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Preface

Stochastic processes with memory are the focus of intensive mathematical, exper
imental, and computational studies due to the widening spectrum of applications 
in natural and social sciences. To engage more in these exciting new developments, 
the Research Center for Theoretical Physics (RCTP), Central Visayan Institute 
Foundation, organized the 7th Jagna International Workshop: Analysis of Fractional 
Stochastic Processes: Advances and Applications on 6-9 January 2014. The Work
shop aimed to discuss (a) novel vis-a-vis standard approaches in fractional stochastic 
analysis; (b) experimental and theoretical highlights in applications to nanotechnol
ogy, mass rapid transit systems, critical transitions in economic systems, fractional 
quantum mechanics, polymer physics, among others; and (c) challenges, recent 
breakthroughs and open questions. The informal nature of the Workshop held in the 
coastal town of Jagna in the island province of Bohol, Philippines, was essentially 
meant to foster active interaction among speakers and participants so that possible 
research targets could be clearly defined.

The papers in this volume serve as a record of (i) review and pedagogical lectures 
given with graduate students and young Ph.D.’s as the target audience, and (ii) new 
research results. As in previous workshops of the series, camera-ready manuscripts 
were contributed by lecturers and speakers for the publication of the Proceedings 
to allow a wider audience to benefit from the Workshop.

The Workshop organizers wish to express their gratitude to the speakers, lec
turers, and participants, as well as to the Workshop sponsors for the invaluable 
support. They are also grateful to the Workshop project assistants and staff who 
ensured the smooth running of the Workshop.

С. C. Bernido and М. V. Carpio-Bernido
Editors

№ World Scientific
w w w . w o r l d s c i e n t i f i c . c o m
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This paper gives a brief introduction to  some im portant fractional and multifractional 
Gaussian processes commonly used in modelling natural phenomena and man-made 
systems. The processes include fractional Brownian motion (both standard and the 
Riemann-Liouville type), multifractional Brownian motion, fractional and multifrac
tional Ornstein-Uhlenbeck processes, fractional and mutifractional Reisz-Bessel motion. 
Possible applications of these processes are briefly mentioned.

Keywords: Fractional and multifractional stochastic processes; locally self-similarity; 
short and long-range dependence.

PACS Numbers: 02.50.-r, 02.50.Ey, 05.40.-a

1. Introduction

During the past few decades, fractional calculus1-4 has found applications in diverse 
fields ranging from physical and biological sciences, engineering to internet traf
fic and economics. One of the main reasons for its popularity in modelling many 
phenomena is that it provides a natural setting for describing processes which are 
fractal in nature and with memory.5-11 Many applications of fractional calculus 
are based on the fractional integro-differential equations.12-15 For example, various

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.
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types of fractional diffusion equations and fractional Langevin-type equations have 
been proposed to model anomalous diffusion, and both deterministic and stochastic 
fractional equations are used to describe viscoelastic phenomena, telecommunica
tion, and other systems in science and engineering.16-29

The usual way to obtain concrete realization of a particular fractional model 
is to associate it with a fractional generalization of an ordinary stochastic process. 
This can be carried out nicely due to the smooth integration of fractional calculus 
and probability theory. The most well-known among these fractional stochastic 
processes include fractional Brownian motion30-32 and fractional Levy motion.33-35 
Another fractional stochastic process of interest is fractional Ornstein-Uhlenbeck 
process.36-38

Fractional Brownian motion (FBM) and fractional Ornstein-Uhlenbeck (FOU) 
process are characterized by a single parameter. It is possible to extend FBM 
to bifractional Brownian motion39 and mixed FBM ,40 which are indexed by two 
parameters and two or more parameters respectively. Similarly, FOU process can 
also be generalized to a process parametrized by two fractional indices.41. Other 
examples of stochastic processes with two indices are fractional Riesz-Bessel motion 
(FRBM)43,44 and Gaussian process with generalized Cauchy covariance (generalized 
Cauchy process).45,46 In general, processes parametrized by two indices can provide 
more flexibility in modelling physical phenomena. In the case of the generalized 
Cauchy process both have the advantage that the two indices provide separate char
acterization of the fractal dimension or self-similar property, a local property, and 
the long-range dependence, a global property. This is in contrast to models based 
on fractional Brownian motion which characterize these two properties with a single 
parameter. On the other hand, the two indices of FRBM characterize the long-range 
dependence and intermittency separately. In contrast, FBM is not intermittent.

Further generalization of fractional process can be carried out by replacing 
the constant index by a continuous function of time. In this way, one obtains 
multifractional Brownian motion47,48 and multifractional Ornstein-Uhlenbeck pro
cess.49 Similarly, it is possible to have the multifractional extension of Riesz-Bessel 
motion50,51 and generalized Cauchy process. These processes can be used to describe 
systems with variable fractal dimension and variable memory. In this short paper 
we shall restrict our discussion on some fractional and multifractional Gaussian 
processes, and mentioned briefly their possible applications. The non-Gaussian frac
tional and multifractional Levy motion will not be considered here.

2. Fractional Brownian M otion

Among all the fractional stochastic processes applied to modeling natural and man- 
made systems, fractional Brownian motion (FBM) can be regarded as the most 
widely used. Here we would like to summarise briefly the main properties of FBM.

1560001-2



Some fractional and multifractional Gaussian processes: A brief introduction

The standard FBM as introduced by Mandelbrot and Van Ness52 is defined by 
the following moving average representation:

D"<‘> -  щ н т щ { 0 {‘  -  " , я ' 1/2 -

( * - « 4  (i)

where B{t) is the standard Brownian motion, Г is the gamma function and the 
Holder exponent (or Hurst index) H  lies in the range 0 < H  < 1. Equation (1) can 
be written more compactly as

Вн{Ь) =  Г (Я  +  1 / 2) ~ и)И+" 1/2 “  dB ^ '  W

where (x)+ =  m ax(i, 0). Note that there exists an equivalent representation of FBM 
known as the harmonizable or the spectral representation:33

1 r°° eiti _  x

B"{t)=2i  L w ^ dm- (3)
B h is a Gaussian process with zero mean and its variance and covariance are respec
tively

( (S h W ) 2)  = ° н \1\2И~ (4)

( ( В я М В я М ) 2)  = ± [\1Г +  | . Г  -  |t -  . | “ ], (5)

with

^  =  ( № ( D f )  =  (e)

FBM defined above is continuous everywhere non-differentiable with an unique 
scaling exponent H , a characteristic of a monofractal process.

The standard FBM B # has some desirable properties. It is a self-similar process 
of order H:

Bniat) = aHBf{{t), Va >  0, t e R,  (7)

where the equality is in the sense of finite joint distributions. Though B h is itself 
non-stationary, its increment process

A B H(t,T) = B H(t + T)  — B H(t), т > 0, (8)

is stationary with covariance

^ A B H { t , T 1) A B H ( t , T 2 ) ' j  =  a- f [ \ r , \ 2 H  +  \ t 2 \2 H  -  | n  -  t 2 \2 H ] .  ( 9 )
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Self-similarity together with stationary increments imply

BH(t + t ) — B(t) = а~н  [ В н ^  + ат) -  Bu{t)\, Va > 0, t e  M. (10)

In contrast to the local properties which depend mainly on the correlations 
between points that are close to each other, the long and short-range dependence 
of a stochastic process is a global property that measures the total strength of the 
correlation over a large domain. Given a Gaussian stochastic process Y[t)  with

Г l - 1 /2
correlation R(t,s)  — (Y (s )Y ( t)^  ^ (y (s ))2^ ( y ( f ) ) 2M we say that it has

long-range dependence (LRD) or long memory if the integral JR R(t, t  + u)du is 
divergent. On the other hand, if the integral is convergent, the process has short- 
range dependence (SRD) or short memory.37 One can easily verify that FBM is LRD 
except for H  =  1/2, which corresponds to Brownian motion, a Markov process.

Despite the nice properties mentioned above, the standard FBM does not rep
resent a causal time-invariant system as there does exist a well-defined impulse 
response function. There is another type of FBM, the one-sided FBM first intro
duced by Barnes and Allan53 using the Riemann-Liouville (RL) fractional integral:

X h(,) ‘  Щ 1 1 / 2) I  {t ~ (11)
represents a linear system driven by white noise 77 (t), with the impulse response 
function t H~1/ 2/(T (H + l/2 )) .  The RL-FBM Xn{t)  is a zero-mean Gaussian process 
with a complicated covariance:

, . j.H—1/2 „ # + 1 /2

= (- F + V 2) ( r ( f l + l / 2) f ^ ( U / 2 - H ' 3/2 +  f l -8 / t ) ' <12)

where s < t and 2^1 is the Gauss hypergeometric function. However, the variance 
of X h has the same time dependence as Вц-

<13)
Except for the absence of stationary increments, X h has many properties in com

mon with B h , such as self-similarity, regularity of sample path, LRD, etc. Absence 
of stationary property for its increments implies that X h can not have a harmo- 
nizable representation, and it is also not possible to associate to X g  a generalized 
spectrum of power-law type as in the case of standard FBM. This is the main rea
son for the lesser use of FBM of RL-type in modeling systems with power law type 
spectrum. However, X h has gained more popularity recently in some applications 
as the process is physically more realistic since it starts at time zero.

Applications of FBM are well-known and diverse. Here we just mention the more 
common ones such as anomalous transport phenomena in physical and biological 
sciences, telecommunication,54 and finance.30’55
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3. M ultifractional Brownian M otion

FBM can only be used in modelling phenomena which are monofractal with same 
irregularity globally and with constant memory as characterised by the constant 
Holder exponent H. However, for real world systems global self-similarity seldom 
exists. Fixed scaling only holds for a certain finite range of intervals. In addition, 
empirical data indicate that the scaling exponent or order of self-similarity usu
ally has more than one value. Thus in many complex heterogeneous systems there 
exist phenomena which exhibit multifractal properties with variable space and time 
dependent memory.56-58 One simple way to generalize a mono-scaling FBM to a 
multi-scaling FBM (or multifractional Brownian motion, MBM) is to replace the 
constant H51der exponent by H(t),t  e  IR+, a (0, l)-valued function with Holder 
regularity r, r > sup H(t). In general H(t) can be a deterministic or random func
tion, and it needs not be a continuous function. This time-varying Holder exponent 
H(t) describes the local variations of the irregularity of the MBM. Such a general
ization of FBM B h to MBM В Нщ was carried out independently by Peltier and 
Levy-Vehel47 based on the moving-average representation and by Benassi et al48 
using the harmonizable representation. As expected, these two generalizations of 
MBM are almost certainly equivalent up to a multiplicative deterministic function 
of time.59-60

MBM does not satisfy the self-similar property and its increments are no longer 
stationary as a result of the time-dependence of the Holder exponent. However, one 
expects -Вя(4) to behave like FBM locally. If an additional condition is imposed on 
H(t) such that H{t) G C r (R, (0, l ) ) , t  € R for some positive r with r  > supH(t), 
then it can be shown that H (t0) is almost certainly the Holder exponent of the 
MBM at the point t 0; and the local Hausdorff and box dimensions of the graph of 
BH(t) at t0 are almost certainly 2 — H{ta). One can also characterize the above local 
fractal property by using the following notion. A process Z (t) is said to satisfy the 
locally asymptotically self-similarity at a point t0 if

lim
p —> 0 +

Z(t + pu) — Z(t0)
pH(t0) =  (Я я (* .)Н )и6в, (14)

u6R
where the equality is up to a multiplicative deterministic function of time. It can 
be verified that Вн{Ь) is locally asymptotically self-similar. Thus MBM at a time 
t0 behaves locally like a FBM with Holder exponent H (t0). Note that the time- 
dependent Holder exponent has no effect on the long range dependence of the 
process. Just like FBM, i?H(t) is a long memory process.

Similar to the case of standard FBM, one can also extend FBM of RL type to 
its corresponding multifractional process. By replacing H by H(t) in (11), one gets 
MBM of RL type with the following covariance:60,61

a*i ( l Л  - H ( t ) , H ( a )  +  %,$)
% % )  = - ------------- —7 ---------- ^ —7---------- 2t 2-

X 7 (2tf(S) +  l ) r ( t f ( S) +  ± ) r ( t f ( t )  +  ±J
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The two types of MBM (standard and RL) have more properties in common 
as compared with the corresponding two types of FBM. They have non-stationary 
increments, and both are locally asymptotically self-similar with local fractal dimen
sion at a point t0 given by 2 — H (t0), and they are both LRD.

MBM has been applied to model many phenomena which have variable irre- 
gurities or variable memory. For example, it is used in modelling network traffic 
and signal processing,62’63 in geophysics for terrain modelling,64,65 in financial time 
series for stochastic volatility modelling,66 and in modelling anomalous diffusion 
with variable memory.67,68

Finally we remark that MBM can be further generalized. Various generalizations 
of MBM have been proposed69,70 to allow Holder function to be very irregular, and 
enable the prescription of local intensity of jumps in space or time.

4. Fractional and M ultifractional Ornstein-Uhlenbeck Process

FBM and MBM are used to model long memory phenomena. For describing systems 
which are short-range dependent, Ornstein-Uhlenbeck process can be a suitable 
candidate. Recall that Ornstein-Uhlenbeck process is the solution of the ordinary 
Langevin equation

Dtx(t) + ux(t)  =  r](t), (16)

where T](t) is standard white noise which can be regarded as the time derivative 
of Brownian motion in the sense of generalized function. Assuming x(a) = 0, the 
solution of (16) is given by

x (0 = f  euj(',~u^v(u )du. (17)
J a

There are several ways to fractionalize Ornstein-Uhlenbeck process. One way is to 
replace the white noise by a fractional Gaussian noise in (16) or (17),36,37 or one 
can apply the Lamperti transformation to fractional Brownian motion.37,38

In this paper we shall consider a different type of FOU processes. FOU process 
of Weyl type and Riemann-Liouville type can be defined as71

Y ? ( t)  = Щ  f  (t -  u)a- l e ^ - u\{n )d u , (18)

ya L(t) = Щ  f \ t  -  u r - ' e ^ - ^ W d u .  (19)

The condition a  > 1/2 is imposed to ensure finite variance for both the FOU 
processes. (18) and (19) can be regarded as the generalizations of (17), with a = 
—oo and a =  0. These fractional processes are solutions to the following nonlinear 
fractional Langevin equation:

(aDt +uj)aY(t) = T ,( t) . (20)
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The Weyl fractional Ornstein-Uhlenbeck process Y™(t) is stationary centred 
Gaussian process with variance and covariance

E ( [ С М ] г) = Г(2<,~ ‘У  ■ Р ЫГ (a)
a — 1 / 2

( ^ r )  «#». (21b)

where K„(z) is the modified Bessel function of second kind.72 On the other hand, 
the Riemann-Liouville fractional Ornstein-Uhlenbeck process Y ^ L(t) is a non- 
stationary centred Gaussian process with variance and covariance

(“ a)

/ 4 p-u(t+s) ,a ta - l  , s \
E ( Y ^ ( t ) Y ^ ( s ) )  =  r ( a  +  i )r(a )  * 1 ( l , l - a , l  +  « ) , I , M 4  * > « .  (22b)

where 7 (0, ж) is the incomplete Gamma function, and $ i(a , 6, с, ж, у) is the con
fluent hypergeometric function in two variables. For discussion of properties and 
applications of the FOU process of Weyl and RL type, and their extension to FOU 
process with two indices can be found elsewhere.41,42,71

Just like the case of MBM, one can extend the two types of FOU processes to 
their corresponding multifractional OU (MOU) processes by replacing a  by a(t). 
The covariance of the MOU process of Weyl type for s < t is given by

/  \  p — w ( t + s )  Г&

* ( « & ( * « &  M )  =  r (t t (t ) )r (o (s ) )  / _ < *  -
w(t—s) poo

/  + 1 -  s)a{-t)- le - 2“udu
Jo

^ (a{s),a{s)+ a(t),2 u j(t-s)), (23)

Г (а (4 ))Г (а (в ))
e-u>(t-s)U _  a\a(e)+a(t)-l

r (a ( t) )
where Ф(a ,y;z)  is the confluent hypergeometric function. In contrast to the Weyl 
fractional Ornstein-Uhlenbeck process, the multifractional process is in general not 
stationary.

For MOU process of RL type, its covariance for s < t is

* (n s < w » < * > )  -  r ( : W)r(!'(.)) i >  -
e-oj(t+s)sa(s)^oc(t)-l /•! . ._ / s \ a(t) — l

r (a ( t) )r (e (* ))
e~ui(t+s) Sa(s) j.a(t) - 1

j \  1 -  u)a^ ~ l ( 1  -  J u ) Q(t) \ 2u,uadu

~  W ( \ , 1 ( А\ ф1 (1 . 1 - « (* ) .!  + « (« ),« /* .M e ))-  (24)Г(а(в ) +  1 )Г(а(в))

The local properties of these two types of MOU processes are similar to that 
of the corresponding MBM. With probability one, both the functions Y™ (t ) and
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Y ^ L{t) have Holder exponent a(tQ) — 1/2 at the point t 0\ and the Hausdorff dimen
sion of the two processes is 5/2 — a(t0).49 In addition, MOU processes of Weyl and 
RL-type are locally asymptotically self-similar, their tangent process at a point t0 
is the FBM indexed by parameter a(t0) —1/2. In contrast to MBM, MOU processes 
are SRD, that is they are short memory processes.

The remark concerning the multifractality of the multifractional Brownian 
motion applies to the multifractional Ornstein-Uhlenbeck process. That is, the mul
tifractional process is truly multifractal if the Holder exponent is a random function, 
otherwise it is a multiscaling process. However, there are many phenomena that are 
multiscaling instead of multifractal.

5. Fractional and M ultifractional Riesz-Bessel M otion

Fractional Riesz-Bessel motion (FRBM) was first introduced by Anh et al. as 
fractional Riesz-Bessel random field.43 In one dimension, it is a Gaussian process 
parametrized by two indices which characterize separately two distinct properties — 
self-similarity and intermittency. The latter property corresponds to features such as 
sharp peaks or random bursts, and properties of processes that can be described by 
high skewed probability distributions with very slowly decaying tails. Thus FRBM 
has an advantage over FBM, which is unable to describe intermittency. In addition, 
for certain ranges of the two parameters, FRBM has a semimartingale representa
tion.44

FRBM is closely related to Riesz and Bessel potentials. In the one dimension 
case, FRBM can be regarded as the solution of the following fractional stochastic 
differential equation:

D l '2(Dt +  o,)q/V Qi7 =  v (t), a >  0, 0 < 7  < 1 , (25)

where is the Riesz derivative defined by

D l /2f ( t )  = F - 1(\k \ 'i f(k)) ,  (26)

where F  denotes Fourier transform, /  =  F (f) .  Formally, the solution of (25) is 
given by

1 A eikt 
= —  /  ------------------- izv(t)dt. (27)

2 W r  |jb |7 (a ,2 +  jfc2)“ / 2

(27) is to be regarded as a generalized random process.
Note that Va n (t) can be defined as an ordinary stochastic process if 0 < 7  < 1/2, 

and a  +  7  > 1/2. In the limit 7  =  0, Va n {t) becomes FOU process of Weyl type 
which is SRD. On the other hand, if a  =  0, (27) becomes the generalized spectral 
density associated with FBM, a long memory process. In general, Vari(t) is LRD 
when 7  ф 0. Thus, FRBM allows interpolation between long and short memory 
processes.
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The spectral density of Va n (t) is

5 ( 4  -  w w U + v r  (28)
The covariance of FRBM can be calculated as the inverse Fourier transform of the 
spectral density (28)

, 1 — 2 a —2or - 2 7 r ( l - 7 ) r ( a  +  7 —j )  з i
C a , n , ( x )  —  27 г Г ( а )  1^ 2 (  о  о  a  7 , o ’

oj\x \

\X\2a+21 1Г^|- — Q — 7 ) U)\X\ (29)

Note that when 7 =  0, (29) becomes
oI/2-q  / 1tI \  a x/2

CQl0(*) =  - 7 = ^  U  K a. 1/2(w\x\) (30)v (а) \
which is the covariance of the fractional Bessel process.72 When a  =  1, (30) becomes 
the two-point Schwinger function of the one-dimensional Euclidean scalar massive 
field.

Additional properties of FRBM are discussed elsewhere.43,44,51 Generalization 
of FRBM to multifractional RBM (MRBM) can again be carried out by replacing 
a  and 7 by a(t) and 7 (t) respectively in (27). The resulting MRBM V^(t)i7(t)(i) 
is a Gaussian process which has many properties similar to MBM. For example, 
MRBM is locally asymptotically self-similar, its tangent process at a point tQ is a 
standard FBM indexed by a(t0) + 7 (tQ) -  1/2. Note that this is an example of the 
general result of Falconer73 that under certain conditions, the tangent process of 
a Gaussian process is FBM up to a multiplicative deterministic function of time. 
Another local property is that the Hausdorff dimension at a point t0 of the graph 
of FRBM is with probability one equal to 5/2 — a(t0) — 7 (ta).

Finally, we consider the LRD and SRD properties of MRBM. In the general case 
where a(t) and 7 (t) are not constants, we can show the following:51 (a) If 7 (i) =  0 
and there exists a constant M  so that n /2  < a(t) <  M  then the MRBM of variable 
order Va^^oit) is SRD. (b) If there exist constants L\ £ (0,n/2) and L2 > n/2, 
Mi G ( L i ,n / 2), M 2 > Li  so that L\ < 7 (t) < Mi and L2 < a(t)+'y(t) < M2, then 
MRBM Va(t)Mt){t) is LRD.

FRBM and MRBM can be used to model systems that exhibit both long-range 
dependence and intermittency, for example, in financial time series, air pollution, 
rainfall data, porosity in heterogenous aquifer, turbulence, etc.43,44,74-76

6. Generalized Cauchy Process

The stationary Gaussian process defined by the following generalized Cauchy (GC) 
covariance parametrized by two indices

Ca,p(t) = ( y a,p(s)Ua,p(t + 8)) =  (1 +  |*|Q) -/3, tG K ,  0 < a < l ,  /3 > 0, (31)
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is known as generalized Cauchy process.46 When a = 2, /3 =  1 one gets the usual 
Cauchy process. This process was first introduced by Gneiting and Schlather.45 
It has a nice and useful property which allows separate characterization of fractal 
dimension and LRD by two different parameters.

It is well-known that a stationary process cannot be self-similar. Ua^{t)  satis
fies a weaker self-similar property known as local self-similarity.77’ 78 A Gaussian 
stationary process is locally self-similar of order к if its covariance C(t) satisfies for 
t -» 0,

C(f) =  l - / ? | t |* [ l  +  0 ( |f r ) ] ,  ^ > 0 .  (32)

A more intuitive alternative definition is the following. A Gaussian process U (t ) is 
said to be locally self-similar of index к if

Uc,As) -  Ua A rt) =  UocAs) -  Uc,,p(t)\ > as |f -  s| -> 0, (33)

where the equality is in the sense of finite joint distributions. The above two def
initions and also the locally asymptotically self-similarity defined by (14) are all 
equivalent.46 It is straightforward to show that the tangent process at a point t0 is 
FBM indexed by a. In other words, GC process behaves locally like a FBM. The 
fractal dimension of the graph of a locally self-similar process of order a  is 5/2 — a.

GC process is LRD for 0 < a/3 < 1 and is SRD if a[i > 1 . The large time lag 
behaviour of the covariance (31) is given by the hyperbolically decaying covariance 
C(t) ~  \t\~aP, t —> oo which is characteristic of LRD. If the covariance is re
expressed as (l 4- |£|Q) then the parameters a  and £, respectively, provide 
separate characterization of fractal dimension and LRD.

It is interesting to point out that the covariance of GC process has the same 
functional form as the characteristic function of generalized Linnik distribution79 
and spectral density of the generalized Whittle-Matern process.72 There are also 
laws in physics which have this same analytic form. One example is the Havriliak- 
Negami relaxation law in the non-Debye relaxation theory.46 Thus, all of these 
quantities should have the same analytic and asymptotic properties, and results 
obtained in any one of them are of relevance to the other.

Applications of GC process can be found in geostatistics, telecommunication 
and climate modelling.46’80’81 Extension to GC field82 is particularly useful for 
geological modeling. Generalization of GC process to multifractional GC process so 
far has not been carried out. However, it is expected such a generalization would 
be similar to MRBM indexed by two variable parameters.

7. Concluding Remarks

From the brief discussion given above, one notes that many of the fractional and 
multifractional Gaussian processes have similar local properties, in particular the 
local self-similarity (or having FBM as the tangent process at a point). The LRD
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(or SRD) character is carried over from the fractional process to the correspond
ing multifractional process. Some related processes such as step FBM83 and mixed 
FBM40 are not included. The step FBM can be regarded as a special case of MBM, 
with H(t) a piecewise linear function. Such a multiscale process can be used to 
model anomalous transport phenomena such as single-file diffusion.84 Mixed FBM is 
a linear combination of two or more independent FBM, and it can be used to model 
retarding anomalous diffusion,85 financial time series,31,40 telecommunication,86 etc. 
As far as applications of fractional and multifractional stochastic processes are con
cerned, it is possible to select from a variety of processes one that provides the best 
description of the system under study.

Finally, we remark that path integral formulation of fractional stochastic pro
cesses has recently attracted considerable interest from physicists as well as math
ematicians.87-90 In view of the fact that several candidate theories of quantum 
gravity91-94 share the idea that spacetime is multifractal, one would expect path 
integral formulation of fractional and multifractional stochastic processes may play 
an important role in physics, just like the case in Brownian motion.
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1. Introduction

The fractional Brownian motion (fflm) is a popular model for both short-range 
dependent and long-range dependent phenomena in various fields, including physics, 
biology, hydrology, network research, financial mathematics, etc. There are many 
good sources devoted to the fBm, I will cite only few of them. For a good introduc
tory text on the fBm, a reader may address recent Ivan Nourdin’s lecture notes1 or 
the dedicated chapter of the famous David Nualart’s book.2 More comprehensive 
guides are by Yuliya Mishura3 and Francesca Biagini et al;4 the former has stronger 
emphasis towards the pathwise integration, while the latter, towards the white noise 
approach. A review of Jean-Frangois Coeurjolly5 is an extensive guide to the use of 
statistical methods and simulation procedures for the fBm.

It is worth saying few words on the aim and the origin of this article. After I 
gave a mini-course devoted to the fBm at the 7th Jagna International Conference, 
the organizers approached me with a proposition to write lecture notes. Knowing 
that there are already so many sources devoted to the fBm, I was hesitant for the 
first time. But ultimately I decided to agree and wrote this article. Naturally, it 
would be impossible to cover all the aspects of the fBm in such a short exposition, 
and this was not my aim. My aim was rather to make a brief introduction to the

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.
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ffim. Since most of the listeners of the course were not pure mathematicians, I tried 
to keep the text as accessible as possible, at the same time paying more attention 
at such practical issues as the simulation and identification of ffim.

The article is structured as follows. In Section 2, the fractional Brownian motion 
is defined, and its essential properties are studied. Section 3 is devoted to the con
tinuity of ffim. In Section 4, several integral representations of ffim in terms of 
standard Wiener process are given. Section 5 discusses the statistical estimation 
issues for ffim. In Section 6, a simulation algorithm for ffim is presented.

2. Definition and Basic Properties

Definition 2.1. A fractional Brownian motion (ffim) is a centered Gaussian pro
cess {B f1 , t  > 0} with the covariance function

+ (1)
This process has a parameter H  6 (0,1), called the Hurst parameter or the Hurst 
index.

Remark 2.1. In order to specify the distribution of a Gaussian process, it is enough 
to specify its mean and covariance function, therefore, for each fixed value of the 
Hurst parameter H, the distribution of B H is uniquely determined by the above 
definition. However, this definition does not guarantee the existence of ffim; to show 
that the ffim exists, one needs e.g. to check that the covariance function is non
negative definite. We will show the existence later, in Section 4, giving an explicit 
construction of ffim.

B j /2B l /2 =  t A s ,  i.e.Observe that for H  = 1/2, the covariance function is E
B 1/2 =  W, a standard Wiener process, or a Brownian motion. This justifies the 
name “fractional Brownian motion” : B H is a generalization of Brownian motion 
obtained by allowing the Hurst parameter to differ from 1/2. Later we will uncover 
the meaning of the Hurst parameter.

Further we study several properties which can be deduced immediately from the 
definition. The following representation for the covariance of increments of ffim is 
easily obtained from (1 ):

e [ К - в К - в ]

=  ^ (|*l -  5a|2H +  1*2 -  Si\2H -  \t2 -  t , \2H —  \s2 -  Si |2H)  . (2)

Stationary increments. Take a fixed t > 0 and consider the process Yt = 
B^+s — B *1, t > 0. It follows from (2) that the covariance function of Y  is the 
same as that of B H. Since the both processes are centered Gaussian, the equality 
of covariance functions implies that Y  has the same distribution as B H. Thus, the 
incremental behavior of B H at any point in the future is the same, for this reason
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B H is said to have stationary increments. Processes with stationary increments are 
good for modeling a time-homogeneous evolution of system.

Self-similarity. Now consider, for a fixed a > 0, the process Z, = ВЦ, , t > 0. 
It is clearly seen from (1) that Z  has the same covariance, consequently, the same 
distribution as aHB H. This property is called .ff-self-similarity. It means the scale- 
invariance of the process: in each time interval the behavior is the same, if we choose 
the space scale properly.

It is an easy exercise to show that the fBm with Hurst parameter H  is, up to a 
constant, the only Я -self-similar Gaussian process with stationary increments.

Dependence of increments. Let us return to the formula (2) and study it 
in more detail. Assume that sj < t\ < s2 < t2 so that the intervals [«i,<i] and 
[зг, t2] do not intersect. Then the left-hand side of (2) can be expressed as ((/(a i)  — 
f(o,2) - { f { b x) - f { b 2))/2, where a\ = t2 - s b a2 = t2 - t i ,  bx =  s2 - s i ,  b2 =  s2 - t \ ,  
f (x )  = x 2H. Obviously, a\ — a2 = b2 — b\ — t\ — s\. Therefore,

E [ (В "  -  В " )  ( b £  -  B " )  ] < 0 for Я  G (0 ,1/2) 

in view of the concavity of / ;

E [ (B lt[ -  В " )  (В "  -  В ») ] > 0 for H  G (1 /2 ,1),

since /  is convex in this case. Thus, for Я  G (0 ,1/2), the fBm has the property of 
counterpersistence: if it was increasing in the past, it is more likely to decrease in 
the future, and vice versa. In contrast, for Я  G (1 /2 ,1), the fBm is persistent, it is 
more likely to keep trend than to break it. Moreover, for such Я , the fBm has the 
property of long memory (long-range dependence).

Finally we mention that the fBm is neither a Markov process nor a semimartin
gale.

3. Continuity of Fractional Brownian M otion
There are several ways to establish the continuity of fBm. All of them are based on 
the formula

E [ ( B f - B f ) 2 ] = | * - * r  (3)

for the variogram of fBm, which follows from (2).
The first of the methods is probably the most popular way to prove that a 

process is continuous.

Theorem 3.1 (K olm ogorov-Chentsov continuity theorem ). Assume that 
for a stochastic process {X t , t  > 0} there exist such К  > O.p > 0./3 > 0 such that 
for all t > 0, s > 0

E[\Xt - X s\p } < K \ t - s \ 1+0.

Then the process X  has a continuous modification, i.e. a process jX f ,t  > o j  such 

that X  G С[0, oo) and for a l l t>  0 Pr(X t =  X t) =  1. Moreover, for any 7 G (0, (3/p)

1560002-3



G. Shevchenko

and T  > 0 the process X  is 7 -Holder continuous on [О, T], i.e.

\ X t - X a \sup - 7 ------ г--- < 0 0 .
0 < s< t< T  ( t  — s)'!'

Corollary 3.1. The fractional Brownian motion B H has continuous modification. 
Moreover, for any 7 € (0, H) this modification is 7 -Holder continuous on each finite 
interval.

Proof. Since Bf1 — В j? is centered Gaussian with variance \t — s\H, we have 
E [ IВ  I1 — B » \v ] = K p \t — s\pH. Therefore, taking any p > l /H ,  we get the exis
tence of continuous modification. We also get the Holder continuity of the modifi
cation with exponent 7 6  (0, H  — 1 /p). Choosing p sufficiently large, we arrive at 
the desired statement. □

To avoid speaking about a continuous modification each time, in the rest of this 
article we will assume the continuity of fBm itself.

Another way to argue the Holder continuity lies through a very powerful deter
ministic inequality.

Theorem 3.2 (G arsia-R odem ich-R um sey inequality). For any p > 0 and
в > 1/p there exists a constant K p e such that for any f  G C[0, T]

sup \ т ^ ж < с г , ( [ т т ь / м г  У *

Remark 3.1. One of the most widely used techniques in calculus is the estima
tion of integral by the supremum of integrand times measure of integration set, e.g. 
fa f ( x )dx  — suPxe[a,b) If i x )\(b — a). However, obviously, one cannot reverse this 

inequality and estimate the integrand by the value of integral (although the temp
tation is great sometimes). Now we see why the Garsia-Rodemich-Rumsey (GRR) 
inequality is a very striking fact (at least at first glance): it is a valid example of 
such reverse statement.

The continuity assumption in the GRR inequality is essential. It is easy to see that 
for /  =  1 [o,t/2] the right-hand side of the inequality is finite, while the left-hand 
side is infinite. So in order to show the Holder continuity of fBm using the GRR 
inequality, we should first establish usual continuity with the help of some other 
methods (and we have already done that). The advantage of the GRR inequality 
is that in contast to the Kolmogorov-Chentsov theorem it allows to estimate the 
Holder norm of a process.

Alternative proof of the second part of Corollary 3.1. We remind that we 
assume B H itself to be continuous. Take some в < H  and p > 1 /Н  and write, as
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before, E [ |B^1 — В ^  |p ] =  K p \t — s\pH. Denote

С = sup
о<s<t<T { t - s ) 0 - W  

Raising the GRR inequality to the power p and taking expectations, we get

Гт Гт E \ \B H -  B H \P]
I  i l : , r '

=  K ^ eKp J  J  \x -  y f H- e)~l dxdy  < oo.

It follows that £ < oo a.s. By changing, if necessary, the ffim B H on an event of 
zero probability, we get the desired Holder continuity. □

Finally, we mention that by using specialized facts about regularity of Gaussian 
processes, it is possible to show that the exact modulus of continuity of ffim is 
uj(S) =  6H |log <511 /"2. Consequently, it is only Holder continuous of order up to H , 
but not Я -Holder continuous (although quite close to be).

Let us now summarize what we know about the Hurst parameter H. We already 
knew that, depending on whether H £ (0,1/2) or H  € (1/2,1), the increments 
of ffim are either negatively correlated or positively correlated. It is also easy to 
see that the correlation increases with H. In other words, the ffim becomes more 
and more persistent when H  increases (ultimately for H  = 1 it becomes a linear 
function: Bj = £t, where £ is standard Gaussian).

On the other hand, it follows from the above discussion that the Hurst parameter 
H  dictates the regularity of ffim: the larger H  is, the smoother ffim becomes. Now it 
is probably the most suitable moment to give some pictures of ffim, which illustrate 
perfectly the dependence of ffim on H.

4. Integral Representations of Fractional Brownian M otion

Further we will study representations of fractional Brownian motion in terms of a 
standard Wiener process. I expect the reader to be aware of Ito stochastic calculus, 
nevertheless, it is worth to give concise information on the objects we need.

Let {W t,t  > M} be a standard Wiener process on R, i.e. {W t, t>  0} and 
0} are independent standard Wiener processes on [0, oo).

For functions /  £ L2(1R) the integral 1(f) = JR f (x)dW (x)  with respect to W  
(the Wiener integral) is constructed as follows. For a step function

П

h(x) =  'У ] ak 1  [«fc,tfc] ix )i 
k=1
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Fig. 1. Paths of fBm for different values of ff.

define
n n

/(/*) =  /  h(x)dW(x) =  w *  -  •
^  fc=i

It is easily checked that /  is linear and isometric, consequently, it can be extended 
from the set of step functions to Ь2(R). This extension, naturally, is an isometry 
too. We summarize below its basic properties.

1. linearity: for a, (3 G R, f , g  &

I ( a f  + (3g) =  a l ( f )  + (31(g);

2. mean zero: E [1(f) ] = 0 ;
3. isometry: E [1(f)2] = f R f ( x ) 2dx, moreover, for f , g  € L2(R)

Е [ Л / К Ы ]  =  [  f(x)g(x)dx.
Js.

4. for f i , . . .  , f n € L2(R) the random variables / ( / i ) , . . . , / ( / « )  are jointly Gaussian. 

Next we consider representations of the form

B ?  = I (k t ) =  f  kt (x)dW(x), 
J R
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where for each t > 0 kt £ L2(R) is some deterministic kernel (not necessarily 
supported by the whole real line). Due to the properties of Wiener integral, the 
process given by such representation is a centered Gaussian process. So in order to 
argue that such representation defines an fBm, it is enough to show that it has the 
same covariance. The following simple statement may also be of use: a process has 
covariance given by (1) iff its variogram is given by (3).

The Mandelbrot-Van Ness representation, or the moving average representation 
of fBm is defined in the following proposition. It also can be used as a proof of 
existence of fBm.

Then the process X t = I ( k f1A) is an fBm with Hurst parameter H.

