ANALYSIS FOR DIFFUSION
PROCESSES ON RIEMANNIAN
MANIFOLDS



ADVANCED SERIES ON STATISTICAL SCIENCE &
APPLIED PROBABILITY

Editor: Ole E. Barndorff-Nielsen

Published

Vol. 6 Elementary Stochastic Calculus — With Finance in View

Vol. 7

Vol. 8

Vol. 9

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

10

n

12

13

14

16

17

by T. Mikosch

Stochastic Methods in Hydrology: Rain, Landforms and Floods
eds. O. E. Barndorff-Nielsen et al.

Statistical Experiments and Decisions: Asymptotic Theory
by A. N. Shiryaev and V. G. Spokoiny

Non-Gaussian Merton-Black-Scholes Theory
by S. 1 Boyarchenko and S. Z. Levendorskii

Limit Theorems for Associated Random Fields and Related Systems
by A. Bulinski and A. Shashkin

Stochastic Modeling of Electricity and Related Markets
by F. E. Benth, J. Saltyte Benth and S. Koekebakker

An Elementary Introduction to Stochastic Interest Rate Modeling
by N. Privault

Change of Time and Change of Measure
by O. E. Barndorff-Nielsen and A. Shiryaev

Ruin Probabilities (2nd Edition)
by S. Asmussen and H. Albrecher

Hedging Derivatives
by T. Rheinlander and J. Sexton

An Elementary Introduction to Stochastic Interest Rate Modeling
(2nd Edition)
by N. Privault

Modeling and Pricing in Financial Markets for Weather Derivatives
by F. E. Benth and J. Saltyte Benth

Analysis for Diffusion Processes on Riemannian Manifolds
by Feng-Yu Wang

*To view the complete list of the published volumes in the series, please visit:
http:/Amvwv.worldscientific.convseries/asssap


http://www.worldscientific.com/series/asssap

Advanced Series on
Statistical Science &

Applied Probability Vol. 18

ANALYSIS FOR DIFFUSION
PROCESSES ON RIEMANNIAN
MANIFOLDS

Feng-Yu Wang

Beijing Normal University, China & Swansea University, UK

\\e world scientific

NEW JERSEY < LONDON e SINGAPORE e BENING < SHANGHAI < HONG KONG e TAIPEI = CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Advanced Series on Statistical Science and Applied Probability — Vol. 18
ANALYSIS FOR DIFFUSION PROCESSES ON RIEMANNIAN MANIFOLDS

Copyright © 2014 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in anyform or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 978-981-4452-64-9

Printed in Singapore by World Scientific Printers.



Preface

As a cross research field of probability theory and Riemannian geometry,
stochastic analysis on Riemannian manifolds devotes to providing proba-
bilistic solutions of problems arising from differential geometry and develop-
ing a complete theory of diffusion processes on Riemannian manifolds. Since
1980s, many important contributions have been made in this field, which
include, as two typical examples, probabilistic proofs of the Hormander
theorem and the Atiyah-Singer index theorem made by P. Malliavin and J.
M. Bismut respectively. We would also like to mention three powerful tools
developed in the literature: Malliavian calculus, Bakry-Emery’s semigroup
argument, and coupling method, which have led to numerous results for
diffusion processes and applications to geometry analysis. For instance, as
included in the present book, about twenty equivalent semigroup inequali-
ties have been found for the curvature lower bound condition by using these
tools, and these semigroup inequalities are crucial in the study of various
different topics in the field.

Based on recent progresses made in the last decade, this book aims to
present a self-contained theory concerning (reflecting) diffusion processes on
Riemannian manifolds with or without boundary, and thus complements
some earlier published books in the literature: [Bismut (1984)], [Emery
(1989)], [Elworthy (1982)], [Hsu (2002a)], [lkeda and Watanabe (1989)],
[Malliavin (1997)], and [Stroock (2000)]. The author did not intend to
include in the book all recent contributions in the field, materials of the
book are selected systematically but mainly according to his own research
interests.

The book consists of five chapters. The first chapter contains neces-
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sary preparations for the study, which include a collection of fundamental
results from Riemannian manifold, coupling method and applications, and
a brief theory of functional inequalities. The second chapter is devoted to
the theory of diffusion processes on Riemannian manifolds without bound-
ary, where various equivalent semigroup properties are presented for the
curvature lower bound of the underlying diffusion operator. These equiv-
alent properties have been applied to the study of functional inequalities,
Harnack inequalities and applications, and transportation-cost inequalities.
The third chapter aims to build up a corresponding theory for the reflect-
ing diffusion processes on Riemannian manifold with boundary, for which
equivalent semigroup properties are presented for both the curvature lower
bound and the lower bound of the second fundamental form of the bound-
ary. As applications, functional/Harnack/transportation-cost inequalities
as well as the Robin semigroup are closely investigated. In Chapter 4 we
investigate the stochastic analysis on the path space of the reflecting diffu-
sion process on a Riemannian manifold with boundary. The main content
includes the quasi-invariant flow induced by stochastic differential equa-
tions with reflection, integration by parts formula for the damped gradient
operator, and the log-Sobolev/transpotation-cost inequalities. Finally, in
Chapter 5, functional inequalities and regularity estimates for sub-elliptic
diffusion processes are studied by using Malliavin calculus as well as argu-
ments introduced in the previous chapters.

Most of the book is organized from the author’s recent publications
concerning diffusion processes on manifolds, including joint papers with
colleagues who are gratefully acknowledged for their fruitful collaborations.
I would like to thank Lijuan Cheng, Xiliang Fan, Huaigian Lee, Jian Wang,
Shaogin Zhang and Ms. Lai Fun Kwong for reading earlier drafts of the
book and corrections. A main part of Chapter 3 has been presented for
a mini course in the Chinese Academy of Science. | would like to thank
Xiang-Dong Li for the kind invitation and all audience who attended the
mini course. | would also like to thank my colleagues from the probability
groups of Beijing Normal University and Swansea University, in particular
Mu-Fa Chen, Wenming Hong, Niels Jacob, Zenghu Li, Eugene Lytvynov,
Yonghua Mao, Aubrey Truman, Jiang-Lun Wu, Chenggui Yuan and Yuhui
Zhang. Their kind help and constant encouragement have provided an ex-
cellent working environment for me. Finally, financial support from the
National Natural Science Foundation of China, Specialized Research Foun-
dation for Doctorial Programs, the Fundamental Research Funds for the
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Central Universities, and the Laboratory of Mathematics and Complex Sys-
tems, are gratefully acknowledged.

Feng-Yu Wang
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Chapter 1

Preliminaries

In this chapter we collect necessary preliminaries used in the book. 81.1
and §1.2 consist of some fundamental contents from Riemannian geometry
(see e.g. [Chavel (1984)] and [Cheeger and Ebin (1975)]); 81.3 is a brief
account for coupling arguments and applications organized from [Cranston
and Greven (1995)], [Lindvall and Rogers (1986)], [Lindvall (1992)], [Wang
(2010b)], [Wang (2012a)] and [Wang (2012d)]; 81.4 and 815 are mainly
selected from [Wang (2012d); Wang and Yuan (2011)] for Harnack in-
equalities, derivative formulae and their applications; and 81.6 introduces
some general results on functional inequalities and applications (see [Wang
(2005a)]).

1.1 Riemannian manifold

1.1.1 Differentiable manifold

Let M be a Hausdorff topological space with a countable basis of open sets.
For each openset O c M, if :0O — s one-to-one and <p(0) is open,
then (O, ) is called a coordinate neighborhood on M. A d-dimensional dif-
ferential structure on M is a family U := {(Oa,ipa)} of coordinate neigh-
borhoods such that

() UaOa DM,

(i) Forany a, /3 ipao 1: <QB3(Opf) Oa)*<pa(Oaf| O0) is COOsmooth,
i.e. (Oa,ipa) and (Op,<pp) are C°°-compatible,

(iii) If a coordinate neighborhood (0,ip) is Coc-compatible with each
(Oa,ga) in U, then (O, P e U.
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If M is equipped with a differential structure, then it is called a d-
dimensional differentiable manifold, and each (O,<) E U is called a local
(coordinate) chart.

For any p E Z+, the set of all non-negative integers, and an open set
Dc a function h : D —=R is called 0 p-smooth and denoted by h E
CP(D):if it is continuous when p = 0 and has continuous derivatives up to
order p whenp > 1 A function / : M— s called 0 p-smooth and denoted
by / E CP(M), if for any (0, i")eW there holds / o< 1 £ 0p(<p(0)). Let
CP(M) denote the set of all 0 p-smooth functions on M, and Cf(M) the set
of such functions with compact supports. When p = 0 we denote C(M) =
CP{M) and Cf(M) = CO(M). Moreover, let C°°(M) = Mp>! CP{M) and
Co (M) = Mp>1 Finally, given x £ M, let Cp(x) be the set of Cp-
smooth functions defined in a neighborhood of x. When p = 0 we denote
C(x) = Cp{x) and Cqg(x) = Cqg(x). Moreover, let C°°(x) =
and Cfi°(x) = Mpem”~o”™)-

Definition 1.1.1. Let M be a differentiable manifold. The tangent space
TXM at a point x E M is the set of all mappings X : C°°(a;)->M satisfying:

() X(af +c29) = c\Xf +c2Xg, [/, g6 C°{x), cb c2GRd,
(i) X{fg) = (Xf)g(x) +f(x)Xg, f,ge C°°{x).

Obviously, TXM is a vector space by the convention
X+Y)f=Xf+Y/, (cX)f :=c(Xf), CcER,/ e C°(x).

Let x E O with (0, ip) E U. then for any vector Z at <p(x) on Mh one may
define tp*Z E TXM by

(ip*2)f:=z2(fo"-1), [/ GC°°(x).

Let (u\,...,Ud) be the Euclidean coordinate on <p(0), and let =
1<i<d. Forany X ETXM one has X = p*ip*X, where <p*Xis a

vector at <p(X) satisfying

(<p*X)g := X(go<p), g E C**{ip(x)).
Then
t=1 i— dm  dxi'
Therefore, is a basis of TXM .
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Now, let TM := {JxeMTxM, which is called the vector bundle on M.
A vector field on M is a mapping

XXGTXM, XGM

Let (TM) be the set of all vector fields on M. A vector field X is called
(7p-smooth if in any local chart there exist Cp-smooth functions fi,. mmfd
such that

Let TP[TM) denote the set of all Cp-smooth vector fields.

Definition 1.1.2. Let M be a differentiable manifold. A mapping V :
TM x TI{TM) —TM s called a connection on M, if it is bilinear and
VH\Y = V(A, Y) has the following properties: for any x G M,

() IfAGTXM and Y G F{TM), then VXY G TXM;
(i) Forany / € CI(M), Vx(fY) = (Xf)Yx+ f(X)XxY, X € TXM, Y G
F1(TM).

1.1.2 Riemannian manifold

Definition 1.1.3. Let M be a differentiable manifold. For each x € M,
let gx be an inner product on the vector space TXM. If for any local chart

and any X, Y € T°°(TM), gx(Xx,Yx) is C°°-smooth in x, then g
is called a Riemannian metric on M. A differentiable manifold equipped
with a Riemannian metric is called a Riemannian manifold.

In the sequel, we also denote g = (e,*). It is clear that under a local
chart (0,<p) a Riemannian metric has the representation

so that gij G C°°(M) and (gij(x)) is strictly positive definite at each x £ O.
Moreover, the Riemannian metric determines a unique measure such that
for any local chart (0,<p),

vol(A) = / \/detgoip*1(n)du, A CU.
K{A)

We call this measure the volume measure of M and simply denote it by da;.
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Theorem 1.1.1 (Levi-Civita). If M is a Riemannian manifold, then
there exists a unique connection V (called Levi-Civita connection) satis-

fying

X(Y, 2) ={VXY,2) + (Y,VXZ), V*y =Vyl+[XY]
for all X,Y,Z £ YI(TM), where (,) denotes the inner product under the
Riemannian metric and [X, ¥] := XY —YX.

Throughout the book, we only use the Levi-Civita connection. It is
useful to note that [X, Y] is a vector field for any X,¥ £ TI(TM). A
mapping 7 : [a, /3— s called a Cp-curve on M if it is continuous and
for any local chart (0,ip), 07 :[a/3]M7-1(C)— is Cp-smooth. For a
C'l-curve 7, we may define the tangent vector along 7 by

7tf = (it, VI(Ttp = f 6C°°bl-

Definition 1.1.4. (1) Let 7 : [a, /3=>M be a C*-curve on M. A vector field

X is said to be constant (or parallel) along 7 if VAX = 0 for t £ [a,/7].
Given V £ TYaM, there exists a unique constant vector field X along 7
satisfying Xla = V. We call this vector field the parallel transportation of

V along 7. A C2-curve 7 is called geodesic if V-,7 = 0.

) Forany x £ M and any X £ TXM, X ¢ O, there exists a unique

geodesic 7 : [0,000—M such that 70 = x and 70 = X. We denote

7t expx(tX) and call expx : TXM-+M the exponential map at x. By
convention we set expx(0) = X.

For any x ¢y, one may define the Riemannian distance between x and
Y by

p(x,y) =infl J [7*ds : 7 : 0,1]-tM

is a Cl-curve such that 70 = x and 71 = j/|,

where |X| — (X, X)1/2 := g(X, X)¥2. Throughout the book we only
consider connected M, i.e. p(x,y) < oo for any x,y £ M. In this case
p(x, y) can be reached by a geodesic. On the other hand, however, geodesics
linking two points may not be unique. Thus, the one with length p(x,y) is
called the minimal geodesic. For any point 0 £ M, let pa= p(o, m.

In many cases, the minimal geodesic is still not unique. For instance, for
the unit sphere Sd, each half circle linking the highest and the lowest points
is a minimal geodesic. This fact leads to the following notion of cut-locus.
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Definition 1.1.5. Let x £ M. Forany X £ 8x:= {X £ TXM :|X| = 1},
let

r(X) :=sup{t > 0:p(x,expx(tX)) —t}.

If r(X) < oo then we call expx(r(X)X) a cut-point of x. The set

cut(x) := {expl (r(X)Jf) : X £ 8x, r(X) < oo}
is called the cut-locus of the point x. Moreover, the quantity

ix m=inf{r(X) : X £ 8x}
is called the injectivity radius of x. Finally, we call im m=infxgm C the
injectivity radius of M.
The following result summarizes some properties of the cut-locus.

Theorem 1.1.2. (1) cut(2) is closed and has volume zero.
(2) p(x, ¢ is C°°-smooth on M \ ({x} Ucut(x)).
(3) ix > 0for anyx £ M and the function i : M —(0, 00] is continuous.
(4) The set Dx :=expxJ(M \ cut(x)) is starlike in TXM and

expX : Dx—expx(Dx)
is a diffeomorphism. Consequently, ify ¢cut(x) then the minimal geodesic
linking x and y is unique.
We now introduce the curvature on M. For any X, Y, Z £ F'2(TM), let
TZ{X,Y)Z :=VyVXxZ —NVxXVyZ + V\x y]"i

where [X,¥] := XY —YX is the Lie bracket of X and Y. For any
XX, YX,Zx £ TXM, let X, Y, Z be their smooth extensions respectively.
Then the value of 1Z(X, Y)Z at point x is independent of the choices of ex-
tensions and hence, H is a well-defined tensor which is called the curvature
tensor of the connection V.

The curvature tensor satisfies the following identities:

71(X,Y)Z + 11(Y,X)Z =0,
U{X, Y)Z + 1{Z, X)Y +7r(Y, Z)X = 0,
TL{X,Y)Z,V) = (U(Z,V)X,Y) = -(TZ(X,Y)V,Z).

Definition 1.1.6. (1) For X, Y £ TXM, the quantity

(K(X,Y)X,Y)

SectXoY)  \avi2- {X,Y)2
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is called the sectional curvature of the plane spanned by X and Y. If X is
parallel to Y then we set Sect(A,Y) = 0.
(2) Let {Wt}f=1 be an orthonormal basis on TXM. The quantity
d
Ric(X,Y) =~ (LL X, Wt)Y, Wt)
i=l
is independent of the choice of {Wi} and Ric is called the Ricci curvature
tensor.
(3) Let 7 be a geodesic. A smooth vector field J is called a Jacobi field
along 7 if

VyVyl = -1r(7,J)7.
This equation is called the Jacobi equation.

Since the Jacobi equation is a second order ordinary equation, given
X,Y 6 T7oM, there exists a Jacobi field along 7 such that Jo = X,
V7tJtjt=0 = Y. Moreover, let 7 : [0, f]|—M be a geodesic, for any X 6 T7oM
and Y € TItM, there exists a Jacobi field J along 7 satisfying Jg= X and
Jt = Y. Concerning the uniqueness of Jacobi fields, we introduce the notion
of conjugate point.

Definition 1.1.7. Let x 6 M. y € M s called a conjugate point of x, if
there exists a nontrivial Jacobi field J along a minimal geodesic linking x
and y such that J vanishes at x and y.

Proposition 1.1.3. cut(:r) consists of conjugate points of x and points
having more than one minimal geodesics to x.

To make analysis on Riemannian manifolds, let us introduce some fun-
damental operators including the divergence, the gradient and the Laplace
operators.

Definition 1.1.8. Let X £ I''(TM), we define its divergence by
d

(divXfix) = (trVA)(x) = J2 (V WiX,Wi),
=1
where {Wi} is an orthonormal basis of TXM . It is easy to check that divA
is independent of the choice of {Wi}. For / € C1(M), define its gradient
V/€T(TM) by
(VI X) =Xf, x er(tm).

Finally, the Laplace operator is defined by [ = divV which acts well on
C2-functions.
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Next, we introduce calculus for differential forms. We call a function
on M a Gform, and for p 6 N, an alternating linear functional on 8€pTM
is called a p-form, where a map 9 : ®PTM —R is called alternating, if for
any X\,... ,XP£ TM and any permutation a of {1,...,p}, there holds

B(Xa{l),..., Xa*) sgn(<7)o(Xb ..., Xp).

We write sgn(c) = 1ifit is representable as even number of transposition
and sgn(cr) = -1 otherwise. It is clear that for p > d, there is only zero
p-form; and for any 1-form B there exists a dual vector field 0* such that

{6%,X) =6(X), XeTM.

A linear functional ® on gpTM s called a p-tensor. For a p-tensor &
and a (/-tensor @, we define their product (p + </)-tensor ®0 & by letting

@®P)Ne, ..., Xp,YL...,YQ) = ®(Xb ... XP)D(Yb...,Y q)

for Aj,..., Xp,Yi,...,Yq6 TM. To make a p-form from a p-tensor ®, we
introduce the alternating map /1 with

Nd{Xn ..., Xp) = 5(7ngn(°‘)$( ~(i),---, X (),

where a runs over all permutations of {1,... ,p}. Now, for a p-form B and
a (/-form B, their alternating product

9A6:=J19 ®B

isa (p+ g)-form.

A p-form 9 is called smooth, if for any smooth vector fields X\,..., Xp,
9(Xi,..., Xp) is a smooth function. Let flp(M) denote the class of all
smooth p-forms on M. The manifold is called orientable if there is a smooth
d-form which is non-zero at any point. For a O-form /, its exterior differ-
ential d/ is defined by df{X) = Xf = (V/,A) for A € TM. When
p € N, the exterior differential d is a linear map from ilp(M) to SIP+1(M)
for p 6 N such that for any smooth functions /o, 4 ,..., /p,

d{/od/i A... Adfp}=d/0Ad/i n... nd/p.

Since d is a local operator and on local charts a smooth p-form can be
represented as combinations of p-forms like fodxtl A ... A dxip for /o 6
C°°(M) and 1 < ii < ®2 < ... <1 < d, dis well-defined on flp(M).
Obviously, d2 := dd = 0.
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To introduce the codifferential, which is the formal adjoint of d, we first
define the covariant derivative. Let B £ flp(M) and X £ TXM. Then X x@
defined by

(VXx0)(*b ..., XP)= £»(XI(s),..., Xp(s))|s=0

is called the covariant derivative of B along X, where Xi(s) is the parallel
transportation of X along the geodesic sya expx{,sX]. Now, the codifferen-
tial is defined by

{d*e)(XIf...,XP) = - Xb ..., Xp),

i=1

for 8 £ Op(M),x £ M, XX,..., Xp £ TXM and n = {ul,... ,ud} an or-
thonormal basis of TXM. The operator

Op = -(dd* + d*d) : [TP(M) -> QP(M)

is called the (negative) Hodge-de Rham Laplacian on dp(M).

Finally, we introduce the orthonormal frame bundle and the horizontal
lift. For M being a connected complete Riemannian manifold of dimension
d, O(M) : =Ll m Ox(M) is called the orthonormal frame bundle over M,
where Ox(M) is the space of all orthonormal bases of TXM . Obviously,
Ox{M) is isometric to O(d), the d-dimensional orthogonal group - the
group of orthogonal (d x dj-matrices. Thus, for each x & M, Ox(M) is
a |d(d —I)-dimensional Riemannian manifold.

To see that 0{M) has a natural Riemannian structure, let p : O(M) —=
M with pu := x if u £ Ox(M), which is called the canonical projection
from 0{M) onto M. Let {(Oa,ipa)} be the differential structure of M, one
may define the local charts on 0(M) by letting Oa := [jx€0 Ox(M) and
a(u) = (ipa(pu),(il;a)*u), where (ipa)*u := ((ipa)*Xi,..., (ipa)*Xd) e
O(d) for u = (Xi,..., X() 6 Oa. Note that O(d) is equipped with the
Riemannian structure induced by the Euclidean metric on Md . Then the
family {(Oa,ipa)} together with the Riemannian structure of 0(d) and
the metric on M determines a unique Riemannian structure on 0(M).
Therefore, 0(M) is a \d(d + I)-dimensional Riemannian manifold.

Now, given e € Rd, let us define the corresponding horizontal vector
field He on O(M). For any u £ 0(M) we have ue £ TpuM. Let us be
the parallel transportation of n along the geodesic exppu(sue),s > 0. We
obtain a vector He(u) := “us|s=0 £ TuO(M). Thus, we have defined a
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vector field He on O(M) which is indeed C°°-smooth. In particular, let
{et}=l be an orthonormal basis on Rd, define

d

ao(m) =Y, Hlr.

i=1
It is easy to see that this operator is independent of the choice of the basis
{er}. We call Ao(m) horizontal Laplace operator. Moreover, for any
vector field Z on M, we define its horizontal lift by Hz{u) := Hu-iz(u),u £
O(M), where un1Z is the unique vector e S such that Zpu = ue.

1.1.3 Some formulae and comparison results

We first introduce the Bochner- Weitzenbock formula, which formulates the
Ricci curvature as the difference between the Hodge-de Rham Laplacian and
the horizontal Laplacian on fl1. For any p > 0, the horizontal Laplacian
Op :=trV2is defined on IP; that is, for any x £ M and 8 £ Op,

d

@Opo)(*) =" (V uiVuio)(x)

=i
for an orthonormal basis n = (u1,..., ud} around x with Viil(r) = 0,1 <
i <d; we call such n a normal frame at x. In particular, Ag= Do = A.
But when p £ N, Ap and Dp might be no longer equal, and their difference
gives rise to a curvature term.

Theorem 1.1.4 (Bochner-Weitzenbock formula). Ai = CL —Ric,
where for any 1-form B, Ric(0) is the 1-form defined by

Ric(0)(X) := Ric(X,B*), X £TM.
Consequently, for any smooth function f,

AAIV/I2- (VA V) = UHessH2' + Ric(V/, V1),

where Hessj(X,Y) :=(VxV/y) forX,Y £ TM and ||-||hs is the Hilbert-
Schmidt norm.

Now, we introduce some useful integral formulae for the above operators.
For given / £ Cf° (M), the set of functions in CP(M) with bounded deriva-
tives up to order p, by Sard’s theorem the set of critical values in /(M) has
Lebesgue measure zero. In other words, {/ = t} is a (d —I)-dimensional
submanifold of M for a.e. t £ f(M). Let A denote the volume measure on
a (d —I)-dimensional submanifold of M with the induced metric.
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Theorem 1.1.5 (Coarea formula). For any f G Cff'(M) and any h G
L1{dx),

[ /ilV/|dx= f af na
Jm J

—o0  J{7=£)
In particular, if dp := hdx is afi/ni&eDmeasure and let dpg := hdA then

Fd({f = t})dt.
@

Theorem 1.1.6 (Green formula or integration by parts formula).
(D If X 6 YI(TM) with compact support, then

/1 divX(a:)da; = O.

(2) Iff,ge(% (M), then
JL (fAg)(x)dx= Jf (gAf)(x)dx = - Jf (V/, Vg)(x)dx.
m m

3) Let X ¢TI (TM) and D ¢ M a smooth open domain, i.e. an open
domain with boundary a (d —1)-dimensional differential manifold. Then

[ (divX)()da; = - [ (X,N)dA,
JD JdD

where N is the inward pointing unit normal vector field on dD.
(4) For a smooth open domain D,

J[D(ng+(Vf,Vg))(x)dx == f f(Ng)dA, f cC”D),g G C*(D).
JdD
Finally, we introduce two variational formulae for the Riemannian dis-

tance. Let X G TXM and Y G TyM. We assume that y f ciit(.T) and let
7 : [0, p{x,y)]—M be the unique minimal geodesic from x to y.

Theorem 1.1.7 (First variational formula). We have

(X +Y)p(x,y):=Xp(-,y)(x) + Yp{x,-)(y)= JE (XisV,-ys)ds
for any smooth vector field V along 7 with Vg= X and Vp'x%¥y) =Y.
Theorem 1.1.8 (Second variational formula). Let X and Y be two
smooth vector fields with VX (r) = 0 and VY(y) =0. Let X and Y act on

x and y respectively. Then

rp(x,v)
(X +Y)20(x,y) :Jg (VA I — (777, 3)1i 3))sds,

where J is the unique Jacobi field along 7 with Jg X and Jp(xy) *



Preliminaries 1
In particular, the following Hessian comparison theorem and Laplacian
comparison theorem are consequences of the second variational formula.

Theorem 1.1.9 (Hessian comparison theorem). Assume thatfor any
unit vector field Y along 7 with (Y,7) = 0 one has Sect(7,Y) < k, where
Ke | is aconstant. If p(x,y) < TT//K\ then

Hessp M (Y,Y)(y) >j(p(x,y)){l- (Yp(x, -)(r))2},
where
r, if k=0,
sin(-Vkr)/VKk, if k>0, (1.1.1)
sinh(%/—kr)/ v —f¢ if K <O.

Theorem 1.1.10 (Laplacian comparison theorem). Let Lc(-y,7) >
k(d —1) hold for some k e M Then

Ap(x,-)(y) < ~--p --(p(x.y)).

/ISect(Y,7) < k for any unit vector field Y along 7 with (Y,7) = 0, then

Ap{x,-)(y) > * -(p(x.Y))-

The Hessian and Laplacian comparison theorems can be proved by using
the second variational formula and the following index lemma. Let 7 :
[0,t]-HM be a minimal geodesic, for any vector field X along 7, let

1(X,X) = ﬁ [V~ 2- <ft(7,*%)7,*»ede.
We call 1(X, X) the index form of X along 7.

Theorem 1.1.11 (Index lemma). Let J be a Jacobi field along a min-
imal geodesic 7 with 70 ¢ cut(7*). For any vector field X along 7 with
Xg—Jqg and either Xt —Jt or V70X = V70J, one has I (X,X) > 1(J, J).

1.2 Riemannian manifold with boundary

Definition 1.2.1. Let M be a Hausdorff topological space with a count-
able basis of open sets having disjoint decomposition M = (dM) (J M®,
where M° is a d-dimensional differential manifold, and for any point
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0 € dM there exists a neighborhood O of o and a homeomorphism
ip: 0O -A Hd :={(xi,... ,Xd) £ Rd : xj, > 0} such that ip(c) = 0 and
ip(0fAdM) = {(kb ... ,Xd) £ Nd : Xd = 0}. If these local charts, together
with those on M°, are compatible with each other, then M is called a
d-dimensional differential manifold with boundary dM. If moreover M is
equipped with a smooth metric, then it is called a Reimennian manifold
with boundary.

Obviously, if M is a d-dimensional differential manifold with boundary,
then the boundary dM is a (d—)-dimensional differential manifold. Simple
examples for differential manifolds with boundary are smooth domains in
a differential manifold. As before, TXM denotes the tangent space at point
x £ M, and TM = \UxeMTxM. If x £ dM, then TxdM, the tangent
space of dM at point ) is a subspace of TXM. Let TdM = UxedM TxdM.
Obviously, when xx€ dM we have TXM —TxdM ®span{A'x}, where Nx £
TXM is a unitary vector orthogonal to TxdM. Throughout the book, we
will take N to be the inward pointing unit normal vector field of M, i.e.
for any £ dM, Nx £ TXM s unitary and orthogonal to TxdM such that
expx[eN] £ M° holds for small e > 0.

Definition 1.2.2. Let M be a Riemannian manifold with boundary, and
let N be the inward pointing unit normal vector field of dM. Then the
2-tensor

1(X,Y) :=-(VxJV,T), X,Y eTxdM,x £dM
is called the second fundamental form of the boundary. If I > 0, ie.
I(A,X) > 0 for any X £ TdM, then the manifold (or the boundary)
is called convex.

For a connected Riemannian manifold with boundary, let p be the Rie-
mannian distance defined as in the case without boundary; i.e. for any
XYy £ M, p(x,y) is the inf over the lengths of smooth curves in M linking
these two points. In general, p{x, y) might not be reached by a geodesic,
but it is the case if dM is convex. To see this, we first extend M to a com-
plete Riemannian manifold without boundary by using the polar coordinate
around dM. Let <©+= {(B,r) :B £ dM,r £ [0,r(0))}, r € C°°(dM; (0, 00))
such that the exponential map

dx 3 (8,r) Hyexp(0,r) := expO[rfV] £ exp(<9+)
is diffeomorphic. Then under the polar coordinate we extend df to dT m=
{(0,r) :B £ dM,r £ (—(Q), r(#))}, so that
M :=MU dr=MU {(,r) :0£ dM, r £ (-r(0), 0)}
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is a differential manifold without boundary. Moreover, (¢, ¢ extends natu-
rally to a Riemannian metric on M by using the metric on d M: under the
polar coordinate such that {d6i, dr \\ <i <d—I}on dM is orthonormal
under the original metric, if at point (8,r) one has X = Yli=i fidOi + fodr
and Y = Y*Zi 9id0i + godr, then let (X,Y) = YoZo fi9i- To make M
complete, let h 6 C°°(M) be such that fJ[0oo) = 1, h(r) > O0forr > —1 and
h(r) = 0forr < —. Then M is complete under the metric h~2(-, *), where
h £ C°°(M) is such that h\m — 1 and h{6,r) = h(r/r(9)) for (6,r) € dr.
Therefore, according to Proposition 2.1.5 in [Wang (2005a)], we have the
following result.

Theorem 1.2.1. IfdM is convex, then there exists a complete Riemannian
manifold (Mo,(-,-)o) without boundary, which extends (M, (,*)) such that
for any x,y £ M, the minimal geodesic linking x and y lies in M.

According to Theorem 1.2.1, we can define the cut-locus and state the
comparison theorems for pa as in the case without boundary.

Let pa be the Riemannian distance to the boundary. It is clear using
local charts that pa is smooth in a neighborhood of dM. We call

ia 'm=sup {r > 0: pa is smooth on {pa <r}}

the injectivity radius of dM. Obviously, 0 > 0 if M is compact, but it
could be zero in the non-compact case (supO = 0 by convention).

Let M be a Riemannian manifold with boundary. The frame bun-
dle 0{M) is again a Riemannian manifold with boundary dO{M) =
(JxedM Ox{M). The following two results are essentially due to Kasue [Ka-
sue (1982, 1984)] (see also Theorem A.l in [Wang (2005b)]).

Theorem 1.2.2 (Hessian Comparison). (1) Let 9,1 € | be constants
such that | < B and Sect < k. Let
[cos \tk, t ----7?sin \fk t if K> 0,

= . ) t>0.
[cosh \/A-k t — sinh%—kt ifk <0,

Let h~1{0) be the first zero point of h (h_1(0) := oo if the zero point of h
does not exist). Then for any x € M° such that pa{x) < ig Ah-1(0) and
any unit X ETXM orthogonal to S7pa(x),

HesSpa (X, X) > ~(pa(x)).
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(2) If 1 > B and Sect > k, then
Hesspa(X, X) < ~(pd(x))

holds for anyx GM with po(x) < iaA/i_1(0) and unit X GTXM orthogonal
to Xpd(x).

Proof. The proof of (1) can be found in the Appendix of [Wang (2005b)].
Below we include a brief proof of (2). Let p be the orthogonal projection of
x on dM, and let 7(s) = exp [sIV],;s € [0,pa(x)\ be the geodesic from p to
x. Let {J(s)}s6[aPa(x)] be the Jacobi field along 7 such that J(pg(x)) = X
and
(7(0),v) = - 47(0),Vv), Vv GTpdMm.
By the second variational formula we have (see e.g. page 321 in [Chavel
(1995)])
HessRg(A, X)

paly . .
(17(s)I2- (i, 7(e))7(«), I(s)))ds.
Let {A’(s)}se[oia(X)] be the parallel displacement of X along 7 such that
X(pg(x)) = X. Define

— h{s
Is) = HP;&)) X(s), s € [0,p9(X)].

Then J is orthogonal to Vpg along 7 and J(pg(x)) = J(pa(x)) —X. By
the index lemma (see the first display on page 322 in [Chavel (1995)]), we
obtain

i Pea(x)
Hesg(X, X) = -1(7(0), 7(0)) + Jo  {h'(sf - kh(s)2}ds
= fr(Pd{x)). 0

The following Laplacian comparison theorem is a direct consequence of
Theorem 1.2.2.

Theorem 1.2.3 (Laplacian comparison). (1) In the situation of Theo-
rem 1.2.2(1),

Apg(x) > ~— "~ h (Pd(x)), ifPd(x) <iaAh x(0).
(2) In the situation of Theorem 1.2.2(2),

Apa(x) < ’\—H-(pd{x)), if pa(x) <igJlh-1(0).
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To do the stochastic analysis on non-convex manifolds, we will make use
of a conformal change of metric such that the boundary becomes convex
under the new metric. In general, for any strictly positive smooth function
ton M, the metric (u'/ := ¢~2(-,-) is called a conformal change of the
metric g := (¢, *). The following results can be easily verified (see Theorem
1.159 in [Bess (1987)] and (3.2) in [Fang et al (2008)]).

Theorem 1.2.4. Let V' and Ric' be the Levi-Civita connection and the
Ricci curvature for the metric (-, m)'. Then:

(1) For any two vector fields X,Y onM,'V'xY =V xY —(X,X\ogh}Y —
("X71oEd)X + (X,¥Y)X7\o&h
(2 Ric'=Ric+ (d- r"HeBB* + {d~xAd - (d- 3)|V log0|2)(-, *).

Theorem 1.2.5. Let oG C2(M) be strictly positive. I1f | > —N\ogd then
dM is convex under the metric (% ¢)' := ¢~2(- *).

Proof. Since {X, ™M) = 0for X GTdM and noting that the inward unit
normal vector field of dM under the metric (,*)' is TV := ¢lA, by Theorem
1.2.4(2),

~(VxN'", Xy = £2(TV,VIogP)\X\2 - p~2(Xx N', X)
= 0-1(I(X,X) + (TMlog<A)|X|]2) >0, X GTdM.

1.3 Coupling and applications

A coupling for two distributions (i.e. probability measures) is nothing but
a joint distribution of them. More precisely:

Definition 1.3.1. Let (E,B) be a measurable space, and let /r,n G V(E),
the set of all probability measures on (E,B). A probability measure 1 on
the product space (E x E, B x B) is called a coupling of i, and r/, if

MAx E) =p(A), LWE x A) =v{A), AeB.

We shall let C(ji. u) stand for the set of all couplings of ji and v. Obvi-
ously, the product measure p x v is a coupling of ji and v, which is called
the independent coupling. This coupling is too simple to have broad appli-
cations, but it at least indicates the existence of coupling. Before moving
to more general applications of coupling, let us present a simple example
to show that even this trivial coupling could have non-trivial applications.
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Throughout the paper, we shall let /i{f) denote the integral of function /
w.r.t. measure p.

For a measurable space (E,B), let B(E) (resp. Bb(E), BE(E)) denote
the set of all measurable (resp. bounded measurable, bounded non-negative
measurable) functions on E. If moreover E is a topology space with B
the Borel a-field, let C(E) (resp. Cb(E),C"(E)) stand for the set of a
continuous (resp. bounded continuous, bounded non-negative continuous)
functions on E.

Example 1.3.1 (FKG inequality) Letp and v be probability measures
on K, then for any two bounded increasing functions / and g, one has

M/ff) + "(fa) > M/Ms) + K-OMfl}-
Proof. Since / and g are increasing, one has

(Fx)-f(y){g(x)-g(y))> o xr/era.
So, the desired inequality follows by taking integral w.r.t. the independent
coupling p x V. O

In the remainder of this section, we first link coupling to transport problem,
which leads to the notions of optimal coupling and probability distances,
then introduce coupling for stochastic processes and a coupling method to
establish Harnack type inequalities.

1.3.1 Transport problem and Wasserstein distance

Let Xi, X2, mmxn be n places, and consider the distribution p := {pr :
i = 1,...,n} of some product among these places, i.e. pr refers to the
ratio of the product at place Xi. We have pt > 0 and Y"i=i M —1, that
is, p is a probability measure on E := {l,...,n}. Now, due to market
demand one wishes to transport the product among these places to the
target distribution v := {w : 1 < i < n}, which is another probability
measure on E. Let M := {N™ : 1 < i,j < n} be a transport scheme,
where ILj refers to the amount to be transported from place X{ to place Xj.
Obviously, the scheme is exact to transport the product from distribution

p into distribution v if and only if M satisfies
M M

Pi= A (1., Vj="01], 17hj<U.

j=1 1=
Thus, a scheme transporting from p to u is nothing but a coupling of p and
v, and vice versa.
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Now, suppose pij is the cost to transport a unit product from place Xi
to place Xj. Then it is reasonable that p gives rise to a distance on E. With
the cost function p, the transportation cost for a scheme 1 is

A PIBAij — / pdn.

ij=1 JE*E
Therefore, the minimal transportation cost between these two distributions
is

Wi(p,v) := inf f pdll,

which is called the Lx-Wasserstein distance between p, and n induced by
the cost function p.
In general, we have the following notion for //-transportation cost.

Definition 1.3.2. Let (E,B) be a measurable space and p a non-negative
measurable function on E x E. For any p £ [1, 00],

Wﬁp,v) = in@j\ﬂb@p >duj/p (13.1)

is also called the //-transportation cost between probability measures p
and v induced by the cost function p.

When p is a distance on E, it is also called the //-Wasserstein distance
induced by p, since in this case Wfi is a distance on VP(E) := {// € V{E) :
p GLp(p x &)} (see e.g. [Chen (1992)]).

It is easy to see from (1.3.1) that any coupling provides an upper bound
of the transportation cost, while the following Kontorovich dual formula
enables one to find lower bound estimates.

Proposition 1.3.1 (Monge-Kontorovich dual formula). For p > 1,
let

O ={(/.9) =f, 9 € BH(E), f(x) <g{y) + p(x,y)p, X,y € E).
Then

WE(p, v)p = sup {p(f) - u(g)}-
(fi9ECp
When (E, p) is a metric space, Bb{E) in the definition of Qo can be replaced

by a sub-class of bounded measurable functions determining probability
measures (e.g. bounded Lipschitzian functions), see e.g. [Rachev (1991)].
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1.3.2 Optimal coupling and optimal map

Definition 1.3.3. Let p,v G V{E) and p > 0 on E x E be fixed. If
M GC(p,u) reaches the infimum in (1.3.1), then it is called an Lp-optimal
coupling for p and n w.r.t. the cost function p. If a measurable map vy :
E -> E maps p into a (i.e. u = /roy-1), such that I1(dx, dy) := p(dx)5x(dy)
is an optimal coupling, where Sx is the Dirac measure at x, then y is called
an optimal transportation map for the .A-transportation cost.

To fix (or estimate) the transportation cost, it is crucial to construct
the optimal coupling or optimal map. Below we introduce some results on
existence and construction of the optimal coupling/map.

Proposition 1.3.2. Let (E,p) be a Polish space. Thenfor anyp,v € V(E)
and any p G [l,00), there exists an optimal coupling.

The proof is fundamental. Since it is easy to see that the class C(p, v) is
tight, for a sequence of couplings (I1n}n>i such that

lim TIn{pP) = WE(p,v)p,

there is a weakly convergent subsequence, whose weak limit gives an optimal
coupling.

As for the optimal map, let us simply mention a result of McCann
[McCann (1995)] for E = Rd, see [Villani (2009a)] and references within for
extensions and historical remarks.

Theorem 1.3.3. Let E = Rd,p(x,y) — WX —y|, and p = 2. Then for
any two absolutely continuous probability measures p(dx) := f(x)dx and
v{dx)  g{x)dx such that f > 0, there exists a unique optimal map, which
is given by T = TV for a convex function V solving the equation

f = </(VP)detVacW
in the distribution sense, where Vac is the gradient for the absolutely con-
tinuous part of a distribution.

Finally, we introduce the Wasserstein coupling which is optimal when p is
the discrete distance on E; that is, this coupling is optimal for the total
variation distance. We leave the proof as an exercise.

Proposition 1.3.4 (Wasserstein coupling). Let p{x,y) = 1{xdyy We
have

Wp{p,uy =\\\p-v yar = sup IP(A) - u(A)\,
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and the Wasserstein coupling
n<dx,A ,N)(dx)MdAS) + - )-W
y)  (,/1,)(dx) ) M—r) (L)
is optimal, where (p —is)+ and (p —u)~ are the positive and negative
parts respectively in the Hahn-Jordan decomposition of p —v, and p Av =
p-{p-u)+.

1.3.3 Coupling for stochastic processes

Definition 1.3.4. Let X := {Xt}t>0 and Y := {Ft}t>0 be two stochastic
processes on£. A stochastic process (X, Y) on E x E is called a coupling
of them if the distributions of X and F coincide with those of X and Y
respectively.

Let us observe that a coupling of two stochastic processes corresponds
to a coupling of their distributions, so that the notion goes back to coupling
of probability measures introduced above.

Let p and v be the distributions of X and Y respectively, which are
probability measures on the path space W := E"0*°\ equipped with the
product cr-algebra

E(W) :=cr(wH» W : t € [0, 00)).
For any M 6 C(p,p), (W x W, I~{W) x X(W), M) is a probability space under
which
(X, Y)(w) :=(udjui2), w=(w\w2) €W xW
is a coupling for X and Y. Conversely, the distribution of a coupling for X
and Y also provides a coupling for p and v.

Now, let Pt and Pt(x,dy) be the semigroup and transition probability
kernel for a strong Markov process on a Polish space E. If X := {Xt)t>0
and Y := (F)t>o0 are two processes with the same transition probability
kernel Pt{x, dy), then (X, Y) = (Xt,F)t>o is called a coupling of the strong
Markov process with coupling time

TRV = inf{t > 0: Xt = Yt}.
The coupling is called successful if T3 < oo a.s. For any p £ V{E), let
be the distribution of the Markov process with initial distribution p, and
let pPt be the marginal distribution of PMat time t.

Definition 1.3.5. If for any x,y £ E, there exists a successful coupling
starting from (x,y), then the strong Markov process is said to have suc-
cessful coupling (or to have the coupling property).
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Let
T=Plew uis: s>t
t>0
be the tail crfield. The following result includes some equivalent asser-

tions for the coupling property (see [Cranston and Greven (1995); Lindvall
(1992); Thorisson (1994)]).

Theorem 1.3.5. Each of the following is equivalent to the coupling prop-
erty:

(1) For anyp,v £ V(E), lim~oo ||pPt- uPt\war = Q.
(2) All bounded time-space harmonic functions are constant, i.e. a bounded
measurable function n on [0,00) x E has to be constant if

u(t, 9 = Psu(t+s,m, s, t>0.

(3) The tail a-algebra T is trivial, i.e. PMX £ A) = 0 or 1 holds for
p £V{E) and A GT.
(4) For any p,v £ V(E), PM= P" holds on T.

A weaker notion than the coupling property is the shift-coupling prop-
erty.

Definition 1.3.6. The strong Markov process is said to have the shift
coupling property, if for any x,y £ E there is a coupling (X, Y) starting at
(x,y) such that Xtx= Yt2 holds for some finite stopping times T\ and T2-

Let
| {AL£F{W) :w£ A impliesw(t +¢ £ A t >0}

be the shift-invariant cr-field. Below are some equivalent statements for the
shift-coupling property (see [Aldous and Thorisson (1993); Cranston and
Greven (1995); Thorisson (1994)]).

Theorem 1.3.6. Each of the following is equivalent to the shift coupling
property:

(5) For anyp,v £ V(E), lim~oo }f* \pPs - z/Ps|,,ards = Q.

(6) All bounded harmonic functions are constant, i.e. a bounded measurable
function f on E has to be constant if Ptf —f holds for all t > 0.

(7) The invariant a-algebra of the process is trivial, i.e. PA(X £ A) —0
or 1 holds forp £ V(E) and A £ T.

(8) For any p,v £ V{E), W =P" holds on I.
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According to Theorem 5 in [Cranston and Wang (2000)], the coupling
property and the shift-coupling property are equivalent, and thus all above
statements (1)-(8) are equivalent, provided there exist s,t > 0 and increas-
ing function ® E C([0,1]) with ®(0) < 1 such that

Ptf <${Pt+f), 0</ <1

holds.

By the strong Markov property, for a coupling (X, Y) with coupling
time T, we may let Xt = Yt for t > T without changing the transition
probability kernel; that is, letting

ift<T,
ift>T,
the process (X, Y) is again a coupling. Therefore, for any x,y £ E and any
coupling (X,Y) starting at (x,y) with coupling time TXtV, we have
Ptf(x) - Ptf(y)1= |[E(/(Xt) - f(YD)\ <osc(/)P(TxY >t), f e Bb(E),

where osc(/) := sup/ —inf/. This implies the following assertions, which
are fundamentally crucial for applications of coupling in the study of
Markov processes.

@i If imMxP(TRY > t) = 0,x 6 E, then Pt is strong Feller, i.e.
PtBb(E) c Ch(E).

(i) Lety be an invariant probability measure. If the coupling time Txy is
measurable in (x, y), then

IVPt - W\var ~ 2} P(TXy > f)lI(d:r,dy), MeC(ay)
exE
holds for v £ P(E).
(iii) The gradient estimate
\P tf(y)-Ptf(x)\
p(xiy)
< osc(/) limsup AN XEE

Y-+X P(X,y)

|[VPt/(a;)| := limsup
y-=X

holds.

By constructing coupling such that P(Tsy > t) < Ce"A<holds for some
C, X > 0, we derive lower bound estimates of the spectral gap in the sym-
metric case (see [Chen and Wang (1997a,b)]).
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1.3.4 Coupling by change of measure

Finally, we introduce the notion of coupling by change of measure and appli-
cations to the dimension-free Harnack inequality [Wang (1997b)], Busmut
formula [Bismut (1984)] and Driver’s integration by parts formula [Driver
(1997)]. The Harnack inequality has been investigated and applied by many
authors for finite- and infinite-dimensional diffusions, see [Arnaudon et al
(2006, 2009); Da Prato et al (2009); Aida and Zhang (2002); Kawabi (2005);
Es-Sarhir et al (2009); Liu (2009); Liu and Wang (2008); Rockner and Wang
(2010); Wang (2006, 2007a, 201le, 2010d); Wang et al (2012); Wang and
Xu (2013); Wang and Yuan (2011)], while the Bismut formula and the in-
tegration by parts formula are important tools in the study of regularity
estimates of diffusion semigroups.

Definition 1.3.7. Let g and v be two probability measures on a measur-
able space (E,B), and let X ,Y be two E-valued random variables w.r.t. a
probability space (D, F, P).

(i) If the distribution of X is g, while under another probability measure
Q on (fi, X) the distribution of Y is v, we call (X.Y) a coupling by
change of measure for g and v with changed probability Q.

(i) 1f g and n axe distributions of two stochastic processes with path space
E, a coupling by change of measure for g and u is also called a coupling
by change of measure for these processes. In this case X and Y are
called the marginal processes of the coupling.

Theorem 1.3.7 (Harnack inequality). Let Pt be a Markov semigroup
and let x,y GE,T > 0 befixed. Let Pxxand Fy be the distributions of the
process starting at x and y respectively. If there is a coupling by change of
measure (X,Y) of the Markov process with changed probability dQ := i?dP,
such that X0 —x,Yo =y and Xt = Yt, thenfor anyf G (E),
(PTNRY) < (PTfp{Xj)(ERP"-P)p-\ p>1
Prf(y) <\ogPTef {x)+E(R\ogR).
Proof. Since Prf(x) = Ef(XT), E(Rf(YT)) = Prf(y) and XT = YT, by
the Holder inequality, we have
(Prfny) = (E(Rf(YT)))p = (E(RF(XT)))p
< (Efp{XT)){ERpPp- Mp- 1= (PTf p{x))(ERp/(p- )p~1.
Thus, the first inequality holds. By using the Young inequality
E(Rf{XT)) < logEe”XT) +E(R log R)
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instead of the Holder inequality, we prove the second inequality. O
Moreover, the argument of coupling by change of measure can also be
used to establish the Bismut type derivative formula.

Theorem 1.3.8 (Bismut formula). Let Pt be a Markov semigroup and
let T > 0 befixed. Let7 : [0,ro] -» E withro > 0 be a curve on E
such that for any s £ (0,ro) there exists a coupling by change of measure
(X, X £) with changed probability dQe := i?£dP of the Markov process with
X0=7(0), =7() and XT = Xj.. If

M(T) 3= figy—-
exists in T1¢P), then

E[M(T)F(XT)\, f€ B b(E).

Proof. Simply note that under the given conditions
E_I;errfMe)) - Prf(x) .Eli_rPOE[Ref(XI.)] - Ef(XT)
= lim Je [f(XT)(Re- 1)] = E[M(T)/(Xr)]. 0
Finally, we consider the integration by parts formula and shift Harnack
inequalities.

Theorem 1.3.9. Let E be a Banach space and x,e £ E and T > 0 be
fixed.

(1) For any coupling by change of measure (X,Y) with changed probability
Q = QAP for the Markov process such that Xg = Y() = x and Yt =
Xx + e, there holds the shift Harnack inequality

\PTTCO)\r<PT{\f\»{e+-)}tx)(ER")p-\ P> 1,/ € Bb(E),
and the shift log-Harnack inequality
PT logf{x) <logPT{/(e + -)}(K) + E(R\ogR), f £ Bb(E),f >0.

(2) Let (X,X£),e £ [0,1], be afamily of couplings by change of measure
for Pxxand P>xwith changed probability Q£ = P £P such that

Xe{T) =XT+ee, e£(0,1].
IfRo—1and Nt —"P e|f=0 exists in L1(P), then
PT(Ve/)(x) = E{f(XT)NT}, /, Vel e Bb(E).
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Proof. The proof is similar to that we introduced above for the Harnack
inequality and Bismut formula.
(1) Note that PTf{x) = E{Rf{YT)} = E{Rf{XT +e)}. We have

\Pri(x)\p < (E|/T(XT +e))(EA"T)p-1 =P T{J/IP(e+-)}W (Ef?")p_1.
Similarly, for positive /,

PTlogf(x) = E{R logf(XT + ¢)}
< logE/(Xr +¢) + E(PlogP) - log PT{f(e + )}*) + E(4 log ).

(2) Noting that Prf(x) —E[Ref(Xe(T))} = E{Ref(Xr + ee)}, we
obtain

0= —E{RI(XT+ee)} __ PT(VeN(x) - E{f{(XT)NT},

provided RO= 1and NT := -~ P £J£=0 exists in LXP). 0

1.4  Harnack inequalities and applications

In this section we consider the Harnack and shift Harnack inequalities for
a bounded linear operator and applications. As results presented below are
not yet well known, we include complete proofs (see also [Wang and Yuan
(2011); Wang (2012d)]).

1.4.1 Harnack inequality

Definition 1.4.1. Let y be a probability measure on (E, B), and let P be
a bounded linear operator on Bb(E).

(n) vy is called quasi-invariant of P, if yP is absolutely continuous w.r.t.
y, where (yP){A) :=y(P1n), A £ B. IfyP =y theny is called an
invariant probability measure of P.

(rr) A measurable function p on E2 is called the kernel of P w.r.t. vy, if

Pf= }e p(-,2)/(yV(dy), f£B Db{E).

(in) Let E be a topology space. P is called a Feller operator, if PCh(E) C
Cb(E), while it is called a strong Feller operator if PBb(E) C Ch(E).
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From now on, in this section we assume that E is a topology space and
B is its Borel cr-field and P is a Markov operator (i.e. positivity-preserving,
contraction linear operator with P1 = 1) given by

PR(X) = [ f(y)P(x.dy), f cBNE) X EE

for a transition probability measure P(x, dy). We will consider the following
Hamack type inequality for P:

h(P/(a0) < {PO(/)(y)}edad x,yeE, fe B+(E), (14.2)

where ® G C([0, 00)) is non-negative and strictly increasing, and @ is a
measurable non-negative function on E2.

Theorem 1.4.1. Let p be a quasi-invariant probability measure of P. Let
® G C1(J0, 00)) be an increasing function with ®'(1) > 0 and ®(00) :=
limj-"00 ®(r) = oo, such that (1.4.1) holds.

@) INimy-yX{4>(x,y) + ®(yx)} = 0 holds for all x G E, then P is strong
Feller.

(2) P has a kernel p w.r.t. p, so that any invariant probability measure of
P is absolutely continuous w.r.t. p.

(3) P has at most one invariant probability measure and if it has, the kernel
of P w.r.t. the invariant probability measure is strictly positive.

(4) The kernel p of P w.r.t. p satisfies

Ap(K, )P 1(~™)(1m < ®_1(ed(TT), X,y GE,

where ®- 1(00) := 00 by convention.
(5) /Ird _1(r) is convex for r > 0, then the kernel p of P w.r.t. p satisfies

J[ P{x, -MIl, -)dp > e_d(x), x,y GE.

(6) Ifp is an invariant probability measure of P, then

sup P/(x) < ! X G E.

JeB+(E), M(P(/))<1 JEe-<y>p{dy)’

Proof. Since (6) is obvious, below we prove (1)-(5) respectively.
(1) Let / G Bb(E) be positive. Applying (1-4.1) to 1+ ¢ in place of /
for e > 0, we have

P(1 +ePf{x)) < {PP(1 +£/)bl }epx*, x,y GE,e >0.
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By the Taylor expansion this implies
®(1) + ed'(1)PFf(x) +o(e) < {P(1) + ed'(1)P/(y) + o(e)}ed(x™ (1.4.2)
for small e > 0. Letting y —x we obtain

ePf{x) < Eli\mjpf Pf(y) + o(e).

Thus, Pf(x) < liminfy-n Pf(y) holds for all x £ E. Similarly, changing
the roles of x and y we obtain Pf(y) > limsupx*yPf(x) forany y £ E.
Therefore, P f is continuous.

2 To prove the existence of a kernel, it suffices to prove that for any
A £ B with y(A) =0 we have P1a = 0. Applying (1.4.1) to / = 1+ tila,
we obtain

Ol + nPla(x)) f e y(dy)
Je (14.3)
<J[ $(1 +nlA)(Y)(fiP)(dy), n> 1.
e

Since y (A) = 0 and y is quasi-invariant for P. we have 1a = 0,yP-a.s. So,
it follows from (1.4.3) that

®(1+nP1A(X)) < < 00 xeE,n> 1

Since ®(1 +n) —00 as n —>00, this implies that P 1g0k) = 0 for all x € E.

Now, for any invariant probability measure yo of P, if y(A) = 0 then
P1A = 0 implies that yo(A) = yo(P 1) = 0. Therefore, yo is absolutely
continuous w.r.t. y.

(3 We first prove that the kernel of P w.r.t. an invariant probability
measure Yo is strictly positive. To this end, it suffices to show that for any
x e E and A GB, Pla{x) = 0 implies that yo{A) = 0. Since P 150x) = 0,
applying (1.4.1) to 7 = 1+ nP 1A we obtain
®(1+ nPlabl) < {PO(1 + nig)(x)}edy>® = ®(L)ed(/x), YeE,n> 1.
Letting n —» 00 we conclude that P1a = 0 and hence, yo(A) = yo(P1A) =
0.

Next, let yi be another invariant probability measure of P, by (2) we

have dyi = fdyo for some probability density function /. We aim to prove
that / = 1/io-a.e. Let p{x,y) > 0 be the kernel of P w.r.t. yo, and let

P*{x,dy) =p(y,x)y0{dy). Then

P*9= f 9{y)P*{;dy), peBb(E)
Je



Preliminaries 27

is the adjoint operator of P w.r.t. po. Since /ig is P-invariant, we have

[ gP*Idp0= [ PgdpO0O= [ gdp0, g £ Bb{E).
Je Je je

This implies that P*1 = 1 po-a.e. Thus, for poae. x € E the mea-
sure P*(x,-) is a probability measure. On the other hand, since pi is
P-invariant, we have

[ {P)9dfM) = f fPgdfio = f Pg dpi
Je Je Je

= [ gdp1= [ fgdpo, geBbiE).
This implies that P*f =/,//o0-a.e. Therefore,

[ -Ljh -IRL,.

When P*(x, ¢) is a probability measure, by the Jensen inequality one has
P*y?y(x) > p,  (ir) and the equation holds if and only if / is constant
P*(x, -)-a.s. Hence, / is constant P*(x, -)-a.s. for pO-a.e. x. Sincep(x, y) >
0 for any y £ E such that po is absolutely continuous w.r.t. P*(x, ¢ for
any x £ E, we conclude that / is constant /io-a.s. Therefore, / = 1/io-as.
since / is a probability density function.

(4) Applying (1-4.1) to

piy.-
and letting n -> 00, we obtain the desired inequality.

(5) Letrd_1(r) be convex for r > 0. By the Jensen inequality we have
/ . p(a:,-)cb l(p(X1 _))dp > o r(l)
So, applying (1.4.1) to
f =nAd-(p(x )

and letting n —» 00, we obtain

Jop i) p(y ) dpo eyt A3 p(n,-) D_1PEK)<UA > e~dpkY) -

Let (P,p) be a metric space. We shall often consider the following
Harnack inequality with a power a > 1 (i.e. (1.4.1) with ®(r) = ra):

acp{x,y)2-

. f £B+(E),x,yEE, (L4.4)

(i7(*))* < (Pfa(y)) exP
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where ¢ > 0is a constant. To state our next result, we shall assume that E is
a length space, i.e. forany x ¢ y and any s G (0, 1), there exists a sequence
{zn} ¢ E such that p(x,z,,) -» sp(x,y) and p(zn,y) m (1 - s)p(x,y) as
n —¥o0.

Theorem 1.4.2. Assume that (E,p) is a length space and let on, «2 > 1
be two constants. If (1-4.4) holds for o = oi, 02, it holds also for a = a\a2.

Proof. Let
= L=l o equivalently, 1—s= &(827 1
0102 - 1 olo2- 1
and let {zn} C E such that p{x, zn) -> sp(x,y) and p(zn,y) —=(1-s)p(x,y)
as n —00. Since (1.4.4) holds for o = Oi and a =02, forany / e  (E)

we have

(Pf(x)aia2< (Pfai zn))aexp 2 a2cpixzn)2-

Oi —1
0io2cp(a;,zn)2 az2cp(zn,y)2-
< (P M a2(y))exp in(—l ) opz(—ly)

Letting n —00 we arrive at

@ /() 2< (P/ttl*2(y)) exp oio2cs2p(a;,jH2  oc(l - s)2p(x,y)2"

oi-1 Q-1
_ . 0la2cp(a;, y)2n
= (P/QI“2(2))exp 0102 —1 0

As a consequence of Theorem 1.4.2, (1-4.4) implies the following log-
Harnack inequality (1.4.5).

Corollary 1.4.3. Let (E,p) be a length space. If (1.4.4) holds for some
a > 1, then

P(logf){x) <logPf(y) +cp{x,y)2, x,y GE,f >1,/ cBb(E). (14.5)
Proof. By Theorem 1.4.2, (1.4.4) holds for an(n GN) in place of 0. So,

<p(x,y)2-
-an—1 .
Therefore, by the dominated convergence theorem,

JP a0

< lig {(PTOYan- 1

Pfa n{x) <(Pf(y))a nexp

Pf(y))a }
log Pf{y) + cp{x,y)2 0
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Obviously, each of (1-4.4) and (1.4.5) implies that P(x, ¢) and P(y, *) are
equivalent to each other. Indeed, if P(y,A) = 0 then applying (1-4.4) to
/ = la or applying (1.4.5) to / = 1+ nlg and letting n -r 0o, we conclude
that P{x, A) = 0. By the same reason, P(x, ® and P(y, ¢) are equivalent for
any x,y 6 E if

(Pf(x))a < (Pfa(y))V(x,y), x,y € E,f e B+(E) (1.4.6)
or
P(\ogf)(x) <\ogPf(y)+ y{x,y), x,yeE,f>1/ SBbE) (14.7)
holds for some positive function ® on E x E. In these cases let
, 4 P(x,dz)
Pxy{z)- P(y,dz)
be the Radon-Nikodym derivative of P(x, ¢) with respect to P(y, m.
Proposition 1.4.4. Let ® be a positive function on E x E.

(1) (1.4.6) holds if and only if P{x,*) and P(y, ¢ are equivalent and pXv

satisfies
P{pliia~1)}(x) <'it(x,y)U/{a~1), x,yeE. (1.4.8)
(2) (1-4.7) holds if and only if P(x, ¢ and P(y, ¢ are equivalent and pxy
satisfies
P{logpX\V}(x) < d(x,y), X,y € E. (1.4.9

(3) If (1.4.7) holds then for a P-invariant probability measure p, the
entropy-cost inequality

p((P*f) logP*f) <W*(fp,p), f >0,p(/) =1
holds for P* the adjoint operator of P in L2(/i).

Proof. (1) Applying (1.4.6) to fn{z) := {n NPxy(2)}1/(*_1), n > 1, we
obtain

(Pfn{x))a < ®{x,y)Pf%(y) = ®{x.y) J[E {n Npx,y(z) }a/{a- HP(y,dz)
<® (x,y) er {n ApXiy{z)}/{a~1>P(x,dz) = <b(x,y)Pfn{x).
Thus,
p {pDya~1)}(x) = dig, Pfn(x) < @(x,y)1/(a-1).
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So, (1.4.6) implies (1.4.8).
On the other hand, if (1.4.8) holds then for any / € B"{E), by the
Holder inequality
pf(x)= Jf {pxy}(2)f(2)P{y,dz)
e

/I r \ (a-l1)/a

= (Pn.y))Va(Ppl(f-)(x)){a-iya
<(PMy))l/allx,y)l/a.

Therefore, (1.4.6) holds.
(2) We shall use the following Young inequality: for any probability
measure v on M, if 51,52 > 0 with u(g\) = 1, then

MN9192) < K5i loSPi) + log™(e92).
For / > 1, applying the above inequality for 51 = px,y,52 = log/ and
v = P{y,*), we obtain

P(log/)(x)= J[e{IOX,y{Z)|09f(2)}F’(y,O|Z)

< P(\ogpx,y)(x) + logPf{y).

So, (1.4.9) implies (1.4.7). On the other hand, applying (1.4.7) to /,, =
1+ npxy, we arrive at

P{logpXy}(x) <P(logtn){x) - logn
fl -+1
<logPfn(y) -logn+4f(x,y) = Iog———ﬁ——— b ®{x,y).

Therefore, by letting n — 00 we obtain (1.4.9).
(3) Let M € C(fp,p). Applying (1.4.7) to P*f in place of / and inte-
grating w.r.t. T1, we obtain

m((P7) logP*f) = J p log P*f(x)U(dx, dy)
< J[ EIogPP*f(y)n(dx,dy) + MN(P)

= Alog PP*f) + MN(®P)

< logp{PP*f) + MN(®P) = MN(P),
where in the last two steps we have used the Jensen inequality and that ¢
is PP*-invariant. This completes the proof. O
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1.4.2 Shift Hamack inequality
Let P(x, dy) be a transition probability on a Banach space E. Let

Pf(x)= &f(y)P(x,dy), fe B b(Rd)

be the associated Markov operator. Let @ : [0,00) —[0, 00) be a strictly
increasing and convex continuous function. Consider the shift Harnack
inequality

®(P/M)<P{do/(e+-)}("M, feB+(E) (1.4.10)

for some x,e € E and constant Ch(x,e) > 0. Obviously, if ®(r) —rp for
some p > 1then this inequality reduces to the shift Harnack inequality with
power p, while when ®(r) = er it becomes the shift log-Harnack inequality.

Theorem 1.4.5. Let P be given above and satisfy (1.4.10) for all x,e £
E :=Rd and some non-negative measurable function onR“x | . Then

sup P(Pf)(x) <

feB+(Rd),fRd <Pof(x)dx<I

1
(Rde-Gieble” X © Rd. (14.11)

Consequently:

(1) 7/®(0) = 0, then P has a transition density p (x,y) w.r.t. the Lebesgue
measure such that

1
J/R dp(x,y)¢ 1(p(x,y))dy <@ 1 /Rie_CiipeMe (14.12)
(2) If &(r) = rp for some p > 1, then
[ P(x,y)rdy < 14.13
Jmd (x.y)hdy (/Rde c™(xe)de)p-1 ( )

Proof. Let/ € B))'(Rd) such that fRO®(f)(x)dx < 1 By (1.4.10) we
have

®PH()e-C  <P{®of(e+)() = [ ®of(y +e)Px,dy).

Integrating both sides w.r.t. de and noting that fRI® o f(y + e)de =
fRI®o/(e)de < 1, we obtain

APH(x) I e Cixe)oe < 1

This implies (1.4.11).
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When ®(0) = 0, (1.4.11) implies that

sup POX)<®~12 ct@ed <00 (14.14)
/7€B+(RM),/RIi$o/ (x)dx<I VjR<ie ue
since by the strictly increasing and convex properties we have ®(r) t oo
and rt oo. Now, for any Lebesgue-null set A, taking /,, = nl g we obtain
from ®(0) = 0 that

/ ®° fn(%)dx = 0< 1.
jRd
Therefore, applying (1.4.14) to f = fn we obtain

P(x, A) =Pla(x) < -®-1 fRde~Cﬁ)(x'ebleJ ,
which goes to zero as n —t 00. Thus, P(x, ¢) is absolutely continuous w.r.t.
the Lebesgue measure, so that the density function p(x,y) exists, and
(1.4.12) follows from (1.4.11) by taking f(y) = ®- 1(p(X, Y)).

Finally, let ®(r) = rp for some p > 1. For fixed X, let

gy - AP

(/e{«Ap(x,2)}p-"1)5

It is easy to see that JRIf p(y)dy = 1. Then it follows from (1.4.11) with
®(r) = rp that

[ {nAp{x.y)}rdy < (PR{x))" < —— 1 -
Hu* e~Co(x'e)de)?- 1

Then (1.4.13) follows by letting n — oo0. O

Finally, we consider applications of the shift Harnack inequality to dis-
tribution properties of the underlying transition probability.

Theorem 1.4.6. Let P begiven as above for some Banach space E, and let
(1.4.10) holdfor some x,e E E, finite C$(x, €) and some strictly increasing
and convex continuous function @ with ®(0) = 0.

(1) P(x, ¢ is absolutely continuous w.r.t. P(x, m—e).
(2) If &(r) = rd(r) for some strictly increasing positive continuous func-
tion @ on (0,00), then the density p(x,e;y) := satisfies
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Proof. For P(x, m—e)-null set A, let /| —la- Then (1.4.10) implies that
®(P(x,A)) < 0; hence P(x,A) = 0 since ®(r) > 0 for r > 0. Therefore,
P(x, ¢ is absolutely continuous w.r.t. P(x, m—e). Next, let ®(r) = ro(r).
Applying (1.4.10) for f(y) = &(rr 1p(X, €;y)) and noting that

we obtain

Then the proof is completed by letting n —00. O

1.5 Harnack inequality and derivative estimate

In this section, we consider the relationship between Harnack inequalities
and derivative estimates of Markov operators on a geodesic space. The
main results are reorganized from [Arnaudon et al (2009); Rockner and
Wang (2010); Wang (2012b,d)] where different type of Harnack inequalities
are considered.

Recall that a metric space (E, p) is called a geodesic space, if for any
X,y € E, there exists a map 7 : [0,1] -4 E such that 7(0) = a,7(1) = y
and p('){s), 7(t)) = |i —s\p{x, y) for [0,17. Amap 7 : [0,ro1 -4 E with
7(0) = x for some ro > 0 and x € E is called a minimal geodesic from x
with speed ¢ > 0O, if p(7(s),7(f)) = c\t —s| holds for s,t € [0,r0]. For a
function / on E, we define |[V/|(x) as the local Lipschitz constant of / at
point X, i.e.

_ limsup 0O ~ f{y) 1
[V/|(x) = limsup P(-\)

Obviously, \Vf\ > 0and |/xx) - f(y)\ <pwx.y)11v/1100. Let P be a Markov
operator on Bb(E).
1.5.1 Harnack inequality and entropy-gradient estimate

Proposition 1.5.1. Let & > 0 and 3€ C'tpoo) x E\ [0,00)). The fol-
lowing two statements are equivalent.



34 Analysis for Diffusion Processes on Riemannian Manifolds

(1) For any strictly positive f £ Bb{E),
[VP/| < 6{P(flogf) - (Pf)\agPf}+0{8,-)Pf, 6> 50.

(2) For any p > 1 and x,y £ E such that p(x,y) < , and for any
positive f € Bb(E),

(P/Nix) < {Pfp(y)}
"f1opp(xy) /. p-1
ex . ds
P 30 1+ (p-DsPWCHN + 6 sy (D)
where 7 : [0,1] — E is a minimal geodesic from x to y with speed
P(x.y).

Proof. Forp> 1 leta(s) = 1+ (p- I)s. We have J(s) := > Jo
for s £ [0,1). Then (1) implies that

p,1)o”r  10g(P/“W f/*“W(7(s))
is Lipschitz continuous and
"log (P/*()p/«W(7(8))
S P(P-DIP(/eWbg/“W)-(P/eW)bgP/eW}, , &
ORAEY (7(«)

PP(g,I/)|VP/°WI
a(s)Pfasl  (105)
>7PP{va) ] p-1
a(s) 4\d(s)p(a:y)
Integrating over [0,1) we obtain (2).
On the other hand, for any z £ E, let 7 be a minimal geodesic from 2
with &7 (7),z) = r for small r > 0, and

7(s)). se[0,1).

V() = timsup (7 (M) - T2
1_

We have either (i) or (ii):

() [V/[(2) = limsupr_>0
(i) [V/|(z) = limsuprrONe - fW ).

For any 5 > Jo, let p = 1+ 6r. We have 6 > Jo(l + Sr) and thus,
B7(7),2) =r < for small r > 0. Applying (2) to x =7(7) and y = z,
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we obtain from (i) that

5{(Pf)I°gPf}(z) + \*7Pf\(z) = I”[n_i%p @f)1+Srb(r))-Pf(z)

(PTL+SN(D) XD fo wy i ra(w ~ 'Ten)as  PH2)
< Iirp_s;gp -----------------

= 6P (f\ogf)(2)+/3(6,2)Pf(2).
Similarly, if (ii) holds then

IVP/|(z) - SP(f logf)(z) = limsup (FP(2) - (PT1SNb(r))

(Pf)(z2)-(Pf)1Sr(z)exp i (}ﬂrﬁgngs,'y(srgds

< limsup
r—=0
P(6,2)PHz)-6{(Pf)logPf}(z).
Therefore, (1) holds. O

Similarly, we have the following result on the shift Harnack inequality
(see also Proposition 5.3.8 in Chapter 5).

Proposition 1.5.2. Let E be a Banach space. Lete € E,se € (0,1) and
/3 6 C((5e,00) x E- [0,00)). Then the following assertions are equivalent.

(1) For any positive f G CI(E),
[P(Vel)| < <S{P(/log/) —(P/) log.P/} + Se(6,-)Pf, 6>6e.

(2) For any positive f G (E),r G (0, andp>izrg >

(Pf)p <{P{fp(re +-)})

pr P-1
&P r [+ (p—l)§5P§(r +rjp—l)s’ + srelds

Proof. The proof from (1) to (2) is completely similar to the first part
of the proof in Proposition 1.5.1. To prove (1) from (2), we let z,e GE be
fixed and assume that P(Ve/)(z) > 0 (otherwise, simply use —e to replace
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e). Then (2) with p = 1+ 5r for 5> Se implies that

<5{(P/)I0OgP/}(z) + |P(Vel)|(z)

imegp (PLITE + IN1SI2)-P1(2)
>0
(Pr1sn(z) exp o TS0 ar - Pi2)
< limsyp —------------=----
r—=0
= SP(f logf){z) + Pe(6,2)Pf(2).

Therefore, (1) holds. O

1.5.2 Hamack inequality and L2-gradient estimate
Proposition 1.5.3. For any constant C > 0, the L2-gradient estimate
[VP/|2< C2Pf2, f e Bb(E) (15.2)
is equivalent to the Hamack type inequality
Pf(z"') < Pf(z) +Cp(z,2")y/Pp@), (15.2)
holds for all z,z" e E, f > 0, /7 £ Bu(E).

Proof. (1.5.1) = (1.5.2). Let 7 : [0,1] -A E be a minimal geodesic
such that 7(0) —z,7(1) = z'. By (1.5.1), for any positive / £ Bb{E) and
constant r > 0, we have

& (T M

1+ rsf)2
< C2p{z,2")2
4r
So,
Cp{z,z'f
(TTO)<)PNe)+  4r
Combining this with the fact that

L+rf _t_J1f+LrPf_rp’
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we obtain
Pf(z') <Pf(z) + C2p{* Z)2 +rPf2(z').

Minimizing the right-hand side in r > 0 we prove (1.5.2).
(1.5.2) = (1.5.1). By (1.5.2), we have

IPf(z) - Pf(z")] < Cp(z, z")\\AU f € Ch(M).
So, Pf is Lipschitz continuous for any / e Bb(E). Letz e E and 7 :
[0,1] =M be a minimal geodesic such that 7(0) = z, p(70,7S) = s and
limsupP” 7~~~ P /N = |VP/|(2).
s—0 S
Then it follows from (1.5.2) that

IVP/IM-Umsup?8 - "~ 10»
s—0 S

<Clipy/PPLW) =Cy/P/L.

Therefore, (1.5.1) holds. O

Correspondingly, we have the following result concerning the shift Har-
nack inequality.
Proposition 1.5.4. Let E be a Banach space and C > 0 be a constant.
Then

I-P(Ve/)|2< CPf2, feCI(E),f> 0
is equivalent to
Pf <P{f(re +}+\r\VCPp, reR,/ €B+(E).

1.5.3 Harnack inequalities and gradient-gradient estimates

In this subsection we consider diffusion semigroup Pt with generator
(L,T>(L)) on a geodesic space (E, p) in the following sense: there ex-
ists a subclass Ao C P(L) of Bb(E), such that for any / E Ao and
ip E C°°([inf/, sup/]) one has Ptf,ipof E Ao and

aFPth = PtLf = LPtf, Lq}of =tpofLf+¥,/°/|V /|2, t>0. (L5.3)

A typical example is a non-explosive elliptic diffusion process on a differen-
tial manifold E. In this case we take p to be the intrinsic metric induced
by the square field of the diffusion, and let

n = {Ptf : t>0,f EC°°,df has compact support}.
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Proposition 1.5.5. Assume that (1.5.3) holds. Let £ be a positive measur-
able function on [0, 00), and let g € C1(J0,t\) be increasing with g(0) = 0
and gft) = 1.

(v U
[VPt/]|2< m 2Pt\Vf\2, feAo,t> 0. (15.4)
Then
Ptf{y) < logPtef (x) + pX* - J [</(S)E(s)|2ds, t > O,f £ AO.

(1.5.5)
@ If
[VPt/|<£(f)Pt|V/|, fEAOO,t>0. (1.5.6)
Then

(Ptf)p(x) < (Pt p(y)) exp Z‘Eé’iw)zL[ |\£’< >4)9'(s\)|" ds  (157)

holds for t > 0 and nonnegative / G/1-

Proof. Let7 :[0,1] —P be a minimal geodesic from x to y with constant

speed p(x,y).
(1) By (1.5.3) and (1.5.4) we have

~ P Slog Pt- Sf (7 09(s))
< {p(z,y)b'(«)l mVPSlogPt_se/ 1- Ps|VIogPt_se/|2}(7 05(S))

< {p(@>NIA(S)IE(s)\/s|VIogPt_se7|2—Ps|VIogPt_seN2}(7 ° g(s))

< p(x,yN(3)2\g'(3)\2
4
Integrating over [0,t] we obtain (1.5.5).

(2) Similarly, by (1.5.3) and (1.5.6) we obtain
A P s(Pt sf)p(7 0g(S))
> Ps{p(p-1)(Pt,sf)p 2\VPt sfl2}(7 0g(9))
-p(x,y)\g'{s)\ mlv ps(Pt-sf)p(‘io <&))|
> ppt (P 1-57) p( (p~(%’)t|}{5¢§-25/|2 - W(sM x,v)\f\/ Pt-J\

Pt-s
> PPUYEE2GEN2, 0 o7 0gs)), s € .1
4(p- 1)

This implies (1.5.7). O

(7°S(«))
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1.6 Functional inequalities and applications

Let H be a separable Hilbert space and (L,V(L)) a negatively definite
self-adjoint operator on H generating a contraction Co-semigroup Pt. Let
(E,T>(£)) be the associated quadric form. We have £{f, g) = —{f,Lg) for
/, g € D(L). It is well known that ||P<|| < e~I"c if and only if the Poincare
inequality

N2 < CE{f,f), fev(£)

holds. This inequality is also equivalent to infcr{—) > 1/C, where er(-)
stands for the spectrum of a linear operator.

We first introduce a Poincare type inequality to describe the essential
spectrum of L and the exponential decay of Pt in the tail norm, then intro-
duce the weak Poincare inequality to describe general convergence rates of

Pt-

1.6.1 Poincare type inequality and essential spectrum

Let (L,T>(L)) be a negative definite self-adjoint operator on a separable
Hilbert space H, and let (£, P{£)) be the associate quadratic form. For
BcB, let

I7ll* = sup{|(/,p) - ge B}, f <€H.

We shall use the following Poincare type inequality to study the essential
spectrum of L:

2 < rE(F,F) +O(N)\\B., r>r0,f eV(E), (1.6.1)

where r0 > 0 is a constant and /3 : (ro,00) — (0,00) is a (decreasing)
function.
Let aess(L) be the essential spectrum of L. which consists of limit points
in the spectrum cr(L) and isolated eigenvalues of L with infinite multiplicity.
The following result is due to [Wang (2004b)], which provides a corre-
spondence between upper bound of the essential spectrum for — and the
Poincare type inequality (1.6.1).

Theorem 1.6.1. Letro > 0. Then the following statements are equivalent:

(1) aess(-L) c 1,00).
(2) There exist a compact set B ¢ 1 and afunction /3 : (ro, co) — (0, 0o)
such that (1.6.1) holds.
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(3) There existt > 0 and B C H such that PtB is relatively compact and
(1.6.1) holds for some /3 : (ro, 00) —» (0, 00).

Recall that a linear operator on a Banach space is called compact, if it sends
bounded sets into relatively compact sets. Let Pt = etL. It is well known
that Pt is compact for some/all t > 0 if and only if gess(L) = 0.

Theorem 1.6.2. The following statements are equivalent to each other:

(1) aess(L) = 0.

(2) (1.6.1) holds for ro = 0, some compact set B and some /3 : (0, 00) —
(0, 00).

(3) There existst >0 and B e | such that PtB is relatively compact and
(1.6.1) holds for ro = 0 and some ft: (0, 00) —¥ (0, 00).

(4) Pt is compact for some t > 0.

(5) Pt is compactfor all t > 0.

Now, we apply the above results to Dirichlet forms on U := L2(g) for
a a-finite complete measure space (E, B, g). Let (£,V(£)) be a symmetric
Dirichlet form in L2(g). We shall study (1.6.1) for

B=Bd {g:\d<a}
where > 0 is a fixed function in L2(g). In this case

WIU* = sup \g(gf)\ = p(P\I).
\a\<o
In particular, if g is finite we may take ¢ — 1 such that g(d\d\) = ||/|]i.
The following result is taken from [Wang (2002a)].

Theorem 1.6.3. Letro > 0. If aess(—L) C [r~00), then for any ¢ £
L2(g) with ¢p> 0 g-a.e. there exists /3 : (ro,00) —(0, oo) such that

PU2) <r£(f,f) +t3{r)gNe\i\f, r>r0 f£ T (1.6.2)

When ro = 0, the inequality (1.6.2) is called the super Poincare inequal-
ity for o= 1, and the intrinsic super Poincare inequality if ¢bis the ground
state of L, i.e. the positive unit eigenfunction of infa(—L). Of course, the
ground state might not exist.

According to Theorem 1.6.1, to prove that (1.6.2) implies aess(—) C
[lu\ 00), we need to verify that PrBd is relatively compact for some t > 0.
To this end, we assume that Pt has a density pt(x, y) with respect to g. The
following theorem is due to [Wang (2000b)] and [Gong and Wang (2002)].
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Theorem 1.6.4. Assume thatfor some t > 0 the operator Pt has a density
Pt(x,y) with respect to p, i.e.

Ptf = [ Pt(-y)f(y)n(dy)

holds in L2(p). Then for any positive ¢ G L2(p) and /3 : (ro,00) —
(0,00), (1.6.2) implies aess(—L) ¢ [eg” oo).

Remark 1.6.1. The assumption on the existence of density in Theorem
1.6.4 can be replaced by the existence of asymptotic density: a linear op-
erator is said to have asymptotic density w.r.t. p if there exists a sequence
of linear operators {Pn} having densities w.r.t. p such that \Pn —P L% —+0
asn —+00. A fact is that any compact operator has asymptotic density.
See 83.1.3 in [Wang (2005a)] for details.

Due to this Remark, we have the following consequences.

Corollary 1.6.5. Assume that Pt has asymptotic density for some t > 0.
Then the following are equivalent:

(1) There exist o> 0 in L2(p) and some /3 : (ro,00) — (0,00) such that
(1.6.2) holds.

(2) For any o> 0 in L2(p), there exists (3 : (ro,00) —>(0,00) such that
(1.6.2) holds.

(3) (Tess(-L) C [rg 1,00).

Corollary 1.6.6. The following statements are equivalent to each other:

(1) Pt is compact for some/any t > 0.

(2) Pt has asymptotic density for some t > 0 and there exist ¢ > 0 in
L2(p) and some /3 :(0,00) -> (0,00) such that (1.6.2) holds for ro= 0.

(3) Pt has asymptotic density for any t > 0, and for any ¢ > 0 in L2(p)
there exists 3 : (0,00) —» (0,00) such that (1.6.2) holds for ro = 0.

(4) aess(—) = 0.

As a conclusion of this section, we present the following result on (1.6.2)
which can be easily verified by splitting arguments.

Proposition 1.6.7. Letro > 0. If (1.6.2) holdsfor some positive ¢ G L2(p)
and some 3 : (ro,00) — (0,00), then for any ¢ > 0 such that ¢ G L2{p)
there exists /3 : (ro, ooy —(0,00) such that

M /2) < rE(f,)+i3(Np(4>\\)2, f GV(£),r > rom



42 Analysis for Diffusion Processes on Riemannian Manifolds

1.6.2 Exponential decay in the tail norm

Let P be a bounded linear operator on L2(p). For any t,¢ > 0 with
€ L2(p) we have

Jim sup [I((PHKIp/I>fvHIz= Jim sup p((\PT\- sich)+2) V2

R~/ Th <] 1/la<l

So, the above limits are independent of the choices of pand ip. We call the
limit tail norm of P, and denote it by [IP]]¢ -

Theorem 1.6.8. Letro > 0 befixed. Then

(1) (1.6.2) implies ||Pt||r < e_t/r° for all t> 0.
(2) 1f\Ptj|e < e_t/r° holds for some t > 0, then for any strictly positive
€ L2(p) there exists 3: (ro,00) —>(0, 00) such that (1.6.2) holds.

