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Foreword

From First Edition

A senior-level undergraduate course entitled “Vibration and Flutter” was taught 
for many years at Georgia Tech under the quarter system. This course dealt with-' 
elementary topics involving the static and/or dynamic behavior of structural ele­
ments, both without and with the influence of a flowing fluid. The course did not 
discuss the static behavior of structures in the absence of fluid flow because this is 
typically considered in courses in structural mechanics. Thus, the course essentially 
dealt with the fields of structural dynamics (when fluid flow is not considered) and 
aeroelasticity (when it is).

As the name suggests, structural dynamics is concerned with the vibration and 
dynamic response of structural elements. It can be regarded as a subset of aero­
elasticity, the field of study concerned with interaction between the deformation of 
an elastic structure in an airstream and the resulting aerodynamic force. Aeroelastic 
phenomena can be observed on a daily basis in nature (e.g., the swaying of trees in 
the wind and the humming sound that Venetian blinds make in the wind). The most 
general aeroelastic phenomena include dynamics, but static aeroelastic phenomena 
are also important. The course was expanded to cover a full semester, and the 
course title was appropriately changed to “Introduction to Structural Dynamics and 
Aeroelasticity.”

Aeroelastic and structural-dynamic phenomena can result in dangerous static 
and dynamic deformations and instabilities and, thus, have important practical con­
sequences in many areas of technology. Especially when one is concerned with the 
design of modern aircraft and space vehicles—both of which are characterized by 
the demand for extremely lightweight structures—the solution of many structural 
dynamics and aeroelasticity problems is a basic requirement for achieving an oper­
ationally reliable and structurally optimal system. Aeroelastic phenomena can also 
play an important role in turbomachinery, civil-engineering structures, wind-energy 
converters, and even in the sound generation of musical instruments.
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Aeroelastic problems may be classified roughly in the categories of response 
and stability. Although stability problems are the principal focus of the material pre­
sented herein, it is not because response problems are any less important. Rather, 
because the amplitude of deformation is indeterminate in linear stability problems, 
one may consider an exclusively linear treatment and still manage to solve many 
practical problems. However, because the amplitude is important in response prob­
lems, one is far more likely to need to be concerned with nonlinear behavior when 
attempting to solve them. Although nonlinear equations come closer to representing 
reality, the analytical solution of nonlinear equations is problematic, especially in 
the context of undergraduate studies.

The purpose of this text is to provide an introduction to the fields of structural 
dynamics and aeroelasticity. The length and scope of the text are intended to be 
appropriate for a semester-length, senior-level, undergraduate course or a first-year 
graduate course in which the emphasis is on conventional aircraft. For curricula that 
provide a separate course in structural dynamics, an ample amount of material has 
been added to the aeroelasticity chapters so that a full course on aeroelasticity alone 
could be developed from this text.

This text was built on the foundation provided by Professor Pierce’s course 
notes, which had been used for the “Vibration and Flutter” course since the 1970s. 
After Professor Pierce’s retirement in 1995, when the responsibility for the course 
was transferred to Professor Hodges, the idea was conceived of turning the notes 
into a more substantial text. This process began with the laborious conversion of 
Professor Pierce’s original set of course notes to LaTeX format in the fall of 1997. 
The authors are grateful to Margaret Ojala, who was at that time Professor Hodges’s 
administrative assistant and who facilitated the conversion. Professor Hodges then 
began the process of expanding the material and adding problems to all chapters. 
Some of the most substantial additions were in the aeroelasticity chapters, partly 
motivated by Georgia Tech’s conversion to the semester system. Dr. Mayuresh J. 
Patil,1 while he was a Postdoctoral Fellow in the School of Aerospace Engineering, 
worked with Professor Hodges to add material on aeroelastic tailoring and unsteady 
aerodynamics mainly during the academic year 1999-2000. The authors thank 
Professor David A. Peters of Washington University for his comments on the 
section that treats unsteady aerodynamics. Finally, Professor Pierce, while enjoying 
his retirement and building a new house and amid a computer-hardware failure 
and visits from grandchildren, still managed to add material on the history of 
aeroelasticity and on the к and p-k methods in the early summer of 2001.

Dewey H. Hodges and G. Alvin Pierce 
Atlanta, Georgia 
June 2002

1 Presently, Dr. Patil is Associate Professor in the Department of Aerospace and Ocean Engineering 
at Virginia Polytechnic and State University.
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Addendum for Second Edition

Plans for the second edition were inaugurated in 2007, when Professor Pierce was 
still alive. All his colleagues at Georgia Tech and in the technical community at large 
were saddened to learn of his death in November 2008. Afterward, plans for the 
second edition were somewhat slow to develop.

The changes made for the second edition include additional material along 
with extensive reorganization. Instructors may choose to omit certain sections 
without breaking the continuity of the overall treatment. Foundational material 
in mechanics and structures was somewhat expanded to make the treatment 
more self-contained and collected into a single chapter. It is hoped that this new 
organization will facilitate students who do not need this review to easily skip it, and 
that students who do need it will find it convenient to have it consolidated into one 
relatively short chapter. A discussion of stability is incorporated, along with a review 
of how single-degree-of-freedom systems behave as key parameters are varied. 
More detail is added for obtaining numerical solutions of characteristic equations.: 
in structural dynamics. Students are introduced to finite-element structural models, 
making the material more commensurate with industry practice. Material on control 
reversal in static aeroelasticity has been added. Discussion on numerical solution 
of the flutter determinant via Mathematica™ replaces the method presented in 
the first edition for interpolating from a set of candidate reduced frequencies. The 
treatment of flutter analysis based on complex eigenvalues is expanded to include 
an unsteady-aerodynamics model that has its own state variables. Finally, the role 
of flight-testing and certification is discussed. It is hoped that the second edition 
will not only maintain the text’s uniqueness as an undergraduate-level treatment of 
the subject, but that it also will prove to be more useful in a first-year graduate course.

Dewey H. Hodges
Atlanta, Georgia
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| й  Introduction

“Aeroelasticity” is the term used to denote the field of study concerned with the 
interaction between the deformation of an elastic structure in an airstream and 
the resulting aerodynamic force. The interdisciplinary nature of the field is best;, 
illustrated by Fig. 1.1, which originated with Professor A. R. Collar in the 1940s. This 
triangle depicts interactions among the three disciplines of aerodynamics, dynamics, 
and elasticity. Classical aerodynamic theories provide a prediction of the forces 
acting on a body of a given shape. Elasticity provides a prediction of the shape of an 
elastic body under a given load. Dynamics introduces the effects of inertial forces. 
With the knowledge of elementary aerodynamics, dynamics, and elasticity, students 
are in a position to look at problems in which two or more of these phenomena 
interact. The field of flight mechanics involves the interaction between aerodynamics 
and dynamics, which most undergraduate students in an aeronautics/aeronautical 
engineering curriculum have studied in a separate course by their senior year. This 
text considers the three remaining areas of interaction, as follows:

• between elasticity and dynamics (i.e., structural dynamics)
• between aerodynamics and elasticity (i.e., static aeroelasticity)
• among all three (i.e., dynamic aeroelasticity)

Because of their importance to aerospace system design, these areas are also ap­
propriate for study in an undergraduate aeronautics/aeronautical engineering cur­
riculum. In aeroelasticity, one finds that the loads depend on the deformation (i.e., 
aerodynamics) and that the deformation depends on the loads (i.e., structural me­
chanics/dynamics); thus, one has a coupled problem. Consequently, prior study of all 
three constituent disciplines is necessary before a study in aeroelasticity can be un­
dertaken. Moreover, a study in structural dynamics is helpful in developing concepts 
that are useful in solving aeroelasticity problems, such as the modal representation.

It is of interest that aeroelastic phenomena played a major role throughout the 
history of powered flight. The Wright brothers utilized controlled warping of the 
wings on their Wright Flyer in 1903 to achieve lateral control. This was essential to 
their success in achieving powered flight because the aircraft was laterally unstable 
due to the significant anhedral of the wings. Earlier in 1903, Samuel Langley made
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two attempts to achieve powered flight from the top of a houseboat on the Potomac 
River. His efforts resulted in catastrophic failure of the wings caused by their being 
overly flexible and overloaded. Such aeroelastic phenomena, including torsional 
divergence, were major factors in the predominance of the biplane design until the 
early 1930s, when “stressed-skin” metallic structural configurations were introduced 
to provide adequate torsional stiffness for monoplanes.

The first recorded and documented case of flutter in an aircraft occurred in 1916. 
The Handley Page 0/400 bomber experienced violent tail oscillations as the result of 
the lack of a torsion-rod connection between the port and starboard elevators—an 
absolute design requirement of today. The incident involved a dynamic twisting of 
the fuselage to as much as 45 degrees in conjunction with an antisymmetric flapping 
of the elevators. Catastrophic failures due to aircraft flutter became a major design 
concern during the First World War and remain so today. R. A. Frazer and W. J. 
Duncan at the National Physical Laboratory in England compiled a classic document 
on this subject entitled, “The Flutter of Aeroplane Wings” as R&M 1155 in August 
1928. This small document (about 200 pages) became known as “The Flutter Bible.” 
Their treatment for the analysis and prevention of the flutter problem laid the 
groundwork for the techniques in use today.

Another major aircraft-design concern that may be classified as a static- 
aeroelastic phenomenon was experienced in 1927 by the Bristol Bagshot, a twin- 
engine, high-aspect-ratio English aircraft. As the speed was increased, the aileron 
effectiveness decreased to zero and then became negative. This loss and reversal 
of aileron control is commonly known today as “aileron reversal.” The incident
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was successfully analyzed and design criteria were developed for its prevention by 
Roxbee Cox and Pugsley at the Royal Aircraft Establishment in the early 1930s. 
Although aileron reversal generally does not lead to a catastrophic failure, it can be 
dangerous and therefore is an essential design concern. It is of interest that during 
this period of the early 1930s, it was Roxbee Cox and Pugsley who proposed the 
name “aeroelasticity” to describe these phenomena, which are the subject of this 
text.

In the design of aerospace vehicles, aeroelastic phenomena can result in a full 
spectrum of behavior from the near benign to the catastrophic. At the near-benign 
end of the spectrum, one finds passenger and pilot discomfort. One moves from 
there to steady-state and transient vibrations that slowly cause an aircraft structure 
to suffer fatigue damage at the microscopic level. At the catastrophic end, aeroelastic 
instabilities can quickly destroy an aircraft and result in loss of human life without 
warning. Aeroelastic problems that need to be addressed by aerospace system de­
signers can be mainly static in nature—meaning that inertial forces do not play a 
significant role—or they can be strongly influenced by inertial forces. Although not., 
the case in general, the analysis of some aeroelastic phenomena can be undertaken 
by means of small-deformation theories. Aeroelastic phenomena may strongly affect 
the performance of an aircraft, positively or negatively. They also may determine 
whether its control surfaces perform their intended functions well, poorly, or even 
in the exact opposite manner of that which they are intended to do. It is clear then 
that all of these studies have important practical consequences in many areas of 
aerospace technology. The design of modern aircraft and space vehicles is charac­
terized by the demand for extremely lightweight structures. Therefore, the solution 
of many aeroelastic problems is a basic requirement for achieving an operationally 
reliable and structurally optimal system. Aeroelastic phenomena also play an im­
portant role in turbomachinery, in wind-energy converters, and even in the sound 
generation of musical instruments.

The most commonly posed problems for the aeroelastician are stability prob­
lems. Although the elastic moduli of a given structural member are independent of 
the speed of the aircraft, the aerodynamic forces strongly depend on it. It is there­
fore not difficult to imagine scenarios in which the aerodynamic forces “overpower” 
the elastic restoring forces. When this occurs in such a way that inertial forces have 
little effect, we refer to this as a static-aeroelastic instability—or “divergence.” In 
contrast, when the inertial forces are important, the resulting dynamic instability is 
called “flutter.” Both divergence and flutter can be catastrophic, leading to sudden 
destruction of a vehicle. Thus, it is vital for aircraft designers to know how to design 
lifting surfaces that are free of such problems. Most of the treatment of aeroelasticity 
in this text is concerned with stability problems.

Much of the rest of the field of aeroelasticity involves a study of aircraft response 
in flight. Static-aeroelastic response problems constitute a special case in which 
inertial forces do not contribute and in which one may need to predict the lift 
developed by an aircraft of given configuration at a specified angle of attack or 
determine the maximum load factor that such an aircraft can sustain. Also, problems
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of control effectiveness and aileron reversal fall in this category. When inertial forces 
are important, one may need to know how the aircraft reacts in turbulence or in gusts. 
Another important phenomenon is buffeting, which is characterized by transient 
vibration induced by wakes behind wings, nacelles, or other aircraft components.

All of these problems are treatable within the context of a linear analysis. Math­
ematically, linear problems in aeroelastic response and stability are complementary. 
That is, instabilities are predictable from examining the situations under which ho­
mogeneous equations possess nontrivial solutions. Response problems, however, 
are generally based on the solution of inhomogeneous equations. When the sys­
tem becomes unstable, a solution to the inhomogeneous equations ceases to exist, 
whereas the homogeneous equations and boundary conditions associated with a 
stable conguration do not have a nontrivial solution.

Unlike the predictions from linear analyses, in actual aircraft, it is possible for 
self-excited oscillations to develop, even at speeds less than the flutter speed. More­
over, large disturbances can “bump” a system that is predicted to be stable by linear 
analyses into a state of large oscillatory motion. Both situations can lead to steady- 
state periodic oscillations for the entire system, called “limit-cycle oscillations.” In 
such situations, there can be fatigue problems leading to concerns about the life of 
certain components of an aircraft as well as passenger comfort and pilot endurance. 
To capture such behavior in an analysis, the aircraft must be treated as a nonlinear 
system. Although of great practical importance, nonlinear analyses are beyond the 
scope of this textbook.

The organization of the text is as follows. The fundamentals of mechanics are 
reviewed in Chapter 2. Later chapters frequently refer to this chapter for the for­
mulations embodied therein, including the dynamics of particles and rigid bodies 
along with analyses of strings and beams as examples of simple structural elements. 
Finally, the behavior of single-degree-of-freedom systems is reviewed along with a 
physically motivated discussion of stability.

To describe the dynamic behavior of conventional aircraft, the topic of struc­
tural dynamics is introduced in Chapter 3. This is the study of dynamic properties of 
continuous elastic configurations, which provides a means of analytically represent­
ing a flight vehicle’s deformed shape at any instant of time. We begin with simple 
systems, such as vibrating strings, and move up in complexity to beams in torsion 
and finally to beams in bending. The introduction of the modal representation and 
its subsequent use in solving aeroelastic problems is the main emphasis of Chapter 3. 
A brief introduction to the methods of Ritz and Galerkin is also included.

Chapter 4 addresses static aeroelasticity. The chapter is concerned with static 
instabilities, steady airloads, and control-effectiveness problems. Again, we begin 
with simple systems, such as elastically restrained rigid wings. We move to wings 
in torsion and swept wings in bending and torsion and then finish the chapter with 
a treatment of swept composite wings undergoing elastically coupled bending and 
torsional deformation.

Finally, Chapter 5 discusses aeroelastic flutter, which is associated with dynamic- 
aeroelastic instabilities due to the mutual interaction of aerodynamic, elastic, and
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inertial forces. A generic lifting-surface analysis is first presented, followed by illus­
trative treatments involving simple “typical-section models.” Engineering solution 
methods for flutter are discussed, followed by a brief presentation of unsteady- 
aerodynamic theories, both classical and modern. The chapter concludes with an 
application of the modal representation to the flutter analysis of flexible wings, a 
discussion of the flutter-boundary characteristics of conventional aircraft, and an 
overview of how structural dynamics and aeroelasticity impact flight tests and cer­
tification. It is important to note that central to our study in the final two chapters 
are the phenomena of divergence and flutter, which typically result in catastrophic 
failure of the lifting surface and may lead to subsequent destruction of the flight 
vehicle.

An appendix is included in which Lagrange’s equations are derived and illus­
trated, as well as references for structural dynamics and aeroelasticity.



2 Mechanics Fundamentals

Although to penetrate into the intimate mysteries of nature and thence to learn the 
true causes of phenomena is not allowed to us, nevertheless it can happen that a 
certain Active hypothesis may suffice for explaining many phenomena.

—Leonard Euler

As discussed in Chapter 1, both structural dynamics and aeroelasticity are built on 
the foundations of dynamics and structural mechanics. Therefore, in this chapter, we 
review the fundamentals of mechanics for particles, rigid bodies, and simple struc­
tures such as strings and beams. The review encompasses laws of motion, expressions 
for energy and work, and background assumptions. The chapter concludes with a 
brief discussion of the behavior of single-degree-of-freedom systems and the notion 
of stability.

The field of structural dynamics addresses the dynamic deformation behavior 
of continuous structural configurations. In general, load-deflection relationships are 
nonlinear, and the deflections are not necessarily small. In this chapter, to facilitate 
tractable, analytical solutions, we restrict our attention to linearly elastic systems 
undergoing small deflections—conditions that typify most flight-vehicle operations.

However, some level of geometrically nonlinear theory is necessary to arrive at 
a set of linear equations for strings, membranes, helicopter blades, turbine blades, 
and flexible rods in rotating spacecraft. Among these problems, only strings are 
discussed herein. Indeed, linear equations of motion for free vibration of strings 
cannot be obtained without initial consideration and subsequent careful elimination 
of nonlinearities.

The treatment goes beyond material generally presented in textbooks when 
it delves into the modeling of composite beams. By virtue of the inclusion of this 
section, readers obtain more than a glimpse of the physical phenomena associated 
with these evermore pervasive structural elements to the point that such beams can 
be treated in a simple fashion suitable for use in aeroelastic tailoring (see Chapter 4). 
The treatment follows along with the spirit of Euler’s quotation: in mechanics, we 
seek to make certain assumptions (i.e., Active hypotheses) that although they do 
not necessarily provide knowledge of true causes, they do afford us a mathematical
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model that is useful for analysis and design. The usefulness of such models is only 
as good as can be validated against experiments or models of higher fidelity. For 
example, defining a beam as a slender structural element in which one dimension is 
much larger than the other two, we observe that many aircraft wings do not have the 
geometry of a beam. If the aspect ratio is sufficiently large, however, a beam model 
may suffice to describe the overall behavioral characteristics of a wing.

2.1 Particles and Rigid Bodies

The simplest dynamical systems are particles. The particle is idealized as a “point- 
mass,” meaning that it takes up no space even though it has nonzero mass. The 
position vector of a particle in a Cartesian frame can be characterized in terms of 
its three Cartesian coordinates—for example, x, y, and z. Particles have velocity 
and acceleration but they do not have angular velocity or angular acceleration. 
Introducing three unit vectors, i, j, and k, which are regarded as fixed in a Cartesian 
frame F, one may write the position vector of a particle Q relative to a point О fixed.: 
in F  as

Pq =  x\ +  y\ +  zk (2.1)

The velocity of Q in F  can then be written as a time derivative of the position vector 
in which one regards the unit vectors as fixed (i.e., having zero time derivatives) in 
F, so that

\Q  =  xl +  y j  +  zk (2.2)

Finally, the acceleration of Q in F  is given by

aQ =  +  )>j +  гк (2.3)

2.1.1 Newton’s Laws

An inertial frame is a frame of reference in which Newton’s laws are valid. The only 
way to ascertain whether a particular frame is sufficiently close to being inertial is 
by comparing calculated results with experimental data. These laws may be stated 
as follows:

1st Particles with zero resultant force acting on them move with constant velocity 
in an inertial frame.

2nd The resultant force on a particle is equal to its mass times its acceleration in an 
inertial frame. In other words, this acceleration is defined as in Eq. (2.3), with 
the frame F  being an inertial frame.

3rd When a particle P  exerts a force on another particle Q, Q simultaneously exerts 
a force on P  with the same magnitude but in the opposite direction. This law is 
often simplified as the sentence: “To every action, there is an equal and opposite 
reaction.”
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Euler generalized Newton’s laws to systems of particles, including rigid bodies. A 
rigid body В may be regarded kinematically as a reference frame. It is easy to show 
that the position of every point in В is determined in a frame of reference F if (a) 
the position of any point fixed in B, such as its mass center C, is known in the frame 
of reference F; and (b) the orientation of В is known in F.

Euler’s first law for a rigid body simply states that the resultant force acting on 
a rigid body is equal to its mass times the acceleration of the body’s mass center in 
an inertial frame. Euler’s second law is more involved and may be stated in several 
ways. The two ways used most commonly in this text are as follows:

• The sum of torques about the mass center С of a rigid body is equal to the time 
rate of change in F of the body’s angular momentum in F  about C, with F  being 
an inertial frame.

• The sum of torques about a point О that is fixed in the body and is also inertially 
fixed is equal to the time rate of change in F  of the body’s angular momentum 
in F  about O, with F  being an inertial frame. We subsequently refer to О as a 
“pivot.”

Consider a rigid body undergoing two-dimensional motion such that the mass 
center С moves in the x-y plane and the body has rotational motion about the z axis. 
Assuming the body to be “balanced” in that the products of inertia Ixz =  Iyz =  0, 
Euler’s second law can be simplified to the scalar equation

2.1.2 Euler’s Laws and Rigid Bodies

where Tc is the moment of all forces about the z axis passing through C, Ic is the 
moment of inertia about C, and 9 is the angular acceleration in an inertial frame of 
the body about z■ This equation also holds if С is replaced by O.

2.1.3 Kinetic Energy

The kinetic energy К  of a particle Q in F  can be written as

where m is the mass of the particle and \ q is the velocity of Q in F. To use this 
expression for the kinetic energy in mechanics, F  must be an inertial frame.

The kinetic energy of a rigid body B in F  can be written as

where m is the mass of the body, Ic is the inertia tensor of В about C, vc is the 
velocity of С in F, and &>д is the angular velocity of В in F. In two-dimensional 
motion of a balanced body, we may simplify this to

Tc =  IC0 (2.4)

„ m
K  =  ~2y Q ■ y Q (2.5)

К -  —\c  ■ Ус +  ' Ic ' (2.6)

(2.7)
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where Iq is the moment of inertia of В about С about z, в is the angular velocity 
of В in F  about z, and z is an axis perpendicular to the plane of motion. A similar 
equation also holds if С is replaced by O, a pivot, such that

К =  у  в2 (2.8)

where to  is the moment of inertia of В about an axis z passing through O. To use 
these expressions for kinetic energy in mechanics, F  must be an inertial frame.

2.1.4 Work

The work W done in a reference frame F by a force F acting at a point Q, which may 
be either a particle or a point on a rigid body, may be written as

(  2 F • vQdt (2.9)
Ji,

where \q is the velocity of Q in F, and t\ and 12 are arbitrary fixed times. When there 
are contact and distance forces acting on a rigid body, we may express the work done;: 
by all such forces in terms of their resultant R, acting at C, and the total torque T  of 
all such forces about C, such that

W =  /"2 (R • vc• +  T  • шц) dt (2.10)
Ji1

The most common usage of these formulae in this text is the calculation of virtual 
work (i.e., the work done by applied forces through a virtual displacement).

2.1.5 Lagrange’s Equations

There are several occasions to make use of Lagrange’s equations when calculating 
the forced response of structural systems. Lagrange’s equations are derived in the 
Appendix and can be written as

d / 9 L \  dL
d i \ W ~ W i  =  ai {' =  ’ ( • }

where L =  К -  P  is called the “Lagrangean”—that is, the difference between the 
total kinetic energy, K, and the total potential energy, P, of the system. The general­
ized coordinates are ; the term on the right-hand side, a-,, is called the “generalized 
force.” The latter represents the effects of all nonconservative forces, as well as any 
conservative forces that are not treated in the total potential energy.

Under many circumstances, the kinetic energy can be represented as a function 
of only the coordinate rates so that

К =  Щ  ь & ,& ,...)  (2-12)

The potential energy P consists of contributions from strain energy, discrete springs, 
gravity, applied loads (conservative only), and so on. The potential energy is a 
function of only the coordinates themselves; that is

P=P{H (2.13)
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Figure 2.1. Schematic of vibrating string

Thus, Lagrange’s equations can be written as

(2.14)

2.2 Modeling the Dynamics of Strings

Among the continuous systems to be considered in other chapters, the string is the 
simplest. Typically, by this time in their undergraduate studies, most students have 
had some exposure to the solution of string-vibration problems. Here, we present for 
future reference a derivation of the governing equation, the potential energy, and the 
kinetic energy along with the virtual work of an applied distributed transverse force.

2.2.1 Equations of Motion

A string of initial length I q is stretched in the x direction between two walls separated 
by a distance I > Co. The string tension, T(x, r), is considered high, and the transverse 
displacement v(x, t ) and slope p{x, t) are eventually regarded as small. At any given 
instant, this system can be illustrated as in Fig. 2.1. To describe the dynamic behavior 
of this system, the forces acting on a differential length dx of the string can be 
illustrated by Fig. 2.2. Note that the longitudinal displacement u{x, t), transverse 
displacement, slope, and tension at the right end of the differential element are

Figure 2.2. Differential element of string showing displacement components and tension force

T

dx
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represented as a Taylor series expansion of the values at the left end. Because the 
string segment is of a differential length that can be arbitrarily small, the series is 
truncated by neglecting terms of the order of dx2 and higher.

Neglecting gravity and any other applied loads, two equations of motion can 
be formed by resolving the tension forces in the x and у directions and setting 
the resultant force on the differential element equal to its mass mdx times the 
acceleration of its mass center. Neglecting higher-order differentials, we obtain the 
equations of motion as

A

is the mass per unit length. From Fig. 2.2, ignoring second and higher powers of dx - 
and letting ds =  (1 +  e)dx where e is the elongation, we can identify

Finally, considering the string as homogeneous, isotropic, and linearly elastic, we 
can write the tension force as a linear function of the elongation, so that

where EA is the constant longitudinal stiffness of the string. This completes the 
system of nonlinear equations that govern the vibration of the string. To develop 
analytical solutions, we must simplify these equations.

Let us presuppose the existence of a static-equilibrium solution of the string 
deflection so that

(2.15)

where for a string homogeneous over its cross section

(2.16)

(2.17)

Noting that cos2(jS) +  sin2(y6) =  1, we can find the elongation e as

(2.18)

T =  EAe (2.19)

u(x, t ) =  u(x) 

d(*, t) =  0

fi{x, t) =  0 (2.20)

e(x ,t) =  e(x) 

T(x, t) =  T(x)
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We then find that such a solution exists and that if и(О) =  0

T(x) =  T0

- t  \ Tq Se(x) =  e0 =  —  =  —
EA lo

u(x) =  €qX

(2.21)

where To and eo are constants and 8 =  £ — l 0 is the change in the length of the string 
between its stretched and unstretched states.

If the steady-state tension To is sufficiently high, the perturbation deflections 
about the static-equilibrium solution are very small. Thus, we can assume

u(x, t =  u(x) +  u(X, t)

v(x, t =  v{x, t)

p(x ,t =  P(x, t)

e(x, t =  ?(*) -1- i(x , t )

T(x, t =  T{x) +  t(x , t)

(2.22)

where the ( )  quantities are taken to be infinitesimally small. Furthermore, from the 
second of Eqs. (2.17), we can determine j} in terms of the other quantities; that is

P =
1 dv

1 +  eo dx
(2.23)

Substituting the perturbation expressions of Eqs. (2.22) and (2.23) into Eqs. (2.15) 
while ignoring all squares and products of the ( )  quantities, we find that the equations 
of motion can be reduced to two linear partial differential equations

EA
У й
dx2
d2v

m
д U 
№  
g2(To ri'v d" v 

1 +  eo dx2 312

(2.24)

Thus, the two nonlinear equations of motion in Eqs. (2.15) for the free vibration 
of a string have been reduced to two uncoupled linear equations: one for longitudinal 
vibration and the other for transverse vibrations. Because it is typically true that 
EA »  To, longitudinal motions have much smaller amplitudes and much higher 
natural frequencies; thus, they are not usually of interest. Moreover, the fact that 
EA »  To leads to the observations that eo <£ 1 and <5 «; to (see Eqs. 2.21). Thus, the 
transverse motion is governed by

d2i d2v
(2.25)
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For convenience, we drop the ( )s and the subscript, thereby yielding the usual 
equation for string vibration found in texts on vibration

T d2v d2v
T — т — m — T (2.26)

d x2 at2

This is called the one-dimensional “wave equation,” and it governs the structural 
dynamic behavior of the string in conjunction with boundary conditions and initial 
conditions. The fact that the equation is of second order both temporally and spatially 
indicates that two boundary conditions and two initial conditions need to be specified. 
The boundary conditions at the ends of the string correspond to zero displacement, 
as described by

v(0, 0  =  w(*. 0  =  0 (2.27)

where it is noted that the distinction between C0 and i  is no longer relevant. The 
general solution to the wave equation with these homogeneous boundary conditions 
comprises a simple eigenvalue problem; the solution, along with a treatment of the 
initial conditions, is in Section 3.1.

2.2.2 Strain Energy

To solve problems involving the forced response of strings using Lagrange’s equa­
tion, we need an expression for the strain energy, which is caused by extension of 
the string, viz.

1 С
P = -  EAe2dx (2.28)

2 Jo
where, as before

е=ё _1=у(1+Ю +G£) - i  (2-29)
and the original length is £0- To pick up all of the linear terms in Lagrange’s equa­
tions, we must include all terms in the energy up through the second power of 
the unknowns. Taking the pertinent unknowns to be perturbations relative to the 
stretched but undeflected string, we can again write

e(x, t ) =  ?(*) -I- e(*, t)

u(x, t) =  u(x) +  u(x, t ) (2.30)

v(x, t) =  v(x, t )

For EA equal to a constant, the strain energy is

FA r l«
P =  —-  / (?2 +  2?e +  e2) dx (2.31)

2 Jo

From Eqs. (2.21), we know that T =  To and ? =  eo. where To and Co are constants. 
Thus, the first term of P  is a constant and can be ignored. Because To =  EAeo, the
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strain energy simplifies to

Г«о EA ft»
P

f 0 ЕЛ Г 0
=  To I e dx +  / e2 dx (2.32)

Jo 2 Jo

Using Eqs. (2.29) and (2.30), we find that the longitudinal strain becomes

A Эй 1 (d v \ 2
+  +  "  (233) 

where the ellipsis refers to terms of third and higher degree in the spatial partial 
derivatives of ft and v. Then, when we drop all terms that are of third and higher 
degree in the spatial partial derivatives of ft and v, the strain energy becomes

в ' г ( 1аьй;  , To f e° / 3 0 \ 2 EA f e° ( д й \2P — To / —  dx +  — ------ - / \ -— \ d x  +  —-  / ( — ) dx H----- (2.34)
Jo Зх 2(1 +  ео)Уо \ d x J  2 /о \Эдг/

Assuming ft (0) =  ft (io) =  0, we find that the first term vanishes. Because perturba­
tions of the transverse deflections are the unknowns in which we are most interested, 
and because perturbations of the longitudinal displacements are uncoupled from 
these and involve oscillations with much higher frequency, we do not need the last 
term. This leaves only the second term. As before, noting that eo 1 and dropping 
the ~ and subscripts for convenience, we obtain the potential energy for a vibrating 
string

dx (2.35)

as found in vibration texts.
In any continuous system—whether a string, beam, plate, or shell—we may ac­

count for an attached spring by regarding it as an external force and thus determining 
its contribution to the generalized forces. Such attached springs may be either dis­
crete (i.e., at a point) or distributed. Conversely, we may treat them as added parts 
of the system by including their potential energies (see Problem 5). Be careful to not 
count forces twice; the same is true for any other entity as well.

2.2.3 Kinetic Energy

To solve problems involving the forced response of strings using Lagrange’s equa­
tion, we also need the kinetic energy. The kinetic energy for a differential length of 
string is

Recalling that the longitudinal displacement и was shown previously to be less 
significant than the transverse displacement v and to uncouple from it for small- 
perturbation motions about the static-equilibrium state, we may now express the
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kinetic energy of the whole string over length I as

1 f e ( d v \2 J 
К  =  -  I m l — ] dx

2 Jo \  /
(2.37)

2.2.4 Virtual Work of Applied, Distributed Force

To solve problems involving the forced response of strings using Lagrange’s equa­
tion, we also need a general expression for the virtual work of all forces not accounted 
for in the potential energy. These applied forces and moments are identified most 
commonly as externally applied loads, which may or may not be a function of the 
response. They also include any dissipative loads, such as those from dampers. To 
determine the contribution of distributed transverse loads, denoted by f(x , t), the 
virtual work may be computed as the work done by applied forces through a virtual 
displacement, viz.

where the virtual displacement S v also may be thought of as the Lagrangean variation 
of the displacement field. Such a variation may be thought of as an increment of the 
displacement field that satisfies all geometric constraints.

2.3 Elementary Beam Theory

Now that we have considered the fundamental aspects of structural dynamics analysis 
for strings, these same concepts are applied to the dynamics of beam torsional and 
bending deformation. The beam has many more of the characteristics of typical 
aeronautical structures. Indeed, high-aspect-ratio wings and helicopter rotor blades 
are frequently idealized as beams, especially in conceptual and preliminary design. 
Even for low-aspect-ratio wings, although a plate model may be more realistic, the 
bending and torsional deformation can be approximated by use of beam theory with 
adjusted stiffness coefficients.

2.3.1 Torsion

In an effort to retain a level of simplicity that promotes tractability, the St. Venant 
theory of torsion is used and the problem is idealized to the extent that torsion 
is uncoupled from transverse deflections. The torsional rigidity, denoted by G J , 
is taken as given and may vary with x. For homogeneous and isotropic beams, 
GJ =  G J, where G denotes the shear modulus and J  is a constant that depends only 
on the geometry of the cross section. To be uncoupled from bending and other types 
of deformation, the x axis must be along the elastic axis and also must coincide with 
the locus of cross-sectional mass centroids. For isotropic beams, the elastic axis is 
along the locus of cross-sectional shear centers.

For such beams, J  can be determined by solving a boundary-value problem 
over the cross section, which requires finding the cross-sectional warping caused by

■i
(2.38)
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Figure 2.3. Beam undergoing torsional deformation

torsion. Although analytical solutions for this problem are available for simple cross- 
sectional geometries, solving for the cross-sectional warping and torsional stiffness 
is, in general, not a trivial exercise and possibly requires a numerical solution of 
Laplace’s equation over the cross section. Moreover, when the beam is inhomo­
geneous with more than one constituent material and/or when one or more of the 
constituent materials is anisotropic, we must solve a more involved boundary-value 
problem over the cross-sectional area. For additional discussion of this point, see 
Section 2.4.

Equation of Motion. The beam is considered initially to have nonuniform properties 
along the x axis and to be loaded with a known, distributed twisting moment r(x ,t). 
The elastic twisting deflection, 9, is positive in a right-handed sense about this axis, as 
illustrated in Fig. 2.3. In contrast, the twisting moment, denoted by T, is the structural 
torque (i.e., the resultant moment of the tractions on a cross-sectional face about 
the elastic axis). Recall that an outward-directed normal on the positive x face is 
directed to the right, whereas an outward-directed normal on the negative x face is 
directed to the left. Thus, a positive torque tends to rotate the positive x face in a 
direction that is positive along the x axis in the right-hand sense and the negative 
x face in a direction that is positive along the — x axis in the right-hand sense, as 
depicted in Fig. 2.3. This affects the boundary conditions, which are discussed in 
connection with applications of the theory in Chapter 3.

Letting plpdx be the polar mass moment of inertia about the x axis of the 
differential beam segment in Fig. 2.4, we can obtain the equation of motion by 
equating the resultant twisting moment on both segment faces to the rate of change 
of the segment’s angular momentum about the elastic axis. This yields

9 T
T -|----- dx — T +  r(x, t)dx =  plpdx

dx
bl9

(2.39)

j, | д T ^  Figure 2.4. Cross-sectional slice of beam undergoing torsional deformation
dx

-dx
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or

(2.40)

where the polar mass moment of inertia is

p IP =  J j P (У2 +  г2) dA (2.41)
A

Here, A is the cross section of the beam, у and z are cross-sectional Cartesian 
coordinates, and p is the mass density of the beam. When p is constant over the 
cross section, then ~pTp =  p lp, where Ip is the polar area moment of inertia per unit 
length. In general, however, p lp may vary along the x axis.

The twisting moment can be written in terms of the twist rate and the St. Venant 
torsional rigidity GJ as

Substituting these expressions into Eq. (2.40), we obtain the partial-differential 
equation of motion for the nonuniform beam given by

Strain Energy. The strain energy of an isotropic beam undergoing pure torsional 
deformation can be written as

This is also an appropriate expression of torsional strain energy for a composite 
beam without elastic coupling.

Kinetic Energy. The kinetic energy of a beam undergoing pure torsional deforma­
tion can be written as

Virtual Work of Applied, Distributed Torque. The virtual work of an applied dis­
tributed twisting moment r(x, t) on a beam undergoing torsional deformation may 
be computed as

(2.42);

(2.43)

(2.44)

(2.45)

(2.46)

where SO is the variation of 0(x,t), the angle of rotation caused by twist. Note that 89 
may be thought of as an increment of в(х, t) that satisfies all geometric constraints.



Mechanics Fundamentals

Figure 2.5. Schematic of beam for bending dynamics

► x

2.3.2 Bending

As in the case of torsion, the beam is initially treated as having nonuniform properties 
along the x axis. The x axis is taken as the line of the individual cross-sectional 
neutral axes associated with pure bending in and normal to the plane of the diagram 
in Fig. 2.5. For simplicity, however, we consider only uncoupled bending in the x-y 
plane, thus excluding initially twisted beams from the development. The bending 
deflections are denoted by v(x,t) in the у direction. The x axis is presumed to be 
straight, thus excluding initially curved beams. We continue to assume for now that 
the properties of the beam allow the x axis to be chosen so that bending and torsion 
are both structurally and inertially uncoupled. Therefore, in the plane(s) in which 
bending is taking place, the loci of both shear centers and mass centers must also 
coincide with the x axis. Finally, the transverse beam displacement, v, is presumed 
small to permit a linearly elastic representation of the deformation.

Equation of Motion. A free-body diagram for the differential-beam segment shown 
in Fig. 2.6 includes the shear force, V, and the bending moment, M. Recall from our 
previous discussion on torsion that an outward-directed normal on the positive x face 
is directed to the right, and an outward-directed normal is directed to the left on the 
negative x face. By this convention, V is the resultant of the transverse shear stresses

Figure 2.6. Schematic of differential beam segment
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in the positive у direction (upward in Fig. 2.6) on a positive x cross-sectional face 
and in the negative у direction on a negative x cross-sectional face. In other words, 
a positive shear force tends to displace the positive jc face upward and the negative 
jc face downward, as depicted in Fig. 2.6. The bending moment, M, is the moment of 
the longitudinal stresses about a line parallel to the z axis (perpendicular to the plane 
of the diagram in Fig. 2.6) at the intersection between the cross-sectional plane and 
the neutral surface. Thus, a positive bending moment tends to rotate the positive x 
face positively about the z axis (in the right-handed sense) and the negative x face 
negatively about the z axis. This affects the boundary conditions, which are examined 
in detail in connection with applications of the theory in Chapter 3. The distributed 
loading (with units of force per unit length) is denoted by f{x ,t). The equation of 
motion for transverse-beam displacements can be obtained by setting the resultant 
force on the segment equal to the mass times the acceleration, which yields

f ( x , t ) d x - V + ^ V  +  ^ - d x Sj = m d x ^ ^  (247)

and leads to

£  +  № . * ) - » £  (2.48)

where m is the mass per unit length, given by pA for homogeneous cross sections. 
We must also consider the moment equation. We note here that the cross-sectional 
rotational inertia about the z axis will be ignored because it has a small effect. Taking 
a counterclockwise moment as positive, we sum the moments about the point a to 
obtain

_M  +  ( m  +  ^ d x )  +  ( v  +  ^ d x )  dx +  ( /  -  =  0 (2.49)

which, after we neglect the higher-order differentials (i.e., higher powers of dx), 
becomes

17 + v = 0 (150)
Recall that the bending moment is proportional to the local curvature; therefore

« = £ 7 0  (2.51)

where E l may be regarded as the effective bending stiffness of the beam at a 
particular cross section and hence may vary with *. Note that for isotropic beams, 
calculation of the bending rigidity is a straightforward integration over the cross 
section, given by

E l = j j Ey2dA (2.52)
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in detail in connection with applications of the theory in Chapter 3. The distributed 
loading (with units of force per unit length) is denoted by f{x ,t). The equation of 
motion for transverse-beam displacements can be obtained by setting the resultant 
force on the segment equal to the mass times the acceleration, which yields

f (x , t )d x — V +  +  ^ d x j  =  m d x ^ -  (2.47)

and leads to

£  +  № . < > = . « £  M )

where m is the mass per unit length, given by pA for homogeneous cross sections. 
We must also consider the moment equation. We note here that the cross-sectional 
rotational inertia about the z axis will be ignored because it has a small effect. Taking 
a counterclockwise moment as positive, we sum the moments about the point a to 
obtain

- M  +  (m  +  +  ( v  +  dx +  ( /  -  =  0 (2.49)

which, after we neglect the higher-order differentials (i.e., higher powers of dx), 
becomes

3- ^ -  +  V =  0 (2.50)
ax

Recall that the bending moment is proportional to the local curvature; therefore

______ 9 2 d

М = Е , - г (2.51)

where E l  may be regarded as the effective bending stiffness of the beam at a 
particular cross section and hence may vary with jc. Note that for isotropic beams, 
calculation of the bending rigidity is a straightforward integration over the cross 
section, given by

E l J J  Ey2dA (2.52)
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where E is the Young’s modulus. When the beam is homogeneous the Young’s 
modulus may be moved outside the integration so that ~El =  E l where I is the cross- 
sectional area moment of inertia about the z axis for a particular cross section. Here, 
the origin of the у and z axes is at the sectional centroid. However, when one or more 
of the constituent materials is anisotropic, determination of the effective bending 
rigidity becomes more difficult to perform rigorously. For additional discussion of 
this point, see Section 2.4.

Substitution of Eq. (2.51) into Eq. (2.50) and of the resulting equation into 
Eq. (2.48) yields the partial differential equation of motion for a spanwise nonuni­
form beam as

Э2 /_ _ 9 2u \  d2v
( Е ,т л ) + т а = / ( х - ,> <2'5з>

Strain Energy. The strain energy of an isotropic beam undergoing pure bending 
deformation can be written as

1 f e —  /  32u \ 2
E l i - Л  dx (2.54)

This is also an appropriate expression for the bending strain energy for a composite 
beam without elastic coupling.

Kinetic Energy. The kinetic energy of a beam undergoing bending deformation can 
be written as

K=12l m( ^ ) dX (2'5S> 
just as for a vibrating string. For a spanwise nonuniform beam, m may vary with j c.

Virtual Work of Applied, Distributed Force. The virtual work of an applied dis­
tributed force f(x , t) on a beam undergoing bending deformation may be computed

8W = f f(x ,t)8v(x ,t)dx  (2.56)
Jo

just as for a vibrating string.

2.4 Composite Beams

Recall that the x axis (i.e., the axial coordinate) for homogeneous, isotropic beams 
is generally chosen as the locus of cross-sectional shear centers. This choice is fre­
quently denoted as the “elastic axis” because it structurally uncouples torsion from 
both transverse shearing deformation and bending. Thus, transverse forces acting 
through this axis do not twist the beam. However, even for spanwise uniform com­
posite beams, when transverse shear forces act through any axis defined as the locus 
of a cross-sectional property, it is still possible that these forces will twist the beam
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because bending-twist coupling may be present. For the type of composite-beam 
analysis presented herein, we still choose the x axis to be along the locus of shear 
centers; but, for composite beams, this choice uncouples only torsion and transverse 
shear deformation. Therefore, although transverse shear forces acting through the 
.r axis do not directly induces twist, the bending moment induced by the shear force 
still induces twist when bending-twist coupling is present.

2.4.1 Constitutive Law and Strain Energy for Coupled Bending and Torsion

A straightforward way to introduce such coupling in the elementary beam equations 
presented previously is to alter the “constitutive law” (i.e., the relationship between 
cross-sectional stress resultants and the generalized strains). So, we change

to

T ) _ GJ 0 '

дв
dx

Mг _  0 T i d2V
dx2 .

T ~g 7 - K
дв
dx

M - k ТП d 2V

19л:2 J

(2.57)

(2.58)

where E l  is the effective bending stiffness, GJ is the effective torsional stiffness, and 
К is the effective bending-torsion coupling stiffness (with the same dimensions as 
£7 and GJ). Whereas E l and GJ are strictly positive, К may be positive, negative, 
or zero. A positive value of К implies that when the beam is loaded with an upward 
vertical force at the tip, the resulting positive bending moment induces a positive (i.e., 
nose-up) twisting moment. Values of G J , E l, and К are best found by cross-sectional 
codes such as VABS™ a commercially available computer program developed at 
Georgia Tech (Hodges, 2006).

Now, given Eq. (2.58), it is straightforward to write the strain energy as

U =  -  Г
2 Jo

д в T д в

dx GJ - K dx
d2V - К  ~Ш d2v
dx2 . dx2 .

dx (2.59)

where the 2 x 2 matrix must be positive-definite for physical reasons. This means 
that of necessity, K2 < E l G J .

2.4.2 Inertia Forces and Kinetic Energy for Coupled Bending and Torsion

In general, there is also inertial coupling between bending and torsional deflections. 
This type of coupling stems from d, the offset of the cross-sectional mass centroid 
from the x axis shown in Fig. 2.7 and given by

md =  -  J  J  p zdA  (2.60)
A
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so that the acceleration of the mass centroid is

( d2v ,920 \ t
‘ c = { w + d w ) ‘ <2'61)

For inhomogeneous beams, the offset d may be defined as the distance from the x 
axis to the cross-sectional mass centroid, positive when the mass centroid is toward 
the leading edge from the x axis.

Similarly, if one neglects rotary inertia of the cross-sectional plane about the z 
axis, the angular momentum of the cross section about С is

/_Э 6>  .3 |Л Г
\ H7+ э7 /

(2.62)

where, for beams in which the material density varies over the cross section, we may 
calculate the cross-sectional mass polar moment of inertia as

PIp =  / /  P (У2 +  z2) dA (2.63)

The kinetic energy follows from similar considerations and can be written di­
rectly as

К
и ш

двд V — / д в у
э7эг+ р\эг") dx (2.64)

2.4.3 Equations of Motion for Coupled Bending and Torsion

Using the coupled constitutive law and inertia forces, the partial differential equa­
tions of motion for coupled bending and torsion of a composite beam become

_ Э 26> 32v 9 / - —дв TJ 2v\ . .
p h —r  +  m d—r------- ( G J --------К — -г I =  r( x, t)
y p dt2 312 d x \  dx dx2 J

4 (2.65)
/ 32u д2в\  92 / ——d2v Эв\ , ,  4

where we see the structural coupling through К  and the inertial coupling through d.
Of course, we may simplify these equations for isotropic beams undergoing 

coupled bending and torsion simply by setting К =  0.
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Figure 2.8. Character of static-equili 
brium positions

2.5 The Notion of Stability

Consider a structure undergoing external loads applied quasistatically. In such a 
case, static equilibrium is maintained as the elastic structure deforms. If now at 
any level of the external force a “small” external disturbance is applied, and the 
structure reacts by simply performing oscillations about the deformed equilibrium 
state, the equilibrium state is said to be stable. This disturbance can be in the form 
of deformation or velocity; by “small,” we mean “as small as desired.” As a result of 
this latter definition, it is more appropriate to say that the equilibrium is stable for a -' 
small disturbance. In addition, we stipulate that when the disturbance is introduced, 
the level of the external forces is kept constant. Conversely, if the elastic structure 
either (a) tends to and remains in the disturbed position, or (b) diverges from the 
equilibrium state, the equilibrium is said to be unstable. Some authors prefer to 
distinguish these two conditions and call the equilibrium “neutrally stable” for case 
(a) and “unstable” for case (b). When either of these two cases occurs, the level of 
the external forces is referred to as “critical.”

This is illustrated using the system shown in Fig. 2.8. This system consists of a 
ball of weight W resting at different points on a surface with zero curvature normal to 
the plane of the figure. Points of zero slope on the surface denote positions of static 
equilibrium (i.e., points A, B, and C). Furthermore, the character of equilibrium 
at these points is substantially different. At A, if the system is disturbed through 
infinitesimal disturbances (i.e., small displacements or small velocities), it simply 
oscillates, about the static-equilibrium position A  Such an equilibrium position 
is called stable for small disturbances. At point B, if the system is disturbed, it 
tends to move away from the static-equilibrium position B. Such an equilibrium 
position is called unstable for small disturbances. Finally, at point C, if the system is 
disturbed, it tends to remain in the disturbed position. Such an equilibrium position 
is called neutrally stable or indifferent for small disturbances. The expression “for 
small disturbances” is used because the definition depends on the small size of the 
perturbations and is the foundational reason we may use linearized equations to 
conduct the analysis. If the disturbances are allowed to be of finite magnitude, then 
it is possible for a system to be unstable for small disturbances but stable for large 
disturbances (i.e., point B, Fig. 2.9a) or stable for small disturbances but unstable 
for large disturbances (i.e., point Д  Fig. 2.9b).1

1 Portions of section 2.5 including figures 2.8 and 2.9 are excerpted from Simitses and Hodges (2006) 
and (2010), used with permission.
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Figure 2.9. Character of static-equilibrium positions for finite disturbances

2.6 Systems with One Degree of Freedom

The behavior of systems with one degree of freedom is of interest in its own right. 
Through the various forms of modal approximations, such as the Ritz and Galerkin 
methods (see Section 3.5), the behavior of complex systems frequently can be re­
duced to a set of equations each having the form of a single-degree-of-freedom 
system. Therefore, it is worthwhile to explore the various types of behavior we 
associate with such systems.

Consider a particle of mass m, restrained by a spring with elastic constant к and 
a damper with damping constant c, and forced with a function f (t)  (Fig. 2.10). The 
governing equation can be written

where x{t) is the single unknown, typically a displacement or rotation but not limited 
to such. Here, the mass m, the damping c, and the stiffness к are the system parameters 
and f( t)  is a forcing function. Our interest in this system is limited for now in two 
special cases: (1) unforced motion, with f( t)  as identically zero; and (2) harmonically 
forced motion.

2.6.1 Unforced Motion

Eq. (2.66) for unforced motion is given by

mx +  cx +  kx =  f (t) (2.66)

mx + cx +  kx =  0 (2.67)

At)
A

ЛФ)

m
Figure 2.10. Single-degree-of-freedom system

к
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An exhaustive treatment of this equation is beyond the scope of this text. Suffice it to 
say that for our purposes, we are concerned with the qualitative aspects of the motion 
for various combinations of parameter values. We are interested in both positive and 
negative stiffness and damping. To facilitate exploration of the behavior, we define 
the natural frequency со such that к — mco2, divide the equation by m, and introduce 
the damping ratio £ so that с =  2ml; ш. Then, the equation of motion reduces to

x +  2t; cox +  co2x =  0 (2.68)

another advantageous step is to introduce dimensionless time ^  =  cot, derivatives 
with respect to which are denoted by ( ) '.  With this, Eq. (2.68) becomes

x" +  2t,x' +  jc =  0 (2.69)

We are mostly concerned about the response of systems with small damping 
ratios, in which f < 1. For this case, the general solution is

x(i/r) =  e Ja cos ^ / l  — +  b sin ^ \/l — K2"^j ]

x'(\j/) =  е~(ф [̂ (byj\ -  <2 — £a) cos (V l -  Z2^  (2.70)

-  ( f b +  ау/ 1 -  <2) sin ( V w V ) ]

The responses caused by arbitrary initial displacement and velocity can be con­
structed by combining the responses to unit initial displacement and unit initial 
velocity. For the first, we let x(0) =  1 and x'(0) =  0, which together imply that a — 1 
and b =  — £2. For the second, we let x(0) =  0 and д:'(0) =  1, which together 
imply a =  0 and b =  1 /V 1 — f 2. In all cases, the displacement and velocity both 
exhibit an oscillatory character with a decaying amplitude for £ > 0 and a growing 
amplitude for £ < 0. Positive damping leads to a decaying response signal (Fig. 2.11) 
and negative damping to a growing response signal (Fig. 2.12).

Actual mechanical systems always have positive stiffness. However, with the 
advent of active materials, it is possible to have a negative effective stiffness. Also, 
in the field of aeroelasticity, aerodynamics can contribute a negative stiffening effect 
that possibly overpowers the positive stiffness from the structure or the support. 
When a system has a negative effective stiffness, the response can be written as

x(\fr) =  e~° |̂ a cosh (f-v/l +  £2)  +  bsinh [ty/l +  (2.71)

This function is only slightly affected by the sign of £ and the initial conditions. Typ­
ical results are shown in Fig. 2.13. Response for negative stiffness is nonoscillatory 
divergent motion. Damping makes little difference when the stiffness is negative, 
although response is slightly larger for negative damping. In summary, when in­
stabilities are encountered, the system response is divergent and may be either 
nonoscillatory or oscillatory.
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Figure 2.11. Response for system with positive к and д:(0) =  x'(0) =  0.5, i; =  0.04

2.6.2 Harmonically Forced Motion

We now consider the case of harmonically forced motion, where f ( t )  is a harmonic 
function of the form f ( t )  =  kAcos(Qt). The response to harmonically excited mo­
tion is a subject worthy of study, but we hardly “scratch the surface” in this brief 
discussion. For the present purpose, we consider the equation of motion written as

mx +  cx +  kx =  kAcos(£lt) (2.72)

Dividing through by m, we find

x +  2^cox +  co2x =  Aw2 cos(Qt) =  Aa>2e‘ni (2.73)

J # )

Figure 2.12. Response for system with positive к and x(0) =  x'(0) =  0.5, ? =  —0.04
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Figure 2.13. Response for system with negative к and jc (0) = 1, x'(0) =  0, f =  — 0.05, 0, 
and 0.05.

with X  as a complex variable and the actual displacement being found as the real 
part of x. Considering only the steady-state part of the response, we may assume

jc =  Xein‘ (2.74)

Substitution of Eq. (2.74) into Eq. (2.73) yields

-л =  G(i £2) = ----------1---------- (2.75)
Л l - ( £ ) + 2 i f S

where G(i £2) is the frequency response. This form allows us to write the solution as

x =  A|G(i£2)| cos(Qt -  ф) (2.76)

where |G(/£2)| is known as the magnification factor, given by

|G(/Si)| =  , 1 (2.77)

v H S J V + F  -  (S )2]

and plotted in Fig. 2.14. The phase angle

( 2 - 7 8 >

shows the delay between the peaks in f( t)  at t =  Inn/SI, and the peaks in x(t) at
t =  <p/Q 4- Inn/SI for n =  0 ,1 ,__

Now, as an example, we may consider a harmonic forcing function f( t)  with 
A — 1 plotted along with x(t) for a particular choice £ and Q/w in Fig. 2.15. Here, 
the phase lag is noticeable as the response peaks are shifted approximately 43.45 
degrees to the right.
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|G(/ft)|

excited system

Harmonically forced systems also may exhibit a large and possibly dangerous 
response in the case of resonance, where the driving frequency Q is very near со. For 
undamped systems, the response grows as

— [f sin(fttf) +  cos(&>;)] (2.79)

whereas the response amplitude reaches l/(2£) for lightly damped systems.

2.7 Epilogue

In this chapter, we laid out the foundational theories of mechanics that are needed 
for an introductory treatment of structural dynamics and aeroelasticity. It is hoped

m m

fit, degrees

Figure 2.15. Excitation f(t) (solid line) and response x(l) (dashed line) versus Qt (in degrees) 
for f = 0.1 and й /a» = 0.9 for a harmonically excited system



Problems 1-4

that students find it helpful to be able to refer to these treatments as they are applied 
throughout the remainder of the text. Structural dynamics and aeroelasticity analyses 
of realistic aircraft structural elements may require more sophisticated theories, such 
as plate and shell theory and full three-dimensional finite-element analysis; however, 
such treatments are beyond the scope of this text.

