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Preface

Deterministic Calculus has been proved extremely useful in the last few hun-
dred years for describing the dynamics laws for macro-objects, such as plan-
ets, projectiles, bullets, etc. However, at the micro-scale, the picture looks
completely different, since at this level the classical laws of Newtonian me-
chanics cease to function “normally”. Micro-particles behave differently, in
the sense that their state cannot be determined accurately as in the case of
macro-objects; their position or velocity can be described using probability
densities rather than exact deterministic variables. Consequently, the study
of nature at the micro-scale level has to be done with the help of a special
tool, called Stochastic Calculus. The fact that nature at a small scale has a
non-deterministic character makes Stochastic Calculus a useful and important
tool for the study of Quantum Mechanics.

In fact, all branches of science involving random functions can be ap-
proached by Stochastic Calculus. These include, but they are not limited to,
signal processing, noise filtering, stochastic control, optimal stopping, elec-
trical circuits, financial markets, molecular chemistry, population evolution,
etc.

However, all these applications assume a strong mathematical background,
which takes a long time to develop. Stochastic Calculus is not an easy theory
to grasp and, in general, requires acquaintance with probability, analysis and
measure theory. This fact makes Stochastic Calculus almost always absent
from the undergraduate curriculum. However, many other subjects studied at
this level, such as biology, chemistry, economics, or electrical circuits, might be
more completely understood if a minimum knowledge of Stochastic Calculus
is assumed.

The attribute informal, present in the title of the book, refers to the fact
that the approach is at an introductory level and not at its maximum math-
ematical detail. Many proofs are just sketched, or done “naively” without
putting the reader through a theory with all the bells and whistles.

The goal of this work is to informally introduce elementary Stochastic
Calculus to senior undergraduate students in Mathematics, Economics and
Business majors. The author’s goal was to capture as much as possible of the
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spirit of elementary Calculus, which the students have already been exposed
to in the beginning of their majors. This assumes a presentation that mimics
similar properties of deterministic Calculus as much as possible, which facili-
tates the understanding of more complicated concepts of Stochastic Calculus.

The reader of this text will get the idea that deterministic Calculus is just
a particular case of Stochastic Calculus and that Ito’s integral is not a too
much harder concept than the Riemannian integral, while solving stochastic
differential equations follows relatively similar steps as solving ordinary dif-
ferential equations. Moreover, modeling real life phenomena with Stochastic
Calculus rather than with deterministic Calculus brings more light, detail and
significance to the picture.

The book can be used as a text for a one semester course in stochastic
calculus and probabilities, or as an accompanying text for courses in other
areas such as finance, economics, chemistry, physics, or engineering.

Since deterministic Calculus books usually start with a brief presentation
of elementary functions, and then continue with limits, and other properties
of functions, we employed here a similar approach, starting with elementary
stochastic processes, different types of limits and pursuing with properties
of stochastic processes. The chapters regarding differentiation and integration
follow the same pattern. For instance, there is a product rule, a chain-type rule
and an integration by parts in Stochastic Calculus, which are modifications of
the well-known rules from elementary Calculus.

In order to make the book available to a wider audience, we sacrificed rigor
and completeness for clarity and simplicity, emphasizing mainly on examples
and exercises. Most of the time we assumed maximal regularity conditions for
which the computations hold and the statements are valid. Many complicated
proofs can be skipped at the first reading without affecting later understand-
ing. This will be found attractive by both Business and Economics students,
who might get lost otherwise in a very profound mathematical textbook where
the forest’s scenery is obscured by the sight of the trees. A flow chart indicat-
ing the possible order the reader can follow can be found at the end of this
preface.

An important feature of this textbook is the large number of solved prob-
lems and examples which will benefit both the beginner as well as the advanced
student.

This book grew from a series of lectures and courses given by the author
at Eastern Michigan University (USA), Kuwait University (Kuwait) and Fu-
Jen University (Taiwan). The student body was very varied. | had math,
statistics, computer science, economics and business majors. At the initial
stage, several students read the first draft of these notes and provided valuable
feedback, supplying a list of corrections, which is far from exhaustive. Finding
any typos or making comments regarding the present material are welcome.
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List of Notations and Symbols

The following notations have been frequently used in the text.

Probability space

n Sample space

I a-field

X Random variable
Xt Stochastic process

as —lim Xt The almost sure limit of Xt
t—00

ms —im Xt The mean square limit of Xt
t—b00

p —im Xt The limit in probability of Xt
t—00

Tt Filtration

dwt . .
M. Wt White noise
H H dt
Wt,Bt Brownian motion

AWt,ABt Jumps of the Brownian motion during time interval At
dwt, dBt Infinitesimal jumps of the Brownian motion
V{Xt) Total variation of Xt
VA (X)), (X, X)t Quadratic variation of Xt
Fx (X) Probability distribution function of X
Px(x) Probability density function of X

p{x,y,t) Transition density function

E[-] Expectation operator
LLIX\CI,\ Conditional expectation of X with respect to Q
Var(X) Variance of the random variable X

Cov(X,Y) Covariance of X and Y
p(X,Y), Corr(X,Y) Correlation of X and Y
AX,FX (T-algebras generated by X

ix
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Gamma function

Beta function

Poisson process

Waiting time for Poisson process

Interarrival time for Poisson process

The minimum between t\ and (= min{ri,T2})
The maximum between t\and r2 (= max{ri,r2})
Sequence superior limit (= supr(>1rn)

Sequence inferior limit (= inf,>i )

Drift rate

Volatility, standard deviation

Partial derivative with respect to

n-dimensional Euclidean space

Euclidean norm (= \/X\ + eee+ xfy
Laplacian of /
The characteristic function of A

The L2-norm (= yj/ @f(t)2dt)
Squared integrable functions on [0, I']

Functions twice differentiable with second derivative continuous

Functions with compact support of class C2
Bessel process

The mean square estimator of Q
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Chapter 1

A Few Introductory Problems

Even if deterministic Calculus is an excellent tool for modeling real life prob-
lems, however, when it comes to random exterior influences, Stochastic Cal-
culus is the one which can allow for a more accurate modeling of the problem.
In real life applications, involving trajectories, measurements, noisy signals,
etc., the effects of many unpredictable factors can be averaged out, via the
Central Limit Theorem, as a normal random variable. This is related to the
Brownian motion, which was introduced to model the irregular movements of
pollen grains in a liquid.

In the following we shall discuss a few problems involving random pertur-
bations, which serve as motivation for the study of the Stochastic Calculus
introduced in next chapters. We shall come back to some of these problems
and solve them partially or completely in Chapter 11.

1.1 Stochastic Population Growth Models

Exponential growth model Let P(t) denote the population at time t. In
the time interval At the population increases by the amount AP{t) —P(t +
At)—P(t). The classical model of population growth suggests that the relative
percentage increase in population is proportional with the time interval, i.e.

A-P(0
P(t) ~r

where the constant r > 0 denotes the population growth. Allowing for in-
finitesimal time intervals, the aforementioned equation writes as

dP{t) = rP{t)dt.

This differential equation has the solution P(t) = Poert, where Pqis the initial
population size. The evolution of the population is driven by its growth rate
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Figure 1.1: (a) Noisy population with exponential growth, (b) Noisy population
with logistic growth.

r. In real life this rate is not constant. It might be a function of time t, or even
more general, it might oscillate irregularly around some deterministic average
function a(t):

rt = a(t) + “noise”.

In this case, rt becomes a random variable indexed over time t. The associated
equation becomes a stochastic differential equation

dP(t) = (a(t) + “noise”)P(t)dt. (1.1.1)

Solving an equation of type (1.1.1) is a problem of Stochastic Calculus, see
Fig. 1.1(a).

Logistic growth model The previous exponential growth model allows the
population to increase indefinitely. However, due to competition, limited space
and resources, the population will increase slower and slower. This model
was introduced by P.F. Verhust in 1832 and rediscovered by R. Pearl in the
twentieth century. The main assumption of the model is that the amount
of competition is proportional with the number of encounters between the
population members, which is proportional with the square of the population
size

dP(t) = rP(t)dt - kP (tfdt. (1.1.2)

The solution is given by the logistic function

p{t) = M .
U Pg+ {K —Po)e~rt’

where K = r/k is the saturation level of the population. One of the stochastic
variants of equation (1.1.2) is given by

dP(t) = rP(t)dt —kP{t)2dt + /X“noise”)P{t),
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where /3 € K is a measure of the size of the noise in the system. This equation is
used to model the growth of a population in a stochastic, crowded environment,
see Fig. 1.1(b).

1.2 Pricing Zero-coupon Bonds

A bond is a financial instrument which pays back at the end of its lifetime, T,
an amount equal to B, and provides some periodical payments, called coupons.
If the coupons are equal to zero, the bond is called a zero-coupon bond or a
discount bond. Using the time value of money, the price of a bond at time t
is B(t) = Be~"~T1=r\ where r is the risk-free interest rate. The bond satisfies
the ordinary differential equation

dB(t) = rB{t)dt

with the final condition B(T) = B. In a “noisy” market the constant interest
rate r is replaced by rt = r(t) + “noise”, a fact that makes the bond pricing
more complicated. This treatment can be achieved by Stochastic Calculus.

1.3 Noisy Pendulum

The free oscillations of a simple pendulum of unit mass can be described by
the nonlinear equation 9(t) = —k2sin0(f), where 9(t) is the angle between
the string and the vertical direction. If the pendulum is moving under the
influence of a time dependent exterior force F — F(t), then the equation of
the pendulum with forced oscillations is given by 6(t) + k2sin9(t) = F{t). We
may encounter the situation when the force is not deterministic and we have

F{t) = fit) + (“noise”).

How does the noisy force influence the deviation angle 9{t)l Stochastic Cal-
culus can be used to answer this question.

1.4 Diffusion of Particles

Consider a flowing fluid with the velocity field v(x). A particle that moves
with the fluid has a trajectory 4>{t) described by the equation '{t) = v(</>(1)).
A small particle, that is also subject to molecular bombardments, will be
described by an equation of the type ¢i(b) = v/~ {t)) + <r(“noise”), where the
constant a > 0 determines the size of the noise and controls the diffusion of
the small particle in the fluid.
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Now consider a drop of ink (which is made out of a very large number of
tiny particles) left to diffuse in a liquid. Each ink particle performs a noisy
trajectory in the liquid. Let p(x,t) represent the density of particles that
arrive about x at time t. After some diffusion time, the darker regions of
the liquid represent the regions with higher density p(x,t), while the lighter
regions correspond to smaller density p(x,t). Knowing the density p(x,t)
provides control over the dynamics of the diffusion process and can be used to
find the probability that an ink particle reaches a certain region.

1.5 Cholesterol Level

The blood cholesterol level at time t is denoted by C(t). This depends on the
intaken food fat as well as organism absorption and individual production of
cholesterol. The rate of change of the cholesterol level is given by

@ =a{Co-C(t))+bE,

where Co is the natural level of cholesterol and E denotes the daily rate of
intaken cholesterol; the constants a and bmodel the production and absorption
of cholesterol in the organism. The solution of this linear differential equation
is

C(t) = COe~at + (Co + I ){1 - e~at),

which in the long run tends to the saturation level of cholesterol Co 4- "E.
Due to either observation errors or variations in the intake amount of food,
the aforementioned equation will get the following noisy form

= a(Co —C(t)) + bE + “noise”.

This equation can be explicitly solved using Stochastic Calculus. Furthermore,
we can also find the probability that the cholesterol level is over the allowed
organism limit.

1.6 Electron Motion

Consider an electron situated at the initial distance >(0) from the origin,
which moves with a unit speed towards the origin. Its coordinate x(t) € M3 is
supposed to satisfy the equation

dx(t) _ x(t)
dt KE)L
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Figure 1.2: (a) The trajectory of the electron x(t) tends towards the origin.
(b) White noise.

Like in the case of the pollen grain, whose motion is agitated by the neigh-
boring molecules, we assume that the electron is subject to bombardment by
some “aether” particles, which makes its movement unpredictable, with con-
stant tendency to go towards the origin, see Fig. 1.2 (a). Then its equation
becomes

ANl o=_AL +w
dt 1701

This type of description of electrons is usually seen in stochastic mechanics.
This theory can be found in Fenyes [18] and Nelson [36].

1.7 White Noise

All aforementioned problems involved a “noise” influence. This noise is di-
rectly related to the trajectory of a small particle which diffuses in a liquid
due to the molecular bombardments (just consider the last example in the case
of a static fluid, v = 0). This was observed first time by Brown [8] in 1828,
and was called Brownian motion and it is customarily denoted by Bf. It has
a very irregular, continuous trajectory, which from the mathematical point
of view is nowhere differentiable. A satisfactory explanation of the Brownian
motion was given by Einstein [17] in 1905. A different but likewise succesful
decription of the Brownian motion was done by Langevin [32] in 1908.

The adjective “white” comes from signal processing, where it refers to the
fact that the noise is completely unpredictable, i.e. it is not biased towards
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any specific “frequency”,l1 see Fig. 1.2. If Mt denotes the “white noise” at
time t, the trajectory dyb) of a diffused particle satisfies

Pty = aNt,  t> 0,

The solution depends on the Brownian motion starting at x, i.e ¢{f) = x + Bt.
Therefore the white noise is the instantaneous rate of change of the Brownian
motion, and can be written informally as

m dBt

This looks contradictory, since Bt is not differentiable. However, there is a
way of making sense of the previous formula by considering the derivative in
the following “generalized sense” :

for any compact supported, smooth function /. From this point of view, the
white noise JVi is a generalized function or a distribution. We shall get back to
the notion of white noise in section 11.1.

1.8 Bounded and Quadratic Variation

The graph of a C l-difFerentiable function, defined on a compact interval, has
finite length. Unlike the case of differentiable functions, trajectories of Brow-
nian motions, or other stochastic processes, are not of finite length. We may
say that to a certain extent, the role of the “length” in this case is played by
the “quadratic variation”. This is actually a measure of the roughness of the
process, see Fig. 1.3. This section will introduce these notions in an informal
way. We shall cover these topics in more detail later in sections 4.11 and 4.12.

Let f : [a,b] — M be a continuously differentiable function, and consider
the partition a = x0 < xi < mmm< xn = bof the interval [a, b}. A smooth curve
y = f(x), a < x < b, is rectifiable (has length) if the sum of the lengths of the
line segments with vertices at Po(io>fix0))> === Fn(xn,f(xn)) is bounded by
a given constant, which is independent of the number n and the choice of the
division points xt. Assuming the division is equidistant, Ax = (b —a)/n, the
curve length becomes

IrThe white light is an equal mixture of radiations of all visible frequencies.
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Figure 1.3: (a) Smooth, (b) Rough, (c¢) Very rough.

n—1 n—
SP  YkpkH\ = SPX] V(Ax)2+ (O/) 2-
k=0 fc=0

Furthermore, if / is continuously differentiable, the computation can be con-
tinued as

1= Z7 ™)~ "H AT

where we used that the limit of an increasing sequence is equal to its superior
limit.

Definition 1.8.1 The function /(x) has bounded variation on the interval
[a 6] iffor any division a = x0 < X\ < me< xn = b the sum

(E=
I/Ofc+i) - f(xk)I

fc=0

is bounded above by a given constant.

The total variation of / on [a, I is defined by

v(f) = supj® jfeti) - F(xK)]. (1.8.3)

fc=0

The amount V (/) measures in a certain sense the “roughness” of the function.
If / is a constant function, then V (/) = 0. If / is a stair-type function, then
V (f) is the sum of the absolute value of its jumps.
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We note that if / is continuously differentiable, then the total variation
can be written as an integral

n—
V(f) = s u p \f(xk+i) - f(xKk\
X k=0
Mt~ 107+ )-Ibl LA1= /' l(D)I<ix
RFPON n i+l Ja

The next result states a relation between the length of the graph and the
total variation of a function /, which is not differentiable.

Proposition 1.8.2 Letf :[a bl —R be afunction. Then the graph y —f{x)
has length if and only if V(f) < oo.

Proof:  Consider the simplifying notations (A/)& = f(xk+1) —f(xk) and
AXx = »ct+i —Tre Taking the summation in the double inequality

[(A/bl < yj(Ax)2+ [(ANM]2 < Ax + | (ANTc]
and then applying the “sup” yields
V(f)<e<(b-a) + V(f),

which implies the desired conclusion. I

By virtue of the previous result, the functions with infinite total variations
have graphs of infinite lengths.

The following informal computation shows that the Brownian motion has
infinite total variation (a real proof of this fact is given in section 4.12)

= dBt
V(Bt) = sup~ Btk -Btki= P o 9t

f
tk k=o 38 Ja

since the area under the curve t -> |Aj] is infinite.
We can try to model a finer “roughness” of the function using the quadratic
variation of / on the interval [a, b}

n—
F@)/) = sup]T (xjfe+i) - f(xk)E. (1.8.4)
fo=o

where the “sup” is taken over all divisions a= xq < Xi < mme< xn= h
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It is worth noting that if / has bounded total variation, V(f) < oo, then
VA f) = 0. This comes from the following inequality

V{Af) < max \f(xk+i) - f(xK\V(f) >0, as }aq -)=O.

The total variation for the Brownian motion does not provide much in-
formation. It turns out that the correct measure for the roughness of the
Brownian motion is the quadratic variation

e
VA(BtY) = supj] B(tk+l) - B(tk) L. (1.8.5)
U k=0

It will be shown that V~ (Bt) is equal to the time interval b—a.






Chapter 2

Basic Notions

2.1 Probability Space

The modem theory of probability stems from the work of Kolmogorov [28],
published in 1933. Kolmogorov associates a random experiment with a prob-
ability space, which is a triplet, (2 J7,P), consisting of the set of outcomes,
Q, a crfield, J~ with Boolean algebra properties, and a probability measure,
P. In the following sections, each of these elements will be discussed in more
detail.

2.2 Sample Space

A random experiment in the theory of probability is an experiment whose out-
comes cannot be determined in advance. When an experiment is performed,
all possible outcomes form a set called the sample space, which will be denoted
by Q.

For instance, flipping a coin produces the sample space with two states
O = {H. T}. while rolling a die yields a sample space with six states V. =
{1, ===,6}. Choosing randomly a number between O and 1 corresponds to a
sample space, which is the entire segment O = (0,1).

In financial markets one can regard Q as the states of the world, by this,
we mean all possible states the world might have. The number of states of the
world that affect the stock market is huge. These would contain all possible
values for the vector parameters that describe the world, which is practically
infinite.

All subsets of the sample space Q form a set denoted by 2. The reason
for this notation is that the set of parts of il can be put into a bijective
correspondence with the set of binary functions / : 17 —{0,1}. The number
of elements of this set is 21, where |¥] denotes the cardinal of 17. If the set is

n
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finite, JO] = n, then 2° has 2n elements. If Q is infinitely countable (i.e. can
be put into a bijective correspondence with the set of natural numbers), then
271 is infinite and its cardinal is the same as that of the real number set R.

Remark 2.2.1 Pick a natural number at random. Any subset of the sample
space corresponds to a sequence formed with 0 and 1. For instance, the subset
{1,3,5,6} corresponds to the sequence 10101100000... having 1 on the 1st,
3rd, 5th and 6th places and 0 in rest. It is known that the number of these
sequences is infinite and can be put into a bijective correspondence with the
real number set B This can also be written as |2N]= |R], and stated by saying
that the set of all subsets of natural numbers N has the same cardinal as the
real numbers set R.

2.3 Events and Probability
The set of parts 2n satisfies the following properties:

1 It contains the empty set O;
2. If it contains a set A, then it also contains its complement A = Q\yl;

3. It is closed with regard to unions, i.e., if A\, A2,... is a sequence of sets,
then their union A\ UA2 U == also belongs to 2Q.

Any subset J of 22 that satisfies the previous three properties is called a er-
field. The sets belonging to J- are called events. This way, the complement of
an event, or the union of events is also an event. We say that an event occurs
if the outcome of the experiment is an element of that subset.

The chance of occurrence of an event is measured by a probability function
P : T —[0,1] which satisfies the following two properties:

L P(M) =1
2. For any mutually disjoint events A\, A2, mmf J7,

P{AXUA2U -) = P{AX) + P{A2) + mmee

The triplet (fi, T, P) is called a probability space. This is the main setup
in which the probability theory works.

Example 2.3.1 In the case of a coin flipping, the probability space has the
following elements: fl = {H.T}, T = {0, {H}, {T}, {H,T}} and P is defined
by P(0) =0, P({H}) =1 P{T}H =i, P({ff,T}) = 1.
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Figure 2.1: If any set X 1((a, 6)) is “known”, then the random variable X :
Q —=R is -measurable.

Example 2.3.2 Consider afinite sample space 17 = {si,..., sn}, with the a-
field F = 2n, and probability given by P(A) = v|/n, YA £ F. Then (ft, F, P)
is a probability space.

Example 2.3.3 Let Q = [0,1] and consider the cr-field #([0,1]) given by the
set of all open or closed intervals on [0,1], or any unions, intersections, and
complementary sets. Define P(A) = A(A), where A stands for the Lebesgue
measure (in particular, if A = (a,b), then P(A) = b—a is the length of the
interval). It can be shown that (I,#([0,1]),P) is a probability space.

2.4 Random Variables

Since the cr-field IF provides the knowledge about which events are possible on
the considered probability space, then F can be regarded as the information
component of the probability space (Q,F,P). A random variable X is a
function that assigns a numerical value to each state of the world, X : 2 —»R,
such that the values taken by X are known to someone who has access to the
information F. More precisely, given any two numbers a. 6 6 R. then all the
states of the world for which X takes values between a and b forms a set that
is an event (an element of F), i.e.

{wGfija< X(w) <b} £F.

Another way of saying this is that X is an F-measurable function.
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Example 2.4.1 Let X(w) be the number of people who want to buy houses,
given the state of the market w. Is X measurable? This would mean that
given two numbers, say a = 10,000 and b = 50,000, we know all the market
situations n for which there are at least 10,000 and at most 50, 000 people
willing to purchase houses. Many times, in theory, it makes sense to assume
that we have enough knowledge so that we can assume X is measurable.

Example 2.4.2 Consider the experiment of flipping three coins. In this case
Q is the set of all possible triplets, which can be made with H and T. Consider
the random variable X which gives the number of tails obtained. For instance
X(HHH) = 0, X(HHT) = 1 etc. The sets

{w; X(u») = 0} = {###}, {w; X{w)
{w; X(w) = 3} = {TTT}, {w; X(w)

1} = {HHT, HTH, THH},
2} = {HTT, THT, TTH}

belong to 27, and hence X is a random variable.

2.5 Integration in Probability Measure

The notion of expectation is based on integration on measure spaces. In this
section we recall briefly the definition of an integral with respect to the prob-
ability measure P. For more insight on measurable functions and integration
theory the reader is referred to the classical text of Halmos [21].

Let X :2—R be a random variable on the probability space (fi, T ,P). A
partition (f2j)i<j<n of il is a family of subsets 17j C 17, with € T . satisfying

1 fli Mflj = 0, for i dj-
n

2. (Jftj = M.

Each fij is an event and its associated probability is P(il). Consider the
characteristic function of a set A C  defined by xa(u)

More properties of \A can be found in Exercise 2.12.9. The integral will be
defined in the following three steps:

(i) A simple function is a sum of characteristic functions / = CrXy, ;
g € M. This means f(uj) = ck for u G Q/c. The integral of the simple function
/ is defined by

(rm) If X : 17 —= M is a random variable, then from the measure theory
it is known that there is a sequence of simple functions (fn)n>l satisfying
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Hrm-oo /n(”) = X(w). Furthermore, if X > 0, then we may assume that
fn < tn+1- Then we define

f XdP= lim [ fndP.
Jn II_))OO }n

(in) If X is not non-negative, we can write X = X+ —X~ with X+ =
sup{X, 0} > 0 and X~ = sup{—X, 0} > 0. Define

[ XdP= lim f X+dP- lim [ X~ dP,
n-»°0Jn Jq

where we assume that at least one of the integrals is finite.

From now on, the integral notations J3 X dP or Jq X (uj) dP(uj) will be used
interchangeably. In the rest of the chapter the integral notation will be used
informally, without requiring a direct use of the previous definition.
Two widely used properties of the integral defined above are:
Linearity: For any two random variables X and Y and a, b R
f (aXx +bY)dP =a [ XdP +b [ Y dP\
Jn Jn Ju
Positivity: If X <0 then

[ XdP> 0.
Jn

2.6 Two Convergence Theorems

During future computations we shall often need to swap the limit symbol with
the integral. There are two basic measure theory results that allow doing this.
We shall state these results below and use them whenever needed.

Theorem 2.6.1 (The monotone convergence theorem) Let (fi,J7,P) be
a probability space and (fn)n>l a sequence of measurable functions, fn: Q —
[0, 00) such that:

(*) 0 < ffe(w) < fk+i(w), Vwefi, k> 1;
(if) the sequence is pointwise convergent

f(w) = lim fnu>, Vi G1l.

Then
(1) / is measurable;
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Theorem 2.6.2 (The dominated convergence theorem) Let (fi,~7,P) be
a probability space and (fn)n>l a sequence of measurable functions, fn : fi —
R. Assume that:

*) (/n) ™ pointwise convergent

f(u) = lim fn(uj), VWE U,

(rr) there is an integrable function g, (i.e. J™ | dP < 00) such that
\fn(U\ < g(uj), VwEtt,n>1.

Then f is integrable and

lim [ fndP = f f dP.
n->°°Jn Jn

2.7 Distribution Functions

Let X be a random variable on the probability space (2, J7,P). The distribu-
tion function of X is the function Fx : R —=[0,1] defined by

Fx (x) = P(u-,X(u)<x).

It is worth observing that since X is a random variable, then the set {w; X(w) <
x} belongs to the information set J=
The distribution function is non-decreasing and satisfies the limits

lim Fx(x) =0, lim Fy(x) = 1

X-¥-o00 XV ' x-U -0o0

If we have
-NEX(x)=p(x),
then we say that p(x) is the probability density function of X.

It is important to note the following relation among distribution function,
probability and probability density function of the random variable X

Fx(x) = P(X <x) = f dP(uj) = ( p(u)du. (2-7.2)
J{X<x} J—o0

The probability density function p(x) has the following properties:
(N px) >0
(**) f-ooP(v)du = 1
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The first one is a consequence of the fact that the distribution function
Fx{x) is non-decreasing. The second follows from (2.7.1) by making x — oc

As an extension of formula (2.7.1) we have for any ~-measurable function

(2.7.2)

Another useful propety, which follows from the Fundamental Theorem of
Calculus is

In the case of discrete random variables the aforementioned integral is replaced
by the following sum

P(a< X < b= p(x = X)

a<x<b

For more details the reader is referred to a traditional probability book, such
as Wackerly et al. [13].

2.8 Independence

Roughly speaking, two random variables X and Y are independent if the
occurrence of one of them does not change the probability density of the other.
More precisely, if for any two open intervals I,Bcl, the events

E= {w;X(w) € A}, F={w;Y (W) € B}

are independent, i.e., P(E MF) = P(E)P(F), then X and Y are called inde-
pendent random variables.

Proposition 2.8.1 Let X and Y be independent random variables with den-
sity functions px (x) and pY{y)- Then the joint density function of (X,Y) is
given by px,y(x,y) =px{x)pY(y).



18 An Informal Introduction to Stochastic Calculus with Applications

Proof: Using the independence of sets, we havel

Px< X <x+dx,y<Y <y+dy
= P(x< X <x+dx)P(y <Y <y+dy
= px(x)dx pY(y)dy

= Px(X)PY(y)dxdy-

px Y(x, y) dxdy

Dropping the factor dxdy yields the desired result. We note that the converse
also holds true. ]

The a-algebra generated by a random variable X : Q —R is the cralgebra
generated by the unions, intersections and complements of events of the form
{w,X(w) G (a, 6)}, with a < b real numbers. This will be denoted by Ax-

Two (7-fields Q and H included in J- are called independent if

P(Gntf) = P(G)P(H), VGeG,Hen.
The random variable X and the cr-field Q are called independent if the
algebras Ax and Q are independent.
2.9 Expectation

A random variable X : Q —R is called integrable if
J \X(ui)\dP(u) = 1 \x\p(x) dx < oo,
q JK

where p(x) denotes the probability density function of X. The previous iden-
tity is based on changing the domain of integration from 2to R.
The expectation of an integrable random variable X is defined by

E[X] = f X(u:)dP(u>)— f xp(x)dx.
Ja J

r

Customarily, the expectation of X is denoted by u and is called the mean. In
general, for any measurable function h : R —R, we have

i(X)] = f h dP(0j) = f h dx.
E[/i(X)] A (X(u)) dP(oj) JIVI(X)IO(X) X

In the case of a discrete random variable X the expectation is defined as

E[X] = J2xkP (X = xKk).
k>1

1We are using the useful approximation P(x < X < x + dx) = f* +dx p{u) du = p(x)dx.
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Proposition 2.9.1 The expectation operator E is linear, i.e. for any inte-
grable random variables X and Y

1 E[cX] = cE[X], Ve € K;
2. E[X + Y] = E[X] + E[Y].

Proof: It follows from the fact that the integral is a linear operator. ]

Proposition 2.9.2 Let X and Y be two independent integrable random vari-
ables. Then
E[XY] =E[X]E [Y].

Proof: This is a variant of Fubini’s theorem, which in this case states that a
double integral is a product of two simple integrals. Let px, pY>Px, denote
the probability densities of X, Y and (X,Y), respectively. Since X and Y are
independent, by Proposition 2.8.1 we have

Exy] = JJ xypXY(x,y)dxdy = jx p x (x)dx | yp¥(y)dy = E[X]E[Y],

Definition 2.9.3 The covariance of two random variables is defined by
Cov(X, Y) = E[XY] - E[X]E[Y].
The variance of X is given by
Var(X) = Cov{X,X).

Proposition 2.9.2 states that if X and Y are independent, then Cov(X, Y) —
0. It is worth to note that the converse in not necessarily true, see Exercise
2.9.6. However, the converse holds true if both X and Y are assumed normally
distributed.

Exercise 2.9.4 Show that
(@) Cov(X,Y) =E[{X-1ix)(Y-Hy)}, where =E[X] andnY = E[Y};
6 Var(X) = E[(X - vx)2Z}

From Exercise 2.9.4 (b), we have Var(X) > 0, so, there is a real number
a > 0 such that Var(X) —a2. The number o is called standard deviation.
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Exercise 2.9.5 Let p and a denote the mean and the standard deviation of
the random variable X . Show that

E[X2] = m2+ or2.

Exercise 2.9.6 Consider two random variables with the following table of
joint probabilities:

Y\ X -1 0 1
-1 1/16 3/16 1/16
0 3/16 0 3/16
1 1/16 3/16 1/16
Show the following:
(@ E[X] = E[Y] = E[XY\ = 0;
(6) Cov(X,Y) = 0;
(c) P(0,0) ™~ Px(0)PY(0);
(d) X and Y are not independent.
The covariance can be standardized in the following way. Let ax and cry be

the standard deviations of X and Y, respectively. The correlation coefficient
of X and Y is defined as

x.ry = C™M (L.

axo-y

Exercise 2.9.7 (a) Prove that for any random variables A and B we have
LWAB}2 < E[AZ]E[B2}.

(b) Use part (a) to show that for any random variables X and Y we have
—1 < p(X,Y) <1.
(¢) What can you say about the random variables X and Y if p(X,Y) = 1?

2.9.1 The best approximation of a random variable

Let X be a random variable. We would like to approximate X by a single
(nonrandom) number x. The “best” value of x is chosen in the sense of the
“least squares”, i.e. x is picked such that the expectation of the error square
(X —x)2 is minimum. Denote /j = E[X] and a2 = Var(X). Since

E[(X - )2] E[X2]- 2xE[X] + x2

a2+ u2—2xp + x2

a2+ (x- p)2,
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the minimum is obtained for x = uy, and in this case
mMIinE[(X —x)2\= a2.
X
It follows that the mean, /X, is the best approximation of the random variable
X in the least squares sense.
2.9.2 Change of measure in an expectation

Let P,Q : T — R be two probability measures on 2 such that there is an
integrable random variable / : 17 —R, such that dQ = fdP. This means

Q{A)= [ dQ= ff(uj)dP(u), ViGJ.
JA JA

Denote by Kp and E”™ the expectations with respect to the measures P and
Q, respectively. Then we have

Ea[X}= [ X(uj)dQ(u)= [ X(u)f(u)dP(u) =Ep[fX].
Ja Jdn
Exercise 2.9.8 Let g :[0,1] -* [0,00) be a integrable function with

[ g(x)dx = 1
Jo

Consider Q : 6([0,1]) —» R, given by Q(A) = [/ g(x)dx. Show that Q is a
probability measure on (f2 = [0,1],£?([0,1])).

2.10 Basic Distributions

We shall recall a few basic distributions, which are most often seen in appli-
cations.

Normal distribution A random variable X is said to have a normal distri-
bution if its probability density function is given by

P(x) -

with fj, and a > 0 constant parameters, see Fig. 2.2(a). The mean and variance
are given by
E[X] = u, Var[X] = a2.

If X has a normal distribution with mean /i and variance o2, we shall write

X ~ N(n, a2).
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Exercise 2.10.1 Let ctf3 G R. Show that if X is normal distributed, with
X ~ N(fj,,a2), then Y = aX + /3 is also normal distributed, with

Y ~ N(ani + (3, a2a2).

Log-normal distribution Let X be normally distributed with mean /i and
variance a2. Then the random variable Y = ex is said to be log-normal
distributed. The mean and variance of Y are given by

E[Y] = e»+rT
Var[Y} e M~V 2- 1.

The density function of the log-normal distributed random variable Y is given

by
p{x) = — ==e 2 , x>0,
Xey/rTT

see Fig. 2.2(b).

Definition 2.10.2 The moment generating function of a random variable X
is the function mx(t) = E[e4‘] = J etxp(x)dx, where p(x) is the probability
density function of X, provided the integral exists.

The name comes from the fact that the nth moments of X, given by yn —
E[Xn], are generated by the derivatives of mx(t)

dnmx (t)
dtn  |to

It is worth noting the relation between the Laplace transforlg)rg\ and the mo-

ment generating function, in the case x > 0, C(p(x))(t) = / e~txp(x)dx =
Jo

Exercise 2.10.3 Find the moment generating function for the exponential
distribution p(x) = Ae-I\ x > 0, A> 0.

Exercise 2.10.4 Show that if X and Y are two independent random vari-
ables, then mx+y(t) = fnx(t)m,Y{t).

Exercise 2.10.5 Given that the moment generating function of a normally
distributed random variable X ~ N(/j,,a2) is m(t) = E[eiA] = e+t a , show
that
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Figure 2.2: (a) Normal distribution, (b) Log-normal distribution, (c) Gamma
distributions, (d) Beta distributions.

(@) E[YNn] = er+n242/2; where Y = ex .

(b) Show that the mean and variance of the log-normal random variable
Y = ex are

E\Y] = en+a2/2, Var[Y] = e2™ 2(e™ - 1).

Gamma distribution A random variable X is said to have a gamma distri-
bution with parameters a > 0, /3> 0 if its density function is given by
xa-ie-all3

P(X)= yre) ' x- 0

where I (a) denotes the gamma function

POO

MN@a) = / ya—~le~ydy.
Jo

It is worth noting that for a = n, integer, we have I'(n) = (n —1).. The
gamma distribution is provided in Fig. 2.2(c). The mean and variance are
given by

BAO = a3 Var[X] = a/32.
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The case a = 1 is known as the exponential distribution, see Fig. 2.3(a). In
this case

p(x) = “B~X*i x>0

The particular case when a = n/2 and BB = 2 becomes the %2—distribution
with n degrees of freedom. This characterizes also a sum of n independent
standard normal distributions.

Beta distribution A random variable X is said to have a beta distribution
with parameters a > 0, /3> 0 if its probability density function is of the form

p(x>= bm ) ' 0SxS1°

where B(a,/3) denotes the beta function.2 See see Fig. 2.2(d) for two partic-
ular density functions. In this case

B =
A e+ /3
Poisson distribution A discrete random variable X is said to have a Poisson
probability distribution if
\k
P(X = k)= —e~\ k=0,1,2,...,
with JZ1> 0 parameter, see Fig. 2.3(b). In this case E[X] = J1land Var[X} = J1

Pearson 5 distribution Let a, f3> 0. A random variable X with the density

function I e-/3/x

P{X) = <Il'(@) [x/NT»" X -°

is said to have a Pearson 5 distribution3 with positive parameters a and A3 It
can be shown that

A B2
ifa>1 . ‘ e —f -, r ifa > 2
E[X]={ a—1 2 Vari)=t' a7
00, otherwise, [ oo, otherwise.
2Two definition formulas for the beta functions are B(a,(3) = and B{a.,P) =

l02/*_1(1-r/)3_1-
3The Pearson family of distributions was designed by Pearson between 1890 and 1895.
There are several Pearson distributions, this one being distinguished by the number 5.
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A=15 0<k<3D

Figure 2.3: (a) Exponential distribution, (b) Poisson distribution.

The mode of this distribution is equal to -------- .

The Inverse Gaussian distribution Let /n, /1> 0. A random variable X
has an inverse Gaussian distribution with parameters // and A if its density
function is given by

p(x) = (2.10.3)

We shall write X ~ 1G(ji. A). Its mean, variance and mode are given by

where the mode denotes the value xm for which p(x) is maximum, i.e., p(xo0) =
maxxp(x). This distribution will be used to model the time instance when a
Brownian motion with drift exceeds a certain barrier for the first time.

2.11 Sums of Random Variables

Let X be a positive random variable with probability density /. We note first
that for any s > 0

POO

E[e~sX] = e~sxf{x)dx = £(f(x))(s), (2.11.49)

/
Jo
where C denotes the Laplace transform.

The following result provides the relation between the convolution and the
probability density of a sum of two random variables.
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Theorem 2.11.1 Let X andY be two positive, independent random variables
with probability densities f and g. Let h be the probability density of the sum
X +Y. Then

h®) = (Fr9)(t)= [ f(t-r)g(rdT = J(]: f(r)g(t —t)dr.

Proof: Since X and Y are independent, we have
E[e- S(X+Y)] = we-BX|E [e-SY]_

Using (2.11.4) this can be written in terms of Laplace transforms as

E(h)(s) = C()(s)C(9)(s).
Using Exercise 2.11.2, the density h can be written as the desired convolution
h(t) = «/ ~g)(1). n

Exercise 2.11.2 If F(s) = C(f(t))(s), G(s) = C(g(t))(s) both exist for s >
a> 0, then
H(s) —F(s)G(s) —C(h(t))(s),

for
4t) = (f*g)(t)= f f({t —mpg(mdr = f f{r)g(t - r)dr.
Jo Jo

Using the associativity of the convolution
(f*g)*k = f*(g*k) = f*g*k

we obtain that if /, g and k are the probability densities of the positive,
independent random variables X, Y and Z, respectively, then / *g * K is the
probability density of the sum X + Y + Z. The aforementioned result can be
easily extended to the sum of n random variables.

Example 2.11.3 Consider two independent, exponentially distributed ran-
dom variables X and Y. We shall investigate the distribution of the sum
X + Y. Consider f(t) = g(t) = Xe~xt in Theorem 2.11.1 and obtain the
probability density of the sum

h(t) = f \e~x-: T\e~Xrdr = \2te~xt, t> 0,
Jo

which is Gamma distributed, with parameters a = 2 and = 1/J1.

Exercise 2.11.4 Consider the independent, exponentially distributed random
variables X X\ Xt and Y  X¥e X2t, with Ax  A2. Show that the sum is
distributed as

X +Y ~ TAIN - (e~A - e~XIt), t> 0.
AX—A2
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Figure 2.4: The orthogonal projection of the random variable X on the space
Sg is the conditional expectation Y = E[X]£7].

2.12 Conditional Expectations

Let X be a random variable on the probability space (17,J7,P), and Q be a
m-field contained in J~ Since X is ~-measurable, the expectation of X, given
the information J~ must be X itself, a fact that can be written as E[X]J7] = X
(for details see Example 2.12.5).

On the other hand, the information Q does not completely determine X.
The random variable that makes a prediction for X based on the information
Q is denoted by E[X](y], and is called the conditional expectation of X given
Q. This is defined as the random variable Y = Epf]£], which is the best
approximation of X in the least squares sense, i.e.

E[(X - Y)2 < E[(X - Z)% (2.12.5)

for any ~-measurable random variable Z.
The set of all square integrable random variables on 2 forms a Hilbert
space with the inner product

(X, Y)=E[XY],

see Exercise 2.12.10. This defines the norm |X]]2 = E[X2], which induces the
distance d(X, Y) = [P~ || Denote by Sg the set of all *-measurable random
variables on 0. We shall show that the element of Sg that is the closest to
X in the aforementioned distance is the conditional expectation ¥ = E[X]C7?],
see Fig. 2.4. Let Xx denote the orthogonal projection of X on the space Sg.
This satisfies

E[{X-X%)(Z-X%)\=0, VZ€Sg. (2.12.6)
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The Pythagorean relation
\N\X- X J2+ IIZ- Xx[B= WX- ZIp, VZ G5e
implies the inequality
W- xLR<AWX - A2  vzesg,
which is equivalent to
E[(X - X£)2 < E[(X - Z)\ VZeSg,

which yields X+ = E[X]C/], so the conditional expectation is the orthogonal
projection of X on the space Sg. The uniqueness of this projection is a con-
sequence of the Pythagorean relation. The orthogonality relation (2.12.6) can
be written equivalently as

E[(X - Y)U] =0, VC/ G Sg.
Therefore, the conditional expectation Y satisfies the identity
E[XU]=E[YU], VU G Sg.

In particular, if we choose U = x A, the characteristic function of aset A G Q
then the foregoing relation yields

J XdP :J YdP, VAeg.

We arrive at the following equivalent characterization of the conditional ex-
pectations.
The conditional expectation of X given Q is a random variable satisfying:

1. E[X]C] is Q-measurable;
2. fAE[X\QdP - fAX dP, VAeg.

Exercise 2.12.1 Consider the probability space (fi,J7,P), and let Q be a cF
field included in T . If X is a Q-measurable random variable such that

[ XdP =0 VAeG,
Ja
then X = 0 as.

It is worth mentioning here an equivalent famous result, which relates to
conditional expectations:
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Theorem 2.12.2 (Radon-Nikodym) Let (fI1,.77,P) be a probability space
and Q be a o-field included in T. Then for any random variable X there is a
Q-measurable random variable Y such that

[ XdP = [ YdP, VAet. (2.12.7)
JAa JA

Radon-Nikodym’s theorem states the existence of Y . In fact this is unique
almost surely by the application of Exercise 2.12.1.

Example 2.12.3 Show that if Q — then E[X](] = E[X],

Proof: We need to show that E[X] satisfies conditions 1 and 2. The first one
is obviously satisfied since any constant is ~-measurable. The latter condition
is checked on each set of Q. We have

[ XdP = E[X]=E[X] [ dP= [ E[X]dP
Jn Jn Jfl

[ XdP = [ e[X]dP.

Jo Jo

Example 2.12.4 Show that E[E[X]C?]] = E[X], i.e. all conditional expecta-
tions have the same mean, which is the mean of X.

Proof: Using the definition of expectation and taking A = I2in the second
relation of the aforementioned definition, yields

E[EIXICT = [ E[X\G]dP:} XdP = E[X],
Jn n
which ends the proof. ]

Example 2.12.5 The conditional expectation of X given the total informa-
tion J is the random variable X itself, i.e.

E[X\T] = X.

Proof: The random variables X and Epfl-P] are both P-measurable (from
the definition of the random variable). Prom the definition of the conditional
expectation we have

f E[X\F\dP= [ XdP, MAeF.
Ja Ja
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Exercise 2.12.1 implies that E ~J 7 = X almost surely. I

General properties of the conditional expectation are stated below without
proof. The proof involves more or less simple manipulations of integrals and
can be taken as an exercise for the reader.

Proposition 2.12.6 Let X andY be two random variables on the probability
space (fi,J7,P). We have

1. Linearity:
E[aX + bY\g] = aE[X\g\ + bE[Y\(q], Vab € R;
2. Factoring out the measurable part:
E[XY\g\ = XE[Y\g\

if X is g-measurable. In particular, E[X[C7] = X.
3. Tower property (“the least information wins”):

E[E[X\gI\n] = E[E[X]H]IS] = E[X\H], ifU C Q\
4- Positivity:
E[X\o\ > 0,ifX > 0;

5. Expectation of a constant is a constant:
E[c\g] = c.
6. An independent condition drops out:
E[X\g}=E[X],
if X is independent ofg.

Exercise 2.12.7 Prove the property 3 (tower property) given in the previous
proposition.

Exercise 2.12.8 Toss afair coin 4 times. Each toss yields either H (heads)
or T (tails) with equal probability.

(a) How many elements does the sample space fi have?

(b) Consider the events A = {Two of the 4 tosses are H), B = {The first
toss is H}, and C = {3 of the 4 tosses are H}. Compute P(A), P(B) and
P(C).

(c) Compute P(A MNMB) and P(B IMC).

(d) Are the events A and B independent?

(e) Are the events B and C independent? Find P(B\C).
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(/) Consider the following information sets (a-algebras)

F = [we know the outcomes of the first two tosses}

Q= {we know the outcomes of the tosses but not the order}.

How can you state in words the information set F D Q?
(g) Prove or disprove: (i) Ae Q, (ii) BE£F. and (in) C € Q.

(h)Define the random variables

X = number of H —number ofT

Y = number ofT before the first H.

Show that X is Q-measurable while Y is not Q-measurable.

(i) Find the expectations E[X], E[Y] and E[X](?].

Exercise 2.12.9 Let X be a random variable on the probability space (fi, T, P),
which is independent of the a-field Q C J-. Consider the characteristic function

Exercise 2.12.10 Let L2(Q, J7,P) be the space of square integrable random
variables on the probability space (fi, J7,P). Define the following scalar product
on L2(Q,F,P)

(X,Y) =E[XY].

(a) Show that L2(Q, F, P) becomes a Hilbert space;

(b) Show that if £ is a random variable in L2(Q, F, P) and Q is a a-field
contained in F, then HEJ£E7] is the orthogonal projection of £ onto the subspace
of L2("2 F,P) consisting of Q-measurable random variables.
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Exx1

Figure 2.5: Jensen’s inequality </?(E[X]) < E[</?(X)] for a convex function (p.

2.13 Inequalities of Random Variables

This section prepares the reader for the limits of sequences of random variables
and limits of stochastic processes. We recall first that an infinite differentiable
function f(x), has a Taylor series at a if

Im = /(»)+" (*- “>+ - 2+ - °)3+ memm
where x belongs to an interval neighborhood of a.

Exercise 2.13.1 Let f(x) be afunction that is n + 1 times differentiable on
an interval 1, containing a. Show that there is a£ G/ such that for any x £ |

f(x) = f(a) + N -(x - @)+ meet X - an+ - a)n+l.

We shall start with a classical inequality result regarding expectations.

Theorem 2.13.2 (Jensen’s inequality) Let 9: R —=R be a convex func-
tion and let X be an integrable random variable on the probability space (f2, Jr,P).
If <p(X) is integrable, then

<p(E[X}) < E[<p{X)].

Proof: We shall assume ip twice differentiable with <" continuous. Let uy =
E[X]. Expand ipin a Taylor series about u, see Exercise 2.13.1, and get

4{x) = 4>(n) + - M+ A</ - m)2,



Basic Notions 33

with £ in between x and /1 Since ip is convex, ip" > 0, and hence

A Xx) > <p(p) + ¥'(*)(* - FP
which means the graph of tp(x) is above the tangent line at (k <p(X)). Replac-
ing x by the random variable X, and taking the expectation yields
EfcPO] > E[p(u) + <t/(p)(X- /)] = <p(i) + 4/ (W)(E[X] - )
= }é(d) =
which proves the result. ]

Fig. 2.5 provides a graphical interpretation of Jensen’s inequality. If the
distribution of X is symmetric, then the distribution of <p(X) is skewed, with
<p(E[X\) < EM *)].

It is worth noting that the inequality is reversed for ip concave. We shall
present next a couple of applications.

A random variable X : —R is called square integrable if
E[X2] = j Wuo\2dP(bj) — f x2p(x)dx< oo.
JA JR

Application 2.13.3 If X is a square integrable random variable, then it is
integrable.

Proof: Jensen’s inequality with (p(x) = x2 becomes
E[X]2 < E[X2].

Since the right side is finite, it follows that E[X] < o0, so X is integrable.
[ |

Application 2.13.4 Ifmx(t) denotes the moment generating function of the
random variable X with mean u, then

fnx{t) >
Proof:  Applying Jensen’s inequality with the convex function <p(X) = ex
yields

eE[X] < LWexy

Substituting tX for X implies that

eHfX] < E[etx\ (2.13.8)
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Using the definition of the moment generating function mx(t) = E[efX] and
that E[iX] = £E[X] = tfi, then (2.13.8) leads to the desired inequality. ]

The variance of a square integrable random variable X is defined by
Var{X) = E[X2]-E[X}2.

By Application 2.13.3 we have Var(X) > 0, so that there is a constant ax > 0,
called standard deviation, such that

af = Var(X).
Exercise 2.13.5 Prove the following identity:
Var[X] = E[(X-E[X])2].

Exercise 2.13.6 Prove that a non-constant random variable has a nonzero
standard deviation.

Exercise 2.13.7 Prove the following extension of Jensen’s inequality: Ifip is
a convex function, then for any a-field Q C T we have

<EHRARQ) <em x)\q].

Exercise 2.13.8 Show the following:
(@) 1EXTI<ELIXIL
(b) 1I8XICA] < HIX] Bl for any a-field Q C J7,
() \E[X]\r < E[| /1M /or r > 1,
(d) 1EXICIr < E[IX]r |7, for any a-field QCF andr > 1

Theorem 2.13.9 (Markov’s inequality) For any Ap > 0, we have the
following inequality:

P(n-,\X(1)\>X)<~AE[\XT

Proof: Let A = {lj; |[XW)] > A}. Then

E[IXIP] J[Q Wuwi\pdP (u)> J[A \X(©)\pdP{u)> J[A \pdP(u)

XIDJ[ dP(u) = AP(A) = ApP(IX] > A).

Dividing by \p leads to the desired result. ]
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Theorem 2.13.10 (Tchebychev’s inequality) If X is a random variable
with mean 4 and variance a2, then

2
P(u;Ne )-ml>A)<”.

Proof: Let A = {w; JAfw) —L\ > A}. Then
a2 = Var(X) = E[(X-p)2Z=[ (X- /n2dP > f (X - /i)2dP
Jn JA

> A2 [ dP = A2P{A) = A2P(u; |X(Ww) -y \> A).
Ja

Dividing by A2 leads to the desired inequality. ]

The next result deals with exponentially decreasing bounds on tail distri-
butions.

Theorem 2.13.11 (Chernoff bounds) Let X be a random variable. Then
for any A> 0 we have

E[et
1 P{x>\)<1;e>A)q, V*>0;

TolgtXi
2 P(X <A< lTA\NVt<O.

Proof: 1. Lett > 0 and denote Y = etx. By Markov's inequality

P(Y > ext) < LU
e

Then we have

P(X>A) = P(tx> Ay =p@E™5 AN
_ E[Y] E[etx]
= P(Y > ext) < oM - BN
2. The case t < 0 is similar. [

In the following we shall present an application of the Chernoff bounds for
the normal distributed random variables.

Let X be arandom variable normally distributed with mean /i and variance
a2. It is known that its moment generating function is given by

m(t) = EJetx] =

Using the first Chernoff bound we obtain

P{X> A < = e -x» H212j2\Mt >0,
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which implies

min[(/i —X)t+ ~
P(X> A < es° 2

It is easy to see that the quadratic function f(t) = (y —A)t + \t292 has the

minimum value reached for t = —0 . Since t > 0, A needs to satisfy A > ti.
N1
Then (
mm \-u\ (A- uy
t>o0 V o2 / r2

Substituting into the previous formula, we obtain the following result:

Proposition 2.13.12 If X is a normally distributed variable, X N(fi,a2),
then for any A > fi
_(A-jif
P(X >A<e 2<2

Exercise 2.13.13 Let X be a Poisson random variable with mean A > 0.

(a) Show that the moment generating function of X is m(t) = e'~e*~1);
(6) Use a Chemoff bound to show that

P{X >k)< eAet-1)-tfc, t>0

Markov’s, Tchebychev's and Chernoff's inequalities will be useful later
when computing limits of random variables.

Proposition 2.13.14 Let X be a random variable and f and g be two func-
tions, both increasing or decreasing. Then

E[f(X)g(X)] > E[f(X)]E[9(X)]. (2.13.9)
Proof: For any two independent random variables X and Y. we have
[F{.X)-f{Y))(g{X)-g{Y))> O

Applying expectation yields

E[f(X)g(X)] + E[f(Y)g(Y)] > E[f(X)IE[f(Y)]+E[f(Y)]E[f(X)].
Considering Y as an independent copy of X we obtain

2E[f(X)g(X)] > 2E[f(X)}E[9(X)}-
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Exercise 2.13.15 Show the following inequalities:
(a) E[X2] > E[X]2;
(b) E[X sinh(X)] > E[X]E[sinh(X)];
(c) E[X6] > E[X]E[X5];
(d) E[X6] > E[X3]2.

Exercise 2.13.16 For any n,k > 1, show that
E[X2(n+fct+i)] > E[X2fc+l] E pf2n+1].

2.14 Limits of Sequences of Random Variables

Consider a sequence (Xn)n>\ of random variables defined on the probability
space (fi, J7,P). There are several ways of making sense of the limit expression
X = lim Xn. This is the subject treated in the following sections.

71—»00
Almost Sure Limit The sequence Xn converges almost surely to X, if for
all states of the world oo, except a set of probability zero, we have

Iim Xn(w) = X (.
n—oo
More precisely, this means

p gui; lim Xn(n) = =1
n—oo /

and we shall write as-lim Xn = X. An important example where this type of

n—00

limit occurs is the Strong Law of Large Numbers:

If Xn is a sequence of independent and identically distributed random vari-
Xi+ ---+ Xn

ables with the same mean p, then as-liie . = fx

This result ensures that the sample mean tends to the (unknown) popu-
lation mean p almost surely as n — 00, a fact that makes it very useful in
statistics.

