МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АБУ РАЙХАНА БЕРУНИ

А.С.САФАРОВ

ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОННЫХ ПРИБОРОВ НА ОСНОВЕ КРЕМНИЙ – ДИОКСИД КРЕМНИЯ

Учебное пособие

ЧАСТЬ 1

Таш ке нт-2001

УДК 838.216.253

Физические основы микроэлектронных приборов на основе кремнийдноксид кремкия: Уч. пособие:/ А.С.Сафаров; Таш кентский государственный технический университет. Таш кент, 2001. Часть І. 168 с.

В пособии язучаются вопросы теории точечных дефектов в непроводящих стеклообразных двуокисях кремяня. Значительная часть работы посвящена вычислению изблюдаемых свойств дефектов и сравнению теории с экспериментом. Книга состоит из обзорной методики и экспериментальной части, а также аключает в себе сравнений экспериментов с теоретическими данными. Следует отметить, что автором развита теория кинетихи окисления кремния.

Пособие полезно как теоретикам, так и экспериментаторам, интересующимися теорией образования двуокиси кремная на поверхности кремния, а также студентам старших курсов и магистрам по данному направлевию.

Илл 64 Библиогр.: 127 назв.

Печатается по решению редакционно-издательского совета Така кентского государственного технического университета имени Абу Рабхана Беруна.

Научный редактор д-р хим.наук, проф. В.А. Арсламбеков (Месква, ИФХРАН).

> Рецевзенты: академик АН РУз Муминов Р.А., завляб. ФТИАНРУз

> > проф. Влясов С.И., завлаф. «Физика полупроводников и диэлектряков» Таш НУ им. Улугбека.

Таш кептский государственный технический университет, 2001.

введение

Актуальность проблемы. Анализ научных публикаций и патентных исследований за последние тридцать лет в Республике Узбекистан и в семи ведущих странах показал,что изучение физических и физикохимических свойств поверхностей чистого и окисленного кремния является одной из актуальных научных проблем.

Это связано с важнейшими областями практического применения кремния, число которых непрерывно увеличивается микроэлектронная интегральная планарная техника и технология, эмиссионная электроника, оптика тонких пленок, производство сверхтонких полупроводниковых слоев различного назначения и др.

При окислении кремния на его поверхности образуется новая структураоксид кремния. Во всех случаях окисления между кремнием и оксидом кремния имеется переходный слой, содержащий встроенные заряды, образовавшиеся в процессе окисления.

Воспроизводить образцы оксида кремния с толщинами менее 200 ангстрем и с другими необходимыми для микроэлектронной технологии свойствами, можно только на основе глубокого теоретического изучения процессов окисления, а также, используя результаты прецизионных экспериментальных измерений,выполненных на эталонных образцах. Это связано с тем, что на начальном этапе окисления происходят весьма сложные физико-химические процессы, когда не всякая методика может "чувствовать" реальную картину кинетики окисления. Косвенные методы,применяемые для определения закономерностей кинетики начального окисления,не дают необходимой информации. Например,параболические константы скоростей окисления, определенные различными методами, существенно отличаются друг от друга.

При первичном взаимодействии кислорода с чистой поверхностью кремния происходит химическая реакция с выделением значительного

количества тепловой энергии. Дополнительные сложности связаны с тем,что когда температура достигает предела расплавления кремния,то выделенная в сверхлокальномобъеме тепловая энергия рассеивается за очень короткое время, (10⁻¹⁰ с). Отеюда ясна сложность физикохимических процессов,происходящих на начальном этале окисления кремния.

Несмотря на имеющиеся успехи в изучении окисления, до начала работ автора отсутствовали систематизированные результаты комплексных исследований одного и того же физико-химического процесса окисления кремния различными современными методами-микрогравиметрическими, Оже-спектроскопией, вторично-ионной масс-спектрометрией (ВИМС), нольт-экспресс методом, унифицированный КРП и т.д. До сих пор оставались не выясненными также ряд проблем, связанных с изменением электронного состояния чистого и окисленного кристалла кремния, их атомарно-молекулярной структуры и механизмов образования оксидов кремния , а особенно электрофизических свойств приборов, полученных на основе Si -SiO, структур.

Практически отсутствовала достоверная информация о составе и распределении химических элементов по глубине окисла, а также стехиометрическом строений оксидов,образованных на поверхности кристаллакремния. Отсутствовали теоретические обоснования,учитывающие влияние адсорбции и десорбции на механизм и кинетику процесса образования оксида на поверхности кристалла кремния,особенно на начальном этапе взаимодействия газа с поверхностью. Не были систематизированы физико-химические процессы,протекающие во время окисления ионнолегированных монокристаллов кремния. Отсюда очевидны теоретическая и практическая значимость исследований поверхностных явлений, а также границы Si -SiO₂ структур.

Результаты исследований данной проблемы позволяют: во-

первых, научно обоснованно прогнозировать свойства полученных приборов конкретного назначения в производстве планарной технологии, интегральных схем, полевых транзисторов, приборов с зарядовой связью (ПЗС), а во вторых, развивать теории механизма окисления кремния для понимания основных физико-химических процессов, происходящих на поверхности и на границе Si -SiO₂ структур.

ГЛАВА -1 АНАЛИЗ СОСТОЯНИЯ ИССЛЕДОВАНИИ ПРОЦЕССА ОКИСЛЕНИЯ, А ТАКЖЕ ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ СТРУКТУР КРЕМНИЙ - ДИОКСИД КРЕМНИЯ

В производстве полупроводниковых и микроэлектронных приборов окисление кремния используется для различных целей. В зависимости от конкретных задач определяющее значение для создания полупроводниковых приборов могут иметь те или иные свойства оксидного слоя, окисленного кремния и монокристаллического кремния (Si - SiO, системы).

В данной главе анализируется современное состояние аспектов физики Si - SiO, систем и, закономерностей процесса окисления кремния. Большинство результатов обобщены ранее в известных обзорных и монографических работах [1, 2- 10]. Учитывая это, рассмотрим лишь основные положения исследуемых вопросов.

1.1. Электрофизические свойства SiO, и структур Si - SiO,

В 1960 г. в работах Танненбаума и Аталла [11, 12] описан первый функциональный МОП - транзистор, название которого составляют первые буквы названий образующих его слоёв металла, окисла и проводника. Принцип работы МОП - транзисторов основан на эффекте модуляции проводимости тонкого приповерхностного слоя полупроводника поперечным электрическим полем, приложенным через изолированный затвор.

Заметная модуляция проводимости приповерхностного слоя будет наблюдаться, когда плотность индуцированного полем заряда окажется сравнимой с общим количеством носителей заряда в этом слое. Как правило, слой должен быть монокристаллическим и содержать возможно меньшее количество дефектов, являющихся центрами рассеяния носителей заряда. Кроме того, слой должен быть достаточно тонким, конкрстно, чем выше объёмная равновесная концентрация носителей заряда в нём, тем он должен быть тоньще.

Приповерхностный слой, или как его иначе называют, инверсионный канал, имеет весьма малые толщины, составляющие порядка сотни Ангстрем. В рассеянии посителей заряда определяющую роль играют пока ещё недостаточно полно изученные явления, протекающие вблизи поверхности полупроводника. Важное значение при этом имеет доля индуцированных свободных носителей заряда, которая и определит глубину модуляции проводимости. В связи с этим возникает проблема обеспечения высокого качества границы раздела систем Si - SiO₂.

Носители заряда могут локализоваться на поверхностных состояниях весьма различного происхождения. Ещё в 1932 году академиком И. Е. Таммом была предсказана возможность локализации электронов на поверхностных состояниях, образующихся вследствие обрыва периодичности кристаллической решётки. В дальнейшем были установлены и исследованы другие типы поверхностных состояний полупроводников [8].

Оксидная плёнка обладает способностью пассивировать поверхность кремния и сводить к минимуму плотность поверхностных состояний на повнися таких состояний - окисел. Термическое окисление приводит к образованию границы раздела с весьма малой плотностью состояний, достигающих величин порядка 10¹⁰ см⁻² эВ⁻¹ [10]. Получение высококачественных границраздела кремния с окислом явилось важнейшим этапом развития микроэлектроники.

Высокие требования предъявляются и к диэлектрическим характеристикам окисного слоя. Так пробивная напряжённость электрического поля должна быть не ниже 10⁷ В/см, токи утечки должны быть достаточно малыми даже в сильных полях, а диэлектрическая проницаемость - достаточно высокой.

Граница раздела представляет некоторую область, включающую в себя в той или иной мере разупорядоченный слой полупроводника и, наоборот, члетично упорядоченый слой диэлектрика. С этим связана и неравномерность МОП - структур, степень которой изменяется либо самопроизвольно, либо при различных внешних воздействиях.

Медленные изменения степени неравномерности проявляются в изменениях заряда в окисной плёнке и на границе раздела её с полупроводником. Природа этих изменений может включать в себя целый изме элементарных процессов.

Поекольку практическая ценность МОП - структур в сильной степени зависит от стабильности их характеристик, общим интересом представляется изучение природы поверхностных состояний границы раздела и самой диэлектрической плёнки.

На границе раздела меняется химический состав контактирующих фаз, их структура, поскольку слой полупроводника является монокристалдическим, а диэлектрический слой - аморфным и, наконец, происходит изменение электрических характеристик слоёв.

Наступает перераспределение имеющихся примесей, а также образование структурных дефектов. Разнообразие факторов, которые определяют параметры границы раздела, приводит к тому, что каждый конкретный прибор может иметь свои индивидуальные особенности. Одинаковые в отношении величины заряда МОП - структуры могут обладать различной стабильностью характеристик.

Характер окисления определяет свойства окисного слоя. По - видимому, структура дефектов в термически выращенных окисных плёнках существенно отличается от структуры дефектов плавленного кварца. Это подтверждает то, что энергия активации термического окисления 41.1 ккал/моль, полученная нами, или 30.6 ккал/моль [13], намного меньше, чем энергия активации собственной диффузии кислорода в кварце, равная 71.3 ккал/моль [14].

В работе [15] исследованы характерные оксидные слои, возникающие при килячении кремния в азотной кислоте и выращенные методом термического оксидирования. Показано, что при освещении ультратонкой структуры SiO₂ - Si наблюдается изменение работы выхода на несколько сотен милливольт. После выключения освещения потенциал поверхности возвращается на темновое значение. Переходный процесс состоит из двух стадий, первая стадия является очень быстрой, а вторая более медленной и имеет экспоненциальный вид. Величина поверхностного потенциала зависит от концентрации легирующей примеси, плотности связанного на границе раздела заряда и плотности поверхностных ловущек.

В [15] разработано несколько моделей, объясняющих влияние напряжений, возникающих на границе раздела Si - SiO₂, и слоя оксида на кинетику окисления. Образование разности потенциалов на границе раздела связано с образованием слоя оксида критической толщины, который либо уменьшает диффузию окислителя к границе раздела либо ограничивает поток образовавшегося оксида от границы раздела. После достижения некой критической толщины слоя оксида напряжение, возникающее на границе раздела "будет лимитировать скорость окисления и будет превалировать над напряжением, возникающим в результате нагрева пластины или приложенным извне напряжением. В результате, при увеличении времени окисления, а следовательно, при увеличении толщины оксидного слоя влияние на процесс быстрого термического оксидирования кремния приложенного извне напряжения или возникающего при нагревании напряжения будет снижаться.

При приложении к образцу "растягивающего" напряжения расстояние между атомами увеличивается, что способствует увеличению скорости

окисления. При приложении "сжимающего" напряжения наблюдаются обратная картина.

В работе [17] показано, что увеличение смещения на этором затворе на 3В приводило к возрастанию на 1В поверхностного потенциала в окрестности истока. В результате имел место сдвиг порогового напряжения на 0.4В.

В [18] показано, что диэлектрик из реоксидированного взотированного оксида, сформированный при температуре 850°С, по сравнению с обычным оксидом обладает лучшей стабильностью в сильных электрических пояях в экспериментах с конденсаторами и уменьшенной деградацией кругизны транзисторов при нагружении в режиме образования горячих носителей.

Для экспериментов в режиме образования горячих носителей использовались n - канальные МОП ПТ с эффективной длиной канала 0.9 - 1.5 мкм, шириной канала 20 мкм и толщиной подзатворного диэлектрика 10 Нм.

Оптимизация процесса формирования ROXNOX - слоя основана на том, что стабильность границы раздела соответствует её устойчивости к генерации состояний в режиме нагрузки по Фаулеру - Нордгейму. Для очень слабого азотирования поверхность раздела Si - SiO₂ менее стабильна и характеризуется увеличенной генерацией состояний при постоянной тоховой нагрузке.

В [19] установлено, что описанная модель даёт возможность более точно по сравнению с известными моделями рассчитать значения напряжения и тока насыщения, особенно для МОП транзисторов с коротким каналом. Различие результатов расчётов, проведённых на основе этих моделей незначительно, если концентрация легирующей примеси в канале меньше 10¹³ см⁻¹. При повышении уровня легирования канала точность расчетов по известной модели падает.

В работе [20] описана методика выявления дефектов упаковки в

структурах SIMOX, использующая травление в химическом составе с малой скоростью растворения, последующее декорирование дефектов обработкой в растворе HF и далее микроскопическое исследование.

Обследование образцов с помощью просвечивающего электронного микроскопа и оптического микроскопа показало, что дефекты имеют среднюю длину 13 - 14 мкм и их плотность составляет (0.5 - 0.9) х 10³ см⁻².

Дефекты упаховки с размерами менее 2 мкм уже не удаётся отличить от нитевидных дислокаций ввиду некоторой неопределённости размеров окон, вытравленных в скрытом слос. SiO,.

Обследование образцов SIMOX и Si после окисления при температурах в интервале 1050 - 1150°С дало результаты, свидетельствующие об одинаковой кинетике роста дефектов упаковки, с очень близкими значениями экспоненциального показателя в выражении для зависимости длины дефектов от энергии активации и температуры окисления. Энергия активации равна 2.45 эВ для кремния и 2.48 эВ для структур SIMOX.

В [21] исследована роль атомов азота в ускорении диффузии примесей и обеднении приповерхностного зарядового слоя в процессе быстрого термического нитрирования. Ускорение диффузии примесей объясняется встраиванием атомов азота и кремния в междоузлия в процессе высокотемпературной термообработки в атмосфере аммиака. Кроме того, даётся объяснение ускорению диффузии примеси, которое нельзя полностью объяснить с помощью механизмов с участием точечных дефектов, присущих обычному окислению.

Для экспериментов использовали пластины P - Si с концентрацией примеси 7.5 x 10^{14} см⁻³, которые легировали затем с помощью имплантации В (32 кэВ; 1.5×10^{13} см⁻²), P (100 кэВ; 2×10^{13} см⁻²) или As (150 кэВ; 2×10^{13} см⁻²) через слой SiO₂ толщиной 35 Hм, после чего выполняли отжиг (20 мин при температуре 1000° C) для устранения радиационных нарушений.

Далее слой SiO, растворяли и с помощью окисления в печи выращивали

II

новую плёнку SiO₂ толщиной 10 Нм. Последующая быстрая термическая обработка включала различные комбинации нитрирования в атмосфере аммиака (100 сек при 950° С либо 1150° С), повторного окисления в сухом кислороде (40 сек при 1000° С). Объяснение ускорения диффузии примеси может состоять в том, что перенасыщенный слой в оксинитриде на границе раздела Si - SiO₂ является источником для диффузии точечных дефектов в монокристаллическом кремнии. Ранее предполагалось, что такими точечными дефектами служат лишь междоузельные атомы кремния, но теперь явно обнаруживается роль попадающих в междоузлия атомов азота.

В [22] с помощью быстрого изотермического отжига с температурой 400° С выполнен ряд экспериментов для сопоставления с результатами отжига в печи при температурах 400° С и выше 700° С. Высокотемпературный отжиг в печи вызывает возрастание концентрации примесей с глубокими энергетическими уровнями, об этом свидетельствует уменьшение времени жизни носителей в сочетании с возвращением удельного сопротивления, что подтверждается данными спектрометрии глубоких уровней. В процессе отжига в печи с температурой 400° С происходит генерирование этих примесей на дефектах, а изотермический электронно - лучевой отжиг с той же температурой оказывается слишком кратковременным, чтобы вызвать подобные изменения.

В работе [23] проведены эксперименты по ослаблению диффузии бора в структурах МОП транзисторов в процессе с формированием слоя TiSi, с помощью быстрого термического отжига. В процессе формирования силицида TiSi, на слое поликремния усиливается диффузия бора из поликремния через слой окисла затвора в Si подложку. Этот эффект становится более выраженным с повышением температуры отжига и уменьшением толщины слоя окисла.

В [24] исследовано низкотемпературное деформирование структур Si - SiO₂ в потоке продуктов плазменного разряда; проводится анализ

химических реакций на поверхности Si подложки. Выращивание слоёв SiO₂ с использованием N₂O даёт сравнительно с O₂ существенно лучшие дизлектрические свойства, главным образом в части значений тока пробоя. При выращивании плёнок окисла с использованием N₂O на начальной стадии процесса на поверхности кремния отмечена адсорбция не только атомов кислорода, но также и атомов азота. Из сравнительных экспериментов для МОП - структур следует, что композитные диэлектрики обеспечивают 5 - кратное увеличение плотности электронных состояний с энергисй в середине запрещённой зоны. Требуются дополнительные исследования, чтобы определить физические причины этих особенностей и научиться различать эффекты для объёма нитридных слоёв и для поверхностей раздела внутри композитных диэлектрических плёнок.

В работе [25] рассмотрены проблемы неоднородности тонких слоёв SiO₂, выращенных в N₂O с помощью быстрой термической обработки. Окисление производилось в системе AG 610 при температурах 1050, 1000 и 1150°C в течение 30 - 320 сек. В качестве окисляющей среды использовались чистая N₂O, чистый O₂ смесь N₂O и O₂, смесь N₂O и N₂.

Объёмная скорость травления вблизи центра пластины ниже, чем у контрольного SiO_2 , что предполагает наличие промежуточного обогащённого N слоя с большим числом атомов N на границе Si - SiO_2 вблизи центра пластины. В отличие от этого скорость травления на краях пластины близка к скорости травления термического SiO_2 . Скорость травления образцов, выращенных в чистом O_2 , имеет практически постоянное значение, равное 0.055 Нм/сек.

1.2. Механизм процесса окисления с учётом начальной стадии образования окисной пленки кремния.

Изучению кинетики окисления кремния посвящён ряд работ [5, 10, 26, 28]. В монографиях [4, 29, 27] отмечается, что высокотемпературное

онсление следует параболическому закону, отклоняясь от него только в на: альной стадии окисления. Вагнер и Хауффе [30, 31] дали теоретическое обоснование параболическому росту окисла с учётом диффузионных роцессов.

Образование оксидной плёнки на металлах, сплавах, и полупроводниках происходит согласно известной химической реакции типа:

 $2Fe + O_2 = 2FeO$ is $Si + O_2 = SiO_2$. (1.1)

Начальное окисление действительно осуществляется согласно уравнению (1.1), но последующее нарастание плёнки происходит за счёт явлений диффузии и переноса, сильно усложняющих механизм образования и кинетику роста окисных плёнок, так как первоначальный продукт реакции образует на поверхности металла или полупроводника компактное покрытие, и пространственно разделяет оба компонента реакции.

В работе [30] предложена следующая схема роста окненых плёнок, ... целяющая суммарный процесс ряда стадий:

1. Реакция на границах фаз:

а) диссоциация молекул неметаллов одновременно с хемосорбцией образовавшихся атомов;

б) внедрение хемосорбированных ионов, а также полученых путём непосредственного проникновения в решётку покрытия или путём соединения с ионами металла, выделившимися из решётки и пристраивания к поверхности;

 в) переход металла (в форме ионов и электронов) из фазы металла или полупроводника в кристаллическую решётку покрытия;

г) реакция между ионами неметалла, попадающими на границу фаз "металл - покрытие", с атомами металла.

2. Процессы образования кристаллических зародышей.

3. Обусловленная градиентом химического потенциала диффузия катионов или анионов либо взаимная диффузия тех и других, противоположно направленных, через слой покрытия.

Согласно теории Архарова [32] окисление происходит следующим образом. Образуется первичная тончайшая плёнка окисла на наружной поверхности металла и кислород проникает сквозь первичную плёнку. Такое проникновение может происходить двумя путями.

1. По случайным трешинам или по каналам, образуемым парами в ранее образовавшейся плёнке, газ диффундирует к неокисленному металлу, находящемуся на дне трещин или каналов, и там вступает в реакцию;

2. Атсмы газа и металла входят в кристаллическую решётку продуктов реакции, тде протекает диффузия в твёддой фазе.

Процессы первого типа можно отнести к таким, которые сильне зависят от подготовки поверхности и условий окисления, а второй этап

- типичный диффузионный процесс, при котором происходит двухсторонняя встречная диффузия через первичную пленку: с одной стороны - атомы или ионы кислорода, а с другой - атомы или ионы металла.

Таким образом, химическая реакция происходит одновременчие на границах плёнка - металл или плёнка-газ.

Вработах [10, 28, 33] показано, что если низкотемпературное окисление в основном протекает согласно логарифмическим или обратнологарифмическим закономерностям, то высокотемпера оное подчиняется временной зависимости параболического з сна с отклонениями только на начальной стадии окисления.

Вагнер [31] вывел уравнения образования окисной плёнки, рассчитывающие скорость окисления по свободной энергии реакции окисления, электропроводности, а также по значениям коэффициента диффузии ионов и электронов в слое окисной плёнки. Скорость диффузии зависит от концентрации дефектов в окисной плёнке, а скорость окисления - от скорости диффузии через окисную плёнку реагирующих компонентов. Теория Вагнера не касается начальных стадий окисления и окисления при более низких температурах.

Теория Мотта и Кабрера [34], предложенная для объяснения механизма роста тонких плёнок, не согласуется с экспериментом и не применима для случая высоких температур, когда на начальных стадиях процесса наблюдается отклонение от параболического закона. Мотт и Кабрера предполагают, что в плёнке окисла движущиеся электроны независимо от ионов проходят через тонкий слой окисла путём туннельного эффекта, либо в результате гермоионной эмиссии, реагируют на внешней поверхности плёнки, т. е. на границе окисел - газ с кислородом и образуют ионы кислорода. Катионы металла, соответственно, образуются на границе раздела металл - окисел. В результате чего, по мнению авторов, внутри окисной плёнки создаётся сильное электрическое поле, способствующее переносу положительных ионов к поверхности раздела окисел - газ. При этом скорость переноса ионов должна находиться в экспоненциальной зависимости от напряжённости поля, и процесс окисления, соответственно, описывается обратнологарифмическим уравнением.

Дил и Гров [35] считают, что на начальном этапе окисления окисная плёнка растёт полинейному закону. В последнее время появился ряд работ [33,28,36]], в которых была экспериментально получена полная кинетическая кривая, но при этом не наблюдалась прямолинейная зависимость. В работе [28] доказывается, что на начальной стадии кинетика окисления подчиняется сложному закону, сильно отличающемуся от линейного. Утверждается, что это связано с повышенной концентрацией дефектов в начальных слоях окисла.

Васильев и Аюпов [33], систематизируя литературные и свои данные, показали, что результаты работ разных авторов значительно расходятся между собой. Некоторые расхождения результатов связаны с измерением голщины окисной плёнки косвенным методом, на основании которого делался вывод о кинетике окисления. На ваш взгляд, при таких методах исследования трудно что - либо сказать о кинетике роста окисной плёнки, особенно в начальной стадии процесса. Дело в том, что в зависимости от режима окисления могут накладываться химическая десорбция и испарение продуктов реакции, не регистрируемые многими методами, а эти процессы могут продолжаться ощутимое время, что нельзя не учитывать. Кроме того, многие из известных методов не позволяют получить экспериментальные точки на начальном этапе окисления.

Кинетические кривые, построенные при малом количестве экспериментальных точек, во многих случаях приводят к прямолинейному закону роста. А эксперименты с использованием таких методов, как непрерывное взвешивание, автоматические эллипсометрические измерения толщины плёнки в процессе ее роста [36] и др. не согласуются с этими выводами, так как получаемые ими кинетические кривые строятся на основе нескольких тысяч экспериментальных точек, включая и начальную стадию процесса окисления. Начальная часть кинетической кривой отличается от параболы (рис. 1.1а). Отклонение от параболы более явно видно в координатах dt/dl - L, где зависимость изображается прямой линией (рис. 1.1.6). Действительно, имеется участок, где все экспериментальные точки пожатся на прямую линию. Но в своей начальной части кривая непрямолинейна и эта часть не описывается линейной зависимостью [36].

Обычно начальный этап окисления происходит ускоренным темпом, отклоняясь от параболической закономерности. Этот эффект можно объяснить, воспользовавшись теорией, предложенной в работах [8, 28], основанной на взаимодействии активных газов с поверхностью полупроводников, находящихся в атомарно - чистом состоянии. Атомы поверхностных слоёв атомарно - чистой поверности смещаются от своих нормальных положений в решётке и перегруппировываются в некоторые поверхностные структуры с другой симметрией и иными размерами элементарной ячейки. Кроме изменения регулярных положений поверхностных атомов решётки, по сравнению с их соответствующими положениями в объёме, на реальной поверхности кристалла неизбежно существование различных микро - и макроскопических дефектов структуры.

Поверхность полупроводника, даже находящаяся в атомарно чистом состоянии, в основном, довольно далека от структуры идеальной поверхности [8].

В работе[37] показано, что при взаимодействии фтора с поверхностью микрокристаллического кремния при комнатной температуре и пониженных давлениях газа наблюдается оплавление поверхности кремния.

При элементарном акте взаимодействия молекулы газа с поверхностью металла вся теплота реакции выделяется в ничтожно малом объёме, что обеспечивает локальное повышение температуры поверхности. Следующая молекула газа, попадая в зону локального перегрева, вступает в реакцию уже с большей вероятностью, чем на холодных участках. Следовательно, дополнительно выделяется тепло и снова повышается температура поверхности. Этот процесс может происходить до тех пор, пока не устанавливается равновесие между выделением тепла за счёт реакции и теплоотводом за счёт теплопроводности кремния. В этих условиях, т. е. в условиях сильных локальных и кратковременных перегревов поверхности, происходит образование сильно дефектной структуры окисной плёнки. Такая плёнка содержит большое количество различных структурных дефектов (вакансии, междоузельные атомы в анионной и катиочной подрешётках).