Problems

1. Show that the equation of motion for longitudinal vibration of a uniform beam 
is the same as that for a string, viz.

2. Show that the strain energy for longitudinal deformation of a beam is the same 
as that for a string, viz.

3. Show that the kinetic energy for longitudinal deformation of a beam is the same 
as that for a string, viz.

4. Show that Eqs. (2.65) are the equations of motion for coupled bending-torsion 
behavior of a composite beam.

2



3 Structural Dynamics

O students, study mathematics, and do not build without foundations__
—Leonardo da Vinci

The purpose of this chapter is to convey to students a small introductory portion of 
the theory of structural dynamics. Much of the theory to which the students will be 
exposed in this treatment was developed by mathematicians during the time between 
Newton and Rayleigh. The grasp of this mathematical foundation is therefore a goal 
that is worthwhile in its own right. Moreover, as implied by the da Vinci quotation, 
a proper use of this foundation enables the advance of technology.

Structural dynamics is a broad subject, encompassing determination of natural 
frequencies and mode shapes (i.e., the so-called free-vibration problem), response 
due to initial conditions, forced response in the time domain, and frequency response. 
In the following discussion, we deal with all except the last category. For response 
problems, if the loading is at least in part of aerodynamic origin, then the response is 
said to be aeroelastic. In general, the aerodynamic loading then will depend on the 
structural deformation, and the deformation will depend on the aerodynamic load­
ing. Linear aeroelastic problems are considered in subsequent chapters, and linear 
structured dynamics problems are considered in the present chapter. Other impor­
tant phenomena, such as limit-cycle oscillations of lifting surfaces, must be treated 
with sophisticated nonlinear-analysis methodology; however, they are beyond the 
scope of this text.

The value of structural dynamics to the general study of aeroelastic phenomena is 
its ability to provide a means of quantitatively describing the deformation pattern at 
any instant in time for a continuous structural system in response to external loading. 
Although there are many methods of approximating the structural-deformation 
pattern, several of the widely used methods are reducible to what is called a “modal 
representation” as long as the underlying structural modeling is linear. The purpose 
of this chapter is to establish the concept of modal representation and show how it 
can be used to describe the dynamic behavior of continuous elastic systems. Also 
included is an introductory treatment of the Ritz and Galerkin methods, techniques 
that use assumed modes or similar sets of functions to obtain approximate solutions in
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a simple way. Indeed, both methods are close relatives of the finite element method, 
a widely used approximate method that can accurately analyze realistic structural 
configurations. Only the basics of applying the finite element method to beams are 
covered herein; details of this method are in books that offer a more advanced 
perspective on structural analysis, several of which are listed in the references.

The analytical developments presented in this chapter are conceptually similar 
to the methods of analysis conducted on complete flight vehicles. In an effort to 
maintain analytical simplicity, the continuous structural configurations to be exam­
ined are all uniform and one-dimensional. Although such structures may appear 
impractical relative to conventional aircraft, they exhibit structural dynamic prop­
erties and representations that are essentially the same as those of full-scale flight 
vehicles.

3.1 Uniform String Dynamics

To more easily understand a mathematical description of the mechanics associated.,- 
with the structural dynamics of continuous elastic systems, the classical “vibrating- 
string problem” is first considered. Although the free-vibration of a string can be 
described by the linear second-order partial differential equation in one dimen­
sion derived in Chapter 2 (see Eq. 2.26), it is typically descriptive of the more 
complex linearly elastic systems of aerospace vehicles. After the fundamental con­
cepts are reviewed for the string, other components that are more representative 
of these vehicles are discussed. Although the free vibration of a string can be ana­
lyzed using equations of motion of the same form as those governing uniform beam 
extensional and torsional vibrations, the string is chosen as our first example pri­
marily because—in contrast to the behavior of the other structures—string behavior 
can be visualized easily. Moreover, typically by this time in their undergraduate 
studies, most students have had some exposure to the solution of string-vibration 
problems.

3.1.1 Standing Wave (Modal) Solution

The wave equation governing transverse vibration of a nonuniform string was de­
rived in Eq. (2.26) for uniform strings. Here, we repeat it for convenience, with a 
slight generalization

d2v ,
T 8 ?  =  m W  W  < З Д )

Here, the mass distribution m(x) is allowed to vary along the string. This partial 
differential equation of motion with two independent variables may be reduced 
to two ordinary differential equations by making a “separation of variables.” The 
dependent variable of transverse displacement is represented by

v(x,t) =  X(x)Y(t) (3.2)
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This product form is now substituted into the wave equation, Eq. (3.1). To simplify 
the notation, let ( ) ' and ( )  denote ordinary derivatives with respect to x and t. Thus, 
the wave equation becomes

TX"(x)Y(t) =m(x)X(x)Y(t) (3.3)

Rearranging terms as

TX"(x) Y(t)
(3.4)

m(x)X(x) Y(t)

we observe that the left-hand side of this equation is a function of only the single 
independent variable x and the right-hand side is a function of only/. The presence of 
m(x) reflects material density and/or geometry that varies along the string, whereas 
constant T is consistent with approximations used in deriving Eq. (3.1). Because 
each side of the equation is a function of different independent variables, the only 
way that the equality can be valid is for each side to be equal to a common constant. 
Let this constant be -со2, so that

(3.5)
m(x)X(x) Y(t)

This yields two ordinary differential equations, given by

TX "(x) +  т(х)ш 2Х(х) =  0
(3.6)

Y{t) +  a?Y{t) =  0

Both of these equations are linear, ordinary differential equations. The second of the 
two equations has constant coefficients and is the governing equation for a harmonic 
oscillator with frequency a>. Because the first equation has a variable coefficient m(x) 
in its second term, however, it can be solved in closed form only in special cases.

Specifically, when the mass per unit length m is a constant, the first of Eqs. (3.6) 
has a familiar solution. In this case, it is expedient to introduce

2 " ^ 2 n .« =  —  (3.7)

so that the two ordinary differential equations are of the same form; that is

X "(x) +  a 2X(x) =  0
(3.8)

Y(t) +  oj2Y(t) =  0

Because the general solutions to these linear, second-order differential equations 
are well known, they are written without any further justification as

X(x) =  y4sin(af.r) +  В cost ax )
(3.9)

Y{t) — С sin (cot) +  D cos {cot)

where

со =  a , / -  (3.10)
V m

Recall that these solutions are only valid when a  ^  0.
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The boundary conditions on the string are given in Eqs. (2.27). The boundary 
condition on the left end of the string, where x =  0, can be written as

If A =  0, the displacement is identically zero for all jc and t. Although this is an 
acceptable solution, it is of little interest and therefore is referred to as a “trivial 
solution.” Of more concern is when

This relationship is called the “characteristic equation” and has a denumerably 
infinite set of solutions known as “eigenvalues.” These solutions can be written as

where, recalling that а  Ф 0 is a requirement for this solution, we must exclude the 
root corresponding to i =  0. To ascertain whether a nontrivial a  =  0 solution exists, 
we must return to the first of Eqs. (3.8) and determine whether a nontrivial solution 
exists with a  =  0 that also satisfies all the boundary conditions—that is, whether 
there is a nontrivial solution to X" =  0 for which ДО) =  X (l) =  0. Obviously, there 
is no such solution for this problem. Solutions associated with a  =  0 are addressed 
in more detail when we consider problems for which rigid-body modes may exist.

Therefore, for each integer value of the index /, there is an eigenvalue a, and 
an associated solution X,, called the “eigenfunction.” It contributes to the general 
solution based on the corresponding value of Yt. Thus, its total contribution can be 
written as

u(0 ,0  =  X(0)Y(t) =  0 (3.11)

which is satisfied when

Д 0 )  =  0 (3.12)

so that

B =  0 (3.13)

The boundary condition on the right end is

v (i,t)  =  X{i)Y{t) =  0 (3.14)

w hich is satisfied when

X(i) =  0 (3.15)

and so

Л 8т(а£) =  0 (3.16)

sin(a€) =  0 (3.17)

( / =  1 , 2 , . . . ) (3.18)

Vi(x,t) =  Xj(x)Yj(t) (3.19)

г г /
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where

Xi(x) =  Aj sin(o'1x)

Yi(t) =  Ci sin ((Ujt) +  Di cos (a>,■/)
(3.20)

The constants Д , C,, and Di may have different numerical values for each eigenvalue; 
thus, they are subscripted with the index. The most general solution for the string 
displacement would have contributions associated with all the eigenvalues. Thus, 
the general solution can be written as a sum of the complete set as

Close inspection of this total string displacement indicates that at any given 
instant, the transverse deflection is represented by summation over a denumerably 
infinite set of shapes. Each shape is of indeterminate amplitude and is associated 
with a particular eigenfunction; these shapes are also called “mode shapes” in the 
field of structural dynamics. They are represented here by ( jc) .  Thus, for transverse 
deflection of a string, the mode shapes may be written as

or any constant times 0,-(jc) .  It can be observed from this function (Fig. 3.1) that 
the higher the mode number i, the more crossings of the zero axis on the interval
0 < x < t. These crossings are sometimes referred to as “nodes.” The trend of in­
creasing numbers of nodes with an increase in the mode number is generally true in 
structural dynamics.

In the previous solution for the total displacement, each mode shape is multiplied 
by a function of time. This multiplier is called the “generalized coordinate” and is 
represented here by £, (f). For this specific problem, the generalized coordinates are

00

v(x,t) =  ^ 2  Vi(X’ t)
i=i

(3.21)

=  V  sin [Ei sin (cujt) -(- Fi cos (w,/)]

where

(3.22)

Note that the original constants were combined as

(3.23)

(3.24)

£,(/) =  Ei sin (a)jt) +  Fi cos (a>it) (3.25)

and thus are seen to be simple harmonic functions of time with frequencies &>,. 
Because there were no external loads applied to the string, the preceding result is
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called the “homogeneous solution.” Had there been an external loading, the resulting 
time dependency of the generalized coordinates would reflect it.

Thus, the total string displacement can be written as a sum of “modal” contri­
butions of the form

OO
v( x , t )  =  (3-26)

/=i

This expression can be interpreted as a weighted sum of the mode shapes, each of 
which has a modal amplitude (i.e., the generalized coordinate) that is a function of 
time. For the homogeneous solution obtained here, this time dependency is simple 
harmonic at a frequency that is unique for each mode or eigenvalue. These are called 
the “natural frequencies” of the modes, or “modal frequencies,” and are represented 
by a), . For the string, they are

ft)/ =  ^  Д  i =  1 , 2 , . . .  ,00  (3.27)
n m

with the lowest frequencies given by the lowest mode numbers. Indeed, just as the 
increase in the number of nodes with the mode number is generally true, so it is with
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the natural frequency. When the physical and geometric parameters of the problem 
are expressed in any consistent1 set of units, the units of the natural frequency are 
rad/sec. Division by 2л converts the units of frequency into “cycles per second,” or 
Hertz. The inverse of the natural frequency in Hertz is the period of the oscillatory 
motion.

To summarize what has been accomplished in solving the wave equation, it may 
be said that the string displacement as a function of both x and t can be represented 
as a sum of modal contributions. Each mode in this representation is a structural 
dynamic property of the given system (i.e., string) and can be described completely 
by mode shape and modal frequency. Such “modes of vibration” can be formulated 
for any linearly elastic structure that is a conservative system. This statement includes 
two restrictions that must be observed for a modal representation: (1 ) linearity, which 
is satisfied here by the linear wave equation; and (2 ) the system must be conservative, 
which means that there can be no addition or dissipation of energy in free vibration. 
A typical violation of the second restriction is the existence of damping, such as 
structural or aerodynamic damping. When damping is present, it can be adequately 
treated as an external loading. Mode shapes are determined only by the solution of 
homogeneous equations and, in general, they are real only for self-adjoint equations.

3.1.2 Orthogonality of Mode Shapes

A most significant property of the mode shapes derived for the string is that they form 
a set of orthogonal mathematical functions. If the mass distribution is nonuniform 
along x, then the mode shapes are no longer s in ( /7 r*:/£); instead, they must be found 
by solving the first of Eqs. (3.6). The resulting mode shapes, however, may not be 
expressible in closed form. Nonetheless, they are orthogonal but with respect to the 
mass distribution as a weighting function. In such a case, this condition of functional 
orthogonality can be described analytically as

fJo
т{х)ф1{х)фЛх) dx =  0  (i Ф j )

(3.28)

Ф 0  (< =  j)

To prove that the mode shapes obtained for the string problem are orthogonal, an 
individual modal contribution given by

V j ( x , t )  =</>;(*)& (0  (3.29)

where 0 ,-(x) is a normalized solution of the first of Eqs. (3.6). Substituting v,(x, t) 
into the governing differential equation (i.e., wave equation), we obtain

d2Vi d2l)j

=  ( 3 - 3 0 >

1 For example, with SI units, one has the units of T as N, m as kg/m, and t  as m. With English units, 
one has the units of T as lb, m as slugs/ft, and t  as ft.
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Тф”{ x)%i(t) =  m{x)<t>i(x%{t) (3.31)

Because the general (i.e., homogeneous) solution for the generalized coordinate is 
a simple harmonic function, then we may write

ii = - w U i  (3-32)

Thus, the wave equation becomes

Тф"(х)^0) =  -т (х )ф 1(х )о ^ 1([) (3.33)

so that

Тф"{х) =  -т{х)ф 1{х)ш] (3.34)

If this procedure is repeated by substituting the y'th modal contribution into the wave 
equation, a similar result

Тф’'(х) =  —т(х)ф/(х)ш2 (3.35)

is obtained. After multiplying Eq. (3.34) by фj and Eq. (3.35) by ф, , subtracting, and 
integrating the result over the length of the string, we obtain

(w f-w 2j ) [  т{х)ф1(х)фj(x)dx =  T f  [<fr(*)</>J(*) -  Ф”(х)ф](х)\ dx (3.36) 
Jo Jo

The integral on the right-hand side can be integrated by parts using

pb b pb
I udv — uv — I vdu (3.37)

Ja a Ju

by letting

for the first term and

и =  0 , du =  ф’̂ 1х

v =  ф'• dv =

и =  фj du =  ф'^х

v  =  ф[ dv =  ф'/dx

(3.38)

(3.39)

for the second. The result becomes

(cof ~ CO2;) f  m (x ^ i(x ^ j(x )d x
Jo

=  T -  ф1ф,)\l -  T (\ф [ф ) -  ф 'ф '^ х  =  О
J  О

(3.40)

Every term on the right-hand side is zero: the first and second because the mode 
shape is zero at both ends by virtue of the boundary conditions given by Eqs. (2.27),
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and the integral because of cancellation. It may now be concluded that when i ф j, 
because щ ф coj, it follows that

m{x)(j)i(x)<l)j(x)dx =  0 (3.41)

This relationship thus demonstrates that the mode shapes for a string that is fixed at 
both ends form an orthogonal set of functions. However, when i =  j

rt
/ m{x)4>J(x)dx =  Mi (3.42)

Jo

The value of this integral, Mt, is referred to as the “generalized mass” of the /th 
mode. The numerical values of the generalized masses depend on the normalization 
scheme used for the mode shapes <p,{x).

This development is for a string of nonuniform mass per unit length and con­
stant tension force. It is important to note that it readily can be generalized to 
more involved developments for beam torsional and bending deformation. In such 
cases, the structural stiffnesses—which are analogous to the tension force in the 
string problem—also may be nonuniform along the span. Although the struc­
tural stiffnesses may not be taken outside the integrals in such cases, the rest of 
the development remains similar. See Problems 8 (a) and 10(a) at the end of this 
chapter.

For uniform strings and the mode shapes normalized as in Eq. (3.24), it is shown 
easily for all i and j  that the orthogonality condition and generalized mass, Eqs. (3.41) 
and (3.42), respectively, reduce to

f*' ml
/ (f>i(x)<pj(x)dx — 0 Mi — —  only for m — const. (3.43)

Jo 2

3.1.3 Using Orthogonality

The property of orthogonality is useful in many aspects of structural-dynamics anal­
ysis. As an illustration, consider the response of an unforced uniform string to initial 
conditions. In this case, there are no external loads on the string, but it is presumed 
to have an initial deflection shape and an initial velocity distribution. Let these initial 
conditions be represented as

v(x, 0 ) =  f{x)

dv (3-44)
— ix ,°) =  gix)

where both f{x) and g(x) must be compatible with the boundary conditions.
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Using Eq. (3.21), these initial conditions can be written in terms of the modal 
representation as

<X> /  • \_ . /  ITCX \
v(x, 0 ) =  2 2  Fi sin y— J  =

^ v"' Еал FT . ( i n x \

fix )

(3.45)

8A x  dt

Both of these relationships are multiplied by sin ( jn x / l)  dx and integrated over the 
length of the string. The first relationship yields

f ‘ sin (c r)dx= t,F‘ J‘Si” (^t) si” ) d*

_  h i
2

where the evaluation used the orthogonality property of the mode shapes, which 
causes every term in the infinite sum to be zero except where i =  j. The mass per 
unit length is constant for this case and hence does not appear under the integral. 
The second relationship can be reduced in a similar manner, so that

= (3.47)

E jj i t  f f
2 V m

This treatment of the initial conditions therefore permits a direct evaluation of 
the unknown constants ( Et and F,) in the modal representation of the total string 
displacement; that is

(3 48)

Thus, for the prescribed initial conditions given by f(x ) and g(x), the resulting string 
displacement can be described as

0 0  /  * \

v(x, t) =  2 2  sin ( ~J~ ) [£< sin(ft),0 +  F, cos(w/0] (3-49)
i=1 ^ '
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Example: Response Due to Given Initial Shape. To further illustrate this proce­
dure, consider the case of the plucked string with zero initial velocity. Let the initial 
shape be as shown in Fig. 3.2. If we assume the initial velocity to be zero, then 
g(x) =  0 and Ei =  0 for all i. The string displacement becomes

sin
/= 1

inx
~ T

) cos{a>it)

To evaluate the constants, Ft, the initial string shape is written as

/(* )  =  2 /1  (f)

=  2 A ( l - f )

Substitution of this function into the preceding integral yields

(

0 <  x S § 

|  < x < t

(3.50)

(3.51)

v _  4h
‘ ~  i 2

J  x  sin dx +  J  {t — jc )  sin ^
( i n  jc \

T  ) dx

8 h 
(in)'-

(3.52)

■ sin

It may be noted that sin(/;r/2) is zero for all even values of the index and that it is 
either +1 or -1  for odd values. If desired, these constants can be written as

Fi =
8 h 

(in)2 
0

( - 1) T (i odd) 

(i even)
(3.53)

The fact that Ft =  0 for all even values of i is indicative of the symmetry of the 
initial string displacement about the midpoint. That is, because the initial shape is 
symmetric about x =  1/2, no antisymmetric modes of vibration are thereby excited. 
The total string displacement becomes

8h ^  ( - 1 ) ^  . 
v(x,t) = -2  ^  — 5 —  sin

i=l,3....

I7 tx \  . .
—  Jcos(<u/ 0 (3.54)

where
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It should be noted from this solution that the modal contributions to the total 
displacement significantly decrease as the mode number (i.e., the index /') increases. 
This can be observed by the dependence of Fj on i and is characteristic of almost all 
structural-dynamics response problems; thus, it permits a truncation of the infinite 
sum to a finite number of the lower-order modes. This solution indicates that the 
string will vibrate forever, with the string periodically returning to its initial shape. 
In actual systems, however, there are always dissipative phenomena that cause the 
motion to die out in time. This is considered when we address aeroelastic flutter in 
Chapter 5.

3.1.4 Traveling Wave Solution

In the preceding section, a modal solution was obtained for the string problem. 
The solution depicted the total displacement as a summation of specific shapes as 
measured relative to the ends of the string. Each shape had an amplitude that was,., 
in general, a function of time. When these individual modal contributions were of 
constant amplitude at their modal frequency, they appeared as standing or fixed 
waves along the string.

Another interpretation of the string response is now considered by examining 
the solution obtained for a string with an initial displacement but zero initial velocity 
and external loading. In this case, the £,s were all zero so that the displacement was 
written as

Equation (3.58) is known as the Fourier sine series representation of the function 
f{x). Additional information on the Fourier series may be found in more advanced 
textbooks on structural dynamics and applied mathematics. Now, to rewrite the 
general solution for this problem, the two well-known identities

(3.56)

The Ffi can be determined from the initial shape, f{x), as

(3.57)

It also may be noted that the initial shape can be represented by

(3.58)

sin(a +  fi) =  sin(o;) cos (p) +  cos(a) sin(^) 

sin(a -  fi) =  sin(a) cos(fi) -  cos(a) sin(/6 )
(3.59)

can be added to yield another identity as

sin(a) cos(^) =  i  [sin(a +  fi) +  sin(a -  fi)] (3.60)
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This identity can be used to rewrite the general solution given by Eq. (3.56) as

1

i=i
sin -f sin (3.61)

Equation (3.58) gives the functional form of f(x ) as an infinite sum of sine func­
tions with coefficients /*] . The two terms on the right-hand side of Eq. (3.61) are of 
the same form as the sum in Eq. (3.58) and can be identified as having the func­
tional form of f(x ) but with different arguments. It is therefore possible to rewrite 
Eq. (3.61) as

/ ( *  + (3.62)

This is the principal result of the traveling-wave solution. In reality, it is mathemati­
cally identical to the previously given standing-wave solution in Eq. (3.56); the only 
difference is point of view.

To illustrate how Eq. (3.62) represents traveling waves along the string, the two 
arguments of the shape function are replaced by new spatial coordinates, the origins 
of which are time dependent. The new coordinates are defined as

Equation (3.62) becomes

xL(x, t )  =  x +  

x r ( x , t )  =  x —

v(x,t) =  ^ [ f ( x L) +  /(**)]

'T  ’ —t 
m

т  t
m

(3.63)

(3.64)

which indicates that the time-dependent string shape is the sum of two shapes of a 
form identical to the initial shape but of one half its magnitude. Initially, at t  = 0, 
the origins of the x l and x r coincide with the x origin as

xi(x, 0 ) =  0  at x =  0  

x r ( x , 0 ) =  0  at x =  0  

At any later time t  > 0, the origins of and x r can be located by

(3.65)

xl(x, t) =  0  at

x r ( x , t )  = 0  at

(3.66)

These results indicate that the x i coordinate system is moving to the left with a 
speed V T/m and the x r  coordinate system is moving to the right with the same 
speed. These origin positions are indicated in Fig. 3.3. As a consequence of these 
moving origins, the shape f(x i) / 2  appears to propagate to the left and the shape
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f (x R) /2 appears to propagate to the right. Both of these shapes will move at a 
constant propagation speed of

V =  J -  (3.67)
V m

so that Eq. (3.62) may be written in the form

v(x, t) =  l-  [ f ix  +  Vt) +  f ix  -  Vt)] (3.68)

This is also called D ’Alembert’s form of the equation.
When these shapes reach one of the walls, the deflection must go to zero to satisfy 

the boundary conditions. This condition at each wall causes the shapes to be reflected 
in the opposite direction. These reflections appear as inverted shapes propagating 
away from the walls, again with the speed V =  -JTJm. This reflected-wave behavior 
is inherent to the Fourier sine series representation of f ix ) given in Eq. (3.58). 
Determination of the string displacement at times subsequent to t =  0 requires the 
evaluation of f ix  ±  Vt) in Eq. (3.62). Although the function f ix )  is defined only for 
the range 0 < x < I, the arguments x + V t  and x -  Vt significantly exceed this range. 
The Fourier sine series for f ix ), Eq. (3.58), possesses two distinct mathematical 
properties that permit evaluation of the function throughout the extended range of 
the argument and demonstrate the reflected-wave behavior.

First Property of f (x). Because all terms in the Fourier sine series for f ix )  are odd 
functions of x, f ix ) must also be an odd function. This property can be described as

f i - x )  =  - f i x )  (3.69)

It is immediately seen that this is a description of the reflected-wave behavior at the 
x =  0  wall.

Second Property of f (x). Because all terms in the Fourier sine series for f ix )  are 
periodic in x with a period of 21 , then f ix )  also must be periodic in x with a period 
of 21. This property can be described as

/(* )  =  f{x +  2nl) for и =  0, ±1, ± 2 , . . .  (3.70)

This relationship, in conjunction with the previously noted “odd” functionality of 
f ix ), describes the reflected-wave behavior at the x =  I wall.
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Figure 3.4. Example initial shape of wave

General Evaluation of f ( x ± V t ) .  These two properties can be applied simulta­
neously for the evaluation of / ( x +  Vt) and f(x  — Vt) for any value of their 
argument—say, x ±  Vt. When this argument lies within the range

n l < x ±  Vt < (n +  1)1

where

then

n =  0 , ± 1 , ± 2 ,

f{x ± V t)  =  ( - ! ) " /  (-1 )" x ±  Vt +
( - 1 )" -  2n -  1

(3.71)

(3.72)

(3.73)

We used Eq. (3.70) to reduce the range of motion, which was initially —oo < x < +oo, 
down to the range 0  < x < t, our physical space (i.e., where the string actually is 
mounted).

Example of Traveling Wave. The initial string shape is given in Fig. 3.4. At subse­
quent times, the string shape appears as shown in Fig. 3.5. The absolute distance 
each of the half shapes has traveled at time t is denoted by x. The faint lines are 
the displacements associated with the two constituent waves after transformation 
to bring them into the range 0  < x < I, and the bold line is the sum of these two 
displacements. The displacement during the time l*J m /T  < t < 2tJm JT  is a mirror 
image of the progression revealed in Fig. 3.5 with a return to the original shape at 
t =  I ts jm / T. The motion is periodic thereafter with period 2l^fm jT.

3.1.5 Generalized Equations of Motion

Once the free-vibration modes have been determined for a linear, conservative 
system, it is a straightforward procedure to determine the system’s response to 
any external loading. This is accomplished by treating each mode of vibration as a 
dimensional degree of freedom whose scalar coordinate is the mode’s generalized 
coordinate. For each of these modal degrees of freedom, a “generalized equation 
of motion” can be formulated from Lagrange’s equations (see the Appendix and 
Section 2.1.5). The generalized equations of motion for the string problem can be 
formulated by substituting expressions for the potential and kinetic energies into
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Figure 3.5. Shape of traveling wave at various times

Lagrange’s equations; see Eq. (2.14), repeated here for convenience as 

/Э K \  ЭР , . , 0 4d
dt

In the energy expressions, the string displacement is represented in terms 
generalized coordinates and mode shapes as

v(x, t ) =  ^ </>,•(*)&(Г)
/=i

(3.74) 

of its

(3.75)
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Because gravitational effects are being neglected, the potential energy of the 
string consists of only the strain energy caused by extension of the string. Recalling 
Section 2.2.2, we can express this as

=  i  Г  ( ~ \
2 Jo \ э*/

dx (3.76)

In terms of the mode shapes as represented in Eq. (3.75), the total potential energy 
then can be written as

P = f  j f  ( l> & )  dx (3‘77)

Before evaluating this integral, it should be noted that the square of a sum (as 
appearing in the integrand) can be written in terms of a double sum. This can be 
demonstrated by the following simple example:

= (« 1 + « 2  +  аз) 2

— "b #2 "b ^3 "t" 2 fli«2  “1“ 2й2йз “Ь 2йз#1

— ^ 1  ( « 1  +  яг +  аз) +  й2 (а\ +  яг +  Яз) +  йз (ai +  аг +  аз)
(3.78)

3 3 3

=  а\ 2 2 а‘ +  И а, + а 32 2 а‘
i=l i=1 i=l

3 3 3 3

= J2aiJ2ai = J222a‘ai
j = i  i = i  i = i  / = i

Thus, the potential energy becomes

P
rp  00 00

E E  (3.79)
, = 1  ; = 1  J°

For the string, the mode shapes and their first derivatives are sinusoidal functions; 
consequently, they form an orthogonal set? That is

j  <!>'i{x)<t>'j(x)dx =  0 (i Ф j ) (3.80)

Thus, the potential energy relationship can be simplified to

IT 00 pi

p = y E ^ 2  /  * ? dx (3-81)
2  ,-=i ^

2 It is nor true in general that the derivatives of mode-shape functions form an orthogonal set.
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The integral in this expression can be integrated by parts as

f e Iе Ct
/ ф[ф\йх =  фЩ  -  / ф1{х)ф-(х)(1х 

Jo 10 Jo
(3.82)

By virtue of the boundary conditions at both ends, the first term is zero. Substitution 
of Eq. (3.34) into the last term (i.e., the integral) shows that

pi pi
T I fifdx = wf I т(х)ф}<1х =  Micof 

Jo Jo
(3.83)

where we recall that &>; is the natural frequency of the ith mode and that Mt is the 
generalized mass (see Eq. [3.42]). (Note that the ith generalized mass depends on 
the mode shape of the ith mode and on how that mode shape is normalized.) Thus, 
the potential energy becomes

1 00
Р = - ^ Г Щ а > М (3.84)

i = l

Recalling the kinetic energy from Eq. (2.37), repeated here for convenience as

l Y... /о..ч 2 "

*“ Щ £ )
we may now use the modal representation to write

dx

K = \ JQ dx

(3.85)

(3.86)

With the double-sum notation, the kinetic energy simplifies to
л£ OO OO

К =  X I У 2 У Kfo№jkjm(.x)dx 
2 J° i= 1 ; = 1

I  OO oo
lily J  m(x)фiфjdx

(3.87)

i= l  /=1

Because the mode shapes are orthogonal functions where

I т(х )ф 1(х)фj(x)dx  = 
Jo

0 (/ Ф j)
м  Ф о (/ =  /)

the total kinetic energy becomes

(3.88)

(3.89)
;=i

The “generalized equations of motion” now can be obtained by substitution of 
the kinetic energy of Eq. (3.89) and the potential energy of Eq. (3.84) into Lagrange’s
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equations given as Eqs. (3.74). The resulting equations are then

Mt (£■ +  о Щ  =  2, (/ =  1,2, . . . ) (3.90)

When using a modal representation, we may use equations of this form for the 
dynamic analysis of any linearly elastic structure. The generalized mass and natural 
frequencies, of course, will differ depending on whether the structure is a string, a 
beam in torsion or bending, a plate or shell, or a complete aircraft. The left-hand 
side of this equation has at least these terms regardless of the system being analyzed. 
Kinetic and potential energies also may contain contributions from discrete elements 
such as added particles, rigid bodies, or springs. Finally, additional terms could arise 
from potential energy of conservative applied loads, such as gravity.

The right-hand side, conversely, is highly problem-dependent and is addressed 
next. The case of a vibrating structure without external forces is a special case, 
previously discussed in Section 3.1.3. When there are no external forces, H, =  0 for 
all /. The resulting general solution of Eq. (3.90) is the same as that presented in 
Section 3.1.3, which was obtained without reference to the generalized equations of 
motion and yields results depending only on the initial conditions. When including an 
entity such as a spring in the potential energy, we are enlarging the boundary of the 
system to include a new element. However, when the same entity is included through 
its contribution to the generalized forces, it is being treated as a source of external 
forces, something external to the system. Despite this philosophical distinction, the 
end result is the same (see Problem 5). Any effect that can be included in the 
generalized equations of motion through potential energy can be included instead 
through the generalized force. It is extremely important to not count the same effect 
twice (e.g., including the same entity through both potential energy and generalized 
forces).

3.1.6 Generalized Force

The generalized force, S, (r)—which appears on the right-hand side of the general­
ized equations of motion—represents the effective loading associated with all forces 
and moments not accounted for in P, which includes any nonconservative forces 
and moments. These forces and moments are most commonly identified as exter­
nally applied loads, which may or may not be a function of modal response. They 
also include any dissipative loads such as those from dampers. To determine the 
contribution of distributed loads, denoted by f(x , t ), the virtual work is computed 
from Eq. (2.38), repeated here for convenience as

■t
(3.91)

The term Sv(x, t) represents a variation of the displacement field, typically re­
ferred to as the “virtual displacement,” which can be written in terms of the
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Figure 3.6. Concentrated force acting on string
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generalized coordinates and mode shapes as
OO

Sv(x, t) =  (3.92)
<=i

where <5£,(0 is an arbitrary increment in the Zth generalized coordinate. Thus, the 
virtual work becomes

__  re °°
8 W =  I У Л х , Ш х ) 8Ш йх

J° 1=1 
°° f t 

=  T s m  /  f (x ,t ) 4>i(x)dx 
T~1 Jo

(3.93 ) ;:

i = I

Identifying the generalized force as

3 , ( 0 = /  f(x , t)<p,(x)dx (3.94)
Jo

we find that the virtual work reduces to
OO

SW =  J > ( 0  <51, (0  (3-95)
,=i

The loading / ( x, t ) in this development is a distributed load with units of force 
per unit length. If instead this loading is concentrated at one or more points—say, 
as Fc(t) with units of force acting at x =  xc as shown in Fig. 3.6—then its functional 
representation must include the Dirac delta function, 8 (x -  xc), which is similar to 
the impulse function in the time domain. In this case, the distributed load can be 
written as

f(x , t ) =  Fc(t)8(x -  xc) (3.96)

Recall that the Dirac delta function can be thought of as the limiting case of a 
rectangular shape with area held constant and equal to unity as its width goes to 
zero (Fig. 3.7). Thus, it may be defined by its integral property; for example, for 
a < xo < b

r b
8(x -  xo)dx =  1

(3.97)fJ  a

i

a 

b
f(x )8 (x -  x0)dx =  f{xo)
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Figure 3.7. Approaching the Dirac delta function

As a consequence, this integral expression for the generalized force can be applied 
to the concentrated load so that

3.1.7 Example Calculations of Forced Response

In this section, we present two examples of forced-response calculations. These 
examples also appropriately are called “initial-value problems.” The first has zero 
initial displacement and velocity; the second has nonzero initial displacement and 
zero initial velocity.

Example: Calculation of Forced Response. An example of a dynamically loaded 
uniform string is considered to illustrate the generalized force computation and 
subsequent solution for the string displacement. The specific example is a uniformly 
distributed load (in space) of simple harmonic amplitude (in time) shown in Fig. 3.8 
with

(3.98)
Fc(t)4>i(xc)

f(x , t ) =  Fsin(wf) (3.99)
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Figure 3.8. Distributed force / ( x, t) act­
ing on string
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The initial string displacement and velocity are taken as zero. Computation of the 
generalized force is simply

3, =  J  Fsin(fttf)sin dx 

~Fl
=  —  s in (< y f)[ l  -  c o s ( / j t ) ]  

in

Considering the even- and odd-indexed modes separately, we have

2 ~Fl
——  s in  (cot) (i odd)
171

0  (i even)

(3.100)

(3.101)

With this equation, the generalized equations of motion become 

Mj( I; +  coj^i) —
2 FI
——  sin (cot) (i odd)
17t

0  (i even)
(3.102)

Because the initial conditions on displacement and velocity are both identically zero, 
that is

U(x,0) =  ^ 0 c ,0 )  =  0 (3.103)
ut

it follows that the response is governed only by the generalized forces. Thus, the 
even-indexed modes are not excited because their generalized forces are also zero. 
For the odd-indexed modes, the general solution to their equation of motion is

£ =  At sin(a>,/) +  Bj cos(coit) +  C, sin(cor) (3.104)

Note that the first two terms correspond to the homogeneous portion of the solu­
tion, whereas the third term represents the particular solution. In this example, the 
particular solution has the same form of time dependence as the generalized force.

To evaluate the constants Л, and Д of the homogeneous solution, a procedure 
can be followed that is similar to the one used in Section 3.1.2 for solution of 
the homogeneous initial-condition problem. The initial displacement of the present 
example can be written as

OO OO /  • \
v(x, o) =  2 2  ш т =  E  5 ' sin F r )  =  0  (зло5)

(=1,3.... (=1,3,... ^  '
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Multiplying both sides of this relationship by sm (jnx/£)dx and integrating over x 
from 0  to t, we obtain

0 (3.106)

Applying the orthogonality property of the sine functions in the integrand indicates 
that

Bi =  0  (i odd)

The same procedure can be applied to the initial velocity, where

Я 00 00 /  • \
0 ) =  Ф М Ш )  =  (Aa>i +  Qco) sin =

(3.107)

(3.108)

Again, this relationship can be multiplied by sin (jnx /l)dx  and integrated over the 
string length. The orthogonality property in this case yields

A  =   ̂ (i odd)
CO,

(3.109)

Initial conditions of zero displacement and velocity thus require that the generalized 
coordinates of the odd-indexed modes be written as

Hi =  Q
CO

sin(o> / ) ------sin (cd,/)
ft),

(/ odd) (3.110)

The constants C, of the particular solution can be determined by substitution of the 
generalized coordinate back into the generalized equations of motion. This yields

t 7 7 \  2  F iMiQ (ft», — со ) sin (cot) — ——  sin (cot)
17Г

Using Eq. (3.42), we find that Mi =  m il l  for all i. Thus, C, becomes

4F
Q =

inm  (cof — со2)

(3.111)

(3.112)

Thus, the string displacement can be now written as the sum of contributions from 
the odd-indexed modes. Recall that neither the excitation loading nor the initial 
conditions excite the even-indexed modes. Thus

b(t)<t>i(x)
1=1.3,...

AF
т л E

/=1.3,...

sin(&)f) — ^  sin (cojt) 

i (со2 — со2)
sin

/  '1ЛХ 

\ ~

(3.113)

When the forcing frequency coincides with one of the natural frequencies, an 
interesting situation results. Considering only the time-dependent part of a typical
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Figure 3.9. String with concentrated 
force at mid-span

term in the series of Eq. (3.113), that is

sin(ct^) — ^  sin (oo,t) 
i (со? -  со2)

(3.114)

we find that when со ->■ со,, the term becomes indeterminate. To see what its value is 
in the limit, we let со, =  со +  s, , which gives

sin(ft>f) -  ^ s i n  [(co +  ej)t]

i j (со +  Sj)2 -  со2j

Invoking PHopital’s rule to take the limit as e, ->■ 0, we obtain

sin (cot) — cot cos (cot)

(3.115)

2  ico2
(3.116)

The second term tends to infinity as time increases with a linearly increasing ampli­
tude. This phenomenon is called “resonance” and, because of its destructive nature, 
should be avoided. That is, when a structure is excited using harmonic excitation, the 
forcing frequency must not be too near any of the structure’s natural frequencies.

Example: Calculation of Forced Response with Nonzero-Initial Conditions. A sec­
ond example is considered to illustrate the treatment of a concentrated force and 
initial conditions that are not identically zero. In this case, a concentrated step- 
function force of magnitude F0 is applied to the center of the string, as illustrated in 
Fig. 3.9. Recall that the unit-step function,l(r), is defined by

1(0 = 0  (f < 0) 

=  1  ( r > 0 )
(3.117)

The initial shape of the string is given as

v(x, 0) =  h sin (3.118)

and the initial velocity as zero.



The generalized force can be determined from the integral of a distributed 
loading as
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3< = [  f{x,t)<j>i(x)dx 
Jo

=  F o m s  (x  -  0 4>i{x)dx

= Fo 1 ( 0 0 1

=  F0 l(O sin

•G)

K t )
because

sin ^ = 0  (i even)

=  (—l ) 1̂  (i odd) 

the generalized equations of motion become

Mid, +  «,2&) =  0  (i even)
+  co^i) =  F0 1 ( 0 ( - 1 ) ^  (/ odd) 

The corresponding general solutions are

§,• =  A  sin (<w/ 0  +  Д cos (w, 0  (i even)

£,■ =  A  sin (<w;0 +  Д cos («, 0  +  C, (i odd) 

Consider the finite, initial displacement

(3.119)

(3.120)

(3.121)

(3.122)

uu
w(x,0 ) = ^ | , ( О ) 0 ,(х) 

i=l
OO / . \ OO /  . \

=  E  « ™ ( Ц Ч  +  E  < « + C , ) s i n ( 2 i )  (3.123)
/=2,4.... '  '  i= l,3 ,.„  \  1 /

. /4 л \х \
=  Л sin -----

V t J
This last equality is multiplied by sin( jjtx /i)d x  and integrated over the length of the 
string to yield

* L sin ( t 9  si“ № ) dx=„ £ .д f sin ( t 9  sin

+„5 . (в+с')^ !Ь1(!̂ ) " п( ^ ) л
(3.124)
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These integrals can be evaluated easily by noting the orthogonality property of the 
sine functions. The result gives the following values for the constants Д-:

B4 =  h

В, =  0 (i even but Ф 4) (3.125)

Bi =  —C, (i odd)

The initial velocity being zero requires that

a OO OO /  * \
-£ (x , 0) =  ^ | ;(О)0(л:) =  Y ,w i4  sin { / j r j  =  0 (3.126)

Multiplication by sin (jjtx /l)dx  and integration results in determining that Д  =  0 
for all i. These results can be summarized by noting that Hi =  0 for all even values of 
i except

£ 4  =  /icos (o>4 г) (3.127)

and for odd i

Hi =  Q  [1 — cos (w;/)] (г odd) (3.128)

The constants C, can be determined by substitution of the odd generalized 
coordinates back into the equations of motion

MiQcof =  F0 (—1 )^  t >  0 (3.129)

Given that M-t =  m t / l , this yields

c , =  m - V t  (ЗДЗО)
T(l7T)Z

so that the complete string displacement becomes
00

v(x,t) =
1 = 1

1-1 m x. . . /4тт;с\ 21 Fq ^  ( - l)- r -  Г1 . . ( i  
=  /icos(w 4 0 s m ^ - y - J  + 2 _ /  — 7 2 — [1 -  cos (со,-0] Sin ^  ^

(3.131)

Thus, the first term is the response due to initial displacement, and the sum over the 
odd-indexed modes is the response due to the forcing function.

3.2 Uniform Beam Torsional Dynamics

Although vibrating strings are easy to visualize and exhibit many of the features of 
vibrating aerospace structures, to analyze such structures, more realistic models are 
needed. In this section, we apply the concepts related to the modal representation
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to the dynamics of beams in torsion. A beam is a structural member in which one 
dimension is much larger than the other two. It is thus understandable to idealize the 
twisting and bending of high-aspect-ratio wings and helicopter rotor blades in terms 
of beam theory, especially in conceptual and preliminary design. Because many 
behavioral characteristics of typical aeronautical structures are found in beams, the 
torsion of beam-like lifting surfaces plays a vital role in both static and dynamic 
aeroelasticity.

3.2.1 Equations of Motion

For free vibration of a beam in torsion, we specialize the equation of motion derived 
in Section 2.3.1 by setting r(x , t) =  0 to obtain

д2в9
dx a/wf£ pIP( x ) j ^  (3.132)

Other than the quantities that multiply the partial derivatives, this equation of motion 
is similar to that for the dynamic behavior of a string. The difference is that the 
stiffness coefficient GJ(x), unlike the tension in the string, may not be constant. 
Specialization to the spanwise uniform case is undertaken to obtain a closed-form 
solution. Properties varying with x are not an obstacle for application of the variety 
of approximate methods discussed in Section 3.5, but here we are concerned with 
obtaining closed-form solutions to aid in understanding the results. As shown when 
we explore the boundary conditions in detail, there are more interesting possibilities 
for the boundary conditions for beams in torsion than there are for the string.

As before, we apply separation of variables, by substituting

e (x ,t)  =  X(x)Y(t) (3.133)

into the partial differential equation of motion and arranging the terms so that 
dependencies on x and t are separated across the equality. This yields

\Щ х ) Х \х ) ] ' ?(t) 
p IP(x)X(x) ПО 

Thus, each side must equal a constant—say, — шг—so that

[G J{x )X \x )] Y(t) _  2

(3.134)

p iP(x)X(x) no
Two ordinary differential equations then follow; namely

[G J(x)X '(x)] +  p Ip(x)w2 X(x) =  0 

У(0 +  ш2 У(0 =  0

=  -со2 (3.135)

(3.136)

The first of Eqs. (3.136) has variable coefficients in x and—except for certain special 
cases such as spanwise uniformity—does not possess a closed-form solution. The 
second, however, is the same as the second of Eqs. (3.6), the solution of which is well 
known.
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Some specialization is necessary in order to proceed further. Therefore, we 
consider only beams with spanwise uniform properties. Eqs. (3.136) then become

X" +  a 2X = 0
(3.137)

Y + w 2Y =  0

where a 2 =  ~pTpw2[G J . For а  Ф 0, the solutions can be written as

X(x) =  /Isin(ajc) +  Bcos(ax)
(3.138)

Y(t) =  С sin (wt) +  Dcos (cot)

To complete the solutions, constants A and В can be determined to within a mul­
tiplicative constant from the boundary conditions at the ends of the beam; С and 
D can be found as a function of the initial beam deflection and rate of deflection. 
Because the partial differential equations of motion governing both transverse vibra­
tion of uniform strings and torsional vibration of uniform beams are one-dimensional' 
wave equations, we rightfully can expect all of the previously discussed properties 
of standing and traveling waves to exist here as well.

Note that the special case of a  =  0 is an important special case with a different 
set of general solutions. It is addressed in more detail in Section 3.2.3.

3.2.2 Boundary Conditions

For a beam undergoing pure torsion, one boundary condition is required at each end. 
Mathematically, boundary conditions may affect в as well as its partial derivatives, 
such as дв/дх and d26 /d t2, at the ends of the beam. In the context of the separation 
of variables, these conditions lead to corresponding conditions on X  and/or X ' at 
the ends. These relationships are necessary and sufficient for determination of the 
constants A and В to within a multiplicative constant.

The nature of the boundary condition at an end stems from how that end is 
restrained. When an end cross section is unrestrained, the tractions on it are identi­
cally zero. Conversely, the most stringent condition is a perfect clamp, which allows 
no rotation of an end cross section. Although this is a common idealization, it is 
practically impossible to achieve in practice.

Cases that only partially restrain an end cross section involve elastic and/or 
inertial reactions. For example, an aircraft wing attached to a flexible support, such 
as a fuselage, is not a perfect clamped condition; the root of the wing experiences 
some rotation because of inherent flexibility at the point of attachment. A boundary 
condition that is idealized in terms of a rotational spring may be used to create 
a more realistic model for the support flexibility. Appropriate values for support 
flexibility can be estimated from static tests. Boundary conditions involving inertial 
reactions may stem from attached rigid bodies to model the effects of fuel tanks, 
engines, armaments, and so on.
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Figure 3.10. Clamped end of a beam

x = t

In this section, we consider two boundary conditions of the “primitive” type and 
two examples of derived boundary conditions that can be imposed at the ends of the 
beam to determine the constants A and B.

Clamped End. In this first primitive case (Fig. 3.10), the x =  i  end of the beam is 
assumed to be clamped or rigidly attached to an immovable support. As a conse­
quence, there is no rotation due to elastic twist at this end of the beam, and the 
boundary condition is

0 { l,t) =  0 =  X(e)Y(t) (3.139)

which is identically satisfied when

x(e) =  о (3.140)

Free End. For the second primitive case, we consider the x =  I end cross section of 
the beam to be free of stress (Fig. 3.11). Therefore, the twisting moment resultant 
on the end cross section must be zero

T (l,t)  = G T ( i ) ^ ( £ , t )  = 0 (3.141)

Because G J {I) > 0, this specializes to

^ ( e , t )  =  X '(l)Y (t) =  0 (3.142)

Thus, the specific condition to be satisfied is

X'(t) = 0 (3.143)

Other Forms of End Restraint. In any cross section of a beam undergoing deforma­
tion, there is a set of tractions on the plane of a typical cross section; a traction is a 
projection of the stress (three-dimensional) onto a surface (two-dimensional). From 
tractions at a given cross section, we can define the resultant force and moment at 
that station of the beam. When the end of a beam is connected to a rigid body, the

1 x - t

Figure 3.11. Free end of a beam
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Figure 3.12. Schematic of the x = t end of the 
beam, showing the twisting moment T, and the 
equal and opposite torque acting on the rigid body

Beam
Rigid body 
with moment 
of inertia Ic

body exerts forces and moments on the beam that are balanced by the distributed 
traction on the end cross section. That is, the force and moment resultants on the 
end cross section are reacted by equal and opposite forces and moments on the rigid 
body. These facts, along with application of suitable laws of motion for the attached 
body, allow us to determine the boundary conditions.

In the case of torsion, for any cross section, the resultant moment about x of 
tractions caused by transverse shearing stress has the sense of a twisting moment, T, 
given by

With x directed to the right and the outward-directed normal along the positive x 
direction at the end of the beam where x =  I, a positive twisting moment is directed 
along x in the right-handed sense. To avoid coupling with transverse motion, we 
stipulate that the mass center С of the attached rigid body lies on the x axis (i.e., the 
elastic axis of the beam). The body has a mass moment of inertia Ic about С so that 
it contributes a concentrated rotational inertia effect on the beam. The free-body 
diagram for the problem is then as shown in Fig. 3.12. By Newton’s third law, the 
beam’s twisting moment produces an equal and opposite torque on the rigid body.

Recall that Euler’s second law for a rigid body is stated precisely in Section 2.1.2. 
The only forces acting on the rigid body here3 are the contact forces from the beam. 
So, the x component of the left-hand side of Euler’s law is the sum of all moments 
acting on the body; that is

where the sign in front of T is negative because of the free-body diagram and the sign 
convention, which has moments acting on the body as positive in the same direction 
as the rotation of the body—along x in the right-handed sense. The * component of 
the right-hand side is the inertial time derivative of the inertial angular momentum 
about C, here simply the moment of inertia times the angular acceleration:

where the left superscript on the left-hand side reflects the fact that the time deriva­
tive is taken in the inertial frame F, defined in Section 2.1.2. Euler’s law for this rigid

(3.144)

(3.145)

(3.146)

- Recall that we normally ignore gravity for free-vibration problems.
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ПО.0 __________
**■ .....  ^ ^  * " 1  Figure 3.13. Schematic of the x = 0 end of the

i = 0  eam beam, showing the twisting moment T, and the
wiflfmoment equal and opposite torque acting on the rigid body

body is then expressed by equating these two very different quantities, yielding

- T ( t , t )  =  l j ^ ( l , t )  (3.147)

or

- G J - ( l , t )  =  Ic W ( i , t )  (3.148)

This equation then expresses the boundary condition of a beam undergoing uncou­
pled torsional vibration with a rigid body attached at x =  I.

When the body is attached to the x =  0 end, there is a subtle but important 
difference. With x directed to the right and the outward-directed normal along the 
negative x direction at the x =  0  end of the beam, a positive twisting moment is 
directed along — x in the right-handed sense. The free-body diagram for the problem 
is then as shown in Fig. 3.13. By Newton’s third law, the twisting moment produces 
an equal and opposite torque on the rigid body, which is in the direction of a positive 
rotation for the body. Therefore, Euler’s law (and the resulting boundary condition) 
is written as

7X0,0 =  lc~ ( 0 , t )  (3.149)

__ on o2n
G J - ( 0 , t ) =  Ic — (0,t) (3.150)

Thus, this equation expresses the boundary condition of a beam undergoing uncou­
pled torsional vibration with a rigid body attached at x =  0 .

The following example illustrates a convenient way to think about the contri­
bution of a spring to the boundary of a beam undergoing only torsional rotation. 
Consider a beam with an attached rigid body at its x =  I end, such that the rigid 
body is, in turn, restrained by a light torsional spring attached to the ground. The 
rotational sign convention does not change; 9 is always positive in the x direction 
(i.e., to the right in the sense of the right-hand rule). The rigid body, because it is 
attached to the end of the beam, rotates by 9(1, t). Thus, the rotational spring reacts 
against that rotation, and the moment applied by the spring to the body is opposite 
to the direction of the rotation (Fig. 3.14). The boundary condition for the beam 
results from applying Euler’s second law to the rigid body, so that

-k 0 (i, t) -  T(t, t ) =  1С™ (1 , t ) (3.151)
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Rigid
Beam body

T(IA
e{** ** С

ke((,t)
Torque exerted 
by rotational 
spring attached 
to ground

Figure 3.14. Example with rigid body and spring

If the body-spring mechanism is instead on the x =  0 end of the beam, then the 
moment exerted by the spring is still in the same direction. However, what constitutes 
a positive twisting moment on the beam has the opposite sense, and the boundary 
condition changes to

-к в (0, r) +  П0, t) =  / с ~ ( 0, 0  (3.152)

Clearly, if the body is absent, one may set Ic =  0. Then, the problem reduces 
to the elastically restrained boundary condition, as shown in Fig. 3.15. The twisting, 
moment at the beam end must be equal and opposite to the spring reaction for any 
finite rotation due to twist at the x =  I end, so that

-T (C ,t) =  - G J — { l j )  =  kB{i,t) (3.153)
dx

At the x =  0 end, however

7(0, 0  =  C7̂ (0- 0 = *0(°. 0 (3.154)

To be useful for separation of variables, we must determine the corresponding 
boundary condition on X. Thus, we write 9(x, t) as X(x)Y(t) as before, yielding

G JX '(l)Y (t) =  -kX(e)Y(t) (3.155)

which requires that

W x \ l )  =  —kX(t) (3.156)

Readers should verify that the same type of boundary condition at the other end 
would yield

G 7 X \0 ) =  kX( 0) (3.157)

where the sign change comes about by virtue of the switch in the direction noted 
previously for a positive twisting moment.

Figure 3.15. Elastically restrained end of a 
beam
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Ic

1

Figure 3.16. Inertially restrained end of a beam

Conversely, if the spring is absent, we may set k =  0, and the problem reduces 
to the inertially restrained case with only a rigid body attached to the x — I end 
(Fig. 3.16). The twisting moment at the beam end must be equal and opposite to the 
inertial reaction of the concentrated inertia for any finite angular acceleration of the 
end. Therefore

__ ал
_ GJ - { l , t )  =  Ic — ( l , t ) (3.158)

Expressing this condition in terms of X(x), Y(/), and their derivatives, we find that

-G lX '( t)Y ( t)  =  Ic X(l)Y(t) (3.159)

From separation of variables, it was determined from the second of Eqs. (3.137) that 
for free vibration (i.e., no external forces), we may regard Y(t) as describing simple 
harmonic motion; that is

2Trj
Y(t) = -co2Y(t) =  ~ ^ ^ Y ( t )  (3.160)

Pip
Substitution into the preceding condition then yields

GTX'(e)Y(t) =  a 2 =  Ic X(l)Y(t) (3.161)
pip

which requires that

pTpX '(i) =  a 2 Ic X(l) (3.162)

As before, readers should verify that the same type of boundary condition at the 
other end would yield

JT^X'(0) =  - a 2Ic X( 0) (3.163)

It is appropriate to note that the use of Eq. (3.160) allows us to express Eq. (3.158)

G T ^-(e, t ) =  co2Ic9(C, t ) (3.164)
OAT

with the caveat that this condition holds true only for simple harmonic motion.

3.2.3 Example Solutions for Mode Shapes and Frequencies

In this section, we consider several examples of the calculation of natural frequen­
cies and mode shapes of vibrating beams in torsion. We begin with the clamped-free
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r = 0

Figure 3.17. Schematic of clamped-free beam undergoing torsion

case, often referred to as “cantilevered.” Next, we consider the free-free case, illus­
trating the concept of the rigid-body mode. Finally, we consider a case that requires 
numerical solution of the transcendental characteristic equation: a beam clamped at 
as root and restrained with a rotational spring at the tip.

Example Solution for Clamped-Free Beam. To illustrate the application of these 
boundary conditions, consider the case of a uniform beam that is clamped at x =  0  

and free at x =  I, as shown in Fig. 3.17. The boundary conditions for this case are

ДО) =  X '{i) =  0 (3.165)

Recall that the general solution was previously determined as

6 (x ,t) =  X(x)Y(t) (3.166)

•here X and Y are given in Eqs. (3.138). For а  Ф 0, the first of those equations has 
ibe solution

Д х )  =  .Asin(ajr) +  Bcos(ax) (3.167)

It is apparent that the boundary conditions lead to the following 

Д 0 ) =  0 requires В =  0
(3.168)

X '(i) =  0 requires Aa cos(a£) =  0

If A =  0, a trivial solution is obtained, such that the deflection is identically zero. 
Because а  Ф 0, a nontrivial solution requires that

cos(a£) =  0 (3.169)

This is called the “characteristic equation,” the solutions of which consist of a denu- 
merably infinite set called the “eigenvalues” and are given by

«,•€= (/ =  1,2, . . . )  (3.170)

The Y(t) portion of the general solution is observed to have the form of simple 
harmonic motion, as indicated in Eq. (3.160), so that the natural frequency is

(3.171)
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Figure 3.18. First three mode shapes for clamped-free 
beam vibrating in torsion

Фз(х)

Because a  can have only specific values, the frequencies also take on specific numer­
ical values given by

ft); =  O';
IGJ _  (2i -  1)tt /G J

Р^р 21 pip
(3.172)

These are the natural frequencies of the beam. Associated with each frequency is a 
“mode shape” as determined from the x -dependent portion of the general solution. 
The mode shapes (or eigenfunctions) can be written as

</>,(*) =  sin(a,:c) =  sin
( 2  i  —  1 ) jt x  

2 t
(3.173)

or any constant times $, (x). The first three of these mode shapes are plotted in 
Fig. 3.18. The zero derivative at the free end is indicative of the vanishing twisting 
moment at the free end.

