

Е.И.БУТИКОВ, А.А.БЫКОВ, А.С.КОНДРАТЬЕВ

ФИЗИКА

В ПРИМЕРАХ И ЗАДАЧАХ

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для слушателей подготовительных отделений высших учебных заведений

· · · · ·

МОСКВЛ «НАУКА» ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ 1979 22.3 Б 93 УДК 530.1

Евгений Иванович Бутиков Александр Александрович Быкоя Александр Сергеевич Кондратьев

ФИЗИКА В ПРИМЕРАХ И ЗАДАЧАХ

М., 1979 г., 464 стр. с илл.

Редактор В. П. Белоусов

Техн. редактор И. Ш. Аксельрод Корректоры З. В. Автонеева, Т. С. Вайсберг

ИБ № 11422

Сдано в набор 28.04.79. Подписано к печати 28.08.79. Бумага 84×108¹/за. Тип. № 3. Литературная гарнитура. Высокая печать. Услови. печ.л. 24.36. Уч.-изд. л. 23,81. Тираж 300 000 экз. Заказ № 112. Цена книги 80 коп.

> Издательство «Наука» Главная редакция физико-математической литературы 11707 І. Москва, В-71. Ленинский просцект. 15

Ордена Октябръской Революции и ордена Трудового Красного Знамени Первая Образцовая типография имени А. А. Жданова Сокополиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. Москва, М-54, Валовая, 28

С «Наука», Главная редакция физико-математической литературы 1979 Решение задач составляет неотъемлемую часть полноценного изучения физики на любом уровне — от первоначального, школьного, вплоть до специального физического образования.

Судить о степени понимания физических законов можно по умению сознательно их применять для анализа конкретных физических явлений, т. е. для решения задач. Опыт преподавания показывает, что наибольшую трудность для учащихся представляет вопрос «с чего начать?», т. е. не само использование физических законов, а именно выбор, какие законы и почему следует применять при анализе каждого конкретного явления. Это умение выбрать путь решения задачи, т. е. умение определить, какие именно физические законы описывают рассматриваемое явление, как раз и свидетельствует о глубоком и всестороннем понимании физики. Сколько раз при преподавании физики и в школе, и в вузе авторам приходилось наблюдать, как ознакомление буквально с несколькими первыми строчками приводимых в задачнике решений позволяет учащемуся более или менее уверенно довести решение до конца самостоятельно. Но даже и после этого значительная часть учащихся, как правило, не может объяснить, почему же применение именно данного физического закона приводит к поставленной цели. Преодолению этих трудностей и призвано помочь предлагаемое пособие.

Однако это не единственная цель, которую ставили перед собой авторы. По их глубокому убеждению, должна существовать и «обратная связь» между разбираемыми задачами и физическими законами. Каждая задача должна давать повод для серьезного и глубокого, пусть иногда и совсем краткого, разговора о сути физических явлений и законов. Изучая физику, учащиеся постигают различные физические законы, одни из которых относятся только к определенному кругу явлений, папример механических, электрических, оптических, другие же являются фундаментальными, общими для всех физических явлений. Для глубокого понимания физики необходимо четкое осознание степени общности различных физических законов, границ их применимости, их места в общей физической картине мира. Во многих задачах всех разделов книги показывается, как, например, применение закона сохранения энергии часто позволяет решить задачу проще, взглянуть на нее с более общих позиций и, что особенно важно, дает возможность найти ответы на некоторые вопросы, касающиеся тех явлений, для которых неизвестны описывающие их конкретные законы.

При решении задач необходимо умение уверенно применять законы сохранения, но научиться правильному применению этих законов не так просто. Иногда, уверовав во всемогущество фундаментальных законов физики, учащиеся начинают применять их формально, без анализа сути происходящих явлений. В книге на примере некоторых разбираемых задач показано, к каким ошибкам это может привести. В этом отношении особенно поучительны задачи, в которых рассматриваются столкновения упругих стержней.

Процесс решения задачи похож на небольшое исследование. Как и в настоящем научном исследовании, заранее далеко не всегда ясно, какой должна быть последовательность действий для получения результата. Никаких универсальных рецептов для этого не существует. Необходимое умение приходит только в результате упорного труда по мере накопления опыта.

Физический мир сложен. Далеко не все явления поддаются классификации по разделам физики. Поэтому порой не так просто отнести ту или иную задачу к определенному разделу. Но именно такие задачи, как правило, и представляют наибольший интерес, поскольку в них можно почувствовать единство физического мира, увидеть аналогию между совершенно разными по своей физической природе явлениями и найти общий язык для их описания.

В предлагаемой книге подобные задачи отнесены к определенному разделу по формальному виду их условия, несмотря на то, что в процессе решения приходится затрагивать материал других разделов.

В приводимых решениях задач и разборах примеров уделяется особое внимание тем моментам, которые должны присутствовать в любом исследовании. Это, прежде всего, обоснованный выбор идеализации изучаемого процесса, ибо вместо самого явления мы всегда вынуждены рассматривать некоторую упрощенную модель, стремясь сохранить в пей самые характерные, нанболее важные черты явления. Во-вторых, это обязательное исследование простых частных и предельных случаев, для которых ответ очевиден или может быть получен сразу независимо от общего решения. Очень полезен также поиск и разбор аналогий с другими задачами и явлениями, а также сравнение методов их анализа.

При решении задач широко используются приближенные методы. Часто их применение не только облегчает решение задачи, но и позволяет представить результат в более удобном для исследования виде. В некоторых случаях, когда получение даже приближенного результата сопряжено с необходимостью выхода за рамки принятого уровня изложения, используются оценки, дающие качественную картину и порядок величины. И, наконец, обращается внимание на возможность разных подходов к решению задачи.

Предлагаемое пособиє является логическим продолжением книги «Физика» (для поступающих в вузы) тех же авторов, выпущенной в свет издательством «Наука» в 1978 г. Оно может быть использовано и независимо от упомянутой книги теми, читателями, которые хорошо знакомы с теоретическим материалом, но хотели бы приобрести или развить навыки в решении задач.

При написании книги авторы использовали опыт, полученный при создании учебного пособия «Физика в задачах», которое выходило в издательстве Ленинградского университета в 1974 и 1976 гг.

Все приведенные здесь задачи использовались на уроках физики в физико-математической школе-интернате при Ленинградском государственном университете им. А. А. Жданова. Многие из них предлагались на олимпиадах школьников г. Ленинграда и на семинарских занятиях со студентами на физическом факультете Ленинградского университета. Оказалось, что некоторые задачи представляют определенные трудности даже для студентов-физиков, несмотря на то, что для решения этих задач, строго говоря, не требуется знаний, выходящих за рамки школьной программы как по физике, так и по математике.

Авторы надеются, что книга окажется полезной для учащихся старших классов средней школы, профессионально-технических училищ и техникумов, а также для преподавателей и студентов вузов.

Авторы считают своим приятным долгом выразить искреннюю благодарность Б. Б. Буховцеву и В. С. Светозарову, взявшим на себя труд по рецензированию рукописи, и редактору В. П. Белоусогу. Их доброжелательная критика во многом способствовала улучшению книги.

Авторы

Кинематика изучает «геометрию» движения. Что мы под этим понимаем? «Геометрия» движения — это математическое описание движения без анализа причин, его вызывающих. Другими словами, без выяснения вопроса, почему рассматриваемое движение происходит именно так, а не иначе, устанавливается математическое соотношение между его различными характеристиками, такими как перемещение, пройденный путь, скорость, ускорение, время движения.

Движение материальной точки всегда рассматривается в какой-либо системе отсчета. Положение материальной точки можно определить, если задать ее радиус-вектор rили, что эквивалентно, три координаты x, y, z — проекции радиус-вектора на оси декартовой системы координат. Движение математически описано полностью, если известен радиус-вектор как функция времени r(t), т. е. известны три скалярные функции x(t), y(t), z(t). Например, для равномерного движения, т. е. движения с постоянной скоростью v, функция r(t) имеет вид

$$\boldsymbol{r}\left(l\right) = \boldsymbol{r}_{0} + \boldsymbol{v}l, \qquad (1)$$

а для равнопеременного движения с ускорением а

$$r(t) = r_0 + v_0 t + at^2/2.$$
 (2)

В этих формулах r_0 характеризует начальное положение точки, т. е. $r_0 = r(t)|_{t=0} = r(0)$, v_0 — начальная скорость. Подчеркием, что в кинематике ускорение считается за-

Подчеркнем, что в кинематике ускорение считается заданным. Величина ускорения находится либо опытным путем, либо расчетным с помощью законов динамики, когда известны силы, определяющие характер движения. Забегая вперед, отметим, что уравнение (1) описывает движение материальной точки в инерциальной системе отсчета, если на точку пе действуют силы (или все действующие силы уравновешиваются), а уравнение (2) — если действующие силы постоянны. В последнем случае говорят, что движение тела происходит в постоянном во времени однородном силовом поле. Примером такого поля может служить поле тяготения вблизи поверхности Земли при условий, что высота тела над поверхностью мала по сравнению с радиусом Земли. Разумеется, движение тела вблизи поверхности Земли описывается уравнением (2) только тогда, когда можно не учитывать сопротивление воздуха.

Итак, функция r(t) содержит полную информацию о кинематике движения тела, т. е. ответ на любой вопрос в кинематических задачах можно получить, используя только зависимость r(t). Никаких других физических законов при этом привлекать не требуется. Например, зависимость мгновенной скорости точки от времени в однородном поле может быть получена из соотношения (2) дифференцированием радиус-вектора по времени и имеет вид

$$\boldsymbol{v}(t) = \boldsymbol{v}_0 + \boldsymbol{a}t.$$

При решении задач мы будем записывать уравнение (2) непосредственно в проекциях на оси координат. При постоянном ускорении a всегда можно выбрать систему координат таким образом, чтобы векторное уравнение (2) сводилось к двум скалярным: так как траектория, по которой движется тело, плоская, то нужно просто совместить, например, плоскость x, y с плоскостью, в которой лежит траектория. Тогда векторное уравнение (2) эквивалентно двум скалярным уравнениям

$$\begin{aligned} x(t) &= x_0 + v_{0x}t + a_x t^2/2, \\ y(t) &= y_0 + v_{0y}t + a_y t^2/2. \end{aligned}$$
 (3)

В частности, если рассматривать движение тела вблизи поверхности Земли под действием только силы тяжести, то удобно направить ось *у* вертикально вверх. Тогда вектор ускорения имеет только одну отличную от нуля проекцию: $a_x=0$, $a_y=-g$, и система (3) принимает вид

$$x(t) = x_0 + v_{0x}t = x_0 + v_0\cos\varphi \cdot t, y(t) = y_0 + v_{0y}t - gt^2/2 = y_0 + v_0\sin\varphi \cdot t - gt^2/2,$$
(4)

где φ — угол, образованный вектором начальной скорости с горизонтом. Иногда удобно поместить начало координат в начальную точку траектории, тогда $x_0 = y_0 = 0$.

При равномерном движении материальной точки по при равномерном двяжении материальной точки по окружности вектор скорости изменяется только по направ-лению, оставаясь неизменным по абсолютной величине (по модулю). Вектор ускорения при этом направлен к центру окружности перпендикулярно вектору скорости, т. е. по нормали к траектории. Величина ускорения равна

$$a=v^2/R,$$
 (5)

где *R* — радиус окружности. Эта же формула справедлива и при движении точки с постоянной по величине скоростью v по произвольной криволинейной траектории. В этом случае R есть радиус кривизны траектории в рассматриваемой точке. Вектор ускорения при этом направлен к центру кривизны, т. е. перпендикулярно вектору скорости, на-правленному по касательной к траектории. Если же скорость меняется по величине, то у вектора ускорения кроме нормальной составляющей, даваемой той же формулой (5), будет еще составляющая, направленная по вектору скорости или против него, в зависимости от того, увеличивается или уменьшается скорость движущейся материальной точки.

Решение кинематической задачи сводится к использованию указанных выше уравнений в конкретных условиях, сформулированных в задаче. При этом было бы наивно пытаться овладеть каким-то «общим методом» решения, пригодным для всех задач; подобного «общего метода» по-просту не существует. Наоборот, на приводимых примерах читатель может убедиться, что всегда существует несколько более или менее различающихся между собой подходов к исследованию физических явлений.

Разные подходы нередко оттеняют новые стороны изу-чаемого явления, позволяя глубже проникнуть в его физический смысл. Поэтому в большинстве разбираемых задач приводятся различные варианты решения.

1. Переправа. Представим себе реку с параллельными берегами, расстояние между которыми l (рис. 1.1). Скорость течения по всей ширине реки одинакова и равна \boldsymbol{u} . С какой наименьшей постоянной скоростью \boldsymbol{v}_{\min} относительно воды должна плыть лодка, чтобы из точки A попасть в точку B на противоположном берегу, находящуюся на расстоянии с ниже по течению?

На какое минимальное расстояние s_{min} снесет лодку вниз по течению при переправе на другой берег, если величина ее скорости относительно воды равна v?

Чтобы ответить на эти вопросы, нужно прежде всего отчетливо представить себе, что скорость лодки относитель-

Рис. 1.1. Переправа через реку. Скорость течения и в любом месте реки одинакова.

Рис. 1.2. Скорость лодки относительно берегов V равна сумме векторов и и v.

но берегов V есть векторная сумма скорости течения u и скорости лодки относительно воды v (рис. 1.2):

$$V = u + v. \tag{1}$$

Будем считать, что лодка имеет относительно воды некоторую неизменную по величине скорость v. Тогда, отправляясь из точки A, лодка сможет попасть в точку B только

Рис. 1.3. Выбор направления скорости лодки о для переяравы из А в В.

Рис. 1.4. К вычислению минимальной скорости vmin.

в том случае, если ее скорость относительно берегов V удастся направить по прямой AB или левее этой прямой. Если ни при каком направлении v мы не сможем получить в начальный момент результирующую скорость V вдоль прямой AB, то лодку обязательно снесет течением ниже точки B (рис. 1.3).

точки *B* (рис. 1.3). Нужное нам направление вектора *V* может быть получено при разных значениях вектора *v*. Скорость течения *u* во всех случаях направлена одинаково и изображается одним и тем же вектором. Скорость лодки относительно воды *v* может быть направлена по-разному. Из рис. 1.3 видно, что величина этой скорости будет наименьшей в том случае, когда скорость лодки относительно берега *V* направлена именно по прямой *AB*, а скорость *v* перпендикулярна этой прямой. Этот случай показан на рис. 1.4. Из подсбия изображенных прямоугольных треугольников находим

$$\frac{v_{\min}}{u} = \frac{l}{\sqrt{l^2 + s^2}} \,. \tag{2}$$

Отметим, что если мы хотим попасть в точку *B*, двигаясь с минимальной возможной скоростью v_{\min} , то нам придется направить нос лодки перпендикулярно выбранной траекто-рии лодки *AB*. Лодку будет сносить течением, и в резуль-тате она будет боком приближаться к намеченной цели! Возвращаясь к рис. 1.3, мы видим, что для получения ответа на первый вопрос задачи нам пришлось проанали-зировать треугольник, соответствующий закону сложения скоростей (1). В этом треугольнике одва из сторон (*u*) была задана по величине и направлению. Направление другой с тороны (*V*) мы выбрали, исходя из условия задачи — требовання попасть в точку *B*. Тогда для получения мини-мального значения величины третьей стороны (*v*) ее нужно было направить перпендикулярно выбранному направле-нию *V*. нию V.

 нию v.
 Аналогичные рассуждения можно использовать и для ответа на второй вопрос задачи. Вектор скорости течения и и в этом случае задан по величине и по направлению.
 Что касается второго слагаемого в правой части выражения (1) — вектора скорости лодки относительно воды v, то заранее известна только его величина v, а направление может быть любым. Если начало вектора v совместить с концом вектора u (рис. 1.5), то конец вектора v может лежать в любой точке окружности радиуса v. Из рис. 1.5, δ сразу видно, что снос лодки течением неизбежен, если v < u. Если же скорость лодки v больше скорости u, то при должном выборе направления v можно добиться того, что сноса вообще не будет (рис. 1.5, a). Более того, при v > u можно,

Рис. 1.5. Выбор направления для переправы с минимальным сносом.

нереправляясь через реку, причалить к противоположному берегу в любом месте выше по течению.

Анализ рис. 1.5, б показывает, что при v < u снос будет минимальным, если вектор скорости лодки относительно берегов V направлен по касательной к окружности радиуса v. Сравнивая изображенные на этом рисунке подобные треугольники, находим величину минимального сноса лодки s_{min} :

$$s_{\min} = l \frac{\sqrt{u^2 - v^2}}{v}$$
 (v < u). (3)

Посмотрите еще раз на рис. 1.5, б и сообразите, куда следует направлять нос лодки при переправе, чтобы ее снос течением был минимальным.

2. Как опередить автобус? Человек находится в поле на расстоянии *l* от прямолинейного участка шоссе. Справа от себя он замечает движущийся по шоссе автобус. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автобуса как можно дальше от него? Скорость автобуса *u*, скорость человека *v*.

Интерес, разумеется, представляет только случай v < u, так как при v > u человек может убежать от автобуса на любое расстояние. Чтобы выбежать на шоссе как можно раньше, человек должен избрать кратчайший путь. Если при этом он даже и успеет выбежать на шоссе впереди автобуса, то все равно расстояние до автобуса не будет максимальным из возможных. В самом деле, если бежать не перпендикулярно шоссе, а под некоторым небольшим углом α к перпендикуляру (рис. 2.1), то путь человека до шоссе увеличится на

Рис. 2.1. Бежать к шоссе нужно не по кратчайшему пути.

Рис. 2.2. Скорость человека в системе отсчета, где автобус неподвижен.

величину Δl , но зато он выбежит на дорогу на расстоянии d левее точки B. Если выбрать угол α достаточно малым, то расстояние d можно сделать больше расстояния Δl в любое число раз. Поэтому, несмотря на то, что скорость человека v меньше скорости автобуса u, он окажется на шоссе на большем расстоянии от автобуса, чем в точке B.

В каком же направлении следует бежать человеку? Оказывается, что на этот вопрос легко ответить, если перейти в другую систему отсчета, в которой автобус покоится. Эта система отсчета движется относительно земли в левую сторону со скоростью u. В данной системе неподвижно стоящий на земле человек имеет скорость u, направленную вправо (рис. 2.2). Полная скорость человека в новой системе отсчета V равна векторной сумме u и скорости человека относительно земли v.

Теперь нетрудно сообразить, что эта задача эквивалентна рассмотренной выше задаче о минимальном сносе лодки при переправе на другой берег реки. Так как в рассматриваемой системе отсчета автобус неподвижен, то требование выбежать на шоссе как можно дальше от автобуса равносильно требованию минимального сноса лодки при переправе через реку. Поэтому искомое направление вектора **v** определяется таким же построением, как и в предыдущей задаче (рис. 2.3). Траектория человека в системе отсчета, где автобус неподвижен, — это прямая *AC*. Траектория же в системе отсчета, связанной с землей, — прямая *AD*.

Рис. 2.3. К нахождению направления движения человека.

Таким образом, бежать к шоссе нужно не по кратчайшему пути, а под углом а к нему, причем

$$\sin \alpha = \frac{v}{u}$$
.

Из рис. 2.3 видно, что человек сможет прибежать на шоссе раньше автобуса только в том случае, если в начальный момент автобус находится от точки B на расстоянии, не меньшем s_{min} , где

$$s_{\min} = l \frac{\sqrt{u^2 - v^2}}{v} \, .$$

Рассмотренная задача может служить примером того, как удачный выбор системы отсчета позволяет значительно облегчить решение.

3. Раднус кривизны. Найти радиус кривизны циклоиды в верхней точке ее дуги — в точке A на рис. 3.1.

Нахождение радиуса кривнзны заданной кривой — это, разумеется, чисто геометрическая задача. Для ее решения достаточно знать уравнение кривой. Поэтому на первый взгляд не ясно, какое отношение к физике имеет поставленный в задаче вопрос. Однако иногда такие задачи можно очень просто решить, воспользовавшись тем, что радиус кривизны кривой входит в некоторые кинематические формулы. Основная идея заключается в том, что рассматриваемую геометрическую кривую представляют как траекторию какого-либо достаточно простого механического движения и исследуют это движение методами кинематики.

Рис. 3.1. Циклонда.

Циклонду можно рассматривать как траекторию какойлибо точки обода колеса, которое катится без проскальзывания по прямой. На рис. 3.2 показана циклоида, которую

Рис. 3.2. Циклоида как траектория точки обода катящегося колеса.

«вычерчивает» точка A, находившаяся внизу в начальный момент. Точка A описывает данную циклоиду независимо от того, катится ли колесо равномерно или с ускорением, важно только, чтобы оно не проскальзывало. Проще всего рассмотреть, разумеется, равномерное качение колеса. Такое качение получается в результате сложения равномерного вращения колеса вокруг оси и равномерного поступательного движения, скорость которого v равна произведению угловой скорости на радиус колеса r.

Во всех инерциальных системах отсчета материальная точка имеет одно и то же ускорение. Поэтому находить его можно в любой такой системе отсчета. Ясно, что ускорение

точек обода колеса связано только с его вращением вокруг оси. Поэтому ускорение *а* любой точки обода направлено по радиусу к центру колеса и равно

$$a = v^2/r.$$
 (1)

Значит, и в высшей точке циклонды ускорение элемента обода колеса равно $v^{2/r}$ и направлено вниз (рис. 3.2). Теперь рассмотрим движение этой же точки обода как

Геперь рассмотрим движение этой же точки осода как движение по циклоиде. Скорость в любой точке траектории направлена по касательной к ней; значит, в высшей точке циклоиды скорость направлена горизонтально. Ускорение же, как мы выяснили, направлено вертикально вниз, т. е. перпендикулярно вектору скорости. Поэтому найденная выше величина ускорения может быть записана также в виде

$$a = V^2 / R, \tag{2}$$

где V— величина скорости точки обода в ее верхнем поло-женин, а R— искомый радиус кривизны циклонды. Для нахождения V будем рассуждать следующим обра-зом. Скорость любой точки обода катящегося колеса равна векторной сумме скорости поступательного движения колеса и линейной скорости вращения вокруг осн. При отсутствии проскальзывания эти скорости равны по величине. В верхней точке они и направлены одинаково. Поэтому V=2v, и, сравнивая формулы (1) и (2), находим

$$R=4r.$$
 (3)

Радиус кривизны циклоиды в верхней точке равен удво-енному диаметру колеса. Если бы мы рассматривали каче-ние колеса как вращение вокруг мгновенной осн, совпадаю-щей в каждый момент с нижней неподвижной точкой колеса (рис. 3.2), то могло бы показаться, что верхняя точка дви-жется по окружности, радиус которой равен диаметру ко-леса. Так оно и было бы, если бы мгновенная ось вращения О оставалась неподвижной. На самом деле эта ось переме-щается вместе с колесом, и именно поэтому рассматриваемая точка обода A движется в этот момент по окружности, ради-ус которой дается формулой (3).

4. В цель с наименьшей начальной скоростью. Необходимо с поверхности земли попасть камнем в цель, которая расположена на высоте *h* и на расстоянии *s* по горизонтали. При какой наименьшей начальной скорости камня это возможно? Сопротивлением воздуха пренебречь.

На первый взгляд кажется, что начальная скорость камия будет панменьшей, если верхняя точка его траектории совпалает с мишенью

(рис. 4.1, *a*).

Может быть, и вам так показалось? Иллюзия эта настолько сильна, что подобное решение аналогичной задачи можно встретить в некоторых солидных пособиях по решению физичезалач. Олнако. ских даже не решая задачи. убедиться, легко 410 так. Лействи-ЭТО не тельно, будем мысленно уменьшать высоту, на которой расположена пель. При этом точка, куда попадает камень. продолжает согласно предположению оставаться верхней точкой траектории (рис. 4.1, б), в том числе и в предельном случае h=0. Но

Рис. 4.1. К выбору оптимальной траектории.

совершенно очевидно, что для того, чтобы попасть в цель, находящуюся на земле, достаточно просто добросить камень до цели (рис. 4.1, б). Итак, предположение о том, что цель совпадает с высшей точкой траектории полета камня, неверно.

Ошибочность этого предположения становится еще более очевидной, если заметить, что требуемая при этом начальная скорость должна возрастать по мере того, как $h \rightarrow 0$.

Приведенный анализ представляет собой пример проверки решения задачи предельным переходом к более простому случаю, когда ответ либо очевиден, либо может быть легко найден.

Из приведенного качественного анализа можно сделать заключение, что цель всегда должна находиться на нисходящей ветви траектории (рис. 4.1, в). Еще раз напомним, что мы ищем траекторию с минимальной начальной скоростью.

Приступим к решению задачи.

Пусть камень брошен под углом α к горизонту и попал в цель. Его перемещения по горизонтали s и по вертикали h могут быть записаны следующим образом:

$$s = v_0 \cos \alpha \cdot t,$$

$$h = v_0 \sin \alpha \cdot t - gt^2/2.$$

Поскольку время полета камия t нас не интересует, исключим его из этих уравнений. Выражая t из первого уравнения и подставляя во второе, получаем

$$h = s \operatorname{tg} \alpha - \frac{g s^2}{2 v_0^2 \cos^2 \alpha} \,. \tag{1}$$

Это уравнение содержит две неизвестные величины v_0 и α и имеет поэтому бесчисленное множество решений, что соответствует возможности попасть в цель бесконечным числом способов. Из этих решений нам нужно выбрать то, которое соответствует минимальному значению v_0 .

спосооов. Из этих решений нам нужно выорать то, которое соответствует минимальному значению v_0 . Прямой путь решения этой задачи состоит в нахождении v_0 как функции от α из уравнения (1) и исследовании этой функции на экстремум, что требует, однако, применения высшей математики. Поэтому поступим иначе. Решим уравнение (1) отпосительно α . Используя известное соотношение $1/\cos^2 \alpha = 1 + tg^2 \alpha$, замечаем, что из (1) получается квадратное уравнение относительно $tg \alpha$:

$$gs^{2} tg^{2} \alpha - 2v_{b}^{2} s tg \alpha + gs^{2} + 2v_{b}^{2} h = 0.$$
 (2)

Решив его, получим

$$tg \alpha = \frac{1}{gs} \left[v_0^2 \pm \sqrt{v_0^4 - g \left(gs^2 + 2v_0^2 h \right)} \right].$$

Казалось бы, ничего хорошего не получается — громоздкое выражение. А на самом деле мы в двух шагах от ответа на вопрос задачи. Действительно, для tg α физический смысл имеют только вещественные решения, и поэтому дискриминаит должен быть неотрицательным:

$$v_0^4 - 2ghv_0^2 - g^2 s^2 \ge 0.$$

Легко убедиться, что мннимальное значение v_0^2 , при котором это соотношение справедливо, соответствует случаю равенства; таким образом,

$$v_{\text{omin}}^2 = g(h + \sqrt{h^2 + s^2}).$$

(Второй корень $v_{0\min}^2 = g(h - \sqrt{h^2 + s^2})$ не имеет физического смысла, так как квадрат скорости есть величина положительная.) Итак, полученный нами ответ имеет следующий вид:

$$v_{\text{omin}} = \sqrt{g(h + \sqrt{h^2 + s^2})}$$
 (3)

Проанализируем теперь решение несколько подробнее. Возвратимся к квадратному уравнению для tg α . При положительном дискриминанте оно имеет два решения, т. е. при заданном значении v_0 камень может попасть в цель по двум различным траекториям. При отрицательном дискриминанте решений нет, т. е. ни при каком значении угла α камень не попадет в цель при заданной скорости. При равном нулю дискриминанте имеется только одно решение (единственная траектория полета камня до цели). Именно в этом случае, как мы выяснили, пачальная скорость будет минимальной, а выражение для tg α имеет особенно простой вид:

$$tg \alpha = \frac{v_{0\min}^2}{g_s} = \frac{h + \sqrt{h^2 + s^2}}{s} .$$
 (4)

Проверим правильность полученного результата предельными переходами.

1. Если h=0, то tg $\alpha=1$, т. е. камень нужно бросить под углом $\pi/4$. Хорошо известно, что это соответствует максимальной дальности полета по горизонтали при заданной начальной скорости, а при заданной дальности — минимальной начальной скорости. Этот случай уже обсуждался вначале.

2. Если $s \rightarrow 0$, то $tg \alpha \rightarrow \infty$, а $\alpha \rightarrow \pi/2$. Действительно, камень следует бросать вертикально вверх, и только в этом

случае положение цели совпадает с наивысшей точкой траектории.

Итак, мы решили поставленную задачу, потребовав, чтобы корни квадратного уравнения (2) для tg α имели физический смысл, т. е. были вещественными.

Рассмотрим теперь несколько иной способ рассуждений, приводящий, естественно, к тому же результату. Прежде всего отметим одно очевидное обстоятельство: при заданном расстоянии *s* чем выше расположена цель, тем больше должна быть минимальная начальная скорость камня. Поэтому, вместо того чтобы искать минимум v_0 при заданном *h*, можно искать максимум *h* при заданном v_0 .

Предположим, что v₀ задано. Тогда, выразив h из (2):

$$h = -\frac{gs^2}{2v_0^2} tg^2 \alpha + s tg \alpha - \frac{gs^2}{2v_0^2},$$

легко исследовать получившийся квадратный трехчлен отпосительно tg α на максимум. (Напомним, что максимум квадратного трехчлена $y = ax^2 + bx + c$ (a < 0) имеет место при x = -b/2a и равен $c - b^2/4a$.) Максимальное значение h достигается при tg $\alpha = v_0^2/gs$ и равно

$$h = \frac{v_0^2}{2g} - \frac{gs^2}{2v_0^2} \,. \tag{5}$$

Из (5) находим минимальное значение начальной скорости v_0 при заданной высоте цели h, совпадающее с полученным ранее.

5. В цель за стеной. Между целью и минометом, находящимися на одной горизонтали, расположена стена высотой *h*. Расстояние от миномета до стены равно *a*, а от стены до цели *b*. Определить минимальную величину начальной скорости мины, необходимую для поражения цели. Под каким углом при этом следует стрелять? Сопротивлением воздуха пренебречь.

Попробуем разобраться в этой задаче, не выписывая пока никаких формул. Рассмотрим все траектории, проходящие через цель, забыв на время о существовании стены. На рис. 5.1 выделена траектория, соответствующая наименьшему значению начальной скорости мины. Напомним, что этой траектории соответствует угол $\alpha = 45^\circ$. Нетрудно убедиться, что начальные скорости, соответствующие другим траекториям, монотонно возрастают при удалении этих траекторий от выделенной как вверх, так и вниз. Поэтому, если стена окажется ниже выделенной траектории, то решение тривиально: именно эта траектория и

Рис. 5.1. Траектории, проходящие через цель.

удовлетворяет поставленным условиям. Если стена окажется выше, то искомая траектория проходит через верхний край стены. Вот и все.

Теперь остается только записать эти рассуждения на математическом языке, т. е. получить выражения для величины начальной скорости υ₀ и угла α в каждом из этих случаев.

Прежде всего получим общее уравнение траекторий, проходящих через цель. Как мы уже знаем, уравнение траекторий, выходящих из начала координат, имеет вид

$$y = x \operatorname{tg} \alpha - \frac{g x^2}{2v_0^2} (1 + \operatorname{tg}^2 \alpha).$$
 (1)

Потребуем, чтобы эти траектории проходили через цель. Для этого положим в (1) y=0 при x=a+b:

$$0 = (a+b) \operatorname{tg} \alpha - \frac{g \, (a+b)^2}{2v_0^2} \, (1 + \operatorname{tg}^2 \alpha). \tag{2}$$

Выражая из (2) начальную скорость v₀ и подставляя в (1), получим уравнение траекторий, проходящих через цель:

$$y = x \left(1 - \frac{x}{a+b} \right) \lg \alpha.$$
 (3)

Придавая α разные значения в пределах от 0 до $\pi/2$, получаем все траектории, изображенные на рис. 5.1. Вы-деленная траектория получается при tg $\alpha = 1$ ($\alpha = \pi/4$):

$$y = x \left(1 - \frac{x}{a+b} \right). \tag{4}$$

Выясним теперь, при каком условии эта траектория проходит над стеной. Для этого найдем высоту h₁ точки траектории при x = a:

$$h_1 = a \left(1 - \frac{a}{a+b} \right) = \frac{ab}{a+b} \,.$$

Таким образом, если высота стены h меньше, чем h_i , то искомая траектория определяется выражением (4), а соответствующая ей начальная скорость v_0 легко находится из уравнения (2) при tg α =1:

$$v_{\text{omin}} = \sqrt{g(a+b)}$$

Это есть обычное соотношение между начальной скоростью и максимальной дальностью полета по горизонтали. Определим теперь искомую траекторию, если стена вы-ше выделенной траектории: $h > h_1$. Как уже отмечалось, в этом случае нужно найти траекторию, проходящую через верхний край стены, т. е. положить в (3) y=h при x=a:

$$h = a \left(1 - \frac{a}{a+b} \right) \operatorname{tg} \alpha_1,$$

откуда $tg \alpha_1 = h (a+b)/ab$. Уравнение искомой траектории получим, подставив найденное значение $tg \alpha_1$ в формулу (3):

$$y = x \left(1 - \frac{x}{a+b} \right) \frac{a+b}{ab} h.$$

Отметим, что для ответа на поставленные в задаче вопросы это уравнение нам не требуется, но оно дает возможность проследить, через какие точки мина летит к цели. Для нахождения соответствующей этой траектории начальной скорости нужно подставить полученное значение $tg\alpha_1$ в уравнение (2):

$$v_{\text{omin}}^2 = \frac{gab}{2h} \left[1 + \left(h \frac{a+b}{ab}\right)^2 \right].$$

Итак, резюмируя изложенное, сформулируем ответ:
если
$$h \leq \frac{ab}{a+b}$$
, то
 $\alpha = \frac{\pi}{4}$, $v_0^2 = g(a+b)$;
если $h \geq \frac{ab}{a+b}$, то
 $\alpha = \arctan\left(h\frac{a+b}{ab}\right)$, $v_0^2 = \frac{gab}{2h}\left[1 + \left(h\frac{a+b}{ab}\right)^2\right]$.

Полезно и в этой задаче рассмотреть предельные случаи. Не будем останавливаться на относительно малонитересных случаях, как, например, a=b (стена посредине между минометом и целью).

Бессмысленно полагать a=0 или b=0 при $h \neq 0$, но несомненно представляет интерес случай, когда a и b одновременно стремятся к нулю (при $h \neq 0$). В этом предельном случае требуется просто перебросить мину через стену. Ответ в этом случае очевиден: стрелять нужно вертикально вверх ($\alpha = \pi/2$), а начальная скорость $v_0 = \sqrt{2gh}$. Покажем, как получить этот результат из ответа к задаче. Здесь, конечно, нужно обращаться к случаю $h \ge ab/(a+b)$. Полагая a=b и одновременно устремляя их к нулю, получим $\alpha \rightarrow$ $\rightarrow \pi/2$ и

$$v_0^2 = \frac{g}{2h} \left[ab + h^2 \frac{(a+b)^2}{ab} \right] = \frac{g}{2h} \left(a^2 + 4h^2 \right) \longrightarrow 2gh.$$

6. Простреливаемая область. Зенитное орудне может сообщить снаряду начальную скорость v_0 в любом направлении. Требуется найти зону поражения, т. е. границу, отделяющую цели, до которых снаряд из данного орудия может долететь, от недостижимых целей. Сопротивлением воздуха пренебречь.

Попробуем сначала выяснить, что можно сказать об этой границе, не решая задачи. Сам факт существования такой границы сомнений не вызывает, так что поставленный в задаче вопрос имеет смысл (кстати, начиная решать задачу, никогда не вредно подумать об этом). Попытаемся представить себе искомую границу. Очевидно, что она представляет собой некоторую поверхность. Если цель находится точно над орудием, то стрелять нужно вертикально вверх. Снаряд при этом поднимается на высоту $h=v_0^2/2g$, после чего начинает падать вниз, так что граница достижимых целей пересекает вертикаль в точке, находящейся на высоте h.

Если ограничиться целями, находящимися на горизонтальной плоскости, то очевидно, что граница представляет

Рис. 6.1. Граница простреливаемой области.

собой окружность, радиус которой равен максимальной дальности полета снаряда по горизонтали $s=v_0^2/g$ (напомним, что максимальная дальность полета по горизонтали достигается при угле возвышения ствола орудия $\alpha = \pi/4$). Эта

Рис. 6.2. Граница является огибающей для траекторий.

окружность есть пересечение искомой поверхности с горизонтальной плоскостью (рис. 6.1). Вообще из симметрии можно сделать вывод, что искомая поверхность представляет собой поверхность вращения некоторой кривой вокруг вертикали, проходящей через орудие, и задача сводится к нахождению этой кривой. Отметим, что кривая есть огибающая всех возможных траекторий (рис. 6.2). Приступим к решению задачи. Выберем систему координат: орудие расположим в начале координат, ось *х* направим горизонтально, ось *у* — вертикально. Тогда зависимость координат снаряда от времени выразится следующим образом:

$$\begin{aligned} x(t) &= v_0 \cos \alpha \cdot t, \\ y(t) &= v_0 \sin \alpha \cdot t - gt^2/2. \end{aligned}$$

Исключив из этих уравнений t, получим уравнение траектории снаряда y = f(x):

$$y = x \operatorname{tg} \alpha - \frac{g x^2}{2v_0^2} (1 + \operatorname{tg}^2 \alpha).$$
 (1)

Это уравнение параболы. Коэффициенты при x и x^2 зависят от угла α , т. е. при разных направлениях начальной скорости получаются различные траектории. Таким образом, данное уравнение описывает семейство траекторий при одной и той же величине, но различных направлениях начальной скорости v_0 .

Но этому же уравнению можно придать и другой смысл. Будем теперь рассматривать x и y как координаты определенной цели, в которую попадает снаряд, двигаясь по некоторой траектории. Тогда при заданных координатах цели x и y уравнение (1) определяет угол, под которым нужно выпустить снаряд с начальной скоростью v_0 для того, чтобы он попал в эту цель. Решая это квадратное относительно tg α уравнение, находим

$$tg \alpha = \frac{1}{gx} \left[v_0^2 \pm \sqrt{v_0^4 - g \left(gx^2 + 2v_0^2 y \right)} \right].$$
(2)

Если уравнение имеет вещественное решение, т. е. дискриминант неотрицателен:

$$v_0^4 - g(gx^2 + 2v_0^2y) \ge 0,$$
 (3)

то в цель попасть можно. Если вещественных решений нет, т. е.

$$v_0^4 - g(gx^2 + 2v_0^2y) < 0,$$

то в цель попасть нельзя. Это значит, что цель находится за пределами искомой границы. Координаты цели, расположенной на границе, должны удовлетворять соотношению $v_0^4 - g(gx^2 + 2v_0^2y) = 0$. Выражая отсюда *у* как функцию *x*, получаем уравнение границы в явном виде:

$$y = \frac{v_0^2}{2g} - \frac{gx^2}{2v_0^2} \,. \tag{4}$$

Это уравнение параболы с вершиной при x=0, $y=v_0^2/2g$. Коэффициент при x^2 отрицателен, т. е. ветви параболы направлены вниз и пересекают горизонтальную ось в точках $x=\pm v_0^2/g$ (рис. 6.2). Итак, полученная граница действительно проходит через точки, которые вначале были нами установлены из элементарных соображений.

Мы нашли сечение граничной поверхности вертикальной плоскостью, проходящей через начало координат. Вся поверхность может быть получена вращением этой параболы вокруг оси *у*.

В связи с приведенным решением сделаем еще несколько замечаний. Рассмотрим какую-либо точку, находящуюся ближе границы (например точку A на рис. 6.2). Для такой точки подкоренное выражение в формуле (2) положительно, и, следовательно, через нее проходят две траектории (при заданной величине начальной скорости), соответствующие двум возможным значениям угла α .

В баллистике одна из этих траекторий называется настильной, а другая, касающаяся границы до попадания в цель, — навесной. Через каждую точку, принадлежащую границе, проходит лишь одна траектория. Отметим, что граница является огибающей для семейства траекторий при различных направлениях начальной скорости и фиксированном значении величины начальной скорости v_0 .

Приведем другой возможный путь решения этой задачи, связанный с еще одной трактовкой уравнения (1). Рассмотрим цели, находящиеся на одной вертикали, отстоящей от орудия на расстояние x, и найдем на пей самую высокую точку, в которую еще может попасть снаряд. Эта точка, очевидно, принадлежит границе. Таким образом, задача сводится к нахождению максимума y, т. е. правой части уравнения (1), рассматриваемой как функция угла α . Правая часть есть квадратный трехчлен относительно tg α и имеет максимум при tg $\alpha = v_0^2/gx$. Соответствующее максимуму значение y получается подстановкой этого значения

æ

tg а в уравнение (1):

$$y = \frac{v_0^2}{2g} - \frac{gx^2}{2v_0^2}$$
,

что совпадает с полученным ранее уравнением границы (4).

7. Грязь от колес. Телега равномерно катится по горизонтальной мокрой дороге. На какую максимальную высоту поднимаются капли воды, срывающиеся с обода колеса?

Эта задача во многом подобна предыдущим. Самая существенная особенность заключается, пожалуй, в том, что для ее решения нельзя поместить начало координат в

исходную точку траектории капли, так как отрыв капель происходит в разных точках обода колеса. Совместим поэтому начало координат с центром колеса, т. е. будем рассматривать движение капель в системе отсчета, связанной с телегой, движущейся равномерно и прямолинейно относительно земли. Очевидно, что максимальная высота подъема капель по вертикали не зависит от того, рассматривать их движение в системе отсчета. связанной с землей, или в

Рис. 7.1. Траектории капель в системе отсчета, связанной с телегой.

системе отсчета, связанной с равномерно движущейся по горизонтали телегой. Если скорость телеги равна v₀ и колеса не пробуксовывают, то в выбранной системе отсчета величина скорости любой точки обода также равна v₀. (Докажите последнее утверждение сами — это совсем просто.) Положение любой из точек, в которых происходит отрыв капли от обода, однозначно определяется углом φ (рис. 7.1).

Текущие координаты капли, оторвавшейся от обода колеса в точке, характеризуемой углом ф, определяются

соотношениями

$$x(t) = -R\cos\varphi + v_0\sin\varphi \cdot t, \qquad (1)$$

$$y(t) = R\sin\varphi + v_0\cos\varphi \cdot t - gt^2/2. \tag{2}$$

Для нахождения максимальной высоты подъема капли y_{\max} нужно подставить в уравнение (2) время подъема капли t_1 , которое проще всего найти следующим образом. В наивысшей точке траектории вертикальная составляющая скорости v_y обращается в нуль: $v_y = v_0 \cos \varphi - gt_1 = 0$, откуда

$$t_1 = (v_0 \cos \varphi)/g. \tag{3}$$

Тогда максимальная высота подъема капли, оторвавшейся от обода в рассматриваемой точке,

$$y_{\max} = -\frac{v_0^2}{2g}\sin^2\varphi + R\sin\varphi + \frac{v_0^2}{2g}.$$
 (4)

(В этой формуле cos φ выражен через sin φ.)

Из (4) видно, что максимальная высота подъема зависит от угла φ , т. е. от того, в какой точке произошел отрыв капли. В какой же точке должна оторваться капля, чтобы подняться выше всех остальных? Выражение (4) для максимальной высоты подъема представляет собой квадратный трехчлен относительно sin φ и принимает свое наибольшее значение

$$h_{\max} = \frac{gR^2}{2v_0^2} + \frac{v_0^2}{2g} \tag{5}$$

при sin $\varphi = gR/v_0^2$. Конечно, этот результат имеет смысл, если $gR \leqslant v_0^2$, т. е. если телега катится достаточно быстро. В противном случае, как нетрудно убедиться, ни одна из отрывающихся капель не поднимается выше верхней точки обода. Докажите это самостоятельно.

С помощью соотношения (1) легко увидеть, что найденная точка наивысшего подъема лежит точно над оську колеса: подставляя (3) в (1) и учитывая, что $\sin \varphi = g R / v_v^2$, получаем x=0.

Ответ на поставленный в задаче вопрос — формула (5) для наибольшей высоты подъема отрывающихся капель получен путем исследования на максимум квадратного трехчлена (4) относительно sin φ . Этот результат можно получить и иначе. Будем рассуждать следующим образом. Зафиксируем некоторое значение y_{max} и решим уравнение (4) относительно sin φ :

$$\sin \varphi_{1,2} = \frac{gR}{v_0^2} \pm \sqrt{\left(\frac{gR}{v_0^2}\right)^2 + 1 - \frac{2gy_{max}}{v_0^2}} .$$
 (6)

Здесь углы φ_1 и φ_2 определяют те точки обода, отрываясь от которых капли достигают заданной максимальной высоты. Если вещественных корней нет, то заданного значения y_{max} не достигает ни одна капля. Если есть два различных вещественных корня φ_1 и φ_2 , то заданная высота является максимальной для двух капель. Это отчетливо видно из рис. 8.4 задачи 8 про «мокрое» колесо. Наибольшей высоты из всех капель, как видно из того же рисунка, достигает только одна капля. Следовательно, эту наибольшую высоту h_{max} можно найти, потребовав, чтобы оба корня уравнения (6) сливались в один: приравнивая дискримииант нулю, получаем ответ — формулу (5). Итак, получено исчерпывающее решение этой задачи.

Итак, получено исчерпывающее решение этой задачи. Как и предыдущие задачи, мы решили ее, используя уравнения движения (1) и (2), которые дают зависимость координат движущегося тела от времени. Эти уравнения содержат всю информацию о движении тела. Но во многих случаях полная информация бывает не нужна. Например, в обсуждаемой задаче нас совершенно не интересуют временные зависимости — требуется найти лишь положение точки наивысшего подъема капли, а момент времени, когда капля там оказывается, интереса не представляет. В подобных случаях часто оказывается удобным с самого начала исключить избыточную информацию, воспользовавшись законами сохранения. В рассматриваемой задаче можно сразу получить соотношение (4) для наибольшей высоты подъема капель, если применить закон сохранения механической энергии. Полагая потенциальную энергию капли на уровне оси колеса равной нулю, для полной энергии капли в точке отрыва имеем

$$E_1 = mgR\sin\varphi + mv_0^2/2.$$

В высшей точке траектории вертикальная составляющая скорости обращается в нуль. Поскольку горизонтальная составляющая скорости не меняется, энергия в высшей точке

$$E_2 = mgy_{max} + m (v_0 \sin \varphi)^2/2.$$

Приравнивая E_1 и E_2 , получаем формулу (4). Как видите, во многих задачах не вредно подумать о том, нельзя ли упростить решение, используя законы сохранения!

8. Капли с вращающегося колеса. Мокрое колесо равномерно вращается в вертикальной плоскости вокруг неподвижной оси. С обода срываются капли. Найти границу «сухой» области.

Движение оторвавшихся капель происходит под действием силы тяжести, которая всем каплям сообщает одинаковое ускорение g. Это позволяет сначала отвлечься от

наличия тяготения. Рассмотрим движение капель, оторвавшихся от обода колеса в один и тот же момент. В отсутствие ускорения свободного падения капли движутся по прямым линиям. В любой момент времени *t* все капли лежат на окружности радиуса *r* (рис. 8.1), для которого с помощью теоремы Пифагора можно написать

$$r^{2}(t) = R^{2} + (v_{0}t)^{2},$$
 (1)

Рис. 8.1. В отсутствие тяжести капли движутся прямолинейно.

где *R* — радиус колеса, *v*₀ — скорость точек обода.

рость точек обода. Радиус окружности *r* увеличивается с течением времени, а при наличии тяготения вся эта окружность еще и «падает» с ускорением свободного падения *g*. Если начало координат выбрано в центре колеса, то в любой момент времени *t* ордината центра окружности равна — *gt*²/2. Уравнение «падающей» окружности в этой системе координат имеет вид

$$x^{2}+(y+gt^{2}/2)^{2}=r^{2}(t).$$
 (2)

Уравнение (2) есть уравнение целого семейства окружностей: придавая t разные значения, получаем окружности, на которых находятся капли в различные моменты времени. Легко сообразить, что искомая граница есть огибающая этого семейства окружностей (рис. 8.2). Ясно, что высшая точка этой границы лежит точно над осью колеса. Другими словами, уравнение (2) определяет всю «мокрую» область

(рис. 8.3), и для решения задачи нам нужно найти границу заштрихованной области.

Будем искать эту границу следующим образом. Заметим, что капли, оторвавшиеся от колеса в один и тот же момент

Рис. 8.2. Граница «мокрой» сбласти как огибающая окружностей.

времени, достигают границы в разные моменты времени: граница касается разных окружностей. Проведя горизон-

тальную прямую на некотором уровне У, найлем на ней наиболее удаленную OT оси у «мокрую» точку, не задумываясь 0 TOM. какой окружности она принадлежит. Абсциссу Χ точки пересечения окружности с любой этой прямой можно найти, подставив в уравне-

Рис. 8.3. «Мокрая» область заштрихована.

ние окружности (2) ординату y = Y и радиус r из уравнения (1):

$$X^{2} = R^{2} + v_{0}^{2}t^{2} - (Y + gt^{2}/2)^{2}.$$
 (3)

Легко видеть, что правая часть (3) есть квадратный трехчлен относительно *l*³:

$$X^{2} = -g^{2}t^{4}/4 + (v_{0}^{2} - gY) t^{2} + R^{2} - Y^{2}.$$

Его максимальное значение

$$X^{2} = R^{2} + v_{0}^{4}/g^{2} - 2v_{0}^{2}Y/g.$$
 (4)

Разрешая (4) относительно У, получаем уравнение границы «сухой» области:

$$Y = -\frac{g}{2v_0^2} X^2 + \frac{gR^2}{2v_0^2} + \frac{v_0^2}{2g} .$$
 (5)

Это уравнение параболы, ветви которой направлены вниз, а вершина находится на оси у на высоте $gR^{2/2}v_{0}^{2}+v_{0}^{2/2}g$.

Рис. 8.4. Граница «мокрой» области как огибающая парабол — траскторий капель.

Граница была найдена как огибающая семейства окружностей, на которых находились капли, оторвавшиеся в один и тот же момент времени. Между тем траектория каждой отдельной капли представляет собой параболу, и поэтому найденная гра-ница (5) является огибающей этих парабол (рис. 8.4). Интересно отметить, что задачи 6 и 7 являются настичим случаями

Рис. 8.5. Граница «мокрой» области при медленном вращении колеса.

6 и 7 являются частными случаями этой задачи. Действительно, в задаче 7 фактически требовалось найти лишь верхнюю точку границы «мокрой» области: при X = 0

$$Y = h_{\max} = \frac{gR^2}{2v_0^2} + \frac{v_0^2}{2g} \,.$$

Задача 6 получается из этой задачи, если устремить к нулю радиус колеса *R* при неизменной скорости *v*₀. Уравнение

границы достижимых целей получается из (5), если в последнем положить R=0:

$$Y = -\frac{g}{2v_0^2} X^2 + \frac{v_0^2}{2g} \,.$$

При решении этой задачи мы молчаливо предполагали, что искомая граница проходит вне колеса. Как и в предыдущей задаче, легко убедиться, что это справедливо при условин $v_0^2 > gR$. В противном случае ($v_0^2 \leq gR$) граница «мокрой» области в своей верхней части проходит по ободу колеса (дуга окружности), а затем плавно переходит в ветви параболы (рис. 8.5). Динамика изучает, как происходит движение тела при его взаимодействии с другими телами. Взаимодействие описывается на языке сил, действующих на тело. Основу динамики материальной точки составляют три закона Ньютона. Первый закон выделяет те системы отсчета, в которых уравнения динамики имеют наиболее простой вид,— это так называемые инерциальные системы отсчета. Второй закон Ньютона устанавливает связь между ускорением, с которым движется материальная точка в инерциальной системе отсчета, и действующими на нее силами. Третий закон связывает между собой силы, с которыми тела действуют друг на друга.

В динамике взаимодействие тел считается заданным: например, гравитационное взаимодействие материальных точек описывается законом тяготения, а электростатическое взаимодействие точечных зарядов — законом Кулона. Выражения для сил, входящих в законы Ньютона, должны быть взяты из других разделов физики, где изучается их природа.

Решение динамической задачи следует начинать с анализа всех сил, действующих на интересующее нас тело.

Остановимся несколько подробнее на тех видах сил, которые встречаются в задачах этого раздела. Гравитационное взаимодействие тел осуществляется посредством создаваемых ими полей тяготения. Тело со сферически-симметричным распределением масс (например земной шар) создает в окружающем пространстве такое же гравитационное поле, как и материальная точка такой же массы, помещенная в его центр. В задачах о движении спутников Земли удобно выражать действующую на них силу притяжения Земли через расстояние спутника до центра Земли *r*, ускорение свободного падения *g* на поверхности Земли и ее радиус *R*:

$$F = \gamma \frac{mM}{r^2} = \frac{mgR^2}{r^2} , \qquad (1)$$

где M — масса Земли, m — масса спутника. Такой вид формулы для F удобен тем, что величина действующей на спутник силы выражается через легко запоминающиеся величины g=9.8 м/с² и R=6370 км.

Во многих задачах приходится рассматривать трение тел друг о друга. При наличии трения силу Q, с которой одно тело действует на другое, удобно рассматривать как две силы (см. рисунок): силу N, направленную по нормали к поверхности контакта (сила нормального давления или сила реакции опоры, которая по своей природе является

упругой силой), и силу трения $F_{\tau p}$, направленную по касательной. Удобство заключается в том, что при скольжении тел величины этих составляющих одной силы Q связаны между собой приближенным законом Кулона — Амонтона, установленным опытным путем:

$$F_{\rm TP} = \mu N \,. \tag{2}$$

Силу Q, с которой шероховатая поверхность действует на тело, удобно представить как сумму силы нормального давления N и силы трения $F_{\text{тр}}$.

Коэффициент трения скольжения μ зависит от рода соприкасающихся поверхностей. Обычно пренебрегают слабой зависимостью силы трения от площади контакта и от величины относительной скорости тел. Для трения покоя закон (2) не имеет места: величина силы трения покоя может изменяться от нуля до некоторого максимального значения, обычно несколько превышающего силу трения скольжения для этих поверхностей. При решении задач для простоты максимальное значение силы трения покоя принимается равным μN .

Основное уравнение динамики — второй закон Ньютона. — векторное уравнение. В рассматриваемых задачах действующие силы лежат в одной плоскости, поэтому можно выбрать систему координат так, чтобы векторное уравнение второго закона сводилось к двум скалярным.

Применение второго и третьего законов Ньютона к системе взаимодействующих тел позволяет сформулировать закон движения центра масс (центра инерции) системы тел в очень простом виде: центр масс движется так, как двигалась бы материальная точка с массой, равной сумме масс всех тел, входящих в систему, под действием силы, равной векторной сумме всех внешних сил, действующих на тела рассматриваемой системы. В частности, отсюда следует, что под действием только внутренних сил центр масс не может приобрести ускорения.

Решение динамических задач часто облегчается использованием законов сохранения энергии, импульса и момента импульса. Особенно эффективным является использование этих законов в тех случаях, когда действующие силы непостоянны и непосредственное решение уравнений динамики с помощью элементарной математики невозможно. Закон сохранения энергии широко используется при решении задач о движении космических аппаратов. Как и в (1), выражение для потенциальной энергии тела в гравитационном поле Земли удобно записать через ускорение свободного падения на поверхности Земли:

$$E_n(r) = -\gamma \frac{mM}{r} = -\frac{mgR^2}{r} .$$
 (3)

В выражении (3) потенциальная энергия стремится к нулю при $r \to \infty$, т. е. потенциальная энергия тяготения тела, удаленного на бесконечность, принята равной нулю.

Скорость спутника, движущегося по круговой орбите радиусом *r*, называется первой космической скоростью. Ее можно найти с помощью второго закона Ньютона и закона всемирного тяготения:

$$v_{\rm I}=\sqrt{\frac{gR^2}{r}}.$$

Для спутника, движущегося вблизи поверхности Земли, первая космическая скорость $v_1 = \sqrt{gR} = 7.9$ км/с.

Минимальная скорость, которую нужно сообщить телу, находящемуся на расстоянии r от центра Земли, для того чтобы оно удалилось на бесконечность, носит название второй космической скорости. Ее можно найти с помощью закона сохранения энергии:

$$v_{II} = \sqrt{\frac{2gR^2}{r}} = \sqrt{2} v_I.$$

Для тела, находящегося на поверхности Земли,

$$v_{11} = \sqrt{2gR} = 11,2$$
 KM/C.

36
Тело удалится на бесконечность независимо от того, в каком направлении сообщена ему вторая космическая ско-рость, хотя траектории при этом будут разные (но все пара-болические!). Если сообщить скорость больше второй кос-мической, то тело удалится по гиперболе. Если начальная скорость меньше второй космической, то тело движется по эллипсу, один из фокусов которого совпадает с центром Зем-ли. Это утверждение носит название первого закона Кеп-лера, который был открыт в результате наблюдений за движением планет вокруг Солнца.

При решении задач будут, использоваться также второй и третий законы Кеплера. Согласно второму закону Кеплера секторная скорость спутника постоянна. Третий закон Кеплера утверждает, что квадраты периодов обращения спут-ников относятся как кубы больших полуосей их эллиптических орбит.

Законы Кеплера можно вывести с помощью уравнений

Законы кеплера можно вывести с помощью уравнении динамики и закона всемирного тяготения. При решении задач, в которых встречается колебатель-ное движение, следует помнить, что при гармонических колебаниях, когда равнодействующая всех сил направлена к положению равновесия и пропорциональна смещению, циклическая частота колебаний определяется соотношением

$$\omega = \sqrt{k/m},$$

где *m* — масса тела, а *k* — коэффициент пропорциональности между силой и смещением. Применение этой формулы к малым колебаниям математического маятника длиной *l* дает $\omega = \sqrt{g/l}$.

1. Неподвижный блок. Через неподвижный блок перекинута нерастяжимая нить, к концам которой прикреплены грузы с массами m и M, причем $m \ll M$ (рис. 1.1). Найти силу натяжения нити при движении грузов, пренебрегая трением, массами блока и нити.

При указанных в условии идеализациях задача, конечно же, тривиальна. Если $m \ll M$, то тяжелый груз будет падать практически свободно, т. е. почти с ускорением g. Но тогда в силу нерастяжимости нити легкий груз будет вынужден подниматься с таким же ускорением. Для этого

действующая на него со стороны нити сила должна быть вдвое больше силы тяжести. Поэтому сила натяжения нити $T \approx 2mg$. Так как массой блока можно пренебречь, то сила натяжения нити одинакова по обе стороны блока.

Разумеется, этот результат можно получить и строго. Рассматривая действующие на грузы силы (рис. 1.1) и проектируя уравнения второго закона Ньютона для каждого

Силы.

на

во время движения.

грузы

Рис. 1.1.

ствующие

из грузов на вертикальное направление, получим

$$Ag - T = Ma, \qquad (1)$$

$$ng - T = -ma. \tag{2}$$

Исключая из этих уравнений ускорение грузов *а*, находим

$$T = \frac{2mM}{m+M}g.$$
 (3)

При $m \ll M$ в знаменателе можно пренебречь *m* по сравнению с *M*. Это дает $T \approx 2mg$.

А теперь предположим, что, начав решать эту задачу строго и записав уравнения (1) и (2), мы сообразили, что при заданном условии $m \ll M$ ускорение а практически

равно g. Тогда для нахождения T можно подставить это значение ускорения a=g в уравнение (1) или (2). Подстановка a=g в уравнение (2) действительно дает значение T=2mg. А вот подстановка в уравнение (1) приводит к неожиданному результату T=0. В чем же тут дело? Ведь уравнения (1) и (2) точные, и строгое решение возможно только при использовании обоих этих уравнений.

Этот пример ярко иллюстрирует то обстоятельство, что в физике понятия «малая величина» и «большая величина» сами по себе бессмысленны. Если «большая» или «малая», то обязательно должно быть указано, по сравнению с чем. Подставляя приближенное значение a=g в уравнения (1) или (2), мы выражаем натяжение нити T через силу тяжести, действующую соответственно на тяжелый или на легкий груз. Поскольку сила T того же порядка величины, что и сила тяжести легкого груза mg, то уравнение (2) дает правильный ответ. Подстановка a=g в уравнение (1) не приводит к правильному ответу, ибо по сравнению с большой величиной Mgи нуль, и 2mg — это почти одно и то же. Чтобы уравнение (1) приводило к правильному ответу, в нем нужно учесть малое отличие a от g.

Используя понятие большой или малой величины, нужно обязательно отдавать себе отчет, с чем эта величина сравнивается. И хотя во многих случаях это явно не оговаривается, но всегда подразумевается. Так, например, в этой задаче, пренебрегая массой блока и массой нити, мы не оговорили, по сравнению с чем малы их величины. А кстати, по сравнению с чем?

2. Нефизическая задача. Тело сбрасывается в воду с некоторой высоты без начальной скорости; при этом измеряется глубина его погружения за одну секунду после вхождения в воду. Установлено, что если начальную высоту изменить в k раз, то глубина погружения изменится в l раз. При каких соотношениях между k и l тело тонет в воде? Сопротивлением воздуха и воды пренебречь.

Любой физический процесс представляет собой сложное явление. Составляя условие задачи, мы фактически всегда упрощаем рассматриваемые явления, отбрасывая несущественные, а часто, к сожалению, и существенные стороны. Например, решая задачи о движении тела, брошенного под углом к горизонту, мы пренебрегали сопротивлением воздуха.

В рассматриваемой задаче предлагается пренебречь еще и сопротивлением воды. Если пренебрежение сопротивлением воздуха часто бывает оправданным (особенно при малых скоростях), то пренебрегать сопротивлением воды в этой задаче нельзя, так как получаемые при таком пренебрежении результаты не имеют ничего общего с действительностью: бессмысленно было бы проверять полученный ответ на опыте. Действительно, мы не учитываем фонтан брызг, поднимаемых телом при ударе о воду; расходящуюся по поверхности волну; вязкость воды; не учитываем движение воды, вытесняемой телом.

И все же такие «нефизические» задачи имеют право на существование: во первых, благодаря своей четкой поста-

новке (в условии указано, чем пренебречь) они позволяют научиться применять физические законы для количественного анализа искусственно упрощенных явлений; вовторых, в некоторых случаях такое решение может послужить основой (нулевым приближением) для дальнейших уточнений.

Но вернемся к нашей «нефизической» задаче. Даже при таких упрощениях на первый взгляд не ясно, с чего начинать. Обратимся к вопросу, поставленному в задаче: при каком условии тело тонет в воде? Тело тонет, если его масса *m* больше массы воды m_0 того же объема, что и тело. Таким образом, требуется выяснить, при каких условиях $m_0/m < 1$.

Движение тела в воде происходит под действием двух постоянных сил: силы тяжести mg н выталкивающей силы Архимеда — m_0g и, следовательно, будет равнопеременным с ускорением $a=g(1-m_0/m)$. Поскольку скорость тела перед входом в воду $v_0 = \sqrt{2gh}$, то перемещение тела в воде за время t

$$s_1 = \sqrt{2gh} t + \frac{1}{2}g\left(1 - \frac{m_0}{m}\right)t^2.$$

Во втором случае, когда тело сброшено с высоты kh, перемещение тела в воде за то же время t

$$s_2 = \sqrt{2kgh} t + \frac{1}{2}g\left(1 - \frac{m_0}{m}\right) t^2.$$

По условию задачи $s_2/s_1 = l$, т. е.

$$\frac{\sqrt{2kgh} + \frac{1}{2}g\left(1 - \frac{m_0}{m}\right)t}{\sqrt{2gh} + \frac{1}{2}g\left(1 - \frac{m_0}{m}\right)t} = l.$$
 (1)

Обозначим для удобства $\frac{1}{2}g\left(1-\frac{m_0}{m}\right)t$ через x. Тело будет тонуть при $m_0/m<1$, т. е. при x>0. Запишем уравнение (1), используя введенное обозначение:

$$\sqrt{2kgh} + x = l\left(\sqrt{2gh} + x\right). \tag{2}$$

Выясним, при каком условии корень этого уравнения $x = \sqrt{2gh} (\sqrt{k} - l)/(l - 1)$ положителен. Элементарным анализом можно убедиться, что при k > 1 x положительно при $l < \sqrt{k}$, а при k < 1 x > 0 при $l > \sqrt{k}$.

Таким образом, полученный результат можно сформулировать следующим образом. Тело будет тонуть в воде, если при увеличении начальной высоты в k раз глубина погружения за первую секунду увеличится менее чем в \sqrt{k} раз. Если же глубина погружения за первую секунду возрастет более чем в \sqrt{k} раз, то тело будет всплывать. Подумаем теперь, как можно уточнить решение этой

Подумаем теперь, как можно уточнить решение этой задачи, если отказаться от некоторых из сделанных выше упрощающих предположений. Оказывается, сравнительно просто можно учесть движение воды, вытесняемой телом.

Прежде всего отметим, что при равномерном движении тела в жидкости сопротивление, которое оказывает жидкость его движению, обусловлено силами вязкого трения. Однако при неравномерном движении картина будет существенно иная. Даже при движении в идеальной жидкости следует учитывать, что ускорение сообщается не только телу, но и частицам самой жидкости. Как это скажется на движении тела?

Чтобы покоившееся тело массы *m* привести в движение со скоростью *v*, нужно совершить работу, равную $mv^2/2$. Из-за увлечения жидкости, окружающей тело, ее частицы приобретут скорости, пропорциональные скорости тела *v*. В результате увлеченная телом жидкость будет обладать кинетической энергией, пропорциональной v^2 , для сообщения которой потребуется дополнительная работа. Поэтому работа по приведению в движение погруженного в жидкость тела пропорциональна v^2 , но больше $mv^2/2$. Записав эту работу в виде

 $A = Mv^2/2,$

где M > m, приходим к выводу, что при погружении тела в жидкость оно будет двигаться под действием внешних сил так, как будто его масса увеличилась. Дополнительная, так называемая присоединенная масса характеризует инертные свойства окружающей жидкости. Значение присоединенной массы зависит от плотности жидкости и формы тела.

Посмотрим, что изменится в решении задачи при учете присоединенной массы. Очевидно, что ускорение тела при его движении в жидкости под действием силы тяжести mg и выталкивающей силы $-m_0g$ будет равно $a' = g(m-m_0)/M$. Именно на эту величину заменится ускорение $a = g(1 - m_0/m)$ в выражениях для s_1 и s_2 и в уравнении (1). Если теперь через x обозначить $g(m-m_0)t/2M$, то уравнение (2) будет иметь прежний вид. Так как тело тонет при $m > m_0$, то из уравнения (2), как и раньше, нужно найти условия, при которых x > 0.

Таким образом, учет присоединенной массы не изменяет ответа в этой задаче.

3. Санки на горе. Склон горы образует угол α с горизонтом. Под каким углом β (рис. 3.1) следует тянуть за веревку, чтобы равномерно втаскивать санки с наименьшим усилием? Какова должна быть величина этой силы?

Считая санки материальной точкой, можно принять, что все действующие на санки силы — и сила тяжести G, и

сила реакции поверхности горки **Q**, и сила **F**, с которой тянут за веревку, приложены в одной точке

Рис. 3.1. Под каким углом β тянуть за веревку?

Рис. 3.2. Силы, действующие на санки.

(рис. 3.2). При равномерном движении санок векторная сумма всех действующих сил равна нулю:

$$\boldsymbol{F} + \boldsymbol{Q} + \boldsymbol{G} = 0. \tag{1}$$

Для исследования уравнения (1) спроектируем это векторное равенство на два взаимно перпендикулярных направления: вдоль наклонной плоскости и перпендикулярно ей. При этом учтем, что проекция силы Q на направление нормали к плоскости есть нормальная сила реакции N, а проекция Q на направление вдоль плоскости есть сила трения скольжения $F_{\rm TD}$. В результате вместо (1) получим

$$F\cos\beta - F_{\tau\rho} - G\sin\alpha = 0, \qquad (2)$$

$$F\sin\beta + N - G\cos\alpha = 0. \tag{3}$$

42

Для исследования зависимости величины силы F от угла β необходимо исключить из этих уравнений N и $F_{\tau p}$, так как они сами зависят от угла β . На основании закона Кулона — Амонтона

$$F_{\rm TP} = \mu N. \tag{4}$$

Выражая силу N из уравнения (3) и подставляя в (4), получаем

$$F_{\rm rp} = \mu \left(G \cos \alpha - F \sin \beta \right). \tag{5}$$

Учитывая это выражение для силы трения, из уравнения (2) находим

$$F = G \frac{\sin \alpha + \mu \cos \alpha}{\cos \beta + \mu \sin \beta}.$$
 (6)

Числитель этого выражения не зависит от β , поэтому величина силы F будет наименьшей, когда знаменатель максимален. Поэтому будем искать максимум выражения

$$f(\beta) = \cos\beta + \mu \sin\beta. \tag{7}$$

Для нахождения максимума можно приравнять нулю производную этой функции: $f'(\beta) = 0$. Можно найти максимум и элементарно, сведя $f(\beta)$ к одной тригонометрической функции угла β . Введем некоторую величину φ так, чтобы tg φ был равен коэффициенту трения μ :

$$\mu = tg \ \varphi = \frac{\sin \varphi}{\cos \varphi} \,. \tag{8}$$

Такая замена возможна при любом μ , так как тангенс изменяется от — ∞ до ∞ . Подставляя μ из соотношения (8) в выражение (7) и приводя правую часть к общему знаменателю, получаем

$$f(\beta) = \frac{\cos\beta\cos\varphi + \sin\beta\sin\varphi}{\cos\varphi} = \frac{\cos(\beta - \varphi)}{\cos\varphi}.$$
 (9)

Теперь очевидно, что величина $f(\beta)$ максимальна при $\beta = \varphi$, т. е. при

$$\beta = \arctan \mu.$$
 (10)

Вот под таким углом β и следует тянуть санки за веревку. Величина силы F при этом будет наименьшей. Чтобы найти ее, подставим в (6) выражение (8) для μ и учтем, что в интересующем нас случае φ=β. В результате после простых преобразований получим

$$F = G \sin(\alpha + \beta). \tag{11}$$

Проанализируем полученный ответ. Прежде всего отметим, что приведенное решение имеет смысл только тогда, когда получившееся значение β таково, что $\alpha + \beta \leq \pi/2$. Если $\alpha + \beta > \pi/2$, то, как видно из рис. 3.2, сила *F* откло-

Рис. 3.3. Графическое опредсление наименьшей силы F. нялась бы влево от вертикали и не могла бы втаскивать санки в гору. В предельном случае $\alpha+\beta=\pi/2$ сила *F* направлена вертикально вверх, и ее величина, как видно из формулы (11), равна силе тяжести *G*. Это значит, что сила *F* просто удерживает санки на весу, а сила *Q* равна нулю.

Таким образом, форма ответа зависит от угла α и коэффициента трения μ . Если α + + arctg $\mu < \pi/2$, то ответ на поставленные вопросы дается фор-

мулами (10) и (11). В противном случае сила **F** должна быть направлена вертикально вверх и по величине равна G.

Эта задача допускает изящное графическое решение. Для этого заметим, что формально введенная соотношением (8) величина ϕ имеет простой физический смысл: в силу закона Кулона — Амонтона (4) ϕ есть угол, образованный силой реакции опоры Q с нормалью к наклонной плоскости (рис. 3.2). Поэтому уравнение (1) легко исследовать графически.

Сначала изобразим на чертеже известную и по величине, и по направлению силу G (рис. 3.3). Что касается слагаемого Q, то нам заранее известно только его направление: как видно из рис. 3.2, оно составляет угол $\varphi = \arctan \varphi$ с нормалью к наклонной плоскости, т. е. угол $\alpha + \varphi$ с вертикалью. Поэтому через конец вектора G проводим прямую, составляющую угол $\alpha + \varphi$ с вертикалью. На этой прямой будем откладывать силу Q, совмещая ее начало с концом вектора G. Далее в соответствии с уравнением (1) строим силу F, которая должна замыкать треугольник сил, т. е. соединять конец вектора Q с началом вектора G. Из рис. 3.3 видно, что величина силы F будет наименьшей, когда ее направление образует прямой угол с направлением Q, т. е. угол $\alpha + \varphi$ с горизонтом или, другими словами, угол $\varphi = \arctan g \mu$ со склоном горы.

Из рис. 3.3 видно, что это решение имеет смысл, только если α + arctg $\mu < \pi/2$. Обычно коэффициент трения невелик, и это условие не выполняется только при углах α , близких к $\pi/2$. Значит, решение, выражаемое формулой (10), может оказаться несправедливым только при подъеме на очень крутую гору.

В заключение предлагаем подумать над вопросом, почему передние колеса деревенской телеги, к осн которой прикрепляются оглобли, как правило, меньше задних.

4. Доски на наклонной плоскости. На наклонной плоскости, составляющей угол α с горизонтом, лежат две доски, одна на другой (рис. 4.1). Можно ли подобрать такие значения масс досок m_1 и m_2 , коэффициентов трения досок о плоскость μ_1 и друг о друга μ_2 , чтобы нижняя доска выскользнула из-под верхней? В начальный момент доски покоятся.

На первый взгляд это самая обычная задача. Следует рассмотреть все действующие на доски силы и, пользуясь законами Ньютона, составить урав-

нения движения. Решив их, найдем ускорения a_1 и a_2 , и для ответа на поставленный вопрос останется только выяснить, при каких условиях ускорение нижней доски a_1 больше ускорения верхней a_2 . Однако, попытавшись выполнить эту программу, мы сразу столкнемся с трудностью. Для решения урав-

Рис. 4.1. Доски на наклонной плоскости.

нений нужно знать, как направлены все действующие силы. Но как направлены силы трения досок друг о друга? Это зависит от их относительной скорости, т. е. от того, какая из досок соскальзывает с бо́льшим ускорением. Получается заколдованный круг: чтобы найти ускорения, надо знать направление сил, а чтобы найти направление сил, требуется знать, какое из ускорений больше. Такое положение характерно для многих задач, где учитывается трение. Конечно, можно последовательно перебирать все мыслимые варианты и исключать те из них, которые приводят к нелепому ре-

Рис. 4.2. Действующие силы при условии, что нижняя доска выскальзывает из-под верхней.

зультату. Но можно найти иной подход, чтобы подобных проблем не возникало.

В данной задаче нам нужно только выяснить, возможно ли движение нижней доски с бо́льшим ускорением. Предположим, что это возможно, т. е. что мы подобрали такие значения масс и коэффициентов трения, при которых $a_1 > a_2$. Тогда направление всех сил определяется одно-

значно и указано на рис. 4.2, где F — сила трения нижней доски о наклонную плоскость, $F_1 = -F_2$ — силы трения досок друг о друга, N — нормальная сила реакции наклонной плоскости, $N_1 = -N_2$ — силы давления досок друг на друга. Составляя уравнения движения досок и проектируя их на направление вдоль наклонной плоскости, получаем

$$m_1g\sin\alpha - F - F_1 = m_1a_1,$$
$$m_2g\sin\alpha + F_1 = m_2a_2.$$

Из этих уравнений сразу видно, что при любых массах и коэффициентах трения

 $a_1 < g \sin \alpha$, $a_2 > g \sin \alpha$,

т. е. $a_1 < a_2$. Мы получили противоречие: при предположении, что $a_1 > a_2$, из уравнений динамики следует, что $a_1 < a_2$. Так как уравнения динамики безусловно справедливы, полученное противоречие означает, что предположение о возможности движения нижней доски с бо́льшим ускорением ошибочно,

5. Бусинка на вращающемся стержне. На гладкий стержень, расположенный под углом α к вертикали, насажена бусинка (рис. 5.1). Стержень вращается с угловой скоростью ω вокруг вертикальной оси. Описать движение бусинки по стержню. Трением пренебречь.

Может ли бусинка покоиться относительно стержня? Предположим, что может. Это значит, что существует такая точка стержня (на расстоянии r от оси вращения — см. рис. 5.1), находясь в которой бусинка относительно стержня покоится, т. е. действующие на нее силы тяжести mg и реакции стержня N сообщают ей ускорение a, равное центростремительному ускорению

(1)

центростремительному ускорению этой точки стержня. Из рисунка видно, что

$$mg \operatorname{ctg} \alpha = ma$$
,

откуда следует (так как $a=\omega^2 r$), что $r=\frac{g}{\omega^2}\operatorname{ctg} \alpha$. Помещенная в эту точку бусинка покоится относительно стерж-

ня. Таким образом, положение равновесия бусинки на вращающемся стержне существует.

Будет ли равновесие устойчивым? Другими словами, как будет вести себя бусинка, если по какойлибо причине она немного сместится из этого положения? Для выяснения а Рис. 5.1. Силы, дей-

Рис. 5.1. Силы, денствующие на неподвижную относительно стержня бусиңку.

этого вопроса поступим следующим образом: сместим бусинку немного вверх по стержню и выясним, при каком условии бусинка будет в равновесии и в этой новой точке. Только двумя силами mg и N здесь не обойтись, поскольку при наличии только этих двух сил положение равновесия определяется однозначно формулой (1). Нужна третья сила. Такой силой могла бы быть сила трения бусинки о стержень. Выясним, в какую сторону она должна быть направлена (рис. 5.2). Величина и направление силы тяжести не изменились, направление нормальной силы реакции N также не изменилось. Поскольку ma' > ma, необходимо, чтобы сила трения была направлена вниз по стержню. Но по условию задачи этой силы нет, поэтому бусинка будет скользить вверх по стержню. Аналогичными рассуждениями можно

Рис. 5.2. Чтобы удержать бусинку в смещенном вверх положении, нужна сила *F*, действующая вниз вдоль стержня. показать, что при небольшом смещении бусинки вниз она будет скользить вниз, т. е. удаляться от положения равновесия. Таким образом, положение равновесия бусинки на вращающемся стержне будет неустойчивым.

Каким будет поведение бусинки при наличии трения? Поскольку величина силы трения покоя может изменяться от нуля до некоторого максимального значения, из предыдущих рассуждений ясно, что должен существовать целый участок на стержне, в любой точке которого бусинка будет покоиться относительно стержня. Предлагаем вам самостоятельно найти величину и положение этого участка на стержне при

известном коэффициенте трения. Если у вас возникнут затруднения, рекомендуем ознакомиться со следующей задачей.

6. Брусок на наклонной плоскости. Наклонная плоскость, составляющая угол а с горизонтом, движется, горизонтально с ускорением а в направлении, указанном на рис. 6.1. Как будет двигаться лежащий на ней брусок, если коэффициент трения бруска о наклонную плоскость равен µ?

Рассмотрим сначала простейший частный случай, когда плоскость покоится или движется равномерно (a=0). При этом поведение бруска исследуется очень просто. Если $\mu \ge tg \alpha$, брусок покоится на наклонной плоскости, при $\mu < tg \alpha$ брусок ускоренно соскальзывает вниз.

Выясним теперь, при каком условии брусок будет неподвижно лежать на наклонной плоскости при ее ускоренном движении. Очевидно, что ускорение бруска при этом должно совпадать с ускорением плоскости. Для этого несбходимо, чтобы векторная сумма всех сил, действующих на брусок, была равна произведению его массы на ускорение *a*. На брусок действуют сила тяжести mg, сила реакции наклонной плоскости N и сила трения покоя F. Напомним, что величина силы трения покоя может изменяться от нуля до максимального значения, равного μN . Направлена она может быть как вверх, так и вниз вдоль наклонной плоскости. Если ускорение плоскости a_0 таково, что $mg + N = ma_0$, то

Рис. 6.1. Наклонная плоскость движется с заданным ускорением а.

сила трения отсутствует: F=0 (рис. 6.2, *a*). Это, конечно, не значит, что доска вдруг стала гладкой! Просто при $a=a_0$ относительная скорость бруска и поверхности равна нулю и в отсутствие силы трения, и поэтому сила трения не возникает. Из рис. 6.2, *a* видно, что $a_0=g \operatorname{tg} \alpha$.

Если ускорение наклонной плоскости *а* немного меньше a_0 , то в отсутствие трения, т. е. при $\mu = 0$, брусок соскальзывал бы вниз; при $\mu \neq 0$ возникает сила трения, паправленная вверх вдоль наклонной плоскости, и брусок остается неподвижным. Но поскольку величина силы трения покоя не может превышать μN , то при достаточно малом ускорении плоскости, меньшем некоторого значения a_1 , брусок будет соскальзывать вниз. Это значение ускорения a_1 находится из условия, что сила трения F равна своему максимальному значению μN и направлена вверх по наклонной плоскости (рис. 6.2, 6). Составим уравнение движения бруска $mg + N + F = ma_1$ испроектируем его на направления вдоль наклонной плоскости и по нормали к ней:

$$mg\sin\alpha - \mu N = ma_1\cos\alpha, \qquad (1)$$
$$N - mg\cos\alpha = ma_1\sin\alpha.$$

Исключая N, находим

$$a_1 = g \frac{\sin \alpha - \mu \cos \alpha}{\cos \alpha + \mu \sin \alpha}.$$
 (2)

Итак, если ускорение плоскости $a < a_1$, брусок соскальзывает вниз. Заметим, что при $\mu > tg \alpha$ ускорение a_1 оказывается отрицательным. Какой в этом смысл? Напомним, что при $\mu \ge tg \alpha$ брусок не будет соскальзывать и при a=0 (наклонная плоскость неподвижна или движется равномерно). Брусок не будет соскальзывать и при a < 0, когда ускорение плоскости направлено влево, до тех пор, пока величина ускорения не превосходит $|a_1|$. Действительно, уравнения (1) справедливы и тогда, когда ускорение a_1 направлено

Рис. 6.2. Силы, действующие на брусок, при разных значениях ускорения наклонной плоскости.

влево, если под *a*₁ понимать его проекцию на горизонтальное направление.

Таким образом, мы нашли условие соскальзывания бруска при любых μ и α:

$$a < g \frac{\sin \alpha - \mu \cos \alpha}{\cos \alpha + \mu \sin \alpha}$$
.

Пусть теперь ускорение плоскости *а* немного больше a_0 . Тогда при $\mu = 0$ брусок перемещался бы вверх вдоль плоскости; при $\mu \neq 0$ возникает сила трения покоя, направленная вниз вдоль плоскости, и брусок останется неподвижным на плоскости. С ростом *а* увеличивается и сила трения, и когда ускорение становится таким, что величина силы трения *F* достигает своего максимального значения μN , брусок начинает скользить вверх. Выясним, при каком ускорении плоскости a_2 сила трения становится равной μN (рис. 6.2, *в*). Составляя, как и раньше, уравнение движения бруска $mg + N + F = ma_2$ и проектируя его на те же направления:

$$mg \sin \alpha + \mu N = ma_2 \cos \alpha,$$

$$N - mg \cos \alpha = ma_2 \sin \alpha,$$

находим

$$a_2 = g \, \frac{\sin \alpha + \mu \cos \alpha}{\cos \alpha - \mu \sin \alpha} \, .$$

Итак, если ускорение плоскости $a > a_2$, брусок скользит вверх. Заметим, что a_2 при μ =ctg α обращается в бесконечность. Это означает, что при $\mu \ge$ ctg α брусок не будет скользить вверх ни при каком ускорении плоскости.

Собирая вместе полученные результаты, можно записать условие неподвижности бруска на наклонной плоскости в следующем виде:

 $g \frac{\sin \alpha - \mu \cos \alpha}{\cos \alpha + \mu \sin \alpha} \leqslant a \leqslant \begin{cases} g \frac{\sin \alpha + \mu \cos \alpha}{\cos \alpha - \mu \sin \alpha}, & \mu < \operatorname{ctg} \alpha; \\ \infty, & \mu \geqslant \operatorname{ctg} \alpha. \end{cases}$

7. Брусок на подвижном клине. На верхнюю часть клина массы *M*, который может без трения перемещаться по горизонтальной поверхности (рис. 7.1), кладут брусок массы *m* и отпускают без начального толчка. Какую горизонтальную скорость приобретает клин к тому моменту, когда брусок соскользнет до конца? Какой угол с горизонтом составляет вектор скорости бруска *v*, если угол при основании клина равен *а*? Высота клина *h*, трением между бруском и поверхностью клина пренебречь.

Проще всего ответить на поставленные вопросы, используя законы сохранения импульса и энергии. Однако в данном случае одних законов сохранения недостаточно. Необходимо еще использовать кинематическую связь между скоростями клина и бруска, выражающую условие того, что движение бруска происходит именно по поверхности клина. Обозначим горизонтальную и вертикальную составляющие скорости бруска относительно земли через v_x и v_y , а скорость клина в этот же момент времени через -V. Поскольку при соскальзывании бруска клин движется налево,

Рис. 7.1. В ігачальный момент брусок и клин неподвижны.

Рис. 7.2. Вектор скорости бруска относительно клина направлен вдоль поверхности клина.

то горизонтальная составляющая скорости бруска относительно клина равна $v_x + V$ (рис. 7.2). Полная скорость бруска относительно клина должна быть направлена вдоль его поверхности, поэтому с помощью рис. 7.2 сразу находим

$$v_y = (v_x + V) \operatorname{tg} \alpha. \tag{1}$$

Это и есть искомое кинематическое соотношение.

Вектор скорости бруска относительно земли v образует угол β с горизонтом, тангенс которого равен отношению v_v/v_x (рис. 7.3). Поэтому с помощью соотношения (1) имеем

$$\operatorname{tg} \beta = \frac{v_y}{v_x} = \left(1 + \frac{V}{v_x}\right) \operatorname{tg} \alpha. \quad \cdot \tag{2}$$

Величины v_x и V можно связать с помощью условия сохранения горизонтальной составляющей импульса системы, которое выражает тот факт, что центр масс системы не перемещается в горизонтальном направлении:

$$mv_{x} = MV.$$
 (3)

Соотношение (3) позволяет переписать формулу (2) для tg β в виде

$$tg\beta = \left(1 + \frac{m}{M}\right) tg\alpha.$$
(4)

На рис. 7.3 пунктиром показана траектория бруска относительно земли. Если масса бруска много меньше массы клина, т. е. $m/M \ll 1$, то из формулы (4) получаем $\beta \approx \alpha$. Так и должно быть, ибо в этом предельном случае клин практически не приходит в движение. В другом предельном случае $m/M \gg 1$ угол $\beta \approx \pi/2$: легкий клин выскальзывает из-под тяжелого бруска, который падает практически отвесно.

Осталось найти только величину горизонтальной скорости клина в момент, когда брусок соскользнет до его основания. Это можно сделать, если воспользоваться еще и

Рис. 7.3. Вектор скорости **о** и траектория бруска (пунктир) относительно земли.

законом сохранения механической энергии. Поскольку трение отсутствует, первоначальная потенциальная энергия бруска целиком превращается в кинетическую энергию бруска и клина:

$$mgh = \frac{1}{2}m(v_x^2 + v_y^2) + \frac{1}{2}MV^2.$$
 (5)

Подставляя в это уравнение сначала v_y из выражения (1), а затем v_x из закона сохранения импульса (3), находим

$$V^{2} = \frac{2gh}{(M/m)^{2} + (1 + M/m)^{2} \operatorname{tg}^{2} \alpha + M/m} \,. \tag{6}$$

Рассмотрите сами получающиеся из формулы (6) выражения в предельных случаях $m/M \ll 1$ и $m/M \gg 1$ и объясните результаты.

8. Выскальзывающая доска. На конце доски длины L и массы M находится маленький брусок массы m (рис. 8.1). Доска может скользить без трения по горизонтальной плоскости. Коэффициент трения скольжения бруска по поверхности доски равен μ . Какую горизонтальную скорость v_0 нужно толчком сообщить доске, чтобы она выскользнула из-под бруска?

При сообщении доске горизонтальной скорости v₀ резким толчком или ударом брусок не получает начальной скорости относительно земли, так как действующая на

Рис. 8.1. Доска мгновенно получает начальную скорость v₀.

него со стороны доски сила трения не может превосходить величины µmg и за короткое время удара не может сообщить бруску заметного импульса. После толчка в системе отсчета, связанной с землей, бру-

сок движется равноускоренно, а доска — равнозамедленно.

Если начальная скорость доски v₀ невелика, то может наступить такой момент, когда скорости доски и бруска примут одинаковое значение. В этот момент проскальзывание прекращается, дальше оба тела движутся равномерно с одинаковой скоростью v как одно тело, и доска, разумеется, уже не выскользнет из-под бруска. Если же начальная скорость доски достаточно велика, то скорости доски и бруска могут не успеть сравняться за то время, пока брусок проскользит вдоль всей доски. В этом случае доска выскользнет из-под бруска.

Обозначим расстояние, пройденное бруском по доске до момента прекращения проскальзывания, через s. Очевидно, что при выполнении неравенства s < L доска не выскальзывает из-под бруска. Если это неравенство не выполняется, то доска выскользнет из-под бруска.

Эта задача служит наглядным примером того, насколько проще и быстрее может приводить к ответу использование законов сохранения по сравнению с непосредственным применением законов динамики. Оказывается, что достаточно выписать два уравнения, соответствующие законам сохранения импульса и энергии, чтобы немедленно получить ответ.

Поскольку по условию между доской и плоскостью трение отсутствует, то направленный горизонтально полный импульс системы остается без изменения. Так как после прекращения проскальзывания оба тела движутся с одина-ковой скоростью *v*, то

$$Mv_0 = (M+m) v. \tag{1}$$

Для применения закона сохранения энергии нужно прежде всего подсчитать работу сил трения, действующих

Рис. 8.2. Перемещение доски s₁ больше перемещения бруска s₂ на величину s.

между бруском и доской. Эти силы равны по величине и противоположно направлены. Сила трения, действующая на брусок, разгоняет его, увеличивая его кинетическую энергию. Работа этой силы положительна. Сила трения, действующая на доску, тормозит ее; работа этой силы отрицательна. Очевидно, что относительно земли точка приложения силы трения, действующей на доску, совершает перемещение s₁, которое больше перемещения точки приложения второй силы трения s₂ на величину s (рис. 8.2). Поэтому суммарная работа сил трения отрицательна и равна —µmgs.

Таким образом, уравнение закона сохранения энергии записывается в виде

$$\frac{1}{2}(M+m)v^2 - \frac{1}{2}Mv_0^2 = -\mu mgs.$$
 (2)

Выражая v из уравнения (1) и подставляя в (2), находим

$$s = \frac{1}{2} \frac{M}{m+M} \frac{v_0^2}{\mu g}.$$
 (3)

Если вычисленное по формуле (3) значение *s* окажется больше *L*, то это и будет означать, что при такой начальной скорости доски v_0 она выскользнет из-под бруска. Отсюда находим необходимое для этого значение v_0 :

$$v_{0} > \sqrt{2\mu g L \left(1 + \frac{m}{M}\right)} . \tag{4}$$

Длипнее оказалось бы решение, основанное на непосредственном применении законов Ньютона. При таком решении прежде всего, определив ускорения тел, пришлось бы написать уравнения, выражающие зависимость от времени скоростей доски и бруска относительно земли. Это дало бы возможность найти момент времени, в который эти скорости окажутся одинаковыми. После этого, написав уравнения, выражающие зависимость положений доски s_1 и бруска s_2 от времени (рис. 8.2), можно найти то расстояние *s*, на которое переместится брусок относительно доски к моменту прекращения проскальзывания. Проделайте самн указанные выкладки и убедитесь, что они приводят к тому же самому результату (3).

9. Мертвая петля. Небольшое тело скользит без трения по наклонному желобу, который затем переходит в круговую «мертвую петлю» радиуса R (рис. 9.1). С какой минимальной высоты h должно спускаться тело без пачальной скорости, чтобы оно не оторвалось от желоба? Какова должна быть начальная высота для того, чтобы тело смогло преодолеть «мертвую петлю» с симметрично вырезанной верхней частью (рис. 9.2)?

Движение тела под действием одной лишь снлы тяжести, как известно, происходит по параболической траектории. Поэтому для движения по круговому желобу, расположенному в вертикальной плоскости, кроме силы тяжести на тело должны действовать и другие силы. В отсутствие трения такой силой может быть только сила N реакции желоба, направленная по нормали к его поверхности (рис. 9.3). Очевидно, что тело не отрывается от желоба, пока эта сила не равна нулю. Если происходит отрыв тела от желоба, то в точке отрыва сила N обращается в нуль. После отрыва от желоба движение тела происходит только под действием силы тяжести, и тело движется по параболе. Предположим, что тело, не отрываясь, движется по желобу, и вычислим величину силы реакции N в произвольной точке, положение которой определяется углом α

Рис. 9.2. «Мертвая петля» с вырезом.

(рис. 9.3). Составим уравнение второго закона Ньютона для этой точки:

$$mg + N = ma. \tag{1}$$

Для нахождения величины силы **N** спроектируем уравнение (1) на радиальное направление. Поскольку нормальная составляющая ускорения

равна v^2/R , из уравнения (1) имеем

$$mg\cos\alpha + N = \frac{mv^2}{R}$$
, (2)

откуда

$$N = mg\left(\frac{v^2}{gR} - \cos\alpha\right). \quad (3)$$

В этом выражении величина скорости *v* тоже зависит от

угла α, и ее нужно найти для определения *N*. Это можно сделать, используя проекцию уравнения (1) па касательное направление. Однако такой путь требует умения интегрировать. Поэтому для нахождения скорости удобнее использовать закон сохранения механической энергии.

Поскольку сила реакции желоба в любой точке перпендикулярна скорости тела и, следовательно, работы не совершает, полный запас механической энергии остается неизменным. В начальной точке тело обладает только потенци-

альной энергией, равной mgh. В рассматриваемой точке механическая энергия складывается из кинетической энергии $mv^{2/2}$ и потенциальной энергии, равной $mgR(1+\cos\alpha)$ (рис. 9.3). Поэтому

$$mgh = \frac{1}{2} mv^2 + mgR (1 + \cos\alpha), \qquad (4)$$

откуда

$$v^2 = 2gR\left(\frac{h}{R} - 1 - \cos\alpha\right). \tag{5}$$

Подставляя найденное значение скорости в формулу (3), находим силу реакции N:

$$N = mg\left(2\frac{h}{R} - 2 - 3\cos\alpha\right). \tag{6}$$

Из выражения (6) видно, что наибольшее значение сила N имеет в нижней точке желоба, которой соответствует $\alpha = \pi$, соз $\alpha = -1$:

$$N_{\max} = mg\left(2\frac{h}{R} + 1\right). \tag{7}$$

Из (7) следует, что сила, с которой тело давит на желоб в нижней точке, больше, чем сила тяжести mg. Только в том случае, когда начальная высота h равна нулю (т. е. тело просто лежит в нижней точке желоба), оно давит на желоб с силой, равной mg.

Из выражения (б) также видно, что сила N монотонно убывает по мере подъема тела по желобу и достигает наименьшего значения в высшей точке, которой соответствует $\alpha = 0$, $\cos \alpha = 1$:

$$N_{\min} = mg\left(2\frac{h}{R}-5\right).$$
 (8)

Если тело не отрывается от желоба в верхней точке, то оно не оторвется и ни в какой другой. Поэтому формула (8) позволяет найти ту минимальную начальную высоту h_{\min} , при которой тело совершает полный оборот, не отрываясь от желоба. Полагая в (8) $N_{\min} = 0$, находим

$$h_{\min} = \frac{5}{2} R. \tag{9}$$

58

Рассмотрим теперь движение тела по петле с вырезом. Для того чтобы тело могло совершить «мертвую петлю», в этом случае необходимо, чтобы, сорвавшись с края выреза в точке A и пролетев часть пути по параболе под действием только силы тяжести, оно попало бы как раз на продолжение желоба в точку B (рис. 9.4). Движение после отрыва от желоба происходит по закону

$$\boldsymbol{r} = \boldsymbol{v}t + \boldsymbol{g}t^2/2, \tag{10}$$

если начало отсчета времени t и положения r выбраны в момент отрыва и в точке отрыва. Так как в точке отрыва A

Рис. 9.4. В разрыве «петли» между точками А и В тело движется по параболе.

скорость v направлена по касательной к желобу, то, проектируя уравнение (10) на горизонтальное (x) и вертикальное (y) направления и требуя, чтобы траектория проходила через точку B (траектория 1 на рис. 9.4), получим

$$2R \sin \varphi = v \cos \varphi \cdot t,$$

$$(11)$$

$$0 = v \sin \varphi \cdot t - \rho t^2/2.$$

Находя t из второго уравнения и подставляя в первое, получим

$$v^2 = \frac{gR}{\cos\varphi} . \tag{12}$$

Именно такой скоростью должно обладать тело в момент отрыва, чтобы оно попало в точку В.

Теперь обратим внимание на то, что формула (12) была получена только из кинематических соображений при рассмотрении свободного полета тела от точки $A \ \kappa B$. Поэтому необходимо проверить, что при такой скорости в точке Aтело действительно сможет дойти до нее, двигаясь по желобу. Другими словами, нужно убедиться, что при такой скорости тело оказывает давление на желоб, т. е. вычисляемая по формуле (3) при $\alpha = \varphi$ сила N больше нуля. Подставляя v^2 из (12) в формулу (3), получаем

$$N = mg\left(\frac{1}{\cos\varphi} - \cos\varphi\right).$$

Это выражение неотрицательно при любых φ от 0 до $\pi/2$, которые только и представляют интерес. Скорость в точке *A* связана с искомой начальной высотой *h* соотношением (5), в котором, разумеется, угол α следует заменить на φ :

$$v^{2} = 2gR\left(\frac{h}{R} - 1 - \cos\varphi\right).$$
⁽¹³⁾

Приравнивая правые части выражений (12) и (13), находим h:

$$h = R\left(1 + \cos\varphi + \frac{1}{2\cos\varphi}\right). \tag{14}$$

Эта формула дает то значение начальной высоты h, при котором тело преодолеет мертвую петлю с вырезом именно так, как нужно,— покинув желоб в точке A, вновь коснется его как раз в точке B. Касание желоба в точке B произойдет без удара, так как скорость тела при движении по параболе в этой точке будет направлена по касательной к желобу.

