and RR) from 
different studies can be combined, the average of effect magnitude will be 
calculated, and then the reliable conclusion would be drawn.

In practice, taking the logarithm of odds ratio for two rates as the 
effect magnitude is most familiar in medical literatures though, taking the 
difference between two rates to show clinical curative effect directly might 
sometimes be more meaningful. The preference depends on the analytical 
objectives.

29.3.2 Homogeneity test

If P < a in homogeneity test, first of all, the reason for disaccord from 
different studies should be explored, for example, including and excluding
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criterion of the observation objects might be different. After excluding a 
few ineligible studies, whether the random effect model still should be used 
should be re-considered.

29.3.3 Publish bias and funnel plot

The most important problem in meta-analysis is publication bias, for exam
ple, medical journals tend to publish “positive” results with P < 0.05. 
It was reported that the publication rate of “positive” results in clinical 
trials was about 77%, and the publication rate of “negative” results was 
only 42%. Therefore, meta-analysis based on published literatures tends 
to obtain “positive” synthetic results. It is demanded that for high quality 
meta-analysis, one should collect as much as possible the relevant studies. 
The international medical journals have claimed that important researches 
must complete their public registration before starting. This measure might 
be helpful in retrieving some unpublished “negative” results.

The funnel plot is most frequently used to identify publication bias. It is 
a scatter plot, with the sample size (or reciprocal of standard error of effect 
magnitude) as у-axis, the effect magnitude (or logarithm of effect magni
tude) as x-axis (Fig. 29.5), and each point refers to a study report. In practice, 
the independent studies with small sample size are in majority, they have 
more chance to present extreme values of effect magnitude than those with 
large sample size, and hence the corresponding dots distribute symmetri
cally at one bottom of one funnel plot; on the other hand, the independent 
studies with large sample size are in minority, their accuracies of effect 
magnitude are high, and hence the corresponding dots more concentrate at 
the top of the funnel plot. The basic hypothesis of funnel plot is that with 
the increase of sample size, the accuracy of estimating the effect magnitude 
increases, the range of variation gradually reduces, and converges to a dot 
finally. The scatter plot looks like an inverted symmetry funnel, so-called 
funnel plot. If the funnel plot presents asymmetric, then the publication 
bias may exist. Drawing of a funnel plot needs more independent studies 
(usually greater than five). Figure 29.6 is the funnel plot of Table 29.5.

29.3.4 Fail-safe number

Assume there were Na literatures with “negative” results being missed, and 
incorporating these “negative” results with the current data, the “positive”
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Fig. 29.5 A sketch map of funnel plot.
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Fig. 29.6 Funnel plot of 14 clinical trails using glucocorticoid to prevent neonate from 
ARDS.

conclusion from current meta-analysis would be pulled down. This number 
is called as Fail-safe Number (Nfs). It can be proved

- k

2
N t

Z,
(29.22)
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where Z, is the i th standardized normal deviate obtained from the existing 
/th study for meta-analysis,

X u -  X2i
Z, =  - y ------ Z ,=

b X \ i - X 2i

In (OR,)
S\n(ORi)

or Z, = P u  -  P2i  

c
°P\i~P2i

or transformed according to the P -value (one-sided probability) reported 
by the /th study through a table of standard normal distribution. Na is the 
possible number of missed literatures in which effect magnitude is 0  at the 
test level a . The bigger Nn is, the smaller possibility is the current result 
being pulled down, and the smaller publication bias is.

As an example, for the mergence of effect magnitude in Table 29.5, we 
have Z, =  —16.9834, one-sided critical value Z0.05 =  1.645 is given, 
substituting into (29.22), we obtain

/Vq.05 =
-16.9834

1.645
14 =  92.59 % 93.

The conclusion is that if the merging result ORc =  0.6167 of effect 
magnitude is only held due to missed literatures, in which effect magni
tude is 0 (OR =  1) at a test level, the current result might be pulled down 
after adding 93 reports about failure to prevent neonate from ARDS by 
using glucocorticoid. If the reader thinks that the number 93 is big enough, 
and that is almost impossible to have so many “negative” literatures missed, 
then the publication bias might not be serious.

29.4 Computerized Experiments

Experiment 29.1 Mergence of effect magnitudes Program 29.1 is for 
Example 29.4. Lines 01-19 are to input data, and calculate the combined 
standard deviation SSC and effect magnitude d,. S_NUM is the number of 
studies; NTI XII STI NCI X2I and SCI represent the sample size, mean 
and standard deviation in drug A and drug В respectively. Lines 20-26 are 
to calculate to,-, Wjdj, Wjdf in amounts as SWI, SWID and SWID2. Lines 
27-39 are to calculate the weighted mean of the effect magnitudes and d, 
and to perform the homogeneity test as well as to calculate 95% Cl with the 
exact P-value of the homogeneity test, where AVD for d, SD2 for sj, SE2 
for s], SDEL2 for xf, SDBAR for sj, and CHISQ and P are the values of
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Program 29.1 The meta-analysis of the differences between means.

Line Program Line Program

01 DATA A; 21 ID= _N_;
0 2 INPUT NTI XII STI NCI X2I SCI; 2 2 IF _N_ =S_NUM THEN DO;
03 SSC=SQRT(((NTI— 1 )*STI**2+ 

(NCI— 1 )*SCI**2)/(NTI+NCI—2));
23 SWI=S W I1 ;S WID=SWID 1; 

S W1D2=S WID21;
04 DI=(X2I—X1I)/SSC; 24 END;
05 WI=NTI+NCI; WID=WI*DI; 

WID2=WI*DI**2;
25 PROC SORT;

BY DESCENDING ID;
06 S_NUM=10; 26 DATA C; SET B;
07 CARDS; 27 AVD=SWID/SWI;
08 26 2.60 0.474 29 8.73 1.587 28 SD2=(SWID2—AVD**2*SWI)/ 

SWI;
09 27 2.41 0.639 32 3.94 1.541 29 SE2=4*S_NUM/SWI*

(l+AVD**2/8);
10 28 1.40 0.639 27 6.20 1.574 30 CH1SQ=S_NUM*SD2/SE2; 

DF=S_NUM— 1;
11 21 3.58 0.144 23 5.39 1.209 31 P = l—PROBCHI(CHISQ,DF);
12 26 2.22 0.277 22 7.54 1.246 33 IF SD2>SE2 THEN 

SDEL2=SD2-SE2;
13 27 1.48 0.671 31 3.98 1.606 33 ELSE SDEL2=0;
14 25 3.24 0.603 28 4.51 0.416 34 LOW=AVD— 1.96*SDEL2**0.5;
15 20 0.44 0.523 20 3.81 1.787 35 UP=AVD+1.96*SDEL2**0.5;
16 20 3.74 0.773 33 10.62 1.233 36 SDBAR=SE2**0.5/S_NUM**0.5;
17 28 1.89 0.942 30 6.70 1.132 37 FLOW=AVD— 1.96*SDBAR;
18 38 FUP=AVD+1,96*SDBAR;
19 DATA B; SETA; 39 PROC PRINT;
2 0 SWI 1+WI;SWID 1+WID; 

SWID21+WID2;
40 RUN;

X2 and P of homogeneity test. The terms AVD, FLOW, FUP, LOW and UP 
express the estimate of combined OR, the lower and upper limits of 95% Cl 
of OR by the fixed effect model and the random effect model respectively. 
Lines 40-41 are to output the results.

Experiment 29.2 Mergence of ORs Program 29.2 is for Example 29.2. 
Line 01 is the selection of output format. Lines 02-23 are to input data, 
calculate OR and effect magnitude y, ; S_NUM is the number of studies; 
NAINBI NCI and NDI denote the cell numbers a, b, c and d respectively, 
of which a in the 11th study is supposed to be 0.1 rather than the initial 
value 0. Lines 26-37 are to calculate w w f ,  ш,у,-, w,y(2, yw, s? (denoted
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Program 29.2 The meta-analysis of O R  data.

Line Program Line Program

01 OPTIONS LS=74 PS=MAX 
NOCENTER NODATE;

29 ID= _N_;

0 2 DATA A; 30 IF _N_ =S_NUM THEN DO;
03 INPUT NAI NBI NCI NDI; 31 SWI=S W I1 ;S W I2=SW I21;
04 OR=(NAI*NDI)/(NBI*NCI); 33 SWIYI=SWIYI1; 

SWIYI2=SWIYI21;
05 YI=LOG(OR); 33 YWBAR=SWIYI/SWI;

SYBAR2=1/SWI;
06 WI=(1/NAI+1/NBI+1/

NCI+1/NDI)**(-1);
34 Q=SWIYI2-YWBAR**2*SWI;

07 NI=NA1+NBI+NCI+NDI; 35 SMU2=(Q-S_NUM+1)/ 
(SWI-SWI2/SWI);

08 S_NUM=14; 36 END;
09 CARDS; 37 P= 1 -PROBCHI(Q,S_NUM-1);
10 36 496 60 478 38 PROC SORT;

BY DESCENDING ID;
11 1 6 8  5 56 39 DATA C; SET В;
12 14 117 20 117 40 FORC=EXP(YWBAR);
13 3 64 7 52 41 FORLOW=EXP

(YWBAR-1.96*SYBAR2**0.5);
14 8  48 10 61 42 FORUP=EXP

(YWBAR+1.96*SYBAR2**0.5);
15 3 61 12 46 43 SMU2S+SMU2;
16 1 70 7 6 8 44 WIS=1/(WI**(-1 )+SMU2S);
17 4 77 11 52 45 WISYI=WIS*YI;
18 32 339 34 338 46 SWIS1 +W1S;SWISYI 1+WISYI;
19 5 44 4 27 47 IF _N_ =S_NUM THEN DO;
2 0 7 114 13 111 48 SWIS=SWIS 1 ;SWISYI=SWISYI 1;
21 0.1 23 1 21 49 YBAR=SWISYI/SWIS;
2 2 931 11 31 50 SY2=1/SWIS;
23 6  89 9 85 51 ORC=EXP(YBAR);
24 52 ORLOW=EXP( Y BAR-1.96* 

SY2**0.5);
25 DATA B; SET A; 53 ORUP=EXP(YBAR+1.96* 

SY2**0.5);
26 WI2=W1**2;WIYI=WI*YI;

WIYI2=WI*YI**2;
54 END;

27 SWI1+WI; SWI21+WI2; 55 PROC PRINT;
28 SWIYI1+WIYI;

SWIYI21+WIYI2;
56 RUN;
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with SWI, SWI2, SWIYI, SWIYI2, YBAR and SYBAR2), Q statistic of 
homogeneity test and the P-value of the test. Lines 38-54 are to calculate the 
estimate of combined OR and its 95% Cl, where WIS =  w*, YWBAR =  yw, 
YBAR =  y, SMU2 =  s2M, SY2 =  sj; FORC =  ORc, FORLOW, FORUP 
and ORC =  ORc, ORLOW, ORUP express the estimate of combined OR, 
the lower limit and the upper limit of its 95% Cl of the fixed effect model 
and of the random effect model respectively. Lines 55-56 are to output the 
results.

29.5 Practice and Experiments

1. Table 29.7 consists of the results of four studies that involve a psycho
logical test about self-esteem. Try to perform a meta-analysis (Extracted 
from: Minghuang Hong, Chinese J. of Health Statistics (1992) 9, 1).

2. Work out a meta-analysis on the data of three case-control studies on 
HBV in Table 29.8.

3. Table 29.9 is the results of 4 RCTs in which peptic ulcer disease was 
treated by domestic Ranitidine in the trial group and by Cimetidine in

Table 29.7 Four studies on psychological test about self-esteem.

No.

Control Training

Total S Dn X n X

1 41 11 41 17 16
2 29 225 33 175 1 0 0

3 104 9 98 12 7
4 11 23 11 31 12

Table 29.8 Three case-control studies on HBV.

HBV (+) HBV ( - )

No. Case Control Case Control

1 44 17 12 39
2 25 12 21 80
3 55 10 14 128
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Table 29.9 Curative effect of treating 
peptic ulcer disease.

Study no.

Healing rate (%)

Trial Control

1 100.0(7/7) 92.8(13/14)
2 83.3 (30/36) 80.0 (20/25)
3 87.1 (54/62) 68.8 (44/64)
4 78.1 (25/32) 69.2(18/26)

Table 29.10 Thickness of metacarpus II cortex of girl children in 11 investigations.

High FI area Fit FI area
Combined

Study N2i X2i s2i n\i x u Hi SD
no. (1) (2) (3) (4) (5) (6) (7)

1 26 2.26 0.32 42 2.33 0.33 0.326
2 55 2.39 0.31 40 2.49 0.32 0.314
3 46 2.50 0.30 50 2.67 0.35 0.327
4 45 2.64 0.26 50 2.90 0.45 0.372
5 45 2.81 0.35 45 2.93 0.36 0.355
6 52 2.95 0.46 55 3.27 0.37 0.416
7 46 3.15 0.39 42 3.48 0.48 0.435
8 45 3.47 0.46 51 3.73 0.54 0.504
9 45 3.63 0.38 45 3.81 0.40 0.390

10 42 3.81 0.41 45 4.16 0.42 0.415
11 44 3.99 0.56 25 4.18 0.41 0.511

the control group. Work out a meta-analysis on the data of odds ratio for 
ulcer healing rates between domestic Ranitidine and Cimetidine.

4. Sample size of each study is used as weighting coefficient. Work out a 
meta-analysis on the data of 11 studies in Table 29.10.

(1st edn. and 2nd edn. Yongyong Xu, Changsheng Chen, Jiqian Fang)





Chapter 30

Comparative Effectiveness Research

30.1 Background

All countries in the world are facing the problem of limited resources for 
health care. Therefore it is important that clinical testing, treatment and pre
vention methods should be evaluated without bias, so as to provide medical 
professionals and health administrators information to select effective and 
low-cost methods of prevention or treatment and policies in health care. 
Although there are a lot of data reporting the effects of new medications, 
equipments, and medical procedures, strict comparison research between 
different treatments is rare. For example, two new medications are both 
better than the placebo, but which one is better? Such studies are lacking; 
and findings of such studies may bring pharmaceutical factories great risks 
because of the potential unfavorable results. New medications and equip
ments are emerging quickly and continuously though, whether the new ones 
are better than the old ones should be studied carefully.

At the same time, among existing data, there is a lack of evidence of what 
kind of treatment is most effective for a certain type of patients. Research 
data can provide some evidence of the effectiveness of treatments, however, 
in order to treat a specific patient, clinician still face the problem of how 
to choose the best therapeutic schedule by using existing evidence. New 
therapeutic schedule could be more effective than the conventional ones, 
but could be more expensive. Is the increase in the cost of treatment equiv
alent to the increase in the effect? Actually in medical practice, clinicians 
are usually keen to choose the more expensive treatment, sometimes even

7 9 3
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choose without hesitating in the case of the lack of a reliable evaluation of 
the treatment.

The presence of the above-mentioned problems not only leads to the 
patients’ health problems not being solved effectively, but also causes unlim
ited rise of health costs. As the Institute of Medicine (IOM) of the United 
States stated in 2008, “Patient care must be based on due diligence, clear 
and wise use of the best available evidence”. It is to create and collect the 
best medical evidence, from which to implement the medical mission and 
to care for the patients as much as possible. The concept of Comparative 
Effectiveness Research (CER) has emerged in such context. In this chapter, 
we are going to introduce CER according to the report of the Congress of 
the United States in 2007 “Research on the comparative effectiveness of 
medical treatment: issues and options for an expanded federal role”.

30.2 Definitions

According to the IOM of the United States, “Comparative effectiveness 
research (CER) is the generation and synthesis of evidence that compares 
the benefits and harms of alternative methods to prevent, diagnose, treat, 
and monitor a clinical condition or to improve the delivery of care. The 
purpose of CER is to assist consumers, clinicians, purchasers, and policy 
makers to make informed decisions that will improve health care at both 
the individual and population levels”.

CER is a sort of simple but rigorous assessments which mainly com
pares several alternative diagnosis/treatment methods possibly being chosen 
by certain population of patients. The compared methods can be analogous 
(e.g., medications with equivalent effects), or different (e.g., medication and 
surgery). Contents of CER include the comparison of advantages and risks 
of various types of diagnosis/treatment methods, as well as their cost effec
tiveness. Sometimes, a particular treatment could be proved to be effective 
or to have the highest cost effectiveness for the majority of patients, but 
the most critical and difficult thing is how to find the most effective and 
cost-effective method for a specific type of patient.

In many countries, the results on effect comparison are routinely used 
to determine the treatments covered by medical insurance and the propor
tion of Medicare reimbursement. For example, missions of the National



Comparative Effectiveness Research 795

Institute for Health and Clinical Excellence (NICE) of the UK are to 
compare the clinical effects and cost-effectiveness of new and existing 
medications, methods and techniques, and to provide guidelines for the 
diagnosis/treatment for certain type of diseases or patients. By 2007, the 
NICE has published appraisals of over 100 specific technologies, guidance 
on the use of about 250 medical procedures, and about 60 sets of treatment 
Guidelines — a substantial but not exhaustive list.

The core of CER is to produce optimized evidence. To achieve the opti
mization of evidence, the following are needed. (‘Initial National Priori
ties for Comparative Effectiveness Research’. Committee on Comparative 
Effectiveness Research Prioritization, Institute of Medicine)

(1) Study Populations Representative of Clinical Practice
Many studies on the effects of medical interventions on health address 
efficacy rather than effectiveness. Efficacy reflects the degree to which an 
intervention produces the expected result under carefully controlled con
ditions chosen to maximize the likelihood of effects. Many randomized 
controlled trials — generally considered to be the gold standard — are 
efficacy studies, particularly those conducted to win regulatory approval. 
The study population and setting of efficacy studies may differ in impor
tant aspects from those settings in which the interventions are likely to be 
used. By contrast, effectiveness research intends to measure the benefits 
and harms of an intervention in ordinary settings and broader populations, 
and therefore can often be more relevant to decision making and evaluation 
of health care providers and patients. However, since it is impossible to 
have randomization in the effectiveness researches such as observational, 
database, registry, and other studies, the unidentified bias and confounders 
may weaken the level of evidence; and the evidence may be strengthened 
by the efficacy studies in broaden populations or settings generating more 
generalized outcomes.

(2) Focus on the Individual Rather than the Average Patient
With the growing knowledge of disease mechanisms, systems biology, 
genomics, and other sciences that create the potential for more targeted ther
apies, doctors, patients and policy makers are increasingly seeking evidence 
not only from the general populations, but also from relevant subgroups. 
Increasing emphasis on patient-level attributes that may modify the balance
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of benefits or harms can lead to more personalized medicine, reducing the 
pressure to try alternatives found to be ineffective in similar subgroups.

(3) Study Two or More Interventions by Direct Comparison
Although the public requires evidence of “active comparators”, compar
ing evidence-based alternatives (including usual care), and in some clinical 
circumstances, the government also support comparison studies compar
ing with “active control”, there is a paucity of head-to-head comparisons. 
Beyond specific medical interventions and technologies, there is a need 
for evidence evaluating the clinical and resource effects of innovations in 
health care delivery models, including new benefit designs, cost-sharing 
techniques, integrated organizational models, public health and population- 
level strategies, and interventions to improve the quality of care. Because 
these interventions are often implemented at provider or regional levels, 
the methods required to evaluate them may differ from those used to eval
uate patient-level interventions.

30.3 Examples

The following are five examples of CER, which may help the readers to 
understand the methods and features of CER.

Example 30.1 “Meticulous analyses” may overthrow consensus on 
the comparative superiority of different therapies In patients with stable 
coronary artery disease, percutaneous coronary intervention (PCI) is the 
therapeutic method commonly performed by doctors. The study indicates 
that PCI reduces the incidence of myocardial infarction and death in patients 
who have acute coronary syndromes, but the result remains unclear for 
patients with stable coronary artery disease. Between 1999 and 2004, a 
randomized trial involving 2287 patients with stable coronary artery disease 
from 50 clinical centers was conducted in the US. One group was assigned 
to PCI with optimal medical therapy (PCI group, n =  1149) and the other 
group received optimal medical therapy alone (control group, n =  1138). 
After a follow-up period of 2.5 to 7.0 years (median =  4.6), although the 
PCI group showed better revascularization and less heart symptoms, there 
was no significant difference between the two groups in 5-year survival 
rate, incidence of myocardial infarction or stroke, and hospitalization rate
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for acute coronary syndrome. In 2004, more than 1 million coronary stent 
procedures were performed in the US, and recent registry data indicated 
that approximately 85% of all PCI procedures were undertaken electively 
in patients with stable coronary artery disease. Therefore, the therapeutic 
method that generally accepted, by contrast, increases medical cost without 
substantial benefit (New England J. of Medicine (2007), 356, 1503-1516).

Example 30.2 Inexpensive “old drugs” are not necessarily inferior 
to new drugs Diuretic (e.g. Chlorthalidone) is a kind of inexpensive and 
effective antihypertensive drugs. With the development and usage of new 
drugs, antihypertensive drugs commonly used also include angiotensin
converting enzyme inhibitor (ACEI, e.g. Lisinopril) and calcium channel 
blocker (CCB, e.g. Amlodipine), etc. The optimal first-step therapy for the 
patients with hypertension, especially for those old ones with the risk of 
CDH, is unknown. Between 1994 to 2002, a total of 33,357 participants 
(aged 55 years or older with hypertension, and at least one other CHD 
risk factor) from 623 North American centers were selected for a random
ized, double-blind, multi-center clinical trial conducted by the National 
Institute of Heart, Lung and Blood of the US. Participants were randomly 
assigned to receive Chlorthalidone (n =  15,255), Amlodipine (n =  9048), 
and Lisinopril (n =9054) for planned mean follow-up of 4.9 years. As a 
result, there was no significant difference in the incidence of mortality, fatal 
CHD, or nonfatal myocardial infarction among the three groups. Systolic 
blood pressure of Diuretic group was lower than that of the other two groups. 
Diuretic has advantages on other indicators (e.g. stroke) as well. The results 
of comparison indicated that “old drugs” are more effective and cheaper, 
and should be selected as optimal first-step drugs (J. of American Medical 
Association, (2002) 288, 2981-2997).

Example 30.3 Surgery or non surgery? To discuss advantages and dis
advantages by ‘head-to-head’ comparison Effects on patients with severe 
emphysema and criteria for the selection of patients have not been estab
lished. In a multi-center, randomized, controlled trial in the US, a total of 
1218 patients with severe emphysema were randomly assigned to the lung- 
volume-reduction surgery group (n =  608) or the medical treatment group 
(n =  610). The result showed no significant differences in overall mortal
ity between the two groups. After 24 months, exercise capacity improved
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by 15% in patients of the surgery group, while by only 3% in patients of 
the medical-therapy group, and the difference was significant. By analyzing 
data of patients with predominantly upper-lobe emphysema and low exer
cise capacity, mortality was found lower in the surgery group than in the 
medical-therapy group. Overall, lung-volume-reduction surgery increases 
the chance of improved exercise capacity but does not confer a survival 
advantage over the medical therapy. Surgery confers a survival advantage 
for patients in some particular conditions. But for those with non-upper-lobe 
emphysema and high base-line exercise capacity, lung-volume-reduction 
surgery is not a wise choice. ‘Head-to-head’ comparison not only helps dis
cerning the advantages and disadvantages of surgery, but also gives clues 
of indications for surgery (New England J. of Medicine (2003) 348, 2059- 
2073).

Example 30.4 For the manufacturer, comparison researches may be 
risky A pharmaceutical factory sponsored a randomized, double-blind 
trial. A total of 4162 patients who had been hospitalized for an acute 
coronary syndrome were randomly assigned into the pravastatin group 
(n =  2063. Drug A group, produced by the sponsor) and the atorvastatin 
group (n =  2099, Drug В Group), with a mean follow-up of 24 months. 
The results showed that the median of LDL cholesterol was 2.46 mmol/L 
in group A, and was 1.60mmol/L in group B. The difference between the 
two groups was significant. By using Kaplan-Meier method, the outcome 
rates (death) after two years’ follow up was 26.3% in group A and 22.4% in 
group В. The difference was significant. Although the sponsor hoped that 
drug A to be more effective, the study indicated that drug В worked bet
ter in preventing cardiovascular disease (CVD), death and lowering LDL 
cholesterol level among patients with acute coronary syndrome, as com
pared with drug A. As conducting comparison researches is risky, it is not 
easy for pharmaceutical factories to sponsor trials of this kind (New England 
J. of Medicine (2004) 350, 1495-1504).

Example 30.5 Is MRI effective for the examination of breast can
cer? Comparison research can be used to discern the difference of efficacy 
between examination methods as well. A study in the Netherlands compared 
the efficacy of MRI with that of mammography for early-stage screening 
in women with a genetic or familial predisposition to breast cancer. They
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found that the sensitivity of mammography and MRI for detecting invasive 
breast cancer was 33.3% and 79.5%, respectively, and the specificity was 
95.0% and 89.8%, respectively. The difference was significant. Efficacy of 
MRI was obviously better than that of mammography, especially in patients 
with invasive tumors that were 10mm or less. Another study conducted in 
Canada also indicated that the detection rate for breast cancer of MRI was 
higher than that of mammography, and no differences were found between 
the mortality rates of the two groups. The charge of MRI is high. Further
more, although MRI had a higher detection rate of cancer, survival rate of 
patient was not increased by early detection. Issues on whether to promote 
MRI among women at high risk should be given careful consideration. (New 
England J. of Medicine (2004) 351, 427^137; J. of the American Medical 
Association, (2004) 292, 1317-1325).

30.4 Features and Principles

CER has six features as follows. ( ‘Initial National Priorities for Compar
ative Effectiveness Research’. Committee on Comparative Effectiveness 
Research Prioritization. Institute of Medicine)

(1) CER has the objective of directly informing a specific clinical deci
sion from the individual patient perspective or a health policy decision 
from the population perspective. The range of potential objectives for 
CER studies gives the field a broad scope. Clinical questions refer to the 
health care of individual patients, including preventive, screening, diag
nostic, therapeutic, monitoring, or rehabilitative interventions. Policy 
questions refer to the health and health care of populations through 
knowledge synthesis and transfer strategies, public health programs 
and so on. As CER contributes to such important decisions, all relevant 
stakeholders (including patients and the public) and decision makers 
would reasonably be included throughout the CER process, including 
priority setting, study design, explanation and implementation of results 
(Tunis et al., 2003).

(2) CER compares at least two alternative interventions, each with the 
potential to be “best practice”. For many clinical decisions, “optimal 
usual care” is considered the standard which is used to be compared 
in CER. CER studies may also include the alternative of “watchful
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waiting” when it is considered a reasonable strategy in the clinical 
context. CER highlights research that compares a test intervention with 
a method which is frequently-used and considered to be effective.

(3) CER describes results at the population and subgroup levels. The pri
mary outcome of a clinical trial is a measure of the “average effect” of 
an intervention, usually as estimated in the population assigned to the 
intervention in the trial. During the application of the results, clinicians 
must judge whether a particular patient is sufficiently similar to the trial 
population. By its focus on subgroup results, CER assists providers 
and patients in individualizing decisions — going beyond the average 
effects to the effect in subjects with common clinical characteristics.

(4) CER measures outcomes — both benefits and harms — that are impor
tant to patients. There is an important distinction between much clinical 
research and CER, in that CER places high value on external validity, or 
the ability to generalize results to real-world decision making. Harms or 
risks of unintended consequences are also outcomes of interest, because 
they influence the net benefits of an intervention. Resource utilization 
may be highly relevant to net benefits when comparing the full clinical 
course of interventions, and cost-effectiveness analysis is a useful tool 
of CER.

(5) CER employs methods and data sources appropriate for the decision 
of interest. CER includes at least three broad categories of research 
methods. Where evidence is lacking, CER may generate it either in 
non-experimental studies (observational settings) or in experiments 
(randomized controlled trial, as well as nonrandomized controlled tri
als). For decisions that have been the topic of substantial previous 
research, synthesis of existing studies (systematic reviews and meta
analysis and decision analysis) may be appropriate. Data sources for 
CER may thus include published studies, existing data from the delivery 
of care (insurance claims data and electronic health records), clinical 
registries, and information collected by clinical investigators, either ret
rospectively or prospectively.

(6) CER is conducted in settings that are similar to those in which the inter
vention will be used in practice. For experimental studies, investigators 
should deliver the intervention in settings that are as close to actual 
practice as possible. Consistent with the definition of effectiveness, the
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settings of CER studies are a defining characteristic. The settings of 
both experimental studies and observational studies are the realistic 
practice settings.

Although CER has the features described above, it does not mean that all 
CER should have the features. An intervention study can be compared with 
blank control group, placebo group or standard intervention group in the 
beginning. Actually, at the early stage of a new treatment study, safety and 
efficacy trials must be carried out in a specific setting. When the intervention 
is effective compared to placebo, the “head-to-head” comparison need to 
be carried out to answer the key question that which method is the most 
appropriate to the specific patient populations.

During the CER studies, researchers should follow the principles as 
follows:

(1) The objective of CER is to help the decision-makers (patients, doctors, 
payers and policy makers) make wise decisions in health practices.

(2) CER aims to discover and fill in the knowledge gaps in the practices.
(3) CER provides the information to individual or population about the 

benefits, harms, fees and logic of different strategies and treatments.
(4) The scope of the CER study is wide, including intervention, testing, 

prevention, health services, quality of service, etc.

Based on the principles above, CER must do the following:

(1) The “head-to-head” comparison between several effective tests, treat
ments or prevention methods in the current standard must be carried 
out instead of comparing with placebo only.

(2) To evaluate the outcomes which are directly related to the patients, 
instead of the benefits of science or one specific experimental indicator.

(3) To compare the economics issues of different preventive and care mea
sures, not only the effects but also the cost.

(4) In order to help the patients and doctors make a choice among the 
effective treatments, the patients’ characteristics which closely related 
to different outcomes must be identified instead of giving a general 
conclusion that the effect of one treatment is the best on average.
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30.5 Research Methods and Techniques

A variety of methods are used to evaluate different treatment options, includ
ing the synthesis of existing research data (systematic review), or to carry 
out head-to-head clinical trials of different methods. Although these stud
ies are not mutually exclusive, each category face certain challenges, and 
researchers need to weigh against the research costs and the value of the 
information obtained. With the increasing emphasis on CER, people are 
increasingly concerned about how to use the most appropriate method to 
study “head-to-head” medical problems (Congress of the United States 
in 2007 ‘Research on the comparative effectiveness of medical treatment: 
issues and options for an expanded federal role’).

30.5.1 Systematic reviews o f existing research

Systematic review would probably be the easiest approach to compare effec
tiveness of different treatment options by reviewing and summarizing the 
results of existing research in a systematic and rigorous way. Many existing 
studies may only compare a single treatment to a placebo, but the results 
of several studies of individual therapies could in some cases be combined 
to measure those treatments against one another. This combination could 
critically evaluate the strengths and weaknesses of the existing evidence, 
to coordinate conflicting results, or to interpret the existing evidence. One 
advantage of the systematic review is its relatively low cost when compared 
to others.

As the evidence required to compare different treatment options is lim
ited, how much additional insight can be gleaned from systematic reviews of 
existing research is not clear. Randomized controlled trials can provide the 
most conclusive evidence about the effect of the treatment among the exist
ing evidences, so existing results from randomized controlled trials would 
naturally be the focus of any systematic review. But such studies also have 
limitations, one of which is that clinical trials sponsored by interested par
ties are more likely to get positive results than independent research. For 
example, after analyzing the data of 37 studies sponsored by commercial 
organizations, which is often the only source of such data, it was found 
that these studies were more likely to report results in favor of the sponsor 
(Mantel-Haenszel OR = 3.60, 95% Cl =  2.63-4.91), suggesting that con
flict of interests potentially impact the study.
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Another potential limitation is that existing information may not be 
sufficient to reach a unified and clear conclusion. Studies may be difficult 
to compare or reconcile, either because they use different methodologies 
or analyze different populations of patients, or simply because they yield 
conflicting findings. For example, a number of independent studies have 
examined different screen i ng techniques for colorectal cancer, each of which 
provides an estimate of the cost for each increase in quality adjusted life year 
(QALYs) per enrollee. But according to a recent review of those studies, 
the results varied to such an extent that reaching a clear conclusion about 
which technique was most effective or most cost-effective was difficult.

Comparative studies of available treatments may have even more limita
tions than studies of population screening tests, because trials of treatments 
for particular diseases usually exclude patients with certain health problems, 
elderly enrollees, or others who may be of considerable interest in gauging 
comparative effectiveness. As a result, it is hard to determine how broadly 
the results apply or whether they will hold for other groups of patients. The 
fundamental issue is that, no matter how rigorously a systematic review 
is conducted, its contribution is by definition constrained by quality of the 
underlying original evidence. For example, a systematic review of stud
ies illustrates the advantages and disadvantages of diabetes therapy. The 
retrospective study covered a large body of literature, consisting of over 
200 reports, and it was able to reach a relatively clear conclusion: Older 
drugs were found to be at least as effective as newer drugs in controlling 
patients’ blood sugar and cholesterol levels. However, most of the studies 
that were reviewed had relatively short durations — two years or less — 
so they were not able to address the impact on mortality. At the same time, 
many studies have focused on the non-elderly white patients, and therefore 
cannot explain the therapeutic effect of these diabetes drugs on other eth
nic groups. In addition, the study population of the research — diabetes 
patients excluded those with other serious health problems, but in practice, 
most diabetic patients suffering from other diseases at the same time, this 
distinction further limits the potential use of the research results.

Therefore, systematic reviews find that the available evidence is not 
adequate to address many important problems, so the primary value of such 
reviews may lie in identifying clearly the gaps in knowledge that should be 
the subject of future research. The statistical methods of systematic review 
can be found in Chap. 29.
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30.5.2 Randomized controlled trials

Randomized controlled trials would probably be the research method that 
yields the most definitive results. But this approach would also be the most 
expensive and would take the longest to conduct (referred to Chap. 11 for 
more details). Rigorously designed trials will have an important impact on 
the selection of clinical programs. For example, in 2007, a study conducted 
in the US compared the efficacy of angioplasty and metal stent with nonsur- 
gical management in the patients with stable coronary artery. It was found 
that the effect of metal stents failed to prevent death and myocardial infarc
tion effectively. Although the researchers noted that the study results were 
“unexpected” and that its methods and results needed a careful discussion, 
the findings made a rapid reduction in the usage of stents (10% less than one 
month before the report was released, and 15% less as compared with the 
same period in the previous year). In another study, the researchers evalu
ated the effects of lung-volume-reduction surgery for advanced emphysema 
patients. The study found that several types of emphysema patients would 
benefit from the therapy and the health insurance agency (Medicare) agreed 
for nationwide coverage of the cost of treatment of these therapies, with 
the estimated expenses of approximately $15 billion. But after the publica
tion of this study, the actual number of patients underwent the procedure 
decreased rapidly, because the results showed that lung-volume-reduction 
surgery failed to extend the survival time with 10% mortality. The impact 
of the above randomized controlled trials for medical practice may not be 
typical, but publishing the results of these trials often takes several years.

Although the number of randomized controlled trials is increasing dra
matically in recent years, there are still many problems. Many research 
evaluated efficacy rather than effectiveness. As mentioned earlier, the main 
difference between these two is that the former is a study under ideal con
ditions, while the latter is carried out in a real medical environment. In 
many randomized controlled trials, patients with other health problems or 
of certain groups (such as the elderly) are often excluded from the study. 
In addition, many of the study objects are patient who meet a certain defi
nition, so its results may not be universal. At the same time, the objectivity 
of results of randomized controlled trials with commercial sponsorship is 
also being questioned.
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Randomized controlled trial has some other limitations. First, the rel
atively high costs and long duration limit the feasibility of some effect 
studies. Secondly, the more stringent definition of the target population, the 
fewer patients are eligible to meet the inclusion criteria, and the higher the 
degree of difficulty of implementation. Again, if the pros and cons of dif
ferent treatments cannot be confirmed, there will be no problem whatever 
groups the subjects are assigned to. However, if the subjects are assigned 
to a group which is generally considered to be less effective, there come 
the ethics problems. Given these limitations, carrying out and promoting 
comparative effectiveness research cannot rely solely on randomized con
trolled trials. It is necessary to combine randomized controlled trials with 
observational studies.

On the basis of the existing randomized controlled trials, a new method 
is proposed by using the computer model to simulate the therapeutic effects 
of treatments targeting at different patients. This method can serve as a 
substitution or complement of clinical trials. There are some mature models, 
and the most prominent may be Archimedes model designed by the team 
of David Eddy. The advantage of such method is once a model is built, the 
effectiveness of the particular method can be investigated with a relatively 
low cost. In fact, this approach can be even better than the analysis of 
claims data, electronic health records, or medical registration data. If the 
model can accurately predict the effects of a new treatment, the time waiting 
for those treatments to be used and tracking their effects on actual patients 
can be reduced. However, it may be quite difficult to achieve this goal. 
A prominent obstacle is that even if the model is rich enough to simulate 
the real situation of medical services, after all, it is not entirely true, and 
this makes it difficult to have enough confidence and acceptance of the 
results.

30.5.3 Practical clinical trials

To solve the existing problems in the randomized controlled trial, some 
researchers proposed that a greater emphasis should be put on “practical” 
clinical trials (practical clinical trials, pragmatic clinical trials, PCT) in 
comparative effectiveness study. Compared with RCT, there are three main 
features of PCT.
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(1) Comparing alternative methods that clinicians face in practice

Example 30.6 A PCT conducted by the Department of Veterans Affairs 
(VA) compared the effects of terazosin hydrochloride (TH) and finasteride 
(FI) in patients with benign prostatic hyperplasia (BPH). Both medications 
have been approved by the Food and Drug Administration (FDA), but the 
evidence was based the comparisons with placebo, and the manufacturers 
had no motivation to initiate comparative studies of the two medications. 
In this PCT, 1229 BPH patients were randomly assigned to placebo, FI, TH 
or FI-TH combination groups. The average changes of symptom scores in 
the first year since baseline was 2.6, 3.2, 6.1, and 6.2 for the four groups, 
respectively, and the FI, TH and FI-TH groups all had significant differences 
as compared to the placebo group (P < 0.001). The increase of peak 
urinary-flow rates in the first year was 1.4,1.6,2.7, and 3.2 ml per second for 
the four groups, and comparing TH and FI-TH groups with FI and placebo 
groups, the differences were all significant (P < 0.001). In conclusion, TH 
was more effective than FI (once the study initiated, both manufacturers 
contributed to the design and funding for the study) (New England Journal 
of Medicine (1996) 335, 533-9).

(2) Extracting a wide variety of participants from clinical patients
RCTs are generally more stringent in the inclusion of participants, while 
PCTs have relatively broad inclusion criteria, and the exclusion criteria are 
also as lenient as possible. Patients recruited in a RCT are usually with 
clear diagnosis, but in practice, doctors often need to start symptomatic 
treatment before diagnosis, therefore expanding the participants to patients 
with certain symptoms is much meaningful.

Example 30.7 Before the treatment of patients with rhinosinusitis, doc
tors usually judge the patients’ condition by symptoms and results of X-rays, 
rather than conduct sinus puncture immediately to diagnose. In a multicen
ter trial of sinusitis treatment, the inclusion criteria required the patients 
having sinusitis symptoms or being found sinus infections by X-rays, but 
not patients diagnosed by sinus puncture. Patients were allocated to the 
intervention group (nasal corticosteroid therapy combined with conven
tional medication) or the control group (placebo nasal spray combined 
with conventional medication) blindly and randomly. The study found that
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nasal corticosteroids combined with conventional medication therapy can 
improve treatment effects as compared to the control group. Because the 
study expanded the subjects from those who were limited and were dif
ficult to be diagnosed in community hospitals to those who were broader 
and suitable for the operation in community, the results have more practical 
applications for community physicians. In addition, PCTs often recruit sub
jects through community and primary hospitals, hence the patients are more 
diverse and the findings could be more useful for general medical practice 
(JAMA (2001) 286, 3097-3105).

(3) Collecting a wider range of health-related outcomes

In addition to traditional research outcomes (e.g., death and morbidity), 
results of PCT results also include indicators related to function (e.g., quality 
of life, severity of symptoms, satisfaction, costs of treatment, etc.). Mean
while, in order to reflect the natural history of diseases as much as possible, 
the follow-up period of PCT is usually longer than that of traditional clin
ical trials. The results obtained from the two types of studies may hence 
different. For example, in a study of surgical repair of abdominal aortic 
aneurysm, most of the previous studies had short follow-up period, so had 
left substantial uncertainty. In two other studies, which were followed up 
for 4.9 and 8.0 years, results showed that the survival rate was not improved 
by elective surgical repair of aneurysms.

PCT is simpler, less expensive and less time cost, so is regarded to be 
more “worthwhile”. But it also faces the risk of reduced accuracy.

Example 30.8 In a study of the effects of hormone treatment for the 
menopause, 16,608 healthy menopausal women were randomly assigned to 
the hormone therapy group or the placebo group, with an expected follow-up 
period of 8.5 years. After an average follow-up period of 5.2 years, results 
showed that the incidence of invasive breast cancer in the hormone therapy 
group exceeded the preset stopping boundary, and the risk of cardiovascular 
diseases was high, so the study was stop immediately. However, further 
analysis found that the effect of hormone therapy was related to the patient’s 
age, and hormone therapy was beneficial for some patients. (JAMA (2002) 
288, 321-33).
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30.5.4 Cluster randomized trial

Interventions of RCT is generally targeting at individuals, but some studies 
need to adopt cluster randomized trials (CRT), especially when the inter
vention is to be applied to an entire group (e.g., a community-based health 
promotion initiative), or when the status of individuals are linked (e.g., 
studies of contagious diseases). In the study carried out at methadone main
tenance treatment clinics aiming at reducing dropout rate, the participants 
were randomly assigned to the intervention group (receiving psychological 
and behavioral counseling) and the control group (receiving conventional 
treatment), the interaction between the participants may affect the control 
group (contamination), hence may affect the judgment effects of the inter
vention. Comparison between CRTs and RCTs is showed in Fig. 30.1.

In CRTs, unit of randomization could be community (e.g., to carry out 
mass media education), clinic (e.g., to carry out medical intervention), 
school (e.g., to carry out the smoking prevention intervention) or family 
(e.g., to carry out diet intervention). There are several advantages of CRT.

(1) By applying interventions at the hospital or community level, CRT can 
more readily study interventions under conditions of actual use. For 
instance, a CRT that uses existing clinical and administrative mecha
nisms incorporates the impact of group dynamics (advocacy, peer pres
sure, reminders) among healthcare providers.

Population Population

(a). Randomized controlled trial (b). Cluster randomized trial

Fig. 30.1 Comparison between randomized controlled trial and cluster randomized trial.
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(2) CRTs are often intended to be applied to an entire hospital, Intensive 
Care Unit (ICU) or clinic population without exclusion, which enhances 
generalizability.

(3) CRTs are able to harness the health care delivery system’s existing 
administrative capacities, including quality improvement programs and 
data collection systems, simplifying the logistics of implementation and 
reducing study costs. The increasing availability of electronic health 
information facilitates the implementation of cluster randomized trials, 
as routinely collected electronic health information can be used to assess 
baseline status, monitor implementation, and measure outcomes.

Example 30.9 In a study of the prevention of the Methicillin-resistant 
Staphylococcus aureus (MRSA) infection in ICU, the researchers used 
CRT design to compare the effect of three MRSA control strategies (active 
screening and isolation, active screening and MRSA eliminate coloniza
tion, widely cancel colonization without considering the status of MRSA). 
All the three control strategies are used in practice, but which is better 
is inconclusive. Affiliated hospitals of the Hospital Corporation of Amer
ica (HCA) ranked the hospitals according to the annual number of ICU 
patients, and then divided the hospitals into six groups according to the rank 
(six groups with six hospitals, and a group with three hospitals). Hospitals 
within each group were further ranked in accordance with MRSA preva
lence, the adjacent three hospitals were randomly assigned to three MRSA 
control strategies, and ICU in each hospital received the same control strat
egy. This randomized method balanced the number of ICU patients and 
MRSA prevalence in each group. The main outcome of the study is the 
number of patients with the infection of MRSA during two days after ICU 
admission to two days after leaving the ICU. Other outcomes include MRSA 
infection in the blood or urinary tract. All results, including the cost of treat
ment and so on, can be obtained from the information system of HCA. The 
study used existing vocational education systems and compliance monitor
ing systems. The executors and the supervisors are the person in charge 
of the ICU or infection control management, rather than specially trained 
researchers. This kind of research is based on existing systems and staff, 
making the intervention and evaluation closer to reality, and is conducive 
for the information exchange within the HCA system.
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What to be noted in CRT is that the research often does not require 
informed consent of each subject, so there may be ethical issues. CRT 
design must also meet ethical requirements. In addition, due to the non
independence of individuals within the same cluster, the effective sample 
size is less than the total number of individuals. This reduction of the sample 
size depends on the average group size (m) and the degree of correlation 
(p ) within the group. In order to compensate for reduced power of the 
cluster randomized controlled trials, the sample size should be expanded 
on the basis of the sample size of individual randomized controlled trials to 
[1 +  (m — 1 )p] times.

30.5.5 O bservation al study

Compared with randomized controlled trials, pragmatic clinical trials and 
cluster randomization trials, observational studies do not assign interven
tions for the exposure of objects. It is one type of methods used to describe 
the distribution of diseases and health among population, and to explore 
the sequential relationship between exposures and diseases, through field 
test, analysis and recording data objectively. Traditional observational stud
ies include cross-sectional study, case-control study and cohort study. It is 
refreshed with the development of registration data and claims records. 
Methods based on such data have been receiving increased attention.

Considering its low internal validation and confounders, observational 
studies are usually characterized as having inferior quality of evidence than 
randomized controlled trials. While more and more researches indicate 
recently that well-designed observational studies can provide information 
about intervention effect effectively, and the quality of evidence is as good 
as randomized controlled trials. In contrast, some comparative effective
ness questions are particularly appropriate to be answered by observational 
studies:

(1) When large studies are needed

Example 30.10 Although multiple treatment guidelines recommend the 
use of systemic corticosteroids for flare-ups of chronic obstructive pul
monary disease, the optimal dose and route of administration have not been 
well defined. Data from an observational study of 84,621 patients con
ducted at 414 US hospitals in 2006 and 2007 demonstrated that physicians
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were more likely to administer high-dose (average 600mg/d) intravenous 
systemic corticosteroids in such cases rather than low-dose oral corticos
teroids (average 60mg/d). Of all patients, 92% were initially treated with 
intravenous systemic corticosteroids, whereas 8% received oral corticos
teroids. The death rates and adverse event frequencies were 1.4% and 
10.9% in the intravenously treated patients while 1.0% and 10.3% in 
orally treated patients respectively. When confounders were adjusted by 
propensity-matched analysis (more detail of the method are introduced in 
“useful methods”), the treatment effects of the two therapies were in fact 
quite similar, while the risk of side effect was lower among orally treated 
patients, as was length of stay and cost (JAMA (2010) 303, 2359-67). To 
evaluate these findings in a randomized trial, the trial would have to be 
very large, with approximately 30,000 patients in the two groups combined 
(JAMA (2010) 303, 2409-10).