Example Solution for Free-Free Beam. A second example, which exhibits both 
elastic motion as described previously and motion as a rigid body, is the case of a
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i = 0  x~i
Figure 3.19. Schematic of free-free beam undergoing torsion

beam that is free at both ends, as shown in Fig. 3.19. The boundary conditions are

X'(0) =  X'{1) =  0 (3.174)

From the general solution for X(x) in Eqs. (3.138), we find that for а  Ф 0

X'(x) =  /4acos(a*) — B asing*) (3.175)

Thus, the condition at jc =  0 requires that

Aa =  0 (3.176)

For A =  0, the condition at x =  I requires that

sin(a£) =  0  (3.177)

because a null solution (в =  0) is obtained if В = 0. This characteristic equation is-? 
satisfied by

ail  =  in  (/ =  1,2, . . . )  (3.178)

and the corresponding natural frequencies become

=  (ЗЛ79) 

The associated mode shapes are determined from the corresponding X(x) as

<Д,(х) =  cos(a,;t) =  cos (3.180)

These frequencies and mode shapes describe the normal mode of vibration for the 
elastic degrees of freedom of the free-free beam in torsion.

Now, if in the previous analysis the separation constant, a , is taken as zero, then 
the governing ordinary differential equations are changed to

=  =  о (3.181)
X  GJ Y '

X"(x) =  0 and Y(t) =  0 (3.182)

The general solutions to these equations can be written as

X(x) =  ax +  b
(3.183)

Y(t) =  ct +  d

The arbitrary constants, a and b, in the spatially dependent portion of the solution 
again can be determined from the boundary conditions. For the present case of the
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free-free beam, the conditions are

X '( 0 ) =  0  requires a =  0  

X '(l) — 0 requires a =  0
(3.184)

Because both conditions are satisfied without imposing any restrictions on the con­
stant b, this constant can be anything, which implies that the torsional deflection can 
be nontrivial for a  =  0. From X(x) with a =  0, it is apparent that the corresponding 
value of в is independent of the coordinate x. This means that this motion for a  — 0 
is a “rigid-body” rotation of the beam.

The time-dependent solution for this motion, Y(t), also is different from that 
obtained for the elastic motion. Primarily, the motion is not oscillatory; thus, the 
rigid-body natural frequency is zero. The arbitrary constants, с and d, can be ob­
tained from the initial values of the rigid-body orientation and angular velocity. To 
summarize the complete solution for the free-free beam in torsion, a set of general­
ized coordinates can be defined by

The first three elastic mode shapes are plotted in Fig. 3.20. The zero derivative at both 
ends is indicative of the vanishing twisting moment there. The natural frequencies 
associated with these mode shapes are

Note that the rigid-body generalized coordinate, £o(0, represents the radian measure 
of the rigid-body rotation of the beam about the x axis.

A quick way to verify the existence of a rigid-body mode is to substitute w =  0 
and X — a constant into the differential equation, and boundary conditions for X. 
A rigid-body mode exists if and only if all are satisfied. Caution: Do not try to argue 
that there is a rigid-body mode because a  — 0  satisfies the characteristic equation, 
Eq. (3.177). To obtain that equation, we presupposed that а  ф 0!

Example Solution for Clamped-Spring-Restrained Beam. A final example for 
beam torsion is given by the system shown in Fig. 3.21. The beam is clamped at 
the root (x =  0 ) end, and the other end is restrained with a rotational spring having 
spring constant k — %GJ/I, where f  is a dimensionless parameter. The boundary

OO
(3.185)

where

</>o =  l
(3.186)

wo =  0

(3.187)
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Figure 3.20. First three elastic mode shapes for free-free 
beam vibrating in torsion

conditions on X  are thus 

Д 0 ) = 0

GJ (3.188)
G JX '(e) = -kx{i) =  — -$ x ( t )  -* ix'{i) + t,x{t) = о

When these boundary conditions are substituted into the general solution found in 
Eqs. (3.138), we see that the first condition requires that В =  0; the second condition, 
along with the requirement for a nontrivial solution, leads to

i'  tan (a l) +  a t  =  0 (3.189)

Figure 3.21. Schematic of torsion problem with 
spring

Г777777 ' / /  / /  ТУ
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Figure 3.22. Plots of tan(a^) and -a l / t ,  versus a t  for f  =  5

This transcendental equation has a denumerably infinite set of roots that cannot be 
found in closed form. However, as many of these roots as desired can be found using 
numerical procedures found in commercially available software packages such as 
M athem atical Maple™ and MATLAB™

To facilitate this sort of root-finding in general, we may need to specify initial 
guesses for the values of a l. These can be found using graphical means by plotting, 
for example, tan(a l) and —atft; versus a l  for a specified value of £ =  5, as shown 
in Fig. 3.22. The points where these curves intersect (indicated by dots in the figure) 
are the solutions, the locations of which are seen to be approximately at a l  =  2 .6 , 
5.4, and 8.4. These values, when used as initial guesses in a root-finding application, 
provide quick convergence to a \ l  =  2.65366, a 2l  =  5.45435, and азt  =  8.39135. As 
an alternative approach for this particular example, we may solve Eq. 3.189 for f 
and plot it versus a l  to find the roots without iteration.

Thus, the roots of Eq. (3.189) are functions of f , and the first four such roots are 
plotted versus £ in Fig. 3.23. Denoting these roots by a, , with i =  1 , 2 , . . . ,  we obtain 
the corresponding natural frequencies

From the plots (and from Eq. 3.189), we note that as £ tends toward zero, a \ l  tends 
toward я / 2 , which means that the fundamental natural frequency is

which is the natural frequency of a clamped-free beam in torsion (as shown herein). 
We also can show that as f tends to infinity, a \ l  tends toward л so that the

(3.190)

(3.191)
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a,(

Figure 3.23. Plot of the lowest values of a, versus f  for a clamped-spring-restrained beam in 
torsion

fundamental natural frequency is

<{^ oo) <зл92> 

which is the natural frequency of a clamped-clamped beam in torsion. Recalling the 
similarity of the governing equations and boundary conditions, the determination of 
the natural frequencies of a clamped-clamped beam in torsion follows directly from 
the previous solution for natural frequencies of a string fixed at both ends.

To obtain the corresponding mode shapes, we take the solutions for a, and 
substitute back into X, recalling that we can arbitrarily set A = \  and that В =  0. 
The resulting mode shape is

0, =  sin(a,x) (/ =  1,2, . . . )  (3.193)

The first three modes for £ =  1 are shown in Fig. 3.24. As expected, neither the twist 
angle nor its derivative are equal to zero at the tip. Close examination of Fig. 3.24 
illustrates that for higher and higher frequencies, the spring-restrained ends behave 
more and more like free ends.

3.2.4 Calculation of Forced Response

The formulation of initial-value problems for beams in torsion is almost identical 
to that for strings, presented in Section 3.1.7. We first should determine the virtual 
work done by the applied loads, such as a distributed twisting moment per unit 
length discussed in Section 2.3.1. From this, we may find the generalized forces 
associated with torsion. Once the generalized forces are known, we may solve the 
generalized equations of motion, which are of the form in Eq. (3.90). The resulting 
initial-value problem then can be solved by invoking orthogonality to obtain values
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f=i

Figure 3.24. First three mode shapes for clamped-spring- 
restrained beam in torsion, ( = 1

(=1

1 (

of the arbitrary constants in the general and particular solutions, as illustrated in the 
examples in Section 3.1.7.

3.3 Uniform Beam Bending Dynamics

The free vibration of a beam in bending is often referred to as “transverse vibration.” 
This type of motion differs from the transverse dynamics of strings and the torsional 
dynamics of beams in that the governing equations of motion are of a different 
mathematical form. Although these equations are different, their solutions are ob­
tained in a similar manner and exhibit similar physical characteristics. Again, we 
start with the properties varying with x and specialize when we must. Observe that 
whereas most aerospace structures experience combined or simultaneous bending 
and torsional dynamic behavior, we have here chosen certain configuration variables 
to uncouple these types of motion.

3.3.1 Equation of Motion

From Section 2.3.2, Eq. (2.53) is repeated here for convenience
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In the following sections, we treat the special case of free vibration for which 
f(x , t ) =  0 .

3 ^ .2  General Solutions

A solution to the equation of motion for the transverse vibrations of beams can be 
obtained by a separation of the independent variables. This separation is denoted as

v(x,t) =  X(x)Y(t) (3.195)

which, when substituted into the equation of motion, yields

Because the dependencies on x and t were separated across the equality, each side 
must equal a constant—say, со2. The resulting ordinary differential equations then 
become

(E lX ")" -m w 2X = 0
(3.197)

Y +  co2Y  =  0

For simplicity, we specialize the equations for the case of spanwise uniformity 
of all properties so that the first of Eqs. (3.197) simplifies to

X"" =  a 4X  (3.198)

wfaere

a 4 =  __
E l

a 4 =  ^ r  (3.199)

»  a constant.
For а  Ф 0, the general solution to the second of Eqs. (3.197) can be written as 

■  the cases for the string and beam torsion; namely

Y(t) — .Asin(<wO -I- Bcos(a)t) (3.200)

For а  Ф 0, the general solution to the spatially dependent equation can be 
obtained by presuming a solution of the form

X(x) — exp(Ax) (3.201)

Substitution of this assumed form into the fourth-order differential equation for 
J I i )  yields

A4 — a 4 =  0 (3.202)

wfaach can be factored to

(X — ia)(k +  ia)(X — cc)(X +  a) =  0 (3.203)

•S ea ting  a general solution of the form

X(x) =  C\ exp(mjt) +  Cj exp(—iax) +  Сз ехр(ад:) +  C4 exp(-ax) (3.204)
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Rewriting the exponential functions as trigonometric and hyperbolic sine and cosine 
functions yields an alternative form of the general solution as

Д г )  =  D\ sin(a;c) +  Di cos(a;t) +  D3 sinh(a;c) +  A  cosh(ax) (3.205)

Eventual determination of the constants Ц  (i = 1 , 2, 3, and 4) and a  requires spec­
ification of appropriate boundary conditions. To facilitate this procedure, this last 
solution form can be rearranged to provide, in some cases, a slight advantage in the 
algebra, so that

X(x) — E\ [sin(ax) +  sinh(o'jc)l +  £ 2 fsin(ajc) — sinh(«x)l
(3.206)

+  £ 3 [cos(ax) +  cosh(a;t)] +  £ 4 [cos(ax) — cosh(ax)]

To complete the solution, the constants A and В can be determined from the initial 
deflection and rate of deflection of the beam. The remaining four constants, С,, Д , 
or Ei (i =  1,2,3, and 4), can be evaluated from the boundary conditions, which must 
be imposed at each end of the beam. As was true for torsion, the important special 
case of a  =  0  is connected with rigid-body modes for beam bending and is addressed 
in more detail in Section 3.3.4.

3.3.3 Boundary Conditions

For the beam-bending problem, it is necessary to impose two boundary conditions 
at each end of the beam. Mathematically, boundary conditions may affect v and its 
partial derivatives, such as dv/dx, d2v/dx2, Э3 и/Эл:3, d2v/dt2, and d3v/dxdt2. In the 
context of the separation of variables, these conditions lead to corresponding con­
straints on some or all of the following at the ends: X, X ', X ", and X'". The resulting 
four boundary conditions on X and its derivatives are necessary and sufficient for 
determination of the four constants Q , Ц  , or E-, (i =  1, 2, 3, and 4) to within a 
multiplicative constant.

As with torsion, the nature of the boundary conditions at an end stems from 
how that end is restrained. When an end cross section is unrestrained, the tractions 
on it are identically zero. Again, the most stringent condition is a perfect clamp, 
which for bending allows neither translation nor rotation of an end cross section. 
Like the clamped-end condition in torsion, the clamped end in bending is a common 
idealization, although nearly impossible to achieve in practice.

For the bending problem, a wide variety of cases that only partially restrain 
an end cross section is possible. The cases typically involve elastic and/or inertial 
reactions. A boundary condition that is idealized in terms of both translational and 
rotational springs may be used to more realistically account for support flexibility. 
Appropriate values for both translational and rotational flexibility of the support 
can be estimated from static tests. Finally, we can use rigid bodies and springs in 
combination to model attached hardware such as fuel tanks, engines, armaments, 
and laboratory fixtures.
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Figure 3.25. Schematic of pinned-end condition

In this section, we consider the four “primitive” boundary conditions; four de­
rived boundary conditions involving individual elastic and inertial restraints; and 
two examples of derived boundary conditions that involve combinations of v and its 
partial derivatives that can be imposed at the ends of the beam for determination of 
the four arbitrary constants of the general solution for X.

A boundary condition can be written as a linear relationship involving one or 
more of the following: the beam deflection, its first three spatial partial derivatives, 
and its first two temporal partial derivatives. Although it is not a mathematical 
requirement, the particular combination of conditions to be specified at a beam _. 
end should represent a physically realizable constraint. The various spatial partial 
derivatives of the beam deflection can be associated with particular beam states at 
any arbitrary point along the beam. There are four such states of practical interest:

1. Deflection = v(x, t) =  X(x)Y(t)
2. Slope =  p(x, t) =  fx(x, t ) =  X ’(x)Y(t)
3. Bending Moment =  M(x, t) =  E I(x )j4 (x , t) =  EI(x)X"(x)Y(t)
4. Shear =  V(x, t) =  - £  [ Ё 7 ( * ) % 4 ]  =  -[EI(x)X "(x)]'Y (t)

When relating these beam states, the positive convention for deflection and slope 
is the same at both ends of the beam. In contrast, the sign conventions on shear 
and bending moment differ at opposite beam ends, as illustrated by the free-body 
differential beam element used to obtain the equation of motion (see Fig. 2.6).

The most common conditions that can occur at the beam ends involve vanish­
ing pairs of individual states. Typical of such conditions are the following classical 
configurations (specialized for spanwise uniformity):

• Clamped or built-in end, which implies zero deflection and slope, is illustrated 
in Fig. 3.10 and has v(£, t ) =  |^(£, г) =  0 so that X(l) =  X '(t) — 0.

• Free end, which corresponds to zero bending moment and shear, is illustrated 
in Fig. 3.11 and has M(l, t ) =  V(l, t) =  0 so that X "(l) =  X"'(£) =  0.

• Simply supported, hinged, or pinned end, which indicates zero deflection and 
bending moment, is denoted by the triangular symbol in Fig. 3.25 and has 
v(t, t ) =  M(e, 0  =  o so that X{t) =  X "(i) =  0.

• Sliding end, which corresponds to zero shear and slope, is illustrated in Fig. 3.26 
and has & (l, t) =  V(e, t) =  0 so that X '(t) =  X "'(i) =  0.

All of these conditions can occur in the same form at x — 0.
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J \  Figure 3.26. Schematic of sliding-end condition
\
\
\

In addition to these zero-state conditions, we derive boundary conditions corre­
sponding to linear-constraint reactions associated with elastic and inertial elements. 
The simplest of these are of the following four basic types:

• translational elastic constraint
• rotational elastic constraint
• translational inertia constraint
• rotational inertia constraint

Two additional examples are presented that are more involved because they entail 
combinations of these four types.

Translational Elastic Constraint. Consider a beam undergoing bending with a trans­
lational spring with elastic constant к attached to the x =  0  end of a beam, as shown 
in Fig. 3.27. Assuming that this end of the beam is deflected by the amount u(0, t), 
then the spring tries to pull the end of the beam back to its original position by 
exerting a downward force at the end, the magnitude of which is equal to kv(0 , t). 
Because the transverse-shear force at the left end (on the negative x face) is positive 
down, the boundary condition becomes

To be useful for separation of variables, we must make the substitution v(x, t) = 
X(x)Y(t), yielding

V(0 , t) =  kv( 0 , t) 

Using the definition of the shear force, we obtain

(3.207)

(3.208)

[£■/(0)^(0)"]' =  -kX(0) (3.209)

kv(0 ,t)

(a) beam with spring (b) beam with spring force

vWWV^WW
Figure 3.27. Example beam undergoing bending with a spring at the x = 0 end
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Figure 3.28. Schematic of beam with translational spring at both ends

which further simplifies for a spanwise uniform beam to

Ж 1 '" (0 )  =  - Щ 0 )  (3.210)

If the spring were at x =  I instead, the direction of the spring force at x =  I 
would be the same (i.e., downward), but the shear force is positive upward because 
this is the positive x face. Thus

V(£, t) =  -k o (l, t ) (3.211)

[Ei(i)x{e)"]' = kx(i) (3.212)

which further simplifies for a spanwise uniform beam to

E lX " '(t)  =  kX(t) (3.213)

These conditions must be augmented by one additional condition at each end 
because two are required. For example, consider a beam with translational springs 
at both ends, as shown in Fig. 3.28. At each end, the other conditions for this case 
would be that the bending moment is equal to zero.

Rotational Elastic Constraint. Consider now a beam with a rotational spring at the 
right end, as depicted in Fig. 3.29. For a rotation of the end cross-sectional plane of 
dv/dx at x =  I, which is positive in the counterclockwise direction, the spring exerts 
a moment in the opposite direction (i.e., clockwise). Because the bending moment at 
the right end of the beam is positive in the counterclockwise direction, the boundary 
condition then becomes

M (e,t) =  - A l , t )  (3.214)
OX

Figure 3.29. Example of beam undergoing bending with a rotational spring at right end
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Figure 3.30. Schematic of be'&ro. with тоШкшА ъртал&ъ ?л. both ex\d%

Using the definition of bending moment, we find

(3.215)

The boundary condition on X then becomes

E IX "(i) =  —kX '(t) (3.216)

As with the shear force, the sign convention on bending moment differs at 
the opposite end. Here, at the left end, the spring still exerts a clockwise moment; 
however, the bending moment is also positive in the clockwise direction. Thus, we 
may write

for that on X(x) and its derivatives. As before, one more condition is required at 
each end. Consider, for example, a beam with rotational springs at both ends, shown 
in Fig. 3.30. Here, it is necessary to set the shear forces at both ends equal to zero.

Translational and Rotational Inertia Constraints. The translational inertia con­
straint stems from the inertial reaction force associated with the translational motion 
of either a rigid body or a particle attached to an end of a beam. Similarly, the ro­
tational inertia constraint results from the inertial reaction moment associated with 
rotational motion of a rigid body attached to an end of a beam.

Consider the beam shown in Fig. 3.31, to which is attached a rigid body of mass 
mc and mass moment of inertia about the mass center С equal to Ic- The point 
С is located on the x axis at x =  0, and the beam is assumed to be undergoing 
bending deformation. The set of all contact forces exerted on the body by the 
beam can be replaced by a single force applied at the point C, and the moment of 
those contact forces about C. The resultant of all of those contact forces is simply 
the shear force K(0, t)\ their moment about С is the bending moment A/(0, t).

M (o,t) =  A o , t )
(3.217)

for the condition on v(x, t ) and its partial derivatives and

~ЫХ"(0) =  kX'(0) (3.218)
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Rigid
body

Beam

(a) Beam w ith rigid body 
attached a t z=0

V(0, t)k M(0,t)

Rigid
body

Beam

1
^ ( 0 , t )

(b) Beam and rigid body 
shown separated

Figure 3.31. Schematic of rigid body (a) attached to end of a beam, and (b) detached showing 
interactions

Therefore, Euler’s first and second laws take on the form

d2v
V(0 , 0  = m c- ^ ( 0 ,t)

M(0 , t ) =  Ic
d3v

dxdt2

(3.219)

(0 ,0

which in terms of v and its partial derivatives become, respectively,

3
dx EI( 0 ) g ( 0 . 0

Ew w M = Ic^ 0' t)

(3.220)

(3.221)

To determine the boundary conditions on X, we first substitute v(x, t) =  X(x)Y(t) 
as before, yielding

~ [E l(0 )X "m 'Y (t)  = m cX(0)Y(t)

Kl(0)X"(0)Y(t) =  Ic X'(0)Y(t)

Recalling from the second of Eqs. (3.197) that Y +  со2 Y =  0, these relationships 
simplify to

- [EI(0)X"(0)Y =  —mcw2X(0)

£ 7 (0 )X " ( 0 ) =  - I cco2X ’( 0) 

which, for a spanwise uniform beam, may be simplified to

m X "\ 0 ) =  mca 4X(0 ) 

mX"( 0 ) =  - I cct4X '( 0)

(3.222)

(3.223)

Eqs. (3.223) apply when a rigid body is attached to a free end. For a particle, we may 
simply set Ic =  0. Finally, at the opposite end of the beam, we need only change the 
signs of the stress resultants, so that

3 v

-M(l, t) =  Ic
d3v

dxdt2

(3.224)

(.e , t )
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v(f-M M{t A

(a) beam with 
positive stress 
resultants at x=t

(b) rigid body with contact 
force and moment from beam 

Figure 3.32. Example with rigid body attached to the right end of beam undergoing bending

from which we may express boundary conditions on X for a spanwise uniform beam, 
given by

m X "\t) =  - m cu 4X(i) 

m X"(l) =  Icoi4X '(i)
(3.225)

It is appropriate to note that the use of the second of Eqs. (3.225) allows us to 
express Eqs. (3.197) as

V(£, t) =  mcw2v(t, t)

dv (3‘226)
M(i, t) =  lew2— (€, t) 

dx
subject to the restriction that these conditions hold true only for free vibration.

Other Boundary Configurations. We now turn our attention to two more examples, 
which are only slightly more involved. First, we consider a beam with an attached 
rigid body of mass mc and moment inertia about С given by Ic- The body has a 
mass center that is offset from the point of attachment (at x — I) by a distance e, as 
shown in Fig. 3.32. (This is unlike the previous case in which the body mass center 
С is located at x =  I and thus has e — 0; see Fig. 3.31.) The body mass center С 
is assumed to be on the x axis so that transverse vibrations do not excite torsional 
vibrations and vice versa. The sum of all forces acting on the body is

( £ f) . - v u <) (3.227)

Euler’s first law says that this should be equated to the mass times the acceleration 
of C. The acceleration of С in the у direction can be written as

d 3 V
(.e ,t) (3.228)

where the body’s angular acceleration about the z axis (normal to the plane of the 
paper) is

d3v
a 7 =

dt2dx 0t , t )

Thus, Euler’s first law for the body is 

- V ( l , t )  =  m,
r d2v 33u
W (e’ t) +  e d f id l(e’°

(3.229)

(3.230)
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0  (pin)

I rigid rod 
;  spring a  Ч Ч Ч '

beam

Figure 3.33. Example with mechanism attached to the left end of beam undergoing bending

The sum of the moments about С in the z direction

(IX), (3.231)

Euler’s second law says that this should be equated to the moment of inertia about 
С times the angular acceleration about the z axis, so that

- M {l,t) +  eV (t,t)  =  lc - ^ ( l , t ) (3.232)

Eqs. (3.230) and (3.232) can be combined to solve for V{t, t) and M(l, /), yielding

M (l, t) =  - ( Ic +  mce2) - ^ ^ ( i ,  t ) -  mce ^ ( £ ,  t)

V(l, t) =  —mc

where the beam reactions are

r d 2 V 93v
a t2 ('i J )  +  e dt2dx

d 2 V

( * . 0

(3.233)

__
E m w d . »

(3.234)

The last example involves a mechanism attached to the left end of a beam with 
a pinned connection to ground, as shown in Fig. 3.33. The massless rigid rod is of 
length h and the particle has mass mc\ this combination should be considered a rigid 
body with mass mc and moment of inertia about the pivot mch2. The massless rod 
is embedded in the left end of the beam and rotates with it. A positive rotation 
of the x =  0  cross-sectional plane about the normal to the page (i.e., the z axis) is 
counterclockwise and has the value

m o  = £(o,o (3.235)

This rotation results in the downward motion of the particle by the distance hfi(0, t) 
and leads to the upward force exerted by the spring, khf}(0, t). Thus, this body has 
a free-body diagram, as shown in Fig. 3.34. A rotation of the rigid body is positive 
in the counterclockwise direction. Denoting the pivot as O, we find that the sum of 
moments on the mechanism is

( Е и о Х - а д о - ^ о - о (3.236)
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<---------h--------- ►

k h —  ( 0 , 0  
d x

Figure 3.34. Free-body diagram for example with mechanism attached to the left end of beam 
undergoing bending

Here, Euler’s second law is applied about the pivot to avoid dealing with reaction 
forces at O. This requires us to equate the sum of the moments about О to the 
moment of inertia about О times the angular acceleration; viz.

M(0 , t) -  kh2yx (0 , t) =  mch2- ^ ( о, o (3.237)

< j № . ) - t f £ ( a o - « r f s f e № 0  P-238>
The corresponding boundary condition on X  at x =  0 is found to be

ТПХ"(0) -  kh2X '(0) +  mch2cc4^ X ' ( 0) =  0 (3.239)

As always with bending problems, one other boundary condition applies at x =  0 
for the configuration shown in Fig. 3.33—namely, u(0, t) =  X(0) =  0.

3.3.4 Example Solutions for Mode Shapes and Frequencies

In this section, we consider several examples of the calculation of natural frequencies 
and mode shapes of vibrating beams in bending. One of the simplest cases is the 
pinned-pinned case, with which we begin. It is one of the few cases for beams in 
bending for which a numerical solution of the characteristic equation is not required. 
Next, we treat the important clamped-free case, followed by the case of a hinged-free 
beam with a rotational restraint about the hinge. Finally, we consider the free-free 
case, illustrating the concept of the rigid-body mode.

Example Solution for Pinned-Pinned Beam. Consider the pinned-pinned beam as 
shown in Fig. 3.35. The horizontal rollers at the right end are placed there to indicate 
that the resultant axial force in the beam is zero. Otherwise, the problem becomes 
highly nonlinear because it then becomes necessary to take the axial force into 
account, thereby significantly complicating the problem! The boundary conditions 
reduce to conditions on X  given by

Ж0) =  X"(0) =  X(i) =  X"(e) =  0 (3.240)
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Figure 3.35. Schematic of pinned-pinned beam

Substituting the first two boundary conditions into the general solution as found in 
Eq. (3.205), we find that

(3.241)
D2 +  A  — 0  

c*2( - A  +  A )  =  0

Recall that the constant a  cannot be zero. To consider the a  =  0 case we must take 
a solution in the form of a cubic polynomial, and the boundary conditions for this 
case do not yield a nontrivial solution of that form. Therefore, A  =  A  = 0 , and the 
solution for ^becom es

X(x) =  A  sin(ajc) +  D3 sinh(aA:) (3.242)

Using the last two of the boundary conditions, we obtain a set of homogeneous 
algebraic equations in A  and A

(3.243)

A nontrivial solution can exist only if the determinant of the coefficients is equal to 
zero; therefore

sin(a£) sinh(o;€) A 0

-sin(o;£) sinh(a£) 0

2  sin(a£) sinh(a;€) =  0 (3.244)

Because а  Ф 0, we know that the only way this characteristic equation can be satisfied 
is for

sin(a£) =  0

which has a denumerably infinite set of roots given by

(/ =  1 , 2 , . . . )
in

a, =

(3.245)

(3.246)

Although this is the same set of eigenvalues that we found for the string problem, 
the relationship to the natural frequencies is quite different; viz.



Structural Dynamics

Figure 3.36. Schematic of clamped-free beam

As observed in the cases of the string and beam torsion, there is associated 
with the tth natural frequency a unique deformation shape called the mode shape 
(or eigenfunction). Each mode shape can be obtained from the spatially dependent 
portion of the solution by evaluating the function, X{x), for any known value of a,. 
To find Xi, we substitute any value for a, back into either of the two scalar equations 
represented by the matrix equation in Eq. (3.243). It is important to recognize that 
the constants A  and A  now should be written as A; and A;- Using the first of 
these equations along with the knowledge that sinh(a, €) Ф 0, we find that A; =  0, 
leaving

/  i n x \
X  =  A ; Sin ( —  J (/ =  1 , 2 , . . . )  (3.249)

where A; can be any nonzero constant. For example, choosing А/ =  1. we find the 
mode shape to be

* = s i n ( ^ )  (/ =  1,2, . . . )  (3.250)

which is the same mode shape as obtained previously for the vibrating string.

Example Solution for Clamped-Free Beam. Consider the clamped-free beam as 
shown in Fig. 3.36, the boundary conditions of which reduce to conditions on X  
given by

Д 0 ) =  X'(0) =  x"(£) =  X " \i)  =  0  (3.251)

As in the previous example, we can show that this problem does not exhibit a 
nontrivial solution for the case of a  =  0. Thus, we use the form of the general solution 
in Eq. (3.206) for which а  Ф 0. Along with the first two boundary conditions, this 
yields

Д 0 ) =  0 -► £ 3 =  0
(3.252)

Д (0 ) =  0 Ex =  0

The remaining boundary conditions yield two homogeneous algebraic equations that 
may be reduced to the form

(3.253)
sinh(a€) +  sin(a£) cosh(a€) +  cos(a^) 
cosh(a€) +  cos(ai) sinh(a£) — sin(o^)
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Table 3.1. Values of ait, (2 i — 1 )тг/2, and ft for 
/ = 1.......5 for the clamped-free beam

i a i l (2i -  1 )77-/2 ft

1 1.87510 1.57080 0.734096
2 4.69409 4.71239 1.01847
3 7.85476 7.85398 0.999224
4 10.9955 10.9956 1.00003
5 14.1372 14.1372 0.999999

It can be verified by applying Cramer’s method for their solution that a nontrivial 
solution exists only if the determinant of the coefficients is equal to zero. This is 
typical of all nontrivial solutions to homogeneous, linear, algebraic equations, and 
here yields

sinh2 (a£) — sin2 (a£) — [cosh(a£) +  cos(a£ ) ] 2  =  0 (3.254)

or, noting the identities

sin2 (a€) +  cos2(a£) =  1

(3.255)
cosh2 (a€) -  sinh2 (a€) =  1

we obtain the characteristic equation as simply

cos(a£) cosh(a£) +  1 =  0 (3.256)

We cannot extract a closed-form exact solution for this transcendental equation. 
However, numerical solutions are obtained easily. Most numerical procedures re­
quire initial estimates of the solution to converge. Because cosh(a£) becomes large 
as its argument becomes large, we can argue that at least the largest roots will be 
close to those of cos(a£) =  0, or 04I =  (2i — l)n /2 . Indeed, the use of these values 
as initial estimates yields a set of numerical values that approach the initial estimates 
ever more closely as i increases. The values of щ1 (i.e., dimensionless quantities) are 
listed in Table 3.1. To six places, all values of € for i > 5 are equal to (2i — 1)л/2. 
The corresponding natural frequencies are given by

m

To obtain the mode shapes, we substitute the values in Table 3.1 into either 
of Eqs. (3.253). The resulting equation for the ith mode has one arbitrary constant 
remaining (i.e., either Ец or £ 4 ; can be kept), which can be set equal to any number 
desired to conveniently normalize the resulting mode shape </>, . For example, nor­
malizing the solution by - £ 4 /, which is equivalent to setting £ 4 , =  - 1 , we can show 
that

ф, =  cosh(a,x) -  cos(a,x) — Д [sinh(a,x) -  sin(a,x)] (3.258)
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Ф\

1 (

where

A =
E2i cosh(a,£) +  cos (a,€)

(3.259)
£ 4 / sinh(«,£) +  sin(a,£)

The values of ft also are tabulated in Table 3.1. For this particular normalization

f  cfidx =  I 
Jo

0 = 2 (—1 У+ 1

(3.260)

the first of which is left to the reader to show (see Prob. lOd). The first three mode 
shapes are depicted in Fig. 3.37. Note that as with previous results, the higher the 
mode number, the more nodes (i.e., crossings of the zero-displacement line).

Example Solution for Spring-Restrained, Hinged-Free Beam. This sample prob­
lem for which modes of vibration are determined is for a uniform beam that is 
hinged at the right-hand end and restrained there by a rotational spring with elastic
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Figure 3.38. Schematic of spring-restrained, 
hinged-free beam

constant k =  к E l f t. The left-hand end is free, as illustrated in Fig. 3.38. The bound­
ary conditions for this case require that

* " ( 0 ) = 0  

X"'(0) = 0
(3.261)

X(i) =  0

~ЁЛХ"(1) =  -k X '( l)  or IX "(I) =  -kX '(£ )

The spatially dependent portion of the general solution is used in the form of 
Eq. (3.206). The two conditions of zero bending moment and shear at x =  0 re­
quire that

X"(0) =  0 -* £ , =  0
(3.262)

JT'(O) =  0 -* £ 2 =  0

The third boundary condition, that of zero displacement at x =  I, can now be indi­
cated by

X(t) =  E\ [sin(a€) +  sinh(a€)] +  £3 [cos(or£) +  cosh(a£)] =  0 (3.263) 

The fourth boundary condition, a rotational elastic constraint at jc =  I, can be written

l 2X "(i) +  K lX \l)  =  0 (3.264)

so that

( a t )2 {E\ [-sin(a£) +  sinh(a€)] +  £ 3  [—cos(a^) +  cosh(a€)]}
(3.265)

+  « a t {£ 1  [cos(a£) +  cosh(a£)] -I- £ 3  [-sin(a^) +  sinh(a£)]} =  0

This relationship can be rearranged as

Ex
a t  I 

cos(a€) +  cosh(al) H-----[-sin(a^) +  sinh(a€)] |

+  £ 3  {—sin(a£) +  sinh(a€) +  — [— cos (at) +  cosh(a€)] \ =  0

(3.266)

The simultaneous solution of Eqs. (3.263) and (3.266) for nonzero values of Ex and 
£3 requires that the determinant of the 2 x 2  array formed by their coefficients must
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be zero. Setting the determinant formed from Eqs. (3.263) and (3.266) to zero, we 
find

{ a l  ]
sin(a£) — sinh(a£) -\-----[cos(a^) — cosh(a^)] >

+  [cos(a€) +  cosh(a€)] |cos(a€) +  cosh(a€) +  — [— sin(a^) +  sinh(a€)] J =  0

(3.267)

After executing the indicated multiplications and applying the identities of 
Eqs. (3.255), the relationship becomes

(t )[sin(a£) cosh(a£) -  cos(a£) sinh(a£)] =  1 +  cos (a t) cosh(a€) (3,268)

This is the characteristic equation. As in the previous example, it is a transcendental 
equation that cannot be solved analytically. Note that for specified finite and nonzero 
values of к, we may calculate numerically a denumerably infinite set of the eigen­
values a vl  (for / =  1 , 2 , . . .) by a suitable iterative procedure. For such an iterative 
solution, we need initial estimates for the alb. Note, however, that this equation is a 
special case in which we may solve for к as a function of a l  without iteration.

In the limit as к tends to infinity, we find eigenvalues in agreement with the 
clamped-free case, as expected. In the limit as к tends to zero, we can show that 
a rigid-body mode exists. The next example illustrates a procedure by which we 
may prove the existence of one or more rigid-body modes. It is important to note, 
however, that it is incorrect to try to infer the existence of a rigid-body mode because 
a l  =  0 satisfies Eq. (3.268) in the limit as к tends to zero; our general solution for X 
is valid only when а  Ф 0 .

For specified values of m, E l, I, and the stiffness parameter к, the eigenvalues 
can be used to determine the natural frequencies as

and the ith mode shape can be defined as 
M x )

Ei> (3.270)
sin(a1jc) +  sinh(a,x) +  Д [cos(a(x) +  cosh(a,x)J

The modal parameter ft =  Ец/Ец can be obtained from the zero-displacement 
boundary condition at x — I, Eq. (3.263). When evaluated for the ith mode, Д 
becomes

=  Eu =  sin(q,-l) +  sinh(g,-l)
1 Ey cos (ail) +  cosh(a;£)

numerical values of which can be found once € is known for specific values of к.
A sample set of numerical results for this example is shown in Figs. 3.39 through 

3.41. The first three mode shapes are shown for к =  1 in Fig. 3.39. Fig. 3.40 shows the 
variation of a il  versus к for / =  1,2, and 3, illustrating the fact that the frequencies of
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Figure 3.39. Mode shapes for first three modes of a 
spring-restrained, hinged-free beam in bending; к =  1 ,

an = (1.24792)2У Ж /(т£4), m =

(4.03114)2У Ш /(тг4), and w3 = (1Л34\3)2^ТП/(т14)

x
7

Фг

the higher modes are much less sensitive to the spring constant than that of the first 
mode. Indeed, the first mode frequency (proportional to the square of the smallest 
plotted quantity in Fig. 3.40) tends to zero as к tends toward zero in the limit. 
This can be interpreted as the lowest-frequency mode transitioning to a rigid-body 
mode, which exists only when the spring constant is identically zero. In the limit as к 
becomes infinite, in contrast, the eigenvalues tend toward those of the clamped-free 
beam, as expected. Indeed, as Fig. 3.41 shows, when к =  50 the mode shape starts

Ctjf
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Ф i

Figure 3.41. Mode shape for fundamental 
mode of the spring-restrained, hinged- 
iree beam  in bending; к =  50, =

(1.83929)2 yJ~E7 / ( m l4)

to look more like that of a clamped-free beam (with the fixity being on the right end 
in this example).

Example Solution for Free-Free Beam. The case of a uniform beam that is uncon­
strained at both ends, Fig. 3.42, may be considered as a crude first approximation to 
a freely flying vehicle. Their elastic and rigid dynamic properties are quite similar. In 
both instances, these properties can be described in terms of a modal representation. 

The boundary conditions for this case require that

X"(0) =  X m(0) =  X " (l )  =  X"’( l)  =  0 (3.272)

The spatially dependent portion of the general solution to be used here again involves 
the sums and differences of the trigonometric and hyperbolic functions. Two of the 
£,s can be eliminated by applying the boundary conditions at x =  0  so that

*"(0) =  0 -> £4 =  0
(3.273)

X"'(0) =  0 -* Ei =  0

The conditions at x  =  I of zero bending moment and zero shear X "(t )  =  0, and 
X'"(i)  =  0, respectively, yield the following relationships:

£i [— sin(a£) +  sinh(a£)] +  £ 3  [— cos (a l )  +  cosh(a^)] =  0

(3.274)
E\ [— cos(a£) +  cosh(a£)] +  £ 3  [sin(a£) +  sinh(a^)] =  0

Here again, the nontrivial solution to these equations requires that the determinant 
of the £ 1  and £ 3  coefficients be zero. This relationship becomes

sinh2 (a£) -  sin2 (a£) — [cosh(a^) -  cos(a€ ) ] 2  =  0 (3.275)

which simplifies to

cos (a l )  cosh(a£) =  1 (3.276)

£ = 0 
к — Figure 3.42. Schematic of free-free beam
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Table 3.2. Values o f  a, I, (2 i +  \ ) tc/ 2, and fr fo r  
i =  1........5 fo r  the free-free beam

i (2i +  l)jr/2 Pi

1 4.73004 4.71239 0.982502
2 7.85320 7.85398 1.00078
3 10.9956 10.9956 0.999966
4 14.1372 14.1372 1.00000
5 17.2788 17.2788 1.00000

For large a l ,  the roots tend to values that make cos (a l )  =  0. Unlike the clamped-free 
case, however, there is no root near ж/2,  and the first nonzero root occurs near Зл/2. 
Indeed, the ith root is near (2i -f 1)тг/2. Thus, the roots of this characteristic equation 
readily can be computed numerically to yield the eigenvalues a , t  in Table 3.2. From 
these numerical values, the natural frequencies can be found as

(3.277)

The mode shape associated with each eigenvalue can be defined as

/ \ M x )Ф^х) =  - 4 - ^
Ey, (3.278)

=  cos(atx)  +  cosh(a,*) -  ft [sin(a,x) +  sinh(o!(л:)]

The numerical value of the modal parameter ft =  —Еи /Ец ,  also tabulated in Ta­
ble 3.2, can be obtained from either of the boundary conditions given in Eqs. (3.274). 
Using the first of those equations as an example, we obtain

B =  _ E u  =  cosh(g,-€) -  со s(aj l )
1 Ey  sinh(a,£) -  sin(o', £)

It can be shown that the first of Eqs. (3.274) would yield the same result by using 
the characteristic equation as an identity. The first three of these mode shapes are 
shown in Fig. 3.43.

In addition to these modal properties that can be used to describe the elastic 
behavior of the beam, there are also modal properties that describe the rigid be­
havior of the beam. These modes are associated with zero values of the separation 
constant a.  Recall that a similar result was obtained for torsional deflections of a 
free-free beam. When a  is zero, the governing ordinary differential equations for 
beam bending, Eqs. (3.197), become

X"" =  0 Y =  0 (3.280)

The general solutions to these equations can be written as

„  b x 3 c x 2 
X  — —— I— -— Ь d x  +  e

6  2 (3.281)

y = f t  +  g
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x Figure 3.43. First three free-vibration elastic mode 
у  shapes of a free-free beam in bending

where the arbitrary constants, b through e, in the spatially dependent portion of the 
solution can be established from the boundary conditions. These conditions of zero 
bending moment and shear at the ends of the beam yield the following:

X''(0) =  0 с =  0

X"'(0) =  0 -* b =  0
(3.282)

X "[t )  =  Q ^  b l  +  c =  0 

X"’( l )  =  0 -* b =  0

It is apparent that all four boundary conditions can be satisfied with b =  с =  0. 
Because no restrictions are placed on the constants d  and e, they can be arbitrary. 
Thus, a general description of the solution in this case is

X = d x  +  e (3.283)

An important characteristic of this solution is that no relationship has been estab­
lished between d  and e. Therefore, they can be presumed to represent two inde­
pendent motions of the beam. As written previously, e represents a rigid vertical 
translation of the beam because it is independent of x. The d x term, being linear
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in x,  represents a rigid rotation of the beam about the left end. It can be shown 
that when the rotational motion is taken to be about the mass centroid, it and the 
translation are orthogonal with respect to one another and with respect to the elastic 
modes. This suggests that the modal representation for these rigid-body degrees of 
freedom can be described by

о
frigid =  X ! (0  (3.284)

i = - i

where

ф~\ =  1  and £_i (t) =  translation
t  (3.285)

фо =  x  -  -  and £ 0 ( 0  =  rotation angle

The time-dependent portion of the solution for these rigid-body motions is seen to 
be aperiodic. This means that natural frequencies for both rigid-body modes are 
zero. The two arbitrary constants contained in Y(t)  can be evaluated from the initial 
rigid-body displacement and velocity associated with the translation and rotation. 
Thus, the complete solution for the free-free beam-bending problem can now be 
written in terms of all of its modes as

OO
« = £ >  (*)& (0  (3.286)

i=—1

This example provides a convenient vehicle for further discussion of symmetry. 
It was already noted in the case of a vibrating string that systems exhibiting geo­
metric symmetry have two distinct types of mode shapes—namely, those that are 
symmetric about the midpoint and those that are antisymmetric about the midpoint. 
As can be seen in the results, this is indeed true for the modes of the free-free beam. 
In particular, the rigid-body translation mode and the first and third elastic modes 
are clearly symmetric about the midpoint of the beam, whereas the rigid-body rota­
tion mode and the second elastic mode are antisymmetric about the midpoint (see 
Fig. 3.43).

This observation suggests that the symmetric mode shapes could be obtained by 
calculating the mode shapes of a beam that is half the length of the original beam 
and that has the sliding condition at one end and is free at the other. Similarly, 
the antisymmetric modes could be obtained by calculating the mode shapes of a 
beam with half the length of the original beam and that has one end pinned and the 
other free. It also should be evident that a symmetric aircraft with high-aspect-ratio 
wings, modeled as beams and attached to a rigid-body fuselage, could be represented 
similarly in terms of the symmetric and antisymmetric modes of the combined body 
and wing system. That is, we may model the whole system by considering only one 
wing attached to a rigid body with half the mass and half the rotational inertia with 
appropriate boundary conditions.
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The formulation of initial-value problems for beams in bending is almost identical 
to that for beams in torsion and for strings; see Sections 3.1.7 and 3.2.4, respectively. 
We should first determine the virtual work done by the applied loads, such as a 
distributed transverse force per unit length. From this, we may find the generalized 
forces associated with bending. Once they are known, one may solve the generalized 
equations of motion, which are in the form of Eq. (3.90). The resulting initial- 
value problem then can be solved by invoking orthogonality to obtain values of 
the arbitrary constants in the general and particular solutions, as illustrated in the 
examples in Section 3.1.7.

3.3.5 Calculation of Forced Response

3.4 Free Vibration of Beams in Coupled Bending and Torsion

In this section, the analytical treatment of coupled bending-torsion vibration of 
composite beams is briefly considered. The treatment is restricted to uniform beams 
and to the presentation of governing equations, sample boundary conditions, and 
suggestions for solution.

3.4.1 Equations of Motion

First, we specialize Eqs. (2.65) for spanwise uniformity and free vibration, yielding

—г д вp l p - ^ + m d
d2v
J i 2

G J ^  +  K p ^  = 0  
dx2 dx3

a 2e d2v — d4v a3e n 
m d —TT + m — +  E l —7 -  К —r =  0 

dt2 8t2 dx4 dx3

(3.287)

Because these are linear equations with constant coefficients, for free vibration we 
may assume simple harmonic motion. In the spirit of separation of variables, the 
solutions for v and 6 are written as

v(x, t) — v(x) exp(ia>t) 

6 (x, t) =  6 (x) exp(iwt)
(3.288)

with the mode shapes being of the form

v — v exp(ax)

6 = 6  exp(ax)

which allows us to write the system of equations in matrix form as

(3.289)

E l  a 4 — тш2 —K a 3 — mdw2 N 0
K a 3 — mdw2 —G J a 2 — p l pw2 l»l 0 (3.290)
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For there to be a nontrivial solution, the determinant of the coefficient matrix must 
vanish, yielding

( Ш О Т -  K 2)a6 +  JTp ~Ё1со2а 4 -  mG7co2a 2 -  (.mpTp -  m2d2)co4 = 0 (3.291)

This cubic equation in a 2 may be solved for arbitrary w2. When d  and К  are nonzero, 
finding the exact, closed-form solution “by hand” is problematic. However, with the 
aid of symbolic computational tools such as Mathematica™, we may easily extract 
the six roots denoted here by a, for / =  1 ,2 , . . . ,  6 , as functions of to2. Note that
a ,+ з =  —a, for i =  1,2, and 3.

Therefore, when K , d  Ф 0, the solution for the mode shape may be written as

Now, with six boundary conditions (i.e., three at each end), we may find six homo­
geneous algebraic equations for C,. The condition for a nontrivial solution leads to 
the characteristic equation for со2. There is a denumerably infinite set of roots for со2, 
so that for any value determined for со2, we may find any five of the C, coefficients 
in terms of the sixth and thus determine the mode shapes. In general, each mode 
shape involves both v and в. For small couplings (i.e., such that К 2 <5C GJ EI  and 
md2 «  pip),  one “branch” of these roots is near the uncoupled bending frequencies 
and the other is near the uncoupled torsional frequencies.

3.4.2 Boundary Conditions

The boundary conditions for coupled bending and torsion range from very simple to 
somewhat complex, depending on the type of restraint(s) imposed on the ends. For 
example, for a clamped end, we have v =  dv /dx  =  6 =  0 , the same as for uncoupled 
bending and torsion. Similarly, a free end has zero bending moment, shear force, 
and twisting moment, respectively written as M =  V =  T =  0. Note the definitions 
of M  and T  in Eqs. (2.58) and that V =  —dM/dx.  Equations governing other re­
straints may be determined by appropriate kinematical or physical relationships. 
For example, a pinned connection may imply specification of an axis about which 
the moment vector (i.e., combination of bending and twisting moments) vanishes 
and perpendicular to which components of the rotation vector (i.e., combination of 
bending and twisting rotations) vanish. Relationships for both elastic and inertial 
restraints may be developed using Euler’s laws, as in the uncoupled cases herein.

v =  C\ exp(aijc) +  Сг exp(a2 *) +  Сз ехр(с*зд:)

-I- C4  exp (-a ix ) +  C5 ex p (-a 2 *) +  Q  ex p (-a3x) 

в =  Di exp(aix) +  Di exp(a2 ^) +  Di ехр(азл:)

+  Di, exp (-a ix ) +  £ > 5  exp(-o;2jc) +  D(, ехр(-азх)

(3.292)

where

i =  1 , 2 , . . . , 6 (3.293)
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The complexity of this class of problem provides excellent motivation for the 
introduction of approximate methods, which is undertaken in the next section.

3.5 Approximate Solution Techniques

There are several popular methods that make use of a set of modes or other functions 
to approximate the dynamic behavior of systems. In this section, without going 
into detail about the theories associated with this subject, we illustrate within the 
framework already established how we can use a truncated set of modes or another 
set of functions to obtain an approximate solution. Details of the theories behind 
modal approximation methods are found in texts that treat structural dynamics at 
the graduate level. The two main approaches are (1) Galerkin’s method, applied 
to ordinary or partial differential equations; and (2) the Ritz method, applied to 
Lagrange’s equations or the principle of virtual work. These two methods yield 
identical results in certain situations. Thus, if time is limited, it would be necessary to 
discuss only one of the two methods to give students an introduction to the method 
and an appreciation of results that can be obtained this way. The Ritz method is 
preferred in the present context because of the ease with which it can be presented 
within the framework of Lagrange’s equations. Nevertheless, both of these methods 
are presented at a level suitable for undergraduate students.

3.5.1 The Ritz Method

Building on the previous treatment, we start with Lagrange’s equations, given by

where in the Lagrangean, L =  К  — P, the total kinetic energy is K,  the total potential 
energy is P,  n is the number of generalized coordinates retained, the generalized 
coordinates are and S, is the generalized force. Although it can be helpful, as 
discussed herein, it is not necessary to make use of potential energy, which can 
account only for conservative forces. The generalized force, however, can be used to 
include the effects of any loads. So as not to count the same physical effects more than 
once, the generalized force should include only those forces that are not accounted 
for in the potential energy. The generalized forces stem from virtual work, which 
can be written as

i =  1 ,2 , . . .  ,n (3.294)

П

(3.295)

where <5& is an arbitrary increment in the ith generalized coordinate.
Consider a beam in bending as an example. The total kinetic energy must include 

that of the beam as well as any attached particles or rigid bodies. The contribution
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of the beam is

k* - = \ L  m G 0 dxiam (3.296)

where m  is the mass per unit length of the beam. The total potential energy P  =  
U +  V  comprises the internal strain energy of the beam, denoted by U, plus any 
additional potential energy, V, attributed to gravity, springs attached to the beam, 
or applied static loads. All other loads, such as aerodynamic loads, damping, and 
follower forces, must be accounted for in 3, .

The strain energy for a beam in bending is given by

The expression for V  varies depending on the problem being addressed, as does the 
virtual work of all forces other than those accounted for in V. The virtual work of . 
an applied distributed force per unit length f ( x ,  t ) can be written as

where Sv is an increment of v in which time is held fixed and / ( x,  г) is positive in the 
direction of positive v.

To apply the Ritz method, we need to express P, K,  and S W  in terms of a series 
of functions with one or more terms. For a beam in bending, this means that

There are several characteristics that these “basis functions” ф,• must possess, as 
follows:

1. Each function must satisfy at least all boundary conditions on displacement and 
rotation (often called the “geometric” boundary conditions). It is not necessary 
that they satisfy the force and moment boundary conditions, but satisfaction of 
them may improve accuracy. However, it is not easy, in general, to find functions 
that satisfy all boundary conditions.

2. Each function must be continuous and p  times differentiable, where p  is the 
order of the highest spatial derivative in the Lagrangean. The pth derivative of 
at least one function must be nonzero. Here, from Eq. (3.297), p  =  2.

3. If more than one function is used, they must be chosen from a set of functions 
that is complete. This means that any function on the interval 0 < x <  t  with the 
same boundary conditions as the problem under consideration can be expressed 
to any degree of accuracy as a linear combination of the functions in the set.

(3.297)

(3.298)

П

(3.299)
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Examples of complete sets of functions on the interval 0 < x < t  include

1, JC, JC2 , . . .

. / л х \  . ( 2л х \  . ( Ъ л х \
sin \ ~ Г ) ’sin \ ~ Г )  ' sin \ 7 ~ )  ’ ' "

a set of mode shapes for any problem

Completeness also implies that there can be no missing terms between the lowest 
and highest terms used in any series.

4. The set of functions must be linearly independent. This means that

П

У " щф[(х) =  0 =*■ я, =  0 for all i (3.300)
<=o

A set of functions that satisfies all of these criteria is said to be “admissible.”
By use of the series approximation, we reduced a problem with an infinite 

number of degrees of freedom to one with n degrees of freedom. Instead of being 
governed by a partial differential equation, the behavior of this system is now defined 
by n second-order, ordinary differential equations in time. This reduction from 
a continuous system modeled by a partial differential equation with an infinite 
number of degrees of freedom to a system described by a finite number of ordinary 
differential equations in time is sometimes called spatial discretization. The number 
n is usually increased until convergence is obtained. (Note that if inertial forces are 
not considered so that the kinetic energy is identically zero, then a system described 
by an ordinary differential equation in a single spatial variable is reduced by the Ritz 
method to a system described by n algebraic equations.)

Now, let us illustrate how the approximating functions are actually used. Let </>,, 
/ =  1, 2 , . . . ,  oo, be a complete set of p-times differentiable, linearly independent 
functions that satisfy the displacement and rotation boundary conditions. Thus, U 
can be written as

u = \  Ё  E  tei f  ЖФ"Ф"ах (3-301)
2 t i U  Jo

The contributions of any springs that restrain the structure, as well as conservative 
loads, must be added to obtain the full potential energy P.

The kinetic energy of the beam is

1 " " f e 
КЫат =  ~ У ] У "kikj \  тф,ф,(1х (3.302)

2 ,=1 7 = 1 J°

Contributions of any additional particles and rigid bodies must be added to obtain 
the complete kinetic energy K.
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The virtual work must account for distributed and concentrated forces resulting 
from all other sources, such as damping and aerodynamics. This can be written as

____  « Г n i

<5W =  7 > ,  / f ( x ,  t)<p,dx +  Fc
i=i Uo

(x0, /)</>, (Xq) (3.303)

where xo is a value of x at which a concentrated force is located. Here, the first 
term accounts for a distributed force /(x , t) on the interior of the beam, and the 
second term accounts for a concentrated force on the interior (see Eq. 3.96). In 
aeroelasticity, the loads /(x , t ) and Fc(xo, t) may depend on the displacement in a 
complicated manner.

The integrands in these quantities all involve the basis functions and their deriva­
tives over the length of the beam. Note that these integrals involve only known quan­
tities and often can be evaluated analytically. Sometimes they are too complicated to 
undertake analytically, however, and they must be evaluated numerically. Numeri­
cal evaluation is often facilitated by nondimensionalization. Symbolic computation 
tools such as Mathematica™ and Maple™ may be helpful in both situations.

With all such things considered, the equations of motion can be written in a form 
that is quite common; viz.

[M]{f} +  [C ]{f}+  [/<]{£} = {£} (3.304)

where ) is a column matrix of the generalized coordinates, {Z7} is a column matrix of 
the generalized force terms that do not depend on (') is the time derivative of ( ) , 
[M] is the mass matrix, [C] is the gyroscopic/damping matrix, and [/C] is the stiffness 
matrix. The most important contribution to [A/] is from the kinetic energy, and this 
contribution is symmetric. The most important contribution to [ ЛГ] is from the strain 
energy of the structure and potential energy of any springs that restrain the motion 
of the structure. There can be contributions to all terms in the equations of motion 
from kinetic energy and virtual work. For example, there are contributions from 
kinetic energy to [C] and [K] when there is a rotating coordinate system. Damping 
makes contributions to [C] through the virtual work. Finally, because aerodynamic 
loads, in general, depend on the displacement and its time derivatives, aeroelastic 
analyses may contain terms in [A/], [C], and [AT] that stem from aerodynamic loads.