Следует отметить, что при малых давлениях кислорода наблюдается иная картина, так как каждая новая молекула кислорода взаимодействует с холодной поверхностью. После очередного удара молекул кислорода выделяющаяся теплота реакции успевает полностью рассеяться до следующего осаждения молекул кислорода в ту же зону. По всей поверхности температура остаётся одинаковой, поэтому процесс окисления происходит сравнительно медленно, образуется очень тонкий слой окисла однородный по составу,который имеет малое количество структурных дефектов.

После формирования первичной окисной плёнки, локальные перегревы поверхности прекращаются. Компоненты реакции - кислород и кремний - оказываются пространственно разделёнными. Режим окисления установился на нужной температуре и поддерживается строго постоянно Если исходить из теории Вагнера и Мотта - Кабрера, которые заранее предполагают, что свойства окисной плёнки, в частности, концентрация дефектов на ней, по мере её уголщения остаётся постоянной, то дальнейшее протекание процесса должно следовать параболическому закону роста окисления. Однако на начальной стадии окисления виден ускоренный росокисления, отклоняющийся от параболического закона роста, и это може с продолжаться несколько часов, в зависимости от режима окисления. В процессе роста (с утолщением) окисленной плёнки, сильно изменяются сё свойства, стехнометрический состав, фазовый состав, структура и особенно степень её дефектности. Это влияет и на величину коэффициента диффузии реагирующих компонентов, что в свою очередь, определяет кинетику роста окисной плёнки.

Таким образом, исследование кинетики начального этапа окисления, может дать объяснение причин ускоренного роста пленки в начально. стадии окисления и объяснить физико - химическую природу механизма дальнейшего роста окисной плёнки.

В [37] подробно рассматривается эффект локального перегрева поверхности кремния. Получена расчётная зависимость температуры в зоне локальных перегревов от времени и расстояния от места реакции в виде семейства кривых, представленных на рис. 1.2. Авторы утверждают, что слой кремния до 100 Å может прогреться до температур свыше 1000° С. Как известно из диффузионной теории, такое сильное повышение

19

т эмпературы поверхности кремния способствует лёгкому перемещению компонентов реакции. После проникновения кислорода в решётку кремния разрушается связь и образуется другой её тип. Появляется то: кая плён са, которая контактирует с полупроводником, а из - за разной ширины запрещённой зоны в зоне контакта создается как бы гетеропереход (Si -SiO₂) с кажущимся р - п гетеропереходом (или переходный слой, насыщенный избыточными дефектами), но процесс окисления продолжается за счёт реакции кислорода и кремния, проходящих сквозь образованную плёнку вследствие двухсторонней диффузии в неё, на границах кислород - окисная плёнка и плёнка - кремний (подложка). В процессе дальнейшего роста такой плёнки в условиях повышенной температуры происходит отжиг структурных дефектов и упорядочение стехиометрического состава плёнки.

При этом концентрация избыточных дефектов, влияющих на скорость диффузии, со временем уменьшается и приобретает постоянное значение, характерное для данной температуры и условий эксперимента.

В[5] даётся представление о механизме образования окисной плёнки, исходя из сравнения размеров атомов кремния и кислорода. В этой модели шар с радиусом R_{si} (относительный размер атома кремния) окружён четырьмя шарами с радиусом R_{o2} (относительный размер атомов кислорода), причём выполняются условия :

 $R_{02} = 3 \times R_{si}$; $R_{si} = 0.42 \text{ Å}$; $R_{02} = 1.32 \text{ Å}$.

Атомы кремния не могут передвигаться без нарушения четырёх связей с кислородом, в то же время мостиковые кислородные атомы связаны только с двумя атомами кремния, по одному электрону с каждым. Немостиковые атомы кислорода связаны только с одним атомом кремния. Таким образом, атомы кислорода могут двигаться в решётке свободнее.

Теперь рассмотрим случай, когда эти шары (R_{s_i} и R_{o_2}) неравномерно распределяются в зависимости от расстояния ($0 < X < d_{s_{io2}}$), т. е. по толщине

окисной плёнки кремния.

В работах [38, 12] изучено распределение концентрации кремния и кислорода в окисной пленке. Показано, что рост окисной пленки подчі няется диффузионному закону. Тогда, естественно, имеется слой обогащённый одним типом реагента за счёт нехватки другого и гоэтому существует ещё один слой SiO_{1-x}, можно сказать переходный, после него начинается граница SiO₂, как это показано в работе [39]. Следует отметить, что при термическом окислении нельзя чётко разделить границу плёнки подложки, в отличие от таких методов, как вакуумное испарение пиролитическое разложение, пиролитические реакции и т. д. При термическом окислении плёнка и подложка разделяются переходным слоём. После прекращения процесса термического окисления образуется кажущийся р - п переход. При снятии окисной плёнки, в основном, исчезает и образованный р - п переход.

Из - за недостатка кислорода и избытка кремния на границе Si - SiO₂ всегда сохраняется некоторая повышенная по сравнению с объёмом окисла концентрация дефектов. Надо подчеркнуть, что прямым способом нельзя избавиться от этих дефектов, т. с. имеется некоторое их количество, которое не зависитот обеспечения идеального технологического режима окисления кремния и предокислительной подготовки поверхности.

В работе [40] приведены результаты расчётов параметров МОП -СБИС, изготовленных на основе структур КНД. В случае режима накопления носителей также имело место появление нежелательных изломов на ВАХ, обусловленных плавающим потенциалом подложки. Эффекты короткого канала в ПТ на основе КНД - структур должны играть значительную роль вследствие низкого уровня легирования канала. Тем не менее, пробой, часто наблюдаемый в субмикронных объёмных МОП - ПТ, в тонкоплёночных ПТ маловероятен.

В [41] рассмотрено применение быстрого термического отжига

парофазного химического осаждения плёнок SiO₂ в чистом кислороде. Быстрый термический отжиг осуществлялся в O₂ при температуре 700 -1050° С в установке Heatpulse фирмы AG Associates, которая обеспечивала скорость повышения температуры 100° С/сек. Изучены электрофизические свойства плёнок SiO₂ на примере зависимости фиксированного положительного заряда от температуры отжига. Для сравнения указаны результаты длительного отжига. Из полученных результатов видно уменьшение заряда с увеличением температуры отжига, причём примерно 2/3 - кратное уменьшение уровня заряда наблюдается в случае отжига 120 сек при температуре 1050° С.

Механизм адсорбции кислорода на кремнии и других полупр^содниковых материалов, так же как и кинетика образования защитной окисной плёнки, до сих пор являются предметом многочисленных экспериментальных исследований и дискуссий. Кроме практического использования в микроэлектронных приборах, механизм образования диоксида кремния представляет и особый научный интерес [42-53,54-58].

В работе [18] приводятся данные по окислению Si при температуре 850° С и атмосферном давлении.В течение 55 мин сформирован 10 Нм слой диоксида кремния. Доказано, что диоксид кремния из реоксидированного азотированного оксида, сформированный при температуре 850° С, по сравнению с обычным диоксидом обладает лучшей стабильностью в сильных электрических полях и уменьшенной деградацией крутизны транзисторов при нагружении в режиме образования горячих носителей. В [59] предложено исследование электрических характеристик высококачественных плёнок диоксида кремния, сформированных при температуре ниже 50° С в системе ВЧ - магнетрона с овальным электродом, с существенно отличным режимом ПВХО с плазменной активацией ,что способствует улучшению структуры диоксида кремния и его электрических свойств.

٠

В работе [60] для создания МОП - структур проводилось сухое термическое окисление в стандартной нечи с горячими стенками при 950° С с последующим повышением температуры аллюминиевых электродов затвора и отжигом в форминг - газе. Образцы для проведения анализа поверхностных свойств получали термическим окислением, низкотемпературным окислением в атмосфере кислорода при воздействии УФ - излучения. В зависимости от способа предварительной обработки образца, могут быть получены различные профили распределения фтора на границе раздела Si - SiO₂ структур, что по - разному скажется на надёжности МОП - структур.

В работе [61] исследованы приборы со структурой кремний - на изоляторе (КНИ), которые обладают рядом преимуществ по сравнению с приборами объёмного типа, например, меньшая ёмкость переходов и высокая радиационная стойкость. Наряду с этими структурами КНИ с большой толщиной плёнок свойственны существенные недостатки: перегиб кривой ВАХ; аномальные точки в предпороговой области: выброс тока стока при переключении из - за плавающего потенциала подложки. Авторы исследовали возможности создания структуры прибора с субмикронными размерами элементов, в частности, БИС с тонкоплёночными КМОП - ПТ, с длиной затвора 0.5 мкм.

В [62] использовали пластины кремния n - типа с сопротивлением от 4 до 8 Ом х см ориентации (100). В эти подложки имплантировался кислород дозой 2.0 х 10¹⁸ см⁻² при 200 кЭви 350 кЭв и комнатной температуре. Общий ток луча составлял (4÷7) х 10⁻⁵ А. После имплантации пластины отжигались в атмосфере азота.

Структуры "Кремний на изоляторе" исследовались методами резерфордовского обратного рассеивания (РОР), измерения распределённого сопротивления (РС), эллиптической поляризационной спектоскопии (ЭПС) и ИК - спектроскопии на поглощение. Методом РОР определялась толщина поверхностного слоя кремния и скрытого слоя диоксида: кремния.

В работе [63] исследованы характеристики новой структуры полностью обеднённого транзистора с узким каналом - прибора с ветикальной КНИ - структурой. Нижняя часть кремний островка подтравливается в смеси НF и HNO₃ и для формирования КНИ - структуры проводится окисление подложки при температуре 1100° С. В результате создан новый сверхтонкий КНИ. - прибор, невосприимчивый к эффектам короткого канала, по сравнению с обычными сверхтонкими КНИ - приборами.

1.3. Внешние воздействия на кинетику роста диоксида кремния и зарядовые свойства структур кремний - диоксид кремния

Известно, что внешние воздействия, например, УФ - об тучения, термический и импульсный, а также лазерный отжиг сильно влияют на кинетику роста тонких плёнок диоксида кремния. Кроме того, их влияние может значительно изменять электрофизические свойства образованных структур кремний - диоксид кремния. При технологическом исполнении микроэлектронных полупроводниковых приборов на основе структур кремний - диоксид кремния появились такие вопросы для решения, которые требовали изучить связь между кинетикой роста и электрофизическими свойствами образуемых структур кремний - диоксид кремния.

В работе [64] даётся обзор физико - химических процессов на границе раздела Si - SiO₂, играющей важнейшую роль в МОП технологии. Основное внимание обращено на химическую структуру пограничной поверхности и её связь с химическими процессами образования МОП приборов и их результирующими параметрами. Методом РФЭС определяются структура слоя SiO₂, прилегающего к границе раздела Si - SiO₂ и состав самой границы. Обсуждаются данные, полученные различными способами: ЭПР, эллипсометрией, изучением тонкой структуры протяжённых спектров рентгеновского поглощения поверхности. Рассматривается существование отличающейся по структуре области SiO₂ вблизи границы раздела и её влияние на ширину запрещённой зоны SiO₂; распределение и зависимость от кристаллографического направления состояния подокиси в пределах монослоя на границе раздела, влияние электронного облучения на структуру решётки SiO₂, влияние H₂ на разрыв непрерывности валентной зоны SiO₂ и контакте с Si, а также воздействие способа химической обработки на химические и электронные свойства границы раздела.

В [65] окисление производится при температуре 900° С, давлении кислорода 0.8 МПа. Исследование с помощью РЭМ показало, что качество плоских структур не зависит от температуры окисления и толщины окисла, более того, дислокации в процессе окисления не образуется даже при толщине оксидного слоя в 2 мкм, а токи утечки между отдельными островками SiO, на Si незначительны.

В работах [66 - 68] приводятся экспериментальные данные, которые позволяют анализировать влияние внешних воздействий на скорость окисления, а также на электрофизические свойства получаемых Si - SiO₂ систем. Локальный нагрев образцов соответствовал температурам 1050 -1300° С. Окисление поверхности Si проводили в атмосфере сухой смеси O₂ + N₂, причём отношение концентраций O₂ / (O₂ + N₂) = 100 варьировалось от 3 до 100%. Установлено, что при O₂ / (O₂ + N₂) = 100 процесс окисления идёт по закону Дила - Грова, а при O₂ / (O₂ + N₂) = 3 по закону Мотта -Кабрера. Показано, что вычисление энергии активации окисления в условиях облучения галогенной лампой значительно отличается по своему значению от энергии активации, полученной при обычном термическом окислении. Предлагается способ формирования термического окисла на поверхности подложки Si, который позволяет одновременно создавать плёнки окисла различной толщины в требуемых областях пчастины. С этой целью поверхность окисления пластины освещается сфокусированным лазерным лучом с длиной волны, соответствующей энергии квантов большей ширины запрещённой зоны Si, но менее - ширины запрещённой зоны SiO₂. Такой луч сканирует по поверхности пластины, причём большая плотность энергии луча при этом должна приходиться на те участки, где необходимо создать большую толщину оксидной плёнки.

В [73] обсуждаются новые экспериментальные данные по окислению Si и существующей модели, главным образом, начальной стадии процесса; результаты окисления силицидов металлов и фотонной эмиссии на начальной стадии окисления.

В работе [69] исследовалась начальная стадия процесса окисления. При окислении Si [70], [71], [72] в сухом кислороде на начальной стадии скорости роста SiO₂ больше, чем предполагает общее линейно параболическое соотношение окисления. Увеличение скорости роста изучалось в интервале температур от 800 до 1000° С. Толщина SiO₂ менялась от 1.0 - 1.5 нМ, что соответствует естественному окислу до 60 нМ. Обнаружено, что увеличение скорости роста можно описать двумя слагаемыми, которые на протяжении эксперимента уменьшаются со временем.

В [70] показано, что образование ловушек происходит на границе после плазмохимического осаждения плёнок нитрида кремния и УФ облучения. По мере увеличения длительности УФ - облучения происходит возрастание плотности поверхностных состояний [ПС], даже при практически нулевой напряжённости электрического поля в окисле.

Этот процесс достигает насыщения через несколько часов облучения. Максимальная плотность [ПС] находится на уровне E = 0.7 эВ. Это

26

позволяет предположить, что образование ПС происходит при плазмохимическом осаждении плёнки нитрида кремния. В процессе насаждения ПС пассивируется атмосферным водородом, поступающим из слоя нитрида кремния, а УФ - облучение высвобождает атомы Н, и тем самым способствует возникновению энергетически активных ПС. Характерно, что этот процесс происходит при энергии квантов ниже ширины запрещённой зоны SiO₂.

В работе [74] методами дифракции ИК - спектроскопии исследовались характеристики связей между атомами Si и O в тонких плёнках SiO₂, термически выращенных на поверхности монокристалла кремния. Плёнки выращивали в атмосфере чистого кислорода, либо смесей HCL + O₂ или H₂ - O₂ при различных температурах. Подложки разогревались BY из-тучением CO₂ - лазера. Установлено, что для всех способов выращивания SiO₂ положение максимума в спектрах ИК - поглощения, обнаруженного в области от 1050 до 1060 (для плёнок толщины 1.3 нМ) или от 1060 до 1080 см⁻¹ (для плёнок толщиной 15 нМ), его ширина и степень асимметрии является функцией толщины плёнки SiO₂. Для плёнок, толщина которых превышает 10 нМ, асимметрия пика составляет примерно 9 см⁻¹. Сделан вывод что, несмотря на стехиометрию состава, слой SiO₂ на Si является переходным, вплоть до толщины 15 нМ.

В [75] исследовалось влияние длины волны луча лазера на ускорение процесса термического окисления кремния. Окислялись образцы Si [6] и [70] в сухом кислороде при температурах 850 - 900° С в течение 0.5 - 3 часа. Образцы в процессе окисления облучались лазером с энергией фотонов от 4 до 6.4 эВ. Эффективность увеличения скорости окисления в области облучения повышалась на порядок, когда энергия фотона возрастала от видимол области до УФ и превышала различие в энергии зон проводимости в SiO₂ и Si. Дальнейшее увеличение имело место, когда энергия фотона в УФ - сбласти превышала энергию диссоциации молекулы кислорода.

£

Рис. 1.2. Распределение тепла от точечного источника

۰.

В работе [76 | показано, что УФ - облучение инверсионных слоёв МОП - структур приводит к образованию поверхностных акцепторных состояний. Механизм такого влияния УФ - облучения связывается с разрушение связей Si - H и Si - OH на границе Si - SiO₂. Образование акцепторных состояний снижает суммарную плотность постоянного заряда на поверхностных состояниях, и обеспечивает увеличение подвижности носителей в инверсионных каналах МОП - структур при захвате электронов на эти акцепторные состояния.

В работе [77] представлена модель окисления кремния в кислороде при воздействии лазерного излучения с длиной волны $\lambda = 514$ нМ на поверхность кремния и плотности энергии порядка 150 Вт / см². Предполагается, что при поглощении фотона на границе раздела Si - SiO₂ в кремнии появляются оборванные свя..и Si - SiO₂ - локализованных электронно - дырочных пар. Энергия активации процесса окисления понижается при воздействии лазерного излучения.

В работе [78] предложена модель кинетики термического окисления кремния, легированного Р (10 - 16 Ом. см), усиленного облученнем фотонами. Изменение скорости окисления было пропорционально мощности падающего света. Эти и другие экспериментальные данные позволили предположить, что усиление скорости окисления при облучении обусловлено вторичной эмиссией электронов из кремния в слой SiO₂ и ускорением диссоциации молекул кислорода.

В работе [79] предполагается, что при выращивании слоя аморфного окисла на поверхности кремния между кремнием и окислом присутствует промежуточный "реакционный" окисел. Динамические напряжения, генерируемые в "реакционном" слое, стабилизируют "реакционный" слой, а кислород - через аморфный окисел, и реакция идёт на границе между "реакционным" и аморфным слоями. Использование этой гипотезы позволило объяснить некоторые очевидные аномалии и несоответствия, с по женные на ранних стадиях роста окисла.

работ [80] проведен краткий обзор по стимуляции окисления кремния за счет интенсивного оптического облучения. Отмечается, что существует несколько различных механизмов окисления. Подчёркивается, что термические эффекты являются доминирующими в реакции окисления, они связаны с диффузией окисляющих частиц через оксидный слой, существующий до процесса окисления на поверхности S, с последующим их взаимодействием с атомами кремния. Предполагается, что фотонное усиление окисления имеет место при облучении видимым и УФ - светом.

В работе [81] рассмотрены проблемы наращивания и осаждения диэлектрических плёнок. Приведены результаты структурного анализа границы раздела изолятор - полупроводник.

В [82] с помощью дифракции, ИК - спектроскопии исследовалась переходная область между многокристаллическим кремнием и SiO₂, выращенными методом термического окисления. Прослеживается зависимость поглощения на "растягивающих" колебаниях Si - О связей в области 1075 см. от толщины слоя SiO₂, начиная с 1.8 нМ. Можно отделить объёмные характеристики SiO₂ от параметров, испытывающих влияние границы раздела Si - SiO₂; установлено, что влияние границы раздела сказывается на глубину 10 нМ в слое SiO₂. Для более толстых плёнок отличается, соответственно, вид симметрии зоны поглощения SiO₂ в области 9 см⁻¹, которая не имеет сильной зависимости от толщины SiO₂. Для SiO₂ толщиной не менее 10 нМ изменяется положение пика, ширины и вида симметрии, что указывает на иную структуру SiO₂, и деформацию ее на границе раздела.

В работе [71] при изучении реакционной стойкости МОП - структур установлено существенное влияние времени поддувки окислительной атмосферы на выращивание подзатворного окисла парах трихлорэтилена и плотности введённых облучением поверхностных состояний. Аналогичная

3I

зависимость наблюдалась и при инжекции в плёнку электронов с высокой энергией из канала МОП - ПТ. Интенсивность нарастания плотности поверхностных состояний после облучения зависит от площали затвора МОП - структур.

В работе [72] плёнки Si толщиной 1.0 - 2.5 нМ получены на подложках Si [70] термическим окислением, электронно - лучевым испарением и естественным окислением. Показано, что по нормали к поверхности раздела степень упорядочения атомов изменяется от полного упорядочения в Si к слою сильно ориентированных микрокристаллов, внедрённых в аморфную матрицу и, наконец, к смеси разбросанных, слабо ориентированных кристаллов с аморфной средой. Большинство дифракционных линий микрокристаллов соответствует структуре SiO₂ кристаболита.

В работе [83] проведён количественный анализ поверхности на атомарном уровне после удаления оксида методом дифракции медленных электронов в сверхвысоком вакууме. Окисление образцов кремния [72] проводилось при различных условиях в атмосфере сухого и влажного кислорода, а также при температурах 800 и 1000° С. Процесс окисления приводил к наличию некоторой неровности поверхности, которую можно уменьшать, используя низкие скорости окисления, а также определённый режим отжига в неокисляющей среде.

В [84] фотохимическое осаждение тонких плёнок двуокиси кремния SiO₂ из газовой фазы проводилось в системе с газовым составом SiH₄ + O₂ + N₂ при низких температурах подложки и с применением фотостимуляции. Если на начальном этапе процесс осаждения плёнки в течение короткого времени инициировался облучением УФ - светом, то затем он продолжался и после удаления света. Фотостимуляция тесно связана с такими параметрами, как температура подложки, давление газа в камере и отношения давлений O₂ / SiH₄. Характеристики таких плёнок определялись

32

по скорости травления по спектрам ИК - излучения и вольтфарадным измерениям.

В работе [85] показано, что в случае образования электронно дырочных пар электроны являются главным каталитическим агентом при фотонно - стимулированном усилении окисления кремния. При средних значениях плотности энергии светового облучения в видимой части спектра происходит усиление окисления на 10 - 50%, которое значительно возрастает при энергии фотонов, несколько превышающей границу энергетической зоны проводимости между SiO, и Si. Полагают, что внедрение "горячих" электронов в SiO, усиливает процесс окисления за счёт присоединения электронов к некоторым диффундирующим кислородным агентам, с последующей диссоциацией в агенты О* и О. В работе [86] доказано, что при лазерном стимулировании происходит ускоренный рост тонких (< 300 Å) слоёв диоксида кремния, в частности, на выявление И установление количественной оценки фотонной стимуляции роста в ходе термического процесса окисления. Получение высококачественных оксидов с точно контролируемой толщиной в диапазоне 10 - 100 А весьма актуально в субмикронной МОП - технологии при изготовлении запоминающих устройств и в МДП - структурах с гетеропереходами, работающими на основе туннельного эффекта.

В работе [87] изучалось окисление Si в сухом и влажном кислороде. Окислялись химически очищенные пластины кремния [6], легированные бором или фосфором. Термообработка осуществлялась излучением галогеновой лампы с длительностью импульса от 2 до 25 сек. Кинетика роста, состав и свойства окисных плёнок изучались с помощью лазерной эллипсометрии и РФЭС. Плотность состояний на границе Si - SiO, определялась по ВФХ. Процесс окисления включает в себя переходную начальную стадию роста окисла и стационарного линейно - параболического окисления. Полученный окисел имеет квазистехиометрический состав. Плотность поверхностных состояний (2 ÷ 8) х 10¹¹ см⁻² завысит от тотличны окисла.

В [88] предложен способ селективного формирован ω изолирующето слоя на полупроводнике, либо металлической подложке, с тонкоплёночной маской. Подложку помещают в герметическую камеру, нагревают до температуры 100 - 400° С, подают в камеру смесь $Cl_2 - \omega$ набо $BCl_3 - O_2$ и освещают подложку с помощью мощной лампы либо лазера. Освещение вызывает образование радикалов Cl, травление полупроводникового материала, газофазную реакцию окисления либо нитри твания продуктов травления и осаждения образующегося диэлектрика на незащение наской участки подложки. Дополнительно проводят уплотняющую термообработку слоя диэлектрика при температуре $<00^\circ$ С.

В работе [39] рассмотрена роль туннельного окисла в функционировании новых активных элементов и электронных приборов с отрицательным сопротивлением.

В работах [90-92] изучено влияние отжига в сухом кислороде при T= 1110° на поверхность раздела МОП - структур, дефектов, внутреннее напряжение. Далее образцы охлаждались до T= 400° C, после чего проводился отжиг в одну (30 сек при 1160° C), либо в лие сточии (30 сек при 800° C и 30 сек при 1160° C).

Показано, что работа выхода на границе AL - Si зависит от условий отжига, в то время как высота барьера AL - SiO₂ почти постоянна Параллельный отжиг ВФХ наблюдается в две стадии в сторону положительного напряжения, что соответствует уменьшению высоты барьера Si - SiO₂.

Показано, что электрическая прочность слоёв SiO₂ связана логарифмическим законом с их размерами. Вид функции распределения дефектов в SiO₂ зависит от условий выращивания и толщины диэлектрического слоя. И суча да свойства плёнок SiO₂, выращенных в сухом кислороде. О состатьсями измерениями показано, что плёнки окисла являются неод городными, что связано с особеностями процесса отжига при окистении. Величина напряжения на границе раздела Si и SiO₂, достигает 4.6. ¹⁹ дин/см.

работе [93] исследованы эмиссионные явления при механическом с ении слоя Au от слоя SiO₂ в МОП - структуре, изготовленной на Si и ожке с удельным сопротивлением 10 - 20 Ом.см. Толщина слоя SiO₂ авляла 50 - 120 нМ, толщина слоя Au, напылённого в вакууме, стигала 50 нМ. Предложена модель, объясняющая эмиссию электронов соотонов эффектом разделения зарядов. Этот эффект, в свою очередь, опровождается мини-зарядами в объеме плёнки и бомбардировкой оазделяемых поверхностями дефектов.

В [84] для определения элементного состава полученных тонких плёнок и типа химических связей в них применяли такие методы анализа, как электронную оже-спектроскопию (ЭОС) и спектроскопию потерь медленных электронов (СПЭ) в сочетании с ионным распылением. Показано, что обработка в мягкой ВЧ аммониевой плазмеэффективное средство для превращения термического оксида кремния в оксинитрид кремния только при исходной толщине слоя оксида менее 25 нМ. Азотирование в плазме NH, при температуре 573° К стимулирует образование чистого слоя оксинитрида кремния без какого - либо включения структур, аналогичных оксиду кремния, либо нитриду кремния. Этот слой имеет не очень совершенную атомную структуру, содержит разорванные связи типа Si - О и Si - N, однако следов элементарного кремния в нём не обнаруживается.

В работе [94] представлены данные по оптической микроскопии сколов кремниевых пластин с поверхностью, предварительно закрытой плёнкой диэлектрика, подвергнутых трёхступенчатому геттерирующему

35

ŧ

отжигу. Выявлена хорошая корреляция между плотностью поверхностных состояний и уровнем механических напряжений на границе Si - SiO,.