его как раз в точке В. Касание желоба в точке В произойдет без удара, так как скорость тела при движении по параболе в этой точке будет направлена по касательной к желобу. Если начальная высота будет меньше, чем значение, даваемое формулой (14), то, даже если тело дойдет по желобу до точки А, дальше оно полетит по параболе 2 на рис. 9.4 и ударится о желоб ниже точки В. Если же начальная высота будет больше, чем нужно, то тело вообще вылетит из желоба через разрез, двигаясь по параболе 3. Исследуем зависимость необходимой начальной высоты h от усла в узракторизующего велиции выреза. Как видно

Исследуем зависимость необходимой начальной высоты *h* от угла φ , характеризующего величину выреза. Как видно из формулы (14), при $\varphi=0$, т. е. при отсутствии выреза, $h={}^{b}/{}_{2}R$, что совпадает с минимальной начальной высотой (9), которая требуется для преодоления замкнутой петли. С увеличением угла φ начальная высота убывает, достигая минимума, равного

$$h=(1+\sqrt{2})R,$$

при

что

$$\varphi = \pi/4.$$

Действительно, зависящие от ф слагаемые в формуле (14)

 $\cos \varphi + 1/(2 \cos \varphi)$

можно записать в виде

$$\frac{1}{\sqrt{2}}\left(x+\frac{1}{x}\right),$$

где через x обозначено $\sqrt{2} \cos \varphi$. Но x+1/x имеет минимум, равный двум, при x=1, откуда и получаются приведенные

значения минимальной высоты *h* и угла $\varphi = \pi/4$. При дальнейшем увеличении угла φ величина *h* монотонно возрастает и стремится к бесконечности при $\varphi \rightarrow \pi/2$ (рис. 9.5). При $\varphi = \pi/3$, как легко убедиться, высота *h* снова равна $\frac{5}{2}R$. Таким образом, если величина выреза меньше $\pi/3$, необходимая начальная высота меньше, чем при замкнутом желобе.

• Интересно отметить, что высшая точка траектории 1 в разрезе желоба (рис. 9.4) при любых углах ф лежит выше

Рис. 9.5. При $0 < \phi < \pi/3$ начальная высота h почти не зависит от угла ϕ .

продолжения окружности. Дсйствительно, максимальная высота подъема тела после отрыва в точке А равна

Поэтому высота Н этой точки траектории над центром окружности О, как видно из рис. 9.4, равна

$$H = R\cos\varphi + \frac{R}{2}\frac{\sin^2\varphi}{\cos\varphi} = \frac{R}{2}\left(\cos\varphi + \frac{1}{\cos\varphi}\right).$$

Это выражение больше R при любых φ от 0 до $\pi/2$.

II. ДИНАМИКА И ЗАКОНЫ СОХРАНЕНИЯ

10. Связанные шарики. Два одинаковых маленьких шарика, связанных нерастяжимой невесомой нитью длины *l* (рис. 10.1), лежат на гладкой горизонтальной поверхности. Одному из шариков сообщают скорость v_0 , направленную вертикально вверх. Какой должна быть величина начальной скорости для того, чтобы нить все время оставалась натянутой, а нижний шарик не отрывался от горизонтальной поверхности? Трением шарика о поверхность пренебречь. При исследовании условия отрыва нижнего шарика силу натяжения нити считать максимальной при вертикальном положении нити.

Предположим, что начальная скорость v_0 такова, что эти условия выполнены, т. е. при движении шариков нить все время остается натянутой, а нижний шарик не отрывается от поверхности. По каким траекториям тогда движутся шарики? Ясно, что нижний шарик движется прямолинейно, а верхний описывает некоторую кривую (рис. 10.2). Чтобы выяснить, что это за кривая, воспользуемся тем, что при

Рис. 10.1. Одинаковые шарики связаны нерастяжимой нитью.

вертикальной начальной скорости центр масс шариков в отсутствие трения нижнего шарика о поверхность стола может двигаться только по вертикали.

Введем систему координат так, что ось *х* направлена го-

ризонтально вдоль нити, соединяющей шарики, а ось y вертикально и проходит через центр масс шариков. При таком выборе осей нижний шарик будет двигаться вдоль оси x, центр масс C — вдоль оси y, а верхний шарик — по кривой, лежащей в плоскости x, y. Непосредственно из рис. 10.2 видно, что координаты верхнего шарика x и yможно выразить через угол α , образуемый натянутой нитью с горизонтом:

$$x = \frac{l}{2} \cos \alpha,$$

$$y = l \sin \alpha.$$
(1)

Если из этих соотношений исключить угол α , то получится уравнение траектории верхнего шарика. Разделив первое соотношение на l/2, второе на l, возводя их в квадрат и

складывая, находим

$$\frac{x^2}{(l/2)^2} + \frac{y^2}{l^2} = 1.$$
 (2)

Это уравнение эллипса с полуосями 1/2 и 1.

Для того чтобы выяснить, при какой величине начальной скорости v₀ движение шариков будет именно таким, нужно рассчитать силу натяжения

рассчитать силу натяжения соединяющей их нити. Скорость v_0 должна быть достаточно большой, так чтобы натяжение нити ни в какой точке траектории не обращалось в нуль. С другой стороны, эта скорость не должна быть слишком большой, ибо если вертикальная составляющая силы натяжения нити превысит действующую на шарик силу тяжести *mg*, то нижний шарик оторвется от поверхности стола.

При данной начальной скорости натяжение нити Т

ослабевает по мере подъема шарика. Так происходит потому, что с приближением к верхней точке траектории скорость верхнего шарика уменьшается, а действующая на него сила тяжести играет все бо́льшую роль в искривлении его траектории, и, следовательно, роль силы натяжения уменьшается. Поэтому для нахождения наименьшей величины начальной скорости, при которой нить еще остается натянутой вплоть до верхней точки *А* траектории, составим уравнение второго закона Ньютона для верхнего шарика в этой точке. Так как в точке *А* ускорение направлено вертикально вниз, т. е. по нормали к траектории, то его величина равна отношению квадрата скорости v_1 шарика в этой точке к раднусу кривизны траектория *R*. Поэтому

$$T + mg = \frac{mv_1^2}{R} \,. \tag{3}$$

Нить останется натянутой, если вычисленная из уравнения. (3) величина T будет положительной: T > 0. Мы видим, что для нахождения T нужно знать v_1 и R.

Рис. 10.2. Верхний шарик движется по эллипсу с полуосями *l*/2 и *l*.

Скорость v₁ проще всего найти с помощью закона сохранения энергии. Так как центр масс шариков не перемещается по горизонтали, то горизонтальные составляющие скоростей обоих шариков в любой момент времени равны по величине и направлены в противоположные стороны. Поэтому в момент прохождения верхним шариком наивысшей точки траектории скорости обоих шаров равны v₁. Так как в этот момент потенциальная энергия равна mgl, то

$$\frac{mv_0^2}{2} = 2\frac{mv_1^2}{2} + mgl, \qquad (4)$$

откуда

$$v_1^2 = \frac{1}{2} v_0^2 - gl. \tag{5}$$

Теперь нужно найти радиус кривизны эллипса в точке *А*. Это можно сделать так же, как в задаче 3 раздела «Кинематика», где определялся радиус кривизны циклоиды. Основная идея заключается в том, что рассматриваемую кривую представляют как траекторию какого-либо достаточно простого механического движения и исследуют это движение методами кинематики, пользуясь тем, что раднус кривизны входит в формулу для нормальной составляющей ускорения.

Вместо того чтобы рассматривать действительное движение верхнего шарика, при котором угол α довольно сложным образом зависит от времени, рассмотрим вспомогательное движение некоторой точки по этому же эллипсу, считая, что угол α равномерно меняется со временем: $\alpha = = \omega t$. Для такого вспомогательного движения уравнения (1) принимают вид

> $x = \frac{l}{2}\cos\omega t,$ $y = l\sin\omega t.$ (6)

Дифференцируя эти уравнения по времени, находим проекции скорости вспомогательного движения на оси координат

$$v_x = -\omega \frac{l}{2} \sin \omega t,$$

$$v_y = \omega l \cos \omega t.$$
(7)

Дифференцируя по времени уравнения (7), получаем

проекции ускорения:

$$a_{x} = -\omega^{2} \frac{l}{2} \cos \omega t,$$

$$a_{y} = -\omega^{2} l \sin \omega t.$$
(8)

Рассмотрим тот момент, когда точка, совершающая вспомогательное движение, проходит через точку A эллиптической траектории на рис. 10.2. Этому моменту соответствует $\omega t = \pi/2$, и уравнения (7) и (8) дают

$$v_x = -\omega l/2, \quad a_x = 0;$$

 $v_y = 0, \qquad a_y = -\omega^2 l.$ (9)

В точке A величина скорости вспомогательного движения $v = \omega l/2$, а ускорение направлено по нормали к траектории и

его величина $a = \omega^2 l$. Так как величина ускорения связана с радиусом кривизны траектории R соотношением $a = = v^2/R$, то для радиуса кривизны эллипса в точке A получаем

$$R = v^2/a = l/4.$$
 (10)

Таким образом, дугу эллипса вблизи точки А можно рассматривать как часть окружности радиуса *l*/4, показанной пунктиром на рис. 10.3.

Рис. 10.3. Радиус кривизны эллипса в точке А равен 1/4.

Подставим найденные значения скорости движения шарика v₁ из формулы (5) и радиуса кривизны *R* из (10) в уравнение второго закона Ньютона (3). В результате для силы натяжения нити найдем

$$T = \frac{2mv_0^2}{l} - 5mg.$$
 (11)

Силу натяжения нити T при ее вертикальном положении можно найти и короче, не определяя радиуса кривизны траектории. Для этого достаточно сообразить, что оба шарика участвуют в сложном движении: движение по окружности радиуса l/2 вокруг центра нити складывается с движением этого центра по вертикали. Поэтому ускорения

3 Е.И. Бутиков и др.

шариков a_1 и a_2 равны суммам ускорений a'_1 и a'_2 , связанных с движением по окружности, и ускорения a_0 центра нити. При вертикальном положении нити все эти ускорения направлены по вертикали (рис. 10.4). Величина уско-

ИЗ

представляет собой сумму

ускорения ао середины ни-

ти и ускорений a'_1 и a'_2 ,

связанных с движением

по окружности.

шариков

рений a'_1 и a'_2 одинакова и равна $v''_1(l/2)$. Нижний шарик все время движется по горизонтали, поэтому при вертикальном положении нити его полное ускорение a_2 равно нулю. Из рис. 10.4 видно, что при этом $a_0 = a'_2 = v''_1/(l/2)$. Поэтому ускорение верхнего шарика a_1 равно

$$a_i = a'_i + a_0 = 4 \frac{v_i^2}{l}$$
. (12)

Записывая уравнение второго закона Ньютона для верхнего шарика

$$T+mg=ma_1$$

и подставляя сюда ускорение a_i из формулы (12) и скорость v_1 из формулы (5), приходим к прежнему выражению (11) для силы натяжения нити.

Из формулы (11) следует, что сила натяжения нити не обратится

в нуль (T > 0), если величина начальной скорости шарика v_{\bullet} удовлетворяет условню

$$v_{\rm s}^2 > 2.5 \, gl.$$
 (13)

Выясним теперь, при каком условии нижний шарик не будет отрываться от поверхности. В начальный момент на неподвижный шарик действует сила реакции поверхности, равная mg. При движении другого шарика вверх, когда нить образует некоторый угол с горизонтом, эта сила убывает, так как появляется вертикальная составляющая силы натяжения нити. Для того чтобы шарик не оторвался от поверхности, необходимо, чтобы вертикальная составляющая силы натяжения не достигала бы значения, равного mg, даже при вертикальном положении нити. Таким образом, шарик не оторвется, если вычисляемое по формуле

каждого

(11) значение Т не превышает тд:

$$\frac{2mv_0^2}{l} - 5mg < mg,$$

откуда для максимально допустимого значения начальной скорости получаем

$$v_0^2 < 3gl. \tag{14}$$

Подведем итоги. Если начальная скорость шарика v_o лежит в интервале.

$$2,5\,gl < v_0^2 < 3\,gl$$
,

то нить при движении шариков все время натянута, а нижний шарик скользит по поверхности стола. Верхний шарик опишет половину эллипса (рис. 10.2) и ударится о поверхность. Перед ударом его скорость по величине равна vo и направлена вертикально вниз. Если удар о поверхность абсолютно упругий, то эта скорость изменит направление на противоположное и шарик опишет ту же траекторию в обратном направлении.

11. Парадокс кинетической энергии. Игрушечный автомобиль с полностью заведенной пружиной может разогнаться до скорости v. Пренебрегая потерями энергии на тренне, можно считать, что потенциальная энергия заведенной пружины W целиком превратилась в кинетическую энергию игрушки. Рассмотрим этот же процесс в другой инерциальной системе отсчета, которая движется со скоростью v относительно Земли навстречу **у**грушечному автомобилю. В этой системе отсчета окончательная скорость игрушки равна 2v, т. е. вдвое больше, а ее кинетическая энергия в четыре раза больше, т. е. равна 4W. Так как в этой системе отсчета автомобиль с самого начала имел кинетическую энергию W, то в результате раскручивания пружины его кинетическая энергия возросла на 3W, а не на W, как в исходной системе отсчета. Между тем потенциальная энергия заведенной пружины в обоих случаях равна W! Объясните этот парадокс.

Парадокс возникает потому, что в приведенных рассуждениях не учитывалась кинетическая энергия Земли и ее изменение при взаимодействии колес игрушки с дорогой.

3*

Если же это изменение учесть аккуратно, то никакого парадокса вообще не возникает и закон сохранения энергии; разумеется, оказывается выполненным.

Рассмотрим сначала систему отсчета, в которой Земля неподвижна. В этой системе отсчета до разгона автомобиля полный импульс равен нулю. При разгоне автомобиля он

 приобретает скорость v, а Земля приобретает скорость V, направленную противоположно (V < 0). Полный импульс системы остается неизменным, поэтому

$$mv + MV = 0, \qquad (1)$$

Рис. 11.1. Разгоняясь, заводная игрушка сообщает Земле не только поступательное движение со скоростью V, но и вращение с угловой скоростью ω . где *т* — масса игрушки, *М* — масса Земли.

Так как действующая на Землю со стороны колес игрушки сила не проходит через центр Земли, то кроме поступательного движения со скоростью VЗемля приходит также и во вращение с некоторой угловой скоростью ω (рис. 11.1). Забудем пока об этом вращении

Земли и будем считать, что Земля движется только поступательно.

При раскручивании пружины ее потенциальная энергия *W* превращается в кинетическую энергию игрушки и Земли:

$$W = \frac{mv^2}{2} + \frac{MV^2}{2}.$$
 (2)

Выражая V из уравнения (1) и подставляя в (2), находим

$$W = \frac{mv^2}{2} \left(1 + \frac{m}{M} \right). \tag{3}$$

Так как масса игрушки *m* неизмеримо меньше массы Земли $(m/M \ll 1)$, то, как видно нз формулы (3), практически вся энергия пружины превращается в кинетическую энергию игрушки.

Теперь рассмотрим тот же процесс с точки зрения второй системы отсчета, в которой скорость игрушки и Земли сначала равна v. Полный импульс в этой системе отсчета равен (m+M)v. После разгона скорость игрушки равна 2v, а скорость Земли обозначим через V_1 . На основании закона

сохранения импульса

$$m(2v) + MV_1 = (m+M)v.$$
 (4)

Кинетическая энергия игрушки после разгона равна $m(2v)^2/2$, а кинетическая энергия Земли есть $MV_1^2/2$. Изменение полной кинетической энергии ΔE равно

$$\Delta E = \frac{1}{2} m (2v)^2 + \frac{1}{2} M V_1^2 - \frac{1}{2} (m+M) v^2.$$
 (5)

Выразим V₁ из уравнения (4) и подставим в (5):

$$\Delta E = \frac{3}{2} m v^2 + \frac{1}{2} M \left[\left(1 - \frac{m}{M} \right)^2 v^2 - v^2 \right].$$
 (6)

После простых алгебранческих преобразований выражение (6) приводится к виду

$$\Delta E = \frac{1}{2} m v^2 \left(1 + \frac{m}{M} \right). \tag{7}$$

Сравнивая правую часть (7) с формулой (3), видим, что и в этом случае изменение кинетической энергии всей системы равно потенциальной энергии пружины W.

Изменение кинетической энергии игрушки при разгоне в этой системе отсчета действительно в три раза больше, чем изменение этой энергии в системе отсчета, связанной с Землей. Однако теперь изменение кинетической энергии Земли такого же порядка, что и изменение энергии игрушки, в отличие от изменения энергии. Земли в исходной системе отсчета, где оно было ничтожным. В новой системе отсчета колеса игрушки при разгоне тормозят движение Земли, и ее кинетическая энергия убывает. Увеличение кинетической энергии игрушки в этой системе отсчета происходит не только за счет потенциальной энергии пружины, но и за счет уменьшения кинетической энергии Земли.

Разобранный пример наглядно показывает, с какой осторожностью нужно подходить к вопросу о том, что существенно в рассматриваемом явлении, а чем можно пренебречь. Использовать можно любую систему отсчета, и при точном решении задачи выбор системы отсчета безразличен. Однако при нахождении приближенного решения пренебрежения, допустимые в одной системе отсчета, могут оказаться совершенно непригодными в другой. Так, в рассмотренном примере можно было пренебрегать изменением кинетической энергии Земли и считать, что изменение энергии автомобиля равно энергии пружины при использовании системы отсчета, связанной с Землей. Если пользоваться другой системой отсчета, то и при приближенном решении пренебрегать изменением кинетической энергии Земли нельзя, несмотря на то, что изменение скорости Земли, как легко убедиться, одинаково и в той, и в другой системе отсчета.

Обсудим теперь, что изменится в рассуждениях, если учитывать вызываемое игрушкой вращение Земли. В правой части формулы (2) кроме кинетической энергии поступательного движения Земли будет присутствовать еще и кинетическая энергия вращения Земли. По величине она будет такого же порядка, что и кинетическая энергия поступательного движения Земли. Поэтому в системе отсчета, где Земля была неподвижной, ею, как и энергией поступательного движения Земли, можно пренебречь и считать, что вся потенциальная энергия пружины превращается в кинетическую энергию игрушки.

Во второй системе отсчета (где скорости игрушки и Земли сначала равны v) кинетическая энергия вращения Земли будет такой же, как и в первой системе отсчета, поскольку приобретенная Землей угловая скорость ω одинакова во всех инерциальных системах отсчета. Поэтому, в отличие от кинетической энергии поступательного движения Земли, энергией вращения можно пренебречь и во второй системе отсчета.

12. Фантастический космический проект. Хорошо известно, что для совершения межпланетного путешествия находящемуся на поверхности Земли космическому кораблю необходимо сообщить начальную скорость 11,2 км/с (вторая космическая скорость). Однако в случае запуска космического корабля не с поверхности Земли, а через туннель, прорытый насквозь через центр Земли, получается потрясающий результат. Оказывается, что космическому кораблю, свободно падающему в таком туннеле, достаточно сообщить в тот момент, когда он проходит через центр Земли, дополнительную скорость всего лишь в 5,8 км/с, что составляет лишь 52% от второй космической скорости. Тогда при выходе из туннеля он будет иметь скорость как раз 11,2 км/с и сможет соверпиить космическое путешествие. Это значит, что для запуска одного и того же корабля потребуется меньшая ракета и расход топлива будет менее значительным. Объяснить, почему возможен такой выигрыш.

Прежде всего выясним, какую скорость приобретет ракета при свободном падении сквозь туннель до центра Земли. Это можно сделать с помощью закона сохранения энергии,

Рис. 12.1. Сила тяжести в точке А равна силе притяжения к заштрихованной части земного шара.

Рис. 12.2. Силы тяготения, действующие на m со стороны участков m_1 и m_2 , уравновешиваются.

только сначала нужно выяснить, как различаются между собой значения потенциальной 'энергии на поверхности Земли и в ее центре.

Будем считать, что Земля представляет собой сплошной однородный шар. Выясним, как величина действующей на тело силы тяжести зависит от его положения в туннеле. Очевидно, что в центре Земли эта сила равна нулю. Это непосредственно следует из симметрии картины. Найти силу тяжести в произвольной точке можно точно таким же способом, каким определяется напряженность электростатического поля внутри равномерно заряженного шара.

Разобьем мысленно земной шар на тонкие сферические концентрические слои (рис. 12.1). По принципу суперпозиции полная сила, действующая на тело в тункеле, равна векторной сумме сил, действующих на него со стороны отдельных слоев. Легко убедиться в том, что сила тяготения, действующая со стороны любого слоя на тело, находящееся внутри этого слоя, равна нулю. Это сразу видно из построения, показанного на рис. 12.2. Части оболочки с массами m_1 и m_2 притягивают тело массы m с силами, пропорциональными этим массам и обратно пропорциональными квадратам расстояний r_1 и r_2 . Но сами массы m_1 и m_2 , как видно из рисунка, пропорциональны квадратам соответствующих расстояний. В результате силы тяготения, действующие со стороны выделенных участков сферического слоя, уравно-

Рис. 12.3. Зависимость силы тяжести и потенциальной энергии от расстояния до центра Земли.

вешиваются, что и доказывает сделанное утверждение. Именно таким рассуждением отсутствие силы тяготения внутри сферической оболочки было установлено еще Ньютоном.

Таким образом, на тело в туннеле в точке A (рис.12.1) действует сила тяжести только со стороны заштрихованного шара, на поверхности которого находится это тело. Так как масса заштрихованного шара пропорциональна кубу его радиуса r, а сила тяготения пропорциональна массе (т. е. $\sim r^3$) и в то же время обратно пропорциональна квадрату радиуса, то эта сила пропорциональна радиусу шара: $F \sim r$. Так как на поверхности Земли при r=R сила тяжести равна mg, то на произвольном расстоянии r от центра при $r \leq R$ имеем

$$F(r) = mg \frac{r}{R} \,. \tag{1}$$
При r > R сила тяжести убывает обратно пропорционально квадрату расстояния; график зависимости силы тяжести от r показан на рис. 12.3.

Теперь легко найти выражение для потенциальной энергии тела, находящегося в туннеле. Для этого мысленно поднимем тело из центра Земли на расстояние r, перемещая его равномерно. Очевидно, что для этого внешняя сила в каждой точке должна быть равна силе тяжести F(r) и противоположно направлена. Работа этой силы, равная площади заштрихованного треугольника $mgr^2/2R$, определяет изменение потенциальной энергии ΔE_n :

$$\Delta E_{\rm n} = \frac{1}{2} mg \; \frac{r^2}{R} \; . \tag{2}$$

Обычно потенциальную энергию принимают равной нулю, когда тело находится на бесконечно большом расстоянии от Земли (как, например, в формуле (3) из введения к этому разделу). В этой задаче удобно принять потенциальную энергию равной нулю, когда тело находится в центре Земли. Тогда с помощью формулы (2) найдем, что при $r \leq R$

$$E_{\rm n}(r) = \frac{1}{2} mg \frac{r^3}{R}$$
. (3)

На поверхности Земли потенциальная энергия при этом будет равна $\frac{1}{2}mgR$, а на бесконечно большом расстоянии от Земли $\frac{3}{2}mgR$. График зависимости потенциальной энергии от r также показан на рис. 12.3.

Формула (3) позволяет найти скорость ракеты *v* в центре Земли при свободном падении с поверхности. Приравнивая потенциальную энергию на поверхности ½ mgR кинетической энергии ракеты в центре Земли ½ mv²; получим

$$v = \sqrt{gR}.$$
 (4)

Видно, что эта скорость равна первой космической скорости для спутника, движущегося вблизи поверхности Земли: v=7,9 км/с.

Теперь предположим, что в тот момент, когда ракета пролетает через центр Земли, срабатывают двигатели, которые изменяют ее скорость на величину Δv . Тогда, подлетев к поверхности Земли, на выходе из туннеля ракета будет обладать скоростью v_1 , величина которой находится

с помощью закона сохранения энергии:

$$\frac{1}{2}m(v+\Delta v)^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mgR.$$
 (5)

Потребуем, чтобы v_i была равна второй космической скорости $v_{\rm H} = \sqrt{2gR}$. Тогда для необходимого приращения скорости Δv из уравнения (5) после подстановки в него $v = \sqrt{gR}$, решая квадратное уравнение, получим

$$\Delta v = \sqrt{gR} \left(-1 \pm \sqrt{3} \right). \tag{6}$$

Взяв корень со знаком плюс, получаем значение $\Delta v = (\sqrt{3} - 1) \sqrt{gR} = 5,8$ км/с. Второй корень соответствует изменению направления скорости ракеты в результате срабатывания двигателей на противоположное (т. е. торможению с последующим разгоном) и не представляет интереса в рассматриваемом примере.

Естественно задуматься над вопросом, за счет чего получается такой «выигрыш» в энергии при использовании туннеля. При сгорании топлива в двигателях ракеты определенная часть его внутренней энергии превращается в кинетическую энергию ракеты и выброшенных газов. Если до срабатывания двигателей ракета была неподвижна на поверхности Земли, то в силу закона сохранения импульса некоторая (и немалая!) доля высвобождающейся энергии обязательно перейдет в кинетическую энергию газов. Если же двигатели срабатывают в тот момент, когда ракета уже имеет некоторую скорость, то передаваемая газам доля кине-тической энергии может быть меньше. Например, если при движении в туннеле скорость истечения газов из сопла двигателя ракеты будет равна скорости ракеты относительно Земли, то скорость выброшенных газов относительно Земли будет равна нулю. Другими словами, в системе отсчета, связанной с Землей, выброшенные газы вообще не будут обладать кинетической энергией, и вся высвобождающаяся механическая энергия целиком «достается» ракете. Ракете же достанется и кинетическая энергия топлива, которой оно обладало до срабатывания двигателей.

Интересно отметить, что свободное падение ракеты в туннеле представляет собой гармоническое колебание около центра Земли, при котором ракета пролетает через земной шар по диаметру от одного края туннеля до другого. Так происходит потому, что действующая в туннеле сила тяжести направлена к центру Земли и пропорциональна расстоянию до него. С помощью формулы (1) легко найти период таких колебаний. Поскольку частота $\omega = \sqrt{g/R}$, то период $T = 2\pi/\omega = 2\pi \sqrt{R/g}$, что совпадает с пернодом обращения спутника по низкой круговой орбите.

Разумеется, осуществление описанного здесь фантастического космического проекта лежит за пределами технических возможностей. Ни прорыть такой туннель через центр Земли, ни откачать из него воздух, что совершенно необходимо для того, чтобы свободное падение ракеты в нем происходило без сопротивления, конечно, невозможно. Но сама идея использовать поле тяготения для экономин топлива космических кораблей несомненно представляет интерес. Например, в космическом путешествии за пределы Солнечной системы можно использовать поле тяготения одной из тяжелых планет для предварительного разгона и включать двигатели корабля для сообщения необходимого импульса вблизи этой планеты.

13. Изменение орбиты. В результате трення в верхних слоях атмосферы механическая энергия спутника Земли за много витков уменьшилась на 2%. Эрбита спутника при этом как была, так и осталась круговой. Как изменились параметры орбиты: радиус *r*, скорость *v*, период обращения *T*?

В системе отсчета, связанной с Землей, механическая энергия спутника *E* есть сумма его кинетической энергии и потенциальной энергии взаимодействия с Землей (*R* радиус Земли):

$$E = \frac{1}{2} m v^2 - \frac{m g R^2}{r} \,. \tag{1}$$

Так как орбита спутника круговая, то величина его скорости постоянна и связана с радиусом орбиты соотношением

$$v^2 = \frac{gR^2}{r} \,. \tag{2}$$

С помощью (2) выражение для энергии спутника (1) можно представить в виде

$$E(r) = -\frac{mgR^2}{r} + \frac{mgR^2}{2r} = -\frac{mgR^2}{2r}.$$
 (3)

Проиллюстрируем соотношение (3) графически. На рис. 13.1 показана зависимость потенциальной, кинетической и полной энергий спутника от радиуса *г* круговой орбиты. Из рисунка видно, что увеличение механической энер-

Рис. 13.1. Зависимость кинетической, потенциальной и полной энергий спутника Земли от радиуса орбиты.

гии спутника приводит к увеличению радиуса орбиты. Поскольку при нашем выборе начала отсчета потенциальной энергии полэнергия спутника ная всегда отрицательна, относительное изменение энер- $\Lambda E/E$ гии положительно при ee уменьшении $(\Delta E < 0).$ Так как по **VСЛОВИЮ** ПОЛНАЯ энергия **уменьшилась** на 2%, то $\Delta E/E$ положительно и равно 0,02. Соотношение (3) позволяет связать изменение энергии спутника С изменением радиуса орбиты Лг.

$$E(r + \Delta r) = -\frac{1}{2} \frac{mgR^2}{r + \Delta r} =$$
$$= E(r) + \Delta E. \quad (4)$$

Правую часть этого выражения при $\Delta r/r \ll 1$ приближенно можно записать так:

$$-\frac{1}{2}\frac{mgR^2}{r\left(1+\Delta r/r\right)}\approx-\frac{1}{2}\frac{mgR^2}{r}\left(1-\frac{\Delta r}{r}\right)=E\left(r\right)\left(1-\frac{\Delta r}{r}\right).$$
 (5)

Сравнивая (4) и (5), получаем $E + \Delta E = E (1 - \Delta r/r)$, т. е.

$$\frac{\Delta r}{r} = -\frac{\Delta E}{E} = -0,02.$$

Радиус орбиты также уменьшился на 2%.

Изменение скорости спутника при изменении орбиты легко выразить через изменение радиуса орбиты с помощью

соотношения (2):

$$(v + \Delta v)^2 = \frac{gR^2}{r + \Delta r}.$$
 (6)

Поскольку $\Delta v/v \ll 1$, левую часть этого соотношения приближенно можно записать в виде

$$v^2 \left(1+\frac{\Delta v}{v}\right)^2 \approx v^2 \left(1+2\frac{\Delta v}{v}\right).$$

Преобразовав правую часть формулы (6) так же, как и при переходе от (4) к (5), получим

$$v^{2}\left(1+2\frac{\Delta v}{v}\right)=\frac{gR^{2}}{r}\left(1-\frac{\Delta r}{r}\right),$$

откуда, учитывая (2), находим

$$\frac{\Delta v}{v} = -\frac{\Delta r}{2r} = \frac{\Delta E}{2E} = 0,01.$$

Скорость спутника увеличилась на 1%. Обратите внимание, что слабое торможение спутника в верхних слоях атмосферы приводит к увеличению его скорости!

Осталось найти изменение периода обращения. Это легко сделать, зная $\Delta r/r$ и $\Delta v/v$, поскольку период связан с радиусом орбиты и скоростью спутника соотношением $T=2\pi r/v$. Записывая значение периода обращения при изменившихся радиусе орбиты и скорости спутника

$$T + \Delta T = 2\pi \frac{r + \Delta r}{v + \Delta v}$$

и преобразуя правую часть подобно тому, как это делалось выше:

$$2\pi \frac{r\left(1+\Delta r/r\right)}{v\left(1+\Delta v/v\right)} \approx T\left(1+\frac{\Delta r}{r}-\frac{\Delta v}{v}\right),$$

находим

$$\frac{\Delta T}{T} = \frac{\Delta r}{r} - \frac{\Delta v}{v} = -\frac{3 \Delta E}{2E} = -0,03.$$

Период обращения уменьшился на 3%.

14. Энергия спутника. Спутник вращается вокруг Земли по круговой орбите радиуса *г*. В какой пропорции сообщенная ему при запуске энергия распределилась между приращениями потенциальной и кинетической энергий?

Кинетическую энергию спутника *mv*²/2, учитывая, что он движется по круговой орбите, удобно выразить через радиус орбиты *r*:

$$E_{\kappa} = \frac{mgR^2}{2r}, \qquad (1)$$

Находясь на поверхности Земли, спутник уже обладает потенциальной энергией. Если, как обычно, выбрать начало отсчета погенциальной энергии на бесконечности, потенциальная энергия спутника на поверхности Земли

$$E_{n}(R) = -mgR,$$

а потенциальная энергия на орбите

$$E_{n}(r) = -\frac{mgR^{2}}{r}.$$

Следовательно, при выводе спутника на орбиту ему была сообщена потенциальная энергия

$$E_{n} = E_{n}(r) - E_{n}(R) = mgR\left(1 - \frac{R}{r}\right).$$
 (2)

Составляя отношение (1) и (2), находим

$$\frac{E_{\rm n}}{E_{\rm K}}=2\frac{r-R}{R}.$$

Но *г* — *R* равно высоте орбиты *H* над поверхностью Земли. Итак,

$$E_{\rm n}/E_{\rm k}=2H/R$$
,

т. е. отношение сообщенной потенциальной энергии к сообщенной кинетической пропорционально высоте орбиты.

78

15. Возвращение с орбиты. Космический корабль движется по круговой орбите. Для перехода на траекторию приземления кораблю сообщают дополнительную скорость Δv включением тормозного двигателя на короткое время. Рассмотреть два способа перехода на траекторию приземления: 1) дополнительная скорость сообщается в направлении, противоположном орбитальной скорости; 2) дополнительная скорость сообщается вертикально вниз, т. е. в направлении на центр Земли. Какой способ выгоднее энергетически? Исследовать также предельный случай возвращения с низкой круговой орбиты, высота которой h над поверхностью Земли много меньше радиуса Земли R ($h \ll R$).

Сообщение дополнительной скорости Δv переводит корабль с круговой орбиты на эллиптическую. Один из фоку-

сов эллипса, в соответствии с первым законом Кеплера. находится в центре Земли. При любом из способов величина дополнительной скорости будет наименьшей, если эллипс только касается земной поверхности (точнее-границы плотных слоев атмосферы), а не пересекает ее. В самом деле, при таком условии требуется наименьшее «искажение» первоначальной круговой траектории. Ha рис. 15.1 выбранная точка приземления обозначена буквой А. Эта точка является перигеем эллиптической траектории спуска.

При первом способе включение двигателя изменяет

Рис. 15.1. Возможные траекторин снижения с круговой орбиты в точку А на поверхности.

только величину, но не направление скорости. Поэтому в точке, где срабатывает тормозной двцгатель, и исходная круговая, и получившаяся эллиптическая траектория спуска имеют общую касательную, направленную вдоль вектора скорости. Глядя на рис. 15.1, нетрудно сообразить, что эта точка является апогеем эллиптической траектории и, следовательно, лежит на продолжении прямой, проходящей через перигей (точку A) и центр Земли.

При втором способе дополнительная скорость Δv сообщается в направлении, перпендикулярном круговой орбите, и, следовательно, при этом изменяется как величина, так и направление орбитальной скорости. Это означает, что эллиптическая траектория спуска пересекает круговую орбиту в точке, где срабатывает тормозной двигатель (точка *C* на рис. 15.1).

Для определения необходимой величины дополнительной скорости Δv в каждом из этих случаев воспользуемся законом сохранения энергии и вторым законом Кеплера, согласно которому при движении по орбите секторная скорость неизменна. Уравнения, выражающие эти законы, для первого способа можно записать в виде

$$\frac{1}{2}mv^2 - \frac{mgR^2}{r} = \frac{1}{2}mv_1^2 - mgR,$$
 (1)

$$rv = Rv_i, \tag{2}$$

где $v = v_0 - \Delta v_1 - c$ корость в апогее (в точке *B* рис. 15.1), $v_0 - c$ корость на круговой орбите, $r - радиус круговой орбиты, <math>v_1 - c$ корость в точке приземления *A*. Подставляя v_1 из (2) в (1) и перегруппировывая члены, получим

$$v^{2}\left(1-\frac{r^{2}}{R^{2}}\right)=\frac{2gR^{2}}{r}\left(1-\frac{r}{R}\right).$$
(3)

Рассматривая в левой части уравнения (3) разность квадратов $(1-r^2/R^2)$ как произведение (1+r/R) (1-r/R) и сокращая правую и левую части на (1-r/R), получим

$$v = \sqrt{\frac{2gR^2}{r}} \frac{1}{\sqrt{1+r/R}}.$$

Учитывая, что $\sqrt{gR^2/r}$ есть скорость корабля на круговой орбите v_0 , и подставляя $v = v_0 - \Delta v_1$, найдем

$$\Delta v_{1} = v_{0} \left(1 - \sqrt{\frac{2}{1+r/R}} \right).$$
 (4)

В случае низкой круговой орбиты ($h \ll R$) эту точную формулу можно приближенно записать в более простом виде. Преобразуем корень в правой части (4), подставляя

вместо r сумму радиуса Земли R и высоты круговой орбиты h (r=R+h), следующим образом:

$$\sqrt{\frac{2}{1+r/R}} = \sqrt{\frac{2}{1+(R+h)/R}} = \sqrt{\frac{2}{2+h/R}} = \frac{1}{\sqrt{\frac{1}{1+h/2R}}} \approx \approx \frac{1}{n+h/4R} \approx 1 - \frac{h}{4R}.$$

Подставляя это выражение в формулу (4), получим $\Delta v_1 \approx \frac{1}{4} v_0 \frac{h}{R}$.

Перейдем к нахождению дополнительной скорости Δv_2 при втором способе перехода на траекторию приземления. Прежде всего заметим, что при сообщении кораблю дополнительной скорости в направлении на центр Земли его секторная скорость не изменяется, поэтому в любой точке эллиптической траектории спуска значение секторной скорости будет таким же, как и на первоначальной круговой орбите, т. е. равным rv_0 . Запишем это условие для точки приземления A, скорость в которой обозначим через v_2 :

$$rv_0 = Rv_2. \tag{6}$$

Вместе с уравнением закона сохранения энергии

$$\frac{1}{2}m(v_0^2 + \Delta v_2^2) - \frac{mgR^2}{r} = \frac{1}{2}mv_2^2 - mgR$$
(7)

получаем систему уравнений относительно неизвестных v_2 и Δv_2 . В уравнении (7) учтено, что дополнительная скорость Δv_2 перпендикулярна скорости на круговой орбите и квадрат результирующей скорости определяется по теореме Пифагора (см. рис. 15.1). Подставляя v_2 из (6) в уравнение (7), учитывая, что скорость на круговой орбите $v_0 = \sqrt{gR^2/r}$, и выражая через v_0 последнее слагаемое в правой части (7), получим

$$v_0^2 + \Delta v_2^2 - 2v_0^2 = v_0^2 \frac{r^2}{R^2} - 2v_0^2 \frac{r}{R}$$
,

откуда

$$\Delta v_2^2 = v_0^2 \left(\frac{r^2}{R^2} - 2 \frac{r}{R} + 1 \right).$$
 (8)

Таким образом,

$$\Delta v_2 = v_0 \left(\frac{r}{R} - 1\right). \tag{9}$$

(5)

Подставляя в эту формулу r=R+h, получаем

$$\Delta v_2 = v_0 \frac{h}{R} \,. \tag{10}$$

Сравнивая формулы (5) и (10), находим, что при использовании первого способа перехода на траекторию приземления с низкой круговой орбиты ($h \ll R$) необходимая дополнительная скорость Δv в 4 раза меньше. Скорость в точке A, которую необходимо погасить для

Скорость в точке *A*, которую необходимо погасить для осуществления мягкой посадки, при использовании первого способа меньше. Это непосредственно следует из закона сохранения энергии при сравнении этих способов. Действительно, так как изменения потенциальной энергии одинаковы при обоих способах спуска, то кинетическая энер-

Рис. 15.2. К расчету точки срабатывания тормозного двигателя.

гия в точке А больше в том случае, в котором она больше сразу после срабатывания тормозного двигателя. Таким образом, и с этой точки зрения первый способ является предпочтительным. Более высокая скорость входа в плотные слои атмосферы, характерная для второго способа, предъявляет более жесткие требования к теплозащитному экрану корабля. Преимущества первого способа становятся совсем очевидными, если речь идет о посадке на лишенную атмосферы планету (например на Луну), где скорость перед посадкой должна быть погашена двигателем.

гателя. В какой точке круговой орбиты должен сработать орбиты должен сработать тормозной двигатель, чтобы приземление произошло в заданной точке А? При первом способе снижения эта точка, как мы видели, лежит на прямой, проходящей через точку А и центр Земли (точка В на рис. 15.1). А как при втором способе? На рис. 15.1 точка С, где срабатывает двигатель, расположена на прямой, проходящей через центр Земли и образующей прямой угол с радиусом Земли, проведенным в точку А. И это действительно так. Убедиться в этом можно, например, следующим образом.

например, следующим образом. Рассмотрим треугольник СОО' на рис. 15.2, который получается, если точку С соединить с фокусами эллиптической траектории О и О'. Согласно первому закону Кеплера фокус О совпадает с центром Земли. Вычислим стороны s и d этого треугольника, используя свойства эллиптической орбиты, по которой движется корабль после срабатывания двигателя. При этом окажется, что $d^2+r^2=s^2$, т. е. для треугольника СОО' справедлива теорема Пифагора, и, следовательно, он прямоугольный. Сторона d, как видно из рис. 15.2, равна разности r'

Сторона d, как видно из рис. 15.2, равна разности r'и R:

$$d=r'-R.$$
 (11)

Сумма расстояний от любой точки эллипса до фокусов есть постоянная для данного эллипса величина. Приравнивая суммы расстояний до фокусов от точек С и Е, получаем

откуда

$$s+r=r'+R,$$

$$s=r'+R-r.$$
 (12)

Таким образом, для нахождения d и s пужпо вычислить r', т. е. расстояние от центра Земли до апогея эллиптической орбиты. Это можно сделать, используя закон сохранения энергии и постоянство секторной скорости. Приравнивая эти величины в точках C и E, получим

$$v_0 = r'v', \tag{13}$$

$$\frac{1}{2}m(v_0^2 + \Delta v_2^2) - \frac{mgR^2}{r} = \frac{1}{2}m{v'}^2 - \frac{mgR^2}{r'}.$$
 (14)

Подставим в уравнение (14) v' из (13), значение Δv_2 из (9) и заменим, как и раньше, gR^2 на $v_0^2 r$. В результате получим

$$\left(\frac{r}{R}-1\right)^2 = \left(1-\frac{r}{r'}\right)^2.$$
 (15)

Это квадратное уравнение для r' имеет два корня. Один корень r' = R соответствует перигею орбиты, т. е. точке A. Этот корень появляется потому, что правая часть уравнения (13) имеет одинаковый вид и для апогея, и для перигея, а уравнение (14) справедливо для всех точек траектории. Второй корень-

$$r' = \frac{Rr}{2R - r} \tag{16}$$

соответствует искомому расстоянию до апогея.

Теперь остается только подставить r' из (16) в формулы (11) и (12) и убедиться, что $d^2+r^2=s^2$.

Глядя на рис. 15.1, легко сообразить, что для низкой круговой орбиты, когда эллиптические траектории спуска

Рис. 15.3. Снижение в точку A возможно при сообщении в точке D импульса, направленного от центра Земли.

мало отличаются от круговой, возвращение на Землю по первому способу занимает приблизительно половину оборота вокруг Земли, а по второму способу — четверть. В заключение сделаем следующее замечание. При нахождении добавочной скорости Δυ₂ мы взяли только положительный корень уравнения (8). А имеет ли физический

смысл отрицательный корень этого уравнения

$$\Delta v_2 = -v_0 \left(\frac{r}{R} - 1\right)? \tag{17}$$

Знак минус перед этим выражением может означать только то, что эта добавочная скорость направлена не к центру Земли, а в противоположном направлении — от центра Земли. Какая при этом получится траектория? Имеет ли она какое-либо отношение к решаемой задаче, т. е. к нахождению траектории снижения?

дению траектории снижения? Взглянем еще раз на рис. 15.1. Эллипс, соответствующий второму способу снижения, пересекается с исходной круго-вой орбитой корабля дважды: в точках С и D. Из симмет-рии рисунка ясно, что величина скорости на эллиптичес-кой орбите в точках С и D одинакова. Если разложить скорости в этих точках на составляющие по двум взаимно скорости в этих точках на составляющие по двум взаимно перпендикулярным направлениям — вдоль круговой траек-тории и вдоль направления на центр Земли, — то, как ясно из рис. 15.3, соответствующие составляющие скорости будут одинаковы по величине. Поэтому, если кораблю в тот мо-мент, когда он проходит через точку D круговой орбиты, сообщить добавочную скорость Δv_2 , направленную по радиу-су от центра Земли (т. е. вертикально вверх!), то корабль сначала будет удаляться от Земли по эллиптической траек-тории. Но потом двигаясь по ней все равно понато. тории, но потом, двигаясь по ней, все равно придет в TOYKYA.

точку А. Уравнение (8) имеет корень (17), соответствующий этому случаю. Это и не удивительно: как закон сохранения энер-гии (7), так и закон постоянства секторной скорости (6) имеют один и тот же вид независимо от того, направлена ли добавочная скорость Δv_2 к центру или от центра Земли. В случае низкой круговой орбиты возвращение на Землю по такому необычному способу займет, как это видно из рис. 15.3, приблизительно три четверти оборота вокруг

. Земли.

16. Метеорит. На какой угол изменится направление скорости пролетающего мимо Земли метеорита под действием земного притяжения? Скорость метеорита на большом расстоянии от Земли v₀, прицельное расстояние *l*.

Качественно характер зависимости угла отклонения метеорита от скорости v_0 и прицельного расстояния l, т. е. расстояния от центра Земли, на котором пролетел бы метеорит, если бы не было земного притяжения (рис. 16.1), можно установить сразу: при заданной скорости v_0 этот угол тем меньше, чем больше l. Это ясно, так как на пролетающий на большом расстоянии метеорит ослабевающее с расстоянием земное притяжение влияет слабо. При заданном l-угол от-

клонения тем меньше, чем больше скорость v_0 . В самом деле, при большой скорости время пролета мало, и сила земного тяготения не успевает вызвать заметного искривления траектории метеорита.

Для получения количественного результата необходимо использовать некоторые свойства гиперболической траек-

Рис. 16.1. Гиперболическая траектория полета метеорита вблизи Земли.

тории, по которой движется метеорит, если он приходит к Земле из бесконечности. Гипербола — это геометрическое место точек, разность расстояний до которых от двух заданных точек О и О́', называемых фокусами, постоянна: r1- $-r_2$ = const (рис. 16.1). Один изфокусов гиперболы О совпадает с центром Земли, второй фокус О' лежит на прямой, проходящей через центр Земли и ближайшую к центру точку А траектории. На бесконечно больших расстояниях от Земли как при приближении, так и при удалении скорость

метеорита направлена по асимптотам гиперболы, т. е. задача состоит в нахождении угла в между асимптотами. Точка пересечения асимптот лежит посредине между фокусами.

Приравняем разности расстояний от фокусов О и О' до бесконечно удаленной точки (О'В на рис. 16.1) и до ближайшей к центру Земли точки (А на рис. 16.1). Из треуголъника ОО'В находим

$$O'B = 2l \operatorname{tg}(\theta/2), OO' = 2l/\cos(\theta/2).$$

Разность расстояний от фокусов до точки А

$$A0' - A0 = (00' - A0) - A0.$$

Обозначим через *г* расстояние *AO* от центра Земли до ближайшей точки траектории. Теперь условие равенства разности расстояний до выбранных точек можно записать в виде

$$2l \operatorname{tg} (\theta/2) = \frac{2l}{\cos (\theta/2)} - 2r.$$

Перенося 2г в левую часть, возводя обе части в квадрат и используя тождество $1/\cos^2 \alpha = 1 + tg^2 \alpha$, получаем

$$tg(\theta/2) = \frac{l^2 - r^2}{2lr}$$
 (1)

При заданном прицельном расстоянии 1 расстояние г до ближайшей к центру Земли точки траектории зависит от

величины скорости и на бесконечности. Для того чтобы исключить г из формулы (1), воспользуемся законом сохранения энергии

$$\frac{mv_0^2}{2} = \frac{mv^2}{2} - \frac{mgR^2}{r} \qquad (2)$$

(v — скорость метеорита в точке A, R — радиус Земли) и вторым законом Кеплера, который при движении в центральном поле справедлив и для разомкнутых траекторий:

$$lv_0 = rv.$$
 (3)

Правая часть этого равенства очевидна, поскольку в ближай Рис. 16.2. Применение вто-шей к Земле точке траектории рого закона Кеплера к гипер-А вектор скорости *v* перпенди-

кулярен радиусу Земли. Левая часть этого равенства становится очевидной, если посмотреть на рис. 16.2.

Из закона сохранения энергии (2) и формулы (3) легко находим

$$\frac{l^2 - r^2}{r} = \frac{2gR}{v_0^2},$$

что после подстановки в (1) дает

$$\lg \left(\frac{\theta}{2}\right) = \frac{gR^2}{lv_0^2} \,. \tag{4}$$

болической орбите.

Эта формула решает поставленную задачу: определяет угол отклонения метеорита в зависимости от прицельного расстояния и скорости на бесконечности. Угол $\theta/2$ монотонно возрастает от 0 до $\pi/2$ при уменьшении произведения lv_0^2 от ∞ до 0, что согласуется с приведенными выше качественными соображениями.

При решении задачи мы предполагали, что траектория метеорита не задевает Землю. Уравнения (2) и (3) позволяют найти условие, которому должны удовлетворять прицельное расстояние l и скорость метеорита на бесконечности v_0 , чтобы это действительно было так. Полагая в этих уравнениях минимальное расстояние r до центра Земли равным радиусу Земли R и исключая из них v, находим

$$l_{\min} = R \sqrt{\frac{1 + \frac{2gR}{v_0^2}}{1 + \frac{2gR}{v_0^2}}}.$$

При меньших значениях прицельного расстояния метеорит упадет на Землю.

Рассмотрим некоторые частные случаи.

1. Наибольшее значение угла отклонения θ_{max} получается из (4) при наименьшем возможном (при заданной скорости v_0) значении прицельного расстояния l_{min} , выражение для которого можно переписать несколько иначе, воспользовавшись тем, что 2gR равно квадра́ту второй космической скорости v_{II} :

$$l_{\min} = R \sqrt{1 + (v_{11}/v_0)^2}$$

(l_{min} и θ_{max} соответствуют траектории, почти касающейся земного шара). Таким образом,

$$\theta_{\max} = 2 \arctan \frac{(v_{11}/v_{\theta})^2}{2 \sqrt{1 + (v_{11}/v_{\theta})^2}} .$$
 (5)

Если скорость на бесконечности мала по сравнению со второй космической скоростью: $v_0 \ll v_{11}$, то в знаменателе (5) под корнем можно пренебречь единицей:

$$\theta_{\max} \approx 2 \arctan \frac{v_{11}}{2v_0},$$

т. е. $\theta_{max} \rightarrow \pi$ при $v_0/v_{II} \rightarrow 0$: при малой величине начальной скорости и надлежащем выборе ее направления (т. е.

таком, чтобы метеорит все-таки прошел мимо Земли) направление скорости метеорита после облета Земли изменится практически на противоположное.

2. Угол отклонения метеорита будет мал, как видно из (4), при выполнении неравенства $gR^2/lv_0^2 \ll 1$. В этом случае в (4) тангенс можно заменить его аргументом:

$$\theta \approx \frac{2gR^2}{lv_0^2}.$$
 (6)

Правая часть этого выражения представляет собой отношение абсолютной величины потенциальной энергии метеорита на расстоянии l от центра Земли mgR²/l и его кинетической энергии на бесконечности mv2/2.

Интересно отметить, что приближенный результат (6) для отклонения на малый угол с точностью до числового множителя порядка единицы можно получить совершенно элементарно. Рассмотрим относящийся к этому случаю рис. 16.3. Грубо можно считать, что взаимодействие метеорита с Землей существенно только на ближайшем к Земле участке траектории АВ длиной порядка l: другие участки почти прямолинейны, так как там сила земного притяжения практически параллельна скорости метеорита. В рассматриваемом движении величина скорости практически неизменна, и продолжительность действия силы земного тяготения на метеорит можно принять $\Delta t \approx l/v_0$. Силу приб-

Рис. 16.3. K приближенному вычислению малого угла отклонения метеорита.

лиженно можно положить равной mgR²/l². Таким образом, приращение импульса метеорита Δp в направлении, перпендикулярном направлению его движения, составляет по порядку величины

$$\Delta p = F \Delta t \approx \frac{mgR^2}{lv_0} \, .$$

Отсюда для угла отклонения в легко получить

$$\theta \sim \frac{\Delta p}{p} = \frac{\Delta p}{mv_0} = \frac{gR^2}{m^2}.$$

89

17. Рассеяние α -частица, летевшая со скоростью v_0 , упруго рассеивается на неподвижном ядре и изменяет направление движения на 90°. Определить скорость ядра после удара.

Столкновение α-частицы с ядром можно рассматривать как абсолютно упругий удар, при котором выполняются ваконы сохранения энергии и импульса. Пусть *m* и *M* —

Рис. 17.1. Сохранение импульса при рассеянии α-частицы на прямой угол неподвижным ядром. массы α -частицы и ядра, а \boldsymbol{v} н \boldsymbol{V} — нх скорости после столкновения. Тогда законы сохранения энергии и импульса записываются в виде

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}MV^2, \quad (1)$$

$$m\boldsymbol{v}_{0} = m\boldsymbol{v} + M\boldsymbol{V}. \tag{2}$$

Равенству (2) соответствует параллелограмм импульсов на рис. 17.1. Так как по условию α -частица рассеялась на 90°, то треугольники на этом рисунке

прямоугольные. Направление движения ядра после удара составляет некоторый угол φ с первоначальным направлением движения α-частицы. Из рис. 17.1 видно, что

$$tg \varphi = \frac{v}{v_0}.$$
 (3)

Для нахождения величины скорости α-частицы и ядра после удара применим к прямоугольному треугольнику на рис. 17.1 теорему Пифагора:

$$M^2 V^2 = m^2 \left(v_0^2 + v^2 \right). \tag{4}$$

Подставляя отсюда V² в уравнение закона сохранения энергии (1), получаем

$$v^2 = v_0^2 \frac{M-m}{M+m}.$$
 (5)

Подставляя это значение v² в равенство (4), находим

$$V^2 = v_0^2 \frac{2m^2}{M(M+m)}.$$
 (6)

Выражение (3) для tg q с учетом (5) принимает вид

$$tg \varphi = \sqrt{\frac{M-m}{M+m}}.$$
 (7)

Из формулы (5) или (7) видно, что рассеяние α -частицы на 90° при столкновении с неподвижным ядром возможно только в том случае.

когда ее масса меньше массы ядра: m < M. Условие задачи не может быть выполнено, если α -частицы рассеиваются на ядрах водорода, дейтерия, трития или гелия.

Несмотря на то, что рассмотренный процесс мы называем ударом, в действительности αчастица может и не

Рис. 17.2. Гиперболические траектории α-частиц в кулоновском поле ядра.

приходить в непосредственное соприкосновение с ядром. На налетающую α -частицу со стороны ядра действует кулоновская сила отталкивания, так что траектория α -частицы представляет собой гиперболу (рис. 17.2). Ближе всего α -частица подходит к ядру при центральном ударе, в результате которого она рассеивается назад. Для того чтобы оценить по порядку величины наименьшее расстояние r_0 , на которое α -частица может приблизиться к ядру, будем считать, что ядро остается неподвижным, и приравняем первоначальную кинетическую энергию α -частицы к потенциальной энергии системы в момент остановки α -частицы:

$$\frac{1}{2}mv_0^2 = \frac{1}{4\pi\varepsilon_0}\frac{2Ze^2}{r_0},$$
 (8)

где Ze — заряд ядра. Если скорость налетающей α -частицы такова, что вычисленное по формуле (8) значение r_0 окажется больше размера ядра $R \approx 10^{-18}$ см, то в процессе столкновения с ядром на α -частицу действует только кулоновская сила, а короткодействующие ядерные силы не играют никакой роли.

Если в формуле (8) положить r_0 равным радиусу действия ядерных сил $R \approx 10^{-13}$ см, то можно оценить максимальную скорость (или энергию) α -частицы, при которой она еще упруго рассеивается на ядре, не изменяя его внутреннего состояния. Так, при Z порядка 80 (у золота, использовавшегося в опытах Резерфорда, Z=79) эта скорость составляет примерно 10^6 м/с. При этом благодаря тому, что силы кулоновского взаимодействия являются потенциальными, механическая энергия системы сохраняется. В результате модель абсолютно упругого удара адекватно описывает рассеяние, хотя удара в механическом смысле не происходит.

Кинетическую энергию, приобретаемую ядром при рассеянии α-частицы на прямой угол, используя формулу (6), можно записать в виде

$$\frac{1}{2}MV^2 = \frac{mv_0^2}{2}\frac{2m}{M+m}.$$
(9)

Обратим внимание на то, что передаваемая ядру при столкновении энергия составляет ничтожную часть первоначальной энергии α -частицы, если его масса много больше массы α -частицы: $M \gg m$. Этот вывод, полученный для частного случая рассеяния на прямой угол, остается справедливым и в общем случае рассеяния на любые углы.

При получении соотношения (9) использовались только законы сохранения. Поэтому вывод о том, что легкая частица при упругом столкновении с тяжелой частицей может передать ей лишь незначительную часть своей кинетической энергии, является универсальным и применим, в частности, к упругим столкновениям электронов с ионами и нейтральными атомами в плазме. Это приводит к интересным особенностям в свойствах плазмы.

Рассмотрим, например, такой опыт: в плазму впрыскивается пучок быстрых электронов. После того как электроны пучка испытают хотя бы по одному столкновению с ионами или атомами, направленный характер движения электронов будет полностью утрачен. Произойдет полная хаотизация распределения электронов по направлению скорости. Но каждый электрон должен испытать очень много столкновений с тяжелыми частицами, прежде чем произойдет выравнивание средних значений кинетических энергий легких и тяжелых частиц. В результате в течение

92

довольно большого промежутка времени электроны и ионы в плазме будут находиться как бы при разных температурах. Хотя электроны и ионы находятся в одном и том же объеме, полностью перемешаны и все время сталкиваются друг с другом, они ведут себя как две разные, почти изолированные друг от друга термодинамические системы, между которыми почти нет теплообмена!

18. Столкновение шара с клином. Шар массы m, летевший горизонтально со скоростью v, после абсолютно упругого удара о наклонную поверхность клина отскакивает вертикально вверх (рис. 18.1). Клин массы M стоит на гладкой горизонтальной поверхности и после удара скользит по этой поверхности. На какую высоту подскочит шар?

Высота *h* подъема шара над точкой, в которой происходит удар, определяется величиной вертикальной скорости *v*_i, приобретаемой шаром в результате удара:

$$h = \frac{v_1^2}{2g}$$

Поэтому решение задачи сводится к нахождению этой скорости v_1 .

Рассмотрим сначала предельный случай, когда масса клина много больше массы шара: М ≫ ≫ m. Ясно, что массивРис. 18.1. Удар шара о наклонную поверхность клина.

ный клин практически не сдвинется с места при ударе легкого шара, т. е. клин можно считать скрепленным с горизонтальной поверхностью. Чтобы шар действительно отскочил вверх, наклонная грань клина в этом случае должна образовывать угол $\pi/4$ с горизонтом. Так как по условию удар шара о клин абсолютно упругий, скорость шара изменяется только по направлению, оставаясь неизменной по величине: $v_1 = v$. Следовательно, $h = v^{2}/2g$.

А что будет, если масса клина сравнима с массой шара? Попробуем применить законы сохранения импульса и энергии, считая, что при ударе взаимодействие шара с клином и взаимодействие клина с горизонтальной поверхностью происходят мгновенно и одновременно. По условию между клином и поверхностью, на которой он лежит, трение отсутствует. Поэтому проекция закона сохранения импульса на горизонтальное направление записывается в виде

$$mv = MV,$$
 (1)

где V — горизонтальная составляющая скорости клина после удара. Для того чтобы записать проекцию закона сохранения импульса на вертикальное направление, нужно учесть, что при ударе клин взаимодействует с поверхностью, т. е. с Землей:

$$mv_i = (M + M_3)V_i.$$
 (2)

В этом выражении V_I — величина вертикальной скорости клина и Земли после удара, M₃ — масса Земли.

К уравнениям (1) и (2) добавим закон сохранения энергии при упругом ударе:

$$\frac{mv^2}{2} = \frac{mv_1^2}{2} + \frac{MV^2}{2} + \frac{(M+M_3)V_1^2}{2}.$$
 (3)

Последним слагаемым в правой части уравнения (3), которое содержит кинетическую энергию Земли, приобретенную в результате удара, можно пренебречь из-за большой величины массы Земли. Чтобы убедиться в этом, выразим скорость V_1 из уравнения (2) и подставим в (3). Тогда последний член в (3) принимает вид

$$\frac{(M+M_3)V_1^2}{2} = \frac{m}{M+M_3} \frac{mv_1^2}{2}.$$
 (4)

Так как отношение $m/(M+M_3) \ll 1$, то, как видно из (4), передаваемая Земле кинетическая энергия пренебрежимо мала.

Выражая теперь горизонтальную скорость клина Vиз уравнения (1) и подставляя в уравнение (3), в котором отброшен последний член, находим интересующую нас вертикальную скорость шара после удара v_1 :

$$v_1^2 = v^2 \frac{M - m}{M} \,. \tag{5}$$

Мы получили ответ, который выглядит вполне благополучно: например, он удовлетворяет предельному случаю за-

крепленного клина ($m \ll M$), обсуждавшемуся выше. Именно такое решение этой задачи можно встретить во многих руководствах и задачниках.

Но ведь можно рассуждать и иначе. Решая задачу, мы предположили, что происходит только один удар — удар шара о клин, лежащий на Земле. Между тем в столкновении участвуют три тела: шар, клин и Земля. Можно ли на

Рис. 18.2. При упругом ударе средний шар остается на месте.

самом деле считать, что происходит один удар, или необходимо последовательно рассмотреть соударение шара с клином и клина с Землей?

Чтобы убедиться в том, что и такое предположение возможно, вспомним пример другого упругого столкновения, в котором также участвуют три тела: на длинных нитях одинаковой длины подвешены три одинаковых костяных шара, соприкасающихся друг с другом. Один из крайних отклоняют на некоторый угол шаров отпускают И (рис. 18.2, а). Оказывается, что после удара отскакивает только один шар, висящий с другого края, а средний шар остается на месте (рис. 18.2, б). Результат этого опыта говорит о том, что происходящее столкновение нельзя рассматривать как один удар отклоненного шара с системой двух неподвижно висящих шаров. Чтобы объяснить опыт, необходимо рассмотреть два последовательно происходящих упругих соударения — отклоненного шара с центральным, а затем центрального шара со вторым крайним.

При упругом лобовом ударе шаров одинаковой массы налетающий шар останавливается, а покоившийся шар приобретает скорость, равную скорости налетавшего шара. Если предположить, что удар происходит мгновенно, то сразу после первого удара центральный шар уже имеет скорость, но еще не успел сместиться из того положения, в котором находился до удара. В следующий момент происходит удар центрального шара со вторым крайним. В результате этого удара центральный шар останавливается, а крайний шар приобретает такую же скорость, и затем его нить отклоняется от вертикали.

Если же считать, что первый шар сталкивается сразу с системой из двух неподвижных шаров (как бы скрепленных друг с другом), то в результате такого удара эти два шара должны были бы отскочить с одинаковой скоростью. Но на опыте этого не происходит.

Итак, даже если шары висят вплотную друг к другу, их взаимодействие нужно рассматривать как последовательность отдельных соударений друг с другом.

Результат опыта с тремя шарами нельзя, разумеется, безоговорочно переносить на рассматриваемое столкновение шара с клином и плоскостью, так как и условия опыта, и взаимодействующие тела здесь другие. Однако и здесь можно попробовать рассмотреть два последовательных столкновения: шара с клином и клина с Землей. При этом запись законов сохранения несколько изменится. Уравнение (1), выражающее сохранение горизонтальной составляющей импульса, остается без изменения и в том случае, когда мы рассматриваем только первое столкновение — шара с клином. Но уравнение (2) для вертикальной составляющей импульса должно быть заменено другим, так как после первого удара движется только клин, а не клин вместе с Землей:

$$mv_1 = MV_1. \tag{6}$$

Закон сохранения энергии для первого удара запишется в виде

$$\frac{1}{2}mv^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}M(V^2 + V_1^2).$$
 (7)

Выражая V из уравнения (1), V₁ из уравнения (6) и подставляя в (7), получим

$$v_1^2 = v^2 \frac{M - m}{M + m} \,. \tag{8}$$

Видно, что значение вертикальной скорости отскочившего шара v_1 , даваемое выражением (8), меньше значения v_1 из старого ответа (5). Это и понятно, ибо теперь клин после первого удара имеет кинетическую энергию, связанную не только с его движением по горизонтали, но и по вертикали. Конечно, приобретя вертикальную составляющую скорости в результате первого удара, клин не успевает переместиться по вертикали, так как сразу же происходит второе столкновение — клина с Землей. Так как по условию после столкновения клин скользит по горизонтали (а не подскакивает вверх), то его столкновение с Землей следует считать неупругим. Вертикальная скорость клина гасится при этом столкновении, а соответствующая часть кинетической энергии клина превращается в тепло.

Если бы удар клина о Землю был абсолютно упругим, то вертикальная составляющая скорости клина V₁ изменила бы свое направление на противоположное и клин подскочил бы вверх на некоторую высоту вслед за шаром.

Значение скорости отскочившего шара v_1 из (8) также удовлетворяет предельному случаю $m \ll M$, когда $v_1 = v$. Такое решение этой задачи тоже встречается в некоторых задачниках. Сравнивая ответы (5) и (8), мы видим, что по их форме трудно отдать предпочтение какому-либо из приведенных решений. Действительно, оба они удовлетворяют предельному условию $m \ll M$. Обратим внимание на то, что как формула (5), так и формула (8) имеют смысл только при m < M, т. е. когда масса клина больше, чем масса шара. Это означает, что при M < m шар не может отскочить от клина вертикально вверх. Поэтому и условие задачи будет непротиворечивым, только если шар легче клина.

Этот вывод связан с тем, что в общем случае при упругом столкновении движущегося тела с неподвижным изменение направления движения налетающего тела в результате удара может быть любым только тогда, когда масса налетающего тела меньше массы «мишени». Если же масса «снаряда» m больше, чем масса «мишени» M, то «снаряд» не может отклониться на угол, превышающий φ_{max} , который находится из соотношения

$$\sin \varphi_{\max} = \frac{M}{m} \, .$$

При M < m этот предельный угол всегда меньше $\pi/2$.

Итак, сама форма ответов не дает возможности выбрать среди них правильный. Соответствие предельным случаям—это необходимое условие правильности ответа, но, разу-

меется, недостаточное. Можно попробовать поставить дополнительные вопросы, ответ на которые помог бы выбрать правильное решение. Например, здесь можно задать вопрос, какой угол α должна составлять наклонная грань

Рис. 18.3. К вычислению угла наклона грани клина.

клина с горизонтальной, чтобы шар действительно отскочил вертикально вверх.

Построим вектор изменения импульса шара при столкновенин $\Delta p = mv_1 - mv$ (рис. 18.3). Это изменение импульса вызывается силой, действующей на шар со стороны наклонной грани клина. Поскольку удар упругий и тре-

ние отсутствует, то эта сила обязательно направлена перпендикулярно поверхности клина. Теперь из рис. 18.3 сразу видно, что $\lg \alpha = v/v_i$. Так как $v_1 \leq v$, то $\alpha \geq \pi/4$, где знак равенства соответствует предельному случаю.

Значение v_1 в приведенных двух решениях задачи получилось разным, поэтому разным будет и угол α . Однако предельное значение α при $m \ll M$ в обоих случаях одинаково, и мы опять не можем отдать предпочтение одному из ответов.

Так какой же ответ все-таки правильный? Чтобы разобраться в этом, придется внимательно проанализировать условия применимости тех допущений, которые были сделашы при решении задачи. Для этого необходимо гораздо глубже вникнуть в механизм энергетических превращений при упругих столкновениях. Поэтому сначала в нескольких следующих задачах будут рассмотрены более простые примеры, а затем мы вернемся к поставленному вопросу.

19. Длительность удара. Оценить время упругого удара твердых тел, рассматривая столкновение стержня, налетающего торцом на неподвижную недеформируемую стенку (рис. 19.1).

В предыдущей задаче мы считали, что упругий удар твердых тел происходит мгновенно. Но совершенно очевидно, что это предположение является идеализацией. Столкновение реальных тел всегда занимает конечный промежуток времени т. В самом деле, если бы изменение импульса тела при столкновении происходило мгновенно, то сила взаимодействия тел при ударе была бы бесконечно большой, чего, естественно, не бывает. От чего же может зависеть длительность столкновения? Допустим, что мы рассматриваем отражение упругого тела от недеформируемой стенки. При столкновении кинетическая энергия

течение первой половины тела в превращается столкновения в ΠOтенциальную энергию упругой леформации тела. В течение второй половины происходит обратное превращение энергии деформации в кинеэнергию отскакивающего тическую тела. Поэтому очевидно, что упругие свойства тела играют определенную роль при столкновении.

99

Рис. 19.1. Столкновение стержня со стенкой.

Итак, можно ожидать, что длительность удара зависит от модуля Юнга материала тела E, его плотности ρ и его геометрических размеров. Возможно, что длительность удара зависит и от скорости v, с которой тело налетает на преграду.

Нетрудно убедиться, что оценить время столкновения с помощью одних только соображений размерности не удастся. Действительно, если даже взять в качестве налетающего тела шар, размеры которого характеризуются только одним параметром — радиусом R, то из величин E, ρ , Rи υ можно составить бесчисленное множество выражений, имеющих размерность времени:

$$\tau = R \ \sqrt{\frac{\rho}{E}} f\left(\frac{\rho v^2}{E}\right), \qquad (1)$$

где f — произвольная функция безразмерной величины $\rho v^2/E$. Поэтому для нахождения т необходимо динамическое рассмотрение. Проще всего такое рассмотрение провести для тела, имеющего форму длинного стержня.

Пусть стержень, движущийся со скоростью *v*, налетает торцом на неподвижную стенку. При соприкосновении торцевого сечения стержня со стенкой скорости лежащих в этом сечении частиц стержня мгновенно обращаются в нуль. В следующий момент времени останавливаются частицы, расположенные в соседнем сечении, и т. д. Участок стержня, частицы которого к данному моменту уже остановились, находится в деформированном состоянии. Другими словами, в этот момент времени деформированной ока-

Рис. 19.2. Распространение волны упругой деформации в стержне при ударе о стенку. Деформированная часть стержня заштрихована. Фронт волны деформации движется со скоростью звука и. зывается та часть стержня, до которой дошла волна упругой деформации, распространяющаяся по стержню от места контакта с преградой. Эта волна деформации распространяется по стержню со скоростью звука и. Если считать, что стержень пришел в соприкосновение со стенкой в момент времени t=0, то в момент времени t длина сжатой части стержня равна ut. Эта часть стержня на рис. 19.2, а заштрихована. В незаштричасти, стержня скорости хованной всех его частиц по-прежнему равны v, а в сжатой (заштрихованной) части стержня все частицы покоятся.

Первый этап процесса столкновения стержня со стенкой закончится в тот момент, когда весь стержень окажется деформированным, а скорости всех его частиц обратятся в нуль (рис. 19.2, б). В этот момент кинетическая энергия налетающего стержня целиком превращается в потенциальную энергию упругой леформации. Сразу после этого начинается второй этап столкновения, при котором стержень возвращается в недеформированное состояние. Этот процесс свободного начинается Y конца стержня и, распространяясь

по стержню со скоростью звука, постепенно приближается к преграде. На рис. 19.2, в стержень показан в тот момент, когда незаштрихованная часть уже не деформирована и все ее частицы имеют скорость v, направленную влево. Заштрихованный участок по-прежнему деформирован, и скорости всех его частиц равны нулю.

Конец второго этапа столкновения наступит в тот момент, когда весь стержень окажется недеформированным, а все частицы стержня приобретут скорость *v*, направленную противоположно скорости стержня до удара. В этот момент правый конец стержня отделяется от преграды: недеформированный стержень отскакивает от стенки и движется в противоположную сторону с прежней по величине скоростью (рис. 19.2,*г*). Энергия упругой деформации стержня при этом целиком переходит обратно в кинетическую энергию.

Из изложенного ясно, что длительность столкновения т равна времени прохождения фронта волны упругой деформации по стержню туда и обратно:

$$\tau = \frac{2l}{u} , \qquad (2)$$

где *l* — длина стержня.

Определить скорость звука в стержне u можно следующим образом. Рассмотрим стержень в момент времени t (рис. 19.2, a), когда волна деформации распространяется влево. Длина деформированной части стержня в этот момент равна ut. По отношению к недеформированному состоянию эта часть укоротилась на величину vt, равную расстоянию, пройденному к этому моменту еще недеформированной части стержня. Поэтому относительная деформация этой части стержня равна v/u. На основании закона Гука

$$\frac{v}{u} = \frac{1}{E} \frac{F}{S} , \qquad (3)$$

где S — площадь поперечного сечения стержня, а F — сила, действующая на стержень со стороны стенки. Поскольку величина относительной деформации v/u одинакова во все моменты времени, пока стержень находится в контакте с преградой, то, как видно из формулы (3), сила F постоянна. Для нахождения величины этой силы применим закон сохранения импульса к остановившейся части стержня. До контакта с преградой рассматриваемая часть стержня имела импульс $\rho Sut \cdot v$, а в момент времени t ее импульс равен нулю. Поэтому

$$\rho Sut \cdot v = Ft. \tag{4}$$

Подставляя отсюда силу F в формулу (3), получаем

$$u = \sqrt{\frac{\overline{E}}{\rho}}.$$
 (5)

Теперь выражение для времени т столкновения стержня со стенкой (2) принимает вид

$$\tau = 2l \sqrt{\frac{\rho}{E}}.$$
 (6)

Время столкновения т можно найти и иначе, воспользовавшись для этого законом сохранения энергии. Перед столкновением стержень недеформирован и вся его энергия это кинетическая энергия поступательного движения $mv^{2}/2$. Спустя время $\tau/2$ с начала столкновения скорости всех его

Рис. 19.3. Деформация стержня при ударе о стенку.

частиц, как мы видели, обращаются в нуль, а весь стержень оказывается деформированным (рис. 19.2, б). Длина стержня уменьшилась на величину Δl по сравнению с его недеформированным состоянием (рис. 19.3). В этот момент вся энергия стержня — это энергия его упругой деформации. Эту энергию можно записать в виде $k (\Delta l)^2/2$, где k — коэффициент пропорциональности между силой и деформацией: $F = k \Delta l$. Этот коэффици-

ент с помощью закона Гука выражается через модуль Юнга Е и размеры стержня:

$$k = E \frac{S}{l} \,. \tag{7}$$

Максимальная деформация Δl равна тому расстоянию, на которое перемещаются частицы левого конца стержня за время $\tau/2$ (рис. 19.3). Так как эти частицы двигались со скоростью v, то

$$\Delta l = v \frac{\tau}{2}.$$
 (8)

Приравниваем кинетическую энергию стержня до удара и потенциальную энергию деформации. Учитывая, что масса стержня $m = \rho Sl$, и используя соотношения (7) и (8), получаем

$$\frac{1}{2}\rho Slv^2 = \frac{1}{2}\frac{ES}{l}\left(v\frac{\tau}{2}\right)^2,$$

откуда для т снова получаем формулу (6). Это время столкновения обычно очень мало. Например, для стального стержня ($E=2\cdot10^{11}$ Па, $\rho=7,8\cdot10^3$ кг/м³) длиной 28 см вычисление по формуле (6) дает $\tau=10^{-4}$ с. Величину силы *F*, действующей на стенку во время

Величину силы F, действующей на стенку во время удара, можно найти, подставляя скорость звука в стержне (5) в формулу (4):

$$F = Sv \sqrt{\rho E}.$$
 (9)

Видно, что сила, действующая на стенку, пропорциональна скорости стержня перед ударом. Но для применимости приведенного решения необходимо, чтобы механическое напряжение стержня *F/S* не превосходило предела упругости материала, из которого изготовлен стержень. Например, для стали предел упругости

$$(F/S)_{\rm max} = 4 \cdot 10^8 \, \Pi a$$
.

Поэтому максимальная скорость v стального стержня, при которой его соударение с преградой все еще можно считать упругим, оказывается согласно формуле (9) равной 10 м/с. Это соответствует скорости свободного падения тела с высоты всего лишь 5 м. Укажем для сравнения, что скорость звука в стали u=5000 м/с, т. е. $v \ll u$.

Время столкновения стержня с неподвижной преградой (в отличие от силы) оказалось не зависящим от скорости стержня. Этот результат, однако, не является универсальным, а связан со специфической формой рассматриваемого тела. Например, для упругого шара время столкновения со стенкой зависит от его скорости. Динамическое рассмотрение этого случая оказывается более сложным. Связано это с тем, что и площадь соприкосновения деформированного шара со стенкой, и действующая на шар сила в процессе столкновения не остаются постоянными.

20. Столкновение двух стержней. Решение предыдущей задачи можно использовать и для нахождения длительности продольного соударения двух одинаковых упругих стержней.

Рассмотрим, например, случай, когда движущийся со скоростью v стержень налетает на неподвижный. В системе отсчета, где неподвижен центр масс системы стержней, они движутся навстречу друг другу с одинаковыми по величиие скоростями v/2 (рис. 20.1). При столкновении общий центр масс стержней находится в том сечении, где они соприкасаются. Так как этот центр масс неподвижен, то для каждого стержня процесс столкновения происходит точно так же, как и при ударе о неподвижную стенку. Картину распространения волн упругой деформации в стержнях и распространения скоростей частиц стержней в разные моменты времени можно получить, если пририсовать к рис. 19.2

Рис. 20.1. Столкновение двух одинаковых стержней в системе отсчета, связанной с центром масс.

предыдущей задачи (стр. 100) правую часть, являющуюся его зеркальным отражением в плоскости стенки. Это показано на рис. 20.2. Видно, что после столкновения в системе центра масс стержни будут

двигаться в противоположных направлениях с одинаковыми скоростями v/2, причем деформации в них будут отсутствовать.

Для того чтобы получить эту же картину в дабораторной системе отсчета, необходимо к скоростям всех частиц прибавить скорость центра масс v/2. В результате для тех же моментов времени, что и на рис. 20.2, получается картина, изображенная на рис. 20.3. Как и в случае мгновенного удара, налетающий стержень останавливается, а неподвижный до удара стержень приходит в движение со скоростью v.

Несколько сложнее обстоит дело в случае продольного соударения двух стержней разной длины. К моменту отскока полностью избавиться от деформации успеет только более короткий стержень. Так как второй стержень начнет свободное движение после отскока еще частично деформированным, то дальше в нем будут происходить продольные упругие колебания. Часть механической энергии системы окажется связанной с этими колебаниями. Вследствие внутреннего трения колебания постепенно затухнут, и в результате полная механическая энергия стержней после удара окажется меньше, чем до удара. А между тем удар был абсолютно упругим!

Рассмотрим теперь соударение стержней разной длины более подробно. Пусть, например, стержни изготовлены из одного и того же материала и имеют одинаковое поперечное сечение, но один из них вдвое длиннее другого. Процесс соударения этих стержней удобно рассматривать в той системе отсчета, где они движутся с одинаковыми по величине скоростями навстречу друг другу (рис. 20.4). Нетрудно сообразить, что начальная стадия столкновения

Рис. 20.2. Распространение волн упругой деформации и распределение скоростей частиц при столкновении одинаковых стержней в системе центра масс.

Рис. 20.3. То же самое в лабораторной системе отсчета.

и в этом случае будет происходить точно так же, как и при соударении одинаковых стержней (рис. 20.5, *a*). Действительно, в момент соприкосновения торцов стержней в каждом из них начинает распространяться волна упругой деформации. Те точки стержней, до которых фронт волны

Рис. 20.4. Столкновение стержней разной длины.

деформации еще не дошел, ничего «не знают» о том, что уже началось столкновение, и продолжают двигаться так же, как и до начала столкновения. Поэтому различие в длинах стержней начнет проявляться только тогда, когда волна сжатия достигнет конца короткого стержня (рис. 20.5, б). В длинном стержне волна сжатия успеет дойти при этом только до его середины. Начиная с этого момента, процессы в стержнях будут различаться. Так как при распространении упругих волн взаимодействуют между собой только соседние участки

Рис. 20.5. Распространение волн упругой деформации и распределение скоростей частиц при столкновении стержней разной длины. Сжатие стержней показано вертикальными штрихами, а растяжение — горизонтальными. На рисунке не показано изменение длины стержней при их деформации.

среды, то в длинном стержне волна сжатия и дальше будет продолжать распространяться в том же направлении, а короткий стержень начинает возвращаться в недеформированное состояние (рис. 20.5, в). Этот процесс начинается у свободного (левого) конца короткого стержня и постепенно приближается к месту контакта стержней. Все частицы в освободившемся от деформации участке короткого стержня движутся налево с одинаковой скоростью v.

В тот момент, когда волна сжатия достнгает свободного (правого) конца длинного стержия, короткий стержень оказывается полностью недеформированным (рис. 20.5, г). При этом скорости всех точек длинного стержня равны нулю, а скорости всех точек короткого стержня равны и и направлены влево. В этот момент все упругие процессы в коротком стержне заканчиваются, а в длинном начинается процесс возвращения в недеформированное состояние. Этот процесс развивается с обонх концов стержня, так как взаимодействие между длинным стержнем и коротким, освободившимся от деформации, отсутствует. Частицы длинного стержня в освобождающихся от деформации участках вблизи его краев имеют скорости v, направленные так, как показано на рис. 20.5, д. Стержни все еще находятся в контакте, но уже не действуют друг на друга. Силы взаимодействия между стержнями отсутствуют, потому что соприкасающиеся участки стержней уже не деформированы, но стержни еще не разъединяются, так как эти их участки имеют одинаковые скорости. Другими словами, соударение стержней на этом заканчивается, хотя они еще некоторое время будут соприкасаться.

Таким образом, длительность взаимодействия стержней при столкновении равна 2l/u, где l — длина короткого стержня, а u — скорость звука. Нетрудно найти и время, в течение которого стержни соприкасаются друг с другом. Для этого рассмотрим дальнейшие процессы, происходящие в длинном стержне.

В тот момент, когда длинный стержень полностью освободится от деформации, скорости всех его частиц слева от середины стержня будут направлены влево, а скорости всех частиц правой половины стержня — вправо (рис. 20.5, e). Поэтому в обе стороны от середины стержня начнет распространяться волна растяжения (рис. 20.5, ∞). В растянутой части стержня, которая на этом рисунке заштрихована, скорости частиц стержня равны нулю, а вне этой части по-прежнему равны v.

Когда волна растяжения достигнет концов стержня, скорости всех его частиц обратятся в нуль (рис. 20.5, 3).

С этого момента хороткий стержень перестанет касаться левого конца длинного стержня. Таким образом, с момента прекращения взаимодействия стержней до их разделения проходит еще время, равное 2l/u. Поэтому полное время пребывания стержней в контакте равно 4l/u.

Дальше растянутый длинный стержень опять начинает освобождаться от деформации (рис. 20.5, *u*), и т. д. Такие чередующиеся волны сжатия и растяжения можно рассматривать как продольные колебания стержня, при которых в выбранной системе отсчета его середина стоит на месте. До столкновения стержни обладали только кинетической энергией поступательного движения. После столкновения кинетическая энергия короткого стержня такая же, как и до столкновения, так как изменилось только направление скорости стержня. Кинетическая энергия поступательного движения длинного стержня после столкновения равна нулю, так как он как целое покоится. Это значит, что энергия возникших в стержне колебаний равна его первоначальной кинетической энергии.

Таким образом, модель абсолютно упругого удара материальных точек, в которой принимается, что кинетическая энергия сталкивающихся тел сохраняется, оказывается совершенно неприменимой в случае столкновения упругих стержней разной длины. В самом деле, рассматривая стержни как материальные точки с массами m и 2m и применяя к их столкновению законы сохранения энергии и импульса, мы получили бы, что точка массы m после столкновения двигалась бы налево со скоростью $\frac{5}{3}v$, а точка массы 2m — направо со скоростью $\frac{1}{3}v$.

21. Столкновение трех стержней. Разобранный пример столкновения двух стержней, один из которых вдвое длиннее другого, позволяет легко выяснить, как происходит столкновение трех одинаковых стержней. Будем считать, что длинный стержень в предыдущем

Будем считать, что длинный стержень в предыдущем примере на самом деле составлен из двух одинаковых коротких стержней (2 и 3 на рис. 21.1). Отметим прежде всего, что до тех пор, пока в длинном стержне распространяется только волна сжатия (рис. 20.5, a - e предыдущего примера, стр. 106), тот факт, что он состоит из двух отдельных кусков, не играет никакой роли в происходящих процессах.
Ясно, что взаимодействие стержней 2 и 3 начинается в тот момент, когда волна сжатия, распространяясь по стержню 2, достигает его границы со стержнем 3. Это происходит спустя промежуток времени l/u после начала столкновения стержней 1 и 2. Спустя еще промежуток времени

Рис. 21.1. Столкновение трех одинаковых стержней.

l/u взаимодействие стержней 1 и 2 прекращается, а стержней 2 и 3 — продолжается. Рассмотрим тот момент, когда длинный стержень, освобождаясь от сжатия, оказывается

Рис. 21.2. Распределение скоростей частиц стержней после того, как стержни освободились от деформации.

недеформированным. Этому моменту соответствует рис. 20.5, е предыдущего примера. В этот момент скорости всех частиц стержня 2 направлены влево, а стержня 3 вправо (рис. 21.2, а). Так как эти стержни не соединены друг с другом, то никакой волны растяжения, разумеется, не возникает: стержни 2 и 3 просто удаляются друг от друга. При этом стержни 1 и 2 остаются в контакте друг с другом, так как движутся с одинаковыми скоростями налево (рис. 21.2, б). Разделение стержней 2 и 3 происходит спустя промежуток времени 2l/u после начала их взаимодействия, т. е. спустя время l/u после прекращения взаимодействия стержней 1 и 2.

Из сравнения рис. 21.1 и 21.2, б видно, что результат столкновения сводится к тому, что крайние стержни 1 и 3 изменили направления своих скоростей на противоположные, а скорость среднего стержня 2 осталась без изменения. Кинетическая энергия поступательного движения

11. ДИНАМИКА И ЗАКОНЫ СОХРАНЕНИЯ

стержней при таком тройном столкновении остается без изменения. Никаких колебаний после окончания соударения в стержнях не происходит. Поэтому для рассмотренного столкновения применима модель двух последовательных абсолютно упругих столкновений: сначала первого тела со вторым, а затем второго с третьим. Выясним теперь, как будет выглядеть это столкновение в

Выясним теперь, как будет выглядеть это столкновение в той системе отсчета, в которой соприкасающиеся стержни 2 и 3 покоятся, а стержень 1 налетает на них. Для перехода в

Рис. 21.3. Стержень 1 налетает на покоящиеся стержни 2 и 3.

такую систему отсчета нужно к скоростям всех тел прибавить одну и ту же скорость v, направленную вправо. С помощью рис. 21.1 и 21.2, б видим, что в этой системе отсчета до удара стержень 1 движется со скоростью 2v, а стержни 2 и 3 покоятся (рис. 21.3, a). После удара покоятся стержни 1 и 2, а стержень 3 движется со скоростью 2v направо (рис. 21.3, b).

Приведенный подробный анализ столкновения трех одинаковых стержней позволяет понять результат упоминавшегося выше опыта с отскоками подвешенных на нитях упругих шаров (рис. 18.2 на стр. 95).

Из разобранных примеров ясно, что соударения нескольких упругих тел нужно рассматривать как последовательность отдельных столкновений. Для того чтобы применять к этим столкновениям упругих тел модель абсолютно упругого удара, нужно быть уверенным в том, что после прекращения столкновения в телах не происходит колебаний.

22. Упругий шар и стенка. В задаче 19 уже отмечалось, что столкновение шара с недеформируемой стенкой происходит не совсем так, как столкновение стержня со стенкой. Главная причина различия заключается в том, что в про-

110

цессе соударения площадь области контакта шара со стенкой не остается постоянной.

Это различие проявляется даже в статическом случае, когда упругое тело прижимается к недеформируемой стенке постоянной внешней силой. Деформация стержня, поперечное сечение которого одинаково по всей длине, будет при

Рис. 22.1. Пружины разной жесткости.

этом однородной, и потенциальная энергия упругой деформации будет равномерно распределена по всему объему стержия.

При статической деформации шара, прижатого к стенке, характер распределения деформации будет совсем иным. Деформация материала шара уже не будет однородной. Наиболее сильно будут деформированы участки шара вблизи стенки. Чем дальше от стенки, тем меньшей будет деформация. При этом оказывается, что деформация эффективно проникает в шар на сравнительно небольшую глубину и охватывает только некоторую часть шара, объем которой мал по сравнению с объемом всего шара. Потенциальная энергия деформации будет сосредоточена в малой области шара, непосредственно примыкающей к стенке.

Понять такой характер деформации шара и распределения потенциальной энергии по его объему можно, рассматривая сжатие двух последовательно соединенных пружин разной жесткости (рис. 22.1). Пусть жесткость первой пружины k_1 , второй k_2 . Пружины сжимаются силой F, которая при последовательном соединении пружин в любом сечении одинакова. Деформации пружин x_1 и x_2 связаны с величиной силы F и коэффициентами k₁ и k₂ обычными соотношениями

$$F = k_1 x_1, \ F = k_2 x_2. \tag{1}$$

Потенциальные энергии деформированных пружин пропор-циональны квадратам их деформаций;

$$W_1 = \frac{1}{2} k_1 x_1^2, \quad W_2 = \frac{1}{2} k_2 x_2^2.$$
 (2)

Из соотношений (1) следует, что величины деформаций пружин обратно пропорциональны их жесткостям. Поэтому для отношения энергий W_1 и W_2 с по-к мощью (2) находим

$$\frac{W_1}{W_2} = \frac{k_2}{k_1}.$$
 (3)

Видно, что при последовательном соединении пружин запасенная каждой пружиной энергия обратно пропорциональна ее жесткости: чем мягче пружина, тем бо́льшая часть энергии деформации пружин сосредоточена в ней. В предельном случае, когда жесткость од-

ной из пружин стремится к бесконечности (т. е. ее можно считать абсолютно твердым, недеформируемым телом), вся потенциальная энергия деформации оказывается сосредоточенной в другой пружине.

Процесс столкновения шара с недеформируемой стенкой можно представить себе следующим образом. Сначала шар касается стенки в одной точке, затем по мере деформации шара область контакта увеличивается. А это означает, что испытывающую деформацию часть шара качественно можно рассматривать как упругую пружину, жесткость которой возрастает с увеличением сжатия. Это условно показано на рис. 22.2. Энергия деформации будет в основном сосредоточена в той части пружины, которая имеет наименьшую жесткость и испытывает наибольшую деформацию, т. е. в малой части шара, непосредственно примыкающей к стенке.

Описанная выше качественная картина деформации шара означает, что при изучении столкновения упругие свойства

шара можно считать сосредоточенными вблизи точки контакта (в пружине на рис. 22.2). Так как масса этой деформируемой части мала по сравнению с массой всего шара, то ее деформацию можно считать квазистатической (как у пружины, вовсе лишенной массы), а инертные свойства шара можно рассматривать, считая, что вся масса шара сосредоточена в его центре. В отличие от упругого стержня, для которого нужно было считать, что упругие и инертные свойства равномерно распределены по всему объему, здесь мы можем с хорошей точностью рассматривать упругий шар как точечную массу, прикрепленную к невесомой пружине с переменной жесткостью.

Из такой модели сразу становится ясно, что длительность столкновения шара со стенкой зависит от скорости шара перед ударом. При малой скорости деформация мала и затрагивает только участок «пружины» с малой жесткостью. Период колебаний массивного шара на такой пружине велик, поэтому время столкновения будет большим. Чем больше эта скорость, тем более жесткие участки «пружины» вступают в работу и тем меньшим оказывается время столкновения.

При столкновении шара со стенкой, как мы видим, длительность определяется совсем другими процессами, чем при столкновении стержня со стенкой. Там эта длительность определялась временем прохождения звука вдоль стержня, а здесь она связана с периодом колебаний шара на пружине переменной жесткости, причем эта жесткость мала при небольших скоростях. Поэтому длительность столкновения для шара значительно больше, чем для стержня из того же материала и имеющего длину, равную диаметру шара.

Во всех рассуждениях мы для простоты считали стену недеформируемой. Нетрудно сообразить, что все качественные выводы остаются справедливыми и тогда, когда стена сделана из упругого материала, свойства которого близки к свойствам материала шара. Различие в форме поверхности шара и стенки вблизи точки соприкосновения приводит к тому, что при не слишком большой скорости шара деформируется только шар, а поверхность стенки практически остается плоской. Деформация стенки будет существенна только в том случае, когда жесткость материала стенки (модуль Юнга) значительно меньше жесткости шара. Теперь мы можем вернуться к задаче 18 о столкновении шара с клином, лежащим на горизонтальной поверхности, и обсудить вопрос о том, какому из рассмотренных там решений следует отдать предпочтение. Ясно, что единого ответа быть не может: все зависит от таких свойств участвующих в столкновении тел, о которых ничего не говорится в условин задачи.

Если длительность столкновения шара с клином значительно превышает время распространения волны упругой деформации по клину, то можно считать, что действие шара на клин будет квазистатическим, как если бы на паклонную грань клина действовала постоянная сила. В этом случае правильным является представление об одном ударе ударе шара с системой, состоящей из клина и поверхности, на которой он лежит. Следовательно, справедливо первое решение задачи. Так будет, например, тогда, когда жесткость материала клина больше или того же порядка, что и материала шара, а их размеры сравнимы между собой.

Если же жесткость материала клина значительно меньше, чем шара, то может оказаться, что время распространения волны деформации по клину будет больше, чем длительность соударения шара с клином. В этом случае ближе к действительности будет представление о последовательности двух соударений — шара с клином и клина с подставкой. Однако следует помнить, что в этом случае часть первоначальной кинетической энергии шара может превратиться в энергию упругих колебаний клина.

23. Футбольный мяч. Сколько времени длится столкновение футбольного мяча со стенкой? С какой силой мяч давит на стенку?

Будем для простоты считать, что мяч летит перпендикулярно поверхности стенки. При ударе о стенку мяч деформируется. При не слишком большой скорости мяча деформации невелики и можно считать, что не касающаяся стенки часть поверхности мяча по-прежнему сферическая, а место соприкосновения становится плоским, как показано на рис. 23.1.

Какие силы действуют на мяч во время удара? До удара действовавшие на мяч силы атмосферного давления уравновешивали друг друга. В процессе удара это уже не так. Действительно, сначала мяч касается стенки в одной точке; затем от этой точки область контакта расширяется в круг. При этом воздух из зазора вытесняется наружу. В результате появляется нескомпенсированная сила давления атмос-

ферного воздуха, направленная к стенке и равная произведению атмосферного давления p_0 на площадь области контакта S (рис. 23.2).

Давление воздуха *р* внутри мяча во время удара можно считать во всех точках одинаковым, как и при статической деформации. Поэтому воздух внутри мяча давит на часть оболочки, соприкасающуюся со стенкой, с силой, равной *pS*. С такой же по величине, но противоположно направленной силой действует на эту часть оболочки мяча и стенка.

Рис. 23.1. Деформация мяча при столкновении со стенкой.

Итак, полная сила, действующая на мяч при ударе, направлена от стенки и равна ($p - p_0$)S. Площадь области контакта мяча со стенкой S легко найти с помощью рис. 23.3. Обозначим радиус мяча через R, радиус круга — области контакта со стенкой — через r, а величину деформации мяча через x. Тогда по теореме Пифагора

$$r = \sqrt{R^2 - (R - x)^2} = \sqrt{2Rx - x^2}.$$
 (1)

Поэтому площадь области контакта S равна

$$S = \pi r^2 = 2\pi R x \left(1 - \frac{x}{2R} \right). \tag{2}$$

Нужно ли учитывать изменение давления воздуха в мяче при его деформации? Относительное уменьшение объема мяча $\Delta V/V$ оказывается величиной порядка $(x/R)^2$. Поэтому, если мы, считая деформацию мяча x малой по сравнению с его раднусом $R(x \ll R)$, будем при вычислении площади S в (2) отбрасывать малое по сравнению с единицей слагаемое x/2R, то нужно тем более пренебречь изменением давления, пропорциональным $(x/R)^2$.

Таким образом, полная сила F, действующая на мяч во время удара, пропорциональна деформации мяча x:

$$F = (p - p_0)S = 2\pi R (p - p_0)x = kx.$$
 (3)

Движение центра мяча при действии такой силы должно представлять собой гармоническое колебание с частотой, определяемой соотношением

$$\omega^2 = \frac{k}{m} = \frac{2\pi R \left(p - p_0\right)}{m},\tag{4}$$

где *т* — масса мяча. Так как деформация мяча при ударе о стенку может представлять собой только сжатие, которое

р₀5. р5 Рис. 23.2. К нахождению

сил, действующих на мяч при ударе.

не сменяется его растяжением (так как мяч просто отскакивает от стенки), то это «колебание» продолжается только в течение

Рис. 23.3. К определению размера области контакта мяча со стенкой.

половины периода T. Таким образом, длительность удара мяча о стенку т равна

$$\tau = \frac{T}{2} = \frac{\pi}{\omega} = \sqrt{\frac{\pi m}{2R(p-p_0)}}.$$
 (5)

Время столкновения футбольного мяча со стенкой тем меньше, чем больше давление воздуха *р* внутри мяча, но не зависит от скорости мяча перед ударом *v*₀. Максимальная сила, с которой мяч действует на стенку, разумеется, зависит от скорости мяча. В момент наибольшей деформации мяча вся его кинетическая энергия превращается в потенциальную энергию деформации:

$$\frac{1}{2}mv_0^2 = \frac{1}{2}kx_0^2.$$
 (6)

Отсюда можно найти максимальную деформацию мяча хо:

$$x_{0} = \sqrt{\frac{m}{k}} v_{0} = \sqrt{\frac{m}{2\pi R (p - p_{0})}} v_{0}, \qquad (7)$$

где k подставлено из соотношения (4).