An interesting special case of this method occurs when the system is conser­
vatively loaded. The resulting method is usually referred to as the Rayleigh-Ritz 
method, and many theorems can be proved about the convergence of approxima­
tions to the natural frequency. Indeed, one of the most powerful of such theorems 
states that the approximate natural frequencies are always upper bounds; another 
states that adding more terms to a given series always lowers the approximate natural 
frequencies (i.e., making them closer to the exact values).

A further specialized case is the simplest approximation, in which only one term 
is used. Then, an approximate expression for the lowest natural frequency can be 
written as a ratio called the “Rayleigh quotient.” This simplest special case is of more 
than merely academic interest: It is not at all uncommon that a rough estimate of 
the lowest natural frequency is needed early in the design of flexible structures.
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Example: The Ritz Method Using Clamped-Free Modes. In the first example, we 
consider a uniform, clamped-free beam that we modify by adding a tip mass of 
mass find.  The exact solution can be obtained easily for this modified problem 
using the methodology described previously. However, it is desired here to illustrate 
the Ritz method, and we already calculated the modes for a clamped-free beam 
(i.e., without a tip mass) in Section 3.3.4. These mode shapes are solutions of an 
eigenvalue problem; therefore, provided we do not omit any modes between the 
lowest and highest mode number that we use, this set is automatically complete. 
The set is also orthogonal and therefore linearly independent. Of course, these 
modes automatically satisfy the boundary conditions on displacement and rotation 
for our modified problem (because they are the same as for the clamped-free beam), 
and they are infinitely differentiable. Hence, they are admissible functions for the 
modified problem. Moreover, they satisfy the condition of zero moment at the free 
end, which is a boundary condition for our modified problem. However, because 
of the presence of the tip mass in the modified problem, the shear force—which 
readers will recall is proportional to the third derivative of the displacement—does 
not vanish as it does for clamped-free mode shapes.

The strain energy becomes

Substituting the mode shapes of Eq. (3.258) into Eq. (3.305) and taking advantage 
of orthogonality, we can simplify it to

where a, is the set of constants in Table 3.1. Similarly, accounting for the tip mass, 
the kinetic energy of which is

(3.305)

(3.306)
i=i

(3.307)

i= \  ] = l

we obtain the total kinetic energy as

/  r™t>i<t>jd x  +  
2 Jo

(3.308)
1=1 y = l

With the use of the mode shapes in Eq. (3.258), we find that <fr(£) =  2 ( - l ) '+1; 
therefore, the kinetic energy simplifies to
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Table 3.3. A pproxim ate values o f  fo r
clamped-free beam with tip mass o f  iim i using n 
clamped-free m odes o f  Section 3.3.4, Eq. (3.258)

n ц =  1 д =  10

ООII=i

1 1.57241 0.549109 0.175581
2 1.55964 0.542566 0.173398
3 1.55803 0.541748 0.173126
4 1.55761 0.541536 0.173055
5 1.55746 0.541458 0.173029
Exact 1.55730 0.541375 0.173001

where the Kronecker symbol 5,у =  1 for / =  j  and <5,;- =  Ofor/ ф /.F o r free vibration, 
there are no additional forces. Thus, Lagrange’s equations now can be written in 
matrix form as

[M] {£} +  [*]{?} =  0 (3.310)

where [' K*) is a diagonal matrix with the diagonal elements given by

Кц =  ~EJtaf i =  1 ,2 , . . . ,  n (3.311)

and [M] is a symmetric matrix with elements given by

Мц = т £ [ 8ц + 4 n ( - l ) i+i] i, j  =  1 ,2 , . . . ,  n (3.312)

Assuming f  =  f  exp(iwt),  we can write Eq. (3.310) as an eigenvalue problem of 
the form

[ [K ]-a ,2[M]]{F} =  0 (3.313)

Results for the first modal frequency are shown in Table 3.3 and compared therein 
with the exact solution. As we can see, the approximate solution agrees with the exact 
solution to within engineering accuracy with only two terms. For contrast, results 
for the second modal frequency are shown in Table 3.4; these results are not nearly 
as accurate. Results for the higher modes (not shown) are even less accurate. This 
is one of the problems with modal-approximation methods; fortunately, however,

Table 3.4. A pproxim ate values ofa>iyj%£ fo r  
clamped-free beam with tip mass o f  цт 1 using n 
clamped-free m odes o f  Section 3.3.4, Eq. (3.258)

n ц  =  1 li =  10 ц =  100

"> 16.5580 15.8657 15.7867
3 16.3437 15.6191 15.5367
4 16.2902 15.5576 15.4744
5 16.2708 15.5353 15.4518
Exact 16.2501 15.5115 15.4277
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T able 3.5. Approximate values < 
clamped-free beam with tip mass o f  un it using 
n polynomial functions

n ц =  1 ц =  10 ц =  100

1 1.55812 0.541379 0.173001
2 1.55733 0.541375 0.173001
3 1.55730 0.541375 0.173001
4 1.55730 0.541375 0.173001
5 1.55730 0.541375 0.173001
Exact 1.55730 0.541375 0.173001

aeroelasticians and structural dynamicists frequently are interested in only the lower- 
frequency modes. Note that the one-term approximation (i.e., the Rayleigh quotient) 
is within 1.1% for all values of fi displayed.

Example: The Ritz Method Using a Simple Power Series. As an alternative to using 
the mode shapes of a closely related problem, let us repeat the previous solution 
using a simple power series to construct a series of functions 0, . Because the moment 
vanishes at the free end where x =  I, we can make the second derivative of all terms 
proportional to I — x. To obtain a complete series, we can multiply this term by 
a complete power series 1, x, x2, and so on. Thus, we then may write the second 
derivative of the ith function as

1 л  x \  /J ty '-1 (3.314)

With the boundary conditions on displacement and rotation being 0, (0) =  ф'(0) =  0, 
we then can integrate to find an expression for the ith function as

( f ) i+ 1  [ 2  +  / - / ( f ) ]
<t>i (3.315)

i (1 +  i) (2 +  i)

Because the chosen admissible functions have nonzero third derivatives at the tip, 
they offer the possibility of satisfying the nonzero shear condition in combination 
with one another. Such admissible functions are sometimes called “quasi-comparison 
functions.”

In this case, the stiffness matrix becomes

2 EI

Kii =  +  1) (/ +  /)  (1 +  / +  j )
i, j  =  1, 2 , . . . , n (3.316)

and the mass matrix

M
2m l  [3(/2 +  j 2) +  7/j  +  23(i +  /)  +  40]

4 i j  (i +  1) (i +  2) ( j  +  1) ( j  +  2) (i +  j  +  3) (i +  j  +  4) (i +  j  +  5) 

4 fj,ml
(3.317)

+ i, j  =  1, 2 , . . .  ,n
i j  (/ +  1) (i -I- 2) ( j  +  1) ( j  +  2)

Results from this calculation are given in Tables 3.5 and 3.6 for the first two 
modes. It is clear that these results are much better than those obtained with the
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Table 3.6. A pproxim ate values o f a ^ ^ y j  fo r  
clamped-free beam with tip mass o f  tim t using 
n polynom ial functions

n M =  1 ц  =  10 ц =  100

2 16.2853 15.5443 15.4605
3 16.2841 15.5371 15.4524
4 16.2505 15.5119 15.4280
5 16.2501 15.5116 15.4277
Exact 16.2501 15.5115 15.4277

clamped-free beam modes. It is not unusual for polynomial functions to provide 
better results than those obtained with beam mode shapes. However, here it is worth 
noting that the beam mode shapes are at a disadvantage for this problem. Unlike 
the problem being solved (and the polynomials chosen), the beam mode shapes 
are constrained to have zero shear force at the free end and thus are not quasi­
comparison functions for the problem with a tip mass. This one-term polynomial 
approximation (i.e., the Rayleigh quotient) is within 0.05%, which is exceptionally 
good given its simplicity.

It is sometimes suggested that the mode shapes of a closely related problem 
are—at least, in some sense—superior to other approximate sets of functions. For 
example, in the first example, we saw that the orthogonality of the modes used re­
sulted in a diagonal stiffness matrix, which provides a slight advantage in the ease of 
computing the eigenvalues. However, for the low-order problems of the sort we are 
discussing, that advantage is hardly noticeable. Indeed, symbolic computation tools 
such as Mathematica™ and Maple™ are capable of calculating the eigenvalues for 
problems of the size of this example in but a few seconds. Moreover, in some cases, 
the simplicity of carrying out the integrals that result in approximate formulations is 
a more important factor in deciding which set of functions to use in a standard im­
plementation of the Ritz method. Indeed, polynomial functions are generally much 
easier to deal with analytically than free-vibration modes such as those illustrated in 
Section 3.5.1, which frequently involve transcendental functions.

Alternatives to the standard Ritz method include the methods of Galerkin, fi­
nite elements, component mode synthesis, flexibility influence coefficients, methods 
of weighted residuals, collocation methods, and integral equation methods. We in­
troduce Galerkin’s method and the finite element method in the next two sections. 
Detailed descriptions of other approaches are found in more advanced texts on 
structural dynamics and aeroelasticity.

3.5.2 Galerkin’s Method

Rather than making use of energy and Lagrange’s equation as in the Ritz method, 
Galerkin’s method starts with the partial differential equation of motion. Let us 
denote this equation by

£ [d(jc, f)] =  0 (3.318)
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where С is an operator on the unknown function v(x, t ) with maximum spatial partial 
derivatives of the order q. For the structural dynamics problems addressed so far, 
the operator £  is linear and q =  2p,  where p  is the maximum order of spatial partial 
derivative in the Lagrangean. It is important to note, however, that it is not true, in 
general, that q  =  2p\  indeed, we do not need to consider the Lagrangean at all with 
this method.

To apply Galerkin’s method, we need to express v(x, t) and, hence, the operator 
С in terms of a series of functions with one or more terms. For a beam in bending, 
for example, this means that, as before

П
v (x, 0  =  2 2  £j(0<pj(x) (3.319)

/=i
Relative to the basis functions used in the Ritz method, the characteristics that these 
functions Ф1 must possess for use in Galerkin’s method are more stringent, as follows:

1. Each function must satisfy all boundary conditions. Note that it is not easy, in 
general, to find functions that satisfy all boundary conditions.

2. Each function must be at least q times differentiable. The qtb derivative of at 
least one function must be nonzero.

3. If more than one function is used, they must be chosen from a set of functions 
that is complete.

4. The set of functions must be linearly independent.

Functions that satisfy all of these criteria are said to be “comparison functions.” 
The original partial differential equation then is multiplied by ф, and integrated over 
the domain of the independent variable (e.g., 0 < x <  £). Thus, a set of n ordinary 
differential equations is obtained from the original partial differential equation. 
(Note that if the original equation is an ordinary differential equation in x, then 
Galerkin’s method yields n algebraic equations.)

Consider a beam in bending as an example. The equation of motion can be 
written as in Eq. (3.194), with a slight change, as

й ( ж 0 ) + т^ - № '‘)=о (3J20)
where E l  is the flexural rigidity, m  is the mass per unit length, and the boundary 
conditions and loading term f ( x ,  t ) must reflect any attached particles or rigid bodies. 
In aeroelasticity, the loads f (x ,  t) may depend on the displacement in a complicated 
manner.

With all of the components as described herein considered, the discretized equa­
tions of motion can be written in the same form as in the Ritz method; that is

[M]{f} +  [C]{i} +  [K]{f} =  {£} (3.321)

where {§} is a column matrix of the generalized coordinates, {F} is a column matrix 
of the generalized force terms that do not depend on f ( , (') is the time derivative 
of ( ) ,  [M] is the mass matrix, [C] is the gyroscopic/damping matrix, and [/С] is the
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stiffness matrix. As before, inertial forces contribute to [A/], there are contributions 
from the inertial forces to [C] and [/C] when there is a rotating coordinate system, 
and damping also contributes to [С]. Finally, because aeroelastic loads, in general, 
depend on the displacement and its time derivatives, aerodynamics can contribute 
terms to [M], [C], and [AT],

Example: Galerkin’s Method for a Beam in Bending. Now, we illustrate how the 
approximating functions are actually used. Let 0, , i =  1 ,2 , . . . ,  oo be a complete 
set of g-times differentiable, linearly independent functions that satisfy all of the 
boundary conditions. Substituting Eq. (3.319) into Eq. (3.320), multiplying by ф,(х), 
and integrating over x from 0 to t ,  we obtain

/ 'Jo
Ф1 Е Щ) "  +  ^ т ф ,  -  f (x,  t ) 

;=1 ;=1
dx =  0 i — 1 , 2 , . . .  ,n  (3.322)

After reversing the order of integration and summation and integrating the first 
term by parts, and taking into account that the functions ф, satisfy all the boundary 
conditions, this equation becomes

У  J  Е1ф"ф"с1х + 1j J  rmp^jdx^ -  J  /ф,с1х =  0 i -  1 ,2 , . . . ,  n

(3.323)

When we compare the first two terms with the previous derivation by the Ritz 
method, we see the close relationship between these approaches. Indeed, if the 
starting partial differential equation is derivable from energy—which implies that 
q =  2p —and the same approximating functions ф, are used in both cases, the result­
ing discretized equations are the same.

Considering the clamped-free case, for example, we can develop a set of com­
parison functions by starting with

1)41) (3.324)

With the boundary conditions on displacement and rotation being <Д, (0) =  ф[(0) =  0, 
we then can integrate to find an expression for the ith function as

ф1 = ( ! Г И ( ‘ - 7 ) , + Ф - т +(! ) г
/(1 +  i){2 +  i)( 3 +  i) 

Elements of the stiffness matrix are found as

(3.325)

Ku f  Е1ф"ф'\(1х
Jo

24 EI
(3.326)

P  (i +  j  -  1) (i +  j )  (1 + i  +  j ) (2 +  / +  j )  (3 +  г +  j )
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Table 3.7. Approximate values of  for
i = 1,2, and 3, for a clamped-free beam using 
n polynomial functions

n Mode 1 Mode 2 Mode 3

1 3.53009 _ _
2 3.51604 22.7125 -
3 3.51602 22.0354 66.2562
4 3.51602 22.0354 61.7675
5 3.51602 22.0345 61.7395
exact 3.51602 22.0345 61.6972

Similarly, the elements of the mass matrix are found as

Mjj =  / m<f>i<f>jdx
Jo (3.327)
mlpi

P2

where

p\ =  30,240 +  28,512(i +  j )  +  9,672(/2 +  j 2) +  1,392(/3 +  / 3) + 72  (i4 +  / 4)

+  20,040// +  4,520{i2 j  +  i j 2) +  320(i3 j  +  i j 3) +  520i2 j 2 

Pi - i (  1 +  i)(2 +  0(3 +  0/(1 +  /)(2 +  /)(3 +  /)(3 +  i +  /)

(4 +  i +  / ) (5 +  i +  / ) (6 +  i +  /)(7 +  i +  /)
(3.328)

The fact that the governing equation is derivable from energy is reflected in the 
symmetry of [M] and [/£]. Results for free vibration (i.e., with /  =  0) are given in 
Table 3.7. As with the Ritz method, we see monotonic convergence from above and 
accuracy comparable to that achieved via the Ritz method. However, unlike the Ritz 
method, we do not always obtain results for free-vibration problems that converge 
from above.

Example: Galerkin’s Method for a Beam in Bending Using an Alternative Form 
of the Equation of Motion. Consider again a clamped-free beam. To obtain an 
alternative equation of motion, we integrate the equation of motion twice and use 
the boundary conditions of zero shear and bending moment to obtain an integro- 
partial differential equation

- f t9 2u 
dx2 +

dt; =  0 (3.329)

where f  is a dummy variable. Although this equation of motion is somewhat more 
complicated, it is only a second-order equation. Thus, it has only two boundary 
conditions, which are zero displacement and slope at x =  0. Thus, a much simpler
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Table 3.8. Approximate values of  wlyj  = -  for 
/ = 1,2, and 3 for a clamped-free beam using n 
terms of  a power series with a reduced-order 
equation of motion

n Mode 1 Mode 2 Mode 3

1 7.48331 _ _
2 3.84000 57.2822 -

3 3.44050 24.1786 188.677
4 3.52131 20.3280 69.3819
5 3.51698 22.0793 53.2558
6 3.51607 22.1525 61.0295
exact 3.51602 22.0345 61.6972

set of comparison functions can be used, such as a simple power series; that is

</>, =  ( ! )  i =  1,2,  . . . , n  (3.330) .:

We should not expect greater accuracy from this simple set of functions, but the 
analytical effort is considerably less. Indeed, the elements of the stiffness matrix are

Kij =  f  EI(pj<t>'jdx
_ _  (3.331)

_  E l j j j  + 1 )
t ( i  +  7 +  1) 

and the elements of the mass matrix are

Mij =  f  <pi f  (< -  x)m4>j(t;)di; dx
(3.332)

m l 3
=  (2 +  z)(3 +  /)(5 +  i +  j )

Note that these matrices are not symmetric. Moreover, the results presented in 
Table 3.8 are not as accurate as those obtained in Table 3.7, and the convergence is 
not monotonic from above.

The partial differential equations derived previously for free vibration of strings, 
beams in torsion, and beams in bending can be derived from energy-based ap­
proaches, such as Hamilton’s principle. (The use of Hamilton’s principle is beyond 
the scope of this text, but detailed treatments are found in numerous graduate-level 
texts on structural dynamics.) In those cases, the Ritz and Galerkin’s methods give 
the same results when used with the same approximating functions. As shown here, 
however, Galerkin’s method provides a viable alternative to the Ritz method in 
cases where the equations of motion are not of the form presented previously in this 
chapter.
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\

Figure 3.44. Schematic of a nonuniform beam with distributed twisting moment per unit 
length

3.5.3 The Finite Element Method

The finite element method is, by far, the most popular way of solving realistic 
structural dynamics and aeroelasticity problems in industry. The name derives from 
the breaking of a structure into a large number of small elements, modeling them 
approximately, and connecting them together appropriately. Because of this way of 
discretizing the geometry, it is possible to accurately capture modeling details that 
other methods cannot.

In one sense, the finite element method can be regarded as a special case of Ritz 
and Galerkin methods, one in which the generalized coordinates are themselves dis­
placements and/or rotations at points along the structure. It typically makes use of 
polynomial shape functions over each of the finite elements into which the original 
structure is broken. Equations based on the finite element method have the same 
structure as Eq. (3.304); however, they are typically of large order, with n being 
on the order of 102 to 107. What keeps the computational effort from being overly 
burdensome is that the matrices have a narrow-banded structure, which allows spe­
cialized software to be used in solving the equations of motion that takes advantage 
of this structure, reducing both memory and floating-point operations and resulting 
in significant computational advantages.

Here, we present only a simple outline of the method as applied to beams in 
torsion and in bending, leaving more advanced topics such as plates and shells to 
textbooks devoted to the finite element method, such as those by Reddy (1993) and 
Zienkiewicz and Taylor (2005).

Application to Beams in Torsion. Here, we use the finite element method to analyze 
the behavior of a nonuniform beam in torsion. Similar to the application of the Ritz 
method, we make use of Lagrange’s equation. Regardless of how finite elements are 
derived, however, for a sufficiently fine mesh, the results should approach the exact 
structural behavior. This development encompasses both forced response and free 
vibration.

Consider a clamped-free beam subjected to a distributed torque r(x, t ) as de­
picted in Fig. 3.44. Note that the x  coordinate is along the beam. The strain energy
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h - ' H

n+l

GJ.

Figure 3.45. Schematic of a nonuniform beam with internal torques discretized 

of the system can be written as

('  =  i f S 7 w ( S )  dx
(3.333)

where GJ(x)  is the torsional stiffness of the wing and в(х,  t ) is the elastic twist. In the 
finite-element approach, the beam is divided into n elements, as shown in Fig. 3.45. 
Although there is no requirement to make the elements of constant stiffness, we do so 
for convenience. Relaxation of this assumption is left as an exercise for readers (see 
Problem 25). Element i is connected to two end nodes i and i +  1 with coordinates 
Xi and JC/+1 , respectively. Within element i, the torsional stiffness is assumed to be a 
constant, GJi.  The discrete value of the twist at the node i is denoted 0,. The twist 
is linearly interpolated between the nodal values so that

в(х,  t ) = 1 -  z
I

m
z 0i+i(O

where

h

with 0 < z <  1. The expression for в(х,  t) also can be written as

( X - X i )
e ( x , t )  =  0i(t) +

ti [<%+1(O -0 i(O ]

(3.334)

(3.335)

(3.336)

where x, < x < xi+\ and t-t =  xi+\ -  x,. Note that if all 0, are zero except one, then 
only the element immediately to the left (element i — 1) and immediately to the 
right (element i)  are affected (Fig. 3.46). Introducing this approximation into the 
strain energy, Eq. (3.333), and integrating over the beam length yields

U =  \ { в ) т[К]  {0} (3.337)
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Figure 3.46. Assumed twist distribution for all nodal values equal to zero except в.

where the array {0} stores the values of the twist at the nodes 

{0(O}7'=  |0 i(f)fc(O  —  вп+t (0 j  

The resulting stiffness matrix [AT] may be written as

(3.338)

( i j  1
t\

CiJ \
t\ 0 0 0 0 •••

сП\ (iJ  | j (iJ  2 (77;
«2

0 0 0 •••

0 TU2
h

(iJ  2 1 OV3

t i  h
G J %
li

0 0 •••

[K] = 0 0
CiJ %
h

07, 1 G J 4
u

TUi
и (3.339)

0 0 0
G J 4
u

G J 4
«4

1 G J 5
ts

0 0 0

Note that we could add the potential energy of springs attached to ground at any 
nodes to represent elastic restraints.

The kinetic energy may be written as

K =  \ f t W p M ( j i j dX (3340)

Using the same interpolation for в(х,  t ) and a constant mass polar moment of inertia 
per unit length in p I Pi in element i, we obtain a discretized kinetic energy of the 
form

K  =  \ { 0 ) ' [ М \ { в ) (3.341)
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where the mass matrix [M] is given by

[M] =

ptpi
з

pipt( i 
6

\ Plp\ \̂ j Pip7^2

6 3 +  3

0

0

0

0

Р1р1̂2
6

0

0

0

0 
P̂l>2 ̂ 2

p l p y V  2  - P l p \ ^ . y

з +  з
pip) ̂ 3 
—6“

0

0

0
Ĵ‘4 I?

PI pi ̂ 4

0

0

0

plp$̂ 4
~ z ~

1 Pi ̂ 4 | P  t
з ' з

0

0

0

(3.342)
We also could add concentrated inertia at any nodes to represent the inertia of any 
attached rigid bodies.

The contribution of the applied torque r ( x , t ) comes into the analysis through the 
generalized force, which may be extracted from the virtual work, given by Eq. (2.46) 
and repeated here for convenience as

,51У =  /  r{x,  t )86(x, t)dx  
Jo

(3.343)

Here, it is helpful to represent the twisting moment using the same shape functions 
as for 9, viz.

r(x,  t ) =  n( t )  +  ^  [ri+i(r) -  r,(r)] (3.344)

with the array

{r}1 =  [г, r2 ■ ■•/•„+!] (3.345)

representing the nodal values of the applied torque per unit span. The virtual work 
then becomes

8W = { 8e ] r [D]{ r ( t ) }  (3.346)

so that the generalized force then may be put into the form

{3} =  [D]fr(r)} (3.347)
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with the loading matrix [D] given by

0 0 0 0

(3.348)

о 0 0

As for the boundary conditions, admissibility requires only that we satisfy the 
geometric boundary conditions (see Section 3.5.1). If we consider, for example, a 
clamped-free beam, we need only set 6\ =  0. The boundary condition at the free 
end (i.e., zero twisting moment) is a “natural” (i.e., a force or moment) boundary 
condition, not a geometric condition. Therefore, it need not be taken into account in 
a solution by this approach. As a consequence, the first elements of column matrices 
{в} and {r} are removed; the reason the first element of the latter is removed is that 
8в\ — 0, in keeping with the requirement that the virtual displacements and rotations 
must satisfy the geometric boundary conditions. This has the effect of removing the 
first row and column from each of the matrices [M\ and [A-], and the first row from

The equations of motion now may be formed by use of Lagrange’s equation, as 
with the Ritz method. Given the approximation of the twist field in Eq. (3.336), the 
only unknowns of the problem are the nodal twist angles в,. Thus, the equations of 
motion may be written as:

Although the size of the system matrices in the finite element method can be very 
large, these matrices possess important properties. First, as noted previously in the 
discussion of the Ritz method (see Section 3.5.1), they are symmetric, which here is a 
reflection of their having been derived from energy methods applied to conservative 
systems. Second, they are banded; that is, the nonvanishing entries are concentrated 
around the diagonals of the matrices. Third, [M] is positive definite and [X] is at 
least positive semidefinite. In the absence of rigid-body modes, [/C] is positive definite 
because it results from the computation of the strain energy of the structure, itself a 
positive-definite quantity when rigid-body motion is excluded.

[D].

(3.349)

or

(3.350)
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With these equations, we may look at several types of problems for the nonuni­
form beam in torsion. For example:

1. The static response of the beam may be found if {r} is not a function of time. 
For this, we do not need the mass matrix [M\. Thus

[K] {0} =  [D] {/■} (3.351)

2. The free-vibration characteristics of the beam may be found by setting r — 0, 
assuming simple harmonic motion such that {0} =  {§} exp(icot) and solving the 
eigenvalue problem

[ЛГ] {0} = w 2 [ M \ { e ]  (3.352)

3. If (r(r)} has the form (r}exp(/£2r) with {r} and £2 specified constants, the 
steady-state response to harmonic excitation may be found by assuming {<9}(0 = 
{<9} ехр(Шг) and solving the algebraic equations

[ [ К ] - Я 2[М]]{0} =[D]{r} (3.353)

4. Finally, the forced response of the structure may be determined by numerical 
integration of Eqs. (3.350) subject to appropriate initial conditions—that is, 
specified values for (9, (0) and 0, (0).

Complex structures including entire aircraft can be modeled with the finite 
element method. The resulting discretized equations are similar to Eq. (3.350), 
where {0} is an array of nodal displacements and/or rotations, {/"(/)} an array of 
nodal forces and/or torques, [/C] is a stiffness matrix characterizing the elastic be­
havior of the entire structure, and [M\ is a mass matrix characterizing the iner­
tia properties of the entire structure. As the complexity of the model increases, 
the various arrays increase in size. For the most general types of models, such as 
those based on three-dimensional brick elements, hundreds of thousands of de­
grees of freedom or more may be required to accurately model a complete wing 
structure.

As an illustrative example, results obtained for the tip rotation caused by 
twisting of a beam with linearly varying GJ(x)  with GJ(  0) =  GJ  о =  2 G J( t ) ,  
r(x,  t) =  r — const., and constant values of GJ  within each element are presented 
in Table 3.9. The convergence is monotonic, and the answers are evidently upper 
bounds.

Application to Beams in Bending. As another example of applying the finite ele­
ment method, we next turn to its application to beams in bending. The theory of 
bending for beams was presented in terms of strain energy, kinetic energy, and vir­
tual work; this framework is sufficient for constructing a finite-element model for 
nonuniform beams in bending. Again, strictly for simplicity, we assume the bending 
stiffness and mass per unit length to be constants, respectively equal to £7, and m, 
within element i. Allowing for linearly varying EI  and m  within each element is
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Table 3.9. Finite-element results fo r  the tip 
rotation caused by twist o f  a beam with linearly 
varying G J(x) such that G J(0) =  G J a =  2 GJ(tt), 
r(x , t)  =  r =  const., and constant values o f  GJ 
within each element

n
re2

Ш ,

1 0.666667
2 0.628571
3 0.620491
4 0.617560
5 0.616184
6 0.615431

0.614976
exact 0.613706

left as an exercise for readers (see Problem 26). We consider a beam loaded with a 
distributed force per unit length f ( x ,  t )  and a distributed bending moment per unit 
length q(x,  t ) as shown in Fig. 3.47.

As with the beam in torsion, we now develop the stiffness matrix from the strain 
energy. The strain energy is given by

U (3.354)

where v (x , t )  is represented in terms of nodal displacements V j ( t )  and rotations 
Pi(t). The latter is in the sense of the bending slope p(x,  t) =  dv(x, t ) /dx.  When x  is 
between nodes i  and i  +  1, v(x, t) is approximated as

v(x, t)

2Z3 -  3z2 +  1
/

M 0
z3 - 2  z2 +  Z M 0

3z2 -  2Z3 Vi+1(0
z3 -  z2 A +i(0.

(3.355)

<Rx,t) ---------- :----------------------------------------------

Figure 3.47. Schematic of a nonuniform beam with distributed force and bending moment 
per unit length
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where

z -
X — X i

U
(3.356)

with 0 < z <  1. The four cubic polynomials in Eq. (3.355) are called “Hermite poly­
nomials.” They have the property that one of their values or derivatives at the ends 
(i.e., where z  =  0 or z =  1) is equal to unity whereas the other three are equal to 
zero. This way, the element degrees of freedom are displacements or rotations at 
the ends of the element. With this interpolation of v(x , t), the strain energy can be 
written as

'[* ]  {?} (3.357)

where the degrees of freedom are arranged in the column matrix {£(01 length 
In +  2 so that

Vi(t)

Ш
v2(t)

Ш№ }  =

Vn+1 (0 
Рп+Л (0

(3.358)

and the stiffness matrix [/C] has the form

[K] =

n i C h

4

6 1 : 1 ] 12/l/l
' ~ 4

6 /J/1

4 0 0
6 £7] 477,

U

e lT h 277
U

0 0
12777, 12/;/ , 1277? 6 Т П 2 _  

c 2

6 /;/i
T

1277?
^2

677?
T

6Jf
277,fi 677

*■2

677,
T

477?
«2 - f 2 277?

h
0 0 u T H i

4
67;
Ц
h 1277?

0 0
c 2

277
«2

677?
e2c2

477;
«2 .

(3.359)

for the two-element case. Note that the contributions from element 1 are all in the 
upper-left 4x4 submatrix, whereas the contributions from element 2 are all in the 
lower-right 4x4 submatrix. The two overlap at the 2x2 submatrix in the middle for 
degrees of freedom associated with the node at the right end of element 1 and at 
the left end of element 2. With this pattern in mind, it is a straightforward matter to 
expand the matrix to an arbitrary number of elements.

The kinetic energy is given by

К dx (3.360)
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that with the specified interpolation can be written in discretized form as

K = - { I } T [ M ] { I }  (3.361)

with the mass matrix given by

Щ Ь т ^ 5  l \ m i Т $ 1 \т \ 13420 1 1 0 0

m e i m i т г 1т 1 420 1 1 “ Т З о Ф ” ! 0 0

T b h m m l \ m i g  ( l im i +  l2m 2) ~ т ( 1г т 1 ~ l 2m 2) 2m 2 — ~Ш ^\т 2

_ Ш г \ т l Ш  (m ^ l  +  l l ” b ) m e 2m 2 ~ Ш <~2т 2

0 0 щ (-2ГП2 m e2m 2 Щ 12т 2 - f a l \ m 2

0 0 - Ш * 2 т 2 ~ W ) 4 m 2 2m 2

[M ] =

(3.362)

again for the two-element case. This pattern is the same as that of the stiffness matrix, 
so it is also a straightforward matter to expand the mass matrix to an arbitrary number 
of elements.

Finally, the contributions of the applied distributed force and bending moment 
are determined using the virtual work. If we interpolate both f ( x ,  t) and q ( x , t )  in 
the same way that r(x,  t)  was treated for torsion, viz.

f ( x , t )  =  +  l f + \ { t )  -  f i t ) }
(3.363)

q(x,  t) =  qi( t) +  [qi+1(t ) -  qi( t)]

with the arrays {f ( t ) }  and {#(0} representing the nodal values of the applied force 
and bending moment per unit span

{/}r = L /l/2 ---/n + lJ  

{q}T =  Vq\q2 - - -qn+\\
(3.364)

the virtual work then becomes

8W =  {5Wr [Df\ {/(0} + m r  [Dq] {9(0} (3.365)

so that the generalized force may be put into the form

{S } =  [Df ] { № }  +  [Dq]{ q ( t ) } (3.366)
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and loading matrices for the two-element case given by

[Df ] =

[A,]

1

20^1 0 “

¥ 1
1 p2 

30^1 0

¥ i 7
20 +  12 )

1 n2 
30 M

1
20

0 ¥ 2 ¥ 2

0 1 / 2  
30 c 2

1 p2 
20 c 2 J

г  1
2

1
2 0 "

12^1 ~ J 2 ^ \ 0

1
2 0 1

2
1
12 ( £ i  +  £ 2 ) ~ ¥ 2

0 l
2

1
2

0 - ¥ 2 T2^2 -

(3.367)

The contributions from element 1 are all in the upper-left 4 x 2  matrix; those from 
element 2 are in the lower-right 4 x 2  matrix with overlap in the 2 x 1  matrix at the 
center (i.e., the two middle rows of the middle column).

Because the approach is based on the Ritz method, only the geometric boundary 
conditions need to be satisfied. For a clamped-free beam, this means v \ =  fi\ =  0, 
so that the first two rows and columns must be removed from [A/] and [X]. As 
for the loading matrices, D f  and Dq, the first two rows must be removed because 
<5i>i =  =  0. The accuracy of finite elements for beam bending is illustrated in 
Problem 26.

3.6 Epilogue

In this chapter, we considered the free-vibration analysis and modal representa­
tion for flexible structures, along with methods for solving initial-value and forced- 
response problems associated therewith. Moreover, the approximation techniques 
of the Ritz method, the Galerkin method, and the finite element method were intro­
duced. This sets the stage for consideration of aeroelastic problems in Chapters 4 and
5. The static-aeroelasticity problem, addressed in Chapter 4, results from interaction 
of structural and aerodynamic loads. These loads are a subset of those involved in 
dynamic aeroelasticity, which includes inertial effects. One aspect of dynamic aeroe­
lasticity is flutter, which is discussed in Chapter 5, where it is shown that both the 
modal representation and the modal approximation methods apply equally well to 
both types of problems.
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Problems

1. By evaluating the appropriate integrals, prove that each function in the following 
two sets of functions is orthogonal to all other functions in its set over the interval
0 < x <  I:
(a) s i n ( ^ )  for/i =  1,2,3, .. .
(b) cos (5f£) for n =  0 ,1 ,2 , . . .

Use of a table of integrals may be helpful.
2. Considering Eq. (3.54), plot the displacement at time t =  0 for a varying number 

of retained modes, showing that as more modes are kept, the shape more closely 
resembles the initial shape of the string given in Fig. 3.2.

3. Compute the propagation speed of elastic torsional deflections along prismatic, 
homogeneous, isotropic beams with circular cross sections and made of
(a) aluminum (2014-T6)
(b) steel

Hint: Compare the governing wave equation with that for the uniform-string 
problem, noting that for beams with a circular cross section, J  =  Ip.
Answers: (may vary slightly depending on properties used)
(a) 3,140 m/s
(b) 3,110 m/s

4. For a uniform string attached between two walls with no external loads, deter­
mine the total string deflection v(x, t ) for an initial string deflection of zero and 
an initial transverse velocity distribution given by

5. Consider a uniform string of length £ and mass per unit length m  that has been 
stretched between two walls with tension T. Transverse vibration of the string 
is restrained at its midpoint by a linear spring with spring constant k. The spring 
is unstretched when the string is undeflected. Write the generalized equation 
of motion for the ith mode, giving particular attention to the writing of the 
generalized force H, . As a check, derive the equation taking into account the 
spring through the potential energy instead of through the generalized force.

Answer: v(x, t) =  —
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Answer: Letting a>, =  ^ - y —, we find that the generalized equations of motion 
are

л » OO

l + a > f e  +  —  ( - 1 ) ^  X ] ( - 1 ) ^ ? У = 0  i =  l , 3 ....... oo
m t  ,= u .... 

f; +  (of î — 0 i =  2 , 4 , . . . ,  oo

6. Consider a uniform string of length £ with mass per unit length m that has been 
stretched between two walls with tension T. Until the time t =  0, the string is 
undeflected and at rest. At time t =  0, concentrated loads of magnitude Fq sin fif 
are applied at x =  i /Ъ and x =  2£/3 in the positive (up) and negative (down) 
directions, respectively. In addition, a distributed force

. ( Ъ ж х \
— sin -----V t ) . cos(fif)

is applied to the string. What is the total string displacement v(x, t) for time
t >  0? '!

Answer: Letting a>n =  >we lhat

v( x , t ) =  |c „  £sin (fir) — sin (w„;)J sin J
j Dn [cos (fir) — cos (<w„0] sin (~y~)}

/1=2.4....

OO
+

n = 1,3,...

where

Dn

m i  (w2 — fi2) 

2F

Г • /ятг \ . / 2п л \

)/n(w2 — fi2) \П7Т 2 

and where the Kronecker symbol <5,; =  1 for i =  j  and <5,у =  0 for i Ф j .

7. Consider a uniform circular rod of length t ,  torsional rigidity GJ,  and mass 
moment of inertia per unit length p J . The beam is clamped at the end x  =  0, 
and it has a concentrated inertia Ic at its other end where x =  I.
(a) Determine the characteristic equation that can be solved for the torsional 

natural frequencies for the case in which Ic  — pJ l t , ,  where £ is a dimen­
sionless parameter.

(b) Verify that the characteristic equation obtained in part (a) approaches 
that obtained in the text for the clamped-free uniform rod in torsion as f 
approaches zero.

(c) Solve the characteristic equation obtained in part (a) for numerical values 
of the first four eigenvalues, <*,■€, i =  1, 2, 3, and 4, when £ =  1.
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(d) Solve the characteristic equation obtained in part (a) for the numerical 
value of the first eigenvalue, a \ l ,  when £ =  1, 2, 4, and 8. Make a plot 
of the behavior of the lowest natural frequency versus the value of the 
concentrated inertia. Note that a \ i  versus f  is the same in terms of 
dimensionless quantities.

Answer:
(a) f a t  tan(a£) =  1

(c, d) Sample result: a \ t  =  0.860334 for f  =  1

8. Consider a clamped-free beam undergoing torsion:
(a) Prove that the free-vibration mode shapes are orthogonal, regardless of 

whether the beam is uniform.
(b) Given that the kinetic energy is

where Mt is the generalized mass of the ith mode and is the generalized 
coordinate for the ith mode.

(c) Given that the potential energy is the internal (i.e., strain) energy; that is

where cd,- is the natural frequency.
(d) Show that for a uniform beam and for ф, as given in the text, M, =  p l pt / 2 

for all i.

9. Consider a uniform free-free beam undergoing torsion:
(a) Given the mode shapes in the text, find an expression for P  in terms of GJ,  

t ,  and the generalized coordinates.
(b) Given the mode shapes in the text, find an expression for К  in terms of p l p,

I, and the time derivatives of the generalized coordinates.
(c) Substitute results from parts (a) and (b) into Lagrange’s equations and 

identify the resulting generalized masses.

show that К  can be written as

<•=l

show that P  can be written as

Answer:

(c) Mo =  p i pi', Mi =  \ p l pt  for i =  1 ,2 , . . .
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10. Consider a clamped-free beam undergoing bending:
(a) Prove that the free-vibration mode shapes are orthogonal, regardless of 

whether the beam is uniform.
(b) Given the kinetic energy as

where Mt is the generalized mass of the ith mode and is the generalized 
coordinate for the ith mode.

(c) Given that the potential energy is the internal (i.e., strain) energy; that is

where &>, is the natural frequency.
(d) Show that for a uniform beam and for ф1 as given in the text, Mi =  m l  for

11. Consider a uniform beam with the boundary conditions shown in Fig. 3.38 
undergoing bending vibration:
(a) Using the relationships derived in the text, plot the square of characteristic 

value (ot\l)2, which is proportional to the fundamental frequency, versus к 
from 0 to 100. Check your results versus those given in Fig. 3.40.

(b) Plot the fundamental mode shape for values of к of 0.01,0.1,1,10, and 100. 
Suggestion: use Eq. (3.270). Check your results for к =  1 with those given 
in Fig. 3.39; your results for к — 100 will not differ significantly from those 
in Fig. 3.41, in which к =  50.

12. Find the free-vibration frequencies and plot the mode shapes for the first 
five modes of a beam of length I, having bending stiffness E I  and mass per 
unit length m, that is free at its right end, and that has the sliding condition 
(see Fig. 3.26) at its left end. Normalize the mode shapes to have unit de­
flection at the free end and determine the generalized mass for the first five 
modes. _________  _________

i =  1 ,2 , . . . ,  oo. As a sample of the mode shapes, the first elastic mode is 
plotted in Fig. 3.48.

show that К  can be written as

show that P  can be written as

all i.

Answer: щ  =  0, w\ — 5.59332yj  E I / ( m l 4), шг =  30.2258-JEI/ (ml4), &>з =

74.6389y j E I / ( m l 4), co4 =  138.791^ E I / ( m l 4)\ Mq =  m l  and Ц  =  m l / 4  for
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Figure 3.48. First elastic mode shape for sliding-free beam (Note: the “zeroth” mode is a 
rigid-body translation mode)

13. Consider the beam in Problem 12. Add to it a translational spring restraint at the 
left end, having spring constant к =  k E I / 1 3. Find the first three free-vibration 
frequencies and mode shapes for the cases in which к takes on values of 0.01,1, 
and 100. Plot the mode shapes, normalizing them to have unit deflection at the 
free end.
Answer: Sample results: A plot versus к of (a ,£)2 for i =  1,2, and 3 is shown in 

Fig. 3.49, and the first mode shape for к =  1 is shown in Fig. 3.50.

14. Consider a beam that at its left end is clamped and at its right end is pinned with 
a rigid body attached to it. Let the mass moment of inertia of the rigid body be 
given by Ic — i i m l3 where С coincides with the pin (i.e., a pirot).
(a) Find the first two free-vibration frequencies for values of fj. equal to 0.01,

0.1, 1, 10, and 100. Comment on the variation of the natural frequencies 
versus ц.

Figure 3.49. Variation versus к of (а,()2 
for i = 1,2, and 3, for a beam that is free 
on its right end and has a sliding bound­
ary condition spring-restrained in trans­
lation on its left end
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Figure 3.50. First mode shape for a beam 
that is free on its right end and has a slid­
ing boundary condition spring-restrained 
in translation on its left end with к =  1

(b) Choose any normalization that is convenient and plot the first mode shape 
for these same values of д. Comment on the variation of the mode shapes 
versus ц.

Answer: __
(a) Sample result: w\ =  1 .99048^/^  for ц =  1.
(b) Sample result: The first mode shape for д =  1 is shown in Fig. 3.51.

15. Consider a uniform clamped-free beam of length i ,  bending rigidity El ,  and 
mass per unit length m. Until time t =  0, the beam is undeflected and at rest. At 
time t =  0, a transverse concentrated load of magnitude Fcos(Qt)  is applied at
x =  I.
(a) Write the generalized equations of motion.
(b) Determine the total beam displacement v(x, t) for time t > 0.
(c) For the case when £2 = 0, determine the tip displacement of the beam. 

Ignoring those terms that are time dependent (they would die out in a real 
beam because of dissipation), plot the tip displacement versus the number 
of mode shapes retained in the solution up to five modes. Show the static 
tip deflection from elementary beam theory on the plot. (This part of the 
problem illustrates how the modal representation can be applied to static- 
response problems.)

Figure 3.51. First mode shape for a beam that is 
clamped on its left end and pinned with a rigid body 
attached on its right end with ц  =  1

0.2 0.4 0.6 0.8
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Table 3.10. A pproxim ate values o f  toiyj =■ forpinned-free  
beam having a root rotational spring with spring constant o f  
k E I / 1  using one rigid-body m ode (x) and n — 1 
clamped-free m odes o f  Section 3.3.4, Eq. (3.258)

n к =  1 к =  10 * II О о

1 1.73205 5.47723 17.3205
2 1.55736 2.96790 3.44766
3 1.55730 2.96784 3.44766
4 1.55730 2.96784 3.44766
5 1.55730 2.96784 3.44766
Exact 1.55730 2.96784 3.44766

Answer:
(a) The ith equation is

11 +  сof ̂  =  2(—1)'+1^  cos(£20

(b) With </>;(*) given by Eq. (3.258), =  (<*г£)2уО^r> and a , t  as given in Ta­
ble 3.1, we find that

2p  00 (_]У+1 
v(x, t)  =  —-  -=----—  [cos(fi0 -  cos(ft);0] Ф М

m l oof — Q z

(c) The result converges within engineering accuracy to =  using only a few 
terms.

16. Consider a free-free beam with bending stiffness EI,  mass per unit length m, and 
length i .  Applying the Ritz method, write the equations of motion for a system 
that consists of the beam plus identical rigid bodies attached to the ends, where 
each body has a moment of inertia Ic and mass mc. Use as assumed modes those 
of the exact solution of the free-free beam without the attached bodies, obtained 
in the text. Note the terms that provide inertial coupling.

17. Consider a pinned-free beam with the rotation about the hinge restrained by 
a light spring of modulus k EI/1 .  Use a rigid-body rotation plus the set of 
clamped-free modes as the assumed modes of the Ritz method. Compare the

Table 3.11. A pproxim ate values o f  fo r  pinned-free
beam having a root rotational spring with spring constant o f  
k E I / 1  using one rigid-body m ode (x) and n — 1 
clamped-free m odes o f  Section 3.3.4, Eq. (3.258)

n K =  l к =  10

ООII

2 22.8402 37.9002 103.173
3 16.2664 19.3632 21.6202
4 16.2512 19.3563 21.6200
5 16.2502 19.3559 21.6200
Exact 16.2501 19.3558 21.6200
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Table 3.12. A pproxim ate values o f  fo r  pinned-free beam

having a root rotational spring with spring constant o f  к E l / 1 
using one rigid-body m ode (x) and n — 1 polynom ials that satisfy 
clamped-free beam boundary conditions

n K =  1 к =  10 к =  100

1 1.73205 5.47723 17.3205
2 1.55802 2.97497 3.46064
3 1.55730 2.96784 3.44768
4 1.55730 2.96784 3.44766
Exact 1.55730 2.96784 3.44766

results for the first two modes using a varying number of terms for к =  1,10, 
and 100.
Answer: See Tables 3.10 and 3.11.

18. Repeat Problem 17 using a set of polynomial admissible functions. Use one 
rigid-body mode (x ) and a varying number of polynomials that satisfy all the ' 
boundary conditions of a clamped-free beam.
Answer: See Tables 3.12 and 3.13.

19. Consider a clamped-free beam of length I for which the mass per unit length 
and bending stiffness vary according to

и - и . ( 1 - £ + . £ )

Using the comparison functions in Eq. (3.325), apply the Ritz method to de­
termine approximate values for the first three natural frequencies, varying the 
number of terms from one to five. Let ц  =  к =  1/2.
Answer: See Table 3.14.

20. Rework Problem 19 using the Ritz method and the set of polynomial admissible 
functions ( x / t ) l+1, i  =  1 ,2 , . . . ,  n
Answer: See Table 3.15.

Table 3.13. A pproxim ate values o f  fo r  pinned-free beam

having a root rotational spring with spring constant o f  ic E I /t  
using one rigid-body m ode (x) and n — 1 polynom ials that satisfy 
clamped-free beam boundary conditions

n к =  1 к =  10 к =  100

2 24.8200 41.1049 111.743
3 16.4047 19.7070 22.2338
4 16.2508 19.3565 21.6208 
Exact 16.2501 19.3558 21.6200
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Table 3.14. A pproxim ate values o f w i J ^ ^ f o r  a tapered, 
clamped-free beam based on the Ritz m ethod with n 
polynom ials that satisfy all the boundary conditions o f  a 
clamped-free beam

n “ • M

1 4.36731 _ _
2 4.31571 24.7653
3 4.31517 23.5267 69.8711
4 4.31517 23.5199 63.2441
5 4.31517 23.5193 63.2415
Exact 4.31517 23.5193 63.1992

21. Rework Problem 19 using Eq. (3.329) with /  =  0 as the equation of motion and 
the set of polynomial comparison functions (x/€)'+1, / =  1,2, . . . ,  n.
Answer: See Table 3.16.

22. Consider a clamped-free beam to which is attached at spanwise location x =  Ir 
a particle of mass p.ml. Using a two-term Ritz approximation based on the 
functions in Eq. (3.325), plot the approximate value for the fundamental natural 
frequency as a function of r for д =  1.
ans.: See Fig. 3.52.

23. Consider a clamped-free beam undergoing coupled bending and torsion. Set 
up an approximate solution based on the Ritz method for the dimensionless 
frequency parameter

2 m l 4 a 2
~~ W

using the uncoupled bending and torsional mode shapes as assumed modes, 
and with the parameters p l p =  0.01 m l 2, md2 =  0.25p l p, К 2 =  0.25G7 E l ,  and 
G J / E I  =  5. Answer these questions: How do the signs of d  and К  affect the 
frequencies? How do they affect the predicted mode shapes?

Table 3.15. A pproxim ate values o f o j ,J ^ ^ f o r a  tapered, 
clamped-free beam based on the R itz m ethod with n terms o f  
the form  ( x / t ) ,+l, i =  1, 2, . . n

и , . / mot4
w4  ж

1 5.07093 _ _
2 4.31883 33.8182 -

3 4.31732 23.6645 110.529
4 4.31523 23.6640 64.8395
5 4.31517 23.5226 64.7821
Exact 4.31517 23.5193 63.1992
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Table 3.16. A pproxim ate values o f  fo r  a tapered, 
clamped-free beam based on the Galerkin m ethod applied to 
Eq. (3.329) with n terms o f  the form  ( x / t ) ,+\  i =  1 ,2 ........n

n , _ / mat1

1 7.88811 _
2 4.45385 54.5221
3 4.19410 24.3254 175.623
4 4.33744 21.4784 67.1265
5 4.31379 23.8535 53.6214
Exact 4.31517 23.5193 63.1992

24. Repeat Problem 23 using an appropriate power series for bending and for 
torsion.

25. Develop a finite-element solution for the static twist of a clamped-free beam in 
torsion, accounting for linearly varying GJ(x)  within each element. Compare 
results for the tip rotation caused by twisting, with identical loading and proper-.. 
ties (i.e., C7(0) =  G7o =  2G J ( l ) ,  r(x,  t) — r =  const.). Note that the results in 
Section 3.5.3 approximate the linearly varying GJ  as piecewise constant within 
elements, whereas here you are to assume piecewise linearly varying GJ  within 
elements.
Answer: The results do not change; see Table 3.9.

26. Set up a finite-element solution for the dimensionless natural frequencies of a 
beam in bending ш(0)£4ш2/[£7(0)] from Section 3.5.3, accounting for linearly

mt4

Ш

Figure 3.52. Approximate fundamental frequency for a clamped-free beam with a particle of 
mass m l attached at x =  r i
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Table 3.17. Finite-element results fo r  the natural frequencies 
o f  a beam in bending with linearly varying E I(x), such that 
E l( 0) =  E Iq =  2 E I ( i )  and values o f  E l  are taken as linear 
within each element

и « M « M
1 4.31883 33.8182 —

2 4.31654 23.6457 75.9255
3 4.31549 23.5835 63.8756
4 4.31528 23.5430 63.6528
5 4.31522 23.5296 63.4128
6 4.31519 23.5244 63.3088
Exact 4.31517 23.5193 63.1992

varying E I (x ) and m(x)  within each element. Compare [M] and [S'] matrices 
obtained for the case developed in the text (i.e., piecewise constant E l  and 
m  within elements) with those obtained for linearly varying within elements. 
Tabulate dimensionless frequencies for the first three modes, assuming elements 
of constant length, E l  (I) =  0.5£7(0), and m(£) =  0.5m(0).
Answer: See Table 3.17.



Static Aeroelasticity

I discovered that with increasing load, the angle of incidence at the wing tips increased 
perceptibly. It suddenly dawned on me that this increasing angle of incidence was 
the cause of the wing’s collapse, as logically the load resulting from the air pressure 
in a steep dive would increase faster at the wing tips than at the middle. The resulting . 
torsion caused the wings to collapse under the strain of combat maneuvers.

—A. H. G. Fokker in The Flying Dutchman, Henry Holt and Company, 1931

The field of static aeroelasticity is the study of flight-vehicle phenomena associated 
with the interaction of aerodynamic loading induced by steady flow and the resulting 
elastic deformation of the lifting-surface structure. These phenomena are character­
ized as being insensitive to the rates and accelerations of the structural deflections. 
There are two classes of design problems that are encountered in this area. The first 
and most common to all flight vehicles is the effects of elastic deformation on the air­
loads, as well as effects of airloads on the elastic deformation, associated with normal 
operating conditions. These effects can have a profound influence on performance, 
handling qualities, flight stability, structural-load distribution, and control effective­
ness. The second class of problems involves the potential for static instability of the 
lifting-surface structure to result in a catastrophic failure. This instability is often 
termed “divergence” and it can impose a limit on the flight envelope. Simply stated, 
divergence occurs when a lifting surface deforms under aerodynamic loads in such 
a way as to increase the applied load, and the increased load deflects the structure 
further—eventually to the point of failure. Such a failure is not simply the result 
of a load that is too large for the structure as designed; instead, the aerodynamic 
forces actually interact with the structure to create a loss of effective stiffness. This 
phenomenon is explored in more detail in this chapter.

The material presented in this chapter is an introduction to some of these static 
aeroelastic phenomena. To illustrate clearly the mechanics of these problems and yet 
maintain a low level of mathematical complexity, relatively simple configurations are 
considered. The first items treated are rigid aerodynamic models that are elastically 
mounted in a wind-tunnel test section; such elastic mounting is characteristic of most 
load-measurement systems. The second aeroelastic configuration to be treated is

127
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u
------►

Figure 4.1. Planform view of a

a uniform elastic lifting surface of finite span. Its static aeroelastic properties are 
similar to those of most lifting surfaces on conventional flight vehicles.

4.1 Wind-Tunnel Models

In this section, we consider three types of mounting for wind-tunnel models: wall- 
mounted, sting-mounted, and strut-mounted. Expressions for the aeroelastic pitch 
deflections are developed for these simple models that, in turn, lead to a cursory 
understanding of the divergence instability. Finally, we briefly return to the wall- 
mounted model in this section to consider the qualitatively different phenomenon 
of aileron reversal. All of these wing models are assumed to be rigid and two- 
dimensional. That is, the airfoil geometry is independent of spanwise location, and 
the span is sufficiently large that the lift and pitching moment do not depend on a 
spanwise coordinate.

4.1.1 Wall-Mounted Model

Consider a rigid, spanwise-uniform model of a wing that is mounted to the side walls 
of a wind tunnel in such a way as to allow the wing to pitch about the support axis, as 
illustrated in Fig. 4.1. The support is flexible in torsion, which means that it restricts 
the pitch rotation of the wing in the same way as a rotational spring would. We 
denote the rotational stiffness of the support by k, as shown in Fig. 4.2. If we assume 
the body to be pivoted about its support O, located at a distance x () from the leading 
edge, moment equilibrium requires that the sum of all moments about О  must equal 
zero. Thus

/ / / / / / / /

Support (elastic in torsion) 

wind-tunnel model on a torsionally elastic support

Mac +  L ( x 0  -  xac) -  W (xo -  xCg) - к В  =  0 (4.1)
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Were the support rigid, the angle of attack would be ctr, positive nose-up. The 
elastic part of the pitch angle is denoted by в, which is also positive nose-up. The wing 
angle of attack is then a  =  a T +  в. In anticipation of using linear aerodynamics, we 
assume the angle of attack, a,  to be a small angle, such that sin(o;) ^ a a n d c o s ( a )  ss I.'" 
It also is necessary to restrict the analysis to “thin” airfoils (i.e., small thickness to 
chord and small camber). The treatment herein is restricted to incompressible flow, 
but compressibility effects may be taken into account by means of Prandtl-Glauert 
corrections to the airfoil coefficients. For this, the freestream Mach number must 
remain less than roughly 0.8 to avoid transonic effects.