Proof. As it was already mentioned above, in order to prove the statement, it

Theorem 4.1. Let for H  E (0,1)

кУ А(х) = K f f A ((* -  x)+ 1/ 2l (_oo,0)(z) -  (~x)+  1/2)  ,

where

(Г(2Я +  l)sin7rtf)1/2 
Г(Я  +  1/2)

suffices to show that for any t, s > 0 E [ (X t — X s)2 ] =  \t — s\2H.
Write, denoting ц = H — 1/2,

E [ №  -  * s)2 ] =  (K%A)2 [  ((i -  хГ+ - ( s -  xY+fdx
J к

=  ( K H A ) 2 ( t  -  S ) 2 H  [  ( ( x  +  ! ) +  -  { x Y + f d x  J R

=  {K%Af { t  -  s)2H  I  f °  (x +  l )2H~1dx + f ° °  ((a +  1)" -  x ^ f d x

as required. We will omit the proof of the second formula for K j f A, an interested
reader may refer to Appendix in Ref. 3. □

Let us now turn to the harmonizable representation of fBm.

Theorem 4.2. Let for H  G (0,1)

sinta, x > 0, 
1 — cos tx, x  < 0,
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where

TsHa_ ( п f °  l - c o s z V 1/2_  (2Г(2Я  + 1 ) sin7ri?)1/2Kh - { 2J0 ^ 4x) ~ * •
Then the process X t — I(kf1a) is an fBm with Hurst parameter H .

dx

Proof. As in the previous proof, write

c r , v  v \ 2 - \  ( T s H a \ 2  Г f ° °  ( s i n t e  -  s i n s x ) 2 f °  ( c o s t a  -  c o s  see )2E [ №  -  X.) ] =  (K H ) Ц  ------ — (_ 1 )2Я+,

= ( g " a ) 2  / " 2  ~ 2 °“ (! г ‘ > г , ь

=  2(A-"“)=(e -  S f «  Г  =  (t -  » r .
Jo 2

Again, we do not prove the second formula for К \\а. □

The third representation we consider, the so-called Volterra type representation, 
is a bit more involved than the former two, but its advantage is that the kernel in 
this representation has compact support.

T heorem  4.3. Let for H  e  (1 /2 ,1)

k Y ( x )  =  K W / 2 ~ H f  s H - 1 / 2 (s  -  x ) H ~ i , 2 d s  l [0,t](2:),
J X

where

У =  (  H(2H  — 1) \  1/2 
H \B(2  — 2H, H  — 1/2) /  H '

for H  e  (0 ,1/2),

t f ( x )  = k Y,x 1' 2- h ( tH- ^ 2(t -  x)H~1/ 2

-  (H -  l /2 ) x 1/2~H J  sH~3/2(s -  x)H~l/2ds^j l(0j4] (ж),

where

Lн  \ ( 1 - 2 Я ) В ( 1 - 2 Я , Я  +  1/2)

Then X t = I(kY) is an fBm with Hurst parameter H .

Proof. We will consider only the case Я  e (1 /2 ,1), the other case being somewhat 
similar but a lot more tricky.
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Denote /л =  H  — 1/2 and write for t ,s  > 0

ntAs rt  rs
E [XtXg] =  (K h )2 /  x~ 2̂  /  u11 (u -  xY~~l du /  v*1 (v -  x Y ~ ldvdx

JO J  x  J  x

n
s ruAv

/  z~2/i(u -  х)м-1 (г; -  x Y ~ l dxdvdu.
Jo

For и < v, make the change of variable 2 =  \Z^/v *n inner integral so thatv/ г
uvlt.zl u _ x =  uziv̂ ul v _ x = vj^uI d = t obtain
V — ZU ’ V —  ZU > V —  ZU > {v— zu )'1

Г  x - ^ i u - x y - ^ v - x y - 1 
Jo

■ I

dx

1 (v — zu)2̂  ( u z y  1(v — u y  1 Vм 1(v — u)M 1 uv(v — u) ̂
(uv)2̂ ( l  — z)2fl (v -  z u ) ^ 1 {v — zu)p 1 (v — zu)2

=  ы_,1г>~м(г> — и)2д_1 f  гм_1(1 — z)~2̂ dz 
Jo

= u - ^ v - ^ iv  -  u)2H~2B(2 -  2Я, t f  -  1/2),

and a similar formula is valid for v < u. Substituting this into the above expression 
for E [Х)ХЯ ], we arrive at

E [X tX s } =  H(2H ~ l ) j  J  \v ~ U\2H~2 du =  \  ( f H +  s2H ~ \ г ~ в!2Я)  ’ 

as required. □

5. Identification of Hurst Parameter

In order to use a stochastic process as a model in practice, one needs a good statis
tical machinery. There are many statistical tools available for models based on the 
fBm, and this article is too short to cover them all. The most important statistical 
question is about the Hurst parameter, which governs all essential properties of 
fBm.

Consider the following statistical problem: to estimate the Hurst parameter H  
based on the observations S f ,  .B f , . . . ,  В ft  of fBm, where N  is large. There are 
several approaches to this problem. We will study here only an approach based on 
discrete variations of fBm, further methods can be found in.5

First we need to destroy the dependence by applying a suitable filter. Specifically, 
a filter of order r is a polynomial a(x) =  Ylk=o ak'xk such that a(l) =  a '( l)  =  • ■ • =  
a (r-i)(i) _  a M(i)  ф 0 (equivalently, 1 is the root of polynomial a of multiplicity
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r). The filtered observations are defined as
я

В п = '5 2 акВ„+к, n =  l , 2 , . . . , N - q .
k—0

Popular filters are Increments 1 with a(x) =  x  — 1, Daubechies 4 with a(x) =  
\{x  — 1)(ж2(1 — д/3) — 2x), Increments 2 with a(z) =  (x — l) 2. The first two filters 
are of order 1 , the third, of order 2. As it was mentioned, the main aim of filtering 
is to reduce dependence of the data. Indeed, for a filter a of order r > 1 consider 
the covariance

E [B anB am } =  £  £  akajE [ B%+kB»+k}
k=о j =о

=  ^ Y 1 ^ 2 a ka j ( ( n  +  k)2H +  (m +  j ) 2H -  \m +  k -  n -  j \ 2H 
k=0 j= 0

= \ ( j 2 ak(n + k '>2H l L , ai  +  Y 2 a^ m + ^ 2H Y 1 
'  fc=0 i= 0  j= 0  k= 0

9 9 \-EE aka,j \m  +  к  — n  — j \ 2H j 
k=о j=о '

1 4 4
=  -IEE akCLj |m  — n  + к — j \ 2 p ^ i jn  — n), 

k= 0 j= 0

where we have used that YL'k=o °-k — «(1) =  0. Consequently, the filtered data 
jB“, . . . ,  B ^ _ q is a stationary process. Moreover, since (x — l) r | a(x), in the expres
sion for pau  one takes the finite difference of the function x 2H 2r times: r  times with 
respect to n  and r  times with respect to m. It follows that Pjj(n) K H,an2(H r\  
thus the covariance indeed decays faster for large r.

To define an estimator for the Hurst coefficient, for m  > 1 consider the dilated 
filter am(x) a(xm) =  YH=o akXkm- It is obvious that (0) =  ш2Яр ^ (0), 
equivalently,

log ран  (0) =  2 # lo g m  + p%(0). (4)

Thus, an estimator for H  may be obtained by taking a linear regression of estimators 
for log p'ffn (0) on log m . To estimate ра̂ 1 (0) consistently, one can use the empiric 
moments.

Theorem 5.1. The empiric variance

N - m q  „

Vfr = wh^ E  K )
is a strongly consistent estim ator o f (0), i.e. V ^m —> (0) a.s. as N  —» oo.

ч
' ak
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Proof. Since the sequence {B %m, к > 1} is stationary, the result follows immedi
ately from the ergodic theorem. □

Corollary 5.1. Let a set M  С N contain at least two elements, and k°^M be the 
coefficient of linear regression of {log Vfim,m  £ M} on {logm,m £ M }. Then the

-a.M 'h.ci.h 
N  — l*Nstatistic = k“̂ M/2 is a strongly consistent estimator of H.

Proof. Follows directly from Theorem 5.1 and equation 4. □

Remark 5.1. Evidently, the same procedure can be used to estimate the Hurst 
parameter from observations cB± , cBJJ, . . . ,  cB lJ  of fBm multiplied by an unknown 
scale coefficient c. This will not cause any problem, as in (4) we would have an extra 
term logc, which does not influence the estimation procedure. Moreover, thanks to 
the self-similarity property, the estimation procedure will not change if the scaled 
fBm is observed not at the positive integer points, but at the points of some other 
equidistant grid, i.e. if one observes the values с 5 д , с В |д , . . . ,  c B ^ A . It is even 
possible to take Д = T / N  so that we observe the values on some fixed interval. 
However, one needs a different strong consistency proof, as in this case the ergodic 
theorem gives only the convergence in probability.

The simplest example of the regression set M  in Corollary 5.1 is M = {1,2}, and 
the simplest example of the filter is Increments 1, d(x) =  x  — 1. We get the following 
standard strongly consistent estimator of H:

Hk = l  =  (log Vtf -  log v$) = I  log2

where

Vn  =  £  « 1  -  , v g  = ^ —2 £  (Bf+2 -  ВЦ )2 . 
k=1 k—1

Let us now turn to the asymptotic normality of the coefficients. We start by 
formulating a rather general statement.

Let £i, £2) • • • be a stationary sequence of standard Gaussian variables with 
covariance p{n) — E [£i£n+i ], and g : R —> К be a function such that E [<?(£i) ] =  0, 
E [ff(Ci)2 ] < 00• The latter assumption means that g £ L2(R ,7 ), where 7 is the 
standard Gaussian measure on R. Consequently, g can be expanded in a series 
g(x) = Yl'kLo 9M x )  with respect to a system {Hk,k > 0} of orthogonal polynomi
als for the measure 7 , which are Hermite polynomials. We have go = E [g(£,\) ] =  0. 
The smallest number p such that gv ф 0 is called the Hermite rank of g.

The following theorem describes the limit behavior of the cumulative sums S n  =
E t i  9( b ) .
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Theorem  5.2 (Breuer—M ajor). Assume that |p(n)|P < 00• Then one has
the following convergence in finite-dimensional distributions:

{<Jp,gWt , t > 0 }  , N - *  oo,

where

alg = Yl9bk[J2p(n)k-
k=p  n 6 Z

As a corollary, we get asymptotic normality of the estimators. The statement 
depends on r, the order of filter a.

Theorem  5.3. Let either H  e (0,3/4) or H  e  [3/4,1) and r > 2. Then for any 
m  > 1 the estimator V$ is an asymptotically normal estimator of paH (0), and 
ff“’M is an asymptotically normal estimator of H.

Proof. We prove only the statement for the one for H ^ M follows by writing 
explicitly the coefficient of linear regression and analyzing asymptotic expansions. 

Write

N —m q

y / N = m { v $ m -  PH (0)) -  7 » _ ......  £  { { B f f  -  р|Г(0))
v JV m<l k=1

Рн (°) V
N —m q

where £,k = (0) is standard Gaussian. Obviously, p(n) := E[ f̂c f̂e+ n ] =
pa {n)/pan  (0). Thus, we are in a position to apply the Breuer-Major theorem with 
g(x) = x 2 — 1. which is obviously of Hemrite rank 2. So we get the statement provided 
that £ “ =1 p{n)2 < oo. It was argued above that (n) ~  К n2 Ĥ~r\  n —* 
+oo. Therefore, Yl™=iP(n )2 < oo iff 4(H — r) < —1, equivalently, r > H  + 1/4, 
which is exactly our assumption. □

Remark 5.2. The last theorem can be used to construct approximate confidence 
intervals for H. It is possible to compute the asymptotic variance explicitly, but the 
expression for it is quite cumbersome, so it is not given here. A somewhat better 
approach is to numerically calculate it based on simulated data; the next section 
explains how to simulate fBm. Another observation is that the statement above 
depends on the value of H, which is a priori unknown and should be estimated. So, 
if one needs to construct a confidence interval for H, I suggest using a filter of order
2 unless it is a priori known that H < 3/4.
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6. Simulation of Fractional Brownian M otion

Among many methods to simulate fBm, the most efficient one is probably the 
Wood-Chan, or circulant method. The main idea is that a Gaussian vector £ with 
mean ц and covariance matrix С  can be represented as £ =  p  +  SC,, where С is a 
standard Gaussian vector, and the matrix S  is such that S S T — C. So in order to 
simulate a Gaussian vector, one needs to find a “square root” of covariance matrix.

Suppose that we need to simulate the values of fBm on some interval [0,T]. For 
practical purposes it is enough to simulate the values at a sufficiently fine grid, i.e. at 
the points = kT /N , к — 0 ,1 , . . .  ,N  for some large N. Since an fBm is self-similar 
and has stationary increments, it is enough to simulate the values , B { ' , . . . ,  В  ft 
and multiply them by (T /N )H. In turn, in order to simulate the latter values, it is 
suffices to simulate the increments £1 =  B[‘ . £2 =  B'J — B [ ', . . .  -Xn  = В  ft — B ft_v  
The random variables £1 , £2, • • •, £n  form a stationary sequence of standard Gaussian 
variables with covariance

pH(n) = E i  ((n +  1)2H +  (n -  1)2Я -  2 n2H) , n >  1;

this is so-called fractional Gaussian noise (fGn). In other words, £ =  (£1 , . . . ,  £jv)T 
is a centered Gaussian vector with covariance matrix

Cov(£) =

f  1 M 1) Ph ( 2) • PH { N - 2) Ph ( N ~  1 ) \
P h ( ! ) 1 P h W  ■ ■ P h ( N ~ 3) pH( N -  2)

P h ( 2) P h W 1 • PH ( N ~ 4) pH(N  -  3)

Ph ( N - 2) P h ( N - 3) pH( N - 4 )  . 1 M 1)
\ P h ( N - 1) P h ( N - 2) pH( N -  3) . ■ Ph(!) 1

Finding a square root of Cov(£) is not an easy task. It appears that one can 
much easier find a square root of some bigger matrix. Specifically, put M  = 2(7V — 1) 
and

Co =  1, 

Cfc =  S

Now define a circulant matrix

С  =  circ(co,ci,. . .  ,cM- 1) =

к = 1 , 2 , . . . , N - 1 ,

к), k = N , N  + 1,. . . , M -  1.

( Co Cl C2 • • • c m - 2 CM - Л

С м - 1 CO Cl CO1§О

c m - 2

c m - 2 cm-  1 CO Cm —4 С м - 3

C2 сз C4 c0 Ci

V c i C2 C3 c m -  1 Co /

(5)
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Now define a matrix Q — {<ljk)j k=oi with

1 Г „ j k \  
q’k =  V B exp [ M S '

Observe that Q is unitary: Q*Q = QQ* = I m , the identity matrix. The multipli
cation by matrix Q acts, up to the constant l /л/М , as taking the discrete Fourier 
transform (DFT); the multiplication by Q* is, up to the constant \[M . taking the 
inverse DFT. The following statement easily follows from the properties of DFT 
and its inverse.

Theorem  6.1. The circulant matrix С has a representation С  =  QAQ*, where 
A =  diag(A0, A i, . . . ,  А м - i ) ,  Ak  =  J2jLo 1 cj exP { _27Г*м } •  Consequently, С —  SS* 

with S  = QAV2Q*, Л1/2 =  diag(Ay2, A}/2, . . . ,  A j^ J .

The only problem with the last statement is that, generally speaking, the matrix 
S  is complex. However, in the case of fBm the matrix С  is positive definite, so all 
the eigenvalues Xk are positive, as a result, the matrix S  is real. Thus, in order 
to simulate the fGn, one needs to simulate a vector (СьСг. • • • ;См)Т of standard 
Gaussian variables, multiply it by S  and take the first N  coordinates of the resulting 
vector.

Let us turn to the practical realization of the algorithm. We start by noting 
that it is enough to compute the matrix S  only once, then one can simulate as 
many realizations of fGn as needed. However, I do not recommend to proceed this 
way. It is usually better to compute the product QAl/ 2Q*£ step by step. First 
compute taking the inverse DFT of Then multiply the result by Л1/2,

i.e. multiply it elementwise by the vector (A^2, A^2, . . . ,  A^2_1)T. The last step is 
the multiplication by \ /M Q , which is made by taking the DFT. As a result, we 
have one DFT computation, one elementwise multiplication, and one inverse DFT 
computation, which are usually faster than a single matrix multiplication.

Now it is a good moment to explain what is meant by “usually” in the last 
paragraph. It is well known that the DFT computation is most efficient when the 
size of data is a power of 2; it is made by the so-called fast Fourier transform 
(FFT) algorithm. So, if one needs to simulate e.g. N  = 1500 values of fGn (so 
that M  = 2998), it will be better (and faster) to simulate 2049 values (so that 
M  — 4096 =  212).

Finally, taking in account everything said, we describe the algorithm.

1 . Set N  = 2« +  1 and M  = 2«+1.
2. Calculate pH( 1 ) , . . . ,  pH(N  — 1) and set со, c i , . . . ,  cm -i according to (5).
3. Take FFT to get Ao, . . . ,A m - i - Theoretically, one should get real numbers. 

However, since all computer calculations are imprecise, the resulting values will 
have tiny imaginary parts, so one needs to take the real part of result.

4. Generate independent standard Gaussian Cl, ■ ■ • i Cm -
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5. Take the real part of inverse FFT of (д, . . . , См to obtain y=Q*(Ci , . . . ,  Cm )t -
6. Multiply the last elementwise by \/Ao, \/A7,. . . ,  \ / Лм- i  •
7. Take FFT of result to get

( 6 ,  • • • , Ы Т =  ^ M Q A 1/2-± =Q * (C i ,  • • • ,Cm ) T = S(Ci, • ■ • ,Cm ) T -

8. Take the real part of £i, . . . ,  £лг to get the fractional Gaussian noise.
9. Multiply by (T / N ) H to obtain the increments of fBm.

10. Take cumulative sums to get the values of fBm.

For reader’s convenience I give a Matlab code of (steps 1-8 of) this algorithm. It 
is split into two parts: the computation of Л ' / 2. which can be done only once, and 
the simulation.

function r e s  = L a m b d a ( H , N )
M = 2*N -  2;
С = zeros ( 1 ,M ) ;
G = 2*H;
f b c  = 0 ( n ) ( ( n + 1 ) . “ G + a b s ( n - 1 ) . “ G -  2 * n . ~ G ) / 2 ;
С (1:N) = fbc(0:(N-1));
С (N+1:M) = fliplr(C(2:(N-1))); 
res = real(fft(C)).“0.5;

function r e s  = FGN( l a m b d a , NT) 
if ("exist(’NT ’ v a r ’))

NT = 1;
end
M = size ( l a m b d a  , 2 ) ;
a  = b s x f u n ( @ t i m e s , i f f t ( r a n d n ( N T , M ) , [ ] , 2 ) , l a m b d a ) ; 
r e s  = r e a l ( f f t ( a  , [] , 2 ) ) ;  
r e s  = r e s ( : , 1 : ( M / 2 ) ) ;

To simulate n  realizations of fGn, use the following code. Note that for large values of 
N  and n, due to possible memory issues, it may be better to simulate the realizations 
one by one, using FGN (lam bda, 1) or simply FGN (lam bda).

H = 0 . 7 ;  q = 10 ;  У, o r  w h a t e v e r  y o u  l i k e
N = 2 ~q  + 1;
l a m b d a  = L a m b d a ( H , N ) ;
n = 2 0 ;  /  o r  w h a t e v e r  y o u  l i k e
f G n s a m p l e s  = FGN( l a m b d a , 2 0 ) ;
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In this paper we study the grey Brownian motion, namely its representation and local 
time. First it is shown th a t grey Brownian motion may be represented in terms of a  stan
dard Brownian motion and then using a criterium of S. Berman, Trans. Amer. Math. Soc.,
137, 277-299 (1969), we show tha t grey Brownian motion adm its a  А-square integrable 
local tim e almost surely (A denotes the Lebesgue measure) . A s a  consequence we obtain 
the occupation formula and state possible generalizations of these results.

Keywords'. Brownian motion; grey Brownian motion; local time.

1. Introduction

Grey Brownian motion (gBm) was introduced by W. Schneider1,2 as a model for 
slow anomalous diffusions, i.e., the marginal density function of the gBm is the fun
damental solution of the time-fractional diffusion equation, see also Ref. 3. This is a 
class {Bp(t), t > 0, ( ) < / ? <  1 } of processes which are self-similar with stationary 
increments. More recently, this class was extended to the, so called “generalized” 
grey Brownian motion (ggBm) to include slow and fast anomalous diffusions which 
contain either Gaussian or non-Gaussian processes e.g., fBm, gBm and others. The 
time evolution of the marginal density function of this class is described by partial 
integro-differential equations of fractional type, see Refs. 4,5. In this paper we inves
tigate the class of gBm, namely their representation in terms of standard Brownian 
motion (Bm) and show the existence of local time.

In Section 2 we recall the construction and certain properties of gBm, in par
ticular the representation of gBm as a product of Bm and an independent positive 
random variable, see (6) below. Here we would like to emphasize the fact that the 
representation (6) for gBm allow us to study certain properties of gBm in terms

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.
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of those from Bm, e.g., path properties and simulations. Finally, in Section 3 we 
use the criterium due to S. Berman6 in order to show that gBm admits a A-square 
integrable local time, almost surely, cf. Theorem 3.1 below. As a corollary we obtain 
the occupation formula.

2. Grey Brownian m otion

In this section we recall the construction of gBm due to W. Schneider.2 The grey 
noise space is the probability space (S'(R), B(S' (R)), pp) , where S^R) is the space 
of tempered distributions defined on R, B(S'(R)) is the сг-algebra generated by the 
cylinder sets and pp is the grey noise measure given by its characteristic functional

/  6JS'( R)
dn0(w) = Ep ( - 5 IMI2)  , V 6 S(R), 0 < 0 < 1. (1)

Here (•, •) is the canonical bilinear pairing between S(R) and S'(M), || • || the norm 
in L 2(R) and Ep is the Mittag-LefRer function of order (3 defined by

OO n

£»w = E f ( ^ T i ) ’ I €K-71=0 v 7

The range 0 < /3 < 1 is to ensure the complete monotonicity of Ep(—x), see Ref. 7, 
i.e., ( -1  )nE ^ \ —x) >  0 for all x > 0 and n  G N0 := {0,1,2,.. .}. In other words, 
there exists a probability measure up on R+ which is absolutely continuous with 
respect to the Lebesgue measure with density Mp such that

nOO r OO

Ep(—x ) =  /  e~TX dvp(T) =  /  е~~тхМр(т) dr. 
Jo Jo

(2)

The density Mp, the so-called M -Wright probability density function, is related 
to the fundamental solution of the time-fractional diffusion equation, emerges as a 
natural generalization of the Gaussian distribution. It is also a special case of the 
Wright function, namely, Mp(x) =  W -p ,i-p (—x), see eq. (3.5) in Ref. 8.

The absolute moments of Mp in R+ are given by (see eq. (4.7) in Ref. 8)

S > - L ( 3 >

/•OO

Jo
Remark 2.1. Let jir , r  > 0, denote the Gaussian measure on B(S'(R)) with 
intensity r , i.e.,

[  dnT(w) = e ~ ^ 'I2, <peS(R).
Js ‘( R)

Then (2) gives the decomposition
/•OO

p ,p=  p T M p ( r ) d T ,
Jo

which says that the grey noise measure цр is the mixture of the the Gaussian 
measures /ir , r  > 0 with //q =  <5o the Dirac measure at zero.
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It is easy to show that the random variable Xp(JL:o,t))(') =  (•> l[o,i)}>  ̂>  0 is a 
well defined element in L2(S '(Ш), B (S '(Ш)), pp) =: L2(pp) and

l l ^ ( l [ o , t ) ) | | i 8 ( w )  —  ^  P [ ° . * ) H  ~  Г ( / 8  + 1 ) * ’

The gBm Bp is then defined as the stochastic process

Bp = {Bp(t) := X p ( l[o,t)), t >  0}.

The following properties can be easily derived from (1) and the fact that 
P[o,t)||2 =  i.

(1) Bp(0) =  0 almost surely. In addition, for each t > 0, the moments of any order 
are given by

Ге (B2pn+1(t)) = o 
\ E  ( B f ( t ) )  = ^T^0+T)tn-

Here E denotes the expectation with respect to pp.
(2) For each t, s > 0, the characteristic function of the increments is

E (e« (B ,(t)-B ,( .)))  = E p  Q e R  (4)

(3) The covariance function has the form

E(Bp(t)Bp(s)) = щ р  + 1ч A s), t, s > 0. (5)

All these properties may be summarized as follows. For any 0 < /3 < 1, the gBm 
Bp(t), t > 0, is ^-self-similar with stationary increments. It is clear that for /3=1  
the gBm coincides with Bm.

It was shown in Ref. 4 that the gBm Bp admits the following representation

{ B p ( t ) , t > 0 } ± { ^ Y p B ( t ) , t > 0 } ,  (6)

where =  denotes the equality of the finite dimensional distribution and В  is Bm. Yp 
is an independent non-negative random variable with probability density function 
Мр(т),  т > 0.

3. Local tim es for grey Brownian m otion

In this section we prove the existence of local times for gBm using the criterium
due to Berman,6 Lemma 3.1. For the readers convenience we recall the notion of
occupation measure as well as occupation density.
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Let /  : [О, T] — > R be a (nonrandom) measurable function and define, for any 
set F  <E B(R), the occupation measure /л/  on [0, T] of /  up to “time” T  by

Hj{F) := J  1 F(f(s))ds  =  A({t e  [0,T] : f ( t )  € F}),

where A is the Lebesgue measure on [0, Т]. Hence, fif(F)  describes the amount of 
time spent by /  in F  during the time period [0,T]. In particular, if X  =  (X t)te[o,T] 
is a stochastic process, then the occupation measure of the sample path

[0, T] Э  1 1—*  X t (w )  £  R

is defined in the same way but now the measure px.(w) is a random measure, it 
depends on the sample point w of the probability space. We say that /  has an 
occupation density over [0,T\ if /if is absolutely continuous with respect to the 
Lebesgue measure A and denote this density by ! /( - ,  [0,T]). In explicit form, for 
any i f R ,

Lf(x,[0,T)) = ^ ( x ) .

Thus, we have

M /(F )=  Г  l F( f ( s ) )d s =  f  Lf(x,[Q,T\)dx.
JO J F

A continuous stochastic process X  has an occupation density on [0, T] if, for almost
all w € Г2, X.(w) has an occupation density L x (■. [0,T]), also called local time of
X ,  see Berman.6

The criteria for the existence of local times for stochastic processes are due to 
Berman,6 Section 3. More precisely, a stochastic process X  admits a local time if 
and only if

[  f  f \ { e ie^ - x ^ ) d s d t  
J R JO JO

d6 < oo. (7)

In the following we show that (7) is fulfilled if the stochastic process X  is the gBm 
Bp. In fact, from (4) the characteristic function of the increments of gBm Bp is 
given by

E(ei0(Bfl(t)-B0(s))) =  Efi t _

Using Fubini, and the change of variables r = (2)_ 1/20 | t - s |1/2, we have to compute 
at first

L Eg ( - ? 1* - * 0 d e = у  L  Ee{- r2) dr
The integral in the rhs may be computed using the representation of the Mittag- 
Leffler function (2), Fubini theorem again and the Gaussian integral, namely

f  E p ( - r 2) d r =  f  Мр(т) j  e~r T drdT 
J к Jo J R
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roo
=  /  г _1^2М /з(г) dr

J 0

=  у/тс -Г (—5 +  1)
Т И  +  1) '

In the last equality we used the absolute moments of the M-Wright function Mp 
given in (3).

Finally, the t, s-integration is performed as follows.

/ / i ---- ~ПГ2 ds dt =  2 /  /  1---- l~ n H dsdt = A f  t 1 /2dt= l -Jo  Jo \ t - 8 \ W  Jo  J 0 I t - s i 1/ 2 J o  3
Therefore, putting all together, we obtain

[ [ [  E (eie{x{t)~x{s)))d sd t
Jr Jo Jo

m 8\/27r r ( - j  +  1 ) ^
d9 — -------------- -------- < oo.

3 Г ( - / ? |  +  1)

Thus, we have shown the main result of this subsection which we state in the
following theorem.

Theorem 3.1. The gBm process Bp admits a X-square integrable local time 
[0,T]) almost surely.

Corollary 3.1. As a consequence of the existence of the local time Lflf3 (•, [0. T]),
we obtain the occupation formula

Г  f (B p ( t ) )d t=  [  f ( x )L Be(x, [0, T])dx, a.s. (8)
Jo J к

Remark 3.1. The above results may be generalized/realized in various directions.

(1) Theorem (3.1) may be generalized for the so-called “generalized” grey Brownian 
motion BpiCl introduced by A. Mura and F. Mainardi5 such that for a  =  1 we 
recover the gBm, i.e., Bp ti =  Bp.  Moreover, the local times I /Bfl “ (-, [0, T}) of 
Bp^a may be weak approximated by the number of crossings of a regularization 
by convolution of Bp a. For the details see Ref. 9.

(2) On the other hand, we may develop the Appell system which is a biorthogonal 
system of polynomials associated to the grey noise measure /ip in order to 
construct, describe and characterize test and generalized functions spaces. Then 
the local time of gBm may be understood as a generalized function in this 
framework. For the details see Ref. 10.
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We study integral representations of random variables with respect to  general Holder con
tinuous processes and with respect to  two particular cases; fractional Brownian motion 
and mixed fractional Brownian motion. We prove tha t an arbitrary random variable can 
be represented as an improper integral, and th a t the stochastic integral can have any 
distribution. If in addition the random variable is a final value of an adapted Holder 
continuous process, then it can be represented as a proper integral. It is also shown tha t 
in the particular case of mixed fractional Brownian motion, any adapted random variable 
can be represented as a  proper integral.

K eyw ords:  H o ld er p rocesses; f ra c tio n a l B ro w n ian  m o tio n ; m ixed  frac tio n a l B row nian  
m o tio n ; p a th w ise  in teg ra l; g en era lized  L ebesgue—S tie ltje s  in teg ra l; in teg ra l re p re se n ta 
tio n .

1. In troduction

Let (Г2, IF =  { T t , t  €  [0,1]},P) be a stochastic basis, and { X ( t ) , t  6 [0,1]} be an 
F-adapted process.

We consider representations of the form

where ф is an F-adapted process and £ some given T \-measurable random variable.
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While such representation also has theoretical interest the question is particu
larly motivated by m athematical finance. Indeed, £ can be viewed as the claim to 
be hedged and the integral representation corresponds to  the value of the hedging 
portfolio. However, there is a constant representing the value of the claim missing in 
equation (1.1). Consequently, claims £ with representation (1.1) can be hedged with 
zero cost. In particular, the results presented in this paper indicates th a t models 
where the stock process X  (t ) is Holder continuous of some order a  > i  are rarely 
good models since there will be arbitrage present with relatively simple trading 
strategies ip.

The representations similar to  (1.1) were considered by many authors, we cite 
here only the most relevant results. The first results of this kind were established for 
X  =  W ,  the standard Wiener process. In this case, the classical Ito representation 
theorem provides the representation (1 .1) for square integrable centered random 
variables £ with the integrand satisfying J(} Eip(t)2d t  < oo. Such representation was 
shown to take place for any random variable £ in Ref. 1, but with integrand satisfying 
Jo '<P(t)2d t  <  oo a.s. The case where X  =  B H, a fractional Brownian motion with 
H  £ (1 /2 ,1), was considered first in Ref. 2. Under assumption th a t there exists a 
Holder continuous adapted process { z ( t ) , t  G [0,1]} such th a t z( 1) =  £, it was shown 
th a t £ can be represented in the form (1.1). In Ref. 3 this result was extended to  
a larger class of Gaussian processes, and in Ref. 4, under a similar assumption, the 
existence of representation (1.1) with integrand ф 6 C[0,1) was established.

In this article we generalize the results of both Ref. 3 and Ref. 4 by showing 
the existence of the representation (1.1) with ф 6 C [0 ,1) for a generic Holder con
tinuous process X  satisfying some small ball estimates. We also show th a t in the 
case of mixed fractional Brownian motion, i.e. where X  =  W  +  В и , the represen
tation (1.1) takes place for any random variable £. The structure of the article is as 
follows. Section 2 contains basic information on the generalized Lebesgue-Stieltjes 
integral. Section 3 is devoted to  the auxiliary construction of processes which play 
an im portant role in proving the main representation results. Section 4 contains the 
main results concerning the representation of random variables.

2. G eneralized  L eb esg u e-S tie ltjes  Integral

This section gives a basic information on the generalized Lebesgue-Stieltjes integral, 
more details can be found in Ref. 5. For functions f , g  : [a, b] —> К and fi € (0,1), 
define the fractional derivatives

(Г,0 r \ ( T\ .. 1 (  : о Г  f ( x ) ~  f ( u)
Г ( 1 - 0 ) \ { х - а ) Р  P j a (x -  u ) ^ 1 )  ’

( n i -pn \<r \  -  e~i7rp (  9 №  4. (л -  ff\ ( 6 g(x ) -  д(ц ) j- \[Db_ g) {x)  Т ( р ) У ( Ь _ х у - р + ( 1 P ) ] x (u _ x )2-/3duJ -

Assuming tha t D%+ f  G Li[a,b],  D xbZ0gb-  6 £oo[«,&]> where дь~{х) =  g(x)  -  g(b), 
the generalized Lebesgue-Stieltjes integral J^ f (x)dg(x)  is defined as
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[  f (x )dg(x)  =  e™0 f  {D 0a+f ) { x ) { p \ J g b- ) { x )d x .
J  a J  a

^From the definition, we have an immediate estimate
rb

f {x)dg{x)fJ  a
<  C\\f \ \0 t M A 0 {g), (2.1)

where

fJ  a

m
(t — a)P

+ /J a

l / W - / ( * ) ! .d s  I d i ,

Л/зЫ sup
a< u < v< b

(t -  s ) ^ 1

v l f f (u ) -g ( z ) lIJ  U (z - u )2-/S dz

Here and in the rest of the article we will use the symbol С  to denote a positive 
constant, whose value is of no importance and may change from one line to another.

It is easy to see tha t if g is a-Holder continuous on [a,b] and /3 £  (1 — a , 1), 
then hp(g) <  oo. Therefore, it is possible to define ]  '* f {x)dg{x)  in the generalized 
Lebesgue-Stieltjes sense once the integrand /  satisfies ||/ ||/з ;[а,ь] <  oo. In what 
follows we will consider the functions satisfying this condition to be our admissible 
integrands.

3. A dapted  P rocesses W hich Integrate to  Infinity

At the heart of each representation lies an auxiliary construction of an adapted 
integrand ф such tha t for each t  <  1 the integral := J '| ip(s)dX(s)  is finite,
but the integral fg i/>(s)dX(s) is infinite. The latter property can have differ
ent precise meanings: either Vt(ift) —+ + o o ,t —> 1 — or liminft_>i_ Wt(V’) =  —oo, 
lim supt_i l_ Vt{ip) =  +oo.

3.1. C onstruction in a generic case

To obtain such auxiliary construction for a general process there are essentially two 
key features which we study here; the process is assumed to be Holder continuous 
for some order a  >  1/2 and there should be some kind of estimate for small ball 
probability for the increment of the process. We also wish to emphasize tha t these 
properties are needed only close to the end point t  =  1 (or more generally, t  =  T).  
Consequently, the replication procedure can be done in arbitrary small amount of 
time. This can be useful for example in financial applications since one can simply 
wait and observe the process and study whether it might indeed have the needed 
properties, and then sta rt the replication procedure just before the ending point. 
For more detailed discussion in the Gaussian case we refer to Ref. 3.

Assumption 1. There exist a constants a  >  |  such tha t for every s , t  £  [0,1] it 
holds

\ X ( t ) - X { s ) \  < C \ t - s \ a .
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Assumption 2. There exists a constant 6 >  0 such th a t for every s, t E [1 — S, 1] 
with t =  s +  A it holds

P( sup |X (u) — X (s)| <  e) < exp ( —С Д е~ °^  (3.1)

provided th a t e <  A a .

Note th a t the given upper bound for small ball probability is the usual one for 
many Gaussian processes and hence we wish to  use this form. For example, many 
stationary Gaussian processes or Gaussian processes with stationary increments 
satisfy the given assumption. In particular, fractional Brownian motion satisfies the 
given assumption. For more detailed discussion on the assumption, see.3 We also 
remark tha t by examining our proofs below it is clear th a t one could relax the 
assumption by giving less sharp upper bound in terms of Д  and e (see Remark 3.1).

L em m a 3.1. Assume that the process X  satisfies Assumptions 1 and 2. Then there 
exists a W-adapted continuous process ф on [0, 1) such that 0(0) =  0, the integral

f  ф{з)d X ( s )
Jo

exists for  every t  <  1 and

^lim J  ^(s)d.X'(s) =  +oo (3.2)

almost surely.

It turns out th a t the construction presented in the particular case of fBm in the 
authors’ previous work4 works for general Holder continuous processes under our 
small ball Assumption 2. Hence we simply present the key points of the proof.

P roof. Fix numbers 7  € ( l ,  ^ ) ,  77 e  ^0, ^  — l j  and /х >  . Set to =  0 and

tn =  E L i(A k + A jt) ,  where Д* =  K k ~ \  Д* =  K k ~**, К  =  ( £ Г =1 ( к ^ + к ^ ) )  
Also set t'n =  t n- 1 +  Д „, n  >  1. Clearly, tn- \  <  t'n <  tn , n >  1, and t n —> 1, 
n —> 00. Note also tha t if X t  would be a-Holder only close to  the end point, i.e. on 
[1 — <5,1] for some small S, then we simply set t \  =  1 — 6 such th a t X  is Holder on 
[ti, 1] and sta rt after t\  by scaling time points properly. This also implies tha t the 
construction can be done in arbitrary small amount of time.