Приведем численные оценки. Пусть масса мяча $m \approx 0,4$ кг, радиус $R \approx 0,15$ м, а давление воздуха в мяче превышает атмосферное на одну атмосферу: $p-p_0=1$ атм= =1,013·10⁸ Па. Подставляя эти данные в формулу (5), получаем $\tau \approx 6,4\cdot10^{-3}$ с. Длительность столкновения оказалась менее сотой доли секунды. Чтобы оценить величину деформации мяча при ударе, нужно задать еще скорость мяча перед ударом. Считая ее равной примерно 15 м/с, с помощью формулы (7) находим, что максимальная деформация x_0 составляет примерно 3 см. Максимальное значение силы, действующей на стенку в момент остановки мяча, равно, в соответствии с формулой (3), 2800 Н.

24. Отражение от стенки. Под каким углом отскакивает футбольный мяч от стенки?

Задача, разумеется, тривиальная, если считать, что удар абсолютно упругий, а стенка и мяч идеально гладкие. Тогда трение между мячом и поверхностью стенки отсутствует и угол отражения β равен углу

падения а (рис. 24.1).

Совсем иначе обстоит дело, если мяч и стенка шероховатые, так что пренебрегать трением уже нельзя. Однако и в этом случае легко найти угол отражения, если известен коэффициент трения µ мяча о поверхность стенки.

Рис. 24.1. Отскок мяча от стенки.

менной по величине. Параллельная же составляющая скорости, вообще говоря, изменяется по величине.

Чтобы убедиться в этом, рассмотрим силы, действующие на мяч со стороны стенки при ударе (рис. 24.3). Направлен-

Рис. 24.2. Разложение на составляющие скорости мяча до и после удара.

ная по нормали к стенке сила *N* это сила упругости, возникающая при деформации мяча. Деформацию хорошо накачанного мяча можно считать упругой, после удара мяч восстанавливает свою форму. Поэтому энергия упругой деформации мяча после удара снова перейдет в кинетическую энергию. Другими словами, часть кинетической энергии мяча, связанная с его движением по нормали к стенке, остается неизменной.

Изменение составляющей скорости, параллельной поверхности, происходит под действием силы трения. Эта сила направлена в сторону,

противоположную скорости точек поверхности мяча в месте соприкосновения со стенкой. Если мяч до удара не вращался, то скорости этих точек равны v_1 , и дейст-

вне силы трения приводит к уменьшению v_{\parallel} . Это значит, что угол отражения β меньше угла падения α . Именно этот случай и изображен на рис. 24.1 и 24.2. Сила трения может и увеличивать значение v_{\parallel} , если до удара о стенку мяч вращался в направлении, указанном на рис. 24.4. При достаточно быстром вращении мяча ($\omega R > v_{\parallel}$) касающиеся стенки точки мяча имеют скорости, направленные влево, сила трения направлена вправо и v_{\parallel} возрастает В

Рис. 24.3. Силы, действующие на мяч во время удара.

направлена вправо и v_{\parallel} возрастает. В этом случае угол отражения больше угла падения.

Рассмотрим подробно случай, когда мяч до удара не вращается. Будем также считать, что скорости точек мяча, касающихся стенки, не обращаются в нуль: в течение удара проскальзывание не прекращается. Сила **N** (рис. 24.3) возникает в момент соприкосновения мяча со стенкой, затем растет, достигая наибольшей величины в момент максимальной деформации мяча, а затем убывает до нуля. Сила трения скольжения $F_{\rm rp}$ в течение удара также не остается постоянной. В любой момент времени ее величина связана с N законом Кулона — Амонтона:

$$F_{\rm TP} = \mu N. \tag{1}$$

Поэтому в течение всего удара полная сила Q, с которой поверхность стенки действует на мяч, изменяется по величине, но остается неизменной по направлению, образуя

Рис. 24.4. Скорости мяча до и после удара при вращении налетающего мяча по часовой стрелке.

Рис. 24.5. К вычислению угла отражения β.

угол γ с нормалью к стенке. Как видно из рис. 24.3, tg γ= = μ. Это позволяет найти угол отражения мяча β. На основании второго закона Ньютона изменение им-

На основании второго закона Ньютона изменение импульса мяча при ударе о стенку Δp совпадает по направлению с силой Q. С помощью рис. 24.2 построим вектор изменения импульса $\Delta p = m(v' - v)$ (рис. 24.5). Этот вектор, так же как и вектор Q на рис. 24.3, образует угол γ с нормалью к стенке. Непосредственно из рис. 24.5 видно, что

$$v_{\parallel} = v_{\parallel} - 2v_{\perp} \operatorname{tg} \gamma. \tag{2}$$

Деля обе части этого равенства на v_{\perp} и учитывая, что $v_{\parallel}/v_{\perp} = \text{tg } \alpha$, $v'_{\parallel}/v'_{\perp} = \text{tg } \beta$, а tg $\gamma = \mu$, получаем

$$tg\beta = tg\alpha - 2\mu. \tag{3}$$

Из полученной формулы видно, что при малых углах падения, когда tg $\alpha < 2\mu$, результат теряет смысл. С чем это

связано? Формула (3) выведена в предположении, что проскальзывание мяча не прекращалось в течение всего времени его контакта со стенкой. Однако при малых углах падения проскальзывание мяча может прекратиться раньше, чем он отделится от стенки. Это связано с тем, что сила трения скольжения, направленная противоположно v_{\pm} , не только тормозит поступательное движение мяча, но и вызывает его вращение по часовой стрелке, так как точка приложения силы трения не совпадает с центром мяча. Проскальзывание прекращается в тот момент, когда связанная с вращением скорость нижней точки мяча сравняется по величине с параллельной поверхности составляющей скорости центра мяча.

Случай, когда в процессе столкновения со стенкой проскальзывание мяча прекращается, более сложен для исследования, так как требует привлечения уравнения, описывающего вращательное движение. При этом оказывается, что ответ, даваемый формулой (3), становится неприменимым даже при угле падения α , тангенс которого несколько больше 2μ . Точный расчет дает для предельного угла падения tg $\alpha = 5\mu$.

Отскочивший от шероховатой стенки мяч обязательно вращается, даже если до удара он не вращался. Кинетическая энергия этого вращения возникает за счет уменьшения кинетической энергии поступательного движения. Некоторая часть механической энергии мяча при ударе переходит в тепло.

Нетрудно сообразить, что даваемое формулой (3) значение угла отражения β справедливо и в том случае, когда до удара мяч вращался против часовой стрелки. Не представляет труда найти угол отражения и тогда, когда до удара мяч вращается по часовой стрелке. Если это вращение достаточно быстрое, так что проскальзывание мяча не прекращается в течение удара, то, рассуждая так же, как и при получении выражения (3), найдем

$$tg\beta = tg\alpha + 2\mu. \tag{4}$$

В этом случае кинетическая энергия поступательного движения мяча в результате удара о стенку увеличивается. Это увеличение, как и выделение тепла во время удара, происходит за счет кинетической энергии вращения. Статика изучает равновесие тел. В инерциальной системе отсчета твердое тело находится в равновесии, если векторная сумма всех действующих на тело сил и векторная сумма моментов этих сил равны нулю. При выполнении первого условия равно нулю ускорение центра масс тела. При выполнении второго условия отсутствует угловое ускорение вращения. Поэтому, если в начальный момент тело покоилось, то оно будет оставаться в покое и дальше.

Во всех задачах этого раздела рассматриваются сравнительно простые системы, в которых все действующие силы лежат в одной плоскости. В этом случае векторное условие $\sum_{i} F_{i} = 0$ сводится к двум скалярным

$$\sum_{i} F_{ix} = 0, \quad \sum_{i} F_{iy} = 0,$$

если расположить оси х и у в плоскости действия сил.

Для плоской системы сил моменты всех сил направлены перпендикулярно плоскости, в которой лежат силы (если моменты рассматриваются относительно точки, лежащей в этой же плоскости). Поэтому векторное условие для моментов сил сводится к одному скалярному: в положении равновесия алгебраическая сумма моментов всех действующих на тело сил равна нулю. (При этом моменты, стремящиеся повернуть тело по часовой стрелке, берутся с одним знаком, против часовой стрелки — с противоположным.) Выбор точки, относительно которой рассматриваются моменты сил, производится исключительно из соображений удобства: уравнение моментов будет тем проще, чем больше сил будут иметь равные нулю моменты. Напомним, что величина момента силы F относительно точки O до линии действия силы. Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие устойчиво, если при малых смещениях тела из положения равновесия возникающие при этом силы стремятся вернуть его обратно, и неустойчиво, если силы уводят его дальше от положения равновесия. Если же при малых смещениях действующие на тело силы и их моменты по-прежнему уравновешиваются, то равновесие безразличное.

Устойчивому равновесию соответствует минимум потенциальной энергии тела по отношению к ее значениям в соседних положениях тела. Этим свойством часто удобно пользоваться при отыскании положения равновесия и исследовании характера равновесия. Во многих задачах статики, как и в других разделах физики, часто оказывается весьма эффективным использование закона сохранения энергии.

1. Лестница у стенки. Лестница прислонена к наклонной стенке, образующей угол β с вертикалью (рис.-1.1). При каком коэффициенте трения лестницы о стенку возможно равновесие даже в том случае, когда пол идеально гладкий?

Рис. 1.1. Лестница у наклонной стенки.

Рис. 1.2. В отсутствие трения о пол такое равновесие невозможно.

Прежде всего отметим, что лестница, прислоненная к вертикальной стенке, вообще не может находиться в равновесии, если нет трения о пол, — она обязательно соскользнет по стенке. Более того, если как следует подумать, то можно доказать, что верхний конец лестницы при таком соскальзывании обязательно отделится от стенки раньше, чем лестница окажется на полу.

Невозможность равновесня у вертикальной стенки на гладком полу можно сразу увидеть, если взглянуть на рис. 1.2: нормальная сила реакции стенки N_2 сбязательно отлична от нуля, ибо иначе не будет уравновешен момент силы тяжести G относительно точки A; но сама сила N_2

может быть уравновешена только горизонтально направленной силой трения о пол.

А вот равновесие у наклонной шероховатой стенки возможно и на идеально гладком полу. Однако для этого коэффициент трения лестницы о стенку должен быть достаточно большим. Посмотрим на рис. 1.3. Поскольку силы G и N_1 направлены вертикально, то в равновесии величины горизонтальных составляющих сил N_2 и $F_{\rm тр}$ должны быть равны:

$$N_2 \cos\beta = F_{\tau p} \sin\beta. \qquad (1)$$

Величина силы трения покоя $F_{\rm rp}$ максимальна на пороге про-

скальзывания, когда ее значение равно μN_2 . Из формулы (1) в этом случае находим

$$\mu = \operatorname{ctg} \beta. \tag{2}$$

Формула (2) дает минимальное значение коэффициента трения μ , при котором возможно равновесие у наклонной стенки с углом β в отсутствие трения о пол. При этом лестница как бы цепляется за шероховатую стенку, хотя другим концом она, конечно, давит на гладкий пол.

Кстати, почему мы так уверенно говорим, что соотношение (2) — это и есть условие равновесия? Ведь мы еще не выяснили, что при этом будут уравновешены и вертикальные составляющие всех действующих сил. Подумайте над этим сами. В конечном счете все объясняется тем, что в условие (1) никакие другие силы, кроме N₂ и F_{тр}, не входят. Обратим внимание на то, что условие равновесия лест-

ницы не зависит ни от того, насколько наклонена сама лестница, ни от того, в каком месте приложена сила тя-жести **G** и какова ее величина. Это означает, что лест-

Рис. 2.1. Тяжелая балка шарнирно закреплена в точке А.

ница будет в равновесии и в том случае, когда на ней в любом месте стоит человек.

И последнее. Условие (2), как легко видеть, совпадает с хорошо известным условием равновесия тела на наклонной плоскости. Наклоненную на угол в стенку можно рассматривать как плоскость, которая образует угол $\alpha = \pi/2 - \beta$ с горизонтом, и условие (2) записывается в виде µ=tg а. Как по-вашему, это просто совпадение, или в этом есть определенный физический смысл?

2. Заклинивание. Посмотрите на рис. 2.1. Опираю-щаяся на доску тяжелая балка может поворачиваться в шарнире А вокруг горизонтальной оси. Какую горизон-тальную силу нужно приложить к доске, чтобы выдер-нуть ее влево? Вправо? Известны все величины, указанные на рис. 2.1.

Рассмотрим прежде всего действующие силы. На балку действуют сила тяжести **G**, нормальная сила реакции доски **N**, сила трения со стороны доски **F**, направ-ленная в сторону движения доски, и сила реакции шарнира. Направление последней силы заранее не известно, но оно и не понадобится, так как мы будем рассматривать моменты сил, действующих на балку, относительно оси вращения. Тогда условие равновесия моментов действующих на балку сил имеет вид

$$\frac{1}{2}G\sin\beta - N\sin\beta \pm F\cos\beta = 0.$$
 (1)

Знак плюс соответствует движению доски влево (рис. 2.2, a), знак минус — движению вправо (рис. 2.2, b). Силы, действующие на доску, изображены на рис. 2.2, где G_1 — сила тяжести, F_1 — сила трения доски о пол, T — внешняя сила, с которой мы тянем (эта сила будет наименьшей, если доска

Рис. 2.2. Силы, действующие при движении доски влево (а) и вправо (б).

движется равномерно). На основании второго закона Ньютона в этом случае имеем

$$T - F - F_1 = 0, (2)$$

$$N_1 - G_1 - N = 0. (3)$$

Вид уравнений (2) и (3) не зависит от того, в какую сторону движется доска.

На основании закона Кулона — Амонтона

$$F = \mu N, F_1 = \mu_1 N_1. \tag{4}$$

С помощью первого из соотношений (4) и уравнения (1) определяем F и N. Теперь становится совершенно понятным, почему можно было ограничиться только уравнением моментов сил, действующих на балку: по условию задачи нас интересует только движение доски, а ее взаимодействие с балкой описывается двумя силами F и N, которые удается определить из написанных соотношений. Итак,

$$V = \frac{G\sin\beta}{2(\sin\beta\pm\mu\cos\beta)},$$

Для нахождения T нужно подставить в уравнение (2) вместо F и F_i их выражения (4). При этом N_i выражается из соотношения (3) через силу N, которая уже найдена. Проделав все это, получаем

$$T = \mu_1 G_1 + \frac{G(\mu_1 + \mu)}{2(1 \pm \mu \operatorname{ctg} \beta)}.$$
 (5)

Напомним, что верхний знак соответствует движению доски влево, нижний — вправо. Однако второй случай — дви-жение вправо — требует дополнительного исследования, ибо при μ ctg β = 1 знаменатель дроби обращается в нуль; при этом $T \rightarrow \infty$. А что, если μ ctg $\beta > 1$? Нетрудно сообразить, что если μ ctg β стремится к единице со стороны меньших значений, необходимая сила T неограниченно возрастает, и при μ ctg β =1 происходит заклинивание. Совершенно очевидно, что если теперь увеличить μ или ctg β , чтобы μ ctg β стало больше единицы, то доска тем более останется на месте. Поэтому правильный ответ при движении доски вправо выглядит так:

$$T = \mu_1 G_1 + \frac{G(\mu_1 + \mu)}{2(1 - \mu \operatorname{ctg} \beta)}$$
, если $\mu \operatorname{ctg} \beta < 1$.

При μ ctg $\beta \ge 1$ доску вытащить вправо не удается. Попробуем объяснить «на пальцах», почему во втором случае происходит заклинивание, т. е. неограниченное случае происходит заклинивание, т. с. неограниченное возрастание силы трения при стремлении μ ctg β к единице со стороны меньших значений. Сравним значения силы T, необходимой для вытягивания доски в первом и втором слу-чаях. Во втором случае, как видно из формулы (5), нужна бо́льшая сила. Почему? Момент силы трения F относительно оси в этом случае направлен так, что приводит к увеличению силы **N** и, как следствие из этого, к увеличению самой силы трения **F**. Сила трения как бы «увеличивает сама себя».

Решив задачу, мы обычно уверены, что эксперимент подтвердит полученные выводы, в крайнем случае будут несколько нарушены количественные соотношения, если в несколько нарушены количественные соотношения, если в процессе решения пришлось чем-то пренебречь. Если же используемые приближения окажутся слишком грубыми, то результат эксперимента может качественно отличаться от предсказаний. Например, в этой задаче мы пренебрегали возможностью деформации балки и доски и не учитывали зависимость коэффициента трения скольжения от скорости,

۰.

что может оказаться весьма существенным в условиях, близких к заклиниванию; в частности, балка может сломаться прежде, чем произойдет заклинивание, или начать подскакивать.

Однако даже такие академические задачи представляют интерес, несмотря на свой абстрактный характер. В конечном счете мы не можем рассматривать исчерпывающим образом даже самые простые явления природы — всегда

Рис. 2.3. Схема устройства тормозов задних (а) и передних (б) колес автомобиля.

приходится что-то упрощать. Но важно, чтобы выбранная упрощенная модель сохраняла основные черты явления.

Разбираемая задача помогает лучше понять действие тормозных колодок автомобиля. На рис. 2.3 показано устройство тормозов задних (а) и передних (б) колес. При нажатии на педаль тормоза возрастает давление в тормозных цилиндрах С и колодки А и В прижимаются к внутренним поверхностям тормозного барабана, вращающегося вместе с колесом. Легко понять, что поведение колодки В у задних колес аналогично первому случаю разобранной задачи, поведение колодки А — второму случаю. Сила трения, действующая на тормозной барабан со стороны колодки А, больше, чем со стороны колодки В, хотя внешнее прижимающее усилие одинаково для обеих колодок. Колодка А обладает «самотормозящим» действием. Небольшое изменение конструкции тормоза, показанное на рис. 2.3, б, приводит к тому, что уже обе колодки обладают самотормозящим действием. Именно так устроены тормоза передних колес. А как вы думаете, почему передние колеса нужно тормозить сильнее задних?

3. Равновесие в чашке. Гладкий однородный стержень длины 2L опирается на край гладкой неподвижной полусферической чашки радиуса *R* (рис. 3.1). Какой угол α образует стержень с горизонтом в положении равновесия? Трением пренебречь.

На стержень действуют три силы: сила тяжести G, приложенная в середине стержня, и силы реакции чашки N_1 и N_2 . Так как трение отсутствует, сила N_1 , действующая на

Рис. 3.1. Стержень находится в гладкой полусферической чашке,

Рис. 3.2. Силы, действующие на стержень в положении равновесия.

конец стержня, упирающийся в чашку, направлена перпендикулярно поверхности чашки, т. е. по радиусу; сила **N**₂ приложена к стержню со стороны края чашки и направлена перпендикулярно стержню (рис. 3.2). Попробуйте объяснить сами, почему.

Если стержень находится в положении равновесия, то линии, по которым действуют эти три силы, пересекаются в одной точке (точке A). Действительно, рассмотрим точку пересечения линий действия каких-либо двух сил, например N_1 и N_2 , и составим условие равенства нулю суммы моментов всех сил относительно этой точки. Моменты сил N_1 и N_2 относительно точки пересечения их направлений равны нулю, поэтому и момент третьей силы G также должен быть равен нулю, т. е. линия действия силы G проходит через эту же точку. Этого факта достаточно для нахождения положения равновесия стержня. Из элементарных геометрических соображений легко найти все углы, указанные на рис. 3.2.

3. РАВНОВЕСИЕ В ЧАШКЕ

Теперь можно составить уравнение для какой-нибудь тригонометрической функции искомого угла α . Находя из прямоугольного треугольника ABC хорду $BC=2R \cos \alpha$ и учитывая, что точка приложения силы тяжести лежит посредине стержня, получим

$$x = 2R \cos \alpha - L. \tag{1}$$

Далее, рассматривая радиус ОС как сумму двух отрезков. на которые его делит линия действия силы тяжести G, находим

$$R = R\sin\left(\frac{\pi}{2} - 2\alpha\right) + x\cos\alpha.$$
 (2)

Подставляя (1) в (2), получаем после простых преобразований квадратное уравнение для соз а:

$$4R\,\cos^2\alpha - L\,\cos\alpha - 2R = 0. \tag{3}$$

Поскольку угол α лежит в первой четверти, физический смысл имеет только один корень уравнения (3), ибо второй корень отрицателен:

$$\cos \alpha = \frac{1}{8R} \left(L + \frac{1}{L^2 + 32R^2} \right).$$
 (4)

Так как соз α не превышает единицы, то

$$L+\sqrt{L^2+32R^2}\leqslant 8R,$$

откуда $L \leqslant 2R$.

Смысл этого условия очевиден: если длина стержня 2L превышает удвоенный диаметр чашки, то центр тяжести стержня выходит за край чашки и стержень вываливается из нее. Если L=2R, стержень расположен горизонтально ($\alpha=0$) и опирается на чашку в одной точке C.

Если стержень слишком короткий, то он соскользнет внутрь чашки. Найдем минимальную длину стержня, при которой еще возможно описанное в условии равновесие, т. е. стержень еще опирается на край чашки своим правым концом (x=L):

$$2R \cos \alpha_1 = 2L. \tag{5}$$

Предельный угол а₁, при котором стержень еще не соскальзывает внутрь чашки, одновременно с (5) должен удовлетворять также условию равновесия (4). Подставляя (4) в

5 Е.И. Бутиков и др.

(5), находим для минимальной длины стержня:

$$L = R \sqrt{2/3}.$$

Соответствующий этой минимальной длине стержня предельный угол α₁ удовлетворяет условию

$$\cos \alpha_1 = \sqrt{2/3}.$$

Итак, если длина стержня удовлетворяет условию

$$R\sqrt{2/3} < L < 2R,$$

то равновесие возможно, и угол α при равновесии определяется формулой (4). Более детальным исследованием можно показать, что это равновесие устойчиво, если, разумеется, в точке *C* стержень не опирается о чашку точно своим концом.

Легко сообразить, что если стержень короче диаметра чашки (L < R), то существует другое положение устой-чивого равновесия, когда стержень лежит горизонтально внутри чашки.

4. Маятник с трением. К нижнему концу легкого стержня длины *l* прикреплен груз массы *m*, а к верхнему концу — легкая цилиндрическая втулка с внутренним радиусом *R*. Втулка надета с зазором на неподвижную круглую горизонтальную ось (рис. 4.1). При каких значениях угла отклонения ф от вертикали этот маятник может находиться в равновесии, если коэффициент трения между внутренней поверхностью втулки и осью равен µ?

Совершенно очевидно, что в отсутствие трения между осью и втулкой маятник может находиться в равновесии только в вертикальном положении. А вот при наличии трения в оси равновесне маятника возможно в любом отклоненном от вертикали положении в пределах некоторого небольшого сектора — так называемой области застоя.

Рассмотрим, каким образом действующие на маятник силы могут обеспечить его равновесие в отклоненном от вертикали положении. На маятник действуют всего три силы: на груз, прикрепленный к нижнему концу, действует сила тяжести mg, а на втулку со стороны оси в точке их соприкосновения действует нормальная сила реакции оси N, направленная по радиусу, и сила трения $F_{\rm тp}$, направленная по касательной (рис. 4.2). Довольно очевидно, что точка A, где соприкасаются ось и втулка, смещена из верхнего положения в ту же сторону, куда отклонен маятник, но ее точное положение заранее не известно. Для того чтобы правильно изобразить силы N и $F_{\rm rp}$ на чертеже, нужно сообразить, где именно находится точка соприкосновения втулки и оси.

Это легко сделать, если вспомнить следствие, вытекающее из уравнения моментов: при равновесии тела под действием трех сил линии, по которым действуют эти силы, пересекаются в одной точке. Тогда сразу становится ясно, что точка *А* лежит на пересечении вертикали, проходящей через центр масс груза, с внутренней поверхностью втулки (рис. 4.3). А это, в свою очередь, означает, что даже при сколь угодно большом коэффициенте трения в оси невозможно равновесие маятника, ес-

Рис. 4.1. Втулка маятника надета на неподвижную ось.

ли центр масс груза *т* смещен вправо или влево на расстояние, большее радиуса втулки *R*.

Максимальному отклонению маятника от вертикали соответствует наибольшее возможное значение силы трения покоя. Считая это наибольшее значение равным силе трения скольжения, получим, что в равновесии при максимально допустимом отклонении от вертикали

$$F_{\rm rp} = \mu N. \tag{1}$$

Так как в равновесии векторная сумма $F_{\rm Tp}$ и **N** направлена вертикально вверх (рис. 4.3), то

$$tg \alpha = \frac{F_{\tau p}}{N} = \mu.$$
 (2)

Теперь легко найти угол φ , соответствующий максимальному отклонению маятника. Для этого выразим отрезок *OB* (рис. 4.3) через углы α и φ :

$$(l+R)\sin\varphi = R\sin\alpha$$
,

откуда, учитывая соотношение (2), находим

$$\sin \varphi = \frac{R}{l+R} \frac{\mu}{\sqrt{1+\mu^2}}.$$
 (3)

П. Статика

Обратите внимание, что величина предельного угла определяется только значением коэффициента трения и размерами стержня и втулки и не зависит от массы груза.

Полученный ответ удовлетворяет упоминавшимся выше предельным случаям. При µ → 0 предельный угол ф также стремится к нулю, т. е. в отсутствие трения равновесие

Рис. 4.2. Сила реакции оси N и сила трения $F_{\rm rp}$ действуют на втулку маятника в точке ее соприкосновения с осью. Рис. 4.3. Центр масс груза лежит на вертикали, проходящей через точку соприкосновения втулки с осью.

возможно только при вертикальном положении маятника. При $\mu \to \infty$ множитель $\frac{\mu}{\sqrt{1+\mu^2}}$ стремится к единице, и формула (3) принимает вид

$$(l+R)\sin\varphi = R.$$
 (4)

Отсюда видно, что при $\mu \to \infty$ максимально возможное отклонение груза вправо *OB* стремится к *R*.

Если отклонить маятник на угол больше предельного и отпустить, то, совершив несколько колебаний с убывающей амплитудой, маятник остановится где-то внутри области застоя. Остановка маятника может произойти в любой точке области застоя в зависимости от начальных условий.

Интересно отметить, что при наличии трения в оси маятник может находиться в равновесии и в перевернутом положении, когда груз *m* расположен выше оси. В отсутствие трения равновесие перевернутого маятника возможно только при строго вертикальном положении и является неустойчивым. Рассмотрите равновесие перевернутого маятника самостоятельно и убедитесь, что предельно допустимый угол отклонения от вертикали дается тем же выражением (3).

5. Блок с трением в оси. В системе, показанной на рис. 5.1, легкий блок с внешним радиусом *R* и внутренним радиусом *r* надет на неподвижную цилиндрическую ось. Коэффициент трения блока о поверхность оси равен µ. При каких углах α эта система может находиться в равновесии, если трение между грузами и наклопными плоскостями отсутствует?

Очевидно, что при отсутствии трения в оси блока натяжение соединяющей грузы нити одинаково по обе стороны от блока, и поэтому такая система может заходиться в равновесни только тогда, ког-

да она строго симметрична, т. е. угол α равен π/4.

Если же в оси блока есть сухое трение, то натяжение нити справа и слева от блока может быть различно и существует целая область значений угла α вблизи $\alpha = \pi/4$, в пределах которой возмож-

Рис. 5.1. Равновесие блока с трением в оси.

но равновесие. При этом мы, разумеется, считаем, что между нитью и блоком трение велико, так что нить не может проскальзывать.

Для нахождения границ области равновесия рассмотрим силы, действующие на блок. Так как трение между грузами и плоскостями отсутствует, то при равновесии сила натяжения нити слева от блока равна mg sin a, a справа mg cos a. Именно с такими силами нить и действует на блок, как показано на рис. 5.2. Отметим сразу же, что горизонтальные составляющие этих сил по величине равны $mg \sin \alpha \cos \alpha$ (посмотрите внимательно на рис. 5.2) и уравновешивают друг друга. Поэтому векторная сумма сил натяжения нити, действующих на блок, направлена

Рис. 5.2. Силы, действующие на блок со стороны нити.

вертикально вниз. Величина этой равнодействующей силы равна, как видно из того же рис. 5.2,

$$mg \sin^2 \alpha + mg \cos^2 \alpha = mg$$
.

Кроме натяжения нитей на блок действует сила реакции оси Q, которую, как обычно, удобно представить в виде векторной суммы нормальной силы реакции N и силы трения $F_{\rm rp}$, направленной по касательной к внутренней поверхности блока. Обе эти силы приложены в точке A, где блок соприкасается с осью (рис. 5.3). Будем для определенности считать, что угол $\alpha > \pi/4$; тогда сила трения $F_{\rm rp}$ при равновесии системы направлена вправо. Величина этой силы трения покоя может изменяться от нуля (при $\alpha = \pi/4$) до максимального значения, которое мы будем считать равным μN . Это максимальное значение сила трения будет принимать при угле α , соответствующем границе интересующей нас области, где возможно равновесие.

Положение точки A касания блока с осью будем характеризовать углом β (рис. 5.3), который образует с вертикалью раднус, проведенный в точку касания. Величину этого угла можно найти, учитывая, что сила Q уравновешивает векторную сумму действующих на блок сил натяжения нити, т. е. равна mg и направлена вертикально вверх. Приравнивая величины горизонтальных составляющих сил N и F_{ro} , имеем

$$N\sin\beta = \mu N\cos\beta, \qquad (1)$$

откуда

$$tg\beta = \mu$$
. (2)

Обратим внимание, что соотношение (2) совпадает с усло-

вием равновесия тела на наклонной плоскости, образующей угол β с горизонтом. Как по-вашему, это случайное совпадение или ему можно придать определенный физический смысл?

Теперь, легко найти величину действующей на блок силы трения. Так как величина силы Q равна mg, то, как видно из рис. 5.3,

$$F_{\rm rp} = mg\sin\beta. \quad (3)$$

Рис. 5.3. Силы N и F_{тр} действуют на блок в точке A, где блок соприкасается с осью.

Выражая синус угла β через тангенс и учитывая соотношение (2), выражение для силы трения можно переписать в виде

$$F_{\rm rp} = mg \, \frac{\mu}{\sqrt{1 + \mu^2}} \,. \tag{4}$$

Для нахождения предельного значения угла α , при котором еще возможно равновесие системы, напишем условие уравновешивания моментов сил, действующих на блок. Так как плечи сил натяжения нити относительно точки Oравны внешнему радиусу блока R, а плечо силы трения равно внутреннему радиусу блока r (рис. 5.3), то

$$mg(\sin\alpha - \cos\alpha) R = F_{\rm TP} r.$$
 (5)

Подставляя в уравнение (5) значение силы трения из (4) и возводя обе части этого уравнения в квадрат, после простых преобразований находим

$$\sin 2\alpha = 1 - \left(\frac{r}{R}\right)^2 \frac{\mu^2}{1 + \mu^2}.$$
 (6)

При $\mu = 0$, что соответствует отсутствню трения в оси, формула (6) дает sin $2\alpha = 1$, т. е. $\alpha = \pi/4$. Прі, $\mu \neq 0$ правая

часть в выражении (6) меньше единицы, поэтому уравнение (6) для α имеет в промежутке от 0 до $\pi/2$ два корня α_1 и α_2 , расположенных симметрично относительно значения $\alpha = \pi/4$ (рис. 5.4). Корень α_1 , меньший $\pi/4$, появился как лишний при возведении уравнения (5) в квадрат. Однако,

Рис. 5.4. Область углов а, при которых возможно равновесие, ограничена значениями а₁ и а₂.

несмотря на столь «незаконное» появление, он имеет физический смысл, определяя вместе с α_3 всю область значений углов α , в которой система может находиться в равновесии. Подумайте сами, почему так получается.

Могло бы показаться, что при r=R эта задача соответствует случаю, когда грузы соединены нитью, перекинутой

через неподвижный цилиндр, причем коэффициент трения нити о поверхность цилиндра равен µ. Однако это не так. Все дело в том, что в рассматриваемой задаче касание внутреннего цилиндра происходит только в одной точке A, в то время как гибкая нить прилегает к цилиндру по всей дуге. Этот случай будет рассмотрен в задаче 8.

6. Устойчиво ли равновесие? Однородная доска находится в равновесии в прямом двугранном угле с гладкими стенками. На рис. 6.1 изображено сечение этого угла плоскостью, перпендикулярной ребру. Как расположена доска? Устойчиво ли ее равновесие?

Поскольку трение отсутствует, то на доску действуют три силы: сила тяжести G и две силы реакции опор N_1 и N_3 , направленные перпендикулярно граням угла. Как уже было выяснено в задаче 3, в положении равновесия под действием только трех сил линии их действия пересекаются в одной точке (рис. 6.1). Из этого рисунка легко видеть, как можно построением найти положение доски в равновесии. Проводим вертикаль через вершину угла и откладываем на ней от вершины отрезок, равный длине доски. Из конца это: э отрезка опускаем перпендикуляры на гранн

6. УСТОЙЧИВО ЛИ РАВНОВЕСИЕ:

угла. Положение доски в равновесии совпадает со второй диагональю получившегося прямоугольника. Нетрудно убедиться, что угол, который образует доска с одной из граней угла, равен углу а, образуемому другой гранью угла с горизонтом.

В устойчивом положении равновесия потенциальная энергия минимальна, в неустойчивом — максимальна. Поэтому для выяснения характера равновесия достаточно

Рис. 6.1. Силы, действующие на доску в двугранном угле с гладкими стенками.

Рис. 6.2. Перемещение центра тяжести при изменения поло-жения доски.

рассмотреть, как изменяется высота центра тяжести доски при малых смещениях ее из положения равновесия. Если перемещать доску так, чтобы концы ее скользили по граням угла, то ее центр тяжести перемещается по дуге окружности, центр которой совпадает с вершиной угла, а радиус равен половине длины доски (рис. 6.2). В самом деле, как видно из этого рисунка, расстояние от вершины угла до центра тяжести доски не зависит от положения доски и равно половине ее длины.

В положении равновесия радиус, соединяющий вершину угла с центром тяжести доски, расположен вертикально, поэтому при смещении доски ее потенциальная энергия убывает. Равновесие неустойчиво. Случайно отклонившись, доска соскользнет на одну из граней угла. 7. Бревна в кузове. Грузовик загружен одинаковыми гладкими бревнами. Заехав в кювет, он накренился на один борт, так что дно кузова образовало с горизонтом угол θ . Кузов разгрузили, и в нем осталось только три бревна (рис. 7.1). С какой силой F нужно подпереть крайнее бревно 3, чтобы бревна не раскатились? Трением пренебречь.

Положение бревен, указанное на рис. 7.1, возможно только, если угол $\theta < 30^{\circ}$. В противном случае направление силы тяжести верхнего бревна 2 пройдет левее точки опоры

Рис. 7.1. Бревна в наклонном кузове.

о нижнее бревно / и бревно 2 скатится на борт.

При решении этой задачи попытаемся избежать утомительного рассмотрения всех действующих сил и воспользуемся законом сохранения энергин. Если система бревен находится в равновесии, то работа внешней силы *F* при мы-

сленном бесконечно малом медленном перемещении крайнего бревна 3 определяет изменение потенциальной энергии бревен, так как трение отсутствует, а нормальные силы реакции работы не совершают.

«Геометрия» перемещения бревен показана на рис. 7.2, *а*, который для удобства повернут на угол θ по часовой стрелке. На такой же угол поворачивается направление силы тяжести.

Треугольники на рис. 7.2, б соединяют центры бревен до и после перемещения. До перемещения треугольник был равносторонним со стороной, равной диаметру бревен *а*. После перемещения бревен треугольник становится равнобедренным, боковые стороны его по-прежнему равны *a*, основание увеличивается на $2 \Delta x$, а высота изменяется на Δy . В самом деле, бревно *1* лежит на месте, бревно *3* перемещается на $2 \Delta x$ вдоль дна кузова, а бревно *2* перемещается на Δx вдоль дна и на Δy перпендикулярно дну.

Учитывая, что направление силы тяжести составляет угол θ с осью *у* (рис. 7.2, *a*), изменение потенциальной энергии бревен можно записать в виде

 $\Delta E_n = G\cos\theta \cdot \Delta y + G\sin\theta \cdot \Delta x + G\sin\theta \cdot 2 \Delta x.$

Первые два слагаемых дают изменение потенциальной энергии бревна 2, а третье слагаемое — бревна 3. При таком

Рис. 7.2. Перемещение центров бревен при их ряскатывании. перемещении внешняя сила F совершает работу $\Delta A = -F \cdot 2\Delta x$. На основании закона сохранения энергии $-F \cdot 2\Delta x = G \cos \theta \cdot \Delta y + G \sin \theta \cdot 3\Delta x.$ (1)

Для нахождения силы F нужно найти связь между перемещениями Δx и Δy . Проще всего это сделать, выразив

их через изменение $\Delta \alpha$ угла α . В системе координат, показанной на рис. 7.2, a, координаты вершин треугольника до перемещения бревен равны

$$x = a \cos \alpha, \ y = a \sin \alpha.$$
 (2)

После перемещения

$$x + \Delta x = a \cos(\alpha + \Delta \alpha), \ y + \Delta y = a \sin(\alpha + \Delta \alpha).$$
 (3)

Используя формулы для сипуса и косинуса суммы двух углов и учитывая, что при малых $\Delta \alpha \cos \Delta \alpha \approx 1$, sin $\Delta \alpha \approx \approx \Delta \alpha$, с помощью выражений (2) и (3) находим

$$\Delta x = -a \sin \alpha \cdot \Delta \alpha, \ \Delta y = a \cos \alpha \cdot \Delta \alpha. \tag{4}$$

Подставляя (4) в соотношение (1), получаем следующее выражение для силы F:

$$F = \frac{G}{2} \left(\cos \theta \cdot \operatorname{ctg} \alpha - 3 \sin \theta \right).$$

Угол α здесь следует положить равным 60°, так как нужно определить силу F, не позволяющую бревнам раскатываться. Поэтому

$$F = \frac{G}{2} \left(\frac{1}{\sqrt{3}} \cos \theta - 3 \sin \theta \right).$$
 (5)

і Іроанализируем полученный ответ. Если угол наклона кузова лежит в интервале $0 < \theta < \arctan g(1/3\sqrt{3})$, то сила F > 0, т. е. бревна действительно нужно удерживать: если силу F убрать, то бревна раскатятся. При $\theta_1 = \arctan g(1/3\sqrt{3})$ сила F обращается в нуль. При таком угле θ_1 бревна не раскатятся, даже если их не подпирать. Если $\theta_1 < \theta < 30^\circ$, то сила F согласно формуле (5) отрицательна. Это означает, что бревна не раскатятся, даже если бревно 3 вытягивать вдоль дна кузова с силой, меньшей |F|. Таким образом, θ_1 представляет собой наименьший угол, при котором бревна не раскатываются в отсутствие удерживающей силы F. 8. Канат на тумбе. При причаливании к пристани можно остановить движение дажє эчснь большого судна, не прилагая для этого больших усилий. Брошенный с парохода-на пристань канат оборачивают несколько раз вокруг тумбы, и тогда оказывается достаточным приложить к свободному концу каната совсем небольшое усилие, чтобы проскальзывающий по тумбе канат остановил и удержал огромный пароход. Рассчитать, во сколько раз действующая на пароход со стороны каната сила превосходит приложенное к свободному концу каната усилие, если канат трижды обернут вокруг тумбы, а коэффициент трения каната о тумбу µ.

Огромный выигрыш в силе достигается здесь благодаря трению витков каната о поверхность тумбы. Рассмотрим небольшой элемент Δ*l* вит-

небольшой элемент ΔI витка каната на тумбе, характеризуемый углом $\Delta \alpha$ (рис. 8.1). На этот элемент со стороны соседних участков каната действуют упругие силы натяжения Tи $T + \Delta T$, направленные по касательным к поверхности тумбы на концах выделенного участка. Интересующее нас разли-

Рис. 8.1. На элемена каната (А) действуют силы T и T-1- AT со стороны соседних участков.

чие величины этих сил ΔT обусловлено действием на этот элемент силы трения скольжения $\Delta F_{\rm rp}$. Равнодействующая сил натяжения имеет также составляющую, направленную по радиусу к центру тумбы. Эта составляющая уравновешивается нормальной к элементу Δl силой реакции тумбы ΔN . Как видно из построения на рис. 8.2, в котором учтено, что для малого элемента витка Δl отношение $\Delta T/T \ll 1$, величина силы ΔN приближенно равна

$$\Delta N \approx T \Delta \alpha. \tag{1}$$

Величина силы трения скольжения $\Delta F_{\tau p}$ связана с величиной нормальной силы реакции ΔN , как обычно, соотношением

$$\Delta F_{\tau p} = \mu \,\Delta N. \tag{2}$$

Подставляя сюда ΔN из формулы (1) и учитывая, что $\Delta F_{\rm rp} = = \Delta T$, получаем

$$\Delta T = \mu T \ \Delta \alpha. \tag{3}$$

Будем теперь рассматривать натяжение каната T как функцию угла а. Тогда, переходя в выражении (3) к пределу

Рис. 8.2. К вычислению нормальной силы реакции ΔN .

функции, как известно из ки, имеет решение

при $\Delta \alpha \rightarrow 0$ и учитывая, что предел отношения $\Delta T/\Delta \alpha$ при $\Delta \alpha \rightarrow 0$ есть $T'(\alpha)$ — производная от функции $T(\alpha)$ по α , получим следующее дифференциальное уравнение:

$$T'(\alpha) = \mu T(\alpha).$$
 (4)

Такое уравнение, в котором производная от искомой функции пропорциональна самой школьного курса математи-

$$T(\alpha) = C e^{\mu \alpha} \,. \tag{5}$$

Как видно из самого решения, постоянная C имеет смысл силы натяжения каната T_0 при $\alpha = 0$, т. е. усилия, приложенного к свободному концу каната. Поэтому

$$T(\alpha) = T_0 e^{\mu \alpha}. \tag{6}$$

Из этого выражения видно, что отношение натяжения $T(\alpha_1)$ на одном конце каната (т. е. при $\alpha = \alpha_1$) к натяжению T_0 на другом конце, равное $e^{\mu\alpha_1}$, не зависит ни от диаметра, ни от толщины каната, а определяется только коэффициентом трения μ и числом оборотов $n = \alpha_1/2\pi$.

Экспоненциальная функция

 $e^{\mu\alpha_i} = e^{2\pi\mu n}$

растет очень быстро. При целых n это просто геометрическая прогрессия со знаменателем $e^{2\pi\mu}$. Например, даже при μ , равном всего 0,1, после одного оборота (n=1) натяжение каната возрастает в $e^{2\pi\mu} \approx e^{0.63} \approx 1,87$ раза, а после трех оборотов — в $e^{\pi\mu \cdot 3} \approx 6,55$ раза.

142

Следует отметить, что описанный способ преобразования силы является существенно необратимым, в отличие от простых механизмов, таких как рычаг, ворот, тали и т. п. Поэтому таким способом можно только останавливать или удерживать корабль, но нельзя, например, подтягивать его к берегу. Однако, если привести тумбу во вращение с помощью двигателя, то описанным способом можно подтягивать корабль к берегу. Лебедки, в которых используется этот принцип (кабестаны), широко распространены во флоте. Основной закон гидростатики — это закон Паскаля, согласно которому з состоянии равновесия величина давления *р* в жидкости (или газе) не зависит от ориентации площадки, на которую оно действует.

Если несжимаемая жидкость находится в однородном поле тяжести, то гидростатическое давление на глубине hравно ρgh , где ρ — плотность жидкости. Наличие обусловленного полем тяжести гидростатического давления приводит к тому, что на погруженное в жидкость (или газ) тело действует выталкивающая сила. Эта сила направлена вертикально вверх, а ее величина равна весу жидкости, объем которой совпадает с объемом погруженной в жидкость части тела. В этом заключается закон Архимеда.

При стационарном движении жидкости, когда линии тока не меняются со временем и совпадают с траекториями частиц жидкости, через любое поперечное сечение потока в единицу времени проходит одно и то же количество жидкости. Для несжимаемой жидкости это условие выражается уравнением неразрывности:

$$v_1 S_1 = v_2 S_2, \tag{1}$$

где S_1 и S_2 -- площади сечений, а v_1 и v_2 -- скорости жидкости в этих сечениях.

Если при движении жидкости можно пренебречь силами внутреннего трения, то такую жидкость называют идеальной. Для идеальной жидкости выполняется закон сохранения механической энергии. Математическим выражением этого закона является уравнение Бернулли:

$$\rho + \rho gh + \frac{1}{2} \rho v^a = \text{const.}$$
 (2)

Сумма слагаемых, фигурирующих в левой части уравнения (2), имеет одно и то же значение вдоль линии тока. Высота *h*
в любой точке отсчитывается от одного уровня, условно принятого за нулевой.

При движении твердого тела в жидкости (или газе) на тело действует сила сопротивления. Величина этой силы зависит от многих параметров, таких, как скорость движения, размеры и форма тела, плотность жидкости, ее вязкость. Относительная роль этих параметров меняется в зависимости от скорости движения тела в жидкости. При небольших скоростях эта сила обусловлена в основном вязкостью жидкости. В этом случае сила сопротивления пропорциональна скорости тела.

1: Перевернутая воронка. Перевернутая тяжелая коническая воронка поставлена на ровную горизонтальную поверхность, покрытую листовой резиной (рис. 1.1). Узкое отверстие воронки закашчивается тонкой трубкой, через которую внутрь воронки можно наливать воду. Оказалось, что вода начинает вытекать из-под воронки, когда высота уровня воды в трубке становится равной *h*. Определить массу воронки *m*, если площадь сечения ее широкого отверстия равна *S*, а высота воронки равна *H*.

Прежде всего подумаем, почему вода вообще может вытекать из-под воронки. Ведь воронка плотно стоит на резине и никаких щелей там нет.

и никаких щелей там нет. Чтобы вода начала вытекать, воронка должна приподняться. Какая же сила се приподнимает? Дело в том, что силы давления воды в каждой точке поверхности воронки наиравлены по нормали к ней и поэтому имеют вертикальную составляющую. Результирующая этнх сил, как ясно из симметрии воронки, направлена вертикально вверх. При некотором уровне воды в трубке величина этой результирующей силы давления может оказаться достаточной воронку.

может оказаться достаточной для того, чтобы приподнять боронку.

Непосредственное вычисление силы давления требует применения интегрирования. Во-первых, давление воды будет разным для разных горизонтальных слоев, на которые можно разбить поверхность воронки; во-вторых, будут

Рис. 1.2. Задачу можно решить также и для воронки более сложной формы.

разными площади этих слоев. Поэтому удобнее не вычислять эту силу «в лоб», а воспользоваться другими соображениями, основанными на особенностях гидростатического давления жидкости.

Представим себе, что воронка вместе с налитой в нсе водой стоит на весах. Очевидно, что показания весов определяются суммой масс воронки и налитой в нее через трубку воды. В тот момент, когда вода начинает вытекать из-под воронки.

нижний край воронки перестает давить на подставку. А это значит, что в этот момент вся сила, действующая на чашку весов, — это сила давления столба воды высотой *h* на площадь S. Итак, в момент отрыва

$$mg + \rho gV = \rho ghS, \tag{1}$$

где ρ — плотность воды, а V — объем воды в воронке и трубке.

Если трубка тонкая, то объемом заполненной водой части трубки можно пренебречь по сравнению с объемом самой воронки. В этом случае $V = \frac{1}{3} HS$, и из уравнения (1) находим

$$m = \rho S\left(h - \frac{H}{3}\right). \tag{2}$$

Из формулы (2) видно, между прочим, что воронка довольно тяжелая: ее масса более чем вдвое превышает массу воды в объеме воронки. Если бы воронка имела массу, меньшую, чем $\frac{2}{3} \rho SH$, то при наливании воды через трубку воронка оторвалась бы от подставки еще до того, как вода заполнила всю воронку.

Использованный здесь прием позволяет обойтись без непосредственного вычисления сил давления жидкости на поверхность тела и может оказаться полезным при решении других гидростатических задач, особенно в тех случаях, когда тело имеет поверхность сложной формы. Уравнение (1) остается справедливым и в том случае, когда воронка имеет более сложную форму, например, такую, как показано на рис. 1.2. Для нахождения массы воронки нужно только знать объем ее внутренней части.

2. Утонет или нет? Два шара одинакового размера, один легкий, а другой тяжелый, прикреплены к тонкому стержню, причем тяжелый к середине стержня, а легкий к одному из его концов. При погружении в воду в неглубоком месте свободный конец стержня опирается о дно, стержень располагается наклонно и из воды выступает только часть легкого шара, причем отношение объема выступающей части к объему всего шара равно n (рис. 2.1). Будет ли эта система плавать или она утонет, если ее опустить в воду на глубоком месте? Массы легкого шара и стержня считать пренебрежимо малыми.

При первом чтении условия задачи может показаться, что приведенных данных недостаточно для ответа на поставленный вопрос: ведь не указаны ни объем, ни масса шара, которые необходимы для нахождения соотношения между

силой тяжести и выталкивающими силами. Однако это впечатление об- 📻 манчиво. Все, что нужно для решения задачи, в условии задано, и остается только сообразить, как этим восполь- тапалата зоваться.

Поведение системы на глубокой воде определяется тем, что больше: действующая на массивный шар сила тяжести G или сумма действующих на

оба шара одинаковых выталкивающих сил. Это можно выяснить, рассматривая описанное в условии задачи равновесие стержня с шарами на мелководье. На рис. 2.2 показаны действующие на систему силы.

Через **F** обозначена выталкивающая сила, действующая на полностью погруженный шар. Так как легкий шар погружен

Рис. 2.1. Погруженный в воду стержень с шарами опирается о лно.

в воду частично, то действующая на него выталкивающая сила, пропорциональная объему его погруженной части, равна F(1-n). Поскольку сила тяжести G и обе выталкивающие силы направлены по вертикали, то и действующая на конец стержня сила реакции дна Q также направлена вертикально. Рассматривая уравнение моментов сил относительно центра тяжелого шара, сразу убеждаемся, что

Рис. 2.2. Все действующие на систему силы направлены вертикально.

сила **Q** равна выталкивающей силе, действующей на выступающий из воды шар:

$$\boldsymbol{Q} = \boldsymbol{F}\left(1-n\right).$$

Теперь, учитывая, что векторная сумма всех действующих сил в равновесии равна нулю, можно связать величину выталкивающей силы F с действующей на массивный шар силой тяжести

G. Так как все силы направлены по вертикали, то

$$G = F + 2F(1-n) = F(3-2n).$$
(1)

На глубоком месте максимальная величина выталкивающей силы будет достигаться при полном погружении обоих шаров. В этом случае она равна 2F. Если 2F окажется больше силы тяжести G, то стержень с шарами будет плавать в вертикальном положении, и находящийся вверху легкий шар будет частично выступать из воды. Итак, условие плавания на глубокой воде имеет вид

$$G < 2F. \tag{2}$$

Подставляя в левую часть этого неравенства G из уравнения (1), получаем

$$3 - 2n < 2$$
,

откуда $n > \frac{1}{2}$. Это значит, что система не утонет, если на мелководье легкий шар выступает из воды больше, чем наполовину.

3. Знаменитая задача. В бассейне плавает лодка. Как изменится уровень воды в бассейне, если из лодки в бассейн бросить камень? Что произойдет с уровнем воды в бассейне, если в днище лодки проделать отверстие и лодка начнет погружаться? Если уровень воды в бассейне при этом изменится, то в какой момент начнется изменение?

Если камень из лодки выбросить на берег бассейна, то уровень воды в бассейне понизится. Это происходит потому, что лодка становится легче, она всплывает и объем вытесняемой ею воды уменьшается.

Уровень воды в бассейне понизится и в том случае, когда камень выбрасывают в бассейн, хотя понижение уровня теперь будет несколько меньше. В самом деле, когда камень лежит на дне, вытесняемый им объем воды равен объему камня. Пока же он находился в лодке, лодка вытесняла дополнительный объем воды, масса которого была равна массе камня. Так как плотность камня больше плотности воды, то этот объем больше объема самого камня.

А что если из лодки в бассейн выбросить деревянный предмет, например бревно? Если бревно выбрасывается на берег, то тогда нет никакой принципиальной разницы со случаем, когда выбрасывается камень: уровень воды в бассейне понизится. Совсем другое дело, когда бревно выбрасывают в воду. В этом случае уровень воды в бассейне останется прежним, хотя лодка, конечно, несколько всплывет. Ведь бревно плавает на поверхности и, значит, вытесняет такой же объем воды, какой раньше (т. е. до выбрасывания бревна) дополнительно вытесняла лодка.

Итак, если выброшенный из лодки в воду предмет плавает, то уровень воды в бассейне остается без изменения. Если же предмет тонет в воде, то уровень воды понижается. К этим же выводам можно прийти и проще, если пред-

К этим же выводам можно прийти и проще, если представить себе, что весь бассейн стонт на весах. Что бы мы ни. выбрасывали из лодки в воду, показания весов, конечно, не изменятся. Поэтому, если выброшенные из лодки предметы плавают на поверхности, то сила давления воды на дно бассейна не должна измениться. А это возможно только тогда, когда уровень воды останется прежним.

Если же выброшенный предмет опустился на дно бассейна, то действующая на дно бассейна сила определяется не только гидростатическим давлением воды, но и действием самого камня. Так как полная сила должна остаться прежней, то давление воды на дно должно уменьшиться. Поэтому уровень воды в бассейне понизится.

Теперь, когда мы разобрались с первым вопросом, не составит большого труда ответить на вопрос, будет ли изменяться уровень воды в бассейне, если в днище лодки проделать отверстие. Будем считать, что заполнение лодки водой через отверстие происходит медленно, небольшими порциями, так что пока лодка не утонет, она в каждый момент находится в равновесии на поверхности воды. Пока лодка находится на плаву, уровень воды в бассейне не меняется. Объем погруженной части лодки увеличивается ровно на столько, сколько воды (по объему) вошло в лодку. В некоторый момент, набрав определенное количество воды, лодка уже не сможет оставаться в равновесии на плаву и начнет погружаться на дно. С этого момента и произойдет понижение уровня воды в бассейне.

Эта задача знаменита тем, что при попытке сразу ответить на поставленные вопросы интунция часто подводит, так что даже некоторые очень известные физики давали неправильные ответы.

4. Реакция вытекающей струи. В боковой стенке широкого сосуда имеется отверстие, закрытое пробкой (рис. 4.1). Найти величину реактивной силы, которая будет стремиться сдвинуть сосуд с места, если вынуть пробку. Площадь сечения отверстия S, а высота уровня воды над отверстием h.

Пока отверстие сосуда закрыто пробкой, сила, стремящаяся вытолкнуть пробку, определяется гидростатическим давлением столба воды высотой h и равна pghS.

Если пробку удалить из отверстия, то можно думать, что силы давления воды на степки сосуда будут взаимно уравновешиваться всюду, за исключением участка, лежащего точно напротив пробки и имеющего ту же площадь S, что и отверстие. Поэтому, казалось бы, реактивная сила, стремящаяся сдвинуть сосуд, должна быть такой же, как и сила гидростатического давления на этот участок, т. е.

$$F = \rho ghS$$
.

(1)

Однако такой вывод был бы слишком поспешным. Ведь все-таки здесь мы имеем дело с движущейся жидкостью, вытекающей струей из отверстия, и совершенно не очевидно,

Рис. 4.1. Сосуд с отверстием в боковой стенке.

Рис. 4.2. Объем освобождающейся части сосуда равен объему вытекающей жидкости.

что все можно объяснить гидростатическими закономерностями. И действительно, попробовав провести динамическое рассмотрение, мы получим для реактивной силы другой результат. При динамическом подходе действующую на сосуд реактивную силу нужно приравнять импульсу, уносимому вытекающей струей воды за единицу времени. Вычислим величину этой силы.

Будем считать, что скорость истечения воды одинакова по всему сечению отверстия. Если воду в сосуде можно считать идеальной жидкостью, то это действительно так и величину скорости можно найти с помощью закона сохранения механической энергии. В начальном состоянии вода в сосуде неподвижна и ее уровень находится на высоте h над отверстием. Спустя небольшой промежуток времени уровень воды в сосуде немного понизится, так как часть жидкости выйдет из отверстия в виде струи со скоростью v (рис. 4.2). Так как жидкость несжимаема, то объем освободившейся части сосуда ΔV равен объему вытекшей жидкости. Если сосуд достаточно широкий, то можно считать, что уровень воды в сосуде опускается почти с нулевой скоростью. В этом случае закон сохранения энергии записывается в виде

$$\rho \,\Delta V \,gh = \frac{1}{2} \,\rho \,\Delta V v^2, \qquad (2)$$

откуда

$$v^2 = 2gh$$
.

Эта формула была установлена Торричелли. Теперь можно найти импульс, уносимый водой в единицу времени. Так как масса воды, вытекающей за одну секунду, равна ρSv, то уносимый этой массой импульс равен ρSv³. Подставляя сюда найденное значение скорости струи, получаем величнну реактивной силы

$$F=2 \circ ghS.$$
 (3)

Найденное из динамического рассмотрения значение реак-тивной силы (3) оказывается вдвое больше, чем гидростатическая сила давления на пробку (1). _____ Какому же результату следует отдать предпочтение? ...

Поскольку при динамическом рассмотрении мы опирались

Рис. 4.3. Сжатие струи в трубке, вставленной в сосуд.

на фундаментальные законы сохранения энергии и импульса, то такой подход является более строгим. И менее результат тем не справедлив далеко не всегда. Бывают случаи, когда правилен как раз ответ (1).

Все дело здесь в форме струи жидкости, вытекающей из отверстия. Естественно, что эта форма зависит от конструк-

ции отверстия, и площадь сечения струи не всегда совпадает с площадью самого отверстия. Например, в случае, показанном на рис. 4.3, где цилиндрическая трубка вставлена внутрь сосуда, частицы жидкости вблизи краев трубки имеют скорости в поперечных направлениях, что приводит к сжатию струи в таком отверстии. Всюду вблизи стенок сосуда скорость движения жидкости в этом случае пренебрежимо мала и давление на стенки сосуда везде равно гидро-статическому. Но это как раз и означает, что для величины реактивной силы при истечении из такого отверстия справедлив результат (1).

152

Никакого противоречия с динамическим рассмотрением здесь, разумеется, нет. Поскольку струя в отверстии сжимается, то в формуле (3) под S надо понимать не площадь отверстия, а площадь сечения струи, которая для отверстия такой конструкции будет в два раза меньше площади самого отверстия. Подчеркнем, что площадь сечения струи в формуле (3) нужно выбирать в том месте, где струя уже сформировалась и скорости всех частиц жидкости одинаковы по

величине и направлению. Только для такого сечения струи и можно применять законы сохранения энергии и импульса в том виде, в каком они записаны в соотношениях (2) и (3).

А вот для конструкции отверстия, показанной на рис. 4.4, справедлив результат, выражаемый формулой (3), в кото-

Рис. 4.4. В трубке такой формы сжатия струи не происходит.

рой S равна площади отверстия. В самом деле, линии тока в отверстии перед истечением постепенно меняют направление на параллельное оси трубки. В результате площадь сечения вытекающей струи равна площади отверстия трубки и сжатня струи не происходит. Неприменимость гидростатического рассмотрения в этом случае связана с тем, что скорость жидкости у боковой стенки вблизи входа в трубку не равна нулю.

Для всех остальных конструкций отверстия, например для изображенной на рис. 4.1, сжатие струи имеет промежуточное значение между предельными случаями, показанными на рис. 4.3 и рис. 4.4. Реактивная сила выражается формулой (3), в которую в качестве S должна подставляться площадь сечения струи, соответствующая конкретной конструкции отверстия.

5. Истечение с постоянной скоростью. Сосуд, имеющий кран вблизи дна, заполняется водой, после чего плотно закрывается пробкой, сквозь которую проходит открытая с обоих концов трубка (рис. 5.1). С какой скоростью будет вытекать вода из сосуда, если открыть кран?

Когда мы закрываем сосуд пробкой, то вода, разумеется, входит в трубку, так что уровень воды в сосуде и в трубке одинаков. После того как пробка перекроет отверстие в горле сосуда, уровень воды в трубке станет даже несколько выше, чем в сосуде (рис. 5.2), и давление оставшегося под пробкой воздуха будет больше атмосферного на величину давления

Рис. 5.1. Трубка, проходящая через пробку, открыта с обоих концов.

Рис. 5.2. При плотном закрывании пробки уровень воды в трубке поднимается.

столба воды, высота *H* которого равна разности уровней в трубке и в сосуде.

Теперь откроем кран. Скорость истечения из отверстия крана определяется гидростатическим давлением воды на уровне крана.

момент равно Это давление в любой давлению столба воды высотой от уровня крана до уровня воды в трубке, так как верхний конец трубки открыт. Поэтому в начальный момент скорость истечения наибольшая. Уровень воды в трубке будет постепенно понижаться, пока не достигнет нижнего конца трубки. При этом уровень воды в сосуде понизится настолько незначительно, что его можно считать практически неизменным. В самом деле, давление воздуха под пробкой изменится при опускании уровня воды в трубке как раз на величину давления вытекшего из трубки столба воды. А это составляет ничтожную часть величины атмосферного давления, которое эквивалентно давлению приблизительно десяти метров водяного столба.

После того как уровень воды в трубке достигнет ее нижнего конца, дальнейшее истечение воды из крана будет обязательно сопровождаться понижением уровня воды в

самом сосуде. При этом из нижнего конца трубки в сосуд будут проскакивать пузыри воздуха из атмосферы, заполняя освобождающийся объем под пробкой (рис. 5.3). Воздух будет входить ровно столько, сколько нужно для того, чтобы давление воды в сосуде на уровне нижнего конца трубки все время равнялось атмосферному, несмотря на понижение уровня воды в сосуде. В результате гидростатическое давление на уровне крана будет оставаться неизменным и равным ρgh , где h — расстояние по вертикали от крана до нижнего конца трубки. Поэтому

нижнего конца груски. Поэтому и скорость истечения из крана будет постоянной и равной $\sqrt{2gh}$.

Так будет продолжаться до тех пор, пока уровень воды в сосуде не опустится до нижнего конца трубки. При дальнейшем истечении воды ее скорость будет уменьшаться, как и при вытекании из открытого сосуда.

Рассмотренный прибор представляет собой один из простейших механических регуляторов. Постоянство скорости истечения поддерживается в нем автоматически бла-

годаря наличию отрицательной обратной связи, которая обязательно присутствует в любых саморегулирующихся устройствах.

В данном случае для постоянства скорости истечения необходимо поддержание неизменного уровня воды в трубке, а именно у ее нижнего края. Рассмотрим, что произойдет, если этот уровень немного изменится. Пусть, например, с очередным пузырем в сосуд войдет немного больше воздуха, чем нужно, так что уровень воды в трубке чуть-чуть повысится. Тогда, как мы видели выше, вода будет выливаться практически только из трубки, и пока уровень ее снова не дойдет до нижнего края трубки, ни один пузырь воздуха не сможет попасть внутрь сосуда.

Это простое автоматическое устройство для поддержания постоянной скорости истечения является в то же время исключительно надежным, безотказным в работе именно благодаря своей простоте.

Рис. 5.3. При истечении воды воздух входит в сосуд через трубку.

-

6. Гидравлический удар. На рис. 6.1 показана модель водопровода. Из поднятого на некоторую высоту hрезервуара, играющего роль водонапорной башни, выходит магистральная труба постоянного сечения Sи длины l. Эта труба заканчивается узкой загнутой вверх трубкой сечения S_1 с краном, при открывании которого из трубки бьет фонтан. С какой скоростью бьет вода из фонтана и на какую максимальную высоту она поднимается? С какой скоростью движется вода в магистральной трубе и каково там давление? Какое давление будет в магистральной трубе при мгновенном перекрывании крана? Как будет зависеть от времени давление в том случае, когда кран закрывается постепенно в течение промежутка времени т?

При решении этой задачи будем считать воду идеальной жидкостью, т. е. будем пренебрегать ее вязкостью. В этом случае полная механическая энергия жидкости сохраняется,

Рис. 6.1. В этой модели водопровода полная длина магистральной трубы равна *l*.

и для описания ее движения можно использовать уравнение Бернулли, которое и выражает закон сохранения энергии для движущейся идеальной жидкости. При стационарном течении это уравнение имеет вид

$$p + \rho gh + \frac{1}{2}\rho v^2 = \text{const}, \qquad (1)$$

где p — давление, которое показывает неподвижный относительно жидкости манометр, ρ — плотность жидкости, v — скорость жидкости в данной точке и h — высота этой точки над некоторым уровнем. Уравнение (1) говорит о том, что сумма трех слагаемых в левой части имеет одно и то же значение независимо от того, в какой точке она вычисляется. Для удобства мы в дальнейшем не будем явно выписывать одинаковое во всех точках атмосферное давление p_0 , понимая под p в (1) превышение давления в жидкости над атмосферным.

Предположим, что кран открыт и установилось стационарное течение жидкости. Изменением уровня воды в резервуаре будем пренебрегать, считая его объем достаточно большим. Тогда уравнение Бернулли (1) позволяет ответить на все относящиеся к этому случаю вопросы. Скорость струи v_1 , бьющей из фонтанчика, определяется только высотой уровня воды h в резервуаре над отверстием трубки:

$$v_1 = \sqrt{2gh}.$$
 (2)

Это известная формула Торричелли, которая может быть получена как непосредственно из закона сохранения энергии, так и из уравнения Бернулли, если приравнять левые части (1), записанные для точки A на уровне воды в резервуаре, где скорость практически равна нулю, и для точки B, находящейся в отверстии трубки:

$$\rho g h = \frac{1}{2} \rho v_1^2.$$

Вылетающие из отверстия со скоростью $v_i = \sqrt{2gh}$ частицы воды могут подняться до уровня воды в резервуаре, если в отверстии трубки их скорость направлена вертикально вверх.

Скорость движения воды v в магистральной трубе легко найти, учитывая несжимаемость жидкости и используя уравнение неразрывности:

$$Sv = S_1 v_1, \tag{3}$$

откуда с учетом (2) имеем

$$v = v_1 \frac{S_1}{S} = \sqrt{2gh} \frac{S_1}{S}.$$
 (4)

Если S₁ \ll S, то скорость воды в магистральной трубе много

меньше скорости струи, бьющей из отверстия. Отметим, что скорость ѝ одинакова в любом месте магистральной трубы, как непосредственно перед краном, так и в начале трубы сразу после резервуара. А вот давление *р* воды в магистральной трубе будет разным на разной высоте. Так как скорость воды в трубе уже известна, то найти величину давления можно с помощью уравнения Бернулли.

Возьмем произвольную точку С в трубе, находящуюся на высоте *H*. Тогда, приравнивая левые части (1) для точек С и *A*, получим

$$p + \rho g H + \frac{1}{2} \rho v^2 = \rho g h.$$
⁽⁵⁾

Отсюда для давления воды р на высоте Н имеем

$$p = \rho g (h - H) - \frac{1}{2} \rho v^2.$$
 (6)

Из формулы (6) видно, что давление воды в трубе меньше гидростатического, т. е. того, которое было бы при закрытом кране, на величину $\rho v^2/2$. Чем больше скорость воды в магистральной трубе, тем меньше в ней давление. Это отличие давления воды от гидростатического проявляется уже в самом начале трубы, там, где она выходит из резервуара: скорость воды в этом месте скачком возрастает от нуля, а давление также скачком падает.

Давление воды в магистральной трубе перед краном, там, где H=0,

$$p = \rho g h \left(1 - \frac{S_1^2}{S^2} \right). \tag{7}$$

Это выражение получается из формулы (6) при подстановке в нее значения скорости v из (4). Из формулы (7) видно, что отличие давления p от гидростатического определяется соотношением между площадями сечений магистральной трубы S и отверстия в трубке S_1 . Чем меньше расход воды, тем ближе значение давления к гидростатическому.

Теперь рассмотрим, что происходит в трубе при перекрывании крана. Вначале предположим, что отверстие в кране перекрывается мгновенно. В этом случае происходит так называемый гидравлический удар, при котором давление резко возрастает.

158

Движущаяся по трубе жидкость обладает импульсом. При мгновенном перекрывании крана вода в трубе вынуждена затормозиться. Абсолютно несжимаемая жидкость остановилась бы при этом вся сразу. А это, в свою очередь, привело бы к бесконечно большой силе давления на преграду. Поэтому представление об абсолютно несжимасмой жидкости в таких условиях неприменимо.

Выясним, как происходит торможение жидкости при учете ее сжимаемости. Теперь при внезапном появлении преграды жидкость останавливается постепенно, так что за некоторое время Δt остановится только та ее часть, до которой успеет дойти волна сжатия, распространяющаяся в жидкости от закрытого крана навстречу потоку. Если деформациями стенок трубы при повышении давления можно пренебречь, то волна сжатия распространяется со скоростью. равной скорости звука *и* в воде. Величину силы *F*, действующей на заслонку мгновенно

перекрытого крана, можно рассчитать с помощью закона сохранения импульса. Так как до перекрывания крана вода имела скорость v, то импульс остановившейся за время Δt воды был равен $\rho Su \Delta t v$. Поэтому

$$F \Delta t = \rho S u \Delta t v, \tag{8}$$

откуда для возникающего при гидравлическом ударе дополнительного давления $p_{y\pi} = F/S$ получаем

$$p_{y_A} = \rho u v.$$

Разумеется, в силу закона Паскаля (жидкость-то остановилась!) такое давление действует и на заслонку крана, и на стенки магистральной трубы. Увеличение давления при гидравлическом ударе может во много раз превышать величину ¹/₂ ρv^3 , характеризующую согласно формуле (6) уменьшение давления при стационарном движении жидкости. В самом деле, скорость звука в воде и, равная примерно 1,5 км/с, значительно больше, чем скорость воды в трубе υ, которая обычно не превышает нескольких десятков метров в секунду. Возникшее при мгновенном перекрывании крана давление будет существовать до тех пор, пока распространяющаяся со скоростью звука волна сжатия не достигнет резервуара и от него не придет обратная волна, снимающая сжатие воды в магистральной трубе.

Перейдем к случаю, когда кран перекрывается постепенно, в течение времени т. Теперь добавочное давление гидравлического удара возникает не скачком, а будет нарастать постепенно. Здесь будут получаться разные ре-

Рис. 6.2. При медленном перекрывании крана давление гидравлического удара в магистральной трубе нарастает постепенно. зультаты в зависимости от соотношения между временем т и временем распространения волны сжатия воды по всей длине магистральной трубы.

Рассмотрим сначала бесконечно длинную магистральную трубу, перекрывание которой происходит за время т. Допустим для простоты, что площадь отверстия крана уменьшается так, что давление нарастает со временем по линейному закону (рис. 6.2). К концу промежутка времени т,

когда отверстие в кране окажется полностью перекрытым и скорость воды в трубе обратится в нуль, давление гидравлического удара достигнет максимальной величины, равной тому же самому значению ρuv , до которого давление возрастает скачком при $\tau=0$. Поэтому в промежутке $0 < t < \tau$ давление при гидравлическом ударе будет меняться по закону

$$p_{ya}(t) = \rho u v \frac{t}{\tau}.$$
 (9)

Все это, конечно, справедливо, если расход воды за время τ через закрываемый кран будет значительно меньше объема воды в трубе, останавливающейся за это же время. А расходом воды можно пренебречь при $v \ll u$, в чем легко убедиться с помощью уравнения неразрывности (3).

Убедиться с помощью уравнения неразрывности (3). Выясним теперь, до какой величины будет нарастать давление в трубе конечной длины *l*. Как только кран начинают перекрывать, образующееся у крана повышение давления распространяется против течения жидкости и через время *l/u* достигает резервуара. Здесь давление падает, однако жидкость у крана остается сжатой, пока до нее не дойдет от резервуара обратная волна, снимающая сжатие воды. Эта волна также распространяется со скоростью звука в воде u, и ее фронт достигает крана спустя промежуток времени T=2l/u после начала закрывания крана. Поэтому при $\tau < T$ давление у крана успеет вырасти до максимальной величины ρuv , как и в бесконечной трубе. Если же кран закрывается настолько медленно, что $\tau > T$, то, как видно из формулы (9), максимальное значение давления при гидравлическом ударе меньше ρuv и равно

$$p_{yg} = \rho uv \frac{T}{\tau} = \frac{2\rho v l}{\tau}.$$
 (10)

Резкое повышение давления в трубопроводе при быстром закрывании крана может вызвать разрыв стенок труб или их повреждение. Формула (10) показывает, каким способом можно снизить величину возникающего при гидравлическом ударе давления. Этого можно добиться либо увеличением времени перекрывания τ , либо уменьшением длины трубы l, подверженной ударам. Для этого к магистральному трубопроводу присоединяют ответвления в виде водяных колонн или пневматических резервуаров.

Основы теории гидравлического удара были заложены выдающимся русским ученым Н. Е. Жуковским.

7. Гидравлический таран. В модели водопровода, которая была рассмотрена в предыдущей задаче, магистральная труба в конце перед краном имеет вертикальный отросток в виде тонкой длинной трубки (рис. 7.1). На каком уровне установится вода в этой трубке при закрытом кране и при открытом? Что будет происходить в отростке при закрывании крана на конце магистрали?

Пока кран закрыт, водонапорный резервуар и вертикальный отросток представляют собой просто сообщающиеся сосуды. Поэтому вода в нем установится на том же самом уровне h, что и в резервуаре.

При открытом кране вода в магистральной трубе движется со скоростью *v*, величина которой определяется расходом воды, т. е. тем, насколько открыт кран. Эта скорость может изменяться от нуля до максимального значения, которое определяется формулой (4) предыдущей задачи. Давление *p* в магистральной трубе, как было вы-

6 Е.И. Бутиков и др.

яснено в предыдущей задаче, будет в этом случае меньше гидростатического на величину ½2022:

$$p = \rho g h - \frac{1}{2} \rho v^2. \tag{1}$$

Поскольку нижнее отверстие отростка параллельно линиям тока воды в магистральной трубе, то его можно

Рис. 7.1. При движении воды в магистральной трубе уровень воды в манометрической трубке ниже уровня в резервуаре.

рассматривать как обыкновенную манометрическую трубку, высота столба воды в которой h_1 как раз соответствует давлению p на ее нижнем конце:

$$p = \rho g h_1. \tag{2}$$

Сравнивая соотношения (1) и (2), видим, что при открытом кране уровень воды в тонкой вертикальной трубке расположен ниже уровня воды в резервуаре на величину $\frac{1}{2}\rho v^2$ (рис. 7.1).

Выясним теперь, что будет происходить в отростке при закрывании крана. Как мы видели, в этом случае происходит гидравлический удар и давление воды в магистральной трубе резко повышается. Если считать, что кран перекрывает трубу мгновенно (точнее, время перекрывания τ меньше 2l/u, где l — длина магистральной трубы, а u — скорость звука в воде), то давление подскакивает на величину рию. Это позволяет оценить, на какую высоту h_2 может

подняться уровень воды в тонкой трубке:

$$\rho uv = \rho g h_2, \tag{3}$$

откуда $h_2 = uv/g$. Подчеркнем, что приведенная оценка справедлива только в том случае, когда поперечное сечение отростка много меньше сечения магистральной трубы. При этом расход воды через отросток во время гидравлического

Рис. 7.2. При закрывании крана вода поднимается в верхний бак.

удара будет пренебрежимо мал, и поэтому такое устройство не сможет служить водяной колонной, смягчающей гидравлический удар.

Дополнительное повышение уровня воды на величину h_2 может оказаться весьма значительным, намного превосходящим уровень воды в резервуаре h. Поэтому подобное устройство можно использовать для подачи воды на большую высоту (рис. 7.2). Такой «гидравлический таран» будет работать отдельными импульсами, поднимая каждый раз в верхний бак некоторую порцию воды. Увеличение потенциальной энергии поднимаемой воды происходит здесь за счет кинетической энергии воды в магистральной трубе, которая останавливается при перекрывании крана. Очевидно, что производительность гидравлического тарана тем меньше, чем больше высота, на которую он поднимает воду.

163

8. Установившееся падение в жидкости. Два шара одинакового размера, но разной массы m_1 и m_2 связаны нитью, длина которой много больше их радиусов. При помещении в жидкость система этих шаров тонет. Каково будет натяжение соединяющей шары нити при их установившемся падении в жидкости?

В условии задачи приведено слишком мало данных для того, чтобы полностью описать движение шаров в жидкости. Например, для нахождения скорости установившегося

Рис. 8.1. Силы, действующие на связанные шары при их установившемся движении в жидкости.

падения даже одного шара нужно было бы, кроме массы шара, знать его размер, плотность жидкости и зависимость силы сопротивления от скорости. Тогда, приравняв нулю векторную сумму силы тяжести, архимедовой выталкивающей силы и силы сопротивления жидкости, можно было бы определить скорость установившегося падения. А так единственное, что можно сказать, это то, что скорость установившегося падения тяжелого шара будет больше, чем легкого. Тем более мы не можем здесь определить скорость падения связанных шаров, так как в условии заданы только их массы.

Но вот определить силу натяжения связывающей шары нити оказывается возможным. Казалось бы, и здесь не обойтись без знания силы сопротивления, но все дело в том, что при совместном движении этих связанных шаров с оди-

наковой скоростью действующие на них силы сопротивления одинаковы. Для того чтобы такое установление скорости падения действительно произошло, нужно лишь, чтобы сила сопротивления росла с увеличением скорости, причем безразлично, по какому именно закону — линейно, квадратично и т. п. Совершенно ясно, что при любых начальных условиях соединяющая шары нить после установления движения расположится вертикально, так что более тяжелый шар окажется внизу. Поэтому действующие на шары силы натяжения нити T, как и силы тяжести m_1g и m_2g , выталкивающие силы F_A и силы сопротивления F_c , направлены по вертикали (рис. 8.1). Условие равномерного движения нижнего шара имеет вид

$$m_1 g - T - F_A - F_c = 0. \tag{1}$$

Аналогично для верхнего шара

$$m_2 g + T - F_A - F_c = 0. (2)$$

Вычитая уравнение (2) из уравнения (1), получаем

$$T = \frac{1}{2} (m_1 - m_2) g.$$
 (3)

Легко сообразить, что сила натяжения нити будет такой же и при установившемся процессе всплывания, если связанные шары легче воды.

9. Торможение в вязкой жидкости. Двигатель корабля была остановлен в тот момент, когда скорость корабля была равна v_0 . Какой путь и за какое время пройдет корабль до полной остановки, если эффективная масса корабля (включающая присоединенную массу, см. задачу 2 раздела II) равна *m*, а сила сопротивления пропорциональна скорости: F = -kv?

Сила сопротивления при движении твердого тела в жидкости пропорциональна скорости тела в том случае, когда сопротивление движению обусловлено главным образом вязкостью жидкости. Это имеет место при сравнительно небольших скоростях тела относительно жидкости. Коэффициент пропорциональности *k* между силой сопротивления и скоростью в этом случае зависит от формы тела и пропорционален вязкости жидкости и линейным размерам тела в направлении движения. В данной задаче коэффициент *k* является заданной величиной.

Мы рассматриваем движение корабля только под действием силы сопротивления. В соответствии со вторым законом Ньютона имеем

$$na = -kv. \tag{1}$$

Рассматривая это движение за достаточно малый промежуток времени Δt , можно представить скорость и ускорение

Рис. 9.1. Зависимость скорости корабля от его положения.

изменением его положения жуток времени:

корабля в виде отношений
$$v = \Delta x / \Delta t$$
, $a = \Delta v / \Delta t$. Тогда уравнение (1) можно пере-
писать в виде

$$m\frac{\Delta v}{\Delta t} = -k\frac{\Delta x}{\Delta t}.$$
 (2)

Сокращая обе части равенст t x ва (2) на одну и ту же велить скорости чину Δt , получаем соотношение, связывающее изменение скорости корабля Δv с положения Δx за тот же самый проме-

$$\Delta v = -\frac{k}{m} \Delta x. \tag{3}$$

Поскольку k/m есть постоянная величина (она не зависит ни от положения корабля, ни от времени), то соотношение (3) справедливо не только для малых промежутков времени Δt , но и для любых больших промежутков. Поэтому зависимость скорости корабля v от его положения, характеризуемого координатой x, выражается линейной функцией

$$v(x) = v_0 - \frac{k}{m} x. \tag{4}$$

Она показана на рис. 9.1. В начальный момент, когда x=0, скорость корабля равна v_0 . Когда корабль пройдет весь путь l до остановки, его скорость обратится в нуль. Величину l можно найти, полагая в (4) v=0:

$$l = -\frac{m}{k} v_0. \tag{5}$$

А как меняется скорость корабля с течением времени? На этот вопрос можно ответить, если в уравнение второго закона Ньютона (1) подставить ускорение а как производ-

ную скорости по времени:

$$m\frac{dv}{dt} = -kv. \tag{6}$$

Это дифференциальное уравнение для функции v(t), согласно которому производная dv/dt пропорциональна самой

Рис. 9.2. Скорость корабля как функция времени.

функции. Решение такого уравнения представляет собой экспоненциальную функцию

$$v(t) = C \exp\left(-\frac{k}{m}t\right). \tag{7}$$

Постоянная C равна значению скорости в начальный момент при t=0. Поэтому

$$v(t) = v_0 \exp\left(-\frac{k}{m}t\right). \tag{8}$$

График этой функции показан на рис. 9.2. Скорость корабля убывает сначала быстро, а затем все медленнее и медленнее, асимптотически приближаясь к значению v=0. Строго говоря, скорость обратится в нуль только спустя бесконечно большой промежуток времени. Однако почти вся эта «бесконечность» приходится на «дотягивание» скорости до нуля. Основное ее изменение происходит за конечный промежуток времени. Такие экспоненциально затухающие процессы, которые формально продолжаются бесконечно долго, часто встречаются в физике. Например, по такому закону происходит явление радиоактивного распада.

Эффективную длительность процесса экспоненциального затухания принято характеризовать временем, в течение которого затухающая величина уменьшается в определенное

.

число раз, например в два раза (период полураспада). Обычно в физике вводят время τ , в течение которого происходит уменьшение затухающей величины в *е* раз. Именно это время τ условно называют длительностью процесса. В этом смысле время движения корабля τ , как видно из формулы (8), равно m/k. Для его нахождения нужно просто приравнять показатель экспоненты минус единице.

Рис. 9.3. Координата корабля как функция времени.

Зависимость положения корабля от времени x(t)можно найти из соотношения (4), если подставить в него скорость как функцию времени из формулы (8). Учитывая, что согласно (5) $mv_0/k=l$, получим

$$x(t) =$$

$$=l\left[1-\exp\left(-\frac{k}{m}t\right)\right].$$
 (9)

График этой функции показан на рис. 9.3. Хотя движение корабля и происходит бесконечно долго,

пройденный им путь *l* оказывается конечным. Основную часть этого пути корабль проходит за время т.

В этой задаче был рассмотрен пример, когда движение происходило только под действием силы сопротивления. Иногда приходится рассматривать случаи, когда кроме силы сопротивления действуют и другие силы. Например, можно решать задачу о разгоне корабля под действием постоянной силы тяги гребных винтов при учете сопротивления воды. При этом время разгона корабля формально будет бесконечным. Однако для моментов времени $t \gg \tau$ можно считать, что процесс разгона корабля закончился и он движется с постоянной скоростью v_{∞} , величина которой определяется из условия равенства силы тяги и силы сопротивления. Но длительность разгона τ не зависит от величины силы тяги и определяется теми же параметрами m и k, что и в разобранном примере: $\tau = m/k$. Физические свойства систем, состоящих из большого числа частиц (атомов и молекул), составляют предмет изучения молекулярной физики и термодинамики. Любая макроскопическая система содержит огромное число частиц. Например, всего 1 см³ воздуха при нормальных условиях содержит 2,7·10¹⁹ молекул. Поэтому совершенно очевидно, что применение законов динамики для нахождения микроскопических характеристик такой системы, т. е. координат и скоростей всех молекул, совершенно бесперспективно. Но такая детальная информация о рассматриваемой системе нам и не нужна.

Для ответа на очень многие вопросы достаточно знать не поведение отдельных молекул, а только макроскопические параметры, характеризующие состояние всей системы. Такими параметрами являются, например, объем системы, ее масса, полная энергия. Если система находится в состоянии равновесия, то она характеризуется еще и такими параметрами, как давление и температура. Значение макроскопических параметров определяется не поведением отдельных молекул, а средним результатом, к которому приводит их совокупное движение, т. е. средними значениями микроскопических параметров.

Задача молекулярно-кинетической теории (статистической механики) состоит в том, чтобы установить связь макроскопических параметров системы со средними значениями микроскопических величин и дать способ вычисления этих средних значений на основе законов движения отдельных частиц. Так, например, для одного моля идеального газа молекулярно-кинетическая теория устанавливает связь между величиной произведения двух макроскопических параметров газа — давления p и молярного объема V_{μ} — и средним значением $\langle E \rangle$ микроскопического теплового

движения одной молекулы:

$$pV_{\mu} = \frac{2}{3} \langle E \rangle N_A, \tag{1}$$

где N_A — число Авогадро.

Исторически сложился и другой подход к изучению систем, состоящих из большого числа частиц, в котором установление связей между различными макроскопическими параметрами производится опытным путем. Например, для одного моля идеального газа на опыте установлена следующая связь между тремя макроскопическими параметрами — давлением, молярным объемом и абсолютной температурой газа:

$$pV_{\mu} = RT \tag{2}$$

(R — универсальная газовая постоянная). Такой эмпирический подход характерен для термодинамики.

В основе термодинамики лежат несколько установленных на опыте фундаментальных физических законов. Первый закон термодинамики представляет собой обобщенный закон сохранения энергии: энергия макроскопической системы может быть изменена как в результате работы внешних сил, так и при сообщении тепла. Если считать механическую энергию системы неизменной, то первый закон термодинамики утверждает, что изменение внутренней энергии системы ΔU при переходе из одного состояния в другое равно сумме работы внешних сил $\Delta A'$ и количества переданного тепла ΔQ :

$$\Delta U = \Delta A' + \Delta Q. \tag{3}$$

Второй закон термодинамики связан с необратимостью реальных процессов в макроскопических системах и указывает направление возможных энергетических превращений.

В рамках термодинамики невозможно вскрыть глубокий физический смысл макроскопических параметров системы, т. е. их связь со средними значениями микроскопических параметров. Однако именно благодаря этому обстоятельству основные законы термодинамики, установленные на опыте, отличаются большой общностью и применимы ко всем макроскопическим системам независимо от особенностей их внутренней структуры.

170

Наиболее полные представления о свойствах систем большого числа частиц дает совместное использование термодинамики и статистической механики. Например, сравнение формул (1) и (2) дает возможность установить физический смысл макроскопического параметра — термодинамической температуры *T*:

$$\langle E \rangle = \frac{3}{2} kT, \qquad k = \frac{R}{N_A},$$

а также получить удобное выражение для давления идеального газа

$$p = nkT, \quad n = \frac{N_A}{V_{\mu}}.$$

Таким образом, давление идеального газа определяется средним числом частиц в единице объема *n* и абсолютной температурой.

Для многих задач первый закон термодинамики удобно записать в несколько отличной от выражения (3) форме:

$$\Delta Q = \Delta U + \Delta A$$

— сообщенное системе количество тепла ΔQ равно сумме изменения внутренней энергии ΔU и работы ΔA , совершенной системой (ΔA — работа, которую совершают силы, приложенные со стороны рассматриваемой системы к внешним телам). Исторически первый закон термодинамики был впервые сформулирован именно в таком виде.

1. Испорченный ртутный барометр. В трубку ртутного барометра попал пузырек воздуха. В результате при некотором атмосферном давлении p_0 и температуре T_0 высота столба ртути в трубке уменьшилась и стала равной H_1 . Чему равно атмосферное давление, если при температуре T высота столба ртути оказалась равной H? Трубка имеет правильную цилиндрическую форму, и расстояние от уровня ртути в чашке до запаянного конца трубки равно L.

В неиспорченном ртутном барометре в запаянной трубке над ртутью в «торричеллиевой пустоте» воздуха нет, а есть только насыщенные пары ртути, давление которых при обычных температурах пренебрежимо мало. Поэтому его не принимают во внимание при измерениях атмосферного давления. Иное дело, если в барометр попадает пузырек

Рис. 1.1. Атмосферное давление равно сумме давления воздуха в трубке и гидростатического давления ртутного столба. воздуха. Давление воздуха в трубке уже нельзя не учитывать. Но это вовсе значит. что такой барометр не не пригоден для измерения атмосферного давления. Достаточно один раз измерить высоту столба ртути в нем при атмосферном давлении известных и температуре, чтобы получить формулу для определения истинного атмосферного давления по его показаниям.

Если при атмосферном давлении p_0 высота ртутного столба равна H_1 (рис. 1.1), то величина p_0 равна сумме давления воздуха в трубке над ртутью p_1 и гидростатического давления столба ртути высотой H_1 . Если измерять давление воздуха, как и гидростатическое давление, прямо в миллиметрах ртутного столба, то

$$p_0 = p_1 + H_i.$$
 (1)

Точно такое же соотношение можно написать и для измеряемого атмосферного давления $p_{aтм}$ в случае, когда показание испорченного барометра равно *H*:

$$p_{atm} = p + H, \tag{2}$$

где *р* — давление воздуха в трубке над ртутным столбом высотой *H*. Теперь, считая воздух в трубке идеальным газом, можно воспользоваться уравнением его состояния. Так как масса попавшего в трубку воздуха в дальнейшем уже не меняется, а сечение трубки одинаково по всей ее длине, то

$$\frac{p_1(L-H_1)}{T_1} = \frac{p(L-H)}{T}.$$
 (3)

Подставляя в соотношение (3) значение p_1 из уравнения (1), находим

$$p = (p_0 - H_1) \frac{L - H_1}{L - H} \frac{T}{T_1}.$$
 (4)

Формула (4) дает поправку, которую, как видно из уравнения (2), нужно прибавить к показаниям барометра H, чтобы получить истинное значение атмосферного давлення $p_{\text{атм}}$. Формулу для расчета $p_{\text{атм}}$ удобно записать в виде

$$p_{atm} = H + \frac{T}{L - H} C, \tag{5}$$

где

$$C = (p_0 - H_1) \frac{L - H_1}{T_1}.$$
 (6)

Числовое значение постоянной С может быть раз и навсегда вычислено заранее. Прибором можно пользоваться, только теперь для нахождения атмосферного давления нужен еще и термометр.

2. Вакуумный насос. Имеется сосуд объемом V и поршневой насос с объемом камеры V' (рис. 2.1). Сколько качаний нужно сделать, чтобы давление в сосуде уменьшилось от p до p'? Атмосферное давление p_0 . Изменением температуры пренебречь.

Мы, естественно, считаем, что начальное давление p не превосходит наружного давления p_0 , иначе можно сначала просто выпустить излишек газа.

Эту задачу можно решить, используя закон Бойля — Мариотта, хотя в процессе откачки масса газа в сосуде

Рис. 2.1. Схема поршневого вакуумного насоса.

изменяется. Действительно, рассмотрим первый ход поршня влево; при этом клапан А закрыт, клапан В открыт и газ из сосуда входит в камеру насоса. Давление газа уменьшается от первоначального значения до некоторого p_1 . Поскольку процесс изотермический и масса газа при этом не меняется, можно воспользоваться законом Бойля — Мариотта

$$pV = p_1(V + V').$$
 (1)

При обратном ходе поршня клапан B закрывается, и воздух из камеры насоса выталкивается наружу через клапан A. При втором ходе поршня влево все повторяется точно так же, только давление в начале хода в сосуде равно p_i . Обозначив давление в конце второго хода через p_2 , имеем

$$p_1V = p_2(V + V').$$

Подставив сюда рі из уравнения (1), находим

$$\boldsymbol{p}_{2} = p \left(\frac{V}{V+V'} \right)^{2}.$$

Рассуждая дальше таким же образом, нетрудно убедиться, что после n ходов поршня давление p_n в сосуде будет равно

$$p_n = p \left(\frac{V}{V+V'}\right)^n. \tag{2}$$

По формуле (2) определяется число качаний n, необходимое для того, чтобы понизить давление в сосуде до значения $p_n = p'$:

$$n = \frac{\lg (p'/p)}{\lg [V/(V+V')]}.$$

Интересно построить график зависимости давления в сосуде от числа качаний *n*. Это есть график показательной функции с основанием V/(V+V') < 1 (рис. 2.2). Обратите внимание, что давление с каждым шагом уменьшается на все меньшую и меньшую величину. Подумайте, как поступить, если требуемое конечное давление p' не совпадает ни с одним значением p_n , определяемым формулой (2).

Согласно формуле (2) по мере откачки давление воздуха в сосуде убывает и при достаточно большом числе качаний *п* может быть сделано сколь угодно малым. Однако в действительности ни один насос не может откачать воздух из сосуда полностью, так, чтобы давление в нем обратилссь в нуль. Для каждого насоса существует некоторое минимальное давление p_{\min} , ниже которого он не может дать разрежение. Причина этого — существование вредных про-странств, неидеальная работа клапанов и т. п. Например, когда поршень насоса движется вправо, выталкивая воздух из камеры в атмосферу, между поршнем и клапаном неиз-бежно остается пусть даже очень маленький, но конечный объем ΔV . Поэтому не весь воздух из камеры будет вытолк-

нут в атмосферу. Это и замедляет откачку и в конце концов приводит к тому, что при некотором давлении в сосуде насос вообще начинает работать вхолостую. Действительно, при давлении в сосуде p_{\min} воздух, сжатый от первоначального объема камеры V' до объема ΔV , будет иметь давление не выше атмосферного ро и не сможет выйти наружу. Итак, для определения предельного давления, обуслов-

Рис. 2.2. Зависимость лавления откачиваемом сосуде OT качанни насоса.

ленного существованием вредного пространства, можно написать следующее условие:

$$p_{\min}V' = p_{\theta} \Delta V, \qquad (3)$$

откуда $p_{\min} = p_0 \Delta V/V'$. Для получения больших разрежений обычно используют несколько насосов, соединенных последовательно. Насос каждой последующей ступени откачивает воздух не в атмосферу, а в объем, из которого воздух откачивается насосом предыдущей ступени.

3. Колебания поршня. Расположенный горизонтально цилиндрический сосуд, заполненный идеальным газом, разделен поршнем, который может двигаться без трения. В равновесии поршень находится посредине цилиндра. При малых смещениях из положения равновесия поршень совершает колебания. Найти зависимость частоты этих колебаний от температуры, считая процесс изотермическим.

В положении равновесия давление р на поршень слева и справа одинаково. Поскольку объем газа слева и справа одинаков, а температура T постоянна, из уравнения Мен-делеева — Клапейрона

Рис. 3.1. Изменение давления при смещении поршня из равновесного положения,

$$pV = vRT$$
 (1)

следует, что количество газа v одинаково по обе стороны от поршня. Отметим, что химический состав газов может быть различным.

Пусть поршень сместился из положения равновесия, на-

пример влево, на малую величину x, так что Sx «V, где S — площадь поршня (рис. 3.1). Поскольку температура по условию не меняется, то

$$(p+\Delta p_1)(V-Sx) = (p-\Delta p_2)(V+Sx).$$

Раскрыв скобки и приведя подобные члены, получим

$$(\Delta p_1 + \Delta p_2)V - (\Delta p_1 - \Delta p_2)Sx = 2pSx.$$

Второе слагаемое слева много меньше первого не только потому, что Sx <к, но и вследствие того, что множителем при V стоит сумма двух близких величин Δp_1 и Δp_2 , а множителем при Šx — их разность. Пренебрегая вторым слагаемым, получаем

$$\Delta p_1 + \Delta p_2 = \frac{2pS}{V}x.$$

Результирующая сила, действующая на поршень, равна

$$F = -\frac{2pS^2}{V}x.$$

Знак минус означает, что сила направлена в сторону, противоположную направлению смещения поршня, т. е. к положению равновесия. Под действием силы, пропорциональной смещению, поршень массой М будет совершать гармонические колебания с частотой ω, определяемой соотношением

$$\omega^2 = \frac{2\rho S^2}{VM}.$$
 (2)

При решении задачи мы молчаливо предполагали, что масса газа много меньше массы поршня, так что кинетической энергией макроскопического движения газа при колебаниях поршня можно пренебречь по сравнению с кинетической энергией поршня. Подумайте, где использовано это условие.

Выразив р из уравнения Менделеева — Клапейрона (1), получим

$$\omega^2 = \frac{2\nu R S^2}{M V^2} T. \tag{3}$$

Таким образом, частота колебаний поршия пропорциональна $V\overline{T}$, ибо коэффициент при T в формуле (3) не зависит от температуры, если пренебречь тепловым расширением сосуда.

Подумайте теперь, какие условия должны выполняться, чтобы процесс действительно был изотермическим. Для того чтобы температура газа в процессе колебаний не изменялась, необходим хороший тепловой контакт с большим тепловым резервуаром — термостатом, имеющим постоянную температуру. Что значит хороший тепловой контакт? Это значит, что время установления теплового равновесия между газом в сосуде и термостатом должно быть много меньше периода колебаний поршня. Тогда можно считать, что газ в каждый момент имеет ту же температуру, что и термостат. Если, наоборот, период колебаний окажется много меньше времени установления теплового равновесия между газом и термостатом, то можно считать, что колебания поршня происходят практически без обмена теплом с термостатом. В этом случае процесс можно считать адиабатическим, несмотря на отсутствие тепловой изоляции сосуда с поршнем. Оказывается, что зависимость частоты колебаний от температуры при этом будет такой же, как и в изотермическом случае, только коэффициент в формуле (3) умножится на число, большее единицы. Увеличение частоты колебаний при адиабатическом процессе можно объяснить, сравнивая p-V-диаграммы изотермического и адиабатического процессов идеального газа.

178 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Отметим, что приведенное решение в обоих случаях имеет смысл, только если время установления теплового равновесия в самом газе много меньше периода колебаний поршня, так как в противном случае вообще теряют смысл такие равновесные макроскопические характеристики газа, как давление и температура. Другими словами, по отношению к самому газу процесс должен быть квазистатическим.

4. Поршень в закрытом цилиндре. В вертикальном закрытом цилиндре имеется поршень, который может перемещаться без трення (рис. 4.1). По обе стороны от поршня находятся одинаковые массы одного и того же газа. При температуре T, одинаковой во всем цилиндре, объем верхней части в n раз больше, чем объем нижней. Каким будет отношение этих объемов, если повысить температуру до значения T'?

