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Preface to the Second Edition

The Second Edition of An Introduction to Lagrangian Mechanics includes a 
larger selection of examples and problems (with hints) in each chapter and 
the reduction of the unavoidable typos that crept into the First Edition. 
The Second Edition also continues the strong emphasis of the First Edi­
tion on the development and application of mathematical methods (mostly 
calculus) to the solution of problems in Classical Mechanics.

New material has been added to most chapters. In Chapter 1, the 
Frenet-Serret formulas are given for a light ray propagating in an arbi­
trary medium and a new derivation of the Noether theorem for discrete 
Lagrangian systems is given in Chapter 2. In Chapter 3, the motion of a 
particle in the Morse potential is given as another example of motion in 
a potential that exhibits a separatrix solution separating bounded motion 
from unbounded motion. Sections have been rearranged in Chapter 5 and 
a modified Rutherford scattering problem is solved exactly to show that 
the total scattering cross section сгт associated with scattering by a con­
fined potential (i.e., which vanishes beyond a certain radius R) yields the 
hard-sphere result err — ^ R2 ■ In Chapter 6, the Frenet-Serret formulas 
for the Coriolis-corrected projectile motion are presented and the Frenet- 
Serret torsion is shown to be directly related to the Coriolis deflection. In 
Chapter 7, complete solutions of the body-frame and space-frame precession 
motions are given and a new solution of the sleeping-top problem is given, 
while in Chapter 8, the normal-mode stability analysis of the sleeping top 
is presented in a two-dimensional configuration space. Lastly, Appendix 
A presents a simple solution for the roots of a general cubic polynomial 
and a compendium of integral formulas evaluated by the trigonometric and 
hyperbolic-trigonometric substitution methods.

Alain Jean Brizard (2014)





Preface to the First Edition

The structure of the present lecture notes on the Lagrangian mechanics of 
particles and fields is based on achieving several goals. As a first goal, I 
wanted to model these notes after the wonderful monograph of Landau and 
Lifschitz on Mechanics [13], which is often thought to be too concise for 
most undergraduate students. One of the many positive characteristics of 
Landau and Lifschitz’s Mechanics, however, is that Lagrangian mechanics 
is introduced in its first chapter and not in later chapters as is usually done 
in more standard textbooks used at the sophomore/junior undergraduate 
level.1 Consequently, the Lagrangian method becomes the centerpiece of 
the present course and provides a continuous thread throughout the text. 
This course has been taught at Dartmouth College and Saint Michael’s 
College in approximately the same format proposed in these lecture notes.

As a second goal, the lecture notes introduce several numerical investi­
gations of dynamical equations appearing throughout the text. These nu­
merical investigations present an interactive pedagogical approach, which 
should enable students to begin their own numerical investigations. As a 
third goal, an attempt was made to introduce historical facts (whenever ap­
propriate) about the pioneers of Classical Mechanics. Much of the historical 
information included in the Notes is taken from excellent books by Rene 
Dugas [4], Wolfgang Yourgrau and Stanley Mandelstam [21], and Cornelius 
Lanczos [12]. In fact, from a pedagogical point of view, this historical per­
spective helps educating undergraduate students in establishing the deep 
connections between Classical and Quantum Mechanics, which are often 
ignored or even inverted (as can be observed when students are surprised

lrThe reader is invited to  read A call to action  by E. F. Taylor [Am. J. Phys. 71, 423- 
425 (2003)], which promotes a reorganization o f undergraduate physics education that 
includes an early introduction of Lagrangian Mechanics (the Principle o f Least Action) 
into the physics curriculum.

ix
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to learn that Hamiltonians have an independent classical existence). As a 
fourth and final goal, I wanted to keep the scope of these notes limited to a 
one-semester course in contrast to standard textbooks, which often include 
an extensive review of Newtonian Mechanics as well as additional material 
such as Hamiltonian chaos.

It is expected that students taking this course will have had a one- 
year calculus-based introductory physics course followed by a one-semester 
course in Modern Physics. Ideally, students should have completed their full 
calculus sequence and, perhaps, have taken a course on ordinary differential 
equations. On the other hand, this course should be taken before a rigorous 
course in Quantum Mechanics in order to provide students with a sound 
historical perspective involving the connection between Classical Physics 
and Quantum Physics. Hence, the fall semester of the junior year provides 
a perfect niche for this course. Topics identified with an asterisk can also 
be included in a more advanced course.

The standard topics covered in these notes are: The Calculus of Vari­
ations (Chapter 1), Lagrangian Mechanics (Chapter 2), Hamiltonian Me­
chanics (Chapter 3), Motion in a Central Field (Chapter 4), Collisions and 
Scattering Theory (Chapter 5), Motion in a Non-Inertial Frame (Chapter 
6), Rigid Body Motion (Chapter 7), Normal-Mode Analysis (Chapter 8), 
and Continuous Lagrangian Systems (Chapter 9). Each chapter contains a 
set of problems with variable level of difficulty. Lastly, in order to ensure 
a self-contained presentation, a summary of mathematical methods associ­
ated with linear algebra and numerical analysis is presented in Appendix A. 
Appendix В presents a brief introduction to the applications of the Jacobi 
and Weierstrass elliptic functions in Classical Mechanics; see Whittaker’s 
textbook [20] for many more applications. Lastly, Appendix С presents a 
brief summary of differential geometric methods in the modern formulation 
of Hamiltonian mechanics and perturbation theory.

Several innovative topics not normally discussed in standard undergrad­
uate textbooks are included throughout the notes. In Chapter 1, a complete 
discussion of Fermat’s Principle of Least Time is presented, from which 
a generalization of Snell’s Law for light refraction through a nonuniform 
medium is derived and the equations of geometric optics are obtained [3]. 
We note that Fermat’s Principle proves to be an ideal introduction to varia­
tional methods in the undergraduate physics curriculum since students are 
already familiar with Snell’s Law of light refraction.

In Chapter 2, we establish the connection between Fermat’s Princi­
ple of Least Time and Maupertuis-Jacobi’s Principle of Least Action.
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In particular, Jacobi’s Principle introduces a geometric representation of 
single-particle dynamics that establishes a clear pre-relativistic connection 
between Geometry and Physics. Next, the nature of mechanical forces (e.g., 
active versus passive forces) is discussed within the context of d’Alembert’s 
Principle, which is based on a dynamical generalization of the Principle of 
Virtual Work. Lastly, the fundamental link between the energy-momentum 
conservation laws and the symmetries of the Lagrangian function is first dis­
cussed through Noether’s Theorem and then Routh’s procedure to eliminate 
ignorable coordinates is applied to a Lagrangian with symmetries.

In Chapter 3, we present a brief discussion of Hamiltonian optics 
and the wave-particle duality that established the connection between 
Classical Physics and Quantum Physics. The problem of charged-particle 
motion in an electromagnetic field is also investigated by the Lagrangian 
method in the three-dimensional configuration space and the Hamiltonian 
method in six-dimensional phase space. This important physical example 
presents a clear link between the Lagrangian and Hamiltonian methods. 
In Chapter 4, we discuss the role of the Laplace-Runge-Lenz vector in­
variant in determining the shape of the Kepler bounded orbit. We also 
use the Laplace-Runge-Lenz vector to study the precession of a perturbed 
Keplerian orbit. In Chapter 5, we present a complete solution of the soft- 
sphere scattering problem as well as the problem of elastic scattering by a 
hard surface. In Chapter 9, we present the variational derivations of the 
Schroedinger equation and the Euler equations for a perfect fluid. Using 
the Noether method, we also derive their respective conservation laws.

In Appendix B, we present an introduction to the applications of the 
Jacobi and Weierstrass elliptic functions in Classical Mechanics. These in­
teresting functions used to be part of the standard curriculum in Classical 
Mechanics [13, 20] and have now all but disappeared from modern text­
books [7,15]. For the Jacobi elliptic function, we consider the problems of 
motion in a quartic potential, while for the Weierstrass elliptic function, 
we consider the problem of motion in a cubic potential. The problem of 
the planar pendulum is used to establish the connection between the Ja­
cobi and Weierstrass elliptic functions. Lastly, in Appendix C, we present 
a brief introduction to noncanonical Hamiltonian mechanics and canonical 
Hamiltonian perturbation theory.

My interest in Lagrangian Mechanics was awakened more than 30 years 
ago when I was an undergraduate student at the College Militaire Royal 
de Saint Jean (Canada). One of my professors (Fernand Ledoyen) bravely 
taught me Lagrangian Mechanics with Landau and Lifschitz [13] and Arnold
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[1] as our constant companions. I remember being immediately struck 
by the beauty of Lagrangian Mechanics and the power of its methods. 
I have used Lagrangian methods in my own research in plasma physics 
for the past 20 years. I would like to thank my Lagrangian collaborators 
Allan N. Kaufman (University of California at Berkeley) and Eugene (Gene) 
R. Tracy (College of William and Mary) for their friendship and support 
during this time.

Lastly, I owe a great debt of love and gratitude to my wife (Dinah 
Larsen) and son (Peter Brizard Larsen) and I thank them for their patience 
and understanding during the arduous process of writing this book.

Alain Jean Brizard (2007)
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Chapter 1

The Calculus of Variations

A wide range of equations in physics, from quantum field and superstring 
theories to general relativity, from fluid dynamics to plasma physics and 
condensed-matter theory, are derived from action (variational) principles 
[2,17]. The purpose of this Chapter is to introduce the methods of the 
Calculus of Variations that figure prominently in the formulation of action 
principles in physics.

1.1 Foundations o f the Calculus o f Variations

1.1.1 A Simple Minimization Problem

It is a well-known fact that the shortest distance between two points in 
(Euclidean) space is calculated along a straight line joining the two points. 
Although this fact is intuitively obvious, we begin our discussion of the 
problem of minimizing certain integrals in mathematics and physics with a 
search for an explicit proof. In particular, we prove that the straight line 
y0(x) =  mx yields a path of shortest distance between the two points (0, 0) 
and (l,m ) on the (x, ;</)-plane as follows.

First, we consider the length integral

choice we make for the function y(x); thus, С [у] is called a functional of y. 
We insist, however, that the function y(x) satisfy the boundary conditions 
y(0) =  0 and y(l) =  m. For example, for yo{x) =  mx, we find C[yo] =

where y' =  y'(x) is the slope of the function у at point x. The notation C\y] 
is used to denote the fact that the value of the integral (1.1) depends on the

l
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y/l +  m2, while for y\{x) =  m x2, we find
/>1 ______________   ̂ /*arcsinh2m

£[vA =  /  \/l +  4 m2 a;2 dx =  - — /  cosh2 z ck
Jo 2m Jo

=  -—  2m \A +  4 m2 +  arcsinh(2 m) ,4m L J
where we used the hyperbolic-trigonometric substitution1 2mx =  sinh л. 
We can readily show that C[yo\ < £[?/i] for all non-vanishing m-values. 

Next, we introduce the modified function

y( x;e) =  2/o (ж) +  eSy(x),

where yo(x) =  mx (i.e., the solution to our problem) and the variation 
function Sy(x) is required to satisfy the prescribed boundary conditions 
йу(0) =  0 =  (52/ (1). We thus define the modified length integral

£[2/o + e<5y] = [  \ A + { m  +  eSy')2dx
Jo

as a function of e and a functional of Sy. We now show that the func­
tion yo(x) =  mx minimizes the integral (1.1) by evaluating the following 
derivatives

C[y0 +  e6y]\ =  ~7= = щ  f 
J e=o v l  +  m2 Jo

m
VTT'.

Sy1 dx 

[6y(l) -  <52/(0)] =  0,

and

£[t,o +  e% ] ) i=o =  I  (1 + VJ )S„  > ".

which holds for a fixed value of m and all variations Sy(x) that satisfy the 
conditions #2/(0) =  0 =  Sy(l). Hence, we have shown that y(x) =  mx 
minimizes the length integral (1.1) since the first derivative (with respect 
to e) vanishes at e =  0, while its second derivative is positive at e — 0. 
We note, however, that our task was made easier by our knowledge of the 
actual minimizing function yo(x) = mx; without this knowledge, we would 
be required to choose a trial function yo(x) and test for all variations Sy(x) 
that vanish at the integration boundaries.

Another way to tackle this minimization problem is to find a way to 
characterize the function yo{x) that minimizes the length integral (1.1), for

lrrh e trigonometric and hyperbolic-trigonometric substitutions are used extensively in 
this textbook and reviewed in App. A.
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all variations Sy(x), without actually solving for y(x). For example, the 
characteristic property of a straight line y(x) is that its second derivative 
vanishes for all values of x. The methods of the Calculus of Variations 
introduced in this Chapter present a mathematical procedure for trans­
forming the problem of minimizing an integral to the problem of finding 
the solution to an ordinary differential equation for y(x). The mathemati­
cal foundations of the Calculus of Variations were developed by Leonhard 
Euler (1707-1783) and Joseph-Louis Lagrange (1736-1813), who developed 
the mathematical method for finding curves that minimize (or maximize) 
certain integrals.

1.1.2 Methods o f  the Calculus o f Variations

1.1.2.1 Euler’s First Equation

The methods of the Calculus of Variations transform the problem of mini­
mizing (or maximizing) an integral of the form

Н у] =  [  F (y,y';x)dx  (1.2)
J a

(with fixed boundary points a and b) into the solution of a differential equa­
tion for y{x) expressed in terms of derivatives of the integrand F(y,y';x), 
which is assumed to be a smooth function of y(x) and its first derivative 
y'(x), with a possible explicit dependence on x. See problem 1 at the end 
of this Chapter for a generalization of Eq. (1.2).

The problem of extremizing the integral (1.2) will be treated in analogy 
with the problem of finding the extremal value of any (smooth) function 
fix ), i.e., finding the value xo such that

f '(x 0) =  lim ~ ^ f(x o +  e) -  f ( x 0) j  =  ^ ^ / ( ж 0 +  бЛ)^ =  0,

where h ф 0 is an arbitrary constant factor.2 First, we introduce the first-

2An extremum  point refers to either the minimum or maximum o f  a one-variable func­
tion. A  critical point, on the other hand, refers to a point where the gradient o f a 
multi-variable function vanishes. Critical points include minima and maxima as well as 
saddle points (where the function exhibits maxima in some directions and minima in 
other directions). A  function y(x )  is said to be a stationary solution of the functional 
(1.2) if the first variation (1.3) vanishes for all variations Sy that satisfy the boundary 
conditions.
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order functional variation 5T[y, Sy\ defined as 
d

5T[y\Sy\ de

d
de

T[y + e 6y]

Of
£=0

F (y  +  e6y,y' +  e5y',x) dx (1.3)
€=0

where Sy(x) is an arbitrary smooth variation of the path y(x) subject to 
the boundary conditions Sy(a) =  0 =  Sy(b), i.e., the end points of the 
path are not affected by the variation (see Fig. 1.1). By performing the

> x

Fig. 1.1 Virtual displacement Sy(x)  for the functional variation (1.3).

e-derivatives in the functional variation (1.3), which involves partial deriva­
tives of F (y , г/, x) with respect to у and y'. we find

rb r dF dF
5y(x) . + Sy'(x) n dx.6T[y\Sy] 

icond t

5F[y; 6y] =  f  
J a

+

Sy

5уь

dy{x) dy'{x)
When the second term is integrated by parts, we obtain

rb r -  —  [ —  
dy dx \dy' /

'dF_'
J y '/ь

Here, since the variation Sy(x) vanishes at the integration boundaries (буь =  
0 =  6ya), the last terms involving дуь and 5ya vanish explicitly and Eq. (1.4) 
becomes

dF d fd F \  1 , Гь „ 5T

dx

(1.4)

rb
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where 5T/5y is called the functional derivative of T[y\ with respect to the 
function y. The stationarity condition

5T[y,Sy] =  0 (1.6)

for all variations 5y yields Euler’s First equation

A. (2 L \  =  " d2F ' ° 2F 92F -  —  (17 
dx \ dy' J  ̂ dy' dy'  ̂ dy dy' dx dy' dy ’

which represents a second-order ordinary differential equation for y(x). Ac­
cording to the Calculus of Variations, the solution y(x) to this ordinary 
differential equation, subject to the boundary conditions y(a) =  ya and 
y(h) =  yb, yields a solution to the problem of minimizing (or maximizing) 
the integral (1.2). Lastly, we note that Lagrange’s variation operator <5, 
while analogous to the derivative operator d, commutes with the integral 
operator, i.e.,

P(y{x)) dx =  f  Sy{x) P'{y(x))dx,
J a

for any smooth function P.

1.1.2.2 Extremal Values of an Integral

Euler’s First Equation (1.7), which results from the stationarity condition 
(1.6), does not necessarily imply that the Euler path y (ж), in fact, minimizes 
the integral (1.2). To investigate whether the path y(x) actually minimizes 
Eq. (1.2), we must evaluate the second-order functional variation

62T[y,6y\ =  (jj^ T [y  +  e5y)^j

and investigate its sign. By following steps similar to the derivation of 
Eq. (1.5), the second-order variation is expressed as

S2T[y;Sy\ =
n

by2
d2F d_ /  d2F  
dy2 dx \ дуду' +  (<¥)

d2F
d(y7y } rfx’ 

(1.8)
after integration by parts was performed. The necessary and sufficient 
condition for a minimum is 8'2F  > 0 and, thus, the sufficient conditions for 
a minimal integral are

d2F
dy2

- ± ( d2F
dx \dydy'

> 0 and
d2F

(dy')2 > 0, (1.9)
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for all smooth variations 5y(x). For a small enough interval (a,b), how­
ever, the (<5y')2-term will normally dominate over the (<5y)2-term and the 
sufficient condition becomes d2F/(dy')2 > 0 (Legendre’s Condition [6]).

Because variational problems often involve finding the minima or max­
ima of certain integrals, the methods of the Calculus of Variations enable 
us to find extremal solutions yo{x) for which the integral T[y\ is stationary 
(i.e., §T[y0\ =  0), without specifying whether the second-order variation 
is positive-definite (corresponding to a minimum), negative-definite (corre­
sponding to a maximum), or with indefinite sign (i.e., when the coefficients 
of (6y)2 and (5y')2 have opposite signs).

1.1.2.3 Jacobi Equation*

Warning: Material identified by an asterisk is not meant to be covered 
in an undergraduate-level course and can be skipped without loss of 
continuity.

Carl Gustav Jacobi (1804-1851) derived a useful differential equation 
describing the deviation u(x) =  y{x) — y(x) between two extremal curves 
that solve Euler’s First Equation (1.7) for a given function F (x ,  j/, y’). Upon  
Taylor expanding Euler’s First Equation (1.7) for у — у +  и and keeping 
only linear terms in и (which is assumed to be small in the interval (a, b)), 
we easily obtain the linear ordinary differential equation

d (  , d2F d2F \ d2F . d2F
= и i r y  +  v! - .  (1.10)dx \ {dy')2 дуду1 J dy2 dy'dy

By performing the x-derivative on the second term on the left side, we 
obtain a partial cancellation with the second term on the right side and 
obtain the Jacobi equation [6]

d (  d2F du\
dx

(  d2F  du\ Г _ d_ (  d2F  \  
\(9j/')2 dx J  dy2 dx \d y d y ')

( 1.11)

We immediately see that the extremal properties (1.9) of the solutions of 
Euler’s First Equation (1.7) are intimately connected to the behavior of the 
deviation u(x) between two nearby extremal curves.

We note that the differential equation (1-10) may be derived from the 
variational principle <5 f  J(u, u') dx =  0 as the Jacobi-Euler equation
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where the Jacobi function J(u. u'\ x) is defined as

J(u,u') =  i  F(y +  eu, y '+  eu ')j

u2 d2F , d2F u'2 d2F
~  2 dy2 +  UU дуду' +  2 {dy')2'  ̂ ^

For example, for F (y , y') =  +  (y')2> we d2F/dy2 — 0 — d2F/dydy' 
and d2F/d{y')2 =  Л-3 , where Л =  \/l +  m2 for the extremal solution 
y(x) =  mx. The Jacobi function (1.13) for this case is J(u, и') =  | (и1)2/А3 
and the Jacobi equation (1.11) becomes (A~3 u')' =  0, or u" =  0 (i.e., 
deviations between straight lines diverge linearly).

Lastly, the second functional variation (1.8) can be combined with the 
Jacobi equation (1.11) to yield the expression [6]

Гь r)2F /  ? /'\ 2
52T[y,Sy] =  JdtffX>y' ~ S y u )  dx' (L14)

where u(x) is a solution of the Jacobi equation (1.11). We note that the 
minimum condition S2Jr > 0 is now clearly associated with the Legendre 
condition d2F/d{y')2 > 0. Furthermore, we note that the Jacobi equa­
tion describing space-time geodesic deviations plays a fundamental role in 
Einstein’s Theory of General Relativity.3 We shall return to the Jacobi 
equation (1.11) in Sec. 1.4, where we briefly discuss Fermat’s Principle of 
Least Time and its applications to the general theory of geometric optics.

1.1.2.4 Euler’s Second Equation

Whenever the function F  appearing in Eq. (1.2) satisfies the condition 
dF/dx =  0, we may obtain a partial solution to Euler’s First Equation 
(1.7) as follows. First, we write the exact z-derivative of F(y. y'\ x) as 

dF _  9F , dF „ dF_ 
dx dx ^   ̂ dy ^  ̂ dy1' 

and substitute Euler’s First Equation (1.7) for dF/dy in order to combine 
the last two terms, so that we obtain Euler’s Second equation

This equation is especially useful when the integrand F{y , yr) in Eq. (1.2) is 
independent of x (i.e., dF/dx =  0), for which Eq. (1.15) yields the solution

dF
F(y,y') ~ У 'g -;(y ,y ') =  <*> (1-16)

3See, for example, S. Weinberg, Gravitation and Cosmology: Principles and Applica­
tions o f  the General Theory o f  Relativity (W iley 1972).
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where the constant a is determined from the conditions y{xo) =  yo and 
y'(xo) =  y'0. Here, Eq. (1.16) is a partial solution (in some sense) of 
Eq. (1.7), since we have reduced the derivative order from a second-order 
derivative y"(x) in Eq. (1.7) to a first-order derivative y'(x) in Eq. (1.16) 
on the solution y(x). Hence, Euler’s Second Equation has produced an 
equation of the form

dF
G {y,y';a) =  F{y,y') -  y’ —  (y ,y )  -  a =  0,

which can often be integrated by quadrature (as we shall see later) by solving 
for y' as a function of у and x. For example, for F {y,y ’ ) =  sj\ +  (у')2, 
we find F(y,y') — y' dF(y,y')/dy' =  l/y/l + (y')2 — a , which yields y' = 
±  a _1\/l — a2.

1.1.3 Path o f  Shortest Distance and Geodesic Equation

We now return to the problem of minimizing the length integral (1.1), 
with the integrand written as F(y,y') — yXl +  (?/)2. Here, Euler’s First 
Equation (1.7) yields

d_ fd F \  =  y" =  dF =  
dx \dy')  [1 -1- (j/')2]3/ 2 dy

so that the function y(x) that minimizes the length integral (1.1) is the 
solution of the differential equation y"{x) =  0 subject to the boundary 
conditions ?/(0) =  0 and y( 1) =  m, i.e., the extremal solution is y{x) =  
mx. Note that the integrand F(y, y') also satisfies the sufficient minimum 
conditions (1.9) so that the path y(x) =  m x  is indeed the path of shortest 
distance between two points on the plane.

1.1.3.1 Geodesic Equation*

We generalize the problem of finding the path of shortest distance on the 
Euclidean plane (ж, у) to the problem of finding geodesic paths in arbitrary 
geometry because it introduces important geometric concepts in Classical 
Mechanics needed in later chapters. For this purpose, let us consider a 
path in n-dimensional space from point хд to point x »  parameterized by 
the continuous parameter a: x(rr) such that x(A) =  хд and х(Б) =  хд. 
The length integral from point A to В is
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where the space metric gij is defined so that the squared infinitesimal length 
element is ds2 =  дг] (x) dx1 dxJ (summation over repeated indices is implied 
throughout the text).

Next, using the definition (1.3), the first-order variation 5£[x] is given

1 f
« В Д  =  2 JA 

_ 1 f b 
~  2 Л

where a =  s(A) and b

^  6xk 
dxk

dg 
dxk

dx1 dx3 
da da 

dx1 dx3 
ds ds

“Ь 2

+ 2 g^

d6xl dx3 
da da 

dSx1 dx3 
ds ds

da 
ds/da

ds,

s(B) and we have performed a parameterization 
change: x(cr) —> x(s). By integrating the second term by parts (with 6x 
vanishing at the end points), we obtain

d (  dx3\ 1 dgjk dx3 dxk 
ds ds&C[x] =

- J L

- s :

2 dx1 ds ds 6xl ds (1.18)

9ij
d2x3

+ 5xl ds.( dgij 1 dgjk \ dx3 dx 
ds2 ' \9a;fe 2 dxi J ds ds

We now note that, using symmetry properties under interchange of the j-k  
indices, the second term in Eq. (1.18) can also be written as

'dgij 1 dgjk \ dx3 dxk _  1 / dgik _  dgjk \ dx3 dx1̂
2 dxi J ds ds 2 \dxk dx3

dx3 dxk

__и
dxk dx% )  ds ds

=  Г, I jk ds ds
using the definition of the Christoffel symbol 

1 i * f  dgij t dgik
Vjk

dgjk \ =  r i
dxi )  ~2 a \ dxk ' dx3 

where g1’3 denotes a component of the inverse metric (i.e., дгз gjk 
Hence, the first-order variation (1.18) can be expressed as

fb d2xl Tli dx.3 dxkL ds2 3k ds ds
gu Sxe ds.

(1.19) 

=

( 1.20)

The stationarity condition 5C =  0 for arbitrary variations 5xe yields an 
equation for the path x(s) of shortest distance known as the geodesic equa­
tion

d2xl dx3 dxk
+  Г* =  0. ( 1.21)

ds2 ' *3k ds ds 
Returning to two-dimensional Euclidean geometry, where the components 
of the metric tensor are constants (i.e., ds2 =  dx2 +  dy2), the geodesic 
equations are ,t"(s) =  0 =  y"{s), which once again leads to a straight line.
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1.1.3.2 Geodesic Equation on a Sphere

We now consider the example of geodesic curves on the surface of a sphere 
of radius R, which are known to be great circles as we will now show. 
According to Eq. (1.17), they are extremal curves of the length functional

C\<p] =  j  R ^ l  +  sin2 9 d6 =  R j  L(<p',O)d0, (1.22)

where the azimuthal angle ip(9) is an arbitrary function of the polar angle
9. Since the function L(ip', 9) in Eq. (1.22) is independent of the azimuthal 
angle <p, its corresponding Euler’s First Equation (1.7) yields the partial 
solution

dL sin2 в <p'-   : =  sin a,
^ yjl +  sin2 в (ip1)2

where a is an arbitrary constant angle. Solving for ip' we find

m  = sî  ,
sin в v  sin 9 — sin a

which can, thus, be integrated to give
д f  sin a d9 f  tan a du

J sin 9 у/sin2 9 -  sin2 a J V l — u2 tan2 a
where /3 is another constant angle and we used the change of variable и =  
cot 0. A simple trigonometric substitution finally yields

cos(<p —/3) = tana cot#, (1-23)

which describes a great circle on the surface of the sphere. We easily verify 
this statement by converting Eq. (1.23) into the equation for a plane that 
passes through the origin:

z sin a =  x cos a cos /3 +  у cos a sin /3.

The intersection of this plane with the unit sphere is expressed in terms of 
the coordinate functions x =  sin a cos /3, у =  sin a sin j.3, and г =  cos a.

1.2 Classical Variational Problems

The development of the Calculus of Variations led to the resolution of sev­
eral classical optimization problems in mathematics and physics [2,17]. In
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this Section, we present two classical variational problems that are con­
nected to its original development. First, in the isoperimetric problem, 
we show how Lagrange modified Euler’s formulation of the Calculus of 
Variations by allowing constraints to be imposed on the search for finding 
extremal values of certain integrals. Next, in the brachistochrone problem, 
we show how the Calculus of Variations is used to find the path of quick­
est descent for a bead sliding along a frictionless wire under the action of 
gravity.

1.2.1 Isoperimetric Problem

Isoperimetric problems represent some of the earliest applications of the 
variational approach to solving mathematical optimization problems. Pap­
pus (ca. 290-350) was among the first to recognize that among all the 
isoperimetric closed planar curves (i.e., closed curves that have the same 
perimeter length), the circle encloses the greatest area.4 The variational 
formulation of the (planar) isoperimetric problem requires that we maxi­
mize the area integral A — f  y(x) dx while keeping the perimeter length 
integral L =  J -̂ /l + (у')2 dx constant.

The isoperimetric problem falls in a class of variational problems 
called constrained variational principles, where a certain functional 
f  f(y,y'-,x )dx is to be optimized under the constraint that another func­
tional f  g(y,y',x) dx be held constant (say at value G). The constrained 
variational principle is then expressed in terms of the functional

F>\y\ =  j  f(y ,y ',x )d x  + \^G - J  g(y, y', x) dx

-I f{y ,y ',x ) -  X g(y,y',x) dx +  AG, (1.24)

where the parameter A is called a Lagrange multiplier. Note that the func­
tional T\[y] is chosen, on the one hand, so that the derivative

dF\[y\ _  G _  i n(y y' x\ dx =  0
dX

J  g{y,y',x),

enforces the constraint for all curves y{x). On the other hand, the station­
arity condition 8T\ =  0 for the functional (1-24) with respect to arbitrary

4 Such results are normally described in terms o f the so-called isoperimetric inequalities 
4-7Г A  <  L 2, where A  denotes the area enclosed by a closed curve o f perimeter length L ; 
here, equality is satisfied by the circle, where L — 2tt a and A  =  7ra2.
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variations 5y{x) (which vanish at the integration boundaries) yields Euler’s 
First Equation:

d f  d f dg
dx \ dy' dy' (1.25)

dy "  dy'
Here, we assume that this second-order differential equation is to be solved 
(at fixed Л) subject to the conditions y(xo) =  yo and y'(xo) =  0; the 
solution y(x;X) of Eq. (1.25) is, however, parameterized by the Lagrange 
multiplier Л.

If the integrands f{y ,y ')  and g{y,y') in Eq. (1.24) are both explicitly 
independent of x, then Euler’s Second Equation (1.16) for the functional 
(1.24) becomes

d_
dx

df / dg
dy'

=  0. (1.26)

By integrating this equation we obtain

f ~ У'j df_ 
dy'

, dg~ X [g  -  у — ) =  fo -X g o  =  0,

where the constant of integration on the right is chosen from the conditions 
y(xo) =  yo and y'(xo) =  0 (i.e., xq is an extremum point of y(x)), so 
that the value of the constant Lagrange multiplier is now defined as Л = 
f(yo,0)/g(yo,0) =  fo/go- Hence, the solution y(x; A) of the constrained 
variational problem (1.24) is now uniquely determined.

We return to the isoperimetric problem now represented in terms of the 
constrained functional

Л М  = J  ydx + X̂L - 
=  J  У ~ x y/l + (уО2

J  V1 +  (y')2dx
dx +  Л Lj (1.27)

where L denotes the value of the constant-length constraint. From 
Eq. (1.25), the stationarity of the functional (1.27) with respect to arbi­
trary variations Sy(x) yields

Xy'
dx V Vl + (y')\

which can be integrated to give

Xy'

=  1,

V1 +  (v'Y=  X  -  X q , (1.28)
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where xq denotes a constant of integration associated with y'(xo) =  0. Since 
the integrands f(y , у') =  у and g(y, у') — у/1 +  (y')2 are both explicitly 
independent of x, then Euler’s Second Equation (1.26) applies, and we 
obtain

t  ( ;  , A ) - n
\/i + ( » ')V

which can be integrated to give

r - =  У, (1-29)
V1 + (у)2

where we chose y{xо) =  Л with y'(xo) =  0.
Lastly, by combining Eqs. (1.28) and (1.29), we obtain у y '+ (x—xo) =  0, 

which can be integrated to give y2(x) =  A2 — (x — Xo)2. We immediately 
recognize that the maximal isoperimetric curve y(x) is a circle of radius 
r =  A, centered at (x, y) =  (xo, 0), with perimeter length L =  2тг A and 
maximal enclosed area A =  n A2 =  L2/4tt.

1.2.2 Brachistochrone Problem

The brachistochrone problem is a least-time variational problem, which was 
first solved in 1696 by Jean (Johann) Bernoulli (1667-1748). The problem 
can be stated as follows. A bead is released from rest (at the origin in 
Fig. 1.2) and slides down a frictionless wire that connects the origin to a 
given point (Xf,y/). The question posed by the brachistochrone problem 
is to determine the shape y(x) of the wire for which the frictionless descent 
of the bead under gravity takes the shortest amount of time.

Using the (x, y)-coordinates set up in Fig. 1.2, the speed of the bead 
after it has fallen a vertical distance x along the wire is v =  \/‘2g x (where 
g denotes the gravitational acceleration) and, thus, the time integral

m  =  /  ?  =  I  ’ =  I  ’ F { y - « ' ' x ) d x ’ (L30)

is a functional of the path y{x). Note that, in the absence of friction, 
the bead’s mass does not enter into the problem. Since the integrand of 
Eq. (1.30) is independent of the y-coordinate (dF/dy =  0), Euler’s First 
Equation (1.7) simply yields

±(^L\ = о dF y'
dx \ ду ') ду' y/2gx [1 + (y')2}



14 An Introduction to Lagrangian Mechanics

Yf

*  У

Fig. 1.2 Brachistochrone problem.

where a is a constant, which can be rewritten in terms of the scale length 
t =  (2a2g)~1 as

W ?  =  £
i +  (y')2 i Ы )2 =

ds,

Integration by quadrature yields the solution

ф} = f  ^  
subject to the initial condition y{x = 0) =  0. Using the trigonometric 
substitution (with I =  2a)

s — 2a sin2(#/2) =  a (1 -  cos#), 

we obtain the parametric solution

хв(0) =  a (1 — cos0)
and

(1.31)

— cost
+  COS t

= a j  (1 — cos9) d6 =  a (9 — sin0). (1-32)
Jo

This solution yields a parametric representation of the cycloid (Fig. 1.3) 
where the bead is placed on a rolling hoop of radius a.
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Pig. 1.3 Brachistochrone solution.

Using the parametric solution (1.31)-(1.32) for the brachistochrone 
problem, we calculate the time taken to go from the origin (0,0) to the 
end point (2a, 7ro) to be

(ж'в)2 + (y'B )2 jn [ n j a2 [sin2 6 + ( 1 - cos 9)2} M
2ag (1 — cos в)

r~ pHfa /  
9 Jo

de =  7Г J- =  TB. (1.33)
V 9

By comparison, we note that the time taken by following a straight-line 
path (г/ь =  7Г x /2) between these two points would be

Т Ы  =  Г  J 1 + (?Г/2)2 dx =  >  TB,
Jo V 2gx  V 9

which is longer than the minimal time (1.33).

1.3 Fermat’s Principle o f Least Time

Several minimum principles have been invoked throughout the history of 
Physics to explain the behavior of light and particles. In one of its earliest 
form, Hero of Alexandria (ca. 75 AD) stated that light travels in a straight 
line and that light follows a path of shortest distance when it is reflected. 
In 1657, Pierre de Fermat (1601-1665) stated the Principle of Least Time, 
whereby light travels between two points along a path that minimizes the 
travel time, to explain Snell’s Law (Willebrord Snell, 1591-1626) associated 
with light refraction in a stratified medium. Using the index of refraction 
no > 1 of the uniform medium, the speed of light in the medium is expressed 
as vo =  c/no < с, where с is the speed of light in vacuum. This straight-line
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Fig. 1.4 Reflection path (A x B + ) and refraction path (A x£?_) for light propagating in 
a stratified medium (n ' <  n).

path in a uniform medium is not only a path of shortest distance but also 
a path of least time.

The laws of reflection and refraction as light propagates in uniform 
media separated by sharp boundaries (see segments AxB+ and A xB - in 
Fig. 1.4) are easily formulated as minimization problems as follows. The 
time taken by light to go from point A =  (0, h) to point B± =  (L, ±  h) 
after being reflected or refracted at point (x , 0) is given by

T a b {x ) =  с - l \/x2 +  h2 + n' y/{L — x)2 + h2

where n and n! denote the indices of refraction of the medium along path 
Ax and xB±, respectively. We easily evaluate the derivative of Tab (x ) to 
find

cITa b {x ) _  c _ i
dx \Zx2 +  h2

— n
{ L - x )

\/{L- x)2 +  h2

=  с 1 (n sin# — n' sin#'), (1.34)

where the angles в and 9' are defined in Fig. 1.4. Here, the law of reflection 
(n' =  n and В =  B+ in Fig. 1.4) is expressed in terms of the extremum 
condition T'AB{x) =  0, which implies that the path of least time is obtained 
when the reflected angle O' is equal to the incidence angle 9 (or x — L/2  in 
Fig. 1.4).
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Next, the extremum condition T'AB(x) =  0 for refraction (n' ф n and 
В =  В_ in Fig. 1.4) yields Snell’s law of refraction

n sin# =  n' sin#'. (1.35)

Note that Snell’s law implies that the refracted light ray bends toward the 
medium with the largest index of refraction (n > n' in Fig. 1.4). In what 
follows, we generalize Snell’s law to describe the case of light refraction in 
a continuous nonuniform medium.

Before proceeding with this general case, we note that the second deriva­
tive is strictly positive:

cPTabM  1 /  ч „ / q „i\
— ^ 2 ----  = ~hĉ n C0S П ° ) >

which proves that the paths of light reflection and refraction in a flat strat­
ified medium are indeed paths of minimal optical lengths. For some curved 
reflecting surfaces, however, the reflected path corresponds to a path of 
maximum optical length (see problem 16). This example emphasizes the 
fact that Fermat’s Principle is in fact a principle of stationary time.

1.3.1 Light Propagation in a Nonuniform Medium

According to Fermat’s Principle, light propagates in a nonuniform medium 
by traveling along a path that minimizes the travel time between an initial 
point A (where a light ray is launched) and a final point В (where the light 
ray is received). The time taken by a light ray following a path 7  from 
point A to point В (parameterized by a) is [3]

T[x] dx
da da =  с 1 Cr (1.36)

where £„[x] represents the length of the optical path taken by light as it 
travels in a nonuniform medium with refractive index n(x), and

dx
da (1.37)

Fermat’s Principle of Least Time states that light traveling in a nonuniform 
medium follows an optical path x(a) that is a stationary solution of the 
variational principle

S T[x] =  0. (1.38)
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We now consider ray propagation in two dimensions (x, y), with the index 
of refraction n(y), so that the optical length

£n[y\ =  [  n(y) л/ l  +  (y')2 dx (1.39)
J a

is a functional of y(x). We shall return to the general properties of ray 
propagation in Sec. 1.4.

By applying the variational principle (1.38) for the case where F(y, yr) =  
n(y) л/1  +  (у1)2, we find

dF n(y)y' OF , r----
ITt =  л / and T~ =  n ^  v ^  + W .dy' y/l +  {y'Y dy

so that Euler’s First Equation (1.7) becomes

n{y)y" =  n'(y) [l + {y')2]-  (1-40)

Although the solution of this (nonlinear) second-order ordinary differential 
equation is difficult to obtain for general functions n(y), we can nonetheless 
obtain a qualitative picture of its solution by noting that y" has the same 
sign as n'(y). Hence, when n'(y) — 0 for all у (i.e., the medium is spatially 
uniform), the solution y" =  0 yields the straight line y(x;<po) =  tan^o x, 
where ipo denotes the initial launch angle (as measured from the horizontal 
axis). The case where n'(y) > 0 (or < 0), on the other hand, yields a light 
path which is concave upward, i.e., y" > 0 (or downward, i.e., y" < 0), as 
will be shown below.

Note that the sufficient conditions (1.9) for a minimal optical path are 
expressed as

d2F n
=  [i + (y')2}3/2 > ’

which is satisfied for all refractive media, and

d2F d .< d2F \ i и Л i /...ля  ̂ 1(  n 'y' \
dy2 dx V дуду')| - n  V 1 + (!/)• fa. \W 1 + W2)

j  (nn" -  (n')2)
n2 d2 In n
F dy2

whose sign is indefinite. Hence, the sufficient condition for a minimal optical 
length for light traveling in a nonuniform refractive medium is d2 In n/dy2 > 
0; note, however, that only the stationarity of the optical path is physically 
meaningful and, thus, we shall not discuss the minimal properties of light 
paths in what follows.
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Since the function F(y,y') — n(y) \/l + (у')2 is explicitly independent 
of x, Euler’s Second Equation yields

_ . dF n(y)F — у —— =  —. ... : =  constant,
dy' y/ 1  + W Y

and, thus, the partial solution of Eq. (1.40) is

n(y) =  N yj 1 +  (у')2, (1.41)

where N  is a constant determined from the initial conditions of the light ray. 
We note that Eq. (1.41) states that as a light ray enters a region of increased 
(decreased) refractive index, the slope of its path also increases (decreases). 
In particular, by substituting Eq. (1.40) into Eq. (1.41), we find N2 y” =  
n(y) n'(y), and, hence, the path of a light ray is concave upward (downward) 
where n'(y) is positive (negative), as previously discussed. Eq. (1.41) can 
be integrated by quadrature to give the integral solution

f y N ds ,
X(2/) “  Jo V M * ) ]2 -  N * ’ ‘

subject to the condition x{y = 0) =  0. Prom the explicit dependence of 
the index of refraction n(y), we may be able to perform the integration 
in Eq. (1.42) to obtain x{y) and, thus, obtain an explicit solution y(x) by 
inverting x{y).

1.3.2 Snell’s Law

We now show that the partial solution (1.41) corresponds to Snell’s Law for 
light refraction in a nonuniform medium. Consider a light ray traveling in 
the (x, y)-plane launched from the initial position (0,0) at an initial tangent 
angle ipo <  7t/2 (measured from the ж-axis) so that y'(0) =  tan <po is the 
slope at x =  0. The constant N  is then simply determined from Eq. (1.41) 
as N  =  nocosipo, where no =  n(0) is the refractive index at y{0) =  0. 
Next, let y '(x ) =  tan^(x) be the slope of the light ray at (x, y{x)), so that 
V 1 +  Ы )2 — sec ip and Eq. (1.41) becomes n{y) cos ip — nocos<£o- Lastly, 
when we substitute the complementary angle 9 — 7t/2  — ip (measured from 
the vertical y -axis), we obtain the local form of Snell’s Law of refraction

n[y(x)\ sin#(a;) =  щ  sin#o> (1-43)

properly generalized to include a light path in a nonuniform refractive 
medium. Note that Snell’s Law (1.43) does not tell us anything about 
the actual light path y(x); this solution must come from solving Eq. (1.42).
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1.3.3 Application o f Ferm at’s Principle

In order to obtain an explicit solution (1.42) of Fermat’s Principle in two 
dimensions, we consider the propagation of a light ray in a medium with 
linear refractive index

n(y) =  n0 (1 -  fry) (1-44)

exhibiting a constant gradient n'(y) =  — no/3. Substituting this profile into 
the optical-path solution (1-42), we find

x{y) = Г cosyo t ------ (1.45)
Jo -  cos2 ipoу / ( I  -  /3 s)2 -  COS2 (po 

Next, we use the trigonometric substitution

c o s p

with (p — (po at (x ,y ) =  (0,0), so that Eq. (1.45) becomes

xW) = _  22 ^» (  « с у  + ьшу )  _ (L47)
p \ sec <po +  tan щ  J

y-ax is

Fig. 1.5 Parametric solution (1.46)-(1.47) for <fo =  7r/4 and /3 =  1 (solid), /3 =  1/2 
(dashed), and /3 =  0 (dotted). The plots are shown for ( x , y )  from (0 ,0 ) to  (x ,y ) ,  except 
for /3 =  0, for which у  =  x  tan ip®.

The parametric solution (1.46)-(1.47) for the optical path in a linear 
medium (see Fig. 1.5) shows that the path reaches a maximum height у =  
2/(0) at a distance x =  ж(0) when the tangent angle (p is zero:

COS(/J0 , , . . 4 J  _  1 -  COS<^0 x =  ——— m(secy>o + tanipo) and у =  ----- —----- .
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The time taken for the light path parameterized by Eqs. (1.46)-(1.47) in 
going from the origin (0 ,0) to the end point (x,y) is a function of the initial 
angle ipo:

Т Ы  =  ~ Ру(<р)) V ix ')2 + (У')2 dtP

Щ 2 = —  cos ipo
/Зс

C4> 0 

i '
no 

2 /Зс

sec3 ip dip

sin</?o +  cos2 ipo In (sec</?o +  tan^o) (1.48)

Lastly, we note that by expressing y(x; /3) as a function of x, Eq. (1.46) 
becomes

1
y(x;/3) — — 1 -  cos</>o cosh /̂3 sec ipo (x — x)'j (1.49)

In the uniform limit (/3 — 0), we use L’Hospital’s rule on Eq. (1.49) to find 
the straight-line equation y(x; 0) =  x tanipo-

1.4 Geometric Formulation o f Ray Optics*

1.4.1 General Geometric Optics

We now return to the general formulation for light-ray propagation based 
on the time integral (1.36), where the integrand is

dxF | x. I )  =  »(* ) da

and light rays are allowed to travel in a three-dimensional refractive medium 
with a general index of refraction n(x). Euler’s First equation in this case 
is

d (  dF \ dF

where

da \d{dx./da) J dx'

dF n dx dFand —  — Л Vn,

(1.50)

d(dx/da) A da dx

with Л = \dx/da\ given by Eq. (1.37). Euler’s First Equation (1.50), there­
fore, yields the Euler-Fermat equation

d ( n dx\ , _—  =  Л Vn. (1.51)
da \ A da
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By choosing the ray parameterization Л =  ds/da =  n, the Euler-Fermat 
equation (1.51) becomes d2x/da2 =  nVn =  5 Vn2, which implies that 
the light ray is accelerated toward regions of higher index of refraction (see 
Fig. 1.6).

Euler’s Second Equation, on the other hand, states that 

. . /  (ix\ dx dF
H (a) =  F  x, -  -  -da J  da d(dx/da)

is a constant of motion. Note that, while Euler’s Second Equation (1.41) 
proved very useful in providing an explicit solution (Snell’s Law) to finding 
the optical path in a nonuniform medium with index of refraction n(y), it 
appears that Euler’s Second Equation H (a) =  0 now reveals no information 
about the optical path. Where did the information go? To answer this 
question, we apply the Euler-Fermat equation (1.51) to the two-dimensional 
case where a =  x and Л =  yj1 +  (у ')2 with Vn =  n'(y)y. Hence, the Euler- 
Fermat equation (1.51) becomes

d
dx

^  (x +  y'y) -  An' y,

from which we immediately conclude that Euler’s Second Equation (1.41), 
n =  N  Л, now appears as a constant of the motion d(n/A)/dx =  0 associ­
ated with a symmetry of the optical medium (i.e., the optical properties of 
the medium are invariant under translation along the ж-axis). The associ­
ation of symmetries with constants of the motion will later be discussed in 
terms of Noether’s Theorem (see problem 17 and Sec. 2.5).

A

Fig. 1.6 Light-ray curvature к =  n ■ dk/ds and the Frenet-Serret frame (k, n, b) following 
a light ray. The vectors (V n , k,ft) lie on the same plane (i.e., the surface of the page), 
while the vector b =  — n~  V l n n  X к is perpendicular to that plane (i.e., into the page).
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1.4.2 Light-ray Frenet-Serret Equations

Next, by choosing the ray parametrization da =  ds (so that Л =  1), the 
Euler-Fermat equation (1.51) becomes

d ( n =  V». (1.52)
ds \ ds J

Since the ray velocity dn/ds =  к is a unit vector, which defines the direction 
of the wave vector k, Eq. (1.52) yields the light-curvature equation [see 
Eq. (A.24)]

— =  kx  In n X kj =  к n, (1.53)

where n defines the principal normal unit vector and the light-ray Frenet- 
Serret curvature is

к =  |Vlnnxk| =  n-Vlnn; (1-54)

see App. A for a review of the Frenet-Serret formulas for a general spatial 
curve. Note that for the one-dimensional problem discussed in Sec. 1.3.1, 
the curvature к =  |гг'|/(пЛ) =  |у"|/Л3 is in agreement with the standard 
Frenet-Serret curvature.

The light-ray Frenet-Serret torsion is calculated as follows. First, using 
the definition of the binormal unit vector b =  к X n, we use Eq. (1.53) to 
find

— — r/k ~
/tb = kx  — =  — V ln n x k ,  (1.55)ds

which shows that b • Vn =  0 (see Fig. 1.6). Next, we introduce the remain­
ing Frenet-Serret equations [see Eqs. (A.28)-(A.30)]

^  =  rb  — кк and ~  =  - i n ,  (1.56)
ds ds

where к and r  denote the curvature and torsion of the light ray. By taking 
the s-derivative of Eq. (1.55) and then taking the dot product with the 
normal unit vector rT, we obtain the light-ray Frenet-Serret torsion

n
к

-f -Vlnn | X к
ds

Lastly, a light wave is characterized by a polarization unit vector e 
(defined in terms of the wave’s electric field E =  |E| e) that is perpendicular
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to the wavevector direction k. We may, thus, write the polarization vector 
as

e =  cosy>n +  siny> b, (1.58)

where ip denotes the polarization angle measured from the local normal 
n-axis. Using the Frenet-Serret equations (1.56), we obtain the evolution 
equation for the polarization unit vector along a light ray:

de ~ { dip \ de-  = - * c o s v k +  +  t) - ,  (1.59)

which is expressed in terms of the Frenet-Serret curvature and torsion (к, т): 
Kg =  к cos ip denotes the geodesic curvature and rr =  r  +  dip/ds denotes 
the relative torsion, which are derived in Eq. (A.34).

1.4.3 Light Propagation in Spherical Geometry

We now explore the case where the medium is spherically symmetric. By 
using the general ray-orbit equation (1.53), we can also show that, for a 
spherically-symmetric nonuniform medium with index of refraction n(r), 
the light-ray orbit r(s) satisfies the conservation law

I  (r x "w f ) = r x i  ("w S) = r x v"(r) = °- <LS0>
Next, we use the fact that the light-ray path is planar (i.e., the torsion is 
zero, r =  0) and, thus, we write

г X — =  r ^sin</>cos0 — cos0sin0^ z =  rsimpz, (1-61)

where ip =  ф — в denotes the angle between the position vector r =  
г (cos#x +  sin#y) and the tangent vector dv/ds =  cos^x +  sin<^y =  k 
(see Fig. 1.7). The Frenet-Serret equation dk/ds =  к (— sin^x +  cos фу) 
yields the curvature к =  dф/ds.

Using Eq. (1.61), the conservation law (1.60) for ray orbits in a 
spherically-symmetric medium can, therefore, be expressed as

n(r)r  siny?(r) =  N a, (1-62)

which is known as Bouguer’s formula (Pierre Bouguer, 1698-1758), where 
N and a are constants (see Fig. 1.7); note that the condition n(r) r > N a 
must also be satisfied since sinyj(r) < 1. This conservation law is analogous 
to the conservation law of angular momentum for particles moving in a 
central-force potential (see Chap. 4).
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Fig. 1.7 Light path in a nonuniform medium with spherical symmetry.

An explicit expression for the ray orbit r(9) is then obtained as follows. 
First, since dr/ds is a unit vector, we find

dr d6 /  ~ dr Л г в +  (dr/d6) r
ds ds \ dd )  yjr2 +  (dr/dO)2

so that
dO _  1
ds ^/r2 +  (dr/dd)2

and Eq. (1.61) yields
dr ^ n dQ ^ r Nar x  -  =  r sinwz =  r —  Z —> Sinifi =  — . =  ------- ,
ds ds yjr'2 +  (dr/dO)2 nr

where we made use of Bouguer’s formula (1.62). Next, integration by 
quadrature yields

9(r) = N a [  ----- dp = ,
Jr0 p \/n2(p) p2 -  N 2 a2

where we choose г о so that d(ro) — 0. Lastly, a change of integration 
variable r/ =  Na/p yields

rN a / ro  ,

0(r) =  /  ^  -  (1.63)
JNa/r \/n*(ri)-ri2

where n(rj) =  n{Na/i]). Hence, for a spherically-symmetric medium with 
index of refraction n(r), we can compute the light-ray orbit r(0) by inverting 
the integral (1.63) for 6(r).

Consider, for example, the spherically-symmetric refractive index 
n(r) =  no л/2 — (r/R)2, where no =  n(R) denotes the refractive index
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Fig. 1.8 Elliptical light path in a spherically-symmetric refractive medium.

at r =  R. Introducing the dimensional parameter e =  a/R and the trans­
formation a =  r f . Eq. (1.63) becomes

rNa,ro T) dr]f
0(r) =

Jl\N a / r y / n l  (2 772  -  Л Г 2 е 2 )  -  Г}4

1 r(Na/r° f  da
2 J(Na/г)2 sjn^ e2 -  {a -  nl)2

where e =  \J 1 — N 2e2/n2 (assuming that no > N e). Next, using the 
trigonometric substitution a — n2 (1 + e cosx), we find 9{r) =   ̂x(r) or

\/l +  e cos 29 
which represents an ellipse (see Fig. 1.8)

r(0) =  ^ON/lTe (1_g4)

2 / \ 2

,R y/ l—eJ \R\fT

with semi-major and semi-minor axes r\ =  R (1+e)1/ 2 and Vq =  R. (1—e)1/ 2, 
respectively. This example shows that, surprisingly, it is possible to trap 
light!

1.4.4 Geodesic Representation o f  Light Propagation

We now investigate the geodesic properties of light propagation in a nonuni­
form refractive medium. For this purpose, let us consider a path AB in 
space from point A to point В parameterized by the continuous parameter
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a, i.e., x(cr) such that x(A) =  and x(B) =  xg. The time taken by light 
in propagating from A to В is

T[x| = L  i  ^  =  L  ~c ( 9i> %  % )  t o  (105)

where dt =  ndsf с denotes the infinitesimal time interval taken by light in 
moving an infinitesimal distance ds in a medium with refractive index n 
and the space metric is denoted by g^. The geodesic properties of light 
propagation are investigated with the vacuum metric gtJ or the medium- 
modified metric g^ — n2 g'y.

1.4.4.1 Vacuum-metric Case

We begin with the vacuum-metric case and consider the light-curvature 
equation (1.53). First, we define the vacuum-metric tensor gij =  e, • e: in 
terms of the basis vectors (ej, ег, е,з), so that the ray velocity is

•p dx dx1
Ts =  6i'

Second, using the definition for the Christoffel symbol (1.19) and the rela­
tions

=  r< d xk  -  
ds jfc ds 11

we find
dk d2x  d2x l dx3 dej f  d2xl 4 dx? dxk 

ei +  —;----- ; =  —T-гг +  Г,*. —z—ds ds2 ds2 г ds ds \ ds2 jk ds ds

By combining these relations, the light-ray curvature equation (1.53) be­
comes

d2xl { dxj dxk (  dx1 dxj \ <9 In n
+ Г fc —  —  =  [g l> -  —  —  . (1.66)ds2 jfc ds ds \ ds ds J dxj

This equation shows that the path of a light ray departs from a vacuum 
geodesic line as a result of a refractive-index gradient projected along the 
tensor

hv =  дгз _
ds ds

which, by construction, is perpendicular to the ray velocity dx/ds (i.e., 
hl:> dxj/ds = 0).
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1.4.4.2 Medium-metric Case

Next, we investigate the geodesic propagation of a light ray associated 
with the medium-modified (conformal) metric g i;j = n2 gi j ,  where c2dt2 =  
n2ds2 =  дг] dx1 dx-i. The derivation follows a variational formulation sim­
ilar to that found in Sec. 1.1.3. Hence, the first-order variation 5T[x] is 
expressed as

6T[x]
rtb

J t A

d2xl
dt2

—i dx3 dxk 
+  j k ~dt~dt

— x t  9u ox (1.67)

where the medium-modified Christoffel symbol l ]k includes the effects of 
the gradient in the refractive index n(x). We, therefore, find that the light 
path x(t) is a solution of the geodesic equation

d? xl 
dt2

—i dxi dxk
+  jk H T~dT =  '

(1.68)

which is also the path of least time for which <5T[x] =  0. By using the 
substitution d/dt =  (c/n)d/ds in Eq. (1.68), we find dx/dt =  ck/n and 
d2x/dt2 =  (c/n)2 (dk/ds — kd\nn/ds).

When using Cartesian coordinates (where = n2 6ij and g13 =
n 6tJ), for example, the medium-modified Christoffel symbol

jk 8х dk In n +  Slk dj In n — Sjk Sil de In n (1.69)

is expressed in terms of gradient-components of the logarithm of the refrac­
tion index n. By inserting Eq. (1.69) into Eq. (1.68), we readily recover the 
light-ray curvature equation (1.53).

1.4.4.3 Jacobi Equation for Light Propagation

Lastly, we point out that the Jacobi equation for the deviation £(cr) =  
x(er) — x(<x) between two rays that satisfy the Euler-Fermat ray equation 
(1.51) can be obtained from the Jacobi function

X 2  Hx + 60
n

2Л 1

dP_
de2

dZ

dx. d£ 
dcr da

(1.70)
e=0

dx
da X da

£ • Vn d£ dx A _ _

where the Euler-Fermat ray equation (1.51) was taken into account and the 
exact ст-derivative, which cancels out upon integration, is omitted. Hence,
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the Jacobi equation describing light-ray deviation is expressed as the Jacobi- 
Euler-Fermat equation

dJ± ( -  , , 
da \d(d£/da)

which yields 
d

da
n dx 
Л3 da

d£ dx
da da =  Л £ -VVn-

dJ
d t ’

1 dx dx\
1  “  ( 1 '7 1 )

+
di
da

/ >■ t—r i \ dx(£ • V In n) —  
da

Vn dx\ 
X  X d a) ’

The Jacobi equation (1.71) describes the property of nearby rays to converge 
or diverge in a nonuniform refractive medium. Note, here, that the terms 
involving Л-1Vn X dx/da in Eq. (1.71) can be written in terms of the 
Euler-Fermat ray equation (1.51) as

Vn dx 
A da

1 d ( n dx
Л2 da \ A da

dx
da Л3

d2x  dx 
da2 X da

which, thus, involve the Frenet-Serret ray curvature [see Eq. (1.55)].

1.4.5 Wavefront Representation

The complementary picture of rays propagating in a nonuniform medium 
was proposed by Christiaan Huygens (1629-1695) in terms of the picture of 
propagating wavefronts. Here, a wavefront is defined as the surface that is 
locally perpendicular to a ray. Hence, the index of refraction itself (for an 
isotropic medium) can be written as

ck _ _  dx с к .n =  VS =  — or VS  =  n —  =  — , (1-72)
to ds w

where S is called the eikonal function (i.e., a wavefront is defined by the 
surface S =  constant; see Fig. 1.9). To show that this definition is consistent 
with Eq. (1.53), we easily check that

d (  dx\ dVS dx 1 —r.
—  [ n —  = —— = — • VVS = -  VS • VVS
ds \ ds J ds ds n

=  —  VIVSI2 =  —  Vn2 =  Vn.2 n 2 n
This definition, therefore, implies that the wavevector к is curl-free:

V x k  =  v x v ( “ s )  = 0 ,  (1.73)
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where we used the fact that the wave frequency w is unchanged by refrac­
tion. Hence, we find that V X к = kx  Vlnn e  кЬ, from which we obtain 
the light-curvature equation (1.53). Note also that because к is curl-free, 
we easily apply Stokes’ Theorem to find that the closed contour integral 
<fdA k -d x ~ 0  along the boundary ЭА of an open surface A vanishes, i.e., 
the path integral J к • dx is path-independent.

Fig. 1.9 Wavefront surface.

Lastly, in the absence of sources and sinks, the light energy flux en­
tering a finite volume bounded by a closed surface is equal to the light 
energy flux leaving the volume and, thus, the intensity of light I  satisfies 
the conservation law

0 =  V - ( J V S )  =  / V 2S +  VS -V/ .  (1.74)
Using the definition VS - V s  nd/ds, we find the intensity evolution equa­
tion

~  = -  »-■  V ’ s,
OS

whose solution is expressed as

I  =  Io exp ( -  f  V 2S —  V  (1.75)

where Io is the light intensity at position s =  0 along a ray. This equa­
tion, therefore, determines whether light intensity increases (V25 < 0) or 
decreases (V25 > 0) along a ray depending on the sign of V 2,S’. In a re­
fractive medium with spherical symmetry, with S'(r) =  n(r) and к =  r , the 
conservation law (1.74) becomes

which implies that the light intensity satisfies the generalized inverse-square 
law:

I(r)n (r)r2 =  IqTIq Tq . (1-76)
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Table 1.1 Summary of Chapter 1: The Calculus o f Variations.

