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Preface

Deterministic Calculus has been proved extremely useful in the last few hun­
dred years for describing the dynamics laws for macro-objects, such as plan­
ets, projectiles, bullets, etc. However, at the micro-scale, the picture looks 
completely different, since at this level the classical laws of Newtonian me­
chanics cease to function “normally” . Micro-particles behave differently, in 
the sense that their state cannot be determined accurately as in the case of 
macro-objects; their position or velocity can be described using probability 
densities rather than exact deterministic variables. Consequently, the study 
of nature at the micro-scale level has to be done with the help of a special 
tool, called Stochastic Calculus. The fact that nature at a small scale has a 
non-deterministic character makes Stochastic Calculus a useful and important 
tool for the study of Quantum Mechanics.

In fact, all branches of science involving random functions can be ap­
proached by Stochastic Calculus. These include, but they are not limited to, 
signal processing, noise filtering, stochastic control, optimal stopping, elec­
trical circuits, financial markets, molecular chemistry, population evolution, 
etc.

However, all these applications assume a strong mathematical background, 
which takes a long time to develop. Stochastic Calculus is not an easy theory 
to grasp and, in general, requires acquaintance with probability, analysis and 
measure theory. This fact makes Stochastic Calculus almost always absent 
from the undergraduate curriculum. However, many other subjects studied at 
this level, such as biology, chemistry, economics, or electrical circuits, might be 
more completely understood if a minimum knowledge of Stochastic Calculus 
is assumed.

The attribute informal, present in the title of the book, refers to the fact 
that the approach is at an introductory level and not at its maximum math­
ematical detail. Many proofs are just sketched, or done “naively” without 
putting the reader through a theory with all the bells and whistles.

The goal of this work is to informally introduce elementary Stochastic 
Calculus to senior undergraduate students in Mathematics, Economics and 
Business majors. The author’s goal was to capture as much as possible of the



spirit of elementary Calculus, which the students have already been exposed 
to in the beginning of their majors. This assumes a presentation that mimics 
similar properties of deterministic Calculus as much as possible, which facili­
tates the understanding of more complicated concepts of Stochastic Calculus.

The reader of this text will get the idea that deterministic Calculus is just 
a particular case of Stochastic Calculus and that Ito’s integral is not a too 
much harder concept than the Riemannian integral, while solving stochastic 
differential equations follows relatively similar steps as solving ordinary dif­
ferential equations. Moreover, modeling real life phenomena with Stochastic 
Calculus rather than with deterministic Calculus brings more light, detail and 
significance to the picture.

The book can be used as a text for a one semester course in stochastic 
calculus and probabilities, or as an accompanying text for courses in other 
areas such as finance, economics, chemistry, physics, or engineering.

Since deterministic Calculus books usually start with a brief presentation 
of elementary functions, and then continue with limits, and other properties 
of functions, we employed here a similar approach, starting with elementary 
stochastic processes, different types of limits and pursuing with properties 
of stochastic processes. The chapters regarding differentiation and integration 
follow the same pattern. For instance, there is a product rule, a chain-type rule 
and an integration by parts in Stochastic Calculus, which are modifications of 
the well-known rules from elementary Calculus.

In order to make the book available to a wider audience, we sacrificed rigor 
and completeness for clarity and simplicity, emphasizing mainly on examples 
and exercises. Most of the time we assumed maximal regularity conditions for 
which the computations hold and the statements are valid. Many complicated 
proofs can be skipped at the first reading without affecting later understand­
ing. This will be found attractive by both Business and Economics students, 
who might get lost otherwise in a very profound mathematical textbook where 
the forest’s scenery is obscured by the sight of the trees. A flow chart indicat­
ing the possible order the reader can follow can be found at the end of this 
preface.

An important feature of this textbook is the large number of solved prob­
lems and examples which will benefit both the beginner as well as the advanced 
student.

This book grew from a series of lectures and courses given by the author 
at Eastern Michigan University (USA), Kuwait University (Kuwait) and Fu- 
Jen University (Taiwan). The student body was very varied. I had math, 
statistics, computer science, economics and business majors. At the initial 
stage, several students read the first draft of these notes and provided valuable 
feedback, supplying a list of corrections, which is far from exhaustive. Finding 
any typos or making comments regarding the present material are welcome.

vi An Informal Introduction to Stochastic Calculus with Applications
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Heartfelt thanks go to the reviewers who made numerous comments and 
observations contributing to the quality of this book, and whose time is very 
much appreciated.

Finally, I would like to express my gratitude to the World Scientific Pub­
lishing team, especially Rok-Ting Tan and Ying-Oi Chiew for making this 
endeavor possible.
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List of Notations and Symbols

The following notations

n
I
X

Xt
as — lim Xtt—>00

ms — lim X t
t—b OO

p — lim Xtt—>00

M ,W t,

Tt
dWt
dt 
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A Wt,A B t 
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V ^ (X t),(X ,X )t  
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щх\д\
Var(X) 

Cov(X, Y) 
p(X, Y), Corr(X, Y) 

A x ,F X

have been frequently used in the text.
Probability space 
Sample space 
a-field
Random variable
Stochastic process
The almost sure limit of X t

The mean square limit of X t

The limit in probability of X t

Filtration

White noise

Brownian motion
Jumps of the Brownian motion during time interval At
Infinitesimal jumps of the Brownian motion
Total variation of Xt

Quadratic variation of Xt
Probability distribution function of X
Probability density function of X
Transition density function
Expectation operator
Conditional expectation of X  with respect to Q 
Variance of the random variable X  
Covariance of X  and Y  
Correlation of X  and Y  
(T-algebras generated by X

i x
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Г ( - ) Gamma function

S ( v ) Beta function
Nt Poisson process
Sn Waiting time for Poisson process
Tn Interarrival time for Poisson process

T\ A r2 The minimum between t\ and (=  min{ri,T2})
П V r2 The maximum between t\ and r2 (=  m ax{ri,r2})

fn Sequence superior limit (=  supr(>1 rn)

Zn Sequence inferior limit (=  inf„>i тп)

M Drift rate
cr Volatility, standard deviation

о d
Xk,dxk

Partial derivative with respect to

Rn n-dimensional Euclidean space

11*11 Euclidean norm (=  \/x\ +  • • • +  xfy

A / Laplacian of /
1 A , X A The characteristic function of A

l l / l b The L2-norm (=  y j/ Qb f ( t )2 dt)

L2[0,T] Squared integrable functions on [0, Г]
C2(Mn) Functions twice differentiable with second derivative continuous
C02(Mn) Functions with compact support of class C2

Rt Bessel process

Сt The mean square estimator of Q
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Chapter 1

A Few Introductory Problems

Even if deterministic Calculus is an excellent tool for modeling real life prob­
lems, however, when it comes to random exterior influences, Stochastic Cal­
culus is the one which can allow for a more accurate modeling of the problem. 
In real life applications, involving trajectories, measurements, noisy signals, 
etc., the effects of many unpredictable factors can be averaged out, via the 
Central Limit Theorem, as a normal random variable. This is related to the 
Brownian motion, which was introduced to model the irregular movements of 
pollen grains in a liquid.

In the following we shall discuss a few problems involving random pertur­
bations, which serve as motivation for the study of the Stochastic Calculus 
introduced in next chapters. We shall come back to some of these problems 
and solve them partially or completely in Chapter 11.

1.1 Stochastic Population Growth Models

Exponential growth m odel Let P(t) denote the population at time t. In 
the time interval At the population increases by the amount ДP{t) — P(t +  
A t) — P(t). The classical model of population growth suggests that the relative 
percentage increase in population is proportional with the time interval, i.e.

A -P(0
P(t) ~ r ’

where the constant r > 0 denotes the population growth. Allowing for in­
finitesimal time intervals, the aforementioned equation writes as

dP{t) =  rP{t)dt.

This differential equation has the solution P(t) =  Poert, where Pq is the initial 
population size. The evolution of the population is driven by its growth rate

1
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a b

Figure 1.1: (a) Noisy population with exponential growth, (b) Noisy population 
with logistic growth.

r. In real life this rate is not constant. It might be a function of time t, or even 
more general, it might oscillate irregularly around some deterministic average 
function a(t):

rt =  a(t) +  “noise” .
In this case, rt becomes a random variable indexed over time t. The associated 
equation becomes a stochastic differential equation

dP(t) =  (a(t) +  “noise” )P(t)dt. (1.1.1)

Solving an equation of type (1.1.1) is a problem of Stochastic Calculus, see 
Fig. 1.1(a).
Logistic growth m odel The previous exponential growth model allows the 
population to increase indefinitely. However, due to competition, limited space 
and resources, the population will increase slower and slower. This model 
was introduced by P.F. Verhust in 1832 and rediscovered by R. Pearl in the 
twentieth century. The main assumption of the model is that the amount 
of competition is proportional with the number of encounters between the 
population members, which is proportional with the square of the population 
size

dP(t) =  rP(t)dt -  kP (tfd t. (1.1.2)
The solution is given by the logistic function

p {t) = ______ M . ______
U  Pq +  {K  — Po)e~rt ’

where К  =  г/к is the saturation level of the population. One of the stochastic 
variants of equation (1.1.2) is given by

dP(t) =  rP(t)dt — kP{t)2dt +  /3( “noise” )P{t),



A Few Introductory Problems 3

where /3 € К is a measure of the size of the noise in the system. This equation is 
used to model the growth of a population in a stochastic, crowded environment, 
see Fig. 1.1(b).

1.2 Pricing Zero-coupon Bonds

A bond is a financial instrument which pays back at the end of its lifetime, T, 
an amount equal to В , and provides some periodical payments, called coupons. 
If the coupons are equal to zero, the bond is called a zero-coupon bond or a 
discount bond. Using the time value of money, the price of a bond at time t 
is B (t) =  Ве~^т~г\ where r is the risk-free interest rate. The bond satisfies 
the ordinary differential equation

dB(t) =  rB{t)dt

with the final condition B (T ) =  B. In a “noisy” market the constant interest 
rate r is replaced by rt =  r(t) +  “noise” , a fact that makes the bond pricing 
more complicated. This treatment can be achieved by Stochastic Calculus.

1.3 Noisy Pendulum

The free oscillations of a simple pendulum of unit mass can be described by 
the nonlinear equation 9(t) =  —k2 sin 0(f), where 9(t) is the angle between 
the string and the vertical direction. If the pendulum is moving under the 
influence of a time dependent exterior force F — F(t), then the equation of 
the pendulum with forced oscillations is given by 6(t) +  k2 sin 9(t) =  F{t). We 
may encounter the situation when the force is not deterministic and we have

F{t) =  f i t )  +  ( “noise” ).

How does the noisy force influence the deviation angle 9{t)l Stochastic Cal­
culus can be used to answer this question.

1.4 Diffusion of Particles

Consider a flowing fluid with the velocity field v(x). A particle that moves 
with the fluid has a trajectory 4>{t) described by the equation ф'{t) =  v(</>(t)). 
A small particle, that is also subject to molecular bombardments, will be 
described by an equation of the type ф'(Ь) =  v ^ {t ) )  +  <r(“noise” ), where the 
constant a >  0 determines the size of the noise and controls the diffusion of 
the small particle in the fluid.
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Now consider a drop of ink (which is made out of a very large number of 
tiny particles) left to diffuse in a liquid. Each ink particle performs a noisy 
trajectory in the liquid. Let p (x ,t) represent the density of particles that 
arrive about x  at time t. After some diffusion time, the darker regions of 
the liquid represent the regions with higher density p(x,t), while the lighter 
regions correspond to smaller density p(x,t). Knowing the density p (x ,t) 
provides control over the dynamics of the diffusion process and can be used to 
find the probability that an ink particle reaches a certain region.

1.5 Cholesterol Level

The blood cholesterol level at time t is denoted by C(t). This depends on the 
intaken food fat as well as organism absorption and individual production of 
cholesterol. The rate of change of the cholesterol level is given by

Cl̂ = a { C o - C ( t ) ) + b E ,

where Co is the natural level of cholesterol and E  denotes the daily rate of 
intaken cholesterol; the constants a and b model the production and absorption 
of cholesterol in the organism. The solution of this linear differential equation 
is

C(t) =  C0e~at +  (Co +  Ъ-Е ){1  -  e~at),

which in the long run tends to the saturation level of cholesterol Co 4- ^E. 
Due to either observation errors or variations in the intake amount of food, 
the aforementioned equation will get the following noisy form

=  a (Co — C(t)) +  bE +  “noise” .

This equation can be explicitly solved using Stochastic Calculus. Furthermore, 
we can also find the probability that the cholesterol level is over the allowed 
organism limit.

1.6 Electron Motion

Consider an electron situated at the initial distance ж(0) from the origin, 
which moves with a unit speed towards the origin. Its coordinate x(t) € M3 is 
supposed to satisfy the equation

dx(t) _  x(t) 
dt 1ж(£)1
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Figure 1.2: (a) The trajectory of the electron x(t) tends towards the origin.
(b) White noise.

Like in the case of the pollen grain, whose motion is agitated by the neigh­
boring molecules, we assume that the electron is subject to bombardment by 
some “aether” particles, which makes its movement unpredictable, with con­
stant tendency to go towards the origin, see Fig. 1.2 (a). Then its equation 
becomes

^ 1  =  _ ^ L  +  w .  
dt 1̂ (01

This type of description of electrons is usually seen in stochastic mechanics. 
This theory can be found in Fenyes [18] and Nelson [36].

1.7 White Noise

All aforementioned problems involved a “noise” influence. This noise is di­
rectly related to the trajectory of a small particle which diffuses in a liquid 
due to the molecular bombardments (just consider the last example in the case 
of a static fluid, v =  0). This was observed first time by Brown [8] in 1828, 
and was called Brownian motion and it is customarily denoted by Bf . It has 
a very irregular, continuous trajectory, which from the mathematical point 
of view is nowhere differentiable. A satisfactory explanation of the Brownian 
motion was given by Einstein [17] in 1905. A different but likewise succesful 
decription of the Brownian motion was done by Langevin [32] in 1908.

The adjective “white” comes from signal processing, where it refers to the 
fact that the noise is completely unpredictable, i.e. it is not biased towards
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any specific “frequency” ,1 see Fig. 1.2. If Mt denotes the “white noise” at 
time t, the trajectory ф(Ь) of a diffused particle satisfies

Ф'(t) =  crJ\ft, t > 0.

The solution depends on the Brownian motion starting at x, i.e ф{£) =  x +  Bt . 
Therefore the white noise is the instantaneous rate of change of the Brownian 
motion, and can be written informally as

лл dBt

This looks contradictory, since Bt is not differentiable. However, there is a 
way of making sense of the previous formula by considering the derivative in 
the following “generalized sense” :

for any compact supported, smooth function / .  From this point of view, the 
white noise Л/i is a generalized function or a distribution. We shall get back to 
the notion of white noise in section 11.1.

1.8 Bounded and Quadratic Variation

The graph of a C 1-difFerentiable function, defined on a compact interval, has 
finite length. Unlike the case of differentiable functions, trajectories of Brow­
nian motions, or other stochastic processes, are not of finite length. We may 
say that to a certain extent, the role of the “length” in this case is played by 
the “quadratic variation” . This is actually a measure of the roughness of the 
process, see Fig. 1.3. This section will introduce these notions in an informal 
way. We shall cover these topics in more detail later in sections 4.11 and 4.12.

Let f  : [a, b] —> M be a continuously differentiable function, and consider 
the partition a =  xo < xi < ■ ■ ■ < xn =  b of the interval [a, b}. A smooth curve 
у =  f (x ) ,  a < x  < b, is rectifiable (has length) if the sum of the lengths of the 
line segments with vertices at Ро(жо> f i x o))> • • •, Fn(xn, f ( x n)) is bounded by 
a given constant, which is independent of the number n and the choice of the 
division points X;t. Assuming the division is equidistant, A x  =  (b — a)/n ,  the 
curve length becomes

lrThe white light is an equal mixture of radiations of all visible frequencies.
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6 8 10 10 0 2 4

Figure 1.3: (a) Smooth, (b) Rough, (c) Very rough.

n — 1 n—1
SUP \pkpk+l\ =  SUP X ]  V (A x )2 +  (Д/ ) 2-

k=0 fc=0

Furthermore, if /  is continuously differentiable, the computation can be con­
tinued as

1 = Z7 1 + (^)2д1 = /  1̂ + /,(l)2<iI’ 
f c = 0  17 a

where we used that the limit of an increasing sequence is equal to its superior 
limit.

Definition 1.8.1 The function / ( x) has bounded variation on the interval 
[a, 6] if for any division a =  xo < x\ < ■ ■ • < xn =  b the sum

П— 1
l/Ofc+i) -  f ( x k) I

fc=0

is bounded above by a given constant.

The total variation of /  on [a, b] is defined by

n —1

v ( f )  =  s u p j^  |/(zjfe+i) -  f ( x k)|. (1.8.3)
fc=0

The amount V ( / )  measures in a certain sense the “roughness” of the function. 
If /  is a constant function, then V ( / )  =  0. If /  is a stair-type function, then 
V( f )  is the sum of the absolute value of its jumps.
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We note that if /  is continuously differentiable, then the total variation 
can be written as an integral

n— 1
V( f )  =  s u p \f(x k+i) -  f ( x k)\

Xi k=о

И т ^ 1 Л ^ + , ) - / Ы 1 А 1 =  / ‘ l/(l)l< ix  
n~̂ °° , n %к+1 J аn—>oo ■

fc=0

The next result states a relation between the length of the graph and the 
total variation of a function / ,  which is not differentiable.

Proposition  1.8.2 Let f  : [a, b] —> R be a function. Then the graph у — f {x)  
has length if and only if V( f )  < oo.

Proof: Consider the simplifying notations (A /)& =  f(xk+ 1) — f (xk)  and 
A x =  ж/c+i — .Tfe. Taking the summation in the double inequality

|(Д/Ы < y j(A x )2 +  |(А/)^|2 < Ax +  |(A/)fc|

and then applying the “sup” yields

V ( f ) < e < ( b - a )  +  V( f ) ,

which implies the desired conclusion. I
By virtue of the previous result, the functions with infinite total variations 

have graphs of infinite lengths.

The following informal computation shows that the Brownian motion has 
infinite total variation (a real proof of this fact is given in section 4.12)

n—1
V(Bt) =  s u p ^  IBtk+1 - B t k\ =  f  

tk k=о Ja

f b dBt
d t =  f

Ja dt Ja

since the area under the curve t -> |A/j| is infinite.
We can try to model a finer “roughness” of the function using the quadratic 

variation of /  on the interval [a, b}

n—1
F (2)( / )  =  su p ]T  |/(xjfe+i) -  f ( x k) I2. (1.8.4)

fc=о
where the “sup” is taken over all divisions a =  xq < xi < ■ ■ • < xn =  b.
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It is worth noting that if /  has bounded total variation, V( f )  < oo, then 
V^2\ f )  =  0. This comes from the following inequality

V {2\ f )  <  max \f(xk+i) -  f ( x k)\V(f) -> 0, as |Дж| -)• 0.

The total variation for the Brownian motion does not provide much in­
formation. It turns out that the correct measure for the roughness of the 
Brownian motion is the quadratic variation

re—1
V ^ ( B t) =  s u p j ]  IB(tk+1) -  B(tk) I2. (1.8.5)

U k=0

It will be shown that V ^ ( B t) is equal to the time interval b — a.





Chapter 2

Basic Notions

2.1 Probability Space

The modem theory of probability stems from the work of Kolmogorov [28], 
published in 1933. Kolmogorov associates a random experiment with a prob­
ability space, which is a triplet, (Г2, J7, P), consisting of the set of outcomes, 
Q, a ст-field, J~. with Boolean algebra properties, and a probability measure, 
P. In the following sections, each of these elements will be discussed in more 
detail.

2.2 Sample Space

A random experiment in the theory of probability is an experiment whose out­
comes cannot be determined in advance. When an experiment is performed, 
all possible outcomes form a set called the sample space, which will be denoted 
by Q.

For instance, flipping a coin produces the sample space with two states
О =  {H. T}. while rolling a die yields a sample space with six states V. =  
{1, • • • ,6}. Choosing randomly a number between 0 and 1 corresponds to a 
sample space, which is the entire segment О =  (0,1).

In financial markets one can regard Q as the states of the world, by this, 
we mean all possible states the world might have. The number of states of the 
world that affect the stock market is huge. These would contain all possible 
values for the vector parameters that describe the world, which is practically 
infinite.

All subsets of the sample space Q form a set denoted by 2^. The reason 
for this notation is that the set of parts of il can be put into a bijective 
correspondence with the set of binary functions /  : 17 —> {0,1}. The number 
of elements of this set is 2^1, where |J7| denotes the cardinal of 17. If the set is

11
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finite, |0| =  n, then 2° has 2n elements. If Q is infinitely countable (i.e. can 
be put into a bijective correspondence with the set of natural numbers), then 
2^1 is infinite and its cardinal is the same as that of the real number set R.

Rem ark 2.2.1 Pick a natural number at random. Any subset of the sample 
space corresponds to a sequence formed with 0 and 1. For instance, the subset 
{1 ,3 ,5 ,6 } corresponds to the sequence 10101100000... having 1 on the 1st, 
3rd, 5th and 6th places and 0 in rest. It is known that the number of these 
sequences is infinite and can be put into a bijective correspondence with the 
real number set EL This can also be written as |2N| =  |R|, and stated by saying 
that the set of all subsets of natural numbers N has the same cardinal as the 
real numbers set R.

2.3 Events and Probability

The set of parts 2n satisfies the following properties:

1. It contains the empty set 0 ;

2. If it contains a set A, then it also contains its complement A =  Q\yl;

3. It is closed with regard to unions, i.e., if A\, A2 , . . .  is a sequence of sets, 
then their union A\ U A 2 U • • • also belongs to 2Q.

Any subset J- of 2^ that satisfies the previous three properties is called a er- 
field. The sets belonging to J- are called events. This way, the complement of 
an event, or the union of events is also an event. We say that an event occurs 
if the outcome of the experiment is an element of that subset.

The chance of occurrence of an event is measured by a probability function 
P : T  —> [0,1] which satisfies the following two properties:

1. Р(П) =  1;

2. For any mutually disjoint events A\, A2 , ■ ■ ■ £ J7,

P { AX UA2 U - )  =  P{ Ax) +  P{A2) +  ■ ■ • •

The triplet (fi, T, P)  is called a probability space. This is the main setup 
in which the probability theory works.

Exam ple 2.3.1 In the case of a coin flipping, the probability space has the 
following elements: fl =  {H.T} ,  T  =  {0 ,  {H} ,  {T }, { H , T } }  and P is defined 
by P (0 ) =  0, P( {H} )  =  I  P( {T} )  =  i ,  P ( { f f ,T } )  =  1 .
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Figure 2.1: If any set X  1((a, 6)) is “known”, then the random variable X  : 
Q. —>■ R is -measurable.

Exam ple 2.3.2 Consider a finite sample space 17 =  { s i , . . . ,  sn}, with the a- 
field F  =  2n, and probability given by P (A ) =  |vl|/n, У A £ F . Then (ft, F,  P ) 
is a probability space.

Example 2.3.3 Let Q =  [0,1] and consider the cr-field #([0,1]) given by the 
set of all open or closed intervals on [0,1], or any unions, intersections, and 
complementary sets. Define P(A)  =  A (.A), where A stands for the Lebesgue 
measure (in particular, if A =  (a,b), then P(A) =  b — a is the length of the 
interval). It can be shown that (П ,#([0,1]),P) is a probability space.

2.4 Random Variables

Since the cr-field IF provides the knowledge about which events are possible on 
the considered probability space, then F  can be regarded as the information 
component of the probability space (Q,F,P) .  A random variable X  is a 
function that assigns a numerical value to each state of the world, X  : Г2 —»• R, 
such that the values taken by X  are known to someone who has access to the 
information F. More precisely, given any two numbers a. 6 6 R. then all the 
states of the world for which X  takes values between a and b forms a set that 
is an event (an element of F), i.e.

{w G fi; a < X (w) < b} £ F.

Another way of saying this is that X  is an F-measurable function.
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Exam ple 2.4.1 Let Х(ш) be the number of people who want to buy houses, 
given the state of the market w. Is X  measurable? This would mean that 
given two numbers, say a =  10,000 and b =  50,000, we know all the market 
situations и for which there are at least 10,000 and at most 50, 000 people 
willing to purchase houses. Many times, in theory, it makes sense to assume 
that we have enough knowledge so that we can assume X  is measurable.

Example 2.4.2 Consider the experiment of flipping three coins. In this case 
Q is the set of all possible triplets, which can be made with H and T. Consider 
the random variable X  which gives the number of tails obtained. For instance
X ( H H H)  =  0, X(HHT)  =  1. etc. The sets

{w; X(u>) =  0} =  { # # # } ,  {w; Х{ш) =  1} =  {HHT,  H TH , T H H }, 
{w; Х(ш) =  3} =  {TTT},  {w; X(w) =  2} =  { HTT , THT, TTH}

2.5 Integration in Probability Measure

The notion of expectation is based on integration on measure spaces. In this 
section we recall briefly the definition of an integral with respect to the prob­
ability measure P. For more insight on measurable functions and integration 
theory the reader is referred to the classical text of Halmos [21].

Let X  : Г2 —> R be a random variable on the probability space (fi, T , P). A 
partition (f2j)i<j<n of i I is a family of subsets 17 j С 17, with € T . satisfying 

1. fli П flj =  0 , for i ф j-,

Each fij is an event and its associated probability is P (ilt) . Consider the

More properties of \A can be found in Exercise 2.12.9. The integral will be 
defined in the following three steps:

(i) A simple function is a sum of characteristic functions /  =  сгХц ; 
Cj € M. This means f(uj) =  ck for и G Q/c. The integral of the simple function 
/  is defined by

belong to 2^, and hence X  is a random variable.

П

2. (J ftj =  П.

characteristic function of a set A С defined by x a (u )

(гг) If X  : 17 —> M is a random variable, then from the measure theory 
it is known that there is a sequence of simple functions ( fn)n>l satisfying
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НгПп-юо /п(^) =  Х(ш). Furthermore, if X  >  0, then we may assume that 
f n  < f n + 1 -  Then we define

f  X d P =  lim [  f ndP.
J n______ "-»°° Jn_____

(in) If X  is not non-negative, we can write X  =  X + — X~  with X + =  
sup{X, 0} > 0 and X~ =  sup{—X,  0} > 0. Define

[  X d P =  lim f  X + d P -  lim [  X~ dP,
JQ______ n-»°o Jn_______ Jq__________

where we assume that at least one of the integrals is finite.
From now on, the integral notations J<} X  dP or Jq X ( uj) dP(uj) will be used 
interchangeably. In the rest of the chapter the integral notation will be used 
informally, without requiring a direct use of the previous definition.
Two widely used properties of the integral defined above are:

Linearity: For any two random variables X  and Y  and a, b € E  R

f  (aX +  bY)dP =  a [  X d P  +  b [  Y dP\
J П J n  J u

Positivity: If X  < 0  then

[  X d P >  0.
J n

2.6 Two Convergence Theorems

During future computations we shall often need to swap the limit symbol with 
the integral. There are two basic measure theory results that allow doing this. 
We shall state these results below and use them whenever needed.

Theorem  2.6.1 (The m onotone convergence theorem ) Let (fi, J7, P) be 
a probability space and ( fn)n>l a sequence of measurable functions, f n : Q —> 
[0, oo) such that:

(*) 0 < /fc(w) < fk+i(w), V w e fi , k >  1;
(ii) the sequence is pointwise convergent

f(w) =  lim f n(u>), Vuj G fl.
n—t OO

Then
(1) /  is measurable;
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Theorem  2.6.2 (The dom inated convergence theorem ) Let (fi,^7, P) be 
a probability space and (fn)n>l a sequence of measurable functions, f n : fi —> 
R. Assume that:

(*) (/n) ^ pointwise convergent

f (u)  =  lim f n(uj), Vw € U;
n—>oО

(гг) there is an integrable function g, (i.e. J  ̂|д| dP < oo) such that 

\fn(u)\ < g(uj), Vlu £ t t , n > l .

Then f  is integrable and

lim [  f ndP =  f  f  dP.
n->°° J n  J n

2.7 Distribution Functions

Let X  be a random variable on the probability space (Г2, J7, P).  The distribu­
tion function of X  is the function Fx : R —»• [0,1] defined by

Fx (x) =  P ( u- ,X ( u) <x ) .

It is worth observing that since X  is a random variable, then the set {w; X(w) < 
x } belongs to the information set JF.

The distribution function is non-decreasing and satisfies the limits

lim Fx (x) =  0, lim Fy (x) =  1.
x - ¥ -  o o  X V  '  х - Ц - о о  ’

If we have
- ^ F x ( x ) = p ( x ) ,

then we say that p(x) is the probability density function of X.
It is important to note the following relation among distribution function, 

probability and probability density function of the random variable X

Fx(x)  =  P ( X  <  x) =  f  dP(uj) =  (  p(u)du. (2-7.1)
J { X < x }  J —oo

The probability density function p(x) has the following properties:
(г) p(x) >  0
(**) f-ooP(v)du =  1.
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The first one is a consequence of the fact that the distribution function 
Fx { x ) is non-decreasing. The second follows from (2.7.1) by making x —> oc

Another useful propety, which follows from the Fundamental Theorem of

In the case of discrete random variables the aforementioned integral is replaced 
by the following sum

For more details the reader is referred to a traditional probability book, such 
as Wackerly et al. [13].

2.8 Independence

Roughly speaking, two random variables X  and Y  are independent if the 
occurrence of one of them does not change the probability density of the other. 
More precisely, if for any two open intervals l , B c l ,  the events

are independent, i.e., P(E  П F) =  P(E)P(F) ,  then X  and Y  are called inde­
pendent random variables.

As an extension of formula (2.7.1) we have for any ^-measurable function
h

(2.7.2)

Calculus is

Р(а < X  < b) =  p (x  =  x)•
a<x<b

E =  {w;X(w) € A}, F  =  {w; Y (ш) € В}

Proposition 2.8.1 Let X  and Y be independent random variables with den­
sity functions px (x) and pY{y)- Then the joint density function of (X,Y)  is 
given by рх ,у(х,у) = p x {x)pY(y).
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Proof: Using the independence of sets, we have1

px Y(x, у ) dxdy =  P (x < X  < x  +  dx, у < Y  < у +  dy)
=  P(x < X  < x +  dx)P(y < Y  < у +  dy)
=  px (x)dx pY(y)dy

=  Px (x )PY(y)dxdy-

Dropping the factor dxdy yields the desired result. We note that the converse 
also holds true. ■

The a-algebra generated by a random variable X  : Q —> R is the ст-algebra 
generated by the unions, intersections and complements of events of the form 
{w,X(w)  G (a, 6)}, with a < b real numbers. This will be denoted by Ax-  

Two (7-fields Q and H included in J~ are called independent if

P ( G n t f )  =  P(G)P(H),  V G e G , H e n .

The random variable X  and the ст-field Q are called independent if the 
algebras A x  and Q are independent.

2.9 Expectation

A random variable X  : Q —> R is called integrable if

j  \X(uj)\dP(u) =  I  \x\p(x) dx <  oo,
Jq J к

where p(x) denotes the probability density function of X.  The previous iden­
tity is based on changing the domain of integration from Г2 to R.

The expectation of an integrable random variable X  is defined by

E[X] =  f  X(u:)dP(u>)— f  xp(x)dx.
JCl Jr

Customarily, the expectation of X  is denoted by ц and is called the mean. In 
general, for any measurable function h : R —> R, we have

E[/i(X)] =  f  h(X(u) )  dP(oj) =  f  h(x)p(x)dx.
Jo J M

In the case of a discrete random variable X  the expectation is defined as

E[X] =  J 2 x kP ( X  =  x k). 
k> 1

1 We are using the useful approximation P(x  <  X  <  x +  dx) =  f * +dx p{u) du =  p(x)dx.
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Proposition 2.9.1 The expectation operator E is linear, i.e. for any inte- 
grable random variables X  and Y

1. E[cX] =  cE[X], Vc € K;
2. E [X + Y] =  E[X] +  Е[У].

Proof: It follows from the fact that the integral is a linear operator. ■

Proposition 2.9.2 Let X  and Y be two independent integrable random vari­
ables. Then

E[XY] =E[X]E  [У].

Proof: This is a variant of Fubini’s theorem, which in this case states that a 
double integral is a product of two simple integrals. Let px , pY > Px y  denote 
the probability densities of X , Y  and (X,Y) ,  respectively. Since X  and Y  are 
independent, by Proposition 2.8.1 we have

Е[ХУ] =  J J  xypX Y(x,y)dxdy =  j x p x (x)dx j  ypY(y)dy =  E[X]E[Y],

Definition 2.9.3 The covariance of two random variables is defined by

Cov(X,  Y)  =  E[XY] -  Е[Х]Е[У].

The variance of X  is given by

Var(X) =  Cov{X,X) .

Proposition 2.9.2 states that if X  and Y  are independent, then Cov(X, Y)  —
0. It is worth to note that the converse in not necessarily true, see Exercise 
2.9.6. However, the converse holds true if both X  and Y  are assumed normally 
distributed.

Exercise 2.9.4 Show that

(а) Cov(X,Y)  = E [ { X - lix ) ( Y - H y )}, where =E[X]  andnY =  E[Y};

(б) Var(X)  =  E[(X -  v x ) 2};

From Exercise 2.9.4 (b), we have Var(X)  >  0, so, there is a real number 
a >  0 such that Var(X) — a2. The number cr is called standard deviation.
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Exercise 2.9.5 Let p and a denote the mean and the standard deviation of 
the random variable X . Show that

E[X2] =  m2 +  cr2.

Exercise 2.9.6 Consider two random variables with the following table of 
joint probabilities:

Y\X -1 0 1
-1 1/16 3/16 1/16
0 3/16 0 3/16
1 1/16 3/16 1/16

Show the following:
(а) E[X] =  E[Y] =  E[XY\ =  0;
(б) C ov(X , Y ) =  0;
(c) P(0,0) ^  Px(0)PY(0);
(d) X  and Y are not independent.

The covariance can be standardized in the following way. Let ax  and cry be 
the standard deviations of X  and Y, respectively. The correlation coefficient 
of X  and Y  is defined as

, { Х , Г )  =  С™ ( Ш .  
axo-y

Exercise 2.9.7 (a) Prove that for any random variables A and В we have

ЩАВ}2 < E[A2]E[B2}.

(b) Use part (a) to show that for any random variables X  and Y  we have 
—1 < p(X, Y)  <1 .
(c) What can you say about the random variables X  and Y if p(X,Y)  =  I?

2.9.1 T h e  best ap p rox im ation  o f  a ran d om  variable

Let X  be a random variable. We would like to approximate X  by a single 
(nonrandom) number x. The “best” value of x is chosen in the sense of the 
“least squares” , i.e. x is picked such that the expectation of the error square 
(X  — x )2 is minimum. Denote /j =  E[X] and a2 =  Var(X).  Since

E[(X -  ж)2] =  E[X2] -  2xE[X] +  x2 
= a2 +  ц2 — 2xp +  x2 
=  a2 +  ( x -  p)2,
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the minimum is obtained for x =  ц, and in this case

minE[(X — x )2\ =  a2.
X

It follows that the mean, /x, is the best approximation of the random variable 
X  in the least squares sense.

2.9.2 Change of measure in an expectation

Let P, Q : T  —» R be two probability measures on Г2, such that there is an 
integrable random variable /  : 17 —> R, such that dQ =  fdP.  This means

Q { A ) =  [  d Q =  f  f (uj)dP(u), V i G J .
J A JA

Denote by Kp and E^ the expectations with respect to the measures P  and 
Q, respectively. Then we have

Eq [ X } =  [  X(uj )dQ(u)= [  X(u ) f (u )dP(u)  = E p [fX].
J a  Jn

Exercise 2.9.8 Let g : [0,1] -*  [0, oo) be a integrable function with

/ g(x) dx =  1.
Jo

Consider Q : б ([0 ,1]) —» R, given by Q(A)  =  / g(x)dx. Show that Q is a
J A

probability measure on (f2 =  [0,1],£?([0,1])).

2.10 Basic Distributions

We shall recall a few basic distributions, which are most often seen in appli­
cations.
Norm al distribution A random variable X  is said to have a normal distri­
bution if its probability density function is given by

P(x) -

with fj, and a > 0 constant parameters, see Fig. 2.2(a). The mean and variance 
are given by

E[X] =  ц, Var[X] =  a2.

If X  has a normal distribution with mean /i and variance o 2, we shall write

X  ~  N(n, a2).
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Exercise 2.10.1 Let ct,f3 G R. Show that if X  is normal distributed, with 
X  ~  N(fj,,a2), then Y  =  a X  +  /3 is also normal distributed, with

Y  ~  N(a^i +  (3, a 2a2).

Log-norm al distribution Let X  be normally distributed with mean /i and 
variance a2. Then the random variable Y  =  ex  is said to be log-normal 
distributed. The mean and variance of Y  are given by

E [Y] = е»+гт 
Var[Y} =  e ^ V 2 -  1).

The density function of the log-normal distributed random variable Y  is given 

by 1p{x) = ----- 7==e 2̂  , X >  0,
хау/гтт

see Fig. 2.2(b).

Definition 2.10.2 The moment generating function of a random variable X  
is the function mx(t )  =  E[e4̂ ] =  J  etxp(x)dx,  where p(x) is the probability 
density function of X , provided the integral exists.

The name comes from the fact that the nth moments of X , given by цп — 
E[Xn], are generated by the derivatives of mx(t)

dnmx (t) _  
dtn |t=o

It is worth noting the relation between the Laplace transform and the mo-roc
ment generating function, in the case x >  0, C(p(x))(t) =  / e~txp(x)dx =

Jo

Exercise 2.10.3 Find the moment generating function for the exponential 
distribution p(x) =  Ae- I \  x >  0, A > 0.

Exercise 2.10.4 Show that if X  and Y are two independent random vari­
ables, then mx+y( t )  =  fnx(t)m,Y{t).

Exercise 2.10.5 Given that the moment generating function of a normally 
distributed random variable X  ~  N(/j,,a2) is m(t) =  E[eiA] =  e^t+t a , show 
that
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Figure 2.2: (a) Normal distribution, (b) Log-normal distribution, (c) Gamma 
distributions, (d) Beta distributions.

(a) E[Yn] =  e^+n2<r2/2; where Y =  ex .

(b) Show that the mean and variance of the log-normal random variable
Y =  ex  are

E\Y] =  e^+a2/2, Var[Y] =  e2̂ 2 (e^  -  1).

Gam ma distribution A random variable X  is said to have a gamma distri­
bution with parameters a >  0, /3 > 0 if its density function is given by

xa - i e-a://3
p ( x ) =  у г (») ' x - 0'

where Г (a) denotes the gamma function

POO

Г(а) =  /  ya~1e~y dy.
Jo

It is worth noting that for a =  n, integer, we have Г(п) =  (n — 1)!. The 
gamma distribution is provided in Fig. 2.2(c). The mean and variance are 
given by

В Д  =  а/З, V ar[X] =  a/32.
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The case а =  1 is known as the exponential distribution, see Fig. 2.3(a). In 
this case

p(x) =  ~Ъе~Х̂ i x > 0.

The particular case when a =  n/2 and /3 =  2 becomes the %2 — distribution 
with n degrees of freedom. This characterizes also a sum of n independent 
standard normal distributions.
Beta distribution A random variable X  is said to have a beta distribution 
with parameters a >  0, /3 > 0 if its probability density function is of the form

p(x>= b m ) ' 0 S x S 1 '

where B(a,/3) denotes the beta function.2 See see Fig. 2.2(d) for two partic­
ular density functions. In this case

В Д  =  — Var[X} =  7------  д— — .ex +  /3 (a +  /3) (a +  /3 +  1)

Poisson distribution A discrete random variable X  is said to have a Poisson 
probability distribution if

\k
P (X  =  k) =  — e~\ k =  0 ,1 ,2 , . . . ,

with Л > 0 parameter, see Fig. 2.3(b). In this case E[X] =  Л and Var[X} =  Л. 
Pearson 5 distribution Let a, f3 >  0. A random variable X  with the density 
function I e-/3/x

P{X) =  <!Г(а) [ х / И Г » ' X - °

is said to have a Pearson 5 distribution3 with positive parameters a and /3. It 
can be shown that

Я ( в2
if a > 1 у r .„ s  I 7------ —7Г,------ гг, if a >  2E[X] =  { a — 1 ’ V a r { X ) = t  ( a - l ) 2( a - 2 ) ’

oo, otherwise, [ oo, otherwise.

2Two definition formulas for the beta functions are B(a,(3) =  and B{a.,P) =

/о2/“_1(1-г/)э_1Ф-
3The Pearson family of distributions was designed by Pearson between 1890 and 1895. 

There are several Pearson distributions, this one being distinguished by the number 5.
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A = 15, 0 < к < 30

j_L

a b

Figure 2.3: (a) Exponential distribution, (b) Poisson distribution.

The mode of this distribution is equal t o --------.
a  +  1

The Inverse Gaussian distribution Let /л, Л > 0. A random variable X  
has an inverse Gaussian distribution with parameters // and A if its density 
function is given by

We shall write X  ~  IG(ji. A). Its mean, variance and mode are given by

where the mode denotes the value xm for which p(x) is maximum, i.e., p(xo) =  
maxx p(x). This distribution will be used to model the time instance when a 
Brownian motion with drift exceeds a certain barrier for the first time.

2.11 Sums of Random Variables

Let X  be a positive random variable with probability density / .  We note first 
that for any s > 0

p(x) = (2.10.3)

POO

E[e~sX] =  /  e~sxf {x )dx  =  £( f (x) ) (s) ,  (2.11.4)
Jo

where С denotes the Laplace transform.
The following result provides the relation between the convolution and the 

probability density of a sum of two random variables.
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Theorem  2.11.1 Let X  andY be two positive, independent random variables 
with probability densities f  and g. Let h be the probability density of the sum 
X  +  Y. Then

h(t) =  ( f * 9 ) ( t ) =  [  f ( t ~ r )g ( r ) dT  =  f f (r)g( t  — t)d r.
Jo Jo

Proof: Since X  and Y  are independent, we have
E [e - S( X + Y ) ]  =  щ е - в Х |  E [e - SY ] _

Using (2.11.4) this can be written in terms of Laplace transforms as

£(h)(s) =  C(f)(s)C(g)(s).

Using Exercise 2.11.2, the density h can be written as the desired convolution 
h(t) =  ( /  *  g)(t). Л

Exercise 2.11.2 If F(s)  =  C(f(t))(s),  G(s) =  C(g(t))(s) both exist for s > 
a >  0, then

H(s) — F(s)G(s)  — C(h(t))(s),
for

4 t )  =  ( f * g ) ( t ) =  f  f  (t — т)д(т) dr =  f f {r)g( t  -  r) dr.
Jo Jo

Using the associativity of the convolution

( f * g ) * k  =  f * ( g * k )  =  f * g * k

we obtain that if / ,  g and к are the probability densities of the positive, 
independent random variables X,  Y  and Z, respectively, then /  * g * к is the 
probability density of the sum X  +  Y  +  Z. The aforementioned result can be 
easily extended to the sum of n random variables.

Exam ple 2.11.3 Consider two independent, exponentially distributed ran­
dom variables X  and Y . We shall investigate the distribution of the sum 
X  +  Y. Consider f (t )  =  g(t) =  Xe~xt in Theorem 2.11.1 and obtain the 
probability density of the sum

h(t) =  f  \е~х{-1- т)\e~Xr dr =  \2te~xt, t >  0,
Jo

which is Gamma distributed, with parameters a =  2 and /3 =  1/Л.

Exercise 2.11.4 Consider the independent, exponentially distributed random 
variables X  X\e Xlt and Y X%e X2t, with Ax A2. Show that the sum is 
distributed as

X  +  Y  ~  TAl^ - (e~A2f -  e~Xlt), t >  0.
Ax — A2
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Figure 2.4: The orthogonal projection of the random variable X  on the space 
Sg is the conditional expectation Y  =  E[X|£?].

2.12 Conditional Expectations

Let X  be a random variable on the probability space (17, J7, P), and Q be a 
гг-field contained in J~. Since X  is ^-measurable, the expectation of X , given 
the information J~ must be X  itself, a fact that can be written as E[X| J7] =  X  
(for details see Example 2.12.5).

On the other hand, the information Q does not completely determine X. 
The random variable that makes a prediction for X  based on the information 
Q is denoted by E[X|(y], and is called the conditional expectation of X  given 
Q. This is defined as the random variable Y  =  Epf|£], which is the best 
approximation of X  in the least squares sense, i.e.

E[(X -  Y)2} <  E[(X -  Z)%  (2.12.5)

for any ^-measurable random variable Z.
The set of all square integrable random variables on Г2 forms a Hilbert 

space with the inner product

( X , Y ) = E [ X Y ] ,

see Exercise 2.12.10. This defines the norm ||X||2 =  E[X2], which induces the 
distance d(X, Y) =  ||X—У ||. Denote by Sg the set of all ^-measurable random 
variables on 0. We shall show that the element of Sg that is the closest to 
X  in the aforementioned distance is the conditional expectation У =  E[X|C?], 
see Fig. 2.4. Let X±  denote the orthogonal projection of X  on the space Sg. 
This satisfies

E [ { X - X ± ) ( Z - X ± )\=0,  V Z € S g. (2.12.6)
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The Pythagorean relation

\\X -  X J 2 +  IIZ -  X x ||2 =  \\X -  Z II2, VZ G 5e 

implies the inequality

\\x - xL\\2 <\\x - z\\2, vzesg,

which is equivalent to

E[(X -  X ± )2} <  E[(X -  Z ) \  V Z e S g,

which yields X± =  E[X|C/], so the conditional expectation is the orthogonal 
projection of X  on the space Sg. The uniqueness of this projection is a con­
sequence of the Pythagorean relation. The orthogonality relation (2.12.6) can 
be written equivalently as

E[(X -  Y)U] =  0, VC/ G Sg.

Therefore, the conditional expectation Y  satisfies the identity

E[XU]=E[YU],  VU G Sg.

In particular, if we choose U =  x A, the characteristic function of a set A G Q. 
then the foregoing relation yields

J  X d P  =  J  YdP, V A e g .

We arrive at the following equivalent characterization of the conditional ex­
pectations.

The conditional expectation of X  given Q is a random variable satisfying:

1. E[X|C/] is Q-measurable;

2. f A E[X \Q] dP -  f A X  dP, VA e g .

Exercise 2.12.1 Consider the probability space (fi, J7, P), and let Q be a ст- 
field included in T . If X  is a Q-measurable random variable such that

[  X  dP =  0 V A e G ,
J a

then X  =  0 a. s.

It is worth mentioning here an equivalent famous result, which relates to 
conditional expectations:
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Theorem  2.12.2 (Radon-N ikodym ) Let (f!!,.?7, P) be a probability space 
and Q be a о -field included in T . Then for any random variable X  there is a 
Q-measurable random variable Y such that

[  X d P  = [  YdP,  V A e £ .  (2.12.7)
J A J A

Radon-Nikodym’s theorem states the existence of Y . In fact this is unique 
almost surely by the application of Exercise 2.12.1.

Example 2.12.3 Show that if Q — then E[X|(/] =  E[X],

Proof: We need to show that E[X] satisfies conditions 1 and 2. The first one 
is obviously satisfied since any constant is ^-measurable. The latter condition 
is checked on each set of Q. We have

[  X d P  =  E[X] =  E[X] [  d P =  [  E[X]dP
J n  J n  Jfl

[  X d P  =  [ e [X]dP.
J0 J0

Example 2.12.4 Show that E[E[X|C?]] =  E[X], i.e. all conditional expecta­
tions have the same mean, which is the mean of X .

Proof: Using the definition of expectation and taking A =  Г2 in the second 
relation of the aforementioned definition, yields

E[E[X|C?]] =  [  E[X\G]dP= [  XdP =  E[X],
J n  Jn

which ends the proof. ■

Example 2.12.5 The conditional expectation of X  given the total informa­
tion J- is the random variable X  itself, i.e.

E[X\T] =  X.

Proof: The random variables X  and Epfl-P] are both P-measurable (from 
the definition of the random variable). Prom the definition of the conditional 
expectation we have

f  E[X\F\dP= [  X d P , M A e F .
J a  J  a
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Exercise 2.12.1 implies that E ^ J 7] =  X  almost surely. I
General properties of the conditional expectation are stated below without 

proof. The proof involves more or less simple manipulations of integrals and 
can be taken as an exercise for the reader.

Proposition 2.12.6 Let X  andY be two random variables on the probability 
space (fi, J7, P). We have
1. Linearity:

E [aX +  bY\g] = aE[X\g\ + bE[Y\g], Va,6 € R;

2. Factoring out the measurable part:

E[XY\g\  =  XE[Y\g\

if X  is g-measurable. In particular, E[X[C7] =  X .
3. Tower property ( “the least information wins”):

E[E[X\g}\n]  =  E[E[X|H]|S] =  E [X\H ] ,  i f U  С  Q\

4- Positivity:
E[X\g\ >  0 , i f X  >  0 ;

5. Expectation of a constant is a constant:

E[c\g] =  c.

6. An independent condition drops out:

E [ X \ g } = E [ X ] ,

if X  is independent of g .

Exercise 2.12.7 Prove the property 3 (tower property) given in the previous 
proposition.

Exercise 2.12.8 Toss a fair coin 4 times. Each toss yields either H (heads) 
or T (tails) with equal probability.

(a) How many elements does the sample space fi have?
(b) Consider the events A =  {Two of the 4 tosses are H), В =  {The first 

toss is H}, and С =  {3  of the 4 tosses are H}. Compute P(A),  P(B)  and 
P(C).

(c) Compute P (A  П В ) and P (B  П С ).
(d) Are the events A and В independent?
(e) Are the events В and С independent? Find P(B\C).
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( / )  Consider the following information sets (a-algebras)

F  =  [we know the outcomes of the first two tosses}

Q =  { we know the outcomes of the tosses but not the order}.

How can you state in words the information set F  D Q ?

(g) Prove or disprove: (i) A e Q, (ii) В £ F . and (in) С € Q.

(h)Define the random variables

Show that X  is Q-measurable while Y is not Q-measurable.

(i) Find the expectations E[X], Е[У] and E[X|(?].

Exercise 2.12.9 Let X  be a random variable on the probability space (fi, T, P),

Exercise 2.12.10 Let L2(Q, J7, P) be the space of square integrable random 
variables on the probability space (fi, J7, P ). Define the following scalar product

X  =  number of H — number ofT

Y =  number ofT  before the first H.

which is independent of the a-field Q С J-. Consider the characteristic function

on L2(Q,F,P)
(X,Y)  =E[XY] .

(a) Show that L2(Q, F,  P) becomes a Hilbert space;

(b) Show that if £ is a random variable in L2(Q, F,  P)  and Q is a a-field 
contained in F , then E[£|£7] is the orthogonal projection of £ onto the subspace 
of L2 (Г2, F , P )  consisting of Q-measurable random variables.
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E\X 1

Figure 2.5: Jensen’s inequality </?(E[X]) < E[</?(X)] for a convex function (p.

2.13 Inequalities of Random Variables

This section prepares the reader for the limits of sequences of random variables 
and limits of stochastic processes. We recall first that an infinite differentiable 
function f (x) ,  has a Taylor series at a if

/ м  =  / ( » )  +  ^  (* -  “ > +  -  “ >2 +  -  ° )3 +  ■ • ■ ■

where x belongs to an interval neighborhood of a.

Exercise 2.13.1 Let f (x )  be a function that is n +  1 times differentiable on 
an interval I , containing a. Show that there is a £ G /  such that for any x £ I

f (x )  =  f(a)  +  ^ - ( x  -  a) +  ■ • • +  x -  a)n +  -  a)n+1.

We shall start with a classical inequality result regarding expectations.

Theorem  2.13.2 (Jensen’s inequality) Let <p : R —> R be a convex func­
tion and let X  be an integrable random variable on the probability space (f2, Jг, P ). 
If <p(X) is integrable, then

<p(E[X}) < E[<p{X)].

Proof: We shall assume ip twice differentiable with <p" continuous. Let ц =  
Е[Х]. Expand ip in a Taylor series about ц, see Exercise 2.13.1, and get

4>{x) =  4>(n) +  -  M) +  ^ < / ( Ш  -  м)2,
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with £ in between x and /л. Since ip is convex, ip" >  0, and hence

A x ) > <p(p) +  ¥»'(/*)(* -  /“ )>

which means the graph of tp(x) is above the tangent line at (ж, <p(x) ) . Replac­
ing x by the random variable X , and taking the expectation yields

EfcPO] > Е[р(ц) +  <f/(p)(X -  /i)] =  <p(ji) +  ч/(ц)(Е[Х] -  ц)

=  ¥>(a0 =

which proves the result. ■
Fig. 2.5 provides a graphical interpretation of Jensen’s inequality. If the 

distribution of X  is symmetric, then the distribution of <p(X) is skewed, with 
<p(E[X\) < E M * )].

It is worth noting that the inequality is reversed for ip concave. We shall 
present next a couple of applications.

A random variable X  : —> R is called square integrable if

E[X2] =  j  \X(uo)\2 dP(bj) — f  x 2p ( x ) d x <  oo.
J Я J R

Application 2.13.3 If X  is a square integrable random variable, then it is 
integrable.

Proof: Jensen’s inequality with (p(x) =  x2 becomes

E[X]2 < E[X2].

Since the right side is finite, it follows that E[X] < oo, so X  is integrable.
■

Application 2.13.4 Ifmx(t )  denotes the moment generating function of the 
random variable X  with mean ц, then

fnx{t)  >

Proof: Applying Jensen’s inequality with the convex function <p(x) =  ex 
yields

e E [ X ]  <  Щ е х у  

Substituting tX  for X  implies that

eE[fX] < E[etx \. (2.13.8)
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Using the definition of the moment generating function mx ( t ) =  E[efX] and 
that E[iX] =  £E[X] =  tfi, then (2.13.8) leads to the desired inequality. ■

The variance of a square integrable random variable X  is defined by

Var{X)  =  E[X2] - E [ X } 2.

By Application 2.13.3 we have Var(X)  >  0, so that there is a constant ax >  0, 
called standard deviation, such that

a2x =  Var(X).

Exercise 2.13.5 Prove the following identity:

Var[X] =  E [ ( X - E [ X ] ) 2].

Exercise 2.13.6 Prove that a non-constant random variable has a nonzero 
standard deviation.

Exercise 2.13.7 Prove the following extension of Jensen’s inequality: If ip is 
a convex function, then for any а -field Q С T  we have

<p(E[x\g\) < e m x )\ q ] .

Exercise 2.13.8 Show the following:
(a) |E[X]|<E[|X|];
(b) |E[X|C?]| < E[|X| |G], for any a-field Q С J7;
(c) \E[X]\r <  Е [|Л П /or r > 1;
(d) |E[X|C?]|r < E[|X|r |̂ ], for any а -field Q С F  and r >  1.

Theorem 2.13.9 (Markov’s inequality) For any A,p >  0, we have the 
following inequality:

Р ( и - , \ Х ( и ) \ > Х ) < ^ Е [ \ Х П

Proof: Let A =  {lj; |X(w)| > A}. Then

E[|X|P] =  [  \X(uu)\p d P ( u ) >  [  \X(oj)\p d P { u ) >  [  \pdP(u)
J  Q J A J A

=  Xp [  dP(u) =  ApP(A) =  ApP(|X| >  A).
J a

Dividing by \p leads to the desired result. ■
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Theorem 2.13.10 (Tchebychev’s inequality) If X  is a random variable 
with mean ц and variance a2, then

2
P(u, ; № ) - m l > A ) < ^ .

Proof: Let А =  {ш; |Af(w) — ц\ >  A}. Then

a2 =  Var(X)  =  E[(X -  p)2} =  [  (X -  /л)2 dP > f  (X -  /i)2 dP
J n  J A

>  A2 [  dP =  A2P{A) =  A2P(u;  |X(w) - ц \ >  A).
J a

Dividing by A2 leads to the desired inequality. ■
The next result deals with exponentially decreasing bounds on tail distri­

butions.

Theorem 2.13.11 (Chernoff bounds) Let X  be a random variable. Then 
for any A > 0 we have

E[etX] 
e>

1. Р { Х > \ ) < ^ ^ ,  V*>0;

TglgtXi
2. P ( X  < A) <  l At \  Vt <  0.

Proof: 1. Let t > 0 and denote Y =  etx . By Markov’s inequality

P (Y  > ext) <  Ш .
e

Then we have
~tX \  A t\P ( X  >  A) =  P(tx >  At) =  P(e > e 

=  P(Y  > ext) <
E[Y] E[etx ]

A t ~  0Xtель ел
2. The case t <  0 is similar. ■

In the following we shall present an application of the Chernoff bounds for 
the normal distributed random variables.

Let X  be a random variable normally distributed with mean /i and variance 
a2. It is known that its moment generating function is given by

m(t) =  E[et x ] =  .

Using the first Chernoff bound we obtain

P { X >  A) < =  e^ - x» +12t2,j2,\/t > 0 ,
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which implies

min[(/i — X)t +  ^ 
P ( X >  A) <  e 4>° 2

It is easy to see that the quadratic function f (t )  =  (ц — A)t +  \t2<j2 has the 

minimum value reached for t =  —- 0-  . Since t > 0, A needs to satisfy A > ti.
(J1

Then
mm \ - ц \  (A -  цУ
t>о V о-2 /  2cr2

Substituting into the previous formula, we obtain the following result:

Proposition 2.13.12 If X  is a normally distributed variable, X  N(fi ,a2), 
then for any A > fi

_ ( A - j i f  
P (X  > A) < e 2<j2 .

Exercise 2.13.13 Let X  be a Poisson random variable with mean A > 0.
(а) Show that the moment generating function of X  is m(t) =  e'^e*~'1);
(б) Use a Chemoff bound to show that

P {X  > k ) <  eA(et-1)-tfc, t >  0.

Markov’s, Tchebychev’s and Chernoff’s inequalities will be useful later 
when computing limits of random variables.

Proposition 2.13.14 Let X  be a random variable and f  and g be two func­
tions, both increasing or decreasing. Then

E[f (X)g(X)]  > E[f(X)]E[g(X)].  (2.13.9)

Proof: For any two independent random variables X  and Y . we have

[ f { . X ) - f { Y ) ) ( g { X ) - g { Y ) ) >  0.

Applying expectation yields

E[f(X)g(X)]  +  E[f(Y)g(Y)] > E[ f (X) ]E[ f (Y) ]+E[ f (Y) ]E[ f (X) ] .  

Considering Y  as an independent copy of X  we obtain 

2E[ f (X)g(X)]  > 2E[f(X)}E[g(X)}.
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Exercise 2.13.15 Show the following inequalities:
(a) E[X2] >  E[X]2;
(.b) E[X sinh(X)] > E[X]E[sinh(X)];
(c) E[X6] > E[X]E[X5];
(d) E[X6] > E[X3]2.

Exercise 2.13.16 For any n ,k > 1, show that

E[X2(n+fc+i)] > E[X2fc+1]Epf2n+1].

2.14 Limits of Sequences of Random Variables

Consider a sequence (X n)n>\ of random variables defined on the probability 
space (fi, J7, P). There are several ways of making sense of the limit expression 
X  =  lim X n. This is the subject treated in the following sections.

71—► OO

Almost Sure Limit The sequence X n converges almost surely to X , if for 
all states of the world со, except a set of probability zero, we have

lim Х п(ш) =  X (lu).
n —t o o

More precisely, this means

p (ui; lim Х п(и) =  =  1,
\ n —ю о /

and we shall write as-lim X n =  X. An important example where this type of
n—> OO

limit occurs is the Strong Law of Large Numbers:
If X n is a sequence of independent and identically distributed random vari-

X i +  --- +  X n
ables with the same mean p,, then as-lim -------------------- =  fx.n—Юо 71

This result ensures that the sample mean tends to the (unknown) popu­
lation mean p almost surely as n —> oo, a fact that makes it very useful in 
statistics.
Mean Square Limit Another possibility of convergence is to look at the 
mean square deviation of X n from X . We say that X n converges to X  in the 
mean square if

lim E[(X„ -  X ) 2] =  0.
n —> o o

More precisely, this should be interpreted as

lim [  (Хп(ш) -  X{uj))2dP(u) =  0. 
n->°° Ja

This limit will be abbreviated by ms-lim X n =  X.  The mean square conver-
n —> o o

gence is useful when defining the Ito integral.
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Proposition 2.14.1 Consider a sequence X n of random variables such that 
there is a constant к with E[Xn] —> к and Var(Xn) —> 0 as n —> oo. Show 
that ms-lim X n =  k.

n —> OO

Proof: Since we have

E[\Xn -  k\2] =  E[X2n -  2kXn +  к2] =  E[X2] -  2kE[Xn] +  k2 
=  (E[X2] -  E[Xn]2) +  (E[X„]2 -  2kE[Xn] +  к2)

=  Var(Xn) +  (E[Xn] - k ) \

the right side tends to 0 when taking the limit n —> oo. Ш

Exercise 2.14.2 Show the following relation

E[{X -  Y) 2} =  Var[X] +  Var[Y} +  (E[X] -  Е[У])2 -  2Cov(X,Y).

