ОБРАБОТКА МЕТАЛЛОВ РЕЗАНИЕМ

Справочник технолога

Под общей редакцией канд. техн. наук А.А. ПАНОВА

МОСКВА « МАШИНОСТРОЕНИЕ »

1988

Авторы:

А. А. Панов, В. В. Аникин, Н. Г. Бойм, В. С. Волков, Л. Б. Гай, А. И. Зайцев, Г. А. Лавров, Б. В. Медведь, В. Б. Савин, А. П. Соловьев, А. З. Старосельский, З. А. Фарберов, Л. Н. Чеканова, Л. Б. Чернявский, Н. П. Шестаков

Рецензенты: А. А. Гусев, В. В. Москалев, В. Н. Резников

Обработка металлов резанием: Справочник техно-О-23 лога/А. А. Панов, В. В. Аникин, Н. Г. Бойм и др.; Под общ. ред. А. А. Панова.— М.: Машиностроение. 1988.— 736 с.: ил. ISBN 5-217-00032-5

Приведены справочные сведения по созданию робототехнологических комплексов и ГПС, о высокопроизводительной технологической оснастке и инструменте. Даны типовые технологические маршруты и схемы обработки деталей на станках с ЧПУ. Рассмотрены методы обеспечения гочностных нараметров пренезионных деталей, методы и средства измерения, рекомендуемые режимы резания. Приведены расчеты технико-экономической эффективности современной технологии обработки деталей. Для инженерно-технических работников маниностроительных предприятий, а также может быть полезен студентам втузов.

O 2704040000 - 615 265 - 87 /44513

Справочное издание \$1000 - 34

ББК 34.63

Анатолий Алексеевич Панов, Владимир Владимирович Аникин, Надежда Григорьевна Бойм и др.

ОБРАБОТКА МЕТАЛЛОВ РЕЗАНИЕМ

Редакторы И. И. Лесниченко, Т. С. Грачева. Переплет художника К. К. Федорова. Художественный редактор А. И. Ро. Технический редактор И. В. Малыгина. Корректоры О. Е. Мишина, Л. Е. Сонюшкина

ИБ № 5134

Сдано в пабор 26.03.87. Подписано в печать 24.05.88. Т-07012. Формат $70 \times 100^{1}/_{16}$. Бумага офсетная кн.-журп. Гарнитура таймс. Печать офсетная. Усл. печ. л. 59,34. Усл. кр.-отт. 118,68. Уч.-изл. л. 59,41. Тираж 120 000 экз. (Г-й з-д 1 − 50 000 экз.) Заказ № 926. Цена 3 р. 40 к. Ордена Трудового Красного Знамени издательство «Машиностроение», 107076, Москва, Стромынский пер., 4

Ордена Октябрьской Революции, ордена Трудового Красного Знамени Ленниградское производственнотехническое объединение «Печатный Двор» имени А. М. Горького Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. 197136, Ленинград, П-136, Чкаловский пр., 15.

ОГЛАВЛЕНИЕ

Предисловие	6	Глава 4. Роботизированные техноло-	4.0
Глава 1. Опоры, зажимы и установоч-		гические комплексы $(A. A. \Pi a ho s)$	110
ные устройства (В. Б. Савин, А. И. Зай-		1. Основные положения	110
цев, В. В. Аникин)	7	2. Классификация промышленных	
1. Технологические базы	7	роботов и роботизированных тех-	
	,	нологических комплексов	111
2. Обозначение опор, зажимов и	8	3. Технические характеристики ос-	
установочных устройств	Ü	новных моделей промышленных ро-	
Глава 2. Металлорежущие станки		ботов	114
$(\Gamma. A. \Piaspos)$	20	4. Типовые компоновки роботизи-	
 Классификация и нормы точности 		рованных технологических комплек-	100
станков	20	сов и их основные показатели	126
2. Токарные станки	25	5. Определение потребности в робо-	
3. Многоцелевые станки	44	тизированных технологических ком-	4.00
4. Сверлильные и расточные станки	50	плексах	138
5. Фрезерные станки	55	6. Экономическая эффективность от	
Глава 3. Габариты рабочего простран-		внедрения роботизированных техно-	
ства и установочные базы металлоре-		логических комплексов	143
жущих станков (для разработки нала-		Список литературы	147
док) (А. А. Панов)	65	Глава 5. Гибкие производственные	
1. Токарные станки		CHCTEMEL (I E Hannacama)	1.40
Токарно-револьверные одно-		системы (Л. Б. Чернявский)	148
шпиндельные прутковые ав-		1. Основные положения	148
томаты	65	2. Структура ГПС и основные рас-	151
Токарно-револьверные одно-		четные зависимости	151
шпиндельные патронные полу-		3. Автоматизированная транспортно-складская система	154
автоматы	68		169
Токарные многошпиндельные		4. Система стружкоудаления 5. Автомагизированная система уп-	
горизонтальные прутковые ав-		равления	171
томаты	71	6. Компоновка ГПС	180
Токарные многошпиндельные		_	181
горизонтальные патронные	_,	Список литературы	101
полуавтоматы	76	Глава 6. Станочные приспособления	
Токарно-револьверные станки		к металлорежущим станкам (А. З. Ста-	
(с вертикальной осью револь-		росельский)	182
верной головки)	79	1. Универсальные приспособления	182
Токарно-револьверные станки		2. Специализированные приспособ-	
(с горизонтальной осью ре-	0.1	ления и приводы	227
вольверной головки)	81	5 . 7 H	
Токарные вертикальные пат-	0.4	Глава 7. Инструменты для обработки	239
ренные полуавтоматы	84	резанием (Н. П. Шестаков)	
2. Многоцелевые станки	88	1. Резцы	239 269
Вертикальные станки	88	2. Сверла	277
Горизонтальные станки	91	3. Фрезы	27.
3. Фрезерные станки	98	4. Резьбонарезные и зуборезные ин-	299
Горизонтальные консольно-	00	струменты	-//
фрезерные станки	98	C	
Вертикальные консольно-	101	Глава 6. Вспомогательные инструмен-	
фрезерные станки	101	ты к металлорежущим станкам, в том	
4. Продольно-строгально-фрезерные		числе к станкам с ЧПУ (А. 3. Старо-	312
и комбинированные продольно-обра-	105	сельский)	312
батывающие станки	105	1. Инструменты к токарным станкам	J 14

2 Инструменты к токарыс-реводь-		вания инструмента, оснащенного	
2. Инструменты к токарно-револь-	316	режущей керамикой	489
верным станкам	310	Список питератиры	492
3. Инструменты к токарно-револь-	224	Список литературы	474
верным автоматам	324	Глава 14. Технологические методы	
4. Инструменты к сверлильным и		достижения точностных параметров	
расточным станкам	328	деталей прецизионных станков (3. А.	
5. Инструменты к фрезерным стан-			493
кам	359	Φ apbepos)	47.
^		1. Технологический регламент на	
Глава 9. Организация участка размер-		обработку базовых и корпусных де-	40.0
ной настройки инструментов для		талей	493
станков с ЧПУ (Л. Н. Чеканова)	363	Технические требования на обра-	
1. Основные положения	363	ботку типовых деталей	493
2. Организация работ на участке		Типовая схема изготовления дета-	
размерной настройки инструментов	369	лей	495
3. Выполнение расчетов для органи-	207	Технологические условия прове-	
зации участка размерной настройки		дения регламентируемых операций	496
зации участка размерной настройки	370		170
инструментов	370	2. Технологический регламент на об-	
Глава 10. Абразивные инструменты		работку пинолей, гильз, шпинделей и	50/
(Н. П. Шестаков)	378	ходовых винтов	504
1. Типы и основные размеры	378	Гехнические требования на обра-	
2. Шлифовальные круги	379	ботку типовых деталей пинолей и	
	390	гильз	5 04
3. Отрезные круги		Типовая схема изготовления пи-	
4. Шлифовальные сегменты	393	нолей и гильз	505
5. Шлифовальные головки	394	Технологические условия прове-	
6. Элементы крепления абразивных		дения регламентируемых опера-	
инструментов	397	ций изготовления пинолей и гильз	505
Глава 11. Типовые технологические		Технические требования на обра-	202
маршруты механической обработки		ботку типовых деталей шпинделей	515
деталей в условиях мелкосерийного и		Типовая схема изготовления шпин-	5(5
среднесерийного производства (В. В.		делей	516
Аникин, А. И. Зайцев, В. Б. Савин)	404	Технологические условия проведе-	510
· · · · · · · · · · · · · · · · · · ·	404		
Глава 12. Схемы базирования и об-		ния регламентируемых операций	517
работки деталей на станках с числовым		изготовления шпинделей	31/
программным управлением (В. В. Ани-		Технические требования на обра-	
кин, А. И. Зайцев, В. Б. Савин)	446	ботку типовых деталей ходовых	633
4.0		винтов скольжения	523
Глава 13. Обработка деталей инстру-		Типовая схема изготовления холо-	500
ментами из сверхтвердых материалов		вых винтов	523
и минералокерамики (Н. Г. Бойм)	455	Гехнологические условия проведе-	
1. Лезвийный инструмент из сверх-		ния регламентируемых операций	
твердых материалов	455	изготовления ходовых винтов	524
Марки композита	455	Глава 15. Методы и средства измере-	
Конструкции инструмента центра-		ния (Б. В. Медведь)	532
лизованного изготовления	455	1 Metari, unionenua artiforenta	332
Заточка и переточка инструмента	456	1. Методы измерения отклонений	
Рамими подочна инструмента	450	формы и расположения поверхно-	522
Режимы резания инструментом из	465	стей	532
композита	405	2. Средства измерения	551
Области эффективного применения		Координатно-измерительные при-	
лезвийного инструмента из ком-	4/7	боры и машины	551
позита	467	Приборы, управляющие процессом	
Точение и растачивание	468	обработки	554
Фрезерование	474	Контроль точностных параметров	
2. Инструмент, оснащенный минера-		зубчатых колес	554
локерамикой новых марок	480	Лазерные приборы	554
Марки режущей керамики	480	Средства измерений линейных раз-	
Пластины из керамики	482	меров	560
Конструкции инструмента центра-		Средства измерений углов и кону-	
лизованного изготовления, осна-		сов	569
щенного режущей керамикой	483	Средства измерения отклонений	
Рекомендуемые режимы резания	487	формы, расположения и шерохова-	
Области эффективного испол: 30-		тости поверхностей.	572

Глава 16. Межоперационные припуски на обработку деталей машиностроения (Л. Б. Гай)	581	4. Определение полной (плановой) трудоемкости	690
Глава 17. Формулы для определения основного (технологического) времени обработки деталей из металлорежу-		ской эффективности технологии обра- ботки деталей машиностроения (А. П. Соловьев)	695
щих станках (Л. Б. Гай)	609	1. Основная терминология	695
Глава 18. Рекомендации по выбору режимов резания	626	Определение годового экономического эффекта Определение капитальных вложений	696 697
высокоточных деталей (В. С. Волков) 2. Методические указания по нормированию основного времени и режимы резания на многоинструмен-	626	4. Определение себестоимости механической обработки заготовки 5. Выбор наиболее экономически эф-	700
тальных станках	641	фективного варианта технологического процесса обработки заготовки Список литературы	713 715
на станках с ЧПУ и станках типа «Обрабатывающий центр»	676	Глава 21. Оценка интенсивного использования и обновления парка металлорежущего оборудования (A, A,	
Список литературы	683	Панов)	717
трудоемкости на производство про- дукции машиностроения (В. С. Волков) 1. Основные понятия трудоемкости	684	галлорежущего оборудования 2. Расчет потребности и коэффициента воспроизводства и пополнения парка металлорежущего оборудо-	717
и нормативов грудовых затрат на производство продукции 2. Основные методы определения технологической (проектной) трудо-	684	вания	721
емкости	685	вания в проектах	728
доемкости изделий	688	Предметный указатель	731

ПРЕДИСЛОВИЕ

В развитии технологии обработки металлов резанием за последние годы происходят принципиальные изменения. Интенсификация технологических процессов на основе применения режущих инструментов из новых инструментальных материалов, расширение области применения оборудования с ЧПУ, создание роботизированных станочных комплексов и гибких производственных систем с управлением от ЭВМ, повышение размерной и геометрической точности, достигаемой при обработке - таков неполный перечень важнейших направлений развития технологии механической обработки в машиностроении.

Справочник технолога по обработке металлов резанием в отличие от ранее изданных содержит подробные сведения о технологических процессах, в TOM о процессах с применением инструментов из сверхтвердых материалов и минералокерамики, о технологических методах достижения высокой точности для прецизионных деталей, об особенностях внедрения гибких производственных систем, робототехнических станочных комплексов, станков с ЧПУ и многооперационных станков, станочных приспособлений, вспомогательного инструмента, а также рекомендации по выбору режимов резания и технико-экономической эффективности совершенствования технологии механообрабатывающего производства.

В справочнике впервые достаточно широко представлены технические характеристики станков с ЧПУ и многоцелевых станков, которые кроме геометрических параметров обрабатываемых деталей содержат также и точностные параметры, которые помогут технологу выбрать необходимое оборудование для изготовления конкретных деталей.

Представленные в справочнике данные являются необходимой базой для создания новых технологических процессов, разработки наладок, внедрения прогрессивного металлорежущего оборудования, инструментов, контрольно-измерительиых приборов и др. Справочные материалы изложены в соответствии с принципиальными положениями технологин машиностроения. Основное внимание обращено на полноту информации, необходимой для разработчиков и проектантов промышленных предприятий и проектно-технологических организаций.

Справочник может быть полезен инженерно-техническим работникам, а также студентам втузов при выполнении технологической части дипломного проекта.

ОПОРЫ, ЗАЖИМЫ И УСТАНОВОЧНЫЕ УСТРОЙСТВА

1. ТЕХНОЛОГИЧЕСКИЕ БАЗЫ

Заготовка детали в процессе обработки должна занять и сохранять в течение всего времени обработки определенное положение относительно деталей станка или приспособления. Для этого необходимо исключить возможность трех прямолинейных движений заготовки в направлении выбранных координатных осей и трех вращательных движений вокруг этих или параллельных им осей (т. е. лишить заготовку детали шести степеней свободы).

Для определения положения жесткой заготовки необходимо наличие шести опорных точек. Для их размещения требуется три координатные поверхности (или заменяющие их три сочетания координатных поверхностей). В зависимости от формы и размеров заготовки эти точки могут быть расположены на координатной поверхности различно. На заготовках деталей, имеющих форму прямоугольного параллелепипеда, три

опорные точки целесообразно размещать на поверхности, отличающейся наибольшими размерами, две — на поверхности, отличающейся наибольшим протяжением, одну — на поверхности, отличающейся наименьшими размерами (рис. 1).

Поверхность или выполняющие ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке и используемая для базирования, называются базой.

Базу, лишающую заготовку детали трех степеней свободы, называют установочной. В качестве установочной базы выбирают поверхность или сочетание координатных поверхностей с наибольшими размерами.

Базу, лишающую заготовку детали двух степеней свободы, называют направляющей. В качестве направляющей базы выбирают поверхность или сочетание координатных поверхностей наибольшей протяженности.

Базу, лишающую заготовку детали одной

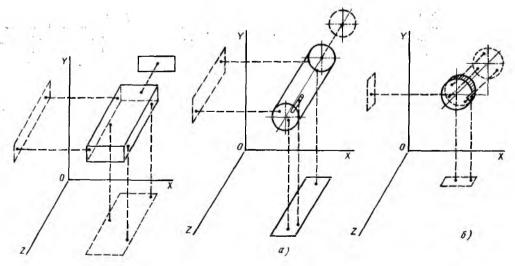


Рис. 1. Координатиые поверхности заготовки, имеющей форму параллеленипеда

Рис. 2. Координатные поверхности заготовки, имеющей форму цилиидра:

a — при L > 3D; δ — при L < 3D

степени свободы, называют *опорной*. В качестве опорной базы выбирают поверхность или сочетание координатных поверхностей с наименьщими размерами. Базу, используемую для определения относительного положения заготовки или изделия и средств измерения, называют измерительной.

Несколько иначе расположены опорные точки по поверхностям заготовок деталей, представляющих собой тела вращения, длина которых больше их диаметра (валики).

На цилиндрической поверхности располагаются четыре опорные точки. Базу, лишающую заготовку детали четырех степеней свободы, называют двойной направляющей.

На торцовой поверхности и на одной из поверхностей шпоночного паза располагается по одной опорной точке; каждая из этих поверхностей называется опорной базой (рис. 2,a).

На заготовке детали, представляющей собой тело вращения, длина которого меньше диаметра (диски, зубчатые колеса, фланцы и т. д.), шесть опорных точек располагаются следующим образом: три — на торцовой поверхности, выполняющей функции установочной базы; две — на цилиндрической, лишаюшей заготовку детали двух степеней свободы (перемещения вдоль двух координатных осей), вследствие чего эта поверхность является двойной опорной базой; одна точка — на одной из поверхностей шпоночного паза, выполняющей функцию опорной базы (рис. 2, б).

Для обеспечения контакта между поверхностями заготовки детали и опорными точками необходимо создать зажимные силы (силовое замыкание), которые рекомендуется располагать против опорных точек.

Погрешностью базирования называется отклонение фактически достигнутого положения заготовки при базировании от требуемого. Эта погрешность имеет место при несовмещении измерительной и установочной баз заготовки; она не является абстрактной величиной, а относится к конкретному размеру при данной схеме установки.

Закреплением называется приложение сил и пар сил к заготовке для обеспечения постоянства ее положения, достигнутого при базировании.

Установкой называется процесс базирования и закрепления заготовки.

Погрешностью установки называется отклонение фактически достигнутого положения заготовки при установке от требуемого.

2. ОБОЗНАЧЕНИЕ ОПОР, ЗАЖИ-МОВ И УСТАНОВОЧНЫХ УСТ-РОЙСТВ

1. Обозначение опор (ГОСТ 3.1107-81)

0		Обозначение опоры на видах		
Опора	спе- реди, сзади	сверху	снизу	
Неподвижная		0	0	
Подвижная	Δ	-0-	ф	
Плавающая	淋	-ф-	-ф-	
Регулируемая	4	©	9	

Примечание. Несколько обозначений одноименных опор на схемах на каждом виде допускается заменять одним с обозначением их числа справа.

2. Обозначение зажимов (ГОСТ 3.1107-81)

	Обозначен	не зажима	на видах
Зажим	спереди, сзади	сверху	снизу
Одиночный	4	Ф	•
Двойной		00	⊙—-⊙

Примечание. Для двойных зажимов длина плеча устанавливается разработчиком в зависимости от расстояния между точками приложения сил. Допускается упрощенное графическое обозначение двойного зажима:

Д. Обозначение двойного зажима на

виде спереди или сзади при совпадении точек приложения силы допускается изображать как обозначение одиночного зажима на аналогичных видах.

3. Обозначение установочных устройств (ГОСТ 3.1107 – 81)

	вочног	ичение го устр на вида	ойства
Установочное устройство	спере- ди, сзади, свер- ху, снизу	слева	справа
Центр: неподвижный	<	Без обо- зна- че- ния	Без обо- зна- че- ния
вращающийся	∢	То же	То же
плавающий	¥	»	»
Оправка: цилиндрическая	~	~~	<u>~</u>
шариковая (роликовая)	₽	V	
Патрон поводковый	1	1	1

Примечание. Для цанговых оправок (патронов) следует применять обозначение:

Для указания устройств зажимов следует применять обозначения в соответствии с табл. 5.

Для гидропластовых оправок допускается применять обозначение r_c |

Число точек приложения силы зажима к изделию при необходимости следует записывать справа от обозначения зажима.

Обозначение опор и установочных устройств, кроме центров, допускается наносить на выносных линиях соответствующих поверхностей.

4. Обозначение формы рабочей новерхности опор, зажимов и установочных устройств (ГОСТ 3.1107-81)

Форма рабочей поверхности	Обозначение формы рабочей поверхности на всех видах
Плоская	_
Сферическая	
Цилиндрическая (шариковая)	0
Призматическая	
Коническая	V
Ромбическая	♦
Трехгранная	

Примечание. Для указания рельефа рабочих поверхностей (рифленая, резьбовая, шлицевая и т. д.) опор, зажимов и установочных устройств следует применять обозначение:

5. Условное обозначение устройств зажимов (ГОСТ 3.1107-81)

Зажимы	Обозначение устройства зажима		
Пневматические	P		
Гидравлические	Н		
Электрические	E		
Магнитные	M		
Электромагнитные	EM		
Прочие	Без обозначения		

Примечание. Обозначение видов зажимов наносят слева от обозначения зажимов.

6. Примеры наяесения обозначений опор, зажимов и установочных устройств на схемах (ГОСТ 3.1107-81)

(1001 3.1107-61)		₁	
Наименование	Примеры нанесения обозначений опор, зажимов и установочных устройств	Нанменование	Примеры нанесения обозначений опор, зажимов и установочных устройств
Центр: неподвижный (гладкий)		Оправка: цилиндрическая	
рифленый		коническая, ролико- вая	
плавающий	A	резьбовая, цилинд- рическая с наруж- ной резьбой	
вращающийся	€	шлицевая	7.5
обратный вращаю- щийся с рифленой поверхностью	×	квиотнер	
Патрон поводковый	1		-vs vinnamin
Люнет: подвижный		Опора регулируемая со сферической выпуклой рабочей поверхностью	<u> </u>
неподвижны й		Зажим пневматичес- кий с цилиндрической рифленой рабочей по- верхностью	0 1

Обозначение обратных центров следует выполнять в зеркальном изображении.

Для базовых установочных поверхностей допускается применять обозначение —

На схемах, имеющих несколько проекций, допускается на отдельных проекциях не указывать обозначения опор, зажимов и установочных устройств относительно из-

делия, если их положение однозначно определяется на одной проекции.

Обозначение форм рабочих поверхностей наносят слева от обозначения опоры, зажима или установочного устройства.

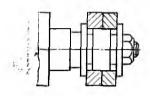
Обозначение рельефа рабочих поверхностей наносят на обозначение соответствующей опоры, зажима или установочного устройства.

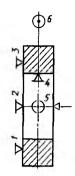
7. Примеры схем базировання деталей

Описание и схема установки Теоретическая схема базирования В центрах с поводком с вращающимся центром и подвижным люнетом В центрах с плавающим центром в поводковом патроне и неподвижным люнетом центрах рифленым вращающимся центром В трехкулачковом самоцентрирующем патроне с базированием по наружному диаметру без упора в торец Штангенциркуль

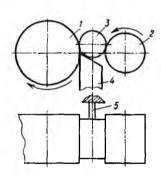
Продолжение табл. 7

	Продолжение табл
Описание и схема установки	Теоретическая схема базирования
В трехкулачковом патроне в разжим с базированием по торцу	
На жесткой центровой конусной или цилиндрической оправке с натягом в центрах с базированием по отверстию	$ \begin{array}{c c} & & \\$
На консольной оправке со шпонкой с базированием по торцу	
На резьбовой консольной оправке с базированием по резьбе	

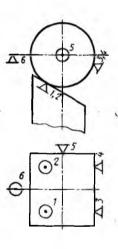

	Продолжение табл. 7
Описание и схема установки	Теоретическая схема базирования
На разжимной консольной оправке с базированием по отверстию	06
	$\bigcirc 3$, $\bigcirc 4$
На разжимной консольной оправке с базированием по торцу	Φ ⁶
	7 7 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3
На шлицевой оправке в центрах с базированием по отверстию	
На жесткой конусной консольной оправке с базированием по отверстию	3 0 4 D

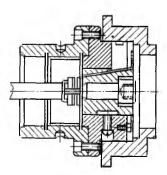

Продолжение табл. 7

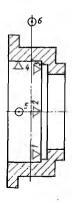
Описание и схема установки


Теоретическая схема базирования

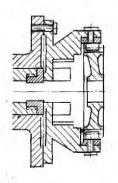
На жесткой консольной оправке с базированием по торцу

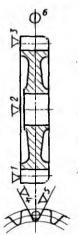



По обрабатываемой поверхности при бесцентровом врезном шлифовании

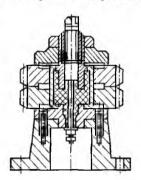


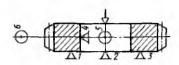
1- шлифовальный круг; 2- ведущий круг; 3- заготовка; 4- опора; 5- продольный упор


На оправке с креплением по отверстию

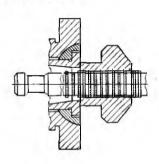


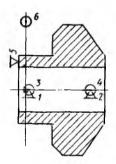
Описание и схема установки	Теоретическая схема базирования
На жесткой оправке с креплением по торцу	A STATE OF THE STA
На оправке в разжим с базированием по отверстию	Φ^{δ}
В приспособлении с роликами с базированием по торцу	

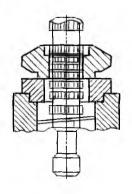


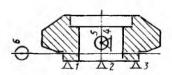

Продолжение табл. 7

Описание и схема установки

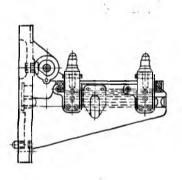

Теоретическая схема базирования

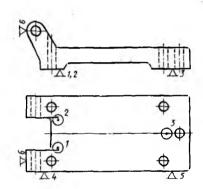

Крепление на оправке с гидропластом



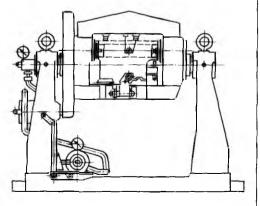

Базирование по отверстию по сферической опоре при протягивании

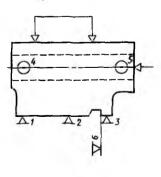
Базирование по торцу и с жесткой опорой при протягивании

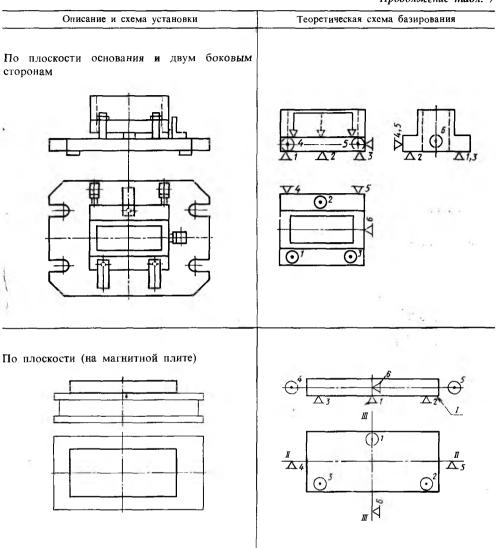



Продолжение табл. 7

	Продолжение табл. 7
Описание и схема установки	Теоретическая схема базирования
В машинпых тисках	Δ1 Δ2 Δ3
В призматических тисках	$\bigoplus_{\mathcal{A}_{1}^{3}} \bigoplus_{\mathcal{A}_{2}^{4}}$
Крепление в призмах	
На плоскость, круглый и срезанный пальцы с вертикальными осями	
	\$\frac{1}{\sqrt{2}} \frac{6}{\sqrt{2}}\$,
В пакладном кондукторе	46
	2 2 3 0 3


	Продолжение табл.
Описание и схема установки	Теоретическая схема базирования
В кондукторе	√4 √5


В кондукторе на поворотном столе



В кондукторе на поворотном приспособлении

Продолжение табл. 7

 Π р и м е ч а н и е. На теоретических схемах базирования пифрами I-6 обозначены опорные точки.

МЕТАЛЛОРЕЖУЩИЕ СТАНКИ

1. КЛАССИФИКАЦИЯ И НОРМЫ ТОЧНОСТИ СТАНКОВ

Металлорежущие станки в соответствии с видами обработки делят на десять групп: каждую группу подразделяют на десять типов, а каждый тип — на десять типоразмеров (табл. 1).

Группы станков определяются технологическим назначением станка (токарные, сверлильные и т. д.); типы — расположением рабочих органов (бесцентрово-шлифовальные, внутришлифовальные), количеством главных рабочих органов (одношпиндельные, многошпиндельные), степенью автоматизации (автомат, полуавтомат).

По степени специализации станки подразделяют на универсальные (общего назначения), специализированные, специальные и широкоуниверсальные.

По типоразмерам различают станки: токарные – по наибольшему размеру обрабатываемой детали над станиной; сверлильные — по наибольшему диаметру сверления в сплошном материале средней твердости; фрезерные — по размерам стола и т. д.; по массе и габаритным размерам станки разделяют на обычные, крупные, тяжелые и уникальные.

Металлорежущие станки изготовляют пяти классов точности (табл. 2).

Перечень ГОСТов на нормы точности станков приведен в табл. 3.

Условное обозначение молели металлорежущего станка состоит из сочетания цифр и букв. Первая цифра обозначает группу, вторая—тип станка, последние цифры—типоразмер. Буква после первой или второй цифры указывает на различное исполнение и модернизацию основной базовой модели станка. Наличие букв в конце цифровой части обозначает модификацию базовой модели, степень точности или особенности станка. Например, мод. 16Б16П обозначает токарно-винторезный станок с наибольшим диаметром обрабатываемого изделия над станиной 320 мм (высотой центров 160 мм) повыщенной точности.

1. Типы и группы металлорежущих станков

Станки	Груп-		Тип									
Станки	па	0	1	2	3	4	5	6	7	8	9	
	0*1	-	-	-	-	-	_	-	_	_	-	
Гокар-	1	Автома	Автоматы и полу		Револьвер-	- 1 - 1	Карусель-	Токарные	Многорез-	Специа-	Разные	
ные		специа- лизиро- ванные	одно- шпин- дельные	много- шпин- дельные	ные	но-отрез- ные	ные	и лобовые	цовые, ко- пироваль- ные	лизиро- ванные	токарные	
Свер- пильные	2	-	Верти- кально-	Полуа	втоматы	Коорди- натно-рас-	Радиаль- но-свер-	Горизон-	Алмазно- расточные	Горизон- тально-	Разные сверлиль	
и рас- точные				свер- лильные	одно- шпин- дельные	много- шпиндель- ные	точные	лильные	расточные		сверлиль- ные и центро- вые	ные
Шлифо- вальные, полиро- вальные, поводоч- ные и за- гочные	3	=	Кругло- шлифо- вальные	Внутри- шлифо- вальные	Обдироч- но-шлифо- вальные	Специали- зирован- ные шли- фовальные	Продоль- но-шлифо- вальные	Заточные	Плоско- шлифо- вальные	Прити- рочные и поли- роваль- ные	Разные, работаю- щие абра- зивом	
комби- нирован- ные	4	(A)		Свето-лучевые	Электро- химические шлифо- вальные, хонинго- вальные, супер- финишные	Электро- химические копирова- льно-про- шивочные, для удале- ния зау- сенцев, маркиро- вочные, контурно- доводоч-	Электро- эрозион- ные вырезные	Электро- эрозион- ные про- шивочные для извле- чения ос- татков сломанно- го инстру- мента	Электро- эрозион- ные копи- ровально- прошивоч- ные, ульт- развуковые и электро- химичес- кие ком- бинирова- нные про-	Анодно- механи- ческие отрезные	1.0	

Станки	Груп-						Тип				
Стапки	па	0	I	2	3	4	5	6	7	8	9
	0*1		-		_		_	-	_	_	
Зубо- и резьбо- обраба- тываю- щие	5	Резьбо- нарез- ные	Зубостро- гальные для пилинд- рических колес	Зуборез- ные для кониче- ских ко- лес	Зубофре- зерные для цилиндри- ческих колес и шлицевых валов	Для наре- зания червячных пар	Для обра- ботки тор- цов зубьев	Резьбо- фрезер- ные	Зубоотде- лочные, провероч- ные и об- катные	Зубо- и резьбо- шлифо- вальные	Разные зубо- и резьбо- обраба- тываю- шие
Фрезер- ные	6	Бара- банно- фрезер- ные	Верти- кально- фрезер- ные кон- сольные	Фрезер- ные неп- рерывно- го дейст- вия	Продоль- но-фре- зерные одно- стоечные	Копиро- вально- фрезерные и гравиро- вальные	Вертикаль- но-фрезер- ные бес- консоль- ные	Продоль- но-фре- зерные двухстоеч- ные	Консоль- но-фрезер- ные широ- ко-универ- сальные	Горизон- тально- фрезер- ные кон- сольные	Разные фрезер- ные
Стро- гальные	7	-	Продо одно- стоечные	двух- стоечные	Попереч- но-стро- гальные	Долбеж- ные	еж- Протяж- – Пр ные гори- ны		Протяж- ные верти- кальные	_	Разные стро- гальные
Разрез- ные	8	-	Отре	зные, работ	гающие			Пилы			(-)
			резцом	абразив- ным кругом	гладким или насеч- ным диском	Правиль- но-отрез- ные	ленточ- ные	дисковые	ножовоч- ные		
Разные	9	_	Опило- вочные	Пило- насека- тельные	Правильно- и бесцентрово- обдирочные	,	Для испытания сверл, шлифовальных кругов	Делитель- ные маши- ны	Балансиро- вочные	-	o - a. `∵

^{*1} Нулевая группа станков является резервной.

2. Классы точности металлорежущих станков (ГОСТ 8-82E)

(,		
Класс точности	сс ноти	Класс точности по абсо- лютной системе	Погрешность измерения в % от допуска измеряемой величины *1
Нормаль- иый Повышен- ный		К1 К2	20
Высокий Особо высокий		K3 K4	25
Особо точный	С	К5	30

^{*1} Погрешность измерения не должна превышать значений, приведенных в таблице.

3. Перечень ГОСТов на нормы точности металлорежущих станков

Группа	Тип	Наименование	ГОСТ
-	-	Станки металлорежущие. Общие требования	8-82E
		к испытаниям на точ-	
		ность	
-	-	Станки металлообра-	7599 – 82
		батывающие. Общие	
		технические условия	25442 025
_	_	Станки металлорежу-	25 443 -82 E
		щие. Образцы – изде-	
	l	лия для проверки точ-	
		ности обработки. Общие технические тре-	
		щие технические тре- бования	7.0
1	1	Станки токарно-про-	8831 – 79E
	•	дольные. Автоматы	0031 772
1	1	Автоматы токарно-ре-	18100-80
	1	вольверные однощпин-	
		дельные прутковые	
1	2	Автоматы токарные	43-85
		многошпиндельные	
		прутковые горизон-	
		тальные	
1	2	Полуавтоматы токар-	6819-84E

ные многошпиндель-

Продолжение табл. 3

Группа	Тип	Наименование	ГОСТ
		ные горизонтальные	
	\	патронные	6030 75
1	2	Станки токарные мно-	6820 – 75
		гошпиндельные верти-	
1	3	Станки токарно-револь-	17 – 70
		верные	
1	5	Станки токарно-кару-	44-85E
1	6	Станки токарина и то	18007 72
ı	0	Станки токарные и то- карно-винторезные	18097 – 72
1	7	Станки токарные мно-	16472 79
		горезцовые и много-	i
		резцово-копироваль-	
		ные горизонтальные	
1	8	полуавтоматические Станки токарные заты-	685 – 83
1	0	ловочные	005 05
2	1	Станки вертикально-	370-81E
		сверлильные	
2	4	Станки координатно-	18098 – 79E
		расточные и координат-	
2	5	Станки радиально-свер-	98-83E
_	_	лильные	
2	6	Станки горизонтально-	211085
2	_	расточные	11576-83E
2	7	Станки отделочно-расточные горизонтальные	113/0-83E
		с подвижным столом	
2	7	Станки отделочно-рас-	594-82
		точные вертикальные	
3	1	Станки круглошлифо-	11654 – 84
3	1	вальные Станки круглошлифо-	13510-84E
5	1	вальные бесцентровые	10010 012
3	2	Станки внутришлифо-	25-80
_		вальные	0525 01
3	4	Станки профильно- шлифовальные	9735-81
3	5	Станки продольно-	13135-80E
•		шлифовальные	
3	6	Станки универсально-	1584 – 75
•		заточные	627 76
5	6	Станки заточные для	627 – 76
3	6	резцов Станки для заточки	16929 71
_		плоских ножей с прямо-	
		линейной режущей	5-0-2
		кромкой	

Продолжение табл. 3

Продолжение табл. 3

		,			,	 	
Группа	Тип	Наименование	ГОСТ	Группа	Тип	Наименование	ГОСТ
3	6	Полуавтоматы для за-	20404 – 75	5	6	Станки резьбофрезер-	1797 – 78
3	6	Станки заточные для сверл	599 – 76	5	7	Станки зубошевинго- вальные	13281 – 77E
3	7	Станки плоскошлифовальные с крестовым	273 – 77	5	7	Станки зубозакругляю-	19166 – 73
		столом и горизонталь-		5	8	щие Станки зубошлифоваль- ные с коническим кру-	7640 – 76E
3	7	Станки плоскошлифо-	872 — 71			гом для цилиндричес-	•
		вальные с круглым сто-		5	8	ких колес Станки зубошлифова-	13133 – 77E
3	7	шпинделем Станки плоскошлифо-	14-71			льные с профильным кругом для цилиндри-	
		вальные с круглым маг-	128	5	8	ческих колес Станки зубошлифова-	13150 – 77E
	_	зонтальным шпинде-	27 02			льные горизонтальные для цилиндрических ко-	
3	7	Станки плоскошлифовальные с круглым сто-	27-83	5	8	лес Станки зубошлифова-	13086 – 77E
_		лом и вертикальным шпинделем				льные с червячным кру- гом для цилиндриче-	
3	8	Станки хонинговаль- ные и притирочные,	2041 – 78E	5	8	ских колес Станки зубошлифова-	13142-83
4	5	вертикальные Станки электроэрозион-	20551 - 82E			льные для конических колес	
4	. 7	ные вырезные Станки электроэрозион-	24953 - 81E	5	8	Станки шлицешлифова- льные	13134-82
_		ные копировально-про- шивочные		5	8	Станки резьбошлифо- вальные	871681
5	0	Станки резьбонарезные и резьбонакатные с	58-72E	6	1,5	Станки фрезерные вертикальные с крестовым	9726 – 83E
		вращающейся голов- кой		6	7,8	столом Станки фрезерные кон-	17734-81E
5	1	Станки зубодолбежные вертикальные для ци-	658 – 78E	6	6	сольные Станки продольно-	18101 85
5	2	линдрических колес Станки зуборезные для	9153-83E	7	į	фрезерные Станки продольно-	35 – 85
_		конических колес с пря- мыми зубьями		7	4	строгальные Станки долбежные	26 75
5	2	Станки зуборезные для конических колес с кру-	9152-83	7	5	Полуавтоматы протяжные горизонтальные	16015 – 83E
5	3	говыми зубьями Станки зубофрезерные	659 – 78E	7	7	Полуавтоматы протяжные вертикальные	16025 – 83E
اً		вертикальные для ци- линдрических колес		8	6	Полуавтоматы и ав- томаты отрезные круг-	28 – 77E
5	3	Станки зубофрезерные горизонтальные для ци-	18065 – 80E	8	7	лопильные Станки ножовочные	15-77
5	3	линдрических колес Станки шлицефрезер-	5642 – 77	9	7	Станки балансировоч- ные	20076 – 74
i	ļ	ные		_		L	

2. ТОКАРНЫЕ СТАНКИ

4. Токарно-револьверные одношлиндельные прутковые автоматы

-	Модель							
Параметр	1M110	1M116	1Ε125Π 1Ε125	1Е125ПИ*!	1E140∏ 1E140	1ЕІ40ПИ*≀	11Б40ПФ4*2	
Размеры прутка наибольшие, мм: круглого (диаметр) шестигранного (размер под ключ) квадратного (сторона квадрата)	10 8 7	16 13 11	2	25 11 7		40 34 28		
длина			30	000			2000	
Диаметр нарезаемой резьбы, мм: плашкой по стали метчиком плашкой по латуни метчиком	M10 M8 M12 M10	M12 M10 M14 M12	M M	18 16 20 18	M M	127 124 130 127	М6 наи- мень- ший, M24 на и бо- льший	
Наибольшая подача прутка за один ход, мм	70			10		100		
Наибольшая длина протачивания револьверным суппортом, мм	6	0		100		100		
Частота вращения (мин ⁻¹) при ходе: правом левом	63 – 1250 63 – 5000	50- 1000 50- 4000	80 - 500 160 - 4000	100 - 2500; 40 - 315 100 - 2500; 40 - 315	50 - 320 100 - 2500	160 4000; 63 500 160 4000; 63 500	40 - 4000 40 - 4000	
Число гнезд для крепления инструмента в головке			110	6			8 и 16	
Диаметр отверстия для крепления инструмента в револьверной головке, мм	2	20			32			
Расстояние от торца шпинделя до револь- верной головки, мм: наименьшее наибольшее	6	0 10			'5 35		99 319	
Число суппортов: поперечных вертикальных			IS	2			l рево- львер- ный	
Наибольший ход суппортов, мм	3	2		4	5		90	

Продолжение табл. 4

				Мод	ель		
Параметр		IM110 IM116 IE125 IE125			<u>IЕ140П</u> IE140	1Е140ПИ*≀	11 540 11 0 4*2
Мощность электродвигателя привода главного движения, кВт Габаритные размеры автомата, мм: длина ширина высота Масса автомата, кг	8 14	20 20 60 90	(11)	2 10	5,5 160 000 600 500		7280 2420 2150 5000
Устройство числового программного управления Число управляемых координат в том числе одновременно Дискретность задания размеров (мм) по оси: X			-	-			2У32-61 4 3 0,001 0,01
Отклонения обработанных поверхностей образцов, мкм: от круглости и цилиндричности Постоянство диаметра (мкм) в партии п образцов		6	5 8 16 25	5	5 8 16 25		5

^{*1} Автоматы мод. $1E125\Pi U$, $1E140\Pi U$, $11E40\Pi \Phi 4$ имеют останов и индексацию шпинделя.

^{*2} Автомат мод. 11Б40ПФ4 предназначен для полной обработки деталей из калиброванного прутка и штучных заготовок диаметром до 125 мм и длиной 100 мм. Неподвижным инструментом на автомате осуществляются обтачивание, растачивание, подрезание торцов, прорезание канавок, протачивание конусов, обтачивание радиусных поверхностей, сверление, зенкерование, развертывание центрального отверстия, нарезание резьбы метчиком, плашкой, резцом, точение и растачивание сложных криволинейных поверхностей, а вращающимся инструментом – поперечное сверление, зенкерование, развертывание, нарезание резьбы метчиком, сверление фланцев, зенкерование отверстий, прорезание шлищев дисковой фрезой, фрезерование шпоночных пазов, прорезание торцовых пазов пальцевой фрезой, фрезерование поперечных лысок. Автомат имеет левую и правую бабки для обработки детали с двух сторон. Частота вращения инструментальных шпинделей револьверной головки 40—2500 ммн⁻¹. Наибольший ход шпиндельных бабок 220 мм. Рабочие подачи шпиндельных бабок и револьверного суппорта 0,7—6000 мм/мин, их ускоренные перемещения 10 м/с.

5. Токарные многошиндельные горизонтальные патронные полуавтоматы

		Mo	дель		
Параметр	1Б225П-6К	1Б225П-8К	1Б240П-4К	1Б240П-6К	1Б240П-8К
Число шпинделей Наибольшие размеры, мм: диаметр обрабатываемой заготовки диаметр патрона длина обрабатываемой поверхности диаметр резьбы, нарезаемой метчиком по стали	100	8 00 80 05 118		6 30 150 160 M30	8 100 125
Число суппортов: поперечных продольных		5	4	5	6
Наибольших ход поперечных суппортов, мм: нижних верхних средних	65 65 65	55 55 55	_	80 80 80	l 70
Наибольший ход продольного суппорта, мм Частота вращения шпинделей (мин ⁻¹) при исполнении: нормальном быстроходном	134 — 1627 328 — 2034	140- 1720 140- 2800	63 — 1048 63 — 1320	180 80 - 1140 80 - 1610	101 1400 101 1820
Наибольшая подача (мм/об) суппортов: продольного поперечного	2,6	2,5	6 0,33	,6	4,6
Длительность быстрого хода, с Мощность электродвигателя привода главного движения, кВт Габаритные размеры полуавтомата, мм: длина ширина высота Масса полуавтомата, кг	41 13 19	-1,6 5 05 120 120 120	2,5	2,0 1 4330 1600 1985 8500	1,5-2,5
Постоянство диаметров образцов, мкм: у партии <i>n</i> со всех шпинделей в поперечном сечении в продольном сечении			50 8 12		
Отклонение от плоскостности подрезанной торцовой поверхности, мкм		12	16		

			Π_{l}	эодолж	сние п	nañ.i. 5
		,	Mo.	дели		
Параметр	1Б265П-4К	15265П-6К	1Б265П-8К	1Б290П-4К	1Б290П-6К	1Б290П-8К
Число шпинделей Наибольшие размеры, мм: диаметр обрабатываемой заготовки диаметр патрона длина обрабатываемой поверхности диаметр резьбы, нарезаемой метчиком по стали	200 200 200 190 M	6 160 160 175 36	8 130 150 150 M30	250 250 250 20	6 200 200 00 M60	8 160 160 160 M36
Число суппортов: поперечных продольных	4	5	6	4	5	6
Наибольший ход суппортов, мм: поперечных нижних верхних средних продольного	90	80 70 0 80 80 200		123	125	00 100
Частога вращения шпинделей (мин ⁻¹) при исполнении: нормальном быстроходном	78 – 805 78 – 1160		97- 814 97- 1290	42 - 560 42 - 800	42 610 42 900	48 - 630 48 - 1000
Наибольшая подача (мм/об) суппортов: продольного поперечных	3,2	2,5	3,2	8,4 2,0	5,9 1,4	5,3 1,2
Длительность быстрого хода, с Мощность электродвигателя привода главного движения, кВт	3,5	30	06	,	3,7 30-40	
Габаритные размеры полуавтомата, мм: длина ширина высота Масса полуавтомата, кг	13 300	4675 1690 2170 14:	500	16	4785 2160 2475 600	16800
Постоянство диаметров образцов, мкм: у партии <i>п</i> со всех шпинделей в поперечном сечении . в продольном сечении				0 8 2		-0
Отклонение от плоскостности (мкм) подрезанной торцовой поверхности			1	6	1 .	C

	Модель								
ГІараметр	1 Б 216-6K	1A225-6	1 Б 225-6К	15225-8K*1	I A240-4	15240-6 15240-6K	1 5 240-8K*1		
		6		8	4	6	8		
Наибольшие размеры обрабатываемого прут- ка, мм: круглого (диаметр) шестигранного (размер под ключ) квадратного (сторона квадрата) длина	16 25 14 21 11 17			20 17 14 4000	50 43 35	40 36 28	32 27 22		
Наибольшие размеры мм: длина заготовки диаметр нарезаемой резьбы Наибольшая подача прутка, мм	100 M12 100		150 M18 150	M30 M24 160					
Число суппортов: поперечных продольных	l		6		4	1	6		
Наибольший ход суппортов, мм: продольного поперечных: нижних верхних заднего среднего отрезного	80 40 40 40 30	65 65 65	5	5 5 55 55 30	95 95				
Наибольшая подача (мм/об) суппортов: продольного поперечных	1,7	2,3 2,5		2,5	6,6 4,6				
Частота вращения шпинделя (мин ⁻¹) при исполнении: быстроходном нормальном	352 - 5013 352 - 3567	- 280 - 2560	354 - 3000 247 - 2416	432 - 4724 310 - 3396	- 125- 1230	140 - 2500 140 - 1600	80 - 1200 80 - 709		
Длительность вспомогательного хода, с Мощность электродвигателя привода главно-	0,75 – 1,5 11,0	2,26		1,99	3,4	2,6	3,7		
го движения, кВт Габаритные размеры автомата, мм: длина ширина высота Масса автомата, кг	5760 1100 2070 5500	5700 2100 2115 5700	15 21	050 325 40 7800	1600	6050 16 1990 10000	580 Lanna		

Продолжение табл. 6

181	Модель								
Параметр	15216-6K	1A225-6	1 Б 225-6 К	15225-8K*I	IA240-4	15240-6 15240-6K	15240-8K*1		
Постоянство диаметра образцов, мкм: у партии <i>n</i> со сех шпинделей	32	50	32	2	65	65 40	40		
круглость ;	4	5	4	ı	8	$\frac{8}{5}$	4		
в продольном сечении	6	10	ϵ	j	14	$\frac{14}{8}$	6		
Постоянство длины у партии п образцов, мкм	40	65	40)	80	80 50	40		

*1 Автоматы мод. 1Б225-8К и 1Б240-8К имеют по два сдвоенных поперечных суппорта из щести.

				Прода	олжение	табл. 6	
			Mo.	дель	цель		
Параметр	15265-4K	15265-6K	15265-8K	1 Б 290-4 K	15290-6K	1 Б 290-8К	
Число шпинделей	4	6	8	4	6	8	
Наибольшие размеры обрабатываемого прутка, мм:	80	65	50	125	100	80	
круглого (диаметр) шестигранного (размер под ключ)	70	55	43	123	86	70	
квадратного (сторона квадрата)	56	45	35	_	70	56	
длина	3000	40	00		3000		
Наибольшие размеры, мм:				}			
длина заготовки		190	i		- 1		
диаметр нарезаемой резьбы	M3		M30	_	M60	M36	
Наибольшая подача прутка, мм:		200	l		250		
Число суппортов: поперечных	4		5	4		6	
продольных Наибольший ход, мм:			1				
продольного суппорта		200		1	275		
поперечных суппортов:		200		a)	213	-	
нижних	8	0	70		125		
верхних	90	8	0		100		
заднего среднего	_	7	0	_	125	100	
от р езн о го	_	7	0		6	5	
Наибольшая подача (мм/об) суппортов:					_		
продольного		3,2		8,4	5,9	5,3	
поперечных	7	1,4		2,0	1,4	1,2	
Частота вращения шпинделя (мин ⁻¹) при исполнении:		1.	. 14 9 7		***		

Продолжение табл. 6

	Модель								
Параметр	1 Б 265-4K	1 Б 265-6 К	1 Б 265-8 K	1 Б 290-4 К	1 Б 290-6K	1 Б 290-8K			
быстроходном	61 – 1050	73 – 1590	97 <i>-</i> 1810	50 — 810	70- 930	80 – 1200			
нормальном	61 ~ 755	73 1065	97— 1176	50 – 508	70 – 660	80 – 706			
Длительность вспомогательного хода, с Мощность электродвигателя привода главного движения, кВт Габаритные размеры автомата, мм:	3,9 3,5 3,7								
длина пирина высота Масса автомата, кг	6130 6285 6130 7945 1830 2475 2170 2360 14 500 20 900				75 60	7985 2185 2425 22 500			
Постоянство диаметра образцов, мкм: у партии <i>n</i> со всех шпинделей круглость в продольном сечении Постоянство длины у партии <i>n</i> образцов, мкм	50 7 10 80								

Примечание. Автоматы мод. $16265-8 \, \mathrm{K}$ и $16290-8 \, \mathrm{K}$ имеют по два сдвоенных поперечных суппорта из шести.

7. Токарно-револьверные станки с горизонтальной осью револьверной головки

	Модель								
Параметр	1Д316П	1Д325П	1Г340П*1 1Г340	1Г340ПЦ	1Г340ПФЦ-01 1Г340ПФЦ-02				
Наибольшие размеры обрабаты-									
ваемого прутка, мм:	1.0	25	İ	40					
круглого (диаметр)	18	25		40	* 100				
шестигранного (размер под ключ)	15	22		32					
квадратного (сторона квадрата)	12	17		27	0105				
Наибольшие размеры, мм:			ļ		15 45 15				
диаметр заготовки, обрабатываемой в патроне:									
над станиной	250	320	1	400					
над поперечным суппортом	80	120	1	200					
длина прутка		,	3000						
Число позиций револьверной головки	12		16		\$ 160				
Диаметр отверстия револьвер-	Шесть от-	Doggy or			3				
ной головки выд крандания и	,	Восемь от-			The state of				
ной головки для крепления ин-	верстий	верстий	14		₩ Ø 30				
струмента, мм	\varnothing 20;	\varnothing 20;	14	отверсти					

				Продол	жение та бл. 7			
			Модель	Модель				
Параметр	1Д316П	1Д325П	1 Г 340 Л * 1 1 Г 340	113401111	1Г340ПФЦ-01 1Г340ПФЦ-02			
Диаметр отверстия инпинделя, мм Частота вращения иплинделя, мин -1 при исполнении:	Шесть отверстий ∅ 30 31	Восемь отверстий Ø 30 40	62					
прутковом прямое вращение	200 – 800	100 – 1000; 200 – 2000; 125 – 1250		45 – 20	00			
обратное врашение патронном скоростном Подача, мм/об: продольная поперечная Мощность электродвигателя привода главного движения, кВт Габаритные размеры станка, мм: длина ширина высота Масса станка, кг Система числового программного управления Программоноситель Постоянство диаметра образца после его чистовой обработки (мкм) в сечении: поперечном		80 - 800 250 - 2500 320 - 3150 0,04 - 0,5 0,028 - 0,315 3,7/3,7 4015 1000 1500 1690	2800 1200 1400 3000 Цикл 8 12 12 12 20	45—25 36—16 56—25 0,035— 0,02—0 6,0/6,1 4715 1240 1680	2800 1200 1400 3750 UCMAT-2 UCMAT-3			
Отклонение от прямолинейности торцовой поверхности образца, мкм	8 на диаме	тре 120 мм	10 на лиа- метре 150 мм 16 на диа- метре 150 мм	10 на диа	метре 150 м м			

^{*}¹ Габаритные размеры приведены для станков мод. 1Г340П, 1Г340П Φ Ц-01 1Г340П Φ Ц-02 без выносного оборудования. *² Двухскоростной электродвигатель.

8. Токарио-револьверные станки с вертнкальной осью револьвервой головки

	Модель									
Параметр	1Е316П	1Е316ПЦ	1 H32 5	1Е340П	1В340Ф30	1Е365БП	1Е365ПФ30	1П371		
Наибольшие размеры обраба-										
тываемого прутка, мм				Ì						
круглого (диаметр)	18		25		40	(100			
шестиг ра нного (размер под ключ)	15		22	:	34		85			
квадратного (сторона квад- рата)	12		17	:	28	4	45	70		
Наибольший диаметр заготов-										
ки, обрабатываемой в патроне,										
MM:										
над станиной	250		320		00	51	630			
над поперечным суппортом	80		160		20	280	250	420		
Диаметр отверстия шпинделя,	31		40	(53	80	92	130		
MM						,				
Число позиций револьверной головки			5		8	6	8	6		
Наибольшая длина прутка, мм				30						
Диаметр отверстия в револь-	20		30	65 50		95 60		125		
верной головке для крепления		1								
инструмента, мм										
Частота вращения шпинделя,	100 - 4	000	80 - 630	45-2000:	45 – 2000;	24-380;	31,5-2000	18 – 900		
мин-!				36-1600; 55-2500	45-250	95-1500				
Подача *1:	1							e e		
продольная		10 - 1500	0,3-0,12	0,05-1,6	1-2500	0.05 - 3.2	3-2500	0.05 - 3.2		
поперечная	20 - 300	20 - 1000	0.3 - 0.12	0,025-0.8	1 - 2500	0,025-1,6	2 - 1200	0,025-1,6		
Число поперечных суппортов Мошность электродвигателя	1,7/2.	,	4,7/4,7	4,2/6,3	6,0/6,2	! 14	5,0	22,0		
привода главного движения,	1,//2.	, <i>-</i>	7,//3,/	7,2,0,3	0,0/0,2		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22,0		
кВт				ĺ						
,				1	1		- 1 -			

Параметр	Модель										
параметр	1E316Π	1Е316ПЦ	1H325	1Е340П	1В340Ф30	1Е365БП	1Е365ПФ30	іП371			
Габаритные размеры станка, мм:					,						
длина ширина высота	3662 751 1610	1945 875 1365	3915 925 1555	5040 1240 1630	2840 1770 1670	4400 1525 1800	4800 1700 1950	4230 1895 1680			
Масса станка, кг Устройство числового про- граммного управления	1900 -	1062 ЦПУ	1300	2280	2500 НЦ-31	5200	4200 НЦ-31	6300			
Число управляемых координат одновременно Дискретность задания разме-	~ ~	2	1	-	2 2		2 2	-			
ров по оси (мм):	-				0,01		0,01	- -			
его чистовой обработки, мкм: постоянство диаметра: в поперечном сечении в любом сечении Отклонение от прямолинейности торцовой поверхности образца		5 10 етре 150 мм	10 16 12 на диа- метре 150 мм	16 12 на диа- метре 10 на диаметре 200 мм							

^{*1} Для станков мод. 1Е316ПЦ, 1В340Ф30, 1Е365ПФ30 поперечные и продольные подачи, а также для станков мод. 1Е316П поперечные подачи приведены в мм/мин; для станков остальных моделей — мм/об.

Примечание. Габаритные размеры и масса станков мод. 1Е316ПЦ и 1В340Ф30 приведены без принадлежностей и электро-оборудования.

9. Токарио-винторезиые станки

*	Модель											
Параметр	16У04П	16P04Π*1	16Б05А	16Б05АФ1	<u>1М61П</u> 1М61	1A616Π 1A616	16Б16A	16Б16П	16Б16Т1*2	<u>16Л20П</u> 16Л20	16K20	
Наибольший диа- метр обрабаты- ваемой заготовки, мм:												
над станиной над суппортом Наибольшая дли-	118	00 110		250 145	160		820 80		125	210	220	
на обрабатывае- мой заготовки, мм	350	300	:	500		710	500; 710	460; 710; 960	750	710; 1000; 1400	710; 1000; 1400; 2000	
Высота располо- жения центров, мм Наибольший диа- метр прутка, мм:	Į:	108 135		108 135				165	-	215		
в цанге в патроне Шаг нарезаемой резьбы:	10 20	14 18		16 26	32		34		36	34	53	
метрической, мм	0,2	5 - 3	0,2	2 - 28	0.5-6	0.5 - 24	0,25	5 - 56	0.05 - 40.95	0,25 – 56	0.5-112	
дюймовой, чис- ло ниток на один дюйм	80-	- 10	9	6-5	48-3,5	56-1	112	-0,5	_	112-0,5	56-0,25	
модул ь ной — модуль, мм	0,1 -	- 1,25	0,1	1 – 14	0.25 - 3	0,25-0,22	0,25	5 - 56	_	0,25-56	0.5 - 112	
питчевой, питч Диаметр отверс- тия шпинделя, мм	20),2	2	26,2	96-7	128-2	36	-0,5	- 37 	112-0,5 36	56-0,25 55	

		Молель												
Параметр	16У04Π	!6P04∏*1	16Б05А	16Б05АФ1	1М61П 1М61	-1A616П 1A616	16Б16A	16Б16П	16B16T1*2	16Л20П 16Л20	16K20			
Внутренний конус шпинделя	Mor	эзе 3	Морзе 4		орзе 4 Морзе 5		Морзе 6		Морзе 5		Морзе 6			
Частота вращения шпинделя, мин ⁻¹	70 —	3500	25-	25 – 2500		9-1800	20-200		2-1200	16-1600	12,5 – 1600			
Подача, мм/об: продольная		0.02 - 0.35		0,12-1,9	$\frac{0.065 - 0.91}{0.037 - 0.52}$	0,05 – 2,8		1-1200 0,05		5-2,8				
поперечная	0.01 - 0,175				0.08 - 1.2	$\frac{0.037 - 0.45}{0.018 - 0.26}$	0,025	5-1,4	0.025 - 1.4					
Конус отверстия	Морзе 2	Ø 20	Морзе 3			Морзе 4				Морзе 5				
пиноли Сечение резца, мм Диаметр патрона (ГОСТ 2675 – 80),		12×12 125 160		22×25	200	25 × 20 160; 250		l 21	00	$\begin{array}{c c} 25 \times 25 \\ 250 \end{array}$				
мм Мощность элект- родвигателя при- вода главного дви- жения, кВт	0,8	1,1	6.44	1,5	4,0		2,8/-	4,6*3	4,2/7,1	3,8/6,3	11,0			
Габаритные размеры станка, мм: длина	1350	1310	1530	1700	2055	2135	2025	; 2235	3100	2230; 2520; 2920	2505; 2795; 3195;			
ширина высота Масса станка, кг	730 1215 540	650 1208 500	910 1385 1365	960 1490 1395	1095 1450 1300	1225 1220 1500	1060 1450 2000; 2000; 2100 2150; 2270		2300 1870 2860	1450 1450 1875; 1975; 2050	3795 1190 1500 2835; 3005; 3225; 3685			

Устройство чис-			-			НЦ-31	_	
лового програм-						1		
много управления Устройство пред-	2	ј Ф5147				Есть	100	
набора и цифро- вой индикации								
Число управляе-	-	2	-			3		
мых координат одновременно		2	-			2	-	
Дискретность за-								
(мм) по оси:								
X Z		0.01	-			0.01	_	
Дискретность	-	0,005 0,0005				0,005	-	
цифровой индика-		1 0,0003	. =			1 0,001	_	
ции, мм			'					
Постоянство диа-								
метра образца в								
сечении, мкм: поперечном	4	2,5	5	3	. 5	. 8	5	8
			8				8	
любом	7	5	$ \begin{array}{c c} $	8	12	20	$\begin{array}{c c} 5\\ 8\\ 12\\ \hline 20 \end{array}$	20
Отклонение от плоскостности торцовой поверх-ности образца, мкм	6	4	10 16	5	10	16	10 16	16

^{*1} Станок мод. 16Р04П имеет револьверную головку вместо задней бабки. *2 Для станка мод. 16Б16Т1 подачи — в мм/мин.

						Модель	-			Проооджен.	
Параметр	16K20F	16K20K	16К20П	16K20B	16K20BΦ1C1	16K20Ф3C5	16К20РФ3	MK6724	16K20T1	MK6731	16K25
Наибольший диа- метр обрабатывае- мой заготовки, мм: над станиной над суппортом		o .	1	220		400		250		500 215	290
Наибольшая длина обрабатываемой за- готовки, мм		00; 1400; 000	7	710; 100	0			1000	t		710; 1000; 1400; 2000
Высота расположения центров, мм					215					25	0
Наибольший диа- метр прутка, мм-		50	53		50	53	1	50	53	50)
Шаг нарезаемой резьбы:											
метрической, мм дюймовой, число ниток на один дюйм	56-0,25	56-0,5	$ \begin{array}{c c} 0,5-1 \\ 56-0,25 \end{array} $		6-0,5		До 20	,	-	0,01 - 40,959)
модульной — мо- дуль, мм питчевой, питч	56-0,25	- 56-0,5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	6-0,5						
Диаметр отверстия шпинделя, мм		50	55		52	55		52	55	52	50

Внутренний конус шпинделя Частота вращения шпинделя, мин ⁻¹	10-1250 16-2000 12,5-1600	16-2000 12,5-1600	Mop3e 6	0 10 - 2000 12,5 - 2000	10 – 1250
Подача. мм/об: продольная поперечная Конус отверстия пи-	0,052,8 0,025 – 1,4	0,025-2,8 0,012-1,4 Mopse 5	3-1200 мм/мин 1,5-6000 мм/мин	0,01-2,8 0,005- -1.4 0,025- Mopse 5	
ноли Сечение резца, мм Диаметр патрона (ГОСТ 2675 – 80), мм			25 × 25 250		
Мощность электро- двигателя привода главного движения, кВт	10,0 11,0 10,0	5,5	10.0; 11,0 7,5	11,0	ТОКАРНЫЕ СТАНКИ
Габаритные размеры станка, мм: длина	2505; 7795; 2505; 2 3195; 3795	2.795		ļ	ТАНКИ
ширина высота	1240 1565 1190	1198 1350 1810	5300 3420 1750	4000 5500 2700 1700 1690	1240 1500
Масса станка, кг	2945; 3055; 2835; 3110; 3225; 3010 3335; 3445; 3835 3905	2835; 2870; 3005 3075	5000 5300	3800 5000	2505; 2795; 3195:
Устройство числового программного управления		У22-1М	H22-1M	НЦ-31 Н22-1М	3795

				1		Модель					
Параметр	16K20F	16K20K	16K20FI	16K20B	16K20BΦ1C1	16K20Ф3C5	16K20PФ3	MK6724	16K20T1	MK6731	16K25
Устройство пред- набора и цифровой индикации							Есть				-
Число управляемых координат			-				2				-
одновременно			9	, 1		4	2				-
Дискретность задания размеров (мм) по оси: X Z Дискретность цифровой индикации			-					01 005 001			7.7
Постоянства диаметра образца (мкм) в сечении: поперечном любом	2	8	5 12		3	t		8			10
Отклонение от плоскостности торцовой поверхности образца, мкм		6	10		3			20 16			30 20
		4									

					Модель				
Параметр	16K25F	16К30П. 16К30	16K30Ф353	16K30Ф3, 16K30Ф305, 16K30Ф325, 16K30Ф335	16K30Ф333	1M63E, 1M63EF	1М63Д	1М63БФ101	16K40
Наибольший диаметр обрабатываемой заготовки, мм: над станиной над суппортом (поперечными салазками)	500 290	350		320	630		350		800 490
Наибольшая длина обрабатываемой заготовки, мм	710; 1000; 1400; 2000	1400; 2000; 2800		1400		1400; 2800	1400	2	800
Высота расположения центров, мм	250		1		325				400
Наибольший диаметр прутка, мм Шаг нарезаемой резьбы:	50		70	71	ŀ	70		65	80
метрической, мм модульной — модуль, мм дюймовой, число ниток на один дюйм	0,5-112 0,5-112 56-		0,01 – 20,47	До - -	10	0,25	- 224 5 – 56 - 0,25	$ \begin{vmatrix} 1 - 223 \\ 0,5 - 112 \\ 56 - 0,25 \end{vmatrix} $	$ \begin{array}{c c} 1-224 \\ 0,25-56 \\ 28-0,25 \end{array} $
питчевой, питч	56-0,25	224-1		-			11	2 - 0.5	
Диаметр отверстия шпинделя,	52	74		71			70		85
Внутренний конус шпинделя	Морзе 6	1	IM (по ГОС	CT 12593—82	2)	8М (по	ГОСТ 12	593 – 82)	11M (πο ΓΟCT 12593 – 82)

	Модель									
Параметр		16K3011, 16K30	16K30Ф353	16K30Ф3, 16K30Ф305, 16K30Ф325, 16K30Ф335	16K30Ф333	IM635, IM635F	1M63Д	1М63БФ101	16K40	
Частота вращения шпинделя, мин ⁻¹	12,5 – 1600	6,3 – 1600		6.3-1250	,	10-1250	12,5-1600	10-1250	6,3-1250	
Подача, мм/об: продольная	0,05 – 2,8	0,055 – 1,2; 0.026 – 0,6	0,01 - 20,47	1—200 м	м/мин	I ряд 0,0	6-1,0; II _I	ряд 0,084—	1,4	
поперечная		0,023 - 0,5; 0,012 - 0,25	0,01 — 20,47	1 —600 м	м/мин	I ряд 0,024-0,37; II ряд 0,034-0,518			-0,518	
резцовых салазок	-	$\begin{vmatrix} 0,013 - 0,3; \\ 0,006 - 0,15 \end{vmatrix}$					19-0,37; 027-0,434	-3	0.024 - 0.37; 0.034 - 0.518	
Конус отверстия в пиноли	Морзе 5		Мор	зе 6		}	Mo	рзе 5		
Сечение резца, мм	25×25				32×25	•		•	40×32	
Диаметр патрона, мм	250	1	32	20				400		
Мошность электродвигателя привода главного движения, кВт	11,0	13; 17; 22		22		15	18,5	15	18,5	
Габаритные размеры станка, мм:							1			
длина	2505; 2795; 3195; 3795	4145; 4745: 5545	5290	4360	5290	3550; 4950	3610	4950	5570	
ширина высота	1240	2010 1545	3470 2105	2925 1600	3450 2105	1,	1780 1 90	1 1550	1844 1620	
D DIQUIE	1500	1545	2103	1000	2103		7/0	1550	1020	

Масса станка, кг	2505; 2795; 3195; 3795	4140; 4550; 5100	7800
Устройство числового программного управления Устройство преднабора и цифровой индикации Число управляемых координат одновременно	-		НЦ-31
Дискретность задания размеров (мм) по оси: X Z			
Дискретность цифровой индика- ции, мм			
Постоянство диаметра образца (мкм) в сечении:		19	
поперечном	10	7 10	
любом	30	30	
Отклонение от плоскостности торцовой поверхности образца, мкм	20	16 20	

6800	7190	3800; 3610 4700	4950	4750 :
H22-1M	НЦ-31		-	
Есть		-	Ф5071	-
2		CS.	2	<u>=</u>
0,01 0,005		-	0,01	Ξ
0,001		(2)	0,001	-
		10		
		30		
		20	4	

3. МНОГОЦЕЛЕВЫЕ СТАНКИ

10. Многоцелевые вертикальные станки

					,
Попомата	L		Модель		
Парамегр	2254ВМ1Ф4	2254ВМФ4	21104Н7Ф4	21105Н7Ф4	CM213B
Размеры рабочей по-	400 × 500	400 × 630	630 × 400	500 × 800	1320 × 630
верхности стола, мм	400 × 500	100 × 050	030 × 400	3,00 × 000	1320 × 050
Перемещение стола,				1	
MM:				i	
продольное	50	00	630	800	1250
поперечное	50	00	400	500	800
•					каретки
Вертикальное переме-		500		700	500
пцение шпиндельной		1			
бабки, мм					
Вылет ининделя, мм	520		450	560	800
Расстояние от торца			1		
ининделя до рабочей	1		1		
поверхности стола,	1		1		
MM:			1		
наименьшее	110	90	200	250	300
наибольшее	610	590	700	950	800
Конус шпинделя (точ-	50 (no FOCT	1 594 5 – 82)	40 (по ГОСТ)	50 (πο ΓΟ C 7	15945 – 82)
ность АТ5 по ГОСТ	1		15945 82)		
19860 - 74)					
Частота вращения	40 - 2000	32 - 2000	30 - 3000	25 2500	20 800
шпинделя, мин - 1				12.0	
Мощность привода	6.	,3	5,5	13,0	8,0
шпинделя, кВт					
Подача, мм/мин: шпиндельной бабки	1		50 - 2000	5 2000	
шпиндельной одоки	1-4	1000	30 - 2000	3 2000	10 1200
стола (продольная	l .		20	2000	
и поперечная)	1				
Скорость быстрого	1	10	000		9600
хода стола и шпин-					
дельной бабки,					
мм/мин	30	1	16	20	30
Вместимость инстру-	,	J	1 10	20	30
ментального магази-					
на, шт.			1	l	
Время смены, с:	1	3	10		2
инструмента заготовок	30		20		_
Наибольшая масса	300		50	700	1500
заготовки, кі	2,75	**		, , , ,	1000
Общая мощность всех	12,96	11,29	14,11	22,98	16,5
электродвигателей	, ,	, .	,	. ,	,
станка, кВт					
Габаритные размеры					
станка, мм:					
длина	500		5200	4225	7900
ширина		4900		3695	4750
высота	3235	3800	3190	3650	3800
'				ı	

Продолжение табл. 10

	Модель								
Параметр	2254ВМ1Ф4	2254ВМФ4	21104Н7Ф4	21105Н7Ф4	CM213B				
Площаль, занимае- мая станком, с реко- мендуемым располо- жением оборудова- ния, м ² Масса станка, кг Система числового	87 «Размер-		8500 2V3	12,38 10871 2-61	37,5 21 950 2H55-1				
программного управ- ления Число управляемых координат одновременно Дискретность зада- ния геометрических размеров, мм	3	5 0,0	3 001	3 2	0,01				

Примечание. Нормы точности станков данных моделей – по отраслевой документации.

11. Многоцелевые горизонтальные станки

	Модель								
Параметр	Модуль ИР320ПМФ4	6Б76ПМФ2	6Б76ПМФ4	2204BM1ФA	2204BMΦ4.	АМК-2204ВМФ4			
Размеры рабочей по-	320 × 320	320 ×	400		400 × 500				
верхности стола, мм Диаметр поворотной части стола, мм Перемещение стола, мм:	-				630				
продольное	_				500	1			
вертикальное		32	0		-	1			
поперечное	400	32	0		500				
Перемещение шпин-									
дельной бабки, мм:									
продольное	400	32	0		-				
вертикальное	360	-			500				
Расстояние от плос-									
кости стола до оси									
шпинделя, мм: наименьшее		12	_	90	70	0.5			
наибольшее	400	44		590 590	570	85 585			
Расстояние от торца	400	44	,	390	370	383			
шпинделя до сере-									
дины стола, мм:						4			
наименьшее	35	7	0	2	40	200			
наибольшее	400	32	-		40	700			

Продолжение табл. 11

				Mover	7	-nue muon. 11
				Модель	1	4
Параметр	Модуль ИР320ПМФ4	6Б76ПМФ2	6Б76ПМФ4	2204BM I Ф4	2204BMФ4	АМК-2204ВМФ4
Конус шпинделя (по ГОСТ 15945 – 82)		40			50	
Частота вращения, мин ⁻¹ : шпинделя стола	13 - 5000 0,05 - 200	40 —	3150	40-2000	32-2000	40-2500
Мощность привода, щиинделя, кВт	7,5	5	,3		6,3	
Продольная, ноперечная и вертикаль-	1 – 3200	2,5 –	2500	1-4000	2,5-2500	1 – 4000
ная подачи, мм/мин Ускоренная подача, мм/мин	10 000	50	00	ŧ .	10 000	
Вместимость инструментального магазина, шт.	36			30		
Время смены инстру- мента «от реза до	14			12		
реза», с Наибольшая масса заготовки, кг	150	10	00	30	00	200
Общая мощность всех электродвигате- лей станка, кВт Габаритные размеры	30,0	8,6	525	14,22	13,23	17,2
станка, мм: длина ширина	3840 2300	2250 2700	2550 2150	5000 4100		00
высота	2507	1905	2065	2825	2475	3022
Масса станка, кг	10000 ·	39	00	8150	7210	14800
Система числового программного управления	*CNC, BOSCH, MJKRO, 5(8)	«Раз- мер-2М»	2V-32	«Размер- 2М-1300»	«Размер-4»	«Размер- 2М-1345»
Число управляемых координат	5	3	4	,6	5	6 .
Дискретность отсчета по осям X , Y , Z , мм		1		0,001		
Число одновремен- но управляемых ко- ординат	3	2	3		5	4-6

Продолжение табл. 11

	Модель									
Параметр	2204ВМФ2	6904ВМФ2	69Б04ПМФ2	ИР500МФ4 (ИР500ПМФ4)	6906ВМФ2					
Размеры рабочей по-	400 × 500	500	×400	500 × 500	630×800					
верхности стола, мм Диаметр поворотной части стола, мм Перемещение стола, мм:		630		_						
продольное	50	00	730	500 стойки	630					
поперечное		500		800	630					
Перемещение шпиндель-										
ной бабки, мм:										
продольное вертикальное		500		630	9.1					
Расстояние от плоскости		500		050						
стола до оси шпинделя,										
MM:										
наименьшее	80	60	0 450		95					
наибольшее Расстояние от торца	580	560	430	_	725					
шпинделя до середины					*, *					
стола, мм:	- 4.0									
наименьшее	200	225	230	_	165					
наибольшее Конус шпинделя (по	700 - 50	725	960 15	50	795					
FOCT 15945 – 82)	50	-	15	50						
Частота вращения,										
мин-1:										
шпинделя	10	32 - 2000	-	21,2-3000	31,5 – 1600					
наибольшая стола Мощность привода	10	۱ ،	7 ,5	- 14,0	5 8,0					
шпинделя, кВт	6,3	4	,,,	14,0	0,0					
Продольная, поперечная	2,5—	2500	2,2 -25 00	1 - 2000	2,5-2500					
и вертикальная подачи,	·									
ММ/мин Vorgenseens	7500	5.0	100	0000 10000	5000					
Ускоренная подача, мм/мин	7500	50	000	8000 - 10000	5000					
Вместимость инструмен-	9		30							
тального магазина, шт.			50							
Время смены инструмен-	12		8	16,2-21,2	8					
та «от реза до реза»,										
С Наиболимов може в	200	500	200	700	500					
Наибольшая масса заготовки, кг	300	500	300	700	500					
Общая мощность всех	10,63	8,02	7,87	35,0	11,4					
электродвигателей, кВт	,	,	,	3 ⁻	"					
Габаритные размеры										
станка: мм	2000	4000		1450						
длина Ширина	3000 5000	4800 5060		450	5665 5050					
высота	2250	5960 1980	5350 2100	4665 3100	5050 2595					
	W=00	1700	1 ~100	2100	2093					

Продолжение табл. 11

		Модель									
Параметр	2204ВМФ2	6904 BM Φ2	69Б04ПМФ2	ИР500МФ4 (ИР500ПМФ4)	6906ВМФ2						
Масса станка, кі Система числового про- граммного управления	6580	6380 «Размер-2М»	7450	11 370 Есть	9000 «Раз- мер-2 М »						
Число управляемых координат одновременно	5	4	5 2	3	4						
Дискретность отсчета по осям $X, Y, Z,$ мм		0,001	0,002	0,001							

Примечания: 1. Масса станков мод. 6904ВМФ2, ИР500МФ4 (ИР500ПМФ4), 6906ВМФ2 приведена без приставного оборудования.

- 2. Технические характеристики станка мод. ИР500МФ4 (ИР500ПМФ4) в зависимости от типа поставляемой системы ЧПУ.
 - 3. Нормы точности станков по отраслевой документации.

Продолжение табл, 11

			Модель		
Параметр	2206BM1Φ4	ИР800МФ4 (ИР800ПМФ4)	2Λ459ΑΜ1Φ4	2А622МФ2	ИР1600МФ4
Размеры рабочей поверхности сто- ла, мм Перемещение сто- ла, мм:	630×800	800×800	1000 × 1000	1250×1120	_
ла, мм. продольное	800	800	1250	1000	1000
		стойки		1	стойки
поперечное	630	1000	800	1250	8000
		1.6	сгойки		салазок
Перемещение шпиндельной баб-					
ки, мм:					
продольное		_		710 ппинделя	1250
вертикальное	630	710	1000) 1	2500
Расстояние, мм:	}				
от плоскости			7.	1	
стола до оси					
ішпинделя:					
наименьшее	95	_	40		
наибольшее	725	-	1000		_
от торца шиин-					
деля до середи-		9			
ны стола:				i	

			Модель		
Параметр	2206ВМ1Ф4	ИР800МФ4 (ИР800ПМФ4)	2A459AM1Φ4	2А622МФ2	ИР1600МФ4
наименьшее	165	10-0	250		# I
наибольшее	795	_	580		-
Конус плинделя		50 (1	по ГОСТ 15945	-82)	
точность АТ5 по					
TOCT 19860 – 74)					
Частота вращения					
мин ^{.– 1} .					
ппинделя	31,5 - 2500	21,2-3000	20-2500	4-1250	5-2000;
				1	2 - 750
стола		_	0.02 - 5	4 max	-
Мощность элект-	11,0	14	1,0	4,5	28,0
оодвигателя при-					
вода нигинделя,					
Вт					
Тродольная, по-	1 - 4000	1 - 2000	2 - 2500	1,6 - 1250	1 - 2000
еречная и верти-					
альная подачи,					
им/мин					
Ускоренная пода-	1	0 000	800	0	6000
а, мм/мин			L		
Вместимость ин-		3	0		40
грументального					
магазина, пот.				}	
Время смены ин-	8	21.2	20		15
струмента «от ре-	-			}	
ва до реза», с					
Общая мощность	11,4	60,0	38.5	41,72	93.7
всех электродвига-		5-, 5	-0,-	,.	
елей станка, кВг		l		1	
Наибольщая мас-	800	1500	5000	40	000
а заготовки, кг	00.0	1000		1	
абаритные раз-		1			
иеры станка, мм:				1	
длина	5480	5388	6500	8900 L	19600
ширина	5115	4635	5800	5200	6500
высота	3130	3445	3685	3965	6900
Масса станка, к	15 000	12800	24 060	20 000	85 000
истема числово-	«Раз-	-	«Размер-	2П62-3И	-
о программного	мер-2М»		2M-1300»	21102 311	
правления	Mop 2111		2111 15000		
Іисло управляе-	5	3	5	3	4
лых координат	2	.,,	,	-1	-
одновременно	3	2	3		2
Іискретность от-	3	0.001	3	0.01	0,001
Evera no ocam X ,		0,001		0,01	0,001
Y, Z, MM					

Примечания: 1. Технические характеристики станков мод. ИР800МФ4 (ИР800ПМФ4), ИР1600МФ4 приведены в зависимости от типа поставляемой системы ЧПУ.

^{2.} Масса станков мод. ИР800МФ4 (ИР800ПМФ4), 2А622МФ2, ИР1600МФ4 приведена приставного оборудования.
3. Нормы точности станков данных моделей — по отраслевой документации.

4. СВЕРЛИЛЬНЫЕ И РАСТОЧНЫЕ СТАНКИ

12. Координатно-расточные станки одностоечные

			Модель		
Параметр	2421	2431	2E440A	2E450A	2E450A
Размер рабочей поверх-	450 × 250	560 × 320	710 × 400	1120	0×630
ности стола (длина ×			1		
× ширина), мм		[[
Наибольший ход стола,	į				
MM:			1		
поперечный	220	250	350	,	630
продольный	320	400	700	1	000
Наибольший ход гильзы	100	150	200		260
ишинделя, мм		1			
Ход шпиндельной го-	200	230	270		310
ловки, мм					
Расстояние от торца			1		
шпинделя до рабочей по-	ļ				
верхности стола, мм:					
наименьшее	100	120	158		200
на и большее	400	500	630		770
Шпиндель:		1			
вынет, мм	280	375	500		710
конус отверстия	Морзе 2	Морзе 3	Морзе 4	45	(no
-	(по ГОСТ	(по ГОСТ	(по ГОСТ	ГС) ČT
	24644 - 81)	(24644 – 81)	25557 - 82)	1594:	5-82)
частота вращения, мин	135 – 3000	75 – 3000	50 – 2000	10 –	2000
рабочая подача, мм/мин	0,015 - 0,06	0,02-0,2	0,03-0,16	1,2 -	1000
мошность элекгродви- гателя привода, кВт	1.0	2,2	4,5	•	7.2
Допускаемая масса обра-	150	250	320	6	500
батываемой заготовки,	1			Ĩ	
KT .			1		
Наибольший диаметр,					
MM:			,		
сверления заготовки	. 10	18	25		30
из стали 45	0.0				
растачиваемых отверс- тий	80	125	250	:	250
Точность, мм:					
отсчета координат			0,001		
установки координат		0,002	1	0	,008
Подача, мм/мин					
стола	-	22-600	20 - 315	1,6	- 7000
салазок		-		1.6	7000
Ускоренный ход,			İ	- 7	
мм/мин:			Ì		
стола	-	160	00	7	000
салазок		- 1	1600		000
				,	•

Продолжение табл. 12

				Продо.	лжение	табл. 12
П			Модель			
Параметр	2421	2431	2E440A	2E450A	2E45	0АФ1-1
тильзы плинделя шпиндельной коробки		_	-		3150	
Габаритные размеры станка, мм:						
длина ширина высота	1950 1650 2020	3040 2640 2430	4915 4135 2385		5200 41 00 3 000	170
Площадь, занимаемая	3,22	8	20,32	2	21,32	
станком, м ² Общая мощность электродвигателей станка, кВт	2,18	2,72	5,12	Ç	9,996	<u>*</u> 1
Масса станка, кі Система программного управления	1675	3735	3400		9200 ПНК	
число управляемых ко- ординат		- %			2	
одновременно		_	1.		2	
Дискретность отсчета координат по осям X , Y , Z , мм			8	. (100,0	
Точность межосевых расстояний отверстий образца после чистовой			·			
обработки на станке, мкм:						
проверяемых в направлении основных осей		6	8		10	141
координат между лю-		6	8		8	
Точность формы отверстия после чистовой об-						
работки на станке, мкм:					-	45
отклонение от круг- лости	1	,6	2,0	e	2,5	
постоянство диаметра в любом продольном сечении	3	0,	4,0		5,0	

Примечания: 1. Масса станка 2Е440А приведена без электрошкафа и принадлежностей.

^{2.} УПНК -- устройство предварительного набора координат.

13. Координатно-расточные двухстоечные станки

	Модель								
Парамегр	2455И	2455	2E460A 2E470A						
Размеры рабочей новерх- ности стола (длина × шири- на), мм		900 × 630	1600 × 1000	1400 × 2240					
Расстояние, мм: между стойками от торца вертикального шинделя до рабочей по- верхности стола:	1000			1400	2000				
наибольшее наименьшее	750 370		00 . 80	1100	1400 70				
от оси горизонтального шпинделя до рабочей по- верхности сгола:		•		'					
наибольшее наименьшее	Φ	=		800 8	1000				
Шпиндели: внутренний конус диаметр гильзы, мм частота вращения, мин подача, мм/мин мощность электродвига- теля привода, кВт	- 45 (no ΓΟCT 15945 – 82) - 120 - 40 – 2000 - 25 – 500 - 4.5 3,8			50 (πο ΓΟСТ 15945 – 82 20 – 2000 2,3/3,9					
Подача, мм/мин: продольная стола поперечная вертикаль- ной шпиндельной голов- ки		800 2,5 – 500		1400 0,8 - 630 0,8 - 20 дл					
поперечная горизонталь- ной шпиндельной головки вертикальная поперечины	_	- 60	00	720	920				
Наибольщее перемещение. мм: продольного сгола поперечное:		800		1400	2000 •				
вертикальной шпин-		630		1000	1400				
дельной головки горизонтальной шпин- дельной головки		-		720	920				
вертикальное поперечины гильз шпинделей	400	500	20	720	900 60				
Скорость быстрого нереме- щения, мм/мин: шпиндельных головок стола	1	500	6000	160 250					

Продолжение табл. 13

растачивания — 250 Точность установки коор- динат, мм:	2E470A 40
сверления по стали — 30 денества — 350 денеств установки координат, мм:	1
сверления по стали — 30 — 250 Точность установки координат, мм:	1
растачивания — 250 Точность установки коор- динат, мм:	1
Точность установки коор-	0.007
динат, мм:	0.007
	0.007
стола 0,004 0,001 0,006 0,005	
Наибольшая масса обраба- 800 800 800 2000	2500
тываемых заготовок, кг	2300
Габаритные размеры стан-	
ка, мм:	
длина 3520 6292 4145 6300	7225
ширина 2910 3410 2975 4220	4820
высота 2760 2680 4410	4880
Площадь, занимаемая стан- 10,24 20,25 12,43 26,6	34,82
ком, м ²	
Общая мощность электро- 2,925 12,62 7,94 18,8	20,1
двигателей станка, кВт	
Масса станка, кг 7400 7000 7479 22 000	36 000
Система программного уп-	_
равления	2 2
Дискретность отсчета коор- 0,001 - 0,001	Trans.
динат, мм Точность межосевых рас-	4.5
стояний отверстий образ-	
ца после чистовой обработ-	- 3:-
ки на станке, мкм:	
проверяемых в направ-	16
лении основных осей ко-	4. (2)
ординат	
между любыми отверс- 8	10
имкит	
Точность формы отверстия	7.0
после чистовой обработки	
па станке, мкм:	
	3,0
	5,0
любом продольном се- чении	1)
TCHINI	

Примечания: 1. Модель 2455И — спениальный координатно-измерительный станок; наибольшие размеры контролируемой детали $800 \times 630 \times 600$ мм.

^{2.} Масса станка мод. 2455 приведена без электрошкафа, инструментальной тумбочки и принадлежностей.

^{3.} УПНК – устройство предварительного набора координат.

14. Координатио-сверлильные стаики с ЧПУ

Hungare	Модель							
Параметр	2Д132МФ2	2550МФ2	2550Ф2	2554Ф2	2554МФ2			
Наибольший диамегр, мм:	1							
сверления в заготовке из	32			50				
стали 45	i				1			
нарезаемой резьбы в за-	M24		M48		M27			
готовке из стали 45								
Шпиндель:	40			50				
конус отверстия (по ГОСТ 15945—82)	40			50	5-1			
вылет, мм	475			-1400				
частота вращения, мин-1	45 – 2000		18	2000				
мощность электродвига-	4/4,5	8,0		1	5,5			
теля привода, кВт				1				
наибольшее расстояние от								
торца до рабочей поверх-								
ности, мм:			-1	1400				
ПЛИТЫ	630			1600				
стола Размеры рабочей поверх-	030			-				
ности, мм:								
стола	400 × 700							
иниты	400 X 700	2000×860		1600 × 860	2000 × 1000			
Наибольший ход стола, мм:		20007.000		1000 7 000	2000 X 1000			
поперечный	400			_				
продольный	630			-				
Наибольший ход, мм:								
салазок			1	600				
сверлильной головки	590		1	000				
шпинделя	-			320				
Скорость быстрого нереме-								
щения, мм/мин:	1							
стола	7000			+ 3				
салазок	_	9600		8000	9600			
сверлильной головки	4000	9600		8000	9600			
шшинделя	-		4	5000				
Наибольшее перемещение		800	1	1000	800			
рукава по колонне (верти-		000		1000	300			
кальное), мм	1							
Скорость вергикального пе-	_		1700		1200			
ремещения рукава, мм/мин			1,00		1200			
Число инструментов в ма-	16	4		18	16			
газине, шт.								
Время автоматической сме-	8		25		17			
ны инструмента, с								
Подача, мм/мин:								
стола	50 - 220							
салазок	30-220		1	-2000				
свердильной головки	10 - 5000			- 2000				
•		25.2						
Площадь, занимаемая стан-	4,73	25,3	25,85	1 2	6,29			
юм, м ²				1				

Продолжение табл. 14

Theresees	Модель								
Параметр	2Д132МФ2	2550МФ2		2550Ф2		2554Ф2		2554МФ2	
Габаритные размеры стан-									
ка, мм:	7000	5	470				5300		
длина	4800		740		- 1		4960		
ширина высота	2850		220				3780		
	5100	11 450	.220	10 750		9000	3/60	9800	
Масса станка, кг	10,48	20,755	1	17,305	- 1	15,375		19,005	
Суммарная мощность	10,46	20,733		17,303	F	13,373		19,003	
электродвигателей, кВт Система программного	21732-3				У 32-6	1	147	3. 64	
	21132-3			2	. y 32-0	300	oraz.		
управления					3	A		A -	
Число управляемых					3		- 0		
координат					2				
одновременно Дискретность задания ли-					0,001	1 - 3	19.7	1	
Дискретность задания ли- нейных размеров, мм					0,001				
неиных размеров, мм									
Точность межосевых рас-				- 5					
стояний отверстий образца									
после чистовой обработки									
на станке, мкм:					-				
проверяемых в направле-	8				12				
нии основных осей коор-	Ü						9	4.	
динат									
между любыми отверс-	8				10				
тиями	, i				• 0				
Точность формы отверстия									
образца после чистовой об-									
работки на станке, мкм:	}								
отклонение от круглости	2,5				3,0				
постоянство диаметра в	5.0				6.0		17		
любом продольном сече-	•,•				,.				
нии									

Примечание. Масса станка мод. 2Д132МФ2 приведена без приставного электрооборудования и устройства ЧПУ.