31

Topic Equation

Euler’s First Equation 
Euler’s Second Equation 
Constrained Variational Principle 
Brachistochrone Problem 
Fermat’s Principle o f Least Time 
Euler-Fermat Equation 
Frenet-Serret Formulas for Light Rays

(1.7)
(1.16)

(1.24)-(1.25)
(1.30)-(1.32)

(1.36)
(1.51)

(1.53)-(1.57)

1.5 Summary

Chapter 1 presented the mathematical foundations of the Calculus of Vari­
ations, which will form the basis upon which the Lagrangian method (in­
troduced in Chapter 2) will be built. The brachistochrone problem and 
Fermat’s Principle of Least Time are two examples that were discussed ex­
tensively. Table 1.1 presents a summary of the important topics of Chapter 
1.

1.6 Problems

1. Consider the problem of finding the extremal solution y(x) of the integral

where F (y,y',y") is a smooth function of its arguments.

(a) Show that Euler’s First Equation for this problem is
_  d_ fd F \  _  d?_ (d F \  

dy dx \dy')  dx2 \dy")

(b) Find Euler’s Second Equation and state whether an additional set of 
boundary conditions for 5y'(a) and 5y'(b) are necessary.

2. Find the curve joining two points (xi,yi) and (x’2 ,уг) that yields a 
surface of revolution (about the ж-axis) of minimum area by minimizing 
the integral
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3. Use the Jacobi equation (1.11) to obtain Eq. (1.14) for 82T.

4. This problem deals with finding the equation for geodesics on a cone 
represented by г(ф) =  р(ф) cot a, for which the infinitesimal length element 
ds is defined as

ds2 =  dp2{4>) + р2(ф) d4)2 + dz2(ф) =  [p2 +  csc2a (p')2] dф2.

The length integral is

C[p\ =  J  V p M ^ c sc ^ p7)2 #  =  J  F(p,p,)dф,

and Euler’s First and Second equations are
d ( dF\ 8F d f  , dF\ OF n

<1ф\др') ~  dp аП< d<l>\ P dp'J ~  дф =
(a) Show that Euler’s Second equation for р(ф) can be written as

p sin a
P o ,

yjp2 sin2 a + {p')2 

where po = р(фо) and р'(фо) =  0.

(b) Solve Euler’s Second equation for р(ф) and show that the equation for 
geodesics on a cone is

Р(Ф) =  Po sec [sin а (ф -  ф0)\ =  p0 sec(x).

(c) With the solution given in part (b), show that
dF dF  sin(x) d SdF\ dF—— = cos(x) and —— = — —  -> —  =  —
dp dp' sina dф \dp')  dp

5. Show that the time required for a particle to move without friction 
from the point (x'0, yo) parametrized by the angle 0o to the minimum point 
( it a,  2 a )  of the cycloid solution of the brachistochrone problem is

fJ On

1_C0S61 J/lde =  7Г
cos #0 — cos в у g

where we used x (в) =  yj2g [x(9) — xq).

6 . A thin rope of mass m (and uniform density) is attached to two vertical
poles of height H separated by a horizontal distance 2D; the coordinates



The Calculus o f  Variations 33

of the pole tops are set at (±  D, H). If the length L of the rope is greater 
than 2D, it will sag under the action of gravity and its lowest point (at 
its midpoint) will be at a height y(x =  0) =  у о . The shape of the rope, 
subject to the boundary conditions y(±  D ) =  Я, is obtained by minimizing 
the gravitational potential energy of the rope expressed in terms of the 
functional

Show that the extremal curve y(x) (known as the catenary curve) for this 
problem is

where 6 =  0 and с =  yo.

7. Show that the parametric solution given by Eqs. (1.46)-(1.47) for the 
linear refractive medium can be expressed as Eq. (1.49).

8 . A light ray travels in a medium with refractive index
n{y) =  n0 exp(-/3 y), 

where no is the refractive index at у =  0 and /3 is a positive constant.

(a) Using Eq. (1.42), with the transformation exp(— /3 s) =  costpo secв, 
show that the path of the light ray is expressed as

where the light ray is initially traveling upwards from (x, y) =  (0, 0) at an 
angle (fi0-

(b) Using the appropriate mathematical techniques, show that we recover 
the expected result lim ^o y{x\0) =  (tanip0) x from Eq. (1.77).

(c) Show that the light ray reaches a maximum height у =  /3-1 In (sec <po) 
at x =  <fo/[3-

9. Consider the path associated with the index of refraction n(y) =  H/y, 
where the height Я  is a constant and 0 < у < H =  R to ensure that, 
according to Eq. (1.41), n(y) > a. Show that the light path has the simple 
semi-circular form:

y{x;P) =  — In
1 Г cos(/3 x -  ipo)
— In ---------------/3 cos ipoCOSlfio

(1.77)

(Я -  x)2 +  у2 R2 —> y(x) — \/x(2 R — x).



34 An Introduction to Lagrangian Mechanics

10.* Using the parametric solutions (1.46)-(1.47) of the optical path in a 
linear refractive medium, calculate the Frenet-Serret curvature coefficient

« м  =  ^ n ? 1.

and show that it is equal to |k X Vlnn|, where

к =  *  = T'{tp) (* L V 1 =  x'x +  y'y
ds \dipj y/(x')2 +  {y')2’

and Vlnn(y) =  у n'{y)/n{y).

11. Assuming that the refractive index n{z) in a nonuniform medium is 
a function of 2 only, show that the Euler-Fermat equations (1.53) for the 
components (a, /3,7 ) of the unit vector к =  a x +  /3 у + 7 z are

a' =  — a 7  n '/n,
/3' =  -  /3 7 n'/n,
7 ' =  (1 — 72) n '/n  =  (a2 +  /32) n'/n.

12. In Fig. 1.8, show that the angle ip(0) defined from Eq. (1.64) is ex­
pressed as

<p(6) =  arcsin
y/r2 +  (dr/dd)2

1 +  e cos 26
\/l +  e2 +  2 e cos 29 

so that ip =  7t/2 at 0 =  0 and 7r /2, as expected for an ellipse.

13. Consider the light-path trajectory г{в) for a spherically-symmetric 
medium, with index of refraction n(r) =  n0 (b/r)2, where b is an arbitrary 
constant and no =  n(b).

(a) Using Eq. (1.63), show that the light-path trajectory is

r(0) =  r0 cos в -I- \J R2 — Tq sin#, 

where r0 =  r{9 =  0) and R =  (no/N) a2/r0.

(b) Using the vector r =  r(6) (sin#x + cos#z) =  r(0)?(9), show that this 
solution satisfies the Euler-Fermat equation

I d f' ,  ̂ d r \  _  _ _n ?
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where ds =  df) \Jr2 +  (r') 2 =  It d,0.

14.* Derive the Jacobi equation (1.71) for two-dimensional light propaga­
tion in a nonuniform medium with index of refraction n(y); Hint: choose 
a =  x. Compare your Jacobi equation with that obtained from Eq. (1.11).

15.* Lagrange showed in 1760 that a surface z(x, y) has minimal area if it 
satisfies the partial differential equation

where (p, q) =  (dz/dx, dz/dy).

(a) Derive Eq. (1-78) by minimizing the surface integral

I[z\ = J J + Я2 dx dy.

(b) Show that the surface z(x,y) =  cosh- 1 (л/а;2 +  y2) has minimal area.

Fig. 1.10 Problem 16.

16. (a) Show that the optical length followed by a light ray along the path 
APB  in Fig. 1.10 is L(9) =  2 \/2 R cos(#/2), where R is the radius of the 
circle.

(b) Show that the optical length L(6) has a maximum for 9 =  0.

17. We now consider light propagation in axially-symmetric cylindrical 
geometry, where the index of refraction n(p) is a function of the cylindrical 
radius p (measured from the г-axis). If we use the г-coordinate as the ray
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parameter, Fermat’s Principle of Least Time (1.38) becomes

5 f  n(p) A(p,p',0') dz =  6 f  n(p) \/l +  (p') 2 + p2 (в')2 dz =  0,
J a J a

where p' =  dp/dz and O' =  d9/dz. Note that the integrand F =  n A is 
independent of z and 0 and therefore

dF dF
N =  F - p' W - 9'de>' ^

dF
R =  — , (1.80)

are constants along the light path (i.e., dN/dz =  0 = dR/dz).

(a) Using the conservation law (1.80), show that, by solving for в' as a 
function of p and p' , we obtain

(b) Using the conservation law (1.79), with Eq. (1.81), obtain the integral 
solution

rp N a da
z(p) =

J a ^/а2[п2(а) -  TV2] -  Д2’ 
which can then be inverted to obtain p(z; N, R).



Chapter 2

Lagrangian Mechanics

Newtonian mechanics discusses the dynamics of particles in terms of (vec­
tor) forces acting on them. Within the context of Newtonian mechanics, 
we distinguish between two classes of forces, depending on whether a force 
is able to do work or not. In the first class, an active force F№ is involved in 
performing infinitesimal work dW = F„, • dx evaluated along the infinitesi­
mal displacement dx; the class of active forces includes conservative (e.g., 
gravity) and nonconservative (e.g., friction) forces. In the second class, a 
passive force Fo is defined as a force not involved in performing work, which 
includes constraint forces such as normal and tension forces. Here, the in­
finitesimal work performed by a passive force is Fo-dx =  0 because the 
infinitesimal displacement dx is required to satisfy the constraints. In con­
trast, the investigation of particle dynamics within Lagrangian mechanics 
uses the concepts of kinetic and potential energies, which are both scalar 
quantities. The difference may seem academic until we realize that it is 
the Lagrangian method which generalizes to physical theories that lie well 
beyond the classical dynamics of particles.

In this Chapter, we present four principles by which single-particle dy­
namics may be derived. The reader is referred to Refs. [4,12,21] for com­
ments regarding the history of the Principles of Least Action of Maupertuis, 
Jacobi, and Hamilton as well as Refs. [9-11] for some additional comments 
concerning recent developments. The primary focus of this Chapter will 
be applications of Hamilton’s Principle on which Lagrangian Mechanics is 
based.

37
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2.1 Maupertuis-Jacobi Principle o f Least Action

The publication of Fermat’s Principle of Least Time in 1657 generated an 
intense controversy between Fermat and disciples of Rene Descartes (1596- 
1650) regarding whether light travels slower (Fermat) or faster (Descartes) 
in a dense medium as compared to free space (air).

In 1744, Pierre Louis Moreau de Maupertuis (1698-1759) stated (with­
out proof) that, in analogy with Fermat’s Principle of Least Time for light, 
a particle of mass m under the influence of an active force F =  — VZ7 moves 
along a path that satisfies the Principle of Least Action: SS =  0, where the 
action integral is defined as

<S[x] =  j p-dx — J  mvds. (2.1)

Here, v — ds/dt =  v • dx/ds denotes the particle’s speed, which can also be 
expressed as

t»(e) = y/(2/m) [E -  U(s)], (2.2)
with the particle’s kinetic energy К  =  mv2/2 =  E — U written in terms of 
its total energy E and its potential energy U(s).

2.1.1 M aupertuis’ Principle

In 1744, Euler proved Maupertuis’ Principle of Least Action SS — 0 for 
particle motion in the (ж, ?/)-plane as follows [21]. For this purpose, we 
use the Frenet-Serret curvature formula for the planar path y(x), where we 
define the tangent unit vector t and the principal normal unit vector n as

-  dx x +  w'y , л у — у' x л ~ , 
t —  —  =  , =  and n =  -  e  z x t ,  (2.3)

ds v/ i + W  y r + W
where y' — dy/dx and ds =  dx y/\ +  (у')2. The Frenet-Serret formula for 
the curvature of a two-dimensional curve (see App. A) is

dt y" n _  ^
d s  =  [ i  +  (y ')2 ]3 /2  =  K n -

Note that the binormal unit vector b e  t X n is defined in Eq. (2.3) as 
b =  z, which is a constant vector and, therefore, the Frenet-Serret torsion 
for Newtonian planar motion is zero.

Next, we introduce Newton’s Second Law of Motion m dv/dt =  F, where
dv d(vt) dv 2 dt
Tt -  V~ d T  = V Ts + V  ds-
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By using the energy conservation law (VК  =  — S7U =  F), Newton’s Second 
Law becomes

mv ( ^  t +  v =  t ft • V /f )  +  mv2 к n 
\ds ds J

=  V K  =  m » V o  (2.4)

between the unit vectors t and n associated with the path, the Frenet-Serret 
curvature re, and the kinetic energy К  =  | mv2(x,y ) of the particle. Note 
that Eq. (2.4) can be re-written as

4 -  =  t X (Vlnv X t ) , (2.5)
ds

which highlights a deep connection with the light-ray Frenet-Serret curva­
ture equation (1.53) derived from Fermat’s Principle of Least Time, where 
the index of refraction n is now replaced by the speed (2 .2).

Lastly, we now show that Eq. (2.5) can be derived from the Maupertuis 
action functional (2 .1), which is expressed as

S =  J  mv(x, у) у7! +  (УО2 dx =  J  F(y,y ';x) dx. (2.6)

We now construct Euler’s first equation for Eq. (2.1), where

dF mv y' dF r -----dv
—-  =  . -----and —  =  т \ / 1 +  j '  2 r .

дУ л/1 +  (уО2 дУ дУ
so that we obtain the Euler-Maupertuis equation

m v y "  m dv m y' dv

[1 +  (у')2]3/2 =  V 1 +  (уО2 зй “  7 ^ + W  ^

=  m (y -  y'x)  -Vt» =  m n -V v,  (2.7)
V 1 +  (y ) 4 '

which can also be expressed as mv к =  mn -Vv.  Using the relation F =  У К  
and the Frenet-Serret formulas (2.3), the Maupertuis-Euler equation (2.7) 
becomes mv2 re =  F • n, from which we recover Newton’s Second Law (2.4).

2.1.2 Jacobi’s Principle

Jacobi emphasized the connection between Fermat’s Principle of Least 
Time (1.36) and Maupertuis’ Principle of Least Action (2.1) by introduc­
ing a different form of the Principle of Least Action 6S =  0, where Jacobi’s 
action integral is

S[x] =  I \j2m (E -  U) ds =  2 f  К  dt, (2.8)
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where the particle momentum is written as p =  \J‘lm (E -  U). To obtain 
the second expression of the action integral (2.8), Jacobi made use of the 
fact that, by introducing a path parameter r such that v — ds/dt =  s' ft' 
(where a prime denotes a r-derivative), we find

_ m i s T  _  F _ r j
2 (f')2 ’

so that 2 К  t' =  s' p, and the second form of Jacobi’s action integral results. 
Next, Jacobi used the Principle of Least Action (2.8) to establish the geo­
metric foundations of particle mechanics. Here, the Euler-Jacobi equation 
resulting from Jacobi’s Principle of Least Action is expressed as

s ( '^ rT7l ) = v'/¥3TF' <2-9>
which is identical to the Euler-Fermat equation (1.52), with the index of 
refraction n substituted with \/E — U.

Note that the connection between Fermat’s Principle of Least Time and 
Maupertuis-Jacobi’s Principle of Least Action yields the relation

|p| =  a n ,  (2.10)

where a is a constant (see Table 3.1). This connection was later used by 
Prince Louis Victor Pierre Raymond de Broglie (1892-1987) to establish 
the relation |p| =  ft|k| =  n(huj/c) between the momentum of a particle 
and its wavenumber |k| =  2tt/X  =  nuj/c, in Eq. (2.10), the constant a 
is a =  (huo/c). Using de Broglie’s relation p =  h к between the particle 
momentum p and the wave vector k, we note that

Mi = s f  |V0|2 =  E  -  U, (2.11)
2m 2m 2m 

where 0  is the dimensionless (eikonal) phase. The time-independent 
Hamilton-Jacobi equation

E =  lV ^g|2 +  ц  (2.12)
2m

is obtained from Eq. (2.11) by using the relation Se =  ft© between Ha.mil- 
ton’s principal function Se (at constant energy E) and the eikonal phase
0  (see Chap. 3 for additional details). Further historical comments con­
cerning the variational derivation of Schroedinger’s equation is discussed 
by Dugas [4], Lanczos [12], and Yourgrau and Mandelstam [21], as well as 
Refs. [10,11].
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2.2 d’Alembert’s Principle

So far, the Maupertuis-Jacobi principles (2.1) and (2.8) make use of the 
length variable s as the orbit parameter to describe particle motion. We 
now turn our attention to two principles that will provide a clear path to­
ward the ultimate action principle called Hamilton’s Principle, from which 
equations of motion are derived in terms of generalized spatial coordinates 
in configuration space.

2.2.1 Principle of Virtual Work

The Principle of Virtual Work is one of the oldest principles in Physics, 
which may find its origin in the work of Aristotle (384-322 B.C.) on the 
static equilibrium of levers [4]. The Principle of Virtual Work was finally 
written in its current form in 1717 by Jean (Johann) Bernoulli and it states 
that a system composed of N  particles is in static equilibrium if the virtual 
work

N

5W  =  Fi-fcc4 =  0 (2.13)
i=l

vanishes for all virtual displacements (<5хх, ...,<5xv) that satisfy physical 
constraints.

Fig. 2.1 Static equilibrium of a lever.

As an application of the Principle of Virtual Work (2.13), we consider 
the static equilibrium of a lever (see Fig. 2.1) composed of two masses m\ 
and m2 placed on a massless rod at distances R\ and /?2, respectively, from 
the fulcrum point O. Here, the only active forces acting on the masses are 
due to gravity: F* =  —тгцду, and the position vectors of mi and m2 are 

rj =  i?! (— cos Ox +  sin#y) and Г2 =  R2 (cosOx — sin(9y),
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respectively (see Fig. 2.1). By using the virtual displacements

<Sxl =  ezxi\  (2.14)

(where e is an infinitesimal angular displacement and the axis of rotation 
is directed along the z-axis, i.e., out of the page), the Principle of Virtual 
Work (2.13) yields the following condition for static equilibrium:

0 =  ecosO (mig Rx — m2g R2) ->• m\R\ =  m2 R2.

Note that, although the static equilibrium of the lever is based on the 
concept of torque (moment of force) equilibrium, the Principle of Virtual 
Work shows that all static equilibria are encompassed by the Principle.

2.2.2 Lagrange’s Equations from d ’Alembert’s Principle

It was Jean Le Rond d’Alembert (1717-1783) who generalized the Principle 
of Virtual Work (in 1742) by including the accelerating force — m, x* in the 
Principle of Virtual Work (2.13):

J 2  ( F* “  m i ~dt?)  -<*x ‘ =  ° ’ (2Л5) 
2=1 '

so that the equations of dynamics could be obtained from Eq. (2.15). Hence, 
d’Alembert’s Principle, in effect, states that the work done by all active 
forces acting in a system is algebraically equal to the work done by all the 
accelerating forces. Note that, in contrast to the variational principles of 
Classical Mechanics (e.g., Fermat, Maupertuis, and Jacobi), d’Alembert’s 
Principle (2.15) and Gauss’ Principle of Least Constraint (see problem 10) 
are constraint principles.

As a simple application of d’Alembert’s Principle (2.15), we return to 
the lever problem (see Fig. 2.1), where we now assume m2 R2 > mi R\. 
Here, the particle accelerations are

xl =  - ( e)2Ti -  0 z X r f,

so that, with Eq. (2.14), d’Alembert’s Principle (2.15) yields

(migRi -  т 2д Д2) cos# +  (m\R\ +  m2 R\) в

Hence, according to d’Alembert’s Principle, the angular acceleration в of 
the unbalanced lever is

» g cos в „  ^ 4
0 =  — - —  (m2 R2 -  777.1 R\) ,
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where I  =  miR2 +  ГП2Щ  denotes the moment of inertia of the lever as 
it rotates about the fulcrum point 0 . Thus, we see that rotational dy­
namics associated with unbalanced torques can be described in terms of 
d’Alembert’s Principle. (See Chap. 7 for additional details concerning ro­
tational dynamics.)

The most historically significant application of d’Alembert’s Principle
(2.15), however, came from Lagrange who transformed it as follows. Con­
sider, for simplicity, the following infinitesimal-work identity

_ w _ ! ( m | . f c )  +  m f . £ ,  ( , 16,

where F represents an active force applied to a particle of mass m so that 
SW =  F • dx denotes the virtual work calculated along the virtual dis­
placement dx. We note that if the position vector x(q 1,...,<&;£) is a time- 
dependent function of к generalized coordinates, then we find

and
i=i dqi

dx dx dx . .
v = ^  =  W  +  £ ^ 9 . -  <2-17)

Next, we introduce the variation of the kinetic energy К  =  mi'2/2:

dx d5x v-л dK  
SK =  m di'~dt~  * г

since the virtual variation operator 5 (introduced by Lagrange) commutes 
with the time derivative d/dt, and we introduce the generalized force

UQi

so that 5 W  =  Yli Q l ■ We shall also use the identity

d2x dx d (  dx\ d f  dx
m dT2 ~  dt ~  ^ ' d t

with
d f  9 x \  _  d2x  . d2x _  dv 
dt \dqi) ~  dtdqi +  dq3 dq, ~  dqi'
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and
dv _  <9x 
дсц dqi'

which both follow from Eq. (2.17). Our first result derived from 
d’Alembert’s Principle (2.16) is now expressed in terms of the generalized 
coordinates (qi,...,qk) as

d ( d K \  OK
0 =  Sqi dt V dqi J dqi

Since this relation must hold for any variation 6q.t (i =  1, k), we obtain 
the d’Alembert-Lagrange equation

d f d K \  dK
d t\ d cn J dqi Ql’ (218)

where the generalized force Ql is associated with any active (conservative 
or nonconservative) force F. Hence, for a conservative active force derivable 
from a single potential energy U (i.e., F =  — V£7), the ith-component of the 
generalized force is Ql =  — dU/dqi, and the d’Alembert-Lagrange equation
(2.18) becomes

d ( d K \  dK dU ,
(2.19)

dt V dqi J dqi dqi'

We shall return to this important equation [see Eq. (2.31)].
Our second result based on d’Alembert’s Principle (2.16), now expressed

as

SK + m  = ± ( r  f . « x ) ,  ( 2. 20)

is obtained as follows. For a conservative active force derivable from a single 
potential energy U (i.e., F =  -  V(7), the virtual work is 6W  =  -S U ,  so 
that time integration of Eq. (2.20) yields an important principle known as 
Hamilton’s Principle

Ĵ  ^ 5K — bu'j dt =  6 Ldt =  0, (2.21)

where <5x vanishes at t ~  t\ and t2 and the function L — К  — U, obtained 
by subtracting the potential energy U from the kinetic energy К , is known 
as the Lagrangian function of the system. Note that the Maupertuis-Jacobi 
Principle (2.8) leads to Hamilton’s Principle (2 .21) if we use the identity 
2К  =  (К — U) +  E  and use the variation operator 5e  at constant total 
energy E.
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2.3 Hamilton’s Principle

2.3.1 Constraint Forces

To illustrate Hamilton’s Principle (2.21), we consider a pendulum composed 
of an object of mass m and a massless string of constant length i  in a 
constant gravitational field with acceleration g. For this problem, Newton’s 
Second Law of Motion rnx =  F is expressed in terms of the net force F =  
T +  m g, where the weight force m g =  — mg у =  — mg (sin 66 — cos 67) and 
the radially-inward tension force T =  -  T ?  are expressed in terms of the 
polar coordinates (r, 6) defined in Fig. 2.2. Using these polar coordinates, 
the accelerating force is mx =  mi (66 -- O'2 7), and Newton’s Second Law 
in the radial direction states that, since the pendulum length i is constant, 
the total radial force must vanish, which yields the tension

T  =  mg cos6 +  m£62, (2.22)

expressed as the sum of the radial component of the weight force and the 
centrifugal force. Newton’s Second Law in the polar direction, on the other 
hand, yields the pendulum equation

m i 6 =  — mgsva.6, (2.23)

where the polar component of the weight force of the pendulum acts as a 
restoring force. We note, here, that the tension force is passive (since it 
does no work) while the weight force is active.

We now investigate the motion of the pendulum as a dynamical problem 
in two dimensions with a single constraint (i.e., constant length) and later 
reduce this problem to a single dimension by carefully choosing a single 
generalized coordinate. Using Cartesian coordinates (x, y) for the pendu­
lum mass shown in Fig. 2.2, the kinetic energy is К  =   ̂rn(x2 +  y2) and 
the gravitational potential energy is U =  mgy, where the length of the 
pendulum string t is constrained to be constant:

I =  y /x2 + y 2. (2.24)

Hence, we consider the constrained action integral defined as

Лл[х] =  j  \ ^ m ( x 2 +  у2) -  mgy +  Л (i  -  \Jx2 + y 2) dt 

=  J  F (x , x ; Л) dt,
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Fig. 2.2 The two-dimensional pendulum problem.

where A represents a Lagrange multiplier used to enforce the constant- 
length constraint (see Sec. 1.2.1), i.e., by definition, d F /дХ =  0 yields the 
constraint (2.24) for all x. Euler’s equations for x and y, respectively, are

X и
m x — -  A — and m y =  - m g  — A (2.25) 

The Lagrange multiplier A is constructed from Eqs. (2.25) as
TTl

Л =  -  -J [яу  +  (xx  +  У у) ]• (2.26)

Next, using the second time derivative of the constant-length constraint 
(2.24), we obtain

x x  +  y y  =  -  (x2 +  y2) ,

so that Eq. (2.26) becomes

A =  — (ж2 + у 2) — mg j  =  т(.в2 +  mg cos в.

The Lagrange multiplier A is, thus, interpreted as the (passive) tension 
force (2.22) in the pendulum string: the constrained displacement for the 
pendulum is expressed as dx =  id6 9, so that the tension force T =  — T ?  
is indeed passive since T • dx =  0.

It turns out that a (passive) constraint force in a dynamical system can 
most often be represented in terms of a constraint involving spatial coordi­
nates. We shall now see that each constraint force can be eliminated from
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the dynamical problem by making use of new spatial coordinates that en­
force the constraint. For example, in the case of the pendulum problem dis­
cussed above, we note that the constant-length constraint can be enforced 
by expressing the Cartesian coordinates x =  £ sin 9 and у =  — I cos 9 in 
terms of the angle 9 (see Fig. 2.2). We shall return to the pendulum problem 
in Sec. 2.4.1.

2.3.2 Generalized Coordinates in Configuration Space

The configuration space of a mechanical system with n—k constraints evolv­
ing in n-dimensional space, with spatial coordinates x =  (ж1, a;2 l),
can sometimes be described in terms of generalized coordinates q =  
(q1, q2, ..., qk) in a fc-dimensional configuration space, with к <  n. Each 
generalized coordinate ql is said to describe motion along a degree of free­
dom of the mechanical system.

Fig. 2.3 Configuration space.

For example, consider a mechanical system composed of two particles 
(see Fig. 2.3), with masses (mi, m2) and three-dimensional coordinate posi­
tions (xi, X2), tied together with a massless rigid rod (so that the distance 
|xi — X2I is constant). The configuration of this two-particle system (in 
six-dimensional space) can be described in terms of the five-dimensional 
coordinates (Xcm; 9, ip), where the position of the center-of-mass in the 
laboratory frame (0 ) is

v  _  £ i m i Xi m l X1 +  m 2 *2 ,0
Л С М  =  — ;— — — , \z -z <)

Ẑ i mi m i +  m2
and the orientation of the rod in the CM frame (O’) is expressed in terms
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of the two angles (в , ip). Hence, as a result of the existence of a single con­
straint (£ =  |xi — X2I), we have reduced the number of coordinates needed 
to describe the state of the system from six to five. Each generalized coor­
dinate is said to describe dynamics along a degree of freedom of the mechan­
ical system; for example, in the case of the two-particle system discussed 
above, the generalized coordinates xcm describe an arbitrary translation 
of the center-of-mass while the generalized coordinates (в , <p) describe an 
arbitrary rotation about the center-of-mass.

Constraints are found to be of two different types referred to as holo- 
nomic and nonholonomic constraints [12]. For example, the differential 
(kinematic) constraint equation dq(r) =  B(r) • dr is said to be holonomic 
(or integrable) if the vector field В satisfies the integrability condition
V  X В =  0. If this condition is satisfied, the function q(r) can be ex­
plicitly constructed and, thus, the number of independent coordinates can 
be reduced by one. For example, consider the differential constraint equa­
tion dz =  Bx(x, у ) dx +  By(x, y) dy, where an infinitesimal change in the x 
and у coordinates produce an infinitesimal change in the z coordinate. This 
differential constraint equation is integrable if the components Bx and By 
satisfy the integrability condition дВх/д у  — дВу/дх ,  which implies that 
there exists a function f{x ,y)  such that Bx =  d f /dx  and By — d f  /dy. 
Hence, under this integrability condition, the differential constraint equa­
tion becomes dz =  df(x, y), which can be integrated to give z =  f(x ,y)  
and, thus, the number of independent coordinates has been reduced from
3 to 2.

If the vector field В does not satisfy the integrability condition V X В =
0, however, the condition dq(r) =  B(r) • dr is said to be non-holonomic. 
A 11 example of non-holonomic condition is the case of the rolling of a solid 
body on a surface. Moreover, we note that a kinematic condition is called 
rheonomic if it is time-dependent, otherwise it is called scleronomic.

In summary, the presence of holonomic constraints can always be treated 
by the introduction of generalized coordinates. The treatment of nonholo­
nomic constraints, on the other hand, requires the addition of constraint 
forces on the right side of Lagrange’s equation (2.18), which falls outside 
the scope of this course.

2.3.3 Constrained M otion on a Surface

As an example of motion under an holonomic constraint, we consider the 
general problem associated with the motion of a particle constrained to
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move on a surface described by the relation F(x, y, z) =  0. First, since the 
velocity cbc/dt of the particle along its trajectory must be perpendicular to 
the gradient V F  (i.e., tangent to the surface F =  0), the displacement dx 
is required to satisfy the constraint condition

dx • V F  =  0. (2.28)

Next, any point x on the surface F(x, y. z) =  0 may be parameterized by 
two surface coordinates (u, v) such that

cbc. . _  „  „ d x . . _  „
- ( u , „ ) - V F  =  0 =  5J(U,»)-VF.

Hence, we may write an expression for dx that satisfies Eq. (2.28) as

dx dx dx dx „ „ г ,
dx =  —  du +  —  dv and —  X —  =  J  VF, 

du dv du dv

where the function J  depends on the surface coordinates (u, v). It is thus 
quite clear that the surface coordinates (u,v) are the generalized coordi­
nates for this constrained motion.

♦ у

Fig. 2.4 Motion on the surface of a cone.

For example, we consider the motion of a particle constrained to move 
on the surface of a cone of apex angle a (see Fig. 2.4). Here, the constraint 
is expressed a sF (i, y, z) — yjx1 +  y2 — z tan a — 0 with V F  =  p -  tan a z,
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where p2 =  x2 +  у 2 and p =  (x /p )x +  (y /p )y ■ The surface coordinates can 
be chosen to be the polar angle в and the function

s(x,y ,z) =  \/x2 +  y2 +  z2 =  \J p2 +  z2,

which measures the distance from the apex of the cone (defining the origin), 
with p =  s sin a and z =  s cosa. Hence, using x =  p (cos0x +  sin0y) + z z , 
we find

with

д х  с- л  л  д х  ^  л  л
—  =  р д  =  p z X p  and —  =  sin a  p +  c o s a z  =  s, 
ov os

dx dx
d e x d~s =  ',C0S“ V F

and thus J  =  p cosa. We shall return to this example in Sec. 2.5.4.

2 .3.4 Euler-Lagrange Equations

Hamilton’s principle (sometimes called THE Principle of Least Action) is 
expressed in terms of a function L(q, q; t) known as the Lagrangian, which 
appears in the action integral

<S[q] =  [  L(q, q; t) dt, (2.29)
Ju

where the action integral is a functional of the generalized coordinates q(i), 
providing a path from the initial point qt =  q(^) to the final point qj  — 
q (tf). The stationarity of the action integral

0 =  f % ; 4  =  ( I s i q  +  e i q l ) ^  =  Jt ' +  dt

<5q- /Jt,

' dL d (d L \

. dq ' dt { d q )
(2.30)

where an integration by parts was carried out on the term rtq • dL/dq  and 
the variation <5q is assumed to vanish at the integration boundaries (/jq, =
0 =  Sqf), yields the Euler-Lagrange equation for the generalized coordinate
qj U =  1 ,...,fc):

=  M  (2 31)
d t \ d q i)  dqi ' ' ’

The Lagrangian also satisfies the Euler’s Second Equation:

d / _  dL\ dL
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and thus, for time-independent Lagrangian systems (dL/dt — 0), we find 
that L — q -d L /d q  is a conserved quantity whose interpretation will be 
discussed shortly.

Note that, according to d’Alembert’s Principle (2.19), the form of the 
Lagrangian function L{r, r; t) is dictated by our requirement that Newton’s 
Second Law m r =  — VC/(r, t), which describes the motion of a particle of 
mass rn in a nonuniform (possibly time-dependent) potential U(r,t), be 
written in the Euler-Lagrange form (2.31). One easily obtains the form

£ (r ,r ; t)  =  j  |r|2 -  U(r,t), (2.33)

for the Lagrangian of a particle of mass m, which is simply the kinetic 
energy of the particle minus its potential energy. The minus sign in 
Eq. (2.33) is important; not only does this form give us the correct equa­
tions of motion but, without the minus sign, energy would not be conserved. 
In fact, we note that Jacobi’s action integral (2.8) can also be written as 
A =  J[(K — U )+E]dt , using the energy conservation law E  =  К +U ;  hence, 
energy conservation is the important connection between the Principles of 
Least Action of Maupertuis-Jacobi and Euler-Lagrange.

2.3.5 Four-step Lagrangian Method

For a simple mechanical system, the Lagrangian function is obtained by 
computing the kinetic energy of the system and its potential energy and 
then constructing Eq. (2.33). The construction of a Lagrangian function 
for a system of N  particles, therefore, proceeds in four steps as follows.
• Step I. Define к generalized coordinates q(t) =  {ql (t), ..., qk(t)) that 
represent the instantaneous configuration of the mechanical system of N  
particles at time t. Hence, for each particle (labeled a =  1, the 
Cartesian-coordinate position vector

xa =  xa(q ;t) (2.34)
is expressed as an explicit function of the generalized coordinates.
• Step II. For each particle, use the position vector (2.34) to construct 
the velocity

va(q.q ;t) =  ^  +  E  ^  (2-35)
3—i

• Step III. From the position (2.34) and velocity (2.35) of each particle, 
construct the kinetic energy

К (q, q; t) =  ^  —  |v0 (q, q: £)|2
a
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and the potential energy

U(q;t) =  U(xa(q-t), t)
a

for the system and combine them to obtain the Lagrangian

L{4,4', t) =  K {q ,q ;t)  -  U(q-,t). (2.36)

• Step IV . Prom the Lagrangian (2.36), the Euler-Lagrange equations 
(2.31) are derived for each generalized coordinate q3:

£  it(w 'm°v‘) = (2-37)a  x a  4

where we have used the identity dvajdcp =  <9x„/dq3.

2.3.6 Lagrangian Mechanics in Curvilinear Coordinates*

Jacobi was the first to investigate the relation between particle dynamics 
and Riemannian geometry. The Euler-Lagrange equation (2.37) can be 
framed within the context of Riemannian geometry as follows. The kinetic 
energy of a single particle of mass m, with generalized coordinates q =  
(q1, ..., qk), is expressed as

m . m dr dr , ... m
=  T  |v| 3

where g-,j denotes the metric tensor on configuration space (i.e., ds2 =  
gij dq1 dqi). When the particle moves in a potential U (q). the Euler- 
Lagrange equation (2.37) becomes

d f ,j\ ..j m ( dgtj dgik\ ,k~ ( m  +  -  ^  +

=  — Ёй* & ak -  —
2 dq1 dq{ ’

or

( d2qj I FJ dqk dql\ dU (О Чй'!

where the Christoffel symbol (1.19) is defined as

rj ĝ _ f  dgik dgu _  dgke\ 
ы 2 \ dq* dqk dq1 )

Thus, the concepts associated with Riemannian geometry that appear ex­
tensively in the theory of General Relativity have natural antecedents in 
classical Lagrangian mechanics.
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2.4 Lagrangian Mechanics in Configuration Space

In this Section, we explore the Lagrangian formulation of several mechanical 
systems, which are listed here in order of increasing complexity. As we 
proceed with our examples, we should note how the Lagrangian formulation 
maintains its relative simplicity compared to the application of the more 
familiar Newton’s method (Isaac Newton, 1643-1727) associated with the 
vectorial decomposition of forces. Here, all constraint forces are eliminated 
in terms of generalized coordinates and all active conservative forces are 
expressed in terms of gradients of suitable potential-energy functions.

2.4.1 Example I: Pendulum

As a first example, we reconsider the pendulum (see Sec. 2.3.1) composed 
of an object of mass m and a massless string of constant length £ in a 
constant gravitational field with acceleration g. Although the motion of 
the pendulum is two-dimensional, a single generalized coordinate is needed 
to describe the configuration of the pendulum: the angle 9 measured from 
the negative y-axis (see Fig. 2.2). Here, the position of the object is given 
as (Step I)

x(9) =  £ sin9 and у (9) =  — £cos9, 

with associated velocity components (Step II)

x(9,9) =  £9 cos9 and у (9,9) =  £9 sin#.

Hence, the kinetic energy of the pendulum is (Step III)

К  =  j  ( i 2 +  У2) =  j  ^ 2,

and choosing the zero potential energy point when 9 =  0 , the gravitational 
potential energy is (Step III)

U =  mg£ (1 — cos#).

The Lagrangian L =  К  — U is, therefore, written as (Step III)

L(9,9) =  ~  £262 — mg£(\ — cos6), 

and the Euler-Lagrange equation for 9 is (Step IV)

дЛ  =  m£2 9 -»■ ^  ( ^ 1  = m(* 0 =  =  ~ m9e sin0 09 d t \ d e )  09
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or

9 +  -  sin# =  0. (2.39)

The pendulum equation (2.39), which is identical to Eq. (2.23) derived by 
the Newtonian method, is solved in the next Chapter through the use of the 
Energy method. Note that, whereas the tension force T in the pendulum 
string must be considered explicitly in the Newtonian method, T is replaced 
by the constraint dx =  £d0 9 in the Lagrangian method.

2.4.2 Example II: Bead on a Rotating Hoop

z

Fig. 2.5 Generalized coordinates for the bead-on-a-rotating-hoop problem.

As a second example, we consider a bead of mass m sliding freely on 
a hoop of radius R rotating with angular velocity П in a constant gravi­
tational field with acceleration g (see Fig. 2.5). Here, since the bead on 
the rotating hoop effectively moves on the surface of a sphere of radius R, 
we use the generalized coordinates given by the two angles # (measured 
from the negative г-axis) and ip (measured from the positive ж-axis), where 
ф =  is used as an additional constraint (i.e., expressed as dip =  fIdt). 
The position of the bead is given in terms of Cartesian coordinates as

x(9,t) =  R  sin# cos((/?o +  Qt), 
y(9,t) =  R sin# sin(<̂ o +  Qt), 
z(6, t) =  — R cos#,
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where ip(t) =  ipo +  0 t, and its associated Cartesian velocity components
are

x(9,0\t) =  R (j) cos в cosip — Q sin# sini/?  ̂ , 

y(9,0;t) =  r (J) cos в sini/? +  fl sin# cos<^) , 

z(9,9;t) =  R 9  sin#, 

so that the kinetic energy of the bead is

К(в,в) =  |  | v |2 =  n f  ( < P  +  s i n 2 « )  .
The gravitational potential energy is

£/(#) — mgR( 1 — cos#),

where the zero-potential energy point is chosen at the bottom of the hoop 
(# =  0 in Fig. 2.5).

The Lagrangian L =  К  — U is, therefore, written as

L(#,#) =  T- ~ - (в2 +  Cl2 sin2 #  ̂ — mgR (1 — cos#),

and the Euler-Lagrange equation for 9 is

dL т-,2 л d (dL\  _ a  =—-  =  mR  # —>•— ( —-  } =  mR 9 
89 dt \ dO J

^  =  -  mgR sin #
?2 r> 2+  mR  fi cos# sin#

or

# +  sin#^-^ — Я2 cos#j =  0. (2.40)

Note that the support (constraint) force provided by the hoop (necessary 
in the Newtonian method) is now replaced by the constraint R =  constant 
in the Lagrangian method. Furthermore, although the motion intrinsically 
takes place on the surface of a sphere of radius R, the azimuthal motion is 
constrained (dip(t) =  О dt) and, thus, the motion of the bead takes place in 
a one-dimensional configuration space (with coordinate #).

Lastly, we note that Eq. (2.40) displays bifurcation behavior, which is 
investigated in Chap. 8 . For Cl2 <  g/R, the equilibrium point # =  0 is 
stable while, for tt2 >  g/R, the equilibrium point # =  0 is now unstable 
and the new equilibrium point # =  arccos(<7/f i 2.R) is stable.
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ш

Fig. 2.6 Generalized coordinates for the rotating-pendulum problem.

2.4.3 Example III: Rotating Pendulum

As a third example, we consider a pendulum of mass m and length b at­
tached to the edge of a disk of radius a rotating at angular velocity ш in a 
constant gravitational field with acceleration g. Placing the origin at the 
center of the disk, the coordinates of the pendulum mass are

Setting the zero potential energy at x =  0, the gravitational potential 
energy is

U — — mg x =  mga sin cut — mgb cos #.

The Lagrangian L =  К  — V  is, therefore, written as

(x, y) =  a (— sinwt, cosuit) +  b(cos#, sin#), 

so that the velocity components are

(x, y) =  -  au (cosut, sinw£) +  6 # ( -  sin#, cos#), 

and the squared velocity is

v2 =  а2ш2 +  b292 +  2 abut) sin(6 —cot).

L{6,6\t) =  — a2u>2 +  b202 +  2abuj6 sin(# — Lot)

— mga sinwt +  mgb cos#, 

and the Euler-Lagrange equation for # is 

dL
—-  =  mb26 +  mabuj sin(# — wt) —>•

(2.41)
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and
d L
—  =  таЪшв cos(0 — ivt) — mgbsmO
du

or

0 +  7  sin в — ^ ш2 cos (в — uit) =  0 
b b

We recover the standard equation of motion for the pendulum when a or 
ш vanish.

Note that the terms

m  2 2 •— а ш — mga sinu;£

in the Lagrangian (2.41) play no role in determining the dynamics of the 
system. In fact, as can easily be shown (see Sec. 2.5), a Lagrangian L is 
always defined up to an exact time derivative, i.e., the Lagrangians L and 
L' — L — df/dt, where /(q . t) is an arbitrary function, lead to the same 
Euler-Lagrange equations. In the present case,

f(t) =  [(m /2) a2uj2] t +  (тда/ш) cosojt

and thus this term can be omitted from the Lagrangian (2.41) without 
changing the equations of motion.

2.4.4 Example IV : Compound Atwood Machine

As a fourth example, we consider a compound Atwood machine (see 
Fig. 2.7) composed three masses (labeled mi, m2, and m3) attached by 
two massless ropes through two massless pulleys in a constant gravitational 
field with acceleration g.

The two generalized coordinates for this system are the distance x of 
mass mi from the top of the first pulley and the distance у  of mass m2 
from the top of the second pulley; here, the lengths la and £ь are constants. 
The coordinates and velocities of the three masses mi, m2, and m3 are

X\ =  x  —> V\ =  x ,

x 2 = i a - x  +  y - * V 2  ~  у -  x ,

Хз =  l a  -  X +  l b -  у  - > v 3 =  - X - y ,  

respectively, so that the total kinetic energy is
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m 3

Fig. 2.7 Generalized coordinates for the compound-Atwood problem.

Placing the zero potential energy at the top of the first pulley, the total 
gravitational potential energy, on the other hand, can be written as

U =  -  gx  (mi -  m2 -  m3) -  g y  (m2 -  m3) ,
where constant terms were omitted. The Lagrangian L =  К  — U  is, there­
fore, written as

L(x,x, у , у ) = 7- ^ - х 2 4- ^  ( x - y f  +  "y  (x +  y)2

+  gx  (mx - m 2 -  m3) +  g y  (m2 -  m3) .
The Euler-Lagrange equation for x is 

dL
dx

r  =  (mi +  m 2 +  m3) ж +  (m3 — m2) у

dt  [ d ±  J =  m̂ i  2 +  тоз ) ж +  (т з - m 2 )  у

^  =  9 { m i -  m 2 -  m 3) 

while the Euler-Lagrange equation for у is

^  =  (m3 -  m2) ж +  (m2 +  m3) у ->

Jt \dijJ =  (тз~ m2>£ + (m2 + тз) У

^  =  g ( m 2 -  m3) .



Lagrangian Mechanics 59

We combine these two Euler-Lagrange equations

(mi + m 2 +  m3) x +  (m3 -  m2) У =  5 (™i ~  rn2 -  m3) , (2.42) 
(m3 -  m2) ® +  (m2 +  m3) у =  g (m2 -  m3) , (2-43)

to describe the dynamical evolution of the compound Atwood machine. 
This set of equations can, in fact, be solved explicitly as

/m i  m+ — ( m i — m2_)
Ё =  9 \ ----------------- 7---9-------- 9T\m im +  +  (m .̂ -  m i)

and
2 mi m_ 

m i m +  +  (m +  — m2_ ) J ’

where m± =  m2± m 3. Note also that, by using the energy conservation law 
E =  К  +  U, it can be shown that the position z of the center of mass of the 
mechanical system (as measured from the top of the first pulley) satisfies 
the relation

M g ( z - z o )  =  x2 +  ~  [y -  i f  +  (Ё +  y)2 >  0, (2.44)

where M  =  (mi +  m2 +  m3) denotes the total mass of the system and 
we have assumed that the system starts from rest (with its center of mass 
located at z0). This important relation tells us that, as the masses start to 
move ( i ^ O  and у ф 0), the center of mass must fall: z >  zq.

Before proceeding to our last example, we introduce a convenient tech­
nique (henceforth known as Frozen Degrees of Freedom) for checking on the 
physical accuracy of any set of coupled Euler-Lagrange equations. Hence, 
for the Euler-Lagrange equation (2.42), we may freeze the degree of free­
dom associated with the у-coordinate (i.e., we set у =  0 =  у or m _ =  0) 
to obtain x =  g (mi — m+ )/(m\ +  m+ ), in agreement with the analysis 
of a simple Atwood machine composed of a mass mi on one side and a 
mass m+ =  m2 +  m3 on the other side. Likewise, for the Euler-Lagrange 
equation (2.43), we may freeze the degree of freedom associated with the 
x-coordinate (i.e., we set x =  0 =  x or mim+ — m2+ -  m2 ) to obtain 
у — g (m _/m +), again in agreement with the analysis of a simple Atwood 
machine.

2.4.5 Example V: Pendulum with Oscillating Fulcrum

As our final example, we consider the case of a pendulum of mass m and 
length I attached to a massless block which is attached to a fixed wall by
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z

g
X

к

—W\A
> у

h—  xo — H

m

Fig. 2.8 Generalized coordinates for the oscillating-pendulum problem.

a massless spring of constant k. Here, we assume that the massless block 
moves without friction on a set of rails (see problem 5). We use the two 
generalized coordinates x and 9 shown in Fig. 2.8 and write the Cartesian 
coordinates (у , z) of the pendulum mass as у =  x + £  sin 9 and z =  —t  cos 0, 
with its associated velocity components у =  x +  £0 cos 9 and z — £9 sin в. 
The kinetic energy of the pendulum is thus

The potential energy U =  Uk +  Ug has two terms: one term Uk =  | kx2 as­
sociated with displacement of the spring away from its equilibrium position 
and one term Ug =  mgz associated with gravity. Hence, the Lagrangian 
for this system is

К  =
m

(y2 +  z2) — ^  (x2 +  £292 +  2£ cost? .
2

• 777, /  . ‘\ к
L(x ,9 ,x ,9 ) =  — yx2 +  £292 +  2£ cos9 xOj — — x2 +  mg£ cos 0.

The Euler-Lagrange equation for x is

=  m x +  m£ (9 cos 9
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while the Euler-Lagrange equation for # is

^ - =  mi (i6  +  x cos#) —>
дв V )

— ( )  =  mi2 в +  mi (x  cos# — хб sin#)
d t \ d e )  '  >

d L
—-  =  — mi хв sin # — mqi sin # 
дв

or1

m x  +  kx =  mi (в2 sin# — # cos#j , (2-45)

# +  (g / i ) sin# =  — (x / i ) cos#. (2-46)

Here, we recover the dynamical equation for a block-and-spring harmonic 
oscillator from Eq. (2.45) by freezing the degree of freedom associated with 
the #-coordinate (i.e., by setting # =  0 =  #) and the dynamical equation for 
the pendulum from Eq. (2.46) by freezing the degree of freedom associated 
with the x-coordinate (i.e., by setting x =  0 =  x). It is easy to see from 
this last example how powerful and yet simple the Lagrangian method is 
compared to the Newtonian method.

2.5 Symmetries and Conservation Laws

We are sometimes faced with a Lagrangian function that is either indepen­
dent of time, independent of a linear spatial coordinate, or independent 
of an angular coordinate. The Noether theorem (Amalie Emmy Noether, 
1882-1935) states that for each symmetry of the Lagrangian there corre­
sponds a conservation law (and vice versa). When the Lagrangian L is 
invariant under a time translation, a space translation, or a spatial rota­
tion, the conservation law involves energy, linear momentum, or angular 
momentum, respectively.

We begin our discussion with a general expression for the variation SL 
of the Lagrangian L(q, q, t):

dL _  d_ f d £
<9q dt \ <9q,

obtained after re-arranging the term bq-dL/dq  in Eq. (2.30). Next, we 
make use of the Euler-Lagrange equations for q (which enables us to drop

iDo not attempt to integrate these equations of motion since, without taking into 
account the mass of the block, these equations are singular. (See problem 5.)

6L =  <5q-
d Л  dL

+  U q -тг-dt \ dq
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the term <Sq • [• • • ]) and we find

5 L =  tA  8 4 ~ V  (2-47)dt \ 9q

Lastly, the variation SL can only be generated by a time translation 8t:

61 =  T- de
| L (q (t +  e St), q(t +  e St), t)

c=0
.d L  0L\

=  6 t [ Tt -  T t ) -

By combining this expression with Eq. (2.47), we find

I  ( « 4 —  -  f t l )  =  - S t  ( § ) ,  . ,  (2.48)

where (dL/dt)^q denotes the partial time derivative of L(q. q. t) at con­
stant (q, q). Equation (2.48) is, henceforth, refered to as the Noether equa­
tion for finite-dimensional mechanical systems; see Chap. 9, Eq. (9.14), for 
the infinite-dimensional case.

We now apply Noether’s Theorem, based on the Noether equation
(2.48), to investigate the connection between symmetries of the Lagrangian 
with conservation laws.

2.5.1 Energy Conservation Law

First, we consider time translations, t —> t +  St (with <5q =  q St), so that 
the Noether equation (2.48) becomes Euler’s Second Equation

_ dL ~  d_ ( .  dL 
dt dt <9q

Noether’s Theorem states that if the Lagrangian is invariant under time 
translations (i.e., dL/dt =  0), then energy is conserved, dE/dt =  0, where

d L
E  =  (2.49)

defines the energy invariant.

2.5.2 M om entum  Conservation Laws

Next, we consider invariance under spatial translations, q —> q +  e (where 
<5q =  e denotes a constant infinitesimal displacement in an arbitrary di­
rection and St =  0), so that the Noether equation (2.48) yields the linear 
momentum conservation law

d { dL\ dP



Lagrangian Mechanics 63

where

(2.50)

denotes the total linear momentum of the mechanical system.
On the other hand, when the Lagrangian is invariant under spatial ro­

tations, q —> q +  86 z x q  (where a constant infinitesimal rotation 86 is 
carried out about an arbitrary symmetry г-axis), the Noether equation
(2.48) yields the angular momentum conservation law

where L =  q X P denotes the total angular momentum of the mechanical 
system.

2.5.3 Invariance Properties o f  a Lagrangian

Lastly, an important invariance property of the Lagrangian is related to the 
fact that the Euler-Lagrange equations themselves are invariant under the 
gauge transformation

on the Lagrangian itself, where F(q, t) is an arbitrary time-dependent func­
tion so that

To investigate the invariance property (2.51), we call L' =  L +  dF/dt the 
new Lagrangian and L the old Lagrangian, and consider the new Euler- 
Lagrange equations

We now express each term in terms of the old Lagrangian L and the function 
F. Let us begin with

(2.51)
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Next, we find

д У  _  d (  8F_ ^  .k d F \ 
dqi dqi у +  dt ^  9 dqk J

_ 0L_ d2F  ,k d2F
dql ^ dqldt  ̂ dqldqk

Using the symmetry properties

, 82F  _  .. d2F  82F  _  d2F
dqidqi dqWq1 &П dtdqi dqldt ’

we easily verify that

A. f — \ dL> d f — \ -  —  -  П 
dt \ dqz J dq’ dt \ dql J dq*

Hence, since L and L' =  L +  dF/dt lead to the same Euler-Lagrange equa­
tions, they are said to be equivalent.

Using this invariance property, for example, we note that the Lagrangian 
is also invariant under the Galilean velocity transformation v —>■ v +  a, so 
that the Lagrangian variation

r r f  dL \  dx dL
a ' V  d r f )  =  a '~dtdv2 ’

using the kinetic identity dL/dv2 =  m/2, can be written as an exact time 
derivative

d t m \ dSF 
oL =  — a  • — x =  —-— .

dt V 2 /  dt
Hence, because Lagrangian mechanics is invariant under the gauge trans­
formation (2.51), the Lagrangian L is said to be Galilean invariant.

2.5.4 Lagrangian Mechanics with Symmetries

As an example of Lagrangian mechanics with symmetries, we return to the 
motion of a particle of mass m constrained to move on the surface of a 
cone of apex angle a (such that у /x2 +  y2 =  г tan a) in the presence of a 
gravitational field (see Fig. 2.4 and Sec. 2.3.3).

The Lagrangian for this constrained mechanical system is expressed in 
terms of the generalized coordinates (s,6), where s denotes the distance 
from the cone’s apex (labeled О in Fig. 2.4) and в is the standard polar 
angle in the (x, y)-plane. Hence, by combining the kinetic energy К  =
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| m(s2 +  a’2 02 sin2 a) with the potential energy U =  mgz =  mg s cos a, 
we construct the Lagrangian

L(s,9;s, 9) =  ^ m ( s 2 +  s292 sin2a j — mgs cos a. (2.52)

Since the Lagrangian is independent of the polar angle 9, the canonical 
angular momentum

pe =  —~ =  ms2 9 sin2 a (2.53)
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is a constant of the motion (as predicted by Noether’s Theorem). The 
Euler-Lagrange equation for s , on the other hand, is expressed as

s +  g cos ol — s92 sin2 a =  — —5— j (2-54)
m2 s'3 sin a

where g cos a denotes the component of the gravitational acceleration par­
allel to the surface of the cone. The right side of Eq. (2.54), which repre­
sents the effect of the centrifugal force, becomes a function of s only after 
using 9 =  pe/(m s2 sin2 a), which follows from the conservation of angular 
momentum.

2.5.5 Routh’s Procedure

Edward John Routh (1831-1907) introduced a simple procedure for elimi­
nating ignorable degrees of freedom while introducing their corresponding 
conserved momenta within the context of Lagrangian Mechanics.

Consider, for example, two-dimensional motion on the (x, y)-plane rep­
resented by the Lagrangian L(r; r, 0), where r and 9 are the polar coordi­
nates. Since the Lagrangian under consideration is independent of the angle 
9, the canonical momentum pe =  dL/Эв  is conserved. Routh’s procedure 
involves the construction of the Routh-Lagrange function (or Routhian)

R(r,r;pe) =  L(r\ r , 9) -  pe 9(r,pe), (2.55)

where 9(r,pe) is expressed as a function of r and pe- Note that the sign 
convention used in Eq. (2.55), which is different from Landau’s convention 
[13], implies that the Routhian R can be treated as a reduced Lagrangian.

Returning to the case of the constrained motion of a particle on the 
surface of a cone in the presence of gravity, the Lagrangian (2.52) can be 
reduced to the Routhian:

R(s,s;pe) =  L (s,s; 9(s,p&)J -  pe 9(s,pe)

=  \ m s2 -  (m gs cosa +  ------ f 9. 2 )  , (2.56)
z \ 2 ms* sin a J
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where the function 9(s,pe) is obtained from Eq. (2.53). The equation of 
motion (2.54) can thus be expressed in Euler-Lagrange form

d_ / 8R\ dR 
ds \ ds

in terms of the effective potential

fd R \  dR ..

P2l/(s) =  mgs cosa +  ------2
2 ms1 sin a

Here, the effective potential V(s) has a single minimum at s =  so, where

,s0 =
m2g sin2 a cos a

and Vo =  V ( s q )  =  I mg so c o s  a.

Side View

z

Top View

z

Fig. 2.9 Particle orbits on the surface of a cone.

Figure 2.9 shows the results of the numerical integration of the di- 
mensionless Euler-Lagrange equations for ( ) { t )  and a (r) =  s(r)/so, where 
т =  t yJ(g/so) cosa; see Appendix A.5 for some advice concerning the nu­
merical solution of coupled ordinary differential equations. The top figure
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in Fig. 2.9 shows a projection of the path of the particle on the (x,z)~ 
plane (side view), which clearly shows that the motion is periodic as the 
ст-coordinate oscillates between two finite values of a. The bottom figure 
in Fig. 2.9 shows a projection of the path of the particle on the (x , y)-plane 
(top view), which shows the slow precession motion in the ^-coordinate.

In the next Chapter, we will show that the doubly-periodic motion of 
the particle moving on the surface of the inverted cone is a result of the 
conservation law of angular momentum and energy (since the Lagrangian 
system is also independent of time).

2.6 Lagrangian Mechanics in the C M  Frame

An important frame of reference associated with the dynamical descrip­
tion of the motion of interacting particles and rigid bodies is provided by 
the center-of-mass (CM) frame. The following discussion focuses on the 
Lagrangian for an isolated two-particle system expressed as

L =  f  I r i l 2 +  ^ N 2 -  J7( n -  r2),

where ri and r2 represent the positions of the particles of mass mi and 
m2, respectively, and U(ri, r2) =  U(r\ — r2) is the potential energy for an 
isolated two-particle system (see Fig. 2.10).

Fig. 2.10 Center-of-Mass frame.

Let us now define the position R  of the center of mass
mi n  +  m2 r2

I ’mi +  m2
and define the relative inter-particle position vector r =  ri — r2, so that the 
particle positions can be expressed as

d  , m2 i mi
ri =  R  +  м г and 1-2 =  R  "  м г’
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where M  =  mi +  m2 is the total mass of the two-particle system (see 
Fig. 2.10). The Lagrangian of the isolated two-particle system, thus, 
becomes

L =  у  |R|2 +  I  |r|2 -  U{r),

where

m i  m 2  / 1  1  4  1

mi +  m2 \mi m2, 
denotes the reduced mass of the two-particle system. We note that the 
angular momentum of the two-particle system is expressed as

L =  ^  ra X p„ =  R x P  +  r x p ,  (2-57)
a

where the canonical momentum of the center-of-mass P and the canoni­
cal momentum p of the two-particle system in the CM frame are defined, 
respectively, as

dL ■ dL
P =  —-  — M R  and p =  =  fir. 

dK dr
For an isolated system (dL/dR  =  0), the canonical momentum P of the 
center-of-mass is a constant of the motion. The CM reference frame can be 
defined by the condition R  =  0, i.e., we move the origin of our coordinate 
system to the CM position.

In the CM frame, the Lagrangian for an isolated two-particle system is

L(T> г) =  I  |r|2 -  U(r), (2.58)

which describes the motion of a fictitious particle of mass ц at position r, 
where the positions of the two real particles of masses mi and m2 are

m2 1 mi /0Г1 =  — r and r2 =  -  — r. (2.59)

Hence, once the Euler-Lagrange equation

d (d L \  dL .. .
= -  " r = - w ( r )  

is solved for r(t), the motion of the two particles in the CM frame is deter­
mined through Eqs. (2.59).

The angular momentum L =  p г X r in the CM frame satisfies the 
evolution equation

-у-  =  r x  fir =  — r x V t /(r ) . (2.60)
dt
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Table 2.1 Summary of Chapter 2: Lagrangian Mechanics.

Topic Equation

Maupertuis’ Principle (2.1)
Jacobi’s Principle (2.8)
Euler-Jacobi Equation (2.9)
Principle of Virtual Work (2.13)
d’Alembert’s Principle (2.15)
Hamilton’s Principle (2.21)
Lagrangian Method (2.34)-(2.37)
Noether Equation (2.48)
Energy-Momentum Conservation Laws (2.49)-(2.50)
Routh-Lagrange Function (2.55)
Lagrangian Function in CM Frame (2.58)

Here, using spherical coordinates (г, #, <p), we find

dL ^ d U  в dU 
dt ^  дв ^  sin# dip

If motion is originally taking place on the (x , y)-plane (i.e., at в =  тг/2) and 
the potential U[r, ip) is independent of the polar angle в, then the angular 
momentum vector is L =  dz and its magnitude t satisfies the evolution 
equation

dt dU_ 
dt dip

Hence, for motion in a potential U(r) that depends only on the radial 
position r, the angular momentum remains along the z-axis, and L =  z 
represents an additional constant of motion. Motion in such central-force 
potentials will be studied in Chap. 4.