Next define the sequence of functions gn =  y/x2 +  n~2 — n _1, n  >  1. Then 
gn(x) j  |* |, n —> 00. Let also /„  =  (1 +  r])gn(x)v ^x^ n- 2 so th a t gn(x)1+v =  
Jo f n ( z ) d z .  For any n >  1 set

r„ =  m in j t  > tn- 1 : |X ( t )  -  X (t„ _ i) | > A  t'n.

Next define

</>(«) =  f n { X {s )  -  X (in_ 1) ) l [tn_liTn)(s)
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for s €  [tn- \ , T n] and

ф { 8)  =  ф(тп ) Т П + £ П 3 1 ( гп |Т п + Д п | ( « )

for s € (rn , t n\. Now by Holder continuity of X  the existence of the integral is clear, 
and we can repeat the arguments in Ref. 4 to obtain that

Л  0(e)cLX-(e) > 2 ~ v V  |X (rfe) -
-'° fc=i

n

fc=l 
ra /-Tfc+Afc

+  £  /  0(e)dX(e). 
fc=i Jt>‘

Moreover, it is clear tha t the second sum converges and arguments in Ref. 4 imply 
tha t also the third sum converges by Holder continuity of X .  To conclude, the 
Assumption 2 implies th a t the first sum diverges since now only a finite number of 
events

A n =  { sup |X (t) -  X ( t n^ ) \  <  n - x/(1+^ } 
tn -i< t< t'n

happens by Borel-Cantelli Lemma and Assumption 2. Hence the result follows. □

R em ark 3.1. By Assumption 2 we obtain that

P (^n ) <  exp C n “(1+,3>

for some constant C.  Hence it is clear tha t our assumption on small ball probabilities 
could be relaxed a lot. In particular, we only need that

OO

£ P ( A „ )  < oo
71=1

to apply Borel-Cantelli lemma.

3.2. C onstruction in pure and m ixed fractional Brownian cases

In this section we consider two im portant particular cases: X  =  B H, a fractional 
Brownian motion with H  >  1/2 and X  =  B H +  W ,  a mixed fractional Brownian 
motion. We start with the pure fractional Brownian case.

Lem m a 3.2. Let f ( t )  =  (1 —t ) ~ H, v(t) =  f* f ( s ) d B H (s). Then lim inft_ i_  v(t)  =  
—oo, lim supt_>1_ v(t)  =  +oo almost surely.
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P ro o f. Define x n =  v(  1—2 " ) —u ( l—2 n+1), n  >  1. Then the sequence { x n , n >  1} 
is stationary Gaussian. Indeed, for any m  >  n >  1,

/•1- 2“” л 1—2_m
E X n X m  =  CtH /  /  \u  -  v\2H~2( l  -  -  v ) ~ Hd u d v

J 1- 2-П+1 J i_ 2-m+i
2—7i+i 2—wi+i/»z nZ

= a„ / |у-х|2Я-2ж
72_n J2_m
П 21 

n

у  d x d y

n — m + 1

|2- " z -  2~пги|2Я 22nHw ~ H2nHz ~ H2~ndw  2_“dz

/•2 _2n“ m+1
|z — t«|2/f_2t(;~w x_ ifd'u;d2: =  r(n  — m),

n - m

where « я  — H ( 2 H  — 1). Moreover, it is clear th a t r(k) — 0 ( 2 k^ ~ H^),k —» oo.
Therefore, defining S',, =  x i +X2 H------ \~xn. n  —» oo, we have lim su p ,,^ ^  Sn =  +oo,
lim infn-.oo Sn =  —oo a.s. by the law of iterated logarithm for weakly dependent 
stationary sequences. Observing tha t v ( l  — 2~n) =  Sn, we get the statem ent. □

Further we move to the case of a mixed fractional Brownian motion. This means 
tha t X  =  B H +  W .  where B "  is a fractional Brownian motion with H  6 (1 /2 ,1), 
and W  is a standard Wiener process. Usually it is assumed tha t B H and W  are 
independent, but we do not impose any assumptions of such kind. Note th a t we 
understand the integral w.r.t. the standard Wiener process W  in the classical Ito 
sense and the integral w.r.t. B H in the generalized Lebesgue Stieltjes sense.

The following lemma provides an “auxiliary” construction in this case and even 
if it will not be used in the following, we give it for two reasons: to  make our 
presentation complete and to  disclose the main idea behind the proof of our main 
result in the mixed case.

L em m a 3.3. Let f ( t )  =  (1 — £)-1//2, v(t)  =  / J  /(s)d(W^(s) +  B H(s)). Then 
lim inff_ i_  v(t)  =  —oo, lim supt_>1_ v(t)  =  +oo almost surely.

P ro o f. Define u(t) =  f* f ( s ) d W ( s ) .  Then it is easy to  see th a t и has the same 

distribution as the time-changed Wiener process, {u(t), t  € [0,1]} =  {W (—ln(l — 
t )), t  E [0,1]}. Hence we get by the law of iterated logarithm lim inft_ i_  u{t) =  
—oo, lim supt_,1+ u(t) — +oo. So it remains to  prove th a t the integral f^(  1 — 
s)“ 1/ 2d S ff(s) is bounded. But the integrand is non-random, so the integral coin
cides with the so-called Wiener integral, and its boundedness follows from the 
finiteness of

E  Q f 1 f ( s ) d B H(s ) )

=  H ( 2 H  -  1) f 1 f \ l - t ) - 1/2{ l - s y 1 /2 \ t - s \ 2H- 2 d u d s  
Jo Jo

=  2 Я В ( 2 Я -  1,1/2). □
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4. R e p re s e n ta tio n  o f R an d o m  V ariab les

In the case of fBm it was shown in Ref. 2 tha t the integral f*  ф(s)dBн (s) can 
have any distribution and later in Ref. 3 the same result was proved for wider class 
of Gaussian processes. Similarly, any random variable can be represented as an 
improper integral in these models. These results are a consequence of the auxiliary 
construction and hence we can obtain similar results by applying the auxiliary con
struction introduced in the previous section for any Holder process which has some 
small ball estimates. More precisely, a direct consequence of Lemma 3.1 is th a t the 
integral can have any distribution and if in addition we have diverging auxiliary con
struction on any (suitable) subinterval, then any measurable random variable can be 
represented as an improper integral. These results are the topic of the next theorems.

T h eo rem  4.1. Let the process X ( t )  satisfy Assumptions 1, 2, and let there exist 
v  £  (1 — 5 ,1) such that the random variable X ( v )  has continuous distribution. Then 
for any distribution function F  there exists a F -adapted process ip such that the 
integral

[  <p(s)dX(s)
Jo

exists and has distribution F.

P ro o f. Since X ( v )  has continuous distribution with cdf F \ , then U  =  F x ( X ( v ) )  is 
uniformly distributed random variable and consequently, F ~ l (U) has distribution 
F.  Hence it suffices to  construct ip such that

f 1 <p(s)dX(s) =  F - 1[Fx (X(v))} .
Jo

Denote by g(x) =  F ~ ! [Fx(x)}.  Let ф be the process constructed in Lemma 3.1 and 
set yt =  f* ф(s)dX (s) . Then yt —> oo as £ —>1 —. P u t r  =  inf{£ >  v : yt =  |^(X(u)|} 
and

<p(t) =  ф(Ь) sgn<7(X (t;))l[Vir].

Clearly fg <p(s)dX(s) has distribution F  and the existence of integral is obvious 
from which the result follows. □

To replicate a distribution we needed an additional assumption th a t X  (v) has 
continuous distribution for some v. Similarly, in order to  replicate an arbitrary 
random variable we need a different additional assumption. Namely, we assume 
tha t the filtration F is left-continuous at 1, i.e. cr(Ut<1 J~t ) =  T \ .

T h eo rem  4.2. Assume that F is left-continuous at 1 and let the process X  satisfy 
Assumptions 1 and 2. Then for any J~\ -measurable random variable £ there exists 
a process ip(s) such that

0(s)dX (s)
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exists for  every t <  1 and

lim [  i p ( s ) d X ( s ) = £  (4.1)
Jo

almost surely.

P roof. Note first th a t by modifying the proof of Lemma 3.1 we see tha t 
Assumption 2 implies the existence of auxiliary construction on every subinterval 
[tt,i>] С [1 — 6 , 1], i.e. for every such interval there exists a process 0 Ui„ such tha t 
limt-.t, / J  фи у̂ (s)dX  (s) =  oo. The rest follows by arguments in Ref. 2 and we only 
present the main steps. Define z( t)  =  tan E[arctan£Jjrt]. Now by left-continuity of 
F and martingale convergence theorem we have z( t)  —> £, t  —* 1—. Let next tn 
be arbitrary increasing sequence converging to 1 , and let </>t„,t„+1 be a process con
structed in Lemma 3.1 such th a t г;” =  J* </>t„,t„+i(s)dX (s) —> oo as t  —> tn4-1 — . 
Defining t„  =  min{f > tn : v ” =  \z(tn) — z ( t n- 1) |} and

OO

V’(s) =  £ </,tn,t„+i(s)l[f„,r„](«)sign(z(fn) -  z { tn- 1))
71=1

it is clear th a t f^n rJj(s)dX(s) =  z ( tn~\)  and on t  € [tn , t n+1] the value fg ip(s)dX(s)  
is between z ( tn- \ ) and z ( t n). Hence it follows th a t we have (4.1). The existence of 
the integral can be shown as in the proof of Lemma 3.1. □

R em ark 4.1 . We remark th a t it is also possible to  construct a continuous process 
ф on [0, 1) such tha t limt_,i f* ^>(s)dX(s) =  £ by applying similar techniques as in 
Ref. 4 or in the proof of Theorem 4.3. More precisely, after stopping t „  let ip(s) go 
to zero linearly on t  £  [тп ,тп +  Д„] for small enough Д „, and then compensate the 
error arising from linear parts by setting r n =  min{t > t n :v™ =  \z(tn) — z ( t n- \ )  — 
/ ; п- 1+Лж i/»(s)dX(s)|}. The details are left to  the reader.

A particularly interesting question for us is which random variables can be 
represented as a proper integral.

4.1 . A proper representation in a generic case

It turns out th a t with general Holder process satisfying our small ball assumption 
one can represent all random variables th a t can be viewed as an end value of some 
a-Holder process with arbitrary a >  0. In the particular case of fBm this was proved 
first in Ref. 2. Similar result for more general Gaussian process was derived in Ref. 3. 
However, in this case it was proved th a t only values a >  1 — a  can be covered 
where a  is the Holder index of the process X .  The benefit of using continuous 
integrands is th a t then one can drop unnecessary extra assumptions. Moreover, then 
one can cover all values of a >  0 also in the case of general Gaussian process. More
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precisely, in the author’s previous work4 it was proved th a t in the case of fBm one 
can construct a continuous integrand Ф on [0, 1) such that

£ =  Г  * ( s ) d B H(s).
Jo

By examining the proof however, we obtain th a t only required facts are Holder 
continuity, small ball estimate and the auxiliary construction with continuous inte
grand. Hence the arguments presented in Ref. 4 imply same result for our general 
case. Note also that, as before, the replication can be done in arbitrary small amount 
of time and the assumed properties are needed only close to the ending point t  =  1 .

T h e o re m  4.3. Let the process X ( t )  satisfy Assumptions 1 and 2. Furthermore, 
assume there exists an F -adapted process { z ( t ) , t  >  0} having Holder continuous 
paths of order a >  0 and such that .z(l) =  £. Then there exists an F -adapted process 
{rp(t),t € [0,1]} such that ф € C[0,1) a.s. and

[ \ ( s ) d X ( s ) = t ■ (4.2)
Jo

almost surely.

The proof follows arguments presented in Ref. 4 but here we will give more instruc
tive proof while some technical steps are omitted.

The idea of the proof is to define a sequence of time points (in)$£L0 converging 
to 1 and then track the Holder process z(t)  along this sequence such that

[  ip(s)dX(s)  =  z ( t n- 1). (4.3)
Jo

More precisely, we apply our diverging auxiliary construction to “get into the right 
track” , and afterwards we aim to stay on this right track. Now there are two options; 
given th a t we have (4.3) for some n  we either manage to stay on the right track 
and consequently we have (4.3) also for n +  1 or if we do not, then we apply the 
auxiliary construction together with stopping again to get “back to the track” . Note 
tha t while we could apply the auxiliary construction separately on every interval 
[in_ i,t„ ] , consequently the integral / 0' ■0 (^)dX(s) over the whole interval would not 
exist. Hence to obtain the result we simply have to show th a t we indeed manage to 
stay on the right path in most of the cases, and the auxiliary construction is needed 
only finite number of times. Finally, in order to construct a continuous integrand 
we simply pace to zero linearly after every time step before starting to act on the 
next time interval.

P ro o f  o f T h e o re m  4.3 . Choose some P G (1 — a,  1). Let Д& be sequence such that 
S fe l i  A* =  1 and define time points to =  0, tn =  JZfe=i Afc- Set also t'n =  +  
Note that now t n- \  <  t'n <  tn . Let also Д*. be a sequence to be determined later 
such that Д;с <  4т1. Following the idea described above, our aim is to define con
tinuous integrand such th a t we track the process z(t)  on intervals \tn- \ , t'n] and
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then we go linearly to  zero such th a t the integrand hits zero before time tn+\. Then 
on [tn+ i , t'n+1] we define continuous integrand ip such th a t i/>(tra+ i) =  0 and we 
are tracking the process z(t) .  Note also th a t on every step we have to  compensate 
the error arising from linear parts. We will first explain naively the construction 
which is somewhat simple. The end of the proof is devoted to  analysis on different 
parameters where we show tha t one can indeed choose them  such tha t we obtain 
our result.
S te p  1. C o n s tru c tio n . We start by setting ip(t) =  0 on the interval [to, t i ] ■ More
over, we set T\ =  t \ .

Denote y(t)  =  / 0‘ ip{s)dX(s) ,  £„ =  z ( t n- 1), gn{x) =  л/ z 2 +  e2 -  en for some 
sequence en and let now n  >  2. To describe our construction mathematically, we 
want to define the process ф on [tn_ i,t„ ]  such tha t

(1) V (tn -i) =  VKtn) =  0;
(2) у(тп) =  £„ for some rn G [tn ,t'n];
(3) V is linear on [r„, r„ +  Д п] and zero afterwards, i.e.

V'(t) =  Ф{тп) Тп + ^ n— Ц т п,т„+Д„](*), t  G [r„ ,tn]. (4.4)

Now the construction is different whether we are already “on the right path” (case 
A) or not (case B) in which case we apply the auxiliary construction of Lemma 3.1. 

Case А) у(тп- \ )  =  £n_ i. For a sequence an to  be determined later, define

тп =  inf {t > tn_ i : angn( X (t) X (tn_ i)) — |An |} A tn ,

where A„ =  fn -  y (t„_ i) =  £„ -  f n - i  -  /£ " *  ^ (s)d X (s). Put

ip(t) =  ang'n( X ( t ) -  X ( t n~i ))  signAn, t  G [tn- i , r n]

and define it by (4.4) on [rn , t n\. Now since X ( t )  is Holder continuous of order 
a  >  it obeys the classical change of variable rule. Hence we get

y(t)  =  y (t„_ i) +  angn(X ( t )  -  X ( t n- i))signA „, t G [t„_ i,r„];

in particular, у(тп) =  £n provided th a t r n < t 'n .
Case B) j/(rn_ i) ф £n_ i. Since Assumption 2 implies th a t there exists diverg

ing auxiliary construction also on every subinterval, there exists an adapted con
tinuous process {^n ( t) , t  G [tn_ i, f 'J}  such th a t vn(t) f*  0n (s)dX (s) —► oo, 
t  —» t'n —. Therefore we can define the stopping time rn =  inf{f G \tn~ \ , t'n) : v{t)  =  
|£„ — 2/(t-„-i)|}- Then we put =  <j>„(t) sign(£„ -  y(Tn- i ) ) ,  t  G [tn_ b r„], and 
use (4.4) on [r„,t„]. Clearly, у(тп) =
S te p  2. “S tay in g  on  th e  r ig h t p a th ” a n d  c o n tin u ity  o f  th e  in teg ra l. To
obtain our result we wish to apply Assumption 2 to  obtain th a t we have Case A) 
in most of the cases and th a t representation (4.2) holds. For the la tter one, it is 
sufficient to prove tha t the integral ip ( s )dX ( s )  is continuous at t =  1 which also 
implies the existence of the integral. Consequently, we end up to some restrictions
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on free parameters. Similarly, note th a t in order to prove tha t we have Case A) in 
most of the cases we have to  prove th a t the event

A n — I  sup angn(X ( t )  X ( t n~ i)) ^  |ЛП| \
1 t€[tn - u t'n ) J

happens only finite number of times. Now by following arguments in Ref. 4 we 
obtain <  an for every n  and

[  ip(s)dX(s)  
Krn-1

< Ce(w) \ф(тп- 1 )\ Д “ = ' <  C e H a „ Д “ос—е

by Holder continuity of X .  Moreover, observing th a t g(n(x) >  |.x| — en we obtain 
that the event A n implies

sup |X (i) - X ( t n- 1 | <  -  £ n -i| +  C£(w)A“ Zi + e n.
te[ tn- i ,t 'n )

Moreover, by Holder continuity of z(t)  this implies th a t also

sup IX ( t )  -  X C t n - i )I <  С'(Ш) а - 1Д п +  Се( ш ) +  en. (4.5)
t e l u - u t ' j

Now the idea is to choose parameters such tha t (4.5) takes place only finite number 
of times. Next we will study the continuity of the integral. For this it suffices to 
show that J^ ip(s)dX(s)  —> 0, n —> oo, which would follow from Ц̂ Ц/ЗДтпД] —* 
n —> oo. Assume now tha t we have chosen parameters such tha t (4.5) takes place 
only finite number of times. We write

l l ^ l l/ 3 ; [ T „ , l ]  = h  + h,
where

r _  f 1 M * ) l  , г _  [ 1 М О  - t M L .

1 ■ L  (t -  тпУ ’ 2 ~  L  L  (* -  * r +i
We follow arguments presented in Ref. 4 to obtain bounds for terms I\  and I2 

with our general parameters, and some technical details will be omitted. F irst we 
estimate

I / /  . \  I OO

r " I ______
(t -  rny

re---I t

00

k = n  k = n

For I2 we write
rrk+l f t  °° r tk r tГтк+1 f t  ^  [ tk  r t

I2 =  £  /  /  i p ( t , s ) d s d t +  2 ^  / / ip ( t , s )d sd t
k=n tk Tn k=n Tk Tn

00 fTk+l [ tk  00' rtk [Tk
=  s)ds dt +  / / ip ( t , s )d sd t

k=n tk Tn k=n Tk Tn
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°°s r T k +1 r t  °°  ̂ r t k  r t

+  У /  /  4>(t, s)ds dt +  / /  -0(^s )dsdf 
k=n tk ^tk k=n k JTk

=: J \  +  J 2  +  J 3  +  J 4 ,

where ip(t ,s) =  \ip(t) — ^ ( 5)| (i — s)~^_1. Now arguments in Ref. 4 imply th a t we 
have

J i < c j 2 ak K ~ p ,
k = n

oo
h  <  C  \ ~ 0 ,

k= n

and

j 4 < c j 2 A k l A l, : - i  л 2- /  
k = n

Moreover, for J 3 we get by Holder continuity of X  that
OO

Л < с м £ ^ д 1^ .
k = n

To summarize, we need to  choose param eters such th a t (4.5) happens only finite 
number of times and

(1)

(2)

(3)

k = n

00

E -  0.
k —n

E ̂ д ^ -^ о .
k = n

Step  3. A n alysis o f  th e  param eters. Next we prove th a t we can choose parame
ters such th a t we obtain (1) — (3) and (4.5) happens only finite number of times. For 
simplicity let us first put an — A~^,  A n =  Д^, and en =  Д£ for some parameters 
[i, 7  and к. W ith these choices (4.5) implies tha t

sup |X ( i ) - A - ( tn_ 0 | < C (w )A * ,

where

A =  min(/i 4- a, 7(0  — e), к).
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Moreover, for any small number e there exists N(cu) such that

Ф ) Д ' < 1 ,  n  >  N ( w ) .

Note now tha t the restriction e <  T a in Assumption 2 implies tha t we have to 
choose parameters such tha t Д ^_£ <  Д “ , or equivalently A — e >  a.  W ith such 
choices and applying Assumption 2 we obtain

p (  sup \ x ( t )  -  х(гп_ 0 | < Д^-£'

which is clearly summable provided A n converges to zero fast enough.
Consider next restrictions (1) — (3). W ith our choices we demand that

OO

Е д ^ - о ,
k=n

oo

Е д Г 7 - о ,
k—n

and
OOJ2 д 1 + “ - е- ^ - к  _ »  0 .

k=n

Again, these conditions are clearly satisfied provided tha t all the exponents are 
positive and Аь  decays to zero fast enough. Hence, by collecting all restrictions, we 
obtain that we have to choose (3, ц, к , 7 , e, and e such that;

(1) д +  a — e >  a,
(2) к  — e > a ,
(3) 7 (a  -  e) -  e > a,
(4) 1 - 1 3 -  (i >  0,
(5) 2 - ( 3 -  к >  0,
(6) l  +  a  — e — /3 — ц  — к > 0 .

The first three restrictions arises from Assumption 2 and the latter three from 
(1) — (3). Note also th a t by choosing e and e small enough we can actually omit 
them  on the conditions (1) -  (6). Now (3) implies tha t 7  >  1 which is consistent 
with A n <  A n / 2  for n large enough. Next combining (4) and (1) we obtain that

a  — a <  ц <  1 — /3

which is possible if we choose /3 G (1 — a,  1 -  a  +  a). Next combining (2) and (5) 
we obtain

a  <  к <  2 — /3, 

and together with restrictions on (3 this is possible if
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a < K < l  +  a  — a.

This is clearly possible since we can, without loss of generality, assume th a t a <  a.  
It remains to study (6). By choosing ц =  a - a  +  8 and к  =  a +  5 for 5 small enough 
we obtain

1 +  a  — /3 — ц — к  — 1 +  a  — (3 — a  +  a — 5 — a  — 6

— 1 —/3 +  a — a  —26 

>  0

since /3 <  1 — a  +  a. To conclude, we obtained th a t we can choose param eters prop
erly and it remains to  choose A n such th a t it converges to zero fast enough. □

R em ark 4 .2 . In Ref. 4 the authors defined Д „ =  n~v and then chose и properly 
to  obtain the result. Now we obtained th a t one can choose Д „ in many different 
ways. For example, one can choose A n =  ^  with К  =  ( ^ £ 1 ]  2“ *)

4.2. Representation in the mixed case

Next we turn  to the representation w.r.t. the mixed fractional Brownian motion 
В 11 +  W  with H  e  (1 /2 ,1). We recall th a t the integral w.r.t. W  is understood in 
the Ito sense, th a t w.r.t. B H, in the generalized Lebesgue-Stieltjes sense.

T heorem  4.4. Assume that the filtration F is left-continuous at 1. Then for  any 
T\  -measurable random variable £ there exists an F -adapted process ip such that

f \ ( t ) d ( B H(t) +  W ( t ) ) = ( i  (4.6)
Jo

P roof. The proof is similar to  th a t of the main result in Ref. 1. Choose some 
/3 6 (1 — Я", 1/2). In view of the left-continuity of F at 1, for each k there exists 
an Jr1_ 2-k -measurable random variable £* such th a t oo, a.s. Take a
subsequence k(n) —> oo, n —> oo such tha t

P ( |& ( n ) - f |  > n - 3) < n - 2 (4.7)

and denote tn =  1 — 2~k n̂\  The integrand ip will be of the form ip =  Y^=\(^n+i  — 
f)- 1/ 2l[ tniTn) with some rn € (tn , t n+i\. First we make some a priori estimates 
concerning the integrand. To this end, consider

11̂ 11/3 ;[ t„ ,t„ +1] = h +  h ,

where

_  f tn+1 _№ O O j j .  _  Г "  ( tn  +  l — t ) p/. _  . n 1/2—/9.

L  (* -  tny  ~  Jo [ t - t ny  d t ^ c{tn+1  tn) ’

2  L  L  о t - w + i
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Tn r t \(tn+i - t )  1/ 2 - ( t n + i ~ s ) 1/21 
(t -  «)/»+! 

tn+1 /-Tn ( i  _  o'!-1/2
7 7

f t n  +  1 Г

+  /  /JO

-ds d£

(*"+1 f l i  d sd t (i -  s )/3+1

<

Tn

T" />t ds dfГ~п Г*

j  t n  J  t n (tn + 1 - t m t n + 1 - s y / z ( t - s ) P + i / *

+  С  H i t  -  Tn) ~ ^ 2dt  <  C { tn+l -  t ny ' 2- 0 .
Jo

In particular, denoting =  f*n+1 ip(t )dBH (t), we have

\v%\ <  C ( t n+i -  tny / 2- P A ( B H), (4.8)

whence

P ( K |  >  n - 3) <  P (|Л(£?Я )| >  C n ~ 3(tn+1 -  i n f - 1/ 2)  

( |Л (Б Я )| >  C n ~ 32 ^ 2- ^

<  C E \ A ( B H) \ n 32{f>- 1/2)n,

consequently,

£ > ( | г ; я | >  n~ 3) <  oo. (4.9)
71=1

Now we define r„ consecutively. Denote v(t)  =  f* if>(s)d(BH(s) +  W(s) ) .  For 
given n >  1 assume th a t т> is defined for к =  1 , . . . ,  n —1 (for n  =  0, assume nothing) 
and denote v™(t ) =  f*  (fn+i - t y 1̂ 2d W (t ). Since f*"+1 (tn+1 -  t )dt  =  +oo, we have
lim inf f tn(tn+1 -  <)_ 1/ 2dVF(s) =  -o o  a.s., lim su p / /  (in+i -  t ) _ 1/ 2d iy (s) =  +oo
a.s. Therefore, the stopping time r n =  inf{i >  t n : v^f (t ) =  £*(„) — n(irl)} A tn+1 
satisfies r„ <  i n+i a.s.

We need to  show (4.6). F irst we argue th a t fg i/>(t)2d t  <  oo so tha t the integral 
f*  xp(s)dW(s) is well defined. Denote G n =  //"+1 ip(t)‘2dt. As in Ref. 1, we have 
P(G„ >  n~ 2 | T tn) < n  |£fc(n) -  u (t„)|. For n >  2, note tha t

v ( tn) =  v ( tn—i)  +  f rp(t)dW(t) +  j  i/j(t)dBH(t)
J  t n  — 1 t n  — 1

=  ffc(n-i) +  [  rf){t)dBH(t) =  £fc(„_i) +  Vя  
Jin-1

and estimate

|Cfc(n) — v ( t n ) |  — |Cfe(n) — C| "b |£ fc (n—1) — £ |  "I” \v n  | •

(4 .10)
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Therefore, taking into account (4.7) and (4.9), we get tha t
OO OO

£  P(G„ > n~2) <  (3n ~2 +  P (n |Cfc(n) -  v ( tn) [ >  3n~2))
n = 1 n = 1

oo ,
<  £  (3 n - 2 +  P ( |^ (n) - £ |  > n “ 3)

n =  1

+  P ( | £ f c ( n - 1 )  -  Cl >  n ~ 3 ) +  P  ( | w ^ |  >  П " 3 )  ^  <  OO.

Then the Borel-Cantelli lemma implies th a t [J ifj(t)2dt  — Gn <  oo a.s.
To show the existence of the integral ip( t )dBH(t), we write ||яЛ||/3;[о,1] <  

E ^ L ilM U [tn,tn+1] and use the above estimates for |H I/3;[t„,t»+i]-
In view of (4.8) and (4.10), v ( t n) —> £, n  —> oo. It remains to prove tha t u (l) — 

v ( tn) =  Jtn ^ ( t ) d ( B H ( t ) + W ( s ) )  —+ 0, n  —■> oo. The convergence Jj1 ip ( t )dW(t ) —> 0,

n  —> oo follows from the convergence of the series E n L i G n, and J '1 x/j(t)dBH (t)

J2™=n \vn \  <  00 thanks to  (4.8), which concludes the proof. □

R em ark 4.3 . It is straightforward to  generalize the statem ent to the case where 
X ( t )  =  f 0 cr(s)dW(s) +  Z(t) ,  where the process a  is an F-adapted bounded non
vanishing process, and Z  is Holder continuous of some order a  >  1/2.
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In this paper we present a realization of Volterra processes within the white noise analysis 
framework. We show th a t Donsker’s delta functions of Volterra processes are elements 
from the space of Hida distributions. An explicit expression for the corresponding chaos 
decomposition in terms of Wick tensor powers of white noise is also given.

Keywords: Volterra processes; white noise analysis; Volterra white noise.

1. In troduction

There has been a growing interest in the study of Volterra processes, i.e. Gaussian 
processes having representation as the stochastic integral of a time dependent kernel 
with respect to the standard Brownian motion. The main motivation comes from 
the diverse applications in the fields of telecommunications and internet traffic, 
turbulence in liquids, image analysis and synthesis, geophysics, and mathematical 
finance, to  name just a few. The class of Volterra processes includes Brownian bridge, 
Ornstein-Uhlenbeck process, and fractional Brownian motion. Several works on the 
Volterra process, the corresponding stochastic calculus, and their applications can 
be found in Refs. 2, 3, 5 and 9.

Let us denote by I  an index set which will be a compact interval [0,T], 0 < 
T  <  oo, the nonnegative half line [0, oo) or the real line K. Given a locally square- 
integrable kernel K ,  i.e. a mapping К  : I  x I  R such th a t К  E L l J I 2)- ^  is 
well-known tha t К  induces a Hilbert-Schmidt operator /С : L 2(I) —> L 2(I ) in the fol
lowing way: an element /  G L 2(I) is mapped to the mapping t >-> f j  K ( t ,  s ) f ( s )  ds. 
We assume the following conditions:

(i) К  is a Volterra kernel, i.e. К (0, s) =  0 for all s G I and K ( t ,  s) ~  0 for s >  t.

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.
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(ii) The family { K ( t ,  •) : t  6 1}  is linearly independent.
(iii) There are positive constants С  and a  such that for all t , s  € I

J  \ K ( t , r )  — K ( s , r ) \ 2 dr <  С \t — s\a .

A stochastic process X  =  (X t ) t e i  defined on a complete probability space (SI, T , P) 
adm itting a representation

X t =  J  K ( t , r ) d B r , (1 )

where В  =  (Bt )te i  denotes standard Brownian motion on (Г2, T ,  P) and К  is a kernel 
satisfying conditions (i)-(iii) is called a Volterra process. Assumption (i) implies that 
X  is adapted to the natural filtration of the Brownian motion B.  From (iii) we know 
tha t K ( t ,  •) € L 2( I ) for each t  €  I  and hence, the process X  is well-defined as a 
family of Wiener integrals. Condition (iii) also guarantees the existence of a Holder 
continuous modification of the process X .  It is clear tha t X  is a centered Gaussian 
process with covariance structure

cov(Xt, X s) =  J  K ( t , r ) K ( s , r )  dr, t , s  G I.

Note th a t the assumption (ii) guarantees th a t the covariance function is indeed 
positive semidefinite on I. Informally, we can consider (1) as a generalized stochastic 
Volterra integral equation with solution white noise Bt =  jjj Bt .

Since with probability one Brownian motion is nowhere differentiable, the com
monly used term  white noise B t must be treated carefully. A branch of stochastic 
analysis which deals with the rigorous study of the white noise is known as white 
noise analysis. It was first introduced by T. Hida in 1976. The basic idea is to  do a 
stochastic analysis where the underlying random variable is not Brownian motion 
but rather its velocity, white noise. Being independent at each time, white noise 
provides a suitable infinite dimensional coordinate system. Due to the Gaussian 
structure it is natural to study the class of Volterra processes within the framework 
of white noise analysis. It is our main goal to build a comprehensive study of the 
white noise approach to Volterra processes and to develop some applications. In this 
paper we present some preliminary results. We remark tha t the study of Volterra 
process by using white noise theory has been initiated in the work of N ualart.9 
There the author focused on the stochastic integration with respect to  fractional 
Brownian motion using Malliavin calculus as well as white noise analysis.

The present paper is organized as follows. Section 2 contains a summary on some 
standard facts from the theory of white noise analysis. In Section 3 we present a 
realization of Volterra processes on the white noise space. We also prove th a t the 
Donsker delta function of a Volterra process exists as a Hida distribution. As a corol
lary we provide an explicit expression for the corresponding chaos decomposition. 
Conclusions and future works are given in Section 4.
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2. B asics o f W h ite  N oise  A nalysis

In order to  make the paper self-contained, we summarize some fundamental con
cepts of white noise analysis used throughout this paper. For a more comprehensive 
explanation including various applications of white noise theory, see for example the 
books of Hida et a l,4 Kuo7 and O bata .10 Let (Sd(R),C. ц)  be the R evalued white 
noise space, i.e., <Sj(R) is the space of R evalued tempered distributions, С is the 
Borel ст-algebra generated by cylinder sets on S d(R), and the white noise probability 
measure /i is uniquely determined through the Bochner-Minlos theorem by fixing 
the characteristic function

C { f )  :=  [  exP (* № />) d№ )  =  exp ( - h f \ o  
Js'd( R) v ' V z

for all R evalued Schwartz test function /  G <S</(R). Here |-|0 denotes the usual 
norm in the real Hilbert space of all R evalued Lebesgue square-integrable functions 
L d(R) and (■, ■) denotes the dual pairing between <S^(R) and <Sd(R). The dual pairing 
is considered as the bilinear extension of the inner product on L^(R), i.e. /g ,  =

£ j = i  f R 9 j(x ) f j i x ) dx  for all g  =  (gl f . . . ,  gd) G L 2d{R) and / =  ( / b . . . ,  f d) G 5 d(M). 
We have also the Gel’fand triple, i.e. the continuous and dense embeddings of spaces 
<Sd(R) c—► L d(R) c—► Sd(M.). We choose the family of the Hilbertian norms which 
topologizes <S<j(R) as the one generated by the Hamiltonian operator of a harmonic

oscillator H  =  — -^2 +  (x2 +  1) (acting in each component) as | / j  =  =

E ^= i E ^ o ( 2 n +  2)2p( / j ,e „)2 where e„, n >  0 denotes the n-th  Hermite function.
Recall tha t the complex Hilbert space Ь2(ц) := L 2(Sd(R),C,  fi; C) is canonically 

unitary isomorphic to  the d-fold tensor product of Fock space of symmetric square- 
integrable function, i.e. L 2{ji) =  (® £1 0 i 2(Rfc, k\dkx))® via the so-called Wiener- 
Ito-Segal isomorphism. Thus, we have the unique chaos decomposition of an element 
F  G Ь2(ц),

F ( u l t . . . , u j d) =  J 2  (2)
(m  i,...,m <i)6N g

with kernel functions of the m -th chaos are in the Fock space. Here
: u)®mj : denotes the rrij-th  Wick tensor power of u>j G S[ (R). We also introduce 
the following notations

m  =  (m i , . . . , m d) G Nq, ш =  £ ш ^ ,  m! =  m
j =1 j =1

which simplify (2) to F(w) =  E meN;J ( : :> /m ) , w £ <%(R). Using, for exam
ple, the Wiener-Ito chaos decomposition theorem (2) and the second quantization 
operator of H  we can construct the Gel’fand triple (S) t—> L 2(/j.) (5)*. Here 
(<S) is the space of white noise test functions obtained by taking the intersection
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of a family of Hilbert subspaces of Ь2(ц). It is equipped with the projective limit 
topology and has the structure of nuclear Frechet space. The space of white noise 
distributions (<S)* is defined as the topological dual space of (S).  Elements of (S ) 
and (5)* are also known as Hida test functions and Hida distributions, respectively.

The S-transfomn of an element Ф G (<S)* is defined as

where

(5Ф) ( / )  :=  ( ( ф , : exp ((•, / ) )  : ) )  , /  G 5 d (R ),

: exp ( ( • , / ) )  ::= £  ( :  •*“  :, / * “ )  =  C ( f )  exp ( ( • , / } )  ,

is the so-called Wick exponential and ((•, •)) denotes the dual pairing between (S)* 
and («?). We define this dual pairing as the bilinear extension of the sesquilinear 
inner product on L2(/i). The decomposition 5 Ф (/) =  E m6Nd (^Fm , / x'm^ extends 
the chaos decomposition to Ф G (S)* with distribution-valued kernels Fm such 
th a t ((Ф,<^)) =  m - (Fm,<Pm), f°r every Hida test function ip G (<S) with
kernel functions (pm . The S-transform provides a very useful way to  deal with the 
Bochner integration of a family of Hida distributions which depend on an addi
tional parameter. The following result is a corollary from the famous Potthoff-Streit 
characterization theorem, for details and proof see Ref. 6.

T h e o re m  2.1. Let (f2, A,  v) be a measure space and A i—> Фд be a mapping from Г2 
to (<S)*. If  the S-transform o f Ф \  fulfills the following two conditions:

(1) the mapping A i—> 5,(Ф л)(/) is measurable for  all f  G 5d(H.), and
(2) there exist Ci(A) G L l Сг(А) G L°°( f l ,A , iy )  and a continuous 

quadratic form В  on <Sd(R) such that for all z  G C, /  G S d (M)

5 (Ф а)(* /)| < C!(A)exp ( c 2(X)\z\2B ( f ) )  ,

then Фа is Bochner integrable with respect to some Hilbertian norm which topolo- 
gizing (S)*. Hence f n Ф\dl'(X)  G (S)*, and furthermore

s (  [ 4>x dv(X))  =  [  5(Ф а) dv(X).  
\ J q j  Jq.