(2) When treatment adherence differs

Example 30.11 Patients usually have poor compliance in the use of 
inhaled steroids, which are considered to be the gold standard for treating 
asthma. An insurer requested observational study conducted in US using 
administrative claims data of about 51,168 patients who have at least one 
record in September 2003 and August 2005, the study evaluated the clin
ical, economical and treatment effect of patient to explore the association 
between asthma medications and outcomes. The researchers concluded that 
although inhaled corticosteroids were associated with a lower risk of inpa
tient admissions and emergency department visits, patients taking oral med
ications were significantly more likely to adhere to their treatment regimen. 
Even when the investigators controlled the severity of disease, patients tak
ing oral medications have greater benefit from treatment than those taking 
inhaled medications. Based on the study, the insurance company decided to 
continue its favorable reimbursement level for the oral medication. How
ever, treatment adherence differs will influence the outcomes in randomized 
trials if it is unable to realize blindly. (Mayo Clinic Proceedings (2009) 84, 
675-84).

(3) When providers have different trainings
Implantable cardioverter defibrillators for patients at risk for sudden car
diac death can be implanted by physicians with a range of training, from
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accredited electrophysiology fellowships to less formal training programs. 
A study of physician certification and outcomes in 111,293 patients showed 
that patients had a higher rate of procedural complications when the 
devices were implanted by thoracic surgeons or cardiologists who were 
not electrophysiologists, compared to when the devices were implanted by 
electrophysiologists. Furthermore, among 35,841 patients who met the stan
dard criteria for use of defibrillators with cardiac resynchronization therapy, 
patients were more likely to receive the indicated resynchronization device 
when their defibrillators were implanted by an electrophysiologist. That is, 
electrophysiologists were more likely to implant the appropriate type of 
device than those who were non-electrophysiologist cardiologists. In ran
domized trials, once the providers themselves will influence the outcomes, 
they must be balanced between groups during the design stage, while such 
method can make the design more difficult, and even infeasible in some 
clinical practices.

As the confounding cannot be balanced through randomization in obser
vational studies, such type of researches is more prone to bias. Clear and 
transparent reports are helpful for readers to evaluate potential bias and 
confounding in a certain research. In order to regulate the report quality 
of observational study, an international cooperation group constitutes of 
epidemiologists, statisticians, famous magazine editors and clinical doctors 
have made great efforts to develop the reporting standard of epidemiolog
ical observational study — Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE). More details can be found on the web
site (http://www.strobe-statement.org). But the STROBE is mainly aimed 
at cross-sectional study, case-control study and cohort study. Recently, with 
the development of comparative effectiveness studies, researchers put for
ward good research for comparative effectiveness (GRACE) principles to 
guide on how to design and evaluate observational comparative effective
ness studies. The GRACE principles include three aspects: first, specified 
study plans (including research questions, main comparisons, outcomes, 
etc.) are needed before conducting the research; second, the study should 
be conducted and analyzed in a manner consistent with good practice and 
reported sufficient detail for evaluation and replication; third, the interpre
tation of comparative effectiveness for the population of interest derived 
from the research should be valid.

http://www.strobe-statement.org
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30.5.6 A nalyses o f  claim s records

A somewhat more challenging approach than others would be health insur
ance claims records. An advantage of that approach is that it could provide 
new information to help resolve uncertainties about treatments at relatively 
low cost — using data on patients that had already been treated.

A central difficulty in such studies, however, is accounting for the dif
ferences in patients’ health status that play a role in determining which 
treatment they get — which can make simple comparisons misleading. 
Insurance claims typically do not include any information about health sta
tus. Yet patients with more severe heart disease, for example, are more likely 
to receive invasive and expensive surgical procedures such as an angioplasty 
or a bypass operation. The greater severity of their condition may also make 
them more likely to have a subsequent heart attack and more likely to die. As 
a result, a comparison with patients receiving less aggressive treatments — 
who are probably not as sick, on average, to begin with — could understate 
the benefits of more aggressive treatments.

Other issues surround the claims data themselves. First, maintaining 
the privacy of the patients whose records were being examined would be 
an important matter but could also present a barrier to conducting such 
studies. Second, in order to obtain sufficient statistical power and significant 
findings, a large amount of claims data would be needed. Third, the quality of 
the study that could be conducted would depend on the level of detail that 
the data provided. Comparisons of the effects of treatments on mortality 
rates would be easier to generate because that information is relatively 
easy to obtain. Effects on morbidity or on the extent, to which symptoms 
are relieved, however, might be more difficult to ascertain — depending 
on whether the relevant data were readily available. In addition, private 
health plans might have difficulty in conducting longer-term comparative 
effectiveness studies using claims data on their enrollees given the turnover 
in insurance coverage; if patients who changed plans were different from 
those who remained, statistical obstacles might undermine the comparison.

30.5.7 M edica l registries

Another option that could supplement or help improve analyses of claims 
data would be to establish medical registries, which generally track patients
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who have a particular disease or who have received a specific treatment. 
Registries collect additional information that is typically not contained in 
claims records, such as measures of health status or test results. In the United 
States, a number of registries — established or managed by various entities, 
including medical specialty societies and product manufacturers — have 
been used to help determine the clinical effectiveness or cost-effectiveness 
of various products and services. Some health plans establish registries 
of their enrollees, although a centrally managed registry would have the 
advantage of being able to track patients if they moved or changed health 
plans.

Data from medical registries could help improve claims based analyses 
both by allowing a broader set of outcomes to be measured and by providing 
information to control for differences among patients getting different treat
ments, including the severity of their illness. But a number of challenges and 
trade-offs would exist. One issue would be how to recruit patients and their 
providers to participate in and provide information to the registries and to 
retain them over time. Voluntary participation might be easy to implement, 
but could introduce bias into analyses if the patients choosing to participate 
differed in important ways from the patients who had opted out. Some form 
of mandatory participation could avoid that problem, but might raise objec
tions from participants. Registries focused on specific treatments could also 
be subject to bias if those patients differed systematically from patients who 
did not receive those treatments — a problem that could be addressed by 
including a comparison group in the registries. Another trade-off concerns 
the data elements to be collected; a more extensive list would permit richer 
analyses but would raise the burden of participation. More-extensive reg
istries and registries involving more patients would also be more expensive 
to operate, although the annual costs of maintaining a typical registry are 
probably on the order of several million dollars.

The establishment of registries could affect medical practice in vari
ous ways. For example, Centers for Medicare & Medicaid Services (CMS) 
recently instituted a policy of “coverage with evidence development” for 
Medicare, to address treatments with potentially promising but uncertain 
medical benefits. Under that policy, Medicare now covers the costs of 
implantable cardioverter-defibrillators for a broader set of heart conditions 
than had previously been eligible — but only if those new patients are 
included in a registry that is supposed to track their progress. The new
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policy allows broader access to that technology in order to help generate 
the kind of evidence needed to reach a conclusion about its value. Another 
example comes from Sweden, where a registry of patients undergoing hip 
replacement surgery has been used to provide periodic feedback to doctors 
about their surgical techniques and to track which specific models of artifi
cial hip have the lowest rates of complications. That effort is credited with 
reducing health costs by avoiding repeat operations to fix faulty or poorly 
installed hips.

30.5.8 Useful techniques

30.5.8.1 Instrumental variables

In the analysis based on observational data or health insurance claims 
records, a potential risk is selection bias. For instance, in the effect research 
among different treatments for heart disease patients, those who have more 
severe heart disease are more likely to receive invasive and expensive sur
gical procedures such as an angioplasty or a bypass operation. The greater 
severity of their condition may also make them more likely to have a sub
sequent heart attack and more likely to die. As a result, a comparison with 
patients receiving more conservative treatments — who are probably not 
as sick, on average — could understate the benefits of more aggressive 
treatments. In other settings, patients receiving more aggressive treatments 
may be healthier, so even well-designed observational studies can generate 
misleading findings regarding the benefits of these treatments.

To address such problems, corrected methods can be used in statis
tics to control the confounder influences between groups, but if there exist 
unknown confounders, other methods are needed. Instrumental variables 
are commonly used in economics and now spread to medical field to ana
lyze the relation between treatment and health effect. By observation we 
can obtain instrumental variables which are correlated with the treatment 
that patients receive but are not correlated with their underlying health. As 
illustrated in Fig. 30.2, by using instrumental variables we can simulate to 
randomly allocate patients into different treatment groups.

For example, one study using claims data from health insurance sought 
to explore the influence of intensive treatment (such as an angioplasty or 
a bypass operation) on elderly acute myocardial infraction patients. The 
data showed patients living farther away from hospitals were less likely
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Fig. 30.2 Instrumental variables illustration.

to receive an intensive treatment while there was no difference on health 
condition between patients living farther and living nearer. Under this cir
cumstance (living distance was not correlated with their underlying health 
but was correlated with the treatment that patients received), living distance 
could be used as an instrumental variable: patients living farther away were 
more likely to receive non-intensive treatment (as randomly allocated to 
non-intensive treatment group) while those living nearer were more likely 
to receive intensive treatment (as randomly allocated to intensive treat
ment group). The study found that patients receiving intensive treatment 
(living nearer) had slightly lower mortality rates, but the difference arose 
only on the first day of admission. In the long run, the study implied that 
intensive treatment of elderly acute myocardial infraction patients had no 
influence on mortality. But in the claims data analysis, all the studies do not 
have proper instrument variables. Even though there might exist such vari
ables, the influence from other confounders on the result cannot be excluded 
easily.

30.5.8.2 Propensity score

With the development of social informatization, medical registries are 
substantially accumulated and continuously improved. Issues on how to 
reasonably use these observational data to compare the effects of differ
ent treatments and interventions deserve exploration. In the analyses of 
medical registries, it is difficult ot demonstrate the real effects of inter
ventions because of the unbalance of basic information and severity of 
diseases between different groups. Common ways to deal with the potential
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confounders during data analyses include stratified analysis and adjusted 
analysis. In recent years, researchers proposed the application of propen
sity score to balance the influences of confounders between different 
groups.

Propensity score is a value related to the probability ratio of one choosing 
to use intervention (or the treatment being studied) instead of control when 
observable covariates are given. Propensity score could be calculated with 
logistic regression. When the dependent variable Y =  1 refers to choosing 
the intervention (or treatment) and Y =  0 otherwise, and the independent 
variables X\, X2, . . . ,  Xk refer to the potential confounders, the logistic 
equation for P =  Pr(F =  1|X|, X2, . . . ,  Xk) can be built as follows:

Ln ^ =  fit) +  P\X\ +  /З2 Х2 +  • • • +  PkXk-

The propensity score for the ith subject is defined with

PSi — +  fi\X \ +  P2X2 +  • • • +  PkX k.

One can see that the propensity score is a composite score of important con
founders which well reflects the propensity of an individual being subject 
to the group of intervention (or treatment).

Methods of balancing confounders between groups with propensity 
score are as follows:

(1) Adjustment. It is the method of directly including propensity score in 
the model as an independent variable and analyzing the relationship 
between the intervention and the outcome after adjusting propensity 
score.

(2) Stratification. It is the method of dividing subjects into several strata 
and analyzing the relationship between the intervention and the outcome 
within each stratum.

(3) Matching. In this method, all the subjects in different groups are respec
tively ranked according to their propensity scores. Each subject of the 
intervention group could be matched up with one or more subjects 
(randomly selected if there are multiple eligible ones) from the control 
group by similar propensity score.
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(a) N o  m a tc h in g  (b ) S o m e  m atch in g

Control
group

group

(c) C o m p le te  m atch in g

F ig . 3 0 .3  D iffe ren t m atch in g  sta tu s  o f  p ro p e n sity  scores.

The newly constructed data will then be used to analyze the relationship 
between the intervention and the outcome of the study by using pairwise- 
designed methods. Of course, some subjects may be excluded from anal
ysis because of the absence of suitable matching. Thus the procedure of 
matching may lose part of information. Three different kinds of matching 
are depicted in Fig. 30.3. In situation A, there is no overlap in propen
sity scores between the intervention group and the control group, which 
indicates failure in matching. In situation B, part of the members in two 
groups with their propensity scores in the overlapped range could hopefully 
be matched. In situation C, the propensity scores of the two groups are 
completely overlapped, and the matching could be performed to the best.

In a research conducted in Denmark (European Heart J. (2011) 32, 
1900-8), multiple medical registration data and propensity score were used 
to compare the mortality and CVD risk of different insulin secretagogues 
(ISs) and metformin in type II diabetes patients with or without previous 
MI. Because of huge cost and great variety of insulin secretagogues, it 
is unrealistic to conduct a large-sample RCT. Every resident in Denmark 
has a unique, permanent registration number which is connected to various 
domestic registrations. Registration data used in the study included “The 
National Prescription Registry of Danish” (record information of all medi
cation prescriptions since 1995), “The National Patient Registry” (record all 
the primary diagnoses of hospitalizations at discharge since 1978), and "The 
National Causes of Death Register” (record the information about causes of 
death). All individuals aged 20 years and above who initiated single-agent
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treatment with an IS or metformin between 1997 and 2006 were included 
in the study, while those treated with insulin alone or with the combination 
of multiple drugs were excluded. A total of 107,806 patients with type II 
diabetes were included, and were followed up for up to 9 years (median
3.3 years).

Results of data stratified according to the presence of MI indicated the 
correlation between the usage of insulin secretagogues (glimepiride, gliben- 
clamide, glipizide, gliclazide, tolbutamide and repaglinide) or metformin 
and the outcomes (all-cause mortality, cardiovascular and mortality). But the 
basic information (age, gender, treatment duration, etc.), comorbidity and 
drug combination were incomparable (partly listed in Table 30.1). These 
factors potentially confounded the correlation between the drug and the 
outcomes. Therefore, a logistic equation was built for treatments (a certain 
insulin secretagogues or metformin) according to potential confounders in 
the baseline, propensity score was then calculated for each subject, and a 
new sample was obtained after screening individuals by matching. Analy
ses of matched data indicated a better balance (partly listed in Table 30.2) 
in baseline characteristics (basic information, comorbidity, drug combi
nation, etc.) between matched groups. Then adjusting the factors remain
ing unbalanced after matching, Cox regression analysis further indicated 
the inferiority of six insulin secretagogues to metformin in prevention 
of all-cause mortality and cardiovascular death. The difference of risk of 
all-cause mortality and cardiovascular death between glimepiride, gliben- 
clamide, glipizide, tolbutamide and metformin was statistically significant 
respectively.

30.6 Steps of CER

There are seven primary steps in the implementation of CER:

(1) Identify new and developing clinical interventions. To find existing 
problems by clinical practice and propose new clinical methods can 
be regarded as the object of comparative effectiveness research. These 
methods include all those related to patients’ health in the process of 
disease prevention, diagnosis and treatment.

(2) Review and summarize current medical research. Focusing on the med
ical issues being studied, widely review the related literatures and get



T a b le  30 .1  C o m p a riso n  o f  b as ic  in fo rm a tio n  and  co m o rb id ity  o f  type  II d iab e tes  p a tie n ts  (w ith o u t M I) w h o  a cc ep te d  trea tm e n t o f  
m e tfo rm in  o r  in su lin  se c re tag o g u e s .

M e tfo rm in G lim ep iride G lic laz id e G lib en c lam id e G lip iz id e T o lbu tam ide R ep ag lin id e

N  (% ) 4 3 ,3 4 0  (5 4 .3 ) 36 ,313 (37 .0) 5926 (6 .0) 12,495 (1 2 .7 ) 6965  (6 .1 ) 5335  (5 .4) 2513  (2 .6)

A g e  (y ears) 5 2 .5  ±  14.0 60 .9  ±  13.3 60 .0  ±  13.2 6 3 .2  ±  13.7 6 3 .0  ±  13.5 6 4 .4  ±  13.5 5 7 .9  ±  12.6

M en (% ) 50 .9 55.3 56.5 54 .4 54.1 53 .8 56 .0

T rea tm e n t d u ra tio n 1.76 ±  1.58 2.11 ±  1.75 2 .10  ±  1.75 2 .3 5  ±  2 .08 2 .35  ±  2 .08 2 .3 6  ± 2 . 1 3 1.97 ±  1.76
(y ear)

C o n g e stiv e  h eart 1.1 2.5 1.6 2.4 2 .4 2.6 0.7
fa ilu re  (% ) 

C a rd ia c 1.6 3.2 2.1 3 .0 3.2 2.8 1.5
d y srh y th m ia  (% ) 

P e rip h e ra l v a sc u la r 0.3 0.6 0.5 0.7 0 .9 0 .9 0.6
d ise ase(% )

C e reb ro v a sc u la r 1.6 2.8 1.4 2 .9 2.8 3.3 1.2
d ise a se  (% ) 

C h ro n ic  p u lm o n ary 1.5 2.6 1.6 2 .4 2.8 2.6 1.2
d ise a se  (% )

Data  sources: S c h ra m m  et al. (E u ro p ea n  H eart J. (2011) 32 , 1900-8).
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Table 30.2 C o m p a riso n  o f  basic  in fo rm a tio n  an d  c o m o rb id ity  o f  ty p e  2  d iab e tes  p a tie n ts  (w ith o u t M I) w h o  a cc ep te d  trea tm en t o f  
m e tfo rm in  o r in su lin  sec re tag o g u es a fte r p ro p en sity  score ca lcu la tio n  an d  m atc h in g  (p a rt o f  m ed ic a tio n  g ro u p s).

M etform in G lim ep iride M e tfo rm in G lic la z id e N e tfo rm in G lib en c lam id e M etfo rm in G lip iz ide

N  (% ) 22 340 22  340 4  739 4  739 7 4 1 2 7 4 1 2 4  981 4  981

(50.0) (50 .0) (5 0 .0 ) (5 0 .0 ) (50 .0) (5 0 .0 ) (50 .0) (50 .0)

A g e  (y ears) 57.1  ±  12.0 57 .3  ±  12.2 6 0 .0  ±  13.2 6 0 .0  ±  13.2 5 9 .6  ±  12.9 5 9 .6  ±  13.0 61 .5  ±  12.7 6 1 .6  ±  12.8

M en  (% ) 55.1 55.7 56.3 56 .8 54 .9 54 .9 55 .4 55.4

T rea tm e n t d u ra tio n 2.1 ±  1.7 2.1 ±  1.8 2.0 ±  1.8 2.1 ±  1.9 2 .5  ± 2 . 1 2 .4  ± 2 . 1 2 .4  ± 2 . 1 2 .5  ± 2 . 2

(y ear)
C o n g e stiv e  h e art 0.7 0.7 0.2 0.2 0.6 0.6 1.2 1.7

fa ilu re  (% ) 
C ard iac 1.1 1.1 2.2 1.9 0 .9 0 .9 1.4 1.4

d y s rh y th m ia  (% ) 
P e rip h e ra l v ascu la r 0.4 0.1 0.3 0.5 0.1 0.1 0.2 0.2

d ise a se  (% ) 
C e reb ro v a sc u la r 1.5 1.5 0.5 0.5 1.2 1.2 1.2 1.2

d ise a se  (% ) 
C h ro n ic  p u lm o n ary 1.1 1.1 0.7 0 .7 1.5 1.7 1.4 1.4

d ise a se  (% )

Data  sources: S c h ra m m  et al. (E u ropean  H eart J. (2011) 32, 1900-8 .
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complete understanding of the current situation, existing methods and 
their shortcomings, so as to prepare for the design and development of 
a comparative effective research.

(3) Identify the gaps between existing medical research and the needs of 
clinical practice. Identify problems in clinical practice that cannot be 
answered by existing data and design scientific research program.

(4) Promote and generate new scientific evidence and analytic tools. From 
the results of comparative effective research, generate new scientific 
evidence or increase the completeness and accuracy of original evi
dence. At the same time, develop new methods to adapt to the needs of 
comparative effectiveness research.

(5) Train and develop clinical researchers. In the process of comparative 
effectiveness research, pay attention to strengthen the scientific research 
ability of clinical staffs. Encourage them to discover and put forward 
questions from clinical practice; and unite the researchers from multiple 
disciplines to cooperate in the comparative effectiveness research.

(6) Translate and disseminate research findings to diverse stakeholders. On 
one hand, the results of comparative effectiveness research should be 
used to guide clinical practice, which is the fundamental goal of CER; 
on the other hand, the achievements should be disseminated timely and 
widely to other clinical staffs by means of paper, report etc.

(7) Inform stakeholders via an open forum. Beside clinicians, CER findings 
should be known by stakeholders in related areas like public health, 
health policy etc. Only in this way, can the studied issue be emphasized 
and promoted on every layer of stair.

30.7 Standards for Implementation and Report

Implementation and report of CER should comply with the following stan
dards:

(1) Theme and researchers. Both the patients and decision makers should 
join in the theme choosing and refining of CER. The team for CER 
must represent clinical or public health practice. As CER is aimed at 
solving specific problems in medical practice, the content studied must 
has direct relation to the real health problems faced with patients. It is 
necessary for the CER researchers to have the most advanced knowledge
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as well as medical practice level to make CER by existing strategy and 
then generate new medical evidence.

(2) Protocol. The protocol of CER should have high quality and trans
parency. Keep up to the highest scientific standards in the aspects of 
program design, data analysis and results interpretation, especially to 
the guidelines aimed at improving clinical research quality and trans
parency such as Consolidated Standard of Reporting Trials (CON
SORT) for randomized control test and Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) for observational 
study. There should be explicit, clear and executive research program, 
focused issue, methods and analysis plan for a CER. Researchers should 
abide by the program strictly. Once it happens to some adjustment, all 
the changed should be recorded in detail. The programs of CER should 
have open access and be available for both researchers and patients by 
registration on the international institution websites.

(3) Peer review. Strict peer review is needed for a CER report. Before pub
lication, the research results must be reviewed by independent experts 
in this field, methodologists and statisticians. Based on the query pro
posed by experts, researchers need to revise and refine the report. In the 
meanwhile, the report should conclude a discussion about its limits such 
as bias, confounders and application range to make the report as fair as 
possible. In addition, to guarantee the public and other researchers to 
acquire the results without obstacles, the relevant magazines and media 
should provide CER results freely.

(4) Compelling policy for conflicts of interests. Due to the potential interest 
influence on the assessed intervention, CER must comply with policies 
relating to interests unconditionally. For example, a certain CER finds 
some treatment is superior to the conventional treatment, which may 
lead to increasing usage of this treatment and decreasing usage of the 
conventional treatment during the subsequent clinical practice. So in the 
peer review and publication in any situation, the researchers, sponsors 
and other contributors must announce all the interest relationship clearly 
and leave the readers alone to judge the fairness of CER results.

(5) Full cooperation with statisticians and epidemiologists. For statisticians 
and epidemiologists, CER is both of opportunity and challenge. On the 
majority, it belongs to observational study, but it is not completely equal
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to traditional cohort study, case-control study and cross-sectional study. 
In order to make the CER fit to the high-level scientific and ethical 
standards, statisticians should not only use the existing technology, but 
also develop new methods on design and analysis to meet the specific 
demand of CER. At the same time, the variety of CER determines that 
statistics and epidemiology will encounter new challenges inevitably, 
such as adroit design of various observational clinical researches, man
agement of severe missing data, imperfect follow-up, immeasurable 
bias, potential effect of chance and data mining techniques. Only by full 
cooperation with statisticians in the process of design, implementation, 
analysis and paper writing, can clinical researchers achieve higher level 
in CER.

(6) The responsibility of medical magazines: medical magazines should 
advocate, develop CER and at the same time promote its research 
achievement. Magazines and peer reviewers must make sure that CER 
satisfies the highest scientific and ethic standards as well as other health- 
related research. So they need to develop methodology and statistics to 
evaluate the methods used in new or unfamiliar health care research 
properly.

30.8 Summary

(1) CER is a brand new idea in medical research, which provides evidence 
for patients, doctors and administrators to make wise decision by com
paring different methods in prevention, diagnosis and treatment.

(2) CER is a kind of medical research based on “real word”, which com
bines medical practice to make “head-to-head” comparison. It con
cludes studied not only on medical effect and cost-effect, but also 
optimal studies on different subjects, different illness conditions and 
different aims.

(3) CER needs large sample and it must be combined with information 
technology, data mining technique and informatics in medical field.

(4) Magazine editors and statistical epidemiologists must correct their per
spectives on CER and impel the clinicians to carry out CER during the 
process of clinical practice.
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30.9 Computerized Experiments

Experiment 30.1 Propensity score matching To study the impact of two 
surgical methods A and В on survival time of patients with lung cancer, a 
total of 902 patients participated in the study, of which 562 were treated with 
A (63.3%) and 340 were treated with В (37.7%). In clinical practice, the 
doctor usually select appropriate surgical approach according to the actual 
situation of the patient instead of a random, thus, the baseline covariates 
between the groups may be distributed unevenly. To reduce such bias when 
comparing survival time of the two groups, matching by propensity score 
was used in this study to balance the baseline covariates between the two 
groups, and matched data were analyzed by survival analysis.

Step 1 Calculation of propensity score: Taking surgical method (variable 
VATS2) as the dependent variable (T =  0 for A, and Y — 1 for B), and 
gender (gender), age (age), pathological characteristic (path), tumor stage 
(latesTNM) as independent variables to build a logistic regression model. 
The propensity scores can be calculated for each patient (Program 30.1), 
which is the probability of the patient receiving surgery В given the values 
of existing covariates.

Lines 01 to 04 of Program 30.1 input the data to SAS database; lines 05 
to 11 are logistic regression taking VATS2 as the dependent variable and

P ro g ram  30.1 C a lcu la tio n  the  p ro p en sity  score.

L ine P ro g ram

01 P R O C  IM P O R T  O U T = A ;
02  D A T A F IL E = "H :\ E x p erim en t 3 0 - l .X L S ”;
03 D B M S = E X C E L  R E P L A C E ;
04  G E T N A M E S = y e s ;
05 DATA C O ;
0 6  S E T  A;
07 PR O C  L O G IS T IC  DATA =  C O ;
08  C L A S S  p a th  la tesT N M  ;
09  M O D E L  V A T S 2=  g e n d er ag e  p a th  la te sT N M  ;
10 O U T P U T  O U T = c o  P R O B = p ro b  ;
11 R U N ;
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Table 3 0 .3  B a la n ce  co m p a riso n  o f  co v aria te s  o f  th e  tw o  g ro u p s b e fo re  an d  a fte r m atch ing .

B efo re  m atch in g A fte r  m atch in g

G ro u p  A G ro u p  В P -v a lu e G ro u p  A G ro u p  В P -v a lu e

S am p le  s ize  (% ) 562  (6 2 .3 ) 3 4 0  (3 7 .7 ) 259  (50) 259  (50) 0.671
A ge M ean 5 7 .6 2  ± 60.71 ± < 0 .001 5 9 .7 0  ± 5 9 .3 2  ±

(± S .D .)  
G e n d er (% )

10.35 10.51 9 .65 10.70

M ale 4 1 9 (6 8 .0 ) 197 (32 .0) < 0 .001 177 (50 .7 ) 172 (4 9 .3 ) 0 .639
F em ale 143 (5 0 .0 ) 143 (5 0 .0 ) 82 (48 .5) 87 (5 1 .5 )

P a tho log ica l
ty p e  (% ) 
1 177 (6 9 .1 ) 79  (30 .9 ) 0.002 7 6  (50 .7) 74  (49 .3 ) 0 .778
2 275  (57 .1 ) 207 (4 2 .9 ) 143 (50 .7 ) 139 (4 9 .3 )
3 1 1 0 (6 7 .1 ) 54  (32 .9 ) 4 0  (46 .5) 4 6  (5 3 .5 )

T u m o r stage  (% ) 
1 190 (4 7 .1 ) 2 1 3 (5 2 .9 ) < 0 .001 138 (49 .8 ) 139 (50 .2) 0.901
2 136 (7 1 .6 ) 54  (28 .4 ) 45  (48 .4) 4 8  (5 1 .6 )
3 2 3 6  (7 6 .4 ) 73 (23 .6 ) 7 6  (51 .4) 72 (4 8 .6 )

gender, age, path, and latesTNM as independent variables. The propensity 
score for each patient can be calculated.

Step 2 Matching: 1:1 propensity score matching based on surgical В group 
can be conducted through macro program. The program can be found in 
file (30.1.2) at http://www.worldscientific.eom/r/8981 -supp, or refer to S AS 
website http://www2.sas.com/proceedings/sugi26/p214-26.pdf.

Step 3 Testing the balance of covariates between two groups before 
and after matching: The balance of important covariates between the two 
surgical groups before and after matching can be tested by t-test for con
tinuous variables and Chi-square test for discrete variables (Table 30.3).

One can see from the results above, the distributions of covariates 
between the two groups are significantly different before matching but 
achieve a balance after that.

Step 4 After the matching process: A survival analysis is conducted for 
the matched data (259 cases for both A and В groups) to compare the 
survival time (see Program 30.2).

http://www.worldscientific.eom/r/8981
http://www2.sas.com/proceedings/sugi26/p214-26.pdf
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P ro g ra m  30 .2  S urv ival an a ly s is  u sing  m atch ed  data .

L in e  P ro g ram

01 PR O C  L IF E T E S T  M E T H O D = P L
02  D A T A F IL E = "H :\E x p e rim e n ts  30-1 a f te rm a tc h in g .X L S " ;
03 P L O T S = (S );
04  T IM E  O S m o n th s* s ta tu sO S (0 )
05 STR A TA  VATS2;
0 6  R U N ;

Experiment 30.2 Propensity score matching of non-balanced sample
To study the impact of non-balanced sampling in groups A and В on survival 
time, the following experiment is to generate a set of simulation data of 
survival time, which follows an exponentially distribution, and to explore 
the impact of propensity score matching on survival analysis.

Step 1 Generating exponentially distributed survival time ht: The
covariates include x l , x 2  and irrelevant variable x3, where x l follows a 
binary distribution (p  =  0.5), x2 and x3 follow the standard normal distri
bution. x l and x2 are involved in the generation of survival time ht, which 
follows an exponential distribution with a parameter of 0.5x1 +0.4x2. The 
censoring indicator is a variable flag (0 indicates censoring). The dataset A 
is generated by repeat the procedure 1000 times, and it is divided into two 
groups by the dichotomous variables x 1. Within each group, the data are 
divided into four layers (x3 < 0, ht < 0.25), (x3 < 0, ht > 0.25), (x3 > 0, 
ht < 0.25), and (x3 > 0, ht > 0.25) corresponding to g =  1,2, 3,4, 
respectively.

Program 30.3 Generating 1000 individuals randomly. Line 03 generates 
random a variable x l which follows a binary distribution; lines 04 and 05 
generate the independent variables x2 and x3 of which both follow stan
dard normal distribution; lines 06-11 generate the values of survival time 
with censoring arround a constant 1.5623, the censored proportion is about 
50%; lines 12-15 divide 1000 individuals into four layers (g =  1,2, 3,4) 
according to the values of the variables x3 and ht.

Step 2 Cox proportional hazards regression: To conduct Cox regression 
by phreg process using random variables generated above. Flag =  0 indicates 
censoring data (see Program 30.4).
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P ro g ra m  30 .3  G e n era tin g  e x p o n en tia lly  d is 
trib u ted  surv ival tim e  ht.

L ine P ro g ram

01 d a ta  A ;
02 d o  i =  1 to  1000 ;
03 x 1 =  ra n tb l(0 ,0 .5 ,0 .5 )-1 ;
04 x 2 = n o rm a l(0 ) ;
05 x 3 = n o rm a l(0 ) ;
06 z = R A N U N I(0 ) ;
07 t= - lo g (z )* e x p (-(0 .5 * x  1 + 0 .4 * x 2 )) ;
08 t2 =  ra n u n i(0 )* l .5623;
09 h t= m in ( t,t2 ) ;
10 i f  t  >  t2  th en  f la g = 0 ;
11 e lse  f l a g = l ;
12 i f  x 3 < 0  an d  h t< 0 .2 5  then  g = l ;
13 E L S E  IF  x 3 < 0  an d  h t> 0 .2 5  T H E N  g = 2 ;
14 E L S E  IF  x 3 > 0  and  h t< 0 .2 5  T H E N  g = 3 ;
15 E L S E  g = 4 ;
16 End;
17 o u tpu t;
18 run;

P ro g ra m  30 .4 C o x  reg ress io n .

L ine Program

01 p ro c  p h reg  d a ta = A ;
02 m odel h t* f la g (0 )= x  1 x2  x 3 /se le c tio n = s te p w ise  s le = 0 .0 5  s ls= 0 .0 5  R L ;
03 O u tp u t su rv iv a l= s ;
04 run ;

R esu lt 1: C o x  reg ress io n  re su lts  o f  the  o rig in a l da ta  

A n a ly sis  o f  M ax im u m  L ik e lih o o d  E stim a te s

V ariable
P a ra m e te r  

D F  es tim a te
S tandard

e rro r C h i-sq u a re
P r >  C hi- 

square
H azard

ra tio
9 5 %  H aza rd  ra tio  
C o n fid en ce  lim its

x l
x2

1 0 .5 2 0 5 6  
1 0 .4 5 4 9 9

0 .08518
0 .04414

37 .3 5 1 6
106.2562

< 0.0001
< 0.0001

1.683
1.576

1.424 1.989 
1.446 1.719
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P ro g ram  30 .5  U n b a lan ced  sam pling .

L in e  P ro g ram

01 DATA s i  s 2 ;
02  S E T  A ;
03  IF x 1=1 T H E N  O U T P U T  s 1;
0 4  E L S E  O U T P U T  s2;
05 R U N ;
06  p roc  so rt d a ta = s  1;
07 by g;
08 run;
09  p roc  survey  se lec t d a ta = s l  o u t= r l  m e th o d = srs  sa m p ra te = (0 .9 ,0 .3 ,0 .3 ,0 .4 );
10 STR A TA  g;
11 run;
12 p roc  sort d a ta = s 2 ;
13 b y g ;
14 run ;
15 p roc  su rv ey se lec t d a ta = s 2  o u t= r2  m e th o d = srs  sa m p ra te= (0 .5 ,0 .3 ,0 .3 ,0 .9 );
16 STR A TA  g;
17 run;
18 d a ta B ;
19 se t r l  r2;
20 run;

Step 3 Unbalanced sampling of the two datasets: x I =  1, x\  = 0  indi
cate individual in group 1 and group 2 respectively. The sampling ratio of 
the four layers was (0.9, 0.3, 0.3, 0.4) in group 1 and (0.5, 0.3, 0.3, 0.9) in 
group 2.

Program 30.5, lines 01-05 divide the dataset A into two subsets s 1 and s2 
in accordance with x l = 0  and xl =  1; lines 06-08 and lines 12-14 sort the 
datasets si and s2 according to the stratification variables g \lines 09-11 and 
lines 15-17 use the surveyselect process to conduct unbalanced sampling 
in accordance with the stratification variable g; srs means sampling without 
replacement; lines 18-20 merge the sampling data into data set B, which 
contains about 500 individuals (here we have 501 individuals).

Step 4 Cox proportional hazards regression of the samples obtained 
by non-balanced sampling: For data obtained from unbalanced sampling, 
Cox regression is conducted by phreg process where flag =  0 indicates 
censoring (refer to step 2 for programs).
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R e su lt 2: C o x  re g re ss io n  re su lts  o f  u n b a la n ce d  sam pling . 

A n a ly s is  o f  M a x im u m  L ik e lih o o d  E stim a tes

V ariab le D F
P a ra m e te r
e s tim a te

S tan d ard
e rro r C h i-sq u a re

P r >  C h i- 
square

H azard
ra tio

95%  H a za rd  ra tio  
C o n fid en ce  lim its

x l 1 0 .9 0 3 4 4 0 .12455 5 2 .6 1 3 0 < 0 .0001 2 .468 1.933 3.151
x2 1 0 .40428 0.06121 43 .6225 < 0 .0001 1.498 1.329 1.689
x3 1 -0 .1 3 6 2 2 0 .0 5 8 9 0 5.3481 0 .0207 0 .873 0 .778 0 .979

Step 5 Matching by propensity score: Matching the two groups in 
dataset В obtained by non- balanced sampling through propensity score 
matching method used above, there will be about 150 pairs of individuals 
(here we have 155 pairs).

Step 6 Cox proportional hazards regression of the non-balanced sam
ple after matching of propensity score: For data obtained after propensity 
score matching, Cox regression is conducted through phreg process where 
flag =  0 indicates censoring.

R esu lt 3: C o x  reg ress io n  re su lts  a f te r  p ro p e n sity  sco re  m atch in g . 

A n a ly s is  o f  M a x im u m  L ik e lih o o d  E stim a tes

P a ra m e te r S tan d ard P r >  C h i- H aza rd 9 5 %  H a za rd  ra tio
V ariable D F  e stim a te e rro r C h i-sq u a re square ra tio C o n fid en ce  lim its

x l 1 0 .8 1 6 2 6 0 .1 5 4 5 4 27 .8989 <.0001 2 .262 1.671 3 .062
x2 1 0 .3 8 7 2 2 0 .0 7 6 6 9 25 .4919 <.0001 1.473 1.267 1.712

It can be learnt from this example that the generation of survival time 
(ht) only involved со variates x l and x2 (see results 1), but after unbalanced 
sampling of ht which is correlated with x3. The regression by Cox model 
showed that all the coefficients of variables x 1, x2 and x3 were statistically 
significant (see results 2). Here variable x3 was false positive. However, 
after using matching of propensity score, Cox regression showed that only 
coefficient of variables x 1 and x2 are statistically significant. Hence match
ing of propensity score can eliminate the impact of confounder x3 to a 
certain extent. We suggest the reader to think about the reason of the above 
phenomenon.

(2nd edn. Jing Gu, Qian Zhao, Jiqian Fang)



Chapter 31

Statistical Methods in Scale Development

With the change from biomedical model to biopsychosocial medical model, 
the clinical professionals gradually pay more attention to the patients’ psy
chological characteristics and feelings, which are usually measured by 
scales. How to develop a qualified scale? Does a scale measure the expected 
contents? Are the results measured by the scale reliable? How to analyze 
the data measured by the scale? This chapter will discuss these issues.

31.1 Development of Scales

In the widest sense, scale development is a complex process involving a 
whole set of methods and including a framework ranging from establishment 
of concepts, operational definitions, development of item pool, selection of 
items, construction of scale, and test of psychometric properties. While in 
the narrow sense, it is just a process of definition of concepts and items 
development.

31.1.1 Main steps of scale development

The main steps of scale development are described by the following example 
on developing a Quality of Life Scale.

1. Objectives and subjects
We should firstly determine the subjects and make sure we would develop 
a generic scale or a specific scale for a particular population, such 
as the elderly people or the cancer patients. Whether the scale aims

831
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at discrimination or evaluation is another issue need to be considered 
beforehand as well.

2. Working group
A nominal group and several focus groups should be organized. The mem
bers of focus groups who are responsible for raising items should be some
what extensively selected, including physicians, nurses, carers and patients 
in addition to the experts.

3. Definition and decomposition
This step would be completed by focus groups. The main task of this step 
is to clarify the definition of the concept to be measured and the structure 
of it. For example, the definition of quality of life and the meaning of its 
subscales, domains and facets.

4. Item pool development
In this step, the items associated with the content clarified in step 3 are put 
forward according to their professional knowledge and personal experience 
independently. And the nominal group goes through a process of rewording, 
classification and analysis to perform an item pool.

5. The format of the response scale
There are two different formats for recording the response. One is the 
so-called linear analog painting technique, which prepares a line segment 
with 0 and 10 attached to the two ends respectively as a coordinate, and asks 
the subject to score his (or her) response by setting a point on it. Another is 
the orderly level off method, which prepares several adjectives or adverbs 
with equidistance describing different levels of the response and asks the 
subject to select one and only one level as a score to match his (or her) 
response.

6. Item analysis and selection
In this step, items are analyzed and screened based on the scores with 
statistical methods to develop a preliminary scale.

7. Pilot study
This step aims at evaluating reliability, validity, response feature, and other 
psychometric features of the scale through pilot study.
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8. Revision

After revision on the basis of the above steps, we get the final scale.

31.1.2 Item  analysis a n d  item  selection

1. Item analysis
Item analysis is a necessary part of pilot study. It is a process of evaluating 
the items from various aspects and providing evidences for item selection, 
including evaluation of difficulty, response feature, discrimination, repre
sentativeness, and independence.

Analysis of difficulty can be evaluated by the response rate. If an item is 
only answered by a few subjects, then we can conclude that it is unsuitable 
or difficult.

Analysis of response feature is aimed to determine the validity of options 
and how the subjects response to them. It is unsuitable if the responses from 
the subjects concentrate on some special options rather than others.

2. Item selection

Item selection is a key task in development of a scale. The importance, 
sensitivity, independence, representativeness, and certainty of items should 
be taken into consideration. The feasibility and acceptability of them should 
be addressed as well.

The following are the approaches of item selection from various per
spectives and serve different purposes. The sample sizes are better to be 
larger than 100.

(1) Subjective evaluation. This approach is to select items according to 
their importance to health. Doctors or patients would be asked to 
score the importance of each item independently (hundred-mark sys
tem would be used, while ranking is another choice when the num
ber of the items is small). Then the items will be selected according 
to their mean or median scores, and those low-scored items could be 
abandoned. In addition, evaluations of importance should be conducted 
among doctors and patients separately because they might have different 
views.

(2) Dispersion trend method. This method is to select items according 
to their sensitivity. The smaller the dispersion tendency is, the worse
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ability of discrimination the item has. So the items with large discrete 
tendency could be selected. The indices reflecting dispersion tendency 
depend on the distributions and features of the scores of each item. 
Generally speaking, standard deviation and coefficient of variation are 
widely used.

(3) Correlation coefficient method. This method is to select items accord
ing to their representativeness and independence. Through calculations 
and statistical tests of correlation coefficients, those having many or few 
related items will be selected. The former can provide more information 
because of their representativeness while the latter cannot be replaced 
by others because of their independence. The Pearson product-moment 
correlation coefficient, Spearman or Kendall rank correlation coeffi
cient are widely used.

(4) Factor Analysis. This method is to identify the factor structure of the 
scale firstly. Then the items with large loading and which are consistent 
with the factor structure could be selected. For example, if a scale for 
quality of life is conceived to have five main factors including phys
ical function, psychological status, social relationship, symptoms and 
toxicity, environment, we can choose the items related to these five 
factors.

(5) Cluster analysis. This method is also to select items according to their 
representativeness. Using a clustering method (hierarchical approach 
is commonly used), the items could be classified into several clusters. 
In every cluster, the item(s) mostly correlated with others on average 
could be selected as the representative ones.

(6) Regression analysis. Subjects are asked to make a total score for their 
overall evaluation (such as quality of life). This total score could be 
used as a dependent variable Y. Then a multiple regression analysis 
between Y and items (X), X i , . . . ,  X p) will to conducted to select the 
items which have big influences on Y . One can get different numbers 
of important items for further choosing if different testing levels (a) 
are selected. This method can also be used at a domain level to select 
items for the specific domain.

(7) Discriminant analysis. A good scale should have the ability of dis
tinguish different populations (such as patients and healthy peo
ple). Given datasets from two different populations in pilot study, a
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discriminant analysis could be conducted to select items which are
good in distinguishing the two populations.

Any of the above-mentioned method has its own advantages and dis
advantages in selecting items. The subjective evaluation method is based 
on subjective judgements of evaluators, and pilot studies are not necessary, 
while the other methods, based on measured results, need some pilot stud
ies. The subjective evaluation method based on importance assessment can 
be used firstly to select among large amount of items, then put the resulted 
items into pilot study and select them by other methods.

Generally speaking, the correlation coefficient method, factor analysis 
method and clustering analysis method emphasize on relational structure of 
data, and select the items on the perspective of representativeness. Factor 
analysis method and clustering analysis method can be conducted due to 
the existing of correlation among items. The correlation analysis method 
is flexible, but do not take into account the relationship among items and 
the structure of scale. The results issued by different clustering methods are 
various and difficult to discern which is better. One can try several clustering 
methods at the same time, and take an overall consideration of the results. 
The discrete tendency method, regression analysis method and discriminant 
analysis emphasize the variation of structure of data, which select items 
on the perspective of sensitivity and importance. So the items with large 
variation possibly tend to be selected. To sum up, different methods are 
distinguished and related at the same time. These methods can be combined 
to select items. The items being selected initially should go through further 
testing of other features like feasibility, reliability, validity and so on to 
continually determine if being retained or abandoned.

31.2 Adopting Scale with Foreign Language

There are no more than two ways regarding to scales, which include refor
mulating a new one and using the developed ones. How to translate an 
already developed foreign scale and adjust it to the new culture background? 
Does the process of transformation include only translation? Will the trans
lated foreign scales be appropriate for domestic measurement? The answer 
is definitely no.
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31.2.1 Translation an d  back-translation  o f  scale

1. Translation
Usually the “forward” translation is suggested to be accomplished by at least 
two translators who are familiar with the source language and its cultural 
background as well as the target language with great proficiency.

2. Back-translation
Back-translation is a key procedure to check the equivalence. It is suggested 
to be worked out by those differing from the forward translators and without 
reading the initial version of the source language. By comparing the back- 
translated scale with the initial scale, one may find the flaws in the translation 
or the points need cultural adaptation.

31.2.2 C ultura l adaptation  o f  scale

The process of cultural adaptation is to assess the equivalence between the 
new scale and the initial one. There are at least six aspects being considered 
in terms of equivalence.

1. Conceptual equivalence
The conceptual equivalence means whether there exist identical definition 
and understanding in different culture background. For instance, in the 
research of cross-culture health-related quality of life (HRQOL) measure
ment, it is basically assumed that there exists a universally acknowledged 
QOL definition which can be measured by an identical set of domains. 
Besides, it is required to maintain the same response scale cross different 
culture background, so as to guarantee the consistency of measurement 
results.

Evaluation method: the most frequently used way is to review relevant 
literatures from different countries or regions and grasp their definition and 
understanding about the concept, and then conclude whether these thoughts 
are equivalent. Also it is useful to consult expert or to organize focus group 
discussion to evaluate the equivalence. The factor analysis could be used to 
assess conceptual equivalence in terms of potential factor structure, loading 
of each item on the relevant factors.

Taking QOL scales as an example, there may be four kinds of evaluation 
results: the first one is that the definition of QOL and the importance degree
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of each domain are the same between the two scales; the second is that the 
definition of QOL is the same but the importance degrees of each domain 
are different; the third is that the definition of QOL and the importance 
degree of each domain are partially the same; the last is that the definition 
of QOL and the importance degree of each domain are totally different.

The first kind of result shows good conceptual equivalence. The second 
shows that there exists conceptual equivalence and the weight coefficients 
could be used to reflect the different importance among domains. The third 
and the last demonstrate that there is no conceptual equivalence. For the 
third one, the different domains could be regarded as a part of cultural 
specificity when evaluating QOL.

2. Item equivalence

Similarly, the item equivalence between the two scales concerns whether 
the roles of the item are the same within the domains. For instance, the item 
on sleeping pill usage may generate cultural distinction, because in certain 
countries people do not use these pills. Another example is that using one’s 
ability in looking after his or her garden might not be proper to measure 
the health situation and activity ability, because most people do not own 
private gardens in some countries. When the item equivalence is evaluated, 
one should not only consider the efficiency but also the acceptance of the 
item. Some items are considered impolite or offensive in certain culture 
background. For example, it is not proper to ask one’s sex life under some 
circumstances. When and only when the item plays the same role in the 
domain with the same efficiency and acceptance, the item equivalence could 
be concluded.