Mean Square Limit Another possibility of convergence is to look at the
mean square deviation of Xn from X. We say that X n converges to X in the
mean square if

lim E[(X,, - X)2]= 0.

n —>o00

More precisely, this should be interpreted as

lim [ (Xn(w) - X{uj))2dP(u) = 0.
n->°°Ja
This limit will be abbreviated by ms-lim Xn = X. The mean square conver-

n —>00

gence is useful when defining the Ito integral.
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Proposition 2.14.1 Consider a sequence Xn of random variables such that
there is a constant k with E[Xn] — k and Var(Xn) —0 as h — 00. Show

that ms-lim Xn = k.
n—00

Proof: Since we have

EN\Xn- k¥] = E[XB- 2kXn+ k2] = E[X2]- 2kE[Xn] + k2
(E[X2] - E[XNn]2) + (E[X,]2- 2KE[Xn] + K2)
Var(Xn) + (E[Xn]-k)\

the right side tends to 0 when taking the limit n —oo. LU

Exercise 2.14.2 Show the following relation
E[{X - Y)2Z} = Var[X] + Var[Y}+ (E[X] - E[¥])2- 2CoVv(X,Y).

Exercise 2.14.3 If Xn tends to X in mean square, with E[X2] < oo, show
that:

(&) E[Xn] —E[X] as n —o00;

(b) E[X2} > E[X2] as n -> 00;

(c) Var[Xn] —=Var[X] as n —00;

(d) Cov(Xn,X) -4 Var[X] as n —=00.

Exercise 2.14.4 1f Xn tends to X in mean square, show that E[Xn [H tends
to E[X]H] in mean square.

Limit in Probability The random variable X is the limit in probability of
Xn if for n large enough the probability of deviation from X can be made
smaller than any arbitrary e. More precisely, for any e > 0

Iig P(a; \WXn(w) —X(W)] <e) = 1L
n—00
This can also be written as
lim P(cj; [X,(u)) —Xw)] > ¢€) = 0.
n—00 4

This limit is denoted by p-lim Xn= X.

—>00

It is worth noting that both almost certain convergence and convergence
in mean square imply the convergence in probability.

Proposition 2.14.5 The convergence in mean square implies the convergence
in probability.
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Proof: Let ms;\li%an = Y. Let e > 0be arbitrarily fixed. Applying Markov’'s
inequality with X —Yn —Y, p —2 and A= € yields

0< PA\Yn-Y |>e) < “E[\Yn- F]2.
The right side tends to 0 as n —=00. Applying the Squeeze Theorem we obtain
lim PAYn-Y |>¢) =0,
n—o0
which means that Yn converges stochastically to Y. I

Example 2.14.6 Let X n be a sequence of random variables such that E[| Xn | —

0 as n —=00. Prove that p-lim Xn= 0.
n—*00

Proof: Let e > 0 be arbitrarily fixed. We need to show
I_Illyrgo P(‘l(li; IXn(W] > ¢e) = 0. (2.14.10)
Prom Markov's inequality (see Theorem 2.13.9) we have
0<P(n-\Xn(n)\>e) <M M .
Using the Squeeze Theorem we obtain (2.14.10). ]

Remark 2.14.7 The conclusion still holds true even in the case when there
is ap > 0 such that E[]X,]P] =0 as n -> oo.

Limit in Distribution We say the sequence X n converges in distribution to
X if for any continuous bounded function <p(x) we have

lim EMXM)]=EWNX)].

We make the remark that this type of limit is even weaker than the stochastic
convergence, i.e. it is implied by it.

An application of the limit in distribution is obtained if we consider tp(x) =
e%x In this case the expectation becomes the Fourier transform of the prob-
ability density

E[y3(X)] = J eltxp(x) dx = p(t),
and it is called the characteristic function of the random variable X. It follows

that if X n converges in distribution to X, then the characteristic function of
X n converges to the characteristic function of X. From the properties of the
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Fourier transform, the probability density of X n approaches the probability
density of X.
It can be shown that the convergence in distribution is equivalent to

Jim Fn(x) = F(x),

whenever F is continuous at X, where Fn and F denote the distribution func-
tions of Xn and X, respectively. This is the reason that this convergence bears
its name.

Exercise 2.14.8 Consider the probability space (Q,,T,P), with ft —[0,1], J&
the cr-algebra of Borel sets, and P the Lebesgue measure (see Example 2.3.3).
Define the sequence X n by

_ 1 0 ifn<1/2 _r1 ifn<1/2
2n 11, ifu> 1/2, 21 \ 0, ifn > 1/2.

Show that X n converges in distribution, but does not converge in probability.

2.15 Properties of Mean-Square Limit

This section deals with the main properties of the mean-square limit, which
will be useful in later applications regarding the Ito integral.

Lemma 2.15.1 Ifms-lim Xn= 0 and ms-lim Yn = 0, then

71—» 00 7i—»00

ms-lim (Xn + Yn) —O0.
71—» 00
Proof: It follows from the inequality
(x +y)2< 2x2+ 2y2.

The details are left to the reader. ]

Proposition 2.15.2 Ifthe sequences of random variables X n andYn converge
in the mean square, then

1 ms-lim (Xn+ Yn) = ms-lim Xn+ ms-lim Yn
n-+o0o0 n—CD n—CD

2. ms-lim (cXn) = ¢ mms-lim Xn, Vc€ M
71—>AD n—00

Proof: 1 Let ms-lim Xn—X and ms-lim Yn = Y. Consider the sequences

71—=00 71—>00

Xn=Xn—X and YA —Yn —Y. Then ms-lim X'n= 0 and ms-lim Yl = 0.
Applying Lemma 2.15.1 yields
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ms-lim (X'n+ Y£) = 0.
n—too
This is equivalent to
ms-lim (Xn —X + Yn—Y) = 0,
n—00
which becomes
ms-lim (Xn+ Yn) = X + Y.

n-t o

2. The second relation can be proved in a similar way and is left as an exercise
to the reader. ]

Remark 2.15.3 It is worthy to note that
-lim (X nY -lim (Xn)- ms-lim (Yn).
msnltrgo( nyn) msnlr.rgo( n) msn_|>rgo( n)
Counter-examples can be found, see Exercise 2.15.5.

Exercise 2.15.4 Use a computer algebra system to show the following:
- 2
g
((()ig 0= /- 5 1/2;
fee xA
{b) I ANTT i = 00

Vb -Maév)-

Exercise 2.15.5 Let X be a random variable with the probability density func-
tion

P{X) = rfl75M 4/5)> + |’ 1-°-
(a) 5/iow that E[X2] < 00 and E[X4] = 00;

(b) Construct the sequences of random variables Xn = Yn = ~X. Show

that ms-lim Xn = 0, ms-lim Yn = 0, but ms-lim (XnYn) = 00.
Nn—00 n—¥aoo —>00

2.16 Stochastic Processes

A stochastic process on the probability space (2 F, P) is a family of random
variables Xt parameterized by t € T, where T C R. If T is an interval we
say that Xt is a stochastic process in continuous time. If T = {1,2,3,...}
we shall say that Xt is a stochastic process in discrete time. The latter case
describes a sequence of random variables. The reader interested in these type
of processes can consult Brzezniak and Zastawniak [9].

The aforementioned types of convergence can be easily extended to con-
tinuous time. For instance, Xt converges almost surely to X as t —=00 if

p (u; lim Xt(oj) = X(W)'J) —1
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The evolution in time of a given state of the world u G given by the function
t i—>Xt(cj) is called a path or realization of Xt. The study of stochastic
processes using computer simulations is based on retrieving information about
the process Xt given a large number of its realizations.

Next we shall structure the information field F with an order relation
parameterized by the time t. Consider that all the information accumulated
until time t is contained by the a-field Ft- This means that Ft contains the
information containing events that have already occurred until time t, and
which did not. Since the information is growing in time, we have

Jsci[cCl

for any s, t£T with s <t. The family Ft is called a filtration.

A stochastic process Xt is said to be adapted to the filtration Ft if Xt is
Ft- measurable, for any ( £ T. This means that the information at time t
determines the value of the random variable Xt.

Example 2.16.1 Here there are afew examples offiltrations:

1. Ft represents the information about the evolution of a stock until time
t, witht > 0.

2. Ft represents the information about the evolution of a Black-Jack game
until time t, with t > 0.

3. Ft represents the medical information of a patient until time t.

Example 2.16.2 If X is a random variable, consider the conditional expec-
tation
Xt = E[X\Ft}.

From the definition of conditional expectation, the random variable Xt is Ft-
measurable, and can be regarded as the measurement of X at time t using
the information Ft- If the accumulated knowledge Ft increases and eventually
equals the cr-field F, then X = E[X|.F], i.e. we obtain the entire random
variable. The process Xt is adapted to Ft-

Example 2.16.3 Don Joe goes to a doctor to get an estimation of how long
he still has to live. The age at which he will pass away is a random variable,
denoted by X. Given his medical condition today, which is contained in Ft,
the doctor can infer an average age, which is the average of all random in-
stances that agree with the information to date; this is given by the conditional
expectation Xt = E[X| . The stochastic process Xt is adapted to the medical
knowledge Ft-
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We shall define next an important type of stochastic process.4

Definition 2.16.4 A process Xt, t GT, is called a martingale with respect to
the filtration Ft if

1. Xt is integrable for eacht £ T;

2. Xt is adapted to the filtration Ft,

3. Xs = E[Xt\Fs], Vs<t.

Remark 2.16.5 The first condition states that the unconditional forecast is
finite E[|Xt]] = / |Xj| dP < oo. Condition 2 says that the value Xt is known,
J

n
given the information set Ft- This can also be stated by saying that Xt is
JVmeasurable. The third relation asserts that the best forecast of unobserved
future values is the last observation on Xt.

Example 2.16.6 Let Xt denote Mr. Li Zhu salary after t years of work at
the same company. Since Xt is known at time t and it is bounded above, as all
salaries are, then the first two conditions hold. Being honest, Mr. Zhu expects
today that his future salary will be the same as today’s, i.e. Xs — E[Xt|.Fs],
for s <t. This means that X t is a martingale.

Exercise 2.16.7 If X is an integrable random variable on (M, F, P), and Ft
is afiltration. Prove that Xt = E[X|¥] is a martingale.

Exercise 2.16.8 Let Xt and Yt be martingales with respect to the filtration
Tt. Show that for any a.b.c G K the process Zt — aXt + bYt + ¢ is an Ft-
martingale.

Exercise 2.16.9 Let Xt and Yt be martingales with respect to the filtration
Tt.

(a) Is the process XtYt always a martingale with respect to Tt ?

(b) What about the processes X f and Y 2?

Exercise 2.16.10 Two processes Xt and Yt are called conditionally uncorre-
lated, given Ft, if

E[(Xt- Xa)(Yt- YS\FS] = 0, VO0<s<t<oo.

Let Xt and Yt be martingale processes. Show that the process Zt = XtYt is
a martingale if and only if Xt and Yt are conditionally uncorrelated. Assume
that Xt, Yt and Zt are integrable.

4The concept of martingale was introduced by Levy in 1934.
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In the following, if Xt is a stochastic process, the minimum amount of
information resulted from knowing the process X s until time t is denoted by
Tt = €(Xs;s <t). This is the cr-algebra generated by the events {w; Xs(u) G
(a, b)}, for any real numbers a < band s <t.

In the case of a discrete process, the minimum amount of information
resulted from knowing the process Xk until time n is Tn = cr(Xk] k < n), the
cr-algebra generated by the events {uj:X}.{lo) G (a, 6)}, for any real numbers
a<band k <n.

Exercise 2.16.11 Let Xn, n > 0 be a sequence of integrable independent
random variables, with E[Xn] < oo, for all n > 0. Let So = -Xb, Sn =
X0 + eee+ X n. Show the following:

(@) Sn — is an Tn-martingale.

(b) If E[Xn] = 0 and E[X2] < 00, Vn > 0, then S2 —Var(Sn) is an
Tn-martingale.

Exercise 2.16.12 Let Xn, n > 0 be a sequence of independent, integrable
random variables such that E[X,] = 1for n > 0. Prove that Pn —Xo sX\ m=m
Xn is an Fn-martingale.

Exercise 2.16.13 (a) Let X be a normally distributed random variable with
mean 4 ~ 0 and variance a2. Prove that there is a unique B ¢ 0 such that
Lesx} = 1

(b) Let (Xi)i>o be a sequence of identically normally distributed random vari-
ables with mean /i ¢ 0. Consider the sum Sn = X j. Show that Zn = eeSn
is a martingale, with 9 defined in part (a).

In section 10.1 we shall encounter several processes which are martingales.



Chapter 3

Useful Stochastic Processes

This chapter deals with the most common used stochastic processes and their
basic properties. The two main basic processes are the Brownian motion and
the Poisson process. The other processes described in this chapter are derived
from the previous two. For more advanced topics on the Brownian motion,
the reader may consult Freedman [19], Hida [22], Knight [27], Karatzas and
Shreve [26], or Morters and Peres [34].

3.1 The Brownian Motion

The observation first made by the botanist Robert Brown in 1827, that small
pollen grains suspended in water have a very irregular and unpredictable state
of motion, led to the definition of the Brownian motion, which is formalized
in the following.

Definition 3.1.1 A Brownian motion process is a stochastic process Bt, t >
0, which satisfies

1. The process starts at the origin, Bg= 0;

2. Bt has independent increments;

3. The process Bt is continuous in t;

/m The increments Bt —Bs are normally distributed with mean zero and
variance \t —s|,

Bt- Bs~ N(0,1L- s]).

The process Xt —x + Bt has all the properties of a Brownian motion that
starts at x. Condition 4 states that the increments of a Brownian motion are
stationary, i.e. the distribution of Bt —Bs depends only on the time interval
t—s

P{Bt+s - Bs<a) = P(Bt- B0 <a) = P{Bt < a).

45
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It is worth noting that even if Bt is continuous, it is nowhere differentiable.
From condition 4 we get that Bt is normally distributed with mean E[P"] = 0
and Var[Bt}=t

Bt ~ N(0,1).

This implies also that the second moment is E[P2] = t. Let 0 < s <t. Since
the increments are independent, we can write

E[BSBt] = E[(Pe- BO)(Bt- Bs)+ BS}= E[Bs- BO]JE[Bt- Bs]+ E[BZ] = s.

Consequently, Bs and Bt are not independent.

Condition 4 also has a physical explanation. A pollen grain suspended in
water is kicked about by a very large number of water molecules. The influence
of each molecule on the grain is independent of the other molecules. These
effects are averaged out into a resultant increment of the grain coordinate.
According to the Central Limit Theorem, this increment has to be normally
distributed.

If the exterior stochastic activity on the pollen grain is represented at
time t by the noise f1/j, then the cummulative effect on the grain during the
time interval [0,f] is represented by the integral Wt = J(jVsds, which is the
Brownian motion.

There are three distinct classical constructions of the Brownian motion,
due to Wiener [47], Kolmogorov [28] and Levy [33]. However, the existence of
the Brownian motion process is beyond the goal of this book.

It is worth noting that the processes with stationary and independent
increments form a special class of stochastic processes, called Levy processes;
so, in particular, Brownian motions are Levy processes.

Proposition 3.1.2 A Brownian motion process Bt is a martingale with re-
spect to the information set Ft = o(Ba\s < t).

Proof: The integrability of Bt follows from Jensen’s inequality
E[|Pt]]2 < E[B2 = Var(Bt) = \t\ < oo.
Bt is obviously J-j-measurable. Let s <t and write Bt = Bs+ (Bt —Bs). Then

E[Bt\Fa] = E[BS+ (Bt- B8)\r'g]
= EfPsL.LF] + E[Bt —BS\J-9
= Bs+ E[Bt —Ps] = Bs + E[Bt-s —Po] = Psi
where we used that Bs is Ps-predictable (from where E[PS|PS] = Bs) and that

the increment Bt —Bs is independent of previous values of Bt contained in the
information set Tt —c(Ps;s <t). L
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A process with similar properties as the Brownian motion was introduced
by Wiener.

Definition 3.1.3 A Wiener process Wt is a process adapted to afiltration J~
such that

1. The process starts at the origin, Wo = 0;
2. Wt is a squared integrable Jt-martingale with
E[(Wt- W82}=t-s, s<t;
3. The process Wt is continuous in t.
Since Wt is a martingale, its increments satisfy
E[Wt- Ws] = E[Wt- WS\TS\ = E[Wt\Fs] - = Ws- Ws =0,
and hence E[Wt}= 0. It is easy to show that
Var[Wt- Ws]= 1- s\ Var[Wt}=t.

Exercise 3.1.4 Show that a Brownian process Bt is a Wiener process.

The only property Bt has and Wt seems not to have is that the increments are
normally distributed. However, it can be shown that there is no distinction
between these two processes, as the famous Levy theorem states, see section
10.2. From now on, the notations Bt and Wt will be used interchangeably.

Infinitesimal relations In stochastic calculus we often need to use infinites-
imal notation and its properties. If dWt denotes the infinitesimal increment
of a Wiener process in the time interval dt, the aforementioned properties
become dWt ~ N(0,dt), E[dWt] = 0, and E[(dWt)2] = dt.

Proposition 3.1.5 If Wt is a Brownian motion with respect to the informa-
tion set Ft, then Yt = W2 —t is a martingale.

Proof: Yt is integrable since
E[[Y*] < E[W2+ 1] = 2t < 00, t>0.

Let s <t. Usingthat the increments Wt—Ws and (Wt—Ws)2 are independent
of the information set Ta and applying Proposition 2.12.6 yields

E[W?\7a\ = E[(Ws+ W t-W s)2\Ts]
= E[W2+ 2Ws(Wt-Ws) + (Wt-Ws)2\Ts\
= E[W2\TS]+ E[2Wa(Wt - W8)\Fa]+ E[(Wt - Ws)2\TS]
= W2+ 2WsE[Wt - WS\TS]+ E[(Wt - Ws)2\TS]
= W2+ 2WSE[Wt - Ws] + E[(Wt - Ws)2}
= W2+t-s,
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and hence E[W? —t\T4] = W2 —s, for s <t. U

The following result states the memoryless property of Brownian motionl
Wt.

Proposition 3.1.6 The conditional distribution of Wt+S, given the present
Wt and the past Wu, 0 < un <'t, depends only on the present.

Proof: Using the independent increment assumption, we have

P(Wt+s < c\Wt = X, Wu,0 <u<t)
= PWtis-W t < c- x\Wt=x,Wu,0<un<t)
= P{Wt+s- Wt <c- X)

= PiWt+s < clwt = x).

Since Wt is normally distributed with mean 0 and variance t. its density
function is

Mx) => " -

Then its distribution function is
Ft(x) =P(Wt<x) = ~ f e~ du.
Mt J—eo
The probability that Wt is between the values a and b is given by

Pla<Wt<hbh=mnm fe_2tdu, a<h
V27t Ja

Even if the increments of a Brownian motion are independent, their values
are still correlated.

Proposition 3.1.7 Let0 < s <t Then
1. Cov(Ws,Wt) —s;

2. Corr(Ws,Wt) =

1These type of processes are called Markov processes.
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Proof: 1. Using the properties of covariance

Cov(Ws,Wt) = Cov{Ws,Ws+ Wt- Ws)
= Cov(Ws,Ws) + Cov{Wa, Wt - Wa)
= Var(Ws) + E[Ws(Wt - Ws)] - E[We]E[Wt - WS]
= a+ E[Ws]E[Wt- Ws]
= S,
since E[WY = 0.

We can also arrive at the same result starting from the formula
Cov(Ws,Wt) = E[W8Wt]- E[We]E[WLt] = E[WaW]

Using that conditional expectations have the same expectation, factoring out
the predictable part, and using that Wt is a martingale, we have

E [WsWi] E[E[WsWt\Ts]] E [W SE[Wt\Ts]]

E[WSWS] = E[VAg] = s,

so Cov{Ws,Wt) = s.

2. The correlation formula yields

cMNw,,wt) — . Ir

Remark 3.1.8 Removing the order relation between s and t, the previous
relations can also be stated as

Cov(Wa,Wt) = min{s,f};
mm {s,*
Corr(Wa,Wt) = maxis, t}}i

The following exercises state the translation and the scaling invariance
properties of the Brownian motion.

Exercise 3.1.9 For any to > 0, show that the process Xt = Wt+t0 —W1t0 is a
Brownian motion. It can also be stated that the Brownian motion is translation
invariant.
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Exercise 3.1.10 For any A > 0, show that the process Xt = ;EfW\t is a
Brownian motion. This says that the Brownian motion is invariant by scaling.

Exercise 3.1.11 Let0 < s <t < u. Show the following multiplicative prop-
erty
Corr(Ws,Wt)Corr(Wt,Wu) = Corr(Ws,Wu).

Exercise 3.1.12 Find the expectations E["3] and E[W"].
Exercise 3.1.13 (a) Use the martingale property ofW € —t to find
E[(W?-t)(W?-5)}-,

(6) Evaluate E[WRW 2];
(c) Compute Cov(W?, Wa);
(d) Find Corr(W2,wW?).

Exercise 3.1.14 Consider the process Yt = tWit, t > 0, and define Yo = 0.

(a) Find the distribution of Yt]

(b) Find the probability density ofYt;

(c) Find Cov(Ys,Yt);

(d) Find E[Yt —Y5] and Var{Yt ~ ¥Y) f°rs <t.

It is worth noting that the process Yt = tWti, t > 0 with Yo= 0is a Brownian
motion, see Exercise 10.2.10 .

Exercise 3.1.15 The process Xt = \WHt\ is called a Brownian motion reflected
at the origin. Show that

() E[lWt]] =

d) Var(\Wt\) = (1 - I)t.

Exercise 3.1.16 Let0<s <t. Find E[W2|F;].

Exercise 3.1.17 Let0 < s <t. Show that
(@) E[WB\Ts] = 3(t- s)Ws+ WS;
(b) E[Wu\Ts] = 3(t- s)2+ 6(t- s)Wg + Wg.

rl
Exercise 3.1.18 Show that E [ WudulTs ={t-s)Ws.
JS J
Exercise 3.1.19 Show that the process
Xt=wf- 3 [ Wsds
Jo

is a martingale with respect to the information set Ft = (r{Ws;s < t}.
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Figure 3.1: (a) Three simulations of the Broumian motion Wt. (b) Two sim-
ulations of the exponential Brownian motion eWt.

Exercise 3.1.20 Show that the following processes are Brownian motions
(@ Xt=Wt —WT-t, 0 <t<T;
b Yt=-Wt,t>0.

Exercise 3.1.21 Let Wt and Wt be two independent Brownian motions and
p be a constant with \p\ < 1.

(a) Show that the process Xt = pWt + \/l —p2Wt is continuous and has
the distribution N(0,t);

(b) Is Xt a Brownian motion?
Exercise 3.1.22 LetY be arandom variable distributed as N (0,1). Consider
the process Xt = \/tY . Is Xt a Brownian motion?
3.2 Geometric Brownian Motion
The geometric Brownian motion with drift p and volatility a is the process
Xt - t>o.

In the standard case, when u, = 0 and <7=1. the process becomes Xt =
gWt-t/2~ ~ > (j. This driftless process is always a martingale, see Exercise 3.2.4.

The following result will be useful later in the chapter.
Lemma 3.2.1 E[ea/‘] = ea2t"2, for a > 0.

Proof: Using the definition of expectation
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where we have used the integral formula

r ax +bxdx = xl-eK, a>0

with a= 7 and b= a.

Proposition 3.2.2 The exponential Brownian motion Xt = eWt is log-normally
distributed with mean e*/2 and variance e2t —et.

Proof: Since Wt is normally distributed, then Xt = eWt will have a log-normal
distribution. Using Lemma 3.2.1 we have

E[Xt] = E[eWt]= et/2
E[X?} = E[e2Wt] = e2t,

and hence the variance is

Var[Xt] = WX2}- E[Xt]2 = e - [et/2)2 = e - el.

A few simulations of the process Xt are contained in Fig. 3.1(b).

The distribution function of Xt = e *can be obtained by reducing it to
the distribution function of a Brownian motion as in the following.

FXt (x)

P(Xt<x) = P(eW < Xx)
P(Wt < Inx) = Fy, (\nx)
Inx 72

; - d
Vatj-c &

The density function of the geometric Brownian motion Xt = eW is given by

_ L =e-(\nX)*/(2)} ifx>0!
x\f2nt
0, elsewhere.

Exercise 3.2.3 Show that

E[er-"] =en, s<t.
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W,-W- W,-W.

4, Wiy W4,

Figure 3.2: To be used in the proof of formula (3.3.1); the area of the blocks
can be counted in two equivalent ways, horizontally and vertically.

Exercise 3.2.4 Let Xt = eWt.

(a) Show that Xt is not a martingale.

(b) Show that e~2 Xt is a martingale.

(c) Show that for any constant ¢ € R, the process Yt = ecWt~2°2t is a
martingale.

Exercise 3.2.5 If Xt = eWt, find Cov(Xs,Xt)
(a) by direct computation;
(b) by using Exercise 3.2.4 (b).

Exercise 3.2.6 Show that

E\e2W?] = f (1- 4%)-1/2> 0<*<1/4
\ 00, otherwise.

3.3 Integrated Brownian Motion

The stochastic process

Zt — [ Wsds, t>0
Jo

is called the integrated Brownian motion. Obviously, Zg= 0.
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Let 0 = s0 < si < oem< Jc < ®mBN = t, with s" = Then Zt can be
written as a limit of Riemann sums

Wyl t eee+t WS”
n

Zt = lim

n.

r<

Ws,As = t lim
J =Y

1

=
1

where As = Sk+i —s = K Since WSk are not independent, we first need
to transform the previous expression into a sum of independent normally dis-
tributed random variables. A straightforward computation shows that

Wai + mme+
= n(Wa - Xo)+ (n- 1)(WS2-W SI) + --- + (WSn- Ws*)
= X1+X2+ ---+ Xn. (3.3.1)

This formula becomes clear if one sums the area of the blocks in Fig. 3.2
horizontally and then vertically. Since the increments of a Brownian motion
are independent and normally distributed, we have

Xi ~ N (0,n2A5)
X2~ iV(0, (n —I)2As)
X3~ N(0O, (n —2)2A5)

Xn ~ iV(0, As).

Recall now the following well known theorem on the addition formula for
Gaussian random variables.

Theorem 3.3.1 If Xj are independent random variables normally distributed
with mean fij and variance c2, then the sum X\ + eee+ Xn is also normally

distributed with mean Hi + ee¢ + fin and variance + eeet (r2.

Then

X1+, +X,, NiV(0,(142 434 -W YA ,)= J(0,"(" +1>62n + 1)AS),

with As = — Using (3.3.1) yields

WSI+--- + W AN/ (n+ )(2w + )3\
n \Y/ 6nz )

“Taking the limit” with n oo, we get

13>
O -
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Proposition 3.3.2 The integrated Brownian motion Zt has a normal distri-
bution with mean 0 and variance t3/3.

Remark 3.3.3 The aforementioned limit was taken heuristically, without
specifying the type of the convergence. In order to make this work, the fol-
lowing result is usually used:

If Xn is a sequence of normal random variables that converges in mean
square to X, then the limit X is normally distributed, with E[X,] —E[X]
and Var(Xn) —»Var(X), as n —oo0.

The mean and the variance can also be computed in a direct way as follows.
By Fubini’s theorem we have

E [z1]

E[f Wsds}= f [ WsdsdP
Jo JK Jo

[ [ WsdPds= [ E[WS]ds = 0,
Jo Jr Jo

since E[VFS] = 0. Then the variance is given by

Var[Zt] = E[Z®2]- E[Zt]2= E[Zf
= E [ Wudum[ Wvdv] =E[ f f WUWVdudv
Jo Jo 1 -Jo Jo
E[WuWv]dudv= [ f min{u, v} dudv
I I JJ[oi
{1 min{u,v}dudv + // min{u,v}dudyv, 3.3.2
J JD) v JIb .} ( )
where
D\ = {(u,v);n >v,0<u <t} 2= {(uv);n<v,0<n <t}

The first integral can be evaluated using Fubini’s theorem

/' min{u,v}dudv = [/ vdudv
J JDi J JDi

Similarly, the latter integral is equal to

t
min{u,v} dudv = —3

d2
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Substituting in (3.3.2) yields

t3 13 t3
+ -7 =

6 6 3
For another computation of the variance of Zt, see Exercise 5.6.2.

Var[thE =

Exercise 3.3.4 (a) Prove that the moment generating function of Zt is given
by
m(U) = EbZts/e

(b) Use the first part to find the mean and variance of Zt-

Exercise 3.3.5 Lets <t. Show that the covariance of the integrated Brown-
ian motion is given by

Cov{zs,Z™j = s2(|- 0, s<t.

Exercise 3.3.6 Show that

(a) Cov(Zt,Zt —Zt-h) = \t2h-\- o(h), where o(h) denotes a quantity such
that lim/j*o o(h)/h = 0;

(b) Cov(Zt,Wt) =j.

Exercise 3.3.7 Show that

E[eW3+Wu] — emin{s,u}

Exercise 3.3.8 Consider the process Xt= / eWads.
Jo
(a) Find the mean of Xt;

(b) Find the variance of X t.

In the next exercises Ft denotes the a-field generated by the Brownian
motion Wt-

Exercise 3.3.9 Consider the process Zt= Wudu, t > 0.

Jo
(a) Show that = Zt + Wt(T —t), for any t < T;
(6) Prove that the process Mt = Zt —tWt is an Ft-martingale.

Exercise 3.3.10 LetYt= fwWd dy, t> 0.
Jo

rT
(@) Show thatE 'J W2ds\Ft] = W2(T -t) +i(T - t)2,foranyt <T,;

(b) Prove that the process Mt = Yt —tW 2+t /2 is an Ft-martingale.
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Figure 3.3: (a) Brownian bridge pinned down at0 and 1. (b) Brownian motion
with drift Xt = [it + Wt, with positive drift 4 > 0.

3.4 Exponential Integrated Brownian Motion

If Zt = /0 Wsds denotes the integrated Brownian motion, the process

Vit

is called exponential integrated Brownian motion. The process starts at Vo =
e® = 1. Since Zt is normally distributed, then Vt is log-normally distributed.
We compute the mean and the variance in a direct way. Using Exercises 3.2.5
and 3.3.4 we have

EM\ = E[ezZt]=m() = eT
E[VtZ} = E[e2Zt) = m(2) = =en
var(Vty = E[V2}-E[VH2 e3 e3
Cov{Vs,Vt) = el
Exercise 3.4.1 Show that EfVrI*t] = VteT 31 fort<T.

3.5 Brownian Bridge

The process Xt = Wt —tW\ is called the Brownian bridge fixed at both 0 and
1, see Fig. 3.3(a). Since we can also write

Xt = wt- twt- twx + twt
(1-t) (Wt-Wo)-t(WI-Wt),

using that the increments Wt —Wgqgand W\ —Wt are independent and normally
distributed, with

Wt- WO~ N(0,t),  Wi- Wt~ N(0,1- t),
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it follows that Xt is normally distributed with

E[Xt]
Var[Xt]

(I-t)E[{Wt-Wo)]-m[{W1-Wt}=0
(1 - t)2Var[{wWt- WO\ + t2Var[(Wx - W)\
(I-t)y2{t-0)+t2(I-t)

This can also be stated by saying that the Brownian bridge tied at 0 and 1 is
a Gaussian process with mean 0 and variance — so X, N(O,t(I-1)).

Exercise 3.5.1 Let Xt = Wt —tW\, 0 <t < 1 be a Brownian bridge fixed at
0 and 1. Let Yt = X 2. Show that Yg= Yi = 0 and find E[¥r1] and Var(Yt).

3.6 Brownian Motion with Drift

The process Yt = [it+ Wt, t > 0, is called Brownian motion with drift, see
Fig. 3.3(b). The process Yt tends to drift off at a rate [i. It starts at Yq= 0
and it is a Gaussian process with mean

E[Yt] = nt + E[W(] = nt

and variance
Var\Yt] = Var[fit + Wt] = Var\Wt] —t.

Exercise 3.6.1 Find the distribution and the density functions of the process
Yt.
3.7 Bessel Process

This section deals with the process satisfied by the Euclidean distance from
the origin to a particle following a Brownian motion in Mn. More precisely, if
Wi(t), ee+,Wn(t) are independent Brownian motions, consider the n-dimensional
Brownian motion W(t) = (W\(t), s ,Wn(t)), n > 2. The process

Rt = dist(0,W(t)) - \/Wi(t)2+ mmm+ Wn(t)2

is called the n-dimensional Bessel process, see Fig. 3.4.

The probability density of this process is given by the following result.

Proposition 3.7.1 The probability density function of Rt, t > 0 is given by
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Figure 3.4: The Bessel process Rt = |W (i)| for n = 2.

\2trn T(n/2) P le P>°>-
pt(p) =
01
with
(] —1)! for n even;
—1)(8 —2) oo for n °dd-
Proof: Since the Brownian motions W\[t),..., Wn(t) are independent, their

joint density function is
fw,.w,(x) = fw, (x)ee‘fw,,. (K = Z?ﬁbr{f}z e-(R+- +c")/(2", t > 0.

In the next computation we shall use the following formula of integration
that follows from the use of polar coordinates

[ f(x)dx =cr(S"_1) [ rn~1g(r) dr, (3.7.3)
J{\x\<p} Jo

where f(x) = a(px|) is a function on R7Lwith spherical symmetry, and where
2W 2

is the area of the (n —I)-dimensional sphere in M”. Let
r(n/2)
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p > 0. The distribution function of RLis

Fr(p) = P(Rt<P)= [ fwv-wn(x)dxi ' dxr

= \ — V-0 e- K4- +*»)/(!) dXi eeedxn
N2+ -+ X “<Pd (27rt)n/

f PrnA [ 1 --e—*?2+-+MN)/(2)~ dr
Jo I 7s(0,i) (27THn/2 y

=B\ T
g{sh=t) [P,
(2nt)n/2 Jo

'1 -r2m dr.

Differentiating yields

B 2t, 0,t 0.
eeya2r(n/2) p=ot=

It isworth noting that in the 2-dimensional case the aforementioned density
becomes a particular case of a Weibull distribution with parameters m = 2
and a = 21, called Wald*s distribution

Pt(x) = —1xe—:£[, x>0,t>0.

Exercise 3.7.2 f£ef -P(i?t < t) be the probability of a 2-dimensional Brownian
motion being inside of the disk D(0,p) at time t > 0. Show that

Pi
21

Exercise 3.7.3 Let Rt be a 2-dimensional Bessel process. Show that
(a) E[/?f] = yj2irt/2;
(b Var(Rt) = 2t(I-f).

R ] . . .
Exercise 3.7.4 Lef Xt = —, i > 0, where Rt is a 2-dimensional Bessel

process. Show that Xt —0 os f -> 00 in mean square.
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3.8 The Poisson Process

A Poisson process describes the number of occurrences of a certain event before
time t, such as: the number of electrons arriving at an anode until time t\ the
number of cars arriving at a gas station until time t; the number of phone calls
received on a certain day until time t; the number of visitors entering a museum
on a certain day until time the number of earthquakes that occurred in Chile
during the time interval [0,t]; the number of shocks in the stock market from
the beginning of the year until time t; the number of twisters that might hit
Alabama from the beginning of the century until time t.

The definition of a Poisson process is stated more precisely in the following.
Its graph looks like a stair-type function with unit jumps, see Fig. 3.5.

Definition 3.8.1 A Poisson process is a stochastic process Nt, t > 0, which
satisfies

1. The process starts at the origin, Ng= 0;

2. Nt has independent increments;

3. The process Nt is right continuous in t, with left hand limits;

/m The increments Nt —Ns, with 0 < s < t, have a Poisson distribution
with parameter A(t —s), i.e.

P(Nt —Ns = k) = AV A

It can be shown that condition 4 in the previous definition can be replaced by

the following two conditions:
P(Nt-Na=1)
P{Nt-N s> 2)

AEE- a)+ o(t- s) (3.8.4)
o(t-s), (3.8.5)

where o(h) denotes a quantity such that lim”o o(h)/h = 0. Then the prob-
ability that a jump of size 1 occurs in the infinitesimal interval dt is equal to
Adt, and the probability that at least 2 events occur in the same small interval
is zero. This implies that the random variable dNt may take only two values,
0 and 1, and hence satisfies

P(dNt = 1)
P(dNt = 0)

Adt (3.8.6)
1-Xdt. (3.8.7)

Exercise 3.8.2 Show that if condition 4 is satisfied, then conditions (3.8.4)
and (3.8.5) hold.
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Figure 3.5: The Poisson process Nt-

Exercise 3.8.3 Which of the following expressions are o(h) ?
@) f(h)=3h2+h;
() f(h) = Vh + 5;
(c) f(h) = hiInj/r|;
(d) f(h) = heh.

Condition 4 also states that Nt has stationary increments. The fact that
Nt —Ns is stationary can be stated as

P(Nt+s —Ns <n) = P(Nt—Ng<n) = P(Nt<n) =J2
fc=0

From condition 4 we get the mean and variance of increments
E[Nt- Ns]= A(t- s), Var[Nt - Ns\= A(t - s).

In particular, the random variable Nt is Poisson distributed with E[Nt\ = At
and Var[Nt\ = Xt. The parameter Ais called the rate of the process. This
means that the events occur at the constant rate A with A> 0.

Since the increments are independent, we have for 0 < s <t

E[AyV*] E[(iVs —No)(Nt —Ns) + N 2]
= EJ[iVs- iVOJE[iV] - Ns\+ E[NZ2]
= Xs mX(t - s) + (Far[iVs] + E[iVs]2)

— NIst H . (3.8.8)
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As a consequence we have the following result:

Proposition 3.8.4 Let0<s <t Then
1. Cov(Ns,Nt) = As;

Corr(Ns,Nt) =

Proof: 1. Using (3.8.8) we have

Cov(Ns,Nt) E[NaNt]- E[Na]E[Nt]

= A%t + As —XsXt
= As

2. Using the formula for the correlation yields

n (mrom\ Cov(Ns,Nt) _ As s
an g (Var[Ns]Var[Nt]y/2  (AsAi)v2 \t

It worth noting the similarity with Proposition 3.1.7.

Proposition 3.8.5 Let Nt be T f adapted. Then the process Mt = Nt —Xt is
an Tt-martingale.

Proof: Lets <t and write Nt = Ns+ (Nt —Ns). Then

E[Nt\Ts]

E[Ns + (Nt - N s)\Ts]
= E[iVs[7-s]+E[JVT-iVs|M]
= Ns+E[Nt- Ns]
— Ns+ At —s),
where we used that Ns is J*-measurable (and hence E[XY)7] — Ns) and

that the increment Nt —Ns is independent of previous values of Ns and the
information set Ts. Subtracting Xt yields

E[Nt - Xt\?2a]=NS- As,

or E[Mt|J-"s] = Ms. Since it is obvious that Mt is integrable and J*-adapted,
it follows that Mt is a martingale. [

It is worth noting that the Poisson process Nt is not a martingale. The
martingale process Mt = Nt —Xt is called the compensated Poisson process.

Exercise 3.8.6 Compute E[iV2[Vs] for s < t. Is the process N2 an J-s-
martingale ?
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Exercise 3.8.7 (a) Show that the moment generating function of the random
variable Nt is

(b) Deduce the expressions for the first few moments

E[ivt] = Xt
E[iVe] = A2+ Xt
E[iV3] = X3t3 + 3X2t2 + Xt

E[Nf] = X4t* + 6X3t3 + 7X2t2 + Xt.
(c) Show that the first few central moments are given by

E[Nt-Xt] = 0
E[(iV4-Ai)2] = Xt
E[(Nt —A)3] = Xt
E[(VF—AD4] = 3X2t2 + Xt.

Exercise 3.8.8 Find the mean and variance of the process Xt = eN!

Exercise 3.8.9 (a) Show that the moment generating function of the random
variable Mt is

(6) Lets <t. Verify that

E[Mt-M s\ = 0,
E[(Mt - Ms)2] X(t —s),
E[(Mt - M s)3] X(t-s),
E[(Mt-M s)4} X (t-s) + 3X2(t-s)2.

Exercise 3.8.10 Lets <t. Show that

Var[{Mt - M s)2} = X(t- s) + 2X2{t- s)2.

3.9 Interarrival Times

For each state of the world, oj, the path t — Nt(oo) is a step function that
exhibits unit jumps. Each jump in the path corresponds to an occurrence of
a new event. Let T\ be the random variable which describes the time of the
1st jump. Let be the time between the 1st jump and the second one. In
general, denote by Tn the time elapsed between the (n —I)th and nth jumps.
The random variables Tn are called interarrival times.
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Proposition 3.9.1 The random variables Tn are independent and exponen-
tially distributed with mean E[Tn] = 1/A.

Proof: We start by noticing that the events {T\ > t} and {Nt = 0} are the
same, since both describe the situation that no events occurred until time t.
Then

P{T\ >t) = P(Nt=0) = P(Nt- NO =0) = e~Xt,

and hence the distribution function of T\ is
FTi(t) =P{Ti <t) = 1- P(Ti >t) = 1- e~xt.

Differentiating yields the density function
U,(t) = jtFT,(t) = \e-u.

It follows that T\ is has an exponential distribution, with E[7\] = 1/A.
In order to show that the random variables T\ and T2 are independent, it
suffices to show that

P(T2<t) =P(T2 <t\Tx=5),

i.e. the distribution function of T2 is independent of the values of T\. We note
first that from the independent increments property

P(Ojumpsin(s,s +t],1jump in(0,s]) = P(Ns+t- Ns=0,Ns- N0 = 1)
= P(Ns+t-N s=0)P(NS-No0=1)
= P(Ojumps in(s,s+t])P(l jump in (0,s]).

Then the conditional distribution of T2 is

F(tle) = P(r2<t\Ti =s) =1- P(T2>1|Ti = s)
_P(T2>t,Ti=5)
P(Ti =5)
P(Ojumps in(s,s+ t], Ljump in (0, s])
1 P{Ti = s)

P(O jumps in(s,s+ *]P(l jump in (0, s])
P (I jump in (0,s])
1—P (0 jumps in (s,s + i])
1- P(Ns+t- Ns=0) = 1- e~xt,

which is independent of s. Then T2 is independent of T\ and exponentially
distributed. A similar argument for any Tn leads to the desired result.
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3.10 Waiting Times

The random variable Sn = T\ + Ti + eee+ Tn is called the waiting time until
the nth jump. The event {Sn < t} means that there are n jumps that occurred
before or at time t, i.e. there are at least n events that happened up to time t;
the event is equal to {Nt > n}. Hence the distribution function of Sn is given

by
00 (X,)k
FSn(t) - P(Sn<t) = P(Nt>n) =e-A"
k=n
Differentiating we obtain the density function of the waiting time Sn

~ dt SnA ~ [n- D!

Writing N
n-ig-At

IS,W =

it turns out that Sn has a gamma distribution with parameters a = n and
/3= 1/A. It follows that

E[5.,] = p Var[Sn}= ~

The relation IinaOE[S,,] = 00 states that the expectation of the waiting time
n—*
is unbounded as n —00.
\e~ Xt(\t)n I

Exercise 3.10.1 Prove that ~{an(t) = —y-----I-J|,----

Exercise 3.10.2 Using that the interarrival times T\, T2, mmm are independent
and exponentially distributed, compute directly the mean E[£n] and variance
Var(Sn).

3.11 The Integrated Poisson Process

The function 1 —Nu is continuous with the exception of a set of countable
jumps of size 1. It is known that such functions are Riemann integrable, so it
makes sense to define the process

= [ Nudu,
Jo

called the integrated Poisson process. The next result provides a relation
between the process Ut and the partial sum of the waiting times Sk-
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Figure 3.6: The Poisson process Nt and the waiting times Si, S2, mmSn. The
area of the shaded rectangle is n(Sn+i —t).

Proposition 3.11.1 The integrated Poisson process can be expressed as

Nt
Ut=tNt-J2 Sk.
k=1

Let Nt = n. Since Nu is equal to K between the waiting times Sk and Sfc+i,
the process Ut, which is equal to the area of the subgraph of Nu between 0
and t, can be expressed as

U — f Nudu —1¢(S2—S\) + 2+(S3—S2)4-+m+ n(5n)i—Sn) —n(Sn+i —t).
Jo

Since Sn <t < Sn+1, the difference of the last two terms represents the area
of the last rectangle, which has the length t —Sn and the height n. Using
associativity, a computation yields

1¢(52—Si) + 2¢(S3—S2) + e+ n(S,,+i —Sn) = NSn+1—(Si + S2+ see+ Sn).
Substituting in the aforementioned relation, we get
U = nSn+i —(Si+ S2+ eee+ Sn) —n(Sn+1—t)

= nt—(Si+ S2+ mw+ Sn)

Nt
= tNt—X Sk,
fc=i
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where we replaced n by Nt.

The conditional distribution of the waiting times is provided by the fol-
lowing useful result.

Theorem 3.11.2 Given Nt = n, the waiting times S2,%¢¢ Sn have the
joint density function given by

nl
f(s1,S2, , Sfi) 5 0<Si<S2™ “~Sn«t.

tn
This is the same as the density of an ordered sample of size n from a uni-
form distribution on the interval (0,t). A “naive” explanation of this re-
sult is as follows. If we know that there will be exactly n events during the
time interval (0,<), since the events can occur at any time, each of them can
be considered uniformly distributed, with the density f(sk) = I/t. Since it
makes sense to consider the events independent, taking into consideration all
n! possible permutations, the joint density function becomes /(si,-- - ,sn) =

n\f(SI)...f(Sn) = £.

Exercise 3.11.3 Find the following means

(@) E[Ut].
Nt

() e[£s*].
k=1

Exercise 3.11.4 Show that
(@) Si+ 52 H—-—-+Sn=nT\ + (N —1)T2+ «e®Tn_i + Tn;
n{n + 1)

G E[~34 =n o

k=1
(c)E[B A =n]

A3
Exercise 3.11.5 Show that Var(Ut) = 3

Exercise 3.11.6 Can you apply a similar proof as in Proposition 3.3.2 to
show that the integrated Poisson process Ut is also a Poisson process?

Exercise 3.11.7 LetY : -> N be a discrete random variable. Show that for
any random variable X we have

E[X] = EE[*|Y = y}P(Y = y).
y>0
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Exercise 3.11.8 Use Exercise 3.11.7 to solve Exercise 3.11.3 (b).
Exercise 3.11.9 (a) Let Tk be the kth interarrival time. Show that

N A
eO'TEI— a> 0.

E
[ A+o1

(b) Let n —Nt- Show that
Ut = nt —[nTi + (n —1)T2+ + 2Tn_i + Tn\.
(c) Find the conditional expectation
E O"UlNt=n

(Hint: If we know that there are exactly n jumps in the interval [0, T], it makes
sense to consider the arrival time of the jumps Tt independent and uniformly
distributed on [0, T]).

(d) Find the expectation
E -aUut

3.12 Submartingales

A stochastic process Xt on the probability space (17, T, P) is called a sub-
martingale with respect to the filtration Tt if:

(a) fQ|Xt dP < oo {Xt integrable);
(b) Xt is known if Tt is given (Xt is adaptable to Tt)',

(c) E[Xt+sJ-f] > Xt,Vt,s > 0 (future predictions exceed the present value).

Example 3.12.1 We shall prove that the process Xt —iit + oWt, with f, > 0
is a submartingale.

The integrability follows from the inequality |Xt(w)| < [it + Wt(u:)\ and in-
tegrability of Wt. The adaptability of Xt is obvious, and the last property
follows from the computation:

E[Xt+s|Tt\ = E[/it + aWt+s\Tt\ + us > E[fit + oWt+s\Tt\
[it + oOE[Wt+s\Tt\ = lit + aWt = Xt,

where we used that Wt is a martingale.
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Example 3.12.2 We shall show that the square of the Brownian motion, W 2,
is a submartingale.

Using that W@ —t is a martingale, we have

E[W?+S|T t\ E[W2s-(t +s)\Ft}+t+s=W2-t +t+s

= W2+s>W2.

The following result supplies examples of submartingales starting from
martingales or submartingales.

Proposition 3.12.3 (a) If Xt is a martingale and ¢ a convex function such
that g(Xt) is integrable, then the process Yt = (X" is a submartingale.

(b) If Xt is a submartingale and ¢ an increasing convex function such that
(X" is integrable, then the process Yt = (X" is a submartingale.

(c) If Xt is a martingale and f(t) is an increasing, integrable function, then
Yt — Xt + f(t) is a submartingale.

Proof: (a) Using Jensen’s inequality for conditional probabilities, Exercise
2.13.7, we have

E[Yt+s\Ft} = E[dh(X1+a)\Tt) > Pp(E[X,+a\b}) = dp(Xr) = VYt.
(b) From the submartingale property and monotonicity of ¢ we have
MNE[Xt+a|7i]) > d(Xn).

Then apply a similar computation as in part (a).
(c) We shall check only the forecast property, since the other properties are
obvious.

E[Y*+8|Ft]

E[Xt+s + f(t + s)\Tt} = E[Xi+s[JIt] + f{t + s)
Xt+f(t+5s) > Xt+f(t) = VYt, Vs,t> 0.

Corollary 3.12.4 (a) Let Xt be a right continuous martingale. Then X 2,
\Xt\, eXt are submartingales.

(b) Let fj, > 0. Then e*i+aWt is a submartingale.

Proof: (a) Results from part (a) of Proposition 3.12.3.
@) It follows from Example 3.12.1 and part (b) of Proposition 3.12.3. |

The following result provides important inequalities involving submartin-
gales, see for instance Doob [14].
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Proposition 3.12.5 (Doob’s Submartingale Inequality) (a) LetXtbhea
non-negative submartingale. Then

P(supXs>x) < , \/x > 0.
s<t X

(b) If Xf is a right continuous submartingale, then for any x > 0

P{supXt >x) <
s<t %

where X #+ = Tax{X*, 0}.

Exercise 3.12.6 Letx > 0. Show the inequalities:

(@) P(supW2>x) < —
S<t X

(fy P(sup WS >x) < — — .

s<t ®

. .osups<, [WJ
Exercise 3.12.7 5ftoro that p-lim_------ e =0
t—=00

Exercise 3.12.8 5/tory that for any martingale Xt we have the inequality

P(supXe>x) < yX > 0.
s<t X

It is worth noting that Doob’s inequality implies Markov’s inequality. Since
supXs > Xt, then P(Xt > x) < P(supXs > x). Then Doob’s inequality

s<t s<t

P(supXs > x) < nXt]

S<t %

implies Markov’s inequality (see Theorem 2.13.9)

P{Xt >x)< n)>:t]

Exercise 3.12.9 Let Nt denote the Poisson process and consider the infor-
mation set Tt = cr{Ns]s <t}.

(a) Show that Nt is a submartingale;
(b) Is N.f a submartingale?
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Exercise 3.12.10 It can be shown that for any 0 < a < T we have the in-
equality
e [E(* _n T . <(<)
a<t<T " 2

Nt
Using this inequality prove that ms-lim — = A
g q y p AU

The following famous inequality involving expectations was also found by
Doob. The proof can be found for instance in Chung and Williams [12].

Theorem 3.12.11 (Doob’s inequality) If Xt is a continuous martingale,
then
E sup Xf < 4E[XE]

Lo<t<T

Exercise 3.12.12 Use Doob% inequality to show

E sup W? <A4T.
Lo<t<T

Exercise 3.12.13 Find Doob’ inequality for the martingale Xt = W2 —t.



Chapter 4

Properties of Stochastic
Processes

This chapter presents detailed properties specific to stochastic processes, such
as stopping times, hitting times, bounded variation, quadratic variation as
well as some results regarding convergence and optimal stopping.

4.1 Stopping Times

Consider the probability space (O, -T7,P) and the filtration (Ji)t>0, i-e. an
ascending sequence of cr-fields

T8CTtCT, Vs < t.

Assume that the decision to stop playing a game before or at time t is deter-
mined by the information J-j available at time t. Then this decision can be
modeled by a random variable r : fi -> [0, 00], which satisfies

{w; t(w) < t} £ Tt, Vt > 0.

This means that given the information set Ft, we know whether the event
{ui;t(cj) < t} had occurred or not. We note that the possibility r = oo is also
included, since the decision to continue the game for ever is a possible event.
A random variable r with the previous properties is called a stopping time.

The next example illustrates a few cases when a decision is or is not a stopping
time. In order to accomplish this, think of the situation that r is the time
when some random event related to a given stochastic process occurs first.

Example 4.1.1 Let J% be the information available until time t regarding the
evolution of a stock. Assume the price of the stock at time t = 0 is $50 per
share. The following decisions are stopping times:

73
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(a) Sell the stock when it reaches for the first time the price of $100 per
share;

(6) Buy the stock when it reaches for the first time the price of $10 per
share;

(c) Sell the stock at the end of the year;

(d) Sell the stock either when it reaches for the first time $80 or at the end
of the year.

(e) Keep the stock either until the initial investment doubles or until the
end of the year;

The following decision is not a stopping time:
(/) Sell the stock when it reaches the maximum level it will ever be.

Part (/) is not a stopping time because it requires information about the
future that is not contained in Tt- In part () there are two conditions; the
latter one has the occurring probability equal to 1.

Exercise 4.1.2 Show that any positive constant, T = c, is a stopping time
with respect to any filtration.

Exercise 4.1.3 Let t(u) = inf{t > 0; |Wt(0;)] > K}, with K > 0 constant.
Show that T is a stopping time with respect to the filtration Tt = &(WS]s <t).

The random variable r is called the first exit time of the Brownian motion Wt
from the interval (—K,K). In a similar way one can define the first exit time
of the process Xt from the interval (o, b):

t(uj) = inf{4 > 0-Xt(ui) <(a,6)} = in f> 0;X(w) > bor Xt(u>) < a)}.
Let Xo < a. The first entry time of Xt in the interval [a, 6] is defined as
T(w) = inf{£ > 0\Xt(u) € [a,6]}
If we let b = 00, we obtain the first hitting time of the level a
t(lu) = inf{£ > 0;Xt(0;) > a)}.
We shall deal with hitting times in more detail in section 4.3.