5. ФРЕЗЕРНЫЕ СТАНКИ

15. ГОРИЗОНТАЛЬНЫЕ КОНСОЛЬНО-ФРЕЗЕРНЫЕ СТАНКИ

	·			Модель			
Параметр	6Т804Г		6P80F	6Р81Г	6Р81ГМФ3-1	6Р82Г	6Р83Г
Размеры рабочей поверхности сто- па, мм: длина ширина	- 	800 200			1000 250	1250 320	1600 400

Продолжение табл. 15

					Продолжен	ние табл. І
			Моде	ель		
Параметр	6Т804Г	6Р80Г	6P81F	6Р81ГМФ3-1	6Р82Г	6Р83Г
Наибольшие перемещения стола (мм) в направле-						
нии: продольном поперечном	400	500 60	210	30	800 250	1000 320
вертикальном Расстояние от оси	320	300	360	350	420	350
горизонтальиого щпинделя до ра-	+23					
бочей поверхности стола, мм:						
наибольшее наименьшее	3	50 50	410	400	1	50 30
Размеры поворотного стола, мм	Ø 200	/ Ø	250	320×320	Ø	350
Длина обрабаты- ваемой поверхнос-	400	500	6	30	800	1000
ти, мм Наибольшая мас- са обрабатывае-	1.	50	2	00	250	300
мой заготовки, кг Конус шпинделя (по ГОСТ		7 : 24	(АТ5 по ГС	OCT 15945—8	32)	
19860 – 76) Частота вращения шпинделя, мин ⁻¹ Подача стола, мм/мин:	63-2800	50-2240	50 – 1600	40 – 2500	31,5-	- 1600
продольная	11,2-500	25 – 1200	25-800	25 –	1250	
и поперечная вертикальная Скорость быст-	5,6-250	12,5 - 560	8,3-266,7	12,5 – 600	8,3-	416,6
рого перемещения стола,						
мм/мин: продольного и поперечного	4000	2150	3150	4000	30	000
вертикального	1000	1100		1000)	
Мощность электродвигателя при-	2,2	3,0	5,5	11,3	7,5	10,0
вода шпинделя, кВт Общая мощность всех электродвигателей станка, кВт	2,725	3,925	7,125	19,26	9,825	13,125
Габаритные раз- меры станка, мм: длина	1625	1875	2210	5025	2305	25 65

Продолжение табл. 15

			Mo	одель	···-	
Параметр	6Т804Г	6Р80Г	6P81F	6Р81ГМФ3-1	6Р82Г	6Р83Г
ширина	1620	1855	2045	3650	1840	2340
высота	1630	1515	1610	2120	1680	1770
Масса станка, кг	850	1270	2245	5600	2830	3700
Устройство число-		-		H33-2M	-	
вого программно-						
го управления						14
Число управляе-		-		3		
мых координат						1.1
одновременно		-		3	- 3. <u>L</u>	
Дискретность						
отсчета (мм)					41.5	
по оси:						- 5 6
X		-		100,0	-	
Y				100,0	-	
Z		-		10,0	-	
Отклонения, мкм:						
от плоскости ра-	25			30	41	1.5
бочей поверх- ности		0,100			* +=	
от параллель-	25			30		
ности верхней						
поверхности его						
основанию					7 4	
от перпендику-						
лярности			1	Допуск 0,02/100		
от круглости,	80			100		
воспроизведен-						
ной при кон-		į				
турном фрезе-						
ровании цилин-				1.2	1 430	
дрической по-					5.	17 - "
верхности			-			
		1				

Примечание. Станок мод. 6Р81ГМФ3-1 оснащен инструментальным магазином на 12 инструментов и устройством для автоматической смены инструмента.

16. Вертикальные консольно-фрезерные станки

	Модель								
Параметр	6T104	6P10	6P11	6РПФ3	6P12E	6P12K-1			
Размеры рабочей по-									
верхности стола, мм:									
Длина	630	800	1000		12:	50			
ширина	180	200	1	250	32	20			
Наибольшие переме-									
щения стола, мм:			ļ		21				
продольное (по оси	400	500	1	630	80	00			
<i>X</i>)			1						

Продолжение табл. 16

	Ţ		M	одель		<u></u>
Парамегр	6T104	6P10	6P11	6P11Ф3	6P12B	6P12K-1
поперечное	1,	60	210	300	240	260
(по оси У)	1	00	210	300	240	200
вертикальное	320	300	360	350 консоли	410	420
Подача стола, мм/мин:						
продольная	11,2-500	25 - 1120	25 - 800	7,5 - 1135	40 – 2000	12,5 - 1600
поперечная	11,2-500	25 – 1120	25 - 800	7,5-1135	40 – 2000	12,5 - 1600
вертикальная	5,6-250	12,5-560	8,3 - 266,7	7,5—1135	13,3 - 666,6	4, 1 - 530
Скорость быстрого пе-	l		1	ļ		}
ремещения стола, пол-		•	{	!		
зуна (пиноли — на стан-	}		{	Ì		
ках с ЧПУ), мм/мин:	4000	2150	2150	4000	4600	4000
продольного	4000	2150	3150	4000	4600	4000
поперечного	4000	2150	3150	4000	4600	4000
вертикального	1330	1100	1050	1330	1530	1330
Угол поворота наклад- ной головки, °		± 45		_	±4	13
Частота вращения	63 - 2800	50 - 2240	50 1600	80-2500	50 - 2500	40-2000
шпинделя, мин ⁻¹ Конус шпинделя		7	: 24 (uo. EO	 CT 15945	82)	1
Расстояние, мм:		,	. 24 (110 1 0	C1 13545 ~	62)	
от оси шпинделя до	20	00	285	345	350	n
вертикальных на-	20	,0	203	343	3.5	U
правляющих стани-						
ны на привижения				}		
от торца иппинделя						
до рабочей поверх-						
ности стола:						
наибольшее	35	50	410	400	450	O
наименьшее		5	0		30	
Наибольшее осевое		6	0	120	70	1
перемещение пиноли						
(ползуна по оси Z),						
ММ						
Мощность электро-	2,2	3,0	5,	,5	10,0	7,5
двигателя привода						
вращения плинделя,				0.0		
кВт						121
Общая мощность всех	2,725	3,925	7,0	8,5	12,325	10,0
электродвигателей		ì			Ì	
станка, кВт	70					
Габаритные размеры	ł					
станка, мм:						
длина	1625	1445	2045	4000	2340	2355
ширина	1315	1875	1560	2000	1950	2100
высота	1350	1730	1940	2220	2020	2328
Масса станка, кг	780	1300	2360	2550	3180	4170
Устройство числового		-	ļ	«Размер-	-	
программного управ- ления				4 M »		
				ļ	7	

Продолжение табл. 16

17			M	Іодель		
Парамегр	6T 104	6P10	6P11	6Р11Ф3	6Р12Б	6P12K-1
Число унравляемых ко- ординат		_		4		
Нисло одновременно /правляемых коорди- нат		-		3	-	18
Цискретность отсчета соординат, мм		~		0,01	-	
от плоскостпости ра- бочей поверхности	25			30		e .
ог парадлельности верхней поверхности его основанию	25	ĺ		30		
от перпендикуляр- ности обработанных поверхностей			Допус	к 0,02/100		4. 6
нри контурном фрезеровании цилинд- рической поверхности	80			100		in .

Примечания: 1. Масса стапков мод. 6Т104 и 6Р11Ф3 приведена без приставного оборудования.

2. Станок мод. 6Р12К-1 оснащен копировальным устройством.

Продолжение табл. 16

**	Модель								
Параметр	6Р13Б	6P13K-1	6 T 13-1	6Т13Ф3-1	6Р13РФ3	6Р13Ф3-37			
Размеры рабочей поверхности стола, мм: длина пирина Наибольшие перемещения стола, мм: продольное (по				1600 400					
оси X) понеречное (по	320	34	40	1	400	, v.			
оси <i>Y</i>) вертикальное Подача стола, мм/мин:	410		430		380	420			
продольная и понеречная	40 – 2000	12,5 –	1600	3-4800	20 – 1200	3-4800			
вертикальная	13,3 – 666,6	4,1 –	- 530	3 — 4800 ползуна	20 — 1200 револь- верной головки	3 — 4800 ползуна			

Продолжение табл. 16

п			Mo	одель		
Параметр	6Р13Б	6P13K-1	6T13-1	6Т13Ф3-1	6Р13РФ3	6Р13Ф3-37
Скорость быстрого перемещения стола, пол- зуна (пиноли — на стан-						
ках с ЧПУ), мм/мин:	4600		200	7500	2400	4000
продольного	4600	1	000	7500	2400	4800
поперечного	4600		000	7500	2400	4800
вертикального	1530] 1.	330	7500	2400	4800
	G I			ползуна	револь- верной	ползуна
U	1		45		головки	
Наибольший угол по- ворота накладной го- повки, °		#	45		360	-
Частота вращения шпинделя, мин ⁻¹	50-2500	40-2000	$ ^{31,5-1600}$		40 - 2000	
Конус шпинделя		7	: 24 (по ГО	CT 15945-	-82)	
Расстояние, мм:					,	
от оси шпинделя до		420			500	
вертикальных на-						
правляющих стани- ны						
от торца шпинделя до рабочей поверх-	e es la					
ности стола: наибольшее	30	50	0	70	450	490
наименьшее Наибольшее осевое пе-	30	80		250	1	250
ремещение пиноли		80	į	230		230
[ползуна - по оси Z),]			ļ			
мм						
Мощность электродви-	13,0	7,5	11,0		7,5	
ателя привода враще-	1 .5,0	, ,-	1,0		,,5	
ия шпинделя, кВт			1 1		,	
Общая мощность всех	16,125	10,8	14,3	12	.7	16,87
электродвигателей	·	, , , , , , , , , , , , , , , , , , ,	1			
станка, кВт						
Габаритные размеры			1			
станка, мм:						
длина	2600	2595	2570	3970	3555	3450
ширина	2260	2418	2252	3450	4150	3970
высота	2120	2460	2430	2965	2517	2965
Масса станка, кг	4270	4870	4250	5300	6900	5900
устройство числового			ł	2C-42	H33-1M	H33-2M
программного управ-			1			
нада инваридами и из			}		2	
нисло управляемых ко-					3	
ординат Число одновременно			100		2	
Число одновременно /правляемых коорди-			1		4	
правляемых коорди-	44. **		ļ			
··			!	-		

Продолжение табл. 16

_	Модель								
Параметр	6Р13Б	6P13K-1	6T13-1	6Т13Ф3-1	6Р13РФ3	6P	13Ф3-37		
Дискретность отсчета		-			0,01		÷.		
координат, мм									
Отклонения, мкм:				1		1 0.			
от плоскостности ра-				25		Đ.	- i -		
бочей поверхности от параллельности				25			1+1		
верхней поверхности его основанию				0.02/100			1.		
от перпендикуляр-			Допус	к 0,02/100					
ности обработан- ных поверхностей при контурном фре- зеровании шилиндри- ческой поверхности	٠			100)	. 1	*** :		

Примечания: 1. Станок мод. 6P13K-1 оснащен копировальным устройством. 2. Станок мод. 6P13PФ3 оснащен шестипозиционной револьверной головкой.

17. Вертикально-фрезерные полуавтоматы с крестовым столом и числовым программным управлением

Потого			Модель		
Параметр	ЛФ270Ф3	6520МФ3	ЛФ315Ф3	ЛФ350Ф3	ЛФ360Ф3
Размеры рабочей поверхности сто-					
ла, мм:					
длина	6	30		800	
ширина	250	320	250	1 3	20
Наибольшее перемещение стола,		1			
MM:					1
продольное (по оси X)		500		630	500
поперечное (по оси У)	250			20	4
Наибольшее вертикальное переме-			350		
щение шпиндельной бабки (по оси	_				
Z), _{MM}			14		16.
Подача (бесступенчатое регулиро-			1		4.
вание), мм/мин:]	,		3 16 .1
вертикальная	5 1200	5 2000	ł	5 1500	
по контуру	5 - 1200	5 - 3000		5 - 1500	
Ускоренная подача раздельно по	4000	9000		5000	
каждой координате, мм/мин Расстояние, мм:	4800	8000		5000	
от торца шпинделя до рабочей поверхности стола:					
наибольшее			450	7	
наименьшее			100	0.00	
от оси шлинделя до направляю-			340		
щих станины			<i>3</i> 40		
evenienn					

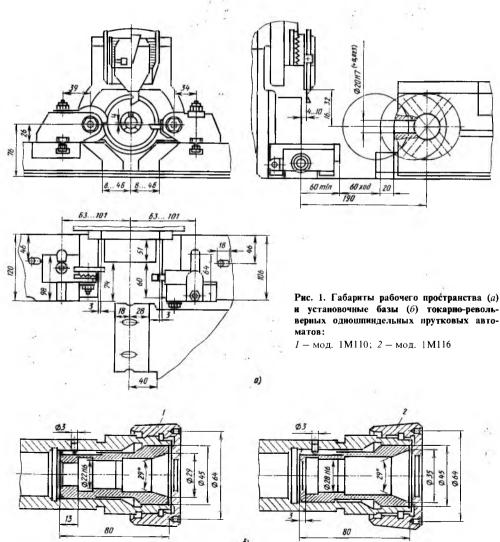
				Продолжен	ıе табл. 17
Поример			Модель		
Парамегр	ЛФ270Ф3	652МФ3	ЛФ315Ф3	ЛФ350Ф3	ЛФ360Ф3
Конус шпинделя Частота вращения шпинделя, мин ⁻¹ Наибольшая масса обрабатываемой заготовки, кг	31,5 – 1600 150	7:24 (n 31,5-4000 250	ο ΓΟCT 15 1000 – 3150	945 – 82) 31,5 – 1,600 200	63-1600
Число одношпиндельных головок Минимальное расстояние между шлинделями, мм Число инструментов в магазине	15	1 14	4 200	1 -	2 250
Устройство автоматической смены инсгрумента	Ec	ТЬ		_	
Мощность электродвигателя привода главного движения, кВт	4,0	6,6	1,1/1,5*	4,0	ı
Общая мощность всех электродвигателей станка, кВт	7,14	12,5	4,229/ 4,669	7,1	29
Габаритные размеры станка, мм: длина ширина высота	3050 2650	3200 2300	2185	3050 2150	
Масса станка, кг Устройство числового программно- го управления Число управляемых координаг Число одновременно управляемых	3700 H33-1 M	4500 2C58-63	3 3 или 2	370 H33-1 M	00
координат Дискретность задания размеров, мм			0,01		
Отклонения, мкм: от прямолинейности иоверхностей от параллельности верхней по- верхности основанию и боковых граней между собой			16 20		
от перпендикулярности боковых граней к верхней поверхности от круглости наружной цилиндрической поверхности при контурном фрезеровании	- 3 -		16 160		19
Точность межосевых расстояний отверстий (для станков с програминым управлением), мкм			80	į.	

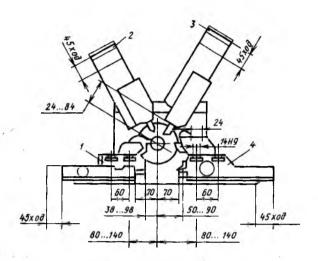
^{*} Двухскоростной электродвигатель.

18. Вертикально-фрезерные станки с крестовым столом

T	Модель						
Параметр	6540Ц	6550Ф3	6550РФ3	654Ф3	654РФ3		
— Размеры рабочей поверхности сто-							
ла, мм:							
длина		1000	ŀ	16	500		
цирина	400 500			530			
Наибольшее перемещение стола,	1						
MM:							
продольное		800		12	250		
поперечное	400	5	00	ϵ	530		
Подача стола, мм/мин:	1				. 4.		
продольная	10-2000	5	1200	0.1	- 1200		
поперечная	10-2000	3 —	1200	0,1 -	- 1200		
Ускоренное перемещение стола,	1 1						
мм/мин:							
продольное (но оси X)	3000		480	20	.)		
поперечное (по оси У)							
Наибольшее перемещение шпин-	430	5	30	6	25		
дельной бабки (по оси Z), мм					1		
Наибольшее перемещение гильзы,	12	0	-	125	-		
MM		_					
Подача шпиндельной бабки, мм/мин	4-800	5—	1200		- 1200		
Ускоренное перемещение ипиндель-	800		480)()			
ной бабки, мм/мин		7					
Расстояние от торца шпинделя до							
рабочей поверхности стола, мм:	520		20	-	50		
наибольшее	530		30	/	50		
наименьшее	430		00 60	6	125 70		
Расстояние от оси шпинделя до направляющих стойки, мм	430	3	00	O	70		
направляющих стоики, мм Конус шпинделя		7 : 24 (11	о ГОСТ 159	145 82)			
Частота вращения шпинделя, мин ⁻¹	31,5-1600		40-2000		31,5-160		
Наибольшая масса обрабатывае-	800		00		000		
мой заготовки, кі	000	,			,00		
Мощность электродвигателя при-	7,5	8,0	4,3	13,0	8,0		
вода шпинделя, кВт	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0	',-	,-	-,*		
Общая мощность всех электродви-	10,49	12,01	9,69	16,41	14,63		
гателей станка, кВт		_,	,	,	,		
Габаритные размеры станка, мм:							
длина	3322	50	1 000	6080	6440		
ширина	2835	43	880	3500	4500		
высота	2810	3180	3300	3570	3140		
Масса станка, кг	6200	10 500	10 000	10 600	16 500		
Устройство числового программно-	ЦПУ		H33-	2 M			
го управления				. F.			
Число управляемых координат			3				
Число одновременно управляемых	2 [3/3	2			
координат							
Дискретность задания размеров, мм	0,005		0,0				
устройство цифровой индикации и	-		Ec	ГЬ			
адаптивного управления							
• •	,						

Продолжение табл. 18


n	Модель							
Параметр	6540Ц	6550Ф3	6550РФ3	654Ф3	654РФ3			
	!							
Дискретность, мм:	- 1							
отработки			0,01					
индикации	-		0,001					
Число индикатируемых координат		1	3					
Отклонение мкм:								
от прямолинейности		16	1	20				
от параллельности верхней по-		20	1	25				
верхности основанию и боковых								
граней между собой	_	17		100	`			
от перпендикулярности боковых	допус	к 16 мкм н	а длине изм	ерения 100	MM			
граней к верхней поверхности			100					
от круглости цилиндрической			100					
поверхности при контурном фрезеровании (для станков с про-								
граммным управлением)								
Точность межосевых расстояний от-	65 m	зи межосево	м расстояни	ш по 125 з	мм.			
верстий (для станков с програм-			асстоянин с					
мным управлением), мкм	p	, p						


Примечание. Станки мод. 6550РФЗ и 654РФЗ оснащены шестипозиционной револьверной головкой.

ГАБАРИТЫ РАБОЧЕГО ПРОСТРАНСТВА И УСТАНОВОЧНЫЕ БАЗЫ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ (ДЛЯ РАЗРАБОТКИ НАЛАДОК)

1. ТОКАРНЫЕ СТАНКИ

ТОКАРНО-РЕВОЛЬВЕРНЫЕ ОДНОШПИНДЕЛЬНЫЕ ПРУТКОВЫЕ АВТОМАТЫ

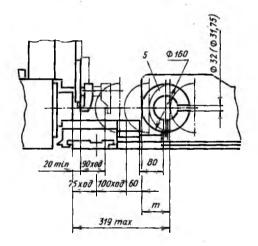


Рис. 2. Габариты рабочего пространства токарио-револьверного одношпиндельного пруткового автомата мод. 1Е140ПИ повышенной точности:

I— передний крестовый суппорт; 2— передний вертикальный суппорт; 3— задний вертикальный суппорт; 4— задний поперечный суппорт; 5— револьверный суппорт; m=84 мм— постоянный отскок .

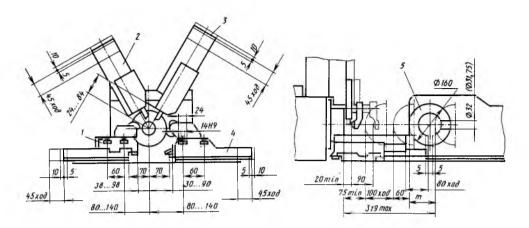


Рис. 3. Габариты рабочего пространства токарио-револьверных одношпиндельных прутковых автоматов мод. 1E125; 1E140 и мод. 1E125П; 1E140П повышенной точности:

I — передний крестовый суппорт; 2 — передний вертикальный суппорт; 3 — задний вертикальный суппорт; 4 — задний поперечный суппорт; 5 — револьверный суппорт; m = 84 мм постоянный отскок

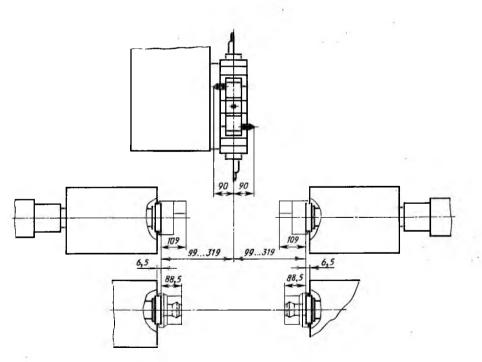


Рис. 4. Габариты рабочего пространства токарно-револьверного многооперационного автомата мод. 11Б40ПФ4 с ЧПУ

ТОКАРНО-РЕВОЛЬВЕРНЫЕ ОДНОШПИНДЕЛЬНЫЕ ПАТРОННЫЕ ПОЛУАВТОМАТЫ

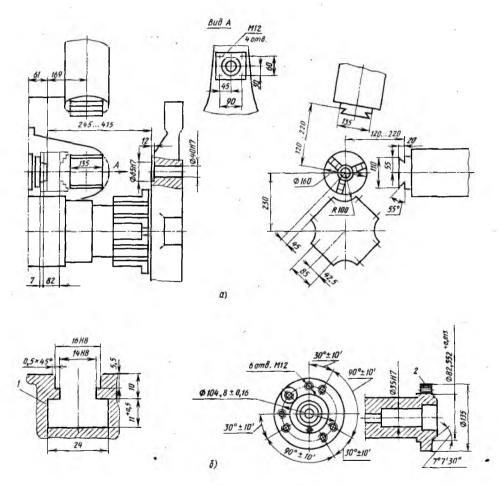


Рис. 5. Габариты рабочего пространства (a) и установочные базы (δ) токарио-револьверного полуавтомата мод. 1416:

I — паз револьверного суппорта; 2 — шпиндель

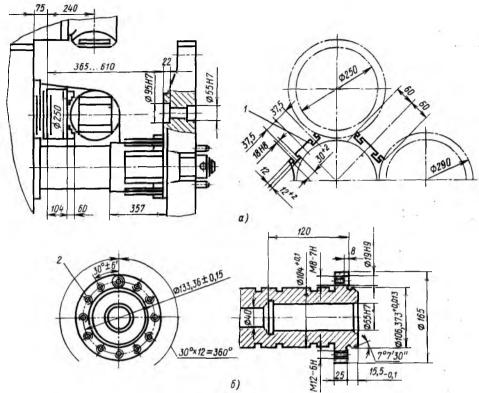
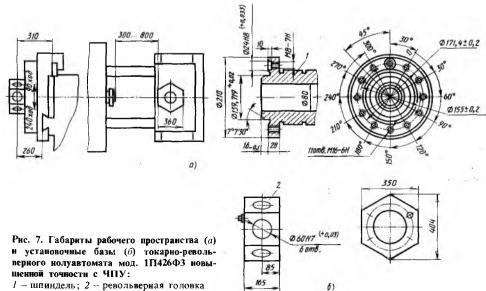



Рис. 6. Габариты рабочего пространства (a) и установочные базы (б) токарно-револьверного полуавтомата мод. 1A425:

1 - поперечный суппорт; 2 - шпиндель

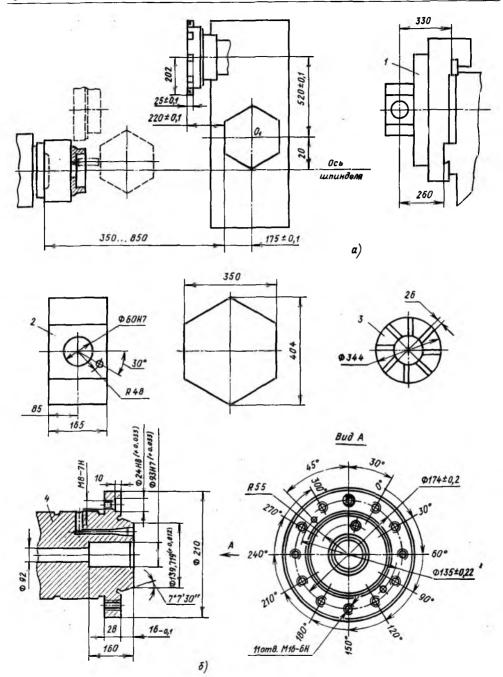


Рис. 8. Габариты рабочего пространства (а) и установочные базы (б) токарио-револьверного полуавтомата мод. 1П426ДФ3 повышенной точности с ЧПУ: I — суппорт; 2 — револьверная шестиграиная головка; 3 — револьверная круглая головка; 4 — шпиндель

ТОКАРНЫЕ МНОГОШПИНДЕЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ ПРУТКОВЫЕ АВТОМАТЫ

Рис. 9. Габариты рабочего пространства (a) и установочные базы (b) токариого шестишпиндельного горизонтального пруткового автомата мод. 1Б216-6К повышенной точности:

I — пазы продольного суппорта; 2 — пазы поперечных суппортов; 3 — зеркало коробки подач; 4 — отрезной суппорт; 5 — зеркало шпиндельного блока; a = 45 мм — расстояние до торца цанги

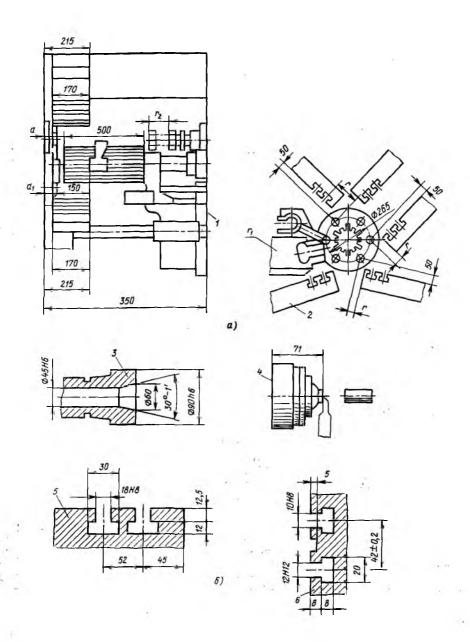
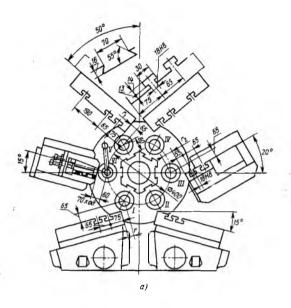


Рис. 10. Габариты рабочего пространства (a) и установочные базы (δ) токарного шестишниндельного горизонтального пруткового автомата мод. 1Б225-6К повышенной точности:

I — зеркало коробки подач; 2 — суппорт; 3 — шпиндель; 4 — торец шпиндельного барабана; 5 — пазы поперечного суппорта; 6 — пазы продольного суппорта; a — расстояние до торца каретки, равное 75 мм; a_1 = 59 мм — расстояние до торца цанги


Расстояние, мм	r	r_1	r ₂
Наибольший ход	105	-	130
Рабочий ход	55	40	-
Регулирование	50	16	-

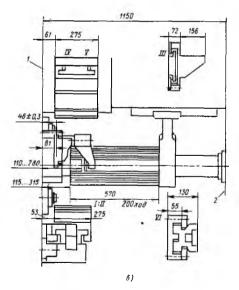


Рис. 11. Габариты рабочего пространства (а) н установочные базы (б) токарного шестишпиндельного горизонтального пруткового автомата мод. 15240-6К повышенной точности:

I — зеркало шпиндельного блока; 2 — торец шпинделя; 3 — торец шпиндельного барабана; 4 — зеркало коробки подач

r
160
50
30

Расстояние, мм	r	r_{i}	r_2
Наибольшее	40	40	60
Рабочий ход	40 80 40	80	70
Регулирование	40	50	40

Рис. 12. Габариты рабочего пространства (a) и установочные базы (b) токарного шестишиилельного горизонтального пруткового автомата мол. 15265-6K повышенной точности:

1- зеркало шпиндельного блока; 2- зеркало коробки подач

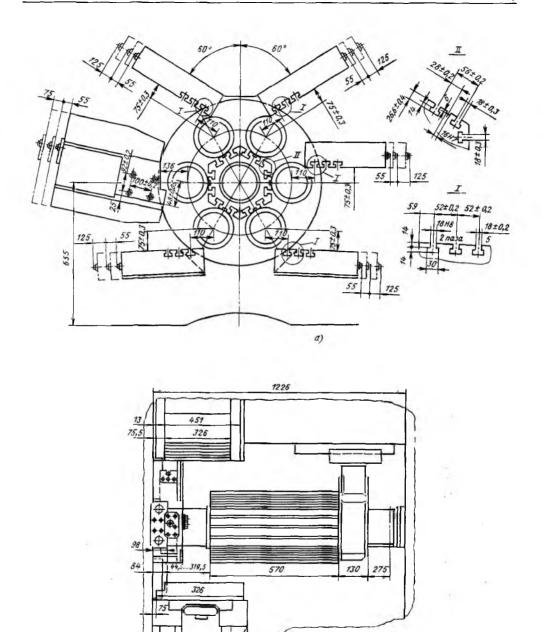


Рис. 13. Габариты рабочего пространства (a) и установочные базы (b) токарного шестишпиидельного горизонтального пруткового автомата мод. 15290-6K повышенной точности

ТОКАРНЫЕ МНОГОШПИНДЕЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ ПАТРОННЫЕ ПОЛУАВТОМАТЫ

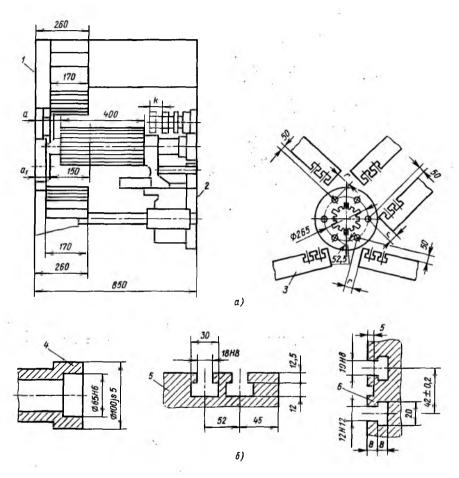


Рис. 14. Габариты рабочего простраиства (а) и установочные базы (б) токарного шестниянндельного горизонтального патронного полуавтомата мод. 16225П-6 ${\bf k}$ повышенной точности:

I— зеркало шпиндельного блока; 2— зеркало коробки подач; 3— суппорт; 4— шпиндель; 5— пазы поперечного суппорта; 6— пазы продольного суппорта; a— расстояние до торца каретки, равное 100 мм, a_1 = 50 мм— расстояние до торца цанги; k = =130 мм— наибольший ход

Расстояние, мм	r
Наибольший ход	115
Рабочий ход	65
Регулирование	50

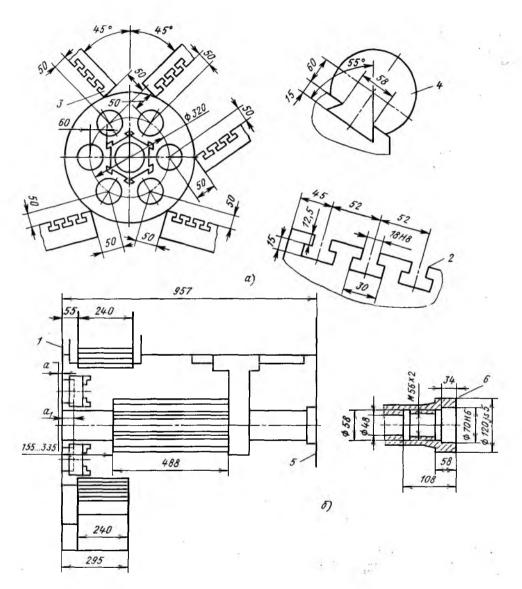


Рис. 15. Габарнты рабочего пространства (a) н установочные базы (b) шестишинидельного горизонтального патронного полуавтомата мод. 16240 Π -6K повышенной точности:

I— зеркало шпиндельного блока; 2— пазы поперечного суппорта; 3— суппорт; 4— паз продольного суппорта; 5— зеркало коробки подач; 6— шпиндель; a = 23 мм — расстояние до торца барабана; a_1 = 22 мм — расстояние до торца шпинделя

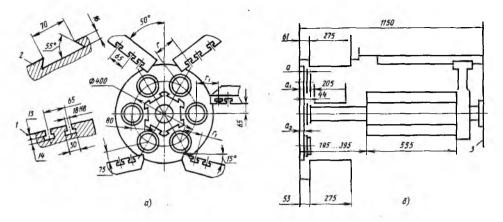
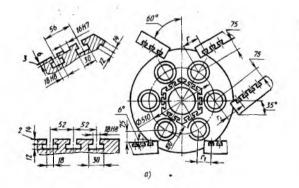



Рис. 16. Габариты рабочего пространства (a) н установочные базы (b) токарного шестишинидельного горизонтального патронного полуавтомата мод. 1Б265 Π -6K повышенной точности:

I — пазы поперечных суппортов; 2 — пазы продольного суппорта; 3 — зеркало коробки подач; a = 54 мм — расстояние до торца шпинделя; a_1 = 83 мм — расстояние до суппорта III позиции; a_2 = 10 мм — расстояние до торца барабана

Расстояние, мм	r	r_1
Наибольшее	115	115
Рабочий ход	80	80
Регулирование	50	40

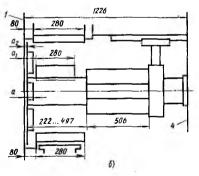


Рис. 17. Габариты рабочего пространства (a) и установочиые базы (b) токариого шестишниндельного горизонтального интронного полуавтомата мод. 1Б290П-6К повышенной точности:

I— зеркало шпиндельного блока; 2— пазы поперечных суппортов; 3— пазы продольного суппорта; 4— зеркало коробки подач; $a=63,5\,$ мм — расстояние до торца шпинделя; $a_1=80\,$ мм — расстояние до суппорта III позиции; $a_2=5\,$ мм — расстояние до торца барабана

Расстояние	r	r_1
Наибольшее Рабочий ход Регулирование		110 110 55

ТОКАРНО-РЕВОЛЬВЕРНЫЕ СТАНКИ (С ВЕРТИКАЛЬНОЙ ОСЬЮ РЕВОЛЬВЕРНОЙ ГОЛОВКИ)

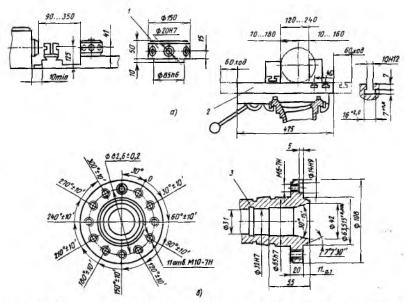


Рис. 18. Габариты рабочего пространства (а) и установочные базы (б) токарно-револьверного пруткового станка мод. 1E316A повышенной точности с револьверной головкой:

7 — револьверная головка; 2 — поперечный суппорт; 3 — шпиндель

215... 630

215... 630

215... 630

225... 630

225... 630

226... 630

226... 630

227... 630

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

2280

Рис. 19. Габариты рабочего пространства (a) и установочные базы (b) токарио-револьверного станка 1ЕЗ40 Π :

1 -шпиндель

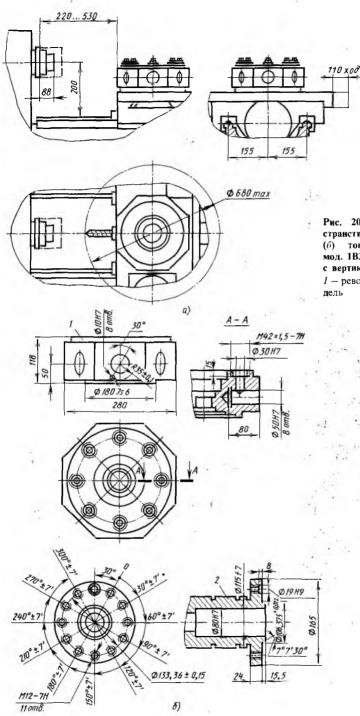
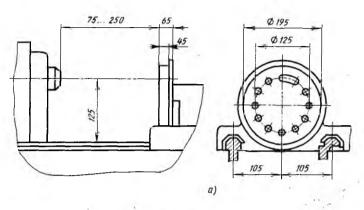



Рис. 20. Габариты рабочего пространства (а) н установочные базы (б) токарно-револьверного станка мод. 18340ФЗ повышенной точности с вертикальной головкой с ЧПУ: 1— револьверная головка; 2— шпин-

ТОКАРНО-РЕВОЛЬВЕРНЫЕ СТАНКИ (С ГОРИЗОНТАЛЬНОЙ ОСЬЮ РЕВОЛЬВЕРНОЙ ГОЛОВКИ)

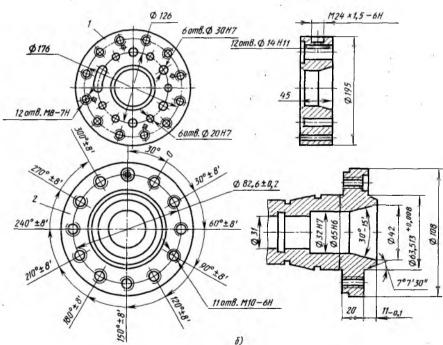


Рис. 21. Габариты рабочего пространства (a) и установочные базы (b) токарно-револьверного станка мод. 1Д316 Π :

I – револьверная головка; 2 – шпиндель

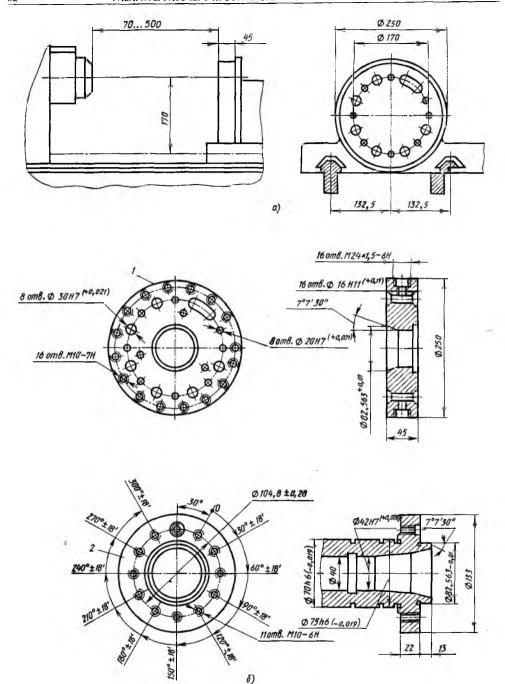


Рис. 22. Габариты рабочего простраиства (a) и установочные базы $(\hat{\sigma})$ универсального токарио-револьверного станка мод. 1Д325П повышенной точности:

I — револьверная головка;
 2 — шпиндель

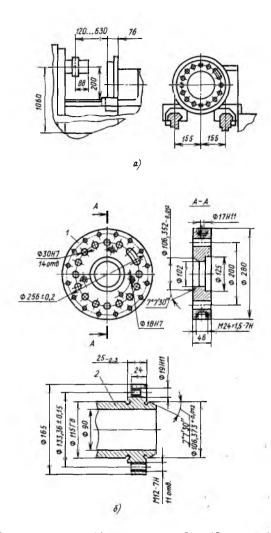


Рис. 23. Габариты рабочего пространства (a) и установочные базы (б) токарно-февольверных станков мод. 1Г340; 1Г340П и мод. 1Г340ПЦ с пикловым программным управлением: 1 — револьверная головка; 2 — шпиндель

ТОКАРНЫЕ ВЕРТИКАЛЬНЫЕ ПАТРОННЫЕ ПОЛУАВТОМАТЫ

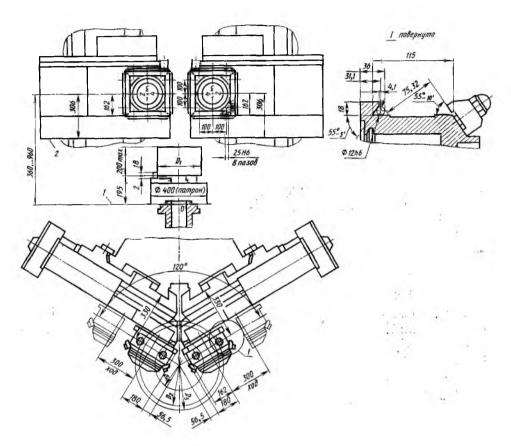


Рис. 24. Габарнты рабочего пространства токарного вертикального полуавтомата мод. 1A734Ф3 с ЧПУ: I — базовый торец шпинделя; 2 — кожух; D_1 = 320 мм — номинальный диаметр обрабатываемой поверхности; D_2 = 560 мм — наибольший диаметр детали, устанавливаемой над направляющими суппорта; D_3 = 630 мм — наибольший диаметр детали, устанавливаемой над станиной

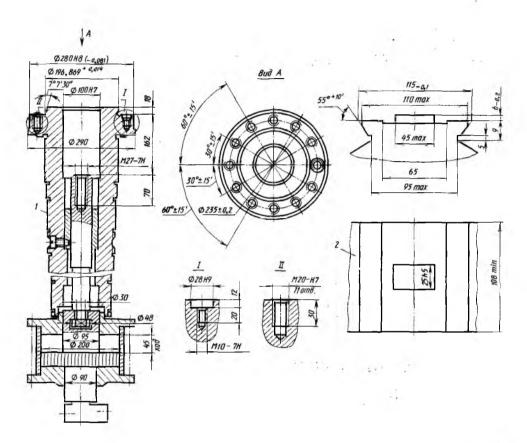


Рис. 25. Установочные базы токарного вертикального полуавтомата мод. 1A734Ф3 с ЧПУ: I — шпиндель; 2 — резпедержатель

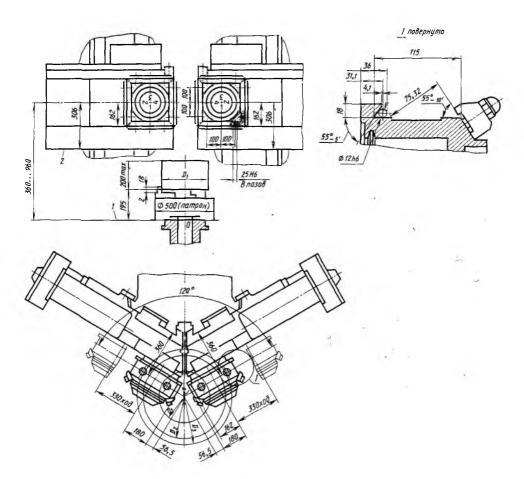


Рис. 26. Габариты рабочего простраиства токарного вертикального полуавтомата мод. 1A751Ф3 с ЧПУ: I- базовый торец шлинделя; 2- кожух; $D_l=500$ мм- номинальный диаметр обрабатываемой поверхносги; $D_2=630$ мм- наибольший диаметр детали, устанавливаемой над направляющими суппорта; $D_3=710$ мм- наибольший диаметр детали, устанавливаемой над станиной

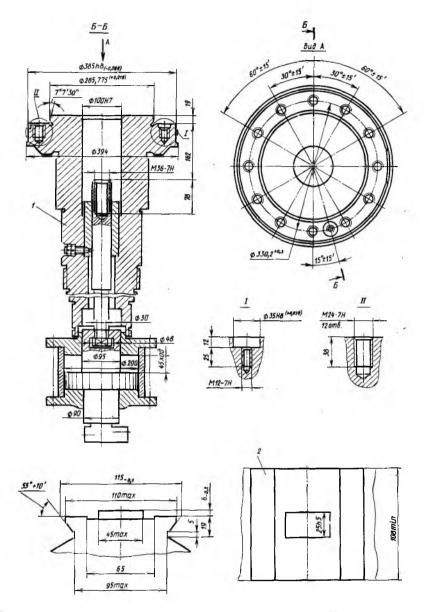


Рис. 27. Установочные базы токарного вертикального полуавтомата мод. 1A751 Φ 3 с ЧПУ: I- шпиндель; 2- резцедержатель

2. МНОГОЦЕЛЕВЫЕ СТАНКИ

ВЕРТИКАЛЬНЫЕ СТАНКИ

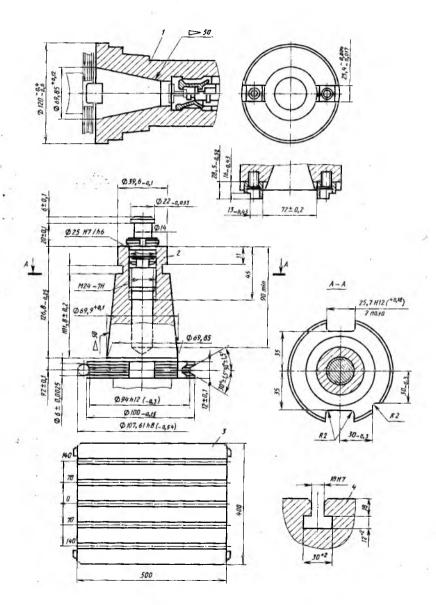
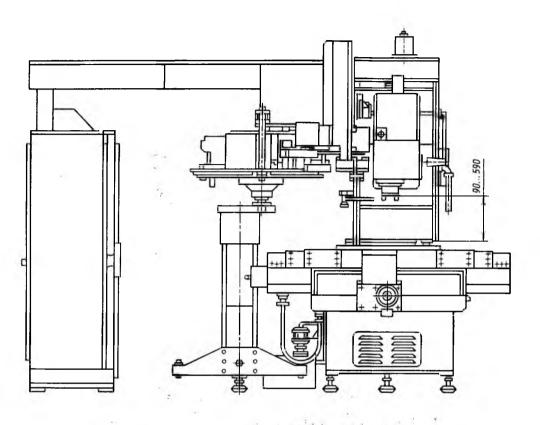



Рис. 28. Установочные базы вертикального сверлильно-фрезерно-расточного станка мод. 2254ВМФ4 в кой точности с автоматической загрузкой ииструмента и заготовок:

I — шпиндель; 2 — инструментальная оправка; 3 — спутник; 4 — паз стола и спутника

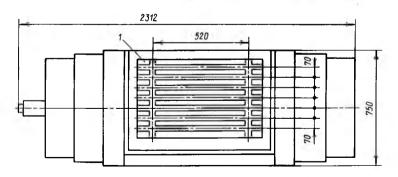


Рис. 29. Габариты рабочего пространства сверлильно-фрезерио-расточного вертикального ставка мод. $2254 \mathrm{BM}\Phi 4$ с крестовым столом, универсальной системой ЧПУ и инструментальным магазином: l- стол

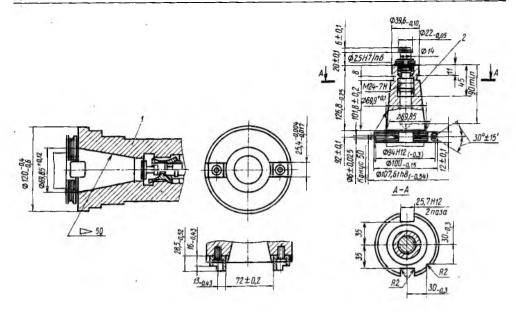
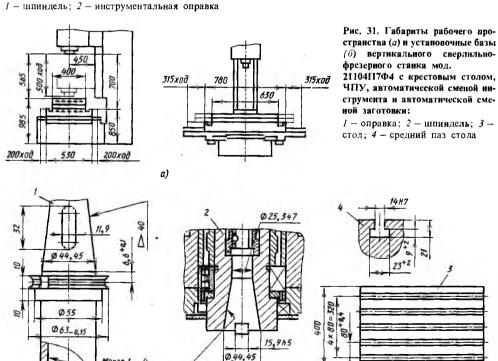
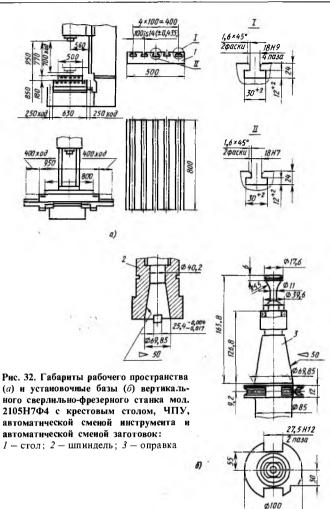
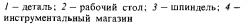
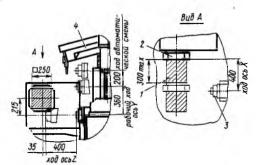




Рис. 30. Установочные базы сверлильно-фрезерио-расточного вертикального станка мод. 2254ВМ Φ 4 с крестовым столом, универсальной системой ЧПУ и инструментальным магазином:


630


5)

ГОРИЗОНТАЛЬНЫЕ СТАНКИ

Рис. 33. Габариты рабочего пространства сверлильиофрезерио-расточного горизонтального стаика мод. «Модуль ИР320ПМФ4» с подвижной стойкой с ЧПУ:

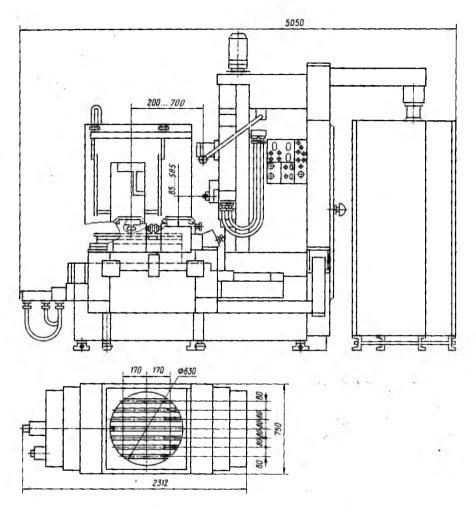


Рис. 34. Габариты рабочего пространства сверлильно-фрезерно-расточного горизонтального станка мод AMK-2204BMФ4

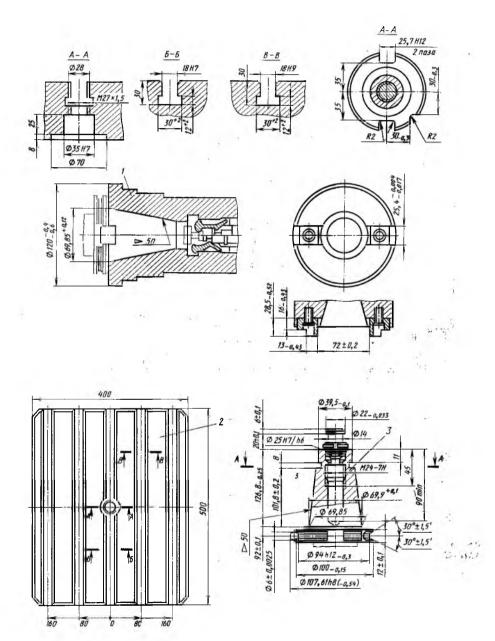
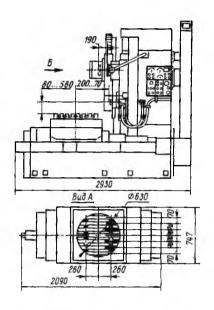



Рис. 35. Установочные базы сверлильно-фрезерио-расточного станка высокой точности мод. АМК-2204ВМФ4 I — шпиндель; 2 — спутник; 3 — инструментальная оправка

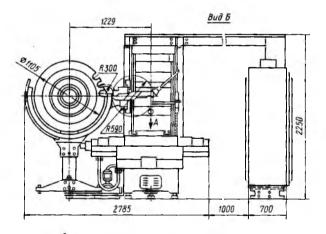


Рис. 36. Габариты рабочего пространства сверлильно-фрезерно-расточного горизонтального станка с ЧПУ и инструментальным магазином мод. 2204ВМФ2

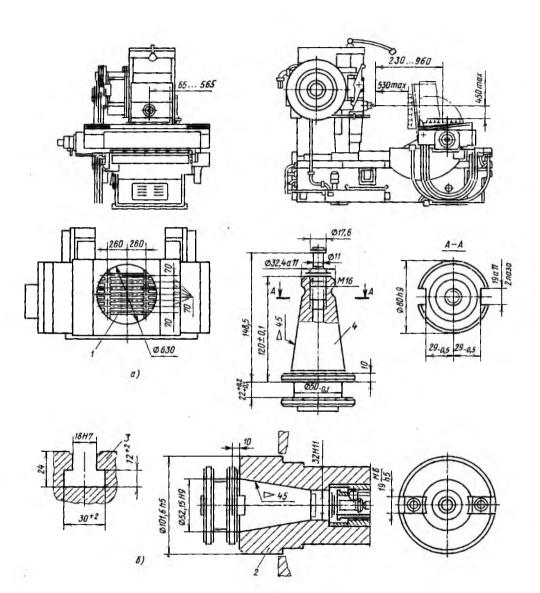


Рис. 38. Габариты рабочего простраиства (а) и установочные базы (б) сверлильно-фрезерио-расточного горизонтального станка мод. $69504\Pi M\Phi 2$ с крестовым наклоино-поворотным столом, $4\Pi Y$ и инструментальным магазином:

1-стол; 2-шпиндель; 3-паз стола; 4-инструментальная оправка

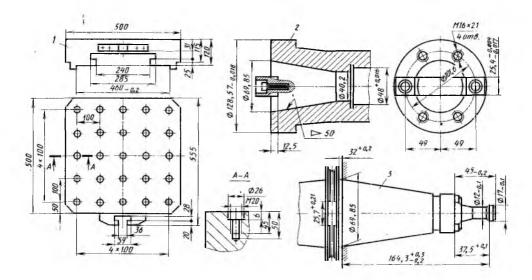


Рис. 39. Установочные базы сверлильно-фрезерно-расточного горизонтального сванка мод. ИР500МФ4 с подвижной стойкой:

1 - плита спутника; 2 - шпиндель; 3 - инструментальная оправка

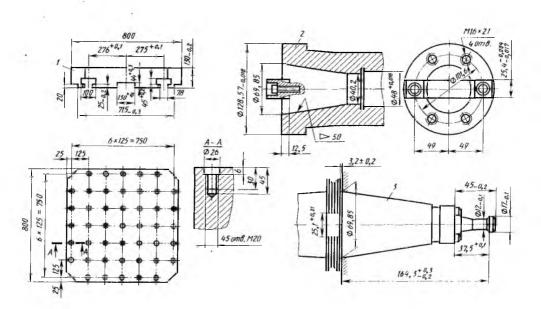


Рис. 40. Установочные базы сверлильно-фрезерио-расточного станка мод. ИР800МФ4 с подвижной стойкой: I — плита спутпика; Z — шпиндель; Z — инструментальная оправка

4 Обработка металлов резаинем

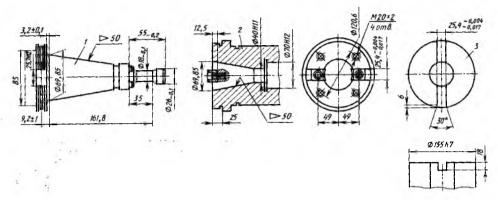


Рис. 41. Установочные базы сверлильно-фрезерио-расточного горизонтального станка мод. ИР1600МФ4 с крестовой стойкой:

I - инструментальная оправка: 2 - шпиндель; 3 - шпиндель навесной инструментальной головки

3. ФРЕЗЕРНЫЕ СТАНКИ

ГОРИЗОНТАЛЬНЫЕ КОНСОЛЬНО-ФРЕЗЕРНЫЕ СТАНКИ

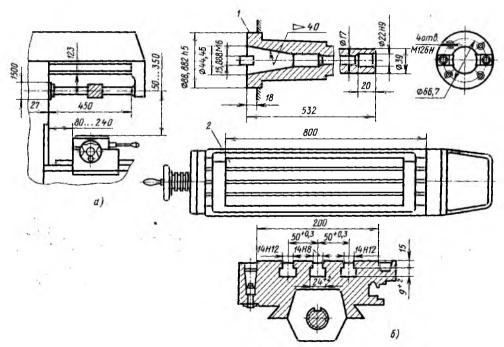


Рис. 42. Габариты рабочего пространства (а) и установочные базы (б) горизонтально-фрезерного консольного станка мод. 6Р80 Γ :

1 -шпиндель; 2 -стол

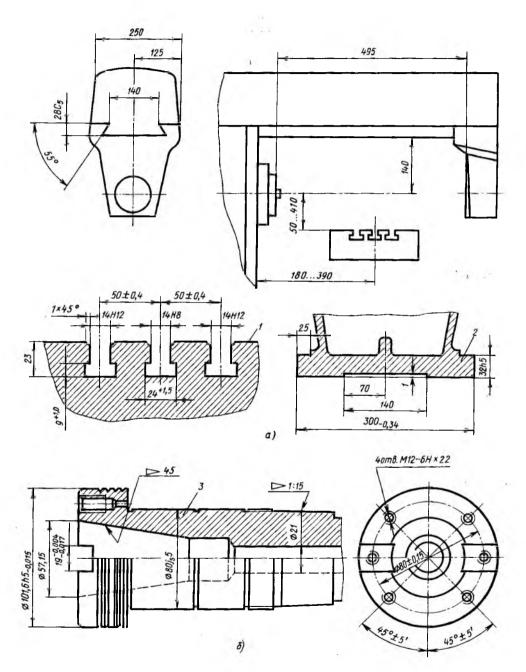


Рис. 43. Габариты рабочего пространства (a) и установочные базы (δ) горизонтально-фрезерного консольного станка мод. 6P81 Γ :

I — пазы стола; 2 — направляющие станины; 3 — шпиндель

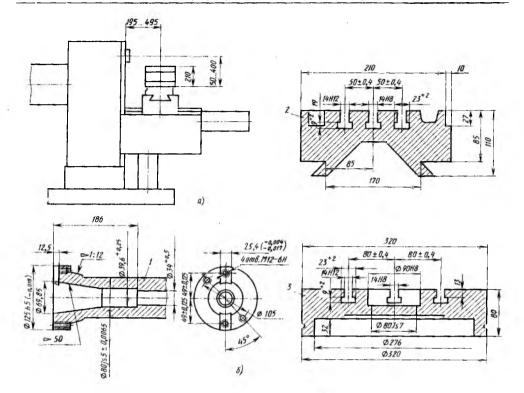


Рис. 44. Габариты рабочего пространства (а) и установочные базы (\vec{o}) горизоитально-фрезерного консольного станка мод. 6Р81ГМФ3-1 с ЧПУ и инструментальным магазином:

I — шиндель; 2 — стол; 3 — поворотный стол

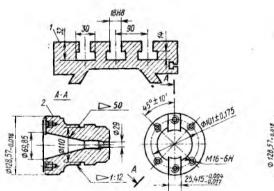


Рис. 45. Установочные базы консольно-фрезерного станка мод. 6Р82Г:

I — пазы стола; 2 — шпиндель

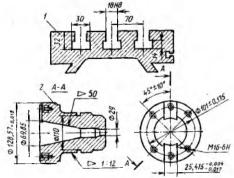
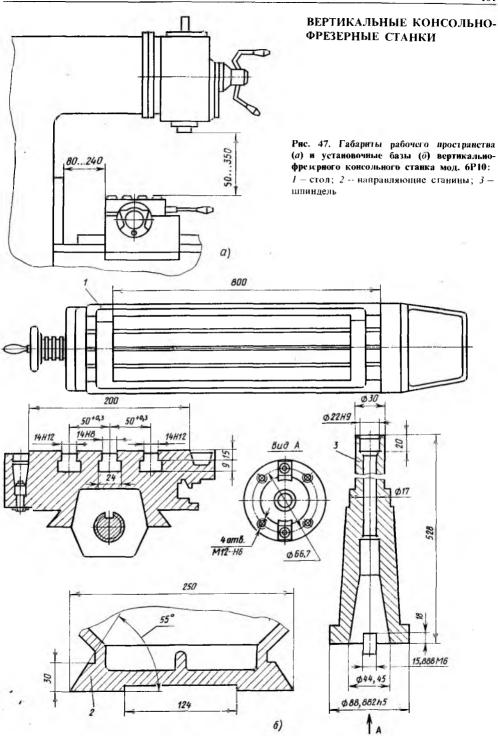
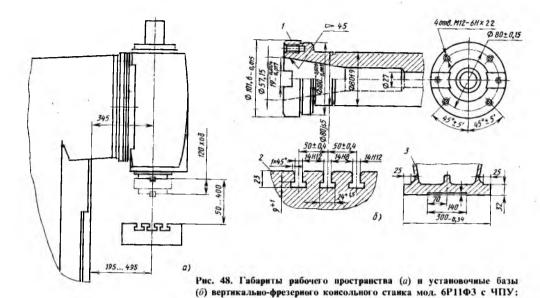




Рис. 46. Установочные базы консольно-фрезерного станка мод. 6P83Г:

I — пазы стола; 2 — ишиндель

I — шпиндель; 2 — пазы стола; 3 — направляющие станины

Рис. 49. Габариты рабочего пространства (а) н установочные базы (б) вертикально-фрезерного консольного станка мод. 6Р12Б:

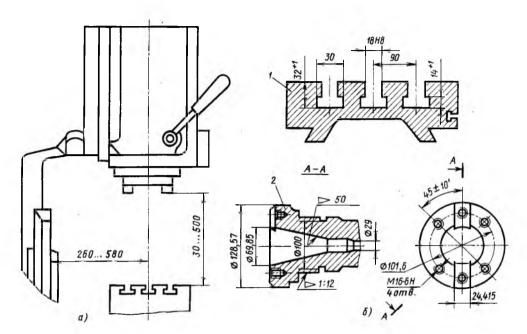


Рис. 50. Габариты рабочего пространства (a) и установочные базы (δ) вертикально-фрезерного консольного станка мод. 6Р13Б:

1 – пазы стола; 2 – шпиндель

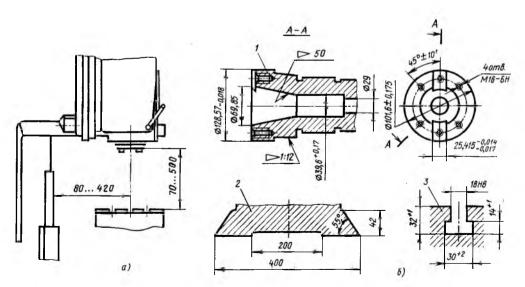
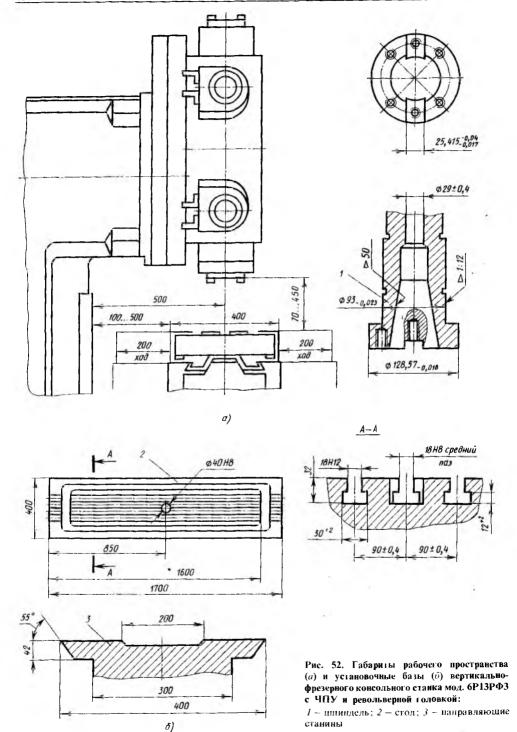
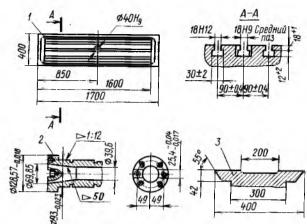
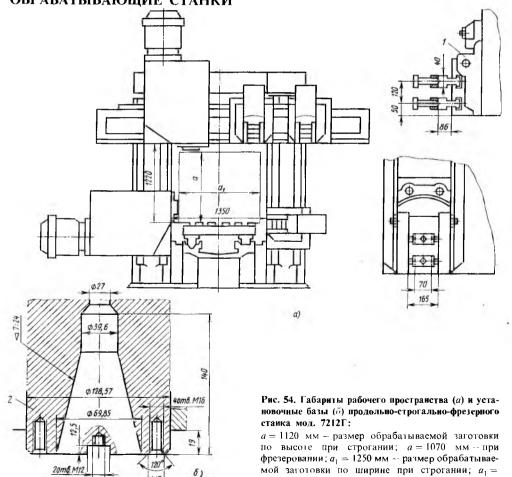


Рис. 51. Габариты рабочего пространства (a) и установочные базы (δ) вертикально-фрезерного консольного станка мод. δ T13-1:

I — шпиндель; 2 — направляющие стола; 3 — средний паз стола


Рис. 53. Установочные базы вертикально-фрезерного консольного станка мод. 6Р13Ф3-37 с ЧПУ:

1 - стол; 2 - шпиндель; 3 - паправ-ляющие станины

4. ПРОДОЛЬНО-

СТРОГАЛЬНО-ФРЕЗЕРНЫЕ И КОМБИНИРОВАННЫЕ ПРОДОЛЬНО-ОБРАБАТЫВАЮЩИЕ СТАНКИ

= 1150 мм - при

фрезеровании;

головка; 2 - ишиндель фрезерной головки;

1 — резцовая

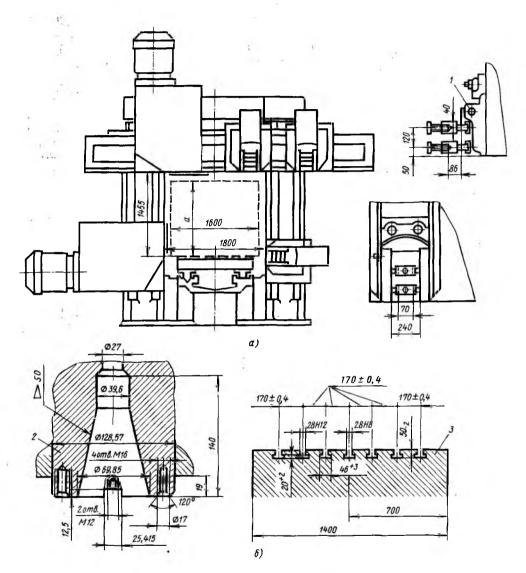


Рис. 55. Габариты рабочего простраиства (a) и установочные базы (б) продольно-строгально-фрезерного станка мод. 7216 Γ :

a=1400 мм — размер обрабатываемой заготовки по высоте при строгании; a=1350 мм — при фрезеровании; I — резцовая головка; 2 — шпиидель фрезерной головки; 3 — стол

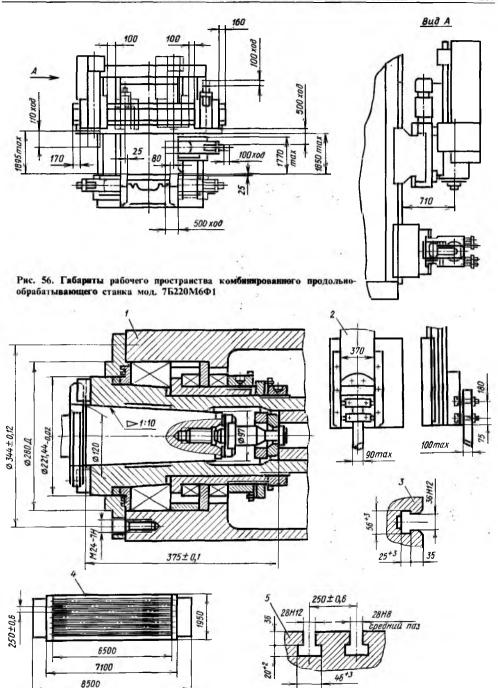


Рис. 57. Установочные базы комбинированного продольно-обрабатывающего станка мод. 7Б220М6Ф1: I — фрезерно-расточный суппорт; 2 — резцедержатель суппортов; 3 — пазы резцедержателя; 4 — стол; 5 — пазы стола

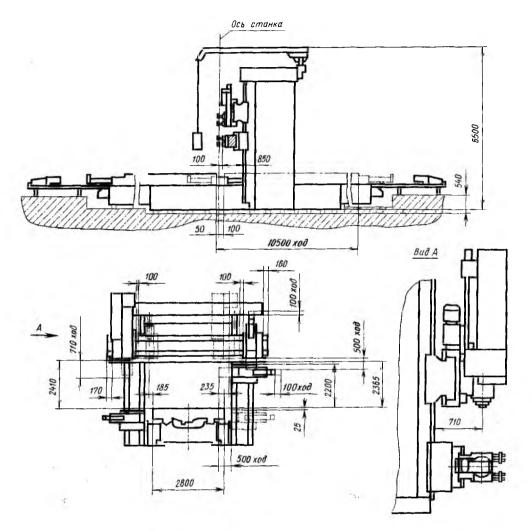


Рис. 58. Габариты рабочего пространства комбинированного продольно-строгального станка мод. 7228M10Ф1

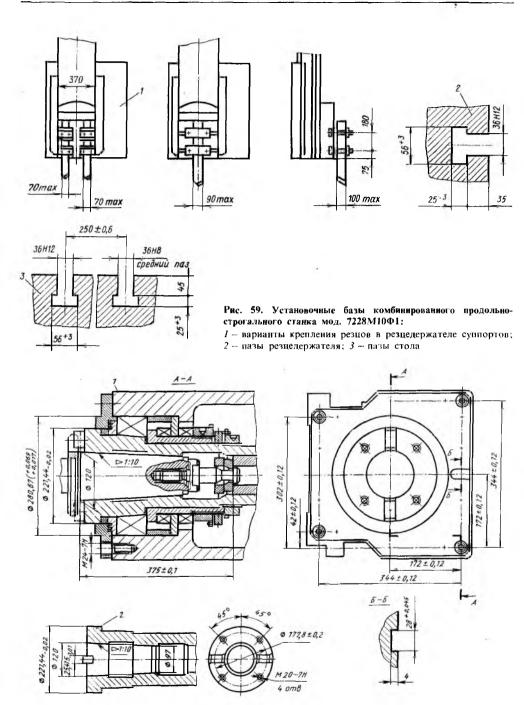


Рис. 60. Установочные базы комбинированного нродольно-строгального станка мод. 7228М10Ф1: I — фрезерно-расточный суппорт; Z — шпиндель

РОБОТИЗИРОВАННЫЕ ТЕХНОЛОГИЧЕСКИЕ КОМПЛЕКСЫ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Роботизация металлорежущих станков — способ автоматизации механической обработки, основанный на применении промышленных роботов для обслуживания технологического оборудования в целях исключения ручного труда [3].

В соответствии с ГОСТ 25686—85 промышленный робот (ПР)—автоматическая машина, стационарная или передвижная, состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и перепрограммируемого устройства программного управления для выполнения в производственном процессе двитательных и управляющих функций.

Номенклатура основных показателей ПР устанавливается ГОСТ 25378—82. Применяемость этих машин в наибольшей степени определяется следующими показателями [5,6]: номинальной грузоподъемностью; структурной кинематической схемой; видом управления; геометрическими, скоростными и точностными показателями степеней подвижности.

С помощью ПР на металлорежущих станках автоматизируются следующие основные операции [1,9]: установка заготовок в рабочую зону станка (при необходимости с контролем правильности базирования); снятие деталей со станка и раскладка их в тару (накопитель); передача деталей от станка к станку; кантование деталей (заготовок) в процессе обработки; контроль размеров деталей (эту функцию более целесообразно выполнять устройствами, комплектующими станок); очистка баз деталей и базирующих поверхностей приспособлений; смена инструмента.

Необходимыми условиями возможности применения ПР на любой операции являются: соответствие массы манипулируемого объекта грузоподъемности ПР; вписываемость зоны, в которой должно проводиться манипулирование (транспортирование), в зону обслуживания робота; соответствие траектории, скорости и точности, требуемых

для выполнения операции движений объекта, кинематическим и точностным возможностям ПР и возможности запрограммировать требуемые позиции; возможность захватывания объекта захватным устройством ПР или стыковки соответствующего захватного устройства с кистью ПР; возможность организации беспрепятственного движения исполнительного устройства ПР между требуемыми позициями; соответствие условий окружающей среды (пыль, влажность, температура, химическая активность) исполнению ПР.

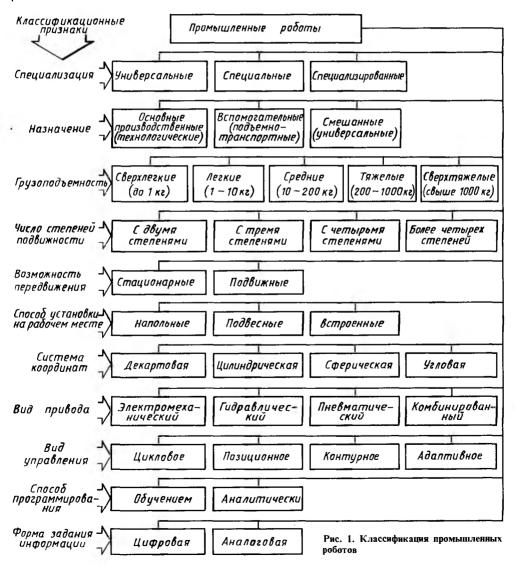
Роботизированный технологический комплекс (РТК) — совокупность единицы технологического оборудования, промышленного робота и средств оснащения, автономно функционирующая и осуществляющая многократные циклы (ГОСТ 26228 – 85).

Средствами оснащения РТК могут быть устройства накопления, ориентации, поштучной выдачи объектов производства и другие устройства, обеспечивающие функционирование РТК.

По организационному признаку РТК могут функционировать отдельно, как самостоятельный вид оборудования, или могут быть объединены в соответствии с ГОСТ 26228—85 в роботизированные технологические линии, роботизированные технологические участки.

Роботизированная технологическая линия — совокупность роботизированных технологических комплексов, связанных между собой транспортными средствами и системой управления, или нескольких единиц технологического оборудования, обслуживаемого одним или несколькими промышленными роботами для выполнения операций в принятой технологической последовательности.

Роботизированный технологический участок — совокупность роботизированных технологических комплексов, связанных между собой транспортными средствами и системой управления, или нескольких единиц технологического оборудования, обслуживаемых одним или несколькими промышленными роботами, в которой предусмотре-


на возможность изменения последовательности использования технологического оборудования.

2. КЛАССИФИКАЦИЯ ПРОМЫШЛЕННЫХ РОБОТОВ И РОБОТИЗИРОВАННЫХ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ

Классификация промышленных роботов по различным признакам представлена на рис. 1.

Универсальный ПР предназначен для выполнения основных и вспомогательных операций и переходов с различным технологическим оборудованием, специальный ПР — для выполнения определенных операций и переходов с конкретным технологическим оборудованием, специализированный ПР — для выполнения операций или переходов одного вида при работе с определенной группой технологического оборудования.

Типоразмеры ПР должны устанавливаться по совокупности классификационных признаков.

Новые конструкции ПР данного типа должны разрабатываться только с целью повышения их функциональных возможностей путем введения дополнительных степеней подвижности, реализации методов адаптивного управления, улучшения динамических характеристик, точности позиционирования, увеличения числа программируемых точек; повышения надежности, технологичности, ремонтопригодности; повышения уровня унификации; снижения материалоемкости и энергоемкости; проведения научно-исследовательских работ, направленных на развитие теоретических основ робототехники.

Техническое задание на разработку новых моделей ПР должно согласовываться с головной организацией по разработке промышленных роботов соответствующего технологического назначения, специалисты которой по определенной методике или экспертным путем принимают решение о целесообразности (или нецелесообразности) разработки и освоения производства новой модели.

Основными факторами оценки технического уровня ПР являются: приспособляемость (адаптивность); динамические характеристики; надежность; точность позиционирования и повторяемость; трудоемкость программирования (способ и уровень языка программирования); материалоемкость и энергоемкость.

Повышение технического уровня и качества ПР должно основываться на применении прогрессивной технологии машинои приборостроения, достижениях технической кибернетики, теории механизмов и машин, а также максимальном применении в конструкциях ПР современных устройств получения и обработки информации, высокоэффективных приводов и т. п.

Важнейшей характеристикой ПР, определяющей в значительной степени область их применения, служит компоновка, отличающаяся совокупностью ряда признаков: видом системы координат основных движений и ее ориентацией; числом степеней подвижности и движений; числом захватных устройств.

Подвесные ПР, применяющиеся в механообработке, работают, как правило, в следующих системах координат: прямоугольной плоской системе координат, т. е. совершают два основных движения— вдоль оси портала (движение каретки) и в перпендикулярном к оси портала направлении (выдвижение руки в вертикальном направлении или под углом к вертикали); цилиндрической полярной системе координат, т. е. имеют три основных движения — вдоль оси портала, поворот руки вокруг горизонтальной оси (качание руки) и выдвижение руки; цилиндрической угловой системе координат, т. е. имеют три основных движения — вдоль оси портала и качание каждого из звеньев шарнирной руки; системе координат, представляющей собой комбинацию плоской прямоугольной системы с дополнительным качанием второго звена руки.

Кроме основных движений, определяющих систему координат робота, последний, как правило, имеет возможность выполнения ориентирующих движений — вращение кисти (к которой крепится захватное устройство) вокруг оси руки, поворот кисти вокруг оси (одной или двух), перпендикулярной к оси руки.

Напольные ПР, применяемые при обработке резанием, работают, как правило, в цилиндрической системе координат, т. е. у них осуществляется подъем руки, ее поворот вокруг вертикальной оси и радиальное выдвижение в горизонтальной плоскости. Ориептирующие движения, кроме характерных для портальных ПР, включают и сдвиг захвата.

Встраиваемые ПР, применяемые при обработке резанием, могут иметь компоновку, аналогичную подвесным роботам, работающим в плоской прямоугольной и полярной цилиндрической системе координат, а также конструктивное исполнение, позволяющее крепить их спереди к станку и обеспечивающее возможность поворота руки вокруг вертикальной и горизонтальной осей. Отличие первых роботов от портальных состоит в креплении монорельса, по которому движется каретка, непосредственно на станке.

Наиболее целесообразной формой внедрения ПР в серийное производство служит применение роботизированных технологических комплексов (РТК), на базе которых далее могут быть созданы роботизированные технологические участки, цехи и заводы.

Организационно-техническая классификация роботизированных технологических комплексов представлена на рис. 2.

На базе одних и тех же моделей станков могут создаваться РТК различных компоновок, комплектуемые ПР, обладающими различными технологическими и техническими возможностями.

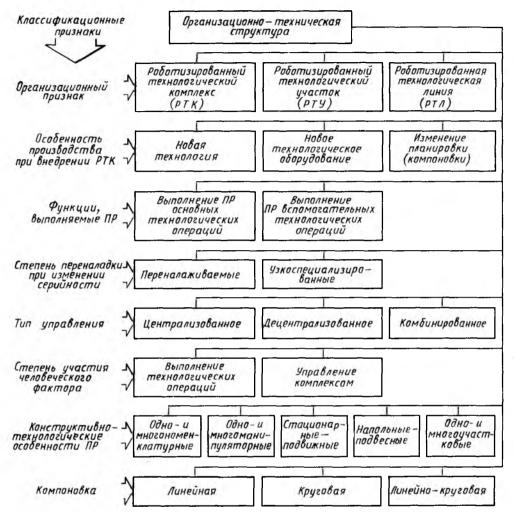


Рис. 2. Организационно-техническая классификация роботизированных технологических комплексов

Наибольшее распространение получили следующие компоновочные рещения РТК: одностаночные — из одного станка, обслуживаемого ПР, расположенным над станком (подвесным ПР), рядом со станком (напольным ПР) или встроенным в сганок; многостаночные линейные и линейно-параллельные на базе портальных ПР; многостаночные круговой компоновки с применением напольных ПР.

Линейные компоновки РТК с применением портальных ПР характеризуются следующими особенностями: занимают меньшую производственную площадь, чем комплексы круговой компоновки; обеспечивают переналадку и ремонт оборудования без останова работы всего комплекса, возможность визуального наблюдения за работой оборудования; обеспечивают безопасные условия работы обслуживающего персонала и обслуживание одним ПР трех станков и более.

Особенность круговых компоновок определяется отличительными признаками применяемых напольных ПР, в том числе меньшей материалоемкостью и простотой проведения профилактических работ и ремонта ПР.

РТК со встроенным ПР (одностаночные модули) занимают минимальную площадь.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСНОВНЫХ МОДЕЛЕЙ ПРОМЫШЛЕННЫХ РОБОТОВ [7]

1. Области применения и техническая характеристика ПР

Модель, назначение и техническая характеристика

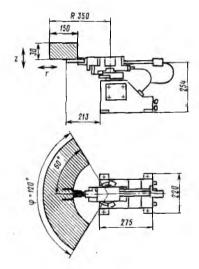
Предназначен для обслуживания операций обработки резанием, холодной штамповки, а также для выполнения простейщих сборочных операций.

Техническая характеристика

Грузоподъемность, кг	. 0,1
Число степеней подвижности (без	3
захватного устройства)	. 5(4)
Число рук/ захватных устройств	
на руку	
Тип привода	. Пневма
	тичес-
	кий
Управление	. Цикло
	BOC
Число программируемых коорди	
нат	
Погрешность позиционирования	,
MM	
Наибольший вылет R руки, мм	1 345

^{*} Только для исполнения 01.01

Модель, назначение и техническая характеристика

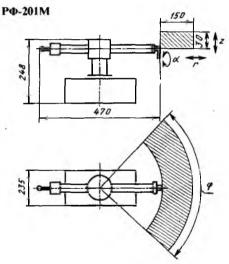

Линейные перемещения (мм) при

			, •				•		′	•		
'скорос	τи,	M	/c:									
0,17												z = 50
0,6										•		r = 150
0,17												x = 50*
У гловь	эе	пер	рем	1ец	цен	ия,	٥.					
ф (п	ри	СК	opo	СТ	и 6	,2	pa,	1 /c) .			220
α (пј	эи	ско	po	СТІ	ī 1,	53	pa.	д/с).			90
Macca,	KΓ											30 (29)
Пря	им	e v	a	ни	я:	1.	31	нач	ени	ıя	В	скобках
только	ДЛ	R	исп	ол	нен	ния	01	.03	3. 2	2. 3	Vпј	равление

роботом осуществляется устройством мод.

МП-9

AC-2611


Предназначен для обслуживания станков и штамповочных прессов, а также для сборочных работ.

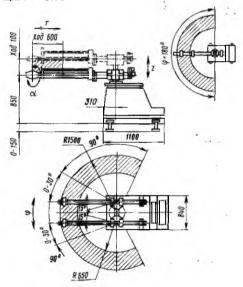
Технич	еская	харс	ікт	ері	icm	шк	а			
Грузог	подъем	ност	гь,	кг						0,2
Число	степе	ней	по	дви	ж	юс	ТИ	(б	ез	
захват										3
Число	рук/	захн	заті	ы	(yc:	гро	йс	ГВ	
иа ру	ку.									1/1
Тип пр	ивода									Пневма
										тичес-

кий Управление Цикловое

Модель, назначение и техническая характеристика

Число программируемых коор-	
динат	3
Вместимость памяти системы (чис-	
ло команд)	10
Погрешность позиционирования,	
MM	$\pm 0,2$
Наибольший вылет R руки, мм	350
Линейные перемещения (мм):	
z (при скорости 0,1 м/с)	30
r (при скорости 0,3 м/c)	150
Угловое перемещение (при ско-	
рости 2,2 рад/с), °	120
Масса, кг	70

Предназначен для автоматизации процессов колодной штамповки, обработки резанием и процессов несложной сборки.


Техническая характеристика

Грузоп	ЮД	ье	MHO	ост	ь,	КΓ						0,2
Число	СТ	еп	ене	й	под	ΙВИ	жн	oc	ГИ	(б	23	
захвати	ных	()	уст	po	йст	ъ)						4
Число	p)	yĸ/	3a	хва	TH	ых	y	стр	юй	СТЕ	3	
на руг	ζy											1/1
Тип п	рин	30,	ца									Пневма-
Управл	тен	ие					•					тичес- кий Цикло- вое
Число	пр	ОГ	par	ΜМ	ир	уем	ых	R	00	рді	1 -	
нат.												3

Модель, назначение и техническая характеристика

					_	_						
Спосо	бі	про	гр	ам	ΜИ	ров	зан	ия	П	epe	-	
мещен	ий											Набор
											1	кулачка-
											N	ии на ба-
												рабане
Вмест	имо	ост	ь І	(a N	1ЯТ	ис	сис	гем	њ			-
(число	K	ом	ан	д)								5
Погре	шн	ост	ъ	П)ЗИ	цио	ЭНИ	ιpo	ван	ия	,	
MM .								٠,				± 0.05
Линей	ны	еп	epe	еме	ше	ни	я,	ММ	1:			
r												150
Z												30
Углов	oe	пер	эем	1em	ен	ие,	٥.					
φ.		•										90
α (п	ри	скс	po	сті	16.	12	pa	д/с).			180
Maçca	, KI		٠.				٠.					40

Циклон-3.01

Предназначен для обслуживания металлорежущих станков и кузнечно-прессового оборудования.

Техническая характеристика

Грузоподъемность суммарная/ на	
одну руку, кг	6/3
Число степеней подвижности (без	
захватного устройства)	6
Число рук/ захватных устройств	
на руку	2/1

Продолжение табл. 1

Модель,	назначение	И	техническая						
характеристика									

Модель,	назначение	И	техническая
	характерис	ТИ	ка

характеристика
Тип привода
Управление
Число программируемых коорди-
нат
Способ программирования пере-
мещений По упо-
рам
Вместимость памяти системы (чис-
ло команд)
Погрешность позиционирования,
MM $\pm 0,1$
Наибольший вылет руки, мм 1500
Линейные перемещения, мм:
r (при скорости 0,6 м/c) 600
z (при скорости 0,3 м/c) 100
Перемещение, мм:
руки 250
основания
Угловые перемещения руки, °:
ф (при скорости 1,02 рад/с) 180
α (при скорости 1,53 рад/с) 180
Масса, кг 540
Примечание. Управление роботом
может осуществляться устройствами мод.

Предназначен для загрузки деталей типа втулок при обслуживании валов металлорежущих станков и разнообразных отливок при обслуживании машин литья под давлением.

Техническая характеристика

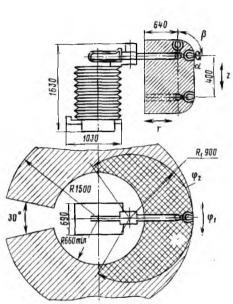
Грузоподъемность, Число степеней под				5
захватного устройств Число рук/захватн	ва)			6
на руку				1/1
Тип привода				
	• • •	-		тичес-
				кий
Управление				Цикло-
				вое
Число программируе	емых ко	орд	(и-	
нат				6
Вместимость памяти				
сло команд)				60
Погрешность пози				
MM	-			± 0.1
			•	,.
Линейные перемещен	ия, мм	:		
z				150
r				600

ПУР-Ц и УМЦ-20.

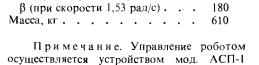
ГЛΘ	овь	ıe	пе	pen	лец	цен	ия.	0	:		
φ				•							240
θ											15
ac	ca,	кг									550

ПР-4

Универсал-5.02


Предназначен для обслуживания полуав-
томатов, агрегатных и универсальных стан-
ков, модернизированных для обслуживания
их роботами, а также для межоперацион-
ного транспортирования деталей.

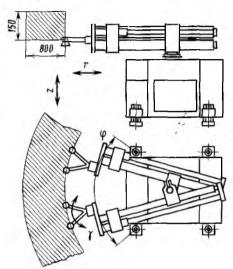
	4.5
	2
10	r . 95
1650	
· · · · · · · · · · · · · · · · · · ·	
956	
	,
4//////	


Техническая характеристика

Грузоподъеми	ност	Ь,	кг						5
Число степен	ей	по,	дви	ж	oc'	ГИ	(б	ез	
захватного ус	троі	йст	ва)	١.					6
Число рук/	захн	зат	ны	X	уст	ро	йст	ΓВ	
на руку						•			1/1
Тип привода									Элект-
Y_ =									ричес-
									кий

Модель, назначение и техническая характеристика Модель, назначение и техническая характеристика

Recommen
MILLIAMINI
Управление
Число программируемых коорди-
нат 4
Способ программирования пере-
мещений Обуче-
ние
Вместимость памяти системы (чис-
ло команд) 50
Погрешность позиционирования,
$MM \dots \underbrace{+1}$
Наибольший вылет <i>R</i> руки, мм 1500
Линейные перемещения, мм:
z (при скорости 0,1 м/c) 400
r (при скорости 0,34 м/с) 640
Угловые перемещения, ":
ф ₁ (при скорости 1,36 рад/с) 330


240

180

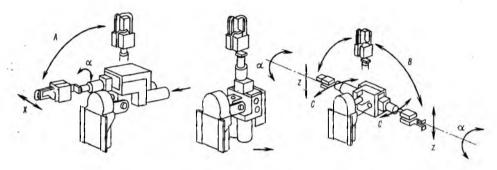
 Φ_2 (при скорости 1,32 рад/с).

α (при скорости 3 рад/с) .

КМ10Ц.42.01

Предназначен для обслуживания металлорежущего и кузнечно-прессового оборудования.

суммарная/


Техническая характеристика

Грузополъемность

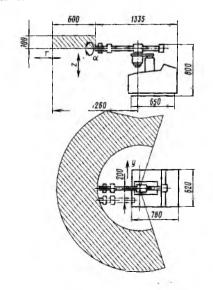
i pysonogbennioerb tymmup-an,
на одну руку, кг 10/5
Число степеней подвижности (без
захватного устройства) 6
Число рук/захватных устройств на
руку
Тип привода
тичес-
кий
Управление
вое
Число программируемых коорди-
нат 4
Способ программирования пере-
мещений
рам
Линейные перемещения, мм:
r (при скорости 1,3 м/с) 800
, (1
z (при скорости 0,3 м/c) · · · 150
Угловые перемещения, :
ф (при скорости 1,53 рад/с) 180
у (при скорости 2,55 рад/с) 180
Масса, кг

Модель, назначение и техническая характеристика

M10Π.62.01

Предназначен для обслуживания металлорежущих станков типа мод. 16К20Ф3.