Evaluation method: The most frequently used methods include review
ing local literature, Delphi evaluation method and focus group discussion. 
By reviewing relevant literature about every region, especially on anthro
pology and sociology, one can know more about the characteristics about 
local culture.

Delphi evaluation method helps to know the experts’ evaluation about 
the item.

Furthermore, ranking the items according to their importance through 
focus group might make the researchers know more about the efficiency of 
the item. From the viewpoint of statistics, item equivalence means that an
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item measures the same potential factor, also means that the correlations 
among items in different cultures are the same. The item response theory 
can be used to evaluate the property of a given item; the Cronbach’s alpha 
reliability coefficient can be used to evaluate the inner consistency of the 
items.

There may be four kinds of results: the first is good item equivalence, or 
the items can be translated from the source language to the target language 
for direct use; the second is item equivalence with slight adjustment; the 
third one is no equivalence, and the item should be replaced by others; the 
fourth one is not only no equivalence but also taboos so that the item should 
be deleted.

3. Semantic equivalence
The semantic equivalence concerns the semantic delivery by different lan
guages is equivalent and resulting in the same response. In general, the 
meaning of a word might include denotative and connotative ones. Deno
tation refers to that expressed by the word itself, and can be searched in the 
dictionary; connotation refers to the implied meaning of the specific con
text, which is gained by sociology and anthropology research. To achieve 
semantic equivalence, one must catch precise understanding about the key 
words in the scale before translation.

Evaluation method: the semantic equivalence can be evaluated by strictly 
examining the process of translation-back translation. In case that a few 
items can hardly be made up a semantic equivalence for some reason, one 
needs to replace or even delete them at the end.

4. Operational equivalence

Operational equivalence means that similar format, administration mode, 
time specification and measurement methodology are used.

Evaluation method: These can be checked by the focus groups and 
experts consultation.

For certain practical reason, some operational procedures might need 
to be adjusted. For example, change the administration mode of self-report 
by report with help of investigators or change the phone-based survey by 
mail-based one, etc. Under such circumstance, evidence is needed to show 
that the results from different administration mode are acceptable.
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5. Measurement equivalence

Measurement equivalence is to guarantee the similarity of psychometric 
characteristics of different linguistic versions, especially the reliability, 
validity and responsibility.

Evaluation method: the Cronbach’s a coefficient and test-retest correla
tion could be used to evaluate the reliability; the hypothesis testing and con
firmatory factor analysis (CFA) could be used to evaluate the discriminant 
validity, convergent validity and construct validity; and the Item Response 
Theory (IRT) could be used to evaluate measurement equivalence.

There might be two equivalent levels in practice: The first level, there is 
a similar factor structure between different linguistic versions; the second 
level, relevant factor loadings are similar.

6. Functional equivalence

Functional equivalence can be defined as the overall equivalence achieved 
by the scales used in two or more than two kinds of cultures, which is the 
comprehensive outcome of all kinds of equivalence mentioned above.

There are three levels on functional equivalence: the first, each of the 
above-mentioned equivalence plays well and the outcomes of scale mea
surement are comparable and merged between different cultures; the sec
ond, there exists conceptual equivalence while other kinds of equivalence 
are not so ideal, then the measurement results should be transformed firstly 
before being compared or merged; the third, there exists no conceptual 
equivalence even though other kinds of equivalence are acceptable, then 
the results are not comparable and their implication in different cultures are 
distinct.

The six kinds of equivalences mentioned above aim to help us have 
a better understanding of the scale equivalence. Conceptual equivalence 
which requires researchers to consider its efficiency and necessity deliber
ately before introducing an existing scale is significantly important. If it is 
not proper to introduce an existing scale, researchers should consider estab
lishing a new scale based on specific culture. Currently some researchers 
rely too much on the translation-back-translation procedure but ignore the 
equivalence evaluation, thus a real cross-cultural study will be difficult to 
perform.
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31.3 The Concept and Evaluation of Validity and Reliability 

31.3.1 Validity

Validity is concerned with whether a variable measures what it is supposed 
to measure. For instance, does an IQ test measure intelligence? Does a 
quality of life scale measure people’s quality of life? Dose a depression 
questionnaire measure the degree of patient’s depression? These are the 
questions on validity, but they can never be answered with absolute certainty. 
Although we can never prove the validity, we can develop some indices to 
evaluate it. Traditionally, statisticians have distinguished four types of valid
ity: content validity, criterion validity, construct validity, and convergent- 
discriminant validity. Content validity is largely a “conceptual test”, whereas 
the other three types are empirically rooted. If a measure truly corresponds 
to a concept, we would expect that all four types of validity would be 
satisfied.

1. Content validity
Content validity is a qualitative type of validity where the domain of a 
concept is made clear and the analyst judges whether the measures fully 
represent the domain. To the extent that they do, content validity is met. An 
expert evaluation method can be used to evaluate the content validity.

Just as a non-representative sample of people can lead to mistaken infer
ences to the population, a non-representative sample of measures can distort 
our understanding of a concept.

The major limitation of content validity stems from its dependence on 
the theoretical definition. For most concepts in the social sciences, no con
sensus exists on theoretical definitions. In this situation the burden falls 
on researchers not only to provide a theoretical definition accepted by 
their peers but also to select indicators that fully cover its domain and 
dimensions. Definition of “quality of life” is just a case that lacks of con
sensus, leading to big differences between many existing quality of life 
questionnaires.

2. Criteria validity

Criterion validity is the degree of correspondence between a measure and a 
criterion variable, usually measured by their correlation. To assess criterion
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validity, we need an objective reliable standard measure with which to com
pare our measure. Suppose that in a survey we ask each employee in a cor
poration to report his or her salary. If we had access to the actual salary 
records, we could assess the validity of the survey measure by correlat
ing the reported ones and the records. In this case the employee records 
represent an ideal, or nearly ideal, criterion of comparison.

One may adopt the absolute value of the correlation between a measure 
and a criterion to assess criteria validity. Does this correlation coefficient 
reveal the validity of a measure? Only when the criterion measures the 
concept we concerned perfectly, can correlation coefficient reveal the true 
validity. However, the limitation of criterion validity is that for many mea
sures no perfect criterion is available.

3. Construct validity

The evaluation of construct validity is usually completed by a factor analysis 
approach. To design a questionnaire, the researchers often begin with a set 
of theoretical relations as the bases of a concept to be measured. Then 
based on the observed data, a factor analysis is used to examine whether 
the questionnaire reflects the postulated theoretical construct, and confirm 
whether the researcher’s hypotheses are consistent with the real data.

The main function of factor analysis is to draw some common factors 
from a series of variables measured by a scale. Different from the observed 
variables (also called manifest variables, like the score of each item in the 
scale), these factors are called latent variables. The latent variables are unob
servable, while the relationship between them and the manifest variables 
can be investigated. Generally, the manifest variables are divided into sev
eral groups; the variables of each group share a common factor; the common 
factors reflect the structure of the whole scale. Therefore, the factor analysis 
not only can assess the construct validity, but also can investigate the struc
ture of the whole scale through grouping all of the observed variables. The 
term of factor analysis as a whole includes exploratory factor analysis and 
confirmatory factor analysis. Confirmatory factor analysis is preferable than 
exploratory factor analysis, whenever one wants to confirm the construct 
validity. Relevant materials are referred to the chapter of factor analysis in 
this book.
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4. Discriminant validity

Discriminant validity means that a well-designed scale should be able to 
distinguish the characteristics between certain target populations (such as 
“healthy subjects” and “patients”). For instance, it could be assessed through 
the following procedure: investigating some target populations respectively, 
then calculating the scores of domains and total score, and finally, a t test 
or analysis of variance is applied to test whether there are significant dif
ferences between the scores of the populations. If the hypothesis test shows 
significant differences, the discriminant validity is met.

31.3.2 R eliability

Reliability is the consistency of measurement. It is not the same as validity 
since we can have consistent but invalid measures. To illustrate reliability, 
suppose that I want to measure your level of education. I narrowly define 
education as completed years of formal schooling. I operationalize it by 
asking: “How many years of formal school have you had?” Next, I record 
your answer. If I had the ability to erase your memory of the question 
and the response you gave, I could repeat the same question and again, 
record your answer. Repeating this process an infinite number of times, 
I could determine the consistency of your response to the same question. 
The reliability of this education measure is the consistency in your response 
over the infinite trials. The greater the fluctuation across your answers, the 
lower the reliability of the measure is.

It is possible to have a very reliable measure that is not valid. For 
example, repeatedly weighing yourself on a bathroom scale may provide 
a reliable measure of your weight but the scale is not valid if it always 
gives a weight that is 5 kg too light. A more extreme example would be 
to obtain a measure of intelligence by asking individuals their shoes size. 
This may provide a very reliable measure, but it lacks validity as an intelli
gence measure. Thus the distinction between reliability and validity is very 
important.

Much of the social science literature on reliability originates in classi
cal measurement theory from psychology. A fundamental equation of the 
theory is

Xi = т i +  <?,,
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where x,- is the i th observed variable (or “test” score), et is the error term 
and Tj is the true score that underlies x,. It is assumed that cov(r,, e ,) =  0 
and E(e,) =  0. According to classical test theory, the errors of measurement 
for different items are uncorrelated. The correlation between two measures 
results from the association of their true scores.

Reliability is defined as a ratio between the variance of true scores 
Var(xi) and the variance of observed variables V ar(xj), which equals to the 
square of correlation coefficient between observed scores and true scores.

A number of methods have been proposed for estimating the reliability 
of measures. Here we review the three most common ones: test-retest, split- 
halves, and Cronbach’s a.

1. Test-re test method

The test-retest method is based on administering the same measure for the 
same variable at two points in time, of which the difference should not be 
too long so that the subject’s condition does not change during the period. 
A correlation analysis or hypothesis testing between scores of two tests 
is adopted to evaluate the reliability of the scale. When a statistical sig
nificant correlation coefficient results in the correlation analysis or none 
significant difference results in the hypothesis testing, the reliability is met. 
This method is particularly suitable for a factual scale. A correlation coef
ficient obtained from correlation analysis is named as test-retest reliability, 
of which a recommend standard is not less than 0.7.

Test-retest reliability assessment is difficult to operate in practice. First, 
it assumes perfect stability of the true condition. In many cases the true 
condition may change over time so that the difference between two tests is 
not simply caused by random errors. Second, memory effect is often present 
that the response of the first interview can influence the response in a second 
interview, and the latter response tends to be the same with the former one. 
Consequently, both too short and too long lengths of the time interval are not 
proposed. Many researchers make a recommendation of two to four weeks.

2. Split-halves method

When a test-retest method is impossible to operate, an alternative means is 
to divide all items into halves, of which the correlation coefficient r is used 
to calculate a reliability coefficient as the assessment of reliability.
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The question is how to divide into halves. Generally, factual items are 
difficult to divide, for different characteristics are incomparable. Therefore, 
such method does not suit the kind of factual scales.

For the kind of attitude scales, the items are generally a variety of positive 
or negative statement around a certain theme, and the subjects are asked 
to make choices among statements. For example, to choose one of “very 
dissatisfied”, “dissatisfied”, “neither satisfied nor dissatisfied”, “satisfied” 
and “very satisfied”, and score them from 1 to 5. To divide all items into 
half, it can be based on the sequential order or parity of the item number as 
far as the two halves one similar in content, format and amount of items. 
The correlation coefficient r between scores of the halves is merely the 
reliability of the half scale though the reliability of the whole scale can be 
gauged by the Spearman-Brown Prophecy formula

A recommend standard of it is not less than 0.7.
The split-halves test is more desirable than the test-retest that it only 

needs the measurements at one time point and without the trouble of memory 
effects so that it is often cheaper and easier in performance.

The disadvantage of split-halves method is the way that the halves are 
allocated is somewhat arbitrary. There are many possible ways of dividing 
a set of items into half, and each split could lead to a different reliability 
estimate.

3. Chronbach’s a  coefficient
Split-halves reliability coefficient is established in the assumption that the 
variance of the scores of the two halves are equal, which is not always 
satisfied. If the variances are not equal, the reliability will be underestimated. 

L.J. Chronbach proposed to use the coefficient a to assess reliability:

(31.2)

where к is the total number of items, sf is the variance of the score of item 
i, Sj is the variance of the total score. The Chronbach’s a is the most pop
ular reliability coefficient in social science research at present. Generally,
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a standard of no less than 0.7 is recommended, while some researchers 
preferred 0.9 or above.

When calculating the coefficient a , additional attention should be paid 
when the scale consists of more than one domain. In such a case, in addition 
to the whole scale, it is more proper to calculate the coefficient a for each 
domain respectively.

What both split-halves method and Chronbach’s a coefficient actually 
assess is the internal consistency of the scale such that the former assesses 
the consistency between two halves of the scale, while the latter assesses 
the consistency among all items. This is a kind of homogeneity. If the con
sistency does not exist, the integration of the scores becomes unreasonable. 
Thus, to improve the reliability, we should pay attention to the homogeneity 
of statements originally when design a scale: whether the items describe a 
certain characteristic in the same direction, and some items that are likely 
to cause heterogeneity need to be ruled out.

Even though a scale has been demonstrated reliable and valid, it still can
not be marked as an effective tool if it cannot detect some subtle, clinical 
significant and time-dependent changes. Responsibility to change is con
sidered as a validity, which is also called sensitivity. It means the measure 
must sensitively response to the change of observations when their internal 
or external environments change. We determine the observations under sev
eral different conditions, then examine the corresponding measuring result, 
to see whether there exist any differences.

Researchers often evaluate the responsibility to change by the follow
ing method: to investigate the objects prior treatment and post treatment 
respectively using the same scale and record the scores. If the treatment or 
intervention is effective, a significant difference will be observed between 
the two scores on average. In this case, we can use a paired-sample / -test to 
see whether the prior-post difference and correlation are statistical signifi
cant, and the responsibility to change is also assessed.

31.3.3 C ase study

In this section the process of validation and reliability evaluation of 
WHOQOL-BREF will be introduced. It can help the readers to get a better 
understanding of basic concepts and learn how to assess reliability and 
validity of a scale.
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The concept of health related quality of life (HRQOL) is revised from 
health defined by WHO. WHO makes a definition to health as “a state of 
complete physical, mental and social well-being and not merely the absence 
of disease or infirmity” in 1985. Based on this definition, researchers wish 
to come up with some new indices to assess the impact of disease and 
impairment on daily activities and behavior, perceived health measures and 
disability/functional status measures. Hence, HRQOL is proposed and it is 
of concerned by many researchers, which is comically viewed as the miss
ing measurement in health. Although there is no consensus of definition 
for HRQOL currently, researchers reach an agreement in the content of it. 
Most of them think that HRQOL should include five domains: physical 
status and functional abilities, psychological status and well being, social 
interactions, economic and/or vocational status and factors, and religious 
and/or spiritual status. HRQOL is defined by WHO as “individuals’ percep
tion of their position in life in the context of the culture and value systems 
in which they live in relation to their goals, expectations, standards and 
concerns”. It is a broad ranging concept incorporating in a complex way the 
persons’ physical health, psychological state, level of independence, social 
relationships, personal beliefs and their relationships to salient features of 
the environment.

The following question is how to measure HRQOL? Specially designed 
measurements are no doubt needed, and the measurements are scales com
monly. The development of a new QOL instrument requires a considerable 
amount of detailed work, demanding patience, time and resources. In short, 
a scale design contains several basic steps: establishment of concepts, oper
ational definitions of every domain and field, item generation and selection, 
question formatting, preliminary study, psychometric evaluation, revise and 
field test.

The World Health Organization Quality of Life (WHOQOL) is an inter
national scale developed by WHO to assess individual’s HRQOL. Currently 
WHOQOL has two versions, they are WHOQOL-100 (contains 100 items) 
and WHOQOL-BREF (contains 26 items). The two scales were developed 
by 15 (9 added later) centers of different countries or districts with differ
ent cultural and economic backgrounds, and all steps are with the uniform 
leadership of WHO.
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Table 31.1 Structure of WHOQOL-BREF.

Domain Item

I. Physical health 3. To what extent do you feel that physical pain prevents you from 
doing what you need to do?

16. How satisfied are you with your sleep?
10. Do you have enough energy for everyday life?
15. How well are you able to get around?
17. How satisfied are you with your ability to perform your daily 

living activities?
4. How much medical treatment do you need to perform your daily 

life?
18. How satisfied are you with your capacity for work?

II. Psychological 5. How much do you enjoy life?
7. How well are you able to concentrate?

19. How satisfied are you with yourself?
11. Are you able to accept your bodily appearance?
26. How often do you have negative feelings such as a blue mood, 

despair, anxiety and depression?
6. To what extent do you feel your life is meaningful?

III. Social
relationships

20. How satisfied are you with your personal relationships?
22. How satisfied are you with the support you get from your friends?
21. How satisfied are you with your sex life?

IV. Environment 8. How safe do you feel in your daily life?
23. How satisfied are you with your condition of living place?
12. Do you have enough money to meet your needs?
24. How satisfied are you with your access to health services?
13. How available is the information that you need in your 

day-to-day life?
14. To what extent do you have the opportunity for leisure activity?
9. How healthy is your physical environment?

25. How satisfied are you with your transport?

Comprehensive 1. How would you rate your quality of life?
2. How satisfied are you with your health?

According to the assumption of the WHOQOL research group, the 
WHOQOL-BREF contains four domains, each of which has six items. 
Besides, the scale includes two questions to measure the total quality of life 
and total health condition viewed by individuals. Ultimately, the WHOQOL- 
BREF contains 26 items in total (Table 31.1).
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A preliminary test is conducted to assess reliability and validity of the 
questionnaire after its first formation. In the preliminary test, the question
naire was administrated to no less than 300 participants in each research 
center. 250 subjects are patients and others are healthy people, half male 
and half female. Then a psychometric evaluation is carried out through the 
following steps.

Firstly, the validity of the scale will be evaluated, which is concerned 
with whether the scale measures people’s quality of life. In order to assess 
the content validity of the scale, experts can be asked to evaluate whether 
the items of the scale measure people’s quality of life according to the 
definitions of the concepts and the domains included.

The process of the scale developing indicates that WHOQOL-BREFhas 
good content validity. Since there is no criterion scale which measures peo
ple’s quality of life according to the concept defined by WHO, the criterion 
validity cannot be assessed.

The confirmatory factor analysis (CFA) was used to assess the construct 
validity of the scale with three steps. Firstly, factor structure was drawn 
according to the theoretical framework hypothesized during the process of 
scale developing (Fig. 31.1); secondly, the model was constructed according 
to the factor structure; finally, the goodness-of-fit between the model and 
data was assessed using the main indices including / 2 and goodness-of-fit 
index (GFI). The value of / 2 is sensitive to the sample size and the deviation 
from normal distribution. Some researchers suggest that/ 2 can be regarded 
as the statistic measuring the goodness-of-fit instead of a test statistic that a 
bigger value of / 2 indicates bad fit. The common procedure is to compare 
both the x 2 values and degrees of freedom of the two models; if relative 
to the decrease in degrees of freedom, the decrease in / 2 is big enough, 
model with more parameters is acceptable. The values of GFI range from 0 
to 1 and bigger GFI indicates better goodness-of-fit. Generally, a GFI value 
above 0.9 is considered good construct validity.

A CFA of the data from the preliminary test of WHOQOL-BREF was 
performed and the value of GFI was 0.904, which indicated an adequate 
model fit and good construct validity of the scale. The r-test was applied to 
compare the mean scores of physical health domain, psychological health 
domain, social relationships domain, and environment domain between the 
groups of patients and healthy people. The statistical significant difference
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Fig. 31.1 Factor structure o f W HOQ OL-BREF.

(P < 0.05) demonstrated a good discriminant validity of the scale. Above 
all, the validity of WHOQOL-BREF is good.

Then evaluate the reliability of the scale. The test-retest reliability was 
not evaluated since initially the quality of life of the objects was not mea
sured by the scale repeatedly. The Cronbach’s a coefficient was used to 
evaluate the reliability of the scale.

WHOQOL-BREF includes four domains: Physical Health, Psycholog
ical Health, Social Relationships, and Environment. Here, the method of 
calculating Cronbach’s a coefficient and the split-half reliability of the Envi
ronment Domain is demonstrated as follows.

Example 31.1 The Environment Domain including eight items, the con
tent, mean score, and variance of each item are listed in Table 31.2.
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Table 31.2 T h e  m ean  sco re  an d  va rian ce  o f  eac h  item  in  E n v iro n m en t D om ain .

Item s in  en v iro n m en t d o m ain M ean  score V ariance

1. H ow  safe  d o  y o u  feel in y o u r d a ily  life? 3 .3 5 4 6 0 .535
2. H ow  h ea lth y  is y o u r p h y sica l en v iro n m en t? 3 .1053 0 .7 5 6
3. D o  y o u  have en o u g h  m oney  to  m ee t y o u r n eed s? 2 .8643 0 .7 0 7
4. H ow  av ailab le  is  th e  in fo rm a tio n  th a t you  n eed  in  yo u r 

day -to -d ay  life?
2 .8 9 4 7 0 .633

5. To w h at e x ten t d o  you  have  th e  o p p o rtu n ity  fo r  le isu re  
ac tiv ities?

3 .0 1 6 6 0.761

6. H ow  sa tis fied  a re  you  w ith  th e  c o n d itio n s  o f  y o u r liv ing  p lace? 3 .1773 0 .8 8 5
7. H ow  sa tis fied  a re  you  w ith  y o u r access to  h e a lth  se rv ices? 3 .2 0 2 2 0 .7 4 5
8. H ow  sa tis fied  a re  y o u  w ith  y o u r tran sp o rt? 3 .1911 0 .8 5 5

Total S co re  o f  E n v iro n m en t D om ain* 24.8061 18.473

*T otal sco re  o f  E n v iro n m en t D o m ain  e q u a ls  to  the  su m  sco re  o f  th e  e ig h t item s.

Solve Calculate the Cronbach’s a coefficient, according to formula (31.2),

a =

8 ( л 0.535 +  0.756 + -----h 0.855

7 V 18.473
0.779.

It indicates that the Environment Domain has good reliability.
The split-half reliability can also be calculated. Eight items in Environ

ment Domain are divided into two parts, the first part includes the first four 
items (items 1, 2, 3, 4) and the second part includes the last four items 
(items 5, 6 , 7, 8). Calculate the sum of scores in the first part and denote by 
H\, and then calculate the sum of scores in the second part and denote by 
H2. The correlation coefficient between H\ and H2 is r =  0.675. Hence, 
the split-half reliability is

R =
2  r

Г + 7
2 X 0.675 
1 +  0.675

=  0.8060.

The value of split-half reliability is similar to the Cronbach’s a coeffi
cient, indicating that the Environment Domain has good reliability.

Following the same method, the Cronbach’s a coefficients of the Phys
ical Health Domain, Psychological Health Domain, and Social Relation
ships Domain are 0.8474, 0.7919, and 0.7179 respectively. The Cronbach’s
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a coefficients of four domains show that the WHOQOL-BREF scale has 
good reliability.

31.4 Item Response Theory and Scale Evaluation

The methods of reliability and validity evaluation described above are based 
on the classical test theory (CTT). In addition, Item Response Theory (IRT) 
is commonly used in this field. IRT, formed in the early 20th century, is a 
new modern measurement theory which is superior to CTT. The birth of IRT 
changed people’s research ways and presentation modes of measurement 
properties and changed the methods of processing scores. IRT is now widely 
used in education, psychology, medicine and other research fields.

31.4.1 Concepts and models

IRT is the general latent trait models. The relationship between examinees’ 
item performance and the set of traits underlying item performance can be 
described by a monotonically increasing function called an item charac
teristic function (ICF) or item characteristic curve (ICC). After clarifying 
the characteristics of dimension (unidimensional and multidimensional), 
the relationship between items (independent and dependent) and pattern of 
responses (full or none, grade scoring, step-by-step scoring), examinees’ 
abilities and performance indices of items can be estimated by using proper 
probabilistic models. The following introduction are about models for full- 
none performance only.

1. Model assumptions of IRT
The dependent variable is the dichotomous response (such as suc- 
cess/failure, refuse/accept) of the item that an examinee performs, while 
the independent variable is the latent trait of the examinee.

Two basic assumptions:

(1) For items with different parameters, the shapes of ICC are different: the 
shape of ICC describes the relationship between the examinee’s latent 
trait and the probability of response for the item. Different items may 
have different ICC shapes.

(2) Local independence: it means that the probability of response for an 
item is only influenced by the examinee’s ability. In other words,
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after taking the examinee’s ability into account, no relationship exists 
between the examinee’s responses to different items.

Besides the two basic assumptions above, there are other assumptions for 
different IRT models.

2. Basic models for full-none performance

(1) Logistic Model
Logistic model rests on logistic distribution. If we use wis to denote the joint 
action of the examinee and item parameters in the model, the probability 
that the examinee answers the item correctly with a given wis is calculated 
by the equation

P ( X , s  =  l|to„) =
eWis

1 +  eWis
Table 31.2 gives 3 logistic models. For the 1-parameter logistic model, 
WiS =  6 S — /?,•; for the 2-parameter logistic model, Wis =  a,-(6 S — /?,); and

Table 31.3 T h e  1-, 2-, and  3 -p a ra m e te r  lo g is tic  m o d els  an d  th e ir  assu m p tio n s .

M odel Model equation and meaning A ssu m p tio n

1 -p a ram ete r 
log is tic  
m odel 

(1 PL ) 
(R asch )

P(xh = №,bi)  =
gWs - b j  )

1 - f -  e ^ s ~ ^ b

T h e  sim p les t IR T  m odel. 0S is th e  la ten t tra it  o f  the 
e x am in ee  s, b, is th e  ite m  i ’s d ifficu lty  p a ram ete r, P 
is  the  p ro b ab ility  th a t th e  ex am in ee  s an sw ers  the 
item  i co rrec tly .

®  U n id im e n sio n a lity  
©  L ocal

in d ep en d en ce  
®  G u ess in g  is 0  
©  S am e  d isc rim in an t

2 -p a ra m e te r
log istic
m odel
(2P L )

P(Xis =  1 \0S, bj ,aj) =
eai(Os-bi)

1 q_ eai(es—bi)

A d d e d  in the  item  d isc rim in an t param eter, a, is  the  
item  / ’s d isc rim in an t p a ram ete r, P  is th e  p ro b ab ility  
th a t the  e x am in ee  s an sw ers  th e  item  i co rrec tly .

®  U n id im e n sio n a lity  
©  L ocal

in d ep en d en ce  
®  G u e ss in g  is 0

3-p a ram ete r 
log is tic  
m odel 
(3P L )

e a.i(8s - b i )
P(X is =  l\es,(li,ai) = c i +  ( 1

In c lu d in g  bo th  d isc rim in an t p a ram e te r  an d  p seu d o  
g u e ss in g  p a ram eter, c ; is th e  item  i ’s p seu d o  
g u e ss in g  p a ram eter, P  is th e  p ro b a b ility  th a t the 
e x am in ee  .v an sw ers  the  item  i co rrec tly .

®  U n id im e n sio n a lity  
@ L ocal

in d ep en d en ce
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the 3-parameter logistic model includes a pseudo-guessing parameter c, in 
addition to Wis.

(2) Traditional Normal Ogive Models
The same as Logistic Models, the Traditional Normal Ogive Models can 
be divided into 2-parameter model and 3-parameter model according to 
the number of item parameters with the assumptions corresponding to the 
Logistic Models (see Table 31.4). Using the cumulative probability of nor
mal distribution to express the probability that the examinee answers the 
item correctly, that is,

w , =  u z

where Zis — a,{0  ̂ — bj).
In addition to the basic models for full-none performance, there are Poly- 

tomous IRT Models (including Unidimensional Graded Response Model, 
Adjusted Graded Response Model, Partial Credit Model, and Adjusted Par
tial Credit Model), Non-parameter Models, and Multidimensional Models.

T a b le  31 .4  T h e  2- an d  3 -p a ram ete r trad itio n a l no rm al og ive  m odels.

M odel M odel eq u atio n

2 -p a ra m e te r  m odel P ( X is =  1 \es , b i , a i ) =  J  d t
3 -p a ram ete r m odel P ( X is =  \ \ O s , b j , a j , C i )

r a i ( G s - b i )  | ,
- C ,  + ( 1  C , ) j ^  (2 7 r) l / 2 e  dt

3. Advantages of IRT (compared to CTT)
Comparing to CTT, IRT has the following advantages:

(1) The estimation of examinee’s latent trait does not depend on the specific 
item. IRT put the examinee’s latent trait and item “difficulty” on the 
whole scale to perform the estimation. No matter the item is “difficult” 
or “easy”, the estimation of the examinee’s latent trait is invariant.

(2) The estimation of the parameters of “difficulty” or “discrimination” 
has nothing to do with the examinee. For the same item, responses of
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high-ability and low-ability examinees are fitted the same ICC, and the 
corresponding item parameter is unique.

(3) The notion of information function of IRT takes the place of reliabil
ity theory, which uses the amount of information provided by item at 
the examinee’s ability to indicate the reliability of the test. IRT avoids 
the assumption about “parallel tests” and gives the test precision of 
examinees with different abilities.

31.4.2 Application of  IRT on scale evaluation

(1) Test the construct validity of scale
Choose an appropriate model to fit the items by dimensions or by all. If the 
items fit well by dimensions but not fit well by all, it indicates that each 
dimension tests one side of the latent trait, so the scale has good construct 
validity.

(2) Test the measurement bias or differential item functioning (DIF)
In the study of Quality of Life Scale, DIF is defined as: in the same condition 
of quality of life, the distributions of scores of the item are not the same 
in different groups (gender, age or country, etc.). The principle of applying 
IRT in DIF analysis is comparing the parameters among different groups. 
If the parameters are identical, it is considered as no DIF existing among 
different groups.

(3) Scale development and modification
In IRT, information function is used to describe the test efficiency of a scale 
or an item.

Generally, for the item i, the information function is denoted as

W ) i p i r n 2
P i ( 0 ) Q i ( e )

Р[{в) is the derivative of the item response function (the probability that 
the examinee answers the item correctly) with respect to в and Qj(d) — 
1 -  Pi (в).

Test information function I (в) in essence is the amount of information 
when using the scale to test the examinee’s latent trait, which is simply the 
sum of the item information functions at в. The test information function is 
the biggest amount of information for the whole test, no matter what kind
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of scoring methods is used, which can be used in scale development and 
item selection. The principle of applying IRT in item selection is that the 
test information function achieves the desired goal by the least items.

Example 31.2 Differential item functioning analysis for WHOQOL-lOO 
basing on the Hong Kong and Argentina data from WHOQOL Group 
(Yaofeng Han, Yuantao Hao, Jiqian Fang. Detection of Differential Item 
Functioning in Cross Cultural Analysis of the WHOQOL-lOO. Chinese J. 
of Health Statistic (2009) 26(4), 338-339).

Solution The principle and steps in applying IRT-ANOVA to DIF analysis 
are shown below

(1) Merged the data from the two centers, Hong Kong and Argentina, and 
then estimate the parameters of each item and examinee;

(2) Calculated the probability of the examinee n selecting к on item i(P,uk) 
by using the parameters from step ( 1);

(3) Calculated the expectation and variance of the item i's score of the 
examinee n by using the probability from step (2);

mi

V[xni] =  -2pnik -  E2ni.
k=0

(4) Calculated the standardized residual of the item i's score of the exam
inee n

ry _xni Enj
ni ~  7 Ш

In order to carry a further ANOVA, examinees were divided into ten 
blocks according to the location parameter, respectively indicated by 
the subscript c; and the subscript g was used to indicate the center. 
Therefore, the examinee could be indicated as ncg, whose standardized 
residual could be indicated as Z„ ,

Xncgi Ericgi
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T a b le  31 .5  R e su lts  o f  D IF  an a ly s is  u sin g  IR T-A N O V A  fo r soc ia l d o m ain  o f  W H O - 
QO L-IO O.

R esearch
R e se arc h  c en te rs  B lo ck s  c e n te r  x  B locks

Item F df P F df P F df P D IF

F13.1 1.844 1 0 .1 7 4 7 1.724 9 0 .0 7 9 0 1.057 9 0 .3 9 2 0
F 1 3 .2 2 .248 1 0 .1 3 4 0 2 .050 9 0.0311 0 .932 9 0 .4 9 5 6
F 13 .3 2 .3 8 4 1 0 .1 2 2 9 3.575 9 0 .0 0 0 2 0 .975 9 0 .4 5 8 4
F 13 .4 134.502 1 < 0 .001 1.629 9 0 .1 0 2 0 1.070 9 0 .3 8 2 5 V
F14.1 0 .2 6 6 1 0 .6 0 6 4 0 .805 9 0 .6115 1.880 9 0.0511
F 14 .2 5 .3 7 9 1 0 .0 2 0 2 2 .304 9 0 .0 1 4 4 0.371 9 0 .9 4 8 9
F 14.3 2 .743 1 0 .0 9 7 9 1.542 9 0.1281 0 .970 9 0 .4 6 2 9
F 1 4 .4 12.218 1 0 .0005 3 .752 9 0.0001 2 .285 9 0 .0 1 5 3 V
F15.1 0 .053 1 0 .8185 4 .048 9 < 0 .0001 1.494 9 0 .1 4 5 0
F 1 5 .2 0 .0 5 2 1 0 .8 1 9 7 3 .724 9 0.0001 7.261 9 < 0 .0 0 0 1 у
F 15 .3 15.291 1 0 .0001 3.671 9 0.0001 0 .785 9 0 .6 3 0 0
F 1 5 .4 2 4 .4 2 4 1 < 0 .0 0 0 1 5 .246 9 < 0 .0 0 0 1 1.511 9 0 .1 3 8 7 у

S ig n ifican t level a  = 0 .1 0 .

(5) Performed ANOVA to the standardized residual. Dependent variables 
were centers and blocks, and then we analyzed their main effects and 
interaction effect of centers and blocks. Either main effects or inter
action effect having statistical significance indicated the item had DIF 
between Hong Kong and Argentina (see Table 31.5).

31.5 Computer Experiments

Experiment 31.1 Reliability analysis of a scale Program 31.1 is used for 
analyzing the results of Example 31.1.

31.6 Exercises and Experiments

1. What are validity and reliability? What is the purpose of validity and 
reliability evaluation?
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P ro g ram  31.1 R e liab ility  an a ly s is  o f  the  re su lts  o f  E x am p le  31.1.

L ine P ro g ram L ine P rogram

01 DATA cro n b ach ; 08 5 5 4  3 4 4 4 5  34

02 IN P U T  q l -q 8  to ta l @ @ ; 09 P R O C  M E A N S  m ean  var m a x d e c = 4 ;

03 C A R D S ; 10 VAR q l -q 7  to ta l;
04 1 1 1 1 2 1 1 1 9 11 R U N ;
05 1 4  1 1 1 4  1 1 14 12 P R O C  C O R R  d a ta = c ro n b a c h  a lp h a  nocorr;
06 13 V A R q l-q 8 ;
07 5 5 4 3 4 5 4 4  34 17 R U N ;

2. What are the common methods of validity and reliability evaluation? 
What characteristics do they have?

3. How to evaluate the validity and reliability of a new scale? What are the 
steps in detail?

(2nd edn. Yuantao Hao, Nanqiao Cai)





Chapter 32

Statistical Methods for Data from Genetic 
Epidemiological Study

Genetic epidemiology is a relatively new discipline that seeks to elucidate 
the role of genetic and environmental factors in the occurrence of disease in 
population. The surge in the field of genetic epidemiology has been accom
panied by the explosion in molecular techniques, the increasing sophistica
tion of statistical methods and the emergence of molecular epidemiology. 
In this chapter, some basic concepts and theories of linkage analysis and 
genetic association analysis are introduced.

32.1 Basic Concepts

32.1.1 Genetic terminology

In the human somatic cell, there are 23 pairs of chromosomes, including 
22 pairs of autosomes and one pair of sex chromosomes. Females have two 
of the same kind of sex chromosome (XX), while males have two distinct 
sex chromosomes with difference in shape and size (XY). The chromo
somes determine the cell differentiation, cell function and the development 
of the human body, behavior and intelligence. The observable trait is called 
phenotype, such as height, weight, blood type and disease status. Gene, a 
molecular unit of heredity, is a functional part of DNA, which determines 
various biological traits. It is estimated that there are about 10,000 nuclear 
genes in human beings. Each gene has its specific location in the chromo
some, called locus. A locus sometimes represents a perceptive DNA marker 
or a DNA fragment with polymorphism. Any of the alternative forms of a 
gene that may occur at a given locus are termed as alleles. Alleles are often 
denoted by letters or numbers, such as A, a, В, b, 1, 2 or 3. The pair of

859
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xlx2

M1 A a

М2 В В

Fig. 32 .1  L o cu s , h o m o zy g o te  an d  h e te ro zy g o te .

alleles at a locus is referred to as the genotype; such as AA, Aa or aa. The 
individual with identical alleles is called a homozygote, such as AA or aa. 
The individual with different alleles is called a heterozygote, such as Aa.

In Fig. 32.1, Xi and X2 are a pair of homologous chromosomes. Ml 
and М2 are two different genes and they have specific locations in the 
chromosome, locus M 1 and locus М2. Genes M 1 and М2 may have two 
different alleles, that is A, a, and B, b. The individual in Fig. 32.1 has two 
different alleles in M 1, that is, genotype Aa, so the individual is called a 
heterozygote at locus M l; at locus М2, the two alleles are the same, with 
genotype BB, so the individual is called homozygous at locus М2. The 
proportion of alleles at a locus in a population is called the gene frequency; 
for example, P{A) =  0.3 means that 30% of alleles at this locus in this 
population are A. The total of gene frequencies of all different alleles at a 
certain locus is 1. The genotypic frequency is the proportion of individuals 
carrying a certain genotype in a population; for example, P(Aa) =  0.3 
means that 30% of individuals in the population carries the genotype Aa.

32.1.2 Hardy-Weinberg equilibrium

Random mating is defined as any female that has the same chance of mating 
with any male. Accordingly, the probability of mating type is the product 
of female genotypic frequency and male genotypic frequency; for example 
P(AA x Aa) =  P(AA)P(Aa).

Assume a locus has two possible alleles A and a, and the frequencies 
of allele A and allele a are P(A) =  pA, P{a) =  pa. If three genotype 
frequencies for the pair of alleles in certain generation of a population are

P{AA) =  p \ ,  P(aa) =  p], P{Aa) =  2pApa, (32.1)

then under random mating, there will be no change in either the allele fre
quencies or the genotypic frequencies in the next generation. This is an



Statistical Methods for Data from Genetic Epidemiological Study 861

equilibrium status in the population, and it is called Hardy-Weinberg equi
librium (HWE). In a large random mating population, without immigration, 
selection and mutation, the allele and genotypic frequencies will not change 
from one generation to the next.

If the genotype frequencies in certain generation do not satisfy condition 
(32.1), the next generation will be close to the equilibrium under random 
mating.

In genetic analysis, Pearson / 2 test is used to test the hypothesis of 
HWE. The null hypothesis is that the study population is in HWE, and the 
test statistic is

2 _  (О -  E ) 2

X ^  E (32.2)
d f  — Number of phenotype — Number of alleles at a locus.

In Eq. (32.2), О is the observed genotypic count, E is the expected genotypic 
count. For the locus with two possible alleles and under the hypothesis of 
HWE, the expected frequencies of genotype in a random sample with n 
individuals are

A A A a aa

п р \ 2np A pa nPa

The values of рл and pa can be estimated by:

Pa =
2 п а а  +  П А а  

2  n Pa =
2 n aa ~f~ tl Aa 

In
(32.3)

where пАа , n Aa, naa are the observed numbers of the individuals with geno
type AA, Aa and aa, respectively.

Example 32.1 In a genetic study of hypertension, 197 individuals were 
randomly selected from a population. Their genotypes of angiotensin
converting enzyme (ACE) were analyzed and the observed frequencies are

A A  A a  aa

26  93 78
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The null hypothesis of “this population is in HWE” is tested.

Pa
2 ПАА +  ПАа 

2  n
0.3680, pa =  0.6320,

Eaa =  197 x (0.3680)2 =  26.68,

EAa =  2 x 197 x 0.3680 x 0.6320 =  91.63,

Eaa =  197 x (0.6320)2 =  78.69,

2 (26 — 26.68)2 , (93 -  91.63)2 ( (78 — 78.69)2
* _  26.68 +  91.63 +  78.69

v =  1.

0.0439,

Since P =  0.8346 > a =  0.05, the null hypothesis cannot be rejected; we 
conclude that the population is in HWE.

32.1.3 Linkage and linkage equilibrium

From Mendel’s second law, if two genetic loci are on different chromo
somes, the transmission of alleles at one locus is independent of that at 
another locus (the recombination rate 9 =  1 /2). However, if the two genetic 
loci are close together, the alleles that are paternal or maternal in the ori
gin tend to transmit together to an offspring. This phenomenon is called as 
linkage. The closer the two loci are, the smaller the probability for crossing 
over. The recombination fraction for two linked loci is less than 1/2.

If the alleles of two loci are randomly combined, these two loci are 
called linkage equilibrium. For example, there are two loci and each has two 
possible alleles, A, a and B, b, respectively. Their allele frequencies are

P(A) =  p, P{a) =  q, P{B) =  u, P(b) =  v,

where p + q  =  1 , u + v  =  1. When these two loci are in linkage equilibrium, 
the probability of joint haplotype equals the product of individual allele 
frequencies of two loci.

P(AB) =  P(A)P(B) =  pu, P(Ab) =  P(A)P(b) =  pv,  

P(aB) =  P(a)P(B) =  qu, P{ab) =  P{a)P{b) =  qv.
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Under random mating, there are nine two-locus joint genotype and their 
frequencies are

A A B B A A B b A A b b A a B B A a B b Aabb a a B B a a B b aabb

2 2 2 p~uv 2 2 2p q i r Apquv 2p q v 2 2 2 q и 2 q 2uv 2 2 i r

The genotypic probabilities of the next generation will be the same as 
the current generation.

If the alleles of two loci are not randomly combined, we call these two 
loci in linkage disequilibrium and <5 is often used as the parameter of linkage 
disequilibrium

8 =  P(AB) -  P(A)P(B),  (32.4)

<5 =  0  means linkage equilibrium between two loci and 8  ф 0  means linkage 
disequilibrium, thus

P{AB) =  P(A)P(B)  +  8 , P(Ab) =  P(A)P(b) -  8 , 

P(aB) =  P(a)P(B) -  8 , P(ab) =  P(a)P(b) +  8 .
(32.5)

Besides 8 , 8 ' and r (or r 2) are also useful measures of linkage disequi
librium. 8 i is defined as

8
S' =

I <51 max ’

l^ lm a x  —

min(P{A)P(b), P{a)P(B)),  if (5 > 0,
(32.6)

m\n{P{A)P(B), P(a)P(b)), if 8  < 0,

8 ’ is sometimes called standardized 8 . Obyiously, |(5'| < 1. r is defined as

P(a{a2) -  P(ai)P(a2) +(-)<* ^
r =  . . ■ . _ ----------  (32.7)

у/  P (A) P (a) P (В) P (b) yj P (A) P (a) P {В) P (b)
or

P (A)P(a)P (В)P(b) ’

where a\ e {A,a},a 2 € {B ,b }, and the sign in (32.7) is determined by 
ct\, a2, see (32.5). It is easy to show that r is actually the Pearson correlation 
coefficient of alleles ci\ and a2.
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If there are two or more loci that are in linkage disequilibrium in a popu
lation, the linkage equilibrium will not be approached by random mating of 
one generation. It needs n generations (« -»• oo) to be close to linkage equi
librium or S close to 0. The speed of approaching joint equilibrium depends 
on the recombination fraction в. Let Sq be the initial linkage disequilibrium 
parameter, the linkage disequilibrium parameter after n generations is

6 n  =  ( l - f f ) " d o .

It is obvious that the linkage disequilibrium decreases quickly when the 
linkage is weak (в is close to 1/2); otherwise, more generations should 
be passed to approach linkage equilibrium. Therefore the value of linkage 
disequilibrium is the evidence of linkage in some extent.

32.1.4 Hereditary mode

Assuming a disease locus with disease allele D and a normal allele d, 
the prevalence of the individuals with genotype DD, Dd or dd is called 
penetrance of DD, Dd or dd, denoted by f o p ,  f n d ,  f d d  respectively. The 
penetrance is actually a conditional prevalence, i.e. P (Affected|genotype). 
Usually, 1 > / dd > f Dd > f d d  > 0. When the population is in HWE, the 
prevalence will be

PA =  P (Affected) -  q 1 f DD +  2*(1 -  q ) f Dd +  (1 -  q f  f dd, (32.8)

where q is the frequency of allele D.
The hereditary mode is determined by the penetrances. If 1 > / dd =  

f o d  > f d d  > 0, it is called dominant hereditary mode. In the special case 
when f o D  =  f o d  =  1, f d d  —■ 0 , it is called complete dominant mode. 
Similarly, it is called recessive hereditary mode if 1 > f u n  > f o d  =  
f d d  > 0 , and called complete recessive mode in the special case when 
/ dd =  1 , f D d  =  f d d  =  0. It is called additive if 1 > f D D  > f D d  > f dd  > 
0 , f D d  =  \  ( / dd +  f d d ) ,  and multiplicative if 1 > f DD > f Dd > f d d > 0 ,
f n d  = \ J  f o t )  f d d -

To infer the hereditary mode, we should collect the pedigree and segre
gation information. The segregation analysis is commonly used to infer the 
hereditary mode. The inferences are based on the segregation information 
derived from the collected pedigree data. The details are omitted here.
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32.2 Linkage Analysis

32.2.1 Introduction

The linkage analysis investigates whether or not two loci physically locate 
near one another on the same chromosome. The linkage analysis is one 
of the most important methods used to localize disease gene in human 
genome. The classical concept of linkage is the alleles from two linked 
loci (physically close) tend to segregate together, that is, they are passed 
from parent to child as a single unit. This phenomenon of cosegregation 
in a family deviates from Mendel’s second law of independent assortment. 
The most possible biological explanation of linkage is that these two loci 
are physically very close in the same chromosome so that they are passed 
from parent to child as a single unit. Elston (1981) thought that the linkage 
of a known marked gene and a putative gene for a disease is considered 
the highest level of statistical evidence that the disease is due to a genetic 
mechanism. The alleles cosegregated due to linkage between two loci in one 
family may be different from the alleles in another family. For example, for 
a disease linking with ABO blood type locus, the disease allele might link 
with allele A in one family and might link with allele В in another family. 
Since the cosegregation phenomenon due to linkage is only observable 
within families, the family data or data from biologically related subjects 
are necessary for detecting linkage. Although the allelic association (linkage 
disequilibrium) can be detected by general population studies, the genetic 
linkage cannot be detected and the recombination fraction between two loci 
cannot be estimated by this kind of study. Allelic association is a property 
of alleles, while linkage is a property of loci. They are two different but 
related concepts. The linkage is one cause of allelic association but the 
allelic association is not totally caused by linkage.

