Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет – УПИ имени первого Президента России Б.Н. Ельцина»

Л.А. Федотова

ВЫБОР КАБЕЛЬНЫХ ЛИНИЙ, АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ И ПРЕДОХРАНИТЕЛЕЙ В СЕТИ 0,4 кВ

Учебное электронное текстовое издание Подготовлено кафедрой «Электротехника и электротехнологические системы» Научный редактор: проф., д-р техн. наук Ф.Н. Сарапулов

2-ое издание, стереотип

Методические указания к выполнению курсовой работы по курсу «Электроснабжение и электрооборудование электротехнологических установок» для студентов всех форм обучения специальности 140605 — Электротехнологические установки и системы

Приводится методика выбора кабельных линий, автоматических выключателей и предохранителей в сетях 0,4 кВ, что позволит значительно облегчить работу студентов при выполнении курсовой работы по дисциплине «Электроснабжение и электрооборудование электротехнологических установок».

© ГОУ ВПО УГТУ – УПИ, 2009

Екатеринбург 2009

ЗАДАНИЕ

к выполнению курсовой работы по курсу «Электроснабжение и электрооборудование электротехнологических установок»

Выбрать сечения и марки кабельных линий 1 и 2, автоматический выключатель в линии 1, предохранитель в линии 2 сети 0,4 кВ.

Исходные данные к расчету:

- все потребители относятся к 2-й и 3-й категории надежности, т. е. не требуют резервирования питания;
- сопротивления элементов сети (трансформатора и кабелей) рекомендуется принимать по [1] или [2], для кабелей можно принимать $Z_{\rm пr\, yд}=2,3r_{\rm yд}$, т. е. принимать величину удельного полного сопротивления петли фаза-нуль в 2,3 раза больше активного удельного сопротивления жилы;
 - при расчетах не учитывать сопротивление внешней сети 6 (10) кВ.

Схема участка сети цеха промышленного предприятия приведена на рис. 1.

1. Расчет электрических нагрузок по коэффициенту расчетной активной мощности

Расчетный максимум нагрузки кабеля, питающего силовую нагрузку напряжением до 1 кВ, определяется по коэффициенту расчетной активной мощности

$$P_{\rm p} = K_{\rm p} \sum_{1}^{m} P_{\rm ci} ,$$

где K_p – расчетный коэффициент активной мощности;

 P_{ci} – средняя активная мощность i-го электроприемника;

m — количество электроприемников.

Средняя активная мощность электроприемника определяется следующим образом

$$P_{ci} = k_{\text{H}i} P_{\text{HOM }i},$$

где $k_{\text{и}i}$ – индивидуальный коэффициент использования;

 $P_{{\scriptscriptstyle {
m HOM}}\,i}-$ установленная мощность электроприемников.

Установленная мощность электроприемников

$$P_{\text{HOM }i} = P_{\Pi} \sqrt{\Pi B}$$
,

где $P_{\rm II}$ – паспортная активная мощность;

ПВ – продолжительность включения.

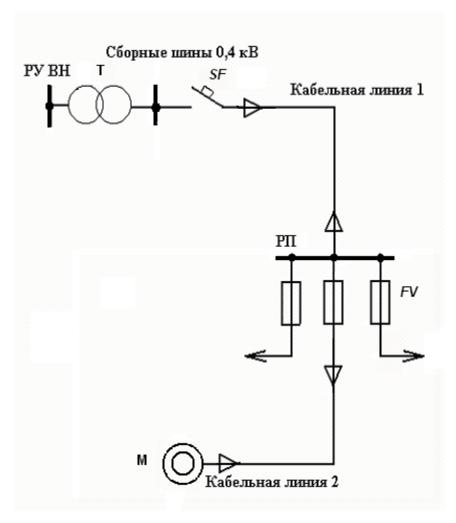


Рис. 1. Схема участка сети цеха промышленного предприятия:

РУ ВН — распределительное устройство высшего напряжения; Т — трансформатор; SF — автоматический выключатель; РП — распределительный пункт; FV — предохранитель; М — асинхронный двигатель

Средняя реактивная нагрузка $Q_{ci} = k_{ui} P_{\text{ном } i} \operatorname{tg} \phi_i$, где $\operatorname{tg} \phi_i$ – коэффициент реактивной мощности.

Величина расчетного коэффициента активной мощности K_p находится по справочным данным (табл. П.1 в прил. 1 или табл. 9.1 [1]) в зависимости от величины группового коэффициента использования K_u и эффективного числа электроприемников n_3 .

Групповой коэффициент использования активной мощности определя-

$$K_{\rm M} = \frac{\sum_{1}^{m} P_{\rm c}i}{\sum_{1}^{m} P_{\rm HOM} i}.$$

Пример определения расчетной нагрузки

Перечень электроприемников, подключенных к РП, и их параметры заносят в таблицу.

	Наименование	Количество,	Номинальная	$k_{\scriptscriptstyle \mathrm{M}}$	tg arphi	$P_{\rm c}$,	Q_{c} ,
	оборудования	ШТ.	мощность, кВт			кВт	кВ∙Ар
1.	Токарный станок	1	2,5	0,2	1,33	0,5	0,665
2.	Сварочный					0.04	
	трансформатор	1	0,8	0,3	2,3	0,24	0,552
3.	Сушильный шкаф	1	1,3	0,7	0,33	0,91	0,3003
4.	Вентиляторы						
	тепловой завесы	2	0,4.2 = 0,8	0,8	1,0	0,64	0,64
	Итого	5	5,4	0,424		2,29	2,1573

Допускается определение эффективного числа приемников по упрощенной

формуле
$$n_{_{9}} = \frac{2\sum P_{_{{\rm HOM}\,i}}}{P_{_{{\rm HOM}\,i\,{\rm max}}}}$$
 , где $P_{_{{\rm HOM}\,i\,{\rm max}}}$ – номинальная мощность наиболее мощного электроприемника.

Расчетная реактивная нагрузка определяется следующим образом $Q_{\rm p} = L_{\rm p} \sum Q_{\rm c}{}_i \ , \ {\rm гдe} \ L_{\rm p} - {\rm pacчетный} \ {\rm коэффициент} \ {\rm peakтивной} \ {\rm мощности}.$

Величина расчетного коэффициента реактивной мощности принимается $L_{\rm p}$ = 1,1 при $n_{_3} \le 10$; $L_{\rm p}$ = 1,0 при $n_{_3} > 10$.