2.7 Summary

Chapter 2 presented various variational principles used to describe particle 
dynamics in force fields that are derived from potential-energy functions. 
The four-step Lagrangian method was introduced as powerful way of deriv­
ing equations of motion in configuration space and several examples were 
given. Table 2.1 presents a summary of the important topics of Chapter 2.
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2.8 Problems

1. Consider a physical system composed of two blocks of mass mi and 
Щ2 resting on incline planes placed at angles #i and #2, respectively, as 
measured from the horizontal (see Fig. 2.11). The only active force acting 
on the blocks is due to gravity (g =  —g y): Fi =  —rriigy and, thus, 
the Principle of Virtual Work (2.13) implies that the system is in static 
equilibrium if

0 =  m ig y -бх1 +  m2<7y-5x2.

Find the virtual displacements dx1 and <5x2 needed to show that, according 
to the Principle of Virtual Work, the condition for static equilibrium is
7771 S in  0\ =  7772 S in  # 2-

Fig. 2.11 Problem 1.

2. A particle of mass 777 is constrained to slide down a curve у =  V (x) 
under the action of gravity without friction. Show that the Euler-Lagrange 
equation for this system yields the equation

x =  -  V' (g +  V ) , 

where V =  x V 1 and V  =  x V' +  x2 V " .

3. Derive Eq. (2.44) for the compound Atwood machine.

4. A bead (of mass 777) slides without friction on a wire in the shape of a 
cycloid: х(в) — а (в — sin#) and у (9) =  a (1 +  cos в).

(a) Show that the Lagrangian for this problem is

L(6,9) =  777 a2 (1 — cos#) 92 — mg a (1 -I- cos#) 

and derive the Euler-Lagrange equation for the angle 9.

(b) Show that the equation of motion for и =  cos(#/2) is й +  (Л2 и =  0 and
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find an expression for Q.

5. A cart of mass M  is placed on rails and attached to a wall with the help of 
a massless spring with constant к (Fig. 2.12); the spring is in its equilibrium 
state when the cart is at a distance xo from the wall. A pendulum of mass 
m and length £ is attached to the cart (as shown).

(a) Show that the Lagrangian for the cart-pendulum system is

L(x,x, 9,9) =  — (m 4- M) x2 +  - m i 2 92 +  mi x 9 cos 9

— —kx2 +  mg £ cos 9, (261)

where x denotes the position of the cart (as measured from a suitable origin) 
and 9 denotes the angular position of the pendulum.

(b) From the Lagrangian (2.61), write the Euler-Lagrange equations for the 
generalized coordinates x and в.

(c) Write the normalized equations for £ =  x / i  and 9 in terms of the 
normalized time r =  t \Jgji and the two dimensionless parameters /j =  
m /(m  +  M) <  1 and Q2 =  ki/[(m +  M)g].

6. An Atwood machine is composed of two masses m and M  attached by 
means of a massless rope into which a massless spring (with constant k) is 
inserted (as shown in Fig. 2.13). When the spring is in a relaxed state, the 
spring-rope length is t.

(a) Find suitable generalized coordinates to describe the motion of the two
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m

Fig. 2.13 Problem 6.

masses (allowing for elongation or compression of the spring).

(b) Using these generalized coordinates, construct the Lagrangian and de­
rive the appropriate Euler-Lagrange equations.

7. An Atwood machine is composed of two masses m and M  attached by 
means of a massless rope. The massless pulley is attached to a massless 
spring with constant к (as shown in Fig. 2.14).

(a) Find suitable generalized coordinates to describe the motion of the two 
masses (allowing for elongation or compression of the spring).

(b) Using these generalized coordinates, construct the Lagrangian and de­
rive the appropriate Euler-Lagrange equations.

8. A pendulum of length £ and mass m is attached to a point of mass M  
that is constrained to only move horizontally.

(a) Derive the coupled Euler-Lagrange equations for the horizontal displace­
ment x and the angular displacement 9.

(b) Show that this system possesses a symmetry related to translations 
along the ж-axis. Using the corresponding conservation law, show that the
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m

Fig. 2.14 Problem 7.

coupled equations derived in Part (a) can be expressed as

(l — fi cos2#) 0 +  u)2 sin# +  ^  #2 sin2# =  0,

where ц ~  m /(m  +  M )  is the mass ratio and ujg =  \Jg/i is the pendulum 
angular frequency.

9. Dissipative effects can be included within the Lagrangian formalism 
through the Rayleigh dissipation function TZ{x), such that

d fd L \  dL ЭП 
dt \ d x )  dx dx

Find the Rayleigh dissipation and Lagrangian functions for the equation of 
motion m x  +  Xx +  kx =  0.

10*. The equations of motion for a particle of mass m moving under the 
influence of a potential U (x , y, z) and the constraint г =  /(ж, у) are
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where F =  — V£7 is the force derived from the potential U.

(a) Show that these equations are derived from the constrained Lagrangian 
L = \  m|x|2 -  U -  A [z -  f(x, y)].

(b) Show that these equations follow from Gauss’ Least Constraint Principle 

<5|mx-F|2 =  (m x -  F) -mSx — 0,

where the variation is applied with respect to the acceleration x only.

11*. Rocket propulsion is described in terms of the equations of motion 
x + V $  =  (m/m) c, where с is the exhaust velocity relative to the rocket 
and Ф(х) is the potential energy per unit mass. By definition, the mass 
loss rate is given as m /m  =  — 1 |x +  VФ| =  — a/с, which implies that, if 
the magnitude с =  |c| of the exhaust velocity is constant, the ratio rrif jrn\ 
of the final mass to the initial mass of the rocket is expressed as

The mass ratio is therefore maximum (i.e., the rocket uses the least amount 
of fuel) if the integral

and derive that equation in terms of the unit vector с =  c/c.

(b) By using the fact that с is a unit vector, show that the Euler-Lagrange 
equation derived in Part (a) can be written as \dc/dt\2 =  c - V V # - c ,  so 
that a minimum solution exists provided the condition c - V V $ - c  >  0 is 
satisfied (where the equality applies to the case dc/dt =  0).

(c) Show that the minimum condition с • V V $  • с >  0 yields cos ф =  с •? <
1 /  -\/3 for the case of the attractive gravitational potential Ф(х) =  —G M /r ,  
where M  denotes the mass of the object to which the rocket is attracted.

is m inim um .

(a) Show that the Euler-Lagrange equation for this problem is

12. An oscillating pendulum consists of a bob of mass m attached to a 
spring of constant к and relaxed length £ (see Fig. 2.15). The generalized
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Fig. 2.15 Problem 13.

coordinates for this system are the angle 9 and the displacement r away 
from the spring’s equilibrium. Find the Lagrangian L(r, 9: r, 9) and derive 
the Euler-Lagrange equations for r and 9.





Chapter 3

Hamiltonian Mechanics

In the previous Chapter, the Lagrangian method was introduced as a pow­
erful alternative to the Newtonian method for deriving equations of motion 
for multi-particle mechanical systems. In the present Chapter, a comple­
mentary approach to the Lagrangian method, known as the Hamiltonian 
method, is presented.

Although much of the Hamiltonian method is outside the scope of this 
course (e.g., the canonical and noncanonical Hamiltonian formulations of 
Classical Mechanics and the Hamiltonian formulation of Quantum Mechan­
ics), a simplified version (the Energy method) is presented here as a prac­
tical method for solving the Euler-Lagrange equations by quadrature. See 
Appendix С for a brief introduction to the modern formulation of Hamil­
tonian Mechanics.

3.1 Hamilton’s Canonical Equations

The Euler-Lagrange equations on the /.'-dimensional configuration space q 
are к second-order differential equations:

d (  dL\ dL
dt \dqi J d (f ^

This set of second-order differential equations can be written as 2к first- 
order differential equations on a 2fc-dimensional phase space with coordi­
nates z =  (g1, ...,qk; p i,...,Pk), where

d L
Pj(q,q;i) =  7jTj(q,q;i) (3.2)

defines the j t/l-component of the canonical momentum. In terms of these 
new coordinates, the Euler-Lagrange equations (3.1) are transformed into

77
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Hamilton’s canonical equations (William Rowan Hamilton, 1805-1865) 
dq? dH dPj dH
m  =  o f,  ” d i t  =  ~  w  (3'3)

where the Hamiltonian function Я (q, p; t) is defined from the Lagrangian 
function L(q, q; t) by the Legendre transformation (Adrien-Marie Legendre, 
1752-1833)

H (q, p; t) =  p • q(q, p, t) -  L[q, q(q, p, t), t], (3.4)

Hamilton’s canonical equations of motion (3.3) are completely equivalent 
to the Lagrangian formulation.

We note that Hamilton’s equations (3.3) can also be derived from a 
variational principle in 2/c-dimensional phase space z =  (q, p) as follows. 
First, we use the inverse of the Legendre transformation

L(z,z-,t) =  p - q  — H(z\t) (3.5)

to obtain an expression for the Lagrangian function in phase space. Next, 
we calculate the first-variation of the action integral

' I  b ( q , p ; 0  dt =  J r / • d H \ (  i- X dH
5 p - ( q - +  vp ' <5q" <5q' ^

dt,

where the variations Sql and Sp, are now considered independent (and they 
are both assumed to vanish at the end points). By integrating by parts the 
term p • <5q, we find

i J  L(q,p;f) dt =  J

so that the Principle of Least Action J 6Ldt =  0 now yields Hamilton’s 
equations (3.3) for arbitrary variations (<5q, <5p) in 2fc-dimensional phase 
space.

Lastly, an important equation associated with Hamilton’s principal 
function S can be derived from the infinitesimal action

c?S(q, t) =  p-rfq — H dt, (3.6)

from which we obtain the relations
Я  =  -  dS/dt }

\ ■ (3-7)
p =  dS/dq J

These relations can be used to obtain the Hamilton-Jacobi equation for 
particle dynamics [7]

dS , TT(  dS
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The solution to this equation is said to generate a canonical transformation 
that annihilates the Hamiltonian, i.e., the function S  generates a time- 
dependent canonical transformation z =  (q, p) —> Z =  (Q,P) such that 
the new Hamiltonian K(Z-,t) =  H(z(Z,t)-,t) +  dtS(q(Z,t),t) vanishes. Ap­
plications of the Hamilton-Jacobi equation fall outside the scope of the 
present course [7,13]. We simply mention here that the Hamilton-Jacobi 
equation (3.8) figures prominently in the historical connection between par­
ticle dynamics and wave mechanics (as discussed in Sec. 3.3), as well as the 
connection between Classical Mechanics and Quantum Mechanics (as dis­
cussed in Sec. 9.3 and problem 1 in Chap. 9).

3.2 Legendre Transformation*

Before proceeding with the Hamiltonian formulation of particle dynamics, 
we investigate the condition under which the Legendre transformation (3.4) 
is possible. It turns out that this condition is associated with the condition 
under which the inversion of the relation p(r,r,£) —> r(r, p. t) is possible. 
To simplify our discussion, we focus on motion in two dimensions (x, y).

The general expression of the kinetic energy term of a Lagrangian with 
two degrees of freedom L(x , x, y, y) =  K(x, x, y ,y) — U (x , y) is

K (x,x , y, y) =  ^  x2 +  /Зх у +  ^  y2 =  -  rT ■ M • r, (3.9)

where rT =  (x, y) denotes the transpose of r (see Appendix A for additional 
details concerning linear algebra) and the mass matrix M is

Here, the coefficients a, /3, and 7  may be functions of x and y. The canonical 
momentum vector (3.2) is thus defined as



The Lagrangian is said to be regular if the mass matrix M is invertible, i.e., 
if its determinant

Д =  det(M) =  a 7  — /З2 ф 0.

In the case of a regular Lagrangian, we readily invert (3.10) to obtain

r(r,p ,t) =  M_1 • p ->
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or

(3.11)
у =  (apy -  ppx) /Д 

and the kinetic energy term becomes

K {x,px, y,py) =  i p '  • M- 1 • p.

Lastly, under the Legendre transformation (3.4), we find

H =  p • (M_1 • p) -  f ^ p T • M_1 p -  U

=  \ PT • M" 1 ■ p +  U =  K  +  U.

Hence, we clearly see that the Legendre transformation is applicable only 
if the mass matrix M in the kinetic energy (3.9) is invertible. Lastly, we 
note that the Legendre transformation is also used in other areas in physics 
such as Thermodynamics.

3.3 Hamiltonian Optics and Wave-Particle Duality*

Historically, the Hamiltonian method was first introduced as a formulation 
of the dynamics of light rays [4,21]. Consider the following phase integral

6[z] =  f 0(x ,k;t) dt =  I k -x  -  w (x,k\t) dt, (3-12)
Jt\ J t\

where 0[z] is a functional of the light-path z(t) =  (x(f), k(f,)) in ray 
phase space, expressed in terms of the instantaneous position x(t) of a 
light ray and its associated instantaneous wave vector k(f); here, the dis­
persion relation w(x. k; t) is obtained as a root of the dispersion equation 
det D(x, t; k. w) =  0, and a dot denotes a total time derivative: x =  dx/dl.
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Assuming that the phase integral 0[z] acquires a stationary value for a 
physical ray orbit z(f), henceforth called the Principle of Stationary Phase 
<50 =  0, we can show that Euler’s First Equation leads to Hamilton’s 
(canonical) ray equations:

dx , (Ik ,
dt =  dk an ~dt =  ~  3̂'13  ̂

The first ray equation states that a ray travels at the group velocity while 
the second ray equation states that the wave vector к is refracted as the ray 
propagates in a non-uniform medium (see Chap. 1). Hence, the frequency 
function w(x, k;t) is the Hamiltonian of ray dynamics in a nonuniform 
medium. The Hamiltonian theory of wave dynamics in ray phase space is 
covered extensively by Tracy, Brizard, Richardson, and Kaufman [19].

The Hamilton-Jacobi equation for ray optics is obtained from the in­
finitesimal phase

d0(x, t) =  k- dx — ш dt, (3-14)

from which we obtain the eikonal relations
w =  — dQ/dt

(3.15)
k =  V 0

These relations can then be used to obtain the Hamilton-Jacobi equation
<90
—  +  w (x ,V 0 ;i) =  0, (3.16)

where w(x, k;£) is the Hamiltonian for the ray equations (3.13). The anal­
ogy between the Hamilton-Jacobi equation (3.8) for particle dynamics and 
the Hamilton-Jacobi equation (3.16) for ray optics leads us to recognize the 
deep connections between Classical Mechanics and Wave Mechanics (see 
Table 3.1 for a detailed correspondence).

It was de Broglie who noted (as a graduate student well versed in 
Classical Mechanics) the similarities between Hamilton’s equations (3.3) 
and (3.13), on the one hand, and the Maupertuis-Jacobi (2.1) and Euler- 
Lagrange (2.29) Principles of Least Action and Fermat’s Principle of Least 
Time (1.36) and Principle of Stationary Phase (3.12), on the other hand 
(see Table 3.1). By using the quantum of action h — h/2-к defined in terms 
of Planck’s constant h and Planck’s energy hypothesis E =  fko, de Broglie 
suggested that a particle’s momentum p be related to its wavevector к ac­
cording to de Broglie’s formula p =  /г к and introduced the wave-particle 
synthesis based on the identity

<S[z] — ft0[z] (3-17)



Table 3.1 Correspondence between Particle and Wave Mechanics.
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Particle Wave

Phase Space 
Hamiltonian 
Variational Principle I

z = (q, p)
Я (г; t)

Maupertuis-Jacobi

z =  (x, k) 
w(z; t ) 
Fermat

v /2 m ( £ - l / ( q ) ) n(x) 
Stationary Phase 

в =  к • x  — и
Variational Principle II

/ ( • ■ О *
Hamilton 

L =  p • q — Я
Hamilton-Jacobi 
Hamilton’s equations

dtS +  # (q ,  9qS, t) =  0 dt& +  u;(x, V 0 , t) =  0 
(q ,p ) =  (дрЯ, - д чН)  (x, к) =  (9кШ, -  Vu>)

involving the action integral ,S[z] and the phase integral 0[z].
The final synthesis between Classical and Quantum Mechanics came 

from Richard Phillips Feynman (1918-1988) who provided an explicit 
derivation of Schroedinger’s equation (Erwin Rudolf Josef Alexander 
Schroedinger, 1887-1961) by associating the probability that a particle fol­
low a particular path z (t\Zo) with the expression ехр(г ft-1 <S[z]), where <S[z] 
denotes the action integral for the path [21].

3.4 Motion in an Electromagnetic Field

Although the problem of the motion of a charged particle in an electro­
magnetic field can be considered outside the scope of the present course, 
it represents a important paradigm that beautifully illustrates the connec­
tion between Lagrangian and Hamiltonian mechanics and it is well worth 
studying.

3.4.1 Euler-Lagrange Equations

The equations of motion for a charged particle of mass m and charge e 
moving in an electromagnetic field represented by the electric field E and 
magnetic field В are

where x denotes the position of the particle and v its velocity (Note: Gaus­
sian units are used whenever electromagnetic fields are involved).

(3.18)

(3.19)
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By treating the coordinates (x, v) as generalized coordinates (i.e., Sv is 
treated independently from 5x), we can show that the equations of motion
(3.18) and (3.19) can be obtained as Euler-Lagrange equations from the 
Lagrangian (3.5):

L(x,x,  v,v;  t) =  ( m v + ^  A(x, f ) j  x -  (e $ (x ,i)  +  ~  |v|2)  , (3.20)

where Ф and A  are the electromagnetic potentials in terms of which electric 
and magnetic fields are defined

1 dA
E =  - У Ф  --------- —  and В =  V x A . (3.21)

с at
Note that these expressions for E and В satisfy Faraday’s law V  X E =
— c~1 dH/dt and Gauss’s Law V  • В =  0.

First, we look at the Euler-Lagrange equation for x:
dL e d ( dL\ . e ( dA
_  =  m v + ; A  - »  _ ^ _ j = m v + - ^ —  + X - V A

dL e .
-r— =  -  V A ' X  -  e V  Ф, 
ах с

which yields the Lorentz force equation (3.19), since

m v =  -  e ( V $  +  -  ^  ] +  -  x x V X A  =  eE  +  -  x x B ,  (3.22) 
\ с at J с с

where the definitions (3.21) were used.
Next, we look at the Euler-Lagrange equation for v:

OL d (d L \  8L
a* "  0 “* J t \ d i )  =  0 = a i  “  m(x -  v)’

which yields Eq. (3.18). Because dL/dv  =  0, we note that we could use 
Eq. (3.18) as a constraint, which could be imposed a priori on the La­
grangian (3.20), to give

L(x, x; i) =  Щ |x|2 +  - A ( x , t ) * x  -  еФ(х, t). (3.23)
z  С

The Euler-Lagrange equation for x in this case is identical to Eq. (3.22) 
with v =  x.

Lastly, Euler’s second equation yields 
d f  . dL\ dL d tm . ., _\ 9Ф e dA

~  * = “ s ( ¥ |v| + e V  +  e m ~ l ^ - x

( X '
УФ +  - - г — ) =  0, 

с dt

which follows from the definitions (3.21).
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3.4.2 Gauge Invariance

The electric and magnetic fields defined in (3.21) are invariant under the 
gauge transformation

1 d\ф _> ф ------ - A  and A  —>• A  +  V * , (3.24)
с at

where x(x i t) is an arbitrary scalar field. Although the equations of motion
(3.18) and (3.19) are manifestly gauge invariant, the Lagrangian (3.23) is 
not manifestly gauge invariant since the electromagnetic potentials Ф and 
A appear explicitly. Under a gauge transformation (3.24), however, we find

£  L +  H i . v *  -  e ( - i g )  =  L +  | ( f x ) .

Since Lagrangian Mechanics is invariant under the transformation (2.51), 
the Lagrangian (3.23) is invariant under the gauge transformation (3.24).

3.4.3 Canonical Hamilton’s Equations

The canonical momentum p for a particle of mass m and charge e in an
electromagnetic field is defined as

f) T p
p(x, v,t) =  —  =  mv +  - A( x , t ) ,  (3.25)

Ух с
which is the sum of the kinetic momentum (m v) and a magnetic contribu­
tion (represented by the vector potential A). The canonical Hamiltonian 
function //(x , p, t ) is now constructed through the Legendre transformation

tf(x,p,t) =  p-x(x,p,£) -  L[x,x(x,p,i),t] (3.26)

1
2m

A (x,t) еФ(х,г), (3.27)

where v(x, p, t) was obtained by inverting p(x, v, t) from Eq. (3.25). Using 
the canonical Hamiltonian function (3.27), we immediately find

. ЭН 1 /  
x =  я-  =  — ( ар m  V

dH
p =  “  йГ =  ■

o-
e УФ -  -  V A  • x,

с

(3.28)

(3.29)

from which we recover the equations of motion (3.18) and (3.19) once we 
use the definition (3.25) for the canonical momentum. We also note that
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the total energy is not invariant in time-dependent electromagnetic fields: 
dH дФ _  e d A  . _  _  dL f  dL\ dk =  _  dL 
dt dt с dt X dt \P <9x / dt ~  dt'

(3.30)
where we used the definitions (3.25)-(3.26), and dL/dt is calculated in 
configuration space from Eq. (3.23) at constant (x, x).

We should warn the reader that the simplicity of the canonical Hamil­
tonian formalism comes at a price: the canonical momentum p =  dL/ д q 
and the Hamiltonian are not physical quantities. Indeed, under the gauge 
transformation (3.24), the canonical momentum and Hamiltonian are trans­
formed as

p —» p +  -  Vx and H  —̂ H  — —
с с dt

These transformations, however, leave Hamilton’s canonical equations
(3.28)-(3.29) invariant.

3.4.4 Maupertuis ’ Principle for  Particle-Beam Optics

Because of the close connection between Fermat’s Principle of Least Time 
and Maupertuis’ Principle of Least Action (see Table 3.1), it is instructive 
to derive a variational principle suitable for applications in particle-beam 
optics, where the path of a charged-particle beam is guided by electric and 
magnetic lenses.

We begin with the classical action integral

J  L dt =  J  ( l  -  g . r  ) < t t  + j ^ - d v

— — J  H dt +  J  p • dr,

where we used the Legendre transformation (3.4) in the first integral and 
used the definition (3.2) for the canonical momentum in the second integral. 
If we consider time-independent guiding magnetic fields, the electron energy 
is constant (H  =  E) and Maupertuis’ Principle of Least Action 6S& =  0 is 
expressed in terms of the action functional (at constant energy E) [3]

Se  =  j  P • dr =  J  ( m v  +  -  •dr

=  J  ( m v  +  -  A -ŝ j ds, (3.31)

where electrons have mass m and charge q, the unit vector s is defined as 
s =  dr/ds, and mv =  \j2m (E — q Ф) is defined in terms of the total energy 
E  and the electric scalar potential Ф.
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3.5 One-degree-of-freedom Hamiltonian Dynamics

In this Section, we investigate Hamiltonian dynamics with one degree of 
freedom in a time-independent potential. In particular, we show that, by 
using the Energy Method, such systems are always integrable (i.e., they 
can always be solved by quadrature).

After introducing the Energy Method (Sec. 3.5.1), we consider four ex­
amples of integrable motion in one-dimensional Hamiltonian dynamics: the 
simple harmonic oscillator (Sec. 3.5.2); the motion of a particle in the Morse 
potential (Sec. 3.5.3); the pendulum (Sec. 3.5.4); and the constrained mo­
tion of a particle on the surface of a cone (Sec. 3.5.5). While the second 
example (the motion of a particle in the Morse potential) appears overly 
complicated, it is still solvable in terms of trigonometric functions.

3.5.1 Energy Method

The one degree-of-freedom Hamiltonian dynamics of a particle of mass m 
is based on the Hamiltonian

H(x,p) =  +  U(x), (3.32)

where p =  mx is the particle’s momentum and U (x ) is the time-independent 
potential energy. The Hamilton’s equations (3.3) for this Hamiltonian are

!Ё  =  £■ and ±  (3.33)
dt m at dx

Since the Hamiltonian (and Lagrangian) is time independent, the energy
conservation law states that H(x,p) =  E. In turn, this conservation law
implies that the particle’s velocity x can be expressed as

x(x,E) =  ± J - [ E - U ( x ) }, (3.34)
V m

where the sign of x is determined from the initial conditions.
It is immediately clear from Eq. (3.34) that physical motion is possible 

only if E >  U(x)\ points where E  =  U(x) are known as turning points 
since the particle velocity x vanishes at these points. In Fig. 3.1, which 
represents the dimensionless potential U{x) =  x — x3/3 , each horizontal 
line corresponds to a constant energy value (called an energy level). For 
the top energy level, only one turning point (labeled a in Fig. 3.1) exists 
and a particle coming from the right will be reflected at point a and return 
to large (positive) values of ж; the motion in this case is said to be along an
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Fig. 3.1 Bounded and unbounded energy levels in a cubic potential U(x) =  x — ж3/3.

unbounded orbit (see orbits I in Fig. 3.2). As the energy value is lowered, two 
turning points (labeled b and / )  appear and motion can either be bounded 
(between points b and / )  or unbounded (if the initial position is to the right 
of point / ) ;  this energy level is known as a separatrix level since bounded 
and unbounded motions share one turning point (see orbits II and III in 
Fig. 3.2). As energy is lowered below the separatrix level, three turning 
points (labeled c, e, and g) appear and, once again, motion can either be 
along a bounded orbit (with turning points с and e) or an unbounded orbit if 
the initial position is to the right of point g (see orbits IV and V in Fig. 3.2).1 
Lastly, we note that point d in Fig. 3.1 is actually an equilibrium point (as 
is point / ) ,  where x and x both vanish; only unbounded motion is allowed 
as energy is lowered below point d (e.g., point h) and the corresponding 
unbounded orbits are analogous to orbit V in Fig. 3.2.

The dynamical solution x(t;E)  of the Hamilton’s equations (3.33) is 
first expressed an integration by quadrature using Eq. (3.34) as

where the particle’s initial position xq is between the turning points X\ <  x? 
(allowing Х2 —> oo) and we assume that ж(0) >  0. Next, inversion of the 
relation (3.35) yields the solution x(t; E).

Lastly, for bounded motion in one dimension, the particle bounces back 
and forth between the two turning points x\ and £2 >  Xi, and the period

1Note: Quantum tunneling establishes a connection between the bounded and un­
bounded solutions separated by unphysical regions (where E <  U).

(3.35)
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x-axis

Fig. 3.2 Bounded and unbounded orbits in the cubic potential shown in Fig. 3.1: orbits I 
correspond to the energy level with turning point a; the bounded orbit II and unbounded 
orbit III correspond to the separatrix energy level with turning points b and / ;  bounded 
orbits IV correspond to the energy level with turning points с and e; and the unbounded 
orbit V  corresponds to the energy level with turning point g. (These orbits are explicitly 
solved in Appendix В in terms of the Weierstrass elliptic function.)

of oscillation T(E) is a function of energy alone

f x2 dx ,___  ГХ2 dr
T (E ) =  2 /  t-i\i =  /  (3.36)JX1 \x(x,E)\ JX1 -  U{x)

Thus, Eqs. (3.35) and (3.36) describe applications of the Energy Method 
in one dimension. We now look at a series of one-dimensional problems 
solvable by the Energy Method.

3.5.2 Simple Harmonic Oscillator

As a first example, we consider the case of a particle of mass m attached to 
a spring of constant k, for which the potential energy is U(x) =  \ kx2. The 
motion of a particle with total energy E  is always bounded, with turning 
points

x i,2(E) — ±  \JlE/к  =  ± a

determined from the turning-point equation E  =  i  к x2.
We start with the solution (3.35) for t(x; E ) for the case of x(0; E) =  +a,
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so that x(t; E) <  0 for t >  0, and

, frn f x ds fm f a ds

~ V "* j a V "* Л
m
— arccos |(;) ■ (3-37)

Inversion of this relation yields the well-known solution

x(t; E) =  a cos(uj0t), (3.38)

where loq =  y/k/m.  Next, we compute the particle velocity v(t) =  dx/dt:

v(t) =  — awо sin(woi), (3.39)

which shows that the graph of Eqs. (3.38)-(3.39) in the phase-space portrait 
(x,v) is an ellipse: x2/a 2 +  v2/(awo)2 =  1.

Lastly, using Eq. (3.36), we find the period of oscillation

T(E) =  -  Г  / ix =  — , (3.40)
Jo va  — xz wo

which turns out to be independent of energy E. Hence, as the energy E  is 
raised, the distance 2a =  л/8 E /k  between the two turning points increases, 
but then so does the average speed v =  2a/Т ,  so that the period T  is a 
constant.

3.5.3 M orse Potential

While the solution (3.35) for the Hamilton equation (3.34) appears straight­
forward, there are few potentials U (x ) for which Eq. (3.35) can actually be 
solved explicitly. One such potential is the Morse potential

U(x) =  Uo (e~2ax -  2 e - “j ,  (3.41)

which has the minimum — Uq at x =  0 (see Fig. 3.3). The constant a 
determines where the potential changes sign: U(x) >  0 for x <  xq =
-  ( l /а )  ln(2); and U(x) <  0 for x >  xq] the Morse potential also vanishes 
as x —¥ oo. For motion near the vicinity of the minimum at x =  0, we 
note that the Morse potential U(x) ~  — Uo +  Uq a2 x2 is approximated as 
a shifted simple harmonic oscillator.

The motion of a particle (of mass m) in the Morse potential (3.41) is 
bounded when — Uo <  E  <  0, while the motion is unbounded when E >  0. 
This can be seen by calculating the turning points defined as the solution 
of the turning-point equation E =  U(x). By defining the dimensionless
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U(x)
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X±

Fig. 3.3 Graph of U(x)  versus x for the Morse potential (3.41), with three energy levels 
shown: E  =  — f/o /2  (lowest), E  =  0 (middle), and E =  Uq (highest).

energy parameter e =  E /U 0 and r =  exp(—a x) >  0, the turning-point 
equation becomes r2 — 2 r — e =  0, whose solutions are r± =  1 ±  y/l +  e or

=  — a~1 In ( l  ±  y/1 +  e) =  a -1 In ^± e _ V l  +  e -  e-1 ) . (3.42)

It is easy to see that for the case — 1 <  t <  0 (i.e., — t/o <  E  <  0), the 
two roots r± =  1 ±  ^ /l — |e| >  0 exist and the motion is bounded (i.e., it is 
periodic between x+ <  x  <  X - ) ;  see lowest energy level in Fig. 3.3. For the 
case e >  0 (i.e., E  >  0), the root r_ =  1 — \/1 +  e <  0 is not allowed (since 
r cannot be negative by definition), and the motion is unbounded with a 
single turning point at x  =  x +  =  -  (1/a) ln(l +  \/l +  e); see highest energy 
level in Fig. 3.3. The dotted line in Fig. 3.3 corresponds to the energy level 
E  =  0.

The solution (3.35) for the Morse potential can be expressed as

t(x) =
m Г  dy

2 E Jx+ -  e- i  (e- 2 осу _ 2 е ~ аУ) 

Г rn [ x _________eay dy_________
2 E Jx+ ^/е2аУ +  2е~1еаУ - e - 1

~~rn~ Г хp(qx) ds
2 a2E  ,/exp(ax+) \/s2 +  2 e_1s -  e_1

(3.43)

where the initial condition ж(0) =  x+ is chosen as the leftmost turning point 
(see Fig. 3.3), where i(0) =  0, and the last integral is obtained through
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the substitution s(y) =  exp (ску). We now solve this integral explicitly for 
the three cases corresponding to — 1 <  e <  0 (bounded motion), e =  0 
(unbounded motion), and e >  0 (unbounded).

3.5.3.1 Bounded Motion

For the case —1 <  e <  0, the integral solution (3.43) becomes

M<*x) ds/ n , m 
t(x)

- rexp  

J exp(2 a 2\E\ 7exp(ax+) \ / - s 2 +  2\e\ — |e| 1
e x p (a x ) ^ g

fJ ex2a2\E\JeMax+) v/|e|-2(l -  |€|) -  (s -  N " 1)2

where we completed the square —s2 +  2as — a =  (a2 — a) — (s — a)2, 
with a =  |e|-1 , to obtain the last integral. By using the trigonometric 
substitution s(0) — |e|—1 (1 -  ^ 1  — |e| cos#), so that ехр(аж+) =  s(# =  0), 
we easily find

. . I m /  1 — lei ехр(аж) \
t(x) =  —g—-  arccos 1 1

2a 2\E\ \ / '

This solution can be easily inverted to yield the equation of motion for the 
bounded case:

x(t) =  — In I -  v ". . cos(wt) ] , (3-44)
a

where uj(E) =  y /2a2\E\/m, and the particle velocity v(t) =  x(t) is obtained 
from Eq. (3.44)

=  / m  _ V ^ Z E S f c l L ]  , (3.45)
™ 1 — \/l — M cos(ut) J771

The period of the bounded motion is

T(E) =
2m Г х р(аж- ) ds(■ex p(,< 

J e xp (a« 2 \Щ Jexp(ax+) y/\e\~2(l  -  le l) -  ( S ~  l6l l )2

(3.46)
Jo a y  \E \

I 2m 
a2 \E\

One peculiar aspect of the period (3.46) is that, in the limit |E| -> 0, the 
period becomes infinite. This is easily understood from the fact that the 
second turning point X- — — ( l /а )  ln(l — \J\ — |e|) —> oo as |e| —> 0.
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3.5.3.2 Unbounded Motion

For the case e >  0, the integral solution (3.43) may be expressed as

rexp(ax) dfj

-  Ш . p ( m + )  1/ ( s  +  6 _ 1 ) 2  ~  e _ 2 ( 1  + e )  ’

after completing the square. By using the hyperbolic-trigonometric substi­
tution s(z) =  6_1(—1 +  y/l +  e coshz), so that ехр(аж+ ) =  s(z =  0), we 
easily find

, < * > .  / ^ - ( 1 1 1 * 1 ) .

This solution can be easily inverted to yield the equation of motion for the 
unbounded case (e >  0):

x(t) =  — In ^ —-■ +  - cosh(avoot) -  , (3-47)

where Voo =  \J2E/m is the asymptotic velocity at x =  oo. The particle 
velocity v(t) =  x(t), on the other hand, is obtained from Eq. (3.47) as

=  ^  /  V V p . ,ш Ь(а» t) \
V v 1 +  e cosh(a Voot) -  I J

which reaches the asymptotic value Voo as t —> oo.
Lastly, the special unbounded case e =  0 is solved as

/•exp (ax) d s

t{x) ] / 2 a*U0 J1/2 y / 2 l = I ’ 

which yields the equation of motion

x(t) =  ± l n ( ±  +  i ( a u 0i)2) -  (3-49)

where vq =  2Uo/m is the velocity at x  =  0 (for E  =  0) and the particle 
velocity is

v(t) =  vo ( т ~ 7 - Л 2- )  > (3-50)\1 +  { a v o t y j

which vanishes as t —¥ oo. Note that this solution can either be obtained 
from the bounded solution (3.44) in the limit |e| —> 0 or from the unbounded 
solution (3.47) in the limit e —» 0.
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v(t)

Fig. 3.4 Phase-space portrait for the motion in the Morse potential. The inner curves, 
which are labeled by e =  (—0.8, —0.3, —0.1, —0.05), describe the bounded motion (3.44)- 
(3.45). The outer curves, which are labeled by t  =  (0.1,0.5,2), describe the unbounded 
motion (3.47)-(3.48). The dashed curve (labeled by e =  0) describes the separatrix 
solution (3.49)-(3.50), which separates the bounded and unbounded solutions.

3.5.3.3 Phase-space Portrait

T h e  phase-space p o r tra i t  for th e  m o tio n  in  th e  M orse p o te n tia l is show n 
in Fig. 3.4. The dashed curve corresponds to the special unbounded case 
given by Eqs. (3.49)-(3.50). Because this special curve separates the inner 
(bounded) curves (3.44)-(3.45) from the outer (unbounded) curves (3.47)-
(3.48), it is referred to as the separatrix curve. The asymptotic values ±  «oo 
for the unbounded velocities correspond to the case of a free particle.

3 .5 .4  Pendulum

Our third example involves the case of the pendulum problem discussed in 
Sec. 2.4.1. The energy equation in this case is

E  =  ^ m£2 62 +  mg£ (1 —cos0), (3.51)

where the potential energy term  is mgi  (1 — cos#) <  2 mgL It is convenient 
to  rescale the pendulum dynamics by introducing a dimensionless time 
т =  wot, where ujq =  y/g/ t,  and a dimensionless energy e =  E/{mgt),  so
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th a t the energy equation (3.51) becomes

g =  i(<9')2 +  (1 -  cos 6»), (3.52)

where в(т) is now viewed as a function of r . Solutions of the pendulum 
problem (3.52) are divided into three classes depending on the value of the 
to tal energy of the pendulum (see Fig. 3.5): Class III (rotation) e > 2, 
Class II (separatrix) e =  2, and Class I (libration) e <  2.

Fig. 3.5 Normalized pendulum potential U( 0) / (mg£)  = 1 — cos0.

In the rotation class (e >  2), the kinetic energy can never vanish and 
the pendulum keeps rotating either clockwise or counter-clockwise depend­
ing on the sign of 6'0. In the libration class (e < 2), on the other hand, 
the kinetic energy vanishes at turning points easily determined by initial 
conditions if the pendulum starts from rest (в'0 =  0) -  in this case, the 
turning points are ±$o =  ±  arccos(l — e). In the separatrix class (e =  2), 
the turning points are ±  arccos(— 1) =  ±7r.

3.5.4.1 Libration Class (E  < 2mgl)

We now look at an explicit solution for pendulum librations (class I), where 
the (dimensionless) angular velocity в' is

в ' (6\Е) =  ±  y ^ (co s6 ^ -co s0 o ) =  ± 2  ^/sin2(#0/2 ) -  sin2(#/2),
(3.53)
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where во =  arccos(l — e). By making the substitution s in 0/2 = к s in (p, 
where

k{e) = sin(0o/2) =  \ / ф  < 1 (3-54)
and ip = ±  7t/2 when в =  ±  во, Eq. (3.53) becomes

ip' = ±  \J l  -  k2 sin2 ip. (3.55)
The libration solution of the pendulum problem is thus

Л е ] = Г  7l S ’ " - 2 ~ » (3-56>7©(0) у / 1 — k2 sin ip 
where 0(0) =  arcsin(fc_1 sin в/2). The inversion of this relation yields the 
libration equation of motion

6(t ) = 2 arcsin [fc sn(r|fc2)] (3.57)
expressed in terms of the Jacobi elliptic function sn(r|fc2) (see Appendix B .l 
for more details). From Eq. (3.57), we also calculate the angular velocity

m  =  (3.58)
y / l  — kz snz{T\kz)

where we used the Jacobi-function identity dn2(r|fc2) =  1 — k2 sn2(r|A;2). 
Equations (3.57)-(3.58) can be used to recover the energy equation (3.52):

^ (0')2 +  (1 — cos в) — 2 k2 (cn2 +  sn2) — 2 k2 = e,

which makes use of the Jacobi-function identity cn2(r|fc2) +  sn2(r|fc2) =  1. 
We note th a t in the limit к 1, we find cn(r|A:2) ~  cn(r|0) =  cos(r) and 
sn(r|fc2) — sn(r|0) =  sin(r), and Eqs. (3.57)-(3.58) become 9(т) ~  в0 sin(r) 
and в' =  во cos(r).

Lastly, the period of oscillation is obtained from Eq. (3.56) and is defined
as

r*'2 dip
T{E)

4 Г
wo Jo

=  £  / 'Wo Jo

y j l  — k 2 sin2 ip
Я-/2 /  £ 2

dip I 1 +  —  sin2 <p +

V 4
where K ( k 2) denotes the complete elliptic integral of the first kind (see 
Fig. 3.6 and Appendix B .l). We note here th a t if к -C 1 (or во 1) the 
libration period of a pendulum is nearly independent of energy, T  ~ 2 - k / ujo - 

However, we also note tha t as e —> 2 (i.e., к 1 or во —> 7r), the libration 
period of the pendulum becomes infinitely large, i.e., T  —> oo in Eq. (3.59).
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3.5.4.2 Separatrix Class (E  = 2mg£)

In the separatrix case (во =  л), the pendulum equation (3.53) yields the 
separatrix equation ip' — cos <p, where ip = 6 /2. The integral solution

rv
T(lP) — /  sec dip = ln(sec ip +  tan  tp)

J о
can be inverted to yield the separatrix solution

0(t ) = 2 arcsec (cosh(r)) =  2 arccos (sech (r)), (3.60)

where 0(0) =  0 was chosen as the initial condition. The angular velocity 
associated with the separatrix solution is

в' — 2 sech(r). (3.61)

Equations (3.60)-(3.61) can be used to recover the energy equation (3.52): 
1 
2

We again note tha t в тт only as r  —> oc.

-  {O')2 +  (1 — cos0) =  2sech2(r) +  2 ( l — sech2(r)) = 2 = e.

3.5.4.3 Rotation Class (E  > 2mgt)

T h e  so lu tio n  for ro ta t io n s  (class III)  a sso c ia ted  w ith  th e  in itia l cond itions 
во — 0 an d  th e  energy  eq u a tio n  (3.52) becom es

\ % ?  = e =  \ { e ' ) 2 -  ( l  -  c o s^ ) ,

or в' = ± 2 sJV/2  — sin2(0/2), which shows tha t в' does not vanish for rota­
tions (since e > 2). We now define <p =  в/2  to obtain

ip' — ±  к \J  1 — k~2 sin2 ip, (3.62)

where к =  \ /e/2  > 1. Hence, the integral solution for rotations

=  i  Г  ( 3 ,3 ,
^ Jo у  1 — k~z sin <p

can be inverted and expressed in terms the Jacobi elliptic function 
sn (k r[/c” 2) (see Appendix B .l for more details) as

в(т) = 2 arcsin [sn(fc т|&~2)] (3.64)

Prom Eq. (3.64), we also calculate the angular velocity

. . 2k cn(кт\к~2) dn(кт\к~2)
в (т) =  ------- v = L — - =  2k dn(fcr fc_ ). (3.65)

V 7 V ^ l -  s n 2 ( f c r | f c - 2 ) v ;
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Equations (3.64)-(3.65) can be used to  recover the energy equation (3.52):

1 (O') +  (1 — cos 9) — 2 k dn (кт\к~ ) -f- 2 sn (кт\к~ )

= 2 к2 (dn2(кт\к 2) +  к 2 s n 2 (fcT|fc 2)) =  2 к2

which makes use of the Jacobi-function identity dn2(z |m )+ m sn 2(z|m) =  1. 
Lastly, the rotation period is obtained from Eq. (3.63) and is defined as

T ( E )
4 W 2

kw о J0
dp 4

\ / l  — k ~2 sin2 ip
K(k~ ). (3.66)

Figure 3.6 shows the plot of the normalized pendulum period as a function 
of к2 for the Libration Class I and Rotation Class III.

Fig. 3.6 Normalized pendulum period ljqT ( E ) / 2 tt as a function of the normalized en­
ergy e for Libration Class I (e < 2) and Rotation Class III (c >  2). The period is infinite 
for the Separatrix Class II (e =  2).

3.5.4.4 Phase-space Portrait

The phase-space portrait (9,9') of the pendulum is shown in Fig. 3.7. The 
dotted curves represent the separatrix solution (3.60)-(3.61), with e = 2 and 
the turning points at ±  7r. The inner curves represent the libration solution 
(3.57)-(3.58), with e = (0.08,0.5,1.28) and the turning points located at 
± arccos(l — e). The outer curves represent the rotation solution (3.64)- 
(3.65), with e — (3,8).

The appearance of separatrices in periodic Hamiltonian systems is quite 
common whenever two different classes of motion are related by a single
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Fig. 3.7 Phase-space portrait of the pendulum.

parameter. In the case of motion in the Morse potential (see Fig. 3.4) and 
the pendulum problem (see Fig. 3.7), the energy param eter e is used to dis­
tinguish two different classes of motion: bounded and unbounded motions. 
In Secs. 7.2.3 and B.1.2, we shall study the case where two different classes 
of bounded motion exist. In general, a separatrix is associated with at least 
one turning point so where U ' ( s q ) = 0 and U " ( s q ) < 0.

3 .5 .5  Constrained M otion  on the Surface o f  a Cone

For our last example, we return to the constrained motion of a particle 
of mass to on a cone in the presence of gravity. In Sec. 2.5.4, we showed 
tha t this motion is doubly periodic in the generalized coordinates s and 
в. The fact th a t the Lagrangian (2.52) is independent of time leads to  the 
conservation law of energy

E  = TT*2 +  ( 7.---- T“2---- 9 +  m9 c o s a s \  =  ^ s 2 +  V(s), (3.67)
^ \2 m s in  a s z )  I

where the conservation law of angular momentum i  =  ms 2 sin2 а в was 
used. The effective potential V(s) in Eq. (3.67) has a single minimum 
Vq — I  mgso cos a  at
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and the only type of motion is bounded when E  > Vo-
The turning points for this problem are solutions of the cubic equation

I е = Ъ  + (3-68)

where e =  E/Vо >  1 and ct = s/so. The three roots of Eq. (3.68) are 

cti =  e/2 +  e cos[</>(e)/3]

(72 = e/2 — e cos[7r/3 +  ф(е)/3] 

стз =  e/2 — e cos[7r/3 — ф(e)/3] ,

(3.69)

where ф(е) =  arccos(l — 2/e3); see App. A for the calculation of the three 
roots of a general cubic polynomial. The root стз remains negative for all 
normalized energies e; this root is discarded as unphysical since s must be 
positive (by definition). The other two roots (0-1, 02), which are complex 
for e < 1 (i.e., for energies below the minimum of the effective potential 
energy Vo), become real a t e =  1 (ф = n), where <j\ =  02 = 1, and separate 
[cj 1 >  cr2) for larger values of e.

The dimensionless equations of motion for this problem are

a" =  - 1  +  1/cr3 

sin а в' =  1 /ст2
(3.70)

where we introduced a dimensionless time r  =  ojgt, with ojg = 
\/(g/s0) cosa. The top figure of Fig. 2.9 shows tha t the solution of the <x- 
equation is periodic between 02 <  <t < <ti; while the ^-dynamics is naturally 
periodic (bottom figure).

Lastly, the period of ст-oscillations is determined by the definite integral

whose solution is expressed in terms of Weierstrass elliptic function (see 
Appendix B). We note tha t in one period (see Fig. 2.9), the orbit precesses 
by an angular deviation

/•o)gT(e) 1 i 'U g T (e )  j

Д0(с) = в' dr = -г—
Jo sin a  Jo ст2( г ) ’

where we used the conservation law of angular momentum.
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Table 3.2 Summary of Chapter 3: Hamiltonian Mechanics.

Topic Equation

Hamilton’s Equations (3.3)
Legendre Transformation (3.4)
Phase-space Lagrangian (3.5)
Hamilton-Jacobi Equation (3.8)
Hamiltonian for Charged-Particle Motion (3.27)
Energy Method (3.35)
Simple Harmonic Oscillator (3.37)-(3.40)
Morse Potential (3.41)-(3.50)
Pendulum (3.51)-(3.66)
Constrained Motion on the Surface of a Cone (3.67)-(3.71)

3.6 S u m m a ry

Chapter 3 presented a brief introduction of the Hamiltonian method, where 
the Hamiltonian function on phase space was derived from the Lagrangian 
function on configuration space by the Legendre transformation. The en­
ergy method was used to  provide explicit solutions to bounded and un­
bounded motion in one-dimensional potential functions. Table 3.2 presents 
a summary of the im portant topics of Chapter 3.

3 .7 P ro b le m s

1. A particle of mass m  and to tal energy E  moves periodically in a one­
dimensional potential U(x) = F \x\, where F  is a positive constant.

(a) Find the turning points for this potential ±  xq.

(b) Show tha t the dynamical solution x(t',E) for this potential is 

’ xq — a t 2/ 2 (0 <  t < t )

x(t) — Xq +  a (f — 2 r ) 2/ 2 ( r  < t  <  3 r)

. xo — a (t — 4 t ) 2/2  (3 т < t < 4 r) 
where a and r  are suitable constants to be determined.

(c) Find the period T(E)  =  4 t  for the motion.

2. Find the Hamiltonian H{x,p)  =  p x ( x ,p) — L(x , x(x, p)) for the following
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r / . \ . 9 . 9\ 2 2L(x,x)  =  — x (1 +  a x  ) — — a; аг, 

where (m, w, a ) are constants and p = dL /dx  is inverted to  obtain the 
relation x(x,p).

3. A block of mass m  rests on the inclined plane (with angle в) of a 
triangular block of mass M  as shown in Fig. 3.8. Here, we consider the case 
where both blocks slide without friction (i.e., m  slides on the inclined plane 
without friction and M  slides without friction on the horizontal plane).

Lagrangian

Fig. 3.8 Problem 2.

(a) Using the generalized coordinates (x , у ) shown in Fig. 3.8, construct the 
Lagrangian L(x, x, y, y).

(b) Derive the Euler-Lagrange equations for x  and y.

(c) Calculate the canonical momenta

px(x,ir, y,y) = and py(x,x, y,y) =

and invert these expressions to find the functions x(x,px , y,py) and 
y{x,px, y,py).

(d) Calculate the Hamiltonian H(x,px , y, py ) for this system by using the 
Legendre transformation H(x,px, у, py) = px x + p y у — L(x, x, y, y ) , where 
the functions x{x,pX: y ,py) and y(x,px , y,py) are used.

(e) Find which of the two momenta found in P art (c) is a constant of the 
motion and discuss why it is so. If the two blocks start from rest, what is 
the value of this constant of motion?

4. Consider all possible orbits of a unit-mass particle moving in the dimen­
sionless potential U(x) = 1 — x 2/2 + ж4/16. Here, orbits are solutions of
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the equation of motion x = — U'(x') and the dimensionless energy equation 
is E  = x2/2 +  U(x).

(a) Draw the potential U(x) and identify all possible unbounded and 
bounded orbits (with their respective energy ranges).

(b) For each orbit found in part (a), find the turning point(s) for each 
energy level.

(c) Sketch the phase portrait (x , x) showing all orbits (including the sepa­
ratrix  orbit).

(d) Show th a t the separatrix orbit (with initial conditions xo =  \/8  and 
x0 =  0) is expressed as x(t) = y/8  sech(i) by solving the integral

ds
t(x) =  /  .

Jx  V s 2 ( 1  -  « 2 / 8 )

(Hint: use the hyperbolic trigonometric substitution s = \/8  sech£.)

5. Write a numerical code to solve the second-order ordinary differential 
equation x = x  — x 3/3  by choosing appropriate initial conditions needed to 
obtain all the possible (bounded and unbounded) orbits.

6. W hen a particle (of mass m) moving under the potential U(x) is per­
turbed by the potential 6U(x), its period (3.36) is changed by a small 
amount defined as

5T = -  y/2m ^  
oE fJ  X 1

5U(x) dx 
y / E - U ( x )

where x \^ (E )  are the turning points of the unperturbed problem.
Show th a t the change in the period of a particle moving in the quadratic 

potential U(x) = тш2 х 2/2 introduced by the perturbation potential 
5U (x) = e x 4 is

£rj-i 6?tEоГ =  — e —~—r ,

where the particle is trapped in the region — a < x  < a in the unperturbed 
potential, where a = \J2 E j (rnuj2).

7. Consider two simple-harmonic oscillators described by the coordinates 
x\  and X2 w ith respective frequencies wi and и? > lo\ and subject to the
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(nonlinear) constraint x \  +  x \  =  1.

(a) Derive the Euler-Lagrange equations for X\ and x 2 by using the La­
grangian

where A is the Lagrange multiplier associated with the constraint, and verify 
tha t the energy E  =  |  ( i f  +  x2) +  \  (wj x \  +  ш2 x2) is a constant of the 
motion (i.e., dE/dt = 0).

(b) Find an expression for the Lagrange multiplier A in terms of X \  and x 2.

(c) By substituting x\(t)  =  cos9{t) and x 2(t) =  s in0(t) into the Euler- 
Lagrange equations derived in Part (a), show tha t one obtains the nonlinear 
equation

9 +  (uj2 — w2) cos в sin в — 0.

Note th a t this equation can also be w ritten as <p" +  (О2 — 1) sintp =  0, 
where tp(r) = 2 в(ш11) and Q=uj2/uji > 1.

8. Recreate the phase portrait shown in Fig. 3.7 for the pendulum by 
numerical integration of the normalized equation 9" +  sin 0 =  0 subject to 
the energy conservation law e =  | ( 9') 2 +  (1 — cos 9), from which suitable 
initial conditions can be selected.

9. Show th a t Eq. (3.60) is the separatrix solution for the pendulum problem 
when E  =  2 mg £.

10. A particle of mass m  is moving in the potential

(a) Assuming tha t the particle is moving with velocity 

Vi =  v\ (cos 9\ x +  sin 9\ у) 

in the region x < 0, and velocity

V2 =  v2 (cos 92 x + sin 92 y)
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in the region x > 0 and along the direction 62 ф #1, and using the conser­
vation laws of energy and momentum in the ^/-direction, show tha t

sin 02 V E  — Ui

(b) Discuss the cases E > Ui > U2 and E > U2 > IJ\.

11. Show th a t the period of oscillation for a particle of mass m  moving in 
the potential U(x) = Uq tan 2(kx) is given as

T ( E ) =  2 \/2m  f
Jo

dx n 2 m
\JE  — Uq tan 2(kx) к V E  +  f7o ’ 

where the turning point is a = arctan(-\/E/Uq).

Hint: Use the substitution tan(A'.x) =  tan(fco) sin 0 and the integral

T/2 dd 7Г /  2Iо 1 + a 2 sin2 в v T + ot

12. The relativistic Lagrangian for a particle of rest mass m moving in a 
potential t/(x ) is

L (x ,x ) =  — me2 y / l  — |x |2/c 2 — t/(x ),

where с is the speed of light.

(a) Derive the equation of motion for x.

(b) Using the Legendre transformation (3.4), derive the relativistic Hamil­
tonian.



C h a p te r  4

M otion  in a  C en tra l-F o rce  F ield

The present Chapter introduces an im portant set of problems tha t are solv­
able by the Noether and Energy methods. Here, bounded and unbounded 
solutions are obtained for time-independent central-force planar problems 
in which energy and angular momentum are constants of the motion. The 
existence of two constants of motion for two-dimensional planar motion im­
plies th a t exact solutions can be obtained if integral solutions (obtained by 
quadrature) can be inverted.

4.1 M o tio n  in  a  C en tra l-F o rc e  F ie ld

A p artic le  m oves u n d e r th e  influence o f a  cen tra l-fo rce  field

F (r)  =  F(r)?(e,ip) = — U'(r)7,  (4.1)
if the force F(r) — — U'(r) on the particle is independent of the angular 
position (в, ip) of the particle about the center of force and depends only 
on its distance r  from the center of force. For a power-law central-force 
potential U(r) =  (k / n ) r n , the central force F  =  — V£/ =  —k r n~lT is 
attractive (or repulsive) if the constant к is positive (or negative).

Note that, for a central-force potential U(r), the angular momentum 
L =  £z in the CM frame is a constant of the motion [see Eq. (2.60)] since 
г X V£7(r) =  0. When we consider the planar dynamics of two particles 
th a t interact through a time-independent central potential, the conservation 
of energy and angular momentum allows us to obtain an exact solution 
in terms of the polar coordinates (r(t) ,6 (t)) associated with the relative 
position

r  =  r i  — Г2 =  r fcosOx + sinfly^ =  r?  (4.2)

between the two particles.

105
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4.1 .1  Lagrangian Form alism

The center-of-mass (CM) Lagrangian for two interacting particles (with 
masses m i and m 2) in a central-force potential U(r) was presented in 
Eq. (2.58). Using the polar coordinates (4.2), the CM Lagrangian becomes

L(r , r , 6) =  |  ( r 2 +  r2 62) -  U(r), (4.3)

where p = m im 2/(m i +  m 2) denotes the reduced mass for the two-particle 
system.

Since the Lagrangian (4.3) is independent of 9, it follows from Noether’s 
Theorem

А (Ёк\ -  =
dt V дв J  дв ~  °

th a t the canonical angular momentum

d L
Pe =  =  VT2® = t  (4.4)дв

is a constant of motion (labeled £). The Routhian for this problem is, 
therefore, defined as

R(r,r;pe) =  L(r,r, 9) -  pe 9 =  ^  f 2 -  V(r),  (4.5)

where the effective potential is

e_
2  p r

The Euler-Lagrange-Routh equation for r yields the radial force equation

e2
p r  =  - V ( r )  =  — r  -  U'(r). (4.7)

р г л

The radial solution r(t) of the radial equation (4.7) is formally obtained 
from the energy equation

Li 11

E = V  + 2 ^  + U«  = V  + ^  (4'8)
as

t(r;E,£) = Г - ,  *  , (4.9)
Jr0 y / E - V { p ) 'V E - V ( p ) '  

where ro =  r(0) is the initial radial position.
If the integral solution (4.9) can be explicitly evaluated and inverted, 

the radial solution r(t; E, £) is then found for a given pair of invariants
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(E,£). Once the radial solution r(t) is found, the angular solution 9(t) is 
then obtained by integration

is thus parameterized by time, for a given pair of invariants (E, £.).
The dynamical solution (4.11) appears simple enough to write down, 

however, it is often difficult to explicitly evaluate the integral radial solution 
(4.9). Another approach focuses on deriving the orbital solution r(6), where 
в now appears as the orbit parameter, so that the planar orbit

can be found. While the planar orbit (4.12) is easier to find, we cannot 
determine the position of the particle as a function of time until the angular 
solution e(t) is known.

4.1.1.1 Radial Orbit Equation

We now proceed with the derivation of the orbital solution r(6) for a given 
potential U(r). Since 0 =  £/ jir2 does not change sign along the orbit (as a 
result of the conservation of angular momentum £ ф 0), we may replace r 
and r with r' (0) and r"(6) as follows. First, we begin with

where we use the conservation of angular momentum and define the new 
dependent variable s(6) =  1 /r(0). Next, we write r = — {£/1>) 0 s" =
— {£/ц )2 s2 s", so tha t the radial force equation (4.7) becomes

(4.10)

The planar dynamical orbit

(4.11)

(4.12)

=  -  Wm) s',

(4.13)

where

U{s) =  |  U(l/s)  (4.14)

denotes the normalized central potential expressed as a function of s.
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4.1.1.2 Inversion Problem

Before proceeding with the solution of the orbit equation (4.13), we note 
th a t the form of the physical potential U(r) can be calculated from the 
knowledge of the function s(9) = 1 /r{0) and the constants of motion (E, £). 
This inverse-problem procedure requires: (a) expressing s" as a function of 
s through 0(s); (b) solving for U(s) through Eq. (4.13):

=  -  s"(ff(s)) -  s; (4.15)

and (c) using the definition (4.14): U(r) = (JL2/ [i) U(l /r).  The angular 
dynamics 6{t) can also be determined as

i  . . fi re
/  г 2{ф) (1ф, (4.16)

Jo/xrJ (0)
where we assumed tha t t(9 = 0) =  0.

For example, consider the particle trajectory described in terms of the 
function r(6 ) =  r 0 sec (а  в), where r 0 and a  are constants.1 The radial orbit 
equation (4.13) then becomes

/f . / 2  dU(s)s +  s =  -  (or -  l)  s = -------
' ds

where we used s(0) =  s0 cos(a<?) and s"  =  -  a 2St) cos(a6) = —a 2 s, with 
so =  l / r 0. Hence, we readily find

U(s) =  i  (a 2 -  l)  s2 -+ U(r) =  2̂ (« 2 -  !) •

As expected, the central potential is either repulsive for a > l or attractive 
for a < l  (see Fig. 4.1).

We note th a t knowledge of the orbit r{6) allows us to  solve for the 
angular dynamics 0(t) from Eq. (4.16), which in turn  gives us the radial 
dynamics r(t). For our example, we find

K@) =  [  sec2 ф (1ф — tan(a0),cut J о a t
which can be inverted to  yield the angular solution

0 (t) = a ~ l arc tan (ao ;i) , (4-17)

where w =  £/(/1Гд). Next, upon substituting Eq. (4.17) into r{6) — 
ro sec (а в), we obtain the radial solution

r(t) = r0 y / l  +  (a u t )2. (4-18)
[ These constants could be determined by tracing the orbit г(в) as a function of В of ; 

particle over an extended period of time.
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Fig. 4.1 Repulsive (a  > 1) and attractive (a  <  1) orbits: x{9) =  rosec(c*6) cos(0) and 
y(Q) =  rosec(c*6) sin(0), for the central-force potential U(r) =  (a 2 — l ) r - 2 .

Lastly, the to tal energy

E  =
(X i f

2 цг& = V(r0),

is determined from the initial conditions r(0) =  ro and r(0) =  0, i.e., ro is 
the single turning point in the effective potential V(r) = U (r)+ £2/ (2 /гг2) =  
a 2 £2/ ( 2цг2).

4.1 .2  H am iltonian Form alism

We now return to the solution of the orbit equation (4.13). First, we write 
the energy equation

6
f iE/£ =

s '2 s2 —
T  +  2 +  U{S)•

(4.19)

in terms of (s, s') and the normalized potential U(s), so th a t we obtain

(4.20)s'(в) = ±  yje — 2U(s) -  s2.