Exercise 4.1.4 Let Xt be a continuous stochastic process. Prove that the first
exit time of Xt from the interval (a, b) is a stopping time.

We shall present in the following some properties regarding operations
with stopping times. Consider the notations ™\ VT2 = max{ri, T2}, "\ /1T2 =
min{ri,r2}, fn = supn>1mm and rn = infn>i rn.
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Proposition 4.1.5 Let t\ and t2 be two stopping times with respect to the
filtration Tf Then

1. VW12
2. VATr2
3.ri+r2

are stopping times.

Proof: 1. We have
{u;rivra< £2={w,n <t} N{w;r2< "G
since {cj;t\ <t} G and {w;r2< t} € JN Then M\ Vr2is a stopping time.
2. The event {cj;M Ar2< i} G ifand only if {w;t\ Ar2 > £} GPt-
{cj;n Ar2> <= {w;n > i} N{un-t2> t} £ pt,

since >t} £ Pt and (cj;r2 > t} GPt, as the cr-algebra is closed to
complements.

3. We note that T\ + t2 < t if there is a ¢ G (0, t) such that
Ti < ¢, 72 <t—c

Using that the rational numbers are dense in M, we can write

{cj;ti +t2<t} = (J <c}MN{w;T2<t-cf) GPt,
O<c<t,ceQ
since
{w;n < c} GPcC Ft, {Mr2<t- c}Gli_cCPt-
It follows that 7 + t2 is a stopping time. ]

0o

A filtration Pt is called right-continuous if Pt = fV .+ i, fort > 0.
n=1
This means that the information available at time t is a good approximation

for any future infinitesimal information Pt+e', or, equivalently, nothing more
can be I%ﬁrned by peeking infinitesimally far into the future. If denote by

Pt+ = ), Pt+ﬁ\* then the right-continuity can be written conveniently as
1
Pt = Pt+-

Exercise 4.1.6 (a) Let Pt = a{Ws;s < t} and Qt = c{ Wudu\s < t},
where Wt is a Brownian motion. Is Pt right-continuous? What about Qt ?

(6) Let Aft = a{Na;s < t}, where Nt is a Poisson motion. Is Mt right-
continuous ?
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The next result states that in the case of a right-continuous filtration the
inequality {r < t} from the definition of the stopping time can be replaced by
a strict inequality.

Proposition 4.1.7 Let Tt be right-continuous. The following are equivalent:
(a) T is a stoping time;
(b) {r <t} GTt, for allt > 0.

Proof: *“(a) =>m (6)” Let r be a stopping time. Then {r<t— CTt_ i C

Tt, and hence Un>i{r —*~ «} e ~t- Then writing

{r<t}=11{r<t- €Tt

n> |

it follows that {r < t} GTt, i.e. r is a stopping time.
“(6) =>m (a)” It follows from

{t <t} = M{r<*+-}e 1|_|1Ji+i = Tt+=Tt-

n>1 n>|

Proposition 4.1.8 Xet J-j be right-continuous and (m)n>i 6e a sequence of
bounded stopping times. Then supnrn and infrn are stopping times.

Proof: The fact that fn = supnr,, is a stopping time follows from

{w;fn<t}c P {wrn<*}e N1-

n>l

In order to show that rn = infrn is a stopping time we shall proceed as in
the following. Using that Tt is right-continuous and closed to complements,
using proposition 4.1.7, it suffices to show that {w;Tn > t) GTt- This follows
from

{w;r,, >t} = P|{w;Tn >t}e Tt-
T>1

Exercise 4.1.9 Letr be a stopping time.
(@) Let c > 1 be a constant. Show that ct is a stopping time.

(b) Let f : [0,00) -> M be a continuous, increasing function satisfying
f(t) > t. Prove that f(r) is a stopping time.

(c) Show that eT is a stopping time.
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Exercise 4.1.10 Let T be a stopping time and ¢ > 0 a constant. Prove that
T+ c is a stopping time.

Exercise 4.1.11 Let a be a constant and define T= inf{£ > 0; Wt —a}. Is T
a stopping time?

Exercise 4.1.12 Let T be a stopping time. Consider the following sequence
m—(m+ N2-n ifm2~n<r < (m+ 1)2-n (stop at the first time of the form
k2~n after r). Prove that m is a stopping time.

4.2 Stopping Theorem for Martingales

The next result states that in a fair game, the expected final fortune of a
gambler, who is using a stopping time to quit the game, is the same as the
expected initial fortune. From the financial point of view, the theorem says
that if you buy an asset at some initial time and adopt a strategy of deciding
when to sell it, then the expected price at the selling time is the initial price;
so one cannot make money by buying and selling an asset whose price is a
martingale. Fortunately, the price of a stock is not a martingale, and people
can still expect to make money buying and selling stocks.

If (Mt)t>o0is an *-martingale, then taking the expectation in
Wi[Mt\Fs\ = Ms, Vs <t
and using Example 2.12.4 yields
E[Mt]=E[M s], Vs < t.

In particular, E[M]j] = E[Mo], for any t > 0. The next result states necessary
conditions under which this identity holds if t is replaced by any stopping time
r. The reader can skip the proof at the first reading.

Theorem 4.2.1 (Optional Stopping Theorem) Let(Mt)t>o be aright con-
tinuous Tt-martingale and r be a stopping time with respect to Tt such that

T is bounded, i.e. 3N < oo such that T< N.

Then E[MT\ = E[Mo]. If Mt is an Tt-submartingale, then E[Mr] > E[Mo].

Proof: Consider the following convenient notation for the indicator function

of a set
t(lo) > t;
r(w) <t
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Taking the expectation in relation
MT= Mtm “I"(Mr
see Exercise 4.2.3, yields
E[MT\ = E[MrM] + E[MTI{r>i}] —E[MtI {T>t}].

Since MrAt is a martingale, see Exercise 4.2.4 (6), then EfM™] = E[Mo]. The
previous relation becomes

E[MT\ = E[Mo] + E[MTI {T>t}] - E[MtI {T>t}], W > O.
Taking the limit yields
E[MT\ = E[MO] + lim E[MTI{T>]- lim E[Mtl {r>1}], (4.2.1)

We shall show that both limits are equal to zero.
Since |[MTI|T>tH < \MT\, Vt > 0, and Mr is integrable, see Exercise 4.2.4
(a), by the dominated convergence theorem we have

lim E[MTIrT>t§] = lim / MrlItT>\dP= / Ilim MTIiT>t\ dP = 0.
t->00 r t->00 JQ J

Qi->00

For the second limit
Ilm E[MtI{T>t\ = tI_|>rrc1)OJ[q MtI{T>t} dP = 0,

since for t > N the integrand vanishes. Hence relation (4.2.1) yields E[MT] =
E[MQ]. [ |

It is worth noting that the previous theorem is a special case of the more
general Optional Stopping Theorem of Doob:

Theorem 4.2.2 Let Mt be a right continuous martingale and a,r be two
bounded stopping times, with a < r. Then Ma, MT are integrable and

EIMrl*a] = Mu  a.s.
In particular, taking expectations, we have
E[MT] = E[M{ a.s.

In the case when Mt is a submartingale then E[MT] > E[M{] a.s.
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Figure 4.1: The first hitting time Ta given by Wra = a.

Exercise 4.2.3 Show that
Mr— MT + (MT
where 1{r>t} ~ the indicator function of the set {r > t}.

Exercise 4.2.4 Let Mt be a right continuous martingale and r be a bounded
stopping time. Show that

(a) MT is integrable;
(b) M-r/x is a martingale.

Exercise 4.2.5 Show that letting a = 0 in Theorem 4.2.2 yields Theorem
4.2.1.

4.3 The First Passage of Time

The first passage of time is a particular type of hitting time, which is useful
in finance when studying barrier options and lookback options. For instance,
knock-in options enter into existence when the stock price hits for the first
time a certain barrier before option maturity. A lookback option is priced
using the maximum value of the stock until the present time. The stock price
is not a Brownian motion, but it depends on one. Hence the need for studying
the hitting time for the Brownian motion.

The first result deals with the first hitting time for a Brownian motion to
reach the barrier a E M, see Fig. 4.1.

Lemma 4.3.1 Let Ta be the first time the Brownian motion Wt hits a. Then
the distribution function of Ta is given by
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Proof: If A and B are two events, then

P(A)

P{AMB) + P{AMB)
P(A\B)P(B) + P(A\B)P(B). (4.3.2)

Let a > 0. Using formula (4.3.2) for A = {w; Wt(uj) > a} and B = {w; Ta(n) <
t} yields

P{Wt>a) = P(Wt>a\Ta<t)P(Ta<t)
+P{Wt > a\Ta > t)P(Ta > t) (4.3.3)

If Ta > t, the Brownian motion did not reach the barrier a yet, so we must
have Wt < a. Therefore

P(Wt>a\Ta>t) = 0.

If Ta < t, then Wra = a. Since the Brownian motion is a Markov process,
it starts fresh at Ta. Due to symmetry of the density function of a normal
variable, Wt has equal chances to go up or go down after the time interval
t —Ta. It follows that

P(Wt>a\Ta<t) =\.

Substituting into (4.3.3) yields

P{Ta<t) = 2P(Wt >a)
= 2 r e-*vmdx=* T e~y22dy.
V2ITt Ja V2tlJa/Vi

If a < 0, symmetry implies that the distribution of Ta is the same as that of
T_a, so we get

oo

9 T
P(Ta<t) = P(T_a<t) = - = e-Y /2dy.
V27T ] —alylt

Remark 4.3.2 The previous proof is based on a more general principle called
the reflection principle: If r is a stopping time for the Brownian motion Wt,
then the Brownian motion reflected at r is also a Brownian motion.

Theorem 4.3.3 Let a GM be fixed. Then the Brownian motion hits a (in a
finite amount of time) with probability 1.
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Proof: The probability that Wt hits a (in a finite amount of time) is

2
P(Ta< o00) = I|m P(Ta<t) = lim —= 2/2d
2ot © Y22V
roc
[ e~y2/2dy = 1,
T Jo y y

where we used the well known integral
roc 1 roc
/[ e~yl2dy=- [/ e~vi2dy = -\[2K
JLoemylady =g Yy =5 [

J.qgo

The previous result stated that the Brownian motion hits the barrier a
almost surely. The next result shows that the expected time to hit the barrier
is infinite.

Proposition 4.3.4 The random variable Ta has a Pearson 5 distribution
given by
p(t) = \—/i”’: e A< 2, t>0.
21t

a2
It has the mean E[Ta] = oo and the mode 3
Proof: Differentiating in the formula of distribution functionl

2
FTa(t) = P(Ta<t) = m e vyl2d
VI Ja/\i J J

yields the following probability density function

dFxa(t) a ® _3

A =~n0~ =vse "r’”’ t>0m

This is a Pearson 5 distribution with parameters a = 1/2 and f3—a2/2. The
expectation is

oo

a I 1 n2
E[Ta] = J/0 tp[t) dt = \_/’Zzn J{) Gt=e~udt.

10ne may use Leibniz’s formula a / f(u) du =
dt Jv(t)
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Figure 4.2: The distribution of the first hitting time Ta.

Using the inequality e a > 1_Z t > 0, we have the estimation

a f°° 1 a3 1
' . 4.3.4
[°] > 771 Vvt o2varn| gi2dt=CC (434
since J0°  dt is divergent and J'J° dt is convergent.

The mode of Ta is given by

a+1l 2"+1) 3"

Remark 4.3.5 The distribution has a peak at a2/3. Then if we need to pick
a small time interval [E—dt,t + dt] in which the probability that the Brownian
motion hits the barrier a is maximum, we need to choose t = a2/ 3, see Fig. 4.2.

Remark 4.3.6 Formula (4.3.4) states that the expected waiting time for Wt
to reach the barrier a is infinite. However, the expected waiting time for the
Brownian motion Wt to hit either a or —a is finite, see Exercise 4.3.9.

Corollary 4.3.7 A Brownian motion process returns to the origin in afinite
amount time with probability 1.

Proof: Choose a = 0 and apply Theorem 4.3.3. ]

Exercise 4.3.8 Try to apply the proof of Lemma 4-3.1 for the following stochas-
tic processes

(a) Xt = p.t+ aWt, with /n,a > 0 constants;

(b) Xt= § Wxds.
Jo
Where is the difficulty?
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Exercise 4.3.9 Let a > 0 and consider the hitting time
Ta=inf{4 > 0;\Wt\> a}.
Prove that E[ra] = a2.

Exercise 4.3.10 (a) Show that the distribution function of the process

Xt = Sigtg’)ﬂ Ws

is given by
0 rdfy/t
P(Xt<a) =—= [/ e~y /2 dy,
\% Jo
and the probability density is
2 XE
Pt(x) = * e~* i x>

(6) Sfioiw that E[X<] = y/2t/TT and Var(Xt) = t(*-----

Exercise 4.3.11 (a) Show that the probability density of the absolute value
of a Brownian motion Xt = \Wt\, t > 0, is given by

(b) Consider the processes Xt —\Wt\ and Yt — \Bt\, with Wt and Bt indepen-
dent Brownian motions. Use Theorem 2.11.1 to obtain the probability density
of the sum process Zt — Xt + Yt.

The fact that a Brownian motion returns to the origin or hits a barrier
almost surely is a property characteristic to the first dimension only. The
next result states that in larger dimensions this is no longer possible.

Theorem 4.3.12 Let (a, b) € M2. The 2-dimensional Brownian motion W (t) =
(Wi(t),w2(t)) (with W\(t) and Wi(t) independent) hits the point (a,b) with
probability zero. The same result is valid for any n-dimensional Brownian
motion, with n > 2.

However, if the point (a, b) is replaced by the disk
De(x0) = {if M2;|x - x01< €},

then there is a difference in the behavior of the Brownian motion from n = 2
to n > 2, as pointed out by the next two results:
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Theorem 4.3.13 The 2-dimensional Brownian motion W (t) = (W\(t), W2(t))
hits the disk -De(xo) with probability one.

Theorem 4.3.14 Letn > 2. The n-dimensional Brownian motion W(t) hits
the ball D6(xo) with probability

The previous results can be stated by saying that that Brownian motion
is transient in Rn, for n > 2. If n = 2 the previous probability equals 1. We
shall come back with proofs to the aforementioned results in a later chapter
(see section 9.6).

Remark 4.3.15 If life spreads according to a Brownian motion, the afore-
mentioned results explain why life is more extensive on earth rather than in
space. The probability for a form of life to reach a planet of radius R situated
at distance d is Since d is large the probability is very small, unlike in the
plane, where the probability is always 1.

Exercise 4.3.16 Is the one-dimensional Brownian motion transient or recur-
rent in R ?

4.4 The Arc-sine Laws
In this section we present a few results which provide certain probabilities
related with the behavior of a Brownian motion in terms of the arc-sine of

a quotient of two time instances. These results are generally known as the
Arc-sine Laws.

The following result will be used in the proof of the first Arc-sine Law.

Proposition 4.4.1 (@) IfX :Q N is a discrete random variable, then for
any subset A c ft, we have

P(A) =~ P(A\X = x)P(X = x).

(b) If X :2-* R is a continuous random variable, then

P{A) = / P(A\X = x)dP = / P(A\X = x)fx(x) dx.
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Figure 4.3: The event A(a;t\,t2) in the Arc-sine Law.

Proof: (a) The sets X~1(x) = {X = x} = {w\X(n) = x} form a partition of
the sample space fi, i.e.:

wn = uxx-\x)-
(i) X_160) NX~1(y) = 0 forx dy.
Then A = [N nXx_10x" = "rAM{X = x}*, and hence

X X

P(A) Ep(nn{X =x})

AP{AVX =x)P(X = x).

X

(b) In the case when X is continuous, the sum is replaced by an integral and
the probability P({X = x}) by fx(x)dx, where fx is the density function of
X. ]

The zero set of a Brownian motion Wt is defined by {/, > 0; Wt = 0}. Since
Wt is continuous, the zero set is closed with no isolated points almost surely.
The next result deals with the probability that the zero set does not intersect
the interval (ti,t2).

Theorem 4.4.2 (The Arc-sine Law) The probability that a Brownian mo-
tion Wt does not have any zeros in the interval (£1,2) is equal to

P(Wt d 0,t\ <t < t?) = —arcsinJ —.
(Wt e ) T V £2
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Proof: The proof follows Ross [43]. Let A(a]t\,t2) denote the event that the
Brownian motion Wt takes on the value a between t\ and t2. In particular,
M(0; t, denotes the event that Wt has (at least) a zero between t\ and
t2- Substituting A = A(0; £1,72) and X — Wtl into the formula provided by
Proposition 4.4.1

P(A)= 1 P(A\X = x)fx (x) dx
yields

P(A(0:tit2) = J P{MO:ti,t2\Wtl=x) FWH(x)dx (4.4.5)

\]' P(A(0;tLt2\WH = x)e 2 dx.

Using the properties of Wt with respect to time translation and symmetry we
have

P(A(0;t1,t2)\Wtl = x) P(A(0;0,t2-h)\Wo =x)

= P(A(-x-0,t2-ti)\W0=0)

= P(A(]x];0,i2-ti)|Wo = 0)

= P(A(\x\;0,t2 - ti))

= P(T\X\\<t2-h),
the last identity stating that Wt hits |x before t2 —t\ m Using Lemma 4.3.1
yields

2 foe 2
P(A(O-ti,t2)\Wtl =x) = ol I e 2% dy.
(AL ) yhair(z - 1) Ix\

Substituting into (4.4.5) we obtain

1 / 2 n \ X2
P(A(O;ti,t2)) = -zf= ( /o =/ e dy)e~2ti dx
vV 27M\ J—00 'Y 27r(<2 t\) Jwx\
1 rOO

rOO y ] )Q
- -, = [ [ e 22-'i) 2 dydx.
TTyl/tlfc -*i) Jo JI¥

The above integral can be evaluated to get (see Exercise 4.4.3 )
P(A(0;<i,£2)) = 1----- arcsin n/—.
(A( ) = -

Using P(Wt @ 0,ii <t < i2) = 1- P(A(0;ii,t2)) we obtain the desired
result. I
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Exercise 4.4.3 Use polar coordinates to show
| reo r°o y2 X2
- = e 2¢2 -y 2 dydx = 1----- arcsin * —.
ny/tiih ~h) Jo JX\ n V h
Exercise 4.4.4 Find the probability that a 2-dimensional Brownian motion
W(t) = (Wi(t), W2(t)) stays in the same quadrant for the time interval t G
(h,t2).

Exercise 4.4.5 Find the probability that a Brownian motion Wt does not take
the value a in the interval (ii,*2)e

Exercise 4.4.6 Leta ¢ b. Find the probability that a Brownian motion Wt
does not take any of the values {a,b} in the interval (ti,i2)- Formulate and
prove a generalization.

We provide below without proof a few similar results dealing with arc-sine
probabilities, whose proofs can be found for instance in Kuo [30]. The first
result deals with the amount of time spent by a Brownian motion on the
positive half-axis.

Theorem 4.4.7 (Arc-sine Law of Levy) Let Lf = J[sgn+Wsds be the
amount of time a Brownian motion Wt is positive during the time interval
[0,4]. Then

2 . r
P\L~[ < r) = —arcsin V\P
The next result deals with the Arc-sine Law for the last exit time of a
Brownian motion from O.

Theorem 4.4.8 (Arc-sine Law of exit from 0) Let 71 = sup{0 < s <
t\Ws = 0}. Then

2 r
P{lt <t) = —arcsin ij’i 0<T<Ht

The Arc-sine Law for the time the Brownian motion attains its maximum
on the interval [0,t] is given by the next result.

Theorem 4.4.9 (KArc-sine Law of maximum) Let Mt = 0maxtW4 and de-
’ <s<
fine
Q= sup{0 < s <t\Ws = Mt}.
Then
2 . .Ps
P{6t < «) = —arcsin J 0<s<t,t>0.
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45 More on Hitting Times

In this section we shall deal with results regarding hitting times of Brownian
motion with drift. These type of results are useful in Mathematical Finance
when finding the value of barrier options.

Theorem 4.5.1 Let Xt = p,t+ Wt denote a Brownian motion with nonzero
drift rate 4, and consider a, /3> 0. Then

e2M3_ 1
P (Xt goes up to a before down to —/3) = —Tr—b—:—g——%.

Proof: Let T = inf{£ > 0; Xt > a or Xt < —3} be the first exit time of Xt
from the interval (—3,a), which is a stopping time, see Exercise 4.1.4. The
exponential process

Mt = ec-4*, t>0
is a martingale, see Exercise 3.2.4(c). Then IE[Mt\ = E[Mo] = 1. By the
Optional Stopping Theorem (see Theorem 4.2.1), we get E[Mt\ = 1. This can
be written as
1 = E[ecWT~"c2T] =E[ecXT- » +* T]. (4.5.6)
Choosing c = — yields E[e-2,jA"T] = 1. Since the random variable X t takes

only the values a and -/3, if we let pa = P(Xt = a), the previous relation
becomes
e-»apa+eW (l-pa)=1.

Solving for pa yields

e2n3- 1
Pa=e2u3 e-2m' (4.5.7)
Noting that
pa = P{Xt goes up to a before down to —/3)
leads to the desired answer. [

It is worth noting how the previous formula changes in the case when the
drift rate is zero, i.e. when y = 0, and Xt = Wt. The previous probability is
computed by taking the limit 4 —0 and using L’Hospital’s rule

lim e -} _ lim A Z/Ee_?:\_ ______ = _{3-
S0en T e o 02/3e8"’&+ 2ae 24 a+ 3

Hence

P(Wt goes up to a before down to —/3) =

a+ 3
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Taking the limit /3 — 00 we recover the following result
P(Wt hits a) = 1.

If a = /3 we obtain

P (Wt goes up to a before down to —a) —

which shows that the Brownian motion is equally likely to go up or down an
amount a in a given time interval.

If Ta and Tp denote the times when the process Xt reaches a and /3, respec-
tively, then the aforementioned probabilities can be written using inequalities.
For instance, the first identity becomes

e i
P{Ta< T-p) = e2m3 _ e-2Ua"

Exercise 4.5.2 Let Xt = fit + Wt denote a Brownian motion with nonzero
drift rate /n, and consider a > 0.

(a) Iffi > 0 show that
P(Xtgoesuptoa) = 1
(6) If [i < 0 show that
P(Xtgoes up toa) = e2w < 1
Formula (a) can be written equivalently as
P(s_ug)(Wt +/it) > a) = 1, u>o,
i>
while formula (b) becomes
P(sup(Wj + lit) > a) —e fi< 0,
t>0

or
P(sup(H/i —yt) >a) = e 27", 7 >0,
=0

which is known as one of the Doob’s inequalities. This can also be described
in terms of stopping times as follows. Define the stopping time

Ta = inf{f > 0;Wt —yt > a}.
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Using
P(Ta < 00) = P(sup(Wt —71) > a)
>0

yields the identities

e-2"7, 7 >0,
1 7<0.

P(Ta < 00)
P(rQ< o00)

Exercise 4.5.3 Let Xt = fit + Wt denote a Brownian motion with nonzero
drift rate )i, and consider /3 > 0. Show that the probability that Xt never hits

—3 is given by
1-e-2¢, ifii>0
0, ify <o0.
Recall that T is the first time when the process Xt hits a or —3.
Exercise 4.5.4 (a) Show that

mrV 1 _ ae?/if3 + -a-1M"3
- e2if3 _ e-2ua

(b) Find E[X$\;
(c) Compute Var(Xr)-

The next result deals with the time one has to wait (in expectation) for
the process Xt = /-it + Wt to reach either a or —/3.

Proposition 4.5.5 The expected value ofT s

ae2uP | /3e-2"a —a —13
E[T] = uP 1

Proof: Using that Wt is a martingale, with E\Wt] = E[Wo] = 0, applying the
Optional Stopping Theorem, Theorem 4.2.1, yields

0= E[WT\ = E[XT - yT\ = E[XT]- uE[T\
Then by Exercise 4.5.4(a) we get

E[Xr] + be~"a-a- i3

BTl = e —e 27

Exercise 4.5.6 Take the limit /x —m0 in the formula provided by Proposition
4-55 to find the expected time for a Brownian motion to hit either a or —/3.
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Exercise 4.5.7 Find E[T2] andVar(T).

Exercise 4.5.8 (Wald’s identities) Let T be afinite and bounded stopping
time for the Brownian motion WtmShow that:

(a) E[WT]= 0;
() E[WI]] = E[T].

The previous techniques can also be applied to right continuous martin-
gales. Let a > 0 and consider the hitting time of the Poisson process for the
barrier a

r = inf{t > 0;Nt > a}.

Proposition 4.5.9 The expected waiting time for Nt to reach the barrier a
iS E[t] = f.

Proof: Since Mt = Nt —Xt is a right continuous martingale, by the Optional
Stopping Theorem E[MT] = E[Mq = 0. Then E[NT —Ar] = 0 and hence
E[r] = \E[NT]= 2

4.6 The Inverse Laplace Transform Method

In this section we shall use the Optional Stopping Theorem in conjunction
with the inverse Laplace transform to obtain the probability density functions
for hitting times.

The case of standard Brownian motion Let x > 0. The first hitting time
T=Tx = inf{i > 0; Wt > x} is a stopping time. Since Mt = ecWt~*c2t, t > 0,
is a martingale, with E[M] = E[Mo] = 1, by the Optional Stopping Theorem,
see Theorem 4.2.1, we have

E[MT]= 1

This can be written equivalently as E[e 1= 1 Using WT = x, we get
E[e-5¢cV] = e- ¢~
It is worth noting that ¢ > 0. This is implied from the fact that e~zcT< 1

and r, x > 0.
Substituting s —|c 2, the previous relation becomes

E[e~ST]= e~ "X (4.6.8)

This relation has a couple of useful applications.
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Proposition 4.6.1 The moments of the first hitting time are all infinite
E[rn] = oo, n>1

Proof: The nth moment of r can be obtained by differentiating and taking

£NE [e-ST] = E[(—F)ne-ST], = (-D)"E[rn],

Is=0 1s=0

Using (4.6.8) yields
E[rn]= (-1)M e~ "X

Since by induction we have

dsn koo 2r*/2s(n+®)/2°

with Mfc,rfc positive integers, it easily follows that E[rn] = oo.
For instance, in the case n = 1, we have

E[f] = -4 -¢ = lim = +00.
ds S—0+ 2\[2sx

Another application involves the inverse Laplace transform to get the prob-
ability density. This way we can retrieve the result of Proposition 4.3.4.

Proposition 4.6.2 The probability density of the hitting time T is given by
p(t) = -/===e~ii-, t> 0. (4.6.9)

Proof: Let x > 0. The expectation

POO
E[e_sr] = J{) e~STp(r) dr = C{p(r)}(s)

is the Laplace transform of p(T). Applying the inverse Laplace transform
yields

p(r) = £-4E[e-STI}(r) = £-1{e-"}(r)

2
X e 5 r > 0.
\f2irr3
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In the case x < 0 we obtain

_X
Ry="w e2t T>0'
which leads to (4.6.9). [

The computation on the inverse Laplace transform is be-
yond the goal of this book. The reader can obtain the value of this inverse
Laplace transform using the Mathematica software. However, the more math-
ematically interested reader is referred to consult the method of complex in-
tegration in a book on inverse Laplace transforms.

Another application of formula (4.6.8) is the following inequality.

Proposition 4.6.3 (Chernoff bound) Let T be the first hitting time when
the Brownian motion Wt hits the barrier x, x > 0. Then

PlT<A<e 2 VA > 0.

Proof: Let s = —t in part 2 of Theorem 2.13.11 and use (4.6.8) to get

P(r< A< = EA X~ = eA' X Vs > 0.

Then P(t < A) < emms>0-"s), where /(s) = As—xy/2s. Since /'(s) = A—H=,

then /(s) reaches its minimum at the critical point so = * The minimum
value is
Substituting in the previous inequality leads to the required result. ]

The case of Brownian motion with drift Consider the Brownian motion
with drift Xt = [it + trWt, with //,a > 0. Let

r = inf{f£ > 0;Xt > x}

denote the first hitting time of the barrier x, with x > 0. We shall compute
the distribution of the random variable r and its first two moments.
Applying the Optional Stopping Theorem (Theorem 4.2.1) to the martin-

gale Mt = ecWit~2c2 yields
E[MT\=E[M(] = L
Using that WT = A(XT—uT) and X T = x, the previous relation becomes

E[e“(» +5C] = e~°x. (4.6.10)
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Substituting s = E + —202 and completing to a square yields
n2 n\2
2s H— ~ —
¢ \Y; 7

Solving for ¢ we get the solutions

cC=-» +J2s+ A" cC=-»-J2s+ £
a Vv cr2 o V (7

Assume ¢ < 0. Then substituting the second solution into (4.6.10) yields

E[e-sT] = ejir+ y/ 2T+ 2)x _

This relation is contradictory since e ST < 1 while e7 * \/2xx2+//2x ~ |

where we used that s, x, T> 0. Hence it follows that ¢ > 0. Substituting the
first solution into (4.6.10) leads to

—ejln-y [ 224N _
We arrive at the following result:

Proposition 4.6.4 Assume fi,x > 0. Let T be the time the process Xt =
fit + aWt hits x for the first time. Then we have

E[e"ST]= e? (*-vIW )X i g> Q. 4gU)

Proposition 4.6.5 Let T be the time the process Xt = fit + <iWt hits x, with
x > 0 and fi > 0.

(a) Then the density function of T is given by

P(T) = T>0. (4.6.12)

a-_ .6
a\J2KTéli
(b) T/ie mean and variance of T are

Efyt= Var(r) = e
M Al
Proof: (a) Let p(r) be the density function of r. Since

roo
E[e-sr] = J/() e~STp(r) dr = £{p(r)}(s)
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is the Laplace transform of p(r), applying the inverse Laplace transform yields

p(r) = £-1{E[e-eT}=£“i{e" W 2)2#2*}
a (x-Mr)2
e Atz ( r > 0.
(v2rrT3/2
It is worth noting that the computation of the previous inverse Laplace trans-
form is non-elementary; however, it can be easily computed using the Mathe-
matica software.
(b) The moments are obtained by differentiating the moment generating

function and taking the value at s = 0

E = —"-Efe- - 202+f) x
[T] o [ ST]e:O ds )
X p -2z {» -\/Zs02+il,2)x

sj[12 + 2sn

X

iy

= - N - =

Elr2 = (-D2;0E[e-SNl__ =

XRp2 + XyJ\12 + 2scr2) A~ -y /2 scr2+fi2)x
(p2 + 2scr2)3/2
HI2 x2

Hence

var(r) —E[t ]—E[] = ‘%

It is worth noting that we can arrive at the formula E[r] = ” in the following
heuristic way. Taking the expectation in the equation /it + aWr = x yields
PE[r] = x, where we used that E[WT] = 0 for any finite stopping time r

(see Exercise 4.5.8 (a)). Solving for E[r] yields the aforementioned formula.
]

Even if the computations are more or less similar to the previous result,
we shall treat next the case of the negative barrier in its full length. This
is because of its particular importance in being useful in practical problems,
such as pricing perpetual American puts.

Proposition 4.6.6 Assume p,x > 0. Let T be the time the process Xt =
pt + aWt hits —x for the first time.
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(a) We have
E[e~sr]= e+ V 2200 27 s> 0. (4.6.13)
(b) Then the density function of T is given by

. X (E+AT>_
= al9e 2'a > >0 - (4.6.14)
(c) The mean of T is
X Bux
E[rf] = -e~".

Proof: (a) Consider the stopping time r = inf{i > 0;Xt = —x}. By the
Optional Stopping Theorem (Theorem 4.2.1) applied to the martingale Mt =
ecWt- \'t yjoldg

1 = MO=E[MN=E[ecWI~AT] = E[e*XT-»T- " T
= E[e-"~"-4-r] =e-f*E[e-&+ T].
Therefore
E[e~"+")T] =e°x. (4.6.15)
If let s =" + y, then solving for cyieldsc= — + y 25 + but only the

negative solution works out; this comes from the fact that both terms of the
equation (4.6.15) have to be less than 1. Hence (4.6.15) becomes

E[e~ST] = e>o0
(b) Relation (4.6.13) can be written equivalently as
C(p(T)) = eMM+V2* 2+1M)*,

Taking the inverse Laplace transform, and using Mathematica software to
compute it, we obtain

p(r)=£-ipW ~)>W ) =_~* T>0.
4 ' OyZTTT |

(c) Differentiating and evaluating at s = 0 we obtain
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Exercise 4.6.7 Assume the hypothesis of Proposition 4-6.6 are satisfied. Find
Var(r).

Exercise 4.6.8 Find the modes of distributions (4.6.12) and (4.6.14). What
do you notice?

Exercise 4.6.9 Let Xt= 2t+ 3Wt and Yt = 2t + Wt-

(a) Show that the expected times for Xt and Yt to reach any barrier x > 0
are the same.

@) 1If Xt and Yt model the prices of two stocks, which one would you like
to own?

Exercise 4.6.10 Does 41+ 2Wt hit 9 faster (in expectation) than 51+ 3Wt
hits 14?

Exercise 4.6.11 Let 1 be the first time the Brownian motion with drift Xt =
/it+ Wt hits x, where 1,x > 0. Prove the inequality

P{t< A) < VA > 0.

The double barrier case In the following we shall consider the case of double
barrier. Consider the Brownian motion with drift Xt = fit+ Wt, L|> 0. Let
a,(3> 0 and define the stopping time

T = inf{t > 0; Xt > aor Xt < —3}.

Relation (4.5.6) states
ElecXle-("+8c2)T] = L

Since the random variables T and Xt are independent (why?), we have
E[ecXT]E [e-N+H2c2)1] = 1.
Using E[ecXT} = ecapa + e~c™(l —pa), with pa given by (4.5.7), then

E [e-(cM +ic2)T] =

ecapa+ e cP(l-pa)

If we substitute s = ¢/x+ ~c2, then

E[e-sT] = . - 7= e (4.6.16)
e(-/x+V2s+MN)apa + e-{-p+y/2s+7)/3™ _ Paj
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The probability density of the stopping time T is obtained by taking the inverse
Laplace transform of the right side expression

p(T) = C~I( t = = = - J(r),
\ e(-p+y/28+p>)apa + e-(-M+\/2sHW)™N(1 _ pQJ

an expression which is not feasible for having a closed form solution. However,
expression (4.6.16) would be useful for computing the price for double barrier
derivatives.

Exercise 4.6.12 Use formula (4.6.16) to find the expectation LLIT].

Exercise 4.6.13 Let Tx —inf{i > 0; Wi\ > x}, for x > 0.
(a) Show that E[edATr] = cosh(cx), for any ¢ > 0.
(b) Prove that

E[e~XTH] = sech(\/2A:r), VA > 0.

Exercise 4.6.14 Denote by Mt = Nt —Xt the compensated Poisson process
and let ¢ > 0 be a constant.

(&) Show that
Xt = ecM*-LLLeG c~1)
is an Tt-martingale, with Tt = a(JVu;un <t).

(b) Leta>0and T = inf{i > 0; Mt > a} be the first hitting time of the level
a. Use the Optional Stopping Theorem to show that

E[e-AsT] = e~"s)a, s >0,

where tp: [0,00) — [0, 00) is the inverse function of /(x) = ex —x —1.
(c) Show that E[T] = oo.

(d) Can you use the inverse Laplace transform to find the probability density
function ofT?

4.7 The Theorems of Levy and Pitman

This section presents two of the most famous results on Brownian motions,
which are Levy’'s and Pitman’s theorems. They deal with surprising equiva-
lences in law involving a Brownian motion and its maximum and minimum.

Let Wt be a standard Brownian motion and denote its running maximum

by

Mt — max WSs.

0<s<t
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Figure 4.4: The reflection principle for a Brownian motion.

From Exercise 4.3.10 the probability density of Mt is given by

2
Pt(x) = e 25 x> 0.
y/brt

Lemma 4.7.1 The joint density function of (Wt,Mt) is given by

f(a,b)= 2, @D a<b b>o.
y/brt3/2

Proof: Let a <b. Assume Mt > b, i.e. Ws takes values larger than or equal to
b in the interval [0, t]. By the reflection principle, see Fig. 4.4, the Brownian
motion reflected at the stopping time Tb is also a Brownian motion. The
probabilities to increase or decrease by an amount of at least b—a are then
equal

PWt>2b- a\Mt> b) = P(Wt < a\Mt > b).

Multiplying by P(Mt > b) and using the conditional probability formula yields
P(Wt>2b-a, Mt>b) = P{Wt< a, Mt> h). (4.7.17)
Conditions Wt > 2b—a and 2b—a>b imply Mt > b, so
P{Mt> 6IWt > 2b-a) = L
Then the left side of (4.7.17) can be computed as
PWt>2b- a, Mt>b) = PWt>2b- a)P(Mt>b\Wt>2b-a)

= P(Wt>2b-a)

1 X
— -/ e 22tdx.
V2nt J2ba
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Substituting into (4.7.17) implies
N @M 2

PWt< a Mt>b)= mr / e~ if dx.
VATTt J2b—a

The associated probability density f(a, b) can be obtained by differentiation
P(wtG(a,a—/Aa), Mt G (b,b + Ab)
Aa Ab

f(a,b) = —lim Alérpo
a2

2(26 —a 2b-a)2
(26 —a) (@)
V2irt3

The following equivalence in law was found by Levy [33] in 1948.

Theorem 4.7.2 The processes Xt = Mt —Wt and Wi\, t > 0 have the same
probability law.
Proof: The probability density of \W\ is given by Exercise 4.3.11 (a)
Pt(x) = 2 e 450 (4.7.18)
\ ATt

Using a direct computation and Lemma 4.7.1 we shall show that Xt = Mt —Wt
also has the density (4.7.18). For n > 0 we have

P{Xt<u) = P(Mt—Wt< u):Jj f(x, y) dx dy
{0<y—x<u,y>0}
= h~h,
with
h =1/ f{x,y)dxdy, 12= [/ f{x,y) dxdy.
{y —x<u,y>o0} {0<7/<x}

This writes the integral over a strip as a difference of integrals over the interior
of two angles, see Fig. 4.5(a). A great simplification of computation is done
by observing that the second integral vanishes

X
I_I f(x,y) dydx

ree X (2y-x)2
y/brt3az 1/ (2y —x)e A dydx
I ‘] @ 22
- ze~zt dzdx = 0,
\fbit?12 Jo J-
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y:(yx+u)/2/\r / y:*

c [/ /o 5
-un n

Figure 4.5: (a) The integration strip for the proof of Levy’s theorem, (b) The
domains Daoc, Daob, and Dabc for the proof of Pitman’s theorem.

as an integral of an odd function over a symmetric interval. Next we shall
compute the first integral

00 ru-\-x
I / / / (x,y) dy dx

-u JO
roc ru-vx a*)2
[ (2y —x)e 2 dydx
n oI» |2 J—H JO

2 @0 f(2u+x)/V2t
[ ze 2 dzdx,
y/2-Kt B— I=x/Vzt

where we substituted z —2y —x. Changing the variable in r = z2. we get

roo r(2u+x)2/(2t)
= e rdrdx
\fbrt J-u JIx2/(2t)

x2 (2u+x)2

s Lok " e

- @ 2
- .I )_ e- '-gl d X -——-—- ’l /[r e_21 dv
\fbvt J-w Wbrt jJu

1 M .2 . x2
e 20dx= . I e 2t dx.
y/7Pptt J-y v27rt Yo
Therefore P(Xt < u) —N\ = /@e a dx. Differentiate with respect to u
we obtain the probability density of Xt

Ne («) = du = Tt e-idx

2 e—yﬁ} m>0,
\Z2irt
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which matches relation (4.7.18).

Denote the running minimum of a Brownian motion Wt by

mt = min WSs.
o<s<t

Corollary 4.7.3 Let Bt be a Brownian motion. Then the processes Yt —
Bt —mt and \Bt\, t > 0 have the same probability law.

Proof: Consider the reflected Brownian motion Wt = —Bt. Then Wt = \BA\
and Bt —mt = Mt —Wt- Applying Theorem 4.7.2 for Wt implies the desired
result. |

It is worth concluding that the processes Wt\ Mt and Mt —Wt have the
same law.

Before getting to the second result of this section, we shall recall a few
results. The 3-dimensional Bessel process Rt is the process satisfied by the Eu-
clidean distance from the origin to a 3-dimensional Brownian motion W (t) =
(W2{t),W 2(t),W 2(t)) in M3

Rt = Vwi(t)2+ wXty + wXtf.
Its probability density is given by Proposition 3.7.1

(4.7.19)

In the following we present another striking identity in law, similar to Levy'’s,
which was found by Pitman [38] in 1975.

Theorem 4.7.4 The process Zt = 2Mt —Wt, t > 0 is distributed as a 3-
dimensional Bessel process Rt.

Proof: We shall follow the same idea as in the proof of Theorem 4.7.2. Let
n > 0 and consider the domains, see Fig. 4.5(b).

Daoc = {2y - x < u,y > 0,x <y}
Daob = {0 < > y}
Dabc = {2y —x < u,y > 0}.

The probability function of Zt can be evaluated as

P(2Mt- Wt< u) = f(x,y) dxdy (4.7.20)

f(x,y)dxdy - 11 f(x,y) dx dy

h(u) - 12{u).
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We note first that the second integral vanishes, as an integral of an odd func-
tion over a symmetric interval

fufx 2 (Ry-x)2

I L T w M{2y~x)e~ a9 iydx
1 fu fx £
— oln / ze™t dzdx = 0.
J-x

hiu)

The first integral is computed using the substitutions z = 2y —x and r = 22

M [e()2 2

h(u = ONe ~ X)e 2 dydx
( ) J-uJo \fbttg{ ) y
/r r ze’q[dzdx— ——' f r/ e 2 drdx
S/bntSVZJ uJ-x 2y/21—rt3/2J u Jxz
t
dx
\[bst312 J-

1 2
= [ & kdx—Z=ue 2

x/27rt J-u V27rt

= /lre bl dx —ue I:I‘J

VMtJO

Differentiate using the Fundamental Theorem of Calculus and the product
rule to obtain

d~/\

W= 7% gou’e

Using (4.7.21) yields

which retrieves the density function (4.7.19) of a 3-dimensional Bessel process,
and hence the theorem is proved.

Corollary 4.7.5 The process Wt—2rrit, t > 0 is distributed as a 3-dimensional
Bessel process Rt-

Exercise 4.7.6 Prove Corollary 4-7.5.
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4.8 Limits of Stochastic Processes

Let (Xt)t>0 be a stochastic process. We can make sense of the limit expression
X = lim Xt, in a similar way as we did in section 2.14 for sequences of random

t—Y0o

variables. We shall rewrite the definitions for the continuous case.

Almost Certain Limit The process Xt converges almost certainly to X, if
for all states of the world U except a set of probability zero, we have

tirQOXt(u) = X(w).

We shall write ac-tﬂgp Xt = X. It is also sometimes called strong convergence.
)

Mean Square Limit We say that the process Xt converges to X in the mean
square if
lim E[(Xt- X)2} = 0.
t—»00
In this case we write ms-lim Xt = X.
Limit in Probability The stochastic process Xt converges in probability to
X if
lim P\ \XXt(») - X{w)I> e) = 0.
t—00

This limit is abbreviated by piin(;lo Xt —X.

It is worth noting that, like in the case of sequences of random variables,
both almost certain convergence and convergence in mean square imply the
convergence in probability, which implies the limit in distribution.

Limit in Distribution We say that Xt converges in distribution to X if for
any continuous bounded function <p(x) we have

lim E[ip(Xt)]=E[<p(X)].

It is worth noting that the stochastic convergence implies the convergence in
distribution.

4.9 Mean Square Convergence

The following property is a reformulation of Proposition 2.14.1 in the contin-
uous setup, the main lines of the proof remaining the same.

Proposition 4.9.1 Consider a stochastic process Xt such that EpTj] -> k, a
constant, and Var(Xt) —0 ast -> 00. Then ms-lim Xt —k.

t—o00
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It is worthy to note that the previous statement holds true if the limit to
infinity is replaced by a limit to any other number.

Next we shall provide a few applications.

Application 4.9.2 Ifa > 1/2, then

. Wt
ms-lim — = 0.
t—too ta

Proof: Let Xt = Then E[X{] = = 0, and
Varik A= *Var[Wt]=" =
for any t > 0. Since 2a-i ~ as”™ °° aPPVYTé Proposition 4.9.1 yields

ms-lim Wt _ B. 1
t->-00 ta

Corollary 4.9.3 We have ms-lim Wt = 0.
t—0 t

Application 4.9.4 Let Zt = f* Wsds. Iff3> 3/2, then

ms-th[H -tq‘- = 0.
Proof: Let Xt= Then EpQ] = —0, and

t3 1

1
Var[Xt}= "Var[zt]=" =1 3,

for any t > 0. Since "~2/3-3 ®as ™ 00 aPP~™nS Proposition 4.9.1 leads
to the desired result. [

Application 4.9.5 For anyp > 0, ¢ > 1 we have

eWt-ct
ms-lim --------- =0
— t
eWt-ct e Wt
Proojf: Consider the process Xt= - 5T e Since
E[Xt] = = — = — -» 0, ast—=m00

E ll tpect tPect  ei.c-\)ttP
Var[eWt] _e2t-eb_ 1/ 1 1 \
Var[Atj - t2pe2ct ~ t2pe2ct ~ i2p\e2t{c-l) gt(2c-1))

as t —00, Proposition 4.9.1 leads to the desired result. |
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Application 4.9.6 Show that

max Ws
ms-hm Oesst . =0
t—00 t
max Ws
Proof: Let Xt= - . Since by Exercise 4.3.10
E[max Ws\ = 0
O<s<t
Var(max Ws) = 2Vt,
o<s<t
then
E[Xt] = 0
2 ft
Var[Xt] = —2--"0O t —o00.

Apply Proposition 4.9.1 to get the desired result.
Remark 4.9.7 One of the strongest results regarding limits of Brownian mo-
tions is called the law of iterated logarithms and was first proved by Lamperti:

hm sup — wr, _ - 1

tA"  \MllIn(Int)
almost certainly.

Exercise 4.9.8 Find a stochastic process Xt such that the following both con-
ditions are satisfied:

-lim Xt =
(n mstlgnt 0

(rr) ms-lim X? ¢ O.
t—00
Exercise 4.9.9 Let Xt be a stochastic process. Show that

ms4im Xt= 0 ms4im \Xt\= 0.

t—00 t—»00

4.10 The Martingale Convergence Theorem

We state now, without proof, a result which is a powerful way of proving the
almost sure convergence. We start with the discrete version:
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Theorem 4.10.1 Let Xn be a martingale with bounded means
3M > 0 such that E[[Xn]< M, Vn > 1 (4.10.21)

Then there is a random variable L such that os-lim Xn= L, i.e.
n—00

P(uj;nll_>rr30Xn(Lu) =L(w)) =1
Since E[]X,,112 < E[X2], the condition (4.10.21) can be replaced by its stronger

version
3M > 0 such that E[X2] < M, Vn > 1

The following result deals with the continuous version of the Martingale
Convergence Theorem. Denote the infinite knowledge by J-* —<N Ut J7]j .

Theorem 4.10.2 Let Xt be an Tt-martingale such that
3M > 0 such that E[|Xt]] < M, VvVt > 0.

Then there is an -measurable random variable X~ such that Xt — X~
a.s. ast —oo.

The next exercise involves a process that is as-convergent but is not ms-
convergent.

Exercise 4.10.3 It is known that Xt — is a martingale. Since
E[IXt]] = E[eT ~1/2} = e~t/2E[eWi] = =1,

by the Martingale Convergence Theorem there is a random variable L such

that Xt —=L as. ast—» oo.

(&) What is the limit L ? How did you make your guess?
(6) Show that

EN\Xt - 1J2] = Var(Xt) + (E{Xt)- I)".

(c) Show that Xt does not converge in the mean square to 1.

(d) Prove that the sequence Xt is as-convergent but it is not ms-convergent.
Exercise 4.10.4 Let Xt = Wt + 1, where Wt is a Brownian motion and
consider

T = inf{t > 0;Xt < 0}.

(a) Is T a stopping time?

(b) Is Yt = Xtm g continuous martingale?

(c) Show that E[Yt] = 1, Vi > 0.

(d) Verify the limit as-limt >.00 Yt = 0.

(e) Is this contradicting the Optional Stopping Theorem?
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4.11 Quadratic Variation

In order to gauge the roughness of stochastic processes we shall consider the
sum of fc-powcrs of consecutive increments in the process, as the norm of the
partition decreases to zero.

Definition 4.11.1 Let Xt be a continuous stochastic process on Q, and Kk > 0
be a constant. The kth variation process of Xt, denoted by (X ,X)I(K) is defined
by the following limit in probability
n—1
<X, X)IfoM = p-lim AN NXU+HI(U) - Xti(u)\k,

max, [ti+i—ti|

where 0 = \ < t2< mmm< tn = t.
If k= 1, the process (X ,X)” is called the total variation process of Xt-

For k = 2, (X,X)t = (X,X)” is called the quadratic variation process of
xt.

It can be shown that the quadratic variation exists and is unique (up to in-
distinguishability) for continuous square integrable martingales Xt, i.e. mar-
tingales satisfying Xg = 0 a.s. and 1E[X2] < oo, for all t > 0. Furthermore,
the quadratic variation, (X,X)t, of a square integrable martingale Xt is an
increasing continuous process satisfying

(0 (X,X)o=0-,

(a) X ?-(X,X )t is a martingale.
Next we introduce a symmetric and bilinear operation.
Definition 4.11.2 The quadratic covariation of two continuous square inte-
grable martingales Xt and Yt is defined as

(X,Y)t= \({X + Y, X +Y)t- {X- Y,X - Y)).

Exercise 4.11.3 Prove that:
@ (X, Y)t= {Y ,X)f,
(b) (aX + by, Z)t = a(X, Z)t+ b(Y, 2)t.

Exercise 4.11.4 Let Mt and Nt be square integrable martingales. Prove that
the process MtNt — (M, N)t is a martingale.

Exercise 4.11.5 Prove that the total variation on the interval [0, N\ of a Brow-
nian motion is infinite a.s.

We shall encounter in the following a few important examples that will be
useful when dealing with stochastic integrals.
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4.11.1 The quadratic variation of Wt

The next result states that the quadratic variation of the Brownian motion
Wt on the interval [0, T\ is T. More precisely, we have:

Proposition 4.11.6 Let T > 0 and consider the equidistant partition 0 =
to<ti <mmmn_i <tn=T. Then

(4.11.22)

Proof: Consider the random variable

71—1

VAN A

i=0

- WH

Since the increments of a Brownian motion are independent, Proposition 5.2.1
yields

n—1 n—i
E[Xn] = {(Wutl~Wu)2t=Y ,~ -~
i=0 i=0
= tn-t0=T\
MN—1 n—1
Var(Xn) = Y JVar[{Wti+1-W ti)2]= Y JNU+i - tif
i=0 i=0
T\2 2T2
= nm
& = n

where we used that the partition is equidistant. Since X n satisfies the condi-
tions

E[Xn] = T, Vn> g

Var[Xn] — 0, n —2oo,

by Proposition 4.9.1 we obtain ms-lim Xn= T, or
77—>00

77,-1
ms-lim ~ (W ti+1-W ti)2= T. (4.11.23)

r=0
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Since the mean square convergence implies convergence in probability, it

follows that
n—1

p-lim Y {Wti+l-W ti? = T,
n—>(Dr_O

i.e. the quadratic variation of Wt on [0, T] is T.

Exercise 4.11.7 Prove that the quadratic variation of the Brownian motion
Wt on [a b is equal to b—a.

The Fundamental Relation dW2—dt The relation discussed in this section
can be regarded as the fundamental relation of Stochastic Calculus. We shall
start by recalling relation (4.11.23)

n—1

ms-lim Y {W ti+l - Wtif = T. (4.11.24)

i=0

The right side can be regarded as a regular Riemann integral
T = [Tdt,
Jo

while the left side can be regarded as a stochastic integral with respect to dWf

rT n—1
[ (dWt)2= ms-lim V(W ti+l - Wt
ylljl n—oo /i\;O

Substituting into (4.11.24) yields
[ (dwp2= f dt, VT >0
Jo Jo

The differential form of this integral equation is
dw? = dt.

In fact, this expression also holds in the mean square sense, as it can be inferred
from the next exercise.

Exercise 4.11.8 Show that
(@ E[dW? - dt] =
(6) Var(dwt —dt) = o(dt);
-lim (dWf —dt) = 0.
(c) msd{,rqo( )



Properties of Stochastic Processes 111

Roughly speaking, the process rill 2, which is the square of infinitesimal in-
crements of a Brownian motion, is deterministic. This relation plays a central
role in Stochastic Calculus and will be useful when dealing with Ito’s lemma.

The following exercise states that dtdwt = 0, which is another important
stochastic relation useful in 1to’'s lemma.

Exercise 4.11.9 Consider the equidistant partition 0 = to < t\ < mmn-\ <
tn= T. Show that

71—1

ms-lim Y "(Wti+l - Wu)(ti+i - U) = 0. (4.11.25)
i=0

4.12 The Total Variation of Brownian Motion

The total variation of a Brownian motion Wt is defined as

71—1
V(Wt) = supY I\Wk+1-W tk\
tk k=o

for all partitions 0 = to < t\ < mm< tn~i <tn = T. Without losing generality,
we may assume the partition is equidistant, i.e. tk+t\—tk = Equivalently,

V(Wt) = 71Iirr(‘)l0 Yn,

where
n—

f=0

Using Exercise 3.1.15 and the independent increments of the Brownian motion
provides the mean and variance of the random variable Yn

71— 1 [ n-1 anT
/-j2V (tk+i-tk)=J —
fc=U k=0
n— 2, n~i
a2 = Var{yn)= Y, Var[\Wtk+1-W tkN= {I--)Y J{k+i-tKk)
k=0 " k=0

) @--)t.