The measure for linkage between two loci is the recombination frac
tion в. It describes the genetic distance between two genes in a chromosome 
and the distance of two loci. The recombinant is that the haplotype of an 
individual is different from the haplotypes of his (or her) father or mother. 
The non-recombinant is that the haplotype of an individual is the same 
as that of one of his (or her) parents. As shown in Fig. 32.2, the parents’ 
mating type is ab/ab x AB/ab,  the first son is a recombinant (Ab/ab) and 
the second son is a non-recombinant (AB/ab). The recombination is due to
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I

I
A | a  A |  a

b i b  в | b

Fig. 32.2 D em o n stra tio n  o f  reco m b in an t and  n o n -reco m b in an t.

the exchange of non-sister chromatids from the homologous chromosome 
during the meiosis of chromosome and the genes located on some chromo
some are separated from each other. The chance of recombination between 
two loci is proportional to the distance of two loci. The closer the two loci are, 
the less likely that a cross-over will occur between them. The frequency of 
recombination between two loci is called recombination fraction, presented 
as 0. If two loci are far apart and segregate independently, then 0 =  1/2; and 
if two loci are identical and are actually one locus, then 0 =  0. The range of 
the recombination fraction is 0 < 0 < 1/2. In genetics, 1% recombination 
fraction is called 1 genetic distance, that is, 1 centimorgan. 1 centimorgan is 
about the distance of 1,000,000 base pair (1000 kb) on chromosome. There 
are two types of statistical methods for linkage analysis: model-based and 
model free.

32.2.2 The LODS method

The log-odds score (LODS) method is based on the maximum likelihood 
ratio test and is considered a model-based procedure. Usually, assume the 
mode of inheritance, the number of alleles and the penetrance of each geno
type are known for the LODS method. LODS is the logarithm of a ratio 
between the probability of a given family when two loci are linked accord
ing to a recombination fraction 0  and the probability of the family without 
linkage (0  =  1/ 2), that is,

z 0 )  = log' » z ^ W  (32-9>

The values of 0 lie between 0 and 0.5. Recombination fraction 0 can be 
estimated by maximizing Z, the LODS. Since in Eq. (32.9) the denominator
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F ig . 3 2 .3  D em o n stra tio n  o f  a  th ree -g en e ra tio n  fam ily.

is a constant and the numerator is the likelihood function for a given family, 
the estimated 6  value is a maximum likelihood estimation of 0 .

LODS method is subject to a kind of sequential experiment method. 
Therefore, the LODS value for each family can be added up together 
according to the same recombination fractions. Generally, when Z > 3, 
it is considered as an evidence of linkage (p < 0.0001). By experience, 
в < 0.10  means a close linkage, в  > 0.20  means a loose linkage, and 
0.10  < в < 0.20  means a median linkage.

Figure 32.3 depicts the occurrence of an autosomal dominant disease 
in a three-generation family. The disease is decided by the locus with two 
possible alleles D or d and the marker alleles are M or m. The black symbols 
indicate the subject is affected in the graph. The penetrances are

Both grandmother and mother are homozygous with genotype dd at the dis
ease locus and the genotype is mm at the marker locus. The marker genotype 
for father is Mm. Since the father must receive a dm from grandmother, and 
he is affected, the haplotype for the father must be DM/dm  whatever the 
grandfather’s genotype is DD or Dd at the disease locus. Since the mother 
is homozygous at both disease and marker loci, each of the four children 
must receive a dm from her. Therefore we may deduce the haplotype for 
all children as in Fig. 32.3. Only the second son belongs to recombinant 
based on the two locus genotype and linkage phases of parent and children. 
Based on the specific recombination fraction 0. the estimated Z value for

P (Affected \DD) =  P (Affected\Dd) =  I, 
P (Affected\dd) — 0.
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this pedigree may be calculated as:

Z =  log10
0(1 - d f

0.5(1 — 0.5)3

Now many software or numerical procedures for LODS method of 
linkage analysis are available, like LINKAGE (Lathrop,1984), MENDEL 
(Lange, 1988), and FASTLINK (Cottingham, 1993).

Example 32.2 In order to lock the location of disease-related gene of 
Machado-Joseph disease (MJD) on 14th chromosome, Wang G.X. et al. 
(1997) used 13 micro satellites DNA markers on 14th chromosome to do a 
linkage analysis in four MJD high risk families. There are a total of 61 mem
bers in these four families including 15 affected cases. The Mlink procedure 
in the software Linkage (5.22 version) was used to do two loci linkage analy
sis. It is assumed that the genotype frequency of MJD is 0.000002 (referring 
to the results of epidemiological survey in Japan). The recombination frac
tions for man and woman are considered as the same. Under the assumption 
of the autosomal chromosome dominant inheritance, the LODS values are 
estimated when the recombination fractions are 0, 0.01,0.05, 0.1, 0.15, 0.2 
and 0.3. The results are listed in Table 32.1.

Table 32 .1  L O D S  o f  tw o  loci lin k ag e  an a ly s is  b e tw een  M JD  g en e  and  13 m ic ro  sa te llite  
D N A  m ark e rs  on  14th ch ro m o so m e .

R eco m b in a tio n  frac tio n  (в)

L o cu s 0 .0 0 0 0 .0 1 0 0 .0 5 0 0 .1 0 0 0 .1 5 0 0 .2 0 0 0 .3 0 0 •Zmax в

D 14S 59 0 .7 3 0 .7 2 0 .6 6 0 .6 0 0 .5 2 0 .43 0 .2 4 0.73 0 .0 0
D 14S 55 0 .0 0 0 .0 0 0 .0 6 0.01 0.11 0 .1 2 0 .1 0 0 .12 0 .2 0
D 14S 67 — 00 1.99 2 .4 2 2 .35 2 .1 2 1.81 1.08 2.42 0.05
D 14S 48 3 .03 2 .9 8 2 .7 6 2 .45 2.11 1.74 0 .9 9 3.03 0 .0 0
D I4 S 2 9 1 0.01 0.01 0.01 0.01 0.01 0 .0 0 0 .0 0 0.01 0 .00
D 14 S 2 8 0 2 .1 8 2 .1 4 1.96 1.74 1.50 1.26 0 .7 6 2.18 0 .0 0
A F M 3 4 3 v fl 3 .0 6 3 .13 3 .0 9 2 .83 2 .4 7 2 .05 1.12 3.13 0.01
D 14S81 4.91 4 .8 2 4 .4 2 3.91 3 .3 8 2 .8 4 1.69 4.91 0 .0 0
D 14S 265 — 00 - 1 .9 8 - 0 .7 3 - 0 . 3 0 - 0 .1 2 - 0 .0 3 0 .0 2 0 .0 2 0 .29
D 14S 62 0 .3 2 0 .4 9 0 .7 5 0.81 0 .7 7 0 .6 9 0 .4 4 0.81 0 .1 0
D 14S 65 — 00 - 1 .8 9 - 0 .4 6 0 .0 7 0 .3 0 0 .3 8 0.31 0 .38 0 .2 2
D 14S 45 — 00 - 2 .8 5 - 1 .4 7 - 0 .9 0 - 0 .5 9 - 0 .3 9 - 0 .1 5 0 .00 0 .48
D 14S51 — 00 - 0 .6 6 0.01 0 .2 3 0 .2 9 0 .2 9 0 .2 0 0 .3 0 0 .17
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The LODS values (Zmax) for the markers D14S48, AFM343vfl and 
D14S81 are greater than 3, and the recombination fractions (в) for them are 
less than 0.1. Therefore, we may consider that these three loci are closely 
linked to the disease-related locus of MJD.

32.2.3 The ASP method

The LODS method of linkage analysis strictly depends on the specific inher
itance mode and is not proper when the inheritance mode of interested traits 
or disorders is not clear. In these situations, other non-parametric methods 
of linkage analysis are appropriate. The affected sib pair method (ASP) 
suggested by Penrose is introduced here.

Assume that G and T represent the main trait (disease) and measuring 
trait (genetic marker). Generally, when one of the parents is affected and 
the genotype of measuring trait is Tt, and another is not affected and the 
genotype of measuring trait is tt, their mating types may be supposed as: 
GT/gt x gt/gt or Gt/gT x gt/gt. In this situation, the phenotype of children 
may be one of four combinations: G-T, G-tt, ggT- and ggtt. Therefore there 
are ten types of sib pair in sib group (Table 32.2).

These ten types of sib pairs may be classified into four groups. In the 
first group, the traits of two members of sib pair are totally the same (type 
1-4), no recombinant. In the second group, the first trait of two members 
of sib pair is the same and the second trait is different (type 5, 6), there is

Table 32.2 T en ty p es o f  sib  
p a ir  co m b in a tio n s.

s ib l sib2

Type 1 G T G T
Type 2 G t G t
Type 3 gT gT
Type 4 gt g t
Type 5 G T G t
Type 6 gT gt
Type 7 G T gT
T ype 8 G t gt
Type 9 G T gt
T ype 10 G t gT
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recombinant. In the third group, the first trait of two members of sib pair is 
different and the second trait is the same (type 7, 8), there is recombinant. 
In the fourth group, the traits of two members of sib pair are all different 
(type 9, 10), no recombinant.

If locus of G is linked to that of T, whatever the linkage phases of 
double heterozygote is matching (GT/gt x gt/gt) or not (Gt/gT x gt/gt) the 
frequencies of the first and fourth groups are larger than those of the other 
two. Table 32.2 may be regrouped as Table 32.3.

In Table 32.3, rt\, n2 ,n 3 and «4 are the frequencies of sib pairs in 
groups 1 ,2 ,3  and 4 respectively. A chi-square test for 2 x 2 table is used 
to decide if there is a linkage between G and T loci. The null hypothesis is 
H0: there is no linkage between G and T

x 2 =
yv(n,rt4 -  n2n3 ) 2

(«1 + « 2>(«3 + n A)(n\ + n 3)(n2 +  n4)'
V =  1. (32.10)

When the chi-square value is large, the linkage between G and T is sug
gested.

Example 32.3 In order to decide if the locus of antibody A links to the 
locus of MN blood type, and antibody A and antibody M of sib from 10 
families are tested. The results are listed in Table 32.4.

Table 32.3 2 x  2  tab le  o f  fo u r g ro u p s  o f  sib  pairs .

G ro u p  o f  sib  p a ir G T  (o r g t) G t (o r gT ) Total

G T  (o r  gt) n 1 n 2 n\  +  n 2
g T  (o r G t) n 3 n4 П3 + П 4

Total n\  + n 3 П2 + П 4 N

Table 3 2 .4  A n tib o d y  A  an d  M  o f  sib  pa irs  fro m  ten  fam ilies.

N u m b e r o f  fam ilie s  w h ere  s ib s c o m e  fro m

A ntib o d y  1 2 3  4  5 6 7 8 9 1 0

+ + ++ + + ------ + -  —b + - -  + + + —
+ + ++ ++ - - +  + - + + ------ + + + —

A

M
------ + -  ++
+ + -  + -  ++
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Table 32 .5  T h e  p h en o ty p es o f  sib  pairs .

T ypes o f  sib  pairs A  +  M +  (o r А -  M - ) A  +  M  -  (o r  A  -  M + ) Total

A  +  M  T  (o r  A  — A /—) 16 5 21
A  — M +  (o r  A  +  M - ) 4 3 7

Total 20 8 28

The sibs in each family may be matched to sib pair and in total 28 
pairs are matched. As in the first family, four sibs may be matched to form 
4(4 —1)/2 =  6 sib pairs. The phenotypes of 28 pairs are listed in Table 32.5. 

When it is tested for H(): there is no linkage between A and M,

X2 28(16 x 3 - 5  x 4 )2 

21 x 7 x 20 x 8
0.9333

P =  0.3340, according to a =  0.05, Ho is not rejected. The results suggest 
that there is no linkage between antibody A and M.

32.3 Genetic Association Analysis

Genetic association studies aim at detecting the association between one or 
more genetic polymorphisms and a trait. Once an allele of a gene is over 
represented in a case population relative to the control, it may be estab
lished that such an allele of the gene is associated with the studied disease. 
Population-based case-control design and family-based designs such as the 
case-parent triad designs are often used for genetic association studies.

32.3.1 Population base association analysis

The association can be demonstrated, if it exists, by comparing allele fre
quencies at the marker locus in random samples of unrelated patients and 
controls. Therefore, unlike the linkage studies requiring data from the whole 
families of ASPs, genetic association studies can use population-based case- 
control design. In this simple case, familiar methods such as / 2 tests of 
association, logistic regression, and odds ratios may be suitable.

Pearson % 2 test statistic,

X2
E

(О -  E) 2

E
(32.11)
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where О is the “observed frequency”, and E is the “expected frequency”. 
There are two kinds of / 2 tests, genotype-based / 2 test and allele-based 
X2 test. The tests are executed using a contingency table analysis with the 
rows representing the binary disease status and the columns representing the 
g observed genotype classes or ^observed allele classes respectively. The 
genotype-based x 2 test compares the genotype frequencies, and the allele- 
based x 2 test compares allele frequencies at the marker locus in random 
samples of unrelated cases and controls. It is assumed that there is an additive 
or multiplicative allele effect on the disease susceptibility in the allele- 
based x 2 test. Both tests assume HWE in the combined sample of cases 
and controls. When H0, no association between the marker and affection 
status of a particular disease, holds, the genotype-based and allele-based / 2 
statistics have an asymptotic x 2 distribution with degrees of freedom (df) 
g — 1 and к — .1 respectively. For the biallelic markers, the genotype-based 
and allele-based x 2 statistics are asymptotically x 2 distributed with df = 2  

and df =  1 respectively.

Example 32.4 In a genetic association study of diabetes, two random 
samples with unrelated 366 diabetes patients and 390 normal subjects 
were recruited respectively. The genotyping results for a candidate single 
nucleotide polymorphism (SNP) marker are shown in Table 32.6.

The genotype-based x 2 test statistic

df  =  2, P — 0.004. Therefore there is significant difference in genotype 
distribution between case and control groups, and an association between 
diabetes and the SNP marker is suggested. Furthermore, we can calculate

Table 3 2 .6  G en o ty p e  freq u en c ie s 
fo r  C ase  an d  co n tro l g roups.

G en o ty p e

G ro u p  11 12 22 Total

C ase  107 198 61 366
C o n tro l 159 181 5 0  390
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Table 32 .7  A lle le  freq u en c ie s fo r  th e  c ase  an d  c o n tro l 
g roups.

A lle le

G roup 1 2 Total

C ase 41 2 *  (5 6 .2 8 % ) 320  (4 3 .7 2 % ) 7 3 2 (1 0 0 % )
C ontro l 4 9 9  (63 .97% ) 28 1 (3 6 .0 3 % ) 7 8 0 (1 0 0 % )

*412  =  2 x  107 +  198, s im ila r  fo r  o th e r  cells.

the odds ratio (OR) for genotype 12 and 22, with 11 as reference level, 
resulting in 1.626 and 1.813 respectively.

The allele-based contingency table is shown in Table 32.7. In a similar 
way, we obtain =  9.325 with df =  1 and P =  0.002, and the OR for 
allele 2 relative to 1 is 1.379. The results suggest that there is a significant 
difference between the case and control groups for the allele frequencies.

The general genotype-based / 2 test is performed regardless of the 
underlying hereditary mode. If the genotype risks are additive, the genotype- 
based x 2 test will not be as powerful as allele-based x 2 test which is tailored 
to this scenario, because of the smaller sample size and larger degree of free
dom. If allele 1 is assumed a risk allele for a biallelic marker, one way to 
improve the power to detect the dominant (or recessive) risks is to count the 
heterozygotes with genotype 12 into homozygotes with genotype 11 (or 22 
respectively) since the heterozygotes have the same risk with homozygote 
11 (or 22 respectively). And then a 2 x 2 table rather than 2 x 3  table is 
constructed and a Pearson 1 -df test can be applied.

For complex traits, it is widely thought that the heterozygote risk is 
constrained to lie within the range defined by the two homozygote risks, that 
i s /дл > I ao > / ao, where A is a risk allele. The widely used dose-response 
model, the Cochran-Armitage trend test (also known as the Armitage test) 
is also used in testing a marker for association with a disease locus. The 
table for Armitage test is set up as Table 32.8.

The statistic for Cochran-Armitage trend test is given as

Elo ti(Sn -  RSi) Ho

[E?=o -  rii) -  2  E != o E f= i tttjntrij]
N( 0 , 1)

(32.12)
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Table 32.8 G en o ty p e  d istrib u tio n  
fo r c ase  an d  con tro l g roups.

R isk  a lle le  c o u n t

G roup 0 1 2 Total

C ase ro r\ n R

C ontro l so s 1 s i S

Total «1 П2 N

or

XcA =  Z2 - x l  (32.13)

where to ,  t \, Ь are pre-specified weights for three genotypes according to 
the hereditary mode. For example, the additive allele effect model describes 
the linearity of the genotype-phenotype relationship for the binary trait, and 
t 0 , t \ , ь  can be set as 0, l,and2. Similarly, ( t o ,  t\ ,  t 2 )  —  (0, 1, 1) and (0, 0, 1) 
for dominant and recessive model respectively. The linear trend test statistic 
corresponding to additive model with ( to ,  t \ , h )  =  (0 , 1, 2) is

^ _  y/N[N(r\ +  2r2) -  R(ni +  2n2)] m
~  s/RS(N(nx + 4 n 2 ) - ( n i + 2 n 2)2]'

The linear trend test for the data from Table 32.7 shows Z =  3.128 and 
P =  0.0018.

In the presence of the effects of covariates, the stratified /  2 test or logistic 
regression can be used to detect and control their effects. The stratified 
X2 test can be used when there exist a few categorical covariates only; 
otherwise, the logistic regression is a better choice.

32.3.2 Family-based association analysis

The association between a disease and a genetic marker can arise from con
founding by underlying stratification and admixture (substructure) within 
the population. The population stratification can occur in case-control 
or other population-based designs. It is important to make comparisons 
between cases and controls within homogeneous subpopulations as far as 
possible. The family-based designs have been proposed to counteract con
founding due to population stratification. The best-known family-based
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Table 32.9 C o m b in a tio n s  o f  tran sm itte d  
an d  n o n tran sm itted  m ark e r a lle le s  A  an d  a  
a m o n g  2n  p a ren ts  o f  n a ffec ted  ch ild ren .

N o n tran sm itted  a lle le

T ran sm itted  a lle le A a T otal

A «11 «12 «1 +
a «21 «22 « 2 +

Total «+ 1 « + 2 2 n

design is the case-parent triad design. The case-parent triad design and 
transmission disequilibrium tests (TDTs) proposed by Spielman (1993) sug
gested to collect case-parent trios. The alleles or genotypes transmitted to 
affected individuals are compared with untransmitted alleles or genotypes, 
providing that a control sample is inherently matched to the case sample 
with regard to population structure. TDT also has the advantage that it does 
not require data either on multiple affected family members or on unaffected 
sibs.

Suppose that we have a sample of n case-parent trios. In these families 
there will be a total of 4n parental marker alleles, 2n of which are transmitted 
and In of which are not transmitted. The data on marker alleles in the 
affected children can be set up as in Table 32.9.

я и , я22 in Table 32.9 are the numbers of the homozygous parents. The 
transmitted allele from homozygous parent is the same as the nontransmitted 
allele. n 12 (or n2\) is the number of heterozygous Aa parents who transmit 
A (or a) and do not transmit a (or Л) to the affected offspring. TDT suggests 
that the association exists if a significant difference is observed between n i2 
and «21- TDT proposed by Spielman is also referred to as McNemar’s / 2 
test.

X
2 ( П 12 -  n 2i)2 

«12 +  «21
(32.15)

Note that only the data from heterozygous parents should be used in the test 
since the homozygous parents provide no information about the transmis
sion disequilibrium.
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Example 32.5 The data used here were from Spielman et al. (1993) 
assembled from 94 families with two or more insulin-dependent diabetes 
mellitus (IDDM) children. The candidate marker is the region of tandem- 
repeat DNA (5' flanking polymorphism [5'FP]) adjacent to the insulin gene 
on chromosome 11 p. The heterozygous parents transmitted 124 alleles 
(78 class 1 alleles and 46 class X alleles) to their diabetic offspring.

Here «и , n22 are 78 and 46 respectively when TDT is used.

2 (« i2~ «2 i)2 (78 - 4 6 ) 2у = --------------- = ---------------=  8.26,
Л «12+ «21 124

with degree of freedom df =  1 and P — 0.004. This finding suggests that 
the 5'FP contributing to IDDM susceptibility.

TDT has been extended to a marker locus with more than two alleles 
(Spielman, 1996; Sham, 1995). For the TDT in the general case when the 
marker has m (>2) alleles, the details on the transmitted/nontransmitted 
and shown in Table 32.10.

tiij in Table 32.10 is the number of parents with genotype ij who transmit 
i and do not transmit j  to the affected offspring. Sham (1995) pointed out 
that the test of symmetry which tests the symmetry of the TDT table can be 
used to detect the transmission disequilibrium. The statistic

^  \  -  ( « i j  -  n j i ) 2
l s ~ Z Lw ’

i < j  n , J ^  n J ‘

(32.16)

Table 32.10 C o m b in a tio n s  o f  tran sm itte d  an d  n o n tran s- 
m itted  m ark e r a lle le s  1 ,2 , ,m  a m o n g  2  n  p a ren ts  o f  n 
affec ted  ch ild ren .

N o n tra n sm itted  a lle le

T ran sm itte d  a lle le 1 2 m Total

1 «11 «12 • « lm «1 +
2 «21 «22 ■ • «2m « 2 +

m «11 «12 • ■■ « lm nm+

Total «+ 1 « + 2  • ■ • «+ m 2 N
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Table 32.11 T D T  tab le  fo r  154 p a ren ts  fro m  77 trios .

N o n tra n sm itted  a lle le

T ran sm itted  a lle le 1 2 3 Total

1 9 17 22 48
2 18 20 13 51
3 19 23 13 55

Total 46 60 48 154

is asymptotically x 2 distributed with df=  m(m — l)/2 , under # 0. In the 
special case when m — 2, Ts is the TDT statistic proposed by Spielman.

Example 32.6 In an association study in German population between neu
ral tube defect (NTD) and gene Mthfr (Stegmann et ai,  1999), 77 affected- 
parent trios were collected, see Table 32.11.

T  =  у  (n U -  n J i )2 

пч +  пЛ

(18 -  17)2 i (22 -  19)2 _ (23 -  13)2 
-  18+ 17 +  2 2 +  19 +  2 3 +  13 

=  3.026, d f  =  3

and P =  0.388. Therefore no association for the marker Mthfr is concluded.

32.4 Computerized Experiments

Experiment 32.1 Test of H-W equilibrium The data used in the test 
for HWE analysis is from Example 32.1. In Program 32.1, lines 01-13 
are used to build the dataset HW with 26, 93 and 78 observations with 
genotypes A A, Aa, and cia, respectively. HW test for the built dataset via 
allele procedure is performed in lines 14-16.

Experiment 32.2 Genetic association analysis with case-control design
Three statistical methods, the genotype case-control test, Armitage’s trend 
test and allele case-control test are used for testing the association between
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P ro g ra m  32.1 T est fo r  H a rd y -W e in b e rg  eq u ilib riu m .

L ine P ro g ram L ine P ro g ram

01 DATA H W ; 09 E N D ;
02 D O  i d = l  T O  26; 10 D O  id =  120 T O  197;
03 a lle le  1 = "A "; a lle le 2 = " A " ; 11 a l le le l= " a " ;  a lle le 2 = " a " ;
04 O U T P U T ; 12 O U T P U T ;
05 E N D ; 13 E N D ;
06 D O  id = 2 7  T O  119; 14 P R O C  A L L E L E  d a ta = H W ;
07 a l le le l= " A " ;  a lle le 2 = " a " ; 15 VA R a lle le  1 a lle le2 ;
08 O U T P U T ; 16 R U N ;

P ro g ra m  32 .2  G en e tic  a sso c ia tio n  an a ly s is  w ith  case-co n tro l d esign .

L ine P ro g ram L ine Program

01 DATA geno; 11 DATA a lle le ;
02 IN P U T  r c  f  @ @ ; 12 IN P U T  r c f  @ @  ;
03 C A R D S ; 13 C A R D S ;
04 1 1 107 1 2 198 1 3 61 14 1 1 4 1 2  1 2 320
05 2  1 159 2 2 181 2 3 50 15 2 1 4 9 9  2 2 281
06 ' 16
07 P R O C  F R E Q  d a ta = g e n o ; 17 PR O C  F R E Q  d a ta = a lle le ;
08 W E IG H T  f; 18 W E IG H T  f;
09 T A B L E S  r* c /N O C O L 19 T A B L E S  r* c /N O C O L

T R E N D  C H IS Q ; N O P E R C E N T  C H IS Q ;
10 R U N ; 20 R U N ;

a marker and a disease locus. The data used in the analysis are from Exam
ple 32.4. In Program 32.2, lines 01-06 are used to construct the 2 x 3 
contingency table with 2 rows representing binary disease status and 3 
columns representing the 3 genotype classes. The FREQ procedure in 
lines 07-10 is used to perform classical/2 test (genotype-based / 2) test and 
Cochran-Armitage linear trend test with the option TREND. 2 x 2  allele 
based contingency table is built by lines 11-16. The rest lines are for the 
allele-based / 2 test.

Experiment 32.3 TDT analysis The data used in the analysis is from 
Example 32.6. In Program 32.3, lines 01-07 are used to construct the 
3 x 3  transmitted/nontransmitted table shown in Table 32.12. The FREQ
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P ro g ram  32.3  T D T  analysis.

L ine P ro g ram L in e P ro g ram

01 DATA A ; 08 P R O C  F R E Q ;
02 IN P U T  r c  f  @ @ ; 09 W E IG H T  f;
03 C A R D S ; 10 T A B L E S  r* c /N O R O W  N O C O L
04 1 1 9  1 2  17 1 3 22 11 C H IS Q  A G R E E ;
05 2  1 18 2 2 2 0 2 3  13 12 R U N ;
06 3 1 19 3 2 23 3 3 13 13 P R O C  PR IN T ;
07 R U N ;

Table 32.12 G en o ty p e  fistribu tion
o f  155 a ffec ted -p aren t trios.

G en o ty p e  o f  the

G eno type
a ffec ted  ch ild

C C C T  T To f  paren ts

C C x C C 19
C C x C T 4 4
C C x T T 7
C T x C C 36 30
C T x C T 15 15 6
C T x T T 10 7
T T x T T 2

procedure with option “AGREE” in lines 8-10 is used to detect the symmetry
of the TDT table.

32.5 Practice and Experiments

1. For a random mating population, estimate the genotype proportion in 
the next generation: (0.25,0.10,0.65); (0.30,0,0.70); (0,0.60,0.40).

2. Test whether the genotype frequencies in the following population are 
HW or not and calculate the equilibrium proportion for those non- 
HW population: (50%, 0%, 50%); (36%, 15%, 49%); (9%, 10%, 81%); 
(45%, 45%, 10%).

3. What are the HWE and linkage equilibrium?
4. For the biallelic system, show that the LD coefficient ris just the Pearson 

correlation coefficient.
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5. How to choose the LODS method and ASP method in a linkage analysis? 
What is the relationship between recombination fraction and the genetic 
distance? What is the range of recombination fraction value?

6. The genotype information of 155 affected-parent trios collected for an 
family-based association study are shown Table 32.12. Construct a trans- 
mitted/nontransmitted table and perform a TDT analysis.

(1st edn. Qing Liu, Zongli Xu, Caixia Li, Jiqian Fang; 2nd edn. Caixia Li, 
Jiqian Fang)



C h a p ter  33

Statistical Methods in Bioinformatics

Bioinformatics was a new interdisciplinary subject which dated from late 
1980s, due to the rapid growth genome sequencing data. Our ultimate pur
pose was to disclose innovation from hug biological data and to find out 
what the living creatures were going through by the strategy for analyz
ing and processing with data which challenge adventurous biologists and 
mathematicians.

Bioinformatics works upon enormous database which is comprised of 
two-level database. The original data from experiment or those with a few 
simply treat only, e.g. data arrange and annotate, are stored into the first 
level database; and the second level database is the developed database 
of the first, which is not only derived, but also theoretically analyzed for 
certain aims based on the first level database. The Genbank, EMBL and 
DDBJ, etc. are noted as the first level nucleic acid databases, as well as 
some protein sequence databases, e.g. SWISS-PORT and PIR, etc. and some 
protein structure databases, such as PDB. Many second level databases have 
been created by different features for several objects, of which GDB is a 
human genome database, TRANSFAC is a transcription factor binding sites 
database, and SCOP family is a protein structure classification database, etc.

To create and implement a new analytical tool is one of the core issues 
of bioinformatics, so as to get more biological information from the above- 
mentioned databases. Hence, Statistics figures one important in Bioinfor
matics, for instance, rip and rigorous multi-sequence comparison methods, 
testing methods for large-scale and multi-level complex statistical analysis 
methods, etc. Those include certain amounts of statistics skills. This chapter 
will give an introduction of it, and will also describe statistics applied in 
bioinformatics in various aspects.

881
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33.1 Sequence Alignment Methods

In molecular biology research, normally, it has to look up from databases 
to find out similar homologous sequences for a new detective nucleotide 
sequence or its translated amino acid sequence, in order to speculate the 
possibly belonged family and function of unknown gene sequence. To an 
amino acid sequence, a ready known three-dimensional structure homol
ogous protein could be found potentially to speculate the spatial structure 
of unknown sequence. Then, database is essential to bioinformatics as an 
important tool, either database search or database query.

Protein similarity search usually draws on heuristic algorithm, with 
some optimization criteria, can calculate the “almost” correct answer 
immediately. The BLAST, FASTA and Smith-Waterman based dynamic 
programming algorithm are the three popular algorithms for database 
searching.

33.1.1 BLAST database search tool

BLAST, an abbreviation for Basic Local Alignment Search Tool, is 
an algorithm for comparing primary biological sequence information 
(Altschul et ai ,  1990; 1997), of which the main idea is that there are often 
high-scoring segment pairs (HSP) contained in a statistically significant 
alignment. BLAST searches for high scoring sequence alignments between 
the query sequence and sequences in the database using a heuristic approach 
that approximates the Smith-Waterman algorithm. Then the search starts 
from the segment to both ends to detect a well-matched segment as long as 
possible.

33.1.2 Sequence similarity

Sequence similarity is a very direct quantitative relation, a lot of measure
ments to describe, but in common definition are distance and similarity. 
Distance, the definition is allocate a weight value to each potentially mutated 
in biological evolution, and defined two sequences such that one of them 
can be transformed into another by series variation. Therefore, the dis
tance between two sequences is calculated as the minimal sum value of 
those variation’s weight values. Similarity is also based on two defined 
sequences, scoring (weight valuing) the segment pairs while matched at



Statistical Methods in Bioinformatics 883

each point. The similarity is calculated as the maximal sum value of those 
scores (weight values).

Assigning a sequence to apply database for similar retrieval, the follow
ing situations may result:

(1) The sequence completely matches with a sequence in database (exactly 
the same).

(2) The sequence is similar to those interesting sequence (oncogenes or 
growth factors, cytokines, etc.) clearly.

(3) The sequence is similar to the general featured sequence in database 
(Cytochrome C, rib nuclease).

(4) Very faint similarities between two sequences, e.g. two sequences’ 
residue resemble at 15-25%. Doolittle called this situation between 
similar and dissimilar twilight zone (common occurred situation).

(5) Not match at all.

Researcher must ensure whether the incorrect occurred in sequencing pro
cess and searchable database is up-to-date before confirming that a new 
protein has been found through sequence comparison, which must pro
ceed with extreme caution. If it is a new sequence with no similarity to 
any other, then it is a unique sequence which can be used as probes for 
withdrawing genes containing such DNA sequence from genomic library. 
This kind of unique sequence is barely able to find, as the nucleic acid and 
protein sequence databases keep expanding. Any long enough sequence 
may find some similarity sequences partly by matching in sequences 
database.

In most cases, whether the high scored sequences in waiting list are truly 
related to the one detected during database searching require further tests 
to pair detected sequence with those in waiting list to full-scale alignment 
comparisons and statistical tests.

Despite the sequence registered residues’ likelihood can reflect the 
similarity size, there still exist influence factors, e.g. length of compared 
sequence, the number of brought in empty positions, etc. Therefore, it does 
not come along with similarity size as direct proportion. The result has to 
pass through statistical tests after sequence comparison to identify whether 
it has statistical significance.
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33.1.3 Sequence similar statistical tests

The Monte Carlo simulation method is a very direct and simple way to 
identify whether the score of a pair of the sequence full-scale alignment was 
statistically significant. It randomly alters the symbols of sequences and then 
calculates a new score of full-scale alignment by the same procedure and 
variable parameters. Such a process is repeated approximately 100 times, 
resulting in 100 mean values and standard deviations. Assuming random 
sequence full-scale alignment score satisfies a standard normal distribution, 
then decision making could be based on the Z-value. If the Z-value equal to 
3SD, 4SD or 5SD units then the random occurrence of full-scale alignment 
scores with its probability are 10~3, KL0  or 10-7. In the circumstance that 
Z-value is over 5SD, two compared proteins full-scale alignment scores 
could be recognized such that their theoretical mean difference is not zero 
and these two proteins were homologous evolution. For Z-values between 
3SD to 5SD, and other evidence to prove similarities (functional similar) 
between two proteins, they could be identified as homologous evolution, 
but not for Z-values less than 3SD.

Many sequence comparison software with Z-value calculating program 
are able to evaluate the full-scale alignment level directly, e.g. PIR pro
tein analysis, ALIGN and RELATE program computing the results and 
Z-values of sequence alignment. Therefore, human a — 2 micro globulin 
and cattle/goat immunoglobulin sequence registering Z-value is calculated 
as 5.83SD. The IDEAS and SEQDP software have their own programs to 
calculate Z-value, SEQDP and RDF2 respectively.

The Karlin-Altschul formula for BLAST scoring test: Monte Carlo stim
ulation method assumes a large number of random registering as normal 
distributed. However, every scored randomized variable is the maximum 
(optimal registering) among large number of score data. Hence normal
ity assumption is not very rational, it can be detected and seen clearly 
by fitting the scored data into a normality curve. Vingron and Watter- 
man has popularized and applied the formula to local sequence align
ment score statistical test formula in which the sequence length is one 
of the parameters. And Karlin and Altschul had analyzed the distribu
tion from BLAST. For two sequences a and b, BLAST found out high 
scoring pairs (HSP) were a, • • • a,-*., and bj ■ ■ ■ bj-k. And the matching 
regions score is defined as the sum of similar values S(x, y) coming
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from PAM250 matrix which is X]f=o S(a,+/, b j + i ) .  To calculate and report 
HSPs’ separation points, Karlin and Altschul generated an optimal HSP test 
formula. The probability of optimal HSP scoring H(a,b)  surpasses the thre
shold t is:

P(H(a,b ) > r ) ^ l  - e ~ rnmpf. (33.1)

Note that r and p can be computed directly or from an equation, and m 
and n are the length of two sequences. It indicates that the HSPs score is 
approximately Poisson distributed. Hypothesize that each of the symbol’s 
expectation score is negative. Therefore, positive scored HSP are rare events, 
the occurring of randomized variable HSP score over threshold is nearly 
distributed as Poisson. (It is based on the mean value A.)

OO OO

EE
i = 0  k=0

(33.2)

In this way, the maximum score below threshold t with the probability 
is p(A, 0) =  e~x, and the probability of score surpasses the threshold is 
(1 — e~x). In the Karlin-Altschul formula, rump1 is equivalent to A, the 
expectation of the number with score above HSP threshold t is mmp'.

33.2 The Data Acquisition and Standardization of Gene 
Expression Patterns

Gene chip is used to measure the genic expression levels or determine 
relative abundance of nucleic acid sequences in the target by probetar- 
get hybridization which is usually detected and quantified by fluorophore- 
labeled targets. Every gene on a standardized chip can obtain an expression 
ratio, that under a certain condition, the ratio of expression level of 
such a gene compared to it expressed in control. Usually, log2 (ratio) 
is used to describe the amplitude of gene expression up- or down- 
regulated.

Gene expression pattern analysis has been a major subject in bioinfor
matics study, as well as a technically difficult subject. After transforming 
into mathematical problems, the analysis mission is to find out statically sig
nificant frame including global pattern and local pattern from the expression 
matrix.
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Table 33.1 T h e  d iffe ren tia lly  e x p ressed  g en es  b e tw ee n  n eu ra l tu b e  ce ll tu m o r an d  m a lig 
nan t g lio m a  sam p le  g roup .

B ra in _ m e d u llo b la s to m as (M D ) B ra in _ m a lig n an tg lio m a s (M G )

No. G enes S am p le  1 S am p le  10 S am p le  1 • • S am p le  10

G e n e l R P S 23 14.6621 •• 14.7091 13.2274  •• 13.3266
G ene2 S F R S 3 12 .9033 • • 12.0275 10.9643 • • 11 .3182
G ene3 ZIC1 9 .4 6 4 4  • ■ 13.6175 9 .9 6 9 6  • • 11 .0983
G ene4 R P L 39 14 .2960  • • 14.6199 11.7454  •• 12.7507
G ene5 K IA A 0 1 8 2 11 .4974  • • 11 .6760 9 .9 4 7 0  • • 10.9078

G en e  111 R A B 31 9 .8 7 9 9  ■ • 10.0444 11.0274 11.4131
G e n e l 12 L O C 6 4 2 0 4 12.3817  •• 10.6534 11.9193 •• 12.1503

Example 33.1 Study the biological functions of CNS of embryonal 
carcinoma in brain tissue, using gene chip to get microarray DNA expres
sion data, and the dataset comes from CNS experiment network station. 
(http://www.broad.mit.edu/mpr/CNS) Each chip has located 7129 genes 
and 42 tumor tissue samples which consist of 10 medulloblastomas, 10 
malignant gliomas, 10 AT/RTs, 8 PNETS and 4 normal cerebella samples.

112 statistically significant expression genes have been screening out 
from medulloblastomas and malignant gliomas in experiments. See the spe
cific expression from Table 33.1 (Ф The genes are in the row and the samples 
are in the column, such samples may be different tissues, environments or 
events, etc. © The gene is a sample of cluster analysis, the sample is the 
variable of cluster analysis.)

The format of gene expression data is given to facilitate further analysis. 

Solution output results

O bs N am e x l x2 x3 x l8 x !9 x20

1
2

R P S 23
S F R S 3

14.66
12.90

14.02
11.65

14.80 ■ • 
11.97 ••

14.14
11.27

13.22
11.14

13.32
11.32

111
112

R A B 31
L O C 6 4 2 0 4

9 .8 8
12.38

10.14
11.81

10.28 • • 
10.85

11.60
• 13.34

12.07
13.00

11.41
12.15

http://www.broad.mit.edu/mpr/CNS
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Data acquisition and standardization of gene expression patterns: 
each chip can get two wavelength channels scanning images to two fluores
cent dyes after competitive hybridization experiment. Many chip scanners 
are fixed with graphical analysis software, which can calculate fluorescence 
intensity from both sample point and its background in the range of two- 
channel after pixels gridded, and then transform the image information into 
computable digital information.

It required standardizing relative fluorescence intensity for each channel 
after image processing. Different markers, detection efficiency to distinct 
fluorescent marks, or original concentration of sample RNA caused sys
tematic error will correct while standardizing. The existing standardization 
methods mainly include reference point standardization, the total strength 
standardization, local weighted linear regression standardization and local 
mean standardization, etc. Each method has its own characteristics, due to 
difference of density expressional gene chips and practical quality of chip 
experiments to select suitable methods. As there are many reasons to cause 
systematic errors, it makes chip standardization more complicated. As errors 
can only be reduced by single method, but not completely eliminated, it is 
impossible to have chip standardization.

33.3 Differentially Expressed Genes Screening

The differentially expressed genes have statistical difference expression 
levels among several experimental groups called ‘significant gene (or sta
tistically significant genes)’. Usually, the expression level which is doubled 
or halved (i.e., Log2(ratio) > 1 or <  —1) can be a standard to detect 
different expressions. Theoretically, differentially expressed genes can be 
screened by only one trial. Due to experimental errors, repeated experiments 
are required to inspect and verify.

Controlling multiple testing error rates (false positive rate) and guar
anteeing high screening efficiency are essential for differentially expressed 
genes screening. Researchers had proposed a variety of methods for solving 
the problem of microarray data for differentially expressed genes screen
ing, including SAM (Significance Analysis of Microarrays) is applied for 
differentially expressed genes screening regardless of research design and 
data type with gene expression profiles. And more methods, such as two 
samples f-test, Bonferroni correction, BH etc. can be used.
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The Bonferroni, Sidak and Hochberg corrections are able to keep FWER 
and FDR at a very low level, while the number of screened differentially 
expressed genes is relatively small. However, they are inapplicable for data 
analysis of gene expression profile screening differentially expressed genes. 
Grouped / -test in the same sample size and variance can filter out the largest 
number of differentially expressed genes, but it may ineffectively control 
FWER and FDR levels and selected too many false positives differentially 
expressed genes. The simulation test found that both SAM and BH in 
screening differentially expressed genes number, false positive number, and, 
FWER and FDR are very nearly the same, both have selected plenty of dif
ferentially expressed genes and have controlled multiple testing error rates.

Example 33.2 In order to explore the different degree of varicocele 
patients’ Notch 1 testicular tissue in gene expression, 38 cases of varico
cele patients were treated including varicocele I degree 10 cases, II degree 
12 cases and III degree 16 cases. The Notchl gene expression level has 
been determined from testicular tissue (Table 33.2). Can be the differentially 
expressed genes screened out via Bonferroni correction grouped /-test?

Table 33.2 N o tc h l in  g en e  ex p ress io n  level from  38 cases 
o f  d iffe re n t deg rees o f  v a rico ce le  p a tie n ts ’ te s tic u la r  tissue .

I degree  
(n =  10)

II d eg ree  
(«  =  12)

III d eg ree  
(n =  16)

0 .552 0 .109 0 .058
0 .513 0.101 0 .046
0.451 0 .116 0 .056
0.451 0 .125 0 .052
0 .559 0 .127 0 .066
0 .619 0 .122 0 .042
0 .502 0 .112 0 .042
0 .527 0 .106 0 .049
0 .563 0 .104 0 .045
0 .505 0 .127 0 .057

0 .122 0.031
0 .123 0 .069

0.051
0 .038
0 .059
0 .043
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Solution The example explored Notchl gene expression differences 
during three degree conditions from varicocele patients’ testicular tissue 
(Table 33.3).

The result of Notchl gene expression level comparison under different 
condition degree: F =  977.42, P < 0.0001, and it suggested that the gene 
present different expressions in degrees (see Table 33.5).

It suggested that the Notchl gene expression differed significantly in 
III degree condition varicocele patients’ testicular tissue.

Table 3 3 .3  T h e  ex p ress io n  level o f  th e  th ree  g roups.

P a tie n t’s con d itio n C ase M ean S tan d ard  dev ia tion

I degree 10 0 .5 2 4 2 0 .0518
II deg ree 12 0 .1162 0 .0094
III d eg ree 16 0 .0503 0 .0102

Table 33.4 A N O V A  tab le  fo r  th ree  g roups.

S o u rces df 55 M S F  P

M odel 2 1.4935 0 .7468 9 7 7 .4 2  < 0 .0001
E rro r 35 0.0267 0 .0008

Total 37 1.5202

Table 33.5 T h e  d iffe ren tia lly  e x p ressed  g en es  sc ree n e d  by B o n fe rro n i co rrec tio n  
g ro u p ed  /- te s t.

(I) P a tie n t’s 
co n d itio n

(J) P a tie n t’s 
c o n d itio n

M ean  D ifferen ce

(I-J) S td. E rro r Sig.

95%  C l

L o w er U p p e r

I degree II  d eg ree 0 .408033* 0 .011835 0.000 0 .3 7 8 2 7 0 .4 3 7 7 9
III deg ree 0 .473950* 0 .0 1 1 1 4 2 0.000 0 .44593 0 .5 0 1 9 7

II deg ree I deg ree -0 .4 0 8 0 3 3 * 0 .011835 0.000 - 0 .4 3 7 7 9 - 0 .3 7 8 2 7

III deg ree 0 .065917* 0 .010555 0.000 0 .0 3 9 3 7 0 .0 9 2 4 6

III degree I deg ree -0 .4 7 3 9 5 0 * 0 .0 1 1 1 4 2 0.000 - 0 .5 0 1 9 7 - 0 .4 4 5 9 3
II d eg ree -0 .0 6 5 9 1 7 * * 0 .0 1 0 5 5 5 0.000 - 0 .0 9 2 4 6 - 0 .0 3 9 3 7
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33.4 Cluster Analysis of Gene Expression

Cluster analysis, the most popular method of gene expression analysis, is 
aim at classifying genes from perspective on functional expression. From 
a mathematical standpoint, the obtained gene groups by cluster analysis 
are of similar mathematically attribute among internal group members, but 
different from other group members. From a biological viewpoint, cluster
ing analysis implying biological meaning or basic hypothesis in that the 
gene expression spectra are similar within internal group and they may be 
functionally the same. However, the functionally same encoded genes (such 
as phosphorylation of other proteins) from products may not always share 
similar transcriptional pattern.

In contrast, the functional different genes may have similar expression 
profiles by coincidence or because of randomly disturbance. Despite the 
occurrence of many unexpected circumstances, the numbers of functionally 
related genes have very similar expression profiles under a group of 
correlated conditions, in particular, gene со-regulated by a common tran
scription, or products constituted protein complex are the same, or regulated 
in the same pathway. Thus, in practice, similar gene expression profile can 
be clustered to infer the function of unknown genes.

Cluster analysis is a generally used method in pattern recognition and 
data mining, which is an effective knowledge-based method. It is used exten
sively in gene expression data analysis and it mainly includes hierarchical 
clustering, К-means and self-organizing map networks, etc.

33.4.1 Hierarchical clustering

System clustering, also known as hierarchical clustering, is a simple method 
and the results are easily visualized. It has become one of the most widely 
used methods in gene expression data analysis, such as yeast and human 
gene expressions. However, many hierarchical clustering methods remain 
a potential problem that the strict phyletic evolutionary tree reflects gene 
expression pattern improperly, which contains multiple special paths.

Example 33.3 Use hierarchical cluster to analyze 112 differentially 
expressed genes (data source from Example 33.1).

Solution The purpose of this study is to classify the differentially 
expressed genes and to study its biological function upon the classification.
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To classify 20 samples, as many as 112 differentially expressed genes from 
two tissues, the WARD hierarchical clustering method is applied here to 
meet the requirements (other methods include Euclidean distance method 
and focus of the average clustering method, etc.). Definition of inter-cluster 
distance by hierarchical clustering hinged on the distances between samples 
(i.e., genes). Firstly, merge together two closest cases into a category among 
n cases (individual cases) and recalculate the inter-cluster distance. Then 
decide which case is to be merged with which other case (or category has 
been merged). This process keeps repeating till all cases are merged into 
a large category. Finally, the result is plotted as a clustering tree directly 
reflecting the clustering process.

(1) Output:

Parti

The default statistics including mean, standard deviation, skewness, kurtosis 
and coefficient peaks, as shown in Table 33.6.

Table 33.6 W ard m in im u m  v arian ce  c lu s te r  analysis.