Exercise 2.14.3 If X n tends to X  in mean square, with E[X2] < oo, show 
that:

(a) E[Xn] —> E[X] as n —> oo;
(b) E[X2} ->• E[X2] as n -> oo;
(c) Var[Xn] —> Var[X] as n —> oo;
(d) Cov(Xn, X ) -4 Var[X] as n —>• oo.

Exercise 2.14.4 If X n tends to X  in mean square, show that E[Xn|"H] tends 
to E[X|H] in mean square.

Limit in Probability The random variable X  is the limit in probability of 
X n if for n large enough the probability of deviation from X  can be made 
smaller than any arbitrary e. More precisely, for any e > 0

lim P ( oj; \Xn(w) — X(w)| < e) =  1.
n—> OO

This can also be written as

lim P ( cj; |X„(u;) — X(w)| > e) =  0.
n—> oo 4 '

This limit is denoted by p-lim X n =  X.
n —> o o

It is worth noting that both almost certain convergence and convergence 
in mean square imply the convergence in probability.

Proposition 2.14.5 The convergence in mean square implies the convergence 
in probability.
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Proof: Let ms-lim Yn =  Y. Let e > 0 be arbitrarily fixed. Applying Markov’s
n —УОО

inequality with X  — Yn — Y, p — 2 and A =  €, yields

0 < P(\Yn - Y | > e) < ^E[\Yn -  F|2].

The right side tends to 0 as n —>• oo. Applying the Squeeze Theorem we obtain

lim P(\Yn - Y | > e) =  0,
n —> OO

which means that Yn converges stochastically to Y. I

Example 2.14.6 Let X n be a sequence of random variables such that E[|Xn|] — 
0 as n —>• oo. Prove that p-lim X n =  0.

n —*oo

Proof: Let e >  0 be arbitrarily fixed. We need to show

lim P(ui; |Xn(w)| > e) =  0. (2.14.10)
П-УОО 4 '

Prom Markov’s inequality (see Theorem 2.13.9) we have 

0<Р(и- ,\Хп(и)\>е)  <  M M .

Using the Squeeze Theorem we obtain (2.14.10). ■

Remark 2.14.7 The conclusion still holds true even in the case when there 
is a p >  0 such that E[|X„|P] —> 0 as n -> oo.

Limit in Distribution We say the sequence X n converges in distribution to 
X  if for any continuous bounded function <p(x) we have

lim Е М Х П) ] = Е И Х ) ] .
n —> OO

We make the remark that this type of limit is even weaker than the stochastic 
convergence, i.e. it is implied by it.

An application of the limit in distribution is obtained if we consider tp(x) =  
e%tx. In this case the expectation becomes the Fourier transform of the prob­
ability density

Е[уз(Х)] =  J  eltxp(x) dx =  p(t),

and it is called the characteristic function of the random variable X . It follows 
that if X n converges in distribution to X , then the characteristic function of 
X n converges to the characteristic function of X . From the properties of the
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Fourier transform, the probability density of X n approaches the probability 
density of X.

It can be shown that the convergence in distribution is equivalent to

lim Fn(x) =  F(x),
n —¥oО

whenever F  is continuous at x, where Fn and F  denote the distribution func­
tions of X n and X,  respectively. This is the reason that this convergence bears 
its name.

Exercise 2.14.8 Consider the probability space (Q,,T,P), with ft — [0,1], JF 
the cr-algebra of Borel sets, and P  the Lebesgue measure (see Example 2.3.3). 
Define the sequence X n by

_  /  0, if и  < 1/2 _  Г 1, if и <  1/2 
2n I 1, if и >  1/2, 2n+1 \ 0, if и >  1/2.

Show that X n converges in distribution, but does not converge in probability.

2.15 Properties of Mean-Square Limit

This section deals with the main properties of the mean-square limit, which 
will be useful in later applications regarding the Ito integral.

Lemma 2.15.1 If ms-lim X n =  0 and ms-lim Yn =  0, then
71—» OO 7i—» 0 0

ms-lim (X n +  Yn) — 0.
71—» OO

Proof: It follows from the inequality

(x +  y)2 < 2x2 +  2y2.

The details are left to the reader. ■

Proposition  2.15.2 If the sequences of random variables X n andYn converge 
in the mean square, then

1. ms-lim (X n +  Yn) =  ms-lim X n +  ms-lim Yn
n - + o o  n—> OO n—> OO

2. ms-lim (cXn) =  с ■ ms-lim X n, Vc € M.
71—УОО n—t OO

Proof: 1. Let ms-lim X n — X  and ms-lim Yn =  Y. Consider the sequences
71—>00 71—> 0 0

X'n =  X n — X  and Ŷ  — Yn — Y . Then ms-lim X'n =  0 and ms-lim Yl =  0. 
Applying Lemma 2.15.1 yields
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ms-lim (X'n +  Y£) =  0.
n —too

This is equivalent to
ms-lim (Xn — X  + Yn — Y) =  0,

n—>oo
which becomes

ms-lim (X n +  Yn) =  X  +  Y.
П - Ю О

2. The second relation can be proved in a similar way and is left as an exercise 
to the reader. ■

Remark 2.15.3 It is worthy to note that
ms-lim (X nYn) ф ms-lim (Xn)- ms-lim (Yn).

n—too n—► oo n-> oo
Counter-examples can be found, see Exercise 2.15.5.

Exercise 2.15.4 Use a computer algebra system to show the following: 
п0° ~2 тл/2(«)/ ^Tidx = V ' / l ~ 5_1/2;

f°° xA
{b) I  ^ T T ‘i l  =  00;

<c>fVЬ^-МёМ!)-
Exercise 2.15.5 Let X  be a random variable with the probability density func­
tion

P{X) =  r f l7 5 M 4 /5 )>  +  l ’ 1 -  °-
(a) 5/iow that E[X2] < 00 and E[X4] =  00;
(b) Construct the sequences of random variables X n =  Yn =  ^X. Show 

that ms-lim X n =  0, ms-lim Yn =  0, but ms-lim (X nYn) =  0 0 .
П—>00 n —¥ OO П—>00

2.16 Stochastic Processes

A stochastic process on the probability space (Г2, F, P) is a family of random 
variables X t parameterized by t € T, where T с R. If T is an interval we 
say that Xt is a stochastic process in continuous time. If T =  {1,2 ,3, . . .  } 
we shall say that X t is a stochastic process in discrete time. The latter case 
describes a sequence of random variables. The reader interested in these type 
of processes can consult Brzezniak and Zastawniak [9].

The aforementioned types of convergence can be easily extended to con­
tinuous time. For instance, Xt converges almost surely to X  as t —>• 00 if

p (u; lim Xt(oj) =  X(w)') — 1.
V t —► 00 j
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The evolution in time of a given state of the world и  G given by the function 
t i— > X t (cj) is called a path or realization of X t . The study of stochastic 
processes using computer simulations is based on retrieving information about 
the process X t  given a large number of its realizations.

Next we shall structure the information field F  with an order relation 
parameterized by the time t. Consider tha t all the information accumulated 
until time t is contained by the a-field Ft- This means tha t Ft contains the 
information containing events tha t have already occurred until time t, and 
which did not. Since the information is growing in time, we have

J s С J [  С J

for any s , t £ T  with s < t.  The family Ft is called a filtration.
A stochastic process X t is said to be adapted to the filtration Ft if X t is 

Ft- measurable, for any ( £  T . This means tha t the information at time t 
determines the value of the random variable X t .

E x am p le  2.16.1 Here there are a few examples o f filtrations:
1 . Ft represents the information about the evolution of a stock until time 

t, with t > 0 .
2. Ft represents the information about the evolution of a Black-Jack game 

until time t, with t > 0 .
3. Ft represents the medical information of a patient until time t.

E x am p le  2.16.2 I f  X  is a random variable, consider the conditional expec­
tation

X t = E[X\ F t}.

From the definition of conditional expectation, the random variable X t is Ft- 
measurable, and can be regarded as the measurement of X  at time t using 
the information Ft- I f  the accumulated knowledge Ft increases and eventually 
equals the cr-field F , then X  =  E[X|.F], i.e. we obtain the entire random 
variable. The process X t is adapted to Ft-

E x am p le  2.16.3 Don Joe goes to a doctor to get an estimation of how long 
he still has to live. The age at which he will pass away is a random variable, 
denoted by X .  Given his medical condition today, which is contained in Ft, 
the doctor can infer an average age, which is the average of all random in­
stances that agree with the information to date; this is given by the conditional 
expectation X t =  E[X| . The stochastic process X t is adapted to the medical 
knowledge Ft-
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We shall define next an im portant type of stochastic process.4

D efin itio n  2 .1 6 .4  A process X t, t G T , is called a martingale with respect to 
the filtration Ft i f

1. X t is integrable for each t £ T;
2 . X t is adapted to the filtration Ft,
3. X s = E[Xt \Fs], V s < t .

R em ark  2 .16 .5  The first condition states that the unconditional forecast is 
finite E[|Xt]] =  / |Xj| dP < oo. Condition 2 says tha t the value X t is known,

Jn
given the information set Ft- This can also be stated by saying tha t X t is 
JVmeasurable. The third relation asserts tha t the best forecast of unobserved 
future values is the last observation on X t.

E xam p le  2 .16 .6  Let X t denote Mr. Li Zhu’s salary after t years o f work at 
the same company. Since X t is known at time t and it is bounded above, as all 
salaries are, then the first two conditions hold. Being honest, Mr. Zhu expects 
today that his future salary will be the same as today’s, i.e. X s — E[Xt|.Fs], 
for s < t. This means that X t is a martingale.

E xerc ise  2 .1 6 .7  I f  X  is an integrable random variable on (П, F , P ), and Ft 
is a filtration. Prove that X t =  E[X |У-'t] is a martingale.

E xerc ise  2 .16 .8  Let X t and Yt be martingales with respect to the filtration 
T t . Show that for any a. b. с G К the process Zt — aXt +  bYt + с is an Ft - 
martingale.

E xerc ise  2 .16 .9  Let X t and Yt be martingales with respect to the filtration
T t .

(a) Is the process X tYt always a martingale with respect to T t ?
(b) What about the processes X ‘f  and Y 2 ?

E xerc ise  2 .16 .10  Two processes X t and Yt are called conditionally uncorre­
lated, given Ft, if

E[(Xt -  X a)(Yt -  YS)\FS] =  0, V 0 < s < t < o o .

Let X t and Yt be martingale processes. Show that the process Zt =  X tYt is 
a martingale i f  and only if  X t and Yt are conditionally uncorrelated. Assume 
that X t, Yt and Zt are integrable.

4The concept of martingale was introduced by Levy in 1934.



44 An Informal Introduction to Stochastic Calculus with Applications

In the following, if X t is a stochastic process, the minimum amount of 
information resulted from knowing the process X s until time t  is denoted by 
T t =  <t(X s; s < t) .  This is the cr-algebra generated by the events {w; X s(u) G 
(a, b)}, for any real numbers а < b and s < t.

In the case of a discrete process, the minimum amount of information 
resulted from knowing the process X k  until time n  is T n =  cr(Xk] к < n), the 
cr-algebra generated by the events {uj: X}.{lo) G (a, 6)}, for any real numbers 
а < b and к < n.

E xerc ise  2 .16 .11  Let X n, n > 0 be a sequence of integrable independent 
random variables, with E[Xn] <  oo, for all n > 0. Let So = -X”o, Sn = 
Xo +  • • • +  X n . Show the following:

(a) S n — is an Tn-martingale.
(b) I f  E[Xn] =  0 and E[X2] <  oo, Vn > 0, then S 2 — V ar(Sn) is an 

Т п-martingale.

E xerc ise  2 .16 .12  Let X n , n > 0 be a sequence of independent, integrable 
random variables such that E[X„] =  1 for n > 0. Prove that Pn — Xo ■ X \ ■ ■ ■ ■ 
X n is an F n-martingale.

E xerc ise  2 .16 .1 3  (a) Let X  be a normally distributed random variable with 
mean ц  ^  0 and variance a 2. Prove that there is a unique в ф 0 such that 
Щевх} =  1.
(b) Let (X i)i>о be a sequence of identically normally distributed random vari­
ables with mean /i ф 0 . Consider the sum Sn =  X j . Show that Zn = eeSn 
is a martingale, with 9 defined in part (a).

In section 10.1 we shall encounter several processes which are martingales.



Chapter 3

Useful S tochastic Processes

This chapter deals with the most common used stochastic processes and their 
basic properties. The two main basic processes are the Brownian motion and 
the Poisson process. The other processes described in this chapter are derived 
from the previous two. For more advanced topics on the Brownian motion, 
the reader may consult Freedman [19], Hida [22], Knight [27], Karatzas and 
Shreve [26], or Morters and Peres [34].

3.1 T he Brownian M otion

The observation first made by the botanist Robert Brown in 1827, tha t small 
pollen grains suspended in water have a very irregular and unpredictable state 
of motion, led to the definition of the Brownian motion, which is formalized 
in the following.

D efin ition  3.1.1 A Brownian motion process is a stochastic process Bt, t >
0 , which satisfies

1. The process starts at the origin, B q = 0;
2 . Bt has independent increments;
3. The process B t is continuous in t;
4■ The increments B t — B s are normally distributed with mean zero and 

variance \t — s|,
B t -  B s ~  N (0 ,11 -  s|).

The process X t — x  + B t has all the properties of a Brownian motion that 
starts at x. Condition 4 states tha t the increments of a Brownian motion are 
stationary, i.e. the distribution of Bt — B s depends only on the time interval
t — s

P {B t+s -  B s < a ) = P (B t -  B 0 < a ) = P {B t < a).

45
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It is worth noting tha t even if Bt is continuous, it is nowhere differentiable. 
From condition 4 we get tha t Bt is normally distributed with mean E[P^] =  0 
and Var[Bt} =  t

B t ~  N ( 0 , t).

This implies also tha t the second moment is E [P 2] =  t. Let 0 <  s < t. Since 
the increments are independent, we can write

E[B8B t] =  E[(Pe -  B 0)(B t -  B s) +  B 2S} =  E[Bs -  B 0]E[Bt -  B s] +  E[B2] =  s.

Consequently, B s and B t are not independent.
Condition 4 also has a physical explanation. A pollen grain suspended in 

water is kicked about by a very large number of water molecules. The influence 
of each molecule on the grain is independent of the other molecules. These 
effects are averaged out into a resultant increment of the grain coordinate. 
According to the Central Limit Theorem, this increment has to be normally 
distributed.

If the exterior stochastic activity on the pollen grain is represented at 
time t by the noise Л/j, then the cummulative effect on the grain during the 
time interval [0, t] is represented by the integral Wt =  J(| jVs ds, which is the 
Brownian motion.

There are three distinct classical constructions of the Brownian motion, 
due to Wiener [47], Kolmogorov [28] and Levy [33]. However, the existence of 
the Brownian motion process is beyond the goal of this book.

It is worth noting tha t the processes with stationary and independent 
increments form a special class of stochastic processes, called Levy processes; 
so, in particular, Brownian motions are Levy processes.

P ro p o s itio n  3 .1 .2  A Brownian motion process Bt is a martingale with re­
spect to the information set Ft =  o(B a\ s < t).

Proof: The integrability of B t follows from Jensen’s inequality

E [|P t |]2 <  E [B2\ = V ar(B t) = \t\ < oo.

Bt is obviously J-j-measurable. Let s < t  and write Bt = B s + (Bt — B s). Then

E[Bt \Fa] = E[BS + (B t -  В 8)\Г8]
=  EfPsI.F,] +  E [Bt — B S\J-5]
=  B s +  E [Bt — Ps] =  B s +  E [Bt-s  — Po] =  Psi

where we used tha t B s is P s-predictable (from where E [PS|P S] =  B s) and tha t 
the increment B t — B s is independent of previous values of B t contained in the 
information set Tt — c (P s; s < t) . Ш
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A process with similar properties as the Brownian motion was introduced 
by Wiener.

D efin itio n  3 .1 .3  A Wiener process Wt is a process adapted to a filtration J~t 
such that

1. The process starts at the origin, Wo =  0;
2 . Wt is a squared integrable J~t -martingale with

E[(Wt -  W8)2} = t - s ,  s < t ;

3. The process Wt is continuous in t.

Since Wt is a martingale, its increments satisfy

E [Wt -  Ws] = E[Wt -  W S\TS\ = E[Wt \Fs] -  =  W s -  Ws =  0,

and hence E[Wt} =  0. It is easy to show that

Var[Wt -  Ws] =  11 -  s\, Var[Wt} =  t.

E xerc ise  3 .1 .4  Show that a Brownian process B t is a Wiener process.

The only property Bt has and Wt seems not to have is tha t the increments are 
normally distributed. However, it can be shown tha t there is no distinction 
between these two processes, as the famous Levy theorem states, see section 
10.2. From now on, the notations Bt and Wt will be used interchangeably.

In fin itesim al re la tion s In stochastic calculus we often need to use infinites­
imal notation and its properties. If dWt denotes the infinitesimal increment 
of a Wiener process in the time interval dt, the aforementioned properties 
become dWt ~  N (0 ,d t), E[dWt] =  0, and E [(dWt)2] =  dt.

P ro p o s itio n  3.1.5 I f  Wt is a Brownian motion with respect to the informa­
tion set Ft, then Yt = W 2 — t is a martingale.

Proof: Yt is integrable since

Е[|У*|] < E[W2 + 1] =  2t < oo, t > 0 .

Let s < t. Using tha t the increments Wt — Ws and (Wt — W s ) 2 are independent 
of the information set T a and applying Proposition 2.12.6 yields

E [W?\7a\ = E[(Ws + W t - W s)2 \Ts]
= E[W 2 + 2Ws( W t - W s) + ( W t - W s)2 \Ts\
= E[W 2 \TS] +  E[2Wa(Wt -  W 8)\Fa] +  E [(Wt -  W s)2 \TS]

= W 2 + 2WsE[Wt -  WS\TS] +  E [(Wt -  Ws)2 \TS] 
= W 2 +  2WsE[Wt -  Ws] +  E [(Wt -  W s)2}

= W 2 + t - s ,
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and hence E [W? — t\T 4] = W 2 — s, for s < t. U

The following result states the memoryless property of Brownian motion1
Wt .

P r o p o s itio n  3 .1 .6  The conditional distribution of Wt+S, given the present 
Wt and the past W u, 0 < и < t, depends only on the present.

Proof: Using the independent increment assumption, we have

P (W t+s < c\Wt =  x, Wu, 0 < u < t )

=  P (W t+s - W t < c -  x\W t =  x, Wu, 0 < и < t)

=  P{W t+s -  Wt < с -  x)

= PiWt+s < c\w t = x).

Since Wt is normally distributed with mean 0 and variance t. its density 
function is

Мх) = ж ^ -
Then its distribution function is

Ft(x) = P (W t < x)  =  ^  f  e~^t du.
■у27Гt J —oo

The probability tha t Wt is between the values a and b is given by 

P(a < Wt < b) =  ■■ ■ f  e_ 2t  du, a < b.
V 27ft J a

Even if the increments of a Brownian motion are independent, their values 
are still correlated.

P ro p o s itio n  3 .1 .7  Let 0 < s < t. Then

1. Cov(W s, Wt ) — s;

2. Corr(W s, Wt) =

1 These type of processes are called Markov processes.
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Proof: 1. Using the properties of covariance

Cov(W s, Wt) = Cov{Ws,W s + Wt -  W s)
= Cov(W s, W s) +  Cov{Wa, Wt -  W a)
= Var (Ws) +  E [Ws(Wt -  W s)] -  E[We]E[Wt -  W 8]
=  а +  E[Ws]E[Wt -  Ws]
= s,

since E[WS] =  0 .

We can also arrive at the same result starting from the formula

Cov(W s, Wt) =  E [W8W t] -  E[We]E[Wt] =  E[WaW t].

Using tha t conditional expectations have the same expectation, factoring out
the predictable part, and using tha t W t is a martingale, we have

E [WsWt] = E[E[WsWt \T s]]^E [W sE[Wt \Ts]]
= E[WSWS] =  E[V^S2] =  s,

so Cov{Ws,W t) = s.

2. The correlation formula yields

c^(w„wt) = . _ /г

R e m a rk  3.1.8 Removing the order relation between s and t, the previous 
relations can also be stated as

Cov(W a,W t) =  min{s,f}; 

Corr(Wa,Wt) =
mm {s,*}
max{s, t}

The following exercises state the translation and the scaling invariance 
properties of the Brownian motion.

E xerc ise  3.1.9 For any to > 0, show that the process X t =  Wt+t0 — Wt0 is a 
Brownian motion. It can also be stated that the Brownian motion is translation 
invariant.
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E xerc ise  3 .1 .10  For any A > 0, show that the process X t = ~hfW\t is a
v A

Brownian motion. This says that the Brownian motion is invariant by scaling.

E xerc ise  3 .1 .11  Let 0 < s < t < u. Show the following multiplicative prop­
erty

C orr(W s, Wt)Corr(W t , Wu) =  C orr(W s, W u).

E xerc ise  3 .1 .12  Find the expectations Е[И^3] and E[W^].

E xerc ise  3 .1 .1 3  (a) Use the martingale property o fW t2 — t to find

E [ ( W ? - t ) ( W? - s ) } - ,

(6) Evaluate E[Wt2W 2];
(c) Compute Cov(W ?, Wa );
(d) Find C orr(W t2,W ?).

E xerc ise  3 .1 .1 4  Consider the process Yt = t W i ,  t > 0, and define Yo =  0.
t

(a) Find the distribution of Yt]
(b) Find the probability density o fY t ;
(c) Find Cov(Ys,Yt);
(d) Find E[Yt — У5] and Var{Yt ~  У ) f ° r s < t.

It is worth noting tha t the process Yt = t W i , t > 0 with Yo =  0 is a Browniant
motion, see Exercise 10.2.10 .

E xerc ise  3 .1 .15  The process X t = \Wt\ is called a Brownian motion reflected 
at the origin. Show that
(a) E[|Wt |] =
Оb) Var(\Wt \) =  (1 -  l ) t .

E xerc ise  3 .1 .1 6  Let 0 < s < t .  Find E[W 2|.F,;].

E xerc ise  3 .1 .1 7  Let 0 < s < t. Show that
(a) E[Wt3 \Ts] =  3(t -  s)W s + W ,s3;
(b) E[Wt4 \Ts] = 3(t -  s )2 +  6(t -  s)Wg +  Wg.

г rl
E xerc ise  3 .1 .1 8  Show that E [  WudulTs = { t - s ) W s.

JS J

E x erc ise  3.1 .19 Show that the process

X t = w f  -  3 [  Ws ds
Jo

is a m artingale with respect to the inform ation set Ft =  (r{Ws; s <  t}.
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Figure 3.1: (a) Three simulations of the Broumian motion W t. (b) Two sim­
ulations of the exponential Brownian motion eWt.

E xerc ise  3 .1 .20  Show that the following processes are Brownian motions
(a) X t = Wt  — WT- t ,  0 < t < T ;
(b) Yt = - W t , t  > 0.

E xerc ise  3 .1 .21  Let Wt and Wt be two independent Brownian motions and 
p be a constant with \p\ <  1.

(a) Show that the process X t =  pWt +  \ / l  — p2 Wt is continuous and has 
the distribution N(0, t ) ;

(b) Is X t  a Brownian motion?

E xerc ise  3 .1 .22  Let Y  be a random variable distributed as N (0,1). Consider 
the process X t =  \ / t Y . Is X t a Brownian motion?

3.2 G eom etric Brownian M otion

The geometric Brownian motion with drift p  and volatility a is the process

X t -  t  >  o.

In the standard case, when ц = 0 and < 7 = 1 .  the process becomes X t = 
gWt-t/2^  ̂ >  (j. This driftless process is always a martingale, see Exercise 3.2.4. 

The following result will be useful later in the chapter.

L em m a 3 .2 .1  Е[еаИ/‘] =  ea2t^2, for a  > 0.

Proof: Using the definition of expectation
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where we have used the integral formula

/ '
r ax +bxdx =  xl - e K ,  a >  0

with a = 7̂  and b = a.

P r o p o s itio n  3 .2 .2  The exponential Brownian motion X t =  eWt is log-normally 
distributed with mean e*/2 and variance e2t — et .

Proof: Since Wt is normally distributed, then X t = eWt will have a log-normal 
distribution. Using Lemma 3.2.1 we have

E[Xt] =  E[eWt] =  et/2 

E[X?} = E[e2Wt] = e2t,

and hence the variance is

Var[X t] =  Щ Х 2} -  E[Xt]2 = e2t -  [et/2 ) 2 =  e2t -  el.

A  few simulations of the process Xt  are contained in Fig. 3.1(b).
The distribution function of X t =  e * can be obtained by reducing it to 

the distribution function of a Brownian motion as in the following.

FXt (x ) =  P ( X t < x )  = P (eWt < x)
=  P (W t < In x) = Fw (\nx)

1
/_

W t  '
lnx 2̂

e~ du.\/2ttt J-c
The density function of the geometric Brownian motion Xt  = eWt is given by

_ L =e-(\nX)*/(21)} i f x > 0 !  
x \ f 2-nt

0 , elsewhere.

E xerc ise  3 .2 .3  Show that

E [ e ^ - ^ ]  =  e ^ ,  s < t .
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W.-W-2 1 w„-w.S3 2

4 , w4 -w4*2 *»

Figure 3.2: To be used in the proof of formula (3.3.1); the area of the blocks 
can be counted in two equivalent ways, horizontally and vertically.

E xerc ise  3 .2 .4  Let X t =  eWt.
(a) Show that X t is not a martingale.
(b) Show that e~2 X t is a martingale.
(c) Show that for any constant с € R, the process Yt = ecWt~ 2°2t is a 

martingale.

E xercise  3 .2 .5  I f  X t = eWt, find Cov(Xs, X t )
(a) by direct computation;
(b) by using Exercise 3.2.4 (b).

E xerc ise  3 .2 .6  Show that

E\e2W?] = f  ( 1 - 4*)-1/2> 0 < * < l / 4  
\  oo, otherwise.

3.3 Integrated Brownian M otion

The stochastic process

Zt — [  Ws ds, t > 0
Jo

is called the integrated Brownian motion. Obviously, Zq =  0.
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Let 0 =  so < si < • • ■ < Sfc < ■ sn = t, with s^ =  Then Zt can be 
written as a limit of Riemann sums

W , , +  • • • +  Ws„
Zt =  lim V  Ws, As =  t lim

П.—ЬПС) * J  n .—V oon —У oc *— '  п —У ОС Л
k=1

where As =  Sk+i — s^ =  К  Since WSk are not independent, we first need 
to transform the previous expression into a sum of independent normally dis­
tributed random variables. A straightforward computation shows that

Wai + ■ ■ • +  
=  n(W ai -  Жо) +  (n -  1 )(W S2 - W Sl) + --- + (WSn-  W s ^ )
= X 1 + X 2 + --- + X n. (3.3.1)

This formula becomes clear if one sums the area of the blocks in Fig. 3.2 
horizontally and then vertically. Since the increments of a Brownian motion 
are independent and normally distributed, we have

X i  ~  N  (0, n 2As)
X 2 ~  iV(0, (n — l ) 2 As)
X 3 ~  N ( 0, (n — 2)2As)

X n ~  iV(0, A s).

Recall now the following well known theorem on the addition formula for 
Gaussian random variables.

T h eo rem  3 .3 .1  I f  X j  are independent random variables normally distributed 
with mean fij and variance c 2, then the sum X \  +  • • • +  X n is also normally 
distributed with mean Hi + ••• + fin and variance +  • • • +  cr2.

Then

X l + . . . + X „ ^ iV(0 ,(1 + 2 4 3 4 - W ) A , ) = Jv ( 0 , "(" +1>6(2n +  1)AS) ,

with As =  —. Using (3.3.1) yields

WSl +- - -  +  WSn ^  N  /  (n +  l)(2w +  l ) f3\ 
n V 6n z )

“Taking the limit” with n  oo, we get

13>
Ю -
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P r o p o sitio n  3 .3 .2  The integrated Brownian motion Zt has a normal distri­
bution with mean 0 and variance t3/3.

R em ark  3 .3 .3  The aforementioned limit was taken heuristically, without 
specifying the type of the convergence. In order to make this work, the fol­
lowing result is usually used:

If X n is a sequence of normal random variables tha t converges in mean 
square to X ,  then the limit X  is normally distributed, with E[X„] —> E[X] 
and V a r ( Xn ) —»• Var(X) ,  as n —> oo.

The mean and the variance can also be computed in a direct way as follows. 
By Fubini’s theorem we have

E [Zt] = E [ f  Ws ds}= f  [  Ws ds dP  
Jo J к Jo

=  [  [  Ws d P d s =  [  E[WS]ds =  0,
Jo Jr Jo

since E[VFS] =  0. Then the variance is given by

Var[Zt] = E[Zt2] -  E[Zt]2 =  E [Zf

= E [  Wu d u ■ [  Wv dv] = E [  f  f
Jo Jo -I '-Jo Jo

П Е [WuW v]dudv=  [ f
J  J[ 0,i

WUWV dudv 

min{u, v} dudv

/ /  min{u, v} dudv +  / /  m in{u,v}dudv,  (3.3.2)
J  JD, J  JDi' D \ J J D 2

where

D\ = {(u, v); и > v, 0 < и < t},  I ?2 =  {(u, v); и < v, 0 < и < t}. 

The first integral can be evaluated using Fubini’s theorem

/ /  min{u,v}dudv  =  / /  v dudv
J  JDi J  JDi

Similarly, the latter integral is equal to

min{u,v} dudv = —.
t3

d 2
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Substituting in (3.3.2) yields

t3 t3 t3 Var[Zt} = -  + -  =
1 J 6 6 3

For another computation of the variance of Z t , see Exercise 5.6.2.

E x erc ise  3 .3 .4  (a) Prove that the moment generating function of Zt is given 
by

m(u)  = eb

(b) Use the first part to find the mean and variance of Zt-

-  p u2t3 / 6

E xerc ise  3.3.5 Let s < t .  Show that the covariance of the integrated Brown­
ian motion is given by

C o v { z s, Z ^ j  =  s 2 ( | -  0 ,  s < t .

E xerc ise  3.3.6 Show that
(a) Cov(Zt , Z t — Zt-h)  = \ t 2h-\- o(h), where o(h) denotes a quantity such 

that lim/j^o o(h)/h = 0 ;

(b) C ov(Zt ,W t) = j .

E xerc ise  3.3 .7  Show that

E [e W 3+ W u ] — e min{s,u}

E xerc ise  3.3.8 Consider the process X t =  / eWa ds.
Jo

(a) Find the mean of Xt;
(b) Find the variance of X t .

In the next exercises Ft denotes the сг-field generated by the Brownian 
motion Wt-

E xerc ise  3.3.9 Consider the process Z t=  Wu du, t > 0.
Jo

(а) Show that =  Zt +  W t(T — t), for any t <  T;
(б) Prove that the process Mt =  Zt — tW t is an Ft-martingale.

E xerc ise  3 .3 .10 Let Yt =  / W,, du, t >  0.
rT

= f w l d u ,  
Jo

(a) Show that E ' J  W 2 ds\Ft] = W 2(T - t )  + i ( T  -  t )2, for any t < T;

(b) Prove that the process Mt = Yt — tW 2 + t /2  is an Ft-martingale.
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Figure 3.3: (a) Brownian bridge pinned down at 0 and 1. (b) Brownian motion 
with drift X t =  [it +  Wt, with positive drift ц > 0.

3.4 E xponential Integrated Brownian M otion

If Z t =  / 0 Ws ds denotes the integrated Brownian motion, the process

Vt

is called exponential integrated Brownian motion. The process starts at Vo =  
e° =  1. Since Zt is normally distributed, then Vt is log-normally distributed. 
We compute the mean and the variance in a direct way. Using Exercises 3.2.5 
and 3.3.4 we have

E [Vt\ = E[eZt] = m (l) =  eT  

E[Vt2} = E[e2Zt) =  m(2) =  = e ^

Var(Vt) = E[V2} - E [ V t}2 

Cov{Vs, Vt) = e l-

e з t±  e з

E xerc ise  3.4.1 Show that EfVrl^t] =  Vte^T з 1 for t < T.

3.5 Brownian Bridge

The process X t = Wt — tW \ is called the Brownian bridge fixed at both 0 and
1, see Fig. 3.3(a). Since we can also write

X t = Wt -  twt -  tWx + twt
=  ( l - t ) ( W t - W o ) - t ( W l - W t),

using that the increments Wt — Wq and W\ — Wt are independent and normally 
distributed, with

Wt -  W0 ~  N (0, t), W i -  Wt ~  N (0,1  -  t),
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it follows tha t X t is normally distributed with

E[Xt] = ( l - t ) E [ { W t - W o ) ] - m [ { W 1 - W t)} = 0 
Var[X t] =  (1 -  t )2Var[{Wt -  W0)\ + t 2Var[(Wx -  Wt)\

= ( l - t ) 2{ t - 0 ) + t 2( l - t )

This can also be stated by saying tha t the Brownian bridge tied at 0 and 1 is 
a Gaussian process with mean 0 and variance — so X,  N ( 0 , t ( l - t ) ) .

E xerc ise  3.5.1 Let X t  = Wt — tW \, 0 < t < 1 be a Brownian bridge fixed at
0 and 1. Let Yt =  X 2. Show that Yq = Yi =  0 and find  Е[Уг] and Var(Yt).

3.6 Brow nian M otion  w ith  D rift

The process Yt =  [it +  Wt, t > 0, is called Brownian motion with drift, see 
Fig. 3.3(b). The process Yt tends to drift off at a rate [i. It starts at Yq =  0 
and it is a Gaussian process with mean

E[Yt] = n t + E[W(] =  nt

and variance
V ar\Yt] = Var[fit +  Wt] =  V  ar\W t] — t.

E xerc ise  3.6.1 Find the distribution and the density functions of the process
Yt .

3.7 B essel P rocess

This section deals with the process satisfied by the Euclidean distance from 
the origin to a particle following a Brownian motion in Mn. More precisely, if 
Wi(t),  • • • , Wn(t) are independent Brownian motions, consider the n-dimensional 
Brownian motion W(t)  =  (W\(t),  ■ ■ • , Wn(t)), n  > 2. The process

Rt = d i s t (0 , W( t ) )  -  \ / W i ( t ) 2 + ■■■+ Wn(t ) 2

is called the n-dimensional Bessel process, see Fig. 3.4.

The probability density of this process is given by the following result.

P ro p o s itio n  3.7.1 The probability density function of Rt, t > 0 is given by
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Figure 3.4: The Bessel process R t =  |W (i)| for n  =  2.

with

p t ( p )  =
\2t r n T(n/2) РП le P>°>-

0 ,

(l| — 1)! for n even;

— !)(§  — 2) • • • f or n °dd-

Proof: Since the Brownian motions W\[ t ) , . . . ,  Wn(t) are independent, their 
joint density function is

f w , ...w„ (x ) = fw, (x ) • • ‘ fw„. (ж) =  7»~ L /o  е -(ж?+- +:с")/(2^ , t > 0 .(2n t ) n/ 2

In the next computation we shall use the following formula of integration 
tha t follows from the use of polar coordinates

[  f ( x ) d x  = cr(S"_1) [  rn~1g(r) dr, (3.7.3)
J{\x\<p} Jo

where f ( x )  =  д(|ж|) is a function on R71 with spherical symmetry, and where
2W 2

Г(п/2)
is the area of the (n — l)-dimensional sphere in M” . Let
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p > 0. The distribution function of R,L is

Fr (p) =  P (R t < P ) =  [  fw v -wn (x ) dxi ’ ' '  dxr

= \  — V -7o е- <х?+- +*»)/(!й) dxi • • • dxn
Л ? + - + Х “ < Р Я ( 2 7 r t ) n /

=  f PrnA  [  1 -- e—(*?+-+^)/(2t) ^  dr
Jo I 7s(o,i) (27Tf)n/2 у

n - l \  rpg{Sn~l ) 
(2n t ) n/ 2

Г г ""1
Jo

-r 2/ m d r .

Differentiating yields

d ^ ( S " - 1 )  n - 1p e at

(2£)та/2Г(п/2)
pB 2t, p >  0 , t  >  0.

It is worth noting tha t in the 2-dimensional case the aforementioned density 
becomes a particular case of a Weibull distribution with parameters m  =  2 
and a  =  21, called Wald’s distribution

1 _=£Pt(x) = - x e  21 , x >  0 ,t > 0.

E xerc ise  3 .7 .2  £ef -P(i?t <  t) be the probability of a 2-dimensional Brownian 
motion being inside of the disk D(0,p) at time t  > 0. Show that

Pi 
21

E xerc ise  3 .7 .3  Let Rt be a 2-dimensional Bessel process. Show that
(a) E[/?f] =  yj2irt/2;
(Ib) Var (Rt ) =  2 t ( l - f ) .

R
E xerc ise  3 .7 .4  Lef Xt  =  — , i >  0, where Rt is a 2-dimensional Bessel 
process. Show that X t —> 0 os f -> oo in mean square.



Useful Stochastic Processes 6 1

3.8 The P oisson Process

A Poisson process describes the number of occurrences of a certain event before 
time t, such as: the number of electrons arriving at an anode until time t\ the 
number of cars arriving at a gas station until time t; the number of phone calls 
received on a certain day until time t; the number of visitors entering a museum 
on a certain day until time the number of earthquakes tha t occurred in Chile 
during the time interval [0 , t]; the number of shocks in the stock market from 
the beginning of the year until time t; the number of twisters tha t might hit 
Alabama from the beginning of the century until time t.

The definition of a Poisson process is stated more precisely in the following. 
Its graph looks like a stair-type function with unit jumps, see Fig. 3.5.

D efin ition  3.8.1 A Poisson process is a stochastic process N t, t > 0, which 
satisfies

1. The process starts at the origin, N q =  0;
2 . Nt has independent increments;
3. The process Nt is right continuous in t, with left hand limits;
4■ The increments Nt — N s, with 0 < s < t, have a Poisson distribution 

with parameter A(t — s), i.e.

P ( N t — N s = k) =  AV ^ .

It can be shown tha t condition 4 in the previous definition can be replaced by 
the following two conditions:

P ( N t - N a = 1) =  A(£ -  a) +  o(t -  s) (3.8.4)
P{Nt - N s > 2) =  o ( t - s ) ,  (3.8.5)

where o(h) denotes a quantity such tha t l im ^ o  o(h)/h = 0. Then the prob­
ability tha t a jump of size 1 occurs in the infinitesimal interval dt is equal to 
A dt, and the probability tha t at least 2 events occur in the same small interval 
is zero. This implies that the random variable dNt  may take only two values,
0 and 1, and hence satisfies

P(dNt = 1) =  A dt (3.8.6)
P(dNt = 0) =  1 - X d t .  (3.8.7)

E xerc ise  3.8.2 Show that i f  condition 4 is satisfied, then conditions (3.8.4) 
and (3.8.5) hold.
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Figure 3.5: The Poisson process Nt-

E xerc ise  3 .8 .3  Which of the following expressions are o(h) ?
(a) f ( h ) =  3h2 + h;
(b) f ( h )  = V h  +  5;
(c) f (h)  = h In |/г|;
(d) f (h)  = heh.

Condition 4 also states tha t Nt has stationary increments. The fact that 
Nt — N s is stationary can be stated as

P (N t+s — N s < n )  = P ( N t — N q < n) = P ( N t < n )  = J 2
fc=0

From condition 4 we get the mean and variance of increments

E [Nt -  N s] = A(t -  s), Var[Nt -  N s\ = A(t -  s ).

In particular, the random variable Nt is Poisson distributed with E [Nt\ =  At 
and Var[Nt\ =  Xt. The parameter A is called the rate of the process. This 
means tha t the events occur at the constant rate A, with A > 0.

Since the increments are independent, we have for 0 <  s < t

E[AyV*] =  E[(iVs — No)(Nt — N s) +  N 2]
=  E[iVs -  iVo]E[iVj -  N s\ +  E [N2]
= Xs ■ X(t -  s) +  (Far[iVs] +  E[iVs]2)
— Л st  H- Лs. (3.8.8)
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As a consequence we have the following result:

P ro p o s itio n  3.8.4 Let 0 < s < t. Then
1. Cov(Ns, N t ) = As;

Corr(Ns, Nt)  =

Proof: 1. Using (3.8.8) we have

Cov(Ns, N t ) = E[NaN t] -  E[Na]E[Nt]
=  A 2st  +  As — XsXt 
= As.

2. Using the formula for the correlation yields

n  (лт лт \ _ Cov(Ns, N t ) _  As _  [s
ОГ̂  S! (Var[Ns]Var[Nt] y / 2 (AsAi)1/ 2 \  t

■
It worth noting the similarity with Proposition 3.1.7.

P ro p o s itio n  3.8.5 Let Nt be T f  adapted. Then the process M t = N t — Xt is 
an Tt-martingale.

Proof: Let s < t and write Nt = N s + (Nt — N s). Then

E[Nt \Ts] = E[Ns + (Nt - N s)\Ts]
= E[iVs |7-s]+E[JVf - iV s |^ ]
=  N s + E[Nt -  N s]
— N s +  A (t — s ),

where we used tha t N s is J^-measurable (and hence Е[ХЧ[J 7,] — N s) and 
tha t the increment N t — N s is independent of previous values of N s and the 
information set T s. Subtracting Xt yields

E [Nt -  X t\?a] = N S -  As,

or E[Mt|J-"s] =  M s. Since it is obvious tha t M t is integrable and J^-adapted, 
it follows tha t Mt is a martingale. ■

It is worth noting tha t the Poisson process N t is not a martingale. The 
martingale process Mt =  Nt — Xt is called the compensated Poisson process.

E xerc ise  3.8.6 Compute E[iV2|̂ -"s] for s < t. Is the process N 2 an J-s- 
martingale ?
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E xerc ise  3 .8 .7  (a) Show that the moment generating function of the random 
variable N t is

(ib) Deduce the expressions for the first few moments

E[iVt] =  Xt
E[iVt2] =  A 2t2 +  Xt
E[iV3] =  X3 t3 + 3X2t 2 + Xt
E [Nf] = X4t* + 6X3t3 + 7X2t 2 + Xt.

(c) Show that the first few central moments are given by

E[Nt - X t ]  =  0
E[(iV4 - A i ) 2] =  Xt
E[(Nt — Ai)3] =  Xt
E[(iVf — Ai)4] =  3X2t 2 + Xt.

E xerc ise  3 .8 .8  Find the mean and variance of the process X t = eNt

E xerc ise  3 .8 .9  (a) Show that the moment generating function of the random 
variable Mt is

(6) Let s < t. Verify that 

E [Mt - M s\ = 0, 
E[(Mt -  M s)2] = X(t — s), 
E [(Mt - M s)3] = X ( t - s ) ,  
E [(Mt - M s)4} = X ( t - s )  + 3X2( t - s ) 2.

E x erc ise  3.8.10 Let s < t .  Show that

Var[{Mt - M s)2} =  X ( t -  s) + 2X2{ t -  s)2.

3.9 Interarrival T im es

For each state of the world, oj, the path t —> Nt(oo) is a step function that 
exhibits unit jumps. Each jum p in the path corresponds to an occurrence of 
a new event. Let T\ be the random variable which describes the time of the 
1st jump. Let be the time between the 1st jum p and the second one. In 
general, denote by Tn the time elapsed between the (n — l) th  and n th  jumps. 
The random variables Tn are called interarrival times.
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P ro p o s itio n  3 .9 .1  The random variables Tn are independent and exponen­
tially distributed with mean E[Tn] =  1/A.

Proof: We start by noticing tha t the events {T\ > t} and {N t =  0} are the 
same, since both describe the situation that no events occurred until time t. 
Then

P{T\ > t)  = P ( N t = 0) =  P ( N t -  N 0 = 0) =  e~Xt, 

and hence the distribution function of T\ is

FTi (t) = P{Ti < t)  = 1 -  P(Ti > t)  =  1 -  e~xt.

Differentiating yields the density function

U,(t)  =  j t FT,(t) =  \ e - u .

It follows tha t T\ is has an exponential distribution, with E[7\] =  1/A.
In order to show tha t the random variables T\ and T2 are independent, it 
suffices to show that

P (T 2 < t )  = P(T2 < t\Tx = s ),

i.e. the distribution function of T2 is independent of the values of T\. We note 
first tha t from the independent increments property

P ( 0 jumps in (s, s + t], 1 jum p in (0, s]) =  P (N s+t -  N s = 0, N s -  N 0 =  1)
=  P (N s+t - N s =  0)P(NS - N 0 = l)
= P ( 0 jumps in (s, s + t ] )P ( l  jump in (0 , s]).

Then the conditional distribution of T2 is

F (t|e) =  Р (Г2 < t\Ti = s )  = 1 -  P(T 2 > t|T i =  s)
_  P(T 2 > t,T i =  s)

P(Ti = s)
P ( 0 jumps in (s , s +  t], 1 jum p in (0, s])

1 P{Ti =  s)
P (0  jumps in (s, s +  ^ ])P (l jum p in (0, s])

P ( l  jum p in (0, s])
=  1 — P (0 jumps in (s, s +  i])

=  1 -  P (N s+t -  N s = 0) =  1 -  e~xt,

which is independent of s. Then T2 is independent of T\ and exponentially 
distributed. A similar argument for any Tn leads to the desired result.
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t n - i g - A t

3.10 W aiting T im es

The random variable Sn =  T\ + T i +  • • • +  Tn is called the waiting time until 
the nth jump. The event {Sn < t} means tha t there are n  jum ps tha t occurred 
before or at time t, i.e. there are at least n  events tha t happened up to time t; 
the event is equal to {N t > n }. Hence the distribution function of Sn is given 
by

00 (Xt,)k
FSn(t) -  P( Sn < t )  =  P ( N t > n )  = e - At ^

k= n

Differentiating we obtain the density function of the waiting time Sn

~  dt Sn^  ~  [n -  1)!

Writing

/S„W  =

it turns out tha t Sn has a gamma distribution with parameters a  =  n  and 
/3 = 1/A. It follows that

E[5„] =  p  Var[Sn} = ~

The relation lim Е[5„] =  00 states tha t the expectation of the waiting time
n —*00

is unbounded as n —> 00.

d \ e ~ Xt( \ t ) n~l
E xerc ise  3 .10 .1  Prove that ~rFsn(t) = — 7-------r;----dt yn — lj!

E xerc ise  3 .10 .2  Using that the interarrival times T \,T 2, ■ ■ ■ are independent 
and exponentially distributed, compute directly the mean Е[£п] and variance
V  ar(Sn).

3.11 T he Integrated Poisson P rocess

The function и —> N u is continuous with the exception of a set of countable 
jum ps of size 1. It is known tha t such functions are Riemann integrable, so it 
makes sense to define the process

Ut = [  N u du ,
Jo

called the integrated Poisson process. The next result provides a relation 
between the process Ut and the partial sum of the waiting times Sk-
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N,

5

3

2

Figure 3.6: The Poisson process Nt and the waiting times S i, S2, ■ ■ ■ Sn . The 
area of the shaded rectangle is n(Sn+i — t).

P ro p o s itio n  3.11.1 The integrated Poisson process can be expressed as

Nt

Ut = t N t - J 2  S k .
k= 1

Let N t = n. Since N u is equal to к between the waiting times Sk and Sfc+i, 
the process Ut, which is equal to the area of the subgraph of N u between 0 
and t, can be expressed as

Ut — f  N u du — 1 • (S2 — S\)  +  2 • (S3 — S 2) 4- • ■ • +  n (5n_)_i — Sn) — n(Sn+i — t). 
Jo

Since Sn < t < Sn+1, the difference of the last two terms represents the area 
of the last rectangle, which has the length t — Sn and the height n. Using 
associativity, a computation yields

1 • (52 — Si) +  2 • (S3 — S2) +  • • • +  n(S„+i — S n) =  n S n+1 — (Si +  S2 +  • • • +  Sn).

Substituting in the aforementioned relation, we get

Ut =  nSn+i — (Si +  S2 +  • • • +  Sn) — n(Sn+1 — t )

=  nt  — (Si +  S2 +  • ■ • +  Sn)

Nt

= t N t — X  Sfc, 
fc=i
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where we replaced n  by N t .

The conditional distribution of the waiting times is provided by the fol­
lowing useful result.

T h e o re m  3.11.2 Given N t = n, the waiting times S2, • • • ,S n have the 
jo in t density function given by

л !
f  (s 1, S2, , Sfi) 5 0 <  Si < S2 ^  ‘ ^  Sn <1 t.

tn

This is the same as the density of an ordered sample of size n  from a uni­
form distribution on the interval (0,t). A “naive” explanation of this re­
sult is as follows. If we know tha t there will be exactly n  events during the 
time interval (0 ,<), since the events can occur at any time, each of them can 
be considered uniformly distributed, with the density f ( s k) =  l / t .  Since it 
makes sense to consider the events independent, taking into consideration all 
n! possible permutations, the joint density function becomes / ( s i , - -  - , sn) =

n \ f ( Sl ) . . . f ( Sn) = £ .

E xerc ise  3 .11.3 Find the following means
(a) E[Ut].

Nt
(b) e [ £ s * ] .

k= 1

E x erc ise  3 .11.4 Show that
(a) Si +  52 H-----+ Sn = nT\ +  (n — 1)T2 +  • • ■ 2Tn_i +  Tn;

n{n + 1)
(Ь) Е [ ^ З Д  =  п 

k=1 2Л

(с) E [ В д  =  п]

At3
E x erc ise  3.11.5 Show that Var(U t) =  — .

3

E x erc ise  3 .11.6  Can you apply a similar proof as in Proposition 3.3.2 to 
show that the integrated Poisson process Ut is also a Poisson process?

E x erc ise  3 .11 .7  Let Y  : -> N be a discrete random variable. Show that for 
any random variable X  we have

Е[Х] =  £ Е [ * |  Y  = y}P(Y = y). 
y> 0
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E xerc ise  3.11.8 Use Exercise 3.11.7 to solve Exercise 3.11.3 (b). 

E xerc ise  3.11.9 (a) Let Tk be the kth interarrival time. Show that

E[e -0-Tfe I _ A
A +  о ’

(b) Let n — Nt- Show that

Ut = n t — [nTi +  (n — 1 )T2 +

(c) Find the conditional expectation

a  > 0.

+  2Tn_i +  Tn\.

E 0-°u t N t = n

(Hint: I f  we know that there are exactly n jumps in the interval [0, T], it makes 
sense to consider the arrival time of the jumps Tt independent and uniformly 
distributed on [0, T]).
(d) Find the expectation

E -aUt

3.12 Subm artingales

A stochastic process X t  on the probability space (17, T , P ) is called a sub­
martingale with respect to the filtration Tt if:

(a) fQ |X t dP < oo {Xt integrable);

(b) X t is known if T t is given (X t is adaptable to Tt)',

(c) E[Xt+s|J-f] >  Xt , V t , s  > 0 (future predictions exceed the present value).

E x am p le  3.12.1 We shall prove that the process X t — iit + о Wt, with fj, > 0 
is a submartingale.

The integrability follows from the inequality |Xt(w)| < [it + \ Wt(u:)\ and in- 
tegrability of Wt. The adaptability of X t is obvious, and the last property 
follows from the computation:

E[Xt+s|T t\ = E[/it + aW t+s\Tt\ + us > E[fit +  oW t+s\Tt\
=  [it +  oE[Wt+s\Tt\ = lit +  aW t =  X t ,

where we used tha t W t is a martingale.
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E xam p le  3 .12 .2  We shall show that the square of the Brownian motion, W 2, 
is a submartingale.

Using tha t W t2 — t is a martingale, we have

E[W?+S| T t\ =  E[W2+s - ( t  + s)\Ft} + t  + s = W 2 - t  + t + s 
= W 2 +  s > W 2.

The following result supplies examples of submartingales starting from 
martingales or submartingales.

P r o p o s itio n  3 .12 .3  (a) I f  X t is a martingale and ф a convex function such 
that ф(Хt) is integrable, then the process Yt =  ф(Х^  is a submartingale.
(b) I f  X t is a submartingale and ф an increasing convex function such that 
ф(Х^  is integrable, then the process Yt =  ф(Х^  is a submartingale.
(c) I f  X t is a martingale and f ( t )  is an increasing, integrable function, then 
Yt — X t + f ( t )  is a submartingale.

Proof: (a) Using Jensen’s inequality for conditional probabilities, Exercise 
2.13.7, we have

E[Yt+s\Ft} = Е[ф(Х1+а)\T t) > ф(Е[Х,+а\Ъ }) = ф(Хг) = Yt .

(b) From the submartingale property and monotonicity of ф we have

^ (E [X t+a|7 i]) >  ф(Хг).

Then apply a similar computation as in part (a).
(c) We shall check only the forecast property, since the other properties are 
obvious.

Е[У*+в| Ft] =  E[Xt+s +  f ( t  + s)\T t} = E[Xi+s|JTt] +  f { t  +  s)
= X t + f ( t  + s) > X t + f ( t )  = Yt , V s , t >  0.

C orollary  3 .1 2 .4  (a) Let X t be a right continuous martingale. Then X 2, 
\Xt \, eXt are submartingales.
(b) Let /j, > 0. Then e^i+aWt is a submartingale.

Proof: (a) Results from part (a) of Proposition 3.12.3.
(■b) It follows from Example 3.12.1 and part (b) of Proposition 3.12.3. I

The following result provides im portant inequalities involving submartin­
gales, see for instance Doob [14].
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P ro p o s itio n  3 .12 .5  (D o o b ’s S u b m artin ga le  In eq u a lity ) (a) Let X t be а
non-negative submartingale. Then

P ( s u p X s > x) < ———, \/x  > 0.
S<t X

(b) I f  Xf  is a right continuous submartingale, then for any x  >  0

P{ s u p Xt > x )  <
S<t %

where X t+ =  тах{Х*, 0}.

E xerc ise  3 .12 .6  Let x  > 0. Show the inequalities:

(a) P(sup W 2 > x) < —.
S<t X

(ft) P(sup |WS| > x )  < — — .
s < t  ®

sups<, |WJ
E xerc ise  3 .12 .7  5/юго that p-lim ------=------- =  0.t—>oo t

E xerc ise  3 .12 .8  5/югу that for any martingale X t we have the inequality 

P (supX t2 > x) < y x  >  o.
S<t X

It is worth noting tha t Doob’s inequality implies Markov’s inequality. Since 
supX s >  X t, then P( Xt  > x) <  P (su p X s >  ж). Then Doob’s inequality
s< t s< t

n x t]
P (su p X s >  x) <

S<t %

implies Markov’s inequality (see Theorem 2.13.9)

n x t]P{Xt  > x ) <
x

E xercise  3 .12 .9  Let Nt denote the Poisson process and consider the infor­
mation set T t =  cr{Ns] s < t } .

(a) Show that Nt is a submartingale;
(b) Is N.f  a submartingale?



E xerc ise  3 .1 2 .1 0  It can be shown that for any 0 < a < т we have the in­
equality

; [ E ( *  _ л Г . «
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E
a <t<T

~  O2

N t
Using this inequality prove that ms-lim —  =  A.t—> oo t

The following famous inequality involving expectations was also found by 
Doob. The proof can be found for instance in Chung and Williams [12].

T h eo rem  3 .12 .11  (D o o b ’s in eq u a lity ) I f  X t is a continuous martingale, 
then

E sup X f
L o < t < T

< 4E[Xt2].

E xerc ise  3 .12 .12  Use Doob’s inequality to show

E sup W?
L o < t < T

< 4T.

E xerc ise  3 .1 2 .1 3  Find Doob’s inequality for the martingale X t =  W 2 — t.



Chapter 4

P ro p ertie s  of S tochastic 
Processes

This chapter presents detailed properties specific to stochastic processes, such 
as stopping times, hitting times, bounded variation, quadratic variation as 
well as some results regarding convergence and optimal stopping.

4.1 Stopping T im es

Consider the probability space (О, -T7, P) and the filtration (Ji)t>o, i-e. an 
ascending sequence of cr-fields

T 8 С T t С T ,  Vs < t.

Assume tha t the decision to stop playing a game before or at time t is deter­
mined by the information J-j available at time t. Then this decision can be 
modeled by a random variable r  : fi -> [0 , oo], which satisfies

{w; t(w) < t }  £ Tt,  Vt >  0.

This means tha t given the information set Ft, we know whether the event 
{ui;t (cj) < t} had occurred or not. We note tha t the possibility r  =  oo is also 
included, since the decision to continue the game for ever is a possible event. 
A random variable r  with the previous properties is called a stopping time.

The next example illustrates a few cases when a decision is or is not a stopping 
time. In order to accomplish this, think of the situation tha t r  is the time 
when some random event related to a given stochastic process occurs first.

E x am p le  4.1.1 Let J t̂ be the information available until time t regarding the 
evolution of a stock. Assume the price of the stock at time t = 0 is $50 per 
share. The following decisions are stopping times:

73
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(а) Sell the stock when it reaches for the first time the price of $100 per 
share;

(б) Buy the stock when it reaches for the first time the price o f $10 per 
share;

(c) Sell the stock at the end of the year;
(d) Sell the stock either when it reaches for the first time $80 or at the end 

of the year.
(e) Keep the stock either until the initial investment doubles or until the 

end of the year;

The following decision is not a stopping time:
( /)  Sell the stock when it reaches the maximum level it will ever be.

Part ( /)  is not a stopping time because it requires information about the 
future tha t is not contained in Tt- In part (e) there are two conditions; the 
latter one has the occurring probability equal to 1.

E xerc ise  4 .1 .2  Show that any positive constant, т =  с, is a stopping time 
with respect to any filtration.

E xerc ise  4 .1 .3  Let t ( u )  = inf{t >  0; |Wt (o;)| > К} ,  with К  >  0 constant. 
Show that т is a stopping time with respect to the filtration T t = &(WS] s < t ) .

The random variable r  is called the first exit time of the Brownian motion Wt 
from the interval (—K , K ) .  In a similar way one can define the first exit time 
of the process X t from the interval (o, b):

t ( u j )  =  inf{4 >  0-,Xt(ui) ( a ,  6) }  =  i n f >  0 ;X(w)  >  b or Xt(u>) <  a ) } .

Let Xo < a. The first entry time of X t in the interval [a, 6] is defined as

т(ш) =  inf{£ > 0\ X t (u) € [a,6]}.

If we let b = oo, we obtain the first hitting time of the level a

t ( l u )  =  inf{£ >  0;Xt(o;) >  a)}.

We shall deal with hitting times in more detail in section 4.3.

E xerc ise  4 .1 .4  Let X t be a continuous stochastic process. Prove that the first 
exit time of X t from the interval (a, b) is a stopping time.

We shall present in the following some properties regarding operations 
with stopping times. Consider the notations т\ V T2 =  m ax{ri,T2}, т\ Л T2 =  
m in { ri,r2}, f n =  supn>1 тп and r n =  infn>i r n.
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P ro p o s itio n  4.1.5 Let t \  and t 2 be two stopping times with respect to the 
filtration T f  Then

1.  Т\ V T2
2. T\ A r2
3. r i  +  r 2

are stopping times.

Proof: 1. We have

{u;; r i V r 2 < £} =  {w; n  <  t} П {w; r 2 < ^} G

since {cj; t \  <  t }  G and {w; r2 <  t} € J^. Then т\ V r2 is a stopping time.

2. The event {cj; П A r 2 <  i} G if and only if {w; t\ A r 2 > £} G Pt-

{cj; n  A r 2 >  <} =  {w; n  >  i }  П { и-  t 2 >  t }  £  p t ,

since > t} £ P t and (cj; r2 >  t} G Pt, as the cr-algebra is closed to
complements.

3. We note tha t т\ +  t 2 < t  if there is a с G (0, t ) such that

Ti <  c, 72 < t  — c.

Using that the rational numbers are dense in M, we can write

{cj; t i  + t 2 < t} = ( J  <с}Г){ш;т2 < t - c f )  G Pt ,
0<c<t,ceQ

since
{w; n  < c} G P c С F t , {^; r2 <  t  -  c} G J i_ c С Pt - 

It follows tha t 7*i +  t 2 is a stopping time. ■
OO

A filtration P t is called right-continuous if Pt =  f V . +  i ,  for t > 0 .
n=  1

This means tha t the information available at time t  is a good approximation 
for any future infinitesimal information Pt+e', or, equivalently, nothing more 
can be learned by peeking infinitesimally far into the future. If denote by

00
Pt+ =  [ )  P t+ A* then the right-continuity can be written conveniently as1 ' nП= 1
Pt = Pt+-

E xerc ise  4 .1 .6  (a) Let P t =  a {Ws;s < t} and Qt =  cr{ Wu du\ s < t}, 
where Wt is a Brownian motion. Is Pt right-continuous? What about Qt ?

(6) Let Aft =  a {N a;s <  t}, where Nt is a Poisson motion. Is Mt right- 
continuous ?
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The next result states tha t in the case of a right-continuous filtration the 
inequality { r <  t} from the definition of the stopping time can be replaced by 
a strict inequality.

P r o p o s itio n  4 .1 .7  Let T t be right-continuous. The following are equivalent:
(a) т is a stoping time;
(b) {r < t} G Tt, for all t > 0.

Proof: “(a) =>■ (6)” Let r  be a stopping time. Then { r <  t  — С T t_ i  С
n

T t, and hence Un>i{r  — * ~ «} e  ^ t- Then writing

{r < t} =  | J  {r <  t -  € T t
n>  l

it follows that {r < t} G Tt, i.e. r  is a stopping time.
“(6) =>■ (a)” It follows from

{t  < t }  =  П { г  < *  +  - } €  П J i + i =  T t+ = T t -
1 1  77, 1 1 n

n > 1 n > l

P r o p o s itio n  4 .1 .8  Xet J-j be right-continuous and (тп)п>i 6e a sequence of 
bounded stopping times. Then supn r n and inf rn are stopping times.