Corollary 1.6.9. The following statements are equivalent to each other:

(1) (1.6.2) holdsfor ro —0, some positive 06 L2(p) and some (3 : (0, 00) —
(0, 00).

(2) ||IPt|lr = Ofor allt > 0.

(3) ||Pt||r = Ofor some t > 0.

1.6.3 The F-Sobolev inequality

Let F e C(0, 00) be an increasing function such that supre(01| |[rF(r)| < oo

and F(oo) := limr >0F(r) = o0o. We say that the F-Sobolev inequality
holds if there exist two constants C\ > 0, Ci > 0 such that
m(/2P (/12)) < Cif(/,]) +c2, fe V(£), p(f2) = 1. (1.6.3)

In particular, if F = log, we call (1.6.3) the (defective when C2 f- 0) log-
Sobolev inequality. We will provide a correspondence between (1.6.3) and

M(/2) < rE(f,f) +/3{r)p{\f\)2, r>0,feV{E). (1.6.4)
Theorem 1.6.10. Let (E,V (£)) be a Dirichlet form on L2(p).

(1) If the F-Sobolev inequality (1.6.3) holds with F > 0, then (1.6.4) holds
with fi(r) = c1F - 1(c2(2 + r--1)) for some ci,c2 > 0, where P _1(r) =
inf{s > 0:F(s) >r} and inf0 := oo.

(2) If (1.6.4) holds, then (1.6.3) holds with

F(r)=C~ } £(et)dt - c2(e)
r Jo
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for any e € (0,1) and some Ci(e),c2(e) > 0, where
O=38G )~ >0
The following is a direct consequence of Theorems 1.6.10.

Corollary 1.6.11. Assume that (£,D(£)) is a Dirichlet form.

(1) Let 6 > 0. Then (1.6.3) holds with F(r) = [log(l + r)]5 if and only if
(1.6.4) holds with f3(r) = exp[c(l + r~x/ &\ for some ¢ > 0.

(2) Letp > 0. Then (1.6.3) holds with F(r) = r2/p if and only if (1.6.4)
holds with /3(r) = c(l + r~p/2) for some ¢ > 0. They are all equivalent
to the Nash inequality

p(f2) < d + QE(f,/)pl(2+p), | e V(E),MI/I) = 1

for some c\,c2 > 0, and hence also to the classical Sobolev inequality if
p>2

\W\\Ip/(p-2) < cim(/2) + c2£(f, /), [ GV{E)
for some c\,c2> 0.

1.6.4 Weak Poincare inequality

Let (H, (-, *) be a real Hilbert space and (L, T>{L)) a linear operator gener-
ating a Co-contraction semigroup Pt. Let £(/, g) := (g,Lf) for/, g e V{L).
The following inequality is called the weak Poincare inequality:

W2 <a(r)£(f,f)+rA>(f), feV(L),r> 0, (16.5)

where a is a nonnegative and decreasing function on (0,00), and ® : H —»
[0,00] satisfies d(c/) = c2d(/) for all c€ Mand / 6 EL

Corresponding to the equivalence of the Poincare inequality and the
existence of spectral gap, the weak Poincare inequality describes a “weak
spectral gap” property. More precisely, for a conservative Dirichlet form
(£,V{£)) on L2{p) and ®(/) := ||/||*, (1.6.5) with W := {/ € L2(p) :
p(f) = O} is equivalent to Kusuoka-Aida’s “weak spectral gap property”
(WSGP for short, see [Aida (1998)]): for any sequence {/,,} C T){£) such
that p(f2) < 1,p(fn) = 0, and £(fn,fn) —+0 as n —00, we have /,, =0
in probability.

Proposition 1.6.12. Let (E,T>(£)) be a conservative Dirichlet form on
L2(p) w.r.t. the probability space (E,B,p). Let H := {/ GL2{p) : p{f) =
0}. Then WSGP s equivalent to (1.6.5) for some a and ®(/) := LJLIA.
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The next result indicates that the weak Poincare inequality together
with the defective Poincare inequality imply the Poincare inequality.

Proposition 1.6.13. Assume that {£,£>{£)) be a Dirichlet form on L2(p).
Let H be either L2(p), or the orthogonal complement of constants when p
is a probability measure and (£, T>{£)) is conservative. Assume that there
exist four constants Ci,C2,C{, C2 > 0 such that

ti(f2) < C1E(f,f) + C2\W\I  f e V()
and
P(/2) < CLE(f, f)+ C2\\\lo, f € V{£)f|H
hold.

(1) /M1l = L2(p) then C2C2 < 1 implies
p(f2)< 2(Cltf~ g(/,/), feV(E).
1 —a 0202

(2) Let \i be a probability measure, £ be conservative and N = {/ €
L2(p), p(f) = o} Ifc = i(l + >+ yJ{C2+ 1+ C')C") < 1 then
the Poincare inequality

M/2) <<?£(/, 4+ M/)2, /leo g (1.6.6)
holds for C = (Ci + C()/(1- c).

Now, let us describe the convergence rate of Pt by using (1.6.5).
Theorem 1.6.14. Assume that (1.6.5) holds. Then

WPt\2 < inf {r sup ®(P8) +exp[-2f/a(r)]||/||2 1.6.7
r>°i 89[0',3t] (PE) pL (M1 l (1.6.7)

holds for t > 0,/ € £>(//). Consequently, if d(Pr/) < ®(/) for anyt > 0
and f € W, then

urn2<m m +W W, *>0,/€v(), (1.6.8)

where £(t) :=inf{r > 0: a(r) logr < t} fort > 0. In particular, £(t) 40
as1100.
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The following is a converse result of Theorem 1.6.14, which says that
at least when L is normal a convergence rate of Pt also implies the weak
Poincare inequality.

Theorem 1.6.15. Assume that L is normal, i.e. LL* = L*L. If there
exist ® : H —[0,00] and decreasing f : [0,00) -4 (0,00) such that ®(c/) =
c2d (/) forcGR and f 6 H,E(f) j.O astf oo, and

\\Ptff t>o0,feVv(L), (1.6.9
then (1.6.5) holds with ®= @ and

a(r) = 2r si'%—SE_l(sexp[l —s/rl), (1.6.10)

where £- 1(f) := inf{r > 0 : £(r) < t}. If in particular (1.6.9) holds for
£(t) = exp[—St] for some 6 > 0, then the Poincare inequality (1.6.6) holds
for C =2/5 and all f € V(L) with (/) < oo.

Finally, we present an analogue of Theorem 1.6.15 for a class of operators
L, which are not necessarily normal, but are such that

£(Ptf,Ptf)<h(t)E(f,f), t>0,feV(L) (1.6.12)

for some positive h € C[0, 00). It is well-known that (1.6.11) holds for h = 1
provided L is self-adjoint. Moreover, it also holds for diffusion processes
under certain curvature condition (see Theorem 2.3.1(2) below).

Theorem 1.6.16. Assume that (1.6.11) holds. Then (1.6.9) implies (1.6.5)
with # = & and

a h(s)ds, r > 0.

1.6.5 Equivalence of irreducibility and weak Poincare in-
equality

Let (£,P,p) be a crfinite measure space. A Dirichlet form (£, V(£)) on
L2(p) is called non-conservative if either 1 (f T>{£) or 5(1,1) > 0, while
it is called irreducible if / € F,(5) with £{f,f) = O implies / = 0. We
shall prove that the irreducibility is equivalent to the validity of the weak
Poincare inequality of type

p(f2)<a(r)£(f,f) + r\\\OOM\A\D2, r >0,/ € V{E). (1.6.12)

Here, the L1-norm appears in the right-hand side since in this case fi is
allowed to be infinite and thus the L°°-norm is no longer larger than the
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L2-norm. Of course, the L'-norm can be dropped from (1.6.12) when fj, is
finite.

Theorem 1.6.17. A non-conservative Dirichlet form (£,D(£)) is irre-
ducible if and only if there exists a : (0,00) — (0,00) such that (1.6.12)
holds. Consequently, for any symmetric (sub-) Markov semigroup Pt on
L2(iu), |.Pt/]]2 =0 for any f G L2(p) ast — 00 if and only if

lim sup |[P//112 = 0.

*aco |I/IIiV | /] U<i
Proof, (a) Let Pt be the associated semigroup of (£,V(E)). Then
(E,£>(E)) is irreducible if and only if p((Ptf)2) —0 as t — 00 for any
[ € L2(/i). On the other hand, by Theorem 2.1 in [Rockner and Wang
(2001)] with &(/) = H/If V II/H, (1.6.12) holds for some a if and only if

lim sup p((Ptf)2) = 0.
t K&imiivii/iu<i
So, the second assertion follows from the first one.
(b) Let/ G £>(E) with£(/,/) = 0. Foranye > Oletfe= (|/| —)+ /1L
We have £(fe,fe) =0 and by the Schwarz inequality

mli<p(f2p(\f\>s)<"-.

So, applying (1.6.12) to fe we obtain p(f2) < r(1+£~2p(\f\)2) for all r > 0.
This implies f£= 0 for all e > 0 and thus, / = Q.

(c) Now, let (E£,£>(E)) be irreducible, we claim that (1.6.12) holds for
some function a : (0,00) — (0,00). Otherwise, there exist some r > 0 and
a sequence {fn}c P(£) such that

1= m(n) > rig(fn,fn) +A(/n||l V|, ll00)2, n> 1 (16.13)

Since £(|/n|, |/,,]) < £(/n,/n)5we may and do assume that /,, > 0 for all
n > 1. Since {/,.} is bounded both in L2(fi) and LI(p), there exist two
functions / G L2(p),f G L1(p) and a subsequence {fnk} such that f,,k
converges weakly to / in L2¢j) and / in L1(j.) respectively. Obviously,
M(/5) = V-ifa) for all 9 € L2(p) ML°°(p), so that / = /.

Let Pt be the (sub-) Markov semigroup and (L,V(L)) the generator
associated to (£, V(£)). Then Ptf GV(L) for any t > 0. By the symmetry
of Pt and the weak convergence of {fnk} to / in L2(p), we have

Aigyp((Ptfnk)g) = ligy p(fnkPtg) = h(fPtg) = h((Ptf)g), g€ L2(p).
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This implies
lim £{Ptfnk,g) = -1im n{{Ptfnk)Lg)
fcto0

fc-»00 g 14)

= -tiNef)Lg) = £{Ptf, 9), 9€ V{L).

Moreover, due to (1.6.13) and the symmetry of £,
acI_irK1;10 £(Ptfnk,g)2< KL% £{Ptfnk,Ptfnk)£{g,0)
< lerpo £(fnkdnk)£(g,9) = O.

Combining this with (1.6.14) we conclude that £{Ptf, Ptf) = Oforall t > 0.
Thus, by the irreducibility, Ptf = 0 holds for all t > 0. This implies / = 0
by the strong continuity of Pt in b2(1). Since (1.6.13) implies /,, < r-1/2,
by the weak convergence of {fnk}to / = 0 in L1(fi) we obtain

lim Kfnk) <r~2/2 lim p(/nJ = 0.
A0 K—»CD

This contradicts to the assumption that p (/2) = 1for all n > 1. Therefore,
(1.6.12) holds for some function a : (0, 00) —¥ (0, 00). O






Chapter 2

Diffusion Processes on Riemannian
Manifolds without Boundary

In this chapter we aim to study the diffusion semigroup on Riemannian
manifolds by using Bakry-Emery’s curvature condition. By establishing the
asymptotic formulae for the curvature operator, various equivalent semi-
group inequalities and applications are presented for the curvature lower
bound condition. Transportation-cost inequalities, functional inequalities
for curvature unbounded below, and intrinsic Harnack ultracontractivity on
non-compact manifolds are also investigated. The main tools of the study
are the Ito formula for SDEs on Riemannian manifolds and the coupling
method.

2.1 Brownian motion with drift

Let M be a complete connected Riemannian manifold of dimension d, and
let Zbea Cl-smooth vector field on M. We will study the diffusion process
generated by L := A +Z. To this end, we first construct the corresponding
horizontal diffusion process generated by fo(m) + Hz on 0{M) by solving
the Stratonovich st(()jchastic differential equation (SDE)

dut =y/2~ Hei(ut) odB\ + Hz (u4df, u0=wn € O(M),
2=1
where Bt := (Bj, ..., Bf) is the d-dimensional Brownian motion on a com-
plete filtered probability space (fl, {.Ft}t>0,P). Since Hz is C1, it is well
known that (see e.g. [lkeda and Watanabe (1989); Elworthy (1982)]) the
equation has a unique solution up to the life time ( := limMQO(n, where
(n:=inf{t > 0:p(pu, put) >n}, n>1.

Let Xt = put- Then Xt solves the equation

dXt= V2utodBt + Z(Xt)dt, Xg=Xx :=puo (2.1.1)

49
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up to the life time (. By the Ito formula, for any / € Cq(M),
f(Xt)-f(x)- f Lf(Xs)ds=V2 f\u:1VnXs),dBs)
Jo Jo

is a martingale up to the life time  that is, Xt is the diffusion process
generated by L, and we call it the L-diffusion process. When Z —0, then
Xt := Xt/2is generated by ~[], and is called the Brownian motion on M.

Throughout the book except §2.8 where the intrinsic ultracontractiv-
ity is considered, we only consider non-explosive (i.e. £ = o0o) diffusion
processes. In this case

Ptf(x) := Exf(Xt), x £ M,t >0,/ € Bb(M)

gives rise to a Markov semigroup {Pt}t>0 on Bb(M), which is called the
diffusion semigroup generated by L. Here and in what follows, Ex (resp.
Px) stands for the expectation (resp. probability) taken for the underlying
process starting from point x. Below we present a criterion for the non-
explosion.

Theorem 2.1.1. Let ip€ (7(0, 00) be non-negative such that Lp0 < ipopQ
holds outside cut(o). If

dr = o0, (2.1.2)

then the diffusion process generated by L is non-explosive.

Proof. Let
o pt r n

dtJ exp —J ip(s)ds dr-.go pO.
It is easy to see that Lf < 1 holds outside cut(o). Then, by (2.1.1) and
Kendall’s Ito formula for the radial part (see [Kendall (1987)]),

df(Xt) < V2(ufIXf(Xt), dBt) + Lf{Xt)dt

<y/2(ufIXf(Xt),dBt)+dt

holds up to the life time (,. In particular, if Xg= x 6 M, then
g{n)P(Cn <t)< Ef(XtA(N) < /(*) + =

Since g{n) —00 as n —00, this implies that

. A w1
P(C <t)< nI|_r>rgoP(C,,<t)< lim Q)\% 1=0,t>0.

n—00

Therefore, P(* = 00) = 1 O



Diffusion Processes on Riemannian Manifolds without Boundary 51

As a consequence of Theorem 2.1.1, the following result includes two
explicit curvature conditions for the non-explosion, see [Hsu (2002a, 2003);
March (1986)] for the study of the non-explosion of the Brownian motion
and relations to the Dirichlet problem at infinity. Let

Ricz (X, Y) = Ric(X,Y) - (VXZY), X,Y £ TXM,x £ M.

For any two-tensor T and any function /, we write T > / if T(X,X) >
/|X 2 holds for X £ TM.

Corollary 2.1.2. The diffusion process is non-explosive in each of the fol-
lowing situations:

(o) There exist non-negative functions <p,if £ C(0,00) such that (2.1.2)
holds, Ric > —ip(po), and

(Z,Vp0) + y/(d- Dtp(po) coth (vV (Po)/(d- 1)p0) < ipop0

holds outside cut(o). In particular, it is the case if Ric > —(l +
Po) I°g2(e + Po) and (Z,Xpa) < c(l + Po)log(e + Po) outside cut(o)
hold.

(b) There exists a non-negative h £ C([0, cto)) such that Ricz > —h opa
and (2.1.2) holds for if(s) :=f° h(r)dr. In particular, it is the case if
Ricz > —elog(e + po) holds for some constant ¢ > 0.

Proof. The first assertion follows from the Laplacian comparison theo-
rem, Theorem 1.1.10, and Theorem 2.1.1. To prove the second assertion,
let x cut(o) such that pO(x) >0, and let 7 : [0, pO{x)\ —M be the unique
minimal geodesic from o to x. For simplicity, we will write pa= p0{x). Let
n:= (ul ..., ud) £ Ox(M) such that ud = jipo), and let {Ji}fZ1 be Jacobi
fields along 7 such that Jj(0) = 0and Ji(p0) = ur,1 <i < d —1. By the
second variational formula Theorem 1.1.8 we have

Ape = E Ov 7Jii2- (m Ji)rdi))(s)ds.
i=1J°

Let Ui be the constant vector field along 7 such that Ui(p0) = LL, and let
f(s) = 1N By the index lemma (Lemma 1.1.11) for X{ = fUi, we
obtain

Apo <) ((d- 1)(/)2- /2Ric(7,7)) (s)ds.
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On the other hand,

@;bf\{-fz(r 7AHY b

{2ff'(Z 07,7) + [ 2(V-yZ07,7)}(s)ds.
Therefore, there exists a constant C > 0 such that
LPo<C+ — -+ I h(s)ds =: ¢(p0). (2.1.3)
Po Jo

It is easy to see that (2.1.2) holds for ip(s) J@h(r)dr if and only if it
holds for ip in place of ip. Then the desired assertion follows from Theorem
2.1.1. o

Since L is elliptic, according to the Malliavin calculus, for any / G
Bb(M), P.f is smooth on (0,00) x M, see [Malliavin (1997); Nualart (1995)].

Theorem 2.1.3. Forany f ¢ Bs{M), the backward Kolmogorov equation
Etp tf = LPtf, t>0 (2.1.9)

holds. If moreover f G C2(M) such that Lf is bounded, there also holds
the forward Kolmogorov equation

jtPtf = PtLf, t>0. (2.1.5)

To prove this theorem, we will make use of the following simple lemma
concerning the exit time. For r > 0, let

oy = inf{f > 0: Xt £ B(X0,n},

where forx GM andr > 0, B{x, r) := {y GM :p{x,y) <r} isthe geodesic
ball at x with radius r.

Lemma 2.1.4. For any x GM and r > 0, there exists a constant ¢ > 0
such that Px(ar <t)< e~cr  holds for t G (0,1].

Proof. There exists a constant ¢\ > 0 such that Lp2 < c\ holds on
B(x, r) outside the cut-locus of x. Let 7t := px{Xt), t > 0. By Kendall’s Ito
formula [Kendall (1987)], there exists a one-dimensional Brownian motion
bt such that

d72< 2A427tdbt 4-ci df, t<ay.
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Thus, for fixedt > 0and 5> 0,

Z’s := expf??sz— -SCis - 4/523E Y;HU]', s < ar

is a supermartingale. Therefore,

Plov<t) =P T>>a5)f]7m> r}]
<P \lﬂiaz[(_l ZSA(JI’ N A6r2/t—6ci—462r2/t

<exp (c\5 —-{dr2—462r2)

The proof is completed by taking 6 := 1/8. O

Proof. [Proof of Theorem 2.1.3] For fixed x G M, let h G Co°(M) such
that livo (x,i) —1- By the Ito formula,

d(hPt-sf)(xs) = dms+ {L(hPt_s/)+ h”pt,sf}(xs)ds, se [of]

holds for martingale dMs := y/2 (V(/iPt_s/)(Xs), usdBs). Thus,

limEx{hPt_sf){Xs) - Ptf{x)
s|0 S

= E1 jf bl kP*-/) + (2.1.6)

{ N /-"~P,[}(*)e
On the other hand, by Lemma 2.1.4,

|E*(/iPt_s/)(X5) - Ptf(x)| < ||/(ft - D)|]jocP“(ai < €)
<[|/(/1-1)||0e-d/8

holds for some constant ¢ > 0 and s G (0,1]. Therefore, (2.1.4) follows from
(2.16).

Next, if / GC2(M) such that Lf is bounded, then by the Ito formula,
f{Xt) —{X0) —fo Lf(Xs)ds is a martingale. So,

Ptf - f+ [ PsLfds, s=>0.

This implies (2.1.5). O
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2.2 Formulae for VPt and Ric?

The derivative formula of Pt is known as Bismut-Elworthy-Li formula [Bis-
mut (1984); Elworthy and Li (1994)]. The formula we are introducing is a
more general version due to Thalmaier [Thalmaier (1997)]. Let us introduce
the WI . Kd-valued process {Qt}t>0>which solves the ordinary differential
equation

-Qt = -Ricf(ut)Qt, Q0 =1, (2.2.1)
where 1 is the horizontal L-diffusion process with puo = x, and Ricf(iq)
is a random variable on such that

= Kicziutb™ta), a,b &Rd. (2.2.2)

Since Ricf is continuous and the process is non-explosive, this equation has
a unique solution. In particular, let K ¢ C(M) be such that Ric® > K,
then

ilQtl < exp t>0, (2.2.3)

where || «| is the operator norm on M.

Theorem 2.2.1. Lett> 0,x G M and D be a compact domain such that
X G D°, the interior of D. Let td be the first hitting time of Xt to dD,
where x ¢ = X. Let F G c2([0,f] x D) satisfy the heat equation

dsF(-,x)(s) = LF(s,-)(x), s G [0]a: G D. (2.2.4)

Then for any adapted absolutely continuous LLk~valued process h such that
h(0) = 0, h(s) = 1for s > t/ATD and E (/Ch'(s)2ds)a < oo for some a >
there holds

UolVF(t,-)(*) = "=E~F(0,XtATD)j\'(s)Q ;dB X
Proof. Let Fs = F(s, ¢). By Theorem 2.1.3 and Theorem 1.1.4, we have

- (dFs) = dLFS= d{—d*dFs + (dFS)(2)}

= Ai(dFs) + Vz (dFs) + (V.Z, VFS) (2-25)
= (Di + Vz)(dFs)-Ricz (-, VFs).

On the other hand, by the Itd formula,

d(d/)(Xs)= (pi + Vz)(df)(Xs)ds + V2XUsdBs(df)(Xs), f c C2(M).
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Combining this with (2.2.5), we obtain
d(dFt_s)(Xs) = V2VWkdB, (dFt-s)(Xs) +Ricz (-,VFt_s(Xs))dS. (2.2.6)

Now, for any a ¢ Md, letting vs = usQsa G TxsM, s G [0, ], it follows from
(2.2.6) and (2.2.1) that

d(XFt- s{Xs),usQsa) = V2RessFt_s(usdBs,usQsa)(Xs) (2.2.7)
is a local martingale. Moreover, by the Ito formula we have
dFt_s{Xs) = V2(XPt- sFO{Xs),usdBs),

so that

Fo(Xt\TD) —Ft (VFt—sATd ( X SATO) 5Usd-Bs) »

Therefore, noting that h'(s) = 0 for s >t J1p, we have
1 +=E~Fo(XtATD)j (h\s)Qsa,dBs)}

=e| j\vPt-sFO(X.),v.)(h - I),(s)ds]|
= E{(XFt_s(Xs),vs)(h-1)(s)}\0 (2.2.8)

-E J[O (h-1)(s)d(XFt,,s(Xs),vs)
= (VFt,wa),

where the last step follows from the fact that (h—I)(s)d(V.Ft_s(Xs), vs) is
a martingale for s 6 [0, t] according to (2.2.7) and our assumption on h. O

In [Thalmaier and Wang (1998)] some explicit processes h required in
Theorem 2.2.1 have been constructed according to the geometry on D,
from which one obtains explicit gradient estimates of Ptf only using local
geometry of the manifold. For instance, we have the following result.

Corollary 2.2.2. Let Ricz > K for some K ¢ C(M). Forany x ¢ M let
k(x)=s u p + |Z]). Then there exists a constant ¢ > 0 such that

WMboexp[c(l + K)]

< t>0,f€B b(M).
IVPt/] Vent b(M)



56 Analysis for Diffusion Processes on Riemannian Manifolds

Proof. By the semigroup property and the contraction of Pt, it suffices
to prove for t < 1. We will apply Theorem 221 to D = B(x, 1). Let
[ = cos(7rpx/2). Let Xg= x and

T(s)= JF r 2(Xr)dr, s<TD
o

and set T(s) = oc for s > Tp. Let
r(s)=inf{r>0: T(r) >s}, s>0.

Thenr oT(s) =T or(s) = s fors < Since / < 1, we have T(s) >s
and ¢ (s) <Ss. Moreover,

t,(s) =t~ ) =/2" w)’ s- Td (2'29)
Define

1 <-sAr(t)

h(s) =1- - / r 2(Xr)dr.
t Jo

Then h meets the requirement of Theorem 2.2.1, and
/uT(t)

1 J—r(t)
J h'(s)2ds = p f~A{Xs)ds

1 [N 1 (2:2.10
rNo
=£1 r 2(xs)dT(s) = £ J r 2(xTs))d5

It is easy to see from the Ito formula that s H X T(S) is generated by f 2L,
which is non-explosive on B(x, 1). So, it follows from Kendall’s Ito formula
that

dr 2(XT) < dMs + (f2Lf~2)(XT{s))ds (2.2.11)

holds for some local martingale Ms. By Theorem 1.1.10 and the definition
of K, there exists a constant ¢\ > 0 such that

(sin[imx/2])Lpx < ci(l + k(x))
holds on B(x, 1). Thus, there exists a constant @ > 0 such that
foLf~2= -2f-"Lf +6/-2[V/[2<c2(l+ ))T 2
holds on B(x, 1). Therefore, (2.2.10) and (2.2.11) yield

7°T(1) 1 ft

E*J  hi(s)2ds < A jf E*f-2(XT{9)ds

<\ f eCIH)s < 7 e ca(l+Kow», t G (0,1]
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for some constant c3> 0. Let v £ TXM such that |} = 1 Since by (2.2.3)
and Ricz > —«(x) on B(x, 1)

Kl < |Pjeck(x), s<r(t),t< 1
holds for vs := usQsu0 1u, it follows from Theorem 2.2.1 that

1/2 —AebHL+K(x)
[((VPt/(*),1;)] < ece(x) (e 3 {\h'(sYds < Vi
[
holds for some constant ¢4 > 0 and all t £ (0,1]. This completes the proof.
O

Next, we present derivative formulae of Pt without using hitting times,
which are essentially due to Bismut [Bismut (1984)] and Elworthy-Li [El-
worthy and Li (1994)].

Theorem 2.2.3. Assume that Lp2 < c(l + p2) holds outside cut(o) for
some constant ¢ > 0. If

Ricz > d - 16e (c+16)tPo (2.2.12)

holds for some constant d £ K, thenfor any h £ Cr([0, t]) such that h{0) =
o,M*) = i,
UolVPtf(x)=E x{uf1Vf(Xt)}

1 r P i (2.2.13)
= — E*I[f(Xt)J h'(s)Q;dBs]j

holds for f £ CI(M),x € M and v 6 TXM. In particular, taking h(s) =
1AT,

UAVPEHX) = JAE*[f{Xt)J QIdP,}.

Proof. By Kendall’s Ito formula [Kendall (1987)],
dPo(Xt)2 < 2V2p0(Xt)dbt + c(l + pO(Xt)2)dt

holds for some one-dimensional Brownian motion bt. Letting A= 16+ c,
we obtain

d{e-Ap0("t)2} < 2V2p0(Xt)e-Xtdbt + ce~Xtdt - lte~xtPo(Xt)2dt.
Therefore, letting C(t,x) = cpo(x)2+ct™
EXe 16/aA*exp[-As]p0(Xs)2ds < (j™ x)EXe2"2 P°(X A exp[-As]db,
< C(t, X) (EXe16/0J%" exp[-2As]p0(. X)) s\ V2
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This implies that
Exe16/0JX" exp[-As]p,,(Xs)ds < C(t,x)2.

Letting n-A- 0o, we arrive at

lgxe16exp[-At] f* pO(X 3)2ds <

Combining this with (2.2.12) we conclude that for K := d —16e_(c+16)40>
one has Ricz > K and

sup ExefoK (Xs)ds < oo, K ¢cM is compact. (2.2.14)
XekK

Therefore, due to (2.2.1) and Theorem A.6(i) in [Elworthy (1982)] (see also
Theorems 3.1, 9.1 in [Li, X.-M. (1994)]), we have sups€P/] ||VPe/|joo < oo.
Then the first equality in (2.2.13) follows from (2.2.7) by taking F(x,s) =
(V-Pt_s/(x), vs) for vs = usQsu”v, v £ TXM. Next, by the first equality in
(2.2.13) and (2.2.14), we obtain

E* su VPf s/(Xs),usd < [|[V/|[ooEVoK'” ) ds <00.
s€[(£)t]|( _s/(X's),usq < |[V/[] )

So, for the above vs it follows from (2.2.7) that {VPt-sf(Xs),vs),s £ [0, f]
is a uniformly integrable martingale, and thus, (2.2.8) holds for t in place of
tAtd and any h £ C1([0, t]) with h(0) = 0, h(t) = 1 Therefore, the second
equality in (2.2.13) holds. O

According to (2.1.3) and the Laplacian comparison theorem, Theorem
1.1.10, the assumption Lp2 < c(l + p2) in Theorem 2.2.3 is ensured by
the assumption

(A2.2.1) 3C > 0 such that either Ric* > —€, or Ric > —€(1 + p2) and
(Z, Vp0) < C(1 + po).

The above two theorems describe the gradient of Pt by using the curva-
ture Ricz- Below we present characterizations of Ricz using the gradient
of Pt.

Theorem 2.2.4. Letx £ M and X £ TXM with |X| = 1. Letf £ Cq (M)
such that V/(x) = X and Hess/(k) = 0, and let fn = n+f forn > 1
Then:

Pt\V fnx)-\X P tf\P(x)

(1) For anyp >0, Ricz(X, X) = lim ot
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(2) Foranyp > 1,
ivp,/1")(*
sp-nt - VR
S 2 pNe/,2- (Ptfn/P)P}
im g A(p —)i )(*)m
(3) Ric.z(X,JQ r?e"al fo eacli of the following limits:

wer(x,x)

!I%Erﬁ , [(Ptm){Pt(/nlog/n) - (Pt/,)logPt/n}-f|V Pt/|2(x),
™ 1™  [4iP«|V/|2+ (P /2)logP jf - Pt{fl log/ 2}] (x).
Proof. Since V/(x) = X and Hess/(x) = 0, by the Bochner-Weitzenbock
formula Theorem 1.1.4,
r2(/,/)(x) = ’1‘L|V/|2(x) - (VI VLI)(x) = Ricz(X,X).  (2.2.15)

Therefore, the first assertion follows from the Kolmogorov equation Theo-
rem 2.1.3 and the Taylor expansions at point x (recall that Hess/(x) = 0):

PIV/p= [VI[P+tLV/p+ o) = [V/IP+ ||V [r2L|V/]2+ 0(f),

IVPU|p = [VIIp+pt|V Ir2(VL/, V1) + o(t)

for small t > 0.
Next, let fn —n + f, which is positive for large n. We have, for small

t > 0 and large n,
Ptfn - (Ptfn/pr =t{Lf@- p/2(p- 1)/pP /2/p)
+ £ {1?Sl - p(p- 1)/2p-2)/p(L/2p)2- pflr-W’ L "tf’) +0(t2)

4P~ Dt|VA2+ 4(p- Df2
P

+ 8P *P D201, VLl +120(n_1) + o(t2),

r2(/,1)

where 0(t2) depends on n but O(n *) is independent of t such that nO(n J)
is bounded for n > 1 Combining this with (2.2.15) and

[VP(/|2= |V /|2+ 2t(V/, VL/) + o(f), (2.2.16)
we prove the first equality in (2). Similarly, the second equality follows
since

PtV/[2= |V/|2+ fL|V /]2 + off). (2.2.17)
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Finally, (3) can be proved by combining (2.2.16) and (2.2.17) with the
following two asymptotic formulae respectively:

(Ptfn){Pt(fn log/,,) - (Ptfn) log Ptfn}
= (fn +£0(1) + o(t))|t[F(/,,log/n) - (1 Flog fn)Lfn\

+j [L2{fnlog/,) - (L + log/,)LZ, - fAiLfn)2] + o(t2)}
=W 12+ t2T2(f, /) + 2f2(V/, Vil) + t20(n~2) + o(t2);
and

(Ptfn) log Ptfn ~ pt(fn log f 2)
=t[(L+ log/2)L/2- L(f2log/2)]

+J [fn2(Lf2)2+ L+ logf2)L2f2- L2(f2logf 2}
= 4tV /[2- 42(VL/,V]) - 2f2L|V/|2+ o(t2) + t20(n~1).  n

2.3 Equivalent semigroup inequalities for curvature lower
bound

In this section we aim to provide various equivalent semigroup properties
for the curvature lower bound. Basing on Theorem 2.2.4, we first introduce
equivalent gradient inequalities.

Theorem 2.3.1. Assume (A2.2.1) and letp 6 [l,00) andp = pA 2

Then for any K € C(M) such that K~/p2 — 0 as p0 —¥ 0o, the following

statements are equivalent to each other:

(1) Ricz > K.

(@ \WPtI{x)\v < E"{|V/|IP(Xt)exp[-p/@A(Xs)ds]} holds for t >
0,xeM ,f eCl(M).

(3) Foranyt>0,x € M and positive f e CI(M),

P\ptf2l "Ptf p ~ A < Ex{\VA\2(Xt) [ e-2/ ™ Ne dsl,
yp ~ 1) I Jo )

where when p = 1 the inequality is understood as its limit asp f 1:
Pt{f2logf 2)(x) - (Ptf 2(x)) log Ptf 2(x)

< ABEX{|V /|2(Xt)jf e“2” K(Xr)drds]|.
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(4) Foranyt>0x¢€M and positive f € CI(M),
[VPt/]|2(x)
< PtP - (Air
~ PP~ 1)JIM{(Pt-sf)22~rXs)exp[-2j*K(Xr)dr)})-4s'
where when p = 1 (hence, p = 1), the inequality is understood as its
limit by taking p 4 1¢
[Vp fI2(x) < (Pt(flogf)-(PtH)\0gPtf}(x)
J*(E*{Pt-sf(Xs)exp[-2j°K(Xr)dr}})-4s

Proof. According to the proof of Theorem 2.2.3, < 00
holds for any p,t > 0 and x £ M. So, according to Theorem 2.2.4, we
obtain (1) by applying (2) to / e Cg°(M) such that Hess/(x) = 0O, or
applying (3) to n +f in place of /, or applying (4) to (n+/)2/pwhenp > 1
(resp. n+f when p = 1) in place of /. So, it suffices to show that (1)
implies (2)-(4).

Firstly, (2) follows from (1) according to the first equality in (2.2.13)
and (2.2.1). To prove (3) and (4), let p € (1,2]. By an approximation
argument we assume that / £ C°°(M) and is constant outside a compact
set such that L fp is bounded for any p > 0. In this case, by Theorem 2.1.3,
(2) for p = 1, and the Holder inequality, we obtain at point x that

+ p s(pt-sf 2p)p = p(p- i)Ps{|VPt_s/ 2p|2(Ft_s/ 2T -2}
<p(p- DE*{(Ex*|V/2/p|(Xt_s)e-/o-sK(x Pdr)2(Pt_sf 2P)p- 2(Xs)}
< 4(p" . DExX{(Ex»(V /|2(Xt_s)e~2/0 - *r(*-)dr))

X ((Pt_s/ ™) (P t_s/ 2/P)P-2)(As)}.
Since 2—p e [0,1], by the Jensen inequality
Pt-sfr < (Pt-sf2/p)2-p,
so that by the Markov property,
éfS-Ps(Pt-szIpY < 4(’\-P— -E*{LV /12(Xt)e~21? }
holds for s G [0,t\. This implies (3) by taking integral over [0,£]. Similarly,
NP s(Pt-sf)P=p(p- I)Ps{(Pt-sf)p- 2\VPt-sf\2}
> P(p- N(EJIVPt-,/|(X,)e- fo* (x-)dr)2
Ex(Pt-Sf)2-P(Xs)e~2 K(Xr)dr

> p(p —N)|VPt/|2

~ ExMt-sfA-PtXsNMNfoK&r)N’ S £ [04].
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Integrating over [0, t\ we prove (4). O

When K is constant and » e [1,2], the above equivalences are well
known according to Bakry-Emery and Ledoux (see e.g. [Bakry (1994,1997);
Bakry and Emery (1984); Bakry and Ledoux (1996a); Ledoux (2000)]),
while when p > 2 and K is constant the equivalence of (1) and (2) is first
observed by von Renesse and Sturm in [von Renesse and Strum (2005)].
The present general version of these equivalences appear here for the first
time.

Next, we aim to present equivalent Harnack and cost inequalities for
the curvature lower bound. To this end, let us first introduce two useful
couplings for the diffusion process generated by L, namely, the coupling by
parallel displacement and the coupling by reflection. These couplings were
first introduced by Kendall (see [Kendall (1986)]) by taking independent
coupling in a neighborhood of the cut-locus, and then refined by Cranston
[Cranston (1991)] by taking limit as the neighborhood converges to the
cut-locus. Here, we adopt the formulation of [Wang (2005a)] where these
couplings were constructed by solving SDEs on M x M which are singu-
lar on the cut-locus, see proofs of Theorem 2.1.1 and Proposition 2.5.1 in
[Wang (2005a)] which work also for the slightly more general framework in
Theorem 2.3.2 below (cf. Section 3 in [Arnaudon et al (2006)]).

For x,y e M such that (x,y) ~ cut := {(x',y") e MxM : x' e cut(y")},
let {JJti be Jacobi fields along the minimal geodesic 7 from x to y such
that at x and y {J47 : 1 <r <d—1} is an orthonormal basis. Let

d- 1
Iz(x,y) = “21|{Ji,Ji) + Zp(-,y)(X) + Zp(x,-)(y)-
Moreover, let Pxy : TXM -A TyM be the parallel transform along the
geodesic 7, and let

MXV:TXM -7 TyM; v PX¥W - 2{v,j)(X)-y(y)
be the mirror reflection. Then Pxy and Mxy are smooth outside cut and

D = {(a,x) : x e M}. For convenience, we let Px>x and Mxyx be the
identity for any x e M.

Theorem 2.3.2. Letx oy andT > 0 befixed. LetU: [0, T) xM2—-TM2
be C1-smooth in [0, T) x (cut UD)c.

(1) There exist two Brownian motions Bt and Bt on a complete filtered
probability space (fi, {Jt}t>0)P) such that

I {(Xt,Xt){cut}dBt = 1{(Xt, X4 cut}rt 1P Xt,XtUtdBt
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holds, where Xt with lift . and Xt with lift w, solve the equation

f dXt=y/2utodBt+ Z(Xt)dt, X0=x

\ dXt=V2utodBt+ {Z(Xt)+ U(t,XuXt)I{Xt" ty}dt, Xo =vy.
Moreover,

dp(Xt,Xt) < {lz (Xt,Xt) + (U(t,Xt,Xt),Vp(Xt,-)(Xt))I{x" Xt}}dt.

(2) The first assertion in (1) holds by using MXf Xt to replace Px Xf. In
this case

dp(Xt,Xt)
< 2\/2dbt + {lz (Xt,Xt) + (U(t,Xt,Xt),Xp(Xt,-)(Xt)) {x" Xt]}dt
holds for some one-dimensional Brownian motion bt.

Definition 2.3.1. The couplings in Theorem 2.3.2 (1) and (2) are called the
coupling by parallel displacement and the coupling by reflection respectively.

The coupling by reflection was first introduced by Lindvall and Rogers
[Lindvall and Rogers (1986)], see [Chen and Li (1989)] for more couplings
of diffusions on Md. The next result provides some additional equivalent
statements for Ric* > K for some constant K, where the equivalence of
(1) and (2) is due to [von Renesse and Strum (2005)]. It is easy to see that
(2) is also equivalent to

Wi(pPt,uPt) < Wf(p, o)e-Kt, p,ve V{M),

where pPt e V(M) is defined by (pPt)(A) —p(/Y1a) for measurable set
A. (3) was initiated in [Wang (1997b)] while the equivalences of (1)-(4)
are essentially due to [Wang (2004a, 2010b)], and (7)-(8) are found in
[Bakry et al (2011)]. See Theorem 4.4.2 in Chapter 4 for 7 more equiv-
alent transportation-cost inequalities. Moreover, (12) and (13) are taken
from [Bakry and Ledoux (1996a)], which provide gradient inequalities using
the Gaussian isoperimetric function

lg == &30 D6, where dg(s) = —= [ e~Bdtt, sel.
vZl J—e

Finally, (14) and (15), first presented in [Bakry et al (2012)], are the Har-
nack type inequalities corresponding to (12) and (13) respectively.

Theorem 2.3.3. Letp 6 [l,00) and K e R be constants, and letpt(x,y) be
the heat kernel of Pt w.r.t. a measure p equivalent to the volume measure.
Then the following assertions are equivalent to each other:
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Ricz > K.

For any x,y EM andt >0, Wg(SxPt,SyPt) < p(x,y)e~Kt holds.

For any vi,v2 EM andt > 0, Wg(oiPt,viPt) <W g p 2) * Kt holds.
When p > 1, for any f E B (M),

Kpp{x.y)2
@tf)p(x) < Ptf p(y) exp z(p_pl';’({exzé)_ y  KYEME>O

For any f E Bb(M) with/ > 1,
Ptlogf(x) < log Ptf{y) + X, YEM t> 0.

Whenp > 1 foranyt >0andx,y EM,

P o(p- D2kt - 1).
Foranyt >0 and x,y GM,
Kp(x,y)2
p{dZ) f w ™ -n
Forany0O<s<tandl<aq\ < such that

KL~ 1= 1

gi —1 e2Ks —1’ (23.)

there holds

{Ps(Pt_s/P }« < (Pt/9)*, [/ >0,/ €Bb{M).
Forany0<s<tand0< @€2< Q@ or 2 < g <0 such that (2.3.1)
holds,

{PtD" <{Ps(Pt_sfr}£, f >0,f EBb(M).

|[VPt/|p < e_pKtPt|V/lp, fECI(M),t> 0.
For any t> 0 and positive f E CA(M),

PA2){PI2-(PtI/[")pAZ} < 1- e-2Kt
4(p N2 —1) Yo~ 2K
When p = 1 the inequality reduces to the log-Sobolev inequality

Pt(f2\0gf2) - (P tf 2)logPtf 2 < 2(1- AV /|5
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(11) For anyt > 0 and positive f £
Ivp fl2 < 2K{PtfrV - (Ptf)pA2} (P tf)" +
1~ (pN2)(ph2- 1)(ex - 1)
When p = 1 the inequality reduces to
n2. 2K{Pt(/log/) - (Pt/)logPt/}Pt/
- e2At _ ! ]
(12) Forany f £Bs(M) andt > 0,

IVEt/[22 ~#n{ (AN /))2- (N1bl/))2}

(13) Forany f £ Cj(M) and f > 0,

IG(Ptf) < Pt\jIG{f)2+ — ~"— |V/|2

(14) Forany f € Bo(M) andt >0,

DEY-NX®) N dEY-Abl +P(xy)][e2Kt~:f’ x,yeM.

(15) For any smooth domain A C M and A(r) :={z £ M :p(z, A) <r} for
r>o,

FtIN(M) N ptln(e—tpxy) (V) t~ QX Yy £ M.

Proof. The equivalence of (1), (9) and (10) follows directly from Theorem
2.3.1 with constant K. The proof of (11) implying (1) is the same as that
of Theorem 2.3.1(4) implying (1), while (11) follows from Theorem 2.3.1(4)
since by the Jensen inequality we have

E{(Pt-sf){2~p)\ x s)} < (EPt-sf(Xs) f - p+ = (PJ)(2- p)+.

By Theorem 1.4.1, (3) and (4) are equivalent to (5) and (6) respectively.
Moreover, according to Corollary 1.4.3, we see that (3) implies (4). There-
fore, it remains to prove that (1) is equivalent to (2)/ (2", (1) implies (3),
(4) implies (1), and (10) with p = 1 is equivalent to each of (7) and (8), (1)
is equivalent to (12), (12) is equivalent to (14), (1) implies (13), (13) and
(14) imply (15), and (15) implies (9) with p —1.

(@ (1) is equivalent to (2), (2). By (1) and the index lemma
Theorem 1.1.11, we have lz(x,y) < ~Kp(x,y). So, using the coupling by
parallel displacement and Theorem 2.3.2 with U = 0, we obtain from (1)
that

W?(6xPu 6yPt) < (Ep(Xt,Ti)p)Up < p("y)e~Kt.
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That is, (1) implies (2). Obviously, (2") implies (2). It is also easy to see
that (2) implies (2'), so that they are equivalent. Indeed, let n G C(iq, *2)
such that WE(i>\Pt, v-iPt) = #(pp)Y/p. Then from Proposition 1.3.1 and (2)
we obtain

WE(viPt,v2Pt)p < RA WP{6xPt,6yPt)pTr(dx,dy)
JMxM

<e~pKtW p(vu v2y.

On the other hand, if (2) holds then letting Tok,y be the optimal coupling
for 6xPt and SyPt for the Lp-transportation cost, for / G C{(M) we have

VP < lim ™™ T - HyRexy{dx',dy’)
' y-yXx

(p-i)/p
< lim
YV \IMXM ' PXLY) >
WE(6xPt,6yPt)

p{x,y)
< e-Kt(Pt|V /|p/(p- 1)){p- D/p(@).

Thus, (9) holds, which is equivalent to (1) as mentioned above according
to Theorem 2.3.1.

(b) (9) implies (3). By approximations and the monotone class theo-
rem, we may assume that / € CE(M), inf/ > 0and / is constant outside a
compact set. Givenx coy andt > 0, let 7 : [0,t] -> M be the geodesic from
a to y with length p{x,y). Letting vs = d7s/ds, we have |us| = p(x,y)/t.
Let

_ t(exp[2Ks] - 1)

exp[2Kt\ —1 scot.

Then h(0) = 0, h(t) =t. Let ys = "yh(s)- Define

if(s) = logPs(Pt_sf)p(ys), s GJ[04].
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By (9) with p = 1we have |[VPt/| < e KtPt\Xf\. Combining this with the
Kolmogorov equations, we obtain (simply denote p(x, y) by p)

+ h'(s)(VPs(Pt-sfr,v Hs))}

psip”_sf)Pps{(p- i) ("W r2|VPt-s/[2

\%

-£e-K'h{8)(Pt-a r - 1\VPt- ef\}

ps(pf_s/)PP-{(Pt-~)P((p-DIVIogPt-s/|2
-A(s)e-MVilogPt s/}

__ pK2p2exp[2Ks}
(p —1)(exp[2KT] —1)2° 1)
By integrating over s from O to t, we complete the proof.

(©) (4) implies (1). Letx GM and X GTXM be fixed. Foranyn > 1
we may take / G C*°(M) such that / is constant outside a compact set,
and

1 Vv

VI(x) = X, Hessy(x) =0, / >n. (2.3.2)

Taking jt —exp{—2fVlog/(a;)], we have p(x,"/t) = 2t|Vlog/|(a;) fort G
[O,to], where to > 0 is such that 2to|i?| < fof{x). By (4) with y = "ft, we
obtain

PtOogf){x) < logPt/(7t) + X ~ KL 1/I20k)- *e (**o]-  (2-3.3)

Since LT GCq(M) and Hess/(:r) = 0 implies V|V /|2(:r) = 0, at point x we
have

APt logf\t=o = Llogf = - |Vlog/|2,

It=0 =
dfzTtlog/.t 0 = L2log/

A (M 42 Ne [+2{VEIIVIVM

+A el A 2(VVI2)VID)

L2f (L2 2 g a /). W, £ +4 10
f /2 f /2 /3 /4
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Thus, by Taylor’s expansions,

Pt(\ogf)(x) =\ogf(x)+t{rlLf -\VIogf\2)(x) + jA +0(t2) (2.3.4)

holds for small t > 0. On the other hand, let Nt —Pxr/tV logf(x), where

Px,It is the parallel displacement along the geodesic t 7t. We have
71= —2Nt and VAt A = 0. So,

_ 2(VPtf,Nt)
log-Pt/(7t)|t=0 ptf =0
-j— 2|Vlog/|2,

d2
— logPt/(7t)[t=0 -~ ~ - 2(V({_1ThH, Vog/)

- - WLf, Vlog/) + j2(Vf, Viog/) Lf

+ 4Hessiog/ (V log/, Vlog/)
L2 (Lf)2 (VLI V)

/ /2 /2
V11
A /4

=:b,

where, as in above, the functions take value at point x and we have used
Hessj(x) = 0 in the last step. Thus, we have

logPtfbt) =log/(*) + - 2|Vlog/|2)(x) + ~B + o(t2).
Combining this with (2.3.3) and (2.3.4), we arrive at

al(L|V/P-2(VLIV/)+2gjr)w +o0()

Letting t-*Owe obtain
r2(/,1)(x) ==~V 12(x) - <VL/,,VN(x) > tFIV/]2(x) - ~ (x ).

Denote M2(/, /) by I"'2(/) for simplicity. Since by the Bochner-Weitzenbock
formula and (2.3.2) we have V/(x) = X, f(x) >n and

F2(/, )(x) = Ric(X, X) - (VXZ, X),
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it follows that
Ric(X,X) - (VxZ,X) > K\X\2- LIJn , n>1
This implies (1) by letting n —00.
(d) (10) with p = 1 implies (7) and (8). It suffices to prove for

/ € Cb°(M) such that inf/ > 0 and Lf is bounded. In this case, for any
t >0, let

gs) =1+ {d , Ms) = {Ps(Pt-sf){s)} » , «e (Ot].
Then
1-e22Ks+q(s)-1_Q
2K q'@s)
so that (10) with p = 1 implies

A -Ys)

=Ps(Pt.J)Mog(Ptrsf)r - {Ps(Pt_s/)x}logPs(Pt_s/)%

4 46)2(a) -
Q(s)

1- e~
<220

Therefore, in case (7) one has q'(s) < 0 so that tp'(s) > 0, while in case (8)
one has g'(s) > 0 so that ip'(s) < 0. Hence, the inequalities in (7) and (8)
hold.

(e) (7) or (8) implies (10) with p = 1. We only prove that (7)
implies (10), since (8) implying (10) can be proved in a similar way. Let
gi =2and g2= 2(1 + e) for small e > 0. According to (2.3.1) we take

Wi(p< 5/T-2VPi s/|2}

2Ks  qfs) - 1. _
+ q'(s{ )P s{(Pt-s/)As)- 2|VPt_s/|2} = O.

A {gi -1 (e2Kt-1)"' 1 ' ~2Kt
SE)_ 1 g(l+ 92-1

_ 1 2e(l - e~2Kt) e(l X

—t+ﬁ<bg(l 1+2 )=‘- m°(e)-

So, we obtain from (7) that
0 > lira1{(P»n(P,_n A2<«>)rb - Ptl2}

=P,flogf - (P,f2)logP,f2- 2(1 ™IW P .
Therefore, (10) with p —1 holds.
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(f) (1) is equivalent to (12). As (1) is equivalent to (9) forp = 1,
it implies that Ps|VPt_s/| > eKs\VPtf\. Combining this with the Kol-
mogorov equation, the fact that Igl'g = “ 1 and using the Schwarz in-
equality, we obtain

-AN{PsIG(Pt_,/)}2= -2{Ps/G(Pt_s/)}P5{"(Pt-,/)|VPt_s/|2}
= 2{Ps/G(Pt_s/)}Ps > {P,|VPt_s/|}2 > e2Ks|VPf/|2.

Integrating w.r.t. ds over the interval [0, £], we prove (12).

On the other hand, as observed in [Hino (2002)], using ef in place of f
and letting e — O, it is easy to derive (11) for p = 2 from (12), and (11) is
equivalent to (1) as observed above.

(@) (12) is equivalent to (14). Since oPtf\2= it is
easy to see that (12) is equivalent to

\WV*G °FtP &<>°,

which is obviously equivalent to (14).
(h) (1) is equivalent to (13). Let h(s) = Noting that
Iglg = — and (1) implies

r2(Pt_s/, pt-sf)y >~ |V M/|2+ I Jp 2, s6[01],
we have

£ psd4/c(Pt-s/)2+ h(s)|VPt_s/|2
.» (IGr6 + rG2){Pt-sf)\VPt-sf?+ h{s)T2{Pt-sf) + e-2K‘\VPt-sf\2
3 JIG(Pt-sf)2+ h(S)|VPt_s/|2
1(/g/G)(Pt-s/)V Pt-a/ + fe(s)V|VPf_s/|2)2
S {1G{Pt-sf)2+ h(s)|VPt_s/|2}32
An (MNPESHIVPE I D2+ fe™ fi;/'22
~ y/lc(Pt-,f)2+ h{8)\VPt- af\*
|(/G G)(Pt-s/)VPt-s/ + h(s)VIVPt_,/12]2
8 {IG{Pt-sf)2+ h(S)|VPt_s/|2}3/2
> 0.

Thus, (13) holds.
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On the other hand, as observed in [Bakry and Ledoux (1996a)], using
ef in place of / and letting e —0, we derive (10) from (13), and (10) is
equivalent to (1) as already proved above.

() (13) and (14) imply (15). By (13) we have

IG(Ptf) < Pjaif) +y/WL P*T

Taking / = la for a smooth domain A and noting that  0) = Iq(1) = 0,
we obtain

lg(PAa) < \fh{t)PtIdA-

PtAdAjr) x>
I{Ptlyi(r)) y/uy) ~

This implies
PAa(r) > ®c(p51(Pd?) + ylULy)> r N °-

Combining this with (14) we obtain

PAaf) <AGAglt 10)) + PA ) - PAA(p(XY)e-K'-

() (15) implies (9) for p = 1 For any unit v £ TXM, (15) implies
Ptl A(expx[eu]) - PAa{x) < P4laee K(a(x), e > 0,

where drA := {z :d(z, A) £ (0,r)}. Multiplying both sides by Aand letting
e -A 0, we obtain

IVPtIA|(x) < e~Kt(Pt(x,-))vd(dA),

where pg(dA) is the area of dA induced by a measure p. Therefore, for
any smooth / > 0,

faD
IVP/10r) < J/ [VPtl{/>s}|(x)ds
0

rco

<e Kt J/ (Pt(x, -))pd({f = s})ds = e-KtPt\Vf\(x).
0
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2.4 Applications of equivalent semigroup inequalities

Throughout this section, we assume that Pt has a non-trivial invariant
measure fi. Then there exists V £ C{M) such that fi(dx) = ev~dx, where
and throughout, dx is the Riemannian volume measure, see [Bogachev,
Krylov and Rockner (2001); Bogachev, Rockner and Wang (2001)] and
references within. In particular, if Z —W for some V £ C2(M), then Pt
is symmetric in L2§1) for p(dx) = cwxhlx.

Theorem 2.4.1. Let Ric™ > K for some K £ LLland assume that p is a
probability measure.

(1) If K >0 then for any p £ [1, 00),

P(h(/2) M /2/p)p) < 2 2 f>0,f£ CI(M).
p—1 K

In particular, the following log-Sobolev inequality holds:
M /2log/2)< | m|V/|2), [ £CI(M),p(f2)- L

(2) Let Pt* be the adjoint operator of Pt in L2(p). Then

KW?(f2p,p)2 2
ekt - 1) » M/ =1-

(3) IfPt is symmetric in L2(p), then the following HWI inequality holds:

p{(Pff2)logP ff2) <

M/72b g /2) < 2y/p(\SIF\2)WE (f2p, p) - *W ?(f2p,p)2,
foral f £ CI(M), p{f2)=1

Proof. Since the Poincare inequality holds on any compact connected
smooth domains, by Theorem 3.1 in [Rockner and Wang (2001)] there holds
a weak Poincare inequality, namely

M(/2) < a()M [V/|2) + r[[/]|~, | € Cb{M),p(f) =0,r >0

holds for some positive function a on (0, 00). Then, according to Theorem

1.6.14 for ® (/) = ||/||*, Ptf -A p{f){t -» 00) in L2(p) for any / e Bb(M).

Hence, (1) follows from Theorem 2.3.1(3) with p —1 by letting f —o00.
Next, applying Theorem 2.3.3(4) to Pff 2 in place of /, we obtain

pt(iogp ;/2)(x) < log(Ptpt*f2)(y) + » i) X,y EM
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Integrating with respect to the optimal coupling 1T(d:E. dy) of f 2fi and ji
for the /~-transportation cost, and using the Jensen inequality, we obtain

M (p;/2)iogp;/2) < +Mbg (ptp;f2)

- 2(e2Kt - 1)
Therefore, (2) holds.
Finally, By Theorem 2.3.1(3), we have
Pt(f2\ogf2) < (Pt/ 2)logPJ2+ 2(1- » - QP |V /|2

Integrating w.r.t. /x leads to

ofi —o~2kKt\

M /2log/2) < £— ~(IVI|2)+ M Ne/2)logPt/2).

If Pt = P*, combining this with (2) we arrive at

K 2(e2Kt - 1)
= _ 727 N H *
rx(IV/]3) + ) 2N g ofi 3, *> o,
where
2(1 —e~2Kt)

rt ~ K '
Let / be non-constant. Taking t £ (0, og] such that

»  W(pff,n)

we complete the proof. Note that if K < 0then {rt :t £ (0, 0o]} = (0,00]
so that such the required t exists. If K > 0 then the range of rt is (0, )},
and in this case the log-Sobolev inequality in (1) implies the Talagrand
inequality (see [Otto and Villani (2000); Bobkov et al (2001)])

NIV Ti)2< -~M(/2log/2).
This, together with the log-Sobolev inequality, implies that
Wp{f2»,n) » 2

ViwfF) ~ K"
Therefore, the required t exists for K > 0 as well. O
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Theorem 2.4.1(1) is well known as the Bakry-Emery criterion [Bakry
and Emery (1984)] and was extended in [Chen and Wang (1997b)] to the
situation that Ric—Hessy is uniformly positive outside a compact set, while
the third assertion (known as the HWI inequality) is first proved in [Otto
and Villani (2000)]. Our proof of Theorem 2.4.1 is taken from [Bobkov et al
(2001)]. Next, we apply the dimension free Harnack inequality in Theorem
2.3.3 (see [Rockner and Wang (2003a)]).

Theorem 2.4.2. Let Ricz > K for some K GK and assume that p is a
probability measure. Then for any o GM :

(1) Pt is ultracontractive, i.e. |jP*L#—e0 < 00for all t > 0O, if and only if
\\Pt explApoJHoo < 00 for any At > 0.

(2) Pt is supercontractive, i.e. [[Ptt2=4< 00for allt >0, if and only if
/u(exp[Ap2]) < 00 for any A> 0.

(3) If there exists A> —K /2 such that p(exp[Ap2]) < 00, then Pt is hyper-
contractive, i.e. L[T).2=4< 1 holds for some t > 0.

Proof. By Theorem 2.3.3(3),
Kp{x,y)2
\PJ{x)\2 < Psf 2{y) exp eXp[2RTS] —1J (24.2)
This implies that

1> \Psf(x)\ZJfM exp I— Xﬁg%’gj)?l 5 Addy)

> \Psf(x)\2p,(B(0, 1))exp - *;((582(’25: DE
Then there exist ¢\, >0 such that
\Psf\ < exp [(ci + CPo)/s], s G(0,1]. (24.2)
By (2.4.2) we have
IPt||2—e0 < II-Pt/2exp[2(ci + c2pR)/t]|lco < 00, t G(0,1], (2.4.3)

provided ||Ptexp[ApZ]Lto < 00 for any t, A> 0. On the other hand, if Pt is
ultracontractive, then it is supercontractive and thus (cf. [Aida et al (1994)]
or [Aida and Stroock (1994)]) exp[Ap] GL2(p) for any A> 0. Therefore,
LP*exp[A/a2]|loo < LiPtLP-+00lexp[Ap2]||2 < 00 for any t, A> 0. Similarly,
(2) also follows from (2.4.2).

Now, if there exists A> —K/2 such that p(exp[Ap2]) < 00, then there
exists t > 0 and g > p > 2 such that ||Pt||p_" < 00. This can be proved
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by the argument leading to (2.4.2), just consider / with ||/||p = 1 in-
stead of LJLI2 = 1, and apply the dimension-free Harnack inequality The-
orem 2.3.3(3). Then, by Riesz-Thorin’s interpolation theorem, we have
[I-PtIh—=9 < 00 f°r some t > 0 and some q > 2. This implies the defective
log-Sobolev inequality (see e.g. [Gross (1976, 1993); Davies (1989); Davies
and Simon (1984)])

M /21°g/2) < CIM([V /|[2) +C2, f GCI{M),M2) = 1

for some constants C\,C2 > 0. Since M is connected so that there holds a
weak Poincare inequality (see Theorem 3.1 in [Rockner and Wang (2001)]),
this and Proposition 1.6.13 imply the log-Sobolev inequality

M(/210g/2) < CMIV/I2), | e CI(M),n(f2) =1

for some constant C > 0. Therefore, due to Gross [Gross (1976)], Pt is
hypercontractive. O

Although Theorem 2.4.2 provide exact criteria (i.e. sufficient and nec-
essary conditions) for the ultracontracitity and the supercontractivity, it
merely provides a sufficient condition for the hypercontractivity. It was
shown in [Chen and Wang (2007)] that this sufficient condition is already
sharp in the sense that if for any K < 0 and e > 0, there exists an example
of M and V such that Ric® > K for Z = VF,/j(e” _£)P0) < og but Pt
is not hypercontractive. It was shown in [Rockner and Wang (2003a)] that
when Ricz is bounded below, the hypercontractivity of Pt is equivalent to
the validity ofthe log-Sobolev inequality. So, according to the concentration
property of the log-Sobolev inequality (see [Aida et al (1994)]), Theorem
2.4.2 also implies that when Ricz > 0, Pt is hypercontractive if and only if
p(eA) < 00 holds for some /1> 0.

Finally, we apply the dimension-free Harnack inequality to heat ker-
nel estimates. To this end, we need the following lemma (see [Grigoryan
(1997)]).

Lemma 2.4.3. Assume that Z = VR for some V G C2(M) and let
fi(dx) = ev~dx. Forx GM,T > 0,p > 1, = p/(2(p—1)), let

Y)2 'y T
ven = mWEY

Then for any /G 6 (Af),

JM Jm
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Proof. By an approximation argument, it suffices to prove for finite p.
Indeed, we may take {Vn} ¢ C2(M) such that Vnt V and for each n,
p,,(dx) = exp[V\X)JdX is finite and Vn = V on B(x, n). If the desired
inequality holds for p,, and P” generated by [ + VV#, then it holds for
Pt and p as well by letting n -A oo. Since p is finite, we may assume that
f >c> 0 for some constant c. Let

'(s) = L, (PstHY))pexplri{s.y)in(dy). s G[0.T/q).

It is easy to see that

. VPY| p(x,-) \2
-I){PsfY en
Jop{p-DiPstyen "5 . 2{p-|){T—qs)J dp
<0, s< —.
q
This completes the proof by taking integral over [0, t]. O

Theorem 2.4.4. Let Pt be symmetric in L2(p), and letpt be the heat kernel
of Pi w.r.t. p. Let Ricz > K for some K 6 K.

(1) For any 5> 2 there exists ¢(6) > 0 such that

Pt{x,y) < exp (I +1) P{)Z(IS?)Z
yip(B(x, y))p(B(y, V1))

for allx,y GM, t > 0.
(2) Ifp is a probability measure, then

Kp(x,y)21

Pt{x,y) >exp 2(eKt —1) *

X,y £ M,t >0.
Proof. (1) For 6 > 2, let p G(1,2) such that q:=p/[2{p- 1)] < 5/2. By
Lemma 2.4.3 for T = 5t/2 and applying Theorem 2.3.3(3),

®200pBc Y exp ) pz)p(?;ét —1) 5/2l —q

p2Kp(x,y)2 p{x,y)2 1
@—p)(e2Kt —1) 2(T-qt) P@)

p(x,y)2 1
%T-qt) M(dy)

= [, [ 2P)e_pxy)Z(2N)p(d2).
M

< fM (Ptf)4x)yexp

= ], Pti2ipp(yyexp -
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Taking

f(y) = {n A\ pt(x,y))e{nAp(x'y)2){2T), ye M,

we obtain

pe((5)(1+1)
p(B(x,y/2t))
for some constant c¢(S) > 0. Letting n —>00, we arrive at
p(X,Y)Z ec(S)(l1+t)

st P = piax, yizn)
Applying this inequality for t/2 in place of t, we arrive at

ep(Xy)7(2&)pt{xy)

}m {n NIpt{x, y)) 22lAx(x’y,2/(Stp(dy) <

/| Pt{x,y? exp
Jm

ep(x,y)2/(26t) f pt/2(X)z)pt/2(y.Z)n(dz)
Jm

A

J[ (pt/2(x,2)en - 2)2/(6t))(pt/2(y,z)e™'z)2/ ™)) M(dz)
m

< ((Im Pt/2{x, z)2e2p(x'2)2/(st)p{dz)"j

1/2
X QJ[m pt/2(y,z) 222" ZA|O(0|Z)';
Pp(X, 2st 2
< p(x,y) /(2St) exp 0(6)0 +t) P{;(,Si/) 1
\Jp(B(x, s/t))p{B(y, Vi))

for some constant ¢(S) > 0.
(2) Let p be a probability measure. Applying Theorem 2.3.3(4) to
f(z) = Pt{x, z) An and letting n —00, we obtain

Kp{x.y)2
logp2t(x,y) > 2e2Kt - 1) + J/m Pt(x,z) logpt(x,z)p(dz)

- Kp(x,y)2
2(62Kt - 1)' N
2.5 Transportation-cost inequality

This section is essentially reorganized from [Wang (2004c, 2008a)]. Let
(E,p) be a Polish space and p a probability measure on E. Recall that for
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any p e [1, 00), the Lp-Wasserstein distance (or the Lp-1lransportation cost)
between two probability measures pi and pz2is
i/p

WE{pi,/x2) = { p(x, y)pn(d:r, dy)

inf
I nec(”i,/j2) Jex
According to Corollary 4 in [Bolley and Villani (2005)], the transporta-
tion cost inequality

Wp(fp,p)p <Cp{flog/), / >0,p{f)=1

holds for some C > 0 provided p,(exp°P) < oo for some /1> 0, where 0 € E is
a fixed point. See also [Djellout ef al (2004)] for p = 1. Furthermore, apply-
ing Theorem 1.15 in [Gozlan (2006)] with c(x,y) = p(x,y)qgand a(r) = r2p,
we conclude that for any g € [1, 2p),

Wp(fp,p)2p<Cp(flogf), / >0p(f) —1 (25.1)

holds for some C > 0 if and only if p(eX(-°>""P) < oo for some J1> 0.

In general, however, this concentration of p does not imply (2.5.1) for
q = 2p. For instance, due to [Bakry et al (2007)], there exist plentiful
examples with p(eXp<®">) < oo for some /1> 0 but the Poincare inequality
does not hold, which is weaker than the Talagrand inequality (see Section
7 in [Otto and Villani (2000)] or Section 4.1 in [Bobkov et al (2001)])

WE(fp,p)2<Cp(flog/), / >0,p(f) =1 (2.5.2)

Therefore, to derive (2.5.1) with g = 2p, one needs something stronger than
the corresponding concentration of p.
In this section, we aim to derive (2.5.1) with g = 2p, i.e.

Wm(fp,p)2p <Cp(flogf), f >0,p(f) =1, (2.5.3)

on a connected complete Riemnnian manifold M for the Riemannian dis-
tance p, by using the super Poincare inequalities

M/2)<tM [V /|2) + ~(OM|/])2, r>0JeCt(M), (2.5.4)

where /3 : (0,00) — (0,00) is a decreasing function. The advantage of
(2.5.3) is its tensorization property. More precisely, due to the induction
argument in Section 3 in [Talagrand (1996)], if (2.5.3) holds for couples
(pi, pi), i = 1,..., n, then it also holds for the product measure pi x ... Xpn

and
I‘I

p(Xi,.... xn;30,...yn) = | ~pilxipid

2=1
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To derive (2.5.3) from (2.5.4), we first prove the weighted log-Sobolev
inequality

M(/21°g/2) < Cp(aop(o, -)|IV/[2), ju(/2) = 1, (2.5.5)

where a is a positive function determined by /3 in (2.5.4), then estab-
lish the transportation-cost inequality using log-Sobolev type inequalities,
and finally, make links between the super Poincare inequality and the
transportation-cost inequality.

2.5.1 From super Poincare to weighted log-Sobolev inequal-
ities

We shall work with a diffusion framework as in [Bakry et al (2007)]. Let
(E,E,p) be a separable complete probability space, and let (£,£>(E)) be
a conservative symmetric local Dirichlet form on L2(/r) with domain TI>§9
in the following sense. Let A be a dense subspace of TX£) under the £1/ -
norm (£i(/,/) = WLR+ £(/>/)) which is composed of bounded functions,
stable under products and composition with Lipschitz functions on M Let
r Bh{E) be a bilinear mapping, such that

(O r{,/) > oand £{f,g) = p(F(f,g)) for f,g € A;
(@ r(cdo/,p) = '(/)T(/,n) for f,g GA and ¢ G CB°(K);
(3) M (fg, K =gT(f, h)y + /T (™, h) for f,g,heA with fg € A.

It is easy to see that the positivity and the bilinear property imply
r¢,52< r( fHF(g,g) for all /,g 6 A- We shall denote by “icc the
set of functions / such that for any integer n, the truncated function
fn = min(n, max(/, —)) is in A. For such functions, the bilinear map
I automatically extends and shares the same properties than for functions
in A.

Next, let g GAi,,c be positive such that I'(p, g) < 1 We shall start from
the super Poincare inequality

M /2) < rE(f,f) + P{r)p{\f\)2, r> 0. (2.5.6)
To derive the desired weighted log-Sobolev inequality
M/21°g/2) < Cp(T(f, f)aog), yu(/2) =1, (2.5.7)

we shall also need the following Poincare inequality

M /2)< C cE(/,1) + M/)2 (25.8)
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for some Co > 0. Here and in what follows, the reference function / is
taken from /1.

Theorem 2.5.1. Assume (2.5.8) holds for some Co > 0. Then (2.5.6) im-
plies (2.5.7) for some constant C > 0 and

“<e>i= SUP{ *): s -
where
V{s) = (log(2s))(I A/3_1(s/2)), s> 1
for /3_1(s) := inf{t > 0: /3(t) < s}.
Proof, (a) Let ®(B) = fi(g > s) which decreases to zero as s -> 0o. We

may take ro > 0 such that

ro(l +SISJ£i7y(s)) < - (2.5.9

and
f31(err*/4) < 1L (2.5.10)
For a fixed number r G (0, ro] we define ur = ®_1(2e~r 1) and let

hji= (e —ur—n)+nl)((n+ 2+ ur—p)+ A l),

N = (logdon + ury)p Urd”™ + ur))’
Bn={n<g—ur<n+2} n>0.

Then

E " 21" I+7i- (2611)
By (2.5.6) and noting that
MIf\hn)2 < M/2/InN)Me >n + ur)< m(/2*"n)®(n + ur),

we have
(€))] ()
E M /2in)< E{*"M (r(An,/fin)) +/3(r,)M|/|hn)2j
71=0 n=0
<E Anlsj + 2rnM(/218,) + P(rn)®(n+ Ur)M/2/12)}

n=0 n
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for rn > 0. Since by (2.5.10) and the definition of a
a(s) >Snfors<n+2+ur,
letting r,, = Snr we obtain

@ (€]
< £ {2r/x(F(/,ha°elB) +2rSnn(f4BJ
o n=0 (2512)
+ [3(rén)d(n + ur)n{f2hA)j.
Noting that
A :=rlog - rlog prp-u A -n ) = 1m
we have

<

Thus, by (2.5.12) and (2.5.9) and the fact that Sn < sup??, we arrive at

Y mix) <Y 2m (-Ha 8) 0D +2Y mix)-
It fgl](;)ws from thir;_;nd (2.5.11) that "
M /21{e>1+m) ~ 16rm(C(/, f)a og) + *m(/2)- (25.13)
(b) On the other hand, since a is decreasing

M(/2l {e<i+«.}) N M/2{(2 + ur - £ 11}
< 28N (/, f) 1{e<2+Ur}) + 2sn(f2) + ~ (s)m(l/1)2
2s
a(2 + ur)M(F(/, Ha oq) +2s/?(/2) + I?(s)M|/])2, s> 0.
Taking
S--ra(2+ur)< 2
due to (2.5.9), we obtain

M/21{e<l+a-}) ™ 2rMr (/>/)« 0q) + ~M /2) + B(ra(2 + ur))/?(]/])2
Since by (2.5.10) and the definitions of a and ur

raf(2+«) >h ch;j(.?elj:l))q ri(M" 1
r-i

=r {(V)’
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we obtain

M(/2l{e<i+«r}) < 2ra(C(/,f)aoQ+"M /2)+ ~-M I/]) 2.
Combining this with (2.5.13) we conclude that
M(/2) <40rp (I (/,/)aop)+er Vd/1)2, re(0,rQ].
Therefore, there exists a constant ¢ > 0 such that
M(/2) < rn(T(f,f)aoe) +ec(l+ D™ (J/|)2, r>0. (2.5.14)

According to e.g. Corollary 1.3 in [Wang (2000b)], this is equivalent to the
defective weighted log-Sobolev inequality

M/2bg/2) < CiMr(/,f)aog) + C2, p{f2)=1 (2.5.15)
(c) Finally, for any / with //(/) = 0, it follows from (2.5.8) that
M/2) < m/2{1 + R- e%Al}) + \\Obls >R)
< 2CoMI(/, 1{e<l+g}) + (2Co+ 1)\\AbIlB > R)
+v(f{(e-R)+ ni})2
051{( ) )
< ~ puM(r(/,N<*° g + 2(CO+ 1)]|/|]|«xMe > R> R > o

Since > R) —0as R — 00, the weighted weak Poincare inequality
M(/2) < 13(Nu(r(/, fa oe) + r||/||*, r>0,A() =0
holds for some positive function /3on (0, 00). By Proposition 1.3 in [Rockner
and Wang (2001)], this and (2.5.14) implies the weighted Poincare inequal-
ity
M(/2) < C"m(I"(/, fotoe) + p(f)2

for some constant C > 0. Combining this with (2.5.15) we obtain the
desired weighted log-Sobolev inequality (2.5.7). O

2.5.2 From log-Sobolev to transportation-cost inequalities

Let V G C(M) be such that p :=ev”~dx is a probability measure, and
let A:TM —TM be a continuous mapping such that A(x) is a strictly
positive definite, symmetric linear operator on TXM for each x G M. Define

S(f.9) =p(T(f.9)), f.g GC™(M),

where I'(/, ) := (AVf,Vg) for/,g GCI{M). Then (£, Cq’(M)) is closable
in L2(/i). Indeed, we may assume that V and A are C*-smooth since the
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closability does not change if we replace V and A by smooth V and A such
that ||K —VHo < oo and c\A < A < c"A for some constant ci,C2 > 0.
In the smooth case the Dirichlet form of the diffusion process generated by
L := div(ylV) + AW, which is symmetric in L2(p), is a closed extension
to (£,Cq’(M)). Let (£, T>(£)) be the closure which is a Dirichlet form on
L2(p).

Next, let pa be the distance induced by A, i.e. for all x,y G M,

sup{/(z) - f(y) :f cCI(M), T'(/,]) < 1}

Pn(x,y)

infl ¥ \/(A~1lis,'fs) ds : 7 GCrI([0, I];M), 70 = ®,7i = ¥

We first consider the case where A and V are smooth. In this case, M
with metric gA(X,Y) = (A~1X,Y) is a complete Riemannian manifold,
and the associated Markov semigroup Pt of (£, V(£)) is generated by L =
div("V) + AW. Let/ GCe°(M) := {/+C :/ ¢ C*(M),C G R} such
that p(f) —1and e_1 >/ > e for some e G (0,1). Let pt := {Ptf)p
which is a probability measure for each t > 0. Let us fix t > 0. To estimate
the Wasserstein distance between w, and Rt+s for s > 0, Otto and Villani
constructed a coupling (for A —1) in the following way. Let £t+s(r) :=
V log Pt+Sf(x). Then the ordinary differential equation

= {Aft+s)°<I>5, do=1 s>0 (2.5.16)
has a unique solution. We will prove that

ws(dz,dy) := pr(ix)6dyIx)(Ay) (2.5.17)
provides a coupling of pt and pt+s which is called Otto- Villani’ coupling,
where 64B(X) denotes the Dirac measure at point dB(x). This was done
by Otto and Villani [Otto and Villani (2000)] under the assumption that

Ricvv is bounded below. To avoid this additional assumption we follow
the line of [Wang (2004c)] (see also [Wang (2005a)]).

Lemma 2.5.2. Let V and A be smooth such that p(dx) := ewX)dx is
a probability measure and (M, pn) is complete. For f G Cf°(M) with
e-1 >/ > e for some constant e G (0,1), the unique solution to (2.5.16)
is nonexplosive with p(x,3(x)) < Cy/s(s + 1) for some ¢ > 0, all x GM
and all s > 0. Moreover, for each s > 0,08 : M —M s a diffeomorphism
whose inverse solves the equation

dUKDVl = £t+s—m ° ou, do =1 (2518)
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Proof. It suffices to prove for noncompact M. Let x £ M be fixed, and
let

r'* = inf{s > 0:pA{x, d8(x)) > n}, n>1.
If & := linin”o00 t" < 00, then there is a sequence {sn} C (0, tx) such that

PA(X, &4 (x)) > n. But for s < tx, it follows from the Kolmogorov equation
(2.1.5) that

- cflgi}091(F’HJsf)){(t>S(><)) = ~(Zt+s OB, ~ 0 s(1)) - (Ppt? L* ) 0 ds{x)

> ((AzZt+s) 0 ¢3(x)~b+8 00B(x))  1/1I°

Then
((AZt+s) ° q3(.x)"1+B ° DB{X))A3 < 4L~ lI°0S!f + logg 2

Therefore, letting \X\A := yf{A~IX,X) for X e 'M, we obtain
2

n2 < pA(x,3n( ds pn{x,d3(x)) ds
v 5 1 B HEE
< +Sralog£-2.

Letting n —00 we prove that tx = o0o0. Moreover, replacing sn by s we
obtain that pA(x, d3(x)) < cMJs(s + 1) forsome c > Oand all s > 0,x € M.

Finally, for fixed s > 0O, let {qwm : n € [0,s]} solve (2.5.18). It is easy
to check that ¢8 = dupl, the inverse map of d8. Indeed, one has B8 n —
tm ° dB (resp. tH-u —dm ° dB) for all m € [0,s], since both of them solve
(2.5.18) (resp. (2.5.16)) with initial value d3 (resp. d®8). Hence d3 is a
homeomorphism on M. O

Proposition 2.5.3. In the situation of Lemma 2.5.2 let ¢8 solve (2.5.16),
then (2.5.17) determines a coupling n3 for pt and pt+s, Le. @s S
C(Pd Pt+s)-

Proof. It suffices to prove that for any h € Cq(M) one has
/ ho = / hdpt. 25.19
M 4B [y NP (2.5.19)
Letting hs :=h odal, we have hsoda= h and hence,

dd;hs (AZt+s,Vh, 0.
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Since h has compact support, by Lemma 2.5.2 and the completeness of
(M,pa), there is a compact set B such that hr\Bc = 0 for all r € [0, s].
Thus, by the symmetry of L,

d
o s Ar-dirt+r dr_|_ hr Pt+rf d-P

=J [{Pt+rf)-~hr + hr(LPt+rf)~dp

A [drir ANE)j APt+r —0.
Therefore, (2.5.19) holds. O

We now adopt the above constructed coupling to establish
transportation-cost inequality from the log-Sobolev inequality

dM/2log/2) < £(/,]), | €CI(M),p(f2) =1, (2.5.20)
where @ : [0, 00) —» [0,00).

Theorem 2.5.4. Let & € C([0, 00); [0,00)) be increasing such that
fg $/(s)~V2ds < oo. Then (2.5.20) implies

Wpa(f2p, p) < ®(M/2log/2), p(f2)=1 (2.5.22)
for
a(r) Lr s r>0.
2Jo y/Ul "’

In particular, if/0° ®(i1) 1,2ds < oo then (M, pn) is compact with diameter
D < /0° d(B)-1/"3.

Proof. By an approximation procedure mentioned above we assume that
both V and A are smooth and / 6 Cfc(M) such that e 1l > /2 > e
for some e e (0,1) and p(f2) = 1L Let o € M be a fixed point
and denote pa,0 — Pa(o,-)- We first note that (2.5.20) with ®(00) :=
lim~oo ®(r) > 0 implies that p{p\ 0) < oo. Indeed, applying (2.5.20) for

fn,m = 2 Am,n,m >0, where c,,m:= p{[{pn,0 ~ n)+ JIM]2) is the
C-n,m
normalization, we obtain

O bl/2T 18/2T))< A 1, (2.5.22)

where Bn := {pn,0 < n} Since by Jensen’s inequality

(/L rg/L) = M@ABcIn.ml°Sfn.m) > bgM ~n)-1
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asn-to0, there exists n, ¢ > 0 such that
*M/n,mbg/2m))>c, m> 0.
Thus, it follows from (2.5.22) that

Ne @)

C< m > 0.

Letting m — 00 we obtain p((pA,0 ~ n)+ ) < °° and hence, p(p\,0) < oo.
By Proposition 2.5.3 and (2.5.16) we have

\W £ APLPEFS)2< | g P (. 430))2PL(AX)

<Jn (=10 ~ Pa(x,@r{x)) drd pt(dx)

(2.5.23)
11 g f (AVPEHT,VPUHT)

S Jo Jm @t+rf)2

(AVPt+rf,V P t+rf) o
&
S Jm dﬂ} (Pt+rf)2 -

Since due to (2.5.19) and f > e one has

(AVPt+rf,V P t+rf)

MYs b (Pt+rf)2
_ o, (AVPLHTEXTPLT)

slo Jm Pt+rf
< — f £ (Pt+rf, Pt+rf)dr < £(/ /) < oo

£ «
we conclude that

(Pr(x))p Ne x)

odr&r \dpt

(A\7Pt+rf,V P t+rf)
h i (Pt+rf)2
is uniformly integrable w.r.t. pt. Then it follows from (2.5.23) and the
dominated convergence theorem that

L, A(pt,Pt+s)2

odrdr : s G[01]

1 I (AVPt+rfy P t+rf)

limsu < / dmlimsu 0 qrAr
s->0+p Jm s—>o+p s | (Pt+rfy -
- #VPtf,VPtf)
- J_M dp.
Ptf
Combining this with (2.5.20) we arrive at
1. rpn, w 2£(VPP,y/PfP 2594
NP WE (pepies) AR U(P tE2) log P2 (25.24)
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Since p{p\ Q < ooand f2£ [ee *], we have WgA(pt,p) < oo forallt >0
and

w PA(p,pt) - W pA(p,pt+s) < W PA(pt, pt+s),
AM((-Pt/2)log-Pt/2) = -4 £(y/pji, 4 pd 2), t> 0.
Thus, letting ht  p((Ptf 2) log Ptf 2) we obtain from (2.5.24) that

AN-{-W PAMMI} := I™ ~(WAA(p,pt) - W2{p, pt+s))

) K

20(M 1/2°
Since Ptf 2 —=p(f2) = 1in L2(ji) as t — 00 as explained in the proof
of Theorem 2.4.2(3), and since f 2 is bounded and p{p\ Q < oo, we have
ht =0 and W2(p,pt) =0 as t —00. Therefore, (2.5.25) implies

(2.5.25)
<

N h'At 1 dr
b4y /»n())_< -2 Jo EHM@*% : 216 h(r)L/2- (2.5.26)
This implies the first assertion.