Полная расчетная мощность силовой нагрузки $S_{\rm p} = \sqrt{P_{\rm p}^2 + Q_{\rm p}^2} \ .$ Расчетный ток нагрузки

$$I_{\rm p} = \frac{S_{\rm p}}{\sqrt{3}U},$$

где $U_{\text{ном}}$ – номинальное напряжение рассчитываемой электрической сети.

В приведенном примере для кабельной линии 1 получаем: $K_{\rm u}=0.424$; $n_{\rm s}=4$; $K_{\rm p}=1.82$; $P_{\rm p}=4.1678$ кВт; $Q_{\rm p}=2.373$ кВ-Ар; $S_{\rm p}=4.796$ кВ-А; $I_{\rm p}=6.93$ А.

2. Расчет пиковых нагрузок электроприемников

Пиковый ток для группы электроприемников находится как сумма токов максимального рабочего тока группы без учета тока самого мощного асинхронного двигателя и пускового тока этого (самого мощного) асинхронного двигателя по формуле

$$I_{\text{\tiny MMK}} = I_{\text{\tiny p}} - k_{\text{\tiny M}} I_{\text{\tiny HOM}_{\text{\tiny A}\text{\tiny M}}} + k_{\text{\tiny \Pi}} I_{\text{\tiny HOM}_{\text{\tiny A}\text{\tiny M}}},$$

где $I_{{\scriptscriptstyle {
m HOM}}_{{\scriptscriptstyle {
m A}}{\scriptscriptstyle {
m J}}}}$ – номинальный ток самого мощного асинхронного двигателя;

 $k_{_{\Pi}}$ – кратность пускового тока этого асинхронного двигателя (табл. П.2 прил. 2).

Номинальный ток асинхронного двигателя определяется по формуле

$$I_{\text{HOM}_{AJI}} = \frac{P_{\text{HOM}}}{\sqrt{3}U_{\text{HOM}}\cos\varphi_{\text{HOM}}\eta_{\text{HOM}}},$$

где $P_{\mbox{\tiny HOM}}$ — номинальная мощность асинхронного двигателя;

 $cos\phi_{\text{ном}}$ – номинальный коэффициент мощности асинхронного двигателя;

 $\eta_{\text{ном}}$ — номинальный коэффициент полезного действия асинхронного двигателя.

Технические данные асинхронных двигателей приводятся в табл. П.2 прил. 2.

3. Выбор кабельных линий

Сечение кабеля выбирается по допустимому длительному току из условий нагрева. При прокладке в кабельном канале нескольких кабелей следует учесть их взаимное температурное влияние при определении допустимого длительного тока.

Допустимый длительный ток вычисляется по соотношению

$$I_{\rm p} \leq k_1 k_2 I_{\rm доп}$$

где I_p – расчетный ток;

 k_1 – коэффициент, учитывающий прокладку нескольких кабелей в канале (табл. П.3.5 в прил. 3);

 $k_2 = 0.92$ (k_2 учитывает тот факт, что согласно правилам устройств электроустановок в сетях 0.4 кВ запрещена прокладка кабелей без нулевой жилы);

 $I_{\rm доп}$ – допустимый длительный ток для кабеля по условиям нагрева в нормальных условиях.

Допустимый длительный ток определяется следующим образом

$$I_{\text{доп}} \ge \frac{I_{\text{p}}}{k_1 k_2}$$
.

По справочным данным (табл. П.3.2 в прил. 3 или табл. 1.3.7 [5]) находится ближайшее большее сечение, выдерживающее в длительном (получасовом) режиме ток больше $I_{\rm лоп}$.

На основании анализа условий прокладки следует сделать вывод о марке прокладываемого кабеля (табл. П.3.1 в прил. 3).

Для приведенного примера принимаем к прокладке кабели марки ABBГ. Для кабельной линии 1 можно принять сечение фазных жил кабеля $2,5\,$ мм 2 (ABBГ– $4 \times 2,5$).

4. Расчет токов коротких замыканий

Расчет токов коротких замыканий предназначен для выбора защитной и коммутационной аппаратуры и проверки оборудования на термическую стойкость.

Расчеты выполняются при следующих условиях:

1. Параметры схемы замещения трансформатора прямой, обратной и нулевой последовательностей одинаковы и составляют

$$R_{1\text{\tiny T}} = R_{2\text{\tiny T}} = R_{0\text{\tiny T}} = \frac{\Delta P_{\text{\tiny K3}} U_{\text{\tiny HH}}^2}{S_{\text{\tiny H}}^2}; \quad X_{1\text{\tiny T}} = X_{2\text{\tiny T}} = X_{0\text{\tiny T}} = \frac{U_{\text{\tiny K}}\% \ U_{\text{\tiny HH}}^2}{100 \ S_{\text{\tiny H}}},$$

где $R_{1\mathrm{T}}=R_{2\mathrm{T}}=R_{0\mathrm{T}}$ – активные сопротивления трансформатора прямой, обратной и нулевой последовательностей;

 $\Delta P_{\rm K3}$ – мощность потерь в опыте короткого замыкания (КЗ);

 $U_{\rm HH}$ – номинальное напряжение обмотки низшего напряжения трансформатора;

 $X_{1\mathrm{\scriptscriptstyle T}} = X_{2\mathrm{\scriptscriptstyle T}} = X_{0\mathrm{\scriptscriptstyle T}}$ — реактивные сопротивления трансформатора прямой, обратной и нулевой последовательностей;

 U_{κ} % – напряжение короткого замыкания, выраженное в процентах;

 $S_{\rm H}$ — номинальная полная мощность трансформатора.

Данные трансформаторов приводятся в табл. П.4.1 прил. 4, либо допускается пользоваться приближенными значениями сопротивлений трансформаторов (табл. П.4.2 прил. 4).

2. Активные и реактивные сопротивления прямой последовательности кабеля и петли фаза-нуль соответственно

$$R_{\scriptscriptstyle \mathrm{K}} = l r_{\scriptscriptstyle \mathrm{YJ}}; \quad X_{\scriptscriptstyle \mathrm{K}} = l x_{\scriptscriptstyle \mathrm{YJ}}; \quad Z_{\scriptscriptstyle \mathrm{IIT}} = 2, 3 r_{\scriptscriptstyle \mathrm{YJ}} l_{\scriptscriptstyle \mathrm{I}}$$

где l — длина кабельной линии;

 $r_{\rm уд}$, $x_{\rm уд}$ — активное и индуктивное удельные сопротивления кабелей (табл. П.3.4 прил. 3).