Proof: The fact tha t f n =  supn r„ is a stopping time follows from 

{w; f n < t} С P  {w; rn < *} e  Л -
n > l

In order to show tha t r n =  inf rn is a stopping time we shall proceed as in 
the following. Using tha t Tt is right-continuous and closed to complements, 
using proposition 4.1.7, it suffices to show tha t {ш;тп > t)  G Tt- This follows 
from

{w;r„ > t} =  P | {ш;тп > t } e  T t -
Tl> 1

E xerc ise  4 .1 .9  Let r  be a stopping time.
(a) Let с > 1 be a constant. Show that ct is a stopping time.
(b) Let f  : [0, oo) -> M be a continuous, increasing function satisfying 

f ( t )  >  t. Prove that f ( r )  is a stopping time.
(c) Show that eT is a stopping time.
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E xerc ise  4 .1 .1 0  Let т be a stopping time and с > 0 a constant. Prove that 
т + с is a stopping time.

E xerc ise  4 .1 .11  Let a be a constant and define т =  inf{£ > 0; Wt — a}. Is т 
a stopping time?

E xerc ise  4 .1 .12  Let т be a stopping time. Consider the following sequence 
тп — (m +  l )2 -n  i f  m 2 ~n <  r  <  (m +  l )2 -n  (stop at the first time of the form  
k2~n after r ). Prove that тп is a stopping time.

4.2 Stopping T heorem  for M artingales

The next result states tha t in a fair game, the expected final fortune of a 
gambler, who is using a stopping time to quit the game, is the same as the 
expected initial fortune. From the financial point of view, the theorem says 
tha t if you buy an asset at some initial time and adopt a strategy of deciding 
when to sell it, then the expected price at the selling time is the initial price; 
so one cannot make money by buying and selling an asset whose price is a 
martingale. Fortunately, the price of a stock is not a martingale, and people 
can still expect to make money buying and selling stocks.

If (Mt )t>о is an ^-m artingale, then taking the expectation in

Wj[Mt \Fs\ = M s , Vs < t

and using Example 2.12.4 yields

E[Mt]= E [M s], Vs < t.

In particular, E[Mj] =  E[Mo], for any t  > 0. The next result states necessary 
conditions under which this identity holds if t is replaced by any stopping time 
r .  The reader can skip the proof at the first reading.

T h eorem  4 .2 .1  (O p tion a l S top p in g  T h eorem ) Le t (Mt)t>о be a right con­
tinuous Tt-martingale and r  be a stopping time with respect to T t such that

т is bounded, i.e. 3 N  < oo such that т < N .

Then E [MT\ =  E[Mo]. I f  Mt is an Tt-submartingale, then E[Mr ] > E[Mo].

Proof: Consider the following convenient notation for the indicator function
of a set

t(lo) >  t ; 
r(w) <  t.
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Taking the expectation in relation

M T =  M tm  “I" (Mr

see Exercise 4.2.3, yields

E[MT\ = E[MrM] +  E[MTl{r>i}] — E[Mt l {T>t}].

Since M rAt is a martingale, see Exercise 4.2.4 (6), then Е[Мтм] =  E[Mo]. The 
previous relation becomes

E[MT\ = E[Mo] +  E[MTl {T>t}] -  E[Mtl {T>t}], Wt >  0.

Taking the limit yields

E[MT\ = E[M0] +  lim E[MTl {T>t}] -  lim E[Mtl {r>t}], (4.2.1)t—юо 1 t—too 1 ’

We shall show tha t both limits are equal to zero.
Since |MTl | T>t}| < \MT\, Vt > 0, and Mr is integrable, see Exercise 4.2.4

(a), by the dominated convergence theorem we have

lim E[MTl r T>t\] =  lim /  M r l t T>t\ d P =  /  lim M Tl i T>t\ dP  =  0.
t->oo г s t->oo J Q J Q i->oo

For the second limit

lim E[Mt l { T>t}\ =  lim [  M t l {T>t} dP  =  0 ,
— t—>oo J q

since for t  > N  the integrand vanishes. Hence relation (4.2.1) yields E[MT] =  
E[M0]. ■

It is worth noting tha t the previous theorem is a special case of the more 
general Optional Stopping Theorem of Doob:

T h eo rem  4 .2 .2  Let M t be a right continuous martingale and a , r  be two 
bounded stopping times, with a  <  r .  Then M a, M T are integrable and

ElMrl^a] = Mu a.s.

In particular, taking expectations, we have

E[MT] =  E[MCT] a.s.

In the case when Mt is a submartingale then E[MT] >  Е[МСТ] a.s.
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Figure 4.1: The first hitting time Ta given by W ra = a.

E x erc ise  4 .2 .3  Show that

Mr—  М т +  (M T

where 1 {r>t} ^  the indicator function of the set { r > t}.

E xerc ise  4 .2 .4  Let Mt be a right continuous martingale and r  be a bounded 
stopping time. Show that

(a) M T is integrable;
(b) M-r/x is a martingale.

E xerc ise  4 .2 .5  Show that letting a =  0 in Theorem 4.2.2 yields Theorem

The first passage of time is a particular type of hitting time, which is useful 
in finance when studying barrier options and lookback options. For instance, 
knock-in options enter into existence when the stock price hits for the first 
time a certain barrier before option maturity. A lookback option is priced 
using the maximum value of the stock until the present time. The stock price 
is not a Brownian motion, but it depends on one. Hence the need for studying 
the hitting time for the Brownian motion.

The first result deals with the first hitting time for a Brownian motion to 
reach the barrier a E M, see Fig. 4.1.

L em m a 4 .3 .1  Let Ta be the first time the Brownian motion Wt hits a. Then 
the distribution function of Ta is given by

4.2.1.

4.3 The First Passage o f T im e
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Proof: If A  and В  are two events, then

P(A)  = Р { А П В )  + Р { А П В )
= P( A\ B)P(B)  +  P(A\ B)P(B) .  (4.3.2)

Let а > 0. Using formula (4.3.2) for A = {w; Wt(uj) > a} and В  =  {w; Та(и) < 
t} yields

P{W t > a) = P (W t > a\Ta < t )P(Ta < t)
+ P{W t > a\Ta > t)P (T a > t) (4.3.3)

If Ta > t, the Brownian motion did not reach the barrier a yet, so we must 
have Wt < a. Therefore

P (W t > a\Ta > t )  =  0.

If Ta <  t, then W ra = a. Since the Brownian motion is a Markov process, 
it starts fresh at Ta. Due to symmetry of the density function of a normal 
variable, Wt has equal chances to go up or go down after the time interval 
t  — Ta. It follows that

P (W t > a\Ta < t)  = \ .

Substituting into (4.3.3) yields

P{Ta < t ) =  2 P ( W t >a)

=  2 r e- * v m d x = * Г  e~y2/ 2 d y .
V2ITt Ja V2tГ Ja/Vi

If a < 0, symmetry implies tha t the distribution of Ta is the same as tha t of 
T_a, so we get

9 Г°°
P(Ta < t )  =  P ( T _ a < t )  =  - =  е-У / 2 dy.

V27Г J —a/y/t

R em ark  4 .3 .2  The previous proof is based on a more general principle called 
the reflection principle: If r  is a stopping time for the Brownian motion Wt, 
then the Brownian motion reflected at r  is also a Brownian motion.

T h eo rem  4 .3 .3  Let a G M be fixed. Then the Brownian motion hits a (in a 
finite amount of time) with probability 1 .
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Proof: The probability tha t Wt hits a (in a finite amount of time) is

2
P(Ta <  oo) =  lim P(Ta < t) =  lim —=  /

‘-*°° ‘->°° \/2тг J\a\/Vt
roc

/  e~y2/2dy = 1,
Jo

e y2/ 2 dy

л/Ът

where we used the well known integral
roc 1 roc
/  e~ y / 2 dy = -  /  e~v I2 dy =  -  \[2ж.

Jo 2 J . q o  2

The previous result stated tha t the Brownian motion hits the barrier a 
almost surely. The next result shows that the expected time to hit the barrier 
is infinite.

P ro p o s itio n  4.3.4 The random variable Ta has a Pearson 5 distribution 
given by

. . U/ __a_  __ a
p(t) = —j = e  2i< 2, t > 0 . 

V 2tt

a2
It has the mean E[Ta] =  oo and the mode — .

3

Proof: Differentiating in the formula of distribution function1

2
F Ta(t)  =  P ( T a < t )  =  - =

V 2n Ja/Л
_ ■ e y I2 dy

V27T Ja/\/i

yields the following probability density function 

. . dF xa (t) a _a?_ _з

^  = ~ л ~  = v s e ” r ’ ’ t > 0 ■

This is a Pearson 5 distribution with parameters a  = 1/2 and f3 — a2/2. The 
expectation is

а Г°° 1 n2 
E[Ta] =  /  tp[t) dt =  —j =  /  —=e~udt .

Jo V2n Jo \Jt

d1One may use Leibniz’s formula — / f (u)  du =
d t J v (t)
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Figure 4.2: The distribution of the first hitting time Ta.

Using the inequality e at > 1 — — t > 0, we have the estimation
Zt

a f°°  1 , a3 1
[ °] > 7 ^ 1  V t 2 V 2^ l  &t f j 2 dt = OC' (4.3.4)

since J0°° dt is divergent and J'J° dt is convergent. 

The mode of Ta is given by

a  + 1 2(^ +  1)
a
з"

R e m a rk  4.3.5 The distribution has a peak at a2/ 3. Then if we need to pick 
a small time interval [£ — d t,t  + dt] in which the probability tha t the Brownian 
motion hits the barrier a is maximum, we need to choose t =  a2/ 3, see Fig. 4.2.

R e m a rk  4.3.6 Formula (4.3.4) states tha t the expected waiting time for Wt 
to reach the barrier a is infinite. However, the expected waiting time for the 
Brownian motion Wt to hit either a or —a is finite, see Exercise 4.3.9.

C o ro lla ry  4 .3 .7  A Brownian motion process returns to the origin in a finite 
amount time with probability 1 .

Proof: Choose a = 0 and apply Theorem 4.3.3. ■

E x erc ise  4 .3 .8  Try to apply the proof of Lemma 4-3.1 for the following stochas­
tic processes

(a) X t =  p.t +  a Wt, with /л, a > 0 constants;

= I  W x ds.(b) X t = f  
Jo

Where is the difficulty?
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E xerc ise  4 .3 .9  Let а > 0 and consider the hitting time

Ta = inf{4 > 0; \ Wt \ > a}.

Prove that E[ra] =  a2.

E xerc ise  4.3.10 (a) Show that the distribution function of the process

X t =  max W s 
se[o,t]

is given by
о rdfy/t

P ( X t <a )  = —=  /  e~y /2 dy,
V  J o

and the probability density is

2 _x£
Pt(x ) =  ^ = = e ~ *  i ж >° -

V Z m

(6) 5/ioiw that E[X<] =  y/2t/TT and V a r ( X t) =  t ( ^ l -----

E xerc ise  4.3.11 (a) Show that the probability density of the absolute value 
of a Brownian motion X t = \ Wt \, t > 0, is given by

(b) Consider the processes X t — \Wt\ and Yt — \Bt \, with Wt and B t indepen­
dent Brownian motions. Use Theorem 2.11.1 to obtain the probability density 
of the sum process Zt — X t + Yt.

The fact tha t a Brownian motion returns to the origin or hits a barrier 
almost surely is a property characteristic to the first dimension only. The 
next result states tha t in larger dimensions this is no longer possible.

T h eo re m  4.3.12 Let (a, b) € M2. The 2-dimensional Brownian motion W (t ) =  
(Wi ( t ) , W2(t)) (with W\(t) and Wi(t)  independent) hits the point (a,b) with 
probability zero. The same result is valid for any n-dimensional Brownian 
motion, with n > 2 .

However, if the point (a, b) is replaced by the disk

D e(x0) =  { i £  M2; |x -  x 01 <  e},

then there is a difference in the behavior of the Brownian motion from n = 2 
to n >  2 , as pointed out by the next two results:
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T h e o re m  4.3.13 The 2-dimensional Brownian motion W (t ) =  (W\(t),  W2(t)) 
hits the disk -De(xo) with probability one.

T h e o re m  4.3 .14 Let n > 2. The n-dimensional Brownian motion W( t )  hits 
the ball D6(xo) with probability

The previous results can be stated by saying tha t tha t Brownian motion 
is transient in Rn, for n > 2. If n =  2 the previous probability equals 1. We 
shall come back with proofs to the aforementioned results in a later chapter 
(see section 9.6).

R e m a rk  4.3.15 If life spreads according to a Brownian motion, the afore­
mentioned results explain why life is more extensive on earth rather than in 
space. The probability for a form of life to reach a planet of radius R  situated 
at distance d is Since d is large the probability is very small, unlike in the 
plane, where the probability is always 1.

E x erc ise  4 .3 .16 Is the one-dimensional Brownian motion transient or recur­
rent in R ?

4.4 T he A rc-sine Laws

In this section we present a few results which provide certain probabilities 
related with the behavior of a Brownian motion in terms of the arc-sine of 
a quotient of two time instances. These results are generally known as the 
Arc-sine Laws.

The following result will be used in the proof of the first Arc-sine Law.

P ro p o s itio n  4.4.1 (a) I f  X  : Q N is a discrete random variable, then for 
any subset A  С  ft, we have

P(A)  = ^  P ( A \ X  =  x ) P ( X  = x).

(b) I f  X  : Г2 -* R is a continuous random variable, then

P{A) = /  P ( A \ X  = x)dP = /  P ( A \ X  = x ) f x ( x )  dx.
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Figure 4.3: The event A(a ; t \ , t 2) in the Arc-sine Law.

Proof: (a) The sets X ~ 1(x) =  { X  = x}  =  {ш\Х(и)  =  ж} form a partition of 
the sample space fi, i.e.:

w n  =  u x x - \ x ) -
(ii) Х _ 1(ж) П X ~ l (y) =  0  for x  Ф y.

Then A  =  [^J П Х _ 1(ж)^ =  (^A П {X =  ж}^, and hence
X  X

P ( A ) =  £ р ( л п { Х  =  х})

=  ^ P { A \ X  = x ) P ( X  =  x).
X

(b) In the case when X  is continuous, the sum is replaced by an integral and 
the probability P ( { X  =  ж}) by f x ( x ) d x , where f x  is the density function of 
X . ■

The zero set of a Brownian motion Wt is defined by {/, > 0; Wt =  0}. Since 
Wt is continuous, the zero set is closed with no isolated points almost surely. 
The next result deals with the probability tha t the zero set does not intersect 
the interval ( t i , t 2).

T h eo re m  4.4.2 (T h e  A rc-sine  Law ) The probability that a Brownian mo­
tion Wt does not have any zeros in the interval (£1,^2) is equal to

P(W t ф 0 , t \  <  t  <  t?) =  — arcsin J —.
7Г V £2
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Proof: The proof follows Ross [43]. Let A(a] t \ , t 2) denote the event that the 
Brownian motion Wt  takes on the value a between t\ and t2. In particular, 
^4(0; t i , denotes the event tha t Wt  has (at least) a zero between t\ and 
t2- Substituting A  =  A(0; £1,^2) and X  — W tl into the formula provided by 
Proposition 4.4.1

P ( A ) =  I P ( A \ X  =  x ) f x (x) dx

yields

P (A (0 ; t i , t2)) =  J  P { M 0 ; t i , t 2)\Wt l = x ) f WH(x)dx  (4.4.5)

1 f°° X 2

=  J P ( A ( 0 ; t 1 , t 2)\Wtl = x )e  2<i dx.

Using the properties of Wt with respect to time translation and symmetry we 
have

P(A(0; t 1 , t 2)\Wtl = x) = P(A(0;0 , t 2 - h ) \ W o  = x)
= P ( A ( - x - 0 , t 2 - t i ) \ W 0 = 0)
= P (A ( | x| ;0, i2 - t i ) | Wo  =  0)
=  P(A( \x\ ;0 , t2 -  ti))
=  P(T\X\ < t2 - h ) ,

the last identity stating th a t Wt hits |x before t 2 — t \  ■ Using Lemma 4.3.1 
yields

2 f°° y2
P( A( 0 - t i , t 2)\Wtl = x ) =  y— r— /  e 2(t2- tx) dy.

y /2ir(t2 -  11) J\x\

Substituting into (4.4.5) we obtain

1 /  2 m2 \ x2
P ( A ( 0 ; t i , t 2)) = - z f =  ( /o =  /  e d y ) e ~ 2ti dx

V  2 ^ t \  J —oo '  Y  27г(<2 t \ )  J\x\  

1 r°° r°° y2 X2
— — , =  /  /  e 2(‘2- ‘i) 2ti dydx.

TTy/tlfc - * i )  Jo J |x|

The above integral can be evaluated to get (see Exercise 4.4.3 )

P(A(0;<i ,£2)) =  1 -----arcsin л / —.
7Г V ^2

Using P(W t Ф 0, i i  <  t  < i 2) =  1 -  P (A( 0 ; i i , t 2)) we obtain the desired 
result. I
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E xerc ise  4 .4 .3  Use polar coordinates to show

I r°o r°o y2 x2 2 
----  =  e 2 ( ‘ 2- ‘ i )  2ti dydx = 1 -----arcsin * —.
n y /t iih  ~  h) Jo J\x\ n V h

E xerc ise  4 .4 .4  Find the probability that a 2-dimensional Brownian motion 
W(t)  =  (W i(t), W2(t)) stays in the same quadrant for the time interval t G 
( h , t 2).

E xerc ise  4 .4 .5  Find the probability that a Brownian motion Wt does not take 
the value a in the interval ( i i , *2) •

E xerc ise  4 .4 .6  Let а ф b. Find the probability that a Brownian motion Wt 
does not take any of the values {a,b} in the interval ( t i , i2)- Formulate and 
prove a generalization.

We provide below without proof a few similar results dealing with arc-sine 
probabilities, whose proofs can be found for instance in Kuo [30]. The first 
result deals with the amount of time spent by a Brownian motion on the 
positive half-axis.

T h eorem  4 .4 .7  (A rc-sin e  Law o f  L evy) Let L f  = J([ sgn+Ws ds be the 
amount of time a Brownian motion Wt is positive during the time interval 
[0,4]. Then

2 pr
P\L~[ < r )  =  — arcsin w

The next result deals with the Arc-sine Law for the last exit time of a 
Brownian motion from 0.

T h eorem  4 .4 .8  (A rc-sin e  Law o f  e x it  from  0) Let 71 =  sup{0 <  s < 
t\ Ws = 0}. Then

2 pr
P {lt < t )  = — arcsin y j i  0 < т < t.

The Arc-sine Law for the time the Brownian motion attains its maximum 
on the interval [0 , t] is given by the next result.

T h eorem  4 .4 .9  (A rc-s in e  Law o f  m axim u m ) Let Mt = max W 4 and de-
K ’ 0 <s<t

fine
Ot =  sup{0 <  s < t\ W s =  M t }.

Then
2 Ps

P{6t < «) =  — arcsin J  0 < s < t , t  > 0 .



8 8 An Informal Introduction to Stochastic Calculus with Applications

4.5 M ore on H itting  T im es

In this section we shall deal with results regarding hitting times of Brownian 
motion with drift. These type of results are useful in Mathematical Finance 
when finding the value of barrier options.

T h e o re m  4.5.1 Let X t =  p,t +  Wt denote a Brownian motion with nonzero 
drift rate ц, and consider a , /3 > 0. Then

e2M/3 _  1
P( Xt  goes up to a  before down to — /3) = -тг-ь------- о— ._ g Z/iCfc

Proof: Let T  =  inf{£ >  0; X t > a  or X t < —/3} be the first exit time of X t 
from the interval (—/3, a ), which is a stopping time, see Exercise 4.1.4. The 
exponential process

M t =  есИ/‘-4 * , t > 0

is a martingale, see Exercise 3.2.4(c). Then IE[Mt\ = E[Mo] =  1. By the 
Optional Stopping Theorem (see Theorem 4.2.1), we get E [Mt \ = 1. This can 
be written as

1 =  E[ecWT~ ^c2T] =Е[есХт- ^ +^ т]. (4.5.6)

Choosing с =  — yields E[e-2,jA"T] =  1. Since the random variable X t  takes 
only the values a  and -/3, if we let pa = P ( X t  =  a ), the previous relation 
becomes

e - 2»apa + e W ( l - p a ) = l.

Solving for pa yields
e2̂ 3 -  1

Pa = e2щз _  e- 2m  ' (4.5.7)

Noting tha t

pa =  P{Xt  goes up to a  before down to — /3)

leads to the desired answer. ■

It is worth noting how the previous formula changes in the case when the 
drift rate is zero, i.e. when ц =  0, and X t =  Wt . The previous probability is 
computed by taking the limit ц —> 0 and using L’Hospital’s rule

e2̂  -  1 2/3e2̂  /3
lim ■ 0 q--------^—  =  lim  ̂ 0 д----------- -—  = --------

>-0 e2̂  — e 2̂ “ о 2/3e2̂  +  2a e  2̂ a a  +  /3
Hence

P(W t goes up to a  before down to — /3) =  ——— .
a  +  /3



Taking the limit /3 —> oo we recover the following result
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P(W t hits a) =  1.

If a  =  /3 we obtain

P (W t goes up to a  before down to — a) —

which shows tha t the Brownian motion is equally likely to go up or down an 
amount a  in a given time interval.

If Ta and Tp denote the times when the process X t reaches a  and /3, respec­
tively, then the aforementioned probabilities can be written using inequalities. 
For instance, the first identity becomes

e2̂  _  i 
P {T a <  T -p ) =  e2M/3 _  e- 2 ца ’

E xerc ise  4.5.2 Let X t = fit + Wt denote a Brownian motion with nonzero 
drift rate /л, and consider a  > 0 .
(а) I f  fi > 0 show that

P ( X t goes up to a) = 1.

(б) I f  [i < 0 show that

P ( X t goes up to a) = е2/ш < 1.

Formula (a) can be written equivalently as

P(sup(W t + /it) > a) =  1,
i > 0

while formula (b) becomes

P(sup(W j +  lit) > a) — e 
t> о

ц > 0,

f i<  0 ,

or
P(sup(H/i — yt) > a) = e 27“ , 7  > 0, 

t> 0

which is known as one of the Doob’s inequalities. This can also be described 
in terms of stopping times as follows. Define the stopping time

та = inf{£ > 0; Wt — y t > a}.



90 An Informal Introduction to Stochastic Calculus with Applications

Using
Р(та <  oo) =  P (  sup(W t — 7 1) >  a )  

t> о
yields the identities

Р(та <  oo) =  e-2"7, 7  > 0,
P ( rQ <  oo) =  1, 7  < 0.

E xerc ise  4 .5 .3  Let X t = fit +  Wt denote a Brownian motion with nonzero 
drift rate )i, and consider /3 > 0 . Show that the probability that X t never hits 
—(3 is given by

1 -  e - 2̂ ,  i f  ii > 0 
0 , i f  ц  < 0 .

Recall tha t T  is the first time when the process X t hits a  or —/3.

E xerc ise  4 .5 .4  (a) Show that

nrr V 1 _  ae2/i/3 +  -  a -  /3
e2/i/3 _  е- 2ца

(b) Find E[X$\;
(c) Compute Var(Xr) -

The next result deals with the time one has to wait (in expectation) for 
the process Xt  = /-it + Wt to reach either a  or —/3.

P r o p o s itio n  4 .5 .5  The expected value o fT  is

ае2цР _|_ /3e-2^a — a — /3
E[T] =

Proof: Using tha t Wt is a martingale, with E \Wt] =  E[Wo] =  0, applying the 
Optional Stopping Theorem, Theorem 4.2.1, yields

0 =  E [WT\ = E[XT -  цТ\  =  E[XT] -  цЕ[Т\.

Then by Exercise 4.5.4(a) we get

E[Xr] + be~^a -  a -  /3Е[Г] =
ц  /x(e2̂  — e_2^“ )

E x erc ise  4 .5 .6  Take the limit /x —>■ 0 in the formula provided by Proposition 
4-5.5 to find the expected time for a Brownian motion to hit either a  or —/3.
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E xerc ise  4 .5 .7  Find E[T2] andVar(T) .

E xerc ise  4 .5 .8  (W ald ’s id e n titie s)  Let T  be a finite and bounded stopping 
time for the Brownian motion Wt ■ Show that:

The previous techniques can also be applied to right continuous m artin­
gales. Let a > 0 and consider the hitting time of the Poisson process for the 
barrier a

P r o p o sitio n  4 .5 .9  The expected waiting time for Nt to reach the barrier a
is E [t ] =  f .

Proof: Since Mt = Nt — Xt is a right continuous martingale, by the Optional 
Stopping Theorem E[MT] =  E[Mq] =  0. Then E[NT — Ar] =  0 and hence

4.6 T he Inverse Laplace Transform M ethod

In this section we shall use the Optional Stopping Theorem in conjunction 
with the inverse Laplace transform to obtain the probability density functions 
for hitting times.

T h e case o f  stan d ard  B row n ian  m o tio n  Let x  > 0. The first hitting time 
т = Tx = inf{i > 0; Wt > x}  is a stopping time. Since Mt = ecWt~*c2t, t > 0, 
is a martingale, with E [Mt] =  E[Mo] =  1, by the Optional Stopping Theorem, 
see Theorem 4.2.1, we have

(a) E [WT] = 0;
(ib) E[W |] =  E[T].

r  =  inf{t > 0 ; Nt > a}.

E[r] =  \E[NT] = a

E [MT] =  1.

This can be written equivalently as E[e ] =  1. Using WT = x, we get

E[e- 5 cV] =  e- c*.

__ 1 2

It is worth noting tha t с > 0. This is implied from the fact tha t e~zc T < 1 
and r, x > 0 .
Substituting s — | c 2, the previous relation becomes

E[e~ST] =  e ~ ^ x (4.6.8)

This relation has a couple of useful applications.
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P ro p o s itio n  4.6.1 The moments of the first hitting time are all infinite

E [rn] =  oo, n  >  1.

Proof: The n th  moment of r  can be obtained by differentiating and taking

£ ^ E  [e-ST] =  E[(—r ) ne-ST], =  ( - l ) " E [ r n],
I s = 0  I s = 0

Using (4.6.8) yields

E [rn] =  ( -1  )П^ е~ ^ Х 

Since by induction we have

I s = 0

dsn ^  2r*/2 s (n+fe)/2 ’k=0

with Mfc,rfc positive integers, it easily follows tha t E [rn] =  oo. 
For instance, in the case n =  1, we have

E[r] =  - 4 - e =  lim = +00.
ds s—>0+ 2 \[2sx

I s = 0

Another application involves the inverse Laplace transform to get the prob­
ability density. This way we can retrieve the result of Proposition 4.3.4.

P ro p o s itio n  4.6.2 The probability density o f the hitting time т is given by

p (t) =  -/= == e~ii-, t >  0. (4.6.9)

Proof: Let x  > 0. The expectation

POO
E[e_sr] =  /  e~STp(r) dr = C{p(r)}(s)

Jo

is the Laplace transform of р(т). Applying the inverse Laplace transform 
yields

p(r) =  £ - 1{E[e-ST]}(r) =  £ - 1{ e - ^ } ( r )
X 2

\ f 2ir r 3
e 2r 5 r  > 0 .
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In the case x  < 0 we obtain
—x

Р(т) = ^ ш е~2т' T>0'
which leads to (4.6.9). ■

The computation on the inverse Laplace transform is be­
yond the goal of this book. The reader can obtain the value of this inverse 
Laplace transform using the Mathematica software. However, the more m ath­
ematically interested reader is referred to consult the method of complex in­
tegration in a book on inverse Laplace transforms.

Another application of formula (4.6.8) is the following inequality.

P ro p o s itio n  4 .6 .3  (C h ern off b ou n d ) Let т be the first hitting time when 
the Brownian motion Wt hits the barrier x, x  > 0. Then

Р{т < A) < e 2Л f VA > 0.

Proof: Let s = — t in part 2 of Theorem 2.13.11 and use (4.6.8) to get

P ( r  < A) < =  Е ^ ХГ~ =  eAs“ x^ ,  Vs > 0.

Then P (t  < A) < emms>0-^s), where / ( s )  =  As — xy/2s. Since / '( s )  =  A — H =,
2

then /( s )  reaches its minimum at the critical point so =  The minimum 
value is

Substituting in the previous inequality leads to the required result. ■

T h e case o f  B row n ian  m o tio n  w ith  drift Consider the Brownian motion 
with drift X t = [it + trWt , with //, a > 0. Let

r  =  inf{£ > 0 ; X t > x}

denote the first hitting time of the barrier x, with x > 0. We shall compute 
the distribution of the random variable r  and its first two moments.

Applying the Optional Stopping Theorem (Theorem 4.2.1) to the m artin­
gale M t =  ecWt~ 2c2t yields

E[MT\ =  E [M0] =  1.

Using tha t WT =  ^ ( X T — цт) and X T = x,  the previous relation becomes

E[e“ (^ + 5C> ]  =  e~°x . (4.6.10)
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Substituting s = —  +  - c 2 and completing to a square yields 
(j 2

/12 /  n \ 2
2s H— ~ —

(J V (7

Solving for с we get the solutions

c = - »  + J 2s + ^  c = - » - J 2s + £
а V cr2 cr V (7

Assume с <  0. Then substituting the second solution into (4.6.10) yields

E[e-sT] =  ej i ^ + y /2s(T2+^2)x _

This relation is contradictory since e_ST < 1 while e7 * \ / 2scr2+//2)x ^  | 
where we used tha t s, x, т > 0. Hence it follows tha t с > 0. Substituting the 
first solution into (4.6.10) leads to

— e j l ^ - y / 2scr2+̂ '2)x _

We arrive at the following result:

P ro p o s itio n  4 .6 .4  Assume f i ,x  > 0. Let т be the time the process X t =  
fit +  aWt hits x  for the first time. Then we have

E[e"ST] =  e? (̂ -v /W ) x i g >  Q_ (4 g U )

P ro p o s itio n  4.6.5 Let т be the time the process X t = fit +  <rWt hits x , with 
x  > 0 and fi > 0 .
(a) Then the density function of т is given by

'T'
Р(т) =  я -  . 6 т >  0. (4.6.12)

a \J 2,KT6l i

(b) T/ie mean and variance of т are

тпГ 1 x  т r /  \  ж ег2E т =  Var(r)  = —
M A4

Proof: (a) Let p (r) be the density function of r .  Since

roo
E[e- s r ] =  / e~STp(r) dr  =  £{p(r)}(s)

Jo
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is the Laplace transform of p(r), applying the inverse Laplace transform yields

p(r) = £ - 1{E[e-eT]} = £ “ i{e^ W 2̂ 2+/*2)*}
а; (ж-мг)2

e 2t(t2 ( r  >  0 .
(7\/27ГТ3/2

It is worth noting tha t the computation of the previous inverse Laplace trans­
form is non-elementary; however, it can be easily computed using the Mathe- 
matica software.

(b) The moments are obtained by differentiating the moment generating 
function and taking the value at s = 0

E[T] =  —^-E[e-ST]| -  2so2+f)x
ds |e=0 ds

X ____________p - ? z { » - \ / ‘Z s o 2 + i J , 2 ) x

\ s = 0s j  [I2 +  2 sn
X

A*'

E[r2] =  ( - l ) 2-^ E [e -ST]| =as I s—о ds
z{p2 +  X y J  \12 +  2scr2) ^ - y / 2  scr2+fi2)xX[ ________________ ^

(p2 +  2scr2)3/ 2 
ЖСГ2 x 2

Hence
х а 2

Var(r)  — E [t ] — E[r] =  3

It is worth noting that we can arrive at the formula E[r] =  ^ in the following 
heuristic way. Taking the expectation in the equation / i t  +  aWr =  x  yields 
pE[r] =  x, where we used that E[WT] =  0 for any finite stopping time r  
(see Exercise 4.5.8 (a)). Solving for E[r] yields the aforementioned formula.

■

Even if the computations are more or less similar to the previous result, 
we shall treat next the case of the negative barrier in its full length. This 
is because of its particular importance in being useful in practical problems, 
such as pricing perpetual American puts.

P ro p o s itio n  4.6.6 Assume p,,x > 0. Let т be the time the process X t =  
p t +  aWt hits —x for the first time.
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(a) We have

E[e~sr] =  e ^ + V 2*0̂ 2)^  s >  0. (4.6.13)

(b) Then the density function of т is given by

, . X  _ (£+Д Г>_
=  я/9е 2" а > r > 0 - (4.6.14)

(c) The mean of т is
X Ъих

E[r] =  - e ~ ^ .

Proof: (a) Consider the stopping time r  =  inf{i > 0 ;X t =  —x}.  By the 
Optional Stopping Theorem (Theorem 4.2.1) applied to the martingale M t =
ecWt- \ t  yjgldg 

1 =  M 0 = E [MT\ = E[ecWT~ ^ T] = Е [ е ^ Хт-»т)- ^ т]

= E [ e - ^ ~ ^ - 4 - r ]  = e- f * E [ e - & +^ T].

Therefore
E [ e ~ ^ +^ )T] = e ° x. (4.6.15)

If let s = ^  +  y ,  then solving for с yields с =  — ̂  ±  у  2s +  but only the 
negative solution works out; this comes from the fact tha t both terms of the 
equation (4.6.15) have to be less than 1. Hence (4.6.15) becomes

E[e~ST] =  e > о

(b) Relation (4.6.13) can be written equivalently as

С(р(т)) = e^(M+V2̂ 2+^)*.

Taking the inverse Laplace transform, and using Mathematica software to 
compute it, we obtain

p (r  ) = £ - i p W ^ ) > W )  = _ *  T > 0 .
4 '  OyZTTT I

(c) Differentiating and evaluating at s = 0 we obtain
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Exercise 4.6.7 Assume the hypothesis of Proposition 4-6.6 are satisfied. Find 
Var(r).

Exercise 4.6.8 Find the modes of distributions (4.6.12) and (4.6.14). What 
do you notice?

Exercise 4.6.9 Let X t =  2t +  3Wt and Yt =  2t +  Wt-
(a) Show that the expected times for X t and Yt to reach any barrier x >  0 

are the same.
(ib) If Xt and Yt model the prices of two stocks, which one would you like 

to own?

Exercise 4.6.10 Does 41 +  2Wt hit 9 faster (in expectation) than 51 +  3Wt 
hits 14?

Exercise 4.6.11 Let т be the first time the Brownian motion with drift X t =  
/it +  Wt hits x, where ц ,х  > 0. Prove the inequality

P {t <  A) <  VA > 0.

The double barrier case In the following we shall consider the case of double 
barrier. Consider the Brownian motion with drift X t =  fit +  Wt, Ц >  0. Let 
a ,(3>  0 and define the stopping time

T  =  inf{t >  0; Xt > a or X t < — /3}.

Relation (4.5.6) states
Е[есХГе-(^+§с2)Т] =  L

Since the random variables T  and X t are independent (why?), we have

Е[есХт]Е [е -^ +12с2)т] =  l .

Using Е[есХт} =  ecapa +  e~ĉ (l —pa), with pa given by (4.5.7), then

E [ e - ( c M + i c 2 ) T ]  =  ----------------------------------------------- -----------------------------------------------

ecapa +  e сР (1 -р а)

If we substitute s =  с/х +  ^c2, then

E[e-sT] = -----------.------------------- ---------7= ---------------(4.6.16)
e(-/x+V2s+^)apa +  e-{-p+y/2s+^)/3^ _  Paj
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The probability density of the stopping time T is obtained by taking the inverse 
Laplace transform of the right side expression

p(T) =  C~l ( ----------t = ------------ ---------= = -------------- J (r),
\ е (-р+у/28+р>)ара +  e-(-M+\/2s+M2)^(l _  pQ) J

an expression which is not feasible for having a closed form solution. However, 
expression (4.6.16) would be useful for computing the price for double barrier 
derivatives.

Exercise 4.6.12 Use formula (4.6.16) to find the expectation ЩТ].

Exercise 4.6.13 Let Tx — inf{i >  0; \Wt\ > x }, for x >  0.
(a) Show that Е[есИ/Т:г] =  cosh(cx), for any с > 0.
(b) Prove that

E[e~XTx] =  sech(\/2A:r), VA > 0.

Exercise 4.6.14 Denote by Mt =  Nt — Xt the compensated Poisson process 
and let с > 0 be a constant.
(a) Show that

X t =  есМ*-ЩеС- с~1) 

is an Tt-martingale, with Tt =  a(JVu; и < t ) .
(b) Let a >  0 and T =  inf{i >  0; Mt > a} be the first hitting time of the level
a. Use the Optional Stopping Theorem to show that

E[e-AsT] =  e~^s)a, s >  0,

where tp : [0, oo) —> [0, oo) is the inverse function of / ( x) =  ex — x — 1.
(c) Show that E[T] =  oo.
(d) Can you use the inverse Laplace transform to find the probability density 
function o fT ?

4.7 The Theorems of Levy and Pitman

This section presents two of the most famous results on Brownian motions, 
which are Levy’s and Pitman’s theorems. They deal with surprising equiva­
lences in law involving a Brownian motion and its maximum and minimum.

Let Wt be a standard Brownian motion and denote its running maximum
by

Mt — max Ws.
о < s < t
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Figure 4.4: The reflection principle for a Brownian motion.

From Exercise 4.3.10 the probability density of Mt is given by
2

Pt(x) =
y/brt

e 2t 5 x >  0.

Lemma 4.7.1 The joint density function of ([Wt,Mt) is given by

a < b, b > 0.
2(2b — a) (2 ь-а)2 

f (a ,b )=  \-------l e----- s -
y/brt3/2

Proof: Let a <b . Assume Mt > b, i.e. Ws takes values larger than or equal to 
b in the interval [0, t]. By the reflection principle, see Fig. 4.4, the Brownian 
motion reflected at the stopping time Tb is also a Brownian motion. The 
probabilities to increase or decrease by an amount of at least b — a are then 
equal

P(W t > 2b -  a \ Mt > b) =  P(W t < a \ Mt > b).
Multiplying by P(M t > b) and using the conditional probability formula yields 

P(W t > 2 b - a ,  Mt > b ) =  P{W t < a, Mt >  b). (4.7.17)

Conditions Wt > 2b — a and 2 b — a > b  imply Mt > b, so 

P{M t > 6 1 Wt > 2 b -a )  =  1.

Then the left side of (4.7.17) can be computed as

P(W t > 2b -  a, Mt > b) =  P(W t > 2  b -  a)P(M t >b\W t > 2 b - a )
=  P(W t > 2 b - a )

1 x 2
— - /  e 2t dx.

V2nt J2b—a
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Substituting into (4.7.17) implies
 ̂ ГОО 2̂

P(W t <  a, Mt > b) =  ■ r  /  e~ if dx.
V^TTt J2b—a

The associated probability density f(a , b) can be obtained by differentiation

P ( w t G (a, a — Да), Mt G (b,b +  Ab)
f(a , b) =  — lim lim —----------------------— ——Да—>-0 АЬ-лО Да Ab

д2

2(26 — а) (2ь-а)2 . e zt
V2irt3

The following equivalence in law was found by Levy [33] in 1948.

Theorem  4.7.2 The processes Xt =  Mt — Wt and \ Wt\, t >  0 have the same 
probability law.

Proof: The probability density of \Wt\ is given by Exercise 4.3.11 (a)
2 x 2

Pt(x) =  —---- e~ x >  0. (4.7.18)
\ 2iTTt

Using a direct computation and Lemma 4.7.1 we shall show that X t =  Mt — Wt 
also has the density (4.7.18). For и >  0 we have

P {X t < u )  =  P(M t — Wt <  u) =  J j f (x , у ) dx dy
{ 0 < y —x < u , y > 0 }

=  h ~ h ,
with

h  =  / /  f{x ,y )d xd y , I2 =  /  /  f {x ,y )  dxdy.
{ y  — x < u , y >  0 }  {0< 7/< ж }

This writes the integral over a strip as a difference of integrals over the interior 
of two angles, see Fig. 4.5(a). A great simplification of computation is done 
by observing that the second integral vanishes

П Х
f (x ,y )  dydx

r ° °  f X ( 2 y - x ) 2
/ / (2у — x)e 2t dy dx

Jo Jo
y/brt3/2

_ l ___  r ° ° r
\fbit?l2 Jo J -

OO rx  2* z
ze~zt dz dx =  0,
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*>

г  / У' = *y = (,x + u)/2^

с / /о Б

-и и

Figure 4.5: (a) The integration strip for the proof of Levy’s theorem, (b) The 
domains Daoc , Daob , and D abc for the proof of Pitman’s theorem.

as an integral of an odd function over a symmetric interval. Next we shall 
compute the first integral

/ 1 / 00 ru-\-x
/  /  (x, y) dy dx 

-u JO
roc ru-vx (2a-*)2
/ / (2у — x)e 2t dy dx 

J—u Joл / » / 2 J —
2 °̂° f ( 2u + x ) /V 2t/00

-u J —:
ze 2 dzdx,

у/2-Kt J—и J—x/Vzt

where we substituted z — 2y — x. Changing the variable in r =  z2. we get
roo r(2u+x)2 / (2t)

\fbrt J-u Jx2/(2t)

■ Т = Г ( ‘У/Ы J-u '

h  = e r dr dx

x 2 (2 u + x )2
e и -  e 2* аж

i Г  - J ,  1 [  —  .
=  . / e  21 d x ----- ;--------- / e  21 dv

\fbvt J-u \Jbrt Ju—u
u  -  _ = ^ _____ . e  21 dx =  . I e 2t dx.

y/2?ct J-u v27rt Уо
1 Г

'Ш, J - ,

r OO 2
I

y/brt j  и
2 Г  x2

Therefore P (X t < u) — I\ =  / Qu e at dx. Differentiate with respect to 
we obtain the probability density of Xt

№ (« )  =  =  Tt[  e - i d x

u

du
2 _yle 2t } и >  0,

\Z2irt
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which matches relation (4.7.18).
Denote the running minimum of a Brownian motion Wt by

mt =  min Ws.
о  < s < t

Corollary 4.7.3 Let Bt be a Brownian motion. Then the processes Yt — 
Bt — mt and \Bt\, t >  0 have the same probability law.

Proof: Consider the reflected Brownian motion Wt =  —Bt. Then Wt =  \Bt\ 
and Bt — m-t =  Mt — Wt- Applying Theorem 4.7.2 for Wt implies the desired 
result. I

It is worth concluding that the processes Wt \, Mt and Mt — Wt have the 
same law.

Before getting to the second result of this section, we shall recall a few 
results. The 3-dimensional Bessel process Rt is the process satisfied by the Eu­
clidean distance from the origin to a 3-dimensional Brownian motion W  (t) =

In the following we present another striking identity in law, similar to Levy’s, 
which was found by Pitman [38] in 1975.

Theorem  4.7.4 The process Zt =  2Mt — Wt, t >  0 is distributed as a 3- 
dimensional Bessel process Rt.

Proof: We shall follow the same idea as in the proof of Theorem 4.7.2. Let 
и >  0 and consider the domains, see Fig. 4.5(b).

(W1{t),W 2(t),W 2(t)) in M3

Rt = Vwi(t)2 + w2{ty + w2{tf.
Its probability density is given by Proposition 3.7.1

(4.7.19)

D aoc  =  {2y -  x <  u,y >  0,x <  y}  

D aob  =  {0 <  >  y}

D abc  =  {2y — x <  u,y >  0}.

The probability function of Zt can be evaluated as

P(2Mt -  Wt < u) =  f (x ,y )  dxdy (4.7.20)

f(x ,y )d x d y  -  I I  f ( x , y) dx dy

h(u) -  I2{u).
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We note first that the second integral vanishes, as an integral of an odd func­
tion over a symmetric interval

f U f X 2 (2y-x)2

h i u )  =  I  L  т ш ^ { 2 у ~ х )е ~ я  i y d x
1 f u f x £=  .—  o ln / ze^t dz dx =  0.

J-x

The first integral is computed using the substitutions z =  2y — x  and r =  z2

Ги /•(*+“ )/2 2 
h(u ) =  rz- q/0 №  ~ x)e 21 dydx

J-u Jo

s/brt3/' 
t

\fbtt3!2

i Г  Г  *1 , , i г г=—— / ze^t dz dx =  — .—  „ . / /
rrt3/ 2 J-u J - x 2у/2ттt3/ 2 J-u Jx

e 21 dr dx
2

\[bst3l2 J -

L

dx

1 Г  2=  . / e к d x ----- -==ue 2t
x/27rt J-u V27rt

2 / Г=  .—  i / e ы dx — ue Ы >.
V M t J o  J

Differentiate using the Fundamental Theorem of Calculus and the product 
rule to obtain

d  ̂ / \ 2 о ц2

Using (4.7.21) yields

— h(u ) = ..— - u e 21 .du 72^ 3/2

which retrieves the density function (4.7.19) of a 3-dimensional Bessel process, 
and hence the theorem is proved.

Corollary 4.7.5 The process Wt—2rrit, t >  0 is distributed as a 3-dimensional 
Bessel process Rt-

Exercise 4.7.6 Prove Corollary 4-7.5.
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4.8 Limits of Stochastic Processes

Let (Xt)t>о be a stochastic process. We can make sense of the limit expression 
X  =  lim Xt, in a similar way as we did in section 2.14 for sequences of random

t —У OO

variables. We shall rewrite the definitions for the continuous case.

Almost Certain Limit The process X t converges almost certainly to X , if 
for all states of the world u>, except a set of probability zero, we have

lim X t(u) =  X(w).
t—>oo

We shall write ac-lim Xt =  X . It is also sometimes called strong convergence.t—y oo

Mean Square Limit We say that the process X t converges to X  in the mean 
square if

lim E[(Xt -  X )2} =  0.
t—»oo

In this case we write ms-lim Xt =  X .
t —> OO

Limit in Probability The stochastic process Xt converges in probability to 
X  if

lim Р(ш\ \Xt(u>) -  X {w )I > e) =  0.t—>oo

This limit is abbreviated by p-lim Xt — X.
t—>00

It is worth noting that, like in the case of sequences of random variables, 
both almost certain convergence and convergence in mean square imply the 
convergence in probability, which implies the limit in distribution.

Limit in Distribution We say that Xt converges in distribution to X  if for 
any continuous bounded function <p(x) we have

lim E[ip(Xt)]=E[<p(X)].
t —¥ OO

It is worth noting that the stochastic convergence implies the convergence in 
distribution.

4.9 Mean Square Convergence

The following property is a reformulation of Proposition 2.14.1 in the contin­
uous setup, the main lines of the proof remaining the same.

Proposition 4.9.1 Consider a stochastic process X t such that EpTj] -> k, a 
constant, and Var(Xt) —> 0 as t -> oo. Then ms-lim Xt — k.

t—>oo
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It is worthy to note that the previous statement holds true if the limit to 
infinity is replaced by a limit to any other number.

Next we shall provide a few applications.

Application 4.9.2 If а >  1/2, then
Wtms-lim —  =  0 .

t—too ta

Proof: Let X t =  Then E[Xt] =  =  0, and

V arlx t\ =  ^ V a r [W t] =  ^  =  

for any t >  0. Since 2a- i  ~ as  ̂ ° ° ’ аРР̂ У̂ пё Proposition 4.9.1 yields
, Wt n 1ms-lim —  =  0. ■

t->-oo t a

WtCorollary 4.9.3 We have ms-lim —  =  0.
t—► OO t

Application 4.9.4 Let Zt =  f* Ws ds. If f3>  3/2, then

ms-lim -J- =  0 .t—ЮО t “

Proof: Let X t =  Then EpQ] =  — 0, and

1 t3 1
Var[Xt} =  ^ V a r [Z t] =  ^  =  ^ = 3 ,

for any t >  0. Since ^2/3-3 ® as  ̂ 00’ aP P ^nS Proposition 4.9.1 leads 
to the desired result. ■

Application 4.9.5 For any p > 0, с > 1 we have
e  W t -c t

ms-lim ---------=  0 .
t—* OO tP

e Wt - c t  e Wt
Proof: Consider the process X t = ----------------= ------------7 .  Sincej  Г tp tpe ct

E[Xt] =  =  —  =  — -»  0, as t —»■ 00
1 J tpect tPect ei.c-\)ttP

_  Var[eWt] __ e2t- e b _  1 /  1 1 \
Var[Atj -  t 2pe 2ct ~  t2pe 2ct ~  i2 p \ e 2 t {c - l )  g t ( 2 c - l ) )  ’

as t —> 00, Proposition 4.9.1 leads to the desired result. I
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A pplication 4.9.6 Show that
max Ws

^  0< s < tms-hm ------------=  0 .t—»oo t

max Ws
Proof: Let X t =  -----. Since by Exercise 4.3.10

E [max Ws\ =  0
0< s < t

Var( max Ws) =  2Vt,
о < s < t

then

E[Xt] =  0
2 ft

Var[Xt] =  —2-----  ̂O’ t —> oo.

Apply Proposition 4.9.1 to get the desired result.

Rem ark 4.9.7 One of the strongest results regarding limits of Brownian mo­
tions is called the law of iterated logarithms and was first proved by Lamperti:

Wthm sup — •. — =  1, 
t^00 \J41 ln(lnt)

almost certainly.

Exercise 4.9.8 Find a stochastic process X t such that the following both con­
ditions are satisfied:

(г) ms-lim Xt =  0t—>oo
(гг) ms-lim X ? ф 0.

t—>oo

Exercise 4.9.9 Let X t be a stochastic process. Show that

ms4im X t =  0 ms4im \Xt \ =  0.
t—>oo t—»oo

4.10 The Martingale Convergence Theorem

We state now, without proof, a result which is a powerful way of proving the 
almost sure convergence. We start with the discrete version:
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Theorem  4.10.1 Let X n be a martingale with bounded means

3M > 0 such that E[|Xn|] < M , Vn > 1. (4.10.21)

Then there is a random variable L such that os-lim X n =  L, i.e.
n—>oo

P (uj; lim Х п(ш) =  L(w)) =  1.
n—>oo

Since E[|X„|]2 <  E[X2], the condition (4.10.21) can be replaced by its stronger 
version

3M  >  0 such that E[X2] < M, Vn > 1.
The following result deals with the continuous version of the Martingale 

Convergence Theorem. Denote the infinite knowledge by J-^ — <r̂  Ut J7/ j .

Theorem  4.10.2 Let X t be an Tt-martingale such that

3M  >  0 such that E[|Xt|] < M, Vt > 0.

Then there is an -measurable random variable X ^  such that X t —> X ^
a.s. as t —̂ oo.

The next exercise involves a process that is as-convergent but is not ms- 
convergent.

Exercise 4.10.3 It is known that X t — is a martingale. Since

E[|Xt|] =  Е[ет ~г/2} =  e~t/2E[eWi] =  =  1,

by the Martingale Convergence Theorem there is a random variable L such 
that Xt —> L a.s. as t —» oo.

(а) What is the limit L ? How did you make your guess ?
(б) Show that

E[\Xt -  1|2] =  Var(Xt) +  (E {X t) -  l ) ' .

(c) Show that Xt does not converge in the mean square to 1.
(d) Prove that the sequence X t is as-convergent but it is not ms-convergent.

Exercise 4.10.4 Let Xt =  Wt +  1, where Wt is a Brownian motion and 
consider

T  =  inf{t > 0;Xt < 0}.

(a) Is T a stopping time?
(b) Is Yt =  X tm o, continuous martingale ?
(c) Show that E[Yt] =  1, Vi > 0.
(d) Verify the limit as-limt_>.oo Yt =  0.
(e) Is this contradicting the Optional Stopping Theorem?
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4.11 Quadratic Variation

In order to gauge the roughness of stochastic processes we shall consider the 
sum of fc-powcrs of consecutive increments in the process, as the norm of the 
partition decreases to zero.

Definition 4.11.1 Let X t be a continuous stochastic process on Q, and к > 0
(к)be a constant. The kth variation process of Xt, denoted by (X ,X )l is defined 

by the following limit in probability
n— 1

<X,X)!fc)M  =  p- lim ^  \XU+I(u) -  X ti(u)\k,
m ax, |ti + i —ti|

where 0 =  t\ < t2 < ■ ■ ■ < tn =  t.
If к =  1, the process (X ,X )^  is called the total variation process of Xt- 
For к =  2, (X ,X )t =  (X ,X )^  is called the quadratic variation process of

x t.
It can be shown that the quadratic variation exists and is unique (up to in- 
distinguishability) for continuous square integrable martingales X t, i.e. mar­
tingales satisfying Xq =  0 a.s. and 1E[X2] < oo, for all t >  0. Furthermore, 
the quadratic variation, (X ,X )t, of a square integrable martingale X t is an 
increasing continuous process satisfying

(0  (X ,X )o= 0 -,
(a) X ? - ( X , X ) t is a martingale.

Next we introduce a symmetric and bilinear operation.

Definition 4.11.2 The quadratic covariation of two continuous square inte­
grable martingales Xt and Yt is defined as

{X ,Y )t =  \ ( {X  +  Y ,X  +  Y )t -  {X  -  Y ,X  -  Y )t) .

Exercise 4.11.3 Prove that:
(a) (X ,Y )t =  {Y ,X )f,
(b) (aX  +  bY, Z )t =  a(X, Z )t +  b(Y, Z )t.

Exercise 4.11.4 Let Mt and Nt be square integrable martingales. Prove that 
the process MtNt — (M, N)t is a martingale.

Exercise 4.11.5 Prove that the total variation on the interval [0, t\ of a Brow­
nian motion is infinite a.s.

We shall encounter in the following a few important examples that will be 
useful when dealing with stochastic integrals.
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4.11.1 T h e  qu adratic  variation  o f  Wt

The next result states that the quadratic variation of the Brownian motion 
Wt on the interval [0, T\ is T. More precisely, we have:

Proposition 4.11.6 Let T  > 0 and consider the equidistant partition 0 =  
to < ti <■■ ■ in_i < tn =  T. Then

(4.11.22)

Proof: Consider the random variable

71— 1

=  ^ ( ^ i  -  W*i
i=0

Since the increments of a Brownian motion are independent, Proposition 5.2.1 
yields

n—1 n— 1

E[Xn] =  {(Wu+1 ~ W u)2} =  Y , ^ - ^  
i=0 i=0 

=  tn - t 0 =  T\

П — 1 n—1

Var(Xn) =  Y JVar[{Wti+1- W ti)2] =  Y J^U+i - t if
i=о

=  n ■ 2

i=0
T \2 2 T2

&  = n

where we used that the partition is equidistant. Since X n satisfies the condi­
tions

E[Xn] =  T, Vn >  1;
Var[Xn] —> 0, n —̂ oo,

by Proposition 4.9.1 we obtain ms-lim X n =  T, or
77.—>00

77,-1

ms-lim ^ ( W ti+1 - W ti)2 =  T.
г= 0

(4.11.23)
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Since the mean square convergence implies convergence in probability, it 
follows that

n—1
p-lim Y ,{W ti+l- W ti?  =  T,n—>00 г=0

i.e. the quadratic variation of Wt on [0, T] is T.

Exercise 4.11.7 Prove that the quadratic variation of the Brownian motion 
Wt on [a, b] is equal to b — a.

The Fundamental Relation dW2 — dt The relation discussed in this section 
can be regarded as the fundamental relation of Stochastic Calculus. We shall 
start by recalling relation (4.11.23)

n—1
ms-lim Y { W ti+1 -  W tif  =  T. (4.11.24)

71—> OO ^ '  
i=0

The right side can be regarded as a regular Riemann integral

T = [ Tdt,
Jo

while the left side can be regarded as a stochastic integral with respect to dWf

rT  n —1

[  (dWt)2 =  ms-lim V (W t i+1 -  Wt
n п —ю о  ^—‘,yu i=0

Substituting into (4.11.24) yields

[  (,dWt)2 =  f  dt, VT > 0. 
Jo Jo

The differential form of this integral equation is

dW? =  dt.

In fact, this expression also holds in the mean square sense, as it can be inferred 
from the next exercise.

Exercise 4.11.8 Show that
(а) E [dW? -  dt] =  0;
(б) Var(dWt — dt) =  o(dt);
(c) ms-lim (dWf — dt) =  0.

dt̂ t 0
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Roughly speaking, the process rill7,2, which is the square of infinitesimal in­
crements of a Brownian motion, is deterministic. This relation plays a central 
role in Stochastic Calculus and will be useful when dealing with Ito’s lemma.

The following exercise states that dt dWt =  0, which is another important 
stochastic relation useful in Ito’s lemma.

Exercise 4.11.9 Consider the equidistant partition 0 =  to <  t\ < ■ ■ ■ tn-\ < 
tn =  T. Show that

71— 1

ms-lim У '(W ti+1 -  Wu)(ti+i -  U) =  0. (4.11.25)
71—>O G  z ----- '

i= 0

4.12 The Total Variation of Brownian Motion

The total variation of a Brownian motion Wt is defined as

71— 1

V(Wt) =  s u p Y J\Wtk+1- W tk\, 
tk k= о

for all partitions 0 =  to < t\ < ■ ■ ■ < tn~i < t n =  T. Without losing generality, 
we may assume the partition is equidistant, i.e. tk+\ — tk =  Equivalently,

V(W t) =  lim Yn,
71—>00

where
71 — 1 

fc=0

Using Exercise 3.1.15 and the independent increments of the Brownian motion 
provides the mean and variance of the random variable Yn

71— 1  П Г П - 1/ 2 r2nT
- j 2 V ( t k+i - t k) =  J —

f c = U  k = 0

n—l 2 , n~ i
a2 =  Var{Yn) =  Y,Var[\W tk+1- W tk\] =  { l - - ) Y J(tk+i - t k) 

-  0
7 Г /k=0 k=0

1 -  - ) t .

Since
{w; Yn(uj) <  /i — ка} С {w; \Yn(u>) — ц\ >  ка}
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Tchebychev’s inequality, Theorem 2.13.10, provides

P{Yn < ц - к а )  < P(\Yn -  ц\ > ка) < , V/c > 1.

This states that the probability of the left tail is smaller than the probability 
of both tails, the second being bounded by p .  Using the probability of the 
complement event, the foregoing relation implies

Р(Уп > M -  ка) > 1  -  Vk >  1.

Substituting for /i and a yields

Considering к =  y/n, we get

P (Y n > Cy/^j >  1 -  Vn > 1,

where

Then for any constant M  > 0, there is an integer n such that С>/п < M  and 
hence

Р(УП > M ) > p (Y n > C V n) >  1 -  Vn > no.

Taking the limit over n yields

lim P(Yn > M )  =  1.n—>oo

Hence, the total variation of a Brownian motion is infinite, almost surely

P(V (W t) =  oo) =  1.

The rest of this chapter deals with similar properties regarding quadratic 
variation of compensated Poisson process and can be skipped at a first reading.

4 .12.1 T h e  qu adratic  variation  o f  Nt — Xt

The following result deals with the quadratic variation of the compensated 
Poisson process Mt =  Nt — Xt.
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Proposition 4.12.1 Let а < b and consider the partition a — to <t\ < ■ ■ ■ < 
tn-1  < t n =  b. Then

n—1

ms- lim ~ M t k f  =  N b ~ N a,
l | A n H °  k = Q

(4.12.26)

where ||ДП|| :=  sup (tk+1 - t k).
0<fc<n—1

Proof: For the sake of simplicity we shall use the following notations 

A tk =  tk+1 -  tk, AM k =  Mtk+1 -  Mtk, AN k =  Ntk+1 -  Ntk. 

The relation we need to prove can also be written as
n —1

ms-lim Y ,  [(AM fc)2 -  ANk] =  0.
fc=0

Let
Yk =  (AM k)2 -  ANk =  [AM k)2 -  AM k -  AA tk. 

It suffices to show that
n—1

fe=0
n —1

=  0,

=  °-fc=0

(4.12.27)

(4.12.28)

The first identity follows from the properties of Poisson processes (see Exercise 
3.8.9)

n—1 n—1 n—1

k=0
e [ Y y }̂ = ^ о д  = х ;е[(лм )̂2] - е[ ANd 

’ ~ k=0 k=0 
n—1

=  У^(АД^ — A A tk) =  0.
k= о

For the proof of the identity (4.12.28) we need to first find the variance of Yk.

Var[Yk] =  Var[(AM k)2 -  (AM k +  XAtk)] =  Var[{AM k)2 -  AM k]
=  Var[(AM k)2} +  Var[AMk] -  2Cov[AMl, AM k] 

tl— \Atk +  2\~At\ +  A A tk

E[(AMfc)3] -  E[(AMfc)2]E[AMfc]

=  2A2(A tk)2,
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where we used Exercise 3.8.9 and the fact that Е[ДМц] =  0. Since Mt is a 
process with independent increments, then Cov[Yk, Yj] =  0 for i Ф j. Then

n—1 n—1 n—1

V a r ^ Y k ]  =  УагШ  +  2 X  CovlYk:Yj] =  J 2  Var\Yk\ 
k=0 k=0 k= 0 

n —1 n —1

=  2A2 ]T (A t k)2 < 2A2||An|| ^  A tk =  2A2(b -  a)||An||, 
k=0 k=0

n—1

and hence Var [ 5 > ]  -> 0 as ||An|| —> 0. According to the Proposition
fe=o

2.14.1, we obtain the desired limit in mean square. ■
The previous result states that the quadratic variation of the martingale 

Mt between a and b is equal to the jump of the Poisson process between a and
b.