Since
{w; Yn(uj) < /i —ka} C {w; () —L\ > Kka}
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Tchebychev’s inequality, Theorem 2.13.10, provides

P{Yn< u-ka) < PA\Yn- u\> ka) < , Vic> 1
This states that the probability of the left tail is smaller than the probability

of both tails, the second being bounded by p. Using the probability of the
complement event, the foregoing relation implies

P(¥n > M- ka) >1 - Vk > 1.

Substituting for /i and a yields

Considering kK = y/n, we get

P(Yn> Cy/nj > 1- vn > 1,

where

Then for any constant M > O, there is an integer n such that C>/n < M and
hence

P(YM> M) > p(Yn>CVn) > 1- Vn > no.

Taking the limit over n yields

lim P(Yn>M) = 1
N—=00

Hence, the total variation of a Brownian motion is infinite, almost surely
P(V(Wt) =o00) = 1

The rest of this chapter deals with similar properties regarding quadratic
variation of compensated Poisson process and can be skipped at a first reading.
4.12.1 The quadratic variation of Nt —Xt

The following result deals with the quadratic variation of the compensated
Poisson process Mt = Nt —Xt.
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Proposition 4.12.1 Leta < b and consider the partition a —to <t\ < mmm<
tn-1 <tn = b, Then
n—1
ms- lim ~ Mtkf = Nb~ Na, (4.12.26)

IlAnH® k=Q

where [|JO1]:= sup (tk+1-tKk).

O<fc<n—1
Proof: For the sake of simplicity we shall use the following notations
Atk = tk+1- tk, AMk= Mtk+l - Mtk, ANk = Ntk+l - Ntk.

The relation we need to prove can also be written as
n—1L
ms-lim Y, [(AMfg2- ANK] = 0.
fc=0
Let
Yk= (AMK)2- ANk= [AMK)2- AMk- AAtk.

It suffices to show that

n—1

= o, (4.12.27)
fe=0
n—1

o (4.12.28)
=0 -

The first identity follows from the properties of Poisson processes (see Exercise
3.8.9)

n—1L n—1 n—1
Y = "No =X ;e[(nmN] - e|[ANd
e[YyY = fopn =x.el(m)]-ep
n—1
= Y~NAON —AAtLK) = 0.
k=0

For the proof of the identity (4.12.28) we need to first find the variance of Yk.

Var[YK] = Var[(AMK)2- (AMk+ XAtk)] = Var[{AMk)2- AMK]
Var[(AMK)2} + Var[AMK] - 2Cov[AMI, AMK]
— \Atk+ 2\~Ag} + AAtK

E[(AMB3] - E[(AMB2]E[AMA

= 2A2(AtK)2,
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where we used Exercise 3.8.9 and the fact that E[AMu] = 0. Since Mt is a
process with independent increments, then Cov[Yk,Yj] = O fori ®j. Then

n—1 n—1 n—1
Var~Yk] = Yarlld + 2X Covlyk:Yj] = 32 VarYR
k=0 k=0 k=0
n— n—
= 2A2]T(AtK2 < 2A2|IM 1 Atk= 2A2(b- a)llAn]I
k=0 k=0
n—1

and hence Var[5 >] -> 0 as |JAn] = 0. According to the Proposition

2.14.1, we obtain the desired limit in mean square. ]

The previous result states that the quadratic variation of the martingale
Mt between a and b is equal to the jump of the Poisson process between a and
b.

The Relation dMf = dNt Recall relation (4.12.26)

n—l
ms- limMY XM tk+l - Mtk)2= Nb- Na. (4.12.29)
fc=0
The right side can be regarded as a Riemann-Stieltjes integral

Nb~Na= [ HNt,
Ja

while the left side can be regarded as a stochastic integral with respect to
{dMtf

b n- 1
/ (dMt)2 := ms-Aimo5 1 (M tictl - Mtft) 2.
feo
Substituting in (4.12.29) yields

I"(dMt)2= f dNt,
Ja Ja

for any a < b. The equivalent differential form is

(dMt)2 = dNt. (4.12.30)
The Relations dtdMt = 0, dWtdMt = 0 In order to show that dtdMt = 0
in the mean square sense, we need to prove the limit

n—1
ms-nli_tm N2 (tk+tl —tk) (M tk+l - Mtk) = 0. (4.12.31)
00
k=0
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This can be thought of as a vanishing integral of the increment process dMt
with respect to dt

dMtdt = O, Va, b £

ta
Denote
n—1 n—1
Xn = N(Efc+i —tk){Mtkil —Mtk) = ~  AtkAMKk.
k=0 k=0

In order to show (4.12.31) it suffices to prove that
1 WwXn]= 0

2. lim Var[Xn}= 0.

Using the additivity of the expectation and Exercise 3.8.9 (b)

n—1 n—1
E[Xn]= E[ A AtfeE[AMf] = 0.
k=0 k=0

Since the Poisson process Nt has independent increments, the same property
holds for the compensated Poisson process Mt. Then AtkAMk and AtjAM j
are independent for A ¢ j . and using the properties of variance we have

n—1 n—1 n—1
Var[Xn}= Var[Y, "kAMK] = ]T(AAf)2Var[AMK = A~ (AAT)3,
k=0 k=0 =0

where we used
Var[AMK\= E[(AMK)2} - (E[AMK})2 = AAtK,

see Exercise 3.8.9 (b). If we let ||Aal= mle(1xAA’\, then

n—1 71—1
Var[Xn} = AN (A tkf < AJJAIRY Atk= Ab- a]]An->0
k=0 f=0

as n —£00. Hence we proved the stochastic differential relation

dtdMt = 0. (4.12.32)

For showing the relation dwt dMt = 0, we need to prove

ms-lim Yn= 0, (4.12.33)

71—"00
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where we have denoted

n—l n—
N o= MNWfe+l - WK)(Mtktl -M tk) = J2& W kAMK.
k=0 k=0

Since the Brownian motion Wt and the process Mt have independent incre-
ments and AWk is independent of AMk, we have

n—1 n—1
E[Yn] = 22 E[AWKAMK] = "E[AW*]E[AMT] = 0,
fc=0 fc=0

where we used E[AHfc] = E[AMK\ = 0. Using also E[(AlVfc)2] = Atk,
E[(AMK)2] = J1Atk, and invoking the independence of AWK and AMK, we
get

Var[AWKAMK] E[(AWK)2(AMK)2Z} - (E[AWRAM )2

E[(AWR2E[(AMT)2] - E[A~]2E[AA4]R

= A(Atk)2.
Then using the independence of the terms in the sum, we get
n—1 n—1
Var[Yn} = J2Var[AWKAMK\=A"(Atf)?2

k=0 k=0
n—1

< AllAn] Atfc = A(b —a)] |JAn |—0,
fc=0

as n — 00. Since Yn is a random variable with mean zero and variance
decreasing to zero, it follows that Yn —0 in the mean square sense. Hence we
proved that

dwtdMt = 0. (4.12.34)
Exercise 4.12.2 Show the following stochastic differential relations:
(&) dtdNt = 0; (b) dWtdNt = 0; (c) dtdwt = ©;
(d) (dNt)2 = dNt; (e) (dMt)2 = dNt] (/) (dMt)A= dNt.

The relations proved in this section are useful when developing stochastic
models for a stock price that exhibits jumps modeled by a Poisson process.
We can represent all these rules in the following multiplication table:

x dt dWt dNt dMt

dt 0 0 0 0
dwt 0 dt 0 0
dNt o 0 dNt dNt
dMt O 0 dNt dNt



Chapter 5

Stochastic Integration

This chapter deals with one of the most useful stochastic integrals, called the
Ito integral. This type of integral was introduced in 1944 by the Japanese
mathematician Ito [24], [25], and was originally motivated by a construction
of diffusion processes. We shall keep the presentation to a maximum sim-
plicity, integrating with respect to a Brownian motion or Poisson process only.
The reader interested in details regarding a larger class of integrators may con-
sult Protter [40] or Kuo [30]. For a more formal introduction into stochastic
integration see Revuz and Yor [41].

Here is a motivation for studying an integral of stochastic type. The Rie-
mann integral J™F(x) dx represents the work done by the force F between
positions x = a and x = b. The element F(x) dx represents the work done by
the force for the infinitesimal displacement dx. Similarly, F(t) dWt represents
the work done by F during an infinitesimal Brownian jump dWt. The cum-
mulative effect is described by the object F(t) dWt, which will be studied
in this chapter. This represents the work effect of the force F done along
the trajectory of a particle modeled by a Brownian motion during the time
interval [a, b].

5.1 Nonanticipating Processes

Consider the Brownian motion Wt. A process Ft is called a nonanticipating
process if Ft is independent of any future increment W¥ —Wt¢, for any t and
t' with t < tl. Consequently, the process Ft is independent of the behavior of
the Brownian motion in the future, i.e. it cannot anticipate the future. For
instance, Wt, eWt, W2 —Wt + t are examples of nonanticipating processes,
while Wt+i or \(Wt+i —Wt)2 are not.

Nonanticipating processes are important because the Ito integral concept
can be easily applied to them.

117
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If Tt denotes the information known until time t, where this information is
generated by the Brownian motion < t}. then any JVadapted process
Ft is nonanticipating.

5.2 Increments of Brownian Motions

In this section we shall discuss a few basic properties of the increments of a
Brownian motion, which will be useful when computing stochastic integrals.

Proposition 5.2.1 Let Wt be a Brownian motion. Ifs < t, we have
1 E[(Wt-W s)2]=t-s.
2. Var[(Wt- Ws)2}= 2(t- s)2.

Proof: 1 Using that Wt —Ws ~ N(0,t —s), we have
EWt- Ws)Z = E[{Wt- Ws)Z - (E[Wt- Ws}2= Var(Wt-W s) = t-s.

2. Dividing by the standard deviation yields the standard normal random

variable ~ ~ N(0,1). Its square, is N 2-distributed with 1
s/t —s t —s

degree of freedom.1 Its mean is 1 and its variance is 2. This implies

£ -(W t-W s)2:
t—s
(Wt- Ws)2
ar

1=* E[(Wt- Ws)Z}=1t- s

\Y 2=>Var[(Wt-Ws)2} = 2 (t-s)2.

Remark 5.2.2 The infinitesimal version of the previous result is obtained by
replacing t —s with dt

1 E[dW2} = dt;

2. Var[dW?} = 2dt2 = 0.

Exercise 5.2.3 Show that
(@ E[Wt- Ws)4= 3(t- s)2;
(b) E[(Wi —WSs)6} = 15(t —s)3.

1A x2-distributed random variable with n degrees of freedom has mean n and variance
2n.
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5.3 The Ito Integral

The Ito integral will be defined in a way that is similar to the Riemann in-
tegral. The Ito integral is taken with respect to infinitesimal increments of
a Brownian motion, dWt, which are random variables, while the Riemann
integral considers integration with respect to the deterministic infinitesimal
changes dt. It is worth noting that the Ito integral is a random variable, while
the Riemann integral is just a real number. Despite this fact, we shall see that
there are several common properties and relations between these two types of
integrals.

Consider 0 < a < b and let Ft = f(Wt,t) be a nonanticipating process
satisfying the “non-explosive” condition

E E[ Ft dt < oo. (5.3.1)

The role of the previous condition will be made more clear when we discuss
the martingale property of the Ito integral, see Proposition 5.5.7. Divide the
interval [a, B\ into n subintervals using the partition points

a=t0< ti < mm< i<tn= b

and consider the partial sums

n—1

Sn=Y ,F™ Wu+i-W u)-

i=0
We emphasize that the intermediate points are the left endpoints of each
interval, and this is the way they should always be chosen. Since the process
Ft is nonanticipative, the random variables Ftt and Wti+l —Wtt are always
independent; this is an important feature in the definition of the Ito integral.

The Ito integral is the limit of the partial sums Sn

ib
ms-lim Snzf Ft dWh,
a

n—00

provided the limit exists. It can be shown that the choice of partition does
not influence the value of the Ito integral. This is the reason why, for practical
purposes, it suffices to assume the intervals equidistant, i.e.
(b—a)
n

’ i _O, 1, ,77. 1.

The previous convergence is taken in the mean square sense, i.e.

b \2n
lim E (snf Ftdwty = O.

n—00
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Existence of the Ito integral
rb

It is known that the Ito stochastic integral / FtdWt exists if the process
Ja
Ft = f(W t,t) satisfies the following properties:
1. The paths t —=Ft(u) are continuous on [a, b for any state of the world
®£

2. The process Ft is nonanticipating for t G [a, bj;
b

3. E I_ F2dt < oo.

For instance, the following stochastic integrals make sense:

rT rT rb
w2dwt, [ Tsm(Wtdwt, f C\Vi)~dwt.
Jo Jo Ja t

5.4 Examples of Ito Integrals

As in the case of the Riemann integral, using the definition is not an efficient
way of computing integrals. The same philosophy applies to Ito integrals. We
shall compute in the following two simple Ito integrals. In later sections we
shall introduce more efficient methods for computing these types of stochastic
integrals.

54.1 The case Ft= ¢, constant

In this case the partial sums can be computed explicitly

71— 1 T—1
Sn = £ Fk(Wt+ -w ti)=J2 - Wu)
i=0 i=0
= c¢(Wb-W a),

and since the answer does not depend on n, we have
rb
Cdwt = QWb- Wa).
Ja

In particular, taking ¢ = 1, a = 0, and b = T, since the Brownian motion
starts at 0, we have the following formula:

dwt = WT.
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5.4.2 The case Ft= Wt

We shall integrate the process Wt between 0 and T. Considering an equidistant
- k . .

partition, we take tk = - K= 0.1. =m=,n —1. The partial sums are given by

n—1

Sn =Y . Wu{Wti+1- w u)-
i=0

Since
XY = -j[{x + y)2-x 2~y\

letting x = Wti and y = Wti+l - Wti yields

Then after pair cancelations the sum becomes

i=0 i=0 i=0
= \wl-\Ew .+-/"
i—0
Using tn = T, we get

1 1
AW *F--J2 (W ti+1-W u

i=0

Sn =

Since the first term on the right side is independent of n, using Proposition
4.11.6, we have

n—1

y/v%- ms}I.i_%D} yrmn o - Wti)2 (5.4.2)
i=0

ms-lim_Sn
n-vm

Wi T (5.4.3)

We have now obtained the following explicit formula of a stochastic inte-
gral:

1. 1
l Wtdwt= -W f- -T.
(o]

In a similar way one can obtain

/ w,dw, = -(wl-w2)
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It is worth noting that the right side contains random variables depending on
the limits of integration a and b.

Exercise 5.4.1 Show the following identities:
(a) E[tfdWt} = 0

(b) E[/a WtdWi] = 0;

(©)

5.5 Properties of the Ito Integral

We shall start with some properties which are similar to those of the Riciiian-
ilian integral.

Proposition 5.5.1 Let f(Wt,t), g(Wt,t) be nonanticipating processes and

cf£l. Then we have

1. Additivity:

\f(Wut) + gWt,t)JdWt=  f(Wt,t)dWt+  9{Wt,t) dwt.

2. Homogeneity:

3. Partition property:

<nm<T.

Proof: 1. Consider the partial sum sequences

n—1

i=0
n—1

Yn = Y ,9(WU,U{WK+I-W ti).
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71—~00 71— OO

Since ms-lim X,, = J f{W t,t) dWt and ms-lim Yn= [ g(Wt,t) dWt, using
0 Jo
Proposition 2.15.2 yields

pT
\] (f{wt,t) + g{Wutj)dwt

- e (FIWUM +aiWu”~yw”™-Wu)
i=0
ms-LLIn (F(W ti,U)(Wti+l - Wu) + $> (W i4,ti)(Wk+l - Wu)
i—0 i=0
= ms-lim (Xn+ Yn) = ms-lim Xn+ ms-lim Yn

71—>00 71—>00 71—"00

f(Wt,t)dwt+ / g(Wt,t)dwt.
= Jo Jo

The proofs of parts 2 and 3 are left as an exercise for the reader. ]

Some other properties, such as monotonicity, do not hold in general. It
is possible to have a non-negative random variable Ft for which the random
variable J@ FtdWt has negative values. More precisely, let Ft = 1. Then

Ft > 0 but f 1dWt = W=t is not always positive. The probability to be
negative is P(Wt < 0) = 1/ 2.

Some of the random variable properties of the Ito integral are given by the
following result:

Proposition 5.5.2 We have
1 Zero mean:

E [ bf(Wtt)dWt = o.
Ja

2. Isometry:

E (Jbfw,t)dWty] =E [J*f(Wtt) dt

3. Covariance:

b
E f(W t,t)dWt g(Wt,t)dwt = Ef f(W t,t)g(Wt,t)dt
a

We shall discuss the previous properties giving rough reasons of proof. The
detailed proofs are beyond the goal of this book.

1 The Ito integral 1 = JMf(Wt, t) dWt is the mean square limit of the partial
sums Sn = £I=0 fu(wu+i - L ); where we denoted fu = f(W ti,ti). Since
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f(Wt, t) is a nonanticipative process, then fti is independent of the increments
Witi+1 — , and hence we have

n—1 n—1
E[5,] = VI[Y Zfu(Wti+1-W ti))\ =J 2n ftiw i+1-W ti)}
2=0 2=0
n—1
i=o0

because the increments have mean zero. Applying the Squeeze Theorem in
the double inequality

0< (E[Sh- I1})* <E[(Sn- )2 O,

yields EfSVi] —E[J] —0. Since E[Sn] = 0 it follows that E[/] = 0, i.e. the Ito
integral has zero mean.

2. Since the square of the sum of partial sums can be written as

n—1
si = Wi,
r=0
n—1
= 'Ef?2i(Wti+l-W ti)2+ 2j2 fti(Wti+1-W ti)ftj(Wtj+1-W tj),
r=0 rch;
using the independence yields
n—1
E[S2] = ~E [/2]JE[(Wt+-W t,
i=o0
+2/N E [/4]E[(WtstL - WH)]E[ftj]JE[(WE+L - W)\
n—1
= -u
»=0
rb r o
which are the Riemann sums of the integral / E[f2ldt=E / ¢ gt . where
Ja Ja

the last identity follows from Fubini’'s theorem. Hence E[52] converges to the
aforementioned integral.

3. Consider the partial sums

n—1 n—1
Sn = Vn = '£igtj{Wtj+1-W tj).
i=0 3=0
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Their product is

n—1 n—1

snvn - (X fu(Wutl - Wuj) ( X 9BiWL+ - Wij]
i=0 j=0
n—1 n—1

= - Wwu)2+ T, PAMAWUH -w u){WiHL - w ).
i=0 rd

Using that ft and gt are nonanticipative and that

E[(WUHL - WE)(WH+L - Wtj\ = E\Wt+L - Wu]E\WG+1 - Wtj] = 0
E[(Wti+l - WY

it follows that

n—1

W30 = J2Er9tM(Wti+l-w ti)2]
i=0
n—1
= J2EIfn9u\(U+I ~U),
i=0
which is the Riemann sum for the integral E[ftgt] dt.

From 1 and 2 it follows that the random variable f f(W t,t) dWt has mean
zero and variance

Var [ bf(Wt,t)dWt] =e[ f f(Wt,t) 'dt
Ja Ja

From 1 and 3 it follows that

Cov'f f(Wt,t)dWt, [ bg(Wt,t)dWt] = f E[f{Wut)g(Wt,t)]dt.

a Ja J Ja

Corollary 5.5.3 (Cauchy’s integral inequality) Letft = f(Wt,t) andgt =
g(Wt,t). Then

E[ftof\dtj < (/ E[/g]dt)(/ E\gZdt).
Proof: It follows from the previous theorem and from the correlation formula
\Carr{X,Y)\ = [VEX)Vn (Y)W -~ 1L

Let Tt be the information set at time t. This implies that fti and Wti+l —
Wtt are known at time t, for any tl+\ < t. It follows that the partial sum
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n—1
Sn= £ fti(Wti+tl —Ws1l) is ~-measurable. The following result, whose proof
i=0
is omitted for technical reasons, states that this is also valid after taking the
limit in the mean square:

Proposition 5.5.4 The Ito integral f* fsdWs is Ft-measurable.

The following two results state that if the upper limit of an Ito integral is
replaced by the parameter t we obtain a continuous martingale.

Proposition 5.5.5 For any s < t we have
rt
E [ f(Wuud\Vu\rs] = I f(Wu,u) dWu
Jo J Jo

Proof: Using part 3 of Proposition 5.5.2 we get

rt
E [ f(Wu,u)dWu\Ts
Jo
= E'T f(Wuu)dWu+ J f(Wu,
1Jo
= E f{W u,u)dWu\Fs £ f(Wu,u) dWu\rs . (5.5.4)

Since fg f(W u,u)dWu is J™-measurable (see Proposition 5.5.4), by part 2 of
Proposition 2.12.6

E I f(Wuu)dWu\Ts] = I f(W u,u) dWu.
Jo J Jo

Since f* f(W u,un) dWn contains only information between s and t, it is in-
dependent of the information set Js, so we can drop the condition in the
expectation; using that Ito integrals have zero mean we obtain

E l]f f{Wu,u)dWu\rs = E jf/ ) dWn = 0.
Substituting into (5.5.4) yields the desired result.

Proposition 5.5.6 Consider the process Xt = J*f(Ws,s) dWs. Then Xt is
continuous, i.e. for almost any state of the world w E £1, the path t —=Xt(w)
is continuous.
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Proof: A rigorous proof is beyond the purpose of this book. We shall provide
just a rough sketch. Assume the process f(W t,t) satisfies E[/(Wt,t)2] < M,
for some M > 0. Let to be fixed and consider h > 0. Consider the increment
Yh = Xto+h—Xt(). Using the aforementioned properties of the Ito integral we
have

- riQ=\d
E[V)J = E[XtO+h-X t0]= E /  f(Wtt)dwt' = 0
1 Jt0
rto+h o210 rto~\~h
Ol FWt0dwtd = /  E[f(Wt,t)2]dt
' ' J  Jtn
pto+h
< M dt = Mh.
Jto

The process Yfr has zero mean for any h > 0 and its variance tends to 0 as
h 0. Using a convergence theorem yields that Yf, tends to O in mean square,
as h 0. This is equivalent to the continuity of Xt at to- ]

Proposition 5.5.7 Let Xt = Jof(Ws,s)dWs, with E[f™ f2(Ws,s) ds] <
00. Then Xt is a continuous Ft-martingale.

Proof: We shall check in the following the properties of a martingale.
Integrability: Using properties of Ito integrals

E[X¢] = E[(3* f(Ws,s)dWsy]=E [J * f2(WSs,s)ds\

POO

<E[J f2(Ws,s)ds] < oo,

and then from the inequality E[]| X [2 < E[AZ] we obtain E[]Xt]] < oo, for all
t> 0.

Measurability: Xt is J™-nieasurable from Proposition 5.5.4.

Forecast: E[ A (] = Xs for s < t by Proposition 5.5.5.

Continuity: See Proposition 5.5.6. ]

5.6 The Wiener Integral

The Wiener integral is a particular case of the Ito stochastic integral. It
is obtained by replacing the nonanticipating stochastic process f(Wt,t) by
the deterministic function f(t). The Wiener integral Jbf(t) dwWt is the mean
square limit of the partial sums
n—1
sn= £/& ) ( WiH-w u).
i=0
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All properties of Ito integrals also hold for Wiener integrals. The Wiener
integral is a random variable with zero mean

b
E / N dwt
Ja
and variance

E f f(t)dwty] = [ fitfdt.
a Ja
However, in the case of Wiener integrals we can say something more about

their distribution.

Proposition 5.6.1 The Wiener integral 1(f)
dom variable with mean 0 and variance

j[' f(t) dWt is a normal ran-

Var[1(f)] = f f(t)2dt: 1o
Ja

Proof: Since increments Wti+l —WIt are normally distributed with mean 0
and variance ti+\ —ij, then

f(U)(Wt+L - Wti) ~ N(0J(U)\ti+l - ti)).
Since these random variables are independent, by Theorem 3.3.1, their sum is
also normally distributed, with

n—1 n—1

sn=y ,/&)Ne +! - wu) ~ E /(*i)2(*i+1 - *<)) =
i=0 i=0

Taking n —o00 and max |JtH ~ O\ 0, the normal distribution tends to
|

rb
N (o, / f(t)2dtj.
J

The previous convergence holds in distribution, and it still needs to be shown
in the mean square. However, we shall omit this essential proof detail. ]

Exercise 5.6.2 Let Zt = J™Wgds.
(a) Use integration by parts to show that

Zt= f\t-s)dW s.
Jo

(b) Use the properties of Wiener integrals to show that

Var(Zt) = t;
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Exercise 5.6.3 Show that the random variable X = f~  dWt is normally
distributed with mean O and variance InT.

Exercise 5.6.4 Let Y = \fidWt- Show that Y is normally distributed
with mean 0 and variance (T2 —1)/2.

Exercise 5.6.5 Find the distribution of the integral J™el sdWs.

Exercise 5.6.6 Show that Xt = /0(2t—u)dWu andYt —fg(3t —4u) dWu are
Gaussian processes with mean 0 and variance |i3.

Exercise 5.6.7 Show that ms- udWu = 0.

Exercise 5.6.8 Find all constants
normally distributed with variance t.

Exercise 5.6.9 Let n be a positive integer. Prove that

Formulate and prove a more general result.

5.7 Poisson Integration

In this section we deal with the integration with respect to the compensated
Poisson process Mt — Nt —At, which is a martingale. Consider 0 < a < b and

let Ft = F(t, Mt) be a nonanticipating process with

Consider the partition
a—to t\ ‘"' tfid4 €Ctn—b

of the interval [a, 6], and associate the partial sums

n—1L
Sn="£F ti_(Mti+1-M ti),
i=0
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where Ftl_ is the left-hand limit at . We note that the intermediate points
are the left-handed limit to the endpoints of each interval. Since the process Ft
is nonanticipative, the random variables Fk_ and Mk+l —Mk are independent.

The integral of Ft~ with respect to Mt is the mean square limit of the
partial sum Sn

ms-liga Sn = f Ft- dMt,

provided the limit exists. More precisely, this convergence means that

2i
IerO10 Em'(Sn- jf* Ft- dMty = 0.

rb

Exercise 5.7.1 Let ¢ be a constant. Show that / c¢dMt —c(Mb —Ma).
Ja

5.8 The case Ft= Mt

We shall integrate the process Mt- between 0 and T with respect to Mt.
kT

Consider the equidistant partition points tk - - , K= 0,1, e« ' n —1 Then
n

the partial sums are given by

Using xy = \[(% + y)2- xg- yg} by letting x = Mu_ andy = Mutl - Mu,
we get

Mt (Mt - Mti) = \(Mti+l-M ti+Mu)2- IM | _-{Mti+1- M tI)2.

Let J be the set of jump instances between 0 and T. Using that Mti = Mti_
fort, @ J, and Mti = 1+ Mti_ for t( G J yields

Mti+1, if ti<f£J

M —Mt + Mt. =
oy k b Mti+l —1, ifti GJ.
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Splitting the sum, canceling in pairs, and applying the difference of squares
formula we have

n—
Sn - 5E(MI+1-M ,,+M u2-i £ AC -5E (M~ .-napg2
i=0 =0 i=0
=\ - D2+ "E mL MI~
ti&J) t&] uSj u&j

= 7E @k "2 \8) +\WiL- \E(M,,- /3

=0
n—1

+5M<»~ 5 DO M.« - M*'>2
1=

i=0

Hence we have arrived at the following formula
£ Mt dMt=hi* - INT.
Similarly, one can obtain

\] Mt- dMt= \(M* - MI) - £(Nb- No).

Exercise 5.8.1 (a) Show that E J/ Mt- dMt = 0.
a

(o) Find Var [ MMtdMt
Ja
Remark 5.8.2 (a) Let w be a fixed state of the world and assume the sample
path t —Nt(oj) has a jump in the interval (a, b). Even if beyond the scope of
this book, it can be shown that the integral

f Nt(u) dNt
Ja

does not exist in the Riemann-Stieltjes sense.
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(b) Let Nt- denote the left-hand limit of Nt. It can be shown that Nt- is
measurable, while Nt is not.
The previous remarks provide the reason why in the following we shall

rb
work with Mt- instead of Mt'. the integral / MtdNt might not exist, while

b Ja
I_ Mt- dNt does exist.
Exercise 5.8.3 Show that
rT
[ Nt- dMt= I(Nf-N1t)- X[ Ntdt
Jo Z Jo
Exercise 5.8.4 Find the variance of
rT
g] Nt dMt.

The following integrals with respect to a Poisson process Nt are considered
in the Riemann-Stieltjes sense. The following result can be found in Bertoin

[6].

Proposition 5.8.5 For any continuous function f we have
rt rt

(@ E [ f(s)divsl = A[ f(s) ds;

Jo J Jo
(b) E[( £ f(s) dNs)2] = AJ* f(s)2ds + A2(J *f(s) ds)2-
() E 10/(sW | = p\ft(efw-I)ds

Proof: (a) Consider the equidistant partition 0 = s0 < Si < eee< sn = {,
with Sfcti —Stc = As. Then

= Jo = - NTD
t=0
n—
lim ?’_’(;f(si)E NS+ - N9

n

= X lim y ~ /(s*)(si+i - Si)= X/ /(s) ds.
i=0 Jo
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(b) Using that Nt is stationary and has independent increments, we have
respectively

E[(NSi+1-N sf] = EJ[iVg.+l _gj] = A(sj+1 — Si) + A2(sj+1 —s*)2
= AAs + A2(As)2,
4(N S+ - Nah(NS+l - NSj)] = E[(iVSi+1 - NS)HE[(NS+L - NSj\
= A(sm - Sj)A(sI+i - Sj) = A2(As)2.

Applying the expectation to the formula

71 —1
(£ f(si)(NS+ - Naij)
i=0 i=0

+2 Y A f(si)F(Sj)(NSHL —NSi){NS+ —Ns

f(si)2(Nsi+i - Ns

yields
71
AN(~N2f(si)(N ai+l-N a
i=0
71
— N2 /(si)2(MAs + A2(As)2) + 2y T(s))T(s])\ 2(A&
i=0 g
71 71
N J(SYN2AS + R L, f(si)2(As)2+ 2 f(S)f(9)(As)
2=0 i=0 MO
71 n—
* o f(si)2/As+ n2( Asj
i=0 1=0

A f f(s)2ds + A2" f f(s) ds'j , as n —oo0.

(c) Using that Nt is stationary with independent increments and has the
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moment generating function K[ekNt] = ex(ek 15t. we have
E Jtf(s)dNs
n—1

%S = Jim E

i=0

M si)(N Si+1-N Si)

n— n—
= I|lim TTE = lim TTE e/(s<)(vw - si)
M-4-00 =0 n—>o00 r=J0-
n—
= Ilim [T e¥ ()-N)(*i+1-Si)= lim eAE"™(e/W -1)(SIH-9)
n—->00r:O n—00

eAlo(e/(s)-1)<is_

Since / is continuous, the Poisson integral J/ f(s)dN's can be computed
0

in terms of the waiting times

Nt
[ f(s)dNs= T f(S k).
Jo k=i

This formula can be used to give a proof for the previous result. For instance,
taking the expectation and using conditions over Nt = n, yields

Nt
E JdN. E[E s5%] =E E[E = n]p(Nt= n)
1)-I<S fc=l n>0 fc=l
Y .-t ["f(x)dJx,r
Xg 1 Jo D\
= Xt

JU n>0 v

eAt [ f(x)dxXext= X[ /(x)dx.
Jo Jo

Exercise 5.8.6 Solve parts (b) and (c) of Proposition 5.8.5 using a similar
idea with the one presented above.

Exercise 5.8.7 Show that
E (3* f(s)dMsy] = A jf/((s)2ds,

where Mt = Nt —Xt is the compensated Poisson process.
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Exercise 5.8.8 Prove that
rt

Yar(”™ f(s)dNs*=\J~" f(s)2dNs.

Exercise 5.8.9 Find
E ejo

Proposition 5.8.10 Let Tt = cr(Ns;0 < s <t). Then for any constant c, the

process
Mt = ecNt+H”-ec)t™ t>o0

is an Tt-martingale.

Proof: Let s < t. Since Nt —Ns is independent of Ts and Nt is stationary,
we have
Eleqgm*~) | ~] = E[edA'_iVs)] = E[ecIM 9]
- eNeG Y(t-s)_

On the other side, taking out the deterministic part yields
E[edir “ )] 7;] = e~cNsK[ecNt \T",
Equating the last two relations we arrive at
E[edT+(1 eO<f ;] —ecAs+A(l-ec)s
which is equivalent to the martingale condition E[Mt\Ts\= Ms. I

We shall present an application of the previous result. Consider the waiting
time until the nth jump, Sn = inf{E > O\Nt = n}, which is a stopping time,
and the filtration Tt = cr(iVs;0 < s < t). Since

Mt = edT+A(l_e°)4

is an Jr-inartingale, by the Optional Stopping Theorem (Theorem 4.2.1) we
have E[MgJ = E[Mo] = 1, which is equivalent to E[eA1 eC*n] = e~cn. Sub-
stituting s = —A(1 —ec), then c = In(l + j). Since s, A> 0, thenc > 0. The
previous expression becomes

A \Xx

E[e”sSn] = e- nIn(1+i) =

Since the expectation on the left side is the Laplace transform of the proba-
bility density of Sn, then
p(Sn) = E£-yE[e-sN]} = £-{(xA_)"}
e-t\tn-1Xn
r(m -
which shows that Sn has a gamma distribution.
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5.9 The Distribution Function of Xt = Jqg g(t) dNt

In this section we consider the function g(t) continuous. Let Si < S2 < mmm<
I+ denote the waiting times until time t. Since the increments dNt are equal
to 1 at Sk and 0 otherwise, the integral can be written as

XT [ git) dNt = 9(Si) 4--—-—--- \-g(SNt)-
JO

The distribution function of the random variable Xt = J@ g(t) dNt can be
obtained conditioning over the Nt

P(XT< u)

J2p (X T<ANT=K)P(NT = K)
k>0

P(5(5i) + """ + 9(SNt) < U\NT = K) P(NT = K)
K>0
J2PA~Si) + ---+9(Sk)<u)P(NT = k). (5.9.5)
fe>0

Considering Si, 6'r, me=, Sk independent and uniformly distributed over the
interval [0, T], we have

P{g(Si) + mee+ g(Sk) <u) = Ndxi---dxk= LN h\
where
Dk = {g(xi) + g(x2) 4----- hg(xk) < n} M{0 < x\, ee=,xk < T}.

Substituting back in (5.9.5) yields

P(XT<u) = 7"2P(g(Si)+ ---+ g(SK)<u)P(NT = k)
k>0
= = 5.9.6)
&0 | k>0

In general, the volume of the A;-dimensional solid Dk is not easy to obtain.
However, there are simple cases when this can be computed explicitly.

A Particular Case We shall do an explicit computation of the partition
function of Xt = Jg s2dNs. In this case the solid DKk is the intersection
between the fc-dimensional ball of radius 5w centered at the origin and the
lc-dimensional cube [0, T]k. There are three possible shapes for DKk, which
depend on the size of y/u:
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(@) if0< \fu< T, then Dk is a ™-part of a ~-dimensional sphere;
(b) if I < y/ih < T\/K, then Dk has a complicated shape;

(©) if_I?(/fc< \fu, then Dk is the entire fc-dimensional cube, and then vol(Dk) —
J_i

. . . . L TK/2R k
Since the volume of the ~-dimensional ball of radius R is given by

then the volume of Dk in case (a) becomes

IiD TV /2
velipu) 2o ([ + 1)
Substituting in (5.9.6) yields
W r<«)=.-‘T 6% , 0< Wii< T.
Nfecird+i)’

It is worth noting that for 1 — 00, the inequality T\[k < \Ju is satisfied
for all kK > 0O; hence relation (5.9.6) yields

\kmk
"EQ P(XT <u) = e~XT IR - e~KkTekT = 1
k>0
The computation in case (b) is more complicated and will be omitted.
Exercise 5.9.1 Calculate the expectation E fg eksdNs and the variance

Var(”™ JQ eks dNsy

Exercise 5.9.2 Compute the distribution function of Xt —  sdNs.

Exercise 5.9.3 The following stochastic differential equation has been used
in LU to model the depreciation value of a car with stochastic repair payments

dvt = —kVtdt —pdNt,

where K > 0 is the depreciation rate, p > 0 is the average repair payment, and
Nt is a Poisson process with rate A

(@) Show that the solution is given by

Vt = V0e-kt - pe~ktJf eks dNs;
0
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(b) Consider the stopping time



Chapter 6

Stochastic Differentiation

Most stochastic processes are not differentiable. For instance, the Brownian
motion process Wt is a continuous process which is nowhere differentiable.
Hence, derivatives like do not make sense in stochastic calculus. The only
guantities allowed to be used are the infinitesimal changes of the process, in
our case, dwt.

The infinitesimal change of a process The change in the process Xt be-
tween instances t and t + At is given by AXt = Xt+At —Xt. When At is
infinitesimally small, we obtain the infinitesimal change of a process Xt

dXt —X t+dt —Xt.

Sometimes it is useful to use the equivalent formula X tHjt —Xt + dXt.

6.1 Basic Rules

The following rules are the analog of some familiar differentiation rules from
the elementary Calculus.

The constant multiple rule If Xt is a stochastic process and c is a constant,
then
d{cXt) = cdXt.

The verification follows from a straightforward application of the infinitesimal
change formula

d(cXt) cXttdt cXt —c(Xt+dt x t) = cdXt.
The sum rule If Xt and Yt are two stochastic processes, then

d(Xt+ Yt) = dXt+ dYt.

139
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The verification is as in the following:

d(Xt + Yt) (Xt+dt + Yt+dt) ~ {Xt + Yt)
(Xt+dt —X1t) + (Xt+dt —VYt)

dXxt + dYf

The difference rule If Xt and Yt are two stochastic processes, then
d(Xt- Yt) = dXt- dyt.

The proof is similar to the one for the sum rule.

The product rule If Xt and Yt are two stochastic processes, then
d{XtYt) = XtdYt+ YtdXt+ dXtdYt.
The proof is as follows:

d(XtYt)

Xt+dtYt+dt ~ XtYt
Xt(Yt+dt ~ Yt) + Yt(Xtrdt — X t) + (Xt+dt — Xt) (Y t+dt — Yt)
XtdYt+ YtdXt+ dXtdYt,

where the second identity is verified by direct computation.

If the process Xt is replaced by the deterministic function f(t), then the
aforementioned formula becomes

d(f(t)Yt) - f(t) dyt+ Ytdf(t) + dfit) dYt.
Since in most practical cases the process Yt satisfies the equation
dYt = ait,Wt)dt + bit, Wt)dwt, (6.1.1)
using relations dt dwWt = dt2 —0, the last term vanishes
df(t) dyt = f'(t)dtdYt = 0O,

and hence
d(f(t)Yt) = f(t)dYt+ Ytdf(t).

This relation looks like the usual product rule.

The quotient rule If Xt and Yt are two stochastic processes, then

Xt\  YtdXt- XtdYt- dXtdyt Xt._ .2
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The proof follows from Ito’s formula and will be addressed in section 6.2.3.

When the process Yt is replaced by the deterministic function f{t). and Xt
is a process satisfying an equation of type (6.1.1), then the previous formula
becomes

I xt \  f(t)ydXt- Xtdf(t)
4(t)J f(t)2

Example 6.1.1 We shall show that
d(W2) = 2WtdWwt + dt.
Applying the product rule and the fundamental relation (dWt)2 = dt, yields

d(W2) = Wtdwt + WtdWt + dWtdWt = 2Wtdwt + dt.

Example 6.1.2 Show that
d(w?) = 3wedwt + 3wWtdt.

Applying the product rule and the previous exercise yields

d(W8) d(Wt mWR) = Wtd(W2) + W.f dWt + d(W.f) dwit

= wt(ewtdWt+ dt) + w 2dWt + dWt(2WtdWt + dt)
= 2W2dwt + Wtdt + W? dWt + 2Wt(dWt)2 + dt dwt
= 3HfdWt+ 3Wtdt,

where we used (dWt)2 = dt and dtdWt - 0.
Example 6.1.3 Show that d{tWt) = Wtdt + tdWt.
Using the product rule and dtdwt = 0, we get

Wwtdt + tdWt + dtdWt
= Witdt+ tdWtm

d{twt)

Example 6.1.4 Let Zt = J*Wudu be the integrated Brownian motion. Show
that
dzt = wtdt.

The infinitesimal change of Zt is

Wsds = Wtdt,

since Ws is a continuous function in s.
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Example 6.1.5 Let At = jZt = \Jj Wudu be the average of the Brownian
motion on the time interval [0,t]. Show that

dAt= \{wt- jZt) dt.

We have

dAt = + ~dzf + dzt

= NZtdt+ Uvtdt+ "W td”
=0

= Hw'~1z')dt

Exercise 6.1.6 Let Gt = \ IgOMudu be the average of the geometric Brown-
ian motion on [0, t]. Find dGt-

6.2 I1to’s Formula

Ito’s formula is the analog of the chain rule from elementary Calculus. We
shall start by reviewing a few concepts regarding function approximations.

Let / be a twice continuously differentiable function of a real variable
X. Let xo be fixed and consider the changes Ax — x —xq and Af(x) —
f(x) —f(xo0). Itis known from Calculus that the following second order Taylor
approximation holds

Af{x) = f'{{x)Ax + MM"(x)(Ax)2+ 0{Axf.

When x is infinitesimally close to .tg. we replace Ax by the differential dx and
obtain

df(x) —f[x)dx + -f*(x)(dx)2+ 0(dx)3. (6.2.2)

In elementary Calculus, all terms involving terms of equal or higher order to
dx2 are neglected; then the aforementioned formula becomes

df(x) = f'(x)dx.

Now, if we consider x = x(t) to be a differentiable function of t, substituting
into the previous formula we obtain the differential form of the well known
chain rule

df(x(t)) = f'(x(t))dx(t) = f'[x(t))x"(t)dt.
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We shall present a similar formula for the stochastic environment. In this
case the deterministic function x[t) is replaced by a stochastic process Xt.
The composition between the differentiable function / and the process Xt is
a process denoted by Ft = f{Xt).

Neglecting the increment powers higher than or equal to (dXt)3, the ex-
pression (6.2.2) becomes

dFt = f{Xt)dXt+ \f"{Xt) (dXtf . (6.2.3)

In the computation of dXt we may take into the account stochastic relations
such as dW2 = dt, or dtdWt = 0.

Theorem 6.2.1 (Ito’'s formula) Let Xt be a stochastic process satisfying
dXt = btdt + (JtdWt,

with bt(u) and at(u>) measurable processes. Let Ft = f(Xt), with f twice
continuously differentiable. Then

2
dFt = [btf'(Xt) + | /" (1t)]dt+ atf(X t) dwt. (6.2.4)

Proof: We shall provide an informal proof. Using relations dWf = dt and
dt2 = dWt dt = 0, we have
[dXtf

bpdt2 + 2btatdWtdt + a?d\V?
a2dt.

Substituting into (6.2.3) yields

dFt

X DXt + " (X t)(d X tf

f'(X t) (btdt + atdWt) + " (X t)oedt
2
btF\ X t) + dt + otf\Xt) dWt.

Remark 6.2.2 Ito’s formula can also be written under the following equiva-
lent integral form

Ft= Fq+ \]*(bsf{x a+ N 2/"(Xs)) ds+ £ asf'(Xs)dWws.
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In the case Xt = Wt we obtain the following consequence:

Corollary 6.2.3 Let Ft = f(Wt). Then

dFt=H"{W t)dt + A\Wt)dWt. (6.2.5)

Particular cases In the following we shall present the most often used cases:
1 If f(x) = xa, with a constant, then f'(x) —aiQ_1, f"(x) = a(a —\)xa~2.
Then (6.2.5) becomes the following useful formula

1
dWe) = -a(a - 1)Wa~zdt + a.W?~ dWt.

A couple of useful cases easily follow:

d(we)
dWo)

2WtdWt + dt
3WRdwt + 3wtdt.

2. If f(x) = ekx, with k constant, f'(x) = kekx, f"(x) = k2ekx. Therefore

d(ekWt) = kekWtdWt + ~k2ekWt dt.

In particular, for k = 1, we obtain the increments of a geometric Brownian
motion
d(eWt) = eWtdWt + ]-eWt dt.

3. If f(x) = sina;, then
d(sin Wt) = cos Wt dWt —- sin Wt dt.

Exercise 6.2.4 Use the previous rules to find the following increments
(a) d(WtewWt)
(b) d(BW2+ 2e5Wt)
(c) d(et+wt)
(d) d[[t+ Wt)n)

Wv du
<) d( U " (

— { e udul, where a is a constant.
(/) d(h eW' du
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In the case when the function / = f(t, x) is also time dependent, the analog
of (6.2.2) is given by

df(t, x) = dtf(t, x)dt + dxf(t, x)dx + ~<Pf(t, x)(dx)2 + O(dx)3+ O(dt)2.

(6.2.6)
Substituting x = Xt yields

dfit, x 1) = cf(t, x ik + AL xt)dxt+ AdK(E, x ([Ax)2  6.2.7)

If Xt is a process satisfying an equation of type (6.1.1), then we obtain an
extra-term in formula (6.2.4)

aFt = Xt)+ awe, Dot xty + WOt Xty ot
+Ho(wit, t)axf(t, xt)dwt. (6.2.8)
Exercise 6.2.5 Show that
d(tw2) = {t + W 2)dt + 2tWtdWt
Exercise 6.2.6 Find the following increments
(&) d(twt) (c) d(t2cos Wt)
(b) d(etWt) (d) d(sintw?2).
6.2.1 Ito diffusions
Consider the process Xt given by
dXt = b{Xu t)dt + o(Xt,t)dWt. (6.2.9)

A process Xt = (X\) e Mn satisfying this relation is called an Ito diffusion in
Rn. Equation (6.2.9) models the position of a small particle that moves under
the influence of a drift force b(Xt,t), and is subject to random deviations. This
situation occurs in the physical world when a particle suspended in a moving
liquid is subject to random molecular bombardments. The amount \ooT is
called the diffusion coefficient and describes the difussion of the particle.

Exercise 6.2.7 Consider the time-homogeneous Ito diffusion in Mn

dXt = b(Xt)dt + a(Xt)dWt.
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6.2.2 Ito’s formula for Poisson processes

Consider the process Ft — F(Mt), where Mt — Nt —Xt is the compensated
Poisson process. Ito’s formula for the process Ft takes the following integral
form. For a proof the reader can consult Kuo [30].

Proposition 6.2.8 Let F be a twice differentiable function. Then for any
a<t we have

Ft —Fa+ t F'(MS) dMs + (AF(Ms) - F'(Me_ )AMeg),

a<s<t
where AMs —Ms —Ms_ and AF(MS —F(MS —F(MS).
We shall apply the aforementioned result for the case Ft = F(Mf) —M 2.
We have
M2= M2+2 f Ms_dMs+ (m2-M 2 -2Ms_(Ms-A/s )V (6.2.10)
Ja a<s<t

Since the jumps in Ns are of size 1, we have (ANs)2 = ANs. Since the
difference of the processes Ms and Ns is continuous, then AMs = ANs. Using
these formulas we have

(m2- M2 - 2MS(Ms- Ms)) = (Ms- Ms)(ms+ Ms_- 2Ms )
= (Ms- Ms )2= (AMs)2= (AN9S?2
= ANS= Ns- N,-.

Since the sum of the jumps between s and t is “2a<s<t ANs = Ntm Na. formula

(6.2.10) becomes

M2= M2+ 2f Ms dMs+ Nt- Na. (6.2.11)
Ja

The differential form is
d(M2) = 2Mt- dMt + dNt,
which is equivalent to
d(M2) = (1 + 2Mt-) dMt+ Xdt,
since dNt = dMt + Adt.

Exercise 6.2.9 Show that
£ Mt- dMt= (M 2-N T).

Exercise 6.2.10 Use Ito’s formula for the Poisson process to find the condi-
tional expectation E[M2 |Js] for s < t.
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6.2.3 Ito’s multidimensional formula

If the process Ft depends on several Ito diffusions, say Ft = f(t, Xt.Yt). then
a similar formula to (6.2.8) leads to

dFt = ~ (t,Xt,Yt)dt+/(t,Xt,Yt)dXt + ~ (t,X t,Yt)dYt
' i, Xt,Yt)(dXt)2+ Xt,Yt)(dYt)2
5 gxo (I XL YO(AXY) 2 dy? ,Yt)(dYt)

2f
t,Xt,Yt)dXtdYt.
dxdy( )

Example 6.2.11 (Harmonic function of a Brownian motion) In the case
when Ft = f(Xt,Y), with Xt = W1, Yt = W 2 independent Brownian motions,

we have

d<- fxiW+d dV+$ dMPRES idvp

+i k dw'dw
df 1, dfriuz, 1(&F , "2\

The expression
A, \(d2f d2f\

f ~ 2\dx2 + dy2)
is called the Laplacian of f. We can rewrite the previous formula as

dFt = -J-dW? + ~-dW 2+ Afdt.
de dy

A function f with 41/ = 0 is called harmonic. The aforementioned formula in
the case of harmonic functions takes the simple form

. (6.2.12)
dF<= % iIW>+ TYw >-

Exercise 6.2.12 Let W },W 2 be two independent Brownian motions. If the
function f is harmonic, show that Ft = / (Wfl.W 2) is a martingale. Is the
converse true?

Exercise 6.2.13 Use the previous formulas to find dFt in the following cases
(@ Ft= (W?)2+ (W?)2
(b) Ft=In[(W/)2+ (W?)2}.
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Exercise 6.2.14 Consider the Bessel process Rt = y/(WI1)2+ (W )2, where
W1 and W? are two independent Brownian motions. Prove that

1 WY o, W? 9
dRt= — dt+ -zdWt + -f-dW 2.
ZKt tit *4

Example 6.2.15 (The product rule) Let Xt and Yt be two Ito diffusions.
Show that
d(XtYt) = YtdXt+ XtdYt+ dXtdYf

Consider the function f(x,y) —xy. Since dxf -y, dyf = x, d2f = d2f = O,
dxdyf = 1, then Ito’s multidimensional formula yields

d(XtYt)

d(f(XYt)=dxfdXt+dyfdYt

+xd2f(dXt)2+ \d2f(dYt)2+ dxdyf dXtdYt
YtdXt + XtdYt + dXtdYt.

Example 6.2.16 (The quotient rule) Let Xt and Yt be two Ito diffusions.
Show that

Xt\  YtdXt- XtdYt- dXtdYt , Xt/ ~ 2
Yt) = Y2 + W dvt) e

Consider the function f(x,y) |. Since dxf = dyf = dz2f = 0,

- , then applying Ito’s multidimensional

dyf = ~p, d2f = AXBY
formula yields
dbl ) = d(f (X'Vt)) = dXfd X t+ dyfdYt

+1d 29d X t)2 + \d2§{dYt)2 Fdxdyf dXtdYt

YtdXt - XtdYt- dXtdYt , XtfJ~ 2
~72 + Y3\dyt) -




Chapter 7

Stochastic Integration
Techniques

Computing a stochastic integral starting from the definition of the Ito integral
is not only difficult, but also rather inefficient. Like in elementary Calculus,
several methods can be developed to compute stochastic integrals. We tried
to keep the analogy with elementary Calculus as much as possible. The inte-
gration by substitution is more complicated in the stochastic environment and
we have considered only a particular case of it, which we called the method of
heat equation.

7.1  Notational Conventions

The intent of this section is to discuss some equivalent integral notations for
a stochastic differential equation. Consider a process Xt whose increments
satisfy the stochastic differential equation dXt — f(t,Wt)dWt. This can be
written equivalently in the integral form as

fdXs= f f(s, Ws)dWs. (7.1.1)
Ja Ja

If we consider the partition 0 = to < t\ < mem< tn-\ < tn = t, then the left

side becomes
n—1

des: mshli_%:y_J(thﬂ - th) = Xt- Xa,

) 3=0
after canceling the terms in pairs. Substituting into formula (7.1.1) yields the
equivalent form

Xt=Xa+ [ f(s, Ws)dWs.

149
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This can also be written as dXt = d(™J f(s,Ws)dW~"j, since Xa s a constant.

Using dXt = f(t, Wt)dWt, the previous formula can be written in the following
two equivalent ways:

(2) For any a < t, we have
d( £ (s, ws)dws) = f(t, Wt)dwt. (7.1.2)
(if) If Yt is a stochastic process, such that YtdWt = dFt, then

1 YtdWt = Fb-F a.
a

These formulas are equivalent ways of writing the stochastic differential equa-
tion (7.1.1), and will be useful in future computations. A few applications
follow.

Example 7.1.1 Verify the stochastic formula

t W?
I an d/\l, =

Let Xt = Jo WsdWs and Yt = A, From Ito’'s formula

it =c2) ~d1) =V ANAN+d) ~\d S awe

and from formula (7.1.2) we get
dXt = J’ dW” = Wtdwt.

Hence dXt = d¥Yt, or d(Xt —Yt) = 0. Since the process Xt —Yt has zero
increments, then Xt —Yt = ¢, constant. Taking t = 0, yields

Wz O
c= Xq—Y0= f
Jo

and hence ¢ = 0. It follows that Xt = Yt, which verifies the desired relation.

Example 7.1.2 Verify the formula

Wfds.
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Consider the stochastic processes Xt = /FsWadWa, Yt = —(w 2 — 17, and
Zt= \/g W 2ds. Formula (7.1.2) yields

axt = tWtdwt

dzt = \w2dt

Applying Ito’s formula, we get

1 1
(t+ W2)dt + 2Wtdwt - tdt
2 L 2
= W2dt+ twidwt,

We can easily see that
dXt = dyt - dzt

This implies d(Xt —Yt + Zt) = 0O, i.e. Xt—Yt+ Zt = ¢, constant. Since
Xg= Yo= Zqg= 0, it follows that ¢ —0. This proves the desired relation.

Example 7.1.3 Show that
I \w2- s)dWs= 1 Wf - twt.