3. V o lte rra  P ro ce sse s  v ia  W h ite  N oise  A nalysis

Let К (t, —) be a Volterra kernel satisfying (i)-(iii). By using the general theory, see 
e.g. Refs. 4 and 10, we have th a t the real-valued random variable X t :=  (•, K ( t , —)) 
defined on the white noise space is normally distributed with mean (X t ) =  
f s >(R) -)> =  0 and variance var(Xt ) =  / S,(R) | ( u , K ( t ,  - ) ) | 2 dfi(u>) =
f R \ K ( t , s ) \ 2 ds. Here Eft denotes the expectation with respect to the white noise 
measure //. As a consequence, the finite dimensional distributions of stochastic pro
cess (X t )te i  coincide with those of Volterra process. Hence, the following represen
tation of Volterra process on the white noise space is well-defined.
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D efin itio n  3.1. Let K , K \ , . . . ,  Kd  be kernels satisfying assumptions (i)-(iii). A 
centered Gaussian process X  =  (X t ) t e i  defined on the white noise space by X t := 

—)) is called a (one-dimensional) Volterra process. A d-dimensional Volterra 
process X  =  (X t ) t s i  is given by the vector X t =  ((•, K i ( t ,  - ) )  Kd( t ,  -)>),
where ((-, K i ( t ,  - ) ) ) te I , ■ ■ ■, ((•, K d(t. —)))te7 are d  independent one-dimensional 
Volterra processes.

The notation ( - , K ( t , —)} has the following meaning. The • indicates a tempered 
distribution w G S'(M) in the variable —. Thus, (w ( s ) , K ( t , s )) only depends on 
the param eter t. Moreover, for a fixed w G <S'(M), it represents a sample path  of 
the stochastic process X .  Note th a t we have to take ш =  (u>i,. . . ,  lo,i) G S'd(M.) as 
a vector of d independent white noises to ensure the independence of d Volterra 
processes in the multidimensional case. Recall th a t we define Volterra process on 
white noise space up to  finite dimensional distributions. The assumption (iii) implies 
the existence of a Holder continuous modification of the process X .  Indeed, let 
p  G [1, oo), then there exists a constant cv such th a t for each t , s  E I:

for some r) > 0 and p  > /3/2. Hence, according to  the Kolmogorov-Chentsov conti
nuity theorem X  has a modification with sample paths which are Holder continuous 
of index 7  for every 7  <  /3/2.

In several applications, such as in the context of Feynman path integral and 
Edwards’ polymer model, we need to  “pin” a Volterra process at some point с G Kd. 
For this purpose we consider Donsker’s delta function of a Volterra process. It is 
defined as the informal composition of the Dirac delta function Sd G 5'(M ) with 
a d-dimensional Volterra process ( ^ t ) t€ [o,T]> >-e-> ( X t — c). We can give a precise 
meaning to Donsker’s delta function as a Hida distribution.

T h eo rem  3.1. Let I  an index set which is either a compact interval [0,T], 0 < 
T  <  oo, the nonnegative half line [0,00) or the real line ffi. For a d-dimensional 
Volterra process

EM (|X t -  X s \p) =  Ем (K-, K ( t ,  - ) )  -  <•, K ( s ,  - )> |p)

<  cp \ t -  s\0p/2

<  cp \t — s |1+7),

x  =  ( X t )teI =  ( (• , K ( t ,  - ) ) ) t6 / =  ((-, З Д ,  - ) > , . . . ,  (., K d(t, - ) » te /

and c — ( c i , . . .  ,Cd) G Md, the Bochner integral
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5 ( ( . ,  K ( t ,  - j )  -  c) := ( i )  £  exp (>A ( ( ,  K ( t ,  - ) )  -  c ) )  JA 

is a Hida distribution with S-transform given by 

S 6 ( ( ; K ( t , - ) ) - c )  ( / )

— Y /2 ( ГГ 1 I exp 1 - - У '  № ' К & ' ~ У  
2?г/  \ J= i ~)|o j  \  2 ^

/o r all f  G <Sd(R).

P ro o f. We are going to show that

exp ^гЛ ^ - , K ( t , - ) ^  - c ) )  dA G (5)*.

First of all we fix the following notations: AK ( t , —) := ^2^=1 X j K j ( t , —),

A ( / , £ ( * , - ) )  =  ( . , - ) }  :=  E ?=1 Л; № ( * >  - ) .  and |A|2 - ) [  : =

Е - = 1 Л̂ ( * , - ) 1§- Let F \ ( f )  := Sexp (гА ( ( • , £ ( * , - ) )  -  c ) )  ( Д  /  G 5 d(R). 
Hence

^ a ( / )  =  ( (e x p  ^гА ^ - , K ( t , - ) ^  -  с) )  exp ( ( ' , / ) )  : ) )

=  Js , m exp  (*A ( ( t3’ ^ ( * ’ - ) )  ~ c) )  exP ( - | l / l § )  exP ( ( t*5> ^ ) )

=  exp (-^ l/1 § ) ^ /(R)exp _̂ *Aĉ exp + / ) )

=  exp ( ~ ^ l / l o )  exp (—гAc) exp Q  f  +  i \ K ( t , ~ )

=  exp ( - | l / l § )  exp (—гАс) exp Q l / l o l  exp ( i \  ( f ,  K ( t ,

x exp ( - ^ |A |2 K ( t ,  - )  Q

=  exp( - i | A | 2 t f ( i , - ) ' exp ( u  ( ( / , £ ( * , - ) ) - c) )
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The mapping A t—► F \ ( f )  is continuous for all /  G <Sd(IR). Thus, the measurability 
with respect to  Lebesgue measure A is fulfilled. Furthermore, for z  G C, /  G <Sd(R):

F x ( z f )

exp ( ~ ^ I A|2 K { t , - )  J  exp ( |z | \ ( f , X K { t , - ) ^  ) 

=  exP ( “ lAl2|tf(* ,-)|g)

(
x exp |A|2 K ( t - )

n |<

N
(,f , X K ( t , - ) }

2

, w*K f , X K ( t , - ) ) 2

( W
2\  1/2 

0/
w 2 * ( * , - )

2

° /

9 \ /
1 12

n) exp
И

0/ U p

9 \
/

i 12
J e x p M
° / [jA |2

2\
E l ( / i . W * , - ) > l  

^=1

1 d
Y , \fj \o\XjKj(t ,  - ) |°  

u = l

< exp

x exp
< j =  1

=  exp ^ - ^ |A |2 |K { t , - )  J  exp ( |; \2\ f\2

The first factor is an integrable function of A, and in the second exponential the 
factor is independent of Л. Hence, according to  Theorem 2.1

To obtain the S-transform of <5 , K ( t , —)^ -  c j , we integrate F \ ( f )  over R d:

= s  ( Ш  L exp (iA ( ( v R{t' ■’ ) ~ c) ) d\ ( / )
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= Ш  L Sexp ((■’ XIt(t' _)) ■c) ) {f)dX 

= Ш  L exp ( ~ i |A|JИ * - _ )0 exp ( iA - > ) ~ е) ) м

t )  П  jT «ч> ( - | |* > (* .  - ) Й ^ + « Л . -KjC*. —)) -  «v)) " ,

1 V n  ^
2,r'  j - i

M J A  /(*  ( U , . K , ( t , - ) ) - 4 ) fexp i

— V /2 I ГГ 1 1 exp | - - У '  
^ )  L t i  \K J&- ) l o  j  P l 2 ^ □

As an immediate consequence of Theorem 3.1 we obtain the generalized expectation 
of the Donsker delta function of a Volterra process

( s ( ( ; K ( t ,  )} c ) )  ( J  П | а д _ ) |0 еХ Р(  2 ( | В Д - ) | 0

Moreover, from Theorem 3.1 we are able to derive the chaos decomposition for the 
Donsker delta function of Volterra process. In order to avoid complicated notations 
we present the result in the case с =  0.

C o ro lla ry  3.1. Let X  =  { X t )teI be a d-dimensional Volterra process. The kernel 

functions F2m of 5 are given by

/  \ \ m f  I \ d/ ‘2 I d i  2m
F2m(u1, . . . , u 2m) = ( - - )  a n f t f t . r g W

for  each m  6 Nq- All other odd kernel functions Fm vanish.

Some examples of Volterra processes, their realization on the white noise space 
together with their Donsker’s delta functions are now in order.

(1) B r o w n i a n  bridge:  Let I =  [0,T] and

Kj(t , s)  =  1[0,t)(s) -  |;1 [o ,t)(s), j  =  l , . . . , d .

Then K j  satisfies assumptions (i)-(iii) and the stochastic process (X t ) t>0 with 
X t  := (•, l[o,t) — yl[o,T)) is a rf-dimensional Brownian bridge with length T
c f  o r f i r i f r  in  О o f  f  iv n n_О___________nr» rlin iT __i n__0 __a i __4-t-w-» /-»__’  I  1___'I'lrin ТЭ ^ „



A white noise analysis of Volterra processes

integral

t
s  (Д -,1[(М ) -  f h o , T )  t

s) Lexp (iA ((■■1|ол ■ f - i|°'T)) "c) ) dX2 tt J

is a Hida distribution with S-transform given by

for all /  G <Sd(M).
(2) Fractional Brownian m o tion : Let H  G (0,1), I  =  [0,T], and

**<M> = Ж т Т Т )  Л  ( «  -  й  -  « я  +  i  * -  ; )  W *

where \F2 is the Gauss hypergeometric function and Vn =  Г1~2~Щ1- 2Н)Н  ̂ 1S 
a normalizing constant which makes var(X i) =  1 .  Then K j  satisfies assump
tions (i)-(iii) and the stochastic process {B[! ) t>0 with := { - , K j ( t , —)) 
is a d-dimensional fractional Brownian motion with Hurst param eter Я , see
e.g. Refs. 3 and 5. We can also define the fractional Brownian motion on 
the whole real line using the so-called moving average representation, i.e. 
B ?  := (•,K j ( t ,  —)) where K j { t , s )  =  ^  ((f -  s )+“ 5 -  ( - s ) + _ 5 ) where 
u+ =  max { и , 0} and

(  Г  I ,  xw i н  Л 2 , 1 (2Явш (тгЯ)Г(2Я))*
C „ = ( l  ( ( !  +  . ) " - . - . » - * )  d , +  - )

see e.g. [8, Theorem 1.3.1].
There is another realization of fractional Brownian motion on the white noise 
space which is due to  Bender:1 Let Я  G (0,1), I  =  [0,oo) and

K j ( t , - )  =  M 111[0,* )(-), j  =

where

’ ( Ь Щ к  Bm,4o , if я  e  (o, J)

M Hf  :=  2 /  * , if Я  =  i

Г ( я - Т) / ( v ) ( v  -  dV I if Я  G ( j ,  1).
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Then, the stochastic process with :=  (- ,М Я l[o,t)) is a d-
dimensional fractional Brownian motion with Hurst param eter Я . This is due 
to the fact tha t for Я  G (0,1) and for all £ G M

( m 5 “ 5 l [0,t))  (:г ) =  r ĝ 1+  ^  ( ( * - ® ) J _ i  ,

see e.g. [8, Lemma 1.1.3]. Moreover, we have the Bochner integral

S ((•, M 5 l [0,t)) -  c) :=  exp (гЛ ((-, M Hl [0>t)) -  c)) dA

is a Hida distribution with S-transform given by 

SS ((•, M 5 i [0,()) — c) ( / )

= ( т я я )  exp ( “a® t  ( /  «?«*> ̂  -

where

'  lime\ o  / £°° /(жу _ (Г У) . if Я  € (0. 5)
/  " , i f ^ = i  

r ( f ^ ry  f l x  f ( y ) ( x  -  у)я “ 5 dy , if Я  G ( i ,  1).
M " / : =

for all /  G 5d(M). For Я  G (0, i )  is nothing else than  the Marchaud
fractional derivative operator and for Я  G (^ ,1 ) M.j /  is the Riemann-Weyl 
fractional integral operator. Note tha t for /  =  l[o,t) or /  G <S(R) it holds tha t 
M ± f  G L 2(K). Note th a t by choosing Я  =  \  we recover the classical Brownian 
motion.

(3) P ure Volterra process: In the preceding examples we only consider d- 
dimensional stochastic processes with d identical Volterra kernels in each coordi
nate. We can also consider d-dimensional pure Volterra process, i.e. we take dif
ferent Volterra kernels which give different independent stochastic processes liv
ing in each coordinate of R d. As a simple example let d ~  2, K \ { t ,  s) =  l[0,t)(s) 
and K 2( t , s )  =  l [ o , t ) ( s )  — ; f l [ o , T ) ( S )-  Then, the two-dimensional stochastic pro
cess

te[o,T]

is a pure Volterra process with a Brownian motion in the first coordinate and 
a Brownian bridge (starting in 0 at time 0 and ending in 0 at time T)  in the 
second coordinate.
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We have presented some preliminary results on a white noise approach to Volterra 
processes. In particular, we discuss the Donsker delta function of Volterra processes 
as a white noise distribution. For future works we plan to  consider the Volterra 
white noise, i.e. the generalized time derivative of a Volterra process, and some 
applications such as in the topics of local times, self-intersection local times and 
fractional path integral.
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Some classes of stochastic processes with memory properties are investigated by evalu
ating the probability density function as a white noise path integral. The corresponding 
modified diffusion equation for different types of memory behavior is then discussed.

1. In troduction

Various natural and social phenomena are characterized by a degree of random
ness and apparent memory of the past. Randomness, uncertainty, and stochasticity 
arise when too many unaccountable and undetermined factors affect the dynamical 
evolution of a system. Memory, on the other hand, manifests in emerging patterns 
and repetitions tha t could occur in an otherwise random development in time. Both 
stochasticity and memory, therefore, appear to be im portant ingredients in a m ath
ematical model for phenomena at various scales. To incorporate these features, we 
take a variable x  and express it in terms of the white noise random variable u> (t) 
and a memory function f  (T  — t), where t is time which varies from 0 to T.  We 
evaluate the probability density function as a sum-over-all histories1-3 if x  starts at 
Xo and ends at x t  a t time t  =  T.  In particular, integration over all paths is done 
using the Gaussian white noise measure4,5 dfi (u>) where, u> =  d B /d t ,  with В  (t) a 
Wiener process. We then consider different types of memory behavior and mention 
some applications.

2. P aram etrizing S toch asticity  and M em ory

To understand natural and social processes we normally track, observe, and record 
values of an im portant variable as it evolves in time. Designating this variable as x,

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.
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its randomness and memory behavior may be parametrized as ,3,6

x ( T )  =  x0 + [  f  (T -  t) h (t) и  (t) dt , (1)
Jo

where Xq is the initial value, f  (T  — t) is a memory function, and h (t ) is a time- 
dependent multiplying factor. Here, ш (t) is the Gaussian white noise variable 
defined such tha t ordinary Brownian motion is, В  (T ) =  и  (t) dt. As time t  ranges 
from 0 to T  in Eq. (1), the functions f  (T  — t) and h (t ) modulate the random  white 
noise variable ш (t) thereby affecting the value or history of x  (T ). The explicit forms 
of /  (T  — t ) and h (t ) may be chosen depending on the system being modeled. For 
the special case where, f ( T  — t) =  h ( t ) =  1, Eq. (1) reduces to the Markovian 
process,

x ( T ) = : x o  +  B { T ) .  (2)

We now proceed to evaluate the transition probability for a system to go from 
x'o to a specific endpoint, x  (T ) =  x t , a t a later time t  =  T.  As in the Feynman path 
integral,1 randomness and uncertainty dictate tha t all possible paths starting from 
the intial point xo should be accommodated. However, only those paths which end 
at a given point x t  contribute in evaluating the transition probability (see, Fig. 1). 
This means th a t we consider only those paths which satisfy the delta function 
constraint,

5 (x  (T ) — x t ) — ^ +  J  f  (T -  t) h( t )  ш (t ) dt -  , (3)

where we used Eq. (1) for x (T ).

TIME

Fig. 1. At tim e t — T , paths may end at different points in space. The delta function constraint 
for paths on the left and right gives zero contribution. The two paths in the middle contribute to 
the probability density function.
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The probability density function P  (x t , T \ xq,Q) for paths satisfying the 
^-function constraint can be obtained by evaluating the expectation value
E  (5 (x (T) -  x T)) as,

P  (xT , T; x 0, 0) =  E  (6 (x (T ) -  xT ))

= J 5 ( x ( T ) —x t ) d[i

— J 5 +  J  f  (T — t) h( t )  uj (t ) dt -  xt^J dfi,

(4)

over the Gaussian white noise measure5 d/л.
Writing the delta function in terms of its Fourier representation we have,

P ( x t , T ; x q ,0) =  J  dn J  dk

x exp < ^ik  — x t  +

r+oo

[  f  (T  — t) h (t) Ш (t) 
Jo

1 f +°°
—  /  dk exp {ik [(xo — x t ) } }  
i7r J - o o

J  exp I  ik J  f  (T — t)h(t)uj  (t) dt  1 d^ .

dt

(5)

If we let, £(t) =  к f ( T  — t) h (t),  the integration over d/i can be carried out, i.e.,5

dt (6 )

Using this result in Eq. (5) we have, 

r + 0 °  dkr + ° °  f ju  \ к 2 Гт  о
Р ( х т,Т-  ж0,0) =  j  —  exp I ik [(z0 -  xT)\ -  у  Д  [ f ( T - t ) h ( t ) \  d t \  .

(7)
The integral over dk is a Gaussian integral which when evaluated yields the proba
bility density function,

P  (xT , Г ;  ®o, 0) =  (  27Г j f  [ /  (T -  t) h (t )]2 d t j

[  [ f ( T - t )  h( t ) ]2 dt 
Jo

x exp —
- l

(xT -  Xo)
(8 )
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As a simple example, take the special case where f  (T — t) is just a constant, 
say, /  =  s f l D  where D  is a diffusion coefficient and h( t )  =  1. Then, Eq. (8) reduces 
to the Gaussian distribution,

<9>

which solves the diffusion equation for the Wiener process. Other examples are 
shown in the next section.

3. M em ory Functions and P robab ility  D en sities

Using Eq. (8), we summarize in Table l 6 some explicit examples of memory function 
/  (T — t) and h (t) for which closed form solutions of the corresponding probability 
density function P  (хт, T ; xo, 0) can be obtained. The equation numbers in the third 
column refer to Refs. 11 and 12.

4. M odified  D iffusion E quation

We now look at the kinetic equation satisfied by the probability density function 
P  (x t , T ; xo, 0) given by Eq. (8) with memory function /  ( r  -  t). Using the notation, 
x t  =  x, and T  =  r ,  the behavior of P  (хт, T; xq, 0) with respect to  time can be 
seen by taking its time derivative,

^ P ( x , r , x 0,0)  =  ~

x exp

y / 2 n f T0 [f  (T  — t ) h  (t)}2 dt 

-  (x -  x 0 f

.2 f 0 [ /  (T — t ) h  (t)]2 dt

which yields the expression, 

d
дт

P  (x, r ; x0, 0) =

j —P  (x, t ;  xp, 0) 
( / ;  [ f ( T - t ) h ( t ) ) 2 dt

(,x -  x 0 У

f T0 [ f { T - t ) h { t ) ] 2 dt

(10)

( И )

On the other hand, an evaluation of, (д 2/ д х 2) P  (x, т; ж0, 0), using Eq. (8) shows 
tha t it is equal to  the factor in curly brackets in Eq. (11), in particular,

| 1 р ( х , г ;х „ ,0) =
t o 2 f „  [ / l T - t ) k ( t ) f d t

1 -
(x -  xoy

f o  [f ( T - t ) h ( t ) ] 2 dt
(12)
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Table 1. Memory function with corresponding Probability Density Function. Equation 
numbers are those in Kefs. 11 and 12.
M em o ry  F u n c tio n

f i T - t ) h(t )
P ro b a b ili ty  D e n s ity  F u n c tio n

P (xT , T ; x q,0)___________
/rp —1/2

[1] /  =  Г(Н +  1/2) h =  1 H  Г 2 ( н + 1 )
T2H

(  H  r 2 ( H + i ) ( z o - * T ) 2N\ x exp I --------- v -фл ----------- J

[2] /  =  sin 2 (T  — t) h = у/ Jo (t) [2irTJi (T)]~5 exp ( — )~
Eq. (6.674.7) of Ref.ll

[3] /  =  cos 2 (T  -  t) h = \J Jo (t) [2тгГ70(Г )]-гехр
Eq. (6.674.8) of Ref. 11

p- 1[4] f  = ( T - t )

[Re ц > 0, T  > 0]

h = e - 0 / 2 t  
t ( n  +  l ) / 2

pn/2es/2T
V S x r t r i T . - l  6XP V 2 Г(д) TM -l у

Eq. (3.471.3) of Ref. 11________

[51 f  = ( T  — t)
ЩГ-

[Re fj. > 0, T  >  0]

h =
e -/ 3 / 2 t

td-W/2

[Re /3 >  0]

2ТГ/3 ̂ 2 ГМ№Ь2„_, „ (£)
/  1 — t/ 1 —  2ft —

X 6XP ^ a rw w t-aj,-, Л £ )  
Eq. (3.471.2) of Ref. 11?

T  2 "  e S r  ( x T - x 0 )2

[6] /  =  (T  -  t)

[Re fi >  0, T  >  0]

h =
p - f 3 / 2 t

[Re 0  >  0]

У2 ^ /3 7  "e ( £ )

x exp ( -лАРг{хт- х 0)2---------
^2/3 5 “e Я Т М К , ^ )

Eq. (3.471.4) of Ref. 11

[7] /  = (T — t)

[Re ц > OS

ft - e<5t/2

[Re i/ > 0]

V2xB(M,i/)'r’'r+t' - 11F1(t/;M+l/;̂ T)
X exp ( + Fi(u]iM+î ;f3T) )

Eq. (3.383.1) of Ref. 11________

[Re fi >  0]

^тГ

x exp “ ( § ) 2 T ( * T - x  o)2

^2У ¥в(^)г 
Eq. (3.383.2) of Ref. 11

[9] /  =  ( T - i ) V

[Re /x >  0]

,Г-3/2Т ^ - М аМ - ^

2™ ( f ) r M ^ . l ( f )
T-STS-''q*‘-5 (10- t 7.)2 

" 2 8ш ( ^ ) Г ( м) ^ _ 1 ( ^ - )

Eq. (3.768.7) of Ref. 11________

x exp —
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Table 1. (Continued)

M em o ry  F u n c tio n
h( t )

P ro b a b i li ty  D e n s ity  F u n c tio n
P ( x t ,T;  zo,0)

[10 ] /  =  ( T - t ) V

[Re /I > 0]

ь cos ̂  (at)
n l - u

2 V  2со8( ^ ) Г Ы ) ^ _ 1 ( ^ )

X e x p [  2 c o s ( ^ ) r W V i ( ^ )  J  
Eq. (3.768.9) of Ref. 11

[11 } f  = ( T - t ) Bf 1 

[Re/i >  0]

h - & T 1 /J —2i/yl —A—
1̂ A

[A >  0]

- с т а  | -1В(Л^ Г ' Р - ^ Т ' - Ь - ^ хо- х т )2 )
^ 2 3F2( - *  А ,а±1;А±й,А±й±1;^ £ )  J

[Re ( д )  >  О]; Eq. (3.254.1) of Ref. 11

[12] /  =  (T  — t)~% 

[|Re И <  1]

h ~  J V ~ aK 1
V (*-c) 

[ c<T]

эг^2 csc(ISTT) [l— cos(l/7r) ( t ^ ~ )

x exp I \
\27r[l-COs(l-7r)(T^ )  ]y

Eq. (3.228.1) of Ref. 11

[13] f  =  (T - t )~ v /2 

[0.5 <  Re и <  1] [ c<T]

/  ( T - c ) -
у —27T2 (c) ,/ 1 COt(|/7r)

х е х р ( < т 7 ? ; (? т ~ Г 0 ) П\  27t( c) ^  1 COt(l/7r) /
Eq. (3.228.2) of Ref. 11

[14] /  =  ( T - t ) ^ 2 

[Re и >  - 1 ,  T  >  0]

h = e - " ' / 2 l
у/2тг( — ц)~1/~ 1е~т^ 7 ( * /+ l» —Тц) 

v с-CD Г  _еТМ ^
P  U f - n ) - " - 1 y iv + 1 - Т ц ) )  

Eq. (3.382.1) of Ref. 11
[15] 40>II l

/  =  y / J ! - v ( T  -  t) 

[— 1 <  Rei/ <  2]

y/2n(J0(T)-cosT)

X exp (  2(J0(T)—cos t ) )  
Eq. (11.3.38) of Ref. 12

[16 ] f  = y / M T - t )  

[Rei/ >  — 1]

h =

[Re/i >  0]

\ J  2t  J„+V(T)
-  C'CD (  - ^ T - x o ) 2 )  XexP ^  2JM+„(T) J

Eq. (11.3.40) of Ref. 12

Using Eq. (12) on the right-hand-side of Eq. (11) yields a modified diffusion equation 
(13) satisfied by P ( x , t ; x o,0), i.e.,

d_
дт

Р { х , т ; х  o , 0 )  = ЪЪт Jo if (T  ~ t ) h (t )]2 dt ^ P { x , T \ x o , G ) , (13)

where, instead of a constant diffusion coefficient, a time-dependent diffusive behavior 
is allowed.13 We now look at specific examples where the corresponding solution 
P ( x , t ; x o ,0) has been applied to actual physical systems.10,14
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(a) Ordinary B row nian M otion:
Consider the special case where /  (T  — t) is just a constant given by /  =  s/2D  

and h( t )  =  1. Eq. (13) yields,

д d 2
— P ( x , t - x o , 0 )  =  D - ^ P ( x , t ; x o , 0 )  (14)

which is the usual diffusion equation for the Wiener process where D  is a diffusion 
coefficient.

(b) Fractional B row nian M otion:
For a memory function f  (T  — t) and h (t) =  1 given by number (1) in Table 1 

of the previous section, we have,

d - j \ f ( T - t ) h { t ) ] 2 dt  9
.2 H

T 2 H - 1
(15)

г ( я  + | )
Using this in Eq. (13) yields,

9  J-2H—1 ^ 2
— P  (ж, г; ж0, 0) = ---- -------- — 2 (ж, г; ж0, 0) , (16)
дт 2Г ( Я + | ) д х 2

which is the diffusion equation for fractional Brownian motion in Riemann-Liouville 
representation .2

(c) E xponentia lly-m odified  Brow nian M otion:
For the memory function /  ( r  — t) and h (t) described by entry [4] in Table 1 we 

have,

f )  Г т  f )  f T  f  e ~  @ / t \

Yt L  d t = d ^ J 0 ( T~ t r ~ { p ^ ' dt
д ( Т ( ц ) т » - 1е~<3/ т

дт \  (3̂

Г ( д ) е - 0/ т
[ ( д - 1  ) т ^ - 2 + /З т ^ -3] .  (17) 

This gives rise to a modified diffusion equation of the form,

^ -Р (ж ,г ;ж о, 0) =  -----[(М- l  ) r ' i- 2 + /3 r 'i" 3]^  -Ц ^ Р  (ж, г; ж0, 0).

(18)

5. C onclusion

The sum-over-all-paths approach to describe stochastic processes possessing various 
types of memory behavior allows a wider range of real-world applications. One 
advantage of the path integral is its ability to handle systems with boundaries and
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spaces with topological constraints6,15,16 often encountered in actual experiments. 
The wide array of possible memory functions is also an advantage in dealing with the 
diversity of natural and social phenomena. Applications could range from complex 
systems to microrhehology and neurophysics, going beyond the m athematically well- 
studied fractional Brownian m otion .6~10,14
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Modern single particle tracking techniques and many large scale simulations produce 
tim e series r( t) of the position of a tracer particle. Standardly these are evaluated in 
terms of the time averaged mean squared displacement. For ergodic processes such as 
Brownian motion, one can interpret the results of such an analysis in terms of the known 
theories for the corresponding ensemble averaged mean squared displacement, if only 
the measurement tim e is sufficiently long. In anomalous diffusion processes, th a t are 
widely observed over many orders of magnitude, the equivalence between (long) time 
and ensemble averages may be broken (weak ergodicity breaking). In such cases the time 
averages may no longer be interpreted in terms of ensemble theories. Here we collect some 
recent results on weakly non-ergodic systems with respect to  the time averaged mean 
squared displacement and the inherent irreproducibility of individual measurements. We 
also address the phenomenon of ageing, the dependence of physical observables on the 
tim e span between initial preparation of the system and the start of the measurement.

Keywords: Anomalous diffusion; ensemble average; time average; ageing; non- 
stationarity.

1. In troduction

Following the three groundbreaking papers on the theory of Brownian motion1 by 
Albert Einstein ,2 M arian Smoluchowski,3 and Paul Langevin,4 in 1908 Jean Perrin 
reported the first systematic single particle tracking results in his seminal paper on 
diffusion. Perrin used microscopic diffusion measurements of small putty  particles 
to determine Avogadro’s number via the Einstein-Stokes-Smoluchowski relation .5 
Due to the relatively short trajectories, Perrin used the ensemble information of 
many measured, not completely identical particles in his analysis.5 Only six years 
after Perrin’s first publication and exactly hundred years ago, in 1914 Ivar Nordlund 
conceived an experimental setup, tha t allowed him to record long time traces of

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons A ttribution 3.0 (CC-BY) License. Further distribution 
of this work is perm itted, provided the original work is properly cited.

W orld Scientific
■ И Г  w ww.worldscientiflc.com
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Fig. 1. Sample trajectories of sedimenting mercury droplets measured by Ivar Nordlund in 1914 
with his moving film technique, tim e increases to  the right.6 The jiggly motion of the droplets 
superimposed onto the deterministic sedimentation shows the Brownian motion of the droplets.

small mercury droplets on a moving film. Prom the records he then evaluated single 
particle trajectories in terms of time averages of the mean squared displacement.6 
Figure 1 shows typical trajectories measured by Nordlund .6 His method was con
tinuously refined in the following two decades, culminating in the measurements of 
Eugen Kappler,7 whose result for Avogadro’s number is within 1% of the current 
best known value.

Single particle tracking has become a routine tool in living biological cells as well 
as complex fluids in vitro,8 Common tracer particles include fluorescently labelled 
molecules such as messenger RNA in the cytoplasm of cells or protein channels in 
their membranes. W ithout labels, submicron tracers such as endogenous granules 
or internalised particles such as viruses or plastic spheres can be directly monitored 
in microscopes.

Consider first a passive tracer particle in a simple liquid such as water. Single 
particle tracking of this tracer will reproduce the laws of Brownian motion. The 
ensemble averaged mean squared displacement (MSD)

obtained as average of r 2 over the probability density function P (r , t) will yield the

proportionality factor depends on the spatial dimension. Single particle tracking 
experiments produce the time series r(t)  of the particle position. Typically, few but 
long trajectories r(t)  are measured and analysed in terms of the time averaged MSD

This moving average sums the particle displacements within the lag time Д  over 
the time series r(t) of length (measurement time) T.  For normal Brownian motion, 
the long time limit yields9

(1)

linear scaling (r 2(t)) ~  К  i t  with time t, where K i  is the diffusion constant. The

6 2 =  т -  A J 0 И* +  A ') ~  dt
1 f T~A г l 2

(2)

52(A)  ~  K i A , (3)

and we find the equivalence (г2(Д)) =  <52(Д) of ensemble and time averaged MSDs. 
This is a restatem ent of Boltzmann’s ergodic hypothesis: long time and ensemble
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averages of physical observables are equivalent. In the following we will also consider 
the average over individual trajectories,

,_____ v 1 J L _____  1 Гт~л
r( t  +  Д) -  r (t) dt. (4)

In many systems deviations from Brownian motion are observed. This anomalous 
diffusion is typically of the power-law form10

(r \ t ) ) ~ K at° (5)

with the anomalous diffusion exponent a  and the generalised diffusion coefficient K a 
of physical dimension [Ka] =  cm2/sec“ . We distinguish subdiffusion (0 <  a  <  1) 
and superdiffusion (a  >  1). Anomalous diffusion is often measured in crowded 
media, in particular, in living biological cells.11-14

Anomalous diffusion loses the universality of Brownian motion, and the MSD 
(5) is no longer sufficient to uniquely identify a stochastic process. Many different 
stochastic processes give rise to anomalous diffusion, and they exhibit many different 
features. The question we address here is the violation of ergodicity: we analyse 
which processes give rise to the disparity (г2(Д)) ф S2(A)  and related properties. As 
we will see, several commonly used anomalous stochastic processes violate ergodicity 
and effect the irreproducibility of single particle tracking measurements.

2. Fractional B row nian and Langevin E quation  M otion

The well known Langevin equation in the overdamped limita

^  =  V 2 Щ * №  (6)

is driven by white Gaussian noise of zero mean and correlator {£(t)£(t')) ~  —
it').4,15 In contrast to the (5-correlation fractional Gaussian noise (fGn) has the 
power-law correlation

< Ш ( 0 > ~ « * а ( « - 1 ) 1 * - * Г _2, (7)

with exponent 0 <  a  <  2. FGn is known to characterise the tracer motion in 
viscoelastic environments.16-21 Such correlated noise also governs the motion of 
individual lipids in lipid membranes,22 24 and fGn occurs for the motion of a tracer 
particle in a single file of colloidal particles with excluded volume interactions.25 In 
the case 0 <  a  <  1 the noise-noise correlator has a negative sign, a situation often 
termed antipersistent noise. In the case 1 <  a  < 2 we speak of persistence.

aFor simplicity, we will use the one-dimensional notation for the remainder of this chapter.
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Fractional Brownian motion simply substitutes the white Gaussian noise in the 
Langevin equation (6) with fGn (7).26,27 From a physical point of view, fGn is to be 
considered an external noise. The resulting ensemble average for the MSD is given 
by Eq. (5). FBM is ergodic in the sense th a t the time averaged MSD for unconfined 
motion becomes28

« 2 Щ  ~  2K a A a (8)

in the limit of long T.  We emphasise tha t the equality S2(A)  =  (x2(A))  indeed 
holds for a single trajectory in the long measurement time T  lim it,16 as expected 
for an ergodic process. The approach to  ergodicity occurs as a power-law, similar 
to regular Brownian m otion .28

In addition to  the ergodic behaviour, individual trajectories of FBM are repro
ducible. More precisely, the amplitude variation of the time averaged MSD <S2(A) 
from different realisations of length T  around the mean (<S2(A)} is Gaussian. At a 
fixed lag time A, the width of this distribution decreases with increasing measure
ment time T ,29 and sufficiently long individual trajectories are therefore in tha t 
sense reproducible.

2.1. Fractional Brownian m otion  (FBM )

2.2. Fractional Langevin equation motion

When we require th a t the fGn is internal and should fulfil the Kubo generalised 
fluctuation-dissipation theorem, the resulting particle motion in the overdamped 
limit is described by the fractional Langevin equation (FLE)30

(9)

for 1 <  a  <  2. Here к в &  represents the therm al energy. In this formulation the 
long-range correlations of the noise are matched by the memory integral over the 
friction kernel. In terms of the fractional Caputo derivative31

? . : а х ^  = ____I ___ f \ t _  (10)
<ft2~“ Г (а  - 1 )  Л  dt' '

Eq. (9) can be rewritten in the compact form

d2 ax(t)  1 / к в &
dt*~a  ~  Г (a  -  1) у  7 a ( a  -  1 ) K a * ^

hence the name fractional Langevin equation .32 FLE motion is ergodic,

S2( A , T )  ~  (x2(A) ~  2 K 2- a A 2- a . (12)

Due to  the restriction 1 <  a  <  2, FLE motion is therefore subdiffusive. As for FBM, 
the approach to ergodicity is algebraic.28 We note th a t FLE motion was also used 
recently in models of active transport in living cells.33
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2.3. Transient non-ergodicity o f FB M  & FLE m otion

The MSD for both FBM and FLE motion crosses over to a plateau in confinement, 
for instance, in case of diffusion in an harmonic potential V ( x ) =  kx2 / 2.34 In 
the case of FBM, no tem perature is defined, and the value of the plateau is a 
function of the anomalous diffusion exponent a , (x'2)st =  АТа Г(1 +  a ) / k a .35 The 
associated time averaged MSD becomes (£2stat) =  2{x2)st. Here the factor two 
between the MSD and the time averaged MSD is due to the definition (2), which 
involves twice the stationary value (®2)st .36 In contrast to FBM, FLE motion fulfils 
the fluctuation-dissipation relation, and the MSD relaxes to the unique plateau 
value (x2)th =  к ц & /к .  while the time average converges to (<52th) — 2(x2)th-36 

While for the free FBM and FLE motion ergodic behaviour is found the crossover 
to the stationary plateau turns out to be transiently non-ergodic. For both FBM and 
FLE motion the relaxation of the ensemble averaged MSD is exponential. However, 
for the time averaged MSD the approach is algebraic. For FBM we find36

K aT ( a  +  1) _ kA 2 a (a  — l ) K a
<52(Д) ~  2(x )st -  g --...Le- * *  -  a , (13)

and for FLE motion36

Ш  ~  2<*! }th ( l  -  * д Ь )  ■ (14)

This transient weak ergodicity breaking may lead to the false assumption that in 
the analysis of data  the process has not yet relaxed, while the corresponding MSD 
{x2(t)) already reached the plateau. This algebraic return to the ergodic behaviour 
represented by the plateau reminds of the algebraic approach to  ergodicity of the 
free motion mentioned above. For single particle tracking experiments of submicron 
tracer beads in a worm-like micellar solution, this behaviour is indeed shown in 
Fig. 2. In this example the confinement is exerted by the optical tweezers used to 
track the particle.19

2.4. Transient ageing o f FB M  & FLE m otion

W hat happens when the system is initially prepared at time t =  0 and we start the 
measurement at some later time ta >  0, the ageing time? We then define the time 
averaged MSD as37,38

______  1 rta+ T —A  2
d2(A) =  T  _  д  J t x(t +  Д) -  x{t) dt. (15)

A Brownian system naturally shows no dependence on ta. Even though the process 
is asymptotically ergodic, however, we observe a transient dependence on ta for 
processes driven by fGn. In general, for these processes it is found tha t the time 
average MSD always contains the two additive term s ,37

(<52(A)} / 81(Д) +  /а8е(Д ;га ,Т ). (16)

The stationary term  depends only on Д, while the second, ageing term  explicitly 
depends on T  and ta .
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lag time д (ms)
Fig. 2. The time averaged MSD of submicron tracer beads in water (circles) and a  viscoelastic 
solution with 1% worm-like micelles (squares).19 The measurement is based on optical tweezers 
tracking, so th a t the initial free motion of the tracer bead eventually becomes confined by the 
tweezers potential. The tim e averaged MSD in water relaxes exponentially (full line), while in the 
worm-like micellar solution we observe the algebraic relaxation of Eq. (14), shown by the dashed 
line.