The Relation dMf =  dNt Recall relation (4.12.26)

n —1

ms- lim̂  Y X M tk+1 -  Mtk )2 =  Nb -  Na. (4.12.29)
fc=0

The right side can be regarded as a Riemann-Stieltjes integral

Nb ~ N a =  [ Ъ dNt,
J a

while the left side can be regarded as a stochastic integral with respect to 
{dMtf

/ ,ь n- 1
(,dMt)2 :=  ms-?limo 5 I (M tjc+1 -  Mtfc)2. 

fe=o
Substituting in (4.12.29) yields

I"'(dMt)2 =  f  dNt,
J a J a

for any a < b. The equivalent differential form is

(dMt)2 =  dNt. (4.12.30)

The Relations dt dMt =  0, dWt dMt =  0 In order to show that dt dMt =  0 
in the mean square sense, we need to prove the limit

n —1

ms-lim ^ 2 (tk+1 — tk)(M tk+1 -  Mtk) =  0. (4.12.31)
n—t OO

k=0
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This can be thought of as a vanishing integral of the increment process dMt 
with respect to dt

dMt dt =  0, Va, b £
tа

Denote
n—1 n—1

X n =  ^ (£ fc+i — tk){Mtk+1 — Mtk) =  ^  A tkAM k. 
k=0 k=0

In order to show (4.12.31) it suffices to prove that

1. ЩХп] =  0;

2. lim Var[Xn} =  0.
n — >■ OO

Using the additivity of the expectation and Exercise 3.8.9 (b)

n—1 n—1

E[Xn] =  E  [ A AtfeE[AMfc] =  0. 
k=0 k=0

Since the Poisson process Nt has independent increments, the same property 
holds for the compensated Poisson process Mt. Then A tkAM k and A tjAM j 
are independent for А: ф j . and using the properties of variance we have

n—1 n—1 n—1

Var[Xn} =  V a r [Y ,  ^ k A M k] =  ]T (AAfc)2V ar[AMk] =  A ^ (A A fc)3, 
k=0 k=0 fc=0

where we used

Var[AMk\ =  E[(AMk)2} -  (E[AMk})2 =  AA tk,

see Exercise 3.8.9 (b). If we let ||Ara|| =  maxAA^, then
к

П — 1 71— 1

Var[Xn} =  A ^ ( A tkf  <  A||A„||2 ^  A tk =  A(b -  a)||An||2 -> 0 
k=0 fc=0

as n —̂ oo. Hence we proved the stochastic differential relation

dtdMt =  0. (4.12.32)

For showing the relation dWt dMt =  0, we need to prove

ms-lim Yn =  0, (4.12.33)
71—^OO
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where we have denoted
n—1 n—1

^  =  ^ (W fc+1 -  Wk)(M tk+1 - M tk) =  J 2 & W kAM k. 
k=0 k=0 

Since the Brownian motion Wt and the process Mt have independent incre­
ments and Д Wk is independent of AM k, we have

n —1 n —1

E[Yn] =  ^ 2  E[AWkAMk] =  ^ E [A W *]E [A M fc] =  0, 
fc=0 fc=0

where we used E[AHfc] =  E[AMk\ =  0. Using also E[(AlVfc)2] =  A tk, 
E[(AM k)2] =  ЛАtk, and invoking the independence of A Wk and A Mk, we 
get

Var[AWkAM k] =  E[(AWk)2(AM k)2} -  (E[AWfcAM fe])2

=  E[(AWfc)2]E[(AMfc)2] -  E [A ^ ]2E[AA4]2 

=  A(A tk)2.

Then using the independence of the terms in the sum, we get
n—1 n—1

Var[Yn} =  J 2 Var[Aw kAM k\ = A ^ ( A t fc)2 
k=0 k=0 

n —1

< A||An|| Atfc =  A(b — a)||An|| —> 0, 
fc=0

as n —> oo. Since Yn is a random variable with mean zero and variance 
decreasing to zero, it follows that Yn —> 0 in the mean square sense. Hence we 
proved that

dWt dMt =  0. (4.12.34)

Exercise 4.12.2 Show the following stochastic differential relations:
(a) dt dNt =  0; (b) dWt dNt =  0; (c) dt dWt =  0;
(d) (dNt)2 =  dNt; (e) (dMt)2 =  dNt] ( / )  (dMt)A =  dNt.

The relations proved in this section are useful when developing stochastic 
models for a stock price that exhibits jumps modeled by a Poisson process. 
We can represent all these rules in the following multiplication table:

X dt dWt dNt dMt
dt 0 0 0 0

dWt 0 dt 0 0
dNt 0 0 dNt dNt
dMt 0 0 dNt dNt



Chapter 5

Stochastic Integration

This chapter deals with one of the most useful stochastic integrals, called the 
Ito integral. This type of integral was introduced in 1944 by the Japanese 
mathematician Ito [24], [25], and was originally motivated by a construction 
of diffusion processes. We shall keep the presentation to a maximum sim­
plicity, integrating with respect to a Brownian motion or Poisson process only. 
The reader interested in details regarding a larger class of integrators may con­
sult Protter [40] or Kuo [30]. For a more formal introduction into stochastic 
integration see Revuz and Yor [41].

Here is a motivation for studying an integral of stochastic type. The Rie- 
mann integral Ĵ  F(x) dx represents the work done by the force F  between 
positions x =  a and x =  b. The element F(x) dx represents the work done by 
the force for the infinitesimal displacement dx. Similarly, F(t) dWt represents 
the work done by F  during an infinitesimal Brownian jump dWt. The cum- 
mulative effect is described by the object F(t) dWt, which will be studied 
in this chapter. This represents the work effect of the force F  done along 
the trajectory of a particle modeled by a Brownian motion during the time 
interval [a, b].

5.1 Nonanticipating Processes

Consider the Brownian motion Wt. A process Ft is called a nonanticipating 
process if Ft is independent of any future increment Wt/ — Wt, for any t and 
t' with t < t!. Consequently, the process Ft is independent of the behavior of 
the Brownian motion in the future, i.e. it cannot anticipate the future. For 
instance, Wt, eWt, W 2 — Wt +  t are examples of nonanticipating processes, 
while Wt+i or \(Wt+i — Wt)2 are not.

Nonanticipating processes are important because the Ito integral concept 
can be easily applied to them.

117
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If Tt denotes the information known until time t, where this information is 
generated by the Brownian motion < t}. then any JVadapted process
Ft is nonanticipating.

5.2 Increments of Brownian Motions

In this section we shall discuss a few basic properties of the increments of a 
Brownian motion, which will be useful when computing stochastic integrals.

Proposition  5.2.1 Let Wt be a Brownian motion. If s <  t, we have
1. E[(Wt - W s)2] = t - s .
2. Var[(Wt -  Ws)2} =  2(t -  s)2.

Proof: 1. Using that Wt — Ws ~  N (0,t — s), we have 

E [{Wt -  Ws)2} =  E [{Wt -  Ws)2} -  (E [Wt -  Ws})2 =  Var(Wt - W s) =  t - s .

2. Dividing by the standard deviation yields the standard normal random

variable ^  ~  N (0,1). Its square, is ^2-distributed with 1
s/t — s t — s

degree of freedom.1 Its mean is 1 and its variance is 2. This implies 

- (W t -W s )2-'E 

V ar

t — s 
(Wt -  Ws)2

=  1 = *  E[(Wt -  Ws)2} =  t -  s;

=  2 = > V a r [ (W t -W s)2} =  2 ( t - s ) 2.

Rem ark 5.2.2 The infinitesimal version of the previous result is obtained by 
replacing t — s with dt

1. E[dW2} =  dt;
2. Var[dW?} =  2dt2 =  0.

Exercise 5.2.3 Show that
(a) E [(Wt -  Ws)4} =  3(t -  s)2;
(b) E[(Wi — Ws)6} =  15(t — s)3.

1A  x 2-distributed random variable with n degrees of freedom has mean n and variance
2 n .
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5.3 The Ito Integral

The Ito integral will be defined in a way that is similar to the Riemann in­
tegral. The Ito integral is taken with respect to infinitesimal increments of 
a Brownian motion, dWt, which are random variables, while the Riemann 
integral considers integration with respect to the deterministic infinitesimal 
changes dt. It is worth noting that the Ito integral is a random variable, while 
the Riemann integral is just a real number. Despite this fact, we shall see that 
there are several common properties and relations between these two types of 
integrals.

Consider 0 < а < b and let Ft =  f(W t,t ) be a nonanticipating process 
satisfying the “non-explosive” condition

E [/J а
Ft dt < oo. (5.3.1)

The role of the previous condition will be made more clear when we discuss 
the martingale property of the Ito integral, see Proposition 5.5.7. Divide the 
interval [a, b\ into n subintervals using the partition points

а =  t0 < ti < ■ ■ ■ < i < t n =  b, 

and consider the partial sums
n —1

Sn =  Y , F^ Wu+i - W u)-
i=0

We emphasize that the intermediate points are the left endpoints of each 
interval, and this is the way they should always be chosen. Since the process 
Ft is nonanticipative, the random variables Ftt and Wti+1 — Wtt are always 
independent; this is an important feature in the definition of the Ito integral.

The Ito integral is the limit of the partial sums Sn
f  ь

ms-lim Sn =  I Ft dWt,
n —> OO /J a

provided the limit exists. It can be shown that the choice of partition does 
not influence the value of the Ito integral. This is the reason why, for practical 
purposes, it suffices to assume the intervals equidistant, i.e.

(b — a)
— , i — 0, 1, ,77. 1.

n
The previous convergence is taken in the mean square sense, i.e.

rb \ 2n
lim E

n —>oo
(sn- f  Ft dWty =  0.
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Existence o f  the Ito integral
rb

It is known that the Ito stochastic integral / Ft dWt exists if the process
J а

Ft =  f (W t,t) satisfies the following properties:
1. The paths t —> Ft(u) are continuous on [a, b] for any state of the world

oo £
2. The process Ft is nonanticipating for t G [a, b];

3. E L
b

F 2 dt <  oo.

For instance, the following stochastic integrals make sense: 

rT rT  rb

Jo
W ?dW t, [ T sm(Wt)dW t, f  C° S(\Vt)~dWt. 

Jo Ja t

5.4 Examples of Ito Integrals

As in the case of the Riemann integral, using the definition is not an efficient 
way of computing integrals. The same philosophy applies to Ito integrals. We 
shall compute in the following two simple Ito integrals. In later sections we 
shall introduce more efficient methods for computing these types of stochastic 
integrals.

5.4.1 T h e  case Ft =  c, constant

In this case the partial sums can be computed explicitly

71— 1 TL—  1

Sn =  £  Fk (Wti+1 - w ti) =  J 2  -  Wu) 
i=0 i=0 

=  c(Wb - W a),

and since the answer does not depend on n, we have

rb

J a
CdWt =  C(Wb -  Wa).

In particular, taking с =  1, a =  0, and b =  T, since the Brownian motion 
starts at 0, we have the following formula:

dWt =  WT.
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5.4.2 T h e  case Ft =  Wt

We shall integrate the process Wt between 0 and T. Considering an equidistant
kTpartition, we take tk =  — , к =  0.1. • ■ • ,n  — 1. The partial sums are given by
n

n —1

Sn =  Y . W u{Wti+1- w u)-
i=0

Since
ХУ =  - j [ {x  +  y ) 2 - x 2 ~ y \

letting x  =  Wti and у =  Wti+1 -  Wti yields 

Then after pair cancelations the sum becomes

i=0 i=0 

= \ w l - \  E w .+. - ^

i=0

i—0

Using tn =  T, we get

1 1
Sn =  ^ W * - - J 2 ( W ti+1- W u

i=о

Since the first term on the right side is independent of n, using Proposition 
4.11.6, we have

n—1

ms-lim Sn =  \w% -  ms-lim \ У^(И^ -  Wti)2 (5.4.2)n-vm / n—Уоо Z —i=о

=  -W | -  -T .2 T 2
(5.4.3)

We have now obtained the following explicit formula of a stochastic inte­
gral:

/Jo

1 . 1,
Wt dWt =  - W f -  -T .

In a similar way one can obtain

/J а
w,dw, = -(wl-w2)
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It is worth noting that the right side contains random variables depending on 
the limits of integration a and b.

Exercise 5.4.1 Show the following identities:

5.5 Properties of the Ito Integral

We shall start with some properties which are similar to those of the Riciiian­
il ian integral.

Proposition  5.5.1 Let f(W t,t), g(W t,t) be nonanticipating processes and 
c £ l .  Then we have

1. Additivity:

(a) E [tfd W t} =  0;

(b) E [/0T WtdWt] =  0;

(c)

\f(Wu t) +  g(W t,t)]dW t =  f(W t,t)d W t +  9{Wt,t) dWt.

2. Homogeneity:

3. Partition property:

< и < T.

Proof: 1. Consider the partial sum sequences

n—1

i=0 
n—1

Yn =  Y ,9 ( WU,U){Wk + l- W ti).
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Since ms-lim X „ =
71— ^OO

Proposition 2.15.2 yields
[  f {W t,t) 

Jo
dWt and ms-lim Yn

71—»  OO
=  [  g(Wt,t) 

Jo
dWt, using

pTJ  (.f{W t,t) +  g{Wu tj)d W t

71— 1

=  E  (fiWuM + aiWu^yw^-Wu)
i=0

71— 1 71— 1

ms-Шп ( f (W ti,U)(Wti+1 -  Wu) +  $ > ( W i 4,ti)(Wk+1 -  Wu)
i—0 i= 0

=  ms-lim (X n +  Yn) =  ms-lim X n +  ms-lim Yn
71—> 0 0  71—> 0 0  71—^OO

= f  Jo
f(W t,t)dW t +  / g(Wt,t)dW t. 

Jo

The proofs of parts 2 and 3 are left as an exercise for the reader. ■

Some other properties, such as monotonicity, do not hold in general. It 
is possible to have a non-negative random variable Ft for which the random 
variable JQT Ft dWt has negative values. More precisely, let Ft =  1. Then 
Ft >  0 but f([ 1 dWt =  Wt is not always positive. The probability to be 
negative is P(W t < 0) =  1/ 2.

Some of the random variable properties of the Ito integral are given by the 
following result:

Proposition 5.5.2 We have
1. Zero mean:

E [ b f (W t,t)dWt
J a

=  o .

2. Isometry:

E ( J b f W , t ) d W ty ]  = E  [ J * f ( W t,t) dt

3. Covariance:
rb

E f(W t,t)dW t g(Wt,t)dW t =  E fJ a
f (W t,t)g(W t,t)dt

We shall discuss the previous properties giving rough reasons of proof. The 
detailed proofs are beyond the goal of this book.

1. The Ito integral I  =  J  ̂f(W t, t) dWt is the mean square limit of the partial 
sums Sn =  £Г=0 fu (w u+i -  Щ );  where we denoted f u =  f (W ti,ti). Since
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f(W t, t) is a nonanticipative process, then f ti is independent of the increments 
Wti+1 — , and hence we have

n—1 n—1

E[5„] =  v [ Y /fu(W ti+1- W ti) \ = J 2 n f t iW i+1- W ti)} 
2=0 2=0

n—1

i=о

because the increments have mean zero. Applying the Squeeze Theorem in 
the double inequality

0 <  (E[Sn -  I})*  <E [(Sn -  I )2} 0,

yields EfSVi] — E[J] —> 0. Since E[Sn] =  0 it follows that E[/] =  0, i.e. the Ito 
integral has zero mean.
2. Since the square of the sum of partial sums can be written as

n—1

s i  = Wti/i
г= 0  

n—1

=  ' £ f ? i(Wti+1- W ti)2 +  2 j 2 f t i(Wti+1- W ti) f tj(Wtj+1- W tj),
гфзг= 0

using the independence yields 
n—1

E[S2] =  ^ E [ / 2]E[(W t+, - W t ,
i= о
+ 2 ^ E [ / 4i]E[(Wts+1 -  Wti)]E[ftj]E[(Wtj+1 -  Wtj)\

n—1

=  - u

ft dt , where

»=0

nb r rb
which are the Riemann sums of the integral / E [f2] dt =  E /

J a J а
the last identity follows from Fubini’s theorem. Hence Е[52] converges to the 
aforementioned integral.

3. Consider the partial sums
n —1 n—1

Sn =  Vn =  ' £ i gtj{Wtj+1- W tj).
i= 0 3 = 0
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Their product is
n—1 n—1

SnVn = (  X  fu(W u+1 -  Wuj)  (  X  9t3 iWt]+1 -  Wtj] 
i=0 j=0 

n—1 n—1

= -  wu)2 + T, f^tAwu+i -w u){wtj+1 -w tj).
i=0 гф]

Using that ft and gt are nonanticipative and that

E[(WU+1 -  Wti)(Wtj+1 -  Wtj)\ =  E\Wti+1 -  Wu]E\Wtj+1 -  Wtj] =  0
E[(Wti+1 -  WtiY

it follows that
n—1

ЩЗД = J2Ê 9tM(Wti+1-w ti)2] 
i=0 
n—1

=  J 2 E l f n 9 u \ ( U + l  ~ U ) ,  
i=0

which is the Riemann sum for the integral E[ftgt] dt.

From 1 and 2 it follows that the random variable f  f (W t, t) d,Wt has mean 
zero and variance

Var [ b f(W t,t)dW t] = e [  f  f(W t,t)
Ja J a

' dt

From 1 and 3 it follows that

Cov ' f  f(W t,t)d W t, [ b g(Wt,t)dWt] =  f  E [f{W u t)g(Wt,t)]dt.
L J a J a J J a

Corollary 5.5.3 (Cauchy’s integral inequality) Let ft =  f (W t,t) and gt =  
g(Wt,t). Then

E[ftgt\ dtj < ( /  E [/t2] d t ) ( /  E \g2}dt).

Proof: It follows from the previous theorem and from the correlation formula 

\Carr{X,Y)\ =  [v £ x ) V n ( Y ) ] W  ~ L

Let Tt be the information set at time t. This implies that f ti and Wti+1 — 
Wtt are known at time t, for any tl+\ <  t. It follows that the partial sum
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71 — 1

Sn =  £  fti(Wti+1 — Wtl) is ^-measurable. The following result, whose proof
i=0

is omitted for technical reasons, states that this is also valid after taking the 
limit in the mean square:

Proposition  5.5.4 The Ito integral f* f s d,Ws is Ft-measurable.

The following two results state that if the upper limit of an Ito integral is 
replaced by the parameter t we obtain a continuous martingale.

Proposition 5.5.5 For any s <  t we have

rt
E [  f (W u,u)d\Vu\Fs] =  Г  f(W u,u) dWu 

Jo J Jo

Proof: Using part 3 of Proposition 5.5.2 we get

rt
E

=  E 

=  E

[  f (W u, u) dWu\Ts 
Jo

' Г  f(W u,u) dWu +  
l J о

f {W u,u)dW u\Fs

J  f(W u,

£  f(W u,u) dWu\Fs . (5.5.4)

Since fg f(W u,u)dW u is J^-measurable (see Proposition 5.5.4), by part 2 of 
Proposition 2.12.6

E Г  f(W u,u)dW u\Ts] =  Г  f(W u,u) dWu. 
Jo J Jo

Since f* f (W u, и) dWn contains only information between s and t, it is in­
dependent of the information set J~s, so we can drop the condition in the 
expectation; using that Ito integrals have zero mean we obtain

E I fJ S
f{W u,u)dW u\Fs =  E jf /(Wu’u) dWn =  0.

Substituting into (5.5.4) yields the desired result.

Proposition 5.5.6 Consider the process X t =  J* f (W s, s) dWs. Then X t is 
continuous, i.e. for almost any state of the world ш E £1, the path t —> X t(w) 
is continuous.
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Proof: A rigorous proof is beyond the purpose of this book. We shall provide 
just a rough sketch. Assume the process f (W t ,t) satisfies E[/(W t,t)2] <  M, 
for some M  >  0. Let to be fixed and consider h > 0. Consider the increment 
Yh =  X to+h — X t(). Using the aforementioned properties of the Ito integral we 
have

to~\-h
' =  0

- rtQ-f-n
E[Y)J =  E[Xt0+h- X t0] =  E /  f (W t, t) dWt

l Jt0

O rto+h  . 2-i rto~\~h
1 f(W t, t) dWt J =  /  E [f(W t,t)2]dt 
tn '  J Jtn'to 

pto+h
< M  dt =  Mh.

Jt0

The process Yfг has zero mean for any h >  0 and its variance tends to 0 as 
h 0. Using a convergence theorem yields that Yf, tends to 0 in mean square, 
as h 0. This is equivalent to the continuity of X t at to- ■

Proposition 5.5.7 Let X t =  Jo f(W s, s) dWs, with E [f™  f 2(Ws,s) ds] <
oo. Then Xt is a continuous Ft-martingale.

Proof: We shall check in the following the properties of a martingale. 
Integrability: Using properties of Ito integrals

E[Xt2] =  E [(J *  f (W s,s)dW sy ] = E [ J *  f 2(Ws,s)ds\
POO

< E [J  f 2(Ws,s)ds] <  oo,

and then from the inequality E[|X|]2 <  E[A42] we obtain E[|Xt|] < oo, for all 
t > 0.
Measurability: Xt is J^-nieasurable from Proposition 5.5.4.
Forecast: E [ A ( | =  X s for s < t by Proposition 5.5.5.
Continuity: See Proposition 5.5.6. ■

5.6 The Wiener Integral

The Wiener integral is a particular case of the Ito stochastic integral. It 
is obtained by replacing the nonanticipating stochastic process f(W t,t) by 
the deterministic function f(t ). The Wiener integral Jb f(t )  dWt is the mean 
square limit of the partial sums

n—1
Sn =  £ / & ) (  Wti+l-w u). 

i=0
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All properties of Ito integrals also hold for Wiener integrals. The Wiener 
integral is a random variable with zero mean

rb
E

and variance

/ m
J а

dWt

E f  f ( t )d w tY ]  =  [  f i t fd t .
a Ja

However, in the case of Wiener integrals we can say something more about 
their distribution.

Proposition 5.6.1 The Wiener integral 1 (f)  =  j [ ‘ f (t )  dWt is a normal ran­
dom variable with mean 0 and variance

Var [1(f)] =  f  f ( t ) 2 dt :=
J a

2
L2'

Proof: Since increments Wti+1 — Wlt are normally distributed with mean 0 
and variance ti+\ — ij, then

f(U )(W ti+1 -  Wti) ~  N (0J (U )\ ti+1 -  ti)).

Since these random variables are independent, by Theorem 3.3.1, their sum is 
also normally distributed, with

n—1 n—1

s n =  y , /& ) № + !  -  w u) ~  E  /(* i)2(*i+1 -  *<)) • 
i= 0  i= 0

Taking n —> oo and max ||ti+i ~ U\\ 0, the normal distribution tends to
i

rb
N (o , /  f ( t )2 d t j .

J  CL

The previous convergence holds in distribution, and it still needs to be shown 
in the mean square. However, we shall omit this essential proof detail. ■

Exercise 5.6.2 Let Zt =  J^Wgds.
(a) Use integration by parts to show that

Zt =  f \ t - s ) d W s.
Jo

(b) Use the properties of Wiener integrals to show that

Var(Zt) =
t 3

3
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Exercise 5.6.3 Show that the random variable X  =  f^ dWt is normally 
distributed with mean 0 and variance In T.

Exercise 5.6.4 Let Y  =  \fidWt- Show that Y is normally distributed 
with mean 0 and variance (T2 — l)/2.

Exercise 5.6.5 Find the distribution of the integral J^e1 s dWs.

Exercise 5.6.6 Show that Xt =  / 0*(2t — u)dWu andYt — fg(3t — 4u) dWu are

Formulate and prove a more general result.

5.7 Poisson Integration

In this section we deal with the integration with respect to the compensated 
Poisson process Mt — Nt — At, which is a martingale. Consider 0 < a < b and

let Ft =  F(t, Mt) be a nonanticipating process with

Consider the partition

a — to t\ ‘ ‘ ‘ tfi—i <C tn — b 

of the interval [a, 6], and associate the partial sums

n—1

Sn =  ' £ F ti_(M ti+1- M ti), 
i=0

Gaussian processes with mean 0 and variance |i3.

Exercise 5.6.7 Show that ms- udWu =  0.

Exercise 5.6.8 Find all constants 
normally distributed with variance t.

Exercise 5.6.9 Let n be a positive integer. Prove that
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where Ftl_ is the left-hand limit at . We note that the intermediate points 
are the left-handed limit to the endpoints of each interval. Since the process Ft 
is nonanticipative, the random variables Fk_ and Mk+1 — Mk are independent.

The integral of Ft~ with respect to Mt is the mean square limit of the 
partial sum Sn

fJo
ms-lim Sn =  I Ft- dMt,n—>00

provided the limit exists. More precisely, this convergence means that

■'(Sn - jf*  Ft-  dMtylim E
n —>00

2i
=  0.

Exercise 5.7.1 Let с
rb

be a constant. Show that / с dMt — с(Мь — Ma).
J a

5.8 The case Ft =  M t

We shall integrate the process M t- between 0 and T  with respect to Mt.
kT

Consider the equidistant partition points tk =  -----, к =  0,1, • • • , n — 1. Then
n

the partial sums are given by

71— 1

i=0

*y =  \[(x +  y '2 ™2 " ‘2
we get
Using xy =  - [ (x  +  y)2 -  x 2 -  y2}, by letting x =  Mu_ and у =  Mu+1 -  Mu,

Mti_(Mti+1 -  Mti) =  \(Mti+l- M ti+ M u_)2 - l- M l _ - l- {Mti+1- M tl)2.

Let J be the set of jump instances between 0 and T. Using that Mti =  Mti_ 
for t, ф J, and Mti =  1 +  Mti_ for t( G J yields

Mt.,, — Mt +  Mt. =(/г+1 иг ьг—
Mti+1, if ti<£J 
Mti+1 — 1, if ti G J.
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Splitting the sum, canceling in pairs, and applying the difference of squares 
formula we have

Sn - 5 E ( M ll+1 - M , , + M u 2 - i £ AC - 5 E ( M^ . - л а д 2
i=0 г=0 i=0

= \ - 1)2 + ^ E  mL  Ml~

n— 1

ti&J
n—1

t&j u$j u&j

-  I I—  X

=  ̂E (<M«« - ‘>2 - M<2-) + \м1 - \ Е(м,„ - Л4)
i=0

=0
n—1

+ 5 M<» ~  5 D M‘ .«  -  M ‘.>2 
i=0

i=0

Hence we have arrived at the following formula

£  Mt.  dMt =  h i *  -  l-N T.

Similarly, one can obtain

J M t -  dMt =  \(M* -  M l) -  ± ( N b -  No).

Exercise 5.8.1 (a) Show that E /
J a

Mt-  dMt =  0 .

(b) Find Var Гм
Ja

Mt dMt

Remark 5.8.2 (a) Let ш be a fixed state of the world and assume the sample 
path t —> Nt(oj) has a jump in the interval (a, b). Even if beyond the scope of 
this book, it can be shown that the integral

f  Nt(u) dNt
J a

does not exist in the Riemann-Stieltjes sense.
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(b) Let Nt- denote the left-hand limit of Nt. It can be shown that Nt-  is 
measurable, while Nt is not.

The previous remarks provide the reason why in the following we shall
rb

work with Mt-  instead of Mt'. the integral / MtdNt might not exist, while
Jab

Mt-  dNt does exist.L
Exercise 5.8.3 Show that

rT
[  Nt-  dMt =  l (N f  - N t) -  X [  Nt dt. 

Jo z Jo

Exercise 5.8.4 Find the variance of

rT

JJo
Nt _ dMt.

The following integrals with respect to a Poisson process Nt are considered 
in the Riemann-Stieltjes sense. The following result can be found in Bertoin 
[6].

Proposition 5.8.5 For any continuous function f  we have
rt rt

(a) E [  f (s )  diVsl =  A [  
Jo J Jo

f ( s )  ds;

(b) E [ (  £  f(s)  dNs)  2] =  A J* f (s )2 ds +  A2 (  J * f(s) ds)2-

(с) E /0‘ / (s W |  =  p\ft(efW-l)ds

Proof: (a) Consider the equidistant partition 0 =  so < si < • • • < sn =  t, 
with Sfc+i — Sfc =  As. Then

E f mJo

n—1

=  ~ N °i)  
t=0

n—1
lim У * f (s j )En—too i=0

n
lim y ^ / ( s*)(si+i -  Si) =  X /  / (s )  ds.

Jo

NSi+1 -  NSi

=  X
i= 0
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(b) Using that Nt is stationary and has independent increments, we have 
respectively

E[(NSi+1- N sf ]  =  E[iVg.+1_gj] =  A(sj+1 — Si) +  A2(sj+1 — s*)2

=  A As +  A2( A s)2,

4 (N Si+1 -  Nat)(N Si+1 -  NSj)] =  E[(iVSi+1 -  NSi)]E[(NSj+1 -  NSj)\

=  A(sm  -  Sj)A(sJ+i -  Sj) =  A2(A s)2.

Applying the expectation to the formula

72 — 1 77, —1

(  £  f(si)(N Si+1 -  Naij)  =  f ( si)2(Nsi+i -  Ns
i=0 i= 0

+2 Y ^ f (s i ) f (Sj)(NSi+1 — NSi) {NSj+1 — Ns

yields

72 — 1

^ [ (^ 2 f ( s i ) (N ai+1- N ai 
i=0

72—1

— ^ 2  / ( si)2(^As +  A2(As)2) +  2 'y^ f (s j) f (s j)\ 2(A&
i=о

72—1

i¥=j
72—1

2=0

72—1

Л / ( S*)2AS +  Д2 Ц  f ( si)2(A s)2 +  2 f ( Si ) f (Sj ) (A s)
i=0 

n—1

i¥=0

* f ( si)2/As+ л2 ( A sj 
i=0 i=0

A f f ( s )2 ds +  A2  ̂ f f (s )  ds'j , as n —> oo.

(c) Using that Nt is stationary with independent increments and has the
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moment generating function K[ekNt] =  ex(ek l'>t. we have

E J t f ( s ) d N s

— lim EП—>00

n—1

=  lim E '
П —УOO

M s i ) (N Si+1- N Si)

i= 0
n —1 n—1

=  lim T T E  =  lim TT E  e /(s<)(jvw - si)
П -4 -О О  П —> OO J -

i = 0 
n —1

г=0

=  lim [ T e¥ (s‘ )-I)(*i+1-Si) =  lim eA E ^ (e /W -l)(Sl+l - Sl)
n —>00 n —>00

г= 0

=  eA/o(e/(s)-l)<is_

Since /  is continuous, the Poisson integral / f(s )d N s can be computed
Jo

in terms of the waiting times
Nt

[  f(s )d N s =  T f ( S k). 
Jo k=i

This formula can be used to give a proof for the previous result. For instance, 
taking the expectation and using conditions over Nt =  n, yields

E Л<Jo
s)dN.

Nt

E [ E  я 5*)] =  E  E [ E  =  n] p (N t =  n)
fc=l n >  0 fc=l

Y . - t [ ‘ f ( x ) d J x , r
tXn 1 Jo

=  e

n>  0 

-X t

n\

=  e- A  t

JU  n > 0  v ’

[  f (x )  dx Xext =  X [  / (  
Jo Jo

x ) dx.

Exercise 5.8.6 Solve parts (b) and (c) of Proposition 5.8.5 using a similar 
idea with the one presented above.

Exercise 5.8.7 Show that 

E ( J *  f(s )d M sy ]  = A j f / ((s)2 ds,

where Mt =  Nt — Xt is the compensated Poisson process.
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Exercise 5.8.8 Prove that
rt

У а г ( ^  f(s )d N s^ = \ J ^  f ( s )2 dNs.

Exercise 5.8.9 Find
E ej о

Proposition 5.8.10 Let Tt =  cr(Ns;0 <  s < t ) .  Then for any constant c, the 
process

Mt =  ecNt+H^-ec)t̂  t >  о

is an Tt-martingale.

Proof: Let s < t. Since Nt — Ns is independent of Ts and Nt is stationary, 
we have

Е[ес(лг* ^ )| ^ ]  =  E[ec(Ar‘ _iVs)] =  E[ecJVt_s]
—  e (̂eC- 1)(t-s)_

On the other side, taking out the deterministic part yields

Е[ес(лг‘ “ ^)|7;] =  e~cNsK[ecNt \T .̂

Equating the last two relations we arrive at
Е[есЛГ‘ +(1' еС)<|7 ;] — ecArs+A(l-ec)s

which is equivalent to the martingale condition E[Mt\Ts\ =  Ms. I
We shall present an application of the previous result. Consider the waiting 

time until the nth jump, Sn =  inf{£ > 0\Nt =  n}, which is a stopping time, 
and the filtration Tt =  cr(iVs; 0 < s < t). Since

Mt =  есЛГ‘+А(1_е°)4

is an Jr/-inartingale, by the Optional Stopping Theorem (Theorem 4.2.1) we 
have E[MgJ =  E[Mo] =  1, which is equivalent to Е[еА(1_еС̂ п] =  e~cn. Sub­
stituting s =  — A(1 — ec), then с =  ln(l +  j ) .  Since s, A > 0, then с > 0. The 
previous expression becomes

A \x 
■ +  •

Since the expectation on the left side is the Laplace transform of the proba­
bility density of Sn, then

p(Sn) =  £ - 1{E [e-ŝ ] }  =  £ - 1{ ( x A _ ) " }
e - t\tn -lXn

Г(п) ’
which shows that Sn has a gamma distribution.

E[e“ sSn] =  e- nln(1+i)  =
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5.9 The Distribution Function of X t =  Jq g(t) dNt

In this section we consider the function g(t) continuous. Let Si < S2 < ■ ■ ■ < 
S]s/t denote the waiting times until time t. Since the increments dNt are equal 
to 1 at Sk and 0 otherwise, the integral can be written as

X T [  git)  d N t =  9 (S i)  4--------\-g(SNt)-
JO

The distribution function of the random variable X t =  JQT g(t) dNt can be 
obtained conditioning over the Nt

P (X T < u) =  J 2  р (х т < ANT =  к) P(NT =  к) 
k>0

=  P (5(5 i) +  ' ' '  +  9(SNt) < u\NT =  к) P(NT =  к)
к>  О

=  J 2 P ^ S i )  +  - - -+ 9 (S k )< u )P (N T =  k). (5.9.5) 
fe>0

Considering S’i, б'г, ■ • • , Sk independent and uniformly distributed over the 
interval [0, T], we have

P{g(Si) +  ■ • • +  g(Sk) < u )  =  ^ d x i - - - d x k =  L° l̂ h\

where

Dk =  {g (xi) +  g(x2) 4------- h g(xk) <  и} П {0 < x\, • • • ,x k < T}.

Substituting back in (5.9.5) yields

P (X T < u ) =  ^ 2 P (g (S i) +  --- +  g(Sk)< u )P (N T  =  k) 
k> 0

=  =  5.9.6)
fe>0 ■ k>0

In general, the volume of the A;-dimensional solid Dk is not easy to obtain. 
However, there are simple cases when this can be computed explicitly.

A  Particular Case We shall do an explicit computation of the partition 
function of X t =  Jq s2 dNs. In this case the solid Dk is the intersection 
between the fc-dimensional ball of radius л/и centered at the origin and the 
/с-dimensional cube [0, T]k. There are three possible shapes for Dk, which 
depend on the size of y/u:
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(a) if 0 < \fu <  T, then Dk is a ^-part of a ^-dimensional sphere;

(b) if Г  < у/й < T\/k, then Dk has a complicated shape;

(c) i f l V f c <  \fu, then Dk is the entire fc-dimensional cube, and then vol(Dk) —
j-’k

7Г k/2R k
Since the volume of the ^-dimensional ball of radius R is given by

then the volume of Dk in case (a) becomes

7Tfe/ V / 2
voliDu) — , ,

K ’ 2fcr(|  + 1)

Substituting in (5.9.6) yields

Щ Г < « )  =  . - ‘ Т  (У , 0 < \/й <  Т.
^ f c i r d + i ) ’

It is worth noting that for и —> oo, the inequality T\[k < \Ju is satisfied 
for all к >  0; hence relation (5.9.6) yields

\krnk
lim P (X T < u ) =  e~XT =  e~kTekT =  1.u—too J fc\k> 0

The computation in case (b) is more complicated and will be omitted.

Exercise 5.9.1 Calculate the expectation E 

Var(^ JQT eks dNsy

fg eks dNs and the variance

Exercise 5.9.2 Compute the distribution function of X t — sdNs.

Exercise 5.9.3 The following stochastic differential equation has been used 
in Щ to model the depreciation value of a car with stochastic repair payments

dVt =  —kVt dt — pdNt,

where к >  0 is the depreciation rate, p >  0 is the average repair payment, and 
Nt is a Poisson process with rate A.

(a) Show that the solution is given by

Vt =  V0e - kt -  pe~kt f  eks dNs;
Jo



(b) Consider the stopping time
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Chapter 6

Stochastic Differentiation

Most stochastic processes are not differentiable. For instance, the Brownian 
motion process Wt is a continuous process which is nowhere differentiable. 
Hence, derivatives like do not make sense in stochastic calculus. The only 
quantities allowed to be used are the infinitesimal changes of the process, in 
our case, dWt.

The infinitesimal change of a process The change in the process X t be­
tween instances t and t +  At is given by A Xt =  Xt+At — X t. When At is 
infinitesimally small, we obtain the infinitesimal change of a process X t

dXt — X t+dt — X t.

Sometimes it is useful to use the equivalent formula X t+rjt — X t + dXt.

6.1 Basic Rules

The following rules are the analog of some familiar differentiation rules from 
the elementary Calculus.

The constant multiple rule If X t is a stochastic process and с is a constant, 
then

d{cX t) =  cdXt.

The verification follows from a straightforward application of the infinitesimal 
change formula

d(cXt) c X t+dt с Xt — c(X t+dt x t) =  cdX t.

The sum rule If Xt and Yt are two stochastic processes, then

d(Xt +  Yt) =  dXt +  dYt.

139
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The verification is as in the following:

d(Xt +  Yt) =  (X t+dt +  Yt+dt) ~ {Xt +  Yt) 
=  (X t+dt — X t) +  (Xt+dt — Yt) 
=  dXt +  dYf

The difference rule If Xt and Yt are two stochastic processes, then

d(Xt -  Yt) =  dXt -  dYt.

The proof is similar to the one for the sum rule.

The product rule If X t and Yt are two stochastic processes, then

d{XtYt) =  X t dYt +  Yt dXt +  dXt dYt.

The proof is as follows:

d(Xt Yt) =  Xt+dtYt+dt ~ X tYt 
=  X t ( Y t+ dt ~  Yt) +  Y t ( X t+dt — X t ) +  ( X t + dt — X t ) ( Y t+ dt — Yt) 

=  X t dYt +  YtdXt +  dXt dYt,

where the second identity is verified by direct computation.

If the process X t is replaced by the deterministic function f (t ), then the 
aforementioned formula becomes

d(f(t)Yt) -  f ( t )  dYt +  Yt df(t) +  dfit) dYt.

Since in most practical cases the process Yt satisfies the equation

dYt =  ait, Wt)dt +  bit, Wt)dWt, 

using relations dt dWt =  dt2 — 0, the last term vanishes

df(t) dYt =  f'(t)dtdYt =  0,

and hence

(6.1.1)

d(f(t)Yt) =  f(t)d Y t +  Yt df(t).

This relation looks like the usual product rule.

The quotient rule If Xt and Yt are two stochastic processes, then

X t \ YtdXt -  X tdYt -  dXtdYt X t . _ . 2
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The proof follows from Ito’s formula and will be addressed in section 6.2.3.
When the process Yt is replaced by the deterministic function f{t). and X t 

is a process satisfying an equation of type (6.1.1), then the previous formula 
becomes

/  X t  \ f(t)d X t -  X tdf(t)
4 ( t )J  f ( t )2

Example 6.1.1 We shall show that

d(W 2) =  2Wt dWt +  dt.

Applying the product rule and the fundamental relation (dWt)2 =  dt, yields 

d(W 2) =  Wt dWt + Wt dWt +  dWt dWt =  2Wt dWt +  dt. 

Example 6.1.2 Show that

d(W?) =  3Wt2 dWt +  3Wtdt.

Applying the product rule and the previous exercise yields

d(Wt3) =  d(Wt ■ Wt2) =  Wtd(W 2) +  W.f dWt +  d(W.f) dWt
=  W t ( 2 W t dWt +  dt) +  W 2 dWt +  dWt(2Wt dWt +  dt)
=  2W 2 dWt +  Wt dt +  W? dWt +  2Wt (dWt )2 +  dt dWt
=  3H f dWt +  3Wt dt,

where we used (dWt)2 =  dt and dtdWt - 0.

Example 6.1.3 Show that d{tWt) =  Wt dt +  tdW t.

Using the product rule and dt dWt =  0, we get

d{tWt) =  Wtdt +  tdWt +  dtdWt 
=  Wt dt +  t dWt ■

Example 6.1.4 Let Zt =  J^Wudu be the integrated Brownian motion. Show 
that

dZt =  Wt dt.

The infinitesimal change of Zt is

Ws ds =  Wt dt,

since Ws is a continuous function in s.



142 An Informal Introduction to Stochastic Calculus with Applications

Exam ple 6.1.5 Let At =  jZ t =  \ Jjj Wu du be the average of the Brownian 
motion on the time interval [0,t]. Show that

dAt =  \ {w t -  j Z t)  dt.

We have

dAt =  +  ~ dZf +  dZt

=  ^ Z t dt +  U v t dt +  ^ W t d ^
=0

= H w‘ ~ l z‘) dt

Exercise 6.1.6 Let Gt =  \ Iq CWu du be the average of the geometric Brown­
ian motion on [0, t]. Find dGt-

6.2 Ito’s Formula

Ito’s formula is the analog of the chain rule from elementary Calculus. We 
shall start by reviewing a few concepts regarding function approximations.

Let /  be a twice continuously differentiable function of a real variable 
x. Let xo be fixed and consider the changes A x — x — xq and A f (x )  — 
f (x )  — f ( x o). It is known from Calculus that the following second order Taylor 
approximation holds

A f {x )  =  f'{x ) A x +  ^ f" (x )(A x )2 +  0 { A x f .

When x is infinitesimally close to .tq . we replace Аж by the differential dx and 
obtain

df(x) — f'[x)dx +  - f" (x ) (d x )2 +  0(dx)3. (6.2.2)

In elementary Calculus, all terms involving terms of equal or higher order to 
dx2 are neglected; then the aforementioned formula becomes

df(x) =  f'(x)dx.

Now, if we consider x =  x(t) to be a differentiable function of t , substituting 
into the previous formula we obtain the differential form of the well known 
chain rule

d f(x(t)) =  f'(x (t))d x(t) =  f'[x (t))x '(t)d t.
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We shall present a similar formula for the stochastic environment. In this 
case the deterministic function x[t) is replaced by a stochastic process X t. 
The composition between the differentiable function /  and the process X t is 
a process denoted by Ft =  f {X t).

Neglecting the increment powers higher than or equal to (dXt)3, the ex­
pression (6.2.2) becomes

In the computation of dXt we may take into the account stochastic relations 
such as dW2 =  dt, or dt dWt =  0.

Theorem  6.2.1 (Ito ’s formula) Let Xt be a stochastic process satisfying

dXt =  btdt +  (JtdWt,

with bt(u) and at(u>) measurable processes. Let Ft =  f(X t), with f  twice 
continuously differentiable. Then

dFt =  f'{X t)d X t +  \ f" {X t) (dXtf . (6.2.3)

2

dFt =  [btf'(Xt) +  | / " ( I t)] dt +  at f ( X t) dWt. (6.2.4)

Proof: We shall provide an informal proof. Using relations dWf =  dt and 
dt2 =  dWt dt =  0, we have

[d X tf

=  b2tdt2 +  2 btatdWtdt +  a?d\V? 
=  a2dt.

Substituting into (6.2.3) yields

dFt =  f \ X t)d X t +  l- f " ( X t) (d X t f  

=  f ' (X t ) ( btdt +  atdWt) +  l- f " ( X t ) o 2t dt
2

=  btf\ X t)  +  dt +  o tf\ X t) dWt.

■

Remark 6.2.2 Ito’s formula can also be written under the following equiva­
lent integral form

Ft =  Fq +  J* (bsf { X a) +  ^ 2/ " ( X s)) ds +  £  asf '(X s) dWs.
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In the case Xt =  Wt we obtain the following consequence: 

Corollary 6.2.3 Let Ft =  f(W t). Then

d F t = l- f " { W t)dt +  f\W t)dW t. (6.2.5)

Particular cases In the following we shall present the most often used cases:
1. If f ( x ) =  xa, with a constant, then f'(x ) — a i Q_1, f " ( x ) =  a (a  — \)xa~2. 
Then (6.2.5) becomes the following useful formula

1
d(Wta) =  - a (a  -  1 )Wta~zdt +  a.W?~ dWt.

A couple of useful cases easily follow:

d(Wt2) =  2Wt dWt +  dt 
d(Wt3) =  3Wt2 dWt +  3Wtdt.

2. If f (x )  =  ekx, with к constant, f ' (x ) =  kekx, f" (x )  =  k2ekx. Therefore

d(ekWt) =  kekWtdWt +  ^k2ekWt dt.

In particular, for к =  1, we obtain the increments of a geometric Brownian 
motion

d(eWt) =  eWtdWt +  ]-eWt dt.

3. If f (x )  =  sina;, then

d(sin Wt) =  cos Wt dWt — -  sin Wt dt.

Exercise 6.2.4 Use the previous rules to find the following increments
(a) d(WteWt)
(b) d(3W2 +  2e5Wt)
(c) d(et+wt)
(d) d[[t +  Wt)n)

Wv du
<e) d ( U ’ (

( / )  d ( h l  eW' du) ’
— j  e u du I, where a is a constant.
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In the case when the function /  =  f(t , x ) is also time dependent, the analog 
of (6.2.2) is given by

df(t, x) =  dtf(t, x)dt +  dxf(t , x)dx +  <̂9%f(t, x)(dx)2 +  O(dx)3 +  O(dt)2.
(6.2.6)

Substituting x =  Xt yields
1df(t, x t) = dtf(t, x t)dt + dx/(t, xt)dxt + d̂2xf(t, x t)(dxt)2. (6.2.7)

If X t is a process satisfying an equation of type (6.1.1), then we obtain an 
extra-term in formula (6.2.4)

dFt, = Xt) +  a(Wt, t)dxf(t, X t) +  

+b(wt,t)dxf(t,xt)dwt.
Exercise 6.2.5 Show that

d(tW 2) =  {t +  W 2)dt +  2tWt dWt 

Exercise 6.2.6 Find the following increments

b(Wt,t)2a2d2xf(t,Xt) dt
(6.2.8)

(a) d(tWt)
(b) d(etWt)

(c) d(t2 cos Wt)
(d) d(sintW 2).

6.2.1 Ito diffusions

Consider the process X t given by

dXt =  b{Xu t)dt +  o (X t, t)dWt. (6.2.9)

A process X t =  (X\) e Mn satisfying this relation is called an Ito diffusion in 
Rn. Equation (6.2.9) models the position of a small particle that moves under 
the influence of a drift force b(Xt,t), and is subject to random deviations. This 
situation occurs in the physical world when a particle suspended in a moving 
liquid is subject to random molecular bombardments. The amount \ooT is 
called the diffusion coefficient and describes the difussion of the particle.

Exercise 6.2.7 Consider the time-homogeneous Ito diffusion in Mn

dXt =  b(Xt)dt +  a (X t)dWt.
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6.2.2 I t o ’s form ula  for P oisson  processes

Consider the process Ft — F(M t), where Mt — Nt — Xt is the compensated 
Poisson process. Ito’s formula for the process Ft takes the following integral 
form. For a proof the reader can consult Kuo [30].

Proposition  6.2.8 Let F  be a twice differentiable function. Then for any 
a < t  we have

Ft — Fa +  t  F'(M S- )  dMs +  ( A F ( M s)  -  F '(M e_)A M e) ,
a< s< t

where A Ms — Ms — Ms_ and A F(M S) — F(M S) — F(M S-) .

We shall apply the aforementioned result for the case Ft =  F (M f) — M 2. 
We have

M 2 =  M 2 +  2 f  Ms_dM s +  (m s2 - M s2_ - 2 M s_(Ms - A / s_ ) V (6.2.10)
J a a < s< t

Since the jumps in Ns are of size 1, we have (A Ns)2 =  A Ns. Since the 
difference of the processes Ms and Ns is continuous, then A Ms =  A Ns. Using 
these formulas we have

(m 2 -  M 2_ -  2MS-(M s -  Ms_ ) )  =  (Ms -  Ms- ) ( m s +  Ms_ -  2Ms_ )  

=  (Ms -  Ms_ ) 2 =  (A Ms)2 =  (ANS)2 
=  ANS =  Ns -  N ,-.

Since the sum of the jumps between s and t is ^2a<s<t ANs =  Nt ■ Na. formula 
(6.2.10) becomes

M 2 =  M 2 +  2 f  Ms-  dMs +  Nt -  Na. (6.2.11)
J a

The differential form is

d(M2) =  2Mt-  dMt +  dNt,

which is equivalent to

d(M2) =  (1 +  2Mt- )  dMt +  Xdt, 

since dNt =  dMt +  A dt.

Exercise 6.2.9 Show that

£  Mt-  dMt = l- ( M 2 - N T).

Exercise 6.2.10 Use Ito ’s formula for the Poisson process to find the condi­
tional expectation E[M2|Jrs] for s < t.
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6.2.3 Ito ’s multidimensional formula

If the process Ft depends on several Ito diffusions, say Ft =  f(t , X t. Yt). then 
a similar formula to (6.2.8) leads to

dFt =  ^ ( t ,X t ,Y t )d t+ ^ (t ,X t ,Y t)dXt +  ^ ( t , X t,Yt)dYt

1
2 dx2 
d2f  

dxdy

(i, X t, Yt)(dXt)2 +  X t, Yt)(dYt)2
2 dy2

(t,X t,Y t)dXtdYt.

Example 6.2.11 (Harmonic function of a Brownian motion) In the case 
when Ft =  f ( X t, Yt) ,  with Xt =  Wfl, Yt =  W 2 independent Brownian motions, 
we have

dF< - fxiW'+di dW‘ + 1S {dW‘1)2+1S idW‘ )2 
+ i k dw' dw‘
df  l , df rlu/2 , 1 ( & f  , ^2/\  ,,

The expression
A , \( d2f  d2f\  

f ~  2 \dx2 +  dy2)
is called the Laplacian of f .  We can rewrite the previous formula as

dFt =  -J-dW? +  ^ -d W 2 +  A fd t. 
dx dy

A function f  with Д /  =  0 is called harmonic. The aforementioned formula in 
the case of harmonic functions takes the simple form

dF< =  % iW > + тУш >-
(6 .2 .12)

Exercise 6.2.12 Let W } ,W 2 be two independent Brownian motions. If the 
function f  is harmonic, show that Ft =  /  (Wfl. W 2) is a martingale. Is the 
converse true?

Exercise 6.2.13 Use the previous formulas to find dFt in the following cases
(a) Ft =  (W ?)2 +  (W ?)2
(b) Ft =  ln[(W/ ) 2 +  (W ?)2}.
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Exercise 6.2.14 Consider the Bessel process Rt =  y/(Wl)2 +  (W f)2, where 
W l and W? are two independent Brownian motions. Prove that

1 W } , W? 9 
dRt =  — dt + - ± d W t  +  - f -d W 2.

ZKt tit *4

Example 6.2.15 (The product rule) Let X t and Yt be two Ito diffusions. 
Show that

d(XtYt) =  YtdXt +  X tdYt +  dXtdYf

Consider the function f (x ,y )  — xy. Since dxf  -  y, dyf  =  x , d2f  =  d2f  =  0, 
dxdyf  =  1, then Ito’s multidimensional formula yields

d(XtYt) =  d ( f (X Y t) ) = d xfd X t + d yfd Y t

+ ± d 2f(d X t)2 +  \d2f(dYt)2 +  dxdyf  dXtdYt 

=  YtdXt +  XtdYt +  dXtdYt.

Example 6.2.16 (The quotient rule) Let Xt and Yt be two Ito diffusions. 
Show that

d
X t \ YtdXt -  XtdYt -  dXtdYt , X t/ ^  ,2 
Y t) = ----------------Y 2----------------+  W dYt) •

Consider the function f (x ,y )  =  |. Since dxf  =  dyf  =  d2f  =  0, 
dyf =  ~ p ,  d2f  =  дхду =  - ф ,  then applying Ito’s multidimensional 
formula yields

dЫ )  =  d(f (X ’Vt)) = dXf d X t +  dyfdYt

+ l-d 2J{dX t)2 +  \d2yf{dYt)2 + dxdyf dXtdYt 

YtdXt -  XtdYt -  dXtdYt , X tfJ^ 2
---------------- 7̂2----------------+  Y3\dyt) •



Chapter 7

Stochastic Integration 
Techniques

Computing a stochastic integral starting from the definition of the Ito integral 
is not only difficult, but also rather inefficient. Like in elementary Calculus, 
several methods can be developed to compute stochastic integrals. We tried 
to keep the analogy with elementary Calculus as much as possible. The inte­
gration by substitution is more complicated in the stochastic environment and 
we have considered only a particular case of it, which we called the method of 
heat equation.

7.1 Notational Conventions

The intent of this section is to discuss some equivalent integral notations for 
a stochastic differential equation. Consider a process Xt whose increments 
satisfy the stochastic differential equation dXt — f(t,W t)dW t. This can be 
written equivalently in the integral form as

f d X s =  f  f(s ,
J a J a

Ws)dWs. (7.1.1)

If we consider the partition 0 =  to < t\ < ■ • ■ <  tn-\ < tn =  t, then the left 
side becomes

n—1

dXs =  ms-lim V (X tj+1 -  X tj) =  X t -  X a,
77.— * -J JfJ a n—УОС ‘

3=0

after canceling the terms in pairs. Substituting into formula (7.1.1) yields the 
equivalent form

X t =  X a +  [  f (s , Ws)dWs.

149
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This can also be written as dXt =  d(^J f ( s , Ws)dW^j, since X a is a constant. 

Using dXt =  f ( t , Wt)dWt, the previous formula can be written in the following
two equivalent ways:
(z) For any a < t, we have

d( f  f (s , Ws)dWs) =  f(t , Wt)dWt. (7.1.2)

(ii) If Yt is a stochastic process, such that YtdWt =  dFt, then

/J a
Yt dWt =  Fb - F a.

These formulas are equivalent ways of writing the stochastic differential equa­
tion (7.1.1), and will be useful in future computations. A few applications 
follow.

Example 7.1.1 Verify the stochastic formula

I
t W? tw„ dW„ =

Let Xt =  Jo Ws dWs and Yt =  ^ . From Ito’s formula

dYt = dî 2~) ~ d(l) = l̂ 2Wt dWt + dt) ~ \dt = Wt dWu 
and from formula (7.1.2) we get

dXt =  J '  dW ^  =  Wt dWt.

Hence dXt =  dYt, or d(Xt — Yt) =  0. Since the process Xt — Yt has zero 
increments, then Xt — Yt =  c, constant. Taking t =  0, yields

■Wn2 O'
c =  X q — Y0 =  f  

Jo

and hence с =  0. It follows that Xt =  Yt, which verifies the desired relation. 

Exam ple 7.1.2 Verify the formula

W fds.
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Consider the stochastic processes X t =  / 0* sW adWa, Yt =  — ( w 2 — 1^, and

Zt =  \ /g W 2 ds. Formula (7.1.2) yields

dXt =  tWtdWt 
dZt = \w2dt.

Applying Ito’s formula, we get

(t +  W?)dt +  2tWt dWt

2

We can easily see that

1
2 L4

=  -W ?dt +  tWt dWt.

1
-----tdt2

dXt =  dYt -  dZt

This implies d(Xt — Yt +  Zt) =  0, i.e. X t — Yt +  Zt =  c, constant. Since 
X q =  Yo =  Zq =  0, it follows that c — 0. This proves the desired relation.

Example 7.1.3 Show that

I \w 2 -  s) dWs =  1 Wf -  twt.

Consider the function f ( t ,x )  =  ^x3 — tx, and let Ff — f{t,W t). Since dtf =  
—x, dxf  =  x 2 — t, and d2f  =  2x, then Ito’s formula provides

dFt =  dtf  dt +  dxf  dWt +  <̂92/  (dWt)2 

=  - W tdt +  (W 2 -  t) dWt + ^2Wt dt

=  (W ? -t )d W t. 

From formula (7.1.2) we get

[\w 2 -  s) dWs =  f  dFs =  Ft -  Fo =  Ft =  \w3 -  tWt. 
Jo Jo J

Exercise 7.1.4 Show that 
rt



■ s t
e 2 sin Ws dWs =  1 — e 2 cos Wt;
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(с) Л
Jo

(d) f  ew°~% dWs =  eWt~% -  1; 
Jo

(e) f 
Jo

(/) [  si 
Jo

1 f
cos Ws dWs =  sin W* +  -  / sin Ws ds;

2 7o

sin W= dW, =  1 — cos W/ - I f ,
2 У0

cos W, ds.

7.2 Stochastic Integration by Parts

Consider the process Ft =  f(t)g (W t), with / and 5 differentiable. Using the 
product rule yields

dFt =  d f(t)g (W t) +  f(t )d g (W t) 

=  f'(t)g(W t)dt +  f{t){g \ W t)dWt +  \g"(W t)dt) 

=  f'(t)g(W t)dt +  \ f(t)g" {W t)dt +  f(t)g'(W t)dW t.

Writing the relation in the integral form, we obtain the first integration by 
parts formula:

[ b f(t)g '{W t) dWt =  f{t)g (W t) Ъ -  [  f'(t)g (W t) d t -  \ [  f(t)g" (W t) dt. 
J  а  а J  a   ̂ J  а

This formula is to be used when integrating a product between a function 
of t and a function of the Brownian motion Wt, for which an antiderivative 
is known. The following two particular cases are important and useful in 
applications.

1. If g(Wt) =  Wt, the aforementioned formula takes the simple form

fb t=b rb ,
/ f(t)d W t =  f{ t )W t -  / f  (t)W t dt.

J  a *=“ Ja
(7.2.3)

It is worth noting that the left side is a Wiener integral.

2. If f ( t )  =  1, then the formula becomes

f bg\Wt)dWt =  g(W t)t Ь -  I  [ Ъg"{Wt)d t . 
Ja  t=a Z Ja

(7.2.4)
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f
A pplication  7 .2 .1  Consider the W iener integral It  — tdW t■ From the

Jo
general theory, see Proposition 5.6.1, it is known that I  is a random variable 
normally distributed with mean 0 and variance

cT rj} зf 1 T 6
V ar[IT\ =  t2 dt =  — . 

Jo

Recall the definition o f  integrated Brownian motion

rt
Zt =

=  /  Jo
Wu du.

Formula (7.2.3) yields a relationship between I  and the integrated Brownian 
motion

IT =  (  t dWt =  TW T — f  Wt dt =  TW T — ZT,
Jo Jo

and hence I t + Z t  =  TW t ■ This relation can be used to compute the covariance 
between I t  and Zt -

C ov(It  +  Zt , I t  +  Zt ) —

V ar[IT\ +  Var[ZT\ +  2C ov{IT, ZT) =  T 2Var[W T] <=>
T 3/3 +  T 3/3 +  2C ov(IT, ZT) =  T 3 ^

C ov{IT,Z T) =  T 3/6,

where we used that Var[ZT\ =  T 3/3 . The processes It and Zt are not inde­
pendent. Their correlation coefficient is 0.5 as the following calculation shows

Согг(1т, Zt ) =
C o v ( I t , Z t )

(y a r[IT}Var[ZT]) 

=  1/2 .

Г 3 / 6 

V2 _  T 3/3

A pplication 7 .2 .2  I f  we let g(x) =  \  in form ula (7.2.4), we 9et

Lb w 2  _ W 2 x
Wt dWt =  —Цг— 2- -  - (6  -  a).

It is worth noting that letting a  =  0 and b — T , we retrieve a form ula that was 
proved by direct methods in chapter 3

f T W l T
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Similarly, i f  we let g (x ) =  \  in (7.2.4) yields

J  a

9 W? 
W ?dW t =  - £ -

ь r b

a Ja
Wt dt.

A pplication  7 .2 .3  Choosing f ( t )  =  eat and g(x) =  sin ж, we shall compute 
the stochastic integral J (f  eat cos Wt dWt using the form ula o f  integration by 
parts

f  eat cos Wt dWt =  [  ea t(sin Wt)'dW t
Jo Jo

T -  [  (eat)'sm W t d t -  \ [  eat(sm W t)'‘ 
о J  о 2 j 0

=  e sin Wt 

=  eaT sin WT

dt

=  eaT sin

— a  f  eat sin Wt dt +  ^ f  
Jo 2 J  о

in W t — ( a  — j  eat sin Wt dt.

eat sin Wt dt

The particular case <2 =  5 leads to the following exact form ula o f  a stochastic 
integral

rl
f  e £

Jo
2 cos Wt dWt =  e2 sin Wt - (7.2.5)

In a sim ilar way, we can obtain an exact form ula fo r  the stochastic integral 
J 0T e'94 sin Wt dWt as follows

f  sin Wt dWt, =  — f  e^(cos Wt)'
Jo Jo

=  —e^1 cos Wj

dWt

т
+  /3 f  e^  cos Wt dt — -  f  

Jo 2 J  0

Taking /3 =  b yields the closed form  form ula

r A •/ e2 si
Jo

sin Wt dWt =  l  — e2 cos Wt -

e'St cos Wt dt.