Consider the function f(t,x) = ~x3—tx, and let Ff —f{t,Wt). Since dtf =
—X, dxf = x2—t, and d2f = 2x, then Ito’s formula provides

dFt = dtf dt + dxf dWt + ~<2/ (dWt)2
= -Witdt+ (W2- t)dWt+ "2Wtdt
= (W?-t)dwW t.
From formula (7.1.2) we get

J\WZ- s)dWs= f dFs= Ft- Fo= Ft= \W3- twt.
0 Jo J

Exercise 7.1.4 Show that
rt



152 An Informal Introduction to Stochastic Calculus with Applications

(©) n.e§ sin WsdWs = 1 —et2 cos Wt;
Jo

d f ew~2%dWs = eWt-%- 1,
Jo

1 f
(e) fcos Ws dWs = sinW* + -/ sin Wsds;
Jo 270

1—cosW -~ | f y Cos W, ds.
2Y

(/) J[o §in W=dw,

7.2 Stochastic Integration by Parts

Consider the process Ft = f(t)g(Wt), with / and 5 differentiable. Using the
product rule yields

dFt df(t)g(W ) + f(t)dg(W t)

f(t)g(W t)dt + f{t){g\ W t)dWt + \g"(Wt)dt)

£ (£)g(W t)dt + \f(t)g"{W t)dt + f(t)g"(Wt)dW't.

Writing the relation in the integral form, we obtain the first integration by
parts formula:

J[ bf(t)g"{Wt)dwt = f{t)g(Wt) b- J[ f'(Hhg(Wt)d t- \J[ f(t)g"(Wt)dt.
a a a NJa

This formula is to be used when integrating a product between a function
of t and a function of the Brownian motion Wt, for which an antiderivative
is known. The following two particular cases are important and useful in
applications.

1. If g(Wt) = Wt, the aforementioned formula takes the simple form

fb t=b  rb ,
/ f(Hdwt = oWt - /7 f (Hwtdt. (7.2.3)
Ja *="  Ja

It is worth noting that the left side is a Wiener integral.

2. If f(t) = 1, then the formula becomes

f bg\Wt)dWt= g(Wt)t b- | [ Bbg"{wt)dt. (7.2.4)
Ja t=a Zla
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f
Application 7.2.1 Consider the Wiener integral It _J tdwW tm From the

0]
general theory, see Proposition 5.6.1, it is known that | is a random variable
normally distributed with mean 0 and variance

f1 0
Var[IT\= t2dt = — .
Jo
Recall the definition of integrated Brownian motion

rt

Zt Wu du.

b0

Formula (7.2.3) yields a relationship between | and the integrated Brownian
motion

IT= ( tdwt=TWT —f Wtdt=TWT —ZT,
Jo Jo

and hence lt+Zt = TW<tm This relation can be used to compute the covariance
between It and Zt -

Cov(lt + Zt,lt + Zt) —
Var[IT\+ Var[ZT\+ 2Cov{IT, ZT) T2Var[WT] <=>
T3/3+ T3/3+ 2Cov(IT,ZT) = T3~
Cov{IT,ZT) T3/6,

where we used that Var[ZT\ = T3/3. The processes It and Zt are not inde-
pendent. Their correlation coefficient is 0.5 as the following calculation shows

Cov(lt,Zt) I 3/6

Corr(1T, Zt) T3/3

V2
(y ar[IT}Var[ZT]) -
= 1/2.

Application 7.2.2 1f we let g(x) = \ in formula (7.2.4), we 9et
b w2 _ W2 X
I_ Wtdwt = —Ur— 2 - -(6 - a).

It is worth noting that letting a = 0 and b —T, we retrieve a formula that was
proved by direct methods in chapter 3

fT Wl T



154 An Informal Introduction to Stochastic Calculus with Applications

Similarly, if we let g(x) = \ in (7.2.4) yields

s b rb
ngWt: VX Wt dt.
Ja a Ja

Application 7.2.3 Choosing f(t) = eat and g(x) = sin>, we shall compute
the stochastic integral Jf eat cos WtdWt using the formula of integration by
parts

f eatcos WtdwWt = [ eat(sin Wt)'dWt
Jo Jo

= e sinwWtT- | (eat)'sthdt-\_[0 eat(smwt)"dt
o Jo 2]

= ealsinWT —a f eatsinWtdt+ ~ f eatsin Wtdt
Jo 2Jo

= eaTsinWt —(a — ] eatsin Wtdt.

The particular case €= 5 leads to the following exact formula of a stochastic
integral
rl
f efcos Wtdwt = e2 sin Wt - (7.2.5)
Jo
In a similar way, we can obtain an exact formula for the stochastic integral
JOr e%sin Wt dWt as follows

f sin WtdWt

— f e”(cos Wt)' dwWt
Jo

Jo
T
= —eMcosW] + /3 f e”cosWtdt —- f ¢'Stcos Wt dt.
Jo 2J0
Taking /3= Db yields the closed form formula
F eAsmWtdwWt = | —e2 cos Wt - (7.2.6)

Jo

A consequence of the last two formulas and of Euler’s formula

Wt _ cos Wt + i sin W,

B! e3 FWElgwit = i(1- en+iwr)

The proof details are left to the reader.
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A general form of the integration by parts formula In general, if Xt
and Yt are two Ito diffusions, from the product formula

d(XtYt) = XtdYt+ YtdXt+ dXtdYt.

Integrating between the limits a and b

fbd(XtYt)= f XtdYt+ [ bYtdXt+ fdXtdY t.

Ja Ja Ja Ja

Prom the Fundamental Theorem

f d(XtYt) = XbYb-X aVa,

Ja

so the previous formula takes the following form of integration by parts

f XtdYt= XbYb- XaYa- [ YtdXt- [ dXtdYt.
Ja Ja Ja

This formula is of theoretical value. In practice, the term dXtdYt needs to be
computed using the rules dWf = dt, and dt dwt = 0.

Exercise 7.2.4 (a) Use integration by parts to get

frT EI. rT w
/ - LWt = tan \WT)+ | dt, T >0
Jo 1+W? ® 1+ 1n?)2

(b) Show that

) Wt dt
Eftan_1WTI = - [ B (1 4 wiys %

(c) Prove the double inequality

/3
<

16 “ (1+x2)2~ 16"
(d) Use part (c) to obtain

3/\

T < Wt dt<3rT.
16 lo

1+ w2y -~ 16
(e) Use part (d) to get

AN T <E[tan-\WT)} < ™~ T .
(/) Does part (e) contradict the inequality

-A<tan-\WT) < nl
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Exercise 7.2.5 (a) Show the relation

[ eWwdWt=eWlr- 1- - | dt.
Jo 2J)o
(b) Use part (a) to find E[eW].

Exercise 7.2.6 (a) Use integration by parts to show

rr 1 rT
J/ WteWtdWt = | + WTeWr - e WT- ~2 ] eWt (1 + Wt)dt;
0 0

(b) Y= pari (a) to find E [WteW];
(c) Show that Cov(Wt,e]At) = ien2;

@) Prove that Corr(Wt,eWt) = \j~t~ ~>anc~coTPun’e the limits ast —» 0

and t —oo0.

Exercise 7.2.7 (a) Lei T > 0. Show the following relation using integration
by parts

£ rfw ni=Il+wt]- £ (TTW n
(6) S/iow that for any real number x the following double inequality holds

1 1—x2
8 —(1+x2)2 ~

(c) Use part (b) to show that

1 < [T 1
8 “ N (T+wiz22""~

(d) Use parts (a) and (c) to get

- <E[In(l + W])] <T.
(e) Y= Jensen’s inequality to get

E[In(l + W)\ < In(l + T).
.Does i/iis contradict the upper bound provided in (d) ?

Exercise 7.2.8 Use integration by parts to show

[ arctan WsdWs = Wtarctan Wt -\ In(l + Wf) - \ f — Tds.
Jo 2 2J0 1+ Wf
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Exercise 7.2.9 (a) Using integration by parts prove the identity
/ Waer¥sdWw<, = 14- evrt(Wt —1) —— 1 (1 + Ws)ew*ds;

(i) Use part (a) to compute E[WteWA\

Exercise 7.2.10 Check the following formulas using integration by parts

7.3 The Heat Equation Method

In elementary Calculus, integration by substitution is the inverse application
of the chain rule. In the stochastic environment, this will be the inverse
application of Ito’s formula. This is difficult to apply in general, but there is
a particular case of great importance.

Let ip(t, x) be a solution of the equation

Il
©

dtv + (7.3.7)

This is called the heat equation without sources. The non-homogeneous equa-

tion
(7.3.8)

is called the heat equation with sources. The function G (t,x) represents the
density of heat sources, while the function tp(t, x) is the temperature at the
point x at time t in a one-dimensional wire. If the heat source is time inde-
pendent, then G —G(x), i.e. G is a function of x only.

Example 7.3.1 Find all solutions of the equation (7.3.7) of type ip(t, x) =
a(t) + b(x).

Substituting into equation (7.3.7) yields

\b"(x) =

Since the left side is a function of x only, while the right side is a function of
variable t, the only case where the previous equation is satisfied is when both
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sides are equal to the same constant C. This is called a separation constant.
Therefore a(t) and b(x) satisfy the equations

a'(t) = —C, \b"{x) = C.
Integrating yields a{t) = —Ct + Co and b(x) = Cx2+ C\x + C2- It follows

that
P(t,x) = C(x2—t) + C\x + C3,

with Co, Ci, C2-C3 arbitrary constants.

Example 7.3.2 Find all solutions of the equation (7.3.7) of the type <p(t,x) =
a(t)b(x).

Substituting into the equation and dividing by a(t)b(x) yields

a'{t) 1b"{x) =
a(t) 2 b(x)
: _ a'(t)
There is a separation constant C such that — = —C and = 2C.
a(t) b(x)

There are three distinct cases to discuss:

1. (7= 0. In this case a(t) = ao and b{x) = b\x+ bo, with ao, a\,bo, b\ real
constants. Then

ip(t, x) = a(t)b{x) = c\x + co, co,ci GR

is just a linear function in x.

2. C > 0. Let A> 0 such that 2C = A2. Then a'(t) = —4j-a(t) and
b"{x) = A2b(x), with solutions

a(t)
b(x)

aoe_A2*/2
cieXx + Qe~Xx.

The general solution of (7.3.7) is
ip(t, x) = e~x2t/2{c\exx + Qe~Xx), a,c2GR.

3. C < 0. Let A> 0 such that 2C = —A2. Then a'{t) = \a{t) and
b"(x) = —A2b(x). Solving yields

aoen2"2
ci sin(Ax) + Q@ cos(AXx).

a(t)
b(x)
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The general solution of (7.3.7) in this case is
<p(t,X) = emR//Xci sin(Aa:) + c? cos(Ax)), ¢j,C2£€ K.

In particular, the functions x, X2 —t, ex~4/2, e~x~*/2, et//xinx and el2cos X,
or any linear combination of them, are solutions of the heat equation (7.3.7).
However, there are other solutions which are not of the previous type.

Exercise 7.3.3 Prove that <p(t,x) = ~x3—tx is a solution of the heat equation
(7.3.7).

Exercise 7.3.4 Show that tp(t,x) = t~"2e~x I~ is a solution of the heat
equation (7.3.7) for t > 0.

X
Exercise 7.3.5 Letip—u(A), with A= 2—-_:>t > 0. Show that ip satisfies the
Vi

heat equation (7.3.7) if and only if n" + 2Av! —O0.

2 2

Exercise 7.3.6 Leterfc(xX) ——= / e~r dr. Show thatip = erfc(x/(2\/t))
VT JX

is a solution of the equation (7.3.7).

Exercise 7.3.7 (the fundamental solution) Show thatip(t,x) = —SJE>
t > 0 satisfies the equation (7.3.7).

Sometimes it is useful to generate new solutions for the heat equation from
other solutions. Below we present a few ways to accomplish this:

(r) by linear combination: if w and tp2 are solutions, then aup\ + ayp? is
a solution, where aj,«2 are constants.

(rr) by translation: if <p(t, x) is a solution, then <p(t—t,x —£) is a solution,
where (+,£) is a translation vector.

(rrr) by affine transforms: if ip(t,x) is a solution, then ip(\t,\2x) is a

solution, for any constant A
Qn+m
(iv) by differentiation: if ip(t,x) is a solution, then — v~ <p(tx) is a

solution.
(v) by convolution: if (p(t, x) is a solution, then so are

[ <p(t,x-S)f(£)dE
Ja

f ip(t-T,x)g(t)dt.

Ja
For more detail on the subject the reader can consult Widder [46] and Cannon
[11].
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Theorem 7.3.8 Let <p(tx) be a solution of the heat equation (7.3.7) and
denote f{t,x) = dxtp(t,x). Then

ff{t, Wt) dWt = w{bWb) - 4>(a Wa).

Ja

Proof: Let Ft = (pit, Wt). Applying Ito’s formula we get
dFt = dx<p(t, Wt) dWt + (dtp+ ~d"dt.

Since dt(p+ \o\u> = 0 and dxy(t, Wt) = fit, Wt), we have
dFt = f{t, Wt)dW t.

Writing in the integral form, yields

[ bfit, Wt)dWt = f dFt= Fb-F a= <p(b, Wh) - <p(a, Wa)
Ja

Ja

Application 7.3.9 Show that

rT

b

Choose the solution of the heat equation (7.3.7) given by (fit,x) —x1~ t.
Then f(t,x) = dx<pit,x) —2x. Theorem 7.3.8 yields

r 2wtdwt= I fit, Wt)dWt = ip(t,x) Wt —T.
Jo Jo

Dividing by 2 leads to the desired result.

Application 7.3.10 Show that

rT 1
[ iIWf- t)dWt= "Wt - TWt.
3

Jo

Consider the function (pit, x) = k3 —tx, which is a solution of the heat equa-
tion (7.3.7), see Exercise 7.3.3. Then fit,x) = dxip{t,x) = x2 —t. Applying
Theorem 7.3.8 yields
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Application 7.3.11 Let A> 0. Prove the identities

Jf e- ¥ +Wlyyyy = - ).

At
Consider the function <p(t,x) = e T XX, which is a solution of the homoge-
neous heat equation (7.3.7), see Example 7.3.2. Then f(t,x) = dxip(t,x) =

+*Ae 2 &bk Apply Theorem 7.3.8 to get

f i\e~A¢><xthE[ dWt = <p(tWt) =e 2 PWe
0 J

Dividing by the constant £A ends the proof.

In particular, for A= 1 the aforementioned formula becomes

/ e~2+Wt dWt = e~"+WT - 1. (7.3.9)
0
Application 7.3.12 Let A> 0. Prove the identity

T Axt
I e 2 cos(AWt) dwt = ﬁe 2 sin(AWr).

From the Example 7.3.2 we know that </4£ x) = e 2 sin(Ax) is a solution of the
heat equation. Applying Theorem 7.3.8 to the function f(t,x) = dxtp(t.x) =

Ae52~ cos(AXx), yields
f Ae“  cos(AWL)dWt Jr f(t,W t) dWt = <p(t, Wt)
0- 0
. a’t .
= e 2 sin(AT'Ft) e 2 sin(AW'r)-

Divide by Ato end the proof.

If we choose A= 1 we recover a result already familiar to the reader from
section 7.2

f t , 4
J/ e2cos(W*) dwWt = e 2 sin IVWW- (7.3.10)
0]

Application 7.3.13 Let A> 0. Show that

\] e 2 sin(AHA NN —e 2 cos(AWX)N.
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Choose ip(t,x) = e 2 cos(Ax) to be a solution of the hejgztlequation. Apply
Theorem 7.3.8 for the function f(t,x) = dxip(t,x) = —Ae 2 sin(Ax) to get

rT 2. T
/ (-A)eV sin(AWi) dW4 = <1 Wt) 0
Jo

XT XT
- e—7~COoS(AWt) = e~ cos(AWX) —1>
and then divide by —A

Application 7.3.14 Let 0 < a < b. Show that
(7.3.11)

From Exercise 7.3.4 we have that ip(t,x) —i- 12e~x2/(2t) is a solution of the
homogeneous heat equation. Since f(t,x) = dx(p(t,x) = —t~3/2xe~x /(2t\
applying Theorem 7.3.8 yields the desired result. The reader can easily fill in
the details.

Integration techniques will be used when solving stochastic differential
equations in the next chapter.

Exercise 7.3.15 Find the value of the following stochastic integrals

(@ [ etcos(V2Wt)dwt
Jo

f3
(b) J/ e2t cos(2Wt)dw't
0

(c) [/ 4e~t+V2WidWt.
Jo

Exercise 7.3.16 Let ip(t,x) be a solution of the following non-homogeneous
heat equation with time-dependent and uniform heat source G(t)

dP+ \&x4>= G(t).

Denote f(t,x) = dxip(t, x). Show that

f f(t,Wt)dWt= v(b,Wh)-ip(a,W a)- [ G(t)dt.
Ja

Ja

How does the formula change if the heat source G is constant?
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7.4 Table of Usual Stochastic Integrals

Now we present a user-friendly table, which enlists integral identities developed
in this chapter. This table is far too complicated to be memorized in full.
However, the first couple of identities in this table are the most memorable,
and should be remembered.

Leta<band 0< T. Then we have:

ul
Wtdt, 0<T;

Jo

3 \Wg _boow2 o P oy
12. /7 t7?Wte™ 2 dWt = a —b™?e 26;

a
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Chapter 8

Stochastic Differential
Equations

If deterministic Calculus was developed mainly to put into differential equa-
tions form the fundamental principles which govern all evolution phenomena,
then Stochastic Calculus plays a similar role for the case of noisy evolution
systems, which provide a more realistic description of the real world.

This chapter deals with several analytic techniques of solving stochastic
differential equations. The number of these techniques is limited and follows
quite closely the methods used in the ordinary differential equations treated,
for instance, in classical books of Arnold [3] or Boyce and DiPrima [7].

8.1 Definitions and Examples

Let Xt be a continuous stochastic process. If small changes in the process
Xt can be written as a linear combination of small changes in t and small
increments of the Brownian motion Wt, we may write

dXt = a(t, Wt,Xt)dt + b(t, Wt, Xt) dWt (8.1.1)

and call it a stochastic differential equation. In fact, this differential relation
has the following integral meaning:

Xt —Xqg+ I/ a(s, Ws,Xs)ds + f b(s,Ws,Xs)dWI (8.1.2)
J

where the last integral is taken in the Ito sense. Relation (8.1.2) is taken as the
definition for the stochastic differential equation (8.1.1). However, since it is
convenient to use stochastic differentials informally, we shall approach stochas-
tic differential equations by analogy with the ordinary differential equations,

165
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and try to present the same methods of solving equations in the new stochastic
environment.

Most of the stochastic differential equations considered here describe dif-
fusions, and are of the type

dXt = a(t, Xt)dt + b(t,Xt)dWt,  X0= C, (8.1.3)

with a(t, x) and b(t, x) measurable functions. The functions a(t, x) and b(t, x)
are called the drift rate and the volatility of the process Xt, respectively. Given
these two functions as input, one may seek for the solution Xt of the stochastic
differential equation as an output. The desired outputs Xt are the so-called
strong solutions. The precise definition of this concept is given in the following.
The beginner can skip this definition; all solutions in this book will be solutions
in the strong sense anyway.

Definition 8.1.1 A process Xt is a strong solution for the stochastic equation
(8.1.3) on the probability space (f1,T,P) if it satisfies the following properties:

(i) Xt is adapted to the augmented filtration Ft generated by the Brownian
motion Wt and the initial condition £;

() P(Xo=0) =1,

(in) For any 0 < t < 00 we have

\] (\a(s,Xs)\+ b2(s,Xs)) ds < o00]
(iv) The formula

Xt —Xo+ f a(s,Xs)ds+/ b(s, Xs) dWs
Jo (0]
holds almost surely.

A few comments regarding the previous definition. Part (r) states that
given the information induced by £ and the history of the Brownian motion
until time t, one can determine the value Xt. Part (rr) states that X q takes
the value Cwith probability 1. Part (Hi) deals with a non-explosive condition
for the coefficients. Part (iv) states that Xt verifies the associated integral
equation.

We shall start with an example.

Example 8.1.2 (The Brownian bridge) Let a,b GM. Show that the pro-
cess

Xt—a(l—t) + b+ (I —t) / - dWs, 0<t<1
0 1.-
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is a solution of the stochastic differential equation
dXt = — dt, + dWt, 0NMt<1,Xg= a.
We shall perform a routine verification to show that Xt is a solution. First we

b-Xt

compute the quotient

b-Xt = b—a(ll——ﬁ)—bbt-—((l—t—))Jf*lil—deK
0 1—
= (b-a){l -t) - (1-t) f - dWs,
Jo 1~

and dividing by 1 —t yields

b-Xt ‘
JLaws. (8.1.4)
1-t Jo 1-«
Using
< [ih > dW") = T rtdw"
the product rule provides
dXt = ad{l —t) + bdt + d(l —t) f ——dWs+ (1 —t)d( f —— dWs
{ ) ( )Jo 1-s ( )Q/JO 1- s ;
= (b—a —\] — dWAjdt + dWt
= + dwtl

where the last identity comes from (8.1.4). We just verified that the process
Xt is a solution of the given stochastic equation. The question of how this
solution was obtained in the first place, is the subject of study for the next few
sections.

8.2 The Integration Technique

We shall start with the simple case when both the drift and the volatility are
just functions of time t.

Proposition 8.2.1 The solution Xt of the stochastic differential equation
dXt= a(t)dt + b(t)dwt

is Gaussian distributed with the mean Xq+j § a(s)ds and the variance f* b2(s) ds.
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Proof: Integrating in the equation yields
Xt-X 0= [ dXs= f a(s)ds+ [ b(s)dWs.
Jo Jo Jo

Using the property of Wiener integrals, Jjj b(s) dWs is Gaussian distributed

with mean 0 and variance  b2(s) ds. Then Xt is Gaussian (as a sum between
a deterministic function and a Gaussian), with

E[Xt] = E[X0+ [ a(s)ds+ f b(s)dWs}
Jo Jo

X0+ / a(s)ds + E g s)dWq
Jo Jo

X0+ a(s) ds,
Jo

Var[Xt} — Var[Xo+ f a(s)ds+ f b(s)dWs
Jo Jo

Var f Db(s)dw
-Jo
r

ﬂ]) b (s)ds,
which ends the proof.

Exercise 8.2.2 Solve the following stochastic differential equations for t > 0
and determine the mean and the variance of the solution:

(a) dXt —costdt —sintdWt, Xo = 1.
(b) dXt=etdt+ VtdWt, X0= 0.
(c) dXt= Tx7dt+ i32dWt, X0 = 1.

If the drift and the volatility depend only on variables t and Wt, the
stochastic differential equation

dXt = a(t, W)dt + b{t, Wt)dWt,  t> 0

defines a stochastic process that can be expressed in terms of Ito integrals

Xt= X0+ f a(s,Ws)ds+ ( b{s,Ws)dWs
Jo Jo
There are several cases when both integrals can be computed explicitly. In
order to compute the second integral we shall often use the table of usual
stochastic integrals provided in section 7.4.
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Example 8.2.3 Find the solution of the stochastic differential equation

dXt = dt + WtdWt, X0= 1.

Integrate between 0 and t and get

/W W
Xt = 1+ SW j WsdWs= 1+ t4— ————
Jo Jo

= \{W?+1t)+ 1
Example 8.2.4 Solve the stochastic differential equation
dXt= (Wt- 1)dt + WdWt, X0=0.

Let Zt = f* Wsds denote the integrated Brownian motion process. Integrating
the equation between 0 and t yields

Xt

f dXs= [\ws-l)ds+ f w; dws
Jo Jo Jo

Zt-t+ "~ "WTF-Zt

iw f-t.
where we used that fg W2dWs = \Wf —Zt.

Example 8.2.5 Solve the stochastic differential equation
dXt = t2dt + e</2cos WtdWt, X0=0,
and find E[JQ] and Var(Xt).

Integrating yields

Xt

[ s2ds+ [ es/2cos WsdWs
Jo Jo

2+ et/2sin W, (8.2.5)

o

where we used (7.3.10). Even if the process Xt is not Gaussian, we can still
compute its mean and variance. Since Ito integrals have zero expectation,
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Another variant of computation is using Ito’s formula

d(sin Wt) = cos Wt dWt —- sin Wt dt

Integrating between 0 and t yields
fit 1 rt
sin Wit / cos WsdWs —- / sin Wsds,
Jo 2Jo

where we used that sin Wq = sinO = 0. Taking the expectation in the previous
relation yields

E[sinWf] = £ f cosWsdWs —\ [ E[EnWslds.
Lo J 2j0

From the properties of the Ito integral, the first expectation on the right side
is zero. Denoting n(t) = E[sin Wt]. we obtain the integral equation

) 1 M
fi) = ~2 5 p(s)ds-

Differentiating yields the differential equation

1
/Nno =

with the solution fj,(t) = kel22. Since k = //()) = E[sin Wq] = 0, it follows
that fj,(t) = 0. Hence
E[sin Wt] = 0.

Taking expectation in (8.2.5) leads to

E[Xt] = £2[j] +et2E[sinW4 = j.

Since the variance of deterministic functions is zero,

r+3 ,
Var —+ en2sin Wt = (et/2)2Far[sin W]

¢}

Var[Xt]

edE[sin2 WA] = i(1 - E[cos2Wt]). (8.2.6)

In order to compute the last expectation we use Ito’s formula

d(cos 2Wt) = —2 sin 2Wt dWt —2 cos 2Wt dt
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and integrate to get

0082~=008 270 —2 Jf sm.2Ws d,Ws —2 Jf cos 2WSds.
0 0]

Taking the expectation and using that Ito integrals have zero expectation,
yields

E[cos2Wt] = 1 —2 Jf E[cos2Ws ds.
0

If we denote m(t) = E[cos2W]j], the previous relation becomes an integral
equation

m(t) = 1—2 / m(s) ds.
Jo

Differentiate and get
m*(t) = —2m(t),

with the solution m(t) = ke~2t. Since k = m(0) = E[cos2Wo0] = 1, we have
m{t) = e~2t. Substituting into (8.2.6) yields

Var[Xt]= | (1 - e~2t) = = sinht.
In conclusion, the solution Xt has the mean and the variance given by
t3 .
ENe] = vy, Var[Xt] —sinht.

Example 8.2.6 Solve the following stochastic differential equation

et/2dXt = dt + eWwt dWt, X0=0,

and find the distribution of the solution Xt and its mean and variance.

Dividing by e”2, integrating between 0 and t, and using formula (7.3.9) yields

Xt f e-s/2ds+ [ e-s/2+Wsd\Vs

Jo Jo
2(1 - e~t/2) + e~"2eT - 1
| + e~t/2(eWt-2).

Since eW is a geometric Brownian motion, using Proposition 3.2.2 yields

E[Xt] = E[1+ e-tR2(eW- 2)]=1- 2e“t/2+ e~r/2E[ew ]
= 2- 2e~t/2.
Var(Xt) = Var[l+ e“t//AeM —2)] = Far[e_t//2'/R] = e~bVar[eW]

= e~\e2t-e 1 =-eb- 1.
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The process Xt has the following distribution:

Fly) = P(Xt<y)=P{l +e~t/\eWm-2)<y)
= P("<1n(2 +e/2(y-1))) =p("<-"1n(2 +¢e/2(y-1)))
= N~™In(2 +et/\y-1)))1
1 fU 2 ) L .
where N(u) = __ / e~s l2ds is the distribution function of a standard

v 27 J — oo
normal distributed random variable.

Example 8.2.7 5ofee the stochastic differential equation
dXt=dt + t~3/2W te-w?/{2t) dWu Xt =1

Integrating between 1 and t and applying formula (7.3.11) yields

Xt = Xx+ ds+\] s~:i/2W.4e - w* /{2s) dW's

= t_e-w?/2 I-w?/m, Vi> 1
tl/z

Exercise 8.2.8 Solve the following stochastic differential equations by the
method of integration

(a) dXt —(t —"sin Wt)dt + (cos Wt)dWt, Xo = 0;
(6) dXt= (™ cosWt- 1)dt + (sin Wt)dwt, X0= 0;

(c) dXt = ~(sin Wt + Wtcos Wt)dt + (Wtsin Wt)dwt, X0= 0.

8.3 Exact Stochastic Equations

The stochastic differential equation
dXt = aft, Wt)dt + b(t, Wt)dwt (8.3.7)

is called exact if there is a differentiable function f(t, x) such that

a(t,x)
b(t,x)

dtf(t,x) + ~dIf{t,x) (8.3.8)

dxf{t,x). (8.3.9)
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Assume the equation is exact. Then substituting in (8.3.7) yields
dXt = Wt) + i d2f(t, Wt))dt + dxf(t, Wt)dwt.
Applying Ito’s formula, the previous equation becomes
dXt = d(f(t,W 1)),

which implies Xt = f(t, Wt) + ¢, with ¢ constant.

Solving the partial differential equations system (8.3.8)-(8.3.9) requires the
following steps:

1. Integrating partially with respect to x in the second equation to obtain
f(t,x) up to an additive function T (t);

2. Substitute into the first equation and determine the function T(t);

3. The solution is Xt = f{t,Wt) + ¢, with ¢ determined from the initial
condition on Xt.

Example 8.3.1 Solve the stochastic differential equation as an exact equation
dXt = e\l + W2)dt + (1 + 2etWt)dwWt, X0=0.
In this case a(t, x) = e*(I + x2) and b(t, x) = 1+ 2etx. The associated system
is
e\l +x2) = dtf(t,x) + ~dIf(t,x)
1+ 2etx = dxf(t,x).

Integrating partially in x in the second equation yields
f(t,x) = J (1+ 2etx) dx = x + etx2 + T(t).

Then dtf = etx2 + T'(t) and d2f = 2eb. Substituting in the first equation
yields
e\l + x2) = etx2+ T\t) + et.

This implies T'(t) = 0, or T = ¢ constant. Hence f(t,x) = x + e*x2+ ¢, and
Xt = f(t,Wt) = Wt + etW2+ c. Since Ao = 0, it follows that ¢ = 0. The
solution is Xt = Wt + etW 2.

Example 8.3.2 Find the solution of

dXt= (2tW? + 3t2(1 + Wtj)dt + (3t2W? + 1)dWt, X0 = 0.
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The coefficient functions are a(t,x) = 2tx3+ 3t2(1+ x) and b(t,x) —3t2x2 + 1.
The associated system is given by

Then dtf — 2tx3 + T'(t) and d2f — 6t2x, and substituting into the first
equation we get

2tx3 + 3i2(1 + x) = 2tx3+ T'(t) + -6 t2x.

After cancelations we get T'(t) —312, so T(t) = t3+ ¢. Then
f(t,x) = t2x3+ x + t3+ ¢.

The solution process is given by Xt = f(t, Wt) = t2W 3+ Wt + t3 + c. Using
Xqg= 0 we get ¢ = 0. Hence the solution is Xt = t2W 3+ Wt + t3.

The next result deals with a condition regarding the closeness of the
stochastic differential equation.

Theorem 8.3.3 If the stochastic differential equation (8.3.7) is exact, then
the coefficient functions a(t,») and b(t,x) satisfy the condition

dxa = dth+ ]~dgb. (8.3.10)

Proof: If the stochastic equation is exact, there is a function f(t, x) satisfying
the system (8.3.8)-(8.3.9). Differentiating the first equation of the system with
respect to x yields

dxa = dtdxf + ~dRdxf .

Substituting b = dxf yields the desired relation.

Remark 8.3.4 The equation (8.3.10) has the meaning of a heat equation.
The function b(t, X) represents the temperature measured at x at the instance
t, while dxa is the density of heat sources. The function a(t, x) can be regarded
as the potential from which the density of heat sources is derived by taking
the gradient in x.
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It is worth noting that equation (8.3.10) is just a necessary condition for
exactness. This means that if this condition is not satisfied, then the equation
is not exact. In that case we need to try a different method to solve the
equation.

Example 8.3.5 Is the stochastic differential equation
dXt = (1 + W?)dt + (t4+ WT)dWt

exact?

Collecting the coefficients, we have a(t,x) = 1+ x2, b(t,x) = £4+ x2. Since
axa = 2x, A = 413, and d2b = 2, the condition (8.3.10) is not satisfied, and
hence the equation is not exact.

Exercise 8.3.6 Solve the following exact stochastic differential equations
(a) dXt=eldt+ (Wi2- t)dwt, X0=1,
(b) dXt= (sint)dt + [W2—t)dWt, X0= ~1;
(c) dXt= tadt + eWUwt, X0 = 0;
(d) dXt= tdt+ e*/2(cos Wt)dW t, X0=1I.
Exercise 8.3.7 Verify the closeness condition and then solve the following
exact stochastic differential equations
() dXt= (Wt+ IWfjdt+ (t+ WB)dWt, X0 = 0;
(b) dXt= 2tWtdt + {t2+ W)dWu Xq= 0
(c) dXt= UWt + \cos Wtjdt + (€*+ sin Wt)dWt, X0=0;
(d) dXt=eW(l+ I)dt + teWwt dWt, X0= 2

8.4 Integration by Inspection

When solving a stochastic differential equation by inspection we look for op-
portunities to apply the product or the quotient formulas:

d(f(t)Yt) = f(t)d Yt + Ytdf(t)

fXt\  f(i)dXt- Xtdf(t)
<m) f(t)2

d

For instance, if a stochastic differential equation can be written as

dXt = f()Wtdt + f(1)dW t,
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the product rule brings the equation into the exact form
dXt = d(f(t)Wt),
which after integration leads to the solution
Xt= X0+ f(t)Wt.
Example 8.4.1 Solve
dXt = (t+ W?)dt + 2tWtdWt, X0= a
We can write the equation as
dXt= W2dt + t(2Wtdwt + dt),
which can be contracted to
dXt = W2dt + td(Wf).
Using the product rule we can bring it to the exact form
dXt= d(tw?),
with the solution Xt = tW'f + a.
Example 8.4.2 Solve the stochastic differential equation
dXt = (Wt + 3t2)dt + tdwt.
If we rewrite the equation as
dXt —3t2dt + (Wtdt + tdWt),

we note the exact expression formed by the last two terms Wtdt + tdWt —
d(tWt). Then

dXt=d(f) + d(tWt),

which is equivalent to d(Xt) = d(ts + tWt). Hence Xt= t3+ tWt + ¢, ¢ GR.

Example 8.4.3 Solve the stochastic differential equation

e~2tdXt = (1 + 2W?)dt + 2WtdWt.
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Multiply by e2t to get
dXt = e2t{l + 2W?)dt + 2e2tWtdWt.

After regrouping, this becomes

dXt= (2e2tdt)W? + e2tQWtdWt + dt).
Since d(e2t) —2e2tdt and d(W 2) = 2WtdWt+dt, the previous relation becomes

dXt = d(e2t)W 2 + e2td(W 2).
By the product rule, the right side becomes exact
dXt = d(e2tw 2),
and hence the solution is Xt = e2tW2+ ¢, ¢ G R.
Example 8.4.4 Solve the equation
t3dXt = (32Xt + t)dt + t6dWt, Xr=0.
The equation can be written as
t3dXt - 3Xtt2dt = tdt + t6dWt.

Divide by t6

(tty
Applying the quotient rule yields

Integrating between 1 and t, yields

A2 301 FWEW 1+ C

S0
Xt=ct3- i + <?2W, - Wi), CEM.
Using Xx = 0 yields ¢ — 1/4 and hence the solution is
X = i(i3- M)+r3(N-umn cgr.
Exercise 8.4.5 Solve the following stochastic differential equations by the in-
spection method
(a) dXt= (1+ wWt)dt+ {t+ 2Wt)dwt, X0 =0
(b) t2dXt= (213 - Wt)dt + tdWt, Xi =0
() e~t/2dXt = \Wtdt + dWt, X0=0;
(d) dXt= 2tWtdWt + Wfdt, XG=0
() dXt= ™M+ % WINt + \ft dWi, Xi =0.
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8.5 Linear Stochastic Differential Equations
Consider the stochastic differential equation with the drift term linear in Xt
dXt= (a(t)Xt+ At))dt + b(t, Wt)dWu t> 0.

This can also be written as
dXt —a(t)Xtdt = f5(t)dt + b(t, Wt)dWt.

Let A{t) —Jq ft(;s) ds. Multiplying by the integrating factor e~A”\ the left
side of the previous equation becomes an exact expression

e~A®) [dXt- a{t)Xtdtj

e~A®P (t)dt + e~ANDb(t, Wt)dWt

d (e- ADX tA e~ANP{t)dt + - Afb(t,Wt)dWt.

Integrating yields

e~A® Xt

XO+J[ e-ANP(s)ds+ [ e~A(s)b(s,Ws)dWs
0 Jo

Xt XO0eAN + eAN (1 e~AN(3(s)ds+ J e- A™b(s, Ws)dW ,}.

The first integral within the previous parentheses is a Riemann integral, and
the latter one is an Ito stochastic integral. Sometimes, in practical applications
these integrals can be computed explicitly.

When b(t,Wt) = b(t), the latter integral becomes a Wiener integral. In
this case the solution Xt is Gaussian with mean and variance given by

E[Xt] X0eAW + eA™ [ e~A™/3(s)ds
Jo

Var[Xt]

e2A® f e~2A"b(s)2ds.
Jo

Another important particular case is when a(t) = a ¢ 0, i3(t) —f3 are
constants and b(t, Wt) = b(t). The equation in this case is

dXt = (aXt + P)dt + b(t)dwt,  t> 0,

and the solution takes the form

Xt= X0Oeat + —{eat - 1) + f ea”™ s”6(s) dWs.
a Jo
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Example 8.5.1 Solve the linear stochastic differential equation
dXt = (2Xt+ 1)dt + e2tdWt.

Write the equation as
dXt- 2Xtdt = dt + e2tdWt

and multiply by the integrating factor e~2t to get

d

Integrate between 0 and t and multiply by e , to obtain

rt rt
X0e2t+ e2t [ e~2sds + e2t f dWs
Jo Jo

Xt

X0e2t+ ~(e2t-1) + e2tWt.
Example 8.5.2 Solve the linear stochastic differential equation
dXt= (2- Xt)dt+ e"WtdW f
Multiplying by the integrating factor e* yields
e\dXt+ Xtdt) = 2ebdt + Wt dWt.

Since et(dXt + Xtdt) = d(etXt), integrating between 0 and t we get

eIXt= X0+ [Eeeddt+ t dWs.
Jo Jo

Dividing by et and performing the integration yields
Xt = X0e-t+ 2(l-e~t)+ Ne-t(W2-1t).
Example 8.5.3 Solve the linear stochastic differential equation
dXt= (}X t+ 1)dt + el cos W, dWt.
Write the equation as

1
dXt- -X,dt = dt + el cos WtdWt
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and multiply by the integrating factor e to get
d(e~t/2Xt) = e~t/2dt + et/2 cos WtdWt.

Integrating yields

e~t/2Xt= X0+ [ e~s/2ds+ [ es/2cosWsdWs.
Jo Jo

Multiply by e42 and use formula (7.3.10) to obtain the solution
Xt= X0en2+ 2(e'/2- 1) + el sin Wt.

Exercise 8.5.4 Solve the following linear stochastic differential equations
(a) dXt= (4Xt- 1)dt + 2dWt\
(b) dXt= (3Xt- 2)dt + e3tdWt;
(c) dXt= (1+ Xt)dt + etWtdWHt;
(d) dXt = (4Xr+ t)dt + edtdWt;
(e) dXt= (t+\X~"jdt + elsin WtdWt;

(f) dXt= -X tdt + e-fdwt.

In the following we present an important example of stochastic differential
equation, which can be solved by the method presented in this section.

Proposition 8.5.5 (The mean-reverting Ornstein-Uhlenbeck process)
Let m and a be two constants. Then the solution Xt of the stochastic equation

dXt = (m —Xt)dt + adwWt (8.5.11)
is given by
Xt=m+ (Xo —m)e 1+ a N g, (8.5.12)
Xt is Gaussian with mean and variance given by
E[Xj] = m+ (Xo—m)e’t
Var(Xt) = (1 —e~21).

Proof: Adding Xtdt to both sides and multiplying by the integrating factor
et we get
d(etXt) = meidt + otetd,Wt,
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which after integration yields
ebXt = X0+ m(e* - 1) +a [ esdW4
Jo
Hence

Xt = Xoe t+ m —e t+ae~t|I A

m+ (Xo —m)e t+a f es 1dWs.
Jo

Since Xt is the sum between a predictable function and a Wiener integral,
then we can use Proposition 5.6.1 and it follows that Xt is Gaussian, with

t

E[Xt] = m+ (Xo—m)e +E a f es~*dWs = m + (Xq —m)e~
Jo
rt
Var(Xt) = Var a II es~f dw. az2e 2t|£ e2sds
p2t _ | 1
= Q2e-2tf--——-- - = -a2(\ —e~21).
2 2 v ;

The name mean-reverting comes from the fact that

i E1x —n.

The variance also tends to zero exponentially, tIim Var[Xt} = 0. According to
—>00
Proposition 4.9.1, the process Xt tends to m in the mean square sense.

Proposition 8.5.6 (The Brownian bridge) Fora,b e R fixed, the stochas-
tic differential equation

dXt = —1-----£—dt +dwt, 0<t< 1 Xg=a

has the solution
fl 1
Xt=a(l —t)+bt+ (I—t) / - dWs, 0 < t < 1L (8.5.13)
Jo

The solution has the property Iin”ln Xt = b, almost certainly.
t->
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Proof: If we let Yt = b —Xt the equation becomes linear in Yt

dYt+ -~—Ytdt= -dW t.

Multiplying by the integrating factor p(t) — yields

*(rh) - ~ihd

which leads by integration to

Making t = 0 yields ¢ —a —b, so

b-Xt o dWs.
1-t b T
Solving for X vyields
Xt =a( —t) + bt+ -dWs, 0 <t < 1
Let Ut= (1 —i) /) dWs. First we notice that
E[Ct] = ( t)E[ f J — dws\ =0,
Jo 1~
Far(C/t) = ( ds

= (
In order to show as-limt-"~i Xt = b, we need to prove
P(w; lim Xt{w) —b) = 1.
Since Xt = o(1 —t) + bt 4- Ut, it suffices to show that
P(ku;lin' Ut{u) = 0) = L (8.5.14)
We evaluate the probability of the complementary event

P(fj;ltir_nf/t(w) (09] 02 = P(\I/.IJ; Lt (U\ > e, Vi),
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for some e > 0. Since by Markov’s inequality

P(u; \ll'{u)e >el< Var(ut _ t(l-t)

holds for any 0 < t < 1, choosing t —¥1 implies that
P(w:l0i(w)]>CVY) = Q

which implies (8.5.14). ]

The process (8.5.13) is called the Brownian bridge because it joins Xo = a
with X\ = b. Since Xt is the sum between a deterministic linear function in t
and a Wiener integral, it follows that it is a Gaussian process, with mean and
variance

E[Xr] = a(l —t) + bt
Var{Xt) Var(Ut) = t(I-t).

It is worth noting that the variance is maximum at the midpointt = (b—a)/2
and zero at the end points a and b.

Exercise 8.5.7 Show that the Brownian bridge (8.5.13) satisfies Xt b as
t-¥ 1-

Exercise 8.5.8 Find Cov(Xs,Xt), 0 < s < tfor the following cases:
(a) Xt is a mean reverting Ornstein- Uhlenbeck process;
@) Xt is a Brownian bridge process.

8.6 Stochastic Equations with respect to a Poisson
Process
Similar techniques can be applied in the case when the Brownian motion

process Wt is replaced by a Poisson process Nt with constant rate A For
instance, the stochastic differential equation

dXt
X0

3Xtdt + e3tdNt
1

can be solved multiplying by the integrating factor e-3< to obtain
d(e~3tXt) = dNt.

Integrating yields e~3tX4= Nt + 1, so the solution is Xt = e3t(l + Nt).
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The following equation
dXt —(m —Xt)dt + adNt

is similar to the equation defining the mean-reverting Ornstein-Uhlenbeck pro-
cess. As we shall see, in this case, the process is no more mean-reverting, but
it reverts to a certain constant. A similar method yields the solution

Xt=m+ (Xo —T)é~r+ ae~r T esdNs.
Jo

Since from Proposition 5.8.5 and Exercise 5.8.8 we have

E[ [ esdNs]
Jo

x f esds = X(et —1)

Jo
Var(J esdNs) \J e2sds = " (e2t —1),

it follows that

E[X1]

m + (Xo —m)e~* + aA(l —e-t) —»m + aX

Var{Xt) NI(l-e -2

It is worth noting that in this case the process Xt is not Gaussian any more.

8.7 The Method of Variation of Parameters
Let us start by considering the following stochastic equation
dXt- aXtdwt, (8.7.15)

with a constant. This is the equation which, in physics, is known to model
the linear noise. Dividing by Xt yields

dXt
Xt

= a dwt-
Switch to the integral form
adW t,

and integrate “blindly” to get hi X, = aWt + ¢, with ¢ an integration constant.
This leads to the “pseudo-solution”

Xt = e.aWt+c



Stochastic Differential Equations 185

The nomination “pseudo” stands for the fact that Xt does not satisfy the
initial equation. We shall find a correct solution by letting the parameter ¢ be
a function of t. In other words, we are looking for a solution of the following
type:

Xt = eaWt+c{t\ (8.7.16)

where the function c(t) is subject to be determined. Using Ito’s formula we
get

dXt

d{eaWt+cNg) = eaWt+c(®) " + a2/2)dt + aeaWt+cNdW t

Xt(J(t) + c?/2)dt + aX tdwt.

Substituting the last term from the initial equation (8.7.15) yields
dXt = Xt(c'(t) + a2/2)dt + dXt,

which leads to the equation

d(t) + a2/2 = 0

with the solution c(t) = —\zt + k. Substituting into (8.7.16) yields

Xt =

The value of the constant k is determined by taking t = 0. This leads to
Xo = ek. Hence we have obtained the solution of the equation (8.7.15)

Xt = X0eddt-1r*,

Example 8.7.1 Use the method of variation of parameters to solve the stochas-
tic differential equation

dXt = [iXtdt + aX tdwt,

with jx and a constants.

After dividing by Xt we bring the equation into the equivalent integral form

flt=)ld+ a\¥

Integrate on the left “blindly” and get

In Xt —fit + aWt + c,
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where ¢ is an integration constant. We arrive at the following “pseudo-

solution”
Xt — e[it+<rWt+c

Assume the constant c is replaced by a function c(t), so we are looking for a
solution of the form
Xt = etd+o-Wt+cW' (8.7.17)

Apply Ito’s formula and get

2
dXt = Xt([i + c'(t) + ~2~)dt + (fXtdWt-

Subtracting the initial equation yields

(CW + ~~)dt = 0,

which is satisfied for cl(t) = — * with the solution cft) —— + Kk, K € R.
Substituting into (8.7.17) yields the solution

X _ eixtraWt-~-t+k _ e(p.-g)t+(7Wt+k _ X Q@™ ~ N t+aWt

Exercise 8.7.2 Use the method of variation of parameters to solve the equa-
tion
dXt = XtWtdWt

by following the next two steps:

(a) Divide by Xt and integrate ‘blindly” to get the *pseudo-solution”

with ¢ constant.

(b) Consider ¢ = c(t, Wt) and find a solution of type

Xt = e~ +c(t, W\

Example 8.7.3 (Langevin equation) Solve dXt = —gXtdt + crdWt, with g
constant.

We start solving the associated deterministic equation

dXt= -qX tdt,
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which has the solution Xt = Ce~qt, with C constant. Now, look for a solution
of the type Xt = C(t)e~qt, and determine the function C(t) such that the
initial equation is satisfied. Comparing

dXt

d(c(t)e~qtd = —gC(t)e~qidt + e~qtdC(t)

—gXtdt + e~qtdC(t)
with the initial stochastic differential equation of Xt implies that C (t) satisfies
dC(t) = aeqtdWt.

Integrating we obtain C(t) = C(0) + a f* egs dWs, and hence Xt = C(0)e_ <+
cre~qt Jgegs dWs. It is not hard to see that C(0) = Xo, which enables us to
write the final solution as

Xt= X0e-qt+ ae~th[ eqgs dws.
0]

Exercise 8.7.4 (the mean reverting Orstein-Uhlenbeck process) Use the
method of variation of constants to solve

dXt = A(fi —Xr)dt + crdwWht,

where A and /1 are constants.

8.8 Integrating Factors

The method of integrating factors can be applied to a class of stochastic dif-
ferential equations of the type

dXt = f(t, Xt)dt + g(t)X tdWt, (8.8.18)

where / and g are continuous deterministic functions. The integrating factor
is given by
pt = e- SOff(s)dws+ \/,*g2{s) ds_

The equation can be brought into the following exact form
d(ptXt) = ptf{t, Xt)dt.

Substituting Yt = ptXt, we obtain that Yt satisfies the deterministic differential
equation
dYt = ptf (t, Yt/pt)dt,

which can be solved by either integration or as an exact equation. We shall
exemplify the method of integrating factors with a few examples.
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Example 8.8.1 Solve the stochastic differential equation
dXt= rdt + aXtdWt, (8.8.19)
with r and a constants.

The integrating factor is given by pt = e\a2t~aWt. Using Ito’s formula, we can
easily check that
dpt = Pt(oi2dt —adWt).

Using dt2 = dtdWt = 0, (dWt)2 = dt we obtain
dXtdpt = —a 2ptXtdt.
Multiplying by pt, the initial equation becomes
ptdXt- aptXtdwWt = rptdt,
and adding and subtracting a 2ptXtdt, from the left side yields
ptdXt- aptXtdWt+ a2ptXtdt - a2ptXtdt = rptdt.
This can be written as
ptdXt + Xtdpt + dptdXt = rptdt,
which, by virtue of the product rule, becomes

d(ptXt) = rptdt.

ptXt= pgXqg+ rYpsds

and hence the solution is
Xt — —Xo H--/,psds

Pt Pt Jo

Integrating yields

= XOeaWt~"a2t + r [ e-~4t-s)+a(wt-ws)dg
Jo

Exercise 8.8.2 Leta be a constant. Solve the following stochastic differential
equations by the method of integrating factors

(a) dXt= aXtdWf,
(b) dXt= Xtdt+ aX tdWt;

(c) dXt= Edt+ o XfdwW j. Xo > 0.
Exercise 8.8.3 Let Xt be the solution of the stochastic equation dXt = (rXtdwt,

with a constant. Let At = j J{XsdWs be the stochastic average of Xt. Find
the stochastic equation satisfied by At, the mean and variance of At-
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8.9 Existence and Uniqueness

The following theorem is the analog of Picard’s result from ordinary differ-
ential equations. It states the existence and uniqueness of strong solutions
of stochastic differential equations. The proof of the next theorem can be
found in Oksendal [37]. For more results regarding existence and uniqueness
of strong solutions the reader is referred to Krylov and Zvonkin [29].

Theorem 8.9.1 (Existence and Uniqueness) Consider the stochastic dif-
ferential equation

dXt = b(t, Xt)dt + a(t, Xt)dwWt,  X0=c

where ¢ is a constant and b and a are continuous functions on [0,T\ X R
satisfying

1L I6EX] + laix)] < (71 + PK); XGR,i G[0,T]

2. \b(t,x) - b(t,y)\ + \a(t,x) - a(t,y)\ < K\x - y\ Yy GR,t G [0, T]
with C,K positive constants. Let Tt = a{W s\s < t}. Then there is a unique
solution process Xt that is continuous and J-fadapted and satisfies

The first condition says that the drift and volatility increase no faster
than a linear function in x. This condition ensures that the solution Xt does
not explode in finite time, i.e. does not tend to oo for finite t. The second
conditions states that the functions are Lipschitz in the second argument; this
condition guarantees the solution uniqueness.

The following example deals with an exploding solution. Consider the
nonlinear stochastic differential equation

dXt = Xfdt + X2 dWt, X0 = 174 (8.9.20)

where a is a nonzero constant. It is clear that condition 1. does not hold, since
the drift increases cubically.

We shall look for a solution of the type Xt = f{W t). Ito’s formula yields
dXt = f'(Wt)dW t+ " (W t)dt.

Equating the coefficients of dt and dWt in the last two equations yields

AW t)

X 2/ F (W t) = f(W1)2 (8.9.21)

\f*(Wt) X 27 f(W t) = 2f(Wt)3. (8.9.22)
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We note that equation (8.9.21) implies (8.9.22) by differentiation. So it suffices
to solve only the ordinary differential equation

f'(x) = f(x)2,  /(0) = 1/a

Separating and integrating we have

1w =18 ="

Hence a solution of equation (8.9.20) is

Let Ta be the first time the Brownian motion Wt hits a. Then the process Xt
is defined only for 0 < t < Ta. Ta is a random variable with P(Ta < o0o) = 1
and E[Ta] = oo, see section 4.3.

Example 8.9.2 Show that that the following stochastic differential equations
have a unique (strong) solution, without solving the equations explicitly:

(a) dXt = fiXtdt + o dWt (Langevin equation);

(b) dXt = (m —Xt)dt + adWt (Mean reverting Ornstein-Uhlenbeck pro-
cess);

(c) dXt = aXtdWt (Linear noise);

(d) dXt = Zdt + dWf (Squared Bessel process);

(e) dXf = fiXtdt + aXt dWt (Geometric Brownian motion);

(/) dXt = (no + niXt) dt + yJ~-dWt (CIR process),

with m, n, M and & positive constants.
Example 8.9.3 Consider the stochastic differential equation
dXt=(yJl+* 2+ ~Xt)dt+sjl + X?dwWt, X0= x0.

(a) Solve the equation;

(b) Show that there is a unique solution.
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8.10 Finding Mean and Variance

For most practical purposes, the most important information one needs to
know about a process is its mean and variance. These can be found directly
from the stochastic equation in some particular cases without solving explicitly
the equation. We shall deal with this problem in the present section.

Consider the process Xt satisfying (6.1.1). Then taking the expectation
in (8.1.2) and using the property of the Ito integral as a zero mean random
variable yields

E[Xt]=X 0+ JE) E[a(s,VFs, X s)]ds. (8.10.23)
Applying the Fundamental Theorem of Calculus we obtain
JE[X t\=E[a(t,Wt,Xt).
We note that Xt is not differentiable, but its expectation E[Xt] is. This equa-

tion can be solved exactly in a few particular cases.