For linear aerodynamics, the lift for a rigid support is simply

frigid =  q S C lva  r (4.2)

whereas the lift for an elastic support is

L = q S C u (ar +  e ) (4.3)

where q =  \pooU2 is the freestream dynamic pressure (i.e., in the far field—often 
denoted by ), U is the freestream air speed, д*, is the freestream air density, 5 
is the planform area, and C/v is the wing lift-curve slope. Note that L Ф Lrigjd; for 
positive 9, L >  Lrigid- We can express the moment of aerodynamic forces about the 
aerodynamic center as

Mac — q  S c C m z c  (4-4)

If the angle of attack is small, C m  с can be regarded as a constant. Note here that 
linear aerodynamics implies that the lift-curve slope C/_ is a constant. A further 
simplification may be that C/v =  2я  in accordance with two-dimensional thin-airfoil 
theory. If experimental data or results from computational fluid dynamics provide 
an alternative value, then it should be used.

Using Eqs. (4.3) and (4.4), the equilibrium equation, Eq. (4.1), can be expanded

qScC мяс +  q S C (ar +  в ) (xo -  xac) -  W (xo -  xcg) =  кв (4.5)
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Solving Eq. (4.5) for the elastic deflection, we obtain

_  qScCMac +  qSC,xa r (x0 -  xac) W  (x0 xcg) 
k - q S C ^ i x o - x  ac)

(4.6)

When a r and q are specified, the total lift can be determined.
When the lift acts upstream of point O,  an increase in lift increases a  that, in 

turn, increases lift. Thus, lift is a destabilizing influence counteracting the restraining 
action of the spring when xo  > *ac- Recalling the discussion of stability in Section 
2.5, when a system is perturbed from a state of equilibrium and tends to diverge 
further from its equilibrium state, we say that the system is unstable. Such is the case 
when the moment of the lift about point О  exceeds the restoring moment from the 
spring. This is one of the simplest examples of the static aeroelastic instability called 
“divergence.” Now, from Eq. (4.6), we see that the aerodynamic center is forward of 
the support point О  when xac < xo,  making it possible for the denominator to vanish 
or for 9 to blow up when q is sufficiently large. The denominator of the expression 
for в  is a sort of effective stiffness, which decreases as q of increases. When the 
denominator vanishes, divergence occurs. The divergence dynamic pressure—or 
dynamic pressure at which divergence occurs—is then denoted by

From this, the divergence speed—or the air speed at which divergence occurs—can 
be found as

It is evident that when the aerodynamic center is coincident with the pivot, so 
that xo  =  xac, the divergence dynamic pressure becomes infinite. Also, when the 
aerodynamic center is aft of the pivot so that x o  < xac, the divergence dynamic 
pressure becomes negative. Because for physical reasons dynamic pressure must be 
positive and finite, it is clear in either case that divergence is impossible.

To further pursue the character of this instability, consider the case of a symmet­
ric airfoil (Смас =  0). Furthermore, let x () — xcg so that the weight term drops out 
of the equation for 9. From Eq. (4.7), we can let к =  q o S C ^  (х() -  xac); therefore, 
9 can be written simply as

The lift is proportional to a r +  9. Thus, the change in lift divided by the rigid lift is 
given by

frigid “ r 1 it>

Both 9 and A L/L ^pd  clearly approach infinity as q -» q\>. Indeed, a plot of the latter 
is given in Fig. 4.3 and shows the large change in lift caused by the aeroelastic effect. 
The lift evidently starts from its “rigid” value—that is, the value it would have were

к (4.7)
SCi" (xo — xac)

(4.8)
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L rigid

the support rigid—and increases to infinity as q -> qo.  However, remember that 
there are limitations on the validity of both expressions. Namely, the lift will not 
continue to increase as stall is encountered. Moreover, because the structure will not 
tolerate infinite deformation, failure takes place at some finite value of в —generally 
at a dynamic pressure well below the divergence dynamic pressure.

When the system parameters are within the bounds of validity for linear theory, 
another fascinating feature of this problem emerges. We can invert the expression 
for в to obtain

making it evident that l / в  is proportional to 1/q  (Fig. 4.4). Therefore, for a model 
of this type, only two data points are needed to extrapolate the line down and to the 
left until it intercepts the 1 / q  axis at a distance 1 / q o  from the origin. As shown in 
the figure, the slope of this line also can be used to estimate qo- The form of this 
plot is of great practical value because estimates of qo  can be extrapolated from data 
taken at speeds far below the divergence speed. This means that qo  can be estimated 
even when the values of the model parameters are not precisely known, thereby 
circumventing the need to risk destruction of the model by testing all the way up to 
the divergence boundary.

4.1.2 Sting-Mounted Model

A second configuration of potential interest is a rigid model mounted on an elastic 
sting. A simplified version of this kind of model is shown in Figs. 4.5 through 4.7, in 
which the sting is modeled as a uniform, elastic, clamped-free beam with bending
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в

stiffness EI  and length Ac, where A. is a dimensionless parameter. The model is 
mounted in such a way as to have angle of attack of a r when the beam is undeformed. 
Thus, as before, a =  a T +  в,  where в is the nose-up rotation of the wing resulting 
from bending of the sting, as shown in Fig. 4.6. Also in Fig. 4.6, we denote the tip 
deflection of the beam as S, although we do not need it for this analysis. Note the 
equal and opposite directions on the force Fo and moment Mo at the trailing edge of 
the wing in Fig. 4.7 versus at the tip of the sting in Fig. 4.6.

к \ \ \ Ч \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Ч \ \ Ч \ \ \ \ \ \ Ч \ Ч Ч \ \ \ Ч \ Ч Ч Ч Ч Ч \ \ \ Ч \ \ Ч \ \ 1

....... £....... .................-..  Д(.................*►

kV W W K W W W W W W W W W W W W W W W ^W V W ^^C s^X vW W ^X I 
Figure 4.5. Schematic of a sting-mounted wind-tunnel model
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Figure 4.6. Detailed view of the clamped-free beam

From superposition, we can deduce the total bending slope at the tip of the sting 
as the sum of contributions from the tip force Fq and tip moment Mo, denoted by 9f  
and 9m , respectively, so that

9 =  9 г  +  9 м

From elementary beam theory, these constituent parts can be written as

F0(Xc)2

(4.12)

so that

9/.

9m

Fo =  

M0 =

2 E l
Mq(Xc)

1П

2 EI  9f  
(Xc)2

EI 9m 
Xc

(4.13)

(4.14)

Two static aeroelastic equilibrium equations now can be written for the deter­
mination of 9f and 9M. Using Eqs. (4.3) and (4.4) for the lift and pitching moment,

Figure 4.7. Detailed view of the sting-mounted wing
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Figure 4.8. Schematic of strut-supported wind-tunnel model

the force equilibrium equation can be written as

qSCie (ar +  +  &m) — W  — Fq =  0 (4.15)

and the sum of moments about the trailing edge yields

qScCMac +  q S C ^  (ar +  dF +  вм) (с -  xac) -  W (с -  *cg) -  M0 =  0 (4.16)

Substitution of Eqs. (4.14) into Eqs. (4.15) and (4.16), simultaneous solution for Of 
and вм, and use of Eq. (4.12) yields

W  (X +  2 — 2rCg) — 2q SC Mac 
q s c u

— a r (X +  2 — 2rac)

X +  2 — 2гяс ~
2 EI

(4.17)

ac Xc2q S C u

where rac =  xac/c and rcg =  xcg/c. Here again, the condition for divergence can be 
obtained by setting the denominator to zero, so that

2£7
,D =  c ^  +  2 - 2rK ) C u  (4'18)

However, unlike the previous example, we cannot make the divergence dynamic 
pressure infinite or negative (thereby making divergence mathematically impos­
sible) by choice of configuration parameters because xac/c < 1. For a given wing 
configuration, we are left only with the possibility of increasing the sting’s bending 
stiffness or decreasing X to make the divergence dynamic pressure larger.

4.1.3 Strut-Mounted Model

A third configuration of a wind-tunnel mount is a strut system, as illustrated in 
Figs. 4.8 and 4.9. The two linearly elastic struts have the same extensional stiffness, k, 
and are mounted at the leading and trailing edges of the wing. The model is mounted 
in such a way as to have an angle of attack of a r when the springs are both unde­
formed. Thus, as before, the angle of attack is a  — a r +  в. As illustrated in Fig. 4.9, 
the elastic part of the pitch angle, в,  can be related to the extension of the two struts as

в =  (4.19)
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Figure 4.9. Cross section of strut-supported wind-tunnel model

The sum of the forces in the vertical direction shows that

L - W  -  k( h  +  <52) =  0 

The sum of the moments about the trailing edge yields

A/ac +  Ц с  -  xac) -  W(c -  xcg) -  kcS 1 =  0

(4.20)

(4.21)

Again, using Eqs. (4.3) and (4.4) for the lift and pitching moment, the simultaneous 
solution of the force and moment equations yields

As usual, the divergence condition is indicated by the vanishing of the denominator, 
so that

It is evident for this problem as specified that when the aerodynamic center is in 
front of the mid-chord (as it is in subsonic flow), the divergence condition cannot 
be eliminated. However, divergence can be eliminated if the leading-edge spring 
stiffness is increased relative to that of the trailing-edge spring. This is left as an 
exercise for readers (see Problem 5).

4.1.4 Wall-Mounted Model for Application to Aileron Reversal

Before leaving the wind-tunnel-type models discussed so far in this chapter, we 
consider the problem of aileron reversal. “Aileron reversal” is the reversal of the 
aileron’s expected response due to structural deformation of the wing. For exam­
ple, wing torsional flexibility can cause ailerons to gradually lose their effectiveness 
as dynamic pressure increases; beyond a certain dynamic pressure that we call the 
“reversal dynamic pressure,” they start to function in a manner that is opposite to 
their intended purpose. The primary danger posed by the loss of control effectiveness

в = (4.22)

kc
(4.23)

q°  SCU (1 -  2* ? )
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l J  e

Figure 4.10. Schematic of the airfoil section of a flapped two-dimensional wing in a wind 
tunnel

is that the pilot cannot control the aircraft in the usual way. There are additional 
concerns for aircraft, the missions of which depend on their being highly maneu­
verable. For example, when control effectiveness is lost, the pilot may not be able 
to count on the aircraft’s ability to execute evasive maneuvers. This loss in control 
effectiveness and eventual reversal is the focus of this section.

Consider the airfoil section of a flapped two-dimensional wing, shown in Fig. 4.10. 
Similar to the model discussed in Section 4.1.1, the wing is pivoted and restrained by 
a rotational spring with spring constant k. The main differences are that (1) a trailing- 
edge flap is added such that the flap angle fi can be arbitrarily set by the flight-control 
system; and (2) we need not consider gravity to illustrate this phenomenon, so the 
weight is not shown in the figure. Moment equilibrium for this system about the 
pivot requires that

The lift and pitching moment for a two-dimensional wing can be written as 
before; namely

When fi ф 0, the effective camber of the airfoil changes, inducing changes in both 
lift and pitching moment. For a linear theory, both a  and fi should be small angles, 
so that

where, as before, the angle of attack is a =  a T +  в. Note that Сщ  < 0; for conve­
nience, we assume a symmetric airfoil (Сщ — 0).

Note that we may most directly determine the divergence dynamic pressure by 
writing the equilibrium equation without the inhomogeneous terms; that is

Mac +  eL  — k9 (4.24)

L =  qSCi , 

Mac =  Я c SCмае
(4.25)

(4.26)

(k -  eq SC 1^)0 — 0 (4.27)
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A nontrivial solution exists when the coefficient of в vanishes, yielding the divergence 
dynamic pressure as

qn =  (4.28)
eSCu

Clearly, the divergence dynamic pressure is unaffected by the aileron.
Conversely, the response is significantly affected by the aileron, as we now show. 

We can solve the response problem by substituting Eqs. (4.25) into the moment- 
equilibrium equation, Eq. (4.24), making use of Eqs. (4.26), and determining в 
to be

в =  q S \ e C lva T +  {eCLl, + c C Mp) p ]  
k — eqSCiv

We see that because of the flexibility of the model in pitch (representative of torsional 
flexibility in a wing), в  is a function of p. We then find the lift as follows:

1. Substitute Eq. (4.29) into a =  a r +  в  to obtain a.
2. Substitute a  into the first of Eqs. (4.26) to obtain the lift coefficient. ■
3. Finally, substitute the lift coefficient into the first of Eqs. (4.25) to obtain an 

expression for the aeroelastic lift:

qS \ c K a r +  С,ф ( l  +  4 ) /?]
L =  — t ' ------- t t  ' J (4.30)

1 eqSCi., 4 '
1 к

It is evident from the two terms in the coefficient of p  in this expression that lift is a 
function of ft in two counteracting ways. Ignoring the effect of the denominator, we 
see that the first term in the numerator that multiplies /3 is purely aerodynamic and 
leads to an increase in lift with ft because of a change in the effective camber. The 
second term is aeroelastic. Recalling that С щ  < 0, we see that as /6 is increased, the 
effective change in the camber also induces a nose-down pitching moment that— 
because the model is flexible in pitch—tends to decrease в and in turn decrease lift. 
At low speed, the purely aerodynamic increase in lift overpowers the aeroelastic 
tendency to decrease the lift, so that the lift indeed increases with /3 (and the aileron 
works as advertised). However, as dynamic pressure increases, the aeroelastic effect 
becomes stronger; there is a point at which the net rate of change of lift with respect 
to p  vanishes so that

9L q S c LA \  +  L̂ £ ^ )
д±  =  о = -------L I-----  > (4.31)
эр I -  e“ŝ

Thus, we find that the dynamic pressure at which the reversal occurs is

q« = - J r ' r  (4-32>
Notice that because Cm„ < 0, q K >  0. Obviously, a stiffer к gives a higher reversal 
speed, and a model that is rigid in pitch (analogous to a torsionally rigid wing) will
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not undergo reversal. For dynamic pressures above qn (but still below the divergence 
dynamic pressure), a positive fi will actually decrease the lift.

Now let us consider the effect of both numerator and denominator. As discussed 
previously, the divergence dynamic pressure also can be found by setting the denom­
inator of L  or в  equal to zero, resulting in the same expression for qo  as found in 
Eq. (4.27). Equations (4.27) and (4.32) can be used to simplify the expression for the 
lift in Eq. (4.30) to obtain

(4зз)

4D

It is clear from this expression that the coefficient of fi can be positive, negative, or 
zero. Thus, a positive fi could increase the lift, decrease the lift, or not change the lift 
at all. The aileron’s lift efficiency, r/, can be thought of as the aeroelastic (i.e., actual) 
change in lift per unit change in fi divided by the change in lift per unit change in fi 
that would result were the model not flexible in pitch; that is

change in lift per unit change in fi for elastic wing
Tj =  ----------------------------------------------------------------

change in lift per unit change in fi for rigid wing 

Using this, we can easily find that

1 — 2.
1 =  r r f  (4-34)

4D

which implies that the wing will remain divergence-free and control efficiency will 
not be lost as long as q <  qo  <  qR■ Obviously, were the model rigid in pitch, both q D 
and qR would become infinite and rj =  1.

Thinking unconventionally for the moment, let us allow the possibility of <3C 
qn- This will result in aileron reversal at a low speed, of course. Although the 
aileron now works opposite to the usual way at most operational speeds of the 
aircraft, this type of design should not be ruled out on these grounds alone. Active 
flight-control systems certainly can compensate for this. Moreover, we can obtain 
considerably more (negative) lift for positive fi in this unusual regime than positive 
lift for positive fi in the more conventional setting. This concept is a part of the design 
of the Kaman “servo-flap rotor,” the blades of which have trailing-edge flaps that flap 
up for increased lift. It also may have important implications for the design of highly 
maneuverable aircraft. Exactly what other potential advantages and disadvantages 
exist from following this strategy—particularly in this era of composite materials, 
smart structures, and active controls—is not presently known and is the subject of 
current research.

We revisit this problem in Section 4.2.5 from the point of view of a flexible beam 
model for the wing.
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z

Figure 4.11. Uniform unswept clamped-free lifting surface

4.2 Uniform Lifting Surface

So far, our aeroelastic analyses focused on rigid wings with a flexible support. These 
idealized configurations provide insight into the aeroelastic stability and response, 
but practical analyses must take into account flexibility of the lifting surface. That be­
ing the case, in this section, we address flexible wings, albeit with simplified structural 
representation.

Consider an unswept uniform elastic lifting surface as illustrated in Figs. 4.11 
and 4.12. The lifting surface is modeled as a beam and, in keeping with historical 
practice in the field of aeroelasticity, the spanwise coordinate along the elastic axis 
is denoted by y. The beam is presumed to be built in at the root (i.e., у  =  0, to 
represent attachment to a wind-tunnel wall or a fuselage) and free at the tip (i.e., 
у  =  t ) .  The у  axis corresponds to the elastic axis, which may be defined as the line of 
effective shear centers, assumed here to be straight. Recall that for isotropic beams, 
a transverse force applied at any point along this axis results in bending with no 
elastic torsional rotation about the axis. This axis is also the axis of twist in response 
to a pure twisting moment applied to the wing. Because the primary concern here
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Figure 4.12. Cross section of spanwise uniform lifting surface

is the determination of the airload distributions, the only elastic deformation that 
influences these loads is rotation due to twist about the elastic axis.

4.2.1 Steady-Flow Strip Theory

In Section 4.1, wings are assumed to be rigid and two-dimensional. That is, the airfoil 
geometry including incidence angle is independent of spanwise location, and the 
span is sufficiently large that lift and pitching moment are not functions of a spanwise 
coordinate. In turning our attention to wings that can be modeled as isotropic beams, 
the incidence angle now may be a function of the spanwise coordinate because of the 
possibility of elastic twist. We need the distributed lift force and pitching moment 
per unit span exerted by aerodynamic forces along a slender beam-like wing. At this 
stage, however, we ignore the three-dimensional tip effects associated with wings of 
finite length; the aerodynamic loads at a given spanwise location do not depend on 
those at any other.

The total applied, distributed, twisting moment per unit span about the elastic 
axis is denoted as M’(y), which is positive leading-edge-up and given by

M' =  M'ac +  e U  -  Nmgd  (4.35)

where L' and M'ac are the distributed spanwise lift and pitching moment (i.e., the lift 
and pitching moment per unit length), mg is the spanwise weight distribution (i.e., 
the weight per unit length), and N  is the “normal load factor” for the case in which 
the wing is level (i.e., the z  axis is directed vertically upward). Thus, N  can be written 
as

N = ±  =  1 +  ^  (4.36)
W g

where Az is the z  component of the wing’s inertial acceleration, W  is the total weight 
of the aircraft, and L  is the total lift.

The distributed aerodynamic loads can be written in coefficient form as

L' =  qcci  

K c  =  q c 2cmac
(4.37)
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where the freestream dynamic pressure, q, is

q =  l- PooU2 (4.38)

Note that the sectional lift c< and moment cmaс coefficients are written here in 
lower case to distinguish them from lift and pitching moment coefficients for a two- 
dimensional wing, which are normally written in upper case. Finally, the primes are 
included with L', M ' , and M'ac to reflect that these are distributed quantities (i.e., per 
unit span).

The sectional lift and pitching-moment coefficients can be related to the angle of 
attack a  by an appropriate aerodynamic theory as some functions ce(a)  and cmac(a),  
where the functional relationship generally involves integration over the planform. 
To simplify the calculation, the wing can be broken up into spanwise segments of 
infinitesimal length, where the local lift and pitching moment can be estimated from 
two-dimensional theory. This theory, commonly known as “strip theory,” frequently 
uses a table for efficient calculation. Here, however, for small values of a,  we may 
use an even simpler form in which the lift-curve slope is assumed to be a constant 
along the span, so that

ct (y)  =  ace(y) (4.39)

where a denotes the constant sectional lift-curve slope, and the sectional-moment 
coefficient стЯС(а)  is assumed to be a constant along the span.

The angle of attack is represented by two components. The first is a rigid con­
tribution, <*r, from a rigid rotation of the surface (plus any built-in twist, although 
none is assumed to exist here). The second component is the elastic angle of twist 
в(у) .  Hence

“ OO =  “ r +  0(y)  (4.40)

where, as is appropriate for strip theory, the contribution from downwash associated 
with vortices at the wing tip is neglected. Therefore, associated with the angle of 
attack at each infinitesimal section is a component of sectional-lift coefficient given 
by strip theory as

q OO =  fl[“ r +  0(>O] (4-41)

4.2.2 Equilibrium Equation

Because we are analyzing the static behavior of this wing, it is appropriate to simplify 
the fundamental constitutive relationship of torsional deformation, Eq. (2.42), to 
read

__ Ar\
T =  Ш -j -  (4.42)

dy

where GJ  is the effective torsional stiffness and T  is the twisting moment about 
the elastic axis. Now, a static equation of moment equilibrium about the elastic axis
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can be obtained by equating the rate of change of twisting moment to the negative 
of the applied torque distribution. This is a specialization of Eq. (2.43) in which 
time-dependent terms are ignored, yielding

d T  ^ ( g T ^ - )  =  - M '  (4.43)
dy  dy  \  dy

Recognizing that uniformity implies GJ  is constant over the length; substituting 
Eqs. (4.37) into Eq. (4.35) to obtain the applied torque; and, finally, substituting the 
applied torque and Eq. (4.42) for the internal torque into the equilibrium equation, 
Eq. (4.43), we obtain

dy
G J - j ^  =  ~ q c 2cmac -  eqcce +  Nmgd  (4.44)

Eq. (4.41) now can be substituted into the equilibrium equation to yield an in- 
homogeneous, second-order, ordinary differential equation with constant coeffi 
cients

d 2e q c a e n 1 , 7 ,4 .. ...
—  +  -= = г в  =  - = =  (qc стас +  qcaear  -  Nmgd)  (4.45)

A  complete description of this equilibrium condition requires specification of the 
boundary conditions. Because the surface is built in at the root and free at the tip. 
these conditions can be written as

у  =  0 : 0 = 0  (zero deflection)
d0 n , . . 4 (4.46)у =  I: — =  0 (zero twisting moment) 
dy

Obviously, these boundary conditions are valid only for the clamped-free condition. 
The boundary conditions for other end conditions for beams in torsion are given in 
Section 3.2.2.

4.2.3 Torsional Divergence

If it is presumed that the configuration parameters of the uniform wing are known, 
then it is possible to solve Eq. (4.45) to determine the resulting twist distribution and 
associated airload. To simplify the notation, let

2 qcae

f  (4-47)
X2a r =  =  (qc2cmac -  Nmgd)

(jJ

so that

£ £ -c  _  Nmgd  
ae qcae
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Note that X2 and a T are independent of у  because the wing is assumed to be uniform. 
The static-aeroelastic equilibrium equation now can be written as

_ . + X2e =  - X 2 (ar + a T) (4.49)

The general solution to this linear ordinary differential equation is

в =  /Isin(Xy) +  Bcos(Xy) -  (ar +  <*r) (4.50)

subject to the condition that X Ф 0. Applying the boundary conditions, we find that

0(0) = 0 :  B =  a r +  a T
(4.51)

9 \ t )  = 0 :  /4=Btan(X£)

where ( ) '  — d( ) /dy.  Thus, the elastic-twist distribution becomes

в =  (ar +  a r) [tan(A.£) sin(A_y) +  cos(Xy) -  1] (4.52)

Because 9 is now known, the spanwise-lift distribution can be found using the ' 
relationship

L’ =  qca(ar +  в ) (4.53)

It is important to note from the expression for elastic twist that в becomes 
infinite as XI approaches я/2 . This phenomenon is called “torsional divergence” and 
depends on the numerical value of

W W  < 4 ' M )

Thus, it is apparent that there exists a value of the dynamic pressure q — qp,  at which 
Xi equals n/2 ,  where the elastic twist theoretically becomes infinite. The value qn is 
called the “divergence dynamic pressure” and is given by

G7 /7Г \2
Я D ( ! )  <«*>

Noting now that we can write

with

eca \ 2i

Xi =  (4.56)

Яр

the twist angle of the wing at the tip can be written as 

G(i) — (ar +  <*r) [sec(A£) -  1]

=  (ar +  «r) [sec -  l]
(4.58)
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Oun (degrees)

where Eq. (4.48) now can be written as

ccmac At2 Nmgd
“ r = ------------ ttt "о-" (4-59)ae G J n 2q

Letting d  be zero so that a T becomes independent of q,  we can examine the behavior 
of 6(1) versus q. Such a function is plotted in Fig. 4.13, where we see that the tip-twist 
angle goes to infinity as q approaches unity. Note that the character of the plot in 
Fig. 4.13 is similar to the prebuckling behavior of columns that have imperfections. 
It is of practical interest to note that the tip-twist angle may become sufficiently large 
to warrant concern about the structural integrity for dynamic pressures well below 
qr>. In practice, designers normally require the divergence dynamic pressure to be 
outside of the vehicle’s flight envelope—perhaps by specifying an appropriate factor 
of safety.

Because this instability occurs at a dynamic pressure that is independent of the 
right-hand side of Eq. (4.49), as long as the right-hand side is nonzero, it seems 
possible that the divergence condition could be obtained from the homogeneous 
equilibrium equation

s]2q
—  +  к 2в  =  0  (4.60)
d y 1

The general solution to this eigenvalue problem of the Sturm-Liouville type is

6 =  ylsin(A.y) +  Bcos(ky)  (4.61)

for к Ф 0. Applying the boundary conditions, we obtain

0(0) =  0: 5  =  0

в'(е) =  0 : /4Acos(A£) =  0
(4.62)
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If A  — 0 in the last condition, there is no deflection; this is a so-called trivial solu­
tion. Because X ф 0, a nontrivial solution is obtained when cos(Ai) =  0. This is the 
“characteristic equation” with solutions given by

Xne =  ( 2 n - l ) j  (/2 =  1 ,2 ,...)  (4.63)

These values are called “eigenvalues.” This set of values for Xni  corresponds to a set 
of dynamic pressures

«. =  (2» -  Ч 2 ( £ ) *  ^  (* =  1 .2 ,.. .)  (4.64)

The lowest of these values, q \ , is equal to the divergence dynamic pressure, q n, pre­
viously obtained from the inhomogeneous equilibrium equation. This result implies 
that there are nontrivial solutions of the homogeneous equation for the elastic twist. 
In other words, even for cases in which the right-hand side of Eq. (4.49) is zero 
(i.e., when a T +  a r =  0 ), there is a nontrivial solution

0n =  An sin(A.rt.y) (4.65)

for each of these discrete values of dynamic pressure. Because A,t is undetermined, 
the amplitude of 9„ is arbitrary, which means that the effective torsional stiffness is 
zero whenever the dynamic pressure q — qn. The mode shape 9\ is the divergence 
mode shape, which must not be confused with the twist distribution obtained from 
the inhomogeneous equation.

If the elastic axis is upstream of the aerodynamic center, then e <  0 and X is 
imaginary in the preceding analysis. The characteristic equation for the divergence 
condition becomes cosh(|A|£) =  0. Because there is no real value of X that satisfies 
this equation, the divergence phenomenon does not occur in this case.

4.2.4 Airload Distribution

It has been observed that the spanwise-lift distribution can be determined as

L' =  qca (ar + 9 )  (4.66)

where we recall from Eq. (4.52) that

9 =  (ar +  a r) [tan(Ai) sin(A.>') 4- cos(Xy) -  1] (4.67)

and where a T is given in Eq. (4.48). If the lifting surface is a wind-tunnel model of 
a wing and is fastened to the wind-tunnel wall, then the load factor, N, is equal to 
unity and a T can be specified. The resulting computation of L! is straightforward.

If, however, the lifting surface represents half the wing surface of a flying vehicle, 
the computation of L  is not as direct. Note that the constant a r is a function of N. 
Thus, for a given value of a r, there is a corresponding distribution of elastic twist 
and a particular airload distribution. This airload can be integrated over the vehicle 
to obtain the total lift, L. Recall that N  =  L / W , where W  is the vehicle weight. It 
is thus apparent that the load factor, N,  is related to the rigid angle of attack, a r,
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through the elastic twist angle, 9. For this reason, either of the two variables a T and 
N  can be specified; the other then can be obtained from the total lift L. Assuming a 
two-winged vehicle with all the lift being generated from the wings, we find

L  =  2 Г  L' dy  (4.68)
Jo

Substituting for L  and a r as given herein yields

L =  2qca f  {ar +  (aT +  «r) [tan(A£) sin(A_y) +  cos(A._y) -  1]} dy
Jo (4.69)

( _  rtan(W )1  _ 1  
= 2 q c a l  j (ar + a T) ——— -  ccT \

Because N  =  L / W ,  this expression can be divided by the vehicle weight to yield 
a relationship for N  in terms of a T and a v. This relationship then can be solved 
simultaneously with the preceding expression for a T, Eq. (4.48), in terms of a T and 
N. In this manner, a r can be eliminated, providing either a relationship that expresses 
N  in terms of a r, given by

2G J( X i )2 {aear +  ccmac
N  =

x i
tan(A€) ]|

a e l {t^ ) + 2 т 8 Ы [ 1 - Ы Ц 1 ) } }

or a relationship that expresses a r in terms of N

(4.70)

N W i e
a T =

2 GJXi  tan (ki)

Xi N m g i 2d  cc„
_GJ(Xi)2 ae _

(4.71)
tan(Ai) _

These relationships permit us to specify a constant a r and find N(q)  or, alternatively, 
to specify a constant N  and find a T(q). We find that N(q)  starts out at zero for <7 =  0. 
Conversely, a r(q) starts out at infinity for q =  0. The limiting values as q qi> 
depend on the other parameters. These equations can be used to find the torsional 
deformation and the resulting airload distribution for a specified flight condition.

The calculation of the spanwise aeroelastic airload distribution is immensely 
practical and is used in industry in two separate ways. First, it is used to satisfy a 
requirement of aerodynamicists or performance engineers who need to know the 
total force and moment on the flight vehicle as a function of altitude and flight 
condition. In this instance, the dynamic pressure q  (and altitude or Mach number) 
and a r are specified, and the load factor N  or total lift L  is computed using Eq. (4.70).

A second requirement is that of structural engineers, who must ensure the struc­
tural integrity of the lifting surface for a specified load factor N  and flight condition. 
Such a specification normally is described by what is called a V - N  diagram. For 
the conditions of given load factor and flight condition, it is necessary for structural 
engineers to know the airload distribution to conduct a subsequent loads and stress 
analysis. When q (and altitude or Mach number) and N  are specified, a T is then 
determined from Eq. (4.71). Knowing q, a v, and N, we then use Eq. (4.48) to find a r. 
The torsional deformation, 9, then follows from Eq. (4.67) and the spanwise-airload
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lift distribution for elastic wing

\

Figure 4.14. Rigid and elastic wing-lift distribu­
tions holding aT constant

i;

lift distrib

У I

distribution follows from Eq. (4.66). From this, the distributions of torsional and 
bending moments along the wing can be found, leading directly to the maximum ,, 
stress in the wing, generally somewhere in the root cross section.

Observe that the overall effect of torsional flexibility on the unswept lifting 
surface is to significantly change the spanwise-airload distribution. This effect can be 
seen as the presence of the elastic part of the lift coefficient, which is proportional to 
e(y) .  Because this elastic torsional rotation generally increases as the distance from 
the root (i.e., out along the span), so also does the resultant airload distribution. 
The net effect depends on whether a r or N  is specified. If a T is specified, as in the 
case of a wall-mounted elastic wind-tunnel model ( N  =  1) or as in performance 
computations, then the total lift increases with the additional load appearing in the 
outboard region, as shown in Fig. 4.14.

In the other case, when N  is specified by a structural engineer, the total lift (i.e., 
area under L  versus y)  is unchanged, as shown in Fig. 4.15. The addition of lift in 
the outboard region must be balanced by a decrease inboard. This is accomplished 
by decreasing a T as the surface is made more flexible.

lift distribution for elastic wing

Figure 4.15. Rigid and elastic wing-lift distribu­
tions holding total lift constant lift distribution for rigid wing
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All of the preceding equations for torsional divergence and airload distribu­
tion were based on a strip-theory aerodynamic representation. A slight numerical 
improvement in their predictive capability can be obtained if the two-dimensional 
lift-curve slope, a, is replaced everywhere by the total (i.e., three-dimensional) lift— 
curve slope. Although there is little theoretical justification for this modification, it 
alters the numerical results in the direction of the exact answer. Also, it is important 
to note that the lift distributions depicted in Figs. 4.14 and 4.15 cannot be generated 
with strip-theory aerodynamics because strip theory fails to pick up the dropoff of 
the airload to zero at the wing tip caused by three-dimensional effects. An aero­
dynamic theory at least as sophisticated as Prandtl’s three-dimensional lifting-line 
theory must be used to capture that effect. In such a case, closed-form expressions 
such as those of Eqs. (4.70) and (4.71) cannot be obtained; instead, it is necessary to 
use numerical methods to find TV as a function of a r or a T as a function of N.

4.2.5 Aileron Reversal

In Section 4.1.4, an example illustrating aileron reversal is presented based on a rigid, 
two-dimensional wing with a flexible support. In this section, we examine the same 
physical phenomenon using a torsionally flexible wing model. With the geometry 
and boundary conditions of the uniform, torsionally flexible lifting surface as before, 
we can derive the reversal dynamic pressure for a clamped-free wing. Two logical 
choices are presented regarding the defining condition. One is to define reversal 
dynamic pressure as that dynamic pressure at which the change of total lift with 
respect to the aileron deflection is equal to zero. Another equally valid definition is 
to define it as the dynamic pressure at which the change in root-bending moment with 
respect to the aileron deflection is equal to zero. Finally, we look at the effectiveness 
of ailerons for roll control—often termed the “roll effectiveness”—of a simplified 
flying aircraft model.

Note that the presence of an aileron requires that we modify the sectional lift 
and pitching moment coefficients, so that

Using these coefficients and setting a r equal to zero, the sectional lift and pitching 
moment are given by

where we assume that the aileron extends along the entire length of the wing. As­
suming the weight to have a negligible effect on the reversal condition, the modified 
version of Eq. (4.49) is written as

Ci = a a  +  CtpP 

Cmac =  Cmpfi
(4.72)

L! =  qc (ав +  ct f f}) 

M' =  eL! +  qc2cm/lP
(4.73)
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where

and, as before

=  ec t '  +  ccn, 
a e

(4J6)

With the boundary conditions of a clamped-free beam, the solution for в  is given by 

в =  - i j/p [1 -  cos(A.>1) -  sin(Xy) tan(X£)] (4.77)

The total lift for the uniform lifting surface then is obtained as

L =  [ ‘ U d y = ^  
Jo e

' . tan(Ai)
(e clfl +  с cm„) — ^ ------ с сщ (4.78)

Therefore, from the first definition of aileron reversal

— о => tan (j^) _  CCmi> (4.79)
dp Xi ссщ +  ectf

which, given e /c  and the sectional coefficients,1 may be solved numerically for Xi. 
The smallest value of Xi denoted by X\i  yields the reversal dynamic pressure as

We may refine the theoretical result by considering a simplified correction from 
three-dimensional effects by use of a tip-loss factor, typically chosen as В =  0.97. 
Instead of obtaining the total lift by integrating the sectional lift over the entire wing 
length from у  =  0 to у  =  t ,  we integrate only from у  =  0 to у  =  Bi.

Similarly, we may account for an aileron that does not extend over the entire 
length of the wing. Suppose that the aileron starts at у  =  r i  and extends to у  =  Ri  
with 0 < r < R <  1. This means that there are as many as three segments to be 
analyzed. There is no inhomogeneous term for the segments between у  =  r i  and 
у  =  Ri,  so instead of Eq. (4.74), we write

d20\ _ 2

dy

d26

+  Xz6i = 0  0 < у  < r i

2 + x2e2 =  -  X2\lrp r i  < y  <  Ri  (4.81)
d y 2
,/2a.
— 1  +  x2e1 = 0  Ri  <  у  <  i  
dy l

1 Estimated values of the airfoil coefficients may be obtained from experiment or from XFOIL, 
a computer code based on a panel method for design and analysis of subsonic isolated airfoils 
(see Drela, 1992).
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and obtain the resulting six arbitrary constants by imposing the six boundary 
conditions

0,(0) = 0 

el ( r i )  =  e2( n )  

d02
~ ^ {r t )  =  l T y W

-  ihl Rt )  *4'82*

Calculation of the reversal dynamic pressure from the second definition (i.e., the 
one in terms of the root-bending-moment criterion) is left as an exercise for readers 
(see Problem 20).

This treatment can be generalized easily to consider the roll effectiveness of 
a complete aircraft model. Similar problems can be posed in the framework of 
dynamics, in which the objective is, say, to predict the angular acceleration caused 
by deflection of a control surface, or the time to change the orientation of the aircraft 
from one roll angle to another. Depending on the aircraft and the maneuver, it may 
be necessary to consider nonlinearities. Here, however, only a static, linear treatment 
is included.

Consider a rolling aircraft with unswept wings, the right half of which is shown 
in Fig. 4.16, with a constant roll rate denoted by p. As shown in Fig. 4.17, the wing 
section has an incidence angle with respect to the freestream velocity of a T +  9 (y). In 
a roll maneuver with p  >  0, the right wing moves  upward while the left wing moves 
downward. The right wing then “sees” an additional component of wind velocity 
equal to p y  perpendicular to the freestream velocity and downward. As shown in 
Fig. 4.17, because p y  <SC U, the angle of attack is reduced from the incidence angle 
to a r +  9 — p y / U .

Some contributions to the lift and pitching moment are the same (opposite) on 
both sides of the aircraft; these are referred to as symmetric (antisymmetric) com­
ponents. Separate problems can be posed in terms of symmetric and antisymmetric 
parts, which are generally uncoupled from one another. In particular, we can treat 
the roll problem as an antisymmetric problem noting that all symmetric components 
cancel out in pure roll. Hence, we can discard them a priori. For example, in the 
relationship

a = ^ e ( y ) - ^ .  (4.83)

the first term, a r, drops out because of symmetry. Both в(у)  and the roll-rate term 
are antisymmetric because в and fi have the opposite sense across the mid-plane of 
the aircraft. The last term, which represents the increment in the angle of attack from
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Figure 4.16. Schematic of a rolling aircraft

the roll rate p  based on the assumption of a small angle of attack, also is explicitly 
antisymmetric.

Assuming c (y ) to be a constant, c, we may write the governing differential 
equation as

g + i W ( a _ w )  ,4.84,

with boundary conditions 0(0) =  d 9 / d y ( l )  =  0. The solution is given by

в =  -у— [Лу — sec(X£) sin(Xy)] 4- Vr/?[tan(Ai) sin(A._y) +  cos(Ay) -  1] (4.85)
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dp

Figure 4.18. Roll-rate sensitivity versus XI for e =  0.25c, ctf! =  0.8, and стр =  —0.5, showing 
the reversal point at XI =  0.984774

Now, because the aircraft is in a steady-state rolling motion, the total rolling moment 
must be equal to zero. Thus, ignoring the offset of the wing root from the mid-plane 
of the aircraft, we may find the moment of the lift about the mid-plane of the aircraft

j  yL ' (y )dy  =  yqc  [а (в -  ^  +  cepp  j dy  (4.86)

which, when set equal to zero, can be solved for the constant roll rate p. (Note that 
the three terms in Eq. [4.86] are the contributions toward the rolling moment due 
to the elastic twist, the roll rate p,  and the aileron deflection p,  respectively.) This 
result, written here in dimensionless form as p i / U ,  is given by

p i  _  Xi {сст„ [(Xi)2 -  2sec(Al) +  2] -  2ectf [sec(A-l) -  1]} p  
U 2 ae[Xi — tan(A£)]

which is proportional to p. At a certain dynamic pressure, we are unable to change 
the roll rate by changing p. This dynamic pressure occurs when the sensitivity of the 
roll rate to p  vanishes; viz.

Э( " )  =  M  (ct4  [ ( ^ ) 2 ~ 2 s e c ( X i )  +  2] -  2ectf [sec(Xl) -  1]} =  q 
dp 2 ae[Xt — tan(A.£)]

For specific values of e/c and the sectional airfoil coefficients clf> and cm/l, we may 
numerically solve this equation for a set of roots for Xi. The lowest value is associated 
the aileron reversal. Alternatively, we simply may plot the quantity in Eq. (4.88) 
versus Xi until it changes sign, which is the reversal point.

For a specific case (i.e., e =  0.25c, C(f =  0.8, and cm/t =  —0.5), the roll-rate sen­
sitivity is shown versus Xi, which is proportional to the speed U,  in Fig. 4.18, which 
shows the reversal point at Xi =  0.984774. Notice that the curve at low speed starts
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Figure 4.19. Contributions to rolling moment R (normalized) from the three terms of 
Eq. (4.86)

as relatively flat and monotonically decreases until the reversal point is reached. 
This shape is a typical result and shows the importance of static aeroelasticity in this 
aspect of flight mechanics. It is also interesting to observe the relative contributions 
to the rolling moment from the elastic twist, the rolling motion, and the aileron 
deflections depicted in Fig. 4.19. At the reversal point, p  vanishes, and the rolling 
moment contributions from elastic twist and from aileron deflection exactly cancel 
out one another.

4.2.6 Sweep Effects

To observe the effect of sweeping a wing aft or forward on the aeroelastic charac­
teristics, it is presumed that the swept geometry is obtained by rotating the surface 
about the root of the elastic axis, as illustrated in Fig. 4.20. The aerodynamic re­
actions depend on the angle of attack as measured in the streamwise direction as

a  =  a r +  в (4.89)

where в is the change in the streamwise angle of attack caused by elastic deformation. 
To develop a kinematical relationship for в, we introduce the unit vectors ai and §2, 
aligned with the у  axis and the freestream, respectively. Another set of unit vectors, 
bi and 62 , is obtained by rotating ai and &2 by the sweep angle A, as shown in 
Fig. 4.20, so that b, is aligned with the elastic axis (i.e., the у  axis). From Fig. 4.20, 
we see that

bi =  cos(A)ai 4- sin(A)a2
(4.90)

62 =  — sin(A)ai +  cos(A)a2

Observe that the total rotation of the local wing cross-sectional frame caused by 
elastic deformation can be written as the combination of rotations caused by wing
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f cos(A') -

/  с soc(A)

torsion, в  about bi, and wing bending, d w / d y  about 62, where w is the bending 
deflection (positive up, which in Fig. 4.20 is out of the paper). Now, 9 is the component 
of this total rotation about a i; that is

(*■ + £*») •ai

=  в cos(A)
dw
dy

(4.91)
sin(A)

From this relationship, it can be noted that as the result of sweep, the effective angle 
of attack is altered by bending. This coupling between bending and torsion affects 
both the static aeroelastic response of the wing in flight as well as the conditions 
under which divergence occurs. Also, it can be observed that for combined bending 
and torsion of a swept, elastic wing, the section in the direction of the streamwise 
airflow exhibits a change in camber—a higher-order effect that is here neglected.

To facilitate direct comparison with the previous unswept results, to the extent 
possible, the same structural and aerodynamic notation is retained as was used for 
the unswept planform. To determine the total elastic deflection, two equilibrium 
equations are required: one for torsional moment equilibrium as in the unswept case 
and one for transverse force equilibrium (associated with bending). These equations 
can be written as

=  —qecaa -  qc2cmac +  Nmgd

qcact — Nmg

(4.92)
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In these equilibrium equations, a is used to denote the two-dimensional lift-curve 
slope of the swept surface and cmaс to represent the two-dimensional pitching- 
moment coefficient of the swept surface. These aerodynamic constants are related 
to their unswept counterparts by

a — a cos(A)
(4'93)

С mac — cmaccos (A)

for moderate- to high-aspect-ratio surfaces. Substituting for a, a  =  a x +  6 and, in 
turn, the dependence of в  on в and w from Eq. (4.91), specializing for spanwise 
uniformity so that GJ  and EI  are constants, and letting ( ) ' denote d( ) / dy ,  we 
obtain two coupled, ordinary differential equations for torsion and bending given by

Яеса-Qcos2(Л) -  ^ w 's in (A )c o s ( A )
GJ GJ

=  — [qecaaT cos(A) +  qc2cm&c cos2(A) — Nmgd]
GJ

w"" +  I^w 'sin (A )cos(A ) — cos2(A) =  =  [qcaaT cos(A) — Nmg] (4.94) 
E I  EI EI

Because the surface is built in at the root and free at the tip, the following boundary 
conditions must be imposed on the solution:

(4.95)

Bending-torsion coupling is exhibited in Eqs. (4.94) through the term involving w in 
the torsion equation and through the term involving в in the bending equation.

There are two special cases of interest in which the coupling either vanishes or 
is much simplified so that we can solve the equations analytically. The first is for the 
case of vanishing sweep in which the uncoupled torsion equation (i.e., the first of 
Eqs. [4.94]) is the same as previously discussed and clearly leads to solutions for 
either the torsional divergence condition or the torsional deformation and air­
load distribution as discussed (see Sections 4.2.3 and 4.2.4, respectively). In the 
latter case, once the torsional deformation is obtained, the solution for в =  в can 
be substituted into the bending equation (i.e., the second of Eqs. [4.94]). Integra­
tion of the resulting ordinary differential equation and application of the boundary 
conditions lead to the shear force, bending moment, bending slope, and bending 
deflection.

A second special case occurs when e =  0. In this case, torsional divergence does 
not take place, and a polynomial solution for в can be found from the в equation and 
boundary conditions. Substitution of this solution into the bending equation leads

7  =  0 : в  = 0 (zero torsional rotation)
w = 0 (zero deflection)
w' = 0 (zero bending slope)

7  =  £: в ’ = 0 (zero twisting moment)
w" =  0 (zero bending moment)
tv"’ =  0 (zero shear force)
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to a fourth-order, ordinary differential equation for w with a polynomial forcing 
function; note that the в terms are now part of that forcing function. This equation 
and accompanying boundary conditions can be solved for the bending deflection, 
but the solution is not straightforward. Alternatively, to solve this equation for a 
divergence condition, we need only the homogeneous part, which can be written as 
a third-order equation in £ =  w'\ namely

qca
+  4==i; sin(A)cos(A) 

EI
0 (4.96)

For the clamped-free boundary conditions £(0) =  £'(£) =  i;"(£) =  0, this equation 
has a known analytical solution that yields a divergence dynamic pressure of

qn =  -6.32970-
EI

ac€3 sin(A)cos(A) (4-97)

The minus sign implies that this bending-divergence instability takes place only for 
forward-swept wings; that is, where A < 0.

Examination of Eqs. (4.94) illustrates that there are two ways in which the sweep 
influences the aeroelastic behavior. One way is the loss of aerodynamic effectiveness, 
as exhibited by the change in the second term of the torsion equations from

q e c a -
GJ

to - = = • #  co s2(A )  
GJ

(4.98)

Note that this effect is independent of the direction of sweep. The second effect 
is the influence of bending slope on the effective angle of attack (see Eq. 4.91), 
which leads to bending-torsion coupling. This coupling has a strong influence on 
both divergence and load distribution. The total effect of sweep depends strongly 
on whether the surface is swept backward or forward. This can be illustrated by its 
influence on the divergence dynamic pressure, q»,  as shown in Fig. 4.21. It is apparent 
that forward sweep causes the surface to be more susceptible to divergence, whereas 
backward sweep increases the divergence dynamic pressure. Indeed, a small amount 
of backward sweep (i.e., for the idealized case under consideration, depending on 
e / t  and G J / E I , only 5 or 10 degrees) can cause the divergence dynamic pressure 
to become sufficiently large that it ceases to be an issue. Specific cases are discussed 
later in this section in conjunction with an approximate solution of the governing 
equations.
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Figure 4.22. Lift distribution for positive, zero, 
and negative A

//

У

The overall effect of sweep on the aeroelastic-load distribution also strongly 
depends on whether the surface is swept forward or backward. This is illustrated in 
Fig. 4.22, which shows spanwise load distributions for an elastic surface for which the 
total lift (or N ) is held constant by adjusting a r. From the standpoint of structural 
loads, it is apparent that the root bending moment is significantly greater for forward 
sweep than for backward sweep at a given value of total lift.

The primary motivation for sweeping a lifting surface is to improve the vehicle 
performance through drag reduction, although some loss in lifting capability may be 
experienced. However, these aeroelastic considerations can have a significant impact 
on design decisions. From an aeroelastic standpoint, forward sweep exacerbates 
divergence instability and increases structural loads, whereas backward sweep can 
alleviate these concerns. The advent of composite lifting surfaces enabled the use 
of bending-twist elastic coupling to passively stabilize forward sweep, making it 
possible to use forward-swept wings. Indeed, the X-29 could not have been flown 
without a means to stabilize the wings against divergence. We discuss this further in 
Section 4.2.7.

Exact Solution for Bending-Torsion Divergence. Extraction of the analytical solu­
tion of the set of coupled, ordinary differential equations in Eqs. (4.94) is compli­
cated. The exact analytical solution is obtained most easily by first converting the 
coupled set of equations into a single equation governing the elastic component of 
the angle of attack. For calculation of only the divergence dynamic pressure, we can 
consider just the homogeneous parts of Eqs. (4.94):

To obtain a single equation, we differentiate the first equation with respect to у  and 
multiply it by cos(A). From this modified first equation, we subtract sin(A) times the

+  ?еса_ёCOs2(A) -  S (v 's in (A )c o s (A )  =  0
GJ GJ

w "" 4 - ^ % w ' sin(A) cos(A) -  <Ш^9 cos2(A) =  0 
EI EI

(4.99)
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second equation, replacing в cos(A) — w' sin(A) with в, to obtain

в'" +  co s2( A )в' +  sin(A) cos(A)0  =  0
GJ EI

(4.100)

Introducing a dimensionless axial coordinate /? =  у /£,  this is equation can be written 
as

where ( ) ' now denotes d( )/drj. The boundary conditions can be derived from 
Eqs. (4.95) as

Here, the first of Eqs. (4.99) and the final boundary condition from Eqs. (4.95) are 
used to derive the third boundary condition.

The exact solution for Eqs. (4.101) and (4.102) was obtained by Diederich and 
Budiansky (1948). Its behavior is complex, with multiple branches, and it is not 
used easily in a design context. However, a simple approximation of one branch is 
presented next and compared with plots of the exact solution.

Approximate Solution for Bending-Torsion Divergence. In view of the complexity 
of the exact solution, it is fortunate that there are various approximate methods for 
treating such equations, one of which is the application of the Ritz method to the 
principle of virtual work (see Section 3.5). In this special case, the kinetic energy is 
zero, and the resulting algebraic equations are a special case of the generalized equa­
tions of motion (see Section 3.1.5), termed “generalized equations of equilibrium.” 
Determination of such an approximate solution is left as an exercise for readers 
(see Problems 11-16).

Here, we consider instead an approximation of one branch of the analytical so­
lution for the bending-torsion divergence problem. Fortunately, the most important 
branch from a physical point of view behaves simply. Indeed, if we define

then, as shown by Diederich and Budiansky (1948), the divergence boundary can be 
approximately represented within a certain range in terms of a straight line

the exact solution for pure torsional divergence. Also, for a torsionally rigid wing, 
we have xd =  0 and, thus, fii> =  -19 /3 , which is very close to -6.3297, the exact 
solution for bending divergence. For the cases in between, the error is quite small.

6" ' +  c o s 2( A ) 0 ' +  sin(A) cos(A)0  =  0
G J EI

(4.101)

0 (0 ) =  в'(1) =  0 "(1) +  cos2(A)0 (l) =  0 (4.102)

(4.103)

2
Note that for a wing rigid in bending, we have fio =  0 and, thus, rw =  ^-, which is
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Figure 4.23. rD versus pD for coupled bending-torsion divergence; solid lines (exact solution) 
and dashed line (Eq. 4.104)

It is important to note that the sign of r  is driven by the sign of e, whereas the sign of 
P is driven by the sign of A. The approximate solution in Eq. (4.104) is plotted along 
with some branches of the exact solution in Fig. 4.23. Note the excellent agreement 
between the straight-line approximation and the exact solution near the origin. Note 
also that the intersections of the solution with the rd  axis (where Pn — 0 ) coincide 
with the squares of the roots previously obtained in Section 4.2.3, Eq. (4.63), as 
(2n -  1)2jt2/4 for n =  1 ,2 , . . . ,  oo (i.e., Jt2/4,  9л2/ 4 , ...).

A more convenient way of depicting the behavior of the divergence dynamic 
pressure is to plot го  versus a parameter that depends on only the configuration. 
This can be accomplished by introducing the dimensionless parameter r, given by

r =  — — - = t a n ( A )  
r  e EI

(4.105)

which can be positive, negative, or zero. Equation (4.104) can then be written as

ж2 Ъп2г 
— ~Г H--- 77Г4 76

Thus, we can solve for г о  such that

ro =

or alternatively for q D, equal to 

Qd

7Г

G J n 2

4ecal2 cos2(A) [ l -  Щ-~е Щ tan(A)j

(4.106)

(4.107)

(4.108)

Several branches of the exact solution of Eqs. (4.101) and (4.102) for the smallest 
absolute values of тд versus r are plotted as solid lines in Fig. 4.24. Note that there is
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td

Figure 4.24. г» versus r for coupled bending-torsion divergence; solid lines (exact solution) 
and dashed lines (Eq. 4.107 and Tp = —21r2/4  in fourth quadrant)

at least one branch in all quadrants except the third, and there is only one branch in 
the fourth quadrant. The approximate solutions for r /> versus r from Eq. (4.107) are 
plotted as dashed hyperbolae in the first, second, and fourth quadrants. Moreover, 
as r becomes large, the solution in the fourth quadrant asymptotically approaches 
the parabola г о =  -2 7 r2/4, also shown as a dashed curve. Note that as in Fig. 4.23, 
the intersections of the roots with the r« axis are я 2/ 4 ,9 n 2/А, 25л2/4, and so on. The 
configuration of any wing fixes the value of r . For positive e, we consider only positive 
values of гд. Thus, we start from zero and proceed in the positive direction on 
this plot (i.e., at constant r)  to find the first intersection with a solid line. This value 
of t d  is the normalized dynamic pressure at which divergence occurs. In Fig. 4.25,

td

Figure 4.25. rD versus r for coupled bending-torsion divergence; solid lines (exact solution) 
and dashed lines (Eq. 4.107)
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an enlargement of these results in a more practical range is shown. It is easily seen 
that the dashed lines in the first and second quadrants are close to the solid lines 
when r <  1.5. Note that when e < 0, a negative value of xn leads to a positive value 
of qp.  In this case, we should proceed along a line of constant r in the negative xp 
direction.

It is interesting that the approximate solution, despite its proximity to the exact 
solution, exhibits a qualitatively different behavior mathematically. The approximate 
solution exhibits an asymptotic behavior, with xp tending to plus infinity from the 
left and to minus infinity from the right at the value of r that causes the denominator 
to vanish—namely, when r =  76/(3n 2) — 2.56680. If the approximate solution were 
exact, mathematically it would mean that divergence is not possible at that value 
of r. Moreover, physically it would mean that divergence is not possible for e >  0 
and r > 76/(3jt2) [or for e < 0 and r <  76/(3л-2)]. Actually, however, the exact 
solution exhibits an instability of the “limit-point” variety. For e >  0, this means that 
divergence occurs for small and positive values of r. Moreover, as r is increased in the 
first quadrant, xp also increases until a certain point is reached, at which two things 
happen: (1) above this value of xp, the curve turns back to the left instead of reaching ''1 
an asymptote; and (2 ) any slight increase in r beyond this point causes the solution 
to jump to a higher branch. This point is called a limit point. On the main branch 
of the curve in the first quadrant, for example, the limit point is at r — 1.59768 and 
xp =  10.7090. It is shown in the plot in Fig. 4.24 that any slight increase in r causes 
the solution to jump from the lower branch—where its value is 10.7090—to a higher 
branch, where its value is 66.8133, at which point xp is rapidly increasing with r. So, 
although there is no value of r that results in an infinite exact value of the divergence 
dynamic pressure, practically speaking, divergence in the vicinity of the limit-point 
value of r is all but eliminated. Thus, it is sufficient for practical purposes to say that 
divergence is not possible near those points where the approximate solution blows 
up, and we may regard the approximate solution as sufficiently close to the exact 
solution for design purposes. The limit point in the fourth quadrant is appropriate 
for the situation in which e <  0—namely, when the aerodynamic center is behind 
the elastic axis. There, the exact limit point is at r =  3.56595 and xp =  —14.8345. 
Note that the negative values of e and xp yield a positive qp.  It is left to readers as 
an exercise to explore this possibility further (see Problem 18).