Техническая характеристика


Грузоподъемность, суммарная/ на одно захватное устройство	10/5
Число степеней подвижности (без захватного устройства)	6
Число рук/ захватных устройств на руку	1/2

Тип прив									•	Элект- ропнев- матичес- кий Позици- онное
Число п	porpa	мм	ימע	ven	ых	K	00	рπ	и-	
нат			p.	•			•	•	•	6
Способ	прог	рам	ми	po:	ван	гия	I	пер	e-	
мещения								-		Обуче-
										ние
Вместим	ость 1	ам	яти	C	ист	ем	ы,	чи	c-	
ло точек			•							300
Погрешн	ость	П	031	ιци	он	иро	ва	ιни	я,	
мм										± 0.5
Наиболь:	щий в	ыл	ет р	ЭУΚ	и,	мм				630
Масса, к										110
Линейны	е п е г	ем	eme	ени	я	по	к	റവ	n-	

Угловые перемещения ио координатным осям

з гловые перемещения по координативым осим							
Ось	Угол поворота, °	Скорость, рад/с					
А В С	90 · 120 180	0,023-2,2					
α	-90; 90; 180	1,53					

Бриг-10

M20II.40.01

Продолжение табл. 1

10

Продолжение табл. 1

Модель, назначение и техническая характеристика

Модель, назначение и техническая характеристика

Предназначен для автоматизации операций
загрузки и разгрузки, установки (снятия)
детали на токарные полуавтоматы типа
мод. 1А730, 1А240П-6, резьбофрезерные
полуавтоматы мод. 5К63, токарные полу-
автоматы с ЧПУ мод. АТПР-2М12, а
также для обслуживания прессов мод.
П-6328, П-6330.

2359		11 500	200
Z I	325 15 325	· · ·	300°
4			
<			

Техническая характ	пери	icn	ик	а		
Грузоподъемность,	кг					

Число степеней подвижности (без 5 захватного устройства). Число степеней подвижности (без 5 захватного устройства).

Число рук/захватных устройств на 1/1

Тип привода . . Пневматический

Управление . . Цикловое

Число программируемых коорди-4

Способ программирования перемещений Набор на штекерной панели

Вместимость памяти системы (чи-28 сло команд).

Погрешность позиционирования, Мм ± 0.3

Наибольший вылет R руки, мм 1260 Линейные перемещения, мм: z (при скорости 0,3 м/c) . . . 100

r (при скорости 0,6 м/с) . . . 600 y (при скорости 0,3 м/с) . . . 200

Угловые перемещения (при скорости 1,53 рад/с), °: 210

180 Масса, кг. 300

Предназначен для обслуживания металлорежущих станков типа мод. 16К20Ф3.

5

300

 $\pm 1,0$

Техническая характеристика

Грузоподъемность, суммарная/на одно захватное устройство, кг 20/10 Число степеней подвижности (без захватного устройства) Число рук/захватных устройств на руку 1/2 Тип привода . . Электропневмати-

ческий Управление Позипионное Число программируемых коорди-

5 нат Способ программирования перемешения Обучение

Вместимость памяти системы, чис-Погрешность позиционирования, мм

Наибольший вылет руки, мм. . . 1100 570 Macca, Kr. .

Продолжение табл. 1

1 6

кий

Модель,	назначение	И	техническая
	характерис	ТИ	ка

Молель,	назначение	и	техническая
	характерис	ТИ	ка

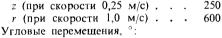
Диапазои перемещений, мм

Исполнение	H	r_{\parallel}	<i>r</i> ₂	<i>r</i> ₃		
M20Π.40.01	780; 950	500; 800	944; 1044	641; 858		
М20П.40.02	950	1100	1060	1150		

Техническая характеристика

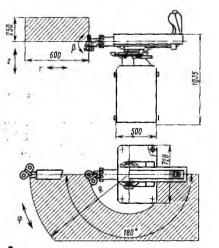
труз:	опод	(PCV	1HO	CT.	ь,	ΚI	•	•	•	•	•	13
Числ	о ст	епе	неі	ĺ	ПΟ,	дви	ЖН	loc1	ľИ	(б	ез	
захва	атног	0	yc	гр	ойс	ств	a)					3
Числ	о ру	к/за	ахв	ат	ны	x y	/ст	рой	ic _T	ВЕ	ıa	
руку											٠	1/1
												Пневма
	•											тичес-

Линейные перемещения по координатным осям

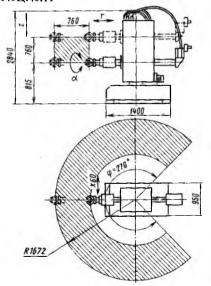

Ось	Расстояние, мм	Скорость, м/с
z R	500 1100	$0,008 - 0,5 \\ 0,008 - 1,0$

Управ	вление .									Цикло-
										вое
Число	прогр	амы	ир	yen	4ЫХ	. 1	coo	рді	и-	

Число программируемых коорди-	
нат	3
Вместимость памяти системы (чис-	
ло команд)	27
Погрепиность позиционирования,	
MM	$\pm 0,5$
Наибольший вылет R руки, мм	1100
Линейные перемещения, мм:	
0.25	3.00


Угловые перемещения но координатным осям

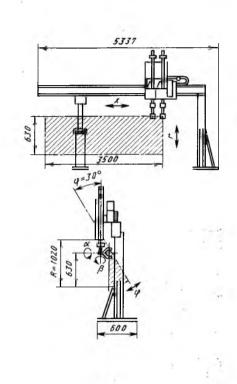
Ось	Угол поворота, °	Скорость, рад/с
$egin{array}{c} lpha \ eta \ eta \end{array}$	от -90 до 180 ±3,5 300	1,02 0,51 0,00001 - 0,001


ф (при скорости 1,53 рад/с). 180 80 Масса, кг 400

МП-5

Предназначен для обслуживания прессов и металлорежущих станков мод. 1734П, ТР-6, У-115 и т. п., для сборочных и транспортных операций на конвейере.

СМ40Ц.40.11

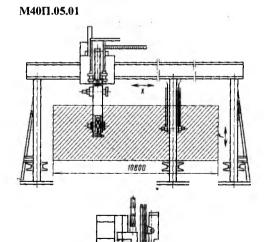


Предназначен для обслуживания металлорежущих станков типа мод. 1713.

Модель, назначение и техническая характеристика

Техническая характеристика	
Грузоподъемность, кг	40
Число степеней подвижности (без	
захватного устройства)	4
Число рук/захватных устройств	
на руку	1/1
Тип привода	Гидрав-
•	личес-
	кий
Управление	Цикло-
•	вое
Число программируемых коор-	
динат	3
Способ программирования переме-	
щений	По упо-
	рам
Вместимость памяти системы (чис-	
ло команд)	150
Погрешность позиционирования,	
MM	$\pm 1,5$
Наибольший вылет R руки, мм	1672
Линейные перемещения, мм:	
r (при скорости, м/с: вперед	
0,41, назад 0,635)	760
z (при скорости, м/c: вверх	
0,212, вниз 0,38)	760
Угловые перемещения, °:	
φ	270
ά	180
Масса, кг	1400

М20Ц.4.8


Предназначен для обслуживания металлорежущих станков типа мод. 1В340Ф30.

Техничес	ская хар	рактери	стика							
Параметр	Модификация									
Параметр	48.01	48.02	48.11	48.12	05.01	05.02	05.11	05.12		
Грузоподъемность суммарная/на руку, кг	20	/10	2	20	20/10		20			
Число степеней подвижности (без захватного устройства)	9	7	5	4	7	5	4	3		
Число рук/ захватных устройств на руку	2	/1	1	/1	2,	/1	1,	/1		
Тип привода	Пневматический									
Система управления Погрешность позиционирования, мм	УЦМ 663 ±1,0									

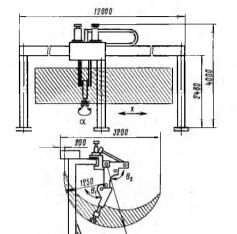
Модель, назначение и техническая характеристика

Техническая характеристика												
	Модификация											
Параметр	48.01	48.01 48.02 48.11 48.12 05.01 05.02 05.11 0										
Наибольший вылет <i>R</i> руки, мм				10	20							
Линейные перемещения, мм: x^{*1} (при скорости 1,2 м/с) r (при скорости 0,5 м/с)	3500 630											
Угловые перемещения (при скорости 3 рад/с), $^{\circ}$: $^{\circ}$				3	0							
α	90	140	90	_	90	_	90	-				
β	180											
Масса, кг	1450											

*1 Перемещение x — общее для обеих рук.

Предназначен для обслуживания металлорежущих станков типа мод. MP-315.

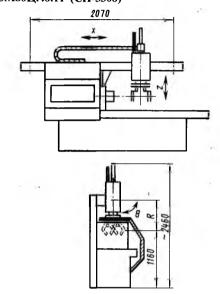
Техническая характеристика


Грузоподъемность, кг	. 40
Число степеней подвижности (бе	ез
захватного устройства)	. 5
Число рук/захватных устройств в	на
руку	. 1/2
Тип привода	. Гидрав
	личес-
	кий
Управление	. Позици
	онное
Число программируемых коорді	и-
нат	. 3
Погрешность позиционирования	± 1
Линейные перемещения, мм:	
x (при скорости 0,8 м/с)	. 10800
r (при скорости 0,4 м/с)	. 500
Угловые перемещения, °:	
φ	. 100
β (при скорости 0,76 рад/с)	. 90
α (при скорости 1,53 рад/с)	. 180
Масса, кг	. 3000

Продолжение табл. 1

Модель, назначение и техническая характеристика

СМ40Ф2.80.01 (ЦРВ-50)


Модель, назначение и техническая характеристика

θ_2								90
								180
Mac	ca,	кг			•			3400

 Π р и м е ч а н и е. Управление роботом осуществляется устройством мод. УПМ-331.

СМ80Ц.48.11 (СН-3308)

Предназначен для обслуживания металлорежущих станков типа мод. 1713Ф3.

Техническая характеристика	
Грузоподъемность, кг 40	
Число степеней подвижности (без	
захватного устройства) 4	
Число рук/захватных устройств на	
руку 1/1	
Тип привода Гидрав-	
личес-	
кий	
Управление	
онное	
Число программируемых коорди-	
нат	
Способ программирования пере-	
мещений Обуче-	
ние	
Вместимость памяти системы,	
кбайт 51,2	
Погрешность позиционирования,	
MM ±1	
Наибольший вылет R руки, мм 1900	,
Линейное перемещение (при ско-	
рости 0,8 м/с), мм 10000	
Угловые перемещения (при ско-	
рости 0,51 рад/с), °:	
рости од радусу, .	


Предназначен для обслуживания металлорежущих станков типа мод. 16К20Ф3.

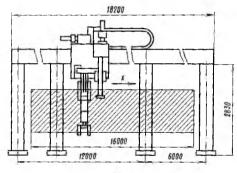
Техническая характеристика	
Грузоподъемность суммарная/на захватное устройство, кг	80/40
Число степеней подвижности (без	
захватного устройства)	3
Число рук/захватных устройств на	
руку	2/1
Тип привода	Элект-
	рогид-
	равли-
	ческий
Управление	Цикло-
	вое
Число программируемых коор-	
динат	3
Способ программирования пере-	
мещений	По упо-
	рам

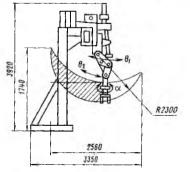
Модель, назначение и техническая характеристика

Погрешность позиционирования,	
MM	$\pm 1,5$
Наибольший вылет R руки, мм	800
Линейные перемещения, мм:	
x (при скорости 0,2 м/с)	2070
	320
Угловое перемещение θ , \circ	15
Масса, кг	280

СМ80Ц.25.01А

Предназначен для загрузки станков с ЧПУ с горизонтальной осью шпинделя. Диаметры заготовок, зажимаемых в натронах сменными захватными устройствами: 400—250, 250—125; ширина зажимаемой заготовки 140—10 мм.


Техническая характеристика

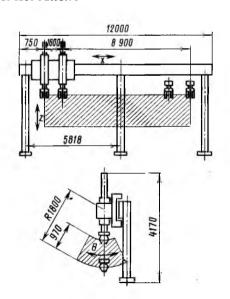

техн	ичесь	сая	xap	ран	m	ери	cm	ика	ı			
Груз	опод	ъем	4H0	CTE	,	C	ум:	мај	эна	я/н	ıa	
одно	зах	ват	ное	У	ст	poi	íст	во				80/40
Числ	о ст	епе	ней	F	lo,	ЦВИ	жн	oct	ги	(б	ез	
захва	тног	оу	стр	οй	ст	ва)						3
числ	о ру	к/з	ахв	аті	ы	ху	ст	poi	іст	ВЕ	ıa	
руку												1/2
Тип	при	вод	a									Гидрав-
												личес-
												кий

Модель, назначение и техническая характеристика

Система управления
Число программируемых коорди-
нат
Способ программирования пере-
мещений
рам
Вместимость памяти системы (чис-
ло команд) 80
Погрешность позиционирования,
мм 0,3
Наибольший вылет <i>R</i> руки, мм 1500
Линейные перемещения, мм:
х (при скорости 0,8 м/с) 3600
z (при скорости 0,5 м/с) 1000
Угловое перемещение α (при ско-
рости 1,53 рад/с), °
Масса, кг

УМ160Ф2.81.01

Предназначен для обслуживания метадлорежущих станков типа мод. 1 Б732Ф3


1

Продолжение табл. 1

Модель.	назначение	И	гехническая
	характерис	ги	ка

Техническая характеристика	
Грузоподъемность, кг	160
Число степеней подвижности (без	
захватного устройства)	4
Число рук/захватных устройств на	
руку	1/1
Вместимость памяти системы,	
кбайт	51,2
Погрешность позиционирования,	0.5
MM	± 0.5
Наибольший вылет R руки, мм	2300
Линейные перемещения (при ско-	16000
рости 1,2 м/с), мм	16 000
Угловые перемещения, °:	00
θ_1 (при скорости 0,51 рад/с)	90
θ_2 (при скорости 0,51 рад/с)	90
α (при скорости 0,25 рад/с) 9	6500
Масса, кг	
Примечание. Управление росуществляется устройством мод. У	DOOD TOM

СМ160Ф2.05.01

Модель, назначение и техническая характеристика

Техническая х ар актеристика
Грузоподъемность суммарная/на
одну руку, кг
Число степеней подвижности (без
захватного устройства) 5
Число рук/захватных устройств на
руку
Тип привода Гид-
равличе-
ский
Управление
онное
Число программируемых коорди-
нат ,
Способ программирования пере-
мещений
ние
Вместимость памяти системы,
кбайт 51,2
Погрешность позиционирования,
MM $\pm 0,5$
Наибольший вылет <i>R</i> руки, мм 1800
Линейные перемещения, мм:
х (при скорости 0,8 м/с) 8900
z (при скорости 0,3 м/c) 970
Угловое перемещение θ (при ско-
рости 0,25 рад/с), ° 60
Масса, кг 6500
Примечание. Управление ро-

ботом осуществляется устройством

мод. УПМ-331.

Предназначен для обслуживания металлорежущих станков типа мод. 1Б732Ф3У3

4. ТИПОВЫЕ КОМПОНОВКИ РОБОТИЗИРОВАННЫХ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ И ИХ ОСНОВНЫЕ ПОКАЗАТЕЛИ [8]

2. Основные технико-экономические показатели роботизированных технологических комплексов

Наименование и основные показатели комплекса

Планировка комплекса

Комплекс мод. МО-1И611-Ритм

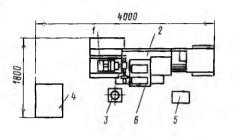
Предназначен для токарной обработки заготовок деталей типа тел вращения из штучных исходных заготовок массой до 0,1 кг.

ПР осуществляет загрузку стаика с позиции выдачи вибробункера, куда заготовки поступают в ориентированном виде. Обработанные детали сбрасываются в тару через лоток. Размеры обрабатываемой заготовки, мм:

диаметр						6 - 50
длина .			•			10 - 50

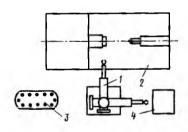
Основные показатели комплекса

Время ц	икла обработ	ки загот	овки,	
мин			0,	15 - 0.5
Произво	дительность	при ;	двух-	
сменной	работе, тыс	. шт/год		.350-
	• ,	•		1050


Ожидаемый экономический эф-
фект, тыс. руб
Повышение производительности
оборудования, % До 150
Число высвобождаемых рабочих в
смену

Комплекс на базе промышленного робота мод. «Циклон-3Б» и стенка мод. 1А730Ц

Предназначен для токарной обработки заготовок деталей типа валов, фланцев массой до 3 кг. ПР в составе комплекса осуществляет загрузку и разгрузку станка. Робот одной рукой берет предварительно ориентированную заготовку из загрузочного устройства периодического действия и передает ее на станок; второй рукой выгружает готовую деталь в тару.


Размеры обрабатываемой заготовки, мм:

ДИ	аметр:					
	фланца					200
	вала .		•			50
ДЛ	ина:					
	фланца					80
	вала .					50

I – ПР мод. Ритм-01.01 встроенного типа;
 2 – токарно-винторезный станок мод.

1И1611ПМФ3 с ЧПУ; 3 — вибробункер; 4 — система программного управления (СПУ) станка; 5 — устройство управления ПР мод. AC-2611; 6 — тара для заготовок (деталей)

1 — ПР мод. «Циклон-3Б» напольного типа; 2 — токарный многорезцовый станок мод. 1А730Ц*1 (специальное исполнение); 3 — горизонтальное загрузочное устройство; 4 — накопитель

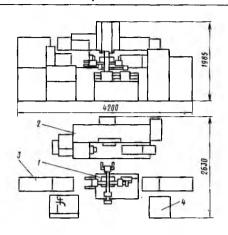
^{*1} Кроме указанного оборудования комплекс может создаваться на базе токарных многорезцовых станков мод. 1И713Ц, 1708Ц и токарного полуавтомата мод. 1713Ф3.

Планировка комплекса

Комплекс мод. НТ303КР

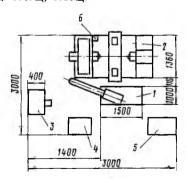
лияметр:

Предназначен для токарной обработки заготовок деталей типа валов и фланцев массой до 10 кг в условиях крупносерийного производства. ПР в составе комплекса выполняет загрузку станка заготовками из кассеты, выгрузку деталей и укладку их в другую кассету. Размеры обрабатываемой заготовки, мм:


диамс	ν.							
вала						٠	До	100
флан								
длина	ва	ла					>>	320

Основные показатели комплекса Производительность, шт/ч . . . 10-60 Ожидаемый экономический эффект, тыс. руб 5

Комплекс на базе промышленного робота мод. ПР-4 и станка мод. 1708


Предназначен для токарной обработки заготовок деталей типа валов массой до 5 кг из штучных исходных заготовок. ПР в составе комплекса выполняет следующие операции: загрузку и разгрузку станка, сбрасывание детали в тару, дает команду на включение станка.

na banto r		10	010	* 1 1 1/	ч.							
Размеры	oб	pa	баз	гы	ae	мо	й	заг	ОТ	эвк	и,	MM:
диам	ет	p										50
длин	a											500

 $1-\Pi P$ мод. 20ГП-3 напольного типа; 2- токарный многорезцовый станок мод. $1H713*^1$ (специальное исполнение); 3- кассета; 4- устройства управления ΠP .

*1 Кроме указанного оборудования комплекс может создаваться на базе токарных полуавтоматов с ЧПУ мод. 1725Ф3, 1713Ф3 и токарных многорезцовых полуавтоматов мод. 1713Ц, 1725Ц.

 $1-\Pi P$ мод. ΠP -4 напольного типа; 2- токарный многорезцовый полуавтомат мод. $1708*^{1}$ (специальное исполнение); 3- устройство поштучной выдачи заготовок; 4- тара; 5- устройства управления ΠP ; 6- устройство удаления стружки.

Показ**а**тель комплекса

Время цикла обработки заготовки, с 23,5

^{*1} Кроме указанного оборудования комплекс может создаваться на базе токарных станков мод. 1А720, 1716Ц, 1716Ф3.

Планировка комплекса

Комплекс на базе промышленного робота мод. Бриг-10Б и станка мод. A616Ф3

Предназначен для токарной обработки заготовок деталей типа валов и фасонных заготовок типа «тройник» массой до 10 кг. ПР в составе комплекса осуществляет загрузку станка из специального загрузочного устройства, разгрузку деталей в тару, дает команду на включение станка.

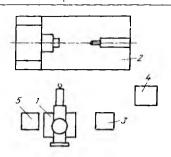
Размеры обрабатываемой заготовки, мм:

диаметр фланца										100
вала . длина:	•	•	•	٠	•	•	٠	•	•	До 80
фланца вала		•	•			•				200 600

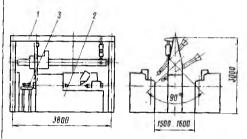
Комплекс на базе промышленного робота мод. МП и станка мод. 1713

Комплекс предназначен для токарной обработки заготовок деталей типа валов массой до 10 кг.

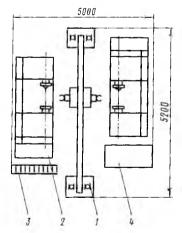
Заготовки загружают вручную в загрузочное устройство. Последующие загрузочно-разгрузочные, транспортные операции передачи деталей между станками выполияются ПР в технологической последова гельности.


Размеры	обра	ба	цТ	ває	емс	эй	заг	от	овн	ίИ,	MM:	
диа	метр										.До	80
	****										4	:nn

Основные показатели комплекса


Время цикла обработки заготовки,	
мин	4,18
Производительность, шт/год	82 000
Ожидаемый экономический эф-	
фект, тыс. руб	16,1
Число высвобождаемых рабочих	2

Комплекс на базе промышленного робота мод. МП н станков мод. 1716Ц


Предназначен для токарной обработки с двух сторон заготовок деталей типа валов, валов-шестерен и других заготовок типа тел вращения массой до 10 кг в серийном и массовом производстве. ПР обеспечивает перемещение обрабатываемых заготовок, их замену на станках и осуществляет функции управления.

 $I-\Pi P$ мод. Бриг-10Б напольного типа; 2- станок мод. А616Ф3 с ЧПУ; 3- загрузочное устройство; 4- устройства управления ΠP ; 5- тара

I — манипулятор мод. МП портального типа; 2 — токарный полуавтомаг мод. 1713 (специальное исполнение); 3 — загрузочное устройство

1 — манипулятор портального типа; 2 — токарно-гидрокопировальный полуавтомат мод. 1716Ц (специальное исполнение); 3 — штанговый конвейер; 4 — приемный стол

Комплекс мод. БРСК-01

Предназначен для автоматизации процесса гокарной обработки заготовок деталей типа фланцев массой до 10 кг в условиях многономенклатурного производства.

ПР в составе комплекса выполняет загрузку станка заготовками из магазина-накопителя, выгрузку обработанных деталей и укладку их в тот же магазин после обработки.

Размеры обрабатываемой заготовки, мм: диаметр До 200

Основные показатели комплекса Время цикла обработки заготовки, 40 000 Производительность, шт/год. . . Ожидаемый экономический эффект, тыс. руб. 8 Повышение производительности оборудования, % 26

1.3

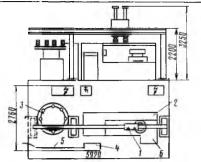
11

1,3

Комплекс на базе промышлениого робота мод. М10П62.01 н стаика мод. 16К20Ф3

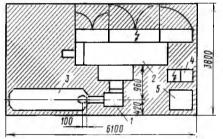
Число высвобождаемых рабочих

Предназначен для токарной обработки заготовок деталей типа валов и фланцев массой до 10 кг.


ПР берет заготовку с тактового стола. загружает станок и затем возвращает обработанную деталь на тактовый стол. Размеры обрабатываемой заготовки, мм:

лиаметр:

вала.					120
фланца					150
длина:					
вала .					500
фланца					150


Основные показатели комплекса Время цикла обработки заготовки, 5 Производительность, шт/год. . . 42 500 Ожидаемый экономический эффект, тыс. руб

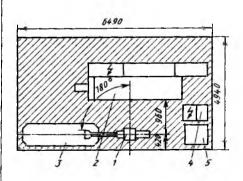
Планировка комплекса

I — промышленный робот мод. $M20 \coprod .48.01$ портального типа; 2 — токарноревольверный станок 1В340Ф30*1 с ЧПУ; 3 — магазин-накопитель: 4 — устройства управления ΠP ; 5 — ограждение; 6 — устройства управления станка.

* Кроме указанного оборудования комплекс может создаваться на базе токарных станков мод. 16Б16Ф3, 1П717Ф3, 1П426Ф3, КТ-141, 16Б16Т1.

 $I - \Pi P$ мод. М10П62.01 встроенного типа; 2 — токарный станок мод. $16K20\Phi3^{*1}$; 3 — тактовый стол; 4 — устройства управления ПР; 5 - система управления станка.

*1 Рекомендации по применению РТК; PTK 16K20Ф3P132 H001, PTK 16K20Ф3P132 Н002 и РТК 16К20РФ3Р132 Н002 предназначены для обработки валов и фланцев. Обработка ведется за две установки с поворотом заготовок деталей на 180°. H003 РТК 16К20Ф3Р232 16К20РФ3Р232 Н003 применяют для обработки валов и фланцев с одной стороны. РТК 16К20Ф3Р232 Н004 предназначен для обработки валов и фланцев за две установки с поворотом заготовки. PTK 16К20РФ3Р232 Н005 предназначен для обработки фланцев и других патронных деталей за две установки с поворотом на 180°


Число высвобождаемых рабочих

		РК дл	я патрои раб		ровых	РК для патронных работ			
Составные части РК	Обозначение составных частей РК	16K20	Ф3Р132	16K20	Ф3Р232	16K20F	16К20Р Ф3Р232		
			Исполі	нение	Исполнение				
		H001	H002	H003	H004	H002	H003	H005	
Станки	16K20Ф3C132 16K20Ф3C119 16K20Ф3C232 16K20Ф3C219 16K20PФ3C132 16K20PФ3C119 16K20PФ3C232 16K20PФ3C232	X (X)	X (X)	X (X)	X (X)	X (X)	X (X)	X (X)	
Роботы	М10П.62.01 М20П.40.01.02	X	X	X	X	X	Х	X	
Поворотные блоки Захватные устройства	Б В Г С01 С02 С05 С06 С07 С08	x x	x x	X X X	X X X	x x	X X X	x x x	
Тактовые столы	CT 220 CT 220.01	Х	X	X	X		X	X	

Условные обозначения: X – оборудование и устройства, рекомендуемые к применению; (X) – оборудование и устройства, рекомендуемые к применению условно.

Наименование и основные показатели комплекса
Комплекс на базе промышленного робота мод. М20П40.01 и станка мод. 16К20Ф3
Предназначен для токарной обработки заготовок
деталей типа валов и фланцев массой до 20 кг.
ПР берет заготовку с тактового стола, загружает
станок и затем возвращает обработанную деталь на
тактовый стол.
Размеры обрабатываемой заготовки, мм:
диаметр:
вала
фланца 150
длина;
вала 500
фланда 150
Основные показатели комплекса
Время цикла обработки заготовки. мин
Производительность, шт/год
Ожидаемый экономический эффект, тыс. руб. 1,6
Повыщение производительности оборудова-
ния. 7% 27
Число высвобождаемых рабочих 1,5

Планировка комплекса

 $I-\Pi P$ мод. М20П40.01 напольного типа; 2- токарный станок мод. 16К20Ф3; 3- тактовый стол; 4- устройства управления ΠP ; 5- устройства управления станка

Наименование и основные показатели комплекса

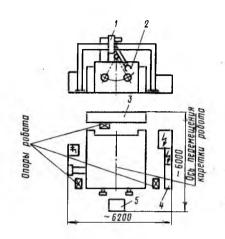
Комплекс мод. МРК40-202

Предназначен для токарной обработки заэтовок деталей типа фланцев массой до 40 кг. ПР в составе комплекса осуществляет последовательную загрузку двух шпинделей станка: берет заготовку из тары на роликовом конвейере, устанавливает ее в первый шпиндель; после обработки одной стороны заготовки ставит ее на позицию переориентирования и затем загружает во второй шпиндель, а обработанную деталь укладывает в тару. Робот оснащен двухпозиционным захватным устройством. ПР может также осуществлять параллельную загрузку шпинделей.

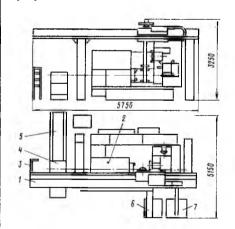
Показатель комплекса

Комплекс мод. РРТК-1Д98

Предназначен для автоматизации процесса токарной обработки заготовок деталей типа фланцев массой до 40 кг.


ПР в составе комплекса выполняет операции по загрузке станка заготовками из специальной тары, установленной на тактовом столе.

Робот снабжен двухпозиционным захватным устройством, позволяющим осуществить разгрузку и загрузку станка последовательно путем поворота руки на 180°.


Основные показатели комплекса

Производите	льн	юсть	, ш	IT/F	эд					28 800
Ожидаемый	экс	оном	иче	ески	й	эd	офе	кт,	,	
тыс. руб									٠.	34 420

Планировка комплекса

 $1-\Pi P$ мод. М40П.05.01 портального типа; 2- двухшпиндельный станок мод. МР-315; 3- роликовый конвейер; 4- устройства управления ΠP ; 5- позиция персориентации.

 $1-\Pi P$ мод. СМ80Ц.25.03 портального типа; 2 — токарный станок мод. $1\Pi756 \Box \Phi 3.98$ с ΠV^{*1} ; 3 — ограждение; 4 — специальная тара; 5 — тактовый стол; 6 — устройства управления робота; 7 — устройства ΠV станка.

^{*1} Кроме указанного оборудования комплекс может создаваться на базе токарного станка мод. 1П756Ф4, РТ724Ф3.

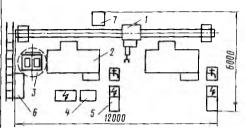
Планировка комплекса

Комплекс на базе промышленного робота мод. УМ 160Ф2.81.02 и станков мод. 16К30Ф3

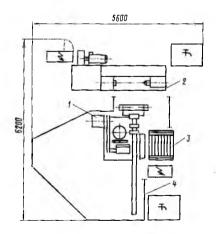
Предназначен для токарной обработки заготовок дегалей типа муфт массой до 40 кг.

ПР в составе комплекса осуществляет следующие операции: из тары, расположенной на поворотном устройстве, берет заготовку и загружает первый станок для обработки заготовки с одной стороны, затем последовательно загружает вгорой станок для обработки заготовки с другой стороны с перебазированием заготовки. После обработки деталь устанавливается на поворотном устройстве, стол поворачивается, и тара перемещается в зону склада.

Основные показатели комплекса


Время цикла обработки заготовки, с 20 Производительность, шт/год... 20 000

Комплекс на базе промышленного робота мод. СМ40Ц.40.11 и станка мод. 1713


Предназначен для токарной обработки заготовок деталей типа валов массой до 40 кг в условиях мелкосерийного, среднесерийного и крупносерийного производства.

ПР в составе комплекса выполняет загрузку станка заготовками из кассеты, выгрузку обработанных деталей и укладку их в ту же кассету

Размеры обрабатываемой заготовки, мм:

 $I - \Pi P$ мод. УМ160Ф2.81.02 портального типа; 2 — токарный станок мод. 16К30Ф3 с ЧПУ; 3 — поворотное устройство; 4 — устройства управления ΠP ; 5 — устройства управления станка; 6 — загрузочная позиция склада; 7 — тара для стружки.

 $1 - \Pi P$ мод. СМ40Ц.40.11 напольного типа; 2 - токарный многорезцовый станок мод. 1713 (специальное исполнение); 3 - кассета; 4 - ограждение.

Планировка комплекса

Комплекс на базе промышленного робота мол. CM8011.48.11 и станка мол. 16К20Ф3

Предназначен для автоматизации процесса токарной обработки заготовок деталей типа валов массой до 40 кг.

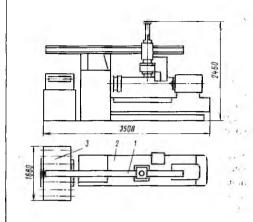
ПР осуществляет загрузку станка заготовками из магазина, разгрузку и укладку деталей в магазин.

Размеры	об	pat	ат	ыв	ien	10й	38	го	TOE	зки	, 1	MM:	
диамет	p											До	120
длина												>>	710

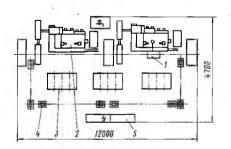
Комплекс на базе промышленного робота мод. СМ40Ф2.80.01 и станков мод. 1713Ф3

Предназначен для токарной обработки заготовок деталей типа валов массой до 40 кг в условиях серийного многономенклатурного производства.

ПР в составе комплекса осуществляет загрузку и разгрузку деталей в тару, межстаночное транспортирование, раскладку обработанных деталей в тару в ориентированном виде. Комплекс снабжен системой светозащиты.


 Размеры обрабатываемой заготовки, диаметр
 До 100

 длина
 "


 "
 "

 "
 "

 "
 700

 $I - \Pi P$ мод. СМ80Ц.48.11 портального встроенного типа; 2 - токарный станок мод. $16K20\Phi 3$ с $\Psi\Pi Y^{*1}$; 3 - магазиннакопитель.

 $1 - \Pi P$ мод. СМ40Ф2.80.01 портального типа; 2 - токарный станок мод. 1713Ф3 ϵ ЧПУ; 3 - магазин; 4 - система светозащиты; 5 - устройства управления ΠP .

^{*1} Кроме указанного оборудования комплекс может создаваться на базе токарного станка мод. 16К20Т1.

Комплекс мод. АСВР-041

Предназначен для автоматизации технологического процесса токарной обработки заготовок массой до 40 кг в условиях многономенклатурного серийного производства.

ПР в составе комплекса выполняет следующие операции: загрузку станков, выгрузку, межстаночное транспортирование, перебазирование и раскладку заготовок и деталей. Заготовки в магазине располагаются в ориентированном виде. Робот осуществляет поиск леталей в магазине.

Комплекс снабжен системой светозациты.

Размеры	обр	аб	ать	іва	ем	ΙОЙ	38	ILO.	TOE	ки.	, À	4M:	
диамет	p											До	200
длина		٠										>>	710

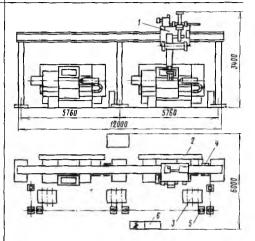
Основные показатели комплекса	
Время цикла обработки заготовки,	
мин	5 - 10
Производительность, шт/год	20 000
Ожидаемый экономический эффект,	
тыс. руб	21
Повышение производительности обо-	
рудования, %	40
Число высвобождаемых рабочих	3,0

Комплекс мол. АСВР-06

Предназначен для автоматизации технологического процесса шлифования заготовок типа валов массой до 40 кг в условиях серийного производства.

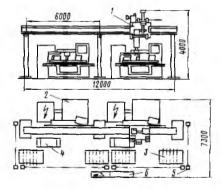
ПР в составе комплекса выполняет следующие операции: загрузку и разгрузку деталей, межстаночное транспортирование, перебазирование и раскладку заготовок и деталей в магазине, а также их поиск перед загрузкой в станок.

Заготовки в магазине располагаются в ориентированном виде.


200

Комплекс	: (сна	бж	ен	СИ	сте	МО	ў	све	тоз	au	циты.	
Размеры	0	бра	ба	ты	вае	MC	й	заг	ото	эвк	и,	MM:	
диамет	p							•				До	

длина .	•		•		•	•	•	>>	710
Основные п	оказ	ame.i	и к	эмплен	cca				
Время цик.	ла с	браб	отк	и заго	ото	ки	,		
мин									
Производи	гель	ност	5 , 1	шт/год	ц.			240	000
Ожидаемый	íЭ	коно	мич	еский	эф	фе	кт,		
								1.7	-0


тыс. руб. . 158 Повышение производительности оборудования, % 400 Число высвобождаемых рабочих 6.5

Планировка комплекса

 $I - \Pi P$ мод. СМ40 Φ 2.80.01 портального типа; 2 – токарный станок мод. 16К20Т1 с $4\Pi Y^{*1}$: 3 — магазин; 4 — промежуточная позиция; 5 - система светозащиты; 6 - устройства управления ПР.

*1 Кроме указанного оборудования комплекс может создаваться на базе токарного станка мод. 16К20Ф3.

1 – ПР мод. СМ40Ф2.80.01 портального типа: 2 – шлифовальный станок $3M151\Phi2$ с $4\Pi Y^{*1}$; 3 — магазин-накопитель; 4 — промежуточная позиция контроля; 5 - система светозащиты; 6 - устройства управления ПР.

^{*1} Кроме указанного оборудования комплекс может создаваться на базе шлифовального станка мод. ВН-25А.

Комплекс мод. ЛАС-ЧПУ

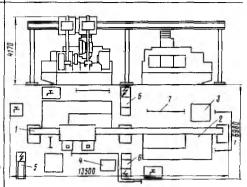
Предназначен для автоматизации процесса токарной обработки заготовок деталей типа валов массой до 160 кг в условиях серийного многономенклатурного производства. ПР в составе комплекса выполняет загрузку и выгрузку деталей, межстаночное транспортирование и укладку готовых деталей в тару.

Размеры	обр	раб	ат	ыв	aen	юй	38	го	TOE	зки,	, MM	
диамет	p Î										. Дс	250
длина												
												00,
											1400	2000

Предназначен для автоматизации технологического процесса токарной обработки заготовок массой до 160 кг типа валов в условиях серийного производства. ПР в составе комплекса выполняет следующие операции: загрузку станков, выгрузку, межстаночное транспортирование, перебазирование заготовок и деталей.

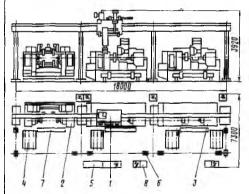
Заготовки в магазине располагаются в ориентированном виде.

Робот осуществляет поиск заготовок и раскладку деталей в магазине. РК комплектуется системой светозащиты.


140*1

Размер	obj	pat	ат	ыв	aeı	иой	iД	ета	ЛИ	, N	IM.	
пиаме	ern.		_									

grame ip	1 10
длина	1000,
	1400*1
Основные показатели комплекса	
Время цикла обработки заготовки,	
мин	10 - 15
Производительность, шт/год	15000
Ожидаемый экономический эффект,	
тыс. руб	100
Повышение производительности обо-	
рудования, %	34
Число высвобождаемых рабочих	4


^{*1} Ограничение размеров установлено техническими параметрами станка мод. MP-73M.

Планировка комплекса

 $J-\Pi P$ мод. СМ160Ф2.05.01 портального типа; 2-токарный станок мод. 1Б732Ф3 с ЧП Y^{*1} ; 3-магазин; 4-стол для выставки инструмента; 5-устройства управления ΠP ; 6-устройства управления станка; 7-ограждение.

*1 Кроме указанного оборудования комплекс может создаваться на базе токарных станков мод. 1740Ф3 и 1740РФ3-41.

 $J-\Pi P$ портального типа мод. УМ160Ф2.81. 01; 2- фрезерно-центровальный станок мод. МР-73М; 3- токарный станок мод. 1Б732Ф3 с ЧПУ*2; 4- магазин; 5- устройства управления ПР; 6- система светозащиты; 7- промежуточная позиция; 8- устройства управления стапком.

^{*2} Кроме указанного оборудования комплекс может создаваться на базе токарных станков мод. 1740Ф3 и 1Б732.

Комплекс мод. АСВР-01

Предназначен для автоматизации технологического процесса токарной обработки заготовок массой до 160 кг типа валов в условиях серийного производства.

ПР в составе комплекса выполняет следующие операции: загрузку и выгрузку деталей, межстаночное транспортирование, перебазирование заготовок и деталей.

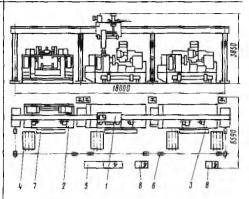
Заготовки в магазине располагаются в ориентированном виде.

Робот осуществляет поиск заготовок и раскладку деталей в магазине. Комплекс снабжен системой светозащиты.

Комплекс мод. АСВР-02

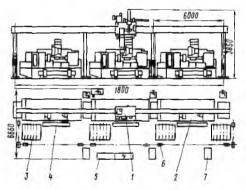
Предназначен для автоматизации технологического процесса токарной обработки заготовок массой до 160 кг типа валов в условиях серийного производства.

Число высвобождаемых рабочих. . .


ПР в составе комплекса выполняет следующие операции: загрузку станков, выгрузку, межстаночное транспортирование, перебазирование заготовок и деталей.

Заготовки располагаются в магазине в ориентированном виде.

Робот осуществляет поиск заготовок и раскладку деталей в магазине. Комплекс снабжен системой светозащиты.


длина	1000 -
Основные показатели комплекса	
Время цикла обработки заготовки,	
мин	10 - 15
Производительность, шт/год	16 500
Ожидаемый экономический эффект,	
тыс. руб	151
Повышение производительности обо-	
рудования, %	43
Число высвобождаемых рабочих	4

Планировка комплекса

 $I-\Pi P$ мод. УМ160Ф2.81.01 портального типа; 2- фрезерно-центровальный станок мод. МР-179; 3- токарный станок мод. 1Б732Ф3 с ЧПУ*1; 4- магазин (тара); 5- устройства управления ПР; 6- система светозащиты; 7- промежуточная позиция; 8- устройства управления станком.

*1 Кроме указанного оборудования комплекс может создаваться на базе токарных станков мод. 1740Ф3 и 1Б732.

 $I-\Pi P$ мод. УМ160Ф2.81.01 портального типа; 2- токарный станок мод. 1Б732Ф3 с ЧПУ*1; 3- магазин (тара); 4- промежуточная позиция; 5- устройство управления ΠP ; 6- система светозащиты; 7- устройство управления станком.

^{*1} Кроме указанного оборудования комплекс может создаваться на базе токарного станка с ЧПУ мод. 1Б740Ф3.

Планировка комплекса

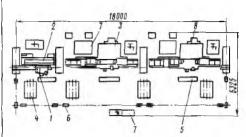
Комплекс мод. АСВР-07

Предназначен для автоматизации технологического процесса шлифования заготовок массой до 160 кг типа валов в условиях серийного производства.

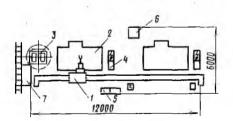
ПР в составе комплекса выполняет следующие операции: загрузку станков, выгрузку, межстаночное транспортирование, перебазирование заготовок и деталей.

Заготовки располагаются в магазине в ориентированном виде.

Робот осуществляет поиск деталей в магазине и перенос их на позицию контроля перед загрузкой в станок.


Основные показатели комплекса

Комплекс на базе промышленного робота мод. УМ160Ф2.81.02 и станков мод. 1П752МФ3


Предназначен для токарной обработки заготовок деталей типа буксы массой до 160 кг.

ПР в составе комплекса осуществляет следующие операции: из тары, расположенной на поворотном устройстве, берет заготовку и загружает первый станок для обработки заготовки с одной стороны, затем последовательно загружает второй станок для обработки заготовки с другой стороны. Готовая деталь устанавливается на поворотном устройстве, стол поворачивается, и тара перемещается в зону склада.

Основные показатели комплекса

 $I - \Pi P$ мод. УМ160Ф2.81.01 портального тила; 2 - центродоводочный станок мод. МА 3926; 3 - шлифовальный станок мод. 3М163Ф2; 4 - магазин; 5 - промежуточная позиция контроля; 6 - система светозащиты; 7 - устройства управления ΠP ; 8 - станция СОЖ.

 $I-\Pi P$ мод. УМ160Ф2.81.02 портального типа; 2- токарный станок мод. 1П752МФ3 с ЧПУ; 3- поворотное устройство; 4- система управления станка; 5- устройства управления ПР; 6- тара для стружки; 7- загрузочная позиция склада.

5. ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ В РОБОТИЗИРОВАННЫХ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСАХ

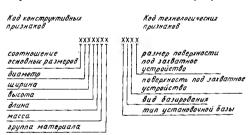
Исходные данные для расчета. Расчет потребности в основном технологическом оборудовании, ПР и РТК ведут исходя из условия применения ПР в качестве средств автоматизации технологических процессов в составе одно- и многостаночных технологических комплексов для обработки деталей резанием [4]. При этом на предприятии должно быть оборудование с ПУ или оборудование с полуавтоматическим циклом работ, которое может быть автоматизировано. При отсутствии такого оборудования определяют потребность в РТК.

За единицу расчета принимают промышленный робот в составе РТК с линейной компоновкой оборудования.

Потребность в ПР (РТК) определяют для объединенных по конструктивно-технологическим параметрам групп заготовок деталей, обработка резанием которых в РТК является технически возможной и целесообразной; это детали типа: валов, шпинделей, пинолей и гильз; стаканов, втулок, фланцев, зубчатых колес; планок, клиньев, плит, крышек; корпусных.

Исходные данные для расчета потребности ПР (РТК) включают: рабочие чертежи деталей; технологические процессы обработки заготовок деталей; производственный объем выпуска деталей предприятием; станкоемкость механической обработки деталей; нормы выработки по профессиям.

Потребность в ПР (РТК) определяют путем: подбора и анализа деталей, подлежащих обработке на РТК; сбора и анализа исходных данных по станкоемкости механической обработки заготовок деталей и составу применяемого оборудования с ПУ и полуавтоматическим циклом работ; расчета потребности в основном технологическом оборудовании, переводимом на обслуживание ПР; выбора модели ПР (РТК); расчета потребного количества ПР (РТК); технико-экономического обоснования применения ПР (РТК).


Классификация деталей. Детали, подлежащие обработке в РТК, должны иметь: одноляющие без дополнительной выверки устанавливать их на станок; четко выраженные базы и признаки ориентации, позволяющие организовать их транспортирование и складирование в ориентированном виде с использованием стандартизованной вспомогательной оснастки; конструктивнотехнологические параметры, позволяющие вести их обработку по групповому методу.

Детали, отвечающие перечисленным требованиям, группируют по конструктивнотехнологическим признакам для выявления однотипных групп деталей, параметры которых требуют однозначных условий при автоматизации операций загрузки-разгрузки основного оборудования.

В основу формирования группы положен принцип общности геометрических признаков входящих в нее деталей.

Для оптимизации работ по выявлению групп однотипных деталей отобранные детали кодируют по конструктивно-технологическим признакам.

Конструктивно-технологические признаки и структура кода деталей, отобранных для обработки в РТК, состоят из 11 разрядов:

Общий конструктивно-технологический код формируется в соответствии с принятой очередностью по кодировочным таблицам (табл. 3-10).

Станкоемкость обработки и расчет количества основного технологического оборудования. Расчет осуществляется по суммарной станкоемкости, т. е. по суммарному времени, затрачиваемому станком на выполнение операций резанием при изготовлении годовой программы выпуска деталей, в станко-часах.

Станкоемкость обработки по действующим на начало расчетного периода нормам и состав используемого оборудования принимают по данным карт технологических процессов механической обработки загото-

3. Кодирование деталей по геометрическим параметрам и соотношению основных размеров

Группа – детали	Подгруппа	Соотношение основных параметров деталей	Код
Типа тел вращения	Фланцы, зубчатые колеса Втулки, стаканы Валы, шпиндели	$L \le 0.3 D$ $L \le 2 D$ $L > 2 D$	1 2 3
Плоскостные	Крышки, плиты Планки, клинья	$L \ge B, \ H \le \frac{B}{2}$ $L \ge 2 \ B, \ B \ge H$	4 5
Корпусные и средние отливки	Корпуса	$L \geqslant B \geqslant H$	6

Обозначение: L — длина; D — диаметр; B — ширина.

4. Коднрование деталей по размерной характеристике (диаметру, ширине, высоте, длине)

5. Кодирование деталей по массе

Размерный ряд, мм	Код	Масса, кг	Код
До 32	1	До 0,63	0
Св. 32 до 63	2	Св. 0,63 до 1,25	1
» 63 » 100	3	» 1,25 » 2,5	2
» 100 » 125	4	» 2,50 » 5	3
» 125 » 160	5	» 5,00 » 10	4
» 160 » 200	6	» 10,00 » 20	5
» 200 » 250	7	» 20,00 » 40	6
» 250 » 320	. 8	» 40,00 » 80	7
» 320 » 400	9	» 80,00 » 160	- 8
» 400 » 500	10	» 160	9
» 500 » 1000	11		3
» 1000 » 1500	12		

6. Кодирование деталей по группе материала

7. Кодирование деталей по типу установочной базы

Материал	Кол	Тип установочной базы	Код
Сталь Чугун Цветные металлы Пластмассы	1 2 3 4	Чистовая Черновая	1 2

8. Кодирование деталей по виду базирования

9. Кодирование деталей по виду поверхности под захватные устройства

Код		Поверхность под схват	Код	
l	_	Наружная цилиндрическая поверхность	1	
2		Внутренняя цилиндрическая по-	2	
3		Плоскость	3	
	Код 1 2 3	Код 1 2 3 4	1 Наружная цилиндрическая поверхность 2 Внутренняя цилиндрическая поверхность	1 Наружная цилиндрическая по- верхность 2 Внутренняя цилиндрическая по- верхность

10. Кодирование	деталей по	размерам	поверхностей	под	захватиые устройства
-----------------	------------	----------	--------------	-----	----------------------

Размеры пове захватные уст		Код	Размеры поверхности под захватные устройства, мм	Код
До 32		0	Св. 160 до 200	5
Св. 32 до 63	-	1	» 200 » 250	6
» 63 » 100		2	» 250 » 320	7
» 100 » 125	3.0	3	» 320 » 400	8
» 125 » 160		4	» 400	9

На стадни сбора исходных данных для определения станкоемкости и состава оборудования выявляют возможность проведения работ, выполняемых на универсальном оборудовании, на оборудовании с ПУ в составе РТК, и предполагаемую модель оборудования с ПУ для их осуществления.

Для каждой подгруппы деталей с одинаковым кодом по массе определяют итоговую станкоемкость мехапической обработки по видам работ (дифференцированно по моделям оборудования) на деталь и на объем выпуска деталей.

Итоговая станкоемкость по подгруппам деталей является исходной для определения состава основного технологического оборудования и ПР, потребных для организации РТК.

Основное технологическое оборудование, переводимое на обслуживание ПР, рассчитывают для каждой группы деталей с учетом подгрупп с одинаковым кодом деталей по массе.

Внутри подгруппы расчет выполняют дифференцированию по моделям переводимого оборудования. Количество оборудования г-й модели

$$S_r = \frac{\sum_{i=1}^{n} T_{\text{tar}, kji} N_i}{60 F_3},$$
 (1)

где $T_{\text{шт.} kji}$ — суммарное штучно-калькуляционное время определенного вида операций для j-й подгруппы деталей по i-му изделию, мин (с учетом применяемости деталей на изделие); N_i — годовой объем выпуска i-го изделия, шт.; F_2 — эффективный годовой фонд производственного времени оборудования, ч; $i=1,\ldots,n$ — число наименований выпускаемых изделий.

$$T_{\text{III.K}\hat{\mu}} = \left(\frac{\sum_{q=t}^{l} t_{\text{III.K}q} k_1}{k_{\prod_{y}}} + \frac{\sum_{z=t}^{m} t_{\text{III.K}z}}{k_{\prod_{q} \prod y}}\right) k_2, \quad (2)$$

где $t_{\text{пит.к}q}$ — для j-й подгруппы деталей i-го изделия штучно-калькуляционное время q-й операции механической обработки, выполняемой на универсальном оборудовании и подлежащей переводу на r-ю модель станка с ПУ (полуавтомат), на базе которого предполагается создание РТК; $t_{\text{пит.к}z}$ — для

11. Значения коэффициента k_1

	Операции						
Группа — детали	гокарные	сверлильные	фрезерные	сверлильно- фрезерно- расточные			
Типа стаканов, втулок, фланцев, зубчатых колес	0,60-0,80	0,60-0,80	0,85-0,95	_			
Типа валов, шпинделей, пинолей, гильз	0,60-0,80	0,75-0,85	0,40-0,50	-			
Плоскостные типа планок, клиньев, плит, крышек	_	0,65-0,80	0,65-0,85	0,50-0,60			
Корпусные	_	_	0,80-0,90	0,50-0,60			

Примечание. Меньшие значения коэффициента относятся к изделиям, для которых при нормировании работ, выполняемых на металлорежущих станках, применены опытностатистические нормы; большие — к изделиям, для которых применены технически обоснованные нормы.

і-й подгруппы деталей і-го изделия штучнокалькуляционное время г-й операции механической обработки, выполняемой на станке с ПУ (полуавтомате) г-й модели, на базе копредполагается создание k_1 — коэффициент снижения станкоемкости вследствие перевода операций механической обработки с универсального оборудования на оборудование с ΠY ; $k_2 - коэффициент$ снижения станкоемкости механической обработки заготовок леталей вследствие обслуметаллорежущего оборудования живания $\Pi P; k_{\Pi_V}, k_{\Pi_{V\Pi V}}$ – коэффициент, учитывающий процент выполнения действующих норм выработки на предприятии соответственно для универсального оборудования и оборудования с программным управлением (полуавтомата).

Рекомендуемые значения коэффициента k_1 (табл. 11) определены на основании статистического анализа результатов внедрения оборудования с ПУ.

Значения коэффициента k_2 для укрупненных расчетов (табл. 12) определены по видам работ отношением штучного времени на летале-операцию, выполняемую на оборудовании, обслуживаемом ΠP ($t_{\text{urt},\Pi P}$), к штучному времени на детале-операцию, выполняемую на оборудовании с ΠY , обслуживаемом рабочим (t_{urt,Π_P}).

В основу определения $t_{\text{шт. ПР}}$ положен анализ структуры штучного времени на деталеоперацию, выполняемую на оборудовании с ПУ, обслуживаемом рабочим.

Предусматривают два способа расчета потребности в основном технологическом оборудовании для организации РТК: расчет потребности вручную с использованием счетно-клавишных машин; автоматизированный расчет с использованием ЭВМ.

Количество оборудования по моделям рассчитывают для подгрупп деталей по массе (см. табл. 5). При необходимости пределы подгрупп расширяют исходя из ряда грузоподъемности ПР: 10, 20, 40, 80, 160 кг.

При автоматизированном расчете эксплуатация программного комплекса системы ориентирована на ЭВМ ЕС-1022 с оперативной памятью 256 кбайт, с одним накопителем на магнитных дисках (ЕС-5061) под управлением дисковой операционной системы (ДОС ЕС) версии 2.2.

12. Значения коэффициента k_2

Грузонодъем- ность ПР, кг рук Г		Операции										
	Количе- ство рук ПР, шт.	фрезерно- иен гро- вальные	гокарные	сверлиль- ные	свер- лильно- фрезерно- расточные	фрезерные	шлифо- вальные	зубообра- батываю- щие				
Детали типа тел вращения												
До 10	1	0,98	0,98	0,97	_	_	0,97	0,98				
	2	0,96	0,96	0,93		-	~	0,96				
Св. 10 до 20	1	0,96	0,96	0,92	~	_	0,96	0,96				
	2	0,95	0,95	0,90	~	i – [0,95				
» 20 » 40	1	0,95	0,95	_	-	_ i	0,94	0,95				
	2	0,93	0,93	_	-	-		0,93				
» 40 » 80	1	0,95	0,95	_		1 – 1	0,93	0,95				
ļ	2	-	-	-	-	-	-	-				
» 80 » 160	1	0,95	0,95	_		_	0,91	0,95				
	2	1-4	-	-	-	-	-	-				
Плоскостиые и корпусные детали												
До 10	1	_		1,0	0,98	1,0	0,91	_				
, .	2	_		0,86	0,82	0,83	0,73	_				
Св. 10 до 20	1	-	-	0,97	0,94	0,93	0,92	_				
·	2	_	-	0,90	0,91	0,86	0,83	_				
» 20 » 40	1	_		0,96	0,94	0,91	0,88	_				
» 40 » 80	1	_	_	0,96	0,94	0,91	0,80	_				
» 80 » 160	1	-	_	0,93	0,92	0,90	-	_				

Подготовка оперативной исходной информации предусмотрена на перфокартах или магнитных лентах.

Выходной документ автоматизированного расчета реализован для групп деталей, объединенных по конструктивно-технологическим параметрам для разного вида работ. Число видов работ не должно превышать 11.

Расчет количества промышленных роботов. Необходимую модель промышленного робота для обслуживания основного технологического оборудования подбирают на основании анализа технических характеристик существующих моделей ПР по следующим параметрам: назначению и компоновке ПР; грузоподъемности, кг; числу степеней подвижности; конструкции захватного устройства; размерам загружаемых заготовок; объему рабочей зоны; точности позиционирования; наличию элементов адаптации (к расположению деталей и их ориентации).

ПР проверяют на соответствие конструктивно-технологическим параметрам обрабатываемых заготовок и технической характеристике обслуживаемого технологического оборудования с определением возможности стыковки системы управления ПР с системой управления основного оборудования.

При неполном соответствии параметров принимают существующую модель ПР, требующую минимальной доработки отдельных узлов ПР.

При определении потребности в ПР учитывают возможность организации многостаночного обслуживания станков ПР.

Основными критериями, определяющими возможность организации многостаночного комплекса, обслуживаемого одним ПР, являются:

крупносерийный или среднесерийный тип производства деталей, характеризующийся ограниченной номенклатурой деталей, закрепленных за обслуживаемым оборудованием;

наличие оборудования, имеющего общность схем загрузки и параметрических характеристик обрабатываемых заготовок;

наличие заготовок, близких по конструктивно-технологическим параметрам, обеспечивающих работу ПР без переналадки в течение обработки производственной партии; минимальное штучное время обработки заготовок в РТК $t_{\text{пит}} \geqslant 3$ мин.

аготовок в РТК г_{шт} > 3 мин, При t_{max} < 3 мин вопрос организа ии обслуживаемого производственного оборудования.

При возможности организации многостаночных комплексов потребное количество ПР по каждой модели обслуживаемых станков

$$\Pi_{\Pi P} = \frac{S}{k_{MR}},$$

где S — принятое число станков, подлежащих переводу на обслуживание ΠP , шт.; $k_{\rm MH}$ — коэффициент многостаночного обслуживания (число станков, обслуживаемых одним ΠP).

Рекомендуемые значения коэффициента $k_{\text{мит}}$ определены в зависимости от минимальной величины $t_{\text{шт}}$ комплекта деталей, подлежащих обработке на обслуживаемых станках:

Максимальное число станков, обслуживаемых одним ПР, рекомендуется принимать не более четырех, так как с увеличением числа станков возрастают трудности их увязки с остальными производственными процессами и подбора заготовок для обработки. Наиболее предпочтительным при многостаночном обслуживании является обслуживание ПР двух-трех станков.

Потребность в ПР для организации многостаночных комплексов определяют в следующем порядке:

дифференцированно по моделям оборудования подбирают заготовки деталей, $t_{\rm шт}$ которых с учетом коэффициентов k_1 , k_2 , $k_{\Pi_{\rm W}}$, $k_{\Pi_{\rm W}}$ [формула (2)] составляет менее 3 мин. Число ПР при обработке заготовок этих деталей принимают равным количеству обслуживаемого оборудования;

аналогично подбирают детали, $t_{\rm mir}$ которых с учетом коэффициентов составляет более 3 мин. По формуле (1) в пределах групп по времени определяют необходимое для обработки заготовок этих деталей количество основного оборудования.

Параметр $k_{\text{мн}}$ рекомендуется использовать при укрупненных расчетах. Потребности в ПР (РТК) определяют для каждого отдельного случая в зависимости от конкретных производственных условий с учетом параметров еталей, по лежа их обработке, и тех-

6. ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ОТ ВНЕДРЕНИЯ РОБОТИЗИРОВАННЫХ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ

На всех стадиях внедрения РТК годовой экономический эффект от использования ПР и РТК за один год эксплуатации (суммарный), руб. [2]

$$\Theta_1 = (3_1 - 3_2) = (C_1 + E_0 K_1) - (C_2 + E_0 K_2),$$

где 3₁ — приведенные затраты потребителя по базовому варианту, рассчитанные на годовой объем продукции, производимой при использовании РТК, руб.; 32 - приведенные затраты потребителя при использовании РТК, руб.; C_1 – себестоимость по базовому варианту в расчете на годовой объем продукции, производимой при использовании РТК, руб.; C_2 – себестоимость годового выпуска продукции, производимой на РТК, руб.; K_1 — капитальные вложения потребителя по базовому варианту в расчете на годовой объем продукции, производимой при использовании РТК, руб.; K_2 – капитальные вложения потребителя при использовании РТК, руб.; $E_{\rm H}$ — нормативный коэффициент эффективности капитальных равный 0,15.

Эффективность будет в случае положительной разницы приведенных затрат ($3_1 > 3_2$); при этом срок окупаемости должен быть меньще 6,7 года.

Срок окупаемости дополнительных капитальных вложений (число лет)

$$T_{\rm OK} = \frac{K_2 - K_1}{C_1 - C_2}.$$

Капитальные вложения потребителя

$$K = K_{6} + K_{3D} + K_{cn} + K_{He3} + K_{np} + K_{ny} + K_{rex} + K_{w},$$

где K_6 — балансовая стоимость оборудования, руб.; $K_{\rm in}$ — стоимость помещения, занимаемого оборудованием, руб.; $K_{\rm cn}$ — стоимость служебно-бытовых помещений, руб.; $K_{\rm hes}$ — оборотные средства в незавершенном производстве, руб.; $K_{\rm np}$ — стоимость специальных приспособлений, руб.; $K_{\rm ny}$ — стоимость комплекта программ управления (ПУ), руб.; $K_{\rm rex}$ — стоимость проектных

работ по привязке РТК к условиям заказчика, руб.; $K_{\rm w}$ — стоимость жилищного и культурно-бытового строительства, руб.

Стоимость помещения, занимаемого оборудованием,

$$K_{3\perp} = \mathcal{L}_{\Pi\Pi,3} (S + S_{V}) \vee P_{ni},$$

где $H_{\Pi\Pi,3}$ — стоимость 1 м² площади цеха, руб.; S — площадь, занимаемая оборудованием, м²; S_y — площадь, занимаемая выносными вспомогательными устройствами (ПУ, электрошкафами, гидростанцией и др.), м²; P_{nl} — принятое количество оборудования i-го типа, шт.

Площадь РТК рекомендуется определять по габаритным размерам (с учетом выносных устройств) согласно планировке, помещенной в руководстве по эксплуатации РТК.

В этом случае вместо суммы $S+S_y$ принимают площадь по планировке, а v=1,3 (v-коэффициент, учитывающий дополнительную площадь, занимаемую оборудованием).

Стоимость служебно-бытовых помещений (бытовые помещения, столовые, заводоуправление и др.)

$$K_{\rm cn} = \mathcal{U}_{\rm nn.6} S_6 (P_{\rm cr} + P_{\rm H} + P_{\rm T}),$$

где S_6 — площадь служебно-бытовых помещений, приходящаяся на одного рабочего, равная 7 м²; $\mathcal{U}_{\text{пл.6}}$ — стоимость 1 м² служебно-бытовых помещений, руб.; $P_{\text{ст}}$ — число станочников (операторов); $P_{\text{н}}$ — число наладчиков; P_{T} — число транспортных рабочих.

Оборотные средства в незавершенном производстве в расчете на один комплекс

$$K_{\text{He3}} = 3m\left(C_3 + \frac{C}{B_2}0,5\right)\sigma,$$

где 3 — число партий заготовок деталей, приходящихся в среднем на одно рабочее место (одна — в ожидании обработки, вторая — в работе, третья — на транспортировании либо на контроле).

Число заготовок деталей в партии запуска (шт.)

$$m=\frac{P'}{S_n},$$

где P' — годовой выпуск деталей одного наименования, шт.; S_n — число запусков в год; при больших партиях, когда произведение 3m превышает 0,25 B_2 (B_2 — годовой выпуск продукции, шт.), при расчете необходимо принять $3m = 0.25~B_2$, т. е. ограничить размер незавершенного производства квартальным выпуском деталей; C_3 — стоимость заготовки, руб.; 0.5 — коэффициент нарастания затрат; σ — коэффициент, учитывающий увеличение размера незавершенного производства в базовом варианте; C — себестоимость годового объема выпуска продукции, руб.

При количестве оборудования больше одного наименования $\sigma = 1.1 \div 1.2$.

Стоимость заготовки

$$C_3 = C_M M$$

где $C_{\rm M}$ — стоимость 1 кг заготовки, включая транспортно-заготовительные расходы, руб.; M — масса заготовки, кг.

Стоимость специальных приспособлений

$$K_{\rm np} = K_{\rm np}' a_2$$

где K'_{np} — стоимость комплекта специальных приспособлений для обработки заготовок деталей одного наименования, включая затраты на проектирование и изготовление, руб.; a_2 — число наименований деталей, обрабатываемых в течение года, шт.

Стоимость специальных приспособлений при укрупненных расчетах можно принимать по нормативам НПО «Оргстанкинпром».

Единовременные затраты на специальные приспособления учитывают как по базовому, так и по новому варианту. Затраты на приспособления зависят от серийности производства, продолжительности выпуска деталей и других факторов.

Текущие затраты на сборку, разборку, износ приспособления по обоим вариантам в таких случаях подлежат учету в составе годовых эксплуатационных издержек потребителя.

Стоимость комплекта ПУ

$$K_{\Pi V} = K'_{\Pi V} a_{2}$$
,

где $K'_{\Pi Y}$ – стоимость подготовки ПУ на обработку детали одного наименования, руб.

Величина $K'_{\Pi Y}$ зависит от многих факторов — сложности детали, применяемой вычислительной техники, средств контроля ΠY , средств полготовки исходных данных, перфорации, навыков и особенностей технологапрограммиста.

В условиях единичного производства стоимость ПУ входит только в издержки потребителя.

Для универсального оборудования с ручным управлением учитываются расходы по разработке технологического процесса и его нормированию. При укрупненных расчетах

$$K'_{\Pi Y1} = 0.25 K'_{\Pi Y2},$$

где $K'_{\Pi Y2}$ — затраты на разработку технологического процесса и его нормирование, руб.

Затраты на комплекты ПУ входят в сопутствующие капитальные вложения K' по новому варианту только в том случае, если в процессе автоматизации предусмотрен переход с обработки на универсальном оборудовании с ручным управлением на обработку на оборудовании с ПУ. Если в обоих вариантах предусмотрено оборудование с ЧПУ, затраты $K_{\Pi V}$ не учитываются.

Затраты $K_{\text{тех}}$ на проектные работы по «привязке» РТК к условиям заказчика учитываются только по новому варианту. При расчете эффекта на стадии создания ПР и РТК, когда фактические затраты не-известны, сумма затрат принимается равной 3% от стоимости РТК, т. е.

$$K_{\text{res}} = 0.03 \, H_2$$

где U_2 – стоимость РТК, руб.

Внедрение РТК обеспечивает сокращение численности рабочих, поэтому в расчетах экономического эффекта необходимо учитывать экономию затрат на жилищное и культурно-бытовое строительство на предприятиях машиностроения. Затраты на жилищное и культурно-бытовое строительство для каждого варианта

$$K_{\mathbf{x}} = \mathcal{U}_{\mathbf{x}}(P_{\mathrm{c}\mathrm{T}} + P_{\mathrm{H}} + P_{\mathrm{T}}),$$

где $II_{\rm w}$ – стоимость жилищного и культурно-бытового стоительства, приходящаяся на одного рабочего (составляет 6,6 тыс. руб).

Если в качестве базового принимают новое современное оборудование, то балансовая стоимость

$$K_{61} = U_{1i} P_{ni} \alpha$$

где H_{1i} — оптовая цена основного технологического оборудования i-й модели, руб; α — коэффициент, учитывающий затраты на доставку и установку оборудования, включая пусконаладочные работы.

Если в качестве базового принимают оборудование действующего предприятия, то при расчете K_{61} коэффициент α не учитывается, а под \mathcal{U}_{11} понимается балансовая

стоимость конкретной модели базового оборудования по данным заказчика.

Балансовая стоимость $PTK - K_{62}$ определяется либо путем умножения его стоимости \mathcal{U}_2 на коэффициент α , либо по фактическим данным заказчика (если PTK введен в эксплуатацию).

Стоимость \mathcal{U}_2 РТК на стадии внедрения у потребителя определяют следующим образом. Если РТК поставляют потребителю комплектно, то \mathcal{U}_2 принимают по данным завода-изготовителя РТК. Если завод-потребитель приобретает отдельно ПР и на его базе создает РТК, то стоимость последнего определяют путем суммирования стоимости ПР и других затрат.

Себестоимость годового выпуска продукции (руб.)

$$C = H_3 + H_{\Pi Y} + H_{np} + H_{ycn} + H_6 + H_{nn} + H_{cn} + H_p + H_v + H_3 + H_B,$$

где U_3 — годовая заработная плата рабочих (со всеми видами начислений), $U_{\Pi Y}$ — годовые затраты на подготовку и возобновление ПУ, руб.; U_{np} – годовые затраты ремонт специальных приспособлений, руб.; U_{ven} – годовые затраты на прокат универсально-сборных приспособлений, U_{nn} — годовые затраты на содержание помещения, занимаемого оборудованием, руб.; U_{5} — годовые амортизационные отчисления на полное восстановление оборудования, руб.; Исл - годовые затраты на содержание служебно-бытовых помещений, приходящихоборудования, руб.; единицу $U_{\rm p}$ — годовые затраты на ремонт (включая капитальный) и техническое обслуживание оборудования (кроме устройств) ПУ, руб.; U_{v} – годовые затраты на гехническое обслуживание и ремонт устройств ПУ, руб.; И, - годовые затраты на силовую электроэнергию, руб.; $И_{\rm B}$ – годовые затраты на сжатый воздух, руб.

Годовая заработная плата рабочих, обслуживающих РТК (основная и дополнительная), включая выплаты из фондов общественного потребления,

$$U_3 = (H_c P_{cT} + H_H P_H + H_D P_T) 1,43,$$

где H_c — среднегодовая заработная плата рабочего (оператора) соответствующего разряла, руб.; H_n — среднегодовая заработная плата наладчика соответствующего разряда, руб.; H_n — среднегодовая заработная плата транспортного рабочего соответствующего разряда, руб.; 1,43 — коэффициент, учиты-

вающий фонды общественного потребления (включая коэффициент 1,14 — отчисления на социальное страхование).

На этапе создания ПР и РТК рекомендуется пользоваться нормативами среднегодовой заработной платы.

Для определения экономии от облегчения труда в связи с роботизацией необходимо по методике НИИтруда провести оценку тяжести труда по сравниваемым вариантам и установить по нормативу размер доплат к заработной плате по каждому варианту. Уменьшение категории тжести труда приводит к уменьшению или отмене доплат, что обеспечивает дополнительную экономию по фонду заработной платы в новом варианте по сравнению с базовым. Этот фактор учитывают при расчете заработной платы.

При необходимости более точных расчетов заработная плата рабочих должна быть определена с учетом фактически сложившихся на предприятии коэффициентов или по фактической среднегодовой заработной плате рабочих соответствующих профессий и разрядов.

Годовые затраты на подготовку и возобновление ПУ

$$u_{\Pi y} = \frac{K_{\Pi y} K_3}{Z},$$

где K_3 — коэффициент, учитывающий возобновление перфоленты, принимаемый при укрупненных расчетах равным 1,1; Z — продолжительность выпуска детали одного наименования, годы; при укрупненных расчетах объем выпуска рекомендуется принимать за три — пять лет, что соответствует средним показателям смены изделий в серийном производстве.

Годовые затраты на ремонт специальных приспособлений

$$U_{\Pi P} = K_{\Pi P} \left(\frac{1}{Z} + K_{\Pi} \right),$$

где $K_{\rm n}$ – коэффициент, учитывающий затраты на ремонт специальных приспособлений, принимаемый при укрупненных расчетах равным 0,04.

Годовые затраты на прокат УСП

$$U_{\text{УСП}} = U_{\text{УСП}} a_2 S_n$$

где $\mathcal{L}_{VC\Pi}$ — оптовая цена на прокат одного УСП, руб.

Годовые амортизационные отчисления на полное восстановление оборудования (руб.)

 $M_6 = K_6 P$, где P – амортизационные отчисления на полное восстановление оборудования, доли единицы.

На этапе внедрения ПР и РТК в качестве Р принимают утвержденные нормы амортизационных отчислений на полное восстановление основного технологического оборудования.

Годовые затраты на содержание помещения, занимаемого оборудованием,

$$M_{\text{пл}} = H_{\text{пл}}(S + S_{\text{v}}) v P_{ni}$$

где $H_{\rm nn}$ – стоимость содержания (затраты на освещение, отопление, вентиляцию, ремонт и уборку) 1 м² площади цеха, руб.; P_{ni} учитывается только для базового варианта.

Годовые затраты на содержание служебнобытовых помещений, приходящиеся на единицу оборудования,

$$U_{\rm c,I} = H_{\rm II,I} S_6 (P_{\rm cT} + P_{\rm H} + P_{\rm T}).$$

Годовые затраты на ремонт (включая капитальный) и техническое обслуживание оборудования (кроме устройств ЧПУ)

$$H_{\rm D} = (H_{\rm M}R_{\rm M} + H_{\rm 2}R_{\rm 3})\,\mu P_{ni}\,,$$

где $H_{\rm M}$, $H_{\rm 3}$ – годовые нормативы затрат на единицу ремонтосложности соответственно механической и электрической части, руб.; $R_{\rm M}$, $R_{\rm 3}$ – ремонтосложность соответственно механической и электрической части оборудования *1; μ — коэффициент, учитывающий класс точности оборудования; P_{mi} учитывается только для базового варианта.

Поскольку наладчик, обслуживающий РТК, кроме переналадки оборудования выполняет также частичное техническое обслуживание оборудования комплекса (устранение мелких неисправностей) значения $H_{\rm M}$ и $H_{\rm 3}$ для нового варианта принимают с уменьшением стоимости и технического обслуживания оборудования- на 20%.

Ремонтосложность может быть установлена также по аналогии, либо рассчитана в соответствии с Методическими рекомендациями «Оценка ремонтопригодности металлорежущих станков на стадии проектирования» М.: ЭНИМС, 1981*1.

При расчете затрат на ремонт РТК принято, что ремонт всего оборудования комплекса проводят одновременно. Поэтому по новому варианту единицы ремонтосложности всего оборудования РТК суммируют и затраты на ремоит рассчитывают на суммарное число единиц его ремонтосложности. Нормативы затрат на единицу ремонтосложности $H_{\rm M}$, $H_{\rm D}$ принимают в соответствии с основным технологическим оборудованием РК.

Годовые затраты на техническое обслуживание и ремонт УПУ определяют по разработанным укрупненным нормативам в зависимости от типа устройства, которое применяется в конкретном оборудовании

$$\mathbf{\mathcal{U}}_{\mathbf{y}} = \sum_{i=1}^{n} H_{\mathbf{y}} a_{i},$$

где H_y – годовые затраты на техническое обслуживание и ремонт *i*-го УПУ, руб.; a_i – число *i*-х УПУ в РТК (для базового варианта вместо a_i принимают P_{nii}).

Годовые затраты на силовую электроэнергию

$$U_{9} = \frac{C_{9}NK_{a_{M}}K_{a_{B}}\Phi_{o6}\delta I}{r},$$

где C_2 — стоимость 1 кВт ч электроэнергии, равная 0,018 р; N - установленная ΠP, электродвигателя Кам - коэффициент, учитывающий использование электродвигателя по мощности; $K_{\text{а.в}}$ — коэффициент, учитывающий использоэлектродвигателя вание по времени: $\Phi_{\rm ob}$ – эффективный годовой фонд времени работы оборудования, ч; І - коэффициент, учитывающий потери в сети, равный 1,05; r — коэффициент полезного действия оборудования; δ — коэффициент загрузки оборудования.

В расчетах учитывают только стоимость электроэнергии, расходуемой ПР, так как по основному технологическому оборудованию расход и стоимость электроэнергии по сравниваемым вариантам не изменяются.

При определении целесообразности приобретения ПР и РТК используют расчетные показатели (годовую программу выпуска деталей, число наименований обрабатываемых

^{*1} Единая система планово-предупредительного ремонта и рациональной эксплуатации технологического оборудования машиностроительных предприятий. М.: Машиностроение, 1967.

^{*1} Там же приведены данные по ремонтосложности стацков.

заготовок и т. д.) и нормативные данные. Стоимость проектных работ по «привязке» РТК к условиях заказчика принимают по смете к договору или по данным заказчика.

Если подобранная номенклатура деталей обеспечивает частичную загрузку РТК, то необходимо расширить расчетную номенклатуру деталей. При отсутствии возможности полной загрузки РТК в планируемом году расчеты на данной стадии следует вести исходя из условия полной загрузки РТК ($\delta = 0.85$), с учетом дальнейшего расширения номенклатуры.

Для расчета фактической экономической эффективности внедрения РТК необходимо иметь данные, характеризующие фактическую номенклатуру деталей, обрабатываемых на РТК, фактическую годовую программу выпуска каждой детали. Фактические данные по эксплуатации РТК (по сравнению с базовым вариантом) должны быть утверждены заводом-заказчиком.

При расчете отдельных статей капитальных вложений и себестоимости продукции допускается применение нормативных данных.

Стоимость РТК принимают по балансовой стоимости по данным бухгалтерии завода с учетом фактических затрат на проектные работы.

СПИСОК ЛИТЕРАТУРЫ

[. Автоматические манипуляторы и робототехнические системы. Робототехника. М.: Машиностроение, 1984. 281 с.

- 2. Ииструкция по оценке экономической эффективности создания и использования автоматических манипуляторов с программным управлением (промышленных роботов). М.: НИИМаш, 1983, 99 с.
- 3. **Козырев Ю.** Г. Промышленные роботы: Справочник. М.: Машиностроение, 1983. 374 с.
- 4. Методика определения потребности станкозаводов в промышленных роботах и технологических комплексах с использованием промышленных роботов (для механообрабатывающего производства). РТМ Н40-2-83. М.: НИИМаш, 1983. 32 с.
- 5. Методические указания. Общие положения роботизации. РД50-355-82. М.: Изд-во стандартов. 1983. 8 с.
- 6. Методические указания. Правила организации работ по роботизации производственных процессов. РД50-356 82. М.: Издво стандартов. 1983. 8 с.
- 7. **Промышленные** роботы и манипуляторы с ручным управлением. Каталог: М.: НИИМаш, 1982. 101 с.
- 8. Роботизированные комплексы оборудование робот стран членов СЭВ. М.: НИИ-Маш. 1984. 171 с.
- 9. Создание механообрабатывающих роботизированных технологических комплексов (гибких производственных модулей, линий участков) на базе типажа промышленных роботов Минстанкопрома. Методические рекомендации. М.: НИИМащ, 1984. 56 с.

ГИБКИЕ ПРОИЗВОДСТВЕННЫЕ СИСТЕМЫ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

.

Современный этап развития машиностроения характеризуется повышением экономических и научно-технических требований к производству. Это обусловлено сокрашением сроков обновления производственной номенклатуры, увеличением ее сложности, повышением требований к стабильности основных параметров машин и их надежности, что привело к значительному росту издержек производства.

Реальным решением комплекса указанных задач может служить только широкая автоматизация производства, роль и значение которой существенно повысились.

Автоматизация производства в машиностроении представляет собой самостоятельную комплексную задачу, связанную с созданием нового современного оборудования, технологических процессов, систем организации производства и управления им, обеспечивающих повышение производительности труда, улучшение его условий, сокращение потребности в рабочей силе и, что не менее важно, снижение уровня производственного травматизма.

Специфичность современных задач автоматизации производства определяется тем, что в результате углубляющегося разделения труда, роста подетальной и технологической специализации снижается роль массового и крупносерийного производства в машиностроении.

Для решения поставленных задач в серийном производстве должны быть созданы условия, отвечающие по производительности крупносерийному, а по гибкости и приспособляемости — серийному производству. Сближение возможностей производств этих типов происходит на базе станков с ЧПУ, широкого внедрения в сферу производства электронно-вычислительных машин (ЭВМ), создания систем адаптативного управления пропессом изготовления деталей на металлорежущих станках, вне рен я в производств

быть достигнута только при комплексном подходе, т. е. путем объединения станков и создания гибких переналаживаемых систем, управляемых от ЭВМ, позволяющих автоматизировать трудоемкие процессы технологической подготовки производства, осуществлять оперативное планирование, диспетчирование, учет заготовок (деталей), управлять основным и вспомогательным оборудованием.

В этих системах определенное место отведено промышленным роботам (ПР) и манипуляторам, обеспечивающим не только повышение уровня автоматизации и производительность труда, но и возможность двух-. трехсменной работы оборудования. В соответствии с ГОСТ 26228-85 гибкая производственная система (ГПС) - совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик.

По организационным признакам различают следующие виды ГПС: гибкая автоматизированная линия (ГАЛ), гибкий автоматизированный участок (ГАУ), гибкий автоматизированный цех (ГАЦ).

Гибкая автоматизированная линия (ГАЛ) – гибкая производственная система, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкий автоматизированный участок — гибкая производственная система, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования

представляющая собой в различных сочетаниях совокупность гибких автоматизированных линий, роботизированных технологических линий, гибких автоматизированных, роботизированных технологических участков для изготовления изделий заданной номенклатуры.

Составные части ГПС следующие:

Гибкий производственный модуль (ГПМ) — единица технологического оборудования для производства изделия произвольной номенклатуры в установленных пределах значений их характеристик с программным управлением, автономно функционирующая, автоматически осуществляющая все функции, связанные с их изготовлением, имеющая возможность встраивания в гибкую производственную систему.

Для работы в условиях ГПС могут использоваться модернизированные серийные полуавтоматы, станки с ЧПУ или специально разработанные модели автоматизированного оборудования.

Целесообразность включения отдельных видов оборудования определяется требованиями конкретного производственного процесса, уровнем концентрации и совмещения операций. Модернизируемые станки, встраиваемые в ГПС, должны отвечать требованиям, которые диктуются условиями работы в составе ГПС, и требованиям, предъявляемым к металлорежущим станкам, комплектующим РТК.

Эти станки должны обеспечивать высокую производительность. максимально можный уровень концентрации и совмещения операций, а также иметь максимально возможную унификацию отдельных узлов и комплектующих изделий, крепежной и инструментальной оснастки. В станках следует предусматривать автоматическую смену инструмента, совмещенную во времени с выполнением вспомогательных ходов. Должны быть обеспечены хорошие условия отвода стружки из зоны резания, устройства обдува или обмыва под давлением базирующих поверхностей приспособлений для закрепления заготовок или спутников. В системах управления должны быть предусмотрены панели для обмена сигналами с взаимосвязанным оборудованием ГПС и системами диагностики. Металлорежущие станки должны оснащаться устройствами, обеспечивающими автоматическое поддержание точности в условиях «малолюдной» технологии, реализуемой в ГПС.

Система обеспечения функционирования $(CO\Phi)$ $\Gamma\Pi C$ — совокупность в общем случае взаимосвязанных автоматизированных систем, обеспечивающих проектирование изделий, технологическую подготовку их производства, управление гибкой производственной системой с помошью ЭВМ и автоматическое перемещение предметов производства и технологической оснастки. В общем случае в систему обеспечения функционирования ГПС входят: автоматизированная транспортно-складская система (АТСС), автоматизированная система инструментального обеспечения (АСИО); система автоматизированного контроля (САК); автоматизированная система удаления отходов (АСУО); автоматизированная система управления технологическими процессами (АСУ ТП); автоматизированная система научных исследований (АСНИ); система автоматизированного проектирования (САПР); автоматизированная система технологической подготовки производства (АСТПП); автоматизированная система управления (АСУ).

Автоматизированная транспортно-складская система (ATCC) — система взаимосвязанных автоматизированных и складских устройств для укладки, хранения, временного накопления, разгрузки и доставки предметов труда, технологической оснастки.

Автоматизированная система инструментального обеспечения (АСИО)— система взаимосвязанных элементов, включающая участки подготовки инструмента, его транспортирования, накопления, устройства смены и контроля качества инструмента, обеспечивающие подготовку, хранение, автоматическую установку и замену инструмента.

АСИО должна обеспечивать рациональное использование фонда машинного времени металлорежущих станков, сокращение вспомогательного времени при их обслуживании, контроль и уход за инструментом.

Состав АСИО определяется в зависимости от конкретных производственных условий (количества наименований обрабатываемых деталей в партии запуска, количества металлорежущих станков, входящих в состав ГПС, производственных площадей и т. д.).

На участках подготовки инструмента осушествляются: хранение инструмента, комплектация согласно комплектовочным картам, сборка и настройка режущего инструмента на размер, получение комплектов изношенного инструмента и их разборка, а также учет инструмента и его движения. Организация работы инструмента и его оснащение должны осуществляться в соответствии с «Типовыми проектами участков настройки инструмента вне станка и обслуживание инструментом участков из станков с ЧПУ» НПО Оргстанкинпрома.

Автоматизированная система контроля (САК) строится как на базе средств активного контроля за обработкой детали, так и на базе средств послеоперационного контроля. Предпочтение должно отдаваться устройствам активного контроля, обеспечивающим не только контроль состояния режущего инструмента, но и контроль обрабатываемых заготовок.

Устройства автоматического поддержания точности обработки должны обеспечивать получение качественного изделия на данной стадии обработки, корректировать положение режущего инструмента по мере его износа, контролируя изменения поля допуска детали, и выдавать необходимые сигналы в критических ситуациях. Структурная схема взаимодействия составных частей САК представлена на рис. 1.

Устройства для активного контроля, используемые в САК, должны быть универсальными, г. е. обеспечивать контроль всех операций, выполняемых на станке, иметь минимальные габаритные размеры, обеспечивать встройку в станки, а также иметь органы, обеспечивающие их настройку и регулирование.

Лиагностический сигнал. формируемый пропорциоустройством, должен быть нальным изменению контролируемого размера во всем диапазоне операционного допуска на обработку и пригодиым для ввода в систему ЧПУ станка. Конструкция контрольного устройства и вид диагностического сигнала должны быть инвариантны к факторам, присущим процессу резания: действию стружки. технологической (СОЖ, газовая среда и ч. д.), изменению уровня вибрации механизмов и узлов станка,

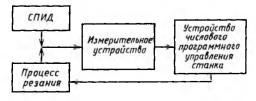


Рис. 1. Структурная схема взаимодействия составных частей системы автоматического контроля

переменному шуму в рабочей зоне станка, а также изменению температуры заготовки, отклонению твердости материала и неоднородности физико-механического состава.

Система ЧПУ станка должна обеспечивать возможность задания эталонных значений диагностических сигналов и отклонений от них, прием сигналов с устройства контроля, их математическую обработку и сравнение с эталонным значением, а также выполнение математических операций с необходимым быстродействием и точностью, формирование команд [8].

ГПС, как и любая производственная система, представляет собой совокупность объектов, связанных причинно-следственной зависимостью так, что их функции, действия и выполняемые над ними операции должны приводить к выпуску продукции заданного качества и в надлежащем количестве за установленное время. Оптимальная система отличается максимальной производительностью при минимальных затратах [5].

Поэтому состав и структура ГПС определяются содержанием конкретного производственного процесса, который формируется конструктивно-технологическими параметрами обрабатываемой номенклатуры деталей и годовой производственной программы их выпуска.

Детали, подлежащие обработке в ГПС, выбирают в соответствии с требованиями, аналогичными требованиям обработки их на РТК (см. гл. 4). Детали должны быть такими, чтобы их можно было группировать по конструктивно-техиологичесоднородным ким признакам. Это позволит применять групповую форму организации производственных процессов, типизацию технологических процессов на всех стадиях обработки, а также использовать однородное основное вспомогательное оборудование. Детали должны иметь явные технологические базы и признаки ориентации, позволяющие транспортировать и складировать их в ориентированном виде.

Заготовки деталей, переводимых на обработку в ГПС, должны отвечать повышенным требованиям и в первую очередь обладать постоянством припусков на обработку. Сварные заготовки, поковки, резаный прокат необходимо зачищать от заусенцев и т. д. Чугунные и цветные отливки должны быть зачищены, с них должны быть удалены литники и шпаклевка. Стальные заготовки из легированных труднообрабатываемых сталей и стальные отливки рекомендуется подвергать отжигу.

В целях исключения поломок режущего инструмента у заготовок, поступающих на обработку в ГПС, необходимо контролировать размеры и твердость.

2. СТРУКТУРА ГПС И ОСНОВНЫЕ РАСЧЕТНЫЕ ЗАВИСИМОСТИ

Значительные капитальные вложения для создания ГПС обусловливают необходимость минимизировать риск ошибок и поиск оптимального решения при создании их для конкретного потребителя. Это в первую очередь относится к определению структуры ГПС, являющейся основополагающей во всем процессе проектирования. Оптимальная структура ГПС должна обеспечивать наивысшую производительность, качество и надежность работы при ограниченных затратехнологическое оборудование функционирования. систему Поэтому ошибки, допущенные на ранних стадиях проектирования, когда собственно и определяется структура ГПС, обычно приводят к увеличению сроков и стоимости проектирования, дополнительным затратам при изготовлении, внедрении и к снижению ожидаемого (планируемого) эффекта.

Выбор структуры ГПС заключается в правильном, учитывающем ситуации производственного процесса, определении количества основного технологического оборудования и экономически оправданного состава системы обеспечения ее функционирования. Моделирование является единственным методом, позволяющим оценить реальное (или близко к реальному) поведение системы и рассмотреть влияние на производительность ГПС реальных производственных ситуаций и конкретных параметров ее составляющих.

Имитационное моделнрование. Основой работы модели ГПС является многократное воспроизведение на ЭВМ отдельных ситуаций производственного процесса.

Последовательность указанных ситуаций по временам обработки, транспортирования, партиям запуска, технологическим маршрутам, надежности работы основного и вспомогательного оборудования ГПС и другим параметрам должна соответствовать реальному производственному процессу, подчи-

няющемуся установленным регламентам. Таким образом, рассматриваемая модель представляет собой реализацию процессов производства множества различных изделей в соответствии с этапами производственного цикла [6].

Однако, как и для всех моделей, качество имитационной модели определяется тем, насколько она отображает поведение моделируемой системы, что в значительной мере зависит от тех исходных данных, которые используются при имитации производственного процесса.

При оценке результатов моделирования необходимо учитывать, что она должна носить технико-экономический характер, т. е. в соответствии с ГОСТ 15467—79 учитывать соотношение суммарного полезного эффекта от эксплуатации ГПС и суммарных затрат на ее создание и эксплуатацию.

Наиболее объективным показателем оптимальности структуры является рост производительности. При оценке различных вариантов структуры ГПС важнейшим условием выбора оптимального является связь расчетов производительности всей системы и ее составных частей с требованиями к их технологической надежности.

Основные положения по определению производительности ГПС вытекают из определения ГПС и ее задач:

- 1) ГПС должна быть ориентирована на выпуск комплектов деталей, число которых диктуется требованиями сборки;
- 2) комплект деталей определяется в результате структурного анализа выпускаемых машин и образуется из множества деталей, обладающих общими конструктивно-технологическими признаками;
- 3) длительность процесса обработки деталей резанием, входящих в это множество, представляет собой случайное событие, которое зависит от вида детали, размеров обрабатываемых поверхностей, метода обработки, типа и уровня автоматизации оборудования;
- 4) длительность процесса обработки деталей этого множества характеризуется количественными характеристиками (станкоемкостью детали, станкоемкостью операции), имеющими статистический характер распределения с параметрами: выборочная средняя станкоемкость, стандартное отклонение, размах и т. д. [4];
- ввиду того, что полная размерная обработка осуществляется в течение нескольких

смен, при определении производительности значительно проще оперировать понятием «технологическая операция», характеризующим производительность за более короткий промежуток времени.