Free FLE motion has a stationary term  featuring subdiffusion, / st — A 2~a , and 
the ageing term  decays as / age — 1 /T  as long as the initial velocity distribution is 
not thermal. In the limit ta T , we find the ageing time dependence37

fa.ge — ta 2a. (17)

Under confinement FLE motion the term  / st has a power-law approach to  the 
therm al plateau value, while again / age ~  1 /T . Interestingly, a different („-scaling 
is followed by the ageing term ,37

/ a g e ^ e -6 - (18)

Confined FBM has / age — 1 /T , however, the ageing term  shows the exponential 
decay37

/ a g e  ~  x l  e x p (-2 kta). (19)

3. Subdiffusive C ontinuous T im e R andom  W alks

As discussed in the previous section, FBM and FLE motion reach the ergodic 
behaviour algebraically, similar to Brownian motion. For sufficiently long measure
ments, individual trajectories become fully reproducible, and ergodicity is achieved 
in every single trajectory. Here we introduce a process, for which ergodicity is bro
ken asymptotically, and even for long measurement times T  individual trajectories 
never become reproducible. This process is the well-known Scher-Montroll-Weiss 
continuous time random walk (CTRW ):39-41 after each jum p a random walker is 
trapped (immobilised) for some waiting time t  before it is allowed to  jum p again. 
The waiting times t are independent random variables, th a t is, CTRWs are renewal
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processes. Waiting times are distributed identically with the waiting time probabil-

W ith this distribution of waiting times, the process leads to the subdiffusive MSD
(5).40,41 Due to the range of a , no characteristic waiting time (t) =  J0°° ti/j(t)dt —> oo 
exists. This scale-free nature of the CTRW process no longer possesses a time scale 
that allows one to distinguish a single or few jumps from many jumps. Typically, 
in a given trajectory longer and longer individual waiting events occur which can 
become of the order of the measurement time T, no m atter how long we run the 
measurement.

CTRW-type stochastic motion was observed in a wide range of systems, spanning 
the motion of charge carriers in amorphous semiconductors,40 the dispersion of 
tracer chemicals in subsurface aquifers,42 as well as the motion of tracer beads in 
cross-linked semiflexible actin gels43 and of functionalised colloidal particles facing 
complementarily functionalised surfaces.44 In living cells, the motion of lipid and 
insulin granules in the cell cytoplasm17’ 18 as well as of protein channels in the 
plasma membrane45 follow the law (20).

The lack of a characteristic waiting time scale effects weak ergodicity break
ing,46,47 and the time averaged MSD becomes48,49

which shows a clear disparity with the ensemble averaged MSD (5). Despite the 
anomalous nature of the process, the dependence of the time averaged MSD (21) 
on the lag time Д  is the same as for Brownian motion. Only the fact th a t the 
amplitude decays as function of the measurement time T  reflects the anomaly: while 
the process evolves in time, increasingly longer individual waiting times occur and 
cause a decay of the effective diffusivity ~  K a / T [ ~a . This behaviour also leads to 
severe changes in the interaction of a particle with a reactive surface50,51 and the 
exploration of phase scape.52

Figure 3 shows the time averaged MSD for individual realisations of a subdiffu
sive CTRW with a  =  0.5. We notice a distinct scatter of the amplitudes between 
the realisations. Moreover, while for most realisations the predicted linear slope 
( ¥ Щ ) ~ а  is observed, some of the time traces also show variations in the local 
slope. Such amplitude scatter and local slope variations are a common feature in 
many experiments, compare Refs. 17, 18, 45, 53. We can quantify the amplitude 
scatter in terms of the dimensionless ratio £ =  <52(Д) j  The correspond
ing distribution of relative amplitudes, фа ( 0  in the case of the subdiffusive CTRW 
becomes a one-sided Levy stable distribution .9,48 This distribution for the limit

ity density function 4>{t). The form proposed originally by Scher and Montroll is 
the power-law40

(20)

(21)
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Fig. 3. (Color online) Individual trajectories of a scale-free, subdiffusive CTRW with a  = 0.5 
exhibit the linear lag tim e dependence predicted by Eq. (21), with smaller local variations of the 
slope. In addition, there is a  clear scatter of the amplitudes between individual trajectories. These 
features reflect the influence of individual long waiting tim e events.

T  —> oo demonstrates th a t no m atter how long we average the motion of the par
ticle, on the single trajectory level the time averaged MSD of this process always 
remains a random quantity. In the special case a  =  1/2 we find the Gaussian form

0i / 2(C) =  \  exp • (22)

Its maximum is at £ — 0, reflecting completely stalled trajectories during the mea
surement time T.  Mobile trajectories with £ >  0 are distributed as a half Gaussian. 
W hen a  increases towards the Brownian value a  =  1, a peak emerges at £ =  1. In 
the Brownian case a  =  1, ergodicity is restored, and ф\ (£) =  <5(£ — 1) indicates tha t 
for sufficiently long trajectories each realisation is fully reproducible. This behaviour 
in term s of </>(£) is independent of an external potential,54,55 due to the fact th a t the 
ratio <52(A) j  <̂52(Д )^ is equal to  the ratio n (T )/(n (T )) of the number of jum ps.38

Under confinement, for instance, by an harmonic external potential within a 
finite domain with reflecting walls, the time averaged MSD of subdiffusive CTRWs 
does not converge to  the therm al plateau of the ensemble averaged MSD. Instead, 
the time averaged MSD scales like55,56

( » P 5 ) ~ ( W .  <23)

for Д  -С T  and Д  (l/[A 'a.Ai])1//Q. Ai represents the lowest non-zero eigenvalue 
of the Fokker-Planck operator in the confining potential, a measure for the time 
scale when the particle engages with the confinement. The result (23) is universal 
in so far as only the prefactor depends on the very form of the confining poten
tial V(x) .  It involves the first and second moments of the Boltzmann distribution, 
(x i ) в  — f  x i  exp(—V  (x) / [ к в  & } ) d x / 2?. The normalisation factor is the partition 

=  j  exp(—V (x ) / [ k B ^ ] ) d x .  The analysis shows th a t in this scale free process 
weak non-ergodicity remains present even in the limit of long measurements.
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3.1. Ageing behaviour o f subdiffusive C T R W  processes

CTRW processes with diverging time scale display ageing effects.57,58 We already 
saw ageing in the presence of the measurement time T  in the time averaged MSD 
(21). Ageing is due to  the non-stationarity of the process. Thus, in subdiffusive 
CTRWs the two-point correlation (x ( t \ ) x ( t2)) =  f { t i / t 2) is not a function of the 
difference \t2 —t\  \ of the two times but their ratio .55 This breakdown of stationarity 
removes the time translation invariance of stationary processes and needs to be 
taken into consideration in experiments, in which the start of the recording of the 
trajectories occurs only at some (ageing) time ta >  0 after the original initialisation 
of the system dynamics at t  =  0.

For the regular MSD, for sufficiently long ageing times ta this leads to a crossover 
from the scaling (x 2(t)) ~  K at / t \ ~ a in the ageing-dominated regime t <C t a to 
the scaling (5) when the system evolves for much longer than  the ageing time, 
t  3> ta.3S' 58 In the same situation the time averaged MSD (15) behaves much simpler 
and features the multiplicative, universal correction factor38

+  - ( ! ) “ . (24)

This factor solely depends on the ratio t a/ T  of ageing time t a and measurement 
time T.  Thus, apart from the amplitude, the scaling of the time averaged MSD (15) 
as function of the lag time A remains unaffected, an im portant piece of knowledge 
when the exact age ta of the process is not precisely known.38

Ageing of a subdiffusive CTRW process gives rise to another remarkable feature. 
Namely, the probability to  observe at least one jum p in an aged trajectory of length 
T  decreases algebraically with the ageing time ta .38 This property of the population 
splitting of particles into a mobile and a fully immobile fraction has to be taken 
into account when we want to deduce the anomalous diffusion constant from aged 
trajectories.38 We note th a t also the first passage time behaviour of aged CTRW 
processes exhibits an explicit dependence on the ageing time t a . In particular, inter
esting crossovers between different scaling regimes occur, a fact th a t may be used 
to deduce the age ta of a system from sufficiently long first passage d a ta .59

More specifically, in an aged system the start of the measurement at ta typically 
finds the system during one of the long waiting time events. It can be shown that 
the occurrence of the first jum p event in this case at the so-called forward waiting 
time t \  is distributed according to ,60' 62

, . . . sin(7ra) i"
M h \ t a )  =  ^ ta { t a + t i y  (25)

At long waiting times t a 3> t \  the distribution of the forward waiting time is thus 
broader than  the regular waiting times t in if)(t). In an aged CTRW all subsequent 
jumps then follow the law ip(t) again. Still, due to the macroscopic memory inherent 
in CTRW processes,10 the influence of the ageing time persists until the evolution is 
much longer than t a. In a modified CTRW model, in which every jump is dominated
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by the forward waiting time (25), the dynamics of the process is significantly slowed 
down, giving rise to  logarithmic time evolutions.63 These can be connected to single 
file systems in which each particle separately becomes trapped with a scale-free 
distribution of trapping times

4. C o rre la te d  C o n tin u o u s  T im e  R a n d o m  W alks

W hat if we do away with the renewal property of the previously discussed CTRW 
process? One way to  include correlations into the CTRW process is to consider a 
model when successive waiting times are only separated by an incremental change. 
Physically, this could reflect the motion in a quenched environment, in which locally 
the motion is dominated by a given mobility with small variations. We could thus 
imagine th a t the current waiting тг is composed of increments in the form65-67

Ti — £1 +  £2 +  • • • +  £ i-i ■ (26)

If the are distributed according to a Levy stable law defined in terms of its Fourier 
transform exp (— wi t h 0 <  7  <  2, then the process leads to  anomalous 
diffusion governed by Eq. (5) with the anomalous diffusion exponent a  =  7/(1  + 7 ). 
Its range is 0 <  a  <  2 /3 .65,66 This model features a stretched exponential mode 
relaxation P ( k , t )  ~  exp(—c t1/ 2) in the limit 7  =  2, while for for 0 <  7  <  2 a 
power-law form P(k ,  t) ~  t~ y is obtained .67 There also exist alternative models to 
correlated jum p processes, see the discussion in Refs. 68 and 69 and the citations 
therein.

The absolute value in the law (26) implies th a t the mean waiting time keeps 
growing with T  and diverges in the long time limit. The time averaged MSD67

(<52( A ) } J ' l - 7 / ( l + 7 )  ( 2 7 )

shows the weakly non-ergodic behaviour of the correlated CTRW process. It also 
features ageing effects demonstrated by the temporal decay of the response of the 
system to a periodic driving force.67 Individual trajectories show a pronounced 
amplitude scatter.65

A similar trick can be used to  correlate subsequent jum p lengths. The MSD of 
this process is then given exactly by65

m 2) *  t( l+ 1 > (f + 1)1,2, (28)

for a Gaussian distribution of jum p increments with variance a 2. This process thus 
has the cubic long time scaling behaviour (x( t )2) ~  t 3. The associated time averaged 
MSD scales quadratically ,65

(<52(A)} ~  Д ZT  (29)

for Д  <C T.  Thus, also this process is weakly non-ergodic.65
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5. H eterogeneous D iffusion P rocesses

Let us now address a seemingly much simpler scenario, namely, a diffusion process 
with a space-dependent diffusivity К  (x). Such descriptions were used to model tu r
bulence70 or diffusion in heterogenous porous m edia.71,72 In biological cells, local

where the multiplicative noise £(i) is white and Gaussian with zero mean. Using 
the Stratonovich interpretation this heterogeneous diffusion process (HDP) can be 
shown to be weakly non-ergodic.

Consider the power-law form K ( x )  ~  K q\x \  ̂ for the diffusivity. The MSD is 
then given by74

with the exponent p =  2 /(2 — /3). For /3 <  0 this process is therefore subdiffusive, 
while for 0 <  /3 <  2 it is superdiffusive.74 The time averaged MSD in the limit 
Д  <C T  exhibits the linear dependence74

on the lag time, valid for both sub- and superdiffusive regimes. This implies the 
exact connection (<52(Д)) =  (Д /Т )1- р (.т2(Д)) with the ensemble averaged MSD.

Interestingly, despite the simplicity of the HDP process we again observe a 
weakly non-ergodic behaviour. Similar results follow in the case of fast (exponential) 
and slow (logarithmic) variations of the diffusivity К  (ж) with the particle position
ж.75 We note tha t for the exponential case the square root scaling (S2(A))  ~  Д 1/2 
was observed.75 In the context of imaged diffusion in cells the HDP process with 
power-law ж-dependence of K ( x )  was also generalised to two dimensions.76

6. Scaled B row nian M otion

W hat if we consider a time-dependent diffusion coefficient instead of the x- 
dependence? As pointed out by Fulinski already ,77 such experimentally observed 
variations of the diffusivity78 may cause weakly non-ergodic behaviour in analogy 
to the spatial dependence in the HDP process above. For a power-law time depen
dence of the diffusivity this process is so-called scaled Brownian motion (SBM).79 
Let us start with the Langevin equation

variations of the diffusion coefficient were indeed recently mapped ou t.73 We con
sider the Langevin equation74

^  = v m x )  x m , (30)

(31)

(32)

^  =  у /2 ~ Щ ) x m , (33)
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where £(t) is white Gaussian noise with zero mean. The diffusion coefficient is given 
by

J f ( t )  = a K ata - \  (34)

where 0 <  a  <  2. This process obviously leads to the MSD (5). Concurrently, the 
time averaged MSD has the exact form80

(«Я(Д )) = 2 K at 1+a 1 -  (A / T ) 1+a -  (1 -  A /T )1+“

(a  +  1) T - A

For A C T ,  the linear Д -scaling is recovered,81

(35)

(<52(A )) 2 K ° i j ,]_a (36)

in both the sub- and superdiffusive cases. Thus, again we obtain a weakly non- 
ergodic behaviour given by the disparity between ensemble and time averaged MSD. 
However, different to the above weakly non-ergodic processes, SBM features fully 
reproducible trajectories in the long time lim it.80,81 As discussed in Ref. 80 in 
detail, the time dependent diffusivity Ж (t) may appear as a simple and natural 
choice for the description of anomalous diffusion processes. However, Ж (t) actually 
reflects a time-dependent tem perature ,77,80 and thus leads to unphysical behaviour 
in thermalised systems, in particular, when the da ta  are from a confined system, 
for instance, when the trajectories are measured by optical tweezers m ethods.80

7. C o n c lu sio n s

Single particle tracking is increasingly becoming a standard tool to study the motion 
of tracer particles in systems such as complex fluids or even living biological cells. 
Concurrently, single particle traces are evaluated in large scale computer simula
tions, for instance, to detect inhomogeneous motion in a population of simulated 
particles. To evaluate the garnered time series one typically uses the time aver
aged MSD. As we showed here, when the motion of the particle is anomalous, care 
has to be taken to evaluate the results in a physically meaningful way. Due to  the 
occurrence of transient or asymptotic weak ergodicity breaking, one cannot sim
ply compare the results for the time averages with the known behaviour of the 
corresponding ensemble averages.

Apart from the processes discussed herein, non-ergodic behaviour also occurs in 
other stochastic processes, including the ultraweakly non-ergodic Levy walks82-84 
where the disparity between ensemble and time averaged MSDs only amounts to  a 
constant factor. Diffusion on random, fractal percolation clusters was shown to be 
ergodic.85 We also note tha t in some systems combinations of stochastic processes 
have to  be applied to  capture the observed d a ta .17,18,45,86-88
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The diagnosis of a given data  set for the exact underlying stochastic process11-14 
requires the analysis of several complementary quantities. We mention the ampli
tude scatter statistics,29 increment autocorrelations,9,23 higher order moments,89,90 
mean maximal excursion m ethods,89 p-variation,91,92 and the analysis of the dis
tribution of the apparent diffusivity.93
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The study of transport dynamics of charge carriers in homogeneous and inhomogeneous 
organic semiconductor using the variable order time-fractional drift-difFusion equation 
(VO-TFDDE) is presented in this paper. The fractional-time derivative operator and 
spatial derivative operator of the time-fractional drift-difFusion equation are discretized 
respectively using the implicit difference scheme and the centered difference scheme. Self- 
consistent Poisson solver was incorporated in the model to solve for the electric potential 
and the localized electric field that sweeps the charge carriers across the device. The 
homogeneity of the material is represented by the different values or functions of the 
fractional derivative order. Diffusion transport dynamics is observed when charge carriers 
are moving in homogeneous crystalline-like structure. In contrast, dispersive transport 
dynamics is observed when charge carriers are moving in homogeneous amorphous-like 
structure. For inhomogeneous amorphous-crystalline-mixed structure, pulse broadening 
effect is impeded as charge carriers are moving towards the crystalline-like region at the 
other end of the device. Conversely, pulse broadening effect is getting severe if charge 
carriers are moving across the device with inhomogeneous crystalline-amorphous-mixed 
structure. Therefore, in order to achieve diffusive-like transport dynamics that could 
reduce the pulse broadening effect, homogeneous crystalline-like structure or inhomoge
neous amorphous-crystalline-mixed structure is recommended for device fabrication.

Keywords: Fractional diffusion equation; dispersive transport; organic semiconductor.

1. Introduction

The discovery of conducting polymer, polyacetylene doped with halogens in 1977 by 
Heeger, MacDiarmid and Shirakawa has triggered tremendous research in organic 
electronic materials1. Extensive collaborative efforts among physicists, chemists,
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material scientists and device engineers were mobilized to study the electrical, opti
cal, thermal and mechanical properties of organic or polymer materials. In addition, 
low-cost, low-temperature and simpler fabrication processes involved in the fabri
cation of an organic material, and its elasticity property, have further made organic 
material as the promising material for making various types of electronic and opto
electronic devices. Some of the popular organic-based devices are organic solar cells2, 
organic light emitting diodes3, and organic field-effect transistors4. Unfortunately, 
the low carrier mobility, low thermal tolerance and performance degradation due to 
oxidation of organic materials have hindered the application of organic materials in 
high-speed, high-temperature and high-power applications. Particularly, the low car
rier mobility suffered by organic materials broadens the pulse width of the electrical- 
injected or photo-generated current pulse in the device. This further reduces the 
speed performance of the device in responding to a pulse train with high-repetition 
rate. Numerous kinetic theories have been proposed to explain the possible physical 
mechanisms that govern the pulse broadening effect of the current pulse such as the 
multiple trapping mechanism due to exponential energy distribution of the localized 
states and charge carrier conduction via hopping mechanism5” 7.

The observation of the universality of long-tail behaviour of transient photocur
rent in a disorder semiconductor obtained from the time-of-flight measurement sug
gests that the transport dynamics could be studied through Brownian motion or its 
generalizations. One of the charge carrier transport frameworks is the continuous 
time random walk (CTRW) model proposed by Schear and Montrell5. In the CTRW 
framework, the dispersive transport due to the multiple trapping time mechanism 
is described by writing the hopping time distribution as in the power-law form of 
ip(t) ~  t ]+a where 0 <  a <  1 , with the asymptotic property used to account for the 
long-tail behaviour of the transient photocurrent observed in disorder semiconduc
tor material. The scaling parameter a is useful to deduce the type of the transport 
dynamics of the charge carriers. For example, exponent а ф  1 gives the sub-diffusion 
type process while a =  1 represents the standard diffusion process.

The long-tail behaviour of transient photocurrent observed in disorder semicon
ductor also implied that the transport dynamics in disorder semiconductor deviates 
from the standard kinetic transport model that is derived based on the Fick’s law. 
Thus, various types of kinetic transport models have been established to study 
the dispersive transport of charge carriers in disorder semiconductor. These models 
include the fractional Fokker-Planck equation8-11, fractional differential approach 
consisting of various forms of fractional drift-diffusion equations12” 13, fractional 
Langevin equation14-15, fractional Klein-Kramer equation16, Levy-space-fractional 
diffusion equation17-18 and Levy-space-fractional Fokker-Planck equation19.

In this work, we study how the transport dynamics of charge carriers is influenced 
by the homogeneity and inhomogeneity of the organic semiconductor using the 
variable-order time-fractional drift-diffusion equation (VOTFDDE). The numerical 
scheme previously developed to solve the time-fractional diffusion equation20-21 
was employed here to solve the VOTFDDE. Section 2 presents the mathematical
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background used to describe the dispersive transport dynamics of charge carrier in 
homogeneous and inhomogeneous organic semiconductor. The procedures of solving 
the VOTFDDE, self-consistent Poisson solver and current density are outlined in 
Section 3. Discussion of the simulated results are given in Section 4 and followed by 
the conclusion in Section 5.

2. Mathematical Modeling of Dispersive Transport

2.1. Variable order time-fractional drift-diffusion equation

The standard one-dimensional diffusion equation (DE) used to model charge carrier 
transport dynamics in non-disorder material such as a crystalline semiconductor is 
given as

dn(x, t)  d2n ( x , t )
dt dx2 ’ 1 '

where n(x,t) is the charge carrier density and D  is diffusion constant. If the material 
is subjected to an external perturbation such as an electric field, a charge carrier 
will be forced to drift either parallel or anti-parallel with the direction of the electric 
field. Thus, the standard one-dimensional drift-diffusion equation (DDE) is rewrit
ten based on Eq. (1) as

dn(x,t )  d2n ( x , t ) d n (x , t )
— g r -  =  D S ^ - v (x ' t ) — a ^ -  (2)

where the velocity of the charge carrier is

v (x, t) =  nE(x, t) ,  (3)

ц is its mobility and E(x,t )  is the localized electric field.
However, Eq. (1) and Eq. (2) are not adequate to model the charge carrier trans

port dynamics in disorder material such as amorphous semiconductor and organic 
semiconductor. This is because the charge carrier diffuses with highly fluctuating 
diffusivity that results in dispersive transport which is a complex process consisting 
of various Gaussian processes with wide distribution of their statistical parameters. 
The dispersive transport causes the transient photocurrent distribution measured 
from the disorder semiconductor material having an asymptotic power-law behavior 
with a distribution of the scaling exponent22 a(x, t). Therefore, the one-dimensional 
diffusion equation in Eq. (1) and the one-dimensional drift-diffusion equation in 
Eq. (2) can be generalized to represent the dispersive transport by taking the vari
able order fractional-time derivative on Eq. (1) and Eq. (2). The variable order 
one-dimensional time-fractional diffusion equation20-21 (VOTFDE) and the vari
able order one-dimensional time-fractional drift-diffusion equation (VOTFDDE) are 
rewritten respectively as

da^ n ( X,t) d2 n(x, t)
d ta (x ,t) U  d x 2 > W
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and

da(x,i)n{x: t) _  ^ d 2n(x , t )  , ^  d n (x , t ) , r.\
d ta (x,t) - D  д х 2 У (Х ’ *> d x  - W

where the a(x,t)  is the variable order fractional derivative order which can be 
expressed as a function of time, space or independent variables. If a(x, t) =  1, Eq. (4) 
and Eq. (5) reduce to the standard diffusion equation and standard drift-diffusion 
equation as shown in Eq. (1) and Eq. (2). The variable order (VO) time-fractional 
derivative is expressed using the Caputo fractional derivative definition as

da('x’t'>n ( x , t ) 1 [ ь dn(x ,s)  ds . . . .
dta(x'V ~  Г (1 - a ( x , t ) )  J0 ds (t -  3)а{х’ь) ’ < a (x , ) ~  • ( )

Owing to the difficulty in discretization of the time-fractional derivative, the 
Caputo derivative is usually expressed in terms of the Riemann-Liouville fractional 
derivative and then approximated using Griiwald-Letnikov derivative to obtain the 
solution23. Nevertheless, Lin and Xu20 and Sun et al.21 had demonstrated a finite 
difference scheme to discretize the Caputo time-fractional derivative and were able 
to obtain the solution for the time-fractional diffusion equation.

2.2. Electric potential and electric field

The electric potential V (x,t) established in the material is obtained by solving the 
self-consistent Poisson equation consisting of the charge carrier density,

d2V  (x,t) p(x, t)  en(x ,t)
dx2 £ £r£o (7)

where p(x,t) is the charge density, e is the value of the electronic charge, er is 
the relative permittivity of the material and £o is the permittivity of vacuum. The 
localized electric field in Eq. (3) is then obtained through the following equation as

_  , . dV (x, t)
E ^  =  — i r l - <8>

2.3. Current density

The total current density Jt  (for a single type charge carrier) is obtained as the 
sum of the diffusion current density Jdiff and drift current density J drift as given 
below

Jt  i )  =  J\drift t )  Jdiff (■£> 0  • (9)

JT (ж, t) =  en (x, t) [iE {x, t) -  eD  V ’ 1. (10)
o x
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3. Numerical Method

3.1. Numerical scheme for variable order time-fractional 
drift-diffusion equation

Owing to the unconditional stability offered by the implicit difference scheme, thus 
it is used to discretize the Caputo-type variable order fractional-time derivative. 
Define the following: position is Xi =  г A x  for 0 < i <  Nx , time is tk =  к At  for
0 < к <  Nt — 1, spatial step is Дх =  L / N x, time step is A t  =  T/Nt ,  T  is the total 
time, L  is the device length, Nt is the total time step and Nx is the total spatial 
step. Equation (6) is approximated as20 21,

dO‘(xi,tk+1 )n (Xi^tk+1)
Qfa(Xi, tk+i )

k rtm + l Qn S) ds
1______ у  [
(Xi , tk+1)) _ nJt,T { l - a { Xi, tk+\)) ^ 0 Jtm ds (tk + 1  -  s)a{Xi’tk+l)

к
1

Г(1 - a ( x i , t k+i)) At

dt 

s)

m—0
rtm+l dsrtm+l

X /  ------------— 7— ;---- r +  О {At)
Jtm (tk + 1  -

T ( 2 - a { X i , t k+1)) A «o (» i ,t»+1)

where

b™ 'k + 1  =  (m +  l ) 1-a(Xi,t*+l) m =  0, 1 , . . . ,  fc, (1 1 )

and bo =  1, bm —> 0 as m  —> 00 and О (At) is the approximation error. Hence, the 
discrete variable order time-fractional differential operator is written as

7- a(xi,£fc+i) / , \ __
L*t Tl fail tk-\-l) • — F (2 ol t/c+i)) 

к
1 1 ^ fail k̂-1___________

A ta(xi,tk+1)
 ̂ \ Л 7̂71,fc+1 ^ f̂c+1 —m) Tl(Xi,tk—m) (12) 

*  \ + O l { x i , t k + 1 )  ’  '  '

m =0

and finally Eq. (6) is rewritten as 

аа(х^,и+1)п (х t )
------- та{ха\+1)------- =  V  ;п (х 4,*к+1) +  0 (Д * ). (13)

In order to implement the Caputo fractional derivative, the results of the integer 
order time-derivative of n(x,t) at all the previous time steps are required.
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Apply Eq. (13) and taking the centered difference scheme on the space derivative 
of Eq. (5), the VOTFDDE is approximated as

dc‘<-Xi'tk+1 '>n(xi, t k+i) d2n (x i , tk+1) dn(xi , tk+ 1) , лл  ̂
=  D ------- тг-s---------- v{Xi, tk+1) -------- д---------• (14)Qta(xi,tk+i) dx2 dx

L f Xi'tk+l)n (x i , tk+1) =  D
n (x i+i , t k+i) -  2 n (x i , tk+i) + n ( x i - i , t k+i)

V (xi, tk-|-l)

( A x ) 2

n(Xi-\-i-)tk -̂i) 7l(xi—i , tk-\-\)
2Ax

Let’s define

and

n (xi,tk) — n (iAx, kAt) =  nk,

v (Xi, tk) =  v (iAx, kAt) =  uk.

+  о ( (Д ж )2) .

(15)

(16) 

(17)

Rewriting the VOTFDDE in Eq. (15) by grouping the tk+i terms on the LHS and 
tk terms on the RHS, one gets

fc+1 D T ( 2 - a 1 + l ) A t a " +1 . k+l o fc+1 fc+lN
nk + 1 --------- i--------г—4 ----------- ( n j#  -  2 nki + l +  n f+i)

,fc+i
+  ■

(Д x y  

Г (2 -  « i +1) A t *
2 Ax

fc-i
=  ( l  -  bl’k+1  ̂n^ +  J 2  (b™ ’ k + 1  -  b“ +1'fc+1)  n\~m +  b’l' fe+1n°

771=1

By defining

^  =  and е  =  И 2 - л д ^ ;
2  A x , (18)

( A x Y

the VOTFDDE becomes

( - C ^ 1 -  C ^ j1)  n^ 1 +  ( l  +  2С*+Х)  n*+1 +  ( - C ^ 1 +  C H 1)  nj 

=  ( l  -  b] 'k+1)  n* +  J ]  ( b™ 'k + 1  -  b™+1'k+1)  n*“ m +  bk'k+1 n°i: k >  1. (19)

,fe+iV|-l

771— 1
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When к — 0 and a =  1, Eq. (19) reduces to the standard drift-diffusion equation. 

{ - C b , i - C 1v,i) n l 1 +  ( l + 2 C l i)n l  +  { - C l i +  C l i) n l 1 = n l  b?-1 =  1 . (20) 

Eq. (20) can be solved using the matrix method. Define that

pk-i - i ___(jk~t-.i_c k* le Rk~̂ _̂___Ck~i".̂  -f- Ck̂  ̂’ S k̂ ~̂ _1 H- 2Ck+*
k-l (2 1 ) 

Q k + 1  =  ( l  -  b-’fc+1)  nf +  (b? ' k + 1  -  b™+1’*+1)  nk~m +  bk’k+1 n°.
m=1

At k, for к >  1 and 1 <  i <  Nx — 1, Eq. (19) is a set of linear equations for n(xi, tk+i) 
and can be written as

-S k+1 R^+1 0 0 ■ n k+1 ' ■ Q k+1 -

pk+1 s k+1 o/c+ 1/ t 2 n 2fc+1 Q k+1

0

pk+1

0

n * +1 = Q i +1

0

pk+1
Nx —3

0

qk+1 
°N X- 2
тэк+1

Nx —2

тэк+1
n 'Nx-2
qk+1 
DNx -  1

4 t - 2

1

Q n x - 2

Q kNx - 1

(22)
with the boundary conditions as n(0, t) =  n(L, t) =  0. The charge carrier density 
n(xi,tk) values on the right hand side of the matrix for all the previous time steps 
are known for all grid points. The matrix in Eq. (22) is a tri-diagonal matrix since 
the central three diagonal elements on the left hand side of the matrix are nonzero.

The solution n(x,, ifc+i) of the VOTFDDE can be obtained by solving the matrix 
in Eq. (22) using the forward elimination and backward substitution method as 
outlined below. After forward elimination, coefficient P  will become zero, coefficient 
R  is unchanged and the new value of the ith-element of coefficient Q and S is 
calculated as:

/  pk+1  \
S*+1 < -S *+ 1 -  2 < i  <  N x — 1. (23)

/  p k + 1 \
Q k + i ^ Q k + i _  / ^ j g f c + 1 ;  2 <  i <  N x — 1. (24)

The new value for the matrix in Eq. (22) becomes
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Ŝ ~\~ i ĵ k.fc+1

0 52fe+1 R k2+l

Sk + 1  RSfc+i

cfc+l
° N x - 2

ofc+1
Nx—2

cfc+l
S NX-1

' nk + 1  ' ■ Qk + 1  '

n 2fe+1 Qk2+1

nk + 1 = Q-+1

nNx- 2 Q%+x-2

пл£ -1 Q 'ZU

(25)
Then, one performs backward substitution to obtain the solution n(xi,tk). From 
Eq. (25), one gets the solution at n(xjvx-i,ifc+i) as

-fc+1 
lNx- 1

nfc+i 4 nx- i
cfc+l 
° N X- 1

For г1 -element of n(xi, tk+ 1), it is obtained as

,fc+i _

(26)

(27)

3.2. Numerical scheme for electric potential and electric field

After obtaining the solution for the charge carrier density, the electric potential 
is obtained through the Poisson equation. Centered difference scheme is employed 
to discretize the spatial derivative in Eq. (7). Thus, the approximation of Poisson 
equation is written as

d2V  {xt, tk+0  qn (xi, tfe+i)
dx2 er£o

(28)

v  (xi+i,tk+\) - 2V (Xj,tk+ Q +  V  (Жг—l, tfc+l)
( A x ) 2

(29)
Let’s define

V  (xt, tk) =  V (iAx, kAt) =  V k. (30)

Equation (29) can then be rewritten as

yk + i  _  2 V k+1 +  yk +i  =  _ e (A x )  nk+y  (31)
£ r £0

At k, for k >  1 and 1 <  i <  Nx — 1, Eq. (31) is a set of linear equations for 
V(xi , tk+ 1) and can be written as

en (xi,tk+ 1)
£ r £0

+  0 ( ( A x ) 2)  .
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- 2  1 0 O '

1 ?r 4-

1 - 2  1 y k + l

0 •• :

1 - 2  1 y k + l  
r г

: 0

1 - 2  1 y k + l  
VNX-  2

0  0  1 - 2 yfc+1
VNX- 1

e (Аж) 
£r£0

„fc+1 i er sn T/fc+1

nk + 1

,fc+ 1

Пfc+1

..fc+1
l Nx -

' N x - 2

I £r£o
1 ^  е(Д *)а

(32)'
where the boundary conditions are V (0, t) =  Va (applied bias) and V (L , t) =  0. All 
the values of the charge density p(xi,tk+ 1) on the right hand side of the matrix are 
known for all grid points. The matrix in Eq. (32) is a tri-diagonal matrix since the 
central three diagonal elements on the left hand side of the matrix are nonzero.

By following the similar steps used to obtain the solution for the charge carrier 
density, based on the forward elimination and backward substitution method, the 
matrix in Eq. (32) could be solved to obtain the electric potential. After that, 
the localized electric field at each grid point is solved via the following equation. 
The centered difference method is used to discretize the electric field. Thus, the 
approximation of the localized electric field is

dV (xi,tk+i)
E  (xi, ifc+i)

dx
(33)

„ /  - x \V((i  +  l ) A x , ( k  +  l ) A t ) - V ( ( i - l ) A x , ( k  +  l ) A t )  
E ( Xi, t k+1) =  -  ^ ------------------------------------

Define

E  (Xi,tk) =  E  (iAx, kAt) =  E k.

Equation (33) can then be rewritten as

E k + 1  =
T/fc+1 T/fc+1
4 + 1  vi - 1

2Ax

The electric fields at the boundaries are obtained as 

E ( 0 , t k+1) =  E * + 1  =  -
y k + l  _  y k + l

A x

+ 0  (Ax) .

(34)

(35)

(36)

(37)

E ( L , t k+1) =  E k+ l = -
т/fc+l 1/k+l  
VNX VNX- 1

A x
(38)
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3.3. Numerical scheme f o r  current density

Centered difference method is used to discretize the space derivative of the total 
(single carrier type) current density. Thus, the approximation of the total current 
density at position Xi =  i A x  is written as

4. Case Studies o f  Dispersive Charge Transport

An organic semiconductor thin rod of pentacene (C22H14) is considered in the case 
study. The length of the rod is 0.5 fim  and the diameter of the rod is negligibly 
small compared to the length of the rod. A bias of 5 V is applied at both ends of the 
rod and the temperature of the rod is kept at 300 K. A square pulse with density 
of 5000 cm-3  charge carriers is injected at one end of the rod (x — 0) and they 
are collected at the opposite end of the rod (x =  L). The mobility of the charge 
carriers is 0.02 cm2/Vs, the diffusion coefficient D  is obtained through the Einstein 
relationship D  =  ц,квТ/е =  5.172 x 10-4  cm2s_1. The transport of charge carriers 
in the rod is represented using an one-dimensional variable order time-fractional 
drift-diffusion equation (VOTFDDE) since its area is negligible.