На примере этой задачи можно увидеть, как важно уметь выразить в виде уравнений те условия, при которых

Рис. 4.1. По обе стороны подвижного поршия — одинаковое количество одного и того же газа. происходит описанный в задаче процесс, но которые не указаны явно в условии задачи.

Первый вопрос, который возникает, — пужно ли учитывать вес поршия, о котором ничего не сказано в условии. Если бы масса поршия равиялась ну-

, лю, то при любой температуре поршень в равновесии располагался бы посредине, чтобы давление газа на него с обеих сторон было одинаковым. Поэтому, если n=1, то масса поршня равна нулю и отношение объемов, равное единице, не изменяется при изменении температуры.

При *n*>1 масса поршня не равна нулю. В этом случае в равновесии действующая на поршень сила тяжести уравновешивается силами давления газа снизу и сверху. Поэтому разность давлений газа в нижней и в верхней частях цилиндра имеет одно и то же значение при любой температуре. Таким образом, мы приходим к первому уравнению, отражающему условие механического равновесия поршия в начальном и конечном состояниях. Обозначая давление газа над и под поршнем при температуре T через p_1 и p_2 , а при температуре T' — через p'_1 и p'_2 , имеем

$$p_2 - p_1 = p'_2 - p'_1.$$
 (1)

Еще одно уравнение получается из того условия, что при любом положении поршня полный объем цилиндра, занимаемый газами, имеет одно и то же значение, так как тепловым расширением стенок, конечно, можно пренебречь:

$$V_1 + V_2 = V_1' + V_2', \tag{2}$$

где V_1 и V_2 — объемы верхней и нижней частей цилиндра при температуре T, а V'_1 и V'_2 — при температуре T'.

Подчеркнем еще раз, что уравнения (1) и (2) описывают те условия, которые не оговорены в задаче явно, но которые обязательно нужно учитывать при ее решении.

не условия, которые не отоворсны в задаче явно, но которые обязательно нужно учитывать при ее решении. К уравнениям (1) и (2) следует еще добавить уравнения состояния газа по обе стороны поршня. Так как и в начальном, и в конечном состояниях количество газа в обенх частях сосуда одинаково и газ имеет одинаковую температуру, то

$$p_1 V_1 = p_2 V_2, (3)$$

$$p_1' V_1' = p_2' V_2'. \tag{4}$$

По условию задачи отношение $V_1/V_2 = n$. Поэтому удобно ввести величину *x*, равную отношению объемов в конечном состоянии: $x = V'_1/V'_2$. Теперь с помощью уравнений (3) и (4) получаем

$$\frac{p_2}{p_1} = n, \quad \frac{p_2}{p_1} = x.$$
 (5)

Используя обозначения для величин n и x и соотношения (5), перепишем уравнения (1) и (2) в таком виде, чтобы они содержали только те величины, которые относятся к газу над поршнем:

$$p_1(n-1) = p'_1(x-1),$$
 (6)

$$V_{i}\left(1+\frac{1}{n}\right)=V_{i}\left(1+\frac{1}{x}\right).$$
(7)

Теперь нетрудно сообразить, что для дальнейшего решения целесообразно перемножить почленно уравнения (6) и (7):

$$p_{i}V_{1}(n-1)\left(1+\frac{1}{n}\right) = p_{i}'V_{1}'(x-1)\left(1+\frac{1}{x}\right).$$
 (8)

Действительно, фигурирующие в уравнении (8) произведения давления газа на его объем выражаются с помощью уравнения состояния через его температуру:

$$\frac{p_1 V_1}{T} = \frac{p_1' V_1'}{T'}.$$
(9)

Поэтому уравнение (8) можно переписать в виде

1

$$\frac{T}{T'}\frac{n^2-1}{n} = \frac{x^2-1}{x}.$$
 (10)

В левой части этого уравнения стоят величины, заданные в условии задачи, т. е. мы получили квадратное уравиение относительно искомой величины x. Даже не решая этого уравнения, можно увидеть, что оно правильно описывает очевидные предельные случаи. При n=1, что соответствует невесомому поршню, из (10) получается x=1, как и должно быть. При произвольном n>1 и при $T'\to\infty$ величина $x\to1$: при очень высокой температуре давления газов в обеих частях цилиндра настолько велики, что, песмотря на действующую на поршень силу тяжести, объемы газов над и под поршнем практически одинаковы.

Можно убедиться, что физический смысл имеет только один из корней уравнения (10), так как второй получается отрицательным:

$$x = a + \sqrt{a^2 + 1}$$
, где $a = \frac{T}{T'} \frac{n^2 - 1}{2n}$.

Кстати, с чем связано появление лишнего отрицательного корня?

5. Число молекул в атмосфере. Оценить число молекул воздуха в земной атмосфере.

В условии задачи нет никаких данных. Следовательно, подразумевается, что число молекул воздуха в атмосфере нужно выразить через значения каких-то хорошо известных характеристик атмосферы. Что же нам известно о земной
атмосфере? Прежде всего давление воздуха вблизи поверхности Земли на уровне моря, равное в среднем 76 см. рт. ст. Практически вся атмосфера состоит из молекул азота и кислорода, причем средняя молярная масса воздуха $\mu = 0,029$ кг/моль, поэтому, если бы мы знали массу атмосферы, то легко могли бы определить число молекул в ней.

А как оценить массу атмосферы? «Снизу» атмосфера ограничена поверхностью Земли, средний раднус которой равен 6400 км. Что можно считать «верхней» границей атмосферы? Давление воздуха убывает с высотой и, например, на высоте Эльбруса (5,6 км) составляет лишь половину давления на уровне моря, т. е. концентрация молекул уже в два раза меньше. Отсюда, конечно, не следует делать вывод, что на вдвое большей высоте молекул воздуха нет вовсе. Как известно, современные самолеты, использующие подъемную силу крыла, могут летать на высоте 30 км. Значит, там еще достаточно воздуха. Но вот спутник, летающий на высоте немногим более 200 км, практически не испытывает сопротивления воздуха, т. е. вся масса атмосферы сосредоточена ниже.

Посмотрим, как меняется величина ускорения свободного падения g в зависимости от высоты в пределах атмосферы:

$$g(h) = \frac{\gamma M_3}{(R+h)^2} = \frac{g}{(1+h/R)^2} \approx g\left(1 - \frac{2h}{R}\right),$$

$$g \equiv g(0).$$
(1)

В этой формуле M_3 — масса Земли, γ — гравитационная постоянная.

Поскольку высота атмосферы, как мы выяснили, составляет несколько десятков километров, что много меньше радиуса Земли R, то изменение g на протяжении атмосферы, как видно из (1), не превосходит 2%, и при оценках величину ускорения свободного падения можно считать постоянной. Поэтому давление воздуха p_0 на уровне моря численно равно весу столба воздуха с единичным основанием: G=Mg, где M — масса воздуха в этом столбе.

Полную массу атмосферы M_0 получим, умножив M на площадь поверхности Земли $S=4\pi R^2$:

$$M_0 = \frac{G}{g} 4\pi R^2.$$

Разделив M_0 на среднюю молярную массу воздуха μ , получаем число молей, содержащихся в земной атмосфере, и тогда полное число молекул N равно

$$N = \frac{M_0}{\mu} N_A = \frac{4\pi R^2 \rho_0}{\mu g} N_A.$$
 (2)

Выразив все входящие в формулу (2) величины в какойлибо одной системе единиц, получим $N \approx 10^{44}$.

Итак, чтобы подсчитать число молекул воздуха в земной атмосфере, достаточно знать лишь давление воздуха на уровне моря, молярную массу воздуха, раднус Земли и ускорение свободного падения g у ее поверхности. В ответ не входит высота атмосферы, важно лишь, чтобы она была мала по сравнению с раднусом Земли. Совершенно несущественной оказалась величина температуры воздуха и ее распределение в земной атмосфере.

При решении этой задачи мы воспользовались тем, что толщина атмосферы мала по сравнению с радиусом Земли. Этот факт хорошо известен, но остается вопрос, почему это так, почему земная атмосфера устроена именно таким образом? Чтобы ответить на этот вопрос, нужно знать, как концентрация молекул воздуха зависит от высоты.

Распределение молекул воздуха по высоте легко найти. если предположить, что атмосфера находится в состоянии теплового равновесия, т. е. температура воздуха Т в ней всюду одинакова. Так как давление газа р связано с его концентрацией n соотношением p = nkT, то при постоянной температуре зависимость концентрации и давления OT высоты одинакова. Поэтому можно искать зависимость давления воздуха от высоты. Выделим мысленио горизонтальный слой воздуха на высоте h с площадью основания S, толщина которого Δh мала настолько, чтобы плотность воздуха о в пределах этого слоя можно было считать постоянной. В то же время толщина выделенного слоя должна быть такой, чтобы внутри этого слоя было достаточно много молекул и можно было бы говорить о производимом ими давлении. К этому слою воздуха можно применить условие механического равновесия, считая, что действующая на него сила тяжести уравновешивается силами давления на верхнее и нижнее основания со стороны соседних слоев (рис. 5.1). Если обозначить давление воздуха на высоте h через p, а на высоте $h + \Delta h$ через $p + \Delta p$, то условие

равновесия запишется в виде

$$pS - (p + \Delta p)S - \rho gS \ \Delta h = 0, \tag{3}$$

откуда

$$\Delta p = -\rho g \ \Delta h. \tag{4}$$

183

Входящую в формулу (4) плотность воздуха о можно выразить через давление с помощью уравнения Менделеева — Клапейрона:

$$\rho = \frac{\mu \rho}{RT}.$$
 (5)

Подставляя ρ из (5) в уравнение (4) и переходя в нем к пределу $\Delta h \rightarrow 0$, получаем дифференциальное уравнение для функции p(h):

$$\frac{dp}{dh} = -\frac{\mu g}{RT} p.$$
 (6)

Мы опять встречаемся с уравнением, в котором производная искомой функции про-

порциональна самой функции. Решением этого уравнения является экспонента

$$p(h) = C \exp\left(-\frac{\mu g}{RT}h\right). \quad (7)$$

Постоянная C определяется из условия, что давление на нулевой высоте h=0 равно нормальному атмосферному давлению p_0 :

$$p(h) = p_0 \exp\left(-\frac{\mu g}{RT}h\right). \quad (8)$$

График этой функции приведен на рис. 5.2.

Подставляя в формулу (8) значения $\mu = 0,029$ кг/моль, $g = 9,8 \text{ м/c}^2$, R = 8,31 Дж/ (моль К), T = 300 K, убеждаемся, что имеющая размерность длины величина $RT/\mu g$ равна

Рис. 5.1. Силы, действующие на мысленно выделенный слой газа в поле тяжести.

184 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

8,8 км. На такой высоте давление убывает в e=2,72 раза. Это означает, что характерный масштаб изменения давления или концентрации с высотой составляет примерно 10 км. На высоте 100 км давление воздуха согласно формуле (8) уже практически равно нулю. Итак, атмосфера Земли — это тоненькая оболочка вокруг земного шара.

Рис. 5.2. Зависимость давления газа от высоты в однородном поле тяжести.

Формула (8) остается справедливой и в том случае, когда газ находится в закрытом сосуде, помещенном в однородное поле тяжести. Действительно, при выводе формулы (8) то обстоятельство, что атмосфера представляет собой газ в открытом сосуде без «крышки» сверху, никак не использовалось. Применяя формулу (8) к газу в закрытом сосуде, следует считать, что p_0 представляет собой давление газа на дно сосуда. Давление же на крышку будет, как видно из (8), меньше, чем p_0 , так что разность сил давления на дно и на крышку цилиндрического сосуда как раз равна весу газа в сосуде.

Подводя итог, можно сказать, что хотя давление газа обусловлено ударами хаотически движущихся молекул, в открытом сосуде (в атмосфере) оно определяется весом столба газа. Поле тяжести в этом случае играет роль той «крышки», которая не дает возможности газу распространиться по всему предоставленному ему объему. 6. Торможение спутника в верхней атмосфере. Решая задачу об изменении параметров орбиты спутника при его торможении в верхних слоях атмосферы, мы не рассматривали самого механизма торможения, поскольку связанная с этим процессом потеря механической энергии была задана в условии задачи. В этом примере мы рассмотрим физическую причину торможения спутника и свяжем величину потери энергии с параметрами атмосферы.

Будем для определенности считать, что спутник движется по круговой орбите на высоте h=200 км, где плотность атмосферы ρ составляет примерно $3 \cdot 10^{-9}$ кг/м³. Оценим величину силы трения, действующей на спутник, площадь поперечного сечения которого S=1 м², а масса $M=10^3$ кг.

Как нужно рассматривать торможение спутника в атмосфере? Следует ли считать, что движение спутника происходит в сплошной среде, или же взаимодействие спутника с атмосферой нужно описывать как результат большого числа отдельных ударов молекул воздуха?

При движении твердого тела в сплошной среде вблизи поверхности тела образуется так называемый пограничный слой, в котором некоторые свойства среды, такие как, например, скорости движения частиц среды, отличаются от свойств вдали от тела, где среда остается невозмущенной. Тело при своем движении увлекает частицы среды, находящиеся в пределах пограничного слоя. Размеры такого пограничного слоя сравнимы с размерами самого тела. Когда справедливо такое представление?

Молекулы среды в своем хаотическом тепловом движении все время сталкиваются друг с другом. Если среднее расстояние, проходимое молекулой между двумя последовательными столкновениями, значительно меньше размеров тела, то можно использовать представление о сплошной среде и говорить об образовании пограничного слоя вблизи движущегося тела.

Если же средняя длина свободного пробега молекул среды превосходит размеры тела, то никакого пограничного слоя не образуется: каждая столкнувшаяся с телом молекула успевает до следующего столкновения с другими молекулами настолько далеко удалиться от тела, что уже больше не испытывает с его стороны никакого влияния. Другими словами, движущееся тело сталкивается с молекулами, которые до этого столкновения еще ничего «не знали» об этом теле, т. е. совершали такое движение, каксе

Рис. 6.1. К оценке средней длины свободного пробега молекул. Молекула *А* заденет молекулу *В* только в том случае, если центр *В* лежит внутри цилиндра радиуса *d*. характерно для равновесного состояния среды в отсутствие движущегося тела. В этом случае торможение тела в среде есть результат ударов отдельных молекул.

Итак, выбор того или иного представления о физическом механизме торможения спутника в атмосфере определяется соотношением между его размерами и средней длиной

свободного пробега молекул воздуха. Оценим среднюю длину свободного пробега. Для простоты будем считать молекулы воздуха шариками с днаметром d. Возьмем произвольную молекулу A и будем считать, что она движется в направлении, указанном стрелкой на рис. 6.1, а все остальные молекулы воздуха неподвижны. Из этого рисунка видно, что рассматриваемая молекула столкнется с другой молекулой B только в том случае, когда центр другой молекулы окажется внутри цилиндра, радиус которого равен диаметру молекулы.

Возъмем длину этого цилиндра равной средней длине свободного пробега λ . Тогда, очевидно, в объеме такого цилиндра в среднем находится только одна молекула воздуха. Поэтому

$$n\pi d^2\lambda \approx 1,$$
 (1)

где y — концентрация, т. е. среднее число молекул в единице объема. Обратим внимание, что средняя длина свободного пробега λ не зависит от скорости молекул, т. е. от температуры, а определяется только размерами молекул и их концентрацией.

Найдем длину свободного пробега молекул воздуха на высоте 200 км, где плотность атмосферы ρ=3·10⁻⁹ кг/м³. Считаем среднюю молярную массу воздуха μ равной

6. ТОРМОЖЕНИЕ СПУТНИКА В ВЕРХНЕЙ АТМОСФЕРЕ 187

0,029 кг/моль, а диаметр молекулы $d \approx 3 \cdot 10^{-10}$ м. Плотность ρ равна произведению концентрации n на массу одной молекулы m, которая связана с молярной массой μ и числом Авогадро N_A соотношением $m = \mu/N_A$. Поэтому с помощью (1) получаем

$$\lambda \approx \frac{1}{\pi d^2 n} = \frac{\mu}{\pi d^2 \rho N_A} \approx 60 \text{ M.}$$
(2)

Длина свободного пробега молекулы воздуха оказалась в таких условиях порядка ста метров. Это во много раз

Рис. 6.2. Распределение молекул по проекции скорости их теплового движения на направление скорости тела.

превосходит размеры спутника, поэтому рассчитывать торможение в такой разреженной атмосфере следует, рассматривая отдельные удары молекул.

Результат огромного числа ударов хаотически движущихся молекул воздуха о поверхность движущегося тела, которые приводят к его торможению, может быть описан путем введения непрерывно действующей на это тело силы трения. Зависимость этой силы от скорости тела будет различной при разных соотношениях между скоростью тела V и средней скоростью хаотического движения молекул воздуха $\langle v \rangle$.

При медленном движении тела через неподвижный воздух, когда $V \ll \langle v \rangle$, при нахожденин этой силы можно рассуждать так же, как и при подсчете давления молекул газа на стенку сосуда. При этом следует учитывать, что молекулы, движущиеся навстречу телу, сталкиваются с ним чаще и при каждом ударе в среднем передают ему больший импульс, чем молекулы, которые догоняют тело. В результате давление воздуха на переднюю стенку тела оказывается больше, чем на заднюю. Аккуратный анализ с учетом распределения молекул по скоростям показывает, что сила трения в этом случае пропорциональна первой степени скорости тела. Если же скорость тела V значительно больше средней скорости теплового движения молекул воздуха, то зависимость силы трения от скорости тела будет совсем иной.

На рис. 6.2 показано распределение молекул воздуха по проекции скорости их теплового движения на выделенное направление — направление движения тела. Ширина этого «колокола» по порядку величины равна средней тепловой скорости молекул $\langle v \rangle$. При $V \gg \langle v \rangle$ точка, изображающая скорость тела, лежит на этом графике далеко за пределами «колокола», т. е. на расстоянии от начала координат, много большем ширины «колокола». Поэтому при расчете дей-

Рис. 6.3. К вычислению импульса, передаваемого молекулами воздуха при столкновении с телом.

ствия воздуха на движущееся с такой большой скоростью тело можно совсем пренебречь тепловым движением молекул воздуха и считать, что тело налетает на неподвижные молекулы. Все взаимодействие с воздухом происходит только на передней поверхности тела.

Для нахождения величины действующей на тело силы удобнее считать, что, наоборот, тело покоится, а на него налетает поток молекул, в котором все молекулы имеют

одинаковую скорость, равную скорости тела V. Если поверхность тела перпендикулярна направлению налетающего потока, то при абсолютно упругом ударе каждая молекула передает телу импульс 2mV (рис. 6.3). Число таких ударов о переднюю поверхность тела площади Sза единицу времени равно числу молекул воздуха, находящихся в цилиндре с площадью основания S и высотой V(рис. 6.3), т. е. nVS. Поэтому полная сила F, действующая на тело, равна

$$F = 2mnV^2S = 2\rho V^2S. \tag{3}$$

Таким образом, при $V \gg \langle v \rangle$ сила сопротивления пропорциональна квадрату скорости тела. При движении спутника по околоземной круговой орбите его скорость составляет приблизительно 8 км/с. Это значительно больше средней тепловой скорости молекул воздуха, которая при температуре T порядка нескольких сот кельвин, характерной для атмосферы на высоте около 200 км, составляет примерно $\langle v \rangle \approx V \, kT/m \lesssim 10^3$ м/с. Поэтому для нахождения силы сопротивления нужно пользоваться формулой (3). Подставляя в нее данные из условия задачи, получаем $F \approx \approx 0.4$ Н. Такая сила сообщает спутнику массой 1 т ускорение $a \approx 4 \cdot 10^{-4}$ м/с².

При получении формулы (3) мы считали, что удар молекул о поверхность спутника абсолютно упругий. Если считать этот удар неупругим, то величина силы торможения будет вдвое меньше. При неупругом ударе форма поверхности спутника не влияет на величину силы, а определяется площадью поперечного сечения S.

ределяется площадью поперечного сечения S. Интересно отметить, что для спутника, имеющего форму шара, величина силы сопротивления не зависит от того, упруго или неупруго сталкиваются с его поверхностью молекулы воздуха.

Полученное выражение для силы сопротивления (3) дает возможность найти относительное уменьшение механической энергии $\Delta E/E$ за один оборот спутника вокруг Земли. Потеря энергии за один оборот ΔE определяется работой силы торможения:

$$\Delta E = -F \, 2\pi \, (R+h), \tag{4}$$

где *R* — радиус Земли. Скорость спутника на круговой орбите высоты *h* определяется соотношением

$$V^2 = \frac{gR^2}{R+h}.$$
 (5)

Поскольку механическая энергия спутника равна

$$E = -\frac{MgR^2}{2(R+h)},\tag{6}$$

то для $\Delta E/E$ получаем

$$\frac{\Delta E}{E} = 8\pi \, \frac{\rho S}{M} \, (R+h). \tag{7}$$

Используя данные задачи, с помощью формулы (7) можно убедиться, что уменьшение энергии, например, на 2% произойдет приблизительно за 40 оборотов вокруг Земли. 7. Газ в сосуде с перегородкой. Сосуд с разреженным газом разделен на две части тонкой перегородкой, в которой имеется отверстие, размер которого мал по сравнению со средней длиной свободного пробега (рис. 7.1). Найти отношение концентрации газа в разных частях сосуда, если в одной из них поддерживается температура T_i , в другой T_2 .

Будем считать, что газ в сосуде идеальный, т. е. его молекулы взаимодействуют между собой только при столкновениях. По условию задачи газ разрежен настолько, что средняя длина свободного пробега молекул между столкновениями много больше размеров отверстия. В этом случае молекулы свободно проходят через отверстие, причем каждая молекула приходит в другую половину сосуда с той же

Рис. 7.1. Молекулы газа могут проходить через отверстие в перегородке сосуда. энергией, которой она обладала до этого. Средняя энергия молекул при тепловом равновесии определяется температурой. Поэтому переход молекул из одной части сосуда в другую должен приводить к выравниванию температур.

Говорить об определенной температуре газа каждой

части сосуда можно только в том случае, когда отверстие в перегородке достаточно маленькое, так что установление теплового равновесия в каждой части сосуда происходит гораздо быстрее, чем выравнивание температур этих частей.

Сколько же молекул проходит в единицу времени через отверстие из одной половины сосуда в другую? Нетрудно сообразить, что среднее число таких молекул N пропорционально концентрации n и средней скорости (v) молекул в той половине сосуда, из которой они переходят, а также площади отверстия S:

$$N = Cn \langle v \rangle S. \tag{1}$$

Для вычисления числового значения безразмерного коэффициента С нужно знать закон распределения молекул по направлениям скорости. Однако для решения этой задачи значение С нам не потребуется. В стационарном состоянии полное число молекул в каждой половине сосуда не меняется со временем. Поэтому среднее число молекул, проходящих через отверстие слева направо и справа налево, должно быть одинаковым. Отсюда с помощью соотношения (1) получаем

$$n_1 \langle v_1 \rangle = n_2 \langle v_2 \rangle. \tag{2}$$

Средние скорости молекул в каждой половине пропорциональны квадратному корню из соответствующей температуры. Поэтому из равенства (2) находим

$$\frac{n_1}{n_2} = \sqrt{\frac{\overline{T_2}}{\overline{T_1}}}.$$
 (3)

В горячей части сосуда концентрация молекул меньше. Однако давление газа там больше, чем в холодной части. Учитывая, что давление выра: жается формулой p=nkT, с помощью равенства (3) получаем для отношения давлени<u>й</u> в разных половинах сосуда

$$\frac{p_1}{p_2} = \sqrt{\frac{\overline{T_1}}{\overline{T_2}}} \cdot - (4)$$

Рассмотренные в этой задаче закономерности, связан-

ные с прохождением молекул газа через отверстие, соединяющее сосуды с разной температурой, позволяют объяснить следующий простой, по очень эффектный опыт. Керамический сосуд с пористыми стенками опускается открытым концом в воду (рис. 7.2). Внутри сосуда находится спираль, при пропускании тока через которую можно. нагревать находящийся в сосуде воздух. При включении спирали температура воздуха повышается, он расширяется к начинает выходить пузырями из находящегося под водой отверстия сосуда. При достижении стационарного состояния, когда подводимое спиралью тепло станет равным теплу, отдаваемому поверхностью сосуда в окружающую среду, в сосуде установится определенная температура. Казалось бы, что при этом выход пузырей воздуха должен

Рис. 7.2. При нагретой спирали из сосуда, непрерывно выходят пузырьки воздуха.

прекратиться. Так бы и произошло, если бы стенки сосуда были непроницаемы для молекул воздуха, например стеклянные или металлические.

Но если стенки сосуда пористые, то пузырьки воздуха будут выходить все время, даже тогда, когда температура воздуха в сосуде перестанет повышаться! В чем же здесь дело?

Температура воздуха внутри пористого сосуда выше, чем снаружи, в атмосфере. Давление же воздуха там и там практически одинаково: внутри сосуда оно больше атмосферного всего на несколько сантиметров водяного столба, что соответствует глубине погружения отверстия сосуда под воду. Через поры в стенках сосуда происходит непрерывный обмен молекулами между воздухом внутри сосуда и в атмосфере, так же как это происходит в сосуде с отверстием в перегородке, рассмотренным в данной задаче. В замкнутом сосуде в стационарном состояный число молекул, проходящих через отверстие в обе стороны, одинаково. В результате, как видно из формулы (3), в частях сосуда устанавливались такие концентрации, что произведение концентрации на корень из абсолютной температуры было один аково: $n\sqrt{T} = \text{const.}$

В рассматриваемом случае одинаковыми по обе стороны пористой перегородки будут давления воздуха. Так как p=nkT, то теперь nT=const. Но это означает, что потоки молекул воздуха через поры в стенках из атмосферы в сосуд и обратно неодинаковы. Какой же из них больше? Так как поток молекул пропорционален произведению $n\sqrt{T}$ в той части, откуда он идет, то при выполнении условия nT=const он будет больше оттуда, где температура ниже. Это и дает объяснение описанному опыту: поток воздуха через поры внутрь сосуда больше, чем наружу. В результате в стационарном состоянии входящий через поры в сосуд избыточный воздух нагревается, расширяется и выходит в виде пузырей через отверстие.

8. Разделение изотопов. Прохождение газа через пористую перегородку при достаточно низком давлении, когда средний диаметр пор мал по сравнению с длиной свободного пробега молекул, может быть использовано для разделения изотопов. Для этого газообразное химическое соединение элемента, содержащего естественную смесь изотопов (например, шестифтористый уран, содержащий молекулы $U^{235}F_6$ и $U^{238}F_6$), пропускается через ячейку, устройство которой показано на рис. 8.1. В газе, прошедшем через пористую перегородку, увеличивается процентное содержание легкого изотопа. Прошедший газ непрерывно откачивается и подается в следующую ячейку. Этот процесс повторяется многократно. Сколько циклов необходимо провести, чтобы отношение концентраций легкого и тяжелого изотопов увеличить в 10 раз, если молярные массы соединений легкого и тяжелого изотопов равны соответственно μ_1 и μ_2 ?

Поскольку в каждой ячейке прошедший через пористую перегородку газ непрерывно откачивается насосом, можно считать, что его концентрация (т. е. число молекул в единице объема) за перегородкой пренебрежимо мала по сравнению с концентрацией на входе в ячейку. Поэтому при

Рис. 8.1. Схема ячейки каскада разделения изотопов. А — на вход поступает смесь изотопов; В — обогащенная легким изотопом смесь, прошедшая через пористую перегородку, подается на вход следующей ступени каскада; С — обогащенная тяжелым изотопом смесь возвращается на вход ячейки предыдущего каскада.

расчетах можно пренебречь обратным потоком молекул и считать, что газ проходит через поры в перегородке только в одном направлении.

Число молекул, проходящих за единицу времени через каждое отверстие в пористой перегородке, пропорционально концентрации молекул перед перегородкой и средней скорости их хаотического теплового движения. Так как газ представляет собой смесь молекул, содержащих разные изотопы, можно, как и в предыдущей задаче, написать следующее выражение для чисел N_1 и N_2 прошедших через перегородку за одну секунду молекул:

$$N_1 \sim n_1 \langle v_1 \rangle, \quad N_2 \sim n_2 \langle v_2 \rangle, \tag{1}$$

7 Е.И. Бутиков и др.

где n_1 и n_2 — концентрации легкого и тяжелого изотопов перед перегородкой, а $\langle v_1 \rangle$ и $\langle v_2 \rangle$ — средние скорости их теплового движения. Отношение концентраций молекул газа каждого изотопа после прохождения через одну ячейку равно

$$\gamma_1 = \frac{N_1}{N_2} = \frac{n_1 \langle v_1 \rangle}{n_2 \langle v_2 \rangle}.$$
 (2)

Если бы средние скорости теплового движения молекул, содержащих разные изотопы, были одинаковы, то, как видно из формулы (2), отношение концентраций легкого и тяжелого изотопов было бы таким же, как и до перегородки. Однако из-за различия масс разных изотопов тепловые скорости молекул с легкими и тяжелыми изотопами оказываются разными, хотя средние кинетические энергии тех и других молекул одинаковы и соответствуют температуре смеси. Так как средняя скорость теплового движения пропорциональна корню из отношения абсолютной температуры к массе молекулы:

$$\langle v \rangle \sim \sqrt{\frac{T}{m}},$$
 (3)

то у молекул легкого изотопа эта скорость больше, и после прохождения через перегородку содержание легкого изотопа в смеси увеличивается. Из соотношения (2) при учете (3) следует, что

$$\gamma_1 = \frac{n_1}{n_2} \sqrt{\frac{m_2}{m_1}} = \frac{n_1}{n_2} \sqrt{\frac{\mu_2}{\mu_1}}$$
 (4)

На входе во вторую ячейку отношение концентраций легкого и тяжелого изотопов в смеси равно уже не n_1/n_2 , а

$$\gamma_1 = \frac{n_1}{n_2} \sqrt{\frac{\mu_2}{\mu_1}}.$$

Поэтому после прохождения второй ячейки отношение концентраций будет равно

$$\gamma_2 = \gamma_1 \sqrt{\frac{\mu_2}{\mu_1}} = \frac{n_1}{n_2} \left(\sqrt{\frac{\mu_2}{\mu_1}} \right)^2.$$
 (5)

Легко видеть, что после прохождения k ячеек отношение концентраций у_k выражается формулой

$$\gamma_k = \frac{n_1}{n_2} \left(\sqrt{\frac{\mu_2}{\mu_1}} \right)^k. \tag{6}$$

Если мы хотим, чтобы γ_k было больше, чем n_1/n_2 , в 10 раз, то, как видно из формулы (6), необходимое число ячеек k равно

$$k = \frac{1}{\lg \sqrt{\mu_2/\mu_1}} = \frac{2}{\lg (\mu_2/\mu_1)}.$$
 (7)

Из-за малого различия в массах молекул с разными изотопами приходится проводить большое число циклов обогащения. Так, например, для шестифтористого урана со смесью изотопов U²³⁵ и U²³⁸ для увеличения отношения концентраций в 10 раз требуется соединить последовательно около 540 ячеек.

В заключение отметим, что в каждой ячейке по мере прохождения газа через пористую перегородку содержание тяжелого изотопа в смеси, находящейся перед перегородкой, должно было бы увеличиваться. А это, в свою очередь, приводило бы к тому, что увеличивалось бы количество проходящих через перегородку молекул с тяжелым изотопом. В результате эффективность работы ячейки снижалась бы. Чтобы этого не происходило, нужно обновлять смесь перед перегородкой, не допуская накапливания газа, обогащенного тяжелым изотопом. Поэтому обогащенный тяжелым изотопом газ откачивается и направляется на вход предыдущей ступени каскада (рис. 8.1).

Описанный способ применяется для разделения изотопов урана в крупных промышленных масштабах. Идея этого метода была предложена Рэлеем еще в 1896 году.

9. Сосуд Дьюара. Сжиженные газы хранят в сосудах Дьюара, которые представляют собой стеклянные или металлические колбы с двойными стенками (рис. 9.1). Из пространства между стенками откачан воздух, что приводит к уменьшению их теплопроводности. Так как весь воздух выкачать невозможно, то остаешиеся молекулы будут переносить тепло от окружающей среды к содержимому сосуда Дьюара. Эта остаточная теплопроводность стенок приводит к тому, что находящийся в сосуде сжиженный газ непрерывно испаряется.

При заполнении сосуда Дьюара жидким азотом, температура кипения которого при нормальном атмосферном давлении равна 77,3 К, оказалось, что за час испарилась масса M_1 азота. Сколько испарится из этого

195

же сосуда за час, если его заполнить жидким водородом, температура кипения которого равна 20,4 К? Температура окружающей среды в обоих случаях равна 300 К.

Перенос тепла происходит при таких отклонениях от состояния термодинамического равновесия, когда различные части системы имеют разную температуру. При обычных условиях механизм теплопроводности , газа заключается

Рис. 9.1. Устройство сосуда Дьюара.

в следующем: молекулы из более «горячей» области в результате хаотического движения перемещаются по всем направлениям и, сталкиваясь с молекулами из более «холодных» областей, передают им часть своей энергии. Каждая молекула может перенести «избыток» тепловой энергии на расстояние порядка средней длины свободного пробега λ . Поэтому полный поток тепла от участка с более высокой температурой к участку с более низкой температурой пропорционален концентрации молекул n и их средней длине свободного пробега.

Каждая из величин n и λ зависит от давления, при котором нахо-

дится газ. Но их произведение не зависит от давления. В самом деле, вспомните задачу 6 о торможении спутника в верхних слоях атмосферы, где обсуждалось, от чего зависит средняя длина свободного пробега молекул. Там было получено соотношение

$$n\lambda\sigma\approx 1.$$
 (1)

Величина $\sigma = \pi d^2$ (d — диаметр молекулы) от давления не зависит. Поэтому не зависит от давления и произведение $n\lambda$, хотя концентрация молекул n пропорциональна давлению.

Таким образом, при обычных условиях теплопроводность газа не зависит от давления, ибо все остальные величины, входящие в выражение для потока тепла (разность температур, площадь стенок и расстояние между ними), также не зависят от давления. Так зачем же в сосудах Дьюара откачивают воздух из пространства между стенками? Все дело в том, что при очень низком давлении газа, когда длина свободного пробега молекул оказывается больше расстояния между стенками, механизм теплопроводности становится другим: молекулы газа свободно пролетают от одной стенки до другой, не сталкиваясь друг с другом, и переносят «избыток» энергии непосредственно от стенки к стенке. Теперь теплопроводность не зависит от длины свободного пробега молекул важно лишь, чтобы она превышала расстояние *l* между двойными стенками сосуда. Так как поток тепла, разумеется, и в этом случае пропорционален концентрации молекул, то чем ниже давление оставшегося между стенками воздуха, тем меньше будет его теплопроводность.

Для того чтобы оценить величину потока тепла от наружной стенки сосуда Дьюара к холодной внутренней стенке, будем считать, что каждая молекула воздуха, покидая стенку сосуда, имеет энергию, соответствующую температуре этой стенки. Сталкиваясь с другой стенкой, молекула целиком передает ей свою энергию. Другими словами, мы считаем, что взаимодействие молекул со стенкой носит характер неупругого удара. Если бы удар молекул о стенку был абсолютно упругим, то молекулы газа вообще не переносили бы тепла.

Будем считать, что наружная стенка сосуда имеет температуру T_0 , равную температуре окружающей среды. Находящийся в сосуде Дьюара сжиженный газ все время понемногу выкипает, поэтому, несмотря на непрерывный подвод тепла, его температура остается неизменной. Горлышко сосуда Дьюара держится открытым, чтобы испарившийся газ мог свободно выходить в атмосферу — в противном случае сосуд непременно взорвется вследствие непрерывного роста давления. Таким образом, температура внутренней стенки равна температуре кипения T_1 сжиженного газа при атмосферном давлении.

Поток энергии, переносимый молекулами воздуха от горячей стенки к холодной, пропорционален энергии улетающей молекулы (т. е. температуре горячей стенки T_0) и числу молекул z, покидающих горячую стенку за единицу времени. Сколько же молекул покидают горячую стенку? Очевидно, столько же, сколько прилетает к ней от холодной стенки. Число таких молекул пропорционально концентрации молекул, имеющих температуру холодной стенки T_i , и их средней скорости $\langle v_1 \rangle$:

$$z \sim n_1 \langle v_1 \rangle. \tag{2}$$

Поэтому поток энергии от горячей стенки к холодной пропорционален произведению $T_0 z \sim T_0 n_1 \langle v_1 \rangle$. Аналогично, поток энергии, переносимый молекулами от холодной стенки к горячей, пропорционален произведению $T_1 z \sim T_1 n_1 \langle v_1 \rangle$. Следовательно, поток тепла Q от горячей стенки к холодной, равный разности встречных потоков энергии, пропорционален величине

$$Q \sim (T_0 - T_1) n_i \langle v_i \rangle. \tag{3}$$

Кақова же концентрация n_i «холодных» молекул воздуха в пространстве между стенками? Если обозначить через n_0 концентрацию «горячих» молекул, т. е. тех, которые покинули наружную стенку, то сумма $n_i + n_0$ равна полной концентрации воздуха n между стенками:

$$n=n_1+n_0. \tag{4}$$

Как уже отмечалось, к горячей стенке прилетает в единицу времени столько же молекул, сколько и к холодной. Поэтому

$$n_1 \langle v_1 \rangle = n_0 \langle v_0 \rangle. \tag{5}$$

Так как средняя скорость пропорциональна корню из абсолютной температуры, то из равенства (5) имеем

$$n_0 = n_1 \frac{\langle v_1 \rangle}{\langle v_0 \rangle} = n_1 \sqrt{\frac{T_1}{T_0}}.$$
 (6)

Подставляя n₀ в соотношение (4), находим

$$n_{i} = \frac{n}{1 + \sqrt{T_{1}/T_{0}}}.$$
 (7)

Теперь выражение (3) для потока тепла можно переписать в виде

$$Q \sim (T_0 - T_1) \frac{n \sqrt{T_1}}{1 + \sqrt{T_1/T_0}} = n \sqrt{T_0 T_1} \left(\sqrt{T_0} - \sqrt{T_1} \right). \tag{8}$$

За счет этого потока тепла за единицу времени испаряется масса сжиженного газа M_1 , равная отношению Q к удельной

198

теплоте испарения Λ_1 :

$$M_{1} \sim \frac{n}{\Lambda_{1}} \sqrt{\overline{T_{0}T_{1}}} \left(\sqrt{\overline{T_{0}}} - \sqrt{\overline{T_{1}}} \right).$$
(9)

Точно такое же выражение будет справедливо и в том случае, когда сосуд Дьюара заполнен другим сжиженным газом, у которого температура кипения равна T_2 , а теплота испарения Λ_2 . Все опущенные в формуле (9) коэффициенты пропорциональности не зависят от того, какой именно газ . находится в сосуде. Поэтому для отношения масс разных газов, испаряющихся за одинаковое время из одного и того же сосуда Дьюара, получим

$$\frac{M_2}{M_1} = \frac{\Lambda_1}{\Lambda_2} \sqrt{\frac{\overline{T_2}}{T_1}} \frac{\sqrt{\overline{T_0} - \sqrt{\overline{T_2}}}}{\sqrt{\overline{T_c} - \sqrt{\overline{T_1}}}}.$$
(10)

Подставляя сюда значения удельной теплоты испарения водорода $\Lambda_2 = 4,5 \cdot 10^5 \text{ Дж/кг}$, азота $\Lambda_1 = 2,0 \cdot 10^5 \text{ Дж/кг}$ и их температуры кипения $T_2 = 20,4 \text{ K}$, $T_1 = 77,3 \text{ K}$, найдем $M_2/M_1 \approx 0,34$.

Получилось, что по массе водород выкипает из сосуда Дьюара медленнее азота, хотя температура кипения водорода ниже. Однако со скоростью выкипания по объему все обстоит иначе. Плотность жидкого водорода равна примерно 0,07 г/см³, азота 0,8 г/см³, поэтому для отношения объемов испарившихся водорода V_2 и азота V_1 получаем $V_2/V_1=3,89$, т. е. водород выкипает приблизительно в 4 раза быстрее азота.

Из формулы (9) видно, что масса испаряющегося газа пропорциональна концентрации *n* оставшегося между стенками сосуда Дьюара воздуха. Поэтому теплоизоляция будет тем лучше, чем этого воздуха меньше. Обычно сосуды Дьюара откачивают до высокого вакуума: $10^{-3}-10^{-5}$ мм рт. ст. Это соответствует концентрации оставшегося воздуха $n=p/kT_0\sim 10^{11}-10^{13}$ см⁻³. При таких концентрациях длина свободного пробега будет составлять, как видно из соотношения (1), величину порядка $\lambda \approx 1/(n\pi d^2) \sim 10-10^3$ см. Расстояние между двойными стенками l обычно равно нескольким миллиметрам. Поэтому при таком давлении оставшегося воздуха средняя длина свободного пробега значительно превышает расстояние между стенками, и механизм теплопроводности именно такой, какой рассмотрень в задаче.

При давлении воздуха между стенками порядка 10⁻² мм рт. ст. длина свободного пробега становится сравнимой с расстоянием между стенками. Поэтому откачка до такого или большего давления вообще лишена смысла, поскольку в таких условиях теплопроводность воздуха не зависит от давления.

Поверхности стенок сосуда, образующих вакуумное пространство, обычно покрываются тонким слоем серебра, чтобы уменьшить лучистый теплообмен между стенками. Поэтому в данной задаче мы не учитывали лучистую со-ставляющую теплового потока.

Сосуды Дьюара используются и для хранения веществ при температуре более высокой, чем температура окружающей среды. Распространенные в быту термосы представляют собой стеклянные сосуды Дьюара, заключенные в металлическую или пластмассовую оболочку для защиты от повреждений.

10. Теплоемкость идеального газа. Один моль идеального газа нагревают при таких условиях, что давление газа пропорционально его объему:

$p = \alpha V$,

где α — постоянная. (Здесь объем одного моля газа обозначен через V, а не V_{μ} , чтобы не загромождать формулы.) Найти теплоемкость газа в этом процессе. Попробуйте придумать устройство, в котором давление газа и занимаемый им объем были бы связаны таким соотношением.

Теплоемкость идеального газа (как и любой другой физической системы) является физической величиной, характеризующей не столько саму систему, сколько происходящий в ней процесс.

Вспомним первый закон термодинамики — закон сохранения энергии для процессов, связанных с теплопередачей:

$$\Delta Q = \Delta U + \Delta A \tag{1}$$

— сообщенное системе количество тепла ΔQ определяет изменение внутренней энергии системы ΔU и совершенную при этом системой работу ΔA . Рассматриваемая нами система — идеальный газ, его внутренняя энергия не

зависит от занимаемого им объема и определяется только температурой. Поэтому при любом способе нагревания газа на одно и то же число градусов ΔT его внутренняя энергия изменяется на одну и ту же величину. А вот совершаемая газом работа при этом может быть различной. Например, при нагревании при постоянном объеме газ вообще не совершает работы, а при нагревании при постоянном давлении совершаемая газом работа $\Delta A = p\Delta V$. В результате, как видно из уравнения (1), теплоемкость газа $C = \Delta Q / \Delta T$ оказывается различной в зависимости от того, при каких условиях происходит его нагревание. В первом случае теплоемкость одного моля обозначается C_V и равна

$$C_{\rm V} = \frac{\Delta U}{\Delta T}.$$
 (2)

Во втором случае теплоемкость обозначается C_p , и с помощью уравнения (1) для нее получается следующее выражение:

$$C_p = C_V + p \frac{\Delta V}{\Delta T}.$$

Из уравнения состояния одного моля идеального газа pV = RT при постоянном давлении находим $p\Delta V = R\Delta T$. Теперь для теплоемкости C_p одного моля идеального газа получаем

$$C_p = C_V + R. \tag{3}$$

В общем случае для нахождения теплоемкости газа нужно уметь вычислять работу, совершаемую газом при произвольном процессе.

Как же вычислить работу, совершаемую газом, когда его давление не остается постоянным, а связано с объемом соотношением $p = \alpha V$? Очевидно, что работа также выражается соотношением $\Delta A = p\Delta V$, но только при постоянном давлении ΔV могло быть любым, а в рассматриваемом случае ΔV нужно выбирать настолько малым, чтобы можно было пренебречь изменением давления Δp при расширении газа на ΔV . Теперь нужно связать $p\Delta V$ прн малом изменении объема с изменением температуры. Для этого воспользуемся уравнением состояния

$$pV = RT.$$
 (4)

202 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Пусть при изменении температуры газа на ΔT его объем изменился на ΔV , а давление — на Δp . Эти изменения связаны между собой благодаря уравнению состояния:

$$(p+\Delta p) (V+\Delta V) = R (T+\Delta T).$$
(5)

Вычитая выражение (4) из (5) и пренебрегая малым членом $\Delta p \Delta V$, получаем

$$p\Delta V + V\Delta p = R\Delta T. \tag{6}$$

В рассматриваемом процессе, когда давление газа пропорционально его объему, имеем $\Delta p = \alpha \ \Delta V$. Поэтому

$$V\Delta p = \alpha V \Delta V = p \Delta V. \tag{7}$$

Подставляя $V\Delta p$ из выражения (7) в (6), находим

$$\Delta A = p \,\Delta V = \frac{1}{2} R \,\Delta T.$$

С помощью уравнения (1) находим теплоемкость газа в этом процессе

$$C = C_v + \frac{1}{2}R.$$

Вспоминая связь C_v и C_p , даваемую формулой (3), замечаем, что C можно представить в виде

$$C = \frac{1}{2} \left(C_V + C_p \right).$$

Отметим, что в трех рассмотренных нами процессах (нагревание газа при постоянном объеме, при постоянном давлении и при $p = \alpha V$) теплоемкость газа остается постоянной на всем протяжении процесса.

Теперь подумаем, как практически можно осуществить устройство, в котором давление газа пропорционально занимаемому объему. Это, например, может быть сосуд с поршнем. Поставим его вертикально. Для того чтобы нагревание газа происходило при постоянном объеме, поршень нужно закрепить. Для нагревания при постоянном давлении можно положить на поршень постоянный груз. В интересующем нас случае можно попытаться подпереть поршень упругой пружиной (рис. 10.1), поскольку вследствие закона Гука действующая на поршень со стороны пружины сила будет линейно зависеть от его смещения.

Как подобрать параметры этого устройства, чтобы выполнялось соотношение $p = \alpha V$? При V = 0, когда поршень лежит на дне (рис. 10.2), давление газа под поршнем должно быть равно нулю, поэтому сила тяжести поршня G и сила атмосферного давления p_0S (S — площадь поршня) должны уравновешиваться силой растяжения пружины:

$$G + p_0 S = k (l - l_0).$$
 (8)

Здесь k — жесткость пружины, l₀ — ее длина в свободном состоянии. Итак, нужно подобрать такую пружину, чтобы

Рис. 10.1. Устройство, в котором давление газа может быть пропорционально его объему.

Рис. 10.2. К выбору параметров устройства, в котором $p = \alpha V$.

соотношение (8) выполнялось. Проверим, будет ли при этом давление газа p пропорционально его объему V при произвольном положении поршня (см. рис. 10.1). Напишем условие равновесия поршня:

$$G + p_0 S = k(l - l_0 - x) + pS.$$

Отсюда с учетом равенства (8) получаем

$$p = \frac{kx}{S} = \frac{k}{S^2}V.$$

Попробуйте придумать другие устройства!

204 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

11. Установление равновесия. В расположенном горизонтально цилиндре (рис. 11.1) слева от закрепленного поршня находится идеальный газ, в правой части цилиндра — вакуум. Цилиндр теплоизолирован от окружающей среды, а пружина, расположенная между поршнем и стенкой, находится первоначально в недеформированном состоянии. Поршень освобождают, и после установления равновесия объем, занимаемый газом, увеличивается вдвое. Как изменились при этом температура и давление газа? Теплоемкостями цилиндра, поршня и пружины пренебречь.

По условию задачи вначале пружина находится в недеформированном состоянии и сила давления газа на поршень уравновешивается упором, удерживающим поршень. Когда упор убирают, поршень под действием давления газа перемещается вправо и сжимает пружину. По

Рис. 11.1. Сосуд с газом теплоизолирован от окружающей среды.

инерции поршень проскакивает положение равновесия, и сжатая пружина после остановки толкает его обратно. В системе возникают колебания, которые вследствие трения постепенно затухают, и поршень останавливается в положении равновесия. В начальном состоянии вся энергия рассматриваемой системы состояла только из внутренней энергии газа, ибо поршень был неподвижен, а пружина недеформирована. В конечном состоянии энергия системы складывается из внутренней энергии газа и потенциальной энергии сжатой пружины. В процессе установления равновесия происходили многократные превращения энергии из одного вида в другие: внутренняя энергия газа частично превращалась в кинетическую энергию макроскопического движения газа в цилиндре вслед за поршнем, в кинетическую энергию поршня, потенциальную энергию деформированной пружины и обратно.

В процессе колебаний вследствие трения механическая энергия превращалась в тепло, т. е. во внутреннюю энергию газа. Изменением внутренней энергия поршня, стенок сосуда и пружины можно пренебречь, так как по условию задачи их теплоемкость мала по сравнению с теплоемкостью газа. На основании первого закона термодинамики можно утверждать, что полная энергия системы в результате всех этих процессов не изменилась, так как теплообмен с окружающей средой отсутствовал и система не совершала механической работы над внешними телами.

Сохранение полной энергии системы выражается соотношением

$$\Delta U + \frac{kx^2}{2} = 0, \qquad (1)$$

где второе слагаемое есть потенциальная энергия пружины жесткости k, сжатой на величину x, а изменение внутренней энергии идеального газа ΔU при изменении его температуры от T_1 до T_2 равно

$$\Delta U = v C_V (T_2 - T_1), \qquad (2)$$

где $v = m/\mu$ — число молей газа в цилиндре, а C_v — молярная теплоемкость идеального газа при постоянном объеме.

В положении равновесия сила давления газа на поршень площади S уравновешивается силой реакции сжатой пружины:

$$p_s S = kx. \tag{3}$$

Смещение поршня x очевидным образом связано с изменением объема газа от значения V_1 до V_2 :

$$x = \frac{V_2 - V_1}{S} \,. \tag{4}$$

Подставив в уравнение баланса энергии (1) выражения (2) и (4), получим •

$$wC_V(T_1 - T_2) = \frac{k (V_2 - V_1)^3}{2S^2}.$$
 (5)

V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Используя уравнение состояния идеального газа

$$pV = vRT$$
, (6)

выразим давление газа p_2 в условии механического равновесия поршня (3) через конечные значения температуры и объема, а смещение поршня x - c помощью формулы (4):

$$\frac{v_{RT_2}}{V_2} = \frac{k(V_2 - V_1)}{S^2}.$$
 (7)

Разделив почленно выражения (5) и (7), получаем

$$\frac{2C_V}{R} \left(\frac{T_1}{T_2} - 1 \right) = 1 - \frac{V_1}{V_2}.$$
 (8)

При заданном отношении начального и конечного объемов газа формула (8) дает возможность определить отношение температур:

$$\frac{T_1}{T_2} = 1 + \frac{R}{2C_V} \left(1 - \frac{V_1}{V_2} \right).$$
 (9)

Зная отношение объемов и температур, можно с помощью уравнения состояния (6) найти отношение давлений:

$$\frac{p_1}{p_2} = \frac{R}{2C_V} \left(\frac{V_2}{V_1} - 1 \right) + \frac{V_2}{V_1}.$$
 (10)

Поскольку для идеального одноатомного газа $C_V = {}^{3}/{}_{2}R$, а по условию задачи конечный объем вдвое больше начального, то с помощью формул (9) и (10) находим:

$$\frac{T_2}{T_1} = \frac{6}{7}, \qquad \frac{p_2}{p_1} = \frac{3}{7}.$$

Полученные формулы (9) и (10) полезно проверить для предельного случая, когда ответ очевиден. Если жесткость пружины $k \rightarrow \infty$, то газ не сможет сдвинуть поршень с места, и, следовательно, объем, температура и давление газа останутся без изменения. В этом случае $V_2 = V_1$, и формулы (9) и (10), как и полагается, дают $T_2 = T_1$ и $p_2 = p_1$.

206

12. Измерение отношения теплоемкостей. Для экспериментального определения отношения теплоемкостей газа при постоянном давлении и при постоянном объеме $\gamma = C_p/C_V$ можно применить следующий метод. Некоторое количество газа v, начальные значения объема и давления которого равны V и p, нагревается дважды при помощи электрической спирали, через которую пропускают ток в течение одного и того же времени: сначала при постоянном объеме V, причем конечное значение давления равно p_i , затем при постоянном давлении p из того же начального состояния, причем конечное значение объема оказывается равным V_2 . Как по этим данным рассчитать отношение γ ?

Поскольку электрический нагреватель в обоих случаях работает одинаковое время, то и подводимое к газу количество тепла будет одинаковым: $\Delta Q_1 = \Delta Q_2$. Будем считать, что условия эксперимента обеспечивают отсутствие теплообмена газа с окружающей средой, т. е. сосуд с газом адиабатически изолирован. Поэтому можно написать

$$\Delta Q_1 = v C_V \Delta T_1, \quad \Delta Q_2 = v C_p \Delta T_2, \tag{1}$$

где C_V и C_p — молярные теплоемкости исследуемого газа при постоянном объеме и при постоянном давлении, а ΔT_1 и ΔT_2 — изменения температуры газа в первом и втором случаях. Так как $\Delta Q_1 = \Delta Q_2$, то из формул (1) для $\gamma = C_p/C_V$ получаем

$$\gamma = \frac{\Delta T_1}{\Delta T_2}.$$
 (2)

Поскольку в описываемом эксперименте измеряются не температура, а объем и давление газа, то изменение температуры следует выразить через изменение объема и давления. Для того чтобы сделать это, нужно воспользоваться уравнением состояния.

Формула (2) справедлива для любого газа, не обязательно идеального. Поэтому, если бы мы могли измерять с достаточной точностью изменение температуры, то по формуле (2) мы бы непосредственно находили отношение теплоемкостей реального газа. Однако измерять изменение температуры газа трудно, так как такое измерение требует значительного времени, пока термометр придет в тепловое равновесие с газом. А это, в свою очередь, накладывает жесткие требования на степень теплоизоляции газа от окружающей среды. При измерении изменения объема и давления газа такие требования не возникают. Но за удобство измерений приходиться платить тем, что теперь необходимо знать уравнение состояния газа.

Если условия опыта таковы, что газ с достаточной точностью можно считать идеальным, то можно воспользоваться уравнением Менделеева — Клапейрона

$$pV = vRT.$$
 (3)

Тогда в первом случае, при нагревании газа при постоянном объеме V, имеем

$$(p_1 - p)V = vR\Delta T_1. \tag{4}$$

Во втором случае, при нагревании при постоянном давлении *p*, из (3) имеем

$$p(V_2 - V) = vR\Delta T_2. \tag{5}$$

Выражая ΔT_1 и ΔT_2 из равенств (4) и (5) и подставляя их значения в соотношение (2), находим

$$\gamma = \frac{C_p}{C_V} = \frac{(p_1 - p) V}{p (V_2 - V)} = \frac{p_1 / p - 1}{V_2 / V - 1}.$$
 (6)

13. Истечение газа из отверстия. Какую скорость имеет струя газа, вырывающегося из небольшого отверстия в стенке баллона со сжатым газом (рис: 13.1)? Температура и давление газа в баллоне имеют значения T и p.

Если размер отверстия значительно превышает длину свободного пробега молекул газа в баллоне, то истечение газа можно рассматривать как макроскопический поток. Ограничимся достаточно малым промежутком времени, таким, чтобы давление и температуру газа в баллоне можно было считать неизменными. Тогда процесс истечения газа из баллона можно рассматривать как стационарный, причем траектории любых мысленно выделенных элементов газа совпадают с линиями тока. Если пренебречь тангенциальными силами внутреннего трения между соседними элементами потока газа, что вполне оправдано для рассматриваемого процесса, то для изучения движения газа можно воспользоваться законом сохранения энергии.

Выделим в стационарном потоке газа определенную трубку тока (рис. 13.2). В этой трубке рассмотрим газ, находящийся в некоторый момент времени между сечениями 1 и 2. За промежуток времени Δt этот газ перейдет в новое положение между сечениями 1' и 2'. Применим к этому выделенному газу первый закон термодинамики — закон сохранения энергии. Особенностью рассматриваемого процесса является то, что у выделенной части газа меняется не только внутренняя энергия

U. но и кинетическая энергия макроскопического направлен-ного движения E_к. Полное изменение энергии газа опредевоздействием ляется внешним на него:

$$\Delta U + \Delta E_{\rm R} = \Delta Q + \Delta A', \qquad (1)$$

гле ΔQ — сообщенное выде-

ленному газу количество тепла, а ΔΑ' — работа, совершенная действующими на газ внешними силами за время Δt . В рассматриваемом явлении быстрого истечения из отверстия процесс, происходящий с выделенной частью газа, можно считать адиабатическим, т. е. положить в (1) $\Delta Q = 0$. Разумеется, нельзя утверждать, что теплообмен с соседними участками вообще отсутствует, ведь аднабатической оболочки нет! Однако в струе газа работа, совершаемая соседними участками при «проталкивании» выделенной части газа вдоль трубки тока, гораздо

больше, чем ΔQ , и поэтому теплообменом можно пренебречь. При вычислении работы $\Delta A'$ следует учесть, что действующие на выделенную часть газа силы давления со стороны соседних участков в сечении / направлены вдоль перемещения и противоположно перемещению в сечении 2 (рис. 13.2). Поэтому выражение для работы $\Delta A'$ при перемещении газа за время Δt имеет вид

$$\Delta A' = p_1 \Delta V_1 - p_2 \Delta V_2, \tag{2}$$

где p_1 и p_2 — давления газа в сечениях 1 и 2, ΔV_1 — объем части трубки тока между сечениями 1 и 1', а ΔV_2 — между сечениями 2 и 2'.

Рис. 13.1. Истечение газа из отверстия в баллоне.

210 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

В равновесной термодинамической системе макроскопические параметры, такие как температура T и давление p, имеют одно и то же значение во всех точках. В потоке газа, в отличие от равновесной системы, значения этих параметров меняются от точки к точке, так что можно говорить только о локальном термодинамическом равновесии в отдельных частях потока. Но и такое описание

Рис. 13.2. При стационарном течении энергия газа между сечениями и и 2 (показанного двойной штриховкой) не меняется со временем.

применимо только в тех случаях, когда скорость макроскопического движения газа достаточно медленно меняется в пространстве и во времени. Будем считать, что это условие выполнено. Тогда давление и температура газа меняются вдоль трубки тока на рис. 13.2, но значения этих параметров в пределах малых элементов, например между сечениями 1 и 1' или 2 и 2', можно считать неизменными и связанными между собой уравнением состояния.

С помощью уравнения состояния работу $\Delta A'$ в (2) можно выразить через температуры газа в сечениях 1 и 2. Считая, что за время Δt через каждое сечение трубки тока проходит количество газа v, имеем

$$p_1 \Delta V_1 = vRT_1, \quad p_2 \Delta V_2 = vRT_2,$$

и выражение (2) принимает вид

$$\Delta A' = v R \left(T_1 - T_2 \right). \tag{3}$$

Перейдем теперь к вычислению изменения энергии газа ΔU и $\Delta E_{\rm k}$. Так как внутренняя энергия идеального газа зависит только от температуры, то при прохождении количества газа ν внутренняя энергия выделенной части изменится на величину

$$\Delta U = v C_V (T_2 - T_1), \qquad (4)$$

где C_v — молярная теплоемкость при постоянном объеме. - Изменение кинетической энергии ΔE_{κ} равно

$$\Delta E_{\kappa} = \frac{1}{2} \nu \mu \left(v_2^2 - v_1^2 \right), \tag{5}$$

где µ — молярная масса газа, v_i и v₂ — скорости струи в сечениях 1 и 2.

Подставляя соотношения (3) — (5) в уравнение закона сохранения энергии (1) и сокращая на v, получаем

$$(C_{v}+R)(T_{2}-T_{1})+\frac{1}{2}\mu(v_{2}^{2}-v_{1}^{2})=0.$$
 (6)

Поскольку сечения 1 и 2 были выбраны произвольно, то из соотношения (6) следует, что величина $(C_v + R)T + \mu v^2/2$ имеет одно и то же значение вдоль всей линии тока. Учитывая, что $C_v + R = C_p$, где C_p — молярная теплоемкость при постоянном давлении, можно написать

$$C_p T + \frac{1}{2} \mu v^2 = \text{const.} \tag{7}$$

Этому уравнению можно придать вид, аналогичный уравнению Бернулли в гидродинамике идеальной жидкости. Для этого разделим уравнение (7) почленно на молярный объем V_{μ} . Учитывая, что $RT/V_{\mu}=p$, а μ/V_{μ} есть плотность газа ρ , имеем

$$p + \rho c_v T + \frac{1}{2} \rho v^2 = \text{const}, \qquad (8)$$

где $c_v = C_v/\mu$ — удельная теплоемкость газа. Первый и третий члены в левой части этого уравнения совпадают с соответствующими членами в уравнении Бернулли. В уравнении (8) отсутствует член ρgh , выражающий плотность потенциальной энергии газа (или жидкости) в поле тяжести. Это связано только с тем, что в уравнении (1) не учитывалось изменение потенциальной энергии, так как струя предполагалась горизонтальной. Новым по сравнению с уравнением Бернулли является второй член в уравнении (8), который выражает плотность внутренней энергии газа. В несжимаемой жидкости плотность внутренней энергии неизменна, и ее не нужно учитывать в уравнении баланса энергии. Соотношение (7) позволяет выразить скорость струи газа, вытекающей из отверстия в баллоне, через изменение температуры газа. Так как внутри баллона скорость направленного движения практически равна нулю, то

$$C_p T = C_p T_1 + \frac{1}{2} \mu v_1^2, \tag{9}$$

откуда для скорости струн v1 получаем

$$v_1 = \sqrt{\frac{2}{\mu} C_p (T - T_1)}.$$
 (10)

Для вычисления скорости струи по формуле (10) нужно знать температуру T_1 газа в струе. Ее можно найти с помощью уравнения адиабатического процесса. При истечении газа в вакуум скорость струи $v_{\text{вак}}$ можно оценить, полагая в формуле (10) $T_1=0$. Такая оценка разумна, ибо при расширении в вакуум давление газа в струе падает до нуля и, следовательно, должна приближаться к нулю и его температура:

$$v_{\rm Bak} \approx \sqrt{\frac{2}{\mu} C_p T}.$$
 (11)

Отметим, что кинетическая энергия направленного движения газа в струе возникает за счет внутренней энергии, т. е. энергии хаотического теплового движения молекул газа в баллоне. Скорость истечения опроделяется температурой и не зависит от давления. Независимость скорости истечения от давления связана с тем, что внутренняя энергия идеального газа зависит только от температуры.

Формуле (11) можно придать более удобный вид, если выразить C_p через $\gamma = C_p/C_v$ и универсальную газовую постоянную R:

$$C_p = \frac{C_p}{C_V} C_V = \gamma (C_p - R),$$

откуда $C_p = R\gamma/(\gamma - 1)$. В результате вместо (11) можно написать

$$v_{\text{bak}} = \sqrt{\frac{2}{\mu} \frac{\gamma}{\gamma - 1} RT}.$$
 (12)

Полученные формулы для скорости истечения позволяют сделать сравнительную оценку различных видов топлива для ракетных двигателей. Для получения больших скоростей истечения газов из сопла двигателя предпочтительнее горючее, которое обладает высокой теплотворной способностью (для получения больших температур *T* в камере сгорания) и образует продукты сгорания с малой молярной массой.

14. Заполнение откачанного сосуда. Теплоизолированный сосуд с внутренним объемом V откачан до глубокого вакуума. Окружающий воздух имеет температуру T_0 и давление p_0 . В некоторый момент открывается кран и происходит быстрое заполнение сосуда атмосферным воздухом. Какую температуру T будет иметь воздух в сосуде после его заполнения?

Почему вообще при заполнении сосуда атмосферным воздухом должна измениться его температура? Чтобы разобраться в этом, нужно рассмотреть энергетические превращения, происходящие при заполнении сосуда. При открывании крана какая-то порция воздуха «заталкивается» в сосуд атмосферным давлением. Это значит, что над вошедшим в сосуд воздухом силами атмосферного давления совершается некоторая работа. Благодаря этой работе врывающийся в сосуд воздух приобретает кинетическую энергию направленного макроскопического движения — воздух в сосуд входит струей. При встрече со стенками сосуда и с уже попавшим в сосуд воздухом струя меняет направление, ослабевает и в конце концов исчезает совсем. При этом кинетическая энергия упорядоченного движения воздуха в струе превращается во внутреннюю энергию, т. е. в энергию хаотического теплового движения его молекул.

Все это происходит настолько быстро, что теплообменом входящего в сосуд воздуха с воздухом в атмосфере можно пренебречь. Поэтому применительно к рассматриваемому процессу первый закон термодинамики имеет вид: работа *А* сил атмосферного давления над вошедшим в сосуд воздухом равна изменению внутренней энергии этого воздуха ΔU :

$$A = \Delta U. \tag{1}$$

Как же подсчитать эту работу? Проще всего для этого поступить следующим образом. Представим себе, что наш

откачанный сосуд находится внутри большого цилиндра с подвижным поршнем (рис. 14.1). Давление и температура воздуха внутри большого цилиндра такие же, как и в атмосфере. Так как при заполнении откачанного сосуда воздухом давление и температура воздуха в окружающей сосуд атмосфере остаются неизменными, то процессу заполнения сосуда на рис. 14.1 соответствует перемещение поршня вправо при постоянном давлении *p*₀. При этом

Рис. 14.1. При заполнении воздухом откачанного сосуда силы атмосферного давления совершают работу, равную p_0V_0 .

действующая слева на поршень сила совершаpaбoty $p_0 V_0$, ет гле V₀ — уменьшение объевнутри цилиндра. ма Поскольку энергия не вошедшего в сосуд воздуха внутри цилиндра остается неизменной, то совершенная эта при поршня перемещении работа равна работе, совершаемой силами

атмосферного давления при «заталкивании» воздуха в сосуд.

Обратите внимание, что приведенное здесь вычисление работы при перемещении воздуха отличается от вычисления, рассмотренного в предыдущей задаче. Объясняется это различие тем, что в предыдущей задаче нас интересовала работа, совершаемая над отдельной порцией движущегося газа, в то время как здесь мы находим суммарную работу внешних сил над всем вошедшим в сосуд воздухом.

Изменение внутренней энергии ΔU того воздуха, который попал в сосуд, выражается только через изменение его температуры, если считать воздух идеальным газом:

$$\Delta U = v C_V (T - T_0), \qquad (2)$$

где C_v — молярная теплоемкость воздуха. Количество вошедшего в сосуд воздуха v можно выразить с помощью уравнения состояния. Так как в откачанный сосуд вошло ровно столько воздуха, сколько вытеснил из цилиндра переместившийся поршень (рис. 14.1), то можно написать

$$p_0 V_0 = v R T_0. \tag{3}$$

Теперь выражение (2) для изменения внутренней энергии ΔU переписывается в виде

$$\Delta U = \frac{\rho_0 V_0}{R T_0} C_V \left(T - T_0 \right). \tag{4}$$

Приравнивая, в соответствии с первым законом термодинамики (1), изменение внутренней энергии (4) совершенной работе $A = p_0 V_0$, находим

$$C_V (T - T_0) = RT_0,$$

откуда для конечной температуры воздуха в сосуде T получаем

$$T = T_{0} \left(1 + \frac{R}{C_{V}} \right).$$
(5)

Так как сумма $C_v + R$ равна молярной теплоемкости при постоянном давлении C_p , то выражение (5) можно переписать в виде

$$T = T_0 \frac{C_p}{C_V} = \gamma T_0.$$
 (6)

Температура заполнившего откачанный сосуд воздуха оказывается выше температуры воздуха в атмосфере. Отметим, что результат не зависит ни от объема сосуда, ни от величины давления воздуха в атмосфере. Температура воздуха в сосуде не зависит также и от того, будет ли заполнение сосуда происходить до конца, пока давление воздуха в нем не сравняется с атмосферным, или же кран будет перекрыт раньше. Действительно, все приведенные в решении рассуждения справедливы и в том случае, когда конечное давление воздуха в сосуде меньше атмосферного.

Увеличение температуры при заполнении сосуда, рассчитываемое по формуле (6), оказывается весьма значительным. Так как для воздуха $\gamma \approx 1,4$, то находящийся при комнатной температуре воздух должен нагреваться примерно на сто градусов. Однако наблюдать на опыте такое большое повышение температуры затруднительно. Дело в том, что в течение промежутка времени, необходимого для измерения температуры воздуха, будет устанавливаться тепловое равновесие не только между воздухом в сосуде и термометром, но и между воздухом и стенками сосуда. Но теплоемкость сосуда при решении задачи в

216 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

расчет не принималась. Поэтому формула (6) справедлива только до тех пор, пока воздух в сосуде не успеет прийти в тепловое равновесие со стенками.

15. Круговой процесс. Положительную или отрицательную работу совершает идеальный газ при круговом процессе, показанном на рис. 15.1?

Работа, совершаемая газом в равновесном процессе при небольшом изменении его объема ΔV , равна произведению

Рис. 15.1. На V—Тдиаграмме круговой процесс идет в направлении против часовой стрелки.

р ΔV. Поэтому рассматривать совершаемую газом работу удобно с помощью *р-V*-диаграмм. На рис. 15.2 показан некоторый круговой процесс, в котором газ из состояния 1 переходит в состояние 2, а затем возвращается в исходное состояние по другому пути, т. е. с помощью друт гого равновесного процесса. Удобиспользования *р* — *V*-диа-СТВО грамм заключается в том, что совершаемая газом работа изображается на них площадью, ограниченной графиком соответствующего процесса. Например, при расширении

газа из состояния 1 в состояние 2 он совершает положительную работу, величина которой равна площади криволинейной трапеции, показанной вертикальными штрихами на рис. 15.2. При сжатии газа из состояния 2 в состояние 1 положительную работу совершают сжимающие газ внешние силы, т. е. сам газ совершает отрицательную работу, абсолютная величина которой равна площади криволинейной трапеции, показанной на этом рисунке горизонтальными штрихами.

Полная работа, совершаемая газом при круговом процессе, по абсолютной величине равна площади на *p*—Vдиаграмме, ограниченной графиком этого процесса. Как ясно из предыдущего, эта работа положительна, если круговой процесс совершается в направлении по часовой стрелке, и отрицательна, если круговой процесс совершается против часовой стрелки.
Для того чтобы сразу ответить на поставленный в задаче вопрос, нужно изобразить указанный на рис. 15.1 процесс на *p*—*V*-диаграмме. На участке *1*—*2* температура газа повышается при неизменном объеме. Это изохорический процесс, который на *p*—*V*-диаграмме изображается вертикальным отрезком, направленным вверх (рис. 15.3). На участке 2—3 газ расширяется при неизменной температуре. Это изотермический процесс и на *p*—*V*-диаграмме

Рис. 15.2. На *р* — *V*-диаграмме работа газа изображается соответствующей площадью,

Рис. 15.3. На *р*—*V*диаграмме рассматриваемый круговой процесс совершается в направлении по часовой стрелке.

он изображается отрезком гиперболы 2—3. Наконец, участок 3—1 на рис. 15.1 соответствует изобарическому процессу, так как здесь объем газа пропорционален абсолютной температуре (это сразу видно из уравнения состояния pV = vRT). На p - V-диаграмме изобарическому сжатию газа соответствует отрезок горизонтальной прямой 3—1, направленный налево.

Таким образом, рассматриваемому круговому процессу на *р*—*V*-диаграмме соответствует направление обхода по часовой стрелке. Значит, газ совершает положительную работу.

16. Искусственный лед. Сколько энергии нужно затратить, чтобы 1 кг воды, взятой при 0°С, превратить в лед? Температура окружающей среды 20°С.

Если температура окружающей среды выше 0°С, то заморозить воду можно с помощью холодильной машины. Принципиальная схема холодильной машины представляет собой обращенную схему тепловой машины. В тепловой машине рабочему телу передается некоторое количество тепла Q_1 от нагревателя — резервуара с постоянной температурой T_1 . В результате происходящих с рабочим телом процессов некоторая часть этого тепла превращается в работу A, а остальное тепло передается холодильнику — резервуару с более низкой температурой T_2 . Схематически работа тепловой машины показана на рис. 16.1.

Коэффициент полезного действия тепловой машины η есть отношение совершаемой за цикл работы A к

Рис. 16.1. Принципиальная схема тепловой машины.

получаемому от нагревателя количеству тепла Q₁:

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1}.$$
 (1)

Если тепловая машина работает обратимо, т. е. по циклу Карно, то, в соответствии со вторым законом термодинамики, ее к. п. д. зависит только от температур нагревателя и холодильника:

$$\eta = \frac{A}{Q_1} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}.$$
 (2)

В холодильной машине все процессы происходят в обратном направлении (рис. 16.2).

За счет совершения механической работы некоторое количество тепла Q_2 отнимается от резервуара с более низкой температурой T_2 . При этом резервуару с более высокой температурой T_1 передается количество тепла Q_1 , равное сумме $A+Q_2$. Если холодильная машина работает обратимо, т. е. ее можно использовать и как тепловую машину, то для нее также справедливо соотношение (2).

При использовании холодильной машины для замораживания воды роль резервуара с более высокой температурой T_1 играет окружающий воздух, а роль резервуара с низкой температурой T_2 — замораживаемая вода. Температура воды остается неизменной, пока вся она не превратится в лед, несмотря на то, что у нее отнимается тепло. Для

того чтобы заморозить при 0°С массу воды *m*, от нее нужно отнять количество тепла $Q_2 = \lambda m$, где λ — удельная теплота плавления льда при 0°С.

Заменяя в соотношении (2) Q_1 на $A + Q_2$ и подставляя вместо Q_2 произведение λm , получим

$$\frac{A}{A+\lambda m} = \frac{T_1 - T_2}{T_1}, \qquad (3)$$

откуда

$$A = \lambda m \left(\frac{T_1}{T_2} - 1 \right). \tag{4}$$

Коэффициент полезного действия тепловой машины тем выше, чем больше отношение T_i/T_2 . Чем больше это отношение, тем бо́льшая часть по-

лученного от нагревателя тепла превращается в работу. У холодильной машины все наоборот: эффективность ее работы тем выше, чем меньше отношение T_1/T_2 . Как видно из формулы (4), работа. А, которую нужно совершить, чтобы отнять у холодного тела одно и то же количество тепла λm , тем меньше, чем ближе к единице отношение Т, к Т,. Таким образом, чем ближе температура окружающего воздуха к 0°С, тем меньше энергии требуется для замораживания 1 кг воды. При 20°С выражение в скобках в формуле (4) равно 293/273—1≈0.073. Теплота плавления льда λ при 0°С равна

Рис. 16.2. Принципиальная схема холодильной машины.

3,34.10⁶ Дж/кг. Поэтому для замораживания 1 кг воды потребуется совершить работу $A=2,4.10^4$ Дж.

Полученная формула (4) справедлива для обратимой холодильной машины и, следовательно, определяет минимальное количество энергии, которое необходимо для замораживания воды. Любая реальная холодильная машина работает необратимо, и поэтому потребует бо́льших затрат энергии. Этот вывод основан на втором законе термодинамики и не зависит от того, какое именно устройство используется для замораживания воды. 17. Динамическое отопление. Разобранный в предыдущей задаче принцип работы холодильной машины позволяет понять идею динамического отопления, высказанную Томсоном в 1852 году. Эта идея заключается в следующем. Тепло, полученное при сжигании топлива, используется не для непосредственного обогревания отапливаемого помещения, а направляется в тепловую машину для получения механической работы. С помощью полученной работы приводится в действие холодильная машина, которая отнимает тепло от окружающей среды и отдает его воде в отопительной системе. В чем преимущества такого динамического отопления?

Если имеется источник энергии, с помощью которого можно получить механическую работу A, то при непосредственном отоплении количество тепла Q_1 , поступающее в отопительную систему, равно этой работе: $Q_1 = A$. Например, в обычных электронагревательных приборах вся потребляемая электроэнергия, т. е. работа электричєского тока, превращается в тепло.

Если же эту работу использовать для приведения в действие холодильной машины, то, как мы видели в предыдущей задаче, получаемое нагреваемым телом тепло Q_1 , будет больше, чем совершаемая работа $A: Q_1 > A$. Пусть температура воды в системе отопления равна T_1 , а температура окружающей отапливаемое помещение среды, например грунтовой воды или воды в реке, равна T_2 , причем $T_2 < T_1$. Тогда, в соответствии с формулой (2) предыдущей задачи, получаемое отопительной системой количество тепла Q_1 равно

$$Q_1 = A \frac{T_1}{T_1 - T_2} = A \frac{1}{1 - T_2/T_1}.$$
 (1)

График зависимости Q_1 от температуры отопительной системы T_{1} , выражаемой формулой (1), приведен на рис. 17.1. Видно, что чем меньше отличается температура отопительной системы T_1 от температуры окружающей среды T_2 , тем больший выигрыш дает такая система по сравнению с непосредственным превращением работы в тепло. При очень большой разности температур T_1 и T_2 , когда отношение $T_2/T_1 \ll 1$, динамическая система отопления, как видно из рис. 17.1, не дает заметных преимуществ: $Q_1 \rightarrow A$. В динамической системе отопления работа A получается с помощью тепловой машины, в которой нагреватель, имеющий температуру T, получает тепло Q за счет сжигания

Q.1

топлива. Будем считать, что эта температура Т выше температуры отопительной системы T₁: $T > T_1$. В качестве холодильника тепловой машины можиспользовать но либо окружающую среду, либо воду в отопительной самой системе. В первом случае температура холодильника равна Т₂, во втором — T₁. Рассмотрим каждый из этих случаев отдельно.

Начнем с первого случая. С помощью формулы для коэффициента полезного действия

Рис. 17.1. Зависимость тепла, поступающего в отопительную систему, от ее температуры.

фициента полезного действия тепловой машины выразим работу A через получаемое нагревателем при сжигании топлива количество тепла Q:

$$\frac{A}{Q} = \frac{T - T_2}{T},$$

откуда

$$A = Q \frac{T - T_2}{T}.$$
 (2)

Тепло, отдаваемое холодильнику тепловой машины, уходит в окружающую среду и не используется для отопления. Поэтому все тепло Q_1 , получаемое отопительной системой в рассматриваемом случае, обусловлено действием холодильной машины. Подставляя выражение (2) в формулу (1), находим

$$Q_1 = Q \frac{T_1}{T} \frac{T - T_2}{T_1 - T_2} = Q \frac{1 - T_2/T}{1 - T_2/T_1}.$$
 (3)

Схема действия такой системы динамического отопления показана на рис. 17.2.

Теперь посмотрим, что получается во втором случае, когда в качестве холодильника тепловой машины используется вода в отопительной системе. Выражение для работы, получаемой в результате действия тепловой машины, дается по-прежнему формулой (2), в которую теперь вместо T₂ следует подставить температуру T₁. Обозначая эту работу через A', имеем

$$A' = Q \frac{T - T_i}{T}.$$
 (4)

В рассматриваемом случае отопительная система получает тепло как в результате действия холодильной машины, так и непосредственно от тепловой машины, для которой

Рис. 17.2. Схема динамического отопления, в которой холодильником тепловой машины является окружающая среда,

отопительная система является холодильником (рис. 17.3). Тепло Q'_1 , получаемое за счет холодильной машины, дается формулой (1), если в нее вместо A подставить величину A', даваемую выражением (4):

$$Q_{1}' = Q \frac{T_{1}}{T} \frac{T - T_{i}}{T_{1} - T_{2}}.$$
 (5)

Тепло Q', получаемое отопительной системой от тепловой машины, легко найти с помощью выражения для к. п. д.:

$$\frac{Q-Q'}{Q}=\frac{T-T_1}{T},$$

откуда

$$Q' = Q \frac{T_i}{T}.$$
 (6)

Полное количество тепла Q'_1 , поступающее в отопительную систему, равное сумме Q'_1 и Q', дается выражением

$$Q_{1}'' = Q \frac{T_{1}}{T} \left(\frac{T - T_{1}}{T_{1} - T_{2}} + 1 \right) = Q \frac{T_{1}}{T} \frac{T - T_{2}}{T_{1} - T_{2}}.$$
 (7)

Сравнивая формулы (7) и (3), видим, что оба способа динамического отопления дают одинаковый результат. Если вдуматься, то ничего удивительного в этом нет: хотя во втором случае к. п. д. тепловой машины ниже, чем в первом случае, и, следовательно, для действия холодильной машины получается меньшая работа, зато отопительная система получает дополнительное тепло непосредственно от тепловой машины.

222

Обратим внимание на то, что во всех расчетах и рассуждениях мы считали процессы в тепловой и в холодильной машинах обратимыми: использованные формулы для к. п. д. справедливы только для обратимых машин. Поскольку все реальные машины в большей или меньшей

необратимы, то степени на практике второй способ динамического отопления оказывается более предпочтительным. самом деле. в этом способе меньшее количество полученной от резервуара с самой высокой температурой Т энергии превраиспытывает двойные щения: из тепла в работу, затем снова в тепло. Поэтому и потери из-за необратимости в этом случае меньше. Это особенно ясно в предельном случае очень низкого к. п. д. реальной тепловой машины: работа А при этом пренебрежимо мала, и в первом случае (рис. 17.2) все тепло Q перейдет в окружающую среду, в то время как во втором случае (рис. 17.3) оно попадает в отопительную систему.

В том, что в обоих способах реализации динамического Наереватель Р Потопительная система Система

Рие. 17.3. В такой схеме холодильником тепловой машины служит вода отопительной системы.

отопления при обратимых процессах отопительная система получает одно и то же количество тепла Q_1 (формулы (3) и (7)), можно убедиться вообще без всяких расчетов, если воспользоваться вторым законом термодинамики в формулировке Клаузиуса: невозможно осуществить такой процесс, единственным результатом которого был бы переход тепла от менее нагретого тела к более нагретому. Для доказательства предположим противное: пусть, например, первый способ динамического отопления эффективнее, т. е. при одном и том же количестве тепла Q, полученном от резервуара с самой высокой температурой T, отопительная система с температурой T_1 получает больше тепла, чем при втором способе:

 $Q_1 > Q_1^{"}. \tag{8}$

Обратим все процессы, идущие при втором способе. Схематически это показано на рис. 17.4. Теперь машина между резервуарами с температурами T_1 и T_2 работает как тепловая, и получаемая в ней работа A' приводит в действие холодильную машину между резервуарами с

Рис. 17.4. Процессы в обращенной системе динамического отопления.

температурами T и T_1 . В результате отопительная система отдает тепло $Q_1^{"}=Q'+Q_1'$, а резервуар с самой высокой температурой T получает тепло Q.

Теперь возьмем первую систему динамического отопления (рис. 17.2) и обращенную вторую (рис. 17.4) и заставим их работать одновременно между одними и теми же тремя тепловыми резервуарами. В результате такой совместной работы горячий резервуар с температурой Т отдает и получает одно и то же количество тепла Q, т. е. никаких изменений с ним не происходит. Отопительная система вследствие сделанного предположения (8) получает ·больше тепла, чем отдает, и в итоге получает тепло от окружающей среды. Таким образом, единственным результатом совме-

стного действия двух систем является переход тепла от окружающей среды в отопительную систему, т. е. от менее нагретого тепла к более нагретому. А это противоречит второму закону термодинамики. Следовательно, сделанное предположение (8) неверно.

Совершенно аналогично можно доказать, что при обратимых процессах противоположное предположение о большей эффективности второго способа динамического отопления также приводит к противоречию со вторым за-

224

коном термодинамики. Значит, оба способа одинаково эффективны: $Q_1 = Q_1^{"}$.

Исследуем зависимость получаемого отопительной системой тепла Q_1 от соотношения между температурами нагревателя T, отопительной системы T_1 и окружающей среды T_2 . График зависи-

мости Q_1 от T_1 , выражаемой формулой (3), показан на рис. 17.5. Поскольĸν температура отопительной системы Т₁ ниже температуры нагревателя Т и выше температуры окружающей среды T_2 , то расположен график Q_1 между точками Т, и Т на оси абснисс.

Из этого графика видно, что при заданных значениях температуры окружающей среды T_2 и нагревателя T дина-

и нагревателя г динамическая система будет тем более эффективна, чем ближе температура в отопительной системе к температуре окружающей среды. В этих условиях количество тепла, поступающее в отопительную систему, значительно превышает тепло, полученное при сжигании топлива. Если же температура нагревателя T незначительно превышает температуру в отопительной системе, то использование динамической системы не дает преимуществ: $Q_1 \rightarrow Q$ при $T_1 \rightarrow T$.

Использование динамического отопления экономически целесообразно тогда, когда расходы на его сооружение и эксплуатацию компенсируются стоимостью сэкономленного топлива.

Интересно отметить, что динамическое отопление может действовать и при $T < T_1$, т. е. когда требуется передать телу тепло от нагревателя, температура которого T меньше температуры T_1 нагреваемого тела. Очевидно, что для этого можно, например, воспользоваться схемой, приведенной на рис. 17.4, в которой следует поменять местами нагреватель и отопительную систему.

Рис. 17.5. Зависимость тепла, поступающего в отопительную систему, от ее температуры T_1 при динамическом отоплении.

• 18. Пересечение изотермы и адиабаты. Может ли существовать такое вещество, которое можно перевести из некоторого начального состояния в одно и то же конечное состояние и адиабатически, и изотермически?

Сразу ясно, что идеальный газ не может служить примером такого вещества. Действительно, внутренняя энергия идеального газа — это кинетическая энергия хаотического движения его молекул, которая зависит только от температуры газа. При адиабатическом процессе теплообмен с внешней средой отсутствует и, вследствие первого закона термодинамики, работа может совершаться только за счет внутренней энергии. Поэтому, например, при расширении внутренняя энергия должна убывать, что для идеального газа означает уменьшение его температуры. Итак, при адиабатическом процессе идеальный газ никогда не придет в состояние с той же температурой.

Однако изменение температуры в адиабатическом процессе с веществом, между молекулами которого существует взаимодействие, может и не быть таким простым. Пусть. например, потенциальная энергия взаимодействия такова, что в сильно сжатом состоянии, когда расстояния между молекулами малы, преобладают силы отталкивания, а при расширении, т. е. увеличении этих расстояний, начинают преобладать силы притяжения. Тогда, казалось бы, может случиться так, что при адиабатическом расширении системы из сильно сжатого состояния уменьшение потенциальной энергии взаимодействия молекул обеспечит не только совершение работы, но и увеличение кинетической энергии хаотического движения, т. е. увеличение температуры. При дальнейшем расширении, когда отталкивание между молекулами сменится притяжением, потенциальная энергия взаимодействия молекул начнет увеличиваться. Теперь такое увеличение потенциальной энергии, как и совершение работы при расширении, будет происходить только за счет кинетической энергии хаотического движения молекул. А это значит, что температура системы будет убывать и может принять то значение, которое она имела до начала расширения.

Таким образом, с точки зрения молекулярно-кинетической теории на первый взгляд не видно, почему вещество с такими свойствами не могло бы существовать. Однако можно сразу показать, что с точки зрения общих законов термодинамики существование такого вещества невозможно. Это легко доказать, рассуждая от противного.

Предположим, что такое вещество существует, т. е. из начального состояния 1 можно прийти в некоторое состояние 2 с той же температурой как по изотерме T = const, так и по адиабате Q = 0 (рис. 18.1).

Может показаться, что такой ход адиабаты противоречит описанной выше модели гипотетического вещества, у которого при адиабатическом расширении температура сначала возрастает, а затем уменьшается. Ведь на рис. 18.1 в соответствии с рассмотренной моделью при одном и том же объеме более высоким температурам соответствуют меньшие давления. Напомним, однако, что речь идет не об идеальном газе, а о гипотетическом веществе, уравнение состояния которого может быть очень сложным.

Рис. 18.1. Изотерма и аднабата гипотетического вещества.

Рис. 18.2. Цикл тепловой машины с рабочим телом из гипотетического вещества.

Вещество с такими свойствами можно использовать в качестве рабочего тела в тепловой машине, рабочий цикл которой состоит из изотермического расширения от состояния I до состояния 2 и адиабатического сжатия (рис. 18.2). Во время изотермического расширения рабочее тело получает тепло от окружающей среды. При адиабатическом сжатии теплообмен отсутствует. За весь цикл машина совершает положительную работу, равную площади, ограниченной циклом на p-V-диаграмме. К концу цикла рабочее тело возвращается в исходное состояние, и, следо-

8*

вательно, внутренняя энергия принимает свое первоначальное значение. Поэтому на основании первого закона термодинамики можно утверждать, что все полученное системой за цикл тепло целиком превратилось в работу. Такая машина представляет собой вечный двигатель второго рода. Существование такой машины запрещено вторым законом термодинамики, который в формулировке Томсона имеет вид: невозможно создать периодически действующую тепловую машину, которая все полученное тепло целиком превращала бы в работу.

Итак, мы получили противоречие со вторым законом термодинамики. Значит, вещество с такими свойствами не существует.

В рассуждениях мы предполагали, что соединяющая состояния 1 и 2 изотерма лежит на p-V-днаграмме выше адиабаты и при изотермическом расширении наше гипотетическое вещество получает тепло. Если предположить, что адиабата лежит выше изотермы или что при изотермическом расширении гипотетическое вещество отдаст тепло, или и то, и другое вместе, то аналогичными рассуждениями можно убедиться, что во всех этих случаях мы будем приходить к противоречию либо со вторым, либо даже с первым законом термодинамики.

19. Давление влажного воздуха. Два сосуда объемом V=10 л каждый наполнены сухим воздухсм при давлении $p_0=1$ атм и температуре $t_0=0$ °С. В первый вводят $m_1=3$ г воды, во второй $m_2=15$ г и нагревают сссуды до t=100°С. Определить давление влажного воздуха при этой температуре в каждом сосуде.

Введенная в сосуд вода испаряется, и давление в сосуде согласно закону Дальтона становится равным сумме пар-. циальных давлений воздуха и паров воды.

Парциальное давление воздуха *p* в обоих сосудах одинаково и легко находится с помощью закона Шарля, так как нагревание неизменной массы воздуха происходит при постоянном объеме (ибо тепловым расширением сосуда можно пренебречь):

$$p = p_0 \frac{T}{T_0} = 1 \text{ атм} \cdot \frac{373 \text{ K}}{273 \text{ K}} = 1,37 \text{ атм}.$$

Теперь определим парциальное давление *p*₁ паров воды в первом сосуде при 100°С. Для этого воспользуемся уравнением Менделеева — Клапейрона •

$$p_1 = \frac{1}{V} \frac{m_1}{\mu} RT. \tag{1}$$

Подставляя в (1) числовые значения всех величин ($R = =0,082 \text{ атм} \cdot \pi/(\text{моль} \cdot ^{\circ}\text{C}), \mu = 0,018 \text{ кг/моль}),$ находим $p_1 = =0,51 \text{ атм} < 1 \text{ атм}.$ Полное давление в первом сосуде $p+p_1 = =1,88 \text{ атм}.$

Подсчитав таким же образом парциальное давление паров воды во втором сосуде, получнм $p_2=2,55$ атм > 1 атм. Итак, казалось бы, полное давление во втором сосуде

Итак, казалось бы, полное давление во втором сосуде равно

$$p+p_2=3,92$$
 атм.

Но не будем торопиться. Подумаем, может ли давление водяных паров при 100°С быть больше одной атмосферы. Вспомним, что при давлении 1 атм вода кипит при 100°С. Это значит, что давление насыщенных водяных паров равно 1 атм при 100°С. Другими словами, давление водяных паров при 100°С при наличии свободной поверхности жидкости никогда не может превышать 1 атм. Поэтому во втором сосуде вода испарилась не полностью, пар будет насыщенным и его парциальное давление равно 1 атм. Полное давление в этом сосуде p + 1 атм=2,37 атм.

Подумайте теперь, как можно подсчитать массу неиспарившейся воды во втором сосуде.

При решенин этой задачи для нахождения давления водяных паров мы использовали закон Менделеева — Клапейрона — уравнение состояния идеального газа. Это можно делать для достаточно разреженного пара, независимо от того, является ли он насыщенным или нет. Однако содержание закона в этих двух случаях совершенно различно. Если пар далек от насыщения, то, используя уравнение (1), мы находим давление пара, которое оказывается весьма близким к наблюдаемому на опыте. Для насыщенного пара использование этого уравнения для нахождения давления приводит, как мы только что видели, к абсурду. Однако это не означает, что закон неверен. Если вычисленное по уравнению (1) давление водяного пара оказывается больше, чем давление насыщенных паров при данной температуре, то это означает, что на самом деле масса пара меньше той, которую мы подставляли в уравнение, — часть вещества находится в жидкой фазе. Подставляя в формулу (1) давление насыщенных паров, взятое из таблиц, можно из нее найти массу насыщенного пара, содержащегося в объеме V при температуре T.

Таким образом, применяя уравнение Менделеева — Клапейрона к парам, нужно все время иметь под рукой таблицу зависимости давления насыщенных паров от температуры, т. е. зависимости температуры кипения от давления.

Теперь вы без труда сможете ответить на поставленный дополнительный вопрос — сосчитать массу неиспарившейся воды во втором сосуде.

20. Давление пара над искривленной поверхностью. Как влияет кривизна поверхности жидкости на давление ее насыщенного пара?

Давление насыщенного пара, т. е. пара, находящегося в состоянии термодинамического равновесия со своей жидкостью, зависит от формы поверхности жидкости: над вогнутой поверхностью давление пара ниже, а над выпуклой выше, чем над плоской. Для нахождения зависимости давления пара от кривизны поверхности жидкости рассмотрим явление поднятия (или опускания) жидкости в открытой с двух концов тонкой капиллярной трубочке, одним концом погруженной в жидкость. Пусть пространство над жидкостью ограничено и потому, после установления равновесия в системе, заполнено насыщенным паром. Ограничимся предельными случаями полного смачивания и полного несмачивания жидкостью стенок капилляра (рис. 20.1, а и б). В первом случае мениск жидкости вогнутый и происходит поднятие жидкости, во втором — мениск выпуклый и происходит опускание жидкости. Поскольку давление пара убывает с высотой, то ясно, что над поднявшейся жидкостью оно будет меньше, а над опустившейся больше, чем над плоской поверхностью жидкости в сосуде. Сопоставив это с формой мениска жидкости в капилляре в обоих случаях, приходим к выводу, что давление насыщенного пара над вогнутой поверхностью жидкости меньше, а над выпуклой — больше, чем над плоской. Этот результат

справедлив не только для жидкости в капилляре, но и для любой искривленной поверхности жидкости, например для капли.

Обратим внимание на роль силы тяжести в рассматриваемом примере. В отсутствие силы тяжести давление паров должно быть одинако-

наров должно овнъ одинаковым на любой высоте, и поэтому пар одновременно не может находиться в равновесии с участками жидкости, имеющими разную кривизну поверхности. Напротив, в поле тяжести, где давление пара зависит от высоты, он может одновременно находиться в равновесни и с плоской, и с выпуклой, и с вогнутой поверхностью. Именно так и обстоит дело в рассматриваемом примере.

Найдем количественную зависимость давления насыщенного пара от кривизны поверхности жидкости. Если h

Рис. 20.1. В поле тяжести пар в закрытом сосуде может находиться в равновесии с участками поверхности жидкости, имеющими разную кривизну.

есть высота поднятия жидкости в капилляре (рис. 20.1), то убыль давлення насыщенного пара на такой высоте равна $\Delta p = \rho_n g h$, где $\rho_n - плотность$ насыщенного пара при данной температуре. С другой стороны, высота поднятия жидкости может быть выражена через коэффициент поверхностного натяжения σ , плотность жидкости ρ и радиус трубочки r (который при полном смачивании совпадает с радиусом кривизны мениска жидкости). Для этого нужно приравнять вес столбика жидкости в капилляре, равный $\pi r^2 h \rho g$, удерживающей его силе поверхностного натяжения $2\pi r\sigma$. Отсюда находим: $h = \frac{2\sigma}{\rho r g} \Pi$ одставляя это значение hв Δp , находим, что в условиях термодинамического равновесия давление насыщенного пара над вогнутой сферической поверхностью радиуса r меньше, чем над плосной, на величину

$$\Delta p = \frac{2\sigma \rho_{\rm fl}}{r \rho_{\rm p}}.\tag{1}$$

При выпуклой сферической поверхности эта же формула определяет повышение давления насыщенного пара по сравнению с его давлением над плоской поверхностью. Формула (1) не содержит ускорения свободного падения g, и это не случайно. Связь величины давления насыщенных паров с кривизной поверхности жидкости обусловлена лишь поверхностным натяжением. Роль силы тяжести, как уже отмечалось выше, сводится только к тому, чтобы обеспечить равновесие пара одновременно с участками поверхности жидкости, имеющими разную кривизну.

Зависимостью давления насыщенного пара от кривизны поверхности жидкости во многих случаях, когда r не слишком мало, можно пренебречь. В самом деле, из формулы (1) следует, что даже для очень маленьких капель еоды, радиус которых составляет 10⁻⁶ см, давление насыщенного пара возрастает всего лишь на 10%. Но для маленьких капель жидкости эта зависимость может играть существенную роль. Например, представим себе пар, содержащий большое число капель жидкости различных размеров. Может оказаться, что по отношению к большим каплям пар будет перенасыщенным (т. е. его давление больше, чем в ссстоянии равновесия при той же температуре), в то время как по отношению к маленьким каплям пар еще не насыщен. Тогда возникает поток пара от поверхности малых капель к большим, т. е. жидкость, испаряющаяся с маленьких капель, будет конденсироваться на больших, и, следовательно, они будут расти за счет малых. Таким образом, состояние системы, в котором на одной высоте одновременно имеются и плоская поверхность жидкости, и отдельные капли, не является равновесным, ибо в равновесии давление насыщенных паров на одной высоте должно быть одинаково.