Годовая программа выпуска (станко-ч)

$$P_{\rm r} = \sum_{i=1}^{n} (T_{\rm cp} + t_{\rm cp, jl. 3}) N_i k_i l_{\rm cp},$$

где $T_{\rm cp}$ — выборочная средняя станкоемкость технологической операции, включающая среднее цикловое время обработки и время загрузки — выгрузки детали, станко-ч; $t_{\text{ср. П.3}}$ удельное среднее подготовительно-заключительное время, станко-ч; N_i – годовой объем выпуска i-го изделия, шт; i = 1, $2, \ldots, n$ — число наименований выпускаемых изделий, шт.; k_i — число j-х деталей. входящих в состав комплекта по і-му изделию (с учетом применяемости на изделие), шт.; l_{co} – среднее число операций, необходимых для полной размерной обработки ј-х деталей, шт.

Производительность ГПС определяется числом технологических операций, выполняемых в ГПС за единицу времени. По аналогии с автоматическими линиями производительность ГПС подразделяется [3]:

на цикловую

$$Q_{\rm u} = \frac{T_{\rm c}}{T_{\rm cn} S_{\rm r}};$$

потенциальную

$$Q_{\rm ff} = \frac{T_{\rm c}}{(T_{\rm cp} + t_{\rm ob}) S_r};$$

эффективную

$$Q_{0\phi} = \frac{T_{\rm c}}{(T_{\rm cp} + t_{06} + t_{\rm opr})S_{\rm r}},$$

где $T_{\rm c}$ — время, в течение которого определяется производительность ГПС, ч; $t_{\rm o6}$ = $T_{\rm o6}/q$ — удельные затраты времени на плановое и внеплановое обслуживание механизмов и режущего инструмента, отнесенное к одной технологической операции, ч (q- число технологических операций на одном станке за период $T_{\rm c}$; $T_{\rm o6}$ — время, затраченное на обслуживание за этот период); $t_{\rm opr}$ = $T_{\rm opr}/q$ — удельные затраты времени на простои оборудования, связанные с организационными причинами, ч $(T_{\rm opr}$ — время простоев по организационно-техническим причинам за

Организационио-технический уровень ГПС определяется коэффициентом, характеризующим степень достижения цикловой произволительности

$$\eta_{o,t,y} = \frac{Q_{2\Phi}}{Q_{II}}$$

или

$$\eta_{o.T.y} = T_{cp}/(T_{cp} + t_{o6} + t_{opr}).$$

Разделив числитель и знаменатель на T_{cp} , получим

$$\eta_{o.t.y} = 1/(1 + B_{o6} + B_{opr}),$$

где $B_{\rm of}$ — удельная, т. е. отнесенная к 1 ч работы ГПС, длительность технического обслуживания; $B_{\rm opr}$ — удельные, т. е. отнесенные к 1 ч работы ГПС, потери времени на организациолные причины.

Величина $1-\eta_{\text{о.т.у}}$ характеризует долю времени, в течение которого ГПС простаивает из-за плановых и внеплановых ремонтов, обслуживания и организационных причин. Коэффициент $\eta_{\text{о.т.у}}$ характеризует стенень взаимного соответствия технологического оборудования и системы обеспечения функционирования ГПС.

Инфраструктура ГПС, т. е. состав системы обеспечения функционирования ГПС, должна быть ориентирована на повышение коэффициента $\eta_{0,\tau,y}$, причем состав системы функционирования ГПС должен быть ограничен экономической целесообразностью применительно к условиям конкретного производства, т. е.

$$\Phi_0 S_r \Delta \eta_{0,\tau,y} C_1 \geqslant C_2 + E_{tt} K$$

где Φ_3 — эффективный фонд использования технологического оборудования в году, ч; $\Delta\eta_{0.т.y}$ — приращение коэффициента в результате применения СОФ ГПС; C_1 — стоимость і ч простоев единицы технологического оборудования, руб.; C_2 — себестоимость обслуживания системы обеспечения функционирования ГПС, руб.; E_n — нормативный коэффициент окупаемости капитальных вложений; K — капитальные вложения на создание системы обеспечения функционирования ГПС, руб.

Количество основного технологического оборудования рассчитывают дифференцированно по моделям. Оборудование выбирают по параметру, в наибольшей степени выяв-

типа. Основные размеры применяемого оборудования зависят не только от размеров обрабатываемых заготовок, но и от объема выпуска дегалей разных габаритов.

Оборудование должно быть взаимозаменяемым, так как при этом в значительной мере повышается работоспособность ГПС.

Количество оборудования

$$S_r = \frac{P_1}{\Phi_2}$$
.

Рассчитанное количество оборудования округляют в большую сторону до целого числа и уточняют по результатам имитационного моделирования.

Партия запуска определяется на основе оптимизации затрат:

прямых переменных на изготовление деталей (причем затраты остаются постоянными вне зависимости от размера партии);

на хранение (содержание склада и соответственно хранение), которые остаются неизменными на одну деталь, однако сумма затрат измеряется пропорционально изменению запаса:

вызванных собственно переналадкой оборудования и его простоем за время переналадки, которые не зависят от размера партии, но доля, приходящаяся на деталь, снижается при увеличении партии [1].

Тогда

$$m_j = \sqrt{2P_j'\frac{3_{0,3}}{3_{xp}}},$$

где m_j — размер партии запуска заготовок деталей j-го наименования, шт.; P'_j — годовой выпуск деталей j-го наименования, шт.; $3_{\rm II,3}$ — постоянные затраты на подготовку оборудования, руб.; $3_{\rm xp}$ — затраты на хранение одной детали, руб.

Вместимость склада-наконителя определяется суммой объемов партий заготовок, ожидающих первоначальную обработку, и партий заготовок, находящихся на промежуточном хранении перед последующей обработкой

$$N_{\rm s.c} = \frac{m_j k_1 j k_2}{k_4 \Phi_{\rm H}} \left[T_{\rm nep} + T_{\rm noc.t} (l_{\rm cp} - 1) \right] k_3,$$

где $N_{\rm R,C}$ — число ячеек склада-пакопителя, шт.; k_{1j} — вместимость транспортной тары (среднее число заготовок j-го типа, укладываемых в тару, шт.); k_2 — число партий заготовок, находящихся одновременно на обработке в ГПС, шт.; $T_{\rm пер}$ — среднее время

ожидания партии заготовок перед первоначальной обработкой, смен; $T_{\text{посл}}$ – среднее время ожидания партии заготовок перед последующей обработкой, смен; k_3 – коэффиниент, учитывающий неравномерность грузооборота, равный 1,25; k_4 – число рабочих смен в сутки; $\Phi_{\text{н}}$ – номинальный фонд времени в году, дней.

Расчет количества транспортных средств. Условия работы ATCC соответствуют условиям работы систем массового обслуживания (СМО) с пуассоновским законом распределения времени заявок на обслуживание (окончание обработки на станке детали или деталей, размещенных в транспортной таре) [9].

Интенсивность потока заявок на транспортное оборудование

$$\lambda = \frac{T_c}{2T_{cp}(S_r - S_z)} + 2S_z,$$

где $T_{\rm cp}$ — выборочная средняя станкоемкость технологической операции, ч (в случае группового транспортирования деталей $T_{\rm cp} = \sum T_{\rm cp} k_{1j}$); S_z — число станков, подлежащих переналадке за расчетный период времени $T_{\rm c}$, шт.

Первое слагаемое в формуле учитывает операции по подаче деталей (тары с деталями при групповом способе транспортирования к станку и обратно); второе — подачу оснастки к станкам, когда при переналадке оборудования она осуществляется АТСС.

Длительность обслуживания заявки зависит от типа транспортного средства, скоростных характеристик транспортного средства и протяженности трассы.

Для машин циклического действия (кранов-штабелеров, транспортных манипуляторов) длительность обслуживания (мин) при двухадресном режиме

$$T_{\text{o6c}} = 2(t_{\text{p}} + t_{\text{I}} + t_{\text{M}} + t_{\text{B.II}}).$$

где t_p — время разгона транспортного средства, мин; $t_{\rm T}$ — время торможения транспортного средства, мин; $t_{\rm M}$ — время движения транспортного средства на маршевой скорости, мин; $t_{\rm B, II}$ — время выполнения цикла взять-поставить, мин.

Для расчета времени обслуживания обычно используют средний путь движения транспортного средства на маршевой скорости, который составляет 0.3-0.5 длины трассы.

Интенсивность обслуживания

$$\mu = \frac{1}{T_{\text{ofc}}}.$$

Основным условием функционирования АТСС является $\alpha < n_{\text{T.C.}}$, где α — коэффициент, численно равный отношению интенсивности потока заявок и интенсивности обслуживания, т. е. $\alpha = \lambda/\mu$; $n_{\text{T.C.}}$ — число транспортных средств (обслуживающих приборов).

Учитывая, что входящий поток заявок на обслуживание исходит из S_r обслуживаемых объектов ($S_r > n_{\text{T,C}}$) и обслуживаемый объект вновь становится потенциальным источником заявки на обслуживание, т. е. находится внутри системы и генерирует ограниченный поток заявок, ATCC является типичной замкнутой СМО, для которой длина очереди (шт.) определяется из выражения [11]

$$M_1 = \sum_{k=n_{\text{T.C}}}^{S_r} (k - n_{\text{T.C}}) P_k,$$

где k — число заявок на обслуживание, шт.; P_k — вероятность того, что в системе на обслуживании и в очереди находится k требований;

$$P_k = \left\{ \begin{array}{l} \frac{S_r! \, \alpha^k}{k! \, (S_r - k)} P_0 \; \operatorname{при} \; 1 \leqslant k \leqslant S_r; \\ \frac{S_r! \, \alpha^k}{n_{\mathrm{T.c}}^{k-n_{\mathrm{T.c}}} n_{\mathrm{T.c}}! \, (S_{r-k})!} P_0 \; \operatorname{при} \; n_{\mathrm{T.c}} \leqslant k \leqslant S_r. \end{array} \right.$$

Величина P_0 находится из условий нормировки:

$$\sum_{k=1}^{S_r} P_k = 1$$
 при $k = 1, 2, 3, ..., S_r$.

Среднее число обслуживаемых и ожидающих обслуживания требований

$$M_2 = \sum_{k=n_{\mathsf{T},\mathsf{C}}}^{S_r} k P_k.$$

Коэффициент использования оборудования

$$\xi_1 = 1 - (M_2/S_r)$$
.

Коэффициент простоя оборудования в ожидании обслуживания

$$\xi_2 = M_1/S_r.$$

Коэффициент ξ_1 — интегральная характеристика замкнутой системы, характеризующая интенсивность эксплуатации обслуживаемого технологического оборудования; он

практически равен вероятности того, что данный станок в любой момент времени будет находиться в эксплуатации. Эта характеристика справедлива при отсутствии пристаночного (буферного) накопителя. При наличии такого накопителя во избежание простоя оборудования необходимо выдержать условие $M_1 \leqslant T_{\rm cp}'$, где $T_{\rm cp}'$ — среднее время обработки детали или транспортного комплекта, мин.

При использовании в качестве транспортных средств непрерывных видов транспорта (различного вида конвейеров) систему можно рассматривать как СМО с неограниченным количеством обслуживающих приборов, т. е. $n_{\text{T.C}} = \infty$, и при любой интенсивности входящий поток требований начинает немедленно обслуживаться, так как в системе имеются не занятые приборы.

3. АВТОМАТИЗИРОВАННАЯ ТРАНСПОРТНО-СКЛАДСКАЯ СИСТЕМА

Одной из отличительных особенностей ГПС является наличие в ее составе АТСС. Структура АТСС приведена на рис. 2[2]. Компоновка АТСС в значительной мере определяет компоновку ГПС в целом и, в свою очередь, зависит от конструктивнотехнологических характеристик изготовляемых деталей, масштабов производства, используемого технологического оборудования, производственных площадей и т. д.

Конструктивно-технологические характеристики изготовляемых деталей прежде всего определяют характер прямой или косвенной связи между технологическим оборудованием.

При прямой связи заготовки с помощью транспортных средств подаются со склада к оборудованию и после обработки на одном станке передаются на другой станок для последующей обработки минуя склад. Связь такого рода используется преимущественно при заготовках большой массы со значительным временем обработки. Затраты на транспортирование при таком виде относительно невелики.

Косвенная связь осуществляется между оборудованием через склад при высокой частоте транспортирования, и затраты на транспортирование возрастают. Однако такая организация межоперационных перемещений при серийном производстве имеет

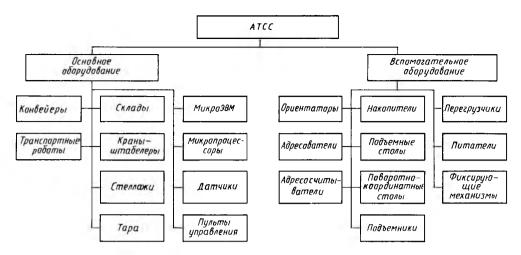


Рис. 2. Структура АТСС

следующие преимущества: весь производственный процесс контролируется и управляется с центрального пульта управления и к станку адресуется минимальное число заготовок; новая партия заготовок направляется к станку только тогда, когда заканчивается обработка предыдущей партии, что уменьшает вместимость накопителей и обеспечивает лучшие возможности контроля и управления производственным процессом.

Компоновки разделяются на линейную и замкнутую (табл. 1) [12].

Варианты размещения рабочих позиций на линии основного движения характерны для автоматических линий.

При линейном принципе компоновки в качестве транспортных средств используют машины циклического действия (краны-штабелеры, транспортные манипуляторы, роботрайлеры).

Замкнутые системы выполняют на базе транспортных средств непрерывного действия (напольные и подвесные конвейеры и т. д.).

1. Основные виды перемещений в зависимости от компоновок АТСС

Компоновки	Направление	Положение рабочих позиций	Последовательность прохождения рабочих позиций				
T	перемещения	относительно линии транспорти- рования	жесткая без пропусков	жесткая с пропуском	любая		
Одностороннее Линейная		На линии В стороне	++	- +	-		
-	Двустороннее	На линии В стороне	- +	- +	- +		
Замкнутая	Одностороннее	На линии В стороне	+	_ +	- +		
	Двустороннее	На линии В стороне	- +	- +	+		

Примечание. Вариант компоновки возможен «+», не возможен «-».

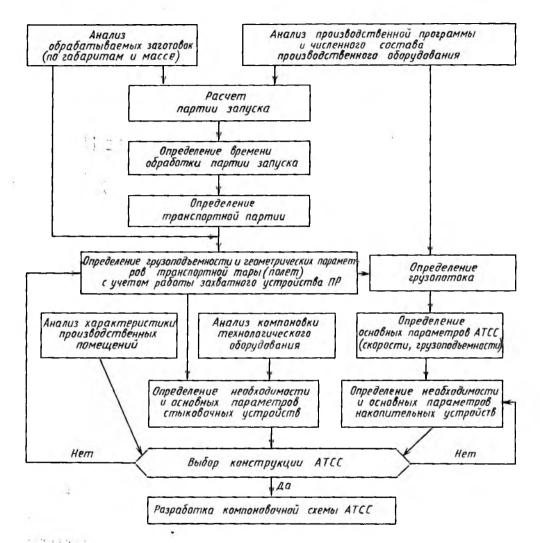
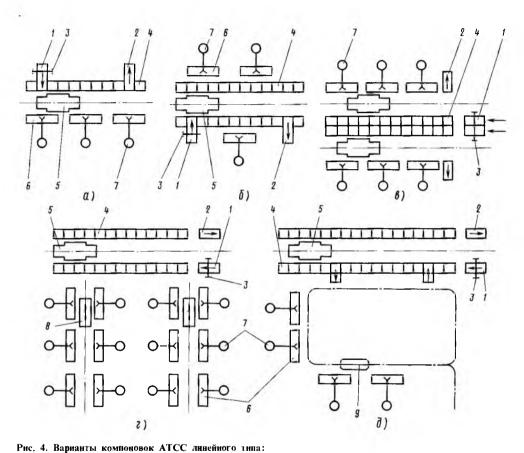



Рис. 3. Структурная схема последовательности выбора компоновки АТСС

1. 2 - загрузочно-разгрузочные устройства; 3 - устройство контроля габарита груза; 4 - стеллажи (накопители); 5 - кран-штабелер; 6 - приемно-передающие устройства; 7 - промышленный робот (автоматический манипулятор); 8 – транспортный манипулятор (передающая тележка); 9 – электроробокар

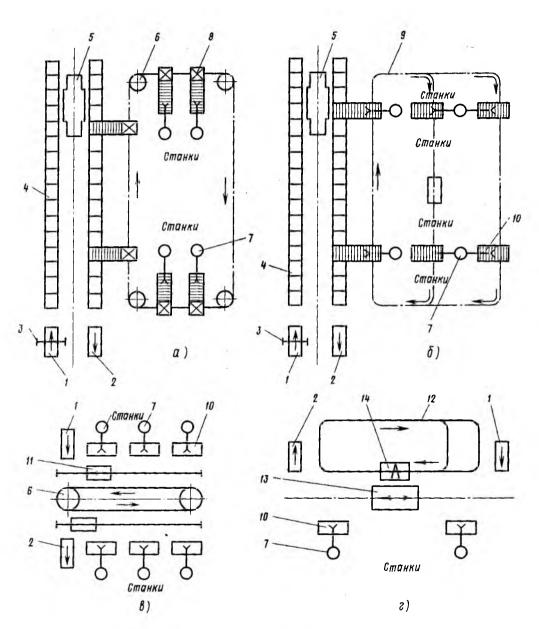


Рис. 5. Компоновка АТСС замкнугого типа на базе подвесного транспорта:

1, 2— загрузочно-разгрузочные устройства; 3— устройство для контроля габаритов груза; 4— стеллажи; 5— кран-штабелер; 6— подвесной грузонесущий конвейер; 7— промышленный робот (автомагический манипулятор); 8— приемно-передающее устройство с опускным столом; 9— монорельсовая дорога; 10— приемно-передающее устройство; 11— конвейерный подвесной манипулятор; 12— подвесной толкающий конвейер; 13— передагочная тележка; 14— опускная секция

2. Основные технические характеристики кранов-штабелеров

b×l	Грузо-	Вы-	разм	итные иеры и, мм	Расстояние от рельсового	Скорос	сть, м/с		Суммар-
Модель	подъ- ем- иость, кг	сота <i>Н</i> стел- лажа, мм	Дли- на <i>l</i>	Шири- на <i>b</i>	пуги до ниж- него рабочего положения грузоза- хватного органа, мм	передви- жения крана- штабе- лера	подъема грузо- захват- ного органа	выдвижения гру- зозахватного органа	ная мощность электро- двигате- лей, кВт
	50	3400	400	300					
CA-TCC-0,16	100			400		1,0	0,2		4,0
	160	4000	500	500					-
			600	400				0.25	
			500	500				0,25	141
CA-TCC-0,25	250	4600	600	400		1,25			5,0
			i	600		, -			1 1
			800	600					
		-	500	500					
CA-TCC-0,5	500		600	400	450		0,3		6,0
C7. 1 CC 0,5				600			,		
			800	600					
		5200		800					
			800	600					
CA-TCC-1,0	1000			800		1,6		0,4	10,6
			1000	1000					
			1200	800					
CA-TCC-2,0	2000		1000	1000		*	à.		16,8
			1200	800					
		7000	1600	1000					
CA-TCC-3,2	3200	7000	1200	800	650	l:			26,0
			1200	1200	0.50				
			1600	1000					

Компоновку ATCC выбирают в соответствии со структурной схемой, представленной на рис. 3.

Типовые принципиальные схемы компоновок представлены на рис. 4 и 5.

В компоновках ATCC, показанных на рис. 4, a-s, в качестве основного транспортного средства использованы краны-штабелеры и транспортные манипуляторы. В компоновках, представленных на рис. $4, \epsilon$ и δ , использованы транспортные манипуляторы и робокары.

В компоновке ATCC замкнутого типа в качестве основного транспортного средства использованы подвесной грузонесущий конвейер (рис. 5, a), монорельсовая дорога на базе грузовоза с автоматическим адресованием (рис. 5, b), грузонесущий конвейер с конвейерным подвесным манипулятором (рис. 5, b) и подвесной толкающий конвейер с опускной секцией (рис. 5, ϵ).

Основные технические характеристики оборудования АТСС представлены в табл. 2-22.

3. Основные технические характеристики кранов-штабелеров производства фирмы «Болканкарподъем» (НРБ)

6×(Грузо-	Габаритные размеры тары, мм		Суммар- ная мощность		Грузо-			Суммар- ная мощность	
Модель	подъем- ность, кі	Дли- на /	Шири- на <i>b</i>	электро- двигате- лей, кВт		подъем- ность, кг	Дли- на /	Шири- на <i>b</i>	электро-	
TC5AM	500	600	800		TC10AM	1000	1000	. 800	1200	0.106
		800	600			1000	1200	800	9,185	
		800	800	9,185	TC16AM	1600	600	800	14,91	
		800	1200				800	600		
		1200	800				800	800		
TC10AM	1000	600	800				800	1200		
		800	800				1200	800		

Примечание. Высота стеллажа H=13694 мм; расстояние от рельсового пути до нижнего рабочего положения грузозахватного органа 505 мм; скорости: передвижения крана-штабелера 1,33 м/с; подъема грузозахватного органа 0,267 м/с.

4. Основые технические характеристики нередаточных тележек для АТСС

b×t	Грузо-		размер	оитные ы тары, им	Расстояние <i>Н</i> до нижнего	Скорость перемещения тары, м/с		
Модель	подъемиость тележки, кг	Число позиций	Длина <i>I</i>	Ширина <i>b</i>	положения грузоза- хватного органа, мм	вдоль пути	поперек пути (ро- ликовый настил)	
	50		400	300				
	50		400	400		0.5		
ТПА-0,16	100		500	500		0,5		
	160		600	400				
			500	500			- 18	
T	250	9		400				
ТПА-0,25	250	1	600	600			1-	
			800	600				
	х		500	500	14.1	1,0		
	+	- 1		400				
ТПА-0,5	500		600	600	450		0,25	
			900	600	4			
			800	800				
			800	600	100		2	
				800			-	
ТПА-1,0	1000	1; 2	1000	1000			-	
			1200	800		2,0		
ТПА-2,0	2000		1000	1000	. *			
			1200	800			1.9	
			1600	1000				
TET A 2.2	2200		1200	800				
ТПА-3,2	3200	1	1200	1200	(50)	1.0		
			1600	1000	650	1,0		

⁶ Обработка металлов резанием

5. Основные технические характеристики цепных конвейеров

цепиых конвенеров						
6×1 A	то) та-	Габарит- ные размеры тары, мм		йера	4 от пола плоскости 4м	
Модель	Масса (брутто) та- ры, кг	Дли- на /	Ши- рина <i>b</i>	Длина конвейера	Расстояние <i>H</i> от пола до несущей плоскости механизма. мм	
КЦ-0,16	50	400	300			
КЦ-0,10	30	400	400	•		
	100	500	500	1		
	160	600	400			
		500	500			
КЦ-0,25	250	600	400 600	b + A	450	
		800	600			
-		500	500			
X511.0.5	500	600	400			
КЦ-0,5	500	600	600			
		800	600			
	ļ	000	800			
		800	600			
КЦ-1,0	1000		800			
			1000			
	-	1200	800	 		
WH 20	2000		1000	26 . 4	650	
КЦ-2,0	2000		1000	2b + A	030	
	-	1000	800			
КЦ-3,2	3200	1200	1200			
					ł.	

6. Основные технические характеристики роликовых конвейеров

роликовых конве	неров					
(ab A	o) ra-	н: разм	арит- ые иеры 1, мм	ie-	Я от по- вй плос- гзма, мм	
Модель	Масса (бругто) тары, кг	Длн- на <i>I</i>	Ши- рина <i>b</i>	Дпина конвейе ра	Расстояние <i>H</i> от по- ла до несущей плос- кости механизма, мм	
	50	400	300			
			400			
KP-0,16	100	500	500			
	160	600	400			
		500	500			
KP-0,25	250	600	400	l+A	450	
			600			
		800	600			
		500	500		ı	
KP-0,5	500	600	400			
			600		-	
		800	600			
· Y	<u> </u>		800			
		800	600			
KP-1,0	1000		800			
		1000	1000			
		1200	800			
KP-2,0	2000	1000	1000	2 <i>l</i> + <i>A</i>	650	
		1200	800		: -	
		1600	1000			
		1200	800			
KP-3,2	3200		1200			
<u></u>		1600	1000			

Примечание. Скорость перемещения тары $0.25 \, \text{м/c}.$

Примечание. Скорость перемещения тары 0.25 м/c.

7. Основные технические характеристики нерегрузочных устройств

Расстояние *H* от пола до весущей плоскости механизма, мм Габаритные размеры тары, мм Macca (брутго) та-Дли-Шириры, кі на на Модель b УП-0.16 УП-0,25 УП-0,5 УП-1.0 УП-2,0 УП-3,2

Примечание. Время подъема не более 3 с, скорость перемещения тары 0,25 м/с.

8. Основные технические характеристики устройств для контроля габаритных размеров тары

тары					
b*l	Macca	разм	оитные иеры и, мм	H от пола плоскости мм	
Модель	(брут- то) та- ры, кг	Дли- на /	Шири- на <i>b</i>	Расстэнние <i>H</i> от пола до несущей плоскости механизма, мм	
	50	400	300		
VICE O 16	30	400	400		
УКГ-0,16	100	500	500		
	160	600	400		
		500	500	i	
VICE 0.25	250	(00	400	450	
УКГ-0,25	250	600	600	450	
		800	600		
1.1		500	500		
		600	400		
		600	600		
УКГ-0,5	500		600		
		800	800		
		200	600		
		800	800		
УКГ-1,0	1000	1000	1000		
		1200	800		
NICE 2.0	2000	1000	1000	(50	
УКГ-2,0	2000	1200	800	650	
		1600	1000		
	20		800		
УКГ-3,2	3200	1200	1200		
		1600	1000		

Примечание. Скорость перемещения тары 0.25 м/c; точность контроля $\pm 10 \text{ мм}$.

9. Основные технические характеристики устройств для контроля массы груза

10. Основные технические характеристики поворотных столов

устронств для ког	nipoan	Macco	труза		воротных столов					
b×((0	разі	оитные меры I, ММ	и от пола плоскости м	(×b	угто)	ные г	арит- разме- гары, ім	поворота,	Расстояние <i>H</i> от пола до несущей плоскости механизма, мм
Модель	Масса (брутто) тары, кг	Дли- иа /	Шири- на <i>b</i>	Расстояние <i>H</i> от пола до несущей плоскости механизма, мм	Модель	Масса (бругто) тары, кг	Длина 1	Ширина <i>b</i>	Скорость поворота,	Расстояни ла до несу кости меха
	Ta Ta			P. M.		50	400	300		
		400	300		СП-0,16			400		
УКМ-0,16	_	ļ 	400		,	100	500	500		
, .		500	500			160	600	400		
	<u> </u>	600	400				500	500	2	
		500	500		СП-0,25	250	600	400		
УКМ-0,25	250	600	400	450				600		450
0,20			600	.50			800	600		
		800	600				500	500		-
		500	500				600	400	i	
УКМ-0,5	500	600	400		СП-0,5	500	000	600		
y KW1-0,5	300	000	600				800	600		
		800	600				800	800		
		800	800			-	800	600		
		800	600		CILLO	500	800	800		F 2 4
УКМ-1,0	1000	800	800		СП-1,0	300	1000	1000		
y N.WI-1,0	1000	1000	1000		-		1200	-	3	
		1200	800			 -	 	1000	3	
		1000	1000	i	СП-2,0	2000	1200	-		650
УКМ-2,0	2000	1200	800	650			1600			
		1600	1000				1000	800		
			800		СП-3,2		1200			
УКМ-3,2	3200	1200	1200	114	J11 5,2	3200	1600			
	3200	1600	1000				1000	1000		

Примечание. Скорость перемещения тары 0,25 м/с; точность контроля $\pm 5\%$.

Примечание. Скорость перемещения тары 0.25~м/c.

11. Основные технические характеристики приемных секций стеллажа

Расстояние *H* от пола до несущей плоскости механизма, мм Габарит-Масса (брутто) тары, ные размеры тары. ММ Шири-Длина на h Модель ПСС-0,16 ПСС-0,25 ПСС-0,5 ПСС-1.0 ПСС-2,0 $\Pi CC-3,2$

12. Основные технические характеристики приемных устройств

\$×1	о) тары, кг	Габа ные ме тары	раз- ры	ий накоп-	H от пола і плоскости мм	
Модель	Масса (брутто) тары,	Длина 1	Ширина в	Число позиций ления, шт.	Расстояние <i>H</i> от пола до несущей плоскости механизма. мм	
	50	400	300			
ПУ-0,16			400			
	100	500	500			
	160	600	400			
		500	500	2		
		600	400	2		
ПУ-0,25	250		600		450	
		800	600		430	
		500	500			
ПУ-0,5	500	600	400			
K2			600			
		800	600			
			800			
		800	600			
ПУ-1,0	1000		800			
		100	1000			
		1200	800			
		1000	1000			
ПУ-2,0	2000	1200	800	3	650	
		1600	1000		050	
			800			
ПУ-3,2	3200	1200	1200			
		1600	1000			

Примечание. Скорость перемещения тары 0,25~м/c; число позиций накопления — одна.

Примечание. Скорость перемещения тары 0.25 м/c.

13. Основиые технические характеристики стеллажей АТСС

DIL -40 Габаритные размеры Грузоподъемность ной ячейки, кг тары, им Высога Н, Ширина Длина Модель CT-0,16 CT-0,25 CT-0,5 CT-1,0 CT-2,0 CT-3,2 Π римечание. Длина $L = 10\,000^{+100}$ мм.

14. Основные технические характеристики тары для ATCC

тары для Атес	<u></u>			
	Масса (брутго), кг	Длина /	Ширина b	Высота h
Модель	Масс		мм	
	50	400	300	200
T-0,16	100			350
,			i	400
	160	600	400	350
				500
		600	400	350
T-0,25	250			500
		800	600	350
		600	800	500
		600	400	350
T-0,5	500			500
-,-		800	600	350
		600	800	500
		800	600	750
T-1,0	1000	600	800	
		1200	800	450
		800	1200	750
		1200	800	450
T-2,0	2000	800	1200	750
		1000	1600	450
				750
		1200	800	1050
T-3,2	3200	800	1200	750
14.7		1000	1600	1050

15. Основные технические характеристяки грузонесущих конвейеров

Модель	Грузоподъем- ность (максималь- ная), кг	Цепь	Шаг звена цепи, мм	Угол вертикаль- ного из- гиба,	Скорость,
ГН-200-Д-5 0 ПНЦ-200-Д-500	50	Двухшарнир- ная	200	90	0,58
ЦПК-80Р П НЦ- 80	250	Разборная	80	45	0.41
ЦПК-100Р ПНЦ-100	500	Разборная Специальная	100		
ГН-160Р ПНЦ-160	1000	Разборная Специальная	160	30	0,33

16. Основные технические характеристики подвесных толкающих конвейеров

Модель	Грузоподъ- емность при макси- мальном угле	при и- гугле Цепь		Угол верти- каль-	рость,	Радиус изгиба пути (минимальный), мм		
	наклона трассы, кг		цепи, мм ного изги- ба, °		м/с	горизон- тального	вертикаль- ного	
ТПВ-200Д-50 ПТЦ-200	50	Двухшарнир- ная	200	60	0,67	600	1000	
ТП-80 ПТЦ-80	250	Разборная	80	45	0,41	410	2000	
КТ-100 ПТЦ-100	500	Разборная Специальная	100	30	0,33	610	3048	
KT-100	1000	Разборная	160	30	3,55	617	6069	
ПТЦ-160	2000	Специальная] 100	50		~*,	1 200	

17. Основные технические характеристики однорельсовых подвесных дорог

	,			
Модель	Грузоподъемность, кг	Скорость передвижения подвиж- ного состава, м/с	Радиус изгиба горизон- тального пути, мм	Угол измерения направления движення на рамной стрелке, °
ОПД-0,16	50; 100; 160	0,33	800	
ОПД-0,250	250	0,		45
ОПД-0,500	500		800	
ОПД-2,0	2000	0,33	1250	40
ОПД-5,0	5000		2500	30
Подвесная транспортная система на базе электротягача с тяговым усилием 750 Н	1000	0,67 0,17*1	1250	45

 *1 0,17 м/с — доводочная скорость подвижного состава.

 Π римечание. Высота подъема (ход) секции подъема 2-7 м.

18. Основиые технические характеристики транспортно-перегрузочных роботов (рельсовых)

6×1	6×1 Macca		Габаритные размеры тары, мм		
Модель	(брутто)	Длина	Ширина		
	тары, кг	/	<i>b</i>		
ТПР-500	500	800	600		
ТПР-1000	1000	1200	800		

Примечание. Скорость перемещения тары до 1,83 м/с; линейное перемещение 25 м; высота подъема 2,1 м.

19. Основные технические характеристики транспортно-перегрузочных роботов (напольных)

900 Oct	Масса (брутто)	Габаритные размеры тары, мм		
Модель	тары,	Длина /	Ширина <i>b</i>	
CMTK-50	50	450	300	
CMTK-150	160	600	400	
CMTK-250	250	600	400	
		800	600	

Примечание. Скорость перемещения тары 0.33 м/с; перемещаемая тара — 250 шт. за 1 ч; точность позиционирования +5 мм.

20. Основные характеристики манипуляторов для ATCC

ED A	Грузоподъ- емность, кг	Высота подъема, мм
MAK-1-50	50	1100
MAK-2-320	320	500

Примечание. Длина перемещения вдоль конвейера 15 м; точность позиционирования 3 мм; число степеней подвижности — четыре.

21. Основные технические характеристики шарнирно-балансирных манипуляторов для АТСС

The	Грузо-	Радиус обслуживания, мм		Скорость во перемещ	Верти- кальное	
Модель	подъемность, кг	макси- мальный	мини- мальный	макси- мальная	мин и- мальная	перемещение руки, мм
МПП-100	100	2600	2240	0,35	0,03	
ШБМ-160	160	3000	700	0,4	0,005	1600
МПЭ-250	250	3100	500		0.005	
МПЭ-400	400	2800	800	0,3	0,005	
МПГ-630	630	3600	1600	0,2	0,01	1800

Примечание. Угол поворота вокруг вертикальной оси 360°.

22. Основные технические характеристики робокар производства фирмы «Интрансмаш» (НРБ – ВНР)

Модель	Грузоподъемность, кг	Скорость пере- движення, м/с	Высота подъема платформы, мм	Скорость перемс- щения груза по ро- ликовой платфор- ме, м/с	Минимальный радиус поворота, мм	Габаритные размеры (длина × ширина × × высота), мм
КН10Р-01 (с подъемной платфор- мой)	1000	1,0	160	-	1500	3370 × 1300 × × 810
КН10Р-01 (с роликовой приводной платформой)	1000	1,0	Т	0,25	1500	3370 × 1300 × × 750

4. СИСТЕМА СТРУЖКОУДАЛЕНИЯ

Количество стружки зависит от типа металлорежущего оборудования (табл. 23), припусков на обработку заготовки, вида применяемого инструмента [7].

Различают стружку в виде мелкой крошки, кусочков, высечки, колечек, жгутика, мелкого, среднего и крупного вьюна, саблевидную.

В табл. 24 приведены данные по видам стружки в зависимости от материала заготовки и металлорежущего оборудования.

Применяемость конвейеров в зависимости от группы стружки приведена в табл. 25.

Технические характеристики серийных конвейеров приведены в табл. 26-28.

Выбор схемы транспортирования стружки в ГПС зависит от общей системы стружкоудаления в цехе. При отсутствии общей системы стружкоудаления необходимо руководствоваться следующим:

для систем, расположенных на площади $300-500\,\mathrm{m}^2$, с количеством стружки до $300\,\mathrm{kr/v}$ целесообразно устанавливать линейные конвейеры для линии станков, а в конце

23. Количество стружкя в зависямости от типа металлорежущего станка

Станок Количество стружки от одного станка Станок		Станок	T .	Количество стружки от одного станка		
	т/год	кг/ч		т/год	кг/ч	
Токарный Сверлильный Расточный и карусель-	24,8 55,9 30,6	7,6 14,2 7,8	Строгальный Долбежный и протяжной	62,4 33,0	15,8 8,4	
ный Фрезерный	36,7	9,3	Прочие	10,7	2,7	

24. Характеристика стружки в зависимостя от материала и типа металлорежущях станков

	Стружка	Масса 1 м ³ стружки, т,	Станки, на которых образуется
Груп- па	Вид	из различных материалов	стружка данного вида
I	Элементообразная мелкая крошка, кусочки, высечки	Чугун ковкий 1,6-1,7	Всех видов
		Чугун серый 1,9-2,0	То же
		Сталь 1,0-1,5	Фрезерные, протяжные, строгальные
		Алюминий 0,75	Зубообрабатывающие, дисковые пилы
II	Элементообразная в виде	Сталь 0,6	Токарные, карусельные, ре-
	витков, нагартованная	Алюминий 0,207	вольверные, сверлильные и
	(колечкообразная)	Бронза 0,7	др.
Ш	Автоматный жгутик, мел-	Сталь 0,5-0,6	Токарные автоматы и полу-
	кий вьюн	Алюминий 0,17-0,2 Бронза 0,6-0,7	автоматы, револьверные
ΙV	Средний вьюн диаметром	Сталь 0,3-0,5	Сверлильные, револьверные,
	100-200 мм сечением 20- 30 мм ²	Алюминий 0,1-0,14	токарные, карусельные, расточные и строгальные
v	Крупный вьюн сечением	Сталь 0,2-0,25	Крупные токарные и карусель-
	$40-50 \text{ MM}^2$	Алюминий 0,07	ные
VI	Саблевидная с однослой-	Сталь 0,15-0,2	То же
	до 1 м и сечением до 100 мм ²		(4)

25. Тип конвейеров в зависимости от группы стружки

T ×			Группа	стружки 🔻		
Тип конвейера	I	II	III	IV	V	VI
Скребковый	+	+	_	-	_	_
Одновинтовой	+	+		~		_
Двухвинтовой	_	+	+	-	_	_
Пластинчатый	_	_	+	+	+	+
Ершово-штанговый	_	_	+	+	+	_
				L	· .	

Примечание. Вариант возможный «+», вариант невозможный «-».

26. Основные технические характеристики пластинчатых конвейеров с настилом «закрытый шарнир» дли транснортирования стружки

Модель	Ширина настила, мм	Максимальная длина, м	Количество транспортируемой стружки, т/ч
КПШ-600	600	200	4
КПШ-800	800	200	

27. Основные технические характеристики винтовых конвейеров дли транспортировании стружки

<u>Фа</u> ∩П <u>ини</u> Модель	Число винтов	Максимальная длина, м	Количество транспорти- руемой стружки, т/ч
KB-1 KB-2	1 2	100	1 2

28. Основные технические характеристики скребковых конвейеров для транспортировании стружки

Модель	Ширина кон- вейера, мм	Максимальная длина, м	Количество транспортируемой стружки, т/ч
КСС-320 КСС-500 КС-300В вертикаль- но-замкнутый для транспортирования, дробления и сорти- ровки стружки	320 500 300	85 85 100	1 5 1,5

линии – емкости для сбора стружки;

для систем с площалью $2000-3000 \text{ м}^2$ и количеством стружки 300-600 кг/ч необходимо применять транспортные системы со специальной тарой, установленной в конце систем.

Стружкоуборочные конвейеры можно монтировать под полом в каналах, перекрытых бетонными плитами или металлическими решетками, а также на полу на специальных металлоконструкциях.

Каналы должны быть перекрыты съемными плитами, загрузочные отверстия — решетками с ячейками в свету 25×25 мм для чугунной стружки и откидными люками для стальной.

В местах с высоким уровнем грунтовых вод необходимо предусмотреть гидроизоляцию подземной части каналов и туннелей. Пол туннелей, основание и стенки каналов должны быть защищены гидроизоляцией, исключающей возможность проникновения в бетон СОЖ, попадающей вместе со стружкой.

Для транспортирования эмульсированной стружки основание каналов должно быть спрофилировано с уклоном не менее 2% в сторону стока эмульсии.

Линейные стружкоуборочные конвейеры следует располагать в непроходных каналах, которые рекомендуется гидроизолировать облицовкой листовой сталью толщиной 4-6 мм.

5. АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

В соответствии с ГОСТ 24.003—84 установлены следующие основные термины и определения (табл. 29).

В состав комплекса технических средств (КТС) входят: управляющий вычислительный комплекс (УВК), средства получения, преобразования, хранения, отображения и регистрации информации, устройства подачи сигналов и исполнительные устройства.

Основные функции АСУ подразделяются на управляющие, информационные и вспомогательные.

Управляющие функции АСУ — функции, результатом которых является выработка и реализация управляющих воздействий на технический объект управления.

К управляющим функциям относятся: программно-логическое управление оборудованием:

адаптивное управление объектом в целом. Информационные функции — функции системы, содержанием которой является сбор, обработка и представление информации о состоянии ГПС оперативному персоналу или передача информации для последующей обработки.

Вспомогательные функции - функции, обе-

29. Термииы и определения системы управления

Термин	Определение
Автоматизированная система управления (АСУ)	Система «человек — машина», обеспечивающая эффективное функционирование объекта, в которой сбор и переработка информации, необходимой для реализации функций управления, осуществляется с применением средств автоматизации
Подсистема автоматизированной системы управления	Система, являющаяся частью автоматизированной системы управления, выделенная по определенному аспекту деления
Техиическое обеспечение автоматизированной системы управления	Комплекс технических средств, применяемых для функционирования автоматизированной системы управления
Математическое обеспечение автоматизированной системы управления	Совокупность математических методов, моделей и алгоритмов обработки информации, использованная при создании автоматизированной системы управления
Программное обеспечение автоматизированной системы управления	-
Организационное обеспечение автоматизированной системы управления	Совокупность документов, регламентирующих деятельность персонала автоматизированной системы управления в условиях ее функционирования
Персонал автоматизированной системы управления Структура комплекса технических средств автоматизированной системы управления (КТС АСУ) Вычислительный комплекс автоматизированной системы управления	Лица, участвующие в функционировании автоматизированной системы управления Структура, элементами которой являются устройства комплекса технических средств автоматизированной системы управления, а связи между элементами отображают информационный обмен Совокупность устройств вычислительной техники, автоматически выполняющих обработку информации в автоматизированной системе управления
Общее программное обеспечение автоматизированной системы управления	Часть программного обеспечения автоматизированной системы управления, представляющей собой совокупность программ, рассчитанных на широкий круг использователей и предназначен-
4 m	ных для организации вычислительного процесса и (или) решений часто встречающихся задач обработки информации
Специальное программное обеспечение автоматизированной системы управления	Часть программного обеспечения автоматизированной системы управления, представляющая собой совокупность программ, разрабатываемых при созданин конкретной АСУ для реализации ее функций
Входная информация автоматизированной системы управления	Информация, поступающая в автоматизирован- ную систему управления в виде документов, данных, сигналов и с клавиатуры, необходи- мая для выполнения функций АСУ
Выходная информация автоматизированной системы управления	Информация, выдаваемая на объект управления, персоналу или в другие системы управления, в виде документов, изображений, данных и сигналов и получаемая в результате выполнения функций
grant of the same of the	автоматизированной системы управления

спечивающие решение внутрисистемных задач.

Составиые части АСУ. Для выполнения указанных функций необходимо взаимодействие следующих составных частей АСУ: технического обеспечения; программного обеспечения; информационного обеспечения; организационного обеспечения; оперативного персонала.

Состав оперативного нерсонала. В состав оперативного персонала входят:

операторы, осуществляющие контроль за работой и управление технологического объекта управления (ТОУ) с использованием информации и рекомендаций КТС;

эксплуатационный персонал, обеспечивающий правильность функционирования КТС.

Ремонтный персонал в состав оперативного персонала не входит.

Задачи, решаемые АСУ ГПС. Выбор технических средств СУ и состав функций, подлежащих автоматизации, в значительной мере зависят от следующих факторов [10]: технологии обработки; состава и компоновки ГПС; организации производства; экономической целесообразности автоматизации составляющих ГПС.

Состав функций и набор решаемых задач АСУ определяются условнями функционирования конкретных ГПС.

Задачи оперативного управления:

- а) управление технологическим процессом: сбор и обработка информации о ходе технологического процесса; координация работы основного технологического оборудования и оборудования АТСС; перераспределение ресурсов в зависимости от фактического состояния производства; организация взаимодействия персонала ГПС с ЭВМ; обеспечение работоспособности СУ при сбоях и перезапусках;
- б) групповое управление основным технологическим оборудованием: управление работой устройств числового программного управления (УЧПУ) (запуск по команде ЭВМ, приостановка обработки, замена программы и т. д.); организация хранения на устройствах внешней памяти ЭВМ библиотек управляющих программ (УП) и документов; раздача УП в УЧПУ;
- в) управление ATCC: прямое управление оборудованием ATCC; взаимодействие с устройствами управления ГПС.

Входной информацией для оперативного управления являются документы, содержащие необходимые сведения для управления станками и оборудованием АТСС: УП для станков, сменно-суточные задания, планыграфики и т. л.

Задачи планирования:

- а) месячное планирование: расчет партий запуска; расчет коэффициента загрузки оборудования всех типов с указанием «узких» мест; составление предварительного графика запуска партий заготовок в обработку; формирование ведомостей на поставку заготовок с предусмотренными опережающими сроками;
- б) оперативное планирование формирование задания на 2-5 суток исходя из результатов работы за предыдущий отрезок времени с учетом фактического наличия заготовок и полуфабрикатов на складе, включая планирование загрузки оборудования; задания на подготовку приспособлений и комплектов инструмента;
- в) сменно-суточное планирование: формирование заданий на каждое рабочее место; формирование заданий на выполнение внешних заданий по кооперации.

Входной информацией является постоянная информация, хранимая в базе данных АСУ (нормативно-справочная, технологическая, данные об оборудовании), и текущая информация, вводимая с внешних носителей или терминалов, включающая исходные задания, а также сведения о незавершенном производстве, поступлении на склад заготовок, количестве брака, готовности приспособлений и комплектов инструмента, состоянии станка.

Задачи учета: выполнение сменных заданий (операцин механической обработки выносных операций; технологического контроля); хранение и учет отчетных документов о выполнении сменных заданий; учет незавершенного производства, поступления заготовок на склад, готовности приспособлений, комплектов инструментов и других данных, необходимых для планирования. Обеспеченность производства необходимыми средстваоснована на учете обеспеченности сменных заданий, определяемой своевременной поставкой заготовок УП, оснастки и инструмента. Показатели работы оборудования служат для расчета показателей использования и надежности станков и другого оборудования.

Кроме того, учитываются отказы системы управления, отказы станков и инструмента.

Задачи контроля и диагностики: контроль готовности оборудования к работе; опера-

тивное цикловое диагностирование, дающее общую оценку состояния объекта управления и выявляющее при необходимости место и причину отказа в процессе функционирования; оперативное узловое диагностирование, используемое при нарушении функционирования объекта управления; диагностирование с использованием специальных устройств по специальным методам, предназначенным для реализации сложных операций; диагностирование по результатам обработки, состоящее в контроле изменения состояния узлов объекта управления, влияющих на точность обработанных деталей.

Задачи автоматизированной системы технологической подготовки производства (АСТПП): обеспечение технологичности конструкции изделия; разработка технологических процессов; проектирование средств технологического оснашения.

Для конкретных изделий (ГАЛ, ГАУ) АСТПП должна решать следующие задачи: проектирование технологических процессов; подготовку УП для оборудования с ЧПУ; разработку ТЗ на проектирование средств технологического оснашения.

Унификация средств, осуществляющих технологические процессы (определенных моделей станков, комплектов режущего инструмента и оснастки), конструктивных элементов, характеристик обрабатываемых деталей и технологических условий выполнения операций позволяет создавать системы проектирования с высоким уровнем автоматизации.

АСТПП для ГПС должна создаваться с учетом интеграции с АСУ для использования единого технического, информационного и программного обеспечения. При этом должно предусматриваться статическое и динамическое взаимодействие с подсистемами управления, планирования, учета и контроля.

Подготовка управляющих программ. Одним из основных элементов, определяющих трудоемкость технологической подготовки производства в условиях ГПС, является подготовка управляющих программ (УП) для станков с ЧПУ.

В условиях ГПС с управлением от ЭВМ наиболее рациональным является мащинное программирование с использованием систем автоматизированного программирования (САП). По степени универсальности САП делятся на универсальные и специализированные, причем последние ориентированы на

определенный объект (например, ГАЛ, ГАУ) и обеспечивают высокий уровень автоматизации технологического проектирования.

Машинное программирование для станков с ЧПУ может осуществляться с использованием ЭВМ различного класса: больших (ЕС ЭВМ), малых (ЕМ ЭВМ), микроЭВМ (типа «Электроника-60», «Искра-226»).

При выборе класса ЭВМ для машинного программирования в ГПС следует исходить из следующего.

Производительность микроЭВМ пока не обеспечивает возможность создания эффективных САП. Однако комплексы на базе микроЭВМ, как правило, оснащены графопостроителями и графическими дисплеями, что обеспечивает контроль УП.

ЕС ЭВМ, при их наличии на предприятии — потребителе ГПС, применяют в основном для задач АСУП; они не обеспечивают оперативной подготовки управляющих программ. В качестве носителей управляющих программ используют перфоленту.

Малые ЭВМ типа СМ-4, применяемые в составе технического обеспечения АСУ ГПС, можно одновременно использовать и для эффективной подготовки управляющих программ, непосредственно передаваемых на станки по каналам связи.

Управление технологическим процессом. При создании системы управления ГПС необходимы разработка средств, обеспечивающих автоматическую координацию работы технологического оборудования, АТСС и вспомогательного оборудования, принятие решений и регулирование технологического процесса (ТП).

Принятие решений и регулирование ТП должны основываться на анализе информации, поступающей от объектов управления. В оперативной памяти ЭВМ строится динамическая модель ГПС в виде таблицы, в которой каждая секция описывает состояние соответствующего элемента объекта управления.

Содержание таблиц обновляется с заданной периодичностью программами сбора информации. Модель используется супервизором системы управления для координации и регулирования ТП при работе в автоматическом режиме.

Программа — супервизор реализуется в виде настраиваемого конечного автомата (таблица принятия решений) и должна обеспечивать различные алгоритмы управления. Особое место в общей системе управления ТП зани-

мает система управления АТСС, которая выполняется самостоятельным законченным блоком, функционирующим автономно относительно длительный период времени, что придает ГПС в целом большую гибкость и «живучесть».

СУ АТСС должна обеспечивать выполнение следующих информационных и управляющих функций: прием информации о положении и состоянии оборудования и прием запросов на обслуживание; ведение динамической модели склада (накопителей); выработку рациональных принципов организации накопления и перемещения объектов обработки; подготовку и передачу адресов и команд, обеспечивающих выполнение транспортными механизмами последовательности перемещения объектов обработки; прием информации (в том числе и от оператора), контроль выполнения задания, включая процессы накопления (складирования) и перемещения; диагностирование состояния оборудования и системы управления; выполнение процедур обмена информацией; возможность восстановления информации о состоянии АТСС перед перезапусками снстемы.

Наличие динамической модели предполагает хранение в информационной памяти микро ЭВМ данных о грузах, находящихся на всех стадиях обработки (на хранении, в пристаночных накопителях, на обработке и т. д.): код детали; этап (стадия) обработки; номер партии; число деталей в партии запуска и транспортной партии; место (адрес) нахождения детали (транспортной партии).

Наличие динамической (информационной) модели обеспечивает также возможность наблюдения диспетчера-оператора за выполнением технологического процесса и работой ATCC.

Диспетчер получает информацию в табличном или графическом виде с помощью видеотермииала и печатающего устройства. В процессе управления он может регулировать ход работ, используя команды языка диспетчера-оператора.

Командный язык диспетчера-оператора (DSP) предназначен для организации взаимодействия диспетчера-оператора, имеющего в своем распоряжении видеотерминал, с ЭВМ. Взаимодействие происходит в виде диалога путем ввода с клавиатуры терминала команд языка DSP.

Формат команд обладает фиксированной формой и имеет вид

Команды языка делятся на группы: управляющие, информационные, вспомогательные.

Управляющие команды позволяют задать режим работы системы управления: автоматический, полуавтоматический и наладочный. В автоматическом режиме последовательность действий определяется плановыми документами и информацией о реальном состоянии объекта управления. В полуавтоматическом режиме работы диспетчер самостоятельно управляет технологическим пронессом.

Наладочный режим предназначен для проведения пусконаладочных и ремонтных работ, а также для вывода машин в исходное положение при сбойных ситуациях.

Информационные команды предназначены для получения информации, отображающей текущее состояние управляемого процесса. С помощью команд данной группы можно получить:

сводку о ходе ТП в целом или для указанного станка;

распечатку сменно-суточного задания с указанием количества уже обработанных деталей:

список УП, имеющихся в библиотеке (БУП): сведения о содержимом склада;

распечатку системного журнала за смену; текущее время и дату.

Вспомогательные команды предназначены для служб ГПС и дисплеев устройств ЧПУ, связанных с ЭВМ каналами связи; вывода информации о правилах использования языка DSP. Перечень команд, разрешенных для каждой службы участка, определяется ее назначением и полномочиями.

Требования к комплексу технических технических Комплекс спедств (КТС) является инструментом для реализации функций системы управления ГПС. КТС состоит из управляющего вычислительного комплекса (УВК), связанного с ним периферийного оборудования, каналов средств сбора и обработки информации на элементах объекта управления. КТС должен обеспечивать: реализацию ранее перечисленных функций управления, возможность своего расширения (с целью увеличения количества управляемого оборудования, наращивания функций) и организацию связи с другими системами управления. КТС должен обладать надежностью, обеспечивающей заданный коэффициент использования основного технологического оборудования.

Средства вычислительной техники. Наиболее приемлемыми по техническим характеристикам для ГПС являются малые ЭВМ СМ-3 и СМ-4 и их перспективные базовые модели СМ-1300, СМ-1420.

Тип УВК	ность УВК
CM-1401.02 – CM-1401.08; CM-1403.01 – CM-1403.07	Для самостоя- тельного приме- нения
CM-1404	Двухпроцессор- ный комплекс с повышенной на- дежностью для са-
CM-1405—CM-1405,04.	мостоятельного применения В автоматизированных системах
Carrier of the Control	научного эксперимента и автоматизированных си-

ния технологическими процессами (АСУТП)

СМ-1406;
СМ-1407...СМ-1407.01

СМ-1410

СМ

стемах

управле-

Дополнительное оборудование специфицированных УВК представлено в табл. 30.

Кроме перечисленных, в состав УВКС могут входить устройства связи с объектом (УСО), обеспечивающие обмен информационными и управляющими сигналами между ЭВМ и устройствами управления технологическим, транспортным и вспомогательным оборудованием ГПС. Выбор базового УВК и необходимого дополнительного оборудования осуществляется на основе анализа функционального назначения системы управления и информационных связей внутри нее: выбираются оборудование УСО, каналы связи, число терминалов, устройств печати и т. л.

30. Дополнительное оборудование специфицированных УВК

O-----

Устройство	Шифр	Назначение и краткая техническая характеристика		
Расширитель интерфейса (РИФСМ)	CM 4101	Увеличение мощности ЭВМ. Позволяет до- полнительно подключить до 19 устройств связи с объектом управления		
Асинхронный мультиплексор передачи данных	CM 8514	Содержит 16 каналов связи с интерфейсом ИРПС. Скорость обмена информацией по каналу до 9600 бит/с		
Алфавитно-цифровые термина- лы с клавиатурой	BTA-2000-15	Размер поля изображения 270×175 мм. Число выводимых на экран знаков — 1920 (24 строки по 80 знаков). Интерфейс ИРПС		
Алфавитно-цифровое печатающее устройство (АЦПУ):	¢			
построчной печати	CM 6305	Устройство печати СМ 6315 барабанного типа. Скорость печати — 500 строк/мин. Число знаков в строке — 132		
последовательной печати	CM 6304	На базе DARO1156. Номинальная скорость печати – 100 символов/с; число знаков – 132		

Продолжение табл. 30

Продолжение так				
Устройство	Шифр	Назначение и краткая техническая характеристика		
Отображения графической информации ЭПГ СМ	CM 7300	Состоит из дисплейного процессора и экранного монитора со световым пером. Размер рабочего поля 240 × 240 мм. Вместимость буферного запоминающего устройства (ЗУ) 128К слов. Максимальная длина линий 120 мм		
Внешней памяти с накопителями на магнитных дисках (НМД): НМД типа СМ 5400 или ИЗОТ 1370	CM 5402	Число подключаемых НМД — до четырех. Вместимость памяти каждого НМД 4,8М байт		
НМД типа ЕС5061	CM 5407	Число подключаемых НМД – до двух. Вместимость памяти каждого НМД 29М байт		
С накопителями на гибких магнитных дисках (НГМД)	CM 5306	Число накопителей в устройстве — два. Вместимость памяти 0,5М байт		
Внешней памяти на магнитной ленте (НМЛ)	CM 5301	Число подключаемых НМЛ – до четырех. Вместимость одной бобины магнитной ленты до 20М байт		
Внешней памяти на базе кассетных накопителей магнитной ленты (КМЛ)	CM 5208	Устройство содержит два накопителя КМЛ		
Согласователь сопряжения УСС ОЩ/2К	CM 4502	Для подключения средств устройств сопряжения с объектом (УСО), разработанных для ЭВМ серии АСВТ-М и стыкуемых с каналом типа 2К. Возможно подключение до 16 модулей УСО		
Расширитель согласователя со- пряжения УСС ОЩ/2K-1	A7111-1	Для увеличения числа подключаемых к УСС ОЩ/2К модулей УСО		
Модули УСО серии АСВТ-М: кодового управления бесконтактный	A641-9	Имеет 16 гальванически развязанных выводов. Служит для дистанционной передачи электрических сигналов к элементам объекта управления		
ввода инициативных сиг- налов	A622-8	Содержит 16 входов для приема сигналов, приходящих от объекта управления, формирует сигналы прерывания ЭВМ по приходу входных сигналов. Имеет модификации		
гальванической развязки	A621-2	Для гальванического разделения сигналов, приходящих от объекта A622-8 управления		
быстрой передачи данных	A723-1	по входам. Имеет восемь каналов Для передачи информации со скоростью до 400 тыс. бит/с на расстояние до 1 км		

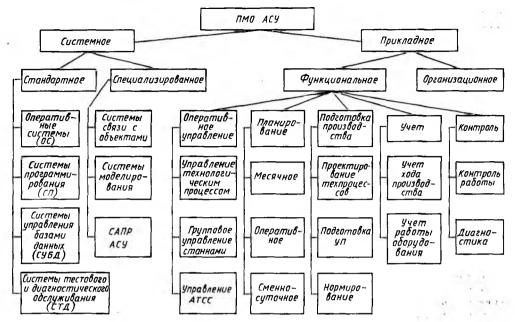


Рис. 6. Структуриая схема программно-математического обеспечения АСУ ГПС

Программное обеспечение. АСУ ГПС является системой переработки информации, работающей в реальном масштабе времени. Структурная схема программно-математического обеспечения (ПМО) системы представлена на рис. 6.

Прикладное ПМО состоит из функциональных пакетов прикладных программ, реализующих функции системы управления, и программ, обеспечивающих ввод-вывод информации, проходящей через систему управления. Обмен информацией пользователей с системой обеспечивается с помощью универсальных диалоговых средств.

ПМО системы управления, работающей в реальном масштабе времени, должно обеспечивать: защиту файлов данных от несанкционированного доступа; регистрацию всех происходящих событий.

Эффективная обработка информации в АСУ обеспечивается использованием централизованной базы данных, взаимодействующей со всеми функциональными подсистемами.

Выбор онерационной системы. Операционная система (ОС), предназначенная для использования в АСУ ГПС, должна обеспечивать: работу в реальном масштабе времени; одновременную работу нескольких пользова-

телей в режиме раздельного времени; мультипрограммирование; использование вторичной памяти прямого доступа в качестве основного носителя операционных систем; организацию эффективной загрузки-выгрузки задач; способность адаптироваться к изменениям конфигурации технических средств УВК и объекта управления; организацию выполнения задач в адресном пространстве свыше 32К слов; динамическое управление памятью; организацию динамического взаимодействия и передачи данных между параллельно выполняющимися прикладными программами; иерархическую организацию ввода-вывода; наличие удобного языка взаимодействия пользователя с операционными системами, стандартных пакетов обработки информации и средств моделирования; возможность использования широкого спектра современных систем программирования; защиту разделяемых ресурсов, программ и данных.

Для УВК СМ-4 разработан ряд операционных систем, пригодных для использования в СУ, характеристики которых представлены в табл. 31.

Для одно- и двухуровневых АСУ наиболее эффективно применять систему ОС РВ и ее модификация.

31. Основные параметры оперативных систем УВК СМ-4

Параметр	РАФОС	дос кп	OC PB	JAS
Максимальный объем оперативной памяти, К слов	124	124	124	124
Число подключаемых терминалов	4	63	32	32
Наличие мультипрограм- ной работы		I	Имеется	- *
Число одновременно выполняемых программ	1 + фоновые	250	уровней приори	тета
Языки программирования Возможность подключения дополнительных пакетов стандартных программ	ФОРТРАН; БЭЙСИК; ФОКАЛ; АПЛ; МАК- РОАССЕМБ- ЛЕР, ПАС- КАЛЬ, «С»	ФОРТРАН; БЭЙСИК — ПЛЮС-2; РПГ-2, МАКРОАС- СЕМБЛЕР ПАСКАЛЬ, КОБОЛ, «С»	ФОРТРАН; БЭЙСИК — ПЛЮС-2; КОБОЛ; ПАСКАЛЬ, МАКРОАС- СЕМБЛЕР, ПЛ-11, «С» Да	ФОРТРАН; БЭЙСИК — ПЛЮС-2 КОБОЛ, МАКРОАС- СЕМБЛЕР
Наиболее эффективная область применения	Непосредственное управление технологическими объектами	Справочные (запросные) системы сбора и обновления данных	Иерархические системы управления технологическими процессами	Верхний уровень иерархических систем управления технологическими процессами

32. Сравнительные характеристики системы управления базой данных

	Функ	циональные	е характери	Технические характеристики		
е Система	Тип модели	Вмести- мость намяти, К слов	Наличие языка диалого- вого дос- тупа	Наличие генера- тора отс- четов	Диапазон временных характеристик	Легкость исполь- зования, гибкость
БСП СУД+ ФОБРИН	Табличная	16-24	Да	Да	Близкий к реально- му времени + Ин- терактивная работа	Удовлетво- рительная
ДВМЅ-11	Сетевая	44-88	Ограни- ченный	Нет	_	_
CETOP	»	15	»	»	_	_
КВАНТ	Ассоциа- тивно-таб- личная	32-64	Да	Да	Близкий к реально- му времени + Инте- рактивная работа	Хорошая
ORACLE	То же	50	»	»	Близкий к реальному времени + Интерактивная работа	- , 1

 Π р и м е ч а н и е. Диапазон временных характеристик (время реакции на запрос): в реальном времени — менее $100\,$ мс; близкий к реальному времени — $100\,$ мс — $1\,$ с; интерактивная работа — более $1\,$ с.

Выбор языков реализации. Для разработки ПМО рекомендуется использовать следующие языковые средства:

для разработки дрейверов внешних устройств и программных интерфейсов — языки МАКРОАССЕМБЛЕР, «С»;

для подсистем оперативного управления, планирования и учета — ФОРТРАН, ПА-СКАЛЬ, ФОБРИН и находящийся на стадии разработки язык АДА;

для задач технологической подготовки производства (с учетом унификации ПО, реализованного на ЭВМ другого типа) — ФОР-ТРАН.

Построение информационного обеспечения. Средства организации информации должны обеспечивать:

хранение и обновление значительного количества операционных данных, отображающих функционирование ГПС (под операционными данными понимаются технологические, технико-экономические данные, размещаемые во вторичной памяти на магнитных дисках и т. д.);

совместное использование данных всеми функциональными подсистемами.

Под базой данных (БД) понимается совокупность операционных данных, используемых функциональными подсистемами АСУ ГПС.

В базу данных включена не только информация об объектах, но и информация о связях между объектами, объединяющих их друг с другом.

Ядром системы угравления базой данных является модель данных, которая определяет способы организации данных и соответствующий подъязык доступа к данным. Под моделью подразумевается абстрактное представление пользователя об информации в базе данных, не связанное со способом хранения записей.

Для УВК СМ-4 разработаны следующие системы управления базой данных (СУБД); БСП СУД + ФОБРИН; DBMS-11, СЕТОР, КВАНТ, ORACL E.

Сводные сравнительные характеристики СУБД приведены в табл. 32.

Для разработки АСУ ГПС пелесообразно использовать ассоциативно-табличный подход, имеющий: возможность изменения модели без увеличения сложности; удобство и полноту подъязыковых данных; более удобную для пользователя ассоциативно-табличную модель данных; теоретическую основу проектирования модели данных.

6. КОМПОНОВКА ГПС

компоновочного плана ГПС – учет потребности в необходимых производственных площадях, рациональное размещение и взаимоувязка основного технологического оборудования, транспортноскладской системы, энергетического оборудования и вспомогательных систем и устройств. На основании компоновочного плана осуществляется выдача заданий на разработку специальных частей проекта. От компоновочного решения в значительной мезависят технологические, пионные и технико-экономические показатепи ГПС.

Компоновочное решение ГПС разрабатывается на основе последовательного уточнения транспортных связей и схемы расположения технологического оборудования. Результатом этой работы должны быть организация рациональной схемы грузопотоков, учитывающей расположение технологического и энергетического оборудования, сокращение длины и упрощение транспортных связей, рациональное использование площади и объемов производственных помещений, обеспечение техники безопасности труда и пожарной безопасности, а также снижение капитальных и эксплуатационных расходов [2].

Строительно-компоновочные решения ГПС должны быть основаны на применении унифицированных типовых секций промышленных зданий с шириной пролета 18 и 24 м (для вновь проектируемых производственных корпусов) и существующих промышленных зданий с шириной пролета 12, 15, 18 и 24 м при техническом перевооружении действующих предприятий.

Компоновочные планы ГПС выполняются в масштабе 1:100. Поперечные и продольные разрезы могут выполняться в масштабе 1:50 и 1:100.

Разбивочные оси корпуса в плане сохраняют маркировку, принятую в строительных чертежах, а именно: горизонтальные оси рядов колонн помечают снизу вверх по оси ординат прописными русскими буквами в алфавитном порядке; вертикальные оси рядов колонн нумеруют слева направо по оси абсписс арабскими цифрами, начиная с единицы в порядке возрастания; разбивочные оси маркируют в кружках диаметром 8 мм (для М1:100 и 1:200).

Для разработки компоновочного плана

ГПС в общем виде необходимы следующие исходные материалы: заявка на создание ГПС; компоновочный план завода, корпуса; строительные чертежи корпуса с поперечными и продольными разрезами (при реконструкции или техническом перевооружении); производственная программа; структура ГПС, полученная в результате имитационного моделирования; распределение станкоемкости деталей и операций; ведомости действующего модернизируемого оборудования с техническими характеристиками; планы расположения действующего оборудования со спецификациями, вертикальными разрезами и коммуникациями.

Выбор способа расположения оборудования зависит от формы организации производства и принятой схемы АТСС. Расстановку станков выполняют согласно "Общесоюзным нормам технологического проектирования механообрабатывающих и сборочных цехов предприятий машиностроения, приборостроения и металлообработки".

При разработке компоновочных планов следует руководствоваться следующими правилами [7]: расстановка технологического оборудования проводится по ходу основного технологического процесса вдоль производственного пролета; с тыльной стороны станков предусматривают специальные проезды движения вспомогательных для портных средств и прохода людей; оборудование АТСС рекомендуется располагать на межколонного пространства (мертвые зоны); станки необходимо группировать по принципу максимума и минимума съема стружки, образующейся при обработке; между тыловыми частями параллельно стоящих станков предусматривают расстояние не менее 700 мм с целью проведения каналов, предназначенных для удаления стружки: системы транспортирования стружки приближены лолжны быть максимально к технологическому оборудованию; не допускается пересечение индивидуальных фундаментов станков с системой стружкоуборки.

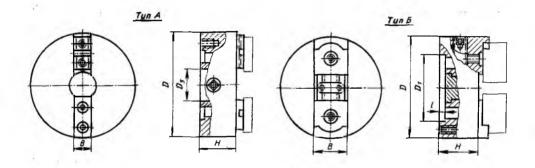
Компоновочный план ГПС на стадии разработки технического предложения выполняют без привязки. Привязку проводят при разработке рабочей документации нанесением масштабной сетки (1 × 1 см), совмещенной с разбивочными осями здания. Однако точность установки оборудования в ГПС, увязка его с АТСС инженерными коммуникациями, как правило, не допускает отклонений в привязках, производимых на-

несением масштабной сетки. Поэтому увязку проводят размерными линиями к разбивочным осям здания от заданной общей базы и между смежными единицами оборудования (цепочкой).

Привязку оборудования осуществляют: по главным осям оборудования; по осям болтовых отверстий в фундаменте или основанию оборудования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бурштейн И. М. Динамическое программирование в планировании. М.: Экономика, 1968, 138 с.
- 2. Гибкое автоматизированное производство/Под ред. С. А. Майорова, Г. В. Орловского, Л.: Машиностроение, 1985. 483 с.
- 3. Дащенко А. И., Белоусов А. П. Проектирование автоматических линий. М.: Высшая школа, 1983. 328 с.
- 4. Жданович В. Ф., Гай Л. Б. Комплексная автоматизация и автоматизация в механических цехах. М.: Машиностроение, 1976. 287 с.
- 5. Козырев Ю. Г. Промышленные роботы: Справочник. М.: Машиностроение, 1983. 374 с.
- 6. Ныс Д. А., Шумяцкий Б. Л., Еленева Ю. А. Развитие автоматизированного проектирования гибких производственных систем для механической обработки. М.: НИИМАШ, 1984. 63 с.
- 7. Общесоюзные нормы технологического проектирования механообрабатывающих и сборочных цехов предприятий машиностроения, приборостроения и металлообработки. М.: НИИМАШ, 1984. 112 с.
- 8. Полей С. М. Контроль состояния режущего инструмента на станках с ЧПУ. М.: НИИМАШ, 1983. 51 с.
- 9. Пуш В. Э., Пиггерт Р., Сосонкин В. Л. Автоматические станочные системы. М.: Машиностроение, 1982. 318 с.
- 10. Создание и применение АСУ для станочных систем. М.: НИИМАШ, 1984. 65 с.
- 11. Саульев В. К. Математические модели теории массового обслуживания. М.: Статистика, 1979. 96 с.
- 12. Чернявский Л. Б. Автоматизированные транспортно-накопительные системы гибких производственных систем механической обработки деталей. М.: ВНИИТЭМР, 1985. 47 с.


глава 6

СТАНОЧНЫЕ ПРИСПОСОБЛЕНИЯ К МЕТАЛЛОРЕЖУЩИМ СТАНКАМ

1. УНИВЕРСАЛЬНЫЕ ПРИСПОСОБЛЕНИЯ

1. Патроны самоцентрирующие двухкулачковые (ГОСТ 14903-69)

Размеры, мм

Продолжение табл. 1

D	D ₃	В	H	Обозначение патрона	D	<i>D</i> ₁	В	Н	l
125	30	20	60	7102-0006	125	95	28	80	
160	40		65	7102-0007	160	130	36	90	4
200	50	28	75	7102-0008	200	165	40	100	
250	65	26	85	7102-0009	250	210	50	110	5
315	80	30	95	7102-0010	315	270	60	115	
	125 160 200 250	125 30 160 40 200 50 250 65	125 30 20 160 40 200 50 28 250 65 36	125 30 20 60 160 40 28 75 250 65 36	В В Н патрона 125 30 20 60 7102-0006 160 40 28 65 7102-0007 200 50 50 75 7102-0008 250 65 36 85 7102-0009	В В Н патрона В 125 30 20 60 7102-0006 125 160 40 28 65 7102-0007 160 200 50 28 75 7102-0008 200 250 65 36 85 7102-0009 250 250 36 36 36 36 36	В В В Н патрона В В 125 30 20 60 7102-0006 125 95 160 40 28 65 7102-0007 160 130 200 50 28 75 7102-0008 200 165 250 65 36 85 7102-0009 250 210	В В Н патрона В В 125 30 20 60 7102-0006 125 95 28 160 40 28 65 7102-0007 160 130 36 200 50 28 75 7102-0008 200 165 40 250 65 36 85 7102-0009 250 210 50	В В В Н патрона В В Н 125 30 20 60 7102-0006 125 95 28 80 160 40 28 65 7102-0007 160 130 36 90 200 50 50 75 7102-0008 200 165 40 100 250 65 36 85 7102-0009 250 210 50 110

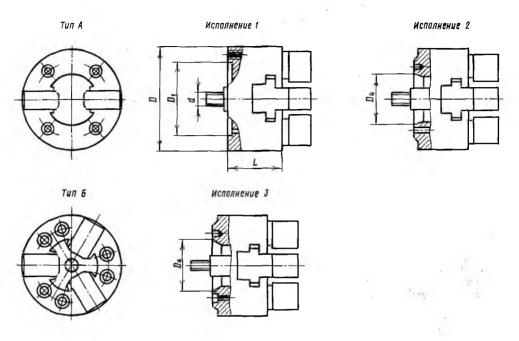
 Π р и м е ч а н и е. Патроны типа A — спирально-реечные, типа B — винтовые.

Пример условного обозначения: Патрон 7102-0001 ГОСТ 14903-69

2. Патроны самоцентрирующие трехкулачковые (ГОСТ 2675-80)

Размеры, мм	4	Tun 1			Tun 2			Tun 3	•	
			+		Н,			H ₁		7
	(Обозначение	патрона тил	a				вный мер		
	1		2		3		ког	нца нделя	Н	H_1
	,		лнение		,	D	ТИ	па		
1	2	1	2	I	2		2	3	He 6	более
7100-0 0 01 7100-0002	_	_	_ _		_	80 100			50 55	
7100-0003	_	7100-0025	-	_	_	125	3	-	60	65
_	_	7100-0026	_	4		ļ	4			
7100-0005	7100-0006	7100-0027	7100-0028	_	_	160			65	75
-		7100-0029	7100-0030		-		5	<u></u>		
7100-0007	7100-0008	7100-0031	7100-0032	7100-0059	7100-0060	200		4	75	85
_	_	7100-0033	7100-0034	_	_		6			
7100-0009	7100-0010	7100-0035	7100-0036	7100-0061	7100-0062	250		5	85	95
-	_	7100-0037	7100-0038	_	_		8			
7100-0011	7100-0022	7100-0039	7100-0040	7100-0063	7100-0064	315	6	6	95	100
_		7100-0041	7100-0042	_	_		8	-		
7100-0015	7100-0016	7100-0043	7100-0044	7100-0065	7100-0076	400		8	105	110
	-	7100-0045	7100-0046		_	<u> </u>	11	-		<u> </u>
7100-0017	_	7100-0047	7100-0048	_	_	500	- 8		115	120
	7100-0018	7100-0049	7100-0050	7100-0067	7100-0068		11	11		
7100-0019	7100-0020	7100-0051 7100-0052	7100-0052 7100-0053	- 7100-0069	7100-0070	630	15	15	125	130

Примечания: 1. Патроны типа 1—с цилиндрическим центрирующим пояском, устанавливаемые на шпиндели через переходной фланец; типа 2—с креплением непосредственно на фланцевые концы шпинделей по ГОСТ 12593—72; типа 3—с креплением непосредственно на фланцевые концы шпинделей по ГОСТ 12595—72; исполнения 1—с цельными кулачками; исполнения 2—со сборными кулачками.


2. Патроны имеют классы точности H, П, В, А. В обозначении патронов приводится буквенный индекс классов точности П, В, А; буквенный индекс класса точности H не указывается.

Пример условного обозначения:

Патрон 7100-0001П ГОСТ 2675-80

3. Патроны токарные самоцентрирующие трех- и двухкулачковые клиновые и рычажно-клиновые ($\Gamma OCT~24351-80$)

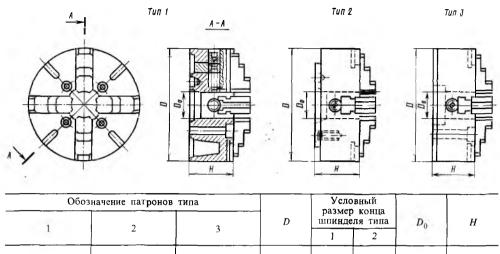
Размеры, мм

	Обо	означение п	атрона типа	a			размер нделя				
	Типа А			Типа Б		_			١.		_
	Ис	толнения по	крепленнк	0		D		L	d	D_1	D_4
1	2	3	1	2	3		Условный коица шп				
_	-	_	7102-0058 7102-0059		=	80 100		65 70	M12	80 100	
7102-0011 7102-0012	-		7102-0060 71 02-00 61	_ _	_ _	1-25	4	80		125	-
7102-0013		_	7102-0064	_	_	150	_			150	
7102-0014 7102-0015	- 7102-0016	- 7102- 0 017	7102-0065 7102-0066	7102-0067	- 7102-0074	16 0	4 5	90	M16	160	82, 653
7102-0018	-	-	7102-0068	_	_	175				175	-
7102-0019 7102-0020	_ 7102-0021	_ 7102-0022	7102-0069 7102-0070	_ 7102-0071	_ 7102-0075	200	5 6	110	l	200	82, 563 106, 375
7102-0023	7102-0024	7102-0025	7102-0072	7102-0073	7102-0076	2 50	8		M24	2 50	139, 719

Продолжение табл. 3

	Обо	значение п	атрона типа	a			мер				
	Типа А			Типа Б		1	размер нделя				
	Ист	полнения по	крепленик)		D	ый шпи	L	d	D_1	D_4
1	2	3	1	2	3		Условный конца шп		[]		
-	7102-0026	7102-0027	-	7102-0077	7102-0078	250	6	110	M24	250	106, 375
7102-0028	1	7102-0030 7102-0032		7102-0080 7102-0082		ולוזו	8 11	125	M27		139, 719 196, 869
7102 -0033 —	1	7102-0035 7102-0037		7102-0085 7102-0087	7102-0086 7102-0088	400	R	145		400	139, 719 196, 869
7102-0038	7102-0039	7102-0040	7102-0089	7102-0090	7102-0091		8				139, 719
-	7102-0041	7102-0042 7102-0044	-	7102-0092 7102-0094	7102-0093	500	-	175	M36	,	196, 869 285, 775
7102-0045 —	7102-0046	7102-0047 7102-0049	7102-0096		7102-0098	420	11	210	1	630	106 860
											,

Примечания: 1. Патроны типа A — двухкулачковые, типа Б — трехкулачковые. Исполнения по креплению: 1 — с креплением на шпиндель станка через переходной фланец; 2 — с креплением непосредственно на фланцевый конец шпинделя по ГОСТ 12595—72; 3 — с креплением непосредственно на фланцевый конец шпинделя по ГОСТ 12593—72.


Исполнения по конструкции: I — клиновые, 2 — рычажно-клиновые. В обозначении патронов указывается цифровой индекс исполнения по конструкции.

- 2. Исполнения крепления для кулачков с помощью: І крестового шпоночного паза; 2—зубчато-реечного зацепления с мелким зубом; 3—зубчато-реечного зацепления с мелким зубом безвинтовое. В обозначении патронов указывается цифровой индекс исполнения крепления для кулачков.
- 3. Патроны имеют классы точности H, Π , B, A. B обозначении патронов приводится буквенный индекс классов точности Π , B, A; буквенный индекс класса точности H не указывается.

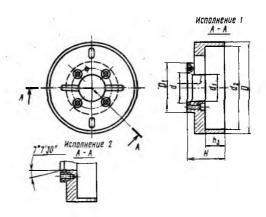
Пример условного обозначения:

Патрон 7102-0011-1-1П ГОСТ 24351-80

4. Патроны четырехкулачковые с незавнсимым перемещением кулачков (ГОСТ **3890—82**) Размеры, мм

	пачение пагронов		D	размер		D_0	Н
1	2	3		1	2		
-	7103-0040 7103-0041	7103-0016	160	=	4 5	40	65
7103-0001	7103-0042 7103-0043	7103-0017	200	5	4	50 .	75
7103-0002 —	7103-0044 7103-0045 7103-0046	7103-0018	250	5 -	5 6 8,	70	85
7103-0003	7103-0040 7103-0012 7103-0047	7103-0019	315	6	6 8	90	95
7103-0004 7103-0005	7103-0049 7103-0013	7103-0020	400	6 8	6 8	100	105
- 7103-0006	7103-0052 7103-0014	7103-0021	500	ĪI	8 11	130	115
- 7103-0007	7103-0053 7103-0015	7103-0022	630	11	8 11	160	125
7103-0008 7103-0009	7103-0054 7103-0055	7103-0023	800	11	11 15	200	135
7103-0010 7103-0011	7103-0056 7103-0057	7103-0024 —	1000	11 15	11 15	200	133

Примечания: І. Патроны типа 1-c креплением непосредственно на фланцевые концы шпинделей по ГОСТ 12595-72; типа 2-c креплением непосредственно на фланцевые концы шпинделей по ГОСТ 12593-72; типа 3-c цилиндрическим центрирующим пояском, устанавливаемые на шпиндели через переходной фланец.

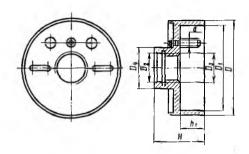

2. Патроны имеют классы точности H, Π , B, A. В обозначении патронов приводится буквенный индекс классов точности Π , B, A; буквенный индекс класса точности H не указывается.