Finally, for any x £ M, by taking / such that f2p -> Sx weakly we
obtain from (2.5.26) that

. dr
WEA(p,6x) < \J° @ (r)1/2°
Hence the proof is completed since this implies
Pa (x.Yy) = WPA(SX, Sy) < WpAgm, ) + WPA(p, Sy)
dr
< f h(r)1/2° X,y £ M. 0

Jo

2.5.3 From super Poincare to transportation-cost inequali-
ties

Theorem 2.5.5. Letp(dx) = e*~dx for some V £ C(M) be a probability
measure on M. Assume that (2.5.4) holds for some positive decreasing
3£ C((0, 00)) such that

®) ~ (log(2s))(IA/3~1(s/2)), s> 1

is bounded, where /3~1(s) := inf{f > 0 : /3(t) < s}. Then (2.5.5) holds for
some C >0 and
1
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Consequently,
Wt (fff, hf <Cp(flog/), / >Qp(f2)- 1, (2.5.27)

where pa is the Riemannian distance induced by the metric
XYY 1= - Y £TXM, x £ M. 25.2
(X, aoﬁ(o(x) , X (2.5.28)

Proof. Since a is bounded, the completeness of the original metric im-
plies that of the weighted one given by (2.5.28). So, (2.5.27) follows from
(2.5.5) according to Theorem 2.5.4 for ®(r) = r/C. Thus, by Theorem
251 with E = M and I'(/,/) = |V/|2, it suffices to prove that (2.5.4)
implies the Poincare inequality (2.5.8) for some Co > 0. Due to Theorem
1.6.2, the super Poincare inequality (2.5.4) implies that the spectrum of L
is discrete. Moreover, since M is connected, the corresponding Dirichlet
form is irreducible so that 0 is a simple eigenvalue. Therefore, L possesses
a spectral gap, which is equivalent to the desired Poincare inequality. O

Since p(p0 > s—2) can be estimated by using known concentration of p
induced by the super Poincare inequality, one may determine the function
a in Theorem 2.5.5 by using /3 only. To present specific consequences of
this result, we need the following lemma in the spirit of [Marton (1986);
Bobkov and Gotze (1999)].

Proposition 2.5.6. Letp :M xM -¥ [0,00) be measurable. For anyr >0
and measurable set A C M with p(A) > 0, let

Ar={x GM :p(x,y)>r for somey GA], r>0.

Wfifp, p)<®o p(flog/), />0mHA =1 (25.29)
holds for some positive increasing ® G C([0, 00)), then
p(Ar) < exp [-®_1(r- ®ologp(A)-1)], r > dolog”(T)-1,
where @ _1(r) ;= inf{s>0: ®d(a) >r), r > 0.

Proof. It suffices to prove for p,(Ar) > 0. In this case, letting Pa =
p(- MA)/p(A) and pat = p{- MAr)/p(Ar), we obtain from (2.5.29) that

r< Wi{pA,pAr) < Wf{pA,p) + W f(pAr,p)

< ®ologp(A)~I + dolog/r(Ar) 1.

This completes the proof. O
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Corollary 2.5.7. Let5€ (1,2).
(@) (2.5.4) with /3(r) = exp[c(l +T-1/9] implies (2.5.5) with
a(s) :=(1 + s)-2(5-D/(2-<5)
and (2.5.27) with pa(x,y) replaced by
p(x. )(1+ p0c) VpO{y))(6-DA2-&m
Consequently, it implies
W2/(2- 6) (fAv)2[{2~5) < Cp(flogf), p(f) =1,f >0 (2.5.30)

for some constant C > 0.
6) If Vv £ C2(M) with Ric —Hessy bounded below, then the following
are equivalent to each other:

(1) (2.5.4) with (3(r) = exp[c(l + r-1/9)] for some constant ¢ > 0;
(2) (2.5.5) with a(s) := (1 + s)—&(r~1/C>— for some C > 0,
(3) (2527) for some C > 0 and pa(x,y) replaced by p(x,y)(1+ p0{x) V

Po(y))i5- 1)/{2- s);

(4) (2.5.30) for some C > (;
(5) p(exp[Apo™2_"]) < oo for some A> Q.

Proof, (a) Let /3(r) = ec(1+ / 1for some c> 0and S> 1 It is easy to
see that
11/3 1(s/2) < cilog<§(2s), s>1

holds for some constant G > 0. Next, by Corollary 5.3 in [Wang (2000b)],
(2.5.4) with this specific function /3 implies

p{p0>s - 2) < c2exp[-c3s2/2<F", s>0
for some constants c2,c3 > 0. Therefore,
a(s) < c4(l + s)-2(-5-)/(2-«)) s>0
holds for some constant ¢4 > 0.
On the other hand, for any x\, x2GM let i G{1,2} such that pO(xi) =
Po{xi) Vp0{x2). Define
i{x) = (p(x,Xi) A + po{xi))(s~1)H2~s), x GRrd.
Then
a oPo|V/|2< cA(l + )-2(«-D/(2-«)|V/|2

< ¢c41{p(0,x;)/2<p0<3p(0,X;)/2}(1L + A>)_2~ _1~ 2_"~(1+ Po(Xi))S~1)/(2"H
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for some constant ¢5 > 0. Since by the triangle inequality p,.{xt) >
\p(x1,72), this implies that the intrinsic distance pa satisfies

\fixi) ~ f(x2)\2
G
> c6p(a;i,x2)2(1 + Po(x\) VPoObI)2" 1)/(2 9
> c7p(xi,x2)2/(2"'9
for some constants C6,c7 > 0. Hence the proof of (a) is completed by The-

orem 2.5.5.
(b) Now, assume that

Pa(ll,X 2)2 >

Ric —Hess > —K

for some K > 0. By (a) and Proposition 2.5.6, which ensures the implication
from (4) to (5), it suffices to deduce (1) from (5). Let

h(r) = p,eTp?), r>0.

By Theorem 5.7 in [Wang (2000b)], the super Poincare inequality (2.5.4)
holds with

B(r) :=co_inf riinf-h(2K +12s-Des/ri~\ r >0
o<ri<r s>0 s
for some constant @ > 0. Since for any /1> 0 there exists c(A) > 0 such
that
rt2 < Ai2/(2_4) + c(Arl/(4 1), r >0,
it follows from (5) that
h(r) < Gexpfciri*4-19, r>0
for some constant G > 0. Therefore,

B(r) <@ inf n inf- exp[c2S /5 1"+ s/ri], r >0
0 s>0 s

<ri<r
for some ¢2 > 0. Taking s = and rg = r, we conclude that
13(r) <ec(l+r 1/S), r>0
for some ¢ > 0. Thus, (1) holds. O

We remark that (2.5.4) with /3(r) = exp[c(l + r-1/5)] for some ¢ > 0
is equivalent to the following log4-Sobolev inequality (see [Wang (2000a,b);
Gong and Wang (2002); Wang (2005a)] for more general results on (2.5.4)
and the F-Sobolev inequality)

p(f2log4(l + f2)) < CIM(|V/|2) + C2, p(f2)=1
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Since due to Corollary 5.3 in [Wang (2000b)] if (2.5.4) holds with /3(r) =
exp[c(l+r-1/'9] for some 5 > 2then M has to be compact, as a complement
to Corollary 2.5.7 we consider the critical case 5= 2 in the next Corollary.

Corollary 2.5.8. (2.5.4) with fd(r) = exp[c(l + r-1/2)] for some ¢ > 0
implies (2.5.5) witha(s)  e~cis for some ¢\ > 0 and (2.5.27) with pa(x,y)
replaced by

P(x.y) e (x)'/p° ()}
for some cr- If hie —Hessy is bounded below, they are all equivalent to the
concentration p(exp[e/¥°]) < oo for some J1> 0.

Proof. The proof is similar to that of Corollary 2.5.7 by noting that
(2.5.4) with (3(r) —exp[c(l + r-1/2)] implies p(pa > s) < exp[-cedq for
some ci > 0, see Corollary 5.3 in [Wang (2000b)]. O

Finally, we present two examples to illustrate the above results.

Example 2.5.1. Let Ric be bounded below. Let V € C(M) be such that
V + apbis bounded for some a > 0 and r > 2. By Corollaries 2.5 and 3.3
in [Wang (2000a)], (2.5.4) holds for /3(r) = exp[c(l + r-"7™2"-17]. Then
Corollary 2.5.7 implies
w p(fp,p)° <Cp(flog/), [/ >oMHA =1
for some constant C > 0. In this inequality r could not be replaced by any
larger number, since Wp > Wp and for any p £ [1, 00) the inequality
Wp{fp,pY <Cp(flog/), 7 >0p(f) =1
implies p(exp°®) < oo for some /1> 0, which fails when p > r for p specified
above.

Example 2.5.2. In the situation of Example 2.5.1 but let V + exp[cpO
be bounded for some ¢ > 0. Then by Corollaries 2.5 and 3.3 in [Wang
(2000a)], (2.5.4) holds with /3(r) = exp[c'(l + r-1/2)] for some d > O.
Hence, by Corollary 2.5.8, there are some ci, C > 0, such that

' L j p(x,y)2eCpXvK{dx,dy) <Cp(flogf), (2.5.32)
wd3lix) Jmx M
holds for all / > 0,p,(f) = 1L On the other hand, it is easy to see from
Proposition 2.5.6 that (2.5.31) implies
Ix(explexp(ApQ)]) < 0o, A> 0,
which is the exact concentration property of the given measure p.
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2.5.4 Super Poincare inequality by perturbations

In this subsection we aim to present explicit estimates on /? in the super
Poincare inequality by perturbation from a given Nash inequality, which is
in particular available if the injectivity radius of the manifold is positive or
Ricci curvature is bounded below. See [Wang (2000a,b, 2005a); Cattiaux
et al (2009)] for more results in this direction.

Let o£ M be fixed. For any /1> 0, let

Mr) =infa(—L|B(or)c) 2532
= inf{M|V/|2) :/ € Ci(M),rffa) =1,f\B(or) = O}.

According to [Wang (2000a)], we have A(co) := limr_Kx A(r) = oo if and
only if the super Poincare inequality

p(f2) < rp(\VFl2) + /3(Np(If)2, r>0,feCI(M) (25.33)

holds for some decreasing function /3 : (0, 00) -* (0, 00). In the following
result, we estimate /3 by using Aand a prior Nash inequality.

Theorem 2.5.9. Let A(r) be defined by (2.5.32). Assume that there exists
a locally Lipschitz continuous function W on M such that the following
Nash inequality holds for do = exp[W]dx and some p > O:

K/2)<cM |V /[2)+o(f)}piptA  o(\f\) = 1 (2.5.34)

Put () = supB(Gr)exp[W —V] and let ip be an increasing function such
that

xp) > i{|[VW|2- W |2-240 (Y - Wj) onB(o,r)

in the distribution sense. If tp is finite, then there exists ¢ > 0 such that
(2.5.33) holds with

P(r) —c[I+i/>(2 + A~1(8r~1)) + r-1]p/2(>(A-L(8r~1) + 2), r < 1, (2.5.35)

where A 1(r) = inf{s > 0 : A(S) > r}. Consequently, letting j(r) =
—supB(or)cLp0, r > 0, the result remains true with A replaced by (7+)2/4.

Proof. By (2.5.34) and Corollary 1.6.11, there exists Ci > 0 such that
KI2y<«'(|[VI2)+cl(l +r-1*2, KI/MN)=I- (2.5.36)
Forany R >0, let h = (p- R)+/1, we then have, for any / GCqg’{M),

M(202)- AM M(\V/|2 + 12)- (2.5.37)
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Next, let h\ = (p—R —2) /11, and assume that /j(|/j) = 1. It follows from
(2.5.36) with test function fh\ exp[(V —W)/2] that

MA?) <rM\(fhi)2\V(V - W)\2+ V(F - W))
+ |V ("D2) + CI(I + r-"y/2n(\Mfhi\exp[(W - V)/2})2
<2rli(|V/]2+ 1 2) + rti(f2h2{\VW\2- |VV|2- 2A(V - W)})
+cl(l +r-Dp/24>R+ 2)
<2r/x(IV/|2) + [2r + rip(R+ 2)]p(f2) + CI(1 + r-1)p' 2R+ 2).
By combining this with (2.5.37), we obtain

2 2AM~1+ A(LV/1)+cr(l +r-7AjR +2)
W - [1—2A(f)-1 —2r —n/j(R + 2)]+

For any e £ (0,1], put

(2.5.39)

R=A AL + €) + 2exjj(R+ 2)

Then (2.5.38) implies that
M /2) < EM(|V/|2) +/3(e)

with B determined by (2.5.35). Finally, if dM is either convex or empty, by
Cheeger’s inequality, A(r) > j (7(r)+)2, the second assertion then follows.
O

Remark. According to Croke’s isoperimetric inequality [Croke (1980)],
when dM = 0, (2.5.34) holds for IF = 0 and p = d provided either i(M) =
oo or i(M) > 0 and the Ricci curvature is bounded from below, where i(M)
denotes the injectivity radius of M. Here, we present below a result based
on a result due to [Wang (2001)]: (2.5.34) holds forp = d and W = ¢p
whenever Ric> —K for some K > 0and ¢ > \/(d —1)K.

Corollary 2.5.10. Assume that Ric(AT, X) > —K\X\2for some K > 0 and
all X ETM. IfdM is either convex or empty, then the results in Theorem
2.5.9 hold for p = d and any smooth W with \W —cp|joo < oo for some
¢ > y/(d—1)K. Consequently, consider V = —ap6(a > 0,6 > 1), (2.5.33)
holds with

o(r) = exp[c'(l + r~Al
for some ¢' > 0 if and only if A> G[A<5—1)]. Moreover, ifV = —expjap]
for some a > 0, then (2.5.33) holds with the above 0 for A=
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Proof. The first assertion follows from Theorem 2.5.9 and the above
Remark. Now, consider V = —aps(a > 0, S > 1). Since the Ricci curvature
is bounded from below, there exists ci > 0 such that Lp < —\ps~1 for big
p. Then A(r) > for big r. Therefore, there exists c2 > 0 such that

A 1(8r-1) < cr-1/(2(,5-1), r<1

Next, By Green and Wu’s approximation theorem [Greene and Wu (1979)],
there exists globally Lipschitz function W E C°° such that ||W —¢cpljoo < 1
and that AW is bounded from above. Then, there exists G > 0 such that

h(r) < exp[c3r5], (r) <c3, r > 1.

By Theorem 2.5.9, (2.5.33) holds with (3{r) = exp[c'(l + r-"9(2(5Y))] for
some d > 0.

On the other hand, if (2.5.33) holds with /3(r) = exp[c'(l + r~A)] for
some ¢' >0 and A< 5/(2(5—1)), by the concentration of p (see Corollary
5.1 in [Wang (2000b)]), p(exp[ep2A(2A 1)]) < oo for some e > 0. This is
impossible since > 5 and hence

p(exp [ep2A(2A D)) - Z-1J exp [ep2A(2A4 1) _/]ldx - oo

by the volume comparison theorem due to [Cheeger et al (1982)]. The proof
for the case that V = exp[—ep] is similar. O

Finally, we look at the super Poincare inequality by perturbations.
Obviously, (2.5.33) does not change qualitatively if V is perturbated by
bounded functions. Our next result says that this is also true if the per-
turbation is Lipshitz continuous. For optimal perturbation results using
growth conditions, we are referred to [Bakry et al (2007)] and references
within.

Proposition 2.5.11. Assume that (2.5.33) holds. 1f U is a Lipschitz func-
tion, then (2.5.33) also holds for dp, :=exp[U]dp with

i3(r) = ci/3(c2(l +r))2
for some c\,ct > 0.

Proof. By e.g. Corollary 5.1 in [Wang (2000b)], (2.5.33) implies that
p(ekm) < oo so that p is a finite measure since {7] < c(l + p) for some
c> 0. Forany / with 4(|/]) = 1, applying (2.5.33) to /exp[f//2] we obtain

0(/2) < 2rp([V/]2) + ¥p (F2VU\2) + /3(F) A (exp[-[//2]/)2.  (2.5.39)
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On the other hand,

O(exp[—L/12])11)2 < e~ 12A(|/]) + A/|le~cli21 {t/|>jv}) }
<2eN +2fi{f2)n(\U\> N)
<2eN +2ft{em )e~Nft(f2), N >0.

Since /r(e”) < oo, this implies that
O(exp[-1//12]/)2<en(/2)+ ~ e>0 (2.5.40)

holds for some constant ¢ > 0. Taking e = [2/3(r)]“1in (2.5.40) and then
substituting it into (2.5.39), we obtain

arfx  Aarg(|y/|2) 4¢/?(r)2 1
I-1vifl&r  1—I\VC||Or’ W |1/
This proves the proposition. O

2.6 Log-Sobolev inequality: Different roles of Ric and Hess

Let Z = VU for some V £ C2(M) such that p(dx) := ev<x\ix is a probabil-
ity measure. In previous sections we have described some properties of the
diffusion process by using the Bakry-Emery curvature Ricz = Ric—Hessy,
in which Ric and —Hess are taking the same role. In this section, we intend
to show that at least for functional inequalities (e.g. the log-Sobolev in-
equality), these two tensors indeed play very different roles (see also [Wang
(2009a)]).

According to Theorem 2.4.1(1), if Ric —Hessy > K holds for some
constant K > 0, then the log-Sobolev inequality

M /2l0g/2) < CXIV/12), A2)=1,/£C\M) (2.6.)

holds for C = 2/K. We aim to prove the log-Sobolev inequality for un-
bounded below Ric —Hessy by using conditions on Ric and Hessy sepa-
rately.

Since the log-Sobolev inequality implies jj,(eX®) < oo for some J1> 0,
to ensure the log-Sobolev inequality a reasonable condition of Hessy is

—Hessy > S outside a compact set (2.6.2)

holds for some constant 5 > 0. Under this condition we are going to search
for the weakest lower bound condition of Ric for the log-Sobolev inequality



96 Analysis for Diffusion Processes on Riemannian Manifolds

to hold. It turns out that under (2.6.2) the optimal curvature lower bound
condition will be of type

Ric > -C - r2p2 (2.6.3)
for some constants C, r > 0, where r will be explicitly given by 5in (2.6.2),
see Theorem 2.6.5 below for details.

As already shown in the proof of Theorem 2.4.2(3), to ensure the log-
Sobolev inequality (equivalently, the hypercontractivity of Pt) we need to
establish the Harnack inequality and to verify the concentration of p. We
first investigate the exponential estimate of the diffusion process, which
turns out to provide reasonable concentration property of /i; then estab-
lish the Harnack inequality by using the coupling method developed in
[Arnaudon et al (2006)].

2.6.1 Exponential estimate and concentration of p

We first study the concentration of p by using (2.6.2) and (2.6.3), for which
we need to estimate LpO from above.

Lemma 2.6.1. If (2.6.2) and (2.6.3) hold then there exists a constant C\ >
0 such that

Lpa<Cl(l+po)-2(6-rvdrl)p@ (2.6.4)
holds outside cut(o), the cut-locus of o. If moreover 8 > r\Jd —1 then
p(eXp®) < oo for all X< |(<5—r\/d - 1).

Proof. According to (2.6.3) and the Laplacian comparison theorem (The-
orem 1.1.10),

ApO < x/(c+ r2p2)(d- L) coth y/(c+ r2p2)/(d —1) pQ
holds outside cut(o). Thus, outside cut(o) one has

Ap@< 2p0s/(c +r2p@)}{d - ) coth {c+r2p@)/(d- I) pQ + 2 (265)
< 2d+ 2p0\I(c + r2p2)(d —1), -

where the second inequality follows from the fact that
rcoshr < (1+r)sinhr, r >0

On the other hand, for x  cut(o) and U the unit tangent vector along
the unique minimal geodesic | form oto x, by (2.6.2) there exists a constant
G > 0 independent of x such that

(VV, X7p0)(x) —(VV,U)(0) + J[ Uessv (U,U)(£s)ds < ci~ 8pa{x).
0
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Combining this with (2.6.5) we prove (2.6.4).
Finally, let J > r\/d —land 0 < 1< |(J —r\/d —1). By (2.6.4) we
have

Lexp® <\exp®(Ci(l + p0) -2 (6- r\/d- 1)pa+ 4ApQ)
<c2- c3poCAY
for some constants @,c3 > 0. This implies (see Proposition 3.2 in [Bo-
gachev, Rockner and Wang (2001)])

Q
[ p2exp°dp < = < oo.
JMIO p-ap 3 00 0

Lemma 2.6.2. Let Xt be the L-diffusion process with Xgq = x G M. If
(2.6.2) and (2.6.3) hold with 6 > r\Jd —1, then for any € (ry/d —1,6)
there exists a constant C2 > 0 such that

Eexp (30- rvvd - I)ZJ[TpO(xty dt
0

<exp C2ZT + -(Jo - r\/d- 1)p0(x)2
forall T >0,x £ M.
Proof. By Lemma 2.6.1, we have
Lp2<C —2(J0- rvVd~l)p@

outside cut(o) for some constant C > 0. Then by Kendall’s Ito formula
[Kendall (1987)] we have

dp@{Xt) < 2v2p0(Xt)dbt + [C- 2(J0- rVd~l)pa(Xt)ldt  (2.6.6)

for some Brownian motion bt on K. In particular, the L-diffusion process
is non-explosive (see Theorem 2.1.1), i.e.

= inf{t > 0:p0{Xt)>n}foo asnt oo
For any A> 0 and n > 1, it follows from (2.6.6) that

r rc, i
Eexp 2A(Jo —r\/d —I) / p2(Xt)dt
L Jo
t_-IT'<n
<expo 2V2 Aj o Po(Xt)dbt

JR— \ 12
< expl(x)+CXT “E exp 160 i)TJ'C p?(Xt)dt%
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where in the last step we have used the inequality
EeM < (Ee2<v)1/2

for Mt = 2\[2\JQX&d p,,(Xs)dbs. This follows immediately from the
Schwarz inequality and the fact that exp[2Mt —2{M)t] is a martingale.
Thus, taking

A= N0- rvd —Y)

we obtain
i l 9 rTAQ
Eexp -(60-rV d~T)2jo pl(Xt)dt
< exp L4(So - rvdr)p@(x) + C2T
for some C2 > 0. Then the proof is completed by letting n -> 0. O

2.6.2 Harnack inequality and the log-Sobolev inequality

According to Theorem 1.3.7, to establish the Harnack inequality we first
construct a coupling by change of measure. As shown in [Arnaudon et al
(2006)] the underlying changed probability measure will be given by a Gir-
sanov transform.

Let T >0and x * y € M be fixed. Due to Theorem 2.3.2 we consider
the following coupling by parallel displacement (for simplicity, we assume
that cut = 0)

dAt = V2w 0dBt + VV(Xt)dt, X0=x,
dYt = V2ut o (utlPXuYtntdBt) + {W(Yt) + ZtU{Xt, Yt)}dt, 0=,

where PxtYt is the parallel transformation along the unique minimal
geodesic from Xt to Yt, U(Xt,Yt) = -Vp(Xt,-){Yt)I{xt"Yt}, 6 > O is
a Lipschitzian function of Xt, and

r.=inf{f > 0:At= Yt}

Lemma 2.6.3. Assume that (2.6.2) and (2.6.3) hold with 5 > 2r\/d —1
Then there exists a constant C3 > 0 independent of X,y and T such that
XT = YT holds for & := C3+ 2rVd"*APo(Xt) +

Proof. According to Theorem 2.3.2, we have
dP(Xu Yt) = {I(Xt,Yt) + (XV,Xp(;Yt))(Xt)

(2.6.7)
+ (XV,Vp(Xt,-)(YD)-Ct}dt, t<t
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By (2.6.3) and letting
K(Xt,Yt)= sup  {c+r2p2},
*([0, p(xt,Yt)])
where £ is the minimal geodesic from Xt to Yt, as in the proof of Corollary
2.1.2 by taking {J,} such that {J,, £} is orthonomal basis at X, and Yt, we
obtain from
[(Xt,Yt) < 2y/K(Xt,Yt)(d-1)

Mp(Xt,Yt (2.6.8)

X tanh JK(Xt,Yt)/(d- 1)

Moreover, by (2.6.2) there exist two constants rO,ri > 0 such that
—Hessy > 6 outside B(o, ro) but < r: on B(o, ro), where B(o, ro) is the
closed geodesic ball at o with radius ro- Since the length of £ contained in
B(o, ro) is less than 2ro, we conclude that

(VC, Vp(-, y1))(Xt) + (VC, Vp(X1) -))(Yt)

mp(Xt,Yt)
| Hessy(4,4)ds < 2rOrx- (p(Xt,Yt) - 2r0)+6

<d - 6p(XuYt
for some constant c\ > 0. Combining this with (2.6.7), (2.6.8) and

& = C3+ 2rvVd=I Po(Xt) +
we arrive at
dp(Xt,Yt) < {2VK (Xt,Yt)(d- 1) + d - Sp(Xt,Yt)
-C3- 2rvVdMIPo(Xt)- "~} d t
for t <. Noting that
yIK(Xt,Yt) < (c + r2[Po{Xt) + p{Xu Yt)}2) 1'2
<V~c+r[Po(Xt) + p(Xt,Yt)\
and 5> 2ry/d—H, one has
2K (XuYt)(d-1)-6p(XuYt)- 2rVd"\Po{Xt) <27c(d-1).
Thus, when C3 > ¢\ + 2\Jc{d —1) we have
dp(Xt,Yt) < -~"rdt, t<T
so that
0=p(XT,YT) <p{xy)- jT » ~d t=LU"p(x,y)

which implies that r <T and hence, X? = Ytm O
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Proposition 2.6.4. Assume that (2.6.2) and (2.6.3) hold with 5 > (1 +
\[2)r\Jd —1. Then there exist C >0 and p > 1 such that

(PTf(y))p < {PTfp(x)) exp "p{x,y)2+ C{T + p0(x)2) (2.6.9)
holds for all x,y £ M, T > 0 and nonnegative f £ Cb(M).
Proof. According to Lemma 2.6.3, we take

ft —C3 + 2ry/d —1p0(Xt) + p{x.y)
such that T<T and Xp = Yp- Obviously, It solves the equation
dyt —V2 w, 0 dBt + X'V (kf)dt
for
dBt := dBt + M=uf% U (Xt,Yt) I{t<r}dt.

By the Girsanov theorem and the fact that r < T, the process {Bt :t £

[0, T]} is a d-dimensional Brownian motion under the probability measure
RF for

R :=exp JA\P x uuABuftU{XuYt)) - +j \ 2dt

By Theorem 1.3.7, we have
(Pri{y))p < {PTfp{x)){FRpPp-Vy -\ (2.6.10)
Since for any continuous exponeng@ integrable martingale Mt and any

P,p > 1, the process exp[f3pMt —pT (M)t] is a martingale, by the Holder
inequality one has

Ee/3Mt—S§<M>t = E A M f- 4 E(W)t . '
] (2.6.11)

By taking /3= p/(p - 1) we obtain

pa(pg -p + 1) (2.6.12)
L8(9-1)(Pu H I
holds for all g > 1. Since 5 > (1 + \fi)r\/d —1, we may take 6g £ ((1 +
\/2)r\/d —1,S), small ¢' > 0 and large CA> 0, independent of T, x and y,
such that

{ER~xy-1< jEexp

f2= (c3+2rvdAiPo(xt)+ " YN

a. ma »2
CA+ Cipf pY* + 2(d0- rVdPPI)2p0{Xt)2
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holds. Moreover, since

- p+1) _
I(j ﬂ] &%10 ba{pg-p+1) _

i
8 —)(p—z 8 (2613)

there exist p, > 1 such that

pa(pg-p + 1) T
8f{a~N(p~ 1)2Jo

2 E4'i[’ + 9_4_9(_)_(_'}/_)_2.;' __@?_:_!_Y_d__:__'l? Jf T po(xty dt.
0

Combining this with (2.6.12) and Lemma 2.6.2, we obtain

ffdt

(EOp/Go- 1))?-1<exp [CST + A"~ J +C50@)2, T=>0x€M
for some constant C5 > 0. This completes the proof by (2.6.10). O

Theorem 2.6.5. Assume that (2.6.2) and (2.6.3) hold for some constants
c,6,r >0 withS> (1 + \/2)r\/d —1. Then (2.6.1) holds for some C > Q.

Proof. By Proposition 2.6.4, let p > 1and C > 0 such that (2.6.9) holds.
Since 6 > r/d —1, we may take T > 0 such that

N <er= I(S-ry/d- ).

Then for any nonnegative / € Cb(M) with p{fp) = 1, since p is Pt-
invariant, it follows from (2.6.9) that

1= Jf PTf p{x)p(dx)
> (Prf{y))pJ[ e-£p(x¥2- ¢ (1+p*?>p(dx)
f - » 2~2C/i(da:
> (PT (y))p.\f{Pod}e 1+ » 2~2C/i(da)

> £'(PTf(y))pexp[-2ep0(y)2y, YEM
for some constant ' > 0. Thus,

J(PTHy)Zpidy) < [ edepoly)2p{dy) < 00

Jm

according to Lemma 2.6.1. This implies that

I-Pel[1p()->12p(m) < °°-
Therefore, the log-Sobolev inequality (2.6.1) holds as explained in the proof
of Theorem 2.4.2(3). O
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To verify the sharpness of this theorem, let Bo > 0 be the smallest pos-
itive constant such that for any connected complete non-compact Rieman-
nian manifold M and V € C2(M) such that f Mewxhlx = 1, the conditions
(2.6.2) and (2.6.3) with 6 > r6oVd —1 imply (2.6.1) for some C > 0. Due
to Theorem 2.6.5 and the following example, we conclude that

B0 € [1)1 + x/2].
The exact value of Oqis however unknown.

Example 2.6.1. Let M = R2be equipped with the rotationally symmet-
ric metric

ds2=dr2+ {rekr }2d#2

under the polar coordinates (r,8) £ [0,00) x S1at 0, where K > 0 is a
constant. Then (see e.g. [Gong and Wang (2002)])

ric= AUTeK2 - 4y 2,
rekr
Thus, (2.6.3) holds for r = 2k. Next, take V = —kp2 —A(p2 + 1)1 for
some A> 0. By the Hessian comparison theorem and the negativity of the

sectional curvature, we obtain (2.6.2) for S = 2k. Since d —2 and

ev('xMx = re-A(1+r2)1/2drdO, (2.6.14)
one has Z < oo and S = 2k = r\Jd —1. But the log-Sobolev inequality
is not valid since by Herbst’s inequality it implies p(erp») < oo for some
r > 0, which is however not the case due to (2.6.14). Since in this example
one has 5 > rey/d —1 for any B < 1, according to the definition of Bo we
conclude that Bo > 1

2.6.3 Hypercontractivity and ultracontractivity

Recall that Pt is called supercontractive if ||Pt||2=>4 < oo for all f > 0 while
ultracontractive if ||Pt||2-t0c0 < oo for all f > 0 (see [Davies and Simon
(1984)]). In the present framework these two properties are stronger than
the hypercontractivity: ||Pt||2=>4 < 1 for some t > 0, which is equivalent to
(2.6.1) due to Gross [Gross (1976, 1993)].

Proposition 2.6.6. Under (2.6.2) and (2.6.3). Pt is supercontractive if
and only if

h(exp[ApZ]) <oo, A>Q,
while it is ultracontractive if and only if WPt exp[Ap2]|joo < oo for all f, A> 0.
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Proof. The proof is similar to that of Theorem 2.3 in [Rockner and Wang
(2003a)]. Let / € L2(p) with p(f2) = 1 By (2.6.9) for p = 2 and noting
that /i is Pt-invariant, we obtain

1> (PTMY))2) exP - Y)2- C{T + pO(x)2)] fi(dx)

> (Pri(y))2exp [- LU-(Po(y)2+ 1) - C(T + 1)\u(B (o, 1)).
Hence, for any T > 0 there exists a constant Xx > 0 such that
\Pri\ < exp[AT(I +pi)}, T>0,p(f2)=1 (2.6.15)
(1) Ifp(ex*) < oo for any A> 0, (2.6.15) yields that
H-PrHr-H < m(ed4At(1+,°)) < oo, T>0.

Conversely, if Pt is supercontractive then the super log-Sobolev inequality
(cf. [Davies and Simon (1984)])

Pif2bg/2) < rp(\VA\2) + 0(r), r>0,p(f2)=1

holds for some /3 : (0, 00) — (0, 00). By [Aida et al (1994)] (see also [Liu
(2009); Rockner and Wang (2003a)]), this inequality implies p(exp°®) < oo
for all A> 0.

(2) By (2.6.15) and the semigroup property,

lI-Prlb-foo < ||PT/2eA (1+)°)|Jo< oo, T >0

provided |P*e/folLip < oo for any t, A > 0. Conversely, since the ul-
tracontractivity is stronger than the supercontractivity, it implies that
e 6 L2(p) for any A> 0 as explained above. Therefore,

||HteA||loo < ||Rt||2-yoo|leAp“ |2 < oo, A> Q.
Then the proof is completed. O

To derive explicit conditions for the supercontractivity and ultracon-
tractivity, we consider the following stronger version of (2.6.2):

—Hessp > ® o pa holds outside a compact subset of M, (2.6.16)

for a positive increasing function ® with ®(r) f oo as r t co. We then aim
to search for reasonable conditions on positive increasing function @ such
that

Ric > —®opQ (2.6.17)

implies the supercontractivity and/or ultracontractivity.
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Theorem 2.6.7. If {2.6.16) and (2.6.17) hold for some increasing positive
functions ® and @ such that

lim o = i 7SR o (2.6.18)

r 1 62
(BN + éjg dr3+C, rt>0 (26.19)

r
Vb (r+t)(d—1) <B/
(@D <s

for some constants B £ (0,1/(1 + V2)) and C > 0. Then Pt is supercon-
tractive. If furthermore
ds

th:  v/s/OF &{u)du
then Pt is ultracontractive. More precisely, for

< 00, (2.6.20)

Ti(r) :=-= | @<, T2 =/ ds r >0,
Vr Jo Jr $ (u)d»
(2.6.20) implies
[[Ptf|2»00 < exp c+ (I +I]"1(cO) + v f1{trc)) <oo0, i>0 (2.6.21)
for some constant ¢ > 0 and

rj”1(s) ;= inf{t > 0; ri(t) > s}, s> 0.

Proof. (a) Replacing ¢ + p2 by ¢ opfland noting that Hessy < —® 0 p0
for large pD, the proof of Lemma 2.6.1 implies

LpR< c”l + po)- 2p0( [ D ~A"a - \/® opa(d- 1) (2.6.22)
0

for some constant ci > 0. Combining this with (2.6.19) and noting that
IPJI‘BPO <£(s)ds —>00 as p0—y oo, we conclude that for any /1> 0

bMa<C— I ®@<la+ 4A2p2¢ o
1+v2 o (2.6.23)
<C + C(A - APoexp® Jr ° <p(s)ds,
o

where C > 0 is a uriiversal constant and

C(A) := supreAr {éAV- L+ V22 J oG |
A
sup re” |4A2r J (B3|
r2<l11(4(1+V2)2a) (I +V2)2 (2.6.24)

< AA2rj"x(4(1 + d2)2A) exp [ATA4(1 + \/2)2A)]
< exp [4A+ 2ATM(4(1 + v*) 2A)] < oo.
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Therefore,
p(eXpl) < oo, JN1>0. (2.6.25)
(b) By (2.6.19), (2.6.22) and Kendall’s Ito formula [Kawabi (2005)] as

in the proof of Lemma 2.6.2, we have

rPOK't)
dpR(Xt) < 2V2Po(Xt)dbt + (cr- 27 Pfljlrgel(zl +£) I'POX>dR)cs E
Jo

for some constants e, C\ > 0, where Xt and ht are in the proof of Lemma
2.6.2. Let

<p(r) — /I' E/5'=/ PEK >0 (2.6.26)
Jo V«uio

We arrive at
dpOpl(Xt) < 2V2Po(Xt)p Opl(Xt)dbt + dpl(Xt)ip" Opl{Xt)dt
2\/2p0(Xt)(l + e) PoXV

/ ® (3 Idt.

+ Ip<opl(Xt){C1-
p<opl(Xt){ |+ y2 !

Prom (2.6.18) we see that
PoA>" ° Pi < ®° Po
¥ °Pifo° $(s)ds 2(fRd(s)ds)2
which goes to zero as pa—>00. Then there exists a constant C2 > C\ such
that

Po(Xt) \
a ® (8”B) dbt + CAdt

2V2 ( rp°(%) ("8 df.
~TW 2 Wo
This implies that for any /1> 0

Eexp r2nV2 n _f'[l( rR(EX)

i fT . fPo(Xt) .
< ff|2XT+\tpop2(AEexp 2V2 XJ d(s)dsjd6t

/ r fT/ fPo(xd _ \2 ' 112
< e-C—2AT+\tpopQ/\/\Eexp 16/12y J CD(VI’\B’\ dt

Taking

e V2
8(1+ \/2)”
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we arrive at
1 It /'po(Xt) \ dt
21+ vh) * <s)ds) (2.6.27)

< e2C2T+<popl(x)V2/S(1+V2)

Eexp

(c) Let 7 : [0,p(Xt,Yt\ —M be the minimal geodesic from Xt to Yt.
By (2.6.16) we have
(VV, Vp(-, Y1) (Xt) + (VV, Vp(XY) -)) (VD)

rp(Xt,Yt) rp(Xt,Yt)
=] Ressv (js,js)ds <C3-J ®oPo(7s)ds (26 28)

<c3 <B(9)ck.

To understand the last inequality, we assume, for instance, that pO(Xt) >
PoiXt) so that by the triangle inequality,

Pobl > Po(Xt) - s > p(Xt,Yt)/2- a, 8€ [0 p(Xt,Yt)/2}.

For the coupling constructed in the above subsection, one concludes
from (2.6.28) and the proof of Lemma 2.6.3 that

dp(Xu Yt) < [2y/K(Xu Yt){d-\) + C4

rp(xt,Yt)/2 (2.6.29)
O ($)(b-&jdE, t<T

holds for some constant C4 > 0, where
K{XUVYt) := sup ®opo < P(Po(Xt) + p(Xt, Yt))
I([0,p(X,Y«)1)
and i is the minimal geodesic from Xt to Yt. Combining this (2.6.19) and
(2.6.29), we obtain

. rPo(Xt) A
dp(Xt,Yt) < {C4+ 26 4>{s)ds - £tjdt, t<r.
So, taking
—C4+20 "Ned WdS+dM),
we arrive at )

dp(XtXt) < t<t.

This implies r <T and hence Xt = Yt as.
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Combining (2.6.19) with (2.6.12) and (2.6.13) we conclude that for the
present choice of there exist p g, C$ > 1such that

- 1 i, rPekY) Ll.d
(EAR(-1)09 1 < Eexp i+ vk o o) @

+C5T + @p(x,y)’
Combining this with (2.6.27) and (2.6.10) we obtain

(PrHy)r < (PTfp{x)) exp CT + *p(x,yf + C<popl(x) (2.6.30)
holds for some p,c > 1, any positive / £ce(Mm) and all X,y € M, T > Q.
(d) For any positive / £ co(M) with p(fp) = 1, (2.6.30) implies that
PrMy)Y exp -CT - "p(x,y)2-Cipopl(x) p{dx) < 1
(PrMy) }B(O,])

Therefore, there exists a constant C > 0 such that

(PrMy)l <exp C{1+T) +"Po(y)2 yeM,T> 0  (2631)
Combining this with (2.6.25) we obtain
IPM\\pHB>< 00, T>0,g>1

This is equivalent to the supercontactivity by the Riesz-Thorin interpola-
tion theorem and ||Pt|li_n = 1. Thus, the first assertion holds.

(e) To prove (2.6.21), it suffices to consider t £ (0,1] since LIPHr-to0 is
decreasing in t > 0. So, below we assume that T < 1 By (2.6.31) and the
fact that (Pr1/)p < Pc (Pt J)p, We have

HPrmHp+o0 < ||Pre2Cp°/T|jocec'(1+r), T > 0. (2.6.32)

So, by the Riesz-Thorin interpolation theorem and ||Pt||i->i = 1, for the
ultracontractivity it suffices to show that

[|lPreAfloo < oo, NT>0. (2.6.33)
Since @ is increasing, it is easy to check that
fylr

p(r)y = y/r [/ o (8”5, r=>0
Jo

is convex, and so is s .sr/("p-) for 1> 0. Thus, it follows from (2.6.23)
and the Jensen inequality that

h\,x{t) := EeA*(x®» <00, Xg=XE M, Nt>0
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and
—Jrrhx,x{t) < C + C(A) - Xhx,x{t)r]{\~1log hxx{t)), t > 0.
This implies (2.6.33) provided (2.6.20) holds. This can be done by consid-
ering the following two situations.
(1) Since hx<x(t) is decreasing provided AhXtX(t)r](X~1log h\tX(t)) > C+
C{A), if
AIrnx(O)»?(A 1 loghxx(0)) < 2C + 2C(X)
then L
hx,x(t) < sup{r > 1:Xrg(X~1logr) < 2C+2C{A)} < r (2C+2Cp9)+ C"
for some constant C" > Q.
(2) If Xh\tX(O)ri(X~1log/iAx(0)) > 2C+2C(A), then hx<x(t) is decreasing
intupto
fA = inf{t > 0: Aziax(®)r?2(A_1 log hx x (1)) < 2C + 2C(A)}.
Indeed,

d+ \
_artth[X(t) <- —2h XX)rj(A-1 loghxx(t)), t<tx.

Thus,
dr A

/ﬁln,x(TA4n) rr?(A-4ogr) - 2 n<n '
This is equivalent to
Ir(A-1 log hXXT Ntx)) > \{T Atx).
Hence,
hx x{T Ntx) < exp [AR2X"(T Afa))] m
Since it is reduced to case (1) if T > tx by regarding tx as the initial time,
in conclusion we have
sup /iAX(T) < max { exp [ART1(T/2)], C" + \{2C + 2C(A))|.

Therefore, (2.6.21) follows from (2.6.32), (2.6.24) with A= 2C'/T, and the
Riesz interpolation theorem. O

Finally, we note that a simple example for conditions in Theorem 2.6.7
to hold is
$(s) = -\ P(5)=£5D
for p > 1 and small enough e > 0. In this case Pt is ultracontractive with
[IP*||2-t00 < exp[c(l + t-(P+D/(P-1))], t>0
for some ¢ > 0.
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2.7 Curvature-dimension condition and applications

In this section we characterize semigroup properties by using the following
curvature-dimension condition

WPAXI\2- <VLLVI) > KSTA2+-(L1)2, | 6 2.7.1)

where K GR and n> d provide a curvature lower bound and a dimension
upper bound of L respectively. When Z = 0 this condition is equivalent
to Ric > —K. In this case (2.7.1) holds for n = d. When Z ¢ 0, n is
essentially larger than d. Indeed, (2.7.1) is equivalent to

Ric(X, X) - (XxZ,X) > K\X\2+ . X cTM. (2.7.2)

In particular, when n = 0o, (2.7.1) reduces to the curvature condition
Ricz > K.

When n < oo, the curvature-dimension condition (2.7.1) has been used
in the study of the Sobolev inequality, the first eigenvalue and the diameter
estimates, and Li-Yau type Harnack inequalities see e.g. [Bakry and Qian
(1999, 2000); Li (2005); Saloff-Coste (1994)] and references within for appli-
cations of the curvature-dimension condition. The purpose of this section
is to present inequalities of Pt for (2.7.1), and to establish the correspond-
ing transportation-cost inequalities. Results presented in this section are
mainly due to [Wang (2011c)].

2.7.1 Gradient and Harnack inequalities

Correspondingly to Theorems 2.3.1 and 2.3.3 where a number of equivalent
inequalities for the curvature lower bound are presented, the following result
includes some equivalent inequalities for the curvature-dimension condition.

Theorem 2.7.1. Let K ER andn > d be two constants. Then each of the
following statements is equivalent to (2.7.1):

(1) [VPt/|2< e-2KIPt|V /|2- | f* e~2KsPs(Pt-sLf)2ds holds for all f €
C2(M),t>0.

@) [VP4|2 < e 2/fPfIV/|2 - I=fe-(PtLf)2 holds for all f G
C%{M),t> 0.
(3) Ptf2- (Pt/)2 < ~e_17ptjv/|2- +2Kt(Ptb )2 holds for all

fe C 2(M),t> 0,
(4) Ptf2- (Ptf)2>AA\X P tf\2+AKtj A~ M(PtLf)2 holds for all f G
C%(M),t> 0.
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(5) e~KtPt\Vf\ > |VPt/| + ~ Joe-K'P.i* fc tf ds holdsfor all f e
C§(M),t >0.

(6) For any t > 0 and increasing ip € C1([0,i]) with g0) = 0 and ip'(0) =
1, the log-Hamack inequality

pxy)2  Kn o (PO

4/0e2*vWds 41 eKvM -I
holds for any positive function f with inf/ > 0 and all x,y £ M.

Pipit) bg f{y) < log Ptf(x) +

Proof. By the Jensen inequality, (2) follows from (1) immediately. So,
it suffices to show that (2.7.1) implies (1), (2) implies (3) and (4), each of
(3) and (4) implies (2.7.1), (5) is equivalent to (2.7.2), (2) implies (6), and
(6) implies (2.7.1). Below we prove these implications respectively.

(2.7.1) implies (1). By (2.7.1) and using the Kolmogorov equations
(Theorem 2.1.3) we have

NP s|VPt_s/|2= Ps{i|VPt_s/|2- 2(V /W , VLPt_s/)}
> 2KPs|VPt_s/|2+ "Ps(Pt_sLf)2, s € [04].
By the Gronwall lemma, this implies (1) immediately.

(2) implies (3) and (4). Obviously,

NP s(Pt_s/)2= Ps{L(Pt-sf)2- 2(Pt_s/)LPt_s/} ?
= 2Ps|VPt_s/|2.
Next, according to (2) and noting that Ps(Pt_sL/)2 > (PtLf)2, we have
1 _ p-2K(t-s)
PSVPt j f < e-2K(-5)pt|V /|2 -wmmioe— —momen Ps(Pt-sLf)2,
2Ks _ i
PSVP4 /2> e2Ks|VPt/ |2+ p_Kr'{"'(Pth)Z'

Combining these with (2.7.3) and integrating w.r.t. ds over [0, t], we prove
(3) and (4).

(3) or (4) implies (2.7.1). For small t>0w e have
Ptf2=f2+tLf2+ "L 2/ 2+ 0(t2),

(Ptf)2—(/ +tLf + —T2/ + o(t2)j
=f2+t2(Lf)2+ 2tfLf +t2fL 2f + o(t2).
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So,
Ptf ~ (Ptf)2= 2f|V/|2+ t2{2(S7Lf, V/> + L|V/|2} + 0(t2). (2.7.4)
On the other hand,

2Kt
Pt|V/|2= {21- 2Kt2+ o(t2)} «{|V/|2+ tL|V/|2+ o(i)}
= 2f|V/|12+ 2f2{L|V/|]2- K\V\2} + o(f2).
Moreover, it is easy to see that

p
K

- 1t2(Lf)2+ o(t2).

Combining these with (2.7.4), we see that (3) implies

22{ "LV /|2- <VL/, V/) - K\VA2- +0(f2) > 0,

Therefore, (2.7.1) holds.
Next, it is easy to see that
e2Kt _ j p2Kt 1

k  Mpyp+—" -—--tfW)2
= [2t+ 2X12+ o(f)} +[V/ + FVL/ + o(B2+ Z2(LTY +0(12)

= 2<|V/|2+ 2t2{2(V/,VL/) + + iV|V/|2} + o(f2).
Combining this with (2.7.4) and (4) we prove (2.7.1).

(5) isequivalent to (2.7.2). Using y\S7Pt- sf\2+ £to replace |VPt_a/|
and letting e -> 0O, in the following calculations we may assume that
|[VPt_s/| is positive and smooth, so that

-P s|VPt_s/| = PjL|VPt a| (VLPLSLy P t-sf)\

VP, -sf\ J
) (2.7.5)
iLIVPt s/|2- (VLPt_ s/, VPt-sf) - |V|VPt-,/]|2
[VPt_s/| h
Since
lL|V/|2-(V L/, V)
=Ric(V/,V/) - (Vvfz, V) + lIHess/lI"s, (2.7.6)

V/ 2
VIWI2= H e.,*,.) < |Hess/|"s,
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it follows from (2.7.2) and (2.7.5) that
a’;Ps|VPt_s/| > KP3\WVPtsf\ + n—_d,Ps—ZR/Wt_zgﬁl ]

This implies (5).

On the other hand, since when t = 0 the equality in (5) holds, one may
take derivatives at t = 0 for both sides of (5) to derive at points such that
1V/| >0

-iCV/l+nv/I> (VLI(f/V/>+ (;{-Z&’)HV/r

Thus,
UVv/I2- (VL/, V) > K\v/12+ {zn'v_/?jz
Combining this with (2.7.6) we obtain

Ric(W WY (QWIZ, NV ) > K\VI\2+ {h VI |, | € C°°(M),
which is equivalent to (2.7.2).

(2) implies (6). By the monotone class theorem, we may assume that
/ E C2(M) which is constant outside a compact set. Let 7 : [0,1]] =M be
the minimal geodesic from x to y, and let
h(s) Jore2K(/,(ndr

foe2™ (r)dr

By (2) and using the Kolmogorov equations we obtain

s € [0,t].

~ pv(s) logPt-stbh(s))

= Py (s){¥3(s)i | og-Pt-s/ - Ljb*~$ }bh{s))
+ ti{s)(ih{s),S7Pv(s) log Pt-s/(7/i(s)))

<Aw {("(s)“ L logpt-sf ~ |VlIogPt_s/|2H7h(s))
+ {I7(s) |p(®, 3N}V ~ (e) log Pt-sf\bh(s))

< |lv>*(s) “ 11 - \Pv(s)LlogPt-Sf\ e e {Pv(s)L\ogP!-s/)2|(7/i(s))
+ {/,(*,y ) h "(s) \logPt_s/| - e2i® « MPWH) logPt_ jf }(70n)

Ne- 20 p(xy)2h'(s)2  Kn(ip'(s) —1)2
- 4 + 4(e2*>(s) _ 1)

This completes the proof by integrating w.r.t. ds over [0, ].
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(6) implies (2.7.1). For fixed x £ M and strictly positive / €
which is constant outside a compact set. Let

ip(s) =s + 2Lflo* ~ s2, 75= expx[—2sVIlog/(x)], s> 0.
According to (6), for small t > 0 we have

(logf)(x) <logPtfbt) + 1

Joe )ds (2.7.7)
Kn (r'¢s) - 2
4 e W -1

Since (fi(t)2 =t2+ o(i2), we have

PA(t)(logf)(x) = | log/ + v(t)Llog/ + ~y-L 2log/j(z) +0(t2)

= logf(x) +ip(t)Llogf(x) + o(t2)
t2fL2f  (Lf)2 2(VL/V/) AjV/12

+ 2\ f p p p
4\V/|2L] _ 6|VI/[4 8Hessf(V/,V]))

+ 3 fa4 + f3 jW -

On the other hand,

logPtfbt) = logf(x) +t{~/~ ~ b TOR
+*2d /EPt/(7t)- 2 N Vlogf(x), VPtfbt)'
2dtV Ptfbt) t=0
log/(a;) + t{Llog/ - |V1og/|2}(r) +0(f2) (2.7.9)
N (LZ (LHh2 4A(VEILNVID | 4[Vvi2L]
21/ P P P
8|V /|4 8HesS/(V/I V) 1),
/4 /3
Finally, since it is easy to see that

Kn rt
i @ 5

+0(t2)

ALDLds=~(Llogf)2(X),

we have

Kn
~T f e N |) ds = \ t2{L|0g/)2(X) + o(*z), (2710)
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Substituting (2.7.8), (2.7.9) and (2.7.10) into (2.7.7), and noting that

(<p®) - YLlogf)(x) =~ (L log/)2(x),

we arrive at
P Vlog/| 209 + (H'0902X)
[* e2ifv(s)ds
A 1/L|V/|2—21(VL/,V/) 2|V/J4\ .nm
~ 2\ 2 i) (x)+o ().

Letting t —0 and multiplying both sides by / 2, we obtain

Km4x)+ (iLz. m
< ([i|lV/|= - (VLEVE) - " -)w -
Replacing / by / + m and letting m —» oo, this implies that

K\WVA2(x) + {blIY 1 <h\VA\2x) - (VL/, V/)(x).

Therefore, (2.7.1) holds.

In particular, when K = 0 Corollary 2.7.3 below includes six more equiv-
alent inequalities for (2.7.1), where (1)-(3) are due to [Bakry and Ledoux
(2006)], (4)-(5) go back to [Bakry et al (2011)], and (6) is taken from
[Qian, B. (2013)]. To formulate and prove this result, we first introduce the
Hamilton-Jacob semigroup Q( generated by 11V-j2, i.e. forany/ e CI(M),
Qtf solves the equation

=~7"NVQ(/|2, Qo/ =/m (2.7.12)
Using the Hopf-Lax formula we have
Qtf(x)= yigl\fn {I(y) +Y %/t -}, t>0,xeMJ eBb(M). (2.7.12)

Lemma 2.7.2. For any f £ C2(M), there exists a constant ¢ > 0 such
that

QtE/ )-£/+M |V /|2 < ct2e3, et>0
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Proof. It suffices to prove for e,t > 0. By (2.7.12), for any z £ M there
exists y £ M such that

Qt(ef){z) =ef(y) + —
Then
P(z,y)2 < 2t{ef(z) - ef{y)) < 4fe]|/||oo-
So, by the Taylor expansion,
Qt(ef)(2) =ef(y) +~ £
>ef(z) +ep(z,y)(VI(2),Vp(y,-)(2)) - Ip(x,y)2||Hess/ ||0D +

>ef(z)-£\V f\2(z)-ct2e3

holds for some constant ¢ > O and all z £ M,e,t > 0.

On the other hand, taking y = exp[—eiV{(z)], we obtain from (2.7.12)
that

Qt{ef)(2) <ef(exp[-etvi(z)}) + |V /]2&)

<ef(z) - ~ |V/|22) +cte3, z£M,e,t> 0

for some constant ¢ > 0. Therefore, the proof is completed. O

Corollary 2.7.3. For anyn > d, each of the following inequalities is equiv-
alent to (2.7.1) with K = 0:

(1) (PtfL(logPtf) > Pt(flogf) (I + —LlogPtf"J holds for all strictly
positive f £ Cb°(M) and t > 0.

(2) tLPtf-~ (P tf)\og (I +~L\ogPtf) <Pt(f\ogf)-(Ptf)logPtf holds
for all strictly positive f £ CE°(M) andt > 0.
(3) Pt(flogf) - (Ptf) logPtf <tLPtf+ (P tf)log (I - 2tPt,, pjgf))

holds for all strictly positive f £ C*°(M) and t > 0.
(4) Forany g\ > q2 >0 and t\,t2 > 0 such that t := 2(t\qgi —t22) > 0,

(Ptle9lQt/)n < (Ptaega/)” *i” *232r( 2" 1f g2)" , | £ Bb{M).
(5) For any 0 £ M ,t\,t2 > 0 and positive f £ Bb(M) with Ptlf(o) = 1,

L, (fPti (0, 9>Pt2(0, )2 < 4Fi|Ptj (/logf)(0) + ! “ 1%1oS  }e
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(6) For any o 6 M,ti,t2 > o and strictly positive f c C*°(M) with
Ptf(0) = 1,
WE (fPtl (0, *) Pt2(°»0)2

<411{ITPHIL [+ |(P tif)log (1- 2 PufLlogfl

nPtJ )

Proof, (a) Each of (1), (2), (3) implies (2.7.1) for K = 0. For any
! 6 Cq’(M), applying (1), (2) and (3) for 1+ef in place of /, and letting
e — 0, we obtain, respectively,

VPU/|2< PLV/|2- -(LPU)2
(PU/2) - (P/)2> 2*|VPil|2+ — (LPt/)2,

Ptf2- (Ptf)2< 2PV /|2~ — (LPU/)2.

According to Theorem 2.7.1, each of these inequalities implies (2.7.1) for
A =0

() (2.7.1) with K =0 implies (1), (2), (3). It suffice to prove for
/ being constant outside a compact set. Set

ofa) = Ps{(Pt-s/)|VIogPt_s/|2}, *c [0*].
By (2.7.1) for K = 0, and using the Schwarz inequality, we obtain
o\>) = 2Ps{(Pt_s/)("L|VlogPt_s/|2- (VlogPt_s/,VLIlogPt_s/))}

> -Ps{(Pt-s/)(LlogPt_s/) 2}

n p{’ a M !
n Ii’t_,/v( Ao P'[—Sf)>j)
>2{Ps(£Pt_,/—gfef)}2

nPtf

oy (0@ - LPH2, sG]

Thus,

d/ 2s

ds\nPtf ¥ axg —Lptf) <0 ccelU (2.7.13)
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In particular,

2 *n~ 1 1 1 1

nPJ ~ 0(0) - LPtf  o(f) - LPtf ~ Pt(fLlog/) ~ (Ptf)LlogPtf

This implies the inequality in (1).

Moreover, it follows from (2.7.13) that

1 2s " 1 ~2(t-s) 1

0(0) - LPtf nPtf ~ (8)- LPtf ~ nPtf + O(f) - LPtf’ S€
Thus, letting a = ppj, we have, for all s € [0,t],

{N0) - LPtfy-1- as ~~ ~LPtf~ aft- s)+ - LPtf)~1'
Integrating w.r.t. ds over [0,f] and noting that
/ 0(s)ds = Pt(/log/) - (Ptf) log Ptf,

we prove the inequalities in (2) and (3).
(©) (3) implies (4). Let a = 2(tI~t2) and for s € [0,£],

s+ XX n (as + 2t2)(s +

Q) ois -f- A2’ efs) 2(s + 2t2qf) ) 1 —aq(s)
It is easy to see that

(O0)'(s) —{e\g')(s) = 9'(e)>0, A(S) >0, s6[0t], (2.7.14)
Let

P(3) = (Pe(s)e9(5)Qs) *, s 6 [0f],
By (2.7.11) we obtain
a2 (2.7.15)

+q(s)2(Y - "T)W w (e NAs)Qs/|VQs/|2)},
where, according to (3) and A(s) > 0,
1(s) = Pe(s)(eXs)Qf loged(s)Qal)
-{Pe(s)eq{s)Qsf)logPefs)e " " f
<e(™)q(s)(1 - 4s))Pe(s){ec{s)QfLQsT) (2.7.16)
+e(s)q(s)zPeis)( e ™ ‘f\\/Qsf\2)
+ EA -1-log A )(s)PQ(s)e ™ /.
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Substituting (2.7.16) into (2.7.15) and using (2.7.14), we arrive at

© ' («) < 2 (N~ 1 -1ogA)(s)W (s), s 6 [O,t\.
Therefore,

P(E) < D(0) exp aLJ‘(A(s) - 1-logA(s))df
Jo sy
This is equivalent to the mequallty in (4) since according to the definition
of functions @, 8, g and A we have

I -Url(A(s) - 1- logA(s))ds = [ El——) (S)(A(s) - 1- logA(s))ds
Jo gis)2" Jo J

_ A(0) —1—og A(0) _ At) - 1-logA(t) / a2q'(s) 3
o) o(t) (L-aats))
a a , (-aghe , crt

1-ag2 1-aqgi (- agh)« ~ 2t2(1 - ag2)

(l ag2”™ =log *r (2(qi - 92)"%1
(t - agi)« :

(d) (3) and (4) imply (5) and (6). Since (6) follows immediately
from (3) and (5), it suffices to prove (5). Applying (4) to gi = 22*+1 and
letting g2 -> 0, we obtain

Ptle* Ql/ <exp [x-Ptaf + 1 (| - 1- log]|) ] .

Combining this with the Young inequality (see Lemma 2.4 in [Arnaudon
et al (2009)] or [Stroock (2000)]), for any positive function g with Ptlg(o) =
1 we have

2%i-(PtAgQif)(o) - PtJ(0))
< Ptl{glogg){o) + logP(leZ<iQl/(0) - - -PtJ{o)

< Ptx(glogg)(0) + [ (" - I-1°g]).

This implies (5) by Proposition 1.3.1 and (2.7.12).

(e) Each of (5) and (6) implies (2.7.1) for K = 0. According to
Theorem 2.7.1 for K = 0, it suffices to prove that for any t > 0,0 GM and
/ GCbh(M) with Ptf(o) =0,

Ptf2(0) < 2tPt\Vf\2(o) -

2t2(PtLf)2(0) (2.7.17)
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Let fs — 1+ ¢/, ti = t,t2= (1 + ae)t, where a 6 R is to be determined.
Then, for small £ > 0 we have fe > 0, Ptf£{o) = 1, and by Proposition 1.3.1
and (2.7.12)

\w $ (fePt(o, -),P{t+ab)t(o, -))2 > Pt{feQi(4etf)}(0) - P{i+, )t(4etf)(0).
Combining this with Lemma 2.7.2, we obtain
WE(fePt(o,-),Pil+ae)t(o,-))2
> 2Pt{(1+sf)(4etf - 4£2t2|V /|2)}(0)
- 8eztzaPtLf(0) + o(e2) (2.7.18)
= 8e2tPtf 2(0) - se2t2Pt\Vf\2(0)
+ geat2aPtLf{o) + ofe2).
Combining this with (5) for f£ in place of /, we arrive at
Ptf2(0) < tPt\S7f\2(0) + atPtLf{0)

+it loSfe)(°) + - los(l + ea))}
= tPt\Vf\2(0) + atPtLf(0o) + \p tf 2(0) +

Taking a = _ 2tP* /(0), we prove (2.7.17). Similarly, (2.7.17) follows by
combining (2.7.18) with (6) for fe in place of /, and noting that Ptf£(0) =
L O

Next, we consider applications of the above equivalent inequalities. We
first present some consequences of Theorem 2.7.1(6) for heat kernel bounds.
According to Li-Yau’s Harnack inequality [Li and Yau (1986); Bakry and
Qian (1999)], if (2.7.1) holds then Pt can be dominated by Pt+S for s, t > Q.
A nice point of (6) is that we are also able to dominate Pt+S by Pt with
help of the logarithmic function. With concrete choices of pwe have the
following explicit log-Harnack inequalities.

Corollary 2.7.4. If (2.7.1) holds, thenfor any s >0,t >0,

\ A [\ K{t+25)p(x V)2 + nKs2
Brrstogfly) < togBe(x" || o2 atekt - 1)0 2719
and
Kp(x,y)2 Kns

Pt logf(y) < log Pt+Sf(x) + 1) (2.7.20)

(e2Kt - 1) + 4Kse2Ki " 4(e2Kt -
hold for x. y £ M and bounded measurable function f with inf/ > 0.



120 Analysis for Diffusion Processes on Riemannian Manifolds

Proof. Lettoe (0,t). Taking
t t+2s$ t\+ r

4>’(r):rA 2+ —j—{r~2) "’
we have
t(e2K(t K tj
e2dfr)dr = €% -1 1(EKETS) ekl
2K 2K (t + 25)
AN {e2if(*+s) - 1)
“ 2K(t + 25)
and
K W(r) - 12, _"rs2 f* dr
e2KV{r)_1 t2  Jt/2 exp[2K(t+2S)(r _L) + Kt]-1
2Ks2
~ t(eKt —1)

Thus, (2.7.19) follows from Theorem 2.7.1(6).
Next, applying Theorem 2.7.1(6) to t+s in place of t and taking <p(r) =
r At, we prove (2.7.20). n

According to Proposition 1.4.4, for any t > 0,s > 0 and x,y € M,
(2.7.19) and (2.7.20) are equivalent to the following heat kernel inequalities
(2.7.21) and (2.7.22) respectively, where v is a measure equivalent to dx
and p” is the heat kernel of Pt w.r.t. v.

Pt+a(y,z)
b ft« (5'2)log wiz) (2.7.21)
< K(t +2s)p(x,y)2 + nKs2
at(e2K(t+s) - 1)  2t(i KU 1)
L p'{y'z)losk ~ ) u{dz (2.7.22)

Kp(x,y)2 Kns
2(e2Kt - 1) + dKse2Kt  4{e2Kt-1)"

2.7.2 HWI inequalities

In this subsection we aim to establish the HWI inequality using the
curvature-dimension condition, which corresponds to Theorem 2.4.1(3) us-
ing the curvature condition. Again let Z = VP such that p(dx) := e\(;,:>tx
is a probability measure. Let V(M) be the set of all probability measures
on M and C(pb /i2) is the set of all couplings for /g and p2-
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Corollary 2.7.5. Let Z =W such that p(dx) :=ev”dx is a probability
measure. If {2.7.1) holds, then for any f £ C1(M) withp(/2) = 1,

vn(l - A>)

Mi2bgi2) < cli(vii+ Y0 S (wrgw ) 1o

(2.7.23)
+ N (wp(f2p,p)
for r € (0, 00) M "0, , Where K + := max{0, K}. Consequently,
M/2i°g/2)< 2® (/v ,riv M A P(/2M )
2\IN(|V 112) —KW 2 (f2p, p) (27.24)

In
(SIWZ(PP.P)= 5 n 1V 112)i4

Proof. Applying (2.7.20) for Ptf 2+e in place of / and letting £ —0, we
obtain, for all s > 0,

(Mlog« T M <logW M + +iofej-

Let M £ C(f2p, p) be the optimal coupling for W2 (f2p, p), integrating both
sides w.r.t. 1 and noting that due to the Jensen inequality and p(f2) =1
it follows that p(\ogP2t+sP) <0, we arrive at

W 2K Kns
2(e2Kt i) + 4se2KtK T 4(e2Kt - 1)’
where and in the remainder of the proof, W2 stands for Wf(pp, p) for sim-
plicity. On the other hand, according to Theorem 2.3.1(3), (2.7.1) implies

Pt(riogf2)<(Ptf2)\ogPtf 2 l_f:ZKt_pt\Vf\

p((Ptf2) log Ptf 2) < (2.7.25)

Integrating both sides w.r.t. p and using (2.7.25) we obtain
2Kt
WK K ns
MIVJIDF peant - 1) + aseKiK  afekt - 1)

Letting r = (1-e~2Kt)/K which runs over all (0, -*p) as t varies in (0, 00),
and using rs to replace s, we get

p(j2logf2) < !

W2 ns

M /21°gf) <rp{\Vf\2)+{I-Kr 2(1+23)r+_ ;

o<rc< s> 0.
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Taking
i} HZWz
s~ 2GC rn
we prove (2.7.23). To prove (2.7.24), let
W2
2y/6'
Since according to Theorems 2.4.1(1) and Theorem 2.5.4 for constant &,

&= MIVI/I2), r

AV CFW )2<M(/2i0g/2) < A M ([V /]2),

sothatr < Thus, (2.7.23) applies to this specific r. Therefore, (2.7.24)
follows by noting that

- Kr)w2 (w2- ~ y
rs 2r 4sfr
1-Kr)w?2 (1—Kr)W2fW2
- 6r+ 2r 2r \
y/n(l - Kr) rn\ +
+ ayjr (w2 2-)
1 K> . 1-Kr
=St o N g K fy
2Ve - KW2
= AN w2- - N — )+
\Wa Wl 2 zylz&V*g ]

By Theorem 2.4.1(3), Ric- Hessy > K (i.e. (2.7.1) for n = oo) implies
M/2bg/2) < =M (W )2

for all / e CI(M) with /r(/2) = 1. According to (2.7.24), the dimension n
contributes to a negative term in the right-hand side since 2y//i(|\V/|2) >
KW%(/2/x p) as explained in the proof of (2.7.24).

Next, we introduce a Sobolev-type HWI inequality derived in [Wang
(2008b)] using (2.7.1).

Theorem 2.7.6. If (2.7.1) holds for some K < 0 and n > 0, then for any
6>0, M/2)=1,

M /2bg/2) < Mog(l+6fi(\VA\2)) + C"n,K)W 2(f2ff,p), (2.7.26)
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where
C(e,n,K):= _inf \-Re® R/r+"rvV~rK
R,r>010 2

++{l +*"KRf-"nK}

Proof. Let/ be a fixed smooth function with p(f2) = 1 By the Li-Yau
Harnack inequality (see Theorem 10 in [Bakry and Qian (1999)]),
(p+ yJFnKs)2

. 5\ n/2
°t/ 2(* )< [IW 2M](1+ |) exp 4s

+AV-nKmin| (V2- )p, nlfj

for all s,t > 0, where p := p(x, y) is the Riemannian distance between x
and y. Thus,

(Pt log Ptf 2)(x) < log Patf 2(x)
94 (p+\J-nK s)2

< logpat+sf 2{y) + ~ log (I + — 4

H—-—mm {(V2-1)p,sV "k }.

Let M € C(fz2p, p) such that W2 := W2(fz2p,p)2 = M(p2). The existence
of the optimal coupling is ensured by Proposition 1.3.2. Integrating both
sides of the above inequality w.r.t. I and applying the symmetry of Pt, we
arrive at

p((Ptf 2) logPtf2) = p{f2Pt log Ptf 2)

< pilog P2t+5f 2) + | log (I + (2.7.27)
(W2 +\/—Ks)2 —nK
* & T —4¢

Since by Jensen’s inequality p(log Pit+sf2) < log p(P2t+sf 2) = 0, combin-
ing (2.7.27) with the following semigroup log-Sobolev inequality (Theorem
2.3.1(3)

2( a-2 Kt
AN (/12log/2)< K felV/12+ (r,/2)lo6PY 2,
we obtain beakth
2(1 B .
M /2log/2) < ( MIV/|2+|log (Il +1i)

K
N (W%+y/—nK )2 —+K
4 i ®

(2.7.28)
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Set s = RW2 and pj = <5/x(V/]2) + r\J-KW2, where R,r > 0 are to be
determined. We have

M'/2<S—RW2 and t < R
iv/]2) 26t ~ 25t 2rVAKW2  2rsfAK!

Thus,
21 K A A (IVI12) < 4te-2KV (|V/]2) < 8RW2e ™ R/

log(l + s/2t) = log(l + eff(\Vf\2) + rV-KW 2)
< log(l + <5/i(|V/[2)) + ry/—KW2.
Combining these with (2.7.28) we obtain

+ MRy 24 Mlog (1 + SxVIR) (2.7.29)
= F(R,)W2 + log(l + <S/x(IV/[2).

To drop the exponential term of \J—K and to make e*~KR/r equal to 1 as
it should be when K =0, we take r = {y/—K + un~1"2)R, where n > 0 is
to be determined, so that

F{R, 1)

nK+ ™ AZA
0 - z + TR +

:H(R,n), R,n=>0

Minimizing H(R,u) in R, n > 0 we arrive at

inf F(R, I’)< inf J-eAK/i"K+un-~) _nR+ “yz"A +1
R.>0 V - «<>o0VS 2 2

Since eFIIK/(VaK+un 1/2) < i ) it follows that
R!pIOFg/R,r) < Lljr;}‘) V5+ Q}/Z + 2/{5u)))}//—nK —riff + -é//—nK
=" +2" K /e-nK+""MN< +
Hence, the proof is completed by (2.7.29). O

Finally, corresponding to Theorem 2.3.3(2), we consider the transporta-
tion inequality of Pt deduced from (2.7.1).
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Proposition 2.7.7. Assume that (2.7.1) holds and let

/-2 S if K >0,
p{xy) = <p{xiV)i fK =0
yi-Ki(n-1Fh TV v ok (n—i) o ITK <0
Then for any p £ [1, 00),
wgimPuHiPt) <e-Ktwp(ffi,p2), t>o,/xb/i2€P(M). (2.7.30)

If K >0 then

nil
W (pjPLjAPt) < exp -In (2.7.31)
for allt >0, Ri,P2 £ V(M), and hence,
Kt 1
IVPt/IU < Trexp nn—l IIV/lloo, t>0,feCl(M). (2.7.32)

Proof. Since the assertion for A' = 0 follows from that for K > Qby
letting K 0, below we only prove the desired inequality for K < 0 and
K > 0 respectively.

(@ Proof of (2.7.31). Let K > 0. Take I e C(pi,p,2) such that
Wf(p1,/xr) = MN(p). and let {Xq, Yg) be an M x M-valued random vari-
able with distribution M. Let (Xt,Yt) be the coupling by reflection of the
L-diffusion process with initial data (Xo,To)- We have (see Theorem 2.3.2
for U =0)

dp(Xt,Yt) < 2v2dbt + Iz {Xt,Yt)dt (2.7.33)

for a one-dimensional Brownian motion and

12 (x, y) :=1(x, y) + (Z,Vp(; ¥))(X) + (Z, Vp{X, 9)(»), (2.7.34)

where letting 7 : [0,p(X,y)) - M be the minimal geodesic from x to y and
{Ji}iZ1 the Jacobi fields along 7 such that at points X, y they together with
7 consist of an orthonormal basis of the tangent space, we have

d~1 mpixy)
I(x,y) =V [/ (IV~ 1 2- (r(7,di)7,Ji))5ds,
i=i *o
where TZ is the curvature tensor on M .

To calculate 1(x,y), let us fix points x ¢ y and simply denote p —
p(x,y). Let be constant vector fields along 7 such that {7, 10r :
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1 <i < d—I}isan orthonormal basis. By the index lemma, for any
/ GCUY M) with /(0) = f(p) ~ 1, we have

t(x,y) <E T (IV7/™]|2- f2(4u0ur Uui))ds
i=1J° (2.7.35)
:}o {(d- D/'(s)2-/(s) 2Ric(7,7)s}ds.
On the other hand, since /(0) = f(p) = 1,
(ZVp(-yN(x) + {ZVp(x,-){y) =] "{/(s)2(7,Z07)5}ds

:} {~N(FE){s)(i,.2°'y)s + [(s)2(V"Zo7,7)s}ds
0

20,2 072 | o a)i(s12 + §()2(V5Z 07,7)s ds.

< -a n —d
Combining this with (2.7.35), (2.7.34) and (2.7.2), we obtain
Iz{x,y)<J[ [(n-1)/'(s)2- Kf(32Kdsls. (2.7.36)
0
Taking

/(s) = tan {"y/K/(n - 1)j sin ("/K/[n - 1) +cos [yjK/(n - 1)s]
for s e [0, p], we obtain
Iz{x,y) <-2y/K(n- Dtan VK/{n- 1))- (2.7.37)
Therefore, it follows from (2.7.33) and the Ito formula that
dp{Xu Yt) < dMt ———hp—E—{)(Xt,Yt)dt
holds for some martingale Mt. Thus,

W " p1Pu p2Pt) < Ep(Xu Yt) < exp Ep(X0,To)

- 11

nK .
exp n—ft N?2(mbii).
(b) Proof of (2.7.32). Taking pi — 6x,p2 —dy and noting that (see
[Bakry and Ledoux (1996b); Kuwada (2013)]) pN/—K/(n - 1) < T, we
obtain from (2.7.31) that
) (o -/(O I inf o'
Ptf{x) Ptf(y)|<)?lég)’ AX1Y) Hﬂ& ) "
<AVf\\aoWf(exPt,evPt)

nKt'
< 7r||\V/||00 exp n—1. (x,y).
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This implies

\Ptf(x) - Ptf(y)\ <
p{xiy)

(c) Proof of (2.7.30). When K <0, we take

t
VAl

[VPt/(a;)| = IIT?XUp Y

rexp

f(s) =cosh (Ey/-K/(n - 1)) sinh *y/-K/(n - 1))

N 1 —cosh(py/—K/(n —1))
sinh(py/-K/(n - 1))
It follows from (2.7.36) that

sinh (sy/—K/(n - 1)), s € [o,p\

Iz{x,y) < 2y/-K{n- Ltanh [- ~ Y -K/(n - 1)).
Combining this with (2.7.37), we obtain

2y/-K(n - 1)tanh ifK <0 (27.38)
1z(X, A.
(x¥) 2yjK{n - 1)tan if K > 0.

Now, let (X0, ho) have distribution M such that M(pp) = W p(p\, p2)p. Using
the coupling by parallel displacement rather than by reflection, we have
dp(Xt,Yt) < 1z (Xu Yt)dt.
Combining this with (2.7.38) we conclude that
dp(Xt,Yt) <e~Ktp(Xt,Yt).
Therefore,

WE{NiPt,H2Pt) - (= p(Xu Yty )1/p
< e~Kt(Ep(Xo,Y0)p)L/p = e~KtW p(pi,p,2).

2.8 Intrinsic ultracontractivity on non-compact manifolds

When p is finite, Theorem 2.4.2(1) provides a criterion for the ultracon-
tractivity of Pt. In this section we consider L := [ + VU for infinite
p(dx) :=e'UUda;. In this case, an important property of Pt is the intrinsic
ultracontractivity.

Definition 2.8.1. Let (E, P, p) be a cr-finite measure space, and (L, V{L))
a negative self-adjoint operator generating a (sub-)Markov semigroup Pt :=
etL on L2(p).
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(1) If Ao(—L) := infer(—L) is a simple eigenvalue with positive unit eigen-
function g where cr(—L) is the spectrum of —, we call po the ground
state of L.

(2 If L has a ground state po > 0 and the Markov semigroup Pf° :=

1eAatPt ((/0-) is ultracontractive with respect to the probability mea-

sure nvo :=yin, ie. |[Pf|[ri(*0)-"*°OW < 00 for all 1 > °’ then
the semigroup Pt is called intrinsically ultracontractive.

Obviously, if Pt is intrinsically ultracontractive, then it has a heat kernel
Pt(x,y) w.r.t. p satisfying

Pt{x,y) < e XatPo(x)ipo(y)\\Pto\L1(fi*o)->L'x{fi0), t>0,x,y e E.

The intrinsic ultracontractivity has been well studied in the framework
of Dirichlet heat semigroups on (in particular, bounded) domains in WI.
For instance, the Dirichlet heat semigroup on a bounded Holder domain of
order O is intrinsically ultracontractive (see [Ciprina (1994); Chen and Song
(2000)]). See the recent work [Ouhabaz and Wang (2007)] and references
within for sharp estimates on ||/*Po|.£1(g ), and [Kim and Song
(2009)] and references within for the study ofthe intrinsic ultracontractivity
of Levy (in particular, stable) processes on domains.

On the other hand, however, when a non-compact Riemannian man-
ifold with infinite volume is concerned, these results are no longer valid
due to the lack of global intrinsic functional inequalities and characteri-
zation of the ground state. This section is taken from [Wang (2010c)],
where sufficient curvature conditions were derived for the intrinsic ultra-
contractivity on non-compact complete manifolds. In order to study the
intrinsic ultracontractivity of Pt, we make use of the following intrinsic su-
per Poincare inequality introduced in [Wang (2002a)] (see also [Ouhabaz
and Wang (2007)]):

M /2) < tIr(IV1]2) + f3{0)p((o\i\)2, 1 >0,/ GCo(A),  (2.8.1)

where /3: (0, 00) —>(0, 00) is a decreasing function.

The intrinsic ultracontractivity of Pt implies (2.8.1) for some /3 (see
Theorem 3.1 in [Wang (2002a)]), and (2.8.1) holds for some /3 if and only
if aess(L) = 0 (see Theorem 2.2 in [Wang (2002a)]), where <ess(L) is the
essential spectrum of L. On the other hand, if

t> r|£1£ 13(r), (2.8.2)
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where 6 1(s) := inf{r > 0:fi(r) < s} for a positive decreasing function /3
then (2.8.1) implies the intrinsic ultracontractivity of Pt with (see Theorem
3.3 in [Wang (2000b)])

I Ol|b1("0)->i00MO) <max{e_1inf/3, ® 1((1 ~£)t)}2< 0o, (2.8.3)
for all e G (0,1),t > 0. We refer to [Davies and Simon (1984)] for the
study of intrinsic ultracontractivity using the log-Sobolev inequality with
parameters.

We will first establish the intrinsic super Poincare inequality (2.8.1)
using the following curvature-dimension operator RicTQE. Assume that for
some m > 0 and positive increasing function K one has, instead of the
second condition in (2.8.7),

RicLm := Ric —Hessv---------=------ > —Popa. (2.8.4)

When @ is a constant, this condition goes back to (2.7.2).

2.8.1 The intrinsic super Poincare inequality

As explained in the last section that due to Theorem2.2 in [Wang (2002a)],
(2.8.1) holds for some /3 if and only if aess(L) = 0. According to the
Donnelly-Li decomposition principle (see [Donnelly and Li (1979)]), they
are also equivalent to

Ao(R) == inf{p(IV/|2) : p(/2) = 1,/ GCLUM), /|B(0o,n) = O}t
as R t 0o. The purpose of this section is to estimate /3in (2.8.1) by using

Ao(R) and the curvature condition. To this end, we will make use of the
following super Poincare inequality:

M(/2) < ti([V/|2) + Po(r)p(\\)2, r >0,/ GCq(M) (2.8.5)

for some decreasing function /% : (0, 00) — (0, 00). In particular, by Corol-
lary 1.1 (2) in [Wang (2000b)], (2.8.5) with 3g(r) = c(1+ r~p/2) for some
constant ¢ > 0 and p > 2 is equivalent to the classical Sobolev inequality

M(/ |2/(p-2)(p-2/p < C(p(IV/12) + p(/2)), | GCq(M)

for some constant C > 0. The latter inequality holds for a large class of
non-compact manifolds. For instance, according to [Croke (1980)], it holds
true for P = 0 provided either the injectivity radius of M is infinite, or the
injectivity radius is positive and the Ricci curvature is bounded below.

To derive explicit intrinsic super Poincare inequality, we first estimate
the ground state.
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Lemma 2.8.1. If (2.8.4) holds then for the positive ground state ipo, there
exists a constant C > 0 such that

1
Vo> " exp -CpoVWpoj =

Proof. Since gois bounded below by a positive constant on a compact
set, it suffices to prove for pa > 1 Let x € M with po{x) > 1 Applying
Theorem 5.2 in [Li (2005)] to a = 2 and R = pa(x), we obtain

e~AVo(0) - Pi Vo(0)
. Po{x) %"
< (Pi+e<po(2))(l + s)m+dexp c\s$>(2po(x)) + 2%

Po(x) 2.
2

= No(M)e-Ao(l+s)(I + s)m+dexp \c\s${2po{x)) + ,S>0,

for some constant ci > 0. Then the proof is completed by taking s =
po(x)/y/ D (2po(x)). O

Theorem 2.8.2. Assume (2.8.5). Let & be positive increasing function on
[0, 00) such that (2.8.4) holds. If Ao(R) t 00 as R f oo, then (2.8.1) holds
with

13(r) = C/30{r/8) exp CXol(8/N®(2 2aq1(8/r)) r>o.
Proof. Since one may always take decreasing /3, it suffices to prove for

r<1l Let/ € Cq(M) be fixed. Let hR= (po—R)+/11, R >0. Then hR
is Lipschitz continuous so that (2.8.5) applies to /(1 —hR) instead of /:

h(/2(1- hRf) < 2sp(\Vf\2) + 25p(f2)

(2.8.6)
+ Po(s)p(\f\IB(0,R+I))2, s=>0.
Next, since hRf =0 on B(0,R), we have
h(lV (/M 2
P(rhR) < < M(|V/|2) +
Combining this with (2.8.6) we obtain
h(/2) < 2/x(/2/4) + 2p(f2(] - hR)2)
4 2/30(s)
43 + +r -
S ( AO(R))(M Iv/12) + M(/2)) infsfo.fi+i)VoM|/|VO)2
Thus, if 4s + < Athen
4A)(s
w12 < @t o VI ) o) -

infB(o,R+1) vo
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Hence, (2.8.1) holds for

P(r) :=inf ﬂ 4A () 8s 8 ! r<i.
infs(o,R+i) o L - T

Combining this with Lemma 2.8.1, there exists a constant ¢ > 0 such that
(2.8.1) holds for

8

/2(r) = inf jc/30(s)exp [C(R+1)y/UJ,2+~U_I,] . 85+ <rj, r<i.

This completes the proof by taken s = r/8 and R = Xq1(8/r). O

2.8.2 Curvature conditions for intrinsic ultracontractivity
Let k and & be two positive increasing functions on [0, 00) such that
Sect < —k 0 Ric > —®opc pQR>> 1 (2.8.7)
holds on M. Next, for a positive increasing function h on (0, 00), let
fi_1(r) :=inf{s>0: h(s) >r}, r>o0.

The following result provides a sufficient condition for the intrinsic ultra-
contractivity of Pt with Z :=W =0.

Theorem 2.8.3. Let M be a Cartan-Hadamard manifold with d > 2 and
let L = 1. Assume that (2.8.7) holds for some positive increasing functions
K and ® with fc(oo) = 0o. We have:

(1) (2.8.1) holds with
(3(r) :=6r-d/r2exp Bk ™1 {8/r)\J®(4 + 2fc~1(#/r))j, r>0

for some constant B > 0.
2 If
k-1{R)" ®@4 + 2k- 1(R)) <cRf, O » 1 (2.8.8)

holds for some constants ¢ > 0 and e € (0,1), then Pt is intrinsically
ultracontractive with

WPrwmALAMMAexpldl +t-21-7~, t>0 (289)
for some constant C > 0, or equivalently
Pt{x,y) < e~Xotpo(x)tpo(y) exp [C(I + f-e/(1-£))] (2.8.10)
for all x,y £ M,t >0.
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(3) If (2.8.8) holds for some ¢ > 0 and e = 1, then Pt is intrinsically
hypercontractive.