1. If a(t,Wt, Xt) = a(t), then ~"E[X*] = a(t) with the exact solution
E[Xt] =X 0+ J* a(s) ds.

2. If a(t, Wt, Xt) = a(t)Xt+ P(t), with a(t) and fl(t) continuous determin-
istic function, then

JE[X t] = aNe [Xt]+ P(t),
which is a linear differential equation in E[X*]. Its solution is given by
E[Xt] = eAW(X 0+ J *e~A"NP{s) ds), (8.10.24)
where A(t) = fga(s)ds. It is worth noting that the expectation E[X(] does
not depend on the volatility term b(t, Wt, Xt).
Exercise 8.10.1 If dXt= (2Xt+ e2t)dt + b(t, Wt, Xt)dWt, then show that
E[Xt] = eAAXo + t).

Proposition 8.10.2 Let Xt be a process satisfying the stochastic equation
dXt = a(t)Xtdt + b(t)dwt.
Then the mean and variance of Xt are given by

E[X1] eAc« X 0

Var[Xt}

e2AN [ e~A"b2(s)ds,
Jo

where A(t) = J™a(s)ds.
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Proof: The expression of HJ*(J follows directly from formula (8.10.24) with
A= 0. In order to compute the second moment we first compute

(dXt)2
d(X2)

b2(t)dt]

2XtdXt + (dXtf
2Xt(a(t)X tdt + b(t)dWt) + b2(t)dt
(2a(t)X 2 + b2(t))dt + 2b(t)X tdWrt,

where we used Ito’s formula. If we let Yt = X 2, the previous equation becomes
dYt = (2a(t)Yt+ b2(t))dt + 2b(t)yfYtdwt.

Applying formula (8.10.24) with a(t) replaced by 2a(t) and /3(t) by b2(t),
yields

E[Y*] = e2A™ (VO + J e~2A"NDb2(s) dshj,

which is equivalent to
E[X2} = e2A™ (xg + ] e~2A"Db2{s) ds).
It follows that the variance is

Var[Xt] = E[X?} - (E[X*])2 = e2A" Jf e~2A"N b 2(s) ds.
0

Remark 8.10.3 We note that the previous equation is of linear type. This
shall be solved explicitly in a future section.

The mean and variance for a given stochastic process can be computed by
working out the associated stochastic equation. We shall provide next a few
examples.

Example 8.10.4 Find the mean and variance of ekWt, with k constant.
From Ito’s formula
d(ekWt) = kekWtdWt + ~k2ekWitdt,

and integrating yields

rt 1 rt

KWL _ 14« [ ekWs dWs + \k2 [ ekWs ds.
Jo 2o
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Taking the expectations we have

Efelwd = 1+ A | H%N ds.

If we let f(t) = E[efdJ(], then differentiating the previous relations yields the
differential equation

fit) = \Kk2f(t)

with the initial condition /(0) = E[ekW°} = 1. The solution is f{t) = efcd/2,
and hence

E[e.kWn - ekM
The variance is
Var(ekWt) = E[e2kwWt] - (E[ekWit})2 = eAH 2 - exY
= ekY{ekH-1).

Example 8.10.5 Find the mean of the process WteWt.

We shall set up a stochastic differential equation for WteWt. Using the product
formula and Ito’s formula yields

dWteWt) - eWtdWt+ Wtd(eWi) + dWtd(eWt)

eWtdWt + (Wt + dWt)(eWtdWt + \eWtdt)

{Ewtev\/t + eWt)dt + (eWt + WieWt)dWt.
Integrating and using that Woew° = 0 yields
WteWt = [ (I-WseWs + eWs)ds+ [ (ew* + Wsew®) dWs.
Jo 2 Jo
Since the expectation of an Ito integral is zero, we have
E [WteW] = Jf (}E[Wsew°] +E[e”]) ds.
0

Let f(t) — E\WteWt]. Using E[eWs] = es/2, the previous integral equation
becomes

f(t) = J (~f(s) + es/2)ds.

Differentiating yields the following linear differential equation

fw = \f(t)+
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with the initial condition /(0) = 0. Multiplying by e- */2 yields the following
exact equation
(e-t/2f(t)Y = L

The solution is f(t) = tet/2. Hence we obtained that
E [WteWH] = tet/2.
Exercise 8.10.6 Find (a) E[W?eWt|\ (6) E [WtekWi],

Example 8.10.7 Show that for any integer k > 0 we have
E[W2k = ™ tk, E\W2k+I] = 0.

In particular, E[W4] = 312, E[Wf] = 15i3.
From Ito’s formula we have
d(Wtn) = riw[l~1dWt+ nm ~ ~wp~2dt.
Integrate and get
W? =n J(F) WJT 1dWs + I'I’TIZ~ N ./E) W?~2ds.

Since the expectation of the first integral on the right side is zero, taking the
expectation yields the following recursive relation

= n(n~" P E[W%n~2]ds.
2 Jo

Using the initial values E [Wt] = 0 and E[W?2] = t, the method of mathematical

induction implies that EAW2k+I] = 0 and E[VF2 = ™~ tk. The details are
left to the reader.

Exercise 8.10.8 (a) Is Wf —3t2 an Tt-martingale?
(b) What about Wf?

Example 8.10.9 Find E[sin Wt}.
From Ito’s formula

d(sin Wt) = cos WtdWt —~ sin Wt dt,
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then integrating yields

fi i rt
sinWt = / cosWsdWs —- / sinU
Jo 2 \o

Taking expectations we arrive at the integral equation
. 1 91_ .
E[sin Wt] = - - E[sinWs]ds.
2Jo

Let /(£) = E[sinWit\. Differentiating yields the equation f*(t) = with
/(0) = E[sin o] = 0. The unique solution is f(t) = 0. Hence

E[sin Wt} = 0.

Exercise 8.10.10 Let a be a constant. Show that
() E[sin(crwt)] = 0;
(6) E[cos(<7Wf)] = e-N /2;
(c) E[sin(i + aWt)\ = e-02"2sint;
(d) E[cos(E + oWt)\ = e-0,2*/2cost.

Exercise 8.10.11 Use the previous exercise and the definition of expectation
to show that
T2

¢ | o

(6)/ * e X2 cosxdk = d/ZA

Exercise 8.10.12 Using expectations show that

0 Xe-ax*+bx dx = . fl ( A V 2/(4a).
© \2al
(6) /°° X2e-ax2+tedx = o J- fl+ eft?/(4a).
Vaz2aV 2al
(c) Can you apply a similar method to find a closed form expression for

the integral

[e]e)

/.

Exercise 8.10.13 Using the result given by Example 8.10.7 show that
(@) E[cos(iWi)] = e~t3/2
(6) E[sin(tWt)] = 0;
(c) E[etwt] = 0.
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For general drift rates we cannot find the mean, but in the case of concave
drift rates we can find an upper bound for the expectation E[Xj]. The following
classical result will be used for this purpose.

Lemma 8.10.14 (Gronwall’s inequality) Let f{t) be a non-negative con-
tinuous function satisfying the inequality

f{t)<C + M f f(s)ds
Jo

for 0< t< T, with C,M constants. Then
fit) < CeMt, 0<t<T.

Proof: The proof follows Revuz and Yor [41]. Iterating the integral inequality
one gets

fit) < C+ M f fis)ds
Jo

cCeMd (C+ MJ fiuydunjds

C+MCt+ Mzi' E Hu)duds
J *

t
C+ MCt+ M2t F ffiu)du.
Jo

N

Working inductively, we obtain the following inequality

.2 tn
fit) < C+ MCt+ MZCé + --- + MnC—I
n!

fyj-n+l-pl rt
+- Jf fiu)du. (8.10.25)
6

The last term tends to 0 as n — 00, since

0< J[ fiu) du < t max f(u),
0

Taking the limit in (8.10.25) it is not hard to obtain

f(t) < C £2=2C e*c«
=0
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Proposition 8.10.15 Let Xt be a continuous stochastic process such that
dXt = a(Xt)dt + b(t, Wt, X t) dWt,

with the function a(-) satisfying the following conditions
1 a(x) >0, for0< x < T,
2. a"(x) <0, for0<x < T;
3. a'(0) = M.

Then E[Xt] < X0eMt, for 0 < Xt< T.

Proof: Prom the mean value theorem there is £ G (0, ) such that
a(x) = a(x) —a(0) = (x —0)a"(£) < xa'(0) = Mx, (8.10.26)

where we used that a'(x) is a decreasing function. Applying Jensen’s inequality
for concave functions yields

E[e(Xt)] < a(E[X1}).
Combining with (8.10.26) we obtain E[o(Xf)] < ME[Xt}. Substituting in the
identity (8.10.23) implies
EBO <X0+ M [ E[Xe]ds.
Jo

Applying Gronwall’s inequality we obtain E[X*] < XoeMt. U

Exercise 8.10.16 State the previous result in the particular case when a(x) =
sinx, with 0 < x < 7T

Not in all cases can the mean and the variance be obtained directly from
the stochastic equation. In these cases one may try to produce closed form
solutions. Some of these techniques were developed in the previous sections of
the current chapter.






Chapter 9

Applications of Brownian
Motion

This chapter deals with a surprising relation between stochastic differential
equations and second order partial differential equations. This will provide
a way of computing solutions of parabolic differential equations, which is a
deterministic problem, by means of studying the transition probability density
of the underlying stochastic process.

9.1 The Directional Derivative

Consider a smooth curve x : [0,00) -» R", starting at >(0) = xo with the
initial velocity v = x*(0). Then the derivative of a function / : Rn—=R in the
direction v is defined by

Dvf(x0) = lim

Applying the chain rule yields

where V/ stands for the gradient of / and (, ) denotes the scalar product.
The linear differential operator Dv is called the directional derivative with
respect to the vector v. In the next section we shall extend this definition
to the case when the curve x(t) is replaced by an Ito diffusion Xt: in this
case the corresponding “directional derivative” will be a second order partial
differential operator.

199
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9.2 The Generator of an Ito Diffusion

Let (Xt)t>o0 be a stochastic process with Xq = xq. We shall consider an
operator that describes infinitesimally the rate of change of a function which
depends smoothly on Xt-

More precisely, the generator of the stochastic process Xt is the second
order partial differential operator A defined by

Af{x) = iimW i L
AN t

for any smooth function (at least of class C2) with compact support, i.e.
/ :Rn—M, / G Cq(Mri). Here Ex stands for the expectation operator given
the initial condition Xy = x, i.e.,

Ex[f(X1)] = E[f{XT)\X0 = x] = .fR f(y)pt(x.,y)dy,
JRN

where pt(x,y) = p(X, y.t, 0) is the transition density of Xt, given Xq= x (the
initial value X qis a deterministic value x).

In the following we shall find the generator associated with the Ito diffusion
dXt = b(Xt)dt + a(X t)dW (t), t>0,X 0= x, (9.2.1)

where W (t) — (W\ (t),..., Wm(t)) is an m-dimensional Brownian motion, with
b:Rn—Mn and o : Mn —=Rnxm measurable functions.

The main tool used in deriving the formula for the generator A is Ito’s
formula in several variables. If Ft = f(X t), then using Ito’s formula we have

dF>= Y .~ X9)dXx+ lE dx“dXi" 9-22»
i 1 i

where Xt = {X}, eee X 1) satisfies the Ito diffusion (9.2.1) on components,
ie,

dXxX\

bi{Xt)dt+ [a{X t)dW (t)\i

bi(Xt)dt + J2°ikdW K(t). (9.2.3)
K

Using the stochastic relations dt2 = dt dWk(t) = 0 and dWk(t) dWr(t) = 6krdt,
a computation provides
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dX1dX{ = (bidt+ °ikdWk bjdt +
= (£ aikdwkit)"™) (£ ajrdwr{t))
K r
= £ dWfc(£)dWr(t) = £ crjfarifcdt
KT K
= (craT)ij dt.
Therefore
dXxX\ dX{ = (<7<r% - dt. (924)

Substituting (9.2.3) and (9.2.4) into (9.2.2) yields
dFt = df
AX

r,K

Integrate and obtain

- 1V rooTii df_
Ft Pog 9 py OXidxi ) « + 2> gy

(Xs)ds

Since Fo = f(Xo0) = /() and Ex(/(a:))) = 7Z(X), applying the expectation
operator in the previous relation we obtain

EXFI= (0 +Ex N|g @0 s d2f ds  (9.2.5)

u dxidxj

Using the commutativity between the operator Ex and the integral jg, apply-
ing I’'Hospital rule (see Exercise 9.2.7), yields

exk] - /(i) iv , a2/W ,v he/W
M J K

We conclude the previous computations with the following result.
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Theorem 9.2.1 The generator of the Ito diffusion (9.2.1) is given by

n +E£*»£m 926>

13

The matrix a is called dispersion and the product acrT is called diffusion
matrix. These names are related with their physical significance. Substituting
(9.2.6) in (9.2.5) we obtain the following formula

mf(Xt)} = N +EX\f Af(Xs)ds], (9.2.7)
0
for any / € CQ(R").

Exercise 9.2.2 Find the generator operator associated with the n-dimensional
Brownian motion.

Exercise 9.2.3 Find the Ito diffusion corresponding to the generator Af(x) =
fr(x) + f'{x).

Exercise 9.2.4 Let Ag = \{dX + Xi™x2) Grushin’s operator.
(a) Find the diffusion process associated with the generator Ac-

(b) Find the diffusion and dispersion matrices and show that they are de-
generate.

Exercise 9.2.5 Let Xt and Yt be two one-dimensional independent Ito diffu-
sions with infinitesimal generators Ax and Ay. Let Zt = (Xt,Yt) with the
infinitesimal generator Az- Show that Az = Ax + Ay.

Exercise 9.2.6 Let Xt be an Ito diffusion with infinitesimal generator Ax-
Consider the process Yt = (t,Xt). Show that the infinitesimal generator ofYt
is given by Ay = dt + Ax =

Exercise 9.2.7 Let Xt be an Ito diffusion with Xq — x, and ip a smooth
function. Using I'Hospital rule, show that

1 Tl 1_.
t-“>r(T)1+-tE1iJé ip(Xs)ds™ =ip(x).
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9.3 Dynkin’s Formula

Formula (9.2.7) holds under more general conditions, when Ms a stopping
time. First we need the following result, which deals with a continuity-type
property in the upper limit of an Ito integral.

Lemma 9.3.1 Let g be a bounded measurable function and T be a stopping
time for Xt with E[r] < 0o. Then

mA\K

Jim E Jé g(x,)t =E JE g(Xs) dW, (9.3.8)
rrAk

Jim E Va3 lds = E Jg g(x8)ds (9.3.9)

Proof: Let Y\ < K. Using the properties of Ito integrals, we have

(£ g(Xs)dWs - rnK g{Xt)dws)2] = e[( £ g(Xs)dWs)

" 92(Xs) < K2Wr —T1/J1k] =0, k —o0.
LJ ik

Since E[X2] < E[X]2, it follows that

PT T Adc
E 7/ g(Xs)dWs —/  g(Xt)dw, 0, K —> 00,
1Jo Jo

which is equivalent to relation (9.3.8).
The second relation can be proved similarly and is left as an exercise for
the reader. ]

Exercise 9.3.2 Assume the hypothesis of the previous lemma. Let 1{S<T} be
the characteristic function of the interval (—oo,r)

/u_ 7 Y ifu<rT
(S<T> \ 0, otherwise.

Show that
rrAk pk
@ 7/ g(Xs)dWs = / 1{s<T}g(Xs)dWs,
Jo Jo

rrAk rk
®6) /7 g(Xs)ds= / 1{s<r}g(Xs)ds.
Jo Jo
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Theorem 9.3.3 (Dynkin’s formula) Let f € Co(Mn), and Xt be an Ito
diffusion starting at x. If Tis a stopping time with E[r] < oo, then

EX[F(XT)] = f(x) + E* ;Jr Af(xs)ds (9.3.10)
0

where A is the infinitesimal generator of Xt.

Proof: Replace t by k and /7 by 1{s<r}/ in (9.2.7) and obtain

E[ls<r/pffR)] = I {s<r}f(x) +E f A (I{s<T})(Xs)ds
Jo J

which can be written as

E[f(XKAN] I {s<T}(x) + E J/* 1{s<T}(s)A (f)(Xs) ds
0

r KN T

I {s<r}f(x)+E / A(f)(Xs)ds (9.3.11)
Jo

Since by Lemma 9.3.1

WNXknT)] > W 1Xr)], K -> 00

rKknT p pT

E /7 A()(Xs)ds ->E / A(f)(Xs)ds K —m00,
Jo J Llo

using Exercise 9.3.2 and relation (9.3.11) yields (9.3.10).

Exercise 9.3.4 Write Dynkin’s formula for the case of a function f(t,Xt).
Use Exercise 9.2.6.

More details in this direction can be found in Dynkin [16]. In the following
sections we shall present a few important results of stochastic calculus that
can be obtained as direct consequences of Dynkin’s formula.

9.4 Kolmogorov’s Backward Equation

For any function /7 € Co(Rn) let v(t,x) = Ex[f(Xt)], given that Xo = x. The
operator E denotes the expectation given the initial condition Xo = x. Then
u(0,x) = /(x), and differentiating in Dynkin’s formula (9.2.7)

v{t,x) = f{x) + Jf Ex[Af(Xs)]ds
0
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provides
N = Ex[Af{Xt)}

Since we are allowed to differentiate inside of an integral, the operators A and
Ex commute
Ex[Af(X1)} = AEX[f(X 1)}

Therefore
N = ExX[Af(Xt)} = AEX[f(X 1)} = Av(t,x).

Hence, we arrive at the following result.

Theorem 9.4.1 (Kolmogorov’s backward equation) Foranyf G Cy(Mn)
the function v(t,x) = Ex[f(Xt)] satisfies the following Cauchy’s problem

dv
Wt = AV’ t>0
v{0,x) = f(x),

where A denotes the generator of the Ito’s diffusion (9.2.1).

Solving Kolmogorov’s backward equation is a problem of partial differential
equations. The reader interested in several methods for solving this equation
can consult the book of Calin et al. [10].

9.5 Exit Time from an Interval

Let Xt = xo + Wt be a one-dimensional Brownian motion starting at xq, with
xo G (@, b). Consider the exit time of the process Xt from the strip (a, b)

T=inf{t > 0;Xt $ (a, b)}.

Assuming E[r] < 0, applying Dynkin’s formula yields

1d2
E[/(Xr)] =f{x0)+ E ' f(X s)ds (9.5.12)
0 2dx2
Choosing f(x) = x in (9.5.12) we obtain
E[Xr] = x0. (9.5.13)

Exercise 9.5.1 Prove relation (9.5.13) using the Optional Stopping Theorem
for the martingale Xt.
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Let pa = P(XT = a) and pp — P(XT = b) be the exit probabilities of Xt
from the interval (a, b). Obviously, pa + pb = 1, since the probability that the
Brownian motion will stay forever inside the bounded interval is zero. Using
the expectation definition, relation (9.5.13) yields

apa+ b(l- pa) = ab-

solving for pa and pb we get the following exit probabilities

Pa = (9.5.14)
= - = N[(— -e
Pb = 1-Pa= fr—- (9.5.15)

It is worth noting that if b —»o00 then pa — 1 and if a —» —o0 then pp — 1
This can be stated by saying that a Brownian motion starting at xq reaches
any level (below or above xq) with probability 1.

Next we shall compute the mean of the exit time, E[T]. Choosing f(x) —x2
in (9.5.12) yields
E[(XT)2] = z2+ E[t],

From the definition of the mean and formulas (9.5.14)-(9.5.15) we obtain

E = 2pb - Xg= a2b 2 - -
[t] aZpa + b2pb q=a S + Ny x0
b_a ba2 —ab2 + xq(b —a)(b + a)
— —ab+ xo(b+ a) —XQ
= (b —Xo){xo —a). (9.5.16)

Exercise 9.5.2 (a) Show that the equation x2 —(6 —a)x + E[r] = 0 cannot
have complex roots;

(b) Prove that E[r] < -— 7 ;

(c) Find the point xq 6 (a, b) such that the expectation of the exit time, E[r],
is maximum.

9.6 Transience and Recurrence of Brownian Motion
We shall consider first the expectation of the exit time from a ball. Then we
shall extend it to an annulus and compute the transience probabilities.

1. Consider the process Xt = a + W(t), where W(t) = (Wi(t),... ,Wn(t))
is an n-dimensional Brownian motion, and a = (ai,...,an) G Mn is a fixed
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Figure 9.1: The Brownian motion Xt in the ball B(0,R).

vector, see Fig. 9.1. Let R > 0 be such that R > Ja]. Consider the exit time
of the process Xt from the ball B{0, R)

T=Iinf{£ > 0; V& > i?}. (9.6.17)
Assuming E[r] < oo and letting f(x) = W — x2 + eee+ x8 in Dynkin’s

formula

E[f(XD\= f(x) + E[I A T(Xs)ds

yields
R2= \a+ E .E nds
0

and hence
R2- ld
E[r] = (9.6.18)
n
In particular, if the Brownian motion starts from the center, i.e. a —O0, the
expectation of the exit time is

R2
Elr] =

We make a few remarks:
(r) Since R2/2 > R2/3, the previous relation implies that it takes longer for

a Brownian motion to exit a disk of radius R rather than a ball of the same
radius.
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(rr) The probability that a Brownian motion leaves the interval (-R, R) is
twice the probability that a 2-dimensional Brownian motion exits the disk
B(0,R).

Exercise 9.6.1 Prove that E[r] < o00; where r is given by (9.6.17).

Exercise 9.6.2 Apply the Optional Stopping Theorem for the martingale Wt =
W2 —t to show that E[r] = R2, where

r = inf{i > 0;]Wt|>R}

is the first exit time of the Brownian motion from (-R, R).

2. Let be Mn such that b £ B(0,R), i.e. b]> R, and consider the annulus
Ak = PR < P < kR}

where K > 0 such that b G Akm Consider the process Xt —b+ W (t) and let
K= inf{t > 0;Xt £ Ak}

be the first exit time of Xt from the annulus Ak- Let f : Ak K be defined

by
—Inx, ifn=2

(*) 1 ifn> 2.

A straightforward computation shows that A/ = 0. Substituting into Dynkin’s
formula

E[/(XrJ] =f(b)+ E [£ (Laf)(Xs)ds

yields
E[f(XTK]=f(b). (9.6.19)

This can be stated by saying that the value of / at a point b in the annulus is
equal to the expected value of / at the first exit time of a Brownian motion
starting at b.

Since jXTk]is a random variable with two outcomes, we have

E[f(XK] =PkH{R) + dkf(kR),

wherepk = POAXTK\= R): gk = P(\XxTk]) = kR andPk+ gk = 1- Substituting
in (9.6.19) yields
Pkf(R) + QkHkR) = f(b). (9.6.20)

There are two distinguished cases:
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(r) If n = 2 we obtain
—pkInR —%(In Kk + InR) = —Inhb.
Using pk= | - gk, solving for pk yields
. M)
m =1 -b1 I
Hence

P(t < 00) —fclim pk —1,
>—00

where r = inf{f > 0;]Xt] < R} is the first time Xt hits the ball B(O,R).
Hence in R2 a Brownian motion hits with probability 1 any ball. This is
stated equivalently by saying that the Brownian motion is recurrent in R2.

{rr) If n > 2 the equation (9.6.20) becomes

Pk ok i
Rn-2 kn-2Rn-2 bn - 2-

Taking the limit kK —o00 yields

Then in R", n > 2, a Brownian motion starting outside of a ball hits it with
a probability less than 1. This is usually stated by saying that the Brownian
motion is transient.

3. We shall recover the previous results using the n-dimensional Bessel process

Rt = dist(0O,W{t)) = ~w I{tY + --- + wn{ty.

Consider the process Yt = a + 7zt, with 0 < a < R, see section 3.7. It can be
shown that the generator of Yt is the Bessel operator of order n, see Example
10.2.4

_ld2 n—1d

4 _
2 dx2 2x  dx

Consider the exit time
T= {t > 0;Yt > R}.

Applying Dynkin’s formula

E[f{Yr)]=f(Y 0)+ E\ T (Af)(Ys)ds
0
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Figure 9.2: The Brownian motion Xt in the annulus Aru.

for f(x) = x2yields R2= a2+ E[JQ@nds]. This leads to

which recovers (9.6.18) with a = |o}.

In the following assume n > 3 and consider the annulus
Atr = {X 6 Mn;r < p{ < i?}.
Consider the stopping time r = inf{t > O\Xt £ Ar,R} = inf{t > O]yt ~
(r,R)}, where Jlo] = a G (r,R). Applying Dynkin’s formula for f(x) = x2~n
yields E[f(YT] = f(a). This can be written as
prr2-n+pRR2-n= a2-n,
where

pr= POXt\=r), pR= P(\Xt\= R), pr+pR=1

Solving for pr and pRyields
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The transience probability is obtained by taking the limit to infinity

. . a2nRn~-2—1 /r\n-2
pr = limprr= lim f— — = — )
00 ASs00r2 nRn 2—1 \aJ

where pr is the probability that a Brownian motion starting outside the ball
of radius r will hit the ball, see Fig. 9.2.

Exercise 9.6.3 Solve the equation ~f"(x) + = 0 by looking for a
solution of monomial type f(x) = xk.

9.7 Application to Parabolic Equations

This section deals with solving first and second order parabolic equations using
the integral of the cost function along a certain characteristic solution. The
first order equations are related to predictable characteristic curves, while the
second order equations depend on stochastic characteristic curves.

9.7.1 Deterministic characteristics

Let </%(s) be the solution of the following one-dimensional ODE

a(s,X(s)), t<s<T

X(t) X,

and define the cumulative cost between t and T along the solution ip
u(t,x) = c{s,ip(s)) ds, (9.7.21)

where ¢ denotes a continuous cost function. Differentiate both sides with
respect to t

d fT .
gl Jt c(s,ip(s))ds

A utipm)

dtu + dxutp'(t) -c(t,ip(1)).

Hence (9.7.21) is a solution of the following final value problem

dtu(t, x) + a(t, x)dxu(t, x) —€(t,x)

u(T,x) 0.
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It is worth mentioning that this is a variant of the method of characteristics.1
The curve given by the solution ip(s) is called a characteristic curve.

Exercise 9.7.1 Using the previous method solve the following final boundary
problems:

@
dtu + xdxu = —x
u{T,x) = 0.
(b)
dtu + txdxu = Inx, X >0
u(T,x) = 0.
9.7.2 Stochastic characteristics
Consider the Ito diffusion
dXs = a(s, Xs)ds + b(s, X 3)dWs, t<s<T

Xt = X,

and define the stochastic cumulative cost function

T

u(t, Xt) = J " c(s,Xs)ds, (9.7.22)

with the conditional expectation

u(t,x) E u(t, Xt)\Xt = x

E JI c(s,Xs)ds\Xt = x
Taking increments on both sides of (9.7.22) yields
rT7
du(t,Xt) = dJ c(s,Xs)ds.

Applying Ito’s formula on one side and the Fundamental Theorem of Calculus
on the other, we obtain

dtu(t,x)dt + dxu(t, Xt)dXt + ~d2u(t, t, X9d X 2 = —¢(t, Xt)dt.

Irrhis is a well known method of solving linear partial differential equations.
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Taking the expectation E[ «\Xt = x] on both sides yields
dtu(t, x)dt + dxu(t, x)a(t,x)dt + ~dxu(t, x)b2(t, x)dt = —e(t, x)dt.
Hence, the expected cost
u(t,x) = IE \] c{s,Xs)ds\Xt =.
is a solution of the following second order parabolic equation
dtu + a(t,x)dxu + ~b2(t,x)d2u(t,x) = —(t,x)
u(tT,x) — 0.

This represents the probabilistic interpretation of the solution of a parabolic
equation.

Exercise 9.7.2 Solve the following final boundary problems:
(a)

dtu+ dxu + \"2u = -x
u(T,x) — o.
(b)
dtu + dxu +-d xu = ex,
u(T,x) = 0.
(c)
dtu + yxgxm+ —a x dxu = —x,

©

u(T,x) =






Chapter 10

Girsanov’'s Theorem and
Brownian Motion

After setting the basis in martingales, we shall prove Girsanov's theorem,
which is the main tool used in practice to eliminate drift. Then we present
levy’s theorem with applications as well as as the time change for Brownian
motions.

10.1 Examples of Martingales

In this section we shall use the knowledge acquired in the previous chapters to
present a few important examples of martingales and some of their particular
cases. Some of these results will be useful later in the proof of Girsanov’s
theorem.

Example 10.1.1 Ifv(s) is a continuous function on [0,T], then

is an J~t-martingale.

The integrability of Xt follows from

We note the continuity of v(s) can be replaced by the weaker condition v €
L2[0,T],

215
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Xt is obviously adapted to the information set  induced by the Brownian
motion WtmTaking out the predictable part leads to

E[Xt]j;] = e[ [ ve)dWT+ [ v(r)dWT
~JO Js
= Xs+E fv{t)dWT = Xa,
Js

where we used that f* v(t) dWT is independent of Fs and the conditional
expectation equals the usual expectation

E [ v(t)dWTFs] = e[ f v(x)dWT = 0.
Js

Js
Example 10.1.2 Let Xt= 1 v(s)dWs be a process as in Example 10.1.1.
Jo
Then
Mt=Xe [V (s)ds
Jo
is an Tt-martingale.

The process Xt satisfies the stochastic equation dXt —v(t)dWt. By Ito’'s
formula

d(Xf) = 2XtdXt + (dXt)2 = 2v(t)XtdWt + v2(t)dt. (10.1.1)

Integrating between s and t yields
X2-X 2=2f Xtv(t)dWT+ f v2(t) dr.
Js Js

Then separating the deterministic from the random part, we have

E[Mt}3s]

E f v2(T)dr\j
Jo

E X2- X2- f v2(t)dr+ X2- [ wv2(t)ydr I:S
L Js Jo

= X2 _ tyxry dr+E X ?2-X2-J v2T)dr\Fs
Jo

Ms+2E fx M DAWT\E = Mg

Js

where we used relation (10.1.1) and that / Xtv(t) dWTis independent of the
JsS

information set J-s.
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The integrability of Mt can be inferred from the following computation.
Since taking the expectation in

v(e)XedWT+ f v2(r)dT
Jo
yields
4 xt] = J[ v2{r)dT,
0

which leads to the following estimation
E[IMt] < E[XE]+ f v2{r)dr< 2 f v2(r)dT< oo.
Jo Jo

In the following we shall mention a few particular cases.

1 Ifv(s) = 1, then Xt = Wt- In this case Mt = W 2 —t is an J™-martingale.
2. Ifv(s) = s, then Xt —JqsdWs, and hence

is an J™-martingale.

Example 10.1.3 Letwn : [0, T] =K be a continuous function. Then
Mt = efo*(s)dWs~1 D" 2(s) s

is an Ft-martingale for 0 < t < T.

Using Exercise 10.1.8 we obtain E[Mt] = 1, so Mt is integrable. Consider

now the process Ut — [ u(s)dWs—- [ u2(s)ds. Then
Jo 2 Jo

dut u(t)dWt —Au2(t)dt

(dUt)2

u(t)dt.

Then Ito’s formula yields

dMt

d{eUt) = eUtdUt + ~eUt(dUt)2

el () dWt —Au2(t)dt + Au2()dir

u(t)MtdWt.
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Integrating between s and t yields

Mt = Ms+ f u(®t)Mt
Js

Since / u(t)MtdWT is independent of Ts, then
Js

Ej u@)MedWT\Ts = E[JS u{t)MedWT\ = 0,

and hence

E[M(1j;] =E[MS+ f u(t)Mt d\VT\rg] = Ms.
Js

Remark 10.1.4 The condition that u(s) is continuous on [0, T] can be relaxed
by asking only

ne L2[0,T] = {n : [0, T] -> M, measurable and f Ju(s)]2ds < o00}.
Jo

It is worth noting that the conclusion still holds if the function u(s) is replaced
by a stochastic process u(t, ui) satisfying Novikov’s condition

E[e & «Hsw)dsi < oo,
The previous process has a distinguished importance in the theory of martin-
gales and will be useful in the proof of Girsanov theorem.

Definition 10.1.5 Let n € _L2[0, 'l be a deterministic function. Then the
stochastic process
Mt = edo dws~\ fo u2(s) ds

is called the exponential process induced by u.

Particular cases of exponential processes In the following we shall con-
sider a few cases of particular interest:

L ¥
1. Let u(s) = o, constant, then Mt = is an N-martingale.
2. Let u(s) = s. Integrating in d(tWt) = tdWt —Wtdt yields

f sdWs = tWt~ f Wsds.
Jo Jo

Let Zt = /g Wsds be the integrated Brownian motion. Then

Mt = eJosdW*-k fo *2ds

is an J™-martingale.
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Example 10.1.6 Let Xt be a solution of dXt = u(t)dt + dWt, with u(s)
bounded function. Consider the exponential process

Mt = e~fo dw~hfo “2(s)ds. (10.1.2)
Then Yt = MtXt is an Tt-martingale.
Applying Ito’s formula we obtain dMt = —u(t)MtdWt- Then
dMtdXt = —u(t)Mtdt.
The product rule yields

dYt = MtdXt+ XfdMt + dMtdXt
— Mt{u(t)dt + dWt) —X tu(t)MtdWt —u(t)Mtdt
= Mt(l - u{t)Xt)dWwt.

Integrating between s and t leads to

Yt= Ys+ f MT(l-u{T)XT)dWT.
Js

Since fs MT(1 —u(T)XT WT is independent of Ts, we have

E [ MTA-u{T)XTDdWT\Ts] =e[ / MT( - u{T)XT)dw, = 0,
JS Js
and hence
E[Yt\Fs] = Ys.

Exercise 10.1.7 Prove that (Wt + t)e~Wt~24 is an Ft-martingale.

Exercise 10.1.8 Let h be a continuous function. Using the properties of the
Wiener integral and log-normal random variables, show that

E Jo MS)dws

Exercise 10.1.9 Let Mt be the exponential process (10.1.2). Use the previous
exercise to show that for any t > 0

() E[Mt\= 1 (b) E[M 2] = efou” 2dks.

Exercise 10.1.10 Let Ft = a{Wu\u < t}. Show that the following processes
are Ft-martingales:

(a) et/2cos Wt,
(b) e”sin Wt.
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Recall that the Laplacian of a twice differentiable function / is defined by
a/M = E“SiBIj.
Example 10.1.11 Consider the smooth function f : Rn—R, such that

*® A/l =o0;

(i) E[I/(NM]] < o0, yt > 0 andx e R.
Then the process Xt = f(Wt) is an Ft-martingale.

Exercise 10.1.12 Let W\{t) and be two independent Brownian mo-
tions. Show that Xt = eWI™ cos WAit) is a martingale.

Proposition 10.1.13 Letf :R™ be a smooth function such that
(HEN\f(Wt)\] <oo0;

(if) E /o JA/(Ws)] ds < oo.

Then the process Xt —f(Wt) —5 Af{W s)ds is a martingale.

Proof: For 0 < s < t we have

E [Xt]Fe] E[f(Wt)\Fs]-E \ | Jf0 AF(W u)du\~

E[f{Wt)\Fs\ -+j\ f(W u)du-j~ E[*A/(wg] du

Let p(t,y,x) be the probability density function of Wt. Integrating by parts
and using that p satisfies the Kolmogorov’s backward equation, we have

E Af(Wu)\Fs :\Jv(u-s,Ws,x)Af(x)dx
- 2J Axp (u-s,W s, x)f(x)dx

n
/— p(u - s, Ws,x)f(x) dx.

Then, using the Fundamental Theorem of Calculus, we obtain

/ E Af(Wu)\Fs du = Jp{u - s,Ws,x)f(x)dx'j du
S

:J p{t- s, Ws,x)f(x) dx - IimJ p(e, Ws,x)f{x) dx

E[f(WO\Fs] - f 6(x = Ws)f(x) dx

E [f(Wt)\Fd] - f(Ws).
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Substituting in (10.1.3) yields

E[Xt\Fs) = E[f(Wt)\Ts] - }j\ f{W u)du-E{f{W t)\Fs] + f(W a)
= f(Ws)-+ J SAf(Wu)du
= Xs.
Hence Xt is an ~-martingale. [

Exercise 10.1.14 Use Proposition 10.1.13 to show that the following pro-
cesses are martingales:

@ Xr=Ww? - t;

(6) Xt= W8B-3f*W sds;

EXt=~"WT-"J 1w r 2cs,

(d) Xt= ecWt —ijC2fo eWs ds, with ¢ constant;

(e) Xt = sin(cWt) + \c2f" sin(cVFs) ds, with ¢ constant.

Exercise 10.1.15 Letf : Rn—mR be afunction such that
(i) E[I/(WDI] < oo;
(rr) A/ = 1/, A constant.
Show that the process Xt = f{Wt) —| fg f(W s) ds is a martingale.

10.2 How to Recognize a Brownian Motion

Many processes are disguised Brownian motions. How can we recognize them?
We already know that a Brownian motion Bt has the following properties:

(r) Is a continuous martingale with respect to o{Bs-s <*};
(rr) Has the quadratic variation (B,B)t = t, for t > 0.

We state, without proof, a classical theorem due to Paul Levy, which is
a reciprocal of the foregoing result. The following theorem is a useful tool
to show that a one-dimensional process is a Brownian motion. For a more
general result and a proof, the reader can consult Durrett [15].

Theorem 10.2.1 (Levy) If Xt is a continuous martingale with respect to
the filtration Tt, with Xg= 0 and (X,X)t = t, for all t > 0, then Xt is an
Tt-Brownian motion.
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Example 10.2.2 Let Bt be a Brownian motion and consider the process

Xt = sgn(Bs)dBs,
Jo
where
1, ifx >0
s (1)y=" -1, ifx <o.

We note that dXt = sgn(Bt)dBt and hence (dXt)2 = dt. Since Xt is a
continuous martingale (because it is an Ito integral) and its quadratic variation
is given by
(X, X)t= [ (dXs)2= [ ds=t,
Jo Jo
then Levy’s theorem implies that Xt is a Brownian motion.

Example 10.2.3 (The squared Bessel process) Let W\(t),--- ,Wn(t) be
n one-dimensional independent Brownian motions, and consider the
n-dimensional Bessel process

Rt = VWi(t)2+ --- + Wn(t)2, n> 2
Define the process

n.+/ 1 w )T

Since the set {cj; Rt(cu) = 0} has probability zero, the division by Rs does
not cause any problems almost surely. As a sum of Ito integrals, (X is an
JFt-martingale, with the quadratic variation given by

By Levy’s theorem, fX is an J~t-Brownian motion. It satisfies the following
equation

dapt=J 2 C ~ ) dWi{t). (10.2.3)
From Ito’s formula and an application of (10.2.3) we get

d(n}) = vy .2Wi(t)dWi(t) + ndt
i=1
" m t& .
2Rt~ d w i(t)+ ndt
i=1 Rt
= 2Rtd/x+ ndt.
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Hence, the squared Bessel process, Zt = R2, satisfies the following stochas-
tic differential equation

dzt —2y/7td/3t + ndt, (10.2.4)
with fit Brownian motion.

Example 10.2.4 (The Bessel process) From Example 10.2.3 we recall that
(dzt)2 —4R2dt. Then, using Rt —Z\ , Ro’s formula yields

dRt

\z]/2dzt-\ z f /Xdzt)2

\~~(2RtdPt + ndt) - \-~dt

dpt + Adt.

Hence the Bessel process satisfies the following stochastic differential equation

m—1
dRt = dpt + — — dt, (10.2.5)
Zxt

where pt is a Brownian motion. R is worth noting that the infinitesimal gen-
erator of Rt is the operator

A =\dl+ 7~ d x, (10.2.6)
which is the Bessel operator of order n.

Example 10.2.5 Letf : M2 —aM be a continuous twice differentiable func-
tion, and consider the process Xt = f(W i(t),W 2(t)), with W\(t), W~t) inde-
pendent one-dimensional Brownian motions. Ito’s formula implies

df df i fd2f  d2f\
dx' - d~AdWI{i) + aii  a( >+ 2\agll, + L, )dt

Then Xt is a continuous martingale if f is harmonic, i.e.

d2f  d2f
4 +4="- (i02j)

Then
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so we have
(X, X)t= [\NdXt)2= f \W\2ds.
Jo Jo
Then the condition (X,X)t = t, for any t> 0, implies |[V/] = 1, i.e.

(Err+LU2 n

Equation (10.2.8) is called the eiconal equation. We shall show that if afunc-
tion f satisfies both equations (10.2.7) and (10.2.8), then it is a linear func-
tion. Or, equivalently, a harmonic solution of the eiconal equation is a linear
function.

From equation (10.2.8) there is a continuous function 0 = 0(x1,22) such

that
df df

(10.2.9)
ax\ 3x2
The closeness condition implies
<9(cos0)  <9(sin$)
dx2 dx\
which is equivalent to
cos V22 1sin 082 = o, (10.2.10)
ox\ 0X2
Differentiating in (10.2.9) with respect to X\ and X2 yields
daf . ajs daf apns
—-2=-sin0—,, -2 = cos9"_m
oxXI ox1 OX2 ox2
Adding and using (10.2.7) we obtain
cos®/AB-—sMRA— —on (10.2.11)
ox2 ox1

Relations (10.2.10) and (10.2.11) can be written as a system

( 8B_\
cosB  SinB ax\ 0
sma cos | 4B 0
V o dx2 )

. . B B
with the solution — = 0, —
OxX\ dx2

implies that f is linear, i.e. f(x\,x2) = CDK + (X2, with d £ R.

= 0. Therefore, B is a constant function. This
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Exercise 10.2.6 If Wt and Wt are two independent Brownian motions and
p £ [1,1] is a constant, use Levy’s theorem to show that the process Xt =
pWt+ n/1-fPWt is a Brownian motion (use that dWtdWt = ()).

Exercise 10.2.7 Consider the process Xt = /( f(s)dW s, with f square inte-
grable function.

(a) Show that Xt is a continuous martingale with the quadratic variation
(X, X)t= f*f2(s)ds;

(b) Apply Levy’s theorem to find all functions f(s) for which Xt is a Brow-
nian motion.

Exercise 10.2.8 Let Xt = e_t f*esdWs, with Ws Brownian motion.
(a) Show that (X, X)t= tfor any t > 0;
@) Is Xt a Brownian motion?

The next exercise states that a Brownian motion is preserved by an or-
thogonal transform.

Exercise 10.2.9 Let Wt= (1Y/, W 2) be a Brownian motion in the plane (i.e.
W} one-dimensional independent Brownian motions) and define the process
Bt = (BIB2) hy

B)
B2

cOS9OW} + sin9W?2
—sin9Wt + cosB W 2,

for afixed angle 9 E R.
(&) Show that B\, B2 are Brownian motions;
(b) Prove that Bj, B2 are independent processes.

Exercise 10.2.10 Consider the process Yt = tWE, ift > 0 and Yq = 0, where
Wt is a Brownian motion. Prove that Yt is a Brownian motion.

10.3 Time Change for Martingales

A martingale satisfying certain properties can always be considered as a Brow-
nian motion running at a modified time clock. The next result is provided
without proof. The interested reader can consult Karatzas and Shreve [26].

Theorem 10.3.1 (Dambis, Dubins and Schwarz, 1965) Let Mt be a con-
tinuous, square integrable Ft-martingale satisfying limt~oo{M, M)t = oo, a.s.
Then Mt can be written as a time-transformed Brownian motion as

Mt —
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where Bt is a one-dimensional Brownian motion. Moreover, if we define for
each s > 0 the stopping time

T(s) = inf{i > 0; (M, M)t > s},
then the time-changed process
Bs= MT(S
is a Qs-Brownian motion, where Qs = Jt(g)>0 < s.

Example 10.3.2 (Scaled Brownian motion) Let Wt be a Brownian mo-
tion and consider the process Xt = eWt, which is a continuous martingale.
Assume ¢ (p 0. Since (dXt)2 = (cdWt)2 = c2dt, the quadratic variation of Xt
is

(X, X)t= [ (dXs)2= [ c2ds c2t-* oo, t —o0.

Jo Jo

Then there is a Brownian motion Wt such that Xt —Wc~t- This can also be
written as \Wc#z = Wt. Substituting s — c2t, yields Ws = cWs/A2. There-
fore, if Ws is a Brownian motion, then the process cWs/i is also a Brownian
motion. In particular, if c ——1, then —Ws is a Brownian motion.

Example 10.3.3 This is an application of the previous example. Let T > 0.
Using the scaling property of the Brownian motion and a change of variables,
we have the following identities in law

r+ rl r
J wtdt = J (ewwey dt=cnl wfadt
fT/c2 fT/c2
= c¢n/ W?c2ds =cnt2 / W? ds,
Jo Jo

for any ¢ > 0. Then set ¢ = y/T and obtain the following identity

[ whdt= T1+n'2 [ W” ds.
Jo Jo

This relation can be easily verified for n = 1, when both sides are normally
distributed as N (0,T:i/3), see section 3.3.

Example 10.3.4 It is known that the process Xt = W2 —t is a continuous
martingale with respect to T = (t{Ws\s < t}. An application of Ito’s formula
yields

dXt = 2WtdWwt,
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so the quadratic variation is

rt

(X,X)t= [\dXs)2=4 [ W2ds := at.
Jo o

J

Therefore, there is a Brownian motion Wt such that Xt = Wat. This is equiv-
alent to stating that given a Brownian motion Wt, its square can be written
as

W2= t+ Wat.
Example 10.3.5 (Brownian Bridge) The Brownian bridge is provided by
-~ 1
formula (8.5.13). The Ito integral Mt — J --—-- dWs can be written as

a Brownian motion as in the following. Since (dMt)2 — Té ----- n )

guadratic variation becomes

-1

Then there is a Brownian motion Bt such that Mt = B_.r'gt_, and hence

(-1 f dWs= (1- t)B_t_ = s t(L t),
Jo 1—s 1%

where B is also a Brownian motion. It follows that the Brownian bridge for-
mula (8.5.13) can be written equivalently as

Xt=o(l —t) + bt+ Btfl t), o<t<1l

This process has the characteristics of a Brownian motion, while satisfying the
boundary conditions Xo = a and X\ —h.

Example 10.3.6 (Lamperti’'s property) LetBt be a Brownian motion and
consider the integrated geometric Brownian motion

At = f e2Bsds, t > 0.
Jo
We note that the process At is continuous and strictly increasing in t, with
Ag= 0 and tIim At = oo. Therefore, there is an'tinverse process Tu, i.e.

Atu = u, u> 0.
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Applying the chain rule yields the derivative

Ek = e-2BTu (10.3.12)
du

Ito’s formula provides
deBt —eBidBt + -ZeBt dt,

which can be written equivalently as

1 f*
eBt = 1+ —J/ eBsds + Mt, (10.3.13)
2 J0

where Mt = fOeBs dBs. Since Mt is a continuous martingale, with

(M, M)t = [\dMs)2= f e2B°ds = At,
Jo Jo

by Theorem 10.3.1 there is a Brownian motion Wt such that Mt — Wa(, or
equivalently, Mtu= Wu, n > 0. Then replacing t by Tu in equation (10.3.13)
yields

1 I'n
eBlu = 1+ - J/ eBsds + Wu, (10.3.14)
2 Jo

which can be written, after applying the chain rule, in differential notation as

deBTh — - eBm du + dWu.
2 du

Substituting the derivative of Tu from (10.3.12), the foregoing relation becomes

Denoting Ru = eB1«, then

Ru = + dw
dRu K. dWu,

which is equation (10.2.5) for n —2, i.e. Ru is a Bessel process. Substituting
m=At andt= TUin Ru = eBt« yields
eBt - RAt

Hence, the geometric Brownian motion eBt is a time-transformed Bessel
process in the plane, RAtm For a generalized Lamperti property in the case of
a Brownian motion with drift, see Yor [48]. See also Lamperti [31].
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Lemma 10.3.7 Letip(t) be a continuous differentiable, withip'(t) > 0, <Y0) =
0 and lim”oo ip(t) = 0o. Then given the one-dimensional Brownian motion
Bt, there is another one-dimensional Brownian motion Wt such that

Proof: The process Xt = fg y/<p'(s) dBs is a continuous martingale, with the
guadratic variation

(X, X)t= [\NdXs)2= f(~{s)d B s)2= ftv/(s)ds = <p(t).
Jo Jo Jo

Then by Theorem 10.3.1 there is a Brownian motion Wt such that W/At) = Xt.
n

Example 10.3.8 If <p(t) = c2t, cp 0, then Lemma 10.3.7 yields Wc = cBt.
This is equivalent to stating that for a given Brownian motion Bt, the process

WSs -- cBs/c2, s>0
is also a Brownian motion.

Remark 10.3.9 The right side of (10.3.15) is a Wiener integral. Hence, under
certain conditions, a Wiener integral becomes a time-scaled Brownian motion.

Exercise 10.3.10 Let Bt be a Brownian motion. Prove that there is another
Brownian motion Wt such that

Exercise 10.3.11 (Ornstein-Uhlenbeck process) Consider the equation
dXt = —gXtdt + adWt, Xg=0

with g and a constants, with g > 0.
(a) Show that the solution is given by

(b) Show that there is a Brownian motion Bt such that

Xt= ae <5 (et _i)/(29).
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Exercise 10.3.12 Consider the equation

a
dXt = —Xtdt + adWt, Xqg—0,

with a constant. Show that there is a Brownian motion Bt such that
Xt = e~at/2Baeat.

Theorem 10.3.13 (Time change formula for Ito integrals) Let tp be a
function as in Lemma 10.3.7, and F a continuous function. Then given a
Brownian motion Bt, there is another Brownian motion Wt such that
rP r(P) -
/[ F(u)dWu= / F(<p(t))y/tpt(t) dBt, a.s. (10.3.16)
Ja Jp—2(a)

Proof:  First, we will prove formula (10.3.16) informally, and then we will
check that the identity holds in law. Formula (10.3.15) can be written in the
equivalent differential form as

dWAt) = vV W dBt.

Then for a continuous function g we have

f gt dwv(t)= f pa(r)y/Ll dBt. (10.3.17)
Ja Ja

Using a change of variable, the left side integral becomes

fib GU)
[ g{tldwWv{t) = / g(<p~ (u))dWu. (10.3.18)
Ja W)

Relations (10.3.17) and (10.3.18) imply

| FiFD) . fiy
/ g(<P~(u))dWu = g(t)Nip'(t) dBt.
Jiff@) Ja

Substituting F =g® a = gp@), and /3 = ip(b) yields

rP r<P~4p) .
/ F(u)dWu= / F(y(t))y/~(fdBt. (10.3.19)
Ja 0 Y

Each of the sides of formula (10.3.16)

P AP HP) o
X = F(u dWu, Y = F{(p{t))y/")dBt
Ja Jip~1(a)
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is a random variable, which is given as a Wiener integral, so they are both
normally distributed. Therefore, in order to show that they are equal in law,
it suffices to show that they have the same first two moments.

From the properties of Wiener integrals we have that E[Xt] = E[Yt\ = O
and

Y
Var(X) = F 2{tt) du
Ja
rv~x(P) , \ \ 2
Var(Y) =
J<1(a)
re>{0) ) ", P
= |/ F(ip(t)) ip'(t)dt= / F{u)du,
Ja

so Var(X) = Var{Y). Hence X —Y in law.

Example 10.3.14 For ip(t) = tant, formula (10.3.16) becomes
) [=tan 1/3

[ F(u)ydWu= / F (t&n t) sect dBt.
Ja Jtan-1 ol

1
If F{u) = T+;_u5 an™a = then we obtain

e 1 -1 3 1
Jo 14 u2dWu= 4, sect

which, after substituting v = tan-1 (3, implies

letani; i
| -dWu= / costdBt.
Jo 1+ 2 Jo
Making v /* ~ yields
roo vy /" 2
J R /' costdBt.
J0 1+u Jo

For the sake of completeness, we include next a stochastic variant of Fu-
bini’'s theorem. For a more general variant of this theorem, the reader is
referred to Ikeda and Watanabe [23].

Theorem 10.3.15 (Stochastic Fubini) Iff : R+ x R+ —R is a bounded
measurable function, then
rt rT rT rt

[ [ f{s,r)drdWs= [ [ f(s,t)to\VvHr.
Jo Jo Jo Jo
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10.4 Girsanov’'s Theorem

In this section we shall present and prove a version of Girsanov's theorem,
which will suffice for the purpose of proposed applications. The main usage of
Girsanov's theorem is the reduction of drift. Consequently, Girsanov’s theorem
applies in finance where it shows that in the study of security markets the
differences between the mean rates of return can be removed. For a gentle
introduction into this subject the interested reader can consult Baxter and
Rennie [5], or Neftici [35].

We shall recall first a few basic notions. Let (fl, J7,P) be a probability
space. When dealing with an J*-martingale on the aforementioned probability
space, the filtration J+ is considered to be the cr-algebra generated by the given
Brownian motion Wt, i.e. H = §{Wu:0 < n < s}. By default, a martingale
is considered with respect to the probability measure P, in the sense that the
expectations involve an integration with respect to P

EP[X] = an X(ui)dP{uj).

We have not used the upper script until now since there was no doubt which
probability measure was used. In this section we shall also use another prob-
ability measure given by

dQ = AlrdP.

where Mr is an exponential process. This means that Q : F —aR is given by

Q{A)= [ dQ= [ MTdP, MAe J=
JA JA

Since Mt > 0, Mo = 1, using the martingale property of Mt yields
Q{A) >0, Ad<p\

QEn = J[ MTdP = EP[MT\= EP[MTYb] = Mo = 1
n

which shows that Q is a probability on J7, and hence (tl. J7,Q) becomes a
probability space. Furthermore, if X is a random variable, then

Ea [X}

[ X(u)dQ(u) = [ X(ui)MT(u) dP(w)
In In

Ep [XMT].

The following result will play a central role in proving Girsanov’s theorem:
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Lemma 10.4.1 Let Xt be the Ito process
dXt = u(t)dt + dwt, Xg=10 0<t<T,
with u(s) a bounded function. Consider the exponential process
Mt = e~ fou™ dWs~"fo “2(s) ds.
Then Xt is an Tt-martingale with respect to the measure
dQ(cj) —MT(uj)dP(uo).