Обратим внимание, что при выводе формулы (1) плотность насыщенного пара ρ_{π} считалась не зависящей от высоты. Однако при очень малом радиусе капилляра высота поднятия жидкости становится настолько большой, что это предположение может оказаться слишком грубым. Очевидно, что в этом случае для давления насыщенных паров нужно воспользоваться барометрической формулой, в которой учитывается зависимость плотности от высоты:

$$p = p_0 \exp\left(-\frac{mgh}{kT}\right). \tag{2}$$

Здесь m — масса молекулы пара, k — постоянная Больцмана, T — абсолютная температура. Из формулы (2) видно, что p_0 представляет собой давление насыщенных паров при h=0, т. е. над плоской поверхностью жидкости.

Подставляя в формулу (2) найденное выше значение высоты подъема жидкости в капилляре $h=2\sigma/(\rho rg)$, на-ходим

$$p = p_0 \exp\left(-\frac{2m\sigma}{kT\rho r}\right). \tag{3}$$

Эта формула определяет давление насыщенных паров, находящихся в равновесии с вогнутой поверхностью жидкости. В случае выпуклой поверхности жидкости, над которой давление насыщенных паров больше, чем над плоской поверхностью, формула для давления отличается от (3) только знаком в показателе экспоненты:

$$p = p_0 \exp \frac{2m\sigma}{kT_0 r}.$$
 (4)

Впервые эти формулы были получены В. Томсоном (Кельвином).

При не слишком малых значениях радиуса кривизны поверхности *r*, когда показатель экспоненты в (3) или (4) мал по сравнению с единидей, эти формулы, разумеется, приводят к тому же результату, что и формула (1). Чтобы показать это, воспользуемся тем, что для экспоненциальной функции e^x при малых x ($x \ll 1$) справедлива приближенная формула $e^x \approx 1+x$. В результате для убыли давления $\Delta p = p_0 - p$ над вогнутой поверхностью с помощью формулы (3) получаем

$$\Delta p = p_0 \frac{2m\sigma}{kT_{\rm P}r}.$$
 (5)

Применяя к насыщенному пару уравнение состояния идеального газа p=nkT и учитывая, что произведение концентрации молекул пара *n* на массу молекулы *m* равно плотности пара ρ_{π} , убеждаемся, что формула (5) совпадает с выражением (1).

Интересно оценить, при каких значениях радиуса кривизны капель для нахождения давления насыщенного пара следует вместо простой формулы (1) использовать более

234 V. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

точную формулу (4). Очевидно, что такая необходимость возникает, когда показатель экспоненты в (4) приближается к единице. Отсюда для радиуса капли *г* получаем следующую оценку:

$$r \leqslant \frac{2m\sigma}{kT\rho}.$$
 (6)

Например, для воды, у которой $\sigma = 72$ дин/см, $m = 3 \cdot 10^{-23}$ г, при T = 300 К получаем $r = 10^{-7}$ см. При таком радиусе капель формулой (1) пользоваться уже нельзя.

Одним из основных законов природы, установленных опытным путем, является закон сохранения электрического заряда. В изолированной системе, что бы в ней ни происходило, полный электрический заряд, т. е. алгебраическая сумма положительного и отрицательного зарядов, остается постоянным.

Взаимодействие электрических зарядов, находящихся в покое, описывается законом Кулона. Этот закон устанавливает зависимость силы взаимодействия двух точечных зарядов в вакууме от их величин q_1 и q_2 и расстояния rмежду ними. В международной системе единиц (СИ) закон имеет вид

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2},\tag{1}$$

где є₀ — электрическая постоянная.

Электрические заряды наделяют окружающее их пространство особыми физическими свойствами — создают электрическое поле. Взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей.

Поле, создаваемое неподвижными зарядами, не меняется со временем и называется электростатическим. Силовой характеристикой электростатического поля является напряженность *E*, равная отношению силы, действующей на пробный заряд, к пробному заряду. Поле, создаваемое уединенным точечным зарядом *q*, является сферическисимметричным; величину его напряженности с помощью закона Кулона (1) можно представить в виде

$$E = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}.$$
 (2).

Энергетической характеристикой электростатического поля является потенциал φ , равный отношению работы,

совершаемой силами электрического поля при перемещении пробного заряда из данной точки поля в некоторую точку, потенциал которой принят равным нулю, к пробному заряду. Физический смысл имеет только разность потенциалов между рассматриваемыми точками, а не абсолютное значение потенциалов точек. Существование потенциала как энергетической характеристики точки поля связано с тем, что работа сил поля при перемещении заряда не зависит от формы траектории, а определяется положением начальной и конечной точек. Поля, обладающие таким свойством, называются потенциальными.

При рассмотрении электростатического поля точечного заряда удобно в качестве точки с нулевым потенциалом выбрать бесконечно удаленную точку. Тогда выражение для потенциала точки, отстоящей на расстояние *r* от заряда, имеет вид

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}.$$
 (3)

Электрические поля графически изображают либо с помощью силовых линий, либо с помощью эквипотенциальных поверхностей. Силовые линии перпендикулярны поверхностям постоянного потенциала, поэтому, имея одну из этих картин, мы можем построить другую.

Электрические поля удовлетворяют принципу суперпозиции: электрическое поле системы зарядов является суммой полей отдельных зарядов. Напряженность поля, создаваемого несколькими зарядами, равна векторной сумме напряженностей полей, создаваемых каждым зарядом в отдельности. Потенциал произвольной точки поля нескольких зарядов равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом. При этом точка нулевого потенциала выбирается общей для всех зарядов.

Существует еще один закон, эквивалентный закону Кулона, который может с равным успехом считаться основным законом электростатического взаимодействия. Это теорема Гаусса. Эквивалентность теоремы Гаусса и закона Кулона основана на обратной пропорциональности силы взаимодействия двух точечных зарядов квадрату расстояния и на принципе суперпозиции. Теорема Гаусса применима к любому потенциальному полю, где действует закон обратных квадратов, например к гравитационному полю. Теорема Гаусса формулируется следующим образом: в вакууме поток N напряженности электрического поля Eчерез любую воображаемую замкнутую поверхность определяется полным зарядом q, находящимся внутри этой поверхности:

$$N = q/\varepsilon_0$$
.

Во многих задачах этого раздела рассматриваются проводники, находящиеся в электрическом поле. В статическом состоянии напряженность электрического поля внутри проводника равна нулю, и все его точки имеют одинаковые потенциалы. Свободные заряды расположены на поверхности проводника. Вне проводника вблизи его границы линии напряженности перпендикулярны поверхности, а напряженность поля связана с плотностью зарядов о на поверхности следующим соотношением, вытекающим из теоремы Гаусса:

$$E = \sigma/\varepsilon_0.$$
 (4)

Емкость уединенного проводника определяется только его формой и размерами и измеряется отношением сообщаемого проводнику заряда Δq к происходящему при этом изменению потенциала проводника $\Delta \varphi$.

Емкость системы двух проводников, заряженных равными по величине разноименными зарядами (конденсатор), определяется отношением заряда одного проводника к разности потенциалов между ним и другим проводником и зависит только от размеров, формы и взаимного расположения проводников. Например, емкость плоского конденсатора с пластинами площадью S и расстоянием d между ними в вакууме равна

$$C = \frac{\varepsilon_0 S}{d}.$$
 (5)

Заряженный конденсатор обладает энергией. Если заряд конденсатора q, а разность потенциалов между пластинами U, то его энергия

$$W = \frac{1}{2} qU = \frac{1}{2} CU^2 = \frac{1}{2} \frac{q^2}{C}.$$
 (6)

Энергию заряженного конденсатора можно рассматривать либо как энергию взаимодействия зарядов, сосредоточенных на его обкладках, либо как энергию создаваемого этими зарядами электрического поля. В рамках электростатики оба эти представления эквивалентны. При изучении переменных во времени полей (электромагнитные волны) можно установить, что в действительности энергия сосредоточена в поле.

Выражение для энергии плоского конденсатора (6), если ее рассматривать как энергию заключенного между обкладками электростатического поля, имеет вид

$$W = \frac{1}{2} \varepsilon_0 E^2 V, \qquad (7)$$

где $V \Rightarrow Sd - obsem,$ занимаемый полем. Коэффициент при V имеет смысл объемной плотности энергии электростатического поля.

Если пространство между обкладками плоского конденсатора заполнено диэлектриком с проницаемостью є, емкость конденсатора увеличивается в є раз:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}.$$
 (8)

Выражение для энергии электрического поля в диэлектрике, как следует из формул (6) и (8), может быть записано в виде

$$W = \frac{1}{2} \varepsilon \varepsilon_0 E^2 V. \tag{9}$$

В этой формуле *E* — напряженность электрического поля в диэлектрике.

1. Заряд внутри проводящей сферы. Точечный заряд q помещен внутрь тонкостенного проводящего шара радиуса R и находится на расстоянии l от его центра. Какие заряды будут индуцированы на внутренней и наружной поверхностях шара и какова будет картина электрического поля в двух случаях: 1) шар заземлен, 2) шар изолирован и не заряжен?

Рассмотрим сначала первый случай. Металлический шар заземлен, т. е. соединен проводником с Землей — проводящим телом огромных размеров. Потенциал Земли практически не меняется, несмотря на то, что при таком

238

1. ЗАРЯД ВНУТРИ ПРОВОДЯЩЕЙ СФЕРЫ

соединении какой-то заряд мог перейти с шара на Землю или наоборот. Если принять потенциал бесконечно удаленной точки равным нулю, то потенциал Земли и, следовательно, соединенного с ней металлического шара также будет равен нулю. В самом деле; вследствие огромных по

Рис. 1.1. Если шар заземлен, то электрическое поле есть только внутри него.

Рис. 1.2. Электрическое поле в полости проводника не зависит от того, что находится вокруг.

сравнению с шаром размеров Земли можно считать, что она простирается до бесконечности.

В толще стенок металлического шара, как и в любом проводнике в состоянии равновесня, электрическое поле отсутствует. Нет его и в окружающем шар пространстве (рис. 1.1). В самом деле, ничего не изменится, если мы будем считать, что все это пространство заполнено проводником (рис. 1.2). Поэтому на наружной поверхности заземленного металлического шара электрического заряда нет.

Найдем величину заряда, индуцированного на внутренней поверхности металлического шара. Попробуем сначала упростить задачу: поместим точечный заряд q в центр сферы (это частный случай). Из симметрии совершенно ясно, что индуцированный заряд распределится по внутренней поверхности шара равномерно. По принципу суперпозиции электрическое поле вне сферы есть сумма полей, создаваемых точечным зарядом q и индуцированным зарядом q'. Так как вне шара эти поля компенсируют друг друга, то q'=-q, т. е. на внутренней поверхности шара индуцируется равный по величине заряд противоположного знака. Подумаем, что будет, если заряд q находится в произвольной точке внутри шара. Легко сообразить, что величина индуцированного заряда q' не зависит от расположения заряда q внутри шара, т. е. от расстояния l. При перемещении заряда q внутри шара будет меняться лишь распределение индуцированного заряда на внутренней поверхности шара.

Поскольку поле в любой точке вне сферы отсутствует, можно утверждать, что система зарядов q и q' электронейтральна: q' = -q. (Заметим, что обратное утверждение неверно: из нейтральности системы не следует, что создаваемое ею поле равно нулю; в качестве примера такой системы можно привести диполь.)

Этот результат становится особенно очевидным, если воспользоваться картиной силовых линий. Как известно, силовые линии электростатического поля всегда начинаются на положительных зарядах и оканчиваются на отрицательных, и число силовых линий однозначно связано с величиной заряда. Вне сферы поля нет, т. е. нет силовых линий. Другими словами, в данном случае все силовые линии начинаются и оканчиваются на зарядах q и q', откуда сразу следует, что полный заряд q+q'=0.

Если заряд *q* помещен в центре шара, то картина силовых линий симметрична: они представляют собой радиальные прямые, как и у уединенного точечного заряда. Картина силовых линий электрического поля внутри шара при смещенном из центра заряде *q* будет сложнее. Вблизи точечного заряда она, разумеется, останется почти без изменений, однако по мере удаления от заряда силовые линии искривляются, так что к внутренней поверхности шара они подходят под прямым углом (рис. 1.1). Поэтому густота силовых линий и, следовательно, поверхностная плотность индуцированных зарядов будет наибольшей в той точке внутренней поверхности шара, которая расположена ближе всего к заряду *q*.

Перейдем ко второму случаю, когда тонкостенный металлический шар изолирован. Теперь электрическое поле есть как внутри, так и вне шара (рис. 1.3). В толще стенок, т. е. в проводнике, поле, конечно, отсутствует.

Начнем опять с простого частного случая: заряд *q* расположен в центре шара. Из симметрии ясно, что индуцированные заряды на внутренней и внешней поверхностях шара распределены равномерно. Поскольку поля в толщьне стенок шара нет, индуцированный на внутренней поверхности заряд q_1 равен — q. Заряд q_2 , находящийся на наружной поверхности шара, поля внутри него не создает. Из электронейтральности проводящего шара следует, что q_2 = $=-q_1=q$. Таким образом, потенциал вне шара равен $\frac{1}{4\pi\varepsilon_0}\frac{q}{r}$, т. е. создаваемое этой системой электрическое поле совпадает с полем точечного заряда, расположенного в центре шара.

При смещении заряда q из центра сферы, как и в предыдущем случае, изменяется распределение заряда q₁

на внутренней поверхности шара, причем так, чтобы поле в толще стенок шара оставалось равным нулю. Поле в полости внутри шара при этом, конечно, меняется, но величина индуцированного заряда q1 остается прежней. Заряд на внешней поверхности $q_2 = q$ по-прежнему распределен равномерно и поля внутри сферы не создает. Таким образом, поле вне шара не зависит от расположения заряда q внутри него.

Отметим, что если изолированный шар был заряжен

Рис. 1.3. Если шар изолирован, то электрическое поле есть и снаружи.

еще до внесения в него заряда q, то этот избыточный заряд Q, как легко сообразить, останется равномерно распределенным по наружной поверхности, так что полный заряд этой поверхности будет равен q+Q. Внутри шара картина распределения поля и индуцированных зарядов останется без изменений.

 Заряд между двумя сферами. Точечный заряд *q* находится между двумя заземленными проводящими -концентрическими сферами с радиусами *a* и *b* на рас- стоянии *r* от центра (*a*<*r*<*b*) (рис. 2.1). Найти индуци-рованные на сферах заряды. Если читатель разобрался в предыдущей задаче, то ему совершенно ясно, что электрическое поле есть только в пространстве между сферами, и поэтому полный заряд системы равен нулю:

$$q + q_a + q_b = 0. \tag{1}$$

Второе уравнение для нахождения неизвестных зарядов q_a и q_b можно получить, записывая выражения для потен-

Рис. 2.1. Точечный заряд q между заземленными проводящими сферами.

циала в центре сфер. Конечно, потенциал во всех точках внутри малой сферы одинаков и равен потенциалу Земли, но мы выбираем для составления уравнения именно центр сферы, поскольку все индуцированные на каждой сфере заряды находятся от этой точки на одинаковых расстояниях а и b. В соответствии с принципом суперпозиции потенциал в центре сфер равен сумме потенциалов полей, создаваемых зарядом индуцированными на сферах a И Рассмотрим, зарядами. например. поле, создаваемое зарядами малой

сферы. Разбивая индуцированный на ней заряд q_a на малые части Δq_i , которые можно считать точечными зарядами, получим следующее выражение для потенциала в центре сферы:

$$\frac{1}{4\pi\varepsilon_0} \sum_i \frac{\Delta q_i}{a} = \frac{1}{4\pi\varepsilon_0 a} \sum_i \Delta q_i = \frac{q_a}{4\pi\varepsilon_0 a}.$$
 (2)

Замечательно, что такое простое выражение для потенциала получается несмотря на то, что создающие электрическое поле заряды распределены на сфере неравномерно. Более того, для нахождения потенциала в центре сферы и не нужно знать, как именно распределены индуцированные заряды.

Аналогичное выражение можно получить для потенциала, создаваемого в центре сфер зарядом *q*_b, индуцированным на внешней сфере. Теперь легко написать выражение для полного потенциала в центре сфер, создаваемого всеми зарядами. Приравнивая его нулю, получаем

$$\frac{1}{4\pi\varepsilon_0}\left(\frac{q}{r}+\frac{q_a}{a}+\frac{q_b}{b}\right)=0.$$
(3)

Решая систему уравнений (1) и (3), находим

$$q_a = -q \frac{a}{r} \frac{b-r}{b-a}, \quad q_b = -q \frac{b}{r} \frac{r-a}{b-a}.$$
 (4)

Как и следовало ожидать, знаки индуцированных зарядов противоположны знаку заряда q. Если в этих формулах положить радиус внутренней сферы a равным нулю, то мы приходим к предыдущей задаче о точечном заряде внутри проводящей сферы. При этом, как видно из (4), $q_a=0$, $q_b==-q$.

Если устремить к бесконечности радиус внешней сферы b, то мы приходим к задаче о точечном заряде вблизи проводящей сферы радиуса a. Первая из формул (4) в этом случае дает индуцированный на сфере заряд:

$$q_a = -q \frac{a}{r}.$$
 (5)

При неограниченном приближении заряда q к внешней поверхности сферы, т. е. при $r \rightarrow a$, величина индуцированного заряда все меньше и меньше отличается от величины подносимого к сфере заряда q.

Как вы думаете, какой смысл имеет в рассматриваемом предельном случае $b \rightarrow \infty$ заряд q_b в формуле (4)?

Используя решение этой задачи, можно найти индуцированные заряды в том случае, когда точечный заряд qнаходится между двумя параллельными бесконечными проводящими плоскостями (рис. 2.2). Для этого нужно устремить к бесконечности раднусы обеих сфер, сохраняя неизменными расстояние между ними и положение заряда q относительно поверхностей сфер: $a \rightarrow \infty$, $b \rightarrow \infty$, b - a ==const= d_1+d_2 . Выполняя аккуратно предельный переход, находим

$$q_1 = -q \frac{d_2}{d_1 + d_2}, \quad q_2 = -q \frac{d_1}{d_1 + d_2}.$$
 (6)

При симметричном расположении заряда q между плоскостями $q_1 = q_2 = -q/2$. Разумеется, можно поискать другой, независимый путь решения. В самом деле, плоскость «проще», чем сфера. Задача с плоскостями является предельным, более простым случаем задачи со сферами. Поэтому естественно придумать для нее более простое независимое решение, которое можно было бы использовать

Рис. 2.2. Точечный заряд *q* между бесконечными проводящими плоскостями.

которое можно было бы использовать для проверки решения задачи со сферами.

Будем рассуждать следующим образом. Что произойдет, если заряд переместить в другую точку плоскости А (рис. 2.2)? Очевидно, что изменится только распределение индуцированных на плоскостях зарядов, величины же их q_1 и q_2 останутся прежними: индуцированные заряды просто перемещаются вместе с зарядом q. Если поместить на этой плоскости несколько точечных 38рядов, то вследствие принципа суперпозиции каждый заряд индуцирует на плоскостях такие заряды, как один. Поэтому. если бы ОН был если нас интересует не распределение индуцированных зарядов, а только их величина, то заряд q можно равномерно «размазать» по всей плоскости А. От этого величина инду-

цированных зарядов не изменится, а задача становится совсем простой, ибо поле теперь однородно. Напряженность поля E_1 слева от этой плоскости равна $q_1/\varepsilon_0 S$ (S площадь пластин), справа от нее $E_2 = q_2/\varepsilon_0 S$, так как индуцированные на внутренних поверхностях пластин заряды q_1 и q_2 в этом случае распределены равномерно. Поскольку разность потенциалов между плоскостью A и каждой из пластин одна и та же, то $E_1d_1 = E_2d_2$, откуда немедленно следует, что

$$q_1 d_1 = q_2 d_2.$$
 (7)

Снаружи пластин поля нет, индуцированные заряды находятся только на внутренних поверхностях пластин,

и на основании теоремы Гаусса можно утверждать, что

$$q_1 + q_2 + q = 0.$$
 (8)

Решая совместно уравнения (7) и (8), получаем ответ — формулы (6).

Не всегда разумно сводить задачу к предыдущей!

3. Заряженная полусфера. Поверхность полусферической чаши радиуса *R* с тонкими стенками заряжена с постоянной плотностью. Определить потенциал в каждой точке поверхности, которая стянула бы чашу, как «кожа на барабане».

На первый взгляд задача кажется довольно сложной. Если выбрать на интересующей нас поверхности произвольную точку, то расстояние от нее до разных точек за-

ряженной полусферы будет не одинаковым: впечатление такое, что не обойтись без помощи высшей математики. Но не будем торопиться! Оказывается, задачу можно решить очень просто, используя принцип суперпозиции электрических полей и соображения симметрии.

Рассмотрим сначала равномерно заряженную по поверхности сферу. Как мы знаем, электрическое поле внутри отсутствует. С другой нее стороны, поле внутри сферы можно рассматривать как суперпозицию полей двух полусфер. Рассмотрим электрическое поле, создаваемое заря-

Рис. 3.1. Напряженность электрического поля *E* равномерно заряженной полусферы в точке *A* перпендикулярна диаметру *BC*.

дами верхней и нижней полусфер в плоскости их соприкосновения. Выберем произвольную точку *A* на этой плоскости (рис. 3.1) и проведем через нее вертикальную плоскость, перпендикулярную диаметру сферы *BC*, на котором лежит точка *A*. Равная нулю напряженность электрического поля сферы в этой точке является векторной суммой напряженностей полей, создаваемых отдельными элемен-

245

тами верхней и нижней полусфер. Как легко убедиться, равна нулю векторная сумма напряженностей E_1 и E_2 , создаваемых участками S_1 и S_2 . Участок S'_2 нижней полусферы, симметричный участку S_2 относительно плоскости соприкосновения полусфер, создает в точке A напряженность поля E'_2 такую, что векторная сумма E_1 и E'_2 перпендикулярна плоскости соприкосновения полусфер. Поскольку для каждого элемента S_1 слева от вертикальной плоскости всегда найдется соответствующий элемент S'_2 справа от этой плоскости, ясно, что полная напряженность поля, создаваемая в точке A всей нижней полусферой (т. е. полукруглой чашей), перпендикулярна плоскости соприкосновения (т. е. воображаемой поверхности, которая стягивает чашу, как «кожа на барабане»).

Точка A была выбрана совершенно произвольно, поэтому сказанное справедливо для всех точек интересующей нас поверхности. Если напряженность поля перпендикулярна поверхности в любой ее точке, то поверхность эквипотенциальная. Проще всего вычислить потенциал этой поверхности в точке, лежащей на оси симметрии чаши. Эта точка равно отстоит от поверхности чаши и по принципу суперпозиции ее потенциал

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{q}{R} = \frac{1}{4\pi\varepsilon_0} \frac{2\pi R^2 \sigma}{R} = \frac{\sigma R}{2\varepsilon_0}.$$

Еще проще можно решить эту задачу, рассматривая не напряженность поля, а потенциал в произвольной точке на интересующей нас поверхности. Опять рассмотрим вспомогательную задачу: найдем потенциал φ_0 поля, создаваемого равномерно заряженной сферой. Он одинаков во всех точках внутри сферы и равен $\sigma R/\epsilon_0$.

С другой стороны, по принципу суперпозиции он равен сумме потенциалов, создаваемых двумя полусферами. Из симметрии ясно, что в любой точке интересующей нас поверхности потенциалы электрического поля, создаваемого верхней и нижней полусферами, равны. Поэтому потенциал поля, создаваемого одной заряженной полусферой во всех точках этой поверхности, одинаков и равен $\varphi = \varphi_0/2 = \sigma R/2\varepsilon_0$.

Подумайте самостоятельно, как найти потенциал в любой точке плоскости «кожи», если ее продолжить за пределы чаши. 4. Диполь у проводящей стенки. Двухатомная молекула, состоящая из атомов различных элементов и, следовательно; обладающая несимметричным распределением электронной плотности, например хлористый водород HCl, представляет собой электронейтральную в целом систему, у которой положения центров положительного и отрицательного зарядов не совпадают в пространстве. В первом приближении такую полярную молекулу можно рассматривать как совокупность двух точечных разноименных зарядов одинаковой величины q и —q, отстоящих друг от друга на некоторое расстояние l. Эта система зарядов называется электрическим диполем. Как такая полярная молекула взаимодействует с проводящей стенкой сосуда?

Так как размеры молекул малы, то стенки сосуда с хорошей точностью можно считать плоскими. Поэтому для нахождения силы, действующей на молекулу со стороны стенки, можно рассмотреть задачу о взаимодействии диполя с бесконечной проводящей плоскостью.

Силы взаимодействия диполя со стенкой возникают вследствие того, что заряды диполя индуцируют заряды на проводящей поверхности степки. Взаимодействие диполя с такими индуцированными зарядами — это и есть взаимодействие с проводящей стенкой. Для нахождения действующей на диполь силы удобно воспользоваться так называемым методом электрических изображений. Сущность этого метода проще всего проиллюстрировать на примере взаимодействия одного точечного заряда с проводящей стенкой. После этого взаимодействие диполя со стенкой можно будет найти с помощью принципа суперпозиции.

Выясним, каким будет электрическое поле, если на расстоянии r от большого куска металла с плоской границей поместить точечный заряд q (рис. 4.1). Прежде всего ясно, что в толще металла электрического поля нет: E=0. Остается найти поле в левом полупространстве, содержащем заряд q. Так как на поверхности проводника индуцируются заряды, то полное поле слева представляет собой сумму полей заряда q и индуцированных зарядов. Как же найти поле индуцированных зарядов. Как же правом полупространстве тоже можно рассматривать как сумму полей заряда q и индуцированных на поверхности металла зарядов. Поэтому ясно, что поле индуцированных зарядов справа от границы эквивалентно полю одного точечного заряда — q, помещенного в ту же точку, где находится заряд q. Но поле индуцированных зарядов симметрично относительно плоской границы металла. Поэтому

Рис. 4.1. Точечный заряд вблизи проводящей стенки.

Рис. 4.2. Слева от стенки электрическое поле индуцированных на ней зарядов эквивалентно полю заряда — q.

слева от границы оно эквивалентно полю точечного заряда — q, расположенного справа от плоскости раздела симметрично заряду q (рис. 4.2).

Итак, сила, действующая на точечный заряд q со стороны индуцированных на поверхности металла зарядов, равна той силе, с которой действовал бы на него заряд —q, расположенный по другую сторону от границы металла симметрично заряду q:

$$F = \frac{1}{4\pi\epsilon_0} \frac{q^2}{(2r)^2}.$$
 (1)

Эта сила, разумеется, направлена к стенке, так как заряд q испытывает притяжение со стороны индуцированных зарядов противоположного знака.

4. ДИПОЛЬ У ПРОВОДЯЩЕЙ СТЕНКИ

Перейдем теперь к рассмотрению диполя вблизи проводящей стенки. В этом случае каждый из зарядов диполя независимо вызывает появление на стенке индуцированных зарядов, поле которых можно рассматривать так, как было описано выше. В результате действие индуцированных зарядов на диполь эквивалентно действию на него двух

Рис. 4.3. Действие индуцированных на степке зарядов эквивалентно действию «диполя-изображения».

Рис. 4.4. Силы, действующие на заряды диполя.

точечных зарядов, каждый из которых является «изображением» одного из зарядов диполя (рис. 4.3).

Пусть, например, ось молекулы ориентирована параллельно стенке сосуда. На рис. 4.4 показаны силы, действующие на заряды диполя со стороны «диполя-изображення». Из этого рисунка сразу видно, что взаимодействие диполя со стенкой носит характер притяжения, так как силы отталкивания F_1 и F_2 , во-первых, меньше сил притяжения F_3 и F_4 (расстояния между одноименными зарядами больше, чем между разноименными) и, во-вторых, направлены под некоторым углом θ .

Найдем результирующую силу притяжения. Равнодействующая сил притяжения **F**₃ и **F**₄ направлена к стенке и равна

$$\frac{1}{4\pi\epsilon_0} 2 \frac{q^2}{(2r)^2}.$$
 (2)

Величина каждой из сил отталкивания **F**₁ и **F**₂ дается выражением

$$\frac{1}{4\pi\varepsilon_0}\frac{q^2}{(2r)^2-l^2}.$$
 (3)

Поскольку эти силы направлены под углом θ (рис. 4.4), то их равнодействующая равна

$$\frac{1}{4\pi\epsilon_0} 2 \frac{q^2}{(2r)^2 + l^2} \cos\theta = \frac{1}{4\pi\epsilon_0} 2 \frac{q^2}{(2r)^2 + l^2} \frac{2r}{\sqrt{(2r)^2 + l^2}}.$$
 (4)

Будем считать, что расстояние l между зарядами, образующими диполь, мало по сравнению с расстоянием r до стенки. Тогда отношение $l'r \ll 1$, и величину равнодействующей силы отталкивания удобно выразить через малый безразмерный параметр $\gamma = (l/2r)^2$. Вместо выражения (4) при этом имеем

$$\frac{1}{4\pi\epsilon_0} 2 \frac{q^2}{(2r)^2} \frac{1}{1+\gamma} \frac{1}{\sqrt{1+\gamma}}.$$
 (5)

В выражении (5) сначала воспользуемся приближенной формулой $\sqrt{1+\gamma} \approx 1 + \frac{1}{2} \gamma$, •а затем, перемножив знаменатели двух последних дробей,— приближенной формулой $1/(1+\frac{3}{2}\gamma) \approx 1-\frac{3}{2}\gamma$. В результате для силы отталкивания вместо (5) получим

$$\frac{1}{4\pi\varepsilon_0} 2 \frac{q^2}{(2r)^2} \left(1 - \frac{3}{2}\gamma\right). \tag{6}$$

Полная сила F взаимодействия диполя со стенкой представляет собой равнодействующую сил притяжения (2) и сил отталкивания (6):

$$F = \frac{1}{4\pi\epsilon_0} \frac{3q^2}{(2r)^2} \,\gamma.$$
 (7)

Подставляя сюда $\gamma = (l/2r)^2$ и вводя дипольный момент p = ql, получим

$$F = \frac{1}{4\pi e_0} \frac{3p^2}{(2r)^4}.$$
 (8)

Обратим внимание на то, что хотя каждый из зарядов диполя взаимодействует со стенкой с силой, обратно пропорциональной квадрату расстояния до стенки, полная сила взаимодействия диполя со стенкой убывает с расстоянием гораздо быстрее — обратно пропорционально четвертой степени. Характер зависимости исследуемой силы взаимодействия от расстояния до стенки не зависит от

5. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ДИПОЛЯ

ориентации диполя. Чтобы убедиться в этом, можно рассмотреть случай, когда ось диполя перпендикулярна стенке. Расчет будет еще проще, так как все четыре силы теперь направлены по одной прямой. Величина силы в этом случае оказывается в два раза больше, чем для диполя, параллельного стенке. Подчеркнем еще раз, что во всех случаях сила носит характер притяжения, несмотря на то, что в целом диполь представляет собой электронейтральную систему.

5. Электрическое поле диполя. Рассмотреть электрическое поле, создаваемое диполем, т. е. двумя одинаковыми по величине разноименными зарядами +q и --q, находящимися на расстоянии *l* друг от друга. Найти потенциал и напряженность этого поля на расстоянии *r*, большом по сравнению с размером. диполя *l*.

Электрическое действие заряженного тела на расстоянии, большом по сравнению с его размерами, определяется полным зарядом этого тела Q. Чем дальше от тела, тем меньше отличается создаваемое им электрическое поле от поля точечного заряда: это поле обладает сферической симметрией, его потенциал убывает с расстоянием как 1/r, а напряженность — как $1/r^2$.

Если же тело в целом электрически нейтрально, т. е. его полный заряд Q равен нулю, то это вовсе не означает, что оно совсем не создает электрического поля. Как мы видели в предыдущей задаче, нейтральная молекула, обладающая дипольным моментом, вызывает появление индуцированных зарядов на металлической поверхности. Значит, диполь создает электрическое поле. Рассчитаем это поле. Рассматривая его как суперпозицию полей точечных зарядов +q и -q, выражение для потенциала φ в точке A, отстоящей от зарядов +q и -q на расстояния r_1 и r_2 (рис. 5.1), можно записать в виде

$$\varphi = \frac{1}{4\pi\epsilon_0} q \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{1}{4\pi\epsilon_0} \frac{q (r_2 - r_1)}{r_1 r_2}.$$
 (1)

Диполь принято характеризовать вектором дипольного момента *p*, величина которого равна произведению *ql*, а направление выбирается вдоль оси диполя от отрицательного заряда к положительному. Для описания поля

251

на большом расстоянии от диполя удобно вместо расстояний r_1 и r_2 ввести расстояние r от центра диполя и угол θ между вектором дипольного момента и направлением на точку наблюдения (рис. 5.1). Как видно из рис. 5.1, при $l/r \ll 1$ разность расстояний $r_2 - r_1$ можно записать в виде

$$r_2 - r_1 \approx l \cos \theta. \tag{2}$$

В том же приближении произведение r_1r_2 в знаменателе формулы (1) можно заменить на r^2 . В результате формула (1) для потенциала φ принимает вид

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{q l \cos \theta}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^2} \cos \theta.$$
(3)

В отличие от потенциала поля точечного заряда, убывающего как 1/r, потенциал электрического поля диполя убы-

Рис. 5.1. К вычислению потенциала диполя в точке А.

вает с расстоянием быстрее — как $1/r^2$. Разумеется, поле диполя не обладает сферической симметрией, поэтому его потенциал зависит не только от расстояния r, но и от направления на точку наблюдения, характеризуемого углом θ .

При вычислении напряженности поля в точке *А* можно, как и при вычислении потенциала, исходить из того, что

поле диполя есть суперпозиция полей точечных зарядов +q и -q. Поэтому напряженность поля E равна векторной сумме напряженностей E_+ и E_- , создаваемых этими зарядами (рис. 5.2, *a*). Величины этих напряженностей даются выражениями

$$E_{+} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r_{1}^{2}}, \quad E_{-} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r_{2}^{2}}.$$
 (4)

Интересующий нас результирующий вектор E удобно представить как сумму двух взаимно перпендикулярных составляющих, одна из которых, E_r , направлена вдоль радиус-вектора r, характеризующего положение точки A от-
носительно центра диполя, а другая, E_0 , перпендикулярна ей (рис. 5.2, δ).

На больших расстояниях от диполя, когда $l/r \ll 1$, векторы E_+ и E_- направлены почти в противоположные стороны (угол между ними отличается от π на малую величину δ) и мало отличаются по модулю (рис. 5.2, δ). Поэтому при нахождении E_r , как видно из рис. 5.2, нужно учитывать

Рис. 5.2. Напряженность поля диполя E можно представить как сумму векторов E_+ и E_- (a) или как сумму векторов E_r и E_0 (b).

различие векторов E_+ и E_- по модулю, но можно пренебречь тем, что они направлены не строго в противоположные стороны. Наоборот, при вычислении E_0 можно пренебречь различием в величине векторов E_+ и E_- , но нужно обязательно учесть их неколлинеарность. Таким образом, для E_r можно написать

$$E_r \approx \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_1^2} - \frac{q}{r_2^2} \right) = \frac{1}{4\pi\epsilon_0} q \frac{(r_1 + r_2)(r_2 - r_1)}{(r_1 r_2)^2}.$$
 (5)

Учитывая, что $l/r \ll 1$, можно заменить в знаменателе этого выражения r_1r_2 на r^2 , а в числителе сумму $r_1 + r_2$ на $2r_1$,

разность $r_2 - r_1$ на $l \cos \theta$. В результате получим

$$E_r = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3} \cos\theta.$$
 (6)

При вычислении E_{θ} , учитывая, что угол δ мал, можно написать

$$E_{\theta} \approx E_{+} \delta. \tag{7}$$

При подстановке сюда значения E_+ из формулы (4) можно r_1 заменить на r. Для величины δ , как видно из рис. 5.2, δ ,

Рис. 5.3. Картина силовых линий поля диполя на большом расстоянии от него.

можно написать $\delta \approx l \sin \theta / r$. В результате выражение (7) принимает вид

$$E_{\theta} = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} \sin\theta.$$
 (8)

Формулы (6) и (8) позволяют представить себе картину силовых линий электрического поля диполя. В точках, лежащих на оси диполя (где угол θ равен нулю или π), E_{θ} = = 0, и, следовательно, вектор напряженности направлен вдоль этой оси. Из формулы (6) видно, что его направление совпадает с направлением вектора дипольного момента **р**

как при $\theta = 0$, так и при $\theta = \pi$. Действительно, при $\theta = \pi \dot{E}_r$, отрицательно, но следует учитывать, что радиус-вектор r, на который проектируется вектор E, направлен в сторону, противоположную p. Во всех точках плоскости, перпендикулярной оси диполя и проходящей через его середину, для которых $\theta = \pi/2$, радиальная составляющая E_r , обращается в нуль. Напряженность поля в этих точках перпендикулярна плоскости и направлена в сторону, противоположную вектору дипольного момента p. Силовые линии для расстояний, больших по сравнению с размерами диполя, схематически показаны на рис. 5.3. В пространстве картина силовых линий симметрична относительно оси диполя.

Формулы (6) и (8) для напряженности поля можно получить и иначе, используя найденное выше выражение для потенциала (3). Для этого воспользуемся тем, что проекция напряженности поля на любое направление E_s связана с изменением потенциала $\Delta \varphi$ при перемещении точки вдоль этого направления на расстояние Δs следующим соотношением:

$$E_s = -\frac{\Delta\varphi}{\Delta s}.$$
 (9)

Для нахождения E_r нужно совершить перемещение вдоль радиус-вектора, т.е. положить в (9) Δs равным Δr . Вычис-

ляя с помощью формулы (3) предел отношения $\Delta \varphi / \Delta r$ при $\Delta r \rightarrow 0$, получаем для E_r выражение (6). Совершенно аналогично для нахождения E_{θ} нужно совершить перемещение Δs перпендикулярно радиус-вектору r в направлении возрастания угла θ . При этом, как видно из рис. 5.4, $\Delta s = r \Delta \theta$, и вычисление

$$E_{\theta} = -\frac{1}{r} \frac{\Delta \varphi}{\Delta \theta}$$

с помощью формулы (3) приводит к выражению (8).

Формулы (6) и (8) важны потому, что они определяют электрическое поле на большом расстоянии не только для настоящего диполя, т. е. двух точечных разноименных зарядов q и -q, но и для любой электрически нейтральной системы зарядов, у которой центры положительных и отрицательных зарядов не совпадают. Таким образом, если тело со сложным распределением заряда, полная величина которого равна Q, на достаточно большом расстоянии кажется просто точечным зарядом, то при Q=0 такое тело будет уже похоже на диполь. Другими словами, для нейтрального в целом тела можно подобрать диполь с таким моментом p, что создаваемое этим диполем на большом расстоянии электрическое поле будет практически эквивалентно полю тела со сложным распределением заряда.

Рис. 5.4. К нахождению связи величины перемещения Δs с изменением угла θ.

VI. ЭЛЕКТРОСТАТ ИКА

6. Взаимодействие диполей. Имеются два диполя p_1 и p_2 , находящиеся на большом расстоянии друг от друга (рис. 6.1). Диполь p_1 закреплен так, что его ось составляет угол θ_1 с прямой, соединяющей центры диполей. Диполь p_2 может, подобно магнитной стрелке, свободно поворачиваться вокруг оси, перпендикулярной плоскости чертежа. Под каким углом θ_2 установится ось второго диполя в равновесии?

Этот пример дает возможность проиллюстрировать применение формул для напряженности электрического поля диполя, полученных в предыдущей задаче.

Электрическое поле оказывает на диполь ориентирующее действие. Легко сообразить, что для диполя, который

Рис. 6.1. Свободный диполь p_2 ориентируется вдоль напряженности поля E_1 , создаваемого закрепленным диполем p_1 .

может свободно поворачиваться вокруг оси, в равновесии вектор дипольного момента направлен вдоль напряженности внешнего электрического поля. В данном случае для диполя p_2 внешним является электрическое поле, создаваемое диполем p_1 . Поэтому для нахождения угла θ_2 нужно найти направление вектора напряженности электрического поля E_1 , создаваемого диполем p_1 в том месте, где находится диполь p_2 . Как видно из рис. 6.1,

$$tg \theta_2 = \frac{E_{1\theta}}{E_{1r}}.$$
 (1)

Воспользовавшись для E₁₀ и E_{1r} формулами (8) и (6) предыдущей задачи, получим

$$tg\theta_2 = \frac{1}{2} tg\theta_i.$$
 (2)

Отметим, что определяемое соотношением (2) значение θ_3 не зависит ни от величины дипольного момента p_1 , ни от расстояния между диполями. Графическое решение уравнения (2) показано на рис. 6.2. Для любого заданного значения θ_1 находим на графике значение $tg\theta_i$ (точка A). Уменьшив в соответствии

с уравнением (2) ординату вдвое (точка B), находим_значение угла θ_2 .

При равном нулю значений θ_1 угол θ_2 также равен нулю, т. е. второй диполь устанавливается в том же направлении. Если угол $\theta_1 = \pi/2$, т. е. первый диполь закреплен под прямым углом к линии, соединяющей центры диполей, то второй (свободный) диполь также установится под прямым углом к этой прямой. но вектор его дипольного момен-

та p_3 будет направлен в сторону, противоположную p_1 . Хотя формула (2) к этому случаю непосредственно не применима, этот результат можно получить предельным переходом, постепенно приближая угол θ_1 к $\pi/2$. Разумеется, это сразу видно и из картины силовых линий диполя на рис. 5.3.

Положение равновесия диполя p_2 , показанное на рис. 6.1, является устойчивым: при отклонениях ориентации диполя от равновесного значения θ_2 появляется момент сил, который стремится повернуть диполь в положение равновесия. Кроме этого положения равновесия есть еще одно, в котором диполь p_2 направлен в противоположную сторону. Но это положение равновесия неустойчиво.

Используя приведенное выше решение задачи, можно легко выяснить, как будет вести себя диполь, который может свободно поворачиваться вокруг неподвижной оси, если он находится около проводящей стенки. Как было показано в задаче 4, действие на диполь индуцированных

на проводящей поверхности зарядов эквивалентно дейст-вию диполя-изображения (рис. 4.3). Диполь на оси будет находиться в равновесии около проводящей плоскости, когда его дипольный момент *p* либо параллелен, либо перпендикулярен стенке (рис. 6.3). Легко убедиться, что в равновесии вектор дипольного мо-мента *p* может быть направлен не только так, как показано на рис. 6.3, *a* и *б*, но и в противоположную сторону. Выясним, будут ли эти положения равновесия устойчи-выми. Если бы диполь-изображение был закреплен, то

Рис. 6.3. Положения равновесия диполя р вблизи проводящей стенки.

равновесие диполя p у проводящей стенки было бы устойчивым как в случае (a), так н в случае (b) на рис. 6.3. Однако диполь-изображение на самом деле не закреплен: при отклонении диполя на оси от равновесного положения диполь-изображение также поворачивается. В результате положение равновесия, показанное на рис. 6.3, a, оказывается устойчивым, а на рис. 6.3, δ — неустойчивым. Чтобы убедиться в этом, рассмотрим отклонение диполя p от положения равновесия, показанного на рис. 6.3, a (рис. 6.4, a). Пусть диполь p повернулся на угол θ . Тогда, очевидно, диполь-изображение p' повернется на такой же угол θ в противоположную сторону. При этом напряженность электрического поля E, создаваемого индуцированными на стенке зарядами, будет такой же, как и напряженность поля диполя-изображения. Как видно из уравнения (2), угол θ_2 , под которым направлен вектор напряженности E, будет меньше, чем угол θ (рис. 6.4, a). При малых отклонениях от равновесия, когда tg $\theta \approx \theta$, из уравнения (2)

видно, что $\theta_2 \approx \theta/2$. Так как диполь *p* стремится ориентироваться по направлению вектора *E*, то возникающий при отклонении момент сил будет возвращать диполь в положение равновесия. Итак, это положение равновесия действительно устойчиво.

А вот в случае (б) малое отклонение диполя p от положения равновесия вызовет, как видно из рис. 6.4, б, появление момента сил, уводящего диполь еще дальше от этого положения равновесия.

До сих пор для ответа на поставленные BOпросы нам достаточно было рассматривать толь-KO вращающий момент действующих сил, на Ho диполь. BO многих случаях важно знать peзультирующую силу. действующую на диполь в электрическом поле. Очевидно, что в однородполе эта сила равном Для на нулю. TOLO чтобы сила сущетакая ствовала. поле должно быть неоднородным. Например, в задаче 4 было показано, что на диполь, находящийся у про-

Рис. 6.4. К выяснению устойчивости положений равновесия диполя p, показанных на рис. 6.3.

водящей поверхности, действует сила, притягивающая его к поверхности. Эта сила обусловлена неоднородным электрическим полем индуцированных зарядов. Поскольку, как мы видели, поле индуцированных зарядов эквивалентно полю диполя-изображения, то найденная там сила фактически выражает силу взаимодействия двух диполей. Следует только учитывать, что сила взаимодействия между реальным диполем и диполем-изображением всегда имеет характер притяжения, в то время как два реальных диполя в зависимости от их взаимной ориентации могут как притягиваться, так и отталкиваться. Но при любой ориентации диполей величина силы взаимодействия

VI. ЭЛЕКТРОСТАТИКА

, обратно пропорциональна четвертой степени расстояния между ними. А какой будет сила, действующая на диполь, находящийся в поле точечного заряда?

7. Диполь и точечный заряд. Найти силу, действующую на диполь с моментом *p* в электрическом поле, создаваемом точечным зарядом *Q*.

Вместо того чтобы искать силу, действующую на диполь со стороны точечного заряда, можно найти силу, действующую на точечный заряд со стороны диполя, воспользовавшись для этого формулами (6) и (8) задачи 5 для

Рис. 7.1. Силы взаимодействия диполя и точечного заряда в случае, когда точечный заряд Q расположен на оси диполя *p*.

напряженности электрического поля диполя. Для неподвижных заряда и диполя в силу третьего закона Ньютона эти силы равны по модулю: $|F_1| = |F_2| = F$.

Рассмотрим сначала случай, когда образующие диполь заряды +q и -q и точечный заряд Q расположены на одной прямой (рис. 7.1). В этом случае напряженность поля диполя в той точке, где расположен заряд Q, будет определяться формулами (6) и (8) задачи 5, если в них положить $\theta=0$. Тогда $E_{\theta}=0$, т. е. напряженность направлена вдоль линии, соединяющей заряды, а ее величина дается формулой (6) для E_r при $\theta=0$:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{2\rho}{r^3}.$$
 (1)

Отсюда для величины силы F, действующей на заряд Q, а следовательно, и на диполь, получаем

$$F = |Q|E = \frac{1}{4\pi\epsilon_0} \frac{2p |Q|}{r^3}.$$
 (2)

Возникновение силы F_i , действующей на диполь, в этом случае обусловлено тем, что образующие диполь заряды

260

+q и -q находятся на разных расстояниях от точечного заряда Q (рис. 7.1), и, следовательно, действующие на них силы отличаются по величине. Из рис. 7.1 видно, что действующие на диполь и на точечный заряд силы F_1 и F_2 направлены вдоль одной и той же прямой (разумеется, в противоположные стороны).

Более интересен случай, когда ось диполя перпендикулярна прямой, соединяющей диполь и заряд Q (рис. 7.2). Теперь для определения напряженности создаваемого ди-

полем электрического поля в том месте, где находится заряд Q, необходимо в формулах (6) и (8) задачи 5 положить $\theta = \pi/2$. Тогда $E_r = 0$ и, следовательно, напряженность поля Eперпендикулярна линии, соединяющей точечный заряд Q с центром диполя.

Рис. 7.2. При таком расположении диполя и точечного заряда силы их взаимодействия F_1 и F_2 не направлены вдоль одной прямой.

Величина напряженности определяется формулой (8) для E_{μ} при $\theta = n/2$:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{\rho}{r^3} \,. \tag{3}$$

Отсюда следует, что сила F_2 , действующая на заряд Q, также перпендикулярна линии, соединяющей диполь и заряд (рис. 7.2). По величине эта сила равна

$$F = |Q|E = \frac{1}{4\pi\epsilon_0} \frac{p|Q|}{r^3}.$$
 (4)

Такая же по величине и противоположная по направлению сила F_1 действует на диполь p (рис. 7.2).

Возникновение силы F_1 , действующей на диполь, легко понять, если учесть, что одинаковые по величине силы F_+ и F_- , действующие на образующие диполь заряды +q и -q, направлены под некоторым углом δ к линии, соединяющей центр диполя с зарядом Q (рис. 7.3).

Результирующая (т. е. векторная сумма) сил F_+ и $F_$ представляет собой силу F_1 , действующую на весь диполь. Точно так же легко понять, почему действующая на заряд Q сила F_2 направлена так, как показано на рис. 7.2: F_2 — это равно действующая сил F'_+ и F'_- , с которыми действуют на заряд Q образующие диполь заряды +q и -q (рис. 7.3). Все это не вызывает сомнений.

Однако в целом картина взаимодействия заряда Q и диполя p, показанная на рис. 7.2, на первый взгляд выглядит довольно странно: хотя силы F_1 и F_2 равны по величине и противоположны по направлению, они не направлены вдоль прямой, соединяющей взаимодействующие

Рис. 7.3. Сила F_1 — результирующая сил F_+ и F_- , сила F_2 — равнодействующая сил F'_+ и F'_- .

тела. Поэтому силы F_1 и F_2 образуют пару сил. Результирующая пары сил F_1+F_2 равна нулю, т. е. ускорение поступательного движения у рассматриваемой системы отсутствует. Однако вращающий момент пары сил отличен от нуля и его величина M равна

$$M = Fr = \frac{1}{4\pi\varepsilon_0} \frac{p \mid Q \mid}{r^2}.$$
 (5)

Казалось бы, под действием этого вращающего момента рассматриваемая система должна совершать ускоренное вращение по часовой стрелке. Но этого не может быть, так как силы F_1 и F_2 — внутренние и, следовательно, не могут изменить полный момент импульса системы. Налицо явный парадокс.

Никакого парадокса, разумеется, не возникает, если рассматривать диполь не как нечто целое, а как совокупность двух точечных зарядов +q и -q (рис. 7.3). В этом случае силы взаимодействия каждой пары точечных зарядов направлены вдоль линии, соединяющей эти заряды, и вращающих моментов не создают. А как объяснить этот парадокс, если диполь рассматривать как целое, что приводит к картине взаимодействия, показанной на рис. 7.2? При таком подходе парадокс возникает потому, что в рассуждениях не был учтен момент сил, действующих на диполь **p**, помещенный в поле точечного заряда Q, т. е. не учитывалось различие между результирующей и равнодействующей силами.

Из рис. 7.3 видно, что действие сил F_+ и F_- на диполь как целое сводится не только к результирующей силе F_1 , но еще и к некоторому вращающему моменту, который стремится повернуть диполь против часовой стрелки. Другими

Рис. 7.4. Силы взаимодействия диполя и точечного заряда при произвольной ориентации диполя,

словами, силы F_+ и F_- нельзя заменить одной равнодействующей F_1 , в отличие от сил F'_+ и F'_- , действующих на заряд Q. При вычислении вращающего момента можно считать силы F_+ и F_- параллельными и рассматривать их как пару сил. В результате для величины действующего на диполь момента сил M_1 получаем

$$M_{1} = F_{+}l = \frac{1}{4\pi\epsilon_{0}} \frac{q |Q|}{r^{2}} l = \frac{1}{4\pi\epsilon_{0}} \frac{p |Q|}{r^{2}}.$$
 (6)

Таким образом, на систему в целом, состоящую из диполя и точечного заряда, действуют два противоположно направленных вращающих момента, величина которых, как видно из формул (5) и (6), одинакова. Поэтому полный вращающий момент равен нулю.

При произвольной ориентации диполя, когда его ось образует угол. θ с направлением на точечный заряд Q, значения обеих составляющих напряженности поля диполя E_r и E_{θ} отличны от нуля, так что полный вектор напряженности E направлен так, как показано на рис. 7.4. Вспоминая решение задачи 6, легко сообразить, что угол θ_2 , под которым направлена сила F_2 , действующая на точечный заряд Q, определяется уравнением

$$\operatorname{tg} \theta_{\mathbf{z}} = \frac{1}{2} \operatorname{tg} \theta. \tag{7}$$

Величину силы F₂ легко найти, учитывая, что E₀ и E, направлены под прямым углом друг к другу:

$$F_{2} = |Q|E = |Q|V\overline{E_{r}^{2} + E_{\theta}^{2}} = \frac{1}{4\pi\varepsilon_{0}} \frac{p|Q|}{r^{3}} \sqrt{1 + 3\cos^{2}\theta}.$$
 (8)

Такая же по величине, противоположно направленная сила F_i действует на диполь p (рис. 7.4). Силы F_1 и F_2 образуют пару, вращающий момент которой отличен от нуля. Как и в разобранном выше случае, этот момент компенсируется вращающим моментом, действующим на диполь. Как видно из формулы (8), действующая на диполь сила отлична от нуля при любой ориентации диполя. Она максимальна при $\theta=0$ и $\theta=\pi$ и минимальна при $\theta=\pi/2$.

Сила взаимодействия диполя и точечного заряда об-Сила взаимодействия диполя и точечного заряда об-ратно пропорциональна третьей степени расстояния между ними, т. е. убывает с расстоянием быстрее, чем сила взаи-модействия точечных зарядов. Сила взаимодействия двух диполей, как мы видели в задаче 4, убывает еще быстрее — обратно пропорционально четвертой степени расстояния. Используя результаты этой задачи, можно объяснить возникновение сил, действующих на незаряженный ди-

электрик в неоднородном электрическом поле. Каждый элемент объема диэлектрика можно рассматривать как элемент объема диэлектрика можно рассматривать как диполь, вектор дипольного момента которого направлен вдоль напряженности электрического поля. В неоднород-ном поле на ориентированный таким образом диполь будет действовать сила, направленная в ту сторону, где напряжен-ность поля больше. Другими словами, диполь втягивается в область более сильного поля. Отметим во избежание недоразумений, что на рис. 7.1 изображен противоположный случай, когда диполь ориентирован не по полю, а против него и выталкивается из области сильного поля. Такая ориентация соответствует неустойчивому равновесию дипо-ля. Дипольный момент, возникающий в изотропном диэлектрике при помещении его в электрическое поле, всег-да ориентирован по полю, и поэтому диэлектрик втягива-ется в область сильного поля.

8. Разрезанный заряженный шар. Заряженный металлический шар радиуса *R* разрезан на две части плоскостью, проходящей на расстоянии *h* от центра шара (рис. 8.1). С какой силой отталкиваются друг от друга эти части? Полный заряд шара равен *Q*.

Будем для определенности считать, что шар заряжен положительно. Заряд металлического шара Q при отсутствии поблизости других заряженных или незаряженных тел

Рис. 8.1. Заряженный металлический шар разрезан на две части.

Рис. 8.2. Электростатическая сила ΔF в каждой точке направлена по нормали к поверхности.

будет равномерно распределен по его поверхности. При этом поверхностная плотность заряда о одинакова во всех точках и равна

$$\sigma = \frac{Q}{4\pi R^2}.$$
 (1)

Из симметрии очевидно, что электростатическая сила ΔF , действующая на каждый малый элемент ΔS заряженной поверхности, направлена по нормали к поверхности (рис. 8.2). Как найти эту силу? Для этого можно найти напряженность электрического поля, создаваемого в том месте, где находится выделенный элемент поверхности ΔS , всей остальной частью заряженного шара.

Напряженность электрического поля вне заряженного шара совпадает с полем точечного заряда такой же величины, помещенного в центр шара. Поэтому непосредственно у поверхности шара величина напряженности *E* равна

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^2} = \frac{\sigma}{\varepsilon_0} \,. \tag{2}$$

По принципу суперпозиции это поле можно рассматривать как векторную сумму полей, создаваемых выделенным элементом поверхности шара ΔS и всей остальной частью шара. Так как нас интересует напряженность поля непосредственно у поверхности шара, то выделенный элемент ΔS можно считать плоским и при вычислении создаваемого им поля воспользоваться выражением для напряженности поля

равномерно заряженной плоскости. Как известно, это поле существует по обе стороны от плоскости (рис. 8.3), и величина его напряженности *E*₁ равна

$$E_1 = \frac{q}{2\epsilon_0} , \qquad (3)$$

Рис. 8.3. Электрическое поле заряженной плоскости.

Внутри шара вплоть до самой его поверхности результирующая напряженность поля равна нулю. Значит, внутри

шара вблизи элемента ΔS поле этого элемента, направленное внутрь шара, компенсируется полем, создаваемым всей остальной частью шара. Таким образом, в месте расположения выделенного элемента ΔS вся остальная часть заряженного шара создает электрическое поле E_2 , направленное наружу, причем величина напряженности E_2 также определяется соотношением (3). Снаружи это поле E_2 имеет одинаковое направление с полем, создаваемым элементом ΔS , и, складываясь с ним, дает полное поле, напряженность которого вдвое больше и определяется выражением (2).

Сила, действующая на элемент ΔS , равна произведению заряда этого элемента $\sigma \Delta S$ на напряженность поля $E_2 = \sigma/2\varepsilon_0$:

$$\Delta F = \frac{\sigma^2}{2\epsilon_0} \Delta S. \tag{4}$$

Сила, действующая на единицу площади поверхности по нормали к ней, представляет собой давление *p*, для которого в соответствии с формулой (4) имеем

$$p = \frac{\Delta F}{\Delta S} = \frac{\sigma^2}{2\epsilon_0} \,. \tag{5}$$

Для нахождения равнодействующей F сил электростатического давления, действующих, например, на верхнюю часть шара, можно представить себе жесткую полую оболочку, имеющую точно такую же форму (рис. 8.4). Если внутри такой оболочки находится газ под давлением p, то сила давления этого газа на «крышку» оболочки совпадает с интересующей нас силой F. Но совершенно очевидно, что точно такая же по величине сила действует на «дно» этой жесткой оболочки. Поэтому F = pS, где $S = \pi (R^2 - h^2) - площадь «дна». Таким образом,$

$$F = \rho S = \frac{\sigma^2}{2\varepsilon_0} \pi R^2 \left(1 - \frac{h^2}{R^2} \right).$$
 (6)

Подставляя сюда значение поверхностной плотности заряда о из (1), получаем

$$F = \frac{1}{4\pi r_0} \frac{Q^2}{8R^2} \left(1 - \frac{h^2}{R^2} \right).$$
 (7)

Сила отталкивания частей шара будет наибольшей, когда шар разрезан по диаметру (h=0). Обратим внимание на то, что в ответ входит квадрат полного заряда шара Q. Это

означает, что взаимодействие частел разрезанного шара всегда носит характер отталкивания, независимо от того, заряжен шар положительно или отрицательно, как это очевидно и из качественных физических соображений.

Величину давления *р* можно найти и иначе, используя закон сохранения энергии. Предположим, что радиус шара увеличился на малую величину Δr . При этом электростатические силы совершат работу, равную *р* ΔV , где ΔV увеличение объема шара. Эта работа совершается за счет электростатической энергии. Электростатическую энергию заряженного шара можно рассматривать как энергию создаваемого им поля. При увеличении раднуса шара электростатическая энергия убывает, так как уменьшается объем, занимаемый полем. Это уменьшение энергии равно произведению объемной плотности электростатической энергии $W = \frac{1}{2} \varepsilon_0 E^2$ на увеличение объема шара ΔV . Приравнивая работу электростатических сил уменьшению

Рис. 8.4. К нахождению силы давления, действующей на отрезанную часть шара.

энергии

$$\rho \,\Delta V = \frac{1}{2} \,\varepsilon_0 E^2 \,\Delta V \tag{8}$$

и подставляя сюда $E = \sigma/\epsilon_0$ из формулы (2), находим $p = -\sigma^2/2\epsilon_0$, что совпадает с полученным ранее выражением (5).

9. Парадокс электростатической энергии. Два одинаковых металлических шарика раднуса R находятся на большом по сравнению с их размерами расстоянии r друг от друга. Один из шариков имеет заряд q, другой не заряжен. Шарики соединяют на некоторое время проводником ничтожно малой емкости, в результате чего заряд q распределяется между ними поровну: $q_1=q_2=q/2$. Теперь оба шарика заряжены и энергия их взаимодействия W равна

$$W = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{4r}.$$
 (1)

Объяснить возникающий парадокс: до соединения один из шариков не был заряжен, и, следовательно, энергия их взаимодействия была равна нулю. После соединения шариков, как видно из формулы (1), энергия их взаимодействия стала положительной, т. е. увеличилась. Откуда взялась эта энергия?

Из закона сохранения энергии следует, что электростатическая энергия шариков могла только уменьшиться. В самом деле, при соединении шариков и перетекании заряда в соединительном проводнике выделяется тепло. При соединении могла проскочить искра, что неизбежно связано с превращением электрической энергии в другие виды энергии. Возникающее противоречие с законом сохранения энергии может означать только то, что в приведенных в условии задачи рассуждениях что-то не учтено. Что же именно?

Дело в том, что энергия взаимодействия заряженных тел — это еще не вся электростатическая энергия. Энергия взаимодействия, выражаемая формулой (1), равна работе внешних сил при сближении заряженных тел из бесконечности до расстояния *г* между ними. Но эта формула не учитывает энергию электростатического взаимодейст-

268

вия отдельных частей каждого из заряженных тел между собой, так называемую собственную энергию заряженных тел. Собственная энергия заряженного тела равна работе внешних сил, которая совершается при сообщении телу электрического заряда. Как найти величину этой энергии? Рассмотрим уединенное заряженное тело. Его собственная энергия не зависит от того, каким способом оно было заряжено. Поэтому рассмотрим такой процесс зарядки, для которого легче всего сосчитать работу внешних

Рассмотрим уединенное заряженное тело. Его собственная энергия не зависит от того, каким способом оно было заряжено. Поэтому рассмотрим такой процесс зарядки, для которого легче всего сосчитать работу внешних сил. Пусть заряд переносится на тело настолько малыми порциями $\Delta q'$, что влиянием поля малого заряда на распределение уже сообщенного телу заряда можно пренебречь. Тогда работа ΔA , совершаемая при перемещении $\Delta q'$ из бесконечности на тело, равна произведению переносимого заряда $\Delta q'$ на потенциал тела φ' . Потенциал металлического тела в любой момент связан с находящимся на нем зарядом q' соотношением $\varphi' = q'/C$, где C — емкость уединенного тела. Поэтому для работы ΔA получаем

$$\Delta A = \Delta q' \, \varphi' = \frac{1}{C} \, q' \, \Delta q'. \tag{2}$$

Суммируя работы ΔA по переносу всех порций заряда $\Delta q'$, пока заряд тела не станет равен q, получаем выражение для собственной энергии W_1 :

$$W_i = \frac{q^2}{2C} \,. \tag{3}$$

Емкость уединенного металлического шара радиуса R равна $4\pi\epsilon_0 R$, поэтому собственная энергия такого шара, имеющего заряд q, дается выражением

$$W_1 = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{2R} \,. \tag{4}$$

Возвратимся теперь к рассматриваемому парадоксу. В начальном состоянии, когда энергия взаимодействия шариков равна нулю, система все-таки обладает электростатической энергией, которая равна собственной энергии заряженного шарика. Эта энергия дается формулой (4). В конечном состоянии, после соединения шариков, электростатическая энергия системы складывается из энергии их взаимодействия, выражаемой формулой (1), и собственных энергий каждого из шариков. Поскольку шарики находятся на большом расстоянии друг от друга, то можно считать, что заряды распределены на них равномерно. Это значит, что собственная энергия каждого из них определяется таким же выражением, как и для уединенного шара. Заряды шариков теперь равны q/2, поэтому для полной электростатической энергии системы в конечном состөянии W' имеем

$$W' = 2 \frac{1}{4\pi\epsilon_0} \frac{(q/2)^2}{2R} + \frac{1}{4\pi\epsilon_0} \frac{q^2}{4r} = \frac{1}{4\pi\epsilon_0} \frac{q^2}{4} \left(\frac{1}{R} + \frac{1}{r}\right).$$
(5)

Сравнивая выражения (4) и (5), видим, что полная электростатическая энєргия системы в результате соединения шариков уменьшилась:

$$W_{1} - W' = \frac{1}{4\pi\epsilon_{0}} \frac{q^{2}}{4} \left(\frac{1}{R} - \frac{1}{r}\right) > 0, \qquad (6)$$

так как r > R. Разность $W_1 - W'$ равна количеству электростатической энергии, которая перешла в другие виды энергии при соединении шариков.

Итак, полная электростатическая энергия системы заряженных тел складывается из их собственных энергий и энергии их взаимодействия. Такое разбиение энергии становится особенно наглядным, если электростатическую энергию системы рассматривать как энергию электрического поля. По принципу суперпозиции электрическое поле E системы двух тел с зарядами q_1 и q_2 равно векторной сумме полей E_1 и E_2 , создаваемых каждым из тел в отдельности. Объемная плотность энергии электрического поля, пропорциональная квадрату напряженности, распадается на три слагаемых в соответствии с выражением

$$E^{2} = (E_{1} + E_{2})^{2} = E_{1}^{2} + E_{2}^{2} + 2(E_{1} \cdot E_{2}).$$
(7)

Первые два слагаемых в правой части соответствуют объемной плотности собственных энергий зарядов q_1 и q_2 , а третье слагаемое соответствует энергии взаимодействия этих зарядов друг с другом. Именно эта часть полной электростатической энергии системы и дается формулой (1). Если бы, решая задачу о соединении шариков, мы с самого начала рассматривали электростатическую энергию системы как энергию электрического поля, то парадокса вообще не возникло бы.

270

Подведем итоги. Системе заряженных тел можно сопоставить либо полную энергию — энергию электрического поля, либо энергию взаимодействия тел. Какому из этих способов отдать предпочтение при решении конкретных задач?

При всех возможных перемещениях заряженных тел, если распределение зарядов на них не меняется, собственная энергия этих тел остается неизменной. Поэтому при таких перемещениях изменение полной электростатической энергии равно изменению энергии взаимодействия. Так как во всех физических явлениях существенно именно изменение энергии системы, то постоянная часть собственная энергия — может быть отброшена. Именно в этом смысле следует понимать часто встречающееся утверждение об эквивалентности энергии взаимодействия зарядов и энергии создаваемого ими поля. Представление электростатической энергии как энергии

Представление электростатической энергии как энергии взаимодействия зарядов особенно удобно в тех случаях, когда в рассматриваемую систему входят точечные заряды. Дело в том, что собственная энергия истинно точечного заряда бесконечна. Это видно, например, из формулы (4), если в ней, сохраняя величину заряда q неизменной, устремить радиус шара R к нулю. С другой стороны, это бесконечное значение собственной энергии точечного заряда остается строго неизменным при любых его перемещениях, и его можно отбросить при вычислении изменения энергии. Таким образом, то обстоятельство, что формула (1) не содержит собственной энергии зарядов, является ее достоинством, а вовсе не недостатком. Формула, содержащая собственную энергию, для системы, в которой есть точечные заряды, была бы лишена смысла.

В отличие от точечных зарядов, собственная энергия проводящих тел не остается неизменной. Она может измениться, например, при перетекании заряда с одного проводника на другой, как это было выяснено в разобранной задаче. Собственная энергия проводника может измениться и просто при взаимном перемещении входящих в систему тел. Действительно, собственная энергия незаряженного проводника равна нулю, если поблизости нет других заряженных тел. Но при приближении к проводнику точечного заряда *q* на поверхности проводника возникают индуцированные заряды. Хотя полный заряд изолированного проводника равен нулю, перераспределение зарядов на его поверхности приводит к появлению электрического поля, создаваемого этими индуцированными зарядами. Это поле обладает энергией, и поэтому собственная энергия проводника уже отлична от нуля.

Разумеется, вывод о том, что собственная энергия проводников не остается постоянной при изменении взаимного расположения или величины зарядов окружающих тел, справедлив и для проводников, полный заряд которых отличен от нуля, так как и в этом случае происходит перераспределение зарядов по поверхности проводников.

10. Заряженные капли жидкости. Как было выяснено в задаче 20 раздела «Молекулярная физика», равновесие капель жидкости со своим насыщенным паром является неустойчивым: большие капли растут за счет испарения маленьких. В результате вся жидкость в закрытом сосуде в отсутствие поля тяжести должна собраться в одну каплю, так что давление насыщенного пара будет соответствовать кривизне ее поверхности. (Разумеется, при наличии поля тяжести жидкость соберется на дне сосуда и ее поверхность будет плоской.) Однако маленькие заряженные капли диэлектрической жидкости ведут себя иначе: в закрытом сосуде, содержащем жидкость и ее насыщенный пар, эти капли растут, пока не достигнут определенного размера. Как объяснить это явление?

В задаче 20 раздела «Молекулярная физика» было показано, что давление насыщенных паров *р* связано с радиусом кривизны *r* выпуклой поверхности жидкости соотношением

$$p = p_0 \exp \frac{2m\sigma}{kT\rho r}, \qquad (1)$$

где p_0 — давление насыщенного пара в случае плоской поверхности жидкости. Это значит, что благодаря поверхностному натяжению в жидкости пар, находящийся в равновесии с каплей радиуса *г*, будет пересыщенным для жидкости, имеющей плоскую поверхность. В результате, как мы видели, на плоской поверхности жидкости происходит конденсация и пар становится ненасыщенным для ка-

пель, что приводит к их испарению. Чем больше коэффициент поверхностного натяжения σ и чем меньше радиус капель, тем быстрее идет такой процесс.

Рассмотрим теперь, что будет происходить в том случае, когда капля имеет электрический заряд. Например, капля образовалась на ионе, так

что можно считать, что В ee находится точечный 32центре ряд *q*. С создаваемым этим ионом электрическим полем связано дополнительное электростатическое давление р'. Для нахождения этого давления будем рассуждать следующим образом. Пусть немного увеличилась капля в размерах, так что изменение ее объема равно ΔV (рис. 10.1). При этом электростатические силы совершают работу, равную $p' \Delta V$. Эта работа совершается за счет энергии электростатического поля кап-

Рис. 10.1. К расчету уменьшения электростатической энергии при увеличении радиуса заряженной капли,

ли, которая уменьшается при увеличении радиуса капли. До расширения капли энергия электрического поля в слое объемом ΔV на рис. 10.1 была равна $\frac{1}{2} \varepsilon_0 E^2 \Delta V$. После расширения капли, когда этот слой заполнился диэлектриком с проницаемостью ε , напряженность поля в нем уменьшилась в ε раз, а энергия поля, в соответствии с формулой (9) из введения к этому разделу, также уменьшилась в ε раз и стала равной $\frac{1}{2} \varepsilon_0 E^2 \frac{\Delta V}{\varepsilon}$. Приравнивая работу сил электрического поля убыли его энергии, получим

$$p' = \frac{1}{2} \varepsilon_0 E^2 \left(1 - \frac{1}{\varepsilon} \right). \tag{2}$$

В этой формуле E представляет собой напряженность электрического поля, которое существовало в слое ΔV до расширения капли. Наличие капли, т. е. шарообразного однородного диэлектрика, окружающего точечный заряд, не нарушает сферической симметрии электрического поля. Поэтому, применяя теорему Гаусса, убеждаемся, что поле

снаружи капли совпадает с полем точечного заряда:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}.$$
 (3)

Подставляя это значение *E* в формулу (2), получаем следующее выражение для дополнительного электростатического давления:

$$p' = \frac{\varepsilon_0}{2\left(4\pi\varepsilon_0\right)^2} \frac{q^2}{r^4} \left(1 - \frac{1}{\varepsilon}\right). \tag{4}$$

Это давление как бы «распирает» каплю изнутри, и поэтому его действие можно рассматривать как уменьшение стягивающего каплю поверхностного натяжения. Давление жидкости внутри капли, обусловленное поверхностным натяжением, дается выражением

$$p_i = \frac{2\sigma}{r}.$$
 (5)

При наличии заряда q давление внутри капли уменьшается на величину p' и становится равным $p_1 - p'$. Поэтому удобно ввести эффективное значение коэффициента поверхностного натяжения $\sigma_{3\Phi}$ так, чтобы давление внутри заряженной капли $p_1 - p'$ по-прежнему выражалось бы формулой (5):

$$p_1 - p' = \frac{2\sigma_{3\phi}}{r} . \qquad (6)$$

Подставляя сюда значения p' и p_1 из формул (4) и (5), получаем следующее выражение для $\sigma_{3\Phi}$:

$$\sigma_{a\phi} = \sigma - \frac{\varepsilon_0 q^2}{4 (4\pi\varepsilon_0)^2} \left(1 - \frac{1}{\varepsilon}\right) \frac{1}{r^3} \equiv \sigma - \frac{\alpha}{r^3}, \qquad (7)$$

где множитель при 1/r³ во втором слагаемом для удобства обозначен через α .

Для того чтобы учесть влияние изменения поверхностного натяжения на давление насыщенных паров вблизи заряженной капли, следует в формуле (1) заменить σ на $\sigma_{3\Phi}$. Тогда с помощью формулы (7) получим

$$\rho = \rho_0 \exp\left\{\frac{2m}{kT\rho}\left(\frac{\sigma}{r} - \frac{\alpha}{r^4}\right)\right\}.$$
 (8)

Для исследования зависимости давления насыщенных па ров от радиуса заряженной капли удобно предварительно

274

прологарифмировать выражение (8):

$$\ln \frac{p}{p_0} = \frac{2m}{kT\rho} \left(\frac{\sigma}{r} - \frac{\alpha}{r^4} \right). \tag{9}$$

У незаряженной капли $\alpha = 0$, т. е. в формуле (9) в правой части остается только первое слагаемое. Соответствующий ему график зависимости $\ln (p/p_0)$ от *г* показан на рис. 19.2

Рис. 10.2. Давление паров, находящихся в равновесии с заряженной каплей жидкости радиуса г.

(тонкая линия). Этот график наглядно отражает неустойчивость незаряженных капель жидкости в парах, находящихся в равновесии с плоской поверхностью: при любом радиусе капли такой пар для капли является ненасыщенным. Поэтому незаряженная капля испаряется. Штриховой линией на этом же рис. 10.2 показан график второго слагаемого в формуле (9). График зависимости $\ln (p/p_0)$ от r для заряженной капли получается сложением этих кривых и показан жирной линией на рис. 10.2. Из этого графика видно, что зависимость давления насыщенных паров от радиуса кривизны при наличии заряда становится немонотонной. При некотором значении радиуса капли $r=r_0$, там, где график пересекает ось абсцисс, давление насыщенного пара p для заряженной капли оказывается таким же, как и давление p_0 для плоской поверхности незаряженной жидкости. Это значит, что заряженные капли такого размера будут находиться в равновесии с паром, давление которого равно p_0 . И оказывается, что это равновесие будет устойчивым.

В самом деле, пусть капля, имеющая радиус r_0 , немного уменьшилась в размерах. Из графика на рис. 10.2 видно, что давление насыщенного пара для нее при этом станет меньше, чем p_0 . А это значит, что окружающий каплю пар с давлением p_0 станет для нее пересыщенным. Такой пересыщенный пар будет конденсироваться на капле, т. е. капля будет расти. Если предположить, что капля радиуса r_0 немного увеличилась, то можно убедиться, что окружающий каплю пар с давлением p_0 станет для нее ненасыщенным. Начнется испарение, и капля будет уменьшаться в размерах.

Разобранный пример позволяет понять принцип действия камеры Вильсона. Пролетающая через камеру заряженная частица оставляет на своем пути множество ионов, на которых немедленно происходит конденсация паров и образуются заряженные капли жидкости. Если пар в камере Вильсона насыщенный, то эти капли растут, пока их радиус не достигнет значения r₀. Незаряженные капли маленького радиуса быстро бы испарялись. Благодаря тому, что капли заряжены, оставляемый пролетевшей частицей след в камере Вильсона сохраняется продолжительное время.

Однако, если мы оценим размер заряженных капель r_0 , при котором они могут находиться в равновесии с паром в камере Вильсона, то обнаружим, что этот размер слишком мал для того, чтобы эти капли были видны. Действительно, чтобы найти величину r_0 , нужно приравнять нулю выражение в скобках в формуле (9). В результате находим

$$r_{0} = \sqrt[3]{\frac{\alpha}{\sigma}} = \frac{1}{4} \sqrt[3]{\frac{q^{2}}{\sigma \pi^{2} \varepsilon_{0}} \left(1 - \frac{1}{\varepsilon}\right)}.$$
 (10)

По этой формуле можно найти, что, например, для капель воды (ε =81, σ =72 дин/см), образовавшихся на однократно заряженных ионах (q=1,6·10⁻¹⁹ Кл), $r_0 \approx 10^{-7}$ см. Эта величина меньше длины волны видимого света, поэтому такие капли нельзя увидеть даже в самый совершенный микроскоп. Так почему же туманный трек в камере Вильсона отчетливо виден даже невооруженным глазом? Все дело в том, что в камере Вильсона используется пересыщенный пар, который находится в метастабильном состоянии. Пусть давление этого пара равно $p_1 > p_0$, чему соответствует горизонтальная прямая *I* на рис. 10.3. При появлении в таком паре незаряженных капель, размер которых меньше критического значения r_1 (рис. 10.3), конденсация пара на них происходить не будет, так как по отношению к таким

Рис. 10.3. Если давление пересыщенного пара достаточно велико (прямая 2), то заряженные капли будут расти неограниченно.

каплям он является ненасыщенным. Именно этим и объясняется возможность существования пара в пересыщенном состоянии, ибо его конденсация может начаться только при появлении сравнительно больших незаряженных капель, радиус которых больше r_1 . Но за счет тепловых флуктуаций такие большие капли не возникают.

Совсем иначе обстоит дело с заряженными каплями. Так как давление пересыщенного пара p_1 в камере больше p_0 , то их рост будет происходить не до значения r_0 , а до большей величины r_2 , при которой пар в камере Вильсона станет насыщенным для заряженной капли (рис. 10.3). Если же давление пересыщенного пара в камере настолько велико, что соответствующая ему прямая 2 на рис. 10.3 вообще не пересекает графика зависимости давления насыщенного пара для заряженной капли, то рост заряженной капли будет происходить неограниченно. Заряженные капли достигают видимых размеров и образуют след пролетевшей частицы.

11. Соединение конденсаторов. Рассмотрим схему соединения конденсаторов, показанную на рис. 11.1. Требуется найти напряжение на каждом конденсаторе.

Различные соединения конденсаторов очень часто встречаются в радиотехнических схемах. Если конденсаторы соединены между собой параллельно, то напряжения на

Рис. 11.1. Разветвленное соединение конденсаторов.

Рис. 11.2. Соединенные между собой обкладки конденсаторов в целом электронейтральны.

них одинаковы, а заряды конденсаторов пропорциональны их емкостям. При последовательном соединении конленсаторов сумма напряжений на отдельных конденсаторах равна приложенному напряжению. Напряжение на каждом конденсаторе можно найти из условия, что соединенные между собой обкладки соседних конденсаторов образуют изолврованный, электронейтральный в целом, проводник. Поэтому заряды всех конденсаторов одинаковы. Например, при последовательном соединении двух конденсаторов (рис. 11.2) указанные условия приводят к следующим равенствам:

$$U_1 + U_2 = U, \quad C_1 U_1 = C_2 U_2.$$
 (1)

Решая эту систему уравнений, находим

$$U_1 = U \frac{C_2}{C_1 + C_2}, \quad U_2 = U \frac{C_1}{C_1 + C_2}.$$
 (2)

Напряжения на последовательно соединенных конденсаторах обратно пропорциональны их емкостям.

Однако иногда встречаются такие соединения конденсаторов, которые не сводятся к совокупности параллельных и последовательных соединений. Как раз с таким примером разветвленной цепи мы сталкиваемся

в условин этой задачи. Каким образом найти напряжения на конденсаторах в этом случае?

Попробуем составить необходимые уравнения. Прежде всего отметим, что знаки заряда каждой пластины конденсаторов C_1 и C_2 можно указать сразу: соединенная с полюсом источника обкладка конденсатора будет иметь заряд того же знака, что и соответствующий полюс. А вот с конденсатором C_3 дело обстоит сложнее, ибо одна из его об-

Рис. 11.3. Полный заряд обведенной пунктиром части схемы равен нулю.

кладок, как видно из рис. 11.1, соединена одновременно и с положительным полюсом одного источника, и с отрицательным полюсом другого. Поэтому сразу указать знак заряда этой обкладки невозможно. Ясно лишь, что заряд этой обкладки может быть и положительным, и отрицательным в зависимости от того, какая разность потенциалов установилась бы между точками A и B в отсутствие конденсатора C_3 . Но можно не терять время на выяснение этого вопроса, а просто предположить, что заряд этой обкладки имеет определенный знак, например, положительный, т. е. знаки зарядов всех обкладок такие, как показано на рис. 11.3. Если мы не угадали знака заряда, то из правильно составленных уравнений для напряжения U_3 получится не положительное, а отрицательное значение.

Теперь можно написать уравнения, связывающие напряжения на конденсаторах с электродвижущими силами источников. Рассмотрим, например, разность потенциалов между точками D и F на рис. 11.3. С одной стороны, эта разность потенциалов равна сумме э. д. с. $\mathscr{E}_1 + \mathscr{E}_2$, с другой сумме напряжений на конденсаторах C_1 и C_2 . Поэтому

$$U_1 + U_2 = \mathscr{E}_1 + \mathscr{E}_2. \tag{3}$$

Точно так же напряжение между точками А и F с одной

стороны равно э. д. с. С_і, с другой — сумме напряжений на конденсаторах С_і и С_з:

$$U_i + U_s = \mathcal{E}_i. \tag{4}$$

Двух написанных уравнений (3) и (4) недостаточно для определения трех неизвестных напряжений U_1 , U_2 и U_3 . Поэтому нужно написать еще одно уравнение. Если мы попытаемся, рассуждая так же, как и раньше, рассмотреть разность потенциалов между точками D и A, то придем к уравнению

$$U_2 - U_3 = \mathscr{E}_2. \tag{5}$$

Однако легко видеть, что это уравнение не поможет в определении неизвестных, так как оно является следствием двух написанных ранее уравнений: вычитая почленно уравнение (4) из (3), получим уравнение (5).

Третье независимое уравнение можно получить так же, как и в случае последовательного соединения конденсаторов, учитывая условие электронейтральности соединенных между собой обкладок конденсаторов, не имеющих контакта с полюсами источников. Эта электронейтральная система обкладок обведена пунктиром на рис. 11.3. В отличие от случая последовательного соединения конденсаторов, это условие приводит не к равенству их зарядов, а к требованию равенства нулю алгебраической суммы зарядов указанных обкладок:

$$C_1 U_1 - C_2 U_2 - C_3 U_3 = 0. \tag{6}$$

Уравнение (6) вместе с любыми двумя из уравнений (3), (4) и (5) образует систему для нахождения неизвестных U_1 , U_2 и U_3 . Выразим, например, U_3 из уравнения (6)

$$U_{s} = \frac{1}{C_{s}} (C_{1} U_{1} - C_{2} U_{2})$$
(7)

и подставим в (4)

$$U_{1}\left(1+\frac{C_{1}}{C_{3}}\right)-U_{3}\frac{C_{2}}{C_{3}}=\mathscr{E}_{1}.$$
(8)

Теперь можно уравнение (3) умножить почленно на отношение C_2/C_3 и сложить с уравнением (8). В результате найдем

$$U_1 = \frac{(\mathscr{E}_1 + \mathscr{E}_2)C_2 + \mathscr{E}_1C_3}{C_1 + C_2 + C_3}.$$
 (9)

Выражение для U₂ можно теперь написать сразу, пользуясь симметрией схемы и меняя в выражении (9) индексы 1 и 2 местами:

$$U_{2} = \frac{(\mathscr{C}_{1} + \mathscr{C}_{2})C_{1} + \mathscr{C}_{2}C_{3}}{C_{1} + C_{2} + C_{3}}.$$
 (10)

Те, кто сомневаются в законности такой операции, могут подставить из (9) найденное значение U_i в уравнение (8) и вычислить U_2 . Для определения U_3 значения U_i и U_2 из (9) и (10) нужно подставить в выражение (7):

$$U_{3} = \frac{C_{1} \mathscr{C}_{1} - C_{2} \mathscr{C}_{2}}{C_{1} + C_{2} + C_{3}}.$$
 (11)

Отметим прежде всего, что значения U₁ и U₂ получаются положительными при любых значениях э. д. с. и емкостей

Рис. 11.4. Такой вид принимает приведенная на рис. 11.1 схема при $C_3=0$.

Рис. 11.5. Случай $C_3 \rightarrow \infty$ соответствует соединению точек A и B проводником.

конденсаторов. Это значит, что знаки зарядов обкладок конденсаторов C_1 и C_2 действительно всегда такие, как указано на рис. 11.3. Значение величины U_3 , как видно из формулы (11), может быть и положительным, и отрицательным. Если $C_1 \mathscr{C}_1 > C_2 \mathscr{C}_2$, то $U_3 > 0$ и знаки зарядов обкладок конденсатора C_3 будут такими, как показано на рис. 11.3. Если же $C_1 \mathscr{C}_1 < C_2 \mathscr{C}_2$, то $U_3 < 0$. Это означает, что полярность напряжения на конденсаторе C_3 будет противоположной указанной на рис. 11.3. Величина же этого напряжения дается модулем правой части выражения (11).

Полезно проверить правильность полученных результатов в очевидных предельных и частных случаях. Во-первых, в симметричной схеме, когда $\mathscr{E}_1 = \mathscr{E}_2$ и $C_1 = C_2$, напряжение U_3 между точками A и B должно быть равно нулю, а

VI. ЭЛЕКТРОСТАТИКА

напряжения U_1 и U_2 должны быть одинаковыми и равными э. д. с. источника \mathscr{E} . Видно, что формулы (9) — (11) приводят в этом случае именно к такому результату.

Во-вторых, при $C_3 = 0$, что соответствует отсутствию этого конденсатора, мы имеем последовательное соединение конденсаторов C_1 и C_2 (рис. 11.4). Формулы (9) и (10) при $C_3 = 0$ совпадают с выражениями (2), если в них под приложенным напряжением U понимать сумму $\mathscr{E}_1 + \mathscr{E}_2$. Формула (11) при $C_3 = 0$ дает значение напряжения между точками A и B в схеме на рис. 11.4:

$$U_{AB} = \frac{C_1 \mathscr{O}_1 - C_2 \mathscr{O}_2}{C_1 + C_2}.$$
 (12)

Наконец, случай $C_3 \rightarrow \infty$ соответствует соединению точек A и B проводником (рис. 11.5). При этом напряжение на каждом конденсаторе равно э. д. с. того источника, параллельно с которым он соединен: $U_1 = \mathscr{E}_1, U_2 = \mathscr{E}_2$. Именно это и получается из формул (9) и (10), так как при $C_3 \rightarrow \infty$ в числителях и знаменателях этих формул можно пренебречь слагаемыми, не содержащими C_3 . Напряжение U_3 , как видно из (11), при этом стремится к нулю.

12. Емкость батареи конденсаторов. Любую совокупность конденсаторов, соединенных в батарею, можно заменить одним эквивалентным конденсатором. Если все конденсаторы соединены параллельно, то емкость батареи равна сумме емкостей отдельных конденсаторов. Если конденсаторы соединены последовательно, то емкость батареи C_0 находится по формуле

$$\frac{1}{C_0} = \sum_i \frac{1}{C_i}, \qquad (1)$$

где C_i — емкости отдельных конденсаторов.

Рассмотрим схему соединения одинаковых конденсаторов емкости С в батарею, показанную на рис. 12.1. Концы батареи конденсаторов присоединены к источнику постоянного напряжения U. Пусть вначале ключ К замкнут. В этом случае фактически имеется два последовательно соединенных конденсатора, так как средний конденсатор замкнут накоротко. Емкость такой батареи в соответствии с формулой (1) равна C/2. Разомкнем ключ К. Теперь получилась батарея из трех последовательно соединенных конденсаторов, емкость которой, если воспользоваться формулой (1), Фдолжна быть равна С/З. С другой стороны, размыкание ключа в электроста-

С другой стороны, размыкание ключа в электростатическом случае (т. е. разрыв цепи при равновесии зарядов) не может привести ни к изменениям потенциалов точек цепи, ни к перераспределениям электрических зарядов. Поэтому заряд q крайних конденсаторов (т. е. заряд батареи) останется неизменным. Не изменится и напряжение на батарее конденсаторов U. Но это означает, что не изменится и емкость батареи $C_0 = C/2$, так как она связана с зарядом батареи q и напряжением на ней U соотношением: $q = C_0 U$. Объясните возникшее противоречие.

Противоречие объясняется тем, что размыкание ключа *К* в приведенной схеме нельзя рассматривать как соединение конденсаторов в новую батарею. О ем-

кости батареи конденсаторов, как о величине, которая зависит только от того, какие взяты конденсаторы и как они соединены между собой, можно говорить в том случае, когда эти конденсаторы соединяются в батарею в незаряженном состоянии и только затем батарея присоединяется к источнику напряжения. При этом условии можно рассчитать емкость батареи, глядя только на электрическую схему. Если же при соединении в батарею какие-то из конденсаторов уже заряжены, то ем-

Рис. 12.1. При размыкании ключа К батарея из двух последовательно соединенных конденсаторов превращается в батарею из трех конденсаторов.

кость батарен, вообще говоря, будет зависеть не только от вида окончательной электрической схемы, но и от исторни ее создания, т. е. от той последовательности, в которой соединялись в батарею предварительно заряженные конденсаторы. В таких условиях использование понятия емкости применительно ко всей батарее конденсаторов вообще нецелесообразно.

Поясним сказанное на примере схемы, приведенной в условии задачи (рис. 12.1). Если три конденсатора соединяются последовательно, а затем такая батарея подключается к источнику питания, то на обкладках всех конденсато-

.

ров возникают одинаковые по величине и противоположные по знаку заряды, так что каждая изолированная от источника часть схемы (например, обведенная пунктиром на рис. 12.2) остается в целом электронейтральной. В этом случае, учитывая, что напряжение источника равно сумме напряжений на отдельных конденсаторах, немедленно приходим к формуле (1) для емкости батареи.

Если в этой схеме теперь соединить обкладки среднего конденсатора, т. е. замкнуть ключ K (рис. 12.3), то средний

Рис. 12.2. Обведенная пунктиром изолированная часть схемы остается электронейтральной при зарядке батареи конденсаторов.

Рис. 12.3. При замыкании ключа К средний конденсатор разряжается. Заряд батареи конденсаторов q₁ при этом возрастает.

конденсатор разрядится, а потенциалы точек A и B станут одинаковыми. При этом сохранится электронейтральность обведенной пунктиром части схемы, которая изолирована от источника напряжения. Это значит, что после замыкания ключа K распределение зарядов в получившейся батарее из двух последовательно соединенных конденсаторов будет таким же, как и при соединении двух незаряженных конденсаторов с последующим подсоединением к источнику. Поэтому формула (1) для емкости батареи двух конденсаторов и в этом случае применима.

Легко видеть, что не только рассмотренное здесь, но и вообще любое замыкание внутри заряженной батареи конденсаторов оставляет электронейтральными все внутренние части батареи, представляющие собой изолированный проодник. Поэтому в таких случаях формулы для емкости батареи остаются справедливыми. Разумеется, после замыкания батарея содержит уже меньшее число конденсаторов. А вот разрыв такого внутреннего проводника на две части может привести к появлению внутри батареи конденсаторов изолированных частей с отличным от нуля полным зарядом. Это хорошо видно на приведенном в условии зада-

чи примере. При размыкании ключа К (рис. 12.1) никаких зарядов на пластинах среднего конденсатора появиться не может, а заряды на пластинах крайних конденсаторов остаются прежними. Поэтому размыкание ключа К приводит к тому, что единый электронейтральный в целом проводник, содержавший внутренние конденсаторов. крайних пластины превращается в лва заряженных проводника с равными по величине и противоположными по знаку зарядами. К такой системе формула (1) для емкости батареи неприменима.

Рис. 12.4. При замыкании ключа емкость батареи конденсаторов не может уменьшиться.

Рассмотрим теперь процессы, происходящие при замыкании ключа, с энергетической точки зрения. При замыкании ключа K в схеме, изображенной на рис. 12.3, кроме нейтрализации зарядов на обкладках среднего конденсатора происходит также увеличение заряда на обкладках крайних конденсаторов, т. е. увеличение заряда батареи. При этом, несмотря на то, что электростатическая энергия среднего конденсатора превращается в другие виды, энергия всей батареи конденсаторов увеличивается за счет работы источника напряжения. И совершаемая источником работа будет вдвое больше, чем увеличение электростатической энергии батареи конденсаторов.

Энергетические соображения позволяют сделать вывод о том, что любое замыкание внутри батареи конденсаторов, подобное рассмотренному закорачиванию среднего конденсатора, приводит к увеличению емкости батареи. При доказательстве этого утверждения для простоты рассмотрим случай, когда заряженная батарея конденсаторов отсоединена от источников. При соединении проводником двух точек, имеющих разные потенциалы, произойдет перераспределение зарядов, которое всегда сопровождается превращением электростатической энергии в другие виды. Так как заряд батареи остается неизменным, то уменьшение энертии батареи, как видно из формулы $W = q^2/2C$, означает увеличение ее емкости. Например, при замыкании ключа Kв схеме, показанной на рис. 12.4, емкость батареи, как легко проверить прямым расчетом, увеличивается, если потенциалы точек A и B в заряженной батарее конденсаторов были различны. Емкость батареи не изменяется лишь в том случае, если емкость конденсаторов удовлетворяет условию: $C_1/C_2 = C_3/C_4$.

13. Энергетические превращения в конденсаторе. Пластина из диэлектрика с проницаемостью є занимает все пространство между обкладками плоского конденсатора, расстояние между которыми равно d (рис. 13.1). Конденсатор соединен с источником постоянного напряжения U. Диэлектрическую пластину вытягивают из конденсатора. Как нужно изменить расстояние между обкладками, чтобы энергия конденсатора приняла первоначальное значение? Рассмотреть два случая: 1) перед вытягиванием пластины конденсатор. отсоединяют от источника напряжения; 2) ключ K остается все время замкнутым.

Рассмотрим вначале первый случай, когда перед тем, как вынуть пластину, конденсатор отсоединяют от источника. Это значит, что в дальнейшем заряды на пластинах конденсатора остаются неизменными. Поэтому для энергии конденсатора W в этом случае удобно воспользоваться выражением

$$W = \frac{q^2}{2C} \,. \tag{1}$$

После вытягивания диэлектрической пластины емкость конденсатора, очевидно, уменьшается в є раз. Из формулы (1) видно, что энергия конденсатора при этом возрастает в є раз: $W' = \varepsilon W$. Чем объясняется увеличение электростатической энергии конденсатора? Так как источник напряжения отключен, то единственной причиной увеличения энергии может быть работа, совершаемая внешними силами при вытаскивании диэлектрической пластины. Отсюда немедленно вытекает, что на диэлектрическую пластину, вынимаемую из конденсатора, со стороны электрического поля действует сила, которая стремится втянуть пластину обратно. Именно с преодолением этой втягивающей силы и связано совершение работы, приводящее к увеличению энергии конденсатора.

Чтобы энергия конденсатора приобрела прежнее значение при неизменном заряде на его пластинах, нужно, как видно из формулы (1), чтобы емкость конденсатора приняла первоначальное значение в отсутствие диэлектрической

Рис. 13.1. Диэлектрическая пластина заполняет все пространство между обкладками плоского конденсатора.

пластины. Этого можно добиться, уменьшая расстояние между обкладками. Поскольку емкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками, то новое расстояние d_1 должно быть в є раз меньше старого: $d_1 = d/\varepsilon$.

То, что для уменьшения энергии конденсатора пластины должны сблизиться, можно увидеть и из закона сохранения энергии. Для уменьшения своей энергии система должна совершить положительную работу над внешними телами, т. е. притягивающиеся друг к другу разноименно заряженные обкладки конденсатора должны сблизиться. При этом над внешними телами совершается работа, так как для равномерного перемещения обкладок силы их взаимного притяжения должны быть уравновешены внешними силами.

Перейдем ко второму случаю. При замкнутом ключе *К* все время остается неизменным напряжение на конденсаторе. Теперь для энергии конденсатора более удобным является выражение

$$W = \frac{1}{2}CU^2. \tag{2}$$

Так как при вытаскивании диэлектрической пластины емкость конденсатора уменьшается в є раз, то во столько же раз уменьшается энергия конденсатора. Как можно объяснить уменьшение энергии конденсатора? Ведь при вытаскивании диэлектрической пластины внешние силы совершают положительную работу, и энергия системы при этом должна возрастать. Она и действительно возрастает, но только система в этом случае кроме конденсатора содержит еще и источник напряжения. Что происходит в источнике при вытаскивании пластины? Заряд конденсатора при уменьшении его емкости также уменьшается. Поэтому в процессе вытягивания пластины источник совершает отрицательную работу, ибо уменьшение заряда конденсатора сопровождается прохождением заряда через источник в обратном направлении. Если источник питания представляет собой аккумулятор, то он при этом заряжается.

Используя закон сохранения энергии, можно найти, какую работу совершают внешние силы при вытаскивании пластины. Прежде всего покажем, что в цепи, где конденсатор присоединен к источнику питания, работа источника равна удвоенному изменению энергии конденсатора при любых происходящих процессах. Если заряд конденсатора изменился на величину Δq , то, как следует из формулы для энергии конденсатора W, записанной в виде

$$W = \frac{1}{2} q U, \tag{3}$$

изменение энергии конденсатора ΔW при этом равно

$$\Delta W = \frac{1}{2} \Delta q U. \tag{4}$$

Источник питания при прохождении через него заряда Δq совершает работу $A_{\mu cr} = \Delta q U$. Поэтому

$$A_{\rm act} = 2\Delta W. \tag{5}$$

Теперь можно составить уравнение баланса энергии для рассматриваемого в задаче процесса и найти работу внешних сил *A*:

$$A + A_{\mu c \tau} = \Delta W. \tag{6}$$

Используя соотношение (5), отсюда находим

$$A = -\Delta W. \tag{7}$$

Поскольку энергия конденсатора уменьшается ($\Delta W < 0$), внешние силы совершают положительную работу (A > 0).
Ответ на поставленный в условин задачи вопрос виден уже из формулы (2): чтобы энергия конденсатора приняла прежнее значение, т. е. увеличилась в є раз, необходимо увеличить емкость конденсатора тоже в є раз. Для этого расстояние между пластинами, так же, как и в первом случае, нужно уменьшить в є раз. Но, в отличие от первого случая, где при сближении обкладок энергия конденсатора убывала, здесь она возрастает. И это происходит несмотря на то, что при сближении обкладок конденсатора, как и в первом случае, совершается положительная работа над внешними телами. Выполнение закона сохранения энергии оказывается возможным благодаря тому, что источник напряжения совершает при сближении обкладок конденсатора положительную работу, которая обеспечивает и увеличение энергии конденсатора, и совершение работы над внешними телами.