Расчет трехфазного короткого замыкания

Схема замещения для расчета токов трехфазного короткого замыкания по-казана на рис. 2.

Принимаем $Z_{\rm c}=0$. Чтобы рассчитать токи короткого замыкания, необходимо знать параметры схемы замещения, т. е. $Z_{\rm r},~Z_{\rm k1}$ и $Z_{\rm k2}$.

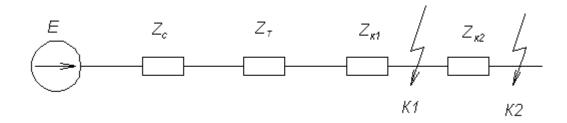


Рис. 2. Схема замещения сети:

 $Z_{\rm c}$ – сопротивление системы; $Z_{\rm r}$ – сопротивление трансформатора; $Z_{\rm kl}$ – сопротивление первого кабеля; $Z_{\rm k2}$ – сопротивление второго кабеля

Ток трехфазного металлического короткого замыкания на землю в точке K1 (максимальный ток короткого замыкания) определяется по соотношению

$$I_{\text{K1}}^{(3)} = \frac{U_{\text{HOM}}}{\sqrt{3}\sqrt{(R_{1\text{T}} + R_{\text{K1}})^2 + (X_{1\text{T}} + X_{\text{K1}})^2}}.$$

Ток трехфазного металлического короткого замыкания на землю в точке K1 с учетом переходного сопротивления (минимальный ток короткого замыкания) определяется по выражению

$$I_{\text{K1}_R}^{(3)} = \frac{U_{\text{HOM}}}{\sqrt{3}\sqrt{\left(R_{1\text{T}} + R_{\text{K1}} + R_{\text{II}}\right)^2 + \left(X_{1\text{T}} + X_{\text{K1}}\right)^2}},$$

где $R_{\rm II}$ — переходное сопротивление, включающее сопротивления контактов и сопротивление дуги в месте короткого замыкания. Переходное сопротивление принимается 30 мОм.

Расчет токов трехфазного короткого замыкания в точке K2 выполнен аналогично:

- без учета переходных сопротивлений

$$I_{\text{K2}}^{(3)} = \frac{U_{\text{HOM}}}{\sqrt{3}\sqrt{\left(R_{1\text{T}} + R_{\text{K1}} + R_{\text{K2}}\right)^2 + \left(X_{1\text{T}} + X_{\text{K1}} + X_{\text{K2}}\right)^2}};$$

- с учетом переходных сопротивлений контактов и дуги

$$I_{\text{K2}_{R}}^{(3)} = \frac{U_{\text{HOM}}}{\sqrt{3}\sqrt{\left(R_{1\text{T}} + R_{\text{K1}} + R_{\text{K2}} + R_{\text{II}}\right)^{2} + \left(X_{1\text{T}} + X_{\text{K1}} + X_{\text{K2}}\right)^{2}}} \ .$$

Расчет однофазного короткого замыкания

Ток однофазного короткого замыкания на землю в точке K1 определяется по соотношению

$$I_{\text{K1}}^{(1)} = \frac{U_{\text{H}\phi}}{Z_{\Sigma}^{(1)} / + Z_{\text{III}}},$$

где $U_{\rm H}$ – номинальное фазное напряжение сети;

 $Z_{\Sigma}^{(1)}$ – полное сопротивление от источника до точки K1 токам однофазного короткого замыкания, которое с учетом сопротивления питающей системы рассчитывается по формуле

$$Z_{\Sigma}^{(1)} = \sqrt{\left(R_{1T} + R_{2T} + R_{0T}\right)^2 + \left(X_{1T} + X_{2T} + X_{0T} + 2X_{c}\right)^2}$$
;

 $Z_{\text{пт}}$ – сопротивление петли фаза-нуль первого кабеля.

С учетом переходных сопротивлений контактов и дуги суммарное сопротивление вычисляется следующим образом

$$Z_{\Sigma R}^{(1)} = \sqrt{\left(3R_{\text{II}} + R_{\text{IT}} + R_{\text{2T}} + R_{\text{0T}}\right)^2 + \left(X_{\text{IT}} + X_{\text{2T}} + X_{\text{0T}} + 2X_{\text{c}}\right)^2} .$$

Аналогичный расчет проводится для точки K2. При расчете токов необходимо учесть сопротивления петли фаза-нуль обоих кабелей.

5. Выбор защитной и коммутационной аппаратуры

Выбор предохранителей

Выбор предохранителя осуществляется по следующим условиям:

1. Номинальное напряжение предохранителя $U_{\text{н пр}}$ должно соответствовать номинальному напряжению сети $U_{\text{ном}}$

$$U_{\text{H np}} \geq U_{\text{Hom}}$$
.

- 2. Номинальный ток плавкой вставки $I_{\mbox{\tiny H.BCT}}$ выбирается по двум условиям:
- ток плавкой вставки должен быть не меньше максимального рабочего то- ка $I_{\text{н.вст}} \geq I_{\text{p max}}$;

- ток плавкой вставки должен превышать пиковый ток двигателей $I_{\text{н.вст}} \geq I_{\text{пик}}/k$ для групповой линии с несколькими электродвигателями, и пусковой ток двигателя $I_{\text{н.вст}} \geq I_{\text{п}}/k$ для линии с одним электродвигателем, где k — коэффициент кратковременной тепловой перегрузки плавкой вставки, который принимается равным 2,5 при легком пуске с длительностью 2-5 с и равным 1,6-2 при тяжелом пуске длительностью около 10 с.

Пусковой ток электродвигателя равен $I_{\Pi} = k_{\Pi} I_{\text{ном}_{\text{A}\Pi}}$.

После выбора предохранителя (табл. П.5 прил. 5) следует выполнить его проверку:

- проверка чувствительности защиты оборудования предохранителем по минимальному току короткого замыкания (кратность минимального тока короткого замыкания по отношению к номинальному току плавкой вставки должна быть больше 3 для невзрывоопасных помещений и 4 для взрывоопасных)

$$K_{\rm H} = I_{\rm K,MHH}/I_{\rm H,BCT}$$
;

- проверка сечения кабеля по току вставки предохранителя (ток вставки не должен превышать максимально допустимый по нагреву ток кабеля, указанная проверка требуется только при необходимости защиты от перегрузки)

$$I_{\text{H.BCT}} \le (0, 8-1, 0) I_{\text{доп.пров}}.$$

Выбор автоматических выключателей

Автоматический выключатель должен защищать сеть от токов коротких замыканий и от перегрузки, поэтому выбирается автоматический выключатель с комбинированным расцепителем.