Пример условного обозначения:

Патрон 7103-0001 П ГОСТ 3890-82

5. Патроны токарные поводковые (ГОСТ 2571-71)

Размеры, мм

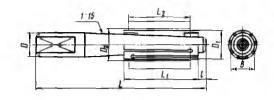


Обозначение пат	рона исполнения				,	Ī.			
1	2	D	<i>D</i> ₁	d	d ₁	d ₂	1	H	h ₃
7108-0021	-	200	108	63, 513	61,0	188	10	100	55
	7108-0022		112						
7108-0023	_	250	133	82,563	79,6	236	12	112	65
_	7108-0024		135] ",	,.,,.				
7108-0025	_	315	165	106,375	103,2	298	13	125	70
	7108-0026		170						
7108-0027	_	400	210	139,719	136,2	380	14	145	85
_	7108-0028		220						
7108-0029	_	500	280	196,869	192,9	475	16	165	100
	7108-0030	_ 30	290]	,,	.,,,		. 30	.30
			'						

Пример условного обозначения: Патрон 7108-0021 ГОСТ 2571-71

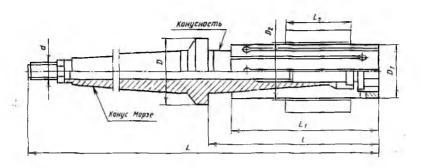
6. Патроны поводковые для резьбовых концов шпинделей (ГОСТ 2572-72)

Размеры, мм

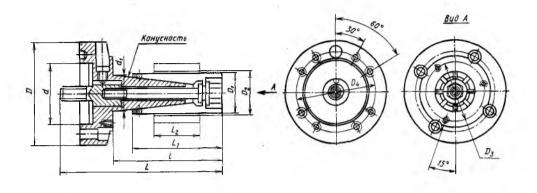

Обозначение патрона	D	D_1	D ₂	D ₃	D_4	d	Н	h ₁
7108-0051	160	148	35	M33	60	12	90	50
7108-0052			40	M39			95	
7108-0053	200	188	48	M45	85	16	105	55
7108-0054			55	M52			110	
7108-0055	250	236	62	M60	110	18	135	65
7108-0056			70	M68		_	145	
7108-0057	315	298	78	M 76	135	22	150	70
7108-0058			92	M90			165	
7108-0059			110	M105	170	25	210	
7108-0060	400	380	125	M120			225	100
7108-0061			140	M135	215	30	235	
7108-0062			155	M150			265	

Пример условного обозначения: Патрон 7108-0051 ГОСТ 2572-72

7. Оправки с разрезными цангами для точных работ (ГОСТ 31,1066.02-85)


Тип I – центровые с ручным зажимом

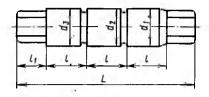
Размеры, мм


Обозначение	D	,			1	В	Разм	еры устан загото		мых
оправки	D		D_1	L_1	, ,	B		D_2	1	-2
							наим.	наиб.	наим.	наиб
7112-1451 7112-1452	14,10 15,77	155	15,80 17,78	70		12 13	16 18	18,00 20,08	14	56
7112-1453 7112-1454 7112-1455 7112-1456	17,53 19,23 20,90 22,63	165	19,78 21,75 23,75 25,75	80	5	15 16 18 19	20 22 24 26	22,08 24,05 26,05 28,05	16	63
7112-1457 7112-1458	24,30 27,07	175 195	27,72 29,72	90		21 23	28 30	30,02 32,72	18	71
7112-1459 7112-1461 7112-1462	28,87 30,50 32,17	205	31,72 33,70 35,70	100		25 26 27	32 34 36	34,72 36,70 38,50	20	80
7112-1463 7112-1464 7112-1465 7112-1466	33,90 36,57 38,30 40,90	215	37,70 39,66 41,66 44,66	110		29 31 33 35	38 40 42 45	40,70 43,66 45,66 48,66	22	85
7112-1467 7112-1468 7112-1469	43,40 45,03 48,67	240	47,60 49,60 52,60	120	10	37 39 42	48 50 53	51,60 53,60 57,60	24	95
7112-1471	51,43	260	55,55	125		44	56	60,55	25	100
7112-1472 7112-1473	54,63 57,27	265	59,55 62,55	130		47 49	60 63	64,55 67,55	26	105
7112-1474	60,60	275	66,50	140		52	67	71,50	28	110
7112-1475 7112-1476	65,03 68,47	300	70,50 74,5 0	150		56 59	71 75	76,50 80,50	30	120
7112-1477 7112-1478	72,83 77,10	310	79,45 84,45	160		63 67	80 85	85,45 90,45	32	130
7112-1479 7112-1481	82,27 86,63	340	89,40 94,40	170	15	72 76	90 95	96,40 101,40	34	135
7112-1482	91,90	265	99,35	180		80	100	107,35	36	145

Тии II — шпиндельные с пиевматическим зажимом

Обозначение	D	d	L	D_1	L_1	1	Конус Морзе	Ко- нус-	Разме	ры уста загот		аемых
о пр авки							Морзе	ность	I)2	1	-2
						-	ſ		наим.	наиб.	наим.	наиб
7112-1483 7112-1484 7112-1485	44 46 52	M12	268 269 294	31,72 33,70 35,70	100	117,0 117,7 118,0	4	1:7	32 34 36	34,02 36,00 38,20	20	80
7112-1486 7112-1487 7112-1488	54 56 58		307 314	37,70 39,70 41,70	110	129,8	5	1 :6	38 40 42	40,50 42,50 45,00	22	85
7112-1489 7112-1491 7112-1492	60 62 64	M14	316 332	44,70 47,60 49,60	120	145,0			45 48 50	48,06 51,60 53,60	24	95
7112-1493 7112-1494 7112-1495	70 71 74	M16	387 390	52,60 55,55 59,55	125 130	150,0 160,0		1:5	53 56 60	56,60 60,15 64,55	25	100
7112-1496 7112-1497	75 77	M20	413	62,50 66,50	140	170,0	6		63 67	67,55 71,50	26 28	105 110
7112-1498 7112-1499 7112-1501	83 85 90	M24	450 462	70,50 74,50 79,45	150 160	182,0		1:4	71 75 80	76,50 80,50 85,45	30	120
7112-1502 7112-1503	95 100		463 479	84,45 89,40	170	206,0		1,4	85 90	90,45 96,40	34	135
7112-1504 7112-1505	105	M30	495 510	94,40 99,35	180	220,0			95 100	101,40 107,55		145

Тип III — фланцевые с пневматическим зажимом, устанавливаемые на фланцевые концы шпинделей (ГОСТ 12593-72 и ГОСТ 12595-72)



-													еры уст мых заг		
Обозна- чение оправки	ый размер ппинделя	D	d	L	D_1	D_3	D_4	d_1	L_1	i	Ко- нус- ность		D ₂	I	2
	Условный конца шпи											наим.	наиб.	наим.	наиб.
7112-1506 7112-1507				218	49,60 52,60			45,4 48,0	120	148		50 53	53,60 56,60	24	95
7112-1508				1223	22 22			50,8	125	153	1:5	56	60,15	25	100
7112-1509 7112-1511	5	133	82,563	233	59,55 62,55	78	104,8	55,0 57,6	130	163		60	64,55	26	105
7112-1512				243	66.50			61,0	140	173		67	71,50	28_	110
7112-1513 7112-1514				252	70,50 74,50			65,4 68,8	150	182		71 75	76,50 80,50	30	120
7112-1515 7112-1516					79 45			73,2 77,5	160	192	1 ;4	80 85	85,45 90,45	32	130
7112-1517 7112-1518	6	165	106,375		89,40 94,40		133,4		170	206		90 95	96,40 101,40	34	135
7112-1519) 	300	99,35			92,3	180	220		100	107,35		145

Пример условного обозначения: Оправка 7112-1451 ГОСТ 31.1066.02-85

8. Оправки цилнидрические ступенчатые центровые (ГОСТ 16213-70)

Размеры, мм

Обозначение комплекта оправок	Номер оправ- ки	Обознач е ние оп р авки	Диаметр отверстия обрабаты- ваемой детали	1	L	d _l	d_2	<i>d</i> ₃	1,
7110-0526	1 2	7110-0526-1 7110-0526-2	8	8	44	7,993 8,007	8,000 8,015	8,005 8,020	10
7110-0527	1 2	7110-0527-1 7110-0527-2		12	56	7,993 8,007	8,000 8,015	8,005 8,020	10
7110-0528	1 2	7110-0528-1 7110-0528-2	9	10	54	8,993 9, 00 7	9,000 9,015	9,005 9,020	
7110-0529	1 2	7110-0529-1 7110-0529-2		14	64	8,993 9,007	9,000 9,015	9,005 9,020	
7110-0530	1 2	7110-0530-1 7110-0530-2	10	10	54	9,993 10,007	10,000 10,015	10,005 10,020	12
7110-0531	1 2	7110-0531-1 7110-0531-2		16	72	9,993 10,007	10,000 10,015	10,005 10,020	
7110-0532	1 2	7110-0532-1 7110-0532-2		12	18	10,991 11,009	11,000 11,018	11,006 11,024	
7110-0533	1 2	7110-0533-1 7110-0533-2	11	18	32	10,991 11,009	11,000 11,018	11,006 11,024	d
7110-0534	1 2	7110-0534-1 7110-0534-2	12	12	64	11,991 12,009	12,000 12,018	12,006 12,024	
7110-0535	1 2	7110-0535-1 7110-0535-2	12	18	82	11,991 12,009	12,000 12,018	12,006 12,024	
7110-0536	1 2	7110-0536-1 7110-0536-2	13	14	70	12,991 13,009	13,000 13,018	13,006 13,024	
7110-0537	1 2	7110-0537-1 7110-0537-2		20	88	12,991 13,009	13,000 13,018	13,006 13,024	14
7110-0538	1 2	7710-0538-1 7110-0538-2	14	14	70	13,991 14,009	14,000 14,018	14,006 14,024	
7110-0539	1 2	7110-0539-1 7110-0539-2		22	94	13,991 14,009	14,000 14,018	14,006 14,024	
	<u>_</u>		<u> </u>					1	

Обозначение									
	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой легали	1	L	d_1	d_2	d_{x}	<i>l</i> ₁
7110-0540	1 2	7110-0540-1 7110-0540-2	1.5	14	74	14,991 15,009	15,000 15,018	15,006 15,024	
7110-0541	1 2	7110-0541-1 7110-0541-2	15	22	98	14,991 15,009	15,000 15,018	15,006 15,024	
7110-0542	1 2	7110-0542-1 7110-0542-2	- 16	16	80	15,991 16,009	16,000 16,018	16,006 16,024	
7110-0543	1 2	7110-0543-1 7110-0543-2		25	107	15,991 16,009	16,000 16,018	16,006 16,024	10
7110-0544	1 2	7110-0544-1 7110-0544-2	1.7	16	80	16,991 17,009	17,000 17,018	17,006 17,024	
7110-0545	1 2	7110-0545-1 7110-0545-2	17	25	107	16,991 17,009	17,000 17,018	17,006 17,024	
7110-0546	1 2	7110-0546-1 7110-0546-2	10	18	86	17,991 18,009	18,000 18,018	18,006 18,024	16
7110-0547	1 2	7110-0547-1 7110-0547-2	18	28	116	17,991 18,009	18,000 18,018	18,006 18,024	3
7110-0548	1 2	7110-0548-1 7110-0548-2	19	18	90	18,990 19,010	19,000 19,021	19,007 19,028	
7110-0549	1 2	7110-0549-1 7110-0549-2		28	120	18,990 19,010	19,000 19,021	19,007 19,028	
7110-0550	1 2	7110-0550-1 7110-0550-2	20	20	96	19,990 20,010	20,000 20,021	20,007 20,028	
7110-0551	1 2	7110-0551-1 7110-0551-2	20	30	126	19,990 20,010	20,000 20,021	20,007 20,028	
7110-0552	1 2	7110-0552-1 7110-0552-2	21	20	96	20,990 21,010	21,000 21,021	21,007 21,028	18
7110-0553	1 2	7,110-0553-1 7110-0553-2	21	32	132	20,990 21,010	21,000 21,021	21,007 21,028	
7110-0554	1 2	7110-0554-1 7110-0554-2	22	22	102	21,990 22,010	22,000 22,021	22,007 22,028	
7110-0555	1 2	7110-0555-1 7110-0555-2	22	34	138	21,990 22,010	22,000 22,021	22,007 22,028	
7110-0556	1 2	7110-0556-1 7110-0556-2	24	25	120	23,990 24,010	24,000 24,021	24,007 24,028	

⁷ Обработка металлов резанием

							,		
Обозначение комплекта оправок	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой детали	l	I.	d_1	d_2	d_3	<i>I</i> ₁
7110-0557	1 2	7110-0557-1 7110-0557-2	24	36	144	23,990 24,010	24,000 24,021	24,007 24,028	
7110-0558	1 2	7110-0558-1 7710-0558-2	25	25	120	24,990 25,010	25,000 25,021	25,007 25,028	
7110-0559	1 2	7110-0559-1 7110-0559-2		38	150	24,990 25,010	25,000 25,021	25,007 25,028	18
7110-0560	1 2	7110-0560-1 7110-0560-2	26	25	120	25,990 26,010	26,000 26,021	26,007 26,028	
7110-0561	1 2	7110-0561-1 7110-0561-2		40	156	25,990 26,010	26,000 26,021	26,007 26,028	
7110-0562	1 2	7110-0562-1 -7110-0562-2	28	28	128	27,990 28,010	28,000 28,021	28,007 28,028	
7110-0563	1 2	7110-0563-1 7110-0563-2		42	170	27,990 28,010	28,000 28,021	28,007 28,028	
7110-0564	1 2	7110-0564-1 7110-0564-2	30	30	134	29,990 30,010	30,000 30,021	30,007 30,028	
7110-0565	1 2	7110-0565-1 7110-0565-2		45	180	29,990 30,010	30,000 30,021	30,007 30,028	22
7110-0566	1 2	7110-0566-1 7110-0566-2	32	32	140	31,988 32,012	32,000 32,025	32,012 32,034	
7110-0567	1 2	7110-0567-1 7110-0567-2		50	194	31,988 32,012	32,000 32,025	32,012 32,034	
7110-0568	1 2	7110-0568-1 7110-0568-2	34	34	146	34,988 34,012	34,000 34,025	34,012 34,034	
7110-0569	1 2	7110-0569-1 7110-0569-2		50	194	33,998 34,012	34,000 34,025	34,012 34,034	
7110-0570	1 2	7110-0570-1 7110-0570-2	36	36	158	35,988 36,012	36,000 36,025	36,012 36,034	
7110-0571	1 2	7110-0571-1 7110-0571-2		56	218	35,988 36,012	36,000 36,025	36,012 36,034	25
·							-1-N-1		

	Прообъясние тибл								
Обозначение комплекта оправок	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой детали	I	L	<i>d</i> ₁	d_2	d,	<i>t</i> ₁
7110-0572	1 2	7110-0572-1 7110-0572-2	38	38	164	37,988 38,012	38,000 38,025	38,012 38,034	
7110-0573	1 2	7110-0573-1 7110-0573-2		56	218	37,988 38,012	38,000 38,025	38,012 38,034	25
7110-0574	1 2	7110-0574-1 7110-0574-2	40	40	176	39,988 40,012	40,000 40,025	40,012 40,034	
7110-0575	1 2	7110-0575-1 7110-0575-2		63	245	39,988 40,012	40,000 40,025	40,012 40,034	28
7110-0576	1 2	7110-0576-1 7110-0576-2	42	42	182	41,988 42,012	40,000 40,025	42,012 42,034	
7110-0577	1 2	7110-0577-1 7110-0577-2		63	245	41,988 42,012	42,000 42,025	42,012 42,034	- 1
7110-0578	1 2	7110-0578-1 7110-0578-2	45	45	200	44,988 45,012	45,000 45,025	45,012 45,034	
7110-0579	1 2	7110-0579-1 7110-0579-2		67	265	44,988 45,012	45,000 45,025	45,012 45,034	
7110-0580	1 2	7110-0580-1 7110-0580-2	40	48	208	47,988 48,012	48,000 48,025	48,012 48,034	32
7110-0581	1 2	7110-0581-1 7110-0581-2	48	75	290	47,988 48,012	48,000 48,025	48,012 48,034	
7110-0582	1 2	7110-0582-1 7110-0582-2	50	50	215	49,988 50,012	50,000 50,025	48,012 48,034	
7110-0583	1 2	7110-0583-1 7110-0583-2	30	75	290	49,988 50,012	50,000 50,025	48,012 48,034	

Пример условного обозначения комплекта оправок для обработки деталей с отверстием диаметром 8 мм:

Комплект оправок 7110-0526-8 ГОСТ 16213 – 70 Пример условного обозначения оправки № 1:

Оправка 7110-0526-1-8 ГОСТ 16213-70

9. Оправки конические центровые (ГОСТ 16211 - 70)

Размеры, мм

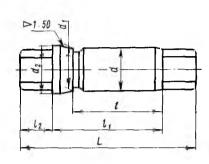
										,
Обозначение комплекта оправок	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой дегали	L	d_1	d_2	1	<i>I</i> ₁	l_2	I_3
7110-0361	1 2	7110-0361-1 7110-0361-2	3,0	52	2,995 3,005	3,010 3,025	38		5	27
7110-0362	1 2	7110-0362-1 7110-0362-2	3,2		3,194 3,206	3,212 3,230				33 43
7110-0363	1 2	7110-0363-1 7110-0363-2	3,6	65	3,594 3,606	3,612 3,630	51	7		33 43
7110-0364	1 2	7110-0364-1 7110-0364-2	4,0		3,994 4,006	4,012 4,030			6	33 43
7110-0365	1 2	7110-0365-1 7110-0365-2	4,5		4,494 4,506	4,512 4,530				33 43
7110-0366	1 2	7110-0366 - 1 7110-0366 - 2	5,0	75	4,994 5,006	5,012 5,030	55		8	33 43
7110-0367	1 2	7110-0367-1 7110-0367-2	5,6	13	5,594 5,606	5,612 5,630	33	10	8	33 43
7110-0368	1 2	7110-0368-1 7110-0368-2	6,3	90	6,293 6,307	6,315 6,336	70		9	44 58
7110-0369	1 2	7110-0369-1 7110-0369-2	7,1		7,093 7,107	7,115 7,136			12 9	44 58
7110-0370	1 2	7110-0370-1 7110-0370-2	8,0	95	7,993 8,007	8,015 8,036	72	12	12 9	44 58
7110-0371	1 2	7110-0371-1 7110-0371-2	9,0		8,993 9,007	9,015 9,036	1		15 10	44 58
7110-0372	1 2	7110-0372-1 7110-0372-2	10,0		9,993 10,007	10,015 10,036	 		15 10	44 58
7110-0373	1 2	7110-0373-1 7110-0373-2	11,0		10,991 11,009	10,018 11,043			18 6	54 68
7110-0374	1 2	7110-0374-1 7110-0374-2	12,0	105	11,991	12,018 12,043	78	14	18	54 68

								Продол	жение	табл. 9
Обозначение комплекта оправок	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой детали	L	d ₁	d_2	1	I ₁	12	l ₃
7110-0375	1 2	7110-0375-1 7110-0375-2	13,0	105	12,991 13,009	13,018 13,043	78	1.4	20 6	54 68
7110-0376	1 2	7110-0376-1 7110-0376-2	14,0		13,991 14,009	14,018 14,043	76	14	20 6	54 68
7110-0377	1 2	7110-0377-1 7110-0377-2	15,0		14,991 15,009	15,018 15,043			24 15	54 68
7110-0378	1 2	7110-0378-1 7110-0378-2	16,0	125	15,991 16,009	16,018 16,043	93	16	24 15	54 68
7110-0379	1 2	7110-0379-1 7110-0379-2	17,0		16,991 17,009	17, 0 18 17,043			26 15	54 68
7110-0380	1 2	7110-0380-1 7110-0380-2	18,0		17,991 18,009	18,018 18,043			26 15	54 68
7110-0381	1 2	7110-0381-1 7110-0381-2	19,0		18,990 19,010	19,021 19,052			30 20	77 105
7110-0382	1 2	7110-0382-1 7110-0382-2	20,0	165	19,990 20,010	20,021 · 20,052	130		30 20	77 105
7110-0383	1 2	7110-0383-1 7110-0383-2	21,0	103	20,990 21,010	21,021 21,052			32 20	77 105
7110-0384	1 2	7110-0384-1 7110-0384-2	22,0		21,990 22,010	22,021 22,052		18	32 20	77 105
7110-0385	1 2	7110-0385-1 7110-0385-2	24,0		23,990 24,010	24,021 24,052			36 25	77 105
7110-0386	1 2	7110-0386-1 7110-0386-2	25,0	170	24,990 25,010	25,021 25,052	135		38 25	77 105
7110-0387	1 2	7110-0387-1 7110-0387-2	26,0		25,990 26,010	26,021 26,052			38 25	77 105
7110-0388	1 2	7110-0388-1 7110-0388-2	28,0	185	27,990 28,010	28,021 28,052	140	22	42 25	77 105
7110-0389	1 2	7110-0389-1 7110-0389-2	30,0		29,990 30,010	30,021 30,052	340		42 25	77 105
7110-0390	1 2	7110-0390-1 7110-0390-2	32,0	215	31.988 32,012	32,025 32,062	170	22	48 30	92 125
7110-0391	1 2	7110-0391-1 7110-0391-2	34,0	_,,,	33,988 34,012	34,025 34,062	, -	_	48 30	92 125

Обозначение комплекта оправок	Номер оправ- ки	Обозн ачение оправ ки	Диаметр отверстия обрабаты- ваемой детали	L	d_1	d_2	t	t_1	l ₂	13
7110-0392	1 2	7110-0392-1 7110-0392-2		230	35,988 36,012	36,025 36,062	180	25	55 30	92 125
7110-0393	1 2	7110-0393-1 7110-0393-2	38,0		37,988 38,012	38,025 38,062			55 30	92 125
7110-0394	1 2	7110-0394-1 7110-0394-2	40,0	240	39,988 40,012	40,025 40,062	185	28	60 45	92 125
7110-0395	1 2	7110-0395-1 7110-0395-2	42,0		41,988 42,012	42,025 42,062			60 45	92 125
7110-0396	1 2	7110-0396-1 7110-0396-2	45,0	265	44,988 45,012	45,025 45,062	200	32	72 45	92 125
7110-0397	1 2	7110-0397-1 7110-0397-2	48,0		47,988 48,012	48,025 48,062			72 45	92 125
7110-0398	1 2	7110-0398-1 7110-0398-2	50,0		49,988 5 0 ,012	50,025 50,062			72 45	92 125
7110-0399	1 2	7110-0399-1 7110-0399-2	52,0		51,985 52,015	52,030 52,074			80 60	112 147
7110-0400	1 2	7110-0400-1 7110-0400 - 2	53,0	310	52,985 53,015	53,030 53,074	238		80 60	112 147
7110-0401	l 2	7110-0401-1 7110-0401-2	55,0		54,985 55,015	55,030 55,074		36	80 60	112 147
7110-0402	1 2	7110-0402-1 7110-0402-2	56,0		55,985 56,015	56,030 56,074		30	85 65	112 147
7110-0403	1 2	7110-0403-1 7110-0403-2	58,0	315	57,985 58,015	58,030 58,074	242		85 65	112 147
7110-0404	1 2	7110-0404-1 7110-0404-2	60,0		59,985 60,015	60,030 60,074			85 65	112 147
7110-0405	1 2	7110-0405-1 7110-0405-2	63,0		62,985 63,015	63,030 63,074			98 80	112 147
7110-0406	1 2	7110-04 06- 1 7110-04 06- 2	65,0	350	64,985 65,015	65,030 65,074	270		98 80	112 147
7110-0407	1 2	7110-0407-1 7110-0407-2	67,0		66,985 67,015	67,030 67,074		40	98 80	112 147
7110-0408	1 2	7110-0408-1 7110-0408-2	70,0	360	69,985 70,015	70,030 70,074	280		105 90	112 147

								провол	экение	mao.i. 9
Обозначение комплекта оправок	Номер оправ- ки	Обозначение оправки	Диаметр отверстия обрабаты- ваемой детали	L	d_1	d ₂	1	, , , , , , , , , , , , , , , , , , ,	l ₂	<i>l</i> ₃
7110-0409	1 2	7110-0409-1 7110-0409-2	71,0	360	70,985 71,015	71,030 71,074	280	40	105 90	112 147
7110-0410	1 2	7110-0410-1 7110-0410-2	75,0		74,985 75,015	75,030 75,074			115 100	112 147
7110-0411	1 2	7110-0411-1 7110-0411-2	78,0	380	77,985 78,015	78,030 78,074	290	45	115 100	112 147
7110-0412	1 2	7110-0412-1 7110-0412-2	80,0		79,985 80,015	80,030 80,074			115 100	112 147
7110-0413	1 2	7110-0413-1 7110-0413-2	82,0		81,983 82,017	82,035 82,087			130 80	130 175
7110-0414	1 2	7110-0414-1 7110-0414-2	85,0	405	84,983 85,017	85,035 85,087	305	50	130 80	130 175
7110-0415	1 2	7110-0415-1 7110-0415-2	88,0	403	87,983 88,017	88,035 88,087	1		130 80	130 175
7110-0416	1 2	7110-0416-1 7110-0416-2	90,0		89, 983 90,017	90,035 90,087		j	130 80	130 175
7110-0417	1 2	7110-0417-1 7110-0417-2	92,0		91,983 92,017	92,035 92,087			150 100	130 175
7110-0418	1 2	7110-0418-1 7110-0418-2	95,0	435	94,983 95,017	95,035 95,087			150 100	130 175
7110-0419	1 2	7110-0419-1 7110-0419-2	98,0	4 00	97,983 98,017	98,035 98,087	325	55	150 100	130 175
7110-0420	1 2	7110-0420-1 7110-0420-2	100,0		99,983 100,017	100,035 100,087			150 100	130 175

Пример условного обозначения комплекта оправок для обработки детали с отверстием диаметром 3 мм:


Комплект оправок 7110-0361-3,0 ТОСТ 16211-70

Пример условного обозначения оправки № 1:

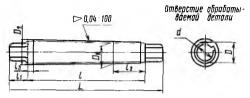
Оправка 7110-0361-1-3,0 ГОСТ 16211-70

10. Оправки цилиндрические центровые (ГОСТ 16212-70)

Размеры, мм

Обозначение оправки	d	1	L	d ₁	<i>d</i> ₂	1,	1,
7110-0431 7110-0432	8	8 16	36 44	7,991	8,090	16 24	10
7110-0433 7110-0434	9	10 18	42 48	8,991	9,090	18 24	12
7110-0435 7110-0436	10	10 20	42 52	9,991	10,090	18 28	
7110-0437 7110-0438	11	12 22	50 60	10,989	10,110	22 32	
7110-0439 7110-0440	12	12 25	50 63	11,989	12,110	22 35	14
7110-0441 7110-0442	13	14 25	52 63	12,989	13,110	24 35	
7110-0443 7110-0444	14	14 28	52 66	13,989	14,110	24 38	
7110-0445 7110-0446	15	14 28	56 70	14,989	15,110	24 38	
7110-0447 7110-0448	16	16 32	58 74	15,989	16,110	26 42	16
7110-0449 7110-0450	17	16 32	58 74	16,989	17,110	26 42	
7110-0451 7110-0452	18	18 36	60 78	17,989	18,110	28 46	

ие та бл. 10	Іродолжени						
12	l _t	d_2	d_1	L	1	d	Обозначение оправки
-	30 48	19,130	18,987	66 84	18 36	19	7110-0453 7110-0454
	32 52	20,130	19,987	68 88	20 40	20	7110-0455 7110-0456
	32 52	21,130	20,987	68 88	20 40	21	7110-0457 7110-0458
	34 58	22,130	21,987	70 94	22 45	22	7110-0459 7110-0460
18	38 62	24,130	23,987	74 98	25 50	24	7110-0461 7110-0462
	38 62	25,130	24,987	74 98	25 50	25	7110-0463 7110-0464
÷	38 62	26,130	25,987	7 4 98	25 50	26	7110-0465 7110-0466
	40 68	28,130	27,987	84 112	28 56	28	7110-0467 7110-0468
22	42 72	30,130	29,987	86 116	30 60	30	7110-0469 7110-0470
•	48 78	32,160	31,984	92 122	32 63	32	7110-0471 7110-0472
	50 82	34,160	33,984	95 125	34 67	34	7110-0473 7110-0474
25	50 85	36,160	35,984	100 135	36 71	36	7110-0475 7110-0476
	52 90	38,160	37,984	102 140	38 75	38	7110-0477 7110-0478
28	55 95	40,160	39,984	110 150	40 80	40	7110-0479 7110-0480
	58 100	42,160	41,984	115 155	42 85	42	7110-0481 7110-0482
	60 105	45,160	44,984	125 170	45 90	45	7110-0483 7110-0484
32	64 110	48,160	47,984	128 175	48 95	48	7110-0485 7110-0486
	66 116	50,160	49,984	120 180	50 100	50	7110-0487 7110-0488
		1					


Продолжение табл. 10

ие табл.	Продолжен	ı								
l_2	I_1	<i>d</i> ₂	d ₁	L	l	d	Обозначение оправки			
	72 124	52,190	51,981	145 195	53 105	52	7110-0489 7110-0490			
	72 124	53,190	52,981	145 195	53 105	52	7110-0491 7110-0492			
36	74 128	55,190	54,981	145 200	56 110	55	7110-0493 7110-0494			
	74 128	56,190	55,981	145 200	56 110	56	7110-0495 7110-0496			
	74 128	60,190	59,981	145 200	56 110	60	7110-0497 7110-0498			
	82 145	62,190	61,981	162 225	63 125	62	7110-0499 7110-0500			
	82 145	63,190	62,981	162 225	63 125	63	7110-0501 7110-0502			
	82 145	65,190	64,981	162 225	63 125	65	7110-0503 7110-0504			
40	82 145	67,190	66,981	162 225	63 125	67	7110-0505 7110-0506			
	90 160	70,190	69,981	170 240	71 140	70	7110-0507 7110-0508			
	90 160	71,190	70,981	170 240	71 140	71	7110-0509 7110-0510			
	90 160	75,190	74,981	190 260	71 140	75	7110-0511 7110-0512			
50	100 180	78,190	77,981	78 80 200 160 280		7110-0513 7110-0514				
	100 180	80,190	79,981	200 280	80 160	80	7110-0515 7110-0516			
					<u></u>	L				

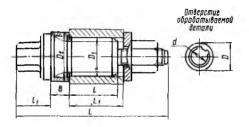
Примечание. В обозначении указывается поле допуска размера d: h6 или k6. Пример условного обозначения:

Оправка 7110-0431-8 h6 ГОСТ 16212-70.

11. Оправки зубчатые (шлицевые) прямобочные конические центровые (ГОСТ 18437-73) Размеры, мм

Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 – 80)	D_1	D ₂	L	1	1,	l_2	l ₃	Число зубь- ев z
7150-0351	$D-6 \times 11 \times 14H7 \times 3F8$ $D-6 \times 11 \times 14H8 \times 3F8$	14,000	14,032	132	104	14	20	3,0	
7150-0352	D-6 × 13 × 16H7 × 3,5F8 D-6 × 13 × 16H8 × 3,5F8	16,000	16,032	136	108		24	4,0	6
7150-0353	$D-6 \times 16 \times 20 H7 \times 4F8$ $D-6 \times 16 \times 20 H8 \times 4F8$	20,000	20.020	165	122	16	30		
7150-0354	$D-10 \times 16 \times 20H7 \times 2,5F8$ $D-10 \times 16 \times 20H8 \times 2,5F8$	20,000	20,039	103	132	16	30		10
7150-0355	$D-6 \times 18 \times 22H7 \times 5F8$ $D-6 \times 18 \times 22H8 \times 5F8$	22,000	22,039	170	135		33	4,5	6
7150-0356	$D-10 \times 18 \times 23H7 \times 3F8$ $D-10 \times 18 \times 23H8 \times 3F8$	23,000	23,039					,,,,,,	10
7150-0357	$D-6 \times 21 \times 25H7 \times 5F8$ $D-6 \times 21 \times 25H8 \times 5F8$	25,000	25,039			18			6
7150-0358	$D-10 \times 21 \times 26H7 \times 3F8$ $D-10 \times 21 \times 26H8 \times 3F8$	26,000	26.020	175	140		38		10
7150-0359	$\begin{array}{c} D\text{-}6 \times 23 \times 26H7 \times 6F8 \\ D\text{-}6 \times 23 \times 26H8 \times 6F8 \end{array}$	26,000	26,039						
7150-0360	$\begin{array}{c} D\text{-}6 \times 23 \times 28H7 \times 6F8 \\ D\text{-}6 \times 23 \times 28H8 \times 6F8 \end{array}$	28,000	28,039						6
7150-0361	$D-10 \times 23 \times 29H7 \times 4F8$ $D-10 \times 23 \times 29H8 \times 4F8$	29,000	29,039	180	145		42		10
7150-0362	$\begin{array}{c} D\text{-}6 \times 26 \times 30 H7 \times 6 F8 \\ D\text{-}6 \times 26 \times 30 H8 \times 6 F8 \end{array}$	30,000	30,039			18	İ	5,5	6
7150-0363	$\begin{array}{c} D\text{-}6 \times 26 \times 32H7 \times 6F8 \\ D\text{-}6 \times 26 \times 32H8 \times 6F8 \end{array}$			205				3,3	
7150-0364	$D-10 \times 26 \times 32 H7 \times 4F8$ $D-10 \times 26 \times 32 H8 \times 4F8$	32,000	32,047		170		47		10
7150-0365	$D-6 \times 28 \times 32H7 \times 7F8$ $D-6 \times 28 \times 32H8 \times 7F8$			215		22	.,		6

							троосло	исение п	панл. 11
Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 $-$ 80)	D_1	D_2	L	l	1,	12	13	Число зубь- ев z
7150-0366	$D-6 \times 28 \times 34H7 \times 7F8$ $D-6 \times 28 \times 34H8 \times 7F8$	34,000	34,047	215	170		47		6
7150-0367	$D-10 \times 28 \times 34 H7 \times 4F8$ $D-10 \times 28 \times 34 H8 \times 4F8$	35,000	35,047			22		5,5	10
7150-0368	$D-8 \times 32 \times 36H7 \times 6F8$ $D-8 \times 32 \times 36H8 \times 6F8$	36,000	36,047	220	175		52		8
7150-0369	$D-8 \times 32 \times 38H7 \times 6F8$ $D-8 \times 32 \times 38H8 \times 6F8$	38,000	38,047						
7150-0370	$D-10 \times 32 \times 40 H7 \times 5 F8$ $D-10 \times 32 \times 40 H8 \times 5 F8$	40,000	40,047	230		22			10
7150-0371	$\begin{array}{c} D\text{-}8 \times 36 \times 40 H7 \times 7F8 \\ D\text{-}8 \times 36 \times 40 H8 \times 7F8 \end{array}$			235	185	25	60	7,5	8
7150-0372	$D-8 \times 36 \times 42H7 \times 7F8$ $D-8 \times 36 \times 42H8 \times 7F8$	42,000	42,047						
7150-0373	$D-10 \times 36 \times 45H7 \times 5F8$ $D-10 \times 36 \times 45H8 \times 5F8$	45,000	45,047	240	190		66		10
7150-0374	D-8 × 42 × 46H7 × 8F8 D-8 × 42 × 46H8 × 8F8	46,000	46,047					6,5	
7150-0375	$D-8 \times 42 \times 48H7 \times 8F8$ $D-8 \times 42 \times 48H8 \times 8F8$	48,000	48,047	250	194		70		8
7150-0376	$D-8 \times 46 \times 50H7 \times 9F8$ $D-8 \times 46 \times 50H8 \times 9F8$	50,000	50,047			28			
7150-0377	$D-10 \times 42 \times 52H7 \times 6F8$ $D-10 \times 42 \times 52H8 \times 6F8$	52,000	52,055						10
7150-0378	$D-8 \times 46 \times 54 H7 \times 9F8$ $D-8 \times 46 \times 54 H8 \times 9F8$	54,000	54,055	280	225		80	7,5	8
7150-0379	$D-10 \times 46 \times 56H7 \times 7F8$ $D-10 \times 46 \times 56H8 \times 7F8$	56,000	56,055						10
7150-0380	$D-8 \times 52 \times 58 H7 \times 10 F8$ $D-8 \times 52 \times 58 H8 \times 10 F8$	58,000	58,055						8
7150-0381	$D-8 \times 52 \times 60 H7 \times 10 F8$ $D-8 \times 52 \times 60 H8 \times 10 F8$	60,000	60,055	300	230	35	85		
7150-0382	$D-16 \times 52 \times 60 H7 \times 5F8$ $D-16 \times 52 \times 60 H8 \times 5F8$,				L		16
7150-0383	$D-8 \times 56 \times 62H7 \times 10F8$ $D-8 \times 56 \times 62H8 \times 10F8$	62,000	62,055	320	240	40	95	- 1 -	8
	<u> </u>		L	Щ	·	<u> </u>			


						4	Продолз	исение т	пабл. 11
Обозпачение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 \sim 80)	D_1	D ₂	L	1	1,	1,	1,	Число зубь- ев z
7150-0384	$D-8 \times 56 \times 65 H7 \times 10 F8$ $D-8 \times 56 \times 65 H8 \times 10 F8$	65,000	65.055	320	240		95	7,5	8
7150-0385	$\begin{array}{c} D\text{-}16 \times 56 \times 65H7 \times 5F8 \\ D\text{-}16 \times 56 \times 65H8 \times 5F8 \end{array}$								16
7150-0386	$D-8 \times 62 \times 68 H7 \times 12 F8$ $D-8 \times 62 \times 68 H8 \times 12 F8$	68,000	68,055			40			8
7150-0387	$D-8 \times 62 \times 72H7 \times 12F8$ $D-8 \times 62 \times 72H8 \times 12F8$	72,000	72,055						
7150-0388	$\begin{array}{c} D\text{-}16 \times 62 \times 72H7 \times 6F8 \\ D\text{-}16 \times 62 \times 72H8 \times 6F8 \end{array}$			340	260		115	i	16
7150-0389	$D-10 \times 72 \times 78H7 \times 12F8$ $D-10 \times 72 \times 78H8 \times 12F8$	78,000	78,055				l		10
7150-0390	$D-10 \times 72 \times 82H7 \times 12F8$ $D-10 \times 72 \times 82H8 \times 12F8$	82,000	82,065						
7150-0391	$ \begin{array}{c} D\text{-}16 \times 72 \times 82 H7 \times 7F8 \\ D\text{-}16 \times 72 \times 82 H8 \times 7F8 \end{array} $			380	300		125		16
7150-0392	$D-10 \times 82 \times 88 H7 \times 12 F8$ $D-10 \times 82 \times 88 H8 \times 12 F8$	88,000	88,065						10
7150-0393	$D-10 \times 82 \times 92H7 \times 12F8$ $D-10 \times 82 \times 92H8 \times 12F8$	92,000	92,065			40	Į.		
7150-0394	$D-20 \times 82 \times 92H7 \times 6F8$ $D-20 \times 82 \times 92H8 \times 6F8$			İ			!	12,5	20
7150-0395	$D-10 \times 92 \times 98 H7 \times 14 F8$ $D-10 \times 92 \times 98 H8 \times 14 F8$	98,000	98,065	400	320		145		10
7150-0396	$D-10 \times 92 \times 102H7 \times 14F8$ $D-10 \times 92 \times 102H8 \times 14F8$	102,000	102,065						
7150-0397	$D-20 \times 92 \times 102H7 \times 7F8$ $D-20 \times 92 \times 102H8 \times 7F8$								20
7150-0398	$D-10 \times 102 \times 108 H7 \times 16 F8$ $D-10 \times 102 \times 108 H8 \times 16 F8$	108,000	108,065						10
7150-0399	$D-10 \times 102 \times 112H7 \times 16F8$ $D-10 \times 102 \times 112H8 \times 16F8$	112,000	112,065	445	345	50	170		
7150-0400	$D-20 \times 102 \times 115 H7 \times 8F8$ $D-20 \times 102 \times 115 H8 \times 8F8$	115,000	115,065	- CFT)) 1)	50	1/0		20
7150-0401	$D-10 \times 112 \times 120$ $H7 \times 18$ $F8$ $D-10 \times 112 \times 120$ $H8 \times 18$ $F8$	120,000	120,065						10

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 – 80)	D,	D_2	L		<i>I</i> ₁	l ₂	13	Число зубь- ев <i>z</i>
$D-20 \times 112 \times 125 H7 \times 9F8$	7150-0402	$D-10 \times 112 \times 125H7 \times 18F8$ $D-10 \times 112 \times 125H8 \times 18F8$	125.000	125,080	500	400	50	185	15,0	10
			1							20

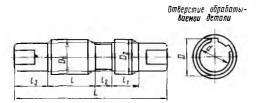
Пример условного обозначения: Оправка 7150-0351 ГОСТ 18437 - 73

12. Оправки зубчатые (шлицевые) центровые (ГОСТ 18438-73)

Размеры, мм

Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139—80)	1	D_1	D_2	L	Наиболь- шая дли- на L_1 обрабаты- ваемого участка	В	I ₁	Число зубь- ев 2		
7150-0421 7150-0422	$D\text{-}6 \times 28 \times 32 \text{H}7 \times 7 \text{F8}$	32 50	32	45	140 15 5	50 67			6		
7150-0423 7150-0424	$D-6 \times 28 \times 34H7 \times 7F8$	32 50	34	48	140 155	50 67		30			
7150-0425 7150-0426	$D-10 \times 28 \times 35H7 \times 4F8$	32 50	35	50	140 155	50 67			10		
7150-0427 7150-0428	$D-8 \times 32 \times 36H7 \times 6F8$	32 50	36	50		140 155	50 67	25		8	
7150-0429 7150-0430	$D-8 \times 32 \times 38H7 \times 6F8$	40 63	38	53	160 180	63 85			· ·		
7150-0431 7150-0432	$D\text{-}10 \times 32 \times 40 \text{H}7 \times 5 \text{F8}$	40 63	40	56	56	1 15	160 180	63 85		36	10
7150-0433 715 0 -0434	$D-8 \times 36 \times 40 H7 \times 7F8$	40 63		36	56	56	165 185	63 85			8

							Іродолз	scenue i	табл. 12
Обозначение оправки	Условное обозначение отверстия обрабатываемой детали 2×d×D (ГОСТ 1139-80)	1	D_1	D_2	L	Наиболь- шая дли- на <i>L</i> ₁ обрабаты- ваемого участка	В	I	Число зубь- ев z
7150-0435 7150-0436	$D-8\times36\times42H7\times7F8$	40 63	42	58	175 195	63 85			8
7150-0437 7150-0438	$D-10 \times 36 \times 45H7 \times 5F8$	40 63	45	62	175 195	63 85			10
7150-0439 7150-0440	$D-8 \times 42 \times 46H7 \times 8F8$	50 71	46	65	190 210	75 95			
7150-0441 7150-0442	$D-8 \times 42 \times 48 H7 \times 8F8$	50 71	48		190 210	75 95	32	36	8
7150-0443 7150-0444	$D-8\times46\times50H7\times9F8$	50 71	50	67	190 210	75 95			÷
7150-0445 7150-0446	$D-10 \times 42 \times 52H7 \times 6F8$	56 80	52	70	195 220	80 105			10
7150-0447 7150-0448	$D-8 \times 46 \times 54 H7 \times 9F8$	56 80	54	75		80 105			8
7150-0449 7150-0450	$D\text{-}10 \times 46 \times 56 H7 \times 7F8$	56 80	56		195 220	80 105			10
7150-0451 7150-0452	$D-8 \times 52 \times 58H7 \times 10F8$	63 90	58	80	220 220 245	90 115			8
7150-0453 7150-0454	$D-8 \times 52 \times 60 H7 \times 10 F8$	63 90			220 245	90 115		50	
7150-0455 7150-0456	$D-16 \times 52 \times 60H7 \times 5F8$	63 90	60		220 245	90 115		30 	16
7150-0457 7150-0458	$D-8 \times 56 \times 62H7 \times 10F8$	63 90	62	82	230 255	90 115	32		8
7150-0459 7150-0460	$D-8 \times 56 \times 65H7 \times 10F8$	71 100		88	245 275	100 130			
7150-0461 7150-0462	$D\text{-}16 \times 56 \times 65H7 \times 5F8$	71 100	65	88	245 275	100 130		55	16
7150-0463 7150-0464	$D-8 \times 62 \times 68 H7 \times 12 F8$	71 100	68	90	245 275	100 130			
7150-0465 7150-0466	$D-8 \times 62 \times 72H7 \times 12F8$	71 100	72	95	245 275	100 130			8
7150-0467 7150-0468	$D-16 \times 62 \times 72H7 \times 6F8$	71 100	72	95	245 275	100 130			16
				1			d. a		P


Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139—80)	1	D_{t}	D ₂	l.	Наиболь- шая дли- на L ₁ обрабаты- ваемого участка	В	1,	Число зубь-	
7150-0469 7150-0470	$D-10 \times 72 \times 78H7 \times 12F8$	80 110	78	100	265 295	110 140			10	
7150-0471 7150-0472	$D-10 \times 72 \times 82H7 \times 12F8$	80 110	82	108	265 295	110 140	32	55		
7150-0473 7150-0474	$D-16 \times 72 \times 82II7 \times 7F8$	80 110			265 295	110			16	
7150-0475 7150-0476	$D-10 \times 82 \times 88H7 \times 12F8$	80 110	88	112	325	140			10	
7150-0477 7150-0478	$D-10 \times 82 \times 92H7 \times 12F8$	80 110	92	118	295 325	110 140	40	60		
7150-0479 7150-0480	$D-20 \times 82 \times 92H7 \times 6F8$	80 110			295 325	110 140			20	
7150-0481 7150-0482	$D\text{-}10 \times 92 \times 98H7 \times 14F8$	90 125	98	122	310 345	125 160			10	
7150-0483 7150-0484	$D\text{-}10 \times 92 \times 102H7 \times 14F8$	90 125	102	120	310 345	125 160	40	60		
7150-0485 7150-0486	$D-20\times 92\times 102H7\times 7F8$	90 125	102	130	130	310 345	125 160			20

Пример условного обозначения: Оправка 7150-0421 ГОСТ 18438 – 73

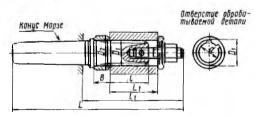
13. Оправки зубчатые (шлицевые) прямобочные центровые с посадкой изделий по s6 (ГОСТ 18439 – 73)

Размеры, мм

75

Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 – 80)	1	D_1	D_2	L	t_1	12	1,	Число зубьев г
	$D-6 \times 11 \times 14H7 \times 3F8$ $D-6 \times 13 \times 16H7 \times 3,5F8$	12 20 12 22	14 16	14 16	80	12	8	25	6

	Ţ	
12	<i>I</i> ₃	Число зубьев
10	25	6
		16 10
12		6 10
		6
14		10 6
16		
		6
	40	6 10
	11.5	$-\frac{8}{10}$
		8
		10
	50	8
		10
	50	10
		8
20		16
	60	8
		16
		8
	10	10 25 12 14 14 40 50 50

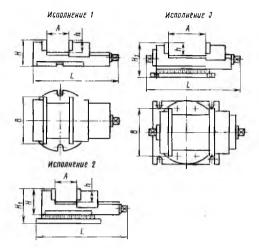

Продолжение табл. 13

Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (ГОСТ 1139 $-$ 80)	I	D_1	D ₂	L	$I_{\mathfrak{l}}$	12	<i>l</i> ₃	Число зубьев <i>z</i>
7150-0538	$D-16 \times 62 \times 72H7 \times 6F8$	40-90	72	72	245	40	20		16
7150-0539	$D-10 \times 72 \times 78H7 \times 12F8$		78	78					10
7150-0540	$D-10 \times 72 \times 82H7 \times 12F8$		82	82]				10
7150-0541	$D-16 \times 72 \times 82H7 \times 7F8$	40 – 100		-	270	50	25		16
7150-0542 7150-0543	$D-10 \times 82 \times 88 H7 \times 12 F8$ $D-10 \times 82 \times 92 H7 \times 12 F8$		88 92	88 92				60	10
7150-0544	$D-20 \times 82 \times 92H7 \times 6F8$								20
71 50-0 545	$D-10 \times 92 \times 98H7 \times 14F8$		98	98	200				10
7150-0546 7150-0547	$D-10 \times 92 \times 102 H7 \times 14 F8$ $D-20 \times 92 \times 102 H7 \times 7 F8$	50-110	102	102	280				20

 Π римечание. В обозначении оправки указывается размер $\it l.$ Пример условного обозначения:

Оправка 7150-0501-12 ГОСТ 18439-80

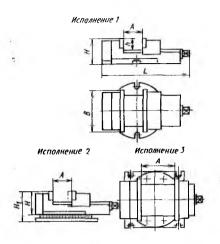
14. Оправки зубчатые (шлидевые) прямобочные шпиидельные (ГОСТ 18440 – 73) Размеры, мм


Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (по ГОСТ 1139 – 80)	Конус Морзе		D_1	D ₂	L	Наиболь- шая длина L ₁ обраба- гываемого участка	В	I	Число зубьев г
7150-0561 7150-0562	$D\text{-}6 \times 11 \times 14H7 \times 3F8$	3 4	14	14	25	148 170	22		67	
7150-0563 7150-0564	$D\text{-}6\times13\times16H7\times3,5F8$	3 4	16	16	28	153 175	25	20	72	6
7150-0565 7150-0566	$D\text{-}6 \times 16 \times 20 H7 \times 4F8$	3 4	20 20	32	163 185	32		82		
7150-0567 7150-0568	$D\text{-}10 \times 16 \times 20 \text{\textit{H}}7 \times 2,5 \text{\textit{F}}8$	2			168 185				10	

							Прос	юлже	ние п	1абл. 14
Обозначение оправки	Условное обозначение отверстия обрабатываемой детали <i>z</i> × <i>d</i> × <i>D</i> (по ГОСТ 1139 – 80)	Конус Морзе	l	D_1	D_2	L	Наиболь- шая длина L ₁ обраба- тываемого уча ст ка	В	It	Число зубьев <i>z</i>
7150-0569 7150-0570	$D-6\times18\times22H7\times5F8$	3 4	22	22	34	165 187	35	20	84	6
7150-0571 7150-0572	$D-10 \times 18 \times 23H7 \times 3F8$	3 4		23	36	165 187				10
7150-0573 7150-0574 7150-0575	$D-6\times24\times25H7\times5F8$	3 4 5	25	25		178 200 227	38	25	97	6
7150-0576 7150-0577 7150-0578	$D-10\times 21\times 26H7\times 3F8$	3 4 5	25	26	38	178 200 227	-			10
7150-0579	$D-6\times23\times26H7\times6F8$	3				178				6
7150-0580 7150-0581	$D-6 \times 23 \times 26H7 \times 6F8$	4 5	25	26	38	200 227	38		97	6
7150-0582 7150-0583 7150-0584	D-6-× 23 × 28 <i>H</i> 7 × 6 <i>F</i> 8	3 4 5		28	40	193 215 242				
7150-0585 7150-0586 7150-0587	$D-10 \times 23 \times 29H7 \times 4F8$	3 4 5	28	29	42	193 215 242	45		112	10
7150-0588 7150-0589 7150-0590	$D-6\times26\times30H7\times6F8$	3 4 5		30		193 215 242		25		6
7150-0591 7150-0592	$D\text{-}6 \times 26 \times 32H7 \times 6F8$	4 5				220 247				
7150-0593 7150-0594	$D-10 \times 26 \times 32H7 \times 4F8$	4 5	,	32	45	220 247			117	10
7150-0595 7150-0596	$D-6\times28\times32H7\times7F8$	4 5	32			220 247	50			6
7150-0597 7150-0598	$D-6\times28\times34H7\times7F8$	4 5		34	48	233 260				
7150-0599 7150-0600	$D\text{-}10 \times 28 \times 35H7 \times 4F8$	4 5		35	50	233 260			130	10
7150-0601 7150-0602	$D-8 \times 32 \times 36H7 \times 6F8$	4 5		36		233 260				8
7150-0603 7150-0604	$D-8 \times 32 \times 38H7 \times 6F8$	4 5	40	38	53	245 272	63	25	142	8

										1400.1. 14
Обозначение оправки	Условное обозначение отверстия обрабатываемой детали $z \times d \times D$ (по ГОСТ 1139 80)	Конус Морзе	,	D_1	D_2	L	Наиболь- ціая длина L ₁ обраба- тываемого участка	В	1,	Число зубьев z
7150-0605 7150-0606	$D\text{-}10 \times 32 \times 40H7 \times 5F8$	4 5		40	5/	245 272		25	142	10
7150-0607 7150-0608	$D-8 \times 36 \times 40H7 \times 7F8$	4 5		40	56	245 272	63	23	142	8
7150-0609 7150-0610	$D-8 \times 36 \times 42H7 \times 7F8$	4 5	40	42	58	263 290			140	
7150-0611 7150-0612	$D-10 \times 36 \times 45H17 \times 5F8$	4 5		45	62	263 290			160	10
7150-0613 7150-0614 7150-0615	D-8 × 42 × 46H7 × 8F8 D-8 × 42 × 48H7 × 8F8 D-8 × 46 × 50H7 × 9F8		50	46 48 50	65 67	300	75		170	8
7150-0616	$D-10 \times 42 \times 52H7 \times 6F8$		- 4	52	70	305	80		175	10
7150-0617 7150-0618	$D-8 \times 46 \times 54H7 \times 9F8$ $D-10 \times 46 \times 56H7 \times 7F8$	5	56	54 56	75			32		8 10
7150-0619 7150-0620 7150-0621	D-8 × 52 × 58H7 × 10F8 D-8 × 52 × 60H7 × 10F8 D-16 × 52 × 60H7 × 5F8		63	58	78	322	90	32	192	8
7150-0622	$D-8 \times 56 \times 62H7 \times 10F8$			62	82					8
7150-0623 7150-0624	$D-8 \times 56 \times 65H7 \times 10F8$ $D-16 \times 56 \times 65H7 \times 5F8$			65	88	385	100		203	8 16
7150-0625	$D-8 \times 62 \times 68 H7 \times 12 F8$		71	68	90					8
7150-0626 7150-0627	$D-8 \times 62 \times 72H7 \times 12F8$ $D-16 \times 62 \times 72H7 \times 6F8$	6		72	95	400	4		210	8 16
7150-0628	$D\text{-}10 \times 72 \times 78\text{H}7 \times 12F8$			78	100	410	110		218	
7150-0629	$D\text{-}10 \times 72 \times 82H7 \times 12F8$		80	82	108				228	10
7150-0630	$D-16 \times 72 \times 82H7 \times 7F8$			<u> </u>						16

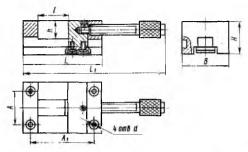
Пример условного обозначения: Оправка 7150-0561 ГОСТ 18440 - 73


15. Тиски стаиочиые с ручным и механизированным приводами (ГОСТ 14904-80) $\mathit{Tun~A}$ Размеры, мм

,	.,	.			кин	Обозначение тисков исполнения	
<i>I</i> ₁	Н	L	A	В	3	2	1
3 2	65	200	40	63			7200-0201
0	_	250			-	7200-0202	
- 2	75		50	80	-		7200-0203
00		280	3			7200-0204	
10 3	85	340	63	100	-	7200-0206	7200-0205
35 4	105	400	80	i		7200-0208	7200-0207
			125	125	-	7200-0210	7200-0209
40	110	450			7200-0211	_	_
		500	100			7200-0213	7200-0212
55 5	130	. 500	200	160		7200-0215	7200-0214
		550	200		7200 0216	_	-
		630	125		w.	7200-0218	7200-0217
95 6	155	}	250	200		7200-0220	7200-0219
		650			7200-0221	_	
30 8	185	800	160	250		7200-0223	7200-0222
50	200		320		7200-0226	7200-0225	7200-0224
75 11	225	900	400	320	7200-0229	7200-0228	7200-0227
50 1:	285	1000	500	400	7200-0232	7200-0231	7200-0230

Продолжение табл. 15

Типы БиВ

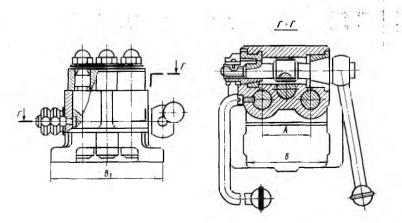

	Обозначение тисков								}		
	типа Б		типа В				A		Н	**	,
		исполнения						L	Н	H_1	h
1	2	3	ı	2	3				_		
7201-0001 7201-0003	7201-0002 7201-0004	- 7201-0005	7202-0001 7202-0003	7202-0002 7202-0004	7202-0005	125	80 125	550	1	135 140	41)
7201-0006 7201-0008	7201-0007 7201-0009	7201-0010	7202-0006 7202-0008	7202-0007 7202-0009	7202-0010	160	100 200	650	130	165	50
7201-0011 7201-0013	7201-0012 7201-0014	- 7201-0015	7202-0011 7202-0013	7202-0012 7202-0014	- 7202-0015	200	125 250	750	155	195	63
7201-0016 7201-0018	7201-0017 7201-0019	7201-0020	7202-0016 7202-0018	7202-0017 7202-0019	- 7202-0020	250	160 320	850	185 200		
7201-0021 7201-0024	7201-0022 7201-0025	7201-0023 7201-0026	7202-0021 7202-0024	7202-0022 7202-0025	7202-0023 7202-0026	320 400	400 500	950 1000	1		

 Π р и м е ч а н и е. Тиски типа A-c ручным приводом исполнений: 1- неповоротные; 2 – поворотные; 3 – поворотные с двусторонним зажимом и усиленным креплением. Тиски типа Б - с пневматическим приводом исполнений: 1 - неповоротные; 2 - поворотные; 3 - поворотные с усиленным креплением. Тиски типа В - с гидравлическим приводом исполнений: 1 - неповоротные; 2 - поворотные; 3 - поворотные с усиленным креплением.

Пример условного обозначения: Тиски 7200-0201 ГОСТ 14904-80

16. Тиски для точных станочных работ (ГОСТ 20746-84)

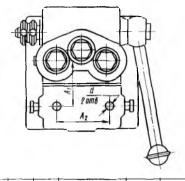
Размеры, мм


				 -					
Обозначение тисков	Ход губки /	В	Н	h	L	L ₁	A	A_1	d
7200-0301	0-55	50	45	18	125	245	_	-	-
7200-0302	0-63	80	60	30	160	291			
7200-0303		100	63	32			63	130	11
7200-0304		125	80	40	200	347	80	170	

Примечание. Тиски имеют классы точности Н, П, А. В обозначении тисков приводится буквенный индекс классов точности П и А; буквенный индекс класса точности Н не указывается.

Пример условного обозначения: Тиски 7200-0301 П ГОСТ 20746-84

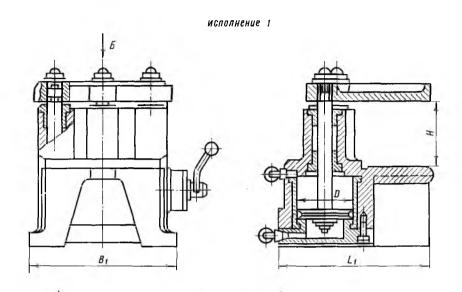
17. Кондукторы скальчатые консольные с конусным зажимом (ГОСТ 16888-71)


Размеры, мм

Испопнение 1

исполнение 2

Продолжение табл. 17

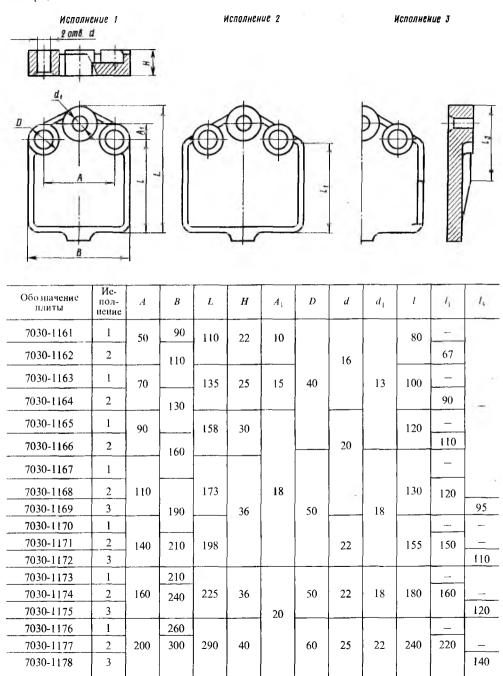

Of	о значение			-			7	H				6
кондуктора	плиты (ГОСТ 16890 – 71)	Иепол- нение	A	A_1	A_2	В	наим.	наиб.	d	B_1	L_1	Сила, зажи- ма, Н
7300-0261	7030-1161, 7030-1162, 7030-1201	1	50			90	40	65		120	115	375
7300-0262	7030-1163, 7030-1164, 7030-1202		70			110	45	75		140	140	427
7300-0263	7030-1181, 7030-1182, 7030-1202	2		63	75				10			
7300-0264	7030-1165, 7030-1166, 7030-1203	1	90	_	-	125	60	95	1	160	165	445
7300-0265	7030-1183, 7030-1184, 7030-1203	2		70	90				10			
7300-0266	7030-1167, 7030-1168, 7030-1169, 7030-1204	l	110	_		140	70	105		170	175	552
7300-0267	7030-1185, 7030-1186, 7030-1204	2		75	105			.00	10			
7300-0268	7030-1170, 7030-1171, 7030-1172, 7030-1205	1	140			160	85	135	-	210	200	590
7300-0269	7030-1187, 7030-1188, 7030-1205	2		90	120				12			


Пример условного обозначения:

Кондуктор 7300-0261 ГОСТ 16888-71

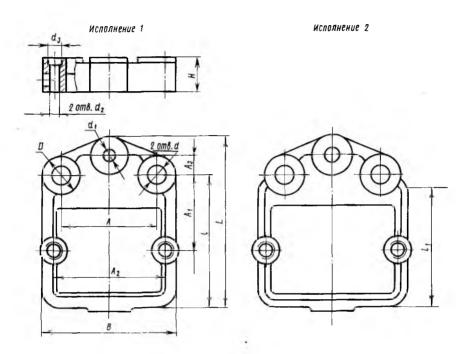
18. Кондукторы скальчатые консольные с пневматическим зажимом (ГОСТ 16889-71)

Размеры, мм

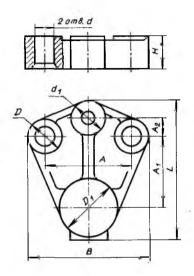

Продолжение табл. 18

	Обозначение							Н	Ī				Сила
кондуктора	или ты (ГОСТ 16890—71)	Испол-	A	A_1	A_2	В	наим.	наиб.	d	d	<i>B</i> ₁	L_1	зажи- ма, <i>Н</i>
7300-0276	7030-1167, 7030-1168, 7030-1169, 7030-1204	1	110	_	_	140	70	105	_		170	200	1925
7300-0277	7030-1185, 7030-1186, 7030-1204	2		75	105				10	16		2	
7300-0278	7030-1170, 7030-1171, 7030-1172, 7030-1205	1	140	_		160	85	135	_	_	200	220	2400
7300-0279	7030-1187, 7030-1188, 7030-1205	2		90	120				12	25			
7300-0280	7030-1173, 7030-1174, 7030-1175, 7030-1206	1	160	_	_	200	100	150			240	268	3900
7300-0281	7030-1189, 7030-1190, 7030-1206	2		105	160				16	40			
7300-0282	7030-1176, 7030-1177, 7030-1178, 7030-1207	1	200		_	250	120	180	_	_	300	335	6120
7300-0283	7030-1191, 7030-1192, 7030-1207	2		145	200				20	40			
	11												

Пример условного обозначения. Кондуктор 7300-0276 ГОСТ 16889 – 71


19. Плиты к скальчатым консольным кондукторам (ГОСТ 16890-71)

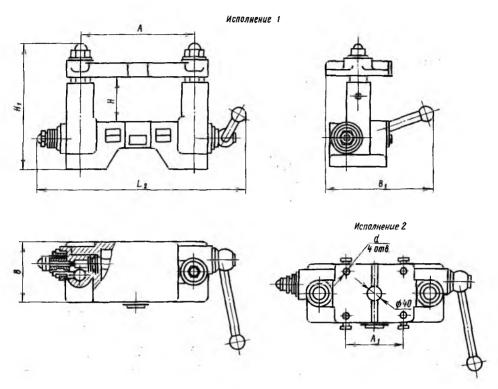
Tun A — без отверстий под установочные пальцы Размеры, мм


Продолжение табл. 19

 $Tun \ \mathcal{B} - \mathbf{c}$ отверстиями под установочные пальцы

Обозначение плиты	Испол- нение	A	В	L	Н	A_{J}	A 2	Α,	D	d	d_1	d_2	d ₃	I
7030-1181	1	70	110	135	25	63	85	15		16				_
7030-1182	2		130				105							90
7030-1183	1	90		158	30	70		18	40	20	13	10	16	_
7030-1184	2		160				135	, ,		20				110

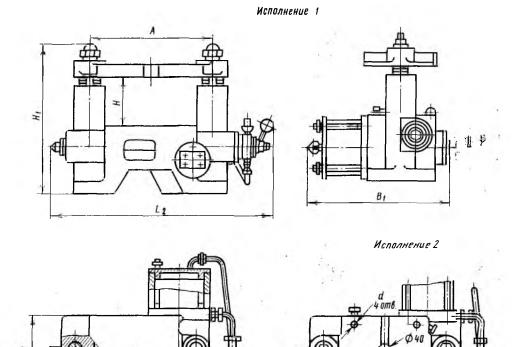
Tun B -угловые



Обозначение пли гы	A	В	L	Н	A_{i}	A_2	D	D_1	d	d_1
7030-1201	50	90	110	22	50	10		50	14	
7030-1202	70	110	130	25	63	15	40	60	16	13
7030-1203	90	130	140	30	70			.,,,	20	
7030-1204	110	160	160		75	18		70		
7030-1205	140	190	170	36	90		50		22	18
7030-1206	160	210	195		105	20		80		
7030-1207	200	260	230	40	145	20	60		25	22

Пример условного обозначения: Плита 7030-1161 ГОСТ 16890-71

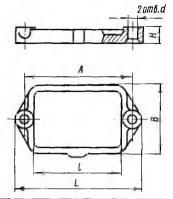
20. Кондукторы скальчатые портальные с конусным зажимом (ГОСТ 16891-71)


Размеры, мм

Обозн	ачение							4				Сила
кондуктора	илнты (ГОСТ 16893 – 71)	Испол- нение	A	A_1	В	L ₂	наим,	наиб.	<i>B</i> ₁	<i>H</i> ₁	d	зажи- ма, Н
7300-0241	7030-1211	1	250	125	140	520	80	120	305	265		}
7300-0242	7030-1221	2									10	450
7300-0243	7030-1212	1	320	160	160	575		180	315	340		
7300-0244	7030-1222	2.					120				12	
7300-0245	7030-1213	1	400	210	220	680	1.20	200	470	360		685
7300-0246	7030-1223	2						_30	1		16	

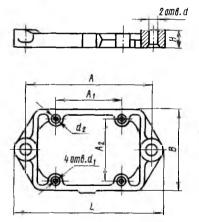
Пример условного обозначения: Кондуктор 7300-0241 ГОСТ 16891 – 71

21. Кондукторы скальчатые портальные с пневматическим зажимом (ГОСТ 16892-71) Размеры, мм



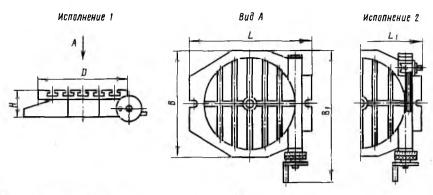
Обозн	ачение	Ис-				Н					F	I .	Сила
кондуктора	плиты (ГОСТ 16893 — 71)	пол- нение	A	A ₁	В	наим.	наиб.	d	<i>B</i> ₁	L_2	наим.	наиб.	зажи- ма, Н
7300-0251	7030-1212	1	320	160	160		180		345	598	382	442	5000
7300-0252	7030-1222	2				120		12_					
7300-0253	7030-1213	1	400	210	220		200		415	678	422	502	
7300-0254	7030-1223	2				ļ		16					
7300-0255	7030-1214	1	500	280	300	160	280	-	530	778	462	582	8500
7300-0256	7030-1224	2	- 30		7			20					

Пример условного обозначения: Кондуктор 7300-0251 ГОСТ 16892-71


22. Плиты к скальчатым портальным кондукторам (ГОСТ 16893-71) $\mathit{Tun}\ A-$ без отверстий под установочные нальцы

Размеры, мм

Обозначение плиты	A	В	Н	L	d	1
7030-1211	250	160	36	310	25	190
7030-1212 7030-1213 7030-1214	320 400 500	180 250 320	50	3 9 0 470 570	32	250 330 430

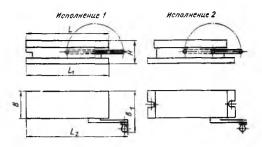

 $\mathit{Tun}\ \mathit{E}-c$ отверстиями под установочные пальцы Размеры, мм

Обозначение плиты	A	A_1	A_2	В	Н	L	d	d_1	d ₂
7030-1221	250	125	105	160	36	310	25	10	18
7030-1222	320	160	125	180		390		12	1 .
7030-1223	400	210	180	250	50	470	32	16	22
7030-1224	500	280	250	320	ļ	570		20	28

Пример условного обозначения: Плита 7030-1211 ГОСТ 16893-71

23. Столы поворотные круглые с ручным и механизированным приводами (ГОСТ 16936-71) Размеры, мм

L_1	L	B_1	В	H		ола исполнения	Обозначение ст
	11	Не более			D	2	1
4	260	420	250	110	160	-	7204-0001
	320	480	300		200	-	7204-0002
420	380	560	360	125	250	7204-0021	7204-0003
500	450	630	420	177	320	7204-0022	7204-0004
600	560	670	500	140	400	7204-0023	7204-0005
700	630	750	600	160	500	7204-0024	7204-0006
	800	900	710	180	630	-	7204-0007
~	900	1060	900	200	800	-	7204-0008
	1120	1250	1120	220	1000	-	7204-0009
	1400	1500	1400		1250	=	7204-0010


 Π р и м е ч а н и я: 1. Столы имеют классы точности H и Π . B обозначении столов приводится буквенный индекс класса точности Π ; буквенный индекс класса точности H не указывается.

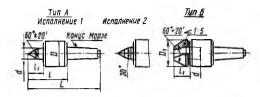
2. Столы подразделяются по исполнению: 1-c ручным приводом; 2-c механизированным приводом от станка.

Пример условного обозначения: Стол 7204-0001 ГОСТ 16936-71

24. Плиты прямоугольные магнитные (ГОСТ 16528-81)

Размеры, мм

Обозначение плиты	Испол- нение	В	L	Н	B_{i}	L_1	L_2
7208-0001	1	100	250		160	250	320
7208-0002	2		210				
7208-0003	1		400			400	530
7208-0003	1	125	250		190	250	380
7208-0004	2		360	80			530
7208-0005	1		400]		400	600
7208- 00 06	_ 2	160	360		240		
7208-0007_	11		500				
7208-0008	2		450			500	710
7208-0009	1		500				Ĺ
7208-0109	1		400			400	600
7208-0010	2	200	450	90	280	500	710
7208-0011	1		630	j			1
7208-0012	2		560		<u> </u>	630	850
7208-0013	1_1		630				
7208-0014	2	250	560		340		L
7208-0015	11		800	j		l	
7208-0016	2		710			800	100
7208-0017	1_1		800	100			
7208-0117	1		630			630	980
7208-0018	2	320	710		420	800	1000
7208-0019	1		1000			1000	132
7208-0020	2		900				


Примечание. Плиты имеют классы точности H, П, В, А. В обозначении плит приводится буквенный индекс классов точности П, В, А; буквенный индекс класса точности H не указывается.

Пример условного обозначения:

Плита 7208-0001 П ГОСТ 16528-81

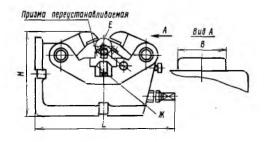
25. Центры станочные вращающиеся (ГОСТ 8742-75)

Размеры, мм

				L		1		
Конус Морзе	Серия	d	І-й ряд	2-й ряд	1-й ряд	2-й ряд	D_1	11
intopse -				Не б	олее		Нем	иенее
2		22	1	60	9	0	56	24
3	Нормальная	25	180	185	94	99	63	26
4	Dr. Le reconstitution	28	210	225	101	116	71	30
5		32	240	260	104	124	80	34
4		36	220	235	111	126	75	36
5	Усиленная	40	250	275	114	139	90	45
6		56	340	360	150	170	125	56
	l .							

Примечания: 1. Центры разделяются на типы: A-c постоянным центровым валиком, B-c насадкой на центровой валик. В обозначении центров приводится буквенный индекс типа.

- 2. Для центров типа А указывается цифровой индекс исполнения.
- 3. В обозначении центров дается номер конуса Морзе хвостовика.
- 4. В обозначении центров указывается буквенный индекс серни: \mathbf{H} нормальной, \mathbf{Y} усиленной.
- 5. Центры нормальной серии могут изготовляться повышенной точности. В обозначении центров указывается буквенный индекс повышенной точности П.
- 6. 1-й ряд для станков с ручным управлением. 2-й ряд для станков с числовым программым управлением. В обозначении центров к станкам с ЧПУ указывается буквенный индекс ЧПУ.

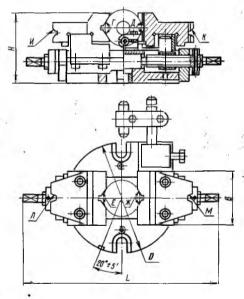

Пример условного обозначения:

Центр A-1-2-НП ЧПУ ГОСТ 8742-75.

2. СПЕЦИАЛИЗИРОВАННЫЕ ПРИСПОСОБЛЕНИЯ И ПРИВОДЫ

26. Тиски станочные винтовые самоцентрирующие рычажные для круглых профилей (ГОСТ 21167—75)

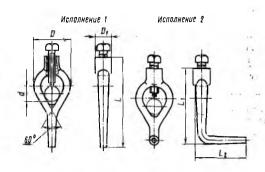
Размеры, мм


Продолжение табл. 26

Обозначение тисков	В		вок, зажимаемых поверхностью	H	L	Сила зажима,
INCKOB		E	Ж			Н
7200-0261 7200-0262 7200-0263	100 125 160	От 10 до 30 Св. 15 до 50 Св. 50 до 100	От 25 до 63 Св. 45 до 100 Св. 90 до 150	190 240 310	295 350 450	14 700 19 600 24 500

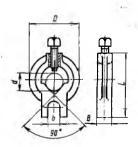
Пример условного обозначения: Тиски 7200-0261 ГОСТ 21167-75

27. Тиски станочные винтовые самоцентрирующие с призматическими губками для круглых профилей (Γ OCT 21168-75)


Размеры, мм

Обозначение тисков	В		вок, зажимаемых поверхностями	Н	L	D	Сила зажима,
		ИиК, ЛиМ	ГиД, ЕиЖ				Н
7200-0251	100	От 10 до 30	От 20 до 63	120	350	200	16 660
7200-0252	125	Св. 15 до 56	Св. 50 до 100	150	460	220	21 560
7200-0253	160	Св. 50 до 80	Св. 63 до 150	200	550	280	26 450

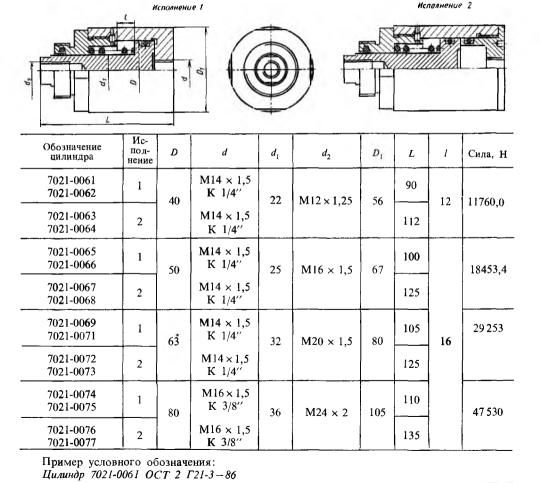
Пример условного обозначения: *Тиски 7200-0251 ГОСТ 21168-75*


28. Хомутики поводковые для токарных и фрезерных работ (ГОСТ 2578 – 70) Размеры, мм

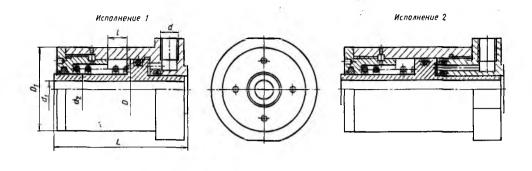
	е хомутика нения	зажим	етр <i>d</i> паемой гали	D	D ,	L	$L_{\rm I}$	L_2
l	2	наим.	наиб.					
7107-0031	7107-0032	5	11	28	14	95	90	70
7107-0033	7107-0034	11	18	36	16	115	100	75
7107-0035	7107-0036	18	25	50	20	135	115	80
7107-0037	7107-0038	25	36	65	24	155	130	85
7107-0039	7107-0040	36	50	85	30	180	145	90
7107-0041	7107-0042	50	65	100	30	205	165	95
7107-0043	7107-0044	65	80	120		230	195	100
7107-0045	7107-0046	80	100	150	35	260	240	105
7107-0047	7107-0048	100	125	180		270	270	120
		1						

Пример условного обозначения: *Хомутик 7107-0031 ГОСТ 2578-70*

29. Хомутнки поводковые для шлифовальных работ (ГОСТ 16488-70) Размеры, мм



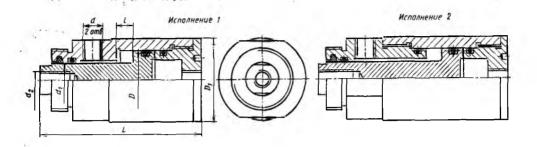
Обозначение хомутика	зажим	етр <i>d</i> паемой п али	D	D L B b		b	Обозначение хомутика	зажим	етр <i>d</i> іаемой али	D	L	В	ь
, , , , , , , , , , , , , , , , , , ,	наим.	наиб.						наим.	наиб.				
7107-0061	5	10	26	40			710 7-0 068	50	60	95	110	}	
7107-0062	10	15	30	50	10	ľ	7107 -0 069	60	70	105	125]	
710 7-0 063	15	20	45	60	1,	1.	7107-0070	70	80	115	140	20	16
7107-0064	20	25	50	67	13	12	7107-0071	80	90	125	150		1
7107-0065	25	32	56	71	1		7107-0072	90	100	135	160		
7107-0066	32	40	67	90	16	-	7107-0073	100	110	150	165	1	
7107-0067	40	50	80	100	20	16	7017-0074	110	125	170	190		


Пример условного обозначения:

Хомутик 7107-0061 ГОСТ 16488-70

30. Гидроцилиндры одностороннего действия со сплошным штоком на номинальное давление 10 МПа (100 кгс/см²) для станочных приспособлений (ОСТ 2 Г21-3-86) Размеры, мм

31. Гидроцилиндры односторониего действия с иолым штоком на иоминальное давление 10 МПа (100 кг/см²) для станочных приспособлений (ОСТ 2 Г21-4-86) Размеры, мм



Обозначение цилиндра	Испол- нение	D	d	<i>d</i> ₂	d_1	D_1	L	l	Сила, Н
7021-0091 7021-0092	1	40	M14 × 1,5 K 1/4"	20	13	56	90	12	9996
7021-0093 7021-0094	2		M14 × 1,5 K 1/4"				115		
7021-0095 7021-0096	1	50	M14 × 1,5 K 1/4"	25	17	67	105		14 700
7021-0097 7021-0098	2		M14 × 1,5 K 1/4"				125		
7021-0099 7021-0101	1	63	M14 × 1,5 K 1/4"	32	21	80	114	16	23 128
7021-0102 7021-0103	2		M14 × 1,5 K 1/4"				145		
7021 - 0104 7021-0105	1	80	M16 × 1,5 K 3/8"	36	25	105	114		37 583
7021-0106 7021-0107	2		M16 × 1,5 K 3/8"				145	1	

Пример условного обозначения: *Цилиндр 7021-0091 ОСТ 2 Г21-4-86*

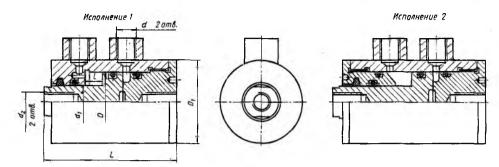
32. Гидроцилиндры двустороннего действия па номинальное давление 10 МПа (100 кгс/см²) для станочных приспособлений (ОСТ 2 Г22-3-86)

Размеры, мм

									Сил	а, Н
Обозначение цилиндра	Испол- нение	D	d	d_1	d ₂	D_1	L	l	толкаю- щая	тяну- щая
7021-0121 7021-0122 7021-0123	1 2	÷ ·	M14×1,5 K 1/4" M14×1,5				105	12	5 -	54 *
7021-0124 7021-0125 7021-0126	1	40	M14×1,5 K 1/4"	22	M12×1,25	56	125	32	12308,8	8584,8
7021-0127 7021-0128	2	d.	M14×1,5 K 1/4"		1		150			
7021-0129 7021-0131	1	4.5	M14×1,5 K 1/4"		3		145	50		
7021-0132 7021-0133	2	44. T	M14×1,5 K 1/4"		. =		170	1		
7021-0134 7021-0135	1	***	. M14×1,5 K 1/4"		-		175	80		Σ.
7021-0136 7021-0137	2		M14×1,5 K 1/4"		0	1	200		-	ıΫı
7021-0138 7021-0139	1	50	M14×1,5 K 1/4"	25	M16×1,5	67	110	16	19237,4	14425,6
7021-0141 7021-0142	2	M14×1,5 K 1/4"	l l	M16×1,5		135	 		0.00	

Продолжение табл. 32

	7						1		· 	ие табл. 32
Обозначение	Испол-	D	d	d_1	d_2	D_1	L	,		a, H
цилиндра	нение			u ₁	u ₂	D ₁		, L	толкаю- щая	тянущая
7021-0143 7021-0144	1		M14×1,5 K 1/4"				125	32	19237,4	14425,6
7021-0145 7021-0146	2		M14 × 1,5 K 1/4"		*		150		4	
7021-0147 7021-0148	1	50	M14×1,5 K 1/4"	25	M16 × 1,5	67	145	50		•
7021-0149 7021-0151	2		M14×1,5 K 1/4"			07	170			
7021-0152 7021-0153	1		M14 × 1,5 K 1/4"		***		175	80	19237,4	14425,6
7021-0154 7021-0155	2		M14 × 1,5 K 1/4"				200			
7021-0156 7021-0157	1		M14 × 1,5 K 1/4"				155	16		3
7021-0158 7021-0159	2		M14 × 1,5 K 1/4"	32			145		3=1	,
7021-0161 7021-0162	1	63	M14 × 1,5 K 1/4"		M20 × 1,5	80	130	32	30536,8 22	22657,6
7021-0163 7021-0164	2		M14 × 1,5 K 1/4"				160		,	1.0
7021-0165 7021-0166	1		M14 × 1,5 K 1/4"		3		150	50	, *) 3)
7021-0167 7021-0168	2		M14×1,5 K 1/4"		-		180			
7021-0169 7021-0171	1		M14 × 1,5 K 1/4"				180	80		1.i
7021-0172 7021-0173	2		M14 × 1,5 K 1/4"				210			
7021-0174 7021-0175	1		M16 × 1,5 K 3/8"				125	16		
7021-0176 7021-0177	2		M16 × 1,5 K 3/8"		- 1 -		150		, i	
7021-0178 7021-0179	1	80	M16×1,5 K 3/8"	36	M24 × 2	105	140	32	49235,2	3926 8,6
7021-0181 7021-0182	2	80	M16 × 1,5 K 3/8"	36 M24 ×	M24 × 2	100		52	سود د د د د د د د د د د د د د د د د د د	27200,0


Продолжение табл. 32

]]	,		,					Сил	a, H
Обозначение цилиндра	Испол- нение	D	d	d_1	<i>d</i> ₂	D_1	L	l	толкаю- щая	тянущая
7021-0183 7021-0184	1		M16 × 1,5 K 3/8"				155	50		
7021-0185 7021-0186	2		M16 × 1,5 K 3/8"				185			20260
7021-0187 7021-0188	1	80	M16 × 1,5 K 3/8"	36	M24 × 2	105	185	80	49235,2	39268,6
7021-0189 7021-0191	2		M16 × 1,5 K 3/8"				215			
7021-0192 7021-0193	1		M16 × 1,5 K 3/8"				125	16		
7021-0194 7021-0195	2		M16 × 1,5 K 3/8"	-	-		150			
7021-0196 7021-0197	1	100	M16 × 1,5 K 3/8"	45	M30 × 2	125	140	32	76930,0	61348,0
7021-0198 7021-0199	2		M16 × 1,5 K 3/8"		M130 × 2		165			
7021-0201 7021-0202	1		M16 × 1,5 K 3/8"		÷		155	50	·	
7021-0203 7021-0204	2		M16 × 1,5 K 3/8"		-		185	!	~1	
7021-0205 7021-0206	1		M16 × 1,5 K 3/8"				185	80	ŝ	
7021-0207 7021-0208	2		M16 × 1,5 • K 3/8"				215			

Пример условного обозначения: *Цилиндр 7021-0121 ОСТ 2 Г22-3-86*

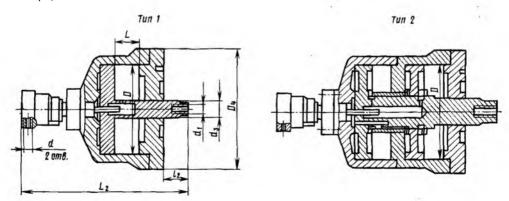
33. Гидроцилипдры двустороннего действия укороченные на номинальное давление 10 МПа (100 кгс/см 2) для станочных приспособлений (ОСТ 2 Г22-4-86)

Размеры, мм

	Ис-								Сил	a, H
Обозначение цилиндра	пол-	D	d	<i>d</i> ₁	d_2	D_1	L	l	толкаю- щая	тянущая
7021-0221 7021-0222	1		M14 × 1,5 K 1/4"				90	12		
7021-0223 7021-0224	2		M14 × 1,5 K 1/4"				105			
7021-0225 7021-0226	1		M14 × 1,5 K 1/4"				110	32		
7021-0227 7021-0228	2	40	M14 × 1,5 K 1/4"	22	M12 × 1,25	56	125		12308,8	8584,8
7021-0229 7021-0231	1		M14 × 1,5 K 1/4"		Í		130	50	ŕ	+
7021-0232 7021-0233	2		M14 × 1,5 K 1/4"				145			
7021-0234 7021-0235	1		M14 × 1,5 K 1/4"				160	80		
7021-0236 7021-0237	2		M14 × 1,5 K 1/4"			 	175		-2-);
7021-0238 7021-0239	1		M14 × 1,5 K 1/4"				95	16		
70 2 1-0241 7021-0242	2		M14 × 1,5 K 1/4"				110		- 1 -	
7021-0243 7021-0244	1	50	M14 × 1,5 K 1/4"	25	M16 × 1,5	67		32	19237,4	14425.6
7021-0245 7021-0246	2		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.			125			- 1.22,0

Продолжение табл. 33

	Τ	Γ			T				,	<i>ie табл. 33</i> ———— a, Н
Обозначение цилиндра	Ис- пол- нение	D	d d	d_1	d_2	D_1	L	l	толкаю- щая	тянущая
7021-0247 7021-0248	1		M14 × 1,5 K 1/4"				130	50	£	
7021-0249 7021-0251	2	50	M14 × 1,5 K 1/4"	25	M16 × 1,5	67	145		19237,4	14425,6
7021-0252 7021-0253	1		M14 × 1,5 K 1/4"				160	80	3. 4.	
7021-0254 7021-0255	2		M14 × 1,5 K 1/4"				175			
7021-0256 7021-0257	1		M14 × 1,5 K 1/4"			}	100	16		
7021-0258 7021-0259	2		M14 × 1,5 K 1/4"	÷			110			
7021-0261 7021-0262	1		M14 × 1,5 K 1/4"	*			115	32	~	
7021-0263 7021-0264	2	63	M14 × 1,5 K 1/4"	32	M20 × 1,5	80	125	L	30536,8	226 57,6
7021-0265 70 21-0266	1	63	M14 × 1,5 K 1/4"		**		135	50	E:1	
7021-0267 7021-0268	2		M14 × 1,5 K 1/4"				145		1	
7021-0269 7021-0271	1		M14 × 1,5 K 1/4"				165	80	7.	,
7021-0272 7021-0273	2	1, 2	M14 × 1,5 K 1/4"				175		~	3
7021-0274 7021-0275	1)	M16 × 1,5 K 3/8"		-		105	16		
7021-0276 7021-0277	2		M16 × 1,5 K 3/8"				115			1
7021-0278 7021-0279	1		M16 × 1,5 K 3/8"				120	32	ie i	
7021-0281 7021-0282	2	80	M16 × 1,5 K 3/8"	36	M24 × 2	105	130		49235,2	39268,6
7021-0283 7021-0284	1	-	M16 × 1,5 K 3/8"		6 M24 × 2	140	50		-	
7021-0285 7021-028 6	2		M16 × 1,5 K 3/8"				150		15/	


Продолжение табл. 33

									100000000000000000000000000000000000000	
	Ис-		}	}				}	Сил	а, Н
Обозначение цилиндра	пол-	D	d	d ₁	d_2	<i>D</i> ₁	L	1	толкаю- щая	тянущая
7021-0287 7021-0288	1	80	M16 × 1,5 K 3/8"	36	M24 × 2	105	170	80	49235,2	39268,6
7021-0289 7021-0291	2		M16 × 1,5 K 3/8"				180			
7021-0292 7021-0293	1		M16 × 1,5 K 3/8"				115	16		
7021-0294 7021-0295	2		M16 × 1,5 K 3/8"				125			100
7021-0296 7021-0297	1		M16 × 1,5 K 3/8"				130	32	ı	
7021-0298 7021-0299	2	100	M16 × 1,5 K 3/8"	45	M30 × 2	125	140		7693 0,0	61348,0
7021-0301 7021-0302	1		M16 × 1,5 K 3/8"				150	50		
7021-0303 7021-0304	2		M16 × 1,5 K 3/8"		791		160			10
7021-0305 7021-0306	1	İ	M16 × 1,5 K 3/8"				180	80	-	i
7021-0307 7021-0308	2	· ·	M16 × 1,5 K 3/8"				190		4	

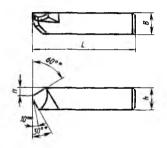
Пример условного обозначения: *Цилиндр 7021-0221 ОСТ 2 Г22-4-8*6

34. Пневмоцилиндры вращающиеся с воздухопроводящей муфтой (ГОСТ 21821 – 76)

Размеры, мм

Продолжение табл. 34

Обозначение цилиндра	Тип	D	L	d	D_4	L_2	d_1	d_3	<i>l</i> ₂
7020-0101 7020-0102		100		M12 × 1,5 K 1/4"	135		M16 × 1,5	25	
7020-0103 7020-0104	1	125		M12 × 1,5 K 1/4"	165	340	<u>, </u>	L	
7020-0105 7020-0106	_	160	32	M12×1,5 K 1/4"	200				30
7020-0107 7020-0108	2			M12 × 1,5 K 1/4"		420	$M20 \times 1,5$	32	
7020-0109 7020-0111	1	200		M12 × 1,5 K 1/4"	240	340			
7020-0112 7020-0113	2			M12 × 1,5 K 1/4"		420			
7020-0114 7020-0115	1	250		M12 × 1,5 K 1/4"	290	370			
7020-0116 7020-0117	2		40	M12 × 1,5 K 1/4"		460	M30 × 2	45	40
7020-0118 7020-0119	1	320		M12 × 1,5 K 1/4"	360	370			
7020-0121 7020-0122	2		50	M12 × 1,5 K 1/4"	360	470			

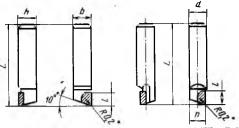

Примечание. Пневмоцилиндры типа 1- одинарные, типа 2- сдвоенные. Пример условного обозначения: Пневмоцилиндр 7020-0101 ГОСТ 21821-76

ИНСТРУМЕНТЫ ДЛЯ ОБРАБОТКИ РЕЗАНИЕМ

1. РЕЗЦЫ

1. Размеры (мм) (FOCT 9795-84)

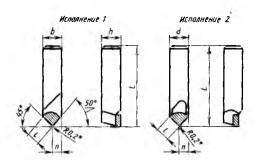
Tun 1



100	A CONTRACTOR OF THE CONTRACTOR	Сечение резца	L	n	Тип пластин по ГОСТ 25396-82 при угле врезки			
10°	0°	$h \times b$			10°	0°		
2142-0141	2142-0181	10×10	40	5	10	10		
2142-0142	2142-0182	10×10	50	5	10	10		
2142-0143	2142-0183	12×12	40	7	10	10		
2142-0144	2142-0184	12×12	50	7	10	10		
2142-0145	2142-0185	12 × 12	63	7	10	10		
2142-0146	2142-0186	16×16	63	10	10	70		
2142-0147	2142-0187	16 × 16	80	10	10	70		
2142-0148	2142-0188	20×20	70	13	10	70		
2142-0149	2142-0189	20×20	80	13	10	70		
2142-0150	2142-0191	20×20	100	13	10	70		
2142-0151	2142-0192	25×25	100	18	10	70		
2142-0152	2142-0193	25×25	125	18	10	70		
	2142-0142 2142-0143 2142-0144 2142-0145 2142-0146 2142-0147 2142-0148 2142-0149 2142-0150 2142-0151	2142-0142 2142-0182 2142-0143 2142-0183 2142-0144 2142-0184 2142-0145 2142-0185 2142-0146 2142-0186 2142-0147 2142-0187 2142-0148 2142-0188 2142-0149 2142-0189 2142-0150 2142-0191 2142-0151 2142-0192	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

^{*} Размеры для справок.

Пример условного обозначения резца типа 1 сечением $h \times b = 16 \times 16$ мм, L = 80 мм с углом врезки 10° пластины из твердого сплава марки ВК8: Резец 2142-0147 ВК8 ГОСТ 9795-84


Тип 2

			ν,	~ ·								_
	бозначение р врезкн	пластин	эм	Сечение резца h × b	d	L	1	n	(FOC	2539 Γ 2542	96 - 82	:)
Правые	Левые	Правые	Левые	, " × "					10°			—
					 	 -		 				
2142-0194	2142-0031	2142-0241	2142-0242	6×6	-	20	5	-		10		
2142-0195	2142-0101	2142-0243	2142-0244	6×6	-	25	5	-		10		
2142-0196	2142-0032	2142-0245	2142-0246	6×6	6	20	5	5		10		
2142-0197	2142-0033	2142-0247	2142-0248	6×6	6	25	5	5		10		
2142-0198	2142-0121	2142-0251	2142-0252	8 × 8	-	25	6	-		(07)		
2142-0199	2142-0102	2142-0253	2142-0254	8×8	-	32	6	-		(07)		
2142-0201	2142-0103	2142-0255	2142-0256	8 × 8	_	40	6	-		(07)		
2142-0202	2142-0034	2142-0257	2142-0258	_	8	25	6	7		(07)		
2142-0203	2142-0035	2142-0261	2142-0262	_	8	32	6	7		(07)		
2142-0204	2142-0036	2142-0263	2142-0264		8	40	6	7		(07)		-
2142-0205	2142-0122	2142-0265	2142-0266	10×10	-	32	8	-		(07)		
2142-0206	2142-0104	2142-0267	2142-0268	10×10	-	40	8	-		(07)		
2142-0207	2142-0105	2142-0271	2142-0272	10×10		50	8	-		(07)		
2142-0208	2142-0037	2142-0273	2142-0274		10	32	8	8,5		(07)		
2142-0209	2142-0038	2142-0275	2142-0276		10	40	8	8,5	-4-	(07)		
2142-0211	2142-0039	2142-0277	2142-0278	_	10	50	8	8,5		(07)		Ġ.
2142-0212	2142-0106	2142-0281	2142-0282	12×12	-	40	10	_	•	(07)		
2142-0213	2142-0107	2142-0283	2142-0284	12×12	-	50	10	_		(07)		
2142-0214	2142-0108	2142-0285	2142-0286	12×12	-	63	10	-	,	(07)		
2142-0215	2142-0041	2142-0287	2142-0288	_	12	40	10	10		(07)	,	
2142-0216	2142-0042	2142-0291	2142-0292	_	12	50	10	10		(07)		
2142-0217	2142-0043	2142-0293	2142-0294	·	12	63	10	10		(07)		
2142-0218	2142-0044	2142-0295	2142-0296	16×16	l –	50	12	_		(07)		
2142-0219	2142-0109	2142-0297	2142-0298	16×16	_	63	12		., -1.	(07)	1.5	
2142-0221	2142-0110	2142-0301	2142-0302	16×16	_	80	12	_		(07)		
2142-0222	2142-0045	2142-0303	2142-0304	_	16	50	12	14		(07)		
2142-0223	2142-0046	2142-0305	2142-0306	_	16	63	12	14		(07)		
2142-0224	2142-0047	2142-0307	2142-0308		16	80	12	14		(07)		
2142-0225	2142-0048	2142-0311	2142-0312	20×20	-	63	16		(07)		(67)	
2142-0226	2142-0112	2142-0313	2142-0314	20×20		80	16		(07)		(67)	
2142-0227	2142-0123	2142-0315	2142-0316	20×20	_	100	16	_	(07)		(67)	
2142-0228	2142-0049	2142-0317	2142-0318		20	63	16	17,5	(07)		(67)	
2142-0229	2142-0051	2142-0317	2142-0318		20	80	16	17,5	(07)		(67)	
2142-0229	2142-0051	2142-0321	2142-0324	_	20	100	16	17,5	(07)		(67)	
2142-0231	2142-0114	2142-0325	2142-0324	25×25	20	100	20	17,5	(07)		(67)	
2142-0232	2142-0114	2142-0323	2142-0328	25×25	_	125	20	_	(07)		(67)	
2142-0233	2142-0113	2142-0327	2142-0328	25 × 25	25	80	20	22	(07)		(67)	
2142-0234	2142-0033	2142-0331	2142-0334	32×32	25	125	25	22	(07)		(67)	
2142-0235	2142-0124	2142-0335	2142-0334	32×32 32×32	-	140	25	-	, ,		(67)	
2142-0236	2142-0116	2142-0333		32 X 32	22			20	(07)			
2142-0237	2142-0054	2142-0337	2142-0338	40 > 40	32	100	25 25	28	(07)		(67)	
2142-0238	2142-0125	2142-0341	2142-0342 2142-0344	40×40 40×40	-	160	25 25		(07)		(67) (67)	
2144-0239	2142-0119	2142-0343	2142-0344	40 X 40		180	23		(07)		(67)	_

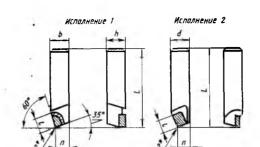
Тип 3

Продолжение табл. 1

11		ие резцов с вки пластин	углом	Сечение резца h × h	d	L	1	n	ΓÒCΤ	253 254	стин по 96-82 26-82) врезки
Правые	Левые	Правые	Левые	"^"					10°	\top	0°
Правые 2142-0055 2142-0001 2142-0005 2142-0007 2142-0009 2142-0065 2142-0067 2142-0011 2142-0013 2142-0015 2142-0072 2142-0072 2142-0072 2142-0072 2142-0072 2142-0073 2142-0073 2142-0073 2142-0073 2142-0073 2142-0073 2142-0073 2142-0073	Левые 2142-0056 2142-0057 2142-0058 2142-0031 2142-0032 2142-0064 2142-0068 2142-0014 2142-0016 2142-0071 2142-0075 2142-0018 2142-0022 2142-0079 2142-0079 2142-0079 2142-0079 2142-0082 2142-0024 2142-0024	Правые 2142-0345 2142-0351 2142-0353 2142-0355 2142-0361 2142-0363 2142-0365 2142-0371 2142-0371 2142-0377 2142-0381 2142-0381 2142-0385 2142-0387 2142-0387 2142-0391 2142-0393 2142-0397 2142-0397 2142-0397	Левые 2142-0346 2142-0352 2142-0354 2142-0356 2142-0368 2142-0368 2142-0372 2142-0376 2142-0376 2142-0378 2142-0388 2142-0388 2142-0388 2142-0388 2142-0389 2142-0399 2142-0399	6×6 6×6 6×6 8×8 8×8 8×8 	8 8 8 8 - 10 10 10 - 12 12 12 12 - 1	20 25 32 25 32 40 25 32 40 50 32 40 50 63 40 50 63 80	5 5 5 6 6 6 6 5 5 5 5 8 8 8 8 8 10 10 10 8 8 8 8 12 12	2,5 2,5 2,5 3,5 3,5 3,5 3,5 3,5 4,5 4,5 4,5 4,5 5,0 5,0 5,0 5,0 6,0 6,0	10° 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10
2142-0025 2142-0083 2142-0085 2142-0087 2142-0089 2142-0092	2142-0026 2142-0084 2142-0086 2142-0088 2142-0091 2142-0093	2142-0401 2142-0403 2142-0405 2142-0407 2142-0411 2142-0413	2142-0402 2142-0404 2142-0408 2142-0412 2142-0414	$ \begin{array}{c c} 16 \times 16 \\ - \\ 20 \times 20 \\ 20 \times 20 \\ - \\ \end{array} $	16 16 - - 20	80 63 80 80 100 80	10 10 10 16 16	6,0 6,0 8,0 8,0 8,0	10 10 10 10 10		70 70 70 70 70
2142-0092	2142-0095	2142-0415	2142-0414	_ 	20	100	12	8,0	10		10

^{*} Размеры для справок.