Although there are qualitative differences, as noted, between the exact and ap­
proximate solutions, within the practical range of interest, this linear approximation 
of the divergence boundary in terms of xp and ftp is numerically accurate and leads 
to a simple expression for the divergence dynamic pressure in terms of the structural 
stiffnesses, e / l ,  and the sweep angle (i.e., Eq. [4.108]). This approximate formula 
can be used in design to explore the behavior of the divergence dynamic pressure 
as a function of the various configuration parameters therein. For the purpose of 
displaying results for the divergence dynamic pressure when e >  0 , it is convenient 
to normalize qp  with its value at zero sweep angle; namely

Ш <4 - i o 9 >
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Figure 4.26. Normalized divergence dynamic pres­
sure for an elastically uncoupled, swept wing with 
Ш /ТП  =  1.0 and e /l =  0.02

so that
qo  =  l  +  t g ( A ) _  (4  U0)

qai 1 _ т Ш ,а” (л )

Thus, for a wing structural design with given values of e, GJ,  EI,  and I, there are 
values of sweep angle Л for which the divergence dynamic pressure goes to infinity 
or becomes negative, implying that divergence is not possible at those values of Л. 
Some values of Л make the numerator infinite because tan(A) blows up, whereas 
other values make the denominator vanish or switch signs. Therefore, within the 
principal range of -90° < Л < 90°, we can surmise that divergence can take place 
only for cases in which |Л| Ф 90° and 3n 2r ф 76. Sign changes have the following 
consequences: Divergence is possible only if -90° < Л < Л ^, where

. . 76 E l e  .A
и п ( л “ ) =  з ^ Ш  (4-m )

Thus, Eq. (4.110) can be written as

qD 1 +  tan2 (Л)
tan(A) (4.112)

1ап(Л̂ )

In other words, we avoid divergence by choosing Л > Лоо, and the divergence dy­
namic pressure drops drastically as Л is decreased below A^. Because is likely to 
be small, this frequently means that backswept wings are free of divergence and that 
divergence dynamic pressure drops drastically for forward-swept wings. Because l \ x  
is the asymptotic value of Л from the approximate solution, which is greater than 
the limit-point value of Л from the exact solution, we may surmise that the approx­
imate solution provides a conservative design. Figure 4.26 shows the behavior of 
divergence dynamic pressure for a wing with G J / E I  =  1.0 and e / l  =  0.02. The plot, 
as expected, passes through unity when the sweep angle is zero. Because is very 
small for this case, the divergence dynamic pressure goes to infinity for a very small 
positive value of sweep angle. Thus, even a small angle of backward sweep can make 
divergence impossible. Figure 4.27 shows the result of decreasing GJ /  E I  to 0.2 and 
holding e / l  constant. Because increases, the wing must be swept back farther 
than in the previous case to avoid divergence.
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Figure 4.27. Normalized divergence dynamic pres­
sure for an elastically uncoupled, swept wing with 
GT/TH =  0.2 and e/£ =  0.02
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Because e can be positive, negative, or zero, qp0 also may be positive, negative, 
or zero. Thus, by normalizing qp  by qд,, we may obfuscate the role of the sign of e 
on qp.  In such cases and perhaps others, it is more convenient to write Eq. (4.112) 
in a form that does not depend on qpa. One way to accomplish this is to eliminate 
qi^ from the expression for q D using Eqs. (4.109) and (4.111), yielding

making it clearer that divergence occurs only when -90° < A < A,», regardless of 
the sign of e. This form of the formula also shows more explicitly that EI  has a role 
in the design of swept wings that are free of divergence.

4.2.7 Composite Wings and Aeroelastic Tailoring

Aeroelastic tailoring is the design of wings using the directional properties of com­
posite materials to optimize aeroelastic performance. The concept of aeroelastic 
tailoring is relatively new and came into the forefront during the design of forward- 
swept wings in the 1980s. Equation (4.112) shows that qp  drops dramatically for 
forward-swept, untailored wings. The low divergence speed was a major hurdle in 
the design of wings with forward sweep. As discussed in this section, use of compos­
ite materials can help remove the disadvantages of forward sweep. Currently, aero­
elastic tailoring is an integral part of the design of composite wings and can be used 
to improve performance in a variety of ways.

Composite materials are anisotropic, which implies different material charac­
teristics (e.g., stiffness) in different directions. A simple beam model is helpful in 
developing an understanding of the behavior of composite wings. Such models may 
exhibit bending-torsion elastic coupling. Analysis of beams with elastic coupling is 
more involved, but it leads to helpful results.

Let us introduce such coupling in our beam equations. For anisotropic beams 
with bending-torsion coupling, the “constitutive law” (i.e., the relationship between

q p a c l 3 

Ш

19 [l +  tan2 (A)]
(4.113)

3 [tan(Aoo) -  tan(A)]
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cross-sectional stress resultants and the generalized strains) changes from

T GJ 0 " в'
M 0 £7 w"

T G7 - K d
M - K £7 w"

(4.114)

to

(4.115)

where К  is the bending-torsion coupling stiffness (with the same dimensions as El  
and 0 7 )  and ( ) ' indicates the derivative with respect to y. A positive value of К  
means that a positive bending deflection will be accompanied by a nose-up twist of 
the wing, which is normally destabilizing for cases with the elastic axis behind the 
aerodynamic center.

Using the coupled constitutive law, the equations of equilibrium become

( G J 9 ' 

( e J w"

k w " у

-  К в ' ) ' ■ qcaa

qecaa  -  qc2cmac +  Nmgd  

Nmg
(4.116)

Consider again a wing that is clamped at the root and free at the tip, so that the 
boundary conditions that must be imposed on the solution are

у  =  0 : в  =  0 (zero torsional rotation)
w  =  0  (zero deflection)

w' =  0  (zero bending slope)
у  =  £: T =  0 (zero twisting moment)

M  =  0 (zero bending moment)
M' =  0 (zero shear force)

(4.117)

For composite beams, the offsets d  and e may be defined in a manner similar 
to the way they were defined for isotropic beams: d  is the distance from the у  axis 
to the cross-sectional mass centroid, positive when the mass centroid is toward the 
leading edge from the у  axis; and e is the distance from the у  axis to the aerodynamic 
center, positive when the aerodynamic center is toward the leading edge from the у 
axis. Recall that for composite beams, the у  axis must have different properties from 
those it has for isotropic beams, and the term “elastic axis” has a different meaning. 
For a spanwise uniform isotropic beam, the elastic axis is along the у  axis and is 
the locus of cross-sectional shear centers; transverse forces acting through this axis 
do not twist the beam. For spanwise uniform composite beams with bending-twist 
coupling, no axis can be defined as the locus of a cross-sectional property through 
which transverse shear forces can act without twisting the beam. For such beams, we 
must place the у  axis along the locus of shear centers, a point in the cross section at 
which transverse shear forces are structurally decoupled from the twisting moment. 
Although transverse shear forces acting at the у  axis do not directly induce twist, the 
bending moment induced by the shear force still induces twist when К  Ф 0.
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We can now write the homogeneous part of the equations of equilibrium as

в
G

К  —m qca

£ / 4 ^ c o s (  A )= 0  
GJ GJ (4.118)

w
EI EI

1 cos(A) =  0

Differentiating the first equation with respect to у  and transforming the set of equa­
tions so that they are uncoupled in the highest derivative terms 9 and w"", we 
obtain

+
EI GJ qeca , К  EI

■ = r 6 cos(A) -  =
E I  GJ — K 2 GJ EI GJ -  К 2 EI

<Ш^в cos(A) =  0

К  GJ qeca , , .
w + ___________ ___в cos(A) -- ---------- —

E I  GJ - K 2 GJ EI  GJ -  K 2 EI

EI GJ qca . 4
-= в  cos(A) =  0

(4.119)

Multiplying the first equation by cos(A) and the second equation by sin(A) and 
subtracting the second equation from the first, we obtain a single equation in terms 
of в =  0 cos(A) — w' sin(A) as

EI GJ qecaC2 

Т П Ш - К 2 G l
cos2 (A) 1

K_

ТП
tan(A) в'

EI GJ q c a i 3 . . .  . .+ __ ■= --------- —т— sm(A) cos(A)
EI GJ — K 2 EI

1 -
К  1 

G7 tan(A)

(4.120)

в  =  0

where ( )' now denotes d( )/dr) as in the parallel development for the elastically 
uncoupled wing discribed previously.

The boundary conditions can be derived from Eqs. (4.117) as

. 4 EI GJ qecat

т = в т = в т + ж ш ^ - щ -
cos2 (A)

' К
1 -  =  tan(A) 

EI
0 (1) =  0 

(4.121)

The aeroelastic divergence problem with structural coupling has the same math­
ematical form as the problem without coupling, an approximate solution of which 
is given in the previous section. We can see that the parameters г and /3 can be 
redefined as

EI GJ q ecat 2 2, \
t = _________ — __  cos (A)

EI GJ -  K 2 GJ
К  , ' 

1 -  =  tan(A) 
EI

P =
EI GJ q c a l 3 

~ E l G 7 - K 2 ТП
sin(A)cos(A) i - A

1

GJ  tan(A).

(4.122)

and, again, the divergence boundary can be expressed approximately in terms of the

71 Ъл2
r,> "  T  +  ~ 76 Pn

(4.123)
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Using the expressions for the parameters in the equation of the divergence boundary, 
we have

ж2 Ш ( Л - К 2 GJ 1
Чо =  ~л----- =4 E I GJ  eca£2 cos2(A) ^  tan(A) _  ^  [tan(A) - ^ ] |

(4.124)

We can simplify this by introducing the dimensionless parameter

К

so that

Qd =

yj E l  GJ

7T2 G J ( 1  -  K2)

4ecat1 c o s 2 ( A )  1 1 — к ' GJ Зя2 г G£ 
76 e F.l tan(A) -

(4.125)

(4.126)

With Eq. (4.126), we may determine the divergence dynamic pressure with sufficient 
accuracy to ascertain its trends versus sweep angle A and elastic-coupling parameter 
к . The formula shows that there is a strong relationship between these two quantities.

To illustrate the utility of this analysis, let us first normalize qo  with the value it 
would have at zero sweep angle and zero coupling—namely, qд,, so that

Qd_ = __________ к 2) [1 +  tan2(A)]
<7Aj 1 - к . Зя2 I G J 

76 e E I tan(A)
(4.127)

As before, when the denominator of the expression for divergence dynamic pres­
sure vanishes, it corresponds to infinite divergence dynamic pressure; crossing this 
“boundary” means crossing from a regime in which divergence occurs to one in 
which it does not. Setting the denominator to zero and solving for the tangent of the 
sweep angle, we obtain

1 + 3 g l G J L K
/  . 4 76 у E l  e 

t a n ( A o o )  = ------—
Зл2 G J i

(4.128)
+  .76 E I e

where Aoo is the sweep angle at which the divergence dynamic pressure goes to 
infinity. With this definition, we can rewrite Eq. (4.127) as

qp =  (1 ~  к 2) [1 +  tan2(A)]
QDo 1 tan(A)

tan(Aoo)

(4.129)

Again, divergence is possible only if —90° < A < A»,. Thus, because of the presence 
of к as an additional design parameter, designers can at least partially compensate 
for the destabilizing effect of forward sweep by appropriately choosing к <  0 , which 
for an increment of upward bending of the wing provides an increment of nose-down 
twisting. There is a limit to how much coupling can be achieved, however, because 
typically \к I < 0 .8 6 .
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Figure 4.28. Normalized divergence dynamic pressure for an elastically coupled, swept wing 
with G7/£7 = 0.2 and e / l  = 0 .02; к = —0.4 (dots and dashes), к = 0 (solid lines), к — 0.4 
(dashed lines)

There are two main differences between the designs of isotropic and compos­
ite wings. First, it is possible to achieve a much wider range of values for GJ / E I .  
Second—and significantly more powerful—is the fact that composite wings can be 
designed with nonzero values of к. From Eq. (4.128), the value of Л<*, is decreased 
as к is decreased, which means that the range of Л over which divergence occurs 
is decreased. To confirm this and the previous statement about positive к being 
destabilizing, Fig. 4.28 shows results for к =  —0.4, 0, and 0.4. It is clear that a com­
posite wing can be swept forward and still avoid divergence with a proper choice 
(i.e., a sufficiently large and negative value) of к. Because forward sweep has ad­
vantages for the design of highly maneuverable aircraft, this is a result of practical 
importance. The sweep angles at which divergence becomes impossible, К ж, are 
also somewhat sensitive to GJ / E I  and e / l ,  as shown in Figs. 4.29 and 4.30. Ev­
idently, divergence-free, forward-swept wings may be designed with larger sweep 
angles by decreasing torsional stiffness relative to bending stiffness and by decreas­
ing e / l .

4.3 Epilogue

In this chapter, we considered divergence and aileron reversal of simple wind-tunnel 
models; torsional divergence, load redistribution, and aileron reversal in flexible- 
beam representations of lifting surfaces; roll effectiveness of an airplane with wings 
modeled as beams; the effects of sweep on coupled bending-torsion divergence; and 
the role of aeroelastic tailoring. It is clear that aircraft design is strongly influenced 
by aeroelastic considerations. In all of the cases explored in this chapter, the inertial 
loads are inconsequential and therefore were neglected. In Chapter 5, inertial loads 
are introduced into the aeroelastic analysis of flight vehicles, and the flutter problem 
is explored.
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Figure 4.29. Sweep angle for which divergence dynamic pressure is infinite for a wing with 
G J/E I  =  0.5; solid line is for e/t  =  0.01; dashed line is for e /t  =  0.04

Problems

1. Consider a rigid, wind-tunnel model of a uniform wing, which is pivoted in 
pitch about the mid-chord and elastically restrained in pitch by a linear spring 
with spring constant of 225 lb/in mounted at the trailing edge. The model has a 
symmetric airfoil, a span of 3 feet, and a chord of 6  inches. The total lift-curve

40
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. . 1 i i i 1 i 1 . . . 1 . .
-0 .4  ^ 0.2 0.4

^  ~ 20
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Figure 4.30. Sweep angle for which divergence dynamic pressure is infinite for a wing with 
e /t  =  0.02; solid line is for G J/E I =  1.0; dashed line is for G J/E I =  0.25
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slope is 6  per rad. The aerodynamic center is located at the quarter-chord, and 
the mass centroid is at the mid-chord.
(a) Calculate the divergence dynamic pressure at sea level.
(b) Calculate the divergence airspeed at sea level.

Answers: сц> =  150 lb/ft2; Up =  355 ft/sec

2. For the model in Problem 1, for a dynamic pressure of 30 lb/ft2, compute the 
percentage change in lift caused by the aeroelastic effect.
Answer: 25%

3. For the model of Problem 1, propose design changes in the support system that 
would double the divergence dynamic pressure by

(a) changing the stiffness of the restraining spring
(b) relocating the pivot point

Answers: (a) к =  450 lb/in; (b) xo =  2.513 in

4. For the model of Problem 1 as altered by the design changes of Problem 3, 
calculate the percentage change in lift caused by the aeroelastic effect for a 
dynamic pressure of 30 lb/ft2, a weight of 3 lb, a T =  0.5°, and for
(a) the design change of Problem 3a
(b) the design change of Problem 3b 

Answers: 11.11%; 17.91%

5. Consider a strut-mounted wing similar to the one discussed in Section 4.1.3, 
except that the two springs may have different stiffnesses. Denoting the leading- 
edge spring constant by k\ and the trailing-edge spring constant by k2, and assum­
ing that the aerodynamic center is at the quarter-chord, show that divergence 
can be eliminated if k \ / k 2 > 3.

6 . Using Excel or a similar tool, plot a family of curves that depict the relationship of 
the aileron-elastic efficiency, rj, versus normalized dynamic pressure, q =  q /q p ,  
for various values of R =  qn/q p  and 0 < q <  1. Make two plots on the following 
scales to reduce confusion:
(a) Plot R < 1 using axes — 3 < r] <  3
(b) Plot R  > 1 using axes —3 < /7 < 3

Hint: Do not compute values for the cases in which 1 < R <  1.1; Excel does not 
handle these well and you may get confused. For some cases, you may want to 
plot symbols only and nicely sketch the lines that form the curves.

Answer the following questions: Where does aileron reversal occur? If you had 
to design a wing, what R  would you try to match (or approach) and why? What 
happens when qn =  q p l  How does the efficiency change as q approaches qip. 
Why do you think this happens? What other pertinent features can you extract 
from these plots? Explain how you came to these conclusions.

7. Consider a torsionally elastic ( G J  — 8 ,000  lb in2) wind-tunnel model of a uni­
form wing, the ends of which are rigidly fastened to the wind-tunnel walls. 
The model has a symmetric airfoil, a span of 3 feet, and a chord of 6  inches.
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The sectional lift-curve slope is 6 per rad. The aerodynamic center is located 
at the quarter-chord, and both the mass centroid and the elastic axis are at the 
mid-chord.
(a) Calculate the divergence dynamic pressure at sea level.
(b) Calculate the divergence airspeed at sea level.

Answers: (a) qn =  162.46 lb/ft2; (b) Uo =  369.65 ft/sec

8 . For the model in Problem 7, propose design changes in the model that would 
double the divergence dynamic pressure by
(a) changing the torsional stiffness of the wing
(b) relocating the elastic axis 

Answers: GJ =  16,000 lb in2; xea =  2.25 in

9. For the model of Problem 7, for a dynamic pressure of 30 lb/ft2, compute the 
percentage increase in the sectional lift at mid-span caused by the aeroelastic 
effect.
Answer: 28.09%

10. For the model in Problem 7, for a dynamic pressure of 30 lb/ft2, compute the 
percentage increase in the total lift caused by the aeroelastic effect.
Answer: 18.58%

11. Consider a swept clamped-free wing, as described in Section 4.2.6. The governing 
partial differential equations are given in Eqs. (4.94) and the boundary condi­
tions in Eqs. (4.95). An approximate solution is sought for a wing with a symmet­
ric airfoil, using a truncated set of assumed modes and the generalized equations 
of equilibrium: a specialized version of the generalized equations of motion for 
which all time-dependent terms are zero. Note that what is being asked for here 
is equivalent to the application of the Ritz method to the principle of virtual 
work (see Section 3.5). With the wing weight ignored, only structural and aero­
dynamic terms are involved. The structural terms of the generalized equations of 
equilibrium are based on the potential energy (here, the strain energy) given by

P  =  I  J  (~Eiw " 2 _  2 Kw"e'  +  G l e ,2)  d y

and the bending and torsion deformation is represented in terms of a truncated 
series, such that

N w

W =
1=1

N„

в =  5 > e , O 0 
1 = 1

where Nw and Afo are the numbers of assumed modes used to represent bending 
and torsion, respectively; /7, and are the generalized coordinates associated 
with bending and torsion, respectively; and Ф, and ©; are the assumed mode
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shapes for bending and torsion, respectively. Determine the potential energy 
in terms of the generalized coordinates using as assumed modes the uncoupled, 
clamped-free, free-vibration modes of torsion and bending. For torsion

with a, and ft as given in Table 3.1.
12. Work Problem 11, but for assumed modes, instead of using the expressions 

given therein, use

recalling that these functions are not orthogonal.
13. Work Problem 11, but use the finite element method to represent both bending 

and torsion.
14. Referring to Problem 11, 12, or 13, starting with the virtual work of the aero­

dynamic forces as

where L! and M' are the sectional lift and pitching-moment expressions used 
to develop Eqs. (4.94), assuming a symmetric airfoil and using the given 
deformation modes, find the generalized forces E, , i =  1 ,2 ,. . . ,  N  =  Nw +  Ne. 
As discussed in the text, generalized forces are the coefficients of the variations 
of the generalized coordinates in the virtual-work expression. (Hint: Neglecting 
the weight terms on the right-hand sides of Eqs. 4.92, we find L  is the right-hand 
side of the second of those equations, whereas M' is the negative of the 
right-hand side of the first and equal to eL'.)

15. Referring to Problems 14 and 11,12, or 13, determine the generalized equations 
of equilibrium in the form

where q is the dimensionless dynamic pressure given by q/qi\,', qr\t is the tor­
sional divergence dynamic pressure of the unswept clamped-free wing, given by 
Eq. (4.55); {£} is the column matrix of all unknowns rji =  щ/ l ,  i =  1 ,2 ,.. . ,  Nw, 
and 0, , i =  1 ,2 ,.. . ,  and {Ho} is an N  x 1 column matrix containing the parts 
of the aerodynamic generalized forces that do not depend on any unknowns; and 
N  =  Nw +  Ne. (Note that in application of the finite element, Nw =  NH refers 
to the number of finite elements, and N  =  2Nw +  Ne.) The N  x N  matrices [/C]

For bending, according to Eq. (3.258), is given as

Ф, =  cosh(a,y) -  cos (a, у ) -  ft[sinh(a,y) -  sin(a,y)]

[ В Д  =  4 { И Ш  +  {Н0}}
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and [A\ are the stiffness and aerodynamic matrices, respectively. If Problem 11 
is the basis for solution and elastic coupling is ignored, then the stiffness matrix 
[A-] is diagonal because the normal modes used to represent the wing structural 
behavior are orthogonal with respect to the stiffness properties of the wing.

16. Referring to Problem 15, perform the following numerical studies:
a. Divergence: To determine the divergence dynamic pressure, write the 

homogeneous generalized equations of equilibrium in the form

<7
which is obviously an eigenvalue problem with 1/ q  as the eigenvalue. 
After solving the eigenvalue problem, the largest 1/q  provides the 
lowest dimensionless critical divergence dynamic pressure q D =  qo/qr^  
at the sweep angle under consideration. By numerical experimentation, 
determine Nw and NH to obtain the divergence dynamic pressure to within 
plotting accuracy. Plot the divergence dynamic pressure versus sweep 
angle for a range of values for the sweep angle —45° < Л < 45° and values 
of the dimensionless parameters e / l  (0.05 and 0.1), E I / G J  (1 and 5), 
and к =  0, ±0.5. Compare your results with those obtained in Eq. (4.129). 
Comment on the accuracy of the approximate solution in the text versus 
your Ritz or finite element solution. Which one should be more accurate? 
Discuss the trends of divergence dynamic pressure that you see regarding 
the sweep angle, stiffness ratio, and location of the aerodynamic center.

b. Response: For the response, you need to consider the inhomogeneous 
equations, which should be put into the form

[ [ K \ - q [ A ] ]  { ? } = ^ { 3 0}

Letting a r =  1°, obtain the response by solving the linear system of 
equations represented in this matrix equation. Plot the response of the 
wing tip (i.e., w and в at ~y =  t )  for varying dynamic pressures up to 
q =  0.95qo  for the above values of e / t ,  E I / G J ,  and к with Л = -25° and 
0°. Plot the lift, twist, and bending-moment distributions for the case with 
the largest tip-twist angle. Comment on this result and on the trends of 
static-aeroelastic response that you see regarding the sweep angle, stiffness 
ratio, location of the aerodynamic center, and elastic coupling.

17. Consider the divergence of an unswept composite wing with к =  0, 
G 7 /£ 7  =  0.2, and e / t  — 0.025. Using Eq. (4.126), determine the value of 
к , as defined by Eq. (4.125), needed to keep the divergence dynamic pressure 
unchanged for forward-swept wings with various values of Л < 0. Plot these 
values of к versus Л.

18. Using the approximate formula found in Eq. (4.126), derive a formula for 
qn act^ /E I  analogous to Eq. (4.113) and use it to determine the divergence 
dynamic pressure for swept composite wings when e <  0. Discuss the situations 
in which we might encounter a negative value of e. Which sign of к would you
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expect to be stabilizing in this case? Plot this normalized divergence dynamic 
pressure for a swept composite wing with G J / EI =  0.2 and e / t  =  —0.025 
versus Л for к =  0 and ±0.4.

19. Consider the divergence of a swept composite wing. Show that the governing 
equation and boundary conditions found in Eqs. (4.120) and (4.121) can be 
written as a second-order, integro-differential equation of the form

with boundary conditions 0(0) =  6'( 1) =  0 and with r =  р/т. Determine the 
two simplest polynomial comparison functions for this reduced-order equation 
and boundary conditions. Use Galerkin’s method to obtain one- and two-term 
approximations to the divergence dynamic pressure xD versus r. Plot your 
approximate solutions for the case in which GJ  /  EI =  0.2, e / i  =  0.02, and 
к =  -0 .4 , depicted in Fig. 4.28, and compare these with the approximate solu­
tion given in the text. For the two-term approximation, determine the limit point 
for positive e, noting that the exact values are r =  1.59768 and r »  =  10.7090. 
Answer: The one-term approximation is

The approximate limit point in the first quadrant is at r =  1.61804 and 
td =  11.2394. Within plotting accuracy, the two-term approximation is 
virtually indistinguishable from the exact solution when —10 < rp  < 10 .

20. Consider a uniform, torsionally flexible wing of length i  with torsional stiffness 
G J  and with the aileron extending from у  =  r i  to у  =  Ri.

(a) Find the expression that must be solved for ki  using the criterion for 
aileron reversal that the change in root-bending moment with respect 
to aileron deflection vanish. Use a tip-loss factor of B.

(b) Assuming that e =  0.25c, clft =  0.8, cmfl =  -0 .5 , and R = l ,  and 
considering both r =  0 and r — 0.5 and В — 0.97 and В =  1, find k\ l .  
Discuss the effect of r and B.

(c) Determine k xi  from Eq. (4.79). Comparing this to your results for 
the case of r =  0, R =  1, and В =  1, explain how it is possible for 
the reversal dynamic pressure extracted from the bending-moment 
criterion to be different from that extracted for the total lift criterion.

Answer: For example, when r =  0, Л =  1, and В =  1: sec(A.€) -

30
Td =  IT— F"12 — 5 r

The two-term approximation is

1260
282 -  105r ±  V3v/15r(197r -  1,036) +  17,408

e Q„ +  с crnfi
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21. Consider a rigid body that represents the fuselage of a symmetric aircraft, 
to which are attached uniform, torsionally flexible wings that have the same 
properties as those in Problem 20. Assuming the aircraft is flying at constant 
speed with a constant roll rate, develop solutions for the same sets of parameters 
as asked for in Problem 20.
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The pilot of the airplane... succeeded in landing with roughly two-thirds of his 
horizontal tail surface out of action; some others have, unfortunately, not been so 
lucky__ The flutter problem is now generally accepted as a problem of primary con­
cern in the design of current aircraft structures. Stiffness criteria based on flutter re­
quirements are, in many instances, the critical design criteria__ There is no evidence
that flutter will have any less influence on the design of aerodynamically controlled 
booster vehicles and re-entry gliders than it has, for instance, on manned bombers.

—R. L. Bisplinghoff and H. Ashley in Principles of  Aeroelasticity, John Wiley 
and Sons, Inc., 1962

Chapter 3 addressed the subject of structural dynamics, which is the study of phe­
nomena associated with the interaction of inertial and elastic forces in mechanical 
systems. In particular, the mechanical systems considered were one-dimensional, 
continuous configurations that exhibit the general structural-dynamic behavior of 
flight vehicles. If in the analysis of these structural-dynamic systems aerodynamic 
loading is included, then the resulting dynamic phenomena may be classified as 
aeroelastic. As observed in Chapter 4, aeroelastic phenomena can have a significant 
influence on the design of flight vehicles. Indeed, these effects can greatly alter the 
design requirements that are specified for the disciplines of performance, structural 
loads, flight stability and control, and even propulsion. In addition, aeroelastic phe­
nomena can introduce catastrophic instabilities of the structure that are unique to 
aeroelastic interactions and can limit the flight envelope.

Recalling the diagram in Fig. 1.1, we can classify aeroelastic phenomena as either 
static or dynamic. Whereas Chapter 4 addressed only static aeroelasticity, in this 
chapter, we examine dynamic aeroelasticity. Although there are many other dynamic 
aeroelastic phenomena that could be treated, we focus entirely on the instability 
called “flutter,” which generally leads to a catastrophic structural failure of a flight 
vehicle. A formal definition of aeroelastic flutter is as follows: a dynamic instability 
o f  a flight vehicle associated with the interaction o f  aerodynamic, elastic, and inertial 
forces. From this definition, it is apparent that any investigation of flutter stability 
requires an adequate knowledge of the system’s structural dynamic and aerodynamic 
properties. To further elaborate, flutter is a self-excited and potentially destructive
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oscillatory instability in which aerodynamic forces on a flexible body couple with its 
natural modes of vibration to produce oscillatory motions with increasing amplitude. 
In such cases, the level of vibration will increase, resulting in oscillatory motion with 
amplitude sufficiently large to cause structural failure.

Because of this, structures exposed to aerodynamic forces—including wings and 
airfoils but also chimneys and bridges—must be carefully designed to avoid flutter. 
In complex systems in which neither the aerodynamics nor the mechanical properties 
are fully understood, the elimination of flutter can be guaranteed only by through 
testing. Of the various phenomena that are categorized as aeroelastic flutter, lifting- 
surface flutter is most often encountered and most likely to result in a catastrophic 
structural failure. As a result, it is required that lifting surfaces of all flight vehicles 
be analyzed and tested to ensure that this dynamic instability will not occur for any 
condition within the vehicle’s flight envelope.

If the airflow about the lifting surface becomes separated during any portion 
of an unstable oscillatory cycle of the angle of attack, the governing equations 
become nonlinear and the instability is referred to as “stall flutter.” Stall flutter 
most commonly occurs on turbojet compressor and helicopter rotor blades. Other 
phenomena that result in nonlinear behavior include large deflections, mechanical 
slop, and nonlinear control systems. Nonlinear phenomena are not considered in the 
present treatment. Even with this obvious paring down of the problem, however, we 
still find that linear-flutter analysis of clean lifting surfaces is complicated. Thus, we 
can offer only a simplified discussion of the theory of flutter. Readers are urged to 
consult the references for additional information on the subject.

This chapter begins by using the modal representation to set up a lifting-surface 
flutter analysis as a linear set of ordinary differential equations. These are trans­
formed into an eigenvalue problem, and the stability characteristics are discussed in 
terms of the eigenvalues. Then, as an example of this methodology, a two-degree- 
of-freedom “typical-section” analysis is formulated using the simple steady-flow 
aerodynamic model used in Chapter 4. The main shortcoming of this simple analysis 
is the neglect of unsteady effects in the aerodynamic model. Motivated by the need to 
consider unsteady aerodynamics in a meaningful but simple way, we then introduce 
classical flutter analysis. Engineering solutions that partially overcome the shortcom­
ings of classical flutter analysis follow. To complete the set of analytical tools needed 
for flutter analysis, two different unsteady-aerodynamic theories are outlined: one 
suitable for use with classical flutter analysis and its derivatives; the other suitable 
for eigenvalue-based flutter analysis. After illustrating how to approach the flutter 
analysis of a flexible wing using the assumed-modes method, the chapter concludes 
with a discussion of flutter-boundary characteristics.

5.1 Stability Characteristics from Eigenvalue Analysis

The lifting-surface flutter of immediate concern can be described by a linear set of 
structural dynamic equations that include a linear representation of the unsteady 
airloads in terms of the elastic deformations. The surface could correspond to a
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wing or stabilizer either with or without control surfaces. Analytical simulation of 
the surface is sometimes made more difficult by the presence of external stores, 
engine nacelles, landing gear, or internal fuel tanks. Although such complexities 
complicate the analysis, they do not alter significantly the physical character of the 
flutter instability. For this reason, the following discussion is limited to a “clean” 
lifting surface.

When idealized for linear analysis, the nature of flutter is such that the flow over 
the lifting surface creates not only steady components of lift and pitching moment 
but also dynamic forces in response to small perturbations of the lifting-surface 
motion. The wing airfoil at a local cross section undergoes pitch and plunge motions 
from lifting-surface torsional and bending deformation, respectively. When a lifting 
surface that is statically stable below its flutter speed is disturbed, the oscillatory 
motions caused by those disturbances die out in time with exponentially decreasing 
amplitudes. That is, we could say that the air provides damping for all such motions. 
Above the flutter speed, however, rather than damping out the motions due to small 
perturbations in the configuration, the air can be said to provide negative damping. 
Thus, these oscillatory motions grow with exponentially increasing amplitudes. This 
qualitative description of flutter can be observed in a general discussion of stability 
characteristics based on complex eigenvalues.

Before attempting to conduct an analysis of flutter, it is instructive to first ex­
amine the possible solutions to a structural-dynamic representation in the presence 
of airloads. We presume that a flight vehicle can be represented in terms of its 
normal modes of vibration. We illustrate this with the lifting surface modeled as a 
plate rather than a beam. This is more realistic for low-aspect-ratio wings but, in 
the present framework, this increased realism presents little increase in complexity 
because of the modal representation. For displacements w(x,  y, t ) in the z  direction 
normal to the plane of the planform (i.e., the x-y  plane), the normal mode shapes can 
be represented by ф; ( x , y)  and the associated natural frequencies by щ.  A typical 
displacement of the structure can be written as

where %,(i) is the generalized coordinate of the ith mode. For simplicity, both rigid- 
body and elastic modes are included in this set without special notation to distinguish 
them from one another. The set of generalized equations of motion for the flight 
vehicle can be written as

where M, is the generalized mass associated with the mass distribution m(x, y)  and 
can be determined as

П

(5.1)

Mi d i  +  wjHi) =  S; (i =  1 ,2 , . . . ,  n) (5.2)

(5.3)
planform
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The generalized force St (t), associated with the external loading F(x, y,  t ), can be 
evaluated as

Recall that of the set of natural frequencies w, , any that are associated with rigid-body 
modes are equal to zero.

To examine the stability properties of the flight vehicle, the only external loading 
to be considered is from the aerodynamic forces, which can be represented as a linear 
function of w(x,  y,  t)  and its partial derivatives, plus a set of additional states that 
may be needed to represent pertinent aspects of the flow field, such as the induced 
flow or downwash. It is presumed that all other external disturbances have been 
eliminated. Such external disturbances normally would include atmospheric gusts, 
store-ejection reactions, and so forth. Recalling that the displacement can be repre­
sented as a summation of the modal contributions, the induced-pressure distribution, 
Ap(x,  y,  t), can be described as a linear function of the generalized coordinates, 
their derivatives, and the flow-field states. Such a relationship can be written as

Ap{x,  y , t )  =  J 2  M * .  y)Hj{t) +  bj{x, y ) l j ( t )  +  cj(x,  y ) l j ( t )] +  J 2 di ( x ’ 
y=i y=i

(5.5)

where the Xs are state variables associated with the flow field, sometimes called 
“augmented” states or “lag” states, written here so as to have the same units as the 
generalized coordinates. The number of these states is denoted by N  > 0, which 
may be distinct from n. The corresponding generalized force of the ith mode now 
can be determined from

S,(0 = J j  F(x,y, t)<l>i(x,y)dxdy (5.4)
planform

П N

planform

j  1 planform

(5.6)

J 1 planform
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Following the convention in some published work, we factored out the freestream 
air density p<*, and U2/ b 2 from the aerodynamic generalized force expression. 
Although not necessary, this step enables analysts to identify altitude effects more 
readily. It also shows explicitly that all aerodynamic effects vanish in a vacuum 
where p<*> vanishes. Moreover, the normalization involving powers of b /  U—where 
b is a reference semi-chord of the lifting surface—allows the matrices [a], [b\, [c], 
and [d] to have the same units, simplifying the equations in terms of dimensionless 
variables that follow later. Any inhomogeneous terms in the generalized forces 
can be eliminated by redefinition of the generalized coordinates so that they are 
measured with respect to a different reference configuration. Thus, the generalized 
equations of motion can be written as a homogeneous set of differential equations 
when this form of the generalized force is included. They are

If N  > 0, then N  additional equations are needed for the Xs. Such equations 
generally have the form

Matrices [Л] and [£] can be obtained from unsteady-aerodynamic theories as well 
as from computational fluid dynamics or test data. Note that matrix [£] may be an 
operator that differentiates {£} one or more times.

This system consists of n +  N  equations—that is, the number of structural modes 
(including both elastic and rigid-body modes) plus the number of aerodynamic 
states, respectively. The general solution to this set of linear ordinary differential 
equations can be described as a simple exponential function of time because they 
are homogeneous. The form of this solution is taken as

Substituting this expression into Eqs. (5.7) and (5.8), we obtain a set of algebraic 
equations, each term of which contains exp(vf). After factoring out this term, the 
result is n +  N  simultaneous linear, homogeneous, algebraic equations for the £s, 
which may be written in matrix form as

7=1 /=1
N

(5.7)
П

Poo ^  P°°  ^  > d i j ^ j  — 0 [} — 1,2

or

Ш Ь  +  J  {M  -[£]{£}} = 0 (5.9)

£;(0 =  Hi exp(yf) U(t )  =  Xt exp(vf) (5.10)

P2l'M'] +  J]2 [M(D2~\ {§} -  Poo [p 2[c] +  p[b] +  [a]] {H} -  Poo И М  =  {0}

[р[Л] +  [ /] ]{ л } -[£ ]{ ? }  =  {0 } (5.11)
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where p  =  b v / U  is the unknown dimensionless eigenvalue, and the symbol ['M-] 
denotes a diagonal matrix with elements M-t . For a nontrivial solution of the general­
ized coordinate amplitudes, the determinant of the array formed by the coefficients 
of Jj and X/ must be zero. It is apparent that this determinant is a polynomial of de­
gree 2n +  N  in p. The subsequent solution of this polynomial equation for p  yields 
2n +  N  roots consisting of nc complex conjugate pairs and nr real numbers where 
2nc +  nr =  In +  N. A typical complex root has the form

vk =  U p .  =  r k ± i n k k =  l , 2 , . . . , n c (5.12)
b

whereas the roots vk with к — nc +  1, nc +  2 , . . . ,  nc +  nr are real. In other words, 
any root can be written as vk so that, S2k =  0  for nc < к < nc +  nr.

—(&)For each root p k, there are corresponding complex column matrices , j  =
_( /Л

1,2 , . . . , « ,  and Xj , j  =  1, 2 , . . . ,  N. Thus, the solution for the displacement field 
from the generalized equations of motion with the aerodynamic coupling can be 
written as

nc+n,

w ( x , y , t )  =  2 2  {tv*(x,30exp[(r* +  in*)f] +  vv*(x,.)0 exp[(r*-infc)f]}  (5-13) 
k=  1

where wk is the complex conjugate of wk. This expression for w(x,  y, t) turns out to 
be real, as expected. Each wk represents a unique linear combination of the mode 
shapes of the structure; viz.

П
wk( x , y )  =  Y 2% (i C)<l>i(x ’ y)  (k =  1,2, . . . , n c +  nr) (5.14)

/=1

—<k)Note that only the relative values of f , can be determined unless the initial dis­
placement and rate of displacement are specified.

It is apparent from the general solution for w(x, y, t), Eq. (5.13), that the &th 
component of the summation represents a simple harmonic oscillation that is modi­
fied by an exponential function. The nature of this dynamic response to any specified 
initial condition is strongly dependent on the sign of each Г .̂ Typical response be­
havior is illustrated in Fig. 5.1 for positive, zero, and negative values of when Qk is 
nonzero. We note that the negative of Г* is sometimes called the “modal damping” 
of the fcth mode, and £2k is called the “modal frequency.” It is also possible to classify 
these motions from the standpoint of stability. The convergent oscillations when 
Г* < 0 are termed “dynamically stable” and the divergent oscillations for Г* > 0 

are “dynamically unstable.” The case of Г* =  0 represents the boundary between 
the two and is often called the “stability boundary.” If these solutions are for an 
aeroelastic system, the dynamically unstable condition is called “flutter” and the 
stability boundary corresponding to simple harmonic motion is called the “flutter 
boundary.”

Recall from Eq. (5.13) that the total displacement is a sum of all modal con­
tributions. It is therefore necessary to consider all possible combinations of Г* and 
Qk, where Г* can be < 0, =  0, or > 0 and Qk can be =  0 or Ф 0. The corresponding
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r *<0

Figure 5.1. Behavior of typical mode amplitude when C2k Ф 0

type of motion and stability characteristics are indicated in Table 5.1 for various 
combinations of Г* and fi*. Although the primary concern here is in regard to the 
dynamic instability referred to as flutter, for which Qk Ф 0, Table 5.1 shows that the 
generalized equations of motion also can provide solutions to the static-aeroelastic 
problem of divergence. This phenomenon is indicated by the unstable condition for 
fi* =  0 , and the divergence boundary occurs when Г* =  fi* =  0 .

In many published works on flutter analysis, the method outlined in this sec­
tion based on determination of stability from complex eigenvalues is known as the

Table 5.1. Types of motion and stability characteristics for 
various values of Г* and Qk

r k Qk Type of motion Stability characteristic

< 0 Ф o Convergent Oscillations Stable
=  0 #0 Simple Harmonic Stability Boundary
> 0 #0 Divergent Oscillations Unstable
<0 =  0 Continuous Convergence Stable
=  0 =  0 Time Independent Stability Boundary
> 0 =  0 Continuous Divergence Unstable

ехР(Г ht)

ехр(Г kt)
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Figure 5.2. Schematic showing geometry of the wing section with pitch and plunge spring 
restraints

“p  method.” It is named for the dimensionless complex eigenvalue p  =  b v / U  that 
appears in Eq. (5.11); p  is frequently termed a “reduced eigenvalue.” To provide an 
accurate prediction of flutter characteristics, the p  method must use an aerodynamic 
theory that accurately represents the loads induced by transient motion of the lifting 
surface. Depending on the theory, augmented aerodynamic states may or may not 
be necessary; for example, the theory outlined in Section 5.5.2 uses them, whereas 
the theory in the next section does not; rather it uses the simplest steady-flow theory 
for which no claim of accuracy is made. The sole purpose of doing so is to illustrate 
the use of the p  method to analyze a simple configuration.

5.2 Aeroelastic Analysis of a Typical Section

In this section, we demonstrate the flutter analysis of a linear aeroelastic system. To 
do this, a simple model is needed. In the older literature on aeroelasticity, flutter 
analyses often were performed using simple, spring-restrained, rigid-wing models 
such as the one shown in Fig. 5.2. These were called “typical-section models” and are 
still appealing because of their physical simplicity. This configuration could represent 
the case of a rigid, two-dimensional wind-tunnel model that is elastically mounted 
in a wind-tunnel test section, or it could correspond to a typical airfoil section along 
a finite wing. In the latter case, the discrete springs would reflect the wing structural 
bending and torsional stiffnesses, and the reference point would represent the elastic 
axis.

Of interest in such models are points P, C, Q, and T, which refer, respectively, 
to the reference point (i.e., where the plunge displacement h is measured), the center 
of mass, the aerodynamic center (i.e., presumed to be the quarter-chord in subsonic 
thin-airfoil theory), and the three-quarter-chord (i.e., an important chordwise loca­
tion in thin-airfoil theory). The dimensionless parameters e and a (i.e., — 1 < e <  1 
and — 1 < a <  1) determine the locations of the points С and P: when these parame­
ters are zero, the points lie on the mid-chord, and when they are positive (negative), 
the points lie toward the trailing (leading) edge. In the literature, the chordwise



5.2 Aeroelastic Analysis of a Typical Section 183

offset of the center of mass from the reference point often appears in the equations 
of motion. It is typically made dimensionless by the airfoil semi-chord b and denoted 
by xe =  e -  a. This so-called static-unbalance parameter is positive when the center 
of mass is toward the trailing edge from the reference point. The rigid plunging and 
pitching of the model is restrained by light, linear springs with spring constants kh 
and ky.

It is convenient to formulate the equations of motion from Lagrange’s equa­
tions. To do this, we need kinetic and potential energies, as well as the generalized 
forces resulting from aerodynamic loading. We immediately can write the potential 
energy as

P  = \ h h 2 +  \ к « в 2 (5.15)

To deduce the kinetic energy, we need the velocity of the mass center C, which 
can be found as

у с  =  Ур +  0 b3 x b [(1 +  a) -  (1 +  e)] bi 

where the inertial velocity of the reference point P  is

y P =  -h \z

and thus

vc =  —f&z +  Ьв(а -  е)Ьг (5.18)

The kinetic energy then is given by

К  =  im vc ■ vc +  i/c<?2 (5.19)

where Ic is the moment of inertia about C. By virtue of the relationship between 62 

and the inertially fixed unit vectors и and 12, assuming 9 to be small, we find that

К  =  ]-m (h2 +  b2x l o 2 +  Ibxehe) +  IcO2
(5.20)

— - m  (h2 +  Ibxehe)  +  - / / ;0 2

where IP =  Ic  +  mb2x 2.
The generalized forces associated with the degrees of freedom h and в are de­

rived easily from the work done by the aerodynamic lift through a virtual displace­
ment of the point Q  and by the aerodynamic pitching moment about Q  through a 
virtual rotation of the model. The velocity of Q  is

v Q =  - h i 2 +  Ь в  Q  b2 (5.21)

The virtual displacement of the point Q  can be obtained simply by replacing the dot 
over each unknown in Eq. (5.21) with a <5 in front of it; that is

5pg =  — Sh i2 b 89 ^ — +  a \ 62 (5.22)

(5.16)

(5.17)
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where <$pQ is the virtual displacement at Q. The angular velocity of the wing is 0 6 3 ; 
therefore, the virtual rotation of the wing is simply 5063 . Hence, the virtual work of 
the aerodynamic forces is

—Sh +  bSW  =  L

and the generalized forces become

Qh =  - L

Qe =  Mi +  b

( И se +  M iS e (5.23)

( H
(5.24)

It is clear that the generalized force associated with h is the negative of the lift, 
whereas the generalized force associated with 9 is the pitching moment about the 
reference point P.

Lagrange’s equations (see the Appendix, Eqs. A.35) are specialized here for the 
case in which the kinetic energy К  depends on only q\, q i , ...; therefore

(5.25)

(5.26)

d ( д К \  d P  „
Т г ( щ )  +  4 = Q i  ( , = 1 ’2’ - ’n)

Here, n — 2, q\ =  h, and qz — O and the equations of motion become 

m( h  +  b;Ков) +  kj,h =  — L

Ipi) +  mbxeh +  ков — M\_ +  b ^  +  a'j L

For the aerodynamics, the steady-flow theory used previously gives

L  =  In po ob t f e  

Mx = 0
4

where, in accord with thin-airfoil theory, we have taken the lift-curve slope to be 2л.  
Assuming this representation to be adequate for now, we can apply the p  method 
because the aerodynamic loads are specified for arbitrary motion. (We subsequently 
consider more sophisticated aerodynamic theories.)

To simplify the notation, we introduce the uncoupled, natural frequencies at 
zero airspeed, defined by

(5.27)

(Oh = (5.28)

Substituting Eqs. (5.27) into Eqs. (5.26), using the definitions in Eqs. (5.28), and 
rearranging the equations of motion into matrix form, we obtain

mb2

mb2Xo

m b 2xo h
UО +

Ip в

mb2co\ 2л р 00Ь2и 2 

IPu>l -  2 (1 +  а) л р х Ь2и 2

h
b o '

в 0
(5.29)
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Note that the first equation was multiplied through by b and the variable h was 
divided by b to make every term in both equations have the same units. Following 
the p  method as outlined previously, we now make the substitutions h =  /iexp(vl) 
and в =  6 exp(vt) ,  which yields

(5.30)

Although this eigenvalue problem can be solved as it is written, it is more convenient 
to introduce dimensionless variables to further simplify the problem. To this end, 
we first let v =  pU /b ,  where p  is the unknown dimensionless, complex eigenvalue; 
divide all equations by m(J2; and finally introduce the dimensionless parameters

mb2 v2 +  mb2w2h mb2 v2x„ +  Inpoob2 U2 h
b 0

mb2v2xe lpw\  +  Ipv2 -  2(a +  \)лрооЬ2и 2_ 6 0

mb 
m

РооЛЬ2

a Mh
We

U
bwe

(5.31)

Here, r is the dimensionless radius of gyration of the section about the reference 
point P  with r 2 > x 2\ a  is the ratio of uncoupled plunge and pitch frequencies; д is 
the mass-ratio parameter reflecting the relative importance of the model mass to the 
mass of the air affected by the model; and V  is the dimensionless freestream speed 
of the air, sometimes called the “reduced velocity.” As a result, the equations then 
simplify to

' n 2 -L nP +  V?

XhP2

xep 2 +  I

r 2P2 +  W -  f M  +  V

h
h 0

в 0
(5.32)

For a nontrivial solution to exist, the determinant of the coefficient matrix must 
be set equal to zero. There are typically two complex conjugate pairs of roots—for 
example

P\ =  - j j -  =  ±*'£2i) 

P2 = ^  =  j j ( F 2 ± i n  2)

(5.33)

A more convenient way to present these roots is to multiply them by the reduced 
velocity V, yielding

b , 4 U Г, , .£2i
VP i =  —(r, ±in,)—  = — ± , — 

U b(Oe (Oe My

b , 4 u  r 2 , . n 2 Vpi = —(г2 ±  (П2)—— = — ± 1  —
U bwy we we

(5.34)

This way, they are now tied to a specified system parameter w„ instead of the varying 
speed U.

For a given configuration and altitude, we must look at the behavior of the 
complex roots as functions of V and find the smallest value of V to give divergent
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Figure 5.3. Plot of the modal frequency versus 
К for a =  -1 /5 ,  e =  -1 /1 0 , ц =  20, r2 =  6/25, 
and a = 2 / 5  (steady-flow theory)
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oscillations in accordance with Table 5.1. That value is Vf  =  UF/(bwe), where Up is 
the flutter speed.

We may find the divergence speed by setting p  =  0 in Eq. (5.32), which leads to 
setting the coefficient of 9 in the 9 equation equal to zero and solving the resulting 
expression for V. This value is the dimensionless divergence speed Vo, given by

This is the same answer that we would obtain with analyses similar to those presented 
in Chapter 4.

For looking at flutter, we consider a specific configuration defined by a =  —1/5, 
e =  —1/10, ц  — 20, r 2 =  6/25, and a  =  2/5. The divergence speed for this configu­
ration is Vo =  2.828 (or Up — 2.828bcoy). Plots of the imaginary and real parts of 
the roots versus V  are shown in Figs. 5.3 and 5.4, respectively. The negative of Г is 
the modal damping and fi is the modal frequency. We consider first the imaginary 
parts, fi, as shown in Fig. 5.3. When V =  0, we expect the two dimensionless fre­
quencies to be near unity and о  for pitching and plunging oscillations, respectively. 
Even at V — 0, these modes are lightly coupled because of the nonzero off-diagonal 
terms proportional to xg in the mass matrix. As V  increases, the frequencies start to

(5.35)

Г
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0.4 Figure 5.4. Plot of the modal damping 
versus V for a =  —1/5, e =  —1/10, fi =  

U 20, r2 =  6/25, and a  =  2/5 (steady-flow
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approach one another, and their respective mode shapes exhibit increasing coupling 
between plunge and pitch. Flutter occurs when the two modal frequencies coalesce, 
at which point the roots become complex conjugate pairs. At this condition, both 
modes are highly coupled pitch-plunge oscillations. The dimensionless flutter speed 
is Vf  =  Up/(ba)e) =  1.843 and the flutter frequency is Slp/шв =  0.5568. The real 
parts, Г, are shown in Fig. 5.4 and remain zero until flutter occurs. When flutter 
occurs, the real part of one of the roots is positive and the other is negative.

Comparing results from this analysis with experimental data, we find that a few 
elements of realism are at least qualitatively captured. For example, the analysis 
predicts that flutter occurs at a value of V  =  Vf < Vo, which is correct for the 
specified configuration. Furthermore, it shows a coalescence of the pitching and 
plunging frequencies as V  approaches Vf , which is not only correct for the specified 
configuration but also is frequently observed in connection with flutter analysis. 
However, the previous analysis is deficient in its ability to accurately predict flutter 
speed. Moreover, the damping of all modes below the flutter speed is predicted to 
be zero, which is known to be incorrect. Finally, the steady-flow theory exhibits a 
coalescence characterized by the two roots being exactly equal to one another at the 
point of flutter. This condition is not met at all in data obtained from experiments 
and flight testing.

These deficiencies in predictive capability stem from deficiencies in the aero­
dynamic theory. The steady-flow aerodynamic theory of Chapter 4 was used. Al­
though this aerodynamic theory has obvious deficiencies (e.g., linearity and two- 
dimensionality), a most significant deficiency concerning flutter analysis is that it 
neglects unsteady effects. To obtain an accurate prediction of flutter speed, it is 
necessary to include unsteadiness in the aerodynamic theory; this demands a more 
sophisticated aerodynamic theory.

Unfortunately, development of unsteady-aerodynamic theories is no small un­
dertaking. Unsteady-aerodynamic theories can be developed most simply when sim­
ple harmonic motion is assumed a priori. Although such limited theories cannot be 
used in the p  method of flutter analysis described in Section 5.1, they can be used 
in classical flutter analysis, described in the next section. As will be shown, classi­
cal flutter analysis can predict the flutter speed and flutter frequency, but it cannot 
predict values of modal damping and frequency away from the flutter condition. To 
obtain a reasonable sense of modal damping and frequencies at points other than 
the flutter condition, two approximate schemes are discussed in Section 5.4.

If these approximations turn out to be inadequate for predicting modal damping 
and frequencies, we have no choice but to carry out a flutter analysis that does 
not assume simple harmonic motion, which in turn requires a still more powerful 
aerodynamic theory. One such approach that fits easily into the framework of Sec­
tion 5.1 is the finite-state theory of Peters et al. (1995). Such a theory not only 
facilitates the calculation of subcritical eigenvalues; because it is a time-domain 
model, it also can be used in control design.

Hence, in the following sections, we first look at classical flutter analysis and 
the approximate techniques associated therewith and then turn to a more detailed
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discussion of unsteady aerodynamics, including one theory that assumes simple 
harmonic motion (i.e., the Theodorsen theory) and one that does not (i.e., the Peters 
finite-state theory).

5.3 Classical Flutter Analysis

Until at least the late 1970s, the aircraft industry performed most lifting-surface 
flutter analyses based on what is commonly called “classical flutter analysis” based 
on the flutter determinant. The objective of such an analysis is to determine the flight 
conditions that correspond to the flutter boundary. It was previously noted that the 
flutter boundary corresponds to conditions for which one of the modes of motion 
has a simple harmonic time dependency. Because this is considered to be a stability 
boundary, it is implied that all modes of motion are convergent (i.e., stable) for less 
critical flight conditions (i.e., lower airspeed). Moreover, all modes other than the 
critical one are convergent at the flutter boundary.

The method of analysis is not based on solving the generalized equations of 
motion as described in Section 5.1. Rather, it is presumed that the solution involves 
simple harmonic motion. With such a solution specified, the equations of motion 
are then solved for the flight condition(s) that yields such a solution. Whereas in 
the p  method we determine the eigenvalues for a set flight condition—the real parts 
of which provide the modal damping—it is apparent that classical flutter analysis 
cannot provide the modal damping for an arbitrary flight condition. Thus, it cannot 
provide any definitive measure of flutter stability other than the location of the 
stability boundary. Although this is the primary weakness of such a method, its 
primary strength is that it needs only the unsteady airloads for simple harmonic 
motion of the surface, which for a given level of accuracy are derived more easily 
than those for arbitrary motion.