Принципы выбора автоматических выключателей (табл. Π .6.1 и табл. Π .6.2 прил. 6):

1. Значение номинального напряжения автоматического выключателя $U_{\rm HB}$ должно соответствовать значению номинального напряжения сети $U_{\rm HOM}$

$$U_{\text{HB}} \geq U_{\text{HOM}}$$
.

- 2. Значение номинального тока расцепителя $I_{\text{н.расц}}$ должно быть больше или равно максимальному длительному расчетному значению тока группы электроприемников I_{p} $I_{\text{н.расц}} \geq I_{\text{p}}$.
- 3. Ток срабатывания электромагнитного расцепителя $I_{\rm co}$ отстраивается от пускового тока $I_{\rm пик}$ наиболее крупного двигателя $I_{\rm co} \ge K_{\rm H} I_{\rm пик}$, где $K_{\rm H}$ коэффициент надежности, учитывающий разброс параметров выключателя (для автоматических выключателей типа AE 20 $K_{\rm H}$ = 1,5).

Проверяем чувствительности отсечки при двухфазных и однофазных коротких замыканиях. Расчетные значения коэффициентов чувствительности при двухфазных $K_{\rm q}^{(2)}$ и однофазных $K_{\rm q}^{(1)}$ коротких замыканиях определяются по соотношениям

$$K_{\rm q}^{(2)} = \frac{I_{\rm Kl_R}^{(2)}}{I_{\rm co}} = \frac{0.867I_{\rm Kl_R}^{(3)}}{I_{\rm co}} \ge 1.1k_{\rm p}; \qquad K_{\rm q}^{(1)} = \frac{I_{\rm Kl_R}^{(1)}}{I_{\rm co}} \ge 1.1k_{\rm p},$$

 $_{\rm ГДе}\ I_{{\rm Kl_R}}^{(2)}$ и $I_{{\rm Kl_R}}^{(1)}$ — минимальные токи коротких замыканий в точке K1;

 $k_{\rm p}$ – коэффициент разброса срабатывания отсечки по току (рекомендуется принимать $1,1k_{\rm p}$ не менее 1,4-1,5).

Временные характеристики автоматических выключателей типа АЕ 20:

- собственное время срабатывания не более 0,04 с при значениях тока, близких к значениям тока срабатывания отсечки;
 - минимальное время -0.01 с.

Определяем ток срабатывания защиты от перегрузки

$$I_{\rm cn} \ge \frac{K_{\rm H} I_{\rm пик}}{K_{\rm B}}$$

где $K_{\rm H}$ – коэффициент надежности, учитывающий запас по току (неточность настройки и разброс срабатывания защиты);

 $K_{\rm B}$ — коэффициент возврата, равный отношению тока возврата (максимального тока, при котором тепловое реле возвращается в исходное состояние — остывает) к минимальному току срабатывания.

Защита считается эффективной, если $I_{\rm cn}=(1,2-1,4)I_{\rm cm}$, где $I_{\rm cm}$ – минимальный ток срабатывания.

Для выключателей AE 20 отношение $I_{\text{сп}}$ $I_{\text{м.расц}}^{\prime} = 1,15$.

Ниже приведены данные о времени срабатывания теплового расцепителя выключателя серии AE 20:

- не срабатывает при $I = 1,05I_{\text{н.расц}}$ в течение 2 ч.;
- срабатывает при $I = 1,25I_{\text{н.расц}}$ в течение 25 мин.;
- срабатывает при $I = 7I_{\text{н.расц}}$

Зависимость $\lg t = \varphi(\lg I)$ позволяет оценить время срабатывания теплового реле при любом токе (рис. 3).

Время срабатывания защиты от перегрузки должно быть выбрано больше, чем время пуска двигателей для ликвидации ложного срабатывания защиты

$$t_{\rm ch} \ge (1, 5-2)t_{\rm hyck}.$$

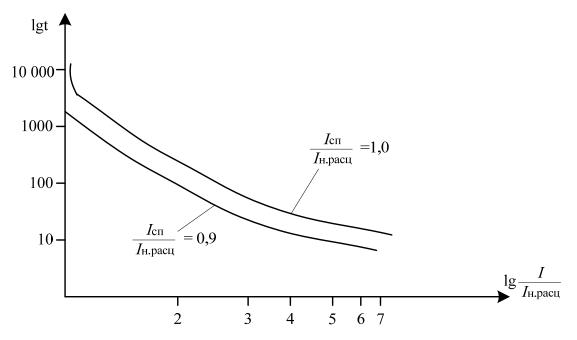


Рис. 3. Зависимость времени срабатывания от тока теплового расцепителя автомата AE 20

Автоматы AE 20 имеют в большинстве случаев встроенную регулировку величины $I_{\rm cn} = (0.9-1.15)I_{\rm H.pacц}$. Для уменьшения времени срабатывания защиты от перегрузки необходимо снизить уставку по току срабатывания защиты от перегрузки до $0.9I_{\rm H.pacц}$.

6. Проверка кабеля на термическую стойкость

Проверка термической стойкости кабеля основана на расчете теплового импульса — количества тепла, которое выделяется в активном сопротивлении кабеля при протекании через него тока короткого замыкания за время начала короткого замыкания до полного погашения дуги при его отключении. Время действия тока зависит от параметров установленной защитной и коммутационной аппаратуры.

Минимально допустимое сечение кабеля $S_{\text{мин}}$ по термической стойкости определяется по выражению

$$S_{\text{MUH}} = \frac{I^{(3)} \sqrt{t_{\text{откл}} + T_{\text{a}}}}{C},$$

где $I^{(3)}$ — максимальное значение расчетного тока короткого замыкания;

 $t_{\mbox{\tiny OTKJ}}$ – собственное время отключения защитного аппарата;

 $T_{\rm a}$ — среднее значение постоянной времени апериодической слагающей тока короткого замыкания ($T_{\rm a}$ = 0,01 c);

C — постоянная времени, зависящая от вида изоляции и материала жил кабеля, определяется при условии, что температура нагрева проводников при коротком замыкании не превышает допустимую — 150 °C для поливинилхлоридной и резиновой изоляции (табл. П.3.3 прил. 3 или [6]).

7. Проверка допустимости перегрева кабеля при протекании по нему пикового тока в течение времени срабатывания защиты

Значение температуры кабеля не должно превышать критическое для данных типов кабеля и изоляции. Допустимая температура для кабеля ABBГ составляет 150°С.