Proof, (a) Since V = 0, (2.8.7) implies (2.8.4). Moreover, since M is
a Cartan-Hadamard manifold, its injectivity radius is infinite. Hence, by
[Croke (1980)], one has |-Pt||i i(M >i,0o) < ct~d/2 for some ¢ > 0 and
all t > 0. By Theorem 4.5(b) in [Wang (2000b)], this implies (2.8.5) with
f34() = ¢(1+ r-d/2) for some constant ¢ > 0.

(b) Since M is a Cartan-Hadamard manifold, B(o,R)c is concave. Let
Bo > 0 be such that (2.8.7) holds for po > Rg- Then for any R > Rqg, we
have Sect < —k(R) on B(0,R)c. To make use of the Laplacian comparison
theorem, we note that the distance to the boundary of B(o, R)c is p,, —R
for Po > R, and the boundary of B(0,R)c is concave so that | < 0. So,
Theorem 1.2.3(1) holds for

h(s) = cosh (Vk(R)'s), s >0,

N
AP> R coVW), Po>R+1 (2.8.11)

holds for some constant @ > 0 which is independent of R. By the Green
formula (Theorem 1.1.6), for any smooth domain D C B(o, R+ )¢, it
follows from (2.8.11) that

coyJk{R)p{D) < }DApOdp <J(§D \Npo\dpd < pa(dD),

where N is the unit normal vector field on dD. Thus, the following Lemma
2.8.4 vyields

AA+1)>~", R>Ro-

Moreover,

AcHS8/r) <inf{fl+l :R >Ro,jk{R) >
= 1+ Ro Vfc-1(32/cor), r >0.

Then by Theorem 2.8.2 with /?0(r) = c(l + r~d/2), we obtain the desired
fi(r) for some B > 0.
(c) If (2.8.8) holds then by (1), (2.8.1) holds for

f3(r) = expo + r~e)]
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for some constant 9 > 0. If e 6 (0,1) then (2.8.9) follows from Corollary
3.4(1) in [Wang (20023)]. If e = 1then

M/2) <rM|V/|2) + exp[o(l +r~D]" 0|/])2, r >0,/ e Cg(M).
Applying this to /<% and noting that
i M(V/2,V72)) = -\n{f2Lvl) = AQvo(/2)-M [2\V"02),
we arrive at
AVo(/2) < r/Vo(|V/|2) + r~(/2]V"0]2)
+ 5M<V/2,V ™)) + e0(+™"1) ~ o(l/1)2
= Wo(lv/|2) +r\oV<po(f2) +e0(1+ ’Vvod/l)2- r >°-
This implies
IVo(/2) < 2rpMY([V/]2) + 2ee’t+r 1V vO(I/1)2) 1 € (0,1/(2A0)).
Hence, there exists a constant 9' > 0 such that
Vo(l2) <o (|V /|2 +e0,(+r Vod/1)2, r>o0- (2.8.12)

By Corollary 1.1(1) in [Wang (2000b)], this is equivalent to the defective
log-Sobolev inequality

IVo(/2l°g/2)<C UVo([V/|2)+C2, /e d ),™ (/2)=1 (2813)
for some Ci, C2 > 0. On the other hand, by Proposition 1.6.13, (2.8.12) and

the weak Poincare inequality due to Theorem 3.1 in [Rockner and Wang
(2001)] imply the Poincare inequality

IVo(/2) < CrodV /12) +MMY/)2, | € CI{M)

for some constant C > 0. Combining this and (2.8.13) we obtain the log-
Sobolev inequality, namely, (2.8.13) with C2 = 0and some possibly different
Ci > 0. Therefore, due to [Gross (1976)], Pf° is hypercontractive since it is
associated to the Dirichlet form m¥m)) on H2X(/v0), the completion
of Cq’(M) with respect to the Sobolev norm

N12i,~0:= 0V o (/2+ [V /]2). (2-8.14)

We remark that the implication ofthe hypercontractivity from the defective
log-Sobolev inequality can also be deduced by using the uniformly positivity
improving property of the diffusion semigroup, see e.g. [Aida (1998)] for
details. Then the proof is finished. O
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Remark 2.8.1. (a) If Ric > —K for some constant K > 0, then aesa(A) ¢
0. Since M is non-compact and complete, this follows from a comparison
theorem by Cheng [Cheng (1975)] for the first Dirichlet eigenvalue and
the Donnelly-Li decomposition principle [Donnelly and Li (1979)] for the
essential spectrum:

info-ess(-A) < sup Xo(B(x, 1)) < Jlo(K),

where JIo{ B(x, 1)) is the first Dirichlet eigenvalue of -A on D and Ao(K) is
the one on the unit geodesic ball in the d-dimensional parabolic space with
Ricci curvature equal to K. Thus, the assumption ®(00) = 0o in Theorem
2.8.3 is necessary for (2.8.1) to hold. Correspondingly, the assumption that
k(00) = oo is also reasonable.

(b) The upper bound given in (2.8.9), which is sharp due to Example
2.8.1 below, is quite different from the known one on bounded domains.
Indeed, for Pt the Dirichlet heat semigroup on a bounded C1,a(a > 0) do-
main in Rd, the short time behavior of the intrinsic heat kernel is algebraic
rather than exponential (see [Ouhabaz and Wang (2007)]):

sup  UxY) 0 (F-(d+2)/2).
xy M x)My)
The following lemma used above is known as Cheeger’s inequality
[Cheeger (1970)].
Lemma 2.8.4. Let D be a domain in M, and let
Ao(D) = inf{M|V/]2) : /| € CI(M),f\Dc=0,M/2) 1}

c(D) = inf
©) ACD,I\r/](A)>O H(A)

Then A0(D) >

Proof. Let/ € CI(M) with /r(/2) = 1and f\o' = 0. Let Ar = {f2 >
r},r > 0. By the coarea formula Theorem 1.1.5 and the Fubini Theorem,

we have
/00 POO

m(V/2])=/ R{dAr)dr>c(D) _ n(f2>r)dr = c(D)ff(f2) = c(D).
Jo Jo

This completes the proof by noting that the Schwarz inequality and p (/2) =
1 yield

MIV/72)2 < AMI2MIV /]2) = 41i(V1]2).
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For the case W b 0, we let t) be a positive increasing function on [0, 00)
such that

Lpo> y/tiopo, po» 1 (2.8.15)

Theorem 2.8.5. Let o be apole in M such that (2.8.4) and (2.8.15) hold
for some increasing positive functions ® and '3 with 'd(co) = oco. Then
aess(L) = 0. Moreover, assuming

\/® (2 + 2Po(x)) _

= 2.8.16
o<9s log+p{B(x, 1) (2810
where B(x, 1) is the unit geodesic ball at x, we have:

(1) (2.8.1) holds with
P(r) = Br~(r+<1+1~r2exp \B3-\32/r)V~(2 + 2tf~1(32/r)) r>o0

for some constant B > 0.
(2) If there exist c> 0 and e G (0,1) such that
d-\R)y/<f>(2+ 20-1(d)) < cRe, A4 » 1, (2.8.17)

then Pt is intrinsically ultracontractive with (2.8.9) and (2.8.10) holding
for some constant C > 0.

(3) If (2.8.17) holds for some ¢ > 0 and e = 1, then Pt is intrinsically
hypercontractive.

To prove Theorem 2.8.5, we first establish the super Poincare inequality
(2.8.5) for a concrete /.

Lemma 2.8.6. In the situation of Theorem 2.8.5. (2.8.16) implies (2.8.5)
with So(r) = ¢(1 + r-(m+d+1)/2) for some constant ¢ > 0.

Proof. By Theorem 5.2 in [Li (2005)] with a = (m +d+ 1)/(m +d), for
any measurable function / > 0with p(f) = 1, we have
Ptf(x) < (Pt+sf(y))(l + 2 exp \CO{2[po{x) VPo(y)])s+ ap(* y \.

for some constant C > 0 and all s,t > 0. This implies

4 - Pt+sf(y)p(dy)

> (ptf(x)) (I + St Tmare -C$(2[pO(X)VpO(!N)])s-a/[4s] Gy "

Le(x, 1)
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Taking s = 1/y/®{2 + 2pa(x)), we obtain
exp[coy/D(2 + 2po(X))]
p(B(x, 1))

for some constant cO> Oand all t > 0,x £ M. Combining this with (2.8.16)
we obtain

PLf(x) < cO(l + f-i)(>*+«H-i)/2 .

HlUioo-i-0.) » ci(! +t-a)(m+d+1)/2, t>0

for some constant ¢\ > 0. According to Theorem 4.5(b) in [Wang (2000b)],
this is equivalent to (2.8.5) with /3o(r) = c(l + r-(m+d+1)/2) for some con-
stant ¢ > 0. O

Proof. [Proof of Theorem 2.85] By (2.8.15) and Cheeger’s inequality
Lemma 2.8.4, we have
A(o)> "N, A»1l.

Since 'd(R) -a 0o as R —>00, the essential spectrum of L is empty and the
desired /3 follows from Theorem 2.8.2 and Lemma 2.8.6. The remainder of
the proof is then similar to that of Theorem 2.8.3. O

2.8.3 Some examples

The following two examples show that conditions in Theorems 2.8.3 and
2.8.,5 can be sharp.

Example 2.8.1. Let M be a Cartan-Hadamard manifold with
-cipi < Sect< -c2Po, Po» 1

for some constants ci,C2<6 > 0. Then <ess(A) = O and for L = [, (2.8.1)
holds with

13(r) = exp[c(l + r _(29)/[28)]
for some constant ¢ > 0. Consequently:

(1) Ptis intrinsically ultracontractive if and only if 3> 2, and when 6 > 2
one has

™ mhvo)— - GlexP [ {s+2HS2], t>0

for some constants 0i,02 > 0, which is sharp in the sense that the
constant o2 cannot be replaced by any positive function o2(t) with
®®™10astJo0.
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(2) Ptis intrinsically hypercontractive if and only if S > 2,

Proof. Since Sect < —&p,, for some ©,S > 0 and large pa, Theorem
2.8.3 implies aess(A) = 0. Moreover, one may take ®(r) = (d—l)cir4 and
k(r) = CI%e for large r, so that

k-\R)y<t(4+ 2k~1(R)) < cf?5+J

for some constant ¢ > 0 and large R. Then the sufficiency and the desired
upper bound of | T*R0||b1(A ) follow from Theorem 2.8.3.
Next, by the concrete ® and Lemma 2.8.1 below we have

Vo> "Nexp[- Cp*"] (2.8.18)

for some constant C > 0. If Pt is intrinsically ultracontractive, i.e. Pf° is
ultracontractive by definition, then, according to Theorem 2.2.4 in [Davies
(1989)] (see also [Gross (1976)] and [Davies and Simon (1984)]), there exists
a function /3: (0, 0o0) —(0, 00) such that

fVo(/21°g/2) < GVo([V/[2) + /2(r), | 6 CA(M),/rY(/2) = 1.

By the concentration of reference measures induced by super log-Sobolev in-
equalities (see e.g. Corollary 6.3 in [Rockner and Wang (2003a)]), the above
log-Sobloev inequality implies pVo(eXPa) < oo for any J1 > 0. Combining
this with (2.8.18) and noting that the Riemannian volume of a Cartan-
Hadamard manifold is infinite, we conclude that $> 2. Similarly, if Pt is
intrinsically hypercontractive, then pipo(eXp<} < oo for some A> 0, so that
S>2

Finally, let 5> 2. If there exists 6i > 0 and a positive function h with
h(t) J 0 as t 40 such that

[|[*T 1kug*0) » “ (Mm,0) <  exP [02f- G+ 2)], t >0,
then Theorem 4.5 in [Wang (2000a)] implies (2.8.1) for

= i _ «-(S+2)/(S-2)
B\ s<|rr:]tf>0t exp h(t)t + 1 r>o.
Takings =rf1landt = (r® /(& g D/i(r /25 g 1)(5 2/(H)? we
obtain
0{r) < #2exp [h(Nr @+2/(28]j r>0 (2.8.19)

for some constant 62 > 0 and positive function h with h{r) 40as r| 0.
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Finally, we aim to deduce from (2.8.19) that
p(eXPa+7) <00, J1> 0, (2.8.20)

which is contradictive to (2.8.18). To this end, we apply Theorem 6.2 in
[Wang (2000b)], which says that

/u(exp[cip0E(c2p0)]) < oo (2.8.21)

holds for some constants c\,c2 > 0 and
£A) =inf|s > 1: A log/3(l/(2f2)df > a|], A> 0.
Since (2.8.19) implies

J '~ log/3(1/(2f2))df <93+ 93f t~s-20sh{l/{at * / s))dt
<93+e(s)s26, s> 1

for some constant 93 > 0 and some positive function e with e(s) ], 0 as
st 00, one has £(A)A~112 — oc as A—>00. Therefore, (2.8.20) follows from
(2.8.21). O

Example 2.8.2. Let M be a Cartan-Hadamard manifold with
Ric > -c(p2fV +1)

for some constants ¢ > 0 and S> 1. Let V = 9pé for some constant 9 > 0
and po» 1 Then aess(L) = 0 and (2.8.1) holds with

fi{r) = explc(l + r _I5[26_1)]]
for some constant ¢ > 0. Consequently:

(1) Pt is intrinsically ultracontractive if and only \{ 8 > 2, and when 8 > 2
one has

W P\\bLL,,0)"b°°("0) < Oi exp BRt~S{S~2)], t>0

for some constants 9\,# > 0, which is sharp in the sense that the
constant 02 cannot be replaced by any positive function 02(f) with

0r(6) 4-0 as t 4 0.
(2) Ptis intrinsically hypercontractive if and only if 8 > 2
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Proof. Since M is a Cartan-Hadamard manifold and 5 > 1, by Theorem
11.10

Lpo>tipi 1=:\/ti°Po, Po» I-
In particular, il(oo) = oc so that oess{L) = 0. Moreover, since
Ric > —e(l + pg(4 1)), |[VV[]2= 9252pl{&])

and Hess —O0OHessps5 > 0 for large pQas M is Cartan-Hadamard, we may
take ®(r) = ci(l + r2(4-1% for some constant cj > 0. Therefore, (2.8.17)
holds for somec> Oand e = | + 2,4 . Then the sufficiency follows from
Theorem 2.8.5 as (2.8.16) follows from

p(B(x, 1)) > c(d) exp Lbi(nf_)VJ > c{d) exp[O(po(¥) - D*], po{x) >1,

where c(d) is the volume of the unit ball in Rd.
On the other hand, by Lemma 2.8.1 below and the concrete K, we have

J)> ~ exp [- Cpi}

for some constant C > 0. Then the remainder of the proof is as same as
that in the proof of Example 2.8.1. O






Chapter 3

Reflecting Diffusion Processes on
Manifolds with Boundary

In this chapter we intend to extend results derived in Chapter 2 to reflecting
diffusion processes on manifolds with boundary. Due to the reflection,
besides the curvature operator, the geometry of the boundary (the second
fundamental form) will be involved in the study.

Let M be a d-dimensional complete connected Riemannian manifold
with boundary dM and the inward pointing unit normal vector field N.
We will study the reflecting diffusion process generated by L :=A + Z for
some C'l-smooth vector field Z. As in Chapter 2, we first construct the
corresponding horizontal reflecting diffusion process generated by Agq(m) +
Hz on 0(M) by solving the Stratonovich stochastic differential equation
(SDE)

d
dut=n/2 " Hei(ut) odBt +Hz (ut)dt + HN(ut)dlt, uo=n GO(M),
t=i
where Bt := (B\, ..., Bf) is the d-dimensional Brownian motion on a com-
plete filtered probability space (D, (dg}t>0,P), and It is an increasing pro-
cess supported on {t > 0 : Xt := put GdM}. Since Hz is C1, it is well
known that (see e.g. [lkeda and Watanabe (1989); Elworthy (1982)]) the
equation has a unique solution (ut,It) up to the life time ( := W T1,,"" (n,
where

QL= inf{£ > 0 :po(Xt) := p(Xt,0) >n}, n>1
for a fixed point 0 GM. It is easy to see that Xt solves the equation
dXt = y2uw, 0dBt + Z(Xt)dt + N(Xt)dlt, Xg—x pito, (3.0.0)
up to the life time £ By the Ito formula, for any / G CffIM) with Nf :=
N f\dM = 0,

FX)-f(x)- | LHX9ds =2 [\n "/ (X 9B

141
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is a martingale up to the life time  So, we call Xt the reflecting diffusion
process generated by L. When Z = 0, then Xt := X /2 is generated by |J
and is called the reflecting Brownian motion on M.

When dM is convex, the Riemannian distance can be reached by the
minimal geodesic in M and N pa< 0, so that Theorem 2.1.1 and Corollary
2.1.2 remain true for the reflecting diffusion process. When dM is non-
convex, let

V={<1>6 CI{M) :infch= 1,1 > -IVIogd). (3.0.2)

If there is € T> then by Theorem 1.2.5dM becomes convex under the new
metric (¢, ¢)' = ¢~2(-, *). Let p' be the corresponding Riemannian distance,
then with gQreplacing pQ Theorem 2.1.1 and Corollary 2.1.2 work for the
reflecting diffusion process generated by L. Prom now on, we will only
consider the case where the reflecting diffusion process is non-explosive.

3.1 Kolmogorov equations and the Neumann problem
In this section we introduce the Kolmogorov equations for Pt, the semigroup
of the reflecting diffusion process generated by L. Consequently, letting
Cn(L) = {fe C°°(M),Nf\dM =o,Lf G
F(t,x) :=Ptf(x) is the unique solution to the Neumann heat equation
dtF = LF, NF(t,®=0fort >0, F(0,¢ = /. (3.1.1)

To this end, we need the following two lemmas, where the first extends
Lemma 2.1.4 to manifolds with boundary, and the second is essentially due
to [Wang (2009c)].

Lemma 3.1.1. Forany x GM and ro > 0, there exists a constant ¢ > 0
such that

Ploy <t)< e-"2* r6[0oro, t>0

holds, where ar = inf{s > 0 : p(Xs,x) > r} and Xs is the reflecting
diffusion process generated by L with Xq= x.

Proof. Let b€ Cffl(M) such that > 1in B(x,ra) and dM is convex
under the metric (-m)' := ¢~2{mm). Let [' and Ric' be the Laplacian and
the Ricci curvature for the metric (s, ¢)'. We have

d2b = A" + {d- 2)pLL| + d2r = [’ + Z".



Reflecting Diffusion Processes on Manifolds with Boundary 143

Let p' be the Riemannian distance function to x induced by the metric (s,*)".
By taking smaller ro we may and do assume that (p)2 € C°°(B(x,2ro)).
By the convexity of the boundary under the new metric and using the Ito
formula, we obtain

dp'(Xt)2 < 2V2</>-\Xt)p'(Xt)dbt + cjdf, t <aro

for some constant ¢\ > 0 and a one-dimensional Brownian motion bt. Due
to this inequality, the remainder of the proof is completely similar to that
of Lemma 2.1.4. O

Lemma 3.1.2. Let x £ dM and let oy be in Lemma 3.1.1 for a fixed
constant r > 0. Then:

(1) E*eA— < oo for any J1> 0 and there exists a constant ¢ > 0 such
that E%2I. < c(t + t2).

(2) Exlthar —  + 0(f3¥2) holds for small t > 0.

Proof. (1) Let h e Cq’(M) be non-negative such that h\oM = 0 and
Nh = 1 holds on (gM) MB(x,r). Since pa is smooth in a neighborhood of
dM, h can be constructed such that h = pa in a neighborhood of (gM) I
B(x,r). By (3.0.1) and the Ito formula,

dh(Xt) = y/2 (Vh(Xt), UfdBt) + Lh(Xt)dt + dlt
> 02 {Vh(Xt), utdBt) —cdt + dIt, t <er

holds for some constant ¢ > 0. This implies that Elenr'JEér < oo for any
N> 0, and

ExC ,r <ci(t2+t + Exh2{XtAar)), t> 0 (3.1.2)

holds for some constant ¢\ > 0. Since h2 satisfies the Neumann boundary
condition, by the Ito formula we have

rtAar

Exhz(XtAar) = EXJ Lh2(Xs)ds <ca2t, t >0
o

for some constant ¢2 > 0. Combining this with (3.1.2) we prove (1).
(2) Let ro€ (0,r) be such that po is smooth on B(x, 2r0). By the Ito
formula we have

dpp(Xt) = \/2dbt + Lpa{Xt)dt + d/<, t < dro, (3.1.3)
where bt is a one-dimensional Brownian motion. Let bt solve
dbt = sgn(et)dbt, hbo = 0.
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Then bt is a one-dimensional Brownian motion such that
djbt] —dht + dlt,

where It is the local time of bt at 0. Combining this with (3.1.3) and noting
that d/t is supported on {pg(Xt) = 0} while dz is supported on {bt = 0},
we obtain

d(pd(Xt)-V2\bt\)2

= 2(pd(Xt) -V 2\bt\)Lpd(Xt)dt + 2(pd(Xt) -V2\bt\)(dIt - VIdIt)

< 2(pd(Xt) - V2\bt\)Lpd(Xt)dt < c1\pd(Xt) - V2\bt\\dt, t < oyO
for some constant G > 0. This implies

Ex{pd{Xt* J - V2\ot* )2 < 'ft2, t>0.
Since due to (3.1.3) one has |ExIt"aro —Expa(XtA(Tro)|2 < c2t2 for some
constant @ > 0, it follows that
|ExZAdlo —V M"EX|6tACId| < at, t> 0

holds for some constant G > 0. Noting that Ex|6t| = y/2t/n and Exbz = t,
combining this with Lemma 3.1.1, we arrive at

EXL 2V \Exam0 - vI2EIH] <c3t+ A E x(6t|l {5CTro)

< c3f+ \/2tFx(t > oy0) < at, te [0,1]
(3.1.4)

for some constant G > 0. Since aro < ay so that ZA0Ww = knar holds for
t < o>, it follows from (3.1.4) and (1) that

2\ft
Exb < at+ ex@tAari{t>CTro}) < at + y/2ctPx{t > aro) < Gt

holds for some constant G > Oand all t e [0, 1] O
Theorem 3.1.3. Let f € Cn(L). Then:

(1) Ptf = PtLf = LPtf, t > 0;

(2) NPtf\dM =0, t> 0

() Lett>0andip€ ([inf/, sup/]). If|VP.f\ is bounded on [0, ] x M,
then

-PMPt-sf) = Ps{rp"(Pt-sf)\VPt-sf\2), se [0f],
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Proof. (1) The first equality follows from Ptf = f + Jg PsLfds implied
by the Ito formula. To prove the second equality, it suffices to show that
forany x £ M° :=M \ dM,

Ptf(x) = LPtf(x). (3.1.5)

Let ro > 0 be such that B(x,ro) C M°, and take h £ Cg°(M) such that
h\B(x,ro/2) = 1 and "|s(x,rO)c = O- By the Ito formula we have

Pt+SF(x) - Ptf(x) = E*(hPtf)(Xs) - (hPtF)(x) + E*{(1 - h)Ptf}(Xs)
=R* I LR (Xr)dr + EX{(1 - PITH(XS).
0

Since L(hPtf){Xr) is bounded and goes to LPtf(x) as r -¥ 0, and noting
that by Lemma 3.1.1,

E*|(I - h)Ptf\(Xs) < ||/|[Ue-c/s, se (0,1]
holds for some constant ¢ > 0, we conclude that

4

that is, (3.1.5) holds.

(2) Let x £ dM. If NPtf(x) ¢ 0, for instance NPtf(x) > 0O, then
there exist two constants ro,£ > 0 such that NPtf > e holds on B(x, 2ro).
Moreover, by using /+ [/]|oo in place of /, we may assume that / > 0. Let
h £ Cq®’(M) suchthat 0 < h < 1,Nh = 0, /r|s(x,/0) = 1 and h\B2rg== 0.
By the Ito formula and using (1), we obtain

%J /w -to.baw w -alw LPtf(x),
Sl

Pt+sf(x) > Ps{hPtf) (x)
s

= Ptf{)+ I PrL(hPth)(x)dr +E* [ (WNPH)(Xr)dir
0 0

> Ptf {) + sLPtf{x) + 0(5) + eWIsAT,

where 0 := inf{s > 0: Xs £ B(x,ro)}. Combining this with (1) we arrive
at

eg!%éExf%< 0,

which is impossible according to Lemma 3.1.2.

(3 By (1) and (2) and using the Ito formula, there is a local martingale

Ms such that
diP(Pt- sf) (Xs) = dMs + {LiP(Pt- sf) - iP'(Pt- sf)LPt-sf}(Xs)ds
= dMs + {iP"{Pt-sf)\VPt- sf\2}{Xs)ds, s £ [0f],
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where
dMs = V2 (V~(Pt_s/)pfs), usdBs), sE [0t].

Since |VP./1 is bounded on [0,f] x M and ¢ e C2([inf/,sup/]), Ms is a
martingale. Therefore,

p.iKPt-.f) = ty{Pt-.f){x.)
= O(Pu/1 + Jf Pr{V"(A-s/)|VPt_s/|2}dr.
o
This completes the proof. O

Corollary 3.1.4. For any f E Cn(L), F(t,x) := Ptf(x) is the unique
C2-solution to (3.1.1).

Proof. By Theorem 3.1.3, it suffices to prove the uniqueness. Let F be
a C2solution to (3.1.1). By the maximal principle and the boundedness
of / we see that F is bounded. Moreover, by the Ito formula we see that
{F(t —s, Xs)}se[ofi is a local martingale, so that

F(t,x) =ExF (t-t ACn,XtAC,), n> 1

Thus, letting n -> oo and using the dominated convergence theorem, we
obtain F(t, x) = E*P(0, Xt) = Ptf{x). O

3.2 Formulae for VPt, Ric® and |

3.2.1 Formula for VPt

We first present a formula for VPtf mSee also Corollary 4.1.3 for an alter-
native version.

Theorem 3.2.1. Lett >0 and ug E Ox(M) be fixed, and let K e C(M)
and o e C(dM) be such that Ricz > K, | > a. Assume that

sup Exexp T K(Xs)dr- [ a(Xs)dls < oo. (3.2.1)
refo,t] Jo Jo

Then there exists a progressively measurable process {<2s}se[ot] on RA®Kd
such that

Qo =1, lQl<exp - J[ K(Xr)ds- J[ a(Xr)dlr  3GJ[0,1],
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and for any f £ (M) such that XP.f is bounded on [0,f] x M, any
h £ Cb ([(),E]) with h(0) = 0,h(t) = 1,

Uo'VPtfix) = E*{<2*n*Ne)}

Proof, (a) Construction of Qs. For any n > 1, let Cfi" 1 solve the equation
dQ<n>= -Ricf (us)Qin)ds - I(us)Q~dls
- Hn + 20(Xs)+)((QiM)*itd 1fV(Xs)) ® (uj'NiXs))dls, Qo=1,
where Ricf (us) is in (2.2.2) and I(us) for Xs £ dM is an Rd ® Revalued
random variable such that
I(rg,)(a, b) = I(Pgusa, Pgusb), a,b £ Rd, (3.2.3)

where for z £ dM. Pg : TZM —TzdM is the projection operator. It is easy
to see that for any a £ Rd,

d||QWa|2 = -2Ricz (us<@in4d u sQ("Mds - 21{PgusQin)a,PgusQ”~a)dls
- (n+ 2(7{Xs)+){usQ"a, N{Xs))adls
< -]|Q Ma||2{2R (Xs)ds + 20{Xs)dIs}
-n(usQ”a,N(Xs))adls.

Therefore,
|IQin)|I2 < exp I;Z [ K{Xr)dr-2 [ o(Xr)dlr <00, n>1 (3.24)
Jo Jo
and forany m > 1,

l wer
n'myd’E J/0 [I(Q")*us 17V(Xs)||d

< lim (ﬁ + hE*

n->o00

5 NQM2{2K\(Xs)ds + 2\0\(Xs)dls})

:0,

where the second equality follows from Lemma 3.1.2, (3.2.4) and the bound-
edness of K and a on B(x,m). Combining (3.2.4) with (3.2.1) we see that
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So, there exist a subsequence {Q(nk”} and a progressively measurable pro-
cess Q such that for any bounded measurable process (£s)se[of] on  and
any bounded  valued random variable r], one has

Hm {e*jf (Qn‘>- QsW's + W{Q<TK) - Qt)v] = 0. (3.2.6)

(b) Proof of the first equality. As in the proof of Theorem 2.2.1, by the
Ito formula we have

d(dPt- sf)(Xs) = VUsdBs(dPt-sf) (Xs) + Ricz (-, VPt_s/(X,))ds
+ V N(dPt- sf) (Xs)dls.
So, for any a £ and n > 1,
d(VPt-sf(Xs),usQ”a)
= EessPt_sf(usQ(jla,usdBs) + E.essPt_3f (N,usQ”l}a){Xs)dls
—(PdusQ"a, S7Pt- af) (Xs)dls.
Forany r GdM and v s TzdM, we have
0= v(N,\/Pt-sf)(z) = (V,,7V, VP(_s/)(z) + Hesspt_5(u, IV).
So,
HessPt s/(u, N) = I(u, XPt-sf)(z). (3.2.7)
Thus,
d{VPt-sf(Xs),usQ[n)a) = EessPt 3f(usQgNa,usdBs)
+ EessPt_3f(N, N)(usQ”™a, N(Xs))dls. 3'2'8

Combining this with (3.2.5) and the boundedness of VP./ on [0, t\ X M, we
obtain

(VPt/,u0a)

Ihn Ex(VPt_tAQr (X (Adm),uMaTQ "~ a >

=1 ™ookoEX{1{'<<m>=<v Ne )~ tQ infc)a>}
Ex(Xf(Xt),utQta).

This implies the first equality.
(c) Proof of the second equality. Since by the Ito formula dPt- sf(Xs) =
V2{XPt-sf(Xs),usdBs), we have

f(Xt) = Ptf(x) + V2 JI "(VPt- sf(Xs), UcdBa
o
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So, for any a £ Rdand m > 1, it follows from (3.2.5), (3.2.6), (3.2.8) and
the boundedness of VP./ that

~ E xIM(Xt)j\'(s) (Q sa,dBs)”

= EXJ% h'(s)(usQsa,XPt. sf{Xs))ds

lim E* J[ h'(s)(usQ *a,V P t,,sf(Xs))ds
0

lim kI_i‘rg'nC J ' h\s)Ex(usA(mQ[n*la, VPt"sAUf(XsA(J)ds

- ti(s)(u0a, VPU()ds = (XPHT(x),ua).
0

Therefore, the proof is completed. O

We would like to indicate that when M is compact, formula (3.2.2)
was first found by Hsu in [Hsu (2002b)], where the strong convergence of
{Qin)}sefod to {Qs}s€[of] in L2(dt x P) and that of Q[n) to Qt in L2(P)
were also proved. Next, combining the above argument with the proof of
Theorem 2.2.1, we have the following local derivative formula of Pt.

Proposition 3.2.2. Lett > 0,x £ M and D be a compact domain such
that x £ D° := D\ dD. Let tg be the first hitting time of Xt to dD,
where Xg= x. Then there exists a progressively measurable process Qs on
Rd gRd with

rSATD psATD
M < . —J K(Xr)dr —J a(X.x)dsf. S <t,

such that for any adapted R+-valued process h satisfying h(0) = 0, h(s) = 1
for s>t Atd and E(/Ch'(s)2ds)a < oo for some a > i, there holds

mi’XPtfix) = AE A f (X ATD)j\'{s)Q*adBsV f £ Bb(M).

3.2.2 Formulae for Ricz and |

Theorem 3.2.3. Letx £ M° :=M\dM and X £ TXM with |Jf| = 1 Let
f £ C*°(M) such that Nf\gM = 0, Hess/(:r) = 0 and S7f(x) —X, and let
fn=n+f forn> 1 Then assertions of Theorem 2.2.4 hold.
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Proof. Let r > 0 be such that B(x,r) C M° and |[V/| > | on B(x,r).
Due to Lemma 2.1.4, the proof of Theorem 2.2.4 works for the present case
by using t Aar to replace t, so that the boundary condition is avoided. We
only present the proof of (1) for instance. By Lemma 2.1.4 and Hessj (x) = 0
we have, at point X,

Pt\Vf\p = E*|Y /T (X4TH) + o(t) = |V/|IP+ fi|V/|p+ o(t)
= |V/p+f |V [r2L|V/]|2+ o(t).

Moreover, since N/\am = 0 and / £ Cq(M), by the Kolmogorov equation

AVPH|*Vo =p |V Ir2(VLIVI)
so that
[VPt/|p= [v/|p+pt|V Ir2(VL/,V/) + o(b).
Thus, (1) holds. O
Next, the following formulae for | are modified from [Wang (2009c)].

Theorem 3.2.4. Letx € dM and X e TxdM with |Jf| = 1. Then for any
f € cn (L) such that Vf(x) = X,

UX,X) =lim -~ { P t|V/|p- |V/|p}X)

(3.2.9)
= lim -?2L={Pt|V/|p- |VPt/|p}x), p=>0.
If moreover f > 0, then for allp € [1,2],
I(X.X) = - Jim AT |V/|§+ P{(Ptf2/P)P- Ptf2} )
t= 8ylt 4p- 1t (32.10)
p{(Ptf2/p)p ~ Ptf2}
o i, VPUI2 4(p- 1t

where whenp = 1 we set

@tf2/p)p ~ Ptf2 = Nt (Ptf2/p)p ~ Ptf2
p-1 p-yi p—1
= (Ptf 2) log Ptf 2-P t(f2logf 2).
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Proof, (a) Let r > 0 such that |V/| > ~ holds on B(x,r), and let
or = inf{t > 0: Xti B(x,rn}. Asin (3.2.7), N\Xf\2 = 2I(V/, V/) holds
on dM. So, by the Ito formula, and using Lemmas 3.1.1 and 3.1.2,

PtV /|p(x)=E * |V /|p(XtAff + 0 ()

= [V/|p(x) +E'xJ*Aar (i|v/p (Xs)ds

_ (3.2.11)
+p{|V/]p_21(V/, Xf)}(Xs)dIfj +o(t)

Ve 2P lmia x)+o(vy)

holds for small t > 0. This proves the first equality in (3.2.9). On the other
hand, by Ptf =/ +/o PsLfds and noting that PSLf 6 C°°([0, t\ x B(x,T)),
we have

IVPt/| p(x) XPst(x)dsp IV/|p(x) + 0(f). (3.2.12)

Combining this with (3.2.11) we prove the second equality in (3.2.9).

(b) By (3.2.12), it remains to prove the first equality in (3.2.10). We only
consider p ¢ 1. By Lemmas 3.1.1 and 3.1.2, and noting that MVf\2(x) —
21(X, X), we have, at point X,

Pt/ 2= E /2(Xt/Wr)+0(f2) = /2+ EI L f2(Xs)ds + o(t2)
fthor p
f2+tLf2+ EJb gglw N Lf2(XS2)dIR + 0(t2)
=f +J ={fNLf+N\VA2} fy/~ds
Vﬂ,{ } o (3.2.13)
+ 2tfLf + 2t|V/|2+ o(t32)
8t3/2

+ gy (VLT +2UX0}

= r_
+ 2tfLf + 2t|V/|2+ o(f3/2).
Similarly,

ptf2/p = j2/p + tLj2/p + fly(2-P)/PN L f
3y/n \p

+ 27 ~ PM 2(1~p)/ipd X, AT)) + oft3/2).
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This implies

(Ptf2P)p = f 2+ 2tfLf + 2Q2p P)V /12

+ (fFNLf + X)) + 0(i32).
Combining this with (3.2.13) we prove the first equality in (3.2.10). O

3.2.3 Gradient estimates

To apply the derivative formula in Theorem 3.2.1, we have to verify in
advance the boundedness of VP./ on [0t] x M. So, we first present a
sufficient condition for this boundedness. To this end, we shall make use of
the coupling by parallel displacement for the reflecting diffusion process. If
dM is convex, by Theorem 1.2.1 the distance between two different points
can be reached by the minimal geodesic in M, so that we have Npa\am < 0
for any o 6 M. Therefore, Theorem 2.3.2 works also for the reflecting
diffusion process generated by L. More precisely, we have the following
result.

Theorem 3.2.5. Assume that dM is convex. Letx gy and T > 0 be
fixed. Let U :[0,T) X M2—=TM2 be C1-smooth in [0, T) x (cut UD)c.

(1) There exist two Brownian motions Bt and Bt on a completed filtered
probability space (0, {-P}t>0>P) such that
I{(X-t,yt)gcut}dB t = I{(X t,yt)*cut}«t 1P xt,Ytut<IBt

holds, where Xt with lift ut and local time It, and Yt with lift ut and
local time It solve the equation

dXt = V2w 0dBt + Z(Xt)dt + N(Xt)dIt, Xgq—x
dlj = V2w 0dBt + {Z(Yt) + U(t, Xt, Y AIAtAY t}}A

Moreover,
dp(Xt,Yt) < {1z (Xt,Yt) + (U(t,Xu Yt)yp (X u-)(YD))I{x" Yi}}dt.

(2) The first assertion in (1) holds by using Mxtyt to replace Pxt,YtmIn
this case
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The following consequence of Theorem 3.2.5 can be found in e.g. [Qian,
Z. (1997); Wang (1997a)].

Corollary 3.2.6. Assume that dM is convex and Ricz > K for some
constant K 6 K. Then

\WPtf\< e~ KtPt\Vf\, feCI(M),t> O.

Proof. To apply Theorem 3.2.5, we first observe that
p(x>)
lz{x,y) < _| Ricz(7,7)(s)ds, x,y e M, (3.2.19)

where 7 : [0,p(x 2)] =M is the minimal geodesic from x to y. Indeed,
letting be constant vector fields along 7 such that {«*7 : 1<r<
d —1} is an orthonormal basis, the index lemma (Theorem 1.1.11) implies

lz{x,y) < ~ + VAZ(7)17))(S)dS

N
L Ricz(7,7)(s)ds.

Now, let U = 0 and (Xt,Xt) be the coupling by parallel displacement for
X0=x,Xg=Yy. By Theorem 3.2.5 for U = 0 and using (3.2.14), we obtain
dp(Xt,Xt) < Iz (Xt,Xt)dt
rp(xt,Xt) 4

<- | Ricz('7,7)(S)ds >dt

<-Kp(Xt,Xt)dt.
Thus, p(Xt,Xt) <e Ktp(x,y), so that by the dominated convergence the-
orem,

IVP/(an)| < limsup &\ TXD - T(X )
Y-+X

p{x.y)
< e Kjimsup g (X0 - F(XO\
y-yx p(Xt,Xt)
= e~KtPH\XA\(X). -

By combining Corollary 3.2.6 with conformal change of metric to make
the boundary from concave to convex, we have the following result. Since
for d = 1 a connected manifold with boundary must be an interval, which
is thus convex, in the following result we only consider d > 2.
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Proposition 3.2.7. Let d > 2 and let Ricz > K for some K € C(M). If
there exists W£T> in (3.0.2) such that

Kep:= inf [02K + 162 \XG2A\2A - (d- 2)[VO[2} > -00, (32.15)

then for any f 6 Cn (L),

1_0 K&
[VPt/| < lIlloollV/Hooe-"* + HAL/IUIIVAHoolIMIoo , t>0.

Proof. By an approximation argument, it suffices to prove for / e
Co°(M) with TV/ = 0. Let A' and V' be associated to the metric
(*,*)' = p~2(-, W), under which gM is convex according to Theorem 1.2.5.
Then (see e.g. (2.2) in [Thalmaier and Wang (1998)])

BL=[0'+27, Z~h2r+ &M\ 2

By Theorem 1.2.4, for any X 6 TM such that (X,X)’ =1, ie. |[X| = ¢
we have

Ric'pf, X) = Ric(X, X) + (d —2)<T1Hess(X, X) + "Ad2- (d- 2)]VOJ2,

and
{Vx Z' xy

<r2(V*z',x) - &2{X, Vlog0)(zZ',X) - (Z',Viogd
+ -2(x,r")(x,x\oéd)

(VxZ,X) + 2(Vlog(/>,X)(Z,X) + (d-2)</.-1Hess"(X,X)
+ (d- 2)(X,Vlog/)2- <pz,V0) - (d- 2)|VO0|2

Therefore, noting that |X| = d

mcz,{x,x) = W c'(a,x) - (Vxz',xy
= Ricz (X, X) - 2(Vlogdy X)(Z, X)

+ 1bh2- Y - 2)(X,Vlog<A)2 (3.2.16)
> KL+ iZiO 2- V02| +|Z] - (d- 2)|[V™N2
> K

Let be the semigroup of the reflecting diffusion process generated by
L':= A"+ Z". Since OM is convex under (e, ¢)', it follows from (3.2.16) and
the proof of Corollary 3.2.6 that

p'(X't,X't) < e~Kfilp'{x,y), x,yeM,
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where p' is the Riemannian distance induced by (s, ¢)' and (X't,X't) is the
coupling by parallel displacement for the //-reflecting diffusion process

starting from (x,y). Since 1 < ¢y we have < p' <p, so that the
above inequality implies
p(X't,X[) < \\00elKtlp{x,y), t> 0. (3.2.17)

To derive the gradient estimate of Pt, we shall make time changes

W = f €xs)As, (y(O)= f d2{X3ds.
Jo Jo

Since L' —d2b, we see that Xt := X'S_ If and Xt := o are generated
by L with reflecting boundary. Again by 1 < dwe have
\ \ ) \ \ t> o.
Combining this with (3.2.17) we arrive at
n it)
| \x"'a)ds
"(X'WALty'it) P )
= -4 °C 1l
=fe°’Clt)-4°C IW
ré&ye (3.2.18)

<.f \d2{X3)- 02(A")[ds

< INVO2jedjoonli;, D) & K’sds

T TYA
<I|v iuil“iua-e-")

K'k P{le)
Therefore,
ifi/w - p,/wi=
<w/(*;,-.<,,) - 1(x;_1D)i + i (3.2.19)
= Ti+/2-
By (3.2.17) and £ 1(t) <t we obtain

h < Ne/\\oce~Kpl\d\ooP(x,y). (3.2.20)
Moreover, since / € Cq°(M) with Nf\dM = 0, it follows from the Ito
formula and (3.2.18) that
P

E AL o
Ap(t) Ad- () HL'/llooEICIN ) -~ - 1M)!

Combining this with (3.2.19) and (3.2.20) we complete the proof. O
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Combining Proposition 3.2.7 with Theorem 3.2.1, we obtain the follow-
ing result.

Corollary 3.2.8. Let Ric® > K for some constant K If there exists
eT> in (3.0.2) such that K > —e0, then

[VPt/| < M 00(Pt\" f\pHp- 1))ip- 1)/p(x) e K+< P))t (3.2.21)
holdsforp£ [l,00), f € CI(M) and = bl{th~1bd-(p+1)\V log §2}.
Moreover,

2 (K+K~*mlc t >0,/ e Bb(M). (3.2.22)

exp[2(K+ K")t\-1

Proof, (@) Since (3.2.21) is equivalent to
\Ptf{x)-P tf{y)\ < ||0]|oce-(if+" P))tJ/ L(Pt|V [r/™-1))~-1)/p(7s)|7s|ds
o

for any x,y GM and any smooth curve 7 : [0,1] -* M linking x and y, by
an approximation argument it suffices to prove for / € Cn (L). By the Ito
formula, we have

<1p-P(X,) = (V</-p@&T),utdRt) + bp-P{X,)dt + Na>~p{Xt)dIt
< lytp-P{Xr),nABI) - pdp-P(Xt){K~*dt + Nlogp(XM1r}.
SO,

Mt := & p{Xt)exp pK{pt+p JC N log th(X3)<118
0

is a local sup-martingale. Thus, by the Fatou lemma, and noting that
P> 1

Ex|<A-p(Xt)expmpKdY + p J[ N log dh(X3)A13
0

A qn
< IW% Ex{th~p(X(n"Cn)exp pK{p)(t ACn)+PjQ N log®(Xa)6ly j
< p(x) < 1.
Therefore,

Exexp IOJf N log h(X3)B < \m Boe-pK*P)t, t> 0. (32.23)
. JO
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Since | > —N log &b by combining this with Theorem 3.2.1 fora ——N log ¢
and Proposition 3.2.7, we obtain

[VPt/(x)|p < (Pt|V/[p/ (p- 1)(@))p- 1EX||Qt]Ip
< (Pt|V/|p/(p_1)(X))p-1Exexp -pKt+p J[ N log th(X3)ii13
[0]

<HMISo(A|V/p/(p- )(X))p- Lle-p™ +< Pt

Therefore, the first inequality holds.
(b) Since (3.2.22) is equivalent to

Pt{x) - Ptf(y)
K +K® Vii2 ol
L%/ \is\(Ptf2)U2bs)ds
<IM 2K + B g NIS\(PHAY2Ds)

for any x,y e M and any smooth curve 7 : [0,1] -+ M linking x and y, by
the monotone class theorem, it suffices to prove for / € Cn(L). Take

e2(K¥K™)S_ j

ca(kekmt 1 SeLoA].

h(s)
Then the second formula in (3.2.2) and (3.2.23) for p = 2 imply
f2
VPt |2 < -P’\—E:Jf h'(s)21\Qs\2ds
o

< [ ti{s)2exp[— 2Ks + 2 I N log p{Xr)dlIr ds
2 Jo L Jo

C Pl ey \s) 2e-2(K+K")sds
Jo
(k +k ™m i
Ptf2-
exp[2(K + KM)t] - 1 O

Finally, to conclude this section, we present an explicit construction of
¢ under the following assumption, which is trivial when M is compact.

(A3.2.1) At least one of the following holds:

(i) dM is convex;

(ii) I is bounded and there exists rO > 0 such that on the set droM :=
{x E M :pa(K) < ro) pe is smooth, Z is bounded, and Sect is bounded
above.
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Under this assumption, we will be able to construct the desired function
¢ by using pg. Thus, to calculate K and |if 1 we shall make use of the
Laplacian comparison Theorem 1.2.3. To this end, for any B, k > 0, let

h(s) —COSVk s ——=sinvks, s> 0
Vk

Thenh 1(0) k 172arcsin mMoreover, let

-cr(l - h(r0))d 1
fo°(h(s) -/i(r0))d 1ds'

Theorem 3.2.9. Assume (A3.2.1) and let K GCb(M) and a € Cb(aM)
such that Ricz > K and | > a. Thenfor anyt > 0:

6 = S(r0,er, k,9)

(1) There exists a progressively measurable process {Qs}SJof] on  OIRd
such that

Q=1 HEIl<exp|-J K(Xr)ds-j cr(Xn)dIT, sGJo,f],
and for any h GCII([0,t]) such that h(0) = 0, h(t) = 1,
Uo'XPJix) = Ex{Q*ufl\/f(Xt)}
= E*j lo h'(s)@*sdBa| , feCI(M).

(2) Let K and a be constant functions, and let | < B, Sect®M < k hold
for some constants k,9 > 0. Then (3.2.22) and

Exe~pal*< ||M|Le“pr P, x GM,t>0 (3.2.24)

holdfor ~ =0 ifdM is convex, and for
K@— S - sup \2\ —(p+ 1)(0+)2
and
pro pro
1+ &) (h(s)- /i(r0))1_ddsd (h(r)- h(r0))d_1dr

<1+ /\0

if (ii) in (A3.2.1) holds with ro < k x/2arcsin *==y.,
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Proof. According to Theorem 3.2.1, it suffices to prove (2). Moreover,
by Corollary 3.2.6, when dM is convex the desired assertions follow imme-
diately by taking b= 1. So, it remains to prove (2) for o < 0 by using (ii)
in (A3.2.1). The key point of the proof is to construct a suitable function
¢ by using pd.
Let b= ipopg, where
pr pro
) =1+ &/ {h(s) —h(ro))1~dds / (h(u) —h(ro))d~1du, r >0.
JO JsAro

By an approximation argument we may regard ¢as C°°-smooth (cf. page
1436 in [Wang (2007a)]). Obviously, ¢ > 1,N logth — — > —+. Since
< > 0, according to Theorem 1.2.3(1), we have

AV°Pd> (—J~~ +t")(Pd)>S, pa<An (3.2.25)

Since |V log| and |Z| are bounded on droM, this implies that K¢ > —eo.
Noting that g9 > 0, 9" < 0 so that ” is decreasing, we have

® ® T O Gt - e 02
= —S+o0 sup [Z| —(p+ )02

Therefore, the proof is complete by (3.2.22) and (3.2.23). O

3.3 Equivalent semigroup inequalities for curvature condi-
tion and lower bound of |

We first introduce equivalent semigroup inequalities for the lower bounds of
Ric.z and I, which are corresponding to those in Theorem 2.3.1 for manifolds
without boundary, then extend Theorem 2.7.1 to manifolds with boundary
using the curvature-dimension condition and lower bound of I. The first
part is mainly based on [Wang (2010b,d)], and the second part is new.

3.3.1 Equivalent statements for lower bounds ofRicz and |

Theorem 3.3.1. Assume (A3.2.1) and letpE [l,00),p = pA2. Then for
any K € Cb(M) and a e Cbu(aM), the following statements are equivalent
to each other:

(1) Ricz> K and | > a.
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(2 Foranyt> 0, x £ M, f £ ClI (M),
\WPtFO)\p < E*{|V/|p(Xt)exp [-pj* K (Xs)d s-p j\ (X s)dI]y

(3) Foranyt>0,x £ M and positive f £ CI(M),
p[Ptf2- @Ptf2/pr\(x)
4p~ 1
<EFjIVI2X)j[V 2/ Sla(")d;.dsJ;

where when p = 1 ffie inequality is understood as its limit asp\.l:
Pt(f2log/ 2)(x) - (Ptf2(x)) logPt/ 2(x)

<4EI||V I2(Xt) » &2 & *r(xr)dr-2 Sla(xr)d*rds

(4) Foranyt>0,x £M and positive f £ CI(M),

PtF - (PtfY,
VP20 < Pt ( )
JoNex{(Pt-sf)2~P(Xs) exp[2f* K(Xr)dr -2 /®@a(Xr)LLr]})-Us
where when p = 1 the inequality is understood as its limit asp f 1:
[VPt/|2(x)
[Pt(/log/)-(PtHlogPtN(x)
[G(E*{Pt_s/(X5)exp[-2/Gtf(Xr)dr - 2/&F(Xr)clr]})-4 S

Proof. By Theorem 3.2.9, it is easy to derive (2) from (1). Moreover,
according to Theorems 3.2.3 and 3.2.4, we see that each of (2)-(4) implies
(1). Finally, taking / £ C°°(M) such that Nf = 0 and / is constant
outside a compact set, similarly to the proof of Theorem 2.3.1 we derive
(3) and (4) from (2). O

Next, the following is an extension of Theorem 2.3.3 to manifolds with
convex boundary. See Theorem 4.4.2 in Chapter 4 for seven more equivalent
transportation-cost inequalities.

<

Theorem 3.3.2. Letp £ [l,00) and K £ R be constants, and letpt(x,y) be
the heat kernel of Pt w.r.t. a measure p equivalent to the volume measure.
Then the following assertions are equivalent to each other:

(1) dM is convex and Ric" > K.
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For any x,y ¢ M and t>0, Wp(SxPt, SyPt) < p(x,y)e~Kt holds.
For any Vi,V2 GP{M) and t>0,
WE(V\Pt,v2Pt) < e-KtWP (", u2)
holds.
When p > 1, for any f ¢ BA(M),

PP <Pifpg) e L NN Ly emeso

For any f GBb(M) with / > 1,

Ptlogf(x) < logPtf(y) + X, yGM,t> 0.

2(e2Kt - 1)’
Whenp > 1, foranyt >0 and x,y GM,
exp Kpp(x,y)2
IMMX'A W 7)Y "M~ }- 12(p —1)2(e2Kt - 1)
Foranyt >0 andx,y GM,

, Kp(x,y)2
I P D00 Bi P = e

Forany0< s <t and 1< g < g2 satisfying (2.3.1),

{Ps(Pt-sf)92}” < (Ptfgi)«, f >0,f GBb{M).

Forany0O<s<tand0< g2<q\ or g <q\ < 0 such that (2.3.1)
holds,

@tfa)» < {PS(Pt-sf)g2}”, / >0,/ € Bb(M).
\VPtf\p <e-PKtPt\VA\P, fECI(M),t> 0.
For any t > 0 and positive f GCE(M),
(PA2){Pt/ 2-(Pt|/ |~ 1 2} 1-e 2K
4(pN2—-1) “ 2K ‘
When p —1 the inequality reduces to the log-Sobolev inequality
2( 2Kt

Pt(f2\ogf2) - (P tf 2)logPtf 2 < K

Pt|V/|2
For any t > 0 and positive f GCE(M),
27 2K{Ptf ~ - (PtfY*2}(Ptfi 2-py
VP2 < b n12)(p N2 —1) (2Kt —1)

When p ~ 1 the inequality reduces to

N 2K{Pt(f\ogf) - (Ptf) log Ptf }Ptf
Vpy(32 2KIPLI0gY) - (1) logPif}
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(12) Foranyf £ Bb(M) andt >0,

[vpt/i2” - (Pticif))2}-
(13) Foranyf £ CI(M) andt >0,

(14) For any f £ Bb(M) andt >0,

(15) For any smooth domain A ¢ M and A(r) := {z £ M :p(z, A) < r} for
r>o,

1A (xX) M PilAa(e~Ktp{x,y))(?)> 1—0, X,y G XI.

Proof. Due to Theorems 3.1.3, 3.2.5 and 3.3.1, except (4) implying (1)
all other implications can be proved as in the proof of Theorem 2.3.3. So,
below we assume (4) and prove (1).

For a fixed point x £ M°® and X £ TXM , taking / £ Cq’(M) such that
V/(x) = X. Hess/(x) = 0and / = 0 in a neighborhood of dM, then the
argument in (c) in the proof of Theorem 2.3.3 works also for the present
case. Thus, (4) implies Ric® > K.

Next, for x £ DM and X £ TxdM, let / £ C°°(M) be such that
/[ > ILNA\dM — 0 and V/(x) = X. We may further assume that / is
constant outside a compact set (see page 311 in [Wang (2010b)]). Let
expf : TxdM —dM be the exponential map on the Riemannian manifold
dM with the induced metric, and let

It =expf [2fVIogf(x)\, t>0.
Applying (4) to y = 7t we obtain
Ptlogf{x) < logPtfbt) +

Since / satisfies the Neumann boundary condition, we have

Pt logf{x) = logf{x) + [ PSL logf{x)ds
(3.3.2)

Jo J Jo
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On the other hand, let Xs be the L-reflecting diffusion process starting at
x with local time Is on dM, and let o\ = inf{s > 0 : p{x,Xs) > 1}. By
Lemma 3.1.1 we have

Ps|Vlog/|2(x) = E|V log/|2(XsAai) + o(a)

—O(s) + |Vlog/|20K) + EJ/ (IV, V|Vlog f\2) (Xr)dIr.
]

Since / satisfies the Neumann boundary condition so that
(TV,V|Vlog/|2) = 2 /-2HessI(TV, V1),
and since (V/, V(1V, V/)) =0 implies
Hess/(TV,V/) = -(WVITV, V) = I(V/, V),
it follows that
Ps|V1og/|20r) = |V 1og/|20r) + O(S)

+ 2/(x)-21(V/, VT)(x)ElaAal + o(ElsAffl).
Noting that due to Lemma 3.1.2 we have EZM = + 0(s), thi
(3.3.2) vyield (recall that Vf(x) = X)

Ptlogf(x) = logf(x) + J@ Ps-j~{x)ds - |V log/|2(z)f

(3.3.3)
On the other hand, we have
Jo
Thus,
Combining this with (3.3.1) and (3.3.3) we arrive at
)V 1og/|2(x) (3.34)

s V?2FW (X'X>+ “<1)
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Obviously,

i i//}ft\f" 1 —ZegKt)) 0.

So, to derive 1(X, X) >0 from (3.3.4) it suffices to verify

AAT (Rf-¥) R 0 3

Noting that since f~1 € C2(M) with L f-1bounded and TV -1 = 0, we
have

pLf PsLf
Sf f

le{(1/Ne) - - f(Xs) f(x). H<
< (E(LF(X.) - LIX)IHH2B(HXs)=1 - HiR )y 22042
+ Lf(X)E I Lf(Xr)-dr
Jo

{x)

=o()(E(/(Xs)-1- /fy)-1)2)172 + O(S).
Since the bounded ness of L/_1 and Nf~1= 0 imply
E(/(X.)"1- fix)-1)2
—EAV2J\x f~ 1(Xr),urdBr) + L f-1(Xr)d7
= 0(8),

we conclude that

Lf PsLf
o W= o0y,

Therefore, (3.3.5) holds. O

According to Theorems 3.3.1 and 3.3.2, the argument in §2.3 also work
for manifolds with convex boundary. Therefore, Theorems 2.4.1, 2.4.2 and
2.4.4 hold for the reflecting diffusion process provided | > 0. When gM is
non-convex, the situation is however very different.
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3.3.2 Equivalent inequalities for curvature-dimension con-
dition and lower bound of |

Corresponding to Theorem 2.7.1, we have the following equivalent state-
ments for (2.7.1) and | > a.

Theorem 3.3.3. Assume (A3.2.1). Let K £ R,a < 0Oandn > d be
constants. Then the following statements are equivalent to each other:

(1) (2.7.1) holds and | > a;

(2)
[VPt/]2 < e~2KtE{|V /|2(Xt)e~2Tit}
- - Jf e~2KsE{(Pt- sL f)2(Xs)e~2als }ds
n Jo
holds for t >0 and f £ Cq(M) with N f\dM = 0,
©)

i P-2 Kt

[VPt/|2< e-2AftE{|V/|2(Xt)e-Zh } - (ptLf)2
holds for t> 0 and f £ Cq(M) with Nf\gm = 0,
@)
Ptf 2- (Ptf)2< 2E{|V/|2(At)J£

e~2Kt -1 + 2Kt,
ko (PELD)2

holds fort > 0 and f £ Cqg(M) with Nf\dM = 0.
When fj = 0, i.e. dM is convex, they are also equivalent to
©)
Ptf2- (Ptf)2> -~ W P tfl2+ ———=" - (PtLf)2
holds for t > 0,/ £ Cg(M) with Nf\gM = 0.

Proof. (1) implies (2). By the Ito formula and (1), there exists a local
martingale Ms such that

d|VPt_s/|2(As) = dMs + {L|VPt_s/|2- 2(VPt_s/, VLPt-sf)}(Xs)ds
+ 21(VPt-s/,VPt_s/)(Xs)dIs

> dMs + {2A|VPt_s/|2(As) + (P (_sL/)2}ds
+ 2cr|VPt_s/|2(As)d/s, s£[0,t}.
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Then
[0,f] 3s b* \VPt_sf\2(Xs)e~2ZKs+als"——[ S(Pt- rLf) 2(Xr)e~AKr+<TIr\dr
n Jo

is a local submartingale. Moreover, by Theorem 3.2.9 this process is square
integrable, so that is indeed a submartingale. Thus, (2) holds.
(2) implies (3). It suffices to note that since a < 0,

E{{Pt-sLf)2{Xs)e-21} > Ps{Pt-sLf)2 > (PtLf)2

(3) implies (4)/(5). By (3), the Markov property and the Jensen
inequality, we have

HE s(Pt_s/)2= 2Ps|VPt_,/|2
< 2e-2t- s'>E{\VA\2(Xt)e-2avt- I')}

20 _e-AT9) o 52 se[o.t).

nK
Integrating w.r.t. ds on [0, t] implies (4). When a —O0 the proof of (3) im-
plying (5) is similar to the case without boundary (see the proof of Theorem
2.7.1).

(4)/(5) implies (1). Let x £ M\dM. By Lemma 3.1.1 we have
F(It > 0) < e~d,* for some constant ¢ > 0 and small t > 0. Then, similarly
to the proof of Theorem 2.7.1, part “(3) implies (2.7.1)”, it is easy to see
that instead of (3) therein the present (4) implies (2.7.1) as well. Moreover,
since (4) is stronger than Theorem 3.3.1(3) for p = 2, it also implies | > a.
Similarly, when (5) implies (1) for a = 0. O

Moreover, when dM is convex we have N\VJ\2\gm > 0 for / satisfying
the Neumann boundary condition. Then repeating the proof of Corollary
2.7.3 and using Theorem 3.3.3 for K = a = 0 in place of Theorem 2.7.1,
we obtain the following result.

Corollary 3.3.4. Let n > d and K = 0. Then each of the following
inequalities is equivalent to (2.7.1) and | > Q.

(1) (PtHL(logPtf) > Pt(/log/)(I + ~LlogPt/) holdsfor all strictly pos-
itive f £ CE°(M) andt> 0.

(2) fLPt/ —f(Pt/)log(l + fLlIogPt/) <Pt(flogf)-(Ptf)\ogPtf holds
for all strictly positive f £ C*°(M) and t > 0.

(3 Pt(/log/)-(Pt/)logPt/ <tLPJ+ f (Pt/) log (1- 2tPt"}°g/)) holds
for all strictly positive f £ C*°(M) and t > 0.
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(4) For any g\ > >0 and t\,tz > 0 such that t := 2(t\q\ —2"2) > 0,

(Ptieq < (Pt3eqif)vtf*t2~ (2(gi~ 92)9

holds for all f £ Bb(M).
(5) Foranyo£ M,t\,t2> 0 and positive f £ Bb(M) with Ptlf{o) = 1,

W$(fpt|{0,-) Pt2(0,0)2< 4t1{ptl(/log/)(o) + \(l - 1 - 1Qg | ) }e
(6) For any o £ M,t\,t2 > 0 and strictly positive f £ Cf°(M) with
Pti{6) = 1,

W*(fPtl(0,-),Pt2(0,-))2
2t1PtIfL\o g f\

< & APt log (- L

3.4 Harnack inequalities for SDEs on and extension to
non-convex manifolds

The purpose of this section is to establish Harnack inequalities on manifolds
with non-convex boundary. As we do not have effective coupling argument
for the reflecting diffusion processes on non-convex manifolds, we will take
a conformal change of metric {s, W' := ¢»~2{, ® as in Theorem 1.2.5 to make
the boundary convex. According to the proof of Proposition 3.2.7, under
the new metric the generator L := A + Z becomes to p~2(A' + Z') for
some vector field Z', where ' is the Laplacian induced by the new metric.
This suggests us to investigate the reflecting diffusion processes with non-
constant diffusion coefficients on convex manifolds. In order to make our
argument easy to follow, we start from a stochastic differential equation on
Rd with non-constant diffusion coefficient, which is interesting by itself.
Consider the following SDE on Rd:

dXt - a(t, Xt)dBt + b(t, X t)dt, (34.1)
where Bt is the d-dimensional Brownian motion on a complete filtered prob-
ability space (fi, {Ft}t>0, P), and

a:[0,000x —»RdgRd, b:[0,ooJxR " Rd
are measurable and continuous in the second variable. Throughout the

paper we assume that for any X0 £ the equation (3.4.1) has a unique
strong solution which is non-explosive and continuous in t.
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Let X'f be the solution to (3.4.1) for Xg= x. We aim to establish the
Harnack inequality for the operator Pt:

Ptf(x) := Ef(Xf), t>0,x6Rd,fe B+(Rd),

where B (Kd) is the class of all bounded non-negative measurable functions
on Rd. To this end, we shall make use of the following assumptions.

(A3.4.1) There exists an increasing function K : [0,00) —R such that for
all x,y € Rd,t >0,

Wa{t,x) - a(t,y)\\BIS + 2(b(t,x) - b(t,y),x-y) < Kt\x-y\2.
(A3.4.2) There exists a decreasing function J1: [0, 00) —(0, 00) such that
aft, x)*a(t,x) > X2I, x eRd,t>0.

(A3.4.3) There exists an increasing function S : [0, 00) — (0, 00) such that
\(a(t,x) - a(t,y))*(x - y)\ <st\x-y\, X,ye Rd,t>0.

(A3.4.4) For n > 1 there exists a constant cn > 0 such that

ller(f,ir) - a(t,y)\HS + [b(t,x) - b{ty)\ <cn\-y| fa;|.lyl.f <n.

It is well known that (A3.4.1) ensures the uniqueness of the solution
to (3.4.1) while (A3.4.4) implies the existence and the uniqueness of the
strong solution. On the other hand, if band a depend only on the variable
x € Rd, then their continuity in x implies the existence of weak solu-
tions (see Theorem 2.3 in [lkeda and Watanabe (1989)]), so that by the
Yamada-Watanabe principle [Yamada and Watanabe (1971)], the unique-
ness ensured by (A3.4.1) implies the existence and uniqueness of the strong
solution.

Note that if a(t, x) and b(t, x) are deterministic and independent of t,
then the solution is a time-homogeneous Markov process generated by

vy d d
L. —"Aajdig " ~hidi,
i,j=1 r=1
where a := acr*. If further more a and b are smooth, we may consider the
Bakry-Emery curvature condition:

r2(/,n > -KT(f,f), f€C°(Rd) (3.4.2)
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for some constant K £ R, where
1 d
Nr<?=xE anll W p), ~9€C1),
i,j=1
T2(f,f):=+LT(FI)-T(F,LF), fecC® o

Then by Theorem 2.3.3(3), the dimension-free Harnack inequality

PPa(x,y)2
(Ptf(x))p < (Ptfp{y)) EXP L2(p —1) (1 —e~2KY)I

holds fort > 0,p > 1,/ £ B*(Rd),x,y £ Rd, and

Pa(x,y) :=sup {\f(x)-f(y)\: / € C1(Ka),[ (/,/]) < I}, x,y £
On the other hand, however, in high dimensions it is very hard to verify the
curvature condition (3.4.2) since it depends on second order derivatives of
a-1, the inverse matrix of a. This is the main reason why existing results
on the dimension-free Harnack inequality for SPDEs are only proved for
the additive noise case (i.e. a is constant).

To handle the non-constant diffusion coefficient case, we first construct

the coupling by change of measure required for the Harnack inequality
according to Theorem 1.3.7.

3.4.1 Construction of the coupling

Let x,y € Rd, T >0and p > (1 + $1/71)2 be fixed such that x ®y. We
have

<B43)
ForB £ (0, 2), let
6 =" (1- eifr(t-T)), t£ [0,T],
Then £ is smooth and strictly positive on [0, T) such that
2-KTb+& =6, t£[0T]. (3.4.4)
Consider the coupling
dXt = o(t, Xt)dBt + b(t,Xt)dt, X0=x,

< dfy = a(t, Yt)dBt + b(t, Yt)dt (3.4.5)
+ ftoft,Y)o{t,Xt)-\X t- Yt)dt, YO=y.
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Since the additional drift term £tV (f, y)cr(t, x)~1(x —y) is locally Lips-
chitzian in y if (A3.4.4) holds, and continuous in y when a and b are
deterministic and time independent, the coupling (Xt,Yt) is a well defined
continuous process fort < Tng, where ( is the explosion time of Yt; namely,
C= Hm~*oo cn fOr
cn ;= inf{t € [0,T) :|Yt| > n},
where we set infO —T. Let
dBt = dBt + Xt)-\Xt- Yt)dt, t<T i<

IfC=T and
Rs:=exp *- J “"HAXty"Xt-YtrdB1t)

i £1>(t,Xt)-\Xt-Y t)\Mt
L {, 7> (LX) )

is a uniformly integrable martingale for s € [0, T), then by the martingale
convergence theorem, Rt := limt\T Rt exists and {Rt}te[o,T] is a martin-
gale. In this case, by the Girsanov theorem {Bt}te[o,T) is a d-dimensional
Brownian motion under the probability RtF. Rewrite (3.4.5) as

rdXt = a(t, Xt)dBt + bft, Xt)dt - *Adt, X0=x,
\dY't = a(t, Yt)dBt + b(t, Yt)dt, YO- ¥

Since jf Zi'dt = 0o, we will see that the additional drift Ldf is
strong enough to force the coupling to be successful up to time T. So,
we first prove the uniform integrability of {RSAc}se[o,T) w.r.t. P so that
Rtac  limsfr -Rsac exists, then prove that £= T Q-a.s. for Q := Rta(P
so that Q = RtF

Let

(3.4.6)

rn=inf{te[0,T):|Xfl+ |Yt|>n}.
Since Xt is non-explosive as assumed, we have t, t c as nt oo.

Lemma 3.4.1. Assume (A3.4.1) and (A3.4.2). Letse (0,2),Xx,y 6
and T > O befixed.

(1) There holds
S2W(2Km -e-*T-ry
Consequently,
Rsaf « i ’(;RsATnA{T—\/n)i s E [0,X], RtAqm iifll-"sA"
exist such that {RSAc)se[o,T] Is a uniformly integrable martingale.
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(2) Let Q = RtadP- Then Q(£ = T) = 1 so that Q = RtP.
Proof. (1) Let s € [0,T) be fixed. By (3.4.6), (A3.4.1) and the Ito
formula,
diXt- Ftl2< 2((*(t,Xt) - a(t,Yt))(Xt- Yt),dBt) + KT\Xt - Yt\2dt
-?-\Xt-Y t\2dt

St
holds for t < s J1Tm. Combining this with (3.4.4) we obtain

A< ~((er(t,Xt) - o(t,Y1))(Xt -Y t),dBt)

XYM i + sty
(34.7)
= ?-((o(t, Xt) - a(t, Yt))(Xt - Yt),dBt)
St
0
- 2|At- Vi|2df, (< sAt,
st
Multiplying by i and integrating from 0 to s Ar,,, we obtain
JosAr, _ psATn
XE-Y 0y (M*, Xt) - oft, Y))(Xt - Y1), dBt)
Jo e? *6

\xsATn - TW j2+ ®- W2
8Es\Th (037]
By the Girsanov theorem, {-Bt}t<rnAs is the d-dimensional Brownian mo-
tion under the probability measure RsATnV. So, taking expectation ES),
with respect to O, /TP, we arrive at

.t Y < ™ Y2 coomins 1 (34.8)

!

Jo et
By (A3.4.2) and the definitions of Rt and Bt, we have

log Rr

- f ULt XD)-\XE- YD) .dB) + - |1 TEXO AL YO,

Xy gD 5 o FTXEY o
- - - + ] ”
< I galtXn-\Xt-YnABy + 3 |

Since {Bt} is the d-dimensional Brownian motion under 72sATnP up to sArn,
combining this with (3.4.8) we obtain

EA3nT, logRSATh = Es,,, logRsATn < 2\TEED’ s 6 I0°T >n -



172 Analysis for Diffusion Processes on Riemannian Manifolds

By the martingale convergence theorem and the Fatou lemma, {RsA\$: s £
[0, T]} is a well-defined martingale with

\x-y\2 KT\x-y¥

2X"o 2M6>(2- 0)(1 - e~KTTY
To see that {Rsa( ms £ [0,T]} is a martingale, let 0 < s <t < T.
By the dominated convergence theorem and the martingale property of
{A«n,, : s £ [0,T)}, we have

E N acls) - EMlirn™ RIATNA(T-L/n)\FS) lim E(?tArmATHn)\'Fs)
= lim RA\T RsAEr
n—oo
(2) Let an = inf{f > 0 : \Xt\>n}. We have ant 0o P-a.s and hence,

also Q-a.s. Since {Bt} is a Q-Brownian motion up to T A(, it follows from
(3.4.7) that

Efsnr log Rsac < SsE[0,T\.

(n—m)2 dm>t@s<t)<E : < YR
SO T d SAamAG )

holds for alln >m > Oand t £ [0, T). By letting fir’st n | oo then mt 00,
we obtain Q(E <t)= Oforallt £ [0, T). This isequivalenttoQ(E=T) = 1
according to the definition of £. O

Lemma 3.4.1 ensures that under Q := A 1ncE>{B«}te[o,T] is a Brownian
motion. Then by (3.4.6), the coupling (Xt,Yt) is well-constructed under
Q fort £ [0,T]. Since ff 1At = oo, we shall see that the coupling is
successful up to time T, so that Xt = Tr holds Q-a.s. (see the proof of
Theorem 3.4.3 below). This will provide the desired Harnack inequality for
Pt according to Theorem 1.3.7 provided Rtac. has finite p/(p —I)-moment.
The next lemma provides an explicit upper bound on moments of Rtaf

Lemma 3.4.2. Assume (A3.4.1)-(A3.4.3). Let Rt and  be fixed for
B = Or We have
O\ Je™ )\ Xt-Yrt\p J I

sup_E<.RsAfexp

o1 82 3 d)) (3.4.9)

< exp OTKT\x- yJ2

4582~ OT){\ —e~KTT)
Consequently,
n OTKT{25T + Ot Xt )\x —y '\
o = & <P ggi2 —0r){St + OTXTH{L —e (34.10)

holds for

XZ0Z

T gt dywgs)-
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Proof. Let B —6T- By (3.4.7), for any I > 0 we have

f«<Ar, Ly
Esnexp I/ Xt— dt
L Jo
rnx —y|J2

BTE0

XE exp rar JrSKh}((o(t,Xt)— a(t, YO)){Xt - Yt), dBt)

< exp

< ox rKT\x - yJ2
P ler{2-87)(1-e- 1<)}

8r24  rsATN \Xt- Yt vz
e\ f 8

where the last step is due to (A3.4.3) and the fact that
EeM < (Ee2{M)t)1/2

X EBMexp

for a continuous exponential integrable martingale Mt. Taking r = j%r, we
arrive at, for all N> 1,

IXt- Ytl-dt <e 6TKT\x-y\2
852 J0 . XD 462{2-eT)(1-e-KTT)

This implies (3.4.9) by letting n -» oo.
Next, by (A3.4.2) and the definition of Rs, we have

ERI+f = EsniCr,,

Esnexp

rSA\Tn 1
=Esnexp I'TY H(AMX t)-\Xt-Yt),dBt) (34n)
rr ot Wt Xt)-\Xt-Yth ~
2 Jo $

Noting that for any exponential integrable martingale Mt w.r.t. Rsj\tJ?,
one has

Esnexp[fTMt + rT(M)t/ 2]
= ES,,exp[rTMt - rrg(M)t/2+ rT(qrT + 1)(M)t/2]
< (Esnexp[rTgMt - r ~ 2(M)t/2])1/?
Tro(Tro+ 1) _ N (9-H/9
mexP 2(,-1)
rTq(rTg + 1)
2(9-1)

(Ee

(e.,, eXp , 9> 1.
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it follows from (3.4.11) that
arT(rT +1) f A" \XE-Y 12, HOZVE]

ex
Pra(g-n\z |
(3.4.12)
Take
q=1+\A +rTl, (3.4.13)
which minimizes q(qrr + 1)/(<? —1) such that
QqrT(qrT + 1) rT+y/T{HT+ 1),  ,, , [— -1
AT T (34.14)
(rm+y/r\ +r7T)2_ 9
2AN 86j,"

Combining (3.4.12) with (3.4.9) and (3.4.14), and noting that due to
(3.4.13) and the definition of rT

S1 et g ot

q 1 -f YJ 1+ rTX 2(5j1-f- 20t\ t

we obtain
9t Kt (26t + OTAr)|® —/2
185f(2- Ot)(Et + 6tAL)(1- e-~T),
According to the Fatou lemma, the proof is then completed by letting
n -A oo. O

< exp

3.4.2 Hamack inequality on Rd

Theorem 3.4.3. Let a(t,x) and b(t,x) either be deterministic and inde-
pendent oft, or satisfy (A3.4.4).

(1) If (A3.4.1) and (A3.4.2) hold then
PTlog f(y) < log PTf(x) + 4 T), />1xy GRdT>o0

(2) 1/(A3.4.1), (A3.4.2) and (A3.4.3) hold, thenforp > (1 + |™)2 and
6p, T = max{<5r, *-(y/p —1)}, the Hamack inequality
KTy/p{s/p- 1)\x-y\2
Prf Prf
(Prity)p < Privi e | P~ DAT- 2pTL- € wem
holdsfor all T > 0,x,y 6 andf £ Bt
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Proof. (1) By Lemma 3.4.1, {/?.sAc}se[QT] is a uniformly integrable mar-
tingale and {Bt}t<T is a d-dimensional Brownian motion under the proba-
bility Q. Thus, Yt can be solved up to time T. Let

r=inf{t6 [0,T] : Xt=Yt}
and set infO = oo by convention. We claim that T<T and thus, Xt =
Yt, Q-a.s. Indeed, if for some w £ tt such that T(w) > T, by the continuity
of the processes we have

teF&Tr] \Xt  Yt|2(w) > 0.

So,
\Xt -Y t\_dt - o
holds on the set {r > T}. I%ut acco?ding to Lemma 3.4.2 we have
Eq [T Xt Ry < o0

we conclude that Q(r > T) =o 0. Therefore, Xt = Yt Q-as.
Now, combining Lemma 3.4.1 with Xt = Yt and using the Young
inequality, for / > 1 we have
Pt logf{y) = EQ[logf(YT)] = E[AT/Klog f(X T)]

<EATAc logp tar+ lOQE /(xt)

<logPTf(x) + 2220(2- 0)(1-e-*TT)-

This completes the proof of (1) by taking 0=1.

(2) Since (A3.4.3) holds for 6t p in place of St, it suffices to prove the
Harnack inequality for St in place of 6t pmLet 0 = Or Since Xt = Yt and
{Bt}te[o,T] is the d-dimensional Brownian motion under Q, we have

" (PrKy)l = (Eal/(Yt)]p - (E[AMC/(XT)])P

< (P/p("))(EApI(p- D)p- 1
Due to (3.4.3) we see that

(3.4.15)

=1+
p —1 4st (st T Ot ~t)
So, it follows from Lemma 3.4.2 and (3.4.3) that

(EAprp-D)P_L = (ERTATRA
(p —1)0t K t (2St + Ot ™t )\ — W2
8G.2—O0mn(St + 0T"T)0 ~ ® KTT"
KTrp("P~1)\x-y\2

B T[(y/p—1)AT - SG1|(1- e KtT)]
Then the proof is finished by combining this with (3.4.15) O

< exp
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Let pt(x,y) be the density of Pt w.r.t. a Radon measure p. Then ac-
cording to Proposition 1.4.4, the above log-Harnack inequality and Harnack
inequality are equivalent to the following heat kernel inequalities respec-
tively:

L PT{X 2)l0g £2N1N - T-"XT) m 346>
and

1 Mx't)(w *> M(dJ)
< exp KTy/p\x - 72
4P TP + D[(VP _ DM - £pT](1- e KIT)I*
for x,y £ IRf, T > 0. So, the following is a direct consequence of Theorem
343.

(3.4.17)

Corollary 3.4.4. Let a(t,x) and b(t,x) either be deterministic and inde-
pendent of t, or satisfy (A3.4.4). Let Pt have a strictly positive density
Pt{x,y) w.r.t. a Radon measure p. Then (A3.4.1) and (A3.4.2) imply
(3.4.16), while (A3.4.1)-(A3.4.3) imply (3.4.17).

Finally, according to the proof of Theorem 2.4.2, the Harnack inequality
with power in Theorem 3.4.3(2) implies the following contractivity proper-
ties of Pf.

Corollary 3.4.5. Let o(t,x) and b(t. x) be deterministic and independent
of t, such that (A3.4.1)-(A3.4.3) hold for constant K, A and 6. Let Pt
have an invariant probability measure p.

(1) If there exists r > K +/ A2 such that p(er™”) < oo, then Pt is hypercon-
tractive, i.e. WPtWL2(n)"L4(p) = 1 holds for some t > 0.

(2 /llr(erl2) < oo holds for all r > 0, then Pt is supercontractive, i.e.
I-Pt|L2(j)>z4(M < oo holds for all t > 0.

(3) If Pterli is bounded for any t,r > 0, then Pt is ultracontractive, i.e.
||I-Pt||L2(p)->L~(p) < oo for any t > O.

3.4.3 Extension to manifolds with convex boundary
Let Pt be the (Neumann) semigroup generated by

L = ipX{&+ 2)
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on M with boundary dM, where ip € Cp(M) and Z is a C 1 vector field on
M. Assume that ip is bounded and

Ricz > K (3.4.18)
holds for some constant K. Let
4 = K-\iP\lo + 2||ZJU[VV>HooMoo + (d- 1)|[VVC- (3.4.19)

Then the (reflecting) diffusion process generated by L is non-explosive.
To formulate Pt as the semigroup associated to a SDE like (3.4.1), we
set

a =V2ip, b=ip2zZ. (3.4.20)

Let d/ denote the Ito differential on M. In local coordinates the Ito differ-
ential for a continuous semi-martingale Xt on M is given by (see [Emery
(1989)] or [Arnaudon et al (2006)])

N
@diXtk=dXk+ > £ YiBXO)d{X\Xi)u 1<k<d.

ij=1
Then Pt is the semigroup for the solution to the SDE
djXt = a{Xt)utdBt + b(Xt)dt + N (Xt)dlt, (34.21)

where Bt is the d-dimensional Brownian motion on a complete filtered prob-
ability space (fl, {d-t}t>0)P)> ut is the horizontal lift of Xt onto the frame
bundle O(M), and It is the local time of Xt on dM. When dM = 0, we
simply set It = 0.

To derive the Harnack inequality as in Section 2, we assume that

N:=infa >0, S:=supa—infa <oo. (3.4.22)

Now, let x,y £ M and T > 0 be fixed. Let p be the Riemannian distance
on M, i.e. p(x,y) is the length of the minimal geodesic on M linking x and
y, which exits if dM is either convex or empty.

Let Xt solve (3.4.21) with Xo = x. Next, for any strictly positive
function £ GC([0,T)), let Yt solve

diYt = a{Yt)Pxt,YtutdBt + b{Yt)dt
_AYDP{Xu YY) Vp +N(yt)djt

for Yo =y, where It is the local time of Yt on dM. In the spirit of The-
orem 3.2.5, we may assume that the cut-locus of M is empty such that
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the parallel displacement is smooth. Otherwise, one only needs to replace
W Ir xt,ytutdBt by a new Brownian motion Bt satisfying

L t, Vi) cut(M)IdBE = \{(Xt,Yt)<fc\A{M)}UtIP xuYtuA B t,

where ut is the horizontal lift of Yt.
Let

dBt = dBt + F<T(X) Yt)(Xt)dt, t<T.
By the Girsanov theorem, for any s € (0, T) the process is the d-

dimensional Brownian motion under the changed probability measure RsP,
where

IVp(: Y1) (Xt),utdBt)

\LI-F pLxuvtt
' et°{xty

p(Xt,Yt)

Rs = exp SM xt)

(3.4.23)

Thus, by (3.4.21) we have
dj Xt = (T{Xt)utdBt + b(Xt)dt
- pPdb Y1) Vp(-, Y){Xt)dt + N (Xt)dlu
djYt = a(vt)pxtytutdBt + b(Yt)dt + N(Yt)dlt.
By Ito’s formula, we obtain
dP(Xu Yt) < <T%)(Vp(;Yt)(Xt),utdBt)
+a(YO(Xp(Xt,m(Yt), PXuYtutdBt)
+ {(ft, Vp(-, Y1) (Xt) + (b,Xp(Xt,-))(Yt) (3.4.24)

d1
+t,uM x,, Y.)- d*d*)}d<,

i=l N
where (/r}r=1 are vector fields on M x M such that “\JUI(Xt) Yt) = 0 and
Ui{Xu Yt) = ip(Xt)Vi + iP(Yt)PXt,YtVi, I<i<d-|I

for an ONB of TXtM with Vd = Xp(-,Yt)(Xt).
In order to calculate Ufp(Xt,Yt), we adopt the second variational for-
mula for the distance. Let pt = p(Xt,Yt) and let be Jacobi fields

along the minimal geodesic 7 : [0, pt] M from Xt to Yt such that
Ji(0) —ip(Xt)Vi and Ji(pt) = ip(Yt)PxtytVi,1 < i < d—L1. Note that
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the existence of 7 is ensured by the convexity of dM. Then, by the second
variational formula and noting that 'VUI(Xt, Yt) = 0, we have

| =TU2p(XtY)=T T {|Y~|2-<7r(7,a8,7)} (", (34.25)
1=l 1=1Jo

where 17 is the curvature tensor. Let
Ms) = (-W t) + ?22ATp(Xt))Py(0O)Ms)M 1<*<d- L
We have J*(0) = Jj(0) and MPt) —MPt)>1 < *< d—1 By the index

lemma,

I"E T {ivri2- (kmmmW s's
1=1

< (d-D|[VV>||~Pt (3:4.26)

- \Pt Jfo {sip(Yt) + (pt - s)M(Xt)}2Ric(7(s),7(s))ds.
Moreover,
6,vp(-,yt))(xt) + (b,vpNe,-))m)

=72 M(SIL(FY + (pt-s)V(A1)2(Z(7(s)),7(s)) }ds

4 (sip(Yt) + (pt - s>0Ne))2((V-yZ) ° 7,7)(s)ds
it b (3.4.27)

+

J% (2°y,1)(s)(%l;(Yt)-"ip (X1))(sil;(Yt) + (pt-s)ip{Xt))ds

< Iélt J/o {siPiYt) + {pt —s)ip(Xt))2((Xjz) 07,7)(s)ds
+ 2||z|lUNe U |V tf||ooPt.
Finally, we have
(Xp(Xu -)(Yt),PXtXtutdBt) = {PYuXy p { X u -){Yt\u tdBt)
= -(Vp(-,Yt){X1),utdBt).
Combining this with (3.4.24) - (3.4.27), we arrive at
dp(Xt,Yt) < (cr(Xt)-a (Y t))(Xp(;Yt)(Xt),utdBt)

+ KAp(Xt, Yt)dt - p{XK~ dt, t<T.
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Then this implies that

dp{Xt; Y2 < Ap(Xu YE)(0(Xt) - o(Yt))(Wp(;Yt)(Xt),utdBt)
& S (3.4.28)

holds fort < T and

Kb + Voo —2(k/, + IVW'lloo). (3.4.29)
In particular, letting

6 - "de( | -ei™("-1>), te [o,T],Be (0,2),

we have

2 —kpft+ G —9
Therefore, the following result follows immediately by repeating calcula-
tions in the last subsection.