То, что на вынимаемую из конденсатора диэлектрическую пластину действует сила, стремящаяся втянуть ее обратно, мы увидели из энергетических соображений. Но как объяснить механизм возникновения этой силы? Диэлектрическая пластина в целом электронейтральна. В электрическом поле каждый элемент объема пластины становится подобным диполю, ориентированному вдоль поля. В тех местах, где электрическое поле однородно, действующие на такие диполи силы равны нулю. Сила отлична от нуля только там, где электрическое поле неоднородно. Поэтому, пока диэлектрическая пластина целиком находится внутри конденсатора, где электрическое поле однородно, действующая на нее сила равна нулю. Но как только часть пластины оказывается выдвинутой из конденсатора в область, где поле неоднородно, на диполи этой части пластины действуют силы, направленные туда, где напряженность поля больше, т. е. внутрь конденсатора. Таким образом, физическая причина появления втягивающей силы обусловлена неоднородностью электрического поля вблизи краев пластины конденсатора.

Расчет электрических цепей постоянного тока основан на использовании закона Ома. Для однородного участка цепи закон Ома выражает связь между силой тока *I*, нагряжением *U* и сопротивлением *R*:

$$I = \frac{U}{R}$$

Часть задач этого раздела посвящена расчету электрических цепей, не сводящихся к совокупности последовательно и параллельно соединенных проводников. В таких задачах очень часто учет симметрии рассматриваемой схемы значительно облегчает ее расчет.

Для замкнутой цепи, содержащей источник тока с э. д. с. & и внутренним сопротивлением r, закон Ома имеет вид

$$I=\frac{6}{R+r}.$$

Если участок цепи, к концам которого приложено напряжение U, содержит источник э. д. с., то сила тока находится с помощью закона Ома для неоднородного участка цепи:

$$I=\frac{U+\mathscr{E}}{R+r}.$$

Под напряжением U на рассматриваемом участке понимается разность $\varphi_1 - \varphi_2$, где φ_1 — потенциал той точки, от которой течет ток, а φ_2 — потенциал точки, в направлении которой течет ток. Э. д. с. \mathscr{E} в этой формуле берется со знаком плюс, если ток внутри источника направлен от отрицательного полюса к положительному, и со знаком минус в противоположном случае. Направление тока при этом вы-

бирается произвольно. Если в результате расчета по этой формуле ток окажется отрицательным, то это означает, что в действительности он течет в сторону, противоположную

выбранному направлению. При протекании тока I по участку, к концам которого приложено напряжение U, за время Δt на этом участке электрическим полем совершается работа

$$\Delta A = I U \ \Delta t.$$

В результате совершения этой работы в рассматриваемом участке цепи выделяется тепло, определяемое законом Джоуля — Ленца:

$$\Delta Q = I^2 R \Delta t$$
,

где *R* — сопротивление участка.

При изменении потока магнитной индукции через по-верхность, ограниченную контуром, в этом контуре возни-кает электродвижущая сила индукции, значение которой согласно закону Фарадея пропорционально скорости изме-нения потока магнитной индукции:

$$\mathscr{E} = -\frac{\Delta \Phi}{\Delta t}$$
.

Знак минус в этой формуле соответствует правилу Ленца, определяющему направление индукционного тока.

Расчет электрических цепей переменного тока основан на том, что при включении в сеть с синусоидальным напряжением сопротивления R, индуктивности L и электри-ческой емкости C ток в цепи также является синусоидальным. Амплитудные значения тока I₀ связаны с амплитудны-ми значениями подаваемого на эти элементы напряжения *U*⁶ следующими соотношениями:

$$I_0 = \frac{U_0}{R}, \quad I_0 = \frac{U_0}{\omega L}, \quad I_0 = U_0 \omega C.$$

На активном сопротивлении напряжение совпадает по фазе с током, на индуктивности напряжение опережает ток по фазе на $\pi/2$, на емкости — отстает от тока на $\pi/2$. В последовательной цепи переменного тока, содержащей сопротивление R, емкость C и индуктивность L, между при-ложенным напряжением и током существует сдвиг по фазе. Если приложенное напряжение дается выражением U= $=U_0 \cos\omega t$, то ток в цепи равен $I=I_0\cos(\omega t-\varphi)$, где ампли-

тудное значение тока I₀ и сдвиг по фазе ф определяются формулами

$$I_0 = \frac{U_0}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}, \quad \text{tg } \varphi = \frac{\omega L - 1/\omega C}{R}.$$

1. Провода и клеммы. Имеется *п* клемм, каждая из которых соединена со всеми остальными клеммами одинаковыми проводниками сопротивлением *R*. Найти сопротивление между любыми двумя клеммами.

Прежде всего из симметрии схемы ясно, что сопротивление одинаково между любой парой клемм.

Рассмотрим вспомогательную схему (рис. 1.1). Две клеммы A и B соединены друг с другом проводником сопротивлением R, а остальные (*n*—2) клеммы соединены с клеммами A и B такими же проводниками сопротив-

Рис. 1.1. Эквивалентная схема для расчета сопротивления между любой парой клемм.

лением R, но не соединены друг с другом. В этой схеме между

В этой схеме между клеммами A и B параллельно включены сопротивление R и (n-2) сопротивлений по 2R. Поэтому полное сопротивление R_{AB} между клеммами A и B вычисляется по формуле

$$\frac{1}{R_{AB}} = \frac{1}{R} + \frac{n-2}{2R}$$
,
откуда $R_{AB} = 2R/n$.

Из симметрии схемы, изображенной на рисунке, видно, что если между клеммами A и B создать некоторую разность потенциалов, то потенциалы остальных (n-2) клемм будут равны между собой.

Соединим теперь проводниками сопротивлением R каждую из (n-2) клемм со всеми остальными. В этих проводниках тока не будет и, следовательно, сопротивление R_{AB} между клеммами A и B при этом не изменится. Но получившаяся в результате такого соединения схема совпадает с той, о которой говорится в условии задачи, так как в этой схеме каждая клемма соединена со всеми остальными проводниками сопротивлением *R*.

Итак, искомое сопротивление между любыми двумя клеммами равно 2R/n. Обратим внимание, насколько простым оказывается решение этой задачи при использовании соображений симметрии. Конечно, угадать вид ответа нетрудно, если рассмотреть последовательно простые легко рассчитываемые частные случан n=2, 3 и 4. Но доказать, что угаданная формула, $R_{AB}=2R/n$, справедлива при любом числе клемм n, не так-то легко. В то же самое время, уловив совсем не очевидную на первый взгляд симметрию этой схемы, мы видим, что расчет общего случая оказывается не сложнее, чем при трех соединенных клеммах.

2. Измерение сопротивления в схеме. На рис. 2.1 показана часть схемы, состоящей из неизвестных сопротивлений. Как, имея омметр и соединительные провода, можно измерить величину сопротивления R_x , не разрывая ни одного контакта схемы?

Рис. 2.1. Участок разветвленной цепи, содержащей искомое сопротивление R_x .

По условию задачи нельзя разрывать никаких соэдинений в этой цепи, но можно соединять проводами любые точки, т. е. закорачивать некоторые участки. Используя провода, исходную схему всегда можно привести к виду, указанному на рис. 2.2.

Схема, изображенная на рис. 2.1, приводится к такому виду, если соединить накоротко точки A, B и C. Тогда

роль R_1 на рис. 2.2 будут играть параллельно соединенные сопротивления 1, 2 и 3 (рис. 2.1), а роль R_2 играет сопротивление всей остальной разветвленной цепи между точками C и D. Нетрудно сообразить, что в общем случае схему, изсбраженную на рис. 2.2, из произвольной, содержащей R_x , можно получить, соединяя накоротко между собой концы всех резисторов, подключенных к искомому с одной стороны. (Если в схеме есть сопротивления, параллельные R_x , то определить R_x , не производя разъединений, невозможно:

Рис. 2.2. К такому виду можно привести схему, показанную на рис. 2.1, с помощью дополнительных проводов.

Рис. 2.3. Для определения трех неизвестных сопротивлений в схеме на рис. 2.2 удобно произвести измерения, предварительно закоротив точки: a) E и D, б) A и E, в) A и D.

можно лишь определить общее сопротивление всех резисторов, включенных параллельно R_x .) Теперь нахождение R_x не представляет никакого труда.

Теперь нахождение R_x не представляет никакого труда. Произведем следующие три измерения.

1. Закорачиваем точки Е и D и включаем омметр между точками A и D. Эквивалентная схема приведена на рис. 2.3, a. Показание омметра r_1 связано с R_1 и R_2 соотношением

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{r_1} \,. \tag{1}$$

2. Закорачиваем точки A и E на рис. 2.2. Омметр, как и раньше, включен между точками A и D. Эквивалентная схема изображена на рис. 2.3, δ . Показание омметра r_2 связано с R_x и R_2 соотношением

$$\frac{1}{R_x} + \frac{1}{R_2} = \frac{1}{r_2} \,. \tag{2}$$

3. Закорачиваем точки A и D. Омметр включаем между точками E и D (рис. 2.3, θ). Показание омметра r_3 в этом случае подчиняется соотношению

$$\frac{1}{R_x} + \frac{1}{R_1} = \frac{1}{r_3}.$$
 (3)

Складывая почленно уравнения (2) и (3) и вычитая уравнение (1), получаем

$$\frac{2}{R_x} = \frac{1}{r_3} + \frac{1}{r_2} - \frac{1}{r_1}.$$

3. Сопротивление цепочки. Найти сопротивление цепочки, состоящей из N звеньев (рис. 3.1). Сопротивление каждого резистора равно R.

Рис. 3.1. Пунктирными линиями показаны отдельные одинаковые звенья цепочки.

Используемые в решении обозначения показаны на рис. 3.2. Применяя несколько раз закон Ома для участка цепи, нетрудно получить следующие соотношения:

$$U_n = 2I_n R + U_{n-1}, (1)$$

$$U_{n-1} = 2I_{n-1}R + U_{n-2}, \tag{2}$$

$$U_{n-1} = (I_n - I_{n-1}) R.$$
(3)

Вычитая из уравнения (1) уравнение (2) и используя соотношение (3), получаем

$$U_n - 4U_{n-1} + U_{n-2} = 0. (4)$$

Далее, приравнивая напряжение U_{n-1} на участке ad сумме напряжений на участках ab, bc и cd, получаем

$$(I_n - I_{n-1})R = I_{n-1}R + (I_{n-1} - I_{n-2})R + I_{n-1}R,$$

откуда

$$I_n - 4I_{n-1} + I_{n-2} = 0. (5)$$

Искомое сопротивление R_N определяется соотношением $R_N = U_N / I_N$.

Полученные формулы (4) и (5) носят название рекуррентных соотношений, ибо они дают возможность найти ток

Рис. 3.2. Обозначения токов и напряжений в отдельных участках цепочки из N звеньев.

и напряжение для *n*-го звена цепочки, если известны эти величины для двух предыдущих звеньев. Примем ток I_1 в первом звене цепочки за единицу: $I_1=1$. Тогда $U_1=3R$. Теперь для второго звена с помощью схемы на рис. 3.2 нетрудно найти: $I_2=4$, $U_2=11R$. Далее токи и напряжения во всех последующих звеньях можно находить, последовательно применяя рекуррентные соотношения (4) и (5). Нельзя ли найти общую формулу, которая дала бы возможность сразу паписать выражение для напряжения U_n и тока I_n в *n*-м звене? Оказывается, можно. Для этого нужно найти функцию целого аргумента *n*, которая удовлетворяла бы уравнению (4) или (5).

Бы уравнению (4) или (5). Попробуем искать решение уравнения (4) в виде $U_n = x^n$. Подставляя эту функцию в (4), получаем квадратное уравнение для $x: x^2 - 4x + 1 = 0$. Корни его $x_{1,2} = 2 \pm \sqrt{3}$.

Так как уравнение (4) линейное, ему удовлетворяет любая функция вида

$$U_n = A_1 x_1^n + A_2 x_2^n = A_1 \left(2 + \sqrt{3}\right)^n + A_2 \left(2 - \sqrt{3}\right)^n, \quad (6)$$

где A_1 и A_2 — произвольные постоянные. Решение (6) уравнения (4) содержит две постоянные, поскольку это уравнение как рекуррентное соотношение определяет значение U_n по двум предшествующим значениям U_{n-1} и U_{n-2} . Поскольку уравнение (5) имеет точно такой же вид, как

и (4), его решение совершенно аналогично (6):

$$I_n = B_1 \left(2 + \sqrt{3}\right)^n + B_2 \left(2 - \sqrt{3}\right)^n.$$
(7)

Каким образом можно найти значения постоянных *А* и *В* в выражениях (6), (7)? Очевидно, что выражения (6) и (7) должны давать правильные значения для уже известных напряжений и токов в первом и во втором звеньях. Для первого звена (n=1) $U_1=3R$, $I_1=1$, поэтому

$$A_{1}(2+\sqrt{3}) + A_{2}(2-\sqrt{3}) = 3R, B_{1}(2+\sqrt{3}) + B_{2}(2-\sqrt{3}) = 1.$$
(8)

Совершенно аналогично для второго звена (n=2), где $U_2=$ $=11R, I_{2}=4, \text{ имеем}$

$$A_{1} (2 + \sqrt{3})^{2} + A_{2} (2 - \sqrt{3})^{2} = 11R,$$

$$B_{1} (2 + \sqrt{3})^{2} + B_{2} (2 - \sqrt{3})^{2} = 4.$$
(9)

Из выражений (8) и (9) определяются значения постоянных A1. A. B1. B.

$$A_{1} = R \frac{\sqrt{3}+1}{2\sqrt{3}}, \quad A_{2} = R \frac{\sqrt{3}-1}{2\sqrt{3}};$$

$$B_{1} = \frac{1}{2\sqrt{3}}, \quad B_{2} = -\frac{1}{2\sqrt{3}}.$$
(10)

Вместо того чтобы использовать уравнения (9), можно ввести формально «нулевое» звено и с помощью рекуррент-ных соотношений (4) и (5) найти: $U_0 = R$, $I_0 = 0$. Если взглянуть на схему рис. 3.2, можно убедиться, что эти величины имеют физический смысл: U_0 и I_0 есть напря-

жение и ток для несуществующего «нулевого» звена. Тогда для упрощения алгебры при нахождении постоянных A и B

вместо (9) можно использовать соответствующие соотношения для нулевого звена

$$A_1 + A_2 = R, B_1 + B_2 = 0.$$

Итак, для сопротивления цепочки из N звеньев, учитывая формулы (10), получим

$$R_N = \frac{U_N}{I_N} = R \frac{(\sqrt{3}+1)(2+\sqrt{3})^N + (\sqrt{3}-1)(2-\sqrt{3})^N}{(2+\sqrt{3})^N - (2-\sqrt{3})^N} .$$
(11)

С помощью этой формулы нетрудно найти сопротивление цепочки с бесконечным числом звеньев. Для этого нужно совершить предельный переход $N \to \infty$. Проще всего это сделать, разделив почленно числитель и знаменатель на $(2 + \sqrt{3})^N$. Вторые слагаемые в числителе и знаменателе после этого будут содержать множитель

$$\left(\frac{2-\sqrt{3}}{2+\sqrt{3}}\right)^N,$$

который стремится к нулю при N → ∞. В результате для сопротивления R_∞ бесконечной цепочки получаем

$$R_{\infty} = R(\sqrt{3} + 1). \tag{12}$$

Сопротивление бесконечной цепочки можно рассчитать и независимо, причем это сделать проще, чем найти сопротивление цепочки с конечным числом звеньев. Идея такого решения заключается в том, что добавление еще одного звена к началу бесконечной цепочки не может изменить ее сопротивление. Но в этом случае мы сразу получаем эквивалентную схему, изображенную на рис. 3.3, причем сопротивление между точками A и B также равно R_{∞} . С другой стороны, сопротивление между этими точками легко выразить через значения сопротивлений, входящих в цепь, изображенную на рис. 3.3. В результате получаем уравнение

$$R_{\infty} = 2R + \frac{RR_{\infty}}{R + R_{\infty}}.$$
 (13)

Решая это квадратное относительно искомой величины R_{∞} уравнение, вновь получим значение, даваемое формулой (12). Второй корень уравнения (13) отрицателен и не имеет физического смысла.

Теперь выясним еще один вопрос. Какое сопротивление R_x нужно присоединить к концу цепочки, содержащей конечное число звеньев (рис. 3.4), для того чтобы сопротивление получившейся цепочки не зависело от числа звеньев? Ответ на этот вопрос нам фактически уже известен: к концу

Рис. 3.3. Эквивалентная схема для цепочки с бесконечным числом одинаковых звеньсв.

Рис. 3.4. Какое сопротивление R_x следует подсоединить к концу цепочки, чтобы ее сопротивление не зависело от числа звепьев?

цепочки нужно присоединить сопротивление R_x , равное R_{∞} . В самом деле, в этом случае вся получившаяся схема будет эквивалентна бесконечной цепочке, сопротивление которой, как мы выяснили, равно $R_{\infty} = R(\sqrt{3}+1)$. Другими словами, подсоединение R_{∞} к концу цепочки эквивалентно добавлению конечного числа звеньев к началу бесконечной цепочки.

4. Почему не меняется показание амперметра? Все хорошо знают, что если изменять сопротивление, включенное в цепь (например, перемещать движок реостата), то ток в цепи меняется. Однако при изменении R_1 в схеме, приведенной на рис. 4.1, показание амперметра не меняется. В чем тут дело? При каком условии это возможно?

Не будем пока выписывать никаких формул. На поставленный вопрос можно ответить, просто внимательно посмотрев на схему. Если через батарею \mathscr{C}_2 ток не идет, то величина сопротивления R_1 ни на что повлиять не может, в том числе и на показания амперметра. При отсутствии тока через R_1 и \mathscr{C}_2 батарея \mathscr{C}_1 , амперметр и сопротивление R фактически образуют неразветвленную последовательную цепь. Итак, остается выяснить, при каком условии отсутствует ток в ответвлении, содержащем \mathscr{C}_2 и R_1 . Применяя к этому участку закон Ома для неоднородного участка цепи, легко убедиться, что ток равен нулю, когда напряже-

ние на R равно э. д. с. батареи \mathscr{E}_2 ($U = \mathscr{E}_2$). Так как при этом

$$U = IR = \frac{\mathfrak{G}_1}{R + r_1}R,$$

то искомое условие есть

$$\mathscr{E}_2 = \mathscr{E}_1 \frac{R}{R+r_1}. \qquad (1)$$

Рис. 4.1. При изменении сопротивления R_1 показание амперметра не меняется.

Этому условию можно удовлетворить при $\mathscr{E}_2 < \mathscr{E}_1$. Отметим, что при этом R_1 может меняться

в пределах от нуля до бесконечности. Однако (1) не есть единственно возможное условие. Например, если $r_2 \gg R$ и $r_2 \gg r_1$, то ток в ответвлении, содержащем \mathscr{E}_2 и R_1 , мал по сравнению с током через амперметр при любом значении R_1 и поэтому практически не влияет на показания амперметра. Возможны и другие условия. Попробуйте найти их!

5. Еще одна цепь с реостатом. Собрана цепь, показанная на рис. 5.1. При каком условии изменение сопротивления R_1 не влияет на показание амперметра? R_1 меняется в любых пределах.

На первый взгляд может показаться, что этого вообще не может быть, так как R_1+R_2 и R соединены парал-

лельно и изменение R₁ обязательно приводит к изменению тока амперметр. через Однако это лишь на первый взгляд. Возможны случан, когда это не так. Вопервых, если $R_2 \gg R$, то при любом R₁ ответвлением тока в участок, содержащий R1 и R2, можпренебречь по сравнению с но через амперметр. Если TOKOM сопротивление *R* и внутреннее сопротивление амперметра равны

Рис. 5.1. Может ли показание амперметра не изменяться при изменении сопротивления R₁?

нулю, весь ток, не разветвляясь, идет через амперметр и величина его не зависит от R_1 . И, во вторых, наибо-

лее интересный случай: если внутреннее сопротивление батареи r=0, то участки цепи, содержащие реостат R_1 и амперметр, вообще никак не влияют друг на друга. Этот случай соответствует параллельному включению нагрузок в сеть с постоянным напряжением. Практически равенство нулю внутреннего сопротивления источника означает, что оно должно быть мало по сравнению с сопротивлением каждой из параллельных ветвей.

6. Источник постоянного тока. Источник тока имеет э. д. с. & и внутреннее сопротивление *г*. Исследовать условия работы такого источника: найти зависимость напряжения на нагрузке *U*, полной мощности *P*, полезной мощности *P*_n и коэффициента полезного действия η от создаваемого источником тока *I*.

Электрическая цепь, содержащая источник тока и нагрузку, сопротивление *R* которой можно изменять, показана на рис. 6.1. Ток в цепи *I* определяется законом Ома

$$I = \frac{\mathfrak{S}}{R+r}.$$

При изменении сопротивления нагрузки *R* от бесконечности (разомкнутая цепь) до нуля (короткое замыкание источника) сила тока изменяется от нуля до максимального значения *I*₀, равного *E*/*r*. Напряжение на зажимах источника *U*, равное э. д. с. *E* при разомкнутой цепи, при наличии тока в цепи *I* определяется выражением

$$U = \mathscr{E} - Ir. \tag{2}$$

Если в правой части вынести э. д. с. \mathscr{E} за скобки и учесть, что отношение \mathscr{E}/r равно току короткого замыкания I_0 , то формула (2) принимает вид

$$U = \mathscr{E}\left(1 - \frac{I}{I_0}\right). \tag{3}$$

(1)

Рис. 6.1. Условия работы источника тока определяются величиной сопротивления нагрузки *R*,

Зависимость напряжения во внешней цепи-от тока изображается прямой линией на рис. 6.2.

Полная мощность *P*, развиваемая источником, равна произведению э. д. с. & на силу тока *I*:

$$P = \mathscr{E}I. \tag{4}$$

Полезная мощность P_n, вынагрузке, деляющаяся на равна произведению напряжения во внешней цепи U на силу тока I. Если для напряжения U воспользоваться формулой (2), то полезная мощность P_n получит-ся как разность между полной мошностью Р и мошностью потерь тепловых на внутреннем сопротивлении источника:

$$P_{\pi} = UI = \mathscr{C}I - I^2 r. \quad (5)$$

Если же для U воспользоваться формулой (3), то выражение для полезной мощности P_n можно записать и в таком виде:

$$P_{\mathbf{n}} = \mathscr{E}I\left(1 - \frac{I}{I_0}\right). \quad (6)$$

Как видно из формулы (4), полная развиваемая источни-

ком мощность P пропорциональна току в цепи I. Ее график изображается прямой линией на рис. 6.2. График полезной мощности P_n , как следует из формулы (5) или (6), представляет собой параболу, ветви которой направлены вниз (рис. 6.2). Эта парабола пересекает ось абсцисс в точках I=0 и $I=I_0$: полезная мощность обращается в нуль как при отсутствии тока (разомкнутая цепь), так и при коротком замыкании, когда вся развиваемая источником мощность Pвыделяется в виде тепла на его внутреннем сопротивлении. Вершина параболы, соответствующая максимальной полез-

Рис. 6.2. Зависимость напряжения
$$U$$
, полной P и полезной P_{π} мощностей и к.п.д. η от тока в цепи.

ной мощности, расположена посредине между точками I=0и $I=I_0$. Максимальное значение полезной мощности, достигаемое при $I=I_0/2$, как видно из формулы (6), равно $\mathscr{C}^{1/2}$, т. е. половине полной мощности, развиваемой источником при данной силе тока. Вторая половина развиваемой мощности при этом бесполезно расходуется на нагревание источника. Легко видеть (например, из формулы (1)), что полезная мощность максимальна, когда сопротивление нагрузки R равно внутреннему сопротивлению источника.

грузки *R* равно внутреннему сопротивлению источника. Коэффициент полезного действия источника, равный отношению полезной мощности *P*_п к полной *P*, можно найти с помощью формул (4) и (6):

$$\eta = \frac{P_{\pi}}{P} = 1 - \frac{l}{l_0} \,. \tag{7}$$

График зависимости к. п. д. η от тока в цепи I показан на рис. 6.2.

Из приведенных на рис. 6.2 графиков видно, что требования получения наибольшей полезной мощности и наибольшего к. п. д. противоречат друг другу: при наибольшей полезной мощности к. п. д. составляет всего 50%. Чтобы к. п. д. был близок к единице, ток в цепи должен быть мал, но при этом стремится к нулю полезная мощность.

полезной мощности к. п. д. составляет всего 50%. Чтооы к. п. д. был близок к единице, ток в цепи должен быть мал, но при этом стремится к нулю полезная мощность. Любую полезную мощность P₁, меньшую максимальной, можно получить при двух значениях тока в цепи I₁ и I₂. Из рис. 6.2 видно, что предпочтительнее получать эту мощность при меньшем значении тока в цепи I, так как к. п. д. источника при этом выше.

7. Последовательное соединение источников тока. Собрана цепь, схема которой дана на рис. 7.1. Э. д. с. первого источника &1 больше э. д. с. второго &2. Вольтметр идеальный, причем нуль его расположен посредине шкалы. При разомкнутом ключе стрелка вольтметра отклоняется влево. При одних значениях параметров схемы стрелка после замыкания ключа отклоняется влево, а при других — вправо. Абсолютная величина напряжения, показываемого вольтметром, известнг и в обоих случаях одинакова. Что покажет вольтметр и куда отклонится его стрелка в каждом из этих случаев, ссли второй источник переключить, как показано на рис. 7.2? Идеальный вольтметр, включенный в электрическую цепь, показывает напряжение, равное разности потенциалов между точками подключения прибора. Обозначим потенциалы этих точек на первой схеме через φ_1 и φ_2 , на второй —

Рис. 7.1. При замкнутом ключе *К* стрелка вольтметра может отклониться как в одну, так и в другую сторону в зависимости от значений э. д. с. и сопротивлений.

Рис. 7.2. В этой цепи источник с э. д. с. 6 д переключен на противоположную полярность по сравнению с рис. 7.1.

через φ'_1 и φ'_2 . Для сокращения записи введем $U = \varphi_2 - \varphi_1$ и $U' = \varphi'_2 - \varphi'_1$. Ток в схеме на рис. 7.1 равен

$$I = \frac{\mathscr{E}_1 + \mathscr{E}_2}{r_1 + r_2 + R}.$$
 (1)

С другой стороны, используя закон Ома для неоднородного участка цепи, содержащего э. д. с. \mathscr{E}_1 , для того же тока I можно написать выражение

$$I = \frac{\varphi_2 - \varphi_1 + \mathscr{E}_1}{r_1} = \frac{U + \mathscr{E}_1}{r_1}.$$
 (2)

Приравняем правые части выражений (1) и (2):

$$\frac{\mathscr{E}_1 + \mathscr{E}_2}{r_1 + r_2 + R} = \frac{U + \mathscr{E}_1}{r_1}.$$
 (3)

Совершенно аналогично для схемы, изображенной на рис. 7.2, получаем

$$\frac{\mathscr{E}_1 - \mathscr{E}_2}{r_1 + r_2 + R} = \frac{U' + \mathscr{E}_1}{r_1}.$$
(4)

Поделив почленно (3) и (4), находим

$$\frac{\mathscr{G}_1 + \mathscr{G}_2}{\mathscr{G}_1 - \mathscr{G}_2} = \frac{U + \mathscr{G}_1}{U' + \mathscr{G}_1},\tag{5}$$

откуда

$$U' = \frac{(\mathscr{E}_1 - \mathscr{E}_2) U - 2\mathscr{E}_1 \mathscr{E}_2}{\mathscr{E}_1 + \mathscr{E}_2} \,. \tag{6}$$

Формально ответ получен. При его получении мы никак не использовали указания, в какую сторону отклоняется стрелка вольтметра, и пока не ясно, как воспользоваться этим ответом в каждом конкретном случае: мы не знаем, какой знак в каждом из рассматриваемых случаев нужно приписать напряжению U.

При разомкнутом ключе, когда ток в цепи на рис. 7.1 отсутствует, потенциал φ_1 больше, чем φ_2 , т. е. $U = \varphi_2 - \varphi_1 < < 0$. По условию задачи при этом стрелка вольтметра отклоняется влево. Этим устанавливается связь между направлением отклонения стрелки вольтметра и знаком напряжения U: при отклонении стрелки прибора влево U < 0, при отклонении вправо U > 0. Поэтому в первом случае, когда стрелка вольтметра отклоняется отклоняется отклоняется влево. Этим устанавливается влево, в формулу (6) подставляется отрицательное значение напряжения U, показанного вольтметром, а во втором случае (стрелка отклоняется вправо) — положительное. Таким же образом устанавливается направление отклонения стрелки вольтметра в схеме на рис. 7.2: если значение U', вычисляемое по формуле (6), окажется отрицательным, стрелка вольтметра будет отклоняться влево, если положительным — вправо.

Легко видеть, что в схеме на рис. 7.2 стрелка вольтметра всегда будет отклоняться в ту же сторону, что и при разомкнутом ключе, независимо от того, в какую сторону она отклонялась в схеме на рис. 7.1. Действительно, так как $\mathscr{C}_1 > \mathscr{C}_2$, то направление тока в схеме на рис. 7.1 определяется источником \mathscr{C}_1 и $\varphi'_1 > \varphi'_2$, т. е. U' < 0. Это можно увидеть и непосредственно из формулы (6). В случае U < 0этот факт очевиден, в случае U > 0 требуется более детальное исследование. Предлагаем вам провести его самостоятельно, только сначала дочитайте до конца решение задачи.

Подумаем теперь, что физически означают разные направления отклонения стрелки вольтметра в схеме на рис. 7.1. Обратимся к формуле (2). Как мы только что выяснили, входящее в нее напряжение U отрицательно, если отклонение стрелки вольтметра происходит в ту же сторону, что и при разомкнутом ключе, когда тока в цепи нет. В этом случае, как видно из (2), ток в цепи меньше тока короткого замыкания для источника \mathscr{E}_1 : $I < I_0 = \mathscr{E}_1/r_1$. Это означает, что источник тока работает нормально, выделяя мощность не только на своем внутреннем сопротивлении r_1 , но и во внешней цепи на нагрузке R.

Если отклонение стрелки вольтметра при замыкании ключа происходит в противоположную сторону, то U>0, и из (2) видно, что ток в цепи больше тока короткого замыкания источника I_0 . Это значит, что источник \mathscr{E}_1 работает «ненормально»: выделяющаяся на его внутреннем сопротивлении мощность превосходит его возможности, т. е. максимальную мощность, которую он вообще может развить. Поэтому, если этот источник убрать, ток в цепи возрастет.

Не следует бездумно соединять последовательно источники тока! Иногда это может привести к результату, прямо противоположному желаемому. Несмотря на то, что при последовательном соединении источников тока э. д. с. батареи всегда увеличивается, сила тока в цепи может и уменьшиться, если при этом слишком сильно возрастает внутреннее сопротивление батареи. Прежде чем добавлять в последовательную батарею еще один источник тока, следует убедиться, что ток его короткого замыкания превосходит силу тока в цепи до подсоединения этого источника.

А как практически обнаружить такой источник-«паразит» в цепи, питаемой батареей последовательно соединенных элементов?

И последнее. Если будете проводить анализ формулы (6), то достаточно понять, что при положительном значении U величина его не может превышать \mathscr{E}_2 . Отсюда немедленно следует, что U' < 0, т. е. и в этом случае стрелка вольтметра отклоняется влево.

8. Параллельное соединение источников тока. Два параллельно соединенных источника тока с э. д. с. \mathscr{E}_1 и \mathscr{E}_2 и внутренними сопротивлениями r_1 и r_2 включены на нагрузку, сопротивление R которой можно изменять (рис. 8.1). Э. д. с. первого источника \mathscr{E}_1 больше э. д. с. второго: $\mathscr{E}_1 > \mathscr{E}_2$. Оказывается, что при некотором значении сопротивления R ток через амперметр отсутствует. В каком направлении пойдет ток через второй источник, если сопротивление нагрузки R: увеличить, уменьшить? Наиболее прямой, хотя и не самый простой, способ решения этой задачи состоит в применении правил Кирхгофа к рассматриваемой разветвленной цепи. Обозначим токи в неразветвленных участках цепи через I_1 , I_2 и зададим им направления, как указано на рис. 8.2.

Рис. 8.1. Сопротивление *R* подобрано так, что ток через амперметр отсутствует.

Рис. 8.2. К расчету токов в цепи по правилам Кирхгофа.

Согласно первому правилу Кирхгофа, выражающему закон сохранения заряда, алгебраическая сумма токов в узле равна нулю:

$$l_1 + l_2 - I = 0.$$
 (1)

Согласно второму правилу Кирхгофа, вытекающему из закона Ома для неоднородного участка цепи, в любом замкнутом контуре алгебраическая сумма произведений токов на сопротивления соответствующих участков равна алгебраической сумме э. д. с., встречающихся при обходе этого контура. Выбирая контуры, содержащие один из источников тока и сопротивление нагрузки, получаем следующие уравнения:

$$I_{1}r_{1} + IR = \mathscr{E}_{i}, I_{2}r_{2} + IR = \mathscr{E}_{2}.$$
 (2)

Решая систему уравнений (1)—(2), можно найти токи во всех участках. Для ответа на поставленные вопросы достаточно иметь выражение для тока I_2 через второй источник:

$$I_{2} = \frac{\mathscr{O}_{2}(r_{1} + R) - \mathscr{O}_{1}R}{R(r_{1} + r_{2}) + r_{1}r_{2}}.$$
(3)

Ток через амперметр будет отсутствовать, когда числитель выражения (3) обращается в нуль. Из этого условия находим то значение сопротивления нагрузки *R*, при кото-

ром показание амперметра равно нулю:

$$R = r_1 \frac{\mathscr{E}_2}{\mathscr{E}_1 - \mathscr{E}_2}.$$
 (4)

(5)

Ток І 2 через второй источник действительно будет идти в указанном на рис. 8.2 направлении, если числитель в выражении (3) положителен, т. е. при выполнении условия

второй источник отсутствует, то при его отклю- $R < r_1 \frac{6^2}{6^2}$ чении ток в остальной части непи не меняется.

Если сопротивление нагрузки *R* удовлетворяет противоположному неравенству, то числитель в выражении (3) отрицателен, и ток / 2 через второй источник в действительности идет в обратную сторону. Итак, при уменьшении сопротивления R от значения (4) ток через второй источник будет идти так, как указано на рис. 8.2, а при увеличении — в противоположную сторону.

Обратим внимание на то, что примененный нами формальный путь решения задачи с помощью правил Кирхгофа позволяет получить верный ответ, не вникая в физический смысл полученного результата. В самом деле, мы пока не можем ответить на вопрос, почему увеличение сопротивления нагрузки приводит к появлению тока I₂ именно в указанном направлении. Попытка ответить на подобный вопрос приведет нас к другому, менее формальному способу решения задачи. Прежде всего заметим, что при отсутствии тока через второй источник ток существует только в одной неразветвленной цепи, содержащей э. д. с. \mathscr{E}_1 и сопротивление нагрузки R (рис. 8.3). Второй источник при этом можно отключить, и в оставшейся цепи ничего не изменится. Силу тока І можно найти на основании закона Ома для неразветвленной цепи:

$$I = \frac{\mathscr{O}_1}{R + r_1}.\tag{6}$$

Рис. 8.3. Если ток через

С другой стороны, при отсутствии тока через второй источник напряжение U на его зажимах равно электродвижущей силе этого источника \mathscr{E}_2 . Поэтому, используя закон Ома для однородного участка цепи, содержащего нагрузку R, имеем

$$I = \frac{U}{R} = \frac{\mathcal{O}_2}{R} \,. \tag{7}$$

Приравнивая правые части формул (6) и (7), получаєм для сопротивления нагрузки R, при котором ток через источник с э. д. с. \mathscr{C}_2 не идет, прежнее выражение (4). Это выражение имеет смысл только при $\mathscr{C}_1 > \mathscr{C}_2$, что естественно, так как напряжение U на зажимах работающего первого источника всегда меньше его электродвижущей силы \mathscr{C}_1 .

Рассмотрим теперь, как будет меняться напряжение между точками A и B при изменении сопротивления R, если второй источник отсутствует. При уменьшении R ток в цепи возрастает и, следовательно, напряжение на зажимах источника с э. д. с. \mathscr{E}_1 (т. е. между точками A и B) уменьшается. Это напряжение становится меньше э. д. с. \mathscr{E}_2 , поэтому при подключении второго источника ток через него пойдет так, как показано на рис. 8.2. В этом случае второй источник будет работать нормально, т. е. отдавать энергию во внешнюю цепь, и эта энергия будет выделяться на нагрузке.

Аналогичными рассуждениями можно убедиться, что при увеличении сопротивления нагрузки папряжение между точками *A* и *B* увеличивается, т. е. становится больше \mathscr{E}_2 . Поэтому при подключении второго источника ток через него пойдет в направлении, противоположном указанному на рис. 8.2. В этом случае второй источник не отдает энергию во внешнюю цепь, а сам потребляет энергию от первого источника.

Таким образом, при параллельном соединении источников тока с разными э. д. с. существует предельное значение сопротивления нагрузки, определяемое формулой (4). Если значение сопротивления нагрузки окажется больше предельного, то использование второго источника вообще нецелесообразно: его подключение приводит к уменьшению тока через нагрузку. 9. Электродвигатель постоянного тока. Электромотор, якорь которого имеет сопротивление R, включен в сеть постоянного тока с напряжением U. При этом груз весом G поднимается со скоростью v_{\uparrow} посредством невесомой нити, намотанной на ось мотора. С какой скоростью v_{\downarrow} будет опускаться этот же груз, если во внешней цепи произойдет замыкание, в результате которого обмотка якоря окажется закороченной? Якорь электромотора находится в магнитном поле, создаваемом постоянным магнитом. Трением в подшипниках пренебречь.

Прежде всего подумаем, почему вообще устанавливается какая-то определенная скорость спуска. Ведь если просто отключить мотор от сети, то при отсутствии трения в подшипниках груз будет раскручивать якорь и опускаться равноускоренно. Ускорение, конечно, будет меньше ускорения свободного падения, если якорь мотора обладает заметным моментом инерции. Мотор, как мы видим, здесь вообще ни при чем, его якорь — это просто раскручиваемый опускающимся грузом маховик. Однако в рассматриваемом в задаче случае электрическая цепь оказывается замкнутой, но так, что напряжение на мотор не подается, и в результате при опускании груза он работает как замкпутый накоротко генератор постсянного тока. При вращении якоря в магнитном поле в его обмотке идет ток. Скорость опускания груза теперь будет увеличиваться только до тех пор, пока действующий на якорь мотора со стороны груза механический момент не будет уравновешен моментом сил, действующих на якорь с током со стороны магнитного поля индуктора.

Так как момент механических сил, действующих на якорь, одинаков как при равномерном подъеме, так и при равномерном спуске (груз один и тот же), а магнитное поле индуктора считается постоянным (по условию задачи оно создается постоянным магнитом), то и ток в цепи якоря будет одинаковым при установившихся подъеме и спуске, поскольку сила, действующая на проводник с током в магнитном поле, пропорциональна току. Обозначим ток в якоре при установившемся движении через *I*. Найти его можно, воспользовавшись законом сохранения энергии при подъеме груза: потребляемая от сети мощность *IU* идет на нагревание обмотки якоря и на подъем груза. Обозна-

чая механическую мощность, развиваемую мотором, через Р_м, можем написать

$$IU = I^2 R + P_{\rm M}.\tag{1}$$

Решая это уравнение, находим

$$I = \frac{U}{2R} \pm \sqrt{\frac{U^2}{4R^2} - \frac{P_{\rm M}}{R}}.$$
 (2)

Почему же получилось два значения тока? В условни задачи заданы вес груза и скорость его подъема, т. е. фактически задана механиче-

ская мощность, развиваемая мотором:

$$P_{\rm M} = G v_{\uparrow} \,. \tag{3}$$

Но одну и ту же механическую мощность, меньшую максимальной, которую может развить мотор при заданном напряжении *U*, можно получить при двух значениях тока в якоре. В самом деле, построим с помощью формулы (1)

Рис. 9.1. Зависимость развиваемой электродвигателем механической мощности от величины тока.

график зависимости механической мощности $P_{\rm M}$ от силы тока в якоре мотора (рис. 9.1). Этот график представляет собой параболу, ветви которой направлены вниз и пересекают ось абсцисс в точках I=0 и I=U/R. Первая точка соответствует режиму холостого хода, т. е. вращению якоря мотора без внешней механической нагрузки. При этом э. д. с. индукции в обмотке якоря компенсирует приложенное напряжение U, и ток отсутствует. Вторая точка (I=U/R) соответствует заторможенному внешним усилием невращающемуся якорю, когда э. д. с. индукции в его обмотке отсутствует. При этом механическая мощность мотора, очевидно, равна нулю, и вся потребляемая от сети мощность идет на натревание обмотки якоря. Вершина параболы соответствует максимальной механической мощности мотора, которая, как нетрудно убедиться, равна $U^2/4R$.

Из рис. 9.1 видно, что любое значение механической мощности $P_{\rm M} = Gv_{\rm f}$, меньшее $U^2/4R$, можно получить при двух значениях тока I_1 и I_2 . Каждому из этих значений тока со-

311

VII. ЭЛЕКТРИЧЕСКИЙ ТОК

ответствует определенное значение момента внешней силы, действующей на якорь мотора. Поскольку эта сила равна весу поднимаемого груза G, то каждому значению механического момента соответствует определенный радиус оси, на которую наматывается нить (рис. 9.2, a соответствует

Рис. 9.2. Одна и та же механическая мощность $P_{\rm M} = Gv_{\uparrow}$ может быть получена при двух значениях угловой скорости якоря.

меньшему значению механического момента и, следовательно, току I_1 , рис. 9.2, δ — току I_2). В первом случае та же самая механическая мощность мотора Gv_{\uparrow} получается при меньшем радиусе и большей угловой скорости вращения якоря, чем во втором случае. Первый случай, очевидно, соответствует более высокому коэффициенту полезного действия мотора. Хотя данных задачи, строго говоря, недостаточно для того, чтобы отдать предположить, что при подъеме груза мотор работал в «правильном» режиме, то из корней I_1 и I_2 следует выбрать меньший. Как мы выяснили, такой же ток будет протекать в об-

Как мы выяснили, такой же ток будет протекать в обмотке якоря и при установившемся спуске груза. Воспользуемся законом сохранения энергии. Поскольку теперь мотор представляет собой замкнутый накоротко генератор постоянного тока, убыль потенциальной энергии груза равна количеству тепла, выделяющегося в обмотке якоря:

$$Gv_{\downarrow} = I^2 R. \tag{4}$$

Значение установившейся скорости спуска v_{\downarrow} получается отсюда после подстановки значения силы тока I из формулы (2), в которой механическая мощность P_{μ} , раз-

виваемая мотором при подъеме груза, подставлена из соотношения (3):

$$v_{\downarrow} = \frac{I^2 R}{G} = \frac{U^2}{4GR} \left[1 - \sqrt{1 - \frac{4GRv_{\uparrow}}{U^2}} \right]^2.$$
(5)

Любопытно отметить, что сумма значений скоростей подъема и спуска равна скорости холостого хода v₀, т. е. скорости подъема нити без груза.

Чтобы убедиться в этом, вспомним, что возникающая в обмотке якоря э. д. с. индукции & пропорциональна скорости вращения якоря, т. е. скорости движения нити v, памотанной на ось:

$$\mathscr{E}_1 = kv. \tag{6}$$

Используя выражение (6), запишем уравнения закона Ома для трех режимов работы мотора — при подъеме груза, при спуске груза с короткозамкнутым якорем и на холостом ходу:

$$U - kv_{\uparrow} = IR, kv_{\downarrow} = IR, U - kv_{0} = 0.$$
(7)

Вычитая второе и третье уравнения из первого, получаем

$$v_{\uparrow} + v_{\downarrow} = v_{0}. \tag{8}$$

10. Конденсаторы в цепи с током. Рассмотрим схему, показанную на рис. 10.1. К входным клеммам приложено постоянное напряжение U. Определить напряжения на конденсаторах, рассматривая четыре возможных положения ключей K_1 и K_2 : 1) оба ключа разомкнуты; 2) ключ K_1 замкнут, K_2 разомкнут; 3) оба ключа замкнуты; 4) ключ K_1 разомкнут, K_2 — замкнут.

Проанализируем последовательно все четыре случая. 1. Когда оба ключа разомкнуты, никакого тока ни в одном участке цепи нет. Задача в этом случае чисто электростатическая: два последовательно соединенных конденсатора подключены к источнику постоянного напряжения U. Поэтому напряжения на конденсаторах U₁ и U₂ в этом случае определяются из системы уравнений

$$U_1 + U_2 = U, C_1 U_1 = C_2 U_2.$$
 (1)

Первое из этих уравнений очевидно, а второе отражает равенство зарядов последовательно соединенных конденсаторов. Решая систему (1), находим

$$U_1 = U \frac{C_2}{C_1 + C_2}, \quad U_2 = U \frac{C_1}{C_1 + C_2}.$$
 (2)

2. Во втором случае, когда ключ K_1 замкнут, а K_2 разомкнут, схема принимает вид, показанный на рис. 10.2.

Рис. 10.1. Напряжения на конденсаторах C_1 и C_2 зависят от положения ключей K_1 и K_2 .

Рис. 10.2. Такой вид принимает схема, когда ключ K₁ замкнут, а K₂ разомкнут.

В такой цепи через последовательно соединенные сопротивления R_1 и R_2 идет ток, а для конденсаторов все осгается так же, как и в первом случае, так как напряжение U по условию неизменно. Другими словами, в такой схеме последовательные цепочки конденсаторов и сопротивлений независимо, параллельно друг другу подключены к сети с постоянным напряжением U.

Если напряжение U не поддерживается неизменным, а источник представляет собой, -например, аккумулятор с электродвижущей силой \mathscr{E} и внутренним сопротивлением r, то подключение цепочки сопротивлений R_1 и R_2 и возникновение тока $I = \mathscr{E}/(R_1 + R_2 + r)$ приводит к уменьшению напряжения, приложенного к цепочке конденсаторов. В этом случае оно будет равно не э. д. с. источника, а

$$U = I (R_1 + R_2) = \frac{\mathscr{E} (R_1 + R_2)}{R_1 + R_2 + r}.$$
 (3)

Формулы (2) для напряжений на конденсаторах остаются в силе, только под U следует понимать величину, даваемую соотношением (3).

3. Когда оба ключа замкнуты, конденсаторы нельзя считать соединенными последовательно. Действительно, в этом случае схему можно представлять так, как показано на рис. 10.3. Каждый конденсатор соединен параллельно со «своим» сопротивлением, и поэтому заряды конденсаторов уже не равны друг другу. Напряжение на

каждом конденсаторе равно напряжению на соответствующем сопротивлении. Так как сопротивления R_1 и R_2 соединены между собой последовательно, ток через них одинаков и напряжения U_1 и U_2 удовлетворяют системе уравнений:

$$U_1 + U_2 = U, \quad \frac{U_1}{U_2} = \frac{R_1}{R_2}.$$
 (4)

Решая эту систему, получаем $U_1 = U \frac{R_1}{R_1 + R_2}, \quad U_2 = U \frac{R_2}{R_1 + R_2}.$ (5)

Рис. 10.3. Когда оба ключа замкнуты, каж-

a^Ua

Рис. 10.3. Қогда оба ключа замкнуты, каждый конденсатор соединен параллельно со «своим» сопротивлением,

Если и в этом случае нельзя пренебрегать внутренним сопротивлением источника, то под U в формулах (5) следует понимать напряжение на внешием участке цепи, даваемое выражением (3).

4. Когда ключ K₁ разомкнут, тока в цепи нет. Если ключ K₂ при этом замкнут, то напряжение на конденсаторе C₂ равно нулю. Следовательно, напряжение на конденсаторе C₁ равно напряжению источника питания U. Отметим, что полученные ответы справедливы тогда,

Отметим, что полученные ответы справедливы тогда, когда все переходные процессы в цепи уже закончились. Непосредственно после замыкания (или размыкания) ключей происходит перезарядка конденсаторов, что занимает некоторый промежуток времени. Длительность этого промежутка зависит от величины сопротивлений и емкостей.

При решении этой задачи считалось, что все конденсаторы были не заряжены до подключения источника в каждом из рассмотренных случаев. Это условие может оказаться невыполненным при последовательном переходе от одного случая к другому без отключения источника. Например, при переходе от случая 4 к случаю 1 путем размыкания ключа K_2 кондепсатор C_2 как был, так и останется незаряженным, несмотря на то, что при этом получается схема с последовательно соединенными конденсаторами. Напряжение на первом конденсаторе остается равным U, а на втором нулю. Сравните этот результат с решением задачи 12 раздела «Электростатика».

11. Переходные процессы в цепи с конденсатором. Сколько времени будет заряжаться конденсатор емкости C, если его подключить через сопротивление R к источнику постоянного напряжения U_0 (рис. 11.1)?

При замыкании ключа *К* (рис. 11.1) в цепи возникает ток и конденсатор начинает заряжаться. По мере увеличения напряжения на конденсаторе ток в цепи убывает. Процесс

Рис. 11.1. Конденсатор C заряжается через сопротивление R от источника постоянного напряжения U_0 .

Рис. 11.2. При таком выборе направления тока его величина I связана с зарядом верхней пластины q соотношением I = dq/dt.

зарядки конденсатора будет происходить до тех пор, пока напряжение на конденсаторе не станет равным напряжению источника U_0 . После пакопления на пластинах конденсатора необходимого для этого заряда $q_0 = CU_0$ ток в цепи прекратится, т. е. переходные процессы в цепи закончатся.

Обозначим заряд верхней пластины конденсатора через *q*. В процессе зарядки конденсатора *q* изменяется. Скорость изменения заряда верхней пластины *dq/dt* определяет силу тока *I* в цепи:

$$I = \frac{dq}{dt} \,. \tag{1}$$

Формула (1) соответствует такому выбору направления тока, которое указано на рис. 11.2: положительное значение тока в формуле (1) соответствует возрастанию заряда верхней пластины конденсатора, т. е. положительному значению производной dq/dt.

значению производной uq'u. В рассматриваемой последовательной цепи сумма напряжений на сопротивлении U_R и конденсаторе U_C равна приложенному напряжению U_0 . Так как напряжение на сопротивлении U_R равно произведению тока I на величину R, то

$$IR + U_c = U_0. \tag{2}$$

Подставляя сюда значение тока I через скорость изменения заряда конденсатора из уравнения (1) и учитывая, что напряжение U_c на конденсаторе в любой момент равно q/C, получим

$$R \frac{dq}{dt} + \frac{q}{C} = U_0.$$
(3)

Это дифференциальное уравнение для функции q(t) определяет зависимость заряда конденсатора от времени. Его удобно переписать в несколько ином виде, учитывая, что приложенное напряжение U_0 равно отношению окончательного заряда конденсатора q_0 к его емкости $C: U_0 = q_0/C$. Тогда вместо (3) получим

$$\frac{dq}{dt} = \frac{1}{RC}(q_0 - q). \tag{4}$$

Это уравнение легко привести к хорошо известному виду, если вместо заряда пластины q ввести другую неизвестную величину Q, характеризующую, насколько заряд пластины в данный момент q отличается от окончательного заряда q_0 :

$$Q = q_0 - q. \tag{5}$$

Из определения (5) следует, что dq/dt = -dQ/dt. Поэтому уравнение (4) после замены (5) принимает вид

$$\frac{dQ}{dt} = -\frac{1}{RC}Q.$$
 (6)

Уравнение (6) означает, что скорость изменения недостающего заряда Q пропорциональна самой величине Q. Решеннем такого уравнения является экспоненциальная функция

$$Q(t) = A \exp\left(-\frac{t}{RC}\right).$$
 (7)

Постоянную A можно найти из начальных условий. Так как в начальный момент времени t=0 конденсатор не заряжен (q=0), то, как видно из формулы (5), недостающий заряд Q при этом равен q_0 . Таким образом, постоянная A

Рис. 11.3. График изменения заряда конденсатора.

в уравнении (7) равна окончательному заряду конденсатора q₀.

График зависимости Q(t) показан пунктиром на рис. 11.3. Из формулы (7) видно, что произведение RC равно тому промежутку времени τ , в течение которого величина Q(t)уменьшается в e раз:

$$Q(\tau) = \frac{q_0}{e}, \quad \tau = RC.$$
(8)

Зависимость заряда конденсатора q от времени для рассматриваемого процесса получается из формулы (5) после подстановки в нее выражения для Q(t) из (7):

$$q(t) = q_0 \left\{ 1 - \exp\left(-\frac{t}{\tau}\right) \right\}.$$
(9)

График q(t), показанный на рис. 11.3, можно построить как разность между постоянным значением окончательного заряда q_0 и графиком зависимости Q(t). Найденная зависимость заряда конденсатора от времени (9) позволяет легко найти значение тока в цепи при зарядке конденсатора в любой момент времени. Так как согласно формуле (1) ток есть производная dq/dt, то с помощью (9) находим

$$I(t) = \frac{q_0}{\tau} \exp\left(-\frac{t}{\tau}\right) = \frac{U_0}{R} \exp\left(-\frac{t}{\tau}\right).$$
(10)

При зарядке конденсатора ток максимален в начальный момент (при замыкании ключа) и в дальнейшем экспонен-

циально убывает со временем. Его график имеет такой же вид, как и график Q(t) на рис. 11.3.

Совершенно аналогично можно рассмотреть процессы при разрядке конденсатора через сопротивление. Пусть в начальный момент времени конденсатор емкости C заряжен до напряжения U_0 , т. е. имеет заряд $q_0 = CU_0$. При замы-

Рис. 11.4. При таком выборе направления тока его величина I связана с зарядом верхней пластины q соотношением I = -dq/dt.

имеет заряд $q_0 = CU_0$. При замыкании ключа в цепи возникает ток, величина которого убывает по мере разряда конденсатора (рис. 11.4). Если попрежнему под q понимать заряд верхней пластины конденсатора, то выбранному на рис. 11.4 направлению тока соответствует выражение

$$I = -\frac{dq}{dt}, \qquad (11)$$

так как при положительном значении тока I заряд верхней пластины убывает, т. е. dq/dt < 0. Поскольку в любой момент времени напряжение на конденсаторе $U_C = q/C$ равно напряжению на сопротивлении $U_R = IR$, то с помощью выражения (11) имеем

$$\frac{dq}{dt} = -\frac{1}{RC}q.$$
 (12)

Соответствующее нашим начальным условиям решение этого уравнения имеет вид

$$q(t) = q_0 \exp\left(-\frac{t}{\tau}\right), \quad \tau = RC, \quad (13)$$

поскольку при t=0 заряд конденсатора равен q₀.

Такой же экспоненциальный характер имеет и зависимость от времени тока в цепи при разряде конденсатора:

$$I(t) = -\frac{dq}{dt} = \frac{q_0}{\tau} \exp\left(-\frac{t}{\tau}\right) = \frac{U_0}{R} \exp\left(-\frac{t}{\tau}\right). \quad (14)$$

Как видно из полученных решений, и процесс зарядки конденсатора, и процесс разрядки, строго говоря, продолжаются бесконечно долго. Но, как и во всех подобных процессах, временная зависимость которых описывается экспонентой с отрицательным показателем, основное изменение рассматриваемой величины (в данном случае — заряда конденсатора или тока в цепи) происходит за конечный промежуток времени, и лишь остающееся сравнительно небольшое ее изменение требует бесконечного времени. Параметром, характеризующим длительность такого процесса, является величина

$$\tau = RC$$
.

За промежуток времени т рассматриваемая величина изменяется в $e \approx 2,72$ раза.

Если интересоваться временем, в течение которого произойдет изменение в любое (сколь угодно большое, по конечное) число раз, то это время будет отличаться от т только численным множителем (и при этом сравнительно небольшим). Например, время, по прошествии которого на пластинах разряжающегося конденсатора останется только одна тысячная часть первоначального заряда, равно $\tau \cdot 3 \ln 10 \approx 7\tau$.

В любой реальной системе переходный процесс продолжается в течение конечного (а не бесконечно большого) промежутка времени, так как говорить о таком процессе имеет смысл только до тех пор, пока рассматриваемая величина не уменьшится до значения, соответствующего уровню тепловых флуктуаций в системе. В приведенном решении задачи молчаливо предполагалось, что мгновенное значение тока одно и то же в любом

В приведенном решении задачи молчаливо предполагалось, что мгновенное значение тока одно и то же в любом месте электрической цепи, соединяющей обкладки конденсатора, а электрическое поле конденсатора такое же, как в электростатике при тех же зарядах на обкладках. Так можно считать, если распространение электрических взаимодействий происходит практически мгновенно. Поскольку на самом деле распространение электромагнитного поля происходит с конечной скоростью (со скоростью света c), то предположение о мгновенности будет вполне оправданным, если время распространения поля вдоль цепи мало по сравнению с τ . В таких случаях говорят, что явления в электрической цепи носят квазистационарный характер. Если длину цепи обозначить через l, то условие квазистационарности процессов при зарядке или разрядке конденсаторов имеет вид

$$\frac{l}{c} \ll \tau = RC.$$

Рассмотренные в этой задаче процессы позволяют объяснить, как происходит преобразование RC-цепочкой (рис. 11.5) подаваемого на ее вход переменного напряжения в виде последовательности прямоугольных импульсов. Начало каждого прямоугольного импульса (рис. 11.6) соответствует подключению к входным клеммам цепи источника постоянного напряжения U_0 на время, равное длитель-

ности импульса *Т*. При этом согласно формуле (10) в цепи скачком возникает ток, который постепенно уменьшается по мере того, как конденсатор заряжается.

Если время зарядки конденсатора $\tau = RC$ много меньше длительности подаваемого на вход прямоугольного импульса T, то ток зарядки прекратится раньше, чем закончит-

Рис. 11.5. Схема *RC*-цепочки.

прекратится раньше, чем закончится прямоугольный импульс. В момент прихода заднего фронта прямоугольного импульса подаваемое на вход цепочки напряжение скачком обращается в нуль. Фактически это означает, что происходит короткое замыкание входных клемм схемы. Цепь, содержащая R и C, становится короткозамкнутой, и конденсатор разряжается через сопротивление R. Направление тока при разрядке противоположно направлению тока при зарядке. Поэтому выходное напряжение на сопротивлении R имеет противоположные полярности при зарядке и разрядке (рис. 11.6). Импульсы выходного напряжения при $\tau < T$ имеют одинаковую величину и при положительной, и при отрицательной полярности, так как конденсатор успевает зарядиться до напряжения U_0 и

11 Е. И. Бутиков и др.

ток через сопротивление *R*, как следует из формул (10) и (14), одинаков в обоих случаях.

Если время зарядки конденсатора т больше длительности прямоугольного импульса T, то конденсатор к моменту прихода заднего фронта не успевает зарядиться до напряжения U_0 . График выходного напряжения на сопротивлении R для этого случая также показан на рис. 11.6. Величина выходных импульсов отрицательной полярности теперь меньше, так как ток при разрядке конденсатора меньше, чем при зарядке. Отсюда следует, что при $T \ll \tau$ форма

Рис. 11.6. Зависимость от времени выходного напряжения на RC-цепочке при подаче на ее вход прямоугольных импульсов.

выходного напряжения на *RC*-цепочке лишь незначительно отличается от входного.

Форма выходного напряжения на RC-цепочке вообще не отличается от формы входного в том случае, когда входное напряжение синусоидально зависит от времени. Разумеется, амплитуда и фаза выходного напряжения будут иными, чем у входного, но зависимость от времени будет по-прежнему синусоидальной. Сохранение формы напряжения, в отличие от рассмотренного выше случая прямоугольных импульсов, для синусоидального напряжения будет выполняться при любых соотношениях между $\tau = RC$ и периодом подаваемого напряжения. 12. Резонанс в последовательной цепи переменного тока. На последовательно соединенные резистор R, конденсатор C и катушку индуктивности L (рис. 12.1) подается переменное синусоидальное напряжение $U(t) = U_0 \cos \omega t$, причем частоту ω можно изменять, не меняя амплитуды напряжения U_0 . Оказалось, что при частотах ω_1 и ω_2 сила тока в цепи одинакова и равна половине максимально возможного значения. При какой частоте ω_0 достигается максимальное значение тока?

Амплитуда переменного тока в рассматриваемой цепи определяется соотношением

$$I_{0} = \frac{U_{0}}{\sqrt{R^{2} + (\omega L - 1/\omega C)^{2}}}.$$
 (1)

При фиксированных параметрах цепи R, L и C и заданной амплитуде внешнего напряжения U_0 эта формула дает зависимость амплитуды тока в цепи от частоты приложенного

Рис. 12.1. Последовательная цепь переменного тока.

Рис. 12.2. Зависимость амплитуды тока от частоты ω,

напряжения ω . Эта зависимость имеет хорошо известный вид резонансной кривой (рис. 12.2). При низких частотах ($\omega \approx 0$) наличие конденсатора практически эквивалентно разрыву в цепи и ток отсутствует. При высоких частотах ($\omega \rightarrow \infty$) сопротивление конденсатора стремится к нулю, но зато неограниченно возрастает сопротивление катушки индуктивности, и ток снова стремится к нулю. Максимальное значение амплитуды тока, как видно из формулы (1), достигается на частоте ω₀, при которой выражение в скобках обращается в нуль:

$$\omega_0 = \frac{1}{\sqrt{LC}} \,. \tag{2}$$

В этом случае индуктивное и емкостное сопротивления равны друг другу и в цепи имеет место резонанс напряжений. При $\omega = \omega_0$ ток в цепи зависит только от активного

Рис. 12.3. Уравнение (3) имеет еще и два отрицательных корня.

сопротивления R, его амплитуда равна U_0/R , а сдвиг по фазе между током и приложенным напряжением отсутствует.

Формула (2) давала бы ответ на вопрос задачи, если бы были известны индуктивность L и емкость C. Однако по условию задачи нужно выразить ω_0 через частоты ω_1 и ω_2 , при которых амплитуда тока вдвое меньше максимальной. Из рис. 12.2 видно, что частота ω_0 лежит между ω_1 и ω_2 , а сами ω_1 и ω_2 тем ближе друг к другу, чем острее резонансная кривая.

Для нахождения резонансной частоты ω₀ поступим следующим образом. Как видно из рис. 12.2, частоты ω₁ и ω₂ являются корнями уравнения

$$\frac{U_0}{2R} = \frac{U_0}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}},$$
 (3)

поскольку они определяются точками пересечения прямой $I_0 = U_0/2R$ и резонансной кривой (1). Отметим, что кроме имеющих физический смысл положительных корней ω_1 и ω_2 уравнение (3) имеет отрицательные корни — ω_1 и — ω_2 , так как правая часть (3) является четной функцией переменной ω
(рис. 12.3). Возводя (3) в квадрат, получаем

$$\left(\omega L - \frac{1}{\omega C}\right)^2 - 3R^2 = 0.$$
⁽⁴⁾

Умножая (4) на $\omega^2 C^2$ и заменяя согласно (2) произведение LC на $1/\omega_{0}^2$, получаем

$$\omega^{4} - \omega_{0}^{2} \left(2 + 3R^{2}C^{2}\omega_{0}^{2}\right)\omega^{2} + \omega_{0}^{4} = 0.$$
⁽⁵⁾

Уравнение (5) биквадратное и, следовательно, имеет четыре корня. Столько же корней имело исходное уравнение (3). Поскольку при возведении уравнения (3) в квадрат мы не могли потерять корней, то корни уравнения (5) совпадают с корнями уравнения (3).

По теореме Виета свободный член уравнения (5) равен произведению его корней: $\omega_1^2 \omega_2^2 = \omega_0^4$, откуда $\omega_0 = \sqrt[3]{\omega_1 \omega_2}$. Обратнм внимание на то, что для справедливости полученного ответа нужно лишь, чтобы при частотах $\omega = \omega_1$ и $\omega = \omega_2$ значения тока в цепи были бы одинаковы. Совсем не обязательно, чтобы они составляли именно половину максимального значения. В самом деле, если при частотах

максимального значения. В самом деле, если при частотах ω_1 и ω_2 значения тока в *n* раз меньше его максимального значения, то в левой части уравнения (3) $U_0/2R$ нужно заменить на U_0/nR . Легко убедиться, что свободный член ω_0^4 в уравнении (5) пе изменится, поэтому согласно теореме Виета по-прежнему $\omega_0 = V \overline{\omega_0 \omega_2}$.

13. Фазовращатель. К точкам A и B схемы, показанной на рис. 13.1, подается напряжение $U_{AB} = U_0 \cos \omega t$. Какое напряжение существует между точк: ми E и D? При каком условии амплитудное значение этого напряжения совпадает с U_0 ? Каким при этом будет сдвиг фаз между напряжениями U_{AB} и U_{ED} ?

Для решения этой задачи удобно применить метод векторных диаграмм. При этом интересующие нас величины могут быть найдены из наглядных геометрических соображений.

Построим векторную диаграмму напряжений на всех элементах схемы. Рассмотрим участок AEB. Поскольку сопротивление R_1 и емкость C_1 соединены последовательно, то векторы, изображающие напряжения U_{R_1} и U_{C_1} , перпендикулярны друг другу, а их сумма изображает приложенное напряжение U_{AB} . При выбранном направлении вращения векторов против часовой стрелки векторная диаграмма этих напряжений показана на рис. 13.2. Опишем около прямоугольного треугольника, образованного векторами U_{0R_1} , U_{0C_1} и U_0 , окружность. Тогда гипотенуза U_0 является диаметром этой окружности. Теперь построим векторы, изображающие напряжения U_{R_2} и U_{C_3} . Они также взаимно перпендикулярны, и их сумма равна вектору U_0 ,

Рис. 13.1. К точкам *А* и В подается синусоидальное напряжение.

Рис. 13.2. Векторная диаграмма напряжений для участка цепи *AEB*.

изображающему приложенное напряжение U_{AB} . Для того чтобы в дальнейшем было удобнее находить интересующее нас напряжение между точками E и D, будем при построении векторной диаграммы учитывать последовательность соединения элементов C и R в каждом плече схемы. Полная векторная диаграмма напряжений изображена на рис. 13.3. Теперь легко сообразить, что напряжение между точками E и D, т. е. разность напряжений U_{R_1} и U_{C_2} , изобразится вектором U'_0 , который расположен по другой диагонали четырехугольника напряжений. Его направление определяется тем, что мы назовем напряжением между точками E и D: разность U_{R_1} — U_{C_2} или U_{C_2} — U_{R_1} . Указанное на рис. 13.3 направление этого вектора соответствует первой возможности. Тогда мгновенное значение напряжения U_{ED} будет описываться выражением

$$U_{ED} = U'_0 \cos\left(\omega t + \varphi\right),\tag{1}$$

где угол ф (рис. 13.3) может изменяться от 0 до л.

Из геометрических соображений очевидно, что амплитудное значение этого напряжения не может быть больше U_0 . Оно равно U_0 только тогда, когда вектор U'_0 проходит по диаметру окружности. В этом случае четырехугольник напряжений превращается в прямоугольник, и интересующий нас сдвиг по фазе φ между U_{ED} и U_{AB} вдвое больше

Рис. 13.3. Напряжение U_{R_1} — U_{C_2} между точками E и D изображается вектором U'_{α} .

Рис. 13.4. Чтобы амплитуда выходного напряжения между точками *E* и *D* была равна амплитуде приложенного напряжения, вектор U'₀ должен проходить через центр окружности.

сдвига по фазе между приложенным напряжением U_{AB} и напряжениями на сопротивлениях R_1 и R_2 (рис. 13.4). Угол $\phi/2$ легко находится из геометрических соображений:

$$tg \frac{\varphi}{2} = \frac{U_{0C_1}}{U_{0R_1}} = \frac{U_{0C_2}}{U_{0R_2}}.$$
 (2)

Так как в последовательно соединенных участках цепи токи одинаковы, то соотношения (2) переписываются в виде

$$\operatorname{tg} \frac{\varphi}{2} = \frac{1}{\omega C_1 R_1} = \frac{1}{\omega C_2 R_2}$$
 (3) .

Из соотношения (3) вытекает, что U'_0 равно U_0 при выполнении условия $C_1R_1 = C_2R_2$, а сдвиг по фазе φ , входящий в формулу (1), в этом случае определяется с помощью выражения для тангенса двойного угла:

$$tg \varphi = \frac{2 tg (\varphi/2)}{1 - tg^2 (\varphi/2)} = \frac{2\omega C_1 R_1}{(\omega C_1 R_1)^2 - 1}.$$

При равенстве емкостных и омических сопротивлений, т. е. при $1/\omega C = R$, сдвиг фаз между напряжениями U_{AB} и U_{ED} составляет $\pi/2$.

Рассмотренная схема представляет собой пример простейшего фазовращателя, если использовать переменные емкости и сопротивления.

14. Трансформатор с сердечником. При включении первичной обмотки трансформатора с замкнутым сердечником в сеть с напряжением $U_1=100$ В на разомкнутой вторичной обмотке, имеющей в два раза (n=2) большее число витков, напряжение $U_3=197$ В. Найти, какое напряжение будет на разомкнутой вторичной обмотке, если воспользоваться сердечником того же размера, но из материала с магнитной проницаемостью в k=10раз меньшей, чем в первом случае. Рассеяние магнитного потока и потерн в сердечнике не учитывать.

Будем в дальнейшем, как и в условии задачи, буквами U_1 и U_3 обозначать амплитудные (или действующие) значения соответствующих напряжений.

Приводимое ниже решение справедливо для режима «холостого хода», когда вторичная обмотка трансформатора разомкнута. Напряжение U_2 на разомкнутой вторичной обмотке в первом случае меньше, чем $nU_1 = 200$ В. Поскольку рассеяния магнитного потока и потерь в сердечнике по условию задачи нет, то различие это вызвано падением напряжения на активном сопротивлении первичной обмотки. Напряжение на индуктивном сопротивлении R_L первичной обмотки опережает по фазе на $\pi/2$ ток и, следовательно, напряжение на активном сопротивлении. Поэтому для полного напряжения U_1 на первичной обмотке, как ясно из векторной диаграммы, можно написать

$$U_1 = V \overline{U_R^3 + U_L^3}.$$
 (1)

Разумеется, непосредственно измерить U_R и U_L по отдельности нельзя, так как первичная обмотка не есть последовательно соединенные индуктивность L и активное сопротивление R: каждый элемент сбмотки обладает одновременно и индуктивностью, и сопротивлением. Это так называемая цепь с распределенными параметрами. Но при расчете можно заменить реальную обмотку на цепь с сосредоточенными параметрами — катушку индуктивности и сопротивление, соединенные последовательно, поскольку через каждый элемент исходной цепи идет один и тот же ток.

Напряжение на индуктивном сопротивлении первичной обмотки по абсолютной величине равно э д. с. самоиндукции \mathscr{C}_1 , возникающей в первичной обмотке, но противоположно ей по фазе. Напряжение U_2 на разомкнутой вторичной обмотке равно возникающей в ней э. д. с. индукции \mathscr{C}_2 . Поскольку э. д. с. \mathscr{C}_1 и \mathscr{C}_2 связаны соотношением $\mathscr{C}_2/\mathscr{C}_1 = n$, то

$$U_2 = n U_L. \tag{2}$$

Итак, напряжение на разомкнутой вторичной обмотке определяется не полным напряжением на первичной обмотке, а лишь величиной его индуктивной составляющей. Поскольку из соотношения (1) следует, что

$$\frac{U_L}{U_1} = \frac{R_L}{\sqrt{R_L^2 + R^2}} = \frac{1}{\sqrt{1 + (R/R_L)^2}},$$
 (3)

то

$$U_{2} = \frac{nU_{1}}{\sqrt{1 + (R/R_{L})^{2}}} \,. \tag{4}$$

Замена сердечника приводит к изменению индуктивного сопротивления первичной обмотки. Индуктивное сопротивление R_L пропорционально магнитной проницаемости материала сердечника, поэтому

$$\frac{R_L}{R'_L} = k,\tag{5}$$

где R_L — индуктивное сопротивление первичной обмотки после замены сердечника.

Учитывая формулу (5), с помощью выражения (4) величину напряжения U'₂ на вторичной обмотке после замены сердечника можно записать в виде

$$U_{2}' = \frac{nU_{1}}{\sqrt{1 + (R/R_{L}')^{2}}} = \frac{nU_{1}}{\sqrt{1 + (kR/R_{L})^{2}}}.$$
 (6)

Из соотношений (2) и (3) видно, что

$$\left(\frac{R}{R_L}\right)^2 = \left(\frac{U_1}{U_L}\right)^2 - 1 = \left(\frac{nU_1}{U_2}\right)^2 - 1.$$
(7)

Подставляя (7) в соотношение (6), находим

$$U_{2}' = \frac{nU_{1}}{\sqrt{1 + k^{2} \left[n^{2} \left(U_{1}/U_{2}\right)^{2} - 1\right]}} \,. \tag{8}$$

Используя заданные в условии значения входящих в формулу (8) величин, получаем U₂=100 В. Итак, напряжение на разомкнутой вторичной обмотке

Итак, напряжение на разомкнутой вторичной обмотке оказалось равным поданному на первичную обмотку, несмотря на то, что число витков во вторичной обмотке в два раза больше. Рассмотренный пример показывает значение сердечника с большой магнитной проницаемостью: для нормальной работы трансформатора необходимо, чтобы активное сопротивление R первичной обмотки было мало по сравнению с ее индуктивным сопротивлением $R_L(R \ll R_L)$.

При выполнении этого условия индуктивная составляющая напряжения будет близка к подаваемому на первичную обмотку напряжению U_1 . У такого трансформатора на холостом ходу $U_2 \approx nU_1$. Эти напряжения находятся почти в противофазе. Благодаря большому индуктивному сопротивлению первичной обмотки трансформатора с сердечником ток в ней при разомкнутой вторичной цепи мал, несмотря на то, что активное сопротивление первичной обмотки мало. Если же такой трансформатор включить в сеть постоянного тока, где играет роль только активное сопротивление R, то ток в первичной обмотке достигнет огромной величины и трансформатор сгорит.

15. Рамка, падающая в магнитном поле. Прямоугольная металлическая рамка находится между полюсами электромагнита, создающего постоянное однородное магнитное поле индукции *B*, направленное горизонтально (рис. 15.1). В некоторый момент рамку отпускают, и она начинает падать. Описать дальнейшее движение рамки. Считать, что магнитное поле существует только между полюсами электромагнита.

Прежде всего отметим, что разомкнутая рамка, в которой ток идти не может, падала бы так же, как и в отсутствие магнитного поля, т. е. с постоянным ускорением свободного падения g. То же самое будет происходить и с замкнутой рамкой до тех пор, пока она целиком находится между полюсами магнита, т. е. в области однородного магнитного поля. В самом деле, в этом случае магнитный поток через рамку не изменяется при ее поступательном движении, индукционный ток в ней не возникает и никаких сил, кроме силы тяжести, на рамку не действует.

Но все изменится, как только нижняя сторона рамки выйдет за пределы полюсов магнита, т. е. области, где существует магнитное поле (рис. 15.2). Теперь при движении

Рис. 15.1. Металлическая рамка падает в магнитном поле.

Рис. 15.2. При появлении индукционного тока / возникает сила Ампера F.

рамки пронизывающий ее магнитный поток убывает и в рамке течет индукционный ток. В результате на верхнюю горизонтальную сторону рамки, находящуюся в магнитном поле, действует сила Ампера *F*. Эта сила, в соответствии с правилом Ленца для индукционного тока, направлена вверх, т. е. стремится уменьшить внешнее воздействие, приводящее к появлению индукционного тока. Ускорение рамки уже не будет равно *g*. Силы Ампера, действующие на боковые (вертикальные) стороны рамки, направлены в противоположные стороны и не оказывают влияния на ее движение.

Поскольку действующая на верхнюю сторону рамки сила Ампера F равна IBl (l — длина этой стороны), то уравнение второго закона Ньютона для падающей рамки имеет вид

$$m\frac{dv}{dt} = mg - IBl. \tag{1}$$

Здесь *т* — масса рамки. Индукционный ток *I* зависит от сопротивления рамки *R* и э. д. с. индукции \mathscr{E}_i . Величина э. д. с. индукции равна скорости изменения магнитного потока через рамку,

$$\mathfrak{S}_i = Blv, \tag{2}$$

поэтому

$$I = \frac{Blv}{R} \,. \tag{3}$$

Подставляя индукционный ток (3) в уравнение второго закона Ньютона (1), получаем

$$\frac{dv}{dt} = g - \frac{B^2 l^2}{mR} v. \tag{4}$$

Если к тому моменту, когда нижняя сторона рамки выходит из магнитного поля, скорость рамки невелика, так что первое слагаемое в правой части (4) больше второго, то рамка продолжает разгоняться, хотя и с меньшим ускорением. Если же рамка уже разогналась настолько, что второе слагаемое больше первого, то она начинает тормозиться.

Уравнение (4) имеет такой же вид, как и уравнение, описывающее разгон корабля под действием постоянной тяги винтов при учете силы сопротивления, пропорциональной скорости корабля (см., например, задачу 9 раздела «Механика жидкостей»). Точно такое же уравнение описывает и процесс падения тяжелого шарика в вязкой жидкости. Во всех случаях скорость тела изменяется до тех пор, пока сила сопротивления не сравняется по величине с постоянной внешней силой.

Это значение скорости v_1 , соответствующее установившемуся движению, легко найти с помощью (4), даже не решая этого дифференциального уравнения. При установившемся движении dv/dt = 0, и для величины v_1 , приравнивая нулю правую часть (4), получаем

$$v_1 = \frac{mgR}{B^2l^2} \,. \tag{5}$$

Скорость установившегося падения v_1 можно найти и из энергетических соображений, не прибегая к уравнениям движения. При падении рамки с постоянной скоростью ее кинетическая энергия остается неизменной, потенциальная энергия уменьшается, и поэтому выделяющееся в рамке джоулево тепло равно убыли ее потенциальной энергии в поле тяжести:

$$I^2 R = mgv_1. \tag{6}$$

Подставляя сюда значение индукционного тока I из формулы (3), приходим к прежнему значению v_1 , выраженному формулой (5).

Сколько времени происходит процесс установления? Успест ли рамка приобрести значение скорости v_1 , пока ее верхняя сторона все еще находится в магнитном поле? Чтобы ответить на эти вопросы, нужно решить уравнение (4). С решением уравнения такого вида мы уже встречались в задаче 11, где речь шла о процессе зарядки конденсатора. Прежде всего, учитывая соотношение (5), перепишем уравнение (4) в более удобном виде:

$$\frac{dv}{dt} = -\frac{1}{\tau} (v - v_1), \qquad (7)$$

где использовано следующее обозначение:

$$\tau = \frac{mR}{B^2 l^2} \,. \tag{8}$$

Так как производные по времени от v и $(v-v_1)$ совпадают, то уравнение (7) говорит о том, что скорость изменения величины $(v-v_1)$ пропорциональна самой этой величине. Поэтому решение уравнения (7) имеет вид

$$v - v_1 = C \exp\left(-\frac{t}{\tau}\right). \tag{9}$$

Из формулы (9) видно, что значение постоянной C равно отличию начальной скорости $v=v_0$ при t=0 от скорости установившегося движения рамки v_1 : $C=v_0-v_1$. Видно также, что отличие мгновенной скорости от установившейся $(v-v_1)$ затухает со временем экспоненциально с характерным временем τ , определяемым соотношением (8). Таким образом, зависимость скорости от времени с того

Таким образом, зависимость скорости от времени с того момента, как на рамку начинает действовать сила Ампера, согласно выражению (9) имеет вид

$$v(t) = (v_0 - v_1) \exp\left(-\frac{t}{\tau}\right) + v_1.$$
 (10)

Это выражение для скорости справедливо, разумеется, только до того момента, пока верхняя сторона рамки не выйдет за пределы магнитного поля (рис. 15.2).

Графики скорости рамки показаны на рис. 15.3. Верхний график соответствует случаю, когда к моменту появления силы Ампера (t=0) скорость рамки v_0 меньше предельного значения v_1 . Нижний график — случаю, когда

Рис. 15.3. Скорость рамки стремится к определенному значению v_i независимо от величины начальной скорости v_0 .

 $v_0 > v_1$. Наклонные прямолинейные участки графиков при t<0 соответствуют свободному падению рамки до появления силы Ампера. Расстояние, которое проходит рамка за характерное время установления т, равно площади, заштрихованной на этих графиках. Для оценки можно считать, что по порядку величины эта площадь $\sim v_1 \tau$. Если длина вертикальной стороны рамки l_1 много меньше этого расстояния $v_1 \tau$, то ни о каком установлении скорости рамки говорить не приходится. Для установления скорости необходимо выполнение неравенства

$$l_1 \ge v_1 \tau = g \left(\frac{mR}{B^2 l^2}\right)^2. \tag{11}$$

Только при выполнении этого условия магі.итное поле заметно сказывается на движении рамки. Интересно отметить, что к этому условию можно прийти из других, более наглядных соображений. В самом деле, магнитное поле может существенно повлиять на движение рамки только в том случае, когда при свободном падении за время установления т рамка прошла бы расстояние, меньшее ее вертикального размера $l_1: l_1 \ge g\tau^2$. Подставляя сюда значение т из формулы (8), приходим опять к условню (11).

Гиз формулы (о), приходим онять к условию (П). При решении задачи мы считали, что область, в которой существует магнитное поле, имеет резкую границу (рис. 15.1, 15.2). Именно следствием этого предположения является существование изломов на графиках скорости при t=0(рис. 15.3). Так как у любого реального магнита спадание магнитного поля происходит постепенно, то в действительности движению рамки соответствуют графики со сглаженными изломами.

При решении задачи мы не учитывали и самоиндукцию падающей рамки, благодаря которой индукционный ток, строго говоря, не равен значению, даваемому формулой (3). Этим эффектом действительно можно пренебречь, когда внешнее магнитное поле *В* много больше магнитного поля, создаваемого самим индукционным током.

16. Переходные процессы в электродвигателе. Как происходит установление постоянной скорости вращения якоря электродвигателя после включения его в сеть с постоянным напряжением?

Электродвигатель постоянного тока — это довольно сложное устройство, хотя принцип его действия очень прост. Он основан на том, что на находящийся во внешнем магнитном поле проводник с током действует сила Ампера. Поэтому понять происходящие в электромоторе процессы можно, рассматривая его простейшую модель, которая выглядит следующим образом (рис. 16.1). По гладким горизонтальным параллельным контактным шинам может без трения перемещаться металлический стержень, электрическое сопротивление которого равно *R*. Вся система помещена в однородное магнитное поле, вектор индукции *B* которого направлен перпендикулярно плоскости, образованной шинами. К концам шин приложено постоянное напряжение U. При прохождении тока на стержень действует сила Ампера F, которая может вызвать его перемещение по шинам. В таком устройстве подвижный стержень является аналогом якоря электромотора, так как при его перемещении может быть совершена работа над внешними телами.

Это же устройство может служить и моделью генератора постоянного тока, если не подавать напряжение на шины, а с помощью внешней силы привести стержень в движение. Такая модель наглядно показывает, почему электрические машины постоянного тока обладают свойством обратимости.

Рис. 16.1. Линейная модель электродвигателя постоянного тока с независимым возбуждением.

Процесс установления постоянной скорости движения якоря для такой электрической машины, работающей в режиме генератора, уже был рассмотрен в предыдущей задаче. В разобранном там примере (рамка, падающая в магнитном поле) роль постоянной внешней силы, приводящей якорь в движение, играла сила тяжести, а роль внешней нагрузки и внутреннего сопротивления генератора играло сопротивление рамки. Так как внешняя нагрузка генератора и обмотка его якоря образуют последовательную электрическую цепь, то процессы установления в нагруженном генераторе и в короткозамкнутом ничем принципиально не отличаются. Разным будет только характерное время установления т, так как оно зависит от полного сопротивления цепи.

Замеченная аналогия с предыдущей задачей позволяет сразу наметить путь для анализа рассматриваемой модели в режиме электромотора. Для этого нужно написать уравнение, определяющее силу тока в цепи, и уравнение движения стержня. Так как величина э. д. с. индукции

пропорциональна скорости стержня, $\mathfrak{E}_i = Blv$ (рис. 16.1), то

$$IR = U - Blv. \tag{1}$$

Обозначим действующую на стержень внешнюю силу через F_1 (рис. 16.1). Так как величина силы Ампера F=IBI, то уравнение второго закона Ньютона для стержня массы *m* записывается в виде

$$m\frac{dv}{dt} = IBI - F_1. \tag{2}$$

Это уравнение после подстановки в него значения тока из уравнения (1) принимает следующий вид:

$$\frac{dv}{dt} = \frac{1}{m} \left(\frac{UBl}{R} - F_1 \right) - \frac{B^2 l^2}{mR} v.$$
(3)

Выражение в круглых скобках в правой части этого уравнения положительно, если рассматриваемое устройство работает в режиме электромотора. В самом деле, отношение U/R дает максимальное значение тока в цепи, когда стержень неподвижен; поэтому (U/R) Bl равно максимально возможному значению силы Ампера. Внешняя сила F_1 не должна превосходить этого значения, так как в противном случае устройство будет работать как генератор. Значение скорости стержня v_1 в установившемся режиме,

Значение скорости стержня v_1 в установившемся режиме, когда dv/dt=0, можно найти, приравнивая нулю правую часть уравнения (3):

$$v_1 = \frac{1}{Bl} \left(U - \frac{RF_1}{Bl} \right). \tag{4}$$

Разумеется, это значение v₁ можно найти и из энергетических соображений, аналогично тому, как это делалось в предыдущей задаче или в задаче 9, где рассматривался установившийся режим работы мотора.

Для исследования переходного процесса в рассматриваемой системе нужно решить уравнение (3). С помощью выражения (4) для v_1 перепишем это уравнение в более компактном виде

$$\frac{dv}{dt} = -\frac{1}{\tau} (v - v_1), \tag{5}$$

где использовано обозначение

$$\tau = \frac{mR}{B^2 l^2} \,. \tag{6}$$

Будем считать, что в момент включения в сеть якорь мотора был неподвижен: v(0) = 0. Решение уравнения (5), удовлетво-

-

Рис. 16.2. Установление скорости якоря и тока в якоре в режимах холостого хода и при механической нагрузке F₁.

ряющее такому начальному условию, запишется следующим образом: v(t) =

$$=v_1\left[1-\exp\left(-\frac{t}{\tau}\right)\right].$$
(7)

График скорости стержня показан на рис. 16.2. Длительность процесса (7) установления скорости v_1 характеризуется временем τ , выражаемым формулой (6).

Полученные результаты, описывающие процесс установления, справедливы при любой допустимой механической нагрузке двигателя, в том числе и для холостого хода, которому соответствует $F_1=0$.

В этом случае установившееся значение скорости равно $v_1 = U/Bl$, а зависимость скорости от времени дается формулой

$$v(t) = \frac{U}{Bt} \left[1 - \exp\left(-\frac{t}{\tau}\right) \right].$$
(8)

Если подставить скорость v(t) в уравнение (1), то можно получить зависимость от времени величины потребляемого мотором тока. В режиме холостого хода эта зависимость имеет вид

$$I(t) = \frac{U}{R} \exp\left(-\frac{t}{\tau}\right).$$
(9)

338

График тока показан на рис. 16.2. В начальный момент при неподвижном якоре ток максимален и равен U/R. Затем по мере разгона якоря ток экспоненциально уменьшается до нуля. Точно так же зависит от времени и потребляемая мощность P = UI(t).

При включении в сеть мотора с механической нагрузкой (роль которой, в частности, может играть даже трение в подшипниках) максимальное значение тока в начальный момент будет таким же, как и для холостого хода, и равным U/R. Затем по мере разгона якоря ток убывает, но стремится не к нулю, а к определенному значению I_1 , ко-торое легко найти из того условия, что в установившем-ся режиме сила Ампера I_1Bl уравновешивает внешнюю силу F_1 :

$$I_1 = \frac{F_1}{Bl} \,. \tag{10}$$

График тока в этом случае также показан на рис. 16.2. Отметим, что скачкообразное возникновение тока при включении мотора обусловлено тем, что мы полностью пренебрегли самоиндукцией якоря. При учете самоиндук-ции ток при включении будет нарастать постепенно, но длительность нарастания обычно мала по сравнению с рассматриваемым процессом установления вращения якоря. Влияние самоиндукции на этот процесс установления, как правило, незначительно, так как в электродвигателе с независимым возбуждением внешнее магнитное поле много больше магнитного поля, создаваемого током в якоре.

17. Диод в электрической цепи. В цепь, предназначен-ную для зарядки конденсатора (рис. 17.1), включен диод Д. Вольт-амперная характеристика диода показана на рис. 17.2. Какое количество тепла выделится на сопро-тивлении R и на диоде после замыкания ключа K в процессе зарядки конденсатора?

Зачем вообще нужно включать днод в цепь для зарядки конденсатора? Некоторые виды конденсаторов, в частности электролитические, требуют вполне определенной поляр-ности подаваемого на них напряжения. В противном слу-чае они просто могут выйти из строя. Характерной чертой днода является его односторонняя проводимость. Поэтому включение диода в цепь, показанную на рис. 17.1, предохраняет конденсатор от повреждения даже в том случае, если на вход цепи будет подано напряжение противоположной полярности. При этом ток в цепи не пойдет, и никакого тепла на сопротивлении *R*, разумеется, не выделится.

Если подаваемое на входнапряжение U₀ имеет требуемую полярность, то при замыкании ключа К ток в цепи в начальный момент максимален, а затем по мере зарядки

Рис. 17.1. Схема для зарядки конденсатора, содержащая диод.

Рис. 17.2. Вольт-амперная характеристика диода.

конденсатора постепенно спадает до нуля. Чтобы рассчитать выделяющееся на сопротивлении тепло непосредственно с помощью закона Джоуля — Ленца, необходимо найти зависимость зарядного тока от времени. Однако этого можно избежать, если воспользоваться законом сохранения энергии.

Пусть в процессе зарядки конденсатора по цепи прошел некоторый заряд q. Совершенная при этом внешним источником напряжения работа A равна

$$A = U_0 q. \tag{1}$$

Так как заряд конденсатора теперь равен q, то запасенная в конденсаторе энергия W равна

$$W = \frac{q^3}{2C} \,. \tag{2}$$

На основании закона сохранения энергии можно утверждать, что выделившееся на сопротивлении R и диоде \mathcal{I} тепло Q равно разности между работой A, совершенной внешним источником, и энергией W, запасенной конденсатором: Q = A - W. (3) Для получения ответа на поставленный вопрос остается выяснить, какой именно заряд q прошел по цепи и как вы-делившееся при этом тепло Q распределилось между со-противлением R и диодом \mathcal{A} .

Полный заряд q, прошедший по цепи, найти легко, ибо в конце концов напряжение на конденсаторе U_c станет равным приложенному напряжению U₁:

$$q = CU_0. \tag{4}$$

Подставляя значение q из формулы (4) в соотношения (1) и (2), для пол-ного количества тепла Q, выделивше-гося на сопротивлении и диоде, получим

$$Q = \frac{1}{2} C U_{\mathfrak{s}}^2. \tag{5}$$

Не так просто обстоит дело с Рис. 17.3. Идеализи-выяснением того, какая часть теп- рованная вольт-амперла Q_R выделилась на сопротивлении, а какая часть Q_R — на диоде. Причина этого заключается в сложном виде

вольт-амперной характеристики диода, из которой видно, что вольт-амперной характеристики диода, из которой видно, что сопротивление диода очень сильно зависит от величины приложенного к нему напряжения. Чтобы разобраться в этом вопросе, заменим сначала реальную вольт-амперную характеристику диода, показанную на рис. 17.2, идеализи-рованной характеристикой, изображенной на рис. 17.3. В отличие от реальной характеристики диода, будем считать, что сопротивление диода в запорном направлении стремится к бесконечности (т. е. обратный ток равен нулю). Будем также считать, что сопротивление диода в пропуск-ном направлении бесконечно, пока значение приложенного напряжения не достигнет некоторой величины U1, после

ном направлении бесконечно, пока значение приложенного напряжения не достигнет некоторой величины U_1 , после чего сопротивление скачком уменьшается до некоторого значения *r*. Фактически это означает замену круто взмы-вающего вверх участка реальной вольт-амперной характе-ристики прямой на рис. 17.3. Как же выбрать значение U_1 , начиная с которого сопротивление диода можно считать постоянным, и чему равно это постоянное значение *r*? Ток в цепи при замыкании ключа не может превышать

характеристика ная днода.

значения U_0/R . Поэтому участок вольт-амперной характеристики диода, расположенный выше точки $I = U_0/R$ на рислики днода, расположенный выше точки $T = O_0/R$ на рис. 17.2, вообще не имеет отношения к рассматриваемой задаче. Мы считаем, что сопротивление R и приложенное напряжение U_0 таковы, что эта точка приходится на крутой почти прямолинейный участок вольт-амперной харак-

Рис. 17.4. К выбору параметров U₁ и r идеализиро-ванной характеристики диода. Для сравнения показана вольт-амперная характерисопротивления R стика (I=U/R).

теристики, как показано на рис. 17.4. Заменяем этот участок прямой линией и продолжаем ее до пересечения с осью абсцисс. Эту прямую и будем рассматривать как идеализированную вольт-амперную xaрактеристику диода. Тогда напряжение U₁ соответствует точпересечения построенной ке прямой с осью абсцисс, а ее наклон характеризует сопротивление диода r при напряжениях, превышающих U₁. Уравнение этой прямой

$$I = \frac{U - U_1}{r}.$$
 (6)

При такой идеализирован-

ной вольт-амперной характеристике диода зарядный ток обращается в нуль уже тогда, когда напряжение на конденсаторе достигнет значения $U_0 - U_1$. Поэтому к моменту прекращения тока в цепи заряд конденсатора будет равен $C(U_0 - U_1)$, а его энергия равна $\frac{1}{2}C(U_0-U_1)^2$.

Так как ток в цепи существует только при напряжениях на диоде, больших чем U₁, то «работает» только наклонный участок идеализированной вольт-амперной характеристики. Но уравнение этой прямой (6) соответствует закону Ома для неоднородного участка цепи, показанной на рис. 17.5, с э. д. с. источника $U_1 < U$. Поэтому мы можем считать, что в цепи для зарядки конденсатора вместо диода включено омическое сопротивление r последовательно с R, а прило-женное напряжение равно $U_0 - U_1$ (рис. 17.6). При про-хождении по такой цепи заряда $C(U_0 - U_1)$ эквивалентный источник с э. д. с. $U_0 - U_1$ совершает работу $C (U_0 - U_1)^2$. Вычитая из этой работы запасенную конденсатором энергию $\frac{1}{2}C (U_0 - U_1)^2$, получаем тепло Q', выделившееся на обоих сопротивлениях R и r:

$$Q' = \frac{1}{2} C \left(U_0 - U_1 \right)^2.$$
 (7)

Поскольку сопротивления *R* и *r* соединены последовательно, то выделяющееся на каждом из них тепло пропорционально величине сопротивления. Поэтому для тепла

Рис. 17.5. Эквивалентная схема «идеализированного» диода при напряжениях U>U₁.

Рис. 17.6. Схема, эквивалентная рис. 17.1, если диод имеет идеализированную вольт-амперную характеристику.

 Q_R , выделяющегося на сопротивлении R, с помощью (7) получаем

$$Q_{R} = Q' \frac{R}{R+r} = \frac{1}{2} C \left(U_{0} - U_{1} \right)^{2} \frac{R}{R+r}.$$
 (8)

Если $r \ll R$, то почти все тепло Q' выделяется на сопротивлении R.

В действительности, как уже отмечалось выше, ток в цепи обратится в нуль только тогда, когда напряжение на конденсаторе сравняется с U_0 . При этом прохождению дополнительного заряда соответствует пологий начальный участок реальной вольт-амперной характеристики диода. Так как сопротивление диода на этом пологом участке очень велико, то большая часть тепла, связанного с прохождением дополнительного заряда, выделяется на диоде, а не на сопротивлении R.

Итак, выделяющееся на сопротивлении R тепло Q_R дается выражением (8) (или (7), если $r \ll R$). Тепло Q_A , выделяющееся на диоде в течение всего процесса зарядки конденсатора, можно найти как разность между теплом Q, даваемым формулой (5), и теплом Q_R . Колебательные явления могут иметь совершенно разную физическую природу, однако, несмотря на это, они часто обладают общими чертами и даже подчиняются одинаковым закономерностям. Общий подход к изучению колебаний в разных физических системах позволяет вследствие универсальности законов колебательных процессов с единой точки зрения рассматривать механические, электромагнитные и другие колебания.

Кроме классификации по физической природе процессов, колебания можно классифицировать и по другим признакам, например, по способу их возбуждения или по их кинематике, т. е. по характеру зависимости изменяющейся величины от времени. При классификации колебаний по способу возбуждения различают собственные, вынужденные, параметрические и автоколебания. Собственные колебания возникают в том случае, когда физическая система выводится из состояния устойчивого равновесия и затем предоставляется самой себе. Вынужденные колебания возникают в системе при наличии периодического внешнего воздействия. Автоколебания могут происходить в нелинейных системах с обратной связью, содержащих источник энергии. Параметрические колебания возникают, когда в системе какой-либо из характеризующих ее параметров периодически изменяется со временем. Примером параметрического возбуждения колебаний могут служить качели: раскачивая их, человек приседает и выпрямляет ноги, периодически изменяя положение центра масс качелей относительно оси подвеса.