The simulation begins with setting up the initial condition and boundary con
ditions for electric potential, electric field, and charge carrier density. Secondly, the

JT {xi,tk+1) =  en(xi , tk+1 ) f iE(xi , tk+1) -  eD
dn (xj, tk+1) 

dx
(39)

Jt  (xi , tk+1)

=  en (iAx,  (к +  1) At) fiEx (iAx,  (к +  1) At)

- e D
n ((г +  1) Ax,  (k +  1) At) -  n ((г -  1) Дх, (к +  1) A t)] ^  t л  ̂

— — +  U (A x )

(40)

Let’s define

Jt  (xi, tk) =  Jt  {iAx,  к At) =  J^t 

Equation (40) can be rewritten as

(41)

(42)

The total current density at the boundaries are obtained as

Jt  (0, tk+ 1) =  Jt q 1 (43)

JT (L,tk+1) =  J*+N\ (44)
A x
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charge carrier density is obtained by solving the VOTFDDE. Thirdly, the electric 
potential and electric field are obtained by solving the Poisson equation after the 
information of charge carrier density is obtained. The electric field is then used again 
to solve for the next time step charge carrier density through the VOTFDDE. These 
two alternating procedures are repeated till the simulation reaches the maximum 
simulation time. In each time step, the velocity and total current density of charge 
carrier are also obtained. Finally, the simulation is stopped. The homogeneity of 
the material is emulated by setting the fractional derivative order to be a constant 
value or a function of space. The fractional derivative order values are taken to be 
a =  1 (standard diffusion), a =  0.50, a(x,t)  — 1 — x / L  (crystalline-amorphous- 
mixed structure) and a(x,t) =  x / L  for 0 <  x  <  L (amorphous-crystalline-mixed 
structure).

4.1. Results and discussions

Fig. 1(a) shows the charge carrier density obtained for standard diffusion (a =  1) 
at different times. It can be seen that the pulse of the charge carrier is maintained 
as Gaussian-like distribution when the charge carriers are swept across the device 
having the homogeneous crystalline-like structure. This indicates that the entire 
pulse of the charge carriers could leave the device at about the same time before the 
second pulse of charge carriers is injected into the device. This yields the device to 
have higher frequency response if the transport dynamics of charge carriers follows 
the normal diffusion process. Fig. 1(b) shows the charge carrier density obtained for 
a =  0.50 at different times. At the beginning, the pulse of the charge carriers devi
ates slightly from the Gaussian distribution. But, the pulse broadening of the charge 
carriers due to the sub-diffusive process causes the distribution of charge carrier to 
follow a long-tail distribution. Hence, charge carriers are distributed throughout the 
device while moving out from the device.

Fig. 2(a) shows the charge carrier density obtained for a(x, t) =  x / L  at different 
times. The fractional derivative order is linearly increasing from zero to one as 
the charge carriers are moving from where they are injected into the device to 
the other end of the device where they are being swept out from the device. The 
increasing of the fractional derivative order is to represent the inhomogeneity of the 
material where the inhomogeneity is changing from an amorphous-like structure to 
a crystalline-like structure. This configuration emulates the amorphous-crystalline- 
mixed structure of pentacene. It can be seen that the square pulse of the charge 
carriers quickly broadens as they are moving out from the device. This is because 
charge carriers are injected first into the amorphous-like structure and moving with 
sub-diffusive transport dynamics. As the charge carriers are moving towards the 
other end of the device with crystalline-like structure, charge carriers are moving 
with normal diffusion process and trying to retain a Gaussian-like distribution. 
Hence, the pulse broadening effect is impeding with time. Fig. 2(b) shows the charge 
carrier density obtained for a (x , t ) =  1 — x / L  at different times. The fractional
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Fig. 1. (a) and (b) represent the charge carrier density obtained for a  =  1 (standard diffusion) 
and a  =  0.50 at different times.

derivative order is linearly decreasing from one approaching to zero as the charge 
carriers are moving from where they are injected into the device to the other end of 
the device where they are being swept out from the device. The decreasing of the 
fractional derivative order is to represent the inhomogeneity of the material where 
the inhomogeneity is changing from a crystalline-like structure to an amorphous-like 
structure. This configuration emulates the crystalline-amorphous-mixed structure 
of pentacene. It can be seen that the pulse maintains a Gaussian-like distribution at 
a short time before the pulse broadens throughout the whole device. This is because 
the charge carriers are injected first at the region which represents a crystalline-like 
structure that causes the charge carriers moving with the normal diffusion process. 
However, the pulse is getting broader in (square) shape when they are moving 
towards the other end of the device. This is because the region near the other end

1560008-12



Fractional dispersive transport in inhomogeneous organic semiconductors

(a) (b)

0 2  0 4  0 6  0 8  

Device Length. L x 0 5 [>im] Device Length. L x 0 .5 (ц т ]

Fig. 2. (a) and (b) represent the charge carrier density obtained for a(x, t) =  x/L and a(x, t) =  
1 — x/L at different times.

of the device represents an amorphous structure that causes charge carriers moving 
with sub-diffusive transport dynamics.

Since the profiles of the current density obtained for all the values of the frac
tional derivative order replicated the corresponding profiles of the charge carrier 
density, thus the interpretation of the profile of the charge carrier density can be 
also used to explain the behavior of the current density. Thus, only few examples 
of the current density profiles are presented in this paper. Fig. 3(a) shows the cur
rent density obtained for a(x, t ) =  x / L  at different times. It can be seen that the 
square pulse of the current density broadens as the current pulse is moving across 
the device. This is because charge carriers are moving with sub-diffusive transport 
dynamics within the amorphous-like region of the device. As the current pulse is 
progressively moving towards the crystalline-like region at the other end of the 
device, the current pulse is trying to retain a Gaussian-like distribution. Hence, the
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Fig. 3. (a) and (b) represent the current density obtained for a(x, t) =  x /L  and a(x, t) =  1 — x/L  
at different times.

pulse broadening effect is decreasing with time. Fig. 3(b) shows the current density 
obtained for a(x,t)  =  1 — x / L  at different times. It can be seen that the current 
pulse maintains a Gaussian-like distribution for a short time before the current 
pulse begins to broaden when the charge carriers are being swept across the device. 
This is because the charge carriers are first moving from a crystalline-like structure 
to an amorphous-like structure that causes the charge carriers moving with the 
sub-diffusive transport dynamics.

5. Conclusion

The time-fractional drift-diffusion equation is employed to simulate the trans
port dynamics of charge carriers in pentacene. The types of structures of pen- 
tacene emulated in this work are ranging from homogenous crystalline (a =  1 ) 
structure to homogeneous amorphous (a —> 0) structure and also including the 
inhomogeneous crystalline-amorphous-mixed (a(x, t ) =  1 — x / L ) structure and
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amorphous-crystalline-mixed (a ( x ,t ) =  x / L ) structure. This is done through sim
ulating the transport dynamics of charge carrier using different values or functions 
of the fractional derivative order. The fractional-time derivative operator and spa
tial derivative operator of the time-fractional drift-diffusion equation are discretized 
respectively using the implicit difference scheme and the centered difference scheme. 
When charge carriers are moving in a homogenous crystalline-like structure, the 
profile of the injected square pulse changes to a Gaussian-like profile. However, the 
profile of the injected square pulse broadens significantly when charge carriers are 
moving in a homogeneous amorphous-like structure. For inhomogeneous amorphous- 
crystalline-mixed structure, even if the profile of the injected square pulse seems to 
be initially broader but the pulse broadening effect is impeded as charge carriers 
are moving towards to the other end of the device with crystalline-like structure. In 
contrast, the pulse broadening of the injected square pulse is getting serious with 
time while charge carriers are moving across the device having the inhomogeneous 
crystalline-amorphous-mixed structure. Therefore, either homogenous crystalline
like structure or inhomogeneous amorphous-crystalline-mixed structure can be used 
in order to reduce the pulse broadening effect.

Acknowledgm ents

The authors are extremely grateful to the University of Malaya for PRPUM Grant 
(CG010-2013) and Ministry of Education for funding support under Long Term 
Research Grant Scheme (LR003-2011A).

References
1. H. Shirakawa, A. McDiarmid and A. Heeger, Chem. Соттпип., 1-4 (2003).
2. S. Yoo, B. Domercq and B. Kippelen, Appl. Phys. Lett. 85, 5427 (2004).
3. M. Kitamura, T. Imada and Y. Arakawa, Appl. Phys. Lett. 83, 3410 (2003).
4. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008).
5. H. Scher and E. W . Montroll, Phys. Rev. В 12, 2455 (1975).
6. M. Silver and L. Cohen, Phys. Rev. В 15, 3276 (1977).
7. G. Lanzani, Photophysics of molecular materials: From single molecules to single crys

tals (Wiley-VCH, Weinheim, 2006).
8. R. Metzler, E. Barkai and J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).
9. R. Metzler, Phys. Rev. E  63, 012103 (2001).

10. E. Barkai, Phys. Rev. E  63, 046118 (2001).
11. F. Liu, V. Anh and I. Turner, J. Comput. Appl. Math. 166, 209 (2004).
12. W . R. Scheider and W . Wyss, J. Math. Phys. 27, 2782 (1989).
13. R. T. Sibatov and V. V. Uchaikin, Phys.-Uspekhi 52, 1019 (2009).
14. B. J. West and S. Picozzi, Phys. Rev. E  65, 037106 (2002).
15. S. C. Lim and S. V. Muniandy, Phys. Rev. E  66, 021114 (2002).
16. R. Metzler and J. Klafter, Phys. Rev. E  61, 6308 (2001).
17. A. Compte, Phys. Rev. E  53, 4191 (1996).
18. A. I. Saichev and G. M. Zaslavsky, Chaos 7, 753 (1997).
19. H. C. Fogedby, Phys. Rev. Lett. 73, 2517 (1994).
20. Y. Lin and C. Xu, J. Comp. Phys. 225, 153-1552 (2007).

1560008-15



К. Y. Choo & S. V. Muniandy

21. H. Sun, W . Chen, C. Li and Y . Chen, Int. J. Bifurcat. Chaos 22, 1250085 (2012).
22. Ft. T. Sibatov and V. V. Uchaikin, arXiv:1310.0415vl [cond-mat.dis-nn] (2013).
23. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Deriva

tives, Fractional Differential Equations, to Methods of Their Solution and Some of 
Their Applications (Acadcmic Press, San Diego, 1999).

1560008-16



7th Jagna International Workshop (2014)
International Journal of Modern Physics: Conference Series 
Vol. 36 (2015) 1560009 (6 pages)
©  The Author
DOI: 10.1142/S2010194515600095

World Scientific
www.worldscientific.com

Bier-Astumian relation, fluctuation theorem 
and their possible applications

Mark Nolan P. Confesor 
Department of Physics, MSU-Iligan Institute of Technology, 

Iligan City, 9200, Philippines 
marknolan2006@gmail. com

Fluctuations in the spatial position of a probe particle that is driven far from equilib
rium can provide valuable information about the driving force. Analysis of the position 
fluctuation is through the fluctuation theorem (FT) and a generalized detailed balance 
called Bier-Astumian relation (BA). Here we show the usefulness of the BA for mapping 
potential landscapes of a particle confined in a potential field. We also demonstrate how 
the FT can be used to extract the driving force for a particle driven by a constant force.

Keywords: Detailed balance condition; fluctuation theorem.

1. Introduction

There have been great strides in fully developing nanotechnology due to possible 
uses in medicine, computation and advanced materials among others. Interestingly, 
such envisioned application of nanotechnology presents fundamental questions in 
physics such as in the understanding of the effect of thermal noise on the operation 
of sub-цт  sized motors in statistical mechanics [1 ].

For small systems, the presence of thermal noise naturally leads to fluctu
ations in some observable quantities conduit to the operation of a particular 
bio/chem/mechanical operation [2]. One case is when thermal noise leads to the 
fluctuation in position of a kinesin molecular motor moving in a microtubule [3]. 
The approach of extracting useful information on the thermodynamics of a system 
from fluctuating observables has become experimentally practical through the use of 
д т -sized colloidal beads as probe particles attached to the system of interest, such 
as beads attached to a Fi-ATPase [4], optically trapped beads dragged in water [5] 
and an optically trapped bead under a temperature gradient [6,7].

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution 
of this work is permitted, provided the original work is properly cited.
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In this article we will present two methods that can be used to analyze the 
fluctuating position of the probe particle. Our approach is not to provide rigorous 
mathematical treatment of the methods but rather we will focus more on how such 
methods can be used to extract thermodynamic variables in the system at hand.

М. N. P. Confesor

2. B ier-Astum ian Relation

For systems in thermodynamic equilibrium, the Detailed Balance (DB) leads to the 
Boltzmann distribution being the stationary solution of the Master’s equation. The 
D B  is basically a measure of reversibility,

P ( x a —> x b',At) _ Pzq (xb)
(1 )P  ► Жц, At) Peg (x a)

where P  (ж* —♦ X j )  is the transition probability to move from position Xi  to X j  and 
Peq (x) is the position probability distribution [8]. We note that LHS of Eq. 1 is 
a ratio of two time dependent functions while on the RHS this time dependence 
vanishes. In Ref. [9], the DB was generalized (the Bier-Astumian relation) to cases 
when particles are moving in medium with a spatial gradient of a thermodynamic 
variable F(x),  i.e. phoretic transport. For instance in diffusiophoresis particles move 
due to the presence of solute concentration gradients and in electrophoresis when 
there is an electric potential gradient [10]. The Bier-Astumian relation (BA) has 
the form,

(2)
Р(хь  —> X a \ A t )

where A G  =  G  (F (хь)) -  G (F  (xa)) and G (F  (x)) is the free energy. к в Т  is the 
Boltzman factor. In thermophoresis, the free energy difference is updated to include 
the kinetic energy difference between xa and хь [6].

We performed brownian dynamic simulation of a probe particle trapped in a 
harmonic well to check the validity of the BA, schematics of the set-up is shown in 
Figure l.a. The probe particle dynamics is described by the Langevin equation of 
the form [11 ],

7 ^  =  ~ kx +  £{t) (3)

where 7  =  67тщ  (0.017 pN-s/ fim), к (1.37 pN/д т )  is the trap stiffness and £(£) is a 
white noise with (£(£)) =  0 and (£{t)£(t')) =  2r)kBT5(t — t') (к в Т  — 0.004 pN-/zm). 
Probe position is computed via the time difference form of Eq. 3. Each simulation 
generated trajectories consisting of 104 particle positions in intervals of A t  =  1 ms. 
In the inset of Figure 2.a we plot the probe position probability distribution which 
is well fitted by a normal distribution as expected for a harmonic trap. As a means 
of checking, the trap stiffness value was recovered from the standard deviation, 
(A x 2), via the relation, к =  anfl fr°m the expected form of the autocorrelation 
function, (x(t +  At)x(t)) ~  exp [—£], where к =  ^ [11]. In Figure 2.b we plot the
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< f

T

Fig. 1. (a) Probe particle trapped in an optical tweezer. Thermal fluctuations causes the probe 
particle to deviate from the trap center (Xo). (b) Illustration of a typical trajectory of a probe 
particle under an external force contains a stochastic and a net drift component.

transition probabilities for the probe particle to jump from x — 0 (the trap center) to 
a position x, P  (0 —» x; At),  and the inverse transition probabilities, P (x —> 0; At).  
As expected both transition probabilities show different profiles for different time 
intervals where the profile spread more for At =  10 ms than for At — 2 ms. From 
the Smoluchowski equation for a particle trapped in a harmonic well, the transition 
probabilities are computed and take the form [11 ],

к [x -  a:'exp ( - ^ ) ] 2 1
P  (x —» x'\ At) =  F  (At) exp

2 kBT [ l  - e x p ( - ^ ) ] (4)

where F ( A t ) is a prefactor. As observed, the spreading of P  (x —> x'; At) increases 
for bigger At. Furthermore, one can then easily show that from the transition prob
abilities, Eq. 4, the BA holds,

P ( x  a —>■ Xb' ,A t )  

P ( x b —> X a \ A t )
exp k x a 2 

2

Хь21

kBT
=  exp

A G
kBT (5)

Simulation results also provide validity of the BA as seen by the recovery of the 
trapping potential well from the ratio of the transition probabilities, =

log (  p(o— a!) )  • The computed potential wells were found to be in excellent agree
ment with that obtained by the traditional method of inverting the Boltzmann 
distribution, i.e. U(x) =  - к в Т  log Peq(x) as shown in Figure 2.c.

3. F luctuation Theorem

Generally the fluctuation theorem quantifies the asymmetry in the entropy produc
tion of a given system. It is written as,

lim
A t—> о

kB
At

, PAt(cr)
Ь  ~б ~ 7-----т = o  (6)

where a is the entropy production and Pa i (v ) is the time dependent probability 
distribution for the entropy production [3]. For a colloidal bead immersed in a 
medium (equilibrated with temperature T) and under an external force, F,  the
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x (цгп) * ( ц т )

Fig. 2. (a) Autocorrelation function of x(t) for different lag times. Solid line is an exponential 
fit, (x(t  +  A t)x (t)) =  exp [—A t/т] where r  =  0.012s. Inset shows the probability distribution of 
the particle position. Fitting curve is a normal distribution fitting with (x) =  0/tm and (A x2) =  
3 x 10- 3д т 2. (b) Transition probabilities computed for transition from the trap center (x  =  0/tm) 
to a position x  and vice versa, (c) Trapping potential as recovered by using the BA (open symbols) 
and through inverting the Boltzman distribution (solid line).

entropy production is just the rate of heat exchange (Q ) of the particle to the bath 
at some time interval At,  i.e. a =  Q / T A t .  Furthermore, the heat exchange is given 
by Q =  F-  A x  (1-dim), where A x  is the particle incremental step. For the case when 
F  =  0 pN, the ratio of PAt(&) /  PAt(—&) equals 1 since there is equal probability 
for the particle to take + A x  and —Ax,  i.e. only when there is driving that the 
ratio is different from 1. In this section we will show the usefulness of the FT in 
extracting the driving force of a probe particle subjected to a constant external 
forcing, schematics in Figure l.b. We performed brownian dynamic simulation of a 
Langevin equation of the form,

7^  = F + m  (7) 
where we varied F  from 0.0 pN —> 0.04 pN. The distribution of a is plotted in 
the inset of Figure 3.a for two different A t  for the case when F  =  0.01 pN. We 
have observed that at longer At  the asymmetry of the distribution becomes more 
pronounced. Furthermore, we also verified the validity of the FT for different At  as 
shown in Figure 3.a. The practical use of the FT is elucidated in Figure 3.b, where 
we generate particle trajectories corresponding to different F.  We then construct 
the corresponding probability distribution of A x  for At — 0.30 s and computed the 
ratio for forward and backward steps as a function of Ax.  We see a linear relation 
between In [Рд4(Да:)/Рд4(—Дж)] and A x  such that the у-intercept is the zero point
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Fig. 3. (a) Verification of the FT, Eq. 6 , for the case when F — 0.01 pN. Inset shows the 
distribution of a  for A t =  0.3 s and A t =  0.15 s (b) Ratio of the forward and backward steps 
distribution of particle position for different values of F; (□ ) 0.0 pN, (O) 0-01 pN, (Л) 0.02 pN, 
(V) 0.03 pN and (<) 0.04 pN . Solid line is a linear fitting with intercept equal to zero. Inset shows 
the computed force (symbols) to the set values in the simulation (solid line).

as is predicted in Eq. 6. Since In [Рд4(Д :г)/Рд4(—Дж)] =  In [Рд^о^/РдД—cr)] and 
a — then the slope of the lines corresponds to jTjpf, i.e. F  =  slopе / кв Т .  In 
the inset of Figure 3.b we plot the computed force from the slope and compared it 
to the set value of F  in the simulation and found good agreements. Lastly, we note 
that the method described in this section in using FT to measure F  was already 
applied to real systems whose dynamics is described by a Langevin equation similar 
to Eq. 7, such as the estimation of torque in the rotation of self-propelling dimers 
[12] and the rotation of Fi-ATPase motor [4].

4. Conclusion

The usefulness of the BA and the FT in extracting thermodynamic variables have 
been illustrated via simulation for two simple systems. Using the BA the trapping 
potential was recovered for the case of a probe particle in a harmonic trap. We 
expect the BA to be able to map even more complicated potential landscapes [13]. 
Furthermore, the FT was successfully used to recover the driving force for the case 
of a probe particle under the action of a constant force. The applicability of FT 
will allow it to measure non-equilibrium driving forces for instance thermophoretic 
force in thermophoresis [7]. The FT was also used to extract the torque that causes 
an asymmetric wheel to rotate in the presence of self-propelling particles in the 
granular scale [14].
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The ability to collect self-propelling particles (SPP) is an essential requirement for pos
sible use of SPP in technological applications. In this paper we proposed a novel way 
of trapping SPP’s, through guided trapping of SPP’s in V-shaped trap. We performed 
brownian dynamic simulation via a modified Escape and Predation model developed 
by L. Angelani (Phys. Rev. Lett., 2012) to assess the validity of the proposed trapping 
method.

Keywords: Collecting self-propelling particles; escape and predation.

1. Introduction

Self-propelling particles (SPP) are ubiquitous in nature. SPPs are observed at dif
ferent length scales; ranging from цт sized motile bacteria to m  sized fishes such 
as whales. Due to huge promising application in medicine, nano-technology, and 
intelligent controls, there is a myriad of artificial SPP’s that have been conceived 
and experimentally made [1 ].

In most conceived cases of using цт-sized SPPs in biotechnology, techniques 
enabling the collection of SPPs are essential. Existing and suggested approaches 
are the use of funnel shaped gates that leads to the sorting of rod-shaped SPPs to 
passive ones [2]; use of wedge like obstacles to collect for also rod-like shaped SPPs
[3]; and an array of L-shaped obstacles for SPPs moving in circular trajectories
[4]. A general mechanism to trap SPPs independent of the shape or the propelling 
mechanism therefore, has yet to be found.
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In this study we propose a novel way of trapping SPPs independent of their 
shape or the nature of the propulsion with shepherding as our inspiration. In our 
trapping method we make use of another SPP (chaser) to guide our SPP of interest 
(target) towards a V-shaped trap for collection same as shepherds do to the sheep.

2. Brownian dynamics simulation

We performed brownian dynamic simulation of an escape and predation model 
proposed by L. Angelani [5] but with a modification that the targets are not anni
hilated and that there is a presence of a V-shaped trap. Furthermore, chasers are 
not allowed to get inside the space enclosed by the V-shaped trap and such space 
is accessible only to targets.

In the simulation employed, both the chaser and the target has a constant speed 
set at vo ■ However, the direction of motion of either the chaser or target can change 
due to localized interaction. Specifically the velocity of a particle i (target or chaser) 
is given by [5],

у ( Ш )  =  ) +  p f (rep) +  +  6 f (al) ( 1 )

The first term corresponds to the alignment of the particles based on the Vicsek 
model; particle i next position is on the same direction as the average velocity of 
the neighboring particles (of the same type) within some radius of the particle i 
[6]. The second and third term in Equation 1, corresponds to the exclusive volume 
interaction that causes no particle (chaser or target) to be on the same location. 
The last term corresponds to the chase or escape force such that a chaser will move 
towards the direction of a target as the target moves away from the chaser. After 
the calculation of the velocity of each particle, the next position of the particle 
is updated by v^nst) At,  where At  is the time step. Parameter values used in the 
simulations are similar to those used in Ref. [5].

3. Escape and predation without annihilation

To better understand the guided trapping mechanism, first we need to assess the 
chase statistics for the case when there is no V-shaped trap. In the simulation, we 
incorporate a repulsive boundary condition and varied the concentration ratio of 
target and chaser from 0.1 <  ф <  6 (ф =  total number of target/total number of 
chaser). Screenshot images of the simulation are shown in Figure l.a-c for three 
concentration regimes of ф. Initially the particles are distributed randomly in the 
simulation box. However, as the simulation progress we observe clustering of same 
particle species. We note that due to the Vicsek alignment, both the target and 
chaser exhibit collective motion by themselves. Furthermore, due to the chase and 
escape force the chasers tend to move towards targets and thus the system exhibits 
complex collective motion, i.e. collective motion of both the target and chasers is 
coupled. To quantize the observed collective motion we employ the order parameter,
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Fig. 1. (Color online) (a-с) Screenshots of the simulation for different concentration ratio ф; (a) 
ф <  1, (b) 0 =  1, and (с) ф > 1. The blue particles correspond to the targets while the red 
particles correspond to the chasers. The upper images correspond to the initial distribution of the 
particles while the lower images correspond to the steady state (after 1500 simulation runs), (d) 
Histogram of Xchaser f°r various ф. Inset. The mean and standard deviation of the P (Xchaser) is 
plotted versus ф. Solid line is an exponential decay fit.

X , given by, x  

and v

l
Nv0 where N  is the total number of targets or chasers 

'j is the individual velocity of either a target or a chaser. Particles are all 
aligned when X =  1 and there are no particle orientational correlation for x =  0. In 
Figure l.d we plot the distribution of Xchaser for different ф. From the distribution 
of Xchaser> statistical measures such as the mean order parameter, (x), and the 
standard deviation ( (x  — (x ) )2) were extracted. Both the (x) and ((x  — (x ) )2) were 
found to be exponentially decaying function of ф.

Our result may have some biological implications, for instance we observe that 
at higher concentration of targets, chasers chase mostly by themselves and not in 
herds as seen by the decrease of Xchaser • However for the case of lower concentration 
of targets, chasers chase mostly in groups. This behavior of food search is similar 
to that used by Dictyostelium at environments of low food concentration [7].

4. G uided trapping o f  target SPPs

The interaction between the SPP (target or chaser) and the V-shaped trap is such 
that only the SPP velocity component parallel to the trap contributes. Figure 2.a-g
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Fig. 2. (Color online) (a-g) Sequential screenshot images of the guided trapping of a target to a 
V-shaped trap for ф =  1. (h) Trapping at long time.

<c)

,

are simulation screenshots showing one mechanism of a guided trapping of a target 
SPP to a V-shaped trap for ф =  1. In Figure 2.a-c, the target which initially is 
located inside the trap has its direction of motion going outside the trap. We note 
that since there is no other target SPP’s near it (no Vicsek interaction) and since 
no chaser is allowed inside the trap, our target of interest moves in a straight line 
until it encounters a chaser that causes it to move in the opposite direction. Finally 
in Figure 2.e-f we see the joint effect of two chasers that cause the target to return 
inside the trap. We observed that at long time, more target SPP’s are trapped 
inside the trap although their trapping mechanism could be different from the one 
detailed above. Factors affecting the efficiency of the trapping mechanism such as 
noise, apex angle of the trap as well as the concentration ratio will be discussed in 
detail in a separate article [8].

5. Conclusion

The guided trapping of target SPP to a V-shaped trap is possible as verified via 
Brownian dynamic simulation. This trapping mechanism is robust as it can work
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on target SPPs of varying shapes and propulsion mechanism since these parameters
were not specified in the simulation.
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In this paper, we discuss our findings on the spatiotemporal dynamics within the mass 
rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin- 
Destination (OD) station pairs follows a power-law, implying the existence of critical OD 
pairs. We then present and discuss the empirically validated agent-based model (ABM) 
we have developed. The model allows recreation o f the observed statistics and the setting 
up of various scenarios and their effects on the system, such as increasing the commuter 
population and the propagation of travel delays within the transportation network. The 
proposed model further enables identification of bottlenecks that can cause the MRT to 
break down, and consequently provide foresight on how such disruptions can possibly 
be managed. This can potentially provide a versatile approach for transport planners 
and government regulators to make quantifiable policies that optimally balance cost and 
convenience as a function of the number of the commuting public.

Keywords: Agent-based modelling; transport dynamics; power law; rail transport system.

1. Introduction

A transportation system is a complex system that exhibits collective phenom
ena resulting from the interaction of its components. The efficiency of transporta
tion networks is crucial in connecting communities as they allow individuals to 
perform various economic activities- from going to work or school, to shopping 
and/or making leisure visits. Consequently, there are many intertwined urban issues 
that surround these systems- from the infrastructures themselves to the passen
gers/commuters utilizing them. Here, we look into the mass rapid transit system 
(MRT), which is becoming the foremost public mode of travel worldwide, especially 
in highly-urbanized cities. It is an economically viable choice since, as the name 
implies, it caters to larger volumes of public commuters and sends them to their 
destinations at higher velocities at a given time.

This is an Open Access article published by World Scientific Publishing Company. It is distributed 
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution 
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As more and more individuals depend on the MRT, it is important to have a 
way to objectively assess its reliability and resilience to a growing city and thus, 
to a growing population. Questions such as the MRT’s robustness to breakdowns 
or if there are “tipping points” present in the system are critical information to 
policymakers, urban planners, and other stakeholders. To understand these issues, 
it is necessary to not only look at the MRT infrastructure singly nor just the indi
vidual commuters that utilize the system, but more importantly, to also study the 
interactions of the entities present in the system.

Fortunately, large socio-technical datasets are becoming increasingly available; 
for public transportation systems, for example, smart fare cards or ticketing data 
have allowed researchers to gain deeper insights on the travel patterns of commuters. 
Generally, knowing the prevailing travel demand and the collective behavior of 
commuters is the first step to a more systematic understanding of such complex 
system.

In this article, we first report on key statistical features with regard to travel 
demand of different origin-destination (OD) pairs in Singapore’s MRT stations and 
show that journeys utilizing these pairs exhibit a power-law distribution with an 
exponent of —1 , i.e. there exist a small number of stations that critically serve 
a large number of commuters. We then discuss a procedure of capturing various 
MRT dynamics using an agent based model that was first described in reference 
[1]. Essentially, from the statistical features of the MRT, specifically the arrival 
times of commuters in stations, we have set up an agent-based model that can infer 
the travel time distributions for specific OD pairs. The simulation framework has 
been validated by comparing the results with actual recorded durations of travel 
from the existing ticketing data. The developed model is then used to explore the 
spatiotemporal correlation of commuters’ travel times with various hypothetical 
scenarios involving inflation of population at various MRT stations.

2. Collective Phenomena in the Dynamics within the MRT

We discuss below some of the statistics collected and observed from Singapore’s con
tactless smart ticketing carda that automatically collects fares for its MRT and bus 
system. A smart fare card essentially stores spatiotemporal information on a sys
tem’s commuting public (where the identity of the card holder has been anonymized 
and the transaction data do not contain any personal information). The MRT of Sin
gapore is estimated to serve around 20% of its total population per day. The smart 
fare card data in this report cover a duration of one week and contain information 
on around 14 million journeys that involve the MRT.

2.1. Travel demand at different times of the day

Figure 1 shows the typical pattern of ridership in Singapore’s MRT. During week
days, it is characterized by a peak in the morning from 7:30 to 9:30 and another

aThe ticketing dataset was provided by the Singapore Land Transport Authority (LTA).
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MONDAY TUESDAY W ED N ESD AY  THURSDAY FRIDAY SATURDAY SUNDAY

Fig. 1. One week travel demand of commuters in Singapore. The dataset includes more than 14 
million journeys within one (1) week across 121 stations.

peak in the evening from 17:30 to 19:30. The distribution is generally more dispersed 
or uniform across different times during weekends. Note that the wider distribution 
of commuters’ timings in the mornings when they are on their way to work places 
makes the morning peaks lower than the peaks of the evening rides. The consistency 
of the distribution within the weekdays point to the existence of a routinary pattern 
of the commuters; and, this signature is expected to be observed in other existing 
transport systems as well.

2.2. Power-law scaling of Origin-Destination pairs

Power-law scaling is a manifestation of long range correlation and is the most utilized 
signature in defining a complex system or probing the degree of coupling among 
agents. A power law temporal distribution of inter-event times implies the existence 
of memory or the presence of historical dependence of the state of evolving agents; 
while a power law in space, or loosely, the fractality of spatial patterns, implies 
the presence of a global interaction of the systems’ components. Figure 2 shows 
that OD distribution exhibits power-law characteristics, i.e. there are very few OD 
pairs that are heavily utilized by the commuters. For instance, a mere 1% of these 
critical ODs already account for about 17% of the total journeys. The implication 
of this result is straightforward- any disruption that will include the most utilized 
stations will result in a catastrophic failure. In the succeeding sections, we discuss 
an empirical model presented in Ref. 1 that looks at the possible growth dynamics 
of MRT stations and how such evolution can impact travel time delays of the global 
(cumulative) and local (selective) OD pairs.

1560011-3



E. F. Legara et al.

Origin stations

0.000001 0.00001 0.0001 0.001

a 1000
о
s  ̂ 100
o
"6 10

10000

1

0.8
0.6
0.4
0.2
0

1 10 100 1000

number of journeys (per day)

Fraction of total O -D  stations pairs

Fig. 2. (Color online) Power-law scaling in Singapore’s MRT: (a) Origin-Destination pairs where 
the size of the circle corresponds to the number of journeys utilizing that pair, while the various 
colors correspond to the different lines in the system, (b) Log-log plot of the number of OD pairs 
and the number of commuter journeys it serves showing a power-law with an exponent of —1. A 
similar result is obtained using Clauset’s algorithm in fitting a power law, (c) Semi-log plot of the 
percentage of commuter journeys and the percent OD pairs utilized. The existence of a power- 
law distributed utilization of OD pairs indicates that only 0.1% of ODs serve 5% of commuters’ 
journeys, or merely 1% and 10% accounts for 17% and 40% of the journey counts.

2.3. Burst in the in-flow of passengers

Figure 3 shows superimposed plots of the different distributions of inter-tap-in (or 
inter-arrival) times for select origin stations. We note that the inter-arrival times 
between two successive commuter agents tapping in at the same origin station 
exhibits similar statistics across stations and is characterized by “bursts” in the in
flow of passengers (peak hours) separated by prolonged sporadicity in tap-in times 
(off-peak times). This is manifested by the fat tail of the distribution. This observed 
statistics is a useful input to the model that will be discussed in the next section.

3. Agent-Based Model

An agent-based model (ABM) is used to capture and reconstruct the observed 
statistics and emergent phenomena discussed in the previous section. In the model
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Fig. 3. Inter-Arrival Time Statistics. Shown are the different inter-arrival time (tap-in) distribu
tions for each origin station under consideration. The distributions are well approximated by a 
power-law with exponent of 2.4 (average Я2 ~  0.91).

proposed, three (3) types of tractable agent objects are defined: passenger, train, 
and station.

A schematic diagram of the MRT is shown in Figure 4. In the figure, a track 
patch/box represents one unit of distance; the system is set up in a manner that it 
is reminiscent of the actual inter-station distances in the Singapore MRT.

This work is focused on a single uni-directional train track involving trains across 
a single line in the MRT network system, with the agent object tra in  having the 
following attributes: time of dispatch, velocity, total capacity, current load, and 
consequently, available capacity. We would like to point interested readers to Ref. 1 
for more details on the construction of the ABM.

Results of the model have been validated using empirical tap-out time and dura
tion of travel time statistics. Figure 5 shows selected OD pairs to demonstrate that 
the travel time distributions obtained in the ABM are in strong agreement with 
those observed from actual data. Results have been statistically validated as well 
using Linfoot’s criteria: fidelity F,  structural content SC,  and correlation quantity 
Q 2’ 3 with values F  — 0.91, S C  =  0.94, Q — 0.96, suggesting that the simulation 
strongly agrees with the patterns found in the empirical data.

1560011-5



E. F. Legara et al.

track patch

Щ \  i i i i i и т п  i m

F  S

Fig. 4. Agent Objects in the Railway System Model. The MRT stations are represented by the 
dark red solid circles marked by numbers. The inter-station distances reflect actual distances. In 
the model, a unit of distance is defined by a track patch. The approximate dispatch time interval 
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4. Phenomenological Scenarios: Overloading and Overcrowding

Using the validated model, we then explore two phenomenological scenarios: (1) 
train overloading as a function of the trains’ loading capacity and (2) platform 
overcrowding due to increases in the number of the commuting population. These 
issues are very real in advanced cities where governments are strongly encouraging 
more citizens to use public transport to unclog busy roads and lessen pollution 
coming from private vehicles.

For the first case, we have reported that there is a critical train loading capacity 
С'  or a “tipping point” where the durations of travel delays in commuter journeys 
begin to increase exponentially as the loading capacity decreases to C ' . This cascade 
of delays is very much reminiscent of the sandpile model wherein even the addition 
of just a single grain of sand can cause an avalanche in the system;4 similarly, “a 
small addition in the number of commuters who cannot board the trains can already 
cause an avalanche of delays” in the system.1
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Fig. 6. (Color online) Effects of Overcrowding: Growth only at the first station. Here we plot the 
temporal behavior of the average travel time delay of commuters along an OD pair, i.e. individuals 
are grouped together based on the OD pair journey they take. The subgraphs are arranged in 
a matrix where the rows represent the station origins and the columns represent the destination 
stations. Shown are the characteristic delay curves resulting from different inflation factor F.
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Fig. 7. (Color online) Effects of Overcrowding: Growth only at the second station. Here we 
plot the temporal behavior of the average travel time delay of commuters along an OD pair, i.e. 
individuals are grouped together based on the OD pair journey they take. The subgraphs are 
arranged in a matrix where the rows represent the station origins and the columns represent the 
destination stations. Shown are the characteristic delay curves resulting from different inflation 
factor F.

In the second scenario, the effect of the increase in the commuter population on 
the system is investigated. Simulation results point to some intuitive and counter
intuitive observations. For one, results show that as the population at a particular 
station is increased by a factor F,  the average duration of travel delay linearly 
increases across the system as well. This result is expected. However, when we 
zoomed in on specific origin-destination pairs, observations have started to vary. In 
Figures 6-9, we dissected each of the cases by looking at the average travel time delay 
of commuters in each OD pair, given the factor of increase F  in the total population 
(distinguished by the colored lines), across the time of day per 30-minute interval. 
Our aim is to track the dynamics across time especially during peak and off-peak 
hours when both train and passenger dynamics are significantly altered. The sub
figures are arranged such that the rows correspond to the station origin (Stations 1 
to 4 denoted by S i , ..., S4), while the columns correspond to the destination stations 
S2 to S5 .
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Fig. 8 . (Color online) Effects of Overcrowding: Geometrically increasing case. Here we plot the 
temporal behavior of the average travel time delay of commuters along an OD pair, i.e. individuals 
are grouped together based on the OD pair journey they take. The subgraphs are arranged in 
a matrix where the rows represent the station origins and the columns represent the destination 
stations. Shown are the characteristic delay curves resulting from different inflation factor F.