Theorem 3.4.6. Assume that dM is either empty or convex. Let (3.4.18)
hold for some constant K and let and Z, % Vip be bounded. Let k¢ be
given by (3.4.19) and (3.4.29). Then all assertions in Theorem 3.4.3 and
Corollaries 3.4.4 and 3.4.5 hold for Pt the (Neumann) semigroup generated
by L = m2(A + Z) on M, and for constant functions K. := ki, S =
supip—infmp and A := inf |*|, and for p(x, y) in place of \x —y|.

3.4.4 Neumann semigroup on non-convex manifolds

Assume that V ¢ 0 and for some constant Ko € Msuch that (3.4.18) holds.
To make the boundary convex, let @€ T™= By Theorem 1.2.5, dM is convex
under the metric

(;m)':= <T2(v>.
Let 4' and V' be the Laplacian and gradient induced by the new metric.
Since > 1, p(x, y) is larger than p'(x, y), the Riemannian distance between
x and y induced by (e, *)'. Moreover, according to the proof of Proposition
3.2.7 we have
L=dg~\A"+2Z"), Ricz,>-Kd( °),
where K is given in (3.2.15). Applying Theorem 3.4.6 to the convex man-
ifold (M, (s ¢)"), = ~1 and (note that |« 1|loo = 1)
K = 2Kdp + 1 r"\NOOWXTcp-1¥00 + 2d(||V> - 1]|M)2

3.4.30
= 2K- + A\dor + (d- 2)VO|joo|V logd\\x + 2d\\V logaplLL,. ( )
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where || «||' is the norm induced by (s, ¢)' and we have used that / > 1, we
obtain the following result.

Theorem 3.4.7. Let (3.4.18) hold. For any o £ T>in (3.0.2), let kp be
fixed by (3.2.15) and (3.4.30). Then all assertions in Theorem 3.4.3 and
Corollaries 3.4.4 and 3.4.5 hold for constant functions K. = k*,S. 1—
infA-1, and A :=inf”-1, and for p(x,y) in place of\x —y\.

3.5 Functional inequalities

In this section we intend to investigate functional inequalities for the reflect-
ing diffusion processes on non-convex manifolds. We first present explicit es-
timates for the spectral gap and the log-Sobolev constants on compact man-
ifolds, then present sufficient and necessary conditions for the log-Sobolev
inequality to hold on non-compact manifolds. Stronger inequalities im-
plying the supercontractivity and the ultracontractivity properties are also
considered. This section is mainly based on [Wang (2005b, 2007a, 2009a)].

Throughout this section, let Z = S7V for some V £ C2(M) such that
p(dx) = eV'x}(ix is a probability measure. Thus, Pt is symmetric in L2(/i)
with Dirichlet form

£(/,<?) = M(V/,V5», f,ge V(E)
where V{£) = H21(p) is the completion of Cq’(M) under the Sobolev
norm ||/||2iM:= \/T(P) +M |V /|2).

3.5.1 Estimates for inequality constants on compact mani-
folds

Let ® : / —=Mbe a convex (72-function, where f is a (not necessarily
bounded) interval. We define the ®-entropy w.r.t. p by
Ent*(/) = m(®(/))) - ®(M4HA), / 6 B+(M), (M) c I.

Since @ is convex, the Jensen inequality implies that Ent[[(/) > 0. For
instance, if ®(r) ;= r2and / = R then Ent.J(/) reduces to the variance
VarM/) = p(/2) —p (/) 2, while if ®(r) := rlogr and | = [0,00), then
Ent”(/) coincides with the relative entropy EntM/) = p(/log[//p(N]).
Moreover, the convexity of ® also implies ®(a, /) := ®(/) —P(@) —P,(a)(/—
a)>0fora6 | and

(3.5.1)
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See e.g. [Chafai (2004)] for further discussions.

Let a$ denote the biggest positive constant such that the d-entropy
inequality

«OENt*(/) < M$"(NHIVI2), fccim;l).

To estimate a$, we make use of Theorem 1.2.5 to reduce to the convex
boundary case, for which the spectral gap and the log-Sobolev constants
have been well estimated (cf. [Chen and Wang (1997a); Wang (1999)] and
references within). To this end, for any D > 0 and K G R, let a(d,K,D)
be the biggest constant such that for any d-dimensional connected compact
Riemmannian manifold M* with convex boundary and diameter less than
D, and for any V* ¢ C2(M*) with RicM - HessJ/. > K, one has

a(d, K, D)Ent™.(f) < 11%®,, (/)|YM*1Im*)> [ GCr(M*7), (35.2)

where p* := Z*ev‘ VM- (da:) with Pm. the volume measure on M* and
Z* > 0 such that p* is a probability measure.

Theorem 3.5.1. Let D be the diameter of M, let p &V for V defined by
(3.2.15), and let Kdb be given by (3.2.16). Then

o> a(b,K®,0)

Wi

Proof. According to the proof of Proposition 3.2.7, we have q2b = ' +
Z' =: V for some vector field Z' such that

Ric'z, > Kdo(-, *), (3.5.3)
where (-m)' := ¢~2(-,-) under which gM is convex, and Ric',A"' are the
associated Ricci curvature and Laplacian. It is easy to see that L' is sym-
metric w.r.t. the probability measure pp := d~2p/p(th~2) and

M $ ()v/2) = p(P-Dpdb(p” (JTD7,v'/)), I ec\M), (35.4)

where V' is the gradient induced by the metric (s, W". Moreover, o> 1 im-
plies that the diameter of M under the new metric is less than D. Combin-
ing this with (3.5.1), (3.5.3), > 1, (3.5.4) and the definition of a(d, K, D),
we arrive at

Ent*() = Inf f y(ai)dp=m{ [ ® Hap{d-2&pP
< TI0fI"Entr (/) < VoY)
M 1

<
a(d, K, D)
This completes the proof. O

M > (/)[V/]2).
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Combining Theorem 3.5.1 with known estimates on convex manifolds,
we have the following results for the spectral gap and the log-Sobolev con-
stant. Let Ai be the first Neumann eigenvalue of L. We have Al = ach for
®(r) :=r2. For any K € R, let

Xi{K,D) =4 inf Y P/(®)-~d*:/EC 1oU])>

AN°) = °7Jo N(s)2e_if"ds = 1}
which is the first mixed eigenvalue of 4 ~ - on [0, D\ with Dirichlet
condition at 0 and Neumann condition at D.
Corollary 3.5.2. Let p£ V. Then
A > Ai (Kd,B)

f fr fD K 2 n-1
— su Ajyn |
Imloo 0</€C(f()),.D])re&,-D|/(r)luQ e 8 dsJs e~ 8 /(r)d7
Consequently,

1 / M2
[H® VvV "2
where r+:=0Vr,r = (—)+forret.

Proof. The first assertion follows from Theorem 3.5.1 and the variational
formula for the first eigenvalue presented in [Chen and Wang (1997a)] (see
also (2.2.1) in [Wang (2005a)]), while the second assertion follows from the
first by taking specific choices of /, see Corollaries 1 and 2 in [Chen and
Wang (1997a)] or Corollary 2.2.2 in [Wang (2005a)]. O

Next, we consider the log-Sobolev constant
a = inf{2M|V/|2) : p(/2log[/2/p (/2)]) = 1}

Obviously, letting ®(r) := rlogr and | = [0, 00), we have a = \at. Then
the following result follows from Theorem 3.5.1 and Theorem 3.1 in [Wang
(1999)].

Corollary 3.5.3. Let p£ V. Then

A > —— o (3.5.5)
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3.5.2 A counterexample for Bakry-Emery criterion

According to Theorem 3.3.1(3) with t -A 0o, when | > 0 the curvature
Ric —Hessy > K (3.5.6)

for some constant K > 0 implies the log-Sobolev inequality
p(/2log/2)y < |Ir(|V /]2), I 6 CI(M),p(f2) =1

This assertion is known as the Bakry-Emery criterion due to [Bakry and
Emery (1984)]. From this one might hope that when | is bounded below
by a slightly negative constant, a larger enough curvature lower bound will
imply the log-Sobolev inequality

M /2log/2)<Cp(|V/]2), feCI(M),p(f2)=1 (35.7)

for some constant C > 0. Since the log-Sobolev inequality is stronger than
the Poincare inequality, this is not true according to the following result.
Although this result is stated only for d = 2, one can construct coun-
terexamples in high dimensions by simply taking product spaces. With
eg. V(x) = ¢ —RWx\2 for constants ¢ € K and R > 0, for which
Ric - Hessy = -Hessy = 2R, Theorem 3.5.4 disproves the Poincare in-
equality for arbitrarily large curvature lower bound and arbitrarily weak
concavity of the boundary.

Theorem 3.5.4. For any e > 0 and any probability measure po on X2
with full support, there exists a smooth connected domain M C K2 with
connected dM such that | > —e but for any C > 0 the Poincare inequality

p(f2) - M/)2< Cp(|JV/]2, | GCUM) (3.5.8)
does not hold.

Proof, (a) Construction of M. We first construct a smooth curve which
will produce the main part of dM. Let ipp G C°°(R) be decreasing on
(—o00,2] and increasing on [3, oo) such that

fo, ifx G[23],
[I, ifx G(—e0, 1] U4, 00).

Next, for a sequence {rn G (0,1)} with r,, | 0as n 7 oo, which will be fixed
later on in order to disprove the Poincare inequality, define
(e8]

— 21(—005] "0 2" ]1(5n,5(n+1)]

n=1

rn+ <A0 - 5n)
1+rn
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Obviously, p£ Cg° (R) with derivatives uniformly bounded in the choice of
{dpe
Now, let D ¢ [0,00) x [0,2] be a connected smooth domain such that

D M[L00) x [0,00) = {(X,y) : 0<y <p{x)}.
Therefore,
dD M(R2\ [0,1] x [0,2]) = [1,00) x {0} U{(x, tp{x)) : x > 1}

Obviously, the second fundamental form Iqo of dD is bounded below in
a compact set, the part [l,00) x {0} is flat, and since the derivatives of
ip £ C*°(R) are bounded uniformly in the choice of {rn}, Isd on the part
{(x, tp(x)) : x > 1} is bounded below uniformly in {rn}. So,

1dD > ~6 (3.5.9)

holds for some constant $> 0 independent of {r,}. To make the second
fundamental form bounded below by —e, let

M =RD := {(Rx,Ry) : (x,y) £ D}

for sufficient large R > 1 such that due to (3.5.9) the second fundamental
form | of dM satisfies

(b) Choices of {r,} destroying the Poincare inequality. Let po be a
probability measure on R2 with full support. Let 1, = iMflo/flo(M). Since
D o [1,5] x [0,2], we have

MM) > M[R, LL, x [0 L) =% > o. (3.5.10)
Note that 6qis independent of the choice of {rn}. Now, for any n > 1, take
fn(x,y) = (x —5nR —2R)+ /11, (x,y) £ M.
Since for tn := 2r,,/(l + rn),
(I5PR+2R,5nR + 2R +11 xR)nM = [5nf?+ 2R, 5nR + 2R +1] x [0, Rrn],
by (3.5.10) we have

M(V/,12) —p([5nR + 2R, 5nR + 2R + 1] x [0,Rfn])
< /Jip(Rx [0,rn4]) (3-5.11)
&
Moreover, since

{/,, = 0} D [R5R] x [0,24], {/, = 1} D [bnR + 4R, 5(n + )R] x [0,2R],
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we have

>MMI[R,5R] x [0.24])
> SORO{[SNR + 4R, 5(n + )] x [0,24])  (3.5.12)

Now, for each n > 1 one may take rn £ (0,1) small enough such that

x oA <O

Combining this with (3.5.11) and (3.5.12) we conclude that

M j E L _, i, b e
KPn) - M/n)f

Therefore, the Poincare inequality is not available. O

3.5.3 Log-Sobolev inequality on locally concave
manifolds

Since the log-Sobolev inequality holds on any compact smooth domains, it
would be possible to extend Theorem 2.4.1 to the case that dM is merely
concave on a bounded domain. Although this sounds quite natural, a com-
plete proof is however far from trivial. The main point is that, in general,
it is not clear how can one split M into a bounded part and an unbounded
but convex part.

Theorem 3.5.5. Assume that for some compact set Mo C M one has | > 0
on (dM) \ Mo and Ric® > K on M \ Mo for some K £ R.

(1) If g(exp®) < oo for some X > —jf, then the log-Sobolev inequality
(3.5.7) holds for some C > 0. In particular, if K > 0 then (3.5.7)
holds.

(2) Pt is supercontractive if and only if /3(/T) := p(eXp°) < oofor any J1> 0.

(3) Pt is ultracontractive if and only if PteXp® is bounded for any /1t > Q.

Proof. By Lemma 3.5.8 below, the class V in (3.0.2) is non-empty. So,
according to the proof of Theorem 2.4.2, (2) and (3) follows from the Har-
nack inequality ensured by Theorem 3.4.7. To prove (1), let g £ V be
constructed in the proof of Lemma 3.5.8. Then the volume measure in-
duced by (-, ¢)' := B is

i/(da;) = dp~n(x)dan
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So,
ev(X)da: = e*(I)i/(d*), V=V -dbg~. (35.13)

Let Ric', Hess',pD V', | *|' be induced by (s, ¢)' corresponding to Ric, Hess,
Po, V, | *| respectively. Since o= 1 and (3.5.6) hold outside a compact set
Mo, we have

Ric' —Hess" = Ric —Hessy > —K outside Mo-
Moreover, there exists a constant ¢ > 0 such that

IPo - Po\ < c.

Therefore, by Lemma 3.5.7 below for the convex manifold (M, (s, )", the
conditions in Theorem 3.5.5(1) imply the log-Sobolev inequality

P(f2log/2) < Cx/xdV'/I'2), [ e Cla(M),p(f2) =1
for some constant C\ > 0. Since
iv'/1'2=72|v/|2< c2|v/|2

holds for some constant C2 > 0, we derive the desired log-Sobolev inequality
for some constant C > 0. O

Lemma 3.5.6. Let dM be convex and
Ric2 > K outside a compact set Mq (3.5.19)

holds for some constant K. Then there exists a constant ¢ > 0 such that

ac(t + p{x,y)) aKp(x, y)2 (3.5.15)
a—1 + 2(a-1)(e2At- 1)

holds for any bounded positive measurable function f on M,t > 0,a > 1

andx,y 6 M.

< (Ptfa(y)) exp

Proof. We will use the argument of coupling by change of measure pro-
posed in Theorem 1.3.7. Let us fix two points x oy in M and to > 0. For
a positive function £ £ C1([0,00)), let (Xt,Yt) be the coupling by parallel
displacement in Theorem 3.2.5(1) for

U (t,Xt,Yt) = -StVp(Xt,-)(Yt).
Then

dP{XUYt) < 1Z{XUYt)dt - &dt, t<r, (3.5.16)
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where r := inf{i > 0 : Xt = Yt} is the coupling time. Let 7 be the minimal
geodesic linking Xt and Yt, by (3.2.14) we have
rp(XtXt)

Iz(XuVYt) < - I Ric*(7,7)ds. (3.5.17)
Since (3.5.14) holds outside a compact set Mo and there exists a constant
c\ > 0 such that Ricz > —€i on the compact set Mo, (3.5.17) implies

Iz(Xt,Yt)<~Kp(Xt,Yt)+c2
for some constant @ > 0. Substituting this into (3.5.16) we arrive at
dp(Xt,Yt) < {c2- Kp(Xt,Yt)- £}dt, t<re.

Equivalently,

d(eKtp{Xt,Yt)) < (c2- 6)eKtdt, t<r. (3.5.18)
Taking
2Kp(x, y)eKt
6 =C2+ eto \
we have

J[o (c2- 6)eKtdt = -p(x,y).

From this and (3.5.18) it is easy to see that T<t0 and hence, Xt) = Yto.
Now, due to the Girsanov theorem (¥)} is generated by L under the
weighted probability i?P, where

R = exp JNZtY p{Xu .){Yt),PXuYtutdBt) - \ jTtfdi .

Then by Theorem 1.3.7,
(PtI{y)T < (AoM*))(EA*“/(-1)"- 1- (3.5.19)
Since T< to and

s k> Ns ;= exp r("p(Xt,-)(Yt),PXuYtutdBt)
V2 [a—1) Jo

" [ &t

“4(a- 1)2Jo
is a martingale, we have ENT = 1 and hence,

ER“/(a_i) = E yNrexp dt

[4(a- 1N)2Jo
< exp de

Ll4c -w o »
a 4C@p{x,y)(eKto - 1) 2Kp(x,y)
exp 4(af-|i9r(01*d'| O2Kto A Q2Kto

O

Combining this with (3.5.19) we complete the proof.
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Lemma 3.5.7. Let dM be convex and Ric® > K hold for some K 6 K
outside a compact set. Then p(eXp°) < oo for some A> —y implies the
log-Sobolev inequality (3.5.7) for some constant C > 0.

Proof. Since dM is convex, by the Bakry-Emery criterion, the log-
Sobolev inequality holds provided K > 0. So, we only consider the case
that K < 0. Let 6= A+ y > 0. Since

lim lim ax )
t-noo a-yoo 2(a —I)(e2Kt —1) ~2'
we may take t,a > 1 and a constant c(t,a) > O such that

. aK(l+r)2 . 6-K 2

ral Pt U D+z?a—T)(e2Kt o< cfta)y — 1 oL
holds. Therefore, for any bounded measurable / with p{\fia) = 1, by the
Harnack inequality (3.5.15) and noting that p is a Pr invariant probability
measure, we obtain

1= | Ptfafy)v(dy)

act ca aKp(x,y)2
> Ptha() f o] POCY) o e ) h(dy)
> \Ptf\a(x)p(B(0, 1))exp - -+ S-K Po{xf

where B(0, 1) = {x £ M : p(0,x) < 1} is the unit geodesic ball at o. Since
A= 2-K this implies that

U\P,fM2S-K)ns-K)\ < exp[c(t,a)(26 - K)/(6 - K)] v

<oo, p{Vl)=1-
Therefore, ||Pt||L“(")->"\>X) < 00 holds for /3 := a(25—K)/(6—K) >a > 1,
so that the desired log-Sobolev inequality holds as explained in the proof
of Theorem 2.4.2. O

Lemma 3.5.8. Assume that dM is convex outside a compact set. Then
there exists pe V in (3.0.2) such that = 1 holds outside a compact set.

Proof. To construct such a dy let pp be the Riemannian distance function
to dM. Let R > 1 be such that dM is convex outside B(o,R). Since pg
is smooth in a neighborhood of dM, there exists ro > 0 such that pg is
smooth on the compact domain

Mi :=B{o,R + 1) M{pg <r0}.
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Now, let h G C°°([0,00)) be increasing such that h'(0) > S,h(0) = 1 and
h1[r0,00) is constant. Then ¢\ :=ho pd is smooth on M\ and

N\og<j>i>8 on M\INgM. (3.5.20)

To extend g\ to a global smooth function ¢ satisfying our conditions,
we take a cut-off function g G C°°(dM) such that 0 < ¥< 1, g —1
on B(o,R) MdM and g = 0 on B(o,R + I)c/JTdM. It is easy to extend
g to a smooth function g on M such that 0 < g < 1 and the Neumann
boundary condition Ng\am = 0 holds. This can be done by using the polar
coordinates around dM. Noting that there exists rg G (0,1) such that the
exponential map

(B{o,R +3) MdM) x [0,ri] 9 (B,r) exp[rlVe] GM
is smooth and one-to-one, we define
NexpfrIVl]) = g(0)h\{r), Be {aM) N1B(o,R +3),re [0O,n]

for some function nonnegative hi G C°°([0, 00); [0,1]) with hi|ori/2] = 1
and hil|[ri 00) = 0. Obviously, g is smooth and well-defined on B(0,R + 2)
with support contained by B{o, R+1). Then g extends to a smooth function
on M by letting g = 0 on M\ B(o, R + 1). Now, let

o= i+ 1-g.
We have b € C°°{M),cb > 1,d\8(o,H+1)c — 1- Then infp= d\am =  so
that VO|dM || N. Moreover, since Ng = 0 and a\s(o,H) = 1> from (3.5.20)
we obtain

_ gAdfti
N logh= >S>-I.
9P Apr+1-4 O

3.5.4 Log-Sobolev inequality on non-convex manifolds

When dM is empty, a perturbation argument is proposed in §2.5.4 to es-
tablish the super Poincare inequality. In this subsection, we aim to extend
this argument to establish the log-Sobolev inequality on manifolds with
boundary. Note that according to its proof, Theorem 2.5.9 works also for
the present setting, so that it applies to the situation of Proposition 3.5.10
as it ensures the desired Nash inequality for p = n according to [Bakry et al
(1995)]. So, below we only consider the log-Sobolev inequality rather than
the more general super Poincare inequality.

According to the perturbation argument in 82.5.4, the key point is to
establish a Nash inequality for a weighted volume measure gw{dx) :=
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ewdx, where W £ C2(M). Since the Nash inequality is equivalent to
a heat kernel upper bounds (see [Davies (1989)]), we shall make use of
the Harnack inequality for the corresponding Neumann semigroup and the
following volume comparison theorem, which is well known in geometry
analysis when W = 0 and dM = 0.

Let L\y —A 4-VW and

IT (/,f) = \bw\vfR2- <VW ,Vv/), fe c°°(M).

Proposition 3.5.9. Let dM be convex and Lw = A + VW satisfy the
curvature dimension condition

TY (f,£)>-K\VA\2+ 2(Lwf)2, / € C°°(M) (35.21)

for some constants K > 0,n > 1. Then piv(dx) := ew”d x satisfies

Hw{B(x,ar))

hw{B(x,r)) y{n- DK @- Nr, r>0x€M,a>1.

Proof. Let px be the Riemannian distance function to point x. By the
Laplacian comparison theorem (see [Qian, Z (1998)]), (3.5.21) implies that
LwPx < V(n ~ 1)}K%°th (35.22)
holds outside cut(a;). Let
(8,r) exp[rq]

be the polar coordinates at x, where 9 e ={XeTXM : Al =1}
and r G [0,rg] for

re :=inf{r > 0: exp[r0] Gcut(a;) UdM}.
Since M is convex and connected, we have (cf. Proposition 2.1.5 in [Wang
(2005a)])
M = {exp[r0] : 9 £ &f 1,r £ [O,re]}.

Due to this and (3.5.22) we complete the proof by repeating the argument
in the proof of Lemma 2.2 in [Gong and Wang (2001)]. O

By Proposition 3.5.9 and the Harnack inequality for the Neumann semi-
group generated by Lw on M, we obtain the following log-Sobolev
inequality for a weighted volume measure.
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Proposition 3.5.10. Let dM be convex and (3.5.21) hold. Let Wo be such
that |VW(q| < a for some constant o > 0 and
liminfexp[iyo-V (n-i )g p£] >0
Rj\a) pTM
Then the following log-Sobolev inequality holds for some ¢ > 0 and with
W =W + WO0:
hw(f2l0& 2) ~ 2 log{c("™w(lv/|2) + 1)}, nwif2)=1-
Proof. By Proposition 3.5.9 for a = (1 + p0(x))/r, we have

pw{B(x.r))

N Pw(B(x, 1+ Po(x)))rn V (n- K (Po(x) + 1)

r @+ n.m)" exp
> w(B(o, i))r"exp _ i (3.5.23)
4 +p060N V(n - DK (po() + 1)
J.n
= ‘Zi+P0{X)Yexpr A o(n_ 1)K (Po(x) + 133
for all r G[0,1],® GM. Next, by (3.5.21) and Theorem 3.3.2(3),
K . Y)2
(POWF(X))a < (prrui aKp(x,y) (3.5.24)

JexP [2{a- 1f1- e~2Kt)y
holds for a > I,t > 0,x,y GM and all bounded nonnegative measurable
functions /. Since [VWo| < c, we have

+PZ.{P?f)a=aP™s{{pWwf)a-1(VWOy P 2 f)}
a{a-1)PzZs{{Ps f)a-2\VPy f\2}

pwna FIVPHL - IVPiR
PWf
(Pf/)2

< .
This implies

02a
{PCET <{PCN &% | 4(a- 1) a>lt>o.

Similarly, this inequality remains true by exchanging the positions of PtV
and P C mCombining this fact with (3.5.24) and taking a = 22/<3 we obtain
Pf/)2® < {P?Ma (x)ex

(PF)2@® < { (2) P o - 1)
- aZKp(le)Z
<(PCr (Maexp p. 1) 202 —1)1 —e~2K9)l
a2Kkp(x,yf . 02a

< (P f/2(y))exp 2(a —1)-t+ 2(a —y1 —e~2Kt)  4(a- 1)
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Thus, for any / with p* (f2) = 1 we have

<\ ox a2a+ 2)
(Prmy =} 5™ 4@—
a2Kp{x,y)2
2(a —1)(1 - e~ 2k)l YW(dY)
a2(a + 2)
ex 3.5.25
4 1B,y P 4(a —1) ( )
azKt

2{a —1)(1 —e~2Kt)\ PW"Y)
<p[ci(f + 1)]
Hw{B{x,\ft)y

for some constant ¢\ > 0. By (3.5.23) and the conditions on Wo, we have
Pw(B{x, Vt)) >c2tn/2, xeM ,te{0,1]
for some constant @ > 0. It follows from (3.5.25) that
(P™f)2<c3r n'2, te (o]

holds for some ¢3 > 0 and all / with p~(/2) = 1 This is equivalent to
the Sobolev inequality of dimension n for (see [Davies (1989)]) which,
according to [Bakry et al (1995)], is also equivalent to the desired log-
Sobolev inequality. O

t>0,xe M

Combining Proposition 3.5.10 with a conformal change of metric, we
are able to prove a log-Sobolev inequality for non-convex M.

Proposition 3.5.11. Assume that | is bounded, Ric > —K for some K >
0, the sectional curvature of M is bounded above, and pg is smooth on
{Po < M for some ro > 0. Then for any Wo with ||VITo|joo < and
liminfp~oo p“dexp[Wo] > 0, the log-Sobolev inequality

m,(/2bg/2) < MMog{c(pwo(|V/|]2) + 1)}, PwouU2)=1
holds for some ¢ > 0.

Proof. Letl > < Wheno =0 (i.e. dM is convex), let h = 1; otherwise,
according to the proof of Theorem 3.2.9, there exists an increasing function
h e Cf°([0,00)) such that h(0) = I,h'(0) = —a and h|[fQQD is constant.
Then h:=hopa£ c°°(m) with 1< o< R for some constant R > 0 and
dM is convex under the metric (-, *)' := ¢~2(-, *).
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Let v be the volume measure induced by (ms) and let vw0 = ew’v.
Applying Proposition 3.5.10 to (M, (-, ®") and W —O0, for which (3.5.21)
holds with n = d, we obtain

iW /2bg/2) < ~log {c,(i'wo(|V,/|/12) + 1)}, wvwO(f2)=1
for some constant ¢' > 0. Since ¢ptakes values in [1, R] so that

[V'If2< R2IV/|2, 1< < Rd,

du\YO
we obtain the desired inequality by a standard perturbation argument. O

Having the above preparations, we are able to prove the following main
result of this subsection.

Theorem 3.5.12. Assume that | and Ric are bounded, the sectional cur-
vature of M is bounded above, and pg is smooth on {pg < ro} for some
ro > 0. If (TV,VR) is bounded below, e,e' > 0 such that e > e"\J(n —1)K,
and the function

-ilVR|Z-£AV-e'V +ep0

is bounded above on M, then the log-Sobolev inequality (3.5.7) holds for
some C > 0. If furthermore

~r\\WV\2~\rAV -V +p0<g>{r), r>0 (3.5.26)
holds for some positive function < on (0, oo), then the super log-Sobolev
inequality

p{f2logf2) <r/i(|V/]|2) +c + c(p(r) + ~ log(c(r-1 + 1)) (3.5.27)
holds for all r > 0, p(f2) = 1.

Proof. Let Ric> —K and | > o for some constants K > 0,0 < 0. Then
(3.5.21) holds for W = 0. Let j > 0 be a constant such that (N,W ) > —77.
Let h be in the proof of Proposition 3.5.11 such that Adis bounded. Let
K > eo:=ele' (> \/{n —1)K) be such that —ok —so > g and let Wo =
eoy+P2- k. Then ||VWOJjoo < 00 and

(VV(V - Wo)) >-0k-r]-eo> 0. (3.5.28)

By Proposition 3.5.11 we have

MAO(/21°g/2) A W (|V /]2) + ~Mog(ci(l + r-1)), r >0, Ma0(/2) = 1
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for some constant Q\ > 0. For / with p(/2) = 1, we apply this inequality
to fe (v~w°)/2 to deduce forr > 0

M/2log/2) < rli(IVIID)+J fP V(R - WOJ2+ WO- v\)
(3.5.29)
+ 28 ((VI2ZV(R- M)+ - log”r"1+ 1)).

By (3.5.28) and the Green formula, we have (recall that N is the unit inward
vector of dM)

M (V/2, V(R - Wo))) = - L faL(v - Woydp- [ f2(N, V(R - W0))dpa

<~ Af2{AV + W R- AWO- (VV, Who)}).

Since IIMAblloo < 00 and by the Laplacian comparison theorem AWo is
bounded above, combining this with (3.5.29) we obtain

M /21°g/2) < rIx(|V/|2) + Mog(ci(r_1 + 1))
: ! \r (3.5.30)
+rK /2{-4IV~2- 2AN+ Tp°+7 -7})" I'>0
for some @ > 0. Taking r = 1/e' and noting that £0 = £/¢e' = er, we
conclude that

-jiIVV|= - IAV + -h <-ijw ju+ea, - eV-1akK

According to our condition this is bounded above. Therefore, (3.5.30) im-
plies the defective log-Sobolev inequality

h(/2log/ 2) < CIM(V/])2+ C2> M/2)= 1

for some constants C\,C2 > 0, and hence (3.5.7) holds for some C > 0
as M is connected. Finally, (3.5.27) follows immediately from (3.5.30) and
(3.5.26). O

3.6 Modified curvature tensors and applications

Let Pt be the semigroup of the reflecting diffusion process generated by
L = 4+ Z for some C'l-smooth vector field Z on M. In the previous
sections the curvature tensor Ricz and the second fundamental form | have
been used to investigate the reflecting diffusion processes. As shown in the
last section, these two tensors play essentially different roles in the study.
Moreover, from the derivative formula in e.g. Theorem 3.2.9 we see that the
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second fundamental form appears in the study as integrals w.r.t. the local
time of the process on the boundary. This is because of the fact that the
geometry of the boundary affects the process only when the process hits the
boundary. To avoid using the local time which is in general less explicit, we
aim to derive explicit results for the reflecting diffusion processes by using
modified curvature tensors consisting of both Ric® and information from
the boundary.

3.6.1 Equivalent semigroup inequalities for the modified
curvature lower bound

For any strictly positive ¢o G C2(M), we introduce a family of modified
curvature tensors

Ri4p:=Ric- VZ- p>0.

To ensure that these tensors contain also information from the boundary,
the function cwill be taken from the class T>defined in (3.0.2). Note that
for a vector X and a function / we write Xf = (X, V/), and conditions
on N and | are automatically restricted to dM and TdM. According to
the proof of Theorem 3.2.9, if (A3.2.1) holds then V ¢ 0. We also remark
that the condition inf o= 1 in the definition of class T>is not essential but
for convenience, since our main result (see Theorem 3.6.1 below) do not
change if one replaces by ctp for a constant ¢ > 0.
Let X f be the reflecting diffusion process generated by

bgp:=L—2Vlogh
Since Xt is non-explosive, so is X f provided V log this bounded.

Theorem 3.6.1. Let @£V in (3.0.2) such that (A3.2.1) holds. Then for
any K GCb(M), the following statements are equivalent to each other:

(1) Riel'l > K;
(2) For any f GCLUM),
A (X)\XPJIx)\
< BEXY (V) {Xt)e~" Jo(“I'lv log*(*.), dB.>-/0(*+|v log*|2)(x,)ds 1
holds for t> 0 and x G M;
(3) Forany f GCI(M),x GM andt > 0,

IVPtf(x)l < o "E x{ «>V/1)(Xf)e" Jo K(xf)da| .
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Proof. According to Proposition 3.6.2 below with Z = A[2V logty (2)
and (3) are equivalent. Moreover, (3) implying (1) follows from Proposition
3.6.3 below. Therefore, it remains to prove that (1) implies (2). Let p€ V
such that (1) holds. Since (1) implies Ric* > K + dbt~r while ¢ € V
ensures | > —N logdy according to Theorem 3.2.9 we have

[VPt/(a;)] < E3||V /|(X t)e_ " (K+ L1 “1)Ne)ds+JdiViog ~ ) db|. (3.6.1)
On the other hand, by the Ito formula, we have
dlog h(X3) = (1 : 1"10&DH(X3) "B a)
+ L log h(X3)63 + N log ¢{X,)ala.
Let m=inf{i > 0:p(x,Xt) >n}, n> 1 Then
J*AT"N log p(X3)d3= log &> » - - V2 ‘Aln(n;1X\0oé h(X3),<1B3)
rt/\Tn

/ Tlog0(As)ds.
Jo

Combining this with (3.6.1) and noting that
hbg-1+ bloé = |VIog0|2,
we obtain
[VPt/(*)| < "E*{(4>|VP(t_r,)+/|)(AtAr,)

x e-V2/dAr'(tx71VI91og0(Xs),dB3)-/ dAT"(A'+|VIogO | : (X s)dS]|

Since K, [Vlog(/>| are bounded and due to Theorem 3.29 (2) |VP/ lis
bounded on [0,f] x M, by the dominated convergence theorem we complete
the proof by letting n -¥ 00. O

Proposition 3.6.2. Let Z be a bounded C 1-smooth vector field on M, and
let Yt be the reflecting diffusion process generated by L + y/2 Z starting at
X. Then for any bound measurable function F o/X[oy] := {As}sg[of],

Proof. Let
R=-exp j\u~Iz{Xa), dBs) - \Z2\2(X3)ds .
By the Girsanov theorem, under the probability measure PdP the process

B, :=B3 f(u-1z{Xr),dBr), s€[0/f]
Jo
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is a d-dimensional Brownian motion. Obviously, the equation (3.0.1) can
be reformulated as

dXs =y/l2u, 0dBs + (Z +\f2Z){Xs)ds + N (Xs)dls.

Therefore, under the new probability measure, X[04 is the reflecting diffu-
sion process generated by L +\/2 Z. Hence,

E*{RF(X[0t)} = E*F(y[Ot]). n
Proposition 3.6.3. For any strictly positive function ¢ G C2(M), the
gradient inequality in Theorem 3.6.1(3) implies Ric~*1 > K . If there exists

ro > 0 such that on {pg < ro} the distance function pg to the boundary is
smooth with bounded Lpg, then Theorem 3.6.1(3) also implies | > —Nlogd.

Proof, (a) Letx GM \ dM and X GTXM with |[X| = 1, we aim to
prove Rich X ,X) > K from Theorem 3.6.1(3). Let / € Cq’(M) with
supp/ C M \ dM be such that Xf(x) = X and Hess/(x) = 0. Lete > 0
such that |V/| > \ on B(x,e), the geodesic ball at x with radius e. Let
X f be the reflecting diffusion process generated by  with X$ = x, and
let

(e —inf{t> 0:p(Xfx) >e}
By Lemma 3.1.1,
Plcre <t)< e _“2/t, t€ (0,1]

holds for some constant ¢ > 0. Since Is = 0 for s < oe, this and [V/|(a;) = 1
imply that

Ex{(0]V f\)2(Xf)e~2f° )asj
=E*{M Vf\)\xta)e-2f r “K(xt)*s} + 0(t) (3.6.2)
= q2{x) + {L*(4>[V/])2- 2Kh2}(x) + o(t),

where o(t) stands for a f-dependent quantity such that o(t)ft —=0ast —0.

On the other hand, since supp/ C M \ dM so that Nf = 0, we have

Ptf = f+ / PsLfds.

This and |V/(a:)| = |X| = 1 imply that
VPtf(x)\2= |V/ + t(XLF)\2(x) + o(i)
= 1+ 2(VL/, VE)(x)t + off).
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Combining this with (3.6.2) and the gradient inequality in Theorem
3.6.1(3), we arrive at

LYUNTVI2
Lty @) - 2(VL/, V) (x) > 2K(x). (3.6.3)
Noting that Hess/(k) = 0 and |V/(x)| = 1 imply

bP[P™ \ x) = L|V/|2(X) - 2(dhbbdh~1)(x),
combining (3.6.3) with Theorem 1.1.4, we obtain

W40xX,X) = Wany/, vih(x) > K(x).

(b) Let x € dM and X € TxdM with |[X| = 1 Let/ € C£°(M) be such

that TV/ = 0 and V/(x) = X. We have

Ptf = f + 5 PsLfds.
0

Consequently, for small t,

[VPt/(x)|]2= |[VI(X)|]2+ 0 ~ 2) - 1+ 0o(t"2). (3.6.4)
On the other hand, according to Lemma 3.1.2, and Proposition 4.1 in [Wang
(20118)],

E tfl=" +o(IL2),

where if is the local time of X f on dM and cf\ := inf{s > 0 : p(x, Xf) > 1}.
Combining this with Lemma 3.1.1 and noting that since |V/(x)| = 1 and

g Va2V /12)P 4 ) = Tu2lV /12)(x),

we obtain
ExX{(D\Vf\)(Xf)e-fo*(xt)*sy = Ex{flv/|) 2(xfAffl) + o(tl/2)
RACTI
= (@2|V/]|2)(x) + E*J/o bd(d2\Xf\2) (Xf)ds

ptAcn
+ EXJ X(p2\XF\2) (XF)dI£
0

= @2{x) + ;\/Z\LT\,(<">2|V/|2)(X) + 0o(t1/2).
Combining this with (3.6.4) and the gradient inequality in Theorem
3.6.1(3), we conclude that
™02V /|2)(x) > 0.
This implies 1(X, X) > —Vlogd{x), since X = V/(x) and TV|V/|2 =
21(V/,VI) due to (3.2.7). O
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3.6.2 Applications of Theorem 3.6.1

In this subsection, we aim to derive explicit gradient/Poincare/Harnack
type inequalities for Pt by using Theorem 3.6.1. To this end, we first present
the following lemma, where the proof of (3.6.5) is standard according to
Bakry and Ledoux [Bakry (1997); Ledoux (2000)] (see also the proofs of
(3) and (4) in Theorem 2.3.1), while that of (3.6.6) is essentially due to
[Rockner and Wang (2010)].

Lemma 3.6.4. If [VPt/|2 < £tP(]V/]2 holds for some strictly positive
£ € C([0,00)) and allt> 0 andf £ CI(M), thenfor allt >0,/ € (M),

2IVP(/12 f+ < Ptf2- (Ptf)2< 2(Pt|V/|2) t E£sde, (3.6.5)
JO ss Jo
and for any measurable function f with f > 1,
Pt log f(y) < log Ptf(x) + , t> 0. (3.6.6)
4/o £« ds

Proof. It suffices to prove for / £ Cjv(P) such that f > 1. For any e > 0,
let 7 : [0,1] -+ M be the minimal curve such that 7(0) = »x7(1) = y and
X < p(x,y) + ulet

h(s) - Jor r , e [ot].
fitridr’

By the Kolmogorov equations (Theorem 3.1.3), we have

N (P slogPt_s/)(7 o h(s))

< -P.|V logPf_s/|2(7 o h(s)) + (e + p(x, ¥))h(s)\VPslogPt_s/|(7 o h(s))

< {-Ps|V logPt_s/|2+ (e + P(x, y))h(s)\/EsPs|V log Pt_s/|2}(7 oh(s))
\ y)%wh(s)2=" f e " ), s£[0,t]-

) 4(e + POaY)%A(s) des(/0fr 1d))2 S£[0.4]

Integrating over [0,t] and letting e | 0, we obtain (3.6.6).
Next, noting that
'<2£t_sPt|V/|2
- P s(Pt_s/)2= 2Ps|VPt_s/|2 -SPLIVI2, e (01),
>21;f1\VPtfl 2,
we prove (3.6.5). O

Corollary 3.6.5. Let 0 £ T>such that (A3.2.1) and RicN2 > K”*'2 hold
for some constant K”A'2. Then:
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(1) 02|VPt/|2< e- 2* a@Pt(®|V/1)2 holds for any f GCLIM) andt > Q.
(2) For any measurable function / > 1, the log-Hamack inequality

Alog/bl < logPtf(x) + t>0,x,y&M

holds.

(3) Ptf2< (Pt/)2+ M * " aK*at)Pt|V/|2 holds for any f GC8(M) and
f > 0. Consequently, if Pt has an invariant probability measure p and
Kd'2 > 0, then the Poincare inequality

M/2)<M 7)2+ AJEM [V /]2), feCI(M)

holds.
@) Ptf2> (Pt/)2+ 1j~ ~/ilVPt/12 holds for any f GCE(M) and t > 0.

Proof. Noting that when Pt has an invariant probability measure p then
p(dx) —ev({)dT holds for some V G C(M) (see e.g. [Bogachev, Rockner
and Wang (2001)]) such that the weak Poincare inequality holds (see Theo-
rem 3.1 in [Rockner and Wang (2001)]), the second assertion in (3) follows
from the first by letting t —00. Thus, because of Lemma 3.6.4 and ¢ > 1,
it suffices to prove the first assertion. Obviously, Ric~2 > Kdi2 implies
that Ricr1> K Kd2 Vlog”|2. Let

Rt=exp -V2 [\n71Y1080(X8),688) - [ [VIog"(Xs)l2iS
By Theorem 3.6.1 and > 1, we obtain
(MVPH])2(x) < (E"{pt(V/I*)(Xt)e-/o~)dSjj2
< {Pt((/>]V/)2(X)}EI (p 2¢-2/0

= {Pt(0|V/)2(x)}e-2 '2
x Exe-2ff2 A (1710Bd(X3),6Ba)-4 /0 |V log 4(6)\Xis

= e-20 2Pt(0|V/])2(X).

Next, we have the following results on the log-Sobolev and HWI inequal-
ities which extend the corresponding ones presented in §2.4 for manifolds
without boundary. In particular, if dM is convex we may take ¢ = 1 so
that Corollary 3.6.6(1) goes back to the log-Sobolev inequality in Theorem
2.4.1(1) and Corollary 3.6.6(2) reduces to the HWI inequality in Theorem
2.4.1(3).
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Corollary 3.6.6. Let Z —S7V for some V 6 C2(M) such that p(dx) :=
evrdx is a probability measure. Let ¢ ¢ V such that (A3.2.1) and
Ric~v2 > K di2 hold for some constant K ¢32.

(1) I1f K*'2> 0 then

M /21°g/2) < M(IV/]2), / € CI(M),p(f2) = 1

(2 1fKdi2< 0 then

nifiogf2) <2MU VrfNWiwZU2,») - M \ K*2w2(f2»,p)2

holds for any f ¢ C\{M) with p(f2) = 1
(3) Letpt(x,y) be the heat kernel of Pt w.r.t. p. Then

\\d\1loKdh, 2P (x,y)2"

Pt{x,y) > exp 2(&*5*- 1)

and

\PRCKd2p{x,y)2
g Pt D l0g oy oy pA2) < 2(e02|<4(?*2«|!D EX &

hold for all t > 0 and x,y ¢ M.

To prove Corollary 3.6.6, we present a log-Sobolev inequality which
generalizes the corresponding known one on manifolds without boundary
(see Theorem 2.3.1(3)).

Lemma 3.6.7. Let pG V such that Ric:¥2 > K ¢ holds for some constant
Kdi2. Let Pf be the semigroup of the reflecting diffusion process generated
by Pd:=L —4V logd Then

Pt{f2\ogf2)< (P tf 2\ogPtf 2
+1W 1 Jre - 28 2t-s)PsPt-JV /|2ds (3'6J)
0
holds for allt > 0 and f G CI(M).

Proof. It suffices to prove for / G Cn (L) with inff2 > 0. Let Rt be
in the proof of Corollary 3.6.5. Since Ric2 > K32 implies that Ric¥1 >
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K := K"2+ |Vlog0|2, by Theorem 3.6.1 and > 1 we have
[VPt/ 2(x)|2
< (El{pt(<AV/2))(Xt)e-/o™.)"}j2
< m\lo(Ptf2H)Ex{R2tV\2(Xt)e-2fo * (* s}
=4 M (P tf2(x))Ex{\\7f\2(Xt)
X 2\/2 (ujlVlogd(x3),dBs)—2/q(|V log0(Xs)|2+ K(Xs))ds”
=4 M (P tf 2(x))e-2K*2AE*{Rt\Vf\2(X1)},

where
Rt .= e-2v"/qgK*“1VI10og0(X3),dBs>-4/da |VIog4>(X3)|2ds

Combining this with Proposition 3.6.2 for Z = —2\/2 V log ch we obtain
[VPt/ 22 < 4||</»||\Pt/ 2)e-2 "'2P [V /|2, t > 0.
Therefore, by the Kolmogorov equations (Theorem 3.1.3),

AP s{(Pt_s/2)logPt_,/2} =P/l ~ ~ P 2

<4||<A|["e-20 2At- s)PsPt-s|V/|2.
Then the proof is completed by integrating over [0,i]. O

Proof.  [Proof of Corollary 3.6.6] Let / 6 ClI(M) such that p(/2) = 1
and /i(JV/|2) > 0. Since p is Pt-invariant while d~4dp is Pt minvariant,
integrating (3.6.7) w.r.t. p gives

M/210S/ 2)
< p((Pr/ 2) log Pt/ 2) +411™M1™ 1* e 2A*2p(Pf|V /|2)ds
Jo

< M((F./2)logP /2) + 4][OJR.jf" .- “ w Iv /| 2ds (68

<M (P/2).0gP/2)+ « N fc ™ --% (|V/]2.

If iC~2 > 0, then letting £-doowe prove Corollary 3.6.6(1).
The proof of the second assertion can be done as in the proof of Theorem
2.4.1(3). Applying Corollary 3.6.5(2) for Ptf 2 in place of /, we find

Pt logPt/ 2(y) < logP2t/ 2(x) + T x've >0
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Integrating w.r.t. the optimal coupling of f 2p and p. which reaches the inf
in the definition of W% a n d noting that Pt is symmetric in L2(p),
we obtain
il4>1" 2w |(/W )2

2(e2 - 1)

Combining this with the first inequality in (3.6.8), we arrive at

M(Pt/ 2)logPt/ 2)<

M/ log/2) < Was\ooWNeh Yrt + M 2>.wz(f2ff,ny
n
(36.9)
\DBCKD s
where
21 _e-20'2) (>0
= >
re: Kox .

If K2 < 0, then {rt : t G[0,00]} = [0, 00]. So, there existst E [0, og] such
that

WS, ri
n MIoVIwWJIFY

Therefore, the desired HWI inequality follows from (3.6.9).
Finally, the third assertion follows from Corollary 3.6.5(2) according to
Proposition 1.4.4(2) and the proof of Theorem 2.4.4(2). O

3.7 Generalized maximum principle and Li-Yau’s Harnack
inequality

Let M be a d-dimensional connected complete Riemannian manifold and
L = A+Z for a C1-smooth vector field Z satisfying the following curvature-
dimension condition:

F2(/,1) := ALIV/|2-(V L1,V )
_ 3.7.0)
(iN2 pivy2, fECo°(M)

for some constants K > 0 and m > d. Note that, for convenience in the
sequel, in (3.7.1) we use —K rather than K to stand for the curvature lower
bound, and use m rather than n to stand for the dimension. When Z —0
and M is either without boundary or compact with a convex boundary
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dM, Li and Yau [Li and Yau (1986)] found the following famous gradient
estimate for the (Neumann) semigroup Pt generated by L:
T
\W\ogPtf\2-adtlogPtf< — +-A-—Ty f>0a>1 (3.7.2

for all positive / € Cb(M). We note that in [Li and Yau (1986)] the second
term in the right hand side of (3.7.2) is , but \/2 here can be replaced

by 4 according to a refined calculation, see e.g. [Davies (1989)].
As an application, (3.7.2) implies the following parabolic Harnack in-
equality for Pt:

t+s\dal2 - Kd
thx) < ( :S) et exp PG 462.3-51) ;. (73

forallt >0, x,y £ M, where a > 1and / £ Cb{M) is positive. From this
Harnack inequality one obtains Gaussian type heat kernel bounds for Pt,
see [Li and Yau (1986); Davies (1989)] for details.

The gradient estimate (3.7.2) has been extended and improved in several
papers. See e.g. [Bakry and Qian (2000)] for an improved version fora = 1
with Z ¢ 0 and dM = 0, and see [Wang, J. (1997)] for an extension to
a compact manifold with nonconvex boundary. The aim of this section is
to investigate the gradient and Harnack inequalities for Pt on noncompact
manifolds with (non-convex) boundary.

Recall that the key step of Li-Yau’s argument for the gradient estimate
(3.7.2) is to apply the maximum principle to the reference function

G{t,x) := £(|Vlog.Pt/|2- adtlogPtf)(x), te [0,T],;s € M.

When M is compact without boundary, the maximum principle says that
for any smooth function G on [0,T] x M with G(0, ) < 0 and supG > 0,
there exists a maximal point of G such that at this point one has VG =
0,dtG > 0 and AG < 0. When M is compact with a convex boundary,
the same assertion holds for the above specified function G as observed in
Proof of Theorem 1.1 in [Li and Yau (1986)]. In 1997, J. Wang [Wang, J.
(1997)] was able to extend this maximum principle on a compact manifold
with nonconvex boundary by taking

G(t,x) = logPtf\2- adt\ogPtf)(x), te [0,T],XEM

for a nice function ¢ compensating the concavity of the boundary.

As for a noncompact manifold without boundary, the gradient estimate
was established in [Li and Yau (1986)] by applying the maximal principle
to a sequence of functions with compact support which approximate the
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original function G. An alternative way is to apply directly the follow-
ing generalized maximum principle (see [Yau (1975a)]): for any bounded
smooth function G on [0, x M with G(0, ¢) < 0 and supG > 0, there
exists a sequence {(fn,a:r@}n>i C [0,T] x M such that

() 0< G(tn,xn)t supG as n f oo;
(i) LG(tn,-)(xn) < [VG(t,,-)(zn)| < £ and dtG(-,xn)(tn) > O for any
n>1.

To apply this generalized maximal principle for the gradient estimate,
one has to first confirm the boundedness of G(t, ¢ f(|V log Ptf\2 —
adtlogPtf) on [0,T) x M for T > 0.

Since the boundedness of this type of reference function is unknown
when M is honcompact with a nonconvex boundary, we shall establish a
generalized maximum principle on a class of noncompact manifolds with
boundary for not necessarily bounded functions. Applying this principle to
a careful choice of reference function G, we derive the Li-Yau type gradient
and Harnack inequalities for Neumann semigroups. To establish such a
maximum principle, we adopt a localization argument so that the classical
maximum principle can be applied. The main results of this section first
appeared in [Wang (2010a)].

3.7.1 A generalized maximum principle

Theorem 3.7.1. Assume that (3.7.1) and (A3.2.1) hold. Let T > 0 and
G be a smooth function on [0, T] x M such that NG\gm > 0,G(0,¢) < 0
and sup G > 0. Then for any e > 0 there exists a sequence {(tn,an)}n>i C
(0, T] x M such that (i) holds and for any n > 1,

Tnu A G(tn,xn)1+e M~ G(tn,X,,) 1+
LG(tn,-Hxn) — 5VGtn,, xn "

n n
and dtG(-,xn)(tn) > 0.

Proof. We first consider the convex case then pass to the nonconvex case
by using Theorem 1.2.5. Without loss of generality, we shall assume that
supG := suppT] G > 1 Otherwise, we may use IG to replace G for a
sufficiently large | > 0.
(@) The convex case. Let h 6 Gq’([0, oo)) be decreasing such that
1, ifr <1,
h(r) = <exp[-(3 - r)_1], ifr€ [2,3),
0, ifr >3
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Obviously, for any e > 0 we have (note that 0 <00 = 0 by convention)

sup {\he~Ih"\ + < Q0. (3.7.4)
[0,00)
Let W = sj\ + pi and take tpn = h(W/n), n > 1 Then
{fin= 1}t M asnf oo (3.7.5)

So, according to (3.7.9) and (3.7.4),

nh(W/n) n2h(W/n)
c

> 376
o (3.7.6)

[Vlog<h,,| <
holds for some constant ¢ > Oand all n > 1.
Let
Gn(t,x) = M(x)G(t,x), te [0,T],ze M.

Since Gn is continuous with compact support, there exists (tn,xn) G [0, T] x
M such that

Gn(tn,Xn)= [O@?%M Gn.

By (3.7.5) and supG > 1, we have limn-yooG(tn,xn) = supG > 1. By
renumbering from a sufficient large w, we may assume that Gn(tn,xn) > 1
and is increasing in n. In particular, (i) in the beginning of this section
holds and

) N~ —mi n>1, (3.7.7)
(Jx\tn-) Xn)

Moreover, since G,,(0, *) < 0, we have tn > 0 and
dtG(-,xn)(tn) >0, n>1I.

Thus, it remains to confirm

[VG(tn,-)(xn) | < cG(t"’ a;n)1+g>

LG(tn,-)(xn) < 8%ﬁn'rl]Xn}(+ , h>1 (338)
for some constant ¢ > 0. Indeed, by using a subsequence {(tmn,xmri)},,>]
for m> cto replace {(th,xn)}n>i, one may reduce (3.7.8) with some ¢ > 0
to that with c = 1.
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Since xn is the maximal point of G,,, we have VG,,(f,, -)(X,) —0
if xn e M\ dM. If xn G dM, we have NGn(tn,-)(xn) < 0. Since
NG(tn,-) > 0,G(tn,xn) > 0 and noting that Npo < O together with
h! < 0 implies Nipn > 0, we conclude that NGn(tn, ){xn) > 0. Hence,
NGn(tn,-)(xn) = 0. Moreover, since xn is the maximal point of Gn(tn,-)
on the closed manifold dM, we have UGn(tn,-)(xn) = 0 for all U € TdM.
Therefore, VGn(tn, -){xn) —O0 also holds for xn 6 dM. Combining this with
(3.7.6) and (3.7.7) we obtain

W&]ﬁn,_}/{-xn“ 2 9.@0ﬁﬂ2|\,</\n| < C_(_S_Q[]_’_)_(DQ_JZT_E

Thus, the first inequality in (3.7.8) holds.
Finally, by (3.7.6) one has

ifnLG + GLipn+ 2(VG, V*,) > pnLG - 0 G- ’\’\n|V G|=0o

holds on {Gn > 0} \ cut(o), by Lemma 3.7.2 below we obtain at point
(tn,xn) that
lG< -G+ g
Men ntPn
Combining this with (3.7.7) and the first inequality in (3.7.8) we get

LG(tn,-)(xn) < hG 1+2e(tn, xn)

for some constant ¢ > 0 and all n > 1. Since e > 0 is arbitrary so that we
may use e/2 to replace £ (recall that G(tn,xn) > 1), we prove the second
inequality in (3.7.8).

(b) The non-convex case. Under (A3.2.1), there exists p GV in
(3.0.2) such that N\og\gm > <. By Theorem 1.2.5, the boundary dM is
convex under the new metric

and L = ¢~2(A" + Z') for some Glsmooth vector Z' such that Ric’Y is
bounded from below. Therefore, we are able to apply Lemma 3.7.2 below
toL':= '+ Z' on the convex Riemannian manifold (M, (-, ¢)") to conclude
the existence of the desired sequence {{tn,xn)}. O

Lemma 3.7.2. Assume that dM is convex and (3.7.1) holds. Let
PniGn,(tn,xn) be in the proof of Theorem 3.7.1. Then the reflecting L-
diffusion process is nonexplosive, and for any ® € Cb(M) such that

® < LGn —GLipn + pnLG + 2(V<"n, VG)
holds on {Gn > O} \ cut(o), we have ® (" k@ < 0for alln > 1
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Proof. Leto£ M be fixed and let pQbe the Riemannian distance to the
point 0. Recall that since dM is convex, for any x,y £ M there exists a
minimal geodesic in M of length p[Xx, y) which links x and y. see e.g. Propo-
sition 2.1.5 in [Wang (2005a)]. So, by (3.7.1) and a comparison theorem
(see [Qian, Z (1998)])
Lp0 < AK (m —1) coth \jK/(m —1)pQ

holds outside {0} Ucut(o). In the sequel we shall set Lpa 0 on cut(o)
such that this implies

L\J1+p2<Clon M (3.7.9)
for some constant ci > 0.

Next, let Xt be the reflecting L-diffusion process generated by L, and
ut be its horizontal lift on the frame bundle 0{M). By the Ito formula for
Po(Xt) established by Kendall [Kendall (1987)] for dM = 0 and noting that
NpO\dM < 0 when dM is nonempty but convex, we have

dpO(Xt) = v/i2 {XpO(Xt), utdBt) + LPo{Xt)dt - dA + dI't, (3.7.10)
where Bt is the d-dimensional Brownian motion, Lpa is taken to be zero
on {o} Ucut(o), It and It are two increasing processes such that \ increases
only when Xt = o while It increases only when Xt £ cut(oc) UdM (note
that It = 0 for d > 2). Combining this with (3.7.9) we obtain

dy/l+p@{Xt) <dMt+ LsI\+pl(Xt)dt <dMt + Cldt
for some martingale Mt- This implies immediately the nonexplosion of Xt.
Now, let us take Xo = xn. Since h! <0, it follows from (3.7.10) that
dpn(Xt) > V2 (Vpn(Xt),utdBt) + Lipn(Xt)dt, (3.7.11)
where we set Ltpn = 0 on cut(o) as above.

On the other hand, since NG(tn, ) > 0, applying the Ito formula to
G(tn,Xt) we obtain

dG(tn, Xt) > V2 (VG(tn,-)(Xt),utdBt) + LG(tn,-){Xt)dt.  (3.7.12)
Due to Gn(tn,xn) > 0, there exists r > 0 such that Gn > 0 on B(xn,r),
the geodesic ball in M centered at xn with radius r. Let

T=inf{t>0: Xt B(xn,nN}.
Then (3.7.11) and (3.7.12) imply

dG,,(tn,Xt) > dMt + LGn{tn, -){Xt)dt > dMt + ®(1n,Xt)dt, t<T

for some martingale Mt. Since Gn(tn.Xt) < Gn(tn,xn) and Xo = xn, this

implies that
rtAT

0 > EGn(tn, XtAT) - Gn{tn,xn) > EJ/ P(1,,, Xs)ds.
o

Therefore, the continuity of ® implies

1 rMar
»((n,x,,) =1lim g "E fXi,,X,)d»<0. m
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3.7.2 Li-Yau type gradient estimate and Hamack inequality

By using the generalized maximum principle, we are able to prove the
following Li-Yau type gradient estimate. When M is compact with a convex
boundary, the first assertion is well known due to [Li and Yau (1986)] by
using the classical maximum principle on compact manifolds, while when M
is compact with a non-convex boundary, a similar inequality to (3.7.13) was
proved in [Wang, J. (1997)] by using the “interior rolling A-ball” condition.

Theorem 3.7.3. Let M satisfy (A3.2.1) and L satisfy (3.7.1). Then the
reflecting L-diffusion process on M is nonexplosive and the corresponding
Neumann semigroup Pt satisfies the following assertions:

(1) 1fdM s convex then (3.7.2) holds for m in place of d.

(2) 1f dM is non-convex, then for any bounded ¢ G V, the gradient in-
equality

m(l+e)a2+ Tak{p,e,a) """

2(1-e)t ' 4(a —f<2|00)

holds for all positive f € Cb(M),a > ||02]l005*> 0,e € (0,1) and

|V log Ptf |2- adtlogPtf <

K(d,e,a) := + JIIVbgAIIL + A sup(~p~2beh?)

mo:2||VIog">2||g0(l +e)\
+ 8(0- |<ALO)Y1- )/
Proof. When dM is convex the nonexplosion of Xt is ensured by Lemma
3.7.2. If dM is non-convex, this can be confirmed by a time change of the
process. More precisely, let X{ be the reflecting diffusion process on M
generated by V := d2b, where L' = ' + Z' is given in (b) of the proof
of Theorem 3.7.1 on the convex manifold (M, (¢, *)). By Lemma 3.7.2 the
process X[ generated by L' is nonexplosive. Since Xt = for £-1 the
inverse of

1+2m = /V ds
Jo pQ

so that tlIMIN2 < £ 1(t) < t, the process Xt is nonexplosive as well.
Let / 6 CI(M) be strictly positive, and let u(t,x) = logPtf(x). For a
fixed number T > 0, we shall apply Theorem 3.7.1 to the reference function

G(t,x) = {<P2(a;)|Vu|2(t,x) —aut(t,x)}, t€[0,T],a; £ M.
Since b€ T> we have

NG = t{ (Xth2)\Xu\2+ -JAN \X P tf\2} >0
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holds on dM.
According to (1.14) in [Ledoux (2000)], (3.7.1) implies

LIVuR- 2(VLu, Vu) > -2K\Vu\2 + (3.7.14)

2|Vup
Multiplying this inequality by e and (3.7.1) by 2(1 —e) then combining
together, we obtain
Livup> 2(vLu, vu) - 2k 2 20 _;)(L”)Z + e|\2/||://3|2212
Moreover, it is easy to check that
Lu = ut —Vu|2, <StVu|2= 2(Vu, Vut).
Then we arrive at

(L —anyvup > 2¢- elyVu

2 IRy R

—2(Vu, V|Vu|2) —2A'|Vul|2.

(3.7.15)

On the other hand,
-a(L - dt)ut = 2a(Vu, Vut) = 2(Vu, M<2|Vu2 - t~1G))
= 22(Vu,V|Vul2) + 2[Vul]2(Vu,MB2) - 2*(V u, VG).
Combining this with (3.7.15) we obtain

(L-d)G=~j+ 472(L~"")IVuR+ [vupLoz2+ 2(V<£2,V|Vu|2)}
+ t2<)2{S7u, V|V U|2) + 2|V u|2(Vu, \&2) - 2t~1{S7u, VG)}
G 2(1- e 2  £02t|V|Vu 212
m UMVt uty + 2|Vup
- KE2A\Wu\2- 2|Vu| *|VG| - 2t|Vu|3\W2|
- 2ilVO02| «|V|Vu|2| + t|Vu|2Ld2.
Noting that
£02t|V|Vu 2
2Vup

2tV 02J2]Vu|

- 2tV<?r| mV[Vul|2| > -
V<ar] wV|Vu[2| o2

we get
(L- d)G > -~ + 20 £BHIVUR- UY2- 2KpU\b\2
- 2]VU| +|VG) - 2tVu[3M2| (3.7.16)
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We assume that supG > 0, otherwise the proof is done. Since G(0, ¢) =
0and NG\gm > 0, we can apply Theorem 3.7.1. Let {(fn,a:n)} be fixed in
Theorem 3.7.1 fore.g. e = \. So,

(L-dt)G(tn,xn) < «_ 2'\n Xn), |VG|(in,*n) < ° 3?An" xn)' (37.17)
From now on, the value of functions are taken at a fixed point (tn,xn), so
that t = tn in the sequel.

Let x = |Vu|2/G. We have

|Vu|2—u4=(\}(— #*aFI ))B = at +

Combining this with (3.7.16) and (3.7.17), we arrive at
2(1- 9@2(xt(a- dq2) + 1)2 2

mazt

G (3.7.18)
n t n

+ {2K2 + 2e~1p~2\Uch2\2 - L<2}xIG.
Since it is easy to see that
{Kt{a - q2) + 1)2> max {I, 4xt(a - d2), (2t(a - dP))3/2x3/2},
multiplying both sides of (3.7.18) by t(xt(a —d®) + 1)- 2G-2, we obtain

21 - e)p2 c't 1 2Kg2+ 2e_1|V log#2 £ —bth2
Ta2z - n(lNVG) +G + 4(q - )G 1
[Vliog d2\¢2 rt
(a - "2)3/2\/2GV
" c't 1 2Kd2+ 2E~1\VIogq\2d? - b2
~n(l AVG) + G + 4(a- 02)G 1

|V log>2]2ma2(l + e)02f  2(1 —e)edh2
A 16(a —42)3e(1 —e)G ma2(l + e)
for some constant ¢' > 0. Taking n —o00 and noting that ¢ > 1, we
conclude that B :=sup G satisfies
21 -e) 1/ 2K + 2e-1\7\o&J2\D + 8up(-th-2bdi2)
ma2(l +e) -6\ + 4(a - |42|joo)
YViog 21" ma2(l +e)T\
16(a - [|*2]j00)3e(l —e) ¥
Combining this with

B > G(T,x) =T{p20)\Um2(T,x) -aw (T,x)), xe M,
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we obtain

L2(x)\Vu\2(T,x) —aut(T,x)
N ma2(1+ e) /1 | XK+ 26 1||VIog02|ho +sup(-0-2L"2)
~ 2(1-e) le+" 4 (a- [1"2]]00)

Iv log ™~ AV0wq2(i + Q)

16 (a- []02]]oo)3e(l -e)

for all .x€ M. Then the proof is completed since T > 0 is arbitrary. O

By a standard argument due to Li and Yau [Li and Yau (1986)], the
gradient estimate (3.7.13) implies the following result on Harnack inequal-

ity.

Corollary 3.7.4. Let M satisfy (A3.2.1) and L satisfy (3.7.1), and let
GEV in (3.0.2). Then

(3.7.19)

for all positive f € Cb(M),t,e € (0,1),a > |/02Joo and X,y e M. In
particular, if dM is convex then (3.7.3) holds for m in place of d and all
a>1

Proof. Due to Theorem 3.7.3, the proof is standard according to [Li and
Yau (1986)]. For x,y € M, let 7 : [0,]] =M be the shortest curve in
M linking x and y such that [7| = p(x,y). Then, for any s,t > 0 and
/ € it follows from (3.7.13) that

EF log Pt+rsfilr) = sdulog Pufbr)\u=t+rs + <7r, V log Pt+rsfbr))

> é|V logPt+rs/|2(7r) -/9(z,y)|V logPt+rs/|(7r1)

This completes the proof by integrating w.r.t. dr over [0,1]. O
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3.8 Robin semigroup and applications

In this section we consider the Robin semigroup with application to the
HWI inequality on non-convex manifolds. The key point of the study is
to identify the semigroup by using the local time of the reflecting diffusion
process and the underlying function Q on the boundary. Throughout the
section we assume that Z = W forsome V £ C2(M), sothat L := A+ W
is symmetric w.r.t. p(dx) := ev/ dx.

For a non-negative measurable function Q on dM and a bounded mea-
surable function W on M, we will consider the operator Lw := L —W with
the Robin boundary condition

N, V/) = Qf ondM, (3.8.1)

where N is the inward pointing unit normal vector field of dM. Let Vgbe
the set of functions / £ Cq°(M) satisfying (3.8.1), by Theorem 1.1.6(4) we
have

£Qw{f,g)-= [ {(Vvf,vg) +Wfg}dg + [ Qfgdpa
IM JdM (382)

=~ ﬂ\/lfLng'U" f,geV
where pg is the area measure on dM induced by p. It is easy to see that
TOD {f € Cq(M) : supp/ CM \ dM},

which is dense in L2(p). So, (£q.w,Ag) is symmetric, bounded below,
densely defined on L2z(fj,). By (3.8.2), (Eq,w>A)) is closable and its clo-
sure (Eq,w,r>(EQw)) is associated to a symmetric Co-semigroup P"'W
on L2(ff). Let (Law ~{L q.w)) be its generator, which thus extends
(Lw,Cg°(M)) due to (3.8.2). When ff = Owe simply denote £q —£q.,w
and P® = P®'w . In this section we aim to study the Poincare inequality

g(f)<CE£Q(fJ), fev(£Q (3.8.3)
and estimate the first Robin eigenvalue
Ag = inf{E<?(//) : / € V{£Q),p{f2) = 1}.

Let P® be the associate (sub-)Markov semigroup, which is called the Robin
semigroup on M generated by L and boundary condition (3.8.1). We have

Pf/lh <e-Adj/|2, feb 2(n).
Recall that for any p > 1, || «||p stands for the Lp-norm w.r.t. p.
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Unlike for the study of the first Neumann and Dirichlet eigenvalues,
known results on the first Robin eigenvalue are very rare: there is no any
non-trivial explicit estimate of Aq for general Q. Nevertheless, it is easy to
see that Aq is bounded above by the first Dirichlet eigenvalue

AD = inf{M|V/]2) : p{f2) = 1,/ € Cg(M), f\dM = 0}.

To describe Aq, we shall first present a probability representation of the
Robin semigroup Pf* and characterize the domain V(Sq).

The remainder of this section consists of three parts. In the first part
we characterize the Robin semigroup Pp,w and the associated quadratic
form, in the second part we investigate the first eigenvalue Aq, and finally,
in the last part we use the Robin semigroup to establish the HWI inequality
on non-convex manifolds.

3.8.1 Characterization of P®@'W and'D(Eq)
Proposition 3.8.1. Let Q > 0. For any f GL2(p),

POQwWT(x)=Ex f{Xt)e-tiw{x°=s-tiQx *dhy xeM, (3.8.4)

where Xt is the L-reflecting diffusion process on M with local time It on
dM, and Ex is the expectation for the process starting at point x.

Proof. Let us denote
f(Xt)e~ 1 w(x"ds~fo Q(x.)di.
We aim to prove that P®'w = P" 'Ll holds on L2(p). To this end, we first

consider / € XV In this case, by (3.0.1), the Ito formula and the Robin
boundary condition,

df(Xt) = V2 (V/Ne), UtdBt) + Lf(Xt)dt + {fQ}(Xt)dlIt.
This implies
djf(Xt)e~ w{x°) d OUUMb}
= dMt+ {(Lwf(Xt))e~So mxs)ds-ff Q(x,,)dls]j di

for some martingale Mt. Therefore,

PQWf(x) = f{x) + J% PAwLwf(x)ds, xEM,t> Q. (3.8.5)
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Now, for any / 6 V(LgW), there exists {/,,},,>1 C VO such that Lwfn =
LQ,wfn -> Lg,w/ and /,, ->/ in L2{p). Since p®'w is bounded in L2{p),
(3.8.5) implies that

PWF =f+ I P?WLQwIds, f £V{Lg>w)
0

Thus,
ApQ,w f
*i 1 =P2’WLQWf, fEV(LQw), t>0 (3.8.6)

holds in L2{p). Since p@>wf g v{Lqw) for s > 0, combining this with
the fact that

d-P?’w/ T pQwf _ pQWT t
holds on V(LQ'W) uniformly in s £ [0,t], we arrive at

+tP£?2P?2'wf =0, s€[0f].

Therefore, PE'Wf = P®MT holds in L2{p) for / £ V{LgW)- Since
V(LQtw) is dense in L2(p), P®'W = P®'W holds in L2(p). O

Proposition 3.8.2. Let Q > 0 and Wqg 1 be the completion of Cq with
respect to the sq -norw, Where
Q= {/ €CI(M) : SQ(fJ) :=p(V/]|2) + pd(Qf2) < o0}.
Then V{£q) = Wq'L
Proof. It suffices to show that V(£q) D Cq.

(@) We first prove v{zq) O Cq(M). Since Cg°(M) is dense in Cq(M)
under the uniform norm up to the first-order derivatives, we only need to
consider / £ Cq’(M). Let xo £ M be fixed. For any / £ Cq’ (M) there
exists R > 0 such that

supp/ C B(xq,R) :={x £ M :p(x0,x) <Rj,

where p is the Riemannian distance on M, i.e. for any x,y € M, p(x,y) is
the length (induced by the Riemannian metric) of the shortest continuous
curve linking x and y. Let ro £ (0,1) such that the exponential map

< = {(gM) NB(x0,R+ 1)} x [0,r0] 3 (9,r) b exp0[rM] € K
is CM-smooth and invertible, where K is the image of 1. Let po be the
Riemannian distance to the boundary dM. It is easy to see that

K = {x £ M :there exists 9£ (aM) NB(xo,R + 1)
such that pq(x) = p{9,x) < ro}.
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Then the polar coordinate (0,r)(x) := pNI(x) for x £ K is smooth in x.
Let

/(0,r) = (I + Q(0)r)/(0,0).
We see that / £ C°°(K) and satisfies the Robin condition on (am) n K.
Since /(x) = 0 for p(xo,x) > R, we have /(x) = 0fora € K with p(xo, X) >
R + ro- Noting that ro < 1, by letting /(x) = 0 for x * K we extend / as
a function on M which is C°°-smooth on

aroM = {x € M :p9(x) < r0}

and satisfies the Robin condition on dM. Now, let h £ C°°(K) such that
0 < h < Lh|[0i] = 0 and /i[200) = 1. Then for any natural number

fn m={l - h(npa)}f + h(np9)f e Co°(M).
Moreover, since /,, = / in a neighborhood of dM, fn satisfies the Robin

boundary condition. Therefore, /,, £ V0. Obviously, fn —/ in L2(p) as
n —>00. It remains to observe that

digySaf{fn ~ f,fn~f)
= lim £a (2 —h(np)}(f —/), {L—n(npO)}(f /)
<a4(™ + vty Jigop(B(x0,R + 1) M{pe < 2/n}) = 0.
(b) Let / 6 cq. Forany n > 1 let gn G Cq’(M) such that 0 < gn <
1)9me(xo,n) = 1, 5n|g(x02m)c = 0 and |Vgn| <  Then fgn ->f in L2(p)

and £o((gn ~ 1)/, (5n —1)/) —» 0 as n —00. Combining this with (a), we
conclude that / £ TXSq). O

Finally, let Rw and R/3 be the Neumann and Dirichlet semigroups gen-
erated by L on M respectively. We have

P/7(x) = Exf(Xt), PDf(x)=E*{f(Xt)I{t<T}}, Xe M,f e Bb(M),
where r is the hitting time of Xt to the boundary dM. As a consequence

of Proposition 3.8.1, the following result says that P® interpolates the
Neumann and Dirichlet semigroups.

Corollary 3.8.3. For any non-negative measurable function Q on dM,
i PTQf(X) = PNf(X), xeM,feBb(M). (3.8.7)
IfQ >0, then
iim P[Qf(x) = PDf(x), x£M,fe Bb{M). (3.8.8)
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Proof. By the dominated convergence theorem, (3.8.7) follows from
(3.8.4) immediately. Next, by (3.8.4) we have
PLQf(x) = E* (f(Xt)e-r Qp¥)<is®
(3.8.9)
= PDf(x) + Ex(1{T<t]f(Xt)e-rfoQ(x,)dhy

Let 7x(d.s, d$) be the distribution of (r, XT) restricted on {r < oo} given
Xo = x. By the strong Markov property of the reflecting L-diffusion process
and the fact that r ¢ t a.s., we have

I*(l{T<t}f(Xt)e- r/0Q (X aydis
(3.8.10)

20.tyxdm A= (X L9 o end 17rx(ds,do).

Since Q > O0and It~s > 0 as. fort > s (cf. Theorem 7.2 in [Sato and
Ueno (1965)]), we have fg sQ(Xr)dlr > 0 as. for Xo € dM and t > s,
Combining this with (3.8.9) and (3.8.10), we prove (3.8.8). O

3.8.2 Some criteria on Ag for u{M) —1

Throughout this subsection, we assume that p{M) = 1. We first present a
probability characterization of Aq.

Theorem 3.8.4. For any measurable function Q > 0 on dM,
An = liminf — log [ (Exe /o <Qxs)dbA ~(™k).
t-yoo 21 IJm ' '
Consequently,
ht%n fZ_i log E'hr2/l«(*e)<“» <\ Q < _t—l log E'UT Ar«(*e)«s.
Proof. By the Jensen inequality, the lower bound in second assertion

follows from the first one immediately, while the upper bound follows from
the fact that

Ege” JoQ(x.)6i. = /i(PWQI) < M(PQI)2)1/2 < e~Xqt.
So, it remains to prove the first assertion. Let

6 = liminf—lo Exe~h 3dL\
T 2t 09y {Bxeh Q)
By Proposition 3.8.1,

[ (E*e-"Qres) 2k

| <PQI{X))2At{dx) < e~2Xgtr (M) = e~2Ac4, t > 0.
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This implies that Ag < 5
On the other hand, for any e > 0 there exists te > 0 such that

— log f (Exe~ /j,(dx) >6/1E 1 —e, t > te.
2t Jm '

So, for any / GL°°(ff), we have

Jf (PQF) 2dp < \\AI JL (Exe~fo <tk-) <A {dx)

< Il/llooe_2(<5Ae_1_e)+t> t > U.
Combining this with Lemma 2.2 in [Rockner and Wang (2001)], we obtain

< |II|MV (12)1slte-2(ME 1- £)+5, t >te,s G[0/f],
Letting t — 00, we arrive at
n((P?f)2) <ffu2)e-2G6AL 1-H)+s, s >0,f G

Since is dense in L2{p). this implies that Aq > 6/1e_1 —e for all
e > 0. Therefore, Aq > 6. O

By Theorem 3.8.4, ffd(Q) > 0 is necessary to ensure Aq > 0. The next
result provides some equivalent statements for Aq > 0 for all non-trivual

Q.
Theorem 3.8.5. Let M be non-compact. Then the following statements
are equivalent to each other:

@) For any non-negative measurable function Q on dM with ffd{Q) > o,
there holds Aq > 0.
(ii) There exists a non-negative measurable function Q on dM with compact
support such that Aq > 0.
(m) There exist two constants C\, C2 > 0 such that the defective Poincare
inequality

M/2) < CIM(V/|2) + c 2i(|/)2, | €ci{m)

holds.
(iv) There exists a constant C > 0 such that the Poincare inequality

M /2) < Cp(\S7f\2) + p(f)2, f GCq(M)
holds.
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Proof. Since the Neumann semigroup has strictly positive density, ac-
cording to [Aida (1998)] it is uniformly positivity improving and hence the
Neumann Dirichlet form satisfies the weak spectral gap property. So, ac-
cording to Proposition 1.2 in [Rockner and Wang (2001)], the weak Poincare
inequality
h (/2) < a{r)fi{\\7f\2) ArLY/Uoo, r >0,/ e CI(M),n(f) =0

holds for some a : (0,00) — (0,00). Thus, due to Proposition 1.3 in
[Rockner and Wang (2001)], the statements (Hi) and (iv) are equivalent.
Moreover, it is clear that (i) implies (ii). Therefore, it suffices to prove that
@i) implies (Hi) while (in) implies (i).

(@) Let Xg > 0 for some non-negative Q with compact support K. Take
h 6 Cq’(M) such that |V/i| < 1,/1|k = 0 and M\w, = 1 for some compact
smooth domain Ki b K. Then by Proposition 3.8.2, for any / 6 Cq(M),

R((t)2) <7 MV + £ » d(Q(th)2) = 1 - M|V (/h)[2)

< ¥-A(|V/|2)+ A - m(/21Ki)-
q Xq
This implies
h(/2) < K(fh)2) + m(/21kd < ~//(|V1]2)+ (I + -~) m(/2lki)-
By the local (defective in case Ki is non-connected) Poincare inequality,

M /21K1) < A/r([V/]2) + Bn(\f\)2

holds for some constants A, B > 0. Therefore, (in) holds.

(b) (Hi) implies (r). Let Hd(Q) > 0. Then it is easy to see that
SQ(fJ) = 0 implies that / — 0. Then according to Theorem 1.6.17,
the weak Poincare inequality

M(/2) < <EQ(F, ) + r[[/]|~, r >0,/ e V(£q)

holds for some a : (0, 00) — (0, 00). On the other hand, (Hi) implies that
(£q .,V (£q)) satisfies the defective Poincare inequality. Therefore, by [Wang
(2003)], we have Xq > 0. O

Obviously, the above proofof (Hi) implying (r) indeed gives the following
stronger assertion.
Theorem 3.8.6. If there exist two constants C\, Cr > 0 such that

m(r2) < CLEQ(fJ) + camiryz, 1+ « Cq(M)
holds, then Xq > 0.
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As a consequence of Theorem 3.8.6, we have the following drift condi-
tions for Xg > 0.

Corollary 3.8.7. If there exists W € C2(M) and a compact set K C M
such that W > 1 and

LW <-XW + blK, NWlaM<aWQ\dM (3.8.11)
holds for some constants X,b,a > 0. Then Xg > 0.

Proof. Without loss of generality, we assume that K is a smooth compact
domain such that the Poincare inequality

Jk/20 < CJ I'v/dM+ ( fdpj , fee YK)

holds for some constant C > 0. By (3.8.11) we have 1 < + Jlk, so
that
-LWA b

INR'sU f 11 dixsa, TP
v VO wosgr+U jw o4 dMH G/ df

< 1+Cb IV/|2d /i+y /[ Qf2dpa+ TP(]/])2
JI\/I n %dM P A
1£Cbq'a__,. b /.,.vo
< el A—-——£0Q(f,f) + XMi/i)2-
This implies xq > 0 according to Theorem 3.8.6. O

In applications, a standard choice of W is espo for e > 0 and the Rie-
mannian distance pato a fixed point o e M. More precisely, if

limsupLp0<0

Po-*00
holds outside the cut-locus of o, which can be verified by using curvature
conditions due to the second variational formula of the Riemannian distance
(cf. [Wang (2005a)]), one has for K = {pa < R} for sufficiently large R> 0,

Lp0< -6
holds outside K for some constant 5> 0. Then
LeenD = eefpo(Lp0 + €) < —e(6 —e)eem
holds outside K. Thus, by letting e.g. W = eBEo for small e and large
pO (note that by an approximation argument we may assume that pa is
smooth, see e.g. [Wang (2005a)]), then LW < —AW + blk holds for some

A b> 0. Next, the boundary condition holds provided either dM is convex
such that Np0 <0, or infQ > 0.
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3.8.3 Application to HW I inequality

As observed in the beginning of this section, when Q > 0 the Robin semi-
group p®'w is symmetric in L2(p). Since according to e.g. Theorem 3.3.3
when dM is non-convex we have to treat P® for negative Q. we first con-
sider the symmetry of P®'W for possibly negative Q.

Lemma 3.8.8. Assume (A3.2.1)(ii). Let W be a bounded measurable
function on M and Q G Cb(gM). Thenfor any t > 0,

pQwij ;=E.jf(Xt)e~JFw (x.)d*-/0Q (xs)dia]
is a symmetric bounded operator on L2{p).

Proof. Since both Q and W are bounded, and by Theorem 3.2.9(2)
5mpréM Ezenr < oo holds for all /1> 0, it is easy to see that P®,w is
bounded in L2(p) since the Neumann semigroup Pt is contractive.