V ariable M ean S td  D ev S kew ness K urtosis В i m odality

xl 11.6789 1.6784 0.0691 - 1 .5 2 0 6 0 .6432
x2 11.4111 1.3716 0 .0 0 1 1 2 - 1 .2 2 8 9 0 .5394
x3 11.9545 1.3776 0 .1575 - 0 .9 6 9 3 0 .4849
x4 11.8535 1.6379 -0 .0 7 3 1 - 1 .2 9 9 2 0 .5 6 3 6
x5 11.4632 1.4720 0 .2 3 3 7 - 1 .2 1 5 7 0 .5 6 4 9
x6 11.6921 1.5913 - 0 .0 0 8 2 2 - 1 .2 6 8 4 0 .5512
x7 11.7336 1.5742 0 .0 4 4 3 - 1 .3 4 8 9 0 .5779
x8 11.3426 1.3862 0 .4 2 0 9 - 0 .6 4 0 3 0 .4819
x9 11.6874 1.7173 0 .0 7 1 3 - 1 .1 9 8 3 0 .5333
xlO 11.7971 1.5526 0 .1 0 0 5 -1 .3 0 6 1 0.5685
x l l 11.4179 1.3259 0.1901 -0 .9 6 1 1 0 .4884
xl2 11.0575 1.1949 0 .6 0 8 8 - 0 .0 2 6 0 0 .4 4 8 4

xl3 11.2553 1.1733 0 .2 1 8 4 - 0 .4 4 4 2 0.3971
xl4 11.2844 1.1630 0 .0 7 3 0 - 0 .7 6 3 9 0 .4335
xl5 11.4966 1.2682 0 .2 1 9 8 - 0 .5 2 1 3 0 .4092
xl6 11.4721 1.2056 0.00731 - 0 .6 6 4 6 0 .4135
xl7 11.6705 1.4102 0 .0 0 4 8 6 - 0 .7 7 3 8 0.4331
xl8 11.5110 1.5016 - 0 .0 4 8 9 - 1 .1 9 4 7 0 .5 3 0 9
xl9 11.2287 1.2546 0 .5 6 3 0 - 0 .0 3 8 4 0 .4326
x20 11.2720 1.2410 0 .2 5 7 0 - 0 .8 5 3 9 0 .4783
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Part II

The eigenvalues of the covariance matrix (Table 33.7), difference values 
between two vertical adjacent eigenvalues, variance ratio, and the cumula
tive variance ratio.

Table 33 .7  T h e  e igenvalues o f  th e  co v arian ce  m atrix .

E igenvalue D ifferen ce P ro p o rtio n C u m u la tiv e

1 25 .6 0 0 4 3 7 8 16 .8781129 0 .6389 0 .6 3 8 9
2 8 .7 2 23249 7 .2 4 7 4 6 9 0 0 .2177 0 .8565
3 1 .4748559 0 .5 9 6 9 4 7 9 0 .0368 0 .8933
4 0 .8 7 7 9 0 8 0 0 .2 1 90825 0 .0219 0 .9152
5 0 .6 5 88255 0 .2 4 34937 0 .0 1 6 4 0 .9317
6 0 .4 1 5 3 3 1 8 0 .0 2 36515 0 .0 1 0 4 0.9421
7 0 .3 9 16803 0 .0 7 5 0 7 5 9 0 .0098 0 .9518
8 0 .3 1 66043 0 .0 3 4 8 6 8 0 0 .0079 0 .9597
9 0 .2817363 0 .0 7 95238 0 .0 0 7 0 0 .9668

10 0 .2 0 2 2 1 2 4 0 .0 3 13723 0 .0 0 5 0 0 .9718
11 0.1708401 0 .0 1 1 7 8 3 9 0 .0043 0.9761
12 0 .1 5 9 0 5 6 2 0 .0 1 79848 0 .0 0 4 0 0 .9 8 0 0
13 0 .1 4 10715 0 .0083331 0 .0035 0 .9 8 3 6
14 0 .1 3 2 7 3 8 4 0 .0 1 7 2 5 9 4 0 .0033 0 .9 8 6 9
15 0 .1 1 5 4 7 9 0 0 .0 0 68077 0 .0029 0 .9898
16 0 .1086713 0 .0 1 0 2 0 1 0 0 .0027 0 .9925
17 0 .0 9 84703 0 .0 0 9 8 8 6 2 0 .0025 0 .9949
18 0.0885841 0.0218081 0 .0022 0.9971
19 0 .0 6 6 7 7 6 0 0.0186661 0 .0017 0 .9988
20 0 .0 4 8 1 1 0 0 0 .0012 1.0000

Root-Mean-Square Total-Sample Standard Deviation =  1.415481 

Root-Mean-Square Distance between Observations =  8.952286 
Part III

Cluster processing as shown in Table 33.8.

Table 3 3 .8  C lu s te r  p ro cess in g .

N C L C lu ste rs  jo in e d F R E Q S P R S Q R SQ

111 R PS6K A 1 R P S 14 2 0.0001 1.00
110 FB L N 1 C L U L 1 2 0 .0002 1.00
109 R P S 8 R PL11 2 0 .0002 1.00
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Table 33.8 (C ontinued)

N C L C lu ste rs  jo in e d F R E Q S P R S Q R S Q

108 R PL 18 R PS 5 2 0 .0002 0 .999
107 H L A -D R A C D 74 2 0 .0002 0 .999
106 N P M I R P L 1 3 A 2 0 .0002 0 .999
105 R P S 3A R P S 18 2 0 .0002 0 .999
104 R PL 19 R P L 24 2 0 .0002 0 .998
103 R P L 3 5 A R P S 15A 2 0 .0003 0 .998
102 R P S 29 RPS11 2 0 .0003 0 .998
101 N F IB H N R P A 1 2 0 .0003 0 .998
100 R P L 9 R P L 1 0 A 2 0 .0003 0 .997

99 R P S 9 R P S 28 2 0 .0003 0 .997
98 R P L 18A R P L P 2 2 0 .0003 0 .997
97 A L C A M SO X 2 2 0 .0003 0 .996
96 C L  108 RPS21 3 0 .0003 0 .996
95 R E L N N N A T 2 0 .0003 0 .996

94 C L 96 R P S 19 4 0 .0003 0 .995
93 PTOV 1 H M G B 2 2 0 .0003 0 .995
92 G N B 2L 1 C L  102 3 0 .0003 0 .995
91 R P L 14 S L C 2 5 A 6 2 0 .0004 0 .994
90 R PL 27 C L 9 9 3 0 .0004 0 .994
89 R P L 34 R P S 17 2 0 .0004 0 .994
88 R PL21 R P L 17 2 0 .0 0 0 4 0 .993
87 R P L 39 R P L 32 2 0 .0004 0 .993
86 SPA R C L1 P E A  15 2 0 .0005 0 .992

85 C L  100 C L  109 4 0 .0005 0 .992
84 C L  106 C L 98 4 0 .0005 0.991
83 K IA A 0 1 8 2 C C N G 1 2 0 .0005 0.991
82 S F R S 3 P T M A 2 0.0005 0 .990
81 ID 2B A T P1B 2 2 0 .0005 0 .990
80 C L  105 R P S 2 7 A 3 0 .0005 0 .989
79 C L 97 O L IG 2 3 0 .0005 0 .989

78 CL91 C L 94 6 0 .0 0 0 6 0 .988

77 SY T11 R A B 31 2 0 .0 0 0 6 0 .988
76 S N R P D 2 R P S 7 2 0 .0 0 0 6 0 .987

75 C L 9 0 C L 88 5 0 .0006 0 .986
74 SL C 1A 3 P O N 2 2 0 .0 0 0 6 0 .986

73 C L101 C L 1 1 0 4 0 .0007 0 .985

72 C L 75 C L  103 7 0 .0007 0 .984

71 K IA A 0367 C L81 3 0 .0007 0 .984

70 C L 9 2 C L  104 5 0 .0007 0 .983

69 C L 8 7 C L 80 5 0 .0007 0 .982
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Table 33.8 (Continued)

N C L C lu ste rs  jo in e d F R E Q S P R S Q R S Q

68 C L 7 8 R P S 16 7 0 .0008 0.981
67 C L 8 2 H 2 A F Z 3 0 .0008 0.981
66 C L 8 4 C L 7 0 9 0 .0008 0 .980
65 C L 83 C L 9 3 4 0 .0008 0 .979
64 Z N F 2 3 8 C L 95 3 0 .0009 0 .978
63 T M S L 8 N P T X 2 2 0 .0009 0 .977
62 FH L1 D D R 1 2 0 .0009 0 .976
61 C L 7 4 C L  107 4 0 .0009 0 .975
60 P C D H G C 3 C L 8 6 3 0 .0 0 1 0 0 .974
59 C L71 ID 4 4 0 .0 0 1 0 0 .973
58 C L 67 H M G N 2 4 0 .0 0 1 0 0 .972
57 C L 77 FEZ1 3 0 .0 0 1 0 0.971
56 C L 8 9 C L 85 6 0 .0 0 1 0 0 .9 7 0
55 A P O E C R Y A B 2 0 .0 0 1 0 0 .969
54 A Q P4 C 3 2 0.0011 0 .968
53 T U B B 3 SO X 4 2 0.0011 0 .967
52 PLP1 N T R K 2 2 0 .0 0 1 2 0 .966
51 C L 58 T M S B 1 0 5 0 .0012 0 .965
50 M A B 21L1 N E U R O D 1 2 0 .0012 0 .963
49 C L 69 H 3F 3A 6 0 .0013 0 .962
48 C L61 M T 1M 5 0 .0 0 1 4 0.961
47 IN SM 1 S T M N 2 2 0 .0 0 1 4 0 .959
46 M Y C N PA X 6 2 0 .0 0 1 4 0 .958
45 C S T 3 L O C 6 4 2 0 4 2 0 .0 0 1 6 0 .956
44 SPA R C H L A -A 2 0 .0016 0 .955
43 C L 57 T C F 1 2 4 0 .0016 0 .953
42 C L 63 R B P1 3 0 .0017 0.951
41 C L 7 6 M G P 3 0 .0017 0 .950
40 C L 59 C L 7 9 7 0 .0017 0 .948
39 P M P 22 C L 48 6 0 .0018 0 .9 4 6
38 PT PR Z1 G P M 6B 2 0 .0018 0 .9 4 4
37 С Ы Н C L 73 6 0 .0019 0 .943
36 R P S 23 C L 49 7 0 .0019 0.941
35 C L 65 N PTX 1 5 0 .0 0 1 9 0 .939
34 C L 43 H TR A 1 5 0 .0 0 2 0 0 .937
33 C L 6 0 C L 6 2 5 0.0021 0 .935
32 C L 5 6 C L 6 6 15 0.0021 0 .933
31 C L 5 3 C D 2 4 3 0 .0022 0 .9 3 0
30 C L 5 4 SPP1 3 0 .0022 0 .928
29 C L 6 8 C L 7 2 14 0 .0022 0 .926
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Table 33.8 (C ontinued)

N C L  C lu ste rs  jo in e d  F R E Q  S P R S Q  R S Q

28 C L 47 C L 5 0
27 C L51 C 5 o rf l3
26 C L 55 M T 2A
25 C L 28 C L 6 4
24 C L 33 C L 45
23 C L 35 C L 42
22 C L 30 S R P X
21 C L 4 0 C L 52
20 C L 26 G F A P
19 C L 34 S C G 2
18 C L 27 CL41
17 C L 23 C L 46
16 Z1C1 C L31
15 C L 2 4 C L 38
14 C L 3 9 C L 19
13 C L21 C L 22
12 C L 1 6 C L 25
11 C L 4 4 C L 2 0
10 C L 3 6 C L 3 2

9 C L 1 8 C L 2 9
8 C L 1 7 C L 37
7 C L 1 1 C L 15
6 C L 13 C L 1 4
5 C L 1 2 C L 8
4 C L IO C L 9
3 C L 5 C L 6
2 C L 4 C L 7
1 C L 2 C L 3

4 0 .0025 0 .923
6 0 .0027 0.921
3 0.0031 0 .918
7 0 .0032 0 .914
7 0 .0033 0.911
8 0 .0033 0 .908
4 0 .0033 0 .905
9 0 .0038 0.901
4 0 .0038 0 .897
6 0 .0 0 4 0 0 .893
9 0 .0043 0 .889

10 0.0051 0 .884
4 0 .0054 0 .878
9 0 .0057 0 .872

12 0 .0062 0 .866
13 0 .0068 0 .859
11 0.0081 0.851
6 0 .0082 0 .843

22 0.0091 0 .834
23 0 .0098 0 .824
16 0 .0143 0 .810
15 0 .0155 0 .795
25 0 .0 1 6 0 0 .779
27 0 .0269 0 .752
45 0 .0637 0 .688
52 0 .0902 0 .598
60 0 .1 3 9 0 0 .459

112 0 .4 5 8 9 0.000

(2) The interpretation of results 

Part I

The default statistics include means, standard deviation, skewness, kurtosis, 
and coefficient peaks of 20 variables.

Part II

The eigenvalues of the covariance matrix, difference values between two 
vertical adjacent eigenvalues, variance ratio, and the cumulative variance 
ratio.
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The square root of the standard deviation of all the samples is 1.415481, 
indicating a small variability within all samples. The distance between 
observations (genes) is 8.952286, indicating that samples (i.e., variables) is 
at a remote distance.

Part III

Cluster processing

Looking at the category number, 112 observations (genes) have been merged 
111 times. According to the distance, the first merging (first cluster) is gene 
9 and gene 16 clustered into the first category, because the standardized 
Euclidean distance is the smallest between them, only 0.0001. By analogy 
with the process, the last is the second category CL2 and the third category 
CL3 clustered into one category. Figure 33.1 shows that to divide the 112 
genes into five major categories were more appropriate.

33.4.2 К-means clustering

К-means clustering (KMC) is a partition clustering method and will not 
create a systematic pedigree dendrogram. It can rapidly classify and suits 
enormous data sample clustering. Practically, the method applied must 
under a certain condition which is the amount of categories that has been 
known before use. Therefore, without any priori knowledge, researcher 
should try several values of К and then decide which value is the best based 
on the clustering results. Otherwise apply hierarchical clustering to find out 
how many clusters and conduct A'-means clustering eventually. Class ini
tialization at the first step is random so that different initializations could 
cause different clusters which are not easy to explain.

Example 33.4 Try using АГ-means clustering method to rapidly cluster 
the 112 genes based on the data from Example 33.1.

Solution The purpose of study is the same as Example 33.3. Here we use 
A'-means clustering.

A'-means clustering chooses the initial condensation point (cluster cen
ter), classifying every sample according to Euclidean Distance Coefficient. 
The initial condensation point is replaced with each class’ center of gravity 
by iterative method. And samples are ranged till classified categories are
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stable. The error sum of squares is applied as a criterion of dynamic clus
tering method, which can calculate in a short time and is very effective for 
large sample clustering, so that it is also known as rapid clustering method. 
Be more specific, n observed units are divided into К classes and determine 
К initial class centers, and then samples are ranged by using the iterative 
method with the principle of cluster centers’ minimum Euclidean.

According to Example 33.3, the A"-value is 5.

Output (Tables 33.9-33.13 are the results of Example 33.3)

Table 33.9 Part I The initial cluster centres of the initial clustering.

Cluster xl x2 x3 X4 x5 xl7 x l8 xl9 x2 0

1 14.66 14.02 14.80 14.84 14.82 14.66 14.02 14.80 14.84
2 9.32 8.95 9.38 9.25 9.25 ■ • 9.32 8.95 9.38 9.25
3 9.46 13.21 13.57 13.22 1 2 .6 6  •• 9.46 13.21 13.57 13.22
4 9.47 9.61 10.78 9.34 9.61 9.47 9.61 10.78 9.34
5 12.95 10.54 12.36 10.95 11.13 12.95 10.54 12.36 10.95

Table 33.10 Part II Summary of clustering.

Cluster
frequency

RMS Std 
deviation

Maximum distance 
from seed to 
observation

Radius
exceeded

Nearest
cluster

Distance between 
cluster centroids

1 26 0.5292 4.9657 3 5.2514
2 24 0.7714 4.8098 4 5.6995
3 2 2 0.6850 6.1436 1 5.2514
4 27 0.7843 5.1499 2 5.6995
5 13 0.8392 5.3769 4 6.8952

Table 33.11 Part III The historical iterative cluster processing.

Relative change in cluster seeds

Iteration Criterion 1 2 3 4 5

1 1.3011 0.5635 0.4684 0.6614 0.5450 0.4300
2 0.7423 0.0133 0.0447 0.0506 0.0400 0.1652
3 0.7310 0 0.0309 0.0263 0.0177 0

4 0.7280 0 0.107 0.0264 0.0806 0
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Table 33.12 Part IV Cluster statistics.

Variable Total STD Within STD R-Square RSQ/O-RSQ)

x l 1.67843 0.73099 0.817155 4.469127
\2 1.37159 0.71129 0.740756 2.857364
x3 1.37762 0.65240 0.783811 3.625592
x4 1.63788 0.66578 0.840722 5.278325
x5 1.47203 0.55568 0.862634 6.279837
x6 1.59134 0.66905 0.829606 4.868760
x7 1.57422 0.64009 0.840626 5.274539
x8 1.38615 1.09706 0.396192 0.656154
x9 1.71731 0.77297 0.804706 4.120487
xlO 1.55259 0.61615 0.848182 5.586813
x l 1 1.32587 0.77694 0.668998 2.021127
xl2 1.19493 0.65422 0.711048 2.460783
xl3 1.17325 0.62581 0.725745 2.646237
xl4 1.16305 0.74230 0.607329 1.546663
xl5 1.26821 0.63940 0.754970 3.081133
xl6 1.20563 0.62195 0.743467 2.898131
xl7 1.41017 0.71747 0.750467 3.007485
xl8 1.50161 0.92573 0.633637 1.729531
xl9 1.25456 0.65641 0.736108 2.789423
x20 1.24101 0.67021 0.718852 2.556841
OVERALL 1.41548 0.71686 0.752760 3.044650

Plot of 112 tones cluster

Csnl

| Cluster О Ф 4 1 -* + + 2  -Э » » « <  p o p 's]

Fig. 33.2 Five types clustering graphic illustration.
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Table 3 3 .1 3  G en es  in  d iffe ren t c lu s te rs.

Cluster
Number 
of genes Name of genes

1 26 RPS23, RPL39. RPL14, SLC25A6, RPL34, H3F3A, RPS17, 
NPM1, GNB2L1, RPS3A, RPS27A, RPL9, RPL10A, RPS5, 
RPS29, RPL32, RPS11, RPL13A, RPL19, RPS8 , RPSI8 , 
RPL11, RPL18A. RPLP2. RPL24, RPS21

2 24 KIAA0182, TMSL8 , RPS6KA1, RBPI, MYCN, RPS14, INSM1. 
PAX6 , STMN2. NPTX2. MAB21LI, ZNF238, TUBB3,
NPTX1, NF1B, PTOV1, RELN, FBLN1, CCNG1. HNRPA1, 
NEUROD1. HMGB2, NNAT. CLUL1

3 2 2 SFRS3, ZIC1, RPL 18, RPL27. H2AFZ, RPS16, RPS19. RPS9, 
SNRPD2. RPL2I, C5orfl3, RPS28, HMGN2, RPL35A, MGP. 
RPL 17. RPS 15A, SOX4. RPS7, CD24. PTMA, TMSB10

4 27 KIAA0367, PMP22, SLC1A3, SYT11, AQP4. HTRA1. C3, 
ALCAM. PON2, SCG2, PLPl, TCF12, PTPRZL SPP1, ID4. 
GPM6 B, OLIG2, FEZ1, SRPX, HLA-DRA, NTRK2, ID2B, 
MT1M, SOX2, CD74. ATP1B2, RAB3I

5 13 SPARC, PCDHGC3, APOE, CST3, CRYAB. FHL1, SPARCL1, 
PEA15, HLA-A, DDR 1, MT2A, GFAP, LOC64204

33.5 Analysis of Gene Regulatory Networks

33.5.1 A n alysis  o f  g en e regu la tory netw orks

The obtained expression data from gene chip is not only used for analyz
ing disciplinary of time-space and studying function of gene, but also to 
reveal gene internal restraining relationship and to study gene transcrip
tion regulatory networks. In fact, gene expression is a subsequence which is 
being affected with genetic and environmental factors upon cells, tissues and 
organs. To transcript a gene depends on the biochemical status of the cell. 
In processing of transcription, a bunch of transcription factors is working on 
the gene’s promoter region and controlling the transcription, although these 
transcription factors are produced from other genes. A gene will change its 
cellular biochemical status after it has been transcribed and translated into 
another functional gene product, so it would directly or indirectly impact 
other genes’ expression, even its own expression.

For more than one gene, if gene expressions keep changing, the cel
lular biochemical status will also change. Generally, a gene expression is
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impacted by other genes, and this gene also influences others, such an inter
nal impact and internal restraining relationship has formed complicated gene 
expression regulatory networks. From a systematic viewpoint, a cell looks 
like a complex dynamic system where each gene is seemed as a systematic 
variable, and variables interact with another.

The purpose of the transcriptional regulatory network analysis is to 
establish a mathematical model of regulatory network to analyze the 
interaction between genes. Now many laboratories and researchers combine 
bio-chip technology and information technology to explore gene regulatory 
networks, and made some effective results. Here we briefly report the 
progress of gene regulatory networks associated with the mathematical 
model and its application in recent years to apply. Weight matrices were 
first applied to gene regulatory networks approach. Weaver et al. showed the 
influence between each gene by a weighted matrix, Reinitz and Sharp con
structed Drosophila gene regulatory networks using the weighting matrix 
models, in order to describe the mechanism of the fruit fly gene in the 
Drosophila gene stripe formation, and find genes playing an important role 
in the section of Drosophila; Boolean algebra model, a Boolean network 
contains n nodes (representing genes), respectively, in the suppression or 
expression status (i.e., 0 and 1 states). Network is a dynamic process of 
Boolean functions of n determined by the state, determined by a function 
of each node. Therefore, the next state of the network can be decided by all 
nodes in the input and the function of the node. Thieffry and Thomas stud
ied the logic of Boolean model about gene regulatory network, a detailed 
analysis of sea urchin Stronglocentrotus Purpuratus gene Endoll6, exam
ined how the level of gene transcription of the gene regulatory networks 
for accurate description of the logic. They describe the gene cis-regulatory 
system based on Boolean theory, and it can simulate the Endol 16 expression 
of transcription in the given conditions; Chen proposed a differential equa
tion model of gene regulatory networks. They have done a lot of assump
tions, such as linear transfer function, gene networks have some stability, 
and they use the Fourier transform technique about stability of the system 
to determine the various parameters; sharing information associated with 
the network model, Butte, etc. sharing information between two genes by 
calculating each, and analyze the expression data from yeast microarray. 
They firstly calculated shared information among all genes according to the
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experimental data of gene expression, and define a share information thresh
old; above the threshold are considered among the genes on the biological 
significance of association, the connection of these genes together, sharing 
information to build the associated network. Correlation coefficient model 
is a classical method for potential biological causal relationship. Although 
the correlation analysis cannot provide an actual basis between the causal 
relationship, it provides us with a hypothesis, which might be tested by other 
methods. According to the principles of gene regulation, if gene A and gene 
В have a high correlation, it might mean: gene A regulates gene B; gene В 
regulates gene A, gene A and gene В are the third co-regulation of gene C, 
random-control relationship. Of course, all these regulatory relationships 
may be indirect in nature.

33.5.2 Established relevant analysis model by gene regulatory 
networks

Note the linear correlation coefficient formula

E L .  (x,k -  X, )(xjk X/)

J r . U  ( * «  -  «У е:., On- Xj)2'
where хцс is an expression level of gene i under the experimental condition 
k, and Xj is an average expression level of gene i under n experimental 
conditions. Between the expression patterns, a positive correlation is asso
ciated with the Euclidean distance principle, but is not sensitive to the trans
lation transformation, additionally, the Euclidean distance analysis cannot 
describe negative correlation, but it implies that there may have a strong 
connection between the two genes.

Example 33.5 Carry out a correlation analysis over 112 genes (Example 
33.1) and examine the relationship among the classes and the relationship 
among the genes within each class.

Solution The correlation between gene clusters: Table 33.14 gives the 
correlation coefficient matrix of five categories, where the coefficient rep
resents the correlation direction and strength level among gene clusters.

Correlation within a gene cluster: Tables 33.15 and 33.16 list the correla
tion matrix of genes for Class 1 and Class 5 only; in some other conditions,
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Table 33.14 The correlation coefficient matrix of five classes.

Classes Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 1 0.70 0.96 -0 .79 -0 .78
Class 2 0.70 1 0.83 -0 .87 - 0 .8 6

Class 3 0.96 0.83 1 -0 .87 - 0 .8 6

Class 4 -0 .79 -0 .87 -0 .87 1 0.96
Class 5 -0 .78 - 0 .8 6 - 0 .8 6 0.96 1

Table 33.15 The related matrix of genes within Class 1.

Genes RPS23 RPL39 RPL14 DDR1 MT2A GFAP LOC64204

RPS23 1 0.90 0.90 0.92 0.91 0.91 0.94
RPL39 0.90 1 0.90 0.92 0.90 0.91 0.90
RPL14 0.90 0.90 1 0.93 0.91 0.91 0.94

DDR1 0.92 0.92 0.93 1 0.94 0.91 0.96
MT2A 0.91 0.90 0.91 0.94 1 0 .8 8 0.95
GFAP 0.91 0.91 0.91 0.91 0 .8 8 1 0.92
LOC64204 0.94 0.90 0.94 0.96 0.95 0.92 1

Table 33.16 The related matrix of Genes within Class 5.

Genes SPARC PCDHGC3 APOE • • MT2A GFAP LOC64204

SPARC 1 0.45 0.44 0.54 0.28 0.78
PCDHGC3 0.45 1 0.67 0.62 0.76 0.48
APOE 0.44 0.67 1 0.76 0 .8 6 0.38

DDR1 0.43 0 .8 8 0.78 0.59 0.83 0.38
MT2A 0.54 0.62 0.76 1 0.62 0.60
GFAP 0.28 0.76 0 .8 6 0.62 1 0.34
LOC64204 0.78 0.48 0.38 0.60 0.34 1

the matrix should be similar. The coefficients are all positive indicating 
that correlativity within the gene cluster is of isotropic attribute, and the 
value shows relevant strength. With the method, classify genes into differ
ent categories first, and then study the correlation between individual genes.
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Table 3 3 .1 7  T h e  re la te d  m atrix  o f  C lass  1 gen es an d  C lass  5 genes.

Gene SPARC PCDHGC3 APOE CST3 ■■• DDR1 MT2A GFAP LOC64204

RPS23 -0 .54 -0 .72 -0 .63 -0 .48 -0 .77 -0.42 -0 .70 -0 .36
RPL39 -0 .48 -0.63 -0 .69 -0 .48 -0 .69 -0.41 -0.67 -0.25
RPL14 -0.43 -0.75 -0.61 -0 .53 -0 .76 -0 .33 -0 .69 -0 .28
SLC25A6 -0.38 -0 .72 -0 .58 -0 .39 -0.71 -0 .46 -0.62 - 0 .2 2

RPL34 -0 .52 -0 .58 -0 .49 -0 .39 -0 .57 -0 .26 -0 .53 -0 .40

RPL11 -0 .46 -0 .80 -0.63 -0 .42 -0.77 -0 .39 -0 .67 -0.35
RPL18A -0 .42 -0.75 -0.63 -0 .54 -0 .75 -0 .49 -0 .70 -0 .32
RPLP2 -0 .45 -0.73 - 0 .6 6 -0.61 -0 .70 -0.48 -0 .76 -0 .35
RPL24 -0 .53 -0 .70 -0.63 -0 .59 -0 .77 -0.43 -0 .73 -0 .40
RPS21 -0 .48 -0 .84 -0 .69 -0.58 -0 .83 -0 .52 -0 .79 -0 .38

It can condense the matrix size, easier to understand and find out the real 
relationship of biological regulation.

The biological explanation: Five types clustering results of correlation 
coefficient matrix shows Class 1 positively correlated with Class 2 and 
Class 3 and negatively correlated with both Class 4 and Class 5, and Class 4 
and Class 5 were a positively correlated.

The related matrix of Class 1 genes and Class 5 genes indicated that 
genes were strongly positively correlated with each other in Class 1, and 
the overwhelming majority of the correlation coefficient is above 0.9. 
In Class 5, genes were mutually moderately positively correlated, the 
correlation coefficient mainly distributed from 0.5 to 0.8. Table 33.17 shows 
that the genes in Class 1 were moderately negatively correlated with those in 
Class 5. From clustering analysis, it shows that the relationship between two 
types of genes was well extracted and can provide clues for in-depth study.

33.6 Computerized Experiments

Experiment 33.1 The format of gene expression data Select two types of 
tissues (medulloblastoma and malignant glioma) of total 20 samples from 
112 differentially expressed genes which are from Example 33.1, and list 
all data with SAS for further study.

Experiment 33.2 SAS programs of differential gene expression 
screening Explore expressed different Notch 1 gene in three degree
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Program 33.1 The format of gene expression data.

Line Program Line Program

01 data PRG33_1; 04 proc print DATA=PRG33_1;
0 2 Infile ‘E:\Chapter33\TXT\ genes.txt’; 05 Run;
03 Input name $ xl-x20;

Program 33.2 The result of differentially expressed genes analysis.

Line Program Line Program

01 data PRG33_2; 16 0.505 0.127 0.057
0 2 do g rp= l to 3; 17 0 .1 2 2  0.031
03 Input Notch 1 @ @; 18 0.123 0.069
04 if Notch 1 ne . then output; 19 0.051
05 end; 2 0 0.038
06 Cards; 2 1 0.059
07 0.552 0.109 0.058 2 2 0.043
08 0.513 0.101 0.046 23 *
09 0.451 0.116 0.056 24 proc glm data= PRG33_2;
10 0.451 0.125 0.052 25 class grp;
11 0.559 0.127 0.066 26 model Notchl=grp;
12 0.619 0.122 0.042 27 means grp;
13 0.502 0.112 0.042 27 run;
14 0.527 0.102 0.049 28 quit;
15 0.563 0.104 0.045

varicocele testicular tissue from 38 varicoele patients, data from 
Example 33.2.

Experiment 33.3 Gene hierarchical clustering method Based on Exam
ple 33.3, apply hierarchical clustering to 112 differentially expressed genes 
which are from Program 33.1. SAS program details every step of compu
tation below.

Experiment 33.4 Gene /с-means clustering Use /.'-means clustering 
method for the rapid clustering with the 112 genes in the cases of 
Program 33.1 based on the data of Example 33.4.

Experiment 33.5 Method of gene networks constructional correlation 
coefficient From Example 33.5, construct gene networks with 112 genes 
(from Example 33.1) by correlation coefficient methods.
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Program 33.3 Gene hierarchical clustering method.

Line Program Line Program

0 1 Data PRG33_3; 06 id name;
0 2 Infile ‘E:\Chapter33\TXT\genes.txt’; 07 run;
03 Input name$ xl-x20; 08 proc print data=tree0 ;
04 Proe cluster data= PRG33_3 simple 09 run;

method=ward outtree=tree0 ; 10 proc tree data=tree0 ;
05 var x 1 -x2 0 ; 11 run;

Program 33.4 Gene к-means clustering.

Line Program Line Program

01 data PRG33_4; 16 run;
0 2 Infile ‘E:\Chapter33\TXT\genes.txt’; 17 legend 1 cframe=ligr
03 Input name$ xl-x20 ; cborder=black
04 proc fastclus data= PRG33_4 maxc=5 18 position=center

maxiter=4 out=fac; value=(justify=center);
05 var x 1 -x2 0 ; 19 axisl label=(angle=90 rotate=0)
06 id name; minor=none;
07 proc sort; 2 0 axis2  minor=none;
08 by cluster; 21 proc gplot data=Can:
09 proc print data=fac; 2 2 plot Can2*Can 1 =Cluster/frame
10 var name cluster; cframe=ligr
11 run; 23 legend=legendl vaxis=axisl
12 proc candisc anova out=can; haxis=axis2 ;
14 var xl-x2 0 ; 24 title2 ’Plot of Canonical Variables
15 title2 ‘Canonical Discriminant Identified by Cluster’;

Analysis of gene Clusters’; 25 run;
14 var xl-x2 0 ;

33.7 Summary

This chapter introduced several major statistical methods in bioinformatics. 
The sequence comparison method of BLAST, FASTA and Smith-Waterman 
not only include probability theory, but also ranged over the statistical meth
ods of hypothesis test. Due to the rapid development of biological database, 
faster and accuracy statistical methods are needed. Controlling multiple test
ing error rates (false positive rate) is the key of differential gene expression 
screening, and must guarantee a high screening efficiency. Methods like 
SAM, two sample f-test, Bonferroni correction and BH are very commonly



Statistical Methods in Bioinformatics 907

P ro g ram  33.5  T h e  m eth o d  o f  g en e  ne tw o rk s co n stru c tio n a l co rre la tio n  coeffic ien t.

Line Program Line Program

01 data PRG33_5; 18 where _name_ not in
0 2 Infile ‘E: \Chapter33\TXT\genes.txt’; ("CLUSTER","DISTANCE");
03 Input name$ x 1 -x20; 19 run;
04 proc f'astclus data= PRG33_6 2 0 /*Genes in Cluster 1 and 5*/

maxc=5 maxiter=4 out=fac proc corr data=tfac;
mean=cluster; 21 Var RPS23 -  RPS21 SPARC -

05 var x l-x2 0 ; LOC64204;
06 id name; 2 2 Run;
07 proc transpose data=cluster 23 /*Genes in Cluster 1 */

out=tclus; var xl-x2 0 ; 24 proc corr data=tfac;
08 /*Correlation Coefficients Between 25 Var RPS23 -  RPS21;

Clusters*/ 26 Run;
09 proc corr data=tclus out=rtclus ; 27 /*Genes in Cluster 5*1
10 run; 28 proc corr data=tfac;
11 /*Correlation Coefficients Between 29 Var SPARC -  LOC64204;

Genes*/ 30 Run;
12 proc sort data=fac; 31 /*Genes in Cluster 1 VS 5*/
13 by cluster; 32 proc corr data=tfac;
14 proc transpose data=fac out=tfac; 33 with RPS23 -  RPS21;
15 id name; 34 Var SPARC -  LOC64204;
16 data tfac; 35 Run;
17 set tfac;

used for microarray data in selection of differentially expressed genes. 
However, some new statistical thinking occurred, it avoided a restriction 
which is pairwise comparison. Gene chip is an important biological anal
ysis technology, that makes contribution in genetic function identification, 
tumor disease diagnosis, pathogenic mechanism analysis and drug design. 
At present, mature methods are available in some key processes, including 
chip design, image acquisition, data processing and analysis, etc. Data clus
tering analysis is the important part of gene microarray data analysis, which 
is widely applied in disease diagnosis. Clustering methods mainly included 
unsupervised clustering and supervised clustering. Gene chip technologies 
are widely applied to gene regulation networks studies that contribute to 
elucidate some disease mechanism and are currently a hot topic in bioinfor
matics. Software of gene chip data analysis includes ScanAlyze for image
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acquisition, Cluster for clustering analysis, TreeView for displaying the 
results of clustering, etc.

However, the current bioinformatics comes up against many difficulties 
and challenges. The structure, mechanism and function of biology are 
awaiting experimental verification, technical analysis methods and theories 
still need to be improved and updated. Therefore, some methods or imple
mentation in this chapter are imperfect due to the restriction of the software 
and method itself. Refinement will be focused in further study.

33.8 Practice and Experiment

1. Can you determine the possible virus species by the sequence of the 
SARS virus?

2. What is the significance of the sequence comparability search?
3. Describe the relationship between similarity and homology of the bio

logical sequences.
4. To realize the gene chip application prospects, present situation of appli

cation and the mainly restricting factors during gene chip development 
through the literature review.

5. Observe the data format and the results analysis from a cancer gene chip 
database.

(2nd edn. Dong Yi)
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Table 1. Distribution function of standard normal distribution.

1 f z  X2
Ф ( г )  =  — = e ~ T  d x  (Z < 0) 

\2т г J—oo

Z 0

z 0 .0 0 0 .0 1 0 .0 2 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Z

- 0 .0 0.500 0 0.496 0 0.492 0 0.488 0 0.484 0 0.480 1 0.476 1 0.472 1 0.468 1 0.464 1 - 0 .0

- 0 .1 0.460 2 0.456 2 0.452 2 0.448 3 0.444 3 0.440 4 0.436 4 0.432 5 0.428 6 0.424 7 - 0 .1

- 0 .2 0.420 7 0.416 8 0.412 9 0.409 0 0.405 2 0.401 8 0.397 4 0.393 6 0.389 7 0.385 9 - 0 .2

-0 .3 0.382 1 0.378 3 0.374 5 0.370 7 0.366 9 0.363 2 0.359 4 0.355 7 0.352 0 0.348 3 -0 .3
-0 .4 0.344 6 0.340 9 0.337 2 0.333 6 0.330 0 0.326 4 0.322 8 0.319 2 0.315 6 0.312 1 -0 .4
-0 .5 0.308 5 0.305 0 0.301 5 0.298 1 0.294 6 0.291 2 0.287 7 0.284 3 0.281 0 0.277 6 -0 .5
- 0 .6 0.274 3 0.270 9 0.267 6 0.264 3 0.261 1 0.257 8 0.254 6 0.251 4 0.248 3 0.245 1 - 0 .6

-0 .7 0.242 0 0.238 9 0.235 8 0.232 7 0.229 7 0.226 6 0.223 6 0 .2 2 0  6 0.217 7 0.214 8 -0 .7
- 0 .8 0.211 9 0.209 0 0.206 1 0.203 3 0.200 5 0.197 7 0.194 9 0.192 2 0.189 4 0.186 7 - 0 .8

-0 .9 0.184 1 0.181 4 0.178 8 0.176 2 0.173 6 0.171 1 0.168 5 0.166 0 0.163 5 0.161 1 -0 .9
-1 .0 0.158 7 0.156 2 0.153 9 0.151 5 0.149 2 0.146 9 0.144 6 0.142 3 0.140 1 0.137 9 -1 .0
- 1.1 0.135 7 0.133 5 0.131 4 0.129 2 0.127 1 0.125 1 0.123 0 0 .1 2 1  0 0.1190 0.117 0 - 1.1

- 1 .2 0.115 1 0.113 1 0 .1 1 1  2 0.109 3 0.107 5 0.105 6 0.103 8 0 .1 0 2  0 0.100 3 0.098 53 - 1 .2

-1 .3 0.096 80 0.095 10 0.093 42 0.091 76 0.090 12 0.088 51 0.086 91 0.085 34 0.083 79 0.082 26 -1 .3
-1 .4 0.080 76 0.079 27 0.077 80 0.076 36 0.074 93 0.073 53 0.072 15 0.070 78 0.069 44 0.068 11 -1 .4
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Table 1. (Continued)

1 rz *2
Ф( Z ) = - =  d x  ( Z >  0)

v 2.71 J— oo

z 0 .0 0 0 .0 1 0 .0 2 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Z

0 .0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.623 9 0.527 9 0.531 9 0.535 9 0 .0

0 .1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0 .1

0 .2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 3 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0 .2

0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 6 0.644 3 0.643 0 0.651 7 0.3
0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.4

0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.710 0 0.722 4 0.5
0 .6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0 .6

0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.7
0 .8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0 .8

0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.831 5 0.834 0 0.836 5 0.838 9 0.9

1 .0 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.862 1 1 .0

1.1 0.854 3 0.866 5 0 .8 6 8  6 0.870 8 0.872 9 0.874 9 0.877 0 0.879 0 0.881 0 0.883 0 1.1

1 .2 0.884 9 0.885 9 0 .8 8 8  8 0.890 7 0.892 5 0.894 4 0.896 2 0.898 0 0.899 7 0.901 48 1 .2

1.3 0.903 20 0.904 90 0.906 58 0.908 24 0.908 8 8 0.911 49 0.913 09 0.914 6 6 0.916 21 0.917 74 1.3
1.4 0.919 24 0.920 73 0.922 20 0.923 64 0.925 07 0.926 47 0.927 85 0.929 22 0.930 56 0.931 89 1.4

1.5 0.933 19 0.934 48 0.935 74 0.936 99 0.938 22 0.939 43 0.940 62 0.941 79 0.942 95 0.944 08 1.5
1 .6 0.945 20 0.946 30 0.947 38 0.948 45 0.949 50 0.950 53 0.951 54 0.952 54 0.953 52 0.954 49 1 .6

1.7 0.955 43 0.956 37 0.957 28 0.958 18 0.959 07 0.959 94 0.960 80 0.961 64 0.952 46 0.963 27 1.7
1 .8 0.964 07 0.964 85 0.965 62 0.966 38 0.967 12 0.967 84 0.968 56 0.969 26 0.969 95 0.970 62 1 .8

1.9 0.971 28 0.971 93 0.972 57 0.973 20 0.973 81 0.974 41 0.975 00 0.975 58 0.976 15 0.976 70 1.9
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Table 2. The upper probability of binomial distribution.

n
\  К
k \ 0 .0 1 0 .0 2 0.04 0.06 0.08 0 .1 0 .2 0.3 0.4 0.5

71 /
/ k n

5 5 0 .0 0 0  0 0 0 .0 0 0  0 0 0 .0 0 0  0 0 0 .0 0 0  01 0.000 32 0.002 43 0.010 24 0.031 25 5 5
4 0 .0 0 0  0 0 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  06 0 .0 0 0  19 0.000 46 0.006 72 0.030 78 0.087 04 0.187 50 4
3 0 .0 0 0  01 0 .0 0 0  08 0 .0 0 0  60 0.001 97 0.004 53 0.008 56 0.057 92 0.163 08 0.317 44 0.500 00 3
2 0.000 98 0.003 84 0.014 76 0.031 87 0.054 36 0.081 46 0.262 72 0.471 78 0.663 04 0.812 50 2

1 0.049 01 0.096 08 0.184 63 0.266 10 0.340 92 0.409 51 0.672 32 0.831 93 0.922 24 0.968 75 1

10 10 0 .0 0 0  01 0 .0 0 0  10 0.000 98 10 10
9 0 .0 0 0  0 0 0.000 14 0 .0 0 1  6 8 0.010 74 9
8 0 .0 0 0  0 0 0 .0 0 0  08 0.001 59 0.012 29 0.054 69 8

7 0 .0 0 0  0 0 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  8 6 0.010 59 0.054 76 0.171 8 8 7
6 0 .0 0 0  0 0 0 .0 0 0  01 0.000 04 0.000 15 0.006 37 0.047 35 0.166 24 0.376 95 6

5 0 .0 0 0  0 0 0 .0 0 0  0 2 0.000 15 0.000 59 0.001 63 0.032 79 0.150 27 0.366 90 0.623 05 5
4 0 .0 0 0  0 0 0.000 03 0.000 44 0.002 03 0.005 80 0 .0 1 2  80 0.120 87 0.350 39 0.617 72 0.828 13 4
3 0 .0 0 0  11 0 .0 0 0  8 6 0.006 21 0.018 84 0.040 08 0.070 19 0.322 20 0.617 22 0.832 71 0.945 31 3
2 0.004 27 0.016 18 0.058 15 0.117 59 0.187 8 8 0.263 90 0.624 19 0.350 69 0.953 64 0.989 26 2

1 0.095 62 0.182 93 0.335 17 0.461 38 0.565 61 0.651 32 0.892 63 0.971 75 0.993 95 0.999 02 1
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Table 2. (Continued)

n
\  7Г
k \ 0 .0 1 0 .0 2 0.04 0.06 0.08 0 .1 0 .2 0.3 0.4 0.5

n  /  
/ к n

15 15 0 .0 0 0  0 0 0.000 03 15 15
14 0 .0 0 0  0 0 0.000 03 0.000 49 14
13 0 .0 0 0  01 0 .0 0 0  28 0.003 69 13
12 0 .0 0 0  0 0 0.000 09 0.001 93 0.017 58 12

11 0 .0 0 0  01 0.000 67 0.009 35 0.059 23 11

10 0 .0 0 0  11 0.003 65 0.033 83 0.150 8 8 10

9 0 .0 0 0  0 0 0 .0 0 0  0 0 0.000 79 0.015 24 0.095 05 0.303 62 9
8 0 .0 0 0  0 0 0 .0 0 0  01 0.000 03 0.004 24 0.050 01 0.213 10 0.500 00 8

7 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  08 0.000 31 0.018 06 0.131 14 0.390 19 0.696 38 7
6 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  15 0.000 70 0.002 25 0.061 05 0.278 38 0.596 78 0.849 12 6

5 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  2 2 0.001 40 0.004 97 0.012 72 0.164 23 0.484 51 0.782 72 0.940 77 5
4 0 .0 0 0  01 0 .0 0 0  18 0.002 45 0.010 36 0.027 31 0.055 56 0.351 84 0.703 13 0.909 50 0.982 42 4
3 0.000 42 0.003 04 0.020 29 0.057 13 0.112 97 0.184 06 0.601 98 0.873 17 0.972 89 0.996 31 3
2 0.009 63 0.035 34 0.119 11 0.226 24 0.340 27 0.450 96 0.832 87 0.964 73 0.994 83 0.999 51 2

1 0.139 94 0.261 43 0.457 91 0.604 71 0.713 70 0.794 11 0.964 82 0.995 25 0.999 53 0.999 97 1

2 0 2 0 0 .0 0 0  0 0 2 0 2 0

19 0 .0 0 0  0 0 0 .0 0 0  0 2 19
18 0 .0 0 0  01 0 .0 0 0  2 0 18
17 0 .0 0 0  0 0 0.000 05 0.001 29 17
16 0 .0 0 0  01 0.000 32 0.005 91 16

15 0.000 04 0 .0 0 1  61 0.020 69 15
14 0 .0 0 0  0 0 0 .0 0 0  26 0.006 47 0.057 6 6 14
13 0 .0 0 0  0 2 0 .0 0 1  28 0.021 03 0.131 59 13
12 0 .0 0 0  10 0.005 14 0.056 53 0.251 72 12
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Table 2. (Continued)
\  71 

"  * \
0 .0 1 0 .0 2 0.04 0.06 0.08 0 .1 0 .2 0.3 0.4 0.5

n  /A n
l l 0 .0 0 0  0 0 0.000 56 0.017 14 0.127 52 0.411 90 и

10 0 .0 0 0  0 0 0 .0 0 0  01 0.002 59 0.047 96 0.244 60 0.588 10 10

9 0 .0 0 0  0 0 0 .0 0 0  01 0 .0 0 0  06 0.009 98 0.113 33 0.404 40 0.748 28 9
8 0 .0 0 0  0 0 0 .0 0 0  01 0.000 09 0.000 42 0.032 14 0.227 73 0.584 11 0.868 41 8

7 0 .0 0 0  01 0 .0 0 0  11 0.000 64 0.002 39 0.086 69 0.391 99 0.749 99 0.942 34 7
6 0 .0 0 0  0 0 0 .0 0 0  10 0.000 87 0.003 80 0.011 25 0.195 79 0.583 63 0.874 40 0.979 31 6

5 0 .0 0 0  0 0 0.000 04 0.000 96 0.005 63 0.018 34 0.043 17 0.370 35 0.762 49 0.949 05 0.994 09 5
4 0.000 04 0 .0 0 0  60 0.007 41 0.028 97 0.070 62 0.132 95 0.588 55 0.892 91 0.984 04 0.998 71 4
3 0 .0 0 1  0 0 0.007 07 0.043 8 6 0.114 97 0.212 05 0.323 07 0.793 92 0.964 52 0.996 39 0.999 80 3
2 0.016 8 6 0.059 90 0.189 6 6 0.339 55 0.483 14 0.608 25 0.930 82 0.992 36 0.999 48 0.999 98 2

1 0.182 09 0.332 39 0.558 00 0.709 89 0.811 31 0.878 42 0.988 47 0.999 20 0.999 96 1 .0 0 0  0 0 1

25 25 25 25
24 0 .0 0 0  0 0 24
23 0 .0 0 0  0 1 23
2 2 0 .0 0 0  0 0 0 .0 0 0  08 2 2

21 0 .0 0 0  01 0.000 46 21

2 0 0.000 05 0.002 04 2 0

19 0 .0 0 0  0 0 0 .0 0 0  28 0.007 32 19
18 0 .0 0 0  0 2 0 .0 0 1  21 0.021 64 18
17 0 .0 0 0  10 0.004 33 0.053 8 8 17
16 0 .0 0 0  0 0 0.000 45 0.013 17 0.114 76 16
15 0 .0 0 0  01 0.001 78 0.034 39 0 .2 1 2  18 15
14 0 .0 0 0  08 0.005 99 0.077 80 0.345 02 14
13 0.000 37 0.017 47 0.153 77 0.500 00 13
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Table 2. (Continued)

n 0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 n

12
11 0 .0 0 0 0 0

10 0 .0 0 0  0 0 0 .0 0 0 0 1

9 0 .0 0 0  01 0 .0 0 0 08
8 0 .0 0 0  0 0 0.000 07 0 .0 0 0 52
7 0 .0 0 0  0 0 0.000 04 0.000 51 0 .0 0 2 77
6 0 .0 0 0  01 0.000 38 0.003 06 0 .0 1 2 29

5 0 .0 0 0  0 0 0 .0 0 0  12 0.002 78 0.015 05 0.045 14
4 0 .0 0 0  11 0.001 45 0.016 52 0.059 76 0.135 09
3 0.001 95 0.013 24 0.076 48 0.187 11 0.323 17
2 0.025 76 0.088 65 0.264 19 0.447 34 0.605 28
1 0 .2 2 2  18 0.396 54 0.639 60 0.787 09 0.875 64

30 30
29 
28 
27 
26 
25 
24 
23 
22 
21
20
19
18

0 .0 0 0  0 0 0.001 54 0.044 25 0.267 72 0.654 98 12

0 .0 0 0  0 1 0.005 56 0.097 80 0.414 23 0.787 82 11

0 .0 0 0  08 0.017 33 0.189 44 0.575 38 0.885 24 10

0.000 46 0.046 77 0.323 07 0.726 47 0.946 12 9
0 .0 0 2  26 0.109 12 0.488 15 0.846 45 0.978 36 8

0.009 48 0.219 96 0.659 35 0.926 43 0.992 6 8 7
0.033 40 0.383 31 0.806 51 0.970 64 0.997 96 6

0.097 99 0.579 33 0.909 53 0.990 53 0.999 54 5
0.236 41 0.766 01 0.966 76 0.997 63 0.999 92 4
0.462 91 0.901 77 0.991 04 0.999 57 0.999 99 3
0.728 79 0.972 61 0.998 43 0.999 95 1 .0 0 0  0 0 2

0.928 21 0.996 22 0.999 87 1 .0 0 0  0 0 1 .0 0 0  0 0 1

30
29
28

0 .0 0 0  0 0 27
0.000 03 26

0 .0 0 0  0 0 0 .0 0 0  16 25
0 .0 0 0  0 1 0.000 72 24
0.000 05 0 .0 0 2  61 23

0 .0 0 0  0 0 0 .0 0 0  2 2 0.008 06 2 2

0 .0 0 0  01 0 .0 0 0  8 6 0.021 39 21

0.000 04 0.002 85 0.049 37 2 0

0 .0 0 0  16 0.008 30 0.100 24 19
0 .0 0 0  0 0 0.000 63 0.021 24 0.180 80 18
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Table 2. (C ontinued)

\  к  
n k \ 0 .0 1 0 .0 2 0.04 0.06 0.08 0 .1 0 .2 0.3 0.4 0.5

n  /  
/ k  n

17 0 .0 0 0  0 1 0 .0 0 2  12 0.048 11 0.292 33 17
16 0.000 05 0.006 37 0.097 06 0.427 77 16
15 0.000 23 0.016 94 0.175 37 0.572 23 15
14 0.000 90 0.040 05 0.285 50 0.707 67 14
13 0 .0 0 0  0 0 0.003 11 0.084 47 0.421 53 0.819 20 13
12 0 .0 0 0  0 0 0 .0 0 0  0 2 0.009 49 0.159 32 0.568 91 0.899 76 12

11 0 .0 0 0  0 0 0 .0 0 0  01 0.000 09 0.025 62 0.269 63 0.708 53 0.950 63 11

10 0 .0 0 0  01 0.000 07 0.000 45 0.061 09 0.411 19 0.823 71 0.978 61 10

9 0 .0 0 0  0 0 0.000 05 0.000 41 0 .0 0 2  0 2 0.128 65 0.568 48 0.905 99 0.991 94 9
8 0 .0 0 0  0 2 0.000 30 0.001 97 0.007 78 0.239 21 0.718 62 0.956 48 0.997 39 8

7 0 .0 0 0  0 0 0 .0 0 0  15 0.001 67 0.008 25 0.025 83 0.393 03 0.840 48 0.982 82 0.999 28 7
6 0 .0 0 0  0 0 0.000 03 0 .0 0 1  06 0.007 95 0.029 29 0.073 19 0.572 49 0.923 41 0.994 34 0.999 84 6

5 0 .0 0 0  01 0.000 30 0.006 32 0.031 54 0.087 36 0.175 49 0.744 77 0.969 85 0.998 49 0.999 97 5
4 0 .0 0 0  2 2 0.002 89 0.030 59 0 .1 0 2  62 0.215 79 0.352 56 0.877 29 0.990 6 8 0.999 69 1 .0 0 0  0 0 4
3 0.003 32 0.021 72 0.116 90 0.267 60 0.434 60 0.588 60 0.955 82 0.997 89 0.999 95 1 .0 0 0  0 0 3
2 0.036 15 0.120 55 0.338 82 0.544 53 0.704 21 0.816 30 0.989 18 0.999 69 1 .0 0 0  0 0 1 .0 0 0  0 0 2

1 0.260 30 0.454 52 0.706 14 0.843 74 0.918 03 0.957 61 0.998 76 1 .0 0 0  0 0 1 .0 0 0  0 0 1 .0 0 0  0 0 1
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Table 3. The confidence interval of n  in binomial distribution.