In Figure 6, a population growth was employed in only one station Si. The 
subplots suggest that across the day, all travels coming from origin stations Si and 
S2 are the most affected (compared to trips coming from S3 and S4). Moreover, 
while journeys originating from Si hint to four gradual transitions, the travel delays 
as functions of F  becomes more homogeneous far from S i. That is, three transitions 
are observed for journeys originating from S2, two transitions for S3 origin (F  =  
1.5 vs all the other Fs),  and the system collapses to a single distribution curve 
for travels originating at S4. The cascade of delays has an effect on reaching the 
saturated state and thus homogenizing the system’s response as it goes farther 
from the inflated source. This systematic decrease in the number of transitions is 
consistently observed in all other cases (Figures 7-9). For instance in Fig. 7, the 
number of transitions are highest in journeys originating from S2 where all the 
passengers are injected. In Figs. 8 and 9, where there is a geometric variation in 
growth, the number of transitions are highest either in the last two or the first two
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Fig. 9. (Color online) Effects of Overcrowding: Geometrically decreasing case. Here we plot the 
temporal behavior of the average travel time delay of commuters along an OD pair, i.e. individuals 
are grouped together based on the OD pair journey they take. The subgraphs are arranged in 
a matrix where the rows represent the station origins and the columns represent the destination 
stations. Shown are the characteristic delay curves resulting from different inflation factor F.

origins dependending on whether the commuters are augmented most in the first 
or the last station, respectively.

The top rows of Figs. 7 and 8 are typical representations of the travel time when 
there is no overcrowding or addition of agents, where the dips during peak hours 
is a result of the increase in frequency of train dispatch during this time. Another 
set of travel delay dips (row 3 in Figs. 6 and 9; row 2 in Fig. 8) are seen during off- 
peak hours that balances the low frequency of train dispatch by the lower number 
of commuting passengers. Note that in general, the added passengers in station Si 
will have the highest impact on passengers originating from Si+i since at stations 
farther from i +  1 , portion of the agents that clogged the system will already alight 
allowing additional capacity in later stations.

5. Conclusion

In this work, we discussed the various statistical features associated with Singa
pore’s MRT system, and described how these empirical observations can be used
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in developing an agent-based model. We have calibrated and validated our model 
using the known travel time distribution of commuters. The platform was then 
used to investigate the impact of inflating the flow volume of commuters in sta
tion platforms. Extending the results to phenomenological overcrowding scenarios, 
we discuss the transient spatiotemporal travel time dynamics and how such result 
hints to potentially identifying system bottlenecks within a segment of the MRT. 
Finally, we demonstrate that the durations of travel delays in specific OD pairs, as a 
result of inflated population, are strongly dependent on how the new commuters are 
distributed across the train stations. The empirical model reported here is flexible 
and customizable enough to potentially provide a versatile approach for transport 
planners and government regulators to make quantifiable policies that optimally 
balance cost and convenience as a function of the number of the commuting public.

As of this writing, we have also already developed a full-scale agent-based model 
that concurrently looks at all stations in Singapore. We refer our readers to our 
recent work appearing in Ref. 5.
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Anticipating critical transitions is very important in economic systems as it can mean 
survival or demise of firms under stressful competition. As such identifying indicators 
that can provide early warning to these transitions are very crucial. In other complex 
systems, critical slowing down has been shown to anticipate critical transitions. In this 
paper, we investigate the applicability of the concept in the heterogeneous quantity 
competition between two firms. We develop a dynamic model where the duopoly can 
adjust their production in a logistic process. We show that the resulting dynamics is 
formally equivalent to a competitive Lotka-Volterra system. We investigate the behavior 
of the dominant eigenvalues and identify conditions that critical slowing down can provide 
early warning to the critical transitions in the dynamic duopoly.

Keywords: Critical slowing down; Lotka-Volterra; complex systems.

1. Introduction

There has been active research to identify signals that can provide early warning 
prior to critical transitions across different systems.1,2 Prominent among them is the 
observation that as the system approaches a critical point, it becomes increasingly 
slow in recovering from small perturbations. Mathematically, this means that the 
characteristic return time will increase when one approaches the critical point.3 This 
phenomenon has been shown to occur across varied fields such as semiconductor 
lasers,4 engineered systems5 and financial markets.6 The intent of the paper is to
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add industrial firms among systems where critical slowing down may anticipate 
transitions.

Anticipating critical transitions is of fundamental interest in economic systems. 
For this complex system, changes are not necessarily smooth but can be abrupt, and 
may cause a critical transition from one dynamical state to another. For instance, 
the market crash in 1929 brought with it two thousand investment firms and resulted 
in a structural change in the American banking industry.7 The more recent financial 
crisis pushed the global economy into a great recession for which many nations are 
still reeling from.8

Analyzing critical transitions is a strategic concern among firms as it relates to 
their success or downfall. Yet the analysis can become difficult as the network of 
firms increase, with each one having a different set of interactions and strategies. 
Our approach would be to consider the simplest system and investigate its crit
ical transitions. With only two firms competing, duopoly is the simplest form of 
oligopoly.9 Even so, it allows for complex interactions depending on the context of 
the competition and the set-up of the firms10,11 As such, different forms have been 
intensively studied to gain insight into the dynamics of industrial organizations.12

In this paper, we consider a heterogeneous quantity competition of firms each 
adjusting their production in a logistic process. We show that the resulting dynamics 
is governed by Lotka-Volterra equations. We extract the critical points and inves
tigate the dominant eigenvalues around these points. We then identify conditions 
that critical slowing down can provide early warning prior to critical transitions in 
the dynamic duopoly.

2. C om petition  M odel

Consider two firms 1 and 2 each with a product competing for the same market. 
The value of their respective product, as given by its price, depend on the quantities 
(4 1 , 4 2 ) in the market, i.e. рг (qi, q-i) • i =  1,2. Expanding up to first order one 
obtains:

Pi (9 i,® ) =  Pi (0,0) + 9 i| “ - + q 2 ^ -  (! )

Substituting a,; =  p,;(0,0) and assuming the price decreases with quantity such that 
dpi/dqi =  —f3i and dpi/dqj =  —7 ij,i ф j  =  1 ,2  we have:

Pi (4 1 , 4 2 ) = 0 4 -  Pi4i -  l i j4j• (2)

One can associate a as the quality of the product in the sense that the higher it 
is, the greater the product is valued. Rewriting pi =  ( d q i /d p i ) 1, the parameter is 
inversely related to the elasticity concept in economics where one is concerned with 
the change in the quantities given the change in the price.13 On the other hand 
7 ij =  (dqj/dpi)~ captures how different the products are from each other.14 For 
instance, if 7 ^  >  0, the product j  adversely affects the value of product i and as 
such can be considered a substitute to product i. For 7 ij <  0, product j  increases
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the value of product i and hence a complement to it; 7у  =  0 means that product j  
has no impact on the value of product i.

With the market condition above, we now look at the profit of firm i. The profit 
7Tj(<7, ) in producing and selling </, units would be the difference between its revenue 
and production cost. Its revenue in selling qi units of the product at price р г is piqi. 
For zero fixed cost and constant marginal cost rrii, the total cost in production is 
niiqi. As such the profit would be given by:

For the firm to maximize its profit, it needs to find the quantity q f  that would 
maximize (3). Taking diri/dqi and equating it to zero and following Cournot’s con
jecture that the other firm keeps its quantity constant (dqj/dqi =  0) (Cournot, 
1960), we obtain the best response of firm i given the output of firm j :

Consider now the situation where the current output qi(t) is different from the 
best response qf(qj)  as given in (4). The firm then needs to have an adjustment 
process that will bring its production to the desired level. Here we consider an 
adjustment process that is given by a logistic equation:

where hi controls the speed of the adjustment.16 The larger к is, the steeper the 
firm has to ramp or reduce its current output to meet the desired level.

Given the adjustment process above, the resulting dynamical equations become:

Equation (6) is formally equivalent to the Lotka-Volterra competitive equations. 
The maximum output of firm «will be realized when firm j  ceases to produce (i.e. 
qj =  0). This monopoly output Mi is just the carrying capacity of the firm and 
is proportional to the firm’s net advantage (a* — rrii). One can extract as well the 
competion coefficient сц and is proportional to the differentiation of the products

я- i (qi) =  ( а ,  -  п и -  P i -  7 i jq j)  qi. (3)

(4)

—Q\ =  bi(q?(qj) -  qi(t))qi(t) (5)

=  M i  (t) (Mi -  qi (t) -  Cijqj (t)) (6)

where

(7)
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3. Critical Transitions

Given the dynamics above, we now investigate the equilibrium states and transitions 
near them. The model above has the following equilibrium points, eigenvalues and 
stability conditions.

Table 1. Equilibria, eigenvalues and stability conditions of the model.

Equilibrium Points (q*, ) Eigenvalues Stable if

(0,0)

(Mi.o)

(0, M2)

(M i —с 12M2 M-2 — C21 M1 \ 
I-C12C21 ’ I-C12C21 )

The first equilibrium point is the trivial case where both firms do not produce 
and this condition is never stable as the eigenvalues are both positive. The next two 
results in the persistence of one firm and the demise of the other. This condition is 
stable if the impact of one firm on the other, as given by the competition coefficient, 
is larger than the ratio between the firms’ monopoly output. The last equilibrium 
point pertain to the coexistence of the firms. This is stable if the impact of each 
firm is less than the ratio of their monopoly outputs.

Now we investigate the transition from one dynamical state to another and see 
how the equilibrium values change as one parameter is varied. Suppose changes in 
the business condition alters the advantage of firm 1 but have no effect on firm 2. 
This can be a change in its quality or cost structure (or both) resulting in a change 
in M i. For Mi very small compared to M2, firm 2 would eventually monopolize the 
market. However as M\ improves it would be possible to coexist with firm 2. The 
value of Mi that would allow this and the type of coexistence depends on the kind 
of competition.

For C12C21 >  1, a path dependent hysteresis-like phenomenon occurs. For smaller 
values of M i, firm 2 would be the only one left in the long-term evolution of the 
competition. However, past C12M 2 it will trade places with firm 2 -  firm 1 now 
monopolizing the market. Reversing the direction, for high values of M i, firm 1 
will be the monopoly until it decreases below M2/C21 where firm 2 becomes the 
monopoly. In between M 2/C21 and C12M2, an unstable coexistence (dotted lines) 
prevails with the outcome depending on their initial conditions. These features are 
shown in Figure l.a.

For C12C21 <  1, a stable coexistence occurs when M\ >  C12M2. Improving beyond 
•M2/C21 results in firm 1 monopolizing the market. The graph of the equilibrium 
values as a function of M 1 is depicted in Fipnire 1 h______________________________

Ai =  fciMi; Л2 =  Never
Ai =  -k\M\
Л2 = —/C2 (C21 A/i — М2)
A i  =  —/С2М 2 
A2 =  —fci (C12M 2 — M i )

= —(<x+6)± v̂ (q 

a =  k\q*\b =  &2<?2

Ai =  -k iM i  C21 >

Ai =  —/С2М2 C12 >

д ±  _  - ( a + b ) W ( a + b ) 2 - 4 ( l - c 1 2 C 2 i ) a b  c i 2 c 2 i  <  1
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<r,
«5

Mi

3.) Ci2C21 > 1 Ь.) C12C21 < 1

Fig. 1. (Color online) Equilibrium values as a function of M i for firm 1 and firm 2.

4. Critical Slowing Down

Given the transitions above, of interest would be to find a way the transitions can 
be anticipated. To go about this, we take a look at the characteristic return time 
required for the system from an initial state qi(t0) to a later state qi(tf) as a function 
of the monopoly outputMj. Prom (6), this would be given by:

Ti(Mi)
rlf \ r4f

/ d t = k~Jt„ Ki Jqi

dqi
qi [Mi -  q i -  Cijqj) ' (8)

For instance, for Mi smaller than C12M 2, the equilibrium state would have q\ =  0 
and q2 =  М 2. However as M\ increases we can estimate the return time from a very 
small value e to a quantity qj

Ti
1 f4f dqi

qi (My -  q i -  C12M2)

_______________ ln 1 e(qf  -  Mi +  c12M2) \
k\(M\ — C12M 2) \qf (e — M i +  C1 2 M 2 ) )

(9)

On the other side of the critical point, the equilibrium state would be (q^,q2) =  
( Mi -c^Ms M j-c8дМдЛ д 8 such coming from of +  e to qr would take about:
^ 1 -C 12C21 ’ 1 -C 12C21 j  ^

Tx
1 r4f

(M1) = W .1 JQt+i

dqi

qi+e Я1 (Ml -  qi -  Ci2q*2 )

1 ln ( (q*i +  £) ( q f  -  Ml  +  cu qZ)\ 
f c i ( M i  -  C 1 2 Q 2 )  \ Qf (<li +  £ -  M i +  0 1 2 ^ 2 )  J

(10)

Plotting the return time as a function of Mi yields the graph in Figure 2.
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ТЦМ1)

Fig. 2. Return time as a function of M i. (М2 =  12, с 12 =  C21 =  075, qf =  075,e =  0001).

Evident in the graph is the rapid increase in the return time as the control 
parameter M 1 approaches the critical point C12M2. This critical slowing down on 
both directions comes before the actual critical transition.

A more general process of anticipating critical transitions using the concept of 
critical slowing has been developed.17. The characteristic return time is obtained 
from the recovery rate p which is just the absolute value of the real part of the 
dominant eigenvalue. For instance, consider the transition from (M i, 0) to (М2) for 
the case C12C21 >  1. From the eigenvalues in Table 1.

p =  |fie(Adominant)| =  min (fciMi, k2 (c2iM i -  M 2) ) . (11)

Using Eq. (11), if k\M\ <  &2 (C21M 1 — M2) then pi =  /cj M i-18 This recovery 
rate would be true for Mi > кчМ^КЫоп — fci). Otherwise, p\ — k2 (C21M 1 — М2). 
As such as the control parameter M\ decreases, the recovery rate is decreasing as 
well, slowing down and becoming zero at the critical transition M2/C21. Similarly, 
for the state (М2) the recovery rate p2 =  /С2М 2 for M i <  M 2 (kiC\2 — k2) / k\ and 
Pi =  k\ (C12M2 — M i) otherwise. We then can superimpose the recovery rates to 
the plot of the equilibrium values as shown in Figure 3.

Evident in the figure is the discontinuous change in the recovery rate prior to the 
critical transitions in the equilibrium values. For instance, for firm 2 the recovery 
rate has changed at (ci2 — k^/ki) М2 whereas the abrupt change in its equilibrium 
value happened at C12M2. One can then measure the absolute change in the control 
parameter Mi before the critical transition sets in, which in this case would be 
(k-i/ki) М 2 =  Г2М2 where r} is the relative speed of adjustment of firm j  to firm 
i. The higher Г2 is, the greater fc2 is compared to ki, and the “sooner” the early 
warning could be.

Similarly for firm 1, the abrupt end of its decline can be forewarned by its recov
ery rate. Before it declines to M2/C21, the recovery rate has undergone a discontinu
ous change at М 2 / (C21 — k\/ k%)■ As such a decline of k\M2/ k 2C2i(c2i — k\/k^) more
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Fig. 3. (Color online) Equilibrium values ( g f ,^ )  and recovery rates p for C12C21 >  1.

Fig. 4. (Color online) Equilibrium values (g * ,? !) an<l recovery rates p for C12C21 <  1.

will bring it to the threshold of the critical transition. Rewriting to r\M 2/ 021(021 — 
ri), the critical transition can be forewarned earlier if the competitive impact of 
firm 1 on 2 is low (i.e. low C21) or the relative speed of adjustment r\ is large 
(ki >  k2).
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For the case of C12C21 <  1, the presence or absence of a region for an early warning 
signal becomes more defined. Similar to the case of ci2c2i > 1, the discontinuous 
transitions of the recovery rate occur at (ci2- r 2)M 2 for firm2 and a t r i M 2/( c 2i — ri) 
for firm 1 as shown in Figure 4. However, the presence of one precludes the other 
as an early warning signal as r2 <  C12 automatically means that C21 — r\ <  0. And 
C21 >  n  implies r2 >  c\2 as illustrated in the figure below (i.e (C12 — r2) M 2 <  0). 
As such, only the firm whose relative speed of adjustment is r* < Cjii Ф j  can have 
an early warning from its recovery rate.

5. Conclusion

Of interest from the preceding results is the role that the relative speed of adjustment 
r, =  ki/kj plays in the presence or absence of an early warning signal. For r\ very 
large, C21 — r\ becomes negative and the discontinuous change of the recovery rate 
occurs at a negative monopoly output of firm 1 which is not realistic. Similarly, for 
large 7*2 , C12 — r2 can become negative and firm 2 loses an early warning signal. 
As such, only at regions where r* <  Cji or ki <  Cjikj does an early warning signal 
for both firms makes sense. Otherwise, the monopoly output shifts to negative and 
hence no longer feasible.

As such, it is possible to use the concept of critical slowing down to provide 
early warning to the critical transitions in a dynamic duopoly. The extent of the 
early warning depends on the monopoly output, competition coefficient and relative 
speed of adjustment. If the monopoly output is large, because, for instance of large 
firm advantage, the farther the warning is from a critical transition. The smaller 
the impact of the competition is, that is the smaller the competition coefficient, the 
more time one is forewarned. And the larger the relative speed of adjustment is, the 
sooner is the early warning.
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The three major international crude oil markets are treated as complex systems and their 
multifractal properties are explored. The study covers daily prices of Brent crude, OPEC 
reference basket and West Texas Intermediate (WTI) crude from January 2, 2003 to 
January 2, 2014. A multifractal detrended fluctuation analysis (MFDFA) is employed to 
extract the generalized Hurst exponents in each of the time series. The generalized Hurst 
exponent is used to measure the degree of m ultifractality which in turn is used to quantify 
the efficiency of the three international crude oil markets. To identify whether the source 
of m ultifractality is long-range correlations or broad fat-tail distributions, shuffled data 
and surrogated data corresponding to each of the time series are generated. Shuffled data 
are obtained by randomizing the order of the price returns data. This will destroy any 
long-range correlation of the time series. Surrogated data is produced using the Fourier- 
Detrended Fluctuation Analysis (F-DFA). This is done by randomizing the phases of 
the price returns data in Fourier space. This will normalize the distribution of the time 
series. The study found that for the three crude oil markets, there is a  strong dependence 
of the generalized Hurst exponents with respect to the order of fluctuations. This shows 
that the daily price time series of the markets under study have signs of multifractality. 
Using the degree of m ultifractality as a  measure of efficiency, the results show that WTI 
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fact that Brent and WTI is a  very competitive market hence, it has a higher level of 
complexity compared against OPEC, which has a  large monopoly power. Comparing 
with shuffled data and surrogated data, the findings suggest that for all the three crude 
oil markets, the m ultifractality is mainly due to long-range correlations.
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1. Introduction

Fractals as introduced by Mandelbrot1-2  describe geometric patterns with large 
degree of self-similarities at all scales. The smaller piece of a pattern can be said to 
be a reduced-form image of a larger piece. This characteristic is used to measure 
fractal dimensions as a fraction rather than an integer. Some examples of fractal 
shapes are rugged coastlines, mountain heights, cloud outlines, river tributaries, tree 
branches, blood vessels, cracks, wave turbulences and chaotic motions. However, 
there are self-similar patterns that involve multiple scaling rules which are not 
sufficiently described by a single fractal dimension but by a spectrum of fractal 
dimensions instead. Generalizing this single dimension into multiple dimensions 
differentiates multifractal from fractals discussed earlier. To distinguish multifractal 
from single fractal, the term monofractal is used for single fractal in this paper. 
Among the natural systems that have been observed to have a multifractal property 
are earthquakes,3 heart rate variability4 and neural activities.5

Mandelbrot6 introduced multifractal models to study economic and financial 
time series in order to address the shortcomings of traditional models such as frac
tional Brownian motion and GARCH processes which are not appropriate with the 
stylized facts of the said time series such as long-memory and fat-tails in volatil
ity. Further studies confirmed multifractality in stock market indices,7-16  foreign 
exchange rates17-20 and interest rates,21 to name a few. As a consequence, many 
studies have now used the properties of multifractality in forecasting models.22-24 

These models are at least as good as, and in some cases, perform better using out- 
of-sample forecast compared to traditional models. One added advantage of these 
models is their being parsimonious.

This paper investigates the presence and compares the degree of multifractality 
of the daily prices of crude oil of the three major international crude oil mar
kets namely the Brent crude, OPEC reference basket and West Texas Intermediate 
(WTI) crude from January 2, 2003 to January 2, 2014. The Brent crude is sourced 
from the North Sea and is the main European oil market; OPEC is mainly sourced 
from the Middle East; and WTI is the benchmark used in Chicago and New York 
mercantile exchange. Furthermore, since multifractality can be due to long-range 
correlations or due to broad fat-tail distributions, this paper identifies which of the 
two factors dominates the multifractality of the daily crude prices time series of 
the said markets. The paper is arranged as follows. Methodology is discussed in 
Section 2. Data are described in Section 3. Presentation of results is in Section 4. 
Finally, the paper concludes in Section 5.

2. Methodology

In measuring multifractality, the paper uses the method of Multifractal Detrended
Fluctuation Analysis (MFDFA) as outlined in Kantelhardt et al.25 Matlab codes
used are based in Ihlen.26 The procedure is summarized in the following steps.
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(1) Given a time series щ, i =  1 where N  is the length, create a profile
Y (к) = y if_ j щ — й, к = 1, ■ ■ ■, N, where й is the mean of u.

(2) Divide the profile Y (к) into Ns = N/s non-overlapping segment of length s. 
Since N  is not generally a multiple of s, in order for the remainder part of 
the series to be included, this step is repeated starting at the end of the series 
moving backwards. Thus, a total of 2N s segments are produced.

(3) Generate Ys (i) =  Ys [(г> — 1) s +  *] for each segment v =  1 , . . . ,  Ns, and Ys (i) =  
Fs [N — (v — Ns) s + i] for each segment v = Ns +  1 , . . . ,  2Ns.

(4) Compute the variance of Ys (i ) as F 2 (v) —  ̂Yli=i P's (*) — ^  (г)]2 , where Yv (i ) 
is the mth order fitting polynomial in the vth segment.

(5) Obtain the qth order fluctuation function by

'   ̂ 2n3 ч  l ! q

If the time series are long-range correlated then Fq (s) is distributed as power 
laws, Fq (s) ~ ,4h(q>. The exponent h (q) is called as the generalized Hurst exponent. 
When h (q) — 0.5, this implies that the fluctuations are just random walks.

For monofractals, the Hurst exponent is a constant equal to h(2). The closer 
the value of h (2) to 0.5, the more closely the time series mimics random walk. 
Hence, market efficiency can be measured by the distance of h(2) from 0.5. For 
multifractals however, h (q) varies with q. Thus, a spectrum of h (q) values implies 
the presence of multifractality.

The degree of multifractality can be quantified as |ДЛ| = h(qmin) — h(qmin). 
Moreover, the higher the degree of multifractality, the lower the market efficiency.23

To identify whether the multifractality is due to long-range correlations or is due 
to broad fat-tail distributions, shuffled data and surrogated data are generated. In 
the spirit of Zunino et a/.,11 100 different shuffled time series and surrogated time 
series are produced to reduce statistical errors. Shuffling the data will remove the 
long-range correlation in the time series. It is done by randomizing the order of the 
original data. The multifractality due to long-range correlation can be computed as 
hc = A h — Ahf where the index / refers to shuffled data.

Surrogated data is produced by randomizing the phases of original data in 
Fourier space. This will make the data to have normal distribution. The multifrac
tality due to broad fat-tail distributions can be measured as hd — Ah — A hr where 
the index r  refers to surrogated data.

3. Data

The daily crude oil prices of the Brent crude, OPEC reference basket and WTI 
crude from January 2, 2003 to January 2, 2014 are used for a total of 2788, 
2839 and 2765 observations respectively. The number of observations differs for 
the three markets because the number of business trading days also differs due
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to national holidays and other idiosyncracies. Daily price data for OPEC ref
erence basket has been downloaded from the OPEC online database website: 
http://www.opec.org/opec_web/en/data_graphs/40.htm. The daily price data for 
Brent and WTI crude was downloaded from the website of the U.S. Energy Infor
mation Administration: http://www.eia.gov/dnav/pet/pet_prijspt_sl_d.htm.

4. Results

Figures 1 to 3 show the plots of the daily crude prices, the daily returns, and 
the associated shuffled and surrogated time series of daily returns for Brent crude, 
OPEC reference basket and WTI crude respectively. The original daily returns and 
the shuffled time series show some extreme fluctuations which is a sign of having 
fat-tail distribution. The surrogated time series do not have extreme fluctuation, a 
characteristic of a normal distribution.

In doing the MFDFA procedure, m = 3 is used as the order of polynomial fit 
in Step 3. The length s varies from 20 to N/4 with a step of 4 as suggested in 
Kantelhardt et al.25 Finally, q runs from —10 to 10 with a step of 0.5. Figure 2 
presents the generalized Hurst exponents for the original returns, shuffled returns 
and surrogated returns. For monofractals, the Hurst exponent is independent of q 
which is also equal to the generalized Hurst exponents of multifractals atq = 2, that
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Fig. 1. (Color online) Plots of the (a) daily Brent crude oil price, (b) its daily returns, (c) shuffled 
time series, and (d) surrogated time series.
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Fig. 2. (Color online) Plots of the (a) daily OPEC crude oil price, (b) its daily returns, (c) shuffled 
time series, and (d) surrogated time series.
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а Ь

Fig. 4. (Color online) Generalized Hurst exponent, h(q), as a function of q for the original, shuffled 
and surrogated daily returns for (a) Brent crude, (b) OPEC reference basket, and (c) WTI crude.

is, h(2).  In other words, monofractals have only one single Hurst exponent which 
is h (2) regardless of the value of q. In contrast, multifractals have a spectrum of 
generalized Hurst exponents which vary depending upon the value of q. It is noted 
in Figure 2 that for the daily returns time series, h (q) is dependent upon q. As 
q increases, h (q) decreases. This is a confirmation that the daily crude price time 
series of the three international crude oil markets are indeed multifractals. This 
suggests that monofractal models are not appropriate for this time series.

Table 1 presents the generalized Hurst exponents, h (g)with values of q ranging 
from -1 0  to 10 for the original return time series, shuffled and surrogated time 
series. Since for all the three markets, we have \hc\ > \hd\- This means that the 
multifractality is mainly due to long-range correlations.

Using |ДЛ| as a measure of efficiency, we can conclude that WTI is the most 
efficient while OPEC is the least efficient market. This implies that OPEC has the 
highest likelihood to be manipulated among the three markets. This reflects the 
fact that Brent and WTI is a very competitive market hence, it has a higher level 
of complexity compared against OPEC, which has a large monopoly power.
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Table 1. Generalized Hurst exponents, h (q) with q =  —10 to 10.

g Brent OPEC WTI

Original Shuffled Surrogated Original Shuffled Surrogated Original Shuffled Surrogated

- 1 0 0.4991 0.5427 0.5750 0.5496 0.5337 0.6397 0.4928 0.5410 0.5380
- 9 0.4974 0.5412 0.5742 0.5477 0.5322 0.6387 0.4913 0.5393 0.5375
- 8 0.4957 0.5397 0.5734 0.5458 0.5307 0.6377 0.4897 0.5374 0.5369
- 7 0.4940 0.5381 0.5727 0.5439 0.5291 0.6367 0.4882 0.5355 0.5365
- 6 0.4923 0.5365 0.5720 0.5420 0.5276 0.6358 0.4867 0.5336 0.5361
- 5 0.4907 0.5349 0.5713 0.5401 0.5260 0.6350 0.4852 0.5316 0.5357
- 4 0.4892 0.5333 0.5707 0.5382 0.5244 0.6342 0.4837 0.5296 0.5354
- 3 0.4878 0.5316 0.5702 0.5365 0.5228 0.6334 0.4823 0.5276 0.5353
- 2 0.4865 0.5300 0.5697 0.5349 0.5212 0.6328 0.4810 0.5255 0.5352
- 1 0.4854 0.5284 0.5692 0.5334 0.5197 0.6322 0.4798 0.5234 0.5352

0 0.4846 0.5268 0.5689 0.5322 0.5181 0.6318 0.4788 0.5213 0.5353
1 0.4841 0.5251 0.5686 0.5313 0.5165 0.6315 0.4781 0.5191 0.5356
2 0.4841 0.5235 0.5684 0.5309 0.5150 0.6312 0.4778 0.5170 0.5360
3 0.4846 0.5219 0.5682 0.5312 0.5135 0.6311 0.4779 0.5148 0.5365
4 0.4860 0.5203 0.5681 0.5322 0.5120 0.6312 0.4786 0.5127 0.5371
5 0.4883 0.5187 0.5681 0.5343 0.5105 0.6313 0.4801 0.5105 0.5378
6 0.4917 0.5171 0.5682 0.5379 0.5091 0.6316 0.4826 0.5083 0.5387
7 0.4967 0.5156 0.5683 0.5432 0.5076 0.6320 0.4864 0.5061 0.5396
8 0.5034 0.5140 0.5685 0.5508 0.5062 0.6324 0.4919 0.5038 0.5406
9 0.5122 0.5123 0.5687 0.5611 0.5047 0.6329 0.4993 0.5016 0.5416

10 0.5231 0.5107 0.5689 0.5743 0.5032 0.6335 0.5087 0.4993 0.5427
Ah 0.5360 0.5090 0.5691 0.5904 0.5017 0.6341 0.5200 0.4970 0.5437

hc = -0.1787 hd = -0.1179 hc = -0.2053 hd = -0.1485 he = -0.1195 hd = -0.0226
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We solve the space-fractional Schrodinger equation for a  quadrupolar triple Dirac-5 
(QTD-5) potential for all energies using the momentum-space approach. For the E < 0 
solution, we consider two cases, i.e., when the strengths of the potential are Vo > 0 
(QTD-5 potential with central Dirac-5 well) and Vo < 0 (QTD-5 potential with central 
Dirac-5 barrier) and derive expressions satisfied by the bound-state energy. For all frac
tional orders a  considered, we find that there is one eigenenergy when Vo > 0, and there 
are two eigenenergies when Vo < 0. We also obtain both bound- and scattering-state 
(E > 0) wave functions and express them in terms of Fox’s if-function.

Keywords: Fractional quantum mechanics; space-fractional Schrodinger equation; 
quadrupolar triple Dirac-5 potential; Fox’s H-function.

1. Introduction
Applications of fractional quantum mechanics (FQM) developed by Laskin1' 2 via 
constructing fractional path integral over paths of Levy flights have gained interest 
over the past 13 years. The formulation offers generalization of some results obtained 
in the standard quantum mechanics (SQM). One of its interesting applications is 
to delta potentials.3 Here we present another application of FQM by considering 
a quadrupolar triple Dirac-5 (QTD-<5) potential in one dimension, which was first 
analyzed by Patil4 in the framework of SQM.

The time-independent space-fractional Schrodinger equation (TISFSE) in the 
position representation reads2

where Da is the generalized quantum diffusion coefficient [D2 = 1/(2m) with m 
being the mass of the particle], ip(x) is the wave function, V(x) is the potential, E

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.

Published 2 January 2015
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is the energy, and (—h2 A)a 2̂ is the quantum Riesz fractional derivative:
1 POO poo

( - П2А)а/2ф{х) = —  / dpeipx,h\p\a / e - ipx'/ĥ {x')dx'. (2)
2тгЯ у —oq У—oo

In the momentum representation the TISFSE can be expressed as3

Da \p\ai>(p) + — = Еф{р), (3)

where ф{р) = f^° e~ipx ĥ^(x)dx is the Fourier transform of ф(х), with the inverse 
transform ф(х) = (2тгН)~1 егрх̂ пф(р)Лр, and (V * ф)(р) is the convolution of 
V[p) and ф{р)'- (V * ф)(р) = V(p — p')ij)(p')dp' . In the next section we solve 
Eq. (1) for a QTD-<5 potential using the momentum-space approach.

2. QTD-<5 Potential and Solutions to the TISFSE

The interaction between an electron and a symmetric linear triatomic molecule can 
be modeled using the potential4 V(x) = Vo[S(x + a) — 26(x) + 6(x — a)], where Vo 
is the strength and a is the spacing between the atoms. Its Fourier transform and 
convolution with ф(р) are given, respectively, by V(p) = Vo(e*aPy/ft — 2 + e_iap/ft) 
and {V * ф)(р) = Vo[emp/fiCo(a) — 2Ci(0) + e~top/fiC2(a)], where the constants 
are defined as Co(a) = C2(—a) = J™ooe~iap ĥip{pl)dp' and Ci(0) = ф(р’)йр'. 
Substituting the expression for (V * ф)('р) in Eq. (3), we obtain an expression for 
ф (p):

^ (P) = ~ 2Cl(0) + e~iaP' hC2(a)]’ (4) 

with 7 Q = V()/2nhDa. Below we solve the TISFSE for two separate cases, namely, 
E < 0 and E > 0.

Case I: E < 0. For this case, let us first consider Vo > 0 (central Dirac-<5 
well case) and define A“ = —E/Da (A > 0). Equation (4) then becomes ф(р) = 
~7 a (H “ + A“)- 1 [e“ p/,fiCo(a) — 2Ci(0) + е_шр/йС2(а)]. When we use this expres
sion to find Cq, Ci, C2, an equation satisfied by bound-state energy can be derived, 
namely, Rea~1A(e) = _R363(Q_1) — B(e), where e = a\/h, R = 2nha Da /(aa~1Vo), 
A(e) = 3T2(0) -  4T2(e) + T2(2e), B{e) = 2{T(0)[T2(0) -  2T 2(e) -  T 2(2e)] + 
2Т2(е)Т(2б)}, and T(y) — 2 J0°° cos(yq)(qa + 1 )~l dq (q = p/X). Figure 1 shows 
plots of the functions f(a ,e )  = Rea~1A(e) and h(a,t) = Л3е3(“-1) — B(e) for 
R = 2 and some values of a. The corresponding eigenvalue for each a  can 
be identified as the e-coordinate of the point of intersection of the two curves. 
For the central Dirac-5 barrier case, Vo < 0 [letting Vo = —g (g > 0)], the 
following energy equations can be derived: (i) T(2e) = T(0) — Qea~1 and (ii) 
T(0) -  T(2e) + 2Qea~x = ±[9T2(0) + 6T(2e)T(0) + Т2(2б) -  16T2(e)]1/2, where 
Q = 27ГhaDa/(aa~1g). The energy equations (i) and (ii) are plotted in the left and 
right panels of Fig. 2, respectively, for Q = 2.
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Fig. 1. Plots of the functions f (a ,e )  and h [a,t)  for the case Vo > 0 with R =  2 and a  = 1.6 
(dotted curve), a  =  1.8 (dash-dotted curve), and a  =  2.0 (solid curve).

Fig. 2. Plots of the energy equations for the case Vo < 0 with Q = 2 and a  = 1.6 (dotted curves), 
a  =  1.8 (dash-dotted curves), and a  =  2.0 (solid curves).

The wave function can be obtained by inverse Fourier transforming ip(p). 
Furthermore, by a suitable choice of phase and application of Parseval’s theorem,3 

f_ 00'ip*(x)i/j(x)dx = (2тг1г)~1 ^*(р)^(р)ф, the normalized wave function for 
the case Vo > 0 can be expressed as Ф(ж) = Ыа [Шф(х+а) — (p(x) + Z(f>(x — a)], where 
Na = n\/kF(a, W, Z) is the normalization constant, with F(a, W, Z) = [a~2(a — 
1 )7t(W2 + Z2 + 1) csc(7r/a) - 4 (W + Z)I(a\/h) + 2WZI{2a\/h)}-1/2 from which we 
define W = Co(a)/2C1(0), Z = C2(a)/2C1(0), and I(y) = f 0°° cos(yq)(qa + 1 )~2dq 
(q = p/X), and the 0 ’s are expressed in terms of Fox’s //-function:5

Ф(У) = # 2 ,3 ( m a\y\c
(1 —l/ a ,l),(l/ 2 ,a/ 2)

(0,a),(1- 1/a,1),(1/2,a/2)

Figure 3 plots this bound-state wave function for W = Z.

(5)
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Fig. 3. Plot of the wave function /Na as a function of x' = x\/h for a = 1.6 (dotted curve), 
a  = 1.8 (dash-dotted curve), and a  = 2.0 (solid curve) with W = Z = 2.