В [95] исследовано влияние НЧ - смещения на скорость травления диоксида кремния. Основным фактором, приводящим к значительному росту скорости травления SiO₂ в комбинированном разряде, является усиление роли ионно - стимулированных процессов на поверхности.

Выводы

Всесторонний анализ литературных научных данных за последние более чем тридцать лет показал, что электрические, термо- фотосвойства и механические напряжения структур кремний - диоксид кремния до сих пор полностью не изучены. Наряду с этим, слабо изучена именно начальная стадия образования диоксида кремния. В связи с этим необходимо развивать теорию кинетики образования диоксида кремния. Отсутствуют математические уравнения для описания зависимости скорости окисления от уровня легирования основных примесей подложки (кремния).

Для исследования свойств структур кремний - диоксид кремния, а акже для изготовления на их основе микроэлектронных приборов с высококачественными параметрами, необходимо развивать теорию механизма образования оксидного слоя кремния. Более того, надо уметь управлять взаимосвязью механизмов образования оксида кремния с электрофизическими свойствами микроэлектронных приборов, наготовленных на их основе, таких как МОП - транзисторы, приборы с зарядовой связью, приборы с переносами зарядов, и интегральные схемы.

Зарядовое состояние межфазной границы Si - SiO₂ структур, а также скорость роста диоксида кремния при окислении кристалла кремния в сухом кислороде на начальной стадии зависит от кристаллографической ориентации кремния и убывает в последовательности [72], [71], [70].
Фундаментальным свойством поверхностного заряда является то, что заряд принадлежит границе раздела Si - SiO₂, т. е. не связан с ионным загрязнением.

В настоящее время также отсутствуют сведения, которые могли бы определить конкретные причины появления зарядов на границе кремния с его двуокисью, а также в объёме оксида кремния. Таким образом,до начала настоящей работы отсутствовали систематические данные по комплексному исследованию динамики окисления кремния, особенно его начальных стадийнто представляет важную самостоятельную научнотехническую задачу, которая и решалась в данной работе.

ГЛАВА-2

МЕТОДЫ И УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ ОКСИДА КРЕМНИЯ

2.1. Термическое окисление кремния в парах воды

Высокотемпературное взаимодействие кремния с водяными парачиназывают окислением в парах воды. В экспериментах мы наблюдате картину, которую можно объяснить травлением участков окисленнои поверхности кремния. Существуют определенные условия термодинамического равновесия, при которых идёт образование окисной плёнки и продолжается кинстика роста оксида кремния. Если такое термодинамическое условие не существует, то происходит обратный процесс, т. е. начинается травление образованных слоёв оксида кремния. Окисление проводилось в многозонной печи типа СД -100, типичная лабораторная печь представлен на рис. 2.1. Если температуру водяного пара поддерживать неизменной и разко уменьшать температуру образца, наблюдается стравливание поверхностного кремния. Первичные контакты между парами воды и поверхностью кремния составляют несколько монослоёв окисла и образуются за счёт хемосорбщии воды, т. е. осуществляют ближние связи. Дальнейшее взаимодействие может быть лишь в том случае, если реагенты переносятся через образованный окисел. Уменьшение температуры образца приводит к уменьшению энергии активации реагентов, т. е. при пониженных температурах на границе крем:ний - окисел или нар - окисел перенос реагентов не происходит.

На границе пар - окисэл при их взаимодействии химическая реакция растворяет окислы в парах воды. Поэтому вместо образования окисной плёнки происходит стравливание вновь образованных окисных плёнок.

По - видимому, после образования первичных слоёв окисла реакция идёт на границе "пар - кремний" и "окисел - кремний". Атомы кремния, связанные в крисгаллической решётке, могут взаимодействовать с молекулами воды, находящимися в окисле или промежуточной группой гидроокиси кремн: и кремнием. Химическая реакция кремния с группой гидроокиси кремния происходит следующим образом:

1) На гр. нице пар - окисел

 $2H_{,0} + SiO_{,} \rightarrow Si + 4OII$ (2.1)

2) На границе окисел-кремний

$$2OH + Si \rightarrow SiO_1 + H_1$$
 (2.2)

В 5. ом случае водород, образующийся в реакциях, быстро диффундирует от границы окисел - кремний или реагирует с другими примесями окиси кремния, образуя гидрооксидные группы.

Гаким образом, для образования и дальнейшего роста окисной плёнки необходима двухсторонняя диффузия реагентов через первично образовавшиеся окисные плёнки. В данном случае - реагенты реакции: вода, водород атомы (ионы) кремния. Дело в том, что водород, диффундируя терез плёнку, может образовывать гидроокисные группы.

$$H_{1} + 2O \rightarrow 2OH \tag{2.3}$$

Рис. 2.1. Принципиальная схема печи для окисления кремпия в парах воды

В процессе окисления, когда скорость окисления ограничивается количеством воды у границы раздела, то рост окисления осуществляется по параболическому закону. На основании многочисленных работ [1-4] выведено уравнение в виде

$$L^{2} = A \times t \times \exp\left(\frac{0.87}{kT}\right), \qquad (2.4)$$

где L - толщина оксида кремния в (Å); t - в минутах.

Данная формула приближённо соответствует температуре окисления в парах воды в пределах 1300 < T < 1500° K.

В работе [6] получено эмпирическое уравнение в виде

$$X = 7.26t \exp(-0.80 / kT)$$
, (2.5)

где X - толщина окисла в мкм;t - время окисления в мин;

Т - температура окисления в *К.

Авторы утверждают, что эти уравнения справедливы при условии T > 1100° C, t > 5 мин. Однако из - за больших разбросов данных нельзя считать уравнения (2.4) и (2.5)полностью описывающими скорость роста окисления в парах воды, хотя они совпадают также и с экспериментальными данными.

Таким образом, из - за сложности механизма образования окисла на начальных стадиях окисления нельзя выявить все особенности образования тонких слоёв оксида кремния. Для процесса окисления в парах воды сложность формирования заключается в том, что за очень малое время образуется окисный слой в несколько сотен Ангстрем.

2.2. Термическое окисление кремния в сухом кислороде

В качестве экспериментальной установки, позволяющей определить характеристики окисления непосредственно в ходе этого процесса, использовались высокочувствительные вакуумные демпферные микровесы с автоматической регистрацией [З7].Такие микровесы дают возможность проводить классический весовой и микровесовой химический анализ, микротермогравиметрический анализ, исследование адсорбщии, процессов испарения, взаимодействия газов с поверхностью твёрдых тел (окисление металлов и полупроводников), определение плотности газов и жидкостей, изучение кинетики, магнитные , метрологические измерения, проверку гирь, весов и т. д.

Получение надёжных данных по кинетике окисления возможно при использовании образцов, свободных от окисных и других поверхностных плёнок, не содержащих адсорбированную влагу и газы, выделение которых в процессе опыта является причиной ошибок в определении изменения веса образца. Поэтому перед окислением образцы обезгаживались путём прогрева их в высоком вакууме (10⁻⁷ мм. рт. ст.) при загруженном состоянии на весах в специальной кварцевой сеточке.

После длительного прогрева в высоком вакууме при $T \approx 300 - 400^{\circ}$ С вес кремниевых образцов достигал постоянной величины, что указывало на удаление с их поверхности адсорбированных газов и паров воды. После окончательной проверки того, что обработка прошла по заданной программе, для образцов кремния уже не допускалось никакого контакта с атмосферой, т. е. после достижения цели нагревательные установки отключались. При постоявстве вакуума температура понижалась до комнатной, после чего напускался особо чистый сухой кислород до пужного давления. В дальнейшем образцы подвергались окислению при заданных режимах.

 окисления, по сревнению с объёмными и оптическими методами. Объёмные методы не позволяют проводить исследования при постоянном давлении газа - окислителя. В основном могут быть использованы при низких давлениях. Оптические методы регистрируют толщину окисной пленки не в процессе её образования, а по окончании эксперимента. Поэтому невозможно различать начальную и дальнейщую скорости роста окисления.

Для того, чтобы судить о механизме и кинетике процесса окисления кремния в сухом кислороде от первичного этапа образования плёнки до полного затухания процесса при заданных температурах и давлениях газа целесообразно проводить исследования методом непрерывного взвешивания.

Метод непрерывного взвешивания имеет и ряд других преимуществ:

- при быстром подъёме температуры образца до заданной величины требуется время, хотя и очень малое, для того, чтобы установилось термическое равновесие между образцом и средой. В течение этого времени температура реакции, а иногда и давление остаются неопределёнными. При непрерывном взвешивании такие искажения могут быть исключены;

- в одном и том же эксперименте можно проводить окисление в широком интервале температур, не изменяя других условий режима окисления. Имеется возможность изучить кинетику испарения окисных плёнок в вакууме, не прерывая опыта, и можно получить надёжные данные о константах скорости окисления и испарения;

 из - за инерционности охлаждения образца после отключения печи возможно дополнительное окисление в неопределённых условиях. При непрерывном взвешивании появляется возможность количественного контроля этого процесса.

Возможность непрерывной автоматической регистрации течения процесса исключает необходимость в интерполяции между точками на графике "вес - время", т. е. можно получить столько экспериментальных точек, что после построения графика его обрабатывают, не проводя

42

усредняющих линий.

В работе была применена усовершенствованная методика, описанная в [99] Изменена и существенно модернизирована электронно и осветительная часть весов. Специально разработан и изготовлен прецизионный блок питания осветителя и электронной части весов. Расширен диапазон защиси результатов в графическом виде на ЭПП - 09, введён дополнительный блок деления, изменяющий чувствительность графической записи в соотношениях 1:10:100, введены дополнительные цифрорегистрирующие блоки прецизионной записи кинетических результатов, период печати которых может устанавливаться в пределах от 5 до 60 мин. Шифровое устройство оснащено дополнительно перфоратором для кодирования информации обработки результатов на ЭВМ. Таким образом, кинетическая информация регистрировалась по четырём каналам: визуально - с помощью отсчётного микроскопа, графически - на двухканальном потенциометре КСПП4 - 014 с одновременной записью температуры окисления, цифровыми таблицами с указанием номера измерения и на перфоленте лля ввода на ЭВМ.

Диапазон непрерывной регистрации изменения массы значительно расширен, а чувствительность и точность измерений доведены до 1 нГ / см², что соответствует 0.1 ÷ 1 монослою адсорбированного кислорода, возможная нагрузка -до 10 г. Схемы весов, вакуумной установки и электронно - оптической части представлены на рис. 2.2, 2.3, 2.4, 2.5, 2.6,

Коромысло весов 1 (рис. 2.6) исполнено из кварца. Вес образца, укреплённого в специально изготовленной из оптического кварца сетке, подвешенной на платиновой проволоке, уравновешивается с помощью набора гирек, выполненных в виде колец из алюминиевой проволоки и подвешенных с помощью магнита на лесенке из тонкой алюминиевой проволоки. Массы аллюминия и меди выбраны таким образом, чтобы скомпенсировать силу втягивания в магнитное поле до нуля. Реакционная трубка соединяется с весами с помощью специальной втулки с вакуумными уплотнителями из витоновых колец. Высокий вакуум (10⁻⁷ мм. рт. ст.) достигается с помощью диффузионного насоса (рис. 2.7). Напуск кислорода производится из баллонов с кислородом через вакуумные краны K₇, K₆, K₄ и металлический вентиль B₁. Давление кислорода в системе контролировалось с помощью дифференциального U - образного манометра. Очистка и осущение кислорода осуществлялось в этой же вакуумной установке (рис. 2.7). Кислород получался методом разложения перманганата калия, помещённого в реакционную трубку при нагреве в печи П₂ до 300 - 350° C.

Очистка кислорода производилась пропусканием его через ловушки, заполненные прокалённым в вакууме КОН в виде гранул, и через ловушки, охлаждаемые жидким кислородом (Л₈ и Л₄).

Для определения изменения веса в качестве отсчётного устройства был использован микроскоп МИР - 2 с окулярометром типа МОВ - 1 - 15х. Использование образцов с поверхностью 10 - 20 см² позволило регистрировать поглощение кислорода в количествах 1.10⁻⁹ г/см². Автоматическая запись на КСПП4 - 014 и автоматическая регистрация цифропечатающим устройством отклонения коромысла весов, связанная с изменением веса образцов, осуществлялась следующим образом. На коромысле весов был наклеен непрозрачный флажок 20 (рис. 2.6) из серебряной фольги. При перемещении коромысла весов флажок пересекал параллельный пучок света от осветителя 1 (рис. 2.9) и делил его на два луча, включенные в мостовую схему (6). Получаемый электрический сигнал, пропорциональный отклонению коромысла, поступал на самопишущий потенциометр КСПП4 - 014 и на цифровой вольтметр Ф30 или Щ1513.

Питание схемы производилось от специального универсального выпрямителя и стабилизатора. Фотосопротивление с оптической системой было жёстко закреплено на микрометрической подаче 4, сочленённой с микроиндикатором перемещения 3. Применение микроиндикатора с диапазоном от 0.001 до 1 мм позволило производить настройку регистрирующей системы независимо от весов. Питание осветителя осуществлялось от универсального выпрямителя и стабилизатора.

На рис. 2.8 представлена общая блок - схема термомикрогравиметрической установки для исследования окисления кремния, а также изучения процесса испарения окиси кремния на поверхности кремния, с использованием автоматической регистрации результатов. Приспособлен транскриптор и ЭМЧ - 23 для ввода данных в ЭВМ для обработки полученных результатов.

Для исследования кинетики окисления кремния при различных температурах на реакционную трубку с образцами одевалась печь с ленточным нагревателем (рис. 2.9).

Нестабильность температуры во время опыта может вносить существенные ошибки в результате эксперимента, так как значение константы "К", сильно зависящее от температуры, согласно соотношению $K = K_0 \times e^{-\epsilon n\tau}$ в условиях нестабильной температуры есть функция времени.

Температура контролировалась специальным программным терморегулирующим устройством (рис. 2.5), состоящим из двух независимых цепей.

Одна непь состояла из пластикового термометра, сопротивления R₁, переключателя измерения температуры П₁ измерительного и регистрирующего электронного моста ЭМП - 65 с датчиком З₁, электронным усилителем ЗУ и управляющей обмоткой магнитного усилителя W_{упр}. Во вторичной цени изменение и регулировка температуры осуществлялись с помощью платино - платинородневой термонары ТП ЭПП - 09 с датчиком з₂ электронного усилителя ЭУ и управляющей обмотки магнитного усилителя (позволили менять диапа зон измерений температуры от 1200° С до 100° С

45

Рис. 2.2. Общий вид микрогравиметрической установки

Рис. 2.3. Откачная система и источняки кислорода

Рис. 2.4. Схема автоматической записи показаний микрогравиметрической установки

Рис. 2.5. Нагревательная печь

Рис. 2.6. Схема автоматической регулировки температуры

Рис. 2.7. Общий вид окислительной каме

в любом интервале температур от 0 до 1200° С. С помощью переключателей пределов измерения температур П₁ и П₂ и датчиков З₂ и З₂ осуществлялась регулировка и стабилизация температуры. С датчика сигнал поступал через электронный усилитель ЭУ на магнитный усилитель ЭУ, управляющая обмотка которого позволили менять ток в цепи рабочей обмотки, что приводило к изменению тока в нагревателе печи.

До одевания печь нагревалась до нужной температуры, регулировка и изменения проводились с помощью платинового термосопротивления. При одевании печи на реакционную трубку с образцами для быстрого установления стабилизированного режима ключ "К" устанавливался в положение "образец", изменение и регулировка температуры осуществля с помощью термопары ТП, расположенной рядом с образцами. Холодные спаи термопары, выведенные наружу, поддерживались при комнатной температуре с 'помощью одетого на них дьюара, наполненного дистиллированной водой. В дальнейшем регулировка производилась при помощи цепи термопары или цепи сопротивления.

Для контрольной проверки, кроме автоматической записи температуры образца, использовалось специальное устройство, измеряющее температуру на потенциометре ПП. Переключение термопары образца на ПП было необходимо также для калибровки записи температуры на ЭПП - 09.

Многочисленные опыты показали, что при одевании и снятии печи показания весов резко менялись в ту или иную сторону в зависимости от давления. Можно подобрать такой режим,ю торый практически исключает такой эффект. Однако эффект нельзя объяснить процессом окисления, поскольку наблюдаемое изменение веса было обратимо, а его скорость намного превышала скорость окисления при заданном объёме окисляющего газа при разогреве и охлаждении реакционной трубки с образцом. Это явление приводит к искажению хода начального этапа процесса окисления. Во время обработки экспериментальных данных необходимо знать точное значение изменения показания весог, обусловленного воздействием эффекта, связанного с нагревом и охлаждением печи. Для достижения этого был проведён ряд опытов. В конце опыта, когда окисленный образец находился при меньших температурах, чем необходимые для предварительного окисления образца, изменение весов обусловлено эффектом воздействия на образец потока газа, связанного с нагревом или охлаждением печи. Если из величин, характеризующих изменение веса (с течением времени в процессе окисления), вычесть значение изменения веса, связанные с этим эффектом, то можно получить данные изменения веса, отображающие собственно, процесс окисления.

Отмечено, что изменение показания веса при одевании печи равно изменению показания веса при снятии печи, но с обратным знаком. При некоторых режимах всё же наблюдалось неравенство этих значений. Причина данного явления связана с тем, что при охлаждении печи наблюдается адсорбция кислорода. Количественно её можно оценить вышеухазанным методом, т. е. с учётом термического эффекта при одевании и снятии печи. Измеренная разность весов даёт приблизительное количество дс. рбированного кислорода.Таким образом, по этой процедуре весы позволяли проводить необходимые в опытах точные измерения.

2.3. Экспериментальная установка для анодного окисления полупроводников и полупроводниковых структур

Установка по анодному окислению предназначена для получения полупроводниковых структур, а также для послойного снятия образованной плёнки в процессе окисления.

Анодное окисление привлекательно тем, что можно окислять образцы локально и многократно. При любом окислении часть образующей плё, чи растёт снаружи поверхности, а часть-в глубине полупроводника. При прецизионном измерении толщины образованной плёнки и последующем снятием ее при помощи плавиковой кислоты, анодное окисление можно также использовать для послойного травления полупроводника. Если необходимо изучать распределение примесей по глубине, например, поннолегированной части образца, то данная методика есть один из единственных точных способов для данной цели.

Плёнки, полученные анодным окислением, в чём - то уступают окисленным плёнкам, образованным термическим методом. Но анодные окисления с успехом могут применяться как метод исследования легированных полупроводников. Изучая кинетику анодного окисления чистого и ионнолегированного кремния на постоянном токе, можно выявить также и механизм роста окисной плёнки.

Важно сконструировать и изготовить установку для анодного окисления полупроводников, а также изучить возможности её применения в микроэлектронной технике как методику исследования процесса окисления и параметров структуры.

На рис 2.10 представлена установка анодного окисления в разрезе. Цилиндрический сосуд (1) для окисления изготавливается из кислотостойкого и термостойкого стекла, например, молибденового. Верхние и нижние основы (4) окислительного сосуда выполнены из органического стекла толщиной 10 -15 мм. На каждой из основ (4) окислительного сосуда имеется круговой паз с резиновым уплотнителем (5). Сосуд собирается в единое целое с помощью стяжных стоек (2), расположенных по внешнему периметру кругового паза. Такая конструкция обеспечивает надёжное уплотнение и лёгкую сборку или разборку конструкции.

К основам сосуда крепятся опорные стойки (3) с резиновыми амортизаторами (5). В центре нижней основы сосуда имеется конусная выточка, заканчивающаяся отверстием диаметром 4 - 6 мм. К нему через уплотняющую шайбу (7) металлической струбцинкой (6) прижимается окислённый образец. Ось струбцинки проходит через втулку (18) с резьбой. Для точной установки образца имеются ограничивающие шайбы (8). На верхней основе (4) сосуда устанавливается осветитель (11) с радиаторами. Осветительная лампа (9) устанавливается с помощью четырёх винтов (10). В центре верхней основы сосуда выточено отверстие, в которое включена с помощью эпоксидного клея оправка (13). В оправку вставлена линза (12) осветителя, фокусирующая свет на окисляемой поверхности образца. Линза фиксирована на оправке разрезным пружинным кольцом (14). Катод (16) изготовлен из никеля в виде диска с двумя лапками и отверстием посередине для прохождения света. Напряжение к катоду подводится с нижней основы сосуда через электроды (17), котрые для герметизации и электрической изоляции вставлены в стойки из органического стекла и залиты эпоксидным клеем. На нижней основе сосуда находится разъём (19) для подключения напряжения, питающего окислительную систему. На верхней основе сосуда два отверстия с резьбовыми пробками для заливки и слива электролита.

Данная установка позволяла проводить окисление образцов кремния в нужных режимах с последующим контролем их параметров.

Выводы

Исследование механизма образования оксида кремния на поверхности твёрдых тел при термическом окислении на атомарно - молекулярном уровне может быть осуществлено термомикрогравимстрическим методом, который позволяет регистрировать привес весов беспрерывно в процессе окисления. На современном этапе исследования поверхностных состояний полупроводников требуется применение комплексных методов с большой чувствительностью с использованием новейних теоретических достижений, что дает объективную картину о процессах, протекающих во время окисления. Для исследования кинетики роста окисления и стехнометрического строения оксида кремния применяется метод локального и многократного анодного окисления кремния, а также окисления структур "кремний на изоляторе" с использованием планарного электрического контакта к слою кремния. Созданные с непосредственным участием автора опытноэкспериментальные установки посьоляют изучать процесс окисления различными эффективными методами с высокой точностью и получать необходимые параметры структур Si-SiO₂ для целей развития микроэлектронного приборостроения.

ГЛАВА -3. МЕТОДИЧЕСКИЕ ОБОСНОВАНИЯ ДЛЯ ПРОВЕДЕНИЯ КОМПЛЕКСНОГО ИССЛЕДОВАНИЯ СВОЙСТВ ОКИСЛЕННОГО КРЕМНИЯ

3.1. Термомикрогравимстрический анализ процесса окисления кремния в сухом кисловоде

Окисление кремния в сухом кислороде исследовалось микрогравиметрическим методом, который позволяет непосредственно определить количество поглощённого кислорода во время протекания процесса окисления с чувствительностью 10⁻⁹ г/см². Зная привес и площадь образца, а также плотность образующегося окисла, определяем его толщину.

Уравнение, описывающее кинетику окисления кремния при различных температурах и давлениях, имеет следующий вид:

 $(Q + Q_0)^2 = 2Kt + 2\Lambda \tau_A (1 - e^{-t/\tau_A}) + 2B\tau_B (1 - e^{-t/\tau_B}) + Q_0^2.$ (3.1)

Необходимо определить коэффициенты К, А. В и др., входящие в ураавнение (3.1). Особенностью уравнения (3.1) является то, что входящие в него постоянные коэффициенты имеют определённый физический смысл. Вм. сче с тем, эти постоянные могут быть определены из результатов кинетических измерений, если экспериментальные данные представить в виде кичетических кривых в координатах толщина - привес - время. При этом кинетические кривые строятся на достаточно большом количестве достоварных экспериментальных данных. Таким условиям удовлетворяет метод непрерывной регистрации процесса окисления.

При переменной t > 10 переменные величины превращаются в гостоянные и уравнение (3.1) обращается в параболическое с постоянным постоянные вида:

 $(Q + Q_p)^2 = 2Kt + C$, (3.2)

Здесь К - параболическая константа;С - постоянная

 $C = 2A\tau_A + 2B\tau_B + Q_0^2 \quad ,$

Для определения неизвестных коэфициентов необходимо знать абсолютную толщину первичной окисной плёнки, обозначенной уравнении (3.1) как (Q + Q₀).Однако при проведении эксперимента обычно регистрируется прирост этой плёнки Q, который отсчитывается от момента времени t = 0. Поэтому можно воспользоваться уравнением скорости процесса (3.3), в которое входит не абсолютные значения толщины и времени, а их изменение в процессе опыта:

$$\left(Q + Q_0\right) = K \frac{dt}{dQ} + A e^{-t/\tau_a} B e^{-t/\tau_a}.$$
(3.3)

Для удобства рассмотрим подобный метод обработки результатов на примере экспериментальных данных по окислению кремния в сухом кислороде при $P_{o_1} = 80$ тор и $T = 794^{\circ}$ C (рис. 3.1). Представленные в координатах Q - t эти данные (рис. 3.1) описываются уравнением (3.3).

При t > 10, е-^{1/т}• н е^{-1/т}• ⇒ 0 уравнение (3.3) принимает следующий вид:

$$K = (Q + Q_0) \frac{dQ}{dt} , \qquad (3.4)$$

Когда Q_о неизвестно, параболическую константу скорости "К" можно

определить следующим образом. При дифференцировании кинетической кривой и её параболической части по наклону определяют величину "K":

$$K = \frac{\Delta(Q + Q_0)}{\Delta \frac{dt}{dQ}}$$
 (3.5)

При прохождении этой прямой линии до пересечения с осью ординат, когда dt/dQ = 0, получаем величину Q_0 .

Следует отметить, что величина Q_0 в уравнении (3.1) определяется не только начальной плёнкой, но и образовавшейся плёнкой, к моменту точной регистрации изменения толщины окисла. Обычно величина Q_0 лежит в пределах 25 – 120 Å.

Зная Q_0 , можно построить график в координатах ($Q + Q_0$)² - t (рис. 3.2), который подразделяют на несколько участков. Прямолинейный участок полученной кривой характеризует "параболическую" часть уравнения (3.1).

$$(Q+Q_0)^2 = 2Kt + 2A\tau_A + 2B\tau_B + Q_0^2$$
, (3.6).

Если продолжить эту прямую линию до пересечения с осью ординат, то определяется отрезок, равный величине $C = 2A\tau_A + 2B\tau_B + Q_0^2$. Так как величина Q_0^2 известна, получаем сумму: $2A\tau_A + 2B\tau_B$.

Для того, чтобы построить кривую (рис. 2.6)

$$(Q+Q_0)^2 = 2A\tau_A \exp(-t/\tau_A) + 2 B \tau_B \exp(-t/\tau_B)$$
 (3.7)

необходимо вычесть ординаты кривой $(Q+Q_0)^2 - t$, описываемой уравнением (3.1), из ординат прямой линии (рис. 3.2), описываемой уравнением (3.6). Из уравнения (3.7) видно, что правая часть представляет собой экспоненту. Рассмотрим три возможные случая, характеризуемы разными соотношениями τ_A и τ_B :

1) $\tau_{A} > \tau_{B}$; 2) $\tau_{A} < \tau_{B}$; μ 3) $\tau_{A} = \tau_{B}$.