При классификации с точки зрения кинематики различают периодические и непериодические колебания. Среди гериодических колебаний особенно важную роль играют пармонические, или синусоидальные, колебания, при которых описывающая систему величина меняется со временем по закону

$$x(t) = A \cos(\omega t + \varphi). \tag{1}$$

Величина A носит название амплитуды колебаний, а $\omega t + \varphi$ — их фазы. Значение фазы колебаний при t=0, т. е. величину φ , называют начальной фазой. Круговая, или циклическая, частота ω связана с периодом колебаний T соотношением

$$T = \frac{2\pi}{\omega} \,. \tag{2}$$

Собственные колебания в консервативных системах будут гармоническими, когда они описываются дифференциальным уравнением вида

$$\ddot{x} + \omega_0^2 x = 0.$$
 (3)

Решением такого уравнения является функция x(t), даваемая выражением (1) при $\omega = \omega_0$. Таким образом, коэффициент при x в уравнении (3) определяет квадрат частоты собственных колебаний ω_0^2 . Значение ω_0 не зависит от начальных условий, а определяется только свойствами самой колебательной системы. От начальных условий зависят амплитуда A и начальная фаза φ .

Установившиеся вынужденные колебания всегда имеют такой же период, что и вызывающее их внешнее воздействие. Если это воздействие является синусоидальным, то и вынужденные колебания будут гармоническими, т. е. будут описываться формулой (1), в которой теперь ω равна частоте внешнего воздействия. Амплитуда A и сдвиг по фазе φ для установившихся вынужденных колебаний не зависят от начальных условий, а определяются амплитудой внешнего воздействия и соотношением между его частотой ω и частотой ω_0 собственных колебаний, которые возможны в рассматриваемой системе. Зависимость A от ω носит немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении ω к ω_0 носит название резонанса.

Волны представляют собой процесс распространения колебаний. Несмотря на различную физическую природу, волны любого типа — механические, электромагнитные и др.— имеют много общего и подчиняются аналогичным закономерностям. Волна, возбуждаемая источником, совершающим гармоническое колебание, называется монохроматической.

Пусть колебания в некоторой точке происходят по закону

$$x(t) = A \cos \omega t. \tag{4}$$

Тогда при распространении волны от этой точки вдоль некоторого направления колебания в точке, отстоящей на расстояние *z*, происходят с некоторым запаздыванием, определяемым временем прохождения волной этого расстояния:

$$x(t, z) = A\cos\omega\left(t - \frac{z}{u}\right).$$
 (5)

Здесь *и* — скорость распространения волны. Амплитуда колебаний *A* в плоской волне всюду одинакова, а в сферической волне убывает обратно пропорционально расстоянию от центра волны.

При одновременном распространении нескольких волн они просто накладываются одна на другую, не искажая друг друга. Независимость распространения нескольких волн носит название принципа суперпозиции. Если эти волны создаются когерентными источниками, то при их наложении возникает устойчивая интерференционная картина, в которой в некоторых точках колебания при сложении усиливают друг друга, а в других, наоборот, ослабляют.

1. Комбинированный маятник. Рассмотрим маятник, изображенный на рис. 1.1. Легкий стержень длины *l* подвешен на оси в точке *A* таким образом, что он может двигаться в плоскости чертежа. К грузу массы *m* на конце стержня прикреплены одинаковые пружины жесткости *k*, расположенные горизонтально в этой же плоскости. Другие концы пружин закреплены неподвижно. Найти частоту малых собственных колебаний такого маятника в отсутствие трения. Массами стержня и пружин пренебречь.

Если бы пружины отсутствовали, то рассматриваемая система представляла бы собой обычный математический маятник, совершающий колебания в поле тяжести. Частота собственных колебаний такого маятника ω₁ зависит

от ускорения свободного падения g и от длины стержня l:

$$\omega_1^2 = \frac{g}{l} \,. \tag{1}$$

Наоборот, в отсутствие силы тяжести данная система превращается в обычный пружинный маятник, у которого

Рис. 1.1. Колебания такого маятника обусловлены как силой тяжести, так и силами упругости.

Рис. 1.2. К вычислению сил, действующих на смещенный из положения равновесия груз.

масса *m* колеблется горизонтально около своего положения равновесия под действием упругих сил. Так как на тело действуют две пружины, то выражение для квадрата частоты собственных колебаний такого пружинного маятника ω_2^3 имеет вид

$$\omega_2^2 = \frac{2k}{m} \,. \tag{2}$$

Нетрудно получнть выражение для частоты собственных колебаний рассматриваемого комбинированного маятника, когда на его движение влияют и сила тяжести, и упругие силы деформированных пружин. Для этого, как обычно, нужно рассмотреть силы, действующие на выведенный из равновесного положения маятник, и написать уравнение второго закона Ньютона. Пусть груз смещен из положения равновесия направо на расстояние x (рис. 1.2). В этом положении на груз в горизонтальном направлении действуют две силы F_1 и F_2 , направленные к положению равновесия. Сила F_1 обусловлена действием поля тяжести. Если величина отклонения x мала по сравнению с длиной маятника $l(|x| \ll l)$, то для проекции этой силы на ось x справедливо приближенное выражение

$$F_1 = -mg\frac{x}{l} \,. \tag{3}$$

Сила F_2 представляет собой равнодействующую сил, действующих на груз со стороны пружин. При указанном на рис. 1.2 выборе направления оси *x* проекция силы, действующей на груз в положении равновесия со стороны правой пружины, равна $k(s-s_0)$, где s_0 — длина недеформированной пружины, а *s* — расстояние между концами пружины при равновесном положении груза. Если $s>s_0$, т. е. пружина растянута, то эта сила направлена вправо, если пружина сжата ($s<s_0$) — то влево. Проекция силы, действующей на груз в положении равновесия со стороны левой пружины, равна — $k(s-s_0)$. Когда груз смещен из равновесия на *x* (рис. 1.2), то со стороны правой пружины действует сила, проекция которой равна $k(s-x-s_0)$, а со стороны левой — $k(s+x-s_0)$. Поэтому проекция равнодействующей силы F_2 равна

$$F_{2} = k (s - x - s_{0}) - k (s + x - s_{0}) = -2 kx.$$
(4)

Отметим, что сила F_2 направлена всегда к положению равновесия и не зависит от того, растянуты или сжаты пружины при равновесном положении груза.

С учетом выражений (3) и (4) уравнение второго закона Ньютона записывается в виде

$$ma = -mg \frac{x}{l} - 2kx. \tag{5}$$

Обозначим, как это обычно принято, ускорение a, равное второй производной смещения x по времени, через x. Тогда уравнение (5) можно переписать следующим образом:

$$\ddot{x} + \left(\frac{g}{l} + \frac{2k}{m}\right)x = 0.$$
 (6)

Таким образом, второй закон Ньютона для рассматриваемой системы приводит к дифференциальному уравнению гармонических колебаний, квадрат частоты которых ω_{0}^{z} равен коэффициенту при *x*:

$$\omega_0^2 = \frac{g}{l} + \frac{2k}{m} \,. \tag{7}$$

Сравнивая эту формулу с выражениями (1) и (2), убеждаемся, что квадрат частоты собственных колебаний комбинированного маятника равен сумме квадратов величин ω_1 и ω_2 , которые являются частотами собственных колебаний маятника при действии каждой из причин, вызывающих колебания, в отдельности:

$$\omega_0^2 = \omega_1^2 + \omega_2^2. \tag{8}$$

Подмеченное свойство является довольно общим для колебательных процессов разной природы: если какая-либо физическая величина может совершать собственные колебания под действием нескольких причин, то при одновременном действии этих причин частота колебаний удовлетворяет правилу (8).

Полученный результат (7) или (8), разумеется, удовлетворяет предельным случаям, когда или жесткость пружин, или сила тяжести стремятся к нулю. Интересен предельный случай, когда неограниченно возрастает длина стержня l. При $l \rightarrow \infty$ мы приходим к такому же результату, как и при $g \rightarrow 0$. Роль стержня в этом случае сводится лишь к тому, чтобы поддерживать груз, совершающий колебания под действием пружин.

2. Несимметричный маятник. У такого же, как и в предыдущей задаче, маятника вместо пружин с одной стороны к грузу прикреплена гибкая резинка, проявляющая упругие свойства только при растяжении (рис. 2.1). Когда маятник расположен вертикально, резинка не натянута. Смещение груза вправо приводит к растяжению резинки, которое удовлетворяет закону Гука: F = -kx. При смещении груза влево резинка просто провисает. Найти период собственных колебаний такого несимметричного маятника.

При отклонении маятника вправо резинка растягивается и движение груза происходит по такому же закону, как и движение комбинированного маятника в предыдущей задаче. Единственное отличие состоит в том, что вместо двух пружин теперь имеется только одна. Поэтому при x > 0

$$ma = -mg \frac{x}{l} - kx \qquad (x > 0). \tag{1}$$

Вводя для ускорения *а* обозначение *x*, перепишем это уравнение в виде

$$\ddot{x} + \omega_0^2 x = 0$$
 (x > 0), (2)

илили где частота собственных колебаний ω₀ определяется соотношением

$$\omega_0^2 = \frac{g}{l} + \frac{k}{m} \,. \tag{3}$$

Из уравнения (2) следует, что движение груза происходит по такому же закону, как и при гармоническом колебании с частотой ω_0 , пока x>0, поскольку сила упругости — kx действует на груз только до тех пор, пока маятник отклонен вправо. Как только маятник пройдет через положение равновесия и начнет отклоняться влево, действие резинки прекращается, и

маятник движется так же, как и при свободном колебании в поле тяжести (рис. 2.2) Дифференциальное уравнение такого движения имеет вид

$$\ddot{x} + \omega_1^2 x = 0$$
 (x < 0), (4)

где

$$\omega_1^2 = \frac{g}{l} \,. \tag{5}$$

Таким образом, полная картина движения маятника с резинкой не описывается одним дифференциальным уравпением. Каждый раз в момент прохождения маятником положения равновесия для описания последующего движения нужно переходить от одного уравнения к другому: от уравнения (2) к уравнению (4), если груз проходит через положение равновесия справа налево, и от уравнения (4) к уравнению (2) — если слева направо.

Рис. 2.1. При

вертикальном

ятника резинка не растянута.

ма-

положении

Период T, в течение которого осуществляется полный цикл движения рассматриваемого несимметричного маятника, складывается из двух полупериодов, соответствующих гармоническим колебаниям с частотами ω_0 и ω_1 :

$$T = \pi \left(\frac{1}{\omega_0} + \frac{1}{\omega_1} \right). \tag{6}$$

Интересно сравнить между собой максимальные отклонения маятника при его смещениях вправо и влево от положения равновесия. Это можно сделать,

например, построив график зависимости смещения груза от времени. Пусть в начальный момент времени t=0 груз смещен вправо от положения равновесия на расстояние A_0 и отпущен без начальной скорости. Пока груз не достигнет положения равнсвесия, график его движения будет представлять собой часть косинусоиды, соответствующей решению уравнения (2) (рис. 2.3):

$$x(t) = A_0 \cos \omega_0 t \qquad \left(0 < t < \frac{\pi}{2\omega_0} \right).$$
(7)

После прохождения положения равновесия, т. е. при x < 0, график движения будет представлять собой часть другой Рис. 2.2. При отклонении маятника влево резинка не влияет на его движение.

косинусоиды, соответствующей решению уравнения (4). Эта косинусонда имеет, как мы выяснили, другой период и, разумеется, другую амплитуду A_1 . Однако в точках, где эти косинусоиды сменяют друг друга, они имеют общую касательную (рис. 2.3). В самом деле, наклон касательной на графике зависимости x(t) определяет скорость тела, которая в момент прохождения положения равновесия не меняется. Такие косинусоиды геометрически подобны (см. заштрихованные фигуры на рис. 2.3), поэтому отношение их амплитуд равно отношению соответствующих полупериодов:

$$\frac{A_1}{A_0} = \frac{\omega_0}{\omega_1} \,. \tag{8}$$

Отсюда после подстановки значений частот ω₀ и ω₁ получаем

$$A_1 = A_0 \sqrt{1 + \frac{kl}{mg}}.$$
 (9)

К соотношению (8) можно прийти и из энергетических соображений. Полная механическая энергия рассматриваемой системы сохраняется, и в точках остановки, где

Рис. 2.3. Заштрихованные фигуры, ограниченные графиком зависимости x (t), геометрически подобны.

отклонения маятника максимальны, она совпадает с потенциальной. Поэтому значения потенциальной энергии в крайних точках одинаковы. Так как действующая сила пропорциональна смещению, то потенциальная энергия пропорциональна квадрату смещения. Коэффициент пропорциональности определяет квадрат частоты колебаний. Поэтому выражение для потенциальной энергии E_n можно записать в виде

$$E_{\rm n} = \frac{1}{2} m \omega^2 x^2. \tag{10}$$

Подчеркнем, что данное выражение справедливо как при отклонении груза влево, когда потенциальная энергия это энергия груза в поле тяжести, так и при отклонении вправо, когда потенциальная энергия системы складывается из энергии груза в поле тяжести и потенциальной энергии растянутой резинки. Разумеется, в формулу (10) в каждом случае следует подставить соответствующее значение частоты ω_0 или ω_1 . Если теперь приравнять значения потенциальной энергии в крайних точках слева и справа,

$$\frac{1}{2} m \omega_1^2 A_1^2 = \frac{1}{2} m \omega_0^2 A_c^2,$$

то немедленно приходим к прежнему соотношению (8).

3. Колебательный контур с источником тока и его механическая аналогия. Источник с э. д. с. & и нулевым внутренним сопротивлением соединен последовательно с катушкой индуктивности и конденсатором (рис. 3.1). В начальный момент времени конденсатор не заряжен. Найти зависимость от времени напряжения на конденсаторе после замыкания ключа K. В какой механической системе процесс колебаний будет аналогичен колебаниям в рассматриваемом контуре?

Изучение процессов, происходящих в рассматриваемом контуре, естественно начать с составления уравнения для тока в такой цепи. Все элементы цепи соединены последовательно, поэтому сила тока во всех ее участках в данный момент времени одинакова, а сумма напряжений на всех элементах равна э. д. с. Так как по условию внутреннее сопротивление источника тока рав-

но нулю, то

$$U_L + U_C = \mathcal{E}, \qquad (1)$$

где U_G — напряжение на конденсаторе, U_L — напряжение на катушке индуктивности.

Напряжение на конденсаторе U_c связано с зарядом q его верхней пластины и его емкостью C соотношением $U_c = q/C$. Напряжение на индуктивности в любой момент

Рис. 3.1. Колебательный контур, содержащий источник питания.

времени равно по величине и противоположно по знаку э. д. с. самоиндукции, поэтому $U_L = L dI/dt$. Ток в цепи *I*, как видно из рис. 3.1, равен скорости изменения заряда верхней пластины конденсатора: I = dq/dt. Подставляя ток в выражение для напряжения на катушке и обозначая вторую производную заряда конденсатора *q* по времени через *a*, перепишем уравнение (1) в виде

$$L\ddot{q} + \frac{q}{C} = \mathscr{E}.$$
 (2)

12 Е. И. Бутяков и др.

Вводя обозначение $\omega_0^2 = 1/LC$, запишем уравнение (2) следующим образом:

$$\ddot{q} + \omega_0^2 q = \frac{\mathscr{O}}{L} \,. \tag{3}$$

Это уравнение отличается от дифференциального уравнения свободных гармонических колебаний с частотой ω_0 только тем, что в его правой части вместо нуля стоит постоянная величина \mathscr{O}/L . Его можно привести к уравнению гармонических колебаний, если сделать простую замену

$$q = Q + \frac{\mathscr{E}}{L\omega_0^2} \,. \tag{4}$$

Так как $q = \ddot{Q}$, то в результате такой замены правая часть в уравнении (3) пропадает, и оно принимает вид

$$\ddot{Q} + \omega_0^2 Q = 0. \tag{5}$$

Видно, что это действительно уравнение свободных гармонических колебаний с частотой ω_0 , но только теперь величиной, совершающей синусоидальные колебания, является не заряд пластины q, а введенная соотношением (4) величина Q:

$$Q(t) = Q_0 \cos(\omega_0 t + \alpha). \tag{6}$$

Постоянные Q₀ и а должны определяться из начальных условий.

Теперь легко написать выражение для интересующей нас величины q(t). Учитывая, что второе слагаемое в правой части соотношения (4) равно С \mathscr{C} , для заряда конденсатора q(t) с помощью (6) получаем

$$q(t) = Q_0 \cos(\omega_0 t + \alpha) + C \mathscr{E}. \tag{7}$$

По условию задачи в начальный момент времени t=0 конденсатор не заряжен, а ключ разомкнут, т. е. тока в цепи нет. Поэтому соответствующие рассматриваемой задаче начальные условия имеют вид

$$q(0) = 0, I(0) = 0.$$
 (8)

Чтобы выбрать постоянные Q_0 и α , удовлетворяющие начальным условиям (8), нужно сначала найти с помощью (7) выражение для тока в цепи І:

$$I(t) = \frac{dq}{dt} = -Q_0 \omega_0 \sin(\omega_0 t + \alpha).$$
(9)

Полагая в формулах (9) и (7) t=0 и учитывая начальные условия (8), получаем уравнения для нахождения Q₀ и α:

$$Q_0 \cos \alpha + C_0^{\alpha} = 0, \quad -Q_0 \omega_0 \sin \alpha = 0. \tag{10}$$

Из первого соотношения (10) видно, что $Q_0 \neq 0$. Тогда из второго соотношения следует, что sin $\alpha = 0$, т. е. начальную

Рис. 3.2. Зависимость заряда конденсатора и тока в цепи от времени.

фазу колебаний α можно положить равной нулю. Подставляя $\alpha = 0$ в первое соотношение (10), находим $Q_0 = -C \mathscr{E}$. Итак, удовлетворяющее начальным условиям (8) решение уравнения (3) имеет вид

$$q(t) = C \mathscr{E} (1 - \cos \omega_0 t). \tag{11}$$

Очевидно, что такой же вид имеет и зависимость от времени напряжения на конденсаторе U(t) = q/C.

Графики зависимости заряда конденсатора и тока от времени показаны на рис. 3.2. Из этого графика видно, что заряд конденсатора совершает гармоническое колебание около значения $q=C\mathcal{E}$, соответствующего заряду, который имел бы конденсатор в рассматриваемой цепи (рис. 3.1) в состоянии равновесия. Колебания заряда пронсходят между значениями q=0 и $q=2C\mathcal{E}$, так что знак заряда каждой пластины не меняется. Колебания тока в

отличие от колебаний заряда, происходят около значения I=0. Максимальное значение напряжения на конденсаторе равно удвоенной величине э. д. с. источника: $U_{Cmax}=26^\circ$. Может возникнуть вопрос, как это вообще источник

Может возникнуть вопрос, как это вообще источник с э. д. с. & может зарядить конденсатор до напряжения, равного 2&. Это объясняется наличием катушки индуктивности в цепи зарядки: действие э. д. с. самоиндукции приводит к тому, что ток в цепи не может обратиться в нуль в тот момент, когда напряжение на конденсаторе достигает значения, равного э. д. с. источника, и конденсатор продолжает заряжаться.

стигает значения, равного э. д. с. источника, и конден сатор продолжает заряжаться. Переходя к обсуждению механической системы, аналогичной рассмотренной электрической цепи, напомним, что колебательному контуру, содержащему индуктивность и емкость, можно сопоставить пружинный маятник. При этом заряд конденсатора аналогичен смещению груза, а ток в контуре — скорости движения груза. Упругая пружина является аналогом конденсатора, а движущаяся масса — аналогом катушки индуктивности.

Но в рассмотренной цепи кроме конденсатора и катушки индуктивности есть еще один элемент — источник питания. Благодаря источнику в такой цепи становится возможным возникновение колебаний даже в том случае, когда в начальный момент и заряд конденсатора, и ток в цепи равны нулю.

Поскольку в электрической цепи в начальный момент времени заряд конденсатора и ток равны нулю, то в механическом аналоге этой схемы в начальный момент пружина должна быть недеформирована, а груз должен покоиться. Остается только придумать, что может выполнить роль источника тока в механической системе: механический аналог источника должен привести систему в движение без начального толчка и должен продолжать действовать и дальше в процессе колебаний.

ше в процессе колеоанни. Нетрудно сообразить, что эту роль в механической системе может сыграть поле тяжести, если пружинный маятник расположить вертикально, подпереть груз подставкой так, чтобы пружина была недеформирована (рис. 3.3), а затем резко выдернуть подставку. Составим уравнение движения для такого маятника. Направим ось х вертикально вниз и будем отсчитывать смещение груза х от начального положения, в котором пружина недеформирована. Тогда проекция силы, действующей на груз со стороны пружины, равна — kx. Так как на груз действует еще и сила тяжести, то уравнение второго закона Ньютона имеет вид

$$ma = mg - kx. \tag{12}$$

Обозначая ускорение пружины, т. е. вторую производную смещения по времени, через \ddot{x} и вводя обозначение $\omega_0^2 = k/m$, перепишем уравнение (12) следую-

щим образом:

$$x + \omega_0^2 x = g.$$
 (13)

Мы видим, что процессы в механической системе и в рассмотренной выше электрической цепи описываются одинаковыми уравнениями (13) и (3). Одинаковыми будут и начальные условия: отсутствию заряда конденсатора и тока в начальный момент времени в электрической цепи (соотношения (8)) соответствуют равные нулю смещение груза и его скорость в момент выдергивания подставки:

$$x(0) = 0, v(0) = 0.$$
 (14)

Таким образом, рассматриваемая механическая система действительно представляет собой аналог электриче-

Рис. 3.3. В начальный момент пружина недеформирована и груз неподвижен. Затем подставку выдергивают.

ской цепи, и все сопоставляемые в них друг другу величины изменяются со временем по одинаковому закону. Поэтому смещение груза x(t) дается формулой (11), в которую только вместо величины СС нужно подставить ее аналог в механической системе. Из сопоставления уравнений (3) и (13) ясно, что величину C/L следует заменить на g, а величину $C = C/L\omega_0^2 -$ на $g/\omega_0^2 = mg/k$:

$$x(t) = \frac{mg}{k} (1 - \cos \omega_0 t).$$
⁽¹⁵⁾

График зависимости x(l) изображается тем же рис. 3.2. Видно, что колебания груза происходят около значения x=mg/k, соответствующего статической деформации пружины под тяжестью груза, т. е. около положения равновесия системы в поле тяжести. Интересно рассмотреть энергетические превращения, происходящие при колебаниях в данной электрической цепи и в сопоставляемой ей механической системе. До замыкания ключа, пока заряд конденсатора и ток в его ка-тушке индуктивности рав-

Рис. 3.4. В цепи с сопротивлением колебания заряда конденсатора затухают.

ны нулю, электрическое поле в конденсаторе и магнитное поле в катушке отсутствуют, т. е. равны нулю соответствующие им энергии. Точно так жедо выдергивания подставки в механической системе упругая потенциальная энергия пружины и кинетическая

затухают. потенциальная энергия пружины и кинетическая энергия груза равны нулю. После выдергивания подставки груз под действием силы тяжести устремляется вниз, при-обретая скорость и кинетическую энергию. Одновременно растет деформация пружины и связанная с ней упругая потенциальная энергия. После прохождения положения равновесия x = mg/k скорость и кинетическая энергия груза начинают убывать, и в крайней нижней точке x = 22mg/k кинетическая энергия пружины $E_n = kx^2/2$ достигает в этот момент наибольшего значения $E_n = 2m^2g^2/k$. Весь этот запас упругой энергия пружина приобрела за счет работы силы тяжести. В самом деле, при опускании груза его потенциальная, энергия в поле тяжести уменьшилась как раз на такую же величину $mg \cdot 2mg/k$. В течение следующей половины периода происходит обратное превращение потенциальной энергии упругой деформации пружины в потенциальной энергию груза в поле тяжести. Совершенно аналогичные превращения энергии происходят и в электрической цепи. В течение первой половины периода за счет работы, совершаемой источником тока, появляется энергия магнитного поля катушки и электрического поля конденсатора, причем к концу этого промежутка времени вся эта энергия оказывается сосредоточенной в конденсаторе. В течение второй половины периода происходят обратные превращения энергии, и вся энергия оказывается сосредоточенной в конденсаторе. В течение второй половины периода происходят обратные превращения энергии, и вся энергия возвращается в источник тока. Очевидно, что это возможно только потому, что внутреннее сопротивление ис-

точника равно нулю. Другими словами, все процессы в источнике обратимы и прохождение заряда через него не связано с выделением тепла.

Любой реальный источник тока (как, впрочем, и катушка индуктивности с соединительными проводами) обладает сопротивлением. Поэтому при происходящих процессах неизбежно выделяется тепло и энергетические превращения необратимы. Колебания в действительности будут затухающими (рис. 3.4), так что в конце концов напряжение на конденсаторе станет равным э. д. с. источника.

В реальной механической системе всегда присутствует трение. Поэтому и здесь неизбежно выделение тепла, т. е. превращения механической энергии также необратимы. Колебания будут затухающими, и груз в конце концов установится в положении равновесия x=mg/k.

4. Двойной маятник. Точка подвеса *А* двойного маятника совершает гармонические колебания с малой амплитудой в горизонтальном направлении (рис. 4.1). Длина нижней нити равна *l*, масса нижнего шарика *m*, верхнего — *M*. Каким должен быть период колебаний точки подвеса *A*, чтобы верхняя нить все время оставалась вертикальной?

Рассмотрим систему шариков m и M, соединенных нитью длиной l. Допустим, мы подобрали такой период колебаний T точки подвеса A, что при колебаниях нашего двойного маятника верхняя нить все время остается вертикальной. Это значит, что все внешние силы, действующие на выделенную систему, а именно силы тяжести и сила натяжения верхней нити, направлены по вертикали. Отсюда следует, что центр масс системы не перемещается в горизонтальном направлении. Другими словами, шары в любой момент времени движутся в противоположных направлениях, а отношение их ускорений обратно пропорционально отношению масс:

$$\frac{a_1}{a_2} = \frac{M}{m} \,. \tag{1}$$

С другой стороны, непосредственно из рис. 4.2 видно, что

$$\frac{a_1}{a_2} = \frac{s}{l-s} \,. \tag{2}$$

Сравнивая (1) и (2), находим

$$s = \frac{l}{1 + m/M} \,. \tag{3}$$

Попытаемся теперь представить себе, что это за колебания. Ускорения обоим шарам сообщает горизонтальная

Рис. 4.1. Точка подвеса *А* совершает гармонические колебания с такой частотой, что верхняя нить все время остается вертикальной.

Рис. 4.2. Если верхняя нить при колебаниях остается вертикальной, то центр масс шаров *В* не перемещается по горизонтали.

составляющая силы натяжения нижней нити. Поскольку точка *B* (центр масс шаров) по горизонтали не перемещается, движение нижнего шара приближенно можно представить себе как свободные колебания математического маятника длиной *s*. Строго говоря, точка *B* совершает перемещения по вертикали, однако при небольшой амплитуде колебаний маятника эти перемещения столь малы, что не влияют на период колебаний.

Период колебаний математического маятника длиной *s* равен $T = 2\pi / \sqrt{s/g}$. Подставляя сюда *s* из формулы (3), получаем

$$T=2\pi \sqrt{\frac{l}{g\left(1+m/M\right)}}.$$

360
Заметим, что точно такие же колебания шаров можно получнть, если верхний шар не подвешивать на нити, а насадить на гладкий горизонтальный стержень, по которому он может скользить без трения. Сила реакции такого стержня направлена все время вертикально вверх и выполняет ту же роль, что и сила натяжения верхней вертикальной нити — поддерживает верхний шар на одном и том же уровне, не сообщая ему никакого горизонтального ускорения. Отсюда ясно, что ответ не зависит от длины верхней нити.

Интересно отметить, что рассматриваемые нами колебания этой системы шаров не являются вынужденными: при отсутствии трения это есть свободные незатухающие колебания. Силу натяжения верхней нити нельзя рассматривать как «вынуждающую», так как, будучи перпендикулярной перемещению, эта сила работы не совершает, т. е. энергия к системе не подводится.

5. Собственные колебания двойного маятника. У двойного маятника, описанного в предыдущей задаче, точка подвеса А неподвижна. Маятник выведен из равновесия таким образом, что при его дальнейшем свободном движении каждый из шариков совершает гармоническое колебание. Какова частота таких колебаний и каким образом их можно возбудить?

Если двойной маятник вывести из равновесия произвольным образом и предоставить самому себе, то каждый из шариков будет, вообще говоря, совершать довольно сложное движение, в котором трудно уловить какую-либо закономерность. Однако при некоторых начальных условиях движение маятника оказывается очень простым: оба шарика совершают чисто гармоническое колебание с одной и той же частотой, причем амплитуды и фазы этих колебаний находятся во вполне определенном соотношении друг с другом.

Такие типы движения называются нормальными колебаниями системы или ее модами.

Существуют определенные методы нахождения нормальных колебаний. Но во многих случаях их можно просто угадать, основываясь на симметрии рассматриваемой системы. Если считать, что колебания двойного маятника могут происходить не только в плоскости чертежа на рис. 4.1, но и в перпендикулярной плоскости, то можно сразу сообразить, что рассматриваемая система обладает осевой сим-

Рис. 5.1. Спроектировав круговое движение маятника на вертикальную плоскость, получим гармоническое колебание. метрией, причем осью симметрии является вертикаль, проходящая через точку подвеса.

Чтобы понять, как подмеченная осевая симметрия системы может помочь в нахождении нормальных колебаний, обратимся сначала к более простому примеру обыкновенного математического маятника. При малых амплитудах колебания такого маятника являются гармоническими. Хорошо известно, что гармонические колебания маятника в определенной плоскости можно рассматривать как проекцию на эту плоскость такого движения, при котором нить маятника описывает круговой конус (рис. 5.1). Таким образом, гармоническое колебательное движение можно представить как проекцию некоторого

кругового движения, поэтому нахождение нормальных колебаний в системе с осевой симметрией можно свести к нахождению возможных круговых движений в этой системе.

Какие же круговые движения возможны у двойного маятника?

Легко сообразить (или даже «нащупать» экспериментально, играя с таким двойным маятником), что возможное круговое движение выглядит так, как показано на рис. 5.2: шарики движутся равномерно и синхронно по окружностям, лежащим в горизонтальных плоскостях, так что нити, которые в каждый момент находятся в одной вертикальной плоскости, описывают конические поверхности.

Теперь нетрудно найти угловую скорость ω и соотношение между углами α_1 и α_2 , которые нити образуют с вертикалью. Для этого нужно применить второй закон Ньютона к движению каждого из шариков. Будем для простоты считать, что массы шариков равны, а верхняя и нижняя нити имеют одинаковую длину l. На рис. 5.3 показаны действующие силы. В случае малых углов, который нас только и интересует, величина силы натяжения нижней нити T_1 практически не отличается от mg, а величина силы натяжения верхней нити T_2 — от 2mg. Как видно из рис. 5.3,

Рис. 5.2. Возможное круговое движение двойного маятника.

Рис. 5.3. Силы, действующие на шарики в двойном маятнике.

проекция действующей на нижний шарик силы T_1 на горизонтальное направление равна $T_1 \sin \alpha_1 \approx mg \alpha_1$. Аналогично проекция сил натяжения нитей, действующих на верхний шарик, равна $T_2 \sin \alpha_2 - T_1 \sin \alpha_1 \approx mg (2\alpha_2 - \alpha_1)$. Поэтому уравнения второго закона Ньютона для каждого из шариков в проекции на радиальное направление имеют вид

$$m\omega^{2}r_{1} = mg\alpha_{1},$$

$$m\omega^{2}r_{2} = mg(2\alpha_{2} - \alpha_{1}).$$
(1)

С помощью рис. 5.3 радиусы окружностей r_1 и r_2 , по которым движутся шарики, легко связать с углами α_1 и α_2 :

$$r_2 = l\alpha_2, \quad r_1 = l(\alpha_1 + \alpha_2). \tag{2}$$

Подставляя r₁ и r₂ в уравнения (1) и вводя обозначение

$$\omega_0^2 = \frac{g}{l} , \qquad (3)$$

получим следующую систему уравнений для определения α₁ и α₂:

$$(\omega^2 - \omega_0^2) \alpha_1 + \omega^2 \alpha_2 = 0, \omega_0^2 \alpha_1 + (\omega^2 - 2\omega_0^2) \alpha_2 = 0.$$
 (4)

Сразу видно, что система уравнений (4) имеет решение $\alpha_1 = 0$ и $\alpha_2 = 0$, которое соответствует маятнику в положении равновесия. Но эта система имеет и ненулевые решения. Для их нахождения исключим, например, α_2 из этих уравнений. Тогда для α_1 получим следующее уравнение:

$$\left[\left(\omega^2 - \omega_0^2 \right) \left(\omega^2 - 2\omega_0^2 \right) - \omega_0^2 \omega^2 \right] \alpha_1 = 0.$$
 (5)

Очевидно, что ненулевое решение $\alpha_1 \neq 0$ может существовать только тогда, когда равно нулю выражение в квадратных скобках. Приводя в нем подобные члены, запишем это условие в виде

$$\omega^{4} - 4\omega_{0}^{2}\omega^{2} + 2\omega_{0}^{4} = 0. \tag{6}$$

Уравнение (6), являющееся условием существования ненулевых решений системы уравнений (4), определяет частоту ω возможных круговых движений двойного маятинка.

$$\omega_{1,2}^2 = \omega_0^2 \left(2 \pm \sqrt{2}\right). \tag{7}$$

Мы видим, что круговые движения двойного маятника могут происходить с двумя разными частотами. Для того чтобы найти соотношение углов α_1 и α_2 , соответствующее каждому из этих движений, нужно подставить по очереди найденные значения частот в одно из уравнений (4). Подставим сначала, например, в первое из уравнений (4) корень $\omega^2 = \omega_2^2 = \omega_0^2 (2 - \sqrt{2})$. После приведения подобных членов получаем

$$\frac{\alpha_1}{\alpha_2} = \sqrt{2}$$
 (при $\omega^2 = \omega_0^2 (2 - \sqrt{2})).$ (8)

Если бы мы подставили корень ω_2^2 во второе из уравнений (4), то мы получили бы точно такое же значение отношения α_1/α_2 . Таким образом, уравнения (4) дают возможность определить не сами углы α_1 п α_2 , а только соотношение между

ними. Это означает, что круговое движение двойного маятника с данной угловой скоростью возможно при разных значениях раствора конуса (но, разумеется, с определенным соотношением α_1/α_2).

Теперь подставим в первое из уравнений (4) другой корень $\omega^2 = \omega_1^2 = \omega_0^2 \left(2 + \sqrt{2}\right)$. Приведя подобные члены, для отношения углов отклонения нитей получим

$$\frac{\alpha_1}{\alpha_2} = -\sqrt{2} \quad (\text{при } \omega^2 = \omega_0^2 \left(2 + \sqrt{2}\right)). \tag{9}$$

Знак минус в этом отношении может означать только то, что при круговом движении двойного маятника нити отклонены от вертикали в противоположные сто-

роны. Такое движение показано на рис. 5.4. О том, что оно возможно, тоже можно было догадаться заранее.

Такнм образом, двойной маятник может совершать два вида круговых движений: движение с меньшей угловой скоростью ω_2 происходит так, как показано на рис. 5.2, а движение с большей угловой скоростью ω_1 — как показано на рис. 5.4. Каждому движению соответствует определенная конфигурация нитей. Все это легко наблюдать на опыте.

Каждому виду круговых движений двойного маятника соответствует свое нормальное колебание. Спроектировав круговое движение на вертикальную плоскость, мы получаем картину соответствующего нормального колебания. Легко видеть, что при нормальном колебании двойного маятника с частотой ω=

Рис. 5.4. Другое возможное движение двойного маятника.

 $= \omega_0 \sqrt{2 - \sqrt{2}} = 0,77 \omega_0$ движение шариков происходит в одинаковой фазе, причем отношение их амплитуд, как следует из формул (2), равно

$$\frac{r_1}{r_2} = 1 + \frac{\alpha_1}{\alpha_2} = 1 + \sqrt{2} = 2,41.$$

При нормальном колебании с частотой $\omega = \omega_0 \sqrt{2 + \sqrt{2}} = -1,85 \omega_0$ шарики совершают колебания в противофазе, а

отношение их амплитуд равно

 $\left|\frac{r_1}{r_2}\right| = \sqrt{2} - 1 = 0,41.$

У двойного маятника с различными длинами верхней и нижней нитей и различными массами шариков частоты нормальных колебаний и отношения амплитуд колебаний шариков будут иными, но качественно вся картина нормальных колебаний остается прежней.

Чтобы возбудить нормальные колебания двойного маятника, можно, например, отклонить нити от вертикали на углы α_1 и α_2 , удовлетворяющие соотношениям (8) или (9), и отпустить шарики одновременно без начального толчка. Но нормальные колебания на опыте можно возбудить и иначе, используя явление резонанса. Для этого можно, взявшись за нить вблчзи точки подвеса, осторожно раскачивать ее с частотой, близкой к частоте одного из нормальных колебаний. Амплитуда соответствующего нормального колебания быстро нарастает, если мы попадаем в резонанс.

6. Вынужденные колебания. Точка подвеса математического маятника длиной l движется под действием внешней силы в горизонтальном направлении по закону $x(t) = x_0 \sin \omega t$. Найти установившиеся вынужденные колебания маятника.

Задача состоит в нахождении установившихся вынужденных колебаний маятника. При нахождении вынужденных колебаний будем пренебрегать трением, однако необходимо отчетливо представлять себе, что установление колебаний принципиально возможно лишь при наличии затухания. С одной стороны, мы собираемся решать задачу без учета сил трения, а с другой стороны, как только что отмечено, силы трения необходимы.

Будет ли полученное решение иметь смысл? Да, будет, но только оно будет описывать движение маятника с малым затуханием спустя достаточно большой промежуток времени после того, как точка подвеса приведена в движение. Слова «достаточно большой промежуток времени» означают здесь, что, несмотря на малое затухание, переходный процесс уже закончился. Из условия задачи нам известны амплитуда x_0 и круговая частота ω колебаний точки подвеса. Очевидно, чго вынужденные колебания будут происходить с той же самой частотой ω , в то время как частота свободных колебаний этого маятника равна $\omega_0 = \sqrt{g/l}$. Основная идея решения заключается в том, чтобы пред-

ключается в том, чтобы представить вынужденные колебания данного маятника как свободные колебания некоторого другого маятника. Очевидно, что длина этого маятника L должна определяться из условия $\omega = \sqrt{g/L}$. Здесь могут представиться разные случаи: частота ω может быть меньше, больше или равна собственной частоте свободных колебаний данного математического маятника.

Рассмотрим сначала случай $\omega < \omega_0$, т. е. частота колебаний точки подвеса меньше частоты свободных колебаний. В этом случае длина *L* воображаемого маятника больше, чем *l* (рис. 6.1). Поскольку рассматриваются малые коле-

Рис. 6.1. При свободных колебаниях маятника длиной L точка B совершает гармоническое колебание с частотой $\omega = \sqrt{g/L}$.

рассматриваются малые колебания, можно считать, что нижний конец A маятника движется по прямой — ось X на рисунке. Если движение точки A происходит по закону $X(t) = X_0 \sin \omega t$, то, как сразу видно из рисунка, точка B, находящаяся на расстоянии lот нижнего конца, совершает движение вдоль оси x по закону $x(t) = x_0 \sin \omega t$, совпадающему с заданным движением точки подвеса. Теперь нетрудно представить себе, что если в качестве точки B взять точку подвеса маятника l, то движение его нижнего конца будет таким же, как и у воображаемого маятника L. Другими словами, если «отрезать» у маятника длины L верхнюю часть, но обеспечить при этом внешними силами движение точки B по такому же закону, как и при свободных колебаниях маятника длины L, то мы получим интересующий нас маятник длины l, точка подвеса которого совершает заданное движение. Очевидно, что движение нижней части маятника при этом не изменится.

Таким образом, вынужденное колебание происходит в той же фазе, что и движение точки подвеса, а амплитуду этого колебания X₀ можно определить из очевидных геометрических соображений:

$$X_{0} = x_{0} \frac{L}{L-l} = x_{0} \frac{\omega_{0}^{2}}{\omega_{0}^{2} - \omega^{2}}.$$

Здесь мы подставили выражения для длин маятников через их частоты. Обратим внимание на то, что при стремлении частоты колебаний точки подвеса к частоте свободных колебаний маятника амплитуда его вынужденных колебаний неограниченно возрастает, т. е. наступает резонанс. Вблизи резонанса полученное нами решение пеприменимо, так как, во-первых, мы исходили из предположения малости колебаний и, во-вторых, вблизи резонанса нельзя пренебрегать затуханием, ибо только при учете затухания амплитуда в резонансе получается конечной.

плитуда в резонансе получается конечной. В случае ω>ω₀ длина воображаемого маятника L<l (рис. 6.2). Рассуждая аналогично предыдущему случаю, легко прийти к выводу, что движение нижнего конца маят-ника l (точка A на рис. 6.2) происходит в противсфазе с дви-жением точки подвеса B. Амплитуда вынужденных колеба-ний легко определяется из геометрических соображений. Приведем окончательный результат: вынужденные ко-лебания маятника описираются урагности

лебания маятника описываются уравнением

$$X(t) = X_0 \sin(\omega t + \varphi),$$

где

 $\varphi = \begin{cases} 0 & \text{при } \omega < \omega_0, \\ -\pi & \text{при } \omega > \omega_0, \end{cases} \quad X_0 = \begin{cases} \frac{x_0 \omega_0^2}{\omega_0^2 - \omega^2} & \text{при } \omega < \omega_0, \\ \frac{x_0 \omega_0^2}{\omega_0^2 - \omega^2} & \text{при } \omega > \omega_0. \end{cases}$

На рис. 6.3 приведена зависимость амплитуды вынужденных колебаний от частоты движения точки подвеса. Кривая 1 соответствует идеализированному случаю, когда затухание отсутствует. При $\omega \rightarrow \omega_0$ эта кривая показывает стремление амплитуды вынужденных колебаний к бесконечности в условиях резонанса. Если бы затухание учитывалось, то вместо кривой 1 получилась бы кривая 2. При этом максимум амплитуды вынужденных колебаний оказывается конечным и приходится на частоту, песколько меньшую частоты ω₀ свободных колебаний. Сдвиг частоты

Рис. 6.2. При $\omega > \omega_0$ нижний конец маятника и точка подвеса движутся в противофазе.

Рис. 6.3. Амплитуда вынужденных колебаний при резонансе тем меньше, чем больше затухание.

тем больше, чем больше затухание. С ростом затухания уменьшается амплитуда вынужденных колебаний. При $\omega \rightarrow \infty$ амплитуда колебаний стремится к нулю даже тогда, когда нет затухания. При $\omega = 0$, что соответствует статическому смещению точки подвеса на расстояние x_0 , нижний конец маятника смещается из прежнего положения на такую же величину x_0 .

7. Успокоение колебаний. Электродвигатель установлен на подставке, которая подвешена на нерастяжимых нитях длиной l (рис. 7.1). Ротор его вращается с угловой скоростью ω . Центр масс ротора двигателя не находится на его оси, поэтому подставка раскачивается в горизонтальном направлении. Для устранения этих нежелательных колебаний подставки можно поступить следующим образом. Подвесим рядом с подставкой груз массы m и соединим его с подставкой упругой пружиной (рис. 7.2). Тогда при определенном значении жесткости пружины k подставка с мотором будет неподвижна, а груз будет совершать колебания. Почему так происходит и какой должна быть жесткость пружины k?

Допустим, что нам удалось подобрать такую пружину: подставка с мотором остается неподвижной, несмотря на то, что ротор мотора вращается. Попробуем выяснить, при каких условиях это возможно. Подставка неподвижна, значит, все действующие на нее силы уравновешены. Какие же силы действуют на подставку?

При вращении ротора его центр масс, не лежащий на оси, движется по окружности. Это значит, что действующая

Рис. 7.1. Подставка с электродвигателем подвешена на нитях,

Рис. 7.2. Успокоение колебаний мотора с несбалансированным ротором с помощью комбинированного маятника.

на ротор сила в каждый момент времени направлена к центру окружности, т. е. представляет собой постоянный по величине вектор, вращающийся с угловой скоростью ω. Величина этой силы *F*₀ согласно второму закону Ньютона равна произведению массы ротора *M* на центростремительное ускорение ω²r:

$$F_0 = M \omega^2 r, \tag{1}$$

где *r* — расстояние от оси до центра масс ротора. Вертикальная проекция действующей на ротор силы изменяется со временем по гармоническому закону

$$F_1(t) = F_0 \sin \omega t. \tag{2}$$

Благодаря этой силе периодически с частотой ω изменяется натяжение нитей, на которых подвешена подставка. Если амплитуда этой силы F_0 не превосходит действующей на мотор с подставкой силы тяжести M_1g , то нити все время остаются натянутыми. Таким образом, подставка не совершает перемещений по вертикали, если, как видно из формулы (1), выполнено условие

$$\omega^2 < \frac{M_1}{M} \frac{g}{r} \,. \tag{3}$$

Выясним теперь, при каком условии подставка с мотором не будет совершать и горизонтальных перемещений. Горизонтальная проекция действующей на ротор силы также изменяется по гармоническому закону:

$$F_2(t) = F_0 \cos \omega t. \tag{4}$$

Согласно третьему закону Ньютона равная по величине и противоположная по направлению сила действует со стороны ротора на статор мотора и подставку. Именно благодаря этой синусондальной силе подставка и совершала бы горизонтальные колебания в отсутствие груза *m* с пружиной. Очевидно, что если в каждый момент времени действующая на подставку со стороны деформированной пружины сила будет уравновешивать силу, действующую со стороны ротора, то подставка с мотором будет неподвижна.

на подставку со стороны деформированной пружины сила будет уравновешивать силу, действующую со стороны ротора, то подставка с мотором будет неподвижна. Таким образом, действующая на подставку со стороны пружины сила должна быть равна силе $F_2(t)$, выражаемой формулой (4), т. е. должна синусоидально зависеть от времени с той же самой частотой ω . Так как упругая сила пружины пропорциональна ее деформации, т. е. смещению груза *m* из положения равновесия (рис. 7.2), то движение груза *m* должно представлять собой гармоническое колебание с той же частотой ω . Поскольку подставка с мотором при этом неподвижна, то ясно, что частота ω должна быть частотой собственных колебаний комбинированного маятника с пружиной. Такой маятник был рассмотрен в задаче 1 этого раздела. Так как теперь к грузу *m* прикреплена одна пружина, а не две, то выражение для частоты собственных колебаний имеет вид

$$\omega^2 = \frac{g}{l} + \frac{k}{m} \,. \tag{5}$$

Отсюда определяется жесткость пружины, необходимой для успокоения колебаний подставки с мотором, якорь которого вращается с угловой скоростью ω:

$$k = m\left(\omega^2 - \frac{g}{l}\right) = m\left(\omega^2 - \omega_0^2\right).$$
(6)

Из этой формулы видно, что добиться успокоения колеба-ний подставки таким способом можно только тогда, когда круговая частота ротора больше частоты ω₀ свободных ко-лебаний математического маятника длины *l*. Для успоко-ения низкочастотных колебаний, когда ω ≤ ω₀, пришлось бы подвешивать груз *m* на нити большей длины. Итак, при вращении несбалансированного ротора под-

ттак, при вращении несоалансированного ротора под-ставка с мотором неподвижна, а присоединенный к ней маятник совершает гармонические колебания. Легко най-ти амплитуду этих колебаний. Как видно из формулы (4), амплитуда колебаний x_0 определяется из условия $kx_0=F_0$. Подставляя сюда F_0 из формулы (1) и k из (6), находим

$$x_{0} = r \, \frac{M}{m} \, \frac{1}{1 - \omega_{0}^{2}/\omega^{2}} \qquad (\omega > \omega_{0}). \tag{7}$$

Амплитуду колебаний груза x_0 всегда можно сделать до-статочно малой путем увеличения массы груза *m*. Однако увеличение массы потребует, как видно из формулы (6), увеличения жесткости пружины *k*. Мы выяснили, что при правильном подборе жесткости пружины действительно возможно такое движение рас-смотренной системы, при котором подставка с мотором не-подвижна. Однако остается вопрос о том, будет ли система сама приходить в такое состояние после включения мотора. Ответ на этот вопрос положительный. Общей чертой вынуж-денных колебаний, происходящих под действием периоди-ческой внешней силы, является то, что спустя некоторое время после начала действия внешней силы система пол-ностью «забывает» свое начальное состояние. В любой ревремя после начала действия внешней силы система полностью «забывает» свое начальное состояние. В любой реальной системе, где собственные колебания затухают, вынужденные колебания приобретают стационарный характер и не зависят от начальных условий. Начальные условия проявляются только в период установления колебаний, который обычно называют переходным процессом. Отметим, что при наличии затухания успокоение колебаний подставки с мотором, строго говоря, не будет абсолютным. Чтобы колебания вспомогательного маятника

при наличии в нем трения происходили с неизменной ам-плитудой, к нему должна подводиться энергия. А это воз-можно только тогда, когда подставка с мотором все-таки совершает колебания с небольшой амплитудой.

Рассмотренный в этой задаче способ успокоения вынужденных колебаний широко применяется в технике и называется динамическим демпфированием.

8. Несинусоидальные колебания. В плоский конденсатор с размерами обкладок $l_1 \times l_2$ и расстоянием между ними d ($l_1 \gg d$, $l_2 \gg d$) полностью вставлена диэлектрическая пластина массы m с проницаемостью ε , как раз заполняющая весь объем между обкладками. На конденсаторе поддерживается постоянное напряжение U. Диэлектрическая пластина выдвигается вдоль стороны длиной l_1 на расстояние x_0 и отпускается. Пренебрегая трением, найти зависимость смещения пластины от времени x(t).

Чтобы выяснить, по какому закону будет происходить движение пластины, прежде всего необходимо найти выражение для силы, действующей на нее со стороны электрического поля плоского конденсатора, соединенного с

Рис. 8.1. К нахождению силы $F_{\mathfrak{gr}}$, втягивающей диэлектрическую пластину при неизменном напряжении U между обкладками конденсатора.

источником постоянного напряжения U. Пусть пластина диэлектрика выдвинута на расстояние x за пределы конденсатора (рис. 8.1) и находится в равновесии под действием силы $F_{a,a}$, действующей со стороны электрического поля, и равной ей по величине внешней силы F. Допустим, что диэлектрик вдвинулся в пространство между обкладками на величину Δx . Из закона сохранения энергии следует, что совершенная при этом источником работа $A_{\mu c \tau}$ равна сумме изменения энергии конденсатора ΔW_{κ} и механической работы, совершенной силой $F_{a,a}$ над внешними телами:

$$A_{\mu c \tau} = \Delta W_{\kappa} + F_{\partial \pi} \Delta x. \tag{1}$$

Если заряд конденсатора изменился при этом на величину Δq , то изменение энергии конденсатора ΔW_{κ} равно

$$\Delta W_{\kappa} = \frac{1}{2} U \,\Delta q. \tag{2}$$

Источник напряжения при этом совершил работу

$$A_{\rm HCT} = U\,\Delta q.\tag{3}$$

Подставляя ΔW_{κ} и $A_{\mu cr}$ из (2) и (3) в уравнение (1), получаем

$$F_{\mathfrak{s}\pi}\,\Delta x = \frac{1}{2}\,U\,\Delta q\,.\tag{4}$$

Это соотношение позволяет найти величину силы $F_{\mathfrak{sr}}$, действующей на диэлектрическую пластину со стороны электрического поля конденсатора. Изменение заряда конденсатора Δq при вдвигании пластины можно записать в виде $\Delta q = U\Delta C$. Изменение емкости конденсатора ΔC при вдвигании пластины на Δx можно найти, если рассматривать конденсатор с частично вдвинутой пластиной как два соединенных параллельно конденсатора, один из которых заполнен диэлектриком, а другой — нет. Тогда простой расчет приводит к следующему результату:

$$\Delta C = \frac{\varepsilon_0 \left(e - 1\right) l_2 \Delta x}{d}.$$
 (5)

Подставляя изменение заряда Δq в уравнение (4), находим $F_{\text{вл}}$:

$$F_{\mathfrak{s}\mathfrak{a}} = \frac{\mathfrak{e}_0 \left(\mathfrak{e} - 1\right) l_2}{d} \frac{U^2}{2}.$$
 (6)

Таким образом, если между обкладками конденсатора поддерживается постоянное напряжение, то величина действующей на диэлектрик силы не зависит от длины выступающей из конденсатора части. Эта сила втягивает диэлектрик в пространство между обкладками.

Теперь легко сообразить, что выдвинутая пластина будет под действием постоянной силы $F_{\mathfrak{p}\mathfrak{n}}$ двигаться равноускоренно с ускорением $a = F_{\mathfrak{p}\mathfrak{n}}/m$, пока не достигнет положения равновесия. После того как пластина проскочит по инерции положение равновесия и высунется из конденсатора с другой стороны, направление ускорения изменится на противоположное, так как изменится направление втягивающей силы. В результате пластина будет совершать колебания, которые, однако, не будут гармоническими. График смещения в зависимости от времени x(l) состоит

Рис. 8.2. Графики смещения и скорости при колебаниях диэлектрической пластины в конденсаторе.

из отрезков парабол (рис. 8.2). Так, например, в течение первой четверти периода таких колебаний, т. е. при $0 < t < \frac{T}{4}$,

$$x(t) = x_0 - \frac{at^2}{2}, (7)$$

где

$$a = \frac{F_{\mathfrak{d},\mathfrak{n}}}{m} = \frac{\varepsilon_0 \left(\varepsilon - 1\right) l_2 U^2}{2md} \,. \tag{8}$$

Амплитуда таких колебаний, как видно из рис. 8.2, совпадает с начальным смещением пластины x_0 из положения равновесия. По истечении первой четверти периода колебаний x(t) в левой части соотношения (7) обращается в нуль. Поэтому для полного периода колебаний T получаем

$$T = 4 \sqrt{\frac{2x_0}{a}}.$$
 (9)

Видно, что период этих несинусоидальных колебаний зависит от амплитуды x₀.

Если график зависимости смещения пластины кондепсатора от времени еще хоть как-то напоминает косинусоиду, то график скорости уже совершенно не похож на то, что должно быть при гармонических колебаниях. Поскольку ускорение пластины постоянно по величине и только скачком меняет направление на противоположное в моменты прохождения пластиной положения равновесия, то график скорости v(t) представляет собой «пилу», показанную на рис. 8.2.

9. Колебания обруча. К невесомому обручу раднуса R, расположенному вертикально, прикреплена материальная точка массы m. Обруч может катиться без проскальзывания по горизонтальной плоскости. Если вывести обруч из положения равновесия так, чтобы диаметр обруча, проходящий через материальную точку, образовал небольшой угол φ_{u} с вертикалью (рис. 9.1), и отпустить без толчка, то возникнут колебания. Каков период этих колебаний?

Если обруч находится в положении устойчивого равновесия, то прикрепленная к нему материальная точка занимает самое нижнее положение. Когда обруч катится без проскальзывания, эта точка движется по циклоиде. Получим прежде всего уравнение этой циклоиды.

Выберем начало координат в положении равновесия материальной точки. «Прокатим» обруч по оси x так, что днаметр, проходящий через точку m, образует с вертикалью угол φ (рис. 9.2). Выразим координаты x и y интересующей нас точки через угол φ . При качении без проскальзывания длина дуги $AB = R\varphi$ равна длине отрезка OB. Поэтому непосредственно из рис. 9.2 видно, что

$$x = R (\varphi - \sin \varphi),$$

$$y = R (1 - \cos \varphi).$$
(1)

При малых колебаниях обруча, когда угол $\phi \ll 1$, формулы (1) можно упростить. Для этого заменим sin ϕ на ϕ , тогда выражение для соs ϕ можно записать в виде

$$\cos \varphi = \sqrt{1 - \sin^2 \varphi} \approx \sqrt{1 - \varphi^2} \approx 1 - \frac{1}{2} \varphi^2.$$

Теперь уравнения (1) переписываются следующим образом:

$$x = 0, \quad y = \frac{1}{2} R \varphi^2.$$
 (2)

Из этих соотношений следует, что при малых колебаниях обруча закрепленная на нем точка движется практически по вертикали.

Найти закоп движения материальной точки по известной траектории можно, вообще не рассматривая действующие

Рис. 9.1. При отклонении из положения равновесия невесомый обруч с точечной массой *m* будет совершать колебания.

Рис. 9.2. К выводу уравнения циклоиды. Длина дуги АВ равна отрезку ОВ.

силы, а воспользовавшись только законом сохранения эпергии. Так как при малых углах фточка движется по вертикали, ее кинетическая энергия равна $my^2/2$. Считая потенциальную энергию равной пулю в положении равновесия, запишем закон сохранения энергии в виде

$$\frac{1}{2}m\dot{y}^2 + mgy = \text{const.}$$
(3)

Продифференцируем это уравнение по времени:

$$myy + mgy = 0. \tag{4}$$

Так как у не равно нулю тождественно, то из этого соотношения после сокращения на *ту* получаем

$$\ddot{y} + g = 0. \tag{5}$$

Это уравнение говорит о том, что ускорение материальной точки все время направлено вертикально вниз, постоянно по

величине и равно ускорению свободного падения. Значит, при малых колебаниях невесомого обруча прикрепленная к нему материальная точка движется так же, как при свободном падении в поле тяжести. Каждый раз в момент про-

Рис. 9.3. Графики скорости и вертикального смещения массы *т* и угла отклонения ф при малых колебаниях обруча.

хождения через положение равновесия направление движения точки изменяется на противоположное, т. е. она ведет себя так же, как упругий стальной шарик, подскакивающий в поле тяжести над горизонтальной мраморной плитой.

Теперь легко написать уравнения, выражающие зависимость скорости и координаты точки от времени для первой четверти периода колебаний T. Так как согласно (5) y = -g, то

Здесь y_0 — высота, на которой находилась масса m в начальный момент, когда обруч был отклонен от положения равновесия на угол φ_0 и отпущен без толчка.

Графики зависимости скорости и координаты *у* от времени показаны на рис. 9.3. Могло бы показаться на первый взгляд, что период колебаний вдвое меньше указанного на этих графиках. Период действительно был бы вдвое меньше, если бы речь шла о подскакивающем шарике. Но для обруча это не так, ибо период колебания здесь определяется временем полного цикла изменения угла *ф*, который состоит из отклонений обруча как в одну сторону, так и в другую. Это особенно отчетливо видно из графика зависимости угла отклонения от времени, который показан на том же рис. 9.3.

График зависимости $\varphi(t)$ состоит из половинок эллипсов, в чем можно убедиться, подставив во вторую из формул (6) координату y, выраженную через угол φ с помощью соотношения (2):

$$\varphi^2(t) = \varphi_0^2 - \frac{g}{R} t^2.$$
 (7)

Эту формулу можно переписать в следующем виде:

$$\frac{\varphi^2}{\varphi_0^2} + \frac{t^2}{(R\varphi_0^2/g)} = 1.$$
 (8)

В ней легко узнать уравнение эллипса на плоскости t, φ . Полуоси этого эллипса равны $\varphi_0 \sqrt{R/g}$ и φ_0 . Как видно из графика зависимости $\varphi(t)$, полуось $\varphi_0 \sqrt{R/g}$ равна четверти периода колебаний обруча T/4. Такое же значение для T/4 можно, разумеется, получить и из уравнения (6).

Таким образом, период колебаний обруча равен

$$T = 4\varphi_0 \sqrt{R/g}.$$
 (9)

Подчеркнем, что даже малые колебания такой системы не являются гармоническими и их период зависит от амплитуды ϕ_0 .

10. Волны во вращающемся кольце. Кольцевой резиновый жгут раскручен вокруг оси, перпендикулярной плоскости кольца (рис. 10.1). Линейная скорость элементов жгута равна *v*. С какой скоростью будут распространяться по такому кольцу поперечные волны малой амплитуды?

Упругая поперечная волна в гибком резиновом жгуте может распространяться только в случае, если этот жгут натянут. Предварительное натяжение необходимо потому, что ненатянутый жгут, в отличие от твердого тела, обладает упругостью только по отношению к деформации растяжения, но не сжатия. В рассматриваемом примере натяжение кольцевого жгута обусловлено его вращением. Найдем это натяжение.

Выделим мысленно на вращающемся жгуте элемент Δl , характеризуемый малым углом θ (рис. 10.2). Силы F_1 и F_2 , действующие на выделенный элемент со стороны соседних участков, направлены по касательной к окружности. Величина этих сил F — это и есть интересующее нас натяжение жгута. Равнодействующая сил F_1 и F_2 сообщает

выделенному элементу жгута центростремительное ускорение v^2/R . Масса выделенного элемента равна $\rho S\Delta l = \rho SR\theta$, где ρ — плотность резины, S — площадь поперечного сечения жгута. Поэтому на основании второго закона Ньютона имеем

$$F\theta = \rho S R\theta \frac{v^2}{R} , \qquad (1)$$

откуда

$$F = \rho S v^2. \tag{2}$$

Предположим теперь, что по этому кольцу распространяется упругая волна, в которой смещение элементов жгута

Рис. 10.1. Резиновое кольцо вращается вокруг вертикальной оси.

Рис. 10.2. К вычислению силы натяжения вращающегося резинового жгута.

происходит в направлении, перпендикулярном равновесной плоскости жгута. Пусть эта волна распространяется, например, в ту же сторону, в какую вращается кольцо. Для того чтобы найти скорость распространения этой волны в жгуте u, поступим следующим образом. Перейдем в новую систему отсчета K, в которой в некоторый момент времени окажется неподвижным определенный выделенный горб волны (рис. 10.3). Ясно, что эта система отсчета движется равномерно со скоростью u+v в направлении касательной к окружности, образуемой вращающимся жгутом. Выделенный горб будет в этой системе отсчета параллельной скорость введенной системы отсчета. В этот момент горб будет выглядеть застывшим, а вещество жгута будет сколь-

380

зить вдоль застывшего горба со скоростью *и* налево (рис. 10.4). Поскольку новая система отсчета является инерциальной, в ней также справедлив второй закон Ньютона. Применим его к движению элемента жгута, проходящего через вершину горба. Этот элемент движется со скоростью *и* по дуге окружности некоторого радиуса *г*,

Рис. 10.3. В некоторый момент времени горб, бегущий по жгуту, будет неподвижен во вспомогательной системе отсчета K.

Рис. 10.4. В этой системе отсчета вещество жгута бежит через вершину застывшего горба со скоростью и.

которая лежит в вертикальной плоскости и показана пунктиром на рис. 10.4. Проекция уравнения второго закона Ньютона на вертикальное направление при движении по этой окружности записывается в виде

$$F\varphi = \rho S \, r\varphi \, \frac{u^2}{r} \,. \tag{3}$$

Отсюда для квадрата скорости распространения поперечной волны по жгуту имеем

$$u^2 = \frac{F}{\rho S} \,. \tag{4}$$

Ясно, что такое же выражение для скорости волны будет справедливо и в случае прямолинейного жгута, натяжение которого *F* создается внешними силами.

Подставляя в формулу (4) выражение для силы натяжения F через скорость вращающегося жгута v из (2), находим, что u=v. Другими словами, скорость поперечных волн относительно жгута, натяжение которого обуславливается его вращением, совпадает с линейной скоростью вращения жгута. Поэтому волны, которые бегут в ту же сторону, куда вращается жгут, движутся относительно неподвижного наблюдателя со скоростью 2v, а волны, бегущие навстречу вращению жгута, кажутся такому наблюдателю неподвижными.

11. Возбуждение волн в струне. Конец натянутой упругой струны приводится в гармоническое колебательное движение с амплитудой A и частотой ω с помощью устройства, схема которого показана на рис. 11.1. Какую мощность развивает мотор, приводящий его в движение? Во что превращается затраченная энергия? Что происходит на другом конце струны? Каким образом можно добиться того, чтобы там не происходило отражения волны?

Для того чтобы описать вынужденное движение струны, введем оси координат x и z так, как показано на рис. 11.2: ось z совпадает с равновесным положением струны, а ось x направлена вдоль стержня, приводящего конец струны в движение. Выберем начало отсчета времени так, чтобы смещение левого конца струны давалось выражением

$$x(t) = A \cos \omega t. \tag{1}$$

Вынужденные колебания левого конца струны приводят к появлению в струне упругой волны, распространяющейся направо вдоль оси z. Скорость u такой волны, как было выяснено в предыдущей задаче, зависит от предварительного натяжения струны F_0 , плотности материала струны ρ и площади ее поперечного сечения S:

$$u^2 = \frac{F_0}{\rho S} \,. \tag{2}$$

При распространении волны поперечное смещение x любой точки струны, имеющей в равновесии координату z, повторяет движение левого конца спустя промежуток времени z/u, который требуется для того, чтобы волна распространилась на расстояние z:

$$x(z, t) = x\left(0, t - \frac{z}{u}\right) = A\cos\omega\left(t - \frac{z}{u}\right).$$
(3)

Для того чтобы най_и развиваемую мотором мощность, нужно знать силу *F*, с которой стержень действует на левый конец струны. Струна действует на стержень с равной по величине и противоголожной по направлению силой *F*₁ (рис. 11.2). Для гибкой струны, проявляющей упругие

Рис. 11.1. Конец струны приводится в движение по гармоническому закону.

Рис. 11.2. Со стороны стержня на конец струны действует сила *F*.

свойства только при деформации растяжения, сила натяжения в любой точке направлена по касательной. Поэтому действующая на стержень сила F_1 направлена под углом α к оси *z*, тангенс которого, как видно из рис. 11.2, равен производной dx/dz при z=0:

$$\operatorname{tg} \alpha = A \frac{\omega}{u} \sin \omega \left(t - \frac{z}{u} \right) \Big|_{z=0} = A \frac{\omega}{u} \sin \omega t.$$
 (4)

При распространении волны в струне каждый ее элемент перемещается только поперек равновесного положения струны. Поэтому горизонтальная проекция силы натяжения струны остается неизменной и равной по величине силе предварительного натяжения F_0 в любой момент времени и в любом месте струны, в том числе и на ее левом конце. Отсюда следует, что вертикальная проекция силы F, равная — F_0 tg α (рис. 11.2), изменяется современем по гармоническому закону:

$$F_{x}(t) = -F_{0}A \frac{\omega}{u}\sin\omega t.$$
 (5)

Скорость движения левою конца струны равна про изводной по времени от смещения x(t), даваемого формулой (1):

$$v_x = x = -A\omega\sin\omega t. \tag{6}$$

Мгновенное значение развиваемой мотором мощности / равно скалярному произведению действующей на левый конец струны силы *F* на его скорость *v*:

$$P = \boldsymbol{F} \cdot \boldsymbol{v} = \boldsymbol{F}_{x} \boldsymbol{v}_{x} = F_{0} A^{2} \frac{\omega^{2}}{u} \sin^{2} \omega t.$$
(7)

Видно, что развиваемая мотором мощность испытывает колебания от нуля до максимального значения, равного $F_0A^2 \frac{\omega^2}{u}$. Среднее значение мощности легко найти, если выразить входящий в формулу (7) квадрат синуса через косинус двойного угла:

$$\sin^2 \omega t = \frac{1}{2} (1 - \cos 2\omega t).$$
 (8)

При усреднении по времени второе слагаемое в (8) исчезает, и выражение для средней мощности $\langle P \rangle$ принимает вид

$$\langle P \rangle = \frac{1}{2} F_0 A^2 \frac{\omega^2}{u} \,. \tag{9}$$

Подставляя сюда значение силы натяжения струны F_{0} из формулы (2), выражение для $\langle P \rangle$ можно записать следующим образом:

$$\langle P \rangle = \frac{1}{2} \rho S \omega^2 A^2 u. \tag{10}$$

Затраченная на возбуждение колебаний левого конца струны энергия, разумеется, не исчезает бесследно, а переносится волной вдоль струны. Это отчетливо видно из формулы (10), в которой правая часть как раз равна потоку энергии, переносимой волной. В самом деле, если рассмотреть кинетическую и потенциальную энергии некоторого элемента струны длины Δl при прохождении волны, то можно убедиться, что среднее значение их суммы равно $\frac{1}{2}\rho S\omega^2 A^2 \Delta l$ За единицу времени волна распространяется - на расстояние Δl , численно равное ее скорости *и*. Поэтому правая часть формулы (10) представляет собой энергию, переносимую волной через любое сечение струны за еди-, ницу времени.

 ницу времени.
 Если струна простирается направо до бесконечности,
 сто энергия переносится волной только в одном направлении. Если при этом диссипация механической энергии, приводящая к затуханию колебаний, пренебрежимо мала, то средний поток энергии в любом месте одинаков.
 В ограниченной струне характер распространения энергии будет различным в зависимости от условий на другом конце струны. Если, например, второй конец струны закрептом то стрина не может перенать энергию стенке так как

В ограниченной струне характер распространения энергии будет различным в зависимости от условий на другом конце струны. Если, например, второй конец струны закреплен, то струна не может передать энергию стенке, так как последняя точка струны неподвижна Энергия волны целиком отражается назад от закрепленного конца. В результате в струне образуется стоячая волна, в которой энергия не переносится через узловые точки, где амплитуда колебаний равна нулю. Можно показать, что в этом случае средняя мощность мотора, возбуждающего такую стоячую волну, равна нулю: сколько энергии в течение периода колебаний могор отдает струне, столько же и получает от нее обратно.

от нее обратно. Но можно на другом конце струны создать и такие условия, что волна не будет отражаться и вся переносимая ею энергия будет передаваться некоторому устройству. Что же должно представлять собой такое устройство? Для того чтобы на правом конце струны длины *l* не происходило отражения волны, нужно, чтобы условия в последней точке струны были бы такими же, как и в бесконечной струне. Другими словами, если «убрать» продолжение струны, то смещение и скорость последней точки должны остаться такими же. Для этого сила *F*₂, действующая на последнюю точку струны со стороны устройства, должна быть такой же, как и со стороны «отрезанной» части бесконечной струны (рис. 11.3).

При нахождении силы F_2 можно поступать так же, как и при нахождении силы F на левом конце струны. Тангенс угла β (рис. 11.3) равен производной dx/dz при z=l:

$$\operatorname{tg} \beta = A \frac{\omega}{u} \sin \omega \left(t - \frac{z}{u} \right) \Big|_{z=i} = A \frac{\omega}{u} \sin \omega \left(t - \frac{i}{u} \right). \quad (11)$$

13 Е. И. Бутиков и др.

Так как горизонтальная проекция силы F_2 равна предварительному натяжению струны F_0 , то вертикальная проекция силы F_2 , равная $F_2 tg \beta$, дается выражением

$$F_{zx} = F_0 A \frac{\omega}{u} \sin \omega \left(t - \frac{l}{u} \right). \tag{12}$$

Легко заметить, что эта сила в каждый момент времени пропорциональна скорости v2 правого конца струны. Эту

Рис. 11.3. Отражения волны на правом конце не произойдет, еслидействующая со стороны штока на конец струны сила F₄ будет такой же, как и со стороны отрезанной части струны.

скорость можно вычислить с помощью выражения (3), предварительно положив в нем z = l:

$$v_2 = \dot{x}(l, t) = -A\omega \sin \omega \left(t - \frac{l}{u}\right).$$
(13)

Сравнивая формулы (12) и (13), видим, что сила F_2 , которая действует на правый конец струны со стороны устройства, обеспечивающего поглощение волны, должна быть пропорциональна скорости крайней точки струны v_2 :

$$F_{2x} = F_0 \frac{v_2}{u} \,. \tag{14}$$

Требуемое устройство можно осуществить, используя силу сопротивления при движении тела в вязкой среде, которая при небольших скоростях пропорциональна скорости. Возьмем, например, легкий шток с поршнем пренебрежимо малой массы, который может передвигаться вертикально в цилиндре, заполненном вязкой жидкостью (рис. 11.3). При этом вязкость жидкости и размер поршня нужно подобрать таким образом, чтобы коэффициент пропорциональности между силой сопротивления и скоростью был бы как раз таким, какой требуется формулой (14), т. е. F_0/u .

При использовании такого устройства вся энергия, передаваемая струне на ее левом конце, будет превращаться в тепло при движении поршня в вязкой жидкости. Таким образом, рассмотренная система фактически представляет собой механический волновод с согласованной нагрузкой на правом конце, с помощью которого энергия может передаваться из одного места в другое.

Аналогичным образом можно передавать энергию из одного места в другое и с помощью электромагнитных волн. Для соответствующих линий передачи или волноводов требуется подбирать нагрузку так, чтобы она была согласована с волноводом, т. е. чтобы не происходило отражения волны от его конца.

12. Направленное излучение радиоволн. Антенны широковещательных радиостанций представляют собой вертикальные мачты, которые в горизонтальной плоскости, т. е. вдоль земной поверхности, излучают одинаково по всем направлениям. Используя несколько таких антенн, работающих от одного передатчика, излучение радиостанции можно сделать направленным. Как надо расположить две антенны в городе, растянувшемся узкой полосой вдоль берега моря, чтобы уменьшить бесполезное излучение радиоволн как в сторону моря, так и в сторону ненаселенной местности?

Формирование направленного излучения радноволн происходит благодаря явлению интерференции. Если есть два когерентных источника S_1 и S_2 , излучающих волны одинаково по всем направлениям, то колебания, приходящие в некоторую точку P, будут усиливать или ослаблять друг друга при сложении в зависимости от разности хода волн $r_1 - r_2$ (рис. 12.1). Будем для простоты считать, что источники одинаковы и излучают в одинаковой фазе. Если точка наблюдения P находится далеко от источников, так что расстояние от P до любого из них много больше расстояния d между источниками, то амплитуды приходящих в Pколебаний можно считать одинаковыми, а при подсчете разности хода направления r_1 и r_2 можно считать параллельными (рис. 12.2). Тогда разность хода Δ выражается через угол θ , характеризующий направление на точку наблюдения P:

$$\Delta = d \sin \theta. \tag{1}$$

Ясно, что при $\theta = 0$ и $\theta = \pi$, т. е. в направлениях, перпендикулярных линии, соединяющей источники, излучение

Рис. 12.1. При когерентных источниках S_1 и S_2 интенсивность колебаний в точке P зависит от разности хода волн $r_1 - r_2$.

Рис. 12.2. К вычислению разности хода волн для удаленной точки наблюдения.

будет максимальным. В направлениях, для которых разность хода Δ равна половине длины волны λ (или любому нечетному числу полуволн), излучение вообще не происходит. Для радиостанций существование таких «мертвых» направлений, конечно же, нежелательно. А это означает, что расстояние *d* между антеннами должно быть меньше половины длины волны. Если расстояние *d* лишь немного меньше $\lambda/2$, то в направлениях вдоль линии, соединяющей антенны, излучение почти не происходит, так как в любую точку на этой линии электромагнитные колебания от антенны приходят почти в противофазе. Если это расстояние уменьшать и дальше, то излучение в этих направлениях будет увеличиваться, так как разность фаз колебаний будет уменьшаться.

Таким образом, для того чтобы направить излучение радиостанции преимущественно вдоль населенного берега

моря, антенны нужно расположить на прямой, перпендикулярной береговой линии. Расстояние между антеннами

должно быть меньше $\lambda/2$ и выбираться из требования, чтобы интенсивность излучения в перпендикулярном к берегу направлении была не меньше определенной величины, например, чтобы она составляла 10% от интенсивности излучения вдоль берега.

Нетрудно сообразить, что с помощью таких антени можно сконцентрировать излучение в нужных направлениях и в том случае, когда город расположен узкой полосой вдоль берега залива, углом вдающегося в сушу (рис 12.3). Для этого достаточно только заметить, что максимум излучения двух антени будет направне перпендикулярно соедилен няющей их линии, а под некоторым углом θ (рис 12.2), если колебания антеннах происходят с посто-B янным сдвигом по фазе δ. Направление максимального излучения в этом случае определится из условия. что вносимая антеннами первоначальная разность фаз & компенсируется

Рис. 12.3. Направления максимального излучения повернуты на некоторый угол θ , если колебания в антенне S_2 отстают по фазе от колебаний в антенне S_1 .

запаздыванием одной из волн при прохождении ею «лишнего» расстояния Δ (рис. 12 2). Если, например, колебания в антенне S_2 отстают от колебаний в S_1 по фазе на величину δ , то угол θ находится из формулы

$$\frac{2\pi}{\lambda}d\sin\theta = \delta,$$
 (2)

так как именно в этом направлении волны от S_1 и S_2 распространяются в одинаковой фазе и при сложении усиливают друг друга. Разумеется, максимальная интенсивность излучения будет наблюдаться в двух направлениях, образующих угол θ с перпендикуляром к линии, соединяющей антенны, как показано на рис. 12.3.

В оптике изучается распространение коротких электромагнитных волн, длина которых составляет примерно 10⁻⁵—10⁻⁷ м. Внутри этой спектральной области лежит сравнительно узкий участок длин волн от 0,40 до 0,76 мкм, соответствующий видимому свету, непосредственно воспринимаемому человеческим глазом. В оптический диапазон, кроме видимого света, включают также инфракрасное и ультрафиолетовое излучения, так как между ними нет принципиального физического различия. Поэтому границы оптического диапазона достаточно условны, и по существу они определяются только используемыми способами получения и регистрации электромагнитных волн.

В основе волновой теории света лежит принцип Гюйгенса, позволяющий по известному положению волнового фронта в данный момент времени найти его положения в последующие моменты времени. По принципу Гюйгенса каждая точка волнового фронта является источником вторичных сферических волн. Огибающая поверхность этих вторичных волновых поверхностей дает положение фронта волны в последующий момент времени.

На основе волновой теории света можно объяснить такие явления, как интерференция и дифракция. Для наблюдения устойчивой картины интерференции световых волн источники света должны быть когерентными, т. е. создаваемые ими волны должны приходить в точку наблюдения с постоянной разностью фаз. Добиться неизменной разности фаз двух волн от независимых нелазерных источников света невозможно. Поэтому для получения интерференционной картины свет от одного источника обычно разделяют на два пучка, а затем после прохождения ими разных путей вновь сводят их вместе. Дифракционные явления, возникающие при прохождении света через отверстия или преграды, получают объяснение при рассмотрении интерференции когерентных вторичных волн, построенных по принципу Гюйгенса.

Принцип Гюйгенса позволяет установить законы, описывающие поведение световой волны на границе раздела двух прозрачных сред. В приближении геометрической оптики для задания положения волновых поверхностей можно ввести лучи, т. е. линии, перпендикулярные волновым поверхностям. Лучи света характеризуют направление распространения волны. Вытекающие из принципа Гюйгенса правила нахождения лучей для отраженной и преломленной волн представляют собой хорошо известные законы геометрической оптики.

Основные законы геометрической оптики — закон прямолинейного распространения света в однородной среде, законы отражения и преломления света на границе двух сред — могут быть получены и с помощью принципа Ферма. Согласно этому принципу действительный путь луча света есть путь, для прохождения которого свету требуется экстремальное (как правило, минимальное) время по сравнению с любым другим близким к действительному мыслимым путем между теми же точками. Хотя такая формулировка принципа Ферма и не вполне точна, она достаточна для понимания рассматриваемых ниже примеров.

Поскольку скорость света в среде с показателем преломления n равна c/n, принцип Ферма можно сформулировать как требование минимальности оптической длины луча при распространении света между двумя заданными точками. Под оптической длиной луча понимается произведение показателя преломления среды на длину луча. В неоднородной среде оптическая длина луча складывается из оптических длин на отдельных участках, которые можно считать однородными. Использование принципа Ферма позволяет рассмотреть некоторые задачи с несколько иной точки зрения, чем при непосредственном применении законов отражения и преломления. Например, при рассмотрении фокусирующей оптической системы вместо применения закона преломления света на искривленной поверхности можно просто потребовать равенства оптических длин всех фокусируемых лучей.

1. Секстант и катафот. Два плоских зеркала образуют двугранный угол α . На одно из зеркал падает луч, лежащий в плоскости, перпендикулярной ребру угла. Определить угол отклонения луча β от первоначального направления после отражения от обоих зеркал. Ход лучей показан на рис. 1.1.

Пусть угол падения луча на первое зеркало равен γ, а на второе — δ. Очевидно, что угол β как внешний угол

Рис. 1.1. Падающий луч, испытав отражение от двух зеркал, изменяет направление на угол β.

треугольника, образованного лучами, равен 2 (γ + δ). С другой стороны, γ + δ = α , потому что как угол α , так и углы γ + δ дополняют угол ω до π . Поэтому β = 2α . Самое интересное, что величина этого угла не зависит от угла падения луча на зеркало! Именно это свойство и позволило использовать такую систему зеркал в навигационном прибо-

ре, называемом секстантом. Секстантом измеряют высоту светила над горизонтом, т. е. угол β между направлениями на горизонт и на звезду (рис. 1.2). Делается это в неблагоприятных условиях, например, на качающейся палубе

Рис. 1.2. Принцилиальная схема секстанта.

корабля. Прибор можно держать трясущимися руками, при этом важно только точно зафиксировать угол α Одно из зеркал полупрозрачное. Наблюдая сквозь него линию горизонта, изменением угла а совмещают с ней видимое в этом зеркале изображение светила (рис. 1.2). Затем величина угла а считывается со шкалы прибора.

Чина угла α считывается со шкалы присора. Обратим внимание на частный случай, когда зеркала образуют между собой прямой угол. Тогда β=π и падающий луч в результате двух отражений поворачивает в обратном направлении (рис. 1.3). Напомним, что это справедливо только в том случае, когда падающий луч лежит

Рис. 1.3. Луч, лежащий в плоскости чертежа, отражается назад, если зеркала образуют прямой угол.

Рис. 1.4. Вогнутая ячейка из трех плоских взаимно перпендикулярных зеркал образует уголковый отражатель.

в плоскости, перпендикулярной ребру двугранного угла между зеркалами.

А можно ли сделать устройство, в котором падающий луч при любых условиях отражался бы назад? Оказывается, что для этого достаточно добавить к двум зеркалам третье, расположив его таким образом, чтобы плоскости всех трех зеркал были взаимно перпендикулярны, подобно координатным плоскостям декартовой системы (рис. 1.4). При произвольной ориентации падающего луча он, испытав отражение от каждого из зеркал, будет распространяться точно в обратном направлении. Убедиться в этом совсем несложно. На рис. 1.5, *а* штриховкой показаны плоскость зеркала и плоскость падения луча. Видно, что проекции падающего и отраженного лучей на плоскость зеркала направлены вдоль одной и той же прямой *MN* (рис. 1.5, *б*). Проекции этих лучей на любую плоскость *Q*, перпендикулярную зеркалу, образуют равные углы с перпендикуляром к зеркалу (рис. 1.5, *в*). Отсюда следует, что при отражении лучей от трех взаимно перпендикулярных зеркал проекция лучей на плоскость любого из трех зеркал выглядит так, как показано на рис. 1.6. Но раз проекция луча на любую из координатных плоскостей меняет направление на противоположное, то и сам луч в результате трех

Рис. 1.5. Проекция падающего и отраженного лучей на плоскость зеркала выглядит так, как показано на рис. б, а проекция на плоскость Q — как на рис. в.

отражений поворачивает точно назад. Такое устройство называется уголковым отражателем или катафотом и широко применяется на практике.

Уголковые отражатели часто выполняют в виде срезанного угла стеклянного кубика, т. е. равносторонней трех-

•

гранной пирамиды. Боковые грани такого кубика делают зеркальными. Уголковые отражатели используются вместо зеркал в лазерных резонаторах и в дальномерах. Их преимущество в том, что они не требуют юстировки. Специальные уголковые отражатели были доставлены на Луну

Рис. 1.6. В точке О луч отражается от третьего зеркала, лежащего в плоскости чертежа.

Рис. 1.7. Падающий на прозрачный шарик с *n*=2 луч после отражения направлен точно назад.

и использованы для точного измерения расстояния до нее с помощью лазерного луча. Погрешность измерения составила всего лишь 0,1 м.

Наиболее распространенное применение катафотов это красные отражатели света, устанавливаемые на автомобилях, велосипедах и дорожных знаках. Такой катафот представляет собой мозаику из зеркальных углов.

Интересно отметить, что таким же свойством отражать падающий под любым углом свет точно в обратном направлении обладает оптический элемент, изображенный на рис. 1.7. Он представляет собой шарик из прозрачного материала с показателем преломления n=2 и с посеребренной задней поверхностью. Нетрудно показать, что любой луч, проходящий внутри шарика не слишком далеко от центра, после отражения на задней поверхности выйдет из шарика в обратном направлении. Это свойство используют при изготовлении светоотражающей краски для дорожных знаков: в ее состав вводят мелкие стеклянные шарики.

ţ

2. Изображение объемных предметов. С помощью тонкой линзы получается изображение объемного предмета, например кубика. Может ли объемное изображение этого предмета быть геометрически подобным самому предмету (т. е. тоже быть кубиком)?

На первый взгляд может показаться, что так и должно быть, поскольку изображение всегда похоже на предмет. Однако если мы попробуем строго показать, что отношение

Рис. 2.1. К выводу формулы Ньютона для тонкой линзы.

поперечных и продольных размеров у изображения такое же, как и у предмета, то увидим, что дело обстоит далеко не так просто.

Количественный подход к решению этой задачи основан на использовании формулы тонкой линзы:

$$\frac{1}{d} + \frac{1}{f} = \frac{1}{F}.$$
 (1)

Этой формуле удобно придать несколько иной вид, вводя обозначение p для расстояния от предмета до переднего фокуса линзы и q для расстояния от заднего фокуса до изображения (рис. 2.1):

$$p=d-F, q=f-F.$$
(2)

Подставляя величины *d* и *f* из формул (2) в уравнение (1), после простых преобразований получим

$$pq \Rightarrow F^2. \tag{3}$$

Такой вид соотношения для тонкой линзы называется формулой Ньютона.

Обозначим поперечный и продольный размеры предмета. через у и х, а соответствующие размеры изображения —
через Y и X (рис. 2.2). Чтобы выяснить вопрос о геометрическом подобии объемного предмета и его изображения, введем, наряду с поперечным линейным увеличением линзы $\Gamma = Y/y$ (рис. 2.2), также продольное увеличение γ , равное отношению продольных размеров изображения и предмета:

$$\gamma = \frac{\chi}{x} \,. \tag{4}$$

Поперечное увеличение линзы Г можно выразить через введенные величины *p* и *q*, характеризующие положение

Рис. 2.2. К вычислению поперечного и продольного увеличения тонкой линзы.

предмета и изображения относительно фокусов линзы:

$$\Gamma = \frac{Y}{y} = \frac{f}{d} = \frac{F+q}{F+\rho} \,. \tag{5}$$

Подставляя сюда фокусное расстояние линзы F из формулы Ньютона (3), получим

$$\Gamma = \sqrt{\frac{q}{p}}.$$
 (6)

Для того чтобы получить выражение для продольного увеличения у, применим формулу Ньютона к точке предмета, показанной концом горизонтальной стрелки на рис. 2.2:

$$(p+x) (q-X) = F^{a}$$
. (7)

Раскрываем скобки в левой части выражения (7). Тогда,

учитыяая формулу (3), получаем

$$xq - pX - xX = 0. \tag{8}$$

Предположим, что xX мало по сравнению с каждым из остальных двух членов в соотношении (8). В этом случае из (8) вытекает, что

$$\frac{X}{x} = \frac{q}{p} \,. \tag{9}$$

Чтобы отброшенное слагаемое xX в (8) было мало по сравнению со вторым членом pX, нужно, чтобы продольный размер предмета x был мал по сравнению с расстоянием p от предмета до фокуса: $x \ll p$. Если это условие выполнено, то из (9) видно, что и $X \ll q$. Отсюда ясно, что член xX в (8) будет мал и по сравнению с первым слагаемым.

Таким образом, когда продольный размер предмета *x* мал по сравнению с расстоянием *p* до фокуса, продольное увеличение линзы γ, в соответствии с формулой (4), дается выражением (9):

$$\gamma = \frac{q}{p} \,. \tag{10}$$

Сравнивая формулы (6) и (10), видим, что продольное увеличение тонкой линзы равно квадрату поперечного увеличения:

$$\gamma = \Gamma^2. \tag{11}$$

Отсюда следует, что изображение будет геометрически подобным предмету только тогда, когда $\gamma = \Gamma = 1$. Для сохранения геометрического подобия предмет обязательно должен изображаться в натуральную величину. Во всех остальных случаях геометрического подобия не будет.

Итак, если мы хотим с помощью тонкой линзы получить изображение объемного предмета, геометрически подобное самому предмету, то продольные размеры предмета должны быть малы по сравнению с фокусным расстоянием линзы, а поместить его нужно на двойном фокусном расстоянии от линзы. 3. Фокусировка пучка параллельных лучей. Рассмотрим параллельный пучок монохроматических лучей. Если на пути такого пучка поставить собирающую линзу со сферическими поверхностями, то, как известно, все лучи соберутся в одной точке, называемой фокусом. Однако это верно лишь для узкого пучка, т. е. для лучей, не слишком сильно отстоящих от оптической оси. Это значит, что ширина пучка должна быть мала по сравнению с радиусом кривизны преломляющих поверхностей линзы. Для широких пучков имеет место сферическая аберрация, т. е. «далекие» лучи пересекают оптическую ось не в фокусе (рис. 3.1).

А нельзя ли выбрать форму преломляющих поверхностей линзы таким образом, чтобы сферическая аберрация вообще отсутствовала, т. е. пучок параллельных лучей любой ширины собирался бы в одной точке?

Для решения этой задачи удобно воспользоваться принципом Ферма. Предварительно решим вспомогательную задачу. Выясним, какой должна быть форма преломляю-

Рис. 3.1. Сферическая аберрация обыкновенной линзы.

щей поверхности, разделяющей две однородные среды с показателями преломления $n_0 = 1$ и n, чтобы параллельный пучок лучей после преломления собрался в одной точке. Из соображений симметрии ясно, что это будет поверхность вращения вокруг оси симметрии пучка. Поэтому достаточно искать сечение этой поверхности осевой плоскостью (рис. 3.2). Поскольку у всех лучей на оси x фаза одинакова, оптическая длина лучей от оси x до фокуса, лежащего на заданном расстоянии F, должна быть одна и та же. Рассмотрим центральный луч и луч, проходящий на произвольном расстоянии х от оси. Для них имеем

$$Fn = y + n \sqrt{(F-y)^2 + x^2}.$$

Это и есть уравнение искомой поверхности.

Преобразуем это соогношение, чтобы выяснить форму полученной поверхности. Уединяя квадратный корень и

возводя обе части равенства в квадрат, получаем

$$(Fn-u)^2 = n^2[(F-u)^2 + x^2].$$

После несложных преобразований это уравнение приводится к виду

$$\frac{x^2}{a^2} + \frac{(y-b)^2}{b^2} = 1, \qquad (1)$$

где

$$a = F \sqrt{\frac{n-1}{n+1}},$$

$$b = F \frac{n}{n+1} \qquad (a < b).$$
 (2)

Рис. 3.2. К нахождению формы преломляющей поверхности, которая фокусирует пучок параллельных лучей.

Уравнение (1) — это уравнение эллипса, изображенного на рис 3.3, а и b — малая и большая полуоси этого эллипса.

Как известно, эллипс — это геометрическое место точек, сумма расстояний до которых от двух заданных

точек, называемых фокусами, одинакова Эта сумма равна большой оси эллипса 2b. Можно убедиться, что точка пересечения всех лучей (фокус пучка лучей) совпадает с дальним фокусом эллипса. Это совсем несложно, требуется лишь выполнить простые алгебраические преобразования.

Итак, мы нашли форму преломляющей поверхности, удовлетворяющей поставленному условию все падающие на нее параллельным пучком лучи собираются в одной точке. Однако такой параллельный пучок не может быть сколь угодно широким: при заданном расстоянии F ширина пучка d не может, как видно из формулы (2), превышать

значение

$$d=2a=2F \sqrt{\frac{n-1}{n+1}}.$$

Теперь подумаем, как с помощью такой преломляющей поверхности можно создать линзу, свободную от сферической

Рис. 3.3. Пучок параллельных лучей после преломления на поверхности эллипсоида вращения собифается в дальнем фокусе.

Рис. 3.4. Вторая поверхность фокусирующей линзы должна быть частью сферы, перпендикулярной лучам.

аберрации для параллельного пучка лучей. Очевидно, что вторая преломляющая поверхность такой линзы должна быть перпендикулярна всем сходящимся лучам, так как только в этом случае она не изменит их направления и все лучи по-прежнему будут пересекаться в одной точке F. Такой поверхностью является сфера с центром в точке F. Чтобы получить линзу максимального диаметра при заданном расстоянии F, радиус R кривизны ее внутренней поверхности следует выбирать равным большой полуоси эллипса b (рис. 3.4).

14 Е. И. Бутиков и др.

До сих пор молчаливо предполагалось, что показатель преломления n > 1, т. е. верхняя среда на рис. 3.2 оптически более плотная.

Однако если под символом *n* понимать относительный показатель преломления верхней среды относительно

Рис. 3.5. При n<1 фокусирующая параллельный пучок поверхность представляет собой гиперболоид вращения.

нижней, то имеет смысл рассмотреть и противоположный случай n<1, когпараллельный пучок ла лучей испытывает преломление при переходе из более плотной в менее плотсреду. Поскольку ную при уравнения выводе преломляющей поверхности условие n > 1 не использовалось, то и в случае n < 1 уравнение искомой границы по-прежнему дается формулой (1), но только при n<1, как видно из $(2), a^2 < 0.$ В этом случае (1)выражение представляет собой уравнение гиперболы, изображенной на рис. 3.5.

Чтобы с помощью такой преломляющей поверхности создать линзу, в качестве второй преломляющей поверхности следует выбрать плоскость в нижней среде, перпендикулярную оси пучка. Расстояние от этой плоскости до вершины преломляющей поверхности выбирается в зависимости от того, какого диаметра мы хотим иметь линзу. Ограничений на величину диаметра теперь нет (пунктир на рис. 3.5).

Казалось бы, нам удалось построить идеальную линзу, по крайней мере для монохроматических лучей. Однако такая линза совершенно непригодна для получения изображений даже бесконечно удаленных предметов. В самом деле, в одной точке пересекаются только лучи, параллельные оси симметрни такой линзы. Пучки параллельных лучей, наклоненные к оптической оси линзы, не пересекаются в одной точке. 4. Черенковское излучение. При равномерном движении электрона в среде со скоростью, превышающей скорость света в данной среде, наблюдается так называемый эффект Вавилова — Черенкова. Он заключается в том, что электрон своим полем когерентно возмущает молекулы или атомы среды, благодаря чему они становятся источниками световых волн, распространяющихся в определенном направлении. Пользуясь принципом Гюйгенса, определите, в каком направлении распространяется излучение.

В среде с показателем преломления n>1 световые волны распространяются со скоростью v=c/n, которая меньше скорости света в вакууме.

Рис. 4.1. Построение по принципу Гюйгенса фронта волны, излучаемой электроном, скорость которого больше скорости света в данной среде.

Для нахождения направления распространения черенковского излучения необходимо в какой-то момент времени определить положение фронта световой волны, возбуждаемой электроном при его движении. На рис. 4.1 изображена прямолинейная траектория равномерного движения электрона в среде. Каждую точку траектории электрона можно рассматривать как источник сферической световой волны, распространяющейся со скоростью v. Пусть A, B и C — точки траектории, в которых находился электрон через последовательные равные промежутки времени Δt . В тот момент времени, когда электрон находился в точке B, фронт волны, возбужденной им в точке A, представлял собой сферу, радиус которой $v\Delta t$ меньше расстояния AB, поскольку скорость электрона v_{an} больше скорости света v в среде. В тот момент, когда электрон попадает в точку C, фронт волны, возбужденной им в точке B, есть сфера ра-

14*

диуса $v\Delta t$, а фронт волны, возбужденной в точке A, — сфера вдвое большего радиуса. Для построения фронта волны черенковского излучения в тот момент, когда электрон находится в точке C, по принципу Гюйгенса следует найти огибающую фронтов всех волн, возбужденных электроном в предшествующие моменты времени. Из рис. 4.1 сразу видно,

Рис. 4.2. Черенковское излучение распространяется под углом θ к направлению движения электрона.

что эта огибающая представляет собой поверхность кругового конуса, ось которого совпадает с траекторией электрона, вершина находится в точке *C*, а угол ф между образующей конуса и его осью определяется соотношением

$$\sin \varphi = \frac{v}{v_{\partial \pi}}.$$

Поскольку лучи света перпендикулярны фронту волны, черенковское излучение распространяется под углом θ к направлению движения электрона (рис. 4.2):

$$\cos\theta = \sin\varphi = \frac{v}{v_{\theta\pi}}.$$
 (1)

Мы построили фронт волны для того момента времени, когда электрон находится в точке C. С течением времени вершина конуса, совпадающая с положением электрона, перемещается вместе с ним со скоростью $v_{9\pi}$. Приемник излучения, находящийся в какой-либо точке D (рис. 4.2), зафиксирует отдельную вспышку света в тот момент, когда фронт волны черенковского излучения пройдет через эту точку. На этом принципе работают черенковские счетчики заряженных частиц, широко используемые в ядерной физике.

Интересно отметить, что условие черенковского излучения (1) справедливо для любого «сверхсветового» источника, а не только для заряженной частицы, движущейся со скоростью, большей скорости света в данной среде. На-

пример, если на плоскую границу раздела двух сред падает под некоторым углом а плоская световая волна (рис. 4.3), то линия пересечения волнового фронта с границей раздела движется вдоль границы со скоростью

$$v' = \frac{v_1}{\sin \alpha} > v_1, \quad (2)$$

где $v_1 = c/n_1$ фазовая скорость света в первой среде. Рассматривая эту дви-

жущуюся со скоростью $v' > v_1$ линию как сверхсветовой источник и применяя к первой среде условие черенковского излучения (1), находим сразу направление отраженной волны β_1 (рис. 4.4):

$$\sin\beta_1 = \cos\theta_1 = \frac{v_1}{v'} \,. \tag{3}$$

Подставляя в (3) скорость движения источника v' из (2), получаем, что sin β_1 = sin α , или β_1 = α . Это хорошо известный закон отражения света на плоской границе.