To describe f Q(Xs)dls we shall apply the Ito formula to a proper
reference function of X s. To this end, we first extend Q to a smooth function
on M. By assumption (A3.2.1)(ii), one may find a function Q G
such that Qlom = Q,NQ\gM —0 and |VQ]| + \LQ\ is bounded. This can
be realized by using the polar coordinates

dM x [0,ro) 3 (9,s) h+expfsAe],

forro > Ogivenin (A3.2.1)(ii). Prom this one may take Q(6, s) = Q(e)h(s)
on groM for some h € C°°([0, 00)), such that h(0) = I,h'(0) = 0 and
h(s) = 0 for s > ro, and let Q = 0 outside gfoM. This Q meets our
requirements since Lpg is bounded on droM.
Let ® € Cq°([0, oo)) be such that 0 < &< 1, d() = 1for s G[0,1] and

®(s) = 0 for s > 2. Let

mpa
Jo
Then 0 <ipn < 2n~1.¢n = pg for pg <n_1,rpn is constant for pg > 2n_1
and W>,| < 1 Moreover, ipn ¢ C°°(M) for large n. Since Xcn = X and
NQ = 0on dM, by the Ito formula we have

ipn = ; $(s)ds.

m n)(Xt) = Mn(t) +} L(M)(Xs)ds+ /*Q(Xe)dls,
0 Jo
where Mn(t) is a martingale with quadratic variational process

(Mn)(t) =2\ X m n)\2(Xs)ds. (3.8.12)
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Note that L(Qipn) and |VQ]| + \LQ\ + larm-M>3| are bounded. So,
Ex[f(Xt)e~fom x s)ds-f*Q(x.)d/.j
= Ex[f(Xt)efo'i L(QiPn)-w Hxs)dsj + £r>

where
£ji ;= Ex[/(Xt)e_N w(x»)d5-/0Q(Xs)dIML _ e(@Qvn)(t)-Mn(t)»

which goes to zero uniformly in x as n — 00 according to (3.8.12) and the
above mentioned properties of Q and dn. Therefore, letting

PYn)f (x) = EIT/(Xt)e™o(l (3'") - IvHXx *)ds],
we have

lim  P?°Wf - Pin)[2)=0, / €i 2.

Noting that Proposition 3.8.1 for Q = 0 implies that Pjr>is symmetric in
L2(/X) for any n > 1, so is P®@'Wm O

Theorem 3.8.9. Let Z = XV for some V £ C2(M) such that i is a
probability measure. Assume (A3.2.1) and let Ricz > K and | > a hold
for some K, a £ M Let

rIx(s) := sup ExeMs, s, A€ M
IX(s) Sup
Then foranyt >0 and f £ Cr(M) with p{f2) =1,

M/2bg/2)< 4~ e-2Xsr/ ZA(s)ds™(|V 1]2)

| W2(fp.p)2 (3.8.14)

4 /@ e2AsT?-2](s)- 1ds

Proof. When dM is convex, the desired HWI inequality follows from the
log-Sobolev inequality in Theorem 3.3.1(3) for a = 0 and the log-Harnack
inequality in Theorem 3.3.2(4) (see the proof of Theorem 2.4.1(3)). So, we
only consider the non-convex case under assumption (A3.2.1)(ii).

By Theorem 3.2.9(2), (A3.2.1)(ii) implies \\ < oo. Let/ £ CI(M) and
t > 0. We have

d IVP 22
—Ps{(Pt_s/ 2)logPt_s/2}=Ps p*a2', e€ p,t, (3.8.15)
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where Pt is the semigroup of the reflecting diffusion process generated by
L=A+W on M. By Theorem 3.3.1(2) for p = 1, (3.8.4) and using the
Schwartz inequality, we obtain

[V iw 2[2 _-2K<t-s)Noy{\V f2\(Xt-s)e-°1'-°})2
Pt-sf2 {y)~ Pt-sf2(y)
< 4e 2)f(t_s)EY{|V/|2(Xt_s)e XTi* s}

= 4e~2K" P Zs\\/f\2(y), se [0t],ye M.

Combining this with (3.8.15) we obtain
-Pt(/2log/2) < {Ptf2)logPtf2+ 4j< e-2K~ P sP A~ s\VF\2ds.
o

Since p, is an invariant measure of Ps and PZS is symmetric in L2(p)
according to Lemma 3.8.8, taking integral for both sides with respect to p,
we arrive at

M /210g/2) < ff{(Ptf2) bg Ptf2)

rt (3.8.16)
+M|V/]|2 fo e 2KsV-20{s)ds.

On the other hand, for any x, y GM, let x. : [0,1]] =M be the minimal
curve from x to y with constant speed. We have |is| = p(x,y). Let h 6
C1([0,i]) be such that h(0) = I,h(t) = 0. According to Theorem 3.3.1(2)
for p = 1, we have

Ptlog/2(x) - logPtf2(y) =J ~Ps(1°gPt-sf2)ixh(s))ds

< J [\h'(s)\p(x,y)\VPs{logPt- s f 2)\{xh(s))

€5 VPEs/22, v j,

(3.8.17)

b s NVPt-sf2 —Ks—jls
<J EX(-*>{ti(s)\p(x, m(X)e
% X >{Mi(s)\p(x,y) Pt-sf2 (X))

[V -Pt-s/ 212 Xs)ds
(Pt—sf2)2( )}

- p(X,y)ZJf"k \h'(s)\2e~2Ksri-2v(s)ds =: c(t)p(X, y)2.
0



Reflecting Diffusion Processes on Manifolds with Boundary 225

Now, let p(f2) = 1 and ir € c (/2/i, /i) be the optimal coupling for
W2{f2p, ft). It follows from the symmetry of Pt and (3.8.17) that

M(Pt/ 2)logPt/ 2) = /i(/2PtlogPt/2) = [ Pt(\ogPtf 2)(x)n(dx,dy)
JMxM

< Jf {logP2t/ 2(y) + c(t)p(x,y)2}n(dx,dy)
MxM
=li(logP2t/ 2) + c(t)W2(f2p, p)2 < c(t)W2{f2ft, ft)2,
where in the last step we have used the Jensen inequality that
Ix(logP2(/ 2) < log p{P2tf 2) = 0.
Combining this with (3.8.16) we obtain

M /2'0g/2) < 4Ir(|V/|2) T e-2Ksri_XT(s)ds
Jo

+ WDBUW)a o o)\ 2e~2KsV-20{s)ds.
Jo

Then the proof is completed by taking

f* e2Kuy_2a(u) se [04]

h(s)
f*e2Kur]_2a(u)-1du 0






Chapter 4

Stochastic Analysis on Path Space
over Manifolds with Boundary

Stochastic analysis on the path space over a complete Riemannian manifold
without boundary has been well developed since 1992 when B. K. Driver
[Driver (1992)] proved the quasi-invariance theorem for the Brownian mo-
tion on compact Riemannian manifolds. A key point of the study is to first
establish an integration by parts formula for the associated gradient opera-
tor induced by the quasi-invariant flows, then prove functional inequalities
for the corresponding Dirichlet form (see e.g. [Fang (1994); Hsu (1997);
Capitaine et al (1997)] and references within). For more analysis on Rie-
mannian path spaces we refer to [Elworthy and Li (2008); Malliavin (1997);
Stroock (2000)] and references within. On the other hand, the Talagrand
type transportation-cost inequality has been established in [Wang (2004b);
Fang et al (2008)] on the path space with respect to the intrinsic distance
induced by the Malliavin gradient and the uniform distance respectively,
see also [Feyel and Ustiinel (2002); Wu and Zhang (2004)] for the study
of transportation-cost inequality on Wiener space and the path space of
diffusion processes on Rd.

The aim of this chapter is to establish the corresponding theory on the
path space for the reflecting diffusion process on manifolds with bound-
ary. In Section 84.1 we introduce an alternative construction of Hsu’s the
multiplicative functional initiated in [Hsu (2002b)], then define the corre-
sponding damped gradient operator in 84.2, which satisfies an integration
by parts formula induced by intrinsic quasi-invariant flows. In 84.3 we es-
tablish the log-Sobolev inequality for the associated Dirichlet form. These
three sections are mainly modified from [Wang (2011a)]. Moreover, some
transportation-cost inequalities, which are equivalent to the curvature con-
dition and the convexity of the manifold, will be addressed in §4.4 and then
partly extended in 8§4.5 to the non-convex case.
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4.1 Multiplicative functional

In this section, we aim to construct a modified version of Hsu’s Multi-
plicative functional introduced in [Hsu (2002b)] for the reflecting diffusion
processes. Let M be a d-dimensional connected Riemannian manifold with
boundary dM. Let T > 0 be fixed. The path space for the reflecting
diffusion process on M with time-interval [0, T] is

WT :=C([0,T};M).

For each point X £ M, let Wj = (s WT : 70 = x}. Let Bt be the
d-dimensional Brownian motion on a complete probability space (4, T, P)
with natural filtration {-Ft}t>0- For any x £ M, let OxM be the set of all
orthonormal bases for the tangent space TXM at point x, and let O(M) :=
UxeM Ox(M) be the frame bundle. Let Z be a C'l-smooth vector field.
Then for any x € M, the reflecting diffusion process generated by L :=
[ + Z starting at x can be constructed by solving the SDE (see (3.0.1))

dXf = V2uf 0dBt + Z(Xf)dt + N(Xf)dIf, (4.1.1)

where uf £ Ox* (M) is the horizontal lift of X f on the frame bundle 0(M),
N is the inward unit normal vector field on dM, and If is the local time of
Xf on the boundary dM. Let X*0tj = {Xf : 0<t<T}

To construct the desired continuous multiplicative functional, we need
the following assumptions.

(A4.1.1) There exist two constants K, a £ R such that Ricz  Ric —
VZ > K and | > a; and EeAf I* < 00 holds for X,t > 0,x £ M, where
a~ =0V (—e.

Due to Theorem 3.2.9, (A4.1.1) follows from (A3.2.1). To introduce
Hsu’s discontinuous multiplicative functional, we need the lift operators
Ricz(u) and I(u) defined by (2.2.2) and (3.2.3) for n £ O(M). Moreover,
form £ gO(M) = {mn £ 0(M) :pu £ gM}, let

Pu(a,b) = (ua, N)(ub, N), a,b£Rd.

For any e >0and r > 0, let Qff solve the following SDE on
dOKJt = -Q "R icf (uf)dt + (e-'Pu; + luf)dIf), 4.1.2)

with Qff =1, for all t > r. According to Theorem 3.4 in [Hsu (2002b)]
for compact M, when e J. 0 the process Qff converges in L2(P) to an
adapted right-continuous process Qxt with left limit, such that Q ftPu* = 0
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if X x 6 dM. Here, we introduce a slightly different but simpler construction
of the multiplicative functional by solving a random integral equation on

Rd <gR.
Theorem 4.1.1. Assume (A4.1.1).
(1) Letr >0. Foranyx € M and Ug 6 Ox(M), the equation

Qre — I{X feam}Pn*)

has a unique solution for t >r.

(2) Forany 0 <r <t, ||Q*t]| < e-k(t-r)-a{it-1T) as >where | | is the
operator norm for d x d-matrices.

(3) Forany0< r <s <t Qft=QftNxt as.

Proof. The uniqueness of solution is obvious. It remains to construct a
solution up to an arbitrarily given time T > r. For simplicity, we will drop
the superscript x. By (A4.1.1) and (4.1.2), we have, fort > T,

HQrtl2< 1-2K f ||Q*J 2ds - 2aJ* ||Q*,J2dls--£J* ||Q*iSPuJ 2d/s.
In particular,
HQrtI2 < e-2K(t-r) 2<T(1* Jr), t>r;
\Qr,sPu. ll2dis < \ (I + 2K-T + 20-1Ty K~TH°~1IXY (41'3)

Combining this with (A4.1.1), we obtain
limE I ||Q*5FuJ 2dIs= 0 (4.1.9)
£>° Jr

and

sup E [ [lQAtfl2(dt + dit) < oo.

eG(0,1) r

Because of the latter we may find a sequence en 4 0 and an adapted process
Qr. € L2(fi x [r,T] -> Rd<Rd;P x (dt + dIt)), such that for any g 6
L2(fi x [r,T] =Rd;P x (dt + d/t)),

lim E [ Qfigt{dt+ dlit) =E f Qrigt{dt + d/t).
nnee Jr ’ Jr
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Noting that dt and dIt are singular to each other, replacing gt by 3r 1{xtedM}
and (JtA{xt<fd\} respectively, we arrive at

n—oo0

lim E} Qrfotdt = E f Qr,totdt,
¥ Jr (4.1.5)

lim E [ Qergtdlt=E f Qr,totdIt

nhee Jr Jr

forall g £ L2(Qx [r, T] =Rd;P x (dt + d/t)). In particular, it follows from
(4.1.4) that

Ejo rtPutipd/t — 0. (4.1.6)
Now, for bounded g, let

ot = {I ~ 1{xtedM}Put)ot-
It follows from (4.1.2) that

EJ QVjtot{"t + dlt)
=EJ (dt-J QrrsRicz(us)&ds - J Q£slu,gtdl”j {dt + dlt
EJf gt{dt +dlt)-E J ~Q~Rief(us)~ gt{dt+ d/t)"ds
-E £ (g"K.j* g{dt+dlt)
Letting nt oo and using (4.1.5), we obtain
EJ  Qr,tot(dt + dIt)
=E/ (1I~J QrsRiclj;(us)ds- J Qrslu,dlshjgt(dt + dlt).
Combining this with (4.1.6) we conclude that

orit = (I ~J Qr,s*dzius)ds —J Qr,slusdes {I —I{Xt€3M}-fii()

holds for P x (dt + d/f)-a.e. So, letting
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forall t 6 [r. T], we have Q = Q, P x (df + d/t)-a.e and thus,

Qr,t = J' Qr.srdifrz (Ms)ds 3 Qr,sh-u3dlIsh (i 1{XtEdM }Put)

holds for t € [r, T].

Next, by the first inequality in (5.5.32) and the weak convergence of Qen
to QP, we have ||Qr,t]| < e-K{t-r)-o(it-iry* p x (df + dff)-a.e. Thus, Qrt
satisfies the same inequality since Qr< — Qr,-, P x (dt + dft)-a.e. Noting
that F(Xt € gM) = 0 holds for any t > 0, and when Xt £ dM, Qr.
is right continuous at t, we conclude that |<2r.t| < e~K(t-r)-o{it-ir) as
So, (2) holds. Finally, since Q& — Q@kQFt holds for all n > 1 and all
0<r<s<t, weprove (3) by a similar argument. O

We remark that our multiplicative functional Qx is slightly different
from Hsu’s Qx, since the latter is right-continuous but the former is not.
As Qq. is continuous on {t:Xf cpdM) which is dense in [0, 00), and both
functional are weak limits of Qx£€n as n —>00, we conclude that they are
equivalent, i.e. for any r <t, Qxt = Qxt, as.

Let Qx —Qxt,t > 0. The following property of Qx will be useful in the
sequel.

Proposition 4.1.2. Assume (A4.1.1). For any Rd-valued continuous
semi-martingale gt with 1{x?edM}PutSt = 0,

dQf,tgt = Or.tdflt - QPtRicf{vf)gtdt - QtitlUgtdIf, t >r,
where

Qrt:= (I ~f q2rictk)ds - £ Qfiutdz~.

Proof. For simplicity, we only consider r = 0. By Theorem 4.1.1 and
1dM(Xt)PUSt = 0, we have

Q*gt= (I - J* QJRicf(<)ds - £ Q*lu*dI”gt = Qkgt.

Then the proof is completed by using Ito’s formula. O
Let Pt be the Neumann semigroup generated by L, i.e.
Ptf{x) —Ef(Xf), xeM ,f >0,/eB 6(M),

where Bb(M) is the set of all bounded measurable functions on M. The
following is a consequence of Proposition 4.1.2.
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Corollary 4.1.3. Assume (A3.2.1). Then for any f GCff{M) andt >
r> 0,

is a martingale. Consequently,

(O~V W pC) = E(Q "« )-1V/(At)|jFr), @.1.7)
and for any non-negative adapted process h such that E J( |/i'(s)|2ds < oo
and h(r) =0,h(t) = 1,

t
(O”rviwpQg?) = -’\e(f(x?);lr h'(s)QfisdBs Tr (4.1.8)

Proof. Again we only consider r = 0 and drop the superscript x for
simplicity.

(@) Let gs = (us)_1S7Pt- sf(Xs). Since on dM the vector field VFt_s/
is vertical to N, we have 1{xsedM}Pus9s = 0. Then, by Proposition 4.1.2,
we have

dQ*9s = Qx&% ~ <3sRicf (ws)fifsds - QxlWysdls, s G[0, t]. (4.1.9)
To calculate dgs, let
F(u,t - s) = u~1X7Pt- sf(pu), uGO(M).

Let {ei}f=1 be the canonical ONB on Rd and {ifej}i=i the corresponding
family of horizontal vector fields. For any vector field U on M, let Hu be
its horizontal lift. Then the horizontal Laplacian is Jo(m) = Yli=

and the generator of ut, the horizontal lift of Xt. is

Lo(M) 'm=/lo(m) + Hz-

By the Bochner-Weitzenbock formula and noting that APt-Sf = — Pt~sf,
we obtain (see also (b) in the proof of Theorem 3.2.1)

~F{u,t- .) = —v~IV(LPt-a)(pu) (411110)

~LO(M)F(-,t- s){u) + Ricf (U)F(u,t - s),

for all s G[0,t]. On the other hand, noting that

d
dut=V2  He 0dB\ + Hz {ut)dt + HN(ut)dlt,

2=1
by Ito’s formula, for any fixed to G [0, f] we have
dF(us,t0) = dMs+ LO(m)F(-, t0)(us)ds + HNF(-, t0)(us)dls,



Stochastic Analysis on Path Space over Manifolds with Boundary 233
where

dMs := V2 (ffejF(-,i0))M dB".
i=

Therefore,
dgs = dMs + Ricf (us)gsds + HNF (-,t- s)(us)dls.

Since 1{xsEdM}QgPus = 0, combining this with (4.1.9) we obtain
dQsga= QfdMs+ Q*(l - PWs){H.NF (-,t- s)(us) - IWsF(us,t - s)}dls.
Noting that for any e £ it follows from (3.2.7) that when Xs £ dM,

((1-Pu,)HNF (;t-s)(us),e)

= UessPt_sf(N,pduse) = I(VPt-sf(Xs),pause)

lus{F(us,t s),e) (lusFlit's) s)5
we conclude that
(/ - PB){HNF(-,t - s)(us) - IWF(us,t- s)}dI3=0.

Therefore, Qxgs is a local martingale. Since (A3.2.1) implies (A4.1.1),
Qxgs is indeed a martingale according to Theorems 3.3.1 and 4.1.1.

(b) (4.1.7) follows immediately from the first assertion as Ptf satisfies
the Neumann boundary condition. The proof of (4.1.8) is similar to that
of (3.2.2). Indeed, as shown in step (c) in the proof of Theorem 3.2.1, we
have

F{Xt) = PU() +Y2 [\uJIVPL-sf(Xs),dBs) (4.1.11)
0

Next, since Q*u~IXPt-sf(Xs) is a martingale,
QX _1VPt-,f{X.) = E(Qxu*Vf(Xt)\Fs), s £ [0<].

Combining these with (4.1.7) for r = 0 we arrive at
Ej/(At)E h\s)QzrdBsJ = EJ* {h'(s)QxuJ1VPt-sf (Xs)}ds
= EJf {h'(s)Qxu; WVf(Xt)}ds = E{Qxur X f(Xt)} = urVPJix).
o

This completes the proof. O
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4.2 Damped gradient, quasi-invariant flows and integration
by parts

It is well-known that for diffusion on manifolds without boundary, the Malli-
avin derivative can be realized by quasi-invariant flows. In this section, by
using the multiplicative functional constructed in the last section, we first
introduce the damped gradient operator as in [Fang and Malliavin (1993)]
for manifolds without boundary, then introduce quasi-invariant flows in-
duced by SDEs with reflection, and finally link them by establishing an
integration by parts formula.

Before moving on, let us mention that the existing study in this direc-
tion is very limited. To see this, let us recall [Zambotti (2005)] where an
integration by parts formula was established on the path space of the one-
dimensional reflecting Brownian motion. Let e.g. Xt —|6t|, where s the
one-dimensional Brownian motion. For h ¢ C([0, T];R) with h(0) = 0 and
/@ \h'(t)\2dt. < oo, let dh be the derivative operator induced by the flow

X +eh, ie.
n

dhF =Y JhtiXif(Xtl,...,Xtn),
2=1

where n ¢ N,0 < t\ < ... <tn <T and F(X[0r]) = f{Xtl,..., Xt,)
for some / 6 C°°(Mn). As the main result of [Zambotti (2005)], when
h ¢ C§((0, T)), Theorem 2.3 in [Zambotti (2005)] provides an integration by
parts formula for dh by using an infinite-dimensional generalized functional
in the sense of Schwarz. Since for a non-trivial function h, X + eh is
not quasi-invariant, this integration by parts formula cannot be formulated
by using the distribution of X with a density function, and the induced
gradient operator does not provide a Dirichlet form on the L2-space of
the distribution of o, T)- In this section, we shall establish an essentially
different integration by parts formula using quasi-invariant flows.

4.2.1 Damped gradient operator and quasi-invariant
flows

We shall use multiplicative functionals {Qxt:0<r <t <T) to define the

damped gradient operator for functionals of X x (see [Fang and Malliavin

(1993)] for the damped gradient operator for manifolds without boundary).
Let

Ho = {n ¢ C([O,T;Md) : /10) - O, [|h[|l20:=  \h'(t)\2dt < oo},
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which is a Hilbert space with respect to the inner product
(hi,h2)mD := J.(l): H2(t))dt.

Consider the following class of smooth cylindrical functions on WT:

JCoO = {WT 37H /(T7tl,see,7t«) :n > 1,
o<ti <.. <tn<T,f e CO°(Mn)}
For any F e JCO00 with F(7) = /(7tl,..., 7t,), define the damped
gradient D{F(X'fn ) as an Hn-valued random variable by setting
(D°F(XfOT]))(0) = 0 and

M(D°F(xA*TIm =£ UknyCKMTI'bMXA",. e« Xfj, te [0t]
i=1

where V, denotes the gradient operator w.r.t. the r-th component. Then,

for any Ho-valued random variable h, let

DhF (XAT]) = (D°F(XAT]),h)W
< «)-IVII(XFI, ... X I, (Q2ti)*b'W}d*.

Note that when dM = 0, we may let It = 0 in (4.1.2), so that our formula-
tion of D°F goes back to the known one presented in [Fang and Malliavin
(1993)] for manifolds without boundary.

Now, we intend to link D®F to the directional derivative induced by a
quasi-invariant flow. The idea comes from 84(a) in [Bismut (1984)] where
quasi-invariant flows are constructed for M being a half-space of Krf, which
essentially reduces to the one-dimensional setting, by solving SDEs with
reflecting boundary. Let Ho be the set of all adapted elements in L2(Q —
HO;P); i.e.

Ho = {h € L2(Q -> Ho;P) : h(t) is .Ft-measurable, t € [0,T]}.

Then Ho is a Hilbert space with inner product
{h, *)h0 := E(ft*)n0 = EJ (h'h)’h'(t))dt, h,he HO.
[0]
To describe D°F by using a quasi-invariant flow, for h € Ho and e > 0
let X £h solve the SDE
dXe'h = V2ufhodBt + Z{Xt’h)dt + N (Xt’h)dI£h

) 4.2.2)
+eV2uehti(t)dt, X*h=x = pug,
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where I\'h and u\'h are, respectively, the local time on dM and the hori-
zontal lift on O(M) for Xf’h.

Moreover, let us explain that the flow is quasi-invariant, i.e. for each
e > 0, the distribution of X £ is absolutely continuous w.r.t. that of
X*0Tj. Let

REh=exp ££ {h'{t),ABt) -~ £ \h\)\4t .

By the Girsanov theorem,
B\'h := Bt - eh(t)

is the d-dimensional Brownian motion under the probability Re,hP. Thus,
the distribution of X*QTj under R£hP coincides with that of X A" under

P. Therefore, the map X*QTj h>X " H " is quasi-invariant.

4.2.2 Integration by parts formula

The following result provides an integration by parts formula for DRF and
a link to the derivative induced by the flow { X * ' }£>0-

Theorem 4.2.1. Assume (A4.1.1). Foranyx € M and F e FCd,

V2E{D°hF } (X~ T])

E{F(X[XTNE (h\t),dBt)}

holds for all h £ Ho;b, the set of all elements in Ho with bounded ||/1.||HO-

Since Ho.b is dense in Ho, the above result implies that the projection
of D° onto Ho can be determined by the flows X £h,h € Ho,6 But it is not
clear whether

yI2 DNF(X(0T]) = lim F(X[°T)  F(X[O'T[> h GHO (4.2.3)

holds or not.

To prove Theorem 4.2.1, we need some preparations. In particular, we
shall use (4.1.7) and a conducting argument as in [Hsu (1997)] for the case
without boundary.
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Lemma 4.2.2. Letx £ M and F £ FCq’. Then
HmEF(" 2T~ F("W =e{f (X ]j\h'(t),dBt)J
holds for all h £ Ho,b-

Proof. Let Bf’h = Bt —eh(t), which is the d-dimensional Brownian mo-
tion under REhP. Reformulate (4.1.1) as

dXf = V2uf odBe'h+ Z{Xf)dt + N(Xf)dIf +eV2utti (t)dt.
By the weak uniqueness of (4.2.2), we conclude that the distribution of
X x under Re'’hP coincides with that of Xeh under P. In particular,
EF(XA"T)) E[REhF{X[Qﬁ)}. Thus,

Wo,r])-m r0n REh- 1

I,E‘iA[TO]E lim E{F (XfGiT])

—E

where the last step is due to the dominated convergence theorem since
{RE,h}£6[oi] is uniformly integrable for h £ Ho,b- O

Lemma 4.2.3. Foranyn>10<fi < .. <tn<T, andf £ CgX¥Mti),

n
KT AX/N(XE,.,,XfJ=~E {QUuir'S/Jix",....XI)}
i=1
holds for all x £ M and wf € Ox(M), where V x denotes the gradient w.r.t.
X.

Proof. By (4.1.7), the desired assertion holds for n = 1. Assume that it
holds for n = k for some natural number k > 1. It remains to prove the
assertion for n = Kk + 1 To this end, set

g(x) = Ef(x, Xf2_tl,..., X%+ tl), x £ M.

By the assumption for n = K we have
fcH
K)-1v3(x) = "E{Q ft_ti« _ ti)-1Vi/(x,Xf2 tl,...,A ffcH ti)}
i=1
for all x £ M, £ Ox(M). Combining this with the assertion for k = 1
and using the Markov property, we obtain

(uR) - IWXEf(Xfi,...,Xfk+) = gixXfJ
k+1
= E{QfI(ufX1Vg(X?J}="EE{QfM)-1VIf(X?1,...,X?k+])}.
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The next lemma is a direct consequence of (4.1.7) and (4.1.11).

Lemma 4.2.4. Letf ¢ C°°(M). Thenfor anyx GM andt > o0,
e{kx?)J\h's,dBs)} =e J\(uf)-vf(xnAQIltyhs)ds

holds for all h GHq,t G [0, T].

Proof.  [Proof of Theorem 4.2.1] By Lemma 4.2.2, it suffices to prove
V2E{D°hF }(X~T]) = EAF(X(OT]) j\h\t),dBt)\, hGW0 (4.2.4)

for F(XfOT]) = f{Xfx,...,XfJ with / GC°°(Mn), where n > 1,0 < tx <
®e< tn < T. According to Lemma 4.2.4, (4.2.4) holds for n = 1. Assuming
(4.2.4) holds for n = k for some fct> 1, we aim to prove it forn = k+1. To
this end, let

g{x) = Ef(x, Xf2_tl,.. -, X?k+_ti), xeM.
By the result for n = 1 and the Markov property,

V2 [ E («)- V(AR (Q7it)y*h)dt
0
= E{E(F(X?0TD\rtl)Jo\ti{t),dB)\ (4.2.5)

=e {f(X{OT])I\h'(1),dBt)y

On the other hand, by Theorem 4.1.1(3), Lemma 4.2.3 and the Markov
property,

r E{{ul)-"g(Xf)*QItiyh't)dt
Jo

ftl , fetl

I E(E( QI'tyuz)-"XJ(X?i,....X?k \ F tI)yQ ItI*h\t))dt

rti

=eE _/ »e-X tfoH)>
i=iJo

Combining this with (4.2.1) and (4.2.5) we obtain

E{L>°F(XfO)T)} = + E {F{X fOtT)J* 1(h'(t),dB1)}

k+H i (4.2.6)
+E A~ [/ ((ui)-1vif(x?1,..., X ; D), (Qiuyh'(t))dt.
=2
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By the Markov property and the assumption for n = k, we have
fcH i
E E/ ((ui)-lvinx?1,...,x?k+),(Qitirh'(t))dt
i=2 -t

= A=e{ F(X~t])E (/i"(t), dBY)|-

Combining this with (4.2.6) we complete the proof. O

4.3 The log-Sobolev inequality

We first consider the path space with a fixed initial point, then move to
the free path space following an idea of [Fang and Wang (2005)], where
the (non-damped) gradient operator is studied on the free path space over
manifolds without boundary.

4.3.1 Log-Sobolev inequality on W j
Let Uj be the distribution of X XJT]j. Let

£X(F, G) = E{(D°F, D°G)Ho(X"T])}, F,G e JFCO°.

Since both D°F and D°G are functionals of X, (Ex,FC”°) is a positive
bilinear form on L2(Wj; M7). It is standard that the integration by parts
formula (4.2.4) implies the closability of the form (see Lemma 4.3.1). We
shall use (£x,V(£x)) to denote the closure of (Ex,FCq®). Moreover, (4.2.4)
also implies the Clark-Ocone type martingale representation formula (see
Lemma 4.3.2), which leads to the standard Gross [Gross (1976)] log-Sobolev
inequality. It is well known that the log-Sobolev inequality implies that the
associated Markov semigroup is hypercontractive and converges exponen-
tially to I1f in the sense of relative entropy.

Lemma 4.3.1. Assume (A4.1.1). (Ex,FCd") is closable inL2(Wj\ M").

Proof. Let {Fn}n>i C FCg° such that £x(Fn,Fn) < 1 for all n > 0 and
IHJ(F2) + £Ex(Fn- Fm,Fn- Fm)->0asn,m oo. We aim to prove that
£x(Fn,Fn) —0 as n — oo0. Since

£x(Fn,Fn) = £x(Fn,Fn - Fm) + £x(Fn, Fm)
< VEX(Fn- Fm,Fn- Fm) + £x(Fn,Fm),
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it suffices to show that for any G G FCq’, one has £x(Fn,G) -» 0 as
n —»00. To this end, let {h*}i>i be an ONB on Ho- For any e > 0 there
exists K > 1 such that

Then

£X(Fn,G) - £ e{(DBIFN)(D*hiG)}(X T]) <& n>1

2=1
Since FCq is dense in L2(W j;11f), there exists Gt € FCqg® such that
E{D’hiG - Gi\2(X"T])} <e, I<i<k.

Therefore,

\E*(Fn,G)| < 26+ £ |E((GIT,0FX[QIT]), ht)po |

2=1
Noting that GiD°Fn = D°(FnGi) —nD°Gi, by (4.2.4), we obtain
\Ex(Fn,G)\

<2e +JNE Fn(XfO[T] |G i(XfOiT)j\h\,d B t) - DhGt(X T])|

Since HI"(F”~) -> 0 as n — 00, by letting first n -» 0o then e —» 0 we
complete the proof. O

Lemma 4.3.2. Assume (A4.1.1). For any F € FCq, let D°F(X*0T]) be
the projection of D°F(X*0T]j) on Hgq, i.e.

3{(D°F(X"1’J)){t) = E(M(D°F(XTOT])(1)]i-t)
forte [0,T], {D°F)(0) = 0. Then
F(XDT]) = EF(XfQT]) + V2 £ (x(D°F(X?0tTIm ,d B t).
Proof. By Theorem 4.2.1, we have

E(h,D°F)no(X(0T]) = A=e I £ (XA])£ (ht,dBt)”, he Ho- (4.3.1)
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On the other hand, by the martingale representation, there exists a pre-
dictable process  such that

Let

We have ipe Ho and by (4.3.2)

holds for all h € Ho- Combining this with (4.3.1) we conclude that
\/2 D°F(XRTj) = ip. Therefore, the desired formula follows from (4.3.2).
O

It is standard that the martingale representation in Lemma 4.3.2 implies
the following log-Sobolev inequality. Since the parameter T has been prop-
erly contained in the Dirichlet form £ just as in the case without boundary
(see [Fang and Malliavin (1993)]), the resulting log-Sobolev constant is in-
dependent of T. Moreover, since it is well-known that the constant 2 in the
inequality is sharp for M = Rd, it is also sharp as a universal constant for
compact manifolds with boundary as  can be approximated by bounded
balls.

Theorem 4.3.3. Assume (A4.1.1). Forany T > 0 and x € M, there
holds the following log-Sobolev inequality

UR(F2logF2) < 4£X{F,F), F 6 V{£x), MX{F2)= 1

Proof. It suffices to prove the inequality for F 6 FCq°. Let mt =
E(F(Xp T]2|.Ft), t € [QT]. By Lemma 4.3.2 and the Ito formula,

Thus
Mx (F2log F2) = Em-log TOT

4E||E)OF (A[aT])||h0 = &Ex(F,F). O
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4.3.2 Log-Sobolev inequality on the free path space

Let 14 be the distribution of the reflecting diffusion process on the time-
interval [0, T] generated by L := A + Z with initial distribution p. Let

H= j/iEC([0,T];Md) : \h'{t)\2dt < oo0j.
Then H is a Hilbert space under the inner product

(hih2u= (MO) M) + [ (M=) ti2n)t.

To define the damped gradient operator on the free path space, let
ft=MxN =BM)xTt,and P=pxP. Letw : M —aTM be
measurable, and let Xo(x,w) = x for (x,w) GM x fi. Then, under the
filtered probability space (fi, Ft, P), Xt(x,w) := Xf(w) is the reflecting
diffusion process generated by L with initial distribution p, and w(x, w) :=
u*(w) is its horizontal lift. Moreover, let QTit(x,w) = Qft(w) forO < r <t.

Now, for any F GFCg° with F(7) = /(’7tl,... |7t,), let

Mn

DF(X) = D°F(X) + £ QtiurVif(Xtl,...,Xtn), (4.3.3)
2=1
where

D°F(X) :=T I QtMurIVIf{Xtl,..., Xtn)dt
i=1i0
is the damped gradient on the path space with fixed initial point. Obviously,
DF{X) e i 2(ft-~ H;P). Define
S>\F, G) = EP(DF, DG)U, F,G £ XC%".

We aim to prove that (EMFCq") is closable in L2(WT\nj) and to es-
tablish the log-Sobolev inequality for its closure (£,L, To prove the
closability, we need the following two lemmas modified from [Fang and
Wang (2005)]. Let Xg(M) be the class of all smooth vector fields on M
with compact support.

Lemma 4.3.4. Assume (A4.1.1). For any f ¢ C”A(Mn), there exist

(eryr>1 C L2(Q;pP) and {csitr>1 ¢ Xo{M) such that
r @

=il -
holds in L2(0. -4 Rd;P).
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Proof. By the decomposition of identity, it suffices to prove for X qre-
stricting on an open set O obeying a smooth ONB {Uj}j=1 for the tangent
space. Then the desired formula holds on {Xo £ O} for

.
is=Y (“0QuUAXJI(Xtl,...,Xtn),Uj(XQ), j=1,....d.
i=1 O

To introduce the integration by parts formula for DF, we need the diver-
gence operator divp w.r.t. u, which is the minus adjoint of V in L2(/i);
that is, for any smooth vector field U,

f (Ufdit =- [ I(divMhdp, / € Ca(M).
Jm Jm
Lemma 4.3.5. Assume (A4.1.1). Forany F £ PC™, U £ fo(M), and
Tt-adapted h £ L2(A -A H; P),
Ep(DF(X),h + UolU(X0))n

= Ep|F(X)[Jo (h\t),dBt) - (divM/)(X0)) }.

Proof. Let {hx(t)}(w) = {h(t)}(x, w), (x,w) £ 4, t £ [0,T]. By Theo-
rem 4.2.1 and (4.3.3), we have

Ep(DF(X),)M =j  (Ex(D°F(Xx),hx)My (dx)

—Ep F(X)j\h'(1),dB)}.

On the other hand, by Lemma 4.2.3 and the definition of div®, we obtain,
for F(X) = f(Xtl,...,Xtn), that
Ef (DF(X),UolU(X0)I
n

Ep(Y QuUuVif(Xtl,. -, XtJ,Uo0”"X0))
2=1

JK/I(E{Yrbuu’\Vif(XtI,...,th},UolU(—))dp

L (VEFQO, [dii = —1 (EFCO)iVME dp

jm

-Ep{FpO (divM7)(X0)}.
Then the proof is finished. O
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Theorem 4.3.6. Assume (A4.1.1). Then the form (EMFGd’) is closable
in L2(WT',lif), and its closure is a symmetric Dirichlet form.

Proof. It suffices to prove the closability. Let {Fn}n>i C FCff such
that linin-i.oo Fn = 0 in L2(WT\IIJ) and h := Lnn-too DFN(X) exists in
F2(f2 — H;P). We intend to prove that h = 0. By (4.3.3) and Lemma
4.3.4, it suffices to prove Ep(h, h + £uq 1U (X 0))nh = 0 for *-adapted h G
b2{in -AHO;P), f GL2(fj; P) and U G AO(M). According to Theorem 4.2.1
and noting that Fn(X) —=0 in L2(P), we have

Ep(h, h)H=lim Ef(DFn(X),h) no IimJ/ (ED°hFn(Xx))fi(dx)
N-*°°Jm
=i f »(X f /i'(t),dBt>ld/*
A g © (00 g (F.ABE
= nILngo Ep<Fn(X)j {nh'(t),dBt)j = 0.
So, we need only to prove
Ep{~(h(0),& 1t/(X0))} = 0.

Since FCq’ is dense in L2(Wr\117"). we may assume that f = G(X) for
some G ¢ FG*“ . In this case, it follows from Lemma 4.3.5 that

Ep{£<h(0),u01t/Ne ))} = Jhn Ep(DFn(X),G(A)ud1t/(A0))H
= imoEp{({F(F.,G)(X)}(0),Uo1* Ne ))
- FAXXiDGiXmoUAUiX0))}
= - tHm Ep{Fn(A)(G(A)(divM7)(X0) + ((DG(X))(0),Uo1B /i ,)» }

Theorem 4.3.7. Assume (A4.1.1). If the log-Sobolev inequality
Id{g2\ogg2) < Cu(\Xg\2), gc C1{M),u{g2) =1 (4.3.4)
holds for some constant C > 0, then

E£(F2logF2) < (4VC)P(F,F), F GOE™) ME(F2) = L
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Proof. It suffices to prove for F £ FCd". By Theorem 4.3.3 and (4.3.4)
we obtain

IHE(F2logF2)= J ILN(F2log F 2)/x(dx)
< 43/ £x(F,Fde)+J (F2)log  (F2)fi(dx) (4.3.5)

< 4Ep\\D°F(X)\go +C Jf VAE-F*{X) V
m

On the other hand, letting F(X) = f(Xtl,.. .,Xtn), it follows from Lemma
4.2.3 that

YYA(X)2= E'F(*)HU QunArVIjXA... XtI[2

<E'l J2QtiuTlivIf(Xtl,...,Xtn) 2
i=l
Combining this with (4.3.5) we complete the proof. O

4.4 Transportation-cost inequalities on path spaces over
convex manifolds

In 1996, Talagrand [Talagrand (1996)] established an inequality to bound
from above the L2-Wasserstein distance of a probability measure to the
standard Gaussian measure by the relative entropy. This inequality is called
(Talagrand) transportation-cost inequality, and has been extended to dis-
tributions on finite- and infinite-dimensional spaces. In particular, this
inequality was established on the path space of diffusion processes with
respect to several different distances (i.e. cost functions): see e.g. [Feyel
and Ustunel (2002)] for the study on the Wiener space with the Cameron-
Martin distance, [Wang (2000b); Djellout et al (2004)] on the path space
of diffusions with the L2-distance, [Wang (2004c)] on the Riemannian path
space with intrinsic distance induced by the Malliavin gradient operator,
and [Fang et al (2008); Wu and Zhang (2004)] on the path space of diffu-
sions with the uniform distance.

The main purpose of this section is to investigate the Talagrand inequal-
ity on the path space W T of the (reflecting) diffusion processes on a convex
manifold.

Let M be a connected complete Riemannian manifold possibly with a
boundary dM. Let L = [ + Z for a G’-smooth vector field Z on M. Let
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Xt be the (reflecting if gM ¢ 0) diffusion process generated by L with
initial distribution p GV(M). Assume that Xt is non-explosive, which is
the case if dM is convex and Ricr > K holds for some constant K Gif
Recall that is the distribution of A[GiTj  {Xt : t G[0,T]}, which is
a probability measure on the (free) path space WT :=(7([0, T];M). When

p = X, we denote 11J = IIf. For any nonnegative measurable function F
on WT such that If*(F) = 1, one has
pF{dx) ~ Uf(F)p(dx) GV(M). (4.4.1)
Consider the uniform distance on WT:
P ! 7,V&WT.
oob,v) I:tes[g,p” V&

Let Wo&*° be the L2-Wasserstein distance (or L2-transportation cost) in-
duced by poo- In general, for any p G [l,00) and for two probability mea-
sures M1,M2 on \VT,

r

Wp(H)M2) = inf ( Poo{li TARTUAT, a])

TreC(Mr,Mn2) WTXWT
is the Lp-Warsserstein distance (or .~-transportation cost) of M1 and M2

induced by the uniform norm, where C(INM1,M2) is the set of all couplings
for M1 and M2.

Additional to Theorems 3.3.1 and 3.3.2, the following Theorem 4.4.2
provides 7 more equivalent transportation-cost inequalities for Ric* > K
and the convexity of dM (when gM ¢ 0). To prove this result, we need
the following inequality due to [Otto and Villani (2000)].

Vp

Lemma 4.4.1. Let p be a probability measure on M and f GC2(M) such
that p{f) = 0. For small enough e > 0 such that fe := 1+ ef > 0, there
holds

M/2) < £Vp(\vi\2)w pUeP,p) + °°WP(ffp,p)2,
where |[Hess/||[oo = supxeM ||Hess/1| for || | the operator norm in Kd.

Proof. Let e GC(ffp,p) reach Wf(f£p, p). Then the Taylor expansion
and the Schwarz inequality imply
P(fef) ~p{f) _ f

P(ﬂ= £Jmx

., (@) - T(y)nEdx.dy)

< - y IVI(y)Ip(:r, y)n£(dx, dy)

£ JIJMXx

+ MM f p(x,yn £(dx,dy)
Z£ Jmx M

X

< M p{\VA\2)Wp(f£p,p) + I[Heg k IVp(f£p,p)2- O
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Theorem 4.4.2. Let Pt (o,-) be the distribution of Xt with Xo = o, and
let PT be the corresponding semigroup. For any K £ K and any p £ [1, 00),
the following statements are equivalent to each other:

@)
)

©)

4

©)

(6)

)

)

dM s either convex or empty, and Ricz > K .
Forany T >0,p £ V(M) and nonnegative F with Uj*(F) = 1,

W ATF LA IEf < | (1 - e-2¢T)III(FlogF)

holds, where pj. £ V{M) is fixed by (4.4.1).
Foranyo£ M and T >0,

Wp{FYIT N\T)2 < |(1 -e-2ifT)nJ(FlogF)

holds for all F >0, n*"(F) = L
Foranyo£ M and T >0,

W3d(PT(0,.),fPT(0,-))2< 1 (1 —e~2KT)PT(f logf)(0)

holds for all f >0, Prf(o) = 1
Foranyo£ M and T >0,

Wp{PT(0,-)JPT(0,-))2<C - T Y pp"

holds for all f > 0, Prf(o) = 1
Forany T >0, and p, n £ V{M),

Wp~(nl,nl)<e-KTWp(p,v).
Forany T >0, p £ P(M), and F > 0 with n*(F) = 1,
Wpe(FnzX) <{I(l-e-22)nJ(FlogF)}" +e~KTWp(pF,p).
For any p £ V{M) and C > 0 such that
W (M>hf < Cp{flog/), / >0,p(f) =1
there holds
Wpee(FTHX)2< (\/|(! - e-2KT) +e-KTVcyill(FlogF)

holds for all F > 0, li*(F) = 1
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Proof. By taking fi = 5a, we have ftp = I1J(F)S0 = 80. So, (3) fol-
lows from each of (2), (7) and (8). Next, (4) follows from (3) by taking
F(X[0it]) = f(XT), and (6) implies Theorem 3.3.2(2) and thus implies (1).
Moreover, it is clear that (8) follows from (7) while (7) is implied by each
of (2) and (6). So, it suffices to prove that (1) =>(3) =>(2), each of (4) and
B)=> (), @) ==(5), and (1) => (6), where “=>" stands for “implies”.

(@) (1) == (3). We shall only consider the case where dM is non-empty
and convex. For the case without boundary, the following argument works
well by taking It = 0 and N = 0. Simply denote X[0t] = X°(JTy Let F
be a positive bounded measurable function on WT such that inf F > 0 and
M1(F) = 1 Then

pt I

rh ;= E(F(XQTDIFY) and Lt~ / — , t€[0,T]

JO ms

are square-integrable .A-martingales. Obviously, we have
Ta = eL*-5<0t) t G[0,T], (4.4.2)

Moreover, by the martingale representation theorem (cf. Theorem 6.6 in
Chapter 1 of [lkeda and Watanabe (1989)]), there exists a unique Ft~
predictable process fit on L such that

Lt= f\p adBs), t€ [0,T]. (4.4.3)
Jo

Let dQ = F(X[0,T])dP. Since EF(X[0,7]) = nJ(F) = 1, Q is a probability
measure on f2 Due to (4.4.2) and (4.4.3) we have

F(X[OT]) = mT = efo "AB9~UT

Moreover, by the Girsanov theorem,

Bt:=Bt- [ psds, *€[0,71 (4.4.4)

Jo
is a d-dimensional Brownian motion under the probability measure Q.
Let Yt solve the SDE

dYt = V2PxtYtut °dBt + Z(Yt)dt + N(Yt)dit, YO= o, (4.4.5)

where Pxtt is the parallel displacement along the minimal geodesic from
Xtto Ytand It is the local time of Yt on dM. According to Theorem 2.3.2,
we may simply consider the case that Pxn is smooth in x,y £ M. Since,
under Q, Bt is a d-dimensional Brownian motion, the distribution of ¥/1]
isnj.
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On the other hand, by (4.4.4) we have
dX< = %2 0 dBt + Z(Xt)dt + y/2utPtdt + N(Xt)dlt- (4.4.6)
Since for any bounded measurable function G on WT
EQG(X[0T]) := E(FG)(X[0T]) = Na{FG),

we conclude that rmder Q the distribution of X[0,r] coincides with Ffl*.
Therefore,

W?~(FEE, nT)2 < Egpoo(X[0I'], YIOI'])2= Eq max p(Xt,Yt)2. (4.4.7)

By the convexity of dM we have

(N(x), Xp(y, #{x)) = (N(x), Vp(-, y)(x)) <0, x e dM.

Combining this with the Ito formula for (Xt,Yt) given by (4.4.5) and (4.4.6),
we obtain from Ricz > K that

dp(Xt,Yt) < - Kp(Xt, Yt)dt + /2 {udhmn Vp(-, Yt)(Xt))dt
< (V2\f3t\-K p{XuYt))dt,

see Theorem 2.3.2. Since Xqg= Yo, this implies

p(Xt,Yt)2 <e~2Kt (V2 j* eKs\ps\d*

< 1_‘?(2'“ Ji; I’ s, te[o.T].
Therefore,
1 _e2AT 0T

Eq tgfc?ﬁ p(Xt,Yt)2 < - e }o Eq|*s As. (4.4.8)
It is clear that

Eql/3|2= E(MT/3|2)

= E(|"|2E (T7|X5) = E(ms|fX»]2), s € [0,].
Finally, since (4.4.2) and (4.4.3) yield

d(m)t = m2d(L)t = m\V/3t\2dt,

(4.4.9)

we have

d(m)t

2 mt
@+ logm()dm(+ T\/3t\dt.

dmtlogrnt = (1 + logmt)dmt +
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As mt is a P-martingale, combining this with (4.4.9) we obtain
[ TEQ\ps\2ds = 2EF(X[QT])logF (A [OTY). (4.4.10)
Jo

Therefore, (3) follows from (4.4.7), (4.4.8) and (4.4.10).
(b) (3) =m(2). By (3), for each x e M, there exists
F
'e eC(w r)M-'no0

such that
/ Poo(7,»?)27rx(d7,cl7?)
JwTxWT
FoF (4.4.11)
KA~ e (nj’(F) “8ne(F),

If x i=>nx(G) is measurable for bounded continuous functions G on WT x
WT, then

n:= f ixfj%(dx) € C(Fn£,nS)
Jm T
is well defined and by (4.4.11)

N -ta-e Tl n*(AgMF)>[)
<|(l-e-22T)n*"("logF).

This implies the inequality in (2).
To confirm the measurability of x m- nx, we first consider discrete p,
ie.p= £n$xn for some {i,,)cM and en > 0 with En= 1 b.

this case
o0

$Px = 'y "Ha:=x,}7rxn; p-a.e.
n=1

is measurable in x and w = ZZZ=i //?({:H1})71X,- Hence, the inequality in
(2) holds. Then, for general p, the desired inequality can be derived by
approximating 4 with discrete distributions in a standard way, see (b) in
the proof of Theorem 4.1 in [Fang et al (2008)].

() 4 = (1). Let/ 6 C2(M) such that Prf(o) = 0. Then, for small
e > 0 such that fe :=1+ ef > 0, we have

PT(/Elog/E)(0) = PT{(1 +ef)(ef - ~(e/)2+ o(e2))|(0)

= jP Tf2(0) + o(e2).
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Combining this with Lemma 4.4.1 and (4), we obtain

(Ptl*?(0) < 2d -B-*""") h P38 .H M
K £—0 €
l_e-ZKT

«  PTIV/[»)Pr/20)

This is equivalent to Theorem 3.3.1(3) for a = 0,p = 2 and constant K.
Therefore, by Theorem 3.3.1, (1) holds.

(d) (5) == (1). Similarly to (c), combining (5) with Lemma 4.4.1 we
obatin

Prf2(o)<’1' 4" ————— \/pr|V/|2(o) I|m "/Prz! 4£ (0)

1- e~2KT

K P\Vf\2{o).

Hence, (1) holds.
(e) (1) == (5). Since (1) implies (4) and, due to Theorem 3.3.1 fora =0

and constant K,
I _e-2kT » |yy|2
Ar(/log/)(o) < o4 —le/ -> / >0,PT/(0) = 1,

we conclude that (1) implies (5).
(f (@) = (6). According to Theorem 3.3.2, (1) implies Theorem
3.3.2(2). So, for any x,y £ M, there exists TRY e C(M*, Yly) such that
| - pLd7r*3 < e~pKTp(x,y)p.

As explained in (b), we assume that 1 and u are discrete, so that for any
T 6 C(/r, u), nXy has a 7r°-version measurable in (x,y). Thus,

Te= | TXiyn°(dx,dy) e C(MA,MN)

JMxM
satisfies
f prod n < epKT [ p(xy)pn°{dx,dy).
JIWTXWT IMxM
This implies the desired inequality. L]

4.5 Transportation-cost inequality on the path space over
non-convex manifolds

Similarly to §3.4.4 where the Harnack inequality is investigated on non-
convex manifolds, we first consider the operator h2(A + Z) as in 83.4.3 on
convex manifolds.
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451 The case with a diffusion coefficient

Let ip > 0 be a smooth function on M, and let be the distribution of
the (reflecting if sM ¢ 0) diffusion process generated by ip2(A +Z) on time
interval [0, X] with initial distribution p, and let A for x E M.

Moreover, for F > 0 with " (F) = 1, let
dF4,(dx) =nM(FMdx).

Theorem 4.5.1. Assume that dM is either empty or convex, and Ricz >
K for some constant K. Let p G C/A°(M) be strictly positive. Let

y = K-~w ac+ 3 ooLYNlool Moo + (d -
Then
WA(FUT, U Ir ™) 2< 2C{T, V>)I1M(FlogF)

holds for /aE 'P(M), F >0, 1J~(F) = 1 and

C(T,d)
. Q< T e2 _
=bl {(1+ N-UM | exp [4(1 + f)VV'] A}

Proof. As explained in (a) of the proof of Theorem 4.4.2, we shall only
consider the case that 3M is non-empty and convex. According to the
proof of “(3) = (2)”, it suffices to prove for p = 50,0 E M. In this case the
desired inequality reduces to

< 2C(T, p)N,,m(F log F), (4.5.1)

forall F >0, nJ ,;(F) = I. Since the diffusion coefficient is non-constant,
it is convenient to adopt the Ito differential d/ for the Girsanov transfor-
mation. So, the reflecting diffusion process generated by ip2(A + Z) can be
constructed by solving the Ito SDE

d/IAt = V27 {Xt)utdBt + ip2(Xt) Z(Xt)dt + N{Xt)dlt, (4.5.2)

where X q= o0 and Bt is the d-dimensional Brownian motion with natural
filtration Ft- Let /,Q and Bt be fixed in the proof of Theorem 4.4.2. Then

d/Xt = V2xP(Xt)utdBt + N (Xt)dlt g3
+ {p2{Xt)Z{Xt) + V2xP{Xt)utpt}dt.
Let Yt solve
d/Yf = V22 (Y1)PXtivtutdBt+22{Yt)Z(Yt)dt+N(Yt)dlt, YO= o, (45.4)
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where It is the local time of Yt on dM. As in (a), under Q, the distributions
of ¥[o1] a3 X[o,r] are and F 11" respectively. So,

wW2°{Fn”~,U”"N)2< EQ maxp(At,yt)2. (4.5.5)
Noting that due to the convexity of dM

(N(X), Vp(y, 9)(*)) = (N(X), Vp(- y)(X)) <0, x 6 dM,
by (4.5.3), (4.5.4) and the Ito formula, we obtain
dp(Xt,Yt) <V2{tP(Xt)(Vp(;Yt)(Xt),utdBt)

+tp(Yt) (Vp(Xt, -)(Y), Pxt,YtutdBt)}
+ {(HX1)2Z(X1t) + V2tP(Xt)ut/,Vp(;Yt)(Xt)) (4.5.6)

d1
+Y, U2D(X,YE) + &(1)2(Z(Y), Vp(Xt, )y},
i=i
where are vector fields on M x M such that XUi(Xt.Yt) = 0 and
vixt,Yr) = rPiXtW +iPiYJPx*"Vu I< i< d-I
for {Vi}f=1 an ONB of TxtM with Vd = Vp(-, Yt)(Xt). By the calculations
leading to (3.4.28), we obtain

dp(Xt,Yt) <V2 M X t) - rP(Y))(Vp(; Yt)(Xt), utdBt)

+ K”p(Xt, Yt)dt + V2 H/lloolAldt.
Then

M t y/2 f e~~"s(tP(Xs) - tP(Ys))(Vp( YS)(XS), usdBs)

Jo
is a Q-martingale such that

p(Xt,Yt) <eK**M4+ u/2em** [V '"IM U & Ids, tEe[oT1. (457

J
So, by the Doob inequality we obotain
it:=E X p(Xs,Ys)2
a3 t]p( )

< (1+ R)eXIMEq »%1%,){] M?2
+2|I[VCU +R-"e2%*Eq(jf e~"aPa
p2db 1 ft
<4(l + R)e» tEQM2+ (I + R-1)\m @c----------- / EQ|2ds
(M Jo
<81+ O)|IY"||he2x [ e-2Ksisds
Jo

R I D K [ R / EQl&]2ds
() 0
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for any R > 0. Since e 2K*s is decreasing in s while is is increasing in s, by
the FKG inequality we have

0 2Kt
J EFXsisds < (] J e~Krsdsjj tHBIs ; £cds.

Therefore,

4<4(1+ 22|Vt m , Tds
ekgpr _ j ft
i A s s
+(i+7-DW KD JO Eql/?s
holds for t G [0, T]. Since Ig= 0, this implies that
Eq tgfcf)f] p(Xt,Y)2=iT

AT _
<(1+R-1

RAT _ A-
Ky
Combining this with the (4.5.5) and (4.4.10), we complete the proof. O

x eXp 4(1 + R)|[V " JS Eql/3s As.

Theorem 4.5.2. In the situation of Theorem 4.5.1,
I (N AN AN) < 2e<™+"vA TW%{p,v), ii,neV(M),T>0

Proof. As explained in the proof of “(6) = (5)”, we only consider p = 6X
and v —by. Let Xt solve (4.5.2) with Xg= x, and let Yt solve, instead of
(4.5.4),

djYt = V2A{Yt)PXuYtutdBt + i2(Yt)Z(Yt)dt + N(Yt)dlt, M0 =.
Then, repeating the proof of Theorem 4.5.1, we have, instead of (4.5.7),
p{Xt, Yt) < +px,y), t>0 (4.5.8)
for
Mt := y/2 Jf e-**a(1,(Xe) - h{Y){Up(;YB)(X,),Palh).
o
So,
Ep(Xt,Yt)2< e™jpOr,y)2+ 2||[VA|ILJ " e~2* sEp(Xs,n)2ds],

which implies
Ep(Xt,Yt)2 < e2(*+HvMI~»p(Xx,y)2.
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Combining this with (4.5.8) and the Doob inequality, we arrive at
A AL AN)2<E max p(Xt,rt)2< e TE max (Mt + p(x, y)f

< 4e2*TE(MT + p(X,y))2 = 4e2k™T (EM% + p(X,y)2)

= 4626 (p(X, y)2+ 2\L\1 jf  e~2k*Ep(Xu Tt)2df)

< 4e2(k™Mv VI0):r&Xa) j/)2.
This implies the desired inequality for p —Sx and v —6y. O

4.5.2 Non-convex manifolds

As in 83.4.4, by combining Theorem 4.5.1 with a proper conformal change of
metric, we are able to establish the following transportation-cost inequality
on a class of manifolds with non-convex boundary. Let K be in (3.2.15)
and = Ov (~Kd).

Theorem 4.5.3. Let M ¢ o with 1 > —a for some constant a > o, and
let Ricz > K hold for some K 6 R. For ¢p € C*°(M) with ¢ > 1, and
Nlogp\am > < lot Kip be in (3.2.15). Then for any p GV (M),
WE°°(FT%,MN"1)2< 2]|0||*c(T,0)n?*(FlogF), F >0,1%(F) =1

holds for

o(T@) = inf {1 +R~1)"
where

4 me=Kp\P\lo + 2||dr + (d- 2)VO0lloo||VO|lool|0]joo + (d - 1)]|VOl|oo.
In particular,
WE°°(FI1%,1%)2 < 2||0]|*c(T,0)n*(FlogF), oeM ,F> 0,MN&(F) =1
Proof. Let (o) = (p~2(-,-). By Theorem 1.2.5, (M, (s,¢)") is convex.
According to the proof of Proposition 3.2.7, we have L = ~2(A' + Z")
and Ric™ > Ka(-,-)', where Z' = ¢2Z + —7V"2. Letting K be defined
in Theorem 4.5.1 for the manifold (M, (s, ¢)") and L — 2(A' + Z") with
= d~r < 1, we see that p < kp since

nn' = oIl vl = e-11Voll < 1IIMoH
So, C(T,rp) <c(T,d). Therefore, Theorem 4.5.1 yields

W?2~(F1%,1%t)2 < 2¢(T,0)nJ(FlogF), F > 0.N1(F) =1,

where p is the uniform distance on IT7 induced by the metric (-, W'. The
proof is completed by noting that < lINlooPA- n

NpT _ 1 p2kpT _ i ,,
N

EXp [4(1 + - ]}’
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Similarly, since Kp < K and
p' <P < \\®\\ooP',

the following result follows from Theorem 4.5.2 by taking ip = ¢~r.

Theorem 4.5.4. In the situation of Theorem 4.5.3,

WES(YI1,n1) < 2|Mjooe® +11A"IWAST UE(M ), e V(M),T > 0.



Chapter 5

Subelliptic Diffusion Processes

In this chapter we investigate hypoelliptic diffusion processes. 85.1 is de-
voted to functional inequalities, including super/weak Poincare inequalities
(85.1.1) and Nash/log-Sobolev inequalities (85.1.2). In §5.2 we introduce
and apply the generalized curvature-dimension condition to the study of
functional/Harnack/HWI1 inequalities. Finally, in 85.3-85.5 we use Malli-
avin calculus and coupling arguments to derive explicit Bismut type formu-
lae and Harnack inequalities.

Let M be a connected complete d-dimensional differentiable manifold
without boundary. Consider the following second order differential operator
on M:

n
L= \t(_i, X?+ Xo.
where X g, =, Xn are smooth vector fields on M. The associated square
field of L is

n

F(/,9):=ENe ANe9). f,geC\M).
i—
Throughout this chapter, we assume that L is subelliptic (also called

hypoelliptic in references), i.e. the Lie algebra induced by the family
{Xi, [Xo, Xi\ : 1< 1 <n) equals to the whole tangent space at any point.
This condition is known as the Hormander condition due to the pioneering
paper [Hormander (1967)], where it is proved that this condition implies
the existence of smooth heat kernel of the associated diffusion semigroup.

When the functional inequality is concerned, we assume that L is sym-
metric w.r.t. a probability measure /i and Lie{X, :1<i<n) = TM. In
this case for any x £ M, there exists A> 1 such that the commutators of
Ho := {Xi :1<i <n} up to order K

Hk  {XjO,eee, [XiO, [Xit,..., [Xik 1, XiK]...]]: 1 *0jeee> A~

257
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spans TXM. Let /i have a strictly positive and C'l-smooth density w.r.t. a
Riemannian volume measure. Then the symmetry of L in L2(/i) is equiva-

lent to
n

£= g_i{ X2+ (div w b (501)

where div™JQ is the unique continuous function such that the integration
by parts formula

/ (diVQ/dLL=-J[ (Xif)dfi,
Jm m
holds. Then
- ﬁvlgl-fdg =y(F(f,9)), f,g£EC?{M)
and thus, the form
£(f,9):=4(T(f.9)), f.g€CZ°(M)

is closable in L2(/i) and its closure is a symmetric Dirichlet form.
Before moving on, let us introduce some typical examples.

Example 5.0.1. (Gruschin operator) Let M =R2and take

d

dy'

where k £ N. Obviously, the Hormander condition holds for +b —{X,Y}
with commutators up to order k. Then the Gruschin semigroup of order K
is generated by X 2+ Y 2. Let g(dx) = evixhlx be a probability measure
for some V € C2(M2). Then the associated symmetric subelliptic diffusion
operator is

Y =

L=X2+Y2+ (XV)X + (YV)Y.

Example 5.0.2. (Kohn-Laplacian) Consider the three-dimensional
Heisenberg group realized as R3 equipped with the group multiplication

(Yo (xt oy z') o= (x + xy + oy z 2+ {xyl- x'y)/2),
which is a Lie group with left-invariant orthonormal frame {X,Y, Z}. where
- d
:&‘%/E' y_ﬁy+ 2dz
Then the Kohn-Laplacian is g := X2+ Y2. Let y(dx) = evNedx be a
probability measure for some V £ C2(R3). Then the associated symmetric
subelliptic diffusion operator is L = X2+ Y2+ (XV)X + (YV)Y.

X
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Example 5.0.3. (Stochastic Hamiltonian system) Let m,d > 1
A€ Km®Mmand B 6 Rm®  such that the Kalman rank condition (see
[Kalman et al (1969)])

Rank[f3, AB,..., AkKB] =m

holds for some 0 < Kk <m —L Then the operator

L= £ { w o o2{x’

generates a stochastic Hamiltonian system. See 85.3.1 and 8§5.4.1 for more
details.

5.1 Functional inequalities

85.1.1 is devoted to the weak and super Poincare inequalities, while the
Nash and log-Sobolev inequalities are investigated in §5.1.2. Main results
presented in these two parts are illustrated by the Gruschin type and Kohn-
Laplacian type operators in §85.1.3 and 8§5.1.4 respectively. Throughout this
section, we use vol instead of dx to stand for a reference Riemannian volume
measure on M. Assume that dp = e”dvol is a probability measure on M
for some V € C2(M). Let L be given in (5.0.1) and let (£,T>(£)) be the
associated Dirichlet form.

5.1.1 Super and weak Poincare inequalities

In order to describe the essential spectrum aess(L) of (L, V{L)), we shall
establish the following Poincare type inequality:

p(/2) < r£(fj) +/3{Np@WN)2, r>r0,feV (£), (5.1.1)

where ro > 0 is a constant, ¢ > 0 is in L2{p) and /? : (ro,00) —>(0, 00)
is a positive (decreasing) function. Since the corresponding semigroup
Pt has transition density with respect to p, according to Corollary 1.6.5,
aess(—L) C [r~1,00) if and only if (5.1.1) holds for some ¢ and /3 spec-
ified above. In particular, aess(L) = 0 if and only if the super Poincare
inequality

p(/2) < rE(F,f) + B3OPE/IN2, r>0,/e £5(E), (5.1.2)

holds for some positive function /3 (0, 00) — (0, 00).
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We will adopt a split argument, that is, the desired functional inequal-
ity follows from a local inequality and a Lyapunov type condition. We
first prove the local Nash inequality. Recall that since Ho satisfies the
Hormander condition, for any compact domain K in M there exists k > 1
such that Hk(x) spans TXM for any x E K. In this case, we have the fol-
lowing the Hormander inequality (see e.g. [Jacob (2002); Rothschild and
Stein (1977)])

I (@- Au@N2vol < CK [ (F(.1) +12)dvol, /e CO(R),

(5.1.3)
where Cq’(K) is the set of all smooth functions on M with supports con-
tained in the interior of K.

Proposition 5.1.1. Let K be a compact domain in M and k > 1 be such
that Hk(x) spans TXM for any x € K. Then there exists a constant Ck > 0
such that

m(/2) < cke(f.f)dev+dke  fe C?(K),p(\f\) = 1

Proof. Since V is bounded on K, it suffices to prove for V = 0. By the
classical Nash inequality on compact domains there exists a constant aq > 0
such that
d/(2+d)
dvol < @ (1 —A)V2/)2d vol

holds for all / € Cq°(K), Jm |/|[dvol = 1 According to Theorem 1.3 in
[Bendikov and Maheaux (2007)] for fractional Dirichlet forms, this implies

ndk/(2+cK)

f 2dvol < ci ((1_A)l/(2fe)/ )2dvoll
K

holds for all / e Cq°(K), Jm |/|dvol = 1 for some constant ci > 0. Com-
bining this with (5.1.3) we obtain

dki{2-+K)
dVol < @ + / 2)dvol (5.1.4)

holds for all f £ Cf°(K), fK|/|[dvol = 1 for some @ > 0. So, to complete
the proof, it remains to confirm the following local Poincare inequality:

| 12dvol<c3 [ r(l/ydvol, fECA(K) (5.1.5)
Jk k
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for some constant G > 0. To this end, let P be the Dirichlet heat semi-
group generated by

n

LO:="2 {x f + (divXi)"} (5.1.6)
=

on K. Then P f is symmetric in L2(K; vol). Let pt > 0 be the heat kernel
of Lo on M, for any / 6 L°°(K;vol) we have

[TAK /|loo<e]||/]loo

for
e=1- Xlgr( chpl(x,y)vol(dy) <1l

This implies that Pt decays exponentially fast in L°°(if; vol) as t -> oo,
and thus, so is in L2(if; vol). Therefore, (5.1.5) follows from e.g. the proof
of Theorem 2.3 in [Rockner and Wang (2001)]. O

The next result is an extension of a classical estimate on the first Dirich-
let eigenvalue for elliptic operators.

Lemma 5.1.2. Let d be an open domain in M. If there exists a smooth
function p such that '(p,p) < 1 and \Lp\ > 0> 0 hold on Q, then

m(/2)<~E(/,1), 16C 0 (fi).

Proof. Without loss of generality, we assume that Lp < —8. Otherwise,
just use —p to replace p. So,

Lexp [#p/2] < i?'exp [0p/2] (5.1.7)
holds on Q. Let h := exp [0/5/2]. Since
- [ fiLfidp, = [ T(/b/2)dp, /b/2& LW
it follows from (5.1.7) that
MI(/,/)) =- 1 fLfdp=- f/1(4 )dp

fig2rm  f +ofrf'f 11
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Recall that a function g on M is called compact, if it has compact level
sets; i.e. {g < r} is compact for any r 6 K.

Theorem 5.1.3. Let L be hypoelliptic. If there exists a smooth compact
function g such that I'(p, g) < 1 and

5 ::Aﬁ%nf \Lg\ > 0,
then aess(—L) C [&/4, 00). If in particular 5= oo then oess(—L) = Q.

Proof. Let pe L2(p) be locally uniformly positive. By Corollary 1.6.5,
we only need to prove (5.1.1) for ro = 4/52 and some /3 : (ro, 00) -> (0, 00).
For any r > 4/62 and any e € (0,6) such that r > 4/(6 —e)2, let Re > 0 be
such that \Lg\ > 6—e on {g > Re). Then, by Lemma 5.1.2, one has

M/2)<~ (/,1), 1€cC?({g>Re}. (5.1.8)

Forany N > 1and / € C8°(M), applying (5.1.8) to [ :=/((e~"c)+ Al)
in place of /, we obtain

M) T ola g /) + (5.1.9)

On the other hand, since {p < Re + IV+ 1} is compact, by Proposition
5.1.1 there exists co(e, N),ci(e, N) > 0 such that for any / € Cq’(M), the
function 72 :=/ ((Re + N + 1—g)+ A |) satisfies

M /2) < *£(/2,/2)+ cl(E,no «~co(E'n°M U 2])2
< 2sE(f, f) + 2sp(f2) + c2(e, N)sc’p(\i<t>)2, s>0

for c2(e,N) := ci(e, N) supe<HetV+Lh~2 < 00. Combining this with
(5.1.9) and noting that f2 < ff + /|, we arrive at

MbE(Srs$ +*)*</. )+ (f< N9 +*> (N
+c2(e,N)s-c*p (\fNe )2, s> 0.
Taking N large enough and s small enough such that

N
u(e, N, s) N2(61€e)2+ 2s < 1,

we obtain

»>0.
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1 140 +&) X £
) S2

o T—u(s, N, s) \(@ —£)2 +

Since
<r(l—u(e, iV,s))]

E Il_rrgol

the set
M) = j(e,iV,s) G(0,J)x[1,00)x(0,1) : 25+~ 1+
(EN,S)6 1N} < QOr > ® O

is nonempty. So, (5.1.1) holds for
P(r) :=inf{iTue s)s~ ~
Let g be a smooth compact function such that a < |Vp| < 6 for two
constants b > a > 0 and large g A very simple example for Theorem
Xn} satisfies the Hormander condition with

5.1.3 to apply is that {Xi
s>0.

X\ —Vp. In this case, let
{XiQ + (divXi)(Aip)}

W(s) = sup |
Qs =1
Then the condition in Theorem 5.1.3 holds for ¥ := €0 g with
. >0

I%f \f\ip'(s)\ —
When Lg < 0 for large g, we are able to extend Theorem 5.1.3 to the

case where I'(p, g) is possibly unbounded
Theorem 5.1.4. Let L be hypoelliptic and let A(s) = supe<sI'(p, g), s >0
ion. If

A >,

for g be a smooth compact function
S:=liminf —
e>°0 y/A(g)

then oess(—) ¢ [d2/4, 00)
1 is nonnegative and increasing. So, for any e € (0,(5), by a classical

Since g is a smooth compact function, J1is continuous. Moreover
approximation theorem, there exists an increasing smooth function Ae such

Proof.

that |/1—Ae| <e. Let
ylAe(s) + £

We have I'(p, g) < 1and there exists Re > 0 such that

~ <—H6—e), p>Re

Lg
©9 ds y/Ae(s) + £ s=g

\JAe(g) +
is completely similar to the proof of Theorem 5.1.3

L
g) +1
According to Lemma 5.1.2, this implies (5.1.8). The remainder of the proof

O
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Next, we consider the weak Poincare inequality for /i being a probability
measure:

p{f2) <a{r)E{f,f)+rllho, r>0,p(/) =0, (5.1.10)

where a : (0, ctg) -» (0, 00) is corresponding to the convergence rate of the
associated semigroup (see §1.6.4). To estimate the function a, we consider
below a special class of hypoelliptic operators on Md with algebraic growth,
more precisely:

(A5.1.1) There existro > 0andrq,..., > 0 such that
r(/fo”s,/o”s)=sror(f,f) oips, s>0,feC\Rd) (5.1.11)
holds for (ps(xi, ...,Xd):= (srixi,..., sTdXd).

Theorem 5.1.5. Let M = Rd and dp = ev”*d x be a probability measure.
Assume that I" satisfies (A5.1.1). Let Ds= {|xj| < sri : 1< i< d} and

&HV) =supV —infV, s>0.
Ds s
Then there exists a constant @ > 0 such that (5.1.10) holds for
a(r) := @inf {sree®* : 2p{Da) <rAl}, r>0.

Proof. To establish the weak Poincare inequality, we need to estimate
the local Poincare constant. Let

(d. = g [ f00dx,

where |D§| is the volume of Ds. For any s > 0, let y(s) > 0 be the smallest
positive constant such that

[ (/(*) ~ ()Dfd x < 7(s) f r{,fH(x)dx, f€c\p 2) (5112
Jds Jdx

holds.
By the local Poincare inequality implied by (5.1.3), we have ag := q(l) 6
(0, 00). Combining this with (A5.1.1), we obtain

JD\ (f°<Ps(x))2dx<cosr°JE2 T(f,f)oips(x)dx, f 6 CLD2s), (f)D. =0.

Therefore, (5.1.12) holds for 7(s) = Cosr°. Combining this with a simple
perturbation argument, we obtain

ff(f2103) < coarcer>p (F (/, 1)) + s > 0.
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Since /x(/) = 0 implies

M/1dJ 2= M/Ip;)2 <
H(DS) p{Ds)

provided p(Ds) < i, we obtain

m(/2id] < cOsree® vV (r(/,/)) + H{D§), d{Ds)< —

Thus,

d(f) < ) +2|/[bl 9»), mUI$) < 5-

This implies the weak Poincare inequality for the desired function a. O

5.1.2 Nash and log-Sobolev inequalities

We first establish the Nash inequality for V = 0, then derive the log-Sobolev
inequality by a perturbation argument as in the elliptic case. To establish
the Nash inequality, we will estimate the intrinsic distance induced by I
and apply heat kernel upper bounds for the associated diffusion semigroup.
To this end, we assume that the square field has an algebraic growth in the
sense of (A5.1.1) and (A5.1.2) below.

(A5.1.2) M —Rd and there exists {m3 > 0 : 1 < j < d} such that
m,0 = 0 for some 1<io <d, and

d
r(/,/) >6\"2\xioem*{ax /)2, 1zU := max b| <e (5.1.13)
j=1

holds for some constants 0\,e > 0.

Next, for any / € C'1(Ed), let
fi(x) = f(ir+1XI,...,im*1xd), i> I,x = (xu...,xd)&Rd. (5.1.14)
(A5.1.3) M = Rd and there exists a constant 02 > 0 such that

r{fi,fi){x) <62i2r(f, f)(imi+1xi,... ,imd+1xd) holds forall x e 1d,i> 1,
and / € C1(Rd).
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5.1.2.1 Heat kernel estimate

Let us first recall a known heat kernel upper bound for hypoelliptic diffu-
sions on a compact connected Riemannian manifold M. Let {Xi,..., Xn}
be a family of smooth vector fields on M satisfying the Hormander condi-
tion.
Forany x € M and v e TXM, let
Hr = sup{fy/|(x) : / € CI{M), T{f,f){x) < 1}

For any smooth curve 7 : [0,rf] =M linking two points X, y, the intrinsic
length of 7 induced by these vector fields is

M 7)== fo I17s|rds.

The intrinsic distance pr{x,y) between x and y is defined as the infimum
over the intrinsic lengths of all smooth curves linking x and y. Recall that
the Hormander condition implies pr < 00.

An equivalent definition of pr is given by using subunit curves. A C1-
curve 7 : [0,r] -)M s called subunit, if

a
df/bl <Vnfl)ht), feC\M),te[0,r}.

Then
pr(x,y) —inf{r > 0:7 : [0,rf] =M is subunit,70 = X, 7r —Yy}-
Moreover, we have
Pr{x,y) =sup{|/(x) -/bl | : f GCLM),T(fIf) <I}.

Let pt(x, y) be the heat kernel of the operator Lqggiven in (5.1.6) on M.
If M is compact, then due to Lemma 8 in [Fefferman and Sanchez-Calle
(1986)] (see also [Jerison and Sanchez-Calle (1986)]), there exists a constant
C > 0 such that (

t <
PYAX)< Vorsr(x, t'2))
where vol is the Riemannian volume measure and Br(x,r) := {pr(*?*) <
r}.
We intend to extend this estimate to the Dirichlet heat kernel on a
bounded domain when M is non-compact. For any open domain Q C M,
let pf be the Dirichlet heat kernel of Lgon IN.

f>0,xeM, (5.1.15)

Lemma 5.1.6. Let ficfli be two bounded open domains in M such that
M C fii and Sy is diffeomorphic to the unit open ball in Kd. Then there
exists a constant C > 0 and to > 0 such that

p2{x’x) 1I6]1A 1, el1l
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Proof. Let ro > 0 such that
MN':=\yeM: infpr(x,y) <r0) c Nb

Let tli be an open geodesic ball in Sd. Then there exists a diffeomorphism
ipi£11—2fli.

In particular, we take a Riemannian metric g on 8d such that <pis indeed

isoperimetric. Let vol be the associated Riemannian volume measure. So,

the vector fields {p*(Xr)} satisfies the Hormander condition on fR. Let
h E C°°(Sd) such that

O0<h<u, =1, /il,,C=0.

Moreover, let {Y),..., YIn} be vector fields on 8d which span the tangent
space at any point. Then

H = {h<p*(Xi), @ —h)Yj : 1<i<n,1<j <m}

satisfies the Hormander condition on 8d. Let p be the corresponding in-
trinsic distance. It is easy to see that

Pr(x, y) = p(<p{x), <p(y)), x € Sl,y e £l'. (5116)
Let pt be the heat kernel of the self-adjoint operator

L:= J2 {X2+ (divX)X}
XeK

on (Sd,g). Due to (5.1.15) one has

PL(x,x) < —mmmmmmmmmmmmee - — , t> 0,xE&d, (5.1.17)

where Bp(x, r) := {p(x, ¢ < r} for r > 0. Since
Lf =W o<p)lo<p-\ f ECO°MD)),
one has
P2{x,y) = pfn\p(x).ip{y)),

where pf/'l) is the Dirichlet heat kernel of L on which is smaller than
pt-Thus, the desired assertion follows from (5.1.16) and (5.1.17) forto =Tg
by noting that <pis isoperimetric. O
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According to Lemma 5.1.6, to obtain an upper bound of pp depending
only on t, we need to estimate the intrinsic distance.

Lemma 5.1.7. Let {A*} satisfy (A5.1.2) with mi = 0. Then

PIr(*, y¥ + I taf {2r+ £
i=2

Proof. For fixed x,y with |x|oo, |ploo < e, let
= (yi,..., yi-i, Xi,..., xd), 1<i<d+1

In particular, x * = x, x(d+1) = y. Taking 7S= (sxi + (L —s)y\, X2, ¢+, xd)
for s € [0,1], by (A5.1.2) with mi = 0 we obtain
d 2

r(f,f)y>el\dxIf\2
L- Yij2n M .

Thus,
pr (X, x(2)) < \X\(; W\ (5.1.18)
Next, for any xi ¢ 0, let
7j(s) = (1 —s)xw + sxM+1\ s £ [0,1], i>2
Similarly, we have
. o i
T(f,f)>el\xi\2mQdxj \ 2 = b Vi,|2 dehi(S))
Then
PrROXI) < iy 25150
If Xi ¢ O, this and (5.1.18) yield
Prixy) < 121 1 W=y (5.1.19)

fetio i
Moreover, for any xi 6 R and r £ (0,e), let xi £ K be such that

|*i - *i] < r,i*i| > r. Let x = (Xi,x2,...,xd),y = (xi,y2,...,yd). It
follows from (5.1.19) that
Pr(x,y) < Pr(x,x) + pr{x,y) + Pr{y, ¥)
< 2r+ [xi =21, 1v-"¥i- oyt
0i 0 rn
i—2
So, the proof is completed. O
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Combining Lemmas 5.1.6 and 5.1.7 we obtain the following main result
of this section.

Proposition 5.1.8. Let {-Xj}=i satisfy the Hormander condition and
(A5.1.2), (A5.1.3). Thenfor any open domainft C {x G :|X|oo < |},
there exists a constant C > 0 such that

suppp(x,x) < ct-{d+mi+ +md)/2, t> 0,x Gft.
Xeo
Proof. Without loss of generality, we assume that m\ = 0. Let to, /1be

in Lemmas s5.1.6 and 5.1.7. Let ¢j = max2<icdo~1+m* and take t\ &
(0,to /17 such that

©i + cfl)vi < -

Since jxjoo < |, Lemma 5.1.7 with r := 0itl/2/4 implies that for any
t G (0, ti],

i=2
Bxtl/2 , (M D2

D{pGM: \xi-yx\< od * FL-ViIv < i <i< dj.

Thus, there exists a constant @ > 0 such that
vol(5r (x,t1/2)) > c2f(d+mi+...+md)/2, t € (0 tl]

Hence, the desired estimate holds for t G (0, tx]. To complete the proof, we
only need to show that

supp”™(x,x) < cze~A* t>ti (5.1.20)
xen

holds for some constants c¢3, A0 > 0. To this end, let Pp be the Dirichlet
semigroup of L on ft. Since the semigroup generated by L on Kd has a
positive heat kernel pt{x,y),

ex inSZf [ pn/2(x, jvol(d?) > 0.
Since p{\ <pti, this implies that
lIFt?/21U°°(n)->L°°(P) = f‘éfﬁ f p?,2{x,y)vo{dy) < 1-ex < 1
q
Therefore, by the semigroup property,

Pt Iz°(f2}>z=(2) < (:ie_‘m (5.1.21)
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holds for some ci, A0 > 0. Moreover, by the local Nash inequality in Propo-

sition 5.1.1, one has HP* ||Li(n)-»L°°(fi) < oo for all t > 0. Combining this
with (5.1.21) we obtain

I (L)L) < NAG/211/2(0)—Lo(n) /2 YL—Loo(n)
< ce Adt, t>tx

for some constant ¢ > 0. Thus, (5.1.20) holds. O

5.1.2.2 Nash and log-Sobolev inequalities

It is well known that the uniform heat kernel upper bound implies a Nash
inequality. To derive the log-Sobolev inequality from the Nash inequality,
we present below a perturbation result for Hormander diffusions on mani-
folds.

Proposition 5.1.9. Let I be the square field associated to vector fields
on a connected complete Riemannian manifold M satisfying the
Hormander condition. Let dpo = ev°d vol for some Vo £ C2(M) such that

M /2)<CMT (/,]) +/2r i(r+2y, [ ecom),pofy) =1 (51.22)

holds for some C,m > 0. Let V £ C2(M) such that d/i := e”~dpo is a
probability measure.

(1) If there exists S > 0 such that
pO(exp[S(T(V, V) - 2LV) - V]) < oo,
then there exists a constant C > 0 such that
M(/2logf2) < cp(r(/,7)), / 6 Cb(M),p(f2)=1
(2) Iffor anys >0
U{s) := hO(exp[s(r(V, V) - 2LV) - V]) < oo,
then there exists a constant @ > 0 such that
M(/2log/ 2) < rp(T(f,/)) + co+ mlog _r'?l_l + log U(r/4)

holds for all r >0 and f £ Cq(M) withp(f2) = 1
Proof. By [Bakry et al (1995)], the Nash inequality (5.1.22) implies

Mo(/2log/2) < zIog{a/iO(T(/,/)) +b}, f£CQM)MY/2)=1
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for some constants a, b > 0. Thus, there exists ¢ > 0 such that
M /2bgf2) < "Mo(I'(/,/)) +c+y log(r1V1]
forallr >0, / € Cq(M), Ho{f2) = 1- Replacing/ by /ev/2for/ € Cq(M)
with n(f2) = 1, and noting that
fio(/2ev log(/2e'1)) = p(/210g/2) + n(f2V),

Mo(T(/eVI2,/e KI2)) = Mo(ex {r (/,/) + IT(/, V) + ~ 120 (1/,Y)})
= n(C(, 1)) + M(C(/2,K) + ~ (1 20(Y, Y))

= (T (/, 1) + |~ (J2{T(AAK) - 2LF}),
we arrive at
p(/2log/2) < £n(T(/, 1)) + Ix(/2{gNe  K) - 2LR] - ¥})

+ C+ vy log(r_.1V1

< ™m(/2log/ 2) + ~p(F(/,N) +c+y log(rivy

+ilogw (eiW “)-~rvi-v)

This implies (2).
If the condition in (1) holds, taking r = 45 in the above display we
obtain the defective log-Sobolev inequality:

M /2log/2) <apl (/,/)) +C2, | €Cq(M),n(f2) =1

for some Ci,C2 > 0. Since due to the Hormander theorem, the operator
n

E{X 2+ (M"Y + YO)Ne }

i—
has positive heat kernel so that the corresponding semigroup is uniformly
positivity improving, according to [Aida (1998)], this defective log-Sobolev
inequality implies the exact one. O

Theorem 5.1.10. Let {Xi}™" on Kd satisfy the Hormander condition
such that (A5.1.2) and (A5.1.3) hold.