1 - a  =  0.95

i \ n  — к
k \ . 1 2 3 4 5 6 7 8 9 1 0 12 14 16 « - к /

/ к

0 0.975 0.842 0.708 0.602 0.522 0.459 0.410 0.369 0.336 0.308 0.265 0.232 0.206 0

0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

1 0.987 0.906 0.806 0.716 0.641 0.579 0.527 0.483 0.445 0.413 0.360 0.319 0.387 1

0.013 0.008 0.006 0.005 0.004 0.004 0.003 0.003 0.003 0 .0 0 2 0 .0 0 2 0 .0 0 2 0 .0 0 1

2 0.992 0.932 0.853 0.777 0.710 0.651 0.600 0.556 0.518 0.434 0.428 0.383 0.347 2

0.094 0.068 0.053 0.043 0.037 0.032 0.028 0.025 0.023 0 .0 2 1 0.018 0.016 0.014
3 0.994 0.947 0.882 0.816 0.755 0.701 0.652 0.610 0.572 0.538 0.481 0.434 0.396 3

0.194 0.147 0.118 0.099 0.085 0.075 0.067 0.060 0.055 0.050 0.043 0.038 0.034
4 0.995 0.957 0.901 0.843 0.788 0.738 0.692 0.651 0.614 0.581 0.524 0.476 0.437 4

0.284 0.223 0.184 0.157 0.137 0 .1 2 2 0.109 0.099 0.091 0.084 0.073 0.064 0.057
5 0.996 0.963 0.915 0.863 0.813 0.766 0.723 0.684 0.649 0.616 0.560 0.512 0.471 5

0.359 0.290 0.245 0 .2 1 2 0.187 0.167 0.151 0.139 0.128 0.118 0.103 0.091 0.082
6 0.996 0.968 0.925 0.878 0.833 0.789 0.749 0.711 0.677 0.646 0.590 0.543 0.502 6

0.421 0.349 0.299 0.262 0.234 0 .2 1 1 0.192 0.177 0.163 0.152 0.133 0.119 0.107
7 0.997 0.972 0.933 0.891 0.849 0.808 0.770 0.734 0.701 0.671 0.616 0.570 0.529 7

0.473 0.400 0.348 0.308 0.277 0.251 0.230 0.213 0.198 0.184 0.163 0.146 0.132

Statistical Tables
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Table 3. (Continued)

— к
к  \ 1 2 3 4 5 6 7 8 9 10 1 2 14 16 n — к /  

/ к

2 2 0.999 0.990 0.975 0.956 0.937 0.917 0.897 0.877 0.858 0.839 0.803 0.768 0.737 22
0.781 0.730 0 .6 8 8 0.651 0.619 0.590 0.565 0.541 0.519 0.500 0.465 0.434 0.408

24 0.999 0.991 0.976 0.960 0.942 0.923 0.904 0.885 0.867 0.849 0.814 0.782 0.751 24
0.797 0.749 0.708 0.673 0.642 0.614 0.589 0.566 0.545 0.525 0.490 0.460 0.433

26 0.999 0.991 0.978 0.962 0.945 0.928 0.910 0.893 0.875 0.858 0.825 0.794 0.764 26
0.810 0.765 0.726 0.693 0.663 0.636 0.611 0.588 0.567 0.548 0.513 0.483 0.456

28 0.999 0.992 0.980 0.965 0.949 0.932 0.916 0.899 0.882 0 .8 6 6 0.834 0.804 0.776 28
0.822 0.779 0.743 0.710 0.681 0.655 0.631 0.609 0.588 0.569 0.535 0.504 0.478

30 0.999 0.992 0.981 0.967 0.952 0.936 0.920 0.904 0.889 0.873 0.843 0.814 0.786 30
0.833 0.792 0.757 0.725 0.697 0.672 0.649 0.627 0.607 0.588 0.554 0.524 0.498

40 0.999 0.994 0.985 0.975 0.963 0.951 0.938 0.925 0.912 0.900 0.875 0.850 0.827 40
0.871 0.838 0.809 0.783 0.759 0.737 0.717 0.698 0.679 0.662 0.631 0.602 0.578

60 1 .0 0 0 0.996 0.990 0.983 0.975 0.966 0.957 0.948 0.939 0.929 0.911 0.893 0.874 60
0.912 0 .8 8 8 0.867 0.848 0.830 0.813 0.797 0.782 0.767 0.752 0.727 0.703 0.681

1 0 0 1 .0 0 0 0.998 0.994 0.989 0.984 0.979 0.973 0.967 0.962 0.955 0.943 0.931 0.919 1 0 0

0.946 0.931 0.917 0.904 0.892 0.881 0.870 0.859 0.849 0.838 0.820 0.802 0.786
2 0 0 1 .0 0 0 0.999 0.997 0.995 0.992 0.989 0.986 0.983 0.980 0.977 0.970 0.964 0.957 2 0 0

0.973 0.965 0.957 0.951 0.944 0.938 0.932 0.926 0.920 0.914 0.903 0.893 0.883
500 1 .0 0 0 1 .0 0 0 0.999 0.998 0.997 0.996 0.995 0.993 0.992 0.991 0.988 0.985 0.982 500

0.989 0.986 0.983 0.980 0.977 0.974 0.972 0.969 0.967 0.964 0.960 0.955 0.95
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Table 3. (Continued)

\  n — к  
k \ 18 2 0 2 2 24 26 28 30 40 60 1 0 0 2 0 0 500 n  — к /  

/ к

7 0.494 0.463 0.435 0.411 0.389 0.369 0.351 0.283 0.203 0.130 0.068 0.028 7
0 .1 2 1 0 .1 1 1 0.103 0.096 0.090 0.084 0.080 0.062 0.043 0.027 0.014 0.005

8 0.518 0.487 0.459 0.434 0.412 0.391 0.373 0.302 0.218 0.141 0.074 0.031 8

0.143 0.132 0.123 0.115 0.107 0 .1 0 1 0.096 0.075 0.052 0.033 0.017 0.007
9 0.540 0.508 0.481 0.455 0.433 0.412 0.393 0.321 0.233 0.151 0.080 0.033 9

0.165 0.153 0.142 0.133 0.125 0.118 0 .1 1 1 0.088 0.061 0.038 0 .0 2 0 0.008
10 0.560 0.528 0.500 0.475 0.452 0.431 0.412 0.338 0.248 0.162 0.086 0.036 10

0.186 0.173 0.161 0.151 0.142 0.134 0.127 0 .1 0 0 0.071 0.045 0.023 0.009
12 0.594 0.563 0.535 0.510 0.487 0.465 0.446 0.369 0.273 0.180 0.097 0.040 12

0.227 0 .2 1 1 0.197 0.186 0.175 0.166 0.157 0.125 0.089 0.057 0.030 0 .0 1 2

14 0.624 0.593 0.566 0.540 0.517 0.496 0.476 0.398 0.297 0.198 0.107 0.045 14
0.264 0.247 0.232 0.218 0.206 0.196 0.186 0.150 0.107 0.069 0.036 0.015

16 0.649 0.619 0.592 0.567 0.544 0.522 0.502 0.422 0.319 0.214 0.117 0.050 16
0.298 0.280 0.263 0.249 0.236 0.224 0.214 0.173 0.126 0.081 0.043 0.018

18 0.671 0.642 0.615 0.590 0.568 0.547 0.527 0.445 0.340 0.230 0.127 0.054 18
0.329 0.310 0.293 0.277 0.264 0.251 0.240 0.196 0.143 0.093 0.050 0 .0 2 1
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Table 3. (Continued)

1 - a  =  0.99

\  и — к
k \

1 2 3 4 5 6 7 8 9 1 0 12 14 16 n  — к /
/ к

0 0.995 0.929 0.829 0.734 0.653 0.586 0.531 0.484 0.445 0.411 0.357 0.315 0.282 0
0 .0 0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.997 0.959 0.889 0.815 0.746 0.685 0.632 0.585 0.544 0.509 0.449 0.402 0.363 1
0.003 0 .0 0 2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

2 0.998 0.971 0.917 0.856 0.797 0.742 0.693 0.648 0.608 0.573 0.512 0.463 0.422 2

0.041 0.029 0.023 0.019 0.016 0.014 0 .0 1 2 0.011 0 .0 1 0 0.009 0.008 0.007 0.006
3 0.999 0.977 0.934 0.882 0.830 0.781 0.735 0.693 0.655 0.621 0.561 0.510 0.468 3

0.111 0.083 0.066 0.055 0.047 0.042 0.037 0.033 0.030 0.028 0.024 0 .0 2 1 0.019
4 0.999 0.981 0.945 0.900 0.854 0.809 0.767 0.728 0.691 0.658 0.599 0.549 0.507 4

0.185 0.144 0.118 0 .1 0 0 0.087 0.077 0.069 0.062 0.057 0.053 0.045 0.040 0.036
5 0.999 0.984 0.953 0.913 0.872 0.831 0.791 0.755 0.720 0 .6 8 8 0.631 0.582 0.539 5

0.254 0.203 0.170 0.146 0.128 0.114 0.103 0.094 0.087 0.080 0.070 0.062 0.055
6 0.999 0.986 0.958 0.923 0 .8 8 6 0.848 0.811 0.777 0.744 0.714 0.658 0.610 0.567 6

0.315 0.258 0.219 0.191 0.169 0.152 0.138 0.127 0.117 0.109 0.095 0.085 0.076
7 0.999 0.988 0.963 0.931 0.897 0.862 0.828 0.795 0.764 0.735 0.681 0.634 0.592 7

0.368 0.307 0.265 0.233 0.209 0.189 0.172 0.159 0.147 0.137 0 .1 2 1 0.108 0.097
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Table 3. (Continued)

\  n — к  
k \

1 2 3 4 5 6 7 8 9 10 12 14 16 n — к /
7 k

2 2 1 .0 0 0 0.996 0.986 0.973 0.958 0.941 0.924 0.907 0.890 0.873 0.839 0.807 0.777 2 2

0.719 0 .6 6 8 0.626 0.590 0.559 0.531 0.507 0.484 0.464 0.445 0.413 0.385 0.361
24 1 .0 0 0 0.996 0.987 0.975 0.961 0.946 0.930 0.913 0.897 0.881 0.849 0.819 0.789 24

0.738 0.690 0.649 0.615 0.584 0.557 0.533 0.511 0.490 0.471 0.439 0.410 0.386
26 1 .0 0 0 0.996 0.988 0.977 0.963 0.949 0.934 0.919 0.903 0 .8 8 8 0.858 0.829 0.800 26

0.755 0.709 0.670 0.637' 0.607 0.580 0.557 0.535 0.515 0.496 0.463 0.434 0.410
28 1 .0 0 0 0.996 0.989 0.978 0.966 0.952 0.938 0.924 0.909 0.894 0 .8 6 6 0.838 0.811 28

0.770 0.726 0.689 0.656 0.627 0.602 0.578 0.557 0.537 0.518 0.485 0.457 0.432
30 1 .0 0 0 0.997 0.989 0.980 0.968 0.955 0.942 0.928 0.914 0.900 0.873 0.846 0.820 30

0.784 0.741 0.705 0.674 0.646 0.621 0.598 0.577 0.557 0.539 0.506 0.478 0.452
40 1 .0 0 0 0.998 0.992 0.984 0.975 0.965 0.955 0.944 0.933 0.921 0.899 0.876 0.854 40

0.832 0.797 0.767 0.740 0.716 0.694 0.673 0.654 0.636 0.619 0.588 0.560 0.536
60 1 .0 0 0 0.998 0.995 0.989 0.983 0.976 0.969 0.961 0.953 0.945 0.928 0.912 0.895 60

0.884 0.859 0.836 0.816 0.797 0.780 0.763 0.748 0.733 0.719 0.693 0 .6 6 8 0.646
1 0 0 1 .0 0 0 0.999 0.997 0.993 0.990 0.985 0.981 0.976 0.971 0.965 0.955 0.943 0.932 1 0 0

0.929 0.912 0.897 0.884 0.871 0.858 0.847 0.836 0.825 0.815 0.795 0.777 0.761
2 0 0 1 .0 0 0 0.999 0.998 0.997 0.995 0.992 0.990 0.988 0.985 0.982 0.976 0.940 0.964 2 0 0

0.964 0.955 0.947 0.939 0.932 0.925 0.919 0.913 0.907 0.901 0.890 0.878 0 .8 6 8

500 1 .0 0 0 1 .0 0 0 0.999 0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.990 0.988 0.985 500
0.985 0.982 0.978 0.975 0.972 0.969 0.967 0.964 0.961 0.959 0.953 0.949 0.944
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Table 3. (C o n tin u e d )

1 — a =  0.99

\ n  — k  
k  \ 18 2 0 2 2 24 26 28 30 40 60 1 0 0 2 0 0 500 n  — к /  

/ к

0 0.255 0.233 0.214 0.193 0.184 0.172 0.162 0.124 0.085 0.052 0.026 0 .0 1 1 0
0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

l 0.331 0.304 0.281 0.262 0.245 0.230 0.216 0.163 0.116 0.071 0.036 0.015 1
0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

2 0.387 0.358 0.332 0.310 0.291 0.274 0.259 0.203 0.141 0.088 0.045 0.018 2
0.005 0.005 0.004 0.004 0.004 0.004 0.003 0 .0 0 2 0 .0 0 2 0 .0 0 1 0 .0 0 1 0 .0 0 0

3 0.432 0.401 0.374 0.351 0.330 0.311 0.295 0.233 0.164 0.103 0.053 0 .0 2 2 3
0.017 0.015 0.014 0.013 0 .0 1 2 0 .0 1 1 0 .0 1 1 0.008 0.005 0.003 0 .0 0 2 0 .0 0 1

4 0.470 0.438 0.410 0.385 0.363 0.344 0.326 0.260 0.184 0.116 0.061 0.025 4
0.032 0.029 0.027 0.025 0.023 0 .0 2 2 0 .0 2 0 0.016 0 .0 1 1 0.007 0.003 0 .0 0 1

5 0.502 0.470 0.441 0.416 0.393 0.373 0.354 0.284 0.203 0.129 0.068 0.028 5
0.050 0.046 0.042 0.039 0.037 0.034 0.032 0.025 0.017 0 .0 1 0 0.005 0 .0 0 2

6 0.531 0.498 0.469 0.443 0.420 0.393 0.379 0.306 0 .2 2 0 0.142 0.075 0.031 6
0.069 0.064 0.059 0.054 0.051 0.048 0.045 0.035 0.024 0.015 0.008 0.003

7 0.555 0.522 0.498 0.467 0.443 0.422 0.402 0.327 0.237 0.153 0.081 0.033 7
0.089 0.082 0.076 0.070 0.066 0.062 0.058 0.045 0.031 0.019 0 .0 1 0 0.004
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Table 3. (<Continued)

— к
k \ 18 2 0 2 2 24 26 28 30 40 60 1 0 0 2 0 0 500 n — к /  

/ к

8 0.578 0.545 0.516 0.489 0.465 0.443 0.423 0.346 0.252 0.164 0.087 0.036 8

0.109 0 .1 0 0 0.093 0.087 0.081 0.076 0.072 0.056 0.039 0.024 0 .0 1 2 0.005
9 0.598 0.565 0.536 0.510 0.485 0.463 0.443 0.364 0.267 0.175 0.093 0.039 9

0.128 0.119 0 .1 1 0 0.103 0.097 0.091 0.086 0.067 0.047 0.029 0.015 0.006
1 0 0.616 0.583 0.555 0.529 0.504 0.482 0.461 0.381 0.281 0.185 0.099 0.041 10

0.148 0.137 0.127 0.119 0 .1 1 2 0.106 0 .1 0 0 0.079 0.055 0.035 0.018 0.007
12 0.647 0.616 0.587 0.561 0.537 0.515 0.494 0.412 0.307 0.205 0 .1 1 0 0.047 12

0.185 0.172 0.161 0.151 0.142 0.134 0.127 0 .1 0 1 0.072 0.045 0.024 0 .0 1 0

14 0.674 0.643 0.615 0.590 0.566 0.543 0.522 0.440 0.332 0.223 0 .1 2 2 0.051 14
0 .2 2 0 0.206 0.193 0.181 0.171 0.162 0.154 0.124 0.088 0.057 0.030 0 .0 1 2

16 0.696 0 .6 6 6 0.639 0.614 0.590 0.568 0.548 0.464 0.354 0.239 0.132 0.056 16
0.253 0.237 0.223 0 .2 1 1 0 .2 0 0 0.189 0.180 0.146 0.105 0.068 0.036 0.015

18 0.716 0.687 0.661 0.636 0.612 0.591 0.570 0.486 0.374 0.255 0.142 0.061 18
0.284 0.267 0.252 0.238 0.226 0.215 0.205 0.167 0 .1 2 2 0.079 0.042 0.018

2 0 0.733 0.705 0.679 0.655 0.632 0.611 0.591 0.507 0.394 0.271 0.152 0.066 2 0

0.313 0.295 0.279 0.264 0.251 0.239 0.229 0.187 0.137 0.090 0.048 0 .0 2 0

ЧСU)
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Table 4. The confidence interval of X in Poisson distribution.

N

1 --  a

N

1 -- a

90 95 99 90 95 99

U L U L U L U L U L U L

0 0 .0 0 3.00 0 .0 0 3.69 0 .0 0 5.30 15 9.25 23.10 8.40 24.74 6.89 28.16
1 0.05 4.74 0.03 5.57 0 .0 1 7.43 16 10.04 24.30 9.15 25.98 7.57 29.48
2 0.36 6.30 0.24 7.22 0 .1 0 9.27 17 10.83 25.50 9.90 27.22 8.25 30.79
3 0.82 7.75 0.62 8.77 0.34 10.98 18 11.63 26.69 10.67 28.45 8.94 32.09
4 1.37 9.15 1.09 10.24 0.67 12.59 19 12.44 27.88 11.44 29.67 9.64 33.38

5 1.97 10.51 1.62 11.67 1.08 14.15 2 0 13.25 29.06 1 2 .2 2 30.89 10.35 34.67
6 2.61 11.84 2 .2 0 13.06 1.54 15.66 21 14.07 30.24 13.00 32.10 11.07 35.95
7 3.29 13.15 2.81 14.42 2.04 17.13 2 2 14.89 31.41 13.79 33.31 11.79 37.22
8 3.98 14.43 3.45 15.76 2.57 18.58 23 15.72 32.59 14.58 34.51 12.52 38.48
9 4.70 15.71 4.12 17.08 3.13 2 0 .0 0 24 16.55 33.75 15.38 35.71 13.26 39.74

1 0 5.43 16.96 4.80 18.39 3.72 21.40 25 17.38 34.92 16.18 36.90 14.00 41.00
11 6.17 18.21 5.49 19.68 4.32 22.78 26 18.22 36.08 16.98 38.10 14.74 42.25
12 6.92 19.44 6 .2 0 20.96 4.94 24.14 27 19.06 37.23 17.79 39.28 15.49 43.50
13 7.69 20.67 6.92 22.23 5.58 25.50 28 19.90 38.39 18.61 40.47 16.25 44.74
14 8.46 21.89 7.65 23.49 6.23 26.84 29 20.75 39.54 19.42 41.65 17.00 45.98
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Table 4. (<Continued)

N

1 -- a

N

1 --  a

90 95 99 90 95 99

U L U L U L U L U L U L

70 56.83 85.40 54.57 88.44 50.33 94.58 85 70.42 101.80 67.89 105.10 63.13 111.76
71 57.73 86.50 55.45 89.56 51.17 95.73 8 6 71.34 102.89 68.79 106.21 63.99 112.90
72 58.63 87.60 56.34 90.67 52.02 96.88 87 72.25 103.98 69.68 107.31 64.85 114.04
73 59.54 88.69 57.22 91.79 52.87 98.03 8 8 73.16 105.06 70.58 108.42 65.72 115.17
74 60.44 89.79 58.11 92.90 53.72 99.18 89 74.07 106.15 71.47 109.52 66.58 116.31

75 61.35 90.89 58.99 94.01 54.57 100.33 90 74.98 107.24 72.37 110.63 67.44 117.45
76 62.25 91.98 59.88 95.13 55.42 101.48 91 75.90 108.32 73.27 111.73 68.31 118.58
77 63.16 93.07 60.77 96.24 56.28 102.62 92 76.81 109.41 74.16 112.83 69.17 119.71
78 64.06 94.17 61.66 97.35 57.13 103.77 93 77.73 110.50 75.06 113.93 70.04 120.85
79 64.97 95.26 62.55 98.46 57.98 104.91 94 78.64 111.58 75.96 115.03 70.91 121.98

80 65.88 96.35 63.44 99.57 58.84 106.06 95 79.56 1 1 2 .6 6 76.86 116.13 71.77 123.11
81 66.79 97.44 64.33 1 0 0 .6 8 59.70 107.20 96 80.47 113.75 77.76 117.23 72.64 124.24
82 67.70 98.53 65.22 101.78 60.55 108.34 97 81.39 114.83 78.66 118.33 73.51 125.37
83 68.60 99.62 6 6 .1 1 102.89 61.41 109.48 98 82.30 115.91 79.56 119.43 74.38 126.50
84 69.51 100.71 67.00 104.00 62.27 110.62 99 83.22 117.00 80.46 120.53 75.25 127.63

1 0 0 84.14 118.08 81.36 121.63 76.12 128.76

40u>4У1
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Table 5. Critical values of t distribution.

P ( \ t \  > ta ) =  a

t a  0 1
\ a  
v \ 0.9 0 .8 0.7 0 .6 0.5 0.4 0.3 0 .2 0 .1 0.05 0 .0 2 0 .0 1 0 .0 0 1 X

i 0.158 0.325 0.510 0.727 1 .0 0 0 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619 1

2 0.142 0.289 0.445 0.617 0.816 1.061 1.386 1 .8 8 6 2.920 4.303 6.965 9.925 31.598 2

3 0.137 0.277 0.424 0.584 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924 3
4 0.134 0.271 0.414 0.569 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610 4
5 0.132 0.267 0.408 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 5

6 0.131 0.265 0.404 0.553 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959 6
7 0.130 0.263 0.402 0.549 0.711 0.896 1.119 1.415 1.895 2.365 2.993 3.499 5.405 7
8 0.130 0.262 0.399 0.546 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041 8

9 0.129 0.261 0.398 0.543 0.703 0.883 1 .1 0 0 1.383 1.833 2.262 2.821 3.250 4.781 9
10 0.129 0.260 0.397 0.542 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587 1 0

11 0.129 0.260 0.396 0.540 0.697 0.876 1.088 1.363 1.796 2 .2 0 1 2.718 3.106 4.437 11

12 0.128 0.259 0.395 0.539 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318 1 2

13 0.128 0.259 0.394 0.538 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221 13
14 0.128 0.258 0.393 0.537 0.692 0 .8 6 8 1.076 1.345 1.761 2.145 2.624 2.977 4.140 14
15 0.128 0.258 0.393 0.536 0.691 0 .8 6 6 1.074 1.341 1.753 2.131 2.602 2.947 4.073 15
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Table 5. (Continued)
\ л
V \ 0.9 0 .8 0.7 0 .6 0.5 0.4 0.3 0 .2 0.1 0.05 0 .0 2 0.01 0.001 a/  

/  v

16 0.128 0.258 0.392 0.535 0.690 0.865 1.071 1.337 1.746 2 .1 2 0 2.583 2.921 4.015 i 6

17 0.128 0.257 0.392 0.534 0.689 0.863 1.069 1.333 1.740 2 .1 1 0 2.567 2.898 3.965 17
18 0.127 0.257 0.392 0.534 0 .6 8 8 0.862 1.067 1.330 1.734 2 .1 0 1 2.552 2.878 3.922 18
19 0.127 0.257 0.391 0.533 0 .6 8 8 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883 39
2 0 0.127 0.257 0.391 0.533 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850 2 0

2 1 0.127 0.257 0.391 0.532 0 .6 8 6 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819 21

2 2 0.127 0.256 0.390 0.532 0 .6 8 6 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792 2 2

23 0.127 0.256 0.390 0.532 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.767 23
24 0.127 0.256 0.390 0.531 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745 24
25 0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 25

26 0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 26
27 0.127 0.256 0.389 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690 27
28 0.127 0.256 0.389 0.530 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674 28
29 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 29
30 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 30

40 0.126 0.255 0.388 0.529 0.681 0.851 1.050 1.303 1.684 2 .0 2 1 2.423 2.704 3.551 40
60 0.126 0.254 0.387 0.527 0.679 0.848 1.046 1.296 1.671 2 .0 0 0 2.390 2.660 3.460 60

1 2 0 0.126 0.254 0.386 0.526 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.373 1 2 0

OO 0.126 0.253 0.385 0.524 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291 OO
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Table 6.1. Critical values of the F distribution (upper tail).

v\

v 2\ 1 2 3 4 5 6 7 8 9 10 15 2 0 30 50 1 0 0 2 0 0 500 0 0 /  n

1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 61.2 61.7 62.3 62.7 63.0 63.2 63.3 63.3 1

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.42 9.44 9.46 9.47 9.48 9.49 9.49 9.49 2

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.20 5.18 5.17 5.15 5.14 5.14 5.14 5.13 3
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.87 3.84 3.82 3.80 3.78 3.77 3.76 3.76 4
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.24 3.21 3.17 3.15 3.13 3.12 3.11 3.11 5

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.87 2.84 2.80 2.77 2.75 2.73 2.73 2.72 6

7 3.59 3.26 3.07 2.96 2 .8 8 2.83 2.78 2.75 2.72 2.70 2.63 2.59 2.56 2.52 2.50 2.48 2.48 2.47 7
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.46 2.42 2.38 2.35 2.32 2.31 2.30 2.29 8

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.34 2.30 2.25 2 .2 2 2.19 2.17 2.17 2.16 9
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.24 2 .2 0 2.16 2 .1 2 2.09 2.07 2.06 2.06 1 0

11 3.23 2 .8 6 2 .6 6 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.17 2 .1 2 2.08 2.04 2 .0 1 1.99 1.98 1.97 11

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2 .2 1 2.19 2 .1 0 2.06 2 .0 1 1.97 1.94 1.92 1.91 1.90 12

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2 .2 0 2.16 2.14 2.05 2 .0 1 1.96 1.92 1 .8 8 1 .8 6 1.85 1.85 13
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2 .1 2 2 .1 0 2 .0 1 1.96 1.91 1.87 1.83 1.82 1.80 1.80 14
15 3.07 2.70 2.49 2.36 2.27 2 .2 1 2.16 2 .1 2 2.09 2.06 1.97 1.92 1.87 1.83 1.79 1.77 1.76 1.76 15

938 
M

edical Statistics and C
om

puter E
xperim

ents



Table 6.1. (iContinued)

a  =  0 .1 0

\  П  /

v 2\ 1 2 3 4 5 6 7 8 9 10 15 2 0 30 50 1 0 0 2 0 0 500 0 0
/  V2

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.94 1.89 1.84 1.79 1.76 1.74 1.73 1.72 16
17 3.03 2.64 2.44 2.31 2 .2 2 2.15 2 .1 0 2.06 2.03 2 .0 0 1.91 1 .8 6 1.81 1.76 1.73 1.71 1.69 1.69 17
18 3.01 2.62 2.42 2.29 2 .2 0 2.13 2.08 2.04 2 .0 0 1.98 1.89 1.84 1.78 1.74 1.70 1 .6 8 1.67 1 .6 6 18
19 2.99 2.61 2.40 2.27 2.18 2 .1 1 2.06 2 .0 2 1.98 1.96 1 .8 6 1.81 1.76 1.71 1.67 1.65 1.64 1.63 19
2 0 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2 .0 0 1.96 1.94 1.84 1.79 1.74 1.69 1.65 1.63 1.62 1.61 2 0

2 2 2.95 2.56 2.35 2 .2 2 2.13 2.06 2 .0 1 1.97 1.93 1.90 1.81 1.76 1.70 1.65 1.61 1.59 1.58 1.57 2 2

24 2.93 2.54 2.33 2.19 2 .1 0 2.04 1.98 1.94 1.91 1 .8 8 1.78 1.73 1.67 1.62 1.58 1.56 1.54 1.53 24
26 2.91 2.52 2.31 2.17 2.08 2 .0 1 1.96 1.92 1 .8 8 1 .8 6 1.76 1.71 1.65 1.59 1.55 1.53 1.51 1.50 26
28 2.89 2.50 2.29 2.16 2.06 2 .0 0 1.94 1.90 1.87 1.84 1.74 1.69 1.63 1.57 1.53 1.50 1.49 1.48 28
30 2 .8 8 2.49 2.28 2.14 2.05 1.98 1.93 1 .8 8 1.85 1.82 1.72 1.67 1.61 1.55 1.51 1.48 1.47 1.46 30

40 2.84 2.44 2.23 2.09 2 .0 0 1.93 1.87 1.83 1.79 1.76 1 .6 6 1.61 1.54 1.48 1.43 1.41 1.39 1.38 40
50 2.81 2.41 2 .2 0 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.63 1.57 1.50 1.44 1.39 1.36 1.34 1.33 50
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.60 1.54 1.48 1.41 1.36 1.33 1.31 1.29 60
80 2.77 2.37 2.15 2 .0 2 1.92 1.85 1.79 1.75 1.71 1 .6 8 1.57 1.51 1.44 1.38 1.32 1.28 1.26 1.24 80

1 0 0 2.76 2.36 2.14 2 .0 0 1.91 1.83 1.78 1.73 1.70 1 .6 6 1.56 1.49 1.42 1.35 1.29 1.26 1.23 1 .21 1 0 0

2 0 0 2.73 2.33 2 .1 1 1.97 1 .8 8 1.80 1.75 1.69 1 .6 6 1.63 1.52 1.46 1.38 1.31 1.24 1 .2 0 1.17 1.14 2 0 0

500 2.72 2.31 2.09 1.96 1 .8 6 1.79 1.73 1 .6 8 1.64 1.61 1.50 1.44 1.36 1.28 1 .21 1.16 1 .1 2 1.09 500
o o 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.49 1.42 1.34 1.26 1.18 1.13 1.08 1 .0 0 OO

Statistical Tables 
939



940 Medical Statistics and Computer Experiments

c
<5

JS

0

CN CN cn Tf in 40 00 O n О -
CN cn Tf m

О OO Tf 4040 O00 40•n 00 3
i n Tf04 r-

p
in
q

Tfn 40p 04
c n

cncnCN Я 04 OO in Tf cn cn cn CN CN CN CN CN CN CN

00 Г"" Tf 40
CN00 00in о04 t

p
e' 40

04
О00 e-40 r-•n 00Tf p >n

c n

cn 04 OO in Tf cn cn en CN CN CN CN CN CN CN

40 40 p
0440 Tf00 о40 CNO n

04
p

оCN 0404 cnOO ОP О
q 'П OOcn

CN 04 OO in Tf СП cn СП CN CN CN CN CN CN CN

2 i n Tf p r-00 Tf40 4004 cnin TfCN cnp 4000 Tftp Tf40 i nin OOp CNp
<4 04 00 in Tf cn cn cn cn CN CN CN CN CN CN

CN Tfp- Tf Tfp O n
oo40 8

r-*in 00CN r-p 04 04P 04
q

О
q

cn
i n

OOp
ON Ы OO in Tf Tf cn cn cn CN CN CN CN CN CN

о ON p 04 t ; 4C04 TfP NO
О s •ncn Ti OO04 in00 inp Г"

q
О
q

Tfin
CN 04 OO in Tf Tf cn cn en CN CN CN CN CN CN

ON T-4- p OO 8 r-
p

О OO40 04cn 00 CNО О04 О00 P i n
q

OsinNCN 04 OO 40 Tf Tf cn cn cn cn CN CN CN CN CN
i n
о
о _ 00

2
3

9 Tf i nOO s
CNOO in cnp Tf

p
cnCN r-

О
i n04 inOO e-P Оp TfvC

II 04 OO 40 Tf Tf cn cn cn cn CN CN CN CN CN
с

2
37 p

04OO 04
О

OOOO CN 04p о»n
04CN Ti

p 04 cnOO 40P p
04 00 NO Tf Tf cn cn cn en cn CN CN CN CN

40

2
3

4 cn
Tf04 40 m04 OOCN Г-oo 00

in e'
en

CN
C N

04
О 8

CN04 inOO O nP
04 OO NO Tf Tf cn cn cn cn cn cn CN CN CN

in О cn p 40CN mp 04
cn 04 ON

q
00
p

cn
cn

оCN - СПО 40 О4 О04
CN 04 04 40 in Tf cn cn cn cn cn cn cn CN CN

т+

2
2

5 CN CN O n

cn
04 cnin CN Tf00 cn40 00

p
40
cn

40CN 00 - 40
ОN 04 04 40 in Tf Tf cn cn cn cn cn cn СП cn

СП 40 CN OOCN O n

in p NOp
in
cn p 4000 p 04in ON

p p
Tf
cn

ON
C N

CN 04 04 40 in Tf Tf Tf cn cn cn cn cn cn СП

CN
g О inin

Tf04 04p Tfp 40p 4 0CN о OO
O n

O n00 00 Tfp
OO
q

CN O n 04 4 0 in in Tf Tf Tf Tf cn cn cn cn СП

in p 40 0404 O nin CN
cn

CN 4004 Tfoo mp f-
q О

q
Tfin

oc о (< 4 0 in in in in Tf Tf Tf Tf Tf Tf

CN - CN cn Tf in 40 Г' 00 O N © CN cn »n

40  Г -  OO ON О

Ю  h  CO O n О

4.
49

 
3.

63
 

3.
24

 
3.0

1 
2.

85
 

2.
74

 
2.

66
 

2.
59

 
2.

54
 

2.
49

 
2.

42
 

2.
37

 
2.

33
 

2.
30

 
2.

28
4.

45
 

3.
59

 
3.

20
 

2.
96

 
2.8

1 
2.

70
 

2.6
1 

2.
55

 
2.

49
 

2.
45

 
2.

38
 

2.
33

 
2.

29
 

2.
26

 
2.

23
4.4

1 
3.

55
 

3.
16

 
2.

93
 

2.
77

 
2.

66
 

2.
58

 
2.5

1 
2.

46
 

2.4
1 

2.
34

 
2.

29
 

2.
25

 
2.

22
 

2.
19

4.
38

 
3.

52
 

3.
13

 
2.

90
 

2.
74

 
2.

63
 

2.
54

 
2.

48
 

2.
42

 
2.

38
 

2.3
1 

2.
26

 
2.2

1 
2.

18
 

2.
16

4.
35

 
3.

49
 

3.
10

 
2.

87
 

2.7
1 

2.
60

 
2.5

1 
2.

45
 

2.
39

 
2.

35
 

2.
28

 
2.

22
 

2.
18

 
2.