Расчет перегрева кабеля от пиковых токов проводится по упрощенному алгоритму, который дает несколько завышенное значение температуры кабеля.

- 1. Определяется масса m проводникового материала $m = \rho s l$, где ρ плотность материала (для алюминия $\rho = 2,703$ г/см³, для меди $\rho = 8,89$ г/см³); s сечение жилы кабеля; l длина кабеля.
- 2. Определяется количество теплоты, необходимое для нагрева массы проводникового материала m от начального значения температуры $t_{\rm H}$ до критического значения температуры $t_{\rm K}$ (табл. П.З.З прил. З), по формуле $Q = mc(t_{\rm K} t_{\rm H})$, где c удельная теплоемкость (для алюминия c = 920 $\frac{\Pi m}{({\rm K}\Gamma \cdot {}^{\circ} {\rm C})}$, для меди c = 386 $\frac{\Pi m}{({\rm K}\Gamma \cdot {}^{\circ} {\rm C})}$); $t_{\rm H}$ = 65 °C.
- 3. Определяются потери активной мощности при протекании пикового тока, выделяющиеся в виде тепла и нагревающие кабель, $P=3I_{\text{пик}}^2\rho\frac{l}{s}$, где ρ удельное сопротивление (для алюминия $\rho=0,028$ мкОм·м, для меди $\rho=0,017$ 241 мкОм·м) материала жил кабеля.
- 4. Находится время, в течение которого при мощности P в кабеле будет выделено найденное (п. 3) количество теплоты:

$$T = \frac{0,0028Q}{P}$$
, ч.

5. Сравнивается реальное время нагрева кабеля при протекании пикового тока (рис. 3 или рис. П.5 прил. 5) со временем T (п. 4). Если время протекания пикового тока меньше времени T, то делается вывод о том, что кабель и его изоляция не нагреются до недопустимого уровня температур, и, следовательно, время срабатывания тепловой защиты от перегрузки выбрано правильно.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Конюхова Е. А. Электроснабжение объектов / Е. А. Конюхова. М.: Академия, 2005. 416 с.
- 2. Электротехнический справочник. В 3 т. Т. 3. В 2 кн. Кн. 1. Производство и распределение электрической энергии / под общ. ред. проф. МЭИ В. Г. Герасимова. 7-е изд., испр. и доп. М.: Энергоиздат, 1988. 656 с.
- 3. Шеховцов В. П. Расчет и проектирование схем электроснабжения: метод. пособие для курсового проектирования / В. П. Шеховцов. М.: ФОРУМ ИНФРА-М, 2005. 214 с.
- 4. Справочник по проектированию электрических сетей и электрооборудования / под ред. В. И. Круповича. 3-е изд., перераб. и доп. М.: Энергоиздат, 1988. 656 с.
- 5. Справочник по проектированию электроснабжения / под ред. Ю. Г. Барыбина. М.: Энергоатомиздат, 1990. 576 с.
- 6. Федоров А. А. Основы электроснабжения промышленных предприятий: учеб. для вузов / А. А. Федоров, В. В. Каменева. 4-е изд., перераб. и доп. М.: Энергоатомиздат, 1984. 472 с.
- 7. Алексеев А. А. Основы электроснабжения: учеб. пособие по дисциплине «Электроснабжение» / А. А. Алексеев, С. С. Ананичева, А. С. Бердин. Екатеринбург: УГТУ–УПИ, 2005. 91 с.

ПРИЛОЖЕНИЯ ПРИЛОЖЕНИЕ 1

Таблица П.1 Значения коэффициентов расчетной нагрузки $K_{\rm p}$ для питающих сетей напряжением до 1000 В

		Коэффициент использования $K_{\scriptscriptstyle ext{ iny M}}$								
$n_{\scriptscriptstyle 9}$	0,1	0,15	0,2	0,3	0,4	0,5	0,6	0,7	0,8	
1	8,00	5,33	4,00	2,67	2,00	1,60	1,33	1,14	1,00	
2	6,22	4,33	3,39	2,45	1,98	1,60	1,33	1,14	1,00	
3	4,05	2,89	2,31	1,74	1,45	1,34	1,22	1,14	1,00	
4	3,24	2,35	1,91	1,47	1,25	1,21	1,12	1,06	1,00	
5	2,84	2,09	1,72	1,35	1,16	1,16	1,08	1,03	1,00	
6	2,64	1,96	1,62	1,28	1,14	1,13	1,06	1,01	1,00	
7	2,49	1,86	1,54	1,23	1,12	1,10	1,04	1,00	1,00	
8	2,37	1,78	1,48	1,19	1,10	1,08	1,02	1,00	1,00	
9	2,27	1,71	1,43	1,16	1,09	1,07	1,01	1,00	1,00	
10	2,18	1,65	1,39	1,13	1,07	1,05	1,00	1,00	1,00	
11	2,11	1,61	1,35	1,10	1,06	1,04	1,00	1,00	1,00	
12	2,04	1,56	1,32	1,08	1,05	1,03	1,00	1,00	1,00	
13	1,99	1,52	1,29	1,06	1,04	1,01	1,00	1,00	1,00	
14	1,94	1,49	1,27	1,05	1,02	1,00	1,00	1,00	1,00	
15	1,89	1,46	1,25	1,03	1,00	1,00	1,00	1,00	1,00	
16	1,85	1,43	1,23	1,02	1,00	1,00	1,00	1,00	1,00	
17	1,81	1,41	1,21	1,00	1,00	1,00	1,00	1,00	1,00	
18	1,78	1,39	1,19	1,00	1,00	1,00	1,00	1,00	1,00	
19	1,75	1,36	1,17	1,00	1,00	1,00	1,00	1,00	1,00	
20	1,72	1,35	1,16	1,00	1,00	1,00	1,00	1,00	1,00	
21	1,69	1,33	1,15	1,00	1,00	1,00	1,00	1,00	1,00	
22	1,67	1,31	1,13	1,00	1,00	1,00	1,00	1,00	1,00	
23	1,64	1,30	1,12	1,00	1,00	1,00	1,00	1,00	1,00	
24	1,62	1,28	1,11	1,00	1,00	1,00	1,00	1,00	1,00	
25	1,60	1,27	1,10	1,00	1,00	1,00	1,00	1,00	1,00	
30	1,51	1,21	1,05	1,00	1,00	1,00	1,00	1,00	1,00	
35	1,44	1,16	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
40	1,40	1,13	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
45	1,35	1,10	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
50	1,30	1,07	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
60	1,25	1,03	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
70	1,20	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
80	1,16	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
90	1,13	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
100	1,10	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	