(1) Letm =d + J2i=i mi- There exists a constant C > 0 such that
vol(/2) < Cvol(r(/, 1)) m/2+m>Q(|/])4/(2+m> (5.1.23)
holds for all f 6 Co(Rd).
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(2) If there exists 6 > 0 such that
vol(exp[-P - $(r(V, V) + 2L0OV)}) < oo,
then there exists a constant C > 0 such that
M /2log/2)<Cli(r(/,/)), | € Co(Md),/i(/2) = 1. (5.1.24)
(3) Ifforanys >0
U(s) := vol(exp[-V - a(l'(V,V) + 2LOV)}) < 0o,

then there exists a constant ag > 0 such that
d .
M(@2bg/2) < rfi(T(f,/)) + cO+ (d+ ~rrij) los77TT + log U{r/4)
j=i r
holds for all r >0 and / 6 Co(Rd) with /x(/2) = 1

Proof. By Proposition 5.1.9 with \b = 0 (i.e. rq —vol), and noting that
LV —LqV + r(V/,V), it suffices to prove the first assertion. Let

Bs= {x € Rd: 2\xj\ < (es)mi+l,1<j <d}, s>0.

By Proposition 5.1.8, there exists a constant C > 0 such that (cf. Theorem
2.4.6 in [Davies (1989)])

vol(/2) < Cuol(F(, f))m* +mKol(\f\)A2+m\  / e C&Bi). (5.1.25)

Now, for any / € Co(Rd), there exists i > 1 such that / e Cq(Bf). We
have ft £ Cq(Bi) and

vol(/2) = r mvol(/2), vold/il) = r mvol(|/]). (5.1.26)
Combining this with (A5.1.3) and (5.1.25), we obtain
vol(/2) < Cfm(2-mvol(r(/,/)))m/(2+m)( r mvol(|/|))4/(2+m)
- Cvol(r(/, f))m* 2+#mo\{\f\) 4" 2+m\
This implies (5.1.23). Hence, the proof of (1) is completed. O

To see that Theorem 5.1.10 applies to a reasonable class of Hormander
type operators, we consider below a specific class of vector fields. Let
d =d\+ d2 and at point (x,y) € Rdl+d2,

d\ d2

Xi —~ ' (Tidg 1 'y ~hij (Cdyj, §i—1,...,n, (5.1.27)
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where a (ffij)nxdi is a matrix such that a := a*a is strictly positive
definite, and {hij} are homogenous functions on Rdl such that

hij(sx) = sljhij(x), s>0,x &Kdl,1<i<n,1<j <d2 (5.1.28)

holds for some constants {lj > 0} and
n d
 JF E E hijohuevivi > Q (5.1.29)

Corollary 5.1.11. Let be in (5.1.27) satisfying the Hormander
condition such that a*a is strictly positive definite and (5.1.28) and (5.1.29)
hold. Then (A5.1.2) and (A5.1.3) hold with d = d\ + di, mi = 0 for
| <i <d\ andmdl+, =hfor 1<i< In particular, (5.1.23) holds for
some constant C > O if and only if m = d\ +d2+ Ylih k-

Proof. Obviously, (A5.1.2) follows from (5.1.28) and (5.1.29). Next, let
fN be in (5.1.14). By (5.1.28)

F(fN,IN)(x,y)
B d\ 2

= E {E N(ridJd*J + Nhijdyjf} (Nx,NI'+lyi,..., NI* +lyd2)
i=17j=1

= N2T (fI)N(x,y), (Xx,y)ERd +i=

Thus, (A5.1.3) holds. Moreover, assume that (5.1.23) holds for some m >
0, it suffices to prove that m —di +dz2 + h- By an approximation
argument we are able to apply (5.1.23) to the function

JC)(*,») mE(s-\X\)+(sh+1 - M )+... (sn +1- lyd2)+, (x,y) € Rdl+d2

for s > 0. Obviously, there exist ci, @ > 0 such that for s > 0,
VOI(/@)) > CIS2+d!+3d2+3ii +...+3IdR)

vol(|/(s)|) < c2s1+dl+2d2+2il+- +2i".
Finally, by (5.1.27) and (5.1.28) there exists G > 0 such that

(5.1.30)

FW>/()) < 3{1{KkI<s}sil+L - ifify+ ... (O prean 1y
D

\ ", ~w fE
s ygm<smyend” Wyl
So, there exists G > 0 such that

vol(r(/w,/w)) < c4sdi+3d2+3'1+-+3*, s> 0.



274 Analysis for Diffusion Processes on Riemannian Manifolds

Therefore, it follows from (5.1.23) that
A2+di+3d2+3/i-f-... 43202

MINdi+3d2+3MN + —+3ZR)m/(2+Th) + (H<ii+2<i2+2/i+..+2Zd2yY(2+m) 50

holds for some C > 0. Therefore,
2+ d\+ X2+ ...+ 3ld2
_ m(di +3d2+ 3+ ... + 3ld2) + 41+ d\ + 22+ 2\ + ... + 2Id2)
2+m
which impliesm =d\ + + h + me+ U2- O
As a generalization to the known log-Sobolev inequality for V = —ep2
on a Riemannian manifold with curvature bounded below, where p is the
Riemannian distance function to a fixed point (cf. Corollary 1.6 in [Wang
(2001)]), we present below a corollary for hypoelliptic operators.

Corollary 5.1.12. Let {W}'=1 satisfy the conditions of Theorem 5.1.10.
Let p € C2(Rd) be nonnegative such that vol(exp[—ep2) < oo for any £ > 0,
and

M(p,p)>61, LOp<62{l +p-1) (5.1.31)
for some constants B\,62 > 0. Let vV = ¢(S) —ps for some constants S, ¢(6) >
0 such that p is a probability measure.

(1) 1f 6 > 2 then there exists a constant C > 0 such that (5.1.24) holds.
(2) 1f 6> 2 then
M /2log/2) <rp(T(fJ))+cr-s"s-A 1r>0,/ed ') (5132
holds for some ¢ > 0. Consequently, the associated semigroup Pt is
ultracontractive with
H-PtIURMI-fb-Oi) ~ exp[c'(l + 1-*/15-1))], t >0
for some ¢' > 0.

Proof. We may assume that p > 1by using p+ 1to replace p. Obviously,
(5.1.31) implies

r(V,V) + 2LOV > M V (&1 - 62{ps-2+ ps~I) (5.1.33)
for some constants t>,S2 > 0. So, if 5 > 2then —T(V, V)+2L0V] <ci+c2R
holds for some ci,C2 > 0. Thus, (5.1.24) holds according to Theorem
5.1.10(2) and the assumption that vol(exp[—ep2]) < oo for any e > 0.

Next, if 6 > 2 then (5.1.33) implies

a(r(v,v) + 2LoV) > -2V - cgs-VI*-2) _C) s>0
for some constants 03,04 > 0. This implies U(s) < exp[c3S~B\'5 2) + 09]
for some 6 > 0. Therefore, (5.1.32) follows from Theorem 5.1.10(3) and
(5.1.24). O



Subelliptic Diffusion Processes 275

5.1.3  Gruschin type operator

In this part we consider the Gruschin type operator L given in Example
5.0.1.

5131 Weak Poincare inequality

Obviously, (A5.1.1) holds for ro = 2,n —1,rr = k+ 1 So, Theorem 5.1.5
applies for ro = 2 and

Ds m={|x| <s, W <sfctl}, s>0.
In particular, we obtain explicit algebraic convergence rate for the following
example. Let
ni ox
V{x,y) =co-6 log(a2+ 1) - + 5 1°g(l + ¥2)
for some 6 > 1/2. Then for some ¢q GK
dp =ec’(l + x2)_5(1 + 22)-(feH-25)/2(fc+) dxdy
is a probability measure. Next, there exists a constant ci > 0 such that
p{Ds) < p(\x\ >s) + p(\y\ > sk+1) <cislAS s >0
Moreover, there exists a constant @ > 0 such that
e5(v>< csfctdd, e>|l.
Then by Theorem 5.1.5 the weak Poincare inequality holds for
a(r) = c3(l + r-(a+*+«)/(M-i))> r >0

for some constant G > 0. Therefore, it follows from Theorem 1.6.14 for
H={/€L2p) :p(f) =0} that

|IPt - pW\oo”2 < ct-W -W +k+“\ t > 0.

5.1.3.2 Super Poincare inequality

For simplicity, we only consider Kk —1so that X = ~ and ¥ = Xuw. Let
V(x,y) = £(a + (c+ x)2)I(b + y)m for some constants a,b,I,m > 0 and
£,¢cd 0. Then gess{L) = 0, i.e. the super Poincare inequality (5.1.2) holds
for some t 6 L2(p) and some function /?, provided either (a) £ > 0,1 >
1/2,m > 5/4; or (b) £< 0,/ > I,m > 5/4,

Proof. Let

p(X,y) = y/i(c+ z)2+ \/l +y2, X,yeR,
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which is a smooth compact function. We have
Fip.p)y) = fiXp)2 + (vp) Hxy) = @LQ2EXVIE (LI, «
(c+ x)2+ \y2+1

for some constant ci > 0 and all x,y e K. By Theorem 5.1.3, it suffices to
show that

pl_lggo |Lp| = oo. (5.1.34)
Noting that
1 (c+ x)2
X 20(X, ,

P Y) p(x,y)  p3(X.y)
XV

YY) 2px, 201 +y2)32  4p3(x,y)(I +y2)

li -
p_|>rro1O X2p+Y2p 2p(x,y) (1l + p2)32 0. (5.1.35)

Moreover, since ¢ ¢ 0, there exists e > 0 such that
(*M(Xp) + (I')(Mp)

_2l(a+ (c+ x)2( 15+ y2)m(c+ x)2

P{x.y)
N mx2{a+ (c+ x)2)I(b +y2)m~1y2

Pyy2+1

(5.1.36)

S e(xa + y2(m-1))

p(.y)
Now, we are able to prove (5.1.34) for cases (a) and (b) respectively.
(@) Let £ > 0. It follows from (5.1.35) and (5.1.36) that limp-"*, Lp = 0o
provided | > 1/2 and m > 5/4.
(b) Let £< 0. By (5.1.35) and (5.1.36)

liminf(—tp) > liminf SO2+Y2Am W —€2
p—t00 p—t00

provided | > 1and m > 5/4. O

5.1.3.3 Nash inequality

Obviously, (5.1.28) and (5.1.29) hold for a = I,di = d2= Mi = k. By
Corollary 5.1.11, (5.1.23) holds for some C > O if and only if m = 2+ k.
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5.1.3.4 Log-Sobolev inequality

Let d(x,y) = \x —c\k+1 + ay2 for some constants ¢ ¢p 0,a > 0. Let V =
Co —8goT for some Co 6 R and 8,rn > 0 such that y is a probability
measure. If m > 2 then there exists C > 0 such that (5.1.24) holds. If
m > 2 then there exists ¢ > 0 such that

m(/2log/2) < rfj(T(f,/)) + cr-m/(— 2) (5.1.37)
holds for all r > 0, / € Cq(M2) with p{f2) = 1
Proof. It is easy to check that
M d = Xp)2+ {Yh)2 = {k + 1)2{x - c)X + 4a2x2ky2
b0 := k(k + 1)pk —c\k~I + 2ax2k.
So, for sufficiently large
r(V, V) + 2LOV
= (T 282427 ~4 —28m(m — )T~ (th, ¢) —25ThT~1b0h
> exg(m- 1
for some constant cx > 0. Thus, there exists @ > 0 such that
r(V, V) + 2LOV > cid™-1) - c2. (5.1.38)

In particular, if m > 2 then the condition of Theorem 5.1.10(2) holds for
8= land e =ci/2. Moreover, if m > 2 then (5.1.38) implies

a[T(V,V) + 2Lo"] +V >crp2* -N - ¢25- 8pr + CO
>-c3(l +s-m/(m-2), s£(01]

for some ¢3 > 0. Therefore, by Theorem 5.1.10(3), the desired log-Sobolev
inequality holds for some ¢ > 0 and all r € (0,1], hence it also holds for all
r > 0 and a possibly larger ¢ > 0, since the weak Poincare inequality and
the defective log-Sobolev inequality imply the strict log-Sobolev inequality

M /2log/2) < Cy{T{fj)), f e Co(R2),p(/2)= 1

for some constant C > 0. O

5.1.4 Kohn-Laplacian type operator

Corresponding to the last subsection, we consider in this part the Kohn-
Laplacian type operator L given in Example 5.0.2.
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5.1.4.1 Weak Poincare inequality

Obviously, (A5.1.1) holds for tg—r3= 2,ri = 2= 1 So, Theorem 5.1.5
applies to ro = 2 and

Ds:={x| <s,W<s, |z <s2}, s>0
Let
1425
V(x,y,z) = c0- Hog [(x2+ 1)(1 + y2) \------ — log(l +z2)
for some S> 1/2. Then for some co?K
dp = e@(l + x2)~s(l + y2) K1 + 22)~{1+25,4'Axdydz
is a probability measure. Next, there exists a constant ¢\ > 0 such that
y(Ds) <y(\x\ >s) + fily\ >5s) <cisl'26, s>0.

Moreover, there exists a constant @ > 0 such that

es°W <c2s1+6S, s> 1
Then by Theorem 5.1.5 the weak Poincare inequality holds for
a(r) =@l +r-(36" - 1), r>0

for some constant ¢3 > 0. Therefore, it follows from Theorem 1.6.14 for
H={/€L2y) :p(/) = 0} that

IPt ~ Mjoo>2 < cFA-U/P-HW), t > 0.
5.1.4.2 Super Poincare inequality
Let V(x,y,z) —c(l + x2+y2)1+ (1 + z2)m, x,y,z GM

Proposition 5.1.123. Ifc > 0,1 > 1 and m > 3/4 then aess(L) = O, or
equivalently the super Poincare inequality (5.1.2) holds for some ¢ G L2(p)
and some function /3.

Proof. Forany e G(0,1) let

pe(x,y,z) = \Ix2+ y2+ \Jz2+ 1+ \Je + x2+ y2, x,y,z GK
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We have
I{pe.Pe)(x,y,2)
2x - yz/(2y/z2+ 1) N
2\Ix2+y2+yfz2+ 1 yjx2+y2+£
2y + xz/(2\Jz2+ 1) N Y
2yIx2+ y2+ ylz2+ 1 X2+ MW+ £ (5.1.39)
= (Prjrd) ' v 1
yIX2+y2+y/z2+ T yIx2+y2+£
N 22(x2+y?2)
16(r2+ )(x2+ 22+ V-22+ 1)
Moreover,
(X2+ Y 2)pe(x,y,2)
= 1 ! 2x~yzl(2ylz?~+T)
\JIXx2+y2+e Uryha2 + y2+ \[ 2+ 1
+y [l 2y+ xz/(2ylz2+ 1)
V2-\x2+ 12+ yfz2+ 1
1 N+ (x2+y2)/(4(z2+ 1)312)
dx2+ y2+£ 2y/x2+ y2+ \I"2+ 1 (5.1.40)
_(2x - yzl2ylz2+ )2+ (2y + xz/(2ylz2+ 1))2
4(x2+ y2+ Vz2+ 1)32

> 1 X2+ y2)z2/(z2+ 1)
yIX2+y2+£ 16(x2+y2+VvzZ2+ )32
S 1 1
\Ix2+ Y2+£ 16
Finally, since

{(XY)(Xpe) + (YY) (¥Ype)}(x.y.r)
2x —yz/ (2y/lz2+ 1) N
2\/X2+Y2+ \/z2-+=1  yjxi2 4“2 -hE
X "2d(l + x2+ y2)I~Ix —mzy(z2+
2y + xz/{2y/z2+ 1)
2yIx2+y2+ y/z™Mrl yIx2+y2+ £
X N2d(l + x2+ y2)I~1ly + mxz(z2+ I)m-1"
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we obtain

{(XV)(Xpe) + (YV)(Ype)}(x.y,z)
b 2cl(x2+ y2){1+ x2+ y2)I~I
\IJx2+yl+ £ (5.1.41)
mz2(x2+ y2{14-22)m 1

AN(r2+ 1)(x2+ y2+ \fz2+ 1)
This implies
pe“—rllo 3:24!51/12:>£ (Lpe)(x,y,z)
N . *1
> lim gZC X2+ "2)(1+ a2+ y2)*"'1
pe-t00 [ \Jx2+y2+e
mez2(1+ z2)m-1

AN(z22+ 1)(e +VZ2+ 1)

(5.1.42)

00.

On the other hand, (5.1.40) and (5.1.41) imply

inf Lpe> ———.
X2+y2<e P v2e 16

Combining this with (5.1.42) we obtain

M LRe > w16

Since (5.1.39) implies "(pe/\/5, Pe/Vb) < 1, it then follows from Theorem
513 that

1/1 1\2

Letting e -4 0 we complete the proof. O

5.1.4.3 Nash inequality

(5.1.28) and (5.1.29) hold for a —I,di = 2,4 = d2 — 1- By Corollary
5.1.11, (5.1.23) holds for some C >0 if and only if m = 4.
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5.1.4.4 Log-Sobolev inequality

We consider the high dimensional case. Let
Xi=dXd-ydz, Yi=dyi+yd2 1<i<n.

LetL = +Y2) and
n
r(/,n) = ]T{Ne)2+ W) 2, /€crrz*1).

Let
p(x,y,z) —y/\x\2+ W2+ 22/ (\xe + \W2), X,y GRn,z GR.
Then vol(exp[—ep2}) < oo for any e > 0.

Proposition 5.1.14. Letn > 2 and V = ¢(S) —ps for 6 > 2 and some
¢(S) G R such that p is a probability measure. Then (5.1.24) holds for some
C > 0. If 6 > 2 then (5.1.32) holds for some ¢ > 0.

Proof. Since V is smooth only on the set 2 := {(X,y,Z) G Rn+n+1 :
M + W > 0}, we shall first restrict everything on L. Obviously,

. 1 f Xiz2 \i* ]
KIDOY2) vy i1 W2+ W22 2(N2+ M2) 5149
vip)xy.2) 0= xiz 4

p(x,y,z) (N2+ bl2)2 m2(\X\2+ \W2)}-
So,
rp. p){x,y,z)
= p{x,y,2)A{a2 + - {X\2+ W2)2) + 4(]z|2+ bl2))-

Thus, when z2 < |(|x|2+ |y|2)2 we have T(p, p)(x,y,z) >  while when
z2 > |(|a;|2+ \yw)2 we have

Z2 > Z2 W\2+ W2 = p(x,y, 2)2
2(M2+ \W2) ~ 8(Im]2+ W\2) 8 8

so that I'(p, p)(x,y, z) >|. In conclusion, we have

r(p.p) > on fi. (5.1.44)
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Next, by (5.1.43), we have

(XiP){x,y,z)
A 1 f z2-2xiytz 4xfz2 y2 \
- p(x,y,2)V o (W\2+W2)2 + (\\2+ W\2)2 + 4(\x\2+ \W2) T
(Y?p){x.y.2)
< | 22- 2xtyiZ N 4yfz2 +
p{xw.2)\ (X\2+W\2)2  (N2+ |i/|23  4(x|]2+ |y|2

Combining this with the fact that 2\xryr\ < 2(xf + y2), we arrive at

n 2|s|
p{xy,z) | (Ix|2+ ly[22  (N2+ bl2)
< Co
p{xiY,z)
for some @ > 0. Due to this and (5.1.44), the proofs of Theorem 5.1.10 and
Corollary 5.1.12 with Kd replaced by fl lead to

(Lp)(xy.2) <

M(/210g/2) < CIx(F(,])), | GC'o(D),/r(/2) (5.1.45)

provided S > 2. This implies (5.1.24) by an approximation argument and
the proof of (5.1.32) for > 2 is similar. More precisely, for any / G
Co(R2n+1) with /r(/2) = 1, let fe = fh £, where

h'{x,y.z) :=QVW+toF-I) AI> £>0-
We have
M(T(/«,/«)) < (1+0)IxX(F(/,))) + (L+r-De- 2||/||*oMTTe), r > 0, (5.1.46)

where = {(x,y,z) £ D: |x|]2+ W2 < e2}. Since

aMg) <ci [ dxdy f e~E2 dz < CE2n+l

i{la:]2+ |/|2<E2} JR

for some c\, c2 > 0, by first letting e —0 then r -> 0 in (5.1.46), we obtain

limsupAt(r(/e,/£)) < u(T(/,/)).
£->0

Thus, (5.1.24) follows by first applying (5.1.45) to /EHr(/2) 12 in place of
/ then letting e->0. O
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5.2 Generalized curvature and applications

As shown in the previous chapters that the Bakry-Emery curvature con-
dition has played a crucial role in the study of elliptic diffusion processes.
When the diffusion operator is merely subelliptic, this condition is how-
ever no longer available. Recently, in order to study subelliptic diffusion
processes, a generalized curvature-dimension condition was introduced and
applied in [Baudoin and Bonnefont (2012); Baudoin et al (2010); Baudoin
and Garofalo (2011)], so that many important results derived in the elliptic
setting have been extended to subelliptic diffusion processes with generators
of type

L:=J2x?+xo0
i=1
for smooth vector fields {Xi : 0 < i < n} on a differentiable manifold
such that {Xi, XXiXj :1 spans the tangent space (see [Wang
(2012c)] for details). In this section we aim to introduce a general version of
curvature condition to study more general subelliptic diffusion semigroups.
Let M be a connected differentiable manifold, and let L be given above
for some C2-smooth vector fields (Xt}=1 and a C'l-smooth vector field X 0.
The square field for L is a symmetric bilinear differential form given by
M
r(f,g) ="£(XIf)(Xig), f,geC\M).
|:

Obviously, I satisfies

r() =r(/,>0,
T{fg,h)=gT{f,h) + fT{g,h),

Le°/.p) = (®*°1L/,0)
for any f,g,h € C1(M) and € C1(R). From now on, a symmetric bilinear
differential form I satisfying these properties is called a diffusion square
field. If moreover for any x € M and / € CI(M), I(f)(x) = 0 implies
(df)(x) = 0, we call f elliptic or non-degenerate.
For any C2-diffusion square field f (i.e. f(/,g) e C2(M) for /,g e
C°°{M)), we define the associated Bakry-Emery curvature operator w.r.t.
L by

fe C 3(M).
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Then the generalized curvature-dimension condition introduced in [Baudoin
and Garofalo (2011)] reads

r2(/) +rrf(/) > + (pr- £)r(49 +p2rz(f), (5.2.1)

forall f e C2(M), r > 0, where p2> 0,k > 0,pi 6 | and d G (0, oo] are
constants, and Tz is a C2-diffusion square field such that I" + Tz is elliptic
and

r(r2(a,9 =r2(r(a, s, /e Ce°(M) (5.2.2)

holds. When I'2 = 0, (5.2.1) reduces back to the Bakry-Emery curvature-
dimension condition [Bakry and Emery (1984)], and when d = oo it becomes
the following generalized curvature condition

r2A+rr|(4> (PL-MI(A +22*(A, 7 e c2(M),r >0. (5.2.3)

Using (5.2.2) and (5.2.3) for symmetric subelliptic operators, the Poincare
inequality for the associated Dirichlet form, the Harnack inequality and the
log-Sobolev inequality (for, however, an enlarged Dirichlet form given by '+
Tz) for the associated diffusion semigroup, and the HWI inequality (where
the energy part is given by the enlarged Dirichlet form) are investigated in
[Baudoin and Bonnefont (2012)].

The generalized curvature-dimension condition we proposed is

ra(l+E Pr27(A "~ w e + £ Kifrit'’

for all / e C3(M),ri,...,ri > 0, where d e (0,00] is a constant, A°) :=
I, {Tr«}r<,<rare some C2-diffusion square fields, and {kijo<i<i are some
continuous functions on (0,00)r. We will only consider the condition with
d=o00, ie.

i

i
ra(@+2>r1$()>E " oSN« (. (5-2.4)
i=1 i=

0
for / e C3(M), r'i,..., r; > 0, but the condition with finite d will be use-

ful for other purposes as in [Baudoin et al (2010); Baudoin and Garofalo
(2011)]. In fact, we will make use of the following assumption.
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(A5.2.1) (5.2.4) holds for some C2-diffusion square fields {r~;-=o and
{Ki}o<i<i C C((0, oo)r), where RQ = I'. There exists a smooth compact
function W > 1on M and a constant C > 0 such that LW < CW and
f(W) < CW2,where f = £L or(i)-

Recall that W is called a compact function if {IT < r} is compact for
any constant r. The condition LW < CW s standard to ensure the non-
explosion of the X-diffusion process, and the condition M(1T) < CW2 is
used to prove the boundedness of T(Ptf) for / € C, where

C:= {/ €C°°(M) NBb(M) : f (/) is bounded}.

5.2.1 Derivative inequalities
The main result in this subsection is the following theorem.

Theorem 5.2.1. Assume (A5.2.1). For fixedt > 0, let {brjo<r<r C
C1([0,t]) be strictly positive on (0, t) such that

BEB)+ 2{Mm T ,(*,....,")}(B)>0, se(0,t),I<i<lI (5.2.5)
and

Then:

(1) Foranyf 6 C,
[

232 {bi(0)TA(Ptf) - bfi)PtT«(/)} < cb{Ptf2- (Ptf)2}
i=0
(2) If

r(@)(r(/),)) =r(rwW (/),)), 1<i<l,feC°°(M), (5.2.6)
then for any positive f £ C,

E {w Mp »]-bi(t)Ptr*} <cb{Pt(flogf)-(Ptf) logPtf}.

To prove this theorem using a modified Bakry-Emery semigroup argu-
ment as in [Baudoin and Bonnefont (2012)], we need to first confirm that
PtC C C, which follows immediately from the following lemma.

Lemma 5.2.2. Assume (A5.2.1) and let K = mino<i<; Kfil,..., 1). Then
f {Ptf) <e~2KtPtT(f), t>0,feC. (5.2.7)
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Proof, (i) We first prove forany / e Cq(M) and t > O, f(P.f) is bounded
on [0, t]xM. To this end, we approximate the generator L by using operators
with compact support, so that the approximating diffusion processes stay
in compact sets. Take h £ co°([0, 00)) such that h' < 0,/i[oj] = 1 and
supp/i = [0,2]. For any m > 1, let ¢m = h(W/m) and Lm = Then
Lm has compact support Bm := {W < 2m}. Let x € {W < m} and X™
be the Lm-diffusion process starting at x. Let

1T = inf{s > 0: W(X™) > 2m}.

Since LW < CW,T{W) < f(W) < CW2h' < 0,0 < h < 1and
h'(W/m) =0 for W > 2m, we have

r 1 _ 2Lipm || 6T(<"m)
‘F’?n <$mn ?
2h'(W/m)LW  2h"{W/m)Y{W)  6h'{W/m)2T{W) Ci
mifim m 2ipm m2° _ B

for some constant C\ > 0 independent of m. By a standard argument, this
implies that Tm = 00 and

s> 0. (5.2.8)

Now, let Psn be the diffusion semigroup generated by Lm. By the Ito
formula and M2 > KT implied by (A5.2.1) we obtain

df(PHJ)(X?) - die

=dM? + {g@bl(Pr-3n - 2r(P™3f,<pthLP ™J)}(X™)ds

> {27f2(P"df) - 4 (log</m, P™sf)P ™sL mf} (X ™)ds (5.2.9)

> {2|A|f(P-s/)+4]||L/||00i/f(log"m)f(P™s/)}(Xr)dS

> -C2ZT(P™J)(XT)ds - f(log"m)pC)de, ee [0f]

for some martingale M1 and some constant C2 > 0 independent of m.
Since h'"{W/m) = 0 for W > 2m and f {W) <CW2,

h'{w/m)2t{w) ~ C3
Tlog@m e

holds for some constant C3 > 0 independent of m. Combining this with
(5.2.8) and (5.2.9) we conclude that

r(Pr/) <ec*ptmf (/) +C3f 4 -) (*D<is
(PT) < ectpml () +C3 1 e i) (52.10)

< eC2t||f (/)|loo + C3teClt
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holds on {W < m}. Letting p be the intrinsic distance induced by f, i.e.

P(z)y)-=sup{\g{z)-g(y)\: T{a)<1}, zy €M,

we deduce from (5.2.10) that for any z,y € M,
[PC/(N)-PT/bl|2< N 1y)2(eC2*||l (/)||0 + C3<e”?), t>0 (5.2.11)

holds for large enough to. Noting that the L-diffusion process is non-
explosive and X™ is indeed generated by L before time am := inf{s >
0 : W(X™) > m) which increases to oo as m —y 0o, we conclude that
Hindoo Pinf — Ptf holds point-wisely. Therefore, letting m — oo in
(5.2.11) we obtain

\Ptf{z) - Ptf(y)|2 < p(®, 2)2(ec2*||l (/)|[o + C3teClt), t>0,y,z e M.
This implies that t(P.f) is bounded on [0,{\ x M for any t > Q.

(i) By an approximation argument, it suffices to prove (5.2.7) for / €
Cq(M). By the Ito formula and (5.2.4), there exists a local martingale Ms
such that

dt{Pt_af){Xa) = dMs+ 2r2(Pt_sf)(Xs)ds
>m s+ 2KT(Pt_sf){Xs)ds, se [0\

Thus,
[0,1]aTe-w (P 8&)(X8

is a local submartingale. Since due to (i) this process is bounded, so that
it is indeed a submartingale. Therefore, (5.2.7) holds. O

Proof. [Proof of Theorem 5.2.1] (1) It suffices to prove for / € C°°(M)
which is constant outside a compact set. In this case we have j*Psf =
LPsf —PsLf. Since Xs is non-explosive, by the Ito formula for any 0 <
i < there exists a local martingale Ms'1such that

dT«(Pt _e/)(X.)

=d + {Lr«(Pt.s/) - 2r« (P _s/,LPt_s/)}(Xs)dS

=d + 2r«(Pt_s/)(Xs)ds, se [0\
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Therefore, due to (5.2.4) and (5.2.5), there exists a local martingale Ms
such that

d{ 5 > (8)F « (P *

i=0

> dM s + { (a g ™~ p * - ./ ) + B A T ()P *-.7)) Y (*.)*«

> dMs + { 32 {bi(s) + 2bo{s)Ki(j",. mm ~)(a))r« (P t-./) }(*.Ne«

>dM  U(s) + 2b0(s)KO(",..., (e)Jr(Pt_e/)(Xe)d*.

So, if cb < 00 then
i

V. MHr(@i)Pt-s/)(*s)+ Q f T(Pt_r/)(Xr)dr
70

=o
is a local submartingale for s S [0,t}. Since, due to Lemma 5.2.2,
{pM (Pt-sf)}o<i<i are bounded, it is indeed a submartingale. In particular,

V. {MO)r«(Pt/) - bi(t)Ptrr(f)} <cb [ PsT(Pt-sf)ds.

To o ] Jo
Then the proof is finished by noting that
PsT(Pt-J) =
2 Let / be strictly positive and be constant outside a compact set

Let
d®(a,x) = {(Pt_,/)rW (logPt_e)}(®), O0<i<ls € [0,t],x € M.
It is easy to see that (5.2.6) implies (cf. [Baudoin and Garofalo (2011)])

bgi) + = 2(Pt-./)r*(logPt_./)» o<i <1.
So, for each 0 < i < |, there exists a local martingale M sil such that

dct>M(s,xs) = dM « + 2{(Pt_s/)r(i)(logPt_s/)}(Xs)ds, s e [O,].

The remainder of the proof is then completely similar to (1); that is,
i

bi(s) {(Pt-9)T « (log Pt_e/)} (Xs)
2=0
+ CbJr {{Pt-rf)TQogPt-rf)}(Xr)dr
o
is a submartingale for s € [0,t], so that the desired inequality follows by
noting that

Ps{(Pt_s/)r(logPt_s/)} = —Ps{(Pt_s/)logPt s/} O
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5.2.2 Applications of Theorem 5.2.1

For any non-negative symmetric measurable functions p on M x M, let
W06 be the L2-transportation-cost with cost function p; i.e. for any two
probability measures pi,p2on M,

Wg(pi,p2) := inf n(p2)l/2

where n(p) stands for the integral of p w.r.t. n, and C(pi,p2) is the set of
all couplings of pi and p2.

5.2.2.1 L2-derivative estimate and applications

Proposition 5.2.3. Assume (A5.2.1). Lett > 0 and {bijo<i<i C
C1([0,t]) be strictly positive in (0,t) such that (5.2.5) holds. If bi(t) =
0,0 <i< | and o < 00, then:

(1) For any f e Bb(M),

|
21T>(0)r»(Pt/) < cb{Ptf2- (Ptf)2} (5.2.12)
t=0

(2) For any non-negative f £ Bb{M), the Harnack type inequality
Ptf{x) < Ptf(y) + “rp b(x,y)\/Ptf2{x), x,y £ M (5.2.13)

holds for pb being the intrinsic distance induced byTb := J2i=0b*(0)".
(3) If Pt has an invariant probability measure p, then for any f > 0 with
p{f) = 1, the variance-cost inequality

VarMp;/) < &W Z4fp,p)y/p((Ptm (5.2.19)

holds, where Pf is the adjoint operator of Pt in L2(p), and
var»{Pff) := M((P7 ) 2) - M1*/)2 = h((Pt*f)2) ~ I-

Proof. By an approximation argument, it suffices to prove for/ 6 C. The
first assertion is a direct consequence of Theorem 5.2.1(1), while according
to Proposition 1.5.3, (5.2.12) implies (5.2.13). Finally, (5.2.14) follows from
(5.2.13) according to the following Lemma 5.2.4.

O
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Lemma 5.2.4. Let P be a Markov operator on Bb(E) for a measurable
space (E. B). Let p be an invariant probability measure of P. If

Pf(x) <Pf(y) + Cp(x,y)*"P]IL,, f £B+(E) (5.2.15)

holds for some constant C > 0 and non-negative symmetric function p on
E x E, then

Voa r < CW(fp.p)y/p((P*H)Z), f >0,p(f) = I-
Proof. Let/ > 0with p(f) = 1 For any # £ C(fp,p), (5.2.15) implies

M(P*/)2) = p(fPP*f) = J

E x

P(P*f)(xMdx, dy)
E

<[ P(P*f)(y)n(dx,dy) + C [ p(x, y)y/P (P*f)2(x) 7r(dx, dy)
JE

JEXE x E
<p(pp*f) +cVAp2MfP(P*f)2) =i + Cy/ir{p2)p((p*f)3).
This completes the proof. O

5.2.2.2 Entropy-derivative estimate and applications

Proposition 5.2.5. Assume (A5.2.1) and (5.26). Lett > 0 and
{6j}o<i<( C C\[0,t}) be strictly positive in (0,t) such that (5.2.5) holds.
Ifbi(t) = 0,0< i</ and ¢ < 00, then:

(1) For any strictly positive f £ Bb(M),
i
J2bi(0)T~(Ptf) < Cb(Ptf){Pt(flogf) - (Ptf) logPt/}. (5.2.16)
i=0
(2) For any non-negative f € Bb(M) and a > 1, the Hamack type inequal-
ity
achpb(X,y)2
(PtFT(x) < ptfa{y) exP &ZE l);) X,y €M (5.2.17)
holds for pb being the intrinsic distance induced byTb := Xa=0 b»(0)[™.
Consequently, the log-Harnack inequality

Ptlog f(x) <logPtf(y)+ P y\. (5.2.18)

holds for strictly positive f £ Bb(M).
(3) If Pt has an invariant probability measure p, then for any / > 0 with
p(f) = 1, the entropy-cost inequality

P{(ptf) logptf) <jwW?{fp,p)2 (5.2.19)
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Proof. By an approximation argument, it suffices to prove for / e C
The first assertion is a direct consequence of Theorem 5.2.1(2), (5.2.17)
follows from (1) in the spirit of Proposition 1.5.2 (see also Lemma 3.4 in
[Wang (2012c)]), (5.2.18) follows from (5.2.17) according to Corollary 1.4.3,
and finally, (5.2.19) follows from (5.2.18) and Proposition 1.4.4. O

5.2.2.3 Exponential decay and Poincare inequality

Proposition 5.2.6. Assume (A5.2.1). ForTi> 0,1 <i <, let

Atb....r/)  min Kiin,...,rr)
o<iI<
where tq := 1. Then
! i
$>*r(0(A/) < {50,/ € CLM).

i=0 i=0
Consequently, if Pt is symmetric with respect to a probability measure L
and

A:= sup \(n,...ri) >0,

ri,..., ri>0

then the Poincare inequality

M/2) < ~m(C(/)+M/))2, /eCg(AT) (5.2.20)
holds.

Proof. By a standard spectral theory (cf. the proof of Corollary 2.4
in [Baudoin and Bonnefont (2012)]), the Poincare inequality follows im-
mediately from the desired derivative inequality. To prove the derivative
inequality, we take

bo(s) = e 2A(ri*- r,)s, bi(s) =ribo(s), 1<i<ls>0.
Then

bi + 200K (5 = —2riA(ri,...,rj)b0+ 200Ki(n,...,ri) >0

CRC /\_
'/

for all 0 < i < I. Therefore, the desired gradient inequality follows from
Theorem 5.2.1(1). O
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5.2.2.4 Derivative inequalities by (5.2.3)

Coming back to condition (5.2.3), Theorem 5.2.1 implies the following exact
extensions of sharp gradient estimates in the elliptic setting (see Theorem
2.3.1 for constant K).

Proposition 5.2.7. Assume (5.2.3) for some constants p2 >0,k >0 and
pi € R. Assume there exist a smooth compact function W > 1 and a
constant C > 0 such that LW < CW and f(VP) < CW2, where I' :=
T+ Tz.

(1) Foranyt>0andf e Bs(M),

p2(e2plt - 1- 2pxt) z
r(Ptf) + pl(e2pit _ Mz (Ptf)

where when pi < 0,
(e2ptl- 12 ur (er—h2 = 2.
epft -i-2p+t r4.oer -1 -r

Consequently, if p\ >0 and Pt is symmetric w.r.t. a probability mea-
sure p, then the Poincare inequality

p(f) < -p(T(f)) + p(f)2, f €cCI(M) (5.2.21)

Pi

holds.
(2) If (5.2.2) holds, then for any t > 0 and positive f € Bb(M),

p2{e2plt - 1- 2pit) z

PPt + - pitegplt —1) T
K(ezpft _ 1)2 2PI(Pt/){Pt(/log/) - (Ptf)logPtf}

<(f+ p2(e2ptt - 1- 2pft)’ e2plt ~ 1

Proof. By an approximation argument, it suffices to prove for f £ C. Let
e2pi(t-s) _ i

60(s) = 2pi
t P2(e2pAts) - i - 2pi(t-8

bi{s) = 2p2J* 60(r)d (E2pAts) piC )), sefo,i].

2pj
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Then it is easy to see that (b[ + 260P2)(i) = 0 and

{b° + Ze0(pi - }() - -1 - preri(t-s) _ i _ 2pi(t- 9))
KeP™ _1)2
p2(e2ptt- 1- 2p+)

Since (5.2.3) implies (5.2.4) for I = 1, = rz,KO(r) = p\ —f and
K\(r) = p2, the desired derivative inequalities follow from (5.2.12) and
(5.2.16). O

>-1

5.2.3 Examples

We present some concrete examples to illustrate results derived in this
section. In the first example the Poincare and log-Sobolev inequalities are
confirmed in the symmetric setting. The second example is the Kohn-
Laplacian on the Heisenberg group for which condition (5.2.3) holds (see
[Baudoin and Garofalo (2011)] for more examples satisfying this condition).
In the last two examples (5.2.6) does not hold so that we are only able to
derive results in Proposition 5.2.3. For simplicity, we make use of the
notion fXi  xik dXil ...d Xtkf for a smooth function / on and 1<
) eeonik A d,k A 1L

Example 5.2.1. Let M =R x M, where M is a complete connected Rie-
mannian manifold. Let L be an elliptic differential operator on M satisfying
the curvature-dimension condition

fa() >Kf(H + - fe (5.2.22)

for some constant K > 0 and m € (1, 00), where I is the square field of L
and f 2is the associated curvature operator, i.e. T2{f) = \LY (/)—f (/, Lf).
Consider

Lf(x,y) = fxx{x,y)-rOxfx{x,y) +x2Lf(x,-){y), f e (xy) eM
for some constant ro 6 K. where and in the sequel, we set

dk
fxi-xk = dX1...dxJ" k- T

Then

rO{f.9){x.y) = T{f,g){x.y) = (Fx9x){x, y) + x2T{f{x, -),9{x, -))(¥).
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Let

Y{l\f,g)(x,y) = r(f(X,—),g(x,—))(y), f,g € COO(M)’(X!y) €M
According to (5.2.22), there exists a positive smooth compact function W
on M such that LW,Y(W) < 1 In fact, let p be the intrinsic distance
to a fixed point induced by f, by (5.2.22) for K > 0 and the comparison
theorem, one has (see [Qian, Z (1998)])

outside the fixed point and the cut-locus of this point. By Greene-Wu’s
approximation theorem (see [Greene and Wu (1979)]), we may assume that
p2is smooth so that Lyjl + p2 < c\ holds for some constant ci > 0. Noting
that f (p) = 1, we may take W = e\J 1+ p2for small enough constant e > Q.

Now, let W(x,y) = 1+ x2+ W (y), which is a smooth compact function
on M. It is easy to see that

LW(x,y)< 2(1+ro)W(x,y),
fW2Z)(@,j/) = 4x2+ (1 + x2)F{w)(y) < SW(x,y),
where T =T +

Proposition 5.2.8. In Example 5.2.1 the generalized curvature condition
(5.2.4) holds for Z= 1 and

Ki(r) =1, KO(r)= (r0- ~ A(Kr- r0- r >0,
and (5.2.6) holds. Consequently:
(1) Propositions 5.2.3 and 5.2.5 hold for 60(0) = t, 5i(0) = t2 and
=1+ 2res(%?t) {(m —ror) V(ror + 4 —Kr2)}.

(2 IfK,ro>0 and L is symmetric w.r.t. a probability measure p on M,
then Pt is symmetric w.r.t.

and the Poincare inequality (5.2.20) holds for
\ f o 4
{ro+y/r2+20K m+ 1]
Moreover, the log-Sobolev inequality
M /2log/2) < cp(I'(/)), f e CI{M),p{f2)=1
holds for some constant ¢ > 0.
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Proof, (i) The proof of (5.2.6) is trivial. Below we intend to prove (5.2.4)
for the desired Ko and K\\ that is,

r2(/) + rif> (/) > r<>() + {(ro- y) AKT- ro- *) }r(A (5.2.24)
holds for all / GC°°(M). It is easy to see that at point (x.y),
rz2(f)y =fL + (1 - rOx2) TA(f) + 4xI<1X(/,/*)
+ 2x2I (1)(/X) + x4f 2(/(x, *))(») - 2xfxLf(x, M(y) + r0/ 2,
4 1)(/)=x2r2(/(x,-))bl + F(1)(/x).
Combining these with (5.2.22) we obtain
r2(/) +r4 14/)
>T«(l) -rox2TA(f) + {(2x2+ r)rW (/x) + 4xrW (/,/,)} +r0/ 2
+ ] @A+ N (M (XH)(r))2 _ 2xExLE(x, )| + x4+ rx2"T (2>())

>T«(A + (K(x2+r)-ro- ~-+-)a; 20 ()(/) - +OW2
> TA)(/) + (Kr- r0- *)x2r@)(/)+ (r0- y)fl

>TW (/) + {(r0- y) N (Kr- r0- i) }r().

Therefore, (5.2.24) holds.

(i) Whence (5.2.6) and (5.2.4) are confirmed for the desired Kqg and
Ki, due to (5.2.23) the assumption (A5.2.1) holds. Then (1) follows im-
mediately by taking

kO(s) =t-s, bi(s) = (f- s)2, s £ [0f]
It remains to prove the Poincare inequality and the log-Sobolev inequality
for K, ro > 0 in the symmetric setting. By Proposition 5.2.6, the Poincare
inequality holds for

A= sup{KO(r)ASd}=sup{i/\(r0-~)A(Kr-r,-i)}.

Since " is decreasing in r > 0 with range (0, oo) while Mo — J1 (Kr -
ro- ~ isincreasing in r > 0 with range (-00, ro), Ais reached by a unique
number r\ > 0 such that

1 \ — — \Ai|\
ri Efo'"?'\ YT T Ry

Then the value of Acan be fixed by considering the following two situations:
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A IfrO- ~ < Xn -r0- A, we have A = r0- ﬁsothat n,= "ﬁl and
henee, A= " i-
B. If Krt - r0O- A <r0- then A = #ri o =sothatri =

- *VAH20* and A= o Yorzox @

To prove the validity of the log-Sobolev inequality, we observe that

2
E<1+2jmA + 4N = cg

Moreover, by the Meyer diameter theorem (see [Bakry and Ledoux (1996a)]
and references within), (5.2.22) with K > 0 implies that the intrinsic dis-
tance induced by f is bounded by a constant D > 0. Noting that

rb(f){xv >,) = th(X:Y) + tZT(f(X, _))(y)!
the associated distance satisfies

_x/2
Pl () < Rt 0y ) e M

Thus, for any A> ~ (> ), “(enp(°'02) < oo holds for o e M and
large t > 0. Combining this with the Harnack inequality (5.2.17), we see
that \\Pe\\e2()->b4(") < o0 holds for some t > 0, so that according to
[Gross (1976)], the defective log-Sobolev inequality holds. As explained
in the proof of Proposition 5.1.9, in the subelliptic setting the defective
log-Sobolev inequality holds if and only if so does the exact one. O

Example 5.2.2. Consider the Kohn-Laplacian operator L = X2+ Y 2in
Example 5.0.2. We have [X,Y] = Z :=dz. Let Tz (f,g) = (Zf){Zg). Then
(5.2.2) holds and

F2(1) = (X2)2+ (XY )2+ (YX)2+ (Y2/)2
+ (XNL(Y2X - XY} + (YN{(X2Y - YX2)I}
> \{Zf)2- 2(XF)(YZF) + 2(YF)(XZf),
TF(/) = (XZ)2+ (YZf)2.

Therefore, (5.2.3) holds for p\ = 0,p2 = | and Kk = 1. Therefore, all
assertions in Propositions 5.2.3 and 5.2.5 hold.
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Example 5.2.3. Consider the Gruschin operator Lf = fxx + x2fyy on
M := R2, where | £ N. We have

FO(.5)(a.y) =T (,8)(xy) = (fxgx)(x,y) +x2(fygy)(x.y)
and L = X2+Y2for X = £,Y =x1*. When| > 2 {X) Y, YXY =
Ix+1u, , Xy X = 0} does not span the whole space for x = 0. Let
FDE9)(xy) =xA~Nfygy){xy), 1<i<l

2
It is easy to see that W(x,y) := 1+x2+ i+x2 is a smooth compact function
such that

LW <CW, f(W)<CW2 (5.2.25)
holds for some constant C > 0.

Proposition 5.2.9. In Example 5.2.3 there exist two constants a,/3 > 0
depending only on | such that (5.2.4) holds for

Ko(ri,...,r,) -
i=i 1
Ki(ri,..., rt) =fin-1, 1<i<Lr0O=1,n >0.
Consequently, Proposition 5.2.3 holds for bi(0) = cff2l 1+r, where

G_pna A%

N1 1<ic<l|,

and

cb= sup {(21-1)rAr-D+2ay A1 2| <CO(I+ti1), t>0
re(o,t) ci

for some constant Co > Q.

Proof. According to Proposition 5.2.3 for bi(s) = Ci(t —s)2~1H, s €
[0,t],0 <i<, it suffices to verify (5.2.4) for the desired {-K)}o<i<;, which
satisfy

6'(s)+260MNe f2,...,7)(s) =0, I<i<l,se[0,t\
(s) (oq O;)( ) [
and

L b+ 26° 4 | o 1)} w

. lcil .
= 21- 1)(t- 92 ) +2a”™ N=(t-5)20), SE€Pp,i]
i=l d
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It is easy to see that at point (x,y) € K2and for 1<r< Z
r2(f) =fL +m - )x2«-»fi +xM & + 2x2f &
+ 422 ,-11yIxy - 222Z 1fxfyy,
i (/)=(@- )2 -21- )*2r-*-D)" + 41- "x -"-Vylxy
+x2(-") /%y +x22-) 1.

So, forro=land > 0,1<i <|,

M2() +~nT »(/)

r=1

> fy E r<V~ W21~ 2i~ I)~2(i_i_1) + fyy E riz2(2i-i) - 2Ix2l~1fxfyy
r=0 r=0

+HiypO+E DDMAMYE 4°¢_iy2-2

> fyE ri-i@g+ 1- )@z - 2r + 1)xaen
r=1

_Yf2 4 r?2(l ~ i)2x4 4
r x h »H1*a(,-*- ?

2 bl ri

1E { 871z + 1~ iy2ll+1~)
1=1

AZ+ 1-)(2Z -2+ 1)x 2" i)} /2

- 'E a + i-i)(2i-2i+i)()()
t=I1
i i

r=1 *
holds for some constants ar> 0,1 < r < Z where the last step is due to the
fact that for constants Ai,Bi > 0,

Aix 26~ —BiX 2 < sup {A*s) 1- Bis¥p= (i~
§>0 ' ' "BTl1 O
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Example 5.2.4. Consider L = Xf + X2+ X2 on K3, where X\ —
W,x 2=Xuw ,X3=yE£- We have

r{oxf,g)(x,y,z) :=T(f,9)(x,y,z)
= (fx9x)(x, y,2) + x2{fyay)(x, y, z) + y2{fzgz){x, y, 2).

Let

r{.9){x.y.2) = {fyay){x, y, 2) +x2(fz92)(x, y, 2),
M2Kf.9)(x.y.z) = (fzgz)(x.y,2).

It is easy to see that W(x,y,z) := 1+x2+y2is a smooth compact function
on R3such that (5.2.25) holds for some constant C > 0.

Proposition 5.2.10. In Example 5.2.4 (5.2.4) holds for

+ 72) Ki{ri,r2)= 1-—- é(Z(rl,rZ) =ri,

[E r

here r\,r2 > 0. Consequently, Proposition 5.2.3 holds for

t2 2t3

and ¢ - 77.

Proof. We first prove (5.2.4) for the desired Ki, 0 < i < 2. It is easy to
see that at point (x,y,z),

F20/) = ixx + fy + *2f1 + 222/ dy+ 2y2f 2Z + x*fQy + 2x2y2f 2% + yaf
4- 4xfyfxy "nax yfzfyz 2xfxfyy 2x yfyfzzi

F21}(/) = ft + fly + *2/ | + Y2+ x4)f2 + X2f Z + x2y2f %
+ axtzixz - 2yfyfzz)

NOY(E) = fL o+ x2f 2z + y2f 2z
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Therefore,
T2(f) + rIr M\F) + r2T/A ()
> T + riT(f) + {(2a;2+ rx)fy + 4xfyfXy}
+ {(2y2+ r\x2+ r2)fZ + 4rxxfzfxz) + {(a;4 + rxx2)fyy - 2xfxfyy}
+ {(2x2y2+ rxy2 + rxx4 + r2x2)fZ + 4x2yfzfyz)
+ {(Y4+ rxx2y2+ r2y2)f2z - 2x2yfyfzz - 2rxyfyfzz}
4x2 4rxx2
2x2 + rxjf M2+ ria;2 + 2y2rz X4+ ria;'
dady2 fyl + X2)2
N2+ IXY2+ Fids + X2 y2+ riaz + r2dy
>rw () + o w (1)~ 222 X 12

4¥2r2 X f2 2
n 1z rxly r2 Jy r2-

> (1 - AN o0 PRPAY - {5+ A5 ().

This implies (5.2.4) for the claimed Kx0< i< 2
Next, take
pO{s) = t-s, bx(s) =-(t- s)2, b2(s) 21(t—s)3, S£[0,t].
Then

>rA(F) + EXTA(f) - 2

(B}« 77 r2ume0e) =0,
6(t—s)2 2(f—s)2
{r+2W4 N £)}<n>=- 21 7 '
1. 2- s)(t35 + 7.

{bo + U 0Ko (", }(s) f e

Therefore, the second assertion holds. O

5.2.4 in extension of Theorem 5.2.1

If 7fo does not satisfy the Hormander condition, (5.2.4) may only hold for
non-positively definite differential forms fyd and some (not all) rx, ..., rx>
0. For instance, when L = + Xuw, one has I'(/) = f2and M2(/) =
fxx-fxfy So, to verify (5.2.4), it is natural to take fy1*/,#) = ~~(fxgy+
fygx), which is however not positively definite. See Example 5.2.5 below
for details.
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To investigate such operators, we make use of the following weaker
version of assumption (A5.2.1). We call bilinear symmetric form I" :
C3(M) x C3(M) —C2(M) a C2 symmetric differential form, if

f (fg, h) = fT(g, h) + fff(/, h), f(/, pop) = (d'0 g)t(f, 9)
holds for all f,g,h £ C3(M), £ CI(K).

(A5.2.2) There exist some C2 symmetric differential forms {I" }i<i<>
a non-empty set fl ¢ (0, oo)r, a smooth compact function W > 1, and some
functions {Ki}o<i<i C C(il) such that

(SH r2(/y +£Liral f (/) > Z I=0Ki(ri,...,n)TV(f) holds for all / €
C3(M) and (ri,... ,rj) € 2 where H4°) —T.
(B2) LW < Cff and "i=o —CW?2 hold for some constant C > Q.
(B3) There existe >0 and f = (fi,... ,i) £ M such that
i i
() =A@+ X]Ar«(A > £ Ir(i)(HI> / e CI(M)*
r=1 r=0
Theorem 5.2.11. Assume (A5.2.2). For fixed t > 0, let (&}o<i<i C
C1([0,1]) be strictly positive on (0,t) such that

N (..., )s)£Nholds for all s £ (0, 1);
(n) (@) + 2{°ftd~(fe,....fe)}(e) =0, s£ (0,1),1<r< 1

T/ien assertions in (1) and (2) o/ Theorem 5.2.1 hold.

Proof. By (131) and (jB3), f2> KT and f > £ Xa=0 hold for some
K £ K and e > 0. Combining these with (B2) and repeating the proof of
Lemma 5.2.2, we conclude that {An)(P.A}o<r<; are bounded on [0, t] x M.
Therefore, due to (r) and () the proof of Theorem 5.2.1 works also for
the present case. Since {I *} kK| might be not positively definite, the
equality in (rr) cannot be replaced by >. O

To illustrate this result, we consider the following example which was
also mentioned in the beginning of this section, where the resulting gradient
and Harnack inequalities have the same time behaviors as the corresponding
ones presented in Corollaries 3.2 and 4.2 in [Gong and Wang (2002)] by
using coupling methods. In this example, it is easy to find correct choices
of W, T(\K'i and M such that assumption (A5.2.2) and condition (i) in
Theorem 5.2.11 hold. The technical (also difficult) point is to construct
functions {bi}l=o such that condition (ii) holds and E =oMO)I () is an
elliptic square field.
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Example 5.2.5. Consider L = + xw, on R2. We have

r)(/,5) := T{f,g) = fx9x.

rax.9) = _\(f)g/+/,», , TW(f,g) :w

Then (A5.2.2) holds for W(x,y) — 1+ x2+y2H —{(ri,r2) :r\,r2 >
0,r\ < 4r2}, and

Ko(rLr2) = 0, Kin,r2) =k KL=~

Moreover, (5.2.6) holds. Then

Let

< («){«(/log) - {r.fy10gr.13. T>o,
and hence,
(Ptf)a((x.y))

] 02,
< (Ptfa(x',y')) exp X- X2 3y - y

.2(2-—v‘t;ﬂr1)\/
(5.2.27)

holds for all a > I,f > 0, (x,y), (x',y') e R2and positive / 6

Proof. Obviously, (J52) holds for the given W and (B3) holds for fj =
r2= 1 (hence (fi,f2) € 0) and e = |. Next, it is easy to see that (5.2.6)
holds and

W ) =fL-fxfy, FRf):\ft-fxxfxy, rf(/)=1%.
Then, for ri,r2 > 0 with r2 < 4r2, we have
F2()) +riar<)(/) + r2Ar)(/)y >~/ + ~"re(/).

Therefore, (B1) holds.
To prove (5.2.26) and (5.2.27), we take | = 2 and

60(s) = t-s, bi(s) —{t- 5)2, b2(s) e [ot].

(t~s)3
3
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Then it is easy to see that (r) and (rr) in Theorem 5.2.11 hold. Noting that
—H0 =1, Ko =0and bi(t) = 0for 0 < r< 2, it follows from Theorem 5.2.11

that
2

(Ft){Pf(/log/) - (ptr) logPt/} > $>(0)T W(pt/)

i=0

= ({Ptf)l - t2(Ptf)x(Ptf)y + j(P tf)Q

Therefore, (5.2.26) holds.
Finally, letting p be the intrinsic distance induced by the square field

i(/) = UM {«ne»)A +y/,2,
we have
C o 2 (\x-x"\2 3\y-y"\2\
) i) 1 2
PIOYLYNZ 5 3 tnte (tAte)3 Y
Then the desired Harnack inequality follows in the spirit of Proposition
151 (see also Lemma 3.4 in [Wang (2012c)]) since (5.2.26) is equivalent to

{TVV) <6{Pt(flogf)-(Ptf) logPtf} + [, $>0. n

5.3 Stochastic Hamiltonian system: Coupling method

This section is organized from [Guillin and Wang (2012)], where coupling by
change of measure is used to derive Bismut formula and Harnack inequality
for generalized stochastic Hamiltonian systems. Let a. £ C(]0, 00); Rd(g)Rd)
be such that at is invertible for every t > 0, A 6 Rm < Rd with rank m,
(Bt)t>0 be a d-dimensional Brownian motion, and Z. £ C1(Rm x Rd;Rd).
Consider the following degenerate stochastic differential equation on Rm x
Rd:

dXyrAXAMdt,
dx[2 = atdBt + zt{x[I\ x [ 2))dt.
We shall use (Xt*(x), x¥Y\x)) to denote the solution with initial data
X =(x","2)£Rm+d := Rmx Rd. Let
Ptf(x) = Ef (Xy\x),xi2x)), t>0,x £ Rm+d.
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We aim to establish the Harnack inequality and derivative formula for Pt.
The generator of the solution to (5.3.1) is

A d+m 02
tj=m+1 J
d+m n . n
+ (Z*@) "™ _+ XI-Ax@)i~ 7 s> 0,x = (X(1),x(2) 6 Mm+d.
j=m+1 J z=1 1

In the case where m = d, at= A=/ and
Zt(x) = -W (x(1)) -cx(2),

this model is known as “stochastic damping Hamiltonian system” in prob-
ability see [Wu (2001); Bakry et al (2008)] (see also [Soize (1994)] for more
general model of stochastic Hamiltonian system).

5.3.1 Derivative formulae
Since A has rank m, we have d> m and for any E Rm, the set
A-zN ={ZW £Rd: Az = z(D} b 0.
For any zW € Rm, let
|A_1z"| = inf{|i*2)]: z» E-Alz"}.
Then it is clear that
[[A-1] :=sup {|A-1z”| : z™» ERm,|r™| < 1} < oo.

We shall use | *| to denote the absolute value and the norm in Euclidean
spaces, and use | ¢|| to denote the operator norm of a matrix. For z E Rm+d,
we use V2 to stand for the directional derivative along r.

Let us introduce now the assumption that we will use in the sequel:

(A5.3.1) There exists a constant C > 0 such that LSW < CW and
Zs(x) - Zs{y)|2< C\x - y\2W(y), X,yE£ Rm+d,\x- W< 1

hold for some Lyapunov function W and s E [0, t].

The main result in this section provides various different versions of
derivative formula by making different choices of the pair functions (it, v).
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Theorem 5.3.1. Assume (A5.3.1). Then the process (xjX"*)t>0 is
non-explosive for any initial point in Rm+d. Moreover, lett >0 andu,v £
C2([0, f]) be such that

ut) =@ =1 u() =u() =u'(0) =u'(t) =v'(t) =v() =0 (532

Then foranyz = (z"z"2) £ KOxRdandz* £ A~1zEA

VzPtf = E<f/(X{(1),X12) [ -v'(s)zW
n Jo (5.3.3)
+(Ve(27),s)" ) (M 1), 2)}1dSs) |

holds for f £ fi;,(Em+d), where
Q(z,2°2s) — ({1 - it(s)}z~ + v{s)Az@\ V'(s)zd —u'(s)z").
Proof. The non-explosion follows since LSW < CW implies
EVIr(Xf1*(a;), X" (x)) < W(x)eCs, s £ [0,t],x £ Rm+d. (5.3.4)

To prove (5.3.3), we make use of the coupling by change of measure. Since
the process is now degenerate, the construction of coupling is highly tech-
nical: we have to force the coupling to be successful before a fixed time by
using a lower dimensional noise.

Letf>0,x= (x"\x"),z=(z"z") ERmtdand z* £ A~I1z" be
fixed. Simply denote (X", xi29 = (xi*(X),xi2(x)). Let

£0 = selM 1V |0(z,2(2),s)| > °°’

so that eol0(z,z(2A s)] < 1for s £ [0,tf] For any e £ (0,£0), let
(XsLe\ X s 2£M solve the equation
dxile) = AXi2ge)ds,
< dxi2f) = osdBs + Zs(X ", X" 2))ds (5.3.5)
+ e{v"(s)zW —u"(s)z"}ds
with Xdl™ = x” +ez” and X" = +ez"A By (5.3.2) and noting
that Az» =z”\ we have
'Xi2F) = Xi2) + ev'{s)zW - eu\s)zW,
<Xpet =xM)+ezh + A Xr2ENdr (5.3.6)
=x i1+ e{l —u(s)}z”) Fev(s)Az(2A
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Due to (5.3.2), this in particular implies
(X(D).X12) = (X(LE) *t(Fehy (537)
and also that
(XilE),Xi2e)) = (Xi),Xi2) + d i(2),s), se[0,t]. (5.3.8)
On the other hand, let
W =raXbl,xkO) Zs{X??Ax M ) +ev'{s)zW-eu"{s)zW
and

Re(s) = exp (5.3.9)

~L ~ 1~ ~ dBrs~\J0 I°viI&(r)l2dr
for s € [0,4]. We have
d*j2E>= osdBE+ ~ (X jA~. X jAds
for
Bf :=Bs+ do o™ e(r)dr, s € [04],

which is d-dimensional Brownian motion under the probability measure
Q£ := RE(t)P according to Lemma 5.3.2 below and the Girsanov theorem.
Thus, due to (5.3.7) we have

Ptf(x +ez) =EQI ( X "\ X M £)) "E[Re(t) f(X",xi2)}
Since Ptf(x) = Ef(X "\ x " 29, we arrive at
Ptf(x + ez) - Ptf(x) = E[(Re(t) - 1)/(X{1),W))].
The proof is then completed by Lemma 5.3.3. O

Lemma 5.3.2. //(A5.3.1) holds, then
sup E(i?8(s)logi?e(s)) < oo.
s6[0,t],e€(0,e0)
Consequently, for each e 6 (0,£0), (i?£(s))s6[cu] is a uniformly integrable
martingale.

Proof. Let

r, = inf{f > 0 : | X{1)(z)| + \){M\>n}, n> 1.

Then rn f oo as n | o0o. By the Girsanov theorem, (Re(s A rn))s6[jf] is
a martingale and {Bs : 0 < s < t A rn} is a Brownian motion under the
probability measure Qfi,, := Re(t A rn)P. Noting that

fsAt, i mAar,

logi?e(sArn) = - J (a“ lef(r), dBN)+-N Icr-"eW~dr, sG [04],
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where the stochastic integral is a Qejn-martingale, we have

E[Re(s 1m)logRe(s Ar,)] = EQn[logde(B A rn)]

1 -, 0 5.3.10
< 2EQe,nJ:5A Wr Ce(r)|dr, se [0t]. ( )

Noting that by (A5.3.1) and (5.3.8)
kri6(r)|2< ce2W (X "\X "% re [01] (5.3.11)

holds for some constant ¢ > 0, and moreover under the probability measure
Qe,,, the process (Xslel Xs2”™)s<tAT, is generated by Ls, LSW < CW
implies
/msAt, rs
Egen / W {xIl'e\x | 2£))dr< EOeX (X"%), N 2%)br
Jo Jo t (5.3.12)
< Jo eCrdr.

Combining this with (5.3.10) we obtain
E[i?e(sA t,) logf?e(s Tm\ <c, s6 [0t],e€ (0,e0),n>1 (53.13)

for some constant ¢ > 0. Since for each n the process (RE(s A Th))se[o(] is a
martingale, letting n —00 in the above inequality we complete the proof.

O
Lemma 5.3.3. If (A5.3.1) holds then the family { is uni-
formly integrable w.r.t. P. Consequently,
limRe{t) ~ 1= f (a-L{u"{s)zW - v»(s)zM
£»° {<)< JQ\( ts) ) (5.3n4)

+ (Ve(z,",,9)") (X (1),Ai2)},dBs)
holds in LXP).
Proof. Let m be in the proof of Lemma 5.3.2 and let
Ne(s) = o:1{Ve(zz®)s)W i M), X ™) + u"{s)zW - v'\s)zW }

for s € [0,t], e € (0,£0). By (A5.3.1) and (5.3.11), there exists a constant
¢ > 0 such that
[(AE(s), o7 1~ (s))| < £]Ae(s)|2+ £~V 7 1& (s)|2

(5.3.15)
<ceW{X?*\X<M)
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holds for e € (0,e0) and s G [0.t]. Since VZ is locally bounded, it follows
from (5.3.8) and (5.3.9) that

d AT, rt/\Tn
e U (Ne{s),dBs)+J (Ne(s),(jIINE(s))di
holds for e G (0, e0) and n > 1. Combining this with (5.3.15) we obtain
IP (tAr )—11 1 Tre ftATn
A i <-/ Rr(tATn)dr / (Nr(s), dBs)
6 £ Jo Jo
reo rtAr,
+c Rr{t/\Tn)dr
Jo Jo

fore G (0,£0)j n> 1 Noting that under Qr the process (J1"L,n\ jd 2rNse[it]
is generated by Ls, by (5.3.4) we have

E f °Rr{t)dr [ W(Xilr),Xi2r))ds
Jo Jo
=T drfEA"W iX"r""r"rds
Jo Jo
is finite. Thus, for the first assertion it remains to show that the family

% ,«:=£-J/O Rr(t 1M)|Sfin|(r)dr, £G(0,e0),n > 1

is uniformly integrable, where
rtAT,

St,,,(r):=J/0 (Nr(s),dBs).

Since rlogl/2(e + r) is increasing and convex in r > 0, by the Jensen

inequality,
logf/2e-+ N}

< ~J E|/?r(tArn)|Etin|(r)logl2 (e + Rr(t NT,)|ED,|(r)) jdr
< . J'!): e|LRr(tﬂrn)|Hti,,|(r)2
+ Rr{t 1m)log (e + Rr(t Arn)|Et,n|(r)) jdr

1
< ~J e|c+ 2RT(t Arn)|EtN|(r)2+ Rr(t N1r,) logRr(t Ar,,)jdr



Subelliptic Diffusion Processes 309

holds for some constant ¢ > 0. Combining this with (5.3.13) and noting
that (5.3.15) and (5.3.12) imply

E{2.(t Nra=tn/(N2} = EQr,,  (M(S), dBB)
= E V{Z n1Bﬂ,|2bls

rtArn

<CEQ / W iXAIXAdsKcl n> I, re (0,£0)
JO

for some constants c, ¢' > 0, we conclude that {Ve,n}e£(0,e0),n>i is uniformly
integrable. Thus, the proof of the first assertion is finished.
Next, by (A5.3.1) and (5.3.8) we have

fimy W4 (V0@ |(2i9)Zs)(Xi1),X &) + u"(a)*<2>- v'(s)z> - 0.

Moreover, for each n > 1 this sequence is bounded on {m > t}. Thus,
(5.3.14) holds a.s. on {rn > t}. Since r,, f 0o, we conclude that (5.3.14)
holds a.s. Therefore, it also holds on LI(P) since {[e(*)~1}g€(0.£0) is uni-
formly integrable according to the first assertion. O

To conclude this subsection, we present an example of kinetic Fokker-
Planck equation.

Example 5.3.1 (Kinetic Fokker-Planck equation) Let m = d and con-
sider

jdXt(l) = X @,
\dX 1@ = dBt- VK(X(D)dt - X[2dt

for some C2-function V > 0 with compact level sets. Let W (x*, x") =
exp[2P(xM) + [a;(2)|2]. We easily get that LW = dW. Thus, it is easy to
see that (A5.3.1) holds for e.g. V(x*) = (1 + x")|2)ror even Ifyar])) =
e(i+|x(D)]2)! for some constant | > 0. Therefore, by Theorem 5.3.1 the

derivative formula (5.3.3) holds for (u, v) satisfying (5.3.2).

5.3.2 Gradient estimates

In this section we aim to derive gradient estimates from the derivative
formula (5.3.3). For simplicity, we only consider the time-homogenous case
that <t and Zt are independent of t. In general, we have the following
result.
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Proposition 5.3.4. Assume (A5.3.1) and let (u,v) satisfy (5.3.2). Then

for any f GBb{Rm+d),t > 0 andz= G Mm+d, GA" z™,
V2Pt/|2 -412(Pt/ 2E T K 2 - v"'{s)zW
VZPU|2 < Ua-412(PU 2E T K ()2 - v'{s)2 53.17)
+Vef{z,w,s)Z(Xilx W )\2s.
Iff > 0 thenfor any S> 0,
f
V2Pt/| < 6{Pt(f logf Ptf) log Ptf +
| | < 6{Pt(flogf) - (Ptf) log Ptf} (53.18)

x logE en” fO I«"(*)2<2)-«"(»)*(2)+ v e(,.i(*),,z™ 1)>~2))l2ds.
Proof. Let

Mt = f {a-1{u'\s)z” -v"{s)z" +SJe(zrzWrZ { X "\X ")}, dBs).
Jo

By (5.3.3) and the Schwarz inequality we obtain
[V2Pt/|2< (Pt/ 2EM2< |lo_1||2(Pt/2E [ \u''{s)z" - v"{s)zW
Jo

+ Xe{z,im>s)Z (Xilx W )\ 2ds.

That is, (5.3.17) holds. Similarly, (5.3.18) follows from (5.3.3) and the
Young inequality (cf. Lemma 2.4 in [Arnaudon et al (2009)]):

V2Pt/| < SfPt(/log/) - (Ptf)logPtf}+6(Ptf)logEexp rMt
since
rMt 2(M )rxl/2
Eexp L&) " Q}Eex
< (Eexp 2||cr F lu"(s)z® —v"(s); @
82 Jo
1412

+ve(222,9" (" 1),xi2)[2dS
O

To derive explicit estimates, we will take the following explicit choice of
the pair (u, v):

u(s) - 52(3;3?_9 v(s) = Stta 2_5_2_2, sG[of], (5.3.19)
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which satisfies (5.3.2). In this case we have

U'(a) = Bs(tf; s), u"(s) = 6(tr25), V'(s) = "~ s)(F~ 39)

(5.3.20)
. 2(3s—2t V. t—s)2(f + 2s
vy = ~|(—ja————)— -« («) = t= 1(( ——————— ), sG[0,t].
In this case, Proposition 5.3.4 holds for
(p<2>=A(z,
6(t —s) z(2) 2(2t —3s),

t3 t2 d 5301
0(z, 2 ) S)fé“ 25) AT s{t- 5)2A2w (32D

(t- s)t- 3s) @ 6s(t~s)t2\

t2 Z t3 Z X

Below we consider the following three cases respectively:

() |VZ| is bounded;
(i) |VZ| has polynomial growth and (Z(x),x”) < C(1+ |x|2) holds for
some constant C > 0 and all x —(xW,x(2);
(iii) A more general case including the kinetic Fokker-Planck equation.

5321 |VZ| is bounded

In this case (A5.3.1) holds for e.g. W[x) — 1+ |x|2, so that Proposition
5.3.4 holds for u"(s)z®)—v"(s)z" and 0(z, z*, s) given in (5.3.21). Prom
this specific choice of @(z,2"2\s) we see that VAZ and V" Z will lead
to different time behaviors of V zPtf, where V(1) and V(2) are the gradient
operators w.r.t. x1» ¢ Km and G respectively. So, we adopt the
condition

VDZ(X)| < Kx, |V(2>Z(X)| < K2, x 6 Rm+d (5.3.22)

for some constants K\,K2 > 0. Moreover, fort > 0and ri,r2> 0, let
-1l
. — - [LA-1] . 3K2\A
At(ri ,'2 b Jrn 2 +Ki + 21
(A 4AN N
r2 ¢ + o7 K2

and

®t(ri,r2)= sei(r(])ft] ®d*(r1,r2). (5.3.23)
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In the following result the inequality (5.3.24) corresponds to the pointwise
estimate of the H1 — L2 regularization investigated in Theorem A.8 in
[Villani (2009b)], while (5.3.26) corresponds to the pointwise estimate of
the regularization “Fisher information to entropy” see Theorem A.18 in
[Villani (2009b)].

Corollary 5.3.5. Let (5.3.22) hold for some constants K\, K2 > 0. Then
foranyt> 0,z = € Mm+d,

V2Pt/|2 < (Ptf2)*t{\zw I k (2)]), / e Bb(Rm+d). (5.3.24)
Iff >0, then

|V ,Pt/] < 6{Pt(f logf) - (Ptf)log(Ptf)} + Y » (\z W\, \z"\) (5.3.25)
holds for all 6 > 0, and consequently

[V2Pt/|2 <~ t(\z"\\z"\){Pt(flogf) - (Pt/)log(Pt/)}Pf/. (5.3.26)
Proof. Letz”" be such that 1= |A-1zB)| < ||A_1| «|;rB)|, and take

By (5.3.17),
V2PH()I2 < [ t2(PU ()E [ M 2 (5.3.28)
0

Since (5.3.22) implies [V2Z]| < /fi|z Q)| + 1T2]z(2)], it follows that

Then

(5.3.29)

Combining this with (5.3.28) we obtain

IV2Pt/ |2 < (Pt/ 2)'M |z(1>],|z(2)-
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Therefore, for any s G (0,t\ by the semigroup property and the Jensen
inequality one has

IV PH/|2= [V2PS(P-s/)|2 < *s(\z™\\zZW\)Ps(Pt_sf) 2
<o (* O U ppys,

This proves (5.3.24) according to (5.3.23).
To prove (5.3.25) we let / > 0 be bounded. By (5.3.18),

IV2P(/| < SfPt(/logl) - (Pt))log(Pt/)}

"2|jlo—H2 5.3.30
H---— logIb exp ”082 gy Vs Ms ( )

Combining this with (5.3.29) we obtain
|[V2Pt/| < 5{Pt(/log/) - (Pt/)log(Pt/)} + ~ ®O|r(D)]|Y2(2)).

As observed above, by the semigroup property and the Jensen inequality,
this implies (5.3.25).
Finally, minimizing the right hand side of (5.3.25) in S > 0, we obtain

[V*Pt/| < 2 M t(\zW\\zW\){Pt(flogf)-(Ptf)logPtf}Ptf.
This is equivalent to (5.3.26). O

5.3.2.2 |VZ| has polynomial growth

Assume there exists | > 0 such that

(A5.3.2) There exists a constant C > 0 such that for any x =
(XxMx”") € Rm+d,

(i) (Z{x) xW)<C{|x|2+ I);
(i) |VZ|(x) :=sup{|V2Z|(x) : \A < 1} < C{1+ [X|r.

It is easy to see that (A5.3.2) implies (a5.3.1) for W(x) = (I + |x]|2)2i,
so that Proposition 5.3.4 holds for u"(s)z*2>—v"(s)z(2) and 0(r, z(2s)
given in (5.3.21).

Corollary 5.3.6. Let (A5.3.2) hold.
(1) There exists a constant ¢ > 0 such that

IVP4/|2(x) < ~ ~ 3 ptfix), / GBb(Rm+d), t> 0,X € Rm+d.
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(2) If1 < A then there exists a constant ¢ > 0 such that
[VPt/|(x) < 6{Pt(f logf) - (Ptf)\og(Ptf)}(x)
+ CPtf(x) -dal/(1-20)
- SR, ol fEmADR) /(-2
holds for all 6 > o and positive f G Bb(Rm+d) and x ¢ Rm+d.

(3) Ifl=\, then there exist two constants c,c' > 0 such thatfor any t > 0
and S > t~2ec+t\

F6Cp. fix)

VPUI(x) <6{Pt(flogf)-(Pt\ogPti}()+

(i+N2
holds for all positive f ¢ Bb(Rrm+d) and X G Mm+d.

Proof. As observed in the proof of Corollary 5.3.5, we only have to prove

the results for t ¢ (0,1].
(1) It is easy to see that Ks in the proof of Corollary 5.3.5 satisfies

[<T-4|2< Cl(t2+t-4)|z|2(] + |XiX)(X)|2+ |Xi2>(x)[2)2 (5.3.31)
for some constant ci > 0. Thus, the first assertion follows from (5.3.28)

and (5.3.4).
(2) Let (A5.3.2) hold for some | G (0,1/2). Then

L(1 + [x|2)2 < c2(] + |x[2)2
holds for some constant c2 > 0. Let (AQ1), A02)) = (Xi™(x),X"2)(x)). By
Ito’s formula, we have

d(l + [X€1))2+ |X€2)|2)2
< Af(1 + [ XW[2+ |Xi2¥2)2i- 1(X(2adB s>
+ c2(l + |AiD|2 + |X(2)|2)2ids.
Thus,
d{e_(i+Qs(1+ |Xil}2+ |X(2)|2)2}
< 4fe-(1H+Cs(l + 1A 2+ |X$2)|2)2- 1(X(2),<7dBs>
- e _(IH+CYs(l + IXM 12+ |AN2)|2)2,ds.

Therefore, for any A> 0,
e-A(I+[x[2)2,EeAl@e-(1+c2>s (1+]X (1)]2+[X<2)[2)2id5

< Ee4A(Fe-<1+2)(I+|x(D[24A<Q)|2)2- 1<Xi2),EBs>

< | Ee32A2i2|||2;0 e-2(1+ A » (1 + X (1)|2+|X<2>[2)2<i- 1)|X(2)[2d5] 1/2  (5'3'32)

< [[EeA%2K]13/06 (Lcly (L+x-Di+boa)2)4 1ds| 1/2.
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On the other hand, since | <\ implies 41 —1 <21, there exists a constant
G > 0such that

RA2R2|H |V '-1< Ard + c3AIM1-2), r> 0.
Combining this with (5.3.32) we arrive at

Eexp |aJ e 1+ s(l + \X M2+ |X]j2¥2)2ids

<exp[a(l+ [x]2)2+ 1A I - 2)
12
X MEexp L jfV (1#C2s(l + X" 12+ |Xi2)|2)2/ds

As the argument works also for t /ir,, in place of t, we may assume that

the left-hand side of the above inequality is finite, so that
™
Eexp A/ e“ M (1 + |Xp)|2+ |x]2)|2)2ids
Jo

< exp [2A(1 + [x[2)2 + c3AU(1-2)

Letting

2ci(t2+t 4) (i+c,
AL(S) ( s2 ) (ep

and combining the above inequality with (5.3.30) and (5.3.31), we arrive at
(JVPt/| —6{Pt(f logf) - (Ptf)logPtf})(x)

< SP*f(X) logEeAt(6)/@exp[-(I+c2)31(1+IX ilh2-HX:<:)]2)2idS
_ (5.3.33)
<e6Ptm { x t(S)(1 + [*|22 + |A tQU(1"2)}

Pt/(the4C(l+t) {\x\ML+ 54a-1)/(I-2i)t-8i/(1-20|

for some constant ¢ > 0. This proves the desired estimate for t E (0,1], and
hence for all t > 0 as observed in the proof of Corollary 5.3.5.
(3) Let (A5.3.2) hold for 1= |, so that (5.3.32) reduces to

Een/o e_(1+°2)e(iH-X"B|2+|x<2)|2ds
< eMH-M2) []Ee8A2I01I2Jo e_(H+C)<(1+Hx<D)|2+[x<2,|2)d 5|12
Taking A= (8||cr|[)~2, we obtain

Eexp ~ [ te-(I+c2*(1+ X D2+ [X [2)d6 < exp r(i+N2)
elk\ Jo Ulkir
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Obviously, there exists a constant ¢ > 0 such that if 6 >t 2ec(1+t) then
J1(S) < (8|lcr||)~2 so that

(IVPU/] - S{Pt(f logf) - (Ptf) logPt/})(*)

<SAE" log(Eexp 1 J1-(1+c).(I+ [X(1)a

8|k|[2A(©)
+ |X<2)|2)2ds

<T*MNMM{1+N2) < ~ " (1 +N2
holds for some constant ¢' > 0. g

5.3.2.3 J1 general case

Corollary 5.3.7. Assume (A5.3.1). Then there exists a constant ¢ > 0
such that

IVP/I2< ~ )ptf2, / e Pb(Km+d). (5.3.34)

If moreover there exist constants \,K > 0 and a C2-function W > 1 such
that

Av < k- 2V (5.3.35)
XK

t/ien there exist constants ¢,60 > 0 such that
[VPt/| < S{Pt{flogf) - {Ptf) log Ptf}
cr 1 logW™ | (5.3.36)
+ jlI(tA1)3+ 1)2/Pt/
holds for f G (Rm+d) and S > Soft.
Proof. Again, it suffices to prove for t G (0,1]. By (5.3.21) and taking

jd2) g such that [2°2Y = ||A_1| *|z”¢, there exists a constant ¢ > 0
such that

|A(z,2Q2),s)] < £]z], 10(z,2(2).5)] < "z].
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holds for some constant ¢ > 0. Since W > 1 and EW/XxjI*,xj2Y) < eCsW ,
this and (5.3.17) yield that

IVPt/]2

<Ci(P,f2)l TIN(r.r<2,»)Ne +E /' |e(2,22>,9)|' H(X<13 X<2>)ds|

<-<h+T°hf2
holds for some constants G, cr > 0.
Next, it is easy to see that the process
Ms:=W ~X "exp [- T A (XA, XMN)dr
Jo W

is a local martingale, and thus a supermartingale due to the Fatou lemma.
Combining this with (5.3.35) and noting that W > 1, we obtain

Een/oW(X"\x”")ds < eKtEMt < eKtW (5.3.38)

Then the second assertion follows from (5.3.18) and (5.3.37) since for any
constant a > 0 and St > y/a/X,
Eexp "V (X (1,X(2)ds

al(A<52t2)

< MEexp X W (XM XAM)ds

5.3.3 Hamack inequality and applications

The aim of this subsection is to establish the log-Harnack inequality and the
Harnack inequality for Pt associated to (5.3.1). We first consider the general
case with assumption (A5.3.1) then move to the more specific setting with
assumption (A5.3.2). Again, we only consider the time-homogenous case.

5.3.3.1 Hamack inequality under (A5.3.1)

We first introduce a result parallel to Proposition 1.5.2.

Proposition 5.3.8. Let IHbe a Hilbert space and P a Markov operator on
Bb(W). Let 2 € H such that for some S £ (0,1) and measurable function
g2 : [52,00) x i -j (0,00),

V2P /| < S{P(flog/) —(Pf) logPf} + 72(5-)P/, 5>*2 (5.3.39)
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holds for all positive f £ Bb(H). Thenfor anya > jzg~, and positive
f € Bb(W),

(Pfla(x)<Pfa(x+z)exp

jEi- o - srabl @y S ds

Proof. Let /2(s) = 1+ (a —lI)s, s £ [0,1]. We have ?u_l > 87 provided
a> k. Then

— log(Pfrs))a/m (x +sz)
_a(a- h{P(/BANlog/"5) - (P/~s>)logP/"s)}

13(s)2P 1AW (x+ s2)
pis)Pip(s) & %)
. a (a—1 \
Then the proof is completed by taking integral over [0,1] w.r.t. ds. O

Below is a consequence of (5.3.36) and Proposition 5.3.8.