В двух первых случаях эксперимент дает две резко отличающиеся кривые

В третьем случае, когда т, = т, график сводится только к одной экспоненте.

Прологарифмировав разности квадратов $\Delta[(Q+Q_0)^2]$ и построив график в координатах $\lg \Delta[(Q+Q_0)^2]$ -t (рис. 3.3), по тангенсу угла наклона полученной кривой, можно определить величины τ_A и τ_B .

$$\tau_{A} = \frac{\Delta t_{1}}{\Delta \ln \left[\Delta (Q + Q_{0})^{2}\right]}; \tau_{B} = \frac{\Delta t_{2}}{\Delta \ln \left[\Delta (Q + Q_{0})^{2}\right]} \quad . \tag{3.8}$$

Продолжая прямую линию до пересечения с осью ординат, находим отрезок, равный величине $2A\tau_{A}$ и $2B\tau_{B}$. Зная τ_{A} и τ_{B} , можно определить величины A и B.

Таким образом, из графиков на рис. 3.1 и 3.4 по уравнениям (3.3) - (3.9) можно найти все неизвестные константы уравнения (3.1).

Эксперименты по окислению кремния в течение длительного времени (более 60 час.) при изменяющемся температурном режиме позволили определить параболические константы скорости окисления "К" на основе лишь одного опыта.

Способы и особенности определения параболической константы скорости процесса окисления при разных температурах в течение таких продолжительных опытов удобно рассматривать на модельных кривых. Если в процессе окисления повторяется какой - нибудь температурный режим, то данные, характеризующие этот этап окисления, представленные в координатах Q - dt/dQ (рис. 3.6), должны укладываться на одну и ту же прямую. Последняя была получена по координатам Q - dt/dQ показателей, относящихся к повторяющемуся температурному режиму, т. е. получается набор отрезков, лежащих на одной линии. Таким образом, при представлении данных по окислению кремния в течение длительногс времени при периодической смене температуры в координатах Q - dt/dQ получаем набор прямых линий, которые пересекаются друг с другом ν осью ординат в одной точке, (Q = 0, dt/dQ = 0) характеризующей началс

координат, а наклоны даёт соответствующая кочстанта скорости "К".

Отклонение в начальном этапе окисления от прямой линии, как мы уже упоминали, свидетельствует о том, что в начале окисления кинетика протекает не по закону парабол, а благодаря более сложному физико химическому процессу.

Описанный метод определения параболической константы скорости окисления даёт хорошие результаты только в том случае, если измерения проведены с высокой точностью и с большим количеством экспериментальных точек или автоматической записью результатов. Точность определения величины "К" рассмотренным методом зависит от конкретных условий окисления кремния. При образовании плёнки достаточной толщины понижение температуры приводит к замедлению процесса окисления, а следовательно, кривизна кривой почти исчезает. В этом случае более точным будет определение параболической константы "К" с помощью (3.4). Зная абсолютную толщину окисленной плёнки ($Q + Q_0$) из предыдущих опытных данных, и определив величину скорости процесса окисления dt/ dQ на данном отрезке времени при данной температуре, можно определить константу скорости "К".

Из графика в координатах $(Q+Q_0)^2 - t$ получим фактически прямую линию, отклоняющуюся лишь на начальном участке. По прямолинейной части этой линии определяем параболическую константу "К" из уравнений:

$$K = \frac{\Delta (Q + Q_0)^2}{2\Delta t}$$
(3.9).

Таким образом, нараболическую константу "К" можно определизь тремя способами:

$$K = (Q + Q_0) \frac{dQ}{dt}; \qquad K = \frac{\Delta(Q + Q_0)}{dt/dQ} = \frac{\Delta Q}{\Delta dt/dQ} \quad ; K = \frac{\Delta(Q + Q_0)^2}{\Delta t} \quad (3.10).$$

Близость величин "К", вычисленных из (3.10), позволила получить надёжные результаты с необходимой достоверностью.

Рис. 3.3. Данные по окислению кремния (Po₂ = 80 Торр и $T = 794^{0}$ C) в координатах $\Delta(Q+Q_{0})^{2}$ ----- t.

Рис. 3.4. Данные по окислению кремния (Po₂ = 80 Торр н $T = 794^{\circ}C$) в координатах $lg[\Delta(Q+Q_0)^2]$ ---- t.

Рис. 3.6. Данные по окислению кремния при Ро₂ = 40 Торр и при различных температурах в координатах (Q+Q₀) — dt/dQ.

Построив график в координатах lgK - 1 / Т, по тангенсу угла наклона определим энергию активации Е.

Воспользовавшись уравнением $\frac{1}{\tau} = D_0^* e^{-U_0 \Lambda \tau}$ и построив график в координатах lg1/t - 1/T, по тангенсу угла наклона определяют энергию активации U_g , где U_g - энергия активации миграции дефектов, соответствующая начальному этапу окисления.

Таким образом, можно определить все коэффициенты K, A, B, τ_A , τ_B , $\psi_{T,T}$ д., входящие в (3.1).

В работе [2,96]выводятся уравнения, по которым определяют параметры, характеризующие качество и электрофизические свойства образованной окисной плёнки SiO, и системы Si - SiO₂.

Скорость изменения концентрации избыточных точечных дефектов пропорциональна их концентрации и подвижности [1]:

$$\frac{\partial \mathbf{n}_{i}}{\partial t} = -\mathbf{n}_{t} \mathbf{D}_{0}^{*} \mathbf{e}^{-\mathbf{U}_{m}/kT} = -\frac{\mathbf{n}_{i}}{\tau_{a}} , \qquad (3.11)$$

где U_{ел} - энергия активации миграции или переменная точечных дефектов;

п, - коэффициент, учитывающий среднюю длину пути перемещения точечных дефектов, равный

$$\alpha = \frac{\pi^2}{a^2}$$
, (3.12)

где а - толщина плёнки, образованной к концу ускоренного роста; т_л - постоянная времени релаксации гочечных дефектов анионного типа равна:

$$\frac{1}{t_{A}} = \frac{\pi^{2}}{a^{2}} D_{0A}^{*} e^{-U_{AA}/kT}$$
(3.13) H

$$\frac{1}{\tau_{A}} = \frac{1}{\tau_{0A}} e^{-U_{AA}/kT}$$
 (3.14), rge

тол - предэкспоненциальный множитель; а D_{0л} - предэкспоненциальный множитель коэффициента диффузии избыточных точечных дефектов.

Выше было показано, каким образом экспериментально определяется τ_A . Зная величины τ_A для соответствующих режимов окисления, можно построить график в координатах lg1/ τ_A и 1/T, по тангенсу угла наклона прямой можно определить U₆₄ и таким же образом U₆₄. Уравнения (3.13) и (3.14) представим в виде:

$$\frac{1}{\alpha \tau_{A}} = D_{0A}^{*} e^{-U_{AA}/kT} = D_{A}^{*}$$
(3.15) и

$$\frac{1}{\alpha \tau_{0A}} = D_{0A}^{*} \qquad (3.16)$$

Зависимости D_A^{*} от температуры окисления и D_{0A}^{*} от давления кислорода представлены на рис. 3.7 и 3.8 соответственно. Из экспериментальных данных находят коэффициент диффузии точечных избыточных дефектов D_A^{*} = 1/ τ_A , так как τ_A известно, а $\alpha = \pi^2 / a^2$ можно вычислить.

Температурная зависимость D_A^* в координатах $\lg D_A^* - 1/T$ (рис. 3.7) даёт прямые линии. Из графика (3.7), по тангенсу угла наклона определяют U_{da} . Из семейства кривых (рис. 3.8) определяют величину D_{0a}^* для различных режимов окисления кремния и её зависимость от давления кислорода. Величина параболической константы скорости окисления "К" определяется: как:

$$K = \beta (\Delta C_A D_A + \Delta C_B D_B)$$
 (3.17) или

$$K = \beta \Delta C_{A} D_{0A} e^{\frac{-(E+U_{A})}{kT}} + \beta \Delta C_{B} D_{0B} e^{\frac{-(E+U_{B})}{kT}} , \qquad (3.18)$$

Индексы "А" принадлежат аниону (отрицательно заряженный ион) кислорода и "В" катиону (положительно заряженный ион) кремния.

Константу "К" можно представить как сумму К, и К,

$$K = K_A + K_B$$
 (3.19) где
 $K_A = \beta \Delta C_A D_A$, (3.20)
 $K_B = \beta \Delta C_B D_B$ (3.21) или

$$K_{A} = \beta \Delta C_{A} D_{0A} e^{\frac{(E-U_{A})}{kT}} = K_{0A} e^{\frac{E_{A}}{kT}}, \qquad (3.22)$$

$$K_{B} = \beta \Delta C_{B} D_{0B} e^{\frac{(E+U_{B})}{kT}} = K_{0B} e^{\frac{E_{B}}{kT}}, \quad (3.23) , \text{ где}$$

$$K_{0A} = \beta \Delta C_{A} D_{0A}, \quad (3.24)$$

$$K_{0B} = \beta \Delta C_{B} D_{0B}, \quad (3.25)$$

$$E_{A} = E_{A} + U_{A}, \quad (3.26)$$

$$E_{B} = E_{B} + U_{B}, \quad (3.27)$$

где Е_A и Е_в-энергия активации процесса диффузии для анионов и катионов соответственно.

Экспериментально определяя "К" из температурных зависимостей в координатах lgK - 1 и по тангенсу угла наклона определяют Е - энергию активации процесса диффузии для аниона или катиона

$$K = K_0 e^{-E/kT}$$
(3.28)

Из семейства экспериментальных кривых k = f(T) определяют κ_p . Постоянные

$$A = \beta \Delta C_{A} L_{A} \quad , \tag{3.29}$$

$$P - \beta \Delta C_B L_B$$
 (3.30) или

$$A = \frac{1}{100} \Delta C_{A} D_{0A} e^{-U_{A}/AT} \frac{n_{0A}}{N_{A}} , \qquad (3.31)$$

$$B = \beta \Delta C_{B} D_{0B} e^{-U_{B}/kT} \frac{n_{0B}}{N_{B}} , \qquad (3.32)$$

Для случая $U_{A} = U_{AA}$ и $U_{B} = U_{AB}$ выполняется условие $D_{0} = D_{0}^{*}$, при этом:

$$\Delta C_{A} = \frac{\pi^{2} K_{0A} \tau_{0A}}{a^{2} \beta} , \qquad (3.33)$$

$$\Delta C_{\rm B} = \frac{\pi^2 K_{0\beta} \tau_{0\beta}}{a^2 \beta} \,. \tag{3.34}$$

Из уравнений (3.33) и (3.34) нетрудно вычислить концентрацию избыточных точечных дефектов анионного и катионного типа ΔC_A и ΔC_B , соответственно.

Начальную концентрацию избыточных точечных дефектов определяем согласно уравнениям (3.30), (3.31), (3.32), (3.33), (3.34) как:

$$\frac{n_{QA}}{N_A} = \frac{A\tau_A}{K_{QA}\tau_{QA}} , \qquad (3.35)$$

$$\frac{n_{0B}}{N_B} = \frac{B\tau_B}{K_{0B}\tau_{0B}} , \qquad (3.36)$$

Равновесную концентрацию точечных дефектов определяют из уравнений:

$$\frac{n_{oA}}{N_{A}} = \frac{K_{A}\tau_{A}}{K_{0A}\tau_{0A}} , \qquad (3.37)$$

$$\frac{n_{\alpha B}}{N_B} = \frac{K_B \tau_B}{K_{0B} \tau_{0B}} \qquad (3.38)$$

Когда $U_A = U_A, D_0 = D_0^*, U_B = U_B$, то

$$A\tau_{A} = \frac{n_{0A}a^{2}\beta\Delta C_{A}}{N_{A}\pi^{2}} , \qquad (3.39)$$

$$B\tau_{B} = \frac{n_{0B}a^{2}\beta\Delta C_{B}}{N_{B}\pi^{2}}, \qquad (3.40)$$

Рис. 3.7. Зависимость коэффициента диффузии от температуры

Рис. 3.8. Зависимость предэкспоненциального члена от давления кислорода

причём Ат_А .: Вт_в определяют экспериментально и из уравнений (3.39) и (3.40).

Таким образом, экспериментально и при помощи описанной методики 3.1 можно установить все параметры, входящие в кинетическое уравнение (3.1).

3.2 Вольтёмкостный (С - V) анализ структур кремний - диоксид кремния

Определение плотности поверхностных состояний на границе раздела Si - SiO₂ проводилось нами по широко известному методу вольтфарадных (C - V) характеристик MOII - структур.

Измерение вольтфарадных (С - V) характеристик проводилось на мосте типа Л2 - 7 и ГКЗ - 40, на частотах 1 МГц, с прижимным индиевым контактом. Образец после измерения не загрязнялся и не разрушался, Существенно то, что измерения проводились на тех же Si - SiO₂ системах, для которых нами была исследована кинетика окисления в разделе 3.1.

Одной из особенностей мостовых вольтфарадных измерений является возможность разделить полную проводимость МОП - структур на активную и реактивную составляющие, что даёт дополнительные сведения о свойствах таких структур.

При высокой частоте измерительного напряжения поверхностные состояния не успевают перезаряжаться вслед за сигналом и остаются практически неизменными. В случае низкой частоты поверхностные состояния перезаряжаются синхронно с измерительным сигналом [100]С увеличением прямого напряжения носители тока концентрируются ближе к границе Si - SiO₂. В этом случае толщина кажущегося "p - n" перехода на межфазной границе Si - SiO, уменьшается, следовательно, ёмкость МОП

съуктур будет максимальной

Упрощённая схема изчачите з полных проводимостей типа Л2 - 7 показана на рис. 3.9. Прибор состоит из мостового измерителя, индикатора баланса, генератора напряжения, источника напряжения смещения.Измерительная схема прибора представляет собой мост с индуктивно связаетсыми по зами. Условия баланса этого моста можно записать в виде Q = Q We contain a We

$$Q_{x} = Q_{0} \frac{W_{i}}{W_{x}} - Q_{n}; C_{x} = C_{0} \frac{W_{i}}{W_{x}} - C_{n}.$$

Прибор, благодаря начальной балансировке моста, позволяет компенсировать "паразитные" ёмкости и проводимости. После тщательной балансировки измеряются ёмкость и проводимость образца.

Для питания мостовой схемы измерительным напряжением используется входящий в комплект с измерителем Л2 - 7 генератор ГКЗ - 40.

Погрешность прибора с учётом систематических погрешностей не более - (0.15 C_x 1 пФ) или - (25 g_x / f пФ) при значениях g_x = 50 200 мм0 и (14 g_x / f пФ) при g_x менее 55 мм0, - для реактивных составляющих. А для активных составляющих: - (0.15 g_x + 0.1 мм0) или (55 x 10-5 fC_x) мм0, соответственно.

Здесь f - рабочая частота в МГц; С_x - измеряемая реактивная составляющая в пикофарадах; g_x - измеряемая активная составляющая в миллимо.

Погрешность при измерении ёмкости МОП - структур не более 10%.

Прибор балансировыся перед каждым измерением и контроль баланса осуществлялся по окончании каждого измерения. Эталонные ёмкости служили для дополнительной проверки прибора. Использовали полупроводниковые варикапы с известными (С - V) характеристиками для возможности периодически проверять работу прибора при различных напряжениях смещения.

Плотность поверхностных зарядов на межфазной границе Si - SiO₂

систем определяется методом сравнения идеализы; эванных теоретических "С - V" кривых с экспериментальными [IOI, IO2] Для построения идеализированой вольтфарадной С - V характеристики вычисляется величина объёмного заряда в поверхностном слое кремния Q₅ и C₅ для области пространственного заряда поверхности полупроводника.

Снекоторым допущением ёмкость МОП - структур можно рассматривать как два последовательно соединённы, конделсатора $C_{ok} \, u \, C_s$, причём C_{uk} - ёмкость окисла (SiO₂), не зависит от приложенного напряжения, а C_{ok} можно определить при помощи известной формулы для плоского конденсатора:

$$C = \frac{E_{so_2}E_0S}{d} , \qquad (2.11)$$

где S - площадь контакта: d - толщина окисла, C_s - некоторая переменная ёмкость, которая изменяется с изменением приложенного внешнего напряжения. С_s по своему поведению очень кохож: на барьерную ёмкость р - n гетероперехода.

Как известно, ёмкостные измерения силь ю сависят от честоты напряжения. Для низкой частоты С, можно огреденить с использованием уравнения вила [3]:

$$C_{s} = \frac{qEE_{0} [2n_{s}Sh(U_{t} - U_{s}) + N_{d} - N_{s}]}{Q_{t}} , \qquad (3.42)$$

Как видно из уравнения(3.42), определение С, немного сложнее, чем определение ёмкостей р - n перехода.Общая ёмкость МОП - структуры равна:

$$\frac{1}{C} = \frac{1}{C_{a}} + \frac{1}{C_{s}} \qquad \text{ИЛИ} \qquad C = \frac{C_{a}C_{s}}{C_{a}} + \frac{1}{C_{s}} \qquad (3.43)$$

Ёмкость С, является переменной функцией при теженного напряжения U. Так как ёмкость окисла С_{ок} не зависит от приложеного напряжения, то изменение общей ёмкости МОП - структуры С определяется изменением C. -

Окисленная поверхность n - Si всегда имеет повышенную концентрацию электронов по сравнению с объёмом образца и возникает поверхностный потенциал Φ_i . В окисле образуются встроенные заряды, что созлает в поверхностном слое кремния заряд Q_i . Теоретические и экспериментальные вольтфарадные характеристики МОП - структур сдвинуты на некоторое U друг от друга и их наклоны различные. При условии так называемых плоских зон, при некотором значении напряжения U дно зоны проводимости и потолок валентной зоны у границы раздела "полупроводник - диэлектрик" спрямляются. Это напряжение U называется напряжением плоских зон. При условии плоских зон величина пространственного заряда в приповерхностном слое кремния становится равной нулю. Емкость пространственного заряда можно определить из уравнения (3.42), где N_d концентрация донорных примесей, равная $N_d = 4.0 \times 10^{14}$ см⁻³, а N_a концентрация акцепторов,

$$Q = -2 \frac{U_s}{|U_s|} qn_L L_D \left\{ 2 \left[Ch \left(U_s - U_F \right) + Ch U_F + U_s Sh U_F \right] \right\}^{0.5}, \quad (3.44)$$

Уравнение (3.44) подставим в уравнение (3.42)

$$C_{s} = \frac{EE_{0}[2n_{s}Sh(U_{F} - U_{s}) + N_{d} - N_{s}]}{-2\frac{U_{s}}{|U_{s}|}n_{r}L_{D}\left\{2[Ch(U_{s} - U_{F}) + ChU_{F} + |U_{s}|ShU_{F}]\right\}^{0.5}}$$
(3.45)

С учётом (3.44) выражение (3.43) имеет следующий вид:
$$C = \frac{C_{ak} \frac{EE_{0} [2n_{i}Sh(U_{F} - U_{s}) + iN_{d} - N_{.}]}{-2 \frac{U_{s}}{|U_{s}|} n_{i}L_{0} \{2[Ch(U_{s} - U_{F}) + ChU_{F} + |U_{s}|ShU_{F}]\}^{0.5}}{C_{ak} + \frac{EE_{0} [2n_{i}Sh(U_{F} - U_{s}) + N_{d} - N_{.}]}{-2 \frac{U_{s}}{|U_{s}|} n_{i}L_{0} \{2[Ch(U_{s} - U_{F}) + ChU_{F} + |U_{s}|ShU_{F}]\}^{0.5}}$$

В уръвнениях (3.41 - 3.45а)

величина диффузионной длины $L_{\rm D} = \left[\frac{{\rm kTE}_{\rm s}E_{\rm o}}{{\rm q}2{\rm qn}_{\rm o}}\right]^{0.5}$,где n_i - концентрация собственного кремния, К - постоянная Больцмана, T - абсолютная температура,

U_r - безразмерная величина, Ф_r - положение уровня Ферми, U_s - безразмерный нормализованный поверхностный потенциал.

Построим экспериментальную кривую С - V и при помощи уравнения (3.45а) теоретическую С - \forall характеристики МОП - структуры. При условии плоских зон, т. е.,когда $\phi_{1} = 0$, находим значение С_п.,равное

$$C = C_{u_3} = \frac{C_{ok}C_{u_3}}{C_{ok} + C_{u_3}}$$

Если известно напряжение смещения U, то $U = U_{n,2} + \phi_{MR}$, где

ф_{ил} - контактная разность потенциалов металл - полупроводник.

Таким образом, плотность фиксированного заряда в окисле N₁ будет определяться как

$$N_r = \frac{C_{ak}U_{a,2}}{q} \quad . \tag{3.46}$$

↓ассчитанные по этой формуле величины для исследованных образцов далее использовались для определения качества окисного слоя.

Рис. 3.9. Упрощенная схема измерительной части моста Л2-7

Рис. 3.10.Блок-схема установки для измерения топографии КРП

3.3. Анализ поверхностных состояний окисленного кремния путем исследования топографии контактной разности потенциалов

Измерение КРП для исследуемых образцов проводилось по известному методу Кельвина [103]В основе этого метода лежит модуляция постоянного напряжения вибрирующим конденсатором. Одной из обкладок плоского конденсатора является исследуемый образец, а вгорой - вибрирующий Для измерения топографии КРП, с целью исследования электрод. неоднородности поверхности полупроводника, желательно уменьшать площадь вибрирующего электрода. В работе (96) предложена унифицированная установка для измерения топографии КРП, позволяющая проводить измерения в высоком вакууме и в атмосфере различных газов. Столик с закрепленнным образцом размещён на отдельном фланце с металлическим уплотнением так, что верхняя часть столика может сдвигаться строго плоско - параллельно влево, вправо и вперёд - назад. Возможно перемещение столика и в двух взаимно - перпендикулярных вертикальном и горизонтальном направлениях. Все эти перемещения осуществляются с помощью микровинтов. Для подачи перемещения с точностью 10 мкм используются сильфоны, механические колебания от вибратора к электроду передаются через тонкую мембрану, изготовленную из нержавеющей стали. В качестве вакуумного уплотнения и изолирующей прокладки использовались тефлоновые прокладки.

Принцип действия вибратора подобен устройству электромагнитного громкоговорителя. Одна из катушек электромагнита L₁ питается от генератора на транзисторах и служит непосредственно для возбуждения колебаний электрода сравнения. Вторая катушка L₂ необходима для точного приближения или удаления этого электрода к образцу за счёт подачи на неё соответствующего постоянного напряжения. Третья катушка L₃ служит для компенсации паразитного сигнала, возникающего в узлах вибрирующего электрода в результате его механических колебаний. При использовании освещения можно визуально контролировать расстояние между электродом сравнения и исследуемым образцом. Если заранее отградуировать зависимость напряжения смещения от расстояния электрода до образца, то измерения КРП можно проводить в темноте.

Контроль составов остаточных газов до 10-9 Тор в системе осуществлялся при помощи омеготронного измерителя парциальных давлений ИПДО -1.В измерительной камере, расположен съёмный барабанный держатель с несколькими образцами.

На рис 3.10 представлена блок - схема установки[97]. Межлу эталонным электродом и исследуемым образцом ОБ за счёт вибрации эталонного электрода и изменения ёмкости между ними образуется переменный сигнал, который подаётся на вход каскадного повторителя УПК с высоким входным сопротивлением[104]. Далее сигнал поступает на селективный микровольтметр В6 - 2. От селективного микровольтметра один сигнал подаётся на осциллограф СІ -19Б, служащим грубым "О" индикатором, а второй - на фазовый детектор Д, собранный на полупроводниковых диодах. Компенсация КРП в измерительной схеме осуществляется с помощью потенциометра постоянного тока ППТВ - 1 с делителем напряжения. Величина КРП регистрировалась на цифровом вольтметре, топография КРП измерялась с точностью - ЗмВ. Одним из достоинств этого метода является его неразрушающая (бесконтактной со стороны SiO,) способность измерения. Несмотря на трудности экспериментов, измерения КРП описанным методом проводились относительно эталонных образцов (Pt, Ni, Si) несколько раз повторением измерения. Перед каждым измерением обязательно определяли КРП эталонных образцов. В конце эксперимента опять измеряли КРП эталонных образцов, а в случае расхождения величин КРП результаты считались недействительными и эксперимент повторялся. Измерения проводились на тех же Si - SiO, системах, для которых нами была исследована кинетика формирования окисного слоя в разделе 3.1. Кроме того, на тех же Si - SiO₂ системах нами

были определены зарядовые параметры по вольтфарадной (С - V) характеристикс из мостовых измерений. Все результаты измерения величины КРП проведены относительно кремния. Измеряя для одной Si - SiO₂ системы несколько значений КРП, находили среднюю величину КРП.

Зависимость плотности поверхностных зарядов на межфазной границе Si - SiO₂ системы N_s от напряжения плоских зон определялась из вольтфарадных характеристик (3.49). Так как Au соответствует напряжению при высоких зонах, т. е. при условии $\varphi_s = 0$, то $\Delta \varphi$ и ΔU_m обусловлены с одними и теми же зарядами на межфазной границе Si - SiO₂ системы. В монографии [15] получена формула для определения величины зарядов приповерхностного слоя через поверхностный потенциал:

$$N_{nc} = \frac{C_{nc}U_{s}}{\beta q},$$

где N_{pc} - плотность заряда в приповерхностном слое; C_{nc} - дифференциальная ёмкость заряда приповерхностного с. оя; U_s - безразмерный поверхностный потенциал, а $\beta = q / kT$.

C учётом КРП зависимость N_{до} запишем в виде $N_{do} = \frac{C_{go}\Delta\phi}{\beta q}$, где $C_{so} = C_s$ при $\phi_s = 0$.

Уравнение при $\phi_s = 0$ имеет ына

$$N_{\Delta\phi} = \frac{E_{a}E_{0}[2n_{i}ShU_{r} + N_{d} - N_{\bullet}] \cdot \Delta\phi}{-2\frac{U_{a}}{|U_{a}|}n_{i}L_{d}\{2[Ch(-U_{r}) + ChU_{r}]\}^{0.5} \cdot q}$$
(3.47)

После некоторых математических преобразований и вычислений для нашего случая уравнение (3.47) можно записать в следующем виде:

$$N_{A\phi} = \frac{C so \Delta \phi}{q} = 48.75 \cdot 10^{10} \Delta \phi \quad . \tag{3.54}$$

Из уравнения (3.48) следует, что по значению КРП для Si - SiO₂ системы можно определить плотность поверхностного заряда межфазной границы при плоских зонах.