15
 

2.
12



Table 6.1. (Continued)

a  =  0.05
\  vi /

V2 \ 1 2 3 4 5 6 7 8 9 1 0 12 14 16 18 2 0 /  v2

21 4.32 3.47 3.07 2.84 2 .6 8 2.57 2.49 2.42 2.37 2.32 2.25 2 .2 0 2.16 2 .1 2 2 .1 0 21

2 2 4.30 3.44 3.05 2.82 2 .6 6 2.55 2.46 2.40 2.34 2.30 2.23 2.17 2.13 2 .1 0 2.07 2 2

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2 .2 0 2.15 2 .1 1 2.08 2.05 23
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.13 2.09 2.05 2.03 24
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2 .1 1 2.07 2.04 2 .0 1 25

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2 .2 2 2.15 2.09 2.05 2 .0 2 1.99 26
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2 .2 0 2.13 2.08 2.04 2 .0 0 1.97 27
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2 .1 2 2.06 2 .0 2 1.99 1.96 28
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2 .2 2 2.18 2 .1 0 2.05 2 .0 1 1.97 1.94 29
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2 .2 1 2.16 2.09 2.04 1.99 1.96 1.93 30

32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14 2.07 2 .0 1 1.97 1.94 1.91 32
34 4.13 3.28 2 .8 8 2.65 2.49 2.38 2.29 2.23 2.17 2 .1 2 2.05 1.99 1.95 1.92 1.89 34
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2 .2 1 2.15 2 .1 1 2.03 1.98 1.93 1.90 1.87 36
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2 .0 2 1.96 1.92 1 .8 8 1.85 38
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2 .1 2 2.08 2 .0 0 1.95 1.90 1.87 1.84 40

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2 .1 1 2.06 1.99 1.94 1.89 1 .8 6 1.83 42
44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2 .1 0 2.05 1.98 1.92 1 .8 8 1.84 1.81 44
46 4.05 3.20 2.81 2.57 2.42 2.30 2 .2 2 2.15 2.09 2.04 1.97 1.91 1.87 1.83 1.80 46
48 4.04 3.19 2.80 2.57 2.41 2.29 2 .2 1 2.14 2.08 2.03 1.96 1.90 1 .8 6 1.82 1.79 48
50 4.03 3.18 2.79 2.56 2.40 2.29 2 .2 0 2.13 2.07 2.03 1.95 1.89 1.85 1.81 1.78 50
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Table 6.1. (Continued)

a =  0.05
\  VI /

v 2 \ 22 24 26 28 30 35 40 45 50 60 80 100 200 500 00 /  v2

1 249 249 249 250 250 251 251 251 252 252 253 253 254 254 254 1
2 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 2
3 8.65 8.64 8.63 8.62 8.62 8.60 8.59 8.59 8.58 8.57 8.56 8.55 8.54 8.53 8.53 3
4 5.79 5.77 5.76 5.75 5.75 7.73 5.72 5.71 5.70 5.69 5.67 5.66 5.65 5.64 5.63 4
5 4.54 4.53 4.52 4.50 4.50 4.48 4.46 4.45 4.44 4.43 4.41 4.41 4.39 4.37 4.37 5

6 3.86 3.84 3.83 3.82 3.81 3.79 3.77 3.76 3.75 3.74 3.72 3.71 3.69 3.68 3.67 6
7 3.43 3.41 3.40 3.39 3.38 3.36 3.34 3.33 3.32 3.30 3.29 3.27 3.25 3.24 3.23 7
8 3.13 3.12 3.10 3.09 3.08 3.06 3.04 3.03 3.02 3.01 2.99 2.97 2.95 2.94 2.93 8
9 2.92 2.90 2.89 2.87 2.86 2.84 2.83 2.81 2.80 2.79 2.77 2.76 2.73 2.72 2.71 9

10 2.75 2.74 2.72 2.71 2.70 2.68 2.66 2.65 2.64 2.62 2.60 2.59 2.56 2.55 2.54 10

11 2.63 2.61 2.59 2.58 2.57 2.55 2.53 2.52 2.51 2.49 2.47 2.46 2.43 2.42 2.40 11
12 2.52 2.51 2.49 2.48 2.47 2.44 2.43 2.41 2.40 2.38 2.36 2.35 2.32 2.31 2.30 12
13 2.44 2.42 2.41 2.39 2.38 2.36 2.34 2.33 2.31 2.30 2.27 2.26 2.23 2.22 2.21 13
14 2.37 2.35 2.33 2.32 2.31 2.28 2.27 2.25 2.24 2.22 2.20 2.19 2.16 2.14 2.13 14
15 2.31 2.29 2.27 2.36 2.25 2.22 2.20 2.19 2.18 2.16 2.14 2.12 2.10 2.08 2.07 15

16 2.25 2.24 2.22 2.21 2.19 2.17 2.15 2.14 2.12 2.11 2.08 2.07 2.04 2.02 2.01 16
17 2.21 2.19 2.17 2.16 2.15 2.12 2.10 2.09 2.08 2.06 2.03 2.02 1.99 1.97 1.96 17
18 2.17 2.15 2.13 2.12 2.11 2.08 2.06 2.05 2.04 2.02 1.99 1.98 1.95 1.93 1.92 18
19 2.13 2.11 2.10 2.08 2.07 2.05 2.03 2.01 2.00 1.98 1.96 1.94 1.91 1.89 1.88 19
20 2.10 2.08 2.07 2.05 2.04 2.01 1.99 1.98 1.97 1.95 1.92 1.91 1.88 1.86 1.84 20

404̂U>
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Table 6.1. (Continued)

a =  0 .0 5

\  V I  /

v 2\ 22 24 26 28 30 35 4 0 45 50 60 80 100 200 500 OO / v 2

42 1.80 1.78 1.76 1.75 1.73 1.70 1.68 1.66 1.65 1.62 1.59 1.57 1.53 1.51 1.49 42

4 4 1.79 1.77 1.75 1.73 1.72 1.69 1.67 1.65 1.63 1.61 1.58 1.56 1.52 1.49 1.48 44

46 1.78 1.76 1.74 1.72 1.71 1.68 1.65 1.64 1.62 1.60 1.57 1.55 1.51 1.48 1.46 46

48 1.77 1.75 1.73 1.71 1.70 1.67 1.64 1.62 1.61 1.59 1.56 1.54 1.49 1.47 1.45 48

50 1.76 1.74 1.72 1.70 1.69 1.66 1.63 1.61 1.60 1.58 1.54 1.52 1.48 1.46 1.44 50

60 1.72 1.70 1.68 1.66 1.65 1.62 1.59 1.57 1.56 1.53 1.50 1.48 1.44 1.41 1.39 60

80 1.68 1.65 1.63 1.62 1.60 1.57 1.54 1.52 1.51 1.48 1.45 1.43 1.38 1.35 1.32 80

100 1.65 1.63 1.61 1.59 1.57 1.54 1.52 1.49 1.48 1.45 1.41 1.39 1.34 1.31 1.28 100

125 1.63 1.60 1.58 1.57 1.55 1.52 1.49 1.47 1.45 1.42 1.39 1.36 1.31 1.27 1.25 125

150 1.61 1.59 1.57 1.55 1.54 1.50 1.48 1.45 1.44 1.41 1.37 1.34 1.29 1.25 1.22 150

200 1.60 1.57 1.55 1.53 1.52 1.48 1.46 1.43 1.41 1.39 1.35 1.32 1.26 1.22 1.19 200

300 1.58 1.55 1.53 1.51 1.50 1.46 1.43 1.41 1.39 1.36 1.32 1.30 1.23 1.19 1.15 300

500 1.56 1.54 1.52 1.50 1.48 1.45 1.42 1.40 1.38 1.35 1.30 1.28 1.21 1.16 1.11 500

1000 1.55 1.53 1.51 1.49 1.47 1.43 1.41 1.38 1.36 1.33 1.29 1.26 1.19 1.13 1.08 1000

oo 1.54 1.52 1.50 1.48 1.46 1.42 1.39 1.37 1.35 1.32 1.27 1.24 1.17 1.11 1.00 OO
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Table 6.1. (C o n tin u e d )

a =  0.01 7
!  V2v2 \ 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 /  V2

1 4  052 5 0 0 0 5 403 5 625 5 763 5 859 5 928 5 981 6 022 6  056 6  106 6  143 6 170 6  192 6 209 1
2 98.5 99 .0 99 .2 99 .2 99.3 99.3 99.4 99 .4 99 .4 99 .4 99 .4 99 .4 99 .4 99 .4 99 .4 2
3 34.1 30 .8 29.5 28 .7 28.2 27 .9 27.7 27.5 27.3 27 .2 27.1 26 .9 26.8 26 .8 26 .7 3
4 21 .2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.2 14.1 14.0 4
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9 .89 9 .77 9 .68 9.61 9 .55 5

6 13.7 10.9 9 .78 9 .15 8.75 8.47 8.26 8.10 7.98 7 .87 7.72 7 .6 0 7 .5 2 7.45 7 .40 6
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6 .84 6.72 6 .62 6 .47 6 .3 6 6 .28 6.21 6 .1 6 7
8 11.3 8.65 7 .5 9 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5 .67 5 .5 6 5 .48 5.41 5 .3 6 8
9 10.6 8.02 6 .99 6 .42 6 .06 5.80 5.61 5 .47 5.35 5 .26 5.11 5.01 4 .9 2 4 .8 6 4.81 9

10 10.0 7 .5 6 6.55 5 .99 5.64 5.39 5.20 5 .06 4 .9 4 4 .85 4.71 4 .6 0 4 .5 2 4 .4 6 4.41 10

11 9 .65 7.21 6 .2 2 5 .6 7 5.32 5.07 4.89 4 .7 4 4 .63 4 .5 4 4 .4 0 4 .2 9 4.21 4 .15 4 .1 0 11
12 9 .33 6 .93 5 .95 5.41 5 .06 4 .82 4.64 4 .5 0 4 .3 9 4 .3 0 4 .1 6 4 .05 3.97 3.91 3 .86 12
13 9 .07 6 .7 0 5 .7 4 5.21 4 .86 4 .62 4.44 4 .3 0 4 .1 9 4 .1 0 3 .96 3 .86 3.78 3 .72 3 .66 13
14 8 .86 6.51 5 .5 6 5 .0 4 4 .69 4 .46 4.28 4 .1 4 4 .03 3 .94 3 .80 3 .70 3 .62 3 .56 3.51 14
15 8.68 6 .3 6 5 .4 2 4 .8 9 4 .5 6 4.32 4.14 4 .0 0 3 .89 3 .80 3 .67 3 .56 3 .49 3 .42 3.37 15
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Table 6.1. (Continued)

a =  0.01

\  V ]  /

v2 \ 1 2 3 4 5 6 i 8 9 10 12 14 16 18 20 /  v 2

16 8.53 6 .23 5 .29 4.77 4 .44 4 .20 4 .03 3 .89 3 .78 3 .69 3.55 3.45 3.37 3.31 3 .26 16

17 8 .40 6.11 5.19 4.67 4 .34 4 .10 3.93 3.79 3 .68 3 .59 3 .4 6 3.35 3.27 3.21 3 .16 17

18 8 .29 6.01 5.09 4.58 4.25 4.01 3 .84 3.71 3 .60 3.51 3 .37 3.27 3 .19 3.13 3.08 18

19 8.18 5 .93 5.01 4 .50 4 .17 3.94 3.77 3.63 3 .52 3.43 3 .30 3 .19 3 .1 2 3.05 3 .0 0 19

20 8 .1 0 5 .85 4 .9 4 4.43 4 .1 0 3.87 3 .70 3 .56 3 .46 3.37 3.23 3.13 3.05 2 .99 2 .94 20

21 8 .02 5 .7 8 4.87 4.37 4 .04 3.81 3 .64 3.51 3 .4 0 3.31 3.17 3 .07 2 .99 2.93 2 .88 21

22 7.95 5 .7 2 4 .82 4.31 3.99 3.76 3.59 3.45 3.35 3 .26 3 .12 3.02 2 .94 2 .88 2.83 22

23 7 .88 5 .6 6 4 .7 6 4 .26 3.94 3.71 3 .54 3.41 3 .30 3.21 3.07 2.97 2 .89 2.83 2 .78 23

24 7 .8 2 5.61 4 .7 2 4 .22 3 .90 3.67 3 .50 3 .36 3 .26 3 .17 3.03 2.93 2.85 2 .79 2 .74 24

25 7 .77 5 .57 4 .68 4.18 3.85 3.63 3 .46 3.32 3.22 3.13 2 .99 2 .89 2.81 2.75 2 .70 25

26 7 .7 2 5 .53 4 .64 4 .14 3.82 3.59 3 .42 3 .29 3.18 3 .09 2 .96 2 .86 2.78 2 .72 2 .66 26

27 7 .68 5 .49 4 .6 0 4.11 3.78 3.56 3.39 3 .26 3.15 3 .0 6 2 .93 2 .82 2.75 2.68 2.63 27

28 7 .6 4 5.45 4 .57 4.07 3.75 3.53 3 .36 3.23 3 .12 3.03 2 .90 2 .79 2.72 2.65 2 .6 0 28

29 7 .6 0 5 .4 2 4 .5 4 4 .04 3.73 3.50 3.33 3 .20 3.09 3 .0 0 2.87 2.77 2.69 2.63 2 .57 29

30 7 .5 6 5 .3 9 4.51 4.02 3.70 3.47 3 .30 3.17 3.07 2 .98 2 .8 4 2 .7 4 2 .66 2 .6 0 2.55 30
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T a b le  6 .1 . (Continued)

a =  0.01

\  VI /

V 2 \ 22 24 26 28 30 35 40 45 50 60 80 100 200 500 oo /  v2

1 6  223 6  235 6 245 6 253 6 261 6  276 6  287 6  296 6  303 6 3 1 3 6  326 6  334 6  350 6  360 6  366 1
2 99 .5 99 .5 99.5 99.5 99.5 99.5 99.5 99.5 99 .5 99.5 99.5 99.5 99.5 99.5 99.5 2
3 26 .6 26 .6 26 .6 26.5 26.5 26.5 26 .4 26 .4 26 .4 26.3 26.3 26.2 26 .2 26.1 26.1 3
4 14.0 13.9 13.9 13.9 13.8 13.8 13.7 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 4
5 9.51 9 .47 9.43 9 .40 9.38 9.33 9 .29 9 .26 9 .2 4 9 .2 0 9 .16 9.13 9.08 9 .0 4 9 .02 5

6 7 .35 7.31 7.28 7.25 7.23 7.18 7 .1 4 7.11 7 .09 7 .06 7.01 6 .9 9 6.93 6 .9 0 6 .88 6
7 6.11 6 .0 7 6 .04 6.02 5.99 5.94 5.91 5 .88 5 .8 6 5 .82 5.78 5.75 5 .7 0 5.67 5.65 7
8 5 .3 2 5 .2 8 5.25 5.22 5 .20 5.15 5 .12 5 .09 5 .07 5.03 4 .9 9 4 .9 6 4.91 4 .8 8 4 .8 6 8
9 4 .7 7 4 .73 4 .70 4 .67 4.65 4.60 4 .57 4 .5 4 4 .5 2 4 .48 4 .4 4 4.41 4 .3 6 4 .33 4.31 9

10 4 .3 6 4 .3 3 4 .30 4 .27 4.25 4.20 4 .1 7 4 .1 4 4 .1 2 4 .08 4 .0 4 4.01 3 .96 3.93 3.91 10

11 4 .0 6 4 .0 2 3.99 3 .96 3.94 3.89 3 .86 3.83 3.81 3.78 3.73 3.71 3 .66 3.62 3 .60 11
12 3 .82 3 .78 3.75 3 .72 3.70 3.65 3 .62 3 .59 3 .57 3 .54 3 .49 3.47 3.41 3.38 3 .36 12
13 3 .62 3 .59 3.56 3.53 3.51 3.46 3.43 3 .4 0 3 .38 3 .34 3 .30 3.27 3 .22 3.19 3.17 13
14 3 .4 6 3 .43 3 .40 3.37 3.35 3.30 3.27 3 .24 3 .22 3.18 3 .14 3.11 3 .06 3.03 3 .00 14
15 3.33 3 .2 9 3.26 3.24 3.21 3.17 3.13 3 .1 0 3 .08 3.05 3 .00 2.98 2 .92 2 .89 2.87 15

16 3 .22 3 .18 3.15 3.12 3.10 3.05 3.02 2.99 2 .97 2.93 2 .89 2 .86 2.81 2 .78 2 .75 16
17 3 .12 3 .08 3.05 3.03 3 .00 2.96 2 .92 2 .89 2 .87 2.83 2 .79 2 .76 2.71 2 .68 2.65 17
18 3.03 3 .0 0 2.97 2.94 2.92 2.87 2 .84 2.81 2 .78 2.75 2 .7 0 2.68 2 .62 2 .59 2 .57 18
19 2 .9 6 2 .92 2.89 2.87 2.84 2.80 2 .76 2 .73 2.71 2.67 2.63 2 .60 2.55 2.51 2 .4 9 19
20 2 .9 0 2 .8 6 2.83 2 .8 0 2.78 2.73 2 .69 2 .67 2 .64 2.61 2 .56 2.54 2 .48 2.44 2 .42 20
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T a b le  6 .1 . (Continued)

= 0.01 

П
v2\ 22 24 26 28 30 35 40 45 50 60 80 100 200 500 0 0 /  v 2

42 2 .3 0 2 .2 6 2.23 2 .2 0 2.18 2.13 2 .09 2 .0 6 2.03 1.99 1.94 1.91 1.85 1.80 1.78 42

4 4 2 .28 2 .2 4 2.21 2.18 2.15 2.10 2.07 2.03 2.01 1.97 1.92 1.89 1.82 1.78 1.75 44

4 6 2 .26 2 .2 2 2.19 2 .16 2.13 2.08 2.04 2.01 1.99 1.95 1.90 1.86 1.80 1.76 1.73 46

48 2 .24 2 .2 0 2.17 2 .14 2.12 2.06 2 .02 1.99 1.97 1.93 1.88 1.84 1.78 1.73 1.70 48

50 2 .22 2 .1 8 2.15 2.12 2 .10 2.05 2.01 1.97 1.95 1.91 1.86 1.82 1.76 1.71 1.68 50

6 0 2.15 2 .12 2.08 2.05 2.03 1.98 1.94 1.90 1.88 1.84 1.78 1.75 1.68 1.63 1.60 60

80 2 .07 2 .03 2.00 1.97 1.94 1.89 1.85 1.82 1.79 1.75 1.69 1.65 1.58 1.53 1.49 80

100 2 .0 2 1.98 1.94 1.92 1.89 1.84 1.80 1.76 1.74 1.69 1.63 1.60 1.52 1.47 1.43 100

125 1.98 1.94 1.91 1.88 1.85 1.80 1.76 1.72 1.69 1.65 1.59 1.55 1.47 1.41 1.37 125

150 1.96 1.92 1.88 1.85 1.83 1.77 1.73 1.69 1.66 1.62 1.56 1.52 1.43 1.38 1.33 150

2 0 0 1.93 1.89 1.85 1.82 1.79 1.74 1.69 1.66 1.63 1.58 1.52 1.48 1.39 1.33 1.28 200

300 1.89 1.85 1.82 1.79 1.76 1.70 1.66 1.62 1.59 1.55 1.48 1.44 1.35 1.28 1.22 300

500 1.87 1.83 1.79 1.76 1.74 1.68 1.63 1.60 1.57 1.52 1.45 1.41 1.31 1.23 1.16 500

1000 1.85 1.81 1.77 1.74 1.72 1.66 1.61 1.58 1.54 1.50 1.43 1.38 1.28 1.19 1.11 1000

(X ) 1.83 1.79 1.76 1.72 1.70 1.64 1.59 1.55 1.52 1.47 1.40 1.36 1.25 1.15 1.00 0 0

о
t-Л
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Table 6.2. C ritica l values o f  F d is tr ib u tio n  (tw o  ta iled ).

a -  0.05

V2\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 973.0 976.7 979.8 982.5 984.9 986.9 988.7 990.4 991.8
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.41 39.42 39.43 39.43 39.44 39.44 39.44 39.45
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.37 14.34 14.30 14.28 14.25 14.23 14.21 14.20 14.18
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79 8.75 8.71 8.68 8.66 8.63 8.61 8.59 8.58
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57 6.52 6.49 6.46 6.43 6.40 6.38 6.36 6.34
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 5.33 5.30 5.27 5.24 5.22 5.20 5.18
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71 4.67 4.63 4.60 4.57 4.54 4.52 4.50 4.48
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24 4.20 4.16 4.13 4.10 4.08 4.05 4.03 4.02
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91 3.87 3.83 3.80 3.77 3.74 3.72 3.70 3.68

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66 3.62 3.58 3.55 3.52 3.50 3.47 3.45 3.44
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 3.39 3.36 3.33 3.30 3.28 3.26 3.24
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 3.24 3.21 3.18 3.15 3.13 3.11 3.09
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09 3.05 3.01 2.98 2.95 2.92 2.90 2.88 2.86
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01 2.96 2.92 2.89 2.86 2.84 2.81 2.79 2.77
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T a b le  6.2. (Continued)

a =  0.01

v\

V2 \ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 16211 20 000  21 615 22 500  23 056  23 437 23 715 23 925 24 091 2 4  224  24 334 24 426  24 505 24 572 24 630  24 681 24 727 24 767 24  803
2 198.5 199.0 199.2 199.2 199.3 199.3 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.4 199.5
3 55.55 49 .80 47.47 46 .19 45 .39 44.84 44.43 44.13 43.88 43.69 43.52 43.39 43.27 43.17 43.08 43.01 42.94 42.88 42.83
4 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.82 20.70 20.60 20.51 20.44 20.37 20.31 20.26 20.21
5 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62 13.49 13.38 13.29 13.21 13.15 13.09 13.03 12.98 12.94
6 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39 10.25 10.13 10.03 9.95 9.88 9.81 9.76 9.71 9.66 9.62
7 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38 8.27 8.18 8.10 8.03 7.97 7.91 7.87 7.83 7.79
8 14.69 11.04 9 .60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.10 7.01 6.94 6.87 6.81 6.76 6.72 6.68 6.64
9 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.31 6.23 6.15 6.09 6.03 5.98 5.94 5.90 5.86

10 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.75 5.66 5.59 5.53 5.47 5.42 5.38 5.34 5.31
11 12.23 8.91 7 .60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.32 5.24 5.16 5.10 5.05 5.00 4 .96 4.92 4 .89
12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5 .09 4.99 4.91 4.84 4.77 4.72 4.67 4.63 4.59 4 .56
13 11.37 8.19 6.93 6.23 5 .79 5.48 5.25 5.08 4.94 4.82 4.72 4 .64 4.57 4.51 4.46 4.41 4.37 4.33 4 .30
14 11.06 7.92 6.68 6.00 5 .56 5.26 5.03 4.86 4.72 4 .60 4.51 4.53 4.36 4.30 4.25 4.20 4 .16 4.12 4 .09
15 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.52 4.33 4.25 4.18 4.12 4.07 4.02 3.98 3.95 3.91
16 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.18 4 .10 4.03 3.97 3.92 3.87 3.83 3.80 3.76
17 10.38 7.35 6 .16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 4.05 3.97 3.90 3.84 3.79 3.75 3.71 3.67 3.64
18 10.22 7.21 6.03 5.37 4 .96 4.66 4.44 4.28 4.14 4.03 3.94 3.86 3.79 3.73 3.68 3.64 3.60 3.56 3.53
19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.84 3.76 3.70 3.64 3.59 3.54 3.50 3.46 3.43
20 9.94 6.99 5.82 5.17 4 .76 4.47 4.26 4.09 3.96 3.85 3.76 3.68 3.61 3.55 3.50 3.46 3.42 3.38 3.35
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.68 3.60 3.54 3.48 3.43 3.38 3.34 3.31 3.27
22 9.73 6.81 6.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.61 3.54 3.47 3.41 3.39 3.31 3.27 3.24 3.21
23 9.63 6.73 5.58 4.95 4 .54 4.26 4.05 3.88 3.75 3.64 3.55 3.47 3.41 3.35 3.30 3.25 3.21 3.18 3.15
24 9.55 6.66 5.52 4 .89 4.49 4.20 3.99 3.83 3.69 3.59 3.50 3.42 3.35 3.30 3.25 3.20 3.16 3.12 3.09
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Table 7. C ritica l va lues o f  / 2 d is trib u tio n  (u p p e r tail).

a

^  0 .975 0 .95 0 .5 0 0.25 0 .1 0 0 .05 0 .025 0.01 0.001

1 0.001 0 .0 0 4 0 .455 1.32 2.71 3.84 5 .02 6.63 10.83
2 0.051 0 .103 1.39 2 .77 4.61 5 .99 7.38 9.21 13.82
3 0 .2 1 6 0 .352 2 .37 4.11 6.25 7 .82 9.35 11.34 16.27
4 0 .4 8 4 0.711 3 .3 6 5 .39 7 .78 9 .49 11.14 13.28 18.47
5 0.831 1.15 4 .3 5 6.63 9 .24 11.07 12.83 15.09 20 .52

6 1.24 1.64 5 .35 7 .84 10.64 12.59 14.45 16.81 2 2 .46
7 1.69 2 .1 7 6 .35 9 .04 12.02 14.07 16.01 18.47 24 .32
8 2 .1 8 2 .7 3 7 .3 4 10.22 13.36 15.51 17.53 20 .09 26 .12
9 2 .7 0 3 .33 8 .3 4 11.39 14.68 16.92 19.02 21 .67 27 .88

10 3.25 3 .9 4 9 .3 4 12.55 15.99 18.31 20.48 23.21 2 9 .59

11 3 .8 2 4 .5 7 10.34 13.70 17.27 19.68 21 .92 2 4 .72 3 1 .26
12 4 .4 0 5 .2 3 11.34 14.85 18.55 21.03 23 .34 26 .22 32.91
13 5.01 5 .8 9 12.34 15.98 19.81 22 .36 2 4 .74 27 .69 34.53
14 5 .63 6 .5 7 13.34 17.12 2 1 .06 23 .68 26 .12 2 9 .14 36 .12
15 6 .2 6 7 .2 6 14.34 18.25 22.31 2 5 .00 27 .49 30 .58 37 .70

16 6.91 7 .9 6 15.34 19.37 2 3 .54 2 6 .30 28.85 3 2 .00 39.25
17 7 .5 6 8 .67 16.34 20 .49 24 .77 27 .59 30.19 33.41 4 0 .79
18 8 .23 9 .3 9 17.34 2 1 .60 25 .99 28.87 31.53 34.81 42.31
19 8.91 10.12 18.34 22 .72 2 7 .20 30 .14 32.85 36 .19 4 3 .82
20 9 .5 9 10.85 19.34 23.83 28.41 31.41 34 .17 37 .57 45.31

21 10.28 11.59 2 0 .34 24.93 29 .62 32 .67 35.48 38.93 4 6 .8 0
22 10.98 12.34 2 1 .34 2 6 .04 30.81 33 .92 36.78 4 0 .2 9 4 8 .27
23 11.69 13.09 2 2 .3 4 2 7 .14 32.01 35.17 38.08 4 1 .6 4 49 .73
24 12.40 13.85 2 3 .34 28 .24 33 .20 36 .42 3 9 .36 4 2 .98 51 .18
25 13.12 14.61 2 4 .34 29 .34 34 .38 37.65 40 .65 44.31 5 2 .62

26 13.84 15.38 2 5 .3 4 30.43 3 5 .56 38 .89 4 1 .92 4 5 .6 4 54.05
27 14.57 16.15 2 6 .3 4 31 .53 36 .74 40.11 4 3 .19 4 6 .9 6 55 .48
28 15.31 16.93 2 7 .3 4 32 .62 37 .92 4 1 .34 4 4 .4 6 4 8 .28 56 .89
29 16.05 17.71 2 8 .34 33.71 39 .09 4 2 .56 4 5 .72 4 9 .59 5 8 .3 0
30 16.79 18.49 2 9 .3 4 3 4 .80 4 0 .26 43 .77 4 6 .98 5 0 .89 5 9 .7 0
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Table 7. (Continued)

a
^  0 .975 0.95 0 .5 0 0 .25 0 .1 0 0.05 0 .025 0.01 0.001

35 20.57 22.47 34 .34 4 0 .2 2 4 6 .0 6 4 9 .8 0 5 3 .20 5 7 .34 66 .62
4 0 24 .43 26.51 3 9 .34 4 5 .6 2 51.81 5 5 .7 6 5 9 .34 6 3 .69 7 3 .40
45 28.37 30.61 4 4 .34 5 0 .98 57.51 6 1 .6 6 65.41 6 9 .96 80 .08
50 32 .36 34 .76 49 .33 5 6 .33 63 .17 6 7 .5 0 71 .42 76.15 86 .66
55 36 .40 38 .96 54 .33 6 1 .6 6 6 8 .8 0 73.31 77 .38 82 .29 93 .17

60 40 .48 4 3 .19 59 .33 6 6 .9 8 7 4 .4 0 7 9 .08 83 .30 88.38 99.61
65 4 4 .60 47 .45 64 .33 7 2 .2 8 79 .97 84 .82 89.18 94 .42 105.99
70 4 8 .76 5 1 .74 69 .33 7 7 .5 8 85.53 9 0 .5 3 95 .02 100.43 112.32
75 5 2 .94 56.05 74 .33 8 2 .8 6 9 1 .06 9 6 .2 2 100.84 106.39 118.60

80 57.15 60 .39 79 .33 88.13 9 6 .58 101.88 106.63 112.33 124.84

85 61.39 64.75 84.33 9 3 .39 102.08 107.52 112.39 118.24 131.04

90 65.65 69.13 89.33 9 8 .65 107.57 113.15 118.14 124.12 137.21
95 69 .92 73 .52 94 .33 103.90 113.04 118.75 123.86 129.97 143.34

100 74 .22 77.93 99 .33 109.14 118.50 124.34 129.56 135.81 149.45

W h en  the  deg ree  o f  freed o m  is m ore  th an  100, the c ritica l va lues o f  can  be  ca lcu la ted  
from  / 2 =  0 .5 [z  +  V 2 (v  — l ) ] 2 . H ere, z is  th e  u p p e r-ta ile d  value  o f  the  s tan d ard  norm al 
d is trib u tio n  co rre sp o n d in g  w ith  g iven  P -v a lu e  an d  v is th e  d eg ree  o f  freedom .

Table 8. C ritica l va lues o f  the  c o rre la tio n  co effic ien t, r .

P ro b a b ility  a

V

O n e-ta iled
\T w o - ta i le d

0.25
0.5

0 .10
0 .20

0.05
0 .1 0

0 .025
0.05

0.01
0 .0 2

0 .005
0.01

0 .0 0 2 5
0 .005

0.001
0 .002

0 .000
0.001

1 0 .707 0.951 0 .988 0 .997 1.000 1 .000 1.000 1.000 1.000
2 0 .5 0 0 0 .8 0 0 0 .900 0 .9 5 0 0 .980 0 .9 9 0 0 .995 0 .998 0 .999
3 0 .4 0 4 0 .687 0 .805 0 .878 0 .934 0 .9 5 9 0 .9 7 4 0 .986 0.991
4 0 .3 4 7 0 .608 0 .729 0.811 0 .882 0 .9 1 7 0 .9 4 2 0 .963 0 .974
5 0 .3 0 9 0.551 0 .669 0 .755 0 .833 0 .875 0 .9 0 6 0 .935 0.951

6 0 .281 0 .507 0.621 0 .707 0 .789 0 .8 3 4 0 .8 7 0 0 .905 0 .925

7 0 .2 6 0 0 .472 0 .582 0 .666 0 .7 5 0 0 .7 9 8 0 .8 3 6 0 .875 0 .898

8 0 .2 4 2 0 .443 0 .549 0 .632 0 .715 0 .765 0 .805 0 .847 0 .872

9 0 .2 2 8 0 .419 0.521 0 .602 0 .685 0 .735 0 .7 7 6 0 .8 2 0 0 .847
10 0 .2 1 6 0 .398 0 .497 0 .576 0 .658 0 .7 0 8 0 .7 5 0 0 .795 0 .823

11 0 .2 0 6 0 .380 0 .476 0 .553 0 .634 0 .6 8 4 0 .7 2 6 0 .772 0.801

12 0 .197 0 .365 0 .457 0 .532 0 .612 0.661 0 .703 0 .750 0 .780

13 0 .1 8 9 0.351 0.441 0 .514 0 .592 0.641 0 .683 0 .730 0 .760
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T a b le  8 . (Continued)

P ro b ab ility  a

V

O n e-ta iled  
\  T w o -ta iled

0.25
0.5

0 .1 0
0 .20

0.05
0 .1 0

0 .025
0.05

0.01
0 .02

0 .005
0.01

0 .0025
0 .005

0.001
0 .002

0 .000
0.001

14 0 .1 8 2 0 .338 0 .426 0 .497 0 .5 7 4 0 .623 0 .664 0.711 0 .742
15 0 .1 7 6 0 .327 0 .412 0 .482 0 .558 0 .606 0 .647 0 .694 0 .725

16 0 .1 7 0 0 .317 0 .4 0 0 0 .468 0 .542 0 .5 9 0 0.631 0 .678 0 .708
17 0 .165 0 .308 0 .389 0 .456 0 .529 0 .575 0 .616 0 .662 0 .693
18 0 .1 6 0 0 .299 0 .378 0 .444 0 .515 0.561 0 .602 0 .648 0 .679
19 0 .1 5 6 0.291 0 .3 6 9 0 .433 0 .503 0 .549 0 .589 0 .635 0 .665
20 0 .152 0 .284 0 .3 6 0 0 .423 0 .492 0 .537 0 .576 0 .622 0 .652

21 0 .148 0 .277 0 .352 0 .413 0 .482 0 .526 0 .565 0 .6 1 0 0 .640
22 0 .145 0.271 0 .3 4 4 0 .404 0 .472 0 .515 0 .554 0 .599 0 .629
23 0.141 0 .265 0 .337 0 .396 0 .462 0 .505 0 .543 0 .588 0 .618
24 0 .138 0 .260 0 .3 3 0 0 .338 0 .453 0 .4 9 6 0 .534 0 .578 0 .607
25 0 .136 0 .255 0 .323 0.381 0 .445 0 .487 0 .524 0 .568 0 .597

26 0 .133 0 .250 0 .317 0 .374 0 .437 0 .479 0 .515 0 .5 5 9 0 .588
27 0.131 0 .245 0.311 0 .367 0 .4 3 0 0.471 0 .507 0 .5 5 0 0 .5 7 9
28 0 .128 0.241 0 .306 0.361 0 .423 0 .463 0 .499 0.541 0 .5 7 0
29 0 .126 0 .237 0.301 0 .355 0 .416 0 .456 0.491 0 .533 0 .562
30 0 .1 2 4 0 .233 0 .296 0 .349 0 .409 0 .449 0 .484 0 .5 2 6 0 .5 5 4

31 0 .122 0 .2 2 9 0.291 0 .344 0 .403 0 .442 0 .477 0 .518 0 .5 4 6
32 0 .1 2 0 0 .225 0 .287 0 .339 0 .397 0 .436 0 .470 0.511 0 .539
33 0 .118 0 .222 0 .283 0 .334 0 .392 0 .4 3 0 0 .464 0 .504 0 .532
34 0 .116 0 .219 0 .279 0 .329 0 .386 0 .4 2 4 0 .458 0 .498 0 .525
35 0 .115 0 .216 0 .275 0 .325 0.381 0 .418 0 .452 0 .492 0 .519

36 0 .113 0 .213 0.271 0 .3 2 0 0 .3 7 6 0 .413 0 .4 4 6 0 .4 8 6 0 .513
37 0.111 0 .210 0 .267 0 .316 0.371 0 .408 0.441 0 .4 8 0 0 .507
38 0 .1 1 0 0 .207 0 .264 0 .312 0 .367 0 .403 0 .435 0 .474 0.501
39 0 .108 0 .204 0.261 0 .308 0 .362 0 .398 0 .4 3 0 0 .469 0 .495
40 0 .107 0 .202 0 .257 0 .304 0 .358 0 .393 0 .425 0 .463 0 .4 9 0

41 0 .1 0 6 0 .199 0 .254 0.301 0 .354 0 .389 0 .4 2 0 0 .458 0 .484
42 0 .104 0 .197 0.251 0 .297 0 .3 5 0 0 .384 0 .416 0 .453 0 .479
43 0 .103 0 .195 0 .248 0 .294 0 .346 0 .380 0.411 0 .449 0 .474
44 0 .102 0 .192 0 .2 4 6 0.291 0 .342 0 .3 7 6 0 .407 0 .444 0 .469
45 0.101 0 .1 9 0 0 .243 0 .288 0 .338 0 .372 0 .403 0 .439 0 .465

46 0 .100 0 .188 0 .2 4 0 0 .285 0 .335 0 .368 0 .399 0 .435 0 .4 6 0
47 0 .099 0 .186 0 .238 0 .282 0.331 0 .365 0 .395 0.431 0 .4 5 6
48 0 .098 0 .184 0 .235 0 .279 0 .328 0.361 0.391 0 .427 0.451
49 0 .097 0 .182 0 .223 0 .276 0 .325 0 .358 0 .387 0 .423 0 .447
50 0 .0 9 6 0.181 0.231 0 .273 0 .322 0 .354 0 .384 0 .419 0 .443



Table 9. C ritica l values o f  th e  S p e a rm a n  ra n k  c o rre la tio n  co effic ien t, rs.

P ro b a b ility  a

n '
O n e -ta ile d  

v T w o -ta iled
0.25
0 .50

0 .10
0 .20

0 .05
0 .1 0

0 .025
0.05

0.01
0 .0 2

0 .005
0.01

0 .0025
0 .005

0.001
0 .002

0 .0005
0.001

4 0 .600 1.000 1.000
5 0 .500 0 .800 0 .9 0 0 1.00 1.000

6 0.371 0 .657 0 .829 0 .886 0 .943 1 .000 1.000
7 0.321 0.571 0 .7 1 4 0 .786 0 .893 0 .929 0 .964 1.000 1.000
8 0 .310 0 .524 0 .643 0 .738 0 .833 0.881 0 .905 0 .952 0 .9 7 6
9 0 .267 0 .483 0 .6 0 0 0 .700 0 .783 0 .833 0 .867 0 .917 0 .933

10 0 .248 0 .455 0 .564 0 .648 0 .745 0 .7 9 4 0 .8 3 0 0 .8 7 9 0 .903

11 0 .236 0 .427 0 .536 0 .618 0 .709 0 .755 0 .8 0 0 0 .845 0 .873
12 0 .217 0 .406 0 .503 0 .587 0 .678 0 .727 0 .769 0 .818 0 .8 4 6
13 0 .209 0 .385 0 .4 8 4 0 .5 6 0 0 .648 0 .703 0 .747 0.791 0 .8 2 4
14 0 .200 0 .367 0 .4 6 4 0 .538 0 .6 2 6 0 .6 7 9 0 .723 0.771 0 .8 0 2
15 0 .189 0 .354 0 .4 4 6 0.521 0 .6 0 4 0 .6 5 4 0 .700 0 .750 0 .779

16 0 .182 0.341 0 .4 2 9 0 .503 0 .5 8 2 0 .635 0 .679 0 .729 0 .762
17 0 .176 0 .328 0 .414 0 .485 0 .566 0 .615 0 .662 0 .713 0 .748
18 0 .170 0 .317 0.401 0 .472 0 .5 5 0 0 .6 0 0 0 .643 0 .695 0 .728
19 0.165 0 .309 0.391 0 .4 6 0 0 .535 0 .5 8 4 0 .628 0 .677 0 .712
20 0.161 0 .299 0 .3 8 0 0 .447 0 .5 2 0 0 .5 7 0 0 .612 0 .662 0 .696

21 0 .156 0 .292 0 .3 7 0 0 .435 0 .508 0 .5 5 6 0 .599 0 .648 0.681
22 0 .152 0 .284 0 .361 0 .425 0 .4 9 6 0 .5 4 4 0 .5 8 6 0 .634 0 .667
23 0 .148 0 .278 0 .353 0 .415 0 .4 8 6 0 .5 3 2 0 .573 0 .622 0 .654
24 0 .144 0.271 0 .344 0 .406 0 .4 7 6 0.521 0 .5 6 2 0 .610 0 .642
25 0 .142 0 .265 0 .337 0 .398 0 .4 6 6 0.511 0.551 0 .598 0 .6 3 0

26 0 .138 0 .259 0.331 0 .390 0 .457 0.501 0.541 0 .587 0 .619
27 0 .136 0 .255 0 .3 2 4 0 .382 0 .448 0.491 0.531 0 .577 0 .608
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T ab le  9. (Continued)

P ro b a b ility  a

n ^
O n e -ta ile d  

\  T w o -ta iled
0 .2 5
0 .5 0

0 .10
0 .20

0.05
0 .10

0 .025
0.05

0.01
0 .02

0 .005
0.01

0 .0025
0 .005

0.001
0 .0 0 2

0 .0005
0.001

28 0 .133 0 .250 0 .317 0 .375 0 .440 0 .483 0 .522 0 .567 0 .598
29 0 .1 3 0 0.245 0 .312 0 .368 0 .433 0 .475 0 .513 0 .558 0 .589
30 0 .1 2 8 0 .240 0 .306 0 .3 6 2 0 .425 0 .467 0 .5 0 4 0 .5 4 9 0 .580

31 0 .1 2 6 0 .236 0.301 0 .3 5 6 0 .418 0 .459 0 .4 9 6 0.541 0.571
32 0 .1 2 4 0 .232 0 .296 0 .3 5 0 0 .412 0 .452 0 .489 0 .533 0 .563
33 0.121 0 .229 0.291 0 .345 0 .405 0 .446 0 .482 0 .525 0 .554
34 0 .1 2 0 0.225 0 .287 0 .3 4 0 0 .399 0 .4 3 9 0 .475 0 .517 0 .547
35 0 .118 0 .222 0 .283 0 .335 0 .394 0 .433 0 .468 0 .5 1 0 0 .539

36 0 .1 1 6 0 .219 0 .279 0 .3 3 0 0 .388 0 .427 0 .462 0 .504 0 .533
37 0 .1 1 4 0 .216 0 .275 0 .325 0 .382 0.421 0 .456 0 .497 0 .5 2 6
38 0 .113 0 .212 0.271 0.321 0 .378 0 .415 0 .4 5 0 0.491 0 .519
39 0.111 0 .210 0 .267 0 .317 0 .373 0 .4 1 0 0 .4 4 4 0 .485 0 .513
40 0 .1 1 0 0 .207 0 .264 0 .313 0 .368 0 .405 0 .4 3 9 0 .4 7 9 0 .507

41 0 .108 0 .204 0.261 0 .309 0 .364 0 .4 0 0 0 .433 0 .473 0.501
42 0 .107 0 .202 0 .257 0 .305 0 .359 0 .395 0 .428 0 .468 0 .495
43 0 .105 0 .199 0 .254 0.301 0 .355 0.391 0 .423 0 .463 0 .4 9 0
44 0 .1 0 4 0 .197 0.251 0 .298 0.351 0 .386 0 .4 1 9 0 .458 0 .484
45 0 .1 0 3 0 .194 0 .248 0 .294 0 .347 0 .382 0 .4 1 4 0 .453 0 .479

46 0 .1 0 2 0 .192 0 .246 0.291 0 .343 0 .378 0 .4 1 0 0 .448 0 .474
47 0 .101 0 .190 0 .243 0 .288 0 .340 0 .3 7 4 0 .405 0 .443 0 .469
48 0 .1 0 0 0 .188 0 .240 0 .285 0 .336 0 .3 7 0 0.401 0 .439 0 .465
49 0 .098 0 .186 0 .238 0 .2 8 2 0 .333 0 .3 6 6 0 .397 0 .434 0 .460
50 0 .097 0 .184 0 .235 0 .2 7 9 0 .329 0 .363 0 .393 0 .4 3 0 0 .456
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Table 10. Critical values of the Ta (n) in Wilcoxon rank sum test.

One-tailed a  One-tailed a

n

0.05 0.025 0.01 0.005

n

0.05 0.025 0.01 0.005

Two-tailed a Two-tailed a

0 .1 0 0.05 0 .0 2 0 .0 1 0 .1 0 0.05 0 .0 2 0 .0 1

5 1 28 130 116 101 91
6 1 1 29 140 126 1 1 0 1 0 0

7 3 2 0 30 151 137 1 2 0 109
8 5 3 1 0 31 163 147 130 118
9 8 5 3 1 32 175 159 140 128

10 10 8 5 3 33 187 170 151 138
11 13 10 7 5 34 2 0 0 182 162 148
12 17 13 9 7 35 213 195 173 159
13 21 17 12 9 36 227 208 185 171
14 25 21 15 12 37 241 2 21 198 182
15 30 25 19 15 38 256 235 2 1 1 194
16 35 29 23 19 39 271 249 224 207
17 41 34 27 23 40 286 264 238 2 2 0

18 47 40 32 27 41 302 279 252 233
19 53 46 37 32 42 319 294 266 247
2 0 60 52 43 37 43 336 301 281 261
21 67 58 49 42 44 353 327 296 276
2 2 75 65 55 48 45 371 343 312 291
23 83 73 62 54 46 389 361 328 307
24 91 81 69 61 47 407 378 345 322

25 1 00 89 76 6 8 48 426 396 362 339

26 1 10 98 84 75 49 446 415 379 355

27 119 107 93 83 50 466 434 397 373



T a b le  11 . C ritic a l va lu es o f  7',/ and  fo r W in c o x o n -M a n n -W h itn e y  ra n k  sum  test.

(Smaller n) 0 1 2 3 4 5 6 7 8 9 1 0

2 3-13 3-15 3-17 4-18 4-20 4-22 4-24 5-25
3-19 3-21 3-23 4-24 4-26

3 6-15 6-18 7-20 8 - 2 2 8-25 9-27 10-29 10-32 11-34 11-37 12-39
6 - 2 1 7-23 7-26 8-28 8-31 9-33 9-36 10-38 10-41

6-27 6-30 7-32 7-35 7-38 8-40 8—43
6-33 6-36 6-39 7-41 7-44

4 11-25 12-28 13-31 14-34 15-37 16-40 17^43 18-46 19-49 20-52 21-55
10-26 11-29 12-32 13-35 14-38 15-41 15-45 16-48 17-51 18-54 19-57

10-30 11-33 11-37 12—40 13^13 13—47 14-50 15-53 15-57 16-60
10-34 10-38 11—41 11-45 12-48 12-52 13-55 14-58 14-62

5 19-36 2 0 ^ 1 0 21-44 23—47 24-51 26-54 27-58 28-62 30-65 31-69 33-72
17-38 18^12 20-45 21-49 22-53 23-57 24-61 26-64 27-68 28-72 29-76
16-39 17-43 18—47 19-51 20-55 21-59 22-63 23-67 24-71 25-75 26-79
15-40 16-44 17-48 17-53 18-57 19-61 20-65 21-69 22-73 22-78 23-82
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T a b le  11. (iContinued)

щ ____________________________ n2Ẑ _
(smaller n ) 0 1 2 3 4 5 6 7 8 9 10

6 28-50 29-55 31-59 33-63 35-67 37-71 38-76 40-80 42-84 44-88 46-92
26-52 27-57 29-61 31-65 32-70 34-74 35-79 37-83 38-88 40-92 42-96
24-54 25-59 27-63 28-68 29-73 30-78 32-82 33-87 34-92 36-96 37-101
23-55 24-60 25-65 26-70 27-75 28-80 30-84 31-89 32-94 33-99 34-104

7 39-66 41-71 43-76 45-81 47-86 49-91 52-95 54-100 56-105 58-110 61-114
36-69 38-74 40-79 42-84 44-89 46-94 48-99 50-104 52-109 54-114 56-119
34-71 35-77 37-82 39-87 40-93 42-98 44-103 45-109 47-114 49-119 51-124
32-73 34-78 35-84 37-89 38-95 40-100 41-106 43-111 44-117 45-122 47-128

8 51-85 54-90 56-96 59-101 62-106 64-112 67-117 69-123 72-128 75-133 77-139
49-87 51-93 53-99 55-105 58-110 60-116 63-121 65-127 67-133 70-138 72-144
45-91 47-97 49-103 51-109 53-115 56-120 58-126 60-132 62-138 64-144 66-150
43-93 45-99 47-105 49-111 51-117 53-123 54-130 56-136 58-142 60-148 62-154

9 66-105 69-111 72-117 75-123 78-129 81-135 84-141 87-147 90-153 93-159 96-165
63-108 65-115 6 8 - 1 2 1 71-127 73-134 76-140 79-146 82-152 84-159 87-165 90-171
59-112 61-119 63-126 66-132 68-139 71-145 73-152 76-158 78-165 81-171 83-178
56-115 58-122 61-128 63-135 65-142 67-149 70-155 72-162 74-169 76-176 78-183

10 82-128 86-134 89-141 92-148 96-154 99-161 103-167 106-174 110-180 113-187 117-193
78-132 81-139 85-145 88-152 91-159 94-166 97-173 100-180 103-187 107-193 1 1 0 - 2 0 0

74-136 77-143 79-151 82-158 85-165 88-172 91-179 93-187 96-194 99-201 102-208
71-139 74-146 76-154 79-161 81-169 84-176 86-184 89-191 92-198 94-206 97-213
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T a b le  12. C ritica l values o f  q fo r  m u ltip le  co m p ariso n .

a =  0.05

\ *
v\ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 к /  

/  v
1 17.97 26.98 32 .82 37.08 40.41 43 .12 45 .40 47 .36 49.07 50.59 51 .96 53 .20 54.33 55 .36 56 .32 57.22 53 .04 58.83 59 .56 i
2 6.08 8.33 9 .80 10.88 11.74 12.44 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77 2

3 4 .50 5.91 6.82 7 .50 8.04 8.48 8.85 9.18 9.46 9 .72 9.95 10.15 10.35 10.52 10.69 10.84 10.98 11.11 11.24 3
4 3.93 5.04 5 .76 6 .29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23 4

5 3 .64 4 .60 5.22 5 .67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 5
1

6 3 .46 4 .34 4 .90 5 .30 5.63 5 .90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 7 .24 7 .34 7.43 7.51 7.59 6 Cv-

7 3 .34 4 .16 4 .68 5.06 5.36 5.61 5.82 6.00 6.16 6 .30 6.43 6.55 6.66 6 .76 6.85 6.94 7.02 7.10 7.17 7

8 3 .26 4 .04 4 .53 4 .89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6 .29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 8 S'
9 3 .20 3.95 4.41 4 .76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 9 bn"

10 3.15 3.88 4 .33 4.65 4.91 5.12 5.30 5.46 5 .60 5.72 5.83 5.93 6.03 6.11 6 .19 6.27 6.34 6 .40 6.47 10 S'
bn

11 3.11 3.82 4 .26 4 .57 4 .82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 6 .06 6.13 6 .20 6.27 6.33 11
о

12 3.08 3.77 4 .20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 12 n
13 3.06 3.73 4 .15 4.45 4 .69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 13 О

3
14 3.03 3 .70 4.11 4.41 4 .64 4.83 4.99 5.13 5.25 5 .36 5 .46 5.55 5.64 5.71 5 .79 5.85 5.91 5.97 6.03 14 с
15 3.01 3.67 4 .08 4 .37 4 .59 4.78 4 .94 5.08 5 .20 5.31 5 .40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96 15 S

16 3 .00 3.65 4.05 4.33 4 .56 4 .74 4 .90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 16 1
17 2.98 3.63 4 .02 4 .30 4 .52 4 .70 4 .86 4 .99 5.11 5.21 5.31 5.39 5.47 5 .54 5.61 5.67 5.73 5.79 5.84 17

18 2.97 3.61 4 .0 0 4 .28 4 .49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 18 5 "
19 2.96 3 .59 3.98 4.25 4 .47 4.65 4 .79 4 .92 5.04 5.14 5.23 5.31 5.39 5 .46 5.53 5 .59 5.65 5 .70 5.75 19

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4 .90 5.01 5.11 5 .20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 20

24 2.92 3.53 3 .90 4 .17 4.37 4.54 4 .68 4.81 4.92 5.01 5 .10 5.18 5.25 5.32 5.38 5 .44 5.49 5.55 5.59 24

30 2.89 3.49 3.85 4 .10 4 .3 0 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 30

4 0 2.86 3.44 3.79 4 .04 4.23 4.39 4.52 4.63 4.73 4.82 4 .90 4 .98 5.04 5.11 5.15 5 .22 5.27 5.31 5 .36 40

60 2.83 3 .40 3.74 3.98 4 .16 4.31 4 .44 4.55 4.65 4.73 4.81 4 .88 4 .94 5 .00 5.06 5 .1 1 5.15 5 .20 5 .24 60

120 2.80 3.36 3.68 3.92 4 .1 0 4.24 4 .36 4.47 4.56 4 .64 4.71 4 .78 4 .84 4 .90 4.95 5 .00 5.04 5.09 5.13 120

OO 2.77 3.31 3.63 3 .86 4.03 4.17 4.29 4.39 4.47 4.55 4 .62 4.68 4.74 4 .80 4.85 4 .89 4.93 4 .97 5.01 OO



T a b le  12 . (Continued)

a =  0.01

\ k
v '\ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 к /

/ V

1 90 .03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6 253.2 260 .0 266.2 271.8 277 .0 281.8 286.3 290.4 294.3 298 .0 i
2 14.04 19.02 22 .29 24.72 26.63 28.20 29.53 30.68 31 .69 32 .59 33 .40 34.13 34.81 35.43 36 .00 36.53 37.03 37 .50 37.95 2

3 8.26 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55 19.77 3

4 6.51 8.12 9 .17 9.96 10.58 11.10 11.55 11.93 12.27 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24 14.40 4

5 5 .70 6.98 7 .80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 5

6 5 .24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9 .10 9 .30 9.48 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54 6

7 4.95 5.92 6 .54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9 .00 9.12 9 .24 9.35 9.46 9.55 9.65 7

8 4 .75 5.64 6 .20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 8

9 4 .60 5.43 5 .96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.49 8.57 9

10 4 .48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7 .36 7 .49 7 .60 7.71 7.81 7.91 7.99 8.08 8.15 8.23 10

11 4 .39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6 .99 7.13 7.25 7 .36 7.46 7.56 7.65 7.73 7.81 7.88 7.95 11

12 4 .32 5.05 5 .50 5.84 6 .10 6.32 6.51 6.67 6.81 6 .94 7.06 7.17 7 .26 7.36 7.44 7.52 7.59 7.66 7.73 12

13 4 .26 4 .96 5 .40 5.73 5.98 6.19 6.37 6.53 6.67 6 .79 6.90 7.01 7 .10 7.19 7.27 7.35 7.42 7.48 7.55 13

14 4.21 4 .89 5 .32 5.63 5.88 6.08 6.26 6.41 6.54 6 .66 6.77 6.87 6 .96 7.05 7.13 7 .20 7.27 7.33 7.39 14

15 4 .17 4 .84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6 .70 6.84 6.98 7 .00 7.07 7.14 7.20 7 .26 15

16 4 .13 4 .79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6 .46 6.56 6.66 6 .74 6.82 6 .90 6.97 7.03 7.09 7.15 16

17 4 .10 4 .74 5 .14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 6.81 6.87 6.94 7 .00 7.05 17

18 4 .07 4 .7 0 5 .09 5.38 5.60 5.79 5.94 6.08 6 .20 6.31 6.41 6 .50 6.58 6.65 6.73 6 .79 6.85 6.91 6.97 18

19 4 .05 4 .67 5.05 5.33 5.55 5.73 5.89 6.02 6 .14 6.25 6 .34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6 .89 19

20 4 .02 4 .64 5 .02 5 .29 5.51 5.69 5.84 5.97 6 .09 6 .19 6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6 .82 20

24 3 .96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6 .02 6.11 6 .19 6 .26 6.33 6.39 6.45 6.51 6 .56 6.61 24

30 3 .89 4.45 4 .8 0 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6 .20 6.26 6.31 6 .36 6.41 30

40 3 .82 4 .37 4 .70 4.93 5.11 5.26 5.39 5.50 5 .60 5.69 5.76 5.83 5.90 5.96 6.02 6.07 6.12 6 .16 6.21 4 0

60 3.76 4 .28 4 .59 4 .82 4.99 5.13 5.25 5.36 5.45 5.53 5 .60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01 60

120 3 .70 4 .20 4 .50 4.71 4.87 5.01 5.12 5.21 5 .30 5.37 5.44 5 .50 5.56 5.61 5.66 5.71 5.75 5.79 5.83 120

00 3.64 4 .12 4 .40 4 .60 4 .76 4.88 4 .99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 00
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Table 13.1. Critical values for Dunnett-r test (one tailed). 
(The upper line is for a  =  0.05, the lower line is for a  =  0.01.)