(7.2.6)

A consequence o f  the last two form ulas and o f  E u ler’s form ula
JW t _ cos Wt +  i sin Wt,

is

JJo
ез +iWt dWt =  i( 1 -  e ^ +iWr)

The proof details are left to the reader.
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A general form  o f th e  in tegration  by p arts form ula In general, if X t 
and Yt are two Ito diffusions, from the product formula

d(X tYt) =  X tdYt +  YtdX t +  dX t dYt.

Integrating between the limits a  and b

f b d(X tYt) =  f  X tdYt +  [ Ь YtdX t +  f d X t d Y t .
J  a  J  a J  a  J  а

Prom the Fundamental Theorem

f  d(X tYt) =  X bYb - X aYa ,
J  a

so the previous formula takes the following form of integration by parts

f  XtdYt =  X bYb -  X aYa -  [  YtdXt -  [  dX t dYt.
J  a J  a  J a

This formula is of theoretical value. In practice, the term dX t dYt needs to be 
computed using the rules dW f =  dt, and dt dWt =  0.

E xercise  7 .2 .4  (a) Use integration by parts to get 

rT  i r T  wf  1/ ---------„dWt =  tan
Jo 1 +W ?

\W T) +  [  
Jo

(b) Show that

E[tan_1(WT)] =  -  [  E  
Jo

(c) Prove the double inequality

о (1 +  И ?)2 

Wt

dt, T  >  0.

(1 + W2)2J dt.

3%/3 <
16 “  (1 + x 2)2 ~ 16 ’

(d) Use part (c) to obtain 

3 ^
16

-T  < L Wt d t < 3- ^ T .
о (1 +  W ? y  ~  16

(e) Use part (d) to get

. ^ T  < E [ta n -\ W T)} < ^ T .

(/) Does part (e) contradict the inequality

- ^ < t a n -\ W T) < n- l



E xercise 7 .2 .5  (a) Show the relation

[  e Wt dWt =  e WT -  1 -  -  [  dt.
Jo 2 J  о

(b) Use part (a) to find  E[eWt].

E xercise  7 .2 .6  (a) Use integration by parts to show

Гт 1 rT
/ Wte Wt dWt =  l  +  WTe Wr - e WT- ~  eWt (1 +  Wt) d t ;

Jo 2 J  о

(b) C/se pari (a) to find  E [WteWt];
(c) Show that C ov(W t,e]At) =  ie^2;

(■d) Prove that C orr(W t, e Wt) =  \j~t~  ̂> anc  ̂ сотРи е̂ the limits as t —» 0 
and t —> oo.

E xercise 7 .2 .7  (a) Lei T  >  0. Show the following relation using integration 
by parts

£  r f w  л*г' = ln<1 + wt] -  £  ( T f W  л
(6) S/iow that fo r  any real number x the following double inequality holds

1 1 — x2 
8 — (1 +  x 2)2 ~

(c) Use part (b) to show that

1 < [ T 1
8 “ Л  (T+W i2)2 " " ^
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(d) Use parts (a) and (c) to get

- -  < E [ln (l +  W |)] < T .
О

(e) C/se Jen sen ’s inequality to get

E[ln(l +  Щ )\  <  ln(l +  T).

.Does i/iis contradict the upper bound provided in (d) ?

E xercise  7 .2 .8  Use integration by parts to show

[  arctan Ws dWs =  Wt arctan Wt - \  ln(l +  W f) -  \ f  -— т ds. 
Jo  2 2 J 0 1 +  W f
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E xercise  7 .2 .9  (a) Using integration by parts prove the identity

/ Wae rYs dW<, =  14- e vrt(Wt — 1) — — I (1 +  Ws)ew*ds;

(ib) Use part (a) to compute E[W teWt\.

E xercise  7 .2 .10  Check the following form ulas using integration by parts

In elementary Calculus, integration by substitution is the inverse application 
of the chain rule. In the stochastic environment, this will be the inverse 
application of Ito’s formula. This is difficult to apply in general, but there is 
a particular case of great importance.

Let ip(t, x ) be a solution of the equation

This is called the heat equation without sources. The non-homogeneous equa­
tion

is called the heat equation with sources. The function G (t,x ) represents the 
density of heat sources, while the function tp(t, x) is the temperature at the 
point x at time t in a one-dimensional wire. If the heat source is time inde­
pendent, then G — G(x), i.e. G  is a function of x  only.

E xam p le 7 .3 .1  Find all solutions o f  the equation (7.3.7) o f  type ip(t, x) =  
a(t) +  b(x).

Substituting into equation (7.3.7) yields

7.3 The Heat Equation Method

dtV +  =  0. (7.3.7)

(7.3.8)

\b"(x ) =

Since the left side is a function of x only, while the right side is a function of 
variable t, the only case where the previous equation is satisfied is when both
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sides are equal to the same constant C. This is called a separation constant. 
Therefore a(t) and b(x) satisfy the equations

a'(t) =  —C, \b"{x) =  C.

Integrating yields a {t) =  — C t +  Co and b(x) =  C x 2 +  C\x +  C2- It follows 
that

(p(t , x) =  C (x 2 — t) +  C\x +  C3, 

with C'o, C i, C'2 - С’з arbitrary constants.

E xam p le  7 .3 .2  Find all solutions o f  the equation (7.3.7) o f  the type <p(t,x) =  
a(t)b(x).

Substituting into the equation and dividing by a(t)b(x) yields

a'{t) 1 b"{x) =  
a(t) 2 b(x)

a'(t)
There is a separation constant С  such that ——  =  — С  and =  2C.

a(t) b(x)
There are three distinct cases to discuss:

1. (7 =  0. In this case a(t) =  ao and b{x) =  b\x +  bo, with ao, a\,bo, b\ real 
constants. Then

ip(t, x) =  a(t)b{x) =  c\x +  со, со, ci G R

is just a linear function in x.
2. С  > 0. Let A >  0 such that 2С  =  A2. Then a'(t) =  —4j-a (t) and 

b"{x) =  A2b(x), with solutions

a (t) =  aoe_A2*/2 

b(x) =  c ie Xx +  C2e~Xx.

The general solution of (7.3.7) is

ip(t, x) = e~x2t/ 2{c\exx + C2e~Xx), a ,  c2 G R.

3. С  <  0. Let A > 0 such that 2С  =  —A2. Then a'{t) =  \ a { t )  and 
b"(x) =  —A2b(x). Solving yields

a(t) =  аоел2^ 2

b(x) =  ci sin(Ax) +  C2 cos(Ax).
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The general solution of (7.3.7) in this case is

<p(t,x) =  ел2(//2(ci sin(Aa:) +  c? cos(Ax)), cj,C2 €  K.

In particular, the functions x , x2 — t, ех~4/2, e ~x~*/2, et//2sinx and e1'2 cos ж, 
or any linear combination of them, are solutions of the heat equation (7.3.7). 
However, there are other solutions which are not of the previous type.

E xercise 7 .3 .3  Prove that <p(t,x) =  ^x3 — tx is a solution o f  the heat equation 
(7.3.7).

Exercise 7 .3 .4  Show that tp(t,x) =  t~^l2e~x I ^  is a solution o f  the heat 
equation (7.3.7) fo r  t > 0 .

X
E xercise 7 .3 .5  Let ip — u(A), with A =  — -=> t > 0. Show that ip satisfies the

2 v i
heat equation (7.3.7) i f  and only i f  и" +  2Av! — 0.

2 2
E xercise 7 .3 .6  Let e r f  c(x) — —=  / e~r dr. Show that ip =  e r f  c(x/(2\/t))

V 71- Jx
is a solution o f  the equation (7.3.7).

_sLExercise 7 .3 .7  (the fundam ental solution) Show that ip(t,x) =  4t >
t >  0 satisfies the equation (7.3.7).

Sometimes it is useful to generate new solutions for the heat equation from 
other solutions. Below we present a few ways to accomplish this:

(г) by linear combination: if щ  and tp2 are solutions, then ацр\ +  ацр2 is 
a solution, where a j , «2 are constants.

(гг) by translation: if <p(t, x ) is a solution, then <p(t — t ,x  — £) is a solution, 
where ( t , £ )  is a translation vector.

(ггг) by affine transforms: if ip(t,x) is a solution, then ip(\t,\2x) is a 
solution, for any constant A.

Q n + m

(iv ) by differentiation: if ip(t,x) is a solution, then —  ^v^ <p(t,x) is a 
solution.

(v) by convolution: if (p(t, x) is a solution, then so are

[  < p (t ,x -S ) f(£ )d £
J  a

f  ip (t -T ,x )g ( t)d t .
J  a

For more detail on the subject the reader can consult Widder [46] and Cannon 
[11].
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T h eorem  7 .3 .8  Let <p(t,x) be a solution o f  the heat equation (7.3.7) and 
denote f { t ,x )  =  dxtp(t,x). Then

f  f { t ,  Wt) dWt =  ч>{Ъ, Wb) -  4>(a, Wa ).
J  a

Proof: Let F t =  (pit, Wt). Applying Ito’s formula we get

dFt =  dx<p(t, Wt) dWt +  (d t<p +  ^ d ^ d t .

Since dt(p +  \д\ц> =  0 and dxy(t, Wt) =  f i t ,  Wt), we have

dFt =  f { t ,  Wt)dW t.

Writing in the integral form, yields

[ Ь f i t ,  Wt) dWt =  f  dFt =  F b - F a =  <p(b, Wb) -  <p(a, Wa )
J  a  J  a

A pplication  7 .3 .9  Show that

rT

IJo

Choose the solution of the heat equation (7.3.7) given by (fit, x) — x 1 ~ t. 
Then f ( t ,x )  =  dx<pit,x) — 2x. Theorem 7.3.8 yields

Г  2Wt dWt =  Г  f i t ,  Wt)dW t =  ip(t,x) 
Jo  Jo

Dividing by 2 leads to the desired result.

Wt  — T.

A pplication  7 .3 .10  Show that

rT 1
[  iW f -  t) dWt =  ^W't -  TW t .

J o  3

Consider the function (pit, x) =  |ж3 — tx, which is a solution of the heat equa­
tion (7.3.7), see Exercise 7.3.3. Then f i t ,x )  =  dxip{t,x) =  x2 — t. Applying 
Theorem 7.3.8 yields
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fJo
е- ¥ ±л wt dWt =  -  l ) .

At
Consider the function <p(t,x) =  e T ±Xx, which is a solution of the homoge­
neous heat equation (7.3.7), see Example 7.3.2. Then f ( t , x ) =  dxip(t,x) =

±Ae 2 ±Лж. Apply Theorem 7.3.8 to get

fJo
± \ е ~ ^ ±Хх dWt ==  [

Jo
dWt =  <p(t,Wt) =  e 2 -±XWt l.

Dividing by the constant ±A ends the proof.

In particular, for A =  1 the aforementioned formula becomes

/Jo
e ~2+Wt dWt =  e~^+WT -  1. (7.3.9)

Application 7 .3 .12  Let A > 0. Prove the identity

I
T  A» t

e 2 cos(AWt) dWt =  — e 2 sin(AWr). 
Л

From the Example 7.3.2 we know that </?(£, x) =  e 2 sin(Ax) is a solution of the 
heat equation. Applying Theorem 7.3.8 to the function f ( t ,x )  =  dxtp(t. x) =

A
Ae~2~ cos(Ax), yields

f -Jo
Ae“  cos(AWt)dW t

Divide by A to end the proof.

Г  f ( t ,W t) 
Jo

dWt =  <p(t, Wt)

=  e 2 sin(AT'Ft)
a-*t

e 2 sin(AW'r)-

If we choose A =  1 we recover a result already familiar to the reader from 
section 7.2

f  t , 4 
/ e2cos(W*)

Jo
dWt =  e 2 sin IVV- (7.3.10)

Application 7 .3 .13  Let A > 0. Show that

J  e 2 sin(AH/<) ^ ^1 — e 2 cos(AWx)^.
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Choose ip(t,x ) =  e 2 cos (Аж) to be a solution of the heat equation. Apply
Л21

Theorem 7.3.8 for the function f ( t ,x )  =  dxip(t,x) =  —Ae 2 sin(Ax) to get 

r T  , 2. т

0

r T  2

/ ( -A )e V  sin(AWi) dW4 =  </?(£, Wt) 
Jo

XT XT
- e~~z~ cos(AWt) =  e~^~ cos(AWx) — 1>

and then divide by —A.

A pplication  7 .3 .1 4  Let 0 < а < b. Show that

(7.3.11)

From Exercise 7.3.4 we have that ip(t,x) — i - 1/2e~x2/(2t) is a solution of the 
homogeneous heat equation. Since f ( t ,x )  =  dx(p(t,x) =  —t~3/2xe~x /(2t\ 
applying Theorem 7.3.8 yields the desired result. The reader can easily fill in 
the details.

Integration techniques will be used when solving stochastic differential 
equations in the next chapter.

E xercise  7 .3 .15  Find the value o f  the following stochastic integrals 

(a) [  et cos(V2W t) dWt
Jo

f 3
(.b) / e2t cos(2 Wt)dW t 

Jo

(с) / 4 e ~t+V2Wi dWt .
Jo

E xercise  7 .3 .16  Let ip(t,x) be a solution o f  the following non-homogeneous 
heat equation with time-dependent and uniform heat source G(t)

dt<P +  \&x4> =  G(t).

Denote f ( t ,x )  =  dxip(t, x). Show that

f  f ( t ,W t)dW t =  v (b ,W b) - i p ( a ,W a) -  [  G(t) dt.
J  a J  a

How does the form ula change i f  the heat source G is constant?
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7.4 Table of Usual Stochastic Integrals

Now we present a user-friendly table, which enlists integral identities developed 
in this chapter. This table is far too complicated to be memorized in full. 
However, the first couple of identities in this table are the most memorable, 
and should be remembered.
Let а < b and 0 < T. Then we have:

■ъ
1.

■T
Wt dt, 0 < Г ;

Jo

_з _W£_ _ i  _ i  wh
12. / t ?Wte 2i dWt =  a  — b ?e 26;

w? i w2 % wfi

a
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Chapter 8

Stochastic Differential 
Equations

If deterministic Calculus was developed mainly to put into differential equa­
tions form the fundamental principles which govern all evolution phenomena, 
then Stochastic Calculus plays a similar role for the case of noisy evolution 
systems, which provide a more realistic description of the real world.

This chapter deals with several analytic techniques of solving stochastic 
differential equations. The number of these techniques is limited and follows 
quite closely the methods used in the ordinary differential equations treated, 
for instance, in classical books of Arnold [3] or Boyce and DiPrima [7].

8.1 Definitions and Examples

Let Xt be a continuous stochastic process. If small changes in the process 
Xt can be written as a linear combination of small changes in t and small 
increments of the Brownian motion Wt, we may write

dX t =  a(t, Wt,X t)dt +  b(t, Wt, X t) dWt (8 .1.1)

and call it a stochastic differential equation. In fact, this differential relation 
has the following integral meaning:

(8 .1.2)

where the last integral is taken in the Ito sense. Relation (8.1.2) is taken as the 
definition for the stochastic differential equation (8.1.1). However, since it is 
convenient to use stochastic differentials informally, we shall approach stochas­
tic differential equations by analogy with the ordinary differential equations,

IXt — X q +  / a(s, Ws , X s) ds +  / b(s,W s ,X s)dW lfJo

165
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and try to present the same methods of solving equations in the new stochastic 
environment.

Most of the stochastic differential equations considered here describe dif­
fusions, and are of the type

dX t =  a(t, X t)dt +  b (t,X t)dWt, X 0 =  C, (8.1.3)

with a(t, x ) and b(t, x) measurable functions. The functions a(t, x) and b(t, x) 
are called the drift rate and the volatility of the process Xt, respectively. Given 
these two functions as input, one may seek for the solution X t of the stochastic 
differential equation as an output. The desired outputs X t are the so-called 
strong solutions. The precise definition of this concept is given in the following. 
The beginner can skip this definition; all solutions in this book will be solutions 
in the strong sense anyway.

D efin ition  8 .1.1  A process Xt is a strong solution fo r  the stochastic equation 
(8.1.3) on the probability space (f1 ,Т ,Р )  i f  it satisfies the following properties:

(i) Xt is adapted to the augmented filtration Ft generated by the Brownian 
motion Wt and the initial condition £;

(гг) P (X о =  C) =  1;
(in) For any 0 <  t < oo we have

J  (\a(s,X s)\+ b2( s ,X s)) ds <  oo]

(iv ) The form ula

Xt — X o +  f  a ( s ,X s)d s  +
Jo

holds almost surely.

A few comments regarding the previous definition. Part (г) states that 
given the information induced by £ and the history of the Brownian motion 
until time t, one can determine the value X t. Part (гг) states that X q takes 
the value С with probability 1. Part (Hi) deals with a non-explosive condition 
for the coefficients. Part (iv) states that X t verifies the associated integral 
equation.

We shall start with an example.

E xam p le 8 .1 .2  (T h e  Brow nian  bridge) Let a, b G M. Show that the pro­
cess

1X t — a( 1 —t) +  bt +  ( l — t) / -------dWs, 0 <  t <  1
Jo 1 -  s

/Jo b(s, X s) dWs
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is a solution o f  the stochastic differential equation

dXt =  —— dt, +  dWt, 0 ^  t <  1, X q =  a.

We shall perform a routine verification to show that X t is a solution. First we
b - X tcompute the quotient
1 -  t

b - X t =  b - a ( l - t ) - b t - ( l - t )  I t —— dWKb — a (l — t) — bt — (1 — t) f  -
Jo 1

=  ( b - a ) { l  - t )  -  (1 - t )  f  — -

Jo  1 ~

* 1
— s

dWs,

and dividing by 1 — t yields

b - X t
1 - t

Using

f ‘ 1/ -------dWs. (8.1.4)
Jo 1 - «

< [ i h > dW ')  =  T r t dW"
the product rule provides

dX t =  a d {l  — t) +  bdt +  d(l — t) f  —-— dWs +  (1 — t )d (  f  —-— dWs)
Jo 1 -  s V J 0 1 -  s )

=  (b — a  — J  — dW ^j dt +  dWt 

=  +  dWtl

where the last identity comes from (8.1.4). We just verified that the process 
X t is a solution of the given stochastic equation. The question of how this 
solution was obtained in the first place , is the subject of study for the next few 
sections.

8.2 The Integration Technique

We shall start with the simple case when both the drift and the volatility are 
just functions of time t.

P rop osition  8 .2 .1  The solution Xt o f  the stochastic differential equation

dX t =  a(t)dt +  b(t)dWt 

is Gaussian distributed with the mean X q + j 1(j a (s ) ds and the variance f *  b2(s) ds.
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Proof: Integrating in the equation yields

X t - X 0 =  [  dX s =  f  a ( s ) d s +  [  b(s)dW s.
Jo Jo Jo

Using the property of Wiener integrals, Jjj b(s) dWs is Gaussian distributed 
with mean 0 and variance b2(s) ds. Then X t is Gaussian (as a sum between 
a deterministic function and a Gaussian), with

E [Xt] =  E [X 0 +  [  a ( s ) d s +  f  b(s)dW s}
Jo Jo

X 0 +  

X,

s) ds +  E/ a(
Jo

o +  a(s) ds, 
Jo

S ' k
Jo

s) dW q

V ar[X t} — V ar[X o+  f  a(s) ds +  f  b(s)dW s
Jo Jo

f  b(s) dW 
-Jo

V ar  

rt

JJo
b (s ) d s ,

which ends the proof.

E xerc ise  8 .2.2  Solve the following stochastic differential equations fo r  t >  0 
and determ ine the mean and the variance o f  the solution:

(a) dXt — cos td t — sin t dWt, Xo =  1.
(,b) dX t = e t dt +  Vt dWt, X 0 =  0.
(c) dX t =  T± 7 dt +  i3/2 dWt, X 0 =  l.

If the drift and the volatility depend only on variables t and Wt, the 
stochastic differential equation

dX t =  a(t, Wt)dt +  b{t, Wt)dWt, t >  0

defines a stochastic process that can be expressed in terms of Ito integrals

X t =  X 0 +  f  a (s ,W s) d s +  (  b{s,W s) 
Jo Jo

dWs

There are several cases when both integrals can be computed explicitly. In 
order to compute the second integral we shall often use the table of usual 
stochastic integrals provided in section 7.4.



Exam ple 8 .2 .3  Find the solution o f  the stochastic differential equation

dX t =  dt +  Wt dWt, X 0 =  1.

Integrate between 0 and t and get

t rt
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W? t
Xt =  1 +  I ds +  j  Ws dWs =  1 +  t 4— ------—/ W

Jo Jo

=  \{W? +  t) +  1.

Exam ple 8 .2 .4  Solve the stochastic differential equation

dX t =  (Wt -  1 )dt +  Wt2 dWt, X 0 =  0.

Let Zt =  f *  Ws ds denote the integrated Brownian motion process. Integrating 
the equation between 0 and t yields

X t =  f  dX s =  [\ w s - l ) d s +  f  
Jo Jo Jo

w ; dws

=  Z t - t  +  ^ W f - Z t

=  i w f - t .

where we used that fg W 2 dWs =  \W f — Zt.

Exam ple 8 .2 .5  Solve the stochastic differential equation 

dX t =  t2dt +  e</2 cos Wt dWt, X 0 =  0, 

and find  E[JQ] and V ar(X t).

Integrating yields

X t =  [  s2 d s +  [  es/2 cos Ws dWs 
Jo  Jo
t 3

=  -  +  et/2sin Wt, (8.2.5)
О

where we used (7.3.10). Even if the process X t is not Gaussian, we can still 
compute its mean and variance. Since Ito integrals have zero expectation,
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Another variant of computation is using Ito’s formula

d(sin Wt) =  cos Wt dWt — -  sin Wt dt

Integrating between 0 and t yields

rt
sin Wt

f t  1 r t

/ cos Ws dWs — -  / sin Ws ds, 
Jo 2 J  о

where we used that sin Wq =  sinO =  0. Taking the expectation in the previous 
relation yields

E[sinWf] =  £' f  cos Ws dWs —\ [  E[si 
L Jo J 2 j 0

[sin Ws 1 ds.

From the properties of the Ito integral, the first expectation on the right side 
is zero. Denoting n(t) =  E[sin Wt]. we obtain the integral equation

fi(t)
1 /■*

= ~2 J  p(s) ds-

Differentiating yields the differential equation

1
/Л0 =

with the solution fj,(t) =  кеГ 1!2. Since к =  //(()) =  E[sin И-'о] =  0, it follows 
that fj,(t) =  0. Hence

E[sin Wt] =  0 .

Taking expectation in (8.2.5) leads to

E[X t] =  £ ? [ j ]  + e t/2E[sinW4] =  j .

Since the variance of deterministic functions is zero,

r+3 ,
V ar[X t] =  V ar  — +  e^ 2 sin Wt =  (et,/2)2Far[sin Wt]

- О
e t

=  e4E[sin2 Wt] =  —(1 -  E[cos2Wt]). (8.2.6)

In order to compute the last expectation we use Ito’s formula 

d(cos 2Wt) =  —2 sin 2Wt dWt — 2 cos 2Wt dt



and integrate to get

008 2 ^ = 0 0 8  2 ^ 0  — 2 f  sm.2Ws d,Ws — 2 f  cos 2WS ds.
Jo Jo

Taking the expectation and using that Ito integrals have zero expectation, 
yields
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E[cos2Wt] =  1 — 2 f  E[cos2Ws 
Jo

ds.

If we denote m (t) =  E[cos2Wj], the previous relation becomes an integral 
equation

m (t) =  1 — 2 / m (s) ds.
Jo

Differentiate and get
m '(t) =  —2 m (t),

with the solution m (t) =  ke~ 2t. Since к =  m (0) =  E[cos2Wo] =  1, we have 
m {t) =  e~2t. Substituting into (8.2.6) yields

V ar[X t] =  | (1  -  e~2t) =  =  sinht.

In conclusion, the solution Xt has the mean and the variance given by

t3
E № ] =  y , V ar[X t] — sinh t.

E xam p le 8 .2 .6  Solve the following stochastic differential equation 

e t/2dX t =  dt +  eWt dWt, X 0 =  0, 

and find the distribution o f  the solution Xt and its mean and variance. 

Dividing by e^2, integrating between 0 and t, and using formula (7.3.9) yields

X t =  f  e - s/ 2 d s +  [  e - s/2+Wsd\Vs 
Jo Jo

=  2(1 -  e~t/2) +  е~^2е т  -  1 
=  l +  e~t/2(eWt- 2 ) .

Since e Wt is a geometric Brownian motion, using Proposition 3.2.2 yields

E[X t] =  E[1 +  e- t /2(eWt -  2)] =  1 -  2e“ t/2 +  е~г/2Е[ещ ]
=  2 -  2e~t/2.

V ar(X t) =  V ar[ 1 +  e“t//2(eM/* — 2)] =  F ar[e_t//2e'/Ft] =  e~bV ar[eWt]
=  e~ \ e2t - е 1) =  е ь -  1.



The process X t has the following distribution:

F (y )  =  P (X t < y )  =  P { l  +  e~t/\ e Wt - 2 ) < y )

=  Р ( ^ < 1 п ( 2  +  е*/2( у - 1 ) ) )  = р ( ^ < - ^ 1 п ( 2  +  е*/2( у - 1 ) ) )

=  N ^ l n ( 2  +  e t/ \ y - l ) ) ) 1

1 f U 2
where N (u ) =  __  / e~s I2 ds is the distribution function of a standard

V  27Г J — oo 
normal distributed random variable.

E xam p le 8 .2 .7  5ofee the stochastic differential equation

dX t = d t  +  t~3/2W te-w?/{-2t) dWu Xt =  1.

Integrating between 1 and t and applying formula (7.3.11) yields

X t =  X x + J  ds +  J  s~:i/2W.4e - w* /{2s) dWs

=  t _ e - w ? / 2 _ l - w ? / m ,  Vi >  1. 
t l / Z

E xercise  8 .2 .8  Solve the following stochastic differential equations by the 
method o f  integration

(а) dX t — (t — ^ sin Wt)dt +  (cos Wt)dWt, Xo =  0;

(б) dX t =  (^ cos Wt -  1 )dt +  (sin Wt)dWt, X 0 =  0;

(c) dX t =   ̂(sin Wt +  Wt cos Wt)dt +  (Wt sin Wt)dW t , X 0 =  0.

8.3 E xact Stochastic Equations

The stochastic differential equation

dX t =  a{t, Wt)dt +  b(t, Wt)dWt (8.3.7)

is called exact if there is a differentiable function f ( t ,  x) such that

a (t ,x )  =  dtf ( t ,x )  +  ^ d l f { t ,x )  (8.3.8)

b(t,x ) =  dxf { t ,x ) .  (8.3.9)
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Assume the equation is exact. Then substituting in (8.3.7) yields 

dX t =  Wt) +  i d 2xf ( t , Wt))d t  +  dxf ( t ,  Wt)dWt.

Applying Ito’s formula, the previous equation becomes

dXt =  d ( f( t ,W t)),

which implies X t =  f ( t ,  Wt) +  c, with с constant.

Solving the partial differential equations system (8.3.8)-(8.3.9) requires the 
following steps:

1. Integrating partially with respect to x  in the second equation to obtain 
f ( t ,x )  up to an additive function T(t);

2. Substitute into the first equation and determine the function T(t);
3. The solution is X t =  f { t , Wt) +  c, with с determined from the initial 

condition on X t.

E xam p le 8 .3 .1  Solve the stochastic differential equation as an exact equation

dX t =  e \ l  +  W 2)dt +  (1 +  2etWt)dWt, X 0 =  0.

In this case a(t, x) =  e*(l +  x2) and b(t, x) =  1 +  2etx. The associated system 
is

e \ l  +  x 2) =  dtf ( t ,x )  +  ^ d l f ( t ,x )

1 +  2etx =  dxf ( t ,x ) .

Integrating partially in x  in the second equation yields

f ( t ,  x) =  J (1 +  2etx) dx =  x  +  etx2 +  T(t).

Then d t f  =  etx2 +  T'(t) and d2f  =  2eb. Substituting in the first equation 
yields

e \ l  +  x 2) =  etx2 +  T\t) +  et .

This implies T'(t) =  0, or T  =  с constant. Hence f ( t ,x )  =  x  +  e*x2 +  c, and 
X t =  f ( t , Wt) =  Wt +  etW 2 +  c. Since Ao =  0, it follows that с =  0. The 
solution is Xt =  Wt +  e tW 2.

E xam ple 8 .3 .2  Find the solution o f

dX t =  (2 tW? +  3t2(l +  Wtj)d t +  (3 t2W? +  1 )dWt , X 0 =  0.



174 An Informal Introduction to Stochastic Calculus with Applications

The coefficient functions are a ( t ,x ) =  2tx3 +  3t2 (1 +  x) and b(t,x) — 3t2x2 +  1. 
The associated system is given by

Then d t f  — 2tx3 +  T'(t) and d2f  — 6t2x, and substituting into the first 
equation we get

After cancelations we get T'(t) — 312, so T(t) =  t3 +  c. Then

f ( t ,  x) =  t2x3 +  x  +  t3 +  c.

The solution process is given by X t =  f ( t ,  Wt) =  t2W 3 +  Wt +  t3 +  c. Using 
X q =  0 we get с =  0. Hence the solution is X t =  t2W 3 +  Wt +  t3.

stochastic differential equation.

T h eorem  8 .3 .3  I f  the stochastic differential equation (8.3.7) is exact, then 
the coefficient functions a (t , ж) and b(t, x) satisfy the condition

Proof: If the stochastic equation is exact, there is a function f ( t ,  x) satisfying 
the system (8.3.8)-(8.3.9). Differentiating the first equation of the system with 
respect to x  yields

R em ark  8 .3 .4  The equation (8.3.10) has the meaning of a heat equation. 
The function b(t, x) represents the temperature measured at x  at the instance 
t, while dxa  is the density of heat sources. The function a(t, x) can be regarded 
as the potential from which the density of heat sources is derived by taking 
the gradient in x.

2 tx3 +  3i2( l  +  x) =  2 tx3 +  T'(t) +  - 6  t2x.

The next result deals with a condition regarding the closeness of the

dxa =  dtb +  ]^d2xb. (8.3.10)

dxa  =  dtdxf  +  ^d 2xdxf .

Substituting b =  dxf  yields the desired relation.
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It is worth noting that equation (8.3.10) is just a necessary condition for 
exactness. This means that if this condition is not satisfied, then the equation 
is not exact. In that case we need to try a different method to solve the 
equation.

E xam ple 8 .3 .5  Is the stochastic differential equation 

dXt =  (1 +  W?)dt +  (t4 +  W f)dW t

exact?

Collecting the coefficients, we have a ( t ,x ) =  1 +  x2, b (t ,x ) =  £4 +  x2. Since 
дха =  2x, дф =  413, and d 2b =  2, the condition (8.3.10) is not satisfied, and 
hence the equation is not exact.

E xercise  8 .3 .6  Solve the following exact stochastic differential equations
(a) dX t =  eldt +  (W'i2 -  t)dW t, X 0 =  1;
(b) dX t =  (sin t)dt +  [W 2 — t)dW t, X 0 =  ~1;

(c) dX t =  t2dt +  eWt~Uwt, X 0 =  0;
(d) dX t =  tdt +  e*/2 (cos Wt)dW t, X 0 =  l .

E xercise  8 .3 .7  Verify the closeness condition and then solve the following 
exact stochastic differential equations

(a) dX t =  ( Wt +  I  W fj  dt +  (t +  Wt3)dWt, X 0 =  0;

(b) dX t =  2tWtdt +  {t2 +  Wt)d W u X q =  0;

(c) dX t =  U W t +  \ cos W tjdt  +  (e* +  sin Wt)dWt, X 0 =  0;

(d) dX t =  eWt (1 +  l)d t  +  teWt dWt, X 0 =  2.

8.4 Integration by Inspection

When solving a stochastic differential equation by inspection we look for op­
portunities to apply the product or the quotient formulas:

d (f(t)Y t) =  f( t )d Y t +  Yt df(t)

d
f X t \ f ( i )d X t -  X tdf(t)
< m )  f ( t ) 2

For instance, if a stochastic differential equation can be written as

dX t =  f'(t)W tdt +  f(t)d W t,
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the product rule brings the equation into the exact form

dX t =  d ( f( t )W t) ,  

which after integration leads to the solution

X t =  X 0 +  f( t )W t.

Exam ple 8 .4 .1  Solve

dX t =  (t +  W?)dt +  2 tWtdWt, X 0 =  a.

We can write the equation as

dX t =  W?dt +  t(2WtdWt +  dt), 

which can be contracted to

dX t =  W?dt +  td (W f).

Using the product rule we can bring it to the exact form

dX t =  d(tW ?), 

with the solution Xt =  tW'f +  a.

Exam ple 8 .4 .2  Solve the stochastic differential equation

dX t =  (Wt +  3t2)dt +  tdWt.

If we rewrite the equation as

dXt — 3 t2dt +  (Wtdt +  tdWt),

we note the exact expression formed by the last two terms Wtdt +  tdWt — 
d(tW t). Then

dX t =  d ( f )  +  d(tW t), 

which is equivalent to d(X t) =  d(ts +  tWt). Hence X t =  t3 +  tWt +  с, с G R.

E xam ple 8 .4 .3  Solve the stochastic differential equation 

e~2tdXt =  (1 +  2 W ?)dt +  2 WtdWt.
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Multiply by e2t to get

dX t =  e2t{ l  +  2 W ?)dt +  2 e2tWtdWt.

After regrouping, this becomes

dX t =  (2 e2tdt)W? +  e2t(2 WtdWt +  dt).

Since d(e2t) — 2e2tdt and d(W 2) =  2W tdW t+dt, the previous relation becomes

dX t =  d(e2t)W 2 +  e2td(W 2).

By the product rule, the right side becomes exact

dX t =  d(e2tW 2), 

and hence the solution is X t =  e2tW 2 +  с, с G R.

E xam p le 8 .4 .4  Solve the equation

t3dX t =  (3 t2X t +  t)dt +  t6dWt, Х г =  0.

The equation can be written as

t3dX t -  3X tt2dt =  tdt +  t6dWt.

Divide by t6

( t ty
Applying the quotient rule yields

Integrating between 1 and t, yields

ч

so

^ = J J 1  +  W t- W 1 +  C

Xt =  ct3 -  i  +  <?(W, -  W i), C€ M.

Using Xx =  0 yields c — 1/4 and hence the solution is

X  =  i ( i 3 - ^ ) + г 3( ^ - и и  c g r .

E xercise  8 .4 .5  Solve the following stochastic differential equations by the in­
spection method

(a) dX t =  (1 +  Wt)dt +  {t +  2 Wt)dWt, X 0 =  0;
(b) t2dX t =  (213 -  Wt)dt +  tdWt, X i =  0;
(c) e~t/2dX t =  \Wtdt +  dWt, X 0 =  0;
(d) dX t =  2 tWtdWt +  W fdt, X(j =  0;

(e) dXt =  1̂ + %^Wt^dt + \ft dWt, Xi =  0.
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8.5 Linear Stochastic Differential Equations

Consider the stochastic differential equation with the drift term linear in Xt

dX t =  (a (t)X t +  /3(t))dt +  b(t, Wt)dWu t >  0.

This can also be written as

dX t — a (t)X tdt =  f5(t)dt +  b(t, Wt)dWt.

Let A{t) — Jq ft(,s) ds. Multiplying by the integrating factor e~A^\ the left 
side of the previous equation becomes an exact expression

e~A(t) [dX t -  a {t )X td tj =  e~A® P(t)dt +  e~A^ b (t, Wt)dWt 

d ( e - A{-b) X t  ̂ =  e~A^ P {t)d t +  e - A{t)b(t,W t)dW t.

Integrating yields

e~A® X t =  X 0 +  [  e - A^ P ( s ) d s +  [  e~A(s)b(s,W s) dWs 
Jo Jo

X t =  X 0eA^  +  eA^  (  J  e~A^(3(s) ds +  J  e - A^ b (s , Ws) d W ,} .

The first integral within the previous parentheses is a Riemann integral, and 
the latter one is an Ito stochastic integral. Sometimes, in practical applications 
these integrals can be computed explicitly.

When b(t,W t) =  b(t), the latter integral becomes a Wiener integral. In 
this case the solution Xt is Gaussian with mean and variance given by

E[Xt] =  X 0eAW +  eA^  [  e~A^ /3 (s )d s
Jo

V ar[X t] =  e2A® f  e~2A^ b (s ) 2 ds.
Jo

Another important particular case is when a(t)  =  а  ф 0, i3(t) — f3 are 
constants and b(t, Wt) =  b(t). The equation in this case is

dXt =  (aX t +  P)dt +  b(t)dW t, t >  0,

and the solution takes the form

X t =  X 0eat +  —{eat -  1) +  f  ea^_s^6(s) dWs. 
a Jo



E xam p le 8 .5 .1  Solve the linear stochastic differential equation

dX t =  (2X t +  1 )dt +  e2tdWt.

Write the equation as

dX t -  2X tdt =  dt +  e2tdWt 

and multiply by the integrating factor e~2t to get
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d

Integrate between 0 and t and multiply by e , to obtain

rt rt
dWsX t =  X 0e2t +  e2t [  e~2sds +  e2t f  

Jo Jo

=  X 0e2t +  ^ (e2t - l )  +  e 2tWt.

Exam p le 8 .5 .2  Solve the linear stochastic differential equation

dX t =  (2 -  X t)dt +  e^ W td W f  

Multiplying by the integrating factor e* yields

e\ dX t +  X tdt) =  2ebdt +  Wt dWt.

Since et(dXt +  Xtdt) =  d(etXt), integrating between 0 and t we get

e lX t =  X 0 +  [ Ь 2e4 dt +  t  dWs.
Jo Jo

Dividing by et and performing the integration yields

X t =  X 0e - t +  2 ( l - e ~ t) +  ^ e - t (W 2 - t ) .  

E xam p le 8 .5 .3  Solve the linear stochastic differential equation 

dX t =  ( ]- X t +  1 )dt +  el cos W, dWt.

Write the equation as

1
dX t -  -X ,d t  =  dt +  el cos Wt dWt
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and multiply by the integrating factor e to get

d(e~t/2X t) =  e~t/2dt +  et/2 cos Wt dWt.

Integrating yields

e~t/2X t =  X 0 +  [  e~s/2d s +  [  e s/2 cos Ws dWs.
Jo Jo

Multiply by e4' 2 and use formula (7.3.10) to obtain the solution 

X t =  X 0e^ 2 +  2(e‘/2 -  1) +  el sin Wt.

E xercise 8 .5 .4  Solve the following linear stochastic differential equations

(a) dX t =  (4X t -  1 )dt +  2dWt\
(b) dX t =  (3X t -  2)dt +  e3tdWt;

(c) dX t =  (1 +  X t)dt +  etWtdWt;
(d) dXt =  (4Х г +  t)dt +  e4tdW t;

(e) dX t =  ( t+ \ X ^ jd t  +  e l sin Wt dWt ;

( f) dX t = - X tdt +  e - f dWt.

In the following we present an important example of stochastic differential 
equation, which can be solved by the method presented in this section.

Proposition 8 .5 .5  (The m ean-reverting O rnstein-U hlenbeck process)
Let m  and a  be two constants. Then the solution Xt o f  the stochastic equation

dXt =  (m  — Xt)dt +  adW t

is given by

Xt =  m  +  (Xo — m )e 1 +  a
Jo

nS—t dW„

-t

(8.5.11)

(8.5.12)

Xt is Gaussian with mean and variance given by

E[Xj] =  m  +  (Xo — m )e  

V ar(X t) =  -^-(1 — e~2t).

Proof: Adding X tdt to both sides and multiplying by the integrating factor
e t we get

d(etXt) =  m eidt +  otetd,Wt,
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which after integration yields

ebXt =  X 0 +  m(e* -  1) +  а  [
Jo

es dW 4.

Hence

Xt =  Xoe t +  m  — e t +  a e ~t I Я
I

=  m  +  (Xo — m )e t +  a  f  e s 1 d,Ws .
Jo

Since Xt is the sum between a predictable function and a Wiener integral, 
then we can use Proposition 5.6.1 and it follows that Xt is Gaussian, with

E [X t] =  m +  (Xo — m )e  +  E

rt

a

V ar(X t) =  V ar Ia  I e s~f dW.

f  es~*
Jo

L

dWs =  m  +  (Xq — m )e - t

a 2e 2t / e2s ds

p2t _  I 1
=  Q2e-2 tf------ - =  - a 2(\ — e~2t).

2 2 v ;

The name mean-reverting comes from the fact that

lim E[X(] — m.
t—b OO

The variance also tends to zero exponentially, lim V ar[X t} =  0. According to
t—>oo

Proposition 4.9.1, the process Xt tends to m  in the mean square sense.

P rop osition  8 .5 .6  (T h e  Brow nian bridge) For a ,b  e  R fixed, the stochas­
tic differential equation

dXt =  —-------dt +  dWt, 0 < t <  1, Xq =  a
1 -  t

has the solution

f l 1
Xt =  a (l — t) +  bt +  ( l —t) / -------dWs, 0 < t <  1.

Jo
(8.5 .13)

The solution has the property lim X t =  b, almost certainly.
t - > l
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Proof: If we let Yt =  b — Xt the equation becomes linear in Yt

dYt +  -^—Y tdt =  -d W t.

Multiplying by the integrating factor p(t) — yields

*(rh) - ~ihdW'*•

which leads by integration to

J L e c _ r _ l
1 - t  Jo  1 -

dWs.

Making t =  0 yields с — а — b, so

b - X t
1 - t

=  a — b Г —Jo  1 -

dWs.

Solving for X  yields

Xt =  a(

Let Ut =  (1 — i) /J dWs. First we notice

E[C7t] =  ( 

Far(C/t) =  ( 

=  (

— t) +  bt + -dWs, 0 <  t <  1.

that

t )E [  f  J — dWs\ =0,
Jo 1 ~ s

In order to show as-limt-^i Xt =  b, we need to prove

P(w; lim Xt{w) — b) =  1.

Since Xt =  o( 1 — t) +  bt 4- Ut, it suffices to show that

Р (ш ; lim Ut{u) =  0) =  1.
4 l '

We evaluate the probability of the complementary event

P(cj;lim f/t(w) ф 0) =  Р(ш; \Ut(u)\ > e,Vt), 
4 t — 7 v

ds

(8 .5 .14)
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for some e > 0. Since by Markov’s inequality

, , , ,  4I s Var(U t) t ( l - t )
P (u ; \Ut{u)\ > e ) <  ------^  =

holds for any 0 <  t < 1, choosing t —¥ 1 implies that

P (w ;| 0 i ( w ) | > C,Vt) =  O,

which implies (8.5.14). ■

The process (8.5.13) is called the Brownian bridge because it joins Xo =  a  
with X\ =  b. Since X t is the sum between a deterministic linear function in t 
and a Wiener integral, it follows that it is a Gaussian process, with mean and 
variance

Е[Хг] =  a (l — t) +  bt 
V ar{X t) =  Var(U t) =  t ( l - t ) .

It is worth noting that the variance is maximum at the midpoint t =  (b — a )/2  
and zero at the end points a  and b.

E xercise  8 .5 .7  Show that the Brownian bridge (8.5.13) satisfies Xt b as 
t -¥  1-

E xercise  8 .5 .8  Find C ov(X s , X t), 0 < s < t fo r  the following cases:
(a) X t is a mean reverting Ornstein- Uhlenbeck process;
(■b) Xt is a Brownian bridge process.

8.6 Stochastic Equations with respect to a Poisson 
Process

Similar techniques can be applied in the case when the Brownian motion 
process Wt is replaced by a Poisson process Nt with constant rate A. For 
instance, the stochastic differential equation

dX t =  3 X tdt +  e3tdNt 

X 0 =  1

can be solved multiplying by the integrating factor e-3< to obtain

d(e~3tX t) =  dNt.

Integrating yields e~3tX 4 =  Nt +  1, so the solution is X t =  e3t( l  +  Nt).
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The following equation

dXt — (m  — Xt)dt +  adNt

is similar to the equation defining the mean-reverting Ornstein-Uhlenbeck pro­
cess. As we shall see, in this case, the process is no more mean-reverting, but 
it reverts to a certain constant. A similar method yields the solution

Xt =  m  +  (Xo — т )ё~ г +  ае~ г f  es dNs . 
Jo

Since from Proposition 5.8.5 and Exercise 5.8.8 we have

E [ [  es dNs] =  x f  es ds =  X(et — 1)
Jo Jo

V ar( J  es dNs) =  \j e2s ds =  ^ (e2t — 1),

it follows that

E[X t] =  m  +  (Xo — m)e~* +  aA (l — e- t ) —» m  +  aX 

V ar{X t) =  ^ ! ( l - e - 2‘ ).

It is worth noting that in this case the process X t is not Gaussian any more.

8.7 The M ethod of Variation of Param eters

Let us start by considering the following stochastic equation

dX t -  a X tdWt, (8.7.15)

with a  constant. This is the equation which, in physics, is known to model 
the linear noise. Dividing by Xt yields

X t

Switch to the integral form

dX t
-  =  a  dWt-

a d W t,

and integrate “blindly” to get hi X, =  aW t +  c , with с an integration constant. 
This leads to the “pseudo-solution”

Xt =  e'aW t+c



Stochastic Differential Equations 185

The nomination “pseudo” stands for the fact that X t does not satisfy the 
initial equation. We shall find a correct solution by letting the parameter с be 
a function of t. In other words, we are looking for a solution of the following 
type:

X t =  eaWt+c{t\  (8.7.16)

where the function c(t) is subject to be determined. Using Ito’s formula we 
get

dX t =  d{eaWt+c№) =  eaWt+c(t) ^  +  a 2 /2)dt +  a e aWt+c^ dW t 

=  X t(J( t )  +  c? /2 )d t +  a X t dWt.

Substituting the last term from the initial equation (8.7.15) yields 

dXt =  X t(c'(t) +  a 2/2) dt +  dX t , 

which leads to the equation

d(t)  +  a 2/2  =  0

2
with the solution c(t) =  — \ t  +  k. Substituting into (8.7.16) yields

X t =  _

The value of the constant к is determined by taking t =  0. This leads to 
Xo =  ek . Hence we have obtained the solution of the equation (8.7.15)

X t =  Х 0еаИЛ‘-1г*.

Exam p le 8 .7 .1  Use the method o f  variation o f param eters to solve the stochas­
tic differential equation

dX t =  [iXtdt +  a X tdWt,

with jx and a  constants.

After dividing by Xt we bring the equation into the equivalent integral form

f l t =J lldt + J  adWt'
Integrate on the left “blindly” and get

In Xt — fit +  aW t +  c,



186 An Informal Introduction to Stochastic Calculus with Applications

where с is an integration constant. We arrive at the following “pseudo­
solution”

X t — e [it+<rW t+c

Assume the constant с is replaced by a function c(t), so we are looking for a 
solution of the form

Xt =  etd+o-Wt+cW' (8.7.17)

Apply Ito’s formula and get

2

dX t =  X t([i +  c'(t) +  ~2~)dt +  (fXtdWt- 

Subtracting the initial equation yields

(C'W  +  ~^)dt =  0,

2 2 
which is satisfied for c!(t) =  — with the solution c{t) — — +  к, к €  R.
Substituting into (8.7.17) yields the solution

X  _  e ix t + a W t - ^ - t + k  _  e ( p . - ĝ )t+ (7W t+ k  _  X Qe ^ ~ ^ t+aWt.

E xercise  8 .7 .2  Use the method o f  variation o f  param eters to solve the equa­
tion

dX t =  X tWtdWt

by following the next two steps:
(a) Divide by Xt and integrate “blindly” to get the “pseudo-solution”

with с constant.

(b) Consider с =  c(t , Wt) and find a solution o f type

X t =  e ^ ~ ^ +c(-t,Wt\

E xam p le 8 .7 .3  (Langevin  equation) Solve dXt =  —qX tdt +  crdWt, with q 
constant.

We start solving the associated deterministic equation

dX t =  - q X tdt,
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which has the solution X t =  C e~ qt, with С  constant. Now, look for a solution 
of the type X t =  C (t)e~ qt, and determine the function C(t) such that the 
initial equation is satisfied. Comparing

dX t =  d ( c ( t ) e ~ qt Ĵ =  — qC (t)e~ qidt +  e~qtdC(t)

=  —qX tdt +  e~qtdC(t) 

with the initial stochastic differential equation of X t implies that С  (t) satisfies

dC(t) =  a e qtdWt.

Integrating we obtain C(t) =  C(0) +  a  f*  eqs dWs , and hence X t =  C(0)e_9< +  
cre~qt J q eqs dWs. It is not hard to see that C(0) =  Xo, which enables us to 
write the final solution as

X t =  X 0e - qt +  ae~ qt [  eqs dWs.
Jo

E xercise  8 .7 .4  (th e  m ean reverting  O rstein -U hlen beck  process) Use the
method o f  variation o f  constants to solve

dX t =  A (fi — X r)dt +  crdWt, 

where A and /л are constants.

8.8 Integrating Factors

The method of integrating factors can be applied to a class of stochastic dif­
ferential equations of the type

dX t =  f ( t ,  X t)dt +  g(t)X tdWt, (8.8.18)

where / and g are continuous deterministic functions. The integrating factor 
is given by

p t =  e-  So ff(s) dWs + \ /„* g2 {s) d s _

The equation can be brought into the following exact form

d(ptXt) =  ptf { t ,  X t)dt.

Substituting Yt =  ptXt, we obtain that Yt satisfies the deterministic differential 
equation

dYt =  ptf  (t, Yt/p t)dt,

which can be solved by either integration or as an exact equation. We shall 
exemplify the method of integrating factors with a few examples.
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E xam ple 8 .8 .1  Solve the stochastic differential equation

dX t =  rdt +  aXtdW t, (8.8.19)

with r and a  constants.

The integrating factor is given by pt =  e \a2t~aWt . Using Ito’s formula, we can 
easily check that

dpt =  P t(o i2d t — a d W t ).

Using dt2 =  dtdW t =  0, (dWt)2 =  dt we obtain

dX tdpt =  —a 2 ptX tdt.

Multiplying by pt, the initial equation becomes

ptdX t -  a p tX tdWt =  rp tdt,

and adding and subtracting a 2ptXtdt, from the left side yields

ptdX t -  a p tX tdWt +  a 2ptX tdt -  a 2ptX tdt =  rptdt.

This can be written as

ptdX t +  X tdpt +  dptdX t =  rptdt,

which, by virtue of the product rule, becomes

d(ptX t) =  rptdt.

Integrating yields

УJo

rt
ptX t =  pqX q +  r I ps ds

and hence the solution is

Xt — —Xo H-----/ ps ds
Pt Pt / 'Jo

=  X 0eaWt~^a2t +  r [  e - ^ 4 t - s ) + a (wt-w s) dg
Jo

E xercise  8 .8 .2  Let a  be a constant. Solve the following stochastic differential 
equations by the method o f  integrating factors

(a) dX t =  aX tdW f,
(b) dX t =  X tdt +  a X tdWt;

(c) dX t =  ——dt +  о XfdW j . Xo >  0.
Xt

E xercise  8 .8 .3  Let X t be the solution o f  the stochastic equation dX t =  (rXt dWt, 
with a  constant. Let At =  j  J ([ X s d,Ws be the stochastic average o f  X t. Find  
the stochastic equation satisfied by At, the mean and variance o f  At-
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8.9 Existence and Uniqueness

The following theorem is the analog of Picard’s result from ordinary differ­
ential equations. It states the existence and uniqueness of strong solutions 
of stochastic differential equations. The proof of the next theorem can be 
found in 0ksendal [37]. For more results regarding existence and uniqueness 
of strong solutions the reader is referred to Krylov and Zvonkin [29].

T heorem  8 .9 .1  (E x isten ce  and U niqueness) Consider the stochastic dif­
ferential equation

where с is a constant and b and a  are continuous functions on [0, T\ x R 
satisfying

with C ,K  positive constants. Let Tt =  a {W s\s <  t} . Then there is a unique 
solution process Xt that is continuous and J - f  adapted and satisfies

The first condition says that the drift and volatility increase no faster 
than a linear function in x. This condition ensures that the solution Xt does 
not explode in finite time, i.e. does not tend to oo for finite t. The second 
conditions states that the functions are Lipschitz in the second argument; this 
condition guarantees the solution uniqueness.

The following example deals with an exploding solution. Consider the 
nonlinear stochastic differential equation

where a is a nonzero constant. It is clear that condition 1. does not hold, since 
the drift increases cubically.

We shall look for a solution of the type X t =  f {W t). Ito’s formula yields

Equating the coefficients of dt and dWt in the last two equations yields

dX t =  b(t, X t)dt +  a(t, X t)dWt, X 0 =  c

1. |6(£,ж)| +  |a(i,x)| <  (7(1 +  |ж|); ж G R, i G [0,T]
2. \b(t,x) -  b(t,y)\ +  \a(t,x) -  a(t,y)\ < K\x -  y\, ж, у G R, t G [0, T]

dX t =  X fd t  +  X 2t dWt, X 0 =  1/a, (8.9.20)

dX t =  f'(W t) d W t + l- f" ( W t)dt.

f\ W t) =  X ? ^ f ' ( W t) =  f (W t)2 

\f"(W t) =  X ? ^ f ( W t )  =  2 f(W t)3.

(8.9.21)

(8.9.22)
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We note that equation (8.9.21) implies (8.9.22) by differentiation. So it suffices 
to solve only the ordinary differential equation

f ' ( x ) =  f ( x ) 2, /(0) =  1/a.

Separating and integrating we have

1 ш  = 1л$̂ Пх) = ̂
Hence a solution of equation (8.9.20) is

X t  = ------- 777-a - W t

Let Ta be the first time the Brownian motion Wt hits a. Then the process X t 
is defined only for 0 <  t <  Ta . Ta is a random variable with P (Ta <  oo) =  1 
and E[Ta] =  oo, see section 4.3.

E xam p le 8 .9 .2  Show that that the following stochastic differential equations 
have a unique (strong) solution, without solving the equations explicitly:

(a) dX t =  fiX td t  +  о  dWt (Langevin equation);

(b) dXt =  (m  — X t) dt +  adW t (Mean reverting Ornstein-Uhlenbeck pro­
cess);

(c) dXt =  aX tdW t (Linear noise);

(d) dX t =  // dt +  dWf (Squared Bessel process);

(e) dXf =  f iX t dt +  aX t dWt (Geom etric Brownian m otion);

(/) dX t =  (no +  n iX t) dt +  yJ^ -dW t (CIR process), 
with m , n, Mi and & positive constants.

E xam p le 8 .9 .3  Consider the stochastic differential equation

dX t = ( y J  1 +  * t2 +  ^ X t) d t + s j l  +  X? dWt, X 0 =  x0.

(a) Solve the equation;

(b) Show that there is a unique solution.
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8.10 Finding Mean and Variance

For most practical purposes, the most important information one needs to 
know about a process is its mean and variance. These can be found directly 
from the stochastic equation in some particular cases without solving explicitly 
the equation. We shall deal with this problem in the present section.

Consider the process X t satisfying (6.1.1). Then taking the expectation 
in (8.1.2) and using the property of the Ito integral as a zero mean random 
variable yields

E[Xt] = X 0 + [  E[a(s,VFs,X s)]ds. (8.10.23)
Jo

Applying the Fundamental Theorem of Calculus we obtain

j E [ X t\ = E [a (t ,W t,X t)}.

We note that Xt is not differentiable, but its expectation E[Xt] is. This equa­
tion can be solved exactly in a few particular cases.

1. If a(t,W t, Xt) =  a(t), then ^E[X*] =  a(t) with the exact solution 
E[X t] = X 0 + J *  a(s) ds.

2. If a(t, Wt, Xt) =  a (t )X t +  P(t), with a(t)  and fl(t) continuous determin­
istic function, then

j E [ X t] =  a №  [Xt] +  P(t), 

which is a linear differential equation in E[X*]. Its solution is given by

E[Xt] =  eAW ( x 0 +  J ' e~A^ P {s )  ds) , (8.10.24)

where A(t) =  fg a ( s ) d s .  It is worth noting that the expectation E[X (] does 
not depend on the volatility term b(t, Wt, Xt).

E xercise  8 .10 .1  I f  dX t =  (2Xt +  e2t)dt +  b(t, Wt, X t)dWt, then show that

E[Xt] =  e 2\X o +  t).

Prop osition  8 .10 .2  Let X t be a process satisfying the stochastic equation
dX t =  a (t )X tdt +  b(t)dW t.

Then the mean and variance o f  Xt are given by

E [X t] =  eA« X 0 

V ar[X t} =  e2A^  [  e~A^ b 2(s)d s ,
Jo

where A(t) =  J^ a (s )d s .
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Proof: The expression of E[J*Q] follows directly from formula (8.10.24) with 
/3 =  0. In order to compute the second moment we first compute

(,dXt)2 =  b2(t)dt] 
d (X 2) =  2XtdX t +  (dXtf  

=  2Xt (a (t)X tdt +  b(t)dW t) +  b2(t)dt 
=  (2 a ( t )X 2 +  b2(t))dt +  2 b(t)X tdWt,

where we used Ito’s formula. If we let Yt =  X 2, the previous equation becomes

dYt =  (2 a(t)Y t +  b2(t))dt +  2b(t)yfYt dWt.

Applying formula (8.10.24) with a ( t ) replaced by 2a(t)  and /3(t) by b2(t), 
yields

Е[У*] =  е2А^  (V0 +  J  e~2A^ b 2(s) ds^j, 

which is equivalent to

E[X 2} =  e2A^  ( x g  +  J  e~2A^ b 2{s) ds).

It follows that the variance is

V ar[X t] = E[X?} -  (E[X*])2 = e2A^  f  e~2A^ b 2(s) ds.
Jo

R em ark  8 .1 0 .3  We note that the previous equation is of linear type. This 
shall be solved explicitly in a future section.

The mean and variance for a given stochastic process can be computed by 
working out the associated stochastic equation. We shall provide next a few 
examples.

E xam p le  8 .1 0 .4  Find the mean and variance o f  ekWt, with к constant. 

From Ito’s formula

d(ekWt) =  k ekWtdWt +  ^ k 2ekWtdt , 

and integrating yields

rt 1 rt
akWt _ 1 +  к [  ekWs dWs +  \ k2 [  ekWs ds. 

Jo 2 Jo
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Taking the expectations we have

E[ekWt] =  1 + ^ I E|<kW, ds.

If we let f ( t )  =  E[efcU (], then differentiating the previous relations yields the 
differential equation

f i t )  =  \k2f (t)

with the initial condition /(0) =  E[ekW°} =  1. The solution is f {t)  =  efc2t/2, 
and hence ___________

E[e'kW n =  ek2t/2

The variance is

V ar(ekWt) =  E[e2kWt] -  (E[ekWt})2 =  еАкЧ'2 -  екЧ 

=  екЧ{екН - 1 ) .

E xam p le 8 .10 .5  Find the mean o f  the process W teWt.

We shall set up a stochastic differential equation for W teWt. Using the product 
formula and Ito’s formula yields

d(Wte Wt) -  e WtdWt +  Wtd(eWi) +  dWt d(eWt)

=  e WtdWt +  (Wt +  dWt)(eWtdWt +  \ eWtdt)

=  {\ w teWt +  e Wt )dt +  (eWt +  WteWt )dWt.
£

Integrating and using that W oew° =  0 yields

Wte Wt =  [  (l-W se Ws + e Ws) d s +  [  (ew* +  Wse w°) dWs.
Jo 2 J  о

Since the expectation of an Ito integral is zero, we have

E [Wte Wt] =  f  (\E[W se w°] + E [e ^ ] )  ds.
Jo 2

Let f ( t )  — E\WteWt]. Using E[eWs] =  es/2, the previous integral equation 
becomes

f ( t )  =  J  (^ f( s )  +  es/2)ds.

Differentiating yields the following linear differential equation

f w  =  \ f ( t ) +



with the initial condition /(0) =  0. Multiplying by e- */2 yields the following 
exact equation

(e - t/2f( t )Y  =  1.

The solution is f ( t ) =  tet/2. Hence we obtained that

E [Wte Wt] =  tet/2.

E xercise  8 .1 0 .6  Find (а) E [W?eWt]\ (6) E [WtekWt],

Exam p le 8 .1 0 .7  Show that fo r  any integer к >  0 we have

E [W2k] =  {j ^ t k , E \W2k+l] =  0.

In particular, E[W 4] =  312, E[Wf6] =  15i3.

From Ito’s formula we have

d(Wtn) =  riW[l~1dWt +  n n̂ ~ ^ w p ~ 2dt.

Integrate and get

W ?  =  n  Г  WJ1’ 1 dWs +  П П̂ ~ ^  Г  W ?~2 ds.
Jo 2 ./о

Since the expectation of the first integral on the right side is zero, taking the 
expectation yields the following recursive relation

=  n(n ~ ^  P  E[Wsn~2] ds.
2 Jo

Using the initial values E [Wt] =  0 and E [W2] =  t, the method of mathematical 
induction implies that E\W2k+l] =  0 and E[VF2fc] =  ^ ^ t k. The details are 
left to the reader.