Пример условного обозначения правого резца типа 3 сечением $h \times b = 16 \times 16$ мм, L=80 мм, с углом врезки 10° пластины из твердого сплава марки ВК6:


Резец 2142-0023 ВК6 ГОСТ 9795-84

То же, для резца с d = 16 мм:

Резец 2142-0085 ВК6 ГОСТ 9795-84

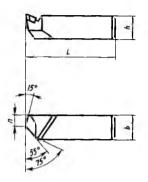
Tun 4

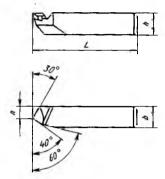
Продолжение табл. 1

		600		40%							
		резцов с угло пластин	PM P	Сечение резца h × b	d	L	1	n	FOCT (FOCT	253 254	ин по 96 — 82 26 — 82) врезки
Правые	Левые	Правые	Левые						10°	7	0°
2142-0096	2142-0097	2142-0463	2142-0464	6×6	_	20	5	3		10	
2142-0098	2142-0099	2142-0465	2142-0466	6×6	-	25	5	3		10	
2142-0417	2142-0418	2142-0467	2142-0468	_	6	20	5	3		10	
2142-0421	2142-0422	2142-0471	2142-0472	_	6	25	5	3		10	
2142-0161	2142-0162	2142-0473	2142-0474	8×8	-	25	6	4		10	
2142-0163	2142-0164	2142-0475	2142-0476	8 × 8	-	32	6	4		10	
2142-0165	2142-0166	2142-0477	2142-0478	8×8	-	40	6	4		10	
2142-0423	2142-0424	2142-0481	2142-0482	_	8	25	6	4		10	
2142-0425	2142-0426	2142-0483	2142-0484	-	8	32	6	4		10	
2142-0427	2142-0111	2142-0485	2142-0486	_	8	40	6	4		10	
2142-0167	2142-0428	2142-0487	2142-0488	10×10	 	32	8	5	-	(07)	
2142-0169	2142-0113	2142-0491	2142-0492	10×10	-	40	8	5		(07)	
2142-0171	2142-0432	2142-0493	2142-0494	10×10	l –	50	8	5	:	(07)	
2142-0433	2142-0434	2142-0495	2142-0496	_	10	32	8	5		(07)	
2142-0117	2142-0118	2142-0497	2142-0498	_	10	40	8	5	((07)	
2142-0435	2142-0436	2142-0501	2142-0502		10	50	8	5		(07)	
2142-0173	2142-0174	2142-0503	2142-0504	12×12	l —	40	10	6		(07)	
2142-0175	2142-0176	2142-0505	2142-0506	12×12	—	50	10	6	1	(07)	
2142-0177	2142-0178	2142-0507	2142-0508	-	-	63	10	6		(07)	
2142-0437	2142-0438	2142-0511	2142-0512	_	12	40	10	6	-1	(07)	
2142-0441	2142-0442	2142-0513	2142-0514	_	12	50	10	6		(07)	
2142-0126	2142-0127	2142-0515	2142-0516	_	12	60	10	6		(07)	
2142-0443	2142-0444	2142-0517	2142-0518	16×16		63	12	8		(07)	
2142-0445	2142-0446	2142-0521	2142-0522	16×16	-	80	12	8		(07)	
2142-0128	2142-0129	2142-0523	2142-0524	_	16	63	12	8		(07)	
2142-0131	2142-0132	2142-0525	2142-0526	_	16	80	12	8		(07)	
2142-0447	2142-0448	2142-0527	2142-0528	20×20	-	80	16	10	(07)		(67)
2142-0451	2142-0452	2142-0531	2142-0532	20×20	-	100	16	10	(07)		(67)
2142-0133	2142-0134	2142-0533	2142-0534	–	10	80	16	10	(07)		(67)
2142-0135	2142-0136	2142-0535	2142-0536	_	10	100	16	10	(07)		(67)
2142-0431	2142-0060	2142-0537	2142-0538	25×25	-	100	20	14	(07)		(67)
2142-0453	2142-0454	2142-0541	2142-0542	25×25		125	20	14	(07)		(67)
* Doorson											

^{*} Размеры для справок.

Резец 2142-0135 ВК6 ГОСТ 9795-84

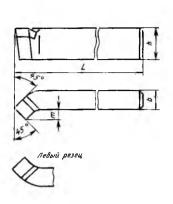

Примечание: Пример условного обозначения правого резца типа 4 сечением $h \times b = 20 \times 20$ мм, L = 100 мм, с углом врезки 10° пластины из твердого сплава марки BK6: Резец 2142-0451 ВК ГОСТ 9795-84

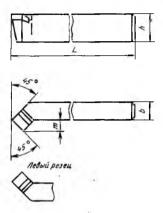

То же, для резца с d = 20 мм:

Тип 6

Продолжение табл. 1

Tun 5


Обозначение р врезки	резцов с углом пластин	Сечение резца	L	n	ГОСТ 2	ластин по 5396—82 при эки пластин
10°	0°	$h \times b$			10°	0°
		_	_			
		Резцы т	ипа 5			9
142-0561	2142-0571	12×12	40	4		10
142-0562	2142-0572	12×12	50	4		10
142-0563	2142-0573	12×12	63	4		10
142-0564	2142-0574	16×16	63	6	10	70
142-0565	2142-0575	16×16	80	6	10	70
		_				(6)
		Резцы т	ипа б			4
142-0581	2142-0591	16×16	63	8		10
142-0582	2142-0592	16×16	80	8		10
142-0583	2142-0593	20×20	80	10	10	1 70
142-0584	2142-0594	20×20	100	10	10	70
142-0585	2142-0595	25 × 25	100	13	10	70
142-0586	2142-0596	25×25	125	13	10	70


Примечания: 1. Пример условного обозначения резца типа 6 сечением $h \times b = 25 \times 25$ мм, L = 100 мм, с углом врезки 10° пластины из твердого сплава марки BK8:

Peseu 2142-0585 BK8 FOCT 9795-84

- 2. Угол врезки пластин в стержень для обработки чугуна и других хрупких материалов 10° , для обработки стали и других вязких материалов 0° .
- 3. Элементы конструкции и геометрические параметры резцов указаны в приложении к ГОСТ 9795-84.
- 4. Форма заточки передней поверхности и доводка режущей части -- по приложению 2 к ГОСТ 18877 -- 73.
 - 5. Технические требования по ГОСТ 5688-61.

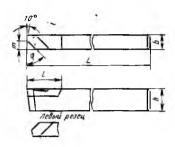
2. Размеры (мм) и обозиачение токарных проходных отогнутых резцов из быстрорежущей стали и с пластинами из твердого сплава (ГОСТ 18868-73, ГОСТ 18877-73)

O	ЭМ	Сечение	T		_		
12° 0°)°	p езца $h \times b$	L	m	Тип пластин	
Правые	Левые	Правые	Левые	1			

Рез	цы из быст		Пластины по ГОСТ				
							2379 – 77
2102-0501	2102-0502	2102-0101	2102-0102	16×10	100	7	41
2102-0503	2102-0504	2102-0103	2102-0104	20×12	120	8	41
2102-0505	2102-0506	2102-0105	2102-0106	25×16	140	11	41
			2102-0108		170	14	41
2102-0509	2102-0510	2102-0109	2102-0110	40×25	20	18	41
	•	1			,		

Резцы с пл	астинами и:	сплава по I	OCT 188	77 – 73			Пластины по ГОСТ 25396—82			
2102-0021	2102-0022	2102-0071	2102-0072	16×10	100	6	>	012		
2102-0025	2102-0026	2102-0075	2102-0076	20×12	120	7		012		*
2102-0005	2102-0006	2102-0055	2102-0056	25×16	140	10		022		
2102-0009	2102-0010	2102-0059	2102-0060	32×20	170	13		022		
2102-0013.	2102-0014	2102-0063	2102-0064	40×25	200	16		022	31	
2102-0017	2102-0018	2102-0067	2102-0068	50×32	240	18	Ŋ.	022	- 5	
2102-0035	2102-0036	2102-0085	2102-0086	50×40	240	23		012		

Примечания: 1. Пример условного обозначения правого резца сечением $h \times b = 25 \times 16$ мм, с углом врезки пластины в стержень 0° (пластина из быстрорежущей стали):


Резуы 2102-0105 ГОСТ 18868-73

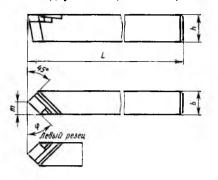
То же, резца с пластинами из твердого сплава марки Т15К6:

Резец 2102-0055 Т15К6 ГОСТ 18877-73

2. Технические требования по ГОСТ 10047-62.

3. Размеры (мм) и обозиачение токарных проходных прямых резцов из быстрорежущей стали (ГОСТ 18869-73)

Обозначен испол	ие резцов нения	Сечение резца	L	l	т при	Тип пластин по ГОСТ		
правых	левых	$h \times b$			45	60	75	2379 – 77
2100-0569	2100-0570	16×10	100	30	6,0	(—)	-	
2100-0665	2100-0666	16 × 10	100	30	_	4,5	_	- 1
2100-0763	2100-0764	16×10	100	30	_	-	4,0	- 8
2100-0571	2100-0572	20×12	120	30	7,0	_	_	56
2100-0667	2100-0668	20×12	120	30	_	6,0	_	57
2100-0765	2100-0766	20×12	120	30	_	_	5,0	58
2100-0565	2100-0566	25×16	140	50	9,0	_	-	
2100-0661	2100-0662	25×16	140	50	-	7,0	<u> </u>	_
2100-0767	2100-0768	25×16	120	40		_	4,0	58
2100-0567	2100-0568	30×20	170	60	12,0	-	-	56
2100-0663	2100-0664	32×20	170	60	_	9,0		57
2100-0769	2100-0770	32 × 20	140	50	_	_	5,0	58


Примечания: 1. Размеры резцов, имеющих наибольшее применение, приняты выборочно.

Peseu 2100-0661 FOCT 18869-73

^{2.} Пример условного обозначения правого резпа сечением $h \times b = 25 \times 16$ мм при $\phi = 60^{\circ}$:

^{3.} Технические требования по ГОСТ 10047-62.

4. Размеры (мм) и обозначение токарных проходных прямых резцов с пластинами из твердого сплава при угле в плане ϕ , равном 45, 60 и 75° (ГОСТ 18878 – 73)

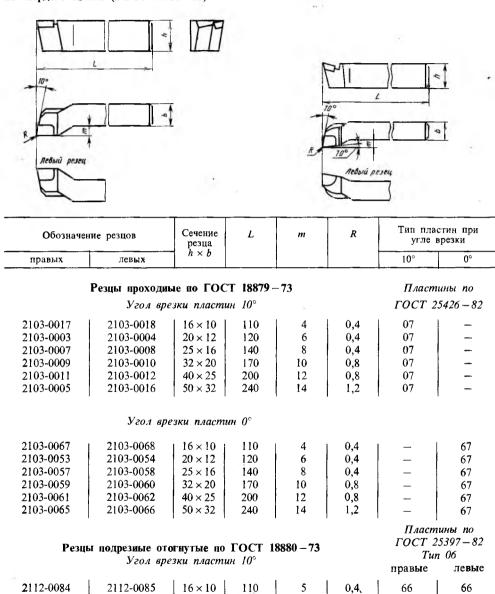
2	означение ре с углом вре 2°	езки пластин		Сечеиие резца h × b	L		при уг плане		по Г 2539	ластин ОСТ 6-82 ппа
Правые	Левые	Правые	Левые	" ^ "	45 60 75		75	1	2	
			-	_						
2100-0401	2100-0402	2100-0461	2100-0462	16×10	100	6	-	-	-	012
2100-0801	2100-0802	2100-0861	2100-0862	16×10	100	-	4,5	_	_	012
2100-0405	2100-0406	2100-0465	2100-0466	20×12	120	7	_	-	_	012
2100-0805	2100-0806	2100-0865	2100-0866	20 × 12	120	_	6,0		_	012
2100-0209	2100-0210	2100-0253	2100-0254	20×12	120	_		3,0	10	10
2100-0409	2100-0410	2100-0469	2100-0470	25×16	140	9,0	_	_	10	12
2100-0809	2100-0810	2100-0869	2100-0870	25×16	140	_	7,0	_	10	12
2100-0213	2100-0214	2100-0257	2100-0258	25×16	120	_	_	4,0	10	10
2100-0413	2100-0414	2100-0473	2100-0474	30 × 20	170	12,0	_	_	10	12
2100-0813	2100-0814	2100-0873	2100-0874	30 × 20	170	_	9,0	_	10	12
2100-0215	2100-0216	2100-0259	2100-0260	30 × 20	140	_	_	5,0	10	10
2100-0417	2100-0418	210-0477	2100-0478	40×25	200	14,0		_	10	12
2100-0817	2100-0818	2100-0877	2100-0878	40 × 25	200		11,0	_	10	12

Примечания. 1. Размеры резцов, имеющих наибольшее применение, приняты выборочно.

2

^{2.} Пример условного обозначения правого резца сечением $h \times b = 25 \times 16$ мм с углом в плане $\phi = 60^\circ$ при угле врезки пластины 10° (пластина из твердого сплава BK8): *Peseų 2100-0809 BK8 ГОСТ 18878—73*

66


66

66

66

66

5. Размеры (мм) и обозначение токариых проходиых упориых резцов с пластинами из твердого сплава (ГОСТ 18879—73) и токарных подрезных отогнутых резцов с пластинами из твердого сплава (ГОСТ 1880—73)

2112-0003

2112-0005

2112-0007

2112-0009

2112-0021

2112-0004

2112-0006

2112-0008

2112-0010

2112-0022

 20×12

 25×16

 30×20

 40×25

 50×32

125

140

170

200

240

6

8

10

12

14

0.4

0.4

0,8

8,0

8,0

66

66

66

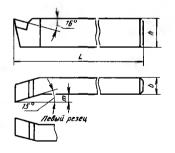
66

66

Продолжение табл. 5

Обозначе	ние резцов	резца L п	m	R	Тип пластин при угле врезки		
правых	левых	h × b		10°	0°		
		Угол вр	езки плас	стин 0°			
2112-0086	2112-0087	16×10	110	5	0,4	_	66
2112-0053	2112-0054	20×12	125	6	0,4	_	66
2112-0057	2112-0058	25 × 16	140	8	0,4	_	66
2112-0063	2112-0064	30×20	170	10	0,8	_	66
2112-0067	2112-0068	40×25	200	12	0,8	_	66
2112-0073	2112-0074	50×32	240	14	0,8	_	66

Примечания: 1. Пример условного обозначения резца сечением $h \times b = 25 \times 16$ мм правого с углом врезки пластины 10° (пластина из твердого сплава марки BK6):


Резец 2101-0007 ВК6 ГОСТ 18879-73

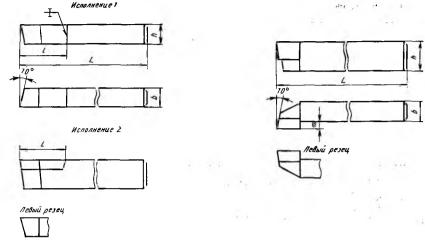
То же, подрезного резца по ГОСТ 18880-73:

Резец 2112-0005 ВК6 ГОСТ 18880-73

2. Технические требования по ГОСТ 5688-61.

6. Размеры (мм) и обозиачение токарных подрезных торцовых резцов с пластинами типа 43 (по ГОСТ 2379-77) из быстрорежущей стали (ГОСТ 18871-73)

Обозначе	ние резцов	Сечение		
правых	левых	резца h × b	L	m
2112-0031	2112-0032	16×10	100	4
2112-0033	2112-0034	20×12	120	5
2112-0035	2112-0036	25×16	140	6
2112-0037	2112-0038	32×20	170	8
2112-0039	2112-0040	40×25	200	10

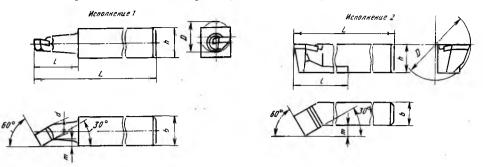

Примечания: 1. Пример условного обозначения правого резца сечением $h \times b = 25 \times 16$ мм:

Резец 2112-0035 ГОСТ 18871-73

2. Технические требования по ГОСТ 10047-62.

7. Размеры (мм) и обозначение токарных проходных упорных резцов из быстрорежущей стали

 $(\Gamma OCT 18870 - 73)$ Тии 1 Tun 2

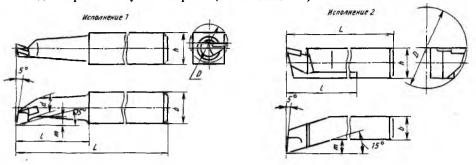

Обозначе	ние резцов	14	Сечение			
правых	левых	Исполнение	резца h × b	L	1	m
		Тип 1				
• 2101-0561	2101-0562	1 1	16×16	80	30	-
2101-0565	2101-0566	2	20×12	100	40	_
2101-0567	2101-0568	2 2	25×16	120	40	_
2101-0569	2101-0570	2	32×20	140	50	_
		F 6				
		Тип 2				
	Уго	л вре зки пласп	<i>ины 12</i> °	ı	ļ	1
2101-0509	2101-0510		16×10	100	-	4
2101-0501	2101-0502		20×12	120	_	5
2101-0503	2101-0504	_	25×16	140	_	6
2101-0505	2101-0506	_	30×20	170	_	6 7
2101-0507	2101-0508		40×25	200	_	9
	Уго.	л врез ки пласт	ины 0°			
2101-0021	2101-0022	- V -	16×10	100	5-0	4
2101-0023	2101-0024	_	20×12	120		5
2101-0025	2101-0026		25×16	140	_	6
2101-0027	2101-0028	_	30×20	170	_	7
2101-0029	2101-0030	-	40×25	200		9

Примечания: 1. Пример условного обозначения правого резца типа 2 сечением $h \times b = 20 \times 12$ мм с углом врезки пластины 12° :

Pesey 2101-0501 FOCT 18870-73

^{2.} Технические требования по ГОСТ 10047-62.

8. Размеры (мм) и обозиачение токарных расточных резцов с пластинами из твердого сплава для обработки сквозных отверстий (ГОСТ 18882-73)

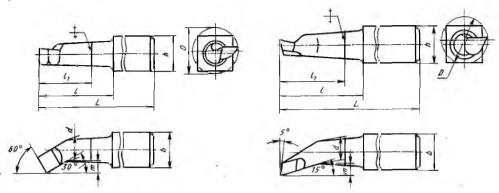

Обозначение р врезкн	Ис- полне- ние	Сечение резца	L	1	d	m	Тип пластин по ГОСТ	<i>D</i> _{наим} отвер-	
10°	0°	нис	$h \times b$				L	2209 - 82	стия
2140-0056	2140-0081	2	16×12	170	80	-	6,0	02 Б	40
2140-0001	2140-0021	1	16×16	120	25	8	3,5	02 A	14
2140-0002	2140-0022	1	16×16	140	40	8	3,5	02 A	14
2140-0003	2140-0023	1	16×16	140	35	10	4,5	02 A	18
2140-0004	2140-0024	1	16×16	170	60	10	4,5	02 A	18
2140-0057	2140-0082	2	20 × 16	200	100	_	8,0	02 Б	55
2140-0005	2140-0025	1	20×20	140	40	12	5,5	02 A	21
2140-0006	2140-0026	1	20 × 20	170	70	12	12,0	02 A	21
2140-0007	2140-0027	1	20×20	170	50	14	6,0	02 A	27
2140-0008	2140-0028	1	20×20	200	80	14	6,0	02 A	27
2140-0058	2140-0083	2	25 × 20	240	120	14	10,0	02 Б	70
2140-0009	2140-0029	ı	25 × 25	200	70	19	8,0	02 A	34
2140-0010	2140-0030	1	25×25	240	100	19	8,0	02 A	34
2140-0059	2140-0084	2	32×25	280	160		12,0	02 Б	80
2140-0060	2140-0085	1	40 × 32	300	180	_	16,0	02 Б	110

Примечания: 1. Пример условного обозначения резца типа 1 исполнения 1 сечением $h \times b = 16 \times 16$ длиной l = 25 мм с углом врезки пластины в стержень 10° (пластина из твердого сплава марки BK4):

Резец 2140-0001 BK4 ГОСТ 18882-73

^{2.} Технические требования по ГОСТ 5688-61.

9. Размеры (мм) и обозначение токарных расточных резцов с пластинами из твердого сплава для обработки глухих отверстий (ГОСТ 1883-73)


Обозначение резцов с углом врезки пластин 10°	Испол- нение	Сечение резца <i>h</i> × <i>b</i>	L	l	d	m	Тип пластин по ГОСТ 2209 — 82	D _{наим}
		1					! !	
2141-0201	1	12×12	100	20	6	2,5	06	10
2141-0056	2	16×12	170	80	_	6,0	06	40
2141-0002	1	16×16	120	25	8	3,5	06	14
2141-0003	1	16×16	140	30	8	3,5	06	14
2141-0004	1	16×16	140	40	10	4,5	06	18
2141-0005	1	16×16	170	60	10	4,5	06	18
2141-0057	2.	20×16	200	100	_	8,0	06	55
2141-0006	1	20×20	140	40	12	6,0	06	21
2141-0007	1	20×20	170	70	12	6,0	06	21
2141-0008	1	20×20	170	50	14	6,0	06	27
2141-0009	1	20 × 20	200	80	14	6,0	06	27
9 2141-0058	2	25×20	240	120	_	10,0	06	70
2141-0010	1	25 × 25	200	70	19	8,0	06	34
2141-0011	1	25×25	240	100	19	8,0	06	34
2141-0059	2	32 × 25	280	160	_	12,0	06	80
2141-0060	1	40 × 32	300	180	_	16,0	06	110
	[]	}						1

Примечания: 1. Пример условного обозначения резца типа 1 сечением $h \times b = 16 \times 16$ мм l = 23 мм с углом врезки пластины в стержень 10° (пластина из твердого сплава марки BK4):

Резец 2141-0002 ВК4 ГОСТ 18883-73

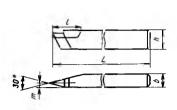
^{2.} Технические требования по ГОСТ 5688-61.

10. Размеры (мм) и обозначение токарных расточных резцов типа 1 из быстрорежущей обработки сквозных отверстий (ГОСТ 18872-73) и глухих отверстий стали для $(\Gamma OCT 18873 - 73)$

Обозначение резцов	резца h × b	L	1		d	m	D _{наим}				
 Pe	зцы для обработ	ки сквозн	ых отверс	тий (ГОС	T 18872 –	73)					
2140-0501	16×16	120	28	25	8	3,5	14				
2140-0502	16×16	140	40	30	8	3,5	14				
2140-0503	16×16	140	35	30	10	4,5	18				
2140-0504	16 × 16	170	60	30	8	4,5	1,8				
2140-0505	20×20	140	40	30	12	5,5	21				
2140-0506	20×20	170	70	30	12	5,5	21				
2140-0507	20×20	170	50	30	14	6,0	27				
2140-0508	20×20	200	80	30	14	6,0	27				
2140-0509	25 × 25	200	70	30	19	8,0	34				
2140-0510	25×25	240	100	30	19	8,0	34				
Резны для обработки глухих отверстий (ГОСТ 18873-73)											
2141-0551	12×12	100	30	15	·4	1,5	6				
2141-0552	12 × 12	100	30	20	√ 6	2,5	10				
2141-0553	16×16	120	30	25	[∑] 8	3,5	14				
2141-0554	16×16	140	35	30	8	3,5	14				
2141-0555	16×16	140	40	35	10	4,5	18				
2141-0556	16×16	170	60	35	10	4,5	18				
2141-0557	20×20	140	40	35	12	6,0	21				
2141-0558	20×20	170	70	35	12	6,0	21				
2141-0559	20×20	170	50	30	14	6,0	27				
2141-0560	20×20	200	80	35	14	6,0	27				
2141-0561	25 × 25	200	70	35	19	8,0	34				
 2141-0562	25 × 25	240	100	35	19	8,0	34				

Примечания: 1. Пример условного обозначения резца сечением $h \times b = 16 \times 16$ мм длиной l = 40 мм:

Резеу 2140-0502 ГОСТ 18872-73


То же, резца для растачивания глухих отверстий:

Резец 2141-0555 ГОСТ 18873-73

2. Технические требования по ГОСТ 10047-62.

Сечение

11. Размеры (мм) и обозначение токарных резьбовых резнов с пластинами из быстрорежущей стали для нарезания наружной резьбы (ГОСТ 18876-73)

Тип 3

	Обозначение резцов для нарезания резьбы			ı	m	Тип пластин по ГОСТ	Шаг резьбы
правой левой		$h \times b$				2379 – 77	P

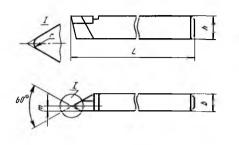
Резцы типа 1 дли метрической резьбы с углом в илане 59°30'

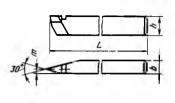
2660-0501	_	16×10	100	40	1,5	61	0,5-2,5
2660-0503	_	20 × 12	120	40	3,0	61	0,75-3
2660-0505	_	25×16	140	50	4,0	61	1-5
2660-0507	1-1	32×20	170	60	5,0	61	1,5-6
		1	l				

Резцы типа 3 дли трапецеидальной резьбы с углум в плане 30°

2664-0501	2664-0502	20×12	120	40	3	· 62	2
2664-0503	2664-0504	20×12	120	40	3	62	3
2664-0505	2664-0506	20×12	120	40	3	62	4
2664-0507	2664-0508	20×12	120	40	4	62	5
2664-0509	2664-0510	25×16	140	50	4	62	6
2664-0511	2664-0512	25 × 16	140	50	5	62	8
2664-0513	2664-0514	25 × 16	140	50	5	62	10
2664-0515	2664-0516	32×20	170	60	6	62	12
2664-0517	2664-0518	32×20	170	60	8	62	16
2664-0519	2664-0520	40×25	200	60	8	62	20
2664-0521	2664-0522	40×25	200	60	10	62	24
		<u> </u>			l		

Примечания: 1. Пример условного обозначения резца типа 1 сечением $h \times b = 20 \times 12$ мм для метрической резьбы с шагом P = 2 мм:


Резец 2660-0503 2 ГОСТ 18876-73


То же, резца для трапецеидальной резьбы типа 3 с шагом P=2 мм: $Peзeu\ 2664-0501\ 2\ FOCT\ 18876-73$

2. Технические требования по ГОСТ 10047-62.

12. Размеры (мм) и обозначение токарных резьбовых резцов с пластинами из твердого сплава дли нарезання наружной резьбы (ГОСТ 18885-73)

Tun I Тип 3

Обозначение резцо резьб		Сечение		Обозначение или тип	Шаг
правой	левой	резца $h \times b$	m 	пластин по ГОСТ 2209 — 82	резьбы <i>Р</i>

Резцы типа 1 дли метрической резьбы с углом в плане 60°

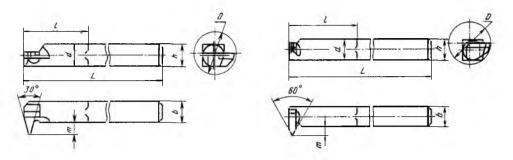
2660-0001 2660-0003 2660-0005 2660-0007	9 =	$ \begin{array}{c cccc} 16 \times 10 \\ 20 \times 12 \\ 25 \times 16 \\ 32 \times 20 \end{array} $	100 120 140 170	1,5 3,0 4,0 5,0	EA3 EA6 EA8 EA10	0,5-2,5 0,8-3,0 1,2-5,0 2-6
		L		l '		

Резцы типа 3 для трапецендальной резьбы с углом в плане 30°

2664-0001	2664-0002	$1 20 \times 12$	1 120	2,0	48	1 2
2664-0003	2664-0004	20×12	120	2,0	48	3
2664-0005	2664-0006	20×12	120	3,0	48	4
2664-0007	2664-0008	20×12	120	3,0	48	5
2664-0009	2664-0010	25×16	140	4.0	48	6
2664-0011	2664-0012	25 × 16	140	4,0	48	8
2664-0013	2664-0014	25 × 16	140	6,0	48	10
2664-0015	2664-0016	32×20	170	6,0	48	12
2664-0017	2664-0018	32×20	170	8,0	48	16
2664-0019	2664-0020	40 × 25	200	10,0	32	20
2664-0021	2664-0022	40×25	200	12,5	32	24
	1480					

Примечания: 1. Пример условного обозначения резца типа 1 сечением $h \times b =$ $=20 \times 12$ мм для метрической резьбы с шагом P=2 мм с пластиной из твердого сплава марки Т15К6:

Резец 2660-0003 2 Т15К6 18885-73


То же, резца для трапецеидальной резьбы типа 3 с шагом P=2 мм: Резец 2664-0501 2 Т15К6 ГОСТ 18885-73

2. Технические требования по ГОСТ 5688-61.

13. Размеры (мм) и обозначение токарных резьбовых резнов с пластинами из твердого сплава для нарезании резьбы в отверстиях (ГОСТ 18885-73)

Тип 2

Тип 4

Для правой резьбы	Для левой резьбы	Сечение резца	L	l	d	m	Тип пластин по ГОСТ	Шаг резь- бы	Д наим
Обозначение		$h \times b$					2209 – 82	P	

Резцы типа 2 для метрической резьбы с углом в плане 60°

2662-0005 2662-0007	_ _	16×16 20×20	170 200	60 80	16 20	9 12	11 11	$\begin{vmatrix} 1,5-4 \\ 2-5 \end{vmatrix}$	30 42
2662-0009	_	25×25	240	100	25	14	11	$\begin{vmatrix} \tilde{3} - \tilde{6} \end{vmatrix}$	52

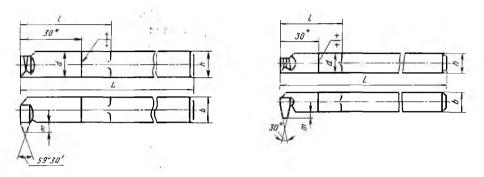
Резцы типа 4 для трапецеидальной резьбы с углом в плане 30°

2666-0011 2666-0013 2666-0015 2666-0017 2666-0019 2666-0021 2666-0023 2666-0025	2666-0012 2666-0014 2666-0016 2666-0018 2666-0020 2666-0022 2666-0024 2666-0026	$ \begin{array}{c} 16 \times 16 \\ 16 \times 16 \\ 16 \times 16 \\ 20 \times 20 \\ 20 \times 20 \\ 20 \times 20 \\ 25 \times 25 \\ 25 \times 25 \\ \end{array} $	170 170 170 200 200 200 240 240	60 60 60 80 80 80 100	16 16 20 20 20 25 25	6 8 10 8 10 12 6 10	48 48 48 48 48 48 48	3 6 10 3 8 12 4 10	30 30 30 44 44 44 62 44
2666-0025	2666-0026	25 × 25	240	100	25	10	48	10	44
2666-0027	2666-0028	25 × 25	240	100	25	15	48	16	44

Примечания: 1. Пример условного обозначения резца типа 4 сечением $h \times b = 16 \times 16$ для правой трапецеидальной резьбы с шагом P = 3 мм с пластиной из твердого сплава марки T15K6:

Резец 2666-0011 4 T15K6 ГОСТ 18885-73

То же, резца типа 2 для метрической резьбы


Резец 2662-0005 2 Т15К6 ГОСТ 18885-73

2. Технические требования по Γ OCT 5688-61.

14. Размеры (мм) и обозначение токарных резьбовых резнов с пластинами из быстрорежущей стали для нарезания резьбы в отверстиях (ГОСТ 18876-73)

Тип 2

Тип 4

	Обозначение резцов для нарезания резьбы правой левой		L	1	d	m	Тип пластин по ГОСТ	Шаг резьбы	Д иаим
правой					L		2379 – 77	Р	

Резцы типа 2 для метрической резьбы с углом в плане 59°30'

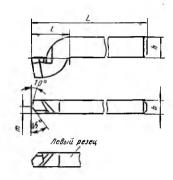
2662-0505	-	16×16	170	60	16	9	- 55	1.1,5-4	30
2662-0507	_	20×20	200	80	20	12	47	2-5	42
2662-0509	-	25×25	240	100	25	14	47	3-6	52

Резцы типа 4 для транецендальной резьбы с углом в плане 30°

2666-0511	2666-0512	16×16	170	60	16	6	_	3	30
2666-0513	2666-0514	16×16	170	60	16	8	-	6	30
2666-0515	2666-0516	16×16	170	60	16	10	_	10	30
2666-0517	2666-0518	20×20	200	80	20	6	55 °	3	44
2666-0519	2666-0520	20×20	200	80	20	10	55	8	44
2666-0521	2666-0522	20×20	200	80	20	12	41	12	44
2666-0523	2666-0524	25×25	240	100	25	6	55	4	62
2666-0525	2666-0526	20×20	240	100	25	10	55	10	62
2666-0527	2666-0528	20×20	240	100	25	15	55	16	62
	100								
									1

^{*} Размеры для справок.

Примечания: 1. Пример условного обозначения резца типа 2 сечением $h \times b = 20 \times 20$ мм для метрической резьбы с шагом P = 3,5 мм:


Резец 2662-0507 3,5 ГОСТ 18876-73

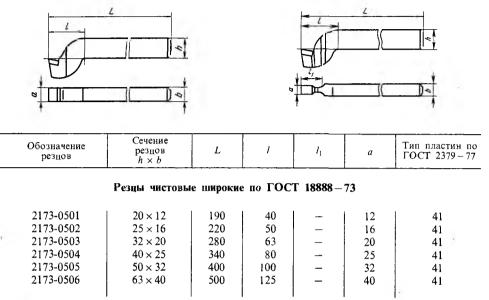
То же, для трапецеидальной резьбы с шагом P=3 мм:

Резец 2666-0517 3 ГОСТ 18876-73

2. Технические требования по ГОСТ 10047-62.

15. Размеры (мм) и обозначение строгальных нроходных изогнутых резпов с пластинами из быстрорежущей стали (Γ OCT 18887-73)

Обозначен	Обозна че ние резцов		L '	1	m	Обозначение пластин по ГОСТ 2379 – 77		
правых	левых	h × b				правых	левых	
	2.							
2171-0751	2171-0752	20×12	190	40	7	4401	4402	
2171-0753	2171-0754	25×16	220	50	9	4403	4404	
2171-0755	2171-0756	32 × 20	280	63	12	4405	4406	
2171-0757	2171-0758	40 × 25	340	80	14	4407	4408	
2171-0759	2171-0760	50 × 32	400	100	16	4409	4410	
2171-0761	2171-0762	63×40	500	125	22	4411	4412	


Примечания: 1. Пример условного обозначения резца сечением $h \times b = 40 \times 25$ мм правого:

Peseu 2171-0757 FOCT 18887-73

- 2. Форма заточки передней и задней поверхностей и доводка режущей части по приложению 2 к Γ OCT 18868-73.
- 3. Элементы конструкции и геометрические параметры резцов указаны в рекомендуемом приложении.
 - 4. Технические требования по ГОСТ 10047-62.

⁹ Обработка металлов резанием

16. Размеры (мм) и обозначение строгальных чистовых широких изогнутых резцов с пластинами нз быстрорежущей стали (ГОСТ 18888-73) и отрезных и прорезных изогнутых резцов с пластинами из быстрорежущей стали (ГОСТ 18890-73)

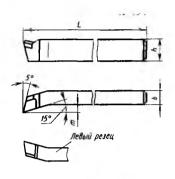
Резцы отрезные и прорезные по ГОСТ 18890-73

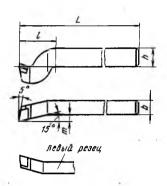
2177-0501	120×12	190	40	25	5	49	
2177-0502	25 × 16	220	50	30	6	49	
2177-0503	25×16	220	50	30	8	49	
2177-0504	32×20	280	63	35	8	49	
2177-0505	32×20	280	63	35	10	49	
2177-0506	40×25	340	80	40	8	49 .	
2177-0507	40×25	340	80	40	12	49	
2177-0508	50×32	400	100	45	12	49	
2177-0509	50×32	400	100	45	15	49	
						100	

Примечания: 1. Пример условного обозначения резца сечением $h \times b = 40 \times 25$ мм с пластиной из быстрорежущей стали:

Резец 2173-0504 ГОСТ 18888-73

То же, резца сечением $h \times b = 40 \times 25$ мм с шириной прореза 8 мм:


Резец 2177-0506 ГОСТ 18890-73


- 2. Форма заточки передней и задней поверхностей и доводки режущей части по приложению 2 к Γ OCT 18868 73.
- 3. Элементы конструкции и геометрические параметры резцов указаны в рекомендуемом приложении.
 - 4. Технические требования по ГОСТ 10047-62.

17. Размеры (мм) и обозначение строгальных подрезных прямых и изогнутых резнов с пластинами из быстрорежущей сталн (ГОСТ 1889-73)

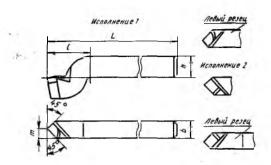
Тип І

Тип 2

Обозначе	ние резцов	Сечение	L	,	m	Тип пластин по ГОСТ
правых	левых	— резца h × b				2379 – 77
					- 1	
	Резцы	типа 1 нодј	резные прям	ые		
2174-0501	2174-0502	+ 20×12	170	1 -	6,0	43
2174-0503	2174-0504	25×16	200	_	8,0	43
2174-0505	2174-0506	32×20	250	_	10,0	43
2174-0507	2174-0508	40 × 25	300	_	12,5	43
2174-0509	2174-0510	50×32	350	_	16,0	43
2174-0511	2174-0512	63 × 40	450	0=0	20,0	43
	Резцы т	ипа 2 подре	зные изогну	тые	* ‡	
2175-0701	2175-0702	1 20×12 1	190	ı 40	1 6,0	1 43
2175-0703	2175-0704	25×16	220	50	8,0	43
2175-0705	2175-0706	32×20	280	63	10,0	43
2175-0707	2175-0708	40×25	340	80	12,5	43
2175-0709	2175-0710	50×32	400	100	16,0	43
2175-0711	2175-0712	63×40	500	125	20,0	43
		05 / 40			, ,	20.75

Примечания: 1. Пример условного обозначения резца типа 1 сечением $h \times b = 40 \times 25$ мм правого:

Резец 2174-0507 ГОСТ 18889—73


То же, резца типа 2:

Резец 2175-0707 ГОСТ 18889-73

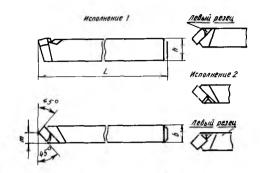
2. Технические требования по ГОСТ 10047-62.

18. Размеры (мм) и обозначение строгальных проходных резцов с пластинами из твердого сплава (ГОСТ 18891-73)

Тип I

Обозначен	Обозначение резцов		Pichoj.		Сечение	L	,	m	Тип пластин по ГОСТ
правых	левых	нение	резца h × b	L	·		25395-82		
		Ì				İ	4		
2171-0001	2171-0002	1	20×16	190	40	9	10		
2171-0051	2171-0052	2	20×16	190	40	9	01		
2171-0003	2171-0004	1	25 × 20	220	50	12	10		
2171-0053	2171-0054	2	25 × 20	220	50	12	01		
2171-0005	2171-0006	1	32 × 25	280	63	14	10		
2171-0055	2171-0056	2	32 × 25	280	63	14	01		
2171-0007	2171-0008	1	40 × 32	340	80	18	10		
2171-0057	2171-0058	2	40×32	340	80	18	01		
2171-0009	2171-0010	1	50 × 40	400	100	23	10		
2171-005 9	2171-0060	2	50 × 40	400	100	23	01		
2171-0011	2171-0012	1	63×50	500	125	30	10		
2171-0061	2171-0062	. 2	63 × 50	500	125	30	01		

Примечания: 1. Пример условного обозначения правого резца типа 1 исполнения 1 сечением $h \times b = 20 \times 16$ мм с пластиной из твердого сплава марки T15K6:


Резец 2171-0001 Т15К6 ГОСТ 18891-73.

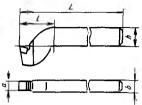
^{2.} Форма заточки и доводки режущей части по приложению 2 к ГОСТ 18877 - 73.

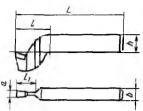
^{3.} Технические требования по ГОСТ 5688-61.

19. Размеры (мм) и обозначение строгальных проходных резнов с пластиными из твердого сплава (ГОСТ 18891 – 73)

Тип 2 -

Обозначен	ие резцов	Испол-	Сечение резца	L	m	Тип пластин по ГОСТ
правых	левых	нение	$h \times b$			25395 - 82
2170-0001	2170-0002	1	20 × 16	170	9	10
2170-0051	2170-0052	2	20×16	170	9	01
2170-0003	2170-0004	1	25×20	200	12	10
2170-0053	2170-0054	2	25 × 20	200	12	01
2170-0005	2170-0006	1	32 × 25	250	14	10
- 2170-0055	2170-0056	2	32 × 25	250	14	01
2170-0007	2170-0008	1	40 × 32	300	18	10
2170-0057	2170-0058	2	40 × 32	300	18	01
2170-0009	2170-0010	1	50 × 40	350	23	10
2170-0059	2170-0060	2	50 × 40	350	23	01
2170-0011	2170-0012	1	63 × 50	450	30	10
2170-0061	2170-0062	2	63 × 50	450	30	01
-						


Примечания: 1. Пример условного обозначения правого резца типа 2 исполнения 1 сечением $h \times b = 20 \times 16$ мм с пластинами из твердого сплава марки T15K6:


Резеу 2170-0001 T15К6 ГОСТ 18891—73.

3. Технические требования по ГОСТ 5688-61.

^{2.} Форма заточки и доводки режущей части по приложению 2 к ГОСТ 18877-73.

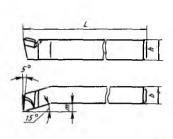
20. Размеры (мм) и обозиачение строгальных чистовых широких изогнутых резнов с пластинами из твердого сплава (ГОСТ 18892-73) и отрезных и прорезных резнов с пластинами из тиердого сплаиа (ГОСТ 18894-73)

	1		1		114
Сечение резца h × b	L	l	1,	а	Тип пластин
Резцы с	строгальиы	е чистовые	по ГОСТ	1 8892 – 73	
20×12	190	40	-	1 12	
25×16	220	50	_	14	
32×20	280	63		18	02 по ГОСТ
50×32	400	100	_	25	25395 - 82
40×25	340	80	-	22	
63×40	500	125	_	35	
Резцы с	трогальны	е отрезные	по ГОСТ 1	18894 – 73	
1 20×12 I	190	ا 40	. 25	55	
25×16		1			
25×16	220	50	30		13 по ГОСТ
32×20	280	63	35		17163 - 82
32×20	220	63	35	1 ′ 1	 .
40×25	340	80	40	1 ' 1	
40×25	340	80	40	10,5	
	240	80	40	12,5	
40×25	340	00	40	1 4,5 1	
40×25 50×32	340 400	100	45	12,5	01 по ГОСТ
50 × 32 50 × 32	400 400				01 по ГОСТ 25395-82
50×32	400	100	45	12,5	01 по ГОСТ 25395-82
	Резцы с 20 × 12 25 × 16 32 × 20 50 × 32 40 × 25 63 × 40 Резцы с 20 × 12 25 × 16 32 × 20 32 × 20 32 × 20 40 × 25 40 × 25 40 × 25	резна $h \times b$ L Резны строгальны 20×12 190 25×16 220 32×20 280 50×32 400 40×25 340 63×40 500 Резны строгальные 20×12 190 25×16 220 25×16 220 32×20 280 32×20 280 32×20 220 40×25 340 40×25 340	резна $h \times b$ L ℓ Резцы строгальные чистовые 20×12 190 40 25×16 220 50 32×20 280 63 50×32 400 100 40×25 340 80 63×40 500 125 Резцы строгальные отрезные 20×12 190 40 25×16 220 50 25×16 220 50 32×20 280 63 32×20 220 63 40×25 340 80 40×25 340 80	резна $h \times b$	резна $h \times b$

Примечания: 1. Пример условного обозначения резца сечением $h \times b = 20 \times 12$ мм с пластинами из твердого сплава марки T15K6:

Резец 2173-0001 Т15К6 ГОСТ 18892-73.

^{2.} Форма заточки и доводки режущей части по приложению 2 к ГОСТ 18877-73.


^{3.} Технические требования по ГОСТ 5688-61.

21. Размеры (мм) и обозначение строгальных подрезных (изогнутых и прямых) резцов с пластинами из твердого сплава (ГОСТ 18893-73)

Tun 1

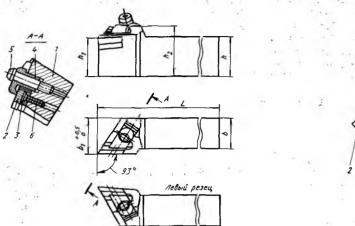
Тип 2

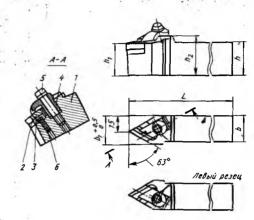
Обозначение резцов		Сечение		,		Обозначение пла- стин по ГОСТ 25397 – 82		
правых	левых	$h \times b$	L I		m	для правых резцов	для левых резцог	
		Резцы типа	1 изоги	утые				
2175-0021	2175-0022	20 × 16	190	1 40	8,0	06050	06060	
2175-0023	2175-0024	25×20	220	50	10,0	06090	0610	
2175-0025	2175-0026	32×25	280	63	12,5	06130	0614	
2175-0027	2175-0028	40 × 32	340	80	15,0	06170	0618	
2175-0029	2175-0030	50×40	400	100	20,0	06270	0628	
2175-0031	2175-0032	63 × 50	500	125	25,0	06270	0628	
		Резцы тип	а 2 прям	иые				
2174-0021	2174-0022	20×16	190	J –	8,0	06050	0606	
2174-0023	2174-0024	25×20	220	_	10,0	06090	0610	
2174-0025	2174-0026	32×25	280	_	12,5	06130	0614	
2174-0027	2174-0028	40 × 32	340	_	15,0	06170	0618	
2174-0029	2174-0030	50×40	400	_	20,0	06270	0628	
2174-0031	2174-0032	63×50	500	l _	25,0	06270	0628	

Примечания: 1. Пример условного обозначения правого резца типа 1 сечеиием $h \times b = 20 \times 16$ мм с пластинами из твердого сплава марки T15K6:

Резец 2175-0021 Т15К6 ГОСТ 18893-73

То же, для резцов типа 2:


Резец 2174-0021 Т15К6 ГОСТ 18893-73


2. Технические требования по ГОСТ 5688-61.

Tun 2

22. Размеры (мм) и обозначение токарных сборных резцов для контурного точения с механическим крепленнем многогранных твердосплавных пластин (ГОСТ 20872—80)

Tuo 1

ĺ					Ì	i		Обозначение		
правых	левых	$h \times b$	n_1	"2	01	"	Правая	Левая	Правая	Левая
Обозначен правых	левых	Сечение	L				Поз. 2. Режущая пластина по ГОСТ 19062—80		Поз. 3. Опор по ГОСТ	ная пластина 19079—80

Резцы типа 1

	2101-0601	2101-0602	20 × 20	20	27	25	150	08116-170405-130	08116-170405-230	741-1704-1	741-1704-2
	2101-0603	2101-0604	20×20	20	27	25	150	08116-170410-130	08116-170410-230	741-1704-1	741-1704-2
L.	2101-0605	2101-0606	20×20	20	27	25	150	08116-170410-136	08116-170410-236	741-1704-1	741-1704-2
	ī	+									

1				,	ı	
2101-0607 2101-0611 2101-0637 2101-0643 2101-0643 2101-0645 2101-0651 2101-0655 2101-0657 2101-0661 2101-0663 2101-0667 2101-0671 2101-0673 2101-0677 2101-0677 2101-0677 2101-0677	2101-0608 2101-0612 2101-0638 2101-0644 2101-0644 2101-0648 2101-0655 2101-0658 2101-0658 2101-0666 2101-0668 2101-0674 2101-0674 2101-0677 2101-0678 2101-0678 2101-0678	20 × 20 20 × 20 25 × 25 25 × 25 25 × 25 25 × 25 32 × 25 32 × 25 32 × 25 32 × 32 32 × 32 40 × 32 40 × 32 40 × 32 40 × 32	20 20 25 25 25 25 25 32 32 32 32 32 32 32 32 40 40	27 27 32 32 32 32 32 39 39 39 39 39 39 39 47 47 47	25 25 32 32 32 32 32 32 32 32 32 40 40 40 40 40 40	150 150 150 150 150 150 170 170 170 170 170 170 170 170 200 200
2101-0683	2101-0684	40×32 40×32	40	47	40 40	200
2101-0685	2101-0686	40 × 32	40	47	40	200
		4		4		
2101-0757 2101-0761 2101-0763 2101-0765 2101-0767 2101-0795 2101-0797 2101-0801 2101-0803 2101-0805	2101-0758 2101-0762 2101-0764 2101-0766 2101-0796 2101-0798 2101-0802 2101-0804 2101-0806	20 × 20 20 × 20 20 × 20 20 × 20 20 × 20 25 × 25 25 × 25 25 × 25 25 × 25 25 × 25	20 20 20 20 20 25 25 25 25 25	27 27 27 27 27 27 32 32 32 32 32 32	25 25 25 25 25 27 27 27 27 27 27	150 150 150 150 150 150 150 150 150

	<u> </u>	1	
08116-170415-130	08116-17041 5-2 30	741-1704-1	741-1704-2
08116-170415-136	08116-170415-236	741-1704-1	741-1704-2
08116-190605-130	08116-190605-230	741-1904-1	741-1904-2
08116-190610-130	08116-190610-230	741-1904-1	741-1904-2
08116-190610-136	08116-190610-236	741-1904-1	741-1904-2
08116-190615-130	08116-190615-230	741-1904-1	741-1904-2
08116-190615-136	08116-190615-236	741-1904-1	741-1904-2
08116-190615-130	08116-190605-230	741-1904-1	741-1904-2
08116-190610-130	08116-190610-230	741-1904-1	741-1904-2
08116-190610-136	08116-190610-236	741-1904-1	741-1904-2
08116-190615-130	08116-190615-230	741-1904-1	741-1904-2
08116-190615-136	08116-190615-236	741-1904-1	741-1904-2
08116-190605-130	08116-190605-230	741-1904-1	741-1904-2
08116-190610-130	08116-190610-230	741-1904-1	741-1904-2
08116-190610-136	08116-190610-236	741-1904-1	741-1904-2
08116-190615-130	08116-190615-230	741-1904-1	741-1904-2
08116-190615-136	08116-190615-236	741-1904-1	741-1904-2
08116-190605-130	08116-190605-230	741-1904-1	741-1904-2
08116-190610-130	08116-190610-230	741-1904-1	741-1904-2
08116-190610-136	08116-190610-236	741-1904-1	741-1904-2
08116-190615-130	08116-190615-230	741-1904-1	741-1904-2
08116-190615-136	08116-190615-236	741-1904-1	741-1904-2
	1	1	I

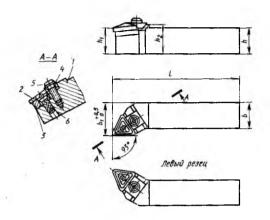
Резцы типа 2

08116-170405-130	08116-170405-230	741-1704-1	741-1704-2
08116-170410-130	08116-170410-230	741-1704-1	741-1704-2
08116-170410-136	08116-170410-236	741-1704-1	741-1704-2
08116-170415-130	08116-170410-230	741-1704-1	741-1704-2
08116-170415-136	08116-170410-236	741-1704-1	741-1704-2
08116-190605-130	08116-190605-230	741-1904-1	741-1904-2
08116-190610-130	08116-190610-230	741-1904-1	741-1904-2
08116-190610-136	08116-190610-236	741-1904-1	741-1904-2
08116-190615-130	08116-190615-230	741-1904-1	741-1904-2
08116-190615-136	08116-190615-236	741-1904-1	741-1904-2
	}		1

Обозначен	ние резцов	Сечение						ая пластина по 9062—80	Поз. 3. Опор по ГОСТ			
правых	левых	резца h × b	h ₁	h ₂	<i>b</i> ₁	L	Правая	Левая	Правая	Левая		
								Обозначение	Обозначение			
2101-0807	2101-0808	32 × 25	32	39	27	170	08116-190605-130	08116-190605 -2 30	741-1904-1	741-1904-2		
2101-0811	2101-0812	32×25	32	39	27	170	08116-190610-130	08116-190610-230	741-1904-1	741-1904-2		
2101-0813	2101-0814	32 × 25	32	39	27	170	08116-190610-136	08116-190610-236	741-1904-1	741-1904-2		
2101-0815	2101-0816	32×25	32	39	27	170	08116-190615-130	08116-190615-230	741-1904-1	741-1904-2		
2101-0817	2101-0818	32 × 25	32	39	27	170	08116-190615-136	08116-190615-236	741-1904-1	741-1904-2		
2101-0821	2101-0822	32×32	32	39	32	170	08116-190605-130	08116-190605-230	741-1904-1	741-1904-2		
2101-0823	2101-0824	32×32	32	39	32	170	08116-190610-130	08116-190610-230	741-1904-1	741-1904-2		
2101-0825	2101-0826	32 × 32	32	39	32	170	08116-190610-136	08116-190610-236	741-1904-1	741-1904-2		
2101-0827	2101-0828	32 × 32	32	39	32	170	08116-190615-130	08116-190615-230	741-1904-1	741-1904-2		
2101-0831	2101-0832	32 × 32	32	39	32	170	08116-190615-136	08116-190615-236	741-1904-1	741-1904-2		
2101-0833	2101-0834	40 × 32	40	47	32	200	08116-190605-130	08116-190605-230	741-1904-1	741-1904-2		
2101-0835	2101-0836	40 × 32	40	47	32	200	08116-190610-130	08116-190610-230	741-1904-1	741-1904-2		
2101-0837	2101-0838	40 × 32	40	47	32	200	08116-190610-136	08116-190610-236	741-1904-1	741-1904-2		
2101-0841	2101-0842	- 40 × 32	40	47	32	200	08116-190615-130	08116-190615-230	741-1904-1	741-1904-2		
2101-0843	2101-0844	40 × 32	40	47	32	200	08116-190615-136	08116-190615-236	741-1904-1	741-1904-2		

Примечания: 1. Пример условного обозначения резца типа 1 сечением $h \times b = 25 \times 25$ мм, длиной L = 150 мм, оснащенного режущей пластиной 08116-190610-130, правого:

Pe3ey 2101-0641 ΓΟCT 20872-80


То же, резца типа 2:

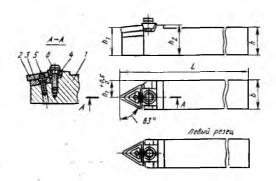
Pesey 2101-0797 FOCT 20872-80

^{2.} Позиции: 1 — державка; 2 — режущая пластина; 3 — опорная пластина; 4 — прихват; 5 — винт; 6 — штифт.

23. Размеры (мм) и обозначение токарных резцов для контурного точения с механическим креплением многогранных твердосплавных пластии (ГОСТ 20872-80)

Тип 3

_	Обозначен	ние резцов	Сечение резца, h × b	h_1	h ₂	<i>b</i> ₁	L	Поз. 2. Режущая пластина по ГОСТ 19046 — 80	Поз. 3. Опорная пластина по ГОСТ 19073—80
_	правых	левых	,,,,,					Обознач	ение
	2103-0671	2103-0672	16×16	16	19	20	125	01114-160304	701-1604
	2103-0673	2103-0674	16×16	16	19	20	125	01114-160308	701-1604
	2103-0675	2103-0676	16×16	16	19	20	125.	01114-160312	701-1604
	2103-0677	2103-0678	16×16	16	19	20	125	01114-160408	701-1603
	2103-0681	2103-0682	16×16	16	19	20	125	01114-160412	701-1603
	2103-0695	2103-0696	20×20	20	24	25	150	01114-220408	701-2204
	2103-0697	2103-0698	20×20	20	24	25	150	01114-220412	701-2204
	2103-0701	2103-0702	20×20	20	24	25	150	01114-220416	701-2204
	2103-0711	2103-0712	25×25	25	29	32	150	01114-220408	701-2204
	2103-0713	2103-0714	25×25	25	25	32	150	01114-220412	701-2204
	2103-0715	2103-0716	25×25	25	25	25	150	01114-220416	701-2204
	2103-0717	2103-0718	32×25	32	36	25	170	01114-220408	701-2204
	2103-0721	2103-0722	32×25	32	36	25	170	01114-220412	701-2204
	2103-0723	2103-0724	32×25	32	36	25	170	01114-220416	701-2204
	2103-0725	2103-0726	32×32	32	36	40	170	01114-270612	701-2704
	2103-0727	2103-0728	32×32	32	36	40	170	01114-270616	701-2704
	2103-0731	2103-0732	40×32	40	44	40	200	01114-270612	701-2704
	2103-0733	2103-0734	40 × 32	40	44	40	200	01114-270616	701-2704


Примечания: 1. Пример условного обозначения резца типа 3 сечением $h \times b = 25 \times 25$ мм, длиной L = 150 мм, оснащенного режущей пластиной 01114-220412, правого:

Резец 2103-0713 ГОСТ 20872-80

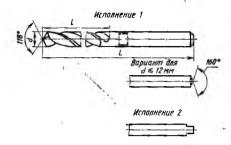
^{2.} Позиции: I — державка; 2 — режущая пластина; 3 — опорная пластина; 4 — клин; 5 — винт; 6 — штифт.

24. Размеры (мм) и обозначение токарных сборных резцов для контурного точения с механическим креплением многогранных тиердосплавных пластии (ГОСТ 20872-80)

Тип 4

Обозначен	левых	Сечение резца h × b	h_1	h ₂	b_1	L	Поз. 2. Режущая пластина по ГОСТ 19046 – 80	Поз. 3. Опорная пластина по ГОСТ 19073 – 80
правых	левых						Обозна	чеиие
• 2101-0915 2101-0917 2101-0921 2101-0923 2101-0925 2101-0941 2101-0945 2101-0955 2101-0957 2101-0961 2101-0963 2101-0967 2101-0967 2101-0971 2101-0971	2101-0916 2101-0918 2101-0922 2101-0924 2101-0926 2101-0942 2101-0944 2101-0956 2101-0956 2101-0952 2101-0964 2101-0968 2101-0968 2101-0972 2101-0974	16 × 16 16 × 16 16 × 16 16 × 16 16 × 16 20 × 20 20 × 20 25 × 25 25 × 25 32 × 25 32 × 25 32 × 25 32 × 25 32 × 32 32 × 32 32 × 32	16 16 16 16 16 20 20 20 25 25 25 32 32 32 32 32	19 19 19 19 19 24 24 24 29 29 29 36 36 36 36	9 9 9 9 9 11 11 15 15 15 15 15	125 125 125 125 125 125 150 150 150 150 170 170 170	01114-160304 01114-160308 01114-160312 01114-160408 01114-160412 01114-220408 01114-220416 01114-220416 01114-220416 01114-220416 01114-220416 01114-220416 01114-220416 01114-270616	701-1604 701-1604 701-1604 701-1603 701-1603 701-2204 701-2204 701-2204 701-2204 701-2204 701-2204 701-2204 701-2204 701-2704
2101-0975 2101-0977	2101-0976 2101-0978	$\begin{array}{c c} 32 \times 32 \\ 40 \times 32 \\ 40 \times 32 \end{array}$	40 40	44 44	15 15	200 200	01114-270616 01114-270612 01114-270616	701-2704 701-7204 701-2704
				ļ <u> </u>			<u> </u>	

Примечания: 1. Пример условного обозначения резца типа 4 сечением $h \times b = 25 \times 25$ мм, L = 150 мм, оснащенного режущей пластиной 01114-220412, правого: Резец 2101-0957 ГОСТ 20872-80


^{2.} Геометрические параметры резцов и конструкции деталей к ним приведены в рекомендуемом приложении к ГОСТ 20872 – 80.

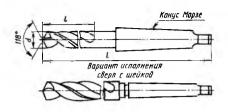
^{3.} Технические требования по ГОСТ 26613-85.

^{4.} Позиции: 1—державка; 2—режущая пластина; 3—опорная пластина; 4—клин; 5—винт; 6—штифт.

2. СВЕРЛА

25. Размеры (мм) и обозиачение спиральных сверл с цилиндрическим хвостовиком Длинная серия (общего назначения) (ГОСТ 886-77)

	ние сверл пнения	d	L	1		ние сверл инения	d	L	ı
1	2	1	ĺ		I	2		ļ	
)	4				
2300-2151	_	1,95	85	56	2300-6974	2300-7174	6,2	148	97
2300-0001		2,00	85	56	2300-6976	2300-7176	6,4	148	97
2300-0005		2,20	90	59	2300-6977	2300-7177	6,5	148	97
2300-0008	_	2,50	95	62	2300-6979	2300-7179	6,7	148	97
2300-0012	-	2,70	100	66	2300-6981	2300-7181	6,8	156	102
2300-0015	2300-2222	3,00	100	66	2300-6983	2300-7183	7,0	156	102
2300-0018	2300-2225	3,20	105	69	2300-6985	2300-7185	7,2	156	102
2300-0022	2300-2229	3,50	112	73	2300-6988	2300-7188	7,5	156	102
2300-0024	2300-2231	3,70	112	73	2300-6991	2300-7191	7,7	165	109
2300-0026	2300-2233	3,90	119	78	2300-6992	2300-7192	7,8	165	109
2300-0027	2300-2234	4,0	119	78	2300-6994	2300-7194	8,0	165	109
2300-0029	2300-2236	4,2	119	78	2300-6997	2300-7197	8,3	165	109
2300-0031	2300-2240	4,5	126	82	2300-6998	2300-7198	8,4	165	109
2300-2160	2300-2242	4,7	126	82	2300-6999	2300-7199	8,5	165	109
2300-0033	2300-2243	4,8	132	87	2300-7001	2300-7201	8,6	175	115
2300-0061	2300-2244	4,9	132	87	2300-7002	2300-7202	8,7	175	115
2300-0034	2300-2245	5,0	132	87	2300-7003	2300-7203	8,8	175	115
2300-6963	2300-7163	5,2	132	87	2300-7005	2300-7205	9,0	175	115
2300-6966	2300-7166	5,5	139	91	2300-7007	2300-7207	9,2	175	115
2300-6968	2300-7168	5,7	139	91	2300-7009	2300-7209	9,4	175	115
2300-6969	2300-7169	5,8	139	91	2300-7011	2300-7211	9,5	175	115
2300-6971	2300-7171	5,9	139	91	2300-7013	2300-7213	9,7	184	121
2300-6972	2300-7172	6,0	139	91	2300-7014	2300-7214	9,8	184	121
	1				2300-7016	2300-7216	10,0	184	121


Примечания: 1. Сверла диаметром более d=10 мм целесообразно применять с коническим хвостовиком по ГОСТ 12121-77.

2. Пример условного обозначения сверла общего назначения диаметром $d=9,0\,$ мм исполнения 1:

Сверло 2300-7005 ГОСТ 886-77

- 3. Центровые отверстия по ГОСТ 14034-74.
- 4. Допускается изготовление сверл без центровых отверстий.
- 5. Технические требования по ГОСТ 2034-82.
- 6. Конструктивные элементы и геометрические параметры режущих элементов сверл по Γ OCT 4010-77.

26. Размеры (мм) и обозначение спиральных удлиненных сверл с коническим хвостовиком (ГОСТ 2092-77)

		ние сверл нения	d	L	l	Конус Морзе	Обозначение сверл исполнения		d	L	1	Конус Морзе
	точного	общего					олониот	об щего				<u> </u>
	2301-4001	2301-0371	6,0	225	145	1	2301-4071	2301-0410	12,5	260	180	1
	2301-4003	2301-0373	6,2	230	150	Î	2301-4074	2301-0502	12,8	260	180	lí
	2301-4005	2301-0477	6,4	230	150	i	2301-4075	2301-0412	13,0	260	180	l i
	2301-4006	2301-0375	6,5	230	150	1	2301-4096	2301-0414	13,5	265	185	i
	2301-4008	2301-0376	6,7	230	150	1	2301-4082	2301-0505	13,8	265	185	1
	2301-4009	2301-0479	6,8	235	155	1	2301-4083	2301-0416	14,0	265	185	1
	2301-4012	2301-0377	7,0	235	155	1	2301-4085	2301-0418	14,5	290	190	2
	2301-4014	2301-0379	7,2	235	155	1	2301-4086	2301-0506	14,74	290	190	2
	2301-4016	2301-0381	7,5	235	155	1	2301-4087	2301-0420	15,0	290	190	2
	2301-4019	2301-0384	7,8	240	160	1	2301-4091	2301-0423	15,5	295	195	2
	2301-4020	2301-0385	8,0	240	160	ı	2301-4093	2301-0424	16,0	295	195	2
	2301-4025	2301-0388	8,3	240	160	1	2301-4095	2301-0426	16,5	300	200	2
	2301-4027	2301-0390	8,5	240	160	1	2301-4097	2301-0427	17,0	300	200	2
	2301-4029	2301-0391	8,7	245	165	1	2301-4103	2301-0431	18,0	305	205	2
	2301-4031	2301-0483	8,8	245	165	1	2301-4105	2301-0433	18,5	310	210	2
	2301-4033	2301-0393	9,0	245	165	i	2301-4107	2301-0435	19,0	310	210	2
	2301-4034	2301-0484	9,2	245	165	1	2301-4111	2301-0438	19,5	320	220	2
1	2301-4038	2301-0395	9,5	245	165	1	2301-4113	2301-0439	20,0	320	220	2
	2301-4042	2301-0487	9,8	250	170	1	2301-4118	2301-0443	21,0	330	230	2
	2301-4044	2301-0398	10,0	250	170	1	2301-4122	2301-0446	22,0	335	235	2
	2301-4046	2301-0400	10,2	250	170	1	2301-4126	2301-0449	23,0	340	240	2
	2301-4049	2301-0402	10,5	250	170	1	2301-4132	2301-0453	24,0	365	245	3
	2301-4053	2301-0491	10,8	255	175	1	2301-4136	2301-0457	25,0	365	245	3
	2301-4055	2301-0404	11,0	255	175	1	2301-4141	2301-0459	26,0	375	255	3
	2301-4061	2301-0406	11,5	255	175	<u>.</u> 1	2301-4145	2301-0464	27,0	385	265	3
	2301-4063	2301-0496	11,8	255	175	1	2301-4149	2301-0468	28,0	385	265	3
	2301-4065	2301-0409	12,0	260	180	1	2301-4154	2301-0470	29,0	395	275	3
				•			2301-4157	2301-0476	30,0	395	275	3

Примечания: 1. Пример условного обозначения сверла общего назначения диаметром $d=15\,\mathrm{mm}$:

Сверло 2301-0420 ГОСТ 2092-77

- 2. Размеры конусов Морзе по ГОСТ 25557-82.
- 3. Технические требования по ГОСТ 2034-82.
- 4. Конструктивные элементы и геометрические параметры режущих элементов сверл по ГОСТ 4010-77.

27. Размеры (мм) и обозначение спиральных сверл с цилиндрическим хвостовиком. Средияя серия (общего назначения) (ГОСТ 10902-77)

	Обозначе	ние сверл			93. 13.1	
пра	вых	ле	вых	1		d
	Испол	нение		d	L	l
ī	II	I	II			
2300-0135	_	2300-0409	_	1,60	43	20
2300-0140	_	2300-0414	-	1,95	49	24
2300-0141	_	2300-0415	_	2,00	49	24
2300-0143	_	2300-0417		2,10	49	24
2300-0145	_	2300-0419	_	2,20	53	27
2300-0146	_	2300-0420	_	2,30	53	27
2300-0147	_	2300-0421	-	2,40	57	30
2300-0148	<u>.</u>	2300-0422	_	2,50	57	30
2300-0150	_	2300-0424	-	2,60	57	30
2300-0152	_	2300-0426	_	2,70	61	33
2300-0153	_	2300-0427	-	2,80	61	33
2300-0154		2300-0428	_	2,90	61	33
2300-7515		2300-0429	_	3,00	61	33
2300-7517	2300-6501	2300-0430	2300-2551	3,10	65	36
2300-7523	2300-6523	2300-0432	2300-2553	3,20	65	36
2300-7525	2300-6525	2300-0433	2300-2554	3,30	65	36
2300-7531	2300-6531	2300-0435	2300-2556	3,40	70	39
2300-7533	2300-6533	2300-0436	2300-2557	3,50	70	39
2300-7535	2300-6535	2300-0437	2300-2558	3,60	70	39
2300-7537	2300-6537	2300-7538	2300-6538	3,70	70	39
2300-7541	2300-6541	2300-7542	2300-6542	3,80	75	43
2300-7543	2300-6543	2300-7544	2300-6544	3,90	75	43
2300-7545	2300-6545	2300-7546	2300-6546	4,00	75	43
2300-7547	2300-6547	2300-7548	2300-6548	4,10	75	43
2300-7551	2300-6561	2300-7552	2300-6552	4,20	75	43
2300-7555	2300-6555	2300-7556	2300-6556	4,30	80	47
2300-7557	2300-6557	2300-7558	2300-6558	4,40	80	47
2300-7561	2300-6551	2300-7562	2300-6562	4,50	80	47
2300-7563	2300-6563	2300-7564	2300-6564	4,60	80	47
2300-7565	2300-6565	2300-7566	2300-6566	4,70	80	47
2300-7567	2300-6567	2300-7568	2300-6568	4,80	86	52
2300-7571	2300-6571	2300-7572	2300-6572	4,90	86	52

Продолжение табл. 27


_		Обозначе	ние сверл				
	пра	вых	ле	вых	1		
_		Испол	тнение		d	L	1
_	I	II	I	II			
	2300-6173	2300-6573	2300-6174	2300-6574	5,0	86	52
	2300-6175	2300-6575	2300-6176	2300-6576	5,1	86	52
	2300-6177	2300-6577	2300-6178	2300-6578	5,2	86	52
	2300-6181	2300-6581	2300-6182	2300-6582	5,3	86	52
	2300-6183	2300-6583	2300-6184	2300-6584	5,4	93	57
	2300-6185	2300-6585	2300-6186	2300-6586	5,5	93	57
	2300-6187	2300-6587	2300-6188	2300-6588	5,6	93	57
	2300-6191	2300-6591	2300-6192	2300-6592	5,7	93	57
	2300-6193	2300-6593	2300-6194	2300-6594	5,8	93	57
	2300-6195	2300-6595	2300-6196	2300-6596	5,9	93	57
	2300-0181-	2300-2433	2300-0455	2300-2583	6,0	93	57
	2300-0183	2300-2435	2300-0457	2300-2585	6,2	101	63
	2300-0307	2300-2437	2300-0561	2300-2587	6,4	101	63
	2300-0308	2300-2439	2300-0562	2300-2589	6,6	101	63
	2300-0186	2300-2440	2300-0460	2300-2590	6,7	101	63
	2300-0309	2300-2441	2300-0563	2300-2591	6,8	109	69
	2300-0187	2300-2443	2300-0461	2300-2593	7,0	109	69
	2300-0189	2300-2445	2300-0463	2300-2595	7,2	109	69
	2300-0191	2300-2447	2300-0465	2300-2597	7,5	109	69
	2300-0194	2300-2450	2300-0468	2300-2600	7,8	117	75
	2300-0195	2300-2452	2300-0469	2300-2602	8,0	117	75
	2300-0198	2300-2455	2300-0472	2300-2605	8,3	117	75
	2300-0200	2300-2457	2300-0474	2300-2507	8,5	117	75
	2300-0312	2300-2458	2300-0566	2300-2608	8,6	125	81
	2300-0201	2300-2459	2300-0475	2300-2609	8,7	125	81
	2300-0313	2300-2460	2300-0567	2300-2610	8,8	125	81
	2300-0203	2300-2462	2300-0477	2300-2612	9,0	125	81
	2300-0204	2300-2464	2300-0478	2300-2614	9,2	125	81
	2300-0205	2300-2467	2300-0479	2300-2617	9,5	125	81
	2300-0207	2300-2469	2300-0481	2300-2619	9,7	133	87
	2300-0317	2300-2470	2300-0571	2300-2620	9,8	133	87
	2300-0208	2300-2472	2300-0482	2300-2622	10,0	133	87
				 _			

Примечания: 1. Пример условного обозначения сверла общего назначения d=10 мм, правого, исполнения I:

Сверло 2300-0208 ГОСТ 10902-77

- 2. Размеры сверл более d=10 мм рекомендуется применять с коническим хвостовиком по Γ OCT 10903-77.
- 3. Центровые отверстия по ГОСТ 14034—74 (допускается изготовлять сверла без центровых отверстий).
 - 4. Технические требования по ГОСТ 2034-82.
 - 5. Размеры поводков сверл по СТ СЭВ 198-75.
- 6. Конструктивные элементы и геометрические параметры режущих элементов сверл по ГОСТ 4010 77.

28. Размеры (мм) и обозначение спиральных длинных сверл с коническим хвостовиком (ГОСТ 12121 -- 77)


Обозначе: испол		d	L	1	Конус	Обозначе испол	ние сверл нения	d		ı	Конус
точного	общего	-	-		Морзе	отонного	общего				Морзе
2301-3151	2301-3351	6,0	160	80	1	2301-3226	2301-3426	12,8	220	140	1
2301-3153	2301-3353	6,2	165	85	1	2301-3228	2301-3428	13,0	220	140	1
2301-3155	2301-3355	6,4	165	85	1 1	2301-3234	2301-3434	13,5	230	150	1
2301-3156	2301-3356	6,5	165	85	1	2301-3237	2301-3437	13,8	230	150	1
2301-3158	2301-3358	6,7	165	85	1	2301-3239	2301-3439	14,0	230	150	1
2301-3159	2301-3359	6,8	170	90	1	2301-3242	2301-3442	14,5	255	155	2
2301-3162	2301-3362	7,0	170	90	1	2301-3243	2301-3443	14,75	255	155	2
2301-3164	2301-3364	7,2	170	90	1	2301-3244	2301-3444	15,0	255	155	2
2301-3167	2301-3367	7,5	170	90	1	2301-3247	2301-3447	15,5	260	160	2
2301-3171	2301-3371	7,8	180	100	1 1	2301-3249	2301-3449	16,0	260	160	2
2301-3173	2301-3373	8,0	180	100	1 1	2301-3252	2301-3452	16,5	265	165	2
2301-3176	2301-3376	8.3	180	100	1	2301-3254	2301-3454	17.0	265	165	2
2301-3178	2301-3378	8,5	180	100	1 1	2301-3259	2301-3459	18,0	270	170	2
2301-3181	2301-3381	8,7	190	110	1 1	2301-3262	2301-3462	18,5	275	175	2
2301-3182	2301-3382	8,8	190	110	lı	2301-3264	2301-3464	19,0	275	175	2
2301-3184	2301-3384	9.0	190	110	1 1	2301-3264	2301-3467	19.5	280	180	2
2301-3186	2301-3386	9,2	190	110	1 1	2301-3267	2301-3469	20.0	280	180	2
2301-3189	2301-3389	9.5	190	110	1 1	2301-3269	2301-3475	21.0	285	185	2
2301-3193	2301-3393	9,8	200	120	1 1	2301-3275	2301-3479	22,0	290	190	2
2301-3195	2301-3395	10.0	200	120	1 1	2301-3279	2301-3484	23,0	295	195	2
2301-3197	2301-3397	10,2	200	120	1 1	2301-3284	2301-3489	24,0	325	203	3
2301-3201	2301-3401	10,5	200	120	ı	2301-3289	2301-3494	25,0	325	203	3
2301-3203	2301-3403	10,8	210	130	1	2301-3294	2301-3498	26,0	335	215	3
2301-3206	2301-3406	11,0	210	130	il	2301-3298	2301-3503	27,0	345	225	3
2301-3212	2301-3412	11,5	210	130	lil	2301-3303	2301-3507	28,0	345	225	3
2301-3215	2301-3415	11,8	210	130	lil	2301-3307	2301-3512	29.0	350	230	3
2301-3216	2301-3416	12,0	220	140	l î l	2301-3312	2301-3516	30.0	350	230	3
2301-3223	2301-3423	12,5	220	140	l i l	2301-3316		ĺ			
		,] [

Примечания: 1. Пример условного обозначения сверла общего назначения диаметром $d=10\,$ мм:

Сверло 2301-3395 ГОСТ 12121-77

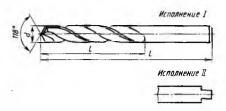
- 2. Размеры конусов Морзе по ГОСТ 25557-82.
- 3. Технические требования по ГОСТ 2034-82.
- 4. Конструктивные элементы и геометрические параметры режущих элементов сверл по ГОСТ 4010-77.

29. Размеры (мм) и обозиачение сниральных сверл с коротким иилиндрическим хвостовиком. Длинная серия (ГОСТ 12122-77)

Обозначе	ние сверл				Обозначе	ние сверл			200
точного исполнения	общего назначення	d	L	1	точного исполнения	общего назначения	d	L	1
2300-5122	2300-7322	1,95	65	40	2300-5173	2300-7373	5,2	105	70
2300-5123	2300-7323	2,00	65	40	2300-5176	2300-7376	5,5	115	80
2300-5125	2300-7325	2,10	65	40	2300-5179	2300-7379	5,8	115	80
2300-5127	2300-7327	2,20	70	45	2300-5182	2300-7382	6,0	115	80
2300-5129	2300-7329	2,30	70	45	2300-5184	2300-7384	6,2	125	85
2300-5132	2300-7332	2,40	70	45	2300-5186	2300-7386	6,4	125	85
2300-5134	2300-7334	2,50	70	45	2300-5187	2300-7387	6,5	125	85
2300-5136	2300-7336	2,60	70	45	2300-5189	2300-7389	6,7	125	85
2300-5138	2300-7338	2,70	75	48	2300-5191	2300-7391	6,8	130	90
2300-5141	2300-7341	2,80	75	48	2300-5193	2300-7393	7,0	130	90
2300-5143	2300-7343	2,90	75	48	2300-5195	2300-7395	7,2	130	90
2300-5144	2300-7344	2,95	75	48	2300-5198	2300-7398	7,5	130	90
2300-5145	2300-7345	3,00	75	48	2300-5202	2300-7402	7,8	140	100
2300-5148	2300-7348	3,20	80	50	2300-5204	2300-7404	8,0	140	100
2300-5153	2300-7353	3,50	85	55	2300-5207	2300-7407	8,3	140	100
2300-5155	2300-7355	3,70	85	55	2300-5209	2300-7409	8,5	140	100
2300-5157	2300-7357	3,90	90	60	2300-5212	2300-7412	8,7	155	110
2300-5158	2300-7358	4,00	90	60	2300-5213	2300-7413	8,8	155	110
2300-5161	2300-7361	4,20	90	60	2300-5215	2300-7415	9,0	155	110
2300-5165	2300-7365	4,50	100	65	2300-5217	2300-7417	9,2	155	110
2300-5167	2300-7367	4,70	100	65	2300-5219	2300-7419	9,4	155	110
2300-5168	2300-7368	4,80	105	70	2300-5221	2300-7421	9,5	155	110
2300-5171	2300-7371	5,0	105	70					

Примечания: 1. Сверла спиральные с коротким цилиндрическим хвостовиком до $d=9,5\,$ мм предназначен для сверления через кондукторные втулки.

^{2.} Пример условного обозначения сверла общего назначения диаметром d=9 мм: Сверло 2300-7415 ГОСТ 12122-77.

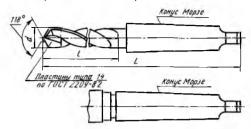

^{3.} Центровые отверстия по ГОСТ 14034-74.

^{4.} Допускается изготовление сверл без центровых отверстий.

^{5.} Технические требования по ГОСТ 2034-82.

^{6.} Конструктивные элементы и геометрические размеры режущих элементов сверл по Γ OCT 4010-77.

30. Размеры (мм) и обозиачение спиральных сверл с инлиидрическим хвостовиком, оснащенных пластинами из твердого сплава (ГОСТ 22735 - 77)


Ооозначение с	верл общего н	азначення исп	олнения	1	1	L		l
	Ī		II	$\frac{1}{d}$	Укоро-	Нор- маль-	Укоро-	Нор маль
укороченных	нормальной длины	укорочен- ных	нормальной длины		ченные	маль- ной длины	ченные	ной длин:
2300-1201	2300-8265	2300-2001	2300-8266	5,0	70	86	36	52
2300-1203	2300-8278	2300-2003	2300-8279	5,2	70	86	36	52
2300-1248	2300-8292	2300-2005	2300-8293	5,4	75	93	40	57
2300-1204	2300-8298	2300-2006	2300-8299	5,5	75	93	40	57
2300-1207	2300-8318	2300-2009	2300-8319	5,8	75	93	40	57
2300-1208	2300-8332	2300-2011	2300-8333	6,0	75	93	40	57
2300-1211	2300-8352	2300-2014	2300-8353	6,3	80	101	42	63
2300-1212	2300-8365	2300-2016	2300-8366	6,5	80	101	42	63
2300-1213	2300-8378	2300-2018	2300-8379	6,7	80	101	42	63
2300-1252	2300-8385	2300-2019	2300-8386	6.8	85	109	45	69
2300-1214	2300-8398	2300-2021	2300-8399	7,0	85	109	45	69
2300-1217	2300-8418	2300-2024	2300-8419	7,3	85	109	45	69
2300-1218	2300-8432	2300-2025	2300-8433	7,5	85	109	45	69
2300-1221	2300-8452	2300-2028	2300-8453	7,8	95	117	52	75
2300-1222	2300-8455	2300-2030	2300-8466	8.0	95	117	52	75
2300-1225	2300-8485	2300-2033	2300-8486	8,3	95	117	52	75
2300-1227	2300-8498	2300-2035	2300-8499	8,5	95	117	52	75
2300-1256	2300-8518	2300-2038	2300-8519	8,8	100	125	55	81
2300-1230	2300-8532	2300-2040	2300-8533	9,0	100	125	55	81
2300-1258	2300-8552	2300-2043	2300-8553	9,3	100	125	55	81
2300-1232	2300-8565	2300-2045	2300-8566	9,5	100	125	55	81
2300-1260	2300-8585	2300-2048	2300-8586	9,8	105	133	60	87
2300-1235	2300-8598	2300-2050	2300-8599	10,0	105	133	60	87
2300-1239	2300-8632	2300-2055	2300-8633	10,5	105	133	60	87
2300-1264	2300-8652	2300-2058	2300-8653	10,8	105	133	60	87
2300-1241	2300-8665	2300-2060	2300-8666	11,0	105	133	60	87
2300-1243	2300-8698	2300-2065	2300-8699	11,5	105	133	60	87
2300-1249	2300-8718	2300-2067	2300-8719	11.8	105	133	60	87
2300-1246	2300-8732	2300-2069	2300-8733	12,0	120	151	70	101

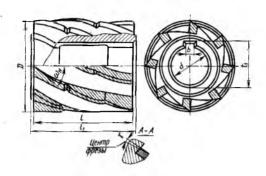
Примечания: 1. Пример условного обозначения сверла общего назначения исполнения 1 нормальной длины диаметром $d=12\,$ мм:

Сверло 2300-8732 ГОСТ 22735-77

^{2.} Конструкция и геометрические параметры сверл приведены по ГОСТ 22735 – 77 (приложение 2).

31. Размеры (мм) и обозначение спиральных сверл с коническим хиостовиком, оснащенных пластинами из твердого сплава (ГОСТ 22736 – 77)

Обозначение сверл	общего назначения				L		l
Укороченные	Нормальной длины	d	Конус Морзе	Укоро- ченные	Нор- мальной длины	Укоро- ченные	Нор- мальной длины
2301-1678	2301-1378	10,0	1	140	168	60	87
2301-1682	2301-1382	10,5	1	140	168	60	87
2301-1684	2301-1384	11,0	1	145	175	65	94
2301-1686	2301-1386	11,5	1	145	175	65	94
2301-1689	2301-1389	12,0	2	170	199	70	101
2301-1690	2301-1390	12,5	2	170	199	70	101
2301-1692	2301-1392	13.0	2	170	199	70	101
2301-1694	2301-1394	13,5	2	170	206	70	108
2301-1696	2301-1396	14,0	2	170	206	70	108
2301-1698	2301-1398	14,5	2	175	212	75	114
2301-1700	2301-1400	15,0	2	175	212	75	114
2301-1703	2301-1403	15,5	2	180	218	80	120
2301-1704	2301-1404	16,0	2	180	218	80	120
2301-1706	2301-1406	16,5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	185	223	85	125
2301-1707	2301-1407	17,0	2	185	223	85	125
2301-1710	2301-1410	17,5	2	190	228	90	130
2301-1711	2301-1411	18,0	2	190	228	90	130
2301-1713	2301-1413	18,5	3	195	256	95	135
2301-1715	2301-1415	19,0	3	220	261	100	140
2301-1718	2301-1418	19,5	3	220	261	100	140
2301-1719	2301-1419	20,0	3	220	261	100	140
2301-1723	2301-1423	21.0	3	225	266	105	145
2301-1726	2301-1426	22,0	3	230	271	110	150
2301-1729	2301-1429	23,0	3	230	276	110	155
2301-1733	2301-1433	24,0	3	235	281	115	160
2301-1737	2301-1437	25,0	3	235	281	115	160
2301-1739	2301-1439	26,0	3	235	286	115	165
2301-1744	2301-1444	27,0	3	240	291	120	170
2301-1748	2301-1448	28,0	4	270	319	120	170
2301-1750	2301-1450	29,0	4	275	324	125	175
2301-1756	2301-1456	30,0	4	275	324	125	175


Примечания: 1. Пример условного обозначения сверла общего назначения нормальной длины диаметром $d=15\,\mathrm{MM}$:

Сверло 2301-1400 ГОСТ 22736-77

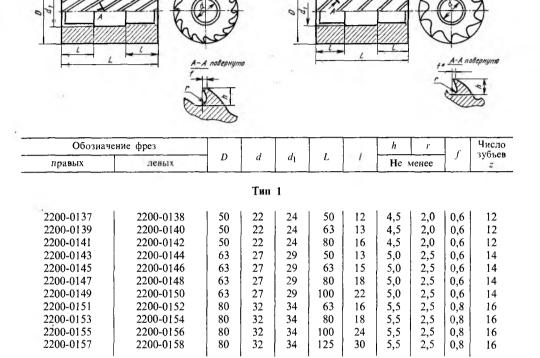
- 2. Размеры конусов Морзе по ГОСТ 25557-82.
- 3. Технические требования по ГОСТ 5756-81.
- 4. Конструктивные элементы и геометрические параметры режущей части сверл по ГОСТ 22735 77.

3. ФРЕЗЫ

32. Размеры (мм) и обозиачение цилиндрических фрез, оснащенных иластинами из твердого сплана (ГОСТ 8721-69)

Обознач	ение фрез		Γ,	, ,				Число	Угол на-
правых	левых	D	L	11	d	b	t ₁	зубьев <i>z</i>	клона зу- бьев о _н ,°
•									
2200-0101	2200-0112	63	45	50	27	6	29,4	8	24
2200-0102	2200-0113	63	70	80	27	6	29,4	8	24
2200-0103	2200-0114	63	96	105	27	6	29,4	8	24
2200-0104	2200-0115	80	45	50	32	8	34,8	8	30
2200-0105	2200-0116	80	70	75	32	8	34,8	8	30
2200-0106	2200-0117	80	9 6	105	32	8	34,8	8	30
2200-0107	2200-0118	100	45	50	40	10	43,5	10	30
2200-0108	2200-0119	100	72	80	40	10	43,5	10	30
2200-0109	2200-0120	100	100	105	40	10	43,5	10	30
2200-0110	2200-0121	125	70	75	50	12	53,5	12	36
2200-0111	2200-0122	125	100	105	50	12	53,5	12	36

Примечания: 1. Пример условного обозначения фрезы, оснащенной правыми винтовыми пластинами из твердого сплава марки T15K6, диаметром D=100 мм и с длиной рабочей части 72 мм:


Фреза 2200-0108 Т15К6 ГОСТ 8721-69

^{2.} Номера пластин по ГОСТ 2209-82. В качестве режущей части фрез должны применяться винтовые пластины из твердого сплава марок T5K10; T14K8; T15K6; BK6 и BK8 по ГОСТ 3882-74.

33. Размеры (мм) и обозначение цилиидрических фрез (ГОСТ 3752-71)

Тип 1

Tun 2

 Π р и мечания: 1. Пример условного обозначения фрезы типа 1 диаметром D=80 мм длиной L=125 мм правой:

Tun 2

34

34

34

34

42

42

42

42

63

80

100

125

80

100

125

160

16

18

24

30

20

26

32

36

10

10

10

10

10

10

10

10

3,5

3,5

3,5

3,5

3,5

3.5

3,5

3,5

1,5

1,5

1.5

1,5

1,5

1,5

1,5

1,5

10

10

10

10

12

12

12

12

32

32

32

32

40

40

40

40

80

80

80

80

100

100

100

100

Фреза 2200-0157 ГОСТ 3752-71

То же, левой:

2200-0195

2200-0197

2200-0199

2200-0201

2200-0203

2200-0205

2200-0207

2200-0209

Фреза 2200-0158 ГОСТ 3752-71

2. Размеры шпоночного паза по ГОСТ 9472-83.