В то же время, для устранения неопределённостей, связанных с индивидуальными особенностями и предысторией Si - SiO₂ систем, требуется знать максимально полную характеристику процесса окисления, полученную неразрушающими методами. Это достигается методом непрерывного взвешивания в процессе окисления с последующим детальным анализом кинетической кривой каждого образца Si - SiO₂ систем.

Анализ кинетической кривой начального окисления позволяет определить эти величины, непосредственно характеризующие поведение дефектов, ответственных за окисление и которые могут участвовать в формировании итогового зарядового состояния Si - SiO, систем.

Основная величина, характеризующая зарядовое состояние Si - SiO₂ систем, плотность поверхностных зарядов определяется с достаточной точностью при помощи измерения ёмкости и контактиой разности потенциалов с использоганием зонной модели Si - SiO₂ систем.

3.4. Зависимость кинетических параметров от температуры окисления и давления кислорода

Для выбора оптимальных режимов окисления необходимо расширить диапазон изменений давления кислорода и температуры окисления, а также тип и концентрации примесей кристалла кремния. Для исследования использовались образцы монокристаллического кремния марки БКФ10 / 0.1 с малым содержанием растворённого кислорода, вырезанные из одного кристалла.

Выбор температур и давлений кислорода позволял выявить начальные стадии процесса роста окисной плёнки на кремии, причем продолжительность эксперимента выбиралась такой, чтобы определить постоянные "константы", характеризующие начальные стадии процесса окисления, т.е. параболические константы скорости роста окисленных плёнок. Давление кислорода выбиралось в диапазоне: 10-150 Торр с шагом 10-20 Торр. (1333-19995 Па), а температура в интервале 650 -1150° С. (923 - 1423° K).

Серия опытов проведена на образцах кремния с различными концентрациями примесей основных носителей, из экспериментальных данных определена зависимость параболической константы скорости окисления от плотности дефектов образца кремния в процессе его окисления при различных режимах. В главах, где описываются специальные опыты и обсуждение результатов,

мы приводим сведения об этих дефектах, их природе, типах и т. д.

На рис. 3.11 дана температурная зависимость константы скорости окисления "К" при различных давлениях кислорода. Как видно, все экспериментальные точки ложатся на три параллельные прямые в аррениусовых координатах, для P_{02} соответственно от 10 до 120 Торр. Энергия активации, определённая по наклону этих прямых, равна E =41130 кал / моль. Предэкспоненциальный множитель "К₀" имеет различные значения, показывающие, что "К₀" зависит от P₀, (рис 3.12), причем эта зависимость может быть аппроксимирована как

$$K_{0} = \gamma \cdot P_{0_{1}}. \tag{3.49}$$

Зная величину " K_0 " при различных P_{0_1} , можно определить значение величины коэффициентау. Удовлетворительная аппроксимация получается при $K_0 = 1.875 \cdot 10^4$ мк⁻²/с м⁴. мин. Тор. Уравнение, характоризующее зависимость " K_0 " от P_{0_1} имеет вид:

 $K_0 = 1.875 \ 10^4 \ P_0$, мк²/с м⁴мин

или

$$K_0 = 2.74 \cdot 10^4 \cdot P_{o_1} (Å)^2 / c e \kappa$$
 (3.50)

Таким образом, зависимость величины параболической константы окисления кремния от Т и Ро, , можно выразить полуэмпирическим

уравнением:

$$K = 1.875 \cdot 10^4 \cdot P_0, \exp(-41130/RT),$$
 (3.51)

где K - в мкг² / см⁴ мин, P₀, - в Тор или

$$K = 2.74 \cdot 10^3 \cdot P_0, \exp(-41130/RT),$$
 (3.52)

где К - в (Å)² / сек., Р_{о2} - в Тор.

Температурная зависимость логарифма обратной величины постоянных времени при разных P_{o_1} приведена на рис. 3.13 в координатах $\lg \frac{1}{\gamma_n} - \frac{1}{T}$. Как видно из рисунка, все экспериментальные точки группируются возле трёх параллельных прямых. По наклону этих прямых можно оценить величину энергии актизации релаксационного процесса ускоренного окисления величиной порядка $U_g = 22850$ кал / моль, что заметно меньше этой характеристики, определённой из температурной зависимости параболических констант скорости процесса окисления "К". Из графиков рис. 3.13 можно также определить величины $\frac{1}{\tau_{o_A}}$, характерызующие предэксноненты. Эти величины равны:

$$P_{o_{1}} = 40 \text{Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.6457 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{1}} = 60 \text{Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.4677 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{1}} = 30 \text{Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.3630 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{1}} = 100 \text{Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.2800 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{1}} = 120 \text{Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.2300 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{2}} = 10 \text{ Topp} \quad \frac{1}{\tau_{o_{k}}} = 0.2300 \text{ cc } \text{ k}^{-1},$$

$$P_{o_{2}} = 10 \text{ Topp} \quad \frac{1}{\tau_{o_{k}}} = 1,400 \text{ cc } \text{ k}^{-1}.$$

На рис 3.14 представлена зависимость τ_{OA} от P_{O_2} . Видно, что τ_{OA} линейно возрастает с увеличением давления $\tau_{OA} = \gamma_1 P_{O_2}$, где $\gamma_1 = 3.57 \cdot 10^{-2}$ сек/Гор. Тогда τ_{OA} можно определить как:

$$τ_{0A} = 3.57 \cdot 10^{-2} \cdot r_{0_{1},7}$$
 (3.53)
Γμε $τ_{0A} = B \text{ cek}, P_{0,7} = B \text{ Topp}.$

Рис. 3.11.Зависимость константы скорости окисления кремния от температуры

Рис. 3.12.Зависимость предэкспоненциального множителя от давления кислорода

Рис. 3.13. Температурная зависимость постоянная времени рассасывания точечных дефектов т_А и т_В

Отсюда вытекает, что $\frac{1}{\tau_{01}} = 28_{x}01 \text{ Po}_{2}^{-1}$, т. е. $\frac{1}{\tau_{01}}$ обратно пропорциональна Р_{о,} . С учётом (3.53) и исследованной области Т и Р_{о,} величину т_а можно выразить следующим образом:

 $\tau_{1} = 3,57 \ 10^{-2} \text{ Po}, \exp(22850/\text{RT}), \text{ cek}$

или 1/т_{*}= 28,01 Ро, · exp(-22850/RT), сек-(3.54).Из уравнения (3.54) видно, что 1 находится в обратно ь, эпорциональной зависимости от Po, , а не увеличивается как зависимость п. зболических констант скорости окисления от Ро, .

Из рисунка видно, что в случае т. все экспериментальные данные дл азных Ро, при разных Т группируются вокруг наклонной прямой. В пределах точности эксперимента зависимость от Ро, не наблюдается. Энергия активации подвижности этого вида точечных дефектов оценивается меньшей величиной и составляет:

 $U_{AB} = 8.2 \ KKaл/моль.$

Величина предэкспоненты равна

 $\frac{1}{--} = 4.59$ cek⁻¹.

В общем виде величину т, можно определить как

 $\tau_{\rm B} = 13.20 \exp(8200/RT)$, cek или $1/\tau_{\rm B}=0.075 \exp(-8200/\text{RT}), \text{ cek}^{-1}$. (3.55)

Путем изучения зависимости скорости окисления от концентрации легирующих примесей и плотности дислокаций в кремнии, показано, что степеньдефектного состояния кремния существенно влияет на скорость параболического окисления.

3.5. Скорость роста оксида кремния, как функция плотности дефектов подложки

В технологии микроэлектронных дискретных и планарных

полупроводниковых приборов плёнки диоксида кремния обычно формируют на кремнии с помощью его термического окисления при температурах 850 - 1100° С. Сверхтонкие оксидные плёнки должны быть совершенны по стехиометрии, электрически прочными и иметь зарядовую стабильность на границе кремний - диоксид кремния. Поэтому управление электрофизическими свойствами структур "кремний - диоксид кремния" в процессе их образования является актуальной проблемой микроэлектроники [105, 106, 45, 48, 165].

Рассмотрим влияние величины концентраций примесей на взаимодействие кислорода с поверхностью кремния и на кинетику его окисления.

Зависимость скорости окисления от дефектности подложки кристалла кремния и концентрации примесей

Известно, что скорость окисления в значительной степени зависит от наличия дефектов в окисле, так как реакция на границе окисти - кремлий, окисел - газ определяется переносом частиц-реагентов. Примеси могут быть локализованы в кремнии или в окисляющей среде (кислород).

Происходит перераспределение примесей основных носителей на поверхности кремния на границеSi - SiO₂ / I2, 38 *J*.

В случае, когда в кремнин присутствуют два типа примесей с различными коэффициентами диффузии, то в процессе его термического окисления вблизи поверхности раздела Si - SiO₂ образуется "p - n" переход. Известно, что равновесие концентрации на границе Si - SiO₂ при данной температуре определяется коэффициентом сегрегадии:

$$\eta = \frac{N_1}{N_2}$$

где N₁ - равновесная концентрация примесей в окисле; N₂ - равновесная концентрация примесей в кремнии.

Каждая примесь имеет соответствующий коэффициент сегрегации. Если $\eta < 1$, то происходит вытеснение примесей (например, фосфор), следовательно, на поверхности кремния происходит обогащение концентрации одной из примесей. Если $\eta > 1$, то бор растворяется в окисле и, по - видимому, приводит к обеднению фронта и уменьшению концентрации примесей на поверхности кремния (например, бор). Эти явления необходимо учитывать во время изготовления полевых транзисторов с р - n переходом и биполярных n - p - n транзисторов.

Как показали эксп-тоиментальные результаты[97, 98, 107, 106] деф четы подложки кремния (плотность дислокации концентрации примесей, параметры кремния и т. д.) сильно влияют на скорость окисления. В работе [79] установлено, что кремний, легированный фосфором с концентрацией 2 x 10²¹ см⁻³, влияет на скорость линейного роста окисла в парах воды и при давлении 120 атмосфер и температуре 650° С, увеличивает ее в 5.7 раза. В работе [107] показано, что наличие фосфора с концентрацией 2 x 10²¹ см⁻³,

приводит к значительному увеличению скорости окисла кремния по параболическому закону при давленый 1 атм и температуре 970° С. чо сравнению со случаем кремния, легированного бором до концентрации 5 х 10¹⁸ см³.

В работах97, ЭВнами показано, что зависимость скорости окисления связана с изменснием концентрации основных примесей в кремнита. плотности дислокаций, тыпом проводимости и плотностью точечных дефектов кремния.

Для исследования окисления кремния в парах воды использовалась печьтина СД - 100, принципиальная схем теё представлена на рис. 2.1. При окислении в парах воды источником служила термоустойчивая колба с дистиллированной водой, нагреваемой до температуры, достаточной для устойчивого создания потока водяных паров через кварцевую трубку при окислении. Специально подготовленные пластинки кремния (по 10 - 15

Рис. 3.14.Зависимость предэксионенты to от запленкя кислорода

Рис. 3.15.3ависимость скорости окисления кремния от плотности поверхностных дислокаций Δ- n - Si; 0 - p - Si

шт.) помещались во внутрь кварцевой трубы в зону нагрева с постоянной температурой до 1200° С. Один конец кварцевой трубы соединён с сосудом с дистиллированной водой, через которую может пропускаться газ (кислород, азот, аргон, и др.). В случае необходимости пар может быть отключён и газ может поступать непосредственно в кварцевую трубу. Регулировка и стабилизация температуры в зоне окисления проводились с точностью $\pm 1^{\circ}$ С.

Процесс окисления происходит в системе, состоящей из кристаллической фазы полупроводника и газовой фазы окислителя, т .е. кремний - кислород. Важным фактором, определяющим скорость окисления, является состояние кристаллической фазы и её поверхности. При одном и том же режиме окисления могут получаться окисные плёнки с различными свойствами, в зависимости от структурного различия кристалла. Свойства межфазной границы системы Si - SiO₂ также зависят от состояния поверхности кристалла, поэтому они не могут быть однозначно определены при помощи измеряемых параметров [109].

Так как идеальную тождественность образцов кристаллической фазы осуществить принципиально невозможно. Следовательно, измеряемые на практике параметры окисления являются индивидуальными для каждого образца. В связи с этим, изучение влияния дефектов кристалла на скорость окисления является важной научно-технической проблемой.

С другой стороны, не менее важным фактором, определяющим скорость окисления, является состояние газовой фазы окислителя, которое характеризуется, давлением и температурой окислительного процесса.

Зависимость скорости окисления от дефектов кристалла

В ряде работ [38,12,38,107,110] изучено изменение скорости окисления с изменением концентрации примесей. В работе[107]высказано

предположение о возможности ускоренного окисления при наличии дислокаций, а в работе[98] приведён график, показывающий зависимость скорости роста окисной плёнки от плотности дислокаций (рис. 3.15).

Как видно из рис. 3.15, в зависимости от плотности дислокации толщина окисного слоя может значительно меняться. Так, например, при одинаковых режимах окисления кремния, увеличение начальной плотности дислокаций в 5 раз приводит к возрастанию толщины оксида кремния на 1200 Å. С ростом плотности дислокаций наблюдается также и увеличение плотности сквозных дефектов окисной плёнки. Следует отметить, что скорость окисления кремния зависит от плотности дислокаций, но при этом она не связана с типом проводимости кремния. Отсюда следует, что дефекты кристалла "независимо от их типа, способствуют интенсивному росту скорости процесса окисления.

На рис 3.16 и 3.17 представлена зависимость толщины окисной плёнки от концентрации электронов и дырок, соответственно, в n - u - p Si. Разброс в значениях d по каждой группе образцов значительно превышает разброс в значениях удельного сопротивления и плотности дислокаций образца. Изменение толщин окисла для каждой группы образцов сведено в одну экспериментальную точку, представляющую среднее арифметическое значение толщины для 6 - 10 образцов с указанием максимального отклонения. Как видно из рис. 2.3, характер концентрационной кривой зависит от типа легирующего элемента. В случае р - Si (рис 3.17) имеется достаточно широкая область концентрации (10¹³ - 10¹⁸) см⁻³, где толщина окисного слоя почти не меняется или слабо растёт с концентрацией. Значительная зависимость скорости окисления от концентрации бора наблюдается в области сильного легирования (10¹⁸ - 10²⁰) см⁻³. Эти данные соответствуют [11] и объясняется в рамках диффузионной теории окисления.

Более сложная ситуация наблюдается в случа-

фосфора, концентрационная зависимость особенно сильно выражена в области слабого легирования (10¹⁴ - 10¹⁶) см⁻³. В случае сильного легирования(10⁷ - 10¹⁸) см⁻³, фосфор слабо влияет на скорость окисления, что в пределах ошибки совпадает с результатами предыдуших работ. Сильное изменение толщины окисного слоя при низких концентрациях фосфора, по - видимому, связано с ограниченной предельной растворимостью фосфора в окиси кремния.

Термическая обработка окисного слоя оказывает влияние на его стехиометрические свойства, в частности, меняется плотность сквозных дефектов (пор). Высокотемпературная обработка уменьшает дефектность окиси. Для изучении кинетики этого процесса проводилась термообработка с различной длительностью при температуре 1150° С в потоке инертного газа. Методом электронографии подсчитывались плотности пор в окислах до и после термообработки. Результаты подсчётов для n - p - n Si представлены в виде зависимости изменения плотности пор по сравнению с исходной от времени термообработки

 $|(N_n - N_{no})| \frac{N_{no}}{100} = f(t)$, где N_{no} - плотность пора, N_n - после термообработки.

Из рис. 3.18 видно, что как абсолютное значение, так и характер изменения плотности пор со временем термообработки различны для случая n - u - p Si. Окисные плёнки, выращенные на p - Si, имеют большую плотность дефектов, чем выращенные на n - Si. Кроме того, поры окиси на p - Si более стабильны и отжигаются при термообработке медленно.

Таким образом, скорость роста, дефектность и поведение объектов зависят от типа проводимости подложки, а также от плотности дислокации в ней. В случае Si, легированного бором, дефекты медленно отжигаются при термообработке, и их количество больще, чем в случае кремния, легированного фосфором.

Многочисленные экспериментальные результаты подтверждают, что

прирост окисной плёнки (dL) зависит от прироста концентрации примесей (dN) подложки (кремния), причём эта зависимость имеет следующий математический вид[12]

$$dL = A \cdot t^{0.5} P_{0_2}^{0.5} e^{-\frac{b}{kT}} (N)^{-\frac{1}{3}} dN , \qquad (3.56)$$

где L - толщина плёнки (SiO₂); А - коэффициент пропорциональности; t - время окисления; E - энергия активации процесса окисления; К постоянная Больцмана; N - концентрация примесей в кремнии.

Проинтегрировав (3.56), получим уравнение следующего вида:

$$L = \frac{2}{3} \cdot A \cdot t^{0.5} P_{0,1}^{0.5} e^{-\frac{E}{kT}} N^{\frac{2}{3}} + C, \qquad (3.57)$$

где C = L₀ толщина естественного окисного слоя на реальной поверхности кремния.

В зависимости от режимов окисления уравнению (3.57) можно придать различный вид, например, при фиксированном t, T и P₀₂ оно приобретает форму:

$$L = BN^{\frac{2}{3}} + C , \qquad (3.58)$$

где

$$B = \frac{2}{3} \cdot A \cdot t^{0.5} P_{0.5}^{0.5} e^{-\frac{E}{kT}} \cdot N^{\frac{2}{3}} + C , \qquad (3.59)$$

Если Р₀₂, Т и N имеют постоянные фиксированные значения, то уравнение (3.57) можно представить в следующем виде:

$$L = B_1 \cdot t^{0.5} + C , \qquad (3.60)$$

здесь

$$B_{1} = \frac{2}{3} \cdot A \cdot P_{0,2}^{0.5} e^{-\frac{E}{kT}} N^{\frac{2}{3}} + C.$$
 (3.61)

На основании последних многочисленных более точных экспериментальных результатов можно утверждать, что прирост окисной плёнки кремния (dL) зависит от концентрации основных носителей (N) кремния. Эту зависимость можно представить в виде:

$$dL = B_0 \cdot t^{0.5} \cdot P_{0.7}^{0.5} \cdot e^{\frac{E}{kT}} \cdot N^{\frac{1}{3}} \cdot dN , \qquad (3.62)$$

Рис. 3.16.Зависимость скорости окисления кремния от концентрации примесей n - типэ

Рис. 3.17.Зависимость скорости окисления кремния от концентрации примесей р - типа

где 1. - толщина оксида кремния; В₀ - коэффициент пропорциональности; t - время окисления; Е - энергия активации процесса окисления; N - концентрация примесей в подложке (кремния).

Проинтегрировав уравнение (3.62), получим:

$$L = \frac{3}{4} \cdot B_0 \cdot t^{0.5} \cdot P_{0_1}^{0.5} \cdot e^{-\frac{E}{kT}} \cdot N^{\frac{4}{3}} + C , \qquad (3.63)$$

где C = L₀ толщина естественного окисного слоя на реальной поверхности кремния.

На рис. 3.10 представлена одна из типичных кривых зависимости скорости роста окисной плёнки (толщина оксида кремния) от концентрации основных носителей п - типа кремния.

Как видно из графика, расчеты, выполненные по формуле (3.63), хорошо согласуются с экспериментом в интервале температур 850 - 1100° С и концентрации 10¹³ - 10¹⁷ см⁻³. Однако, в интервале больших концентрации 10¹⁷ - 10²¹ см⁻³ зависимость скорости роста окисла от концентрации отличается и имеет следующий вид:

$$L = \frac{1}{x} \cdot B_0 t^{0.5} \cdot P_{0_2}^{0.5} \cdot e^{-\frac{E}{kT}} \cdot N^3 + C_1$$
(3.64)

где 1/3 ≤ х ≤ 2/3; В - коэффициент пропорциональности.

График построен на основании данных, полученных при решении уравнений (3.62) и (3.63) на ЭВМ. Здесь приводятся результаты, вычисленные для режима окисления кремния, соответствующие **T**=1100° С, давлению 10° Па; время окисления 30 минут.

Известно, что процесс окисления является следствием двухсторонней встречной реактивной диффузии. В связи с этим полученные результаты могут быть объяснены диффузионной теорией окисления. В работах [96,48, IO5] показано, что концентрация зарядов и их стабильность в системе кремний - диоксид кремния определяется механизмом образования плёнки диоксида, именно на начальной стадии окисления, т. е. при первичном взаимодействии поверхности полупроводника с кислородом образуются точечные дефекты различного типа. Они и являются одним из основных источников появления зарядовых состояний на границе структур кремний - диоксид кремния,что важно для создания конкретных приборов. Для фиксированных значений параметров режима окисления, (P₀₂, T и t окисления) в уравнениях (3.63) и (3.64) можно представить в виде:

$$L = B_1 \cdot N^3 + C$$
, ИЛИ $L = B_2 \cdot N^* + C$, (3.65), где

 $B_{1} = \frac{3}{4} \cdot B_{0} t^{0.5} P_{0.1}^{0.5} e^{-\frac{k}{kT}}, \quad a \qquad B_{2} = \frac{1}{x} \cdot B \cdot t^{0.5} \cdot P_{0.2}^{0.5} e^{-\frac{k}{kT}}. \quad (3.66)$

При фиксированном значении P₀₂, Т и концентрации основных носителей уравнения (3.65) и (3.66) приобретают следующий вид:

$$L = B_3 \cdot t^{0.5} + C$$
 ИЛИ $L = B_4 \cdot t^{0.5} + C$, (3.67)

$$B_{3} = \frac{3}{4} \cdot B_{0} \cdot P_{0_{3}}^{0.5} \cdot e^{-\frac{E}{kT}} \cdot N^{3}, \quad в \text{ то же время}$$

$$B_{4} = \frac{1}{x} \cdot B_{0} \cdot P_{0_{3}}^{0.5} \cdot e^{-\frac{E}{kT}} \cdot N^{*} \qquad (3.68).$$

Таким образом, теоретические расчёты, проведенные на ЭВМ при помощи уравнений (3.67) и (3.68) для зависимости скорости роста диоксида кремния от параметров, а также от условий окисления и проведенный анализ полученных экспериментальных данных дают конкретную ценную информацию о структуре Si. Решая уравнения (3.67) и (3.68) для различных режимов окисления, можно построить номограмму. На основании этой номограммы программируется режим окисления, которым заранее можно задавать значения основных параметров приборов на основе Si - SiO₂ структур. При таком подходе к технологии изготовления структур кремний - диоксид кремния можно получить требуемые параметры приборов для микроэлектроники.

Рис. 3.18.Зависимость плотности пор от времени термообработки

расчетная; о - экспериментальная

3.6. Анодное окисление ноннолегированных и нелегированных полупроводниковых структур

Метод анодного окисления пока сравнительно редко применяют для создания диоксида кремния на поверхности кремния, но этот процесс анодного окисления предельно прост и доступен. Кремниевый образец помещают в специальную электролитную ячейку, электролитами могут служить деонизированная вода, азотная или фосфорная кислота, а анодом является кремний.После полной подготовки установки к работе, подаём определённое напряжение на электроды, создаём условие для осуществления диссоциации молекул воды с образованием атомарного кислорода, который окисляет кремниевый анод и создаёт на нём кремнезёмную плёнку. Затем её промывают и сушат при T= 150 - 200° С в течение 1.5 - 2 часов.

Окисление кремния р - типа может быть осуществлено в растворе азотной или фосфорной кислоты, в н - метилацетамиде при плотности тока 7 м А/см².

Известно, что кремний имеет большое сходство с кислородом, поэтому при комнатной температуре и на воздухе поверхность кремния покрыта тонкой плёнкой окисла (20 - 30Å). Конечно, эта тонкая плёнка является несовершенной и неустойчивой. Тем не менее она разделяет кремний от электролита или же от окисляющего газа. Поэтому дальнейший рост окисла, т. е. реакция кремний - кислород может происходить только за счёт переноса реагирующих веществ через эту плёнку [13,113,115].

Скорость роста анодных окисных плёнок на кремнии в жидком электролите, не растворяющем окисел, зависит от электростатического поля в нём, которое ускоряет миграцию ионов. Ионы кремния обладают подвижностью[II4], следовательно, рост анодной окисной плёнки в первом приближении можно объяснить переносом ионов кремния от границы раздела окисел - кремний через окисел к границе окисел электролит, где и протекает окислительная реакция. Состояние поверхности кремния сильно влияет на скорость окисления, следовательно, и на предельную толщину окисной плёнки, и её свойства.

Анодная поляризация n - типа кремния при напряжении меньше 100В в значительной степени определяется потенциальным барьером на границе кремний-окисел [116,117]В начале роста окисла большая часть приложенного напряжения падает на обеднённый слой в кремнии, поэтому напряженность лоля в окисле, ускоряющее перенос ионов, уменьшается.

Анодное окисление можно проводить при постоянном токе или постоянном напряжении, а также при сочетании обоих вариантов. Для поддержания постоянного ионного тока через окисел необходимо, чтобы с увеличением толщины окисной плёнки возрастало и падение напряжения (U) в ней, т. е. анодное окисление при постоянном токе характеризуется скоростью увеличения напряжения в окисле dU/dt [I I5]. В работе [II5] приводится эмпирическое уравнение для случая, когда электрическое поле (E) в окисле не зависит от времени и расстояния:

$$\frac{dU}{dt} = E \cdot \frac{dx}{dt} = \frac{j \cdot E \cdot M}{Z \cdot F} , \qquad (3.69),$$

где

х - толщина; t - время окисления; j - плотность ионного тока;

F - = 9.65 x 10⁴ Кл/моль - число Фарадея; z - коэффициент, на который умножают число Фарадея, для определения количества электричества, необходимого для образования 1 г/моль окисла;

М - количество грамм - молей окисла; р - удельный вес;

Величино dU/dt приблизительно пропорциональна j; т.е., чем больше плотность ионного тока, тем быстрее увеличивается напряжение, и тем быстрее растёт окисел. Экспериментальные результаты [116,117,119] дают следующие численные данные. При $j = 7 \text{ мА/см}^2$, X/V = 3.8 A/B, а это соответственно $E = 2.6 \times 10^7 \text{ B/см}$. Когда в качестве электролита применяется раствор KNO₃ в n - метилцетамиде анодирование при постоянном токе может идти вплоть до напряжения 350B, соответствующее напряжению пробоя окисной плёнки.