Proof: We need to prove that Xt is an J-j-martingale with respect to Q, so it
suffices to show the following three properties:

1 Integrability of Xt. This part usually follows from standard manipulations
of norms estimations. We shall do it here in detail. Integrating in the equation
of Xt between 0 and t provides

Xy = Jfou {s) ds+ Wt. (10.4.20)
We start with an estimation of the expectation with respect to P
E [Xt] = E ’\\] u(s)ds'j + 2\] u(s)dsWt+ Wt
I u(s)dsy + ZJ u(s)dsEp [Wt}+ E p[wt
i(s) ds¥°+ t< 00, MO<t<T,

where the last inequality follows from the norm estimation

172
fufs)ds < / Juolds g Q1 os
Jo Jo J
1/2
< JE l«s)] ds — T 1/2|M]L2[ox]-

Next we obtain an estimation with respect to Q

EQ[IXi[R ([ \XtWTdp)2< [ \XtedP [ M2dP

xJqg J o Jq
Ep [Xg]Ep [M]] < oo,

since Ef [X2] < oo and Ep[M]] = efo u(s)2fis —e”No,T] f see Exercise 10.1.9.
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2. Ft-mesurability of Xt. This follows from equation (10.4.20) and the fact
that Wt is J”-rneasurable.

3. Conditional expectation of Xt- From Examples 10.1.3 and 10.1.6 recall that
forany 0<t< T:

(r) Mt is an J*-martingale with respect to probability measure P;
(rr) XtMt is an J™-martingale with respect to probability measure P.

We need to verify that
EQ[Xt\Fs] =X § \/s<t,

which can be written as

[ XtdQ= [ XsdQ, Vi€ Js.
Ja Ja

Since dQ = MrdP, the previous relation becomes

[ XtMTdP = f XSMTdP, 'iA € Fs.
Ja Ja

This can be written in terms of conditional expectation as

Ep [XtMT\Fs} = E p [XsMt \Ts}. (10.4.21)

We shall prove this identity by showing that both terms are equal to X VS
Since X s is JN-predictable and Mt is a martingale, the right side term becomes

Ep [XsMT\Is\= XEP[MT\FS = XgMs, Vs < T.

Let s < t. Using the tower property (see Proposition 2.12.6, part 3), the left
side term becomes

Ep [XtM T\Fs}

Ep [Ep{XtMT\F]\Fs] ™ E p [XtEp [MT\T\Fo\
Ep [XtMt\Fs\=XgM s,

where we used that Mt and XtMt are martingales and Xt is .~-measurable.
Hence (10.4.21) holds and Xt is an J™-martingale with respect to the proba-
bility measure Q. ]
Proposition 10.4.2 Consider the process

Xt = [ u(s)ds + Wt, 0<t<T,
Jo

with n € L2[0,T] a deterministic function, and let dQ = M~dP. Then

Eq[X?) = t.
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Proof: Denote U(t) = f~Au(s)ds. Then

E°[X¢]

EP[X2MT] = Ep[U2(t)MT + 2U()WtMT + W2M T\
U2()Ep [MT} + 2U{t)Ep [WtMT] + EP[W?MT\ (10.4.22)

From Exercise 10.1.9 (a) we have Ep [Mt\= 1. In order to compute Ep [WtMr]
we use the tower property and the martingale property of Mt

Ep[WtMT]

Ep [Ep [WIMT\H]] = Ep [WtEp [MT\R\
Ep [WEtM1T\ (10.4.23)

Using the product rule

MtdWt + WtdMt + dWtdMt
(Mt- u(t)MtWtydwt- u(t)Mtdt,

d(WtMt)

where we used dMt = —u(t)MtdWt. Integrating between 0 and t yields
WtMt = f (Ms - u(s)MsWs)dWs - 0 u(s)Msds.
Jo Jo
Taking the expectation and using the property of Ito integrals we have
E[WtMt] = - [ u(s)E[Mads= —][ u(s)ds= -U(t). (10.4.24)
Jo Jo

Substituting into (10.4.23) yields
Ep [WtMT\= -U {t). (10.4.25)
For computing Ep [W2M t\we proceed in a similar way

Ep [W2Mt ]

Ep [Ep [W2MT\R]] = E p [W2Ep [MT\Tt}
Ep [W?M{]. (10.4.26)

Using the product rule yields

diWfMt) Mtd{W?) + W2dMt +d{W?)dMt
Mt{2WtdWt + dt) - We(u(t)MtdWt)
-(2 WtdWt + dt)(u(t)Mtdwt)

MtWt(2 - u()WtdWt+ (Mt- 2u{t)WtMt)dt.

Integrate between 0 and t

rt rt
W2a2Mt= f [MsWs(2-u(s)Ws)}dWs+ [ {Ms-2u(s)W sMs)ds,
Jo Jo
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and take the expected value to get

EP[W2M{] [ (E[MS- 2u(s)E[WsMs}) ds
Jo

j (I + 2u(s)U(s))ds
Jo

t+ U2(t),

where we used (10.4.24). Substituting into (10.4.26) yields
Ep[WEMT\= t + U2(t). (10.4.27)
Substituting (10.4.25) and (10.4.27) into relation (10.4.22) yields
EQ[X?} = U2(t)-2U{t)2+ t+ U2(t) = t, (10.4.28)

which ends the proof of the proposition. [
Now we are prepared to prove one of the most important results of Stochas-
tic Calculus.

Theorem 10.4.3 (Girsanov's Theorem) Letn £ L2[0,T} be a determin-
istic function. Then the process

Xt= [ u(s)ds + Wt, 0<t<T

is a Brownian motion with respect to the probability measure Q given by
dQ = e~" u(s)dWs-f/oTu{s)2dsdp

Proof: Inorder to prove that Xt is a Brownian motion on the probability space
(™, Q) we shall apply Levy’s characterization theorem, see Theorem 10.2.1.
Lemma 10.4.1 implies that the process Xt satisfies the following properties:

1. X0= 0;

2. Xt is continuous in ©\

3. Xt is a square integrable ~-martingale on the space (fi, T, Q). Using
Proposition 10.4.2, the martingale property of Wt, and the additivity and the
tower property of expectations yields

Eq[(Xt- Xs)2}

Eq[X?] - 2Eq[XtXs] + EQ[X2]
= t-2E Q[XtXs\+ s

= t-2EN[EN[XtXs\Ts}} + s

= t-2EQ[XSEQ[Xt\Ts]} + s

= t-2E Q[X2 + s

— t—2s+s=1t—s.
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4. The quadratic variation of Xt is

(X,X)t= [\dXs)2= fds = t.
Jo Jo

Choosing u(s) = A constant, we obtain the following consequence.

Corollary 10.4.4 Let Wt be a Brownian motion on the probability space
(f2, 3~ P). Then the process

Xt=\t+ Wu 0<t<T
is a Brownian motion on the probability space (fi, J7,Q), where

dQ = e-h * T-bwTdR

This result states that a Brownian motion with drift can be viewed as a regular
Brownian motion under a certain change of the probability measure.

Exercise 10.4.5 Show that for any random variable X on (2 T) we have
EP[X] =E Q[ XM "1}

Exercise 10.4.6 Show that:
(@ Ep[/(Ai + WO\ = E~[/(5t) M~ ] for any continuous function f

(b) EP[/0 ext+Wt dt] = E eBt dt M~ 1]. where Bt is a Q-Brownian mo-
tion.

Proposition 10.4.7 (Reduction of drift formulas) Let Wt be a Brown-
ian motion and f a measurable function. Then

() E[f(Xt + Wt)] = e-"™ E [f(Wt)eXWt}

@i) E[f(Wt)] = e- "E[f(Xt + Wt)e-xw*].

Proof: (i) Let Wt be a Brownian motion on the space (Q, J7,P). By Girsanov's
theorem, the process Xt = Xt + Wt can be considered as a Brownian motion
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on and we have
E[f(At+ Wt)] = Ep[f(At+ Wt)] = EATF(X)M -1 = E «[/Ne )e +Wr]
= EQ[/(X t)eNE+A(XT* AT)]
= e-"NE Q[f(Xt)exx'ex(XT-x"]
= e-/~ E Q[f(Xt)eXXE Q[ex{XT~X1)]
= e-~E Q[f(Xt)exXXtle£(T-V
= e-~E Q[f(Xt)exx]

e~ E [F(W t)eXWe.

(i) We apply Girsanov’s theorem for the Q-Brownian motion Xt = At + Wt
and obtain

EQ[/Ne)] = Ep[f(At+ Wt)MT\= Ep[f(At + Wt)e - - XWT]
= Ep[f(At+ Wt)e-XWte - ~ Xi-WT- Wt)]
= e~"E p[f(At + Wt)e~XW] Ep [e~x{WT~Wt)]
= e~"Ep[f(At+ Wt)e-XW}
Replacing Xt by Wt in the first term yields the desired formula. ]

Exercise 10.4.8 Use the reduction of drift formulas and Example 8.10.7 to
show

(@E[(At+ iy 2v * ] =" ("
(b) E[(At + Wt)2k+1le~XW] = 0.
Exercise 10.4.9 Use the reduction of drift formula to show
(&) E[sin(t + aWt)] = e~a4/2sini;
(b) E[cos(i -I- crwt)] = e-0~/2cos t.
Exercise 10.4.10 Use the reduction of drift formulas to find
(a) E[cos(A£ + Wt)e~XWIN\
(b) E[sin(At + Wt)e~XW].
Exercise 10.4.11 Let Wt be a Brownian motion on the space (fl, J7,P), and
dQ —MxdP. Show that
EQ[ext+Wi] =
(a) by a direct computation;
(b) using Girsanov’s theorem.
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Exercise 10.4.12 Let Xt = Xt+ Wt, with Wt a P-Brownian motion.
(a) FindEp[Xt\and EN[X1];
(6) Find EP[X?} and E®[X?}.

Exercise 10.4.13 Use Jensen’s inequality to show that for any convex, mea-
surable function f we have

E[f(Xt + Wt)e-XWt}>f(0)e™.
Exercise 10.4.14 Use the reduction of drift formulas to show

(a) E[Wte~XW] = -Xte'r m
(6) E[W?e~XW] = (i + A2t2)e”r.

Exercise 10.4.15 Consider the stochastic process Xt = Lk + Wt, where Wt
is a Brownian motion on (FI,J-,P).

(8) Find the probability measure dQ such that Xt becomes a Q-Brownian
motion;

(b) Compute explicitly Ep [XtMT];
(c) Use Ep[XtMT\ = E®[Xt] = 0 to find aformula for

Ep [Wte~xJosdWs\

Remark 10.4.16 Girsanov's theorem can be used to compute, at least in
theory, expectations of the form

with / and g continuous functions.

Exercise 10.4.17 Use the drift reduction formula to express Var[f(Xt+Wt)}.






Chapter 11

Some Applications of
Stochastic Calculus

In this chapter we shall present a few applications of stochastic calculus to a
few applied domains of mathematics. The main idea is that some parameters,
which in the case of deterministic Calculus are kept constant during the evo-
lution of the process, in this case are influenced by the exterior white noise,
which is modeled by the informal derivative of a Brownian motion, . This
way, the ordinary differential equations become stochastic differential equa-
tions, and their solutions are stochastic processes. For more applications of
the white noise in chemistry and electricity one can consult the book of Gar-
diner [20]. For further applications to queueing theory the reader is referred
to Ross [43]. For financial economics applications, see Sondermann [45], and
for stochastical modeling of oil prices, see Postali and Picchetti [39]. For an
application to car pricing in a stochastic environment see Alshamary and Calin
[1] and [2].

11.1 White Noise

The white noise is used in applications as an idealization of a random noise
that is independent at different times and has a very large fluctuation at any
time. It can be successfully applied to problems involving an outside noise
influence, such as trajectory of small particles which diffuse in a liquid due
to the molecular bombardments, or signal processing, where it models the
completely unpredictable “static” influence. The fact that the noise is not
biased towards any specific “frequency”, gives it its name “white noise”. In
this chapter we shall study a few applications of the white noise in kinematics,
population growth, radioactive decay and filtering problems.

The white noise will be denoted by JVj and considered as a stochastic pro-

241
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cess. The effect of the noise during the time interval dt is normally distributed
with mean zero and variance dt, and is given as an infinitesimal jump of a
Brownian motion, Mtdt = dBt. Thus, it is convenient sometimes to represent
the white noise informally as a derivative of a Brownian motion,

Since Bt is nowhere differentiable, the aforementioned derivative does not make
sense classically. However, it makes sense in the following “generalized sense”:

[ Mtf{t) dt——[ Btf\t)dt,
JR JR

for any compact supported, smooth function /. Hence, from this point of view,
the white noise Aft is a generalized function or a distribution. In the following
we shall state its relation with the Dirac distribution < which is defined in
the generalized sense as

[ $o{t)f{t)dt = f(0),
JR

for any compact supported, smooth function /.

In order to study the white noise Mt, we should investigate first the process
X[e) = \(B{t+e)-B{t)), t> 0,

which models the rate of change of a Brownian motion B(t). Since we have

E[X{6)] = i(E[2?(i+ 6)]-E[S(t)])=0

Var(Xfe) = I1(i+e-t) =1

the limiting process Mt = lim X ["1will have zero mean and infinite variance.
e\0

Consider s < t and choose e > 0 small enough, such that (s,s + e) IN
@,t + e) = 0. Using the properties of Brownian motions, the differences
B(s + ) —B(s) and B(t + ) —B(t) are independent. Hence, the random
variables Ms and Mt are independent for s < t.

In the following we shall compute the covariance of the process Mt- For
reasons which will be clear later we shall extend the parameter t to take values
in the entire real line R. This can be done by defining the Brownian motion
B(t) as
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Wi(t), ifi>0

BO = w2y, ift<o,

where W\(t) and W-zit) are two independent Brownian motions. First, we

compute the covariance of the process X ~. Assume s < t. Then using the
formula E[jB(u)B(v)] = min{«, t}, we have

Cov(X(A\ X (e)) E[X~X1E)]

= 72 (E[(-"S+ e) ~ B(s)) +e) ~ #Ne)])

= A (e[(B(s+e)B(t+e)] - E[B(s + e)B(t)]
-E[B(s)B (f] f)] + E[B(a)5(t)]])

= -j(s+e—min{s + et} —s+ sj

= + 6- + min{e, t -

i(i_min{i,~}) = Imia{i_LI£ o).

For any s. t we can derive the more general formula

Cov(X(AAX1e) = "maxjl - o}. (11.1.1)

Consider the test function

1/ ™ g |
1 1 <e
(T) = -maxj| ——,Oj-= HLI)
, 0, if \> ¢
which verifies g£(r) > 0, (pe(0) = - and
----- )dr =1
Therefore, we have
fimv?e(r) = SO0(t),
e\0

where ® is the Dirac distribution centered at 0. In fact, the above limit has
the following meaning
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for any test function /.

Since the covariance formula (11.1.1) can also be expressed as
Cov(X™,XN) = ipe(t-s),
then
Cov(Ms,Mt) = (Iei\rBCOV(X’\,X'(e)) = (Iei\rr(} Fe(t- s) = D(t - s).
We arrive at the following definition of the white noise.

Definition 11.1.1 A white noise is a generalized stochastic process Mt, which
is stationary and Gaussian, with mean and covariance given by

0
50(i-s).

LU L,
Cov(Ms,LL

11.2 Stochastic Kinematics

During a race, a cyclist has average speed m. However, his speed varies in
time. Sometimes the cyclist exceeds the speed m, but he gets tired after a
while and slows down. If the cyclist’s speed decreases under the mean m, then
he recuperates the muscle power and is able to speed up again. The cyclist’s
instantaneous velocity M satisfies a mean reverting process described by the
equation

dvt —a(m - vt)dt + adWwit,

where a and a are two positive constants that correspond to the volatility and
rate at which the velocity is pulled towards the mean m. The solution is given
by t

Vt=m+ (Vo- m)e-at+ ae-at [ easdWs. (11.2.2)
Jo

Since the last term is a Wiener integral, the speed vt is normally distributed
with mean and variance

E[«t] = m+ (vo—m)e~at
Vur(vt) =

The expectation of the speed as of time u is given by the conditional expec-
tation given the information Tu available at time n

Ful] = m+ (vo—m)e~at + oe~ai f eas d,Ws.
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The cyclist’s stochastic coordinate at time t is obtained integrating the velocity
r4

.I: xt = xo+ | vsds
Jo

= Xo+ f [m+ (vo- m)e~as+ ae~as f eaudWu\ds
Jo Jo

1—e~at fs
= X0+ mt+ (VO —m)-----m-m-mmmo- bu / | ean" dWuds.

The expected coordinate is
E[xt] = xo+ [ EJ[velds
Jo

= X0+ ] [m+ (vo —m)e~at] ds
0

1 - e~a

= xgq+ mt+ (vq —m)-
a

] 1- e-at
=  xunif(t) + (v0- m)

The term xunif(t) — xo + mt denotes the coordinate the cyclist would have
if moving at the constant velocity m. The difference v¢ —m provides the
following upper and lower bounds

1- at/2)Juo- m\t < |E[xt] - xunif(t)] < M0- m\t

This shows that the error between the expected coordinate and the coordinate
of a uniform move is at most linear in time and is controlled by the difference
vg—m. Therefore, the expected coordinate is the classical coordinate, Epx<] =
Xunif(t), if and only if vO= m.

The acceleration at is obtained as the derivative of velocity \t with respect
to time

at dvt
dt
f
-a(vo —m)e~at —aae~at / easdWs + a—ﬁwt
Jo dt
= ale~at- a<re~at f easdWs + (11.2.3)
Jo dt

where ao is the initial acceleration. The first term is a deterministic function,

the second term is a normally distributed random variable of zero mean, while

dwt ., . . 0. dwtl -
a? Is the white noise term. Since E dt = 0, the long run limit of the

expectation becomes EJa<] = aoce~at —0, as t —0o0.
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Let M denote the mass of the cyclist and Ft — Mat be the muscle force
developed at time t. The work done by the cyclist between instances 0 and t
is given by

rxt rxt r
— | Fsdxs= M | asdxs= M | asvsds,
I Jxo Jo

where the velocity and the acceleration are given by (11.2.2) and (11.2.3).
Computing the exact expression of W is tedious. However, using the properties
of Ito integrals one can compute E[W], see Exercise 11.2.1.

Since the square of velocity is given by

2

vl = (rn+ (mo—m)e + 2ae a(m + (mo—m)e at’jJ eas dWs

2

W e~ 2Zat
(1 €& dwm)2
the expectation of the kinetic energy becomes
Mv\ M 2 t y2n
E L (m+ (w- me a) +o0+ aze-2atk eas dWs)

T (m+ (vO- m)e~at} + ™ (1 _e_2at)

Exercise 11.2.1 Show that
1—e & a 1_eoza (2
E[W] = M"aQtn * aoto~m)+ -
Exercise 11.2.2 A snowflake in falling motion is described by the equation

dvt = gdt + crvt dwt, vo = 0,

where g and a are positive constants.
(8 FindK[vt]',
(b) Compute E[a*];
(c) Solve the equation to find aformula for the velocity VA,
(d) Find aformula for the acceleration at.

Exercise 11.2.3 A particle with the initial velocity vq = 1 m/sec decelerates
in a noisy way according to the equation

dvt ——2vtdt + 0.3 dWt.
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(&) What is the probability that at the time t — 3 sec the velocity of the
particle is less than 0.1 m/sec?

(b) Find the work done by the environment on the particle in order to
decelerate it from v —1 m/sec to v = 0.5 m/sec.

Exercise 11.2.4 A snowball rolls downhill with the velocity given by the equa-
tion
dvt —0.6 vtdt + 0.2 dWHt, vo —O0.
(@) Find the velocity v\

(b) What is the probability that the velocity is greater than 10 m/sec at
t —20 sec?

11.3 Radioactive Decay

Consider a radioactive atom which contains N (t) nuclei at time t. Assume the
number of nuclei which decay during the time interval At is Poisson distributed

P(N(t) - N(t+ At) = n) = —~ ~ TMe~JIA,

where the constant A stands for the decay rate. For a small time interval At
the previous formula becomes

P(N(t) - N(t+ At) = 1) = AAL,

i.e. the probability of the occurrence of one decay in a small time interval is
proportional with the time interval. The probability of the complementary
event is

PAN{t) - N(t+ At) = 0) = 1- AAt. (11.3.4)

Divide the interval [0, tf] into n equidistant subintervals
0=t0< h <t2< mm< tn-i <tn=t,

with At = tfic]i —tic = t/n. The event of not having any decays during the
interval [0,t] can be expressed as

=2
{N(0) - N(t) = 0} = p] {N(tk) - N(tk+1) = 0}.
k=0
Since the increments of a Poisson process are independent, we have
n—1 .
p(iV(0)-iV(t) = 0) = fl p(N(tk)-N(tk+1) =0) = (I-AAtr = (I----
fco n
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Let n —o00 and obtain
p (n (0) ~N(t) = 0) =e~xt.

For N{t) large enough, this probability represents the fraction of nuclei that
survived the decay during the time interval [0, t]. Since the percentage of nuclei
that are still “alive” after time t is represented by the quotient N(t)/ N (0), we
have

m = A

N (0)

This relation, written as N(t) = N(0)e~xt, is the law of radioactive decay.

Now we shall develop a differential equation for N(t). Relation (11.3.4)
states that the fraction of nuclei that resist the decay during the time interval
[t,t+ At] is

Cross multiplying and subtracting N (t) yields
N(t) - N(t+ At) = —XN(t)At. (11.3.5)

Assuming that the period of observation is infinitely fine, At —dt, the equa-
tion becomes
dN(t) = -AN(t) dt.

This describes the kinetics of the radioactive decay, stating that the change
in the number of nuclei dN(t) during the time interval dt is proportional with
the number of nuclei N(t). Solving the aforementioned equation, we obtain
again the law of radioactive decay

N(t) = N(0)e~kt.
Noisy radioactive decay In real life relation (11.3.5) does not hold exactly,

and some errors of measurement or counting are involved. These will be added
as a noisy term

N(t) - N(t+ At) = -\N{t)At + “noise”.
For At small, this becomes a stochastic differential equation
dN(t) = —AN(t) dt + crdWh,

with a positive constant and Wt Brownian motion. The obtained equation is
called Langevin’'s equation. We shall solve it as a linear stochastic differential
equation. Multiplying by the integrating factor eA<yields

d(extN (1)) = aeXtdWt.
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Integrating yields
eMN (t) = N(0) + an exXs dWs.
0

Hence the solution is
N(t) = N(0)e~xt + ae~xtJ[ exsd,Ws. (11.3.6)
0
This is the Ornstein- Uhlenbeck process. Since the last term is a Wiener inte-
gral, by Proposition 8.2.1 we have that N(t) is Gaussian with the mean
t

E[iV(i)] = iV(0)e-A+ e\o f ex™ dWs = N(O)e'Xt
L Jo J

and variance

2
Var[N(t)\ = Var a | eAs<)dWs = {1 - e~2X1).
Jo

Using Exercise 10.3.11 we can write the Gaussian term as a Brownian
motion under a time change as

f eXsdWx = Beorr-1)/(2n)>
with Bt Brownian motion. Hence the solution can also be written as
N(t) = N(0)e~xt + cre- /&b (e2n1._1)/(2/).
Using the expansion
e2At = | + 2At + 0(t2), i-»0,

then (e2d¢ —1)/(2A) = t + 0o(t2), and hence the following approximation holds
for t small

N(t) = N(0)e~X + ae~XiBt.

Exercise 11.3.1 Let N (t) be a noisy radioactive decay. Define the half time
h as

h= infi£ > 0;N(t) < 4IV(O)}

(a) Prove that E[eAl] = 2
(b) Use Jensen’s inequality to show that E[/i] <
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Exercise 11.3.2 Consider a machine which consists initially of N distinct
parts. Assume the number of parts which get defective during the time interval
At is Poisson distributed

p(N{t) - N(t+ At) = n) = -""~p-"e~AAL

(a) What is the probability that all parts still function perfectly at time t?

(b) Find the time t such that the 90% of the machine functions perfectly
at time t.

Exercise 11.3.3 A living organism has initially No cells. Assume the number
of cells which die during the time interval At is Poisson distributed

P(N(t) - N(t+ At) = nj = JT ~ Te~JIA

The organism dies when at least 30% of its cells are dead. Find an approxi-
mation of the death time of the organism.

11.4 Noisy Pendulum

The small oscillations of a free simple pendulum can be described by the linear
equation
0(t) = -k 26(t), (11.4.7)

where 9{t) is the angle between the string and the vertical direction. If the
exterior perturbations are modeled by a white noise process, Aft, then the
pendulum equation under small deviations writes as

0(t) + k29(t) = cMt, (11.4.8)

where kK and a are constants and the noise is given informally as Mt = P L-
The general solution of equation (11.4.8) can be expressed as the sum

e(t) = 9p(t) + 60{t), (11.4.9)

where 9p(t) is a particular solution of (11.4.8) and 9o(t) is the solution of the
associated homogeneous equation (11.4.7).
Standard ODE methods provide

90(t) = c\cos(kt) + @sin(kt),

with ci,c2 £ K. The particular solution 9p(t) can be obtained by the method
of variable coefficients. We are looking for a particular solution

Ip(t) = u\(t) cos(kt) + u2(t) sin(kt), (11.4.10)
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where u\(t) and u2(t) are two differentiable functions, which will be determined
later. Assuming

u[(t) cos(kt) + u2(t)sm(kt) —0, (11.4.11)

differentiating yields

ep{t) u\(t) cos(kt) + u2(t) sin(kt) —kui(t) sin(kt) + ku2(t) cos(kt)

—ku\(t) sin(kt) + ku2(t) cos(kt).

Then the second derivative is

dp(t) = —ku\(t)sin(kt) + ku2(t) cos(kt) (11.4.12)
—k2u\(t) cos(kt) —k2u2(t) sin(kt).

Substituting (11.4.12) and (11.4.10) into (11.4.8) yields

—ku[(t) sin(kt) + ku2(t) cos(kt) — dB (11.4.13)

dB
where we used the informal notation for the white noise JIt = —drt~lEquations
(11.4.11) and (11.4.13) yield the ODEs system in u\ and u2

u[(t) cos(kt) + u2(t) sin(kt) — O (11.4.14)
—u'At) sin(kt) + u2(t) cos(kt) = PR (11.4.15)
The reduction method and integration produces the following solutions

rt
—T / sin(ks) dBs (11.4.16)
® Jo

ui (t)

u2(t)

t- [ cos(ks)dBs. (11.4.17)
~ Jo

These represent the effect of the white noise dBs along the solutions trajec-
tories sin(ks) and cos(ks). Prom the properties of Wiener integrals, it follows
that u\(t) and u2(t) have normal distributions with the mean, variances and
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covariance given by

E[«i(i)] — E[tt2(i)] = 0
var[u\(t)] = i‘rg J/(f) ! sindtkoNds = L;f\tz Siniikt)\
A

Coului(t),u2(t)] = E[tii(t)u2(*)]

e i a It
E —/ sin(ks)dBs,-- / cos(ks) dB
kK Jo K Jo
= -£/\m (b)coSb)rfS=-2j2!s!M .
K Jg K 2
The particular solution (11.4.10) becomes

9pt) = ~ ~J sm(ks)dBgp cos(kt) + ~ J cos(ks)dBg” s'm(kt).

(11.4.18)
Hence the general solution for the pendulum equation given by (11.4.9) is

o(i) = ~ci ——3J sin(ks)dB”j cos(kt) + ~"C2+ —J cos(ks) dB” sin(kt),

where the constants Ci and @ depend on the initial data as

It is worth noting that 9(t) is not normally distributed. This follows from
the fact that Cov[u\(t),u2{t)\ ® 0 implies that U\(t) and u”it) are not inde-
pendent. However, we are able to compute the mean and variance as in the
following

E[0(1)]
Var[6(t)}

Bo(t) = ci cos(kt) + @sin(kt)

Var[0Op(t)] = cos2(kt)Var(ui(t)) + s\n2(kt)Var(ii2{t))
+ 2 sin(kt) cos(kt)Cov(ui(t),u2(t))

azt a2

We shall present in the following another method for finding Xt, involving
an integrating factor. Considering -Xi(t) = 9(t), Xr(<) = 0(t), the pendulum
equation

6{t) = —k26(t) + ans-
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becomes a first order system of stochastic differential equations

dXi(t) = X2(t)dt
dX2(t) — —k2Xi(t)dt + adBt.

Denoting

m43' Y-r.;)e-cC

the aforementioned system becomes a linear matrix stochastic differential
equation
dXt= AXtdt+ K dBt.

Multiplying by the integrating factor e~At yields the exact equation
d(e-AtXt) = e~AtK dBt.

Integrating we obtain the solution
Xt= eAtX0+ f eA™ s)K dBs. (11.4.19)
Jo

Since A2 ——k2I2, a computation of the exponential of At involving a power
series provides

N Antn _ yn A2nt2n y . A2n+lt2n+

] I A + !
o M N0 SZn). >0 SZn 1)!
(_1)n fe2nt2n 1 (_ 1~nfc2w +1t2w+l

N + + 1!
n>o (IZn)I 2 Ko (IZn 1!

cos(kt)l2 + Y( sin(Ai)A

cos (kt) 0 \, f 0 jrsin(fct)
0 cos(kt) J \ —ks'm(kt) 0

cos (kt) \ sin(kt)
—ksin(kt)  cos(kt)

The expectation of Xt is given by

Epft]= eAX0= ( _GGifkRy  coskty 3y 0(0)

( cos(kt)6(0) + £ sin(H)#(0)
-ksm(kt)d(0) + cos(kt)d(0)



254 An Informal Introduction to Stochastic Calculus with Applications

Considering each component separately, implies

E[0(1)]
E[0(D)]

cos(kt)6(0) + ?sin(fciWO)

—ks'm(kt)6(0) + cos(kt)9(0).

Since
pA(t-s) K _ ( f sin(A:(i - s))
\ acos(k(t —s))

the integral term of (11.4.19) can be computed as

2 f Gin(k(t —s))dBs
K Jo

a / cos(k(t —s))dBs
Jo )

Since any electronic circuit is mathematically equivalent to a pendulum
equation, a similar method of study can be applied to it. It is worth noting
that the analysis of noise in electronic circuits was developed as early as 1920s
by Rice [42] and Schottky [44].

Exercise 11.4.1 Consider an electric circuit, in which the charge Qt at time
t satisfies the equation

d2Qt  dDi 20 =M

_ . . . dwt
where the external force is just the influence of the white noise Mt = (—j—t-

(&) Find the solution of the homogeneous equation;
(6) Show that a particular solution is given by

rt
Qt=Jo (e~{t-s) - e~2(i~s)) dWs.

(c) Find the general solution, Qt) and show that E[Qt] satisfies the homo-
geneous equation.

Exercise 11.4.2 (a) Solve the following stochastic differential equation
dXt = Ytdt+ adwj}
dyt = - Xtdt+ OdW.f,

where (W}, W f) is a 2-dimensional Brownian motion and a and (3 are con-
stants.
(b Use part (a) to find a solution for the following stochastic pendulum
equation
et+ et=pw? + aW}.
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11.5 Stochastic Population Growth
This section presents a few population growth models driven by noisy growth
rates. This implies that the population size is stochastic.

Exponential growth model The population at time t, denoted by Pt, sat-
isfies the growth equation
dPt = rt Pt dt, (11.5.20)

where rt is the stochastic growth rate. Assume that rt oscillates irregularly
around some deterministic average function a(t)

rt = a(t) + “noise”.

If the size of the white noise is /3, then

“noise” = JV* = /3C’j\t.

Substituting in (11.5.20) yields the following SDE
dPt = a(t)Ptdt + /3PtdBt, (11.5.21)

where /3 > 0is aconstant and Bt is a Brownian motion. The equation (11.5.21)
can be reduced to an exact equation multiplying by the integrating factor
pt — Ito’s formula provides

dpt = pt((32dt - f3dt),

and hence dptdPt = —/32Yt dt. Denoting Yt = ptPt and applying the product
rule yields

dyt = d(ptPt) = dpt Pt + ptdPt + dptdPt
=  (/32Yt+ a(t)Yt- p2yt)dt+ (/3Yt- pYt)dBt
= a(t)Ytdt.

Hence the process Yt satisfies the deterministic equation
dyt = a(t)Ytdt
with the initial condition Yo = PoPi = Po- Integrating yields
Yt = POe” a(s)ds.
Solving for Pt we obtain

Pt = foe/o «(«)» PDP+PB, (11.5.22)
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Using E[e”Bt] = e”"2*/2, we obtain

E[Pt] = POeti a(s)ds-02/2E PBt} = poel*a(s)ds

It is worth noting that the function P(t) = E[Pt] satisfies the deterministic
equation
dP{t) = a(t) P(t)dt.

The po%ulation Pt provided by formula (11.5.22) is log-normally distributed.

In fact, In— is normally distributed

Inz = N(mi ),

with the mean given by

Tl g2t
m(t) = / a(s)ds---—-—-—.
\o 2

Exercise 11.5.1 Consider the population given by the formula (11.5.22).
(a) Find the probability distribution function of Pt.
(b) Find the probability density function of Pt.

Exercise 11.5.2 A bacteria population has an intrinsic growth rate of r —
0.08 and noise size f3 = 0.01 per day. If the population starts with 10,000
bacteria, find the probability that there are more than 11,000 bacteria after 2
days.

Exercise 11.5.3 A population has a noisy growth rate given by rt = t2+ -
Find the doubling time T, which satisfies

E[PT] = 2Pq.

Population growth in a stochastic and crowded environment In the
previous exponential growth model the population can increase indefinitely. A
more realistic model was obtained by P.F. Yerhust in 1832 (and rediscovered
by R. Pearl in the twentieth century), who assumed that due to competition
the population also tends to decrease at a rate proportional with the number
of encounters between the population members, which is proportional with
the square of the population size

dP(t) = rP(t)dt - kP(t)2dt. (11.5.23)
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The constant r is the intrinsic growth rate, i.e. the relative rate at which the
population would increase if there were no restrictions on the population. The
positive constant K reflects the damping effect on the population growth caused
by competition for resources between the members of the same population.
The solution of the equation (11.5.23) is given by the logistic function

P® = PO+ (K - PO)e~rt' (11.5.24)

where K = r/k is the saturation level, or carrying capacity of the environment.
This represents the equilibrium level to which the population, regardless of its
initial size, will tend in the long run

K = lim Pit).
t—too
One of the stochastic models for the population growth in a stochastic and

competitive environment is obtained keeping in equation (11.5.23) the rate kK
constant, while considering a noisy intrinsic rate of growth

dPt = (r + j5SNt)Pt dt —kP 2dt. (11.5.25)
This equation can be written equivalently as
dPt —rPtdt —kP2dt + /3tdBt, (11.5.26)

where the positive constant /3 measures the size of the noise of the system.
Rewriting the equation as

dpPt = kPt(K - pt)dt + pptdBt,

and multiplying by the integrating factor pt = e” 2(_,,B' leads to the exact
equation

d(ptPt) = kptPt(K - Pt)dt.
Substituting Yt = ptPt yields the equation

dYt = kYt{K - pilYt)dt. (11.5.27)
ert
In order to solve (11.5.27) we shall make the new substitution Zt = T Since

(dYt)2= 0, Ito’s formula provides

ert 1 ..
dzt = rA-dt- T2ertdvt
Yt Y f

rZtdt- ~ e rtkYt(K - pilYt)dt
rZtdt - kZt(K - pilyt)dt

kZtYtP tldt
kertp fldt,
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where we used that r = kKK and ZtYt = ert. The process Zt satisfies the
integrable equation

dzt = kertp™idt
with the solution

rt
Zt= Z0+ kL ersp~lds

Since Zg — — = — , substituting back we obtain the following expression for
Yo Po
the population

ert ert-/32t/2+13Bt

t Pt t Pt Zt +. + kJtersp-1I ds

In the following we shall manipulate the previous expression in order to make
it look as close as possible to the logistic equation (11.5.24).

ert-/32/2+pBt poerte-/32t/2+13Bt poj (erte-p 2t/2H3Bt
fr + kfo erspslds 1+ kP(f* erspsids K + rPOf* erspglds

POK e-P 2tl 2+}Bt
Ke~rt + rPoe~rt Jgersp jl ds

(K - Po)e~rt+ PO(l + r/qg ersps 1c?s)e_r<

If in the previous formula we let /3= 0, and hence ps = 1, we obtain exactly
the expression (11.5.24).

A more sophisticated model is obtained if in equation (11.5.23) both rates
r and k are noisy, with the size of the noise proportional with the rates as
follows

rt=r+ arg_, kt=k+ ak"t.
dt dt

We note that both rates are driven by the same uncertainty source. Substi-
tuting in the equation yields the following SDE

dPt = (rPt- kP?)dt + a{rPt- kP?)dBt.
It can be shown that this equation has a unique strong solution, but the

discussion of this subject is beyond the level of this textbook.

Population growth in a stochastic catastrophic environment In the
previous model the population tends to decrease due to competition and lim-
ited space. In the present model the population decreases suddenly due to
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some unexpected catastrophic events, such as earthquakes, wars, diseases,
natural calamities, etc. The SDE satisfied by the population in this case is

dPt = rPtdt - pptdNt, (11.5.28)

where Nt is a Poisson process with rate A The positive constant /3 is a

dpPt
measure of the size of the drop in the instantaneous relative change — and
Pt

takes values in (0, 1).

We shall construct a solution as in the following. Let S& denote the fcth
jumping time for the Poisson process, i.e. Nsk = kand Nsk_ = k—1. Consider
t € [0, Si). Since there are no jumps in this interval the population satisfies
the stochastic differential equation

dPt —rPtdt, 0< t< Si,

with the solution given by the usual formula Pt = Poert, for t E [0, Si). In
particular, when t = Si-, we have

PSI-=P oerSl. (11.5.29)

Since at the jumping time Si we have

dPsi _ Pst- Psi. _ _o
Ps,- ~ PSI-

then Psx = (1 —j3)Ps1 mCombining with formula (11.5.29) yields
PSI = (1- P)PSI- = POerS'(l - /3). (11.5.30)

Because there are no jumps in the interval [Si, S2) the following differential
equation holds
dPt = rPtdt, Si < t< 82

with the solution
Pt - PSler(f- SI).

Combining with (11.5.30) yields
Pt = PSler™-s” = PoerSI(1- /3)e~~51) = POert(1- /3), Si<t< S2.

The effect of passing over a jump is to multiply the solution by the factor
(1 —/3). Using this observation we obtain inductively

Pt = POert(l-/3)n, Sn<t< Sn+i.
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Replacing n by Nt we arrive at the following expression for the population in
a stochastic catastrophic environment

Pt = POert{ (11.5.31)

In the next paragraph we shall compute the mean of Pt using conditional
expectations

E[Pt] = POertE[(I - P)NT = POert]T E[(I - /3N \\t = n]P(Nt = n)

n>0

POertE (1 - P)nP(Nt=n) = POertV (1- /3n~ e ~

PQrte - xte ™ -p)Xt = Poe(r_/3A)t.

To conclude, if r < /3A the population tends to decrease and then disappear
in the long run. A population with r = /3A has on average a constant size.

Next we shall evaluate the probability of the event {Pt < x} for a given
x > 0. We consider the following transformation of events

{Pt < x} = {iW rOAt < x} = {POert(1- P)N*<x} = {(1 - P)N*< ’F\)e~rt}
0

where we used that In(l —/3) < 0. Denoting yt = In(l —/3) " the probability
n JR—
can now be evaluated as in the following

k>yt

Exercise 11.5.4 An ant colony of 1,000 ants grows at the intrinsic rate r =
0.30 per month. However, each rainfall kills 2% of the ant population, and it
rains 5 times per year.

(a) Write the stochastic differential equation for the ant population size;

(b) What is the probability that there are at least 2,000 ants in the colony
at the end of the first year?

(c) What is the expected size of the colony after 2 years?



Some Applications of Stochastic Calculus 261

Population growth with stochastic harvesting Besides the effect of expo-
nential growth at the intrinsic rate r, we shall also assume that the population
is harvested at the stochastic rate Ct —p + where p > 0 is the mean
harvesting rate and a measures the size of the noise. The population at time
t, denoted by Pt satisfies the following equation

dPt = (rPt- Ct)dt,
which can be written equivalently as
dPt = rPtdt —pdt —udWt. (11.5.32)

Multiplying by e~rt and solving it as a linear stochastic differential equation
yields the solution

rt
Pt=-ert(PO" ) + GertJ dwe- (11.5.33)

This implies that Pt is normally distributed with the mean and variance given
by

E[Pt]

ert(p0-") (11.5.34)
2

Var[Pt] "Z}(e 2rt-1). (11.5.35)

Exercise 11.5.5 Show that the stochastic process (11.5.33) is the solution of
equation (11.5.32).

Exercise 11.5.6 Prove formulas (11.5.34) and (11.5.35).

11.6 Pricing Zero-coupon Bonds

A bond is a financial instrument which pays back at the end of its lifetime, T,
an amount equal to B. If the contract does not provide any payments until
maturity, the bond is called a zero-coupon bond or a discount bond. The value
of the bond at time t is denoted by B(t). In the case when the yield r is
constant, i.e., if

dB(t)

~ m =

then the bond value is given by the familiar expression B(t) = Be~ -t rds =
Be~r(T~t\ We shall assume next the case when the yield of the bond is
affected by the noise in the market

dwit
rt=r+o——, r>o,
at
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where a is a positive constant that controls the size of the noise. This leads
to the following stochastic process

Bt

Be~ fJrsds = Be~ & rdse~ £ ad\s
Be~r{T~t)e~{TWT~W\

The bond value is the conditional expectation of Bt given the information in
the market until time t

E[Bt\Ft]

Be~rv- BE[e_<r(WT_w™) | 7]
Be“r(T_t)E[e WT~W)]
Be-"-VerV -*

According to the przevious model, we note that in the case when the market

noise is small, r > ~ | the bond value appreciates, having the maximum value,
. . 2 .

B, at t = T. If the noise is large, Ly, > r. the bond depreciates and has to be

sold as soon as possible.

Exercise 11.6.1 Use Ito’s formula to show that the process Bt satisfies the
equation

2
(V+ A~ B (t)dt+aB(t)dWt
B.

dB(t)
B(T)

11.7 Finding the Cholesterol Level

The amount of cholesterol in the blood of a person at time t is described by a
stochastic process denoted by Ct. The body cholesterol is either manufactured
by the body or it is absorbed from the intaken food. If E denotes the daily
rate at which cholesterol is eaten and Co stands for the normal level of choles-
terol for a health person, then Ct satisfies the following stochastic differential
equation

dCt = a(Co —Ct)dt + bEdt + adWt, (11.7.36)

where a is a production parameter, b is the absorption parameter, and a is the
size of the noise in the measurement. Solving (11.7.36) as a linear equation
we obtain the solution

b fb
Ct=COe~at + (Co+ -E)(1- e~at) +oe-at / easdWs.
a Jo
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From the properties of Wiener integrals it follows that Ct is normally dis-
tributed, with mean

E[Ct] = COe~at + (Co + IaE){ 1- e-at)

and variance
Var[Ct] —~ (1 —e~2at).

If the diet is kept for a long time, then the cholesterol level becomes the normal
random variable

Ct ~N "Co + —E, > t —00.

In order to evaluate the health of a particular person who is on a given diet
(i.e. when E is kept constant for a long time) we have to find the probability
that the cholesterol level is over a given acceptable level M. Using the long
run normality of Ct, this probability can be evaluated as

K1 (*-C0-%E)2
P(Ct>M) =] — [/ e ax. (11.7.37)
Vv 70- IM

Exercise 11.7.1 Assuming that the intaken food does not have a constant
cholesterol level, the term E is replaced by E + “noise”. Write and solve the
corresponding stochastic differential equation.

Exercise 11.7.2 The normal cholesterol level in the blood is Co = 200 (mil-
ligrams per deciliter), the production parameter isa = 0.1 and the absorption
parameter for a particular person is b = 0.15. What is the maximum daily
intake E of cholesterol such that the long run level of cholesterol is less than
220 with a probability of 95%?

11.8 Photon’s Escape Time from the Sun

This section deals with the computation of a rough approximation of the time
taken by a photon of light to travel from the center of the sun to its surface.
Fusion reactions occur in the core of the sun due to high heat and pressure.
These reactions release high energy photons (gamma rays), which are absorbed
in only a few millimeters by the solar plasma particles and then are emitted
again in a random direction, see Fig. 11.1.

The mathematical model for such a photon emitted and randomly redi-
rected by plasma particles is a Brownian motion process. If Xt denotes the
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Figure 11.1: The photon bounces back and forth in its effort to emerge to the
sun’s surface.

coordinates vector in R3 of the photon at time t, where the center of the sun
is assigned the zero coordinate, then

Xt = a+ oWt, (11.8.38)

where a = Xo is the location where the photon was initially created, o is
the dispersion function and Wt = (U7 .W2.W f) is a 3-dimensional Brownian
process in R3. The dispersion is given by Einstein’s formula

a2 = 2kT/(dirrja),

where k is Boltzmann’s constant, T denotes the absolute temperature, a is
the diameter of the photon, and rj is the viscosity of the solar plasma. For the
sake of simplicity we shall assume in the following that a is constant.

The time when the photon reaches the surface of the sun is a random
variable denoted by r. We shall use a similar method as the one described in
section 9.6 to find the expected time E[T]. If Rs denotes the radius of the sun,
the time necessary for a photon to emerge to the sun’s surface is the exit time

T = inf{t > 0; \Xt\> Rs}- (11.8.39)

Since the infinitesimal generator of the process (11.8.38) is the operator

using the function f(x) = W2 = x2+ X\ + x\ in Dynkin’s formula

E[f(XT\ = f(x) + E [J~ A f(X s)ds
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yields
Rg=Jap+E f 3a2ds ,
LJo
and hence
p2
32

In particular, if the photon is emitted from the sun’s center, the expected
emerging time to the surface is

Elr] = (11.8.40)

(11.8.41)

Using the numerical values for the sun’s radius and photon’s diffusion given
by Rs = 6.955 x 105 km and a2 = 0.0025km2/sec (this corresponds to a 50
meters per second radial photon displacement), formula (11.8.41) yields the
approximate value E[r] « 2 million years. Some other sources compute slightly
different values, but the idea is that it takes a really long time for a photon to
leave the sun’s interior. This is huge compared with the only 8 minutes spent
by the photon on its way to earth.

It is worth noting that if a star has its radius 100 times the sun’s radius,
then the expected emerging time multiplies by a factor of 104. This means
E[r] ~ 2 x 1010 years (20 billion years), which is longer than the entire age of
the universe (« 14 billion years)! Hence, it is possible that a photon created
in the center of the star has not found its way out to the surface yet. Since the
life span of a star is usually around 10 billion years, the photon will probably
not get out of the star during its life span.

11.9 Filtering Theory

Inearly 1960s Kalman and Bucy found a procedure for estimating the state ofa
signal that satisfies a noisy linear differential equation based on a series of noisy
observations. This is known now under the name of Kalman-Bucy filter. This
theory has useful applications in signal processing of aerospace tracking, GPS
location systems, radars, MRI medical imaging, statistical quality control,
and any other applications dealing with reducing or filtering noise out of an
observed system. For more examples on this subject as well as the complete
proofs, the reader can consult Oksendal [37].

Assume Ctis the input process, i.e., a process that describes the state of a
stochastic system at time t, which needs to be observed. This process has some
“noise” built in and its evolution satisfies a given linear stochastic differential
equation

d(t = a(t)Ctdt + b(t)dWt
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noise

Figure 11.2: The input signal G and the observed signal St.

where a(t) and b(t) are given deterministic functions and Wt is a Brownian
motion, independent of the initial value G We assume that & is observed
continuously with the actual observations St = & + “noise”, see Fig. 11.2. If

B
the white noise is given by “noise” = B(t)d— , then
Stdt = (tdt + j3(t)dBt. (11.9.42)

Introducing the cumulative observation process

Qt= Sudu
Jo
and using that the information (cr-algebras) induced by the processes Qt and
St are the same,
= 77

it follows that equation (11.9.42) can be replaced by the more mathematically
useful formula

dQt = {tdt + P(t)dBt, (11.9.43)

with Bt independent of Wt- From now on, Qt will be considered as the ob-
servation process instead of St- It is easier to work with the cummulative
observation process Qt rather than the actual observations St-

The filtering problem can now be stated as:

Given the observations Qs, 0 < s <'t, satisfying equation (11.9.43), find
the best estimate Ct of the state Ct

One of the best estimators @, which is mathematically tractable, is the
one which minimizes the mean square error

R(t) —E[(Ct —Ct)2}-
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This means that for any other square integrable random variable Y, which is
measurable with respect to the field , we have the inequality

E[(Ct~Ct)2] <E[(Ct-F)2].

It turns out that the best estimator & coincides with the conditional expecta-
tion of @ given the information induced by Qs. 0 <s <'t, namely,

The computation of the best estimator G is provided by the following central
result in filtering theory.

Theorem 11.9.1 (Kalman-Bucy filter) Let the state of a system @ satisfy
the equation
d(t = a(t)Ct dt + b(t)dwWt, (11.9.44)

where a(t) and b(t) are deterministic functions. Assume that the random
variable G and the Brownian motion Wt are independent, and let E[Co] =
Var[G = ¢2. Assume the observation Qt satisfy the equation

dQt = a(t)Ct dt + /3(t)dBt, Qo =0, (11.9.45)

with deterministic functions'a(t), (3(t) and Brownian motion Bt, independent
of Wt and (e

Then the conditional expectation Gt = E[Ct]J?] is the solution of the linear
stochastic differential equation

d(t = U(N)Ctdt + V()dQu = (11.9.46)

with
m = u(t) =af(t) - R(t),

and R(t) satisfying the deterministic Riccati equation

A =b\t)+2a()R(t) - pjfiR 2t), R(0) = «2-

Moreover, the least mean square error is given by R(t) = E[(Ct —Ci)2]-

The process @ is called the Kalman-Bucy filter of the filtering problem
(11.9.44)-(11.9.45). Furthermore, if

g, RO —o
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we say that Q is an exact asymptotic estimation of Q.

Explicit solutions In the following we shall deal with the closed form solution
of equation (11.9.46). First, we shall solve (11.9.44) as a linear equation.

Denote A{t) = ef°a” ds and multiply by e~A" to get
d(Cte~m ) = b(t)e~AW dWt.
Integrating and solving for Q we obtain
Q = (0e AW+ J[ eAN~AND(s)dW's. (11.9.47)
0
The mean and variance of the input process Q are

E[Q) = E[ColeAW ="e A(t);

Var[(t} = JfO e2M ~ A b 2(s)ds,

where for the second identity we used the properties of Wiener integrals.
Now, equation (11.9.46) can be solved as a linear equation. After multi-
plying by the factor

pit)-1 —exp{— 1 U(s)ds}
Jo

the equation becomes

d(p(f)- 1C) = p()~1V(1)dQt.

Integrating, we obtain the filter solution
a = PPt+ Pit) Jf p(s)~1V(s) dQs
0

= npt+p(t) (s) 1V(s)a{s)(sds +PtJ[ ps(s) 1V(s)/3(s) dBs,
0

fp

Jo

with (t given by (11.9.47).
It is worth noting that the expectation of the filter is given by

E[G] = E[E[Ct]jf]]=E[Ct]
- peAV.

Example 11.9.2 (Noisy observations of a random variable) Assume £
is a random variable which needs to be measured. Its known mean and vari-
ance are given by E[£] = U and Var[(] = a2. For instance, we may consider
( to be the heart rate per minute, or the cholesterol blood level, or the systolic
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blood pressure for a particular person. Observing any of the aforementioned
variables involve measurement errors that are described by the noise factor.
The actual observations are given by a process St —C+ “noise”, which can be
written in terms of the cumulative observations as

dQt = Cdt + /3dBt,

with (3 > 0 constant. This is equivalent to Qt = Ct + pBt, where the noise
factor represented by the Brownian motion Bt is assumed independent of G
The filtering problem in this case means we have to find a stochastic process
QG which is the best approximation of Cup to time t, given the measurements

Qs = Cs + /3Bs, 0<s<t.

In order to find the filter G consider the constant process & —C and associate
the filtering problem

act = o0

dQt Cdt + f3dBt.

Since in this case a(t) —1, (3(t) = p, a(t) = 0, and b(t) = 0, the Riccati
equation becomes

dR{t) = _5
Il
: . (32 . :
with the solution R(t) —-— depending on the parameter C. Using the

initial condition R(0) = a2, we obtain

m)= azt+ /2’
Then the coefficients V(t) and U(t) take the following form

v = kR(t) - o2t + /2

R(t) = .

v = -4 a2t + (@

Equation (11.9.76) becomes

act + a2t + P2MNdt a2t + P2dQt’
Multiplying by the integrating factor

a2t +P2
P2



270 An Informal Introduction to Stochastic Calculus with Applications

we obtain the exact differential equation

(oU+P N1 _a?2
v R / R

which after integration provides the following formula for the best estimate
2 2
(”’t + /2C°+ a4 +p Qt

ANTO02 (/V+N)-

It is worth noting that the foregoing formula implies that the best estimate
of the random variable (, given the continuous observations Qs, 0 <s < t,
depends only on the last observation Qt- In the case of discrete observations,
the best estimate will depend on each observation, see the next example.