Hence, for a given central-force potential U(r), we can solve for r(6) 
1 /s(9) by integrating

da
0{8) = -  f

j  Sn ф - 2  U(a)
(4.21)

where so defines 0(so) =  0, and performing the inversion 0(s) -¥ s(0) to 
obtain the orbit equation г(в) — 1 /s(9).
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The evaluation of the integral solution (4.21) requires the determination 
of the turning points (where s' — 0) of the equation

e =  s2 +  2 U(s). (4.22)

If two non-vanishing turning points 0 <  Si <  s2 exist, the motion is said 
to  be bounded in the interval s i  <  s < s2 (or r2 < r < 7 * 1 ) ;  otherwise, the 
motion is unbounded. If the motion is bounded, the angular period А 0 is 
defined as

rs2 d s
Ав  =  2 /  _  = . (4.23)

\Je — 2U{s) -  s2

Here, the bounded orbit is closed only if AO is a rational multiple of 2-7Г.

4.2 H om ogeneous C entral Potentials*

An im portant class of central potentials is provided by homogeneous po­
tentials th a t satisfy the condition U{Ar) =  An f/(r), where A denotes a 
rescaling param eter and n  denotes the order of the homogeneous potential.

4.2 .1  The Virial Theorem

The Virial Theorem is an im portant theorem in Celestial Mechanics and 
Astrophysics. We begin with the time derivative of S  =  ]TV p, • r , :

dS ( dVi d r i \  ,
& = E ( ^ - r « +  p - ^ ) .  ( « 4 )

г N '

where p , =  midvi /dt  denotes the kinetic momentum of the ith  particle, 
and the summation is over all particles in a mechanical system under the 
influence of a self-interaction potential

u  = \  E  u ( n - r > )  =  I  
i,j^i i,j^i

We note, however, tha t S  itself can be written as a time derivative 

с v-”' dri d f  1 о l 1 dX
b  =  > rrij - 7-  *rj =  —  -  > Ш; Г; = ----- —,

^  dt dt у  2 ^  у 2 dt

where T  denotes the moment of inertia of the system. Using Hamilton’s 
equations

drt Pi , dpi ^
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Eq. (4.24) can also be written as

-  V iU i j  I =  2 К  -  r i - V i U i j ,
)  i, j ^ i

(4.25)
where К  denotes the kinetic energy of the mechanical system. Next, using 
Newton’s Third Law, we write

ri -ViUij  =  \  ( r i - T ^ ’ V U i T i - r j ) ,

and, for a homogeneous central potential of order n, we find г • VU  (r) =  
n £/(r), so that

\  (ri _ r j ) ‘ у с / (г* _ r j) = n U -
i , j ^ i

Hence, Eq. (4.25) becomes the Virial of Clausius (Rudolph Clausius, 1822- 
1888)

i §  =  2 K - „ U .  (4.26)

If we now assume tha t the mechanical system under consideration is peri­
odic in time (e.g., the system is bounded), then the time average (denoted 
(••■)) of Eq. (4.26) yields the Virial Theorem

(K) =  2  ([/). (4.27)

Hence, the time-average of the total energy of the mechanical system, E  =  
К  + U, is expressed as

E  =  (1 +  n/2) (U) =  ( l + 2 / n ) < J f > ,  (4.28)

since (E) = E,  i.e., the time average of a constant of motion is equal to 
itself. For example, for the Kepler problem (n =  — 1), we find

E  =  \  (U) = -  (K) < 0, (4.29)

which means tha t the to tal energy of a bounded Keplerian orbit is negative 
(see Sec. 4.3.1).

We note tha t the Virial Theorem has im portant applications in astro­
physics where the contraction of a self-gravitating cloud (i.e., (U) becoming 
more negative) leads to an increase in its internal energy (i.e., (K) becoming 
more positive).
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4.2 .2  General Properties o f  Homogeneous Potent ials

We now investigate the dynamical properties of orbits in homogeneous 
central potentials of the form U(r) = (k / n ) r u (n ф —2), where к de­
notes a positive constant, which means th a t the associated central force 
F  =  — VC/ =  — k r n~1'r is attractive.

First, the effective potential (4.6):

I2 к 
2f ir2 nV (r ) =  9 + -  Г"I  . . nr.

has a single extremum point, where

У Ы  =  4  ( W «  -  £ ' ]  =  o,

at a distance ro =  1/so defined as

e2„n+2 _
kfir° ~  .n+2 -

It is simple to  show th a t this extremum is a maximum if n  <  —2 or a 
minimum if n > —2; we shall, henceforth, focus our attention on the latter 
case, where the minimum in the effective potential is

Vo =  V M = ( l  + = ) i , 5 - ( l  +  §)£% .

In the vicinity of this minimum, we can certainly find periodic orbits with 
turning points (гг =  I /S 2 <  r\ =  1 /s i)  tha t satisfy the condition E  = V (r). 

Next, the radial equation (4.13) is w ritten in terms of the potential
U(s) = {ц/ t 2) U{ 1 /s) as

tfU  чп+24 -  £o__
+  ds ~  s»+1 ’

and its solution is given as the orbit integral

dcr

■  / ^ € - ( 2 / n ) s n0+2/ a n -  a2
(4.30)

where S2 denotes the upper turning point in the s-coordinate. The solution
(4.30) can be expressed in terms of closed analytic expressions obtained by 
trigonometric substitution only for n = —1 or n = 2 (when e Ф 0), which 
we now study in detail below (the cases n = — 3 and —4, for example, are 
solved in terms of elliptic functions as discussed in Appendix B).
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4.3 K epler P roblem

In this Section, we solve the Kepler problem (Johannes Kepler, 1571-1630) 
where the attractive central potential U(r) — —k /r  is homogeneous with 
order n  =  — 1 and A; is a positive constant.2 The Virial Theorem (4.27) 
implies tha t periodic solutions of the Kepler problem have negative total 
energies E  = — (К ) = (1/2) (U).

Fig. 4.2 Effective potential (4.32) for the Kepler problem, which has a single minimum 
Vo <  0 at r  =  ro. O rbits are labeled by the eccentricity e =  ^/1 — E/Vo  and are either 
bounded: circular (e =  0) or elliptical (e <  1); or unbounded: parabolic (e =  1) or 
hyperbolic (e >  1).

The general solution of the Kepler problem involves solutions for the 
radial position r(t) and angular position 0 (t)

[ if  =  -  4 r =  — V'(r) and 9 = — (4-31) 
[ i r 6 r A /i  T

whose orbits r(6) are either bounded (periodic) or unbounded (see Fig. 4.2)
in the effective potential

к f 2
=  "  "  +  5— a- (4-32)r 2 f ir2

This potential exhibits a single minimum
к (?

V0 = <  0 at r =  r 0 =  — . (4.33)
2ro цк

To obtain an analytic solution r(Q) for the Kepler problem (4.31), as 
expressed by the radial force equation (4.13), we use the normalized central 
potential U(s) = — sos, where so =  ALk/t2, and Eq. (4.13) becomes

s" +  s =  s0. (4.34)
2For problems involving gravitational attraction, we have к =  G m \ m 2 , while for prob­

lems involving electrostatic attraction (q\q2 < 0), we have к =  |q i921/(47reo).
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The solution of Eq. (4.34) is given by Eq. (4.30), with n = — 1:

daf s9(s) = /
J S \/e  +  2so a — a2 '

and requires finding the turning points si <  *2 for the Kepler problem.
The turning points for the Kepler problem are solutions of the quadratic 

equation

s2 — 2 so s — e — 0, 

which can be w ritten as s i^  =  so ±  \ / sq + e:

s i =  so (1 -  e) and s2 — so ( l  +  e), 

where the eccentricity is defined as

e =  ^ l + e / s 2 = yj l  -  E /V0. (4.35)

The general solution to  Eq. (4.34) is therefore

9(e) =  r (1+e) —=== ^  =  arccos ( , (4.36)
Js V so e2 ~  07 _  so)2 \  s0 e J

which can readily be inverted to give s(B) =  so (1 +  e cos в). The general 
radial orbital solution to  the Kepler Problem is

r(0) =  ----- ------ - .  (4.37)
1 +  e cos в

Figure 4.2 shows the types of orbits described by the Kepler solution (4.37), 
whch is valid for all values of e. We note tha t motion is bounded (i.e., orbits 
are periodic between si <  s <  s2) when V o < - E < 0 ( 0 < e < l ) ,  and the 
motion is unbounded (i.e., orbits are aperiodic with only s-2 being allowed, 
since Si becomes negative) when E > 0 (e >  1). The separatrix solution 
is defined by E = 0 (e =  1) and the motion on the separatrix is also 
unbounded (with s i =  0 or n  —> oo).

4.3 .1  Bounded Keplerian Orbits

We first look at the bounded case where e < 0 or e =  \J  1 — |e|/«o <  1-
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Fig. 4.3 Elliptical orbit for the Kepler problem.

4.3.1.1 Kepler’s First Law

Equation (4.37) generates an ellipse of semi-major axis (see Fig. 4.3)
о r0 r0 r0 к2 a — —--------1- ------  —>■ a — ------ — — — - (4.38)

1 -I- e 1 -  e 1 — e2 2 \E\
and semi-minor axis

b = a \ J  1 - e 2 =  у/Р/{2ц\Е\).  (4.39) 

W ith these definitions, Eq. (4.37) may be written as

( *  +  . ) ’ +  £ - 1 .  (4 ,0 )

which yields Kepler’s First Law: Planets move around the Sun along ellip­
tical orbits. We note th a t the eccentricity can also be calculated in terms 
of the semi-major and semi-minor axes as e =  y/1 — (b/a)2. In addition, 
because the Moon’s eccentricity is e ~  0.055 (as it moves along an elliptical 
orbit around Earth), the ratio of the Moon’s angular diameter at perigee 
(when it is closest to Earth) and the Moon’s angular diameter at apogee 
(when it is farthest from Earth) is 1.116 (i.e., the Moon is 11.6 % bigger 
and nearly 25 % brighter) a t perigee than when it is a t apogee.

When we plot the positions of the two objects (of mass m i and m 2, 
respectively) by using Kepler’s first law (4.37), with the positions r i  and r 2 
determined by Eqs. (2.59), we obtain Fig. 4.4. It is interesting to note that 
by detecting the small wobble motion of a distant star (with mass m i), it 
has been possible to  discover extra-solar planets (with masses m 2 <  m i).

4.3.1.2 Kepler’s Second Law

Using the conservation law of angular momentum (4.4), we find

dt = j  = H r\ e ) d e  = ^ d A ( 6),
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m]/m2 = 4 
e = 0.2

Ш|/Ш2 = 1 
e = 0.2

mj/mj < 1 
e = 0

Fig. 4.4 Keplerian two-body orbits for various mass ratios and eccentricities.

where dA{9) =  ( /  r dr) d9 = \  [r{9)]2 d6 denotes an infinitesimal area swept 
by d6 a t radius r(9). When integrated, the relation

(4.41)

yields Kepler’s Second law: Equal areas A A  are swept in equal times At  
since /x and £ are constants.

4.3.1.3 Kepler’s Third Law

Using Kepler’s Second Law (4.41), the orbital period T  of a bound system 
is defined as

Г2* d9 _  /i f 2n 
Jo 9 t  Jo

rz d9 = 24 a  =
2n /л

a b

where A = nab  denotes the area of an ellipse with semi-major axis a and 
semi-minor axis b. Next, using the expressions (4.38)-(4.39) for a and b,
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the orbital period becomes

2ir p  к P  p k 2
= T "  ' а д  ' ~  ( ' }

We note tha t the Keplerian period (4.42) diverges as E  —> 0. Similar be­
havior has already been observed with the period (3.46) of bounded motion 
in the Morse potential.

If we now substitute the expression for a = k/2\E\  and square both 
sides of Eq. (4.42), we obtain Kepler’s Third Law:

T 2 =  (4.43)
к

In Newtonian gravitational theory, where k/p, =  G(mi + m 2), Kepler’s 
Third Law states tha t T 2/a3 is a constant for all planets in the solar system, 
which is only an approximation th a t holds for m i (true for all solar
planets, e.g., the ratio of E arth ’s mass to the Sun’s is 3 x 10-6 , while it is
9.5 x 10-4 for Jupiter).

Taking m i =  M q to be the mass of the Sun, we find к/p  ~  
G M q = 1.327 x 102Om3/s 2. By introducing the Astronomical Unit3 
1AU =  1.496 x 10n m, defined as the average orbital radius of E arth ’s 
orbit (Earth’s eccentricity is presently at 0.017), as a unit of distance, and 
the Year l y  =  3.156 x 107s, defined as E arth ’s orbital period around the 
Sun, as a unit of time, Kepler’s Third Law (4.43) for planets and comets 
orbiting the Sun becomes T (y)2 =  a(AU)3. Hence, at an average dis­
tance of 0.387 AU from the Sun, Mercury has an orbital period of 0.241 у 
(or nearly 88 days), while at an average distance of 30.069 AU from the 
Sun, Neptune has an orbital period of 165 y. Lastly, using Kepler’s Third 
Law (4.43), the average orbital velocity v = 2ir a /T  is calculated to be
v = ^JkJJjTa) — 29.783km /s x a(AU)-1 / 2, so tha t Mercury, Earth, and 
Neptune travel a t an average orbital velocity of 47.87 km /s, 29.79 km/s, 
and 5.48 km /s, respectively.

4 .3 .2  Unbounded Keplerian Orbits

We now look at the cases where the to tal energy is positive or zero, i.e., e >  1 
in Eq. (4.37). For the case e =  y/l  +  e/so >  1, we redefine a = ro /(e2 — 1) 
and b =  ro /\ /e 2 — 1, so th a t Eq. (4.37) yields the hyperbolic equation

_____________ t - r  - i  -  *■
3D ata used here are taken from Norton’s Star Atlas (Pi Press), Epoch 2000.0 edition.
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Furthermore, we may use a parametric form for the coordinates x  =  a (e — 
cosh^) and у = b s in h ^  and find tha t the hyperbolic asymptotes (at ip —>• 
± 00) are located at i t  ±  0 , where 0  =  arc tan (\/e2 — 1) =  arccos(e_1). 
For the separatrix solution (e =  0 or e =  1), Eq. (4.37) yields r +  x  =  ro, 
from which we recover the parabola x  =  (r2 — y2) / 2ro, with the distance 
of closest approach reached at ж(0) =  ro/2.

F ig . 4 .5  B o u n d e d  a n d  u n b o u n d e d  o r b i t s  fo r  t h e  K e p le r  p ro b le m .

Figure 4.5 shows the four types of Keplerian orbits: a circular (bounded) 
orbit for e =  0; an elliptical (bounded) orbit for e <  1; a hyperbolic (un­
bounded) orbit for e >  1; and the parabolic (unbounded) separatrix solution 
for e =  1.

4 .3 .3  Laplace-Runge-Lenz Vector*

The angular period for a bounded Keplerian orbit is calculated from 
Eq. (4.23) as

/■ so (l+ e) j  /• я-

A9  =  2 / — — . — ..... — =  2 / du> =  2тг.
J s0(l—e) \A o  e2 — (s — So)2 Jo

Since the orientation of the unperturbed Keplerian ellipse is constant (i.e., 
it does not precess), it turns out there exists a third constant of the motion 
for the Kepler problem (in addition to energy and angular momentum); we 
note, however, th a t only two of these three invariants are independent.
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Let us now investigate this additional constant of the motion for the Kepler 
problem. First, we consider the time derivative of the vector p x L ,  where 
the linear momentum p and angular momentum L are

p  =  ц ( f ?  + гб в  ̂ and L =  £z =  fir2в z.

The time derivative of the linear momentum is p =  — VC/ (r) =  —U'(r)7  
while the angular momentum L =  г X p is itself a constant of the motion 
(in a central potential) so th a t

j t (p X L) =  ^  X L =  -  м VC/ X (г X r)

= — fir • X7U r + fir • VC/ r.
By re-arranging terms (and using r*VC/ =  dU/dt  for time-independent 
potentials), we find

j t ( p x L )  = -  j t ( f iUr)  + fi (r • VC/ +  U) r,
or

dA
—  =  fi (r • VC/ +  U) r, (4.44)

where A is the Laplace-Runge-Lenz (LRL) vector:
A  =  p x  L +  fiU{r) r. (4.45)

We immediately note tha t the LRL vector (4.45) is a constant of the motion 
if the potential U (r) satisfies the condition

r  -VU(r)  +  U(r) = =  0.dr
This condition is satisfied for the Kepler problem, with U{r) = —k / r , so 
that the LRL vector (4.45)

A =  p X L — kfiT = — kfi^j? — (.fir в, (4.46)

is a constant of the motion for the Kepler problem.
Since the vector A is constant in both magnitude and direction, its 

constant magnitude

|A P  .  ( £  + v ) + * v  -  ( i  +  W

is expressed in terms of e(E,£). Next, we choose its direction to be along 
the x-axis (A =  kfi e x) and we can easily show tha t 

' f 2 \  л— — kfi J =  A  • r =  (kfie) cos 9

leads to the Kepler solution (4.37), where ro =  t'2/kfi  and the orbit’s ec­
centricity is e =  |A |/kfi.

4.3.3.1 Kepler Problem



120 An Introduction to Lagrangian Mechanics

4.3.3.2 Perturbed Kepler Problem

We now use Eq. (4.44) to investigate what happens to a bounded Keplerian 
orbit when it is perturbed by the introduction of an additional potential 
term  SU(r): U(r) =  Uo{r) 4- 8U(r), where U0(r) =  - k / r .  In this case, we 
find A  =  A 0 +  n8U7 = A 0 +  8A  and Eq. (4.44) yields

d8A
dt

= (8U r-S78U) p  =  —  (rSU) p. 
dr

We now show that, under the perturbation potential 8U(r), the per­
turbed Keplerian orbit precesses in 6 (i.e., A 6 ф 2ir). First, we obtain the 
cross product (to lowest order in 8U)

A ° x  ~  = {SU +  r • X78U) (;p2 +  nUo)  L,

where we used Ao X p  =  p2 + ц Uq. Next, using the expression for the 
unperturbed total energy

E

we define the precession frequency 

шр(в) =  z

P2 , гг _  k 
^  +  Uo ~  ~  2 ^ ’

A o  х * 6 А = ( 5 и  +  Гш v s u ) i f i
|A „|2 dt

= {8U + r  • V 6U)

(/xke)2 
£fik 

(цке)2

(2 E  -  Uo)

Hence, using a = ro / ( l  — e2), the precession frequency becomes

LU'p ( 0 )  =  r 1 (1 + COS i {rSU) (4.47)
r=r ( 0)

where the term  inside the square brackets is evaluated at the unperturbed 
Keplerian solution r(6) — ro /( l  +  e cos 6). We now define the net preces­
sion shift 86 =  f(j" LOp(ft) dO/9 of the perturbed Keplerian orbit over one 
unperturbed period to be

86
п2тг

Jo
1 + e 1 cos 6 

1 +  e cos 6
d ( 8U
dr \  Uo r=r(6)

(4.48)

where we used 6 = (1 + e  cos в)к / (( г ) .  For example, if SU =  -  /З/ r 2, then 
r d(8U/Uo)/dr = — (3/kr and the net precession shift (4.48) is

86 = -Д- [  (l +  e-1 cos0) d6 =  27Г
kr0 Jo kr0

Figmre 4.6 shows the numerical solution of the perturbed Kepler problem
for the case where /3 ~  kro/16.
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Fig. 4.6 Perturbed Kepler problem with 5U(r) — — f t / r2 and 0  ~  fcro/16.

4.4  Isotropic S im ple H arm onic O scillator

As a second example of a central potential with closed bounded orbits 
[see Eq. (4.30) with n = 2], we now investigate the case when the central 
potential is of the form

This potential corresponds to a two-dimensional simple harmonic oscil­
lator with potential energy |  (kx x 2 + ky y2) where the spring constants 
are equal kx = ky = k. The effective potential for this problem is 
V(r) — U(r) + £2/(2  m r 2), where m  denotes the mass of the particle un­
dergoing isotropic simple harmonic motion, which has a single minimum at 
r = ro =  (£2/ к  то)1/ 4. Periodic (bounded) motion is therefore allowed if 
the total energy E  > Vo = V (ro) =  к r%.

By introducing the dimensionless energy E  = £ kr2s. where £ >  1, and 
the dimensionless radius p =  r /ro , the turning points for this problem are 
obtained from solutions of the equation

which are easily expressed as p \  = e ±  \ /e 2 — 1 =  e (1 ±  e) >  0, where

Since r±  =  ro p± cannot be negative, the only two turning points are

(4.49)

e у / 1 -  1 /e2 =  y/1 -  (Vo/E)2 < 1.

and

where we used e =  1/y / l  — e2 for the dimensionless energy.
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Next, using n  =  2 in Eq. (4.30), we find the integral solution
of \ f S2 da f S2 a da
9 { s )  =  /  4 /  2 4  =  /  / -  2 4 4=. (4-50)Js \/£  -  s0/ a 2 — a2 Js y e a 2 —Sq — a4

where e =  2 m E / t 2 ~ 2 e s ^  [see Eq. (4.19), with ц =  m\. Using the change 
of coordinate q = a 2/ s 2 in Eq. (4.50), we obtain

%) = \ Г  72 dq\ 2’ (4'51)1 Jq \ f 2 eq -  1 -  q2 

where <72 =  \ / ( l  +  e )/( 1 — e) =  e ( l  +  e). We now complete the square 
2 eq -  1 — q2 = e2 e2 — (q — e)2 and substitute q(<p) = e ( l  +  e cos ip) in 
Eq. (4.51) to obtain

л/ \ 1 ( q - eU(q) — — arccos 1
2 \  ее

and we easily verify tha t Ав = тг and bounded orbits are closed. The 
equation 9{q) can now be inverted (with r = r0/  ̂ fq) to give

,< „ )  =  (4 52) 
%/l +  e cos 29

which describes the ellipse x 2/b2 + y2/a2 = 1, with semi-major axis a — ri 
and semi-minor axis 6 =  r 2. Note tha t this solution x 2/b2 +  y2/ a 2 = 1 
may be obtained from the Cartesian representation for the Lagrangian L =  
I  m  (x 2 +  y2) — i  к (x2 4- y2), which yields the solutions x(t) =  b cos cot and 
y(t) =  a sin ujt, where w = y /k /m  and the constants a and b are determined 
from the conservation laws E  = |  » 2 (a2 +  b2) and I  = muj a b.

Lastly, the area of the ellipse is A — тгab = n r 2, while the physical 
period is

TiE'f) - Г  j -
Note tha t the radial period is Т / 2 since A9  =  ж. We, therefore, find th a t 
the period of an isotropic simple harmonic oscillator is independent of the 
constants of the motion E  and £, in analogy with the one-dimensional case.

4.5 Internal R eflection  inside a W ell

As a last example of bounded motion in a central-force potential, we con­
sider the motion of a particle of mass m  in the central potential

Г -  Uo (r < R )
U{r) = ■{ (4.53)

I 0 (r >  R)
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R

Fig. 4.7 Effective potential for the internal hard sphere.

where Uq is a constant and R  denotes the radius of a sphere. The effective 
potential V(r) = l 2/ ( 2mr2) + U(r) associated with this potential is shown 
in Fig. 4.7, and orbits are unbounded when E  > Vmax =  i 2/(2m R 2). For 
energy values

t 2 „  _  „  e2Uq <  E  <C Vmax —2mR2 2 m R 2'
on the other hand, Fig. 4.7 shows th a t bounded motion is possible, with 
turning points

r 2 =
£2 ~  n  and r i =  R.

2m  (E  +  TJq)

When E  — Kt.in, the left turning point reaches its maximum value rt = R  
while it reaches its minimum value rt / R  = {I + U q / E)~* < 1  when E  =
I 'm  ax ■

We now solve for the bounded motion in the potential (4.53) by assum­
ing th a t the particle starts a t r  =  rt a t в =  0. The particle orbit is found 
by integration by quadrature of (s ')2 — s2 — s2:

rSt da f  s
—. =  arccos —
v ^ F 7̂ 2 \ * t t

where st = 1 /rt- We easily invert this relation and find the orbital radial 
solution

r(6) — rt seed (for в < 0 ) , (4.54)

where the maximum angle 0  defines the angle at which the particle hits 
the turning point R, i.e., r ( 0 )  =  Д, where 0  =  arccos(rf//?.). Subsequent

9(8) fJ  S
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Fig. 4.8 Internal reflections inside a hard sphere.

motion of the particle involves an infinite sequence of internal reflections as 
shown in Fig. 4.8. The case where E  >  I2/ 2m R 2 involves a single turning 
point and is discussed in Sec. 5.7.

Lastly, we note th a t the dynamical radial solution r(t) is obtained by 
inverting the velocity equation dt =  dr/r:

e ■ r(t) =  J r ?  + I ' l l  I , (4.55)
m  r rt у \ m r t

which is valid for 0 <  t < T,  where
m rt [ZZ. у sin 0T  = [~Z Г sin 0  .

. \ R? — r2 = —^ .....  , (4.56)
I  V v /(2 /m ) (E +  Uo)

and r(T)  =  R. Hence, the radial period for this problem is 2 T.  By 
comparing the orbital radial solution (4.55) with the dynamical radial 
solution (4.54), we easily obtain the dynamical angular solution Q(t) =  
arctan(£ t / m r 2), with 0(T) = 0 . The equations of motion in the (x, y)~ 
plane are, therefore, expressed as x(t) = r(t) cos 9(t) =  rt and y(t) = 
r(t) sin0(i) =  rt tan  6(t) =  (l / m r t) t .

4.6  S u m m a ry

Chapter 4 presented the general solution of planar motion under the in­
fluence of a central-force potential, for which case two constants of motion
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Table 4.1 Summary of Chapter 4: Motion in a Central-Force Field.

Topic Equation

Routhian for Motion in Central-Force Potential
O rbital Radial Motion
Inverse O rbital problem
O rbital Solution
Virial Theorem
Kepler Problem
Kepler’s Three Laws of Planetary Motion 
Laplace-Runge-Lenz Vector 
Perturbed Kepler O rbital Precession 
Isotropic Simple Harmonic Oscillator 
Internal Reflection inside a Well

(4.5)
(4.13)
(4.15)
(4.21)
(4.28)

(4.31)-(4.37)
(4.40)-(4.43)
(4.45)-(4.46)
(4.47)-(4.48)
(4.49)-(4.52)
(4.53)-(4.56)

(energy E  and angular momentum po) exist. W ith these two invariants, 
the Energy method enabled the construction of a solution for the radial 
motion r(t), while the angular motion 6(t) was obtained by integration of 
the angular-momentum conservation law. Complete solutions of the Kepler 
problem, the isotropic simple-harmonic-oscillator problem, and the prob­
lem of internal reflection inside a potential well were also given. Table 4.1 
presents a summary of the im portant topics of Chapter 4.

4 .7  P ro b lem s

1. Consider a comet moving in a parabolic orbit r{6) = ro /( l+ c o s0 )  in the 
plane of the E arth ’s orbit (see Fig. 4.9). If the distance of closest approach 
of the comet to the sun is ro /2  =  /3 ге,  where /3 <  1 and rg  is the radius of 
the E arth ’s (assumed) circular orbit, show th a t the time the comet spends 
within the orbit of the E arth  is given by

where Eq. (4.9) was used (with E = 0 for a parabola) and we used /x 
(1 year/27r)2.

2. A particle (of mass m) moves in a spiral orbit given by r(0) = к вп, 
where к is a constant and n  is a positive integer. Show tha t the effective
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Fig. 4.9 Problem 1.

potential V(r) = U(r) + £2/ (2mr2) tha t allows this motion is 

V(r) =
2m J  r 2+2/"  ’

3. A satellite (of mass m ) is orbiting E arth  along a circular path  (at radius 
ro) with to tal energy

„  m  9 A; к
E  = — vz -  — = ------- ,

2 r0 2r0
where v =  \ /k/ (mro)  represents the satellite’s tangential (angular) speed.
During its orbit, the satellite’s propulsion system gives an instantaneous
boost v —> v +  A?) to the satellite (with Av  >  0 tangent to the orbit). The
new energy of the satellite is

7-,/ m  / л \9 ^ кE'  = — (v “|- A v ) -------= -------- ,
2 ro 2 a

where a > ro is the semi-major axis of the new elliptical orbit.

(a) Show th a t the eccentricity of the new elliptical orbit is e' =  1 — г0/a  
and th a t the energy boost is A E  = E'  — E  = — e' E .

(b) Show tha t the velocity boost At; needed to achieve a desired eccentricity 
ei is

Au(ei) = v (>/1 + ei -  1 j .
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(c) Find the minimum boost value Дг>т т  necessary for the satellite to 
escape E arth ’s gravity (i.e., the satellite’s after-boost orbit is a parabola).

4. Show tha t the radial “fall-in” time of a particle of mass m  in a potential 
U =  — k /r  starting from radius R  without angular momentum is

f R dr I m R 3
At  = — 7 = 7Г/Jo |r| V 8 к

5. Consider the perturbed Kepler problem in which a particle of mass m, 
energy E < 0, and angular momentum £ is moving in the central-force 
potential

тт/  ̂ к a  U(r) =

where the perturbation potential a / r 2 is considered small in the sense tha t 
the dimensionless param eter e = 2m a /£ 2 -С 1 is small.

(a) Show th a t the energy equation for this problem can be written using
s — 1 /r  as

E  = ^  [ (s ')2 +  7 2 s2 -  2 s0s ] , 

where so =  m k /£ 2 and 7 2 =  1 +  e.

(b) Show th a t the turning points are

Si =  —̂  (1 — e) and s2 =  ^ | ( l  +  e),

where e =  ^/1 + 2  7 2i 2E / m k 2.

(c) By solving the integral

6{8) = ~ [
J  S'

where 0(s2) =  0, show that

da
S 2 ~ ~у / (2mE /£ 2) +  2 sqct — 7 2 a2

r(0) = 7 2 r °1 +  e cos(7 $) ’
where ro =  1 / s q . Hence, the ellipse precesses with an angular step AO = 
2^-/7 .

6. Consider a particle of mass m  moving in the potential U (r) =  — k /r  — 
r • F, where F is a constant force vector. Show that, while the angular 
momentum L is no longer conserved, the quantity

mk  „ т о
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is a constant of the motion.

7. A Keplerian elliptical orbit, described by the relation r(9) =  ro /( l  +  
e cos 9), undergoes a precession motion when perturbed by the perturbation 
potential 5U(r), with precession frequency (4.47). Show that, if 6U(r) =
— a / r 3 (where a  is a constant), the net precession shift 69 of the Keplerian 
orbit over one unperturbed period is

f 27r dO „ a
"  =  I  4 .W  j  =  6 -  щ .

where we used 0 = £/цг2 = (£/рг%) (1 +  e cos#)2.

Fig. 4.10 Problem 8.

8. In Kepler’s work, angles are referred to as anomalies. In Fig. 4.10, an 
ellipse (with eccentricity e <  1) of semi-major axis a and semi-minor axis b 
is inscribed by a circle of radius a.

(a) Show tha t the orbit of the planet (at point P  in Fig. 4.10) is described 
in terms of the eccentric anomaly ip as

г(гр) = a (1 — e cos ip),

and the true anomaly 9 is defined in terms of ip as

C0S(W) =  ( v * *  -  ‘  \ .
\  1 — e cos ip J
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Note th a t by using the eccentric anomaly angle ip, we find a cos ip = 
ae + r cos в from which we obtain cosip = (e +  cos 6) / ( l  +  e cos 0) or 
cos в =  (cos ip — e ) /( l  — e cos ip). By substituting this last expression into 
Kepler’s First Law (4.37), we obtain r(ip) =  a (1 — e cos ip).

(b) Show tha t the time from perihelion (ip — 0) is given by Kepler’s Equa­
tion:

\e\
= ^  {Ф -  e simp),

(1 — e cos ip)2
dip

dip

(4.57)

where r  =  2тс -J/j, а3/ к  denotes the orbital period (i.e., 1 year for Earth).

(c) If the E arth ’s orbit is divided in two by the latus rectum (i.e., the vertical 
line drawn through the Sun), show th a t the times spent in the inner and 
outer halves (in fractions of a year) are

^ o u te r

COS — e y j \  — '

(л- — cos 1 e:) +  e \ / T

and tha t the difference between the times is
2

A t  ~  ^ o u te r  d in n e r —
7Г

sin 1 e +  e \J \  — e2

(d) Using t(ip) and r(ip), show tha t the average orbital radius is 
2 r r W m . di, .  a ( i  + e

dip

9. A particle of unit mass moves from infinity along a straight line that, 
if continued would allow it to pass a distance b \/2  from a point P. If the 
particle is attracted  toward point P  with a force varying as k / r 5, and if the 
angular momentum about the point P  is y/k/b, show th a t the trajectory is 
given by [Hint: Show that s" -f s = b2 s3.]

r(0) = b coth(#/\/2).

10. An E arth  satellite moves in an elliptical orbit with a period r ,  eccentric­
ity e, and semi-major axis a =  ((т/2тт)2к / fi)1//3. Show th a t the maximum 
radial velocity of the satellite is

12 r_  ^  27Г a e
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11. (a) Show that if a particle describes a circular orbit under the influence 
of an attractive central force directed toward a point on the circle,

r(0) — 2 Д  |cos0 | =  y/2 R \ / \ +  cos20,

then the force varies as the inverse-fifth power of the distance.

(b) Show th a t for the orbit described the to tal energy of the particle is zero.

(c) Find the period of the motion.

(d) Find x, y, and г» as a function of angle around the circle and show that 
all three quantities are inifinite as the particle goes the center of force.

12*. At perigee of an elliptic gravitational orbit, a particle experiences an 
impulse in the radial direction, sending the particle into another elliptic 
orbit. Determine the new semi-major axis, eccentricity, and orientation in 
terms of the old.

13. Show tha t for elliptical motion in a gravitational field the radial speed 
can be written as

By replacing the radial coordinate r with the eccentric anomaly angle ip, 
show tha t the resulting differential equation can be integrated immediately 
to give Kepler’s Equation (4.57).

14. Discuss the possible types of orbit for a particle moving under the 
central potential k/2r2. (a) For the repulsive case (k >  0), show th a t the 
orbit equation is r(9) = bsecn(f) — 6q), where n, b, and 9q are constants.

(b) For the attractive case (k <  0), the nature of the orbit depends on the 
sign of i 2 +  mk  and E.  Find the orbit equation for each possible type.

15. The Hohmann transfer orbit (H) represents the passage from a circular 
orbit a t radius га to another circular orbit at radius гв > ra (see inset in 
Fig. 4.11).
The transfer orbit requires two boosts a t points 1 and 2, with energy changes

and
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Fig. 4.11 Problem 15.

where a = (г а + г в ) / 2 is the semi-major axis for the Hohmann (H) transfer 
orbit. For each boost (j  =  1,2), compute the velocity change Avj.

16. Consider a binary-star system composed of two stars of masses mi  and 
та2 < mi  undergoing circular motion about their common center of mass 
(see Fig. 4.4).

(a) Use Kepler’s Third Law to show th a t the masses mi  and m 2 are ex­
pressed in terms of the orbital radii rx and according to the relations

ui2 a2 ш2 a2
mi = ——  Г2 and m 2 =  ——  r b

where uj =  2tt/T  is the orbital frequency of the two stars and a =  r\ +  r2 
is the constant separation between the two stars.

(b) Compute the masses of Sirius A and Sirius В (in units of solar mass) 
if their separation is 20 AU (1 AU =  1.5 x 1011 m), with г д / г д  =  2.3, and 
the orbital period is T  = 50 years.

17. A particle of mass m and angular momentum (. is observed to undergo 
periodic motion with its distance г(в) from the center of force given by the
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Fig. 4.12 Problem 17.

relation

r2(6 ) =  a2 cos(2 в), 

which describes a lemniscate of amplitude a (see Fig. 4.12).

(a) Show tha t the potential energy U (r ) leading to  this periodic motion is 
given by the attractive potential

f  a4
U^  =  -  2 ^  ЙГ-

[Hint: Show that s" +  s = 3 a4 s5 =  — U (s).]

(b) Solve the differential equation for 6(t) given by

в =  £/mr2 = (£/ma2) sec(2в) 

for в < 7t/4 subject to  the initial condition 0 — 0 at time t = 0.

18. Show th a t for a particle moving along an elliptical orbit in an inverse- 
square-law potential, the eccentricity of the orbit can be w ritten as

y j n -  1
6 ~  7 ^ + 1 ’

where n = 0max/tfmin is the ratio of the maximum angular velocity to  the 
minimum angular velocity.



C h a p te r  5

Collisions an d  S ca tte rin g  T h eo ry

In Chapter 4, we investigated two types of orbits (bounded and unbounded) 
for two-particle systems evolving under the influence of a central-force po­
tential. In the present Chapter, we focus our attention on unbounded orbits 
within the context of elastic collision theory (i.e., a collision for which en­
ergy and momentum are conserved). In this context, a collision between 
two interacting particles involves a three-step process (see Fig. 5.1): Step
I -  two particles (with masses m i, m 2 and momenta p i ,  Р 2) are initially 
infinitely far apart (in which case, the to tal energy of the two-particle sys­
tem is assumed to be strictly kinetic: |p i |2/2 m i +  |p2|2/2m2); Step II - 
as the two particles approach each other, their interacting potential (re­
pulsive or attractive) causes them to reach a distance of closest approach 
(where the interaction force is strongest); and Step III -  the two particles 
then move progressively farther apart (with momenta q i and q 2), eventu­
ally reaching a point where the total energy is once again strictly kinetic: 
|q i |2/2 m i +  |q2|2/2 m 2).

Fig. 5.1 Collision kinematics (I  —у I I I )  and dynamics (II)-

These three steps form the foundations of Collision Kinematics and 
Collision Dynamics. The topic of Collision Kinematics, which describes

133
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the collision in terms of the conservation laws of momentum and energy:

Pi +  Р 2 =  q i +  q 2, (5.1)

JpiP  +  \ p £  = M !  +  M  (5 2)
2mi  2rri2 2toi 2 ’

deals with Steps I and III; here, the incoming particles define the initial 
state of the two-particle system while the outgoing particles define the final 
state. The topic of Collision Dynamics, on the other hand, deals with Step
II, in which the particular nature of the interaction is taken into account.

5.1 T w o -P a rtic le  C o llisions in  th e  L A B  F ram e

Consider the collision of two particles (labeled 1 and 2) of masses m i and 
m 2, respectively. Let us denote the velocities of particles 1 and 2 before the 
collision as u i and u 2, respectively, while the velocities after the collision 
are denoted v i and v 2. Hence, the particle momenta before and after the 
collision are denoted p, =  ттц u 2 and q ( =  m, v.;, respectively.

Fig. 5.2 Collision kinematics in the LAB frame.

To simplify the analysis, we define the laboratory (LAB) frame to cor­
respond to the reference frame in which m 2 is a t rest (i.e., 112 =  0); in this 
collision scenario, m i is the projectile particle and m 2 is the target particle. 
We now write the velocities u i, v i, and V2 as
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where the deflection angle 9 of the projectile particle and the recoil angle 
ip of the target particle are defined in Fig. 5.2. The conservation laws of 
momentum and energy (5.1)-(5.2) yield

, m i 2 m l i 12 m 2 I |2m i u i  =  m i v x +  m 2v 2 and —  и = —  |v i| H---- — |v2| ,

which can be written in terms of the mass ratio a = m i / m 2 of the projectile 
mass to the target mass as

a v \  cos 9 =  a и — V2 cos ip, (5.4)

a v i  sin# =  v2 s iny , (5.5)
a v \  =  a u 2 — v2. (5.6)

Since the th re e  equations (5.4)-(5.6) are expressed in terms of fo u r un­
known quantities (v\ ,9; V2 ,<£>), for given incident velocity и and mass ratio 
a , we must choose one  post-collision coordinate as an independent variable 
to get a closed solution for the three remaining post-collision variables.

Here, we choose the recoil angle ip of the target particle, and proceed 
with finding expressions for v\(u,<p\a), V2(u,<p;a) and 9(u,<p;a); other 
choices lead to similar formulas (see problems at the end of the Chapter). 
First, adding the square of the momentum components (5.4) and (5.5), we 
obtain

2„2 _  „,2 „,2 о -,2a vT = a и 2 a u v 2 cos (p + v2■ (5-7)ui
Next, using the energy equation (5.6), we find

a 2 v2 =  a  (a  и2 — v2) = a2 u2 — a v 2, (5.8)

so th a t these two equations combine to  give

V2(u,ip;a) = 2 ( ——— I u cosy. (5.9)
V1 + a )

After substituting Eq. (5.9) into Eq. (5.8), we find

vi (u,ip;a) = -и У :1 -  4 cos2 ip = uv(tp), (5.10)

where ц / М  =  a / ( l  +  a )2 is the ratio of the reduced mass //, =  ггц тг /М  
and the total mass M  = m\ + m 2-

Lastly, we take the ratio of the momentum components (5.5) over (5.4) 
in order to  eliminate the unknown v\ and we find

v2 sin V?
tanfl =

a u  — v 2 cos ip
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If we substitute Eq. (5.9), we easily obtain

2 sin<£ cos ip _  sin 2tp
tan#  —

1 +  a  — 2 cos2 tp а  — cos 2 ip 
or

e(ip-,a) =  arctan ( ----- -— —— ^ . (5-11)
\  a — cos 2 <p J

In the limit a = 1 (i.e., a collision involving identical particles), we find

V2 = u cos ip and v\ =  и sin ip (5.12)

from Eqs. (5.9) and (5.10), respectively, and

tan#  -- cot ip —> ip =  — — #, (5.13)

from Eq. (5.11). Hence, the angular sum в + ip for like-particle collisions is 
always 90° (for tp ф 0).

We summarize by stating that, after the collision, the momenta q i and 
q 2 in the LAB frame (where ra2 is initially at rest) are functions of the 
initial momentum p = m \u  and the angles 0 and ip:

qi =pv(ip)  (cos#x +  s in # y ) ,  (5-14)

2 p cos ip , л
q 2 =  —;-------- - (cosv?x -  sm</?y), (5.15)1 +  a

where v(ip) is defined in Eq. (5.10). We note that, by using the relations 
obtained from Eq. (5.11): u(ip) cos# =  ( a —cos2v?)/(l+a) and u(tp) sin# =  
sin2y>/(l +  a), Eqs. (5.14)-(5.15) satisfy the momentum conservation law 
(5.1):

Pqi +42  = ( ( a  — cos 2<p) +  2 cos2 ip  ̂ x

^sin 2ip — 2 cos ip sin ip̂ j у

1 + a

+

=  p \  =  P !  +  p 2 ,

and the energy conservation law (5.2):

|qi|2 , |Q2 |2 p2 (л u 2 \ , P2 Л M
2mi V M  J 2m\ \  M  J2 mi 2 m 2

2m\ 2 m\ ' 2 m 2
P2 _  I P i l 2  , I P 2 I2
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5.2 T w o-P article C ollisions in th e  CM  Frame

In the center-of-mass (CM) frame (see Sec. 2.6), the elastic collision between 
particles 1 and 2 is described quite simply; the CM velocities and momenta 
are, henceforth, denoted with a prime. The simplicity of the CM collisional 
kinematics has important theoretical advantages when we investigate the 
CM collisional dynamics (Step II in Fig. 5.1) in Sec. 5.4.2.

We begin with the momentum of the center-of-mass P  =  Pi +  Р2 =  
mi их which, by momentum conservation, is a constant of motion. Note 
that we are still using the assumption that u2 =  0 (i.e., the target is at rest 
in the LAB frame). Before the collision takes place, the CM momenta of 
particles 1 and 2 are equal in magnitude but with opposite directions (see 
Fig. 5.3): Pi +  p '2 =  0. We now introduce the relations p i =  p'j + 7 P  
and Р2 =  P2 +  (1 — 7 ) P, where 7  is a dimensionless mass parameter that 
is determined as follows. First, in the limit m2 —> 00, it is clear that 
p'i =  p i and thus 7  =  0 in that limit. Hence, the ratio is 7  =  m \ / M  and 
1 — j  =  ГП2/ М . Next, since p2 =  0 in the LAB frame, we then find

P2 =  — (1 — 7 ) P  =  -  Mux =  - p i ,  (5.16)

where \i is the reduced mass of the two-particle system and f i u  =  p /(\  + o ).

Fig. 5.3 Collision kinematics in the CM frame.

After the collision, conservation of energy-momentum dictates that

q'l =  fiu (co s0 x  +  s in 0 y ) =  — q2, (5-17)
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where 0  is the scattering angle in the CM frame. Thus the particle velocities 
after the collision in the CM frame are

It is quite clear, thus, tha t the initial and final kinematic states lie on the 
same circle in CM momentum space and the single variable defining the 
outgoing two-particle state is represented by the CM scattering angle 0 .

5.3 C o n n ec tio n  b e tw e en  th e  C M  a n d  LA B  F ram es

We now establish the connection between the momenta (5.14)-(5.15) in the 
LAB frame and the momenta (5.17) in the CM frame (see Fig. 5.4). First, 
we denote the velocity of the CM as

m i +  1 +  a  ’

so th a t w = |w| =  a u / ( l  +  a) and |v2| =  w = a  |v^|.

-W

- w

Fig. 5.4 CM and LAB collision geometries.

The connection between v'x and v i is expressed as

v i =  v'i 4- w  —>
CO S0)
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so tha t

and

tan#  =  ^  , (5.18)
a  +  cos 0

Vi = \ / l  +  a 2 +  2 a  cos 0 . (5.19)
( 1 + a )

Likewise, the connection between v '2 and v 2 is expressed as

{i>2 cos tp = w (1 — cos 0 )

V‘2 sin tp =  w sin © 

so tha t tan  tp =  sin 0 /(1  — co s0 ) =  cot 0 /2 ,  which yields

tp =  i  (tt -  0 ) ,  (5.20)

and

2(XU • 0  / г 0 1Х
V 2  =  o T 5 )  s m 2 '  ( 5  2 1 )

It is interesting to note tha t Eq. (5.20) is true for all values of a = m\/rri2- 
Hence, once the recoil angle tp is known (i.e., measured), then the CM 
deflection angle is 0  =  7r — 2 tp.

5.4 S c a tte r in g  C ro ss  S ections

In the previous Section, we investigated the connection between the initial 
and final kinematic states of an elastic collision described by Steps I and III, 
respectively, introduced earlier (see Fig. 5.1). Here, the initial kinematic 
state is described in term s of the speed и of the projectile particle in the 
LAB frame (assuming tha t the target particle is a t rest), while the final 
kinematic state is described in terms of the velocity coordinates for the 
deflected projectile particle and the recoiled target particle (V2,tp)•

In the present Section, we shall investigate Step II, namely, how the 
distance of closest approach influences the deflection angles {в. tp) in the 
LAB frame and the deflection angle 0  in the CM frame.
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5.4.1 Definit ions

First, we consider for simplicity the case of a projectile particle of mass 
m  being deflected by a repulsive central-force potential U (r) > 0 whose 
center is a t rest a t the origin (i.e., a  =  0). As the projectile particle 
approaches from the right (at r — oo and 0 =  0) moving with speed it, it is 
progressively deflected until it reaches a minimum radius p a t 0 =  x  after 
which the projectile particle moves away from the repulsion center until it 
reaches r  =  oo at a deflection angle 0 =  0  and again moving with speed u.

\juu

pu
<— о

Fig. 5.5 Scattering geometry: the incoming particle is entering the interaction region 
from the right and is leaving on an asymptote after having been deflected by 0 .

Figure 5.5 shows th a t the scattering process is symmetric about the line 
of closest approach (i.e., 2 \  =  тг — 0 ) . The angle of closest approach

X =  I  (тг -  0 )  (5.22)

is a function of the distance of closest approach p, the to tal energy E,  and 
the angular momentum L l The distance p is, of course, a turning point 
(r =  0) and is the only positive root of the energy equation

f _
2m p2

where E  =  m u 2/2 is the to tal initial energy of the projectile particle.
The path of the projectile particle in Fig. 5.5 is labeled by the impact 

parameter b (the distance of closest approach in the non-interacting case: 
U =  0). A simple calculation (using r  =  — utx  + by and u  =  — их) shows 
tha t the angular momentum L =  t  z is

I  =  z - ( m r x u )  =  mub = V2rn E  b. (5.24)
lrThe sign convention for scattering by an attractive force is \  ^ ( ir+ 0 ); see Eq. (5.59) 

for an example.

E  = (5.23)



Collisions and Scattering Theory 141

I
L

It is, thus, quite clear th a t p is a function of E  = i 2/ (2mb2), m,  and b. 
The angle \  *п Fig- 5.5 is now defined as

{(■/r2) dr 
m[E — U(r)\ — (£2/ r 2)

b/p dx
, (5-25)

sj 1 -  x 2 -  2 b2 U(x/b)
where we used the substitution x = b/r to obtain the second integral, with
the definition b2 U(x/b) = U(b/x)/(2E).

Once an expression 0(6) =  n — 2 \(b)  is obtained from Eq. (5.25), we 
may invert it to obtain 6(0). We note tha t as the impact parameter b 
increases, we generally see th a t the angle of closest approach increases (see 
Fig. 5.5) and, thus, the scattering angle 0  decreases according to Eq. (5.22).

5 .4 .2  Cross Sections in  C M  and L A B  Frames

We are now ready to  discuss the likelihood of the outcome of a collision 
(for a given impact param eter b) by introducing the concept of differential 
cross section a '(0 )  in the CM frame. The infinitesimal cross section da' 
in the CM frame is defined in terms of 6(0) as da'(Q) = 2tt b(@) db(@). 
Physically, da’/dQ. measures the ratio of the number of incident particles 
per unit time scattered into a solid angle dQ,.

Using Eqs. (5.22) and (5.25), the differential cross section in the CM 
frame is defined as

a'(0) =
da’ 6(0 ) d6(0)

rf©
(5.26)

2-n sin 0  dO sin 0  
where, since the quantity db/dQ is negative, we must take its absolute value 
to  ensure tha t cr'(0) is positive. The to tal cross section in the CM frame 
is defined as

=  2tt /Jo
а'{в)  sin 0  d<3. (5.27)

The differential cross section can also be w ritten in the LAB frame in 
terms of the deflection angle

а(в) =

as
da 6(0) db{6 )

d9
(5.28)

2-n sin в de sin (
Since the infinitesimal cross section da =  da’ is the same in both frames 
(i.e., the likelihood of a collision should not depend on the choice of a frame 
of reference), we find

a(0) sin e dO =  cr^©) s i n 0 d 0 ,
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from which we obtain

„(*) =  „ '( в )  Щ  § .  (5.29)
sin 0 d0

This relation ensures tha t the to tal cross section in the LAB frame

а т =  27Г f  cr(0) sin OdO — a'T
Jo

is the same as the cross section in the CM frame (5.27). The inversion of 
Eq. (5.29) yields

■'<*> - S i I- <5-30>
which gives the differential cross section in the LAB frame cr(0) once the 
differential cross section in the CM frame cr'(0) and an explicit formula for 
0 (0) are known.

We point out that, whereas the CM differential cross section cr'(0) 
is naturally associated with theoretical calculations, the LAB differential 
cross section a(0) is naturally associated with experimental measurements. 
Hence, the transform ation (5.29) is used to translate a theoretical predic­
tion into an observable experimental cross section, while the transformation
(5.30) is used to translate experimental measurements into a format suit­
able for theoretical analysis.

We note th a t these transformations (5.29)-(5.30) rely on finding rela­
tions between the LAB deflection angle 0 and the CM deflection angle © 
given by Eq. (5.18), which can be converted into

sin (0  — 0) = a  sin#. (5.31)
Using these relations, we now show how to obtain an expression for 
Eq. (5.29) by using Eqs. (5.18) and (5.31). First, we use Eq. (5.31) to 
obtain (dO — d,0) cos(0 — 9) = a  cos 9 dO. which yields

dO a  cos 9 +  cos(0 —9) /r oo4
~d9 =  cos(0 -  в) ’ (5'32)

where cos(0 — 0) = \ / 1 — a 2 sin2 0 requires th a t a  sin# <  1. In the case 
a  <  1, the maximum deflection angle is therefore #max =  тг; in the case 
a > 1, on the other hand, #max =  arcsin(a_1).

Next, using Eqs. (5.18) and (5.31), we obtain 
sin© a  +  cos© a  +  [cos(0 — #) cos# — sin (0  — #) s in #] 
sin # cos # cos #

a  (1 — sin2 9) + cos(0 — #) cos# 
cos#

=  a  cos# +  V 1 — a 2 sin2 # . (5.33)
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Thus, by combining Eqs. (5.32) and (5.33), we find

s i n 0  d<3 [a cos# +  л /1 — a 2 sin2 9]2

\ / l  — a 2 sin2 в

2 a  cos 9 +  — ..
V 1 — a 2 sin2 9

(5.34)

Lastly, noting from Eq. (5.31) tha t the CM deflection angle is defined as

0(0) = 9  +  arcsin (a sin0),

the transformation er'(0) —> cr(9) is now complete. Similar manipulations 
yield the transformation a (9) -> <x'(0). We now show th a t the LAB-frame 
cross section a(9) are generally difficult to obtain for arbitrary a.

5.5 H a rd -S p h e re  S c a tte r in g

Explicit calculations of differential cross sections tend to  be very com­
plex for general central potentials. In this Section, we look at the simplest 
scattering problem involving the collision of a point-like particle of mass mi  
with a hard sphere of mass m 2 and radius R. The hard-sphere central-force 
potential is

b
±

Fig. 5.6 Hard-sphere scattering geometry.

OO (for r < R)
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and the collision is shown in Fig. 5.6, where we see tha t the impact param ­
eter

b = R  s inx,  (5.36)

depends simply on the angle of incidence X-
We note that, in Fig. 5.6, the angle of reflection r) is shown to be different 

from the angle of incidence x  f°r the case of arbitrary mass ratio a = 
m i / m 2- To show this, we decompose the velocities in terms of components 
perpendicular and tangential to the surface of the sphere at the point of 
impact, i.e., we respectively find

a и cos x  =  v2 — ctvi cos r] 
a и sin x  =  ot Vi sin r].

From these expressions we obtain

a и s in xtan  ту
v2 — ex. и cos x

From Fig. 5.6, we also find the deflection angle в =  тг — (x +  v) an(l the 
recoil angle ip = x- Hence, substituting Eq. (5.9), we find

tan  T] =  ^  ̂ +  ^ tan  x- (5.37)

We, therefore, easily see tha t r/ =  x  (the standard form of the Law of 
Reflection) only if a = 0 (i.e., the target particle is infinitely massive).

In the CM frame (with a  = 0), the collision is symmetric with a deflec­
tion angle x  =  \  (тг — 0 ) , so that

0
b = R  sin x  — R  cos —.

The scattering cross section (5.26) in the CM frame is

< 7 '(0 )  =
m
sin©

db(0 )
dQ

R  cos(0 /2 ) R . _  R'2

and the to tal cross section is

<j t  — 2тг f  cr'(O) sin 0  dQ — n R 2, (5.39)
Jo

i.e., the to tal cross section for the hard-sphere problem is equal to the 
effective area of the sphere.
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The scattering cross section in the LAB frame (we consider the case 
a <  1) can also be obtained from (5.38) using Eqs. (5.29) and (5.34):

1 + a 2 cos 2 6 \
"<*> =  т 2 a cos 6 +

\ / l  — a 2 sin2 1
(5.40)

The integration of this formula yields the to tal cross section

CTj1

-  * R2
-  2 R

=  7Г R

й  
i;
i;

2 a  cost

a  sin(20)

1 + a 2 cos 26 
у/ 1 — a 2 sin2 6 

(1 — a 2) sin#

sin 6 d6

a * sin

2 \ / ( l  — Q2) +  a 2 x 2 —

- 2 v  1 — o 2 sin

(1 — a 2)
a 2) + a 2 x 2

where the first integral in the second line vanishes while the substitution 
x  = cos 6 was introduced in the second and third integrals. Next, we use 
the hyperbolic-trigonometric substitution a x  =  \J 1 — a 2 sinhу in both 
remaining integrals, so tha t we find

I'Y
(Jt  =  7Г R

= R

---- J  (2 cosh2 у — l)  dy

h i :
= 7Г R 2

1
-----a
a

cosh(2y) dy

cosh Y  ■ sinh Y tt R 2 (5.41)

where Y  =  a rc s in h (a /\/l — o 2), so th a t cosh У -sinh У =  a / ( l  — a2). Thus 
the total cross section (5.41) in the LAB frame is tha t same as the total 
cross section (5.39) in the CM frame, as expected.

5.6 R u th e r fo rd  S c a tte r in g

5.6.1 Classical Ru therford Scattering

We now turn  our attention to the scattering of a charged particle of mass mi  
and charge q\ by another charged particle of mass m 2 3> m\  and charge q2 
such tha t 91 Q2 >  0 and ft — m j. This situation is described by a repulsive 
force produced by the Coulomb potential

U{r) =  * , (5.42)
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E  =  E  —  +  -  -> p2 -  2 r0p -  b2 = 0,

where к = qiq? /  (A-к  eo) >  0. The problem of the electrostatic repulsive 
interaction between a positively-charged alpha particle (i.e., the nucleus 
of a helium atom) and positively-charged nucleus of a gold atom  was first 
studied by Rutherford (Ernest Rutherford, 1871-1937) and the scattering 
cross section for this problem is known as the Rutherford cross section.

Using the definition t 2/ 2 m \  =  E b 2, the turning-point equation in this 
case is

b2 к 
~2 ~ p p

where 2 ro =  k / E  is the distance of closest approach for a head-on collision 
(i.e., 6 =  0). The physical solution for the distance of closest approach is

p = r0 + \ J r l + b 2 =  6 (e +  У н - ё 2) , (5.43)

where £ = ro/6. Note th a t the second radial solution ro — \Jrf} +  62 to the 
turning-point equation is negative and, therefore, is not allowed.

The angle x  which the distance of closest approach is reached is 
calculated from Eq. (5.25) as

f b/p dx _  f b/p _________dx_________
Y Jo л/ l  -  x 2 -  2 e x  Jo y/( 1 +  e2) -  (x +  e)2

where b2 U(x/b) = (k /2 E )x /b  = e x  was used in Eq. (5.25) and the upper 
integration boundary is

6 1
+  V T + £*.

p e + v T + lF 2

Making use of the trigonometric substitution x  =  — s +  л/1 +  £2 cosx, we 
find tha t

X =  arccos ( " I —t £ = c o tx  =  ro/b, (5.44) 
\V 1  +  e2/

which becomes 6 =  ro tanx-  Using the relation (5.22), we now find

6(0) =  ro co t(0 /2 ), (5.45)

with db(Q)/dB — — (ro/2) csc2(0 /2 ). Hence, using the definition (5.26), 
the CM Rutherford cross section becomes

CT'( 0 ) =  ------ ^ ------- =  ( -------- *-------- \  . (5 .46)
V ; 4 sin4(0 /2 )  \ 4 E  sin (0 /2 )  /

Note th a t the Rutherford scattering cross section (5.46) does not depend on 
the sign of к and is thus valid for both repulsive and attractive interactions.
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Forward scattering

Fig. 5.7 Rutherford scattering cross section.

Figure 5.7 shows that the Rutherford scattering cross section (5.46) 
becomes very large in the forward direction 0  —» 0 (where a' —> 0~4) 
while the differential cross section exhibits the hard-sphere limit

corresponding to the hard-sphere scattering problem (5.38) for a sphere of 
radius ro- Thus, the probability of backward scattering is not zero, which 
led to the development of the “planetary” model of the atom, in which the 
small positively-charged nucleus (where most of the atomic mass resides) 
is surrounded by a “cloud” of electrons. Note that the forward-scattering 
divergence of the Rutherford formula (5.46) can be eliminated by a slight 
modification of the Coulomb potential U(r).

5.6.2 Modified Rutherford Scattering

In an attempt to remove the divergence of the classical Rutherford scat­
tering cross section (5.46), we now consider the scattering of a particle of 
mass m by the modified Coulomb potential

(5.47)

k(\/r — l/R) (r < R)

(r > R)
(5.48)

where R denotes the radial distance beyond which the Coulomb repulsive 
force is set at zero. The classical Coulomb potential (5.42) is recovered in 
the limit R —> oo.
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The distance of closest approach p is the single positive root of the 
equation

E = E + к ( -  -  a 2 p2 -  2 r0 p -  b2 — 0,
P2 \P R,

where ro = k/2E and a  = \A + 2 ro/R. The positive root of this equation 
yields the distance of closest approach

p = Лг [e + yje2 + Q2 j  , (5.49)

where e = ro/b (the negative root for p is, of course, not physical). We note 
that Eq. (5.49) is a modified version of Eq. (5.43) in which a 2 is replaced 
by 1.