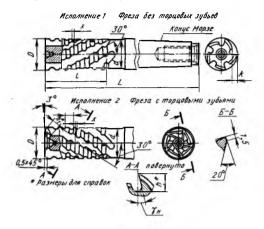
2200-0196

2200-0198

2200-0200

2200-0202

2200-0204


2200-0206

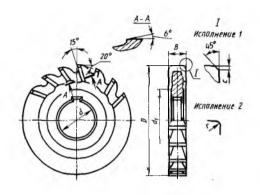
2200-0208

2200-0210

3. Фрезы должны быть изготовлены из быстрорежущей стали.

34. Размеры (мм) и обозиачение концевых обдирочных фрез с затылоианными зубьями и коническим хвостовиком (ГОСТ 4675-71)

Обо	означение ф	рез исполне	ний								ко- Б-		<u>-</u> 4	36
1	2	1	2	1							стружко елитель- канавки	[зубь-	Морзе
правор	ежущих	леворе	жущих	D	d	L	. 1	h	h ₁	k	Шаг страздели ной кан	х	Чис по ев z	Конус
2225-0191	2225-0192	2225-0241	2225-0242	25	23,5	150	50	6.5	4,5	4,3	6	1,20	5	3
2225-0193	2225-0194	2225-0243	2225-0244	25	23,5	180	80	6,5	4,5	4,3	6	1,20	5	3
2225-0195	2225-0196	2225-0245	2225-0246	32	29,0	180	55	8,0	6,0	5,3	8	1,60	5	4
2225-0197	2225-0198	2225-0247	2225-0248	32	29,0	210	85	8,0	6,0	5,3	8	1,60	5	4
2225-0199	2225-0200	2225-0249	2225-0250	32	29,0	255	130	8,0	6,0	5,3	8	1,60	5	4
2225-0201	2225-0202	2225-0251	2225-0252	40	30,5	190	65	9,5	8,0	5,8	9	1,50	6	4
2225-0203	2225-0204	2225-0253	2225-0254	40	30,5	225	100	9,5	8,0	5,8	9	1,50	6	4
2225-0205	2225-0206	2225-0255	2225-0256	40	30,5	285	160	9,5	8,0	5,8	9	1,50	6	4
2225-0207	2225-0208	2225-0257	2225-0258	50	44,0	225	70	11,5	10,0	6,3	10	1,67	6	9
2225-0209	2225-0210	2225-0259	2225-0260	50	44,0	270	115	11,5	10,0	6,3	10	1,67	6	9
2225-0211	2225-0212	2225-0261	2225-0262	50	44,0	335	180	11,5	10,0	6,3	10	1,67	6	9
2225-0213	2225-0214	2225-0263	2225-0264	63	44,0	235	80	11,5	10,0	6,9	10	1,25	8	9
2225-0215	2225-0216	2225-0265	2225-0266	63	44,0	280	125	11,5	10,0	6,9	10	1,25	8	9
2225-0217	2225-0218	2225-0267	2225-0268	63	44,0	355	200	11,0	10,0	6,9	10	1,25	8	9
2225-0219	2225-0220	2225-0269	2225-0270	80	60,0	300	90	13,5	10,0	6,9	15	1,50	10	6
2225-0221	2225-0222	2225-0271	2225-0272	80	60,0	350	140	13,5	10,0	6,9	15	1,50	10	6
2225-0223	2225-0224	2225-0273	2225-0274	80	60,0	435	224	13,5	10,0	6,9	15	1,50	10	6


Примечания: 1. Для фрез диаметром D=80 мм по требованию потребителей хвостовики фрез допускается изготовлять под конус шпинделей станков — Морзе 4 по ГОСТ 25557—82 или метрический конус 80—по СТ СЭВ 147—75.

Фреза 2225-0201 ГОСТ 4675-71

^{2.} Пример условного обозначения концевой фрезы праворежущей диаметром $D=40\,$ мм, длиной $L=190\,$ мм, исполнения 1:

^{3.} Леворежущие фрезы изготовляют только по заказу потребителей.

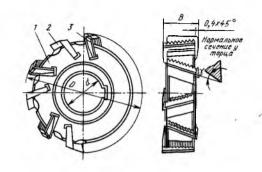
35. Размеры (мм) и обозначение дисковых трехсторонних фрез (ГОСТ 3755-78)

Обознач	чение фрез						Испол	тнение
	лнения			<i>d</i> (пред.		Число	1	2
1	2	D	В	откл. по <i>H</i> 7)	d ₁ , не менее	зуб ьев <i>z</i>	с, не более	<i>r</i> номин.
2240-0351	2240-0352	50	4	16	27	14	0,2	0,16
2240-0201	2240-0354	50	5	16	27	14	0,2	0,16
2240-0202	2240-0356	50	6	16	27	14	0,2	0,16
2240-0357	2240-0358	50	7	16	27	14	0,2	0,16
2240-0361	2240-0362	50	8	16	27	14	0,2	0,16
2240-0363	2240-0364	50	9	16	27	14	0,2	0,25
2240-0365	2240-0366	50	10	16	27	14	0,2	0,25
2240-0367	2240-0368	63	4	22	34	16	0,2	0,16
2240-0371	2240-0372	63	5	22	34	16	0,2	0,16
2240-0203	2240-0374	63	6	22	34	16	0,2	0,16
2240-0375	2240-0376	63	7	22	34	16	0,3	0,16
2240-0204	2240-0378	63	8	22	34	16	0,3	0,16
2240-0381	2240-0382	63	9	22	34	16	0,3	0,16
2240-0205	2240-0384	63	10	22	34	16	0,3	0,25
2240-0206	2240-0386	63	12	22	34	16	0,3	0,25
2240-0387	2240-0388	63	14	22	34	16	0,3	0,25
2240-0391	2240-0392	- 63	16	22	34	16	0,3	0,25
2240-0393	2240-0394	80	5	27	41	18	0,3	0,16
2240-0395	2240-0396	80	6	27	41	18	0,3	0,16
2240-0397	2240-0398	80	7	27	41	18	0,3	0,16
2240-0207	2240-0402	80	8	27	41	18	0,3	0,16
2240-0403	2240-0404	80	9	27	41	18	0,3	0,25
2240-0208	2240-0406	80	10	27	41	18	0,3	0,25
2240-0209	2240-0408	80	12	27	41	18	0,3	0,25
2240-0210	2240-0412	80	14	27	41	18	0,3	0,25
2240-0413	2240-0414	80	16	27	41	18	0,3	0,25
2240-0415	2240-0416	80	18	27	41	18	0,3	0,25
		Į.	210				<u> </u>]
	┧			L	L	L	<u>_</u>	L

Продолжение табл. 35

Обозначе	ние фрез						Испо.	пнение
испол	інения	D	В	<i>d</i> (пред.	d_1 , не	Число	1	2
1	2	<i>D</i>	В	откл. по <i>H</i> 7)	менее	зубьев 	с, не более	<i>r</i> ном ин .
2240-0417	2240-0418	80	20	27	41	18	0,3	0,40
2240-0421	2240-0422	100	6	32	47	20	0,3	0,16
2240-0423	2240-0424	100	7	32	47	20	0,3	0,16
2240-0425	2240-0426	100	8	32	47	20	0,3	0,16
2240-0427	2240-0428	100	9	32	47	20	0,3	0,25
2240-0211	2240-0432	100	10	32	47	20	0,3	0,25
2240-0212	2240-0436	100	12	32	47	20	0,3	0,25
2240-0213	2240-0438	100	14	32	47	20	0,3	0,25
2240-0214	2240-0442	100	16	32	47	20	0,3	0,25
2240-0443	2240-0444	100	18	32	47	20	0,3	0,25
2240-0445	2240-0446	100	20	32	47	20	0,3	0,40
2240-0447	2240-0448	100	22	32	47	20	0,3	0,40
2240-0451	2240-0452	100	25	32	47	20	0,3	0,40
2240-0453	2240-0454	125	8	32	47	22	0,3	0,16
2240-0455	2240-0456	125	9	32	47	22	0,3	0,25
2240-0457	2240-0458	125	10	32	47	22	0,3	0,25
2240-0461	2240-0462	125	12	32	47	22	0,3	0,25
2240-0463	2240-0464	125	14	32	47	22	0,3	0,25
2240-0465	2240-0466	125	16	32	47	22	0,3	0,25
2240-0467	2240-0468	125	18	32	47	22	0,3	0,25
2240-0471	2240-0472	125	20	32	47	22	0,3	0,40
2240-0473	2240-0474	125	22	32	47	22	0,3	0,40
2240-0475	2240-0476	125	25	32	47	22	0,3	0,40
2240-0477	2240-0478	125	28	32	47	22	0,3	0,40
		Ì			1			

 Π р и м е ч а н и я: 1. Пример условного обозначения фрезы диаметром D=80 мм, шириной B = 12 мм, исполнения 1, для паза с предельным отклонением по P9: Фреза 2240-0209 - Р9 ГОСТ 3755 - 78


2. Размеры шпоночного паза по ГОСТ 9472-83.

4. Основные технические требования по ГОСТ 1695-80.

^{3.} По требованию потребителей допускается изготовление фрез с увеличенным числом зубьев.

^{5.} По требованию потребителей допускается изготовление фрез с требуемыми допусками по ширине.

36. Размеры (мм) и обозначение трехсторонних фрез со вставными ножами из быстрорежущей стали ($\Gamma OCT~1669-78$)

		D			į		Поз. 2.	Поз. <i>3</i> .
Обозначение фрез	1-й ряд	2-й ряд	d	В	Число зубьев <i>2</i>	Поз. <i>1</i> . Корпус	Нож правый (ГОСТ 6214-78)	Нож левый (ГОСТ 6214 — 78)
	<u> </u>		ļ				Обозначение	
2241-0151	80	-	27	12	12	2241-0151/1	2020-0151	2020-0152
2241-0153	80	-	27	16	10	2241-0153/1	2020-0155	2020-0156
2241-0155	80	-	27	20	10	2241-0155/1	2020-0157	2020-0158
2241-0157	80	_	27	25	10	2241-0157/1	2020-0159	2020-0160
2241-0158	100	-	27	14	12	2241-0158/1	2020-0163	2020-0164
2241-0159	100	-	27	18	12	2241-0159/1	2020-0165	2020-0166
2241-0160	100	_	27	22	10	2241-0160/1	2020-0021	2020-0022
2241-0161	100	-	27	28	10	2241-0161/1	2020-0169	2020-0170
2241-0162	125	_	32	12	16	2241-0162/1	2020-0161	2020-0162
2241-0163	125	-	32	16	14	2241-0163/1	2020-0165	2020-0166
2241-0164	125	-	32	20	12	2241-0164/1	2020-0021	2020-0022
2241-0165	125	-	32	25	12	2241-0165/1	2020-0023	2020-0024
2241-0166	125	-	32	32	10	2241-0166/1	2020-0171	2020-0172
2241-0167	160	_	40	14	20	2241-0167/1	2020-0163	2020-0164
2241-0168	160		40	18	18	2241-0168/1	2020-0167	2020-0168
2241-0169	160	-	40	22	18	2241-0169/1	2020-0021	2020-0022
2241-0170	160	_	40	28	16	2241-0170/1	2020-0169	2020-0170
2241-0171	160	_	40	36	16	2241-0171/1	2020-0171	2020-0172
2241-0172		180	40	12	20	2241-0172/1	2020-0161	2020-0162

Продолжение табл. 36

_		,						11/0000.114	terme merch 50
	Обозначение фрез	1-й ряд	D 2-й ряд	d	В	Число зубьев <i>z</i>	Поз. 1. Корпус	Поз. 2. Нож правый (ГОСТ 6214-78)	Поз. З. Нож левый (ГОСТ 6214-78)
_								Обозначение	
	2241-0173	_	180	40	16	18	2241-0173/1	2020-0167	2020-0168
	2241-0174	_	180	40	20	18	2241-0174/1	2020-0021	2020-0022
	2241-0175	_	180	40	25	18	2241-0175/1	2020-0023	2020-0024
	2241-0176	_	180	40	32	16	2241-0176/1	2020-0171	20 2 0-0172
	2241-0178	200	_	50	16	20	2241-0178/1	2020-0167	2020-0168
	2241-0179	200	-	50	20	20	2241-0179/1	2020-0021	2020-0022
	2241-0180	200	-	50	25	20	2241-0180/1	2020-0023	2020-0024
	2241-0181	200	_	50	32	18	2241-0181"1	2020-0171	2020-0172
	2241-0182	200	_	50	40	16	2241-0182,1	2020-0173	2020-0174
	2241-0183	_	224	50	14	24	2241-0183/1	2020-0163	2020-0164
	2241-0184	_	224	50	18	22	2241-0184/1	2020-0167	2020-0168
	2241-0185	–	224	50	22	22	2241-0185/1	2020-0021	2020-0022
	2241-0186	_	224	50	28	20	2241-0186/1	2020-0169	2020-0170
	2241-0187	_	224	50	36	18	2241-0187/1	2020-0173	2020-0174
	2241-0188	250	_	50	18	26	2241-0188/1	2020-0167	2020-0168
	2241-0189	250	_	50	22	24	2241-0189/1	2020-0021	2020-0022
	2241-0190	250	-	50	28	24	2241-0190/1	2020-0169	2020-0170
	2241-0191	250	-	50	36	20	2241-0191/1	2020-0173	2 020-0174
	2241-0192	250	_	50	45	20	2241-0192/1	2020-0175	2020-0176
	2241-0193	315	_	50	20	30	2241-0193/1	2020-0021	2020-0022
	2241-0194	315	-	50	25	28	2241-0194/1	2020-0023	2020-0024
	2241-0195	315	_	50	32	28	2241-0195/1	2020-0171	2020-0172
	2241-0196	315	_	50	40	26	2241-0196/1	2020-0173	2020-0174
	2241-0197	315	_	50	50	22	2241-0197/1	2020-0175	2020-0176
_									

 Π римечания: 1. Фрезы по 1-му ряду являются предпочтительными для применения.

^{2.} Пример условного обозначения фрезы диаметром $D=80\,$ мм и шириной $B=25\,$ мм: $\Phi pesa~2241\text{-}0157~\Gamma OCT~1669-78.$


То же, корпуса фрезы диаметром $D_{\rm k} = 80$ мм, шириной $B_{\rm k} = 25$ мм:

Корпус фрезы 2241-0157/1 ГОСТ 1669 – 78

^{3.} Размеры ножей по ГОСТ 6214—78.

^{4.} Технические требования по ГОСТ 1671-77.

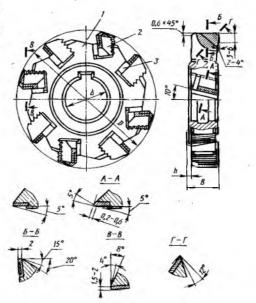
37. Размеры (мм) и обозначение двусторонних фрез со вставными ножами,

		1	D			d	·		
Обозначе	ение фрез 	P	яд			ял		Число	
		,	2	В	P.	яд	h	ножей	
праворежуших	леворежущих				1	2		z i	
2245-0001	2245-0002	100	_	18	_	27	2	8	
2245-0003	2245-0004	100	_	18	32	_	2	8	
2245-0005	2245-0006	125	-	20	_	32	4	10	
2245-0007	2245-0008	125	_	20	40	_	4	10	
2245-0009	2245-0010	160	_	22	_	40	4	12	
2245-0011	2245-0012	160	_	22	50	_	4	12	
2245-0013	2245-0014	_	180	25	_	40	5	14	
2245-0015	2245-0016	_	180	25	50	_	5	14	
2245-0017	2245-0018	200	_	25	_	50	5	14	
2245-0019	2245-0020	200	_	25	60	_	5	14	
2245-0025	2245-0026	250	_	28	-	50	5	18	
2245-0027	2245-0028	250	_	28	60	_	5	18	
2245-0029	2245-0030	315	_	32	_	50	7	20	
2245-0031	2245-0032	315	_	32	60	_	7	20	

 Π римечания: 1. Фрезы по 1-му ряду являются предпочтительными для применения. $B=18\,$ мм, оснащенной твердым сплавом марки T15K6, праворежущей:

То же, корпуса фрезы праворежущей, диаметром $D_{\rm K}=90$ мм, $B_{\rm K}=16$ мм, d=32 мм:

3. Размеры рифлений по ГОСТ 2568-71.


5. Остальные технические условия по ГОСТ 5808-77.

оснащенными твердым сплавом (ГОСТ 6469-69)

	Поз. 1. Ко	рпус фрезы	Поз. <i>2.</i> Н (ГОСТ 1	ож фрезы 4700—69)	Поз. <i>3</i> . Клин	
	праворежущей	леворежущей	праворе- жущей	леворежу- щей	ГОСТ 14701—69	
		Обозначение			<u></u>	
	2245-0001/001	2245-0002/001	2026-0023	2026-0024	2060-0042	
	2245-0003/001	2245-0004/001	2026-0023	2026-0024	2060-0042	
ŀ	2245-0005/001	2245-0006/001	2026-0031	2026-0032	2060-0046	
	2245-0006/001	2245-0008/001	2026-0031	2026-0032	2060-0046	
	2245-0009/001	2245-0010/001	2026-0039	2026-0040	2060-0050	
	2245-0011/001	2245-0012/001	2026-0039	2026-0040	2060-0050	
	2245-0013/001	2245-0014/001	2026-0049	2026-0050	2060-0055	
	2245-0015/001	2245-0016/001	2026-0049	2026-0050	2060-0055	
	2245-0017/001	2245-0018/001	2026-0049	2026-0050	2060-0055	
	2245-0019/001	2245-0020/001	2026-0049	2026-0050	2060-0055	
	2245-0025/001	2245-0026/001	2026-0059	2026-0060	2060-0060	
	2245-0027/001	2245-0028/001	2026-0059	2026-0060	2060-0060	
	2245-0029/001	2245-0029/001	2026-0069	2026-0070	2060-0065	
	2245-0031/001	2245-0032/001	2026-0069	2026-0070	2060-0065	

^{2.} Пример условного обозначения фрезы диаметром D=100 мм, d=32 мм, шириной Фреза 2245-0003 T15K6 ГОСТ 6459-69 Корпус фрезы 2245-0003/001 ГОСТ 6469-69

^{4.} Размеры шпоночных пазов по ГОСТ 9472-83.

0.5	1)			d	Число г	П. 1 К	Поз. 2. Нож (Г	OCT 14700 - 69)	Поз. 3. Клин.	
Обозначение фрез	P	д	В	P	яд	h	зубьев	Поз. 1. Корнус	правый	левый	(FOCT 14701 – 69)
	1	2		1	2		Z		Обознач	ение	
2241-0001	100	_	14	_	27	1,0	8	2241-0001/001	2026-0021	2026-0022	2060-0041
2241-0002	100	-	14	32	_	1,0	8	2241-0002/001	2026-0021	2026-0022	2060-0041
2241-0003	100	_	18	-	27	1,0	8	2241-0003/001	2026-0023	2026-0024	2060-0042
2241-0004	100	_	18	32		1,0	8	2241-0004/001	2026-0023	2026-0024	2060-0042
2241-0005	100	_	22	-	27	2,0	8	2241-0005/001	2026-0025	2026-0026	2060-0043
2241-0006	100	_	22	32	-	2,0	8	2241-0006/001	2026-0025	2026-0026	2060-0043
2241-0007	125	_	12	_	32	1,0	10	2241-0007/001	2026-0027	2026-0028	2060-0044
2241-0008	125	-	12	40	-	1,0	10	2241-0008/001	2026-0027	2026-0028	2060-0044

2241-0009 125 — 16 — 32 1,0 10 2241-0011 125 — 16 40 — 1,0 10 2241-0012 125 — 20 — 32 2,0 10 2241-0013 125 — 25 — 32 2,0 10 2241-0014 125 — 25 40 — 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 — 40 1,0 12 2241-0017 160 — 18 50 — 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0029 160 — 22 — 40 2,0 12 2241-0021 160 — 28 50 — 2,0 12 <th></th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th></th> <th>1</th> <th>ł</th>		1	1	1	1		1	ł
2241-0010 125 — 16 40 — 1,0 10 2241-0011 125 — 20 — 32 2,0 10 2241-0013 125 — 20 40 — 2,0 10 2241-0014 125 — 25 — 32 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 50 — 1,0 12 2241-0018 160 — 18 — 40 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>				<u> </u>				
2241-0011 125 — 20 — 32 2,0 10 2241-0013 125 — 20 40 — 2,0 10 2241-0014 125 — 25 — 32 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 — 40 1,0 12 2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 — 40 1,0 12 2241-0019 160 — 22 — 40 2,0 12 2241-0021 160 — 22 — 40 2,0 12 2241-0021 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 2,0 14 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>32</td> <td></td> <td></td>			-		-	32		
2241-0012 125 — 20 40 — 2,0 10 2241-0013 125 — 25 — 32 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 50 — 1,0 12 2241-0017 160 — 18 50 — 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 18 50 — 1,0 12 2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 50 — 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 <td></td> <td></td> <td></td> <td></td> <td>40</td> <td>_</td> <td></td> <td>10</td>					40	_		10
2241-0013 125 — 25 — 32 2,0 10 2241-0014 125 — 25 40 — 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 50 — 1,0 12 2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0029 160 — 22 — 40 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 16 — 40 1,0 14 <td>_</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>32</td> <td>2,0</td> <td>10</td>	_		-		-	32	2,0	10
2241-0014 125 — 25 40 — 2,0 10 2241-0015 160 — 14 — 40 1,0 12 2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 — 40 1,0 12 2241-0019 160 — 18 50 — 1,0 12 2241-0020 160 — 22 — 40 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0023 — 180 12 50 — 1,0 14 2241-0024 — 180 12 50 — 1,0 14 <td></td> <td></td> <td></td> <td>20</td> <td>40</td> <td>_</td> <td>2,0</td> <td>10</td>				20	40	_	2,0	10
2241-0015 160 — 14 — 40 1,0 12 2241-0016 160 — 14 50 — 1,0 12 2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 22 — 40 2,0 12 2241-0020 160 — 22 — 40 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 <td></td> <td></td> <td>-</td> <td>25</td> <td>l –</td> <td>32</td> <td>2,0</td> <td>10</td>			-	25	l –	32	2,0	10
2241-0016 160 — 14 50 — 1,0 12 2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 22 — 40 2,0 12 2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 — 40 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 — 40 1,0 14 <td></td> <td></td> <td>_</td> <td>25</td> <td>40</td> <td>_</td> <td>2,0</td> <td>10</td>			_	25	40	_	2,0	10
2241-0017 160 — 18 — 40 1,0 12 2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 22 — 40 2,0 12 2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 50 — 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 <td></td> <td></td> <td></td> <td></td> <td>- 1</td> <td>40</td> <td>1,0</td> <td>12</td>					- 1	40	1,0	12
2241-0018 160 — 18 50 — 1,0 12 2241-0019 160 — 22 — 40 2,0 12 2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 50 — 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 25 — 40 2,5 12 <td></td> <td></td> <td>-</td> <td>14</td> <td>50</td> <td>_</td> <td>1,0</td> <td>12</td>			-	14	50	_	1,0	12
2241-0019 160 — 22 — 40 2,0 12 2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 50 — 2,0 14 2241-0028 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 <td></td> <td>160</td> <td>-</td> <td>18</td> <td></td> <td>40</td> <td>1,0</td> <td>12</td>		160	-	18		40	1,0	12
2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0022 160 — 28 50 — 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 50 — 2,0 14 2241-0028 — 180 25 — 40 2,5 12 2241-0030 — 180 25 — 40 3,5 12 2241-0031 — 180 32 50 — 3,5 12 <td></td> <td></td> <td>-</td> <td>18</td> <td>50</td> <td>_</td> <td></td> <td>12</td>			-	18	50	_		12
2241-0020 160 — 22 50 — 2,0 12 2241-0021 160 — 28 — 40 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 — 40 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 — 40 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 — 40 2,5 12 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 50 — 3,5 12 <td></td> <td></td> <td>-</td> <td>22</td> <td>-</td> <td>40</td> <td>2,0</td> <td>12</td>			-	22	-	40	2,0	12
2241-0021 160 — 28 — 40 2,0 12 2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 — 40 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 — 40 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 <td>_</td> <td>160</td> <td>-</td> <td>22</td> <td>50</td> <td>_</td> <td></td> <td>12</td>	_	160	-	22	50	_		12
2241-0023 — 180 12 — 40 1,0 14 2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 50 — 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 20 12 — 50 1,0 14 <td>7</td> <td>160</td> <td>_</td> <td>28</td> <td> — i</td> <td>40</td> <td></td> <td>12</td>	7	160	_	28	— i	40		12
2241-0024 — 180 12 50 — 1,0 14 2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 — 40 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 16 — 50 2,0 14 </td <td></td> <td>160</td> <td></td> <td></td> <td>50</td> <td>_</td> <td>2,0</td> <td>12</td>		160			50	_	2,0	12
2241-0025 — 180 16 — 40 1,0 14 2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 60 — 2,0 14 </td <td></td> <td>-</td> <td></td> <td></td> <td>_ </td> <td>40</td> <td>1,0</td> <td></td>		-			_	40	1,0	
2241-0026 — 180 16 50 — 1,0 14 2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 60 — 2,0 14 </td <td></td> <td>_</td> <td></td> <td></td> <td>50</td> <td></td> <td>1,0</td> <td>14</td>		_			50		1,0	14
2241-0027 — 180 20 — 40 2,0 14 2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 60 — 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 60 — 2,5 14 </td <td></td> <td>_</td> <td>180</td> <td>16</td> <td>_</td> <td>40</td> <td>1,0</td> <td>14</td>		_	180	16	_	40	1,0	14
2241-0028 — 180 20 50 — 2,0 14 2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 60 — 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 25 — 50 2,5 14 2241-0040 200 — 25 — 50 2,5 14		–		16	50		1,0	14
2241-0029 — 180 25 — 40 2,5 12 2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 60 — 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 25 — 50 2,5 14 2241-0049 200 — 25 — 50 2,5 14 2241-0041 200 — 32 — 50 3,5 14		-		20	- 1	40	2,0	14
2241-0030 — 180 25 50 — 2,5 12 2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 60 — 2,5 14 2241-0049 200 — 25 — 50 2,5 14 2241-0041 200 — 32 60 — 2,5 14 </td <td></td> <td></td> <td>180</td> <td>20</td> <td>50</td> <td>_</td> <td>2,0</td> <td>14</td>			180	20	50	_	2,0	14
2241-0031 — 180 32 — 40 3,5 12 2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 — 50 2,5 14 2241-0049 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18		-	180	25	-	40	2,5	12
2241-0032 — 180 32 50 — 3,5 12 2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 60 — 2,5 14 2241-0039 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18 2241-0054 250 — 14 60 — 1,0 18		_	180	25	50	_		12
2241-0033 200 200 12 — 50 1,0 14 2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 60 — 2,5 14 2241-0039 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 — 50 3,5 14 2241-0042 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18 </td <td></td> <td>_</td> <td>180</td> <td>32</td> <td>. – !</td> <td>40</td> <td>3,5</td> <td>12</td>		_	180	32	. – !	40	3,5	12
2241-0034 200 — 12 60 — 1,0 14 2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 60 — 2,5 14 2241-0039 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 — 50 3,5 14 2241-0042 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18 2241-0055 250 — 14 60 — 1,0 18 2241-0055 250 — 18 — 50 2,0 18		-			50	_	3,5	12
2241-0035 200 — 16 — 50 2,0 14 2241-0036 200 — 16 60 — 2,0 14 2241-0037 200 — 20 — 50 2,5 14 2241-0038 200 — 20 60 — 2,5 14 2241-0039 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 — 50 3,5 14 2241-0042 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18 2241-0054 250 — 14 60 — 1,0 18 2241-0055 250 — 18 — 50 2,0 18			200		_	50	1,0	14
2241-0036 200 - 16 60 - 2,0 14 2241-0037 200 - 20 - 50 2,5 14 2241-0038 200 - 20 60 - 2,5 14 2241-0039 200 - 25 - 50 2,5 14 2241-0040 200 - 25 60 - 2,5 14 2241-0041 200 - 32 - 50 3,5 14 2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18			_		60	_		14
2241-0037 200 - 20 - 50 2,5 14 2241-0038 200 - 20 60 - 2,5 14 2241-0039 200 - 25 - 50 2,5 14 2241-0040 200 - 25 60 - 2,5 14 2241-0041 200 - 32 - 50 3,5 14 2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18		1	_			50	2,0	14
2241-0038 200 - 20 60 - 2,5 14 2241-0039 200 - 25 - 50 2,5 14 2241-0040 200 - 25 60 - 2,5 14 2241-0041 200 - 32 - 50 3,5 14 2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18	-			16	60	_		14
2241-0039 200 — 25 — 50 2,5 14 2241-0040 200 — 25 60 — 2,5 14 2241-0041 200 — 32 — 50 3,5 14 2241-0042 200 — 32 60 — 3,5 14 2241-0053 200 — 14 — 50 1,0 18 2241-0054 250 — 14 60 — 1,0 18 2241-0055 250 — 18 — 50 2,0 18			_		-	50	2,5	14
2241-0040 200 - 25 60 - 2,5 14 2241-0041 200 - 32 - 50 3,5 14 2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18		t .			60	_	2,5	14
2241-0041 200 - 32 - 50 3,5 14 2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18					-	50	2,5	14
2241-0042 200 - 32 60 - 3,5 14 2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18		1			60	_	2,5	14
2241-0053 200 - 14 - 50 1,0 18 2241-0054 250 - 14 60 - 1,0 18 2241-0055 250 - 18 - 50 2,0 18					-	50	3,5	14
2241-0054			_		60	_	3,5	14
2241-0055 250 - 18 - 50 2,0 18		1			-	50		ı
2,0			_		60		1,0	
2241-0056 250 - 18 60 - 2,0 18			-		-	50	2,0	
	2241-0056	250	_	18	60		2,0	18

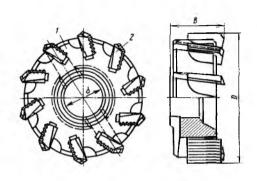
287

2241 0000/001	2026 0020	2026 0020	20.40.00.45
2241-0009/001	2026-0029	2026-0030	2060-0045
2241-0010/001	2026-0029	2026-0030	2060-0045
2241-0011/001	2026-0031	2026-0032	2060-0046
2241-0012/001	2026-0031	2026-0032	2060-0046
2241-0013/001	2026-0033	2026-0034	2060-0047
2241-0014/001	2026-0033	2026-0034	2060-0047
2241-0015/001	2026-0035	2026-0036	2060-0048
2241-0016/001	2026-0035	2026-0036	2060-0048
2241-0017/001	2026-0037	2026-0038	2060-0049
2241-0018/001	2026-0037	2026-0038	2060-0049
2241-0019/001	2026-0039	2026-0040	2060-0050
2241-0020/001	2026-0039	2026-0040	2060-0050
2241-0021/001	2026-0041	2026-0042	2060-0051
2241-0022/001	2026-0041	2026-0042	2060-0051
2241-0023/001	2026-0043	2026-0044	2060-0052
2241-0024/001	2026-0043	2026-0044	2060-0052
2241-0025/001	2026-0045	2026-0046	2060-0053
2241-0026/001	2026-0045	2026-0046	2060-0053
2241-0027/001	2026-0047	2026-0048	2060-0054
2241-0028/001	2026-0047	2026-0048	2060-0054
2241-0029/001	2026-0049	2026-0050	2060-0055
2241-0030/001	2026-0049	2026-0060	2060-0055
2241-0031/001	2026-0051	2026-0052	2060-0056
2241-0032/001	2026-0051	2026-0052	2060-0056
2241-0033/001	2026-0043	2026-0044	2060-0052
2241-0034/001	2026-0043	2026-0044	2060-0052
2241-0035/001	2026-0045	2026-0046	2060-0053
2241-0036/001	2026-0045	2026-0046	2060-0053
2241-0037/001	2026-0047	2026-0048	2060-0054
2241-0038/001	2026-0047	2026-0048	2060-0054
2241-0039/001	2026-0049	2026-0050	2060-0055
2241-0040/001	2026-0049	2026-0050	2060-0055
2241-0041/001	2026-0051	2026-0052	2060-0056
2241-0042/001	2026-0051	2026-0052	2060-0056
2241-0053/001	2026-0053	2026-0054	2060-0057
2241-0054/001	2026-0053	2026-0054	2060-0057
2241-0055/001	2026-0055	2026-0056	2060-0058
2241-0056/001	2026-0055	2026-0056	2060-0058

)			d		Число	П / К	Поз. 2. Нож (Г	OCT 14700 - 69)	Поз 3. Клин
Обозначение фрез	P	яд	В	P	яд	h	зубьев	Поз. 1. Корпус	правый	левый	(ГОСТ J4701 – 69)
	1	2		1	2		Z		Обознач	ение	
2241-0057	250	-	22	_	50	2,5	18	2241-0057/001	2026-0057	2026-0058	2060-0059
2241-0058	250	<u>. </u>	22	60	_	2,5	18	2241-0058/001	2026-0057	2026-0058	2060-0059
2241-0059	250	-	28	_	50	2,5	18	2241-0059/001	2026-0059	2026-0060	2060-0060
2241-0060	250	-	28	60	_	2,5	18	2241-0060/001	2026-0059	2026-0060	2060-0060
2241-0061	250	-	36	_	50	4,0	16	2241-0061/001	2026-0061	2026-0062	2060-0061
2241-0062	250	_	36	60	-	4,0	16	2241-0062/001	2026-0061	2026-0062	2060-0061
2241-0063	315	_	16	_	50	2,0	20	2241-0063/001	2026-0063	2026-0064	2060-0062
2241-0064	315	_	16	60	_	2,0	20	2241-0064/001	2026-0063	2026-0064	2060-0062
2241-0065	315	_	20	_	50	2,5	20	2241-0065/001	2026-0065	2026-0066	2060-0063
2241-0066	315	_	20	60	_	2,5	20	2241-0066/001	2026-0065	2026-0066	2060-0063
2241-0067	315	_	25	_	50	2,5	20	2241-0067/001	2026-0067	2026-0068	2060-0064
2241-0068	315	_	25	60	_	2,5	20	2241-0068/001	2026-0067	2026-0068	2060-0064
2241-0069	315	_	32	_	50	3,5	20	2241-0069/001	2026-0069	2026-0070	2060-0065
2241-0070	315	_	32	60	_	2,5	20	2241-0070/001	2026-0069	2026-0070	2060-0065
2241-0071	315	_	40	_	50	4,0	20	2241-0071/001	2026-0071	2026-0072	2060-0066
2241-0072	315	_	40	60	_	4,0	20	2241-0072/001	2026-0071	2026-0072	2060-0066

Примечания: 1. Фрезы по 1-му ряду диаметров являются предпочтительными для применения.

2. Пример условного обозначения фрезы диаметром $D=100\,$ мм, $d=32\,$ мм, шириной $B=18\,$ мм, оснащенной твердым сплавом T15K6:


Фреза 2241-0004 Т15К6 ГОСТ 5348-69

То же, корпуса фрезы диаметром $D_{\kappa} = 90$ мм, шириной $B_{\kappa} = 16$ мм, d = 32 мм:

Корпус фрезы 2241-0004/001 ГОСТ 5348-69

- 3. Размеры рифлений по ГОСТ 2568-71.
- 4. Размеры ножей по ГОСТ 14700-69.
- 5. Размеры шпоночных пазов по ГОСТ 9472-83.
- 6. Технические требования по ГОСТ 5808-77.

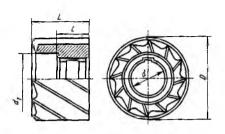
39. Размеры (мм) и обозначение торцовых насадных мелкозубых фрез со вставными ножами, оснащенными пластинами из быстрорежущей стали (ГОСТ 1092-80)

05						Поз. 1. Ко	рпус фрезы	Поз. 2	?. Нож
Ооозначе	ение фрез	D	d	В	Число ножей	право- режущей	лево- режущей	правый	левый
право- режущих	лево- режущих					режущен	Обозначен	ие	
2214-0331	2214-0332	100	32	40	10	2214-0331/001	2214-0332/001	2020-0021	2020-0022
2214-0333	2214-0334	125	40	44	14	2214-0333/001	2214-0334/001	2020-0023	2020-0024
2214-0335	2214-0336	160	50	49	16	2214-0335/001	2214-0336/001	2020-0025	2020-0026
2214-0337	2214-0338	200	50	49	20	2214-0337/001	2214-0338/001	2020-0025	2020-0026
2214-0341	2214-0342	(250)	50	49	26	2214-0341/001	2214-0342/001	2020-0025	2020-0026

Примечания: 1. Размер, заключенный в скобки, непредпочтительный для применения.

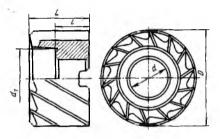
2. Пример условного обозначения праворежущей фрезы диаметром D=100 мм: Фреза 2214-0331 ГОСТ 1092-80

То же, корпуса праворежущей фрезы диаметром $D_{\kappa} = 90$ мм:


Kopnyc 2214-0331/001 FOCT 1092-80

- 3. Основные размеры корпусов фрез по ГОСТ 1092-80.
- Размеры ножей по ГОСТ 6214-78.
- 5. Размеры шпоночного паза по ГОСТ 9472-83.
- Размеры рифлений по ГОСТ 2568-71.
- 7. Технические требования по ГОСТ 1671-77.

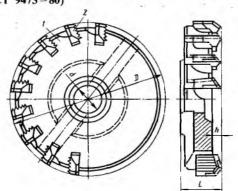
40. Размеры (мм) н обозначение торцовых насадных фрез (ГОСТ 9304-69)


Фрезы диаметром 40-50 мм с крепленнем на продольной шпонке

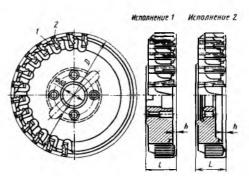
Ton 1

Фрезы днаметром 63-100 мм с креплением на торцовой шпонке

Тып 2


Обозначе	ние фрез	Тип	D	d	d_1	L	,	Число зубьев
праворежущих	леворежуших	1 1111		<i>a</i>	α ₁		<u> </u>	Z
2210-0061	2210-0062	1	40	16	25	32	18	10
2210-0063	2210-0064	1	50	22	32	36	20	12
2210-0071	2210-0072	2	63	27	36	40	22	14
2210-0073	2210-0074	2	80	32	45	45	25	16
2210-0075	2210-0076	2	100	32	56	50	28	18
2210-0081	2210-0082	2	63	27	36	40	22	8
2210-0083	2210-0084-	2	80	32	45	45	25	10
2210-0085	2210-0085	2	100	32	56	50	28	12
			_					

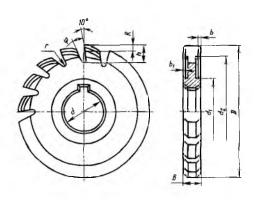
Примечания: 1. Пример условного обозначения праворежущей фрезы типа 1 диаметром $D=50\,$ мм:


Фреза 2210-0063 ГОСТ 9304-69

- 2. Леворежущие фрезы изготовляют по требованию заказчика.
- 3. Размеры шпоночных пазов по ГОСТ 9472-83.
- 4. Технические требования по ГОСТ 1695-80.

41. Размеры (мм) и обозначение торцовых насадных мелкозубых фрез со вставными ножами, оснащенными пластинами из твердого сплава (ГОСТ 9473-80)

10


Обозначе	ние фрез	Испол-				Число	Поз. <i>1</i> . Ко	рпус фрезы	Поз. 2	. Нож
		нение	D	L	h, не менее	зубьев	праворежущий	леворежущий	правый	левый
праворежущих	леворежущих	или d		İ		Z		Обозн	ачение	
2214-0153	2214-0154	32	100	39	4	10	2214-0153/001	2214-0154/001	2021-0013/002	2021-0014/002
2214-0155	2214-0156	40	125	42	4	12	2214-0155/001	2214-0156/001	2021-0013/002	2021-0014/002
2214-0157	2214-0158	50	160	46	5	16	2214-0157/001	2214-0158/001	2021-0015/002	2021-0016/002
2214-0159	2214-0160	50	200	46	5	20	2214-0159/001	2214-0160/001	2021-0015/002	2021-0016/002
2214-0161	2214-0162	1	250	47	6	24	2214-0161/001	2214-0162/001	2021-0015/002	2021-0016/002
2214-0313	2214-0314	1 1	315	66	6	30	2214-0313/001	2214-0314/001	2021-0017/002	2021-0018/002
2214-0171	2214-0172	2	315	66	6	30	2214-0171/001	2214-0172/001	2021-0017/002	2021-0018/002
2214-0315	2214-0316	1	400	66	6	36	2214-0315/001	2214-0316/001	2021-0017/002	2021-0018/002
2214-0173	2214-0174	2	400	66	6	36	2214-0173/001	2214-0174/001	2021-0017/002	2021-0018/002
2214-0317	2214-0318	1 1	500	71	6	44	2214-0317/001	2214-0318/001	2021-0019/002	2021-0020/002
2214-0175	2214-0176	2	500	71	6	44	2214-0175/001	2214-0176/001	2021-0019/002	2021-0020/002
2214-0319	2214-0320	1 1	630	71	6	52	2214-0319/001	2214-0321/001	2021-0019/002	2021-0020/002
2214-0177	2214-0178	2	630	71	6	52	2214-0177/001	2214-0178/001	2021-0019/002	2021-0020/002

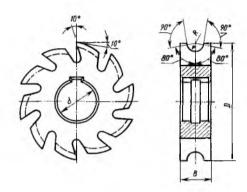
 Π р и м е ч а н и я: 1. Пример условного обозначения праворежущей фрезы диаметром D=200 мм с ножами, оснащенными пластинами из твердого сплава марки ВК8: Фреза 2214-0159 ГОСТ 9473-80

То же, корпуса праворежущей фрезы диаметром $D_{\rm K} = 186$ мм: Корпус 2214-0159/001 ГОСТ 9473-80

2. Основные размеры корпусов фрез по ГОСТ 9473-80 (табл. 3 и 4).
3. Основные размеры ножей по ГОСТ 9473-80 (табл. 5).
4. Технические требования по ГОСТ 24360-80.

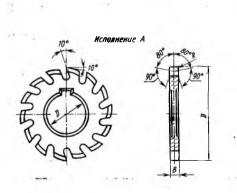
42. Размеры (мм) и обозначение пазовых затылованных фрез (ГОСТ 8543-71)

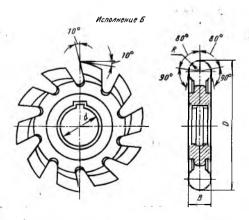
Обозначение	D	В	d	<i>d</i> ₁	d ₂	Ь	<i>b</i> ₁	R	h	r	φ°	Число зубьев г
2250-0051	50	4	16	25	40	0,4	1	2,5	7	1,5	22	12
2250-0052	50	5	16	25	40	0,4	1	2,5	7	1,5	22	12
2250-0053	50	6	16	25	40	0,4	1	2,5	7	1,5	22	12
2250-0054	63	5	22	35	50	0,5	1	3,0	9	1,5	22	14
2250-0055	63	6	22	35	50	0,5	1	3,0	9	1,5	22	14
2250-0057	63	8	22	35	50	0,5	1	3,0	9	1,5	22	14
2250-0059	80	8	27	40	65	0,5	1	4,0	11	2,0	25	14
2250-0060	80	10	27	40	65	0,7	1,5	4,0	11	2,0	25	14
2250-0061	80	12	27	40	65	0,7	1,5	4,0	11	2,0	25	14
2250-0062	100	10	32	45	82	0,7	1,5	4,0	13	2,0	25	16
2250-0063	100	12	32	45	82	0,7	1,5	4,0	13	2,0	25	16
2250-0065	100	16	32	45	82	0,7	1,5	4,0	13	2,0	25	16
		D-1										-


Примечания: 1. Пример условного обозначения фрезы диаметром $D=80\,$ мм, шириной $B=12\,$ мм, для паза по ПШ:

Фреза 2250-0061 ПШ ГОСТ 8543-71

- 2. Размер шпоночного паза по ГОСТ 9472-83.
- 3. Остальные технические требования по ГОСТ 8543-71.

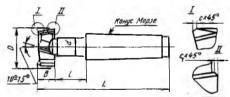

43. Размеры (мм) и обозначение полукруглых вогнутых и выпуклых фрез (ГОСТ 9305-69)


Тип 1

Обозначе- ние	R	D	d	В	Число зубьев, не менее	Обозначе- ние	R	D	d	В	Число зубьев, не менее
2262-0101 2262-0115 2262-0102 2262-0116 2262-0103 2262-0104 2262-0105 2262-0106	1,5 1,6 2,0 2,5 2,5 3 4	50 50 50 50 63 63 63 80	22 22 22 22 22 22 22 22 27	7 7 8 10 10 12 14 14	14 14 14 14 12 12 12 10	2262-0118 2262-0111 2262-0119 2262-0112 2262-0120 2262-0121 2262-0114	9 10 11 12 12 12,5 14	100 100 100 125 125 125 125 125	32 32 32 32 32 32 32 32 32	32 35 40 40 40 40 45 48	10 10 10 10 10 10 10
2262-0107 2262-0108 2262-0117 2262-0109 2262-0110	5 6 7 8 8	80 80 80 80 100	27 27 27 27 27 32	18 22 25 28 28	10 10 10 10 10	2262-0122 2262-0123 2262-0124 2262-0125	18 20 22,5 25	125 125 160 160	32 32 40 40	55 60 75 75	10 10 10 10

Тип 2

Продолжение табл. 43

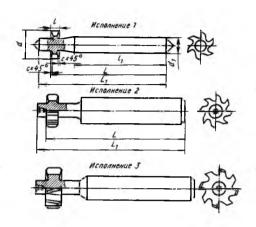

Обозначение	Ис- полне- ние	R	D	d	В	Число зубь- ев г	Обозначение	Ис- полне- ние	R	D	d	В	Число зубь- ев <i>г</i>
2262-0165	Α	1,6	50	22	3,2	14	2262-0060	Б	8	100	32	16	10
2262-0052	A	2	50	22	4	14	2262-0168	Б	9	100	32	18	10
2262-0166	Α	2,5	50	22	5	14	2262-0061	Б	10	100	32	20	10
2262-0053	Б	2,5	63	22	5	12	2262-0169	Б	11	100	32	22	10
2262-0054	Б	3	63	22	6	12	2262-0062	Б	12	100	32	24	10
2262-0055	Б	4	63	22	8	12	2262-0063	Б	12	125	32	24	10
2262-0056	Б	4	80	27	8	10	2262-0170	Б	14	125	32	28	10
2262-0057	Б	5	80	27	10	10	2262-0064	Б	16	125	32	32	10
2262-0058	Б	6	80	27	12	10	2262-0171	A	18	125	32	36	10
2262-0167	Б	7	80	27	14	10	2262-0172	A	20	125	32	40	10
2262-0059	Б	8	80	27	16	10	2262-0173	A	25	130	40	50	10

Примечания: 1. Пример условного обозначения фрезы типа 1, R=8 мм, D=80 мм:

Фреза 2262-0109 ГОСТ 9305-69

- 2. Размеры шпоночного паза по ГОСТ 9472-83.
- 3. Фрезы изготовляют из быстрорежущей стали марок по ГОСТ 19265-73.
- 4. Остальные технические требования по ГОСТ 9305-69.

44. Размеры (мм) и обозначение фрез с напайными твердосиловыми пластинами для обработки Т-образных пазов (ГОСТ 10673—75)


 0.5	Номи- нальный					<i>l</i> (пред.	С	c ₁	Число	Конус
Обозначение	размер паза	D	B		d	откл. +1)	He	более	зубьев <i>2</i>	Морзе
2252-0003	12	21	9	98	10	20	1,0	0,6	6	2
2252-0004	14	25	11	103	12	23	1,6	0,6	6	2
2252-0005	18	32	14	110	15	27	1,6	1,0	6	2
2252-0006	22	40	18	138	19	34	2,5	1,0	6	3
2252-0007	28	50	22	173	25	42	2,5	1,0	6	4
2252-0008	36	- 60	28	188	30	51	2,5	1,0	8	4
2252-0009	42	72	35	229	36	58	4,0	1,6	8	5
2252-0011	48	85	40	240	42	64	6,0	2,0	8	5
2252-0012	54	95	44	251	44	71	6,0	2,0	8	5

Примечания: 1. Пример условного обозначения фрезы для паза с номинальным размером $a=28\,$ мм:

Фреза 2252-0007 ГОСТ 10673-75

- 2. Центровые отверстия по ГОСТ 14034-74.
- 3. В качестве режущей части фрез следует применять пластины из твердого сплава ВК8 по Γ OCT 3882-74.
 - 4. Остальные технические требования по ГОСТ 10673-75.

45. Размеры (мм) и обозначение фрез дли пазов сегментных шпонок (ГОСТ 6648-79)

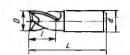
0.5	Номинальные размеры	Ис-			_	6			С			
Обозначение	шпонок (диаметр × × ширина)	нение фрезы	d	1	L	L_1	/ ₁	<i>d</i> ₁	Номи- нальный размер	Предель ное от- клонение		
2234-0151	4×1,0	1	4,3	1,0	37	40	28	6	0,08	+0,03		
2234-0152	$7 \times 1,5$	1	7,5	1,5	37	40	28	6	0,08	+0.03		
2234-0153	7×2.0	1	7,5	2,0	37	40	28	6	0,08	+0,03		
2234-0154	$10 \times 2,0$	1	10,8	2,0	37	40	28	6	0,08	+0.03		
2234-0155	$10 \times 2,5$	1	10,8	2,5	37	40	28	6	0,08	+0.03		
2234-0157	$13 \times 3,0$	2	14,0	3,0	56	60	40	10	0,08	+0.03		
2234-0159	$16 \times 3,0$	2	17,3	3,0	56	60	40	10	0,08	+0,03		
2234-0160	$16 \times 4,0$	2	17,3	4,0	56	60	40	10	0,16	+0.04		
2234-0161	$16 \times 5,0$	2	17,3	5,0	56	60	40	10	0,16	+0.04		
2234-0162	19×4.0	2	20,5	4,0	56	60	40	10	0,16	+0.04		
2234-0163	$19 \times 5,0$	2	20,5	5,0	56	60	40	10	0,16	+0.04		
2234-0165	22×5.0	2	23,8	5,0	60	63	45	12	0,16	+0.04		
2234-0166	22×6.0	3	23,8	6,0	60	63	45	12	0,16	+0.04		
2234-0168	25×6.0	3	27,0	6,0	60	63	45	12	0,16	+0.04		
2234-0172	28×8.0	3	30,2	8,0	63	67	45	12	0,25	+0,06		
2234-0175	$32 \times 10,0$	3	34,6	10,0	63	67	45	12	0,25	+0,06		

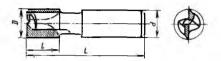
Примечания: 1. Пример условного обозначения фрезы исполнения 1 для шпонки с номинальными размерами $4 \times 1,0$ мм:

Фреза 2234-0151 ГОСТ 6648-79

2. Размеры хвостовиков по СТ СЭВ 116-74.

3. Центровые отверстия по ГОСТ 14034-74 форма А.


4. Фрезы из быстрорежущей стали по ГОСТ 19265—73 диаметром 14 мм и более изготовляют сварными.


5. Остальные технические требования по ГОСТ 6648-79.

46. Размеры (мм) и обозначение шпоночных фрез из быстрорежущей стали (ГОСТ 9140-78) и оснащенных твердосплавными пластинами (ГОСТ 6396-78)

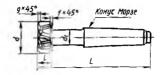
Фрезы из быстрорежущей стали Тип 1

Фрезы, оснащенные твердосплавными пластинами

Обозначе	ение фрез	D	d	L	1	Конус
праворежущих	леворежуших					Морзе
	Фрезы	нз быстрорех	кущей стали	(ΓΟCT 9140-	– 78)	
2235-0001	2235-0002	16	16	105	25	2
2235-0005	2235-0006	18	17	105	25	2
2235-0009	2235-0010	20	17	115	32	2
2235-0033	2235-0034	22	17	115	32	2
2235-0013	2235-0014	24	22	140	40	3
2235-0035	2235-0036	25	22	140	40	2 2 2 3 3 3 3 3 3 4 4
2235-0017	2235-0018	28	23,5	140	40	3
2235-0021	2235-0022	32	23,5	150	50	3
2235-0025	2235-0026	36	30,5	170	50	4
2235-0029	2235-0030	40	30,5	190	63	4
		l	1		ı	l
4				· (FO	CT (20(70)	
Ψ	резы, оснащен	ные твердоси	лавнымн пла	стинами (1 О	CI 0390 — /0)	
2235-0101	2235-0102	12	11	80	16	1
2235-0105	2235-0106] 14	11	90	20	2
2235-0109	2235-0110	16	15	100	20	2
2235-0113	2235-0114	18	16	105	20	2
2235-0117	2235-0118	20	17	110	20	2
2235-0121	2235-0122	24	- 22	130	25	3
2235-0141	2235-0142	22	17	115	20	2
2235-0143	2235-0144	25	22	130	25	3
2235-0125	2235-0126	28	26	130	25	2 2 2 2 3 2 3 3 3 4
2235-0129	2235-0130	32	30	140	32	3
2235-0133	2235-0134	36	30,5	160	32	4
2235-0137	2235-0138	40	36	170	32	4

Примечания: 1. Пример условного обозначения праворежущей фрезы диаметром $D=16\,$ мм из быстрорежущей стали:

Фреза 2235-0001 ГОСТ 9140-78


То же, праворежущей фрезы диаметром 16 мм, оснащенной пластинами из сплава T15K6:

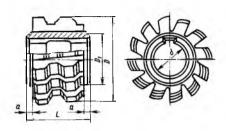
Фреза 2235-0109 Т15К6 ГОСТ 6396-78

- 2. Фрезы по ГОСТ 9140-78 должны быть изготовлены из быстрорежущей стали по ГОСТ 19265-73.
- 3. Технические требования на фрезы с пластинами из твердого сплава по ГОСТ 6396-78.

47. Размеры (мм) и обозиачение фрез для обработки Т-образных пазов (ГОСТ 7063-72)

Тип 2

испол	ение фрез нения	Номинальный размер Т-об- разного	d	d_{I}	1	L	<i>f</i> , не более	g, не более	Конус Морзе	зуб при	сло ьев ис- ении
1	2	паза а					<u> </u>			1	2
2252-0151		6	12,5	5	6	73	0,6	1,0	1	6	
2252-0152	_	8	16,0	7	7	77	0,6	1,0	1	6	_
2252-0153	2252-0154	10	18,0	8	8	82	0,6	1,0	1	6	4
2252-0155	2252-0156	12	21,0	10	9	98	0,6	1,0	2	8	6
2252-0157	2252-0158	14	25,0	12	11	103	0,6	1,6	2	8	6
2252-0159	2252-0160	18	32	15	14	111	1,0	1,6	2	8	6
2252-0161	2252-0162	22	40	19	18	138	1,0	2,5	3	8	6
_	2252-0163	28	50	25	22	173	1,0	2,5	3	_	8
_	2252-0164	36	60	30	28	188	1,0	2,5	3	_	8
_	2252-0165	42	72	36	35	229	1,6	4,0	5	-	8
-	2252-0166	48	85	42	40	240	2,0	6,0	5	_	8 -
-	2252-0167	54	95	44	44	251	2,0	6,0	5	-	8


Примечания: 1. Пример условного обозначения фрезы типа 2 исполнения 1 с номинальным размером паза a=6 мм:

Фреза 2252-0151 ГОСТ 7063-72

2. Центровые отверстия по ГОСТ 14034-74.

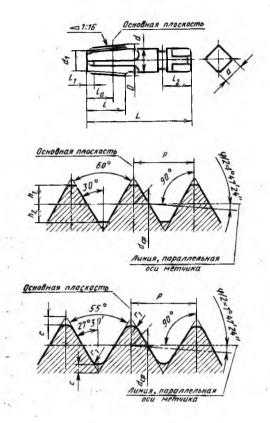
^{3.} Фрезы должны быть изготовлены из быстрорежущей стали по ГОСТ 19265-73, сварными.

48. Размеры (мм) и обозначение червячных чистовых фрез для шлицевых валов с прямобочным профилем (ГОСТ 8027 – 86)

Номиналь	Номинальные размеры валов серий			іля серий	L	a	,	D_{1}	Число зубьев фрезы для серий	
легкой	средней	тяжелой	лег- кой	средней и тяже- лой	L	a	d	не менее	лег- кой	средней и тяже- лой
_	6×16×20	$10 \times 16 \times 20$		63	50	4	22	34	_	10
	$6 \times 18 \times 22$	$10 \times 18 \times 23$	_	63	50	4	22	34	_	10
-	$6 \times 21 \times 25$	$10 \times 21 \times 26$	_	70	56	4	27	40	- 1	10
_	$6 \times 23 \times 28$	$10 \times 23 \times 29$		70	56	4	27	40		10
$6 \times 26 \times 20$	$6 \times 26 \times 32$	$10 \times 26 \times 32$	70	80	63	5	27	40	12	10
$6 \times 28 \times 32$	$6 \times 28 \times 34$	$10 \times 28 \times 35$	70	80	63	5	27	40	12	10
$8 \times 32 \times 36$	$8 \times 32 \times 36$	$10 \times 32 \times 40$	70	80	63	5	27	40	12	10
$8 \times 36 \times 40$	$8 \times 36 \times 42$	$10 \times 36 \times 45$	80	90	70	5	32	50	12	10
$8 \times 42 \times 46$	$8 \times 42 \times 48$	$10 \times 42 \times 52$	80	90	70	5	32	50	12	10
$8 \times 46 \times 50$	$8 \times 46 \times 54$	$10 \times 46 \times 56$	90	100	80	5	32	50	14	12
$8 \times 52 \times 58$	$8 \times 52 \times 60$	$10 \times 52 \times 60$	90	100	80	5	32	50	14	12
$8 \times 56 \times 62$	$8 \times 56 \times 65$	$16 \times 56 \times 60$	90	100	80	5	32	50	14	12
$8 \times 62 \times 68$	$8 \times 62 \times 72$	$16 \times 62 \times 72$	100	112	90	5	40	60	14	12
$10 \times 72 \times 78$	$10 \times 72 \times 80$	$16 \times 72 \times 82$	100	112	90	5	40	60	14	12
$10 \times 82 \times 88$	$10 \times 82 \times 92$	_	112	125	100	5	40	60	14	12
$10 \times 92 \times 98$	$10 \times 92 \times 102$		112	125	100	5	40	60	14	12
$10 \times 102 \times 108$	$10 \times 102 \times 112$	$20 \times 102 \times 115$		140	112	5	40	60	14	12
$10 \times 112 \times 120$	$10 \times 112 \times 125$	$20\times112\times125$	125	140	112	5	40	60	14	12

Примечания: 1. Пример условного обозначения фрезы для вала с центрированием: по наружному диаметру, с номинальными размерами вала $z \times d \times D = 6 \times 16 \times 20$ мм, с точностью толщины зуба по d 10, класса точности C:

Фреза D $6 \times 16 \times 20$ -d10-С ГОСТ 8027 - 86;


по виутреннему диаметру, с номинальными размерами вала $z \times d \times D = 6 \times 16 \times 30$ мм, с точностью внутреннего диаметра по e^9 и с точностью толщины зуба по d^{10} , класса точности C:

Фреза $d 6 \times 16 \times 30$ e9-d10-С ГОСТ 8027-86

2. Фрезы должны быть изготовлены из быстрорежущей стали по ГОСТ 19265-73.

4. РЕЗЬБОНАРЕЗНЫЕ И ЗУБОРЕЗНЫЕ ИНСТРУМЕНТЫ

49. Размеры (мм) и обозначение метчиков для конической резьбы (ГОСТ 6227-80)

Обозначение	D	Обозначение размера, резьбы, дюймы	Число ниток на I"	L	l	l ₀	1,	l ₂	d	d_1	a
		Метчик	зи для ко	ническ	ой дюй	імовой	резьбь	J			
2680-0001	8,3	K 1/16	27	50	16	10	2,8	15	6,3	5,7	5
2680-0002	8,3	К 1/16	27	50	16	10	2,8	16	8,0	5,7	6,3
2680-0003	10,7	К 1/8	27	55	18	11	2,8	16	8,0	8,0	6,3
2680-0004	10,7	К 1/8	27	55	18	11	2,8	19	11,2	8,0	9
2680-0005	14,1	K 1/4	18	65	24	15	4,2	19	11,9	10,3	4

Продолжение табл. 49

								•	просоль	vecture ii	nuon. 47
Обозначение	D	Обозначение размера, резьбы, дюймы	Число ниток на]"	L	l	10	<i>l</i> ₁	l_2	d	d_1	а
2680-0006	14,1	K 1/4	18	65	24	15	4,2	22	14,0	10,3	11,2
2680-0007	17,7	К 3/8	18	75	26	16	4,2	22	14,0	13,8	11,2
2680-0008	21,8	К 1/2	14	85	30	21	5,5	26	18	17,0	14
2680-0009	27,3	K 3/4	14	95	32	31	5,5	32	22	22,3	18
2680-0010	34,1	кі	11 1/2	110	40	26	6,6	36	28	28,0	22,4
2680-0011	42,9	К 1 1/4	11 1/2	120	42	27	6,6	40	31,5	36,7	25
2680-0012	49,0	К 1 1/2	11 1/2	140	42	27	6,6	45	35,5	42,8	28
2680-0013	61,2	К 2	11 1/2	140	45	28	6,6	52	45,0	54,8	35,5
		Метчи	ки для к	оничесі	 кой тр	 убной	резьбы		1	1	1
2680-0051	7,9	Rc 1/16	28	52	14	10,1	2,7	13	5,6	5,7	4,5
2680-0014	10,0	Rc 1/8	28	59	15	10,1	2,7	16	8,0	7,7	6,3
2680-0016	13,4	Rc 1/4	19	67	19	15,0	4,0	18	10,0	10,3	8,0
2680-0018	17,0	Rc 3/8	19	75	21	15,4	4,0	20	12,3	13,6	10,0
2680-0019	21,3	Rc 1/2	14	87	26	20,5	5,5	24	16,0	17,0	12,5
2680-0020	26,8	Rc 3/4	14	96	28	21,8	5,5	28	20,0	22,4	16,0
2680-0021	33,7	Rc I	11	109	33	26,0	70	34	25,0	28,3	20,0
2680-0022	42,4	Rc 1 1/4	11	119	36	28,3	70	40	31,5	36,8	25,0
2680-0023	48,3	Rc 1 1/2	11	125	37	28,3	70	45	35,5	42,6	28,0
	2.0	54.75	1				100	. 75			

Примечание. Пример условного обозначения метчика для нарезания конической дюймовой резьбы К 1/4 с диаметром хвостовика $d_1 = 14$ мм:

32,7

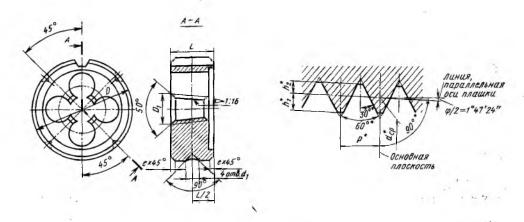
40,0

54,3

31.5

Метчик 2680-0006 ГОСТ 6227-80

Rc 2

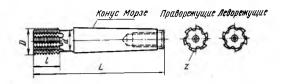

60,1

2680-0024

То же, метчика для нарезания конической трубной резьбы Rc 1/4":

Метчик 2680-0016 ГОСТ 6227-80

50, Размеры (мм) и обозначение круглых плашек для конической дюймовой резьбы (ГОСТ 6228-80)


Обозначение	Обозначение размера резьбы, дюймы	Число ниток на !"	Шаг резьбы <i>Р</i> , мм	D	D ₁	L
2684-0001	K 1/16	27	0,941	25	8,4	11
2684-0002	K 1/8	27	0,941	30	10,7	12
2684-0003	К 1/4	18	1,411	38	14,2	18
2684-0004	К 3/8	18	1,411	45	17,7	18
2684-0005	K 1/2	14	1,814	45	22,1	24
2684-0006	К 3/4	14	1,814	55	27,4	24
2 6 84-0007	К 1	11 1/2	2,209	65	34,3	28
2684-0008	K 1 1/4	11 1/2	2,209	75	43,1	30
2684-0009	K 1 1/4	11 1/2	2,209	90	49,2	30
2684-0010	K 2	11 1/2	2,209	105	61,2	32

Примечания: 1. Пример условного обозначения круглой плашки для нарезания конической дюймовой резьбы К $3/4^{\prime\prime}$:

Плашка 2684-0006 ГОСТ 6228-80

^{2.} Технические требования по ГОСТ 6228-80.

51. Размеры (мм) и обозиачение резьбовых гребенчатых фрез с коническим хвостовиком (ГОСТ 1336-77)

Обозначе	ние фрез	D	Шаг резьбы	L	,	d	Число	Число зубьев
праворежущих	леворежущих		P		,		Морзе	z
2672-0075	2672-0076	12	1,00	102	20	12	2	6
2672-0077	2672-0078	12	1,25	102	20	12	2	6
2672-0081	2672-0082	12	1,50	102	20	12	2	6
2672-0083	2672-0084	12	1,75	102	20	12	2	6
2672-0123	2672-0124	16	1,00	107	25	16	2	6
2672-0125	2672-0126	16	1,25	107	25	16	2	6
2672-0127	2672-0128	16	1,50	107	25	16	2	6
2672-0131	2672-0132	16	1,75	107	25	16	2	6
2672-0133	2672-0134	16	2,00	107	25	16	2	6
2672-0163	2672-0164	20	1,00	114	32	16	2	6
2672-0165	2672-0166	20	1,25	114	32	16	2	6
2672-0167	2672-0168	20	1,50	114	32	16	2	6
2672-0171	2672-0172	20	1,75	114	32	16	2	6
2672-0173	2672-0177	20	2,00	114	32	16	2	6
2672-0203	2672-0204	25	1,50	142	40	20	3	8
2672-0207	2672-0208	25	2,00	142	40	20	3	8
2672-0211	2672-0212	25	2,50	142	40	20	3	8
2672-0213	2672-0214	25	3,00	142	40	20	3	8
2672-0237	2672-0238	32	1,50	152	50	22	3	8
2672-0243	2672-0244	32	2,00	152	50	22	3	8
2672-0245	2672-0246	32	2,50	152	50	22	3	8
2672-0247	2672-0248	32	3,00	152	50	22	3	8
		l .]	

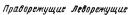
Примечания: 1. Размеры фрез приняты выборочно.

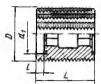
2. Пример условного обозначения праворежущей фрезы с коническим хвостовиком диаметром D=32 мм, с шагом резьбы P=2 мм, с длиной l=50 мм, для наружной метрической резьбы с полем допуска 6g:

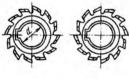
Фреза 2672-0243 6g ГОСТ 1336-77

То же, для внутренней метрической резьбы с полем допуска 6Н:

2672-0243 6H FOCT 1336-77


3. Технические требования по ГОСТ 1336-77.


4. Фреза должна быть изготовлена из быстрорежущей стали по ГОСТ 19265-73.


5. Хвостовики должны быть изготовлены из стали марки 45 или 50 по ГОСТ 1050-74.

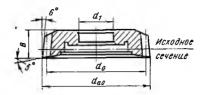
52. Размеры (мм) и обозначение резьбовых гребенчатых насадных фрез (ГОСТ 1336-77)

Испоянение 3

Обозначе	ние фрез		Шаг	,	,	,		Число
праворежущих	леворежущих	D	резьбы <i>Р</i>	L	1	d	d_1	зубьев <i>z</i>
·								
2672-0567	2672-0568	40	1,00	32	5	16	22	10
2672-0573	2672-0574	40	1,50	31,50	5	16	22	10
2672-0577	2672-0578	40	2,00	32	5	16	22	10
2672-0581	2672-0582	40	2,50	32,5	5	16	22	10
2672-0583	2672-0584	40	3,00	30,0	5	16	22	10
2672-0637	2672-0638	50	1,50	49,5	6	22	30	12
2672-0643	2674-0644	50	2,00	50,0	6	22	30	12
2672-0647	2672-0648	50	3,00	48,0	6	22	30	12
2672-0683	2672-0684	63	2,00	50,0	10	32	42	14
2672-0685	2672-0686	63	2,50	50,0	10	32	42	14
2672-0687	2672-0688	63	3,00	48,0	10	32	42	14
2672-0693	2672-0694	63	4,00	48,0	10	32	42	- 14
2672-0745	2672-0746	80	1,50	63,0	10	40	52	16
2672-0751	2672-0752	80	2,00	62,0	10	40	52	16
2672-0755	2672-0766	80	3,00	63,0	10	40	52	16
2672-0761	2672-0762	80	4,00	60,0	10	40	52	16
2672-0783	2672-0784	100	4,00	80,0	10	40	52	16
2672-0787	2672-0788	100	5,00	80,0	10	40	52	16

Примечания: 1. Размеры фрез приняты выборочно.

Фреза 2672-0687 бд ГОСТ 1336-77


^{2.} Пример условного обозначения праворежущей насадкой фрезы исполнения 3, диаметром D=63 мм, P=3 мм, длиной L=50 мм для наружной метрической резьбы с полем допуска 6g:

То же, для внутренней метрической резьбы с полем допуска 6H:

Фреза 2672-0687 6Н ГОСТ 1336-77

^{3.} Технические требования по ГОСТ 1336-77.

53. Размеры (мм) и обозначение зуборезных чистовых дисковых прямозубых долбиков (ГОСТ 9323-79)

Обозначени	е долбяков	М	одуль і	m_0	Число	Диаме	тры окруж	сностей	Высо-
без модифика- с модифика-			Ряд		зубьев	дели- тельной	вершин зубьев	посадоч-	та долбя-
ции профиля	рофиля цией профиля		2	3	² 0	d_0	d_{a0} верстня d_1		ка В

Долбяки с номинальным делительным диаметром 80 мм

2530-0151	2530-0152	1,000	l –	-	76	76,00	79,82	31,75	12
2530-0155	2530-0156	1,250	i —	- '	60	75,000	79,38	31,75	12
2530-0159	2530-0161	1,50	_	-	50	75,00	79,95	31,75	12
2530-0162	2530-0163	_	1,750	_	43	75,250	80,78	31,75	15
2530-0164	2530-0165	2,000	l –	_	38	76,00	82,12	31,75	15
2530-0166	2530-0167	· —	2,250	l –	34	76,50	83,26	31,75	15
2530-0168	2530-0169	2,500	-	-	30	75,00	82,25	31,75	15
2530-0171	2530-0172	i –	2,75	_	28	77,00	84,86	31,75	17
2530-0173	2530-0174	3,000	-	-	25	75,00	83,40	31,75	17
2530-0175	2530-0176	-	_	3,250	24	78,00	87,04	31,75	17
2530-0177	2530-0178	-	3,500] — ,	22	77,00	86,59	31,75	17
2530-0179	2530-0181	l –	_	3,750	20	75,00	85,12	31,75	17
2530-0182	2530-0183	4,00	_	_	19	76,00	86,72	31,75	17
2530-0184	2530-0185	-	_	4,250	18	76,50	87,81	31,75	17
2530-0186	2530-0187	-	4,500	-	17	76,50	88,38	31,75	17
2530-0188	2530-0189	5,00	–	-	16	80,00	93,00	31,75	17
	l	1			1	•		•	•

Долбяки с номинальным делительным диаметром 100 мм

2530-0191	2530-0192	1,00	-	_	100	100,0	104,3	44,45	17
2530-0195	2530-0196	1,250	_	_	80	100,0	104,88	44,45	17
2530-0199	2530-0201	1,500	_	_	68	102,00	107,49	44,45	17
2530-0202	2530-0203	-	1,750	_	58	101,5	107,56	44,45	17
2530-0204	2530-0205	2,00	_		50	100,0	106,60	44,45	20
2530-0206	2530-0207	-	2,25		45	101,25	108,45	44,45	20
2530-0208	2530-0209	2,50	-	_	40	100,0	107,75	44,45	20
2530-0211	2530-0212		2,75	_	36	99,00	107,36	44,45	20
2530-0213	2530-0214	3,00	_	_	34	102,00	110,94	44,45	20
2530-0217	2530-0218	-	3,50	_	28	98,00	108,01	44,45	20
2530-0222	2530-0223	4,00	l – l	_	25	111,20	111,20	44,45	20
2530-0226	2530-0227	-	4,5	_	22	99,00	111,33	44,45	20
2530-0228	2530-0229	5,00	_		20	100,00	113,50	44,45	20

Продолжение табл. 53

Обозначени	е долбяков	Модуль п	n ₀	Число	Диаме	Высо-		
без модифика- ции профиля	с модифика- цией профиля	Ряд 1 2	3	зубьев z ₀	дели- тельной d_0	вершин зубьев <i>d_{a0}</i>	посадоч- ного от- верстия d_1	та долбя- ка <i>В</i>

Долбяки с номинальным делительным диаметром 125 мм

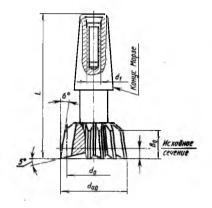
2530-0242	2530-0243	2,00	_	l –	62	124,0	131,8	44,45	22
2530-0244	2530-0245	_	2,25		56	126,0	133,69	44,45	22
2530-0246	2530-0247	2,50	_	i –	50	125,0	133,25	44,45	22
2530-0248	2530-0249	_	2,75	-	46	126,5	135,36	44,45	22
2530-0251	2530-0252	3,00	_	_	42	126,00	135,42	44,45	22
2530-0253	2530-0254	_	_	3,25	38	123,50	133,40	44,45	22
2530-0255	2530-0256		3,50	_	36	126,00	136,57	44,45	22
2530-0257	2530-0258	_	-	3,75	34	127,50	138,68	44,45	24
2530-0259	2530-0261	4,00	_	_	31	124,00	135,68	44,45	24
2530-0262	2530-0263	–	4,50	_	28	126,00	138,87	44,45	24
2530-0264	2530-0265	5,00	-		25	125,00	139,00	44,45	28
									1

Долбяки с иоминальным делительным диаметром 160 мм

2530-0282 2530-0284 2530-0286 2530-0288 2530-0291	2530-0283 2530-0285 2530-0287 2530-0289 2530-0292	6,0 - - 8,0 -	7,0 - 9,0	6,5	27 25 23 20 18	162,00 162,5 161,0 160,0 162,0	179,04 180,7 180,32 181,6 185,94	88,9 88,9 88,9 88,9 88,9	30 30 30 32 32
2530-0291 2530-0293	2530-0292 2530-0294	10,0	9,0	_	18 16	162,0 160,0	185,94 186,20	88,9 88,9	32 32

Долбяки с иоминальным делительным диаметром 200 мм

2530-0295	2530-0296	8,0	-	-	25	200,0	222,4	101,6	40
2530-0297	2530-0298	_	9,0	_	22	198,0	222,66	101,6	40
2530-0299	2530-0301	10,0	l –	- '	20	200,2	227,00	101,6	40
2530-0302	2530-0303	-	11,0	–	18	198	227,26	101,6	40
2530-0304	2530-0305	12,0	_ '	!	17	204	235,18	101,6	40


Примечания: 1. Пример условного обозначения дискового прямозубого долбяка типа 1 с номинальным делительным диаметром 100 мм, модулем $m_0=2,5$ мм, без модификации профиля, класса точности A:

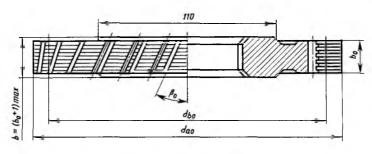
2530-0208 A FOCT 9323-79

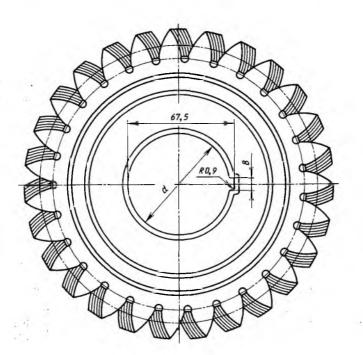
- 2. Размеры долбяков приняты выборочно.
- 3. Дисковые прямозубые долбяки изготовляют классов точности АА, А, В.
- 4. Долбяки по 1-му ряду являются предпочтительными для применения.

5. Технические требования по ГОСТ 9323-79.

54. Размеры (мм) и обозначение зуборезных чистовых хвостовых прямозубых долбяков (ГОСТ 9323-79)

	Mo	дуль	Число	Диаметр о	кружностей	Длииа	Длина		
Обозначение	1 P	яд	зубьев z ₀	делитель- ной d_0	вершин зубьев <i>d_{a0}</i>	длина зубьев <i>В</i> ₀	длина долбяка <i>L</i>	Конус Морзе	
	Дол	бяки с	номииаль	иым делите	ельным диа	метром 25	мм		
2537-0151	1,000	_	26	26,00	28,80	10	80	B 18	M10
2537-0153	1,250		20	25,00	28,38	10	80	B18	M10
2537-0155	1,500	–	18	27,00	30,99	10	80	B18	M10
2537-0156	_	1,750	14	24,50	29,02	12	80	B18	M10
2537-0157	2,00	-	12	24,00	29,08	12	80	B18	M 10
2537-0158	-	2,25	12	27,00	32,72	12	80	B18	M10
2537-0159	2,50	_	10	25,00	31,25	15	80	B18	M10
2537-0161	_	2,75	10	27,50	34,38	15	80	B18	M10
2537-0162	3,00	_	9	27,00	34,44	15	80	B18	M10
	Лол	бяки с	номиналь	ным делите	альным лия	метром 38	мм		
	7,011								
2537-0163	1,00	_	38	38,00	41,06	12	100	B24	M12
2537-0165	1,25	-	30	37,50	41,12	12	100	B24	M12
2537-0167	1,50	-	25	37,50	41,70	12	100	B24	M12
2537-0169	2,00	_	19	38,00	43,36	15	100	B24	M12
2537-0171	-	2,25	16	36,00	41,89	15	100	B24	M12
2537-0172	2,50	_	15	37,50	44,00	15	100	B24	M12
2537-0173		2,75	14	38,50	45,60	15	100	B24	M12
2537-0174	3,00	-	12	36,00	43,62	15	100	B24	M12
2537-0176] -	3,50	11	38,50	47,32	15	100	B24	M12
2537-0178	4,00		10	40,00	50,00	15	100	B24	M12


 Π римечания: 1. Пример условного обозначения хвостового прямозубого долбяка типа 4, номинальным делительным диаметром 25 мм, класса **B**:


2537-0159 B ΓΟCT 9323-79

2. Хвостовые прямозубые долбяки должны быть изготовлены классов точности А и В.

3. Технические требования по ГОСТ 9323-79.

55. Размеры (мм) и обозиачение дисковых шеверов (ГОСТ 8570-80)

Обозначени	е шеверов		Число		Основной			Угол на-
правых	левых	Модуль <i>т</i> ₀	зубьев z ₀	d_{a0}	диаметр d_{b0}	d	b_0	клона на линии зуба β ₀

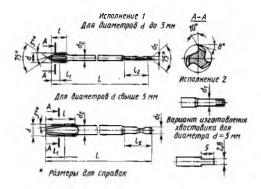
Номинальный делительный диаметр шевера 180 мм

2570-0364	2570-0365	1,25	115	149,25	135,537	63,5	20	5
2570-0366	2570-0367	1,25	115	153,77	139,26	63,5	20	15
2570-0373	2570-0374	1,50	115	178,66	149,09	63,5	20	5

Продолжение табл. 55

						11,000	o more crit	te maon. Do
Обозначен правых	ие шеверов левых	Модуль <i>т</i> ₀	Чис ло зубьев	d _{a0}	О с новной диаметр d_{b0}	d	b ₀	Угол на- клона на линии зуба β ₀
2570-0375	2570-0376	1,50	115	184,09	167,115	63,5	20	15
2570-0377	2570-0378	1,75	100	181,73	165,00	63,5	20	5
2570-0379	2570-0381	1,75	100	187,23	169,64	63,5	20	15
2570-0384	2570-0385	2,0	83	171,72	156,515	63,5	20	5
2570-0386	2570-0387	2,0	83	176,94	160,818	63,5	20	15
2570-0388	2570-0389	2,25	73	170,57	154,865	63,5	20	5
2570-0391	2570-0392	2,25	73	175,68	159,122	63,5	2.7	15
2570-0393	2570-0394	2,50	67	174,33	157,929	63,5	20	5
2570-0395	2570-0396	2,50	67	179,60	162,271	63,5	20	15
2570-0397	2570-0398	2,75	61	175,13	159,165	63,5	20	5
2570-0399	2570-0401	2,75	61	180,40	162,513	63,5	20	15
2570-0402	2570-0403	3,00	53	168,51	159,607	63,5	20	5
2570-0404	2570-0405	3,00	53	172,33	164,604	63,5	20	15
2570-0419	2570-0421	4,00	53	177,73	154,629	63,5	20	5
2570-0422	2570-0423	4,00	53	181,88	158,88	63,5	20	15
2570-0433	2570-0434	5,00	31	173,49	146,143	63,5	20	5
2570-0435	2570-0436	5,00	31	177,36	150,161	63,5	20	15
4								

Примечания: 1. Размеры шеверов приняты выборочно.


2. Шеверы должны быть изготовлены из быстрорежущей стали по ГОСТ 19267-73.

Шевер 2570-0402 А ГОСТ 8570-80

^{3.} Пример условного обозначения правого шевера с номинальным делительным диаметром 180 мм, модулем $m_0=3$ мм, углом наклона винтовой линии $\beta_0=15^\circ$, класса точности A:

^{4.} Технические требования по ГОСТ 8570-80.

56. Размеры (мм) и обозначение гаечных метчиков (ГОСТ 1604-71)

Для метрической резьбы

Обозначен	ие метчиков	ı	Ш	аг						
	нения 1	Номи- нальный	резьб		<i>d</i> ₂	1	I_1	l_2	d_1	1
правых	левых	диаметр резьбы <i>d</i>	круп- ный	мел- кий			-1	i ¹²	- u	
2640-0005	2640-0006	3	0,5	_	70	10	6	20	2,24	2,2
2640-0007	2640-0008	3	0,5	-	120	10	6	20	2,24	2,2
2640-0021	2640-0022	4	0,7	_	90	14	8	20	2,80	2,8
2640-0023	2640-0024	4	0,7		160	14	8	20	2,80	2,
2640-0037	2640-0038	5	0,8	l –	110	16	10	22	3,55	3,
2640-0039	2640-0040	5	0,8	_	180	16	10	22	3,55	3,0
2640-0053	2640-0054	6	1,0	-	120	20	12	22	4,50	4,
2640-0055	2640-0056	6	1,0	l –	200	20	12	22	4,50	4,
2640-0081	2640-0082	8	1,25	_	140	25	16	25	6,3	6,
2640-0083	2640-0084	8	1,25	l —	220	25	16	25	6,3	6,
2640-0117	2640-0118	10	1,5	. –	160	30	18	32	8,0	8,
2640-0119	2640-0120	10	1,5	-	250	30	18	32	8,0	8,
2640-0109	2640-0110	10	_	1,0	160	20	12	32	8,0	8,
2640-0111	2640-0112	10	_	1,0	250	30	12	32	8,0	8,
2640-0153	2640-0154	12,	1,75	_	180	36	21	32	9,0	9,
2640-0155	2640-0156	12,	1,75		280	36	21	32	9,0	9,
2640-0141	2640-0142	12	_	1,0	180	20	12	32	9,0	10
2640-0143	2640-0144	12	_	1,0	280	20	12	32	9,0	10
2640-0193	2640-0194	16	2,0	_	200	40	24	40	12,5	12
2640-0195	2640-0196	16	2,0	_	320	40	24	40	12,5	12
2640-0189	2640-0190	16		1,5	200	30	18	40	12,5	13
2640-0191	2640-0192	16	-	1,5	320	30	18	40	12,5	13
2640-0241	2640-0242	20	2,5	<u> </u>	220	50	30	40	16,0	16
2640-0243	2640-0244	20	2,5	_	360	50	30	40	16,0	16
2640-0233	2640-0234	20	Ĺ	1,5	220	30	18	40	16,0	17
2640-0235	2640-0236	20	_	1,5	360	30	18	40	16,0	17
2640-0277	2640-0278	24	3,0	_	250	60	36	40	18,0	19
2640-0279	2640-0280	24	3,0		360	60	36	40	18,0	19
2640-0273	2640-0274	24	_	2,0	250	40	24	40	18,0	20
2640-0275	2640-0276	24	_	2,0	360	40	24	40	18,0	20

Продолжение табл. 56

Для дюймовой резьбы

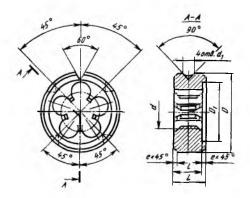
Обозначени	е метчиков		альный резьбы <i>d</i>	Шаг резьбы	Число ниток	L	1	<i>I</i> ₁	$d_{\rm I}$
правых	левых	дюймы	ММ	P	на 1′′				
2640-0521	2640-0522	1/4	6,350	1,270	20	120	25	15	4,5
2640-0523	2640-0524	1/4	6,350	1,270	20	200	25	15	4,5
2640-0525	2640-0526	5/16	7,938	1,411	18	140	28	17	5,6
2640-0527	2640-0528	5/16	7,938	1,411	18	220	28	17	5,6
2640-0529	2640-0530	3/8	9,525	1,538	16	160	32	19	7,1
2640-0531	2640-0532	3/8	9,525	1,538	16	250	32	19	7,1
2640-0537	2640-0538	1/2	12,70	2,117	12	180	40	25	9,0
2640-0539	2640-0540	1/2	12,70	2,117	12	280	40	25	10,0
2640-0545	2640-0546	5/8	15,875	2,309	11	200	45	28	12,5
2640-0547	2640-0548	5/8	15,875	2,309	11	320	45	28	12,5
2640-0549	2640-0550	3/4	19 ,050	2,540	10	200	50	32	14,0
2640-0551	2640-0552	3/4	19,050	2,540	10	320	50	32	14,0
2640-0553	2640-0554	7/8	22,225	2,822	9	220	45	34	18,0
2640-0555	2640-0556	7/8	22,225	2,822	9	360	45	34	18,0
2640-0557	2640-0558	1	25,40	3,175	8	250	60	38	18,0
2640-0559	2640-0560	1	25,40	3,175	8	360	60	38	18,0
2640-0561	2640-0562	1 1/8	28,575	3,629	7	280	70	45	32,4
2640-0563	2640-0564	1 1/8	28,575	3,629	7 .	360	70	45	32,4
2640-0565	2640-0566	1 1/4	31,750	3,629	7	280	70	45	25,0
2640-0567	2640-0568	1 1/4	31,750	3,629	7	360	70	45	32,4
						~			

Примечание. Пример условного обозначения метчика с номинальным диаметром резьбы $d=16\,$ мм, шагом $P=1.5\,$ мм, длиной $L=200\,$ мм, степени точности H2, исполнения 1, правого:

Метчик 2640-0189 H2 ГОСТ 1604-71

То же, левого:

Метчик 2640-0190 H2 ГОСТ 1604-71


То же, номинальным диаметром d=3/4", длиной L=200 мм, степени точности D, исполнения 1, правого:

Метчик 2640-0549 Д ГОСТ 1604-71

То же, левого:

Метчик 2640-0550 Д ГОСТ 1604-71

57. Размеры (мм) и обозначение круглых плашек для метрической резьбы (ГОСТ 9740-71)

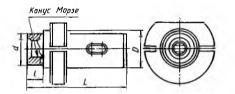
									l	
	правых	левых	нальный диаметр резьбы d	крупный	мелкий	D	D_1	L	l	d_1
	2650-1491	2650-1492	3	0,5	-	20		5	_	4
2	2650-1525	2650-1526	4	0,7		20	-	5	-	4
2	2650-1555	2650-1556	5	0,8		20		7	-	4
2	2650-1577	2650-1578	6	1,0		20	_	7	-	4
2	2650-1623	2650-1624	8	1,25		25	_	9	_	5
2	2650-1631	2650-1632	8	_	1,0	25	_	9		5
2	2650-1683	2650-1684	10	1,5		30	_	11	_	5
2	2650-1697	2650-1698	10	-	1,0	30	_	11	-	5
2	2650-1751	2650-1752	12	1,75		38	_	14	_	6
2	2650-1773	2650-1774	12	-	1,0	38	_	10	-	6
2	2650-2035	2650-2036	16	2,0		45	_	18	_	6
2	2650-2043	2650-2044	16	_	1,5	45	_	14	_	6
2	2650-2087	2650-2088	18	2,5	-	45	_	18	_	6
2	2650-2103	2650-2104	18	2,5	1,5	45	_	14	_	6
2	2650-2133	2650-2134	20	2,5	-	45	_	18	-	6
2	2650-2147	2650-2148	20	_	1,5	45	_	14	-	6
2	2650-2223	2650-2224	24	3,0	-	55		22	_	8
2	2650-2231	2650-2232	24	_	2,0	55	-	16	_	8
2	2650-2291	2650-2292	27	3,0	-	65	-	25		8
. 2	2650-2297	2650-2298	27	-	2,0	65	_	18	14	8
2	2650-2351	2650-2352	30	3,5	_	65	_	25	_	8
2	2650-2365	2650-2366	30	-	2,0	65	_	18	_	8
2	2650-2373	2650-2374	30	_	1,5	65	54	18	12	8

Примечания: 1. Размеры плашки приняты выборочно.

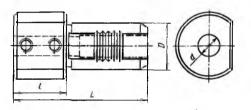
- 2. Плашки по 1-му ряду являются предпочтительными для применения.
- 3. Пример условного обозначения круглой плашки с номинальным диаметром резьбы $d=6\,$ мм, шагом $P=1\,$ мм, для поля допуска резьбы 6g правой:

Плашка 2650-1577 бд ГОСТ 9740-71

То же, левой:


Плашка 2650-1578 6g ГОСТ 9740-71

4. Технические требования по ГОСТ 9740-71 и ГОСТ 17587-72.