E xercise  8 .1 0 .8  (a) Is W f  — 3t2 an Tt-m artingale?

(b) What about W f ?

Exam p le 8 .1 0 .9  Find  E[sin Wt}.

From Ito’s formula

d(sin Wt) =  cos Wt dWt — ^ sin Wt dt,
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then integrating yields

f i  i  rt
sin Wt =  / cos Ws dWs — -  / sin И 

Jo 2 Vo

Taking expectations we arrive at the integral equation

1 i 1E[sin Wt] =  - -  E[sinWs]ds.
2 Jo

Let /(£) =  E[sinWt\. Differentiating yields the equation f'(t)  =  with
/(0) =  E[sin И'о] =  0. The unique solution is f ( t )  =  0. Hence

E[sin Wt} =  0.

Exercise 8 .10 .10  Let a  be a constant. Show that
(а) E[sin(crWt)] =  0;
(б) E[cos(<7Wf)] =  е - Л / 2;

(c) E[sin(i +  aWt)\ =  e-0"2̂ 2 sin t;
(d) E[cos(£ +  oWt)\ =  e-0,2*/2 cos t.

E xercise 8 .10 .11  Use the previous exercise and the definition o f  expectation 
to show that

7Г1/2
/(a  

(6)/
1/4 ’—oo ®

°° -X^/2 Л /2^e ' cos x d x  =  d

Exercise 8 .10 .12  Using expectations show that

X e-a x * + b x  d x  =  . f l (  A V 2/(4a).
\2aJ/ OO

-oo

(6) /°° X2e - ax2+te dx =  л J -  f  1 +  eft2/(4a).
V a 2a V 2a/

(c) Can you apply a sim ilar method to find a closed form  expression fo r  
the integral

/OO 

-OO

Exercise 8 .10 .13  Using the result given by Example 8.10.7 show that

(а) E[cos(iWi)] =  e~t3/2;
(б) E[sin(tWt)] =  0;
(c) E[etWt] =  0.
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For general drift rates we cannot find the mean, but in the case of concave 
drift rates we can find an upper bound for the expectation E[Xj]. The following 
classical result will be used for this purpose.

Lem m a 8 .1 0 .1 4  (G ronw all’s inequality) Let f { t ) be a non-negative con­
tinuous function satisfying the inequality

f { t ) < C  +  M  f  f ( s ) d s  
Jo

fo r  0 < t < T , with С , M  constants. Then

f i t )  < C eMt, 0 < t < T.

Proof: The proof follows Revuz and Yor [41]. Iterating the integral inequality 
one gets

f i t )  < C  +  M  f  f i s ) d s  
Jo

J  (c +  M  J  fiu)du^jds<  C  +  M

=  С  +  M C t  +  M 2 r r  f (u ) dudsJ f n*Jo  Jo

Г / 0
Jo

t
2=  С  +  M C t +  M  t / fiu )d u .

Working inductively, we obtain the following inequality
J .2 t n

f i t )  < C  +  M C t +  M 2C -  +  --- +  M nC —
2 n!

fy j-n + l-p l rt
+-

Jo
f  f iu )d u .  (8.10.25)

Jo
The last term tends to 0 as n —> oo, since

0 < [  f iu )  du <  t max f(u ) ,
Jo

M n+ltn 
lim ------ ;—  -  0.

n —>oo T il

Taking the limit in (8.10.25) it is not hard to obtain

f ( t ) <  C ± ^ = C e * «
k=0
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P rop osition  8 .10 .15  Let X t be a continuous stochastic process such that 

dX t =  a (X t)dt +  b(t, Wt ,X t) dWt,

with the function a(-) satisfying the following conditions
1. a(x) >  0, fo r  0 < x  < T;
2. a"(x) < 0, fo r  0 < x  <  T;
3. a'(0) =  M .

Then E[Xt] <  X 0eMt, fo r  0 < X t < T.

Proof: Prom the mean value theorem there is £ G (0, ж) such that

a(x) =  a(x) — a(0) =  (x — 0)a'(£) <  xa'(0) =  M x, (8.10.26)

where we used that a'(x) is a decreasing function. Applying Jensen’s inequality 
for concave functions yields

E [e(X t)] <  a(E [X t}).

Combining with (8.10.26) we obtain E[o(Xf)] < M E[X t}. Substituting in the 
identity (8.10.23) implies

Е В Д  < X 0 +  M  [  E [X e] ds. 
Jo

Applying Gronwall’s inequality we obtain E[X*] <  X oeMt. U

E xercise  8 .10 .16  State the previous result in the particular case when a (x ) =  
sinx, with 0 < x <  тт.

Not in all cases can the mean and the variance be obtained directly from 
the stochastic equation. In these cases one may try to produce closed form 
solutions. Some of these techniques were developed in the previous sections of 
the current chapter.





Chapter 9

Applications of Brownian
Motion

This chapter deals with a surprising relation between stochastic differential 
equations and second order partial differential equations. This will provide 
a way of computing solutions of parabolic differential equations, which is a 
deterministic problem, by means of studying the transition probability density 
of the underlying stochastic process.

9.1 The Directional Derivative

Consider a smooth curve x : [0, oo) -» R", starting at ж(0) =  xo with the 
initial velocity v =  x'(0). Then the derivative of a function / : Rn —>■ R in the 
direction v is defined by

where V/ stands for the gradient of / and (, ) denotes the scalar product. 
The linear differential operator Dv is called the directional derivative with 
respect to the vector v. In the next section we shall extend this definition 
to the case when the curve x(t) is replaced by an Ito diffusion X t: in this 
case the corresponding “directional derivative” will be a second order partial 
differential operator.

Dvf ( x 0) =  lim

Applying the chain rule yields

199
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9.2 The Generator of an Ito Diffusion

Let (Xt)t>о be a stochastic process with Xq =  x q . We shall consider an 
operator that describes infinitesimally the rate of change of a function which 
depends smoothly on Xt-

More precisely, the generator of the stochastic process X t is the second 
order partial differential operator A defined by

A f{x )  = i im W i Щ  
’ t\0 t ’

for any smooth function (at least of class С 2) with compact support, i.e. 
/ : R n —> M, / G Cq (Mri). Here E x stands for the expectation operator given 
the initial condition Хц =  x, i.e.,

E x[ f(X t)] =  E [ f{X t)\X0 =  x] =  f  f(y )p t(x ,y )d y ,
jR n

where p t(x ,y )  =  p(x, y. t, 0) is the transition density of X t , given X q =  x (the 
initial value X q is a deterministic value x).

In the following we shall find the generator associated with the Ito diffusion

dXt =  b(Xt)dt +  a (X t)dW (t), t > 0 , X 0 =  x, (9.2.1)

where W (t) — (W\ (t) , . . . ,  Wm(t)) is an m-dimensional Brownian motion, with 
b : R n —> Mn and о  : Mn —> Rnxm measurable functions.

The main tool used in deriving the formula for the generator A is Ito’s 
formula in several variables. If Ft =  f ( X t), then using Ito’s formula we have

dF> =  Y . ^ X ‘) d X '< + 1E  d x ‘ dX i' <9-2-2»
i 1 i , j  1 J

where X t =  {X } , • • • , X Ttl) satisfies the Ito diffusion (9.2.1) on components, 
i.e.,

dX\ =  bi{X t) d t+ [ a {X t)dW(t)\i 

=  bi(Xt)dt +  J 2 ° i k d W k(t). (9.2.3)
к

Using the stochastic relations dt2 =  dt dWk (t) =  0 and dWk(t) dWr (t) =  6krdt, 
a computation provides
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dX l dX{ =  (bidt +  °ikdW k bjdt +

=  (  £  aikdWkit)'') (  £  a jr dWr {t))
к r

=  £  dWfc(£)dWr(t) =  £  crjfccrifc dt
к,г к

=  (craT)ij dt.

Therefore
dX\ dX { =  (< 7 < r % - dt. 

Substituting (9.2.3) and (9.2.4) into (9.2.2) yields

(9.2.4)

dFt = d£

г,к дх

Integrate and obtain

Ft =  Po + 1 V '  r Tli
9 ) « + 2 >

+

f Jo 2 ' dxidx j 
hj

df_
dxi

(X s) ds

Since Fo =  f ( X о) =  /(ж) and Е ж(/(а:)) =  /(ж), applying the expectation 
operator in the previous relation we obtain

Ex[Ft] = f ( X) +  Ex № (7 (7
s d2f
u dxidx j

ds (9.2.5)

Using the commutativity between the operator E x and the integral jg , apply­
ing l’Hospital rule (see Exercise 9.2.7), yields

e * k ]  -  /(i) i v  ,  a2/W  , v  h e/W

M J к

We conclude the previous computations with the following result.
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Theorem  9 .2 .1  The generator o f  the Ito diffusion (9.2.1) is given by

И  + £ * » £ ■  <9'2-6>
1,3

The matrix a  is called dispersion  and the product acrT is called diffusion 
matrix. These names are related with their physical significance. Substituting 
(9.2.6) in (9.2.5) we obtain the following formula

m f ( X t ) }  =  №  + E X\ f  A f(X s) d s ] , (9.2.7)
о

for any / €  C02(R ").

Exercise 9 .2 .2  Find the generator operator associated with the n-dim ensional 
Brownian motion.

E xercise 9 .2 .3  Find the Ito diffusion corresponding to the generator A f ( x )  =  
f" (x )  +  f'{x ).

E xercise 9 .2 .4  Let A q  =  \{dXl + Xi^x2) Grushin’s operator.

(a) Find the diffusion process associated with the generator A c-

(b) Find the diffusion and dispersion matrices and show that they are de­
generate.

E xercise 9 .2 .5  Let Xt and Yt be two one-dim ensional independent Ito diffu­
sions with infinitesimal generators A x  and A y. Let Zt =  (Xt,Yt) with the 
infinitesimal generator Az- Show that A z =  Ax  +  A y.

E xercise 9 .2 .6  Let Xt be an Ito diffusion with infinitesimal generator Ax- 
Consider the process Yt =  (t,X t). Show that the infinitesimal generator o fY t  
is given by A y =  dt +  A x  ■

E xercise 9 .2 .7  Let X t be an Ito diffusion with Xq — x, and ip a smooth 
function. Using I’Hospital rule, show that

1 Г f l 1lim - E 1 / ip(Xs)d s  = ip (x ). 
t->o+ t i Jo



Applications of Brownian Motion 203

9.3 Dynkin’s Formula

Formula (9.2.7) holds under more general conditions, when M s a stopping 
time. First we need the following result, which deals with a continuity-type 
property in the upper limit of an Ito integral.

Lem m a 9 .3 .1  Let g be a bounded measurable function and т be a stopping 
time fo r  Xt with E[r] <  oo. Then

lim E
k —»oo

lim E
к—>oo

rr/\K
/ g(x,)t

Jo

rrA k

/ g(x .
Jo

I ds

=  E

=  E

Г  g(Xs)
Jo

Г  g(x8)
Jo

dW ,

ds

(9.3.8)

(9.3.9)

Proof: Let \g\ <  К . Using the properties of Ito integrals, we have

Г т Л к

(  £  g(X s)dW s -  Г g{X t)dW s) 2] =  e [ (  £  g(X s)dW s)  

’ Г  92(X s)
L J  тЛк

< К 2Щт — т Л k] —> 0, k  —> oo.

Since E [X 2] < E [X ]2, it follows that

rrA k
E

P T  Г Т  AAC

/ g(X s) dWs — / g(X t) 
1 Jo  Jo

dW , 0, к —> oo,

which is equivalent to relation (9.3.8).
The second relation can be proved similarly and is left as an exercise for 

the reader. ■

E xercise  9 .3 .2  Assume the hypothesis o f  the previous lemma. Let 1{S<T} be 
the characteristic function o f  the interval (—oo,r)

/ ч _  /  1) i f  и <  T 
(S<T> \ 0, otherwise.

Show that
rrA k  p k

(a) / g(X s) dWs =  / 1 {s<T}g(X s)dW s, 
Jo  Jo

rrA k  r k
(6) / g(X s) ds =  / 1 {s< r}g(X s)ds. 

Jo  Jo
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T h eorem  9 .3 .3  (D y n kin ’s form ula) Let f  € Co(Mn), and Xt be an Ito
diffusion starting at x. I f  т is a stopping time with E[r] <  oo, then

' Г Af(xs)
1 Jo

dsEx[ f(X T)] =  f ( x )  +  E*

where A is the infinitesimal generator o f  X t.

Proof: Replace t by к and / by 1 {s<r}/ in (9.2.7) and obtain

(9.3.10)

E [ls<r/ p ffc)] =  l {s<r}f ( x )  + E  

which can be written as

f  A ( l {s<T}f ) ( X s)d s  
Jo  J

/* 1 {s<T}(s )A (f) (X s) 
Jo

E[f (XkAr)] =  l {s<T}f(x)  + E

r г к Л т

=  l {s< r } f ( x ) + E  / A(f ) (Xs)
Jo

Since by Lemma 9.3.1

ЩПХклт)] -»■ Щ П Х г)], к -> oo

ds

ds (9.3.11)

E
г к Л т  p р т

/ A (f) (X s) ds -> E  / A (f) (X s) ds 
Jo  J L Jo

к —>■ oo,

using Exercise 9.3.2 and relation (9.3.11) yields (9.3.10).

E xercise  9 .3 .4  Write Dynkin’s form ula fo r  the case o f  a function f( t ,X t ) .  
Use Exercise 9.2.6.

More details in this direction can be found in Dynkin [16]. In the following 
sections we shall present a few important results of stochastic calculus that 
can be obtained as direct consequences of Dynkin’s formula.

9.4 Kolmogorov’s Backward Equation

For any function / € Co(Rn) let v (t,x )  =  E x[f(X t)], given that Xo =  x. The 
operator E  denotes the expectation given the initial condition Xo =  x. Then 
u(0, x) =  /(ж), and differentiating in Dynkin’s formula (9.2.7)

v{t,x ) =  f {x )  +  f  E x[A f(X s)]ds  
Jo
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provides

^  =  E x[A f{X t)}.

Since we are allowed to differentiate inside of an integral, the operators A and 
E x commute

E x[A f(X t)} =  AEx[ f(X t)}.

Therefore
^  =  E x[A f(X t)} =  AEx[ f(X t)} =  A v(t,x).

Hence, we arrive at the following result.

T heorem  9 .4 .1  (K olm ogorov’s backw ard equation) For any f  G Сц(Мп) 
the function v (t ,x ) =  E x[f(X t)] satisfies the following Cauchy’s problem

dv
Wt =  Av' t > 0

v {0 ,x ) =  f (x ) ,

where A denotes the generator o f  the I t o ’s diffusion (9.2.1).

Solving Kolmogorov’s backward equation is a problem of partial differential 
equations. The reader interested in several methods for solving this equation 
can consult the book of Calin et al. [10].

9.5 Exit Time from an Interval

Let X t =  xo +  Wt be a one-dimensional Brownian motion starting at xq, with 
x o  G (a, b). Consider the exit time of the process X t from the strip (a, b)

т =  in f{t > 0; Xt $  (a, b)}.

Assuming E[r] <  0, applying Dynkin’s formula yields

r 1 d2
E [/ (X r )j = f { x  0) +  E

Choosing f (x )  =  x  in (9.5.12) we obtain

E[Xr] =  x0.

о 2 dx2
f ( X s)d s (9.5.12)

(9.5.13)

E xercise  9 .5 .1  Prove relation (9.5.13) using the Optional Stopping Theorem  
fo r  the martingale Xt.
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Let pa =  P (X T =  a) and рь — P (X T =  b) be the exit probabilities of Xt 
from the interval (a, b). Obviously, pa + рь =  1, since the probability that the 
Brownian motion will stay forever inside the bounded interval is zero. Using 
the expectation definition, relation (9.5.13) yields

apa +  b( 1 -  pa) =  ab­

solving for pa and рь we get the following exit probabilities

Pa =  (9.5.14) 
b — a

Pb =  1 - P a  =  ^r— -• (9.5.15) b — a

It is worth noting that if b —»• oo then pa —> 1 and if a  —» — oo then рь —> 1. 
This can be stated by saying that a Brownian motion starting at xq reaches 
any level (below or above xq) with probability 1.

Next we shall compute the mean of the exit time, Е[т]. Choosing f ( x )  — x2 
in (9.5.12) yields

E [(X T)2] = z2 +  E[t ],

From the definition of the mean and formulas (9.5.14)-(9.5.15) we obtain

E[t] =  a 2pa +  b2pb -  Xq =  а2 Ь +  h2 ̂ ----- -  x0
b — a  b — a

ba2 — ab2 +  xq (b — a)(b  +  a)
b — a

— —ab +  xo(b  +  a) — XQ

=  (b — Xo){xo — a). (9.5.16)

E xercise  9 .5 .2  (a) Show that the equation x2 — (6 — a)x  +  E[r] =  0 cannot 
have complex roots;

(b) Prove that E[r] < -—   ̂ ;

(c) Find the point xq 6  (a, b) such that the expectation o f  the exit time, E[r], 
is maximum.

9.6 Transience and Recurrence of Brownian Motion

We shall consider first the expectation of the exit time from a ball. Then we 
shall extend it to an annulus and compute the transience probabilities.

1. Consider the process X t =  a +  W (t), where W (t) =  (W i(t) ,. . .  ,W n(t)) 
is an n-dimensional Brownian motion, and a  =  ( a i , . . . , a n) G Mn is a fixed
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Figure 9.1: The Brownian motion X t in the ball B(0,R).

vector, see Fig. 9.1. Let R >  0 be such that R >  |a|. Consider the exit time 
of the process X t from the ball B {0, R)

т =  inf{£ > 0; \Xt\ >  i?}. (9.6.17)

Assuming E[r] <  oo and letting f (x )  =  \x\2 — x 2 +  • • • +  x 2n in Dynkin’s 
formula

E [f(XT)\= f(x) +  E [ J ^ A f ( X s)ds

yields

and hence

R2 =  \a\2 +  E fJo
n ds

E[r] =
R2 -  lal

n
(9.6.18)

In particular, if the Brownian motion starts from the center, i.e. a — 0, the 
expectation of the exit time is

E[r] =
R2
n

We make a few remarks:
(г) Since R2/ 2 > R2/3, the previous relation implies that it takes longer for 
a Brownian motion to exit a disk of radius R rather than a ball of the same 
radius.



208 An Informal Introduction to Stochastic Calculus with Applications

(гг) The probability that a Brownian motion leaves the interval ( -R ,  R) is 
twice the probability that a 2-dimensional Brownian motion exits the disk 
B(0,R).

Exercise 9.6.1 Prove that E[r] < oo; where r  is given by (9.6.17).

Exercise 9.6.2 Apply the Optional Stopping Theorem for the martingale Wt =  
W 2 — t to show that E[r] =  R2, where

r =  inf{i > 0;|Wt| > R }

is the first exit time of the Brownian motion from ( -R , R).

2. Let b e Mn such that b £ B (0, R), i.e. |6| > R , and consider the annulus

Ak =  {ж; R < |ж| < kR}

where к >  0 such that b G Ak■ Consider the process X t — b +  W  (t) and let

тк =  inf{t > 0; X t £ Ak}

be the first exit time of X t from the annulus Ak- Let f  : Ak К be defined 
by

{— In |x|, if n =  2 
ф , ,  if „ > 2.

A straightforward computation shows that A /  =  0. Substituting into Dynkin’s 
formula

E [ /(X rJ ]  = f ( b ) + E [ £  ( 1 д f ) ( X s)ds

yields
E [ f (X Tk) ] = f ( b ) .  (9.6.19)

This can be stated by saying that the value of /  at a point b in the annulus is 
equal to the expected value of /  at the first exit time of a Brownian motion 
starting at b.

Since jX Tk | is a random variable with two outcomes, we have

E[f(XTk)] =Pkf{R) + qkf(kR),

wherepk =  P(\XTk\ =  R): qk =  P(\XxTk |) =  kR andPk +  qk =  1- Substituting 
in (9.6.19) yields

Pkf(R) +  QkHkR) =  f(b). (9.6.20)

There are two distinguished cases:
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(г) If n =  2 we obtain

—pk In R — %(ln к +  In R) =  — In b.

Using pk =  l -  qk, solving for pk yields

, M i )  
и  =  1 ‘ - ы Г

Hence
P (t <  oo) — lim pk — 1,

fc—> oo

where r  =  inf{f > 0;|Xt| < R} is the first time X t hits the ball B(0,R). 
Hence in R2 a Brownian motion hits with probability 1 any ball. This is 
stated equivalently by saying that the Brownian motion is recurrent in R2.

{гг) If n > 2 the equation (9.6.20) becomes

Pk qk i
R n- 2 k n - 2 R n - 2  bn - 2-

Taking the limit к —> oo yields

=  ( f ) " 2

< 1.

Then in R", n >  2, a Brownian motion starting outside of a ball hits it with 
a probability less than 1. This is usually stated by saying that the Brownian 
motion is transient.

3. We shall recover the previous results using the n-dimensional Bessel process

Rt =  dist(0,W {t)) =  ^ w l {tY +  --- +  w n{ty .

Consider the process Yt =  a +  7Zt, with 0 <  a <  R, see section 3.7. It can be 
shown that the generator of Yt is the Bessel operator of order n, see Example 
10.2.4

I d 2 n — 1 dд  — ______ I_________ _
2 dx2 2x dx

Consider the exit time
т =  {t >  0; Yt >  R }.

Applying Dynkin’s formula

E [f{Yr) ] = f ( Y 0) +  E\ Г  (A f)(Y s) ds
о
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Figure 9.2: The Brownian motion Xt in the annulus Аг ц.

for f (x )  =  x 2 yields R2 =  a2 +  E [ JQT n ds]. This leads to

which recovers (9.6.18) with a =  |o|.

In the following assume n > 3 and consider the annulus

At,r =  {x  6 Mn;r  < |ж| < i?}.

Consider the stopping time r =  inf{t > 0\Xt £ Ar,R} =  inf{t > 0]Yt  ̂
(r,R )}, where |lo| =  a G (r ,R ). Applying Dynkin’s formula for f ( x ) =  x 2~n 
yields E [f(Y T] = f(a ). This can be written as

prr2- n + p RR2- n =  a2- n,

where

pr =  P(\Xt\=r),  pR =  P(\Xt\ =  R), pr + p R =  1. 

Solving for pr and pR yields
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The transience probability is obtained by taking the limit to infinity

a2~nRn~2 — 1 / r \n~2
pr =  lim pr r =  lim —r— —— -------=  — ,Я—»oo ’ д-s-oo r2 nRn 2 — 1 \aJ

where pr is the probability that a Brownian motion starting outside the ball 
of radius r will hit the ball, see Fig. 9.2.

Exercise 9.6.3 Solve the equation ^ f"(x) +  =  0 by looking for a
solution of monomial type f (x )  =  xk.

9.7 Application to Parabolic Equations

This section deals with solving first and second order parabolic equations using 
the integral of the cost function along a certain characteristic solution. The 
first order equations are related to predictable characteristic curves, while the 
second order equations depend on stochastic characteristic curves.

9.7.1 Deterministic characteristics

Let </?(s) be the solution of the following one-dimensional ODE

—  ̂ =  a (s ,X (s )), t < s < T  

X (t) =  x,

and define the cumulative cost between t and T along the solution ip

u(t,x) =  c{s,ip(s)) ds, (9.7.21)

where с denotes a continuous cost function. Differentiate both sides with 
respect to t

д d f T 
— u(t,ip(t)) =  qI Jt c(s,ip(s))ds

dtu +  dxutp'(t) =  -c(t,ip (t)).

Hence (9.7.21) is a solution of the following final value problem

dtu(t, x) +  a(t, x)dxu(t, x) =  —c(t,x) 

u(T ,x ) =  0.
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It is worth mentioning that this is a variant of the method of characteristics.1 
The curve given by the solution ip(s) is called a characteristic curve.

Exercise 9.7.1 Using the previous method solve the following final boundary 
problems:
(a)

(b)

dtu +  xdxu =  —x 
u{T,x) =  0.

dtu +  txdxu =  In x, x >  0 
u(T ,x) =  0.

9.7.2 Stochastic characteristics

Consider the Ito diffusion

dXs =  a(s, X s)ds +  b(s, X 3)dWs, t < s < T  

X t =  x,

and define the stochastic cumulative cost function

rTu(t, X t) =  J c(s ,X s)ds , 

with the conditional expectation

u(t,x) =  E u(t, Xt)\Xt =  x

=  E JГ c (s ,X s) ds\Xt =  x

Taking increments on both sides of (9.7.22) yields
r T

du(t,Xt) =  d J  c(s ,X s)ds.

(9.7.22)

Applying Ito’s formula on one side and the Fundamental Theorem of Calculus 
on the other, we obtain

dtu(t, x)dt +  dxu(t, X t)dXt +  -̂d2u(t, t, X t)d X 2 =  —c(t, Xt)dt.

lrrhis is a well known method of solving linear partial differential equations.



Taking the expectation E[ • \Xt =  x] on both sides yields

dtu(t, x)dt +  dxu(t, x)a(t, x)dt +  ^dxu(t, x)b2(t, x)dt =  —c(t, x)dt. 

Hence, the expected cost

u(t,x) =  IE J  c{s ,X s)ds\Xt = .

is a solution of the following second order parabolic equation

dtu +  a(t,x)dxu +  ^b2(t,x)d2u(t, x) =  —c (t,x )

u(T ,x ) — 0.

This represents the probabilistic interpretation of the solution of a parabolic 
equation.

Exercise 9.7.2 Solve the following final boundary problems:
(a)

dtu +  dxu +  \^2xu =  - x
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(b)

u(T , x) — 0.

dtu +  dxu + - d xu =  ex,

u(T, x) =  0.

(c)

dtu +  цхдхи +  —a x dxu =  —x, 

u(T ,x ) =  0.





Chapter 10

Girsanov’s Theorem and 
Brownian Motion

After setting the basis in martingales, we shall prove Girsanov’s theorem, 
which is the main tool used in practice to eliminate drift. Then we present 
levy ’s theorem with applications as well as as the time change for Brownian 
motions.

10.1 Examples of Martingales

In this section we shall use the knowledge acquired in the previous chapters to 
present a few important examples of martingales and some of their particular 
cases. Some of these results will be useful later in the proof of Girsanov’s 
theorem.

Example 10.1.1 If v(s) is a continuous function on [0,T], then

We note the continuity of v(s) can be replaced by the weaker condition v €

is an J~t-martingale.

The integrability of X t follows from

L2[0,T],

215
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Xt is obviously adapted to the information set induced by the Brownian 
motion Wt■ Taking out the predictable part leads to

E[Xt|j;] =  e [  [  v ( t ) dWT +  [  v ( t ) dWT 
'-JO Js

=  X s + E f v {
J S

t ) dWT =  X a,

where we used that f* v ( t ) dWT is independent of Fs and the conditional 
expectation equals the usual expectation

E [  v ( t ) dWT Fs] =  e [  f  v ( t ) dWT 
J s J s

=  0.

Example 10.1.2 Let X t =  I v(s)dW s be a process as in Example 10.1.1.
Jo

Then

Mt =  X 2t /V (
Jo

s) ds

is an Tt-martingale.

The process Xt satisfies the stochastic equation dXt — v(t)dWt. By Ito’s 
formula

d(X f) =  2 X tdXt +  (dXt)2 =  2 v(t)X tdWt +  v2(t)dt. 

Integrating between s and t yields

X 2 - X 2 =  2 f  X t v(t) dWT +  f  v2(t) dr.
J s J s

Then separating the deterministic from the random part, we have 

E[Mt|J-s] =  E

(10.1.1)

=  E 

=  X 2

f  v2(T)dr\j
Jo

X 2 -  X 2 -  f  v2( t) dr +  X 2 -  [  v2( t ) dr |Fs 
L Js Jo

J  v2(T)dr\Fsdr +  E

=  Ms +  2E

-  f v \ r )
Jo

f x M
J  S

X ? - X 2 -

т) dWT \F. =  MS')

where we used relation (10.1.1) and that / X tv(t ) dWT is independent of the
J  S

information set J-s.



Girsanov’s Theorem and Brownian Motion 217

The integrability of Mt can be inferred from the following computation. 
Since taking the expectation in

v (t ) X t dWT +  f  v2(r)dT
Jo

yields

4 x t] =  [  v2{r)dT ,
Jo

which leads to the following estimation

E[|Mt|] < Е[Хг2] +  f  v2{r )d r <  2 f  v2(r)d T <  oo.
Jo Jo

In the following we shall mention a few particular cases.

1. If v(s) =  1, then Xt =  Wt- In this case Mt =  W 2 — t is an J^-martingale.
2. If v(s) =  s, then Xt — Jq sdWs, and hence

is an J^-martingale.

Exam ple 10.1.3 Let и : [0, T] —> К be a continuous function. Then

Mt =  e-fo “ (s) dWs~ I So “2(s)ds

is an Ft-martingale for 0 < t <  T.

Using Exercise 10.1.8 we obtain E [Mt] =  1, so Mt is integrable. Consider

now the process Ut — [  u(s) dWs — -  [  u2(s) ds. Then 
Jo 2 Jo

dUt =  u(t)dWt — ^u2(t)dt 

(dUt)2 =  u(t)dt.

Then Ito’s formula yields

dMt =  d{eUt) =  eUtdUt +  ~eUt(dUt)2

=  eUt û(t)dWt — ^u2(t)dt +  ^u2(t)dt ĵ 

=  u(t)MtdWt.
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Integrating between s and t yields

M t =  M s +  f  u (t )M t 
J s

Since / u(t )M t dW T is independent of T s, then 
J S

E

and hence

j  u (t )M t dWT\Ts = E [Js u {t )M t dWT\ =  0,

E[M(|j;] = E [M S+ f  u ( t )Mt d\VT 
J s

\гя] =  Мя.

Rem ark 10.1.4 The condition that u(s) is continuous on [0, T] can be relaxed 
by asking only

и e L2[0, T] =  {и  : [0, T] -> M; measurable and f  |u(s)|2 ds <  oo}.
Jo

It is worth noting that the conclusion still holds if the function u(s) is replaced 
by a stochastic process u(t, ui) satisfying Novikov’s condition

I f T ,,2/E[e2 Jo «2(s,w)dsj < oo.

The previous process has a distinguished importance in the theory of martin­
gales and will be useful in the proof of Girsanov theorem.

D efinition 1 0 .1 .5  Let и €  _L2[0, Г] be a deterministic function. Then the 
stochastic process

M t =  eJo dw s~\  fo  u2(s) ds 

is called the exponential process induced by u.

Particular cases o f  exponential processes In the following we shall con­
sider a few cases of particular interest:

<t21. Let u(s) =  o, constant, then Mt =  is an ^-martingale.
2. Let u(s) =  s. Integrating in d(tWt) =  tdWt — Wtdt yields

f  sdWs =  tW t~  f  Ws ds.
Jo Jo

Let Zt =  /q Ws ds be the integrated Brownian motion. Then

M t =  eJo sdW * - k  fo *2 ds

is an J^-martingale.
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Example 10 .1.6 Let X t be a solution of dXt =  u(t)dt +  dWt, with u(s) 
bounded function. Consider the exponential process

Mt =  e~ fo dW°~hfo “2(s)ds. (10.1.2)

Then Yt =  MtXt is an Tt-martingale.

Applying Ito’s formula we obtain dMt =  —u(t)MtdWt- Then

dMt dXt =  —u(t)Mtdt.

The product rule yields

dYt =  MtdXt +  XfdMt +  dMt dXt 
— Mt{u(t)dt +  dWt) — X tu(t)MtdWt — u(t)Mtdt 
=  Mt(l -  u{t)Xt)dWt.

Integrating between s and t leads to

Yt =  Ys + f  M T( l - u { T ) X T)dWT.
J S

Since f s MT( 1 — u(T)XT̂ dWT is independent of Ts, we have

E

and hence

[  M T(1 - u { T ) X T)dWT\Ts] = e [  /  M T(l -  u{T)XT)dW,
J S J s

=  0,

E[Yt\Fs] =  Ys.

Exercise 10.1.7 Prove that (Wt +  t)e~Wt~24 is an Ft-martingale.

Exercise 10.1.8 Let h be a continuous function. Using the properties of the 
Wiener integral and log-normal random variables, show that

E Jo M S) dWs

Exercise 10.1.9 Let Mt be the exponential process (10.1.2). Use the previous 
exercise to show that for any t >  0

(a) E [Mt\ =  1 (b) E[M 42] =  e-Го u^ 2 ds.

Exercise 10.1.10 Let Ft =  a{W u\u < t}. Show that the following processes 
are Ft-martingales:

(a) et/2 cos Wt,
(b) e^ s in  Wt.
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Recall that the Laplacian of a twice differentiable function /  is defined by
a /M  = E “=i Blj.
Exam ple 10 .1.11  Consider the smooth function f  : Rn —> R, such that 

(*) А /  =  0;
(ii) Е[|/(И^)|] < oo, yt > 0 and x  e R.

Then the process X t =  f(W t) is an Ft-martingale.

Exercise 10.1.12 Let W\{t) and be two independent Brownian mo­
tions. Show that X t =  eWl^  cos W^it) is a martingale.

Proposition  10.1.13 Let f  : R™
(i)E[\f(Wt)\] < o o ;

be a smooth function such that

(ii) E /о |A/(Ws)| ds < oo.

Then the process X t — f(W t) — 5 A f {W s) ds is a martingale. 

Proof: For 0 < s < t we have

E [Xt|.Fe] =  E [f(W t)\Fs] - E \ l  f  A f(W u)du\^
Jo

=  E[f{Wt)\Fs\ - l- j \ f ( W u) d u - j ^  E [^ A /(w g | du.

Let p (t ,y ,x ) be the probability density function of Wt. Integrating by parts 
and using that p satisfies the Kolmogorov’s backward equation, we have

E A f(W u)\Fs = \ J v ( u - s ,W s,x) A f(x )d x  

= 2 J  A xp ( u - s ,W s,x )f (x )d x

/ л
— p(u -  s, Ws, x ) f(x )  dx.

Then, using the Fundamental Theorem of Calculus, we obtain

/J S
E A f(W u)\Fs du =  J p {u  -  s ,W s,x )f(x )d x 'j du

= J  p { t -  s, Ws, x ) f(x )  dx -  lim J  p(e, Ws, x ) f{x )  dx

=  E [f(W t)\Fs] -  f  6(x =  Ws)f(x )  dx

=  E [f(W t)\Fa] -  f (W s).
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Substituting in (10.1.3) yields

E[Xt\Fs) =  E [f(W t)\Ts] - l- j \ f { W u) d u -E { f {W t)\Fs] + f ( W a)

= f(W s) - ± J S A f(W u)du 

=  X s.

Hence X t is an ^-martingale. ■

Exercise 10.1.14 Use Proposition 10.1.13 to show that the following pro­
cesses are martingales:

(а) Х г =  W? -  t;
(б) X t =  Wt3 - 3 f * W s ds;

(c)Xt = ^ W T - ^ J i w r 2ds;
(d) X t =  ecWt — ijC2 fo eWs ds, with с constant;

(e) X t =  sin(cWt) +  \c2 f^ sin(cVFs) ds, with с constant.

Exercise 10.1.15 Let f  : Rn —>■ R be a function such that

(i) E[|/(Wt)|] < oo;
(гг) А /  =  Л/, A constant.

Show that the process X t =  f{W t) — | fg f (W s) ds is a martingale.

10.2 How to Recognize a Brownian Motion

Many processes are disguised Brownian motions. How can we recognize them? 
We already know that a Brownian motion Bt has the following properties:

(г) Is a continuous martingale with respect to o {B s-,s < * } ;
(гг) Has the quadratic variation (В , B)t =  t, for t >  0.

We state, without proof, a classical theorem due to Paul Levy, which is 
a reciprocal of the foregoing result. The following theorem is a useful tool 
to show that a one-dimensional process is a Brownian motion. For a more 
general result and a proof, the reader can consult Durrett [15].

Theorem  10.2.1 (Levy) If Xt is a continuous martingale with respect to 
the filtration Tt, with X q =  0 and (X ,X )t  =  t, for all t > 0, then X t is an 
Tt-Brownian motion.
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Example 10.2.2 Let Bt be a Brownian motion and consider the process

X t =  sgn(Bs)dBs,
Jo

where
1, if x > 0

S5" ( I ) = ' -1, if x  < 0 .

We note that dXt =  sgn(Bt) dBt and hence (dXt)2 =  dt. Since Xt is a 
continuous martingale (because it is an Ito integral) and its quadratic variation 
is given by

(X ,X )t =  [  (dXs)2 =  [  ds =  t,
Jo Jo

then Levy’s theorem implies that Xt is a Brownian motion.

Exam ple 10.2.3 (The squared Bessel process) Let W\(t),--- ,W n(t) be 
n one-dimensional independent Brownian motions, and consider the 
n-dimensional Bessel process

Rt =  V W i(t)2 +  --- +  Wn(t)2, n >  2.

Define the process

л . ± / Л ш ) т , ,

Since the set {cj; Rt(cu) =  0} has probability zero, the division by Rs does 
not cause any problems almost surely. As a sum of Ito integrals, (3t is an 
JFt-martingale, with the quadratic variation given by

By Levy’s theorem, f3t is an J~t-Brownian motion. It satisfies the following 
equation

dPt =  J 2 C ^ ) dWi{t). (10.2.3)

From Ito ’s formula and an application of (10.2.3) we get

d(n}) =  y . 2 Wi(t)dWi(t) +  ndt

m t )
R t

=  2Rt d/3t +  ndt.

i= 1
n

2 R t ^ ^ d w i(t ) + ndt 
i= 1
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Hence, the squared Bessel process, Zt =  R2, satisfies the following stochas­
tic differential equation

dZt — 2 y/Ztd/3t +  ndt, (10.2.4)

with fit Brownian motion.

Example 10.2.4 (The Bessel process) From Example 10.2.3 we recall that 
(dZt)2 — 4R2 dt. Then, using Rt — Z\ , R o ’s formula yields

dRt = \z]/2 dzt - \ z f /2{dzt)2

=  \~^(2RtdPt +  ndt) -  \-^dt 

=  dpt +   ̂dt.

Hence the Bessel process satisfies the following stochastic differential equation

Tl — 1
dRt =  dpt +  — —  dt, (10.2.5)

ZJtlt

where pt is a Brownian motion. R is worth noting that the infinitesimal gen­
erator of Rt is the operator

A  =  \dl +  ^ d x, (10.2.6) 

which is the Bessel operator of order n.

Example 10.2.5 Let f  : M2 —»■ M be a continuous twice differentiable func­
tion, and consider the process X t =  f(W i(t) ,W 2(t)), with W\(t), W ^t) inde­
pendent one-dimensional Brownian motions. Ito ’s formula implies

d f d f  i fd 2f  d2f\  
d x ‘  -  d ^ dWl{i) +  а й  a( > + 2\дЩ  +  Щ ) dt

Then Xt is a continuous martingale if f  is harmonic, i. e.

d2 f d2 f
4 + 4 = ° -  (io-2j)

Then



224 An Informal Introduction to Stochastic Calculus with Applications

so we have
(X ,X )t =  [\ d X t)2 =  f  \\/f\2ds.

Jo Jo
Then the condition (X ,X )t =  t, for any t >  0, implies |V/| =  1, i.e.

(ёгГ+Ш2-  ^
Equation (10.2.8) is called the eiconal equation. We shall show that if a func­
tion f  satisfies both equations (10.2.7) and (10.2.8), then it is a linear func­
tion. Or, equivalently, a harmonic solution of the eiconal equation is a linear 
function.

From equation (10.2.8) there is a continuous function 0 =  0(x 1, 2:2) such
that

d f d f
dx\ 3x2

The closeness condition implies

<9(cos 0) <9(sin$)

(10.2.9)

which is equivalent to

dx2 

, дв

dx\ 

„ двcos V—----- 1- sin 0—— =  0.
ox\ ox  2 (10.2.10)

Differentiating in (10.2.9) with respect to x\ and Х2 yields

d2f  . а дв d2f  а дв 
—-2 =  - s i n 0— , - ^ = cos9-̂ — ■ 
OX I OX 1 OX2 ox2

Adding and using (10.2.7) we obtain

в дв ■ о "  n  cost/------- sm и ——  — 0.
OX2 ox  1

Relations (10.2.10) and (10.2.11) can be written as a system

(10.2.11)

cos в sin в

sm a cos I

(  дв_ \
dx\

дв 
V  dx2 )

0

0

дв дв
with the solution —— =  0, ——  =  0. Therefore, в is a constant function. This

OX\ dX2
implies that f  is linear, i.e. f(x \ ,x 2) =  С1Ж1 +  С2Х2, with C{ £ R.
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Exercise 10.2.6 If Wt and Wt are two independent Brownian motions and 
p £ [—1,1] is a constant, use Levy’s theorem to show that the process Xt =  
pWt +  л/1-fP W t is a Brownian motion (use that dWtdWt =  ()).

Exercise 10.2.7 Consider the process Xt =  / (j f(s )d W s, with f  square inte­
grable function.

(a) Show that Xt is a continuous martingale with the quadratic variation 
(X ,X )t =  f * f 2(s)ds;

(b) Apply Levy’s theorem to find all functions f(s )  for which Xt is a Brow­
nian motion.

Exercise 10.2.8 Let X t =  e_t f* e s dWs, with Ws Brownian motion.
(a) Show that (X, X ) t =  t for any t >  0;
(■b) Is Xt a Brownian motion?

The next exercise states that a Brownian motion is preserved by an or­
thogonal transform.

Exercise 10.2.9 Let Wt =  (1У/, W 2) be a Brownian motion in the plane (i.e. 
W} one-dimensional independent Brownian motions) and define the process 
Bt =  ( B l B 2) by

B) =  cos 9 W } +  sin 9 W 2 
B2 =  — sin 9 Wt +  cos в W 2,

for a fixed angle 9 E R.
(a) Show that B\, B 2 are Brownian motions;
(b) Prove that B j, B 2 are independent processes.

Exercise 10.2.10 Consider the process Yt =  tW i, ift  >  0 and Yq =  0, where
t

Wt is a Brownian motion. Prove that Yt is a Brownian motion.

10.3 Time Change for Martingales

A martingale satisfying certain properties can always be considered as a Brow­
nian motion running at a modified time clock. The next result is provided 
without proof. The interested reader can consult Karatzas and Shreve [26].

Theorem 10.3.1 (Dambis, Dubins and Schwarz, 1965) Let Mt be a con­
tinuous, square integrable Ft-martingale satisfying limt^oo{M, M)t =  oo, a.s. 
Then Mt can be written as a time-transformed Brownian motion as

Mt —
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where Bt is a one-dimensional Brownian motion. Moreover, if we define for 
each s >  0 the stopping time

T(s) =  inf{i > 0; (M, M )t > s},

then the time-changed process

Bs =  MT(S)

is a Qs-Brownian motion, where Qs =  J~t (s)> 0 < s.

Example 10.3.2 (Scaled Brownian motion) Let Wt be a Brownian mo­
tion and consider the process X t =  eWt, which is a continuous martingale. 
Assume с ф 0. Since (dXt)2 =  (cdWt)2 =  c2dt, the quadratic variation of X t 
is

(X ,X ) t =  [  (dXs)2 =  [  c2ds 
Jo Jo

c2t -* oo, t —> oo.

Then there is a Brownian motion Wt such that Xt — Wc t̂- This can also be 
written as \Wc-zt =  Wt. Substituting s — c2t, yields Ws =  cWs/c2. There­
fore, if Ws is a Brownian motion, then the process cWs/ci is also a Brownian 
motion. In particular, if c — —1, then —Ws is a Brownian motion.

Example 10.3.3 This is an application of the previous example. Let T >  0. 
Using the scaling property of the Brownian motion and a change of variables, 
we have the following identities in law

г± г 1 ГJ  Wt dt =  J  (cW t/c2y  dt =  cn J
f T/c2 fT/c2

=  cn /  W ?  C 2  ds =  cn+2 /  W? ds,
Jo Jo

W fa d t

for any с >  0. Then set с =  y/T and obtain the following identity

[  wtndt= T 1+n'2 [  W ” ds.
Jo Jo

This relation can be easily verified for n =  1, when both sides are normally 
distributed as N (0,T :i/3), see section 3.3.

Example 10.3.4 It is known that the process X t =  W 2 — t is a continuous 
martingale with respect to T  =  (t{Ws\ s <  t}. An application of Ito ’s formula 
yields

dXt =  2 Wt dWt,
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so the quadratic variation is

rt
( X ,X ) t =  [\ d X s)2 =  4 Г  

Jo Jo
W 2 ds := at.

Therefore, there is a Brownian motion Wt such that Xt =  Wat. This is equiv­
alent to stating that given a Brownian motion Wt, its square can be written 
as

W 2 =  t +  Wat.

Example 10.3.5 (Brownian Bridge) The Brownian bridge is provided by
Г* 1

formula (8.5.13). The Ito integral Mt — J ------ dWs can be written as

a Brownian motion as in the following. Since (dMt)2 — тz------
(1 — t)

quadratic variation becomes

- 1

Then there is a Brownian motion Bt such that Mt =  B_t_, and hencei-t

(i - 1) f  dWs =  (1 -  t)B_t_ =  s t(1_t),
Jo 1 — s 1_*

where В is also a Brownian motion. It follows that the Brownian bridge for­
mula (8.5.13) can be written equivalently as

X̂ t =  o (l —t) +  bt +  Bt{1_t), о <  t <  1.

This process has the characteristics of a Brownian motion, while satisfying the 
boundary conditions Xo =  a and X\ — b.

Example 10.3.6 (Lam perti’s property) Let Bt be a Brownian motion and 
consider the integrated geometric Brownian motion

At =  f  e2Bs ds, t > 0.
Jo

We note that the process At is continuous and strictly increasing in t, with
lerefore, there is an't

Atu = u, u >  0.

Aq =  0 and lim At =  oo. Therefore, there is an inverse process Tu, i.e.
t—ЮО
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Applying the chain rule yields the derivative

cE k  =  e-2BTu (10.3.12)
du

Ito’s formula provides

deBt — eBidBt +  - eBt dt,
2

which can be written equivalently as

1 f*
eBt =  1 +  — /  eBsds +  Mt, (10.3.13)

2 Jo

where Mt =  f 0 eBs dBs. Since Mt is a continuous martingale, with

(M, M )t =  [ \dMs)2 =  f  e2B° ds =  At,
Jo Jo

by Theorem 10.3.1 there is a Brownian motion Wt such that Mt — Wa (, or 
equivalently, Mtu =  Wu, и >  0. Then replacing t by Tu in equation (10.3.13) 
yields

1 ГТи
eBTu =  1 +  -  / eBs ds +  Wu, (10.3.14)

2 Jo
which can be written, after applying the chain rule, in differential notation as

deBTn — - еВти du +  dWu.
2 du

Substituting the derivative ofTu from (10.3.12), the foregoing relation becomes

Denoting Ru =  еВт« , then

dRu =  +  dWu,IK,,

which is equation (10.2.5) for n — 2, i.e. Ru is a Bessel process. Substituting 
и =  At and t =  TU in Ru =  еВт« yields

eBt -  RAt.

Hence, the geometric Brownian motion eBt is a time-transformed Bessel 
process in the plane, RAt ■ For a generalized Lamperti property in the case of 
a Brownian motion with drift, see Yor [48]. See also Lamperti [31].
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Lemma 10.3.7 Let ip(t) be a continuous differentiable, withip'(t) > 0, <̂ (0) =
0 and lim^oo ip(t) =  oo. Then given the one-dimensional Brownian motion 
Bt, there is another one-dimensional Brownian motion Wt such that

Then by Theorem 10.3.1 there is a Brownian motion Wt such that W^t) =  Xt.
Л

Example 10.3.8 If <p(t) =  c2t, с ф  0, then Lemma 10.3.7 yields Wc2t =  cBt. 
This is equivalent to stating that for a given Brownian motion Bt, the process

Ws -- cBs/c2, s >  0

is also a Brownian motion.

Remark 10.3.9 The right side of (10.3.15) is a Wiener integral. Hence, under 
certain conditions, a Wiener integral becomes a time-scaled Brownian motion.

Exercise 10.3.10 Let Bt be a Brownian motion. Prove that there is another 
Brownian motion Wt such that

Exercise 10.3.11 (Ornstein-Uhlenbeck process) Consider the equation

Proof: The process X t =  fg y/<p'(s) dBs is a continuous martingale, with the 
quadratic variation

(X ,X )t =  [\ d X s)2 =  f ( ^ { s ) d B s)2 =  f t v/(s)ds =  <p(t). 
Jo Jo Jo

dXt =  —qXtdt +  adWt, Xq =  0

with q and a constants, with q >  0 .
(a) Show that the solution is given by

(b) Show that there is a Brownian motion Bt such that

X t =  ae <?t5 (e29t_i)/(29).
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Exercise 10.3.12 Consider the equation

a
dXt =  ——X tdt +  adWt, X q — 0,

with a constant. Show that there is a Brownian motion Bt such that

X t =  e~at/2 Baeat.

Theorem  10.3.13 (Tim e change formula for Ito integrals) Let tp be a
function as in Lemma 10.3.7, and F  a continuous function. Then given a 
Brownian motion Bt, there is another Brownian motion Wt such that

rP г(Р) _____
/ F(u) dWu =  / F(<p(t))y/tpt(t) dBt, a.s. (10.3.16)

J a. Jtp— 1(a)

Proof: First, we will prove formula (10.3.16) informally, and then we will 
check that the identity holds in law. Formula (10.3.15) can be written in the 
equivalent differential form as

dW^t) =  v V W  dBt.

Then for a continuous function g we have

f g(t)dWv(t ) =  f  д ( г ) у / Щ dBt. (10.3.17)
Ja J a

Using a change of variable, the left side integral becomes

fb rp(b)

Ma)

Relations (10.3.17) and (10.3.18) imply

A f i f ( b )  " fb

ip(a)

Substituting F  =  g о a =  <p(a), and /3 =  ip(b) yields

/1p~l{a)

Each of the sides of formula (10.3.16)

r-b ,-ip(b)
/  g{t]dWv{t) =  /  g(<p~ (u))dWu. (10.3.18)

J a J y>(a)

and (10.3.18) imply

rlP(b) . f b _____
/  g(<P~(u))dWu =  g(t)^ip'(t) dBt.

J (f(a) J a

- g o  a =  tp(a), and /3 =  ip(b) yields

rP г<Р~ЧР) _____
/  F(u)dW u =  /  F (y (t))y/ ^ (f)d B t. (10.3.19)

Ja Jv 1(a)

f P  /•‘P HP) ____
X =  F(u)dW u, Y =  F {(p {t))y / ^ )d B t

Ja Jip~1(a)



Girsanov’s Theorem and Brownian Motion 231

is a random variable, which is given as a Wiener integral, so they are both 
normally distributed. Therefore, in order to show that they are equal in law, 
it suffices to show that they have the same first two moments.

From the properties of Wiener integrals we have that E[Xt] =  E[Yt\ =  0 
and

(tt) du

r v ~ x(P) ,  ,_____ \  2

rp
Var(X) =  F 2{i

J a

Var(Y) =
J  <̂-1 (a)

гч>~г{0) „ rP _
=  / F(ip(t)) ip'(t)dt=  / F  (u)du ,

Ja

so Var(X) =  Var{Y). Hence X  — Y  in law.

Exam ple 10.3.14 For ip(t) =  tan t, formula (10.3.16) becomes 

rf) /•tan_1/3
/ F(u)dW u =  /  F (t&n t) sect dBt.

J a J tan-1 ol

1
1 +  u2

13 1 /■tan-1 [3

If F{u) =  — ;— 2 ап  ̂a =  then we obtain

Г Р  1 Г tan p  1

/  1 i 2 dWu =  /  — 7 Jo 1 +  uz J о sec t

which, after substituting v =  tan-1  (3, implies
/•tan i; i

/  ------- -d W u =  /  cos tdBt.
J о 1 +  гх2 Jo

Making v /* ^ yields

roo y /’7r/ 2
/  ------- /  cos tdBt.

J 0 1 + u Jo

For the sake of completeness, we include next a stochastic variant of Fu- 
bini’s theorem. For a more general variant of this theorem, the reader is 
referred to Ikeda and Watanabe [23].

Theorem  10.3.15 (Stochastic Fubini) If f  : R+ x R+ —> R is a bounded 
measurable function, then

rt rT  rT  rt
t d\VH dr.[  [  f{s ,r )d rd W s =  [  [  f (s ,t )  i 

Jo Jo Jo Jo
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10.4 Girsanov’s Theorem

In this section we shall present and prove a version of Girsanov’s theorem, 
which will suffice for the purpose of proposed applications. The main usage of 
Girsanov’s theorem is the reduction of drift. Consequently, Girsanov’s theorem 
applies in finance where it shows that in the study of security markets the 
differences between the mean rates of return can be removed. For a gentle 
introduction into this subject the interested reader can consult Baxter and 
Rennie [5], or Neftici [35].

We shall recall first a few basic notions. Let (fl, J7, P) be a probability 
space. When dealing with an J^-martingale on the aforementioned probability 
space, the filtration J~t is considered to be the cr-algebra generated by the given 
Brownian motion Wt, i.e. J~t =  <j {W u: 0 < и < s}. By default, a martingale 
is considered with respect to the probability measure P , in the sense that the 
expectations involve an integration with respect to P

EP[X] =  f  X(ui)dP{uj).
Jn

We have not used the upper script until now since there was no doubt which 
probability measure was used. In this section we shall also use another prob­
ability measure given by

dQ =  AlrdP.

where M r is an exponential process. This means that Q : F  —>■ R is given by

Q{A) =  [  d Q =  [  MTdP, MA e  J-■
J A J A

Since Mt > 0, Mo =  1, using the martingale property of Mt yields 

Q{A) > 0 ,  Аф<д\

Q(Cl) =  [  MTdP =  EP[MT\ =  EP[MT\Jb] =  M0 =  1,
Jn

which shows that Q is a probability on J7, and hence (tl. J7, Q) becomes a 
probability space. Furthermore, if X  is a random variable, then

Eq [X} =  [  X (u ) dQ(u) =  [  X(ui)MT(u) dP(w)
Jn  Jn

=  E р [ХМт].

The following result will play a central role in proving Girsanov’s theorem:
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Lemma 10.4.1 Let Xt be the Ito process

dXt =  u(t)dt +  dWt, X q =  0, 0 < t < T ,

with u(s) a bounded function. Consider the exponential process

Mt =  e~ fo u^  dWs~^fo “2(s)ds.

Then X t is an Tt-martingale with respect to the measure

dQ(cj) — MT(uj)dP(uo).

Proof: We need to prove that Xt is an J-j-martingale with respect to Q, so it 
suffices to show the following three properties:

1. Integrability of X t. This part usually follows from standard manipulations 
of norms estimations. We shall do it here in detail. Integrating in the equation 
of X t between 0 and t provides

Xy =  f u { s )  
Jo

ds +  Wt. (10.4.20)

We start with an estimation of the expectation with respect to P

E [Xt ] =  E  ̂J  u(s) ds'j +  2 J  u(s) ds Wt +  Wt 

I u(s)dsy  +  2 J  u(s)dsEp [Wt} + E p [Wt 

\2i(s) ds J +  t <  oo, VO < t <  T,

where the last inequality follows from the norm estimation

f u { s )
Jo

ds <

<

/ |u(s)|ds 
Jo

f  |«(s)|
Jo

fJo
t / |ti(s)| ds

1/2

ds
1/2

— T 1 / 2 |M|L 2[o ,x ]-

Next we obtain an estimation with respect to Q

EQ[|Xi|]2 =  (  [  \Xt\MT d p )2 < [  \Xt\2dP [  M 2dP 
xJq ' J o. J q

=  Ep [Xt2]Ep [M|] < oo, 

since Ef [X2] < oo and Ep [Mj] =  efo u(s)2fis — е^ь [̂о,т] f see Exercise 10.1.9.
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2. Ft-mesurability of X t. This follows from equation (10.4.20) and the fact 
that Wt is J^-rneasurable.
3. Conditional expectation of Xt- From Examples 10.1.3 and 10.1.6 recall that 
for any 0 < t <  T:

(г) Mt is an J^-martingale with respect to probability measure P;
(гг) XtMt is an J^-martingale with respect to probability measure P.

We need to verify that

EQ[Xt\Fs] = X S, \/s<t,

which can be written as

[  X t d Q =  [  X s dQ, V i € J s.
J a  J a

Since dQ =  M rdP , the previous relation becomes

[  X tMT dP =  f  X SMT dP, 'iA € F s.
J a  J a

This can be written in terms of conditional expectation as

Ep [XtMT\Fs} = E p [XsMt \Ts}. (10.4.21)

We shall prove this identity by showing that both terms are equal to X SMS. 
Since X s is J^-predictable and Mt is a martingale, the right side term becomes

Ep [XsMT\Jrs\ =  X SEP[MT\FS} =  XgMs, Vs < T.

Let s < t. Using the tower property (see Proposition 2.12.6, part 3), the left 
side term becomes

Ep [XtMT\Fs} =  Ep [Ep {XtMT\Ft]\Fs] ^ E p [XtEp [MT\Tt]\Fg\
=  Ep [XtMt\Fs\ = X g M s,

where we used that Mt and X tMt are martingales and X t is .^-measurable. 
Hence (10.4.21) holds and X t is an J^-martingale with respect to the proba­
bility measure Q. ■

Proposition  10.4.2 Consider the process

Xt =  [  u(s)ds +  Wt, 0 < t < T ,
Jo

with и € L2[0,T] a deterministic function, and let dQ =  M^dP. Then

Eq [X?) =  t.
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Proof: Denote U(t) =  f^u(s)ds. Then

E °[X t2] =  E P[X2MT] =  Ep [U2(t)MT +  2 U(t)WtMT + W?M T\ 
=  U2(t)Ep [MT} +  2U{t)Ep [WtMT] +  EP[W?MT\. (10.4.22)

From Exercise 10.1.9 (a) we have Ep [Mt\ =  1. In order to compute Ep [WtMr] 
we use the tower property and the martingale property of Mt

Ep [WtMT] =  Ep [Ep [WtMT\Ft]] =  Ep [WtEp [MT\Ft]\
=  E p [WtMt\. (10.4.23)

Using the product rule

d(WtMt) =  MtdWt +  WtdMt +  dWtdMt 
= (Mt -  u(t)MtWt)dWt -  u(t)Mtdt,

where we used dMt =  —u(t)MtdWt. Integrating between 0 and t yields

WtMt =  f  (Ms -  u(s)MsWs)dWs -  Г u(s)Ms ds. 
Jo Jo

Taking the expectation and using the property of Ito integrals we have

E[WtMt] =  -  [  u(s)E[Ma] ds =  — [  u(s) ds =  -U (t). 
Jo Jo

(10.4.24)

Substituting into (10.4.23) yields

Ep [WtMT\ = -U {t). (10.4.25)

For computing Ep [W 2M t \ we proceed in a similar way

Ep [W2Mt ] =  Ep [Ep [W2MT\JFt]] = E p [W2Ep [MT\Tt}}
=  Ep [W?Mt]. (10.4.26)

Using the product rule yields

diWfMt) =  Mtd{W?) +  W?dMt +d{W ?)dM t
=  Mt{2WtdWt +  dt) -  Wt2(u(t)MtdWt)

- (2  WtdWt +  dt)(u(t)MtdWt)
=  MtWt(2 -  u(t)Wt)dWt +  (Mt -  2u{t)WtMt)dt.

Integrate between 0 and t
rt r t

W 2M t=  f  [MsWs(2 -u (s )W s)}dW s +  [  {Ms -2 u (s )W sMs)ds, 
Jo Jo
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and take the expected value to get

EP[W2Mt] =  [  (E[MS} -  2u(s)E[WsMs}) ds 
Jo

=  j  (l +  2 u(s)U (s))ds
Jo

=  t +  U2(t),

where we used (10.4.24). Substituting into (10.4.26) yields

E p [Wt2MT\ =  t +  U2(t). (10.4.27)

Substituting (10.4.25) and (10.4.27) into relation (10.4.22) yields

EQ[X?} =  U2( t ) -2 U { t )2 +  t +  U2(t) =  t, (10.4.28)

which ends the proof of the proposition. ■
Now we are prepared to prove one of the most important results of Stochas­

tic Calculus.

Theorem  10.4.3 (G irsanov’s Theorem ) Let и £ L2[0,T} be a determin­
istic function. Then the process

Xt =  [  u(s)ds +  Wt, 0 < t < T

is a Brownian motion with respect to the probability measure Q given by 

dQ =  e~ ^  u(s)dWs-f/oT u{s)2dsdp

Proof: In order to prove that Xt is a Brownian motion on the probability space 
(Г2, Q) we shall apply Levy’s characterization theorem, see Theorem 10.2.1. 
Lemma 10.4.1 implies that the process X t satisfies the following properties:

1. X 0 =  0;
2. Xt is continuous in t\
3. Xt is a square integrable ^-martingale on the space (fi, T, Q). Using 

Proposition 10.4.2, the martingale property of Wt, and the additivity and the 
tower property of expectations yields

Eq [(Xt -  X s)2} =  Eq [X?] -  2Eq [XtX s] +  EQ[X2] 
=  t - 2 E Q[XtX s\ +  s 
=  t-2 E ^ [E ^ [X tX s\Ts}} +  s 
=  t-2 E Q [X sEQ[Xt\Ts]} +  s 
=  t - 2 E Q[X2} +  s 
— t — 2s +  s =  t — s.
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4. The quadratic variation of X t is

(X ,X ) t =  [\ d X s)2 =  f d s  =  t.
Jo Jo

■
Choosing u(s) =  A, constant, we obtain the following consequence.