ПРИЛОЖЕНИЕ 2

Таблица П.2
Технические данные асинхронных электродвигателей

с короткозамкнутым ротором серии 4А основного исполнения (закрытые обдуваемые)

Тип двигателя	$P_{\scriptscriptstyle \mathrm{H}},$	При номинал	ьной нагрузке	Кп
тип дын штоли	кВт	η, %	cosφ	1411
	ND I	3000 об/мин	(0.5φ	
4АА56В2У3	0,25	68,0	0,77	5,0
4AA63A2Y3	0,37	70,0	0,86	5,0
4АА63В2У3	0,56	73,0	0,86	5,0
4A71A2Y3	0,75	77,0	0,87	5,5
4A71B2Y3	1,10	77,5	0,87	5,5
4A80A2Y3	1,50	81,0	0,85	6,5
4A80B2Y3	2,20	83,0	0,87	6,5
4A90L2Y3	3,00	84,5	0,88	6,5
4A100S2У3	4,00	86,5	0,89	7,5
4A100L2Y3	5,50	87,5	0,91	7,5
4A112M2У3	7,50	87,5	0,88	7,5
4A132M2У3	11,0	88,0	0,90	7,5
4A160S2Y3	15,0	88,0	0,91	7,5
4A160M2У3	18,5	88,5	0,92	7,5
4A180S2Y3	22,0	88,5	0,91	7,5
4А180М2У3	30,0	90,0	0,92	7,5
4A200M2У3	37,0	90,0	0,89	7,5
4A200L2У3	45,0	91,0	0,90	7,5
4A225M2У3	55,0	91,0	0,92	7,5
4A250S2Y3	75,0	91,0	0,89	7,5
4A250M2Y3	90,0	92,0	0,90	7,5
		1500 об/мин		
4А80А4У3	1,10	75,0	0,81	5,0
4А80В4У3	1,50	77,0	0,83	5,0
4A90L4Y3	2,20	80,0	0,83	6,0
4A100S4Y3	3,0	82,0	0,83	6,5
4A100L4Y3	4,0	84,0	0,84	6,5
4A112M4У3	5,5	85,5	0,85	7,0
4A132S4У3	7,5	87,5	0,86	7,0
4А132М4У3	11,0	87,5	0,87	7,0
4A160S4У3	15,0	88,5	0,88	7,0
4A160M4У3	18,5	89,5	0,88	7,0
4A180S4У3	22,0	90,0	0,90	7,0
4A180M4У3	30,0	90,5	0,90	7,0
4A200M4Y3	37,0	91,0	0,90	7,0
4A200L4Y3	45,0	92,0	0,90	7,0
4A225M4Y3	55,0	92,5	0,90	7,0
4A250S4Y3	75,0	93,0	0,90	7,0
4A250M4Y3	90,0	93,0	0,91	7,0

приложение 3

Таблица П.3.1 Марки, конструкция и назначение силовых кабелей

Марки		I avantavia v vaavavava
меди	алюминия	Конструкция и назначение
СБ	АСБ	Кабели с изоляцией из пропитанной бумаги с медными и алю-
АБ	ААБ	миниевыми (А) жилами, в свинцовой (С) или алюминиевой (А)
ОСБ	АОСБ	оболочке, с отдельно освинцованными (О) жилами, бронированные
СП	АСП	стальными лентами (Б) или стальными оцинкованными проволока-
		ми (Π) с наружным защитным покровом – для прокладки в земле (в траншее)
СВГ	АСВГ	То же, но без наружного покрова (Г) – для прокладки внутри
АБГ	ААБГ	помещений, в каналах, тоннелях, при возможных механических
ОСБГ	АОСБГ	воздействиях на кабель
		То же, в алюминиевой оболочке, небронированный – для про-
АΓ	ААΓ	кладки внутри помещений, в каналах, тоннелях при отсутствии ме-
		ханических воздействий на кабель
		То же, в свинцовой утолщенной (Т) оболочке, небронирован-
СГТ	АСГТ	ный – для прокладки в трубах, блоках, тоннелях, каналах, внутри
		помещений при отсутствии механических воздействий на кабель
СБВ	АСБВ	
АБВ	ААБВ	То же, что и кабели марок СБ, АСБ, АБ, ААБ, СБГ, АСБГ,
СБГВ	АСБГВ	ААБГ, но с обедненной (В) и нестекающей (Ц) массой – для про-
ЦСБ	ЦАСБ	кладки на вертикальных трассах и с большой разностью уровней
ЦСБГ	ЦААБГ	
СРБ	АСРБ	Кабели с медными и алюминиевыми (А) жилами с резиновой
ВРБ	АВРБ	(Р), поливинилхлоридной (В) и полиэтиленовой (П) изоляцией. В
НРБ	АНРБ	свинцовой (С), поливинилхлоридной (В), полиэтиленовой (П), ре-
ВВБ	АВВБ	зиновой негорючей (Н) оболочке, с отдельно экранированными (О)
ВПБ	АВПБ	жилами, бронированный стальными лентами (Б), с защитным на-
ВОВБ	АВОВБ	ружным покровом – для прокладки в земле в траншее
ПОВБ	АПОВБ	
СРБГ	АСРБГ	То же, но без наружного покрова (Г) – для прокладки внутри
ВРБГ	АВРБГ	помещений, в каналах, тоннелях
ВВБГ	АВВБГ	
НРБГ	АНРБГ	
СВГ	A CDF	То же небранирования на произвания вышления
СРГ ВРГ	АСРГ АВРГ	То же, небронированные – для прокладки внутри помещений,
НРГ	АВРІ АНРГ	каналах, тоннелях при отсутствии механических воздействий на кабель
ВВГ	AHPI ABBΓ	KAUCJIB
ПВГ	АВВІ АПВГ	
HDI	AHDI	

Длительно допустимые токовые нагрузки на кабели с алюминиевыми жилами, с резиновой или пластмассовой изоляцией до 1000 В, в свинцовой, поливинилхлоридной или негорючей резиновой оболочке, бронированные и небронированные