The angle x  at which the distance of closest approach is reached is 
calculated from Eq. (5.25) as

[ b/R dx ^ f b/p __________dx__________
*  Jo V l  -  x 2 Jb/R y/\ -  x2 -  2 e(x -b / R )

rb'p dx/J  s i ri /з y/(e2 + a 2) -  (x + £)2 ’

where b2 U(x/b) = (k/2E ) (x/b-l/R) = (ex-ro/R) was used in Eq. (5.25), 
the angle /3 is defined as /3 = arcsin(6/i?), and

b a 2
= у/e2 + ' ■ £.

p e + \/e2 + a 2

By using the trigonometric substitution x — — e+y/e2 + o? cos ip, we easily 
find the angle of closest approach

X = /3 + arccos ^ ^ + ^ 2 )  ’ 5̂'50^

where the right side is a complicated function of the impact parameter b. 
We obtain the function 6(0) by following a few simple steps. First, we 
write Eq. (5.50) as x  = P + arccos(A), where Д = (e + sin/3)/\/£2 + a 2. 
Next, we derive the pair of equations

cosx = sin(©/2) = cos/3 Д — sin/3 \/\ — Д2,

sinx = cos(0/2) = sin/3 Д + cos/3 у/1 — Д2,

from which we obtain the relation
l/n/^  sin /3 Д + cos /3 л/Т^Д2 £ sin /3 + 1cot(0/2) = ------------------------ . ■■■■■■■■ = ------------— , (5.51)

cos /ЗА — sin /3 y/l — Д2 £ cos /3
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where we used

y2 — 2 e sin (3 — sin2 /3 cos2 /31 -  Д = - & + a* £z + a* '

with a 2 = l+ ro / -R =  1 + 2 e sin/3. Lastly, we solve Eq. (5.51) for the 
impact parameter b = ro/e and we find

6(0) = ro cot(0/2) cos/3 — sin/3 = — Д cos^ ^ j _ . . , (5.52)
\Jl + Л sin2(0/2)

where /3 = arcsin(6/i?) and A = (1 + R/ro)2 — 1. We can easily verify that, 
in the limit R —> oo, we recover the classical Rutherford formula (5.45) 
from Eq. (5.52).

We are now ready to calculate the differential cross section (5.26) for the 
modified Coulomb potential (5.48). Using the impact-parameter function 
(5.52), we readily find

//n \ _  ( ! + Д) _  r j  [(\/A + 1 -  l ) 2 (1 + A)]
4 [1 + A sin2(0/2)]2 4 [1 + A sin2(0/2)]2 ’ [ ’

where we used R/ro = — l  + \/A + 1. We again recover the classical Ruther­
ford formula (5.46) from Eq. (5.53) in the limit R —> oo. The modified 
Rutherford cross section (5.53) no longer diverges as 0  -> 0, since

which scales as R4 when Д >  ro. We note that cr'(n) = (R2/4)/(1 + A), 
which yields the hard-sphere limit (5.47): —> Tq/4 when R —> oo.

Lastly, the total cross section (5.27) for the modified Coulomb potential
(5.48) is also finite:

<tt = ^ R 2
(1 + A) dx

2 J 0 [1 + A sin2(0/2 )]2 2 J —i (1 “b A/2 Ax/2)2

= ’,R2( i  + 1) l  $  = 'д2' (5-54)

where the result follows from simple integration (after using the substitution 
x = cos0). It is interesting to note that the total cross section for a 
scattering problem that involves a central-force potential that is confined 
within a radius R is от = k R2, i.e., the same as for the hard-sphere 
potential (5.35).
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5.7 Soft-Sphere Scattering

We now proceed with another example of scattering by a confined central- 
force potential, by considering a modified version of the hard-sphere scatter­
ing problem. We introduce the attractive potential considered in Sec. 4.5:

( — Uo (for r < R)
U(r) =  ̂ (5.55)

[  0 for r  > R
where the constant Uq denotes the depth of the attractive potential well 
and the condition E > /2 pR2 involves a single turning point. We denote 
/3 the angle at which the incoming particle enters the soft-sphere potential 
(see Fig. 5.8), and thus the impact parameter b of the incoming particle is 
b = R sin /3. For the case of a repulsive soft-sphere (see problem 10), we 
replace — Uq with Uq in Eq. (5.55).

Fig. 5.8 Soft-sphere scattering geometry.

The particle enters the soft-sphere potential region (r < R ) and reaches 
a distance of closest approach p, defined from the turning-point equation

E = - U q + E ^  ->• p = k _  sin/3, (5.56) 
P v/1 + Uo/E n

where
n = л/ l + Uo/E = b/p > 1 (5.57)

denotes the index of refraction of the attractive soft-sphere potential. From 
Fig. 5.8, we note that an optical analogy helps us determine that, through 
Snell’s law, we find
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where the transmission angle a  is given in terms of the incident angle /3 
and the CM scattering angle — 0  is defined as 0  = 2 (/3 — a).

The distance of closest approach is reached at the angle
bdr

J  P r \/n2r 2 — b2

, b \ (  b= p + arccos —— — arccos — 
\nR J \np

= 0

= /3 + arccos = 2 + (5.59)

where we used Eq. (5.57) in the second line, and the sign convention for \ = 
| (-7Г + 0 ) corresponds to the case of scattering by an attractive potential. 
Using Snell’s Law (5.58), the impact parameter 6(0) can be expressed as

6(0) = nR sin /̂3(6) — ®

which can be solved for 6(0) as
= n R ^ e / 2} (560)

y/l + n 2 —2 n cos(0/2)
Its derivative with respect to 0  yields

db nR [n cos(0/2) — 1] [n — cos(0/2)] 
dQ 2 [1 + n2 — 2 n cos(0/2)]3/2 

and the scattering cross section (5.26) in the CM frame is

VPN = n2R2 4̂  cos(0 /2) cos(0/2)]| , ,
У ’ 4 cos(0/2) [1 + n2 — 2n cos(0/2)]2 ’ 1 ;

Note that, on the one hand, when /3 = 0, we find \ — 7r/2 and 0 min = 0 
while, on the other hand, when /3 = 7t/2, we find 6 = R and

1 = n sin ^  -  n cos(0max/2),

which yields the maximum angle

©max = 2 arccos (?1-1 ) .

Moreover, when 0  = 0 т аХ) we find that db/dQ vanishes and, therefore, the 
differential cross section vanishes (т'(0тах) = 0, while at 0  = 0, we find
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Fig. 5.9 Soft-sphere scattering cross section in the soft-sphere limit (n —> 1) and the 
hard-sphere limit (n Э- 1); here, note that ct(0) =  n2/(n — l ) 2.

Figure 5.9 shows the soft-sphere scattering cross section ct(0) = 
(4/i?2) cr'(O) as a function of 0  for four cases: n = (1.1,1.15) in the soft- 
sphere limit (n — 1 1) and n = (10,20,50,1000) in the hard-sphere limit 
(n 1). We clearly see the strong forward-scattering behavior as n -* 1 
(or Uo —¥ 0) in the soft-sphere limit and the hard-sphere limit a  —> 1 as 
n —» oo. We note that, using the substitution x = n cos 0/2, the total 
scattering cross section associated with Eq. (5.61)

CTrf = 2?r [  
Jo

а'(в) sin 0d©  = 2wR2

dy

Jr
(x — 1) (n2 — x) dx
(1 + 2x)2

, n 2 - l
f ( n 2 - l ) 2  1

J ( n - l ) 2 У2
7Г R (5.62)

where we used the substitution x = \ (n2 +1 — y). Note that the total cross 
section for the attractive soft-sphere potential (5.55) is independent of the 
index of refraction n and is equal to the hard-sphere total cross section 
(5.39), as expected for scattering by a confined central-force potential [see 
Eq. (5.54)].

5.8 Elastic Scattering by a Hard Surface

We now generalize the hard-sphere scattering problem by considering scat­
tering by a smooth hard surface of revolution2 p(z) with maximal radial 
extent R (see Fig. 5.10). Here, a particle of mass m, initially traveling along

2Adapted from J. L. Brun and A. F. Pacheco, Euro. J. Phys. 26, 747 (2005).
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Fig. 5.10 Scattering by a hard surface p(z).

the z-axis with velocity и with an impact parameter b < R, collides with 
the hard surface and is scattered with deflection angle ©. The particle hits 
the surface (assumed to be infinitely massive) at a distance b = p(z) from 
its axis of symmetry and the angle of incidence в = it/2 —ip (measured from 
the normal to the surface) is defined in terms of the complementary angle 
tp, where c o s = [1 + (p')2]-1/2. Since the deflection angle 0  is defined in 
terms of ip as 0  =  tv — 2 9  =  2 ip, we find

tan tp = p'(z)
0

t a n - . (5.63)

By using the identity b(0) = p(z), we can solve for z((->) [or , and we
can thus calculate the differential cross section (5.26).

First, we use the identity
- ldb dz

dQ P dQ
(Ю
dz

where, by inverting Eq. (5.63), we obtain Q(z) = 2 arctan(/o'), which yields

dQ 2 p"

dz

so that we obtain
db
dQ

[i + (p')2Y

[i + (p ')2]2 н

Lastly, using the relation

sin© = 2 cosy? sin ip = 2
tan ip 
sec2 ip

2 pf
Л 2 1  ’
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Table 5.1 Summary of Chapter 5: Collisions and Scattering Theory.

Topic Equation

Two-particle Collision in LAB Frame (5.9)-(5.11)
Two-particle Collision in CM Frame (5.16)-(5.17)
Connection between LAB and CM Frames (5.18)-(5.21)
Angle of Closest Approach (5.25)
Scattering Cross Section in CM Frame (5.26)
Scattering Cross Section in LAB Frame (5.28)-(5.30)
Total Scattering Cross Section (5.27)
Hard-sphere Problem (5.38)-(5.41)
Classical Rutherford Problem (5.46)
Modified Rutherford Problem (5.53)-(5.54)
Soft-sphere Problem (5.61)-(5.62)
Scattering by Hard Surface (5.64)

we find the differential scattering cross section

r(0 (z)) = K z)
sin 0 (z )

Ш

db(z)

sec

dQ(z) 
0 
2 ’

4 | p" [1 + (p')2Y

(5.64)

where к =  Ip^l/fl + (p7)2]3/2 denotes the Frenet-Serret curvature of the 
curve p(z) in the (p, z)-plane.

For example, we revisit the hard-sphere scattering problem studied in 
Sec. 5.5, with p(z) = \/R2 — z2 for — R < z < 0. Here, the Frenet-Serret 
curvature is simply к = 1/i? and

0
= ~ P tan — P

so that the differential cross section (5.64) yields the standard hard-sphere 
result (5.38):

0  R2
T '

Note that it is possible to invert the relation p(z) —>■ cr(0(z)), given by 
Eq. (5.64), to obtain the shape of a surface from its scattering data <x(0) —> 
p(z(Q)).

r(Q{z))
R2 0  
—— cos — 
4 2 sec — = 

2

5.9 Sum m ary

Chapter 5 investigated the kinematics and dynamics of the collision in­
volving two particles that interact through a central-force potential field.
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In planar collision kinematics, the conservation laws of energy and momen­
tum are not sufficient to determine a unique outgoing set of momenta. With 
the help of a single post-collision measurement (in the LAB frame or the 
CM frame), however, a unique set of post-collision momenta are obtained. 
The collision dynamics was shown to be easily expressed in the CM frame 
in terms of a distance and an angle of closest approach, which yielded a 
differential cross section that described the likelihood of an outgoing mo­
mentum state. Table 5.1 presents a summary of the important topics of 
Chapter 5.

5.10 Problem s

1. A particle of mass mi traveling in a straight line at velocity v\ has a 
head-on elastic collision with a particle of mass m2 traveling at velocity
— V2 (along the same line but in the opposite direction). Show that after 
the collision, the masses mi and m2 are assumed to travel at velocities — v[ 
and v'2 defined as

, (1 — a )v i + 2 v2 , , 2a « i -  (1 -  a )v 2v\ = -------rf------r------ and v2 = -------------- r------- ,
1 (1 + a ) 2 (1 + a)

where a  = mi/m2.

2. Consider the transfer of momentum from a particle of mass Ml = M, 
initially traveling to the right at velocity u, toward another of the same mass 
Mr = Л-f, mediated by a third particle of mass m < M. The particles are 
arranged in a straight line, with the lighter particle placed in the middle 
(initially at rest), so that the collision process begins when the heavier 
particle Ml collides head-on with the lighter particle m, which then collides 
with the third particle Mr (also initially at rest). Show that the fraction 
of the initial momentum that is finally transferred to particle Mr from Ml 
is ur = (15/16) и for a  = m/M = 1/3 > \/5 — 2.

[Hint: For a  > л/5 — 2, only two collisions between m and Mr are involved; 
for a  = \/5 — 2, Ml is at rest after the second collision.]

3. (a) Using Eq. (5.3) and the conservation laws of energy and momentum, 
solve for vi (u, #;/?), where /3 = m2/mi.

(b) Discuss the number of physical solutions for vi(u,0',/3) for /3 < 1 and
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0 > i .

(c) For /3 < 1, show that physical solutions for v\ (u,9',(3) exist for 9 < 
arcsin(/3) = 9max.

4.  Show that the momentum transfer Др'г = q'x — p'j of the projectile 
particle in the CM frame has a magnitude

|Api| = 2/ш sin j ,

where /и, и, and 0  are the reduced mass, initial projectile LAB speed, and 
CM scattering angle, respectively.

5. Show that the differential cross section <t'(0) for the elastic scattering of 
a particle of mass m from the repulsive central-force potential U(r) = k/r2 
with a fixed force-center at r = 0 (or an infinitely massive target particle) 
is

„ 'i'r 'i = 271-2 k ~ Q )
m u2 [0 (2tt — 0 ) ]2 s in 0 ’

where и is the speed of the incoming projectile particle at r  = oo.
{-jf_0  ̂ 2 fc

H in t: Show that b(0) = ■■ -  ---- , where Гп = -----
V 7 V2n e - e 2 ° m u2

6. By using the relations tan# = sin0/(o; + cos0) and/or sin(© — 9) = 
a  sin#, where a  = mi/rn-2, show that the relation between the differential 
cross section in the CM frame, cr'((-)), and the differential cross section in 
the LAB frame, cr(9), is

1 + a  cos 0a '(0 )  = <j (0)
(1+ 2  a  cos 0  + a 2)3/2

7. Consider the scattering of a particle of mass m by the localized repulsive 
central potential

( — kr2/2 (r < R)
U(r) = i

[O (r > R)
where the radius R denotes the range of the interaction.

(a) Show that for a particle of energy E > 0 moving towards the center 
of attraction with impact parameter b — R sin/3, the distance of closest
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approach p  for this problem is

0  =  J f  ( « - 1 ) =  '"here e -  V 1 +  Т Г
(b) Show that the angle x  at closest approach is

K1+e>/2 dx
X = IJ sir 0  y / l - x 2 +  (e2 -  1)/ x

1 / 2 sin2 /3 — 1= p + -  arccos

(c) Using the relation % = rj (7r — 0 ) between x  and the CM scattering 
angle © (since the scattering involves a repulsive potential), show that

cos 2/3
cos(2 /3 + 0 ) > 1.

8 . Consider the scattering of a particle of mass m by the potential

U(r) = ----- ------- j ,
r  2 m r

where 0 < /3 < 1 is a constant.

(a) Show that the distance of closest approach is

p = r0 + yjr% + b2 7 2,

where b = £/\/2m E  is the impact parameter, 2 ro = k/E is the distance of 
closest approach for a head-on collision, and 7 2 s  1 — /3.

(b) Show that the angle of closest approach 
Гь/Р dx 1

/Jo arccos
\/l — 7 2ж2 — 2 e ryx 7 V VT+

where e = ro/(by), yields

b = — tan (7 \) = — tan ^7 ^  ~ 7  j  
7 7 V 2 2

We can easily recover the Rutherford expression (5.45) when 7 = 1  (i.e.,
/3 = 0).

(c) Show that the differential cross section (5.26) for this problem is
r o ta n (7 x ) sec2 (7 x)

ст(0) = -------2 Т м ё ) -------’
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from which we recover the classical Rutherford formula (5.46) when 7  = 1 .

(d) While the function <r'(0) diverges as 0  -* 0, verify that the total cross 
section is

a?  — 27Г [  cr'(O) sin (O ) dO = t a n 2 (7 7 r/ 2 ) ,
Jo 7

which is finite for 7  < 1, but diverges as 7  -»  1.

9*. Consider the scattering of a particle by the repulsive potential3

U(r) = ±

(a) Show that the distance of closest approach is

/l + e / е+ 1 Л 1/Л< I 4 к
P =  b \ l ~  = • Wh“ e '  = V 1 + Ebi ~

and the distance of closest approach for a head-on collision (b  =  0, e —> 00) 

is ro = (k/E)1/4.

(b) Show that the angle of closest approach is

rb'p dx
- fJo
-/Jo

\J 1 — x2 — (к/Eb4) x4 

b/p dx
Jo (b2/p2 — x2) [(k/Eb4) x1 + p2/b2]

Using the substitution x = {b/p) sin ф, show that x  is expressed as 
Ь2 Г /2 d<p 2 / 1 — e£_ Г
P2 Jo 1 + e\J 1 + (k/Ep4) sin2 ф (  ̂+ e)

where k/(Ep4) = (e — l)/(e + 1) and К (то) = d^/vT^rrTsin2^  
denotes the complete elliptic integral of the first kind (defined for m < 1).

(c) The CM scattering angle 0  is now parameterized by e (see Fig. 5.11):
' 1 — e N

(i + e) V1 + e /
where 0(1) = 0  and 0(oo) = n. Using the relation [14]

0(e) = 7Г — —----- - К

dK(m) Е(то) — (1 — to) K(to) 
dm 2 то (1 — to)

3See also Section 7.7 of Classical Mechanics with Applications by P. W. Johnson (World
Scientific, 2010).
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show that 
d0(e)

Fig. 5.11 Scattering angle ©(e) as a function of the parameter e.

4e
de (e2 — 1) (e + 1)

and 
db db/de

К

dQ dQ / de = -  o ( e + l) К

1 — e 
1 + e

1 — e 
1 + e

2 e2

1 + e
2 e2

l + e\ /1 - e  
1 + e

1 — e 
1 + e

- l

(d) Show that the differential cross section is

2 7 Г С г '(0 )  S in ©  d ©  =  7Г 7*q
2 2e de

which diverges at e = 1 (i.e., 0  = 0).

( e 2 _  1 )3 / 2 ’

10. Consider elastic scattering by a hard ellipsoid p(z) = po \Л — (z/zq)2 
(— z0 < z < 0), where p0 = -го \/l — e2 < z0 and 0 < e < 1 denotes the 
eccentricity of the ellipse in the (p, z)-plane.

(a) Show that the differential scattering cross section is expressed as

J t c *  -  V -  e2>
[ ’ ~ 4 (1 — e2 cos2 f )

(b) Show that the total cross section <tt is

ат = 27Г f  cr'(Q) sin 0  еЮ = тг p2 
Jo

— — 1 ) In
1 — e2

(c) Show that, when e -> 0, we recover the hard-sphere result a r  = 7rp2.
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11. An electron is moving to the right (from — сю), with speed и and 
impact parameter b, and collides with another electron initially at rest. 
According to collision kinematics in the LAB frame, the deflection angle 9 
of the projectile electron and the recoil angle ip of the target electron satisfy 
the identity (5.13): tan# = cot <p. According collision kinematics in the CM 
frame, on the other hand, we can use the relation (5.20): <p = тг/2 — 0/2, 
to obtain cot<p = tan(0/2).

By making use of the classical Rutherford formula b = ro cot (0/2), 
where ro = k/E for the case of equal-mass Coulomb scattering (we ignore 
all quantum effects, of course), show that the speeds v\ (for the deflected 
electron) and t>2 (for the recoil electron) after the collision are

and tan 9 = cot ip = ro/b.

12. Consider the scattering problem associated with a repulsive soft-sphere 
potential, where — Uq is replaced with Uo in Eq. (5.55). By replacing n = 
(l + Uo/E)^ with n = (l — Uo/E)~%, show that Eq. (5.60) is replaced with 
6(0) = 7i—1 R sin(/3(6) + 0/2), or

13. Using Eqs. (5.63)-(5.64), show that the elastic scattering of a particle by 
the hard surface p{z) = 2\/Rz, where R is a constant, yields the Rutherford 
formula

i>i = и s in y  =

\Jl + n2 — 2n cos(0/2) ’

while Snell’s law (5.58) is replaced with

a = R2/ sin4 — 
' 2

where z = R cot2 ®.



Chapter 6

Motion in a Non-Inertial Frame

A reference frame is said to be an inertial frame if the motion of particles 
in that frame is subject only to physical forces (e.g., forces that are deriv­
able from a physical potential U such that m x  = — V£/). The Principle 
of Galilean Relativity (Sec. 2.5.3) states that the laws of physics are the 
same in all inertial frames and that all reference frames moving at constant 
velocity with respect to an inertial frame are also inertial frames. Hence, 
physical accelerations are identical in all inertial frames.

In contrast, a reference frame is said to be non-inertial if the motion of 
particles in that frame of reference violates the Principle of Galilean Rela­
tivity. Such non-inertial frames include all rotating frames and accelerated 
reference frames.

6.1 T im e D erivatives in R o tatin g  Fram es

To investigate the relationship between inertial and non-inertial frames, we 
consider the time derivative of an arbitrary vector A (t) in two reference 
frames. The first reference frame is called the fixed (inertial) frame and 
is expressed in terms of the Cartesian coordinates r ' = (x\ y', z'). The 
second reference frame is called the rotating (non-inertial) frame and is 
expressed in terms of the Cartesian coordinates r = (x ,y ,z ). In Fig. 6.1, 
the rotating frame shares the same origin as the fixed frame (we remove 
this condition later) and the rotation angular velocity из of the rotating 
frame (with respect to the rotating frame) has components (wx,ujy,ujz).

Since observations can also be made in a rotating frame of reference, we 
decompose the vector A in terms of components Ai in the rotating frame 
(with unit vectors x1). Thus, A  = Аг x' (using the summation rule) and

161
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Fig. 6.1 Rotating and fixed frames.

the time derivative of A as observed in the fixed frame is

^  = + A —  (6 П
dt dt 1 dt

The interpretation of the first term is that of the time derivative of A 
as observed in the rotating frame (where the unit vectors x® are constant) 
while the second term involves the time-dependence of the relation between 
the fixed and rotating frames. By construction, the vector dSF/dt is simply 
expressed in terms of the angular velocity ш of the rotating frame as

§ = « X * t (6.2)

which automatically guarantees that x® • dx1 /dt = 0. Hence, the second 
term in Eq. (6.1) becomes

dx1
A i—  = ш X A, (6.3)

and the time derivative of an arbitrary rotating-frame vector A in a fixed 
frame is, therefore, expressed as

dA\ ( dA\
a ) ,  = Ы )г + “xA- (6-4)

Here, (d/dt)f denotes the time derivative as observed in the fixed (/) frame 
while (d/dt)r denotes the time derivative as observed in the rotating (r)
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frame. An important application of this formula relates to the time deriva­
tive of the rotation angular velocity u> itself, where one can easily see that

f dw\ _  ■ _  f d u \
\ t t ) f  - ш ~ и * Л ’

since the second term in Eq. (6.4) vanishes for A = ш. The time derivative 
of uj is, therefore, the same in both frames of reference and is denoted из in 
what follows.

6.2 A ccelerations in R o ta tin g  Frames

We now consider the general case of a rotating frame and fixed frame being 
related by translation and rotation. The position of a point P  according 
to the fixed frame of reference is labeled r ' , while the position of the same 
point according to the rotating frame of reference is labeled r, and

r' = R  + r, (6.5)

where R  denotes the position of the origin of the rotating frame (e.g., the 
center of mass) according to the fixed frame. Since the velocity of the point 
P  involves the rate of change of position, we must now be careful in defining 
which time-derivative operator, (d/dt)f or (d/dt)r , is used.

The velocities of point P  as observed in the fixed and rotating frames 
are defined as

v '  -  ( § ) , and v ’- = ( ! ) r ’ (6 6)

respectively. Using Eq. (6.4), the relation between the fixed-frame and 
rotating-frame velocities is expressed as

v/ = R + ( ^ J  = R  + vr + w x r ,  (6.7)

where R  denotes the translation velocity of the rotating-frame origin (as 
observed in the fixed frame).

Using Eq. (6.7), we are now in a position to evaluate expressions for 
the acceleration of point P  as observed in the fixed and rotating frames of 
reference, which are defined as

= ( i ? ) ,  ar  = ( i r ) '  (6-8)
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respectively. Hence, using Eq. (6.7), we find
dvr \ ( dw\ f  dr

a / - R  + {~dFJf  + x r  + w x  \dt

= R  + (ar + uj  X v r ) + ш  X г + u j  x (vr + ш  x r ) ,
or

a  / = R  + a r + 2 w X v r + w X r  + w x ( w X r ) ,  (6.9)

where R  denotes the translational acceleration of the rotating-frame origin 
(as observed in the fixed frame of reference). We can write an expression 
for the acceleration of point P  as observed in the rotating frame as

a r -  ^af  — R^ — шХ ( w X r )  — 2 u x v r — w x r ,  (6.10)

which represents the sum of the net inertial acceleration (a j — R ), the cen­
trifugal acceleration —  u j  X (uj  X r )  and the Coriolis acceleration -  2 w X v r 
(see Fig. 6.2) and an angular acceleration term — ш X r  that depends ex­
plicitly on the time dependence of the rotation angular velocity из. The 
centrifugal acceleration acf =  —  u j  X (uj X г) =  uj2 r  —  (a; • r)  u> (which is 
directed outwardly from the rotation axis) represents a familiar non-inertial 
effect in physics.

A less familiar non-inertial effect is the Coriolis acceleration a c 0 = 
- 2 u X r  discovered in 1831 by Gaspard Gustave de Coriolis (1792-1843). 
Figure 6.2 shows that an object falling inwardly (toward Earth), for exam­
ple, also experiences an eastward acceleration. It is also quite clear that, 
since the Coriolis acceleration does not change the kinetic energy of a par­
ticle (i.e., r  • aco = 0), it only changes the direction of the particle’s motion 
(if r is not directed along u>).

6.3 Lagrangian Formulation o f N on-inertial M otion

We can recover the expression (6.10) for the acceleration in a rotating (non- 
inertial) frame from a Lagrangian formulation as follows. The Lagrangian 
for a particle of mass m moving in a non-inertial rotating frame (with its 
origin coinciding with the fixed-frame origin) in the presence of the potential 
U(r) is expressed as

L(r, r) = у  |r + w X r|2 -  U(r) (6-11)
m. ,. ,2 / , rn . ,2 . .= — |r| + m r  • (u> X r) + — \u X r| -  U(r),
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- 0 3  X V

- Юл у
v ж

— ►
-£ 0 X  V

Fig. 6.2 Coriolis acceleration for a falling object on Earth (the shaded area shows the 
night-side of Earth and the rotation angular velocity is pointing out of the page).

where u: is the angular velocity vector. Using the Lagrangian (6.11), we 
now derive the general Euler-Lagrange equations for r .  First, we derive an 
expression for the canonical momentum

so that the Euler-Lagrange equations are
m r — — Vf7(r) — m [ ш X r  + 2 ш X г + u> X (w x  r)  ]. (6.13)

Here, the potential energy term generates the fixed-frame acceleration, 
- V U  = rn a f , and, thus, the Euler-Lagrange equation (6.13) yields 
Eq. (6.10) for a r = r.

It is interesting to note that if we adopt cylindrical coordinates (p, ip, z), 
with the г -axis aligned along the angular velocity u> vector (i.e., w — u> z), 
the vector r  + ш X r becomes

p  =  -7Г7- =  m  (r  +  u X r ) , (6 .12)

so that the time derivative of the canonical momentum is

Next, we derive the generalized force 
d L
—  = — VU(r) — m  [ u> x r + ш X (и X r) ]

=  m ( r  +  o > X r  +  u X r ) .

Г + Ш Х Г  =  p p  +  p ( ( p  +  Uj ) i p  +  ZZ,
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and the Lagrangian (6.11) becomes

L(r ,r )  = j  [p2 + p2 (ф + и )2 + i 2 U{p,<p,z). (6.14)

Hence, if the potential U = U(p, z) is independent of the azimuthal angle 
(p, then the quantity т р 2(ф + u) is a constant of the motion.

6.4 M otion R e la tiv e  to  E arth

We can now apply the acceleration (6.10) to the important case of the fixed 
frame of reference having its origin at the center of Earth (point O' in 
Fig. 6.3) and the rotating frame of reference having its origin at latitude 
A and longitude ф (point О in Fig. 6.3). We note that the rotation of the 
Earth is now represented as ф = ui (with ш = 0).

C_y со

Fig. 6.3 Earth frame: x =  southward (northern hemisphere), у = eastward, and z = 
(radially) upward.

We arrange the (ж, у, z)-axes of the rotating frame so that the 2-axis 
is a continuation of the position vector R  of the rotating-frame origin, 
i.e., R  = Rz in the rotating frame (where R = 6378 km is the radius of 
a spherical Earth). When expressed in terms of the fixed-frame latitude 
angle A and the azimuthal angle ф, the unit vector z is

z = cos A (cos фу! + sintAy') + sinAz'.
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Likewise, we choose the ж-axis to be tangent to a great circle passing through 
the North and South poles, so that

x = — —y = sin A (cos ipx! + sinV’ y') — cosAz',О A
i.e., x points southward. Lastly, the y-axis is chosen such that

dz.
у = z x  x = — sirn/’ x' + cos ip y1 = sec A — ,

i.e., у points eastward.
We now consider the acceleration of a point P  as observed in the rotating 

frame О by writing Eq. (6.10) as
/72 r  tt /7r*
—  = g 0 - R - w x ( « X r ) - 2 u x - .  (6.15)

The first term represents the pure gravitational acceleration due to the 
gravitational pull of the Earth on point P  (as observed in the fixed frame 
located at Earth’s center)

G M  'So = -  r ’ (6Л6)

where r ' = R  + r is the position of point P  in the fixed frame and r is the 
location of P  in the rotating frame. When expressed in terms of rotating- 
frame spherical coordinates (г, 9, <p):

r  — r  [ sin в (cos tpx + sin ip y) + cos Oz],

the fixed-frame position r ' is written as

r ' = (R + r  cos в) z + r  sin в (cos </? x + sin <p y ) ,

and thus

|r'|3 = (Д2 + 2 R r cos в + r 2)3/2 .

The pure gravitational acceleration (6.16) is, therefore, expressed in the 
rotating frame of the Earth as

(1 + e cos 9) z + e sin 9 (cos ip x + sin <p y)
go = -  go (6.17)

(1 + 2e cos9 + e2)3/2 
= — go [(1 — 2 e cos 9) z + e sin 9 (cos (p x + sin ip y) + • • • ],

where g0 = GM/R2 = 9.789 m/s2 and e = г/й <  1 (e.g., e ~ 10-6 at 
r ~ 10 m).

The angular velocity in the fixed frame is ш = ш ?, where 
2-7Г rad ___ __ 5

24 x 3600 sec
= 7.27 x 10~5 rad/s
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is the angular rotation speed of Earth about its axis. In the rotating frame, 
we find

u> = cj (sinAz — cosAx). (6.18)

Because the position vector R  rotates with the origin of the rotating frame, 
its time derivatives yield

R  = w x R  = (w ft cos A) y, 
R = ш X R/ = ш X (ш X R) = — w2 ft cos A (cosAz + sin Ax),

and thus the centrifugal acceleration due to R  is

— R = — ш X ( w x R )  = ago cos A (cos A z + sin A x ) , (6.19)

where uj2 f t  =  0.0337 m/s2 can be expressed in terms of the pure gravita­
tional acceleration go as u>2R = ago, where a  — 3.4 x 10~3 is the nor­
malized centrifugal acceleration. We now define the physical gravitational 
acceleration as

g = go -  Ш x (ш x  R)
= ~ 9o [ ( l  — a  cos2 A)z — (a cos A sin A) x ] , (6.20)

where terms of order e = r/R, have been neglected (since e -C a). For ex­
ample, a plumb line experiences a small angular deviation 5(A) (southward) 
from the true vertical given as

gx a  sin 2A
tan 5(A) =

|gz | (2 — a) + a  cos 2A ’

This function exhibits a maximum at a latitude A defined as cos2A
— a/(2 — a ) , so that

a  sin2A a  _o
tan<5 = ---------------------- = = — T - ~ 1.7 x 10 ,

(2 — a) + a  cos 2A 2 \/l — a
or

5.86 arcmin at A ~ f — + —) rad = 45.05°. 
\4 4/

6.4.1 Coriolis-corrected Projectile M otion

We now return to Eq. (6.15), which is written to lowest order in e and a  as
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where g denotes the effective (constant) gravitational acceleration and the 
Coriolis acceleration is

^  __ __

- 2 w X  -  = — 2w [ (x sin A + z cos А) у — у (sin A x + cos A z) ]. 
dt

Thus, we find the three components of Eq. (6.21) written explicitly as 

x = 2 uj sin A у
у = — 2 ш (sin A x + cos A z) > . (6.22)
z = — g + 2 w cos A у )

An interesting comment can be made concerning horizontal motion (z = 
z = 0) of a floating object at sea in the presence of the Coriolis acceleration 
(.x ,y ) = 2 o j sin A (y, — x). By calculating the Frenet-Serret curvature [see 
Eq. (A.25)] for this planar motion, we find

yx  — x y  2 o j .
К = TTo i ' 2^/2 ’(xz у ) ' V

where v is a constant. Hence, the Coriolis acceleration generates an inertia 
circle with a radius equal to u/(2u>sin A). For example, a particle drifting 
horizontally at sea, with speed 10 cm/s at latitude A = 45°, performs an 
inertia circle with a radius of approximately 1 km.

A first integration of Eq. (6.22) yields

i  = 2w sin A y + Vx
y = — 2 cj(sinA x + cosAz) + Vy > , (6.23)
i  = — gt + 2w cos A у + Vz J

where (Vx,Vy,Vz) are constants defined from initial conditions (x'o; yo■ zo) 
and (хо,уо,2о):

Vx = x0 -  2 w sin А г/о 
Vy = Vo + 2w (sinA x0 + cosAzo) (6-24)
Vx = io — 2 uj cos A yo

A second integration of Eq. (6.23) yields
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which can also be rewritten as

x(t) = x0 + Vx t + 6x(t)
y{t) = Уо + Vy t + Sy(t) } , (6.25)
z(t) = z0 + Vzt -  | g t2 + Sz(t)

where the Coriolis drifts (Sx, Sy, 5z) are

Sx(t) = 2 uj sin A ^ y0 t + T^Vyt2 + J $у{т) dr ^ (6.26)

Sy(t) = -  2 из sin A  ̂x0 t +  ̂ Vx t2 + J  6 x ( t )  dr  ̂ (6.27)

-  2 w cos A ^ z0 t + ~ Vz t2 -  i  g t3 + J  5z(r)dT^J

6z(t) — 2 uj c o s X  ^ y0 t +  i  Vy t2 +  J  Sy(r) dr  ̂ . (6.28)

Note that each Coriolis drift can be expressed as an infinite series in powers 
of из and that all Coriolis effects vanish when из = 0 (i.e., a fixed Earth).

We can investigate Coriolis effects in the problem of projectile motion 
by writing the equations (6.25) to first order in Coriolis effects (i.e., first 
order in из):

x(t) = x0 + ±o t + y0 (из sin A) t2, (6.29)

y(t) = Уо + Уо t -  ±o (из sin A) t 2 -  из cos A (z0 12 -  | t3 ĵ , (6.30)

z(t) = z0 + zot -  i  g t2 + y0 {uj cos A) t2. (6.31)

These equations can be expressed in vector form as

r = r 0 + v 0 t + ~ g t2 -  изХ ^v0 12 + (6-32)

where g = — д z, vo = io  x + уо у + io ?  denotes the initial velocity, and из 
is defined in Eq. (6.18) as a function of A.

6.4 .2 Prenet-Serret-C oriolis Formulas

Using the Frenet-Serret formulas presented in Sec. A.3 of App. A, we now 
derive the Frenet-Serret formulation of the equation (6.32) for Coriolis- 
corrected projectile motion, where the velocity r, acceleration r, and jerk r
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are

r = ( v 0 +  g t )  -  2 ш х  (v o t  +  g t 2/2) , (6.33)
f = g -  2 w x  (v0 +gi)>  (6.34)
r  = —2u>Xg = 2 g uj cos Ay,  (6.35)

where the Coriolis jerk (6.35) is seen to be eastward, when Eq. (6.18) is 
used. We now wish to use Eqs. (6.33)-(6.35) to calculate the Frenet-Serret 
curvature

|r X r| . .к = i . ,v- (6.36)
lr l

and the Frenet-Serret torsion
_  r - ( f x f )  _  ( г хг ) - г

к2 |r|6 |r X f  I2  ̂ '

for the Coriolis-corrected equations for projectile motion (6.32).
First, we note that, in the absence of Coriolis effects (i.e., uj = 0), the 

initial velocity vo and the gravitational acceleration g  define a constant 
plane of motion (i.e., the perpendicular vector v x g  =  v o X g i s a  constant 
of motion) and, thus, projectile motion in the absence of Coriolis effects 
corresponds to planar (two-dimensional) motion. In this planar case, with 
r  = (г>о cos в t)x+  (vo sin 0 t — gt2/2) z, the Frenet-Serret curvature (6.36) 
is

K(f\ = lv o x el = (9/vo) cosg /fi48x
I vo + g^l3 [cos2 в + (sin0 -  gt/v o)2]3/2

The curvature (6.38) has a minimum /tmin = (<]/vo ) cos В at t, = 0 and 
t = 2 (vo/g) sin в (when the projectile is on the ground at z = 0 ) and a 
maximum Kmax = (g/vq) sec20 at t = (щ/д) sin0 (when the projectile 
reaches its maximum height). For a planar curve, however, the Frenet- 
Serret torsion (6.37) is zero since the Coriolis jerk (6.35) vanishes in the 
absence of Coriolis effects.

Next, in the presence of Coriolis effects (uj ф  0), Eqs. (6.33)-(6.34) yield

г X r  = v0 X (g — 2u> X v0) + (v0£ + g t2/2) X r,
|r|2 ~ |v0 + g^|2 -  v0 t2 X r,

where we used the Coriolis jerk (6.35). Hence, the Frenet-Serret curvature
(6.36) is weakly modified by Coriolis effects. The Frenet-Serret torsion
(6.37), on the other hand, is
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to lowest order in Coriolis effects (i.e., we neglected terms of order oj2 and 
higher). If we now introduce the initial velocity conditions

vo vo sin6q (cos(/Jqx + sin<po y )  + cosOq z

which are expressed in terms of spherical coordinates (vo,0o,<Po), we find 
v0 X g = vog (cost/?o У -  sin ip0 x), with |v0 X g| =  v0g s in0O- and thus the 
Frenet-Serret Coriolis torsion is r  ~  — 2 ( uj/ v q )  cos ipo  / sin Oq.

6.4.3 Free-Fall Problem Revisited

To demonstrate the importance of the Coriolis effects in describing motion 
relative to Earth, we consider the simple free-fall problem, where

(xo,yo,zo) = (0,0, h) and (±o,i/o,zo) = (0 ,0,0).

Substituting these initial conditions into Eqs. (6.29)-(6.31), we obtain

x(t) = 0, (6.40)

y(t) = | ("  cos A) f3, (6.41)

z(t) = h ~ \ 9t2- (6.42)

Hence, a free-falling object starting from rest at height h touches the ground 
z(T) = 0 after a time T = \J‘2h/g, after which time the object has drifted 
eastward by a distance of

У(т ) = f  (wcosA)T3 = i  uj cos A \ ——■3 3 у g

This eastward Coriolis drift is maximum at the equator (A = 0). At a 
height of 100 m and latitude 45°, for example, we find an eastward drift of
15.5 mm, which is easily measurable.

6 .4 .4 Foucault Pendulum

In 1851, Jean Bernard Leon Foucault (1819-1868) was able to demonstrate, 
in a classic experiment demonstrating Earth’s rotation, the role played by 
the Coriolis acceleration in his investigations of the motion of a pendulum 
(of length t  and mass m) in the rotating frame of the Earth. His analysis 
showed that, because of the Coriolis acceleration associated with the rota­
tion of the Earth, the motion of the pendulum exhibits a precession motion 
whose period depends on the latitude at which the pendulum is located.
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Fig. 6.4 Plane of oscillation of the Foucault pendulum (in the absence of Coriolis effects) 
spanned by the unit vectors ?  and 9.

The equation of motion for the pendulum is given as

where a/ = g + T/m is the net fixed-frame acceleration of the pendulum 
expressed in terms of the gravitational acceleration g and the string tension 
T (see Fig. 6.4). Note that the vectors g and T span a plane П in which the 
pendulum moves in the absence of the Coriolis acceleration — 2ш X r. Using 
spherical coordinates (г, в, ф) in the rotating frame and placing the origin
О of the pendulum system at its pivot point (see Fig. 6.4), the position of 
the pendulum bob is

r  = £ [ sin# ( s i n x  4- cosy>y) — cos0z] = £г(в,ф). (6.44) 

From this definition, we construct the unit vectors в and ф as

Note that, whereas the unit vectors r  and в lie on the plane П, the unit 
vector ф is perpendicular to it and, thus, the equation of motion of the

r  - a f  — 2 u> X r, (6.43)

(6.45)
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pendulum perpendicular to the plane П is
r  • ф  =  — 2 (ш  X r )  • ф , (6.46)

where we used the fact that ф  • а/ = 0. The pendulum velocity is obtained 
from Eq. (6.44) as

r = (.(во  + ф  sin# ф ^  , (6-47)
so that the azimuthal component of the Coriolis acceleration is

— 2 ( ы х г ) ’ у  = 2 (.и 6 (sin A cos # + cos A sin # sin ip).
If the length £ of the pendulum is large, the angular deviation # of the 
pendulum can be small enough that sin # <C 1 and cos 9 ~ 1 and, thus, the 
azimuthal component of the Coriolis acceleration is approximately (ignoring 
# sin# <C # cos# ~ #)

—  2 (uj  X r) • ф  ^  2 £ (uj sin A) #. (6.48)
Next, the azimuthal component of the pendulum acceleration is 

r • ф  —  £ ( ф  sin# +  2 в ф  cos#^ ,

which, for small angular deviations (# <  1) and assuming that ф  = 0 (to 
be verified later), yields

r • ф  ~ 2 £ ( ф )  9. (6.49)
By combining these expressions into Eq. (6.46), we obtain an expression for 
the precession angular frequency of the Foucault pendulum

ф  = uj sin A (6.50)
as a function of latitude A. As expected, the constant precession motion 
is clockwise in the Northern Hemisphere and reaches a maximum at the 
North Pole (A = 90°). Note that the precession period of the Foucault 
pendulum is (1 day/sin A) so that the period is 1.41 days at a latitude of 
45° or 2 days at a latitude of 30°.

The more traditional approach to describing the precession motion of 
the Foucault pendulum makes use of Cartesian coordinates (x ,y ,z ). The 
motion of the Foucault pendulum in the (x, ?/)-plane is described in terms 
of Eqs. (6.43) as

1 + ^ *  = 2ш »п Л » 1 
у + uJq у 2 uj sin A x J 

where ujq — T/m£ ~ g/£ and z ~ 0 if (. is very large. Figure 6.5 shows the 
numerical solution of Eqs. (6.51) for the Foucault pendulum starting from 
rest at (xo,yo) = (0,1) with 2 (uj/ujq) sin A = 0.05 at A = 45°. Figure 6.6 
shows that, over a finite period of time, the pendulum motion progressively 
moves from the East-West axis to the North-South axis.
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E

Fig. 6.5 Numerical solution of the Foucault-pendulum equations (6.51). The precession 
motion is clockwise and the initial plane of oscillation is vertical (East-West axis).

East South

Fig. 6.6 Projection of the Foucault pendulum along East-West and North-South direc­
tions. The initial plane of oscillation is along the East-West axis.

6.5 Sum m ary

Chapter 6 studied accelerated motion in a rotating frame, where non- 
inertial effects due to centrifugal acceleration and the Coriolis acceleration 
are included. The inclusion of first-order Coriolis corrections in the equa­
tions of projectile motion yielded a non-vanishing Frenet-Serret torsion that 
caused the projectile motion to become non-planar. The Coriolis accelera­
tion associated with Earth’s rotation was also shown to play a crucial role 
in explaining the precession of the Foucault pendulum. Table 6.1 presents
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Table 6.1 Summary of Chapter 6: Motion in a Non-Inertial Frame.

Topic Equation

Time Derivative in a Rotating Frame (6.4)
Acceleration in a Rotating Frame (6.10)
Lagrangian in a Rotating Frame (6.11)
Coriolis-corrected Projectile Motion (6.32)
Foucault-pendulum Precession (6.50)

a summary of the important topics of Chapter 6.

6.6 Problem s

1. (a) Consider the case involving motion in a rotating frame on the (x , y)- 
plane perpendicular to the angular velocity vector ш = ujz with the poten­
tial energy

u (r ) = \ k (z2 + v2) ■

Using the Euler-Lagrange equations (6.13), derive the equations of motion 
for x and y.

(b) By using the equations of motion derived in Part (a), show that the 
canonical angular momentum £ = z • (r x  p) is a constant of the motion.

2. If a particle is projected vertically upward to a height h above a point 
on the Earth’s surface at a northern latitude Л, show that it strikes the 
ground at a point

to the west. (Neglect air resistance, and consider only small vertical 
heights.)

3. For the potential

U( r ,r )  = V(r) + c r - r x r ,

where V(r) denotes an arbitrary central potential and a  denotes an ar­
bitrary constant vector, derive the Euler-Lagrange equations of motion in
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terms of spherical coordinates.

4. The Lagrangian for the Foucault-pendulum equations (6.51) is

1 UJ2
L(x,y;x,y) = -  (x2 + y 2) -----(х2 + У2) + wsinA ( x y - x y ) .

(a) By using the polar transformation

x(t) = p(t) sin ip(t) and y(t) = p(t) cos ip(t), 

derive the new Lagrangian L(p; p, ф).

(b) Since the new Lagrangian Ь(р-,р,ф) is independent of tp, derive an 
expression for the conserved momentum pv = dL/dip and find the Routhian 
R(p, p-,pp) and the Routh-Euler-Lagrange equation for p.

5. We define the complex-valued function q = у + i x = I sin 9 e*v , so that 
Eq. (6.51) becomes

q + ui^q — 2io jsm \q  —  0 .

(a) Insert the eigenfunction q(t) = p ехр(гШ) into this equation and find 
that the solution for the eigenfrequency fl is

Cl = ui sin A ± \Ju>2 sin2 A + Uq, 

so that the eigenfunction is

q = p ехр(гш sin Xt) sin ^\Juj2 sin2 A + uJq t

(b) Verify that

p sin y\Ju2 sin2 A + uJq = £ sin0 ~ £ 9(t),

and

ip(t) = (uj sin A) t, 

from which we recover the Foucault pendulum precession frequency (6.50).

6. The equations of motion for a sphere of mass m traveling in air with 
velocity v  in a constant gravitational field g are

dtw
m  — = m g  + p u jx v  — (p v + ' y w ) ,  (6.52)
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<----------
Velocity v

Magnus force

Fig. 6.7 Magnus force acting on a spinning sphere (with spin axis directed out of the 
page) moving with velocity v.

where the second term is the Magnus force (see Fig. 6.7), and the last two 
terms represent the effects of linear and quadratic air resistance.

The air-resistance coefficients for a sphere of diameter D are /3 = 1.6 x 
10-4  x D and 7  = 0.25 x D2 in SI units. The Magnus coefficient for a 
sphere of diameter D traveling in air (with density 1.168 kg/m3 at 25 °C 
and 1 atm) is ц = (7т2/8 ) 1.168 x D3. Previous studies have shown that 
the torque experienced by the sphere during its trajectory is negligible and, 
thus, the angular velocity ш = шш is treated as constant in Eq. (6.52).

(a) Show that the Magnus force is energy-conserving (i.e., it does no work 
on the sphere) and, thus, its sole purpose is to change the direction of 
motion of the sphere.

(b) For a sphere of diameter D = 0.07 m and mass m = 0.145 kg (e.g., a 
baseball) spinning at lj = 30 rev/sec and traveling horizontally at, v = 44 
m/s, compare the magnitudes of the Magnus force (assume that w_Lv) and 
the linear and quadratic air-resistance drag forces with the sphere’s weight.

7. To analyze the three-dimensional motion of a baseball described by 
Eq. (6.52), we use Cartesian coordinates (x ,y ,z ) with the origin located 
at the pitcher’s mound, the x-axis is directed toward home-plate (located 
approximately 18 m away), the у-axis is directed toward first base, and 
the z-axis is directed upward (i.e., g = —gz). The standard pitches in 
the arsenal of a baseball pitcher are the fast-ball (a) = — y), the curve-ball
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(ш = y), and the slider (Q = z).

(a) In general, we may write the rotation unit vector ш for fast-balls, curve- 
balls, and sliders in terms of an angle ф in the (г/, z)-plane as u> = cos ф у + 
sin ф z, where ф = ж for a fast-ball, ф = -к/2 for a slider, and ф = 0 
for a curve-ball. Find the general expression for the Magnus-force vector 
component ш X v  for these standard pitches.

(b) For a fast-ball and a curve-ball, i.e., the front end of the baseball is ro­
tating upward (downward) for a fast-ball (curve-ball), determine the direc­
tion of the Magnus-force vector component ш X v  and discuss qualitatively 
which ball appears to rise or sink. In addition, if the fast-ball (curve-ball) is 
initially released horizontally (vo = vo x )  , discuss how its downward motion 
under the action of gravity ( i  < 0) causes it to accelerate (decelerate) along 
the x-axis under the action of the Magnus force.

(c) Discuss qualitatively the dominant Magnus-force effect on a slider.





Chapter 7

Rigid Body Motion

So far in this textbook, objects have been considered as point-like particles. 
In the present Chapter, we consider objects known as rigid bodies defined 
as non-deformable discrete collections of massive particles or continuous 
mass distributions. The inertial properties of such objects are described 
not only in terms of their masses (i.e., their translational inertia) but also 
in terms of how their masses are distributed about their instantaneous axis 
of rotation (i.e., their rotational inertia).

7.1 Inertia Tensor o f a Rigid Body

The motion of a rigid body is described in terms of six degrees of freedom. 
Three degrees of freedom are associated with the translational motion of 
the center of mass of the rigid body, and three degrees of freedom are 
associated with the rotational motion about the center of mass. Two of 
these rotational degrees of freedom are associated with the rotation of an 
arbitrary point P about the center of mass O, while the third rotational 
degree of freedom is associated with the rotation of a third point Q about 
the axis defined by the line OP. Hence, the rotational inertia is described 
in terms of a 3 x 3 matrix known as the inertia tensor.

7 .1 .1  Discrete Particle Distribution

We begin our description of rigid body motion by considering the case of a 
rigid discrete particle distribution in which the inter-particle distances are 
constant. The position of each particle a  (= 1, • • • , N) as measured from a

181
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fixed laboratory (LAB) frame (using primed coordinates) is

Г д  =  R  +  Г а ,

where R  = (ma/M)r'a is the position of the center of mass (CM) in 
the LAB and r a is the position of the ath  particle in the CM frame, with

Е а  rna = M Л
> ■ (7-1)

Е а  Ш« Г« -  0 J
Using Eq. (6.7), the velocity of particle a  in the LAB frame is

Vq = R  + w x r m (7.2)

where ш is the angular velocity vector associated with the rotation of the 
particle distribution about an axis of rotation which passes through the 
CM, the velocity v a = r a = 0 for each particle of a discrete rigid (non- 
deformable) body, and R  is the CM velocity in the LAB frame. The total 
linear momentum in the LAB frame is equal to the momentum of the center 
of mass since

P ' = ^ 2  m« va = M R  + шХ I ^  mara J = M R ,
a \ a /

i.e., the total momentum of a rigid body in its CM frame is zero.
Next, the total angular momentum in the LAB frame is expressed as

L' = ^ 2  m a  X vjj = M R  X R  + ^ 2  m a r Q X (ш X rQ) , (7.3)
a  a

and the kinetic energy of particle a  (with mass ma) in the LAB frame is 

K'a — K l 2 = ( W 2 + 2 R -w  X rQ + |w X r a |2)  .

The total kinetic energy K' = J2a K'a of the particle distribution is thus

K> = у  IR-I2 + ~ ( X !  m“ (w ' r « )2| j ’ (7-4)

where we used Eq. (7.1).
Looking at Eqs. (7.3) and (7.4), we introduce the inertia tensor of the 

particle distribution calculated in the CM frame:1

I = ^  ma (r2a l  -  r a r Q) , (7.5)

1 We use the dyadic notation a b = a* x* x7 to denote a 3 x 3 matrix constructed 
out of two 3-dimensional vectors a and b. Thus the z, j-component of a b  is simply 
(a b )ij =  ai bji and the transpose of a b  is (a b )T = b a .
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where 1 denotes the unit tensor (i.e., i  = xx + yy + zz in Cartesian coor­
dinates). In terms of the inertia tensor (7.5), the angular momentum of a 
rigid body in the CM frame and its rotational kinetic energy are

The inertia tensor (7.5) can also be represented as a matrix

/ m„. (n2 4- z2 \ — m.~ (x~n~ 1 — m.„ (x~z~) \

where the symmetry property of the inertia tensor (P l = P :' ) is readily 
apparent.

7.1.2 Parallel-A xes Theorem

A translation of the origin from which the inertia tensor (7.5) is calculated 
leads to a different inertia tensor. Let Qa denote the position of particle a  
in a new frame of reference and let p = va — Qa be the displacement from 
the old origin to the new origin. The new inertia tensor

(7.6)

\ - m a (zaxa ) -  ma (zaya ) ma (ж2 + y\) /

Q

can be expressed as

J  = Y  ma (p2 1 -  pp) + ^  mQ (r2 1 -  r a r„)

Using Eq. (7.1), we obtain the Parallel-Axes Theorem: 

J  = M (p2 I  -  pp) + 1 . (7.7)

Hence, once the inertia tensor (7.5) is calculated in the CM frame, it can 
be calculated anywhere else using Eq. (7.7).
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Fig. 7.1 Continuous distribution of mass.

7.1.3 Continuous Partic le  D istribution

For a continuous particle distribution the CM inertia tensor (7.5) becomes

I = I dm (r2 1 -  r r ) , (7.8)

where dm(r) = p(r) d3r  is the infinitesimal mass element at point r, with 
mass density p(r).

Consider, for example, the case of a uniform cube of mass M  and volume 
b3, with dm = (M/b3) dxdydz. The inertia tensor (7.8) in the LAB frame 
(with the origin placed at one of its corners) has the components

rb rb rbM f  f  f
Jxx = -Jp J  dx J  dy J  dz ■ (у2 + z2)

nb pb nb
/ dx dy dz 

Jo Jo Jo

M Ь -- Jyy — J z

xy  — — -  Mb J y z

and thus the inertia matrix for the uniform cube is

Mb2
12

(  8
- 3  - 3 \

- 3 8 - 3

1 - 3 - 3  8 j

(7.9)

when the origin is chosen as one of the cube’s corners. On the other hand, 
the inertia tensor calculated in the CM frame (computed with the axes
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parallel to the axes of the cube) has the components

M  ,6/2 ,6/2 ,6/2
I x x  = T n  / dx dy dz ■ (j/2 + z 2)

0 . / - 6 / 2  J - 6 / 2  7 - 6 / 26 / 2  J - b / 2

M b2

v ~ b3

M ГЬ/2 /-b/2 /*6/2
/ dx dy

J-b /2 J -b /2 J -b /2
dz ■ x y

— 0 -- /yz -- Izxi

and thus the CM inertia matrix for the cube is

/1 0 °\
Mb2

I =
6

0 1 0

Vo 0 1 /

(7.10)

The displacement vector p from the CM point (6/2,6/2,6/2) to the corner 
(0,0,0) of the cube is given as

p = -  \ (6x + 6y + 6z),

so that p2 = 362/4. By using the Parallel-Axis Theorem (7.7), the inertia 
tensor

(  2

M (p2 1 -  pp) = M b 2

-1 - 1\

- 1  2 - 1

\ - l  - 1  2 /

is added to the CM inertia tensor (7.10) and yields the inertia tensor (7.9).

7.1 .4 Principal Axes o f Inertia

In general, the CM inertia tensor I can be transformed into a diagonal 
tensor with components given by the eigenvalues h , h ,  and I3 of the inertia 
tensor. These components (known as principal moments of inertia) are the 
three roots of the cubic polynomial

I3 -  Tr(I) I 2 + Ad(I)7 -  Det(I) = 0, (7.11)
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obtained from Det(I — / 1) = 0, with coefficients 
Tr(I) = 711 + I22 + I33,

Ad(I) = adn + ad22 + ad33,

Det(I) = I 11 adn -  /12ad12 + /13ad13,
where ad^ is the determinant of the two-by-two matrix obtained from I 
by removing the ith-row and jth-column from the inertia matrix I. (See 
Appendix A for additional details on Linear Algebra.)

Each principal moment of inertia /, represents the moment of inertia 
calculated about the principal axis of inertia with unit vector e,. Since 
the inertia tensor I is real and symmetric, the eigenvalues (I\, /2. /3) are 
necessarily real and the eigenvectors (е1 ,е2,ез) form a new orthonormal 
frame of reference known as the Body frame. The unit vectors (е1 ,в2,ез) 
are related by a sequence of rotations to the Cartesian CM unit vectors 
(x1, x2. x3) by the relation

where Rij are components of the rotation matrix R. Note that a general 
rotation matrix has the form

where the unit vector n defines the axis of rotation about which an angular 
rotation of angle a  is performed according to the right-hand-rule. The gen­
eral rotation matrix (7.13) has the following properties. First, the matrix 
R n ( ~ c > 0  i s  the inverse matrix of R n ( c t : ) ,  i.e., R „ ( — a )  • R n ( a )  =  1 .  Next, 
the determinant of R n ( a )  is +1 and the eigenvalues of R „ , ( a )  are +1 and 
ехр(±га) (see Appendix A.4 for further details).

A rigid body can be classified into one of three different categories (see 
Table 7.1) depending on its principal moments of inertia (I\, /2, /3)- By 
denoting as I' the diagonal inertia tensor calculated in the body frame of 
reference (along the principal axes), we find

where R 1 denotes the transpose of R, i.e., (RT)y  = Rji- In the body frame, 
the inertia tensor is, therefore, expressed in dyadic form as

(7.12)

R„(a) = nn + c o s a ( l  — nn) — s i n a n x l ,  (7-13)

(7.14)

I; — h  ei ei + /2 ег e2 + I3  ез ез (7.15)
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Table 7.1 Three Categories of Rigid Bodies.

Rigid Body Principal Moments 
of Inertia

Example

Asymmetric Top h  > h  > 1з textbook
Symmetric Top h  = I2 > h oblate spheroid (pancake)

h =  h  < h prolate spheroid (football)
Spherical Top h = h  = h cube

the angular velocity is defined as

ш = ei + u)2 e2 + U3 B3, (7.16)

and the rotational kinetic energy (7.6) is

K'rot = \ W • I' • W = \ (h  w? + I2 u l  + h  w32) • (7.17)

z

Fig. 7.2 Dumbbell with total mass M  = 2 m and length 2 6.

Before proceeding further, we consider the example of a dumbbell com­
posed of a massless rod of total length 2 b (see Fig. 7.2), with equal point 
masses m placed at the ends of the rod, with positions

r± = ±fo[sin#(cos<£>x + sin^y) + co s0z].

The center of mass is obviously located at the origin and the CM inertia



188 An Introduction to Lagrangian Mechanics

tensor is I = 2 m b2 1, where

/ 1 — cos2 (p sin2 9 — cos ip sin ip sin2 9 — cos ip cos 9 sin 9 \

I = — cos ip sin ip sin2 9 1 — sin2 ip sin2 9 — sin ip cos 9 sin 9

After some tedious algebra, we find Tr(I) = 4 mb2, Ad(I) = (2mb2)2,

1з = 0 and the double root I\ = I2 = 2 mb2, which makes the dumbbell a 
symmetric top (see Table 7.1).

The root / з= 0  clearly indicates that one of the three principal axes is 
the axis of symmetry of the dumbbell (ез = r). The other two principal 
axes are located on the plane perpendicular to the symmetry axis (i.e., 
ei = 9  and e2 = ф). From these principal axes, we easily recover the 
rotation matrix

where we used the notation (7.13). This two-step rotation describes, first, 
the rotation of the (x, y)-axes by an azimuthal angle ip about the z-axis, 
and, second, a rotation of the (x', z' = z)-axes by a polar angle — 9 about 
the y'-axis. Hence, the new inertia tensor V = R • I • RT becomes

Indeed, the principal moment of inertia about the r-axis is zero, while the 
principal moments of inertia about the perpendicular 0-axis and v>axis are 
equally given as 2 mb2.

and Det(I) = 0, and thus the cubic polynomial (7.11) has the single root

2 mb2 0 
0 2 mb2 
0 0

(7.19)

and the principal axes of inertia for the dumbbell (Fig.7.2) are

ei = cos 9 (cos<px + s in yy ) — sin0z = 9,
?2 = — sinipx + costpy = <p,
ед = sin 0 (cos ip x + sin ipy) + cos 0 z = r.
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Two representations exist for the description of rigid-body dynamics. In 
the Eulerian representation, the three components of the angular velocity 
u> are treated as three independent dynamical variables (representing the 
three degrees of freedom associated with rotation dynamics). We note 
that Eulerian rigid-body dynamics does not represent a regular Lagrangian 
system (as discussed below), while its Hamiltonian formulation is given in 
terms of a noncanonical Poisson-bracket structure (see problem 8). Eulerian 
rigid-body dynamics describes rotations in the body frame of reference (i.e., 
the rigid-body’s center-of-mass frame).