To illustrate classical flutter analysis, it is necessary to consider an appropriate 
representation of unsteady airloads for simple harmonic motion of a lifting surface. 
Because these oscillatory motions are relatively small in amplitude, it is sufficient 
to use a linear-aerodynamic theory for the computation of these loads. These aero­
dynamic theories usually are based on linear potential-flow theory for thin airfoils, 
which presumes that the motion and thickness of the wing structure create a small 
disturbance in the flow field and that perturbations in the flow velocity are small rela­
tive to the freestream speed. For purposes of demonstration, it suffices to reconsider 
the typical section of a two-dimensional lifting surface that is experiencing simulta­
neous translational and rotational motions, as illustrated in Fig. 5.2. The motion is 
simple harmonic; thus, h and 9 are represented as

h(t)  =  /гехр(/ cot)
_  (5.36)

0 (t) = 6  exp(icot)

where w is the frequency of the motion. Although the h and в motions are of the 
same frequency, they are not necessarily in phase. This can be taken into account
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mathematically by representing the amplitude в as a real number and h as a complex 
number. Because a linear aerodynamic theory is to be used, the resulting lift, L, and 
the pitching moment about P,  denoted by M, where

M =  M ^ + b ( l  +  a )  L (5.37)

also are simple harmonic with frequency to, so that

IXt) — Lexp(itot)  

M(t )  — Mexp( iwt )
(5.38)

The amplitudes of these airloads can be computed as complex linear functions of 
the amplitudes of motion as

L =  — ярооЬ3<у2 th{k, Moc) t  +  U{k,  Mx )e 
b

M  =  npoob^a?
h — 

mh(k, Moo)- +  тн(к, M00)в 
b

(5.39)

Here, the freestream air density is represented as and the four complex func­
tions contained in the square brackets represent the dimensionless aerodynamic 
coefficients for the lift and moment resulting from plunging and pitching. These 
coefficients in general, are, functions of the two parameters к and M^, where

к =  —  (reduced frequency)

u  ( 5 '4 0 )Moo =  —  (freestream Mach number)
Coo

As in the case of steady airloads, compressibility effects are reflected here by the 
dependence of the coefficients on M». The reduced frequency к is unique to unsteady 
flows. This dimensionless frequency parameter is a measure of the unsteadiness of 
the flow and normally has a value between zero and unity for conventional flight 
vehicles. Also note that for any specified values of к and M», each coefficient can be 
written as a complex number. As in the case of h relative to в,  the fact that lift and 
pitching moment are complex quantities reflects their phase relationships relative 
to the pitch angle (where we can regard в as a real number, for convenience). The 
speed at which flutter occurs corresponds to specific values of к and М» and must 
be found by iteration. Examples of how this process can be carried out for one- and 
two-degree-of-freedom systems are given in the following subsections.

5.3.1 One-Degree-of-Freedom Flutter

To illustrate the application of classical flutter analysis, a simple configuration is 
treated first. This example is a one-degree-of-freedom aeroelastic system consisting 
of a rigid two-dimensional wing that is permitted to rotate in pitch about a specified
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Figure 5.5. Schematic of the airfoil of a two-dimensional wing that is spring-restrained in pitch

reference point. This is a special case of the typical-section configuration shown in 
Fig. 5.2 for which the plunge degree of freedom is equal to zero, as depicted in 
Fig. 5.5. The system equations of motion reduce to one equation that can be written

To be consistent with classical flutter analysis, the motion of the system is pre­
sumed to be simple harmonic as

The aerodynamic pitching moment, M,  in the equation of motion is in response to 
this simple harmonic pitching displacement. As previously discussed, this airload can 
be described by

Substituting these simple harmonic functions into the equation of motion yields an 
algebraic relationship between the coefficients of 0 as

and rearranging the algebraic relationship, we obtain the final equation to be solved 
for the flight condition at the flutter boundary as

Ip9 +  k$0 =  M (5.41)

0 = 6  exp (icot) (5.42)

M  =  Mexp(i(ot) (5.43)

where

M  =  np00b4w2my{k, Moo)6 (5.44)

h  -  (o2IP =  л р ооЬ4(02тв(к, M^)  

Introducing the natural frequency of the system at zero airspeed

(5.45)

(5.46)

(5.47!
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To solve this equation, it is presumed that the configuration parameters Ip, щ ,  and b 
are known. The unknown parameters that describe the motion and flight condition 
are со, Poo, k, and Moo• These four unknowns must be determined from the single 
algebraic equation, Eq. (5.47). Because the aerodynamic coefficient, me{k, Moo), is 
complex, it can be written as

As a consequence, both the real and imaginary parts of the algebraic relationship 
must be zero, thus providing two real equations to determine the four unknowns. 
Therefore, two of the unknown parameters should be specified. A fixed altitude is 
chosen that specifies the freestream atmospheric density, Poo- The second parameter 
to be fixed is the Mach number, which can be given a temporary value of zero. This, 
of course, implies that the flow is incompressible and the aerodynamic-moment 
coefficient is then only a function of the reduced frequency. The governing algebraic 
equation now can be written as

Equating the imaginary part of the left-hand side to zero gives a relationship that 
can be solved for the reduced frequency, kp, at the flutter boundary; that is

With kp known, Щпц(кр,  0)] can be numerically evaluated. Equating the real part 
of the left-hand side to zero now enables the frequency, сор, to be determined from

Now that kp and wp  have been determined, it is possible to compute the flutter speed

The flutter speed determined by the previous procedure corresponds to the 
originally specified altitude and is based on an incompressible representation of 
the airloads. After this speed has been determined, the speed of sound, c00, at the 
specified altitude can be used to find the flutter Mach number as

If this flutter Mach number is sufficiently small to justify the use of incompressible 
aerodynamic coefficients, then the altitude-speed combination obtained is a point 
on the flutter boundary. If the flutter Mach number is too high to validate the in­
compressible approximation, then the entire procedure should be repeated using 
aerodynamic coefficients that are based on the initially computed flutter Mach num­
ber. Using the standard atmospheric model, which relates density and the speed of 
sound, this iterative scheme converges to a flight condition on the flutter boundary.

me{k, Moo) =  Щгпв(к, Mx,)] +  i%[me(k, Afc)] (5.48)

1 - © 2 +  э*[/я»(*’о)] +  »'ЭИ ( * .  °)] =  o (5-49)

3 [me{kF, 0 )] =  0 (5.50)

л р о о ^ Щ т в ^ к р , 0)]
Ip

(5.51)

(5.52)

(5.53)
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5 .3 .2 Two-Degree-of-Freedom Flutter

The analysis of multi-degree-of-freedom systems for determination of the flutter 
boundary can be demonstrated adequately by the simple two-degree-of-freedom 
configuration in Fig. 5.2. The equations of motion, already derived as Eqs. (5.26), 
are repeated here as follows:

m (h +  bxsd) +  khh =  — L 

IpO +  mbxeh +  кдв =  M

where, as before

M =  M i + b G +o)

(5.54)

(5.55)

The next step in classical flutter analysis is to presume that the motion is simple 
harmonic as represented by

h =  hexp(icot)

9 =  9 exp(iwt)

The corresponding lift and moment can be written as

L =  Lexp(icot)

M =  Mexp(icot)

(5.56)

(5.57)

Substituting these time-dependent functions into the equations of motion, we obtain 
a pair of algebraic equations for the amplitudes of h and 9 in the form

-wlmh — о/тЬхнв +  mw\h  =  — L

col mbxeh — со21рв +  I pwf,9 =  MТа .
(5.58)

where we recall that

L  =  —npoob^w2 4  (k, Moo) T +  Zn (к, Moo) 0 
b

M  =  npootfw2 mh (к, Moo) г  +  m„ (k, Mx ) i 
b

(5.59)

Substituting these lift and moment amplitudes into Eqs. (5.58) and then rearranging, 
we obtain a pair of homogeneous, linear, algebraic equations for h and 9, given by

m

ЛРооЬ2 

mxg
_TtPoob2

+ mh (k, Moo)

+  i-h (k, Moo) 

b 1 Л Р о о Ь 4

+
h i Г mxg

[yrpoob2 

&

+  (-в (к , Moo) 9 =  0

+  me (к, Moo) } 0 =  0

(5.60)
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The coefficients in these equations that involve the inertia terms are symbolically 
simplified by defining the dimensionless parameters used previously; namely

m
t1 = ЛрооЬ2

(mass ratio)

Ip
(5.61)

' — - (mass radius of gyration about P) 
mb1

Using these parameters allows us to rewrite the previous two homogeneous equa­
tions in a simpler way:

1 ( - ) 2 v w /
+  } — +  (fJ-Хц +  в — О

{цхв + m h) -  +  
b V со /

(5.62)

+  тн \ в  =  0

The third step in the flutter analysis is to solve these algebraic equations for the 
flight condition(s) for which the presumed simple harmonic motion is valid. This 
result corresponds to the flutter boundary. If it is presumed that the configuration 
parameters m, e, a, Ip, сои, wH, and b are known, then the unknown quantities h, в, 
w, Poo, Mo©, and к describe the motion and flight condition. Because Eqs. (5.62) are 
linear and homogeneous in h/ b  and в,  the determinant of their coefficients must be 
zero for a nontrivial solution for the motion to exist. This condition can be written
as

n [ i - ° 2 ( f ) 2\  +  b

l+хв +  mh ixr

lixe +  ie 

2 [ l - ( ^ ) 2] + ^
=  0 (5.63)

The determinant in this relationship is called the “flutter determinant.” Note that 
the parameter a =  щ/со» was introduced so that a common term that is explicit in со 
is available—namely, we/w.  Thus, expansion of the determinant yields a quadratic 
polynomial in the unknown к =  (we/w)2.

To complete the solution for the flight condition at the flutter boundary, it 
must be recognized that four unknowns remain: wH/co, ц  =  тЦпр ^Ь1), М^,  and 
к =  Ьш/ U. The one equation available for their solution is the second-degree poly­
nomial characteristic equation from setting the determinant equal to zero. However, 
because the aerodynamic coefficients are complex quantities, this complex equation 
represents two real equations, wherein both the real and imaginary parts must be 
identically zero for a solution to be obtained. This means that two of the four un­
knowns must be specified. A procedure to solve for and map the flutter boundary is 
outlined as follows:

1. Specify an altitude, which fixes the parameter д.
2. Specify an initial guess for of, say, zero.
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3. Recalling that setting the flutter determinant equal to zero yields a quadratic 
equation in A, use a root-finding application1 to find the value of к at which the 
imaginary part of one of the two roots for A. vanishes, which is kf.  This can be 
carried out easily with computerized symbolic manipulation software such as 
Mathematica™ or Maple™

4. Set сов /cop =  у/MJcf) using the root for which A. (kf)  is real.
5. Determine Up =  bcop/kp and M,^  =  Uf/Coo.
6 . Repeat steps 3-5 with the value of M00f obtained in step 5 until converged values 

are obtained for MooF,kp,  and Up for flutter at a given fi.
7. Repeat the entire procedure for various values of д (i.e., an indication of the 

altitude for a given aircraft) to determine the flutter boundary in terms of, say, 
altitude versus kp, and Up.

5.4 Engineering Solutions for Flutter

It was noted in the preceding section that the presumption of simple harmonic 
motion in classical flutter analysis has both advantages and disadvantages. The prime 
argument for specification of simple harmonic time dependency is, of course, its 
correspondence to the stability boundary. Identification of the flight conditions along 
this boundary requires the execution of a tedious, iterative process such as the one 
outlined in Section 5.3. This type of solution can be attributed to Theodorsen (1934), 
who presented the first comprehensive flutter analysis with his development of the 
unsteady airloads on a two-dimensional wing in incompressible potential flow.

Although unsteady-aerodynamics analyses for simple harmonic motion are not 
simple to formulate and execute, they are far more tractable than those for oscillatory 
motions with varying amplitude. Since the work of Theodorsen, numerous unsteady- 
aerodynamic formulations have been developed for simple harmonic motion of 
lifting surfaces. These techniques have proven to be adequate for compressible flows 
in both the subsonic and supersonic regimes. They also have been developed for 
three-dimensional surfaces and, in some cases, with surface-to-surface interaction. 
This availability of relatively accurate unsteady-aerodynamic theories for simple 
harmonic motion was the stimulus for further development of flutter analyses beyond 
that of the classical flutter analysis described in Section 5.3.

1 If one does not have ready access to a root-finding application, this step may be replaced by the 
following four steps:
(a) Specify a set of trial к values—say, from 0.001 to 1.0.
(b) For each value of к (and the specified value of Mx ), calculate the functions Си, £д,ти, and m#.
(c) Solve the flutter determinant, which is a quadratic equation with complex coefficients, for the 

values of X = (щ  /ш)2 that correspond to each of the selected values of k. Note that these 
roots are complex in general, the real part an approximation of (coy/w)2 and the imaginary part 
related to the damping of the mode.

(d) Interpolate to find the value of к at which the imaginary part of one of the roots becomes zero. 
This can be done approximately by plotting the imaginary parts of both roots versus k, so that 
the value of к at which one of the imaginary parts crosses the zero axis can be determined. This 
value of fcis an approximation of kp, making the value of X real when к =  kf.
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There are two other important considerations of practicing engineers. The first 
is to obtain an understanding of the margin of stability at flight conditions in the 
vicinity of the flutter boundary. The second—and possibly the more important—is 
to obtain an understanding of the physical mechanism that causes the instability. 
With this information, engineers can propose design variations that may alleviate 
or even eliminate the instability. When a suitable unsteady-aerodynamic theory is 
available, the p  method can address these considerations. In this section, we examine 
alternative ways that engineers have addressed these problems when unsteady- 
aerodynamic theories that assume simple harmonic motion must be used.

5.4.1 The к  Method

Subsequent to Theodorsen’s analysis of the flutter problem, numerous schemes 
were devised to extract the roots of the “flutter determinant” and thereby identify 
the stability boundary. Scanlan and Rosenbaum (1951) presented a brief overview 
of these techniques as they were offered during the 1940s. It was fairly common 
to include in the flutter analysis a parameter that simulated the effect of structural 
damping. Observations at that time indicated that the energy removed per cycle 
during a simple harmonic oscillation was nearly proportional to the square of the 
amplitude but independent of the frequency. This behavior can be characterized by a 
damping force that is proportional to the displacement but in phase with the velocity.

To incorporate this form of structural damping into the analysis of Section 5.3.2, 
Eqs. (5.54) can be written as

(5.64)

(5.65)

m (h +  Ьхув) +  k h h =  - L  +  Dh 

1рв +  mbxgh +  кев =  M  +  De 

where the dissipative structural damping terms are

Dh — Dh exp(icot)

= —ighmwlh exp(itot)

De =  Dg exp(iwt)

-  - ige lpcold exp(icot)

Proceeding as before, Eqs. (5.62) become

1 -  ( ~ )  (1  +  * £ * ) j  +  ?-h } ^  +  (m *o  +  to)0  =  0

J J  ̂ (5.66)

)  (1 + i g e )\  (O /
(цхв +  mh) ^  +  I fir2 1 +  ПЦ \ в =  0

The damping coefficients gh and go have representative values from 0.01 to 0.05 
depending on the structural configuration. Most early analysts who incorporated this 
type of structural damping model into their flutter analyses specified the coefficient 
values a priori with the intention of improving the accuracy of their results.
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Scanlan and Rosenbaum (1948) suggested that the damping coefficients be 
treated as unknown together with со. In this instance, the subscripts on g can be 
removed. Writing a  =  ojh/шо as before, and introducing

Z = № - ) \ l  +  ig) (5.67)
V со /

we obtain the flutter determinant as
M ( l - ^ Z )  + 4  « ,  +  („ =() (5 68)

fjLXo +  mh [xr2 (1 -  Z) + m9

which is a quadratic equation in Z. The two unknowns of this quadratic equation are 
complex, denoted by

Zi,2 = ( — ) (1+  igi.2) (5.69)
\<Wl,2 /

The computational strategy for solving Eq. (5.68) proceeds in a manner similar to 
the one outlined for Eq. (5.63). The primary difference is that the numerical results 
consist of two pairs of real numbers, (u>\, g \) and (a>2, *2), which can be plotted versus 
airspeed U or a suitably normalized value such as U/(bwe) or “reduced velocity” 1/k.

Plots of the damping coefficients g\ and gi versus airspeed can indicate the 
margin of stability at conditions near the flutter boundary, where gi or g2 is equal to 
zero. These plots proved to be of such significance that the technique of incorporating 
the unknown structural damping was initially called the “U-g method.” Recalling 
that the methodology presumes simple harmonic motion throughout, the numerical 
values of gi and g2 that are obtained for each к can be interpreted only as the required 
damping coefficients (of the specified form) to achieve simple harmonic motion at 
frequencies w\ and « 2, respectively. The damping as modeled does not really exist; 
it was introduced as an artifice to produce the desired motion—truly an artificial 
structural damping.

The plots of frequency versus airspeed in conjunction with the damping plots 
can, in many cases, provide an indication of the physical mechanism that leads to the 
instability. The values of frequency along the U = 0 axis correspond to the coupled 
modes of the original structural dynamic system. As the airspeed increases, the 
individual behavior or interaction of these roots can indicate the transfer of energy 
from one mode to another. Such observations could suggest a way to delay the onset 
of the instability. To confirm identification of the modes of motion for any specified 
reduced frequency, it is only necessary to substitute the corresponding eigenvalues, 
Wi and gi, into the homogeneous equations of motion to compute the associated 
eigenvector (h/b, в). Because this is a complex number, it can provide the relative 
magnitude and phase of the original deflections h and в.

5.4.2 The p -k  Method

The к method is still popular in industry largely because of its speed. Although it 
provides significant advantages to the practicing aeroelastician, it is a mathematically
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improper formulation. The impropriety of imposing simple harmonic motion with 
the introduction of artificial damping precipitated many heated discussions through­
out the industry. It has been argued that for conditions other than the g — 0 case, 
the frequency and damping characteristics do not correctly represent the system 
behavior. As a result, design changes that are made based on these characteristics 
can lead to expensive and potentially dangerous results.

In 1971, Hassig presented definitive numerical results that clearly indicated that 
the к method of flutter analysis can exhibit an improper coupling among the modes 
of motion. His presentation utilized a simple form of unsteady aerodynamics in a 
к method analysis, and then he compared the results with those from a p method 
analysis. Recall that the p  method presented in Section 5.1 is already established 
as the most accurate solution. Here, we show how both к and p-k methods relate 
to it.

In the p  method, the general solution to the homogeneous modal equations of 
motion given by Eqs. (5.7) can be written in terms of a dimensionless eigenvalue 
parameter p — bv/U,  where

Substitution of this expression into Eqs. (5.7) yields n +  N  linear, homogeneous 
equations for the n f,s and the N Xs given as Eqs. (5.11). After eliminating the 
As using the second of Eqs. (5.11), we may rewrite the first of those equations 
symbolically as

where [М.] and ['аЛ] are diagonal matrices with elements M\, M2, . . . ,  Mn and 
w\ , a>\,. . . ,  w2n, respectively; n is the number of modes; and the unsteady aerody­
namics operator matrix [_4(/?)] can be expressed in terms of the other matrices in 
Eqs. (5.11)—namely, in terms of [a], [6 ], [c], [d\, [A], and [£]. The complex matrix 
[A{p)] is made up of so-called aerodynamic-influence coefficients (AICs). These 
coefficients are functions of p  and possibly of the Mach number, depending on the 
sophistication of the aerodynamic theory.

If the Xs are actually eliminated, then the problem, in general, cannot be ex­
pressed as a standard eigenvalue problem. This is not a serious obstacle, however, 
because we can always solve Eqs. (5.11) as a standard eigenvalue problem. The 
purpose here for eliminating the A.s is only to provide a convenient segue into the 
к and p-k methods and show explicitly the differences among the three methods. 
The important thing to note is not the procedure used to obtain Eq. (5.71); rather, 
it is the form of this equation that is most important at this stage. The coefficients 
A(p)  frequently can be determined or identified in other ways. This equation is 
the basis for the p method in one of its usual forms. For a nontrivial solution of 
the generalized coordinate amplitudes, the determinant of the coefficient matrix in

& ( 0  = £,-exp(v0 (5.70)

p 2Гщ  + Тп['Щ['ш2'] -  Poo[A(p)\ {£} = 0 (5.71)
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Eq. (5.71) must be zero, so that

Р2[ Щ  + ^ [ Щ [ с о 2-] -  Рос[Л(р)] =  о (5.72)

For a given speed and altitude, this flutter determinant can be solved for p. The 
result typically yields a set of complex conjugate pairs and real roots, the former 
represented as

where к is the reduced frequency of Eqs. (5.40), у is the rate of decay, given by

and where am and am+\ represent the amplitudes of successive cycles.
Application of the A: method to this modal representation can be readily achieved 

by letting p  =  i к in the preceding formulation. This yields a flutter determinant 
comparable to Eq. (5.72) as

At selected values of reduced frequency and altitude, Eq. (5.75) can be solved for 
the complex roots of b2/ U 2, denoted by Xr +  ikj. These roots may be interpreted as

where g is the structural damping required to sustain simple harmonic motion. This 
structural-damping parameter can be related to the rate of decay parameter of the 
p  method as

This is a good approximation for small damping as in the case of flight vehicles. The 
к method is posed easily as a standard eigenvalue problem, which is clear from 
Eq. (5.75). This alone gives it a significant advantage over the classical flutter- 
determinant method outlined in Section 5.3.

Another important aspect in making any correlation between the p  and к meth­
ods is the matter of adequate inclusion of compressibility effects in the unsteady- 
aerodynamic terms. In the p  method, the flutter determinant is solved for selected 
combinations of speed and altitude. Consequently, the appropriate Mach number 
can be used for the aerodynamic terms at the outset of the computation. In contrast, 
the к method preselects combinations of reduced frequency and altitude. As a result 
of then computing the airspeed as an unknown, Xr, the Mach number cannot be 
accurately specified a priori. The result is that an iterative process similar to the one 
described in Section 5.3 must be conducted to ensure that compressibility effects are 
adequately incorporated in the к method.

p  = y k ± i k (5.73)

(5.74)

■ ftM ] +  ^ г [ 'М ]Г а Л ]  -  p M ik ) }  =  0 (5.75)

(5.76)

g =  2 y (5.77)
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Figure 5.6. Comparison between p  and 
к methods of flutter analysis for a twin- 
jet transport airplane (from Hassig [1971] 
Fig. 1, used by permission)

V-K EAS

Hassig applied the p  and к methods of flutter analysis to a realistic aircraft 
configuration. By incorporating the same unsteady-aerodynamic representation in 
each analysis, he was able to make a valid comparison of the results. His observations 
are typified by Fig. 5.6 (which is his Fig. 1). Note from this figure that not only is 
the modal coupling wrongly predicted by the к method but also, more important, 
the wrong mode is predicted to become unstable. The only consistently valid result 
between the two analyses is that of the flutter speed for which g =  у  =  0. Despite the 
inconsistent modal coupling exhibited by the к method, it permits the use of simple 
harmonic modeling of the unsteady aerodynamic terms. As previously mentioned, 
the accuracy of simple harmonic airload predictions exceeds the accuracy of airload 
predictions for transient motions. It is for this reason that a compromise between 
the two models was suggested.

The p-k method is such a compromise. It is based on conducting a p-method 
type of analysis with the restriction that the unsteady-aerodynamics matrix is for 
simple harmonic motion. Using an arbitrary value of к in computing [A{ik)], we find 
the flutter determinant to be

P2[M\ +  j p  [М]["21 -  Poo[A(ik)] = 0 (5.78)

Given a set of initial guesses for к—say, ко =  bcoi/U for the ith root—this equation 
can be solved for p. Moreover, it can be posed as a standard eigenvalue problem 
for p  because p  appears only in a simple way. The typical result is a set of complex
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Figure 5.7. Comparison between p  and p-k  
methods of flutter analysis for a twin-jet trans­
port airplane (from Hassig [1971] Fig. 2, used 
by permission)

conjugate pairs of roots and possibly some real roots. Selecting one of the complex 
roots and denoting the initial solution as

*1 =  1Э Д 1  Y\ — (5 -79)

we can compute [/t(//ci)]. Using this new matrix in Eq. (5.78) leads to another set of 
ps, so that

k2 = |Э Д | У2 — ~~jo~ (5-8°)

Continual updating of the aerodynamic matrix in this way provides an iterative 
scheme that is convergent for each of the roots, negative у  being a measure of the 
modal damping. The earliest presentation of this technique was offered by Irwin and 
Guyett in 1965. For low-order problems, it is straightforward to use a root-finding 
procedure in which the determinant obtained from setting к — |3(p)| is required to 
vanish.

Hassig applied the p-k method to the configuration in Fig. 5.6. As illustrated 
by Fig. 5.7 (which is his Fig. 2), the p-k method appears to yield approximately the 
same result as the p  method. This, of course, simply validates the convergence of the 
scheme. Its greatest advantage is that it can utilize airloads that have been formulated 
for simple harmonic motion. Another comparison offered by Hassig was between 
the widely used к method and the p-k method for a horizontal stabilizer/elevator 
configuration. This example of a strongly coupled system provided the results given
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Figure 5.8. Comparison between p-k  and к 
methods of flutter analysis for a horizontal 
stabilizer with elevator (from Hassig [1971] 
Fig. 3, used by permission)

V-K EAS

in Fig. 5.8 (which is his Fig. 3). Here again, as in the к versus p  comparison in 
Fig. 5.6, widely differing conclusions can be drawn regarding the modal coupling. In 
addition to the easily interpreted frequency and damping plots versus airspeed for 
strongly coupled systems, a second advantage is offered by the p-k method regarding 
computational effort. The к method requires numerous computer runs at constant 
density to ensure matching of the Mach number with airspeed and altitude. The p-k 
method does not have this requirement.

The accuracy of the p-k method depends on the level of damping in any particular 
mode. It is left as an exercise for readers (see Problem 14) to show that the p-k method 
damping is only a good approximation for the damping in lightly damped modes. 
Fortunately, these are the modes about which we care the most. Methods presently 
used in industry are described by Goodman (2001). Currently, most flutter analyses 
in the aircraft industry are performed using к and/or p-k methods. Although the к 
method remains popular because of its speed, when accuracy is important and the p  
method is not feasible, industry users seem to favor the p-k method, especially those 
who run the NASTRAN™ aeroelasticity package.

5.5 Unsteady Aerodynamics

In Section 5.2, flutter analysis was conducted using an aerodynamic theory for steady 
flow. The lift and pitching moment used were functions only of the instantaneous
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pitch angle, 9. On deeper investigation, however, it is easy to see that the angle of 
attack is not simply equal to 9. For example, recalling that the airfoil reference point 
is plunging with velocity h, at least for small angles, we can justify modifying the 
angle of attack to include the effect of plunge; viz.

« =  0 + ^  (5-81)

where this follows from an argument similar to the one used in Section 4.2.5 regarding 
the influence of aircraft roll on the wing’s angle of attack. However, we must be 
cautious about such ad hoc reasoning because there may be other effects of the same 
order that we are overlooking.

Indeed, there are other effects of equal importance that must be included. Fung 
(1955) suggested an easy experiment to demonstrate that things are not so simple as 
indicated by Eq. (5.81): Attempt to rapidly move a stick in a straight line through 
water and notice the results. In the wake of the stick, there is a vortex pattern, with 
vortices being shed alternately from each side of the stick. This shedding of vortices 
induces a periodic force perpendicular to the stick’s line of motion, causing the stick 
to tend to wobble back and forth in your hand. A similar phenomenon happens 
with the motion of a lifting surface through a fluid and must be accounted for in 
unsteady-aerodynamic theories.

We can observe that lift and pitching moment consist of two parts from two 
physically different phenomena: noncirculatory and circulatory effects. Circulatory 
effects are generally more important for aircraft wings. Indeed, in steady flight, it 
is the circulatory lift that keeps the aircraft aloft. Vortices are an integral part of 
the process of generation of circulatory lift. Basically, there is a difference in the 
velocities on the upper and lower surfaces of an airfoil. Such a velocity profile can 
be represented as a constant velocity flow plus a vortex. In a dynamic situation, 
the strength of the vortex (i.e., the circulation) is changing with time, as are both 
the magnitude and direction of the relative wind vector because of airfoil motion. 
However, the circulatory forces of steady-flow theories do not include the effects of 
the vortices shed into the wake. Restricting our discussion to two dimensions and 
potential flow, we recall an implication of the Helmholtz theorem: The total vorticity 
will always vanish within any closed curve surrounding a particular set of fluid 
particles. Thus, if a clockwise vorticity develops about the airfoil, a counterclockwise 
vortex of the same strength must be shed into the flow. As it moves along, this shed 
vortex changes the flow field by inducing an unsteady flow back onto the airfoil. 
This behavior is a function of the strength of the shed vortex and its distance away 
from the airfoil. Thus, accounting for the effect of shed vorticity is, in general, a 
complex undertaking and would necessitate knowledge of each vortex shed in the 
flow. However, if we assume that the vortices shed in the flow move with the flow, 
then we can estimate the effect of these vortices.

Noncirculatory effects, also called apparent mass and inertia effects, are sec­
ondary in importance. They are generated when the wing has nonzero acceleration
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so that it must carry with it some of the surrounding air. That air has finite mass, 
which leads to inertial forces opposing its acceleration.

In summary, then, unsteady-aerodynamic theories need to account for at least 
three separate physical phenomena, as follows:

1. Because of the airfoil’s unsteady motion relative to the air, the relative wind 
vector is not fixed in space. This is only partly addressed by corrections such as 
in Eq. (5.81). The changing direction of the relative wind changes the effective 
angle of attack and thus changes the lift.

2. As Fung’s experiment shows, the airfoil motion disturbs the flow and causes a 
vortex to be shed at the trailing edge. The downwash from this vortex, in turn, 
changes the flow that impinges on the airfoil. This unsteady downwash changes 
the effective angle of attack and thus changes the lift.

3. The motion of the airfoil accelerates air particles near the airfoil surface, thus 
creating the need to account for the resulting inertial forces (although this 
“apparent-inertia” effect is less significant than that of the shed vorticity). The 
apparent-inertia effect does not change the angle of attack but it does, in general, 
affect both lift and pitching moment.

Additional phenomena that may affect flutter but which are beyond the scope of 
this text include three-dimensional effects, compressibility, airfoil thickness, flow 
separation, and stall.

In this section, we present two types of unsteady-aerodynamic theories, both of 
which are based on potential-flow theory and take into account the effects of shed 
vorticity, the motion of the airfoil relative to the air, and the apparent-mass effects. 
The simpler theory is appropriate for classical flutter analysis as well as for the к and 
p-k methods. The other is a finite-state theory cast in the time domain, appropriate 
for the eigenvalue analysis involved in the p  method as well as for the time-domain 
analysis required in control design.

5.5.1 Theodorsen’s Unsteady Thin-Airfoil Theory

Theodorsen (1934) derived a theory of unsteady aerodynamics for a thin (meaning 
a flat-plate) airfoil undergoing small, simple harmonic oscillations in incompressible 
flow. The derivation is based on linear potential-flow theory and is presented in 
detail along with mathematical subtleties in the textbook by Bisplinghoff, Ashley, 
and Halfman (1955). The lift contains both circulatory and noncirculatory terms, 
whereas the pitching moment about the quarter-chord is entirely noncirculatory. 
According to Theodorsen’s theory, the lift and pitching moment are given by

L = 2;гр00Ш>С(/с) h +  U0 +  b
(5.82)
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Im[C(/c)]
Re[C(£)]

Figure 5.9. Plot of the real and imaginary parts of C(k) for к varying from zero, where 
C (k) =  1, to unity

where the generalized forces are given in Eqs. (5.24). The function C(k) is a complex­
valued function of the reduced frequency k, given by

C{k) =
H ? \ k )

H ? \ k )  +  i H g \ k )
(5.83)

where Hn (k) are Hankel functions of the second kind, which can be expressed in 
terms of Bessel functions of the first and second kind, respectively, as

H ^(k)  =  Jn(k) -  iYn(k) (5.84)

The function C(k) = F(k) +  iG(k) is called Theodorsen’s function and is plotted 
in Figs. 5.9 and 5.10. Note that C(k) is real and equal to unity for the steady case

m .  G(k)

1 / к
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(i.e., к = 0). As к increases, we find that the imaginary part increases in magnitude 
whereas the real part decreases. As к tends to infinity, C(k) approaches 1/2. However, 
for practical situations, к rarely exceeds unity. Hence, the plot in Fig. 5.9 only extends 
to к =  1. The large к behavior is shown in Fig. 5.10. When any harmonic function 
is multiplied by C(k), its magnitude is reduced and a phase lag is introduced. An 
example of this phenomenon is given herein.

A few things are noteworthy concerning Eqs. (5.82). First, in Theodorsen’s 
theory, the lift-curve slope is equal to 2л. Thus, the first of the two terms in the 
lift is the circulatory lift without the effect of shed vortices multiplied by C{k). The 
multiplication by C(k) is a consequence of the theory having considered the effect 
of shed vorticity. The noncirculatory terms (i.e., the second term in the lift as well 
as the entire pitching-moment expression) depend on the acceleration and angular 
acceleration of the airfoil and are mostly apparent-mass/apparent-inertia terms. The 
circulatory lift is the more significant of the two terms in the lift. Note that the 
coefficient of h in the lift is the mass per unit length of the air contained in an 
infinitely long circular cylinder of radius b. This quantity reflects how much air is 
imparted an acceleration by motion of the airfoil.

For steady flow, the circulatory lift is linear in the angle of attack; however, 
for unsteady flow, there is no single angle of attack because the flow direction 
varies along the chordline as the result of the induced flow varying along the chord. 
However, just so we can discuss the concept for unsteady flow, it is helpful to 
introduce an effective angle of attack. For simple harmonic motion, it can be inferred 
from Theodorsen’s theory that an effective angle of attack is

As shown in Section 5.5.2 by comparison with the finite-state aerodynamic model 
introduced therein, a is the angle of attack measured at the three-quarter chord 
based on an averaged value of the induced flow over the chord. Recall that in the 
case of steady-flow aerodynamics of two-dimensional wings, the angle of attack is 
the pitch angle в. Here, however, a depends on в as well as on h, в, and k. Because 
of these additional terms and because of the behavior of C(/c), we expect changes 
in magnitude and phase between в and a. These carry over into changes in the 
magnitude and phase of the lift relative to that of 6 . Indeed, the function C(k) is 
sometimes called the lift-deficiency function because it reduces the magnitude of the 
unsteady lift relative to the steady lift. It also introduces an important phase shift 
between the peak values of pitching oscillations and corresponding oscillations in lift.

When we see the dots over h and в in the lift and pitching-moment expressions, 
it is tempting to think of them as time-domain equations. However, the presence of 
C(k) is nonsensical in a time-domain equation. Therefore, Theodorsen’s theory with 
the C(k) present must be recognized as valid only for simple harmonic motion.

Note that an approximation of Theodorsen’s theory in which C(k) is set equal to 
unit) is called a "quasi-steady" thin-airfoil theory. Such an  approximation has value 
only for cases in which L is res tric ted  to  lie very sm all. F or slow harmonic oscillations

(5.85)
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or slowly varying motion that is not harmonic, the quasi-steady theory may be used 
in the time domain.

As an example to show the decrease in magnitude and change of phase, consider 
that the dominant term in the lift is proportional to a. In the time domain, lift is real 
and so are a  and 0. However, when we regard 0 as harmonic; viz.

0 = 0  exp (icot) (5.86)

then we must realize that to recover the time-domain behavior, we need

0 =  M[0 exp(icot)] (5.87)

Similarly, we must recover the time-domain behavior of a using the relationship

a =  9i[C(/c)0 exp(/«/)] (5.88)

Now, assuming в = 1 so that in the time domain 0 =  cos (cot), we find that

a =  3i[C(fc)0 exp(iatf)]

= SK[C(fc)exp(/<yJ)]

= F(k) cos (cot) — G(k) sin(a>f) (5.89)

= [F2(k) +  G2(&)]j cos (cot — ф)

=  |C(/c)| cos (cot -  ф)

where

tan ( «  =  - Щ  (5.90)

Because |C(fc)| < 1 and ф(к) > 0, having the amplitude of 0 equal to unity implies 
that a  has an amplitude less than unity; having the peak of 0 at t =  0 implies a has its 
peak shifted to t =  ф/со. For example, when к =  1/3, С (к) =  0.649739 -  0.174712 i 
so that |C(fc)| =  0.672819, implying a magnitude reduction of nearly 33%, and ф =  
15.0506 degrees.

Theodorsen’s theory may be used in classical flutter analysis. There, the reduced 
frequency of flutter is not known a priori. We can find к at the flutter condition using 
the method described in Section 5.3. Theodorsen’s theory also may be used in the к 
and p-k methods, as described in Sections 5.4.1 and 5.4.2, respectively.

5.5.2 Finite-State Unsteady Thin-Airfoil Theory of Peters et al.

Although Theodorsen’s theory is an excellent choice for classical flutter analysis, 
there are situations in which an alternative approach is needed. First, we frequently 
need to calculate the modal damping in subcritical flight conditions. Second, there is 
a growing interest in the active control of flutter, and design of controllers requires 
that the system be represented in state-space form. To meet these requirements, 
we need to represent the actual aerodynamic loads (which are in the frequency
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relative wind 
velocity a tT

Figure 5.11. Schematic showing geometry of the zero-lift line, relative wind, and lift directions

domain in Theodorsen’s theory) in terms of time-domain differential equations. 
Finite-state theories approximate the actual infinite-state aerodynamic model to 
within engineering accuracy. One such approach is the finite-state, induced-flow 
theory for inviscid, incompressible flow of Peters et al. (1995).

Consider a typical section of a rigid, symmetric wing (see Fig. 5.2) and the 
additional vectorial directions defined in Fig. 5.11. To begin the presentation of this 
theory, we first relate the three sets of unit vectors, as follows:

1. A set fixed in the inertial frame, ii and 12, such that the air is flowing at velocity 
- W i

2. A set fixed in the wing, bi and 62 , with bj directed along the zero-lift line toward 
the leading edge and 62 perpendicular to b]

3. A set a, and a2 associated with the local relative wind vector at the three-quarter 
chord, such that a, is along the relative wind vector and a2 is perpendicular to it, 
in the assumed direction of the lift

The relationships among these unit vectors can be stated simply as

sin(0 )

and

bj cos(0 )
b2 —sin(#)

ai cos(a)
a2 sin(a)

—sin(a) 
cos(a)

•i
•
«2

V

(5.91)

(5.92)

and i3 = аз =  Ьз = bi x 62 .
Induced-flow theories approximate the effects of shed vortices based on changes 

they cause in the flow field near the airfoil. Thus, the velocity field near the airfoil 
consists of the freestream velocity plus an additional component to account for the
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induced flow. Although the induced flow varies throughout the flow field, we ap­
proximate its value near the airfoil as an average value along the chordline. Thus,

A-o is the average induced flow (perpendicular to the airfoil zero-lift line). Accord­
ing to classical thin-airfoil theory, we should calculate the angle of attack using the 
instantaneous relative wind-velocity vector as calculated at T. To represent the 
relative wind-velocity vector at T, we can write the relative wind vector (i.e., 
the velocity of the wing with respect to the air) as Wsi\ and set it equal to the 
inertial velocity of T minus the inertial air velocity; that is

whereas Ob3 is the inertial angular velocity of the wing. Carrying out the cross product 
in Eq. (5.96), we obtain

the local inertial velocity of the air is written approximately as —Ui\ — /.062, where

W ai =  v r  — ( — U i\ — A062)

= vt- +  Ui\ +  A0b2 

where \ j  is the inertial velocity of the three-quarter chord, given by

V y  =  V/> +  0 6 3  X  TPI

(5.93)

(5.94)

and Tpr is the position vector from P  to T. Fig. 5.2 shows that

b (5.95)

Thus,

(5.96)

The inertial velocity of the reference point P  is

v/< = - h i 2 (5.97)

(5.98)

so that the relative wind can be written as

(5.99)

Alternatively, we may write the relative wind in terms of its components along b| 
and 6 2 ; that is

Mil =  W cos(a)bi — W sin(a)b2 (5.100)

where a  is given by (see Fig. 5.11)
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Using Eq. (5.99), we find that

■ bi = Ucos(0 ) -  h sin(0 )

Wai • b2 = — U sin(0) -  hcos(0) +  b (a  -  ^ J 6 +  Xo
(5.102)

Assuming small angles, we now may show that

(H (5.103)
W =  U +  higher-order terms

According to this derivation, a is an effective angle of attack based on the relative 
wind vector at the three-quarter chord, which, in turn, is based on the average value 
of the induced flow ло over the wing chordline. Note that a is not equal to the pitch 
angle 0. Because of the motion of the wing and the induced flow field, the relative 
wind direction is not fixed in inertial space. Therefore, the effective angle of attack 
depends on the pitch rate, the plunge velocity, and the induced flow. Moreover, the .,-: 
lift is assumed to be perpendicular to the relative wind vector. This assumption is 
adequate for the calculation of lift and pitching moment, which are both first-order 
in the motion variables. However, sufficiently rapid plunge motion (e.g., as in the 
flapping wings of an insect) can result in a value of a  that is not small, and we 
would need to make “small but finite” angle assumptions to calculate the drag (or 
propulsive force equal to negative drag) that could be encountered in such situations.

The total lift and moment expressions including the noncirculatory forces are

Note the similarity between Eqs. (5.104) and (5.82). In particular, by studying the 
circulatory lift in both lift equations, we then can see the basis for identifying a, 
calculated as in the first of Eqs. (5.103) with the expression in Eq. (5.85).

The lift and pitching moment then are used to form the generalized forces from 
Eqs. (5.24) and, in turn, are used in the structural equations in Eqs. (5.26). Even so, 
these two equations are incomplete, having more than two unknowns. The induced- 
flow velocity Ло must be expressed in terms of the airfoil motion. The induced-flow 
theory of Peters et al. does that, representing the average induced-flow velocity Xo 
in terms of N  induced-flow states Ai Д 2, . . . ,  X^ as

where the bn are found by the least-squares method. The induced-flow dynamics 
then are derived from the assumption that the shed vortices stay in the plane of 
the airfoil and travel downstream with the same velocity as the flow. Introducing a

L =  ттрооЬ2 (h +  UO — bad) + lu p ^ U b  h +  U0 +  b l - —a ) d  — Xo
1

2
(5.104)

(5.105)
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column matrix {A} containing the values of kn, we can write the set of N  first-order 
ordinary differential equations governing {A.} as

[A] {A.} +  — {A.} =  {c} h +  U0 b ( — — ci ] 0 (5.106)

where the matrices [A\ and {c} can be derived for a user-defined number of induced- 
flow states. The expressions of the matrices used here are given for N  finite states as

[A] =  [D] +  {d}[b}r +  {c}{d}T +  l-{c}{b}T (5.107)

where

Dnm = 2̂  П =  m  + 1
= —2̂  n =  m — 1 (5.108)
= 0  n ф m ± 1

h — ( It"-1 (дг+п~1)! 1 , n d z N  °n — \ (лг-и-1)! ^
=  ( -1 )" -1  n =  N

dn =  |  n =  1 

= 0  n ф 1

and

(5.109)

(5.110)

c„ =  -  (5.111)n
The resulting aeroelastic model is in the time domain, in contrast to classical 

flutter analysis, which is in the frequency domain (see Section 5.3). Thus, it can be 
used for flutter analysis by the p  method, as well as in the design of control systems 
to alleviate flutter.

Results using the finite-state, induced-flow model (i.e., Eqs. 5.106 and 5.26 with 
generalized forces given by Eqs. 5.24 with lift and pitching moment given by Eqs. 
5.104) for the problem analyzed previously in Section 5.2 (recall that a =  —1/5, 
e = -1/10, /x = 20, r2 — 6/25, and о  = 2/5) are given here. These results are based 
on use of N  — 6  induced-flow states.2 The frequency and damping results are shown 
in Figs. 5.12 and 5.13, respectively. As before, a frequency coalescence is observed 
near the instability, but the flutter condition is marked by the crossing of the real 
part of one of the roots into positive territory. The flutter speed obtained is Vf =  
UF/{ba>e) =  2.165, and the flutter frequency is =  0.6545. Although this value
of the flutter speed is close to that observed previously using the simpler theory, the 
unsteady-aerodynamics theory produces complex roots for all V Ф 0 so that there is 
modal damping in all of the modes below the flutter speed. The equations contain 
damping terms proportional to the velocity that account for the initial increase in

2 It should be noted that a larger number of induced-flow states is not necessary. The use of too many 
may degrade the accuracy of the model because of ill-conditioning.
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Figure 5.12. Plot of the modal frequency versus U/(bcoe) for a =  —1/5, e =  —1/10, ц  = 2 0 , 
r 2 =  6/25, and a  =  2/5; solid lines: p  method, aerodynamics of Peters et al.; dashed lines: 
steady-flow aerodynamics

damping. At higher velocities, however, the destabilizing circulatory term (i.e., the 
nonsymmetric term in the stiffness matrix that also is present in the steady-flow 
theory) overcomes the damping caused by the unsteady terms, resulting in flutter.

It is left to readers as an exercise to show the equivalence of the theories of 
Peters et al. and Theodorsen (see Problem 16).

5.6 Flutter Prediction via Assumed Modes

As previously noted, in industry it is now typical to use the finite element method as a 
means to realistically represent aircraft structural dynamics. Although it is certainly

Г
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Figure 5.13. Plot of the modal damping versus U /(bw e) for a =  —1/5, e =  —1/10, ц  =  20, 
r 2 =  6/25, and a  =  2/5; solid lines: p  method, aerodynamics of Peters et al.; dashed lines: 
steady-flow aerodynamics
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possible to conduct full finite-element flutter analyses, flutter analysis based on a 
truncated set of the modes of the stucture is still helpful and relatively simple; for 
those reasons alone, it often is done. In this section, we show how such an analysis 
can be performed within the framework of the Ritz method, an explanation of which 
is in Section 3.5.

Consider an unswept wing mounted to a wind-tunnel wall that is modeled as a 
uniform cantilevered beam of length t.  For the structural model, we adopt the same 
notation used in Chapter 4. Thus, for a beam with bending rigidity EI and torsional 
rigidity GJ,  the strain energy becomes

U dy  (5.112)

To obtain the kinetic energy, we first consider the airfoil section shown in Fig. 
4.12. Denoting the mass per unit volume of the material by p and noting that the 
velocity of a typical point within the cross-sectional plane is

дв . ( d w  д в \ ,
,  =  ^ ' + Ы ~ х л Г  ( 5 ' ш )

where i and к are unit vectors in the x and z directions, respectively, we can write 
the kinetic energy as

Л L

d x d z d y  (5.114)

Straightforward evaluation of the cross-sectional integrals yields

1 f e \  ( d w \ 2 „  d w d e  l 2 2 / 3 6 I \ 2 
К  = -  / m l  —  ) + 2md --------- (-mb r I — )

2 Jo V 31 )  dt dt \ d t )
dy (5.115)

where m is the mass per unit length, d is the offset of the mass centroid from the 
elastic axis (i.e., positive when the mass centroid is toward the leading edge), b is the 
semi-chord, and hr is the cross-sectional mass radius of gyration about the elastic 
axis.

Finally, we need the virtual work of the aerodynamic forces, which can be written

8 W =  f  [L'Sw +  (M’ac +  eL’)Se]dy  (5.116)
Jo

where, as before, L  and M'ac are the distributed lift and pitching moment per unit 
length of the wing.

Due to long-standing conventions in the literature of unsteady aerodynamics, 
this notation is not compatible with what has been used so far in this chapter. Thus, 
we rewrite these three expressions (i.e., strain energy, kinetic energy, and virtual 
work) in terms of the notation of this chapter. In particular, we can show that the
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following replacements can be made for the notation used in Fig. 4.12:

d -> — bxe

G +°)
L'

K c

L' 

M\

Thus, the strain energy is unchanged from before. The kinetic energy becomes
2 n... ™ /™ \ 2"_ _ l  f  ( d w V  j dw de  , 2 /96» 

К =  -  I m l  —  ) - 2mbxe —— — + m b r  ( —
2 Jo \  9? /  dt dt \  31

dy (5.117)

and the virtual work becomes

S W  = JL'Sw +  M\ + Q  +  bL! S 6 ^ d y  (5.118)

A reasonable choice for the assumed modes is the set of uncoupled cantilevered-' 
beam, free-vibration modes for bending and torsion, such that

w(y> 0 = Z m № i y )
i=i
H,

(5.119)

/=1

where Л/и. and 7VW are the numbers of modes used to represent bending and torsion, 
respectively; and ф, are the generalized coordinates associated with bending and 
torsion, respectively; and Ф, and 0 , are the bending and torsion mode shapes, 
respectively. Here, 0, is given by

where

0 ,- = \ / 2 sin (yiy) 

л (i -  1 )
Yi

and, according to Eq. (3.258), Ф, is given as

Ф, = cosh(a,y) -  cos (a,}') — Д [sinh(o!) y) -  sin(o,/y)]

(5.120)

(5.121)

(5.122)

with ai and Д as given in Table 3.1.
The next step in the application of the Ritz method is to discretize spatially the 

expressions for strain energy, kinetic energy, and virtual work. Because of the ortho­
gonality of both the bending and torsion modes, the strain energy simplifies to
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Similarly, the kinetic energy is simplified considerably because of the ortho­
gonality of both the bending and torsion modes and can be written as

N„ Ne AL

к = — (22 $ +ь2г2 22 - ыхв 22 22 ъ
i=i j=ii=1

where

1 f e
k, =  j J  * » ,

(5.124)

(5.125)

Inertial coupling between bending and torsion motion is reflected by the term in­
volving Д ; , which is a fully populated matrix because the bending and torsion modes 
are not orthogonal to one another.

The virtual-work expression

___  Nw No

s w = ^ 2  Ew’Sr>‘ + Щ  
i=i i=i

(5.126)

can be used to identify the generalized forces. Thus

a Wi = f  Фi L' dy  
Jo (5.127)

dy

where expressions for L' and M\ can be found by taking expressions for L and Mi
4 4

in Eqs. (5.82) or (5.104) and replacing h with - w  and dots with partial derivatives 
with respect to time. This we carry out for illustrative purposes using Theodorsen’s 
theory, for which

d20 '
L' =  2ттрооиЬС(к)

M \  =  -Т Г Р ооЬ 3 3

dw ( i  \  del . . i f r ,"  d w i d2e \  
ш - - ^  +  ь { 2 - “) - ц \ + л р °°ь  { u J 7 - W ~ ba^ )

" 9 0  l d 2w  /1 a \  

dt  2 d t 2 +  \ 8  2 )
э2#"1
aT2

(5.128)

Substituting Eqs. (5.119) into Eqs. (5.128), we obtain expressions for the generalized 
forces that can be put easily into matrix form:

=  —Л Р ооЬ 2С 

-nPaobUt  

—npoobU2£

fl
Ф

[Д] ba[A]T

_ba[A] b2 (a2 +  i) [A]_

2 С(*)[Д] - b [ l  +  2 ( \ - a ) C ( k ) ] [ A ] T

2b ( i +  a) C(k)[A] b2 (1 -  a) [1 -  2 ( i +  a) C(k)] [A]

[0] -2C(k)[A]T

n

>

[0] - b (  1 +  2a)C(k)[A\

'

Ф
(5.129)
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where [A] denotes an identity matrix and [0] denotes a matrix of zeros. Because 
of limitations inherent in the derivation of Theodorsen’s theory, this expression for 
the generalized forces is valid only for simple harmonic motion. Note that the rect­
angular submatrices in this equation are also referred to as aerodynamic-influence 
coefficients (AICs).

All that now remains in the application of the Ritz method is to invoke La­
grange’s equations to obtain the generalized equations of motion, which can be 
written in matrix form as

ml
[Д] - b x e[A]r  

-bxe[A] Ь2г2[Д]
И +
\ф\

f f f A] [0]
[0]

V
• ^
L—' w

ф 3,
(5.130)

where elements of the diagonal matrices [' ZJ ] and f  71-] are given by

Bn =  (M )4 

T„ =  (Yit)2
(5.131)

The appearance of diagonal matrices [' S.] and [' Г-] in the stiffness matrix and the 
appearances of Д in the mass matrix and generalized forces are caused by the 
orthogonality of the chosen basis functions ©, and Ф,. Such a choice is not necessary 
but it simplifies the discretized equations.

Following the methodology of classical flutter analysis in Section 5.3, we

r)(t) =  rjexp(icot)
(5.132)

0 (?) = фех p(icot)

where w is the frequency of the simple harmonic motion. This leads to a flutter 
determinant that can be solved by following steps similar to those outlined in Sec­
tion 5.3, the only difference being that there are now more degrees of freedom if 
either Nw or Ns exceeds unity.

Let us consider the case in which Nw = Ne = 1. If we introduce dimensionless 
constants similar to those in Section 5.3, the equations of motion can be put in the 
form of Eqs. (5.62); that is

+

m

+ (—ЦХе + £ff) Лп ф\ =  0

(~fixe + m w) An — +  
b - 0 +  m

(5.133)

Ф \ =  0
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Here, l w, l №, mw, and are defined in a manner similar to the quantities on the 
right-hand side of Eqs. (5.39) with the loads from Theodorsen’s theory

_  1 2 iC(k)

to — a +  — 
к

2C(k)

mw = a

+ k2
(5.134)

... „2 , 1 { \ - a ) [ l - 2 ( \ + a ) C { k ) ] i  , 2(1 + a ) C ( k )  
me = a  + - ------------------------------------- + -------- ---------

and the fundamental bending and torsion frequencies are

cow = («,£)
\Ы _
ml4

(5.135)
7Г GJ
2  V mb2r2l 2

Finally, the constant A\\ — 0.958641. It is clear that these equations are in the same 
form as those solved previously for the typical section and that the influence of wing 
flexibility for this simplest two-mode case enters only in a minor way—namely, to 
adjust the coupling terms by a factor of less than 5%.

The main purpose of this example is to demonstrate how the tools already 
presented can be used to conduct a flutter analysis of a flexible wing. Addition of 
higher modes certainly can affect the results, as can such things as spanwise variations 
in the mass and stiffness properties and concentrated masses and inertias along the 
wing. Incorporation of these additional features into the analysis would make the 
analysis more suitable for realistic flutter calculations.

However, to fully capture the realism afforded by these and other important 
considerations—such as aircraft with delta-wing configurations or very-low-aspect- 
ratio-wings—a full finite-element analysis is necessary. Even in such cases, it is typical 
that flutter analyses based on assumed modes give analysts a reasonably good idea of 
the mechanisms of instability. Moreover, the full finite element method can be used 
to obtain a realistic set of modes that, in turn, could be used in a Ritz-method analysis 
instead of those used herein. This way, considerable realism can be incorporated into 
the model without necessitating the model to be of large order. Present-day industry 
practice uses both full finite-element models as well as assumed modes derived from 
a full finite-element model.

As for the unsteady aerodynamics, in industry, the AIC matrices usually are com­
puted using panel codes based on unsteady potential flow, such as the doublet-lattice 
method. The geometry of the panels, in general, is quite different from that of the 
structural-finite elements. This gives rise to the need for transferring both motion and 
loads between these two models. One approach for transferal uses a spline matrix that
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Figure 5.14. Plot of dimensionless flutter speed versus mass ratio for the case a = l/ylO, 
r =  1/ 2 , Xu = 0 , and a = —3/10

interpolates the displacements at structural-finite-element grid points to those at the 
panels of the aerodynamics code and transfers loads on the panels to the nodes of the 
finite elements. Methodology has been developed that fosters straightforward cou­
pling of structural and aerodynamic codes despite disparities in their meshes (Smith, 
Cesnik, and Hodges, 1995). Similar procedures also can be used to couple finite- 
element codes with more sophisticated computational fluid dynamics (CFD) codes.

5.7 Flutter Boundary Characteristics

The preceding sections describe procedures for the determination of the flutter 
boundary in terms of altitude, speed, and Mach number. For a standard atmosphere, 
any two of these conditions are sufficient to describe the flight condition. The final 
flutter boundary is presented frequently in terms of a dimensionless flutter speed as 
Ur/(bo)e). The parameter U/(bwe) sometimes is referred to as the reduced velocity, 
although the reciprocal of the reduced frequency U/{bw) is also sometimes so des­
ignated. A useful presentation of this reduced flutter speed as a function of the mass 
ratio, ц =  m/inpoob2), is illustrated in Fig. 5.14. It is immediately apparent that the 
flutter speed increases in a nearly linear manner with increasing mass ratio. This re­
sult can be interpreted in either of two ways. For a given configuration, variations in /x 
would correspond to changes in atmospheric density and, therefore, altitude. In such 
a case, the mass ratio increases with increasing altitude. This implies that any flight 
vehicle is more susceptible to aeroelastic flutter at low rather than higher altitudes.