Corollary 10.4.4 Let Wt be a Brownian motion on the probability space 
(f2, J~. P ). Then the process

X t =  \ t +  Wu 0 < t < T

is a Brownian motion on the probability space (fi, J7, Q), where

dQ =  e- h * T-b wT dR

This result states that a Brownian motion with drift can be viewed as a regular 
Brownian motion under a certain change of the probability measure.

Exercise 10.4.5 Show that for any random variable X  on (Г2, T ) we have

EP[X] = E  Q[XM ^1}.

Exercise 10.4.6 Show that:

(a) Ep [/(Ai +  Wt)\ =  E ^ [/(5 t) M ^1] for any continuous function f ;

(b) ЕР[/0Г ext+Wt dt] =  E eBt dt M^ 1 ]. where Bt is a Q-Brownian mo­
tion.

Proposition 10.4.7 (Reduction of drift formulas) Let Wt be a Brown­
ian motion and f  a measurable function. Then

(г) E[f(Xt +  Wt)] =  e - ^ E [f(W t)eXWt]-

(■ii) E [f(W t)] =  e -^ E [ f (X t  +  Wt)e - xw*].

Proof: (i) Let Wt be a Brownian motion on the space (Q, J7, P). By Girsanov’s 
theorem, the process Xt =  Xt +  Wt can be considered as a Brownian motion
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on and we have

E[f (At +  Wt)] =  Ep [f(At +  Wt)] =  E ^ [f(X t) M - 1] =  E « [ / № ) e ^ + W r] 

=  EQ[/(X t)e ^ £+A(XT“ AT)]

=  e - ^ E  Q [f(X t)exx'ex(x T -x ]̂

=  e - ^ E Q[f(X t)eXXt}EQ[ex{XT~Xt)]

=  e - ^ E  Q[f(X t)eXXt]e £ (T-V

=  e - ^ E  Q[f(X t)eXXt]

=  e ~ ^ E [f (W t)eXWt}.

(ii) We apply Girsanov’s theorem for the Q-Brownian motion X t =  At + Wt 
and obtain

EQ[/№ )]  =  Ep [f(At +  Wt)MT\ =  Ep [f(At +  Wt) e - ^ - XWT]

=  Ep [f(A t+  W t)e-XWte - ^ ~ xi-WT- Wt)]

=  e ~ ^ E p [f(At + Wt)e~XWt] Ep [e~x{WT~Wt)]

=  e ~ ^ E p [f(At +  W t)e-XWt}.

Replacing X t by Wt in the first term yields the desired formula. ■

Exercise 10.4.8 Use the reduction of drift formulas and Example 8.10.7 to 
show

(a)E[(At +  iy,)2V * ]  =  ^ ( ^ ;

(b) E[(At +  Wt)2k+1e~XWt] =  0.

Exercise 10.4.9 Use the reduction of drift formula to show
(a) E[sin(t +  aWt)] =  e~a4/2 sini;
(b) E[cos(i -I- crWt)] =  e-0^ / 2 cos t.

Exercise 10.4.10 Use the reduction of drift formulas to find
(a) E[cos(A£ +  Wt)e~XWt]\
(b) E[sin(At +  Wt)e~XWt].

Exercise 10.4.11 Let Wt be a Brownian motion on the space (fl, J7, P), and 
dQ — MxdP. Show that

EQ[eXt+Wt] =

(a) by a direct computation;
(b) using Girsanov’s theorem.
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Exercise 10.4.12 Let X t =  Xt +  Wt, with Wt а P-Brownian motion.
(а) FindEp [Xt\ and E^[Xt];
(б) Find EP[X?} and Е®[Х?}.

Exercise 10.4.13 Use Jensen’s inequality to show that for any convex, mea­
surable function f  we have

E[f(Xt +  Wt)e -XWt} > f ( 0 ) e ^ .

Exercise 10.4.14 Use the reduction of drift formulas to show

(а) E [Wte~XWt] =  -X te^ r ■

(б) E [W?e~XWt] =  (i +  A2t2)e^r.

Exercise 10.4.15 Consider the stochastic process X t =  Щ- +  Wt, where Wt 
is a Brownian motion on (Fl,J-,P).

(a) Find the probability measure dQ such that X t becomes a Q-Brownian 
motion;

(b) Compute explicitly Ep [XtMT];
(c) Use Ep [XtMT\ =  E®[Xt] =  0 to find a formula for

Ep [Wte~xJosdWs\.

Remark 10.4.16 Girsanov’s theorem can be used to compute, at least in 
theory, expectations of the form

with /  and g continuous functions.

Exercise 10.4.17 Use the drift reduction formula to express Var[f (Xt+W t)}.





Chapter 11

Some Applications of 
Stochastic Calculus

In this chapter we shall present a few applications of stochastic calculus to a 
few applied domains of mathematics. The main idea is that some parameters, 
which in the case of deterministic Calculus are kept constant during the evo­
lution of the process, in this case are influenced by the exterior white noise, 
which is modeled by the informal derivative of a Brownian motion, . This 
way, the ordinary differential equations become stochastic differential equa­
tions, and their solutions are stochastic processes. For more applications of 
the white noise in chemistry and electricity one can consult the book of Gar­
diner [20]. For further applications to queueing theory the reader is referred 
to Ross [43]. For financial economics applications, see Sondermann [45], and 
for stochastical modeling of oil prices, see Postali and Picchetti [39]. For an 
application to car pricing in a stochastic environment see Alshamary and Calin 
[1] and [2].

11.1 White Noise

The white noise is used in applications as an idealization of a random noise 
that is independent at different times and has a very large fluctuation at any 
time. It can be successfully applied to problems involving an outside noise 
influence, such as trajectory of small particles which diffuse in a liquid due 
to the molecular bombardments, or signal processing, where it models the 
completely unpredictable “static” influence. The fact that the noise is not 
biased towards any specific “frequency” , gives it its name “white noise” . In 
this chapter we shall study a few applications of the white noise in kinematics, 
population growth, radioactive decay and filtering problems.

The white noise will be denoted by Л/j and considered as a stochastic pro­

241
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cess. The effect of the noise during the time interval dt is normally distributed 
with mean zero and variance dt, and is given as an infinitesimal jump of a 
Brownian motion, Mtdt =  dBt. Thus, it is convenient sometimes to represent 
the white noise informally as a derivative of a Brownian motion,

Since Bt is nowhere differentiable, the aforementioned derivative does not make 
sense classically. However, it makes sense in the following “generalized sense” :

[  Mtf{t )  d t— — [  Btf\ t)d t ,
JR J R

for any compact supported, smooth function / .  Hence, from this point of view, 
the white noise Aft is a generalized function or a distribution. In the following 
we shall state its relation with the Dirac distribution <5o, which is defined in 
the generalized sense as

[  $o{t)f{t)dt =  f(0 ),
JR

for any compact supported, smooth function / .

In order to study the white noise Mt, we should investigate first the process

X [e) =  \ (B {t +  e ) - B { t ) ) ,  t >  0, 

which models the rate of change of a Brownian motion B(t). Since we have

E[Xt(6)] =  i(E [2?(i +  6 ) ] -E [S ( t ) ] )= 0  

V ar(X (te)) =  I ( i  +  e - t )  =  I

the limiting process Mt =  lim X ['1 will have zero mean and infinite variance.
e\ 0

Consider s < t and choose e > 0 small enough, such that (s, s +  e) П 
(■t,t +  e) =  0 . Using the properties of Brownian motions, the differences 
B(s +  e) — B (s ) and B(t +  e) — B (t) are independent. Hence, the random 
variables Ms and Mt are independent for s < t.

In the following we shall compute the covariance of the process Mt- For 
reasons which will be clear later we shall extend the parameter t to take values 
in the entire real line R. This can be done by defining the Brownian motion 
B (t) as
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B(t) = Wi(t), if i > 0 
W2(—t), i f t < 0,

where W\(t) and W-zit) are two independent Brownian motions. First, we 
compute the covariance of the process X ^ .  Assume s < t. Then using the 
formula E[jB(u)B(v)] =  min{«, t>}, we have

Cov(X(£\ X t(e)) =  E [X ^ X t(£)]

=  2̂ ( E [(-^(S +  e) ~ -B(s)) +  e) ~  # № )])

=  ^  ( e [(B (s +  e)B(t +  e)] -  E [B(s +  e)B(t)] 

-E [B (s )B ( f| f )] +  E [B (a )5 (t)]])

=  - j  (s  +  e — min{s +  e, t} — s +  s j 

=  +  6 -  +  min{e, t -

= i ( i _ min{ i , ^ } )  = I mia{ i _ L l £ , o } .
For any s. t we can derive the more general formula

Cov(X(£\ X t(e)) =  ^ m a x jl  -  o } .  (11.1.1)

Consider the test function
1 / T\

if |t | < e
<ре(т) =  -  max j l  — — , oj- =

which verifies <p£(r) > 0, (pe(0) =  -  and

’ НЧ)'  “
, 0, if \t \ > e,

Therefore, we have
f i m v ? e ( r )  =  S0 ( t ),
e\ 0

-----) dr =  1.

where <So is the Dirac distribution centered at 0. In fact, the above limit has 
the following meaning
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for any test function / .
Since the covariance formula (11.1.1) can also be expressed as

C o v (X ^ ,X ^ )  =  ipe( t - s ) ,

then

Cov(Ms,Mt) =  lim C o v (X ^ ,X t(e)) =  lim <pe(t -  s) =  S0(t -  s).
e\0 e\0

We arrive at the following definition of the white noise.

Definition 11.1.1 A white noise is a generalized stochastic process Mt, which 
is stationary and Gaussian, with mean and covariance given by

ЩЩ =  0
С ov (Ms, Щ  =  50( i - s ) .

11.2 Stochastic Kinematics

During a race, a cyclist has average speed m. However, his speed varies in 
time. Sometimes the cyclist exceeds the speed m, but he gets tired after a 
while and slows down. If the cyclist’s speed decreases under the mean m, then 
he recuperates the muscle power and is able to speed up again. The cyclist’s 
instantaneous velocity Vt satisfies a mean reverting process described by the 
equation

dvt — a(m -  vt)dt +  adWt,

where a and a are two positive constants that correspond to the volatility and 
rate at which the velocity is pulled towards the mean m. The solution is given 
by t

Vt =  m +  (Vo-  m)e- at +  a e -at [  eas dWs. (11.2.2)
Jo

Since the last term is a Wiener integral, the speed vt is normally distributed 
with mean and variance

E[«t] =  m +  (v о — m)e~at 

Vur(vt) =

The expectation of the speed as of time и is given by the conditional expec­
tation given the information Tu available at time и

Fu] =  m +  (vо — m)e~at +  oe~ai f  eas d,Ws.
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r4
xt =  xo +  I vs ds

=  Xo  +

The cyclist’s stochastic coordinate at time t is obtained integrating the velocity

f Jo

f  [m +  (vo -  m)e~as +  ae~as f  eau dWu\ ds
Jo Jo

1 — e~at f s
=  xo +  mt +  (vo — m) --------------Ь и /  /  еа и̂~^ dWu ds.

a Jo Jo
The expected coordinate is

E[xt] =  x o +  [  E[ve] ds 
Jo

=  xo +  [m +  (vo — m)e~at] ds 
Jo

1 -  e~at 
=  xq +  mt +  ( v q  — m) -

=  xunif(t) +  (v0 -  m)

a
1 -  e - at 

a
The term xunif(t) — x'o +  mt denotes the coordinate the cyclist would have 
if moving at the constant velocity m. The difference v q  — m provides the 
following upper and lower bounds

(1 -  at/2)|u0 -  m\t <  |E[xt] -  xunif ( t )| < |w0 -  m\t.

This shows that the error between the expected coordinate and the coordinate 
of a uniform move is at most linear in time and is controlled by the difference 
vq — m. Therefore, the expected coordinate is the classical coordinate, Е[ж<] =  
Xunif(t), if and only if v0 =  m.

The acceleration at is obtained as the derivative of velocity Vt with respect 
to time

at —

f  (
-a(vо — m)e~at — aae~at /  eas dWs +  a-

J  о

dvt 
dt

dWt 
dt

=  a0e~at -  a<re~at f  eas dWs +  (11.2.3)
Jo dt

where ao is the initial acceleration. The first term is a deterministic function, 
the second term is a normally distributed random variable of zero mean, while

dWtl
dt -

expectation becomes E[a<] =  aoe~at —> 0, as t —> oo.

dWt . . 0.
a —-— is the white noise term. Since E 

dt
=  0, the long run limit of the



Let M  denote the mass of the cyclist and Ft — Mat be the muscle force 
developed at time t. The work done by the cyclist between instances 0 and t 
is given by
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rxt rxt r
— I Fs dxs =  M  I as dxs =  M I 

J xq J xo J 0
asvs ds,

where the velocity and the acceleration are given by (11.2.2) and (11.2.3). 
Computing the exact expression of W is tedious. However, using the properties 
of Ito integrals one can compute E[W], see Exercise 11.2.1.

Since the square of velocity is given by

2
vl =  (rn +  (г>о — m)e +  2ae at (m  +  (г>о — m)e at ĵ J  eas dWs

2
W e ~ 2at ( l e“ dW-)2’

the expectation of the kinetic energy becomes

, 2
E Mv\ M

~2
M
T

a 2e - 2 at E(m  +  (vo -  m)e ai)  +  0 +

(m  +  (v0 -  m)e~at ĵ + ^ ( 1_e_2at)

t ч2п
eas dWs )

Exercise 11.2.1 Show that

E[W] =  M^aQtn
1 — e -at

+ ao^o ~ m ) +
a
2 J

1 _  e- 2at (j2
2 a }■

Exercise 11.2.2 A snowflake in falling motion is described by the equation 

dvt =  g dt +  crvt dWt, vo =  0,

where g and a are positive constants.
(a) FindK[vt]',
(b) Compute E[a*];
(c) Solve the equation to find a formula for the velocity Vf,
(d) Find a formula for the acceleration at.

Exercise 11.2.3 A particle with the initial velocity vq =  1 m/sec decelerates 
in a noisy way according to the equation

dvt — —2 vtdt +  0.3 dWt.
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(a) What is the probability that at the time t — 3 sec the velocity of the 
particle is less than 0.1 m/sec?

(b) Find the work done by the environment on the particle in order to 
decelerate it from vq — 1 m/sec to v =  0.5 m/sec.

Exercise 11.2.4 A snowball rolls downhill with the velocity given by the equa­
tion

dvt — 0.6 vt dt +  0.2 dWt, vo — 0.

(a) Find the velocity vt\
(b) What is the probability that the velocity is greater than 10 m/sec at 

t — 20 sec?

11.3 Radioactive Decay

Consider a radioactive atom which contains N(t) nuclei at time t. Assume the 
number of nuclei which decay during the time interval At is Poisson distributed

p (N (t )  -  N (t +  At) =  n) =  —~ ^ Пе~ЛА*,

where the constant A stands for the decay rate. For a small time interval At 
the previous formula becomes

p (N (t)  -  N (t +  At) =  l )  =  A A t,

i.e. the probability of the occurrence of one decay in a small time interval is 
proportional with the time interval. The probability of the complementary 
event is

P^N{t) -  N (t +  At) =  o) =  1 -  AAt. (11.3.4)

Divide the interval [0, t] into n equidistant subintervals

0 =  t0 < h  < t2 < ■ ■ ■ < tn- i  < t n =  t,

with At =  tfc_|_i — tfc =  t/n. The event of not having any decays during the 
interval [0, t] can be expressed as

n—1
{N(0) -  N(t)  =  0} =  p| {N(tk) -  N(tk+1) =  0}. 

k=0

Since the increments of a Poisson process are independent, we have
n—1 .

p ( iV ( 0 ) - iV ( t )  =  o) =  f l  p ( N ( t k) - N ( t k+1) =  o) =  ( l - A A t r  =  ( l ----
fc=o n
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Let n —> oo and obtain

p ( n (0) ~ N (t)  =  o) = e ~ xt.

For N{t) large enough, this probability represents the fraction of nuclei that 
survived the decay during the time interval [0, t]. Since the percentage of nuclei 
that are still “alive” after time t is represented by the quotient N(t)/N(0), we 
have

m  =  —At
N ( 0)

This relation, written as N(t) =  N(0)e~xt, is the law of radioactive decay.

Now we shall develop a differential equation for N(t). Relation (11.3.4) 
states that the fraction of nuclei that resist the decay during the time interval 
[:t, t +  At] is

Cross multiplying and subtracting N (t) yields

N(t) -  N (t +  At) =  —XN(t)At. (11.3.5)

Assuming that the period of observation is infinitely fine, A t —> dt, the equa­
tion becomes

dN(t) =  -A N(t) dt.

This describes the kinetics of the radioactive decay, stating that the change 
in the number of nuclei dN(t) during the time interval dt is proportional with 
the number of nuclei N(t). Solving the aforementioned equation, we obtain 
again the law of radioactive decay

N(t) =  N(0)e~kt.

Noisy radioactive decay In real life relation (11.3.5) does not hold exactly, 
and some errors of measurement or counting are involved. These will be added 
as a noisy term

N(t) -  N (t +  At) =  -\ N {t)A t +  “noise” .

For At small, this becomes a stochastic differential equation

dN(t) =  —AN(t) dt +  crdWt,

with a positive constant and Wt Brownian motion. The obtained equation is 
called Langevin’s equation. We shall solve it as a linear stochastic differential 
equation. Multiplying by the integrating factor eA< yields

d(extN (t)) =  aeXtdWt.
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eMN (t) =  N(0) +  а f  eXs dWs.
Jo

Hence the solution is

N (t) =  N(0)e~xt +  ae~xt [  eXs d,Ws. (11.3.6)
Jo

This is the Ornstein- Uhlenbeck process. Since the last term is a Wiener inte­
gral, by Proposition 8.2.1 we have that N(t) is Gaussian with the mean

t -xtE[iV(i)] =  iV(0)e-At +  e\ o  f  ex^  dWs =  N (0)e
L Jo J

and variance

Jo

2

Var[N(t)\ =  Var a I eA(s_<) dWs =  ^ { 1  -  e~2Xt).

Using Exercise 10.3.11 we can write the Gaussian term as a Brownian 
motion under a time change as

fJo
eXs dWx =  B ,' S =  -0(е2Л‘ -1 )/(2 Л )>

with Bt Brownian motion. Hence the solution can also be written as

N(t) =  N(0)e~xt +  сте- л<Б (е2л._1)/(2Л).

Using the expansion

e2At =  l +  2A t +  o(t2), i - » 0 ,

then (e2Xt — 1)/(2A) =  t +  o(t2), and hence the following approximation holds 
for t small

N(t) =  N(0)e~Xt +  ae~XtBt.

Exercise 11.3.1 Let N (t) be a noisy radioactive decay. Define the half time 
h as

h =  inf{£ > 0; N(t) <  ^iV(O)}.
Zt

(a) Prove that E[eA/l] =  2;
(b) Use Jensen’s inequality to show that E[/i] <
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Exercise 11.3.2 Consider a machine which consists initially of N distinct 
parts. Assume the number of parts which get defective during the time interval 
At is Poisson distributed

p (N {t )  -  N (t +  At) =  n ) =  - " ^ p -" e~AAt.

(a) What is the probability that all parts still function perfectly at time t ?
(b) Find the time t such that the 90% of the machine functions perfectly 

at time t.

Exercise 11.3.3 A living organism has initially No cells. Assume the number 
of cells which die during the time interval At is Poisson distributed

p (N (t )  -  N (t +  At) =  n j =  Л" ^ Пе~ЛА*.

The organism dies when at least 30% of its cells are dead. Find an approxi­
mation of the death time of the organism.

11.4 Noisy Pendulum

The small oscillations of a free simple pendulum can be described by the linear 
equation

0(t) =  - k 26(t), (11.4.7)
where 9{t) is the angle between the string and the vertical direction. If the 
exterior perturbations are modeled by a white noise process, Aft, then the 
pendulum equation under small deviations writes as

0(t) +  k29(t) =  cMt, (11.4.8)
where к and a are constants and the noise is given informally as Mt =  r̂ L- 
The general solution of equation (11.4.8) can be expressed as the sum

e(t) =  9p(t) +  60{t), (11.4.9)

where 9p(t) is a particular solution of (11.4.8) and 9o(t) is the solution of the 
associated homogeneous equation (11.4.7).

Standard ODE methods provide

9o(t) =  c\ cos(kt) +  C2 sin(kt),

with c i,c2 £ K. The particular solution 9p(t) can be obtained by the method 
of variable coefficients. We are looking for a particular solution

9p(t) =  u\(t) cos(kt) +  u2(t) sin(kt), (11.4.10)
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where u\ (t) and u2(t) are two differentiable functions, which will be determined 
later. Assuming

u[(t) cos(kt) +  u'2(t)sm(kt) — 0, (11.4.11)

differentiating yields

e'p{t) =  u\(t) cos(kt) +  u2(t) sin(kt) — kui(t) sin(kt) +  ku2(t) cos(kt)
=  — ku\(t) sin(kt) +  ku2(t) cos(kt).

Then the second derivative is

dp(t) =  — ku\(t) sin(kt) +  ku2(t) cos(kt) (11.4.12)
—k2u\(t) cos(kt) — k2u2(t) sin (kt).

Substituting (11.4.12) and (11.4.10) into (11.4.8) yields

dB
—ku[(t) sin(kt) +  ku'2(t) cos(kt) — (11.4.13)

dB
where we used the informal notation for the white noise Л/’t =  —r~ ■ Equations

dt
(11.4.11) and (11.4.13) yield the ODEs system in u\ and u2

u[(t) cos(kt) +  u2(t) sin(kt) — 0 (11.4.14)

—u'At) sin(kt) +  u2(t) cos(kt) =  -— (11.4.15)
к dt

The reduction method and integration produces the following solutions

rt
ui (t) =  — T /  sin(ks) dBs (11.4.16)

® Jo

u2(t) =  t - [  cos(ks)dBs. (11.4.17)
^ Jo

These represent the effect of the white noise dBs along the solutions trajec­
tories sin(ks) and cos(ks). Prom the properties of Wiener integrals, it follows 
that u\(t) and u2(t) have normal distributions with the mean, variances and
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covariance given by

E[«i
a 2

Var[u\(t)] =  -г* /  sin2(ks)ds =  
к  Jo

E[«i(i)] — E[tt2(i)] =  0
a2 f l ._2n  \ j ° 2 f t  sin(2 kt)\

k2 \ 2 4 к

4A:

Cou[ui(t),u2(t)] =  E[tii(t)u2(*)]
rt -  rtО l

E
а Г a Г— / sin(ks)dBs,--  /  cos(ks) dB 
к  Jo к  Jо

= -£ /\ m (b )c o S(b)rfS= -2 j2 !s !M .
к Jq к 2

The particular solution (11.4.10) becomes

9p(t) =  ^ ^ J  sm(ks)dBgSj  cos(kt) +  ^  J  cos(ks)dBg^ s'm(kt).

(11.4.18)
Hence the general solution for the pendulum equation given by (11.4.9) is 

0 (i) =  ^ci — — J  sin(ks)dB^j cos(kt) +  ^C2 +  — J  cos(ks) d B ^  sin(kt), 

where the constants Ci and C2 depend on the initial data as

It is worth noting that 9(t) is not normally distributed. This follows from 
the fact that Cov[u\(t),u2{t)\ Ф 0 implies that U\(t) and u^it) are not inde­
pendent. However, we are able to compute the mean and variance as in the 
following

E[0(t)] =  во(t) =  ci cos(kt) +  C2 sin(kt)
Var[6(t)} =  Var[0p(t)] =  cos2 (kt)Var(ui(t)) +  s\n2(kt)Var(ii2{t))

+ 2 sin(kt) cos(kt)Cov(ui(t),u2(t)) 
a2t a2 .

We shall present in the following another method for finding X t, involving 
an integrating factor. Considering -Xi(t) =  9(t), Хг(<) =  0(t), the pendulum 
equation

6{t) =  —k26(t) +  a^^- 
dt
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becomes a first order system of stochastic differential equations

dXi(t) =  X 2(t)dt 
dX2(t) — —k2X i(t)d t +  adBt.

Denoting

■ 4 3 ' Ч-г. ;)•- c
the aforementioned system becomes a linear matrix stochastic differential 
equation

dXt =  AXt dt + К  dBt.

Multiplying by the integrating factor e~At yields the exact equation

d (e -AtX t) =  e~AtK  dBt.

Integrating we obtain the solution

X t =  eAtX 0 +  f  eA^ s) К  dBs. (11.4.19)
Jo

Since A2 — —k2I2, a computation of the exponential of At involving a power 
series provides

^  Antn _  у л  A2nt2n y .  A2n+lt2n+l 
n! (2n)! ^  (2n +  l)!n>0 n>0 v ' n>0 v '

( _ l ) n fe2n t 2n I  ( _ 1 ^nfc2 w + lt 2 w + l

^  (2n)l 2 +  к (2n +  1)!n>о v ' n>о v ’

cos(kt)l2 +  у  sin(A:i)A 
к

cos (kt) 0 \ , f  0 jrsin(fct)
0 cos(kt) J \ —ks'm(kt) 0

cos (kt) \ sin (kt)
—ksin(kt) cos (kt)

The expectation of Xt is given by

Epft] =  eA,X 0 =  (  C° ‘ (kt)—ksin(kt) cos (kt) J у 0(0)

(  cos(kt)6(0) +  £ sin(H)#(0) 
-ksm(kt)d(0) +  cos(kt)d(0)
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Considering each component separately, implies

E[0(i)] =  cos(kt)6(0) +  — sin(fciWO)
к

E[0(t)] =  — ks'm(kt)6(0) +  cos(kt)9(0).

Since
pA(t-s) K _  (  f  sin(A:(i -  s))

\ acos(k(t — s))
the integral term of (11.4.19) can be computed as

I

a
к

f  sin(k(t — s))dB s
Jo

a / cos(k(t — s))dB s 
\  Jo )

Since any electronic circuit is mathematically equivalent to a pendulum 
equation, a similar method of study can be applied to it. It is worth noting 
that the analysis of noise in electronic circuits was developed as early as 1920s 
by Rice [42] and Schottky [44].

Exercise 11.4.1 Consider an electric circuit, in which the charge Qt at time 
t satisfies the equation

d2Qt d(Di +  2 Q ,= M „

dWt
where the external force is just the influence of the white noise Mt = ------•

dt
(а) Find the solution of the homogeneous equation;
(б) Show that a particular solution is given by

rt
Q t = J o (e~ {t~s) -  e~2(i~s))  dWs.

(c) Find the general solution, Qt) and show that E[Qt] satisfies the homo­
geneous equation.

Exercise 11.4.2 (a) Solve the following stochastic differential equation

dXt =  Yt dt +  a dW}
dYt =  - X t dt +  0dW.f,

where (W} , W f) is a 2-dimensional Brownian motion and a and (3 are con­
stants.

(b) Use part (a) to find a solution for the following stochastic pendulum 
equation

et +  et =  p w ?  +  aW }.
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11.5 Stochastic Population Growth

This section presents a few population growth models driven by noisy growth 
rates. This implies that the population size is stochastic.

Exponential growth m odel The population at time t, denoted by Pt, sat­
isfies the growth equation

dPt =  rt Pt dt, (11.5.20)

where rt is the stochastic growth rate. Assume that rt oscillates irregularly 
around some deterministic average function a(t)

rt =  a(t) +  “noise” .

If the size of the white noise is /3, then

“noise” =  ДЛ/* =  / 3 ^ .
dt

Substituting in (11.5.20) yields the following SDE

dPt =  a(t)Ptdt +  /3 PtdBt, (11.5.21)

where /3 > 0 is a constant and Bt is a Brownian motion. The equation (11.5.21) 
can be reduced to an exact equation multiplying by the integrating factor 
pt — Ito’s formula provides

dpt =  pt((32dt -  f3dt),

and hence dpt dPt =  —/32Yt dt. Denoting Yt =  ptPt and applying the product 
rule yields

dYt =  d(ptPt) =  dpt Pt +  ptdPt +  dpt dPt 
=  (/32Yt +  a(t)Yt -  p2Yt)dt +  (/3Yt -  pYt)dBt 
=  a(t)Ytdt.

Hence the process Yt satisfies the deterministic equation

dYt =  a(t)Yt dt

with the initial condition Yo =  Po P i =  Po- Integrating yields

Yt =  P0e ^ a(s)ds.

Solving for Pt we obtain

(11.5.22)Pt =  f o e / o  « ( « ) ^  РФ+РВ,
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Using E[e^Bt] =  e^2*/2, we obtain

E[Pt] =  P0eti a(s)ds-02t/2E{ePBt} =  poel*a(s)ds

It is worth noting that the function P (t) =  E[Pt] satisfies the deterministic 
equation

dP{t) =  a(t) P(t)dt.

The population Pt provided by formula (11.5.22) is log-normally distributed. 
p

In fact, In —  is normally distributed

l n ~  ~  N(m(t)i f32t),
■* о

with the mean given by

/'* g2t
m(t) =  / a(s)ds-----— .

Vo 2

Exercise 11.5.1 Consider the population given by the formula (11.5.22).
(a) Find the probability distribution function of Pt.
(b) Find the probability density function of Pt .

Exercise 11.5.2 A bacteria population has an intrinsic growth rate of r — 
0.08 and noise size f3 =  0.01 per day. If the population starts with 10,000 
bacteria, find the probability that there are more than 11,000 bacteria after 2 
days.

Exercise 11.5.3 A population has a noisy growth rate given by rt =  t2 +  • 
Find the doubling time T , which satisfies

E[PT] =  2Pq.

Population growth in a stochastic and crowded environment In the
previous exponential growth model the population can increase indefinitely. A 
more realistic model was obtained by P.F. Yerhust in 1832 (and rediscovered 
by R. Pearl in the twentieth century), who assumed that due to competition 
the population also tends to decrease at a rate proportional with the number 
of encounters between the population members, which is proportional with 
the square of the population size

dP(t) =  rP(t)dt -  kP(t)2dt. (11.5.23)
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The constant r is the intrinsic growth rate, i.e. the relative rate at which the 
population would increase if there were no restrictions on the population. The 
positive constant к reflects the damping effect on the population growth caused 
by competition for resources between the members of the same population. 
The solution of the equation (11.5.23) is given by the logistic function

P ®  = P0 +  (K  -  P0)e~rt' (11.5.24)

where К  =  r/k is the saturation level, or carrying capacity of the environment. 
This represents the equilibrium level to which the population, regardless of its 
initial size, will tend in the long run

К  =  lim Pit).
t—t oo

One of the stochastic models for the population growth in a stochastic and 
competitive environment is obtained keeping in equation (11.5.23) the rate к 
constant, while considering a noisy intrinsic rate of growth

dPt =  (r +  j5Nt)Pt dt — kP2dt. (11.5.25)
This equation can be written equivalently as

dPt — rPt dt — kP2dt +  /3Pt dBt, (11.5.26)
where the positive constant /3 measures the size of the noise of the system. 
Rewriting the equation as

dPt =  kPt(K  -  pt)dt +  ppt dBt,

and multiplying by the integrating factor pt =  е ^ 2(_,,в‘ leads to the exact 
equation

d(ptPt) =  kptPt(K  -  Pt)dt.
Substituting Yt =  ptPt yields the equation

dYt =  kYt{K  -  p i lYt)dt. (11.5.27)
ertIn order to solve (11.5.27) we shall make the new substitution Zt =  — . Since
Yt

(dYt)2 =  0, Ito’s formula provides
ert , 1 i  jdZt =  r ^ - d t -  T^ertdYt 
Yt Y f

rZtdt -  ~ e rtkYt(K  -  p i lYt)dt

rZtdt -  kZt(K  -  p i lYt)dt
kZtYtP tldt
kertp f ldt,
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where we used that r =  к К  and ZtYt =  ert. The process Zt satisfies the 
integrable equation

dZt =  kert p^1d,t

with the solution
rt

IJo
Zt =  Z0 +  k I ersp~l ds

Since Zq — —  =  — , substituting back we obtain the following expression for 
Yo Po 

the population

e rt e rt-/32t/2+l3Bt

t Pt t Pt Z t ± .  +  k  J t  e rsp - l  d s

In the following we shall manipulate the previous expression in order to make 
it look as close as possible to the logistic equation (11.5.24).

Pt. =
ert-/32t/2+pBt poerte-/32t/2+l3Bt poj ( erte-p 2t/2+l3Bt

-pr +  kfo ersps1 ds 1 +  kP() f*  ersps1 ds К  +  rP0 f* erspg1 ds 

P0K e-P 2tl2+f}Bt 
K e~rt +  rPoe~rt Jq ersp j l ds

(K  -  Po)e~rt +  P0( l  +  r /q ersps 1 c?s)e_r<

If in the previous formula we let /3 =  0, and hence ps =  1, we obtain exactly 
the expression (11.5.24).

A more sophisticated model is obtained if in equation (11.5.23) both rates 
r and к are noisy, with the size of the noise proportional with the rates as 
follows

rt =  r +  a r <̂ ,  kt =  k +  a k ^ t .
dt dt

We note that both rates are driven by the same uncertainty source. Substi­
tuting in the equation yields the following SDE

dPt =  (rPt -  kP?)dt +  a{rPt -  kP?)dBt.

It can be shown that this equation has a unique strong solution, but the 
discussion of this subject is beyond the level of this textbook.

Population growth in a stochastic catastrophic environment In the
previous model the population tends to decrease due to competition and lim­
ited space. In the present model the population decreases suddenly due to
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some unexpected catastrophic events, such as earthquakes, wars, diseases, 
natural calamities, etc. The SDE satisfied by the population in this case is

dPt =  rPt dt -  ppt dNt, (11.5.28)

where Nt is a Poisson process with rate A. The positive constant /3 is a
dPt ,

measure of the size of the drop in the instantaneous relative change —— and
Pt

takes values in (0, 1).
We shall construct a solution as in the following. Let S& denote the fcth 

jumping time for the Poisson process, i.e. Nsk =  к and Nsk_ =  k—1. Consider 
t € [0, Si). Since there are no jumps in this interval the population satisfies 
the stochastic differential equation

dPt — rPtdt, 0 < t < Si,

with the solution given by the usual formula Pt =  Poert, for t E [0, Si). In 
particular, when t =  S i-, we have

PSl- = P o e rSl. (11.5.29)

Since at the jumping time Si we have

dP si _  Pst -  Psi -  _  _ o

Ps,- ~  PSl-

then Psx =  (1 — j3)Ps1_ ■ Combining with formula (11.5.29) yields

PSl =  (1 -  P)PSl-  =  P0erS'( l  -  /3). (11.5.30)

Because there are no jumps in the interval [Si, S2) the following differential 
equation holds

dPt =  rPtdt, Si < t < S2,

with the solution
Pt -  PSler(f- Sl).

Combining with (11.5.30) yields

Pt =  PSler^ -s^ =  P0erSl( 1 -  /3)e^~51) =  P0ert( 1 -  /3), Si <  t < S2.

The effect of passing over a jump is to multiply the solution by the factor 
(1 — /3). Using this observation we obtain inductively

Pt =  P0ert( l - / 3 ) n, Sn < t <  Sn+i.
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Replacing n by Nt we arrive at the following expression for the population in 
a stochastic catastrophic environment

In the next paragraph we shall compute the mean of Pt using conditional 
expectations

E [Pt] =  P0ertE[(l -  P)N'] =  P0ert ] T  E[(l -  /3)N‘ \Nt =  n]P(Nt =  n)

To conclude, if r <  /ЗА, the population tends to decrease and then disappear 
in the long run. A population with r =  /ЗА has on average a constant size.

Next we shall evaluate the probability of the event {Pt < x }  for a given 
x >  0. We consider the following transformation of events

{Pt <  x }  =  { i W r_/JA)t <  x } =  {P0ert( 1 -  P)N* < x }  =  {(1 -  P)N* < ^ e ~ rt}

Exercise 11.5.4 An ant colony of 1,000 ants grows at the intrinsic rate r =  
0.30 per month. However, each rainfall kills 2% of the ant population, and it 
rains 5 times per year.

(a) Write the stochastic differential equation for the ant population size;
(b) What is the probability that there are at least 2,000 ants in the colony 

at the end of the first year?

(c) What is the expected size of the colony after 2 years?

Pt =  P0ert{ (11.5.31)

n> 0

P0ert E ( 1  -  P)nP(N t =  n) =  P0ert V (1 -  /3)n^ e ~

PQerte - xte ^ -p)Xt =  P0e(r_/3A)t.

Po

where we used that ln(l — /3) <  0. Denoting yt =  
can now be evaluated as in the following

, the probability
ln(l — /3)

k>yt
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Population growth with stochastic harvesting Besides the effect of expo­
nential growth at the intrinsic rate r, we shall also assume that the population 
is harvested at the stochastic rate Ct — p +  where p > 0 is the mean
harvesting rate and a measures the size of the noise. The population at time 
t, denoted by Pt satisfies the following equation

dPt =  (rPt -  Ct)dt,

which can be written equivalently as

dPt =  rPtdt — pdt — udWt. (11.5.32)

Multiplying by e~rt and solving it as a linear stochastic differential equation 
yields the solution

rt
Pt =  ert (P 0 " )  +  Gert J dW°- (11.5.33)

This implies that Pt is normally distributed with the mean and variance given
by

E [Pt] =  ert(p 0 - ^ )  (11.5.34)
2

Var[Pt] =  ° - ( e 2rt- l ) .  (11.5.35)
Zr

Exercise 11.5.5 Show that the stochastic process (11.5.33) is the solution of 
equation (11.5.32).

Exercise 11.5.6 Prove formulas (11.5.34) and (11.5.35).

11.6 Pricing Zero-coupon Bonds

A bond is a financial instrument which pays back at the end of its lifetime, T, 
an amount equal to B. If the contract does not provide any payments until 
maturity, the bond is called a zero-coupon bond or a discount bond. The value 
of the bond at time t is denoted by B(t). In the case when the yield r is 
constant, i.e., if

dB(t)

~ m =  '

then the bond value is given by the familiar expression B (t) =  Be~ -It rds =  
Be~r(T~t\ We shall assume next the case when the yield of the bond is 
affected by the noise in the market

dWt
rt =  r +  o —— , r >  0, 

at
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where a  is a positive constant that controls the size of the noise. This leads 
to the following stochastic process

B t = Be~ f<T rs ds = Be~ & r dse~ £  а dWs 
= Be~r{-T~t)e~tTi'WT~Wt\

The bond value is the conditional expectation of Bt given the information in 
the market until time t

E[Bt\Ft] = Ве~г т̂ - Ь) E[e_<r(w'T_w*)|.7ri] 
= B e“ r(T_t) E[e ^ WT~Wt)] 

= B e - ^ - V e ^ V - *

According to the previous model, we note that in the case when the market
2

noise is small, r  > ^ ,  the bond value appreciates, having the maximum value,
2

B,  at t  = T. If the noise is large, Щу > r.  the bond depreciates and has to be 
sold as soon as possible.

Exercise 11 .6 .1  Use I t o ’s  f o rm u la  to s h ow  that  the  p r o c e s s  B t sa t i s f i e s  the  
equat ion

2

d B ( t ) = (V + ^ B ( t ) d t + a B ( t ) d W t

B (T )  = B.

11.7 Finding the Cholesterol Level
The amount of cholesterol in the blood of a person at time t  is described by a 
stochastic process denoted by Ct. The body cholesterol is either manufactured 
by the body or it is absorbed from the intaken food. If E denotes the daily 
rate at which cholesterol is eaten and Co stands for the normal level of choles­
terol for a health person, then Ct satisfies the following stochastic differential 
equation

dCt  = a(Co — Ct)dt  + bEdt  + adWt,  (11.7.36)

where a is a production parameter, b is the absorption parameter, and a  is the 
size of the noise in the measurement. Solving (11.7.36) as a linear equation 
we obtain the solution

b f ь
Ct = C0e~at + (Co + - E ) (  1 -  e~at) + o e - at / e as dWs .

a Jo
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From the properties of Wiener integrals it follows that Ct is normally dis­
tributed, with mean

E [Ct] = C0e~at + (Co + -E ){  1 -  e ~at)
a

and variance

Var[Ct] — ^“ (1 — e~2at).

If the diet is kept for a long time, then the cholesterol level becomes the normal 
random variable

Ct ~ N  ̂ Co + —E, > t  —> oo.

In order to evaluate the health of a particular person who is on a given diet 
(i.e. when E is kept constant for a long time) we have to find the probability 
that the cholesterol level is over a given acceptable level M.  Using the long 
run normality of Ct, this probability can be evaluated as

ГК1 (*-C0-% E)2
P (C t > M )  = J —  / e dx. (11.7.37)

V 7Г0- JM

Exercise 11 .7 .1  Assuming  that the  intaken f o o d  d o e s  n o t  hav e  a c on s tan t  
c h o l e s t e r o l  level ,  the  t e r m  E is r e p la c ed  by E + “noise” . Write and so l v e  the  
co r r e s p ond in g  s t o cha s t i c  d i f f e r ent ia l  equation.

Exercise 11.7 .2  The n o rm a l  c h o l e s t e r o l  l e v e l  in  the blood is Co = 200 (mi l ­
l i g rams p e r  de c i l i t e r ) ,  the  p r o du c t i o n  p a r am e t e r  is a  = 0.1 and the ab sorpt ion  
pa ra m e t e r  f o r  a pa r t i cu la r  p e r s o n  is b = 0.15. What is the  max imum daily  
intake E o f  c h o l e s t e r o l  s u c h  that  the l on g  run  l e v e l  o f  c h o l e s t e r o l  is l e s s  than  
220 with a probabi l i t y o f  95%?

11.8 Photon’s Escape Time from the Sun
This section deals with the computation of a rough approximation of the time 
taken by a photon of light to travel from the center of the sun to its surface. 
Fusion reactions occur in the core of the sun due to high heat and pressure. 
These reactions release high energy photons (gamma rays), which are absorbed 
in only a few millimeters by the solar plasma particles and then are emitted 
again in a random direction, see Fig. 11.1.

The mathematical model for such a photon emitted and randomly redi­
rected by plasma particles is a Brownian motion process. If Xt denotes the
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Figure 11.1: The photon bounces back and forth in its effort to emerge to the 
sun’s surface.

where a = Xo is the location where the photon was in itially created, о is 
the dispersion function and Wt = (И7/ . W 2. W f ) is a 3-dimensional Brownian 
process in R3. The dispersion is given by Einstein’s formula

where к  is Boltzmann’s constant, T  denotes the absolute temperature, a  is 
the diameter of the photon, and rj is the viscosity of the solar plasma. For the 
sake of simplicity we shall assume in the following that a  is constant.

The time when the photon reaches the surface of the sun is a random 
variable denoted by r . We shall use a similar method as the one described in 
section 9.6 to find the expected time Е[т]. If R s  denotes the radius of the sun, 
the time necessary for a photon to emerge to the sun’s surface is the exit time

Since the infinitesimal generator of the process (11.8.38) is the operator

coordinates vector in R3 of the photon at time t , where the center of the sun 
is assigned the zero coordinate, then

Xt = a + oWt, (11.8.38)

a 2 = 2kT / (dirrja) ,

т = inf{t > 0 ; \Xt\ > Rs}- (11.8.39)

using the function f(x) = \x\2 = x2 + x\ + x\ in Dynkin’s formula

E [f(X T)\ = f(x) + E [ J ^ A f ( X s)ds



Some Applications of Stochastic Calculus 265

yields

R g  = |a|2 + E f  За2 d s  ,
L Jo

and hence p 2
E[r] =

Зет2
(11.8.40)

In particular, if the photon is emitted from the sun’s center, the expected 
emerging time to the surface is

Using the numerical values for the sun’s radius and photon’s diffusion given 
by R s  = 6.955 x 105 km and a 2 = 0.0025km2/sec (this corresponds to a 50 
meters per second radial photon displacement), formula (11.8.41) yields the 
approximate value E[r] « 2  million years. Some other sources compute slightly 
different values, but the idea is that it takes a really long time for a photon to 
leave the sun’s interior. This is huge compared with the only 8 minutes spent 
by the photon on its way to earth.

It is worth noting that if a star has its radius 100 times the sun’s radius, 
then the expected emerging time multiplies by a factor of 104. This means 
E[r] ~ 2 x 1010 years (20 billion years), which is longer than the entire age of 
the universe ( «  14 billion years)! Hence, it is possible that a photon created 
in the center of the star has not found its way out to the surface yet. Since the 
life span of a star is usually around 10 billion years, the photon will probably 
not get out of the star during its life span.

In early 1960s Kalman and Bucy found a procedure for estimating the state of a 
signal that satisfies a noisy linear differential equation based on a series of noisy 
observations. This is known now under the name of Kalman-Bucy filter. This 
theory has useful applications in signal processing of aerospace tracking, GPS 
location systems, radars, MRI medical imaging, statistical quality control, 
and any other applications dealing with reducing or filtering noise out of an 
observed system. For more examples on this subject as well as the complete 
proofs, the reader can consult 0ksendal [37].

Assume Ct is the input  p ro c e s s ,  i.e., a process that describes the state of a 
stochastic system at time t, which needs to be observed. This process has some 
“noise” built in and its evolution satisfies a given linear stochastic differential 
equation

(11.8.41)

11.9 Filtering Theory

d ( t = a ( t )Ct dt  + b( t )dWt
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noise

Figure 11.2: The inpu t  s i gna l  C,t and th e  o b s e r v e d  s i gna l  S t .

where a (t) and b( t) are given deterministic functions and Wt is a Brownian 
motion, independent of the initial value Co- We assume that Ct is observed 
continuously with the actual observations St = Ct + “noise” , see Fig. 1 1 .2 . If

d B
the white noise is given by “noise” = B(t) — , then

St dt  = ( t d t  + j3( t)dBt . (11.9.42)

Introducing the cumulative observation process

Q t =  Su du  
Jo

and using that the information (ст-algebras) induced by the processes Qt and 
St are the same,

= •??,
it follows that equation (11.9.42) can be replaced by the more mathematically 
useful formula

dQt = {t dt  + P(t )dB t ,  (11.9.43)

with Bt  independent of Wt- From now on, Qt will be considered as the ob­
s e r v a t i o n  p r o c e s s  instead of St- It is easier to work with the cummulative 
observation process Qt rather than the actual observations St-

The filtering problem can now be stated as:
Given the  o b s e r v a t i on s  Qs , 0 < s  < t, s a t i s f y in g  equat ion  (11.9.43), f i n d  

the best  e s t ima t e  Ct o f  th e  s t a t e  Ct-
One of the best estimators Сt, which is mathematically tractable, is the 

one which minimizes the mean square error

R(t)  — E[(Ct — Ct)2]-



Some Applications of Stochastic Calculus 267

This means that for any other square integrable random variable Y, which is 
measurable with respect to the field , we have the inequality

E[(Ct~Ct)2] < E [(C t -F )2].

It turns out that the best estimator Ct coincides with the conditional expecta­
tion of Сt given the information induced by Qs . 0 < s  < t, namely,

The computation of the best estimator Ci is provided by the following central 
result in filtering theory.

Theorem 11 .9 .1  (Kalm an-Bucy filter) Let the  s ta t e  o f  a s y s t em  Qt sa t i s f y  
th e  equat ion

d ( t = a (t)Ct d t  + b( t)dWt , (11.9.44)

whe r e  a ( t ) and b( t) are  d e t e rm in i s t i c  f u n c t i o n s .  Assume that the r andom  
variab le  Co and the  B rown ia n  m o t i o n  Wt are i nd ep end en t ,  and let  E[Co] = 
V ar [Co] = c 2. Assume  the  ob s e r va t i on  Qt sa t i s f y  the  equat ion

dQt = a(t)Ct d t  + /3(t)dBt , Qo = 0 , (11.9.45)

with d e t e rm in i s t i c  f u n c t i o n s ' a ( t ) , (3(t) and  B rown ian  m o t i o n  Bt,  i n d ep end en t  
o f  Wt and  Co •

Then  the cond i t i ona l  exp ec ta t ion  Ct = E[Ct|J^] is the so lu t i on  o f  the l inear  
s t o cha s t i c  d i f f e r ent ia l  equat ion

d ( t = U(t)Ctdt + V(t)dQu  Co = (11.9.46)

with
m  = u ( t ) = a (t) -  R( t) ,

and R(t)  s a t i s f y in g  the  d e t e rm in i s t i c  Ri c ca t i  equat ion

^  = b \ t ) + 2a ( t )R ( t )  -  p j f i R 2(t), R (0) = «-2-

Moreove r ,  the l east  m ean  square  e r r o r  i s g i v e n  by R(t )  = E[(Ct — Ci)2]-

The process Сt is called the  K a lm an -B u c y  f i l t e r  of the filtering problem 
(11.9.44)-(11.9.45). Furthermore, if

lim R(t)  — 0,t—юо
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we say that Q is an exac t  a s ymp t o t i c  e s t ima t i on  of Q.

E xp lic it so lu tio n s In the following we shall deal with the closed form solution 
of equation (11.9.46). First, we shall solve (11.9.44) as a linear equation. 
Denote A{t) = e f ° a^ ds and multiply by e ~A^  to get

d(Ct e~m ) = b(t)e~AW dWt .

Integrating and solving for Q we obtain

Q = ( 0e AW + [  e Â ~ Â b ( s ) d W s . (11.9.47)
Jo

The mean and variance of the input process Q are

E[Q) =  E[Co ]eAW = ^ e A(t);

Var[( t} = f  e 2^ ~ Â b 2( s ) d s ,
Jo

where for the second identity we used the properties of Wiener integrals.
Now, equation (11.9.46) can be solved as a linear equation. After multi­

plying by the factor

p i t ) -1 — exp{— I  U ( s )d s}
Jo

the equation becomes

d(p(f)- 1Ct) = p( t )~l V(t)dQt .

Integrating, we obtain the filter solution

Ct =  PPt +  Pit) f  p( s )~1V(s) dQs 
Jo

s )  d B s ,= n p t + p( t ) f  p ( s )  1V ( s )a{ s ) ( s d s  + Pt [  p s ( s)  1V(s)/3(
Jo Jo

with ( t given by (11.9.47).
It is worth noting that the expectation of the filter is given by

E [Ct] =  E[E[Ct|jf]]=E[Ct]
-  p e AV.

E xam p le  11 .9 .2  (N o isy o b servations of a  random  v a r iab le ) Assume  £ 
is a r a ndom  var iab l e  wh i c h  n e ed s  to  be measu red .  Its known  m ean  and var i ­
an c e  are g i v e n  by  E[£] =  ц and Var[(] = a 2. Fo r  i n s tan ce ,  w e  m a y  c o n s i d e r  
(  to be the  h ea r t  ra t e  p e r  m inu t e ,  o r  th e  c h o l e s t e r o l  blood level ,  o r  th e  s y s t o l i c
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blood p r e s su r e  f o r  a pa r t i cu la r  p e r son .  Obs erv in g  an y  o f  the a f o r em en t i o n e d  
var iab l e s  i n v o lv e  m e a s u r em en t  e r r o r s  that are d e s c r ib ed  by the  n o i s e  f a c t o r .  
The ac tua l  o b s e r v a t i on s  are g i v e n  by a p r o c e s s  St — С + “noise” , wh i c h  c an  be 
wr i t t en  in  t e rm s  o f  the  c umu la t i v e  o b s e r va t io n s  as

dQt = Сdt  + /3dBt ,

with (3 > 0 cons tant .  This is equiva l ent  to Qt = Ct + p B t , wh e r e  the n o i s e  
f a c t o r  r e p r e s en t e d  by the  B rown ia n  m o t i o n  B t is a s sum ed  i n d ep end en t  o f  C- 
The f i l t e r i n g  p r ob l em  in this c a s e  m ean s  w e  ha v e  to  f i nd  a s t o cha s t i c  p r o c e s s  
Ct wh i c h  is the  best  approximat ion o f  С up to t im e  t, g i v e n  the m ea su r em en t s

Qs = Cs + /3Bs , 0 < s < t .

In o r d e r  to f i nd  the  f i l t e r  Ct c o n s i d e r  the  c on s t an t  p r o c e s s  Ct — С and a s so c i a t e  
the  f i l t e r i n g  p r ob l em

dCt = 0
dQt = Cdt + f3dBt .

Sin c e  in this c a s e  a ( t )  — 1, (3(t) = p ,  a( t)  = 0, and  b(t) = 0, the  Ri c ca t i  
equat ion b e c om e s

1 R*(t)J-Xt (t ) ,

dR{t) = __l_ p2/
dt (32

(32
with the  so lu t i on  R(t )  — -— dep end in g  on  the  p a r a m e t e r  C. Using the  

ini t ial  c ond i t i on  R (0) = a 2, w e  obtain

m ) = a 2t  + /32 '

Then the c o e f f i c i e n t s  V (t ) and U (t ) take the  f o l l ow in g  f o r m  

V(t) = 4 R(t)  =/32 cr2t  + /32

U(t ) = - ± - R ( t )  = -
/32 a 2t + (32

Equat ion (11.9.^6) b e c om e s

dCt + a 2t + P2 îd t  a 2t  + P2dQt ' 

Mult iplying by the  in t e gra t in g  f a c t o r

_ a 2t  + P2
P2
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w e  obta in the  exac t  d i f f e r ent ia l  equation

( о Ч  + Р Л  _ a 2
v /32 / /32

wh ich  a f t e r  i n t e gr a t ion  p r o v i d e s  the f o l l ow in g  f o rm u l a  f o r  th e  best  e s t ima t e

/32 <j2
^  = (T2t + /32C° + a 4  + p Qt

= ^ 7 0 2  (/?V + ^ ) -

I t  is wo r th  n o t in g  that the  f o r e g o i n g  f o rm u l a  impl i e s  that the  best e s t ima t e  
o f  the  r a nd om  var iab l e  ( ,  g i v e n  th e  c on t i n u ou s  o b s e r v a t i on s  Qs , 0 < s  < t, 
d ep end s  on ly  on  the last o b s e r v a t i on  Qt- In the  c a s e  o f  d i s c r e t e  obs er vat ions ,  
the  best e s t ima t e  wi l l  d e p end  on  ea ch  obs er va t ion ,  s e e  th e  next example.

E xam p le  11 .9 .3  C on s id e r  a r and om  var iab l e  £, with E[£] = Ц and Var ( ( ) =
о  , wh i c h  is o b s e r v e d  n  t im e s  with  the  r e su lt s

51 = С + 6i
5 2 = С + e2

Sn — С

w h e r e  e j  is an e r r o r  r a nd om  variable ,  i n d e p en d en t  o f  Q, with  IE[ej] = 0 , and  
Var( t j )  = m 2. We shal l  a s s um e  in th e  be g inning  that the  e r r o r s  e j  are i n d e ­
pend en t .  The g oa l  is to f i n d  the  best e s t ima t e  (  o f  (  g i v e n  th e  o b s e r v a t i on s  S j ,  
1 < j < n ,

С =  E[C|Si, • • • ,Sn].
C on s id e r  th e  a f f ine  s pa c e  g e n e r a t e d  by the  o b s e r v a t i on s  Sj

П

C(S) =  { a 0 +  E  CjSj ; a 0, Cj e M}.
j =1

It makes  s e n s e  to look f o r  the best e s t im a t o r  as an e l em e n t  (  € jC(S) su c h  
that  the d i s tan c e  E[(£ — £)2] is minimized.  This o c c u r s  w h en  the  e s t im a t o r  Q 
i s the  o r th o g ona l  p r o j e c t i o n  o f  £ on  the spa c e  C(S) .  This m e an s  w e  h av e  to  
d e t e rm in e  the  c on s t an t s  ao ,  c j  s u c h  that th e  f o l l ow in g  n  + 1 c ond i t i o n s  are 
sa t i s f i ed

E[C] =  E[C] 

E[(C -  C)Sj] =  0, j  = l , --- ,n.
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Let С = «о + c iS i + • • • + c nSn . Sin c e

ц - E[C] = a 0 + n(ci Л--------\-Cn)
it f o l l ow s  that  a o  = cofi, with

co + c i+ c 2 H----- c n = 1. (11.9.48)

There for e ,  (  be longs  to  the  c onv ex  hul l  o f  {fi, S i ,- -  - ,S„}, i.e.

С = со I1 +  c iS i + • • • + c nSn .

A c ompu ta t i on  p r o v i d e s

E [(C -C ) Sj] = E[<fSj] — E[CSj]
n

= coiiElSj} +  2  ckE[SkSj] -  E[C(C +  ч)}
k= 1

n
cofi2 +  J > fcE[(C + ek)(C +  6j-)] -  E[C2] -  E[C]E[e 

k= 1
n n

c o y 2 + E[C2] ^ 2  c k +  m2 c k$kj -  E[C2] 
k=1 к=1 

Con2 +  E[C2](1 -  Co) +  m2Cj -  E[C2]

cic o in 2 - E [ C 2] ) + m 2Cj 
2 2 —cqct + m Cj.

The o r thogona l i t y  c ond i t i o n  E[(£ — C)Sj] = 0 impl i e s
2

c i  = j  = ! , • • • ,  »г. (11.9.49)
m z

Subst i tu ting  in (11.9.48) p r o v i d e s  an equat ion f o r  cq, wh i c h  has the  s o lu t i on
2m

СО о j о >+ no-2
and h e n c e  (11.9.49) b e c om e s

a 2
с,-
J m2 + ner2

/гг c on c lu s i on ,  the  best e s t im a t o r  o f  Q, g i v e n  n  ob s e r va t io n s  S i , • • • , Sn , is g i v e n

С = co/x + E Cfe5fe
fc=i

9  2  nm fi tx v -
m . 2  4 -  t 7 /t 2  ^m2 + ncr2 m2 + n a 2 ,fe=l
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It is wo r th  n o t i n g  that ea ch  o b s e r v a t i on  is equal l y we ight ed .  I f  the  n umb e r  o f  
o b s e r v a t i on s  is large, n  —>• oo, th en  £ ~ ~ Ylk=i &k- This m ean s  that  the  best 
approx imat ion is g i v e n  by th e  a v e ra g e  o f  the  obs er vat ion s .

All p r e v i o u s  f o rm u la s  are val id f o r  th e  c a s e  o f  i n d ep en d en t  ob s e r v a t i on s  €j. 
Assume n ow  that th e  c o v a r i a n c e  matrix

Pij = Cov(ek,€j) =  E [ek€j\

is n o t  n e c e s s a r i l y  diagonal . A s im i l a r  c ompu ta t i o n  leads in  this c a s e  to the  
f o rm u l a

П

E [(C -  C)Sj] = - C 0 <72 +  ^ 2ckpkj.
k= 1

The o r th o g ona l i t y  f o rm u l a  b e c om e s

fc=1

wh ic h  is a l in ear  s y s t em  in  c k. Under  th e  a s sump t i on  that the  matrix  (pkj ) is 
non- s in gu la r ,  l e t  (pki )  be i ts i n v e r s e  matrix, so  the so lu t i on  o f  th e  a f o r em en ­
t i on ed  l i n ea r  s y s t e m  is

П

Cfc = cqu2 £  pk\  k = l , - - - , n .  (11.9.50)
j =i

Subst i tu t ing  in t o  (11.9.48) and so lv in g  f o r  t he  c o e f f i c i e n t  cq y i e ld s

1
со =

1 + Efc j= i p k j '

Then f o rm u l a  (11.9.50) p r o v i d e s  the o t h e r  c o e f f i c i en t s

£ " - i  » ki , ,

Ck ”  'I + l X J ^ i ' k y

Hence ,  th e  best e s t im a t o r  o f  (  in t e rm s  o f  th e  c o v a r i a n c e  matrix is g i v e n  by 

f  /. , f  , ,

1 + ^  h  <r' 2 + £ £ i= i <*

E xam p le  11 .9 .4  C on s id e r  that the  o b s e r v e d  s t a t e  is the  blood c h o l e s t e r o l  
l evel ,  Ct, wh i ch  is g i v e n  by the  s t o c ha s t i c  equat ion (11.7.36)

dCt — a(Co — Ct)dt  + bEdt  + adW t , (11.9.51)
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wh e r e  a  is a p r o du c t i o n  pa ramet er ,  b is the ab so rp t i on  pa ramet er ,  and a  is the  
size o f  the  n o i s e  in the  m ea su r em en t .  The ob s e r va t i on  p r o c e s s  is g i v e n  by

dQt — Ctdt  + /3 dBt , Qo — 0-

We n e ed  to f i nd  th e  best e s t ima t e  Ct o f  th e  c h o l e s t e r o l  l e v e l  Ct, g i v e n  the  
n o i s y  ob s e r va t io n s  Qs , s  < t. However ,  K a lm an -B u c y  f i l t e r  c ann o t  be appl i ed 
dir e c t l y  to (11.9.51). We n e e d  to p e r f o rm  f i r s t  the  sub s t i tu t ion

Ct = С* -  Co -  - E ,a

wh i c h  t r an s fo rm s  (11.9.51) in to  the l in ear  s t o c ha s t i c  d i f f e r ent ia l  equat ion

d,(t = —a ( tdt  + (TdWt ■

Let Zt = Qt — (Co 4— E^t. We n o t e  that the a -a lg eb ra s  indu c ed  by Zt and

Qt are the  same,  J - f  = J~t?, and h e n c e  w e  c an  c o n s i d e r  Zt as an ob s e r va t io n  
p r o c e s s  in s t ead  o f  Qt, sa t i s f y in g

dZt = Ctdt + BdBt . Zq = 0.