In the Lagrangian representation of rigid-body dynamics, the La­
grangian function is expressed in terms of three Eulerian angles, represent­
ing the configuration of the rotating right body in space (i.e., in the LAB 
frame of reference) and their velocities. Lagrangian rigid-body dynamics 
describes rotations in the space (LAB) frame of reference (this representa­
tion is discussed in Sec. 7.3).

7.2 Eulerian R igid-Body Dynamics

7.2.1 Euler Equations

- I = + w x L  = N,

The time derivative of the angular momentum L = I • ш in the fixed (LAB) 
frame is given as

'dL\ 
d t ) }

where N represents the external torque applied to the system (in the LAB 
frame) and (dL/dt)r denotes the rate of change of L in the rotating frame. 
By choosing the body frame as the rotating frame, we find

dL\
d t ) ,

) = I -а» = (/1 w1)ei + (I2 Ш2) ег + (^з^з)ез, (7.20)

while

u; X L = — ei

e3

w2 Ш3 (h  — I3)

UJ 1 UJ2 { h  —  h )

-  e2 (I3 — I\

(7.21)

Thus the time evolution of the angular momentum in the body frame of 
reference is described in terms of

I\ uj\ — u>2 шз {I2 — I 3 )  —  N 1

12 0J2 — W3 wi (I3 — Ii) = N2  ̂ , (7.22)
13 йз — u>i u>2 (Ii — /2) = N3
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which are known as the Euler equations for rigid-body motion. We note 
that the rate of change of the rotational kinetic energy (7.6) is expressed as

^ = w . I. ( i  = w . ( - w x L  + N ) = N . w .  (7.23)

Hence, in the absence of external torque (N = 0), not only is the kinetic en­
ergy conserved but so is the squared angular momentum L2 = E i= i №ш«)2> 
as can be verified from Eq. (7.22).

Lastly, in the absence of torque (N = 0), the free-top Euler equations
are

I\ = W2W3 (I2 — I3 ) 'j
12 й>2 = UJ3 UJ1 (I3 — Ii) > . (7.24)
13 ^ 3  =  u>2 (h  — I2 ) J

While these equations possess the free-top Lagrangian

L = (7.25)

the free-top Euler equations (7.24) cannot be obtained from an uncon­
strained variational principle S f  Ldt = 0 with arbitrary variations Su>. 
Instead, by using the constrained variation2

Suj = £ + ш X £, (7.26)

where £ is an arbitrary vector that vanishes at the end points of the action 
integral (a dot refers to a time derivative in the rotating frame), we find

5L = 6u- L = (£ + и  X С) • L

= i t ( * - L) ~ (Tt + wxL)-
When this expression is now inserted in the variational principle S J  Ldt = 
0, we now readily obtain dL/dt + ш X L — 0, from which Eqs. (7.24) are 
obtained.

7.2.2 Euler Equations fo r  a Torque-free Sym m etric Top

As an application of the Euler equations (7.22), we consider the case of 
the dynamics of a torque-free (or simply free) symmetric top, for which 
N = 0 and /1 = I2 = I± ф /3 = /у, i.e., I± denotes the moment of inertia

2D. D. Holm, J. E. Marsden, and T. S. Ratiu, The EulerPoincare Equations and 
Semidirect Products with Applications to Continuum Theories, Advances in Mathemat­
ics 137 , 1-81 (1998).
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associated with rotations that are perpendicular to the axis of symmetry 
(along the ез-axis) and /ц denotes the moment of inertia associated with 
rotations about the axis of symmetry of the top. Accordingly, the Euler 
equations (7.22) become

IX OJi = W2W3 (JL -  I||) 'j
/1 Ш2 =Ш3 Ш1 (J|| -  I±) >. (7.27)
I\\ W3 = 0 J

The last Euler equation states that if /ц ф 0, we have 0J3 = 0, i.e., и>з is a 
constant of motion.

7.2.2.1 Body-frame Precession and Body Cone

Next, using the constant component 0J3, we define the precession frequency

wP = ws» ( J -  -  1 J , (7-28)
J±

which may be positive (/ц > I±) or negative (/ц < I±). The first two Euler 
equations in Eq. (7.27) become

w i(t) = — ujp uj2{t) and d)2(t) = WpWi(i), (7.29)
whose general solutions are

w i(t) = u i  cos(uipt + фо) and W2(t) = uj± sin(wpi + фо), (7.30) 
where wj_ is a constant amplitude of oscillation and фо is an initial phase 
associated with initial conditions for (t) and W2 (t).

Since ш3 and (t) + (t) are constant, then the magnitude,
u; = \[u\ +W3, of the angular velocity ш is also a constant. Thus, the 
angle between ш and ез:

(?)a = arccosI 

is constant, with
0J3 = и cos (x and w i = ш sin a . (7.32)

The w-dynamics simply involves a constant rotation with frequency 0J3 and 
a precession motion of ш about the ез-axis with a precession frequency lop. 
We, therefore, readily find the precession equation for us in the body frame:

du> 
dt

As a result of this precession motion, the vector из spans a body cone, 
with half-angle (7.31), and precesses with precession frequency oop > 0 if 
i|| > 1.1 (for a pancake-shaped or oblate-spheroid symmetric top) or uip < 0 
if /|j < I± (for a cigar-shaped or prolate-spheroid symmetric top).

—  = ujp e3 ХШ. (7.33)
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Fig. 7.3 Body cone in the Body frame of a free symmetric top, where the perpendicular 
angular velocity oiq =  [cos(wpi)'ei + sin(wpt) ег] precesses about the ез-axis.

7.2.2.2 Examples: Oblate and Prolate Spheroids

We now consider two examples of a symmetric top. Our first example is 
Earth, which (to a good approximation) is an oblate spheroid (i.e., it is 
flattened at the poles), with moments of inertia (see problem 7)

1 2I± = -  M  (a2 + c2) and 7ц = -  M o 2 > Jj_, (7-34)
5 5

where 2 с = 12,714 km is the Pole-to-Pole distance and 2 a = 12,756 km is
the equatorial diameter, so that

I\\ a2 -  c2•J- -  1 = —------ = 0.003298... = e.
1± az + &•

The precession frequency (7.28) of the rotation axis of Earth is, therefore, 
ujp = e wз, where w3 = 2n rad/day is the rotation frequency of the Earth. 
The precession motion repeats itself every e-1 days or 303 days; the actual 
period is 430 days and the difference is partially due to the non-rigidity of 
Earth (i.e., it is not a solid of uniform density) and the fact that the Earth 
is not a pure oblate spheroid. A slower precession motion of approximately 
26,000 years is introduced by the combined gravitational effect of the Sun 
and the Moon on one hand, and the fact that the Earth’s rotation axis is 
at an angle 23.5° to the Ecliptic plane.

Our second example is the American football, which can be approx­
imated as a prolate spheroid, with the long axis 2c ~ 28 cm and the
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short axis 2a ~ 17 cm. The moments of inertia (7.34) yield the ratio 
I\\/Ix = 1 + (172 — 282)/(172 + 282) ~ 0.539 for the case of a football that 
is a solid object with uniform mass density p. The experimental value3 of 
the ratio (I\\/I±)exp — 0.604 shows the effect of mass distribution near the 
surface of the football (which is not a uniform solid) with thickness much 
less than the dimensions a and c.

7.2.2.3 Space-frame Precession and Space Cone

The fact that a symmetric top is torque-free implies that its rotational 
kinetic energy К  is constant [see Eq. (7.23)] and, hence, L • из = 2 К  is 
constant. Since L itself is constant in magnitude and direction in the LAB 
(or fixed) frame, we may choose the z-axis to be along L (i.e., L = £z). The 
vector ш, therefore, moves around 2-axis along a space cone with half-angle 
/3 (i.e., L ■ uj = £uj cos/3), and obeys the precession equation in the space 
frame:

duj
—  = f l x u ,  (7.35)dt

where the precession angular velocity is = fiz , and the precession fre­
quency Cl is defined below in Eq. (7.37).

In an analysis that will be carried out in Sec. 7.3.4, we will show that 
the space-cone half-angle is /3 = \90 — a\, where the body-cone half-angle a  
is defined in Eq. (7.31) and 0o = arccos(z-e3) is the angle between the z- 
axis (defined by L) and the e;j-axis (about which the body-frame precession 
takes place; see Fig. 7.3). Since a  and /3 are both constant angles, then 
so is the angle 9q\ it turns out that the unit vector ез precesses about the 
angular momentum L at the same frequency fI as the angular velocity uj. 
Next, we will show that the relation between the body-cone angle a  and 
the angle 90 is

tan#o = ( I ta n a i (7.36)
V-'ll J

which shows that a  < 90 for /ц < I± (prolate spheroid) and a  > 90 
for /ц > Ij_ (oblate spheroid). Lastly, we will show that the space-cone 
precession frequency is = ф, where

ф = uj yjsin2 a  + (I\\/I±)2 cos2 a  = ujyJ\ + [(I\\/I±)2 -  1] cos2 a . (7.37)

We will also show in Sec. 7.3.4 that ф = £/Ix, where £ = |L| = 
(cjj +uj2) + I2 uj2 denotes the magnitude of the angular momentum.

3See P. J. Brancazio, Am. J. Phys. 55, 415 (1987).
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7.2.3 Euler Equations fo r  a Free Asym m etric Top

We now return to the general case of an asymmetric top (I\ > I2 > /3) 
moving under torque-free conditions. Here, the ordering I\ > I2 > /3 
assumes that the principal axes corresponding to (Ii,I2,I 3) have lengths 
(a, b, c) so that a < b < c. For example, for an asymmetric rectangular box 
(of mass M ), we find

h  = Y  (c2 + b2) > h  = f  (=2 + «2) > h  = f  (b2 + a2).

Hence, rotation of an asymmetric top about its shortest axis (a) yields the 
largest moment of inertia (I\), while rotation about its intermediate (b) 
and longest (c) axes yield the intermediate moment of inertia (I2) and the 
smallest moment of inertia ( I 3 ).

Taking into account this ordering of moments of inertia, Euler’s equa­
tions (7.24) are written as

I\ d>i = U)2 W3 (I2 — I3) 'j
12 il)2 = — LO3 UJ1 (I\ — I3) > . (7.38)
13 W3 = bJ\ UJ2 (I\ — I2) J

As previously mentioned, the torque-free Euler equations (7.38) have two 
constants of the motion: the conservation laws of kinetic energy

к = -  ( i i  Wj + /2^2 + h Чз) — 2 ^°^0’ (7.39)

and (squared) angular momentum

f  = I\u\ + l\ a>2 + I\*32 = (7-40)

which are expressed in terms of the parameters

70 = f2/(2 k) and По = 2 к /t. (7.41)

Figure 7.4 shows the numerical solution of the Euler equations (7.38) 
subject to the initial condition (^10,^ 20,^ 30) = (2 , 0 , 1) for different values 
of the ratio I1/I3 > 1 for a fixed ratio I2/I3 > 1. Note that in the limit
11 = I2 (corresponding to a symmetric top), the top evolves solely on 
the (u»i,W2)-plane (top face in Fig. 7.4) at constant 0J3. As I\ increases 
from /2, the asymmetric top exhibits doubly-periodic behavior in the full 
three-dimensional w-space until the motion becomes restricted again to the 
(w2 ,шз)-р1апе (right side face in Fig. 7.4) in the limit I\ I2. In going 
from the case I\ = I2 to the case I\ 'S> h- it is clear that I\ must cross
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Fig. 7.4 Orbits of an asymmetric top with initial condition (шю, W20><̂30) =  (2 ,0 ,1)  
for different values of the ratio I1/I3 > 1 for a fixed ratio I2 /I3 > 1.

a critical value that separates the two types of periodic (bounded) motion 
(see Fig. 7.4). The separatrix solution is defined by the critical value

-  T  + + h ( h ~ h ) ( w $ ■ (742)
at constant I2 and I3 and given initial conditions (wio, Шгсь̂ ’зо)- This 
critical value is obtained by substituting io = I2 in Eqs. (7.39)-(7.40), 
which become

! Ii I2 uj Jo + I312 

If Ujfo + Jfwfo
or i f  — I\ I2 + 13 (I3 — I2)(^’30/uj 10)2 = 0, whose positive solution for Д is 
given by Eq. (7.42).

We note that the existence of two constants of the motion, Eqs. (7.39) 
and (7.40), for the three Euler equations (7.38) means that we may express 
the Euler equations in terms of a single equation for u>2:

W2(r) = n 2(Io) у(т), (7.43)
and introduce the following definitions

w i ( t )  =  -  f l i ( J o )  \ A  -  У2 ( т ) ,  (7.44)
ш3(т) = П3{Io) л/1 -  т у 2(т), (7.45)
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where t(Iq) = [(7i — /3) fij f i.3 / (I2 Г2г)] t is the dimensionless time, the 
amplitudes are

а д )  =

^ 2(^0) = fto 

^з(^о) = «0

l lo ( I o - h )  
II (II -  /3 )

ho (/0 -  /3) 
/2  ( / 2  -  /3 )

h o  ( h  -  io)
/3  ( /1  -  /3 )

and the modulus m in Eq. (7.45) is defined as

m(/o) ~ L - / 3) ( / i - / o ) '  (7-46)
By substituting Eqs. (7.43)-(7.45) into the equation for ш2 in Eq. (7.38), 
we obtain

v'(t) = \ J(l ~ У2(т )) ( i  -  m(Io) J/2( r ) ) ,

whose solution у(т) = sn(r|m), subject to the initial condition y(0 ) = 0 , is 
expressed in terms of the Jacobi elliptic function sn(r|m) [see Eqs. (B.2)- 
(B.3)]. By requiring that the modulus (7.46) be positive, the parameter 
Io introduced in Eqs. (7.39)-(7.40) must satisfy I3 < Iq < I\ and, hence,
0 < m(Io) < 1 for /3 < /о < I2 and m(Io) > 1 for I2 < Io < h  (with 
m —»• 00 as Io —»• h)-

The solutions for w i(r), uj2(t) and w3(r), subject to the initial condi­
tions (^10,^ 20; ̂ зо) = (— S^i, 0 , Г2з), can thus be expressed in terms of the 
Jacobi elliptic functions (sn, cn, dn) as [13]

(uji, lu2, w3) = ( - f i i c n r ,  Cl2 sn t, f ^ d n r ) .  (7.47)
Lastly, we note that the separatrix (sp) solution of the free asymmetric top 
(see Fig. 7.4) corresponds to Iq = h  (see problem 3), for Eq. (7.47) yields

o;[sp) (t) = -  t s e c h ( f t S  t) , (7.48)

tanh(fiof), (7-49)

4 SP)(t) = у  /з _  /з) sech(Qo t), (7.50)

where = fio\/(ii — I2) {I2 — /3)//3 I\ and we used the limiting forms 
(B.10) of the Jacobi elliptic functions.
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In this Section, we develop a Lagrangian formulation of rigid-body dynam­
ics represented in a three-dimensional configuration space based on three 
angles involving three separate rotations about a fixed point in the rigid 
body.

7.3 Lagrangian Rigid-Body Dynamics

7.3.1 Eulerian Angles as Generalized Coordinates

The Lagrangian description of the physical state of a rotating object with 
principal moments of inertia ( h ,h ,h )  requires the definition of three Eu­
lerian angles (ip,9,tji) in the body frame of reference (see Fig. 7.5).

Fig. 7.5 Euler angles (ip,e,ij)).

The first Eulerian angle i f  (left figure in Fig. 7.5) is associated with the 
rotation of the fixed-frame unit vectors (x,y,z) about the z-axis. Through 
this rotation, we thus obtain the new unit vectors (x', y '. z' ) defined as

= Mv)
/O ' \
I х \1 w' -  1

y =\ 11 \\ Z \
(7.51)

The second Eulerian angle 9 (center figure in Fig. 7.5) is associated with 
the rotation of the unit vectors (><', y', z/) about the x'-axis. We thus obtain 
the new unit vectors (x",y",z") defined as
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The third Eulerian angle ф (right figure in Fig. 7.5) is associated with 
the rotation of the unit vectors (x",y",z") about the z"-axis. We finally 
obtain the body-frame unit vectors (ei, в2,ез) defined as

= R3WO

Г еЛ j/ cos ф sin ф
e2

S
— sin^> cos ф

\ ез/
!

 ̂ 0 0
r (7.53)

The resulting three unit vectors defined in Eq. (7.53) will correspond to the 
three principal axes of inertia defined in Sec. 7.1.4.

Hence, the relation between the fixed-frame unit vectors x-7 = (x,y,z) 
and the body-frame unit vectors ei = (e 1, e2, ез) involves the matrix

R = R3(ip) • Ri(0) • R3 (<£>), 

such that et = Rl3 xP, or

ei = cos ф ± + sin ip (cos 9 (p + sin # z)

e2 = — simp _L + cos гр (cos 9 (p + sin 9 z) / , (7-54)

e3 = — sin# (p + cos#z 

where (p — — sin tp x + cos ip у and i  = ip X z = cos <p x + sin tp у .

7.3 .2 Angular Velocity in  Terms o f E ulerian Angles

According to Fig. 7.5, the angular velocity (7.16) is expressed in terms of 
the frequencies (ф, в, ip) as

ш = w ie i + w2e2 + ш3е3 = ф z. + 9 9! + ip (7.55)

The unit vectors z and x' are written in terms of the body-frame unit 
vectors (e i, e2, e3) as z = sin 0 (sinфei + cos?/;€“2) + cos#e3 and x' = x" = 
cos ф e 1 — sin ’фе-2- The angular velocity (7.55) can, therefore, be written 
exclusively in the body frame of reference in terms of the Euler basis vectors 
(7.54), where the body-frame angular frequencies are

u)\ = ф sin 9 sin ф + 9 cos ф 
UJ2 = ф sin# cos ip — # sin̂ > 
UJ3 =  ф + <p cos #

(7.56)
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Note that all three frequencies are independent of ip (i.e., doji/dip = 0), 
while derivatives with respect to ip and ip are

d o j i  дш 2  , дооз

W  = ul2' Щ  “ d и :  = ° ’

and

d u j\  d o j‘2 , д ш з
= 0 = —— and

dip dip dip
1.

Equations (7.56) allow us to relate Lagrangian rigid-body dynamics, ex­
pressed in terms of the angles (ip,9,ip) and their derivatives (ip,6,ip), to 
Eulerian rigid-body dynamics expressed in terms of the angular velocity 
(7.16).

Lastly, we note that the body-frame basis (7.54) rotates in space ac­
cording to the equations of motion

dej 
dt

dei/dt = ipe2 + в sin ip e3 + ip zxe i 

d̂ 2/dt = —ip e i+ 6 cosipe3 + ip z x e 2 (7-57) 

d&3/dt = — #(cos#<p4-sin#z) + </? sin# _L 

which are written in terms of the Eulerian angular velocities (ф,9,1р).

7.3.3 Rotational K inetic Energy o f a Sym m etric Top

The rotational kinetic energy (7.6) for a symmetric top (with Ii = I2 = 
I± ф I3 = /у) can be written as

1
К I\\ U>1 + I± (̂ >1 + wf)

or explicitly in terms of the Eulerian angles (<p, в, ip) and their time deriva­
tives (ф,в,1р) as

К
1

(ip + ф cosO'j + I± 1̂в2 + ф2 sin2 (7.58)

Hence, for the free symmetric top, the Lagrangian Lo(9,9; ф,1р) is simply 
given by Eq. (7.58).
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7.3.3.1 Lagrangian Dynamics of a Free Symmetric Top

Since the Eulerian angles ip and ф are ignorable coordinates, i.e., the torque- 
free Lagrangian (7.58) is independent of tp and ф, their canonical angular 
momenta

d L
Рч> = -prr = I\\ {ф + ф cos в) cos 9 + I± sin2 9 ф, (7.59) оф

n r
РФ =  — J- =  I\\ { ip  +  ф  COS в) =  i'll UJ3 (7.60)

dip
are constants of motion. By inverting these relations, we obtain the equa­
tions of motion for the Eulerian angles (<p,ip):

Pip — РФ cos$ , ; {pv ~Рф cos6>) cos0
<P = --}■ ■ 2 a and *l> = w3 ------ -— ~  -------- , (7.61)I± sin в I ± sin 0

and the torque-free Lagrangian becomes
1 г Л2 , r .2 , (Р - р - Р ф  COS 6 ) 2 1 ± V + i|| W3 + ----- ----- - T ----- (7.62)

I± sin
By using the constants of motion (7.59)-(7.60), we now construct the 

Routhian for the free symmetric top:
Ro(0, в\р<р,рф) = L0 -  р^ф -  p^ip

-  lL  д2 _ (Ру~РФ cose)2
9 9 т o r  - 2 л ’ ( 7 . 6 3 )z Z1 у 2 I± sin 9

where the third term represents the effective potential

V „№ l v , w )  S  f  >  0  ( 7 .6 4 )
Z 1 l Sin (7

for the free symmetric top (see Fig. 7.6). Note that the term p̂ /2I\\ in 
Eq. (7.63), which is a constant, can be removed from the Routhian Rq 
without changing the equations of motion for 0.

The motion of a free symmetric top can now be described in terms of 
solutions of the Euler-Lagrange-Routh equation for the Eulerian angle в:

d ( dR«, \ •• dRo
= ij_ V =

dt \ дв J  дв
_  _  {Ру-Рф C O sd ) (Рф-Ру COS в)

I± sin# sin2 в
For energies E such that

E -  p j -  > У0(в;р1р,рф), (7.66)
2 i | |

there exists two turning points в\ < 02 for в so that the motion is periodic 
between в\ < в < в2. Once 6(t) is solved for given values of the principal 
moments of inertia I± and iy , and the invariant canonical angular momenta 
(7.59)-(7.60), the functions ip(t) and ip(t) are determined from the time 
integration of Eqs. (7.61).
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Fig. 7.6 Plots of Vo(0; pv , Рф) versus 0 < в < it for the free symmetric top with various 
ratios of рр/р-ф- The bottom solid curve (with р^/рф < 1) has a minimum Vomin = 0 
at во = arccos(р^/рф)', the dashed curve (with pv  =  pф) has a minimum Vomin = 0 at 
Q0 = 0; and the top solid curve (with pv /рф > 1 ) has a minimum Vomin = {p% ~Рф)/21± 
at во = arccos(рф/рц>)-

7.3.3.2 Relat i ve  Equil ibria o f  th e  Free S y m m e t r i c  Top

Figure 7.6 shows plots of the effective potential (7.64) for various ratios of 
р^/рф. When p v /р-ф < 1 (bottom solid curve), the potential has a minimum 
and vanishes at во — arccos(р^/рф)- When p v  =  рф (dashed curve), the 
potential (7.64) becomes Vo(e;pv , p lfi) = (p2 /21 ±) (1 — cos0)/(l + cos в), 
which vanishes at в0 = 0. When р^/рф > 1 (top solid curve), the potential 
(7.64) does not vanish but has a  minimum Vomin = (p2 — Рф)/21х at во = 
arccos (Рф/Ptp)-

Explicit solutions for the rotation of a free symmetric top can be ob­
tained for the equilibrium case 6 = 0 = 6 . i.e., when the angle в  — во 
is located at the minimum of the effective potential Vo(#;pv ,pv>)> with 
E = Vomin + Рф/21\\- This equilibrium is relative in the sense that the 
Eulerian angles (<p,ip) do not have to be constants (i.e., ф ф 0 Ф ip).

First, in the case p v  = рф c o s  во < Рф, we find using Eqs. (7.59)-(7.60):
p v  /и ( i p+ ф cos в0) c o s  в0 + I± sin2 60 ф

c o s  во — —  =  —----------------—■------------ — ---------------
РФ I\\ (чр + Ф cosfc'o)

= cos во + ( sin2 #o ) — ,
V I\\ J

which yields ф =  0 (for в о  ф  0) and i p  =  uj3, which is a  constant of the 
motion for a  free symmetric top. Hence, in this case, we find рф =  /ц i p  and 
E = /у i p 2 / 2. For the case p v  = р ф  (i.e., в0 = 0), we find ф = u 3 — ip .
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Next, in the case рф = p^  cos0q < p v , we find using Eqs. (7.59)-(7.60): 

_  РФ _  711ШзCOS uq =  ----- =

i± /,

Plp /у W3 cos во + I± sin2 во ф ’ 
which yields the angular frequency about the z-axis:

= J l i f s  = ^  = ^
i j_  COS / x  COS2 6*0 /x

Note that, using Eq. (7.56) for W3, we also find the relation

ф cos 0O = у -  (ip + ф cos 0o)  -> Ф cos 0o ^1

which can be manipulated again to give the angular frequency about the 
ез-axis:

Ф = wp, (7.68)

where the body-cone precession frequency cjp is defined in Eq. (7.28). 
Lastly, for the case рф = p v  cos0o, the total energy is E = p i/ 2 /ц + 
( p l - p l ) / 2I ±.

7.3.4 Space-fram e Precession and Space-cone Solutions

We now return to the problem of the space-frame precession of the an­
gular velocity ш (for a free symmetric top) about the constant angular- 
momentum axis (i.e., L = £z) along a space cone of half-angle /3 (i.e., 
L -ш  = £ l j  cos/3) discussed in Sec. 7.2.2.3 (see Fig. 7.7 below).

First, we use the fact that, since the angle 0o between the principal axis 
ез and the angular-momentum z-axis is constant, we find from Eq. (7.54): 

(ie3 ~
—  = sin 0 1. = ф z X e3. (7.69)

Since ез and ш precess about the z-axis at the same rate, we find f l  = ф 
in Eq. (7.35). We note that, since the constant angle 0o must be at the 
minimum of the effective potential Уо(в;р1р ,рф) defined in Eq. (7.64), then 
ф must be either ф = 0 (if p v  < рф) or ф = p v /I± (if p v  > Рф) [see 
Eq. (7.67)]. We, therefore, assume the latter since we want ф ф 0.

Second, at a time when ip = 0, Eq. (7.56) yields oj\ = 0 (since 0 = 0) 
and

ф sin 0o = ui2 — u  sin a

ф cos0o = u >3 -  ip = uj cosa, + шр = (7||//j_)w cosa
, (7.70)
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where we used Eqs. (7.32) and (7.68). Hence, the ratio of these two equa­
tions yields the relation (7.36) between the body-cone half-angle a  and 00- 

Third, making use of the conservation laws of angular-momentum and 
energy (with = 0 ), we obtain

t  = u j  y j Ц  cos2 a  + 72 sin2 a  = 7ц ш cos a  . I l  + tan2 a

and

I» u j cos a  -(- tan2 #o — I\\ u j  coso: s e c  во,

cos 0  = L • uj  = I\\uj ( cos2 a  + -jr- sin2 a

(7.71)

= /у u j cos2 a  ^1 + tan#o t a n a j

=  7|| u j  cos a  sec в о  fcosa cos#o +  s in as in # 0) -  (7.72) 

By dividing Eq. (7.72) by Eq. (7.71), we obtain the relation

во -  a  (if I± > 7ц)
cos /3 = cos(#o — a )  P — 

where we used Eq. (7.36).

(7.73)
a  -  Ho (if 7„ > 7X)

Fig. 7.7 Body (gray) and space cones for the cases of an oblate spheroid (/ц > ij_) and 
a prolate spheroid (7ц < I±), where /ц = 1з is the moment of inertia for rotations about 
the axis of symmetry and I± = I i = I2 is the moment of inertia for rotations that are 
perpendicular to the axis of symmetry.

Figure 7.7 shows the body and space cones corresponding to the oblate- 
spheroid case (7ц > 7 x )  and the prolate-spheroid case (7ц < I±). The
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angular momentum L = i  z is directed along the z-axis, while the angular 
velocity ш lies on the edge of both cones. Both the angular velocity uj and 
the unit vector ез (also known as the symmetry axis) precess about the z- 
axis with precession frequency ф defined in Eq. (7.74); the symmetry cone 
traced by the precession of the symmetry axis is not shown. As u> precesses 
about L, the components uj_l = ш — uj3 ез rotate about the ез-axis with 
precession frequency ujp . Equation (7.21) shows that, for a  symmetric top, 
we find uj X L = w3 (J|| -  I±) (w ei -  uj\ e2) and, thus, e3 • (ш X L) = 0. 
Hence, the three vectors (е3,ш ,Ь ) lie on the same plane П, and the plane 
П precesses with angular velocity ф.

Lastly, using Eq. (7.70), we find the space-frame precession frequency

ф = ш y j sin2 a  + (/у/I±)2 sin2 a  = 1 + [(7ц//_l)2 — 1] cos2 a

^ у / ш 2 + [(Ц/1±)2 - 1]ш2.

We now note that Eq. (7.59) yields

Рч> = 1±Ф =  \jJ'{ (< 4  +  w |) +  ш2

= = |L|, (7.74)

which gives the simple result ф = |L|//j_, i.e., the precession frequency 
of the angular velocity uj about the angular momentum L is equal to the 
magnitude |L| divided by the moment of inertia I± perpendicular to the 
axis of symmetry.

7.4 Sym m etric Top w ith One Fixed Point

We now consider the case of a spinning symmetric top of mass M  and 
principal moments of inertia (/j_ ф /ц) with one fixed point О moving 
in a gravitational field with constant acceleration g  (see Fig. 7.8). The 
rotational kinetic energy of the symmetric top is given by Eq. (7.58) while 
the potential energy for the case of a symmetric top with one fixed point is

U(6 ) = M g h  cos#, (7-75)

where h  is the distance from the fixed point О to the center of mass (CM) 
of the symmetric top. It is immediately clear that, without the effects of 
rotation (i.e., with ф =  0 =  i p ) ,  this problem is analogous to the problem of 
an inverted pendulum with an unstable equilibrium at в  = 0 and a stable
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Fig. 7.8 Symmetric top with one fixed point.

equilibrium at 9 = 7Г (see problem 9). We shall now see that rotational 
effects allow a spinning symmetric top to remain standing with a  range in 
motion в\ < в  < 02 < 7г.

The Routhian for the symmetric top with one fixed point (also known 
as the he avy  symmetric top) is

Н(в , 0' - , РчР’ Р ф )  

where the effective potential is

1 - /321±в 2 -  V{9;pip,p^) ,

У{6 ]Рч>,Рф) = M g h  c o s 9  +
{Pifi -  р-ф c o s  в )2

(7.76)

(7.77)
2 Ij_ sin2 9

We see that rotational effects (with p v  ф 0 ф p,p) prevent the symmetric 
top from reaching 9 = тт. On the other hand, the case of в = 0 (the 
s l e e p i ng  top) is considered in Sec. 7.4.3, where we show that, if the angular 
momentum p ф is large enough, the equilibrium point 9 = 0 is stable (see 
also Sec. 8.3.4).

The Euler-Lagrange-Routh equation of motion for 9 is derived from the 
Routhian (7.76) as

I x 9 = -  V'{9) = M g h  sin 9 -
(py -  Pt/> cos 9) (рф -  p v  cos 9) 

7_i_ sin3 9
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where the first term represents the torque due to gravity while the second 
term is due to free-body rotational dynamics (7.65). The equations of 
motion for tp and ф, on the other hand, are still given by Eqs. (7.61) since the 
gravitational potential (7.75) is independent of the Eulerian angles (<р,ф).

We, henceforth, use the normalized Euler equations

where time has been rescaled d(- ■ ■ )/d r  = (•••)/ = 1 d(- ■ ■ )/dt, with
О = Рф/1_l and the dimensionless parameters

a  = M gh/ (p^  fi) 'j
b = р^/рф > . (7.79)

£ =  { E -  / ц  ы|/2)/(р*П) J

The dimensionless energy equation for the symmetric top with one fixed 
point is now expressed as

and the turning points #1,2 are determined from the turning-point equation 
£ = W (u), with и  = c o s  в. Since this turning-point equation yields the 
cubic equation ( a u  — £)( 1 — u 2) + (b — u )2 = 0 for u,  we expect to find 
three roots («1, 112,^3). However, since the root |из| > 1 is not allowed 
for U = COS в < 1, O n ly  two roots (U) = COS #1 > lt2 = COS #2) or в i < 6 2) 
remain.

Lastly, it can also been shown that the effective potential W(u) has a 
single real minimum with |uo| < 1 (see Fig. 7.9), which is determined by 
finding the roots of the quartic equation a (1 — u2 ) 2 — (b — и)  (1 — и  b) = 0. 
We see from Fig. 7.9 that the minimum щ ( а ,  b) is positive (i.e., во < 7г/2) 
when b > a  and is negative (i.e., тг/2 < в0 < n) when b < a. The three 
remaining roots (ua ,M^,u7) are a complex-conjugate pair (ua ,up = w*), 
where ua = 1 = up at b = 1 and a > 1/4, and u7  < —1 for all values of 
(a,b) .  The two turning points u\ > u2 satisfy the relation u\ > uq > U2 

with the minimum uo-

7.4 .1  N u t a t i o n

£ = ^ (в1)2 + a c o s d  +
2 (1  - c o s 2 в) 2
(6 — cos#)2 _  1

= ~ ( в ')2 + VF(cos#),

We note that the azimuthal equation of motion <p' in Eq. (7.78) can change 
direction if b — cos# changes sign, which requires that —1 < b < 1. The 
normalized heavy-top equations (7.78) have been integrated for the fixed
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Fig. 7.9 Real root uo (a,b) corresponding to the single minimum (with |u| < X) of the 
effective potential W (u) =  au +(b — u )/ (l—u2 ). The plots of uo (a, b) versus b are shown 
from bottom to top with a = ( 2 ,1 ,1/2) and a =  0+ (dashed). Note that uq > 0 (i.e., 
во < 7г/2) when b > a.

Table 7.2 Nutation in Azimuthal Rotation.

b — р<р/рф Sign of ip'

Case I b > cos 9\ > cos в ip' > 0

Case II b — COS 01 > cos в ip' > 0; ip' =  0 at Si

Case III cos 61 > 6 = cos 0  > cos 9 ip' > 0 (0 > 0 )
i p '  < 0  (6>i < в < 0 )

value a  = 0.1 and the initial conditions 0(0) = 9\ = 1 (the lowest turning 
point) and 95(0) = 0, and three cases are shown in Fig. 7.10-7.12 (see also 
Table 7.2): the normalized heavy-top solutions in the (<p, 0)-plane (cos 0 
increases downward) are shown on the left, and the spherical projection of 
the normalized heavy-top solutions (0 , <p) —» (sin0 cos ip, s in 0 simp, cos0) 
are shown on the right, where the initial condition is denoted by a dot (•). 
Note that, since the initial condition is the turning point 0 i, the motion in
0 takes place in the range 0i < 0 < 02, and three possible cases exist (see 
Table 7.2).

In Case I (b > cos0i > cos0), the azimuthal velocity ip' never changes 
sign and azimuthal precession occurs monotonically. (The case b < cos 02 < 
cos0 also exhibits monotonic precession, with ip' < 0.) In Case II (6 = 
cos 0i > cos0), the azimuthal velocity tp' vanishes at 0 = 0i (where O' also 
vanishes since 0i is a  turning point) and the heavy symmetric top exhibits
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Fig. 7.10 Orbits of a heavy top -  Case I (b > cos 9\ > cos в).

a  c u sp  at 9 =  в\. In Case III (cos 0\ >  b =  co s0 ), the azimuthal velocity

Fig. 7.11 Orbits of a heavy top -  Case II (b =  cos в\ > cos в).

ip' vanishes for 9 — 0  and the heavy symmetric top exhibits a  phase of 
r e t r o g rade  motion (between 9\ < 9 < 0 ) .

Fig. 7.12 Orbits of a heavy top -  Case III (cos 0i > 6 = cos 0  > cos в).
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We now investigate the motion of the symmetric top with a fixed point at 
the minimum angle 6q = arccos(щ ) for which W'(u0) = 0 and £ = W(uq) .  
For this case (see Fig. 7.9), when the dimensionless azimuthal frequency

i i  \  ̂ uo  т  /
= TZTrf = фI  U q

is inserted in

0 = = «  -  ( Ь - ^ О - Ь щ )  s  a  _  Ф, л  __ иофл
v1 — u o)  4 '

we obtain the quadratic equation for Ф':

u0 (Ф')2 -  Ф' + о = 0, 

which has the two solutions

Ф± = 2^ -  ( l  ± VI -  4 w0 a )  . (7.80)

These two solutions are real only if the radicand is positive:

uo a  = Mghl±_ c o s 9 ° < I  (7.81)
V\ 4

This condition is obviously satisfied if uo  = cos в о < 0 (i.e., 9q > тт/2). 
Otherwise, it is satisfied if

7.4.2 Slow and Fast Precession

Р ф  =  Ц и з  >  2/x cos 0O, (7.82)

i.e., the spin frequency u>s must be large enough to satisfy the condition 
(7.82). Note that the two solutions (7.80) have the same sign if 0 < 4auo < 
1, i.e., ip’ {uo) has a fast component Ф'4 and a slow component Ф'_. If uq < 0 
(0o > 7r/2), the spinning symmetric top lies below its fixed point, and the 
precession frequencies have opposite signs Ф'+ < 0 < Ф'_.

7 .4 .3  T h e  S l e e p i n g  T op

As a last topic in our discussion of the problem of the symmetric top with 
one fixed, we now consider the case where a symmetric top is launched 
with initial conditions 0(0) = 0i = arccos(fr) ф 0, corresponding to a  turn­
ing point, with 0(0) = y>(0) = 0, with V>(0) Ф 0- In this case, the invariant 
canonical momenta are рф = /у ф((У) and p v  = рф cos0i (i.e., the initial
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conditions correspond to Fig. 7.11). W ith these initial conditions, the di­
mensionless energy equation is

(cos Q\ — cos 9)21
(в1) + a  cos 9 +

which yields the equation

1 ( 0 ' ) 2 =  (CO S0! cos 9)

2 (1 — cos2 9)

(cos 9\ — cos 9)

= a  cos t/j,

a  — (7.83)
2 (1 -  cos2 9)

Furthermore, if we consider the case of the s l e e p i n g  top with the additional 
in itial condition 9\ = 0, Eq. (7.83) becomes 

'1 — cos(
oe 'Y = 2 a cos# — (1 — 2 a)

ч 1 + cos 9 
or using the substitution и = cos 9:

(Ф а ')2 = (1 -  a )2 (a  + 1 -  Ф2), (7.84)

where Ф2 = 1/2a = p^/(2 M g h l ± ) .  The solution of Eq. (7.84) for the 
special case Ф2 = 2 is а (т ) = 1 + 8 r~2, which asymptotically approaches 
и = 1 as т —> oo.  Since this solution yields а  > 1, it is discarded as 
unphysical because a  must satisfy а  = cos 9 < 1. We look for solutions 
with Ф2 Ф 2 below.

The sleeping-top equation (7.84) has the following turning points (where 
u' = 0): uo = 1 (which is a double root) and u\ = Ф2 — 1. The equilib­
rium points for the sleeping top, on the other hand, are obtained from the 
acceleration equation

(1 - и )  [(2Ф2 -  1) -  За] , (7.85)2 Ф2 и"

where the right side vanishes for щ  = 1 and и 2 = (2Ф 2 — l)/3 . Hence, 
uo = 1 is both a turning point and an equilibrium point of the sleeping top. 
For Ф2 > 2, the turning points (uo ,^ i) and equilibrium points (ао ,аг) 
are ordered as ao = 1 < u 2 < Щ, while for Ф2 < 2, they are ordered as 
и i < U‘i  < uq = 1 . In Sec. 8.3.4, we investigate the stability of the sleeping 
top and show that the equilibrium point uo  = 1 is stable if Ф2 > 2, which 
also autom atically satisfies Eq. (7.82), while а 2 is stable for Ф2 < 2.

A sleeping top describes a  symmetric top that is spinning about its axis 
of symmetry in the presence of a gravitational field (i.e., Ф Ф 0). When the 
symmetric top is perfectly upright (0 = 0), the gravitational torque vanishes 
(M g h  sin# = 0) and the top remains upright. If the spin frequency is large 
enough (i.e., Ф2 > 2), a slight departure from 9 = 0 does not cause the top 
to fall but instead it returns to its upright position.
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7.4.3.1 Exact So lu t i on s  in Terms o f  th e  Weie r s t ras s  Fun c t i on

We now look for exact solutions of the sleeping-top equation (7.84) for 
arb itrary values of Ф. Since the right side of Eq. (7.84) is a cubic polynomial 
in u,  we may look for solutions expressed in terms of the Weierstrass elliptic 
function. First, we use

u(t ) = w (t ) + ^ (Ф2 + l )
О

to transform Eq. (7.84) into the Weierstrass differential equation (B.19):

/ el'll) \ ^
( 2Ф dr  ) = 4гу3 ~ 92W ~ 93 ~ ^ W

where = 3 B 2, and д з  = В 3, with В  = | (Ф2 — 2).
Next, the roots of the cubic polynomial f ( w ) are w\ = В  (or u\ = 

Ф2 — 1) and W2,3 = — В/2 (or 1x2,3 = «0 = 1). Because the discriminant 
Д  = g 3 — 27Зз = 0 (due to the existence of a double root), the solution 
of the sleeping-top equation (7.85) corresponds to the singular Weierstrass 
case [8], which can be given in terms of elementary (trigonometric and 
hyperbolic-trigonomentric) functions as follows.

7.4.3.2 Exact So lu t i on s  in Terms  o f  E l em en t a ry  Func t i o n s

An exact solution of the sleeping-top equation (7.84) for Ф2 > 2 is expressed 
as

и  = 1 + (Ф2 -  2) f ~ 2 (z),  (7.86)

where г  = (т/2Ф) \/Ф2 — 2 and the function f ( z )  satisfies the differential 
equation

which is obtained by combining the parts of Eq. (7.84) for Ф2 > 2:

(Ф и ')2 = (Ф2 — 2)3 ( d f  /dz)2 f ~ 6(z),
( 1 - и ) 2 = (Ф2 - 2 ) 2 Г 4(г),

(и + 1 _ ф 2) = (ф2 _ 2 )  ( l  -  /2(* )) f - 2(z ).

Periodic solutions of Eq. (7.87) are f ( z )  — cos г  or sin z, but only cos z is 
finite at г  = 0 (i.e., r  = 0). Thus, the general solution for Ф2 > 2 is

u+ (r) = 1 + (Ф2 -  2) sec2 v ^ 2 -  2)  , (7.88)
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which satisfies the initial condition u(0) = Ф2 — 1 = щ .  Since this solution 
yields u ( t )  >  1, however, it must be rejected as unphysical because и  must 
satisfy и  = c o s  в  < 1. We will explore an approximate solution of Eq. (7.84) 
for Ф2 > 2 in Sec. 8.3.4, by studying the sleeping top as a  two-degree-of- 
freedom dynamical problem.

Ф2 — 1 (lower dashed line).

An exact solution the sleeping-top equation (7.84) for Ф2 < 2 is obtained 
from Eq. (7.88) by writing 2 = г(т/2Ф) \J2 -  Ф2 and using the identity 
sec(i •) = sech(-):

u _ (r )  = 1 + (Ф2 -  2) sech2 y/2 -  Ф2)  , (7.89)

which satisfies the initial condition u(0) = Ф2 — 1 < 1. Figure 7.13 shows a 
plot of Eq. (7.89) for r  < 0, which asymptotically connects the two turning 
points uq = I = u~(— oo) and u i  = Ф2 — 1 = u_(0) of Eq. (7.84).

7 .5 S u m m ary

Chapter 7 investigated the rotation of a  rigid body either in a  three- 
dimensional body-frame space or a  three-dimensional space-frame configu­
ration space (or six-dimensional phase space). In the body frame, the rigid- 
body rotation was described in terms of the three components (w i, u>2 ,oj:i) 
of the angular rotation frequency ш defined in terms of the principal axes 
(e i, в2, ез) of the inertia tensor. In the space frame, the rotation of the rigid 
body was described in terms of the three Eulerian angles (<p, в, ip), and their
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Table 7.3 Summary of Chapter 7: Rigid Body Motion.

Topic Equation

Inertia Tensor for Discrete and Continuous Mass Distributions (7.5) & (7.8)
Parallel-axes Theorem (7.7)
Principal Axes and Moments of Inertia (7.15)
Euler Equations with Torque (7.22)
Euler Equations without Torque (7.24)
Euler Equations for Torque-free Symmetric Top (7.27)
Body Cone and Body-cone Angle (7.31)
Torque-free Asymmetric Top (7.43)-(7.45)
Eulerian Principal Axes (7.54)
Body-frame Angular Frequencies (7.56)
Routhian for Free Symmetric Top (7.63)
Relative Equilibria for Free Symmetric Top (7.67)-(7.68)
Space Cone and Space-cone Angle (7.73)
Space-frame Precession (7.74)
Euler-Lagrange-Routh Equation for Heavy Symmetric Top (7.78)
Sleeping-top Equation and Solutions (7.84) & (7:88)-(7.89)

associated velocities (ф, в, ip). Because the Lagrangian for a  free symmetric 
top was independent of the two Eulerian angles (<p,ip), their canonically- 
conjugate momenta p v and p,p could be used to reduce the rotation of the 
free symmetric top to the motion in в. The precession motion of a free sym­
metric top could be analyzed in either the body frame or the space frame, 
in which the two axes Q = ш/\ш\ and е,з were seen to precess about the 
angular momentum axes z = L/|L|. The addition of a gravitational torque 
on the motion of a  symmetric top with one fixed point did not break the 
invariance of (p^. p,i,), but instead introduced conditions for the stability 
of a sleeping top that are further analyzed in the next Chapter. Table 7.3 
presents a summary of the important topics of Chapter 7.

7 .6  P rob lem s

1. Consider a  thin homogeneous rectangular plate of mass M  and area a b  
that lies on the (x, y)-plane (with 0 < x < a  and 0 < у  < b). Here, the 
infinitesimal mass d m  is defined as d m  = (M/ab) 5(z) d 3x, with

j  5(z )dz  = 1 and J  z5 ( z ) d z  = 0 = J  z2 S(z) dz = 1.

(a) Show that the inertia tensor (calculated in the reference frame with its
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origin at one corner of the plate) takes the form
/ А - С  0 \

J = l —С в 0 ,
V о о a + b )

and find suitable expressions for A, В , and С  in terms of M, a,  and b.

(b) Show that by performing a rotation of the coordinate axes about the 
2-axis through an angle 9, the new inertia tensor is

/ А' - С '  0  \

J'(0) - R3(#)-J-Rj(0) = \ - C  В'  0 ,
V 0 0  A' + B'J

where
A1 = A cos2 9 + В  sin2 9 — С  sin 29 
В'  = A sin2 9 + В  cos2 9 + С  sin 29 

С' = C  cos26 -  ^ (B - A ) s in 29.

(c) Show that A' + В'  = A + В  and
(A' + B')(A'B'  - C " 2 ) =  (A + B ) ( A B ~ C 2),

i.e., the trace and determinant o f  J  are invariant.

(d) When

1 f  2C \ в  =  -

the off-diagonal component C  vanishes and the ж'-axis and y'-axis become 
principal axes. Calculate expressions for A' and B' in terms of M, a, and 
b for this particular angle.

(e) Calculate the inertia tensor I in the CM frame by using the Parallel-Axis 
Theorem and show that

2. Derive the moment of inertia (7.18).

3. (a) The Euler equation for an asymmetric top (I\ > /2 > /3) with 
L2 = 2 I2K  is d>2 = a  (fi2 — wf), where
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Solve for u>2 (t) with the initial condition шг(0) = 0.

(b) Use the solution u>2(t) found in Part (a) to find the solutions u>i(t) and 
given by Eqs. (7.44) and (7.45) for m  = 1.

z

Fig. 7.14 Problem 4.

4. Consider a  circular cone of height H and base radius R =  H t a n a  with 
uniform mass density p  = 3 М/(ir H R2).

(a) Show that the non-vanishing components of the inertia tensor I calcu­
lated from the vertex О of the cone are

J xx = J yy = \ м  ( t f 2 + ^ 0  and J zz = ^  M R 2

(b) Show that the principal moments of inertia calculated in the CM frame 
(located at a  height h  = ЗЯ/4 on the symmetry axis) are

7l = 4 M(fl2 + t )  and I> = raMF?

5. Show that the Euler basis vectors (в1 ,е 2,ез) are determined by 
Eq. (7.54).

6. (a) Use Euler’s equations (7.22) to find the torque needed to rotate a 
rectangular plate of sides a and b about a diagonal with constant angular



216 An Introduction to Lagrangian Mechanics

velocity ш.

(b) Show that this torque vanishes if the rectangular plate is a square (i.e., 
if a = b).

7. As a  result of its daily rotation, the shape of Earth is approximated as an 
oblate spheroid with equatorial radius a = 6,378 km and polar radius с = 
6,357 km. The gravitational potential is expressed in spherical coordinates 
as

фМ )  = (J ll (3 cos2 0 - 1 )  -  ^ 2 r 2 sin2 #,

where M  denotes Earth’s mass, ш denotes its rotation angular frequency, 
and G is the gravitational universal constant. The first term is the gravi­
tational potential for a spherical non-rotating Earth, the second term rep­
resents the correction due to its non-spherical shape, and the third term 
represents the effects of Earth’s rotation.

(a) Show that the principal moments of inertia are
r  ^  / 2  2 \  i t  2  ^  2I±_ = —  (a + c  ) and 7ц = —— a  > I±.

О о

(b) Compute the gravitational acceleration g  = — УФ, and calculate its 
magnitude on the equator ( r , 6 ) — (a , n/ 2 ) and at the north pole (r, 0 ) = 
(c, 0).

(c) Compare the directions and magnitudes of the corrections to the grav­
itational acceleration due to the centrifugal term and the non-spherical 
term.

8. In the absence of external torque, the Euler equations (7.22) can be 
written as

^  { l i j  7 0  i ’ W X L  = €ijk Mj (7fc k?fc),

where the P o i s s o n  bracket { , } is defined in terms of two arb itrary functions 
F ( L) and G(L) as

rp  _  T OF 3G 
* ’ * ' dL  X d L '

Hence a general function F (L ) of angular momentum evolves according to 
the Hamilton’s equation

d F  d F
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(a) Show that any function of |L| is a constant of the motion for rigid body 
dynamics.

(b) Show that the Poisson bracket satisfies the Jacobi identity

{F, {G, H}} + {G, {H, F}} + {#, {F, G}} = 0, 

for three arb itrary functions F,  G, and H.

9. In the absence of rotation (ф = 0 = ip), the heavy-top equation of 
motion for the angle 0 is

I±9 = M g h  s in 6», (7.90)

which represents the equation for an inverted pendulum. If we choose 9 = тг 
(the stable equilibrium point) as the point of lowest potential energy, then 
the energy equation for this problem is expressed as

E = + M g h  (1 + c o s  9) = \ l ± 0 2 + 2 M g h  ( l  -  sin2 (0/2)) .

(a) Show that, for the “in itial” conditions 0(0) = n  and 0(0) = — 2 Q,, where 
Q2 = Mgh/I±_ (i.e., the energy is E = 2 M g h ) ,  the solution for a  “falling” 
top is

9(t) = 2 arcsin sech(^f) , (7-91)

with 9{t) = - 2 0  sech(fit ) . Note that the solution of Eq. (7.90) can only 
be found with in itial conditions 0(0) and 0(0) that are different from the 
unstable separatrix point (0,0) = (0,0), since an unstable separatrix point 
is approached as an asymptotic limit t  —> ±oo.

(b) Show that Eq. (7.91) is a solution of Eq. (7.90).





Chapter 8

Normal-Mode Analysis

8.1 S ta b il ity  of E q u ilib riu m  P o in ts

The nonlinear (one-dimensional) force equation m x  = — V'(x) has equi­
librium points (labeled xo)  where V'(xq) vanishes. The stability of the 
equilibrium point xo is determined by the sign of V"(xq): the equilibrium 
point xq is stable if V"(xo) > 0 or unstable if V"(xq) < 0. Great care 
must be taken, of course, in finding the solution x(t)  for the unstable orbit, 
which must satisfy limt_t±oo x(t)  = xq (i.e., one should not look for a  so­
lution in the vicinity of xq because it is a  separatrix point; see Sec. 7.4.3.2 
and problem 9 of Chap. 7). We now consider two examples from previous 
chapters.

8 .1 .1  B e a d  o n  a  R o t a t i n g  H o o p

As a first example, we return to the problem of a  bead of mass m  sliding 
freely on a hoop of radius R rotating with angular velocity 0  in a constant 
gravitational field with acceleration g  (see Chap. 2). The Lagrangian for 
this system is

L(9,9) = — R292 + ( — R 2^ 2 sin2 в  + m g R  cos6») = ^  R292 -  V(9), 
2 V 2 / 2

where V(9) denotes the effective potential, and the Euler-Lagrange equation 
(2.40) for 9 is

m R 2 9 = —V'(9) = — m R 2i }2 sin# (u — cos#), (8.1)

where v  = g/(RCl2).
The equilibrium points of Eq. (8.1) are 9 = 0 (for all values of i>) and 

9 = arccos(/') if и < 1. The stability of the equilibrium point 9 = во is

219
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determined by the sign of

V"{90) = m R 2Q2 [u c o s d o  — (2 c o s 2 во — l )  ] .

Hence,

V"(0) = m R 2Cl2 [ v  -  1) (8.2)

is positive (i.e., в  = 0 is stable) if v  > 1 or negative (i.e., в = 0 is unstable) 
if v  < 1. In the latter case, when v  < 1 and the second equilibrium point 
во = arccos(i') is allowed, we find

V"{0Q) = m R 2Sl2 \v2 — (2 V2 — l )  ] = m R 2i }2 ( l  — u2) > 0, (8.3)

and thus the equilibrium point во = агссон(г/) is stable when v  < 1.

Fig. 8.1 Bifurcation diagram for the bead on a rotating-hoop problem.

Figure 8.1 shows the bifurcation diagram for the problem of a  bead on 
a rotating hoop. Here, we see that for v  > 1, a  single stable equilibrium 
exists at в = 0. For v  < 1, however, the equilibrium point в = 0 is unstable 
and new stable equilibrium points appear at в  = ± arccos(y). The critical 
value и = g/(RQ2) = 1 is the bifurcation point for the bead on a  rotating 
hoop.

8 .1 .2  C i r c u l a r  O r b i t s  i n  C e n t r a l - F o r c e  F i e l d s

As our second example, we consider the radial force equation
e 2

f i r  = — r — k r n = —V'(r),  
f i r 6

studied in Chap. 4 for a central-force field F ( r )  = — k r n~l (here, /i is 
the reduced mass of the system, the azimuthal angular momentum £ is a
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constant of the motion, and the constant к > 0 for an attractive force). 
The equilibrium point at r  = p  is defined by the relation V  (p) = 0:

The second derivative of the effective potential is

^> = £ ( 3 + <"-1> ^ +a) = £ '(2+n)- (8'5) 
Hence, V"(p) is positive if n > —2, and, thus, circular orbits are stable in 
central-force fields F ( r )  = — к r n~: if n  > —2.

8.2 Small Oscillations about Stable Equilibria

Once an equilibrium point xq is shown to be stable, i.e., V"(xo) > 0, we 
may expand x =  Xo +  Sx about the equilibrium point Xq (with |&e| -С |жо|) 
to find the l inearized  force equation

m  Sx = — V"(xo) 5x, (8.6)

which has oscillatory behavior with frequency

ш(жо) = v i r ^  (8,7)
We first look at the problem of a bead on a rotating hoop, where the 

frequency of small oscillations uj(0o) is either given in Eq. (8.2) as

ш(о) = О  =
for 0o = 0 and v  > 1, or is given in Eq. (8.3) as

for во = arccos(i') and v  < 1. We note that ы = 0 at и = 1, which means 
that the period of oscillation is infinite.

Next, we look at the frequency of small oscillations about the stable 
circular orbit in a central-force field F ( r )  = — k r n~l (with n  > —2). Here, 
from Eq. (8.5), we find
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where £2 = ц  к  p2+n was used. We note that for the Kepler problem 
(n = —1), the period of small oscillations T  = 2n/w is expressed as

2 _  (2 tt )V  3 

к  p  ’
which is precisely the statement of Kepler’s Third Law for circular orbits 
[see Eq. (4.43)]. Hence, a  small perturbation of a stable Keplerian circular 
orbit does not change its orbital period.

Fig. 8.2 Bead on a rotating parabolic wire.

As a last example of linear stability, we consider the case of a  time- 
dependent equilibrium. A rigid parabolic wire having equation z = k r 2 
is fastened to a vertical shaft rotating at constant angular velocity в  = 
w.  A bead of mass m  is free to slide along the wire in the presence of a 
constant gravitational field with potential U(z) = m g z  (see Fig. 8.2). The 
Lagrangian for this mechanical system is given as

L(r,r) = -y  ( l + 4 k2r 2) r2 + 171 — g k ' j r2,

and the Euler-Lagrange equation of motion is easily obtained as

( l  + 4 fc2r 2) r  + 4 k2r  r 2 = (uj2 — 2 gk )  r. (8-8)

Note that when ш2 < 2 gk,  we see that the bead moves in an effective 
potential represented by an isotropic simple harmonic oscillator with spring
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constant y/m (2 gk  — w2) (i.e., the radial position of the bead is bounded), 
while when ui2 > 2 gk,  the bead appears to move on the surface of an 
inverted paraboloid and, thus, the radial position of the bead in this case 
is unbounded.

We now investigate the stability of the linearized motion r ( t )  = r o+Sr( t )  
about an initial radial position ro- The linearized equation for 5r(t )  is

ш2 2 g k \
S f  = ( т п щ ) i r '

so that the rad ial position r  = ro  is stable if ui'2 < 2 gk  and unstable if 
oj2 > 2 gk.  In the stable case (uj2 < 2 gk) ,  the bead oscillates back and 
forth with 0 < r ( t )  < ro,  although the motion can be rather complex 
(see problem 1). For the special case us2 = 2 gk,  the linearized equation 
Sir = 0 implies that the radial dynamics r ( t )  = ro is marginally stable. 
In the unstable case ( uj2 > 2 gk) ,  the radial position of the bead increases 
exponentially as it spirals outward away from the initial radial position ro-

8 .3  N orm al-M ode A n a ly s is  of C oup led  O sc illa tion s

Coupled oscillators can exchange energy periodically as a  result of the cou­
pling mechanism. In the problem of the Foucault pendulum (see Fig. 6.6), 
for example, if the pendulum motion is started in the East-West plane, the 
Coriolis force (the coupling mechanism) allows energy to be transfered to 
the pendulum motion in the North-South plane and this transfer continues 
until motion in the East-West plane has disappeared. This transfer process 
between oscillations in the East-West and North-South planes generates 
the standard precession motion of the Foucault pendulum.

The normal-mode analysis enables us to determine the characteristic 
oscillation frequencies exhibited by coupled linear oscillators. For nonlinear 
coupled oscillators, the nonlinear equations of motion must be linearized 
first before obtaining the characteristic frequencies of small oscillations.

8 .3 .1  N o r m a l - M o d e  A n a l y s i s

8.3.1.1 One- d e g r e e - o f - f r e ed om  Analys is

As a way of introducing the normal-mode analysis for coupled linear equa­
tions obtained from a set of Euler-Lagrange equations, we begin with the
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normal-mode analysis of the one-degree-of-freedom equation

ax ( t )  + 2bx(t )  + cx{t)  = 0, (8.9)

with initial conditions x(0) = A and i;(0) = 0, where (a. b, c )  are 
positive constants. F irst, we introduce the normal-mode representation 
x(t)  = x exp(—iuit ) ,  where x denotes a  constant amplitude and w  is 
the normal-mode frequency. Next, we insert the normal-mode represen­
tation for x(t )  into Eq. (8.9) and obtain the quadratic equation for u>: 
(— au i2 — 2 i buj + c) x = 0, whose solutions (since x ф 0) are

b Гс b^
uj± = - i -  ± \ -  — — = — i v  =t U. (8.10)

a  V a a 1
Hence, the general normal-mode solution of Eq. (8.9) is

x{t) = e~vt (x+ e~iSlt + ein t)  , (8.11)

where the constant amplitudes are now determined from the in itial con­
ditions. When this general solution is matched with the in itial conditions 
x(0) = A and ±(0) = 0, we obtain

x+ + X- — A

i Cl ( x -  — x+) — v  (x+ + 3L.) = 0 

from which we find the solution

x(t ) = A e ~ vt ( c osClt  + — sinffi^ .