A second interpretation of the mass ratio is related to its numerical value for 
any fixed altitude. The value of ц depends on the type of flight vehicle, as re­
flected by the mass per unit span of the lifting surface, m. Table 5.2 lists vehicle 
configurations and typical mass-ratio values for atmospheric densities between sea 
level and 10,000  feet.
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Table 5.2. Variation of mass ratio for 
typical vehicle types

Vehicle type и =  - - -<^ хрюЪ2

Gliders and Ultralights 5-15
General Aviation 10-20
Commercial Transports 15-30
Attack Aircraft 25-55
Helicopter Blades 65-110

The flutter boundary is sensitive to the dimensionless parameters. In Fig. 5.15, 
for example, we see a dramatic change in the flutter speed versus the frequency 
ratio a  = coh/cog for a case with very small mass ratio. Even so, the significant drop 
in the flutter speed for xg =  0.2 around a  = 1.4 is of utmost practical importance. 
There are certain frequency ratios at which the flutter speed becomes very small, 
depending on the values of the other parameters. This dip is observed in the plot of 
flutter speed versus frequency ratio for the wings of most high-performance aircraft, 
which have relatively large mass ratios and positive static unbalances. The chordwise 
offsets also have a strong influence on the flutter speed, as shown in Fig. 5.16. Indeed, 
a small change in the mass-center location can lead to a large increase in the flut­
ter speed. The mass-center location, e, cannot be changed without simultaneously 
changing the dimensionless radius of gyration, r \ however, the relative change in the 
flutter speed for a small percentage change in the former is more than for a similar 
percentage change in the latter. These facts led to a concept of mass-balancing wings 
to alleviate flutter, similar to the way that control surfaces are mass-balanced. If the 
center of mass is moved forward of the reference point, the flutter speed is generally
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Figure 5.15. Plot of dimensionless flutter speed versus frequency ratio for the case ц  =  3, 
r = 1/2, and a = —1/5, where the solid line is for x№ = 0.2 and the dashed line is for xe = 0.1
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Figure 5.16. Plot of dimensionless flutter speed versus e for the case ц = 10, a = 1/V2, and 
r =  1/ 2; the solid line is for a = 0 and the dashed line is for a = 0.2

relatively high. Unfortunately, this is not easily accomplished; however, a large 
change is not usually needed to ensure safety. Note that care must be exercised in 
examining changes in other parameters caused by such changes in the mass distribu­
tion. For example, the torsional frequency may be altered significantly in the process 
of changing the radius of gyration. Finally, we note that the flutter frequency for 
bending-torsion flutter is somewhere between &>/, and tog, where normally a <  1 ; 
however, situations arise in which the flutter frequency may exceed cog.

It is important to note that there are some combinations of the chordwise offset 
parameters e and a for which the current simplified theories indicate that flutter is 
not possible. The classic textbook by Bisplinghoff, Ashley, and Halfman (1955) clas­
sified the effects of the chordwise offsets e and a in terms of small and large a.  For 
small a,  they noted that flutter can happen only when the mass center is behind the 
quarter-chord (i.e., when e > -1/2); thus, it cannot happen when e < - l/2 .F o r large 
cr, flutter can happen only when the elastic axis is in front of the quarter-chord (i.e., 
when a < —1/2); thus, it cannot happen when a > —1/2. Moreover, for the typical- 
section model in combination with the aerodynamic models presented herein, flutter 
does not appear to happen for any combination of a  and r when the mass centroid, 
elastic axis, and aerodynamic center all coincide (i.e., when e =  a =  —1/2). Even if 
this prediction of the analysis is correct, practically speaking, it is difficult to achieve 
coincidence of these points in wing design. Remember, however, that all of these 
statements are made with respect to simplified models. We need to analyze real wings 
in a design setting using powerful tools, such as NASTRAN™ or ASTROS™. In­
deed, bending-torsion flutter is a complicated phenomenon and it seems to defy all of 
our attempts at generalization. Additional discussion of these phenomena, along with 
a large body of solution plots, is found in Bisplinghoff, Ashley, and Halfman (1955).

The final flutter boundary can be presented in numerous ways for any given flight 
vehicle. The manner in which it is illustrated depends on the engineering purpose 
that it is intended to serve. One possible presentation of the flutter boundary is to
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superpose it on the vehicle’s flight envelope. A typical flight envelope for a Mach 2 
attack aircraft is illustrated in Fig. 5.17 with two flutter boundaries indicated by the 
curves marked No. 1 and No. 2. The shaded region above the flutter boundaries, being 
at higher altitudes, corresponds to stable flight conditions; below the boundaries, 
flutter will be experienced. Flutter boundary No. 1 indicates that for a portion 
of the intended flight envelope, the vehicle will experience flutter. Note that these 
conditions of instability correspond to a flight Mach number near unity (i.e., transonic 
flow) and high dynamic pressure. This observation can be generalized by stating that 
a flight vehicle is more susceptible to aeroelastic flutter for conditions of (1) lower 
altitude, (2) transonic flow, and (3) higher dynamic pressure.

If it is determined that the vehicle will experience flutter in any portion of its 
intended flight envelope, it is necessary to make appropriate design changes to elim­
inate the instability for such conditions. These changes may involve alteration of the 
inertial, elastic, or aerodynamic properties of the configuration; often, small varia­
tions in all three provide the best compromise. Flutter boundary No. 2 is indicative of 
a flutter-safe vehicle. Note that at the minimum altitude-transonic condition, there 
appears to be a safety margin with respect to flutter instability. All flight-vehicle spec­
ifications require such a safety factor, which is generally called the “flutter margin.” 
Most specifications require that the margin be 15% over the limit-equivalent air­
speed. In other words, the minimum flutter speed at sea level should not be less that 
1.15 times the airspeed for the maximum expected dynamic pressure as evaluated at 
sea level.

5.8 Structural Dynamics, Aeroelasticity, and Certification3

So, with all of this background on theoretical methods, what are some of the ways 
aeroelasticity and structural dynamics analyses are actually used? We must recall that

3 Rusak (2011), private comm.
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for every aircraft, there may be dozens to several hundred combinations of fuel and 
payloads that must be verified as stable within the aircraft’s flight envelope before 
clearance for flight is given. The use of computational results is crucial because 
we cannot possibly test every combination of fuel and hardware mounted on the 
fuselage and wings (e.g., stores, armaments, fuel tanks). Computational results then 
become our main work tool for every go/no-go decision made in flight-testing and 
ultimate airplane certification for flight.

To proceed with this monumental set of tasks, we first need to identify the most 
critical combinations (i.e., those with the lowest flutter speeds). If possible, these 
should be compared with previous experience in terms of computation and flight- 
testing. Once the most critical configurations are identified, we set them aside for 
special wind-tunnel and flight tests. In particular, we need to ascertain the flutter 
mode’s shape, frequency cop, speed Up, and severity g' = dg/dU,  all evaluated at 
the flutter speed (i.e., where g vanishes). Identification of all four items allows us to 
distinguish between various cases with comparable flutter speeds and, together with 
previous experience, to decide about further needed ground and flight tests to verify 
computations and flight clearance. ’

5.8.1 Ground-Vibration Tests

The purpose of structural dynamics experiments on the ground is to validate the fre­
quencies and mode shapes of a clean airplane or important airplane configurations. 
To accomplish this, the airplane is equipped with strain gages and accelerometers 
at the roots and tips of the wings, of the horizontal and vertical tails, and of the air­
plane nose. The airplane is placed on soft supports to mimic the airplanes free-free 
structural dynamics. Vertical actuators (i.e., shakers) are used at the tips of the wing 
and horizontal tail; both vertical and side shakers may be used at the tips of the nose 
and vertical tail. There is a variety of signal analysis methods to identify natural fre­
quencies, mode shapes, and structural damping from the measurements. Generally, 
the actuators have a bandwidth up to 30 Hz, and a sweep of actuation frequencies is 
first conducted from 0.1 to 30 Hz to identify the symmetric and antisymmetric modes 
in this range. Classical techniques, such as Fast Fourier Transformation (FFT) and 
Power Spectral Density (PSD), are used for spectral analysis of unsteady elastic 
deformation signals to identify the natural frequencies. At this point, we must con­
tinue to study details of the dynamic response at the natural bending and torsional 
frequencies of interest for flutter or other aeroelastic phenomena. For each mode, 
this entails the following:

1. Induce oscillatory motion of the mode at a certain natural frequency, measure 
the response, and perform an FFT analysis to identify the resonance frequency 
and structural damping of that mode.

2. Induce a step-function command from oscillatory motion to zero, measure the 
decay rate, and infer the structural damping of that mode.

3. Induce an impulsive function, measure the decay rate, and infer structural damp­
ing of the mode.
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Now we are ready to compare experimentally measured frequencies and mode 
shapes with detailed finite-element predictions. Using well-established techniques, 
we tune our finite element model to yield frequencies and mode shapes that fit the 
ground-vibration test data.

5.8.2 Wind Tunnel Flutter Experiments

The design of wind tunnel models that accurately represent the flutter situations of 
a real airplane is a complex task—quite possibly an art! The main challenge is to 
compose a small-scale version of the aircraft with tuned structural dynamics and a 
sufficiently detailed geometry that correctly reflects the aircraft’s static and unsteady 
aerodynamic behavior. For these tests, the model is supported by soft cables and 
equipped with strain gages and accelerometers at the roots and tips of wings, at the 
tips of horizontal and vertical tails, and on the nose. Flow turbulence is used to excite 
the model aeroelastic modes. FFT and PSD analysis of the various measured model 
deformations are used to estimate the flutter speed, frequency and severity.

The wind tunnel tests provide essential insight into the possible modes of flutter 
of an airplane. The tests help verify computed results as well as identify unknown 
aeroelastic phenomena related to the airplane configuration. However, it should be 
recognized that unsteady flow phenomena are strongly governed by scale, so that 
reduced frequency, flow Reynolds number, separation between vortices, and interac­
tions between shockwaves and boundary layers may not be correctly represented by 
small-scale models. In such experiments, results may lead to an inaccurate prediction 
of flutter occurrence in the full-scale airplane. In addition, testing of small-scale mod­
els in the wind tunnel provides benchmark cases for improving the computational 
models and tuning the unsteady aerodynamics analysis codes.

5.8.3 Ground Roll (Taxi) and Flight Tests

A special experimental aircraft is equipped with the capability of making realtime 
measurements of the amount of fuel, airspeed, Mach number, altitude, load factors, 
and control surface deflections. The aircraft is also instrumented as in the ground- 
vibration tests with strain gages and accelerometers. Special actuators are included to 
operate the ailerons and elevators over a range of frequencies. A sweep of actuation 
frequencies is first conducted to identify important modes. In addition, at certain 
frequencies, responses to step and impulse commands are measured.

Ground Roll (Taxi) Measurements. Aircraft ground roll (taxi) provides the first 
insight into an airplane’s aeroelastic response. The relatively rough runway excites 
the airplane’s structural modes. In addition, here we conduct a sweep of frequencies 
and FFT-PSD analyses of measurements and determine whether results match with 
analysis predictions of aeroelastic behavior at near zero speeds. If they do not, we 
must stop the test to correct and/or adjust the computational model until agreement 
is found, and then flutter predictions are reevaluated. Only when results do agree, 
may we then proceed to take off.
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Flight Tests. In this step, we take off and fly at the lowest speed at low altitude and 
in level flight. We measure the airplane’s response to air turbulence and conduct 
FFT and PSD analyses. We determine whether these results match our analytical 
predictions for the tested speed. If they do not, we must again stop the test to correct 
and/or adjust the computational model until we find agreement. When they do agree, 
we then may proceed to activate the actuators for an impulse command. Next, we 
determine whether there is sufficient damping. If there is, we conduct a sweep of 
frequencies and conduct FFT and PSD analyses of frequencies and damping. If 
these results match the analysis, then we may (cautiously!) activate actuators at the 
calculated flutter frequency and conduct FFT and PSD analyses of the response. 
When the damping measurements match theoretical predictions, then we activate 
actuators for a step command. Next, we determine whether the response matches 
the analysis. When it does, we then collect and store data in the form of U-g-g' 
diagrams. Only if and when there is reasonable agreement with analyses we proceed 
cautiously to perform maneuvers at various load factors at the same speed and 
altitude. During each maneuver, we activate the actuators for an impulse command 
to see whether there is sufficient damping. If there is, we move on to increase the load' 
factor until the complete set of specified load factors within the flight envelope is 
tested.

If our computed predictions are in agreement with the results obtained at any 
stage, only then is it safe to go to a higher speed (e.g., 25 knots faster) at the same 
altitude. At this point we repeat all of the steps, collecting and storing data in the form 
of U-g-g' diagrams. We systematically and cautiously increase the speed up to its 
maximum, checking at every increment to ensure that our analysis is valid. Similarly, 
we systematically increase altitude to its maximum and repeat the regimen. We stop 
(i.e., reduce speed to the previous safe speed) immediately whenever any one of the 
following happens:

1. A modal damping coefficient g decreases below the level of damping required 
by regulations (5% in a civil aircraft).

2. Oscillations in at least one measurement diverge and grow beyond preapproved 
limits.

3. The dominant frequency deviates from its predicted value.

Thus, it is observed that the analysis of airplane flutter is strongly based on 
theoretical studies. The theory is the work tool for analysis and decisions about 
critical configurations and flight conditions. Ground vibration experiments are used 
to tune the structural dynamics analysis to yield accurate structural modes, and wind 
tunnel experiments to tune the unsteady aerodynamics code. Flutter flight tests are 
extremely dangerous. Real-time measurements and various actuation techniques 
are used to estimate the damping of the airplane at various flight altitudes, speeds, 
and load factors and move from one point to another with much caution. Analysis, 
ground experiments and flight tests always go together to provide full clearance for 
flight without flutter problems.
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In this step, we take off and fly at the lowest speed at low altitude and in level flight. 
We then measure the response due to air turbulence and conduct FFT and PSD 
analyses. We determine whether these results match our analytical predictions. If 
they do not, we must again correct and/or adjust the model until we obtain agree­
ment. When they eventually agree, we then may proceed to activate the actuators 
for an impulse command. Next, we determine whether there is sufficient damping. 
If there is, we conduct a sweep of frequencies and conduct FFT and PSD analyses 
of frequencies and damping. If these results match the analyses, then we may (cau­
tiously!) activate actuators at the calculated flutter frequency and conduct FFT and 
PSD analyses of the response. When the damping measurements match the theo­
retical predictions, we activate actuators for a step command. Next, we determine 
whether the response matches the analyses. When it does, we collect and store data 
in the form of U — g — g' diagrams. Only if and when there is reasonable agreement 
with analyses may we proceed to perform a 2 g maneuver at the same speed and 
altitude. At this level of gs, we activate the actuators for an impulse command to see 
whether there is sufficient damping. If there is, we move on to 3g, then 4g, and so 
on, all at the same airspeed and altitude, until we have tested the complete set of 
specified load factors within the flight envelope.

If our model is still in agreement with the results obtained at any stage, only then 
is it safe to go to a higher speed (e.g., 25 knots faster) at the same altitude. At this 
point, we repeat all of the steps and collect data in the form of U — g -  g' diagrams. 
We systematically and cautiously increase the speed up to its maximum, checking 
at every increment to ensure that our analysis is valid. Similarly, we systematically 
increase altitude to its maximum and repeat the regimen. We stop (i.e., reduce 
speed to the previous safe speed) immediately whenever any one of the following 
happens:

1. There is even the slightest indication that the damping coefficient g decreases 
below 2 % (5% in a civil aircraft).

2. Oscillations in at least one of the measurements diverge and tend to grow beyond 
preapproved limits.

3. The dominant frequency deviates from the predicted mode frequency.

Thus, it is observed that the analysis of flutter is strongly based on theoretical 
studies. The theory is the work tool for analysis and decisions about critical config­
urations and flight conditions. Ground-vibration experiments are used to tune the 
analysis to yield accurate structural-dynamics modes and wind-tunnel experiments 
to tune the unsteady-aerodynamics code.

Flutter flight tests are extremely dangerous. Real-time measurements and vari­
ous actuation techniques are used to estimate the damping of the airplane at various 
flight altitudes, speeds, and load factors, moving from one point to another with 
caution. Analysis, ground experiments, and flight tests always go together to provide 
full clearance for flight without any flutter problems.

5.8.4 Flutter Flight Tests
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5.9 Epilogue

In this chapter, we consider the general problem of lifting-surface flutter. Several 
types of flutter analysis were presented, including the p  method, classical flutter 
analysis, к  method, and p -k  method. The application of classical flutter analysis to 
discrete one- and two-degree-of-freedom wind-tunnel models was presented. Stu­
dents were exposed to Theodorsen’s unsteady thin-airfoil theory along with the more 
modern finite-state thin-airfoil theory of Peters et al. Application of the assumed- 
modes method to construct a flutter analysis of a flexible wing was demonstrated as 
well. The important parameters of the flutter problem were discussed, along with 
current design practice, flight testing, and certification. With a good understanding 
of the material presented herein, students should be sufficiently equipped to apply 
these fundamentals to the design of flight vehicles.

Moreover, with appropriate graduate-level studies well beyond the scope of 
material presented herein, students will be able to conduct research in the exciting 
field of aeroelasticity. Current research topics are quite diverse. With the increased 
sophistication of controls technology, it has become more common to attack flutter 
problems by active control of flaps or other flight-control surfaces. These so-called 
flutter-suppression systems provide alternatives to costly design changes. One type 
of system for which flutter-suppression systems are an excellent choice is a military 
aircraft that must carry weapons as stores. These aircraft must be free of flutter 
within their flight envelope for different configurations, sometimes many different 
configurations. At times, avoidance of flutter by design changes is simply beyond the 
capability of designers for such complex systems. There is also a body of research 
to determine in flight when a flutter boundary is being approached. This could be of 
great value for situations in which damage had altered the properties of the aircraft 
structure—perhaps unknown to the pilot—thus shifting the flutter (or divergence) 
boundary and making the aircraft unsafe to operate within its original flight envelope. 
Other current problems of interest to aeroelasticians include improved analysis 
methodology for prediction of flutter, gust response, and limit-cycle oscillations; 
design of control systems to improve gust response and limit-cycle oscillations; and 
incorporation of aeroelastic analyses at an earlier stage of aircraft design.

Problems

1. Compute the flutter speed for the incompressible, one-degree-of-freedom flutter 
problem with

i - 2
me = —:----- Юг

к

I p  =  50лросЬ4 шв =  10 Hz b =  0.5 ft 

Answer: Up = 405.6 ft/sec

2. According to Theodorsen’s theory, the circulatory lift is proportional to a quan­
tity that for simple harmonic motion can be shown to be equal to the effective
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angle of attack given by

C(k)
г h ь ( i  v i
в + й + й{2  " T .

For a =  —1/2 and simple harmonic motion such that 0 = 1 and h = 
bz [cos(0 ) +  i sin(0 )], find the amplitude and phase of a  relative to в and plot a 
as a function of time for five periods for the following four cases:
(a) z =  0 .1; ф =  0°; к =  0.01

(b) z =  0 .1; ф = 0°; к =  1.0

(c) г = 0.1; 0 = 90°; к =1.0
(d) z =  0.5; ф =  90°; A: = 1.0
Comment on the behavior of a for increasing k, changing the phase angle from 0 
to 90 degrees, and increasing the plunge magnitude. Approximate Theodorsen’s 
function as

п пл  0.01365 + 0.2808/A -  f  
( ' ~  0.01365 + 0.3455iA: -  k2

Answer: (a) amplitude: 0.9931; phase lead: 2.01°
Answer: (b) amplitude: 0.7988; phase lag: 37.0°
Answer: (c) amplitude: 0.7229; phase lag: 37.3°
Answer: (d) amplitude: 0.6008; phase lag: 52.7°

3. Show that the coefficients used in a classical flutter analysis, if based on 
Theodorsen’s theory, are

4 = i - к̂

i 2C(k) 2i (1 — a) C(k) 
lg =  — a — -----------------------------------

mh =  —a +

к к2 к 

2/ (1 +  a) C(k)

rTT 1 , T2 i ( \ - a )  2 ( \  +  a)C(k) : 2 i ( \ - a 2)C(k)
8  - ~ i ^  + ------- i?------- + ----------к--------

4. Consider a two-dimensional rigid wing in incompressible flow with freestream 
speed U and pivoted about the leading edge. The pitch motion is spring- 
restrained with spring constant kg =  Ipwj. Use the exact C(k) and
(a) determine the flutter speed and flutter frequency for //> = 2,500л7>ооЬ4
(b) determine the minimum possible flutter speed and flutter frequency 
Answer: (a) UF = 28.2279bw„ and w,, =  1.13879we\ (b) UF = 24.7877bojg and

(Op =  (Og

5. Consider an incompressible, two-degree-of-freedom flutter problem in which 
a =  —1/5, e = —1/10, д = 20, r2 =  6/25, and a = 2/5. Compute the flutter speed
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and the flutter frequency using the classical flutter approach. For the aerody­
namic coefficients, use those of Theodorsen’s theory with C(k) approximated as 
in Problem 2.
Answer: Up =  2.170 bcog and u>f — 0.6443 we

6 . Consider an incompressible, two-degree-of-freedom flutter problem in which 
a =  —1/5, д = 3, and r =  1/2. Compute the flutter speed and flutter frequency 
for two cases Xg = e — a = 1/5 and xe =  e — a = 1/10, and let a  = 0.2, 0.4, 0.6, 
0.8, and 1.0. Use the classical flutter approach and, for the aerodynamic coeffi­
cients, use those of Theodorsen’s theory with C(k) approximated as in Problem
2. Compare with the results in Fig. 5.15.

7. Set up the complete set of equations for flutter analysis by the p  method using 
the unsteady-aerodynamic theory of Peters et al. (1995), nondimensionalizing 
Eqs. (5.106), and redefining as bwgki.

8 . Write a computer program using MATLAB™ or Mathematica™ to set up the 
solution of the equations derived in Problem 7.

9. Using the computer program written in Problem 8 , solve for the dimensionless?' 
flutter speed and flutter frequency for an incompressible, two-degree-of-freedom 
flutter problem in which a — -1 /3 , e =  —1/10, fi =  50, r =  2/5, and a — 2/5. 
Answer: Up = 2.807 bcog and wp = 0.5952 щ

10. Write a computer program using MATLAB™ or Mathematica™ to set up the 
solution of a two-degree-of-freedom flutter problem using the к method.

11. Use the computer program written in Problem 10 to solve a flutter problem 
in which a — -1 /5 , e = —1/10, д = 20, r2 =  6/25, and a — 2/5. Plot the values 
of oj\t2/oja and g versus U/(bcoe) and compare your results with the quanti­
ties plotted in Figs. 5.12 and 5.13. Noting how the quantities plotted in these 
two sets of figures are different, comment on the similarities and differences 
observed in these plots and why those differences are there. Finally, explain 
why your predicted flutter speed is the same as that determined by the classical 
method.
Answer: See Figs. 5.18 and 5.19.

12. Show that the flutter determinant for the p-k method applied to the typical 
section using Theodorsen aerodynamics can be expressed as

„2 i er2 fc2 i 2ikC(k) p2iiXe+k(i+ak)+\2+ik(\-2a)\C{k)
p  +  i ---------- —

p2 цхв+ак1—ik(\+2a)C(k) %tir1(p1++I)+4i(\+b>)[2i-k{\-b,)}C(k)-k[k-Ai+&a{i+ak)]
\i 8 д

13. Write a computer program using MATLAB™ or Mathematica™ to set up the 
solution of a two-degree-of-freedom flutter problem using the p-k method and 
Theodorsen aerodynamics.

14. Use the computer program written in Problem 13 to solve a flutter problem in 
which a =  —1/5, e =  —1/10, fi =  20, r2 =  6/25, and a — 2/5. Plot the values of
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0.2

U

0.0 0.5 1.0 1.5 2.0 2.5 Ьшв

Figure 5.18. Plot of w u/w # versus U/(bw,,) using the £ method and Theodorsen aerodynamics 
with a =  —1/5, e =  —1/10, ц  =  20, r 2 =  6/25, and a  =  2/5

the estimates of ,2/«« and Г],2/wy versus U/{bwe) and compare your results 
with the quantities plotted in Figs. 5.12 and 5.13. Explain why the estimated 
damping from the p-k method sometimes differs from that of the p  method. 
Answer: See Figs. 5.20 and 5.21.

8

Figure 5.19. Plot of g versus U/(ba>n) using the к method and Theodorsen aerodynamics with 
a =  —1/5, e =  —1/10, /x =  20, r 2 — 6/25, and a  =  2/5
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П

шв

0.0 0.5 1.0 1.5 2.0 2.5 Ьшв

Figure 5.20. Plot of estimated value of ftu /w »  versus U/(ba>e) using the p-k  method with 
Theodorsen aerodynamics (dashed lines) and the p  method with the aerodynamics of Peters 
et al. (solid lines) fo ra  =  -1 /5 ,  e =  -1 /1 0 , // =  20, r 2 =  6/25, and a  =  2/5

15. Write a computer program using MATLAB™ or Mathematica™ to set up the 
solution of a two-degree-of-freedom flutter problem using the p-k method and 
the aerodynamics of Peters et al.

16. Using the computer programs of Problems 13 and 15, show that the p-k 
method yields the same results regardless of whether Theodorsen’s theory or the

Г

ue
0.1 г

- 0.1 - 

- 0.2 -  

-0 .3  - 

-0 .4  - 

-0 .5  I

Figure 5.21. Plot of estimated value of П  г/ч»# versus U/(bcoe) using the p-k  method with 
Theodorsen aerodynamics (dashed lines) and the p  method with the aerodynamics of Peters 
et al. (solid lines) for a =  —1/5, e =  — 1 /10, ц  =  20, r2 =  6/25, and a  =  2/5

U

buje



230 Aeroelastic Flutter

aerodynamic theory of Peters et al. is used, assuming a sufficiently large number 
of inflow states is used in the latter. You may do this for the case a = —1/5, 
e = —1/10, fi =  20, r2 = 6/25, and a  = 2/5. What does this imply about the two 
theories?

17. Write a computer program to solve for the flutter speed of the problem set up 
in Section 5.6. Exercise the code for the parameters of Problem 16 and examine 
the sensitivity of the results to the number of modes assumed.

18. Repeat the derivation in Section 5.6 but use the finite element method.
19. Write a computer program based on Problem 18 and compare the answers 

obtained with those of Problem 17 with one bending mode and one torsion 
mode. Determine the sensitivity of the predicted flutter speed and frequency 
to the number of elements and the number of elements required for results 
converged to four significant figures.

20. Repeat Problem 18 but use the aerodynamic theory of Peters et al. with a set of 
states located at points x = r,£ with r\ < r2 < . . .  < rm, where m is the number 
of sets of aerodynamic states.

21. Write a computer program based on Problem 20. Determine the sensitivity of 
the results to the number and values of parameters r,, in which the latter are 
equally spaced along the span.

22. Comparing Eqs. (5.11) and (5.71), find an expression for [A(p)\ in terms of 
matrices [a], [6 ], [c], [d], [Л], and [£,’] for the special case when the only de­
grees of freedom in the column matrix £ are h/b  and в, and the unsteady- 
aerodynamic theory is based on the theory of Peters et al. with six states. As­
suming simple harmonic motion, extract an approximation for C(k) from these 
equations. Compare the real and imaginary parts of C(k) with those from the 
approximation.



APPENDIX A

Lagrange’s Equations

A.1 Introduction

When we wish to use Newton’s laws to write the equations of motion of a particle or 
a system of particles, we must be careful to include all the forces of the system. The.. 
Lagrangean form of the equations of motion that we derive herein has the advantage 
that we can ignore all forces that do no work (e.g., forces at frictionless pins, forces 
at a point of rolling contact, forces at frictionless guides, and forces in inextensible 
connections). In the case of conservative systems (i.e., systems for which the total 
energy remains constant), the Lagrangean method gives us an automatic procedure 
for obtaining the equations of motion provided only that we can write the kinetic 
and potential energies of the system.

A.2 Degrees of Freedom

Before proceeding to develop the Lagrange equations, we must characterize our 
dynamical systems in a systematic way. The most important property of this sort for 
our present purpose is the number of independent coordinates that we must know 
to completely specify the position or configuration of our system. We say that a 
system has n degrees of freedom if exactly n coordinates serve to completely define 
its configuration.

EXAMPLE 1 A free particle in space has three degrees of freedom because we 
must know three coordinates—x, y, z, for example -  to locate it.

EXAMPLE 2 A wheel that rolls without slipping on a straight track has one degree 
of freedom because either the distance from some base point or the total angle 
of rotation will enable us to locate it completely.

A.3 Generalized Coordinates

We usually think of coordinates as lengths or angles. However, any set of parameters 
that enables us to uniquely specify the configuration of the system can serve as

231
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coordinates. When we generalize the meaning of the term in this manner, we call 
these new quantities “generalized coordinates.”

e x a m p l e  3 Consider a bar rotating in a plane about a point O. The angle of 
rotation with respect to some base line is suggested as an obvious coordinate 
for specifying the position of the bar. However, the area swept over by the 
bar would do equally well and therefore could be used as a generalized co­
ordinate.

If a system has n degrees of freedom, then n generalized coordinates are neces­
sary and sufficient to determine the configuration.

A.4 Lagrange’s Equations

In deriving these equations, we consider systems having two degrees of freedom and 
hence are completely defined by two generalized coordinates q\ and <72. However, 
the results are easily extended to systems with any number of degrees of freedom.

Suppose our system consists of n particles. For each particle, we can write by 
Newton’s second law

where x,, y;, and Zi are the rectangular Cartesian coordinates of the ith particle; M, 
is the mass; and X , Y ,  and Zj are the resultants of all forces acting on it in the x, y, 
and z directions, respectively.

If we multiply both sides of Eqs. (A.l) by <5jc( , 8yt , and Sz,, respectively, and add 
the equations, we have

The right-hand side of this equation represents the work done by all of the forces 
acting on the ith particle during the virtual displacements &Xj, 8y, , and &z,. Hence, 
forces that do no work do not contribute to the right-hand side of Eq. (A.2) and may 
be omitted from the equation. To obtain the corresponding equation for the entire 
system, we sum both sides of Eq. (A.2) for all particles. Thus

Mi'Xi — Xi

m  =  Y i

Mfti = Zi

(A.l)

M, (xiSxj + ytSyi + 'ii8zi) =  XjSxi +  YiSyi +  Z,Sz, (A.2)

П n
Y  Mi (xj8xi +  y,8yi +  zi8zi) =  (X,8xi +  YiSyi +  ZiSzi) (A.3)
<=1 1=1

Now, because our system is completely located in space if we know the two 
generalized coordinates <71 and q2, we must be able to write Xj, yt , and zt as well as



Appendix A: Lagrange’s Equations 233

their increments Sxj, <5_y,, and Sz, as functions of ф and q2. Hence

Xi =Xi(qu q2) 

y, =yi(q\-cn)

Zi =  Zi(q\ , q2)

Differentiating Eq. (A.4) with respect to time gives

3 Xj . 3 Xi 
Xi = r - ? i  +  Т~Я2 Эф aq2

3 yi . , 3 yt .
У1 = ^ ^  + a—Эф 3<72

dZi . dZi .
Z/ = -—ф + -—q2Эф dq2

S im ilarly

3 Xi dx!
SXi = — Sq\ +  — Sq2

Эф dq2

„  3y; Эу;
«ty; = t <5ф +Эф oq2

. 3z,' dZi
SZi =  — Sq\ +  — Sq2 

dq\ dq2

If we substitute these into Eq. (A.3) and rearrange the terms, we obtain

(A.4)

(A.5)

(A.6 )

, . .  Эу, .. 3z; .

+ У1 т.---- 1- Zi -— ) <$фЭф 3<7,

+ м (,' ё +^ +г'Ш г‘'2. 

+ { X[Wz +  Yl^ ~

(A.7)

3Z;
3<?2

From Eq. (A.5), we conclude that because x-,, yi, and z, are functions of q\ and q2 
but not of ф and q2, then

(A.8)

dxi dxi 3 Xi dXi
Эф Эф dq2 dq2

dyi_ _  Эyi_ Эy\_ _  dyi
Эф Эф dq2 э q2

3 Zi _  dZi_ dti 3 Zi
Эф Эф 3 q2 dq2
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We substitute these relationships into the left-hand side of Eq. (A.7) to obtain 

v —'  (  dx ,  dy j  dZi \

+ м (-е' ё +* й +4Ш Ц2. 

- ± [ ( x% + r‘% + z % h

+ ( XÎ +Y‘^ +Z‘^ ) sq!}
Now, let us shift our attack on the problem and consider the kinetic energy of 

the system. This is

(A.9)

(A.10)
i=i

Now calculate and to obtainSqi din

, . 3 y , .  dZi 
+  Я  T ~  +  Zi —  dqx dq\

дК  T T m  (■ 9i'-— = > Mi I Xi —
9<?i “  V

dK  ( /  dXj dyi dZi \  —  =  j 2 Mi i Xi— + y j  +  Zi \ 
9̂ i \  9 î dqi dqi J

(A.11)

(A.12)

We next calculate the time derivative of for which the chain rule gives

d_
dt

(  dXi \  d2Xi
\9<?i /  9 q \ ^ X

9 Xi
dq\ dq2

42

Because from Eq. (A.8) we have

3 /  dxi 3 Xi

W ,  w t q' +  aST*
9 . . .  dXi

T ~  ( xi) =  T—oq l dq i

3 Xj Эх/ 
dqi dqx

(A.13)

(A.14)

we conclude from Eq. (A.13) that
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The ioWowing re\aUonships can be proven in a similar manner-.

—  ( dyi )  -  д Я
ЙЛ \ b q \ )  'Щ\

d (  dZi 

dt

(A.16)
/3 * Л  =  dti_
\9gi у 3 qx

Now let us use Eqs. (A .ll), (A.12), (A.15), and (A.16) to calculate the function

(A.17)
d_ / з к ч  _  d K
dt \ Э ф /  3<7i

for which the result is

d ( d K \  d£  _  " /  db  .. dyi .. dZi 
d t \ d q i )  9<7i ^  1 Э qx У‘ dqx Z‘ dq{

+ V '  Л4 Г ■ d ( d Xi \  d  ( д у Л  . d  ( d t i X  
* ‘ d t  \ 3 ф )  ‘ d t  \ 3 ф )  ~dt \ 3 ф /

V M  [Xi —  
t r  V dqx

, . d y i  . dZi 
+  ? i  7.------ b Zi ~—3 q\ dqx0 (A.18)

From Eqs. (A.15) and (A.16), the second and third terms on the right-hand side of 
Eq. (A.18) are equal and thus cancel, leaving

d_
dt

( b k \  3 к  A  / „  dXi .. dyi .. d t i  \

( э ф )  3<7, “  2  ' V 1 Щ  y> di}] Z‘ dqxJ  ( •

A similar relationship holds for partial derivatives of К  with respect to q2 and q2. 
Hence, Eq. (A.9) can be written

' d_ / 3 K \  
.dt  \ 3 ф /

d К

9 qi.
Sqi +

d ( d K \  dK
dt у

d K \  _  
dq2) dqi_

$q2

+ Y i ^ -  + 2 - 
3 qx

8qi (A.20)

+

Because qx and q2 are independent coordinates, they can be varied arbitrarily. Hence, 
we can conclude that

d_
dt V3 q j

dK
dqx 

dK
dt \ d q 2)  dq2

= V ] (-36 —  + Yi —  +  Zi —  
‘ dqx ‘ dqx ' 3 q xi=1

d_ fd_K\  _  dK
(A.21)
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The right-hand side of Eq. (A.20) is the work done by all of the forces on the 
system when the coordinates of the ith particle undergo the small displacement 8xt, 
Syi, and Szi due to changes 8q\ and Sq2 in the generalized coordinates <71 and q2. The 
coefficients of <5<7i and Sq2 are known as the generalized forces Q\ and Q2 because 
they are the quantities by which the variations of the generalized coordinates must 
be multiplied to calculate the virtual work done by all the forces acting on the system. 
Hence

(A.22)

and Eqs. (A.21) can be written

d_ /ЭКД _ЪК_ 
dt ~ 9^
d_ / д К \  _  э к
dt \ d q 2)  dq2

(A.23)
f t

This is one form of Lagrange’s equations of motion. They apply to any system that is 
completely described by two and only two generalized coordinates, whether or not 
the system is conservative. It can be shown by slightly more extended calculation 
that they apply to systems of any finite number of degrees of freedom.

A.5 Lagrange’s Equations for Conservative Systems

If a system is conservative, the work done by the forces can be calculated from 
the potential energy P. We define the change in potential energy during a small 
displacement as the negative of the work done by the forces of the system during 
the displacement. Because Q\8q\ + Q28q2 is the work done by the forces, we have

SP =  ~ Q \ 8q1 -  Q28q2 (A.24)

We have emphasized that q\ and q2 are independent and, hence, can be varied 
arbitrarily. If Sq2 =  0, we have 8 P =  -  Q\8q\ so that

f t  = ~  (A.25)dq 1

Similarly, it can be seen that

f t  = ~  (A.26)dq2
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Figure A .l. Schematic for the mechanical system 
of Example 5

Replacing <2i and Q2 in Eqs. (A.23) by these expressions, we have

d_ / 9 л :\ _  d K  dP_ _ 0 
dt 1э<7] )  dq\ + dq\

(A.27)
d /Э K \  _dK_ dP_ _ Q 
dt \ d q 2J dq2 dq2

These are Lagrange’s equations of motion for a conservative system. As before, they;: 
hold for systems of any finite number of degrees of freedom.

EXAMPLE 4 Find the equations of motion of a particle of weight W  moving in 
space under the force of gravity.
Solution: We need three coordinates to describe the position of the particle and 
can therefore take x, y, and z as the generalized coordinates. Taking x and у in 
the horizontal plane and z vertically upward with the origin at the earth’s surface 
and taking the origin as the zero position for potential energy, we obtain

К  = ^  (x2 +  y2 +  z2) P =  Wz2 g
d K _ w _  d K _ w .  djK_d_K_dK_ 
dx g X dy g y dz g Z dx dy dz

d / d K \ _ W . .  d / d K \ _ W . .
dt V dx J g X d t \ ‘d y )  g У dt V dz. )  g Z

w . dK
—z 
g dx

w d /9  K \

g
У dt \ d z )

(A.28)

—  = —  = 0  ^  = W
dx dy dz

Hence, Lagrange’s equation, Eq. (A.27), gives 

W W W
— x =  0 — y =  0 — z + W  =  0 (A.29)
g g g 

Of course, these equations are more easily obtainable by the direct applica­
tion of Newton’s second law; this example merely illustrates the application of 
Lagrange’s equations for a familiar problem.

EXAMPLE 5 Find the equation of motion of the sprung weight W sliding on a 
smooth horizontal plane (Fig. A.l).
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w
Figure A.2. Schematic for the mechanical sys­
tem of Example 6

Solution: We may take x as the generalized coordinate and measure it from the 
equilibrium position. Then

Г, W 2 /с 9К  =  — x P  = - x
2 g 2

dK _ W . d ( d K \  _  W..
dx g dt V dx )  g

(A.30)

dx dx
Lagrange’s equation, Eq. (A.27), gives

W
— x + kx =  О (A.31)
8

as the equation of motion.

EXAMPLE 6 Obtain the equations of motion for the system shown in Fig. A.2. 
The bar is weightless.
Solution: The coordinates x\ and x2 can be taken as generalized coordinates. 
Take as the zero datum the configuration for which the bar is horizontal and the 
spring is unstretched. Then

W W i
К  =  —  x\  +  — x\  P =  Wxi -  Wx2 4- - k ( x 2 -  X \ )

^8 ^8 **
d K _ _ W . d K d K  

9i i  g Xl dx2 g Xl 9x2

d _ ( d K \ _ W .. d / d K \ _ W . _  
d t \ d x x)  g Xl d t \ d x 2)  g X2

= w  - k ( x 2 - x  i) ^ -  = - W  + k(x2 - x  i)
dX i  dX2

(A.32)

The Lagrange equations are
W
—xi -V W — Wx2 — хЛ =  4> 
g 
W
—x2 -  W + k(x2 -  xi) =  0 
g

This is an example of a two-degree-of-freedom conservative system.

(A.33)
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A.6 Lagrange’s Equations for Nonconservative Systems

If the system is nonconservative, then, in general, there are some forces (i.e., conser­
vative) that are derivable from a potential function, P(q\, q2, ■■ ■) and some forces 
(i.e., nonconservative) that are not. Those forces for which a potential function does 
not exist must be introduced by first determining their virtual work. The coefficient 
of the virtual displacement Sq, in the virtual-work expression is the generalized force, 
here denoted by <2, (/ =  1 , 2 , . . .). In this instance, it is convenient to introduce what 
is called the Lagrangean as

EXAMPLE 7 Rework Example 5 with a dashpot of constant с connected in parallel 
with the spring.
Solution: The system with a dashpot is nonconservative. Hence, we use Lag­
range’s equations in the form of Eq. (A.35). The kinetic and potential energies 
are the same as in Example 5. To calculate the Q for the dashpot force, use the 
definition that Q is the coefficient by which the generalized coordinates must 
be multiplied to obtain the work done. In any small displacement Sx, the work 
done by the dashpot force — cx is — cx Sx. Hence, —cx is the generalized force 
associated with the dashpot. The Lagrangean is

L = K - P (A.34)

and write the general form of Lagrange’s equations as

(A.35)

Wx2 kx2
2 g 2

(A.36)

and

Q =  - c x (A.37)

Lagrange’s equation then becomes

— x +  kx =  —cx 
g

(A.38)
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admissible functions, 96,98,100,123 
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aerodynamic loads, distributed, 95,97,115,127, 

140,184,206 
aerodynamic influence coefficients, 197,215 
aerodynamics, 1,3,4,5,25,97,103,129,148,176, 

184,188,194,197,199-212,216,217,222,223, 
226-228

finite-state, 187,188,203,206,207,210,
223

linear, 129,188,189 
quasi-steady, 205,206
steady-flow, 127,140,176,182,184,186,187, 

201,202,205,211 
strip theory, 140,141,148 
thin-airfoil theory, 129,182,184,188,203,205,

206,208,223 
unsteady, 176,179,187-189,194-212,216, 

221-223,225,229 
aeroelastic tailoring, 6,163-167 
aileron reversal (see also control effectiveness), 

2-4,128,135-138,148-153,167,169,173 
airfoil (see also thin-airfoil theory), 128-130,136, 

140,149,152,168-170,176,177,182-184,188, 
190,202,203,205-209,212,223 

symmetric, 130,136,168-170 
airloads, 4,127,140,142,145-148,155,176,177, 

188-191,194,199,200 
airloads distribution, 140,142,145-148,155,

157
angle of attack, 3,129,132,134,136,141,145,150, 

151,153,154,156,157,176,202,203,205,206,
209,224 

Ashley, H., 175,203,219,220 
apparent mass/inertia, 202,203,205 
ASTROS, 219

beams, bending of, 4,15,18-22,29,38,48,56, 
70-95,102-106,111-115,119,121-126, 
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221.227
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122,153-157,159,160,163-167,213-217 
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139,141-143,145-148,154-160,163,164,167, 
169-171,173,174,177,182,212-214,216,219,
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bending, see beams, bending of 
bending moment, 18,19,21,73,75,76,78-80,85, 

88,90,93,98,100,104,112,114,147,148,150,
155.157.164.172.173

bending stiffness, 19,119,122,123,131,132,134,
167,182 

Bessel functions, 204 
Bisplinghoff, R. L„ 175,203,219,220 
boundary conditions, 4,13,16,19,33,37,38,43,

47,56-67,69,72-82,85,86,88-93,95,96,98, 
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geometric, 95,110,115 
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Budiansky, B., 158 
buffeting, 4

center of gravity, see mass center 
center of mass, see mass center 
characteristic equation, 33,63,65,66,80,81,83, 

86,89,93,117-119,145,193 
clamped-free beams 

bending of, 72,73,80,82-84,86-89,93,98-101, 
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170.171
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coalescence, 187,210
comparison functions, 102,103,105,123,124,

173
composite beams, see beams, composite 
composite lifting surfaces, see beams, composite 
composite materials, 138,163 
composite wings, see beams, composite 
compressibility, 129,189,194,198,203 
conservative loads, see loads, conservative 
constraint, elastic, see elastic constraint 
constraint, inertial, see inertial constraint 
controls, active, 138,150,176,187,203,206,210, 

224
control effectiveness, loss of (see also aileron 

reversal), 2,3,4,127,135-138,148-153 
coupling

bending-torsion aerodynamic, 154-167,
212-216

bending-torsion elastic, 4,17,18,20-22,29,92, 
93,124,157,163-167 

coupling, bending-torsion inertial, 18,21,22,29, 
92,93,124,212-216

damping, 95,97,103,187,197 
aerodynamic, 36,177 
modal, see modal damping 
structural, 36,195,196,198,221 
viscous, 24,25 

damping matrix, see gyroscopic/damping matrix 
da Vinci, L., 30 
Diederich, F. W ., 148 
Dirac delta function, 49,50 
dissipation, 15,36,41,48,121,196 
divergence, 2,3,5,25,127,128-138,142-145,148, 

154-167 
bending, 156,158
coupled bending-torsion, 154,156-167 
impossibility of, 130,134,135,138,145,

161-163,166,167 
torsional, 2,142-145,148,155,158 

divergence boundary, 131,156,158-167 
divergence dynamic pressure, 130,131,134, 

136-138,143-145,156,157,159,161-167 
divergence speed, 130,131 
driving frequency, see forcing frequency 
Duncan, W. J., 2

efficiency, aileron lift, 138,169 
eigenfunctions, 33,34,64,82, 
eigenvalues, 13,33-35,63,81,86,87,89,98,99, 

101, 111, 117,118,144,145,172,176-182,185, 
187,188,196-199,203 

elastic axis, 15,16,20,59,139-141,145,153,161,
164,170,182,212,219 

elastic restraint 
rotational (bending), 73-75,80,84,85-88,93, 

96,97,122
rotational (torsion), 4,57,58,60,61,63,66,69, 

70,93,97,129,130,136,182,183,190,225

translational, 4,24,73,74,80,93,96,97,116,
120,168,169,182,183 

energy
kinetic, 8,9,10,14,15,17,20,21,22,47,48, 

94-98,108,113,118,119,158,183,184,
212-214,234 

potential, 9,10,14,15,46,47,48,94-97,108,
116,118,119,170,171,183,236,237 

strain, 9,13,14,17,20,21,29,46,95,
97,98,106,107,110-113,118,119,170,212, 
213 

equations
equilibrium, 128,129,133,134,136,137, 

141-145,154,155,158,164,165,170-172 
homogeneous, 4,35-37,51,81-83,93,136,144, 

145,156,157,165, 172,179,192,193,196,197 
inhomogeneous, 4,136,142,145,149,172,

179
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117.121.122.158.170.179-181,188,215 

equilibrium equations, see equations, equilibrium 
Euler, L., 6,8,59,60,77-80,93

fast Fourier transform, 221 
finite element method, 29,31,101,106,107,110,

111, 116,125,126,171,172,211,212,216,217,
222,227

flight envelope, 127,144,175,176,220,221,223,
224

flutter, 2-5,41,115,167,175-229 
flutter, avoidance of, 176, 
flutter analysis 

classical, 176,187,188-194,198,203,206,208, 
210,215,223,225,226 

к method, 195-201,203,223,226,
227

p method, 176-182,184,185,187,188,195, 
197-201,203,210,211,223,225,227,228 

p-k method, 196,197,199-201,203,206,223, 
226-228

flutter boundary, 176,180,181,188,190-196, 
217-220,224 

flutter determinant, 188,193-196,198,199,215, 
226

flutter frequency, 187,191,210,219,221,222,225,
226

flutter Mach number, 191 
flutter reduced frequency, 191,206, 
flutter speed, 4,177,186,187,191,199,210, 

217-222,224-227 
flutter suppression, 224 
Follower forces, see loads, follower 
forcing frequency, 28,52,53 
forcing function, 24,27,55,156,
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Fourier series, 41,43 
Frazer, R. A . , 2 
free-free beams 

bending of, 80,88-91,122 
torsion of, 63-67,118 

free vibration, 6,12,30,31,36,44,56,59,62,70,
71,78,84,90,92,93,99,101,104-106, 111, 
115,118-120,171,213 

frequency ratio, 185,186,193,196,210,211, 
217-219,225-228 

frequency response, 27,30 
Fung, Y. C„ 202,203

Galerkin’s method, 4,24,30,94,101-106,115,
125,173
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52,55,66,94,97,102,106,118,119,170,171, 
177-180,197,213,231,232,236-239 
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equations, equilibrium 

generalized equations of motion, see equations of 
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generalized force, 9,14,48-51,54,69,92,94,97, 
102,109,114,116,171,178,179,183,184,204,
209,210,214,215,236,239 

generalized mass, 38,47,48,118,119,177 
general solution, see solution, general 
gust response, 4,178,224 
Guyett, P. R., 200
gyroscopic/damping matrix, 97,102,103

Halfman, R. L„ 203,219,220,
Hamilton’s principle, 105 
Hankel function, 204 
Hassig, H. J., 197,199-201 
homogeneous solution, see solution, general

incompressibility, 129,191,194,203,207,
224-226 

induced flow, 178,205,207-210 
inertial restraint 

bending, 72-80 
torsion, 57,59,62 

initial conditions, 13,25,30,38-42,44,48,50-55, 
57,66,69,72,91,92, 111, 115,116,180 

Irwin, С. A. K ., 200

Kronecker delta, 99,117

Lagrangean, 9,15,94,95,102,231,239 
Lagrange's equation, 5,9,10,13-15,44,45,47,94, 

99,101,106,110,118,183,184,215,231-239 
Langley, S., 1
lift, 3,128-131,133, 135-138,140,141,143,

145-150,152,157,169-173,177,183,184,189,
192,201-203,205-210,212,224 

lift-curve slope, 129,141,148,155,168,170,184, 
205

lift-deficiency function, 205

lifting-line theory, 148
lifting surface, 3,5,30,127,128,139-167,176,177,

179,182,188,194,202,217,223 
limit-cycle oscillations (LCO), 4,30,224 
limit point, 161,162,173 
load factor, 3,140,145,146,222,223 
loads, 1,4,11,15,23,34,38,48,69,94-97,102,

103,115-117,127,140,146,157,167,175-177, 
182,184,188,189,191,194,200,206,216,217, 
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aerodynamic (see also aerodynamics), 1,4,95, 
97,102,103,115,127,140,146,176,177,182,
184.188.189.191.194.200.206.216.217

Mach number, 129, 146, 189,191,197,198, 201,
217.220.222 

Maple™, 68,97,101,194
mass center/centroid, 8,11,15,18,21,22,59,76,

78,91,164,169,170,183,212,218,219 
mass matrix, 97,100,102,104,105,109, 111, 114,

186,215
mass ratio, 185,186,193-196,210,211,215, 

217-219,225-228 
Mathematica™, 68,93,97,101,194,226,

227
MATLAB™, 68,226,227 
modal damping, 180,186-188,200,206,210,211, 

221
modal frequency, 36,41,99,180,186,211 
modal representation/solution, 1 ,4,5,30,31,36, 

39,41,47,48,55,88,91,115,121,176,177, 
198,

modal truncation, 41
mode shapes, 30,34-39,45—47,49,62,64-67,69, 
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124.171.172.177.180.187.213.221.222 

rigid-body, 33,63, 66,72,80,86,87,91,110,122,
123,178,179 

moment of inertia, 8,9,16,17,19,22,59,76, 79,
80,108,117,120,122,183 

motion
arbitrary/transient, 3,4,182,184,188,

199
oscillatory, 4,25,36,66,176,177,188,194,221 
rigid-body, 91,110
simple harmonic, 62,63,92, 111, 180,187,188, 

193-200,205,215,224

NASTRAN™, 201,219
natural frequency, 12,25,30,35,36,47,48,52,53,

62-66,68,69,80-83,86, 89,91,97,117-120, 
123-126,177,178,184,190,221 

Newton, I., 30
Newton's laws, 7,8,59,60,231
node (as in finite element discretization), 107-109,

112.113.217
node (as in modal crossings), 34,35,84 
nonconservative loads, see loads, nonconservative 
nonhomogeneous solution, see solution, particular
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nonlinearities, 6,11,12,30,80,150,176, 
nontrivial solution, see solution, nontrivial 
normal modes, see mode shapes 
normal, outward-directed, 16,18,59, 60

orthogonality, 36-39,52,55,69,92,98,101,
213-215

partial differential equations, 12,17,20,22,31,56, 
57,94,96,101-105,170 

particle, 4,6-9,24,48,76,77,79,94,96,102,124,
125,202,203,231,232,236,237 

particular solution, see solution, particular 
performance, 3,127,146,147,157,163,175,218 
period, 36,43,44,224 
perturbations, 12-14,23,130,177,188 
Peters, D. A., 187,188,206-211,223,225,227-229 
phase, 27,188,189,195,196,205,206,224,225 
pinned-pinned beams, 80,81 
pitching moment, 128,133,135-137,140,141,148,

150,171,177,183,184,189,190,201-203,205, 
209,210,212 

Plate, 14,15,29,48,106,177,203 
Pugsley, 3

radius of gyration, 185,193,212,218,219, 
Rayleigh, J. W. S., 30 
Rayleigh quotient, 97,100,101 
Rayleigh-Ritz method, 97 
reduced frequency, 189,191,196,198,204-206, 

217
reference point, 182-185,190,202,208,219 
reflected wave, 43 
resonance, 28,53,221 
response

free (i.e., due to initial conditions), 38,40,41,
180

forced (see also gust response), 3,4,9,13-15,
25-28,30,44,48,50-55,69,92,106, 111, 115,
121,177,221,222,224 

frequency, 27,30, 111 
static, 111, 121,135,137,139,154,172 

rigid body, 8,9,58-62,64,66,76-79,91,120,121,
174

rigid-body mode, see mode shapes, rigid-body 
rigid-body motion, see motion, rigid-body 
Ritz method, 4,24,30,94-106,110,115,122-124, 

158,170,172,212,213,215,216 
Rosenbaum, R ., 195,196 
Roxbee Cox, 3

Saint Venant theory, 15,17 
Scanlan, R. H ., 195,196 
separation constant, 65,89 
separation of variables, 31,56,57,61,62,71,72, 

74,92
shear center, 18,20,21,139,164 
shear force, see transverse shear 
shear modulus, 15

simple harmonic motion, see motion, simple 
harmonic 

solution
general, 13,25,32-34,37,41,42,48,51,54,57,

63-65,67,71-73,81,82,85,86,88,89,143,
144.179.180.197 

homogeneous, 35,37,51 
inhomogeneous, 4,136,145,149,

172
nontrivial, 4,33,63,67,81-83,88,93,137,145,

180.185.193.197 
particular, 51,52,70, 92 
standing wave, 31-36 
static equilibrium, 11,12 
traveling wave, 41^44 
trivial, 33,63,145

spatial discretization, 96,102,103,106-108, 111,
114,213,215 

stability, 3,4, 6,23,24,127,128,130,139,144,156, 
157,161,175-181,188,194-196,216,220 

standing wave solution, see solution, standing 
wave

static unbalance, 183,218 
stiffness matrix, 97,100,101,103,105,108, 

111-113,172,211,215 
stress, 2,18,19,21,58, 59,77,146,147,164 
string, 4,6,10-15,20,29,31-57,69-72,81,82,91, 

92,102,105,116,117 
strip theory, see aerodynamics, strip theory 
structural integrity, loss of, 2,3,5,127,131,144, 

146,175,176 
sweep, 153-168,172

Theodorsen, Т., 194,203 
Theodorsen function, 203-206,214,216,224-226 
Theodorsen theory, 188,195,203-207,211,

214-217,224-228 
thin-airfoil theory, see aerodynamics, thin-airfoil 

theory
time domain, 30,49,187,203,205-207,210 
torsion, see beams, torsion of 
torsional stiffness/flexibility, 2,16,21,107,135,

137,141,145,147,167,170,173,182 
transcendental, 63,68,83,86,101 
transverse shear, 18-21,59,73-76,85, 88,90,93, 

98,100,101,104,139,155,164 
traveling wave solution, see solution, traveling 

wave
trivial solution, see solution, trivial 
twist, see beams, torsion of 
twist, axis of, 139
twisting moment, 16,17,21,58-62,64,66,69,93, 

106,109,110,139-142,155,164

unit step, 53

virtual displacement, 9,15,48,110,183,184,232, 
239

virtual rotation, 17,183,184
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virtual work, 9,15,17,20,48,49,68,69,92,94,95, 
97,109, 111, 114,158,170,171,184,212-214,
236,239 

V-N diagram, 146 
vorticity, 202,203,205

warping, 1,15,16
wave equation, 13,31,32,36,37,41-45,57,116 
Wright brothers, 1

Young’s modulus, 19,20
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