Number of treatments (despite the control) T

0 0 1 2 3 4 5 6 7 8 9

5 2 .0 2 2.44 2 .6 8 2.85 2.98 3.08 3.16 3.24 3.30
3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03

6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59

7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30

8 1 .8 6 2 .2 2 2.42 2.55 2 .6 6 2.74 2.81 2.87 2.92
2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09

9 1.83 2.18 2.37 2.50 2.60 2 .6 8 2.75 2.81 2 .8 6

2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94
10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81

2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77

2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 1.78 2 .1 1 2.29 2.41 2.50 2.58 2.64 2.69 2.74

2 .6 8 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2 .6 6 2.71

2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56
15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67

2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65

2.58 2 .8 8 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 1.74 2.05 2 .2 2 2.33 2.42 2.49 2.54 2.59 2.64

2.57 2 .8 6 3.03 3.14 3.23 3.30 3.36 3.41 3.45
18 1.73 2.04 2 .2 1 2.32 2.41 2.48 2.53 2.58 2.62

2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
19 1.73 2.03 2 .2 0 2.31 2.40 2.47 2.52 2.57 2.61

2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40
2 0 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60

2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
24 1.71 2 .0 1 2.17 2.28 2.36 2.43 2.48 2.53 2.57

2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
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Table 13.1. (C o n tin u ed )

Number of treatments (despite the control) T
и  г  oi me errui 

(V) l 2 3 4 5 6 7 8 9

30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24

40 1 .6 8 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
2.42 2 .6 8 2.82 2.92 2.99 3.05 3.10 3.14 3.18

60 1.67 1.95 2 .1 0 2 .2 1 2.28 2.35 2.39 2.44 2.48
2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

1 2 0 1 .6 6 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06

OO 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42
2.33 2.56 2 .6 8 2.77 2.84 2.89 2.93 2.97 3.00

Table 13.2. Critical values of the Dunnet-t test (two tailed). 
(The upper line is for a  =  0.05, the lower line is for a  =  0.01.)

Number of treatments (despite the control) T
D F  of the error

(v) 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97
4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89

6 2.45 2 .8 6 3.10 3.26 3.39 3.49 3.57 3.64 3.71
3.71 4.21 4.51 4.70 4.87 5.00 5.10 5.20 5.28

7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89

8 2.31 2.67 2 .8 8 3.02 3.13 3.22 3.29 3.35 3.41
3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62

9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32
3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43

10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28

11 2 .2 0 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
3.11 3.45 3.65 3.79 3.88 3.98 4.05 4.11 4.16
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Table 13.2. (C o ntinued)

D F  of the error
(v)

Number of treatments (despite the control) T

1 2 3 4 5 6 7 8 9

12 2.18 2.50 2 .6 8 2.81 2.90 2.98 3.04 3.05 3.14
3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07

13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99

14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07
2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93

15 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04
2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88

16 2 .1 2 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02
2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83

17 2 .1 1 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79

18 2 .1 0 2.40 2.56 2 .6 8 2.76 2.83 2.89 2.94 2.98
2 .8 8 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75

19 2.09 2.39 2.55 2 .6 6 2.75 2.81 2.87 2.92 2.96
2 .8 6 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72

2 0 2.09 2.38 2.54 2.65 2.73 2.80 2 .8 6 2.90 2.95
2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69

24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2 .8 6 2.90
2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61

30 2.04 2.32 2.47 2.58 2 .6 6 2.72 2.77 2.82 2 .8 6

2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52

40 2 .0 2 2.29 2.44 2.54 2.62 2 .6 8 2.73 2.77 2.81
2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44

60 2 .0 0 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77
2 .6 6 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37

1 2 0 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73
2.62 2.84 2.97 3.06 3.12 3.18 3.22 3.26 3.29

0 0 1.96 2 .2 1 2.35 2.44 2.51 2.57 2.61 2.65 2.69
2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22
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T a b le  14. S am p le  size  fo r  sa m p lin g  su rvey  on  m ean.

a  =  0.05

a i d 0 .0 0 .1 0 .2 0.3 0.4 0.5 0 .6 0.7 0 .8 0.9

1 7 8 9 9 11 12 13 14 15 17
2 18 2 0 2 2 23 25 27 29 31 33 35
3 38 40 42 45 47 50 53 56 58 61
4 64 6 8 71 74 77 81 84 8 8 91 95
5 99 103 107 111 115 119 123 128 132 137
6 141 146 151 156 160 165 170 176 181 186
7 191 196 2 0 2 207 213 219 225 231 237 243
8 249 255 261 268 274 281 288 294 301 308
9 315 322 329 336 343 351 358 366 373 381

10 389 396 404 412 420 428 437 445 453 462
11 470 478 487 496 505 514 523 532 541 550
12 559 569 578 588 597 607 617 626 636 646
13 656 667 677 687 697 708 718 729 740 750
14 761 772 783 794 805 816 828 839 851 862
15 874 885 897 909 921 933 945 957 969 982
16 994 1 006 1 019 1 032 1 044 1 057 1 070 1 083 1 096 1 109
17 1 1 22 1 135 1 149 1 162 1 175 1 189 1 203 1 216 I 230 1 244
18 1 258 1 272 1 286 1 300 1 314 1 329 1 343 1 358 1 372 1 387
19 1 402 1 416 1 431 1 446 1 461 1 476 1 491 1 507 1 522 1 537
2 0 1 553 1 568 1 583 1 600 1 616 1 631 1 647 1 663 1 680 1 696

a  = 0 .0 1

1 11 12 14 15 17 19 21 23 26 28
2 31 34 36 39 43 46 49 53 56 60
3 64 6 8 72 77 81 8 6 90 95 1 00 105
4 1 10 116 121 127 133 139 145 151 157 164
5 170 177 184 191 198 205 213 2 2 0 228 235
6 243 251 260 268 277 285 294 303 312 321
7 331 340 350 360 370 380 390 400 411 421
8 432 443 454 565 476 487 499 511 522 534
9 546 559 571 583 596 609 622 635 648 661

10 674 6 8 8 702 715 729 743 758 772 787 801
11 816 831 846 861 876 892 907 923 939 955
12 971 987 1 004 1 0 2 0 1 037 1 054 1 070 1 087 1 105 1 1 2 2

13 1 139 1 157 1 175 1 193 1 2 1 1 1 229 1 247 1 265 1 284 1 303
14 1 321 1 340 1 359 1 379 1 398 1 417 1 437 1 457 1 477 1 497
15 1 517 1 537 1 558 1 578 1 599 1 620 1 641 1 662 1 683 1 704
16 1 726 1 747 1 769 1 791 1 813 1 835 1 858 1 880 1 903 1 925
17 1 948 1 971 1 994 2017 2041 2 064 2  088 2  112 2 136 2  160
18 2 184 2  208 2 232 2 257 2  282 2 307 2 332 2 357 2 382 2 408
19 2 433 2 459 2 485 2511 2 537 2 563 2 589 2616 2 643 2 669
2 0 2 696 2 723 2 750 2 778 2 805 2 833 2  860 2  8 8 8 2916 2 943
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T a b le  15. S am p le  s ize  fo r sam p lin g  su rvey  o n  probab ility .

a =  0.05

P

< r \ 0.50
0.45
0.55

0.40
0.60

0.35
0.65

0.30
0.70

0.25
0.75

0 .2 0

0.80
0.15
0.85

0 .1 0

0.90
0.05
0.95

0 .2 0 0 24 24 23 22 2 0 18 15
0.180 30 29 28 27 25 2 2 19
0.160 38 37 36 34 32 28 24
0.140 49 49 47 45 41 37 31 25
0 .1 2 0 67 6 6 64 61 56 50 43 34
0 .1 0 0 96 95 92 87 81 72 61 49
0.090 119 117 114 108 100 89 76 60 43
0.080 150 149 144 137 126 113 96 77 54
0.070 196 194 188 178 165 147 125 100 71
0.060 267 264 256 243 224 2 0 0 171 136 96
0.050 384 380 369 350 323 288 246 196 138 73
0.045 474 470 455 432 498 356 304 242 171 90
0.040 600 594 576 546 504 450 384 306 216 114
0.035 784 776 753 713 659 588 502 400 282 149
0.030 1 067 1 056 1 024 971 896 800 683 544 384 203
0.025 1 537 1 521 1 475 1 398 1 291 1 152 983 784 553 292
0 .0 2 0 2 401 2 377 2 305 2 185 2017 1 801 1 537 1 225 864 456
0.015 4 268 4 226 4 098 3 884 3 585 3 201 2 732 2 177 1 537 811
0 .0 1 0 9 604 9 508 9 220 8  740 8 067 7 203 6  147 4 898 3 457 1 825
0.005 38 415 38 031 36 878 34 958 32 269 28 811 24 586 19 592 13 830 7 299

a  = 0 .0 1

0 .2 0 0 41 41 40 38 35 31 27
0.180 51 51 49 47 43 38 33
0.160 65 64 62 59 54 49 41
0.140 85 84 81 77 71 63 54 43
0 .1 2 0 115 114 111 105 97 8 6 74 59
0 .1 0 0 166 164 159 151 139 124 106 85
0.090 205 203 197 186 172 154 131 104 74
0.080 259 257 249 236 218 194 166 132 93
0.070 339 335 325 308 284 254 217 173 122
0.060 461 456 442 419 387 346 295 235 166
0.050 664 657 637 604 557 498 425 338 239 125
0.045 819 811 786 746 6 8 8 614 524 418 295 156
0.040 1 037 1 026 995 944 871 778 664 529 373 197
0.035 1 354 1 341 1 300 1 232 1 138 1 016 867 691 488 257
0.030 1 843 1 825 1 770 1 677 1 548 1 382 1 180 940 664 350
0.025 2 654 2  628 2 548 2415 2 230 1 991 1 699 1 354 956 504
0 .0 2 0 4 147 4 106 3 981 3 774 3 484 3 111 2 654 2 115 1 493 788
0.015 7 373 7 299 7 078 6710 6  193 5 530 4719 3 760 2 654 1 401
0 .0 1 0 16 588 16 422 15 924 15 095 13 934 12 441 10616 8 460 5 972 3 152
0.005 6 6  349 65 6 8 6 63 696 60 378 55 734 49 762 42 464 33 838 23 8 8 6 12 607



T a b le  16. S am ple  size fo r  co m p ariso n  b e tw ee n  sam p le  m ean  an d  a  g iv en  c o n s tan t b y  f-tes t.

Two-sided test a  =  0.01 a =  0.02 a  =  0.05 a  =  0.1

One-sided test a  =  0.005 a  =0.01 a  =  0.025 a  =  0.05

P P P P
5 / a  0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2

0.05
0.10
0.15
0.20
0.25 110
0.30 134 78 115
0.35 125 99 58 109 85
0.40 115 97 77 45 102 85 66
0.45 92 77 62 37 110 81 68 53
0.50 100 75 63 51 30 90 66 55 43
0.55 83 63 53 42 26 75 55 46 36
0.60 71 53 45 36 22 63 47 39 31
0.65 61 46 39 32 20 55 41 34 27
0.70 53 40 34 28 17 47 35 30 24
0.75 47 36 30 25 16 42 31 26 21
0.80 41 32 27 22 14 37 28 24 19
0.85 37 29 24 20 13 33 25 21 17
0.90 34 26 22 18 12 30 23 19 16
0.95 31 24 20 17 11 27 21 18 14
1.00 28 22 19 16 10 25 19 16 13

0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

122
139 98 69
90 128 64 139 101 45
63 119 90 45 122 97 71 32
47 109 88 67 34 90 72 52 24
37 117 84 68 52 26 100 70 55 41 19
30 93 67 54 41 21 80 55 44 32 15
25 76 54 44 34 18 65 45 36 27 13
21 63 45 37 28 15 54 38 30 22 11
18 54 39 32 24 13 46 32 26 19 9
16 46 33 27 21 12 39 28 22 17 8
14 40 29 24 19 10 34 24 19 15 8
13 35 26 21 16 9 30 21 17 13 7
12 31 23 19 15 9 27 19 15 12 6
11 28 21 17 13 8 24 17 14 11 6
10 25 19 16 12 7 21 15 13 10 5
9 23 17 14 11 7 19 14 11 9 5
9 21 16 13 10 6 18 13 11 8 5

4 0
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T a b le  16. (Continued)

Two-sided tesl 
One-sided test

<5/ a

a  - 

a  -

= 0.01 
= 0.005
P

a

a

=  0.02 
=  0.01

P

a
a

=  0.05 
=  0.025

P

a = 
a  =

= 0.1 
= 0.05
В

0.01 0.05 0.1 0.2

©

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

1.1 24 19 16 14 9 21 16 14 12 8 18 13 11 9 6 15 11 9 7
1.2 21 16 14 12 8 18 14 12 10 7 15 12 10 8 5 13 10 8 6
1.3 18 15 13 11 8 16 13 11 9 6 13 10 9 7 11 8 7 6
1.4 16 13 12 10 7 14 11 10 8 6 12 9 8 7 10 8 7 5
1.5 15 12 11 9 7 13 10 9 8 6 11 8 7 6 9 7 6
1.6 13 11 10 8 6 12 10 9 7 5 10 8 7 6 8 6 6
1.7 12 10 9 8 6 11 9 8 7 9 7 6 5 8 6 5
1.8 11 10 9 8 6 10 8 7 6 8 7 6 7 6
1.9 11 9 8 7 6 10 8 7 6 8 6 6 7 5
2.0 10 8 8 7 5 9 7 7 6 7 6 5 6
2.1 10 8 7 7 8 7 6 6 7 6 6
2.2 9 8 7 6 8 7 6 5 7 6 6
2.3 9 7 7 6 8 6 6 6 5 5
2.4 8 7 7 6 7 6 6 6
2.5 8 7 6 6 7 6 6 6
3.0 7 6 6 5 6 5 5 5
3.5 6 5 5 5
4.0 6

972 
M

edical Statistics and C
om

puter E
xperim

ents



T a b le  17. S am ple  s ize  fo r  co m p ariso n  b e tw ee n  tw o  m ean s by  f-tes t.

Two-sided test 
One-sided test

a = 
a =

= 0.01 
= 0.005
P

a
a

=  0.02 
=  0.01

P

a - 
a -

= 0.05 
= 0.025
P

a
a

=  0.1 
=  0.05
P

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

0.05
0.10
0.15
0.20 136
0.25 124 88
0.30 123 87 61
0.35 110 90 64 102 45
0.40 85 70 100 49 108 78 35
0.45 118 68 101 55 105 79 39 108 86 62 28
0.50 96 55 106 82 45 105 86 64 32 88 70 51 23
0.55 101 79 46 106 88 68 38 87 71 53 27 105 73 58 42 19
0.60 101 85 67 39 89 74 58 32 104 74 60 45 23 89 61 49 36 16
0.65 87 73 57 34 104 77 63 49 28 88 63 51 39 20 76 52 42 30 14
0.70 100 75 63 50 29 90 66 55 43 24 76 55 44 34 17 66 45 36 26 12
0.75 88 66 55 44 26 79 58 48 38 21 67 48 39 29 15 57 40 32 23 11
0.80 77 58 49 39 23 70 51 43 33 19 59 42 34 26 14 50 35 28 21 10
0.85 69 52 43 35 21 62 46 38 30 17 52 37 31 23 12 45 31 25 18 9
0.90 62 46 39 31 19 55 41 34 27 15 47 34 27 21 11 40 28 22 16 8
0.95 55 42 35 28 17 50 37 31 24 14 42 30 25 19 10 36 25 20 15 7
1.00 50 38 32 26 15 45 33 28 22 13 38 27 23 17 9 33 23 18 14 7
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T a b le  17. (Continued)

Two-sided test 
One-sided test

a - 
a =

= 0.01 
= 0.005
P

a

a
=  0.02 
=  0.01 
P

a - 
a -

= 0.05 
= 0.025
P

a
a

=  0.1 
=  0.05
P

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

1.1 42 32 27 22 13 38 28 23 19 11 32 23 19 14 8 27 19 15 11 6
1.2 36 27 23 18 11 32 24 20 16 9 27 20 16 12 7 23 16 13 10 5
1.3 31 23 20 16 10 28 21 17 14 8 23 17 14 11 6 20 14 11 9 5
1.4 27 20 17 14 9 24 18 15 12 8 20 15 12 10 6 17 12 10 8 4
1.5 24 18 15 13 8 21 16 14 11 7 18 13 11 9 5 15 11 9 7 4
1.6 21 16 14 11 7 19 14 12 10 6 16 12 10 8 5 14 10 8 6 4
1.7 19 15 13 10 7 17 13 11 9 6 14 11 9 7 4 12 9 7 6 3
1.8 17 13 11 10 6 15 12 10 8 5 13 10 8 6 4 11 8 7 5
1.9 16 12 11 9 6 14 11 9 8 5 12 9 7 6 4 10 7 6 5
2.0 14 11 10 8 6 13 10 9 7 5 11 8 7 6 4 9 7 6 4
2.1 13 10 9 8 5 12 9 8 7 5 10 8 6 5 3 8 6 5 4
2.2 12 10 8 7 5 11 9 7 6 4 9 7 6 5 8 6 5 4
2.3 11 9 8 7 5 10 8 7 6 4 9 7 6 5 7 5 5 4
2.4 11 9 8 6 5 10 8 7 6 4 8 6 5 4 7 5 4 4
2.5 10 8 7 6 4 9 7 6 5 4 8 6 5 4 6 5 4 3
3.0 8 6 6 5 4 7 6 5 4 3 6 5 4 4 5 4 3
3.5 6 5 5 4 3 6 5 4 4 5 4 4 3 4 3
4.0 6 5 4 4 5 4 4 3 4 4 3 4
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Line 1: a  =  0.05, 1 -  P  =  0.80
Line 2: a  =  0.05, I -  f) =  0.90
Line 3: a = 0 .01 , 1 — /? =  0.95

T a b le  18.1. S am p le  s ize  fo r  co m p ariso n  be tw een  tw o  sam p le  freq u en c ie s (one  ta iled ).

Difference of the two rates (%), S
The smaller

rate (%) 5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 330 105 55 35 25 20 16 13 11 9 8 7 6 6
460 145 76 48 34 26 21 17 15 13 11 9 8 7
850 270 140 89 63 47 37 30 25 21 19 17 14 13

10 540 155 76 47 32 23 19 15 13 11 9 8 7 6
740 210 105 64 44 33 25 21 17 14 12 11 9 8

1370 390 195 120 81 60 46 37 30 25 21 19 16 14

15 710 200 94 56 38 27 21 17 14 12 10 8 7 6
990 270 130 77 52 38 29 22 19 16 13 10 10 8

1820 500 240 145 96 69 52 41 33 27 22 20 17 14

20 860 230 110 63 42 30 22 18 15 12 10 8 7 6
1190 320 150 88 58 41 31 24 20 16 14 11 10 8
2190 590 280 160 105 76 57 44 35 28 23 20 17 14

25 980 260 120 69 45 32 24 19 15 12 10 8 7
1360 360 165 96 63 44 33 25 21 16 14 11 9
2510 660 300 175 115 81 60 46 36 29 23 20 16

30 1080 280 130 73 47 33 24 19 15 12 10 8
1500 390 175 100 65 46 33 25 21 16 13 11
2760 720 230 185 120 84 61 47 36 28 22 19

35 1160 300 135 75 48 33 24 19 15 12 9
1600 410 185 105 67 46 33 25 20 16 12
2960 750 340 190 125 85 61 46 35 27 21

40 1210 310 135 76 48 33 24 18 14 11
1670 420 190 105 67 46 33 24 19 14
3080 780 350 195 125 84 60 44 33 25

45 1230 310 135 75 47 32 22 17 13
1710 430 190 105 65 44 31 22 17
3140 790 350 190 120 81 57 41 30

50 1230 310 135 73 45 30 21 15
1710 420 185 100 63 41 29 21
3140 780 340 185 115 76 52 37
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Table 18.2. Sample size for comparison between two sample frequencies (two tailed).

Line 1: a  =  0.05, 1 - / 7  =  0.80 
Line 2: a  =  0.05, 1 - /? =  0.90 
Line 3: a  = 0 .01 , 1 -  p  =  0.95

Difference of the two rates (%), t>' 
The smaller _____________________________________________

rate (%) 5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 420 130 69 44 31 24 20 16 14 12 10 9 9 7
570 175 93 59 42 32 25 21 18 15 13 11 10 9
960 300 155 100 71 54 42 34 28 24 21 19 16 14

10 680 195 96 59 41 30 23 19 16 13 11 10 9 7
910 260 130 79 54 40 31 24 21 18 15 13 11 10

1550 440 220 135 92 68 52 41 34 28 23 21 18 15

15 910 250 120 71 48 34 26 21 17 14 12 10 9 8
1220 330 160 95 64 46 35 27 22 19 16 13 11 10
2060 560 270 160 110 78 59 47 37 31 25 21 19 16

20 1090 290 135 80 53 38 28 22 18 15 13 10 9 7
1460 390 185 105 71 51 38 29 23 20 16 14 11 10
2470 660 310 180 120 86 64 50 40 32 26 21 19 15

25 1250 330 150 88 57 40 30 23 19 15 13 10 9
1680 440 200 115 77 54 40 31 24 20 16 13 11
2840 740 340 200 130 92 68 52 41 32 26 21 18

30 1380 360 160 93 60 42 31 23 19 15 12 10
1840 480 220 125 80 56 41 31 24 20 16 13
3120 810 370 210 135 95 69 53 41 32 25 21

35 1470 380 170 96 61 42 31 23 18 14 11
1970 500 225 130 82 57 41 31 23 19 15
3340 850 380 215 140 96 69 52 40 31 23

40 1530 390 175 97 61 42 30 22 17 13
2050 520 230 130 82 56 40 29 22 18
3480 880 390 220 140 95 68 50 37 28

45 1560 390 175 96 60 40 28 21 16
2100 520 230 130 80 54 38 27 21
3550 890 390 215 135 92 64 47 34

50 1560 390 170 93 57 38 26 19
2100 520 225 125 77 51 35 24
3550 880 380 210 130 86 59 41
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Table 19. Boundaries of Armitage sequential trial with qualitative responses. 
(Two tailed, a  =  0.05; )S =  0.05.)

6\ =0.75

Middle ends

Boundaries M ' M "
Unequal pairs -------------------- False

n U L positive rate n У n У

9 9 -9 0.004 44 0 44 0

12 10 - 1 0 0.008 62 18 62 -1 8
15 11 -11 0 .0 1 2

18 12 - 1 2 0.015
2 0 12 - 1 2 0 .0 2 0

23 13 -13 0.023
26 14 -14 0.026
28 14 -14 0.029
31 15 -15 0.031
34 16 -16 0.033
37 17 -17 0.034
39 17 -17 0.036
42 18 -18 0.037
45 19 -19 0.038
47 19 -19 0.039
50 2 0 - 2 0 0.039
53 21 -21 0.040
56 2 2 - 2 2 0.040
58 2 2 - 2 2 0.041
60 2 2 - 2 2 0.042
61 21 -21 0.044
62 2 0 - 2 0 0.047

О00©II

8 8 - 8 0.008 26 0 26 0

11 9 -9 0.016 40 14 40 -1 4
14 10 - 1 0 0 .0 2 2

17 11 -11 0.027
2 0 12 - 1 2 0.031
23 13 -13 0.033
26 14 -14 0.035
29 15 -15 0.037
32 16 -16 0.038
35 17 -17 0.039
38 18 -18 0.040
39 17 -17 0.042
40 16 -16 0.047
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Table 19. (Continued)

6\ =  0.85

Middle ends

Unequal pairs 
n

Boundaries
False

positive rate

M ' M n

U L n у n у

7 1 -7 0.016 16 0 16 0

11 9 -9 0 .0 2 2 27 11 27 - 1 1

14 10 - 1 0 0.028
17 11 - 1 1 0.033
2 0 12 - 1 2 0.037
24 14 -14 0.038
26 14 -14 0.041
27 13 -13 0.047

0 \ =  0.90

7 7 -7 0.016 10 0 1 0 0

10 8 - 8 0.029 19 9 19 -9
14 1 0 - 1 0 0.034
18 12 - 1 2 0.037
19 11 - 1 1 0.041

в \ =  0.95

6 6 - 6 0.032 6 0 6 0

11 9 -9 0.038 13 7 13 -7
13 9 -9 0.048

Table 20. Parameters of Schneiderman-Armitage sequential trial with quantitative 
responses.

(Two tailed, a  =  0.05; P  =  0.05)

° d

Boundary coefficients Average “unequal pairs’' needed Average “unequal 
pairs” with given 

sampleci b n 0 n a ^ max

0 .2 18.19 0 .1 0 205 165 270 325
0.3 12.13 0.15 91 74 1 2 0 145
0.4 9.09 0 .2 0 51 42 6 8 82
0.5 7.28 0.25 33 26 43 52
0 .6 6.06 0.30 23 18 30 37
0.7 5.20 0.35 17 14 2 2 27
0 .8 4.55 0.40 13 10 17 21

0.9 4.04 0.45 1 0 8 13 17
1 .0 3.64 0.50 8 7 11 13
1.2 3.03 0.60 6 5 8 10

1.4 2.60 0.70 4 3 6 9
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Table 21. Coordinates of middle ends of right boundary.*
(Two tailed, a  =  p =  0.05, 3 II

{

=  1)

n ' 7.47 8 .0 0 9.00 1 0 .0 0 1 1 .0 0 1 2 .0 0 13.00

y> 0 0.80 1.50 2 .1 0 2.80 3.50 4.30

n ' 14.00 15.00 16.00 17.00 18.00 18.50 18.91

y ' 5.10 6 .0 0 7.00 8 .2 0 9.70 10.80 13.90

*N ote: For any other kinds of sequential trial, the horizontal coordi
nates n! multiplied with d ~ 2 and the vertical coordinates y '  multiplied 
with Orf/d.

Table 22. The basic designs by Latin square.

3 x 3 4 x 4 5 x 5

A B C A В C D A В C D E

В C A В C D A В C D E A

C A B C D A В C D E A В

D A В C D E A В C

E A В C D

6 x 6  7 x 7

A В C D E F A В C D E F G

В C D E F A В C D E F G A

C D E F A В C D E F G A В

D E F A В C D E F G A В C

E F A В C D E F G A В C D

F A В C D E F G A В C D E

G A В C D E F



Table 23. Random numbers.

No. 1 -10  11-20 21 -30  31 -40  41 -5 0

1 2 2 17 6 8 65 81 6 8 95 23 92 35 87 0 2 2 2 57 51 61 09 43 95 06 58 24 82 03 47
2 19 36 27 59 46 13 79 93 37 55 39 77 32 77 09 85 52 05 30 62 47 83 51 62 74
3 16 77 23 0 2 77 09 61 87 25 21 28 06 24 25 93 16 71 13 59 78 23 05 47 47 25
4 78 43 76 71 61 2 0 44 90 32 64 97 67 63 99 61 46 38 03 93 2 2 69 81 21 99 21

5 03 28 28 26 08 73 37 32 04 05 69 30 16 09 05 8 8 69 58 28 99 35 07 44 75 47

6 93 2 2 53 64 39 07 10 63 76 35 87 03 04 79 8 8 08 13 13 85 51 55 34 57 72 69
7 78 76 58 54 74 92 38 70 96 92 52 06 79 79 45 82 63 18 27 44 69 6 6 92 19 09
8 23 6 8 35 26 0 0 99 53 93 61 28 52 70 05 48 34 56 65 05 61 8 6 90 92 10 70 80
9 15 39 25 70 99 93 8 6 52 77 65 15 33 59 05 28 2 2 87 26 07 47 8 6 96 98 29 06

10 58 71 96 30 24 18 46 23 34 27 85 13 99 24 44 49 18 09 79 49 74 16 32 23 0 2

11 57 35 27 33 72 24 53 63 94 09 41 10 76 47 91 44 04 95 49 6 6 39 60 04 59 81
12 48 50 8 6 54 48 2 2 06 34 72 52 82 21 15 65 2 0 33 29 64 71 11 15 91 29 12 03
13 61 96 48 95 03 07 16 39 33 6 6 98 56 10 56 79 77 2 1 30 27 12 90 49 2 2 23 62
14 36 93 89 41 26 29 70 83 63 51 99 74 2 0 52 36 87 09 41 15 09 98 60 16 03 03
15 18 87 0 0 42 31 57 90 12 0 2 07 23 47 37 17 31 54 08 01 8 8 63 39 41 8 8 92 10

16 8 8 56 53 27 59 33 35 72 67 47 77 34 55 45 70 08 18 27 38 90 16 95 8 6 70 75
17 09 72 95 84 29 49 41 31 06 70 42 38 06 45 18 64 84 73 31 65 52 53 37 97 15
18 12 96 8 8 17 31 65 19 69 0 2 83 60 75 8 6 90 6 8 24 64 19 35 51 56 61 87 39 12

19 85 94 57 24 16 92 09 84 38 76 2 2 0 0 27 69 85 29 81 44 78 70 21 94 47 90 12

2 0 38 64 43 59 98 98 77 87 6 8 07 91 51 67 62 44 40 98 05 93 78 23 32 65 41 18
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Table 23. (C o n tin u e d )

No. 1- 1 0 II1 - 2 0 211-30 311-40 41-50

21 53 44 09 42 72 0 0 41 8 6 79 79 6 8 47 2 2 0 0 2 0 35 55 31 51 51 0 0 83 63 2 2 55
2 2 40 76 6 6 26 84 57 99 99 90 37 36 63 32 08 58 37 40 13 6 8 97 87 64 81 07 83
23 0 2 17 79 18 05 12 59 52 57 0 2 2 2 07 90 47 03 28 14 11 30 79 2 0 69 2 2 40 98
24 95 17 82 06 53 31 51 10 96 46 92 06 8 8 07 77 56 11 50 81 69 40 23 72 51 39
25 35 76 2 2 42 92 96 11 83 44 80 34 6 8 35 48 77 33 42 40 90 60 73 96 53 97 8 6

26 26 29 13 56 41 85 47 04 6 6 08 34 72 57 59 13 82 43 80 46 15 38 26 61 70 04
27 77 80 2 0 75 82 72 82 32 99 90 63 95 73 76 63 89 73 44 99 05 48 67 26 43 18
28 46 40 6 6 44 52 91 36 74 43 53 30 82 13 54 0 0 78 45 63 98 35 55 03 36 67 6 8

29 37 56 08 18 09 77 53 84 46 47 31 91 18 95 58 24 16 74 11 53 44 10 13 85 57
30 61 65 61 6 8 6 6 37 27 47 39 19 84 83 70 07 48 53 21 40 06 71 95 06 79 8 8 54

31 93 43 69 64 07 34 18 04 52 35 56 27 09 24 8 6 61 85 53 83 45 19 90 70 99 0 0

32 21 96 60 12 99 11 2 0 99 45 18 48 13 93 55 34 18 37 79 49 90 65 97 38 2 0 46
33 95 2 0 47 97 97 27 37 83 28 71 0 0 06 41 41 74 45 89 09 39 84 51 67 11 52 49
34 97 8 6 21 78 73 10 65 81 92 59 58 76 17 14 97 04 76 62 16 17 17 95 70 45 80
35 69 92 06 34 13 59 71 74 17 32 27 55 10 24 19 23 71 82 13 74 63 52 52 01 41
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Table 23. (C ontinued)

No. 1 -10  11-20 21 -3 0  3 1 -4 0  4 1 -5 0

36 04 31 17 21 56 33 73 99 19 87 26 72 39 27 67 53 77 57 6 8 93 60 61 97 2 2 61
37 61 06 98 03 91 87 14 77 43 96 43 0 0 65 6 8 50 45 60 33 01 07 98 99 46 50 47
38 85 93 85 8 6 8 8 72 87 08 62 40 16 06 10 89 2 0 23 21 34 74 97 76 38 03 29 63
39 21 74 32 47 45 73 96 07 94 52 09 65 90 77 47 25 76 16 19 33 53 05 70 53 30
40 15 69 53 82 80 79 96 23 53 10 65 39 07 16 29 45 33 0 2 43 70 0 2 87 40 41 45

41 0 2 89 08 04 49 2 0 21 14 6 8 8 6 87 63 93 95 17 II 29 01 95 80 35 14 97 35 33
42 87 18 15 89 79 85 43 01 72 73 08 61 74 51 69 89 74 39 82 15 94 51 33 41 67
43 98 83 71 94 2 2 59 97 50 99 52 08 52 85 08 40 87 80 61 65 31 91 51 80 32 44
44 10 08 58 21 6 6 72 6 8 49 29 31 89 85 84 46 06 59 73 19 85 23 65 09 29 75 63
45 47 90 56 10 08 8 8 0 2 84 27 83 42 29 72 23 19 6 6 56 45 65 79 2 0 71 53 2 0 25

46 2 2 85 61 6 8 90 49 64 92 85 44 16 40 12 89 8 8 50 14 49 81 06 01 82 77 45 12

47 67 80 43 79 33 12 83 11 41 16 25 58 19 6 8 70 77 0 2 54 0 0 52 53 43 37 15 26
48 27 62 50 96 72 79 44 61 40 15 14 53 40 65 39 27 31 58 50 28 11 39 03 34 25
49 33 78 80 87 15 38 30 06 38 21 14 47 47 07 26 54 96 87 53 32 40 36 40 96 76
50 13 13 92 6 6 99 47 24 49 57 74 32 25 43 62 17 10 97 11 69 84 99 63 2 2 32 98
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Appendix III

Datasets of Some Real Medical Examples

In this appendix, 12 examples from real world are presented, of which some 
have been mentioned in the text or exercises. The filename of dataset, the 
definition and format of variables will be given after each of the examples.

Example 1 A chemical laboratory measured a biochemical index every 
day as listed the following table. Draw a curve with the following expression:

Y = p\* exp[— exp(p2 — p^TIME)]

Time
(day)

Y
(biochemical index)

Time
(day)

Y
(biochemical index)

1 16.080 9 590.030
2 33.830 10 651.920
3 65.800 11 724.930
4 97.200 12 699.560
5 191.550 13 689.960
6 326.200 14 637.560
7 386.870 15 717.410
8 520.53

Example 2 In order to repair ear injury, a department of orthopaedics 
measured five variables of the uninjured ear for 300 patients who had ear 
injury. The five variables were: ear’s length (EC), ear’s width (EK), the 
abduction distance of the ear (EZ), the type of ear (EX) (coded from 1 to 
6) and the type of auricular lobule (ECX) (coded from 1 to 4). Two other 
indices were calculated as follows:

The ear index (El) =  EK/EC x 100%, 
The abduction index (AI) =  EZ/EK x 100%.

983
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A cluster analysis had been carried out, according to the five variables: 
EC, EK, EZ, El, AI to seek for standard types of the ear for clinical repair 
of ear. If only one side of ear was injured, the type of standardized ear could 
be selected according to the normal side. If both ears were injured, the type 
of standardized ear could be selected according to the judgment of doctors.

The last column of data was the type of ear (TYPE), which was the result 
of cluster analysis.

The original data were listed as follows:

No. EC EK EZ EX ECX TYPE

1 6 .6 3.5 1.9 5 3 1

2 5.9 3.0 2 .1 2 2 1

300 6.5 3.2 1.5 5 2 4

The dataset, DATA2.DAT, can be found in the appendices at the website.

Example 3 A department of orthodontics studied the diagnostic classifi
cation for anterior crossibite in early permanent dentition. The calibration 
data included 50 patients with anterior crossibite in early permanent denti
tion. A total of 25 indices about craniofacial construe characters of anterior 
crossibite were calculated based on X-ray of central occlusion (for example:
ARGO, SN,__ RANG, CV value). The diagnosis of patients (named as
TYPE and TYPE 2) was carried out by specialist who had at least three 
years of clinical experience in orthodontics.

TYPE 1 =  skeletal pattern TYPE 2 1 =  maxillary pattern
2  =  denture pattern 2  =  mandibular pattern
0  =  similar skeletal pattern 0  =  not certain pattern

TYPE 2 was re-classification for skeletal pattern and similar skeletal 
pattern.

Carry out a stepwise linear discriminant analysis for the classification 
of TYPE according to the 25 indices mentioned above.

The dataset, DATA3.DAT, can be found in the appendices at the website.

Example 4 A department of internal medicine conducted a clinical 
research to investigate the relationship between coronary heart disease,
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angina pectoris, myocardial infarction and the function of heart. The indices 
describing the function of heart were indicated by LPA, TC, TG, LDL, 
HDL, APOA and APOB. The statue of coronary heart disease, angina pec
toris and myocardial infarction were indicated by the variables CHD, AP 
and MI respectively (“no” was coded as 0 and “yes” was coded as 1). The 
data also included demographic variables such as gender (SEX, female was 
coded as 0 and male was coded as 1) and age. The total number of observed 
subjects was 136.

The dataset, DATA4.DAT, can be found in the appendices at the website.

Example 5 In order to investigate the effect of the intraepithelial hyper
plasia of esophagus on carcinoma, a cytological examination was carried 
out for the residents over 30 years old of a certain community. At the same 
time, the family history about the death on account of esophagus carcinoma 
was registered. The period of observation was nine and a half years; the data 
on the incidence of esophagus carcinoma of those residents were collected 
and listed as follows:

No. Age X4 X5 X6 n r

2
3
4
5
6

0  0
0  0

1 0

1 0

0  1

0  1

о  0
0 0

1 0

1 0

0  1

0  1

о  0
0  0
1 0

1 0

0  1

0  1

0 11493 62
1 44 1
0 17 0

7 2
8 2
9 2

10 2
11 2
12 2
13 3
14 3
15 3
16 3
17 3
18 3

0 900 10
1 7 0
0 7128 195

30 2
0 78 3
1 0 0
0 417 17
1 5 0
0 1115 34
1 7 0
0 18 3
1 1 0
0 27 2
1 2 1
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The number of observed subjects was N, and the number of patients was R. 
The code sheet for this dataset was:

Age 1 =  30-49 years old

2 =  50-69 years old
3 =  70 years old and 

above

Family 
history (X5)

1 =  spouse died from 
carcinoma of 
esophagus 

0  =  others

Family 1 =  relative died Severe epithelial 1 =  severe hyperplasia
history from carcinoma of hyperplasia of
(X4) esophagus 

0  =  others
esophagus (X6 )

ОcIIо

Example 6 The esophagus carcinoma, stomach carcinoma, colon and 
rectal carcinoma were most common all over the world among the cancers 
of digestive tract. Recently, some new diagnosis technique such as fiberop
tic endoscope, X-ray double contrast neoplasty and exfoliative cytological 
examination made it possible to early diagnose for these cancers, but the 
incidence and prognosis had not been changed significantly. To investigate 
the prognosis situation of the patients with stomach carcinoma, data were 
collected by an epidemiological survey (total 107 patients, 75 deaths and 
32 survivals). The code sheet for the variables to be considered was given 
as follows:

Variable Code Variable Code

Gender 0  =  male, 1 =  female Age 1 =28^10, 2 =  41-50,
3 =  51-60,4 =  61-

Method of 1 =  radical Location of cancer 1 =  gastric antrun
operation gastrectomy (SITE) 2  =  body of stomach
(OM) 2  =  palliative 3 =  cardia of

gastrectomy stomach
Type based 1 - type I, 2 =  type II Degree of 0  =

on gross 3 =  type III. differentiation high differentiation
inspection 4 =  type IV (DD) 1 =  lower
(gross) differentiation
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Variable Code Variable Code

Method of 0  =  expansive growth Depth of infiltration 1 =  muscle layer,
growth 1 =  infiltrative (DI) 2  =  serous coat
(GM) growth layer, 3 =  out layer 

of serous coat
Lymphatic 0  =  none, 1 =  one Lymphatic 0  =  none, 1 =  have

metastasis
(LN)

lymph node 
2  =  two lymph 
node

infiltration (LI)

Distance 0  =  none, 1 =  have LC and PC reaction 0  =  none, 1 =  mild,
metastasis
(DM)

of infiltration (IL) 2  =  obvious

DNA (DNA) 0  =  diploid, Stage of TNM 1 =  lb, 2 =  II, 3 =  Ilia,
1 =  allosome (TNM) 4 =  Illb, 5 =  IV

Outcome 0  =  death, Survival month
(SURV) 1 =  survival (LIFE)

The dataset, DATA6.DAT, can be found in the appendices at the website.

Example 7 To compare the efficacy of Salmeterol (group C), Salbutamol 
(group B) and placebo (group A), a department of pulmonary randomly 
assigned the patients into three treatment groups and measured the PEFR 
value at different time under the condition of double-blind. The results were 
listed in the following table. Test whether there was a significant difference 
among the three treatments.

Measurement at night Measurement in day time

Case Group Before 1 week 2 week 3 week Before 1 week 2 week 3 week
no. A, B o rC  NP NT1 NT2 NF DP DTI DT2 DF

1

2

The dataset, DATA7.DAT, can be found in the appendices at the website.

Example 8 To investigate the relationship between blood pressure, 
cholesterol serum level and coronary heart disease, 1330 patients were 
cross-classified into a 2 x 4 x 4 contingency table according to the fol
lowing criteria. Analyze the data by the methods for discrete variables.
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Coronary heart disease
Blood pressure 

(mm Hg)

Cholesterol serum level

< 2 0 0 200-219 220-259 >260

yes 1 <127 2 3 3 4
2 127-146 3 2 1 3
3 147-166 8 11 6 6

4 >167 7 12 11 11

no 1 <127 117 121 47 2 2

2 127-146 85 98 43 2 0

3 147-166 119 209 6 8 43
4 >167 67 99 46 33

Example 9 In order to investigate the efficacy of tretinoin for leukemia, 
there was a clinical follow-up study including three drug groups. The group
ing variable was GRO (simple chemotherapy group coded 1, tretinoin group 
coded 2 and chemotherapy plus tretinoin group coded 3). The outcome was 
DEAD (death coded 1), and the variable name for follow up time was LIFE 
(month).

The dataset, DATA9.DAT, can be found in the appendices at the website.

Example 10 The following table showed the measurement results of sex 
hormone at several time points for a woman. Fit a curve to express the sex 
hormone changing with time. The expression for the curve is assumed to be:

Y = p i exp(p2X)  +  p3 exp(p4X), 

where p \ , p 2 , рз, p4 are the parameters to be estimated.

X  (hour) V X  (hour) У

0 641 1 2 0 236
1 8 6 6 180 226
5 891 240 224
10 947 300 130
15 757 360 128
2 0 735 480 117
25 541 720 143
30 476 1440 85
40 590 2880 84
50 369 4320 152
60 352 7200 139
90 295
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Example 11 In order to evaluate the severity of retina disease, a depart
ment of ophthalmology measured 10 variables in 131 diabetes patients, 
including age (AGE), course of diabetes (TIME), glucose level (GLU
COSE), visual acuity (VISION) and А-wave latency (AT), А-wave value 
(AV), В-wave latency (ВТ), В-wave value (BV), QP-wave latency (QPT), 
QP-wave value (QPV) of electroretinogram. At the same time, the details of 
the retinal changes were also examined. According to the unified criteria, 
the severity of retina disease was diagnosed as mild, moderate or severe 
(GROUP, coded as A l, A2 and A3 respectively). The raw data were saved 
in EYE 1 .DAT as calibration data. In addition, the above variables of another 
31 diabetic patients were measured and the data were saved in EYE2.DAT 
as test data.

Find a discriminant function by stepwise discriminant analysis based on 
the training sample EYE1 .DAT, and classify the test data EYE2.DAT using 
the linear discriminant function.

Both EYE 1 .DAT and EYE2.DAT were free format and can be found in 
the appendices at the website.

Example 12 In order to classify and identify bacterium, a research con
stitute analyzed the content of fatty acids in bacterium cell using gas chro
matography. 24 bacteria were collected, including eight jejuno-campylo 
bacterium (named CJ1-CJ8), three colonic campylo bacterium (named 
CC1-CC3), nine pyloro-spirillosis (named HP1-HP9) and four other enteric 
bacilli (named XX1-XX4). The percentile contents of 12 different fatty 
acids (named X I-X I2) of those bacteria were measured. The data were 
saved in BACTERIA.DAT (can be found in the appendices at the website).

Classify the 24 bacteria by cluster analysis based on the 12 variables.

(1st edn. Binghua Su, Qingbo He; 2nd edn. Jing Gu)
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