Таблица П.3.2

Сечение	Нагрузка, А, при прокладке кабелей						
жилы, мм ²	одножильных	двухжи	льных	трехжильных			
,	в воздухе	в воздухе	в земле	в воздухе	в земле		
2,5	23	21	34	19	29		
4	31	29	42	27	38		
6	38	38	55	32	46		
10	60	55	80	42	70		
16	75	70	105	60	90		
25	105	90	135	75	115		
35	130	106	160	90	140		
50	165	135	205	110	175		
70	210	165	245	140	210		
95	250	200	295	170	255		
120	295	230	340	200	295		
150	340	270	390	235	335		
185	395	310	440	270	385		
240	465	_	_	_	_		

Таблица П.3.3 Значения функции ${\it C}$ и расчетных значений температуры для кабелей

Кабель	Функция C , $A \cdot e^{1/2} / \text{мм}^2$	Расчетное значение температуры проводника °C	
		начальная	конечная
Кабели с алюминиевыми однопроволочными	92	65	200
жилами и бумажной изоляцией			
То же, с многопроволочными жилами	98	65	200
Кабели с медными однопроволочными жила-	140	65	200
ми и бумажной изоляцией			
То же, с многопроволочными жилами	147	65	200
Кабели с алюминиевыми жилами и поливи-	75	65	150
нилхлоридной или резиновой изоляцией			
То же, с медными жилами	114	65	150
Кабели с алюминиевыми жилами и полиэти-	62	65	120
леновой изоляцией			
То же, с медными жилами	94	65	120

Таблица П.3.4 Значения сопротивлений кабелей напряжением 1 кВ

	Активное сопротивление при 20 °C жилы, мОм/м		Индуктивное сопротивление, мОм/м		
Сечение	при 20 °С жил	Ы, MUM/M			
2	U	U	кабеля с поясной	трех проводов в трубе,	
жилы, мм²	алюминиевой	медной	бумажной	кабеля с резиновой	
			изоляцией	или поливинилхло-	
				ридной изоляцией	
1	_	18,5	_	0,133	
1,5	_	12,3	_	0,126	
2,5	12,5	7,4	0,104	0,116	
4	7,81	4,63	0,095	0,107	
6	5,21	3,09	0,090	0,100	
10	3,12	1,84	0,073	0,099	
16	1,95	1,16	0,0675	0,095	
25	1,25	0,74	0,0662	0,091	
35	0,894	0,53	0,0637	0,088	
50	0,625	0,37	0,0625	0,085	
70	0,447	0,265	0,0612	0,082	
95	0,329	0,195	0,0602	0,081	
120	0,261	0,154	0,0602	0,080	
150	0,208	0,124	0,0596	0,079	
185	0,169	0,100	0,0596	0,078	
240	0,130	0,077	0,0587	0,077	

Таблица П.3.5 Поправочные коэффициенты на число работающих кабелей, лежащих рядом в земле (в трубах и без труб)

Разатания	Коэффициент при числе кабелей					
Расстояние между кабелями, мм	1	2	3	4	5	6
100		0,90	0,85	0,78	0,78	0,75
200	1,00	0,92	0,87	0,82	0,82	0,81
300		0,93	0,90	0,87	0,86	0,85

ПРИЛОЖЕНИЕ 4

Таблица П.4.1 Трансформаторы трехфазные силовые общего назначения двухобмоточные с охлаждением естественным масляным (M)

Тип	U _к ,%	Потери, кВт		$I_{\rm o}$,%
		$P_{\rm x}$	$P_{\scriptscriptstyle m K}$	
TM-25/10	4,5	0,125	0,600	3,2
TM-40/10	4,5	0,180	0,880	3,0
TM-63/10	4,5	0,265	1,280	2,8
TM-100/10	4,5	0,365	1,970	2,6
TM-160/10	4,5	0,540	2,650	2,4
TM-250/10	4,5	0,780	3,700	2,3
TM-400/10	4,5	1,080	5,500	2,1
TM-630/10	5,5	1,680	7,600	2,0
TM-1000/10	5,5	2,450	12,20	1,4
TM-1600/10	5,5	3,300	18,00	1,3
TM-2500/10	5,5	4,600	25,00	1,0
TM-4000/10	6,5	6,400	33,50	0,9
TM-6300/10	6,5	9,000	46,50	0,8

Таблица П.4.2 Сопротивления понижающих трансформаторов с вторичным напряжением 0,4 кВ

Номи-	Номи- Схема		Значение сопротивлений, мОм					
нальная	соеди-	пря	прямой		нулевой		току однофазного	
мощность,	нения	последова	тельности	последова	тельности	КЗ		
кВ-А	обмоток	$R_{ m l_{T}}$	$X_{1 ext{ iny T}}$	$R_{0\scriptscriptstyle m T}$	$X_{0\scriptscriptstyle m T}$	$R_{_{\mathrm{T}}}^{}(1)}$	$X_{\scriptscriptstyle \mathrm{T}}^{\;(1)}$	
25	$y/y_{_{ m H}}$	154	244	1650	1930	1958	2418	
40	$y/y_{_{ m H}}$	88	157	952	1269	1128	1583	
63	$y/y_{_{ m H}}$	52	102	504	873	608	1077	
100	$y/y_{_{ m H}}$	31,5	65	254	582	317	712	
160	$y/y_{_{ m H}}$	16,6	41,7	151	367	184	450	
250	$y/y_{_{ m H}}$	9,4	27,2	96,5	235	115	289	
400	$y/y_{_{ m H}}$	5,5	17,1	55,6	149	66,6	183	
630	$y/y_{_{ m H}}$	3,1	13,6	30,2	95,8	36,4	123	
1000	$y/y_{_{ m H}}$	1,7	8,6	19,6	60,6	2,3	77,8	
1600	$y/y_{_{ m H}}$	1	5,4	16,3	50	18,3	60,8	
2500	Д/У н	0,64	3,46	0,64	3,46	1,92	10,38	

Примечание. Указанные в табл. П.4.2 значения сопротивлений масляных трансформаторов приведены к напряжению $0,4~\mathrm{kB}.$

приложение 5

Таблица П.5 Технические данные предохранителей

Тип предо-	Номинальный ток	Номинальный ток	Характеристика
хранителя	патрона, А	плавкой вставки, А	предохранителя
ПР-2	15 60 100 200 350 600 1000	6, 10, 15 15, 20, 25, 35, 45, 60 60, 80, 100 100, 125, 160, 200 200, 225, 260, 300, 350 350, 430, 500, 600 600, 700, 850, 1000	Трубчатый, с закрытым разборным патроном, без наполнителя, токоограничивающий
НПН-2	15 60	6, 10, 15 15, 20, 25, 35, 45, 60	Трубчатый, с закрытым неразборным патроном, с наполнителем, безынерционный
ПН-2	100 250 400 600 1000	30, 40, 50, 60, 80, 100 80, 100, 120, 150, 200, 250 200, 250, 300, 350, 400 300, 400, 500, 600 500, 600, 750, 800, 1000	Трубчатый, с закрытым разборным патроном, с наполнителем, безынерционный
ПНБ-3	100 150 200 300 500	63, 100 150 200 250, 300 400, 500	Трубчатый, с закрытым патроном, с наполнителем, быстродействующий
ПНБ-5	100 250 400 630	40, 63, 100 160, 250 315, 400 500, 630	