8.3.1.2 Two -d e g r e e - o f - f r e e d om  Analys is

We now turn our attention to a general set of coupled linear second-order 
differential equations

x = — a x  + b y 'j
i  , (8.12) 

y  = bx  -  d y  J

where (a, b, d)  are positive constants. These equations could be derived as 
Euler-Lagrange equations from the Lagrangian

L = \  + ~ \  âx2 + dy2 ~ 2bxy)- 
We first introduce the normal-mode representations x(t)  = x exp (—i u t )  
and y ( t )  = у  exp(—iu i t ) ,  where (x. y )  are arb itrary constant amplitudes

x± =  A 1 +  ■ v  
2 *  2П



Normal-Mode Analysis 225

while uj is the common normal-mode frequency. In the second step, we 
construct the symmetric m atrix equation

' uj2 — a b \ [% \
M  = 0, (8.13)

b w 2 - d )  \ y j

which is expressed in terms of the constants (x , y ). Since we can find non­
triv ia l solutions (x , y ) ф (0 ,0) only if the determinant of the matrix in 
Eq. (8.13) vanishes, we obtain the relation

(w2 -  o) (w2 — d) = b2,

which yields the normal-mode frequencies (±w+, ±w_):

« 4  = A ± v/Д2 + 62, (8.14)

where A = (a + d )/2 and Д = (a — d)/2. In the third step, we determine 
the normal-mode amplitudes (x ± , y ±), which are constructed as solutions 
of the normal-mode equation

0 =

b

which yields the solution

у  = --------b x±____ = = f _  ^  T J i  + ^ ] x ± .  (8.15)
U± Д \/Д2 + b2 \ b ^  V b2 J  v '

If we write

b = с  sin(2/i) and Д = с cos(2/x), (8.16)

then Eq. (8.15) yields

= sin(2y) x ± = -  ( « * f )
cos(2 ,i )T l =

and, thus, the general solutions for (x ( t ) , y ( t ) )  are 

x(t) = A+ cos(c<;+ 1) + A_ cos(w_ i)
(8.17)

y ( t ) = — (A+ ta n /л) cos(o;+ i) + (A_ cot /1) cos(w_ i)
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where the constants A± are determined from initial conditions for 
(x ( t ) , y ( t ) ) ,  with (x , y ) = (0,0) used for simplicity. W ith the solutions 
Eq. (8.17), for example, we easily verify that

x + a x = A+ (— + a)  cos(a;+1) + (— ш2_ + a) cos(a;_ t)
= A+ (—b tan f i) cos (w+t ) + (b co t/л) cos (w _t)

— b y ( t ) .

Lastly, we can construct two independent normal-mode solutions 
cot fi x(t ) — y ( t )

V+(t) = tan fi + cot fi
_  tan f i x ( t )  + y ( t )  л 

V-(t) = —------------------- - = A

A+ cos (w+1), 

cos(w_ t),

(8.18)

(8.19)
tan ц  + cot /1

which oscillate at their respective normal-mode frequencies (i.e., rj± =
— T]±). The amplitude A+ vanishes when y ( t )  = x(t )  cot/i, or the 
amplitude A -  vanishes when y ( t )  — — x(t)  tan fi.

8 .3 .2  C o u p l e d  S i m p l e  H a r m o n i c  O s c i l l a t o r s

Ш m

ДА/—о— АДЛ— о - Д У -
к . . К к

X у

Fig. 8.3 Coupled identical masses and springs.

We begin our study of linearly-coupled oscillators by considering the 
following coupled system comprised of two block-and-spring systems, with 
identical mass m and identical spring constant k, coupled by means of a 
spring of constant К  (see Fig. 8.3). The coupled equations

ш x = — (к + K )  x + К  у  and m y  = —(k + K ) y  + K x  (8.20)

are derived as Euler-Lagrange equations from the Lagrangian

L = у  (z2 + f )  ~ \ (z2 + У2) ~ у  (x -  y)2.

The solutions for x(t) and y ( t )  are obtained by normal-mode analysis as 
follows.
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First, we write x(t)  and y ( t )  in the normal-mode representation x(t) = 
x exp(— iuit) and y ( t )  = у  exp(— iuit), where x and у  are constant oscilla­
tion amplitudes and the normal-mode frequency ш is to be solved in terms 
of the system parameters (m , k , K ). Next, substituting the normal-mode 
representation into Eq. (8.20), we obtain the following normal-mode matrix 
equation

' ш2 m  — (к + К )  К  \ ( x s

(8.22)

К  uj2 m - { k  + K ) J  \ y )  ° ’ 8̂ '21^
which couples the amplitudes x and y.  Comparison with Eq. (8.13) yields 

a = d  = (k + K ) / m  
b = K / m
\ = {a + d)/2 = (k + K ) / m  
A = { a - d ) / 2 = 0

which implies that cos(2/x) = 0 —> /x = 7r/4 according to Eq. (8.16), so 
that с = K / m  and tan/i = 1 = cot p  in Eq. (8.17), where the normal-mode 
frequencies are

<4 = (k + 2 K )/ m
„ I  = Л ± 6  = ( * ± £ )  ± К  = + (8.23)

"* m I  u i  = k/m
Figure 8.4 shows the normalized solution of the coupled equations (8.20), 

where time is normalized as t —> y 7k/m t  for the weak coupling (К  < k) 
case. Note that the two eigenfrequencies are said to be c o m m en s u r a t e  if the 
ratio w+/w_ = у  1 + 2 К/к  is expressed as a rational number p  for values of 
the ratio K/k = (p2 —1)/2 and that for commensurate eigenfrequencies, the 
graph of the solutions on the (ж, j/)-plane generates the so-called Lissajous 
figures. For non-commensurate eigenfrequencies, however, the graph of the 
solutions on the (x, y)-plane shows more complex behavior.

Lastly, we define the normal-mode coordinates
V±(t) = x(t) T y ( t ) .  (8.24)

Figure 8.5 shows the graphs of the normal coordinates r)±(t) = x(t) ^  
y ( t ) ,  which clearly displays the single-frequency behavior predicted by the 
present normal-mode analysis. The solutions rj±(t) are of the form 

T]± = A± cos(u±t + (p±), 
where A± and tp± are constants (determined from initial conditions). The 
general solution of Eqs. (8.20) can, therefore, be written explicitly in terms 
of the normal coordinates rj± as

x(t)  \ A-  A+
y ( t )  )  = ~2 cos^ - f + ± ~2 ~ +
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y-axis

(b)

y-axis

Fig. 8.4 Weak-coupling normalized solutions of the coupled equations (8.20) for K/k = 
5/8 (plots a, c, e) and K/k = 0.1 (plots b, d, f). Plots (a)-(b) show the parametric 
plots of y{t) versus x(t)\ plots (c)-(d) show x(t) versus time t; and plots (e)-(f) show y(t) 
versus time t.

8 .3 .3  C o u p l e d  N o n l i n e a r  O s c i l l a t o r s

Our next example considers coupled nonlinear oscillators, represented by 
the following system composed of two pendula of identical length I  but 
different masses m i and m2 coupled by means of a spring of constant к in 
the presence of a  gravitational field of constant acceleration g  (see Fig. 8.6). 
Here, the distance D between the two points of attach of the pendula is 
equal to the length of the spring in its relaxed state and we assume, for 
simplicity, that the masses always stay on the same horizontal line.

Using the generalized coordinates (#1,^2) defined in Fig. 8.6, the
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n_(0 = x(t) + y<0

n+(t) = *(t)-y(t)

Fig. 8.5 Normal coordinates T}-(t) and ?y+(t) as a function of normalized time for the 
case К/к = 2 with normalized frequencies 1 and л/5, respectively.

в

-• В '

Fig. 8.6 Coupled pendula.

Lagrangian for this system is 
/ • \

L  =  — (mi в\  + 7712 Щ J — g l  [ 77Zi (1 — COS$i) + ?7l2 (1 — cos $2 ) ] 

k f c  a ■----- — (Sin 6»i -SU l 02) ,
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and the nonlinear coupled equations of motion are

m i = -  т \ш 2 sin#i — к (sin#i — sin #2) cos#
(8.25)

Ш2 #2 “  — m2Wj sin #2 + к  (sin#i — sin #2) cos #2

where La2 — g/£.
It is quite clear that the equilibrium point #1 = 0 = #2 is stable and the 

expansion of the coupled equations (8.25) about this equilibrium yields the 
coupled linear equations

m i <71 = m i u>2 q\ -  к (gi -  q2)
(8.26)

m2 qi = -  m 2 u}2 q2 + к (q1 -  q2),я
where 6\ = qi -C  1 and # 2  = <12 1- The normal-mode matrix associated 
with these coupled linear equations (8.26) is

(w — ш2) m i — к к  \ (  Qi
к  (u j2 — u j2 ) m 2 — к  J  \ q 2

= 0, (8.27)

and the vanishing of its determinant yields the relation

[ (w2 -  ш2) ц  -  к ] (ш2 -  ш2) = 0,

where ц  = m i m 2/M is the reduced mass for the system and M  = m i + m 2 
is the total mass. The normal-mode frequencies are thus

2 2 i 2 2 к= uj„ and ш 1 = .y y fi

By inserting the eigenfrequency w2 = ui2 into Eq. (8.27), we obtain the 
m atrix equation

whose solution yields q2_ — qx_ = Q, which represents a net displacement 
of the motion of the center of mass:

7=r m i _ m2 _
Q “  - M q '~ + m ’ 2-

By inserting the eigenfrequency w2 = сид + к/ц  into Eq. (8.27), on the other 
hand, we obtain the m atrix equation

к (m i/ f i  — 1) к \ (Q i+\  _
к к ( т 2/ ц - 1 ) J  \ q 2+ '
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q2+ = - ( m i / / i - l ) § 1+ = ~ ( M / m 2 - l ) q l+ = - ( m 1/m2) q 1+.

In this case, the center of mass does not move since m\ q1+ + m 2 q2+ = 0. 
Lastly, we may solve for q\ and q2 as

whose solution yields

where rj± = A± cos(o;± t + ip±) are general solutions of the normal-mode 
equations t)± = — rj±. Here, denotes the displacement of the center 
of mass

while T]+  denotes the separation 77+  =  q\ -  q2 .

8 .3 .4  S t a b i l i t y  o f  t h e  S l e e p i n g  T op

8.3.4.1 Normal -mod e  Analys is o f  th e  S l e ep ing  Top

Lastly, we return to the problem of the sleeping top discussed in Sec. 7.4.3. 
Here, the equilibrium points of Eq. (7.85) are щ  = 1 and u 2 = (2 Ф2 —1)/3, 
where the first derivative of the potential V(u) vanishes, with

The second derivative of the potential V(u) is V"(u) = 2 [(Ф2 + 1) — 3u], 
which yields

and, thus, the equilibrium points uq — 1 and u 2 = (2 Ф2 — l)/3 are stable 
and unstable, respectively, when Ф2 > 2. Since u 2 = (2 Ф2 —1)/3 > 1 when 
Ф2 > 2, however, this unstable point is physically irrelevant since и  must 
satisfy и  = cos 6 < 1.

When Ф2 < 2, on the other hand, щ  ~ 1 becomes unstable, while 
u 2 = (2 Ф2 — l)/3 becomes stable. Since — | < u 2 < 1 for 0 < Ф2 < 2, the 
stable equilibrium point u 2 is physically relevant.

qi = V- + ~T7 V+ and q2 = 7y_ -  —  rj+, (8.28)

V\u) = (u  — 1) (2 Ф2 - 1 )  -  3 «  .

(8.29)
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i .3.4.2 Two -d im en s i ona l  Anal ys i s  o f  the  S l e ep ing  Top

Following a treatment presented by W hittaker [20], we return to the prob­
lem of the symmetric top with one fixed point expressed in terms of the 
Eulerian angles {tp, в, ф). where the Lagrangian is expressed as

I  j - 2
L = (j)2 + ф2 sin2 #̂  + -у  (ф + ф c o s f f j  — M g h  cos 9.

In Sec. 7.4, we eliminated the ignorable angles (ф, tp) and considered the 
reduced Lagrangian dynamics for the angle 9.

If we are interested in investigating the two-dimensional rotational dy­
namics of the symmetric top with one fixed point, however, we can construct 
the Routhian R± = L — рфф:

R_l  = ( в 2 + ф2 sin2 #̂  + M g h  ( 1 —cosO)  — рф ф (1 — cos#), (8.30)

where the canonical angular momentum рф = дЬ/дф  is a  constant of mo­
tion and we have omitted the terms Рфф — {Mgh + р^/2/ц) = d\/dt  since 
they can be represented as an exact time derivative.

We now study the two-dimensional rotation dynamics in the vicinity 
of 9 = 0 using Eq. (8.30). For this purpose, we introduce the Cartesian 
coordinates coordinates x = sin 9 cos tp and у  = sin 9 sin tp, which represent 
the projection of a point on the unit sphere onto the (x , y)-plane. W ith  
these coordinates, we readily obtain

x2 + y 2 = sin2 9 = (1 -  cos 9) (1 + cos 9)

•,y — у х  — ф sin2 9 = ф (1 — cos9) (1 + cos9)

+ ф2 sin2 1

(8.31)

x2 + y 2 = 92 cos2 1
If we now use the approximation that both x and у  are small in magnitude 
(i.e., 9 is small but ф is finite and may even be large), we obtain

О2 + ф2 sin2 9 ~ x2 + y 2

1 — cos# ~ | {x2 + y 2) (8.32)

ф (1 — cos#) ~ \ { x y  — y x )  
which, when substituted into the Routhian (8.30), yields the reduced 
sleeping-top Lagrangian

L(x,y;x,y) = y  (x2 + у2) + (x2 + y2 ĵ

РФ (  • Л-  у  [xy -  yx) ■ (8.33)
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The first term in Eq. (8.33) represents the rotational kinetic energy, the 
second term is a  destabilizing potential energy (analogous to an inverted 
pendulum; see also problem 9 of Chap. 7), and the third term represents the 
stabilizing non-inertial (Coriolis) energy — p^ z-  (r x  r), where p,pz plays 
a role similar to the angular velocity 2 ш involved in the discussion of the 
Coriolis acceleration observed in non-inertial frames in Sec. 6.3.

The coupled equations of motion for this problem are the Euler- 
Lagrange equations

I±_ x — M g h  x = — р-фуЛ
I , (8.34)

I ± y  -  M g h  у  = рф± )

which are identical in form with the Coriolis-corrected equations (6.51) for 
the Foucault pendulum. By introducing the definitions fi2 = 2 Mgh/1± 
and p^/I_l = ФП (see Eq. (7.84)), the normal-mode analysis of Eq. (8.34), 
with (ж, у )  = (x , y ) exp(—iuit ) ,  yields the matrix equation

w ‘ +  f i2/2 i Ф fi oj

■ i Ф fi uj u/2 + f i2/2
0. (8.35)

The nontrivial solution (ж, у )  ф (0 ,0) requires ш to be a  root of the quartic 
polynomial

w4 + fi2 (1 -  Ф2) w2 + fi4/4 = 0.

We thus easily find

fi2
~2

(Ф2 -  1) ± Ф \/Ф2 - 2 Ф ± х/Ф2 - 2

which yield four normal-mode frequencies ± (fi/2) v + and ± (fi/2) v - ,  
where u± = Ф ± \/Ф2 — 2. These frequencies are real if Ф2 > 2 (and, 
therefore, the motion is stable) or complex-valued (and, therefore, poten­
tia lly  unstable) if Ф2 < 2 (i.e., for Ф = 1, we find v± = 1 ± г).

We conclude our normal-mode analysis of the sleeping-top problem by 
constructing the normal-mode coordinates (x ± , y ±):

i Ф fi u±u2± + fi2/2

— i Ф fi u>± fi2/2,

x±

,У±.
-  0, (8.36)

where
f i2

Ф ± \/ф2 — 2
f i2

Ф i/±,
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and, thus, we find x± ± i y± = 0. The normal-mode solutions for x(t)  and 
y ( t )  are, therefore, expressed as

Л+ /П \ Л_ /П 
x(t) = —  cos I -  v + 1 I + —  cos I -  v -  t 

A+ . f Q  \ A -  . /П
y{t) = —  + —  sin f — i/_ t

(8.37)

(8.38)

which satisfy the coupled equations (8.34) for arb itrary constant coefficients 
A±. These solutions can be rearranged, with x = sin 0 cos ip and у  — 
sin 9 sin <p, to obtain an expression for x + i у  = sin в exp(i ip) ~ в  exp(i ip):

= A sin \/ф2 — 2 t j  exp ^  Ф t J  , 

where the last expression satisfies the initial condition 0(0) = 0.

(8.39)

Fig. 8.7 Orbits (x (t),y (t)) of a sleeping top for Ф2 =  4 (solid) and Ф2 =  1 (dashed), 
with initial conditions (xo,yo) = (0 , 0).

Figure 8.7 shows the sleeping-top orbits on the (x, y)-plane for Ф2 = 4 
(solid) and Ф2 = 1 (dashed). The effect of the Coriolis-like deflection is
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Table 8.1 Summary of Chapter 8 : Normal-Mode Analysis.

Topic Equation

Small Oscillation about a Stable Equilibrium (8.6M8.7)
Normal-mode Analysis for Two Degrees of Motion (8.12)-(8.19)
Coupled Simple Harmonic Oscillators (8.20)-(8.24)
Coupled Nonlinear Oscillators (8.25)-(8.28)
Stability Analysis of the Sleeping Top (8.30)-(8.39)

quite obvious when the sleeping top is stable (Ф2 > 2). As the top begins 
to fall (because of the gravitational torque) from a slight departure from 
6 = 0, the Coriolis-like deflection associated by рф is strong enough to bring 
the top back to в  = 0. Note that this Coriolis-like deflection is stronger as 
the top speeds up in its fall (i.e., as it moves radially outward, the radius 
of curvature increases). When Ф2 < 2 (dashed curve in Fig. 8.7), however, 
the Coriolis-like deflection is not strong enough and the gravitational torque 
causes the top to continue its fall (see problem 9 in Chapter 7).

8 .4  S u m m ary

Chapter 8 studied the stability of equilibria of Euler-Lagrange equations. 
When an equilibrium point was stable, one could calculate a  normal-mode 
frequency of oscillation based on the normal-mode analysis, which also 
yielded the normal modes of oscillation. Linear and nonlinear coupled 
oscillators were considered and the stability of the sleeping top was dis­
cussed in detail. Table 8.1 presents a summary of the important topics of 
Chapter 8.

8 .5  P ro b lem s

1. This problem deals with the numerical integration of the rad ial equation 
of motion (8.8), which is expressed in dimensionless form as

(\ + A p1) p" + 4 p  (p ') — (S7 2) />, (8.40)
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where 0  is a dimensionless parameter and p' = dp/dr  is defined in terms 
of the dimensionless time r .

(a) Find expressions for p , r ,  and il.

(b) Integrate Eq. (8.40) (with initial conditions po = 1 and p '0 = 0) for (I) 
О < 2, (II) 0  = 2, and (III) 0  > 2.

(c) Compare the orbits obtained in Part (b) with the stab ility analysis of 
this problem found in Sec. 8.2.

2. The following compound pendulum is composed of two identical masses 
m  attached by massless rods of identical length £ to a ring of mass M ,  which 
is allowed to slide up and down along a vertical axis in a  gravitational field 
with constant g  (see Fig. 8.8). The entire system rotates about the vertical 
axis with an azimuthal angular frequency ljv .

(a) Show that the Lagrangian for the system can be written as

L(6 , 6 ) = l 262 (m + 2M  sin2 в)  + m £2 u>2 sin2 # + 2 (m  + M)g£ c o s  в

m m

Fig. 8.8 Problem 2.

(b) Identify the equilibrium points for the system and investigate their



Normal-Mode Analysis 237

stability.

(c) Determine the frequency of small oscillations about each stable equilib­
rium point found in Part (b).

3. Consider the same problem as in Sec. (8.3.2) but now with different 
masses m i  ф m 2 (see Fig. 8.9). Calculate the eigenfrequencies and eigen­
vectors (normal coordinates) for this system.

k  1— ►  к  b >  k

X у

Fig. 8.9 Problem 3.

4. Find the eigenfrequencies associated with small oscillations of the system 
shown in Fig. 8.10.

> r

5. Two blocks of identical mass m  are attached by massless springs (with 
identical spring constant к ) as shown in Fig. 8.11. The Lagrangian for this 
system is

к
L { x , x ; y , y ) = у  (±2 + y 2) -  

where x and у  denote departures from equilibrium.

+ {У- x )
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Fig. 8.11 Problem 5.

(a) Derive the Euler-Lagrange equations for x and y.

(b) Show that the eigenfrequencies for small oscillations for this system are

where иij. = к /то.

(с) Show that the eigenvectors associated with the eigenfrequencies ш± are 
represented by the relations

where (x±, y ±) represent the normal-mode amplitudes.

6. An infinite sheet with surface mass density cr has a hole of radius R cut 
into it. A particle of mass m sits (in equilibrium) at the center of the circle. 
Assuming that the sheet lies on the (x , y)-plane (with the hole centered at 
the origin) and that the particle is displaced by a small amount г  <C R 
along the г -axis, calculate the frequency of small oscillations.

7. Two identical masses are connected by two identical massless springs 
and are constrained to move on a  circle (see Fig. 8.12). Of course, the two 
masses are in equilibrium when they are diam etrically opposite points on 
the circle. Solve for the normal modes of the system.

8. Consider a  pendulum of mass m  attached at a  point О with the help 
of a  massless rigid rod on length i .  Here, point О is located at a distance 
R >  £ from a axis of rotation and is rotating at an angular velocity fi about 
the axis of rotation (see Fig. 8.13).

(a) Show that there are two equilibrium configurations to this problem,



Normal-Mode Analysis 239

Fig. 8.12 Problem 7.

Fig. 8.13 Problem 8.

which are obtained from finding the roots to the transcendental equation 

(R — t  sin#) Q2 cos# = g  sin#.

(b) Show that one equilibrium configuration is stable while the other is 
unstable.

9. Two particles of identical masses are connected to each other by a  spring 
(with constant k) and are allowed to move without friction on a hoop of 
radius R  (see Fig. 8.14). The angles #i and #2 are expressed in terms of the 
generalized coordinates # and ip as #1 = # and #2 = # + <,2 — 0 , where # is the
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angular displacement of the right mass from the vertical, 0  is the angular 
separation between the two masses when the spring is at equilibrium, and 
i f  is the angular displacement of the spring away from equilibrium.

Fig. 8.14 Problem 9.

(a) Show that the Lagrangian for this system is

L = — R 2 
2 + (<? + ¥>) — — (R f )2 + m g R  [cos 9 + cos (9 + tf — 0 )] ,

and derive the Euler-Lagrange equations for 9 and f .

(b) Show that the potential U(9,ip) has a global minimum at 0q and i fo, 
which satisfy the transcendental equation

eo =  ^ (0  ~ Ы  =  ^ (0  -  ft2 sin 9o),

where Г22 = lu2/oj%. is the ratio of the squared pendulum frequency ui2 = g/R  
and the squared spring frequency oj2 = k/m.

(c) Find the eigenfrequencies and eigenvectors for the normal modes of 
small oscillations about the equilibrium defined by 9q and f o .



Chapter 9

Continuous Lagrangian Systems

This last Chapter, in fact, represents the beginning for some of the most 
important applications of Lagrangian methods in physics, namely those 
that apply to classical mechanics, special and general relativisty, or classical 
and quantum field theories. So far in this textbook, Lagrangian methods 
have been applied to derive equations of motion for particles or rigid bodies. 
The Noether method has also been applied to obtain the conservation laws 
of energy and momentum for these systems whenever symmetries existed 
for the corresponding Lagrangians.

While a  systematic presentation of the Lagrangian formulation of field 
equations cannot be undertaken at this level, a few examples have nonethe­
less been selected that give a flavor of the power of the Lagrangian method 
for continuous systems.

9.1 W aves on a  S tre tc h ed  S tr in g

9 .1 .1  W a v e  E q u a t i o n

The equation describing transverse waves propagating on a  stretched string 
of constant linear mass density p  under constant tension T  is

d 2u ( x , t ) d 2u(x , t )
P d t 2 dx 2 ’ 1 J

where u ( x , t ) denotes the amplitude of the wave at position x along the 
string at time t. General solutions to this linear wave equation involve 
arb itrary functions g (x  ± v t ) ,  where v  = л/Т/р represents the speed of 
waves propagating on the string. Indeed, we find

p d ? g ( x ± v t ) = p v 2 g "  = T  g "  = T  d 2xg (x  ± v t ) .

241
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The interpretation of the two different signs is that g (x  — v  t) represents a 
wave propagating to the right while g ( x + v  t) represents a wave propagating 
to the left. The general solution of the wave equation (9.1) is

u (x , t )  = A ^ g ( x - v t )  + A+ g (x  + v t ) ,  

where A± are arb itrary constants determined from initial conditions

9 .1 .2  L a g r a n g i a n  F o r m u l a t i o n

The question we now ask is whether the wave equation (9.1) can be derived 
from a variational principle

5 J  L (u , d tu , d xu) d x d t  = 0, (9.2)

where the Lagrangian de n s i t y  L(u,  d tu , dxu)  is a function of the dynamical 
variable u(x,  t) and its space-time derivatives. Here, the variation of the 
Lagrangian density L in Eq. (9.2) is expressed as

dL dSu dL dSu dL
SL = 6u d u  d t  d ( d tu ) dx d ( d xu ) ’

where 8u(x,  t) is a general variation of u(x,  t) subject to the condition that 
it vanishes at the integration boundaries in Eq. (9.2), and we used the 
substitutions 6 (du/dt )  = d5u/dt  and S(du/dx)  = dSu/dx.  By re-arranging 
terms, the variation of £ can be written as

( d L
-^1 f  dC \ d

\ 0 u d t  1\ d ( d tu ) J dx
dC

d{dxu) )}
d  /„ dC  \ d_ Л  dC

/

d t  \du  d{dtu ) )  + dx  V U d{dxu)  J  ' (9'3)

When we insert this expression for 5С into the variational principle (9.2), 
we obtain

d x i i S u { f u -  K a ^ o )  -  й ( э £ ) ) }  = 0| (94)

where the last two terms in Eq. (9.3) cancel out because Su vanishes on 
the integration boundaries. Since the variational principle (9.4) is true 
for general variations Su, we obtain the Euler-Lagrange equation for the 
dynamical field u ( x , t ):

d  / dC \ d  f  dC \ dL
d t  \ d ( d t u ) )  dx \ d ( d xu) J  d u
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The question we posed earlier now focuses on deciding what form the 
Lagrangian density must take. Here, the answer is surprisingly simple: the 
kinetic energy density of the wave is p  (d tu ) 2/2 , while the potential energy 
density is T  (dxu ) 2/2, and thus the Lagrangian density for waves on a 
stretched string is

£(«, 3 , м )  = f  ( I f )  -  f  ( g )  , (9.6)

where it is assumed (for simplicity) that the mass density p  and tension T  
are uniform and time-independent. Since dC/du = 0, we find 

d_ f  dC \ _  d_ / d u \  cPu  
d t  \ d ( d tu ) )  d t \ d t )  P d t 2 ’

A (  o c  )  = ± ( _ t !*l \ = _ t ^
дх  \ d ( d xu ) )  dx \ d x )  dx2 '

and Eq. (9.1) is indeed represented as an Euler-Lagrange equation (9.5) in 
terms of the Lagrangian density (9.6).

The energy density £ of a  stretched string can also be calculated by 
using the Legendre transformation:

_  д и  дС  _  p  ( д и \ 2 T  ( d u \ 2
d t  d ( d tu)  2 \ d t )  ^  2 \ d x )

By using the wave equation (9.1), we readily find that the time derivative 
of the energy density

д£ д  / d u  d u \  
d t  dx  \ d t  d x )  

can be expressed as an energy conservation law d t£ + d S  = 0, where the 
energy-density flux is defined as S  = —T d xu d t u .  The next Section will 
present the general variational formulation of classical field theory, which 
enables us to show that the wave equation (9.1) also satisfies the momentum 
conservation law d tP  + dxП = 0, where the momentum density is V = S/v 2 
and the momentum-density flux is П = 8 .

9.2 Variational Principle for Field Theory*

The simple example of transverse waves on a stretched string allows us to 
view the Euler-Lagrange equation (9.5) as a  generalization of the Euler- 
Lagrange equations

d  (  d L \  dL
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in terms of the generalized coordinates ql . We now spend some time in­
vestigating the Lagrangian description of continuous systems, in which the 
dynamical variable is the single-component field ^ (x , t),  which can easily 
be generalized to fields with multiple components.

9 .2 .1  L a g r a n g i a n  F o r m u l a t i o n

Classical and quantum field theories rely on variational principles based on 
the existence of action functionals. The typical action functional is of the 
form

Л[ф\ — J  d i x С(ф, д^ф), (9.7)

where the wave function t/>(x, t ) represents the state of the system at posi­
tion x  (in n-dimensional space) and time t, while the entire physical content 
of the theory is carried by the Lagrangian density C. We, henceforth, use 
the convenient four-vector notation d^ = (c~1d t , V) in Eq. (9.7) and we 
use the space-like metric tensor1 = d iag(—1, +1, +1, +1)-

The variational principle is based on the stationarity of the action func­
tional (9.7):

d
0 = дЛ[ф] = ^  (Л[ф + e 5ф] j Q = J  6С(ф, d^ip) d 4

Here, the functional variation of the Lagrangian density is
dC дбф

(9.8)

where

5 С = —  6ф + 
дф

=  дф

дС д бф

' dC (  dC  \ 1
_ dф dx \ d ( d ^ ) J  \

дС
■Чбф

+

дС

д к *1 
д х v  '

(9.9)

д бф  
d(d tф)  d tд ( д^ф)  дхV д ( ^ ф )  

and the exact space-time divergence d^iV1 in Eq. (9.9) is obtained by rear­
ranging terms, with

= 5ф
дС

д{д^ф)
and

д№  
д х ^

а
d t

5ф
дС  \

д & ф ) )
+ V • (5ф

дС  \

д ш ) ’
The variational principle (9.8) then yields

дС  d/0 = / d  x 8ф
дф  dx p \ d ( d цф)

d c

*For two four-vectors =  (A0 , A) and В M = (£?°,B), we have A ■ В = АцВ** =
A  • В -  A0 B°, where A0 = -  A0 .
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where the exact divergence <9МЛМ drops out under the assumption that the 
variation 6ф vanish on the integration boundaries. Following the standard 
rules of Calculus of Variations, the Euler-Lagrange equation for the field ф 
is

d (  9C \ _  d_ f  dC \ / dC 
dxp  \ d { d ^ ) J  dt \d(dtф) )  + \0(VVO

The generalization to a multiple-component field simply involves replacing 
the single field ф with the field component фа (where the component index 
a  > 2).

dC
д ф '

(9.10)

9 .2 .2  N o e t h e r  M e t h o d  a n d  C o n s e r v a t i o n  L a w s

Since the Euler-Lagrange equation (9.10) holds true for arb itrary field vari­
ations 5ф, the variation of the Lagrangian density £ is now expressed as 
the Noether equation

SC
dA» 
dxf1

5ф
dC

d{ d» i ’) _
(9.11)

which associates symmetries with conservation laws du J M = 0.

9.2.2.1 Ene r g y -M om en tum  Cons e r v a t i o n  Law

The conservation of energy-momentum (a four-vector quantity) involves a 
symmetry of the Lagrangian with respect to constant s p a c e - t im e  transla­
tions xu —> xp = xu + Sxu, where Sx^ = (cSt,5x.).  The variation 5ф is no 
longer arb itrary in Eq. (9.9) but is required to be of the form

5ф — — Sxv d „ф, (9.12)

which follows from the scalar-invariance property ф(х) = ф(х),  with ф = 
ф + 6ф. The variation SC, on the other hand, is expressed as

SC = -  Sx" d v C -  (dv C) (9.13)

where (d v C ) ,  denotes the explicit derivative of £ at constant ф. 
The Noether equation (9.11) can now be written as2

w l  = l s
(9.14)

2Compare with Eq. (2.48): d/dt (St L — <5q • dL/dq) =  St (dL/dt)4 i(j.
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If the Lagrangian is explicitly independent of the space-time coordinates,
i.e., (д,,£)ф = 0, the energy-momentum conservation law Т ,ш = 0 is 
written in terms of the energy-momentum tensor

TfH, s  c  »» _  W  (9.1.5)
8 (8 ^ )  d x u

We note that the derivation of the energy-momentum conservation law is 
the same for classical and quantum fields. A similar procedure would lead 
to the conservation of angular momentum by considering symmetries of the 
Lagrangian density under arb itrary rotations.

We briefly return to the problem of waves on a stretched string (Sec. 9.1) 
and derive the components of the energy-momentum tensor (9.15) for the 
Lagrangian density (9.6):

nxo — 1 d u  T  d u  d u  S
v  d ( d xu) d t  v  dx  d t  v '

n0x dC d u  d u  d u

(9.17)

= ~ p v e i ^ s V v ’ (918)
mT.  . dC d u  p  ( d u \ 2 T  ( d u \

+  о  « Г  = П. (9.19)d ( d xu)  dx  2 \ d t  J  2 \ dx  J

We have thus shown that the energy-momentum conservation laws d tS  + 
dxS  = 0 and d tV + dxII = 0 can be expressed as d^T 111' = 0, where 
dfj. = dt, dx) with v 2 = T /p. If we compare Eqs. (9.17)-(9.18), we 
immediately conclude that the tensor T^v is symmetric: T 0x = T x0, since 
T/v  = p v .

9.2.2.2 Wave-Ac t ion Con s e r v a t i o n  Law

Waves are known to exist on a  great variety of media. When waves are 
supported by a spatially nonuniform or time-dependent medium, the con­
servation law of energy or momentum no longer apply and instead energy 
or momentum is transfered between the medium and the waves. There is, 
however, one conservation law which still applies and the quantity being 
conserved is known as the wa v e  act i on.

The derivation of a wave-action conservation law differs for classical 
fields and quantum fields. The difference is related to the fact that, whereas 
classical fields are generally represented by real-valued wave functions (i.e.,
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ip* = ip), the wave functions of quantum field theories are complex-valued 
(i.e., ip* ф ip).

The first step in deriving a  wave-action conservation law in classical 
field theory involves transforming the real-valued wave function ip into a 
complex-valued wave function ip. Next, variations of ip and its complex 
conjugate ip* ф ip are of the form

Sip = iSipip and Sip* = — iSipip*, (9.20)

obtained by introducing an infinitesimal phase shift Sip in ip —>■ ip = 
ip exp(i Sip) and ip* —»■ ip = ip* exp(— i Sip). Lastly, we transform the clas­
sical Lagrangian density С into a  real-valued Lagrangian density CR(ip, ip*) 
such that SCfi = 0 (i.e., C r  is explicitly independent of the phase of the 
wave function ip). The wave-action conservation law is, therefore, expressed 
in the form dM = 0, where the wave-action four-density is

d C R
J »  =  21m ip (9.21)

д{д^ 1р) J
where Im[- • •] denotes the imaginary part [i.e., Im(a*6) = (a*b — ab*)/2i\.

The standard method in deriving the wave-action four-density (9.21) 
makes use of the e ikonal  representation for the real-valued wave field ip(x, t): 

i p(x, t)  = $ ( e x , e t )  ei 0 (£X’£t)/e + $*(ex , et )  e~£»(«.**)/*, (9.22) 

where ip denotes the complex-valued eikonal amplitude and 0  denotes the 
eikonal phase. The small parameter t  С  1 indicates that the space-time 
gradient

d^ip = ( г к ц ф  + e i p ^ e i e/ e  + ( - i k ^ i p *  + е ф * ^ е ~ гв/е

is expressed (to lowest order in e) in terms of the wave four-vector

kp. = б-1 <9M0  = 0 iM = (-w / c , k ) , (9.23)
where we used the eikonal relations (3.15). Hence, to lowest order in e, the 
Lagrangian density С {'ф. д 12ф) for a real-valued wave field ip becomes the 
real-valued eikonal-averaged Lagrangian density CR{ip’, k^) for the complex­
valued wave field ip. The wave-action density (9.21) now simply becomes

J “ = e  ^  = § 5 ,  (9.24)
д ( д ^ в )  д к д

and the wave-action conservation law becomes the Euler-Lagrange equation
d  (  dC R \ dCR _

— u,dx^ \<9(с^0)/ 9 0  
which follows from the fact that C r  is independent of the eikonal phase 0  
but not its space-time derivatives <9;,0 .
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9.3 S ch ro ed in g er ’s E quation

A simple yet important example for a quantum field theory is provided by 
the Schroedinger equation for a spinless particle of mass m  subjected to a 
real-valued potential energy function C/(x, t). The Lagrangian density for 
the Schroedinger equation is given as

C '  _  +  * ( r  Й  -  (9.25)

The Schroedinger equation for ip is derived as an Euler-Lagrange equation
(9.10) in terms of ip*, where

8 C r  i h  d  (  8 C r  \ _  i h  dip
d ( d t ip*) 2 d t  \ d ( d t ip*) J  2 d t '

d C R _  h2 (  d C R \ _  h2 2
d ( y i p * )  2m  ' \d(Vip*) )  2m

d C R _  i h  dip 
dip* ~ 2 d t

By combining these derivatives, the Euler-Lagrange equation (9.10) for the 
Schroedinger Lagrangian (9.25) becomes

= ~ ^ V 2iP + UiP, (9.26)d t  2m
while the Schroedinger equation for ip* is as an Euler-Lagrange equation
(9.10) in terms of ip:

-  i h  ^  V V  + U ip*, (9.27)
d t  2m

which is simply the complex-conjugate equation of Eq. (9.26).
The energy-momentum conservation law for the Schroedinger equation

(9.26) is now derived by Noether method. Because the potential U(x, t )  is 
in general spatially nonuniform and time dependent, the energy-momentum 
contained in the wave function is not conserved and energy-momentum is 
exchanged between the wave function and the potential U. For example, 
the energy t r ans f e r  equation is

| + V . S  = M 2 f ,  (9.28)

where the energy density £ and energy density flux S are given explicitly
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The momentum transfer equation, on the other hand, is 
я р
_ + V . T  = - M  2 V£/, (9.29)

where the momentum density P  and momentum density tensor T are given 
explicitly as

zH
p =  — (-Ф VV>‘  -  -ф* Щ )  

h2
т = c R  i + —- (v-0* w  +  w *).

2m
Note that Eqs. (9.28) and (9.29) are both exact equations for any time- 
dependent, nonuniform potential U(x, t ) .

Whereas energy-momentum is transfered between the wave function ^  
and the potential V, the amount of wave-action contained in the wave 
function is conserved. Indeed, the wave-action conservation law is

d  7
- ^ - + V - J  = 0, (9.30)

where, according to Eq. (9.21), the wave-action density J  and wave-action 
density flux J  are

h2
J  = h\ip\2 and J  = — Im (V>* Vf/;) • (9.31)

Thus wave-action conservation law is none other than the law of conserva­
tion of probability associated with the normalization condition

/\ip\2 d3x = 1

for bounds states or the conservation of the number of quanta in a scattering 
problem.

Lastly, by substituting the ansatz

iJj = у/p exp( iS/h)  (9.32)

in the Schroedinger Lagrangian density (9.25), where p > 0 and <S are real­
valued functions, we can easily obtain the “classical” Lagrangian density

f d S  |V<S|2 
C c  = " P ( d t  + + U

in the classical limit h  - »  0. The variational principle

S J  C c ( p - , S , d t S , V S ) d t  = 0
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with respect to variations Sp then yields the Hamilton-Jacobi equation (3.8)

where H  is the Hamiltonian function with momentum p = V S  defined 
in terms of S  (see Table 3.1). We thus see the explicit connection be­
tween the Hamilton-Jacobi equation for classical particle dynamics and the 
Schroedinger equation (9.26) for quantum mechanics. The Euler-Lagrange 
equation for p  (corresponding to variations SS), on the other hand, yields 
the conservation law

d p  „  / V S \  
d t  + V ‘ [ P ^ J  ~ ° ’

which is identical to the wave-action conservation law (9.30), with J  = h p  
and J  = J V S / m .

9.4  E u ler  E quation s for a  P erfec t F lu id

Given Euler’s role in the development of the Calculus of Variations in 
Chap. 1, it is extremely fitting to end this textbook on Lagrangian Me­
chanics by considering the Euler equations of motion for a perfect fluid

^  + V - ( p u )  = 0, (9.33)

p  ( J ^  + u - v ) u  = - V p ,  (9.34)

d  9
—  + u - V 5  = 0. (9.35)

Equation (9.33) represents the particle (mass) conservation law, where 
p(x,  t) denotes the mass density of the fluid and u (x , t) denotes the fluid 
velocity. Equation (9.34) represents Newton’s Second Law for the perfect 
fluid, which states that the fluid moves under the influence of a pressure 
gradient force — Vp(x, t).  Equation (9.35) represents the conservation of 
entropy S(x ,  t),  which states that entropy is ad v e c t ed  with the fluid.

According to the First Law of Thermodynamics, the mass density p 
and the entropy S  (per unit mass) of the fluid can be used as independent 
variables so that a change 5e(p,  S ) in the internal energy (per unit mass) 
of the fluid can be expressed as

Se = T  SS — pS p~ x, (9.36)

where T  and p  denote the temperature and pressure of the fluid.
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The Euler-Lagrange formulation of the Euler fluid equations (9.33)-(9.35) 
is based on the Lagrangian density

с  = \ e \ u ?  - p s  + ф ( ^  + v . p u )  -  (9.37)

where ф and Л are Lagrange multipliers used to enforce the particle conser­
vation law (9.33) and the constraint (9.35) that entropy is advected by the 
fluid. Here, the variational fields are represented by the seven-component 
field фа = (p, u, S: ф, Л) and the Euler-Lagrange equation for each compo­
nent tpa is

3  '  “  '  ■ V .  Г “  )  -  “  ( 9 ,8 ,

9 .4.1 Lagrangian Form ulation

d t  \d(dt^[)a ) J  \d(Vipa) J  д ф а
We note that the Lagrangian density (9.37) does not have space-time deriva­
tives for all fields. For example, it is immediately obvious that we re­
cover the constraint equations (9.33) and (9.35) from variations of the La­
grangian density with respect to the Lagrange multipliers ф and Л (i.e., 
дС/дф = 0 = 5С/д\).

The Euler-Lagrange equation for the mass density p is

t О » )
where h = d ( p e ) / d p  = e  + p/p  is the en tha lpy  of the fluid. The Euler- 
Lagrange equation for the entropy S  is

f  =  T, (940)

where we made use of Eqs. (9.33) and (9.36). Lastly, the Euler-Lagrange 
equation for the fluid velocity u  yields

u  = \7ф + Л VS, (9.41)

which introduces a decomposition of the fluid velocity in terms of a curl- 
free term (i.e., V X Уф = 0) and a term that is proportional to the entropy 
gradient.

We now show that the equation of motion (9.34) is contained in 
Eqs. (9.39)-(9.41) as follows. First, we write the partial time derivative 
of Eq. (9.41)
<9u _ дф  <9A d S
1 * = v <l  + a y s  + A V a

= V ( -  |u|2 -  h  -  и - V o )  + (Г -  u-VA)  VS  -  A V ( u - V S ) .
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By rearranging terms, we find
О
^  = V u - ( u  -  Уф -  A V S) -  u • V (V<£ 

-  V/i + T VS.

A V S)

Lastly, by using Eq. (9.41) and the identity T V S  — Vh = — p  l S7p, we 
recover Eq. (9.34).

9 .4 .2  E n e r g y - M o m e n t u m  C o n s e r v a t i o n  L a w s

We now derive the energy-momentum conservationlaws for the Euler fluid 
equations (9.33)-(9.35). The Noether equation for the Lagrangian density 
(9.37) is expressed as

SC — — (ф 5p — p  A <5sj + V • (Sp u  + p  <5u) ф — p u  X5S . (9.42)

Here, the variations (dp, 5u, SS) are expressed in terms of space-time trans­
lations £ = (5x — u  dt as

6p  = - V - ( £ p ) ,

<5u = + u • V£ — £ • Vu,a t
6S  — — VS,

which satisfy the constraint equations

dSP—  = -  V - (<5pu + p<5u),

dSS
d t

(Su • V S  -  U-V8S.

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

By substituting Eqs. (9.43)-(9.45) on the right side of the Noether equation 
(9.42), we obtain

SC
d_
d t

( p i -u) + v. u ( p £ - u )  -  p i  ( ~ |u| h (9.48)

after carrying out several cancellations as well as using the identity

V - [рф (u£  - £  u)] = V X ( р ф £ х  u ) ,

and using Eq. (9.39) for с1ф/<И.
First, the energy conservation law

d£
dt

+ V - S  = 0 (9.49)
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Topic Equation

Lagrangian Density for a Wave on a Stretched String (9.6)
General Euler-Lagrange Field Equation (9.10)
Noether Equation and Conservation Laws (9.11)-(9.15)
Lagrangian Formulation of the Schroedinger Equation (9.25)-(9.31)
Lagrangian Formulation of the Euler Equations for a Perfect Fluid (9.37)-(9.53)

is associated with time-translation symmetry for which SC = —St dC/dt ,  
where the energy density and energy-density flux are

£ = p  |u|2 -  С = p Q  |u|2 + e j  , (9.50)

S = P U Q  H 2 + e j  + p u  = ( £ + p ) u .  (9.51)

Second, the momentum conservation

8P—  + V -T  = 0 (9.52)

is associated with space-translation symmetry for which SC = - d x  • VC, 
where the momentum density and stress tensor are

P  = p u  and T = p u u  + p i .  (9.53)

The Euler fluid equations also possess a wave-action conservation law, which 
requires us to introduce a fluid reference state on which waves propagate.

We note in closing that the Euler fluid equations (9.33)-(9.35) possess 
a  different Lagrangian formulation (see problem 5) that makes use of con­
strained variations for the fluid fields (p, u, 5 ) without the use of Lagrange 
multipliers (ф, A).

9.5  S u m m ary

Chapter 9 presented a  brief introduction to the Lagrangian formulation 
of classical and quantum field equations. The Noether method was also 
presented and applied to the derivation of the energy-momentum and action 
conservation laws. Table 9.1 presents a summary of the important topics 
of Chapter 9.
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9.6 P ro b lem s

1. Verify Eqs. (9.28)-(9.29) for an arb itrary potential U (x , t ) in the 
Schroedinger equation (9.26).

2. When we insert the ansatz (9.32) into the Schroedinger equation (9.26), 
we obtain two equations defined as the real and imaginary parts of the 
resulting Schroedinger equation. Derive these two equations and give their 
interpretations in the classical limit h  —» 0.

3. Show that Eqs. (9.39)-(9.41) have the Euler-Lagrange form (9.38).

4. Show that Eqs. (9.43)-(9.45) satisfy the constraint equations (9.46)- 
(9.47).

5. Consider a  perfect fluid under the influence of an external force (e.g., 
gravity) and subject to the equation of motion

p  ( J ^  + u - V ^  u = -  Vp -  p V Ф,

where Ф(х, t) denotes the scalar potential (per unit mass) associated with 
the external force. Show that the new equation of motion can be derived 
from the new Lagrangian density

с  = i / > M 2 -  f , ( e  + Ф) + ф ( ^  + V - „ u )  -

6.* Show that the Euler fluid equations (9.33)-(9.35) can be formulated in 
terms of a  constrained variational principle, with the Lagrangian density

£ = \ />lu l2 “  P£{P,S),  

where the constrained variations

SP = - V - ( p £ ) ,

<5u = ^  + u - V£ -  £ • Vu,

6S  = - £ - V S ,  

are expressed in terms of the virtual fluid displacement £.



Appendix A

Basic Mathematical Methods

Appendix A introduces, first, a simple solution for finding the roots of 
a general cubic polynomial, which is a problem that is encountered often 
enough throughout the textbook. Second, we present a compendium of def­
inite integrals that are evaluated by either the trigonometric-substitution 
method or the hyperbolic-trigonometric-substitution method. Third, an 
explicit derivation of the Frenet-Serret formulas is presented for an arbi­
trary curve in three-dimensional space used in Chapters 1-2 and 6. Fourth, 
some basic concepts in linear algebra that a student may have acquired 
before taking this course are summarized. Hopefully, this material will as­
sist the student in following the presentation in Chapters 7 and 8. Lastly, 
some general comments are made concerning the numerical analysis of the 
nonlinear (and coupled) differential equations presented in this textbook.

A .l  Roots of a General Cubic Polynomial

The problem of finding the roots of a cubic polynomial arises often enough 
in physics, that it is worthwhile to present a simple solution based on a 
standard trigonometric identity

cosф =  cos ^3 • — 4 cot3((/>/3) — 3 cos(</>/3), (A .l)

where ф may be real or complex-valued.
We begin with the problem of finding the roots of a general cubic poly­

nomial

f ( x )  = 4  x 3 +  a x 2 +  b x  +  c, (A.2)

where the constants (a, b, c) are arbitrary, and the coefficient 4 appears in 
analogy of Eq. (A .l). In order to continue this analogy, we need to find

255
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a transformation x  =  z +  a  that will eliminate the 22-term with a proper 
choice of a. First, we introduce the Taylor expansion

f { z  +  a ) =  f ( a )  +  f ' { a ) z  +  i  f"(a) z 2 +  4 z3,

and request that f " (a )  vanish, which yields an expression for a  in terms of 
the coefficient a:

f"(a) = 2 4 a  +  2a =  0 =

Hence, with this choice for a, the cubic polynomial (A.2) becomes
P (z )  =  4 z 3 +  f ' (a )  z +  f (a )  =  4 z3 -  g2 z  -  g3, (A.3) 

where the new coefficients are g2 =  — f ' (a )  and дз =  — f (a ) .  The notation 
used here is taken from the Weierstrass equation (B.19).

Secondly, we define two parameters /3 and ф (which may or may not be 
real):

g2 =  3/32 and g3 =  /33 cos ф, (A.4)
so that the first root of Eq. (A.3) is

Z\ =  P  cos((/>/3). (A.5 )

Note that we easily verify that
4 z 3 — g2 z — g3 =  0 3 [4 cos3((/>/3) — 3 cos(<j!>/3) — cosф] =  0, 

which follows from the trigonometric identity (A .l).
Thirdly, if we divide Eq. (A.3) by (z — z\), we obtain the quadratic 

polynomial
4 z 2 +  4/3 cos(0/3) z +  (32 [4 cos2(0/3) — 3], 

whose roots are

z2,з =  P [^ ~ \  cos(0/3) ±  ~  sin(0/3) j  =  -  /3 cos -

(A.6)
Hence, the three roots of the cubic polynomial (A.2) are

Xi =  a  +  /3 cos(^>/3) and жг,з =  a  — /3 cos[(7r ±  ф)/3], 
where _________

- / ( a )a  =  P =  \J- ^ / '( a ) ,  and ф =  arccos
■ / ' ( q )/3 )3/ 2_

Lastly, we note that the roots of Eq. (A.2) are multiple if the discrimi­
nant A  =  g2 —27 g3 vanishes, where

Д =  27 p 6 ( 1  — cos2 ф) =  27 /36 sin2 ф.
Hence, two roots are equal when ф =  0: x\ =  a  +  /3 and 2:2,3 =  a  — P/2 or 
ф — 7г: Ж1,2 =  a  +  p/2 and Х3 =  a  — /3. When the constants (a, b, c) are 
real in Eq. (A.2), then either all roots are real or one root is real and the 
other two are complex-conjugate of each other (see Fig. B.5).
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The method of trigonometric substitution has a special place in physics. 
It is used in most chapters of this textbook. In this Section, we present 
a compendium of integrals that are solved either by the trigonometric- 
substitution method or the hyperbolic-trigonometric-substitution method. 
The goal of this method is to convert an integral of the form J f  (\/l ±  x 2) dx 
into a trigonometric-function integral that can be readily evaluated. The 
reader may consult Gradshteyn and Ryzhik [8] for additional useful 
formulas.

A .2.1 T rig on om etr ic  F u n ction s

The trigonometric-substitution method relies on the following trigonometric 
identities

cos2 # +  sin2 9 =  1 and 1 +  tan2 # =  sec2 #, 

and the indefinite integral

J  sec 9 d9 =  ln(sec# +  tan#),

which leads to the indefinite integrals

A .2 Integration by Trigonometric Substitution

(A.7)

(A.8)

arctan xarctan x
(A.9)

(A.IO)

1. Sine substitution (t =  sin# —> dt/\/1 — t2 =  d9)
в

2. Cosine substitution (t =  cos# —» dt/s/ 1 — t2 =  — dff)
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3. Tangent substitution I (t =  tan# —> dt/(t2 +  1) =  dO)

Г ™ 6 dt f x dt /A
0 =  1  WT~1 ^  arc,an*  =  I — i  (A 13)

Tangent substitution II (у =  tan# —> dy/\/y'2 +  1 =  sec# d6 )
/•x i M rctan i ________

/  ■■ ■ =  /  sec# d# =  In (ж +  \/ж2 +  1) (A .14) 
7o v y 2 + 1  io  ̂ '

4. Secant substitution (y = sec# -> dy/\ /у2 — 1 =  sec# dO)

sec 6  dO =  In (ж +  \Лс2 — 1 j  (A.15)

A .2.2 H yp erb o lic -T r ig o n o m etr ic  F u n ction s

The hyperbolic-trigonometric-substitution method relies on the following 
hyperbolic-trigonometric identities

cosh2 г — sinh2 z =  1 and 1 — tanh2 г =  sech2z,

where

cosh z =  cos(i z) =  -  (ez 4- e ~ z) and sinh z =  —i sin(z z) =  -  (ez — e ~ z ).
— 2

1. Hyperbolic-sine substitution (у  =  sinh г —> dy/\Jy2 +  1 =  dz)

,  =  Г "  -  -S in h , =  f  *  (A .16)
Л  Jo y f i f T 1

Tangent substitution (г/ =  tan< —> dy/\Jy2 +  1 =  sec tdt)
/•arctan 2 ________

arcsinhz =  J  sect dt =  In +  \A 2 +  l j  (A.17)

2 . Hyperbolic-cosine substitution (y = cosh г —> dy/\Jy2 — 1 = dz)

.  =  r h* *  _  агссозЬг _  Г  * L =  (A. 18)

Secant substitution (y =  sect —> d y / ^ y 2 — 1 =  sec tdt)
/•arcsecz ________

arccoshz =  J  sect dt =  In +  л /г2 — l j  (A.19)
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3. Hyperbolic-tangent substitution (у  =  tanh z —> dy/(I — y 2) =  dz)
ptanh z A„  r z d y

У 2

(A.20)r anhz dy , Г  dr
z =  I ------- -  —> arctanhz =  / -—

Jo 1 -  Г  J о 1 “

Sine substitution (y — sin t -> dy/(l — y2) = s e c t d t )
/■arcsm z / 1 +  z  \

arctanhz =  /  sect dt =  -  In I -------  ) (A.21)
Jo  ̂ V1 — z )

A .3  Frenet-Serret Formulas

The geometric properties of spatial curves expressed in terms of the Frenet- 
Serret formulas (Jean Frederic Frenet, 1816-1900; Jospeh Alfred Serret, 
1819-1895) are discussed in many places in the textbook, e.g., in the context 
of light rays (Chap. 1), the Maupertuis Principle (Chap. 2), the scattering 
of a particle by a hard surface (Chap. 5), and the Coriolis acceleration 
(Chap. 6). Here, we review the derivation of the Frenet-Serret formulas 
and discuss other applications.

A . 3.1 F ren et Fram e

Consider a curve

r(£) =  x (t )x  +  y(t) у +  z (t )z  (A.22)

in three-dimensional space parameterized by time t. The infinitesimal 
length element along the curve ds(t) =  v (t)d t  is also parameterized by 
time t, with v(t) =  |r| denoting the speed along the curve at time t.

The Frenet-Serret formulas associated with the curvature к and torsion 
т of the curve (A.22) are defined in terms of the right-handed set of unit 
vectors (t,n, b), where t denotes the tangent unit vector, n denotes the 
normal unit vector, and b denotes the binormal unit vector.

First, by definition, the tangent unit vector is

T 3  £  =  Щ .  (A.23)
ds v(t)

The definitions of the curvature к and the normal unit vector n are 
dt 1 d / r\  r v t
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where v =  d\r\/dt =  t • r, so that the curvature is defined as

|r X r|

while the normal and binormal unit vectors are defined as

and

г X (г X r)

b =

=  t X

r X г
lr X r|

r X r
lr X r|

(A.25)

(A.26)

(A.27)

Hence, the curve (A.22) exhibits curvature if its velocity r and acceleration 
r are not collinear. We note that for a two-dimensional curve r =  x (s )  x +  
y(s) y, we find

^ dr
ds

— x 'x  +  y 'y  =  cos фх +  sin^y,

where </>(s) denotes the tangential angle. With this definition, we readily 
show that the curvature is defined as

dt
к =

ds
dф
ds

Second, we obtain the following expression for the derivative of the 
normal unit vector (A.26):

cfn dt 
ds ds X

t X

г X r
|r X  r|

г X r
V 3

+  t X
d (  r x r

X

ds V If X r|

г X г  \ t
F-----ч ) — ^г X r /  v

=  к ^ t x b j X b +
(г  X r'j

b X
x b

r X r

X b

v r x r
b =  — Kt  +  r b ,  (A.28)

where the torsion

X r J X b n • X r j  r  • (V X r j

V r X r (A.29)

is defined in terms of the triple product r * ( r x r ) .  Hence, the torsion 
requires that the rate of change of acceleration r =  dr/dt (known as jerk) 
along the curve have a nonvanishing component perpendicular to the plane
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constructed by the velocity r and the acceleration r. We readily find that 
a curve that is restricted to a plane possesses zero torsion.

Third, we obtain the expression for the derivative of the binormal unit 
vector (A.27):

dh
ds

b x x  b

К Г Х Г
=  a t  +  /? rT =  — rn ,

where

and

db
“  s  * • *

=  n
db
ds

ri • | rX rJ

r • (r  X r j

r • ( г X r )
----------=  0 ,

к v°

X (г X r)
(r  X r j

(A.30)

The equations (A.24), (A.28), and (A.30) are refered to as the Frenet-Serret 
formulas, which describes the evolution of the unit vectors (t,fi, b) along the 
curve (A.22) in terms of the curvature (A.25) and the torsion (A.29).

Lastly, we note that by introducing the Darboux vector (Gaston Dar- 
boux, 1842-1917)

uj =  т t +  к b, (A.31)

the Frenet-Serret equations (A.24), (A.28), and (A.30) may be written as

d£i—  =  ш x  ej, 
ds

(A.32)

where =  (t, n, b) denotes a component of the so-called Frenet frame. 
Hence, curvature is a measure of the rotation of the Frenet frame about the 
binormal unit vector b, while torsion is the measure of the rotation of the 
Frenet frame about the tangent unit vector t.

A .3.2 D a rbou x  Fram e

If the curve r (t) lies on a surface <S(r), then a Darboux frame Ei =  (T, N, B) 
can be constructed as follows. First, the tangent unit vector T =  t is 
identical to the tangent unit vector t =  r/|r|, which is also tangent to the 
surface S, i.e., T • V«S =  0. Next, the normal unit vector N is naturally
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chosen to be perpendicular to the surface S, i.e., N =  ±V«S/|VS|, while 
the binormal unit vector В satisfies the identity В =  T X N.

The relation between the Prenet frame and the Darboux frame involves 
a rotation about the t-axis:

(fA (l 0 M (l\N =  I 0 cos# sin# I • I n I , (A.33)
 ̂В J \ 0 — sin # cos # /  \ b /

where the rotation angle #(s) may depend on the position s along the curve. 
The corresponding Frenet-Serret formulas for the Darboux frame are

dT/ds =  к cos # IM — к sin # В

dEi
dN/ds =  — к cos# T +  (r +  dQ/ds) В =  f ix E i ,  (A.34)

dB/ds =  к sin# T — (r +  dd/ds) N 

where

=  к ( cos # В +  sin # N)  +  ( r  +
d£
ds

T, (A.35)

where кд =  к cos # is called the geodesic curvature, кп =  — к sin # is called 
the normal curvature, and rr =  r  +  dO/ds is called the relative torsion.

A .3.3 E xam ple: S e iffer t  Spiral on  the U nit Sphere

For example, consider the Seiffert spiral curve on the unit sphere:1

r (s ;k ) =  sn(s|fc2) cos(k s )x  +  sin(fcs)y +  cn(s|fc2) z, (A.36)

where s measures the length of the curve from the North Pole: r(0) =  z, 
the functions (cn, sn) are Jacobi elliptic functions (see App. B), and the 
modulus k2 <  1. Because Eq. (A.36) describes a curve on the unit sphere 
(i.e., |r| =  1), we write r ="r =  snp+cnz (we omit displaying the arguments 
of the Jacobi functions for convenience). When the value k =  0 is inserted 
into Eq. (A.36), we obtain a circle r(s; 0) =  sin s x +  cos s z on the (x, z)- 
plane. When the value k =  1 is inserted into Eq. (A.36), we obtain r(s; 1) =  
tanh s (cos s x +  sin s y) +  sech s z, which quickly settles into a circle on 
the (ж, y)-plane.

1See papers by P. Erdos, Am. J. phys. 68, 888 (2000) and A. J. Brizard, Eur. J. Phys. 30,
729-750 (2009).
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Fig. A .l Plots of Seiffert spiral (A.36) from s =  0 to s =  4 К(fc2) for к =  0.5 (solid). 
Circles (dotted) on the (ж, j/)-plane and (ж, г )-plane are shown as guides.