Case II: E > 0. For this case we let A“ = E/Da (A > 0). Using the property 
f(x)5(x) = f(0)S(x) of the delta function (see also Ref. 3 for the treatment of single 
and double delta potentials for the case E > 0 using this property), we write ф{р) as 
■ф(р) = A 16(p-\)+ A 26(p+\)-4a (\p\a - \ a ) - 1leiai>/hCo(a)-2C1(0)+ e-iar 'hC2(a)]. 
Using this to find Co, C\ , C-2 we obtain

a) = M2^ i  ~ Щ + ^  M0(aX/h) + 2W Mx(0) + ^  ~ ph) M2(aX/h), (6) 
1 — h  1 — 62

UCi(0) = —ppM0(aX/h) + 1/(1 + /2)M i(0) -  ppM2(aX/h), (7)

UC2(a) = Ы \2 ~ p h )M0(aX/h) + ftpM^O) + M *ph + 1 }M2(aA/ft), (8)
1 — 12 I — t2

where we denote p, = [1 + A“ 1S(0)]_1, v — [1 — 2A~1SI(0)]_1, p = h~l vS(aX/K), 
lj = pS(jaX/K) (j = 1,2), U = 4ph + l2 + l, M0(aX/h) = M2{-aX/h) = 
A xe~iax/h + A2emX/h, M i(0) = A\ + Л2, and S(y) = 2 /0°° cos(yq)(qa -  l)~1dq 
(<q = p/A); note from these definitions that ul\ = pp.

The wave function ip(x) after inverse Fourier transforming 'ф(р) is 'ф(х) = 
A[eiXx,h + A2e~iXx/h + (2hAa)~1 [Co(a)C(^ + а) -  2C\ (О)С(ж) + C2(a)£{x -  a)], where 
A'j = Aj/2-Kh (j  = 1,2), the C„s  are those enumerated in Eqs. (6) - (8), and the £’s
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are the following Fox’s Я -functions:

С(у) = Щ2,1
2,3

(1 -1 / a , l),( l- [2 + a ]/ 2 a ,[2 + a ]/ 2 )

-H.2,1
2,3

( W | y |
(0 ,a ) ,( l- l/ a ,l) ,( l- [2 + a )/ 2 a ,[2 + a ]/ 2 )  

(1 -1 / a ,l) ,( l- [2 - a ]/ 2 a ,[2 - a ]/ 2 )

(0 ,a ) , ( l - l/ a , l ) , ( l - [ 2 - a ]/ 2 a , [ 2 - a ]/ 2 )
(9)
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Using a  path integral approach, we consider a  fractional Schrodinger equation with delta- 
perturbed infinite square well. The Levy path integral, which is generalized from the 
Feynman path intergal for the propagator, is expanded into a  perturbation series. From 
this, the energy-dependent Green’s function is obtained.

Keywords: Fractional quantum mechanics; path integral.

PACS Number: 03.65.Db

1. Introduction
Fractional quantum mechanics was first introduced by Laskin. It is described by the 
space-fractional Schrodinger equation (SFSE) containing the Riesz fractional oper
ator. Following Feynman’s path integral approach to quantum mechanics, Laskin 
generalized the path integral over Brownian motions to Levy flights and obtained 
the space-fractional Schrodinger equation.1,2

Solutions to the space-fractional Schrodinger equation with linear potential, 
delta potential, infinite square well, and Coulumb potential, have already been 
obtained via piece-wise solution approach, momentum representation method, and, 
indirectly, the Levy path integral approach.3' 5 However, despite the numerous works 
on fractional quantum mechanics, perturbation has not yet been explored. In this 
paper, we consider the space-fractional Schrodinger equation with perturbative 
terms using the Levy path integral approach. We follow Grosche’s perturbation 
expansion scheme6,7 and obtained an energy-dependent Green’s function for delta 
perturbations. As an example, we consider an infinite square well with delta-function 
perturbation.

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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If a particle starts from a point Xi at an initial time tt and goes to a final point x/ 
at time tf, its path x(t) will have the property, x(U) = Xi and x(tf) = x j. To get 
from the initial point to the final point, we define a propagator, K i( x f ,x i ; t f  — ij) , 
which is the sum over all of the paths that go between points (xi,ti) and (x j,tf) . 
If a particle moves in a potential, then the propagator is written as

2. Levy path integral and fractional Schrodinger equation

fx(tj)=Xj i nIf
K b (x f,X i;t f—ti)=  / Dx(t')exp — -  / dt'V(x(t'

J x ( t i ) = x i  Jt i

where V (x(t')) is the potential energy as a functional of the Levy particle path and
the fractional path integral measure is defined as2

px(tj)=x,  p -J-) -N / a
/ D x(t')=  lim dx^..dxN- Л - ^ - )

J X(ti)=Xi N—*oo J  V h )

* П Ч Ы  (2)
i=i

where Da is the generalized ‘fractional diffusion coefficient’ (has physical dimension, 
[Da] = erg1~acmasa , Da = 1/2m for a  = 2, m denotes the mass of the particle), 
x0 — Xi, xn = Xf, e = (tf — ti)/N, and La (x) is the Levy probability distribution 
function. For a  = 2, equation (2) is transformed to the Feynman free particle 
propagator.2

The propagator describes the evolution of the fractional quantum mechanical 
system in the following way,

/+oo
dxiKL(xf ,Xi; tf  -  ti)ipi(xi,ti), (3)

-OO

where ^ i(xi,U ) is the fractional wave function of the initial state and tpf(xf, tf) is 
the fractional wave function of the final state. Laskin derived the one-dimensional 
fractional Schrodinger equation as follows

ifm ^  = {_ D a { h v)a+ v{x> Ш х  ̂ (4)

where (fiV)a is the Riesz fractional derivative operator,
1 f+OO f+OO

(hV)a^(x,t) = - — J  dpeipx/h\p\a J  *,t)dx. (5)

3. Path integration via summation of perturbation expansions

We follow Grosche’s method for the time-ordered perturbation expansion.6,7 We 
assume that we have a potential W(x) = V(x) + V(x). The propagator correspond
ing to V(x) is assumed to be known. We expand the propagator containing V(x) in 
a perturbation expansion about V(x) in the following way. The initial kernel cor
responding to V(x) propagates in At time unperturbed, then interacts with V(x),

p*/
')) , (1 )
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propagates again in another At time unperturbed, and so on, up to the final state. 
We obtain the following expansion6,7

rx(tf)=Xf ■ ftf ->
K L(xf,Xi-,ts - t i ) =  / Dx(t')ex p — — I dt’(V(x(t')) + V(x(t’)))

Jx(ti)= xi "• J t i

l- j \ t ' V ( x ( t ' ) )

~ / - j\ "  1 /•*(</)=ж/ r i ftf

rx (tf)= xf
/ .Da^i^exp

J x(ti)=xi

))

(6)

Introducing a time-ordering operator, the expansion becomes

^  p t f c  л  —j— OO

, X j, tf  iti) xii^f ^г) “Ь ^  , (~/T")  [ H  I d̂ k I
n= 1 fe=l -/-oo

x K ^ \ x i,x i- ,ti -  ti)V(xi)...K\*1 (x „ ,x„_ i;t„  -  £„_i) 

x V(xn)K^ (x f,xn\tj tn)

(V)/

where * is the fractional propagator for the unperturbed potential and again, it 
is assumed to be known. We have ordered time as U < t\ < t% < ... < t f  and paid 
attention to the fact that Kb(tk — tk -1 ) is different from zero only if tk > tk -1 - 

Now for an arbitrary potential V (x) with an additional (5-perturbation, W(x) — 
V(x) — 7 6 (x -  a), the path integral is given by

K ) p ( x f , X i ; t f  — U)  =  K ^ \ x f ,x i\ t f  — U) +  ^ 2  ( —p ~ ) [  d t *»•••

„=1 4 n Ju
rt\

x / dtiK ^\a,X i\ti -  ti)...
Jti

x K ^ \ a ,a ;tn -  tn- i ) K ^ \ x f ,a-,tf  - t n). (7) 

The energy-dependent Green’s function for the unperturbed system is given by

POO
G{v\ xf ,x i ;E) = - J ^  dTeiET' hK {p { x f ,x i -,tf - t i),T  = t f - t i . (8)

We also introduce the Green’s function, G ^ \ x f , ж*; E) for the perturbed system 
in a similar manner as equation (8). The emerging geometric power series can be
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summed up due to the convolution theorem of the Fourier transformation, hence 
we have6,

G m ( x , ,x , ;E )  = G ^ X f . ^ . E )  -  W

where it is assumed that Ĝ v \a,a\E) actually exists. The energy levels En of 
the perturbed system can be determined in a unique way by the denominator of 
G ^ (x f ,xi-,E).

4. The infinite square well with delta-perturbation

We first consider a particle in a potential V (x ) defined as

v (x) = 1 ° ’ I I " !  (10)I oo, |ж| > /.
The fractional quantum-mechanical propagator for this system was already obtained 
by Dong,4

1 °°{xf ,Xi\tf -U )  = 7 $ > р Н В Д /  -  ti)/h}sm[kn(xi -l)}sin[kn(xf  -/ )],
71= I

where
Т77Г

f c n = 2 T ’ E n =  D a ha \kn\a . ( 1 1 )

Solving the energy-dependent Green’s function for this propagator yields
1 ° °  1

G(v)(xf,X i;E) = у  У  (е~ ~ Г ё)  sin[M ** _  0 ] sm[fcn(xy -  I)]. (12 ) 
n = 1 n

Hence, from equation (9), the Green’s function for the perturbed system is given
by

1 ° °  1
G{5\ x f ,xi-E) = у  Y l { E _ д )  s'm[kn(xi -  l)]sm[kn(xf -  I)}

71=1 П
OO OO -| -|

- p E E (д—в) (r-гё) sin[M“ - 01 “ 41

М. М. I. Nayga & J. P. H. Esguerra

71=1 771 = 1

x sin[A:m(a;t -  0] sin[fcm(a -  I)]

1 ° °  1 

х [ т Е ( ё 7 Г ё ) “ "2[ М « - ! ) ] - 1 / 7
71=1

5. Conclusion

We have expanded the Levy path integral for the fractional quantum propagator in 
a perturabation series. An analogous expansion with the Feynman path integral was 
obtained. From the expanded propagator, the energy dependent Green’s function 
for the delta-perturbed infinite square well was also obtained.
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Self-avoiding or self-repelling random paths, with motivation from their use in polymer 
physics, have been widely studied using the tools of mathematics, physics, and computer 
simulations. We illustrate this by three recent examples.

1. Introduction
Self-avoiding or self-repelling random path models for polymer configurations have 
been studied extensively in mathematics using combinatorics, stochastic analysis, 
in statistical mechanics, and in computer physics using Monte Carlo methods. Clas
sical texts are e.g.4 and12, a recent review can be found in17. The field is highly 
interdisciplinary: the motivation came from chemistry, while physics provides struc
tural intuition and far-reaching predictions, and computer simulations can check 
them out. The mathematical results are less far-reaching but provide the higher 
reliability characteristic of the mathematical approach; much remains to be done in 
the stochastic analysis setting.

Apart from self-avoiding random walks, a prominent realization is the Edwards 
model of self-repelling (or “weakly self-avoiding”) Brownian paths, an example of 
models where self-crossings are not strictly forbidden but where there is an expo
nential penalty on self-crossings.8

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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Recently the Edwards model has been extended to fractional Brownian motion 
(fBm) ,13 allowing for models of stiffer or curlier polymers than those described by 
classical Brownian motion.

It is in this context that we shall present report on progress on three fronts, 
where methods from stochastic analysis, arguments from statistical physics, and 
numerical computation have been employed.

2. Recent developments

2.1. Varadhari’s existence proof

In the Edwards model self-repelling paths are described via a “Boltzmann factor” 
to suppress self-intersections of Brownian motion В :

G — exP ( - " f  ds i :  dtS (B(s) -  B{t)) j

with

Z = E ^exp 3 J  ds J  ( B ( s ) ~~ •

The mathematical problem here lies with the existence of this exponential, how to 
make sense of

r NpH
L =  ds dtS (B(s) -  B(t)) 

Jo Jo
One uses delta sequences to approximate the Dirac distribution

:= (2тер72е~ ^ ’ e > 0 ’

L£~  [  dt [  ds 5e(B(t) -  B(s)). (1)
Jo Jo

Removing the regularization depends on the dimension of the Brownian paths, 
it is straightforward for d = 1 but for d>  2 the expectation diverges

lim E(Le) = oo.
e \ 0

In d = 2 one needs to subtract the expectation, setting

Lc£ = Le -E (L £), 

and will define the centered self-intersection local time as

Lc = lim Lcs.
e \ 0

In d = 3 a further, multiplicative renormalization is required,20 but for d = 2 one 
is thus led to consider

exp (~gLc) .
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However, after centering Lc is unbounded below, and

exp (—gL°) —> oo when Lc —> — oo.

So one needs to show that large values occur only with small probability such 
that the expectation is nevertheless finite. Varadhan19 shows that

E (exp(—gLc)) < oo

and a bona fide probability distribution for planar self-repelling Brownian paths 
exists if g > 0 is sufficiently small. By a further scaling argument this existence 
result can be extended to all g > 0.

Varadhan’s famous proof is based on a clever use of the Chebyshev inequality, 
using the logarithmic divergence of the expectation and an estimate of the rate of 
convergence

IIl c < const.ea for all a < 1/2 .

Concerning this rate of convergence, in his words, “...this is the most difficult step 
of all and requires considerable estimation”. Hence an alternate proof may be of 
interest.

Using the tools of White Noise Analysis, in the particular multiple Wiener inte
gral or “chaos” decomposition of the self-intersection local time9 it is straightforward 
to show2

Theorem  2.1. Let T > 0 be given. Then

\\Lce(T) -  LC{T)||2 < Cea Va < 1.

Apart from a simplified proof one notes the doubling of the convergence rate a.

R em ark  2.1. While a generalisation of the Varadhan existence proof to fBm is 
now available,13 its extension to arbitrary coupling constants g remains an open 
challenge.

2.2. The F lory index

Contrary to the above, the scaling behavior of self-repelling paths is not (yet) 
accessible to strict mathematical arguments, with the exception of the unphysical 
one-dimensional case.14

The question, in physical terms, is about the “end-to-end-length” R of poly
mer, and how it grows as one increases the number N of monomers in the chain. 
Mathematically, for a (fractional) Brownian path x = B H, one has

E (x(N) -  x(0)2) = N2v

with v equal to the “Hurst index” H which characterizes the fBm. The suppression 
of self-intersections, “excluded volume effect” in physics terminology, will make the 
paths swell and one expects v > H.
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Flory’s famous formula10

d + 2
for spatial dimensions d — 1,2,3 was based on a flawed mean field argument12 but 
is remarkably accurate.17 Recently it was extended to the fractional case,1 with

2Я + 2
‘,H = ~ d W

Computer simulations appear to support this formula at least for d — 1. In Refs. 5 

and6 the original self-avoiding Brownian model has been extended to the case where 
fc-fold intersections are tolerated, and only higher order ones penalized. Informally 
this would correspond to the use of higher order self-intersection local times

fN pN ь 
L̂ k\N) = / dt dks IT  (5 (x(t) — x(si)).

Jo Jo l=1

For a rigorous mathematical discussion of such higher order intersection local times 
and the necessary renormalizations to make them well-defined see e.g.7.

Putting aside the problems of a rigorous definition, one can invoke, simple, 
dimensional arguments would lead to

rj\ + к + 1
UH'k{d) = kd + 2 (2) 

which now covers all values of the dimension d. the Hurst index H, and the tolerance 
level k, up to the limiting dimensions where there are no more self-intersections, see 
formula (3) below.

The singularity of higher order self-intersection local times and the non- 
Markovian nature of fBm complicate the mathematical analysis of scaling even 
beyond the classical Brownian case. In this light it is remarkable that for

H d = ^ ± l
к

the formula (2) produces

vH,k{d) = H (3)

i.e. there is no swelling from the suppression of self-intersections. This coincides 
in fact with a rigorous mathematical result: Talagrand18 proves that indeed with 
probability 1 fBm has no (k + l)-tuple points whenever

H d > k- ± 1 .к
On the other hand one notes that for d = 1 the formula (2) would predict increased 
swelling for к > 1; also in the Bm case one expects Wilson type renormalization to 
induce a к = 1 term in the renormalized interaction,16 hence the usual Flory scaling 
also for k-tolerant models.
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2.3. Computational results
In view of the difficulties confronting a mathematical investigation computer simu
lations suggest themselves.

Results in this direction are based on a discretized version of the k-tolerant 
model, with monomer positions

Xk = В н (к), к = 0 ,1 ,2 ,..., TV — 1.

As for the self-intersection local time l J k\ one notes that, informally, we can express 
it in terms of the local time L(N,u), given informally by

r N
L(N, u) — f  dtS (x(t) — u ) . 

Jo

Indeed one has

rN r N
L,(k\N) = f  dt f  dks TT S (x(t) — x(si)) 

J  0 JO i_j

- i: h i
N (  r N \ k+1

dt6 (x(t) — u)

= [  duLk+1(N,u)
Jo

and the latter is straightforward to discretize. Monte Carlo computations with 
importance sampling15 are then based on a conformation energy

Fig. l.
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E(x) = E0(x) +gEi(x)

where Eq is obtained by inverting the fBm covariance matrix, and the excluded 
volume energy is given by a discretized version of L ^ .

Preliminary results for d = 1, к = 1, and 0 < H < 1/2 give encouraging results, 
see Fig. 1. The straight line corresponds to formula (2) for к = 1; extensive precision 
calculations are under way3.
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The scaling expression for fractional Brownian modeled linear polymer chains was 
obtained both theoretically and numerically. Through the probability distribution of 
fractional Brownian paths, the scaling was found out to be ( R2) ~ N2H , where R is the 
end-to-end distance of the polymer chain, N is the number of monomer units and H is 
the Hurst parameter. Numerical data was generated through the use of Monte Carlo sim
ulation implementing the Metropolis algorithm. Results show good agreement between 
numerical and theoretical scaling constants after some parameter optimization. The prob
ability distribution confirmed the Gaussian nature of fractional Brownian motion and 
the behavior is not affected by varying values of the Hurst parameter and of the number 
of monomer units.

Keywords: Polymer; fracional Brownian; Monte Carlo; scaling.

1. Introduction
Many polymer models have been established in order to describe polymer systems 
accurately. One of the most commonly used is the Brownian model or the freely- 
jointed chain model where the polymer chain is seen as a series of statistically 
independent and identical segments connected to each other, forming a linear chain1. 
This type of polymer chain can be described as a simple random walk. For more 
realistic chains, the excluded volume effect may be added to the system in order 
to avoid self-crossings as seen in models such as the Edwards and the Domb-Joyce 
models2,3.

To describe linear polymer chains, the end-to-end vector, R, is used and the 
scaling expression for the system is established in order to relate the end-to-end 
vector, R, to the number of monomer units in polymer chain, N4. This expression

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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takes the form R ~ NVH, where w# is the scaling constant. For the Brownian case in 
real polymer chains, the Flory index, given by vh = jjr j where d is the dimension, 
is the established scaling constant5. However, the Brownian model is fit only for 
good solvents and is not appropriate for poor solvents and long-range repulsion 
solvents4.

The fractional Brownian motion has been suggested for polymer models as it 
is a more general entity in which Brownian motion is a special case. It has been 
recently studied by Bornales et al. but the model includes the excluded volume 
effect which is fit for real chains6. Results from the study showed that the scaling 
constant is dependent on a variable parameter called the Hurst parameter, H , which 
means that different scaling expressions can be derived from the general expression 
itself, thereby possibly catering to different polymer configurations and eventually 
to different solvent types.

In this paper, the scaling expression for purely fractional Brownian modeled lin
ear polymer chains is obtained by two methods - first, by solving it analytically from 
the probability distribution of fractional Brownian paths; second, by implementing 
numerical methods using Metropolis algorithm Monte Carlo simulation.

2. The Scaling Expression for Fractional Brownian motion

2.1. Properties o f fractional Brownian motion

As suggested in studies such as those of Bornales et al., fractional Brownian motion 
is a more generalized approach than the pure Brownian motion by providing a 
general correlation expression between Brownian paths controlled by the variable H, 
called the Hurst parameter. Also, as shown in the study by Sarkar, the expectation 
value for the square of the distance between two fBm paths depends on the Hurst 
parameter. This means that for different values of the Hurst parameter, different 
values of R2 arise, making the variable H a parameter that may describe polymer 
solvent type.

Fractional Brownian motion has three major properties:
It is a continuous Gaussian chain. Therefore, its probability distribution is sim

ilar to the form1,

P(N ,x) =
1

\ / 2 7 r  (x 2 )
exp I —

2 <x2) (1)

Fractional Brownian paths have stationary increments7,

B “ -  B » f )  = E [(B« -  B « f
,2  H (2)

From the expression given in Equation (2), the correlation between fBm paths6

(B » B ? ) 2} = i  (:\t2H+ s 2H (3)
where H is called the Hurst parameter which has values, 0 < H <1.
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It is self similar. Consider B[' as a Brownian path, then self-similarity8 is defined
by

for t > 0 and a > 0, where bj1 is a random variable of the same probability distri
bution as Bf?t .

All of these properties make fractional Brownian motion a more general model 
since it is able to cater to chains that have monomer interactions within them. The 
Brownian case is obtained when H = where the value for the correlation between 
Brownian paths is zero.

2.2. Derivation fo r  the scaling expression

The expectation value of the square of the end-to-end distance of a linear polymer 
chain in fractional Brownian model is given in terms of the probability distribution 
and the expression is given as6

(R2) = Z  x2exp ( - p ^ dXj (5)

where ж is a Brownian path and /3 and Z are constants and Ho carries the correlation 
between monomer positions defined by the equation E [(B[f ■ B r/ )2] = ff0- It is 
possible to make use of changing the variables to eliminate the constant /3 from the 
exponential term. Letting x = , then x2 — (3~1a2. Now, applying this change, 
the expression for (R2) becomes

r N
(R2) = Z a 

Jo
exp -0

[p  2 a, H0P 2
da. (6)

Simplifying the inner product expression, we may express Equation (6) as
f N

(R2) = Z / a2exp 
Jo

H0a2 da. (7)

Note that,

[ 2 c \ 2/ a exp
2

dx. (8)

Implementing Equation (8) to the expression given in Equation (7), (R2) becomes

(R2) ~ ZE [x2] = ZE (B%Y (9)

Since fBm is self-similar, then B^  = NHbH. Applying this to Equation (9) gives

(.R2) ~ Z N 2HE [(ьн у (10)
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From Equation (10), the scaling expression for fractional Brownian Motion is derived

(.R2) ~ N 2H. (1 1 )

This result is similar to that shown in the study by Sarkar where the expectation 
value for R2 is given by a general formula8

v21  , 2  HE ( B f - B f )  = c (H )\ t-s ( 12)

3. S im ulation  M ethods

This study makes use of the Metropolis Monte Carlo simulation methods to produce 
numerical results. In order to attain the closest approximation to the average end- 
to-end distance of the polymer chain, the simulation method makes use of random 
generation of polymer configurations. A polymer configuration of known energy is 
generated first, then it is updated through randomly changing the position of one 
monomer unit. Doing this causes a new polymer configuration, as shown in the 
Figure 1, and thus corresponding to a new energy value.

Since it is assumed that the expectation value R2 is in equilibrium condition, 
it is also necessary to reach the lowest possible energy for the polymer configura
tion. To achieve this, the simulation method implements a filtering condition where 
the new energy value should be less than the previous energy or should be less 
than the random number from 0 to 1 in order to be accepted as the new polymer 
configuration. This process is iterated multiple times in order to make the closest 
approximation and reach the most stable energy. Simulation results give values for 
l n ^ i ?2} 5 j  with the corresponding ln(jV) values. The scaling expression is obtained 
as follows

In ( (Д 2) * )  ~ vHln (N) 

(R2)* «  NVH 

(R2) «  N2vh.

Fig. 1. Changing one monomer unit in a  linear chain.
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Simulation codes were written by Dr. Wolfgang Bock of University of Kaiser
slautern, Germany and Dr. Samuel Eleuterio of Unibersidade Tecnica de Lisboa, 
Portugal, along with their team in Germany, headed by Dr. Ludwig Streit, who are 
in collaborative work with the Physics Department, College of Science and Math
ematics, Mindanao State University Iligan Institute of Technology, Iligan City, 
Philippines. The simulations were processed using С programming language.

4. R esu lts  and Discussion

Numerical data were obtained for Hurst parameter values of 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and 0.9. The number of monomer units was also varied from a range 
of 200 to 850 monomers with increments of 50. The results were plotted in a In(N) 
vs ln^(i?2) 2  ̂ where the slope was taken in order to find the scaling constant as 
shown in Figures 2, 3, 4 and 5.

From the plots illustrated, it can be inferred that as the value of H increases, 
the slope also increases but remains the same for H > Note that from the 
properties of fBm, for H < the fBm paths are negatively correlated and thus 
would correspond to an anti-persistent chain8. To better understand the results

H=0.1-0.5 for N=200-450

-----* ----- --  [m «0  +436808 J

Г  TO  M00670~[

| m-0.2»334J |

| m "0.1205783~~]

5.4 5.6 5.8 6 U
■n(N)

Fig. 2. Plots for //-values of 0.1, 0.2, 0.3, 0.4, and 0.5, for N = 200-450 with slopes.

Fig. 3. Plots for Я -values of 0.6, 0.7, 0.8, and 0.9, for N = 200-450 with slopes.
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H=0.1-0.5 for N=500-850

Fig. 4. Plots for H-values of 0.1, 0.2, 0.3, 0.4, and 0.5, for N = 500-850 with slopes.

Fig. 5. Plots for // -values of 0.6, 0.7, 0.8, and 0.9, for N = 500—850 with slopes.

Table 1. Tabulated values for the simulated 
and the theoretical scaling constants for vary
ing H, r  = 1, N = 200-850.

(tf) Slope Obtained

N =  200-450 N = 500-850

0.1 0.1205783 0.11700828
0.2 0.2262343 0.21894096
0.3 0.340067 0.33257905
0.4 0.4436808 0.44101619
0.5 0.499711 0.50125228
0.6 0.51088970 0.50792676
0.7 0.50875442 0.50840673
0.8 0.50321720 0.49895897
0.9 0.50334768 0.50119497

obtained, the slope values are tabulated along with the corresponding H-value and 
the theoretical prediction. Note that the theoretical expression is given as ( R2) ~ 
N2 ,!, then the expected scaling constant is vh = H.
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Results show that the polymer configurations change with the various values 
of H for H < 0.5 and they follow the expected shrinking of the polymer chain, 
although exact values of the scaling constant give a slightly bigger deviation from 
the theoretical expectations. For the case of H > 0.5, the scaling constants remain 
to be the same as that of H = 0.5, which may be errors in the simulation process. 
The errors from the simulation results are yet to be investigated by varying some 
simulation parameters.
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1. Introduction

In this paper, we show that from the results obtained earlier [1-3] for myoglobin 
and ferritin using the white noise functional approach in modeling the alpha-helical 
secondary structure of the protein, other a-helical proteins can also be simulated 
using Brownian paths. In particular, the Fokker-Plank equation is solved to obtain 
the probability density function from which winding probabilities W(n, L) are cal
culated. The various helical protein conformations are then viewed as arrays of 
diffusion paths modulated by a drift coefficient involving Bessel functions of general 
order /(s) = ,/2P+i (vs), in particular the case for p = 3. We then apply this to 
investigate the diffusion of proteins consisting mainly of a-helical conformations.

Development of reliable methods of predicting diffusion coefficients for proteins 
and other macromolecules is of interest since diffusion is involved in a number of 
biochemical processes such as protein aggregation, transport in intercellular media 
and the protein folding process [4]. Hence, how proteins diffuse inside the cell has 
been the subject of recent experimental and theoretical studies. Simple scaling and 
distribution relationships have been derived from recent databases to describe some 
of the physical properties of proteins in cellular proteomes [5]. The results show 
that many properties of proteins, including their sizes, stabilities, folding rates and 
diffusion coefficients depend simply on the chain length N. For instance, molec
ular dynamics simulations have been done to predict diffusion coefficients of four 
proteins: Cytochrome с (1HRC), lysozyme (1BWI), a-chymotrypsinogen-A (1EX3), 
and ovalbumin (10VA) in aqueous solution. J . Wang and T. Hou [5] have also 
compared molecular diffusion coefficients with experimental values.

2. Modeling of the Polymer

In investigating helical structures of proteins, we use the circular cylindrical coor
dinates, r = (p ,6,z ), and take a winding polymer oriented along the г -axis. The 
polymer conformation can be viewed as random walk consisting of N steps which 
starts at point ro and ends at some point r i .  We can simplify the study of the 
winding behavior of a biopolymer by projecting the paths on the p-6 plane and 
consider a polymer chain which lies on the plane with endpoints at po = {po, $o) and 
Pi = (pi,#i). However, for a typical a-helical conformation, the radius of a helix 
is known and, hence, we can fix the radial variable at p — R. From this scenario, 
a polymer which winds around the г -axis projects a circular structure on the p-0 
plane. The probability density function can then be written as [3],

(1)

Here, L = N1 is the length of the polymer with I the length of each monomer, D is 
the diffusion constant and /(s) the drift coefficient.

To reflect the varying interactions of the different amino acids in an aqueous 
environment, the value of the drift coefficient f(s), with 0< s < L, can also vary

1560018-2



On the diffusion of alpha-helical proteins in solvents

at each length segment along the chainlike molecule. Corresponding to the path, в 
can be parameterized as:

0(a) = в0 + (Vl/R)B(s) (2)

where 9o is an initial value and В the Brownian fluctuation. Eq. (2) deals with 
paths confined to a circular topology. The paths can be classified topologically and 
characterized by winding numbers [6-1 1 ] n = 0 , ± 1 ,± 2 , . . .  where, n > 0 signifies 
n turns counterclockwise around the origin; n < 0 means |n| turns clockwise, and 
n — 0 signifies no winding. With Eq. (2), an evaluation of Eq. (1) using white noise 
calculus yields the result [3],

+oo

P{0u e 0)=  £  Pn, (3)

where,

R2
F" = ' ' r i i exp 2 DR [ ' / i s ) 

Jo
ds (4)

Equation (4) is the probability function for an n-times winding of a path around 
the z-axis. The probability that a helical conformation has a polypeptide winding 
n-times about the z-axis is given by, W(n, L) — Pn/P. For an arbitrary initial point, 
we let во — вi , and we obtain [3],

-exp
W(n, L)

f t  ( 27ГП + Ш  foL f ( s) ds)

& 3 ( 4d r ) /0  f  ( s ) ds
(5)

where 8 3  (u) is the theta function [12]. We note that Eq. (5) is an exact result 
obtained by evaluating Eq. (1). The interaction of each amino acid with the aque
ous environment as well as with other monomers would be reflected in the drift 
coefficient f(s), as s ranges from 0 to L along the length of a biopolymer. The f(s) 
in turn serves as a modulating function affecting the winding probability W(n, L) 
that describes a specific winding conformation. The particular drift coefficient used 
in this study is described in the next section.

3. B esselian  Drift Coefficient of Order 2p + 1

The drift coefficient, /(s) = k J2P+i (vs), where J 2P+i (vs) is a Bessel function, can
be integrated over ds,

eh
f  f  (s) ds = (k/v) 

Jo
1 -  Jo (vL) - 2  У  J 2m (vL)

771=1
(6 )
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with p > 1 [12]. Eq. (6) is then used in Eq. (5) to get the winding probability,
- l

W (n, L) = R\ ^  exp x 
V JjI 03

kl
ADRv 1 -  Jo {vL) -  2 ^  J 2m (VL)

m=l
• (7)

For long polymers L = N1 »  1, вз(и) к  1, and the probability for a helical 
conformation with a winding number n becomes:

&
LI

W (n, L) и  R J %  exp 
V Ы

2ттп + kl
2 DRv

x 1 -  Jo (vL) -  2 ^  J 2m (vL)
771=1

(8)

4. A pp lication

We take the case p = 3 of the drift coefficient f(s) = kJ2P+\(ys) = kJ-j(us) [1] and 
Eq. (6) reduces to:

J  f(s)ds -  {k/v){ 1 -  Jo{vL) -  2 [J2(jaL) + J 4(i/L) + J 6(uL)]}. (9)

The winding probability W(n, L) is the same as Eq. (8), but with only m = 1,
2, 3 contributing to the summation term in the exponential. We use the general 
properties of proteins, R = 0.25 nm, Z = 0.15 nm, and 3.6 residues per helical turn for 
different alpha helical proteins. The graphs of W (n, L) versus length L are simulated 
in order to find the values oik/D  and v that will mimic their experimentally verified 
features.

For example, myoglobin (4MBN) has only one chain with total length of 
153 residues, with alpha helical segments about 80% of its length or about 123 
residues, and with 11 helices based on PDB. Therefore this protein has about 123 
residues divided by 3.6 residues/turns or about 34 helical turns and a length of 
L = 0.15(153) nm «  23 nm. Plotting the winding probability W (—n, L) versus 
length L using the above data, the values of v = 1.93/nm and k/D = 1420/nm were 
found giving 11 peaks (Figure 1). The peaks apparently correspond to 11 helices of 
Myoglobin (4MBN), and the negative n signifies that this protein is right-handed.

The method above was used for other alpha-helical proteins presented in Table 1, 
with the values of k/D and у for each alpha-helical protein giving a good one-to- 
one correspondence between the number of peaks in the graph of W (—n, L) versus 
length L and the number of helical segments based on data from PDB for each of 
the proteins.

One can observe in Table 1 that longer proteins have larger k/D values and 
shorter proteins have smaller values of k/D in aqueous solvent. These results agree 
with experimental observations [14]. In general, larger proteins diffuse slower and 
smaller ones diffuse faster in aqueous solvents. The results also agree with theoret
ical results based on the Stokes-Einstein theory [4]. The model therefore, has the
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Fig. 1. 4MBN: Graph of W (—n , L) versus length for и = 1.93/nm and k/D = 1420/nm.

Table 1. Properties of alpha helical proteins with the simulated values of k/D and v.

P ro te in
(PB D
code)

L en gth  
(#  of 

R es id u es)

% a lp h a  
(#  of 

R es id u es)

#  of 
h e lices

#  of 
tu rn s

и ( 1 /nm ) k/D
( 1 /nm )

2K 9J 42 57% (24) 1 7 1.30 490
3IA3-A+ 91 71% (65) 3 18 1.30 490
2 JU W 80 76% (61) 4 17 1.76 640
2115 135 59% (80) 5 23 1.29 680
2HM Z 113 69% (79) 6 22 1.65 758
3IA3-D++ 145 64% (93) 9 26 1.68 800
2M H B 141 73% (104) 9 29 1.79 1120
4M B N 153 80% (123) 11 34 1.93 1420
2 09 D 234 71% (167) 12 47 1.36 1290
4E4V 485 63% (310) 31 86 1.48 2690
2YN S 490 64% (314) 33 87 1.53 2759
4B A 3 496 64% (319) 34 89 1.55 2839

Note: +3IA3 chain A, ++3IA3 chain D, and the rest of the above proteins are chain A 
if there are more than one chain.

potential for describing the general properties of a protein in aqueous solvent. The 
discouraging feature of this model, however, is that to obtain the values of k/D 
and v for the number of peaks to correspond to the helices for each protein being 
investigated, one had to resort to trial and error scheme. In the graph of W (—n, L) 
versus length, the desired number of peaks can only be obtained after adjusting 
several times the two parameters, v and k/D. Therefore, an empirical formula has 
been developed to avoid this difficulty.

4.1. Construction of an Empirical Formula

In developing the empirical formula, the linear dependence of the values of k/D of 
the proteins presented in Table 1 to the number of helices was taken into account.
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Fig. 2. Plot of k/D versus number of helices.

Table 2. Simulated values compared with predicted values of и and k/D.

P rotein  Length %  alpha Sim ulated Predicted
(PBD code) (#  o f (#  o f i/(l/nm) fe/D(l/nm) i/(l/nm) fe/D(l/nm) 

Residues) Residues)

2K 9J 42 57% (24) 1.30 490 1.49 395.67
3IA3-A+ 91 71% (65) 1.30 490 1.415 612.92
2 JU W 80 76% (61) 1.76 640 1.83 724.06
2115 135 59% (80) 1.29 680 1.29 682.80
2HMZ 113 69% (79) 1.65 758 1.67 832.47
3IA3-D++ 145 64% (93) 1.68 800 1.78 1012.46
2MHB 141 73% (104) 1.79 1120 1.78 1104.50
4M BN 153 80% (123) 1.93 1420 1.91 1346.46
209 D 234 71% (167) 1.36 1290 1.36 1319.61
4E 4V 485 63% (310) 1.48 2690 1.47 2599.31
2YN S 490 64% (314) 1.53 2759 1.55 2772.50
4B A 3 496 64% (319) 1.55 2839 1.56 2845.84

Note: +3IA3 chain A, ++3IA3 chain D, and the rest of the above proteins are chain A if 
there are more than one chain.

The diffusion coefficient (k/D) is then plotted versus the number of helices (Fig
ure 2) which then gave the best fit linear equation:

у = 74.076x + 356 (R2 = 0.9843) (10)

where у is the diffusion coefficient (k/D) and x is the number of helices.
From Figure 2 and from the data in Table 1, proteins with about 65% alpha- 

helical segments fit closely with the plot of Eq. (10) for the diffusion coefficient of 
alpha-helical protein in aqueous solvents. The empirical formula,

k/D та у + (%alpha -  65)?/
= 74.076a: + 356 + (%alpha -  65)(74.076x + 356), (11)

seems handy in predicting the diffusion coefficient. The simulated values and the 
predicted values for the diffusion coefficient k/D of proteins are given in Table 2.

5. Conclusion

In modeling a-helical proteins via the winding probability, Eq. (5), it was shown 
that an empirical formula Eq. (10) facilitates the determination of v and k/D. Using
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Eq. (5) and the simulation method, it was also shown that as the length of the 
biopolymer increases, the values of the diffusion coefficient D decreases which agrees 
with experimental data.
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