The Ri c ca t i  equat ion a s s o c i a t e d  wi th  the  f i l t e r in g  p r ob l em  hav in g  the  input  
p r o c e s s  Qt and o b s e r v a t i on s  Zt is g i v e n  by

= a R ( t ) - ^ R \ t )  + a \  R( 0) = 0,

wh e r e  w e  u s ed  that  E[£o] = — f  E and Var( (o) = 0. The so lu t i on  is g i v e n  by

« i  (1 — e 2Kt)
 ̂ _  a± 2Kt ’ 

Q2

whe r e

cn\ = —a/32 — a2/32 + cr2 
a 2 = -a/32 + /3л/а2/32 + cr2 
К  = \J a2 + (a/13)2.

Solv ing  f o r  the  e s t ima t i on  p r o c e s s  Qt, w e  obta in the f o rm u la

& = - - Е е ~ Ь ZH{s)ds + ^  [  e ~ t i H{u)duR ( s ) d Z s , 
a Рг Jo

whe r e
H ( s ) = a + j p R ( s ) .
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Using that
lim R(t)  = a 2,

t—>00

w e  obta in th e  f o l l ow in g  l on g  run  behav i or  f o r  th e  e s t ima t i on

lim (t = - - Ee~Kt + ^ e ~ Kt [  e Ks dZs .
t —^ 0 0  CL

Ъ  K t f
P2 Jo

This c an  be t r an s f o rm ed  in  t e rm s  o f  Ct and  Qt as f o l l ow s

lim Ct = C0 + (1 -  e~Kt) ( Ъ- Е - - ^ { С о  + - E ) )  + ^ e ~ Kt f  e Ks dQs . 
t—too \a К  p z a J Jo

E xam p le  11 .9 .5  A m od e r n  appl i ca t ion o f  f i l t e r i n g  th e o r y  is in  GPS locat ion.  
The input  s i gna l  is the  t ru e  pos i t i on ,  whi le  the ob s e r va t i on  p r o c e s s  is the  GPS 
pos i t i on .  The p o s i t i o n  is m ea su r ed  by an ine r t i a l  nav i g a t i on  s y s t e m  (INS). 
This has t ran sdu c e r s  that  m ea su r e  a c c e l e ra t ion ,  wh i c h  leads to the v eh i c l e  p o ­
s i t i on  by doubl e  in t e g ra t i on  and  sp e c i f y i n g  i ts ini t ial  pos i t i on .  S in c e  th er e  are 
always  e r r o r s  in  th e  a c c e l e ra t io n  m ea su r em en t ,  this leads to  n o i s e  in the  po s i ­
t i on  locat ion.

The INS po s i t i o n  c an  be che ck ed  o f t e n  by o b s e r v in g  the GPS re c e i v e r .  
Hence ,  the  INS po s i t i o n  e s t ima t e  c an  be c o r r e c t e d  by u s in g  p e r i o d i c  GPS ob­
s e r va t i on s ,  wh i c h  are al so su s c ep t i b l e  to  e r r o r  o f  m ea su r em en t .  F ind ing  the  
op t ima l  w a y  to  u s e  the GPS m ea s u r em en t s  in  o r d e r  to  c o r r e c t  the INS es t i ­
m a t e s  is a s t o c ha s t i c  f i l t e r i n g  prob l em ,  s e e  Bain  and Cri san [4].

E xerc ise  11 .9 .6  Con s id e r  the  f i l t e r i n g  p r ob l em

d ( t = i t  + dWt , fj, = 0 , a  = l

dQt = Y+t.Ctdt + Y T j d B t ,  Qo = 0.

(a) Show  that  th e  a s s o c i a t ed  Ri c ca t i  equat ion is g i v e n  by

^  = 1 - ( 1  + * )Д * -Д ? , R(0) = 1.

(b) Verify that the  s o lu t i on  o f  the  Ri c ca t i  equat ion is

m =  11 + 1

(b) Compu t e  the  best e s t im a t o r  f o r  Ct and  sh ow  that

Ct = - i - e-5(*+‘2/2) Л !  +  s )e i ( s+,2/2) dQs
1 + t
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E xerc ise  11 .9 .7  In a Ka lman -В и с у  f i l t e r  the  s t a t e  С and the o b s e r va t io n s  Qt 
are g i v e n  by dCt = dWt, with  £o be ing  n o rm a l l y  di s tr ibuted  with m ean  1 and  
v a r i an c e  2, and dQt = Qdt  + 2d B t , with Qo = 0 . Find th e  best e s t ima t e  Ct 
f o r  Ct-





Chapter 12

Hints and Solutions

Here we give the hints and solutions to selected exercises. The reader should 
be able to derive the solutions to the rest based on what he has learnt from 
the examples in the chapters.

Chapter 2
E xerc ise  2.9.7 (a) For any random variables A,B,  and variable A 6  1 , inte­
grating in the inequality

(A (cj)A + £ (w) ) 2 > 0, Vw G О

implies

J  (a(u)\ + B ( w ) )  2dP(uo) > 0 .

After expanding and collecting the powers of A, this can be written as

^ j A 2(u ) d P ( o j ) ^ \ 2 + 2^ J^A (u j )B ( o j )dP (u j )^\  + J  В 2(ш) d P ( u )  > 0 .

Substituting

a = [  A2(u: )dP(uj ) ,  b = 2 (  f  A(lu)B(uu) d P { u ) ) , c  = f  B 2(£l)dP(u ) ,  
J n  '  J n  '  J n

the previous inequality becomes

a\2 + ЬХ + с > 0, VA G R.

This occurs when b2 < 4ac , which in this case becomes

E [AB]2 < Е[А2]Е[Б2].

277
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(b) Substitute A = X — p x  and В  = Y  — ц в  and obtain

Щ Х  -  n x ) ( Y  -  f ly)} < \/ЩХ -  n x Y W n i Y  -  My)2] «=*► 
C o v ( X , Y ) < ctjj(<j y -

(c) They are proportional.

Exercise 2.10.1 Let X  ~ Then the distribution function of Y  is

У — 0 'FY(y)  = P (Y  < y )  = P ( a X  + P < y )  = P ( X  < a
.2 /“У (г-(аМ+,а))

e 2 ^ 2  ^1 f —  1 p
— ■■-=.- / e 2CT2 dx = .——  / 

v 27T(J J _ o o  \/2 'kolo J  -

= - 1 -  f
\/2тга' J -

ry (*-*) 
e  2l~a'l2 dz,

with // = a p  + /3, о7 = асг.

Exercise 2.10.5 (a) Making t  — n yields Е[УП] = E[e”^] = e/wl+Tl2°'2/2.
(b) Let n  = 1 and n = 2 in (a) to get the first two moments and then use the 
formula of variance.

Exercise 2.12.7 The tower property

E[E[X\g]\H]=E[X\H\, H c G

is equivalent to

E[X\Q] d P  = [  X d P , VA e  H.
i J a

Since A E  Q, the previous relation holds by the definition of E[X|C/].

Exercise 2.12.8 (a) |fj| = 24 = 16;
(b) P(A) = 3/8, P ( B )  = 1/2, P (C )  = 1/4;
(c) Р (4 Л В )  = | ,Р ( В П С ) 4 ;
(d) P (A )P (B )  = A  = P(A  П B) ,  so A, В  independent;
(e) P ( B ) P ( C )  = | ^ |  = P{B  П C), so В, С  independent; P(B\C) = f ;
(/) we know the outcomes of the first two tosses but we do not know the order 
of the last two tosses;
( g)  A E  Q (true), В  E  T  (true), С E  Q (true);
(г) E[X] = О, Е[У] = j| , E[X|(?] = X , since X is ^-measurable.

Exercise 2.12.9 (a) Direct application of the definition.
(b) P(A) = f Ad P  = f Q XA(u)  d P ( u )  = E\xa]-
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(d) Е[ХлХ] = Е[Хл]Е[Х] = Р(А)Е[Х].
(e) We have the sequence of equivalencies

E[X\g\ = E[X]*> [  E[X]dP= [  X d P y A e G  <* 
J a  J a  

E[X]P(A) = [  X dP^E [X ]P(A ) =E[Xa], 
J a

which follows from (d).

Exercise 2.13.5 If ц  = E[X] then

E[{X -  E[X])2] = E[X2 -  2/xX + /x2] = E[X2] -  2ц2 + ц2 
= E[X2}-E[X}2 = Var[X}.

Exercise 2.13.6 From Exercise 2.13.5 we have Var(X) — 0 <=> X  = E[X], i.e. 
X  is a constant.

Exercise 2.13.7 The same proof as the one in Jensen’s inequality.

Exercise 2.13.8 It follows from Jensen’s inequality or using properties of 
integrals.

Exercise 2.13.13 (a) m(t) = E[etx} =
(b) It follows from the first Chernoff bound.

Exercise 2.13.16 Choose f ( x )  = x2k+1 and g (x)  = x2n+l.

Exercise 2.14.2 By direct computation we have

E[(X -  Y )2} = E[X2] + E[F2] -  2E[XY]
= Var(X ) + E[X}2 + Var[Y] + E[Y]2 -  2E[X]E[Y} 

+2E[X]E[Y] -  2E[XY\
= Var(X)  + Var[Y} + (E[X] -  E[Y])2 -  2Cov{X, Y).

Exercise 2.14.3 (a) Since

E[(X -  Xn)2} > E[X -  Xn}2 = (E[Xn] -  E[X])2 > 0,

the Squeeze Theorem yields limn_>.00(E[Xn] — E[X]) = 0.
(■b) Writing

X 2 -  X 2 = (Xn -  X )2 -  2X (X  -  Xn ), 

and taking the expectation we get

E[X2] -  E[X2] = E[(Xn -  X )2] -  2E[X(X -  Xn)].
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The right side tends to zero since

E [ (X „ - X )2] 0

| E [X (X -X n)]| < [  \X (X ~ X n)\dP  
J n

= v/E[X2]E[(X -  X n)2] -> 0.

(c) It follows from part (b).

(d) Apply Exercise 2.14.2.

Exercise 2.14.4 Using Jensen’s inequality we have

E[(E[Xn \H }-E[X \4] f ]  = E[(E[Xn -  Х\П})2]
< E[E[(Xn -  Xf\H}\
= E[(Xn -  X )2] -* 0 ,

as ra -> 0 .

Exercise 2.16.7 The integrability of Xt follows from

E[|Xt|] = E[|E[X|Ji]|] < E[E[|X| \Tt]] = E[\X\] < oo.

Xt is J 7/-predict able by the definition of the conditional expectation. Using 
the tower property yields

E[Xt \Ts] = Е[Е[Х|Л]|^] = E[X\TS] = X S, s  < t.

Exercise 2.16.8 Since

E[|Zt|] = E[|aXt + bYt + c|] < |a|E[|Xt |] + |Ь|Е[|У*|] + |c| < oo

then Zt is integrable. For s  < t, using the martingale property of Xt and Yt 
we have

E[Zt \JFs\ = aElXtlFs] + 6E[Yt |7-s] + с  = aXs + bYs + с  = Zs .

Exercise 2.16.9 In general the answer is no for both (a) and (b). For instance, 
if Xt — Yt the process X f  is not a martingale, since the Jensen’s inequality

E[X2|J-s] > (E[Xt|J-s] )2 = X 2
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is not necessarily an identity. For instance B 2 is not a martingale, with B t the 
Brownian motion process.

Exercise 2.16.10 It follows from the identity

E [№  -  Xa)(Yt -  YS)\TS] = E [XtYt -  XSYS\JFS].

Exercise 2 .16 .11  (a) Let Yn = Sn — E[5n]. We have

Ynjfk — Sn+k
к  к 

= Yn + Xn+j — Щ-^n+j]- 
j =l j =l

Using the properties of expectation we have

к к 
E[Yn+k\Tn) = Yn + ^ E [ X n+j|7-n] -  £  E[E[Xn+i]|J-n] 

j= i j= i 
к к 

= Yn + J 2  ЦХп+j] -  £  E[Xn+j] 
j= i j =i

= Yn .

(b) Let Zn — S 2 — Vor (Sn ). The process Zn is an ^„-martingale iff

E[Zn+k — Zn \ T = 0.

Let U = Sn+k — Sn . Using the independence we have

Zn+k ~ Zn =  (S2+fe -  S 2) -  (Var (Sn+k -  Var(Sn ))
= (Sn + U)2 -  S 2n -  (Var(Sn+k -  Var{Sn))
= U2 + 2USn - V a r ( U ) ,

so

E[Zn+k -  Zn \Tn\ = E[U2] + 2SnE[U}-Var (U )
= E[U2) -  (E[U2] -  E[U}2)
= 0 ,

since E[C7] = 0.

Exercise 2.16.12 Let T n = a (X k] к < n) . Using the independence 

E[|Fn|]=E[|X0|]---E[|Xn|]<oo,
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so \Pn \ integrable. Taking out the predictable part we have

ЩРп+к\^п] = ЩРпХп+1 ■ ■ ■ Хп+к\Тп] — РпЩХп+1 ■ • • Xn+^Fn]
= PnE[Xn+i] ■ ■ ■ E[X„+fe] = Pn .

Exercise 2.16 .13  (a) Since the random variable Y = OX is normally dis­
tributed with mean Q[i and variance в 2a 2, then

щ е вх ] = е в ^ а \

Hence Е[е0̂ ] = 1 iff 9ц + \02сг2 — 0 which has the nonzero solution в — 
—2ц/&2.

(b) Since e eXi are independent, integrable and satisfy E[eeXi] = 1, by Exer­
cise 2.16.12 we get that the product Zn = e eSn = e eXl ■ ■ ■ е вХп is a  martingale.

Chapter 3
Exercise 3.1.4 Bt  starts at 0 and is continuous in t. By Proposition 3.1.2 
B t is a martingale with E[#2] = t  < oo. Since B t — B s ~ 7V(0, \t — .s|), then 
E [ { B t - B s f ]  = \t-s\.

Exercise 3.1.9 It is obvious that Xt = Wt+t0 — Wto satisfies Xo = 0 and 
that Xt is continuous in t. The increments are normal distributed Xt —  Xs = 
Wt+to -  Ws+to ~ N (0 ,11 -  s|). If 0 < ti < ■ ■ ■ < tn, then 0 < to < t\ + t0 < 
■■■ < tn + t0. The increments Xtk+1 -  Xtk =  Wtk+1+to -  Wtk+to are obviously 
independent and stationary.

Exercise 3 .1 .10  Let s  < t. Then we have

Xt -  Хя
1

T x
(Wxt -  WXs)

1
s  .

The other properties are obvious.

Exercise 3 .1 .11  Apply Property 3.1.7.

Exercise 3 .1.12  Using the moment generating function, we get E[W(3] = 0, 
E [Wt4] = 312.

Exercise 3 .1 .13  (a) Let s  < t. Then 

E [{W2 - t ) ( W 2 - s ) \  = E\E[(W2 - t ) ( W ? - s ) } \ T s

= E 

= E

(W 2 - s ) E [ ( W 2 -t )}\Fs

(Ws2 -  s )5 E W* -  2s W 2 + s2

= E[W4} -  2sE[W2] + s2 = 3s2 -  2s2 + s 2 = 2s2.
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(ib) Using part (a) we have

2s2 = E [ ( W ? - t ) ( W ? - s ) ]
= E[W*W?} -  sE[Wf] -  tE[W2} + t s  
= E[W2W 2] — st.

Therefore E[W2W 2] = t s  + 2s2.
(c) Cov{W j2, W 2) = E [W2W 2] -  E[W2]E[Wf ] = t s  + 2s2 - t s  = 2s2.
(d) C o r r ( W 2, W 2) — = f , where we used

V ar(W f )  = E [Wt4] -  E[W2]2 = 312 -  t2 = 212.

E xerc ise  3.1.14 (a) The distribution function of Yt is given by

F(x) = P(Yt < x )  = P ( tW 1/t< x )  = P (W 1/t<x/t)
pxjt pxjt

= / (l>i/t{y)dy= \Jt/(2ir)ety2/2 dy  
Jo Jo

v/Vt IfJo
=e “2/2 du.

\[2ж

(b) The probability density of Yt is obtained by differentiating F(x)

d  r /v/* 1p(x)  = F '(x ) = -.e-nV2d u = ^ = e - ,V2
V2^ л/27г

and hence Yt ~ N(0,t ) .
(c) Using that Yt has independent increments we have

Cov(Ys,Yt) =  E[YsYt}-E [Y s}E [Y t]= nysYt]
= E Ys (Yt -  Ys ) + Ys = E[ye]E[Ft -  Ys\ + E f t2i

= 0 + s  — s.

(d) Since
Yt -  Ys = (t -  s ) (W 1/t -  Wo) -  s (W 1/a -  W1/t)

E[Yt -  Ya] = ( t -  s)E[W1/t] -  sE[Wl/a -  W1/t] = 0,

and

V a r ( Y t - Y s ) = E[(Yt - Y s )2] = ( t - s ) 2^ + s 2(-s  -  ±) 

(t -  s )2 + s ( t  — s ) _
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Exercise 3.1 .15  (a) Applying the definition of expectation we have

f°° 1 x 2 f°° 1 x 2
E[|Wt|] = / M " т — e 2t dx = / 2x . e 21 dx11 IJ j - j  Jo

1 /*°°= v s l
(ib) Since E[|Wt|2] = E[W2] = t, we have

Var(|Wi|) -  E[|Wi|2]-E [| W i|]2 = i - - = i f l - - ) .
7Г \  7Г /

Exercise 3 .1 .16  By the martingale property of W f — t  we have 

E[W 2|.FS] = E[W 2 -  t\Ts] + t = W? + t - s .

Exercise 3 .1 .17  (a) Expanding

(Wt -  Ws )3 = W 3 -  3W?WS + 3w tw 2 -  w 3

and taking the expectation

n ( W t - W s f \ F s} = E[Wt3\Ts\ - 3 W sE[W2} + 3 W 2E[Wt \^s\ - W !  
= E[Wt3\Ts] - 3 ( t - s ) W s - W l

so
E[W3\JS] = 3(t -  s)W s + W 3,

since
E[(Wt -  и д 3|л] -  E[(Wt -  Ws)3] = E[W3_S] = 0 .

(6) Hint: Start from the expansion of (Wt — Ws)4.

Exercise 3.2.3 Using that e  *~Ws is stationary, we have

Е [ е ^ - ^ ] = Е [ е ^ - ] = е з ( * - в).

E xerc ise  3.2 .4 (a)

E[Xt|7-s] = E[eWt\Fs] = E [ eWt~Wse Ws\Fs\
= e w °E[eWt- w °\Ts\ =  e w °E[ew * -w °}
= e W.e tl2e - e/2'

(b) This can also be written as

E[e~t^ e Wt\Jrs\ = e~s/2e Ws,
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which shows that e  t/2e Wt is a martingale.
(c) From the stationarity we have

E[ecWt~cWs] = E[ec{Wt~Ws)] = E[ecWt- ‘ ] = e5с2(‘~*). 

Then for any s  < t we have

E[ecWt\Fa\ = E[e',c{W t-W s) pcWse  31 = ec sE[icWslR’ fpCCWt-W,)
l-b

= ес̂ Е [е с^ - ^ ) ]  = eclVse 2c (*_s) = ^
1̂ 2СГ£

Multiplying by e 2c2t yields the desired result.

Exercise 3.2.5 (a) Using Exercise 3.2.3 we have

C ov (X s ,X t ) = Е [Х Л ] -  E[Xs]E[Xt] = E[XsXt] -  e ^ e 8' 2
= E [e ^ +Wt] -  e ^ e 8' 2 = E[ew t ~w ‘ e 2^ ~ w ^] -  e ^ 2e s/2

= E[eWt~Ws]E[e2(Ws~Wo'>] -  e ^ e * ' 2 = e ^ e 2s -  e ^ e 3' 2 
= е ^ - е «+*)/2

(b) Using Exercise 3.2.4 (b), we have 

E[XaXt] =  ъ\щхах ь\?,] = E XsE[Xt\Ts\

=  e‘/2E \xsE[e-t/2Xt |.FS]] = e^2E \xa e_s/2X

= e(t_s)/2E[X2] = e {t~s),2E[e2Ws 

= e(*-«)/2e2s = e ^ ,

and continue like in part (a).

Exercise 3.2.6 Using the definition of the expectation we have

E[e2W*2] = j  e 2*, M x ) d x  = ~ = j

=  7 ш 1 е
21 x dx —

e 2x e ~21 dx 

1
v/T=4T

if 1 — At > 0. Otherwise, the integral is infinite. We used the standard integral
J  e ax2 _  ^yn / a  ̂ a > 0.

Exercise 3.3.4 (a) It follows from the fact that Zt is normally distributed; 
(6) Differentiate the moment generating function and evaluate it at и  = 0.
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Exercise 3.3.5 Using the definition of covariance we have 

Cov(za,Zt) = E[ZaZt\ -  E[Z8]E[Zt] = E[ZaZt\

= E f  Wu du ■ I Wv dv  
Jo JoI f f l J  0 J o

n

t  r s  r t
E[WuWv]d u d v  = / / min{u,v} 

Jo Jo

= s < t

WnWv dudv  

dud v

Exercise 3.3.6 (a) Using Exercise 3.3.5

C ov (Z t , -  Zt_h) = C o v (Z t , Zt) -  C o v (Z t , Zt_h)
t t —

6= З - ^ - ^  

= - t 2h  + o(h) .

(b) Using ^  -  Zt- h = J l h Wu du  = hWt + o(h) ,

C o v (Z t , Wt) = —C ov (Z t , Zt — Zt_h)

= l & b  + °W) = h 2-
Exercise 3.3.7 Let s < u .  Since Wt has independent increments, taking the 
expectation in

we obtain

ew a+ w t _  ew t - w se2( w a- w 0)

E[eWs+Wt] = Е [ е ^ - ^ } Е [ е 2^ - ^ } = е ^ е 28

= e 2 e = e 2 e nin{s,t}

Exercise 3.3.8 (a) EpQ] = E ^ ^ 8] d s  = f g  E[es/2] d s  = 2(e t/2 — 1)
(b) Since Var(Xt) — E[X2] — E[Xt]2, it suffices to compute E[X2]. Using 
Exercise 3.3.7 we have

E[Xt2] = e [  f  e Wtd s ■ f  e Wudu] = e [  f  f  < 
'-Jо J o  J '■Jo Jo

t r t

e Wse Wu d s d u

g  2 g m in {s ,t }  d s d u
=  f  f  E[eWs+Wu}dsdu= f  [

Jo Jo Jo Jo

= j j  e~2~es du d s  + / /
J  JD\ J  JD2

= 2l L e‘i ‘e''duds=t(¥2‘~2e,>2+i)'

u+s
e

0 J o  

2 e udu d s
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=  zt + :

where l? i{0  < s  < и  < i} and I?2{0 < и  < s  < t}. In the last identity we 
applied Fubini’s theorem. For finding the variance, use the formula Var(Xt ) = 
E[X2} -  E[Xt]2.

E xerc ise  3.3.9 (a) Splitting the integral at t  and taking out the measurable 
part, we have

Е[гт\Ъ] = E[ Г Wu du\Tt] = E[ f  Wu du\Ft] + E[ Г Wu du\7t)
Jo Jo J t

E [ J  Wu du\Tt\

Zt + E [ j \ w u - W t + Wt) du\Tt]

Zt + E [ j \ w u -  Wt ) du\Tt] + Wt(T  -  t)

E [ j \ w u -  Wt) du] + Wt(T -  t)

= Z t+  Г  E[Wu - W t\du + Wt ( T - t )

= Zt + Wt (T — t), 

since E [Wu -  Wt) = 0 .

(b) Let 0 < t  < T. Using (a) we have

E[ZT -  TWT\Ft] = E[ZT|T t\ -  TE[WT\Ft)
= Zt + Wt ( T - t ) - T W t 
= Z t - t W t .

=  Z t + :

E xerc ise  3.3.10 (a)
rT

E I W tds\F t E 

E 

+2E 

E

' j \ w s - W t  + Wt)2ds\Tt]

J  (W3 - W t )2 ds\^t]

' j T Wt(Ws -  Wt) del J i ]  + E [ J T Wt2 ds\Tt 

[ {w‘s -  Wt)2 ds

+2WtE jfw Wt) d s + E W 2( T - t ) \ T t
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E /Jo
W 2 du + 2WtE ГJo

W„ du + Wt\ T - t )

= 2 ( T - t ) 2 + Wt\ T - t ) .

(b) Using part (a) we have

E YT\?t = E 

= E

j:
i:

W 2d s - T W $  + - T 2\TtA

W 2ds\Tt -  ТЕ W$\Tt + 1T ,

= [  W 2d s  + \ ( T - t ) 2 + W ? ( T - t ) - T W ? - T ( T - t )  + ) -T2 
Jo 2 2

= /Jo
W 2 d s  + - t W 2 + - t 2 = Ys .2

E xerc ise  3.4.1

E[VT \Ft] = E e fo W * du+ f t  du | J t 

e/o w * duE J iTwe A»iej t 
T

=  e / o H / u d u E  e j tr (W u - W t) d u + (T —t)W t ^

= Vte (T- t)WtE\eftT (.wu- w t)du\jrt

= V t eP -W *  E

= U t e ^ ^ E

f t (W u - W t ) d ue J t

X ^ W r d T

Vte < r- t)w te

E xerc ise  3.6.1

F (x ) = P (y t < ж) = P ( p t  + Wj < ж) = .P(W/t <  x  — f i t )
rx —[lt

Л)
e 2t du:

Exercise 3.7.2 Since

[P 1
< p) = / -же 2t с?ж, 

Jo *
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use the inequality
x2 _ l l1 — — < e  at < 1 
21

to get the desired result.

E xerc ise  3.7.3 (a) The mean can be evaluated as
oo 1 22 — 7a re  2* cte

r o c  r OO J

E[Rt\ = / xpt{x) dx = / -  
Jo Jo s
1 /*00 /*00

= I  У1/2е~24 d y  = V2t I  z 2_1 
Jo Jo

/—^/34

(6) Since Е[Д?] = E[VFi(t)2 + W2(f)2] = 21, then

Var(Rt ) = 2 t - ^  = 2 t ( l - ^ ) .

E xerc ise  3.7.4

_ , r v l  Е[Х(] /"7Г
в д  = —  = - ^ r  = v ^  ’ г ^ ° ° ;

F ar(X t) = ^ V a r ( R t ) = |(1 -  J )  -> 0, i -► 0 0 .

By Proposition 2.14.1 we get Xt —» 0, £ -> 00 in mean square. 

E xerc ise  3.8.2

P(Nt — Ns = 1) = X(t -  s)e-x^ s) 
= X (t — s)  ( l  — A (t — s) + o( t  — s) )  
= A (t — s)  + o ( t  — s).

P (N t - N s > 1) = 1 -  P(N t -  Ns = 0) + P{Nt -  Ns = 1) 
= 1 -  e-A(t-*) _  A(* _  Я)е-А(t-e)

= 1 — Г1 — A(i — s )  + o ( t  — s)^ 

—X (t — s) ^1 — A(i — s) +  o( t  — s) j  

=  A 2(t — s)2 = o ( t  — s).

E xerc ise  3.8.6 Write first as

N2 = Nt (Nt -  Ns ) + NtNs 
= (Nt -  Ns )2 + Ns (Nt -  Ns ) + (Nt -  Xt)Ns + XtNs ,
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then

E[7V2|T s] = E[(Nt -  Na)2\T3] + NsE[Nt -  iVs|jrs] + E [Nt -  Xt\TS]NS + AtNs 
= E [(Nt -  Ns )2] + NsE[Nt -  Ns} + E[Nt -  At}Ns + XtNs 
= X(t - s )  + X2( t -  s )2 + XtNs + N2 -  XsNs + XtNs 
= X(t — s)  + X2(t — s ) 2 + 2X(t — s )Ns + N2 
— X (t — s) + [Ns + A (t — s)]2.

Hence EfiV2!^ ]  ф N 2 and hence the process N 2 is not an .^-m artingale. 

E xerc ise  3.8.7 (a)

m Nt(x) = E [exNt} = ^ e xkp(Nt = k)
k> 0 

>Xktk= Eexke~Xt-
k\k> 0

= e~XteXteX = ext(eX~^

(b) E [iV 2] = m"Nt(0) = A2/,2 + Xt. Sim ilarly for the other relations.

Exercise 3.8.8 E[X*] = Е[е^‘] = т щ (  1) = ех^е~г\

Exercise 3.8.9 (a) Since exMt = e x(Nt~Xt) — е_лtxe xNt̂  moment generat­
ing function is

m Mt(x) = E[exMt] = e - XixE[exNt]
_ g —AtXgAt(ex —1 ) _ ^А4(ех — x—1 )

(b) For instance
E [Mf] = m % t ( 0) = At.

Since Mt is a stationary process, E[(Mt — M s)3] = A(t — s). 

E xerc ise  3.8.10

Var[(Mt - M s)2] = E[(Mt -  Ms )4] -  E[(Mt -  Ms )2}2 
= A (t — s) + 3X2(t — s ) 2 — A 2(t — s)2 
= X(t — s) + 2X2 (t — s)2.

Exercise 3 .11.3  (a) E[J7t] = E J^Nu du  = E[iVu] du  = J^X udu  — At2

Nt
(b) E [ £  Sk] = E [tNt -  Ut] = tXt

Xt2 Xt2

fc=l
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Exercise 3 .11.4  (a) Use associativity of addition.
(b) Use that T\, • • ■ ,Tn are independent, exponentialy distributed, with E[T)t] = 
1/Л.

Exercise 3.11.6  The proof cannot go through because a product between a 
constant and a Poisson process is not a Poisson process.

Exercise 3 .11.7  Let p x {x) be the probability density of X.  If p (x , y )  is the 
joint probability density of X  and Y, then p x (x) = ^2y P (x ,y ) .  We have

£ E [X |  Y = y ]P (Y  = y )  = W  
y>о y>oJ

= S/y>0

- I  

/

XPX\Y=y(X\y)P (Y  = y ) dX 

xp{x,y)
P (Y  = y )

P (Y  = y )  dx

x ^ 2 p { x , y ) d x  
y> о

= J  xpx (x )dx  = E[X],

Exercise 3.11.9  (a) Since Tk has an exponential distribution with parameter 
A

E[e'  ̂ f  Jo
e~ax\e~Xx dx =

A
A -Ь о

(b) We have

Ut = T<i + 2Тз + ЗТ4 + • • • + (n — 2)Tn_ i + (n — 1 )Tn + {t — Sn )n  
= T2 + 2T3 + ЗТ4  + • • • + (n — 2)Tn_ i + (n — l ) ? 1̂ + nt

—n(T\ + Г2 + • • • + Г„)
= nt — [nTi + (n — 1)T2 H-----+ Tn\.

(c) Using that the arrival times S*, /с = 1 ,2 , . . .  n, have the same distribution 
as the order statistics U^) corresponding to n independent random variables 
uniformly distributed on the interval (0 ,£), we get

E -aUt Nt = n = Sk)\Nt = n]
—ncrtj

тг<т*ш'Го<7̂ г11 и г Л
= e -*E [e ‘T̂ = lt/W] = e_TMTtE[e<T̂ lt/i;
= e E[e‘ 

, - n ^ I  /“
t  Jo

= e

•E[e'

3CTX1 dX! 1Л
< Jo

e aXn dxn

(1 - e
<Jntn
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(d) Using Exercise 3.11.7 we have

IE = ^ P (7 V t = n) E
n> 0

-<rUt Nt = n

= E e~xtn\n (1 -  e~at)—crt\n

П

— e
n> 0

Л(1 - е - ст‘ )/<7- Л .

crnt n

Exercise 3.12.6 Use Doob’s inequality for the submartingales W f and \Wt\, 
and use that Е[И^2] = t  and E[|Ŵ |] = <l/2t/ir, see Exercise 3.1.15 (a).

Exercise 3.12.7 Divide by t in the inequality from Exercise 3.12.6 part (b).

Exercise 3 .12 .10  Let a  = n  and r  = n  + 1. Then

E sup
n<t<n=

2n
< 4Л (n + 1)

The result follows by taking n  —> oo in the sequence of inequalities

0 < E ( — - a) 2] < e [ sup ( - - A )
' t  / 1  L n<t<n=l ' t  '

< 4A(n + 1)
n *

Chapter 4
Exercise 4.1.2 We have

{иг,т(ш] if с < t 
i f c >  t

and use that 0 ,  Q G T t .

Exercise 4.1.3 First we note that

{ы;т(и) < t}  = ( J  {w; |Ws(w)| > K}.
0 <s<t

(12.0.1)

This can be shown by double inclusion. Let As = {w; |Ws(o;)| > K}.
“ С  ” Let uj G {w ;t(lj) <  t}, so inf{s >  0; |Ws(ci;)| >  К }  <  t. Then exists 
т > и > t  such that |Wu(u;)| > K ,  and hence ш G Au.
“ Э ” Let uj G Uo<s<i(u;> l^ - M I  — K}-  Then there is 0 < s  < t  such that 
|Ws(a;)| > К . This implies t (u j)  < s  and since s  < t  it follows that t ( c j )  < t. 
Since Wt is continuous, then (12.0.1) can also be written as

{ w ; r ( w) <£}= (J {u;; \Wr (uj)\ > K},
0 < r < t ,r e Q
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which implies (о;;г(ш) < t} G Tt since {w; |Wr (w)| > K}  G Tt,  for 0 < r  < t .  
Hence r  is a stopping time. It is worth noting that P ( t < oo) = 1.

P({W; r H < o o } )  = p (U { w ;| W e(w)| > tf} )  > P({u -,\Ws(oj)\ > K})
0 <s

i f  1 j  i 2 K= 1 — / e 2s d y  > 1 ----- ------—>■ 1 , 5 —̂ oo.
^|ж|</с v27rs V27ts

Exercise 4.1.4 Let jFTm = [a + b — ^ ] . We can write

{w; r  < 4} = P| [J {w; X r £ i f m} G J 7*,
m>l r < t , r e Q

since {cj;  ̂ K m} = {u; X r G ■ft'm} G J r С J"*.

Exercise 4.1.6 (a) No. The event Л = {w; Wt(ш) has a local maximum at time t} 
is not in cr{Ws ; s  < t}  but is in cr{Ws; s < t  + e}.

Exercise 4.1.9 (a) We have {w; c r < i} = {w; т < t/c} E T t/C С  Tt-

(b) {w;/(r)  < t} = {w; t  < /_ 1(0 ) = c  since /_1(г) < l -
(c) Apply (6) with f ( x ) = ex.

Exercise 4 .1 .11  If we let G (n ) = {ж; |x — a| < ^}, then {a} = Hn>i G(n) . 
Then тп = inf{t > 0; Wt G G(n)} are stopping times. Since supn rn = r , then 
r  is a stopping time.

Exercise 4.2.3 The relation is proved by verifying two cases:
(г) If lo G {а;; т > t} then (r A t ) (w)  =  t  and the relation becomes

Mt(uj) -  Mt(u) + MT(u) -  Mt(u).

(i i ) If ш G {ш; r  < i}  then (r A i)(w) = т(ш) and the relation is equivalent to 
the obvious relation

MT = MT.

Exercise 4.2.5 Taking the expectation in E[Mr |J>] = MCT yields E[Mr ] =
E[Mg], and then make а  = 0 .

Exercise 4.3.9 Since Mt = W% — t  is a martingale with E[M*] = 0, by the 
Optional Stopping Theorem we get E[MTJ  = E[Mo] = 0, so E[W2o — ra] = 0, 
from where E[ra] = E[W2J  = a2, since WTa = a.
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Exercise 4.3.10 (a) We have

F (a )  = P (X t < a) = 1 -  P (X t > a) = 1 -  P (  max > a)
0 <s<t

oo 2 ,= 1 — P(Ta < t )  — 1 -----JL= I е -У2/ Ч у
V 27Г J\a\/y/t

r o o  n  О PC

—  [  e~y I2 d y ------==. f
V  2 7 Г  Jo V 2 7 Г J\a\/V~t

2 rW/Vi
/ e~y I dy.

Jo

OO ,2
e y d y

\/2п ,

(b) The density function is p(a)  — F'(a)  = -J ^ i e ~a2^ 2t\ a  > 0- Then

E[Xt] = x p ( x )  d x  =  -jL= Г  xe~x2I W  dy = . I *  
Jo \Z2lTt Jo  V 7Г

y 2e  y d y

2

Var(Xt ) = E[X2} - E [ X t}2 = t ( l - ^ y

Exercise 4 .3 .11 (b) h(x) = -j= e  « 2 —

Exercise 4.3.16 It is recurrent since P (3 t  > 0 : a  < Wt < b) = 1.
Exercise 4.4.4 Since

P (W t > 0;£i < t  < t2) = \ p ( W t ф 0;4i < t < t 2) = — arcsin\ h r ,
l  П V *2

using the independence

P ( W l  > 0 , W 2) = P (W I  > 0) P ( W 2 > 0) = ^  (  arcsin ^ | ) 2.

The probability for Wt = (W} , W 2) to be in one of the quadrants is equal to

^ ( „ r c r in  y | ) 2.

Exercise 4.5.2 (a) We have

P(Xt  goes up to a )  — P(Xt  goes up to a  before down to — oo)
g2M/3 _  i

— lim —д------- =— = 1 .
/3-юс e 2^P — e 2^a
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Exercise 4.5.3

P (X t never hits — /3) = P(Xt  goes up to oo before down to — (3)
e 2̂ /3 _  ^

а —юо e 2^  — g —2/xa

Exercise 4.5.4 (a) Use that Е[Ху] = ара — /3(1 — ра ); (b) E[X|.] = а 2ра + 
£2(1 ~Ра) ,  with ра =  ; (с) Use Vаг(Т)  = Е[Т2] -  Е[Т]2.

Exercise 4.5.7 Since Mt = VFt2 — t  is a martingale, with E [Mt] = 0, by the 
Optional Stopping Theorem we get E[Wy — T] = 0. Using W t  = X t  — p T  
yields

E[Xf. -  2/хТХг  + n 2T 2} = E[T].

Then
Е[Т}(1 + 21гЕ[Хт} ) - Е [ Х 2}

E [T } = ----------------- - 2------------------.

Substitute E[Xr] and E[X|,] from Exercise 4.5.4 and E[T] from Proposition 
4.5.5.

Exercise 4 .6 .11 See the proof of Proposition 4.6.3.

Exercise 4.6.12

ЩТ) = = i  ( а р а + /3(1 -  w )) = 5 Ш .

Exercise 4.6.14 (b) Applying the Optional Stopping Theorem

щ е сМт-\Т{еС-с-1)| _  e jXq] _  x 
E [ e c a - A T / ( c ) ]  =  X 

E[g-AT/(c)] = g—°c

Let s  = /(c), so с  — v?(s). Then E[e_AsT] = e~a^ s\
(c) Differentiating and taking s  = 0 yields

—AE[T] = - а е - а^(оУ (0 )

= ~a W ) =

so E[T] = oo.

(d ) The inverse Laplace transform £-1  cannot be represented by 
elementary functions.
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Exercise 4.9.9 Use E[(\Xt \ -  0)2] = E[|Xt|2] = E[(Xt -  O)2].

Exercise 4.10.3 (a) L = 1.
(b) A computation shows

E[(X4 - 1 )2] = E[X2 - 2 X t + l) = E[X2] - 2 E [ X t\ + l  
-  Var(Xt) + (E[Xt] - l ) 2.

(c) Since E[Xt] = 1, we have E[(Xt — l ) 2] = Var(Xt).  Since

Var(Xt)  = e_tE[em ] = е~ \ е21 -  e‘ ) = e* -  1,

Exercise 4 .11.4  Since M t and Nt are martingales, then Mt + Nt and Mt — Nt 
are also martingales. Then (Mt+Nt)2 — (M+N, M + N ) t and (M t—Nt)2 — ( M — 
N ,M  — N)t  are martingales. Subtracting, yields MtNt — (M , N )t martingale.

Exercise 4 .11.8  (a) E[(dWt)2 — d t2} = E[(dWt)2} — d t2 = 0.

(b) Var( (dWt )2 -  dt) = E[(dW2 -  d t )2) = E[(dWt )4 -  2dtdWt + d t2}

Exercise 4.12.2 (a) d tdNt = d t ( dM t + A dt) — d t dM t  + A d t2 = 0 

(■b) dWt dNt = dWt(dMt + A dt ) = dWtdM t + A dWtdt  = 0.

Chapter 5
Exercise 5.2.3 (a) Use either the definition or the moment generation func­
tion to show that E [jyt4] = 312. Using stationarity, E[(W< — Ws )4} = E[Wt1_J = 
3(t — s)2.

then E[(Xt — l ) 2] does not tend to 0 as t  —> oo.

3s t 2 — 2dt ■ 0 + d t2 = Adt2.

(c) Var(  / Wt dWt) = E[( / Wt dWt)2] = E [ - W 2 + - T 2 -  - T W 2\ =
J 0 Jo 4 4  1 1

Exercise 5.6.4 Y  ~ N{0, td t )  = n ( o ,  \{T2 -  1))
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Exercise 5.6.5 Normally distributed with zero mean and variance 

Г е 2**-) d s  = h e 2 t -  1 ).
J o  2

Exercise 5.6.6 Using the property of Wiener integrals, both integrals have
713

zero mean and variance —
О

Exercise 5.6.7 The mean is zero and the variance is i/3 —> 0 as t —> 0.

Exercise 5.6.8 Since it is a  Wiener integral, Xt is normally distributed with 
zero mean and variance

(  b u \2 . 2 b2 .
J  ( a  + — J  du  — (a + — + ab)t.

Hence a2 + у  + ab = 1.

Exercise 5.6.9 Since both Wt and f *  f ( s ) dWs have the mean equal to zero,

C o v ( w t , J *  f ( s ) dWs)  = E[Wt, J *  / (e )  dWs] = E [ J *  dWs j f  / (e )  dWs]

= E[ f  f ( u ) ds] = [  f ( u )  ds .
Jo Jo

The general result is

Cov(wt, J*  / (e )  dWs)  =  J*  /(e )  de.

Choosing /(u) = u n yields the desired identity.

Exercise 5.8.6 Apply the expectation to

Nt 2 iVt

(£/(■&)) =E  /2(^) + 2£/№)/(5,).
fc=l A:=l k^j

We have

г Гт
E

- J o

Var|X
e ks dNs

e ksd Ns )  = ^ ( e 2fcT- i ) .
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Chapter 6
Exercise 6.1.6 Let Xt — e Wu du.  Then

^  tdXt - X tdt  t e Wtd t - X tdt  1 / Wt „ \ J± 
dCt = d [ T j  = -------^ ^ -------- = - [ e  -  Gt) d t .

Exercise 6.2.4
(а) e Wt( l  + \Wt)dt + e Wt( l  + Wt)dWt\
(б) (6Wt + 10e5Wt)dWt + (3 + 25e5Wt)dt;
(c) 2et+w? ( l  + W?)dt  + 2e t+w?WtdWf,

(d) n(t + w t)n- 2((t + w t + V )dt + (t + w t)dwty,

Exercise 6.2.5

d(tW2) = td(W2) + W2dt = t(2WtdWt + dt) + W2dt = {t + W2)dt + 2 tWtdWt. 

E xerc ise  6.2.6 (a) tdWt + Wtdt;
оь) e\wtdt + dWt);
(c) (2 — t/2)i cos W* dt — t2 sin Wt dWt ;
(d) (sin t + W 2 cos t)dt + 2 sin t Wt dWt\

Exercise 6.2.9 It follows from (6.2.11).

Exercise 6.2.10 Take the conditional expectation in

M2 = M2S + 2 f  Mu_ dMu + Nt - N s 
J S

and obtain

E[M2\TS = M 2 + 2E[ [
J S

= M l  + E[Mt + \t\Fs}~ Nt 
= M^ + M s + Xt — Ns 
= M l  + X { t - s ) .

dMu\Fs]+E[Nt\Ts] - N s
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F‘ - F- +f 3 iW' +S ‘, di dWl
One can check that = Fs .

Exercise 6.2.13 (a) dFt = 2Wt1dWt1 + 2W?dW?  + 2dt;

(b) dFt =

Exercise 6.2.12 Integrating in (6.2.12) yields

2 W}dW} + 2 W?dW?

Qj
Exercise 6.2.14 Consider the function f ( x , y )  = v/ж2 + y 2. Since —

ox
x d f  у  1

r> Af  = /-7Г-- ^  we gety/x2 + y2 dy y j x2 + y2 2 д/ж2 + У

+ di d W ‘ +  A , d t  -  4 i W t + 4 i W ‘ +  2 k

Chapter 7
Exercise 7.2.4 (a) Use integration formula with g (x )  = tan - 1  (ж). 

rT 1 rT i /-Т 2W,
(1 + Wt)

(c) Use Calculus to find minima and maxima of the function ip(x) =

=  0 .

(1 + ж2)2"

Exercise 7.2.5 (a) Use integration by parts with g (x )  = e x and get

Г  e w t(iWt = e w T _ г _ 1_ F  e w t d t
Jo  2 J 0

(b) Applying the expectation we obtain

E[eWr] = 1 + \ f  E[eWt] dt.
2 Jo

If let ф(Т) = Е[еИ т ], then ф satisfies the integral equation

Ф(т ) = 1 + \ f T Ф )̂ dt-
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Differentiating yields the ODE ф'(Т) = ^ф(Т), with ф(0) = 1. Solving yields 
ф(Т) — eT/2.

E xerc ise  7.2.6 (a) Apply integration by parts with g ( x ) = (x — l ) e x to get

Г  Wte Wt dWt = Г  g ' (Wt) dWt = g (W T) -  g{0) -  l  Г  g" (Wt ) dt.
Jo Jo z Jo

(b) Applying the expectation yields

E[WTeWT] = E[eWT] - l  + l  f  \E[eWt]+E[WteWt]
2 Jo

i  J T (e '/2 + E[WteWt])  dt.

dt

Then ф(Т) = Е[И/7’еи/т] satisfies the ODE ф'(T) — ф(Т) = eT/2 with >̂(0) = 0.

E xercise 7.2.7 (a) Use integration by parts with g (x )  = ln (l + x2).
(e) Since ln( l  + T) < T, the upper bound obtained in (e) is better than the 
one in (d), without contradicting it.

E xercise 7.3.3 By straightforward computation.

E xercise 7.3.4 By computation.

E xerc ise  7.3.15 (b) i e 6 sin(2W3); (c) 4 -  1).

E xerc ise  7.3.16 Apply Ito’s formula to get

M t ,  w t ) = ( d M t ,  Wt ) + 1 d 2x4>(t, Wt) )dt  + d M t ,  Wt)dWt  

= G(t )d t  + f ( t ,  Wt) dWt .

Integrating between a  and b yields

4>{t,Wt)\ba = I '  G(t) dt + I '  f( t ,W t)dWt.
J  a J  a

Chapter 8
E xercise 8.2.2 (a) Xt = 1 + sin t — f* sin s dWs, Е[Х(] = 1 + sin t, V ar[Xt\ = 
Jq (sin s)2 ds = | — |sin(2t);
(b) Xt = e t -  1 + £  ^TsdWs, E[Xt] = e4 -  1, Var[Xt) =
( c ) X t = 1 + i  ln (l + 12) + /0* 53/2 E[X(] = 1 + ± ln (l + *2), F a r ( X f) =
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Exercise 8.3.6 (a) Xt = \W3 — tWt + e4; (b) Xt = ~ tWt — cost;
(c) Xt = e Wt~i + %; (d) Xt = e‘/2 sin Wt + % + 1.

Exercise 8.3.7 (a) Xt = \W? + tWf,  (b) Xt = \W.f + t 2Wt -  §;
(c) = e*Wt -  cos Wt + 1; (d) Xt = teWt + 2 .

Exercise 8.4.5 (a)

riXt = (2 WtdWt + dt ) + Wtdt  + tdWt 
= d (W 2) + d( tWt ) = d( tWt + Wt2)

so Xt = tWt + Wt2.
(ib) We have

dXt = {2t -  ^ W t)dt  + j d W t 

= 2tdt + d ( j W t ) = d ( t2 + - W t), 

so Xt = t 2 + \Wt -  1 -  Wi. 

(c) dXt = l- e il2Wtdt  + e ^ d W t  = d ( e^ 2Wt), so Xt = e l l 2Wt .
(d) We have

dXt = t(2WtdWt + dt) -  t d t  + W?dt  

= td(W}) i U’-rff -  irfft2)

= « K - £ ) ,

so Xt = tWt - £ .  
(e) dXt = dt  + d(VtWt ) = d(i + \ZtWt), so Xt = t + у/tWt — W\.

Exercise 8.5.4 (a) Xt — Xoe4t + -( 1  — e 4t) + 2 e4^_s' dWs \
4 Jo

(b) Xt = X0e 3t + |(1 -  e 3t) + e 3tWt ;

(c) Xt = e<(X0 + 1 + l- W 2 -  -  1;

(d) Xt = X0e 4t _  A _  l ( i  _  e« )  + e4tWt.

(e) Х4 = Xoe4/2 — 2t — 4 + 5e*̂ 2 — e4 cos Wt',
(/) Х( = Х0е - ‘ + е - ‘ ^ .

Exercise 8.8.2 (a) The integrating factor is pt = e~ Jo edWi+j Jo ° =
a 2

e ~ w h i c h  transforms the equation in the exact form d(ptXt) = 0 .
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Then ptXt = X0 and hence Xt = X{]e aWi~ ' r t .
(6) p t = е~аЩ+^ ь, d (p tXt ) = ptX td t , dYt = Ytdt, Yt = У0е( , ptXt = XQe\  

Xt = X0e ^ t+aWK

E xerc ise  8.8.3 o t d A t = dXt — aAt dt, E[Aj] = 0, Var(At) = E[A2] =

F  Jo E P^]2 ds  =

Exercise 8.10.1 Integrating yields Xt = Xо + Jq (2Xs + e 2s) d s  + b dWs . 
Taking the expectation we get

E[Xt] = X 0 + f  (2ЩХа] + e 2s) ds .
Jo

Differentiating we obtain f ' ( t )  — 2f ( t )  + e 2t, where f ( t )  = E[Xt], with /(0) = 
Xo- Multiplying by the integrating factor e~2t yields (e~2tf{ t ) ) '  = 1 . Inte­
grating yields f [ t )  = e 2t(t + X0).

Exercise 8.10.6 (a) Using product rule and Ito’s formula, we get

d{W?eWt) = e Wt( l  + 2Wt + i Wt2)dt  + e Wt{2 Wt + W?)dWt . 

Integrating and taking expectations yields

E [Wt2e Wt] = J  (E[eWs] + 2E[Ws e w ‘ ] + ^E [W2e Ws] j  ds.

Since E[ew °] = e*/2, E [W8e w *] = t e ^ 2, if let f{ t )  = E [W?eWt], we get by 
differentiation

/'(*) = e*/2 -h 2te*/2 + /(0 ) = 0 .

Multiplying by the integrating factor e- */2 yields (/(4)е- */2); = 1 + 21. Inte­
grating yields the solution f i t )  = t{ 1 + t ) e t 2̂.
(6) Similar method.

Exercise 8.10.8 (a) Using Exercise 3.1.17

E[Wt4 -  3 i2|.Ft] = E[Wt4\Tt] -  3t2
= 3(t -  s ) 2 + 6 (t -  s)W 2 + W 4 -  St2 
= (W 4 -  3s2) + 6s2 -  6t s  + 6(t -  s ) W 2 ф W 4 -  3s2.

Hence W 4 — 312 is not a martingale.
(b) E f W f l = W 3 + 3[t — s ) iy s ф W 3, and hence W 3 is not a martingale.
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Exercise 8.10 .10  (a) Similar method as in Example 8.10.9.
(6) Applying Ito’s formula

d ( c o s (aW t) )  = —a  sm (aWt)dW t — cos(aWt)dt .£

Let f ( t )  — E[cos(<rWi)]. Then f ' ( t )  = ~ ^ f ( t ) ,  /(0) = 1. The solution is

( c)  Since sin(t + <rWt) = sin icos(crWt) + cost sin(crWt), taking the expectation 
and using (a) and (b) yields

E[sin(i + aWt)] = sinflE[cos(crW4)] = e“ “2“* sini .

(d) Similarly starting from cos(£ + crWt) = costcos(crWt) — sintsin(crVFt).

Exercise 8 .10 .11  From Exercise 8.10.10 (6) we have E[cos(W*)] = e- ^ 2. 
From the definition of expectation

E[cos(Wi)] = J °° 1 - s ic o s x —7 = e  at dx. 
VbrtOO

Then choose t  = 1/2 and t  = 1 to get (a) and (6), respectively.

Exercise 8.10.12 (a) Using a standard method involving Ito’s formula we 
can get E(WtebWt) = b t c ^ 1! 2. Let a  = 1/(21). We can write

[  x e  ax2+bx dx = Vbr t  [  x ebx—p = e  2t dx
J  J  \ /2

J2
/-----\f2rrt

tt f  b
=  V2^iE(Wte bw‘ ) =  V 2 V t b i e ^ 2 =  J  / (4a) _

The same method for (b) and (c).

Exercise 8.10.13 (a) We have

v  t 2n (2n)\tn = v ,_  1V» _ ^
1 (2n)\ 2пп\ ^  > 2nn\

n>0 v ' n>0

= e~t3' 2.

(b) Similar computation using E[VF2n+1] = 0.
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Chapter 9
Exercise 9.2.2 A =  £Д = \ E L i  ${■
Exercise 9.2.4 (a) We have

X x(t) = х® + W\(t)

X2(t) = ж° + [  X1( s ) d W 2( s )
Jo

$  + x\W2{t) + [  Wx( s ) d W 2(s).  
Jo

=  Жо

Exercise 9.5.2 (c) E[r] is maximum if b—xо = жо—a, i.e. when xq = (a+b)/2. 
The maximum value is (b — a )2/4.

Exercise 9.6.1 Let = min(fc, r )  /* r  and к ^  oo.  Apply Dynkin’s formula 
for to show that

E[rfe] < i ( i ?2 -  |a|2),

and take к —> oo.
Exercise 9.6.3 x° and x2~n .

Exercise 9.7.1 (a) We have a ( t ,x )  = x, c ( t , x ) = ж, </?(s) = х ея~г and 
u ( t , x ) = f fT x e s~b d s  = х ( ет~г — 1 ).
(b) a ( t , x ) = t x , c ( t ,x )  = — 1пж, cp(s) = же^2 -*2)/2 and

rT  - rp , 2
u ( t ,x )  = — / In (se ^ 2-*2^ 2) ds = — (T — £) In ж + — (T  + t ) ----- .

Jt L 6 3 .

Exercise 9.7.2 (a) u ( t , x ) = x(T — t) + \(T — t )2.
(b) u ( t ,x )  = |еж(е 2(т_ *) — l ) .
(c) We have a ( t , x ) = дж, b( t ,x)  = ax,  c ( t , x ) = ж. The associated diffusion is 
dXs = f iXgds  + Xt = x , which is the geometric Brownian motion

X. = xe^ -\ ^ - f)+ ^ w a-Wt) S> L

The solution is

u ( t ,x )  = E [ j f  xe(M -^2)(^ )+ CT№ - ^ ) ds

=  Ж J *  e ( ^ - l ( « - i ) ) ( s - t ) e ^ 2 ( * - ‘ )/2

= ж e ^ s -V d s  = ^  -  l ) .
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Chapter 10
Exercise 10 .1.7  Apply Example 10.1.6 with и = 1.

Exercise 10.1.8 X t = J^h(s)dW s ~ N(0, fg h2{s) ds). Then eXt is log- 
normal with E[ex ‘ ] = e ^Var^  = e ^ o  h(s)2ds.

Exercise 10.1.9 (a) Using Exercise 10.1.8 we have 

E [Aft] = E [ e - t i u(s)dWse - y o u(s )*ds]

(b) Similar computation as (a).

Exercise 10 .1 .10  (a) Applying the product and Ito’s formulas we get 

d(ei//2 cos Wt) = — e-4/2 sin Wt dWt.

Integrating yields

which is an Ito integral, and hence a martingale; (b) Similarly.

Exercise 10 .1 .12  Use that the function f ( x  1 , 0:2) = eXl cos x2 satisfies Д/ = 
0 .

Exercise 10 .1 .14  (a) f(x )  = x2; (b) f(x )  = a:3; (c) f(x )  = xn/(n(n — 1));
(d) f{x)  = e ^ ; (e) f ( x )  = sin(cx).

2
• pt as Exercise 10.3.10 Let Xf = a J0 e 2 dBs. The quadratic variation is

e  2 Jo- 5  Jo u(s)2 dsE[e~ Jo ^ = e 2 Jor k  /o‘ “(s)2 dse5 /o‘ u(s)2 = 1 .

Then apply Theorem 10.3.1.

Exercise 10 .3 .11 (a) By direct computation;
(6) Let Xt — J'q e qu dWu. The quadratic variation is

Applying Theorem 10.3.1 yields the result.
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Exercise 10.4.15 (c) We evaluate E^[Xt] in two ways. On one side Е^[Хг] = 
0, because Xt is a  Q-Brownian motion. On the other side, using Girsanov 
theorem

E Q[Xt] = E p [XtMT\ = Ep 

Xt2
V 2

+ е~ £ т3Ep [Wte~x f o s dW°]EP[e~A & s dWs

Xt2
+ Ep [Wte~x fo sdWs]e~

Equating to zero yields

Ep [Wte~x fo sdWs] —

Chapter 11
Exercise 11.2 .2  (a) Integrating yields

v t = g t +  f  v s dWs ,
Jo

so E[vt] = g t .
(b) a t —g  + a v tMt , E[af] = g.
(c) M ultiply by the integrating factor p t — e“ 'TU '+2'7 1 and obtain the exact 
equation

d (p tv t ) = p tg d t .

Integrating we get

v t = g e ° w ' - \ ° ^  f  e - M ' H " 2* ds .
Jo

Exercise 11.2 .3  (a) Solving as a  linear equation yields

v t = e~2t + 0.3e~2* [  e 2s dWs ,
Jo

and hence vt is normally distributed with mean /i = e~2t and variance a 2 = 
^ ( 1  -  e~4t). In our case ц  = 0.00247875 and a 2 = 0.0224999, a  = 0.15. 
Then

P ( v 3 < 0.5) = < 0-650) = 0.74.
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Exercise 11.3 .1 (a) Substitute t  = h  in formula

N(t)  = N(0)e~xt + ae~xt [  e Xs dWs .
Jo

Then take the expectation in

N{0) + cr [  e Xs dWs = \ e XhN{0)
Jo 2

and obtain Ar(0) = ^E[eAfe]jV(0), which implies the desired result.
(6) Jensen’s inequality for the random variable h  becomes Е[ел/1] > еЩх^ . 
This can be written as 2 > .

Exercise 11.3.2 (a) Use that N(t) = N(0)e~Xt. (b) t — — (In0.9)/A.

Exercise 11.4 .1 (a) Qo(^) = c \ e ~ l  +  C2e ~ 2 t. (с ) Q t = Q \  + Q o ( t ) -

Exercise 11.4 .2 (a) Let Zt = (Xt,Yt)T and write the equation as dZt = 
AZt + KdWt  and solve it as a  linear equation. (6) Use substitutions Xt = 0t, 
Yt = 9t .

Exercise 11.5 .1 (a) Pt is log-normally distributed, with 

P{Pt < X) = p ^ p o e f o a(s )ds-P2t/2+pBt^

= FaGini +f - \ L a(s]ds)'
where Fu, = e 21 . at Vbrt

Exercise 11.5 .3  The noisy rate is rt = a( t ) + so a ( )̂ = The expec­
tation is given by E[Pr] = Poe °̂ a^ ds = Р о ет3/3. Then T = (31П2)1/3. 

Exercise 11.7 .1 dCt = a(Co — Ct)dt -I- bEdt + bdBt + adWt.

Exercise 11.7.2 Use formula (11.7.37).
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correlation coefficient, 20 
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exact equation, 172 
existence, 189 
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Gamma distribution, 23 
generator, 200

of an Ito diffusion, 200 
geometric Brownian motion, 51 
Girsanov’s theorem, 215, 232, 236 
Gronwall’s inequality, 196

hitting time, 88

independence, 17 
independent

increments, 45 
information field, 42 
input process, 265 
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Brownian motion, 53 
Poisson process, 66 

integrating factor, 187 
integration, 14 
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process, 233 
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model, 2 

lookback option, 79
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martingale, 43
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mean square limit, 37, 104 
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moment generating function, 22 
monotone convergence theorem, 15
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normal distribution, 21 
Novikov’s condition, 218

Optional Stopping Theorem, 77, 205, 
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184, 229, 249

Pearl, 256
Pearson distribution, 24
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Picard, 189
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distribution, 24 
process, 61, 183 
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density function, 16



Index 315

distribution function, 16 
space, 11

quadratic variation, 108

radioactive decay, 247 
Radon-Nikodym theorem, 29 
random variable, 13 
recurrence, 206 
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maximum, 98 
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sample space, 11
scaled Brownian motion, 226
squared Bessel process, 222
standard deviation, 19
stationary, 45
stochastic
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processes, 41 
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time, 73

Strong Law of Large Numbers, 37 
symmetric, 108

time change, 225, 230, 249 
total variation, 111  
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uniform distribution, 68 
uniqueness, 189
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