Теперь применим условие черенковского излучения (1) ко второй среде, где фазовая скорость света $v_2 = c/n_2$:

$$\sin\beta_2 = \cos\theta_2 = \frac{v_2}{v'} \,. \tag{4}$$

Если $v' < v_2$, условие (4) не выполняется ни при каком значении θ_2 , т. е. свет во второй средѐ распространяться не может. Это соответствует хорошо известному случаю полного отражения света от оптически менее плотной среды и имеет место при v_1 /sin $\alpha < v_2$, т. е. при $n_1 \sin \alpha > n_2$. Если

Рис. 4.3. Линия пересечения фронта волны с границей раздела двух сред движется со скоростью v', большей чем v₁.

 $v' > v_2$, то условие черенковского излучения (4) дает нам направление преломленной световой волны, распространяющейся во второй среде:

$$\sin\beta_2 = \frac{v_2}{v_1} \sin\alpha = \frac{n_1}{n_2} \sin\alpha.$$
 (5)

Таким образом, мы видим, что обычные законы отражения и преломления света на плоской границе совпадают с

Рис. 4.4. Направления отраженной и преломленной воли можно получить, используя условие черенковского излучения. условием черенковского излучения, и в этом смысле можно сказать, что условие излучения сверхсветового источника известно уже несколько столетий.

Рассмотрим теперь, чем черенковское излучеже ние отличается OT других видов свечения, вызываемых движущейся в веществе заряженной частицей. При движении электрона сквозь взаимодейстего вещество вешества вие С атомами

приводит к тому, что часть энергии электрона может передаваться атомам, вызывая их ионизацию или возбуждение с последующим высвечиванием. Однако это не есть черенковское излучение, ибо оно некогерентно. Такое излучение возможно и при скорости электрона меньшей, чем фазовая скорость света в среде. Чтобы яснее представить себе особенности черенковского излучения, рассмотрим следующий пример. Представим себе, что электрон со значительной скоростью движется по оси пустотелого канала, проделанного в веществе, так что он не испытывает непосредственных столкновений с атомами вещества. Оказывается, однако, что если диаметр канала значительно меньше длины волны света, то все же имеет место возмущение среды электромагнитным полем электрона, приводящее при $v_{an} > v$ к потере энергии электроном в виде светового излучения сквозь поверхность канала. При этом, если среда является вполне прозрачной, поток излучения беспрепятственно проходит через нее. Именно это излучение и представляет собой в чистом виде излучение Черенкова. Излучаемая

энергия, конечно, заимствуется из энергии движущегося электрона, скорость которого при этом должна уменьшаться. Но само по себе черенковское излучение отнюдь не связано с торможением электрона, ибо оно должно иметь место и при равномерном движении электрона со скоростью $v_{\rm эл} > v$. Конечно, такое равномерное движение вследствие потерь энергии на излучение не может быть движением по инерции и требует для своего поддержания постоянной внешней силы.

• 5. Фокусировка фотоаппарата. Объектив фотоаппарата создает действительное изображение бесконечно удаленной точки, которое лежит в фокальной плоскости. Поэтому при фотографировании удаленных предметов светочувствительный слой пластинки или пленки совмещается с фокальной плоскостью. Определить наибольшее допустимое смещение светочувствительного слоя из фокальной плоскости объектива, при котором еще не происходит ухудшения качества изображения.

Будем считать, что в объективе фотоаппарата устранены все аберрации. Если бы свет распространялся строго по законам геометрической оптики, то параллельный пучок лучей от бесконечно удаленного точечного источника собирался бы в фокусе объектива (рис. 5.1). Если пластинку

Рис. 5.1. При смещении пластинки из фокальной плоскости объектива изсбражение точечного источника размывается в круглое пятно.

расположить так, что светочувствительный слой будет лежать не точно в фокальной плоскости, а окажется смещенным из нее в ту или другую сторону на величину Δx , то на пластинке вместо точки получится изображение в виде кружка. Диаметр этого кружка a, как видно из рис. 5.1,

определяется соотношением

$$a = \theta \,\Delta x = \frac{D}{F} \,\Delta x. \tag{1}$$

Здесь D есть диаметр отверстия в диафрагме или диаметр оправы объектива при полностью открытой диафрагме. Вблизи точки пересечения пучка лучей искривление волновой поверхности становится настолько существенным,

Рис. 5.2. К расчету размеров дифракционной картины.

что условия применимости геометрической оптики заведо-мо не выполняются. Поэтому световой поток нельзя собрать в одну точку в фокусе объектива. Как же выглядит изоб-ражение бесконечно удаленного точечного источника в фокальной плоскости объектива фотоаппарата?

фокальной плоскости объектива фотоаппарата? Чтобы получить представление об этом, рассмотрим для простоты дифракцию плоской волны при прохождении ее через щель с параллельными прямыми краями (рис. 5.2). Поставим после щели собирающую линзу. По принципу Гюйгенса каждая точка фронта световой волны в щели яв-ляется источником новых колебаний, распространяющихся по всем направлениям. В каждой точке фокальной пло-скости линзы собираются те лучи, которые до линзы были параллельны между собой. Поэтому для нахождения диф-ракционной картины в фокальной плоскости линзы нужно рассмотреть интерференцию различных парадледьных межрассмотреть интерференцию различных параллельных между собой пучков лучей.

Ду соози пучков лучеи. Все лучи, идущие параллельно первоначальному на-правлению, имеют одинаковую фазу, поэтому в центре дифракционной картины (точка A на рис. 5.2) будет мак-симум освещенности. Рассмотрим лучи, составляющие угол ф с первоначальным направлением. Если разность

хода крайних лучей Δ равна длине волны света λ , то в результате интерференции в точке *B* произойдет взаимное гашение колебаний. Действительно, для каждого элемента фронта волны σ в верхней половине щели (рис. 5.2) найдется отстоящий от него на D/2 такой же элемент σ' в нижней половине щели, и разность хода лучей от этих элементов

Рис. 5.3. Распределение освещенности на экране при дифракции пло-, ской волны на щели.

равна $\lambda/2$. В результате интерференции эти лучи гасят друг друга. Соответствующий им угол дифракции φ_1 , как видно из рис. 5.2, равен

$$\varphi_1 = \frac{\Delta}{D} = \frac{\lambda}{D} \,. \tag{2}$$

Лучи, дифрагированные под углами от 0 до φ_1 , собираются в фокальной плоскости между точками A и B и лишь частично гасят друг друга. Если учесть интерференцию лучей, дифрагированных под углами, бо́льшими чем φ_1 , то расчет показывает, что распределение интенсивности света на экране имеет вид, изображенный на рис. 5.3. Освещенность экрана в первом боковом максимуме составляет менее 5% от освещенности в главном максимуме. Это означает, что почти весь световой поток, прошедший через щель, распространяется в интервале углов от — φ_1 до φ_1 . Изображение бесконечно удаленного точечного источника в фокальной плоскости линзы оказывается размытым в полоску, перпендикулярную краям щели. Ширина этой полоски

$$b = 2F\varphi_1 = 2\frac{\lambda}{D}F.$$
 (3)

Рассмотрение дифракции на круглом отверстии диаметром D показывает, что изображение бесконечно удаленного точечного источника размывается в круглое пятно, диаметр которого определяется той же формулой (3) с дополнительным числовым коэффициентом, близким к единице. Таким образом, в фотоаппарате изображение бесконечно удаленного точечного источника представляет собой дифракционный кружок, диаметр которого b согласно формуле (3) тем больше, чем меньше диаметр отверстия в диафрагме объектива. Объективы большого диаметра (при условии, что аберрации устранены) дают изображение более высокого качества.

Даваемый формулой (3) диаметр дифракционного пятна является для данного объектива наименьшим принципиально возможным изображением точечного источника. Поэтому бессмысленно стремиться совместить пластинку с фокальной плоскостью объектива настолько точно, чтобы диаметр пятна a в приближении геометрической оптики, даваемый формулой (1), оказался меньше, чем размер дифракционного пятна b. Приравнивая правые части в формулах (1) и (3), находим требуемую точность установки фотопластинки Δx :

$$\Delta x = 2\lambda \left(\frac{F}{D}\right)^2. \tag{4}$$

Например, для фотоаппарата с относительным отверстием D/F, равным 1:3,5, характерное значение Δx оказывается порядка 10^{-3} см. При меньшей точности не будет полностью использована разрешающая способность объектива.

Отметим, что решение этой задачи позволяет легко проанализировать вопрос о глубине резкости. Поскольку из-за дифракционных эффектов размер изображения далекой точки не зависит от положения пластинки в пределах отрезка Δx , даваемого формулой (4), то одинаково резкими на снимке выйдут не только бесконечно удаленные предметы, но и предметы, расстояние d до которых удовлетворяет соотношению

$$\frac{1}{d} + \frac{1}{F + \Delta x} = \frac{1}{F}.$$
 (5)

Учитывая, что $\Delta x \ll F$, отсюда легко получить

$$d = \frac{F^2}{\Delta x} \,. \tag{6}$$

Подставляя величину Δx из формулы (4), находим то расстояние d, начиная от которого и до бесконечности все предметы выйдут на снимке одинаково резкими, если пластинка находится в фокальной плоскости объектива:

$$d = \frac{D^2}{2\lambda} \,. \tag{7}$$

Посмотрим теперь, что получится, если поместить пластинку не в фокальной плоскости, а на расстоянии Δx дальше от нее (рис. 5.1).

Очевидно, что тогда на пластинке идеально резкими в приближении геометрической оптики выйдут изображения тех предметов, которые находятся на расстоянии *d* от объектива. Изображения бесконечно удаленных точек и точек, находящихся на расстоянии *d*/2, будут представлять собой кружки диаметром *a*. Поэтому мы получим на снимке одинаково резкие изображения всех предметов, которые расположены от бесконечности до расстояния, вдвое меньшего *d*.

Из формулы (7) видно, что глубина резкости зависит от того, насколько сильно задиафрагмирован объектив фотоаппарата. Чем меньше диаметр D отверстия диафрагмы, тем больше глубина резкости. Но, увеличивая глубину резкости, диафрагмирование приводит к ухудшению резкости изображения тех предметов, на которые сфокусирован объектив: из формулы (3) видно, что при этом увеличивается размер дифракционного пятна b.

6. Фонари на разном расстоянии. Горящие уличные фонари в виде молочных шаров кажутся одинаково яркими с расстояния 20 и 40 м. Как это объяснить?

Что значит, что в обоих случаях фонари кажутся одинаково яркими? Прежде всего нужно выяснить, чем определяется субъективное ощущение яркости. Очевидно, что зрительное ощущение зависит от размеров изображения на сетчатке глаза и от освещенности этого изображения. А вот ощущение яркости поверхности от размеров изображения этой поверхности на сетчатке не зависит. Проще всего в этом убедиться на опыте, закрывая часть светящейся поверхности фонаря. Ощущение яркости от остающейся открытой части фонаря при этом не меняется.

Итак, субъективное ощущение яркости не зависит от размеров изображения фонаря, создаваемого хрусталиком на сетчатке глаза, а определяется только его освещенностью. Попробуем выяснить, почему освещенность изображения одинаковых фонарей, расположенных на разных расстояниях, будет одинаковой.

На больших расстояниях порядка 20-40 м фонарь радиуса 20-30 см при расчете создаваемой им освещенности поверхности хрусталика (или попадающего в глаз светового потока) можно считать точечным источником света, несмотря на то, что его изображение на сетчатке глаза имеет конечные размеры. Поэтому создаваемая таким фонарем освещенность поверхности убывает обратно пропорционально квадрату расстояния. Следовательно, от фонаря, находящегося на расстоянии 40 м, падающий на поверхность зрачка световой поток в четыре раза меньше, чем от фонаря на расстоянии 20 м. Линейный размер изображения фонаря на сетчатке при расстоянии 40 м в два раза, а площадь его изображения — в четыре раза меньше, чем при расстоянии 20 м. Таким образом, уменьшение попадающего в глаз светового потока от фонаря пропорционально уменьшению площади участка сетчатки глаза, • на которую этот поток попадает, и освещенность изображения не зависит от расстояния до фонаря. Разумеется, это справедливо лишь при отсутствии поглощения или рассеяния света; в противном случае, например в дыму, в тумане, создаваемая фонарем освещенность зрачка убывает быстрее, чем площадь изображения на сетчатке. При этом на большем расстоянии фонарь выглядит более тусклым.

Теперь подумаем, что изменится, если мы будем рассматривать фонарь в бинокль. Можно сообразить, что ссвещенность изображения протяженного фонаря при наблюдении в бинокль не может быть больше, чем при наблюдении невооруженным глазом. В самом деле, бинокль конструируется таким образом, что вместе с глазом наблюдателя он образует единую оптическую систему, в которой весь попадающий в объектив световой поток проходит в глаз. При этом площадь изображения на сетчатке глаза увеличивается во столько же раз, как и попадающий в глаз световой поток. В результате при пренебрежении потерями света в оптической системе бинокля освещенность изображения на сетчатке останется неизменной, и фонарь будет в бинокль казаться в лучшем случае таким же ярким, как и без бинокля.

Но совсем другое дело, если мы будем рассматривать в бинокль или телескоп звезду. Звезды настолько удалены от нас, что, несмотря на их гигантские размеры, угловые размеры почти всех звезд очень малы. Поэтому изображение звезды на сетчатке глаза при рассматривании ее даже в самый большой телескоп неотличимо от изображения истинно точечного источника света. Другими словами, это изображение представляет собой дифракционный кружок. Размер этого кружка не зависит от того, наблюдается ли звезда в телескоп с правильно подобранным окуляром или непосредственно невооруженным глазом. Но световой поток от звезды и, следовательно, освещенность ее изображения при использовании телескопа во столько раз больше, чем при невооруженном глазе, во сколько раз площадь отверстия объектива больше площади зрачка. Поэтому в телескоп звезды кажутся более яркими. В телескоп можно увидеть очень слабые звезды, вообще невидимые невооруженным глазом.

Более того, в телескоп звезды можно увидеть даже днем. Это объясняется тем, что звезда в телескоп кажется более яркой, в то время как фон остается таким же, поскольку любой участок неба представляет собой протяженный источник света.

7. Перспектива на фотоснимке. Как нужно рассматривать фотографию, чтобы получить правильное пространственное впечатление с неискаженной перспективой?

Наличие у фотоаппарата определенной глубины резкости позволяет на одном плоском фотоснимке получить отчетливое изображение предметов, находящихся на разных расстояниях от объектива. Плоские изображения пространственно протяженных предметов всегда передают определенную геометрическую перспективу, т. е. определенное соотношение между величиной и расположением предметов, находящихся на различном удалении от фотоаппарата.

При формировании плоского изображения на фотопластинке объектив осуществляет центральную проекцию

Рис. 7.1. Получение правильной перспективы при рассматривании фотоснимка.

предметов (рис. 7.1, *a*). Центр такой проекции О находится в середине объектива, поскольку проходящие через центр линзы лучи не отклоняются. В результате изображение более удаленного предмета А будет иметь на фотоснимке меньший размер, чем изображение такого же по величине, но более близкого предмета В.

Обычно при фотографировании пластинка находится почти в фокальной плоскости объектива. Для получения правильного пространственного представления при рассматривании фотоснимка нужно, чтобы видимые глазом угловые размеры изображений предметов были бы такими же, как и при непосредственном наблюдении этих предметов. Если рассматривать фотоснимок, помещая глаз точно в ту же точку, где был расположен объектив, это условие будет выполнено: из рис. 7.1, *б* ясно, что мы будем видеть предметы на изображении под такими же углами, как и при непосредственном их наблюдении из той точки, где находился объектив фотоаппарата при съемке.

Итак, смотреть на снимок следует одним глазом, помещая его на расстоянии, равном фокусному расстоянию объектива. Тогда фотография будет производить естественное пространственное впечатление. При фокусных расстояниях 25 см и более это легко осуществить. У распространенных малоформатных фотокамер фокусное расстояние значительно меньше и составляет обычно около 5 см. В этом случае при рассматривании слайдов следует воспользоваться лупой (диаскопом), тогда и здесь сохранится правильное расстояние между глазом и изображением. При рассматривании *n*-кратно увеличенных по сравнению с негативом фотоснимков для сохранения естественной перспективы расстояние между глазом и снимком должно быть в *n* раз больше фокусного расстояния объектива. В большой ауднтории, например в кинозале, это условие выполняется лишь для немногих мест.

При рассматривании одним глазом с неправильного расстояния фотография дает пространственное впечатление, но с искаженной перспективой. При слишком близком расстоянии глубина снимка будет казаться уменьшенной, а при слишком большом — увеличенной. Это искажение перспективы поясняет рис. 7.2. Во всех трех случаях с разных расстояний рассматривается один и тот же снимок, поэтому положение любых точек изображения, например точек A' и B', соответствующих вершинам фонарей, одинаково. Верхний рис. *а* соответствует правильному положению глаза и, следовательно, неискаженной перспективе. При рассматривании снимка с меньшего расстояния (рис. 7.2, 6) дистанция между фонарями кажется уменьшенной. При рассматривании с большего расстояния (рис. 7.2, *в*) картина кажется растянутой в глубину.

Искажение продольной перспективы особенно бросается в глаза при наблюдении в зрительную трубу или бинокль. Хотя в бинокль мы видим объемное изображение, в глубину все предметы и расстояния кажутся нам укороченными. Объектив зрительной трубы создает в фокальной плоскости действительное изображение, которое затем рассматривается глазом через окуляр. Окуляр при этом действует как лупа, позволяя приблизить глаз к изображению и тем самым увеличивая угол зрения. Но увеличение угла зрения, как видно из рис. 7.2, б, приводит к кажущемуся уменьшению глубины. Видеть в трубу неискаженную перспективу можно только тогда, когда труба не изменяет угол зрения. Но это соответствует увеличению, равному

Рис. 7.2. Искажение перспективы при неправильном положении глаза.

единице Если зрительная труба дает увеличение, то искажение перспективы неизбежно.

Еще большее впечатление производит обратный опыт. Если смотреть в бинокль или трубу, направив на предмет не объектив, а окуляр, то протяженность предмета в глубину нам кажется забавно увеличенной.

8. Положение диафрагмы и перспектива. В фотоаппаратах диафрагма помещается обычно между линзами объектива. Что изменится на фотоснимках, если диафрагму помещать на разных расстояниях в промежутке между объективом и фотопластинкой? Рассмотреть случай макросъемки, когда изображения предметов получаются почти в натуральную величину.

Прежде всего обратим внимание на то, что для получения изображения в натуральную величину фотоаппарат должен давать возможность делать расстояние между объективом и фотопластинкой равным удвоенному фокусному расстоянию *F*. Тогда, помещая предметы перед фотоаппаратом на расстояниях порядка 2*F*, мы получим на фотопластинке их резкое изображение. При этом, как мы видели в задаче 5, глубина резкости будет тем больше,

чем меньше диаметр отверстия в диафрагме. К такому выводу мы пришли, считая, что изображению точки соответствует место наибольшего сужения светового пучка, причем это сужение определяется дифракционными эффектами.

Это представление о формировании изображений явля-

ется общепринятым. Однако отнюдь не всегда изображения, хорошо воспринимаемые нашим глазом, тождественны очень резким изображениям. Вспомним хотя бы о том, что очень часто совершенно отчетливой воспринимается картина, нарисованная художником крупными грубыми мазками. То же относится и к получению изображений в некоторых оптических устройствах, например в камереобскуре (рис. 8.1). В ней изображением светящейся точки является пятно, образованное хотя и узким, но расходящимся пучком. Таким образом, качество изображения пространственной картины на плоском фотоснимке определяется не только глубиной резкости, обусловленной дифракционными явлениями, но и указанной всихологической особенностью нашего зрения. Поэтому в дальнейшем мы будем считать, что при достаточно сильном диафрагмировании получаются хорошие изображения находящихся на разных расстояниях предметов и в том случае, когда фотопластинка не совпадает с положением их изображения, построенного по законам геометрической оптики (рис. 8.2, а).

Теперь можно разобраться в том, как будет влиять на характер получаемых фотоснимков положение диафрагмы с малым отверстием, выделяющей узкие пучки, необходимые для формирования четких изображений. В том случае, когда диафрагма расположена вблизи объектива (напри-

Рис. 8.1. Пучки "лучей, формирующих изображение в камере-обскуре.

мер, между его линзами), все формирующие плоское изображение узкие пучки света пересекаются в объективе (рис. 8.2, *a*). В результате на снимке изображение близких к объективу предметов *В* будет крупнее, чем изображение

Рис. 8.2. Перспектива на фотоснимке определяется положением ограничивающей световые пучки диафрагмы. а — неискаженная перспектива; б — перспектива на снимке исчезает, когда диафрагма находится в фокусе; в — перспектива обращенная, когда диафрагма удалена от объектива на расстояние больше фокусного.

таких же предметов A, но расположенных дальше. Фотография будет давать правильное пространственное впечатление с неискаженной перспективой, т. е. предметы на фотографии будут видны под теми же углами, что и при непосредственном наблюдении с места фотографирования. Разумеется, так будет только в том случае, когда мы рассматриваем снимок правильно, т. е., как было показано в предыдущей задаче, одним глазом с расстояния, равного расстоянию от объектива до пластинки при фотографировании.

Пусть теперь диафрагма помещается вблизи фокуса объектива (рис. 8.2, б). Через фокус проходят только те лучи, которые до объектива шли параллельно главной оптической оси. Поэтому в формировании изображения будут участвовать только те вырезанные диафрагмой узкие пучки, оси которых до объектива параллельны главной сптической оси. Из рис. 8.2, б видно, что при этом изображения одинаковых предметов А и В, находящихся на разных расстояниях, будут иметь одинаковые размеры. Перспектива на снимке исчезсет, и все предметы кажутся находящимися на одинаковсм расстоянии.

Еще необычнее случай, когда диафрагма псмещается позади фокуса, ближе к фотопластинке (рис. 8.2, в). Теперь, как ясно из этого рисунка, через отверстие диафрагмы проходят только те лучи, которые до линзы межно было считать вышедшими из действительного изображения отверстия диафрагмы, создаваемого сбъективом. Рассматривая на рисунке вырезаемые диафрагмой узкие пучки, выходящие из предметов A и B, межно убедиться, что размер изображения удаленного предмета A будет больше, чем размер близкого предмета B. Перспектива на снимке будет обращенной, т. е. предметы, находящиеся дальше, будут казаться расположенными ближе!

Итак, положение ограничивающей световые пучки диафрагмы решающим образом влияет на перспективу получающегося на снимке изображения. По мере передвижения диафрагмы от объектива к фотопластинке глубина перспективы постепенно убывает, исчезая совсем при совпадении отверстия диафрагмы с фокусом. Затем перспектива появляется вновь, но уже обращенная.

Подчеркнем во избежание недоразумений, что сделанные выше выводы о характере перспективы на фотоснимке справедливы только при наличии диафрагмы с малым отверстием. Если увеличить диаметр отверстия, то пучки станут широкими, и в плоскости фотопластинки мы не получим четкого изображения находящихся на разных расстояниях предметов. Что же касается изображений предметов, построенных по законам геометрической оптики (г. е. как точек пересечения соответствующих лучей), то их положение и размеры не зависят, разумеется, ни от величины отверстия в диафрагме, ни от ее расположения.

Из рис. 8.2, в видно, что благодаря диафрагме в формировании изображения какой-либо точки предмета участвует только малая часть поверхности линзы. Для того чтобы на фотопластинке получились изображения крайних точек предмета, необходимо, чтобы соответствующие им световые пучки прошли через линзу. Из рисунка видно, что для этого размер линзы должен быть больше размера предмета.

9. Выдержка при фотографировании. Для получения репродукции большое полотно фотографируется сначала целиком, т. е. общим планом, а затем при тех же условиях и тем же фотоаппаратом фотографируются отдельные детали в натуральную величину. Как следует изменить выдержку при изменении масштаба?

Для правильного воспроизведения полутонов при фотографировании для каждого сорта фотопленки требуется

Рис. 9.1. Попадающий на площадь $\Delta S'$ световой поток от элемента ΔS распространяется в телесном угле $\Omega = \sigma/d^2$.

обеспечить определенную экспозицию. Другими словами, на каждый кадр фотопленки должно попасть в среднем одно и то же количество световой энергии. Поэтому произведение освещенности изображения на пленке на время экспозиции должно быть неизменным.

Исходя из этого условия, легко найти, как следует изменить выдержку при изменении масштаба. Выберем некоторый элемент фотографируемого полотна ΔS , настолько малый, чтобы при нахождении исходящего от него светового потока $\Delta \Phi$ этот элемент можно было считать точечным источником света. Тогда поток световой энергии от такого элемента, падающий на открытое диафрагмой отверстие объектива фотоаппарата, пропорционален площади этого элемента ΔS и телесному углу Ω , в котором он

Рис. 9.2. Отношение площадей ΔS и $\Delta S'$ равно квадрату отношения расстояний d и f.

распространяется (рис. 9.1). Телесный угол Ω измеряется отношением площади отверстия в объективе σ к квадрату расстояния от объектива до фотографируемого полотна d. Поэтому

$$\Delta \Phi \sim \Omega \, \Delta S = \frac{\sigma}{d^2} \, \Delta S. \tag{1}$$

Определенная часть этого светового потока попадает на площадь $\Delta S'$ фотопленки, занимаемую изображением элемента полотна ΔS . Остальная (как правило, небольшая) часть этого потока теряется из-за отражения и поглощения света в стеклах объектива. Так как освещенность E изображения равна отношению светового потока к площади, на которую он падает, то

$$E \sim \frac{\Delta \Phi}{\Delta S'} \sim \frac{\sigma}{d^2} \frac{\Delta S}{\Delta S'} \,. \tag{2}$$

Отношение площади предмета ΔS к площади его изображения $\Delta S'$ равно квадрату отношения расстояния d от предмета до объектива фотоаппарата к расстоянию f от объектива до изображения (рис. 9.2):

$$\frac{\Delta S}{\Delta S'} = \frac{d^2}{j^2} \,. \tag{3}$$

Подставляя это соотношение в (2), убеждаемся, что освещенность изображения на фотопленке пропорциональна

площади отверстия объектива σ и обратно пропорциональна квадрату расстояния от объектива до фотопленки:

$$E \sim \sigma/f^2$$
: (4)

При фотографировании полотна общим планом величина f практически равна фокусному расстоянию объектива F. При фотографировании деталей картины в натуральную величину пленка должна находиться на удвоенном фокусном расстоянии от объектива: f=2F. В результате, как видно из (4), освещенность изображения на фотопленке уменьшится в четыре раза, если, конечно, при переходе к фотографированию деталей освещенность полотна и площадь отверстия диафрагмы объектива σ остаются прежними. Это означает, что выдержку нужно увеличить в четыре раза. Если же мы хотим выдержку оставить прежней, то, очевидно, нужно площадь отверстия σ увеличить в четыре раза, т. е. увеличить вдвое относительное отверстие объектива.

10. Интерференция света от протяженного источника. Плоскопараллельная стеклянная пластинка толщиной d с показателем преломления n освещается монохроматическим светом с длиной волны λ от протяженного источника. Позади пластинки расположена линза с фокусным расстоянием F (рис. 10.1). Какой вид имеет интерференционная картина, которая будет наблюдаться на экране, если его расположить в фокальной плоскости линзы?

Рис. 10.1. Схема для наблюдения интерференции от протяженного источника света.

Разобьем мысленно протяженный источник света на отдельные малые элементы, каждый из которых можно

считать точечным источником. Все эти источники излучают свет одной и той же длины волны λ, но независимо друг от друга. Поэтому они некогерентны между собой.

Рис. 10.2. Интерференция света в точке А обусловлена лучом, вышедшим из точечного источника S под углом θ .

Каждый элементарный источник света S излучает сферическую волну, т. е. испускает лучи света по всем направлениям (рис. 10.2). После прохождения через пластинку и линзу эти лучи попадают в разные точки экрана. Рассмотрим один из этих лучей, составляющий угол θ с главной оптической осью линзы. В результате многократных отражений на гранях пластинки этот луч разделяется, как видно из рис. 10.2, на последовательность параллельных между собой лучей. Амплитуды соответствующих этим лучам волн быстро убывают. Все эти лучи после прохождения через линзу собираются в одной и той же точке A фокальной плоскости. Эта точка A находится на расстоянии x от главного фокуса линзы O, которое, как легко видеть из рис. 10.2, дается выражением

$$x = F \operatorname{tg} \theta.$$
 (1)

Так как все эти лучи возникли из одного луча, то они когерентны между собой й, приходя в точку A, интерферируют. В зависимости от разности хода между лучами в точке A будет наблюдаться либо усиление, либо ослабление освещенности. Поскольку условия усиления или ослабления колебаний одинаковы для всех пар соседних лучей, для определения положения максимумов и минимумов интерференционной картины достаточно рассмотреть два соседних луча. С помощью рис. 10.3 нетрудно убедиться, что эта разность хода Δ равна

$$\Delta = (BC + CD) n - BE = \frac{2nd}{\cos \theta_1} - 2d \operatorname{tg} \theta_1 \sin \theta.$$
 (2)

Используя закон преломления света на границе воздух — стекло

$$\sin \theta = n \sin \theta_1, \tag{3}$$

выразим разность хода Δ в формуле (2) через угол θ₁:

$$\Delta = 2nd \left(\frac{1}{\cos \theta_1} - \operatorname{tg} \theta_1 \sin \theta_1 \right) = 2nd \cos \theta_1.$$
 (4)

Из выражения (4) видно,

Рис. 10.3. К расчету разности хода интерферирующих лучей.

что для данной плоскопараллельной пластинки разность хода Δ зависит только от угла θ_1 , или в силу соотношения (3) только от угла θ , образуемого лучом с главной оптической осью. Подчеркнем, что эта разность хода не зависит от положения точечного источника S.

В тех точках экрана, где разность хода Δ равна це-

лому числу длин волн, будет максимум освещенности, а где полуцелому — минимум. Так как Δ зависит только от угла θ , то эти максимумы и минимумы будут располагаться на концентрических окружностях, центр которых лежит в точке O.

Что же будет наблюдаться на экране в фокальной плоскости линзы от одного элементарного источника S? В отсутствие стеклянной пластинки все лучи из S, проходящие через линзу, создают в соответствии с законами геометрической оптики изображение источника S в некоторой точке S' (рис. 10.4). На экране в фокальной плоскости линзы при этом будет освещенное пятно, размеры которого ограничены крайними лучами, проходящими через линзу. При наличии пластинки это пятно будет прорезано светлыми и темными интерференционными полосами, которые, как мы уже выяснили, представляют собой окружности с центром в точке O (рис. 10.5). Радиусы светлых колец, соответствующих условию $\Delta = k\lambda$, легко вычислить с помощью формул (4) и (1). Эти радиусы не зависят от положения элементарного точечного источника S.

Рис. 10.4. В отсутствие плоскопараллельной пластинки точечный источник S дает светлое пятно на экране в фокальной плоскости линзы.

Теперь нетрудно выяснить, как будет выглядеть полная интерференционная картина, создаваемая всем протяжен-

Рис. 10.5. При наличии плоскопараллельной пластинки светлое пятно на экране изрезано интерференционными полосами.

Рис. 10.6. Наложение интерференционных картин от двух точечных источников.

ным источником света. Она получается в результате наложения интерференционных картин от отдельных элементарных источников. Пятна от отдельных источников располагаются в разных местах экрана, частично налагаясь друг на друга (рис. 10.6). Существенно то, что интерференционные кольца на этих пятнах, как было показано, имеют общий центр *O* и одинаковые радиусы. Поэтому при наложении образуется общая система интерференционных колец. В результате полная интерференционная картина представляет собой совокупность чередующихся светлых и темных окружностей, центр которых находится на главной оптической оси линзы.

Из приведенного решения ясно, что интерференционные картины в фокальной плоскости линзы от протяженного монохроматического источника света и от точечного источника S_0 , находящегося на главной оптической оси (рис. 10.2), принципиально не отличаются друг от друга. Отличие только в том, что протяженный источник дает больше света, чем его отдельный элемент S_0 , и его интерференционная картина занимает бо́льшую площадь на экране.

В заключение отметим, что аналогичную интерференционную картину можно наблюдать и в отраженном от плоскопараллельной пластинки свете. Механика теории относительности описывает движение тел в тех случаях, когда их скорость сравнима со скоростью света. В релятивистской механике масса зависит от скорости:

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}} \,. \tag{1}$$

Здесь m_0 — масса покоя, т. е. масса в той системе отсчета, где тело покоится. Именно эта величина и понимается под массой в нерелятивистской механике.

Импульс частицы **р** связан с ее скоростью **v** соотношением

$$\boldsymbol{p} = m\boldsymbol{v} = \frac{m_0 \boldsymbol{v}}{\sqrt{1 - v^2/c^2}} \,. \tag{2}$$

Одним из самых замечательных выводов теории относительности является закон эквивалентности массы и энергии, выражаемый знаменитой формулой Эйнштейна

$$E = mc^{2} = \frac{m_{0}c^{2}}{\sqrt{1 - v^{2}/c^{2}}}.$$
 (3)

Согласно этому закону любое изменение энергии системы сопровождается пропорциональным изменением ее массы. Например, разогнанная частица имеет бо́льшую массу, чем неподвижная, нагретое тело — бо́льшую массу, чем холодное, сжатая пружина — бо́льшую массу, чем несжатая. Из формулы (3) следует, что в релятивистской механике покоящееся тело обладает энергией $E_0 = m_0 c^2$, которая называется энергией покоя.

Из выражений (2) и (3) следует формула, связывающая между собой энергию и импульс релятивистской системы:

$$E^2 - p^2 c^2 = m_{\phi}^2 c^4. \tag{4}$$

Обратим внимание на то, что в правой части (4) стоит величина, не зависящая от выбора системы отсчета. Поэтому, хотя каждое из слагаемых в левой части имеет разное значение в различных инерциальных системах отсчета, вся левая часть не зависит от выбора системы отсчета, т. е. представляет собой релятивистский инвариант. Для ультрарелятивистских частиц, т. е. таких, у которых энергия Eмного больше энергии покоя m_0c^2 , соотношение (4) можно приближенно переписать в виде E = pc.

Если при описании релятивистских явлений в законах физики появляется универсальная постоянная $c=2,998\times$ ×10¹⁰ см/с *), которая представляет собой максимальную скорость распространения взаимодействий — скорость света в вакууме, то при описании явлений микромира появляется еще одна фундаментальная константа h — постоянная Планка. Ее значение равно $6,62 \cdot 10^{-27}$ эрг.с.

Наблюдаемые на опыте корпускулярные свойства света приводят к представлению о том, что электромагнитное излучение можно рассматривать как поток фотонов. Согласно квантовой теории энергия фотона пропорциональна частоте соответствующего излучения и дается формулой Планка

$$E = hv. \tag{5}$$

Поскольку фотон не существует в состоянии покоя, то его масса покоя m_0 равна нулю, а импульс в силу соотношений (4) и (5) дается выражением

$$p = \frac{hv}{c} \,. \tag{6}$$

Фундаментальным законом физики микромира являются соотношения неопределенностей Гейзенберга, которые связывают между собой неопределенности в значениях какойлибо координаты частицы x и соответствующей проекции импульса p_x в один и тот же момент времени:

$$\Delta x \cdot \Delta p_x \ge h. \tag{7}$$

Невозможность приписать микрочастице одновременно точные значения координаты и соответствующей проекции импульса связана с проявлением двойственной корпуску-

428

^{*)} В этом разделе используется система единиц СГСЭ,

лярно-волновой природы микрообъектов. Волновые свойства микрообъектов характеризуются так называемой длиной волны де-Бройля λ, которая обратно пропорциональна импульсу частицы:

$$\lambda = \frac{h}{\rho} \,. \tag{8}$$

Корпускулярно-волновой дуализм заключается в том, что любая частица — фотон, электрон, протон, атом и т. д. — обладает потенциальной возможностью проявлять и корпускулярные, и волновые свойства, но ни в одном явлении они никогда не проявляются одновременно.

1. Принцип относительности. Шарик массы *m* на нити длиной *l* висит неподвижно в однородном поле тяжести напряженности *g*. В некоторый момент времени точка подвеса начинает двигаться в горизонтальном направлении с постоянной скоростью *v* (рис. 1.1). Как при этом будет двигаться шарик?

Условие этой задачи очень простое, однако на первый взгляд совершенно не ясно, как к ней подступиться. С одной стороны, очевидно, что движение та-

кой механической системы подчиняется законам классической механики Ньютона. С другой стороны, непонятно, как эти законы можно здесь применить.

Подсказкой к нахождению пути решения этой задачн может послужить то обстоятельство, что она помещена в разделе «Релятивистская и квантовая физика». То, что квантовая физика здесь ни при чем, сомнений не вызывает, поэтому остается выяснить, какое отношение может иметь эта задача, в которой рассматривается движение с заведомо

Рис. 1.1. В некоторый момент точка подвеса приводится в движение с постоянной скоростью **2**.

нерелятивистскими скоростями, к теории относительности. Оказывается, что и к теории относительности эта задача тоже отношения не имеет. Но вот принцип относительности, лежащий в основе этой теории, причем в своей классической форме, сформулированный еще Галилеем, имеет к этой задаче самое непосредственное отношение. Его использование позволяет сразу свести эту задачу к другой, хорошо известной.

Согласно принципу относительности Галилея законы, описывающие механические явления, во всех инерциальных

Рис. 1.2. В системе отсчета, где точка подвеса неподвижна, шарик в начальный момент имеет скорость — **7**.

системах отсчета одинаковы. При решении данной задачи удобно перейти в систему отсчета, в которой точка подвеса неподвижна. Так как в исходной (лабораторной) системе отсчета точка подвеса движется с постоянной скоростью v, то новая система отсчета также является инерциальной. Однако в этой системе движение шарика на нити выглядит уже довольно просто: точка подвеса нити все время неподвижна, а самому шарику в начальный момент времени сообщается скорость - v, направленная по горизонтали направо (рис. 1.2). Разумеется, и в новой системе отсчета на шарик тоже дейстнапряженновует поле тяготения сти *g*.

В системе отсчета, связанной с точкой подвеса, дальнейшее движение шарика будет происходить по-разному в зависимости от величины его начальной скорости. При небольшой начальной скорости система будет вести себя как математический маятник, совершающий малые почти гармонические колебания вблизи вертикального положения равновесия:

$$\varphi(t) = \varphi_0 \sin \omega t. \tag{1}$$

Величина ω равна частоте собственных колебаний математического маятника длины $l: \omega^2 = g/l$. Выбор начальной фазы колебаний в уравнении (1) соответствует тому, что при t=0маятник расположен вертикально и $\varphi=0$. Амплитуда колебаний φ_0 также находится из начальных условий. Так как согласно формуле (1) угловая скорость маятника φ равна

$$\varphi(t) = \omega \varphi_0 \cos \omega t, \qquad (2)$$

430

то линейная скорость шарика при t=0 равна $\omega \varphi_0 l$. Приравнивая ее величине v, находим угловую амплитуду φ_0 :

$$\varphi_0 = \frac{v}{\omega l} \,. \tag{3}$$

Такое гармоническое колебательное движение маятника происходит только при небольшой амплитуде ф₀≪1, т. е., как видно из формулы (3), при

$$v \ll \omega l = \sqrt{gl}.$$

Если начальная скорость v не очень мала, т. е. не удовлетворяет приведенному неравенству, то колебамаятника будут происходить ния с большой амплитудой и уже не будут гармоническими. Но ампликолебаний, разумеется, туда не может превышать значения $\phi_0 = \pi/2$. При такой амплитуде шарик в крайполнимается них положениях ло точки подвеса. Этому уровня coответствует, как легко убедиться с помощью закона сохранения энергии, значение начальной скорости v = $=\sqrt{2gl}$. Если же начальная скорость

Рис. 1.3. К нахождению точки, в которой натяжение нити *T* обращается в нуль.

больше этого значения, то шарик поднимется выше точки подвеса, однако он будет двигаться по окружности только до тех пор, пока натяжение нити не обратится в нуль. Начиная с этой точки, гибкая нить не влияет на движение шарика, и он движется свободно в поле тяжести по параболе, пока нить снова не вытянется на всю длину.

Угловое положение точки φ_1 , в которой натяжение нити обращается в нуль, легко найти с помощью закона сохранения энергии и проекции уравнения второго закона Ньютона на направление нити, полагая в нем силу патяжения нити T равной нулю. Из рис. 1.3 видно, что эти уравнения записываются следующим образом:

$$\frac{1}{2}mv^{2} = mgl(1 - \cos\varphi_{1}) + \frac{1}{2}mv_{1}^{2}, \qquad (4)$$

$$mg\cos\left(\pi-\varphi_{1}\right)=\frac{mv_{1}^{2}}{l}.$$
(5)

Подставляя v1 из уравнения (5) в (4), находим

$$\cos\varphi_1 = \frac{1}{3} \left(2 - \frac{v^2}{gl} \right). \tag{6}$$

Поскольку шарик поднимается выше точки подвеса только при $v^2 > 2gl$, то даваемое формулой (6) *значение соз φ_1 отрицательно. Из формулы (6) видно, что чем больше значение начальной скорости шарика v, тем ближе угол φ_1 к π . Наконец, если $v^2 = 5gl$, то соз $\varphi_1 = -1$ и натяжение нити обращается в нуль, когда шарик при движении по окружности оказывается точно над точкой подвеса. Ясно, что при таком и тем более при больших значениях начальной скорости шарик будет совершать полные обороты по окружности, все время натягивая нить.

Движение шарика в исходной лабораторной системе отсчета, где его точка подвеса приведена в равномерное движение со скоростью **v**, получается в результате сложения описанного выше движения во вспомогательной системе отсчета и равномерного движения со скоростью **v**.

Разобранный пример наглядно показывает следующее: несмотря на то, что законы движения во всех инерциальных системах отсчета одинаковы, при решении конкретной задачи одна из этих систем может оказаться гораздо удобнее, чем остальные. Удачное применение принципа относительности может превратить сложную на первый взгляд задачу в почти очевидную.

2. Возбуждение атома при столкновении. Наименьшая энергия возбуждения атома гелия равна 21,12 эВ. Возможно ли возбуждение неподвижного атома гелия при столкновении с протоном, обладающим энергией 24 эВ? с электроном такой же эпергии?

Если энергия налетающей частицы недостаточна для возбуждения атома, то ее столкновение с атомом является абсолютно упругим, так как внутреннее состояние атома измениться не может. При возбуждении или ионизации атома в результате удара налетающей частицы столкновение уже не является упругим, так как часть кинетической энергии превращается во внутреннюю энергию возбужденного атома или затрачивается на совершение работы ионизации, т. е. на удаление электрона из атома.

432
Вследствие закона сохранения импульса вся кинетическая энергия налетающей частицы не может пойти на возбуждение или ионизацию атома, хотя такой процесс и не противоречил бы закону сохранения энергии.

Какая же максимальная доля первоначальной кинетической энергии может быть использована для возбуждения атома? На этот вопрос легко ответить, если использовать законы сохранения энергии и импульса для процесса столкновения налетающей частицы с невозбужденным атомом. Энергия возбуждения W представляет собой изменение внутренней энергии атома при переходе из основного состояния в возбужденное. Энергия налетающей частицы это ее кинетическая энергия mo²/2, где v — скорость частицы до столкновения.

На первый взгляд могло бы показаться, что для возбуждения атома наиболее благоприятен случай, когда в результате удара налетающая частица останавливается, передавая атому всю свою энергию. Однако на самом деле оказывается, что в этом случае кинетическая энергия системы после удара не будет наименьшей. Во внутреннюю энергию атома переходит наибольшая часть кинетической энергии частицы, если после столкновения атом и налетевшая частица движутся с одинаковой скоростью, несмотря на то, что какую-то долю своей кинетической энергии налетающая частица при этом сохраняет.

Проще всего в этом убедиться, рассматривая процесс возбуждения атома в системе отсчета, в которой неподвижен центр масс атома и налетающей частицы. Такая система отсчета также является инерциальной. Согласно принципу относительности законы, описывающие любые физические явления, одинаковы во всех инерциальных системах отсчета. Поэтому во введенной системе, как и в исходной, также выполняются законы сохранения энергии и импульса. Полный импульс в этой системе отсчета равен нулю, поэтому после столкновения могут остановиться оба тела --и атом, и частица. Если оба тела действительно остановятся, то во внутреннюю энергию атома перейдет вся первоначальная кинетическая энергия. Но неподвижные в системе центра масс атом и частица имеют одинаковую скорость в исходной лабораторной системе отсчета. Значит, приращение внутренней энергии атома будет наибольшим в том случае, когда после столкновения и атом, и налетев-

4.34 Х. РЕЛЯТИВИСТСКАЯ И КВАНТОВАЯ ФИЗИКА

шая частица имеют одинаковую скорость. Именно такое столкновение и называется абсолютно неупругим ударом, хотя частицы после столкновения не объединяются в одно тело, а движутся независимо.

Запишем законы сохранения энергии и импульса, рассматривая этот наиболее благоприятный для возбуждения атома случай. Обозначим массу атома через *M*, а скорость атома и частицы после удара через *V*. Тогда

$$m\boldsymbol{v} = (M+m) \boldsymbol{V}, \tag{1}$$

ł

$$\frac{1}{2}mv^2 = \frac{1}{2}(m+M)V^2 + W.$$
 (2)

Мы используем здесь нерелятивистские формулы, так как при интересующих нас энергиях порядка 20 эВ и электрон, и тем более протон движутся со скоростью, много меньшей скорости света.

При заданной величине энергии возбуждения W уравцения (1) и (2) определяют наименьшую скорость налетающей частицы v и, следовательно, наименьшую энергию $mv^2/2$, при которой возможно возбуждение атома. Выражая V из (1) и подставляя в (2), находим

$$\frac{1}{2}mv^2 = \left(1 + \frac{m}{M}\right) \mathbb{W}.$$
(3)

Из этого соотношения видно, что чем легче налетающая частица, тем меньше ее энергия, достаточная для возбуждения атома. Например, при возбуждении атома налетающим электроном ($m \ll M$) практически достаточно, чтобы его энергия была равна энергии возбуждения W. Если же атом гелия возбуждается налетающим протоном ($m \approx M/4$), то, как видно из формулы (3), кинетическая энергия прогона должна быть в 1,25 раза больше энергии возбуждения. Поэтому электрон с энергией 24 эВ может возбудить атом гелия (но может рассеяться и упруго, законы сохранения энергии и импульса допускают и такой процесс!), в то время как протон с такой энергией обязательно будет рассеиваться упруго.

Рассмотренный пример позволяет понять, почему при возникновении самостоятельного газового разряда определяющую роль в ионизации столкновениями играют именно электроны, а не тяжелые ионы, хотя последние тоже ускоряются электрическим полем. **3.** Взаимные превращения электронов и фотонов. Возможно ли излучение и поглощение света свободным электроном? Может ли свободный фотон, обладающий достаточной энергией, превратиться в электрон-позитронную пару?

Может ли свободный электрон излучать свет? На первый взгляд кажется, что испускание фотона свободно движущимся электроном не противоречит законам сохранения энергии и импульса. Действительно, ничто, казалось бы, не мешает электрону, движущемуся с некоторой скоростью v, уменьшить свою скорость, передав испускаемому фотону часть своего импульса и кинетической энергии. Однако, записав законы сохранения энергии и импульса для этого процесса, мы увидим, что одновременно удовлетворить этим законам невозможно. Проще всего в этом убедиться, воспользовавшись эквивалентностью различных инерциальных систем отсчета: во всех инерциальных системах отсчета все физические законы одинаковы. Поэтому достаточно доказать невозможность излучения фотона свободным электроном в какой-нибудь одной инерциальной системе отсчета. Рассмотрим систему отсчета, в которой электрон непод-

Рассмотрим систему отсчета, в которой электрон неподвижен. Энергия электрона в этой системе до излучения фотона

$$E_0 = m_0 c^2.$$
 (1)

После излучения фотона вследствие закона сохранения импульса электрон приобретает некоторую скорость *v*, и энергия системы электрон плюс фотон будет равна

$$E = \frac{m_0 c^2}{\sqrt{1 - v^2/c^2}} + h\nu, \qquad (2)$$

где hv — энергия испущенного фотона. Сравнивая формулы (1) и (2), видим, что удовлетворить закону сохранения энергии невозможно, ибо E всегда больше E_0 .

энергии невозможно, июо Е всегда обльше Е₆. Вдумавшись в приведенные рассуждения, легко сообразить, что свободный электрон не может не только излучать, но и поглощать свет. Чтобы в этом убедиться, достаточно просто прочитать приведенные формулы в обратном порядке: соотношение (2) дает энергию системы электрон плюс фотон до поглощения в системе отсчета, где суммарный импульс электрона и фотона равен нулю, а соотношение (1) — энергию после поглощения фотона.

Разумеется, приведенные рассуждения справедливы только для элементарных частиц и неприменимы к сложным объектам, состоящим из нескольких элементарных частиц, например к атомам и молекулам. Свободно движущиеся атомы или молекулы могут излучать и поглощать!

Испускать или поглощать фотоны электрон может только тогда, когда он движется с ускорением, например пролетает вблизи ядра и взаимодействует с его электрическим полем.

Итак, мы убедились, что фотон не может просто поглощаться свободным электроном. Но вот исчезнуть при взаимодействии со свободным электроном, породив при этом электрон-позитронную пару, он может. Для этого фотон должен, конечно, обладать достаточной энергией. Какой же именно?

Прежде всего отметим, что превращение фотона (гаммакванта) в электрон-позитронную пару возможно только в присутствии какой-либо частицы. Без такой частицы этот процесс вообще невозможен в силу закона сохранения импульса. Действительно, предположим, что это произошло, т. е. образовалась электрон-позитронная пара. Всегда существует такая система отсчета, в которой центр масс электрона и позитрона неподвижен, т. е. полный импульс образовавшейся пары равен нулю. Тогда в этой системе отсчета должен быть равен нулю и импульс фотона, породившего эту пару. Но это невозможно, так как не существует такой системы отсчета, в которой фотон покоится. Поэтому фотон может превратиться в электрон-позитронную пару только в присутствии частицы, которая «принимает на себя» его импульс.

Легко сообразить, что необходимая для рождения пары энергия фотона будет тем меньше, чем больше масса Mчастицы, уносящей импульс фотона. В самом деле, чем массивнее эта частица, тем меньшую кинетическую энергию она при этом приобретает. При $m_0/M \ll 1$ этой кинетической энергией можно вообще пренебречь. Если образовавшиеся электрон и позитрон покоятся, то их энергия будет наименьшей из всех возможных и равной энергии покоя системы $2m_0c^2$. Поэтому наименьшая энергия фотона, при которой вообще возможно образование пары, определяется

из соотношения

$$hv = 2m_0 c^2. \tag{3}$$

Эта энергия носит название пороговой. Подставляя сюда значение массы покоя электрона $m_0 = 0.91 \cdot 10^{-27}$ г и скорости света $c = 3 \cdot 10^{10}$ см/с, находим, что пороговая энергия образования электрон-позитронной пары составляет 1.63×10^{-6} эрг= $1.02 \cdot 10^6$ эВ. Длина волны гамма-кванта, обладающего такой энергией, $\lambda = c/\nu = hc/2m_0c^2 = 1.2 \cdot 10^{-10}$ см= = 0.012 Å. Такие фотоны встречаются в космических лучах и возникают при торможении в веществе быстрых заряженных частиц, разогнанных на мощных ускорителях.

Теперь мы можем найти энергию, которой должен обладать фотон, для того чтобы могло произойти рождение электрон-позитронной пары вблизи покоящегося электрона. Будем рассуждать следующим образом. Перейдем з систему отсчета, в которой покоится центр масс всех трех частиц исходного электрона и образовавшейся электрон-позитронной пары. Разумеется, сами частицы могут при этом двигаться. В этой системе отсчета полная энергия будет наименьшей, если все три частицы покоятся. Именно такой случай и соответствует наименьшей энергии фотона, необходимой для рождения пары вблизи электрона. При этом мы пренебрегаем энергией кулоновского взаимодействия электронов и позитрона, которая, как и энергия связи электронов в атомах, по порядку величины составляет несколько электрон-вольт.

Возвращаясь теперь в лабораторную систему отсчета, мы видим, что после рождения пары все три частицы должны двигаться с одинаковой скоростью. Поскольку масса у этих частиц одинакова, то будут одинаковыми и их импульсы. Вследствие закона сохранения импульса это означает, что полный импульс, которым обладали фотон и электрон до рождения пары, распределится поровну между тремя частицами. Если до рождения пары электрон в лабораторной системе отсчета покоится, то после рождения пары импульс каждой частицы p равен одной трети импульса фотона hv/c:

$$p = \frac{1}{3} \frac{hv}{c} \cdot \tag{4}$$

Используя релятивистскую формулу, выражающую энергию частицы через ее импульс, убеждаемся, что и энергия всех трех частиц одинакова и равна

$$E = \sqrt{p^2 c^2 + m_0^2 c^4} = \sqrt{\left(\frac{hv}{3}\right)^2 + m_0^2 c^4}.$$
 (5)

Теперь остается только воспользоваться законом сохранения энергии. До рождения пары энергия в лаборагорной системе отсчета — это энергия фотона hv и энергия покоя электрона m_0c^2 . После рождения пары энергия равна утроенному значению энергии каждой частицы. Поэтому

$$hv + m_0 c^2 = 3 \sqrt{\left(\frac{hv}{3}\right)^2 + m_0^2 c^4}.$$
 (6)

Возводя обе части этого равенства в квадрат и приводя подобные члены, находим значение *hv* пороговой энергии рождения пары вблизи покоящегося электрона:

$$h\nu = 4m_0 c^2. \tag{7}$$

Обратим внимание на то, что эта энергия вдвое превышает значение пороговой энергии фотона для рождения электрон-позитронной пары вблизи массивной частицы, например вблизи ядра тяжелого элемента. Значит, только половина энергии фотона при рождении пары вблизи покоящегося электрона превращается в энергию покоя образовавшихся частиц. Другая половина неизбежно превращается в кинетическую энергию. Это связано с необходимостью обеспечить выполнение закона сохранения импульса.

4. Эффект Допплера. Читатель наверняка замечал, как меняется высота звука гудка локомотива, когда поезд проносится мимо. Высокий тон гудка приближающегося поезда становится заметно более низким, как только источник звука промчится мимо и начинает удаляться. Такое изменение частоты воспринимаемого сигнала при движении источника звука (или приемника) носит название явления Допплера. Это явление имеет место и в оптике: движущийся атом излучает свет другой частоты по сравнению с неподвижным. Оказывается, что это типично волновое явление может быть правильно объяснено с точки зрения представления о свете как о совокупности световых квантов — фотонов. Опираясь на эти представления, покажите, что при медленном движении излучающего атома (скорость атома v много меньше скорости света c) относительное изменение частоты излучаемого им света $\Delta v/v$ дается соотношением

 $\frac{\Delta v}{v} = \frac{v}{c} \cos \theta,$

где 0 — угол между направлением движения атома и направлением испускаемого фотона.

Поскольку мы ничего не знаем о механизме излучения света атомами, нам остается только попробовать применить к акту испускания фотопа движущимся атомом законы сохранения энергии и импульса. «Закрепленный» неподвижный атом испускает фотон с энергией hv при переходе атома из одного стационарного состояния в другое. Разность энергий этих стационарных состояний пе зависит от того, покоится атом или движется.

При испускании фотона свободно движущимся атомом импульс атома изменяется, поскольку испущенный фотон обладает импульсом. Следовательно, кинетическая энергия атома также меняется, и энергия фотона hv', испущенного движущимся атомом, отличается от hv вследствие изменения кинетической энергии атома.

На основании закона сохранения энергии

$$h\nu' - h\nu = \frac{p^2}{2m} - \frac{p_1^2}{2m},$$
 (1)

где p — импульс атома массы m до испускания фотона, p_1 — после испускания.

Начальный и конечный импульсы атома можно связать с импульсом испускаемого фотона p_{ϕ} с помощью закона сохранения импульса (рис. 4.1):

$$\boldsymbol{\rho} = \boldsymbol{\rho}_1 + \boldsymbol{\rho}_{\Phi}. \tag{2}$$

Перенося p_{ϕ} в равенстве (2) в левую часть, возводя полученное равенство в квадрат и учитывая, что импульс фотона крайне мал по сравнению с импульсом излучающего атома, получаем

$$p^2 - 2pp_{\phi}\cos\theta \approx p_1^2. \tag{3}$$

С помощью (3) соотношение (1) можно переписать в виде

$$h\nu' - h\nu = \frac{p}{m} p_{\Phi} \cos \theta. \tag{4}$$

Как записать выражение для импульса фотона p_{ϕ} ? Так как импульс электромагнитного поля связан с энергией

Рис. 4.1. Импульс атома до излучения p равен векторной сумме импульса p_1 после излучения и импульса фотона p_{Φ} .

поля W соотношением W = pc, а энергия испущенного фотона равна hv', то импульс этого фотона p_{ϕ} равен

$$p_{\phi} = \frac{h\nu'}{c} \,. \tag{5}$$

Подставляя (5) в (4) и учитывая, что p/m есть скорость движения v излучающего атома, находим

$$v'-v=v'\frac{v}{c}\cos\theta,$$

откуда

$$\nu' = \frac{\nu}{1 - \frac{v}{c} \cos \theta} \approx \nu \left(1 + \frac{v}{c} \cos \theta \right)$$
(6)

с точностью до членов порядка v/c. Из этой формулы следует приведенное в условии соотношение

$$\frac{\Delta v}{v} = \frac{v}{c} \cos \theta.$$

Обратим теперь внимание на следующее обстоятельство. Если в формуле, определяющей сдвиг частоты, положить v=0, то получается $\Delta v=0$. Означает ли это, что свет, излучаемый свободным неподвижным атомом, имеет такую же частоту, как и свет, излучаемый «закрепленным» атомом? Даже из интуитивных соображений ясно, что так быть не может из-за явления отдачи: закон сохранения импульса

требует, чтобы в результате излучения фотона свободный атом пришел в движение. В полученной выше приближенной формуле явление отдачи не учтено, так как при ее выводе, переходя от (2) к (3), мы пренебрегали импульсом фотона, считая его малым по сравнению с импульсом излучающего атома. Поэтому в окончательной формуле нельзя полагать v=0, так как приведенное решение справедливо только при выполнении условия $hv/c \ll mv$. Если же рассматривать излучение 'света неподвижным атомом, то именно явление отдачи определяет изменение частоты.

Сдвиг частоты, обусловленный явлением отдачи, легко найти с помощью законов сохранения энергии и импульса. Запишем уравнения (1) и (2) для случая p=0:

$$h\nu' - h\nu = -\frac{p_1^2}{2m},$$

$$0 = p_1 - \frac{h\nu'}{c}.$$

Подставляя импульс отдачи p_1 из второго равенства в первое, находим

$$\frac{\Delta v}{v'} = -\frac{hv'}{2mc^2}.$$
 (7)

Таким образом, относительный сдвиг частоты из-за явления отдачи определяется отношением энергии фотона к энергии покоя излучающего атома. Для гамма-квантов, излучаемых атомными ядрами, такой сдвиг оказывается существенным. В оптическом диапазоне $\Delta v/v \ll 1$ и формулу (7) можно переписать в виде

$$\frac{\Delta v}{v} = -\frac{hv}{2mc^2} \,.$$

Например, для линий серии Бальмера в спектре атома водорода Δν/ν~10-⁹.

Разумеется, явление отдачи можно учесть и при излучении света движущимся атомом. Для этого при переходе от формулы (2) к (3) нужно сохранить слагаемое, содержащее квадрат импульса фотона. Окончательное выражение для относительного сдвига частоты, кроме $\frac{v}{c}\cos\theta$, будет содержать член $hv'/2mc^2$, который становится главным при v=0.

До сих пор мы рассматривали нерелятивистский случай, когда излучающий атом двигался со скоростью v, много меньшей скорости света c. Интересно выяснить, каким будет обусловленный эффектом Допплера сдвиг частоты, если излучатель движется с большой скоростью, величина которой сравнима с c. Это можно сделать, если использовать для энергии и импульса излучающего атома точные релятивистские выражения. Однако проще рассмотреть другой пример — аннигиляцию электрон-позитронной пары, сопровождающуюся излучением двух гамма-квантов. Анализ этого примера даст возможность ответить и на интересующей нас вопрос.

Пусть перед аннигиляцией относительная скорость электрона и позитрона мала, т. е. можно считать, что они оба покоятся. Так как импульс всей системы до аннигиляции равен нулю, то он останется равным нулю и после излучения. Это значит что образовавшиеся при аннигиляции фотоны летят в противоположные стороны и имеют равные по величине импульсы hv/c и, следовательно, одинаковую частоту v. Эта частота сразу находится с помощью закона сохранения энергии: приравнивая энергию фотона энергию после

$$2hv = 2m_{e}c^{2}$$

получаем

$$v = \frac{m_0 c^2}{h} \,. \tag{8}$$

Соответствующая этому излучению длина волны $\lambda = c/v$, вследствие (8), равна h/m_0c и называется комптоновской длиной волны электрона.

Теперь рассмотрим этот же процесс аннигиляции электрона и позитрона с точки зрения другой системы отсчета, относительно которой электрон-позитронная пара перед аннигиляцией движется со скоростью v. Направление скорости v выберем так, чтобы оно совпадало с направлением распространения одного из испущенных фотонов. Обозначим через v_1 частоту фотона, излучаемого «вперед», а через v_2 — излучаемого «назад». Тогда в этой системе отсчета закон сохранения импульса в проекции на направление движения аннигилирующей пары принимает вид

$$\frac{hv_1}{c} - \frac{hv_2}{c} = \frac{2m_0v}{\sqrt{1 - v^2/c^2}} \,. \tag{9}$$

При аннигиляции полная релятивнстская энергия пары превращается в энергию излучения. Поэтому закон сохранения энергии записывается следующим образом:

$$hv_1 + hv_2 = \frac{2m_0c^2}{\sqrt{1 - v^2/c^2}} \,. \tag{10}$$

Из системы уравнений (9) и (10) легко пайти частоты v_1 и v_2 . Умножив обе части (9) на с и сложив с уравнением (10), находим v_1 :

$$v_1 = \frac{m_0 c^3}{h} \sqrt{\frac{c+v}{c-v}} = v \sqrt{\frac{c+v}{c-v}}.$$
 (11)

Здесь использовано выражение (8) для частоты v фотона, излучаемого при аннигиляции неподвижной пары. Аналогично, вычитая из уравнения (9) уравнение (10), находим v₂:

$$v_2 = v \sqrt{\frac{c-v}{c+v}} \,. \tag{12}$$

Полученные формулы (11) и (12) и дают выражение для продольного эффекта Допплера в релятивистском случае. Частота v_1 фотона, излучаемого по направлению движения, оказывается выше, а частота v_2 фотона, излучаемого против движения, — ниже, чем частота фотона, испускаемого неподвижным излучателем.

Легко видеть, что при и/с≪1 формулы (11) и (12) дают обычное выражение для нерелятивистского эффекта Допплера. Для этого домножим числитель и знаменатель подкоренного выражения в формуле (11) на с+v. Пренебрегая затем в знаменателе величиной v² по сравнению с с², получим

$$\mathbf{v}_{1} = \mathbf{v} \, \sqrt{\frac{(c+v)^{2}}{c^{2}-v^{2}}} \approx \mathbf{v} \left(1+\frac{v}{c}\right), \qquad (13)$$

что совпадает с формулой (6) при $\theta = 0$. Аналогично, формула (12) при $v/c \ll 1$ дает выражение, совпадающее с формулой (6), если в последней положить $\theta = \pi$.

Во всех рассуждениях мы под частотой молчаливо подразумевали частоту излучения, регистрируемого неподвижным в данной системе отсчета приемником. Изменение частоты происходило только за счет движения источника. На самом деле в случае электромагнитного излучения, распространяющегося в вакууме, все полученные формулы остаются справедливыми и при движении приемника излучения, только в этом случае под v следует понимать относительную скорость — скорость источника относительно приемника.

5. Фотонный парус. На неподвижное идеальное плоское зеркало массы *т* нормально к его поверхности падает плоская световая волна. Под действием силы светового давления зеркало приходит в движение. Определить конечную скорость зеркала и энергию отраженной от него волны, если энергия падающей волны равна W_0 .

На протяжении всей книги мы много раз убеждались, что очень многи задачи можно решить, не вникая в детали происходящих физических явлений. Для ответа на многие вопросы достаточно только представить общую картину рассматриваемых явлений и правильно применить подходящие фундаментальные законы сохранения. Так и в этой задаче. Точное динамическое решение здесь сопряжено с Солышими трудностями. В самом деле, энергия отраженной от зеркала волны зависит от того, как движется зеркало, а закон движения зеркала определяется его взаимодействием со световой волной. Однако совершенно ясно, что, независимо от механизма взаимодействия электромагнитной волны с зеркалом, должны выполняться законы сохранения энергии и импульса, поскольку рассматриваемая система — зеркало и световая волна — является замкнутой. Использование этих законов дает возможность без труда решить эту задачу даже с учетом релятивистских эффектов, когда становится существенной зависимость массы движущегося тела от его скорости.

Приступим к решению задачи. Энергия падающей на зеркало световой волны равна W_0 , а энергию отраженной волны обозначим через W_1 . Вначале зеркало покоится. Тогда закон сохранения энергии можно записать в виде

$$W_0 + m_0 c^2 = W_1 + \frac{m_0 c^2}{\sqrt{1 - v^2/c^2}}$$
 (1)

Так как энергия электромагнитного поля W связана с его

импульсом р соотношением

$$p=\frac{W}{c},\qquad(2)$$

то закон сохранения импульса принимает вид

$$\frac{W_0}{c} = -\frac{W_1}{c} + \frac{m_0 v}{\sqrt{1 - v^2/c^2}} \,. \tag{3}$$

Знак минус в первом члене правой части формулы (3) соответствует тому, что отраженная от зеркала волна движется в обратном направлении. Для исключения энергии отраженной волны W_1 умножим обе части равенства (3) на *с* и сложим почленно с (1). Тогда получим

$$2W_{0} + m_{0}c^{2} = \frac{m_{0}c^{2}}{\sqrt{1 - v^{2}/c^{2}}} \left(1 + \frac{v}{c}\right).$$
(4)

Простыми преобразованиями выражение (4) можно привести к виду

$$\frac{c+v}{c-v} = \left(1 + \frac{2W_0}{m_0 c^2}\right)^2.$$
 (5)

Отсюда получим выражение для конечной скорости зеркала *v*:

$$v = c \frac{(1+2W_0/m_0 c^2)^2 - 1}{(1+2W_0/m_0 c^2)^2 + 1}.$$
 (6)

Теперь найдем энергию отраженной волны W_i . Для этого вычтем из выражения (1) равенство (3), умноженное на c:

$$m_0 c^2 = 2W_1 + m_0 c^2 \sqrt{\frac{c-v}{c+v}}$$
, (7)

откуда с помощью (5) легко находим энергию отраженной волны W₁:

$$W_1 = \frac{W_0}{1 + 2W_0/m_0 c^2} \,. \tag{8}$$

Интересно отметить, что энергия отраженной волны не может превышать половины энергии покоя зеркала, какой бы большой ни была энергия падающей волны. Действительно, пренебрегая единицей в знаменателе (8), мы только увеличим правую часть, поэтому

 $W_1 < \frac{W_0}{2W_0/m_0c^2} = \frac{m_0c^2}{2}$.

Таким образом, чем больше энергия падающей еолны, тем бо́льшая часть этой энергии передается зеркалу. При $W_0 \gg m_0 c^2$ практически вся энергия волны передается зеркалу. Отражается только малая часть энергии, равная, как мы только что видели, $m_0 c^2/2$. Подчеркнем еще раз, что этот результат мы получили, совершенно не вникая в механизм взаимодействия электромагнитной волны с веществом, из котсрого сделано зеркало!

Интересно отметить другой предельный случай, когда энергия падающей волны много меньше энергии покоя зеркала: $W_0 \ll m_0 c^2$. В этом нерелятивистском случае формулы (6) и (8) можно упростить. В знаменателе выражения (6) можно вторым слагаемым в скобках пренебречь по сравнению с единицей, а речелителе при возведении скобки в квадрат следует сохранить удвоенное произведение, ибо единицы взаимно уничтожаются. В результате получаем

$$\frac{v}{c} \approx \frac{2W_0}{m_0 c^2} \,. \tag{9}$$

Так как при $x \ll 1$ справедлива приближенная формула $(1+x)^{-1} \approx 1-x$, то выражение (8) при $W_0 \ll m_0 c^2$ можно привести к виду

$$\frac{\Delta W}{W_0} = \frac{W_0 - W_1}{W_0} \approx \frac{2W_0}{m_0 c^2} \,. \tag{10}$$

Из этих соотношений видно, что в этом случае еолна почти целиком отражается от зеркала, передавая єму лишь ничтожную часть своей энергии. Поэтому «фотонный парус» может быть эффективным только тогда, когда энергия падающей на него волны сравнима с его энергией покоя.

6. Фотоэффект в рентгеновских лучах. На шарик электрометра падает рентгеновское излучение. Угол отклонения стрелки перестает изменяться, когда разность потенциалов между шариком электрометра и землей достигает значения U=8 кВ. Какова длина еолны падающего рентгеновского излучения? Какое напряжение V подано на электроды рентгеновской трубки?

Прежде всего выясним, откуда берется заряд на шарике электрометра. Если электрометр предварительно не был заряжен, то единственная причина появления зарядов фотоэффект, вызываемый рентгеновскими лучами. При выбивании электронов шарик прибора заряжается положительно. Однако с ростом заряда на шарике увеличивающееся электрическое поле не дает выбитым электронам возможности улететь, если их кинетическая энергия недостаточно велика. С учетом тормозящего действия возникающего электрического поля уравнение Эйнштейна, т. е. закон сохранения энергии для элементарного акта фотоэффекта, запишется в виде

$$hv = A + \frac{1}{2}mv^2 + eU.$$
 (1)

В этом выражении A — работа выхода электрона из материала шарика электрометра, v — скорость вылетевшего электрона на большом расстоянии от шарика, U — разность потенциалов между шариком электрометра и землей, e — абсолютная величина заряда электрона. Очевидно, что увеличение заряда шарика будет про-

Очевидно, что увеличение заряда шарика будет продолжаться до тех пор, пока его потенциал не достигнет такой величнны, что все выбитые электроны будут возвращаться на электрометр. Другими словами, U в правой части уравнения (1) достигает максимального значения, когда скорость выбитого электрона v на бесконечности обращается в нуль.

Таким образом, при заданной частоте v рентгеновского - излучения установившееся значение напряжения U на электрометре определяется соотношением

$$hv = A + eU. \tag{2}$$

Из уравнения (2) мы могли бы определить частоту падающего рентгеновского излучения по известному напряжению U, если бы мы зпали работу выхода A. Однако в условии задачи не указано, из какого материала сделан шарик электрометра, но совершенно ясно, что он металлический. Характерное значение работы выхода электронов из металлов составляет несколько электрон-вольт (например для серебра 4,7 эВ). Между тем заданное значение напряжения на электрометре равно 8 кВ, т. е. второй член в правой части уравнения (2) примерно на три порядка больше первого. Поэтому можно пренебречь величиной A по сравнению с eU. В результате получим

$$hv = eU, \tag{3}$$

откуда для длины волны рентгеновского излучения λ находим

$$\lambda = \frac{c}{v} = \frac{ch}{eU} \,.$$

Подставляя числовые значения, получаем $\lambda \approx 1,5 \cdot 10^{-8}$ см = = 1,5 Å. Разумеется, что это есть граничное, наимейьшее возможное значение длины волны. При этом в спектре рентгеновских лучей могут присутствовать и бо́льшие длины волн, причем любой интенсивности.

Для ответа на второй вопрос задачи остается выяснить, каким должно быть напряжение на электродах рентгеновской трубки для того, чтобы найденная нами длина волны λ была бы наименьшей в излучаемом спектре.

Рентгеновское излучение бывает двух типов — характеристическое и тормозное. Характеристическое излучение возникает при переходах электронов между глубокими уровнями энергии атома при возбуждении последнего в результате столкновения с быстрым электроном. Как и оптическое излучение отдельных атомов, характеристическое рентгеновекое излучение состоит из отдельных дискретных линий, причем для каждого химического элемента характерен свой набор линий. Тормозное рентгеновское излучение испускается самими налетающими электронами при их замедлении в веществе антикатода рентгеновской трубки. Это излучение, в отличие от характеристического, имеет непрерывный спектр. Рассматривая элементарный акт тормозного излучения, можно убедиться, что сплошной спектр имеет коротковолновую границу λ_0 , и связать ее с величиной ускоряющего напряжения V на рентгеновской трубке.

Как мы видели, свободный равномерно движущийся электрон не излучает. Поэтому рентгеновское излучение возникает только при взаимодействии разогнанного электрона с веществом антикатода. Если считать, что при этом вся кинетическая энергия электрона может целиком превратиться в излучение, то величину граничной частоты v₀

можно определить сразу из соотношения

$$hv_0 = eV. \tag{4}$$

Здесь eV — работа, совершенная при разгоне электрона силами ускоряющего электрического поля рентгеновской трубки.

Однако применение одного лишь закона сохранения энергии может привести к получению неправильных значений пороговых величин, так как такое энергетическое превращение может оказаться несовместимым с законом сохранения импульса. С подобным примером мы уже встречались в задаче 3 при рассмотрении рождения фотоном электрон-позитронной пары вблизи покоящегося электрона. Поэтому для определения коротковолновой границы сплошного спектра тормозного рентгеновского излучения следует, строго говоря, применить к элементарному акту как закон сохранения энергии, так и закон сохранения импульса.

Испускание рентгеновского фотона может произойти, когда электрон пролетает вблизи какого-либо ядра вещества антикатода, испытывая действие сильного электрического поля. В этом случае электрон может передать часть своего импульса ядру, что обеспечит сохранение полной энергии и импульса всей системы. Поскольку масса ядра много больше массы электрона, то в элементарном акте взаимодействия с электроном, при котором рождается рентгеновский фотон, ядро может «принять на себя» любой импульс, практически не получив при этом никакой энергии. Поэтому закону сохранения импульса не будет противоречить процесс, при котором налетающий электрон останавливается, расходуя всю свою кинетическую энергию только на излучение фотона. Именно этому процессу и соответствует уравнение (4).

В рассуждениях использовалось только то обстоятельство, что масса налетающего электрона много меньше массы ядра. Какое именно ядро участвует в процессе значения не имеет. Поэтому верхняя граница частоты тормозного излучения v_0 не зависит от материала антикатода. Так как при излучении фотона с энергией hv_0 электрон передает ему всю свою энергию, то совершенно ясно, что при данном ускоряющем напряжении V на трубке частота и характеристического излучения не может быть больше v_0 , определяемого уравнением (4).

Теперь для ответа на второй вопрос задачи нужно только сравнить формулы (3) и (4). Поскольку установившееся значение разности потенциалов U между шариком электрометра и землей при фотоэффекте определяется именно верхней границей частот падающего рентгеновского излучения, то ускоряющее напряжение на рентгеновской трубке V как раз равно U, т. е. 8 кВ.

7. Узкий электронный пучок. Для уменьшения размеров пятна на экране электронно-лучевой трубки можно после катода на некотором расстоянии *l* друг от друга поставить две диафрагмы с отверстиями (рнс. 7.1). Покажите, что для второго отверстия существует оптимальный диаметр, соответствующий наименьшему размеру пятна на экране.

После прохождения ускоряющего промежутка, на который подано постоянное напряжение V, электроны в

Рис. 7.1. Для уменьшения размера пятна, на экране можно использовать две диафрагмы с отверстиями.

трубке движутся равномерно, с практически одинаковыми по величине импульсами *р*, определяемыми из соотношения

$$\frac{p^2}{2m} = eV. \tag{1}$$

Для кинетической энергии электронов здесь использовано нерелятивистское выражение, поскольку на практике при ускоряющих напряжениях порядка 10 кВ электроны разгоняются до скорости, не превышающей 0,2 скорости света. Релятивистские поправки составляют при этом всего 2%. Будем спачала считать электрон классической частицей, движение которой описывается законами Ньютона. Пусть отверстие в первой диафрагме настолько мало, что его можно считать точечным. В этом случае днаметр пятна на экране трубки будет тем меньше, чем

(2)

экране труоки оудет тем меньше, чем меньше отверстие во второй диафрагме. В самом деле, электроны в пучке движутся прямолинейно, и из рис. 7.2 видно, что угловой размер пятна θ определяется соотношением

$$\theta = \frac{d}{l}$$
,

и Рис. 7.2. Углсвой размер пучка 0 завнсит

где *d* — днаметр отверстия во второй диафрагме. Поэтому ясно, что если бы электроны действительно вели себя как классические частнцы, то размер пятна на экране трубки

можно было бы сделать сколь угодно малым. Но в действительности это не так. Если неограниченно уменьшать диаметр отверстия во второй диафрагме, то классические представления о движении электрона по определенной траектории рано или поздно окажутся неприменимыми. Как определить, с какого момента в рассматриваемой системе начнут проявляться квантовые закономерности и к каким последствиям для размера пятна на экране это приведет?

Ответ на этот вопрос можно получить с помещью ссотношений неопределенностей Гейзенберга, которые устанавливают пределы применимости классического способа описания. Если электрон прошел через отверстие во второй диафрагме, то неопределенность в значении его ксординаты в направлении поперек пучка Δx определяется размером отверстия d:

$$\Delta x \approx d. \tag{3}$$

В силу соотношения неопределенностей при прохождении через это отверстие электрон приобретает неконтролируемый импульс Δp_x , перпендикулярный оси пучка:

$$\Delta p_x \approx \frac{h}{\Delta x} \approx \frac{h}{d}.$$
 (4)

В результате после прохождения диафрагмы появляется неопределенность в направлении движения электрона, обусловленная действием квантовых закономерностей. Для характеристики этой неопределенности удобно ввести угол $\theta_{кв}$ согласно соотношению

$$\theta_{\rm KB} = \frac{\Delta \rho_X}{\rho} \approx \frac{h}{\rho d} \,. \tag{5}$$

Таким образом, как видно из формулы (5), благодаря квантовым эффектам при уменьшении диаметра отверстия dпроисходит расширение пучка и, как следствие, увеличение размера пятна на экране трубки. Очевидно, что уменьшать отверстие в диафрагме следует только до тех пор, пока величина размытия пучка $\theta_{\rm кв}$ не сравняется с его угловым размером θ , определяемым классическими траекториями электронов: $\theta_{\rm кв} = \theta$. Используя соотношения (5) и (2), из этого условия определяем оптимальный размер отверстия dво второй диафрагме

$$d \approx \sqrt{h \frac{l}{p}}.$$
 (6)

Если сделать диаметр отверстия меньше этой величины, то диаметр пятна увеличится вследствие квантовых эффектов.

К результату, выражаемому формулой (6), можно прийти и другим путем, не используя соотношений неопределенностей Гейзенберга. Действие квантовых закономерностей проявляется в том, что электрон обладает волновыми свойствами, которые приводят к дифракционным явлениям. Длина волны λ , сопоставляемой электрону, зависит от его импульса и определяется соотношением де-Бройля:

$$\lambda = \frac{h}{p} \,. \tag{7}$$

Для того чтобы воспользоваться этим соотношением для ответа на вопрос задачи, нужно прежде всего сообразить, что классическому представлению о движении электронов по определенным траекториям соответствует приближение геометрической оптики, в котором описание распространения волн производится с помощью понятия лучей. Короче — классическим траекториям соответствуют лучи. В рассматриваемом опыте прямолинейному классическому движению электронов между диафрагмами и экраном соответствует пучок прямолинейных лучей. В этом приближении чем меньше размер отверстия, тем меньше размер пятна на экране, в полном соответствии с формулой (2). Но уменьшение размера отверстия в конце концов приведет к проявлению дифракционных явлений. Дифракционные явления в любом приборе дают отклонения от геометрического закона распространения лучей на углы порядка отношения длины волны к размеру препятствия. Поэтому характерный угловой размер $\theta_{вол}$ дифракционного расширения при прохождении волны через отверстие диаметром d определяется соотношением

$$\theta_{\rm BOM} = \frac{\lambda}{d} \,. \tag{8}$$

Если подставить сюда дебройлевскую длину волны электрона из формулы (7), то для углового расширения пучка за счет проявления квантовых эффектов получится прежнее выражение (5).

Приведем численные оценки для оптимального размера отверстия во второй диафрагме. При ускоряющем напряжении V = 10 кВ величина импульса электрона составляет, как следует из формулы (1), $5,4 \cdot 10^{-18}$ г · см/с. Примем расстояние между диафрагмами l равным 1 см. Тогда согласно формуле (6) для оптимального диаметра d получаем $3,5 \times 10^{-5}$ см. Размер пятна D на экране, отстоящем от диафрагмы на расстояние L, вычисляется, как видно из рис. 7.1, по формуле

$$D = L \cdot \theta = \frac{d}{l} \cdot L$$

и при L = 50 см не превосходит $2 \cdot 10^{-3}$ см.

Практически добиваться получения пятна столь малого размера нет необходимости. Поэтому размер отверстия в диафрагме можно делать больше. При этом квантовые эффекты в движении электронов проявляться не будут, и их траектории можно рассчитывать по законам классической механики.

Как ясно из приведенного решения этой задачи, наглядное представление о границах применимости классического описания движения частиц можно получить, оценивая

соответствующую им длину волны де-Бройля. В рассмотренном примере согласно формуле (7) эта длина волны λ равна 10⁻⁹ см. При бо́льших энергиях электронов дебройлевская длина волны будет еще меньше, и их движение в макроскопических приборах можно описывать классически. Например, в камере Вильсона след заряженной частицы представляет собой цепочку водяных капель, каждая диаметром около 10⁻³ см. В этих условиях, когда поперечная координата пролетающей частицы задается именно с такой неопределенностью, ее можно рассматривать как классическую частицу, движущуюся по траектории.

8. Атом водорода и соотношения неопределенностей. Применение соотношений неопределенностей к движению электрона в атоме показывает, что классическое описание здесь непригодно и необходимо использовать квантовые законы. Соотношения неопределенностей представляют собой фундаментальное положение квантовой теории, которое не только устанавливает границы применимости классических представлений, по и позволяет исследовать свойства квантовых систем. Рассмотрите атом водорода, пользуясь этими соотношениями. Оцените размер атома и энергию связи электрона в основном состоянии (т. е. энергию ионизации).

Для ответа на поставленные вопросы действительно достаточно использовать соотношение неопределенностей Гейзенберга, связывающее неопределенности значений координаты электрона и соответствующей проекции его импульса:

$$\Delta x \cdot \Delta p_x \approx h. \tag{1}$$

При этом можно обойтись без детальной теории, основываясь лишь на планетарной модели атома Резерфорда. Согласно этой модели электрон движется по орбите вокруг ядра, и его импульс направлен по касательной к траектории. Поэтому за меру неопределенности положения электрона естественно взять длину орбиты $2\pi r$, а за меру неопределенности импульса — сам импульс электрона p. Это значит, что для электрона в атоме соотношение (1) можно записать в виде

$$2\pi r \cdot p \approx h$$
,

или, вводя вместо h величину $\hbar = h/2\pi$, так: $r \cdot p \approx \hbar$.

Основное состояние атома — это состояние с наименьшей возможной энергией. В ядерной модели энергия атома E включает кинетическую энергию электрона $p^{2/2m}$ и потенциальную энергию взаимодействия электрона с ядром $-e^{2}/r$:

$$E = \frac{p^2}{2m} - \frac{e^2}{r}.$$
 (3)

В классической теории величина импульса электрона при заданном радиусе орбиты *r* определяется с помощью второго закона Ньютона

$$\frac{mv^2}{r} = \frac{e^2}{r^2} \,. \tag{4}$$

Выражая отсюда значение p = mr и подставляя его в (3), получим

$$E = -\frac{e^2}{2r} \,. \tag{5}$$

Как видно из этой формулы, эпергия атома равпа нулю, когда электрон находится на орбите бесконечно большого радиуса, и стремится к бескопечно большому отрицательному значению, когда электрон приближается к ядру. Таким образом, энергия связи электрона равна нулю в первом случае и бесконечно велика во втором. Это значит, что классическая механика вообще не в состоянни объяспить, почему атом имеет определенный конечный размср и определенную энергию связи.

Но в микромире второй закон Ньютона несправедлив. Как видно из соотношения неопределенностей (2), при уменьшении раднуса атома r импульс электрона p растет как 1/r, т. е. не так, как ему предписывает второй закон Ньютона (4), а быстрее. В результате при уменьшении rкинетическая энергия растет быстрее, чем убывает потен циальная, так что при $r \rightarrow 0$ полная энергия атома, даваемая формулой (3), неограниченно возрастает. Отсюда сразу ясно, что электрон не может упасть на ядро, и атом должен иметь конечный размер. Чтобы оценить размер и энергию атома в основном состоянии, можно найти минимум

(2)

выражения (3), выразив в нем *р* (или *r*) с помощью соотношения (2):

$$E \approx \frac{\rho^2}{2m} - \frac{e^2 \rho}{\hbar}.$$
 (6)

Приравнивая нулю производную правой части по p, находим то значение импульса p_0 , при котором полная энергия минимальна:

$$p_0 = \frac{me^2}{\hbar}.$$
 (7)

Соответствующее такому импульсу значение радиуса r_0 , как видно из соотношения (2), равно

$$r_0 = \frac{\hbar^2}{me^2} = 0.53 \cdot 10^{-8}$$
 cm. (8)

Подставляя эти значения r_0 и p_0 в формулу (3) (или значение p_0 в формулу (6)), находим энергию атома в основном состоянии E_0 :

$$E_0 = -\frac{me^4}{2\hbar^2} = -13,53 \text{ sB.}$$
(9)

Таким образом, для того чтобы ионизировать атом водорода, необходима энергия 13,53 эВ.

По смыслу решения можно было ожидать получения лишь правильного порядка величин. Однако найденные выражения для радиуса атома r_0 и энергии E_0 совпадают со значениями, которые дает модель атома водорода по Бору, в основе которой лежит идея квантования момента импульса электрона. Как мы видим, размер атома и энергию связи электрона можно определить, не прибегая к правилам квантования, а используя только соотношение неопределенностей. Совпадению полученных выше приближенных оценок с точными значениями соответствующих величин не следует придавать слишком большого значения. Важно лишь, что соотношение неопределенностей позволяет найти правильный порядок этих величин. При этом основное состояние атома определяется компромиссом, при котором полная энергия имеет наименьшее возможное значение, допускаемое соотношениями неопределенностей.

Отметим, что рассмотренный в этой задаче подход, осцованный на соотношениях неопределенностей, дает внут-

9. ЯДРО И СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

ренне непротиворечивую картину структуры атома. В от-личие от теории Бора, этот подход, в частности, дает возможность понять, почему атом водорода в основном состоянии обладает сферической симметрией.

9. Атомное ядро и соотношения неопределенностей. Из опытов Резерфорда по рассеянию α-частиц известно, что атомное ядро имеет диаметр порядка $10^{-12}-10^{-13}$ см. Считая, что ядро состоит из нуклонов (т. е. протонов и нейтронов), оценить с помощью соотношения неопределенностей величину энергии связи нуклона в ядре, т. е. удельную энергию связи.

Эта задача во многом похожа на предыдущую. Однако при использовании соотношения неопределенностей здесь появятся отличия, связанные с тем, что нам неизвестен характер сил, удерживающих нуклоны в ядре. Другими словами, неизвестна зависимость потенциальной энергии нуклона от его положения внутри ядра. Поэтому, если для атома можно было определить и его размер, и энергию связи электрона, то для ядра использование соотношения неопределенностей позволит только связать между собой аналогичные величины.

Будем считать, что нуклон находится где-то внутри ядра, т. е. неопределенность его положения характеризуется размерами ядра. Тогда соотношение неопределенностей дает следующую оценку для величины импульса нуклона:

$$p \approx \frac{\hbar}{r_0} \,, \tag{1}$$

где r_0 — радиус ядра. Соответствующее такому импульсу значение скорости нуклона массы $M = 1,7 \cdot 10^{-24}$ г при радиусе ядра $r_0 \approx 10^{-13}$ см составляет несколько десятых долей скорости света. Поэтому при оценках нуклон можно считать нерелятивистским. Таким образом, кинетическая энергия $E_{\rm R}$ нуклона массы M в ядре должна быть порядка

$$E_{\mathbf{k}} = \frac{p^2}{2M} \approx \frac{\hbar^2}{2Mr_0^2} \approx 10 \text{ M}\Im\text{B}.$$
 (2)

Поскольку нуклон в ядре находится в связанном состоянии, то абсолютная величина его потенциальной энергии должна

быть больше 10 МэВ. Таким образом, глубина потенциальной ямы, в которой движется нуклон в ядре, во всяком случае не может быть меньше этой величины. Глубина этой потенциальной ямы дает грубую оценку величины энергии связи на один нуклон.

Полученная оценка хорошо согласуется с экспериментальным значением удельной энергии связи, найденным из масс-спектрометрических измерений, которое для большинства ядер равно 8 МэВ/нуклон.

Энергия в 10 МэВ составляет всего 1% от энергии покоя нуклона $Mc^2 \approx 1$ ГэВ. Поэтому действительно можно считать, что ядро состоит из отдельных нуклонов, энергия связи которых мала по сравнению с их энергией покоя.

Интересно отметить, что те же доводы, основанные на соотношениях неопределенностей, показывают, что в состав ядра не могут, наряду с протонами, входить электроны, как это предполагалось в одной из ранних моделей атомного ядра, существовавшей до открытия нейтрона. В самом деле, если электрон локализован в области размером порядка $r_0 \approx 10^{-13}$ см, то, как можно убедиться с помощью соотношения (1), он будет ультрарелятивистским. Для оценки его энергии можно воспользоваться выражением $E_{\rm R} = pc$, что дает $E_{\rm R} \approx 0.2$ ГэВ. Это огромное значение энергии электрона совершенно несовместимо с характерным значением энергии связи ядра в расчете на одну частицу, равным примерно 8 МэВ, не говоря уже о том, что 0.2 ГэВ — это в 400 раз больше, чем энергия покоя электрона, составляющая всего 0.5 МэВ.

10. Принцип эквивалентности. Шарик массы m подвешен внутри пустой цистерны на невесомой нити длиной l (рис. 10.1). В начальный момент t=0 цистерна начинает двигаться в горизонтальном направлении с постоянным ускорением a. Какое движение будет при этом совершать шарик? Что изменится, если цистерну предварительно заполнить водой?

Эта задача очень напоминает первую задачу этого раздела, в которой точка подвеса маятника начинала двигаться с постоянной скоростью и требовалось определить дальнейшее движение маятника. Как мы видели, благодаря прин-

ципу относительности решение задачи значительно облегчалось при переходе в систему отсчета, связанную с точкой подвеса. Здесь принцип относительности нам не поможет, поскольку такая система отсчета из-за ускоренного движения точки подвеса не является иперциальной. И тем не

менее и в данной задаче переход в новую систему отсчета, где точка подвеса неподвижна, облегчает решение. При этом нужно воспользоваться одним из самых фундаментальных законов природы, так называемым принципом эквивалентности, который лежит в основе релятивистской теории тяготения.

Чтобы сформулировать принцип эквивалентности, рассмотрим следующий мысленный эксперимент. Пусть за-

Рис. 10.1. Цистерна начинает двигаться с постоянным ускорением *а*.

крытая лаборатория, например кабина лифта, движется с постоянным ускорением a относительно какой-либо инерциальной системы отсчета в области пространства, где отсутствует поле тяготения. Тогда все свободные тела в лифте, которые относительно инерциальной системы не имеют ускорения, будут относительно лифта иметь одинаковое ускорение — a. Находящийся в закрытом лифте наблюдатель, который не имеет возможности «выглянуть наружу», по поведению этих тел не сможет решить, движется ли лифт с ускорением a или он покоится в однородном поле тяжести, напряженность которого g равна — a. В самом деле, при действии такого поля тяжести все свободные тела в покоящемся лифте будут двигаться с одинаковым ускорением g = -a.

Такая эквивалентность поля тяжести и ускоренного движения системы отсчета справедлива для любых механических явлений: все механические явления в движущемся с ускорением лифте происходят точно так же, как и в неподвижном лифте, но находящемся в поле тяжести. Сформулировав этот принцип, Эйнштейн распространил его, так же как и принцип относительности, не только на механические явления, но и на все физические явления вообще. Применение принципа эквивалентности позволяет упростить рассмотрение многих физических явлений, а нашу задачу вообще превращает в тривиальную. Вместо того чтобы рассматривать ускоренно движущуюся цистерну,

Рис. 10.2. В системе отсчета, связанной с цистерной, действует эффективное поле тяжести g_2 .

Рис. 10.3. Маятник совершает колебания с амплитудой α_0 около направления, задаваемого вектором \boldsymbol{g}_2 .

будем считать, что она неподвижна, но на все тела в ней действует дополнительное гравитационное поле $g_1 = -a$ (рис. 10.2). Это поле, складываясь с истинным полем тяжести Земли, дает эффективное поле тяжести, напряжен-

Рис. 10.4. В заполненной водой цистерне легкий шарик занимает перевернутое положение.

ность которого $g_2 = g + g_1 = g - a$. Вектор g_2 отклонен от истинной вертикали на угол α_0 , тангенс которого определяется соотношением

$$\operatorname{tg} \alpha_0 = \frac{a}{g} \,. \tag{1}$$

Величина напряженности эффективного поля тяжести находится по теореме Пифагора

$$g_2 = \sqrt{g^2 + a^2}.$$
 (2)

Ясно, что в положении равновесия нить маятника направлена вдоль вектора g_2 . В начальный момент, когда цистерна начинает двигаться с ускорением a, шарик неподвижен, а нить вертикальна, т. е. маятник отклонен от нового положения равновесия на угол α_0 влево (рис. 10.3). Поэтому маятник в пустой цистерне будет совершать относительно нового положения равновесия колебания с угловой амплитудой α_0 . Если ускорение цистерны a мало по

10. ПРИНЦИП ЭКВИВАЛЕНТНОСТИ

сравнению с ускорением свободного падения g, то амплитуда колебаний мала и колебания будут гармоническими. Угол отклонения от нового положения равновесия $\alpha(t)$ будет при этом изменяться со временем по закону

$$\alpha(t) = -\alpha_0 \cos \omega t, \qquad (3)$$

где частота ω при малой амплитуде определяется соотношением

$$\omega^{2} = \frac{g_{2}}{l} = \frac{\sqrt{g^{2} + a^{2}}}{l} \approx \frac{g}{l} \left(1 + \frac{1}{2} \alpha_{0}^{2}\right).$$
(4)

При наличии трения эти колебания постепенно затухнут, и маятник остановится в новом положении равновесия.

Используя принцип эквивалентности, легко ответить и на вопрос о том, как будет вести себя маятник в цистерне, заполненной водой. Из-за большой вязкости колебания прекратятся практически сразу, и маятник остановится в положении равновесия. Если плотность шарика больше, чем плотность воды, то положение равновесия маятника будет таким же, как и в пустой цистерне. Если же плотность шарика меньше, чем плотность воды, то угол отклонения нити в положении равновесия отличается на π . При заполнении цистерны водой шарик всплывет под действием архимедовой силы, направленной противоположно силе тяжести. При движении цистерны с ускорением aархимедова сила направлена противоположно вектору g_3 (рис. 10.4).

содержание

Предисловие	3
 Кинематика Переправа (9). 2. Как опередить автобус? (12). 3. Ра- диус кривизны (14). 4. В цель с наименьшей начальной ско- ростью (17). 5. В цель за стеной (20). 6. Простреливаемая сб- ласть (23). 7. Грязь от колес (27). 8. Капли с вращающего- ся колеса (30). 	7
 Динамика и законы сохранения	34
III. Статика	121
IV. Механика жидкостей	144
V. Молекулярная физика и термодинамика	169

перегородкой (190). 8. Разделение изотопов (192). 9. Сосуд Дьюара (195). 10. Теплоемкость идеального газа (200). 11. Установление равновесия (204). 12. Измерение отношения теплосмкостей (207). 13. Истечение газа из отверстия (208). 14. Заполнение откачанного сосуда (213). 15. Круговой процесс (216). 16. Искусственный лед (217). 17. Динамическое отопление (220). 18. Пересечение изотермы и адиабаты (226). 19. Давление влажного воздуха (228). 20. Давление пара над искривленной поверхностью (230).

1. Заряд внутри проводящей сферы (238). 2. Заряд между двумя сферами (241). 3. Заряженная полусфера (245). 4. Диполь у проводящей стенки (247). 5. Электрическое поле диполя (251). 6. Взаимодействие диполей (256). 7. Диполь и точечный заряд (260). 8. Разрезанный заряженный шар (265). 9. Парадокс электростатической энергии (268). 10. Заряженные капли жидкости (272). 11. Соединение конденсаторов (278). 12. Емкость батареи конденсаторов (282). 13. Энергетические превращения в конденсаторе (286).

Комбинированный маятник (346).
 Несимметричный маятник (349).
 Колебательный контур с источником тока и его механическая аналогия (353).
 Двойной маятник (359).
 Собственные колебания двойного маятника (361).
 Вынужденные колебания (366).
 Успокоенне колебаний (369).
 Несинусоидальные колебания (373).
 Колебания обруча (376).
 Волны во вращающемся кольце (379).
 Возбуждение волн в струне (382).
 Направленное излучение радноволи (387).

235

344

тива на фотоснимке (413). 8. Положение диафрагмы и перспектива (416). 9. Выдержка при фотографировании (420). 10. Интерференция света от протяженного источника (422).

1. Принцип относительности (429). 2. Возбуждение атома при столкновении (432). 3. Взаимные превращения электронов и фотонов (435). 4. Эффект Допплера (438). 5. Фотонный парус (444). 6. Фотоэффект в рентгеновских лучах (446). 7. Узкий электронный пучок (450). 8. Атом водорода и соотношения неопределенностей (454). 9. Атомное ядро и соотношения неопределенностей (457). 10. Принцип эквивалентности (458).