Рис. П.5. Семейство защитных характеристик плавких вставок предохранителей

Серия автомата	Число полюсов	Номинальный ток автомата, А	Номинальный ток теплового расцепителя $I_{\scriptscriptstyle \mathrm{H.T.}}$, А	Пределы тока мгновенного срабатывания электромагнитного расцепителя (отсечка), А
AE-1000	1	10	0,32; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,6;	$(12-18)I_{\text{H.T}}$
		25	2; 2,5; 3,2; 4 6; 10; 16; 25	
AE-20	3	25 63 100	0,6; 0,8; 1; 1,25; 1,6; 2; 2,5; 3,2; 4; 5; 6; 8; 10; 12,5; 16; 20; 25 10; 12,5; 16; 20; 25; 32; 40; 50; 63 16; 20; 25; 32; 40; 50; 63; 80; 100	$12I_{\scriptscriptstyle \mathrm{H.T}}$
A3110	2, 3	100	15; 20; 25; 30; 40; 50; 60; 80; 100	$10I_{\scriptscriptstyle m H.T}$
A3120	2, 3	100	15; 20; 25; 30; 40; 50; 60; 80; 100	430 – 800
A3130	2, 3	200	120; 140; 170; 200	840 – 1400
A3140	2, 3	600	250; 300; 350; 400; 500; 600	1750 – 4200
A3710	2, 3	160	20 – 160	400 – 1600
A3720	2, 3	250	160 – 250	1600 – 2500
A3730	2, 3	400	160 – 400	2500 – 4000
A3740	2, 3	400 630	160 – 400 250 – 630	4000 – 6300
ABM-10	3	750	500; 600; 750	4000 – 8000
ABM-15	3	1500	1000; 1150; 1200; 1400; 1500	8000; 10 000
ABM-20	3	2000	1000; 1200; 1500; 1800; 2000	8000; 10 000

Таблица П.6.2 Технические данные автоматических выключателей серии ВА

		Номинальный ток, А	Кратность уставки		
Тип	выключа-	расцепителя	теплового	электро-	$I_{ m OTKJ}$,
	теля	$I_{ m H.p}$	расцепи-	магнитного	кА
	$I_{\scriptscriptstyle \mathrm{H.a}}$	·	теля	расцепите-	
			$K_{ m y(Tp)}$	ля $K_{\mathrm{y(эмp)}}$	
BA 51-25	25	0,3; 0,4; 0,5; 0,6; 0,8; 1,0; 1,25; 1,6	1,2	1,4	3
		2,0; 2,5; 3,15; 4; 5			1,5 2 2,5
BA 51-25		6,3; 8	1,35	7; 10	2
		10; 12,5			2,5
		16; 20; 25			3,0
BA 51Γ-31	100	6,3; 8; 10; 12		3; 7; 10	3,0 2 2,5 3,5 5 0 2
		10			2,5
		20; 25			3,5
		31,5; 40; 50; 63			5
		80; 100			0
BA 51-31		6,3; 8			
BA 51Γ-31		10; 12,5			2,5; 3,8
		31,5; 40; 50; 63			6
		80; 100	1,25		7
BA 51-33	160	80; 100; 125; 160		10	12,5
BA 51Γ-33					
BA 51-35	250	80; 100; 125; 160; 200; 250		12	15
BA 51-37	400	250; 320; 400		10	25
BA 51-39	630	400; 500; 630			35
BA 52-31	100	16; 20; 25	1,35	3; 7; 10	12
BA 52Γ-31		31,5; 40			15
		50; 63			18
	4.50	80; 100	1,25		25
BA 52-33	160	80; 100		10	28
BA 52Γ-33	• • •	125; 160		4.0	35
BA 52-35	250	80; 100; 125; 160; 200; 250		12	30
BA 52-37	400	250; 320; 400		10	40
BA 52-39	630	250; 320; 400; 500; 630	1.22		40
BA 53-37	160	Регулируется ступенями	1,25	2; 3; 5; 7;	20
BA 55-37	250	$0,63-0,8-1,0 ext{ ot } I_{\scriptscriptstyle \mathrm{H.a}}$		10	
D 4 52 22	400				2.5
BA 53-39	160				25
BA 55-39	250				
	400				
D 4 52 41	630			2 2 5 5	
BA 53-41	1000			2; 3; 5; 7	
BA 55-41					

ОГЛАВЛЕНИЕ

ЗАДАНИЕ к выполнению курсовой работы по курсу «Электроснабжение	
и электрооборудование электротехнологических установок»	2
1. Расчет электрических нагрузок по коэффициенту расчетной активной	
мощности	2
2. Расчет пиковых нагрузок электроприемников	5
3. Выбор кабельных линий	5
4. Расчет токов коротких замыканий	6
5. Выбор защитной и коммутационной аппаратуры	9
6. Проверка кабеля на термическую стойкость	12
7. Проверка допустимости перегрева кабеля при протекании по нему	
пикового тока в течение времени срабатывания защиты	13
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	15
ПРИЛОЖЕНИЯ	16
Приложение 1	16
Приложение 2	17
Приложение 3	18
Приложение 4	21
Приложение 5	22
Приложение 6	24

Федотова Лидия Адамовна

ВЫБОР КАБЕЛЬНЫХ ЛИНИЙ, АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ И ПРЕДОХРАНИТЕЛЕЙ В СЕТИ 0,4 кВ

Редактор *И. В. Меркурьева*Компьютерная верстка *Л.А.Федотовой*Подготовка к публикации *Н.В. Лутовой*

Рекомендовано РИС ГОУ ВПО УГТУ – УПИ Разрешено к публикации 10.02.10 Электронный формат – pdf Объем 1,35 уч.-изд. л.

Издательство ГОУ ВПО УГТУ - УПИ 620002, Екатеринбург, ул. Мира, 19

Информационный портал ГОУ ВПО УГТУ – УПИ http://www.ustu.ru