Анодное окисление происходит при постоянном напряжении между анодом и катодом. Первоначальный ток между ними является следствием ионной проводимости окисла. Величина этого определяется сопротивлением электролита, тонкого слоя окисла на кремниевом аноде и поляризацией, связанной с образованием "двойного слоя" в электролите. Налччие потенциального барьера на границе кремний окисся, также может уменьшать величину первоначального тока. Начальная стадия окисления присходит ускоренно, по смещённым закономерностям, а потом наступает насыщение. Когда через окисся протекает минимальный ток, тогда прекращается и процесс анодного окисления. Варьируя приложенное поле, находят оптимальный режим окисления для каждого отдельного образца.

3.7. Пределы зависимости кинетических параметров от температуры окисления и давления кислорода

Известно, что с повышением температуры и давления кислорода, процесс окисления и время релаксации избыточных точечных дефектов, образованные при первичном взаимодействии кислорода с поверхностью кристалла кремния, сильно изменяются. С повышением P_o, время релаксации (τ_A) увеличивается, а с ростом Т-уменьшается. Ожидали резкое изменение величины времени релаксации, проводили серию специальных экспериментов при различных режимах окисления, однако результаты были совершенно неожиданные, а именно, при определённых значениях Т и P_o, параметров, время релаксации практически перес зависеть от них, т. е. наступает насыщение.

Явление насыщения времени релаксации в зависимости от T и P_{o_1} окисления можно объяснить при помощи молекулярно - кинетической теории. В частности, при первичном взаимодействии кислорода с поверхностью кристалла кремния образуется огромное количество избыточных дефектов, и в дальнейшем происходит их релаксация. Время релаксации дефектов сильно зависит от режима окисления. Когда полностью релаксируются избыточные дефекты, тогда для конкретного случая и наступает насыщение. Устойчивые окиси кремния являются диоксидом кремния. Он состоит из одного положительного иона кремния и двух отрицательных ионов кислорода.

При этих условия система обладает квазиравновесным состоянием, а процесс окисления в кинетическом смысле переходит в стационарную стадию. Вследствии этого, дальнейшее увеличение P₀, и T окисления практически не может изменить процесс химического взаимодействия кислорода с кремнием, т.е. концентрация избыточных точечных дефектов типа кислородных вакансий и "междоузлей" кремния при первичном взаимодействии кислорода с поверхностью кристалла достигает возможного максимального значения и наступает насыщение.

На рис. 3.20 показана зависимость времени релаксации избыточных точечных дефектов от P_{o_1} . При определённых значениях P_{o_2} для каждой конкретной T=const имеется соответствующий предел зависимости времени релаксации от P_{o_1} . Из молекулярно - кинетической теории известно, что для замкнутой системы концентрация молекул газов постоянна, и определяется при помощи уравнения состояния идеальных газов. Расчёты, проведённые нами на ЭВМ, показывают, что соотношения ионов кремния и кислорода с некоторой корректировкой с учётом кристаллической связи кремния практически соответствуют значениям, при которых начинается насыщение.

На рис. 3.21 представлена зависимость, обратная величине времени релаксации избыточных точечных дефектов от величины Т. Как видно из графика, здесь также наблюдается насыщение, объясняемое с точки зрения молекулярно - кинетической теории. При повышении Т точечные дефекты быстро отжигаются и насыщение наступает быстрее.

Таким образом, из экспериментальных и расчётно - теоретических данных следует, что имеется широкий интервал, при котором можно регулировать концентрации точечных дефектов, и соответственно электрофизические параметры образованных структур кремний - диоксид кремния.

Эти исследования показывают возможность создания окисных Siструктур с заданными параметрами.

Выводы

Термомикрогравиметрический анализ кинетических исследований показывает, что истинное значение энергии активации процесса окисления можно определить только в том случае, когда кинетика роста окисла регистрируется непрерывно, а также с учётом начальной стадии окисления. Многие методы, применяемые для исследования механизма кинетики образования оксидов не позволяют чётко определить границу, когда скорость роста оксида подчиняется параболическому закону. Если температура окисления высокая, то значение энергии активации процесса окисления будет близко к истинному значению. Однакојесли температура окисления низкая, то полученная энергия активации не соответствует действительности, потому что в режиме низкой Т долгое время происходит ускоренный рост оксида по сравнению с его параболическим ростом. Следовательно, результаты двух совершенно разных закономерностей усреднять нельзя. Поэтому, предложенная нами методика измерений явльется перспективной.

Снятие вольтёмкостной и топографи еской контактной разности потенциалов структур кремний - диоксид кремния, а также анализ кинетических кривых показали, что зарядовое состояние на границе этих структур характеризуется точечными дефектами, образованными на первичной стадии взаимодействия кислорода с поверхностью кристалла кремния.

Скорость роста окисла в парах воды можно выразить в первом приближении уравнением вида: (3.62) и (3.63).

С увеличением дозы облучения растёт плотность зарядов на границе кремний - диоксид кремния. Существует предел зависимости плотности зарядов от дозы облучения ионнолегированного кремния.

Показано, что анодным окислением можно получать равномерное окисление всей рабочей площади структур "кремний на изоляторе". Методом анодного окисления нами определены профили распределения концентраций основных носителей и их холловской подвижности по глубине слоя "кремний на изоляторе".

Релаксационное время для точечных дефектов растёт с увеличением P_{o_1} и уменьшается с ростом Т. Существуют такие пределы изменения P_{o_2} и Т скисления, при достижении которых релаксационное время избыточных точечных дефектов практически не изменяется, т.е. выходит на насыщение. Следовательно,продолжительность начального ускоренного роста диоксида не зависит от дальнейшего увеличения Т и P_{o_2} окисления кремния. Теоретические расчёты дают возможность определить эти пределы насыщения кинетических параметров. Данные эффекты объясняются термодинамическим квазиравновесием между ревтентами процесса окисления.

Таким образом, проведены методические обоснования, необходимые для реализации конкретных режимов в известных методах окисления

Рис. 3.20.Зависимость времени релаксации избыточных точечных дефектов от давления кислорода

Рыс. 3.21.Зависимость обратной величины времени релаксации избыточных точечных дефектов от температуры окисления

кремния для целей оптимизации процесса окисления и получения структур на основе Si со стабильными параметрами.

ГЛАВА-4. ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ДИОКСИДА КРЕМНИЯ И СТРУКТУР КРЕМНИЙ - ДИОКСИД КРЕМНИЯ

Для исследования зарядовых свойств Si - SiO₂ системы использовались образцы, изготовленные автором путём окисления кремния марки БКФ 10/0.1. Измерения характеристик проводились на тех же самых Si - SiO₂ системах, кинетические параметры которых описаны в 3 главе. На всех образцах проводились измерения с использованием установки для измерения её топографии. Кроме того, определятись поверхностные потенциалы на тех же Si - SiO₂ системах по методу высокочастотных вольтфарадных (С - V) измерений.

4.1. Контактная разность потенциалов системы "кремний - диоксид кремния"

Выяснилось, что величина КРП (Δφ) для одного и того же образца от точки к точке несколько отличается, поэтому для КРП (Δφ) принимали среднее арифметическое значение для нескольких сотен точек. На рис 4.1 -4.7 представлены топографии КРП в зависимости от условий выращивания (SiO₂). На графике специально выделены характерные точки, т. е. с максимальными отклонениями от средней величины КРП.

На графике (рис. 4.8) показана температурная зависимость величины КРП в аррениусовых координатах. Видно, что экспериментальные точки группируются вокруг трёх прямых, которые практически параллельны, причем эти точки хорошо ложатся на "свои" прямые, соответствующие давлениям кислорода 10, 20, 40, 60, 80, 100 и 120 Торр. Такая зависимость математически представляется уравнением следующего вида:

$$\Delta \varphi = \varphi_0 \cdot e^{\frac{U_1}{kT}}, \qquad (4.1)$$

где Δφ - величина КРП относительно неокисленного Si в (В);

Δφ₀ - предэкспонента; U₁ - энергия активации образования зарядов.

Из графика (рис. 4.8) определим величины U_1 и $\Delta \phi_0$. Величина $\Delta \phi_0$ зависит от P_0 , (рис. 4.9) и описывается формулой:

$$\Delta \varphi_0 = \gamma_2 \cdot P_{O_1} , \qquad (4.2)$$

где γ_2 - постоянная, равная 7.07 x 10⁻⁶ B/Top.

С учётом (4.2) уравнение (4.1) можно записать в виде:

$$\Delta \varphi = \gamma_2 \cdot P_{O_3} \cdot e^{\frac{U_1}{kT}} . \tag{4.3}$$

Характерно то, что прямые (рис. 4.9), относящиеся к различным T=Const, пересекаются в одной точке, для которой P_o, соответствует 3 - 6 Торр.

Следует отметить, что на рис. 4.9 некоторые экспериментальные точки относятся к значениям величины КРП ($\Delta \phi$), определённым на специально подготовленных образцах. Некоторые образцы после первичного окисления специально несколько раз охлаждались и окислялись повторно. Как видно из графиков (рис. 4.8, 4.9), все экспериментальные точки соответствуют первичным условиям окисления.

4.2. Зависимость плотности поверхностного заряда в системах "кремний диоксид-кремния" от температуры окисления и давления кислорода

Для определения зависимости плотности поверхностных зарядов (N,) на межфазной границе Si - SiO₂ системы от условий окисления проведены

измерения вольтфарадных (С - V) характеристик на тех же образцах, на которых изучалась кинетика роста окисной плёнки и измерено распределение контактной разности потенциалов (КРП) по поверхности.

Измерение ёмкости МОП - структур от потенциала поверхности описывается уравнениями (3.41 - 3.47). Для рассматриваемого случая, когда окисная плёнка образована на поверхности кремния п - типа марки БКФ10 /0.1 коэффициенты уравнений (3.41 - 3.47) имеют следующие значения:

$$\begin{split} \mathbf{L} &= \left[\frac{\mathbf{k} \cdot \mathbf{T} \cdot \mathbf{\epsilon}_{u} \cdot \mathbf{\epsilon}_{0}}{2 \cdot \mathbf{q} \cdot \mathbf{n}_{i}} \right]^{0.5} = 2.5 \cdot 10^{-3} \text{ c M},\\ \mathbf{\epsilon}_{0} &= 8.86 \cdot 10^{-12} \, \text{ф} \, / \, \text{M},\\ \mathbf{\epsilon}_{u} &= 12,\\ \mathbf{n}_{i} &= 1.4 \cdot 10^{10} \, \text{c M}^{3},\\ \mathbf{n}_{d} &= 4 \cdot 10^{14} \, \text{c M}^{3},\\ \mathbf{k} \cdot \mathbf{T} &= 0.026 \cdot 3B \, \text{fr} \, \text{pu} \, \mathbf{T} = 300^{\circ} \, \text{K},\\ \frac{\mathbf{q}}{\mathbf{k} \cdot \mathbf{T}} &= 39 \, \text{B}^{-1},\\ \mathbf{U}_{i} &= 39 \cdot \mathbf{\phi}_{s}.\\ \mathbf{U}_{F} &= \frac{\mathbf{q}}{\mathbf{k} \cdot \mathbf{T} \cdot \mathbf{\phi}_{F}},\\ \mathbf{\phi}_{F} &= \frac{\mathbf{k} \cdot \mathbf{T}}{\mathbf{q}} \cdot \ln \frac{\mathbf{N}_{d}}{\mathbf{n}_{i}} = 0.24 \, \text{B},\\ \mathbf{U}_{F} &= 9.4 \, , \end{split}$$

где U - поверхностный потенциал.

Измерение вольтфарадных характеристик проводились с индиевым металлическим проводом. Согласно данным [7] КРП индий - кремний п - типа (10 Ом х см) можно определить величиной UMII ≈ 0.36 В.

После некоторых математических преобразований и подстановки численных значений уравнения (3.42) (3.43) принимают вид:

Рис. 4.1. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

Рис. 4.2. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

Рис. 4.3. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

Рис. 4.4. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

Рис. 4.6. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

Рис. 4.7. Топографии КРП на поверхности окисленного кремния при различных температурных режимах окисления

$$C_{s} = \frac{428.11 \cdot (0.7 \cdot |e^{-9.4 + 39 \cdot \varphi_{s}} - e^{-(9.4 + 39 \cdot \varphi_{s})}| + 2 \cdot 10^{4})}{\left[e^{9.4 + 39 \cdot \varphi_{s}} + e^{-(9.4 + 39 \cdot \varphi_{s})} + e^{9.4} + e^{-9.4} + 39 \cdot |\varphi_{s}| \cdot (e^{9.4} - e^{-9.4})\right]^{0.5}}, \quad (4.4)$$

$$C = \frac{C_{\text{OK}} + \frac{428.11 \cdot (0.7 \cdot |e^{9.4+39 \cdot \varphi_{1}} - e^{-(9.4+39 \cdot \varphi_{3})}| + 2 \cdot 10^{4})}{[e^{9.4+39 \cdot \varphi_{1}} + e^{-(9.4+39 \cdot \varphi_{1})} + e^{9.4} + e^{-9.4} + 39 \cdot |\varphi_{3}| \cdot (e^{9.4} - e^{-9.4})]^{0.5}}{[e^{9.4+39 \cdot \varphi_{1}} + e^{-(9.4+39 \cdot \varphi_{3})} + e^{9.4} + e^{-(9.4+39 \cdot \varphi_{3})}| + 2 \cdot 10^{4})}$$
(4.5)

Следуя исследованиям[IOI, IO2], можно с помощью уравнения (4.5) рассчитать и построить теоретическую вольтфарадную характеристику для МОП - структуры.

Расчёт зависимости ёмкости идеализированных теоретических МОП структур от приложенного к ним напряжения проведён на ЭВМ типа МИР. Изменение наклона и формы экспериментальной С - V характеристики относительно расчётной, связано с присутствием на границе раздела полупроводник - окисел поверхностных состояний. Для случая однородного распределения поверхностных состояний по энергиям, изменение наклона С - V связано с плотностью поверхностных состояний на границе кремний - окисел, а сдвиг обусловлен фиксированным зарядом в окисной плёнке и контактной разностью потенциалов U_{мп} металл - полупроводник. Из сдвига С - V характеристик можно определить напряжение плоских зон U_{пз}:

$$U_{\Pi 3} = U - V_{M\Pi}$$
 (4.6)

Зная U_{пз}, из уравнения (3.49) определяют плотность фиксированного заряда в окисной плёнке N

При сравнении С - V характеристик для образцов Si - SiO₂, полученных в разных условиях окисления (рис. 4.10 - 4.16), видно, что при изменении режима окисления изменяются, как величина встроенного положительного заряда окисной плёнки, так и плотность . Сильное увеличение N_s

Рис. 4.8. Зависимость КРП от температуры

Рис. 4.9. Зависимость КРП от давления кислорода

происходит в том случае, если после первого окисления образец дополнительно окисляется при более высоких температурах, как это видно из рис. 4.16 для 80 Торр, при T= 794 и 882°.

Для опытов при 853° С, когда повторное окисление при более высоких Т не проводилось, получены меньшие значения N_s . Явной зависимости величины плотности поверхностных состояний N_{nc} на границе кремний – окисел от режима первого или конечного окисления не наблюдается. Однако величина плотности фиксированного заряда в окисной плёнке, определяемая по сдвигу С - V характеристик при напряжении плоских зон UПЗ,чётко коррелирует с режимом первоначального окисления образцов, см. из рис. 4.17 и 4.18.

При представлении полученных данных в аррениусовых координатах (рис. 4.17) все экспериментальные точки ложатся на три параллельные прямые линии, соответствующие P_o, при котором произошло первое окисление образцов кремния. Из графиков 4.17 можно найти математическую зависимость N_s встроенного заряда в окисной плёнке от режима окисления:

$$N = \gamma_{J} \cdot P_{o_{J}} \cdot e^{\frac{U}{kT}}, \qquad (4.7)$$

где $\gamma_3 = 7.6 \times 10^5$ см⁻² тор⁻¹; U - 0.77 эВ.

Из графиков рис. 4.18 видно, что в пределах исследованной области, при одинаковых температурах N, линейно возрастает с увеличением P₀, .

Было отмечено в некоторых экспериментах, например, при 40 Торр и 80 Торр при 794 и 882° С, после первого окисления образцы кремния дополнительно окислялись при других Т при одном и том же P_o, однако полученные значения и в этом случае хорошо описываются уравнением (4.7), как для режима первого окисления.

Следует обратить внимание, что на рис. 4.18 все прямые линии пересекаются в одной точке с минимумом фиксированных зарядов в окисленной плёнке.

Как видно, из сопоставления рис. 4.8 - 4.9 и рис. 4.17 - 4.18, измерения встроенного заряда в окисной плёнке на кремнии, проведённые методами КРП и С - V характеристик, дали одинаковые результаты. Это связано с тем, что измерения КРП от условий окисления проводились относительно неокисленного образца кремния, вырезанного из того же монокристалла кремния, что и окисленные образцы. На поверхности исходного кремния существовала естественная тонкая окисная плёнка с границей раздела Si -SiO,, поэтому изменение КРП в окисленных образцах кремния, в основном, связано с образованием фиксированного заряда в окисной плёнке при высокотемпературном окислении. Смещение С - V характеристик при напряжении плоских зон связано с образованием фиксированного заряда в окисной плёнке, поэтому оба метода дают практически одинаковые результаты. Величина фиксированного заряда в окисной плёнке зависит от Ро. и Т окисления, при которых проводилось первое (начальное) окисление кремния. Последующее повторное окисление этих же образцов кремния при более высоких Т не приводило к заметному изменению фиксированных зарядов в окисной плёнке, однако при этом происходит изменение плотности поверхностных состояний, как уже отмечалось. Чем выше Т и ниже Ро, , при которых проводилось первоначальное окисление кремния, тем меньше величина встроенного заряда в окисной плёнке, как это видно из рис. 4.8 - 4.9 и рис. 4.17 - 4.18 и уравнений (4.3) и (4.6).

Таким образом обнаружено, что величина фиксированного заряда в окисной плёнке определяется условисм первых (начальных) стадий процесса окисления. Величина встроенного в окисной плёнке заряда пропорционально увеличивается с Р_о, и экспоненциально уменьшается с ростом T, при которых проводился процесс окисления. II5

Одним из достоинств предложенной для исследований установки является то, что окисление можно проводить на структуре типа "Кремний на изоляторе" (КНИ), т. е. на образцах кремния, заранее обладающих диэлектрическим слоем. Такие образцы изготавливаются следующим образом: в кремний КЭФ - 4.5 внедрялись высокоэнергетические ионы азота с большой дозой, с последующим отжигом образцов. Легирование осуществлялось ионами с энергией 175 кэВ, доза 1.4 х 1017 см-2, а отжиг проводился на установке фотонного отжига при температуре 1200° С в течение 10 секунд. Для проверки электрических свойств приповерхностного слоя на рабочей поверхности образцов в травителе, (состав 1 объёмная часть HF, 2 части CH,OOH и 3 части HNO,), вытравливались пве мезаструктуры, глубиной h = 10 мкм. Мезаструктуры были сформированы с помощью пятнышек полистероловой плёнки, которые после травления удалялись толуолом. На эти мезаструктуры нанесены контакты In Ga. Один контакт наносился на подложку. Далее омметром измерялись сопротивления между контактами при различной полярности измерительного напряжения. ВАХ нескольких произвольных контактных пар одного из типичных образцов приведены на рис. 4.19.

Результаты экспериментов показывают, что в данных образцах диэлектрический слой Si₃N₄ с явно выраженными изолирующими свойствами отсутствует. В работах [I I9, I20, I21] отмечено: изолирующие слои образуются при дозах внедрения азота больших, чем 5x10¹⁷см⁻², причем из - за слабых донорных свойств азота в кремнии можно было бы ожидать образования низкоомного слоя. Подобные образцы могут быть подвергнуты анодному окислению при непосредственном пропускании тока. Нами были проведены серии последовательных подобных окислений с целью исследования измерения скорости анодного окисления по глубине приповерхностного слоя. На рис. 4.20 представлены эти зависимости для 2-х образцов.

Рис. 4.10.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рнс. 4.11.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рис. 4.12.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рис. 4.13.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рис. 4.14.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рис. 4.15.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Рис. 4.16.Вольтфарадная характеристика М - SiO₂ - Si структур, полученных при различных режимах

Толщина окисных плёнок определялась визуально по интерференционному цвету при сравнении с эталонными плёнками, а также по приросту напряжения на окисле в процессе анодного окисления постоянным током. Для этого был изготовлен набор анодных окисных плёнок на кремнии и эллипсометрическим методом измерены их толщины. Толщина анодных окисных плёнок, выращенных за один шаг, обычно составляла 800 - 1200 Å. Пересчёт толщины окисла в толщину удельного кремния был произведён согласно данным работы [122]. На графике скорость окисления представлена в единицах прироста напряжения за единицу времени. Экспериментальные точки двух типов для каждого из образцов соответствуют средней скорости анодного окисления за 3 мин. и за 5 мин.

Для обоих образцов обнаружено одинаковое поведение характеристик: спад скорости окисления от поверхности до глубины 0.25 - 0.30 мкм. Для однозначной трактовки такого поведения требуется дополнительное исследование, однако второй слабый максимум по глубине согласуется с проекцией среднего пробега ионов азота с энергией 175 кэВ.

Исследования проводились на образцах КНИ - структур, изготовленных на подложке кремния. Был нанесён слой двуокиси (0.6 мкм), далее слои кремния (0.5 мкм), были защищены последовательно слоями: SiO₂ (1.4 мкм) и Si₃N₄ (300 Å). Для удаления нитрида кремния, образцы кипятились в растворе H₃PO₄ (700 мл), H₂SO₄ (7 мл) и H₂O (120 мл), далее удалялся слой SiO₂ в плавиковой кислоте. После этого образцы промывались дистиллированной водой и высущивались.

Визуально на многих слоях обнаруживалась блочная структура в виде характерных "перьев". Снимки, сделанные на оптическом микроскопе, показывают, что слои имеют дентритоподобную структуру и состоят из крупных блоков с размерами примерно 6 х 1000 мкм, разориентированы на углы 0.5 - 2.0°. Объём блоков практически бездислокационный, границы

Рис. 4.17.Зависимость плотности поверхностных зарядов на межфазной грапице Si - SiO2 системы от температуры

Рис. 4.18.Зависимость плотности поверхностных зарядов на межфазной границе Si - SiO₂ системы от давления кислорода

блоков образованы наклонными дислокационными стенками. Вблизи границ, особенно около тройных точек, наблюдается повышенная плотность дислокаций. Другие дефекты (упаковки, двойники и т. д.) не обнаружены. В качестве оптического контакта наносился In Ga сплав. Сопротивления образцов - 1 Мом, на этих образцах методом Ван - дер - Пау вычислены электропроводность и постоянная Холла.

Во время опыта сила магнитной индукции была 0.750 Тл, а величина тока в пределах 0.01 - 0.5 мА. Поверхностные сопротивления р, определяли по методике, описанной в работах [59, 60].

$$\rho = \frac{2.27 \cdot (\mathbf{V}_1 + \mathbf{V}_2)}{1} \cdot f\left(\frac{\mathbf{V}_1}{\mathbf{V}_2}\right), \tag{4.7}$$

где V₁ и V₂ - средние значения (при различных полярностях измерительного тока I) на паре контактов, противоположной токовой паре [mB], [I] =[mA], значение функции $f(V_1/V_2)$ определялось согласно [60].

Эффективная холловская подвижность рассчитывалась согласно выражению:

$$\mu_{wpp} = \frac{V_X \cdot 10^4}{\rho_s \cdot B \cdot 1}, \qquad (4.8)$$

где V-среднее холловское значение из многочисленных измерений. Среднее значение поверхностного сопротивления рабочего слоя и эффективная холловская подвижность, соответственно, составили

 $r_{s} = 14 \div 16 \text{ kOm}$ и $\mu_{abb} = 200 \div 260 \text{ cm}2/\text{B} \cdot \text{cek}$.

В процессе эксперимента на некоторых образцах были проведены послойные измерения эффективной подвижности Холла и электропроводности. Окисление проводилось при токе 1 мА, т. е. при плотности тока примерно 15 мА / см². При начальном напряжении 20 - 30 В в этиленгликолевом электролите до роста напряжения на окисле в 200 В. Оценка показывает, что толщина выращенной окисной плёнки составляет в этом случае 900 Å, т. е. скорость роста анодной окисной плёнки равна примерно 5.2 Å/B. При достижении напряжения на окисле 200 В фиксировалось время роста и вычислялась средняя скорость анодного окисления с учётом начального напряжения в единицах В/сек. Глубина стравленного кремния вычислялась умножением толщины окисла на соответствующий коэффициент [122].

На рис. 4.21 представлены зависимости скорости анодного окисления от глубины стравленного слоя кремния для двух образцов. До глубины 0.4 - 0.5 мкм. скорость анодного окисления образцов постоянна и не зависит от дефектности структуры в пределах всего слоя окиси кремния. Скорость анодного окисления в такой структуре, состоящей из монокристаллических блоков, постоянна и вряд ли может служить индикатором дефектности такой структуры по глубине.

Начиная с глубины 0.4 мкм для обоих образцов, наблюдается подъём скорости анодного окисления и нарушается однородность окраски окисляемого слоя. В этом случае увеличение скорости анодного окисления обусловлено перераспределением плотности тока окисления. Из - за неоднородности толщины слоя кремния при конечных стравлениях образуются островки кремния, электрически изолированные от кругового контакта. Ток окисления через них не протекает и в этих местах окисление заканчивается. Из - за постоянства тока окисления плотность тока в остальных локальных местах повышается, увеличивая скорость анодного окисления, что может служить лишь индикатором границы слоя Si и SiO₂. как видно из рис. 4.21, она оценивается в 0.4, 0.5 мкм.