Example 11.9.3 Consider a random variable £ with E[£] = LLand Var(() =
0 , which is observed n times with the results

51 = C+6i
52 = C+e2
Sn — C

where ¢j is an error random variable, independent of Q with IE[¢j] = 0, and
Var(tj) = m2. We shall assume in the beginning that the errors ej are inde-
pendent. The goal is to find the best estimate ( of ( given the observations Sj,
1<j<n,

C= E[C]Si, *++,Sn].
Consider the affine space generated by the observations Sj

C(S) = {a0+ E CjSj;a0,g e M}
j=1

It makes sense to look for the best estimator as an element ( € jC(S) such
that the distance E[(E —£)2] is minimized. This occurs when the estimator Q
is the orthogonal projection of £ on the space C(S). This means we have to
determine the constants ao, ¢j such that the following n + 1 conditions are
satisfied

E[C]
E[(C - C)S]]

E[C]
0, j=1---,n.
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Let C= «0 + CiSi + eee+¢nSn. Since
Y- gc] =a0+n(ci A-—----- )
it follows that ao = cofi, with
co+citc2H---cn=1 (11.9.48)
Therefore, ( belongs to the convex hull of {fi, Si,-- - ,S,,}, i.e.
C=coll + ciSi + eee+¢nSn.
A computation provides

E[(C-C)S]] = E[<fsj] —E[CSj]
n

= COiiEISj}+ 2 CKE[SKS]] - E[C(C + u)}

k=1
n
cofi2+ J > fE[(C + eK)(C+ 6)] - E[C2] - E[C]E[e
k=
' n n
coy2+ E[C2]*2 ck+ m2  ck$kj - E[C2]
k=1 k=1

Con2 + E[C2](1 - Co) + m2( - E[C2]
coin2-E[C 2])+ m 2§
—cqet® + m*Q.

The orthogonality condition E[(E —C)Sj] = 0 implies

2

i = 2 j = 1000 . (11.9.49)

Substituting in (11.9.48) provides an equation for cqg, which has the solution

m2

© °4no%”
and hence (11.9.49) becomes
az2
C,'
J  m2+ ner2
/it conclusion, the best estimator of Q given n observations Si, e, Sn, is given

C = oo+ E Ofebfe
o=

m’ fi ¢ V-
m2 + ncr2 mQA-I-n?ane:' "
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It is worth noting that each observation is equally weighted. If the number of
observations is large, n —>00, then £ ~ ~Ylk=i & This means that the best
approximation is given by the average of the observations.

All previous formulas are valid for the case of independent observations €j.
Assume now that the covariance matrix

Pij = Cov(ek,£j) = E [eka\

is not necessarily diagonal. A similar computation leads in this case to the
formula

E[(C- C)Sj] = -c o<z + N2CkpkKj.
k=1

The orthogonality formula becomes

f=1

which is a linear system in ck. Under the assumption that the matrix (pk) is
non-singular, let (pki) be its inverse matrix, so the solution of the aforemen-
tioned linear system is

ac = c:qu2£rI PR k=1,---,n. (11.9.50)
j=i
Substituting into (11.9.48) and solving for the coefficient og yields
1
1+ Efcj=ipkj'

Then formula (11.9.50) provides the other coefficients
£"-i»ki ,
K 7 1T+IXJINitky
Hence, the best estimator of ( in terms of the covariance matrix is given by
f /. , f "
1+ N h <2+££i=i<*

Example 11.9.4 Consider that the observed state is the blood cholesterol
level, Ct, which is given by the stochastic equation (11.7.36)

dCt —a(Co —Ct)dt + bEdt + adWt, (11.9.51)
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where a is a production parameter, b is the absorption parameter, and a is the

size of the noise in the measurement. The observation process is given by
dQt —Ctdt + B3dBt, Qo —0

We need to find the best estimate Ct of the cholesterol level Ct, given the
noisy observations Qs, s <t. However, Kalman-Bucy filter cannot be applied
directly to (11.9.51). We need to perform first the substitution

a=C- Co- éE,
which transforms (11.9.51) into the linear stochastic differential equation
d(t = —a(tdt + (TdWtm

Let Zt = Qt —(Co 4— E~t. We note that the a-algebras induced by Zt and

Qt are the same, J-f = J~t?, and hence we can consider Zt as an observation
process instead of Qt, satisfying

dZt = Ctdt + BdBt. Zg=0.

The Riccati equation associated with the filtering problem having the input
process @ and observations Zt is given by

= aR(t)-~R\t) +a\ R(0) =0,

where we used that E[Eo] = —fE and Var((o) = 0. The solution is given by

«i (1 —e2Kt)
A ar 2Kt

where

N\ = —a/fRN— a2+
az2 -a/32+ /3n/a2/32 + cr2
K \Ja2 + (a/13)2.

Solving for the estimation process @, we obtain the formula
&=--Ee~bZH{5)ds + ~ [ e~tiH{u)duR(s)dZs,
a Pr Jo

where
H(s) =a+jpR(s).
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Using that
lim R(t) = a2,

t—00
we obtain the following long run behavior for the estimation

lim (t = - - Ee~Kt + Pe~ Kt  eKs dzs.
a P2 J

t—"00 [e)

This can be transformed in terms of Ct and Qt as follows

H - - ~ AN - AN
tI_@()Ct Co+ (1 eKt)@E Kézco+aE)3+ e~ Kt f eKsdQs.

i
Example 11.9.5 A modern application of filtering theory is in GPS location.
The input signal is the true position, while the observation process is the GPS
position. The position is measured by an inertial navigation system (INS).
This has transducers that measure acceleration, which leads to the vehicle po-
sition by double integration and specifying its initial position. Since there are
always errors in the acceleration measurement, this leads to noise in the posi-
tion location.

The INS position can be checked often by observing the GPS receiver.
Hence, the INS position estimate can be corrected by using periodic GPS ob-
servations, which are also susceptible to error of measurement. Finding the
optimal way to use the GPS measurements in order to correct the INS esti-
mates is a stochastic filtering problem, see Bain and Crisan [4].

Exercise 11.9.6 Consider the filtering problem
d(t = it +dWt, f,=0,a=1

dQt = Y+t.Ctdt+ YTjdBt, Qo = 0.

(a) Show that the associated Riccati equation is given by
A =1-(1 +*)4*-40?, R(0) =1
(b) Verify that the solution of the Riccati equation is
m= 1,
(b) Compute the best estimator for G and show that

Q=-i-e5*+2/2 N ! + s)ei(s+,2/2 d>B
1+t
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Exercise 11.9.7 In a Kalman-Bucy filter the state Cand the observations Qt
are given by dCt = dwWt, with £o being normally distributed with mean 1 and
variance 2, and dQt = Qdt + 2dBt, with Qo = 0. Find the best estimate G
for -






Chapter 12

Hints and Solutions

Here we give the hints and solutions to selected exercises. The reader should
be able to derive the solutions to the rest based on what he has learnt from
the examples in the chapters.

Chapter 2

Exercise 2.9.7 (a) For any random variables A,B, and variable A6 1, inte-
grating in the inequality

(A(c))A+ £(w))2>0, VW GO
implies
J (@U)\+ B(w)) 2dP(u0) >o.
After expanding and collecting the powers of A this can be written as
ATA 2(u)dP(0))A\2+ 27IAA(u))B(0)dP (uj) A\ + J B 2(w) dP(u) > 0.

Substituting

a= [ A2(u:)dP(uj), b=2( f A(lu)B(uu)dP{u)), c= f B2(£I)dP(u),
Jn “Jn ' Jn
the previous inequality becomes
a\2+ bX+ ¢ > 0, VA GR.

This occurs when b2 < 4ac, which in this case becomes

E[AB]2 < E[A2]E[B2].

277
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(b) Substitute A= X —px and B =Y —yB and obtain

WX - nx)(Y - fl} < \/WX- nxYWniY - M)2] <»
Cov(X,Y) <digy-

(c) They are proportional.

Exercise 2.10.1 Let X ~ Then the distribution function of Y is
FY(y) = P(Y <y) =P(aX +P <y) = P(X < ya—o
. 2 (r-(aM-a)
_ m:- ; e 2@ dx= —— ﬁye 2n2 - "
v 27TJ J_oo \/2'kolo J -

G
= -\/%T-ra' ny e 2&?2 dz,

with // = ap + /3 o7 = acr.
Exercise 2.10.5 (a) Making t —n yields E[YT] = E[e”"] = eMM+T2"2/2.

(b) Letn = 1and n =2 in (a) to get the first two moments and then use the
formula of variance.

Exercise 2.12.7 The tower property
E[E[PXN\GI\H]=E[X\H\, HcG

is equivalent to
_E[X\Q]dP:J[ XdP, VAe H.
[ a

Since A e Q, the previous relation holds by the definition of E[X|C/].

Exercise 2.12.8 (a) [f] = 24 = 16,

(b) P(A) = 3/8, P(B) = 1/2, P(C) = 1/4

(cp(4nB)=1|,P(BNOC)s ;

(d) P(A)P(B) = A =P(ATB), so A B independent;

(e) P(B)P(C) =] ~ | =P{BTC), soB, C independent; P(B\C) = f;
(/) we know the outcomes of the first two tosses but we do not know the order
of the last two tosses;

(0) Ae Q (true), B e T (true), C e Q (true);

(N EX] = QE[Y] =j], EIX|(?] = X, since X is ~-measurable.

Exercise 2.12.9 (a) Direct application of the definition.
(b) P(A) = fAdAP = fQXA(u) dP(u) = Bxal
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(d) E[XnX] = E[Xn]E[X] = P(A)E[X].
(e) We have the sequence of equivalencies

EXA\ = EDJ*> [ E[X]dP= [ XdPyAeG <
EDIP(A) = [ XdPEIXIP(A) =E[Xa]
a

which follows from (d).
Exercise 2.13.5 If 4 = E[X] then

E[X - E[X])2] = E[X2- 2/xX+ A2] = E[X2] - 2u2+ 12
= E[X2}-E[X}2= Var[X}.

Exercise 2.13.6 From Exercise 2.13.5 we have Var(X) —0 <=X = E[X], i.e.
X is a constant.

Exercise 2.13.7 The same proof as the one in Jensen’s inequality.

Exercise 2.13.8 It follows from Jensen’s inequality or using properties of
integrals.

Exercise 2.13.13 (a) m(t) = Efetx}=
(b) It follows from the first Chernoff bound.
Exercise 2.13.16 Choose f(x) = x2k+l and g(x) = x2n+l.
Exercise 2.14.2 By direct computation we have
E[(X- Y)2} = E[X2]+E[F2]- 2E[XY]
= Var(X) + E[X}2 + Var[Y] + E[Y]2 - 2E[X]E[Y}
+2E[X]E[Y] - 2E[XY\
= Var(X) + Var[Y}+ (E[X] - E[Y]2- 2Cov{X, Y).

Exercise 2.14.3 (a) Since
E[(X - Xn)2}> E[X - XnR = (E[Xn] - E[X])2 >0,

the Squeeze Theorem yields limn_0(E[Xn] —E[X]) = 0.

@) Writing
X2- X2=(Xn- X)2- 2X(X - Xn),

and taking the expectation we get

E[X2] - E[X2 = E[(Xn- X)2] - 2E[X(X - Xn)].
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The right side tends to zero since
E[(X,-X)7] 0

[E[X(X-Xn)]| < J[ \ X (X ~Xn)\dP
n

= V/E[X2E[(X - Xn)2] -> 0.

(c) It follows from part (b).
(d) Apply Exercise 2.14.2.

Exercise 2.14.4 Using Jensen’s inequality we have

E[(E[Xn\H}-E[X\4]f] E[(E[Xn - X\IT})2]
E[E[(Xn- XA\H}

E[(Xn- X)2] -* 0,

N

as ra-> 0.

Exercise 2.16.7 The integrability of Xt follows from
E[1Xt] = E[IE[XJi]]] < E[E[}]X] \Tt]] = E\X\] < oo.

Xt is J7/-predictable by the definition of the conditional expectation. Using
the tower property yields

E[Xt\Ts] = E[E[X|N]|"] = E[X\TS|=XS, s <t.

Exercise 2.16.8 Since
E[1zt] = E[laXt + bYt + c[] < [alE[]Xt ] + IBIEI]] + K < 00

then Zt is integrable. For s <'t, using the martingale property of Xt and Yt
we have

E[Zt\IB\ = aEIXtIFs] + 6E[Yt|7s] + ¢ = aXs + bYs +¢ = Zs.

Exercise 2.16.9 In general the answer is no for both (a) and (b). For instance,
if Xt —Yt the process Xf is not a martingale, since the Jensen’s inequality

E[X2]¥s] > (E[Xt]Js])2 = X2
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is not necessarily an identity. For instance B 2is not a martingale, with Bt the
Brownian motion process.

Exercise 2.16.10 It follows from the identity

E[Ne - Xa)(Yt - YS\TS = E[XtYt- XSYS\FS]

Exercise 2.16.11 (a) Let Yn = Sn —E[5n]. We have

Ynjfk — Sn+k
K K
= Yn+ Xn+ — WA n+j]-
j=l j=l
Using the properties of expectation we have

K K
E[Yn+k\Tn) = Yn+/"E [X n+j|Mn] - £ E[E[Xn+i]]J-n]
j=i j=i
K K
= Yn+1J2 UXnH] - £ E[Xn+j]
j=i j=i

= Yn.
(b) Let Zn —S2—Vor(Sn). The process Zn is an ~,,-martingale iff
E[Zn+k —Zn\ T = 0.
Let U = Sn+k —Sn. Using the independence we have

Zn+k ~ Zn

(S2#e- S2) - (Var(Sn+k - Var(Sn))
(Sn+ U)2- S@- (Var(Sntk - Var{Sn))
U2+ 2USn-Var(U),

so
E[Zn+k - Zn\Tn\ = E[U2] + 2SnE[U}-Var(U)
= E[U2) - (E[U2] - E[U}2)
= 0,
since E[C7] = 0.

Exercise 2.16.12 Let Tn = a(XKk]k <n). Using the independence

E[IFn1]=E[IX0]]---E[IXn[]<0o0,
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so \Pn\integrable. Taking out the predictable part we have

LLPn+k\"n) LLPnXn+1 memX1+K\Tn] —PnLLXn+1meeXn+"Fn]

PnE[Xn+i] mmE[X,,He] = Pn.

Exercise 2.16.13 (a) Since the random variable Y = OX is normally dis-
tributed with mean Qi and variance B2a2, then

wesx]=es ™ a\

Hence E[e0"] = 1 iff 9y + \02r2 — 0 which has the nonzero solution 8 —
—20/&2.

(b) Since eeXi are independent, integrable and satisfy E[eeXi] = 1, by Exer-
cise 2.16.12 we get that the product Zn = eeSn = eeX| mmmaXn is a martingale.

Chapter 3

Exercise 3.1.4 Bt starts at 0 and is continuous in t. By Proposition 3.1.2
Bt is a martingale with E[#2] =t < oo. Since Bt —Bs ~ 7V(0, t —s]), then
E[{Bt-Bsf] = \t-s\.
Exercise 3.1.9 It is obvious that Xt = Wt+t0 —Wto satisfies Xo = 0 and
that Xt is continuous in t. The increments are normal distributed Xt_ Xs =
Wt+o - Ws+o ~ N(0,1L- s]). If 0 <ti < mm<tn,then 0 <to <t\+10<
mm <tn+t0. The increments Xtk+tl . Xtk. Wik++o - Wtk+o are obviously
independent and stationary.
Exercise 3.1.10 Let s <t. Then we have

1

1
Xt- X4 (Wxt - WX5) S .
Tx

The other properties are obvious.
Exercise 3.1.11 Apply Property 3.1.7.

Exercise 3.1.12 Using the moment generating function, we get E[W@] = 0,
E[WH] = 312.

Exercise 3.1.13 (a) Let s <t. Then

E[{W2-t) (W 2-5)\

ENE[(W2-t) (W ?-5)}\ Ts

E (W2-3s)E[(W2-1)}\Fs

E (W2- s)5 E W*- 2sW2+s2
E[W4}- 2sE[W2] + s2=3S2- 252+ 52 = 252.
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(ib) Using part (a) we have

282

E[(W?2-1)(W?-5)]
= E[WAW?} - SE[Wf] - tE[W2}+ ts
= E[W2W2] —st.

Therefore E[W2W 2] = ts + 252.
(c) Cov{WR,W2) = E[W2W 2] - E[W2]E[Wf]=ts + 252-ts = 252.
(d) Corr(W2,W2) — = f, where we used

Var(Wf) = E[W4] - E[W22 = 312- t2 = 212.

Exercise 3.1.14 (a) The distribution function of Yt is given by

F(x)

P(Yt <x) = P(tW1/t<x) = P(W 1/t<x/t)

pxjt pxjt
J/ (I=i/t{y)dy= ; \Jt/(2ir)ety2/2dy
0 [0}

M|
f” e “ondu.
J \[2K

(b) The probability density of Yt is obtained by differentiating F(x)

: d r Ax 1 . =N =¢-
p(x) = F'(x) = ehVadu e-, V2
van w2r

and hence Yt ~ N(0,t).
(c) Using that Yt has independent increments we have

Cov(Ys,Yt) = E[YsYt}-E[YS}E[Yt]=nysYi]
= E Ys(Yt- Ys)+Ys =E[yelE[Ft- Ys\+ E ft?
= 0+5s —s.
(d) Since

Yt- Ys=(t- s)(WWt- Wo) - s(Wla- WLA)
E[Yt - Ya] = (t- s)E[WWA]- sE[WI/a- WA] = 0,
and
Var(Yt-Ys) = E[(Yt-Ys)2]=(t-s5)2"+52(s - %)

(t- s)2+s(t—s)_
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Exercise 3.1.15 (a) Applying the definition of expectation we have

fOO oo 1

1 x2 x
By =/ MTT—e Tdxs fo2x e 2 dx
1P
=vsl
(ib) Since E[|JWt]2] = E[W?2] = t, we have
Var(IWil) - E[IWIZ-E[IWiR=i--= ifl--}

Exercise 3.1.16 By the martingale property of Wf —t we have

E[W2]|F = E[W2- I\Ts] +t=W? +t-s.

Exercise 3.1.17 (a) Expanding
(Wt- Ws)3=W3- 3W?WS+3wtw 2- w3
and taking the expectation

n(Wt-W sf\Fs} = E[WB\Ts\-3W sE[W2}+3W2E[Wt\s\ -W !
= E[WB\Ts]-3(t-s)W s-W |

SO
E[W3\IS = 3(t - s)Ws + W3,

since
E[(Wt- npg3|n] - E[(Wt- Ws)3=E[W3S =0.

(6) Hint; Start from the expansion of (Wt —Ws)4.
Exercise 3.2.3 Using that e *~W is stationary, we have

E[er-"]=E[enN-]=e3(*-B).

Exercise 3.2.4 (a)

E[Xt]7-s]

E[eWt\Fs] = E [eWi~Wse Ws\Fs\

ew °E[eWt- w °\Ts\= ew °E[ew *-w %}
eW.etl2e- e/2

(b) This can also be written as

E[e~t" e WtN\Is\ = e~s/2e W,
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which shows that e t/2eW is a martingale.
(c) From the stationarity we have

E[ecWt~Ws] = EJec{W~Wk)] = E[ecWt- ‘] = e5c2(' ~*).

Then for any s <t we have

E[ecWt\Fa\ E[ec{Wt-Ws)peWsy = ggWelRfipcCwEW,)

I-b
echEfect -~ )] = edVselc () = A O

Multiplying by e 2c2 yields the desired result.

Exercise 3.2.5 (a) Using Exercise 3.2.3 we have

Cov(Xs,Xt) E[XN] - E[XS]E[Xt] = E[XsXt]- e”e82

= E[e"+W]- e”e82=E[ewt~w'e2 ~ wA] - e”2es/2
= E[eWI~WS]E[e2(Ws~Wb'F- ene*'2=e"Ne2s- eNed2
= N - e«tN)/2

(b) Using Exercise 3.2.4 (b), we have

E[XaXt] = b\wxaxb\?] = E XSE[Xt\Ts\
= e'2E\xsE[e-t/2Xt | F5]] = e”2E \xae_s/2X
= e(t_s)2E[X2] = e{t~s),2E[e2W\
= e(*«)/2e2s=¢ ",

and continue like in part (a).

Exercise 3.2.6 Using the definition of the expectation we have

E[e2W®] = j e25,Mx)dx =~ = j ee~21 dx
Ax dx —
= 7w 1le v/T=4T

if 1—At > 0. Otherwise, the integral is infinite. We used the standard integral
I e ax2 _ ~yn/a~a > 0.

Exercise 3.3.4 (a) It follows from the fact that Zt is normally distributed;
(6) Differentiate the moment generating function and evaluate it at n = 0.
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Exercise 3.3.5 Using the definition of covariance we have

Cov(zaZt) = E[Zazt\- E[Z8|E[Zt] = E[Zazt\
=g f wuduml wedv WnWv dudv
| ffo Jo 1JO Jo

t rs rt dd
E[WuWv]dudv = / / min{u,v} uav
Jo Jo
= s<t
Exercise 3.3.6 (a) Using Exercise 3.3.5
Cov(Zt, - Zt_h) Cov(Zt,Zt) - Cov(Zt,Zt_h)

t t—

3 -~ -1 6

-t2h +o(h).

(b) Using A - Zt-h :ﬂh Wudu = hwt + o(h),

Cov(Zt,Wt) = —Cov(Zt,Zt —Zt_h)

= 1&b +°W) =h 2

Exercise 3.3.7 Let s < u. Since Wt has independent increments, taking the

expectation in
ewatwt _ ewt-w se2(wa-w 0)

we obtain
E[eWs+W]

E[eN-"}E[e2r -N} = e e B

e2e =g 2¢Ninlst

Exercise 3.3.8 (a) EpQ] = E~"8|ds = fg E[es/2]ds = 2(et/2 —1)
(b) Since Var(Xt) —E[X2] —E[Xt]2, it suffices to compute E[X2]. Using
Exercise 3.3.7 we have

E[XQ] = e[ !

eWtdsmf eWudu] =e[ f f &Wse WU dsdu
-Jo Jo J

mjo Jo
tort U‘ES .
f f E[eWstWu}dsdu= f [ & 2 9mints.tpdsdu
Jo Jo J® Jo

“ e~2~esduds + / / 2 eududs
D\ J ID2

=L éi'eclost (¥ 2~250H)
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where 1?i{0 <s <u < i} and 172{0 < n < s < t}. In the last identity we
applied Fubini’'s theorem. For finding the variance, use the formula Var(Xt) =
E[X2}- E[Xt]2.

E xercise 3.3.9 (a) Splitting the integral at t and taking out the measurable
part, we have

E[rT\b] E[ r Wu du\Tt] = E[ f Wudu\Ft] + E[ r Wu du\7t)
Jo Jo Jt

= Zt+E[J Wudu\Tt\
Zt+E [j\wu-W t+ Wt)du\Tt]
Zt+E [\ wu- Wt)du\Tt] + Wt(T - t)
= zt+E[j\wu- wt)du] + Wt(T - t)

= Zt+ I E[Wu-W t\du + Wt(T -t)
= Zt+ Wt(T —1),

since E[WuU - Wt) = 0.

(b) Let 0 <t < T. Using (a) we have

E[ZT- TWT\R] = E[ZTt\- TE[WT\R)
= Zt+WiH(T-t)-TWt
= Zt-tWt.

Exercise 3.3.10 (a)

rT
E Wtds\Ft E'j\ws-Wt + Wt)2ds\Tt]

EJ (W3-W t)2ds\AM]
w26 ) Tweews - wiy delsi] +E[J TwedsiTt

E [ {W Wt)2ds

+2WLE Wt)ds +E W2(T-t)\Tt
Jfw " T
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rT-t
El W 2du +2WtEJ- W,du +WNT-t)
0

= 2(T-t)2+WAT-t).

(b) Using part (a) we have

i |
E YT\ EJ W2ds-TW $ + T 2\T

= E . W20\TU - TE WANTE 1T,

L W2ds + \(T-1)2+ W 2(T-1)-TW 2-T (T -t) +)T2
0

lWZdS +-tW 2+ -2t2= Ys.

Exercise 3.4.1

E[VT \R]

E efo W*du+ft dug t

efow*duE djitt we Avi

= e/oH /uduE er-IEWU'W t)dU+(T—t)WtA

Me (T- )WLENftT(wu- w t)du\jrt

ViteP-W*E .ft (Wu-wt)du
Uterrg XMWrdT

Vte<r-t)wte

Exercise 3.6.1

F(x) = P(yt<x) =P(pt+ Wj<x = PWA£< x —fit)
rx—flit
e 2 du
n)

Exercise 3.7.2 Since

}P 1
<p) = -Xe 2t ¢
Jo *
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use the inequality
1—X2 <e-d <1
to get the desired result.

Exercise 3.7.3 (a) The mean can be evaluated as

roc roo 1 2
ER\ =/ xpt{gdx = / - afe o cfe
? o s g
= JI0 )’1/2e~24dy=V2tJ!) z2_1
/—"/34

(6) Since E[f7] = E[VFi(t)2 + W2(f)2] = 21 then

Var(Rt) = 2 t-~ =2¢t(1-7).

Exercise 3.7.4

v E[X(] /T
B A = — =-Nyr =yAN ! r’\°°;
Far(Xt) = ~Var(Rt)=](1-1J) >0, i -»00.

By Proposition 2.14.1 we get Xt — 0, £-> 00 in mean square.
Exercise 3.8.2

P(Nt —Ns =1 = X(t- s)e-x™ 9
= Xt —s) (I —A(t —s) +o(t —9))
= At —s) +o(t —).

P(Nt-Ns>1) = 1- P(Nt- Ns=0)+P{Nt- Ns=1)
= 1- e-A(t-*) _ A* _ Ae-A(t-e)
= 1—I1—A@{—s) +o(t =)™
—X(t —s) ™M —A(i —s) + o(t —8)j
= At —s)2=o0(t —9).

Exercise 3.8.6 Write first as
N2

Nt(Nt - Ns) + NtNs
= (Nt- Ns)2+ Ns(Nt- Ns)+ (Nt - Xt)Ns + XtNs,
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then

E[7V2[s]

E[(Nt - Na)2\T3] + NsE[Nt - iVs|jrs] + E[Nt - X{\TSJNS + AN
= E[(Nt- Ns)2]+ NsSE[Nt - Ns}+ E[Nt- A}Ns + XtNs
= X(t-s) +X(t- s)2+ XtNs + N2 - XsNs + XtNs
= X(t—s) + XR(t —s)2+ 2X(t —s)Ns + N2
— Xt —s) + [Ns + A(t —s)]2.
Hence EfiV2!*] ¢ N2 and hence the process N2 is not an .~-martingale.
Exercise 3.8.7 ()

mNt(x) = E[exNt}=" e xkp(Nt = k)
k>

>
— Eexke--Xt—)Et\k
= e~XteXeX = ext(ex-"
(b) E[iV2] = m'Nt(0) = A2/2+ Xt. Similarly for the other relations.
Exercise 3.8.8 E[X*] = E[e™] = Ty (1) = ex™e~T\

Exercise 3.8.9 (a) Since exMt = ex(N~X) —e_ntxe xN® moment generat-
ing function is

mMt(x) = E[exMt] = e- XixE[exNi]
g—AtXgAt(ex—1) _ "NA4(ex—x—1)
(b) For instance
E[Mf] = m%t(0) = At.
Since Mt is a stationary process, E[(Mt —M5s)3] = A(t —s).
Exercise 3.8.10

Var[(Mt-M s)2]

E[(Mt - Ms)4]- E[(Mt- Ms)2p
A(t —S) + 3X2(t —s)2 — A2(t —s)2
X(t —s) + 2X2(t —s)2.

Exercise 3.11.3 (a) E[P7t] = E JANudu = E[iVuldu = J*Xudu —A®?

Nt
(b) E[£ SK =E[tNt- U] = tXt
o

X2 Xt2
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Exercise 3.11.4 (a) Use associativity of addition.
(b) Use that T\, e»m, Tn are independent, exponentialy distributed, with E[T)t] =
/n.

Exercise 3.11.6 The proof cannot go through because a product between a
constant and a Poisson process is not a Poisson process.

Exercise 3.11.7 Let px{X) be the probability density of X. If p(x,y) is the
joint probability density of X and Y, then px(x) = "2yP(x,y). We have

EEIXTY =yIP(Y =y) = W Hexawy5(X\)P (Y =y)dX
y>0 y>0J

xp{x.y) _
_ é/P(Y 2y POY =) dx

| x~2p{x,y)dx
- />0

= J/xpx(x)dx = E[X],

Exercise 3.11.9 (a) Since Tk has an exponential distribution with parameter

Ele /\J-[) e~ax\e~Xxdx = Abo

U = T+ 2T3+ 3T4+ eee+ (n—2)Tn_i + (N —1)Tn + {t —Sn)n
= T2+ 2T3+3Ta +eee+(n—2)Tn_i + (n —1)?1 + nt
—A(T\ + T2+ eee+ )
= nt—[nTi + (h —1)T2 H-—--+ Tn\
(c) Using that the arrival times S*, £= 1,2,... n, have the same distribution

as the order statistics U”) corresponding to n independent random variables
uniformly distributed on the interval (0,£), we get

E UUNt=n = SK)\Nt = n]
= el e =1t/W] = e VIE[eD  It/i;
= o TIRENL )]
= ¢ N1/ o dx 1.rlea><ndxn
t Jo <Jo

(1-e
<ntn
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(d) Using Exercise 3.11.7 we have

IE = AP(7TVt=nE <Y Nt=n
n>0
— Ee~xtn\n (1 - e<8§fyn
- = N erntn

o NNt-e-cr)<7-N.

Exercise 3.12.6 Use Doob’s inequality for the submartingales Wf and W\
and use that E["2] = t and E[JW]] = #2t/ir, see Exercise 3.1.15 (a).

Exercise 3.12.7 Divide by t in the inequality from Exercise 3.12.6 part (b).
Exercise 3.12.10 Leta =nandr =n + 1. Then

2N AM(n+1

E  sup < (n+ 1)

n<t<n=

The result follows by taking n —o00 in the sequence of inequalities

4A(n + 1)
O<E (— - 2] < su --A <
( t a)l] © <t<ﬁzl< t )' n*
Chapter 4
Exercise 4.1.2 We have
ifc<t

ol ife> t
and use that 0, Q ¢ Tt.
Exercise 4.1.3 First we note that

{o;T(M) <t} = (J {w; [Wsw)] > K}. (12.0.1)

O<s<t

This can be shown by double inclusion. Let As = {w; [Ws(0)] > K}.

«c ” Let y 6 {w;t(lj) < t}, soinf{s > o; [W&(ci)] > K} < t. Then exists
T>un >t such that [Wu(u))] > K, and hence w G Au.

“39 7 Let U 6 Uoss<i(u;a™-M | —K3}- Then there is 0 < s <t such that
IWs(&)] > K. This implies t(uj) <s and since s <t it follows that t(cj) <t.
Since Wt is continuous, then (12.0.1) can also be written as

{wirw<e€}=  (J {u WU\ > K},

O<r<t,reQ



Hints and Solutions 293

which implies (o;;r(w) <t} GTt since {w; [W(w)] > K} GTt, for 0 <r <t.
Hence r is a stopping time. It is worth noting that P(t < 00) = 1.

P({WrH<o00})

p(U{w;IWeW] > tf}) > P({u-\Ws(a)\ > K})

O<s
= 1—J 1 e xdy >t 2K 5200
<o v27rs V27ts
Exercise 4.1.4 Let jFim = [a + —"]. We can write

w;r<4=P [J {wXxre£ifm}Giz
m>lr<t,reQ

since {cj; NKm} = {u; Xr Gutm} GJr C J™
Exercise 4.1.6 (a) No. The event J1={w; Wt(w) has a local maximum at time t}
is not in cr{Ws;s <t} but is in cr{Ws;s <t + e}.
Exercise 4.1.9 (a) We have {w;cr <i} = {w; T<t/c} ETt/CcC Tt-
() {w;/(r) <t} ={w;t </_1(0) = c since /_1(r) <I-
(c) Apply (6) with f(x) = ex.
Exercise 4.1.11 If we let G(n) = {x [x—a] < *}, then {a} = Hn>i G(n).

Then tn = inf{t > 0; Wt G G(n)} are stopping times. Since supnrn = r, then
r is a stopping time.

Exercise 4.2.3 The relation is proved by verifying two cases:
(M Iflo G{a;; T > t} then (r At)(w) =t and the relation becomes
Mt(u) - Mt(u) + MT(u) - Mt(u).

(i) fwG{w;r < i} then (r Ai)(w) = 7(w) and the relation is equivalent to
the obvious relation

MT= MT.

Exercise 4.2.5 Taking the expectation in E[Mr |J>] = MQvyields E[Mr] =
E[Mg], and then make a = 0.

Exercise 4.3.9 Since Mt = W8 —t is a martingale with E[M*] = 0, by the
Optional Stopping Theorem we get EIMT = E[Mo] = 0, so E[W2d —ra] = 0,
from where E[ra] = E[W2 = a2, since WTa = a.
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Exercise 4.3.10 (a) We have

F(a) =P(Xt<a) = 1- P(Xt>a)=1- P(max > a)

O<s<t

(00]
= 1-—P(Ta<t) —1—i= |  eyd/uy
V 21 Na\/y/t

roo n o P®O 2
— [ e~y l2dy---—== ey dy
v 271 JO v27r J\al/V~t
2 r'W/ Vi
/ e~y | dy.
\/2n Jo

(b) The density function is p(a) —F'(a) = -J"ie~a2"2t\ a > 0- Then

E[Xt] = dx = JI=T xe~xaw dy=.1+*
X Jo *p(x) dx éZITtJo q/ VT
y2e y dy
2
Var(Xt) = E[X2Z}-E[XtR=t(l-"y

Exercise 4.3.11 (b) h(x) = -j=e « 2 —
Exercise 4.3.16 It is recurrent since P(3t >0:a < Wt <bh) = L
Exercise 4.4.4 Since

P(Wt>0Ei <t <t2)= I\p(Wt ¢ 04i <t <t2) = ﬁarcsinbhyrz,
using the independence

P(WI >0,W2) =P(WI >0)P(W2>0) =~ (arcsin™ ] )2

The probability for Wt = (W}, W 2) to be in one of the quadrants is equal to
~,reriny | )2
Exercise 4.5.2 (a) We have
P(Xt goes up toa) — P(Xt goes up to a before down to —o0)
g2MB_ i

— lim = =1,
/3-10c e2"P —e 27a
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Exercise 4.5.3

P (Xt never hits —/3 = P(Xt goes up to oo before down to —(3)
en/3 _ N

a—o00 e2 —g—2/xa

Exercise 4.5.4 (a) Use that E[Xy] = apa —/3(1 —pa); (b) E[X].] = a2pa +
£2(1 ~Pa), with pa = ; () Use Var(T) = E[T2] - E[T]2.

Exercise 4.5.7 Since Mt = V2 —t is a martingale, with E[Mt] = 0, by the
Optional Stopping Theorem we get E[Wy —T] = 0. Using Wt = Xt —pT
yields

E[Xf. - 2/XTXr +n2T 2}= E[T].
Then

e[ 3= ELTHL + 20E[XT})-E[X 2}

Substitute E[Xr] and E[X],] from Exercise 4.5.4 and E[T] from Proposition
455,

Exercise 4.6.11 See the proof of Proposition 4.6.3.
Exercise 4.6.12

LT = =i(apa+/31l-w)) =511

Exercise 4.6.14 (b) Applying the Optional Stopping Theorem
wecMT-\T{eC-c-1)] _ e jXq] _ x

E [eca-A T/(c)] = X

E[g-AT/(c)] = g—¢

Let s = /(c), so ¢ —v?(s). Then E[e_AsT] = e~a" s\
(c) Differentiating and taking s = 0 yields

—AE[T] = -ae-a™oY (0)
= ~aW ) =
so E[T] = oo.
(d) The inverse Laplace transform £-1 cannot be represented by

elementary functions.
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Exercise 4.9.9 Use E[(\Xt\- 0)2] = E[|XtB] = E[(Xt- O)2].
Exercise 4.10.3 (a) L = L
(b) A computation shows

E[(X4- 1)2] = E[X2-2Xt+1) = E[X2]-2E[Xt\+ |
- Var(Xt) + (E[Xt] - 1) 2.
(c) Since E[Xt] = 1, we have E[(Xt —I)2] = Var(Xt). Since
Var(Xt) = e_tE[em] =e~\e2l- e') = e*- 1,
then E[(Xt —I)2] does not tend to 0 as t —o00.

Exercise 4.11.4 Since Mt and Nt are martingales, then Mt + Nt and Mt —Nt
are also martingales. Then (Mt+Nt)2—M+N, M+N)t and (Mt—Nt)2—M —
N,M —N)t are martingales. Subtracting, yields MtNt —(M, N)t martingale.

Exercise 4.11.8 (a) E[(dWt)2 —dt2}= E[(dWt)2}—dt2 = 0.

(b) Var((dwt)2- dt) = E[(dW2- dt)2) = E[(dWt)4 - 2dtdWt + dt2}
3st2 —2dt w0 + dt2 = Adt2.

Exercise 4.12.2 (a) dtdNt = dt(dMt + Adt) —dtdMt + Adt2=10
@) dWtdNt = dWt(dMt + Adt) = dWtdMt + AdWtdt = 0.

Chapter 5

Exercise 5.2.3 (a) Use either the definition or the moment generation func-
tion to show that E[jy#] = 312. Using stationarity, E[(W<—Ws)4}= E[W1tL J =
3(t —s)2.

(c) Var( /. WtdWt) = E[(/ WtdWt)2]=E[-W2+ -T2- -TW2\=
JO Jo 4 4 1 1

Exercise 5.6.4 Y ~ N{0, tdt) =n(o, \{T2- 1))
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Exercise 5.6.5 Normally distributed with zero mean and variance
Me2**-)ds = he2t- 1)
Jo 2

Exercise 5.6.6 Using the property of Wiener integrals, both integrals have

: 713
Zero mean and variance —
o

Exercise 5.6.7 The mean is zero and the variance is i/3 —0 as t —=0.

Exercise 5.6.8 Since it is a Wiener integral, Xt is normally distributed with
zero mean and variance

J Ea + HJ\Zdu —(a2+ b—2+ab)t.

Hence a2+y +ab =1

Exercise 5.6.9 Since both Wt and f* f(s)dWs have the mean equal to zero,

Cov(wt,J* f(s)dws) E[Wt, I* /(e) dWs] = E[J* dWs jf /(e) dWs]

E[f f(u)ds] = [ f(u) ds.
Jo Jo
The general result is
Cov(wt,J* /(e) dws) = J* /(e) de.

Choosing /(u) = un yields the desired identity.
Exercise 5.8.6 Apply the expectation to

ivt

(E/(m&)) =E /A" +2E/NO)/(5)).
fe=l A=l %

We have

Er rTeksts

Jo
Var| Xeksts) = N (e2fcT-i).
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Chapter 6
Exercise 6.1.6 Let Xt — eWidu. Then
dct = g7 j = WXLAX tE teWdE- X Wl FSWE b

Exercise 6.2.4
(@) eWt(l + \Wt)dt + eWt(l + Wt)dWt\
6) (6Wt + 10e5WH)dWit + (3 + 25e5W)dt;
(c) 2et+w?(l + W?)dt + 2et+w?WtdWH,

d nt+wtn-2((t+wt+ Vv )dt+ (t+ wt)dwty,

Exercise 6.2.5

d(tW2) = td(W2) + W2dt = t(2WtdWt + dt) + W2dt = {t+ W2)dt + 2tWtdW.

Exercise 6.2.6 (a) tdWt + Witdt;
ob) e\wtdt + dwt);
(c) (2 —t/2)icos W* dt —t2sin WtdWt;
(d) (sint+ W2cos t)dt + 2sin t Wt dWt\

Exercise 6.2.9 It follows from (6.2.11).
Exercise 6.2.10 Take the conditional expectation in

M2=M8+2f Mu_dMu+ Nt-N s

S

and obtain

E[M2TS = M2+ 26 dMU\Fs]+E[NE\TS] -N s

= MI + E[Mt + \t\Fs}~ Nt
= MM+ Ms + Xt —Ns
= MI + X{t-s).
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Exercise 6.2.12 Integrating in (6.2.12) yields

F-F+f 3 iW+S: d dwl
One can check that = Fs.

Exercise 6.2.13 (a) dFt=2WtdWtl + 2W?dW? + 2dt;

2 2
0 dFt= 2WHIW} + 2W2dW?

Qj
Exercise 6.2.14 Consider the function f(x,y) = vAR +y2. Since X
X df y

1
y/x2+y2 dy ij2+yi>A1E - Zp/»_a_ly we get

Chapter 7
Exercise 7.2.4 (a) Use integration formula with g(x) = tan-1 (x).
rT 1 rT i T 2W,
1+ Wt
= 0.

(c) Use Calculus to find minima and maxima of the function ip(x) = (1 +%2)2"

Exercise 7.2.5 (a) Use integration by parts with g(x) =ex and get

[ ewt(iwt =ewT _r
Jo

1 F ewtdt
210

J

(b) Applying the expectation we obtain
E[eWr]=1+\ f E[eW]dt.
2 Jo

If let b(T) = E[elT], then ¢ satisfies the integral equation

dr)=1+\ fTOYdt-
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Differentiating yields the ODE ¢'(T) = ~(T), with (0) = 1. Solving yields
®(T) —eT72.

Exercise 7.2.6 (a) Apply integration by parts with g(x) = (x —I)ex to get
r WteWwdwt = I ¢"(Wt)dwt = g(WT) - ¢{0)- | T g¢"(Wt)dt.
Jo Jo z Jo

(b) Applying the expectation yields

E[WTeWT] = E[eWT] - | +I2 f  \E[eWt]+E[WteW] dt

Jo

i J T(e'72+ E[WteW]) dt.

Then ¢(T) = E[W/’en/T] satisfies the ODE ¢'(T) —p(T) = eT/2 with ~~0) = 0.

Exercise 7.2.7 (a) Use integration by parts with g(x) = In(l + x2).
(e) Since In(l + T) < T, the upper bound obtained in (e) is better than the
one in (d), without contradicting it.

Exercise 7.3.3 By straightforward computation.

Exercise 7.3.4 By computation.

Exercise 7.3.15 (b) ie6sin(2W3); (c) 4-1).
Exercise 7.3.16 Apply Ito’s formula to get

Mt, wt) (dMt, Wt) + 1d®4>(t, Wt))dt + d M t, Wt)dWt

= G(t)dt + f(t, Wt) dWt.

Integrating between a and b yields

A>EWEONa = 1* G(t) dt + 1° f(t,W t)dWt.
Ja Ja

Chapter 8

Exercise 8.2.2 (a) Xt = 1 +sint —f* sinsdWs, E[X(] = 1 + sint, Var[Xt\=
Jg(sins)2ds = | —]sin(2t);

(b) Xt =et- 1+ £ ATsdWs, E[Xt] = e4- 1, Var[Xt) =

()Xt=1+iIn(l +12) + /G532 E[X(] = 1+ xIn(l +*2), Far(Xf) =
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Exercise 8.3.6 (a) Xt = \W3—Wt + e4 (b) Xt = ~ tWt —cost;
() Xt=eW~i + %; (d) Xt=e'RsinWt+ %+ 1L

Exercise 8.3.7 (a) Xt = \W? + tWf, (b) Xt = \W.f + t2Wt- §;
(c) =e*Wt - cosWt+ 1 (d) Xt =teW + 2.

Exercise 8.4.5 (a)

Xt = (@WtdwWt + dt) + Wtdt + tdWt
d(W2) +d(tWt) = d(tWt + WR)

so Xt = tWt + We.
(ib) We have

dXt = {2t- AWt)dt+ jdWt
= 2t +d(jWt) = d(12+ -W 1),

so Xt=t2+\Wt- 1- Wi
(c) dXt = teil2Wtdt +e~dWt = d(e”2Wt), so Xt = ell2Wt.
(d) We have
dXt = t(2WtdWt + dt) - tdt + W?dt
= td(W}) i U’-rff - irfft2)

= «K -£),

so Xt =tWt-£ .
(e) dXt =dt +d(VtWt) = d(i + \ZtW), so Xt =t + y/tWt —WA\.

Exercise 8.5.4 (a) Xt —Xoe4t + l(l —e4t) + 2J ed™ s dWs\
0

(b) Xt =X0e3t+ J(1- e3t) +e3tWt;
() Xt=e<(X0+ 1+ W 2- - 1
(d) Xt =X0edt _A_ (i _e«) +edtWt.

(e) X4= Xoe42 —2t —4 + 5e*2 —e4cos W,
(/) X( = X0e-"+e-",

Exercise 8.8.2 (a) The integrating factor is pt = e~JoedWi+jJo°

e ~w'hich transforms the equation in the exact form d(ptXt)

301
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Then ptXt = X0 and hence Xt = X{paWi~"rt.

(6) pt = e~alll+~ b, d(ptXt) = ptXtdt, dYt = Ytdt, Yt = Yoe(, ptXt = XQ\
Xt = X0 ~ t+aWkK

Exercise 8.8.3 otdAt = dXt —aAtdt, E[A]] = 0, Var(At) = E[AZ =
F Jo EP"]2ds =

Exercise 8.10.1 Integrating yields Xt = Xo + Jq(2Xs +e2s)ds +  bdWs.
Taking the expectation we get

E[Xt] =X0+ f (2LUXa] + e2s)ds.
Jo

Differentiating we obtain f'(t) —2f(t) +e2t, where f(t) = E[Xt], with /(0) =
Xo- Multiplying by the integrating factor e~2t yields (e~2tf{t))' = 1. Inte-
grating yields f[t) = e2t(t + XO0).

Exercise 8.10.6 (a) Using product rule and Ito’s formula, we get

A{W2eWt) = eWt(l + 2Wt + | WR)dt + e WH2Wt + W?2)dWit.

Integrating and taking expectations yields
EW2eW] =] (E[eWs] + 2E[Wsew ‘] + "E[W2e Ws]j ds.

Since E[ew°] = e*/2, E[W8&w™* = te”2, if let f{t) = E[W?eW], we get by
differentiation

/'(*) = e -h2te2 + /(0) = 0.

Multiplying by the integrating factor e- *2 yields (/(4)e- */2); = 1+ 21 Inte-
grating yields the solution fit) = t{1 + t)et"2.
(6) Similar method.

Exercise 8.10.8 (a) Using Exercise 3.1.17

E[Wd - 3i2]R]

E[WH#\T] - 3t2
3(t- s)2+6(t- SYW2+ W4- St2
= (W4- 3s2) +6s2- 6ts +6(t- s)W2¢h W4- 3s2.

Hence W4 —312 is not a martingale.
() EfWTFI=W3+3[t—s)iysd W3, and hence W3 is not a martingale.



Hints and Solutions 303

Exercise 8.10.10 (a) Similar method as in Example 8.10.9.
(6) Applying Ito’s formula

d(cos(aWt)) = —a sm(aWt)dwWt — cos(aWt)dt.

£
Let f(t) —E[cos(<rwi)]. Then f'(t) = ~~f(t), /(0) = 1. The solution is

(c) Since sin(t+ <rWt) = sin icos(crWt) +cost sin(crWt), taking the expectation
and using (a) and (b) yields

E[sin(i + aWt)] = sinflE[cos(crW4)] = e* “Z*sini.

(d) Similarly starting from cos(€ + crWt) = costcos(crWt) —sintsin(crVFt).

Exercise 8.10.11 From Exercise 8.10.10 (6) we have E[cos(W*)] = e-"2.
From the definition of expectation

[e]e) _Si
E Wi :J cosx—?lze at dx.
[cos(Wi)] . Vbrt

Then choose t = 1/2 and t = 1to get (a) and (6), respectively.

Exercise 8.10.12 (a) Using a standard method involving Ito’s formula we
can get E(Wtebwt) = btc~12. Let a = 1/(21). We can write

J2

[ xe ax2+ixdx = Vbrt [ xebx—g=¢ 2 dx
J J rrt
= V2MNE(Wtebw') = vaVitbien2= 3 =T 0 sua
The same method for (b) and (c).
Exercise 8.10.13 (a) We have
v tzn 2n)\tn =v , 1w _~
1 $2n),\ 2nm\ " > 2nn\
n>0 n>0
= e~t3'2

(b) Similar computation using E[VF2n+1] = 0.
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Chapter 9
Exercise 9.2.2 A= £4=\ELi =
Exercise 9.2.4 (a) We have

XX(t) = x®+ W\(1)

X2(t) * + [ X1(s)dW2(s)

Jo

B+ x\W2{t) + J[ Wx(s)dW 2(s).
0

Exercise 9.5.2 (c) E[r] is maximum if b—x0 = xo—a, i.e. when xq = (a+b)/2.
The maximum value is (b —a)2/4.

Exercise 9.6.1 Let = min(fc,r) /*r and Kk ™ 00. Apply Dynkin’s formula
for  to show that
E[rd <i(i?2- [a]2),
and take k —>00.
Exercise 9.6.3 x° and x2-n.
Exercise 9.7.1 (a) We have a(t,x) = x, ¢(t,x) = x <M = xea~ and
u(t,x) = ffT xes~bds = x(eT~ —1).
(b) a(t,x) = tx, c¢(t,x) = —mx, cp(s) = xe~2-*2)/2 and

rT - p ,2
u(t,x) = —J{ In(sen2-272) ds = AT —§) I_In>K+ 6—(T +1)-— .

Exercise 9.7.2 (a) u(t,x) =x(T —t) + \(T —)2.
(b) u(t,x) = Jex(e2(r_* —I).

(c) We have a(t,x) = px, b(t,x) = ax, ¢(t,x) = The associated diffusion is
dXs = fiXgds + Xt = x, which is the geometric Brownian motion

X. = xer -\ -f)+ A waWt)  S>L

The solution is

u(t,x) E[jf xe(M-22)(*)+@e -~ )ds

KI* e(M-1(«-i))(s-t)er2(*-")/2

= X efrs-Vds =1 - 1).
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Chapter 10

Exercise 10.1.7 Apply Example 10.1.6 with n = 1

Exercise 10.1.8 Xt = J™h(s)dWs ~ N(0, fg h2{s) ds). Then eXt is log-
normal with E[ex‘] = e”Var® = e¢”o0 h(s)2ds.

Exercise 10.1.9 (a) Using Exercise 10.1.8 we have
E[Aft] = E[e-tiu(s)dWse -y o u(s)*ds]
e-Rlous)2dsEfe~lo A =egkB()2de50uE)2 = 1.
(b) Similar computation as (a).

Exercise 10.1.10 (a) Applying the product and Ito’s formulas we get
d(ei/2cos Wt) = —e-4/2sin Wt dWit.

Integrating yields

which is an Ito integral, and hence a martingale; (b) Similarly.

Exercise 10.1.12 Use that the function f(x 1,0:2) = eXl cos x2 satisfies [/ =
0.

f(x) = x2; (b) f(x) = a3; (c) f(x) = xn/(n(n —1));

Exercise 10.1.14 (a)
f(x) = sin(cx).

(d) 1{x) =e”; (e)

Exercise 10.3.10 Let Xf = aﬂﬁeazf’ dBs. The quadratic variation is

Then apply Theorem 10.3.1.

Exercise 10.3.11 (a) By direct computation;
(6) Let Xt —JqequdWu. The quadratic variation is

Applying Theorem 10.3.1 yields the result.
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Exercise 10.4.15 (c) We evaluate EM[Xt] in two ways. On one side EM[XT1] =
0, because Xt is a Q-Brownian motion. On the other side, using Girsanov
theorem

EQIX] = Ep[XtMT\=Ep ,,

X124 e~ £T3Ep [Whe~xfo s (WP]EP [e~A& 5 Wb

X2 + Ep [Wte~xfo sdWs]e~

Equating to zero yields

Ep [Whe~xfo sdWs] —

Chapter 11
Exercise 11.2.2 (a) Integrating yields

vt =gt+ f vsdWs,
Jo

so E[vt] = gt.
(b) at —g + avtMt, E[af] = g.
(c) Multiply by the integrating factor pt —e“TU'+2'7 1 and obtain the exact
equation
d(ptvt) = ptgdt.

Integrating we get

vt=ge°w'-\°~ f e-M'H " 2*ds.
Jo

Exercise 11.2.3 (a) Solving as a linear equation yields
vt = e~2t + 0.3e~2*J[ e2sdWs,
0

and hence vt is normally distributed with mean /i = e~2t and variance a2 =
N (1 - e~4t). In our case 4 = 0.00247875 and a2 = 0.0224999, a = 0.15.
Then

P(v3<05) = < 0-650) = 0.74.
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Exercise 11.3.1 (a) Substitute t = h in formula
N(t) = N(O)e~xt +ae~xt [ eXsdWs.
Jo

Then take the expectation in
N{O) +ca [ eXsdWs = }eXhN{O)
Jo

and obtain Ar(0) = “E[eAgjV(0), which implies the desired result.
(6) Jensen’s inequality for the random variable h becomes E[e//] > elLix".
This can be written as 2 >

Exercise 11.3.2 (a) Use that N(t) = N(0)e~Xt. (b) t ——In0.9)/A.
Exercise 11.4.1 (a) Qo(") =cle~l + C2e~2t. (c) Qt = Q\ + Qo(t)-

Exercise 11.4.2 (a) Let zZt = (Xt,Yt)T and write the equation as dzt =
AZt + KdWt and solve it as a linear equation. (6) Use substitutions Xt = 0t,
Yt = ot.

Exercise 11.5.1 (a) Pt is log-normally distributed, with

P{Pt<X = p~poefoa(s)ds-P2/2+pBt"

=RGiri + -\L 458
where Fy, =\, € 2.

Exercise 11.5.3 The noisy rate is rt = a(t) + soa(™ = The expec-
tation is given by E[Pr] = Poe”® a™ ds = Poet3/3. Then T = (31MM2)1/3.
Exercise 11.7.1 dCt = a(Co —Ct)dt -I- bEdt + bdBt + adWt.

Exercise 11.7.2 Use formula (11.7.37).
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Gamma distribution, 23
generator, 200

of an Ito diffusion, 200
geometric Brownian motion, 51
Girsanov’s theorem, 215, 232, 236
Gronwall’s inequality, 196

hitting time, 88

independence, 17
independent
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input process, 265
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limit
in distribution, 39, 104
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model, 2
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Markov’s inequality, 34, 183
martingale, 43

martingale convergence theorem, 106
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measurable function, 13

moment generating function, 22
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normal distribution, 21
Novikov’s condition, 218

Optional Stopping Theorem, 77, 205,
208

Ornstein-Uhlenbeck process, 180, 183,
184, 229, 249

Pearl, 256
Pearson distribution, 24
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sample space, 11
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standard deviation, 19
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time, 73
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symmetric, 108
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total variation, 111
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uniform distribution, 68
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