Corollary 5.3.9. Let (A5.3.1) and (5.3.35) hold. Then there exist con-
stants 8qg,c¢ > 0 such that for any a > 1,t > 0 and positive f £ Bi,(Mr+d),

Ne /) (*)
5.3.40
S«n* +*)«p[‘?fk|f\//(1'&’)3 , /A log 2/]\.l§'lxt)-|-232)ds (5.3.40)

holds for x, z £ Rm+d with \2\ <
Proof. By (5.3.36),

clzl2r 1 N logW
5 I(tAD3 " (tM)2 Pt

holds for S > 50\z\/t. Thus, (5.3.39) holds for P = Pt and

IVzPt/| < £{Pt(/log/) - (Pt/)logPt/}

Sz =

Therefore, the desired Harnack inequality follows from Proposition 5.3.8.

O
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To derive the log-Harnack inequality, we need the following slightly
stronger condition than the second one in (A5.3.1): there exist a constant
11> 0 and an increasing function U on [0, 00) such that

\Z(x)-Z(Y)\2 < \x-y\2{U (\x-y\) +\W(y)}, x,yeRm+d. (5.3.41)

Theorem 5.3.10. Assume (A5.3.1) such that (5.3.41) holds. Then there
exists a constant ¢ > 0 such that

Pt log f(x)~ log Ptf(y) < c|x-y|2j (IAt):r+ - )

holds for any t > 0, positive function f e Bb{Rrn+d), and x,y € Mm+d.

Proof. Again as in the proof of Corollary 5.3.5, it suffices to prove for
t€ (0,1]. Let x = and y = (yl) ~ 2)). We will make use of the
coupling constructed in the proof of Theorem 531 fore = 1,2 = y —x
and (u,v) being in (5.3.19). We have (X "\ X ") —(xjLIxj2'1), and
(Xp'xi21M9Hait] is generated by L under the probability Qi = Ri(t)P.
So, by the Young inequality (see Lemma 2.4 in [Arnaudon et al (2009)]),
we have
ft log/(y) = E(i?1(*)log/Ne {I']), X (2’1))) = E(Ar(«)106/(X {(1),X12)))
< E(A1()108 1()) + logE/(X (1), X12)
= logPt/(*) + E(fli(t) log R\ (1))«

Combining this with (5.3.10) we arrive at
ft log/(y) - log Ptf(x) < “"Eqj J*W~I"(s)\2<s. (5.3.42)

Taking z!2) such that \z*\ < ||A_1| «Iz*I, we obtain from (5.3.8), (5.3.41),
(5.3.19) and (5.3.20) that for some constants Ci,C2 > 0,

k 16 (s)\2 < c1{|A(z,z<2 )2+ 6(z,212),5)[2(t/(|0(z,2(2).5)])
+ AW(Xj 11> X<2-1>))}

ooaf il W) +wdxJdu \xJ2L)i
-z 1? + 12 r

Combining this with (5.3.42) and noting that LW < CW implies
Eq,W (xjLIN xi-2'1]) < eCsW(y) for s € [0, t], we complete the proof. O
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5.3.3.2 Hamack inequality under assumption (A5.3.2)

Theorem 5.3.11. Let (5.3.22) hold and let ®{ ke in (5.3.23). Thenfor any
t >0,a > 1 and positive function f G Bf,(Rm+d),

(Ptfa(x) < (Ptfa)(y) exp Ié’\a-l_q_;L<(|*(1>-yWI X(2)-y (2| (5.3.43)

holds, here x = (x~\x~), y = (y*\y”") G Rm+d. Consequently,
Ptlogf(x) <logPtf(y) + ®r(a) y() UQ)  ymy) (5.3.44)

holds for all x, y GRm+d.

Proof. It iseasy to see that (5.3.43) follows from (5.3.25) and Proposition

5.3.8. Next, according to Corollary 1.4.3, (5.3.44) follows from (5.3.43) since
Rm+d is a length space under the metric

p(x.y) = - 2(D1,1z(2 -y (2)). 0
The next result extends Theorem 5.3.11 to unbounded S7Z.

Theorem 5.3.12. Assume (A5.3.2). Then there exists a constant ¢ > 0
such that for any t > 0 and positive f G sb(Mm+d),
Ptlog/ (y) - logPt/(x)
+ @ - WA+ (L MM (5.3.45)
<|Z'2“2{.(1nt)3 (1 A2+ «11 ]

holds for x,y G Mm+d. If (A5.3.2) holds for some 1 < \, then there exists
a constant ¢ > 0 such that

41

+ ((a-1)(1N11)2)&- U/*- BO}]

@®tHa{x) < (Ptfa){y) exp [

holds for all t >0,a > 1,x,y GMm+d and positive f G S(,(Rm+d).

Proof. (5.3.45) follows from Theorem 5.3.10 since in this case (A5.3.1)
and (5.3.41) hold for W(x) —(I + |x|2)2 and U(r) = cr2l for some A,c > 0
while (5.3.46) follows from Corollary 5.3.6(2) and Proposition 5.3.8. O

According to Proposition 1.4.4, we have the following consequence of
Theorems 5.3.11 and 5.3.12.

Corollary 5.3.13. Let pt be the transition density of Pt w.r.t. some o-
finite measure p, equivalent to the Lebesgue measure on Rm+d. Let ®4 be in
Theorem 5.3.11.
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(1) (5.3.22) implies

ern+d

< exp ( )r$t 1z(1) —2/41)1, px2) - y {2)])

fy— Pt(x'z)'ogpf( AP p{dz) < @A) - yw \ [z - <))

for allt>0 and x = {X*\x"),y = (y(9),y(2} g Mm+d.
(2) 1f(A5.3.2) holdsfor some | € (0, |), then there exists a constant ¢ > 0
such that

mmdfan f-W «%*)

ac\x —¥/|2
< exp

holds for all t > 0 and x, y € Rm+d.
(3) If (A5.3.2) holds then there exists a constant ¢ > 0 such that

jE’ n+dpt(x, 2) log 'l'Dt él’;)Vx(dz)

+ o\ - Y24 + c(l + Wby
<lz-2l12ip a3 @ ARH2AH tA

holds for all t > 0 and x, y g RTG-d.

Next, for two probability measures p and n, let C{y, p) be the class

of their couplings, i.e. @& € C(v,p) if # is a probability measure on
Rm+d x Rm+d guch that *(Hm+d x .) = a(.) and X |>»+d) = In

the spirit of Proposition 1.4.4, Theorems 5.3.11 and 5.3.12 also imply the
following entropy-cost inequalities. Recall that for any non-negative sym-
metric measurable function ¢ on Km+d x Mm+d, and for any two probability
measures p, 1 on Rm+d, we call

Wce(v,p) := inf / c(x,y)n(dx,dy)

the transportation-cost between these two distributions induced by the cost
function c, where C{v, p) is the set of all couplings of v and p.

Corollary 5.3.14. Let Pt have an invariant probability measure p, and let
P* be the adjoint operator of P in L2{p).
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(1) If (5.3.22) holds then
g(PtflogPt*f)<W Ci(fy,p), t>0,f> =1 (5.3.47)

where ct(x,y) = —T/, \xN —y M),
(2) If (A5.3.2) holds, then there exists ¢ > 0 such that (5.3.47) holds for

5.3.4 Integration by parts formula and shift Hamack in-
equality

In this subsection we aim to establish the integration by parts formula
and the corresponding shift Harnack inequality for the Hamiltonian sys-
tem using coupling (see [Wang (2012d)] for the study of more stochastic
equations).

Consider the following degenerate stochastic differential equation on
Rm+d = Rmx Rd(m > 0,d > 1)

(5.3.48)

where A and B are two matrices of order m x m and m x d respectively,
Z :[0,00) x Rm+d -> Rd is measurable with Zt € C1(Mm+d;Rd) for t > 0,
Wt}t>o are invertible d x d-matrices measurable in t such that the operator
norm ||<d71|| is locally bounded, and Bt is the d-dimensional Brownian
motion.

When m > 1 this equation is degenerate, and when m = 0 we set
Rm = {0}, so that the first equation disappears and thus, the equation
reduces to a non-degenerate equation on Md. To ensure the existence of
the transition density (or heat kernel) of the associated semigroup Pt w.r.t.
the Lebesgue measure on Rm+d, we make use of the following Kalman rank
condition (see [Kalman et al (1969)]) which implies that the associated
diffusion is subelliptic:

(A5.3.3) There exists 0 < K < m —1such that Rank[B, AB, ..., AkB] —
m.

When m = 0 this condition is trivial, and for m = 1 it means that
Rank(B) = 1, i.e. B ~ 0. In general, we allow that m is much larger
than d, so that the associated diffusion process is highly degenerate (see
Example 5.3.1 below).
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Let the solution to (5.3.48) be non-explosive, and let
Ptf = E/(X1(1),X12), t >0,/ € Bo(Rm+d).
To state our main results, let us fix T > 0. For non-negative ¢ G C([0, T])
with 0> 0 in (0, T), define
Qb= f <Xe(T-t1)ABB*e{T-t)A'dt.
Jo

Then <apis invertible (cf. [Saloff-Coste (1994)]). For any z 6 Rm+d and
r >0, let B(z; r) be the ball centered at z with radius r.

Theorem 5.3.15. Assume (A5.3.3) and that the solution to (5.3.48) is
non-explosive with

sup e{ sup IVZt|2j <00, r>0. (5.3.49)
e[0T]  BA(D.X)
Let ¢b,;p GCL([O,T]) such that d0) = {T) = 0,¢p> 0 in (OT), and

®(T) = 1, o(0) —0, Jf rp()~rT~~AaBdt = 0. (5.3.50)
0]

Moreover, for e = (ei, ef) GMm+d, let
h(t) = dh{1)B**T~"A’Q "ei + V>(()e2 €

m = a e(t-s)ABh(s)ds, h(t)"j € Rm+d, t€ [0,T].

(1) For any f GCY(IRm+d), there holds
Pt (VJ)

=RM{x[1x[2) (a™h'{t) - vemzt(x11),x 2))}, dBt)J.
(2 Let X" X @) =x = and

a9 =exp]-" (<TtE16 W ,dBt) - latk1 ~i(t)]2dt

where
m =h\t)+zt(x?\xf2)- a g (1g),x<20)

and (Xj11),X(21) solves the equation

fdX(M) = {AX{(11)+ BX{2,1)}dt, X ~'1}= x~,

\dXj21) - <atdBt+ {Zt(X(1),X{2)) + h'(t)}dt, X<2@) = x(2).
Then
\Pri(x)\p < PT{\f\p(e + -)}@)(ER ) P~-\ p >1,f € Bb(Rm+d),
PTlog/(x) < logPT{/(e + m}*) + E(R\ogR), f € Bb(Rm+d),f > 0.
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Proof. We only prove (1), since (2) follows from Theorem 1.3.9 with
the coupling constructed below for e = 1  Let =
(x Y \x") solve (5.3.48) with initial data and for e € (0,1] let
(xjLe\ Xj2e>) solve the equation

fAX(LE) = {AX{(LE) + BX(2e)}dt,

. (5.3.51)
\d X 2% = otdBt + {Zt{ X " ,xi2)) + £h'(t)}dt,
with initial data (x*~x”"). Then it is easy to see that
(2e)
X x[2)+eh{t), (53.52)

AXH(1E) = X(1) +ef* e(t- SABh(s)ds.

Combining this with 0(0) —d{T) —0 and (5.3.50), we see that h(T) = e2
and

j e(T-i)ABh(t)dt

= [ <B{te(T-t)ABB*e(T-t)A'Q fleidt + [ ip(t)e T~t)ABe2dt
Jo Jo
= el.
Therefore,
(XEB\XE2€) = (XE\XE®) +ee, ee [01] (5.3.53)

Next, to see that ((X*\ X "), (xjLA xj2sY) is a coupling by change of
measure for the solution to (5.3.48), reformulate (5.3.51) as

dx{.0 A x A~ +BXirjdt, x6.0
dX @0  otdWf + Zt(X(UA x 1 2e))dt, x{20 — r(0

where

(5.3.54)

Wf -:Bt+Jf0 a; Yah'(s) + ZS(XW ,XW) - Zs(X M\ X ") }ds
fort 6 [0, T]. Let
W =ceh'(s)+ Z.(XP,xP) - ZS(X ~\X ~) (5.3.55)
and
Be=exp -J (o-r*eW .dB *)|(T SI™(s)|2ds .

By Lemma 5.3.16 below and the Girsanov theorem, Wf is a d-dimensional
Brownian motion under the probability measure Q£ := ReP. Therefore,
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((xY\x?), (X(LA Xj2£M) is a coupling by change of measure with
changed probability Qe. Moreover, combining (5.3.52) with the definition
of Re, we see from (5.3.49) that

\R
(dee e=0= JE (a:1{h'(s)-Xe{s)Zs(XihX")},dBs
holds in ZI1(P). Then the proof is completed by Theorem 1.3.9(2). O

We remark that as shown in the last subsection, condition (5.3.49) and
the non-explosion are implied by (A5.3.1).

Lemma 5.3.16. Let the solution to (5.3.48) be non-explosive such that
(5.3.49) holds, and let  bein (5.3.55). Thenfor any e 6 [0,1] the process

Re{t)y = exp |- ™ (as4 Ks),dBs) - *jf Ws , te [0\
is a uniformly integrable martingale with supt6 D Tj E{Re(t) log Re{t)} < oo.

Proof. LetTnh=inf{t > 0:|X4| + | X4y >n},n > 1 Then mf oo as
nt oo. It suffices to show that

sup  E{AE(<Nm)logRe(t Arn)} < oo. (5.3.56)
te[o,T],n>i
By (5.3.52), there exists r > 0 such that
(XY(LE), X (2£€)) € B{x[I\x [ 2)-r), te [0,T],.£ € [0,1]. (5.3.57)

Let Qen = Re(TA r,)P. By the Girsanov theorem, {Wf }*e[o,Tm,] is the
d-dimensional Brownian motion under the changed probability Qen. Then,
due to (5.3.57),

sup E{77e(tArn)log”E(tArn)} = -EQen / lcr717 (s)|2ds
tefo,¢ ] z Jo

rm
<C + CIEQen sup |VZ{2dt
Joo B(x(Le)x(2e))
holds for some constant C > 0 independent of n. Since the law of
(Xanr4.n™) under Qf, coincides with that of (X$Tn, XnT,,) under P,
combining this with (5.3.49) we obtain

rm
sup E{Re(tATn)logRe(tATn)} <C+C ( E sup \XZt\2dt < oo.
tefo,1] Jo B(Xt\x 2,0

Therefore, (5.3.56) holds. O
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To derive explicit inequalities from Theorem 5.3.15, we consider below a
special case where ||V Zt|joo is bounded and A1= 0 for some natural number
> 1

Corollary 5.3.17. Assume (A5.3.3). If||VZt|joo ani* l0*1" are bounded
int >0, and A1= 0 for some | > 1 Then there exists a constant C > 0
such that for any positive f GBb(Mrn+d),T >0 and e = (el,er) GRm+d:

Cp / |e22 lei|2 _
L) (PTHp<PT1{/p(e+ -)}exP D-IVIAT (1 NT) 483 p> 1

eil
(2 Prlog/<logPr {/(e+ m}+ <% AT T (1 AT)4c+3
2 .
- A leil2
@ Forf G Iprvesj2 < CIPT/ 2/( 1T + (LNT) a3

(4) For strictly positive f G Cb(Rm+d),
[PrVve/| < <5{Pr(/10g/) - (Prf) logPTf)

C/N2, bl2 \r f s>0
+ 8 VIAT + (LAT)4+3JPt» > ¢
Proof. By PT = Pr-iPr-i.r and the Jensen inequality, we only need to
prove for T G (0,1]. Let <)) = ‘yr- mThen ¢0) = ¢p(T) = 0 and due to
Theorem 4.2(1) in [Wang and Zhang (2013)], the rank condition (A5.3.3)
implies that
HQMI < cT~(2ct) (5.3.58)
for some constant ¢ > 0 independent of T G (0,1]. To fix the other reference
function ip in Theorem 5.3.15, let {cj}i<j<;+i GR be such that
i
i+ £ a=no,
=i

(+

1+ E133& « =0, 0<j<i-1
Take
Vi) =1 ‘ep.n
i=1
Then ip(0) = 0,ip(T) = 1land /@ (T —t)j ip(t)dt —0 for 0 < j <1 —L1 Since

Al= 0, we conclude that fA xp{t)e"T~t)AAt —O0. Therefore, (5.3.50) holds.
It is easy to see that

m)\<C, \iP\t)\<cT-\ t G[0,T]
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holds for some constant ¢ > 0. Combining this with (5.3.58), (5.3.52) and
the boundedness of ||vz]joo and jjo—13, we obtain

|6 W I<c(r-2fctDlel + T-1le2)))

|© (t)|<c(T-(Actlel] + [e2])
for some constant ¢ > 0. From this and Theorem 5.3.15, we derive the
desired assertions. O

Corollary 5.3.18. In the situation of Corollary 5.3.17. Let | ¢||p_>q be the
operator norm from Lp to Lg w.r.t. the Lebesgue measure on Km+d. Then
there exists a constant C > 0 guch that

HPHpto < ¢ *(M~~[) 2 (IAT)-d+{(“Bm, p>I1,T>0. (5.3.60)

Consequently, the transition density pT{(x,y),(x",y")) of PT w.r.t. the
Lebesgue measure on Mm+d satisfies

L™ Y)L(x'y )N dx'dy!

mf-d (5.3.61)
<C " {— ) w@nrTyn

_d+(4fc+3)m
p—1

forall T >0, (x,y) 6 Rm+d, p > 1

Proof. By Corollary 5.3.17(1), (5.3.60) follows from (1.4.11) for PT =
P, ®(r) = rp and
co (bl2 ez \
Cox & T IVIAT  (IAT) 43
Moreover, (5.3.61) follows from (1.4.13). O

Example 5.3.2. A simple example for Corollary 5.3.17 to hold is that
at = (7and Zt = Z are independent of t with LIY"Llpo < oo, A = 0, and
Rank(-B) = m. In this case we have d > m, i.e. the dimension of the
generate part is controlled by that of the non-degenerate part. In general,
our results allow m to be much larger than d. For instance, let m —Id for
some | > 2 and

/ 0\
/O isxa O ...0 O
0 0 14560 a==0 O
A= B =
0 0 O .. O g 0
Then Al1= 0 and (A5.3.3) holds for k = | —1. Therefore, assertions in

Corollary 5.3.17 hold for k = | —1
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5.4  Stochastic Hamiltonian system: Malliavin calculus

This section is due to [Wang and Zhang (2013)] where explicit Bismut
formula and Harnack inequality are studied for the stochastic Hamiltonian
system by using Malliavin calculus. In general, the formula can be given by
a pull-back operator (see e.g. 86 in [Aldous and Thorisson (1993)]), which is
normally less explicit in the subelliptic case. Nevertheless, in some concrete
degenerate cases the derivative formula can be explicitly established by
solving certain control problems.

5.4.1 A general result

Consider the following degenerate stochastic differential equation on Rm x
Rd:

fAX (D) = Z (D(AQ),AR)df,
(AXQ = 2>(X(),X(Q)df + adBt, 541

where X tl) and xj2>take values in Rm and Rd respectively, a is an in-
vertible d x d-matrix, Bt is a d-dimensional Brownian motion, 6
C2(Mm+d;Rm) and Z™ g CI1(Rm+d;Rd). Let Xt = (X(1),X{(2),Z =
(Z",Z"). Then the equation can be formulated as

dXt= Z(Xt)dt + (0, adBt). (5.4.2)
We assume that the solution is non-explosive, which is ensured by

(A5.4.2)(l) below. Our purpose is to establish an explicit derivative for-
mula for the associated Markov semigroup Pt-

Ptf(x) = Ef(Xt(x)), t> 0,X£ Rm+d,/ e £6(Rm+d),

where Xt(x) is the solution of (5.4.2) with Xq = x, and Be{Rm+d) is the
set of all bounded measurable functions on Rm+d.

To compare the present equation with that investigated in §5.3 where
ZW is linear, let us recall some simple notations. Firstly, we write the gra-
dient operatoron Rm+das V = (V*, V), where VA1) and stand for
the gradient operators for the first and the second components respectively,
so that V/ : Rm+d —=Rm+d for a differentiable function / on Rm+d. Next,
for a smooth function £ = (£i,...,£*): Rm+d —-» Rfg let

Ne i\ /v « 6\
\VC = : , V«C = : , 1=12.
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Then Vf, V/NE, are matrix-valued functions of orders K x (m+ d), Kk X
m,k x d respectively. Moreover, for an | x fc-matrix M =

andv = £ Rfe let Mr £ R*with (Mv)i = J2j=i"ijvD 1< *< L
We have

V.= (VO*, vgj* = (VOfl*w, *= 12

When ZAMx"NjX"2)) depends only on and V/AZ") is a constant
matrix with rank m, then equation (5.4.1) reduces back to the one studied
in [Guillin and Wang (2012)] (and also in [Zhang, X. (2010)] for m —d).
In this case we are able to construct very explicit successful couplings with
control, which imply the desired derivative formula and Harnack inequali-
ties as in the elliptic case. But when Z-b is non-linear, it seems very hard
to construct such couplings. The idea is to split Z ~ into a linear term and
a non-linear term, and to derive an explicit derivative formula by control-
ling the non-linear part using the linear part in a reasonable way. More
precisely, let

V(QZ(1) =B0+B,

where Bo is a constant m x d-matrix. We will be able to establish derivative
formulae for Pt provided B is dominated by Bqin the sense that

(BB*0a,a) > -e\B;a\2, Vae Mm (5.4.3)

holds for some constant £ £ [0,1).

To state our main result, we first briefly recall the integration by parts
formula for the Brownian motion. Let T > 0 be fixed. For a Hilbert space
q, let

U\H) = jh £ C([0,T];A) : N10) = O, [i21(H) := £ \h'(t)\Ridt < 00

be the Cameron-Martin space over 4. Let H1 = H1(Rrf) and, without
confusion in the context, simply denote || ¢|lhi = || « LH"a) f°r anY Hilbert
space {.

Let (i be the distribution of {Bt}te[0T], which is a probability measure
(i.e. Wiener measure) on the path space = C(]0, T]; K&. The probability
space (2 fi) is endowed with the natural filtration of the coordinate process
Bt(w) := wt,t € [0, T\. A function F £ L2(ll; /i) is called differentiable if
for any h £ H1, the directional derivative
iim FC*sh)-F ()

E—>0 £

DhF
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exists in If the map i 13/u-> DhF £ L2(fl;ff) is bounded, then
there exists a unique DF £ L2(Q —¥ H1;p) such that (DF,h)hi = DhF
holds in L2(Q;p) for all h £ H1. In this case we write F £ V(D) and
call DF the Malliavin gradient of F. It is well known that (D. V(D)) is a
closed operator in L2(ft; p), whose adjoint operator (D*, T>(D*)) is called
the divergence operator. That is,

E(DhF) — [ DhFdff= | FD*hdff = E(FD*h) (5.4.4)

for F £ V{D), h £ V{D*).

For any s > 0, let {K(t, s)}t>s solve the following random ODE on
im®Rm:
g;K(t, s)= (VAZN)(X1)K(L, s), K(s,s) =Imxm. (5.4.5)
We will make use of the following assumption.

(A5.4.1) The function
U(x) Eexp (IVZ(Xt(*))|ldi , x £ Rm+d
H

is locally bounded.

For any v = £ Rm+d with |v] = 1, we aim to search for
h = h(v) £ V{D*) such that
VVPTf(x) = E[f(XT(x))D*h], f £ CI(Rm+d) (5.4.6)

holds. To construct h, for an 'Hl-valued random variable a = (a(s))se[0ir],
let

g(t) = K(t, 0)vV + J* K(t,s)X§ s)Z (X s(x))ds,
(5.4.7)
h(t)= J/ ta-1(V(SQ6)Z(Q(Xs(®)) -a,(9))dS, te[0,T].
)

We will show that h satisfies (5.4.6) provided it is in V(D*) and a(0)
vi2Aa{T) = 0,g(T) = 0.

Theorem 5.4.1. Assume (A5.4.1) for some T > 0. Forv = £
Rm+d, let (a(s))o<s<T be an H1-valued random variable such that c*(0) =

and a(T) = 0, and let g(t) and h(t) be given in (5.4.7). Ifg(T) =0
and h £ V{D*), then (5.4.6) holds.
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Proof. For simplicity, we will drop the initial data of the solution by
writing Xt(x) = Xt. By (A5.4.1) and (5.4.2) we have Xt G T>(D), and
due to the chain rule and the definition of h(t),

DhXt = f XDhXsZ{Xa)ds+ [ (0,0n'(s))ds
Jo 0

O,v™ - Q) + J];) X DhXsZ (X a)ds (5.4.8)

+\b(o,X{gaMs))Z N(Xa)ds
holds for t G [0, I']. Next, it is easy to see that
g(t) = «(1) + JfO v {gsMs))z ~ (x s)ds, te [0,T],
Combining this with (5.4.8) we obtain
DhXt + (g{t),a(t)) —v +J1:) XDhxsHg3,a(s))Z(Xs)ds, te[0,T].

On the other hand, the directional derivative process

YUXt = E_%Xt{x+ev) - Xt(x)
satisfies the same equation, i.e.

WXt=v + [ Xx,xsZ(Xs)ds, te [0,T]. (5.4.9)
Jo

Thus, by the uniqueness of the ODE we conclude that
DhXt + (g(t),a(t)) —VvXu t GI[O,T].
In particular, since (g(T),a(T)) = 0, we have
DhXx = XvXt (5.4.10)
and due to (A5.4.1) and (5.4.9),

E\DhX T\2 = E\XVXT\2 <\v\2Eexp\2 [IVZ]|(Xs)ds . (5.4.11)

Combining this with (5.4.4) and letting / G CI(Rm+d), we are able to
adopt the dominated convergence theorem to obtain
XVPTf = E(XT(XT),XvXT)=E(Vf(XT),DhXT)
= EDhf(XT) = E[f(XT)D*h\. D
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5.4.2 Explicit formula

According to Theorem 5.4.1, to derive explicit derivative formula, we need
to calculate D*h for h given by (5.4.7). To this end, we assume

(A5.4.2) The matrix a £ 9 Rd is invertible, and there exists W £
C2(Km+d) with W > 1 and T~"00 W(x) = 00 such that for some con-
stants ¢, 2> 0 and I\ £ [0,1],

(D) LW <CW, |[V<2>W|2 < CW, where L = ATH(<I<TM2>V(2) + Z Y,
@ IVZ|| < CWNM\ ||V2Z]| < CWh.

Theorem 5.4.2. Assume (A5.4.2) and let = Bqg+ B for some
constant matrix Bq such that (5.4.3) holds for some constant e £ [0,1). If
there exist an increasing function £ £ C([0,T]) and ¢ £ CL(J0, T]) with
£(t) > 0fort £ (0,T], ¢f0) = (T) = 0 and O(f) > Ofort £ (O, T) such
that

J% ®(3)K(T,3)BOBOK (T,3)*<13>bl)1TxT, t£ (0,T], (5.4.12)
Then

D) ot = = PB)K(T, Z A\ X s)BgK(T, S)*ds is invertible for t £
(0, T] with
[<rr'» 5 (T37)W,> $5413>
(2) Let h be determined by (5.4.7) for
ay= L@
PY)BOK(TAY
”) ( N TC(92Q71A(T,0)n(IMS (5.4Nn4)
So £(s)2ds

- oY)k (TyyarJd JF"K(T,s)v% z”(xs)ds-

Then for any p > 2, there exists a constant Tp £ (0,00) if \ = 1 and
Tp — 00 if li < 1, such that for any T £ (0, Tp), (5.4.6) holds with
K\D*h\p < 00.
(3) For any p > 1 there exist constants cj(p), Cr(p) > 0, where cr(p) = 0 if
I\ =12 =0, such that
\YPTN<cYp){PT\TLP
VIXI{(T AD3/2+ £(TAV)}ec* w (5.4.15)
fo™ ~)2<h
holds for all T >0 and f £ M*dy,
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The idea of the proof is to apply Theorem 5.4.1 for the given process
a(s). Obviously, (A5.4.2)(l) implies that for any | > 1, there exists a
constant Ci such that LWI < QW 1, so that EW (Xt(x))1< eCItW(x)1and
thus, the process is non-explosive; while (A5.4.2)(2) implies that |VZ]| +
IV2Z|| < CWIIM2 holds for some C > 0, so that

E ((IVZF + [V2Z||p)(At)) < ecWtr (IM2> t >0 (5.4.16)

holds for any p > 1 with some constant c(p) > 0. The following lemma
ensures that (A5.4.2) implies (A5.4.1) for all T > 0 if \ < 1 and for
small T>0ifd=1

Lemma 5.4.3. If (A5.4.2)(l) holds, then for any T > 0,

oW
< eX
BeXD o0 2earact g WEXOAL <EXP royoeniet. -

Consequently, (A5.4.2)(2) implies that U := Eexp[2 fQ ||[V/||(At)dt] is
locally bounded onRm+d if eitherh < 1 orh = 1 butT2C2\a\\2e4+2CT < 1
Proof. It suffices to prove the first assertion. By the Ito formula and
(A5.4.2)(I), we have
dW{Xt) = (WQW{Xt),adBt) + LW (Xt)dt
< (VWW {Xt1),<TdBt) + CW (X1t)dt.
So, for t € [0,T],
d{e-(C+2/T)tW(Xj} < e-(C+2/T)t"(2)w ~Xt),0dBt)
—CT=2W{Xt)dt.
Te X0

Thus, letting r,, = inf{t > 0: W(Xt) >n}, forany n > 1land J1> 0 we
have

EeXp ;.cras | W {Xt)dt
< eAlvEexp <c+2/T)t("2)W (Xt),0dBt)
" rTAr, 172

<™ Eexp 2AKCKkll2 W{Xt)dt
0

where the second inequality is due to the exponential martingale and
(A5.4.2)(l). By taking
1

A= Teil(rlizecT+2°
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we arrive at
pTArn W
E
P racnonzeracT 5, WAXDAU <€D Lo eorcT
This completes the proof by letting n —¥ co. O

To ensure that ¥,\D*h\p < 0o, we need the following two lemmas.

Lemma 5.4.4. Assume (A5.4.2). Then there exists a constant ¢ > 0 such
that

WDXtW I<ViMecfowll® , t>0. (5.4.17)
Consequently, if \ < 1, thenfor anyp > 1,

E[\su 3<oo,T>0;
te[o,
and if Ix = 1, then for any p> 1 there exists a constant Tp > 0 such that
E( sup_ \DXt\B1) <oo, T £ (0,[P).
R/te[o?l] . 2 )
Proof. Due to Lemma 5.4.3, it suffices to prove (5.4.17). From (5.4.2)
we see that for any h € N1, DhXt solves the following random ODE:
DhXt = J[ (YDhxsZ)(Xs)ds + (0,0h(t)).
0
Combining this with (A5.4.2)(2) and |/i(t)] < \/t\ Hi, we obtain
\DhX t\ < C}O Wh (Xs)\DhX s\ds + Vi\\c Mnl> hem 1
Therefore,
\\DXtWe <C Jf WA (Xs)||DXsllexds + Vil\o\
o
This implies (5.4.17) by Gronwall’s inequality. O

Lemma 5.4.5. Assume (A5.4.2). Thenfor any s G [0,T],
WK(T,s)\\<ec f" wll* dr,

54.18
[KBA(T,s)|| < CWh(Xs)ec™ wllr  dr, ( )

and
WDK{T,s)\\mi <Ce2Cf?wll(x dr [ Wh (Xr)\DXr\midr. (5.4.19)

JS
Consequently, for any p > 1 there exists Tp G (0, 00) if 1 = 1 and Tp = 00
ifli <1 such that

T G (0, Tp).
E itg#)pr] \\DK(T,)\\R1 < 00, (0, Tp)
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Proof. By Lemma 5.4.4 and supteQTJEWI(Xt) < oo for any | > 0 as
observed in the beginning of this section, it suffices to prove (5.4.18) and
(5.4.19). First of all, by (5.4.5) and (A5.4.2)(2), we have

WK{E 9)l| < 1+ 3% IVOZ@Q)Xr)I| wlif(r,a)l|dr

<1+ cJ W (XP)\K(r,a)\dr,

which yields the first estimate in (5.4.18) by Gronwall’s inequality. More-
over, noticing that

dsK(t,s) = st\s/" Z ") (X r)dsK(r, s)dr - (V(D)Z(D)(X9,
by (A5.4.2)(2) we have
ldsK(t, s)\\<C J* VF1(Xr)\dsK(r, s)||dr + CW I (Xs).
The second estimate in (5.4.18) follows. As for (5.4.19), since
at s) = (XDxyV zW ) (X t)K(t, s) + (yWzW)(Xt)DK(t, s),
with DK(s,s) = 0, it follows from (A5.4.2)(2) and (5.4.18) that

WDK(t,s)\\m < j ' WX VAZA(X N [[Ne ||HL|A(r,9)|/dr
+ WX AZ ALX )\ \DK(r,s)\\uidr
< Cec" Wh(Xf)def W I*(Xr)\DXr\m dr
S

aC J* WII(Xr)WDK(r, s)|[Hidr.

This implies (5.4.19). O

Proof. (Proofof Theorem 5.4.2) (1) Let a E Mm. By (5.4.3), (5.4.12)
and = B0+ B we have

(Qta,a) =  4{s) (<K(T,s)BOBOK(T, s)*a, a)
+ (K(T, s)B(Xs)BOK(T,s)*a, a))ds

> (1- e) f* (3)\B*K(T, s)*al2ds > (1 - e)E(t)|al2.
Jo
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This implies that Qt is invertible and (5.4.13) holds.

(2) According to Lemma 5.4.3, (A5.4.2) implies (A5.4.1) forall T >0
ifh < 1and forsmall T > 0if \ = 1 Next, we intend to prove that
h € T>D*) and E\D*h\p < oo for small T > O if \ = 1 and for all T > O if
h < 1 Indeed, by Lemmas 5.4.4, 5.4.5, (5.4.16), and the fact that

DQA = -Q71DQt)Qti,
there exists Tp > 0 if \ = 1and Tp= oo if \ < 1such that
sup E\DQt\o < +00, T G (0, Tp),
te[o, T]

and by (5.4.13),

(Kcar‘B,)Lp<Ne 5 |*, t€(o,n (5.4.20)
sEup] (E\Da(t)\m +E\Dg(t)\my /P <00, T g (0,TP).  (5.4.21)
te[o, T
Since
h'{t) = <j-"{{V{g(OM))Z&){Xt) - a'()},
WDh\t)[[HL < [Ja-1[{[[V2Z(2>(Xt)|| W\DXt\m |(s(t),a(i))| (5.4.22)

+ [IVZ (A \W(Dg(t),Da(t))\\Ne + [[Da’(t)||HL},
we conclude from (A5.4.2)(2), (5.4.16) and (5.4.21) that

(T \ p/2
E f \\Dh'(t)\aldtj +E\\nN\\m < 0o, T G(O, Tp).

Therefore, according to e.g. Proposition 1.5.8 in [Nualart (1995)], we have
h GT>D*) and E\D*h\p < oo provided T G (0,TP).

Now, to prove (5.4.6), it remains to verify the required conditions of
Theorem 5.4.1 for a(t) given by (5.4.14). Since 0(0) = {T) = 0, we have
a(0) = r/24and a(T) = 0. Moreover, noting that

h =712\t I <Kt)K(T,t)vWzW{xt)BSK(T,tydt
Jo Z(t)2dtJo

W Ta*)2Q71k (T,0)vw ds

- 1 fTQtdt ASFQAKAO Ads
1T ewadt Jo

1 [T Ne 2 IK{T,0)v())dt = ,
if 2ot o Ne 20tQ7IK{T,0)v(L)dt = K{T, 0)vW
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and

QY H{TV e

QtQtl1l) PTrlK(T.,s)X% zZ~(Xs)ds

'

= £ ~N-K (Tts)V% Z~{Xt)dst
we obtain by (5.4.14)

p(T) = M(T.0O) Y+ £  K{T,t)V™t)zW (Xt)dt

K(TOW -h +£ ~AK(T,t)V% Z~(Xt)dt- h
_ 0.

(3) By an approximation argument, it suffices to prove the desired gra-
dient estimate for / G CI (Km+d). Moreover, by the semigroup property and
the Jensen inequality, we only have to prove forp G(1,2] and T G (0, Tv/11).
In this case we obtain from (5.4.6) that

IVPT/| < (PT\fn Up(E\D *h\?,

where q := > 2. Therefore, it remains to find constants Ci,C2 > 0,
where @= 0 if I\ = I2= 0, such that

{E\D*h\4)1/q < CI'/T(T" 2+ ttT")eC2W (54.23)
lo”)2s

To this end, we take <&f) = t'Tri t* such that 0 < dp< 1and |<>(f) < ~ for
t G[0,T]. Since £ is increasing, by (5.4.18) and (5.4.12), we have for some
constant ¢ > 0,

J[ £(s)2ds < £(f)2 < ct2, t G[0,1].
(6]

Thus, by Lemmas 5.4.3, 5.4.4, 5.4.5 and (5.4.16), it is easy to see that for
any B > 2 there exist constants ci, 2> 0, where @= 0 if /1= I2= 0, such
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that for all 0 < t_/<0T <Tp/]
| .
(E|[E»XEC ) < CIVfec'w, (EZWDK(T, )\ YA <c{Tz2* w

C\tVT Lw
E]IDQt 1]IHOe < {E(]]Qt 1H I~ 1w 11Q r1fle} e < Wo- c
CIT7/2ec2\
(E|IDa(t)C)le < (El]W)H|™M) o< T ——
Jo £(s)2ds JO £(s)2ds

Combining these with (5.4.22), (A5.4.2)(2) and (5.4.16), we obtain

|H|DL, := (E||1>/1&eHL) 1/, + [[EMH
r/a o
<>[r|EN-jf PPHOH] } +HJLL
<VE[-Y ENMWIHADE  + (ed  Th'(D)[2dt]

CiVT(r32+7(r))eCv

foT £(s)2ds
This implies (5.4.23) since D* : K19 —L q is bounded, see e.g. Proposition
1.5.8 in [Nualart (1995)]. O

5.4.3 Two specific cases

We intend to apply Theorem 5.4.2 with concrete choices of £ satisfying
(5.4.12).

54.3.1 Rank[j30] = m

Theorem 5.4.6. Assume (A5.4.2) and (5.4.3) for some e € [0,1). If
RankfijBo] = m, then there exist constants c\,c2 > 0 such that (5.4.12)
holds for
ttt) =ci [ p(3)e-c1-a3, fe[0,T].
Jo
Consequently, for any p > 1 there exist two constants c\(p), c2{p) > O,
where c2(p) =0 if \ =12= 0, such that

VPT/| < C W Pr\t YPrcMW )
VP (FN 1)302 T>0
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Proof. It is easy to see that the desired gradient estimate follows from
(5.4.15) for the claimed £ with O(f) = t(#Jt", we only prove the first as-
sertion. Since V ~Z " is bounded, there exists a constant C > 0 such
that

\K(T,s)*a\ >e~c(T-s)la, a€lra

If Rank[Bo] = rri, then \B"a\ > c'\a\ holds for some constant ¢' > 0 and all
a € M. Therefore,

Mt (F>(S)K(T, s)BaB K (T, s)*ds
satisfies
(Mta, a) = JE <+6)\BgK (T, s)*a\2ds > C'2J]: <X(e- 2C(r- s)|al2ds.
This completes the proof. O

5432 A :=V~"Z")) is constant

We assume that

(A5.4.3) (Kalman condition) A := is constant and there exists
an integer number 0 < kK < m —1 such that

Rank[BO,ABO,..., AKBO\ = m. (5.4.24)

When k = 0, (5.4.24) means Rank[Bo] = m which has been considered in
Theorem 5.4.6.

Theorem 5.4.7. Assume (A5.4.2), (A5.4.3) and (5.4.3) for some £ €
(0,1). Let gb) = Then:

(1) There exist constants ci,C2 > 0 such that (5.4.12) holds for

ci{t A I) 2(fc+1)
Ne = { TeQT tG [0, T)

(2) For anyp > 1, there exist two constants ci(p),C2(p) > 0, where Cr(p) —
0 if li =12—0, such that

ci(p)(Bt [/1p)1l/p rC,M W T>0
IVPEZL < (T 111 (4fc_v0+3/2
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(3) /IV<2>Z(1>= Bo is constant and I\ <  then there exists a constant
¢ > 0 such that
[VPT/| < A{PT(/log/) - (Ar/) logPTf)
cf hw (i + A Dall/(1-217) 11
Al 1+ A-D)2 (TAD@A*+2-22)/(I-MD + (LA T)4fet3/ T/
holds for all A> 0, T > 0 and f £ BNM.m+d), the set of positive

functions in Bb(Rm+d)-
@) If vI2z{x>= Bo is constant and I\ =\, then there exist constants
c,c' > 0 such thatfor any T > 0,A> and /6 B s (Rm+,i),

[VPr/| < A{PT(/log/) - (Ar/) logPT/} +

Proof. Since (2) is a direct consequence of (5.4.15) and (1), we only prove
(1), (3) and (4).
(1) Let

S(sz_s)e’T’* ABOB * e ~ A'ds,
- L

ut _i_ esABOB£esA ds, fe[0,T].

According to 83 in [Saloff-Coste (1994)], the limit
Q := limf- RfoH)7[/t7t

exists and is an invertible matrix, where (7t)t>0 is a family of projection
matrices. Thus, Ut > c(t A1)2k+LImxm holds for some constant ¢ > 0 and
all t > 0. Then there exist constants €, >0 such that forany t £ (0, P],

Mt>-L j ~T-s)ABOBOe ~ A'ds

41 32
te~4AWT  rt/2 ci(t AN2(fc+)
> / e3ABOB y n ds >
AT o 4y ec2r mxm

holds. This proves the first assertion.

(3) By the semigroup property and the Jensen inequality, we assume
that T £ (0,1]. Let = Bqgbe constant. Then h given in Theorem
5.4.2 is adapted such that

D*h= f (h'{t),dBt).
Jo
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Moreover, it is easy to see that for £(t) given in (1) and T € (0,1],

. Ci(TWII(Xt) + 1)
Wit)| < T2(k 1) te[o,T]

holds for some canstant G > 0 independent of T. Thus, for any /1> 0,
EeD'hix = Eexp = f | (h'(t).dBY)
AJo

1\ 1/2
< (Eexp J(T\h’{t)\ (5.4.25)
0
Jo WA (Xt)dt L2
< AEeXp J>4fc+2 rf4%fe+_$])J

On the other hand, since I\ € [0,1], by Lemma 5.4.3 and the Jensen in-
equality, there exist two constants G3,c\ > 0 such that

Eexp ¥ Jo w(Xt)dt <ecthw, Te (0,1]. (5.4.26)

Moreover, since 21\ < 1, there exists a constant G > 0 such that
c2W 21> c3h W c5(1 + A1)411- 24)
noyafe+2 - (L + 2T + A23(4fc+2-2;i)/(1-2/i)
Combining this with (5.4.25) and (5.4.26), we conclude that
- "IN 1-
log Ee < AP, +\02q(£ké21—)24h1)/(ll—22h1g +\27*k+3 Te (0.1]./1>0
holds for some constant ¢ > 0. This completes the proof of (3) by (5.4.6)
and the Young inequality (see Lemma 2.4 in [Arnaudon et al (2009)])
[VPT/| = \E[f(XT)D*h}j
< A{PT(/log/) - (Ar/) bgPt/} (5.4.27)
+ A(PT/)logEezr'l/A.
4 Again, we only consider T e (0,1]. Let @ and C be in (5.4.25) and
Lemma 5.4.3 respectively. Then there exists a constant ¢ > 0 such that for
any T e (0,1], A> implies

2 < 2
AT 4fc+2 - T2ZCNa\ZEi+2CT
Thus, by (5.4.25) and Lemma 5.4.3, if A> then

COT 2C|H [2e442CT 230 W(Xt)dt 2
log EeD*t/A < ATDVANA2 log E exp T2C\\a\\2e*4+2CT + O2y4/c+3

< c'{T2w + 1)

= [y4*+3
holds for some constant ¢! > 0 independent of T. Combining this with
(5.4.27) we finish the proof. O
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To derive the Harnack inequality of Pt from Theorem 5.4.7 (3) and (4),
let us recall a result of [Gong and Wang (2002)]. If there exist a constant
Ao > 0 and a positive measurable function 7 : [Ao,00) x Rm+d — [0,00)
such that

IVUPT/|<A{PT(/log/)-(PT/)logPT/} + 7(A-)PT/, A>AQ (54.28)

holds for some constant A0 € (0,00]and all / €  (Rm+f), then by Propo-
sition 4.1 in [Gong and Wang (2002)],

Pr/(M)<(PrilUpix+mpexp  LLYIT>DSXEB)T g o)
Jo 1+ (P —l)«

holds for all / €  (Rm+d) and p > 1+ Ao Then we have the following
consequence of Theorem 5.4.7 (3) and (4).

Corollary 5.4.8. Let (A5.4.2) and (A5.4.3) hold such that V2 1) =
Bg is constant.

(1) Ifh £ [0,1/2), then there exists a constant ¢ > 0 such that

cW\2 (ip - 1)P /g W(x + sv)ds
PTf(x)<(PTfp)lp(x + v) eXp D14 |

(1 1. £M)4q/(i-2q) 1
(T N)@Efc+2-210)/(1-2i1) T (L AT)4e+3)

holds for all x,v € Rm+d, T > 0,p > 1 and f 6 P/“(Rm+d).
(2) Ifli = A then there exist two constants c,c' > 0 such that for any
T >0/ GRmtd and x, v G Rm+d,

c'lul2{l --(T N 1)2JqW(a: + su)ds}

PTf{x) < (PTfp)Llp(x+v)exp (0 —1)(T A 1)cr3

holds forp> 1+ (T" |2k
Proof. (1) Let v G Mm+d with |u| > 0. By Theorem 5.4.7(3), we have

IV, Pr/| <AM{PT(/log/) - (PT/)logPT/} +

1+ A-i)4aq/(i-2q)
(T Aly(4fc+2-2h)/(1-2q) * (T Al)4c+3

)2
Prf, A> 0.
Replacing Aby A, we see that (5.4.28) holds for any Aq> 0 and

oW W L+ |ulA_)4II/(1_2)0)

TV A U1+ HA-1)2 (T AN IS (T A 1) 4o+ 3
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for 1> 0. Then the desired Harnack inequality follows from (5.4.29) since

(2) Let v € Rm+d with |u| > 0. By Theorem 5.4.7(4),
c> | ((LAT)2W + 1)

IV,,Pt/| < \WX{PT(flog/) - (PTf)\ogPTf} + ATNN4+3  TJ

holds for 1> (Tn\yk *Using 4 to replace J1, we see that (5.4.28) holds for

c/2((A NT)2W + 1)
A(T N1)4ke+3
Then the proof is completed by (5.4.29). O

5.5 Gruschin type semigroups

In this section we investigate the Bismut formula and Harnack type in-
equalities for Gruschin type semigroups. The first part is organized from
[Wang (2012b)] where Bismut type derivative formulae were derived by
using Malliavin calculus, and the second part is based on [Wang and Xu
(2012)] where the log-Harnack inequality was established using coupling by
change of measure.

5.5.1 Derivative formula

We will work with the following Gruschin type operators on Rm+d:
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for (X,y) E Rm XRd = Rm+d, Where @ E ¢ 1(Rm;r d ®r i) might be
degenerate. When m = d = 1and a(x) = x, it goes back to the Gruschin
operator. To construct the associated diffusion process, we consider the
stochastic differential equation on r m +d:

édXt =dBt,

- 551
\dYt =v(Xt)dBu

where (Bt,Bt) is a Brownian motion on Rm+f. It is easy to see that for
any initial data the equation has a unique solution and the solution is non-
explosive. Let Ex'y stand for the expectation taken for the solution starting
at (x,y) 6 Rm+d. We have

Ptf(x, y) = Exyf(Xt,Yt), f e Bb(Rm+d), (x,y) E Rm+d,t > 0.

To establish explicit derivative formula for Pt, we need the following as-
sumption.

(A5.5.1) Forany T >0and x E Rm, Qt := f0 o[x + Bt)er(x + Bt)*dt
is invertible such that

rT
BIQUA ov~ +5c tlo@ssol+ <o

Lemma 5.5.1. For fixed T > 0 and v = (yi,v2) E Rm+d, let hi €
C1([0,T];Rm) with hi(0) = 0 and hi(T) = v\. If there exists a process
{"2(fH}te[o,T] on Rd such that h2(0) = 0, and h := (h\,h2) e V(D*) satis-
fying
Jo o(Xt)h'2(t)dt+JfO (Vhi{t)_Ma)(Xt)dBt = v2, (5.5.2)
then
VVvPTf = E{f(XT,YT)D*h}, f e Cb(Rmii).

Proof. From (5.5.1) it is easy to see that the derivative process
(filvXt,VvYt)t>o solve the equation

1dV,, Xt —0, Y. Xo=r>1,
\dV wt = (X7wxtcr)(Xt)dBt, V,y0=v2.

WvXt=Vi, Xvyt=v2+ f (VMa)(Xs)dBs. (5.5.3)
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Next, for h given in the lemma, we have
(dDhXt = h[(t)dt, DhXo = 0,
\d DhYt = o(Xt)h'2(t)dt + (X Dhx tcr)(Xt)dBt, DhY0= 0.
Thus,
(DhXt = h1(t),
\D hYt = f* o(Xs)h'2(s)ds + f*(Vhl(s)*)(Xs)dBs.
Since h\(T) = tg, combining this with (5.5.2) and (5.5.3) we obtain
(XVXT,XvYt ) = (DhX T,DhYT).
Therefore, for any / e C\ (Rm+d),

XVPTf = E(VF(XT,YT), (yvXT,VVYT))
= E(V/(AT,YT), (DhXT,DhYT))
= EDh{f(XT,YT)}
= E{f(XT,YT)D*h}.

According to Lemma 5.5.1, to derive explicit derivative formula, the key
point is to solve the control problem (5.5.2). To this end, we will need the
following fundamental lemma which is a direct consequence of 1to’s fromula.

Lemma 5.5.2. Let pt be a predictable process on Rd with E /@ \pt\dt < oo
for some g > 2. Then

E

< {Q(Q_JIy2T(Q22  E\pt\@t

Proof. It suffices to prove the first inequality since the second follows
immediately from Jensen’s inequality. Let Nt = fO(ps,dBs), t > 0. Then
d(iV)t = |pt|2df and

dN2 = 2NtdNt + \pt\2dt.
Noting that \Nt\qg —(N2)"2, by Ito’s formula we obtain

d\Nt\g = (N2 2/2dN2+ A A - { N 2)(4 i)12N 2\pt\2dt

QUENEGE 20Nt~ — ANt 2\pt .
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Therefore,

EiVTI9 ~ J A TE{jVtr 2H 2}df
< 9(@9 5 ") Jf T (ETVH (9-2)/9(EV9t|9) X %dit
0

< 99— (glivr <)@ 2)/q Jf T (EJpt|9)*"" di.
0

Up to an approximation argument we may assume that E\Nt\9 < oo, so
that this implies

mq(q-1)\9/2/ rT

EAIT|*< (ElftjTdSy?

We are now able to prove our main result in this section.

Theorem 5.5.3. Assume (A5.5.1). For any f G CE(Rm+d) and v —
(vuvg) eR m+d,

VVPTE(X,y) = ExV{f(XT,YT)MT}, (X,y) GRm+d, T >0
holds for

MT = - Tr(*Q-1£ {(Vei&)&} (x + Bt)df)

+(Qtl{ca+ £ —Ar~(Yyi&(x +Bt)dBt| ,£ a(x + Bt)dBty

Proof. We assume that (Aq,Vg) = (X,y) and simply denote ExYy by E.
Let

) = (55.4)
and
M*) = (J£ (X°yds)Qrif +£ (555)

for t G [0,T]. Then it is easy to see that (5.5.2) holds. To see that h :=
(/i1,/i2) € T>(D*) and to calculate D*h, let
"TT.s

9i = (ei,QTI\v2 / p (#Mlo) (Xs)dB;

(t) ~ / apQ*eids, i=1,..., d,
Jo
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where {e,}f=l is the canonical ONB on Mi. We have

h(t) = (fti(*),0) + y~9i(0,hi(t)). (5.5.6)

It is easy to see that hi and hi are adapted and

D*(hu0) = j\h[(t),dBt) =
(5.5.7)
D*(0, hi) = ' {h'MABt) = ' (a{Xtyeu ABt).
Jo Jo

Let >t be the er-field induced by {Bs :s G [0,T]}. By Lemma 5.5.2 and
noting that Xt is measurable w.r.t. Xt while B is independent of Xt, we
have

EA{giD*(0,hi)}2\xT) = E A 9ij\a (X ty ei,dBt) BT

<otz g A (a(Xty ei,dBt)} XT

+ 2E Tt (vvie(xt) (QT)*ei,dBt,

>
x | J (a(XtyeudBt)

d)
< 4Qt4 2}0 Ik Ne ) Il 2df

+2ANENMIAN((X Ma(Xt)YiQTlreudBt)r XT
.12
X (a(Xty ei,dBt) XT

d)
< (HV\Q'WZJE (IIVa(Xt)||4 + [la(Xt)]|4+ Ddi

for some constants c,c' > 0. So, (A5.5.1) implies ar*(0, hi) ¢ L2(P) for
i—1 Hence, iffor any i ¢ {1,..., d} one has D"0~ gi G L2(P), then
h ¢ V{D*) and by (5.5.6) and (5.5.7),

D*h = {”*fT) + 2700 | {<r(tyei,dBt) - D {Oihi)gi (55.8)

*=1
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Noting that Xt = x + Bt is independent of B, it is easy to see that

@ Q) i

= (euQrle ™ { (V MVa)a*}(Xt)eidty

which is in L2(P) according to (A5.5.1). Combining this with (5.5.8) and
noting that Xt = x + Bt, we conclude that h £ V(D*) and D*h = Mt-
Then the proof is finished by Lemma 5.5.1. O

The next result is a consequence of Theorem 5.5.3 for a(x) comparable
with \x\lldxd in the sense of (5.5.9) below. We will use || and || s to denote
the Euclidean norm and the operator norm for matrices respectively.

Corollary 5.5.4. Let | £ [1,00) and assume that
ler(m)|| > alrrr, Jlct)|| + [[Ver(m)]] « WX\ < bW\l, x € (5.5.9)
holds for some constants a, b > 0. Thenfor anyp > 1 there exists a constant

Cp > 0 such that for any v = (W V2) € Rm+d, T > 0, (x,y) £ Rm+d

IV.ft.7 ()] < Cs(Priznvp(*,y)(~ + VNI'p+Ty)- ¢ .10

Consequently,

Ti(Pt/)< "y N, T>0,/ £ B(Mm+d) (5.5.11)
holds for some constant C > 0, where
FL(f)(x,y) m=vi(-, y)()\2+ \o(x)*Xf(x, -)(y)\2
for f £ CAMM+d), (X,y) £ Rm=d.

To verify (A5.5.1) for o given in Corollary 5.5.4, we first present the
following lemma.

Lemma 5.5.5. Foranyn € [1,00) and a > 0, there exists a constant ¢ > 0
such that

c

T (x|2+ T)an T>0(,y) £ Rm+d.
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Proof. We shall simply denote E2* by E. Since Xt = x + Bt, for any
J1> 0 we have (see e.g. page 142 in [Borodin and Salminen (1996)])

Ee AWTIxXi _ JjEg-A/nCxi+BJ0)2 < SXP[—  tanh(V2AT)]
i=1 {coth(vV*AT)}m/2
<om2exp  MY/A NN
y/2 2s/2
< 22 exp OV fn2aT) N1
2yf2
AN .
< 2m/2 exp {\X\22+/;) X + 2m/2 exp w2t t)at
Y
This implies that for any r > 0,
Eexp ixtizndt =Eexp - [ {xUn\xt\Wy dt
n : Jo

<SEOD - (par kru- )@

n/(n-1)
nn/(n-1)

(Ix]2+T)AU2")W" \xX\2+T)T\Inr
+ exp
2s/2
Taking r = T_("_1)/n we obtain

X exp

Eex !
p KJ/0 Ne |2'df

N (x|2+ T)(AT)LUr
2V2T(n-f2n T &P 2
for some conﬁ%%nt G > 0. Noting that

7 I*C

<ci exp

e-ssal-l1ds  IT(al)
02!

L
holds for all / > 1 and B, a > 0, we conclude that
pT \ a 1 poo ' pT
i2ndt dA
I, x‘2'd") -fw i np"mE“p[-A [
(pK|2 + T)AI(2n)

<
rb f Ai * 2y/2T n~v>2n
+ exp (W\2+T)(\Ty/ idA
c2Ta(ri—h c3

<
(2+ T)2an * (lr2+ T)anTa ~ {2+ T)anTa
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holds for some constants @,C3 and c. O
Proof. (Proof of Corollary 5.5.4) By the Jensen inequality, it suffices
to prove for p G (1,2] so that g := > 2. It is easy to see that (5.5.9)
implies

Qt > (" Tixt 2t Y icly-di
and hence,

(55.12)
R

Since {Jft}te[o,T] is measurable w.r.t. Tt and due to (5.5.9)
(V. denen HXD)|| < b2wit mx (Z=

we obtain
e D 1y0ell A (v waKI(xtdt  Te
_tv(V £ IMI{(yviCh)a*}(Xt)dt (5.5.13)
< cilvi|9£/\BT:y | Tq~(f(;\|_XXtT;i"c‘j’;)‘;*dt\

for some constant ci > 0. Moreover, since Bt is independent of T t; due to
(5.5.12) and Lemma 5.5.2 there exist constants &,C3 > 0 such that

. 2|u2|9T«/2- 1/ d \Xt\bdt
E HQ?2m9 (v2,j <T(Xt)dBt Tt <

do \Xt\2ldt)<
and

E [WOdWA T_t(\N\/Ia){Xt)dBt,J% a(XtydBt  TT
@i-ngi-n L

< @ E (VVIo)(Xt)dBt Tt

do w idt)4 T

@21-)g)/l i/(2i-1)
x <E } o(Xt)dBt TT
0
_ c3bl 90 _1/0T |Xt|(2i~ D)oot
do 17MtI12idi)9
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hold. Combining these with (5.5.13) we obtain
EMr 9= E{E(|MT|«|7V)}
bl 9, WilgT # \Xt\ A 17 dt
< c3E
) 7q1 + & (5.5.14)
LbLr =l 6k |~ tjtgd g
(Jo \Xt\2dty /'

By Lemma 5.5.5 and noting that Xt = x + Bt, we conclude that for any
P> 1,

L B e 2412 224 12
Jo \Xt\2AdtY M E( 1 H oM w2 1
C3(TE/O |A-|2»dt)*/2 _ ¢, [ (xR+T)«2 c,

TO(x|2+ M)«r - TY(x|2+7)9r  re-id*12+T)*«-"/2

holds for some constants ¢3, Gt > 0. Substituting this into (5.5.14) we arrive
at
bl 9 ) 19

(EIMT|A 4 N T/ 2(Ix12+T)9'/ 2

for some constant G > 0. Therefore, the proof is completed since by the
first assertion

\WPTF(x,y)\ = \E{f(XT,YT)MTH\ < (PTT LUp(lLMTMA. n

Finally, we intend to extend Theorem 5.5.3 to a more general model.
Consider the following SDE on Rm+d:

fdXt = m (Xt)dBt + h (Xt)dt, 5
\dYt = a2(Xt)dBt +b2(Xt)dt,

where (Bt,Bt) is a Brownian motion on Rm+d, g\ £ CI(Rm;Rm®Rm) is
invertible with |lcrf1| < c for some constant ¢ > 0, a2 £ C1(Rm;Rd <pRd)
might be degenerate, hi £ C*Rm;Rm) and b2 £ C1(Rm;Rd). It is easy
to see that for any initial data the solution exists uniquely and is non-
explosive. Let Pt be the associated Markov semigroup. To establish the
derivative formula, let v = (vi,v2) £ Rmtci and T > 0 be fixed, and let
solve the following SDE on Rm:

d6 = (V2lal)(Xt)dBt + {(Veel)(Xt) -~} d t, &=«'m (55.16)
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Since Voi and V& are bounded, the equation has a unique solution up to
time T. It is easy to see from the Ito formula that

1612
o o (VaaD(Xt)dB(
/ H(Vgtg )(X )12 + 2 (6 ,(V gA )N )) _ |612
* T-t T-t (T-n2 &
<2<7 (v5.DNe)ds,)+ - J&L)df

holds for all t € [0,T) and some constant C > 0. This implies that for
te[0,T),

(T-f)H 2 ct 16
, ET dt < oo, 5.5.17
E|6]2< L o112 ( )

Consequently, we may set £r = 0 so that 6 solves (5.5.16) for t 6 [QT].
Moreover, for any n > 1 we have

d|6]|2n < 2rr|6]2(n- 1)(6, (V6 m)(Xt)dBt) + c(n)|6|2’dt
for some constant c¢(n) > 0. Therefore,

sup E|6]|2’ <00, n>1 5.5.18
Sup El6] (55.18)

We are now able to state the derivative formula for Pt as follows.

Theorem 5.5.6. Let QT —/@ a2(Xt)az(Xt)*dt be invertible such that

E*»(IIQMH2E  {J1verxyl 14+ [1ve2(x tIi + 1}dt) 5

< 00.
Then
VVPTf(x,y) = EXY{f(XT,YT)MT}
holds for f e CI(Rm+d) and

MT =[ ~™M(@@Qt £ M{(Vb*2Ne }(Xt)dt)
+ +jT ~ (V €u2(Xt)dBt+j\v M (x t)J,

[ a2(Xt)dBt\.
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Proof. Let h—(hi, h2), where

M= 50 1

h2(t) = (jf* a2(Xs)*ds~Qrl

X{WR2+i (YAa2)Ne)clf + A F(Y6E)Ne)cln.

As in the proof of Theorem 5.5.3, it is easy to see from (5.5.17), (5.5.18),
(5.5.19) and Lkr1 < c that h e V(D*) with D*h = Mr- Therefore, it
remains to verify that (S/VXT,XvYt) = (DhXT,DhYT). It is easy to see
that both XvXt and DhXt + fy solve the equation

AVt —(XVt<\)(Xt)dBt + (VVE&I)(-XOHE, t £ [0, T\, W= W.

By the uniqueness of the solution we have VvXt = DhXt+"t fort e [0, T].
Since = 0, this implies that XVXT —DhXT. Moreover, we have

'd XvYt = (XVvXta2)(Xt)dBt + (Vv,xth2)(Xt)dt, XWO0 =v2,
dDhYt = (XDhXto2)(Xt)dBt +a2(Xt)h'2(t)dt
+ ("Dhxtb2)(Xt)dt, DhYo=0.

Combining this with the definition of h2 and DhXt = XvXt—fy, we obtain

DhYT = XWT - v2- J[ (Xito2)(Xt)dBt
0

+ [ o20xomadt - £ (VRE)(Xtdf
0 Jo

= XyYT.
Therefore, the proof is finished. O

5.5.2 Log-Harnack inequality

Let us start with the classical Gruschin semigroup on R2 with order | > 0,
which is generated by

. (1) [1 |
1(I**-k):=KapV +XXt'& )?)
The corresponding diffusion process can be constructed by solving the SDE

fdX{(1)=dB (1),
\dX 12 = [X(1)'dB(2),
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where Bt (B\X B\2) is a two-dimensional Brownian motion. Clearly,
the equation is degenerate, and when | < 1 the coefficient in the second
equation is non-Lipschitzian. In the simplest case that | = 1 (see Example
5.2.5), the Harnack inequality (5.2.27) holds. According to Corollary 1.4.3,
in this case the log-Harnack inequality

«(tog/)(*,</) < logP.fW.y") + +f~ r)

holds for all B £ (§,2), t > 0,(x,y),(x",y") £ R2 and strictly positive
function f £ Bb(R2), where to > 0 is fixed in Example 5.2.5. But for | ¢ 1,
it is not clear how can one establish the log-Harnack inequality using the
generalized curvature condition or Malliavin calculus. In this subsection we
aim to establish the log-Harnack inequality of the Gruschin semigroup for
all 1 > 0 by using coupling by change of measure. But, our argument does
not imply the Harnack inequality with power like (5.2.27).

We consider the following more general SDE for Xt  (A,'L, xf2 on
EmxRJ= Rm+d(m,d > 1)

JAX€D) =bW (t,X?))dt + <TW(t)dB?\
\dX 12 = {AX ) +bA(t,xil)}dt +ar(t,xil])dB"\

where Bt  (B”, B”) isthe (m + d)-dimensional Brownian motion on a
complete probability space P) with natural filtration {At}t>0, A is a
(d x d)-matrix, and

few : [0,00) x Rm-4 Rm, 6(2>: [0,00) X Rm -> Rd,

oW : [0,00) -x Rm<gRm, o2 :[0,00) x Rm-4 RA®Rd
are measurable, and b\ X2),er(2) are continuous in the second variable.
Assume

(A5.5.2) There exists a decreasing function J1: [0, 00) — (0, 00) such that
(™) (t)aA) (t)* > Xflmxm, t> 0.

(A5.5.3) There exists an increasing function K : [0, 00) =R such that
(bMt,x ™) —b A\t y M), xN —y ) < Kt\xh —y M\ 2
fort >0, x*"\ Z(0) € Rm.

(A5.5.4) There exist increasing functions 0 : [0,00) —XR,h : [0,00) —X
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[1,00) and ip. : [0, 00)2 —[0,00) with ip.(0) = 0 such that
AX® —y ™) + brit, x™) - DAL, y"),xN -y

< 0tx@ - t/2)2+ ipt(k (1) - JDI2)/i(a;@) V Iy@)
holds for all t > 0 and x = (x*,x"),y —(y",y") GRm+d.

It is well known that (A5.5.3) implies the existence, uniqueness and
non-explosion of strong solutions to the first equation in (5.5.20). Once x j 1
is fixed, then it follows from (A5.5.4) that the second equation in (5.5.20)
admits a unique global solution. Note that (A5.5.4) allows a”(t,-) to
be merely Holder continuous when e.g. <t(r) = fa for some constant a G
(0,1). For any x = (x*"x") G we let Xt(x) = (X"*\x),X"2Ax))
denote the solution to (5.5.20) with Xg= x. Since X (x) does not depend
on xS21we also write X *\x) = X * (xAY). We intend to establish Harnack
type inequalities for the associated semigroup Pt:

Ptf(x) ~ Ef(Xt(x)), f € Bb(mm+d),t> 0,x GRm+d.
Let

0t —J  eAT(QLAMIR(LAWD) ATHL T > 0.

Theorem 5.5.7. Assume that (A5.5.2), (A5.5.3) and (A5.5.4) hold.
Let BT = supt€[OiTyj ||le_j4i|- If Qt is invertible and
r2T

Px (x(D.y «) =Ec@lQXtr e OM2gt

X sup /r(| XA+ |xA —j/l")}

t€[o,r]
is finite, then for any strictly posmve fo E?b(Mm+d),
KT -t/1
P2T logf{y) < logP2t/(x) + A2(l — 2fc r)
+ BTO2er T T{Xx11\y 1 11)

3-2B TT

X(2) -/ 242+ o <Pr(x@ -y D2 ¥

Because of Theorem 5.5.7, we are now able to present the log-Harnack
inequality for the Gruschin semigroup on Mm+d with any | > 0.
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Corollary 5.5.8 (Gruschin Semigroup). Let A = 0,bW = OM2 =
0,M]) = Imxm and g (x*1)) = \x"\lldxd for some constant | > 0. Then
there exists a constant ¢ > 0 such that

1) —y 12
PaT logf(y) < logP2Ti(x) + <O =

4+ (las(2¢i-i)+ + y(D)[2G-i)++ r G-)+]
X (|x(2)_J@))2+2T|x(1)_2(H]2GANN
holds for all T > 0 and x, y € Km+d.

Proof. It is easy to see that (A5.5.2)-(A5.5.4) hold for A = 1, Kt =
0 = 0,y=t{r) = cirlAL and h(r) = c\ V for some constant ¢\ > 1

Moreover,
r2T

Qt = Idxd | 10 MO\ g
t

is invertible and
r2T

N were k@CONAK= |

Then, using the fact that for any r > 0,
E sup [B{L)+x(D))2r <c(r)(|x(™|2r+Tr)
t€[0,T]

| +x(D[2dt

holds for some constant c(r) > 0, and noting that Lemma 5.5.5 implies

(/, _
SE{E( (/TI(4+t- 4 D)+ (A+AQ) 2k 9O

C
< T2(1+)
for some constant C > 0, we conclude that

E IS(D) + x A\ 2dt

/\trixl\jy/\) < g/e tes[g%] h(\B/\ +X’\| + |X’\ _
2T -2
x IE B - xmM2dt
< jlirir(|x(1)|2(r_1)+ + ly(D|2,-D++fol-P+)

holds for some constant ¢ > 0. Therefore, the desired log-Harnack inequality
follows from Theorem 5.5.7. O
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The remainder of this subsection is devoted to the proof of Theorem
55.7. Letx = (@\),x"),y = and T > 0 be fixed. The idea
to establish a Harnack type inequality of P2t using a coupling by change
of measure is as follows: construct two processes Xt,Yt and a probability
density function R such that X2x —Y2t,Xqg= x,Yg=, and

P2ZTf(x) = Ef(X2T), PZTf(y) = E{Rf(Y2T)}, fe B b(r +d).
Then, by e.g. the Young inequality, for strictly positive / one obtains

AgTlogl(y) = E{108 /(Y2T)} =E{fllog/(X 2T)}

(5.5.21)
< E(R\ogR) +\ogP2Tf{x).

This implies the log-Harnack inequality provided E(R log R) < oo.

When the SDE is driven by an additive noise, this idea can be easily
realized by adding a proper drift to the equation and using the Girsanov
theorem. In the non-degenerate multiplicative noise case, the argument
has been well modified in 83.4 by constructing a coupling with singular
additional drifts. For the present model, as the SDE is driven by a mul-
tiplicative noise with a possibly degenerate and singular coefficient, it is
hard to follow the known ideas to construct a coupling in one go. We will
construct a coupling in two steps, where the second step will be realized
under the regular conditional probability given B <=

(1) We first construct a coupling (X jY /17 by change of measure for the
first component of the process such that x\1L=y/ 1 fort > T. This
part is now standard as the first equation in (5.5.20) is driven by the
non-degenerate additive noise

(2) Once x [1 = ¥ 1 holds for t > T, the equations for xjT and Yt
will have same noise part for t > T, so that we are a%i to >(i?éustruct a
coupling by change of measure for them such that X2rf = ,.

We first construct the Brownian motion Bt as the coordinate process
on the Wiener space (fi, J7,P), where

0 = C([0,00);Rm+d) = C([0,00);Rm) x C([0,00);Kd),

J7is the Borel n-field, P is the Wiener measure (i.e. the distribution of the
(m + (i)-dirnensional Brownian motion starting at 0). Let

Then Bt is the (m + d)-dimensional Brownian motion w.r.t. the natural
filtration Moreover, let = a{Bj1l:t >0) and P*2>=a(B" :
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0< s <t),t>0. Itiswell known that the conditional regular probability
P(-|.F(2)) given exists. This structure will enable us to first construct
a coupling y I for the first component process up to time T under
probability P, then construct a coupling (xj:2 y/ 2 for the second com-
ponent process from time T on under the regular conditional probability
P(-|Jr™™). For any probability measure P on (0, F), we denote by Ep the
expectation w.r.t. P. When P = P, we simply denote the expectation by E
as usual.
Let Xt = (X}*\xj2) solve the equation (5.5.20) with Xg = x —
Given Yq=y = G Rm+d, we are going to construct
y/?on Rm and y[2>on Rd respectively, such that YAZl= X" fort >T
andY$ =X8$.

55.21 Construction o/Y /1
Consider the equation

dFt@) = b{)(f,yt@)df + u@Q)(f)dB(Y) - u(D)df, M) = yw, (5.5.22)
where

7 = 2KT\XW - yMe-KTt(Yt{D) - X{(1))
UD= T (1 e-aT)IX(1)_y )]

Obviously, the equation has a unique strong solution before the coupling
time
M= inf{t> 0:X() = YaWh.

Then, letting Y 1* = X™W for t > ¢\, we see that (yt3)t>o is a strong
solution to (5.5.22). So, we can reformulate as

_2KT)XA - y(IeKTH(YHD - X(D) i

#(1)  —e-2KTT)AX A )i Lor)(*), t>0 (5523

Proposition 5.5.9. For any t> 0,

3-KTt_ e-KT(2T-t)

XO- Y@< o d)-y @UO0AW

< |z@ -?/@)|I[0,TIW-

(5.5.24)

Consequently, \ <T and x[* = YM\&fort>T.
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Proof. By (A5.5.3) and (5.5.23), we have

ax - Y < (ATx . R 2N e K g

for t £ [0,Ti) M[O,T\. Then

) - "1 <e~ T -e ™ — "D " (1)

for t £ [0,ri) M[O,T]. This implies that TN < T and also (5.5.24) since
xjli=Yfrfort > T\ O

To formulate (5.5.22) as the first equation in (5.5.20), we let
B() = B() - Jf A D(s)ds, t>0
0]

Prom (A5.5.2) and (5.5.23) we see that £/(s) is bounded and adapted.
So, by the Girsanov theorem, Bt is an m-dimensional Brownian motion
under the probability measure <QW:= i?i(T)P, where

RI{t)~exp\"IA(A1)s),dBiD) -~ I [EQ)(s)|2ds , t>

is a martingale. Obviously, (5.5.22) can be formulated as
dTt(l) = b« (f,yt1)df + oW(f)dB(1), YO  yb (5.5.25)

As shown in (5.5.21), for the log-Harnack inequality we need to estimate
the entropy of R\ := R\(T).

Proposition 5.5.10. Let Ri = R\(T). Then

—i/BI2
E{QllogR\} < J/R(1_ e- 2KTT)' (5.5.26)

Proof. Byn < T, (A5.5.2), (5.5.23), we have

. o 2KT\xW-yM\2
LV DOra mP<< ygq . eeT) m

Then, it follows from (5.5.22) and the definition of R\ that
E{/?i logRi} = Eq() logiii

(5.5.27)

_ Kt —/102
= Ba®) [ k@O WMN2A< 05 (e Ty
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5.5.2.2 Construction of ¥/2*
Let
&2) = a™(t,Yt(Qye A(T-2QN (V"D - X Q)\[T2T](t), t >0
Let Yt* solve the equation
dYtR) = {N1Y/2) +6Q)(t,ytD)}dt+ a2)(t,FHD){dBD) - e (Adt} (5.5.28)

with Yg2*= y(2 Since under P(-)Jr‘Y") the processes x j lLand Y /1*are fixed
and b\2 is a d-dimensional Brownian motion, by (A5.5.4) this equation
has a unique solution. Since X[1' = Y'/11for t >T, for the present 6® we
have

Ax[2 + M2)(f, X{(2)) - {AYH{D +b{Aat,Y)} = A{xI2 - yt(2), t>T.
So,

r2T

X2T - Y2T = eAT(X " - ¥Y®) + | eg@T“4HI(2)(*, yt(L)E(df = 0
JT
as Y/In= X1 for t > T. Therefore, X 2T = ¥Y>1- Moreover, let

R2(t) =exp ' I’ fields , tGIT,2T]
JT

ZJT

Proposition 5.5.11. C/nder P (.|*), {02(QHe[r2M * an Xf2~
martingale and R2 := R2(2T) satisfies

BR(["(1)){A2log R2}
< _vmf + ¥V d»») - yl

r2T

Xt&%ﬁ]/i(lyt(l)l + x(1)-y DIIQy1l2 O{T I<n(2>(t.yt(1) || 2df.

Proof. We make use of an approximation argument. Let £i2)(s) =
A 2)id2)l<n}’ and let

R2n{t) = exp 13 {*2s),dBi2)- \j T IC2)(s)[2ds , n>1te [T.2T].
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Then {R2,n(t)}te[T,2T}is an .7* -martingale under P(-]Jr"li). So, it remains
to show that
Ep(.lir()){i?2,n log i?2,n}(t)

<y {e2ert> (2>- sO)|2+ - e™ ~lyr(|s@) - V@>i2)}
x sup Ji(ly/™| + |ar — (5.5.29)
te[o,T]
r2T
X 1Q”H2 / \\a”(t,Ytw )\\2dt
Jt

holds for all + G [T, 2T] and n > 1. Let Q2,n = f?22,n(2T)P(-|"rMl). By the

Girsanov theorem, under <Q2,n the process
[sTvt

Bf) =B{)- / tfHsjds, f€[0,271
Jt

is a d-dimensional Brownian motion. Then, by the definition of £\"(s)i for
any t G [t,2T] we have

®P([Ir(1)){"~2,nbg T2,n}(t)

1 21,
= Eq2, logR2n(t) <2 J EQ2nki2)(s)|2ds

<y (Ep(la 1,)A2,(2r)[4 2) - y£2)[2) (5'5'30)
r2T
XllQges 23c  1k(2)(S,y<1l))|2ds.

Since {f?2,n(t)}te[o0,T] is an ¥ (2'-martingale under p(-\r(~), and Ri,n{T) =
1, we have
EP(MOY)42,n(2T)|*2) - vyo |2} = Ep(F (D)X - vz2)e. (5.5.31)
Finally, by (A5.5.4), (5.5.24) and Ito’s formula, we obtain
dIX12) -yt

< 2{0TIX(2) - Y/2)R+ ~r (Ix(1) - *F(L)R)M I~ (1)]+ 1*(1) - 2A1))}d t

+2(xf)-y t(2),{a(2(f,Xt1)) - a 2(f,yt(1))}dB1(2)> t G [T,2T].
Since h > 1, this implies

Ep(M D)™ 2)-Y ® |2

< (e2e’"><) - »(2R2+ e’ e T~ ‘wd*1l- ""’R))

X sup N(|YIN + —y~)).
te[o,T]

Combining this with (5.5.30) and (5.5.31), we prove (5.5.29). I
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Proof. (Proof of Theorem 5.5.7) Let Xt = (X*, x{2 and Yt =

be constructed above. Then = Yrr- Let R = R\[J2. By
Propositions 5.5.9, 5.5.10, 5.5.11, and noting that the distribution of y(B
under #iP coincides with that of XB)(j/(1)) under P, we have EP(.|*(i))I?2 =
land

E{f?logf?} = E{(i?i logiZOEpj.i"DjBa} + E[f2E]p(.|_"(i))(i2l0og-R2)]
A KTWX(Q) - /(D)2
- \Z{l- e~2KTT)
+ YyE»"'| (e*«Y 2>- j2R+--gy W (I*<'>- <,«|2))
ra7

Xtestg,g] (X)) + [x(1)- 2(1)|)||Q"1||2J/t ||a(2)(*,X'(1))|I2df3-

Combining this with the definition of ®y, we obtain

E{-Rlogi?}

A KT\ —yM\ 2 BTMNATTAT(XM §/B)

~\Z{l- e-2KrT) + 2 (5.5.32)
X|Ix@- y@R+ ---— - Re{x{) - YOP)|.

Since B{2 is a d-dimensional Brownian motion under P(-|drB))! by the
Girsanov theorem, under /?2P ('|*”~) the process

B{2 :=B?]- £ Ci2ds, t£ [T 2T]
is a d-dimensional Brownian motion. Noting that

y(2=y(2+ FT{AY@Q +bW(s,YjI)}ds+ [ ofd(s,Ysw)dB"
Jt Jt

holds for t £ [T, 2T], we see that the distribution of under JIrPH-C*-17)
coincides with that of YAt under P(-|J'A1), where
yt(2)=Tt(2), t£[0T],
and when t £ [T, 2T]
y(2) = y(2)+ T "Ay{2) +b (2)(s y(1)~ds+ T J(2)(s,ys(1))dB(2).

Jt Jt
Therefore,

Ep(~(){~2 log/(y2Z)} = Ep([*(1)){log/(y2").,F22)}.
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Combining this with X2t = Y2t >we obtain
E{R\ogf(X2T)} =E{R1R2\ogf(Y2T)}
= Efi?1EP([jr(i)){i2log/(¥Y 21)})
; 0

= E(n2EP( W log/(r Py &%3)

= E{i?xlog/(yW ,y®)}.
Moreover, again by the Girsanov theorem, under f?iP the process
(b\1\ -Bi2Mtdo2T] is a (d + m)-dimensional Brownian motion, recall that

rT™Mm

B()= B(1)- [ e(1)(s)ds, t€[02T]

(5-5-33)

Noting that (Yt(1), Yt(2") solves the equation

fdrt(Q) =6(J(t,y{D)dt + (Y (t)dB(2), M) = 2(2),
\drt@) = {AYLQ + M2>(i,Y4L), Y(2)}df + u(2)(t,yt1)dS(2), Y12 = y®,

we conclude that the distribution of (Y ” ,Y2t ) under Ri P coincides with
that of X 21(y) under P. Therefore, it follows from (5.5.33) and the Young
inequality that
P2T logf(y) = E{R1logf(Y” ,¥22))} = E{R logf(X2T)}
< logP2rf{x) +E{R\ogR}.
Combining this with (5.5.32) we complete the proof. O
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p-tensor, 7

CP(M): set of all Cp-smooth real
functions on M, 2

Cp(x): set of Cp-smooth real
functions defined in a
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Cqg(M): set of all C*-smooth real
functions on M with compact
supports, 2

CP(M): the set of functions in
CP(M) with bounded derivatives
up to order p, 9

D°F\ the damped gradient on path
space, 235

He* the horizontal vector field
induced by e GRd, 8

1(X,X): index form of X, 11

Mx,y: mirror reflection from TXM to
TyM, 62

O (M): orthonormal frame bundle of
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Pxy aTXM — TyM: parallel
transform, 62

Qxt GRd® Rd: the multiplicative
functional, 229

TM: vector bundle on M, 3

TXM: tangent space at x, 2

W p: Lp-transportation-cost or
Wasserstein distance induced by p,
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X*gffy the quasi-invariant flow, 235
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Sect: sectional curvature, 6
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d*: codifferential, 8

Sx- Dirac measure at x, 18

divM the divergence operator w.r.t.
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7 : tangent vector of curve 7, 4
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17Z: curvature operator, 5

Ao(M): all smooth vector fields on M
with compact support, 242

pa: area measure induced by p, 10

p:0(M) -A M: canonical projection,
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pg: Riemannian distance to the
boundary of the manifold, 13

po: Riemannian distance to point o, 4

a(L): spectrum of L, 39

acss(L): essential spectrum of L, 39

vol(dx) = dx: volume measure, 3

Q (: Hamilton-Jacob semigroup, 114

boundary, 12
convex, 12
injectivity radius, 13

condition
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connection, 3
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coupling
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optimal, 18
Otto-Villani’s, 83
shift, 20
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covariant , 8
differential structure, 1
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equation
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field
Jacobi, 6
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differential, 7
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integration by parts, 23
Monge-Kontorovich, 17
second variational, 10
function
compact, 262



Index 379

geodesic, 4 damped gradient, 235
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gradient, 6
horizontal lift, 9 horizontal Laplace, 9
Laplace, 6
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F-Sobolev, 42 strong Feller, 24
®-entropy, 182 optimal transportation map, 18
FKG, 16 orthonormal frame bundle, 8
Harnack, 22, 25
HWI, 74 process
intrinsic super, 40 diffusion, 50
intrinsic super Poincare, 128 horizontal diffusion, 49
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Nash, 43 product
Poincare, 39 inner, 3
Poincare type, 39 alternating, 7
shift Harnack, 23 property
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super Poincare, 40 semigroup
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index, 11 space
local (coordinate) chart, 2 geodesic, 33
manifold, 2 tail norm, 42
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quasi-invariant, 24 Laplacian comparison, 11, 14
invariant, 24 transportation, 16
volume, 3 cost, 17
multiplicative functional, 229 parallel, 4
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