На нескольких образцах были измерены зависимости эффективной холловской подвижности дырок в слое кремния (рис. 4.22). По этим данным построили усреднённые кривые $\mu_{xdv} = f(d)$ и $\rho_s = \phi(d)$, затем вычисляли

Рис. 4.19.Вольтамперные характеристики ионнолегированных образцов кремния

Рис. 4.20.Зависимость скорости анодного окисления от глубины поверхностного слоя кремния. ● - 2мА; О - 1 мА

I28

зависимости объёмной концентрации дырок Р и их холловской подвижности µ_L от глубины образца. Вычисления производились по формулам из работы [123]:

$$P = \frac{\left(\frac{1}{\rho_s}\right)_i - \left(\frac{1}{\rho_s}\right)_{i11}}{e \cdot d_i \cdot \mu_i} \left[c M^3\right], \qquad (4.9)$$

$$\mu_{i} = \frac{\left(\frac{\mu_{xyyy}}{\rho_{s}}\right)_{i} - \left(\frac{\mu_{xyyy}}{\rho_{s}}\right)_{i+1}}{\left(\frac{1}{\rho_{s}}\right)_{i} - \left(\frac{1}{\rho_{s}}\right)_{i+1}} \begin{bmatrix} c \ M^{2} \\ B \cdot C \end{bmatrix} , \qquad (4.10)$$

где е = -1.6 х 10⁻¹⁹ Кл - элементарный заряд, d_i - толщина удалённого слоя кремния, ρ_s - поверхностное сопротивление в Ом.

Концентрация дырок в слое меняется слабо и составляет величину (6 - 10) х 10¹⁷ см⁻³. Легированный слой имеет резкую границу, обрываясь на глубине 0.20 - 0.22 мкм. По - видимому, этот слой получен ионным внедрением и последующим отжигом. Несмотря на то, что слой фактически является поликристаллическим, из - за больших размеров монокристаллических блоков подвижность высока и по расчётам даже несколько больше эмпирических значений подвижности, по Ирвину [124].

Электрическая изоляция верхнего слоя кремния от подложки была до измерения на всех образцах высокой. Через каждые несколько циклов "анодное окисление - стравливание окисла - измерения" на тыловую сторону каждого из образцов вновь наносился In Ga контакт, большой площади, измерялось электрическое сопротивление между этим контактом и каждым из четырёх контактов. В половине случаев в процессе измерения наблюдалось уменьшение сопротивления ниже 1 Мом.

В заключение отметим, что в указанной конструкции весьма трудно изготовить ограничивающую резиновую шайбу с планарным кольцевым контактом таким образом, чтобы она в процессе многократного удаления и установки образца обеспечивала, с одной стороны, надёжное уплотнение центральной окисляемой части и с другой, -хороший электрический контакт с образцом.

В наших экспериментах, в основном, был использован кремний КДБ - 10/01 с ориентацией [72], облучённый большими дозами азота. Образцы изготавливались двух видов. Образцы первой шайбы были облучены молекулярным азотом N₂ с энергией 50 кэВ и дозой 9 х 10¹⁷ см⁻². Образцы второй шайбы были облучены атомарным азотом N с энергией 100 кэВ и дозой 2 х 10¹⁸ см⁻². Температура облучения по оценкам составляла около 400° С. В экспериментах часто использовались неотожжённые образцы. Визуально образцы первой шайбы были окрашены с рабочей стороны в светло - зелёный цвет. По - видимому, поверхностный слой содержит в себе нитриды, изменяющие эффективный показатель преломления основного материала.

Поскольку, при измерениях окисные плёнки, полученные при анодном окислении, удаляются в плавиковой кислоте, то, прежде всего, мы определяли, в какой степени поверхностный слой подвержен травлению в этом реактиве. Выяснилось, что после выдержки образца в кислоте в течение нескольких минут, цвет его соответствовал цвету кремния, т. е. приповерхностный слой при этих условиях растворяется в плавиковой кислоте. Анодная же окисная плёнка при этом удаляется за доли секунд. Может быть слабый раствор плавиковой зоны кислоты практически не травит слой, полученный после облучения кремния высокой дозой азота при одновременном стравливании азотной кислотой окисной плёнки. Для проверки этого использовали 10% раствор НF. Выяснилось, что анодная оксидная плёнка на кремнии толщиной около 1200 Å в этом растворе стравливается за время 30 сек. Образцы первой шайбы, у которых доза

Рис. 4.21.Зависимость скорости анодного окисления от глубниы КНИ - слоя. О н Δ - два образца из одной шайбы

Рис. 4.22.Зависимость поверхностного сопротивления (а) и эффективной холловской подвижности (б) от глубины КНИ - слоя

изменяли свой интерференционный цвет по сравнению с контрольным нетравленным образцом. Небольшое отличие появилось для нетравленного образца со светло-зелёным цветом, цвет приобретал лазурный оттенок. При дальнейшем травлении интерференционные цвета чётко изменялись. Практически весь приповерхностный слой был стравлен после 15 минутной выдержки.

Таким образом, было замечено довольно чёткое отличие в скорости травления данного слоя и анодной окисной плёнки. Что касается второй шайбы, (доза внедрения 2 х 10¹⁸ см⁻²), то её рабочая сторона имела матовый серебристый цвет. Этот слой (плёнка) после нескольких минут выдержки в концентрированной HF легко отслаивается или стирается спиртом, обнаруживая за ним цвет кремния. В отличие от образцов первой шайбы, полученные вдвое меньшей дозой остатки этой плёнки не растворялись.

Далее мы удостоверились в том, что после удаления упомянутого слоя рабочая поверхность обнаруживает отличие от тыльной стороны образцов. Для этого на рабочую поверхность наносились два планарных индий галлиевых контакта и измерялось сопротивление между ними. Для образцов первой шайбы, облученных меньшей дозой азота, это сопротивление составляло 1 Мом, а для образцов второй шайбы-10 Мом. Сопротивления же между планарными контактами, нанесёнными на тыльную сторону, составляло для всех образцов величину 1 - 10 Ком. Таким образом, слой кремния после стравливания приповерхностного слоя является дефектным.

Измерение скорости анодного окисления проводилось на образцах из второй шайбы (большая внедрённая доза ионов). На рис. 4.23 приведены данные по образцу 2А. При среднем диаметре окисляемой поверхности 3 мм, ток анодного окисления был выбран 2 мА, что соответствует плотности тока 28 мА/см². По оси ординат отложена величина скорости анодного окисления, измеренная в единицах прироста падения напряжения на окисляемой плёнке в единицу времени, усреднённая по первым трём минутам окисления. Средняя толщина окисной плёнки, получаемая за один шаг, составляла 1000 - 1200 Å. Далее при использовании коэффициента пересчёта 0.4 определялась толщина удалённого слоя кремния. Из рисунка видно, что для данных условий характерен большой разброс величины скорости окисления, а также - тенденция к снижению скорости анодного окисления с увеличением расстояния от поверхности образца. Эксперименты показали, что причиной значительного разброса данных может служить качество резиновой ограничивающей шайбы, используемой при окислении. Лучшие результаты были получены с ограничивающими шайбами из силиконовой резины.

Тенденция к снижению скорости анодного окисления может быть обусловлена также старением ограничивающей шайбы и неконтролируемым увеличением части тока, проходящим под шайбой.

С учётом этого окисление следующего образца-2 проводили из этой же шайбы. Диаметр отверстия шайбы был увеличен до 4 мм, был увеличен и ток анодного окисления до 4 мА (32 мА/см²). После каждого шага окисления ограничивающая шайба переворачивалась, а после каждых двух окислений обе стороны шайбы шлифовались. Как и ожидалось, средняя скорость анодного окисления несколько увеличивалась.

Образцы из первой шайбы окислялись в идентичных условиях. Плотность тока анодного окисления составляла 32 мА/см². На рис. 5.12 приведены экспериментальные данные, полученные для двух образцов из этой шайбы - 1 Г и 1 Д. При окислении образца 1 Г использовалась одна шайба без периодического шлифования в процессе окисления. Из рисунка видно что в этом случае имеется тенденция к снижению скорости анодного окисления к концу опыта. Для нескольких окислений к концу эксперимента ограничивающая шайба переворачивалась на малоиспользованную сторону. Из рисунка виден подъём расчётной скорости анодного окисления. Образец же 1 Д окислялся так же, как и 2 И, т. е. на каждые два окисления использовалась фактически новая шайба.

Для повышения точности эксперимента была дополнительно изготовлена конструкция микрососуда, устройство которого ясно из рис. 4.24. Образец прижимается к металлическому основанию (аноду) второпластовой шайбой, внутренний объём которой заполняется электролитом. Катодом служит никелевая петля. Как показали опыты, в таком сосуде площадь окисления строго постоянна и утечка тока под шайбой исключена. Диаметр отверстия в шайбе 4.2 мм, что при токе в 4 мА даёт плотность тока 29 мА/см². Сверху во время окисления микрососуд прикрывался для создания постоянных условий. Перед окислением сосуд заполнялся электролитом, а затем несколько раз промывался водой, затем плёнка стравливалась в растворе НF и далее сосуд промывался снова несколько раз и высущивался.

Данные по окислению образцов в этом микрососуде приведены на рис. 4.25. Видно, что примерно в 1.5 раза увеличилась средняя скорость окисления, что возможно неконтролируемыми токами утечки под шайбой. На рис. 4.25 образец 1 И соответствует меньшей дозе внедрения азота, а образец 2 И - большей. Для обоих образцов около поверхности имеется небольшой максимум при 0.1 мкм. Для образца, имплантированного большой дозой азота, максимум скорости анодного окисления наблюдается также в области 0.25 - 0.30 мкм, что соответствует проекции среднего пробега ионов азота с энергией 100 кэВ. Отжиг образцов с меньшей внедрённой дозой при 1200° С в течение 2 часов несколько снижает среднюю скорость окисления, при этом существенно не изменяя картины распределения скорости анодного окисления по глубине приповерхностного слоя (рис. 4.25, образец 3 А).

Из приведённых результатов ясно, что метод определения профиля радиационных нарушений измерением зависимости скорости анодного окисления от глубины нарушенного слоя является малочувствительным. Были проведены аналогичные эксперименты на образцах, КЭФ - 4.5, облучённых фосфором и мышьяком с энергией 300 - 400 кэВ и дозой 10¹⁵ см⁻². Исследовались образцы, как отожжённые при температуре 500 - 800° С

в течение 5 минут, так и неотожжённые.

Методы исследования скорости анодного окисления содержит большое количество трудноконтролируемых параметров, влияющих на конечный результат. Это может привести к различным "артэффектам" при интерпретации подобных зависимостей.Например,максимум 0.1 мкм (рис. 4.25), на первый взгляд, естественно возникает вследствие бомбардировки азотом.При проверке этого предположения, образец 3 А мы окисляли с тыльной стороны (рис. 4.25), для него характерен аналогичный подъём скорости анодного окисления вблизи поверхности.

Точность эксперимента можно повысить, исследуя очень тонкие нарушения слоя, для которых нужно только одноанодное окисление. Для этого нами были облучены образцы кремния КЭФ - 4.5 с ориентацией [72] ионами бора с энергией - 5 кэВ. Проекция среднего пробега составляет примерно 150 Å. Поскольку в одном цикле анодного окисления уделяется до 500 Å кремния, то изменение скорости анодного окисления должно проявлять особенности уже в одном цикле окисления. Доза внедрения ионов составляла 10¹⁵ см² и температура облучения - 400° С, для увеличения степени равномерности роста плёнки ток окисления был уменыцен с 4 мА до 1 мА. Зависимости падения напряженыя на системе ПОЭ от времени окисления для образца (5 А) приведены на рис. 4.26. Скорость окисления изменяется только в течение первых 7 - 8 минут окисления и в дальнейшем остаётся примерно постоянной. Распределение скорости анодного окисления по глубине приповерхностного слоя кремния для этого же образца, рассчитанное по данным рис. 4.26, приведено на рис. 5.15.

С целью уменьшения или исключения неконтролируемых локальных пробоев при росте плёнки, ток анодного окисления был в десять раз

I35

снижен и уменьшена величина напряжения на анодном окисле. Однако как показали наши эксперименты, качество полученных плёнок при этих режимах почти не изменилось.

4.4. Пределы зависимости зарядовых характеристик Si - SiO₂ структур от параметров состояния реакционной системы

Экспериментальные и теоретические результаты, полученные нами, показали, что после достижения определённых режимов окисления величины зарядовых состояний явно не зависят от температуры, давления, концентрации примесей, количества дефектов. От параметров состояния реакционной системы зависимости не наблюдается.

Для изучения данной проблемы нами была проведена серия специальных опытов. Значительно расширили диапазоны изменения P₀, , температуры окисления, а также концентрации примесей подложки кремния.

Результаты теоретических расчётов, а также экспериментальные данные подтвердили то, что для каждого конкретного режима окисления существуют свои предельные значения, после которых наступает насыщение. Ниже приведены конкретные экспериментальные данные по насыщению КРП и плотности зарядов на межфазной границе Si - SiO₂ структур.

Для исследования зависимости КРП от P_{o_1} в более широком диапазоне проводилась серия опытов. После определённого значения с увеличением P_{o_1} величина КРП на границе Si - SiO₂ структур практически не изменялась. На рис. 4.28 представлено семейство зависимостей КРП от P_{o_1} . Как видно из графика, при определённом режиме окисления (T_{o_K} , P_{o_1}) величина КРП обладает насыщением, в основном, $P_{o_1} > 120$ Торр наступает насыщение. Для каждого режима окисления соответствует свое значение давления, при котором начинается насыщение.

Теоретические расчёты показывают, что именно в этих пределах PO₂ концентрация молекул (атомов) кислорода, близка к термодинамическому

Рис. 4.23.Зависимость скорости анодного окисления по глубине образца

Рис. 4.24. Изменение скорости анодного окисления по глубине образца

квазиравновесному состоянию с концентрацией ионов кремния. Отсюда следует, что концентрация основных носителей подложки (кремния) играет важную роль, и необходим индивидуальный режим для каждого окисляемого кристалла кремния.

На рис. 4.29 представлена зависимость КРП от температуры окисления. Как видно из графика, при определённых значениях Т величина КРП на границе раздела Si - SiO, приобретает постоянную величину. Подобное температурное насыщение объясняется следующим образом. К началу насыщения Т соответствует такому режиму, при котором генерация и отжиг точечных дефектов отвечают термодинамически квазиравновесному состоянию. Так как именно они ответственны за образование Si - SiO, систем, а также за их электрофизические свойства, то существует такое максимальное значение T, после прохождения которого не происходят изменения зарядового состояния и кинетических параметров окисления в процессе изготовления Si - SiO, структур.

Для исследования зависимости плотности поверхностных состояний N_s на межфазной границе структур кремний - диоксид кремния от давления P_o, и Т окисления нами проводились соответствующие эксперименты, а также теоретические расчёты, позволяющие прогнозировать ожидаемую величину плотности поверхностных состояний. Экспериментальные исследования показали, что, начиная с определённых значений P_o, и Т окисления величина N_sперестаёт зависеть от их дальнейщих изменений т. е. наступает насыщение.

На рис. 4.30 показана зависимость от P_o, при различных Т. Как видно из графика, насыщение наступает при P_o, >120 Topp.

На рис. 4.31 представлена зависимость на границе Si - SiO₂ структур от Т при различных P_o, . Зависимость зарядовых состояний границы раздела структур объясняется на основе термодинамических квазиравновесных состояний между реагентами, участвующих в окислении. Расчёты

Рис. 4.25.Зависимость скорости анодного окисления по глубине образца

Рис. 4.26.Вольтвременные характеристики при анодном окислении образцов.

Рис. 4.27.Зависимость скорости анодного окисления по глубине образца

концентрации атомов соответствуютнапример, для 120 Торр в герметичной системе и показывают, что частицы находятся в термодинамическом квазиравновесном состоянии. Следовательно, дальнейшее увеличение P_o, не приводит к резкому изменению N_s на границе Si - SiO₂ систем. Теоретические расчёты показали, что генерация и отжиг точечных дефектов в процессе термического образования диоксида кремния по энергии активации и миграции соответствует дефектам типа кислородных вакансий, а также "междоузельному"кремнию.

4.5.Импульсный и термический отжиг образцов

Изучение влияния на структуру окисных слоев внешних термических, оптических, механических воздействий а также ионного легирования представляет большой практический интерес. Для того,чтобы рационально использовать внешние воздействия при технологическом изготовлении конкретных микроэлектронных планарных приборов необходимо проводить теоретические расчеты величин, ожида змых при воздействии, например,света на поверхность полупроводников и диэлектриков. Кроме того, теоретическое обоснование термических воздействий на свойства структур кремний - диоксид кремний, несомненно, даёт существенный эффект при разработке этих структур.

С точки зрения квантовой теории излучения и его взаимодействия с веществом необходимо рассмотреть совокупность процессов возникновения и исчезновения фотонов, сопровождающих энергетические переходы атомов, молекул или электронных состояний кристаллической решётки. В состоянии термодинамического равновесия элементарные процессы в веществе зависят только от температуры кристалла и распределения электронов его атомов и молекул по энергетическим уровням.

14I

Оптические константы вещества -показатель преломления (n) и коэффициент поглощения (k) находятся в прямой зависимости от его физических свойств, характеризуемых величинами диэлектрической проницаемости (*E*) и электропроводности (σ).

Величины пик описывают распространение электромагнитной волны в веществе. Известно, что п - определяет скорость распространения, а к затухание волны в среде.

В настоящее время недостаточно данных об изменении спектральных показателей поглощения и преломления кремния при высоких температурах, поэтому можно произвести лишь качественную оценку степени черноты и пропускной способности на основе экспериментальных данных. С повышением температуры граница пропускания в кремнии перемещается в область более длинных волн, т. е. более 1.0 мкм. В диапазоне более коротких длин волн поглощательная способность равна излучательной и плавно убывает.

С повышением температуры от 800 до 1500° К интегральная степень черноты убывает. При увеличении температуры от комнатной до 200° С спектральные характеристики окисленного кремния не изменяются. В диапазоне T=200 - 500° С окисленный кремний становится практически нелучепрозрачным, а интегральная степень черноты возрастает.

В данном параграфе с учётом вышеприведённых результатов рассматривается влияние импульсного и термического отжига, а также дозы ионного легирования на электрофизические свойства диоксида кремния и структур кремний - диоксид кремния. Приводится сравнение экспериментальных данных, полученных различными способами.

4.6. Термический и импульсный отжиг образцов и сопоставление полученных экспериментальных результатов

Глубокое изучение механизма образования, кинетики роста оксида кремния, а также влияния на них внешних воздействий является одним из проблемных вопросов в современной микроэлектронике. В свою очередь, глубокое исследование электрофизических свойств образования структур Si - SiO, связано с механизмом их формирования.

В работе [75] сообщается об увеличении скорости термического окисления кремния при стимулировании процесса оптическим излучением мощностью 60 Вт/см² от аргонового ионного лазера. Хотя этот эффект мог иметь, в основном, термическое происхождение, авторы предположили, что частично он является следствием прямого воздействия фотонов, приводящим к образованию электронно - дырочных пар при разрыве связей Si - O на границе раздела Si - SiO₂ В работах [125,123] показано, что в случае образования электронно - дырочных пар электроны являются главным каталитическим агентом при фотостимулированном окислении кремния. При средних значениях плотности энергии светового облучения в видимой части спектра происходит усиление окисления на 10 ... 50%, которое значительно возрастает при энергии фотонов, несколько превышающей границу энергетической зоны про водимости между Si и SiO₂.

Известно [123], что поверхностный заряд на границе кремний диоксид кремния в значительной степени определяется исходным состоянием поверхности кремния и условиями термического окисления и отжига. Проблемы, связанные с изучением состояния границы раздела кремний - диоксид кремния, представляют практический и научный интерес в связи с широким применением МОП - структур на основе SiO₂, для получения ряда планарных микроэлектронных полупроводниковых приборов.

Свойства окисных плёнок, а также структур кремний - диоксид кремния существенно зависят от условий их образования. Для реализации

Рис. 4.28. Предельная зависимость КРП от давления кислорода

Рис. 4.29.Предельная зависимость КРП от температуры

возможности управления свойствами окисных плёнок и свойствами границы раздела окисел - полупроводник, необходимо знание механизма образования и кинетики роста предварительно легированных ионами плёнок оксида кремния.

В процессе изготовления любого типа микроэлектронных приборов образец, например, легированный кремний, подвергается термообработке. При этом значительно изменяется его структура, на поверхности появляются новые слои окиси кремния, которые существенно влияют на коэффициент отражения поверхности кремния.

Для исследования влияния импульсного отжига на свойства оксида кремния и границы раздела Si - SiO₂ использовались образцы кремния $K \ni \Phi$ - 4.5, ориентированные < 100 >, с нанесённым на него слоем окисла толщиной 1000 Å методом термического окисления. Затем проводилось ионное легирование половины пластины с последующим импульсным отжигом всей пластины. Методики ионного легирования и окисления, а также импульсного отжига подробно описаны в работах [I3, I26, I27].

Для сравнения были также изготовлены контрольные пластины, Si отожжённые термически. Физические характеристики контрольных образцов сняты после их термообработки в атмосфере N₂ и O₂ при 1000° С для каждого режима.

Для определения скорости травления SiO₂ использовались пластины КЭФ - 0.2 с двуокисью кремния толщиной 1000 Å. Образцы изготавливались следующим образом. После термического окисления на половине пластинок проводилось легирование в режиме ($E_0 = 75 \text{ кэB}$, $D = 4 \times 10^{17} \text{ см}^{-2}$) ионами Р*. Установлено, что после ионного легирования скорость травления оксида кремния увеличивается, по сравнению с нелегированными образцами. На рис. 4.32. представлена зависимость скорости травления от времени импульсного отжига. Как видно, скорость травления облучённого окисла с увеличением времени импульсного отжига возрастает и в течение 4 сек

Рис. 4.30.Предельная зависимость плотности поверхностных зарядов на межфазной границе Si - SiO₂ системы от давления кислорода

Рис. 4.31. Предельн ая зависимость плотности поверхностных зарядов на межфазной границе Si - SiO₂ системы от температуры

практически достигает значения, соответствующего нелсгированному оксиду. По-видимому, при таком режиме импульсного отжига стехнометрия оксида кремния восстанавливается и оксид ведёт себя так будто бы не подвергался ионному легированию. Известно, что в процессе ионного легирования образуется большое количество точечных эффектов различного типа, при этом разрываются химические связи оксида кремния.

Для разработки рекомендаций оптимального режима импульсного отжига использовались пластины КЭФ - 0.2 и КЭФ - 4.5, легированные ионами фосфора в следующем режиме: $E_0 = 100 \text{ кэВ}$, $D = 4 \times 10^{17} \text{ см}^2$ для КЭФ - 0.2, а также $E_0 = 100 \text{ кэВ}$, $D = 2.5 \times 10^{16} \text{ см}^2$ и $E_0 = 100 \text{ кэВ}$, $D = 3.2 \times 10^{17} \text{ см}^2$ для КЭФ - 4.5, (здесь E_0 - энергия иона, D - доза облучения). После ионного легирования проводился импульсный отжиг образцов с различной длительностью. Влияние импульсного отжига оценивалось по величине изменения поверхностного сопротивления (R_s). На рис. 4.33. приведена зависимость поверхностного сопротивления от длительности импульсного отжига, величина его уменьшается с увеличением времени отжига. Начиная с длительность порядка 5 сек, наблюдается насышение поверхностного сопротивления. По - видимому, при таком режиме отжига образованные точечные дефекты успевают релаксироваться и приобретают устойчивое состояние. Поэтому они практически не влияют на величину поверхностного сопротивления.

На рис. 4.34. представлены зависимости поверхностного сопротивления для случая термического и импульсного отжига после ионного легирования. Термоотжиг проводился при 900° С в течение 30 мин, а длительность импульсного отжига - 9 сек. Поверхностные сопро – тивления термически о тоженных образцов после ионного легирования при меньших дозах облучения резко отличаются. С увеличением дозы облучения влияние термического и импульсного отжига становится близким

друг другу. При определённом значении дозы внедрения они сливаются, т.е.

Рис. 4.32. Зависимость скорости травления от времени импульсного отжига

Рис. 4.33. Зависимость поверхностного сопротивления от длительности импульсного отжига

Рис. 4.34. Зависимость поверхностного сопротивления от дозы ионного легирования. ТО - термоотжиг при 900°С; ИО - импульсный отжиг

Рис. 4.35. Зависимость плотности заряда на границе раздела кремний и диоксида кремния от дозы понного легирования

наступает насыщение дефектообразования. При любом типе отжига, число образованных дефектов различного типа приобретает определённое значение и остаётся стабильным. При этом поверхностное электрическое сопротивление резко уменьшается с увеличением дозы облучения.

Для исследования влияния импульсного отжига на границу раздела Si - SiO₂ использовались пластины кремния КЭФ - 7.5 с окисным слоем толщиной 300 А,полученным термическим окислением в сухом кислороде. Половина образца подвергалась легированию ионами фосфора с $E_0 = 40$ кэВ при различных дозах легирования. Затем окисление проводилось по методике, описанной в [13].

На рис. 5.35. представлены зависимости плотности заряда на границе раздела кремний и диоксид кремния от разных энергий ионов и лозы облучения. Как видно из рисунка, плотность зарядов на границе кремний - диоксид кремния в зависимости от энергии ионов, при определённых значениях дозы легирования, достигает насыщения. В пределах ошибки эксперимента до насыщения плотность заряда практически линейно возрастает с увеличением дозы облучения. Результаты исследования сравнивались с данными, полученными на образцах, отожжённых термическим путём. В работе [126] имеются сведения о том, что величина плотности зарядов зависит от толщины диоксида кремния, причём с увеличением толщины оксида уменьшается значение плотности заряда. В данном случае основную роль играет не толщина оксидной плёнки, а термоотжиг образовавшихся структур. Тогда как при росте плёнок одновременно происходит и отжиг различных точечных дефектов, образованных любым способом.

Генерация быстрых поверхностных состояний на границе раздела Si - SiO₂ структур при импульсном воздействии вызывает искажение вольтёмкостных характеристик МОП - структур.

Поведение заряда в окисле, индуцированного различными

воздействиями обясняется теорией образованных центров окрашивания в халькогенидах, облучаемых светом при наличии смещения. Электроны, генерируемые радиацией, либо рекомбинируют с дырками, либо выносятся из окисла его полем. Дырки, индуцированные УФ - воздействием, менее подвижны, чем электроны, и могут захватываться неподвижными ловушками. По-видимому, эти ловушки представляют собой группы Si - O по аналогии с тем, как это имеет место в объёме кварца или в стекле под влиянием ионизирующего излучения [57–58].

Выводы

Плотность поверхностных состояний на границе структур кремний N_s - диоксид кремний структур определяется в основном процессом начальной стадии окисления кремния. С ростом P_{o_1} до определённой всличины параметры процесса (КРП и др.) увеличиваются линейно, затем происходит их насыщение: N_s сначала экспоненциально уменьшается с ростом T, а далее при определённых значениях T происходит выход N_s на насыщение.