Using properties of the Jacobi elliptic functions discussed in App. B, we 
readily find the tangent unit vector

dx
t =  =  dn ^cnp — snz^ +  ksnip =  ksnip  — dn(?x£>), (A.37) 

where d p / d s  =  к  (p. Next, we find 

d t

ds
=  — r +  2 к  cn dny? + fcsn (?X  ф) =  —7 +  2A;cn_L, (A.38)

so that the Frenet-Serret curvature is

k ( s )  =  \dt/ds\ =  \ /l + 4  k 2 cn2(s|fc2) (A.39)

and the normal unit vector n in the Frenet frame is n =  к-1 dx/ds =  b X t.
We now note that the unit vectors (t, _L, r) satisfy the relation t =  ±  X?, 

where ?  is perpendicular to the surface of the unit sphere. We may, there­
fore, construct the Darboux frame (T, N, B) =  (t, — _L), which yields the
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Frenet-Serret equations in the Darboux frame: 
(ЛГ/ds =  N +  2/ccnB j ^

dt , _  f 
ds \

В -  2 fc cn N ) x  Ei. (A.40)dN/ds =  -  T  

dB/ds — — 2 fccn T 
By comparing Eq. (A.40) with Eqs. (A.34)-(A.35), we readily find

cos #(s) =  — = 1
к л/1 +  4 к2 cn 

so that the geodesic curvature is к 
since the motion takes place on a unit sphere), the normal curvature is 

=  — к sin# =  2 k cn, and, since the relative torsion тг =  т +  d6 /ds 
vanishes in Eq. (A.40), the Frenet-Serret torsion is

and 1#(s) =
— 2 ken

y/ 1  + 4  k2 cn2 ’ 
g — к cos# =  1 (which makes sense

r(s) d6 (s)
ds

cotd
d In к — 2 k sn(s|fc2) dn(s|fc2) 

ds 1 +  4 fc2 cn2(s|A:2)
(A.41)

Fig. A .2 Plots of the Frenet-Serret curvature (solid) and torsion (dashed) for k =  0.5. 
The dotted line shows the geodesic curvature кд =  1.

Figure A .2 shows the Frenet-Serret curvature (A.39) and the Frenet- 
Serret torsion (A.41) for the Seiffert spiral (A.36) for k =  0.5 (see Fig. A .l). 
As the point leaves the North Pole, the negative torsion causes it to drift 
westward (negative у ) from the vertical circle on the (x, z )-plane.

A .3.4 F ren et-S erre t F orm ulas f o r  H elica l P ath

As a simple application of the Frenet-Serret formulas in the Frenet frame, 
we apply them to the helical path

г (#) =  a (cos# x +  sin# у) +  6# z (A.42)
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parameterized by the angle 9. Here, the distance s along the helix is simply 
given as s — св , where с =  V a2 +  b2 =  ds/dO. Hence, the tangent unit 
vector is defined as

л _ _ ^
t =  —  =  cos ol ( — sin 0 x +  cos 0 у)  +  sinaz, (A.43) 

ds

where (a, b) =  (c cos a, с sin a) and 0 < a  <  7t/2 denotes the pitch of the 
helix (e.g., a circle is a helical path with pitch a  =  0). Next, the derivative 
of the tangent unit vector yields

dt 1 (it cos a  , _ л ~ , к■— =  — — = ---------- (cos#x +  smtfy) =  к n, (A.44)
ds с d9 с

so that the normal unit vector is

n =--- — (cos в x +  sin 9 y) (A.45)

and the curvature is к =  с-1 cos a (i.e., a circle of radius a, with pitch 
a  =  0, has a scalar curvature к =  a-1 ). Lastly, the binormal vector is

b =  t x n  =  sin a (— sin# x +  cos# y) +  cosa z , (A.46)

so that its derivative yields

db sina , ^—  =  ------  (cos0x +  sm 0y) =  — т n, (A.47)
ds с

where the torsion is r  =  c_1 sina. We can now easily verify that

dn 1 , , ^ ^ f4—  =  — (sm 0x — costly) =  -  Kt -(- t o . 
ds с

A .4 Linear Algebra

The methods of Linear Algebra are introduced and used extensively in 
Chapters 7 and 8. A brief survey is presented here for convenience.

A fundamental object in linear algebra is the m x  n matrix A with 
components (labeled A ij) distributed on m  rows (i =  1,2, ...,m) and n 
columns (j  =  1,2, ...,n); for simplicity of notation, we write A(mXn) when 
we want to specify the order of the matrix A and we say that a matrix is 
square if m  =  n.
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A . 4 . 1  M a tr ix  A lgebra

We begin with a discussion of general properties of matrices and later focus 
our attention on square matrices (in particular 2 x 2  matrices). First, we 
can add (or subtract) two matrices only if they are of the same order; 
hence, the matrix С =  A ±  В has components Cy =  Aij ±  B y. Next, we 
can multiply a matrix A by a scalar a and obtain the new matrix В =  a A 
with components Вг] =  a A tj . Lastly, we introduce the transpose operation 
(denoted T): A —> AT such that (AT)y  =  A ji, i.e., the transpose of a m  x n 
matrix is a n x  m  matrix. Note that the column vector

(  V i\

\VnJ

is a n x 1 matrix while its transpose (a row vector) v T =  (t>i,..., vn) is a 
matrix of order 1 x n. With this definition, we now introduce the operation 
of matrix multiplication

A(mxn) * B(nxfc),

where C(mxj.) is a new matrix of order m  x к with components
П

Cij — У ] А ц  Bgj .
e=i

Note that the matrix multiplication
П

U T  • V =  ^ 2  U i V i  =  u  • v 
i=l

coincides with the standard dot product of two vectors.
The remainder of this Section will now deal exclusively with square 

matrices. First, we introduce two important operations on square matrices: 
the determinant det(A) and the trace Tr(A) defined, respectively, as

П П
det(A) =  ] T  (~ l ) i+J' А ц  ady =  ^  ( - l ) i+  ̂ Ац  ady, (A.48) 

i— 1 j=  1 
n

Tr(A) =  ^  A iU (A.49)
i= 1

where ad у denotes the determinant of the reduced matrix obtained by re­
moving the ith-row and j  ̂ ‘ -column from A and the index j  is fixed in the
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first expression in Eq. (A.48), while the index i is fixed in the second ex­
pression. Next, we say that the matrix A is invertible if its determinant 
Д =  det(A) does not vanish and we define the inverse A *1 with components

(A_1)ij s  ad,,,

which, thus, satisfies the identity relation

A • A-1 =  I =  A-1 • A,

where I denotes the n x n identity matrix. Note, here, that the matrix 
multiplication

A • В ф В • A

of two matrices A and В is generally not commutative (for А, В ф I). For 
example, if

A =  ( ai U2)  and В =  ?2
\ й з  Й 4 /  V "3 °4

then

and

д  g  __ / a\bi +  а2Ьз a i& 2 +  <22^4 \

\ a3bi +  a4b3 a3b2 +  a4b4 J

в д _ ( b\d\ + b2a3 bia2 + b2a4 A , д B
\ b3ai +  b4a3 b3a2 +  b4a4 J

Lastly, fundamental properties of a square n x n  matrix A are discussed 
in terms of its eigenvalues (A i,...,A„) and eigenvectors (e i,...,e n) which 
satisfy the eigenvalue equation

A ■ =  Ai в», (A.50)

for i — 1,..., n. Here, the determinant and the trace of the n x n  matrix A 
are expressed in terms of its eigenvalues ( A i , A n) as

det(A) =  Ai x ... x A„ and Tr(A) =  Ai +  ... +  An.

In order to continue our discussion of this important problem, we now focus 
our attention on 2 x 2 matrices.
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A .4.2 E igenvalue A n a lysis  o f  a 2 x 2  M a trix

Consider the 2 x 2  matrix

M = ( c  d)' (A51)

where (a, b, c, d) are arbitrary real (or complex) numbers and introduce the 
following two matrix invariants:

A  =  det(M) =  ad —be  and a =  Tr(M) =  a +  d, (A.52)

which denote the determinant and the trace of matrix M, respectively.

A.4.2.1 Eigenvalues o f M

The eigenvalues A and eigenvectors e of matrix M are defined by the eigen­
value equation

M - e =  Ae. (A.53)

This equation has nontrivial solutions only if the determinant of the matrix 
M — AI vanishes (where I denotes the 2 x 2  identity matrix). This vanishing 
determinant yields the characteristic quadratic polynomial:

d e t (M -A I )  =  (a — X) (d — \) — be =  A2 — cr X +  A =  О, (A.54)

and the eigenvalues A± are obtained as the roots of this characteristic poly­
nomial:

. а  /ст2 Г  (a +  d) I (a ~  d) 2 ~
A± = 2 ±  V T  -  д  = 2 *  V 4 ~  + bC■ (A'55)

Here, we note that the matrix invariants (a, A )  are related to the eigenvalues
A±:

A+ +  A_ =  a and A+ • A_ =  Д. (A.56)

Lastly, the eigenvalues are said to be degenerate if A+ =  A_ =  cr/2, i.e.,
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Next, the eigenvectors e± associated with the eigenvalues A± are con­
structed from the eigenvalue equations M • e± =  A±e±, which yield the 
general solutions

e± =  ( 1 J e±, (A.57)

A.4.2.2 Eigenvectors of M

where e±  denotes an arbitrary constant and

A ± — a с , » .
=  — b ~  =  A~ d -  <A'58)

The normalization of the eigenvectors e± (|e±| =  1), for example, can be 
achieved by choosing

1
e± =

y/l +  (M±)2
We note that the eigenvectors e± are not automatically orthogonal to each 
other (i.e., the dot product e+ • e_ may not vanish). Indeed, we find

e + -e _  =  e+ 6 _ ( l  +/u+ /i_), (A.59)

where
1 С

1 +  n+ / i -  =  1 +  (A+ -  a) (A_ -  a) =  1 -

whose sign is indefinite. This relation guarantees, however, that a symmet­
ric matrix (with b =  c) has orthogonal eigenvectors.

If the matrix M is not symmetric, by using the Gram-Schmidt orthog- 
onalization procedure, we may construct two orthogonal vectors (e i,e 2):

ei =  +  /3e_ 

e2 =  7 e+ +  <5e_
(A.60)

where the coefficients (a, /3,7 , S) are chosen to satisfy the orthogonalization 
condition ei -ег =  0; it is important to note that the vectors (e i,e 2) are 
not themselves eigenvectors of the matrix M. For example, we may choose 
a  =  1 =  5, /3 =  0, and

7
■ e_

le+l2
which corresponds to choosing ei =  e+ and constructing e 2 as the compo­
nent of e_ that is orthogonal to e+.
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Lastly, we point out that any two-dimensional vector u may be decom­
posed in terms of the eigenvectors e±:

u =  ^  щ е г =  Y ,  ( S ) eb (A '61)
u -e ?;

г=± г=±

where we assumed, here, that the eigenvectors are orthogonal to each other. 
Furthermore, the transformation M • u generates a new vector

v =  M • u =  ^  щ  M • e* =  ^  Vi ei,
г==Ь г=±

where the components of v are Vi =

A.4.2.3 Inverse o f Matrix M

The matrix (A.51) has an inverse, denoted M-1 , if its determinant Д does 
not vanish. In this nonsingular case, we easily find

M“ = i  (-*?)• <A-62>
so that IVT1 • M = 1  — M • M _1. The determinant of M ~1, denoted Д', is

. ,  da — be 1 1Д -
Д2 — Д A+ • A _ ’ 

while its trace, denoted a ', is

d +  a _  a  1 i 1
д д = л7 + x l '

Hence, the eigenvalues of the inverse matrix (A.62) are

A± =  A^ “  ДГ’ 

and its eigenvectors e± are identical to e± since

M • e± =  A± e± -4 e± =  A± M_1 • e±,

and

M_ 1 -e±  =  A±! e± =  A'± e±.

We note that once the inverse M-1 of a matrix M is known, then any 
inhomogeneous linear system of equations of the form M • u =  v  may be 
solved as u =  M-1 • v.
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A.4.2.4 Special Case I: Real Symmetric Matrix

A real matrix is said to be symmetric if its transpose, denoted MT (i.e., 
=  M ji), satisfies the identity MT =  M, which requires that с =  b in 

Eq. (A.51). In this case, the eigenvalues are automatically real

д± .  ( i ^ )  ± +

and the associated eigenvectors (A.57), which are defined with

-  = - { 4 f ) 4 i +
are automatically orthogonal to each other (e+ • e_ = 0 )  since /x+ /i_ =  — 1.

A.4.2.5 Special Case II: Rotation Matrix

Another special matrix is given by the rotation matrix

R =  ( c“ \  “ ” » ')■  <A e 3 > \ — sin 9 cos 9 J

with determinant det(R) =  1 and trace Tr(R) =  2 cos 9 =  exp(iO) +  
exp(—i6 ). The rotation matrix (A.63) is said to be unitary since its trans­
verse RT is equal to its inverse R_1 =  RT (which is possible only if its 
determinant is one).

The eigenvalues of the rotation matrix (A.63) are ехр(±г0) and the 
eigenvectors are

Note that the rotation matrix (A.63) can be written as R =  ехр(г0сг), 
where the matrix

(also known as the Pauli spin matrix rr2) satisfies the properties <т2"  =  I 
and cr2n+l =  cr and, thus, we find

° °  ( 4 й ) п

exp( i9 a )  =  ^ — — <Jn =  cos 91 +  i s\n 9 cr =  R.
n= 0

Note that the time derivative of the rotation matrix (A.63) satisfies the 
property
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Lastly, we note that the rotation matrix (A.63) can be used to diago- 
nalize a real symmetric matrix (e.g., the inertia tensor)

M =

by constructing the new matrix

a 6 
b d

where

a =  a +  (d — a) sin2 9 — b sin 29,

6 =  b cos 29 — ^ (d — a) sin 29,

d =  d — (d — a) sin2 9 +  b sin 29.

Next, by setting the non-diagonal element 6 =  0 (assuming that d >  a), we 
obtain

26
tan 29

cos 2e =  ( d -  а)/у/(a -  d) 2 +  462

d — a
sin 29 =  2Ь/у/(a — d) 2 +  4 62

where a =  a +  d and Д =  ad — 62 denote the trace and determinant of M, 
respectively. Hence M becomes a diagonal matrix

M =  f A-  " V  (A.65)
. 0 A+ , 

where the diagonal components are

A± =  — ±  — V cr2 — 4 Д.2 2
__ __ _2

Note that, since a =  a +  d =  a +  d =  A+ + A _ and Д =  ad — 6 =  ad — b2 =
A+ +  A_, the trace and determinant of M are the same as that of M, i.e.,
the trace and determinant of any real symmetric matrix are invariant under
the congruence transformation (A.64).

A .5 Numerical Analysis

The nonlinear ordinary differential equations obtained in this course are 
often impossible to solve analytically in terms of known mathematical func­
tions. Since numerical software is often readily available to students (e.g.,
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Mathematica, Maple, or Matlab), translating physical equations into dimen­
sionless equations is a useful skill to acquire.

For example, the physical equation for the pendulum

6 +  a;2 sin в — 0

can be translated into the dimensionless equation

0 " ( t )  +  sin#(r) =  0,

where wg =  \Jgjl and в(т) is a function of the dimensionless time r  =  wgt. 
The great advantage of this dimensionless formulation is that the pendulum 
problem can be solved for all possible values of wg. The dimensionless 
pendulum can thus be solved by using the initial conditions 0(0) and #'(0) 
determined from the dimensionless energy equation

e =  (O' ) 2/ 2  +  (1 —cos#).

Hence, by choosing e and the initial angle #o> we can determine the initial 
velocity #o =  ±y/ 2 [e — (1 — cos#o)]-

Note that it is often preferable to adopt a Hamiltonian representation 
when numerically integrating equations of motion. This means that, instead 
of solving к second-order ordinary differential equations (ODEs), we are 
solving 2k first-order ODEs. For example, for the pendulum problem, we 
numerically solve Hamilton’s equations в'(т) =  р(т) andp'(r) =  — shi#(t), 
which allows us to easily plot the orbits of the pendulum in terms of the 
phase-space coordinates (0 , p).

When we consider nonlinear coupled equations such as Eqs. (2.53) and 
(2.54), which describe the motion on the surface of an inverted cone of 
apex angle a, it is desirable to choose a clock frequency needed to define a 
dimensionless time. By introducing wg =  \/{g/so) cos a and r  =  wgt, we 
obtain the dimensionless equations

o "  =  — I +  \  and в' =  —x—:---- ,
а" с  sin a

where a =  s/sq becomes the distance normalized to 

s -  (S0 — I 2 . 2
\m*g sin a cos a

Note that, while several (physical) parameters appear in Eq. (2.54), the 
normalized equation o "  +  1 =  <x~3 contains no dimensionless parameters 
at all, while the equation for 0' only requires that the cone angle a  (which 
can even be absorbed in a new definition of 9).
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The following sample Mathematica code (v 4.0) was written to generate 
solutions of the problem of constrained motion on the surface of a cone and 
to create Fig. (2.9).

s0 =  3 
Po =  0 
<7o =  0

a =  7r/8

t0 =  0.0 
t x =  20.0

solutionl =  NDSolve[{ 
s'[f] = =  p[t], 
p'[t} = =  -  1 +  i / s [t]3, 
q [t] = =  l/(Sin[a] s[i]2), 
s[0] = =  s0, 
p[0] = =  po, 
g[0] = =  qo } ,
{sM ,p[i],g[< ]},{* .*o,< i}]

plotl =  ParametricPlot[Evaluate[{s[i] Sin[a] Cos[g[f]], s[t] Sin[o] Sin[g[t]]}
/ .  solutionl], {t, to ,t i } ,  AxesLabel —> { “x-axis", “y-axis” }]

plot2 =  ParametricPlot[Evaluate[{s[i] Sin[a] Cos[g[t]], s[i]Cos[a]}
/ .  solutionl], {t ,to ,t\ }, AxesLabel —> { “x-axis” , “z-axis” }]

Note here that we are numerically solving 3 first-order ODEs: a' =  p, 
p' — — 1 +  1 / cr3, and 6 ' =  l/(er2 sin a). The command plotl generates the 
“top view” of Fig. 2.9 while plot2 generates the “side view” . If we need to 
change the parameters or initial conditions for our numerical solution, we 
can create a new solution e.g., solution 2 =  NDSolve[{- • • }].



Appendix В

Elliptic Functions and Integrals*

The Jacobi and Weierstrass elliptic functions [14] used to be part of the 
standard mathematical arsenal of physics students [20]. They appear as 
solutions of many important problems in classical mechanics: the motion 
of a planar pendulum (Jacobi), the motion of a force-free asymmetric top 
(Jacobi), the motion of a spherical pendulum (Weierstrass), and the motion 
of a heavy symmetric top with one fixed point (Weierstrass). The prob­
lem of the planar pendulum, in fact, can be used to construct the general 
connection between the Jacobi and Weierstrass elliptic functions. The easy 
access to mathematical software by physics students suggests that they 
might reappear as useful tools in the undergraduate curriculum.1

B .l  Jacobi Elliptic Functions

B.1.1 D efin ition s  and N ota tion

We begin our introduction of elliptic functions with the more familiar Jacobi 
elliptic functions [16]. The Jacobi elliptic function sn(z | m) is defined in 
terms of the inverse-function formula

1An extended version of this Appendix can be found at arxiv.org/abs/0711.4064 and 
additional material was published in Eur. J. Phys. 30, 729-750 (2009) and Commun. Non­
linear Sci. Numer. Simulat. 18, 511-518 (2013).

0 \J\ — m  sin2 в

Jo v u - i  
=  sn_1(sin<p | m) (B.l)

275
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where the modulus m is a positive number and the amplitude <p varies 
from 0 to 2ж. From this definition, we easily check that sn-1 (sin</> 10) =  
sin-1 (sin <p) — ip. The solution to the differential equation

g ) S =  ( ! - „ ’ ) (B.2)

is expressed in terms of the Jacobi elliptic function

{sn(z|m) (for m  <  1),
(B.3)

m-1 / 2 sn (m1/ 2 z | m _1) (for m  >  1).
By using the transformation у  =  sin tp, the Jacobi differential equation 

(B.2) is also written as
2
=  1 — m  sin2 ip, (B-4)dz

and the solution to this equation is ip(z) =  sin_1[sn(2:|m)] for m < 1 .

Fig. B .l Plots of (a) sn(^|m) and (b) — isn(iz|m) for m =  1/16 showing the real and 
imaginary periods 4 K(m )  and AiK'(m ).

The function sn(.z|m) has a purely-real period 4 К , where the quarter- 
period К  is defined as

К  =  K (m )  =  /  (B.5)
Jo у  1 — m  sin 9

and a purely-imaginary period 4 i K ', where the quarter-period K ' is defined 
as (with the complementary modulus m' =  1 — m)

i K '  =  iK (m ')  =  i /  — ■ ■■ (B.6)
Jo \J\ — m! sin2 9
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m

Fig. B.2 Plots of the quarter periods К  =  K (m ) and K '  =  K (m ') =  K (  1 — m).

Figure B.l shows plots of snz and —isn (iz)  for m =  1/16, which exhibit 
both a real period and an imaginary period. Note that, while the Jacobi 
elliptic function sn г alternates between —1 and +1 for real values of г (with 
zeroes at 2n K ),  it also exhibits singularities for imaginary values of г at 
(2 n +  1) iK ' (n =  0,1,...). Furthermore, a s m -4 0  (and m! —>■ 1), we find 
К  —t 7t/2 (or A K  —» 27t) and \K'\ —»• oo (see Fig. B.2), and so snz —> sinz 
becomes singly-periodic.

Fig. B.3 Plots of sn(z|m), сп(г|т), and dn(2|m) from z =  0 to 4 К (m) for m =  0.81.

The additional Jacobi elliptic functions cn(z \ m) and dn(^ | m) are
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defined from the integrals

dyII
L

(*|rn) - y 2 ){m' + m y 2)' 

_________dy_________
dn(z|m) v / ( l  ~  У2 )  { У 2 ~  m 1) ’

(B.8)

(B.7)

with the properties cnz =  cn(z|m) =  cosip, dnz =  dn(z|m) =  
\J\ — m  sin2 <p, and sn22 +  сп2г =  1 =  dn2z +  m sn 2z. The Jacobi el­
liptic functions cn z and dn 2 are also doubly-periodic with periods 4 К  and 
4i K ' (see Fig. B.3).

The following properties of the Jacobi elliptic functions (sn, cn, dn) are 
useful. First, we find the limits:

sn(2|0)\  /s in  2 '
сп(г|0) I =  I cos2 I (B.9)

vdn(2|0) /  \ 1

sn(z|l)\
cn(z|l) I =  . (B.10)

and

\dn(2|l) /

Next, we find the derivatives with respect to the argument 2 :

sn'(2 |m) =  cn(2|m) dn(z|m)
cn'(2 |m) =  — sn(z|m) dn(2|m)  ̂ , (B .ll)
dn'(2|m) =  — m cn(2|m) sn(2|m)

and, if m >  1 , the identities:

sn(2|m) =  m - 1 /2 sn(ma/2 z lm "1) 
cn(2|m) =  dn(m1//2 2|m-1 ) (B-12)
dn(2 |m) =  с п (т 1/,г z\m~x)

We now turn our attention to solving a simple physical problem that high­
lights the periodic properties the Jacobi elliptic functions (B.l) and (B.7)- 
(B.8). Already, we have seen how the problems of the planar pendulum 
in Sec. 3.5.4 and the force-free asymmetric top in Sec. 7.2.3 can be solved 
simply and explicitly in terms of the Jacobi elliptic functions (sn, cn, dn).
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We look at particle orbits in the (dimensionless) quartic potential U (x )
1 — x 2/2 +  ж4/16. Here, the turning points for E  =  e2 =  U (x) are

B.1.2 Motion in a Quartic Potential

± 2 v T + e  (for e > 1) ' 

0 and ±  л/8 (for e =  1) (B.13)

±  2 v/l ± e  (for e < 1)
Each orbit is solved using the initial condition xo =  2 \/l +  e with the initial 
velocity жо < 0:

dy

- L

- L

- Ы

2л/Т+5 \ /2 (e2 -  !)  +  y2 (! -  y2/&)
____________ \/8 dy____________

2 %/Г+ё VI4 (e +  1) -  У2] [y2 +  4 (e -  1)]

ф(х) dip

n/ T
(B.14)

m sin
where m =  (1 +  e)/2e while we used the trigonometric substitution у =  
2 v T T  e cos ip with

Ф(ж) =  cos-1 X
.2 VT (B.15)

to obtain the last expression in Eq. (B.14). The Jacobi elliptic solutions 
obtained from Eq. (B.14) are shown in Fig. B.4 for the orbit (a), with e >  1, 
the separatrix orbit (b), with e =  1, and the orbit (c), with e <  1.

For e >  1 (i.e., m <  1), corresponding to orbit (a) in Fig. B.4, we use 
Eq. (B .l) to find

x 2 (t) 
4(1 + e )

sin$(x) =  sn(\/e£|m) =  y ]

which yields the phase-portrait coordinates (x, x ):
x (t)  =  2 л/ l +  e сп(-;/ё^9тг) "j

> , (B.16) 
x (t) =  -  2 x /^ T T i )  sn(v/ei|m)dn(-v/et|m) J 

where the velocity x ( t ) is obtained by using Eq. (B .ll). For e =  1 (i.e., the 
separatrix orbit with m =  1), corresponding to orbit (b) in Fig. B.4, the 
phase-portrait coordinates become

x(t) =  \/8 sechi

x (t) =  — \/8 secht tanhi
(B.17)
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Fig. B.4 Phase portait for orbits (B.16)-(B.18) of the quartic potential U(x) — 1 — 
x 2/2 +  ж4/16 for (a) e >  1 , (b) e =  1 (separatrix), and (c) e <  1 .

where the limits (B.10) were applied to Eq. (B.16). Lastly, for e <  1 (i.e., 
m >  1), corresponding to orbit (c) in Fig. B.4, we apply the relations (B.12) 
on Eq. (B.16) to obtain

where т — t \J{\ +  e)/2. The orbits (B.16)-(B.18) are combined to yield 
the phase portrait for the quartic potential shown in Fig. B.4.

B.2 W eierstrass E lliptic Functions

B.2.1 D efin ition s  and N o ta tio n

The Weierstrass elliptic function p(z; д2 , 9 з) is defined as the solution of 
the differential equation [18]

(ds/dz) 2 =  4 s3 -  g2 s -  g3

Here, (ei, e2, ез) denote the roots of the cubic polynomial 4s3 — g2 s — g3 
(such that e\ +  e2 +  ез =  0), where the invariants g2 and дз are defined in 
terms of the cubic roots as

x (t) =  2 \J\ +  e dn(r |m г)
(В.18)

=  4 (s -  ei) (s -  e2) (s -  e3). (B.19)

g2 =  —4 (ei e2 +  e 2 e 3 +  e3 ei) — 2 (e2 +  e2 +  e2)
(B.20)

g3 =  4 ei e2 e3
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and A =  g\ — 27 <?| is the modular discriminant. Since physical values 
for the constants g2 and <73 are always real (and g2 >  0), then either all 
three roots are real or one root (say e0) is real and we have a conjugate 
pair of complex roots (еь,е£) with Re(eb) =  —ea/2. The applications of 
Weierstrass elliptic functions are analyzed in terms of four different cases 
based on the signs of (g3, Д) =  [ ( - , - ) , ( - , + ) , ( + , - ) , ( + , + ) ] ,  with two 
special cases (<73 ф 0, Д =  0) and (<73 =  0, Д > 0).

Fig. B.5 Cubic roots (е1 ,е 2,ез) as a function of e =  (З/дг)3 2̂ S3 with fixed value g2 , 
where a =  s jg i j  VI and Д =  (1 — c2)- The three roots satisfy ei +  ei  +  ез =  0.

In general, the roots (ei, e2, ез) of the cubic polynomial on the right side 
of Eq. (B.19) can be expressed in terms of the parameters a  =  \Jg2/ 1 2  and 
e =  (3/cfc>)3/ 2S3 =  -  cos ip as

/  ei \ /  cos[(<  ̂-  7t)/3] \
e2 I =  2 a  cos[(</3 +  tt)/3] I , (B.21)

\е3/ V -  cos(</>/3) J
and the discriminant is

A =  З23 -  273з2 =  <?23 ( l - e 2). (B.22)

These cubic roots are shown in Fig. B.5 as a function of e for a  =  1/2 (i.e., 
g2 =  3); the polynomial 4s3 — g2s — <73 is positive (and ds/dz is real) to the 
left of the curve and negative (and ds/dz is imaginary) to the right of the 
curve. The three cubic roots (as shown in Fig. B.5) are connected smoothly
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in the complex 92-plane
(  —iijj (ip >  0 , e <  — 1 )

ip =  l Ф (0 <  0 <  7Г, - 1  <  e <  1) (B.23)
( n  +  iiP ('ф >  0 , e >  1)

Here, for e <  —1, the imaginary phase ip =  —i -ф (with if) >  0) yields the 
complex-conjugate roots e\ =  a — ib =  e *2 (with b >  0) and the real root 
ез =  — 2a <  —1; for — 1 <  e <  1, the real phase <p =  ф (with 0 <  ф <  7r) 
yields three real roots e\ >  e2 >  ез; and for e >  1, the complex phase 
ip =  -к +  i ф} (with ij) >  0) yields the real root e\ =  2a > 1 and the complex- 
conjugate roots e2 =  — a — ib =  вз (with b >  0). Note that e2 =  0 (and 
d  =  \/3a =  — ез) for <?3 =  0 (i.e., ф =  7г /2); this case is called the 
lemniscatic case.

Fig. B .6 Plots of (a) и  and Im(u/) for 0 <  дз <  1 and <72 =  3 (i.e., Д >  0) and (b) 
t2 and Im(f2') for дз >  1 and <72 =  3 (i.e., Д <  0). Note that u/(<?2, 0) =  iiv(g2,0), 
fi(<72, 1) =  ^(дг, 1), and both (Cl, П') decrease to zero as дз becomes infinite.

For 0 <  e <  1 (i.e., Д > 0), p(z) has two different periods 2 u> and 2u/ 
along the real and imaginary axes, respectively, with the half-periods uj and 
uj' defined as

^ (52,53) =  [  ,  dS =  , (B-24)
J ei \/4s* -  g2 s -  g3

/ез ds
•• -jr. 3 ' - ■ = = ■  (B.25)

-oo \/|4sd - g 2 s - g 3|
The plots of ш(д2 ,дз) and ш'(д2 ,дз) are shown in Fig. B .6 for g2 =  3 as
functions of g3. Note that for <73 =  0 (with e\ =  — ез and e2 =  0), we find
that lu' =  iui while |u/| approaches infinity as дз approaches one.
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(93 , Д) ei e2 ез U>1 Ш2 UJ3

a — ib a +  ib — 2a < — 1 |n'| - и  a /2 -|П'| +  Ш /2 —г Q
( - , + ) d >  0 с — d >  0 — с <  0 и гш — \ш’ \ —г из
(+ ,+ ) с >  0 d — с >  0 - d  <  0 ш — и  — Ш1 сУ
( + , - ) 2a >  1 — a — ib — a +  ib и

ъ1<мo'1 - П /2 +  П'

For e > 1 (i.e., Д < 0), on the other hand, p (z )  has two different 
periods 2 ft and 2 O' along the real and imaginary axes, respectively, with 
the half-periods and il' defined as

Г°° ds
П ( 9 2 , д 3 ) =  ,; T ......................, (В.26)

J e  1 V 4 s  -  9 2  s - д з

/ei d s
/м з (B.27)

- o o  V l 4 s  3 2  5 - д з |

The plots of С1(д2 ,дз) and £1'(д2 , Зз) are shown in Fig. B .6 for g2 =  3 as
functions of f/з. Note that uj(g2 , 1) =  0 (g2>1), |П'| approaches infinity as
g3 approaches one, and that both and fi' approach zero as (]:>, approaches
infinity.

Table B .l shows the cubic roots e, =  (в1,е2,ез), defined by Eq. (B.21), 
and the half periods uii =  (wi, 0J2 , W3), defined as

Г  dsUi(g2,93) =  /  , „ -- - ...=
v  4s3 — 32 s — 53

=  Г  ■ -  (В.28)
Jet 2 -  ei)(s -  e2)(s -  e3)

The cubic roots and half periods satisfy the following properties: 
p(wj) =

p (z  +  u>i) =  ei +  (ei -  e j )  (e, -  e k) [p(z)  -  e^-1 > , (B.29) 
p (z  +  2иц) =  p (z )  )

where i ф j  ф к so that p(uji +  u j) =  ek- Figure B.7 shows the plots of 
p (z  +  ш2) and p(z  +uj3) for one complete period from 2 =  0 to 2 wi, which 
clearly satisfies the identities (B.29).

The Weierstrass elliptic function р(г; <?2, <7з) obeys the homogeneity re­
lation

p  (A z\ A-4 52, A-6 53) =  A-2 p (z ;g 2,g 3), (B.30)
where А ф 0. By choosing A =  —1, for example, we readily verify 
that the Weierstrass elliptic function has even parity, i.e., p (—z; д2,дз) =
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О 1 2

Fig. B.7 Plots of (a) p(z+ui2) and (b) р{г +  ш$) for 92 =  3 and <73 =  0.5 (with e =  0.5) 
over one complete period from 0 to 2 uii. Note that p(oj} ) =  ej for j  =  2 or 3 and 
p(w< +  uij) =  ejt, for i =  1 and (j , fc) =  (2, 3) or (3,2).

p(z; g2, .93)■ On the other hand, for X =  i, we find that the half-period 
assignments for <73 <  0 in Table B.l are based on the relation

Р(г;52, 5з) =  -  p(iz;g2, Ы )- (B.31)

For example, for - 1  <  <73 <  0 (and Д >  0), we find for p(wi; <72, 53): 

p(|w'|; <72, -  |<7з|) =  -  p(w';ff2, Ы ) =  - ( - d )  =  d, 
which corresponds exactly to e\ =  d found in Table B.l for the case
(«7з,Л) =  ( - , + ) . 2

In general, the connections between the half-periods

and the cubic roots (ef,e2 ,e£) —> (ej“ ,e2 ,e$) as <73 changes sign from 
positive (+) to negative (—) are found in Table B.l to be

(Ц “ ,ол ,̂и>з ) =  'j
 ̂ . (B.32)

( e x , e 2 , e 3 ) =  ( - 4 , - 4 , - e t )  )

Once again, these connections follow a non-standard convention. For exam­
ple, according to the standard convention [18] for the case (<73, Д) =  (+ , —),

2The reader should be warned that only the case (<73, Д) =  (+ , + ) in Table B .l follows 
the standard mathematical convention [18]. The convention for the remaining cases 
(<73, Д) =  [(—, —), (—, + ), (+ , —)] in Table B .l are based on the output of Mathematica, 
on which Eq. (B.21) and the Weierstrass path (B.23) are based, and the convention 
adopted for u>2 satisfies the condition wi +  Ш2 +  из =  0.
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the root 6'2 is real (while =  ез) and the corresponding half-period ui2 is 
also real (in contrast to the convention adopted in Table B .l). The connec­
tions (B.32) shown in Table B.l are simply based on the smooth dependence 
of the cubic roots on the single parameter e (for fixed g2). These connec­
tions enable us to describe consistent orbital dynamics in several problems 
in classical mechanics.

B .2 .2 M o tio n  in  a C ubic P o ten tia l

e

0 - -

1- -

Fig. B .8 Cubic-potential energy levels E  =  x — x 3/3  showing orbits (a) E  >  2/3 
(unbounded orbits; t <  —1), (b) and (с) 0 <  E <  2/3 (bounded and unbounded orbits; 
— 1 <  e <  0), (d) and (e) —2/3 <  E  <  0 (bounded and unbounded orbits; 0 <  e <  1), 
and (f) E  <  —2/3 (unbounded orbit; e >  1).

We have already seen that the solution of the sleeping top problem can 
be written in terms of the Weierstrass elliptic function (Sec. 7.4.3). As an 
additional physical problem, we consider particle orbits in a (dimensionless) 
cubic potential U (x) =  x  — x3/3. Here, the cubic-potential orbits x (t)  are 
solutions of the differential equation

x2 = 2 ( e - x + X- ' )

2
= - ( x  -  x i ) ( x  -  x 2) ( x  -  Х з ) ,  (B.33)

and the turning points (x\ ,x 2 , x 3) are shown in Fig. B .8 (with X1 +X 2 +X 3 =  
0). By writing x(t) =  6 s(t), Eq. (B.33) is transformed into the standard 
Weierstrass elliptic equation (B.19), where the invariants are 52 =  1/3 and
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g3 =  — E/18, so that e =  — 3E/2. Note that bounded orbits exist only for

Fig. B.9 Plots of x(t) versus x (t ) for cubic potential (B.33) show bounded and un­
bounded orbits: Orbit (a) E  >  2/3 (e <  —1 and Д <  0); orbits (b)-(e) —2/3 <  E <  2/3 
(—1 <  e <  1 and Д >  0); and orbit (f) E  <  —2/3 (e >  1 and Д <  0). The dotted 
lines are the bounded and unbounded separatrix orbits for E  =  2/3 and circles denote 
particle positions at t =  0.

The cubic-potential solution for Eq. (B.33) is

x{t) =  6p(t +  7 ), (B.34)

where the constant 7  is determined from the initial condition ж(0). Figure
B.9 shows the orbits (a)-(f) associated with initial conditions identified by 
a circle and a qualitative description of these orbits is summarized in Table
B.2. Note that the turning points Xi =  6 e* (i =  1,2,3) are simply related 
to the standard cubic roots ег. Lastly, the separatrix solution is obtained 
from orbit (b) as E  approaches 2/3 and the period 2 \uj'\ becomes infinite.

Lastly, we note that the imaginary time range for orbit (a) takes into 
account the relation (B.31) since 53 <  0 for this orbit. In addition, the 
connections (B.32) allow us to describe the orbits (a)-(f) in Figs. B .8 and
B.9 (and Table B.2) smoothly as the single (energy) parameter e is varied.
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Table B.2 Bounded and Unbounded Orbits in a Cubic Potential (see 
Figs. B .8 and B.9).

Orbit Energy Time Range Constant 7 Period

(a) E >  2/3 —i d < t < гП — гП Unbounded
(b) 0 <  E <  2/3 0 <  t <  2\u)'\ — iui 2 И
(c) 0 <  E  <  2/3 — |a/| <  t <  и И Unbounded
(d) - 2 /3  <  E <  0 0 <  t <  2 w ш' 2 cj
(e) - 2 /3  < E <  0 — W <  t <  Ш ш Unbounded
(0 E <  - 2 /3 — П <  t <  fi n Unbounded

B.3 Connection between Elliptic Functions

In this Section, we return to the planar pendulum problem of Sec. 3.5.4 to 
establish a connection between the Jacobi and Weierstrass elliptic functions. 
First, we write г =  1 -  cos# (i.e., 0 <  z < 2 )  and transform Eq. (3.51) into 
the cubic-potential equation

( z ' f  =  2 z ( 2 - z ) ( e - z ) ,  (B.35)

with roots at z =  0,2 and e =  E/(m g£). When e <  2, the motion is 
periodic between z — 0 and z =  e, while the motion is periodic between 
z =  0 and г =  2 for e > 2. We recover the standard Weierstrass differential 
equation (B.19) by setting

z ( t )  =  2 р(т 4 -  7 )  +  Ц , (B.36)
where fi =  (e +  2)/3 and the constant 7 is determined from the initial 
condition -г(О).

The root corresponding to z =  0 is labeled ec — — /z/2, the root cor­
responding to z =  2 is labeled еь =  1 -  fJ./2 , and the root corresponding 
to z =  e is labeled ea =  /1 — 1 and we easily verify that ea +  еь +  ec =  0 
(see Fig. B.10). The Weierstrass invariants are g2 =  1 +  3 (/i — 1 )2 and 
g3 =  ц fa — 1) (^ — 2), and the modular discriminant is Д =  e2 (2 — e)2 > 0.

The planar pendulum is now discussed in terms of 4 cases labeled (a)-(d) 
in Fig. B.10. For cases (a) and (b), where 2/3 <  ц <  4/3 (i.e., 0 < e < 2), 
we find

ез — - м / 2  < e 2 =  / x -  1 <  ei =  1 - /г/2,

so that
к =  (e 1 -  e3)1/2 =  1 \

}  . (B.37) 
m =  (e2 -  e3)/(e i -  e3) =  (3/x -  2)/2 =  e/2 <  1 J
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For cases (c) and (d), where /t > 4/3 (i.e., e >  2), we find

e3 =  - / i / 2  <  e2 =  1 — м/2 <  e\ =  p - 1 ,

so that
к = (е1 - е 3)1/2 =  (e /2)1/ 2 > 1 \

\ . (B.38)
m  =  (e2 — e3) /(e i  -  e3) =  2/e < 1 J

Figure B .ll  shows a plot of g3 as a function of the parameter e, which can 
be used with the information presented in Table B.l to describe the motion 
of the planar pendulum in terms of the Weierstrass elliptic function.

Fig. B.10 Plots of the cubic roots (еа,еъ ,ес) as functions of // =  (e +  2)/3. The cases 
(a)-(d) are discussed in the text. Note that for cases (a) and (b), or e <  2, we find 
ec <  e0 <  eb, while for cases (c) and (d), or e >  2 we find ec <  eb <  ea- The bounded 
motion of the planar pendulum (—1 <  z <  1 ) occurs between the two lowest cubic roots: 
ec <  ea (for 6 <  2) or ec <  eb (for e >  2).

We first consider case (a), where 0 < e < 1 (i.e., 2/3 < ц <  1 and 
дз >  0), the periodic motion is bounded between e3 =  - p /2  (i.e., z =  0) 
and e2 =  /х — 1 < 0 (i.e., z =  e). Using the initial condition z(0) =  0, we 
find that p ( j )  =  —fj, /2 =  e3 which implies that 7  =  ш' (see и>з in Table B.l 
for 53 >  0 and Д > 0). The Weierstrass solution of the planar pendulum 
for 0 <  e < 1 is therefore

z ( t )  =  2р(т +  сУ) +  /х, (В.39)

with the period of oscillation 2 uj.
For case (b), where 1 <  e < 2 (i.e., 1 <  ц <  4/3 and g3 <  0), the periodic 

motion is bounded between e3 =  - / i /2  (i.e., г =  0) and e2 =  ц — 1 <  0 (i.e.,
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Fig. B .ll  Plot of the Weierstrass invariant дз as a function of e. For case (а), дз >  0 
and Д >  0; for cases (b) and (с), дз <  0 and Д >  0; and for case (d) дз >  0 and Д >  0.

z  =  e). Using the initial condition z(0) =  0, we find that p(7 ) =  —/i/2 =  ез 
which implies that 7  =  — i u  (see 0J3 in Table B.l for <73 <  0 and Д  >  0). 
The Weierstrass solution of the planar pendulum for 1 <  e <  2 is

z ( t )  =  2 р(т — i u )  +  ц, (B.40)

with the period of oscillation 2 |u/|. As expected, when e —> 2 (i.e., Д —>
0 and m —> 1), the period 2 |a/| approaches infinity as we approach the 
separatrix.

For case (c), where 2 <  e < 4 (i.e., 4/3 < // < 2 and <73 <  0), the periodic 
motion is bounded between ез =  —/i/2  (i.e., г =  0) and ег =  1 — /i/2  (i.e., 
г =  2), with the period of oscillation 2|u/|. Using the initial condition 
2 (0) =  0 , we find that p (7 ) =  —fi/ 2  =  ез which implies that 7  =  —ioj (see 
u>3 in Table B .l for <73 <  0 and Д > 0) and thus the Weierstrass solution 
of the planar pendulum for 2 <  e <  4 is again given by Eq. (B.40). Note 
that the separatrix solution (e =  2) is represented by orbits (b) and (c) as 
\uj'\ 00.

Lastly, for case (d), where e >  4 (i.e., >  2 and дз >  0), the periodic 
motion is bounded between ез =  —ц / 2 (i.e., z =  0) and =  1 — ц / 2  (i.e., 
z =  2). Using the initial condition z(0) =  0, we find that ^(7 ) =  —/i/2  =  ез 
which implies that 7  =  u/ (see W3 in Table B .l for дз >  0 and Д > 0) and 
thus the Weierstrass solution of the planar pendulum for e > 4 is again 
given by Eq. (B.39).

We conclude our discussion of the planar pendulum by using the Jacobi 
and Weierstrass solutions of this problem to establish a general relation 
between these elliptic functions. First, we use the Jacobi elliptic solution



(3.57) for the case e < 2 and find
0

z ( t )  =  2 sin2 -  =  2 m  sn2(/tr | m), (B.41)

where m  =  e/2 and к  =  1. By comparing Eqs. (B.39) and (B.41), we obtain 
the relation
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р (т + ш 3) =  +  ( j M - 1 )  sn2

which is just one example of the general relation

p (t +  w3) =  e3 +  (e2 - e 3) sn2(/tr|m). (B.42)

Next, using the Jacobi elliptic solution (3.64) for e >  2, we find

z ( t )  =  2  sn2 (у / ф т  | 2 /e) =  2 sn2 (^m1/2 г  | , (B.43) 

and thus we recover once again the relation (B.42).



Appendix С

Noncanonical Hamiltonian 
Mechanics*

Modern formulations of Hamiltonian mechanics [1] rely on the use of non­
canonical phase-space coordinates and the methods of differential geome­
try [5]. The purpose of this Appendix is to present a brief introduction to 
the noncanonical single-particle Hamiltonian mechanics. We also present 
an application of the (canonical) Hamiltonian perturbation method to the 
problem of the perturbed simple harmonic oscillator.

C .l  Differential G eom etry

Differential k-forms

=  77 Uili2,..ik dz tl Л dz12 A A dzlk
K!

are fundamental objects in the differential geometry of n-dimensional space 
(with coordinates z), where the components are antisymmetric
with respect to interchange of two adjacent indices since the wedge product 
Л is skew-symmetric (i.e., dza A dz b =  — dzb A dza) with respect to the 
exterior derivative d (which has properties similar to the standard derivative 
d).

Note that the exterior derivative dojk of a differential fc-form (or fc-form 
for short) Шк is a (fc + l)-form. For example, the exterior derivative of a
0-form /  is defined as

d f =  daf d z a, (c . i )

and, thus, d f  is a differential 1-form; note that its components are the 
components of the gradient V / .  Next, the exterior derivative of a 1-form 
Г is a 2-form: dF =  dr*, Л dzb =  даГь dza Л dzb, which, as a result of the
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skew-symmetry of the wedge product A, may be expressed as 

dr =  ± (даГ6 -  дьГа) dza A dzb

=  -  ШаЬ dZa A dzb, (C.2)

where шаь =  — изъа denotes the antisymmetric components of the 2-form 
из =  dr.

An important difference between the exterior derivative d and the stan­
dard derivative d comes from the property that d2̂  =  d(du)fc) =  0 for any 
к-form Шк- Indeed, for a О-form, we find

d2/  =  d2abf  dza A dzb =  0,

since dabf is symmetric with respect to interchange a 44 b while A is anti­
symmetric. For a 1-form, we find

d2r =  ^  (da^bc +  dbOJca + дсшаъ) dza Л dzb Л dzc =  0, 

which vanishes since дашьс +  дьшса +  дси>аь =  0 vanishes identically since
ш =  dr.

A к-form u3k is said to be closed if its exterior derivative is dw^ =  0, 
while a к-form U3k is said to be exact if it can be written in terms of a 
(k-l)-form Tfc_i as Wfc =  dFfc_i. Poincare’s Lemma states that all closed 
k-forms are exact (as can easily be verified), while its converse states that 
all exact к-forms are closed. For example, the infinitesimal volume element 
in three-dimensional space with curvilinear coordinates u =  (u1, u2 ,u 3) and 
Jacobian J\ Г2 =  J ( u )  du1 Л du2 A du3 is a closed 3-form since dfi =  0. 
Hence, according to the converse of Poincare’s Lemma, there exists a 2- 
form cr such that Cl =  dcr, where (т =  \ ег]к crfc(u) du* Л duj defines the 
infinitesimal area 2-form, with the Jacobian defined as J  =  d a 1 ( w)  j  du1.

We now introduce the inner-product operation involving a vector field 
v  and a к-form из к, denoted as v • из к, which produces а (к — l)-form. For 
example, for a 1-form, it is defined as v • Г =  va Га while for a 2-form, it is 
defined as

v-u> =  i  (va ujab dzb -  u abvb dza) =  va u>abdzb.

Note that d(v • fl) =  J ~ xda{ J v a) Cl =  (V • v) Cl, which can be used to 
derive the divergence of any vector field expressed in arbitrary curvilinear 
coordinates.
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C.2 Lagrange and Poisson Tensors

The Poincare-Cartan one-form [1] (Jules Henri Poincare, 1854-1912; 
Elie-Joseph Cartan, 1869-1951) is expressed in canonical phase-space 
coordinates (q, p) as

r\  г

Гс =  —  dql -  H d a  =  pi dq1 -  H  da, (C.3)
dql

where a represents the Hamiltonian orbit parameter. The Lagrange one- 
form (a generalization of the Poincare-Cartan one-form) is expressed in 
terms of general noncanonical phase-space coordinates za as

Г =  Ла dza -  H  da, (C.4)

where
_  dL dq 

° =  d ^ ' d ^ '

The two-form w =  d7  is written as

Ш =  ^ LJab dza A dzb -  dH  A da, (C.5)

where the components of the Lagrange two-form are
_  dAb dAa 

ШаЬ -  dz“ dzb • ( }
The phase-space Euler-Lagrange equation for the coordinate za is obtained 
by the contraction 8za ■ ш =  0, which yields

d l _ d H  
ШаЬ da ~  dz«• ( }

The noncanonical Hamilton’s equations are obtained from Eq. (C.7) 
provided the antisymmetric Lagrange matrix ш (with components ujab) can 
be inverted. This inversion condition is represented by det(w) ф 0. The 
inverse of the Lagrange matrix yields the Poisson matrix J =  with 
components Jab that satisfy the condition Jab uji,c =  <5°c- The noncanonical 
Hamilton’s equation (C.7) for za is therefore written as

^  = ^ | £ М 2 . , я ) . (c.8)

where we introduced the antisymmetric Poisson bracket (Simeon-Denis 
Poisson, 1781-1840)

^  G> s <C9>
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The antisymmetry of the Poisson matrix guarantees the antisymmetry of 
the Poisson bracket {G , F }  =  — {F , G }. An important property of the 
Poisson bracket is that it must satisfy the Jacobi condition (expressed in 
terms of three arbitrary functions F , G , and H)

{F , {G , H )  } +  {G , {H , F }  } +  {H , {F , G } }  =  О, (C.10)

which can be expressed in terms of the components of the Poisson matrix 
as

JadddJbc +  JbdddJca +  JcdddJab =  0. (C .ll)

Note that when canonical coordinates are used (for which the Poisson com­
ponents Jab are either ±  1 or 0), the Jacobi identity (C.10) is trivially sat­
isfied. The condition (C .ll) can also be expressed in terms of the Lagrange 
components шаъ as

da^ bc “b db^ ca ' d cUJab — 0,

which is trivially satisfied since the Lagrange components are defined by 
Eq. (C.6).

As a simple example of noncanonical Hamiltonian mechanics, we 
consider the Poincare-Cartan one-form written in terms of the eight­
dimensional noncanonical coordinates za =  (,-rM, p;i) =  (ct, x; — го/с, p):

Г =  [рц +  “  Ax) dx^ =  ( p + ^ a )  - dx -  (w +  e Ф) d£, (C.12)

where the energy coordinate w is canonically conjugate to time t. The 
Lagrange two-form

uj =  dr =  d A da;̂  +  ^ F ^  dxM A dx" =  dza A dzb (C.13)

is expressed in terms of the Faraday electromagnetic tensor components 
FfW =  df,A v — dvA fl. From the two-form (C.13), we construct the 8 x 8  
antisymmetric Lagrange matrix

(e/c) F - I '
I 0

which is composed of 4 x 4 block matrices. Its inversion yields the 8 x 8  
antisymmetric Poisson matrix

J =  u;-1 =  f  °  1
l - I  (e/c)  F

from which we obtain the noncanonical Poisson bracket
d F  dG d F  d G \  e d F  dG
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When we combine this Poisson bracket with the Hamiltonian H  =  
pfl p11 /2m. we obtain Hamilton’s equations of motion

z a =  { z a, H } =  I
{P n  =  (e/c) vv 

which describe the relativistic motion of a particle in an electromagnetic 
field [7].

Lastly, an important property of Hamilton’s equations is that the equa­
tions satisfy the Liouville Theorem

d (  dza\
= 0 ,  (C.15)

dza \ da

which can also be expressed in terms of the Liouville identities da( J  Jab) =
0, where the Jacobian J  is the determinant of the matrix d(q, p )/3z . For 
the Poisson bracket (C.14), the Liouville identities are dF^/dp^ =  0. 
Lastly, the Liouville Theorem is trivially satisfied in the case of canoni­
cal Hamilton’s equations.

C .3 Hamiltonian Perturbation Theory

Hamiltonian methods offer powerful tools in perturbation theory. For ex­
ample, when an exact dynamical invariant is destroyed by a small per­
turbation, Hamiltonian perturbation methods can be used to construct an 
adiabatic invariant that is preserved to arbitrary order in the perturbation 
amplitude.

We consider, for example, the unperturbed (canonical) Hamiltonian 
Ho — p2/ 2  +  q2/2 for a simple harmonic oscillator with unit mass and 
unit frequency. By introducing the transformation to action-angle coordi­
nates z =  (J, #), where q =  \f2J sin# and p =  V 2 J  cos 9, we readily find 
that the new unperturbed Hamiltonian K o(z) =  H o(q (z),p (z)) =  J is inde­
pendent of the angle 9. Hence, the new unperturbed Hamilton’s equations 
are Jo =  —дКо/дв =  0 and 9q — ЭКо/dJ =  1. The action variable is 
therefore an invariant of the unperturbed Hamiltonian system.

We now introduce the perturbation Hamiltonian e H\(q,p) =  —eq4/24 
in the original simple-harmonic-oscillator Hamiltonian system (where t  ap­
pears as an ordering parameter), which is translated into the new pertur­
bation Hamiltonian

eK i(J ,9 )  =  - ^ J 2 sin4#. (C.16)
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We note here that in order for the perturbation to be considered small 
(i.e., I <  K q), we require that e <  6 /Jmax during the evolution of 
the perturbed system. Because the new Hamiltonian К  =  K q +  eK\ now 
depends on the angle variable 9, the action variable J is no longer invariant,
i.e., J =  — e дК\/дв ф 0. The purpose of Hamiltonian perturbation theory 
is to construct new action-angle coordinates z =  (J, 9) in terms of which 
the transformed Hamiltonian

K (z )  =  K (J (z ) ,9 (z ) )  (C.17)

is independent of the new angle variable 9 up to arbitrary orders in e.
Since the transformation (J, 9) —»• (J, 9) we seek is canonical, it may be 

expressed in the following form

+  6{S i, za}  +  e2 ( { S 2, z a}  +  i { s b {S t, za}  } )  +  ■•• ,

(C.18)
where the functions (Si, S2, • • •) are said to generate the canonical trans­
formation, and the action-angle canonical Poisson bracket is {F , G } =  
doF d jG  — d jF  doG. The new Hamiltonian, on the other hand, is expressed 
in terms of these generating functions as

К  =  К  -  e { S u К }  -  e2 ( { S 2, К } +  \ { s b  {S b K }  } )  +  ••• ,

(C.19)
which ensures the scalar-invariance property (C.17) is satisfied. Note that 
the direct transformation approach used here is different from the standard 
perturbation analysis based on mixed-variable generating functions [7]. The 
main advantage of the direct approach is that it can easily be generalized 
to arbitrary orders in the perturbation parameter e.

When the original Hamiltonian

К  =  K 0(J) +  e K i(J , 9) +  e2K 2 (J,9) +  •■• (C.20)

is expanded in powers of e with each perturbation term K n(J,9 ) (n >  1) 
expressed as an explicit function of 9, the transformed Hamiltonian (C.19) 
is also expressed as an expansion in powers of e

К  =  K q (J ) +  e K i Q )  +  e 2K 2 (J) +  ••• (C.21)

By inserting Eqs. (C.20)-(C.21) in Eq. (C.19), we obtain the following



Noncanonical Hamiltonian Mechanics* 297

К

К о =  Ко, (С.22) 

K 1 = K l -  {S u К о} =  K x -  (C.23) 

2 =  K 2 -  {S 2, К о} -  {S i, K ^  +  l-  { 5 b  {5 b  ^ o } }  

SS2 dSx I f  dS, \ 
— ~d(F ~  ~дв ~  2 \5b W l  (C 24)

At zeroth order, we easily find K 0 =  J. At first order, we impose the 
condition that K\ is independent of 0 by 0-averaging the right side of 
Eq. (C.23), which yields

K r Q )  =  <tfi(J,5)>, (C.25)

while the ^-dependent part K i = K \  — (K i)  is cancelled by choosing 5i such 
that dSi/dO =  K\ . Likewise, the transformed second-order Hamiltonian is 
defined as

i h ( © ) } ■ » -  i «=«>
while the second-order generating function S2 is chosen to cancel all explicit 
0-dependence on the right side of Eq. (C.24).

We note that since the new action variable

7  =  J  +  e l &  +  е 2 { ж  +  l { S u  ж } )  +  ( C 2 7 )

is expressed in terms of a truncated asymptotic series in powers of e, it is
not an exact dynamical invariant, i.e., J =  0 ( e n+1) if the new Hamiltonian
К  =  К  о +  ■ • • +  enK n is truncated at order en. Hence, the new action
variable (C.27) called an adiabatic invariant [13].

Returning to the perturbation term (C.16), for example, we find
j2 _  /2 g c

(K i) =  ~ j g  and K i =  -  —  (cos40 -  4 cos20) =  — ,

so that, up to first order in e, the new Hamiltonian is

К  =  J  -  ^ J 2, (C.28)lb
while the new action-angle variables are

J =  J — J2 (cos 40 — 4 cos 20) and 0 =  0 +  J (sin 40 — 8 sin 20). 
48 9b

expressions up to second order in e:
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N ew  action J

Fig. C .l Plots of the old action J(t) and the new action J(t) (with first-order correc­
tions) corresponding to the initial conditions g(0) =  2 and p(0) =  0 with perturbation 
parameter e =  0.25.

If we now write J in terms of the original coordinates (q ,p ), we find

J  =  \ {P2 +  Q2) ~  ~  (5?4 -  6 p 2 q 2  ~  3^4) * (C-29)

and we easily verify that J =  0 ( e 2), with q =  p and p — — q -I- eq 3/6.
Figure C.l shows plots of the old action J{t) =  p2 (t)/2 +  q2 (t) / 2 

and the new action J(f), given by Eq. (C.29), as functions of time t for 
6 =  0.25. Note that since 1 <  J <  2 during its time evolution, then 
e =  0.25 < 6 /Jmax =  3 satisfies the condition of applicability of Hamilto­
nian perturbation theory. One can clearly see that, even for a large value of 
the perturbation parameter e, the new action J shows much smaller oscilla­
tions than the old action J. One could further reduce the oscillations in the 
new action J by proceeding to second order in the Hamiltonian perturba­
tion analysis [see Eq. (C.27)], which requires us to evaluate the generating 
function S2 in Eq. (C.24).

Lastly, we note that the simplicity of the new Hamilton’s equations of 
motion

j  =  -  ^ r  =  0 and Ь =  ~  =  I -  £ j  =  П, (C.30) 
06 8 J  8 ’

implies that the old action-angle variables can be evaluated explicitly as 
functions of time by inverting the transformation (C.18):

J{t) =  J  +  — J2 [cos4(#o +  Ш) -  4 cos2(0o +  Ш)] , (C.31) 

6 {t) =  во +  Ш — —  J [sin 4(0O +  Ш) -  8 sin2(50 +  Ш)] .(C.32) 

By extension, the old coordinates

q(t) =  y/2 J(t) sin 6 (t) and p(t) =  \J2 J{t) cos 6 (t) (C.33)
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q(t)

Fig. C.2 Plots of exact solution q(t) of the perturbed Hamiltonian problem (C.34) and 
the approximate solution q(t) =  y^2J(t) sin6(t), with (J(t),6(t)) given by Eqs. (C.31)- 
(C.32), for the same initial condition (q(0),p(0)) =  (2,0) and e =  0.25.

have also been solved explicitly as functions of time. Hamiltonian pertur­
bation theory has therefore allowed us to solve explicitly the Hamilton’s 
equations

q =  p and p =  — q +  — q3 (C.34)
6

for small enough values of the perturbation parameter e. It is important 
to note that the solution (C.33), with (./(<), 0(t)) given by Eqs. (C.31)- 
(C.32), starts to deviate from the true solution of Eq. (C.34) for times of 
order e~" when the Hamiltonian perturbation analysis has been carried 
out up to order e” . For example, Fig. C.2 shows that the approximate 
solution (C.33) begins to deviate from the exact solution at a time close 
to e-1 =  4. Note that the deviation of the approximate solution oscillates 
around the exact solution and the amplitude of the deviation depends on 
the initial conditions (i.e., how well the perturbation condition e <  6 /Jmax 
is satisfied).
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