Разработана методика анодного окисления структур "кремний на изоляторе" с использованием планарного электрического контакта к слою кремния. Показано, что таким способом можно получить равномерное окисление рабочей площади образцов. Этот метод применён для исследования профилей распределения концентрации основных носителей и их холловской подвижности по глубине слоя кремния на изоляторе. Анодное окисление при этом использовалось, как метод прецизионного удаления тонких слоёв.

Существует такое значение концентрации примесей, N_s (количество дислокаций) для данной дозы ионного облучения, после которой наступает насыщение, т. е. существует предел зависимости плотности

зарядов на границе кремний - диоксид кремния. Знание зависимости этого предела от P_o, и T окисления и дозы ионного облучения, имеет важное значение для дальнейшего развития полупроводниковых микроэлектронных технологий.

Исследование влияния импульсного и термического отжига на легированные и нелегированные структуры кремний - диоксид кремний даёт важную информацию об электрофизических свойствах таких систем. Эти исследования открывают возможности управлять свойствами образуемых МОП - структур, которые являются основой современных интегральных схем, приборов с переносом зарядов и приборов с зарядовой связью, а также других структур, полученных планарной технологией.

ЛИТЕРАТУРА

- В.А.Арсламбеков. Проблемы физической химии поверхности полупроводников/Под ред. АН. А.В.Ржанова., Новосибирск: Наука, 1978. 107-155 с.
- 2. В.Ф.Киселёв, О.В.Крылов Адсорбционные процессы на новерхности полупроводников и диэлектриков. М.: Наука, 1978. 7-202 с.
- П.П.Коноров, Ю.А.Тврантов., Е.Б.Косьяненков, Проблемы физической химан поверхности полупроводников/ Под ред.А.В.Ржанова. Новосибирск: Наука, 1978. 247-287 с.
- В.И.Лященко., В.Г.Литовченко, И.И.Степко., В.Н.Стриха, Л.В.Лященко Электронные явления на поверхноста полупроводников. Киев, Наукова думка, 1968. 21-350 с.
- Основы технологии кремниевых интегральных схем, окисление диффузия, эпитаксия/ Под ред. Р. Бургера., Р. Донована, М.:Мир. Ч. 1. 1969. 15-332 с.
- 6. Полевые транзисторы/ Под ред. проф. С.А.Майорова. М.Советское радно, 1971. 15-128с.
- 7. Поверхностные свойства твёрдых тел/ Под ред.М.Грина. Пер. с англ. В.Ф.Киселёва. М.:Советское радио, 1971, 31-73с.
- 8. А. В Ржанов. Электронные процессы на поверхности полупроводников. М.: Наука. 1971.
- 9. Б.И.Болтакс., М.К.Баходирханов., С.М.Городецский., П.С.Куликов. Компенсированный кремний. Л.:Наука, 1972. 120с.
- 10. Физика тонких плёнок/ Под ред. Г.Хасса и Р.Э.Туна. М.: Мир. 1970. 303-386с.

11. Attala M.M., Bray A.R., Lindner R. Stability Of Thermally oxidized silicon Junction in wet atmospheres, proc. IEE, London, v/106, p.1130-1137.

 Attala M.M., Tannenboum E., Impurity Redi – Stribution and Junction Formation in Silicon by Thermal oxidation. The Bell System Technologes, Journal, 1960, v.39, № 76, p:933 – 946.

I55

13. В.А. Арсланбеков, А.С.Сафаров. Корреляция между электрофизическими свойствами системы Si-SiO₂ икинетикой роста окисной плёнки на кремнии// Микроэлектроника. 1980. Т.9. Вып. 1, 54-60с.

- Sucov E.W. Diffusion of oxyden in Vitreous Silica, Journal Am. Cera. Soc., 1963, v.46, p. 11 - 20.
- Mizsei J. Surface potencial transients of ultrathin Si SiO₂ structures. Solid State Electronics, 1991, v. 34, № 9, p. 951 - 957.
- Deston R., Massound H.Z., Effect of thermally induced stresses on the rapid – thermal oxidation of silicon. J. Appl. Phys., 1991, v. 70; No 7, p. 3588 – 3592.
- Mizuno J., Saiton Y., Sawada S., Shinozaki S. High perfomance characteristics in trench dual – gate MOSFET (TD MOS), IEEE Trans. Electron. Devices, 1991, v. 38, № 9, p. 2121 – 2127.
- Gross B.J., Krisch K.S., Sodini C.C., An ptimized 850⁶ Clow pressure furnace reoxidized nitrided oxide (ROXNOX) process, IEEE Trans. Electron Devices, 1991, v. 38, № 9, p. 2036 - 2041.
- 19. Lion J.J., Simple model for the saturation voltage and current of submicron MOSFETs. Int.J. Elektronics, 1992, v. 75, № 3, p. 561-567.
- Tsamis C., Tsoukalas D., Guillemot N., at. al., Characterization of oxidation - induced stacking faults in SOI structures by a new chemical etching process. Semicond. Sci. and Technol., 1992, v. 7, № 1A, p. 193 -195.
- Bustello J., Chang C., Hadded S., Wang A., Enhanced inpurity diffusion resulting from rapid thermal nitridation of thin SiO₂., Appl. Phys. Lett., 1991, v. 58 № 17, p. 1872 - 1874.
- Poddi A., Susi E., Effect of rapid thermal annealing on electrical and structural properties of silicon, J. Appl. Phys. Soc., 1991, v. 138, № 6, p. 1841 - 1845.
- Lin J., Park K., Betra S., at. al., Enhancement of boron diffusion through gate oxides in metal - oxide - sem iconductor device under rapid thermal silicidation., Appl. Lett., 1991, v. 58, No 19, p. 2123 - 2125.

- 24. Lucovsky G., Yasuda T., Ma Y., at. al. Low temperature plasm a asisted oxidation and film deposition process for forming device quality Si SiO₂, and composite dielectric Si SiO₂ heterostructures., Thin Solid Films, 1992, v 220, № 1 2, p. 38 44.
- Chu T.Y., Ting W.T., Aha J., Kwong U.L., Thickness and compositional nonuniformities of alfrathin oxides grown by rapid thermal pxidation of silicon in N₂O.J. Electrochym. Soc., 1991, v. 138, № 6, p.13 - 16.
- 26. Н.А.Колобов, М.М.Свмохвалов Диффузия и окисление полупроводников. М.:Металлургия, 1975.454с.
- 27. О.Кубашевский., Б.Голкинс. Окисление металлов и сплавов. М.: Металлургия, 1965. 428с.
- 28. В.А. Арсламбеков. И.Д.Казаринова., К.М.Горбунова. Кинетика и механизм окисления кремния ИФХ, АН Деп. ВИНИТИ, № 311-68, г. Москва, 1968, с. 2-38.
- 29. Ю.Р.Эванс. Коррозия и окисление металлов. М.: Маш-лит, 1962. 15-50с.
- 30. К.Хауффе Реакции в твёрдых телах и на поверхности Т. 1н2. М-Л., 1963. 275-415 с.
- Wagner C. Beitrad Zur Theorie Des Anlaufvogangs, IIZ, Phys. Chem. (B), 1933, v.21, p. 25 - 47.
- 32. В.И. Архаров Механизм взаимодействия металлов с газами/Под ред. В.И. Архарова, К.М.Горбуновой, М.:Наука, 1964, 59с.
- 33. Я. В.Ввсильев, Б.М.Аюпов. Элементарные физико-химические процессы на поверхности монокристаллических полупроводников. Новосибирск: Наука, 1975. 109-133 с.
- Cobrera N., Mott N.F. Theory of the formation of protective oxide fiems on metals, Proc. Roy. Soc. (A), 1956 v.234, p.405 - 418.
- Deal B.E., Grove A.S. General relationship for the thermal oxidation of silicon, Journal, Appl., Phys., 1965, 36, 12, p. 3770 - 3778.

- Hooper M.A., Clarke R.A., Yong L. Thermal oxidation of silicon. In situ measurement of the growth rate using ellipsometry, Journal Electrochem. Socy, 1975, 122, № 9, p. 1216 - 1222.
- В.А.Арсланбеков, К.М.Горбунова, Н.С.Гусева. Влияние давления фтора на скорость его взаимодействия с кремнием// Изв. АН. Сер. Неорганические материалы. 1969, 80-85с.
- А.В.Колосовский. Образцы по электронной технике, серия Полупроводниковые приборы, 1971. Вып.6 / 288/. 3-50с.
- 39. И.Д.Казаринова, В.А.Арсламбеков, К.М.Горбунова. Определение фазового состава окисных плёнок на кремнии методом испарения//Изв. АН. Неорганические материалы, 1969. Т. 5. № 6. 1126-1127с.
- Fossum I.G., Choi J., Sundaresan R., SOI design design for competitive CMOS VLSI., IEEE Trans. Electron Devices, 1990, v.37, Ne 3, p. 724 – 729.
- Kobeda E. < Kellam M., Osburn C/M., Raid them al annealing of low temperature chemical vapor deposited oxides., J. Elecrochym. Soc., 1991, v. 138, № 6, p. 1846 - 1849.
- 42. А.С.Сафаров, Исследование методом ОЭС и ВИМС взаимодействия кислорода с поверхностью кремняя: Материалы международной ХІковференции ВИП-1993. М.Ј993, № 2. 99-101с.
 - 43. А.С.Сафаров, В.А.Арсламбеков. Исследование механизма дополнительно-стимулярованного окисления и определение состава образованных плёнок методами ОЭС и ВИМС: Материалы международной ХІ-конференции ВИП-1993. М. 1993. № 3. 173с.
 - 44. А.С.Сафаров, В.В.Иванов, В.А.Арсламбеков. Исследование процесса обрезования сверхтонких анодных плёнок оксида кремния: Материалы международной XXII-конференции по эмиссионной электронике. РАН. М. 1994, 186с.
 - 45. А.С.Сафаров, В.В.Иванов, В.А.Арсламбеков. Исследование мехавизма образования сверхтонких плёнок оксида кремния на поверхности кремния: Материалы международной XXIIконференции по эмиссионной электронике. РАН. М., 1994, 149с.
 - 46. А.С.Сафаров, В.В.Иванов, В.А.Арсламбеков. Расчёт и моделирование на ЭВМ образования радиационных дефектов на поверхности

- кремния, Материалы конференции по радиационной физике и химии неорганических материалов РФХ-8. Томск-1993, 53с.
- 47. А.С.Сафаров. Кремний-кремний оксиднинг электрофизик хоссаларига ва усиш тезлигига аралаш маларнинг таъсири. Илмий ишлар туплами "Электроника ва микроэлектроника сохасидаги долзарб муаммолари. Таш кент, 1993. 58-62с.
- 48. А.С.Сафаров. Новые проблемы в теории взавмодействия частиц с поверхностью кремния: Материалы VIII-между народного симпозиума по ВЭФЭЭС поверхности твёрдого тела, Ташкент-1994, 101-106с.
- 49. А.С.Сафаров, М.Т.Нормурадов, А.К.Ташатов. Исследование свойств тонких плёнок, полученных термическим окислением кремния; Материалы VIII-международного симпознума по ВЭФЭЭС поверхности твёрдого тела. Таш кент, 1994. 107-108с.
- А.С.Сафаров, А.Х.Касымов. Некоторые особенности электрофизических свойств полупроводников, имплантированных низкоэнергетическими ионами: Материалы VIII-международного симпозиума по ВЭФЭЭС поверхности твёрдого тела. Ташкент, 1994. 117с.
- 51. А.С.Сафаров. Исследование влияния импульсного и термического отжига на свойства границ раздела кремний-диоксид кремния: Материалы І-международной конференции «Новые материалы и приборы», ФТИ. Таш кент, 1994. 161с.
- 52. А.С. Свфаров. Овлияния примесей на коррозностойкость твёрдых тел, я свойства покрытий// Доклады АН РУЗ. 1995. Вып. 4, 24-27с.
- 53. А.С.Сафаров. Мехавизм образования сверхтонких плёнок двуокиси кремния // Доклады АН Р Уз. 1995. Вып.7-8, 26-29с.
- 54. Р.П.Кальныня, А.С.Фрейберг, Э.С.Фельтыныш. О влиянии несущего газа на свойства пиролитических плёнок SiO 2/Изв. АН Латвии, сер. физ.и техн. наук, 1969. № 2. 121-123с.
- 55. Р.П.Кальныня, А.С.Фрейберг, Э.С.Фельтыньш. Исследование структуры пиролитических плёнок SiO₂ травлением// Изв. АН Латвин, сер. физ и техн. наук, 1967. № 4. 44-48с.

- 56. Bell R.J., Dean P., The Structure of Vitreous Silica. Phil Mag., v. 27, p. 1381 1398.
- В.Н.Костин, Г.Ф. Васильев. Низкотемпературное получение плёнок двуокиси кремния// Микроэлектроника, 1971, сер. 6, Вып. 5. 59-63с.
- 58. Sm ith I., Carlan A.J., Oxibation of n type silicon in the 10 1400 A oxide thickness range. J.Appi. Phys., 1972, v.43, № 5, p.2455 - 2459.
- 59. Wu M.S., Bao T., Lin I., Reduced leakage current and improved breekdown voltage of silicon oxide films deposited in low energy RF discharges at room temperature/Sem iconductor Sci. and Technol., 1992, v.7, №8, p. 1123 - 1126.
- 60. Kasi S.R., Lihr M., Cohen S/ Chemistry of fluorine in the oxidation of silicon. Appl/ Phys. Lett., 1991, v. 58, № 25, p. 2975 2977.
- 61. Aoki T., Tom izawa M., Yoshi A., Design considerations for thin film SOI - CMOS device structures fomed by high dose oxyden implantation into silicon, "Vacuum", 1989, v.39, № 2 - 4, p. 219 - 221.
- 62. Hisamoto D., Kaga T., Takeda E. Impact of the vertical SOI "Delta" structure on planer device technology, 1991, v.38, № 6, p. 1419 - 1424.
- 63. Е.Д.Васильева, М.Н. Колотов., В. И. Соколов. и др. Свойство границы раздела Si – SiO₂ процесс внутренного гетерирования в MOII и МНОП – структурах. Микроэлектроника, М., 1992. Т. 21. Вып. 5. 74-80 с.
- 64. Goetzberger von Adolf. Die silizium silizium dioxyd grenzfeache und ihre untersuchung mit dem MOS – verfahren, A.E. C. 1966, Keft 5, p.241 – 255.
- 65. Sakuma Kazuhito. Newself determination plonare oxidetion technologe, Journal Electrochym. Soc. 1987 v. 134, № 6, p.1503 – 1507,
- 66. Irene E. A. The effects of trace amounte of water on the thermal oxidation of silicon in oxyden. Journal Electrochym. Soc. 1974, v.121, № 12, p.1613 1616.

- Wei L.S., Simmons I. G. Effects of tepereture and voltage sweep rate on C - V characteristics of MIS capasitors, Solid State Electron, v. 17, № 10, p.1021 - 1028.
- Irene E. A., Gher R. Thermal oxidation of silicon, Appl. Surface Sci. 1987, v.30, Ne 1 - 4, p.1 - 16.
- 69. Mossound H. Z., Plummer J. D. J. Appl. phys 1987, v.62, № 8, p.3416 3423.
- 70. Blumenstoor K., Herel R. Insul. Films Semicolon. Proc. Int., Conf. INFOS - 85, Toulouse, p. 16 - 18.1985, AMSTERDAM, 1, a, 1986, p. 221 - 224
- 71. Wang Y., Nishoika Yasushiro, Ma T. R., Barker R. C. Apll. Phys. Lett. 1988, v.52, Me 7, p. 573-575.
- 72. Fuoss P. H., Norton L. J., Brennan S. Phys. Rev. Lett. 1988, v.60, № 7, p. 600-603.
- 73. Kreutz E.W. Photoemission stuies of X -Irradiated MOS Structures, Physics

Stat. Sol. (A), 1972, v. 13, p. 527 - 567.

- 74. Boyd I. W., Wilson I. B. Structure of ultrathiin Silicone dioxide films, Appl. Phys. Lett., 1987, v. 50, № 6, p. 320-322.
- Young E. M., Tiller W. A. Thermale oxidation silicon stimulus ultra violet (UV light), Appl. Phys. Lett, 1987, v. 50, Ne 1, p.66.
- 76. Sawada S. Solid. State Electron, 1988, 31, № 1,p.49-51
- 77. Batra S. Journal Apil. Phys. 1987, 61, No 8, Pt. 1, p. 3112-3114.
- 78. Koveda E. Apll. Phys. A. 1988, 47, № 3,p.259-269.
- 79. Stoneham A.M., Grovenar C.R., Cerezo A. Oxidation and surface structure division Silicon - Oxide, Phil. Mag., 1987, B 55, № 2,p.201-209
- Boyd Ian. W. INTERFACES haser Irradiat. Proc. NATO Adv. Study Inst. Alguafreddadi Maratea
 July 14-15<1986, Dorcht etc., 1987, p.409-426.

- Declerk G., Keersmaloher R. INFOS 87, Proc. 5 Int. Conf. Insulating Films on Semiconductors<Hauven 13-15, Apr. 1987, Appl. Surface. Sci., 1987, v.30, № 1-4, p. 1-439.
- Boyd I. W., Wilson J.B. Invastigation of limeted division Si-SiO₂ in long redrad. Journal Apll. Phys., 1987, v. 62, № 8, p. 3195-3200.
- Hahn P. O. and Henhler M. Influence of pxidation parametrs on atomic rougheness at the Si - SiO₂ interface, Journal Appl. Phys. 1981, v. 52(6), p. 4122 - 4127.
- Nishino Sh., Kimoto T., Purusava K. at. al. SiO₂ deposition by Photo initiation, International Conference on Solid State Devices and Materials (18, 1986, Kyoto, Japan) < Extended Ablstracts p. 209 – 212.
- Young E. M., Tiller W. A. Photon enchanced oxidation of silicon. Appl. Phys. Lett., 1983, v. 42, № 1, p. 63-65.
- Micheli F., Boyd W.I. Mechanisms of Photon enhanced oxidation of Silicon, Collog. Laser Process. Mated. London, 12 Dec., 1986, p. 1-6.
- Parkhutik V.P., Labunov V.A. and Chigir G.G. Kinetics and Mechanism of transient thermal oxidation of Silicon. Phys. Stat. Solid. (a), 1986, v. 96, 11, p. 11 - 18/
- Toshiba K.K., Kavasaki/ Method of selectively forming ansulation layer, United States Patent, Japan Ne 4955601, 1986.
- 89. Zolomy I., "Preparation and Investignation of Exreme thin (Tunneling) SiO₂ layers"., Periodica Polytechica El., 1984, v. 28, № 4, p. 281 – 285.
- 90. Pregad S., Ferretti R., "Appi Surface Sci"., 1989 year, № 1 4, p. 348 355.
- 91. Yadava R., "Appl. Phys. Lett"., 1989, p. 834 836.
- Biorkmon C., Lucovsky G. "J. Vac. Sci. and Technol", 1989, N 4, p. 775 781.
- Docring D.L., Dikinson J.T., Langford S.C., Xiong S.P., Fractaem ission on during the interfacial failure of MOS - system, "J. Vac. Sci. and Technol", 1990, 8, N 8, p. 2401 - 2406.

- 94. Atanasova E.D., Shopov A.Y., Auger electron spectroscopy and low energy electron loss spectroscopy investignations of - nitrided thin SiO₂ and oxide on silicon. Thin Solid Films, 1991, v.202, № 2, p. 267 - 282.
- 95. Б.В. Хоянко., Э.В. Примуцкий., А.А. Михайлик., и др. Состояние и кристеллическая структура продуктов взаимодействия Si – SiO₂., 1995, Т. 31, № 3, 327 – 332 с.
- 96. В.А. Арсламбеков, В.Я. Смущевко, В.С. Миняйлик. Установка для измерения топографии КРП. ПТЭ. 1972, № 3. 154с.
- 97. А.А.Арифов, А.С.Сафаров. Парамстры качества термического окисления, как функции плотности дефектов в кремнии:Симпозиум по физике системы полупроводник-плёнка двуокси кремния. Рига-1974. 29-30с.
- 98. А.А.Арифов, А.С.Сафаров.Термическое окисление кремния с различной плотностью легирующих элементов и дислокаций// Микроэлектроника, 1975. Т.4.3. 244-247с.
- В. А. Арсламбсков. Конструпрование высокочувствительных весов для физико-химических исследований М.:Наука, 1972. 1-50с.
- 100. В.М.Колешко, Г.Д.Коплав. С-V методы измерения параметров МОП-структур. Обзоры по электронной технике. Сер. 3 Микроэлектроника.М., 1977.Вып 2. 465с.
- 101. Singh B. R. Rai S. S. and Strivasova R. S. Transport of Sodium Ions in Silicon Dioxide fiems using in MOS – Structures. Phis. Stat Solidy (A), 1972, v. 13, № 1, p. 51-59.
- 102. Zaininger K. H. Automatic Display of C V cuves for MIS Structures, Proc. IEE, 1966, v. 54, № 7, p. 1001 - 1002.
- 103. Б.М. Царёв. Контактная разность потенциалов. М. Наука, 1965, 45с.
- 104.С.П. Мамвнова. Влияние удельного сопротивления кремния в освещения электрода на кинетику электрохимического окисления //Электрохимия. 1968. Т. 2. Вып. 8. 959 - 962 с.
- 105. А.С.Сафаров. Расчёт некоторых параметров приборов с зарядовой связью на основе Si-SiO₂ систем. Проблемы микроэлектроники. Таш кент, 1986. 54-59с.

- 106. В.Г.Литовченко, А.П.Горбань.Основы физики микроэлектронных систем металл-диэлектрик-полупроводник, Киев, Наукова думка, 1978, 9-166с.
- 107. Yeh T.H. Thermal oxidation of Silicon, Journal of Applied Physics, 1962, v.33, 9, p. 2849 - 2850.
- 108. С.3.Зайнобидлинов, Х.С.Далиев. Дефектообразования в кремики. Ташкент, 1993, 1-109с.
- 109. В.А.Мямлян, Ю.В.Плесков. Электрохимия полупроводников.М., 1965, 250с.
- 110. Deal B.E., Shklar M. Characteristics of the Surface state charge at Thermally oxidized Silicon, Journal Electrochym. Soc. 1967, v.114, p.266,
- 111. Deal B.E., Shklar M. Thermal oxidation of Heavity Doped Silicol, Journal Electrochym. Soc. 1965. V. 112, p. 430 - 435.
- 112. А.С.Сафаров. Физические основы микрозлектронной техники. Таш кент-1988. 6-10с.
- 113. А.С.Свфаров, В.А.Арсламбеков. Некоторые особенности механизма и кинетики окисления// Микроэлектроника, М, 1977. Т.б. Вып. 1, 75-81с
- 114. Duffer E. F., Benjiam ini E. A., Milraie C. Electrode reaction and mechanism of Silicon anodization in N - Methylacetam ide, Journal Electrochym. Tech. 1964, v.111, № 9, p. 1042 - 1046.
- 115. В.Н.Чеботин. Физическая химия твёрдого тела. М., 1982. 5-151 с
- 116. Е.А. Ефимов., И.Г. Ерусалимчик. Электрохимия гермения и креминя М.:Госхимиздат, 1963.
- 117. Schmidt P. F., Michal W. Anodic Formation of oxide in Silicon Journal Electochym, Soc. 1957, v. 104, p. 230 236.
- 118 Л.Юнг. Анодные оксидные плёнки. Л.: Энергия, 1967. С. 16-60.

- Duffer, E. F., Benjiamini E. A., Mybroic C. The anodic oxidation of silicon in Ethylen Glycol Solutions. Journal Electrochym. Technol. 1965, No 3-4, p. 75-80.
- 120. Kleinfelder W. J., Johnson W.S., Gibbons J. F. Con. Jornal Phys. 1968 year, v.46, p.597 (перевод в сб. Легирование полупроводников понным внедрением, М.:Мир, 1971, 150с.)
- 121. Dyiewski J., Joshi M.C. The dielectric breakdown properties and I V characteristics of thin SiO₂ films formed by hing doze oxyden 119. А.Б.Данилин., Б.Г., Налбандов., Б.С.Самсонов. Электронная техника, серия 3,1979. Вып. 3 (81).
- 122. А.Б. Данилин., Б.Г. Налбандов., Б.С. Самсонов. Электронная техника, серия 3, 1979. Вып. 3 (81).
- 123. Технология новного легирования пер. с японского яз. Под ред. Проф. П.В.Павлова. Советское радио. М., 1974. 9-139 с.
- 124. Irvin J.C. Bell Siyst. Techn. Journal, 1962, 41, №2, p.387 410.
- 125. А.С.Сафаров. Новые аслекты в теории образования сверхтонких окисных плёнок двуокси кремния//Узбекский физический журнал. 1995. № 1. 42-46с.
- 126. Майер Дж., Эриксон. Дэвис Дж. Ионное легирование полупроводников. М.: Мир, 1973. 13-203 с.
- 127. О.Б. Горбунов., Н.М. Ушаков., Б.Н. Петросян. Тепрографии поверхности Pd – Ga – Аз при воздействии импульсного УФ – лазерного излучения наносекундной длительности. Микроэлектроника, 1988, Т. 17, Вып. 3. 278 – 280 с.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА -1. АНАЛИЗ СОСТОЯНИЯ ИССЛЕДОВАНИИ
ПРОЦЕССА ОКИСЛЕНИЯ, А ТАКЖЕ
ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ СТРУКТУР
кремний - диоксид кремния 6
1.1.Электрофизические свойства SiO ₂ и структур
Si-SiO ₂
1.2. Механизм процесса окисления с учётом начальной стадии
образования окисной пленки кремния13
1.3. Внешние воздействия на кинстику роста диоксида кремния
и зарядовые свойства структур кремний - диоксид кремния
Выводы
ГЛАВА -2. МЕТОДЫ И УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ
ОКСИДА КРЕМНИЯ
2.1. Термическое окисление кремния в парах воды
2.2. Термическое окисление кремния в сухом кислороде41
2.3.Экспериментальная установка для анодного окисления
полупроводников и полупроводниковых структур53
Выводы
ГЛАВА -3. МЕТОДИЧЕСКИЕ ОБОСНОВАНИЯ ДЛЯ
проведения комплексного исследования
СВОЙСТВ ОКИСЛЕННОГО КРЕМНИЯ
3.1. Термомикрогравиметрический анализ процесса окисления
кремния в сухом кислороде
3.2. Вольтёмкостный (С - V) аналыз структур кремний -
диоксид кремния