ВСПОМОГАТЕЛЬНЫЕ ИНСТРУМЕНТЫ К МЕТАЛЛОРЕЖУЩИМ СТАНКАМ, В ТОМ ЧИСЛЕ К СТАНКАМ С ЧПУ

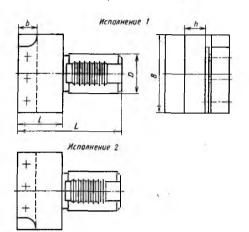
1. ИНСТРУМЕНТЫ К ТОКАРНЫМ СТАНКАМ

1. Втулки переходиме с цилиидрическим хвостовиком и виутреиним коиусом Морзе к станкам с ЧПУ (ОСТ2 П12-11-84)

2. Втулки переходные с цилиндрическим хвостовиком и цилиндрическим отверстием к станкам с ЧПУ (ОСТ2 П12-12-84)

Размеры, мм

D	Конус Морзе	L	d	l
30	1	106		
	2			
50	2	130	_	_
	3			
111	4			
60	3	150		
	4			
80	5	175	60	75
30	6	250		/•
	1 1		1	;

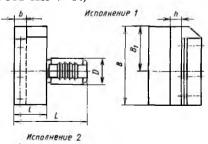

Размеры, мм

	_		
D	d	L	1
30	16	90	35
50	25	133	55
	32	1,55	
	25		
60	32	159	65
	40		
	25		
80	32	209	85
	40		
		L	

Пример условного обозначения втулки размером D=30 мм и конусом Морзе 1: $Bmy_{J}Ka$ 30-1 OCT2 Π 12-11-84

Пример условного обозначения втулки размерами D=30 мм и d=16 мм: $Bmyлка 30-16 \ OCT2 \ \Pi 12-12-84$

3. Резпедержатели с пилиндрическим хвостовиком с перпеидикуляриым открытым пазом к станкам с ЧПУ (ОСТ2 П15-3-84)

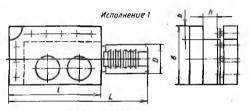


Размеры, мм

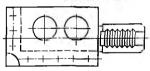
D	1	L	В	b	h
30	40	95	70	16	16
50	60	138	100	25	25
60	70	164	125	32	32
80	80	204	160	40	40

Пример условного обозначения резцедержателя исполнения 1 и размером D=30 мм: $Pезиедержатель 1-30 OCT2 \Pi15-3-84$

4. Резцедержатели с цилиндрическим хвостовиком несимметричные с нерпеидикулярным открытым иазом к станкам с ЧПУ (ОСТ2 П15-4-84)


Продолжение табл. 4

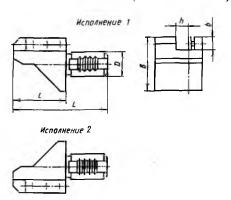
Размеры, мм


D	1	L	В	B_1	b	h
30	45	100	95	60	16	16
50	55	133	120	80	25	25
60	55	149	145	90	32	32
80	75	199	190	110	40	40

Пример условного обозначения резцедержателя исполнения 1 размером D=30 мм: $Pезуедержатель 1-30 \ OCT2 \ \Pi15-4-84$

5. Резцедержатели удлиненные с цилиндрическим хвостовиком с перпендикулярными и параллельными открытыми пазами к станкам с ЧПУ (ОСТ2 П15-5—84)

Исполнение 2

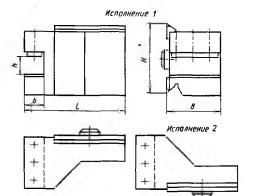

Размеры, мм

		L	В	b	h
30	110	165	70	16	16
50	160	238	100	25	25
60	230	324	125	32	32
80	250	374	160	40	40

Пример условного обозначения резпедержателя исполнения 1 и размером D=30 мм:

Резуедержатель 1-30 ОСТ2 П15-5-84

6. Резцедержатели с цилиидрическим хвостовиком с нараллельным открытым пазом удлинениые к стаикам с ЧПУ (ОСТ2. П15-6-84)


Размеры, мм

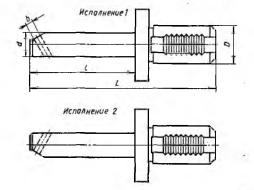
\overline{D}	l	L	В	b	h
30	70	125	70	16	16
50	100	178	100	25	25
60	120	214	125	32	32
80	160	284	160	40	40

Пример условного обозначения резцедержателя исполнения 1 и размером D=30 мм:

Резцедержатель 1-30 ОСТ2 П15-6-84

7. Резцедержатели с базирующей призмой с открытым перпеидикуляриым пазом к стаикам с ЧПУ (ОСТ2 П15-7-84)

Продолжение табл. 7

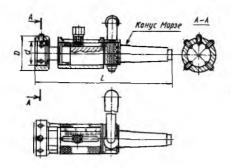

Размеры, мм

Н	В	L	b	h
56	50	95	16	16
90	73	140	25	25
115	85	185	32	32
140	110	210	40	40

Пример условного обозначения резцедержателя исполнения 1 и размером H = 56 мм:

Резцедержатель 1-56 ОСТ2 П15-7-84

8. Оправки расточные с пилиндрическим квостовиком к станкам с ЧПУ $(OCT2\ \Pi14-12-84)$

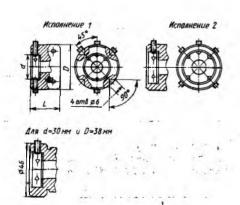


Размеры, мм

D	I I	L	d	Сечение резца <i>b</i>
30	125	198	40	12×12
50	175	275	50	16×16
60	250	366	60	20 × 20
80	200	399		20 × 20

Пример условного обозначения оправки исполнения 1 размером D=30 мм: Оправка 1-30 ОСТ2 $\Pi 14-12-84$

9. Патроны для нарезания резьбы (ГОСТ 21938-76)

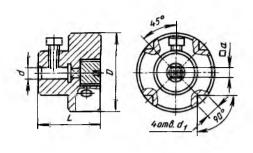

Размеры, мм

Обозначение	Нарезаем	ая резьба	Конус	d	D	L	Длина на
патрона	метчиками	плашками	Морзе	а	D	L	резаемой резьбы
6161-0101			3	38	55	225	45
6161-0102] M5 M20		4			245	7
6161-0103	M5-M20	M3-M20		45	65	270	60
6161-0104			5			290]
6161-0105	M22 – M26	M22 – M26	4	55	75	290	80
6161-0106			5			320	
6161-0107	M27 – M42	M27 – M36	4	65	90	320	110
6161-0108			5		141	350]
	1	1			1	ì	1

Размеры, мм

Пример условного обозначения: Патрон 6161-0101 ГОСТ 21938-76

10. Втулки для плашек к патронам нарезания резьбы (ГОСТ 21939-76)



Продолжение табл. 10

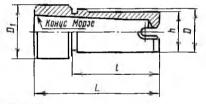
Обозначе- ние втулки	Нарезае- мая резьба	Ис- полне- ние	d	D	L
6140-0051	M3-M6	1	20	38	25
6140-0052	7/13-1/10			45	
6140-0053	M7; M8;		25	38	
6140-0054	M9	2		45	}
6140-0055	M10;	_		38	30
6140-0056	M11		30	45	

Пример условного обозначения: Втулка 6140-0051 ГОСТ 21939-76

11. Втулки дли метчяков к патронам для нарезания резьбы (ГОСТ 21940-76)

Размеры, мм

Обозна- чение втулки	Нарезаемая резьба	d	d_1	a	D	L
6142-0151	M5	5,0		4,0	38	
6142-0152					45	30
6142-0153	M5,5	5,6		4,5	38	
6142-0154					45	
6142-0155	M6	6,3		5,0	38	
6142-0156					45	
6142-0157	M7	7,1		5,6	38	32
6142-0158					45	
6142-0159	M8; M11	8,0		6,3	38	
6142-0161	, , , , , , , , , , , , , , , , , , , ,	3,5		0,0	45	
6142-0162	M9; M12	9,0	6	7,1	38	
6142-0163	,2		i 	,,,	45	36
6142-0164	M10	10.0			38	30
6142-0165	WITO	10,0		8,0	45	
6142-0166	M14; M15	11,2		9,0	38	
6142-0167		111,2		,,0	45	
6142-0168	M16; M17	12,5		10,0	73	
6142-0169	M18; M20	14,0		11,2		45


Продолжение табл. 11

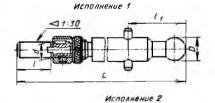
Обозна-	T	$\overline{}$				
чение втулки	Нарезаемая резьба	d	d_1	а	D	L
6142-0171	M22	16,0		12,5	55	
6142-0172	M24; M25; M26;	18,0		14,0		45
6142-0173	M27; M28; M30	20,0	8	16,0		43
6142-0174	M32; M33	22,4	_	18,0	65	
6142-0175	M35; M36	25,0		20,0		56
6142-0176	M38; M39; M40; M42	28,0		22,4		50

Пример условного обозначения: Втулка 6142-0151 ГОСТ 21940 – 76

2. ИНСТРУМЕНТЫ К ТОКАРНО-РЕВОЛЬВЕРНЫМ СТАНКАМ

12. Втулки переходиые с буртиком и внутреиним конусом Морзе (ГОСТ 17178-71)

Размеры, мм

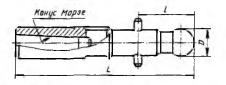

Обозначение втулки	Конус Морзе		$D_{\mathbf{I}}$	L	1	h
6105-0051	1	20	25	60		19,0
6105-0052		25	30	1 00		24,0
6105-0053	2			72	50	
6105-0054	1			60		
6105-0055	2	30	35	72		29,0
6105-0056	3			90	70	
6105-0057	1			60	50	
6105-0058	2	32	38	72		31,0
6105-0059	3	1		90	70	

Обозначение втулки	Конус Морзе	D	$D_{\mathbf{I}}$	L	1	h
6105-0060*1	2			72	63	
6105-0061*1	3	38	45	90	80	36,5
6105-0062*1	4			115		
6105-0063	2			72	63	
6105-0064	3	40	48	90	80	38,5
6105-0065	4			115		
6105-0066*1	2			72	63	
6105-0067*1	3	45	52	90		43,5
6105-0068*1	4			115		
6105-0069	3	50	60	90	80	48,5
6105-0070	4			115		40,5
6105-0071	3	_		90	80	
6105-0072	4	55	63	115	80	53,5
6105-0073	5			145	100	
6105-0074	4	63	72	115	80	61,5
6105-0075	5			145	100	01,3

*1 Втулки предназначены для станков, выпущенных до 1972 г.

Пример условного обозначения: Втулка 6105-0051 ГОСТ 17178-71

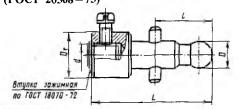
13. Оправки качающиеся для насадных разверток (ГОСТ 20506-75)


Размеры, мм	1	Щ,		\oplus	
Обозначение оправки	d	1	11	D	L.
6232-0052	Исп	олнені	ie 1 42	18	130
6232-0052		28	'-	20	160
6232-0053	13		56		220

Обозначение оправки	d	1	11	D	L
6232-0054			42	18	180
6232-0055	13	40		20	200
6232-0056			56		260
6232-0057			42	18	130
6232-0058		30		20	160
6232-0059	16		56		200
6232-0061			42	18	180
6232-0062		45		20	200
6232-0063			56	_ "	260
6232-0064		34			280
6232-0065	19		75		
6232-0066		50	56		
6232-0067			75	1	
6232-0068		38	56		320
6232-0069	22		75	28	
6232-0071		55	56] _0	340
6232-0072			75		

	Ис	полнен	ue 2		
6232-0073		55	56		320
6232-0074	27		75	28	
6232-0075] -	65	56		260
6232-0076			75		320
6232-0077			56		260
6232-0078	32	60		28	300
6232-0079		70	75		360
6232-0081		65		35	
6232-0082	40		120	40	
6232-0083		80	75	35	400
6232-0084				40	
6232-0085		65	120		
6232-0086	50			50	500
6232-0087	7	90			
		-L	<u> </u>		

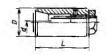
Пример условного обозначения: Оправка 6232-0051 ГОСТ 20506-75


14. Оправки качающиеся для разверток с коническим хвостовиком (ГОСТ 20507-75)

Обозначение оправки	Конус Морзе	D	L	1
6240-0021		12	125	38
6240-0022		18	140	
6240-0023	1		120	42
6240-0024		20	145	1
6240-0025		20	135	56
6240-0026			160	
6240-0027		18	150	42
6240-0028	2	20	1 .50	12
6240-0029		20	165	
6240-0031			170	56
6240-0032		28	190	1
6240-0033		20		
6240-0034	3		220	75
6240-0035		35	185	1 "
6240-0036		33	220	1
6240-0037		28	215	56
6240-0038		-0	235	75
6240-0039		35	210	1 /3
6240-0041	4		250	1
6240-0042		40	260	
6240-0043		40	300	1
6240-0044			285	120
6240-0045	_	50	300	1 .2
6240-0046	5	40	330]
6240-0047		50	1	

Пример условного обозначения: Оправка 6240-0021 ГОСТ 20507-75

15. Оправки качающиеся для разверток с цилиндрическим хвостовиком $(\Gamma OCT 20508 - 75)$

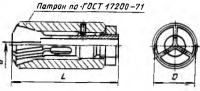


Размеры, мм

Обозначение оправки	d	D	L	l	D_{I}
6242-0011		12	80	3 8	
6242-0012	15	18	90	42	32
6242-0013					
6242-0014		20	105	56	
6242-0015	25	}	115	42	45
6242-0016			120	56	
6242-0017		28		20	

Пример условного обозначения: Оправка 6242-0011 ГОСТ 20508-75

16. Патроны цанговые (ГОСТ 17200-71)

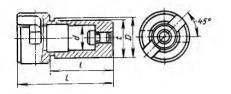

Размеры, мм

Обозначение патрона	d	D	L
6151-0051	2-10	30	63
6151-0052		32	
6151-0053*1	8-15	38	
6151-0054		40	85
6151-0055		50	

*1 Патрон предназначен для станков, выпущенных до 1972 г.

Пример условного обозначения: Патрон 6151-0051 ГОСТ 17200-71

17. Цанги зажимные для инструмента с цилиндрическим хвостовиком (ГОСТ 17201-71)



Размеры, мм

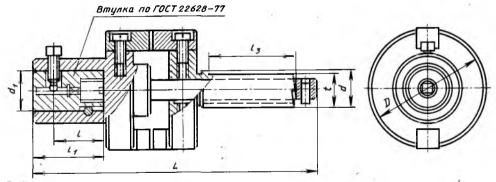
Обозначение цанги	d	D	L	Обозначение цанги	d	D	L ©
6113-0801	2,0			6113-0829	9,3		
6113-0802	2,2			6113-0830	9,7	28	75
6113-0803	2,5			6113-0831	10,0		*127
6113-0804	2,8				-		-
6113-0805	3,0			6113-0832	8,0		4
6113-0806	3,2			6113-0833	8,3		
6113-0807	3,5			6113-0834	8,7		
6113-0808	3,8	L	200	6113-0835	9,0		
6113-0809	4,0	- 1		6113-0836	9,3	•	W.C.
6113-0810	4,2	-	- A-	6113-0837	9,7		
6113-0811	4,5			6113-0838	10,0		
6113-0812	4,8			6113-0839	10,3		
6113-0813	5,0	28	75	6113-0840	10,7		
6113-0814	5,2			6113-0841	11,0	37	100
6113-0815	5,5	1		6113-0842	11,3		0.12
6113-0816	5,8	Ì		6113-0843	11,7		-
6113-0817	6,0			6113-0844	12,0	n	
6113-0818	6,2			6113-0845	12,3		
6113-0819	6,5			6113-0846	12,7		
6113-0820	6,8	1		6113-0847	13,0	1	
6113-0821	7,0			6113-0848	13,3		
6113-0822	7,2	241		6113-0849	13,7		
6113-0823	7,5			6113-0850	14,0		1 -0
6113-0824	7,8			6113-0851	14,5		* -
6113-0825	8,0			6113-0852	15,0		.574.
6113-0826	8,3						
6113-0827	8,7		X -	- 1			47.00
6113-0828	9,0)				
100	, ,			30			
				ļ			1,52
· ·		1	1	1)	1	ì	15.5

Пример условного обозначения: **Цанга** 6113-0801 ГОСТ 17201-71

18. Патроны поводковые для качающихся оправок (ГОСТ 20505-75)

Размеры, мм	м
-------------	---

Обозначение патрона	D	d	L	l	t
6155-0051	20	12	65		19,0
6155-0052	25	18			24,0
6155-0053	30		75	50	29,0
6155-0054	32	20			31,0
6155-0055*1	38				36,5
6155-0056*1		28	90	63	


Продолжение табл. 18

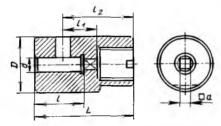
D	d	L	1	t
40	20	an	63	
		70	03	38,5
45	28			43,5
50		110	00	48,5
	35	110	80	
55				53,5
63	40			61,5
65		170	125	63,5
80	50	1/0	123	78,5
	40 45 50 55 63 65	40 20 45 28 50 35 55 63 40 65	40 20 90 45 28 50 35 110 55 63 40 65 170	40 20 90 63 45 28 50 35 110 80 55 63 40 65 170 125

^{*1} Патроны предназначены для станков, выпущенных до 1972 г.

Пример условного обозначения: Патрон 6155-0051 ГОСТ 20505 - 75

19. Патроны для метчиков (ГОСТ 22627-77)

Размеры, мм

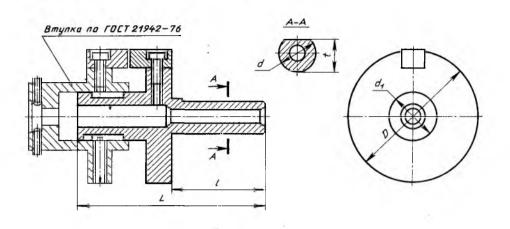

Обозначение патрона	Нарезаемая резьба •	d	L	D	d_1	1	l_1	13	t
6161-0171		18							17,0
6161-0172	M4-M14	20							19,0
6161-0173		25	145	56	20	26	36		24,0
6161-0174		30						44	29,0
6161-0175									
6161-0176	M14-M22	32	155	65	28	34	46		31,0
6161-0177	M4-M14		145	56	20	26	36		

Продолжение табл. 19

Обозначение патрона	Нарезаемая резьба	d	L	D	d_1	1	11	13	t
6161-0178		38	185					57	36,5
6161-0179	M22 – M35	40		75	36	42	55		38,5
6161-0181		4.5	200					72	43,5
6161-0182	M32 – M42	45	205		40	46	60		, , , , ,

Пример условного обозначения: Патрои 6161-0171 ГОСТ 22627-77

20. Втулки к патронам для метчиков (ГОСТ 22628-77)

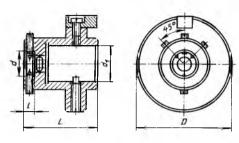

Размеры, мм

Обозначение втулки	Нарезаемая резьба	d	D	L	а	1	11	12	
6142-0181	M4-M5	5,0			4,0	18	13		
6142-0182	M5,5; M7	5,6			4,5	1.0			
6142-0183	M5-M8	6,3		ļ	5,0	19	15		
6142-0184	M7; M9	7,1	20	36	5,6			26	
6142-0185	M8-M11	8,0			30	6,3		16	
6142-0186	M9; M12	9,0			7,1	20	17		
6142-0187	M10; M14	10,0			8,0		18		
6142-0188	M14; M15	11,2			9,0	22	19		
6142-0189	M15-M17	12,5	28	46	10,0	23	20	34	
6142-0191	M16-M20	14,0			11,2	24	22		
6142-0192	M20; M22	16,0			12,5	24	24		
6142-0193	M22 - M26	18,0			14,0	27	26		
6142-0194	M22-M30	20,0	36	55	16,0		28	42	
6142-0195	M27-M35	22,4			18,0	30	32		
6142-0196	M32 - M36	25,0	40	60	20,0		34 -	46	
6142-0197	M36 - M42	28,0	-10	00	22,4	31	36		

Пример условного обозначения: Втулка 6142-0181 ГОСТ 22628-77

¹¹ Обработка метаплов резанием

21. Патроны для плашек (ГОСТ 21941-76)


Размеры, мм

Обозначение патрона	Нарезаемая резьба	d	d_1	D	L	1	t
6161-0121	_	18					17,0
6161-0122	M1-M11	20	26	70	100		19,0
6161-0123		25				55	24,0
6161-0124		30			110]	29,0
6161-0125	M10 M26	32		100			31,0
6161-0126	M10-M26	38	46	108	125	63	36,5
6161-0127		40			123		38,5
6161-0128		45					43,5
6161-0129	M22 - M36	50	58	120	150	80	48,5
6161-0131		55					53,5

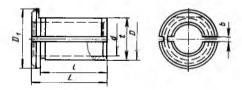
Пример условного обозначения: Патрон 6161-0121 ГОСТ 21941-76

22. Втулки к патронам для плашек (ГОСТ 21942-76)

Исполнение 1

Исп**о**пнение 2

Размеры, мм

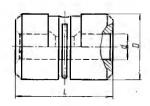

Обозн аче ние втулки	Нарезаемая резъба	Испол- нение	d	d_1	D	L	1
6140-0201			16				5,5
6140-0202		1	20			53	5,5
6140-0203							7.0
6140-0204	M1-M11		25	26	70		7,0
6140-0205						_	9,0
6140-0206						56	8,0
6140-0207		2	30				11,0
6140-0208		-					8,0
6140-0209	M10-M26			-		67	11,0
6140-0211	W110 - W120		38	46	108		10,0
6140-0212						70	14,0
6140-0213			_			67	10,0
6140-0214	M10-M26		45			79	14,0
6140-0215						73	18,0

Обозначение втулки	Нарезаемая резьба	Испол- нение	d	d_1	D	L	/
6140-0216						67	12,0
6140-0217	M10-M26			46	108	71	16,0
6140-0218			55			78	22,0
6140-0219		2				, ,	12,0
6140-0221		2				82	16,0
6140-0222	M22-M36			58	120	88	22,0
6140-0223						80	14,0
6140-0224			65			85	18,0
6140-0225						90	25,0

Пример условного обозначения: *Втулка 6140-0201 ГОСТ 21942* – 76

3. ИНСТРУМЕНТЫ К ТОКАРНО-РЕВОЛЬВЕРНЫМ АВТОМАТАМ

23. Втулки зажимные с буртиком для инструмента с цилиндрическим хвостовиком (ГОСТ 18070-72)


Размеры, мм

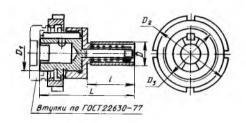
Обозна чение втулки	D	d	L	D_1	,	b	t
6117-0851	3	От 1 до 2				0,6	
6117-0852	•	Св. 2 до 3				0,8	
6117-0853	15	Св. 3 до 6		20		1,0	14,0
6117-0854		Св. 6 до 10	23		20	2,0	
6117-0855		От 3 до 6				1,0	
6117-0856	18	Св. 6 до 12		23		2,0	17,0
6117-0857	20	От 6 до 13	50	26	45	_,	19,0

Обозначение втулки	D	d	L	D_1	,	b	1
6117-0858		От 3 до 6	35		30	1,0	
6117-0859	25	Св. 6 до 18		32	30		24,0
6117-0860	۵	От 6 до 18				2,0	
6117-0861	30	От 10 до 15	50	38	4'5		29,0
6117-0862		Св. 15 до 20	30			3,0	25,0
6117-0863	32	От 10 до 15		40	1	2,0	31,0
6117-0864	32	Св. 15 до 25		10		3,0	31,0
6117-0865*1	38	От 10 до 15		46		2,0	36,5
6117-0866*1	30	Св. 15 до 30	70	40		3,0	30,3
6117-0867	40	От 10 до 15	,,,	48	63	2,0	38,5
6117-0868	1	Св. 15 до 32		70	03		30,3
6117-0869*1	45	От 15 до 38		56			43,5
6117-0870	50	От 15 до 40	73	60		3,0	48,5
6117-0871	55	От 15 до 45	75	65			53,5
6117-0872	63	От 18 до 50	90	75	68		61,5
6117-0873	65	Св. 18 до 50	80	78			63,5

^{*1} Втулки предназначены для станков, выпущенных до 1972 г. Пример условного обозначения втулки с d=1,4 мм: Втулка 6117-0851 1.4 ГОСТ 18070-72

24. Втулки зажимные для инструмента с цилиндрическим хвостовиком (ГОСТ 18069 – 72)

Продолжение табл. 24

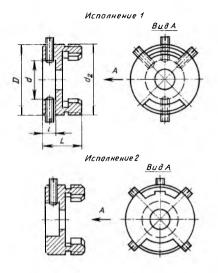

Размеры, мм

Обозначение втулки	D	d	L
6107-0411	12	$ \begin{array}{r} 2-7 \\ 3-10 \\ 3-12 \\ 3-20 \\ 6-20 \end{array} $	20
6107-0412	15		24
6107-0413	28		26
6107-0414	25		36
6107-0415	32		55

Пример условного обозначения втулки с $d=2.4\,$ мм:

Втулка 6107-0411 2,4 ГОСТ 18069-72.

25. Патроны выдвижные для плашек (ГОСТ 22629-77)



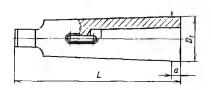
Размеры, мм

Обозначение патрона	Нарезаемая резьба	D	D_1	D_2	D_3	L	1
6162-0201		19,05					
6162-0202	M3-M15	20,00	30	60	M45×1,5	80	40
6162-0203	1	25,0				90	
6162-0204	M10-M26] -5,0	45	78	M 60 × 1,5	100	
6162-0205	M3-M15	25,40	30	60	M45×1,5	90	50
6162-0206	M22 – M26],	45	78	M60×1,5		1
6162-0207		31,75				100	
6162-0208	M16 – M36	32,00	53	100	M80×1,5		
6162-0209		40,00				112	63

Пример условного обозначения: Патрон 6162-0201 ГОСТ 22629-77.

26. Втулки к выдвижным патронам для плашек (ГОСТ 22630-77)

Размеры, мм


Обозначение втулки	Нарезаемая резьба	d	1	D	L	d_2
	•	Исполне	ние І			7
6140-0311	M3-M6	20	5,5	45	23	M45×1,5
6140-0312			7,0		24	
		Исполне	ние 2			
6140-0313		25	7,0	45	24	± *
6140-0314	M7-M9		9,0		26	
6140-0315	M10 – M11	30	8,0	50	=0	M45×1,5
6140-0316	1		11,0		28	
6140-0317	M12-M15	38	10,0		31	
6140-0318	1112 1113		14,0			
6140-0319	M10-M11	30	8,0	60	28	
6140-0321	, WITO WITT		11,0		31	N (0 15
6140-0322	M12-M15	38	10,0			$M60 \times 1,5$
6140-0323	1 1112 11113		14,0		34]

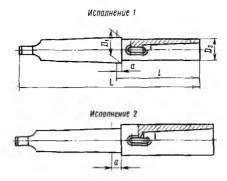
Обозначение втулки	Нарезаемая резьба	d	1	D	L	d_2
6140-0324			10,0		30	
6140-0325	-		14,0	65	34	M60×1,5
6140-0326	M16 – M20	45	18,0		38	
6140-0327	7	ĺ	10,0		30	
6140-0328			14,0	75	34	$M80 \times 1,5$
6140-0329			18,0		38	
6140-0331			12,0	_	32	
6140-0332	M22-M26		16,0	1	36	$M60 \times 1,5$
6140-0333		55	22,0	75	42	"
6140-0334			12,0		32	
6140-0335	M22 – M26		16,0		36	
6140-0336			22,0		42	M001.5
6140-0337			14,0		34	M80×1,5
6140-0338	M27 – M36	65	18,0	85	38	
6140-0339			26,0		45	

Пример условного обозначения: *Втулка 6140-0311 ГОСТ 22630-77*

4. ИНСТРУМЕНТЫ К СВЕРЛИЛЬНЫМ И РАСТОЧНЫМ СТАНКАМ

27. Втулки переходные для креплення инструмента с коннческим хвостовиком (ГОСТ 13598-85)
Короткие

Продолжение табл. 27

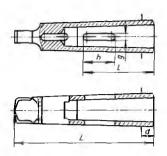

Размеры, мм

Обозначение	е втулки при допуск	се радиального	Конус	Морзе			
0,01	биения конусов, м		наружный	внутрен- ний	D_1	L	а
6100-0141	6100-0201	6100-0211	2		18,6	92	17,0
6100-0142	6100-0202	6100-0212	1		24,1	99	5,0
6100-0143	6100-0203	6100-0213	3	2	24,7	112	18,0
6100-0221	6100-0227	6100-0294		1			
6100-0144	6100-0204	6100-0214	4	2	31,6	124	6,5
6100-0145	6100-0205	6100-0215		3	32,4	140	22,5
6100-0222	6100-0228	6100-0295		1			
6100-0223	6100-0229	6100-0296	5	2	44,7	156	6,5
6100-0146	6100-0206	6100-0216		3			21,5
6100-0147	6100-0207	6100-0217		4	45,5	171	
6100-0224	6100-0291	6100-0297		1			
6100-0225	6100-0292	6100-0298		2			
6100-0226	6100-0293	6100-0299	6	3	63,8	218	8,0
6100-0148	6100-0208	6100-0218		4			(1)
6100-0149	6100-0209	6100-0219		5			
6102-0061	6102-0121	6102-0131	0041		80,4	228	
6102-0062	6102-0122	6102-0132	80*1		83,0	280	60,0
6102-0063	6102-0123	6102-0133	100*1	6	101,5	290	30,0
6102-0064	6102-0124	6102-0134	100	80*1	103,0	320	60,0
6102-0065	6102-0125	6102-0135	1.2	6	120.7	212	12,0
6102-0066	6102-0126	6102-0136	120*1	80*1	120,6	312	
6102-0067	6102-0127	6102-0137		100*1	123,0	360	60,0

^{*1} Конус метрический.

Пример условного обозначения: Втулка 6100-0141 ГОСТ 13598-85

Длинные

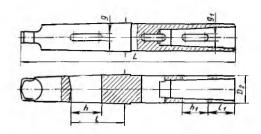

допуске	ие втулки, при радиального конусов, мм	Ис-		нус рзе		_		,	
0,015	0,03	полне- ние	на- руж- ный	внут- рен- ний	D_1	D ₃	L		a
6100-0301	6100-0302		1	1		20	145	83,0	7,0
6100-0303	6100-0304		-	2		30	160	98,0	<u> </u>
6100-0251	6100-0252	2		1		20	160	85,0	
6100-0305	6100-0306		2	2	: :	30	175	100,0	9,0
6100-0307	6100-0308			3	 	36	196	121,0	
6100-0253	6100-0254	1		1	24,1	20	175	81,0	5,0
6100-0255	6100-0256			2		30	194	100,0	
6100-0309	6100-0311	2	3	3	-	36	215	121,0	9,0
6100-0312	6100-0313			4		48	240	146,0	
6100-0314	6100-0315	1	4	1	31,6	20	200	82,5	6,5
6100-0257	6100-0258		4	2	7	30	215	97,5	

Продолжение табл. 27

		-6		, , , , , , , , , , , , , , , , , , ,	нус рзе	Ko Mo	Ис-	в втулки, при адиального онусов, мм	допуске р
а	/	L	D ₃	<i>D</i> ₁	внут- рен- ний	на- руж- ный	подне- ние	0,03	0,015
10,5	122,5	240	36	8	3	4		6100-0317	6100-0316
10,3	147,5	265	48		4	ļ	2	6100-0319	6100-0318
	182,5	300	63		5			6100-0322	6100-0321
6,5	82,5	232	20		1			6100-0324	6100-0323
0,5	97,5	247	30	44,7	2		1	6100-0326	6100-0325
	118,5	268	36		3	5	-	6100-0328	6100-0327
13,5	150,5	300	48	<i>.</i> –	4	:	2	6100-0331	6100-0329
13,3	185,5	335	63		5			6100-0333	6100-0332
	84,0	294	20		1			6100-0335	6100-0334
± =	99,0	309	30		2		-	6100-0337	6100-0336
8,0	120,0	330	36	63,8	3	6	1	6100-0339	6100-0338
,	145,0	355	48		4		- 	6100-0342	6100-0341
1000	180,0	390	63		5		-	6100-0344	6100-0343

Пример условного обозначения: Втулка 6100-0301 ГОСТ 13598-85

28. Втулки переходные с пазом дли крепления инструментов клином (ГОСТ 13599-78) Исполнение 1*


Размеры, мм

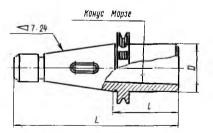
	Обозначение втулки при допуске радиального биения конусов, мм			онус орзе	L	и	g	h	,
0,01	0,02	0,005	наруж- ный	внутрен- ний		, u		n	
6100-0231	6100-0232	6100-0233	4	3	130	12,5		30	65
6100-0234	6100-0235	6100-0236	5		156	6,5		36	03
6100-0237	6100-0238	6100-0239		4	162	12,5	8,3	33	68
6100-0241	6100-0242	6100-0243		3				35	65
6100-0244	6100-0245	6100-0246	6	4	218			38	68
6100-0247	6100-0248	6100-0249		_	<u> </u>	8,0	13,0	43	73
6102-0181	6102-0182	6102-0183	0042	5	228			4.4	
6102-0184	6102-0185	6102-0186	80*2	6	280	60,0	16,3	44	125
6102-0187	6102-0188	6102-0189		5	270	10,0	13,0		81
6102-0191	6102-0192	6102-0193	100*2	6	317	57,0	16,3	52	128
6102-0194	6102-0195	6102-0196		80*2	328	68,0	19,0		139
6102-0197	6102-0198	6102-0199		6	359	59,0	16,3		136
6102-0201	6102-0202	6102-0203	120*2	80*2	367	67,0	19,0	60	144
6102-0204	6102-0205	6102-0206			389	89,0	26,0		166
6102-0207	6102-0208	6102-0209	160*2	100*2	462	82,0	20,0	7.0	181
6102-0211	6102-0212	6102-0213	100.~	120*2	465	85,0	32,0	76	184

 $^{^{*1}}$ Переходные втулки предназначены для станков, выпускаемых после 1974 г. *2 Конус метрический.

Пример условного обозначения: Втулка 6100-0231 ГОСТ 13599-78

Исполнение 2

допуске ра	е втулки при адиального конусов,			D_2	L	g	81	h	h	,	<i>I</i> ₁
N	0.03	наруж- ный	внугрен- ний	22			61	**			.,
0,015	0,03	115111					_	<u> </u>			
6100-0259	6100-0261	4			240	8,3	8,3	36,5	36,5	58,5	28,5
6100-0262*1	6100-0263*1	L	3	34		8,2	6,6	35,0	30,0	60,0	30,0
6100-0264	6100-0265				270	13,0	8,3	41,5	36,5	63,5	28,5
6100-0266*1	6100-0267*1	5				12,2	6,6	40,0	30,0	75,0	30,0
6100-0268	6100-0269	1	4	42	300	13,0	8,3	41,5	39,5	63,5	28,5
6100-0271*1	6100-0272*1					12,2	8,2	40,0	35,0	75,0	30,0
6100-0273	6100-0274		3.	34	330	16,3	8,3	35,0	36,5	57,0	28,5
6100-0275*1	6100-0276*1					16,2	6,6	40,0	30,0	85,0	30,0
6100-0277	6100-0278	6	4	42	360	16,3	8,3	35,0	39,5	57,0	28,5
6100-0279*1	6100-0281*1					16,2	8,2	40,0	35,0	85,0	30,0
6100-0282	6100-0283				390	16,3	13,0	35,0	44,5	57,0	28,5
6100-0284*1	6100-0285*1		5	60		16,2	12,2	40,0	40,0	85,0	40,0
6102-0214	6102-0215				400	19,0	13,0	43,0	44,5	64,0	28,5
6102-0216*1	6102-0217*1	80*²				19,3	12,2	45,0	40,0	100,0	40,0
6102-0218	6102-0219		6	78	460	19,0	16,3	43,0	38,5	64,0	28,5
6102-0221*1	6102-0222*1					19,3	16,2	45,0	40,0	100,0	50,0


допуске р	е втулки при адиального конусов,		онус орзе	рзе		Do (D_2 L			h	h ₁	,	
	им	наруж-	наруж- внутрен-	D_2	L	g	gı	"	$ n_1 $	1	I_1		
0,015	0,03	ный	ний										
6102-0223	6102-0224		5	60	440	26,0	13,0	51,0	44,5	70,5	28,5		
6102-0225*1	6102-0226*1					26,3	12,2	52,0	40,0	112,0	40,5		
6102-0227	6102-0228		6	78	500	26,0	16,3	51,0	38,5	70,0	28,5		
6102-0229*1	6102-0231*1	100*2				26,3	16,2	52,0	40,0	112,0	50,0		
6102-0232	6102-0233		80*2	95	515	26,0	19,0	51,0	44,0	70,0	30,0		
6102-0234*1	6102-0235*1					26,3	19,3	52,0	45,0	112,0	60,0		
6102-0236	6102-0237		6	78	545	32,0	16,3	59,0	38,5	76,0	28,5		
6102-0238*1	6102-0239*1					32,3	16,2	60,0	40,0	130,0	50,0		
6102-0241	6102-0242		80*2	95	560	32,0	19,0	59,0	44,0	76,0	30,0		
6102-0243*1	6102-0244*1	120*2		. •		32,3	19,3	60,0	45,0	130,0	60,0		
6102-0245	6102-0246		100*2	115	600	32,0	26,0	59,0	52,0	76,0	30,0		
6102-0247*1	6102-0248*1					32,3	26,3	60,0	52,0	130,0	70,0		

^{*1} Втулки предназначены для станков, выпущенных до 1974 г.

Пример условного обозначения:

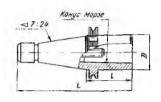
Втулка 6100-0259 ГОСТ 13599-78

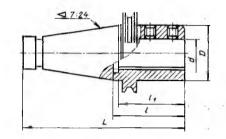
29. Втулки переходные с хвостовиком конусностью 7:24 и внутренним конусом Морзе к станкам с ЧПУ (ОСТ2 $\Pi12-7-84$)

Размеры,	MM			
Ко	нус			
конус- ностью 7:24	Морзе	D	L	1
	2		1 1 1 1	
40	3	44	143,4	50

Продолжение табл. 29

Ко	нус			
конус- ностью 7:24	Морзе	D	L	I
40	4	44	173,4	80
	2		171,8	45
	3	50	186,8	60
50	4		,	
	5	63	231,8	105
	6	90	406,8	280


Пример условного обозначения втулки с наружным конусом № 40 и внутренним конусом Морзе 2:


Втулка 40-2 ОСТ2 П12-7-84

^{*2} Конус метрический.

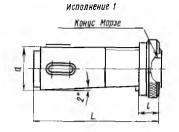
30. Втулки переходные c хвостовиком конуспостью 7:24 и внутренним конусом Морзе для инструмента с резьбовым отверстнем к станкам с ЧПУ (ОСТ2 П12-8-84)

31. Державки дли регулируемых втулок и оправок к стаикам с ЧПУ (ОСТ2 П15-2-84)

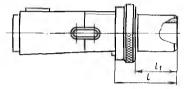
Размеры, мм

Ко	нус			200
конус- ностью 7:24	Морзе	D	L	l
	2		143,4	50
			193,4	100
· 40	3	44	158,4	65
			243,4	150
	4		183,4	90
			171,8	45
	2		226,8	100
	3	50	186,8	60
_			276,8	150
50	4		191,8	65
			276,8	150
	5	63	231,8	105

Размеры, мм


Конус конус- ностью 7:24	d	D	L	1	<i>I</i> ₁
	28	50	168,4	85	75
40	36	63	213,4	106	120
			263,4		170
			186,8		60
50	48	80	231,8	130	105
į			326,8		200

Пример условного обозначения втулки с наружным конусом № 40, внутренним конусом Морзе 2 и размером *l* = 50 мм: Втулка 40-2-50 ОСТ2 П12-8-84


Пример условного обозначения державки с конусом № 40, размерами d = 28 мм и L = 168.4 MM:

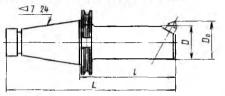
Державка 40-28-168,4 ОСТ2 П15-2-84

32. Втулки регулируемые с внутренним конусом Морзе к станкам с ЧПУ (ОСТ2 Π 12-9-84)

Исполнение 2

Размеры, мм

<u>d</u>	Ис- нол- нение	Конус Морзе	L	l	11	
	1	11	95	13 – 38		
	1	2	93	15-58		
		1	120	37-62	25	
		2	120	37-62	25	
28		1	115	(2 87	50	
20	2	2	145	62 – 87	50	
	2	1	170	87-112	75	
		2		87-112	13	
		1	195	112 127	100	
		2	193,	112 – 137		
		1				
l	ι	2	118	15 – 50	_	
36		3				
		1				
	2	2	148	44 – 79	30	
ĺ		3	ĺ			

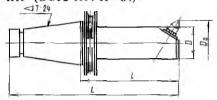

Продолжение	табл.	32

_				прооблакение п	тиол. 52	
d	Ис- пол- нение	Конус Морзе	L	I	11	
	2	1				
		2	178	74-109	60	
	i 	3				
		1				
36		2	208	104 – 139	90	
		3				
		1				
		2	238	134 – 169	120	
		3				
		2				
	1	3	144	19 – 64	_	
		4				
		2				
		3	184	58 – 103	40	
1		4				
		2				
48	2	3	224	98 – 143	80	
		4			_	
ĺ		2				
		3	264	138 – 183	120	
		4				
		2				
		3	304	178 – 223	160	
		4				

Примср условного обозначения втулки с внутренним конусом Морзе 1, размерами d=28 мм и L=95 мм:

Втулка 1-28-95 ОСТ2 П12-9-84

33. Оправки с хвостовиком конусностью 7:24 для получистового растачивания к станкам с ЧПУ (ОСТ2 П14-7 - 84)

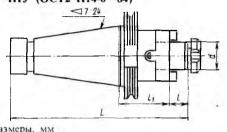

Pa	зме	ры,	MM
----	-----	-----	----

Конус- конус- нос- тью 7:24	D	L	1	Сечение резца	Диаметр D_0 раста- чиваемого отверстия	
	40	253,4	160		20 42	
		343,4	250	12×12	50-65	
	50	353,4	160		45 05	
		393,4	300	16×16	65-85	
40	63	253,4	160	20 20	05 110	
		443,4	350	20×20	85 – 110	
	80	253,4	160			
		443,4	350	25×25	110 – 140	
	100	253,4	160		140 190	
	247	343,4	250		140 – 180	
	40	286,8	160	1212	5065	
		376,8	250	12×12	3003	
	50	286,8	160	1212	45 DE	
		426,8	300	16×16	65-85	
50	63	326,8	160	20 20	05 110	
		476,8	350	20 × 20	85-110	
	80	286,8	160	25 25	110 146	
		476,8	350	25 × 25	110 – 140	
	100	286,8	160		140 100	
	3.5	376,8	250		140 – 180	

Пример условного обозначения оправки с конусом № 40, размерами D = 40 мм и L = 253, 4 MM:

Оправка 40-40-253,4 ОСТ2 II14-7-84

34. Оправки с хвостовиком конусностью 7:24 для чистового растачивания к станкам с ЧПУ (ОСТ2 П14-11-84)

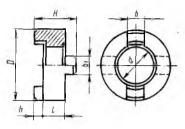


Конус- конус- нос- гью 7:24	D	Ĺ	1	Сече- нис резна	Диаметр D растачиваемого отверстия
	40	253,4	160	10×10	50 65
	40	343,4	250	10 × 10	50-65
	50	253,4	160		65-85
	50	393,4	300	12×12	03-83
40	63	253,4	160	12.712	85-110
40	0.5	443,4	350		65-110
	80	253,4	160	16×16	110-140
	00	443,4	350	10 × 10	110-140
μ.	100	253,4	160	20×20	140 – 180
		343,4	250		
	40	286,8	160	10×10	50-65
		376,8	250		
	50	286,8	160	12×12	65-85
	50	426,8	300		05-05
50	63	286,8	160		85-110
50	0.7	476,8	350		05-110
j	80	286,8	160	16×16	110-140
	00	476,8	350		110 - 140
	100	286,8	160	20 × 20	140 – 180
	100	376,8	250	-0.1.20	140-100

Пример условного обозначения оправки с конусом № 40, размерами D = 40 мм и L = 253.4 MM:

Оправка 40-40-253,4 ОСТ2 П14-11-84

Оправки с хвостовиком конусиостью 7:24 для насадных торцовых фрез к станкам е ЧПУ (ОСТ2 П14-6 - 84)

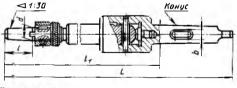

Размет	ры,	MM

азмеры, м	IM			
Конус копус- ностью 7:24	d	1	l ₁	L
	22	18	50	161,4
	-		120	231,4
			50	163,4
40	27	20	150	263,4
	32	22	50	165,4
	52		150	265,4
1	40	26	50	169,4
			150	269,4
	22	10	55	199,8
	22	18	120	264,8
	27	20	55	201,8
1	27	20	155	301,8
	22	22	55	203,8
50	32	22	155	303,8
	10	26	55	207,8
	40	26	155	307,8
	50	20	67	221,8
	50	28	167	321,8

Пример условного обозначения оправки с конусом № 40, размерами d = 22 мм и L = 161.4 MM:

Оправка 40-22-161,4 ОСТ2 П14-6-84

36. Поводки к оправкам для фрез с торцовой шпонкой к станкам с ЧПУ (ОСТ2 П16-1-84)



Размеры, мм

_				
d	D	Н	ı	b_1
22	40	23,2	12	10
27	48	24,6		12
32	58	28,0	14	14
40	70	30,0		16
50	90	34,0	16	18

Пример условного обозначения поводка размерами d = 22 мм и H = 23.2 мм: Поводок 22-23,2 ОСТ2 П16-1-84 Размеры b и h – по ГОСТ 9472 – 83.

37. Оправки качающиеся ных разверток коническим хвостовиком сверлильным расточным (FOCT 21232 - 75)

Размеры, мм

Обозначение оправки	d	1	ь	Конус Морзе	L	I_1
6230-0201		28			271	196
6230-0202	13	40		2	281	206
6230-0203		30	_		276	201
6230-0204	16	45			291	216

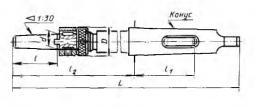
			Пр	одолж	сение п	абл. 37
Обозначение оправки	d	I	b	Конус Морзе	L	<i>I</i> ₁
6230-0205*1		28			286	192
6230-0206*1		40	6,6		296	202
6230-0207	13	28			286	192
6230-0208		40	8,3		296	202
6230-0209*1		30			291	197
6230-0211*1		4 5	6,6		306	212
6230-0212	16	30	0.1		291	197
6230-0213		45	8,3		306	212
6230-0214*1		34		3	296	202
6230-0215*1		50	6,6		311	217
6230-0216	19	34	8,3		296	202
6230-0217		50			311	217
6230-0218*1		38	6,6 8,3		346	252
6230-0219*1		55			366	272
6230-0221	22	38			346	252
6230-0222		5.5	0,5		366	272
6230-0223*1		55	6.6		300	212
6230-0224*1	27	65	6,6		376	282
6230-0225		55	8,3		366	272
6230-0226		65	, 		376	282
6230-0227*1		34	8,2		366	248
6230-0228*1	19	50	0,2		381	263
6230-0229	17	34	8,3		366	248
6230-0231		50	0,5		381	263
6230-0232*1		38	82	4	371	253
6230-0233*1	22	55	8,2		391	273
6230-0234	22	38	Q 2		371	253
6230-0235		55	8,3		391	272
6230-0236*1	27	55	Q n		J71	273
6230-0237*1	- '	65	8,2		401	283

Обозначение оправки	d	1	b	Конус Морзе	L	<i>l</i> ₁
	27	55	8,3	4	391	273
6230-0239	21	65	0,5	4	401	283
6230-0241*1		60			481	331
6230-0242*1	22	70	12,2		491	341
6230-0243	32	60	120		481	331
6230-0244		70	13,0		491	341
6230-0245*1		65			557	407
6230-0246*1		80	12,2		572	422
6230-0247	40	65	12.0	5	557	407
6230-0248		80	13,0)	572	422
6230-0249*1		65	12.2		582	432
6230-0251*1		90	12,2	!	607	457
6230-0252		65	120		582	432
6230-0253	50	90	13,0	6	607	457
6230-0254*1		65	16,2		647	437
6230-0255*1		90			672	462
6230-0256		65	16,3		647	437
6230-0257		90	10,5		672	462
6230-0258*1	60	75	16,2		720	510
6230-0259		/3	16,3		720	
6230-0261*1		65	19,3		657	437
6230-0261*1	50	90	19,3		682	462
6230-0263	30	65	19,0	80*2	657	437
6230-0264		90	19,0		682	462
6230-0265*1	60	75	19,3		730	510
6230-0266	00	13	19,0		730	310
*1 Оправки	т п	редн:	азначе	ны д	иля ст	анков,

выпушенных до 1974 г.

*2 Конус метрический.
Пример условного обозначения:
Оправка 6230-0201 ГОСТ 21232-75

38. Оправки качающиеся для насадных разверток с хвостовиком конусностью 7:24 к сверлильным и расточным станкам (ГОСТ 21233—75)



Размеры, мм

Обозначение оправки	d	,	Конус- конус- но- стью 7:24	L	<i>l</i> ₁
6230-0281		28		296	202
6230-0282	13	40	40	306	212
6230-0283		30] 🕶	301	208
6230-0284	16	45		316	222
6230-0285		34		321	214
6230-0286		50		336	229
6230-0287	19	34		336	259
6230-0288		50	45	381	274
6230-0289		38		37 l	264
6230-0291	22	55		201	204
6230-0292	27	33		391	284
6230-0293	27	65		401	294
6230-0294	22	60		461	334
6230-0295	32	70,	50	471	344
6230-0296	40	65	50	532	405
6230-0297	40	80		547	420
6230-0298	50	65		592	427
6230-0299	50	90	55	617	452
6230-0301	60	75	60	710	503

Пример условного обозначения: Оправка 6230-0281 ГОСТ 21233 - 75

39. Оправки для насадных зенкеров и разверток (ГОСТ 13044-85)

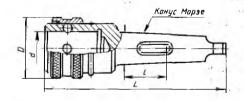
Размеры, мм

Обозначение	ے د				- 11				
оправки	Конус Морзе	đ	1	11	L	D	12		
6230-0382	2	10	40	-	220	18	145,0		
6230-0331			28						
6230-0332		12	45	55,5	250	21	156.0		
6230-0333*1		13	28		230	21	156,0		
				55,0			***		
6230-0334*1	3		45	55,0			-		
6230-0335	,		30	55,5					
6230-0336					16	50	33,3	261	27
6230-0337*1			30	55.0	201	21	167,0		
6230-0338*1		.	50	55,0		ĺ			
6230-0339			34	58,5					
6230-0341		19	56	30,3	298	32	180.5		
6230-0342*1		19	34	60.0		32	180,5		
6230-0343*1			56	60,0					
6230-0344			38	50.5					
6230-0345	4	22	63	58,5	212	20	.04.5		
6230-0346*1		Ī	38		312	39	194,5		
6230-0347*1			63	60,0					
6230-0348			56	50.5	250	45	222.5		
6230-0349			71	58,5	359	45	232,5		
					100				

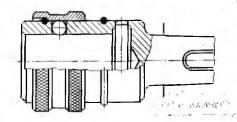
				Продо.	іжеен	ue m	aő.i. 39		
Обозначение оправки	Конус Морзе	d	. 1	l _l	L	D	<i>l</i> ₂		
6230-0351*1	4	27	56	60,0	359	45	232,5		
6230-0352*1	_		71	(2.5					
6230-0383	5		71	63,5					
6230-0384*1			71	75.0			209,5		
6230-0353			60	63,5					
6230-0354		32	80	03,3	376	55	226,5		
6230-0355*1			60	75,0	370)))	220,3		
6230-0356*1			80	/3,0					
6230-0357			65	63,5					
6230-0358	_	5	_	40	90	03,3	396	65	246,5
6230-0359*1)	40	65	75.0	370	05	240,3		
6230-0361*1			90	75,0					
6230-0362			65	63,5					
6230-0363		50	100	03,3	416		266,5		
6230-0364*1	ļ [30	65	75,0	410	80	200,3		
6230-0365*1			100	7.5,0					
6230-0366			65	57,0		00			
6230-0367			100	37,0					
6230-0368*1	6		65	85,0			240,0		
6230-0369*1			100	63,0			240,0		
6230-0371		60	75	57,0	450	90			
6230-0372*1			13	85,0					
6230-0373			65	64,0					
6230-0374	80*2		100	04,()					
6230-0375*1	00.7	00-2	00.5	50	65	100.0		80	230,0
6230-0376*1			100	0,00					
1.4									

Продолжение	m/1/11	- 10

Обозначение оправки	Конус Морзе	d	1	12	L	D	<i>l</i> ₂
6230-0377	80*2		75	64,0			
6230-0378*1		60		100,0	420	90	200,0
6230-0379		0.0	100	64,0	420		200,0
6230-0381*1		80		100,0		120	


*1 Оправки предназначены для станков, выпущенных до 1974 г.

*2 Метрический конус.


Пример условного обозначения: Оправка 6230-0382 ГОСТ 13044-85

40. Патроны для быстросменного инструмента (ГОСТ 14077 – 83)

Исполнение 1 Патроны с велущими шариками

Исполнение 2 Патроны с шариками и ведущим штифтом

Размеры, мм

Обозначение

патрона

6251-0181

6251-0182

6251-0183*1 6251-0184

6251-0185*1

6251-0186

6251-0187*1

6251-0188

6251-0189*1 6251-0191

6251-0192*1

6251-0193

6251-0194*1

Конус

Морзе

3

4

5

5

6

Исполнение 1 24

32

42

55

Продолжение табл. 40

D

45

55

70

85

1

55.5

55

58.5

60

63.5

L

140

170

210

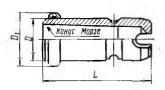
260

335

Исполне	ние 2	?				
Втулки	для	патронов	c	шариками	И	ведущим
штифто	М					

Продолжение табл. 41

Размеры, мм


Обозначение втулки	Конус Морзе	D	L	D_1
втулки	Морзе			

Исполнение 1

6120-0351	1		60	
6120-0352	2	24		40
6120-0353	1		73	
6120-0354	2	32		45
6120-0355	3	Ì	1.02	
6120-0356]3	12	92	(0
6120-0357		42	115	60
6120-0358	4	5.5	115	72
6120-0359	5	55	145	73

41. Втулки переходные быстросменные для инструмента коническим хвостовиком (ГОСТ 13409-83)

Исполнение 1 Втулки для патронов с ведущими шариками

Исполнение 2

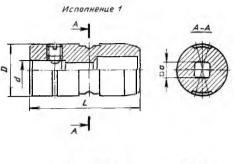
6120-0361	3	,,	130	
6120-0362		42	150	60
6120-0363	4	55	155	73
6120-0364	5] 33	185	13

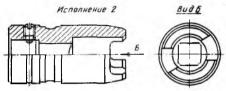
Пример условного обозначения: Втулка 6120-0351 ГОСТ 13409-83

75

Исполнение 2 58.5 42 230 70 60 63,5 55 85 270 75 57

85

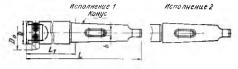

*1 Патроны предназначены для станков, выпущенных до 1974 1.


55

85

Пример условного обозначения: Патрон 6251-0182 ГОСТ 14077-83

42. Втулки переходные быстросменные жесткие для метчиков (ГОСТ 15936-70)



Размеры,	мм
----------	----

6143-0114

Размеры, мм							Прод	должение r	пабл. 42
Обозначение втулки	D	d	а	L	Обозначение втулки	D	d	а	L
	Ист	10лнение	1		-	Ис	10лнение 2	,	
6143-0101		5,0	4,0]	6143-0115	1	иолнение 2 14,0	11,2	
6143-0102		5,6	4,5	0.7	6143-0116		16,0	12,5	1
6143-0103		6,3	5,0		6143-0117	42	18,0	14,0	104
6143-0104	24	7,1	5,6	58	6143-0118		20,0	16,0	- 150
6143-0105		8,0	6,3		6143-0119	,	22,4	18,0	1
6143-0106		9,0	7,1		6143-0120		18.0	14.0	
6143-0107		10,0	8,0		6143-0121		20,0	16,0	-
6143-0108		11,2	9,0		6143-0122	55	22,4	18,0	108
6143-0109		10,0	8,0		6143-0123		25,0	20,0	100
6143-0110		11,2	9,0	4	6143-0124		28,0	22,4	- 2
6143-0111	32	12,5	10,0	70	6143-0125		31,5	25,0	-
6143-0112		14,0	11,2		0143-0123		31,5	25,0	
6143-0113	,	16,0	12,5		Пример ус Втулка 61-				
				7.	Dinyaka Or			5,50 70	

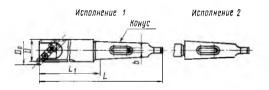
43. Оправки расточные консольные с креплением резца под углом 90 $^{\circ}$ и коническим хвостовиком (ГОСТ 21221 -75)

Размеры, мм

Обозначение оправки	Диаметр <i>D</i> ₀ рас гачиваемо-	Конус Морзе	D	L	L ₁	h	Сечение резца
6300-0531*1				200	82,5	8,2	
6300-0532	35 – 50		25			8,3	-√ 8×8
6300-0533*1] - 33 30					8,2	5 × 0
6300-0534				260	142,5	8,3	1
6300-0535*1				210	92,5	8,2	
6300-0536	15 (0)		32	210	72,3	8,3	10 10
6300-0537*1	45 – 60			300	182,5	8,2	10×10
6300-0538	1					8,3	1
6300-0539*1		4		240	122,5	8,2	
6300-0541		÷	40	240	122,5	8,3	$\boxed{12\times12}$
6300-0542*1	 55 75					8,2	12/12
6300-0543		ing " V		340	225,5	8,3	1
6300-0544**				280	162,5	8,2	
6300-0545			50	200	102,5	8,3	16×16
6300-0546*1	70-95		50	420	302,5	8,2	10 × 10
6300-0547				120	302,5	8,3	10
6300-0548*1				250	100,5	12,2	
6300-0549	45 40		32	250	100,5	13,0	10 10
6300-0551*1	45-60			340	190,5	12,2	10×10
6300-0552				340	170,5	13,0	
6300-0553*1		10		280	130,5	12,2	.,
6300-0554	55 75	- 2-	40	200	150,5	13,0	$\frac{1}{12\times12}$
6300-0555*1	55 – 75	. 5	10	400	250,5	12,2	12/12
6300-0556		ž -		100	250,5	13,0	
6300-0557*1				300	150,5	12,2	
6300-0558		-1-		300	130,5	13,0	
6300-0559*1	70-95		50	450	300,5	12,2] 16×16
6300-0561	- ÷	}				13,0	

Продолжение табл. 43

Обозначение оправки	Диамегр <i>D</i> ₀ растачиваемо- го отверстия	Конуе Морзе	D	L	<i>L</i> ₁	ь	Сечение резца
6300-0562*1	1	4		340	190,5	12,2	
6300-0563	90-120		63		.,,,,,	13,0	$\boxed{20\times20}$
6300-0564*1	1	(0)				12,2	20 120
6300-0565	1	5		560	410,5	13,0	-
6300-0566*1	110-150		80			12,2	25×25
6300-0567			00	280	130,5	13,0	23 × 23
6300-0568*1	140-190		100	200	150,5	12,2	32 × 32
6300-0569	140-170		100			13,0	32 \ 32
6300-0571*1				300	90,0	16,2	
6300-0572	45-60		32	300	30,0	16,3	10×10
6300-0573*1	45-00		32	420	210,0	16,2	
6300-0574	1			420	210,0	16,3	
6300-0575*1						16,2	141
6300-0576	55 – 75	6	40	340	130,0	16,3	12×12
6300-0577*1	33-73	U	40	450	240,0	16,2	1.7
6300-0578	-			450	240,0	16,3	ingt, h.
6300-0579*1	70-95			360	150,0	16,2	-
6300-0581		50	300	130,0	16,3	16×16	
6300-0582*1	70-93		30	530	320,0	16,2	10 × 10
6300-0583	1					16,3	
6300-0584*				400	190,0	16,2	
6300-0585	90-120		63	400	190,0	16,3	20×20
6300-0586*1	90-120			600	390,0	16,2	20 \ 20
6300-0587	-			000	390,0	16,3	
6300-0588*1				450	240,0	16,2	(1)
6300-0589	- 110 150		9.0	430	240,0	16,3	F.J.
6300-0591*1	110-150		80	710	500.0	16,2	25 × 25
6300-0592				710	500,0	16,3	
6300-0593*1	140 100	ţ	100		120.0	16,2	32 × 32
6300-0594	140 – 190	100 340 130	130,0	16,3	32 × 32		
6300-0595*1	1	_			120,0	19,3	
6300-0596	55 – 75	80*2	40		,s	19,0	12×12


Обозначение оправки	Диаметр D_0 растачиваемо-	Конус Морзе	D	L	L_1	ь	Сечение резца
6300-0597*1	55 – 75		40	480	260,0	19,3	12×12
6300-0598			70	100	200,0	19,0	12 \ 12
6300-0599*1		İ		380	160,0	19,3	
6300-0601	70-95		50		,	19,0	16×16
6300-0602*1				530	310,0	19,3	
6300-0603						19,0	
6300-0604*1				420	200,0	19,3	
6300-0605	90-120		63			19,0	20 × 20
6300-0606*1			0.0	630	410,0	19,3	20 × 20
6300-0607		00*1		050	110,0	19,0	
6300-0608*1		80*2	-	480	260,0	19,3	
6 300-0609	110-150		80	100	200,0	19,0	25×25
6300-0611*1	110 130		00	710	490,0	19,3	23 \ 23
6300-0612	1			/.0	470,0	19,0	
6300-0613*1	140 – 190	Ī	100	340	120,0	19,3	
6300-0614			100	340	120,0	19,0	32×32
6300-0615*1		Ī	125	360	140,0	19,3	32 × 32
6300-0616	180-210		122		1 10,0	19,0	1
6300-0617*1				380	120,0	26,3	
6300-0618	55-75	55-75 40			26,0	12×12	
6300-0619*1			40	500	240,0	26,3	1= \ 12
6300-0621	1	100*2		300	240,0	26,0	1
6300-0622*1		100		420	160,0	26,3	
6300-0623	70 – 95	į		420	100,0	26,0	16×16
6300-0624*1	70-93		50	560	300,0	26,3	. 10×10
6300-0625				500	300,0	26,0	
6300-0626*1	-			450	190,0	26,3	
6300-0627	90-120		63	730	190,0	26,0	20 × 20
6300-0628*1	70 120	63	03	670	410,0	26,3	20 × 20
6300-0629				670	410,0	26,0	
6300-0631*1				500	240,0	26,3	
6300-0632	1		00	200	240,0	26,0	25 × 25
6300-0633*1	110-150		80	750	490,0	26,3	1
6300-0634	1			150	1 790,0	26,0	12

						•	
Обозначение оправки	Диаметр <i>D</i> ₀ растачиваемо- то отверстия	Конус Морзе	D	L	L_1	ь	Сечение резца
6300-0635*1				560	300,0	26,3	32 × 32
6300-0636	140-190		100		300,0	26,0	
6300-0637*1		100*2	590,0	26,3	32 \ 32		
6300-0638						26,0	
6300-0639*1	180210		400	140,0	26,3	:	
6300-0641				,,,,	7,0,0	26,0	
6300-0642*1	200 – 270		160	450	190,0	26,3	40×40
6300-0643			200		}	26,0	
				1	1	1	

^{*1} Оправки предназначены для станков, выпущенных до 1974 г.

Пример условного обозначения: Оправка 6300-0531 ГОСТ 21221-75

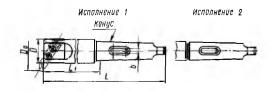
44. Оправки расточные консольные с креплением резца под углом 60° н коническим хвостовиком (ГОСТ 21222 -75)

Размеры, мм

Обозпачение оправки	Диаметр <i>D</i> ₀ растачиваемо- го отверстия	Конус Морзе	D	L	L	h	Сечение резца		
6300-0651*1				300	150,5	12,2			
6300-0652	75-90		50	300		13,0	16×16		
6300-0653*1		90	30	450	300,5	12,2	8.		
6300-0654			1.50	,-	13,0				
6300-0655*1						340	190,5	12,2	
6300-0656	05 115	5	<i>(</i> 2		1,50,0	13,0	20 × 20		
6300-0657*1	85-115		63	560	410,5	12,2			
6300-0658				200	110,5	13,0			
6300-0659*1	110-140	110 - 140	110 – 140	80			12,2	25×25	
6300-0661		·		280	130.5	13,0	25 125		
				7 -00	1,.				

^{*2} Конус метрический.

Продо імеение табл. 44

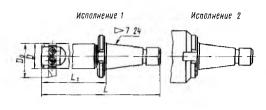

Обозначение оправки	Диаметр D_0 растачиваемого отверстия	Конус Морзе	D	L	I. ₁	h	Сечение резца
6300-0662*1	135 – 180	5	100	280	130,5	12,0	32×32
6300-0663	133-100	3	100	200	130,5	13,0	32 \ 32
5300-0664*1		-		360	150,0	16,2	
6300-0665	75 00	100	50		130,0	16,3	16×16
6300-0666*1	75 – 90			530	320,0	16,2	10 × 10
5300-0667		O Section		330	320,0	16,3	
5300-0668*1		1.5		400	190,0	16,2	<u> </u>
300-0669			63	400	170,0	16,3	20 20
300-0671*1	85-115	4.0	0.5	<u> </u>	390,0	16,2	20×20
5300-0672]	6			370,0	16,3	
5300-0673*1				450	240,0	16,2	
5300-0674	110-140		80	1.50	210,0	16,3	25 × 25
300-0675*1		1.	0.0	710	500.0	16,2	23 × 23
300-0676				710	500,0	16,3	
300-0677*1	135-180		100	340	130,0	16,2	32 × 32
300-0678			100	540	150,0	16,3	32 ^ 32
300-0679*1	75 90			380	160,0	19,3	
300-0681		$\begin{bmatrix} 75-90 \end{bmatrix}$		50	300	100,0	19,0
300-0682*1		4.		530	310,0	19,3	16 × 16
300-0683					310,0	19,0	
5300-0684*1				420	200,0	19,3	
300-0685	85-115	-)(-			200,0	19,0	
300-0686*1			63	630	410,0	19,3	
300-0687				0.50	410,0	19,0 •	
300-0688*1				480	260,0	19,3	
300-0689	110	80*2	0.2	700	200,0	19,0	
300-0691*1	110-140		80	710	490,0	19,3	25×25
300-0692		ĺ		, 10	, 470,0	19,0	
300-0693*1	136 – 180	Ī	100	340	120,0	19,3	
300-0694	130-100		100	340	120,0	19,0	22 ~ 22
300-0695*1	170 - 210	135	125	25 360	140,0	19,3	32×32
170 – 210	170-210	-	125			19,0	

100 100	Обозначение оправки	Диаметр D_0 растачиваемо-	Конус Морзе	D	L	L_1	b	Сечение
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	—— — ——	го отверстия				<u> </u>		резца
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0697*1				420	160.0	26,3	
100*2 100*	6300-0698	$\begin{bmatrix} 75-90 \end{bmatrix}$		50			26,0	16×16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0699*1				560	300.0	26,3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0701						26,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0702*1		100*2		450	190.0	26,3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0703	05 115		63		.,,,,	26,0	20 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6300-0704*1	05-115		03	670	410.0	26,3	20×20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0705					,, .	26,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0706*1				500	240.0	26,3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6300-0707	110_140		80			26,0	25 × 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6300-0708*1				750	490.0	26,3	
100 100 26,0 100 26,0 26,0 26,3 26,0 26,3 26,0 26,0 26,0 26,0 100 125 400 140,0 26,0 26,0 26,0 26,0 26,0 125 400 140,0 26,3 26,0 26,0 26,0 26,0 26,0 26,0 400 190,0 26,3 40 × 40	6300-0709					,	26,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0711*1		Ì		560	300.0	26,3	
5300-0714 26,0 5300-0715*1 170-210 125 400 140,0 26,3 26,0 26,0 5300-0716 26,0 160 450 190,0 26,3 40 × 40	6300-0712	135 – 180	ļ	100			26,0]
6300-0715*1 170-210 125 400 140,0 26,3 26,0 26,0 3300-0717*1 200-260 160 450 190,0 26,3 40×40	6300-0713*1		i		850	590.0	26,3	32×32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6300-0714						26,0	
5300-0716 26,0 26,0 5300-0717*1 200-260 160 450 190,0 26,3 40×40	6300-0715*1	170-210		125	400	140.0	26,3	-
200 – 260 160 450 190,0 -5,2 40 × 40	6300-0716						26,0	*.
	6300-0717*1	200 – 260		160	450	190,0	26,3	40×40
	6300-0718						26,0	

^{*1} Оправки предназначены для станков, выпущенных до 1974 г.

Пример условного обозначения: Оправка 6300-0651 ГОСТ 21222 - 75

45. Оправки расточные консольные с креплением резца под углом 45° и коническим хвостовиком (ГОСТ 21223—75)

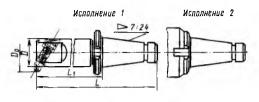

^{*2} Конус метрический.

Обозначение оправки	Диаметр <i>D</i> ₀ растачиваемо- го отверстия	Конус Морзе	D	L	L_1	b	Сечение резца
6300-0721*1	30-45			170	76,0	6,6	
6300-0722	30-43		25	170	70,0	8,3	8×8
6300-0723*1	1		23	240	146,0	6,6	0.0
6300-0724	1			240	140,0	8,3	1
6300-0725*1				190	96,0	6,6	
6300-0726	4055	3	32	150	70,0	8,3	10×10
6300-0727*1	7 70 33	3	32	280	186,0	6,6	
6300-0728				200	100,0	8,3	7
6300-0729*1				200	82,5	8,2	
6300-0731	30-45		25	200	02,5	8,3	$\begin{bmatrix} & & & & & & \\ & & & & & & \\ & & & & & $
6300-0732*1] 50 ,5			260	142,5	8,2	8×8
6300-0733]			200	142,5	8,3	
6300-0734*1				210	92,5	8,2	
6300-0735	40-55		32	210	72,3	8,3	$\begin{bmatrix} 1 \\ 10 \times 10 \end{bmatrix}$
6300 0736*1] 32	300	182,5	8,2	
6300-0737				300	102,5	8,3	
5300-0738*1				240	122.6	8,2	
5300-0739	50-65		40	240	122,5	8,3	12×12
5300-0741*1				340	222,5	8,2	
5300-0742	1	4		340	222,5	8,3	
5300-0743*1		4		280	162,5	8,2	16×16
5300-0744	60-85		50	200	102,5	8,3	
5300-0745*1				420	302,5	8,2	
5300-0746	1			120	302,5	8,3	
5300-0747*1				250	100,5	12,2	
6300-0748	40 ÷ 55		32	250	100,5	13,0] 10×10
5300-0749*1			52	340	190,5	12,2	10 / 10
5300-0751				310	170,5	13,0	1
5300-0752*1				280	130,5	12,2	
5300-0753	50-65	ţ.	40	200	150,5	13,0	12×12
5300-0754*1] " "		10	400	250,5	12,2	12×12
6300-0755]					13,0	
5300-0756*1	60-85		50	300	150,5	12,2	16×16

						Продол.	ысение табл. 4.	
Обозначение оправки	Диаметр <i>D</i> ₀ растачиваемо-	Конус Морзе	D	L	L_1	b	Сечение резца	
6300-0757	60-85	4	50	300	150,5	13,0	16×16	
6300-0758*1				450	300,5	12,2		
6300-0759						13,0		
6300-0761*1				300	90,0	16,2		
6300-0762	$\begin{bmatrix} \\ 40-55 \end{bmatrix}$		32			16,3	10×10	
6300-0763*1				420	210,0	16,2		
6300-0764					,	16,3	. 5	
6300-0765*1				340	130,0	16,2		
6300-0766	50-65	5	40		,	16,3	12×12	
6300-0767*1		_		450	240,0	16,2		
6300-0768						16,3		
6300-0769*1				360	150,0	16,2		
6300-0771	60-85		50			16,3	16×16	
6300-0772*1				530	320,0	16,2		
6300-0773					, ,	16,3	ū	
6300-0774*1				340	120,0	19,3		
6300-0775	50-65	50-65		40	340	120,0	19,0	12×12
6300-0776*1				480	260,0	19,3		
6300-0777		80* 2				19,0		
6300-0778*1		00		380	160,0	19,3	16×16	
6300-0779	60-85		50			19,0		
6300-0781*1				530	310,0	19,3		
6300-0782						19,0		
6300-0783*1				380	120,0	26,3		
6300-0784	50-65		40			26,0	12×12	
6300-0785*1				500	240,0	26,3	12	
6300-0786	7				· _	26,0		
6300-0787*1				420	160,0	26,3		
6300-0788	60-85	100*2	50			26,0	16×16	
6300-0789*1			1	560	300,0	26,3]	
6300-0791				-		26,0		

*1 Оправки предназначены для станков, выпущенных до 1974 г. *2 Конус метрический. Пример условного обозначения: Оправка 6300-0721 ГОСТ 21223-75

46. Оправки расточные консольные с креплением резца под углом 90° и хвостовиком конусностью 7:24 (ГОСТ 21224—75)


Размеры, мм

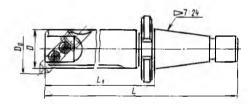
Обозначение оправки	Диаметр D_0 растачиваемого отверстия	Конус конусностью 7:24	D	L	L_1	Сечение резца	
6300-0801	35-50		25	190	96,6	8 × 8	
6300-0802	45-60		32	200	106,6	10×10	
6300-0803	13 00		32	300	206,6	10 / 10	
6300-0804	55 – 75		40	240	146,6	12×12	
6300-0805				360	266,6		
6300-0806	70-95	40	50	260	166,6	16×16	
6300-0807				420	326,6		
5300-0808	90-120		63	300	206,6	20 × 20	
5300-0809	70 120			500	406,6] -0/20	
5300-0811	110 – 150		80	220	126,6	25 × 25	
5300-0812	140 190		100		120,0	32×32	
5300-0813	35 – 50	15 – 60	25	200	93,2	8 × 8	
6300-0814	$\begin{bmatrix} 45-60 \end{bmatrix}$		45 – 60	32	210	103,2	10×10
6300-0815					320	213,2]
5300-0816	55 - 75		40	260	153,2	12×12	
5300-0817				380	273,2		
5300-0818	70 – 95	45	50	280	173,2	16×16	
5300-0819				430	323,2	10/110	
5300-0821	90 - 120	70	63	320	213,2	20 × 20	
5300-0822				500	393,2	20 × 20	
5300-0823	110-150		80	240	133,2	25×25	
5300-0824	140 – 190		100		155,2	32 × 32	
300-0825	45-65		32	260	133,2	10×10	
300-0826			52	360	233,2		
300-0827	55 – 75	50	40	280	153,2	12×12	
5300-0828			70	400	273,2	12 ^ 12	

Обозначение оправки	Диаметр D ₀ растачиваемо- го отверстия	Конус конусностью 7:24	D	L	L_1	Сечение резца
6300-0829	70-95		50	300	173,2	16×16
6300-0831	7 / / / /		50	450	323,2	1 10 × 10
6300-0832	90-120	50	63	340	213,2	20×20
6300-0833	70 120	30	03	530	403,2	20 / 20
6300-0834	110-150		80	340	213,2	25×25
6300-0835				530	403,2	23 × 23
6300-0836	140 190		100	250	123,2	32 × 32
6300-0837	45-60		32	280	115,2	10×10
6300-0838	7 75 00		32	380	215,2	10 × 10
6300-0839	55 – 75		40	300	135,2	12×12
6300-0841	7 33 /3		40	420	255,2	12 \ 12
6300-0842	70-95	× 55	50	320	155,2	16×16
6300-0843	7 , 7		50	480	315,2	10010
6300-0844	90-120		63	380	215,2	20×20
5300-0845			0.5	560	395,2	20/20
6300-0846	110 – 150		80	420	255,2	25×25
6300-0847				670	505,2	
5300-0848	140-190		100	480	315,2	
5300-0849				800	635,2	32×32
5300-0851	180-210		125	340	175,2]
5300-0852	200-270		160			40×40
5300-0853	70 – 95		50	480	273,2	16×16
5300-0854	90 – 120		63	530	323,2	20×20
5300-0855	110-150	60	80	600	393,2	25×25
5300-0856	140 – 190	00	100	670	463,2	32 × 32
5300-0857	180 – 210		125	400	193,2	JZ X JZ
5300-0858	220 – 270		160			40×40

Пример условного обозначения: Оправка 6300-0801 ГОСТ 21224-75

47. Оправки расточные консольные с креплеинем резца под углом 60° и хвостовнком конусностью 7:24 (ГОСТ 21225-75)

Размеры, мм

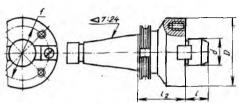

Обозначение оправки	Диаметр D_0 растачиваемого отверстия	Конус конусностью 7:24	D	L	L_1	Сечение резца
6300-0861	75 – 90			260	166,6	16×16
6300-0862	75-90		50	420	326,6	10 × 10
6300-0863	85-115	40	63	300	206,6	20×20
6300-0864		40	03	500	406,6	
6300-0865	110-140	ļ	80	220	126,6	25 × 25
6300-0866	135-180	j	100		120,0	32 × 32
6300-0867	75-90		50	280	173,2	16×16
6300-0868				430	323,2	
6300-0869	85-115	45		320	213,2	20×20
6300-0871	05 175	43	63	500	393,2	
6300-0872	110-140		80	240	133,2	25 × 25
6300-0873	135-180		100	7 - "	,	32 × 32
6300-0874	75 – 90	50	50	300	173,2	16×16
6300-0875] /3 /0			450	323,2	
6300-0876	85-110		5-110 50	63	340	213,2
6300-0877		50		530	403,2	
6300-0878	110-140		80	340	213,2	25 × 25
6300-0879		e e		530	403,2	
6300-0881	135-180		100	250	123,2	32 × 32
6300-0882	75-90	-	50	320	155,2	16 v 16
6300-0883	73-90		30	480	315,2	16×16
6300-0884	85-115	j		380	215,2	20×20
6300-0885	3 65-115	55	63	560	395,2	20 x 20
6300-0886		Ţ		420	255,2	
6300-0887	110-140		80	670	505,2	25 × 25
6300-0888	125 100			480	315,2	
6300-0889	135-180		100	800	635,2	32×32

Продолжение табл. 47

Обозначение оправки	Диаметр D ₀ растачиваемо-	Конус конусностью 7:24	D	L	$L_{\rm I}$	Сечение резца
6300-0891	170-210	55	125	340	175,2	32×32
6300-0892	200-260		160		,	40 × 40
6300-0893	75-90		50	480	273,2	16×16
6300-0894	85-115		63	530	323,2	20 × 20
6300-0895	110-140	60	80	600	393,2	25 × 25
6300-0896	135-180		100	670	463,2	32 × 32
6300-0897	170-210	341	125	400	193,2	1 32 × 32
6300-0898	200-260		160	400		40×40

Пример условного обозначения: Оправка 6300-0861 ГОСТ 21225 - 75

48. Оправки расточные коисольные с креплением резца под углом 45° и хвостовиком конусностью 7:24 (ГОСТ 21226 – 75)

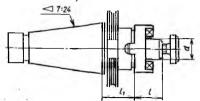

Размеры, мм

Обозначе- ние оп- равки	Диаметр D_0 растачи- вания	Конус конус- ностью 7:24	D	L	<i>L</i> ₁	Сече- ние резца
6300-0901	30 – 4 5		25	190	96,6	8×8
6300-0902	40 – 55		32	200	106,6	10×10
6300-0903			32	300	206,6	
6300-0904	50-65	40	40	240	146,6	12×12
6300-0905				360	266,6	
6300-0906	60 – 85		50	260	166,6	16 × 16
6300-0907				420	326,6	
6300-0908	30 - 45		25	200	93,2	8 × 8
6300-0909	40-55	45	32	210	103,2	10×10
6300-0911	55		34	320	213,2	10 × 10

Продолжение табл. 48

Обозначе- ние оп- равки	Диаметр D_0 растачивания	Конус конус- ностью 7:24	D	L	L_1	Сече- ние резца
6300-0912	50-65		40	260	153,2	12×12
6300-0913		45		380	273,2	
6300-0914	60 – 85	43	50	280	173,2	16×16
6300-0915				430	323,2	
6300-0916	40 – 55		32	260	133,2	10×10
6300-0917				360	233,2	10 × 10
6300-0918	50 – 65	50	40	280	153,2	12×12
6300-0919				400	273,2	
6300-0921	60 - 85		50	300	173,2	16×16
6300-0922				450	323,2	
6300-0923			32	280	115,2	10×10
6300-0924	40 - 55	55	32	380	215,2	
6300-0925	50-65		40	300	135,2	12×12
6300-0926				420	255,2	
6300-0927	60-85		50	320	155,2	
6300-0928				480	315,2	16×16
			Щ.			

Пример условного обозначения: Оправка 6300-0901 ГОСТ 21226 - 75 49. Оправки с конусом 7:24 для насадных торцовых фрез, центрируемых по отверстию к станкам с ЧПУ (ГОСТ 26541-85)



Размеры. м	NA.

Размеры, мм						
Обозначение	с но- 7:24	d	D	1	12	
оправки	Конус конусно- стыю 7:24	а	D	He	более	ſ
6222-0091	40				70	
6222-0092			90		170	66,7
6222-0093			70		70	••,
6222-0094	45				170	
6222-0095			105		70	80,0
6222-0096		40		40	170	00,0
6222-0097			90		70	66,7
6222-0098					170	
6222-0099	-		105		70	0,08
6222-0101			 		170	
6222-0102	50		130		70	101,6
6222-0103					170	, -
6222-0104	~	60	155	48	70	120,6
6222-0105			L		170	
6222-0106			225		70	177,8
6 22 2 -0107					170	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	I		1	1 1	i	1

Пример условного обозначения: Оправка 6222-0091 ГОСТ 26541-85

50. Оправки с конусом 7:24 для насадных торцовых фрез к станкам с ЧПУ (ГОСТ 26538-85)

Продолжение табл. 50

Размеры, мм

Размеры, мм				
Обозначение оправки	Конус конуснос- тью 7:24	d	1	/1
6222-0111		16	27	31
6222-0112		22	20	38
6222-0113		22	30	108
6222-0114		27	22	38
6222-0115	40	27	32	138
6222-0116	40	32	36	36
6222-0117	}		1	136
6222-0118		40	40	36
6222-0119	οYο	.0		136
6222-0121		50	44	34
6222-0122	-	16	27	35
6222-0123		22	30	38
6222-0124	, t	27	32	40
6222-0125	45	32	36	43
6222-0126		40	40	45
6222-0127	- 5	50	44	49
6222-0128	-	16	27	35
6222-0129		22	30	43
6222-0131				108
6222-0132		27	32	43
6222-0133				143
6222-0134	50	32	36	41
6222-0135				141
6222-0136		40	40	41
6222-0137				141
6222-0138	=			39
6222-0139		50	44	51
6222-0141	50			151

Пример условного обозначения: Оправка 6222-0111 ГОСТ 26538-85

51. Оправки с торцовой шпонкой и коинческим хвостовиком с лапкой для торцовых фрез (ГОСТ 13041—83)

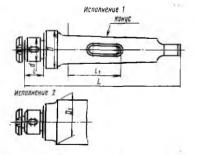
Продолжение табл, 51

исполнение 1 <u>Конце</u>	
L, L, Mсполнение 2	
The time of the second	

Обозначение оправки	Исполнение	Конус Морзе	d	1	11	L	D	D
6220-0191			22	18	58,5	165	40	
6220-0192*1		4			60			
6220-0193			27	20	58,5	175	50	
6220-0194*					60			
6220-0195			32	22				
6220-0196				26	58,5	190	60	
6220-0197				32				
6220-0198*				22		.,,		
6220-0199*				26	60	,		
6220-0201*	1			32				_
6220-0202				26	58,5			
6220-0203			40	32	_ 0,-	200	70	
6220-0204*				26	60			
6220-0205*				32				
6220-0206					63,5	210	50	
6220-0207*			27	20	75			
6220-0208	1	1		22		225		
6220-0209		5	32	26	63,5		60	
6220-0211				32				

	_	T 0	1	Т—				
Обозначение оправки	Исполнение	Конус Морзе	d	,	<i>l</i> ₁	L	D	D_1
6220-0212*				22				
6220-0213*			32	26	75	225	60	1 ,
6220-0214*				32				
6220-0215				26	63,5			
6220-0216			40	32		235	70	
6220-0217*1				26	75			
6220-0218*1]	5		32				-
6220-0219	1		50	28	63,5	245	90	
6220-0221				32	05,5			
6220-0222*1				28	75			
6220-0223*1				32				
6220-0224				22				
6220-0225				26	57			
6220-0226	2		32	32		290	60	63,8
6220-0227*1				22				
6220-0228*1				26	85			
6220-0229*1		6		32				
6220-0231				26	57			
6220-0232			40	32	31	300	70	
6220-0233*1			'	26	85	-	'	
6220-0234*1	l			32	J			
6220-0235				28	57	-		_
6220-0236			50	32]	310	90	
6220-0237*1				28	85	.,,,	10	
6220-0238*1				32	O.			
6221-0021	_			22		_		
6221-0022				26	64			
6221-0023	2	80*2		32		300	60	80,4
$\frac{6221 - 0024^{*1}}{}$				22				
6221-0025*1			32	26	100	:		
6221-0026*1				32				

Продолжение табл. 51


Продолжение	maña	52
прообление	mun.	72

				IIp	OUUMA	сенис	//tu	Ju. 51
Обозначение оправки	Исполнение	Конус Морзе	d	l	l_{I}	L	D	D_1
6221-0027				26	64			
6221-0028	2		40	32		310	70	80,4
6221-0029*1	_			26	100			
6221-0031*1				32	100			
6221-0032				28	64			
6221-0033	1	80*2	50	32		320	90	-
6221-0034*1				28	100			
6221-0035*1				32				

- *1 Оправки предназначены для станков, выпущенных до 1974 г.
 - *2 Конус метрический.

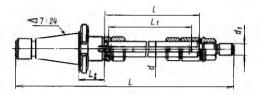
Пример условного обозначения: Оправка 6220-0191 ГОСТ 13041-83

52. Оправки с продольной шпонкой и коиическим хвостовиком с лапкой для торцовых фрез (ГОСТ 13042-83)

Размеры, мм

Обозначение оправки	Конус Морзе	d	1	11	L	D	D ₁
Исполне- ние 1 6220-0239			16	58,5	160		
6220-0241*1	4	16	10	60	100	2	
6220-0242			28	58,5	175	36	-
6220-0243*1				60	1,5		

			Пр	одолж	сение	mai	бл. 52	
Обозначение оправки	Конус Морзе	d	1	1,	L	D	D ₁	
6220-0244			18	58,5	160	36		
6220-0245*1		22	60	60				
6220-0246			36	5 8,5	180			
6220-0247*1			_	60			=	
6220-0248			22	58,5	170			
6220-0249*1	4	27		60		40		
6220-0251			45	58,5	190			
6220-0252*1				60				
6220-0253		32	26	58,5	170			
6220-0254*1	7			60		46		
6220-0255			60	58,5	210			
6220-0256*1				60				
Исполне- ние 2								
6220-0257		16	16	63,5				
6220-0258*1			<u> </u>	75	190			
6220-0259			18	63,5		36		
6220-0261*1		22		75				
6220-0262		22	22	36	63,5	210		44,7
6220-0263*1				75				
6220-0264*1			22	63,5	200			
6220-0265*1				75				
6220-0266		27	45	63,5	220	40		
6220-0267*1	5			75				
Исп олне- ние 1								
6220-0268			26	63,5	210			
6220-0269*1	7	32		75		46		
6220-0271	1		60	63,5	240			
6220-0272*1				75	_		-	
6220-0273	1		28	63,5	210			
6220-0274*1		40		75		56		
6220-0275			60	63,5	240			
6220-0276*1				75				


Продолжение табл. 52

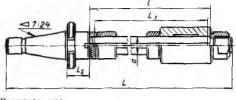
Обозначение оправки	Конус Морзе	d	1	<i>l</i> ₁	L	D	D_1
Исполне- ние 2							
6220-0277			22	57	26 0		
6220-0278*1				85		40	
6220-0279		27	45	57	280		
6220-0281*1			_	85			
6220-0282			26	57	260		
6220-0283*1	6	32		85		46	63,8
6220-0284			60	57	300		, ´
6220-0285*1				85			-
6220-0286		40	28	57	270	56	
6220-0287*1				85			
6220-0288			60	57	300		
6220-0289*1				85	300		
6221-0036			26	64	280		
6221-0037*1	+	32		100	200	46	
6221-0038			60	64	310		
6221-0039*1	80*2		•	100			80,4
6221-0041			28	64	280		00, .
6221-0042*1	1 40	40	_	100	200	56	
6221-0043			60	64	310	30	
6221-0044*1	1.		00	100	310		

- *1 Оправки предназначены для станков, выпущенных до 1974 г.
 - *2 Конус метрический. Пример условного обозначения: Оправка 6220-0239 ГОСТ 13042-83

5. ИНСТРУМЕНТЫ К ФРЕЗЕРНЫМ СТАНКАМ

53. Оправки с цилиидрической цапфой и хвостовиком конусностью 7:24 для горизоитально-фрезериых стаиков (ГОСТ 15067-75)

Размеры, мм


Обозначе- ние оправки	Конус конус- ностью 7:24	d	L	L_1	L_2	1	d_1
6225-0131		22	380	180		200	
6225-0132			430	230		250	16
6225-0133			495	300		315	
6225-0134			354	140		160	
6225-0135		27	444	230		250	20
6225-0136	40	21	509	300	36	315	
6225-0137			594	380		400	
6225-0138			358	140		160	
6225-0139			448	230		250	
6225-0140		32	513	300		315	23
6225-0141			598	380		400	
6225-0142			648	430		450	
6225-0201			395	180		200	
6225-0202		22	445	230		250	16
6225-0203	45		510	300		315	
6225-0204			595	380		400	
6225-0205			459	230		250	
6225-0206		27	524	300	38	315	20

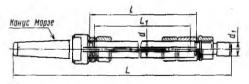
Продолжение табл, 53

конус-Обозначе-Конус ко ностью $L_{\mathbf{i}}$ L_2 d L I d_1 ние оправки 6225-0207 6225-0208 6225-0209 6225-0211 6225-0212 6225-0213 6225-0214 6225-0215 6225-0216 6225-0217 6225-0143 0225-0144 6225-0145 6225-0146 6225-0147 6225-0148 6225-0149 6225-0150 6225-0151 6225-0152 6225-0153 646-380 6225-0154 6225-0155 6225-0156

Пример условного обозначения: Оправка 6225-0131 ГОСТ 15067-75

54. Оправки с поддерживающей втулкой и хвостовиком конусностью 7:24 для горизонтально-фрезерных стаиков (ГОСТ 15068 – 75)

Разме	ры,	MM
-------	-----	----


the first of the second second second						
Обозначе ние оправки	Конус конус-	d	L	L	L_2	/
6225-0171		22	470	300		315
6225-0172			555	380		400
6225-0173	40	27	562		36	
6225-0174]		662	480		500
6225-0175		32	566	380		400
6225-0176			666	480		500
6225-0190		22	485	300		315
6225-0191			570	380		400
6225-0192		27	577			
6225-0193			677	480	38	500
6225-0194	45		581	380		400
6225-0195		32	681	480	-	500
6225-0196			811	610		630
6225-0197			592	380		400
6225-0198		40	692	480	43	500
6225-0199			822	610		630
6225-0177		27	604	380		400
6225-0178			704	480		500
6225-0179	50	32	708			
6225-0180			838	610	45	630
6225-0181		40	714	480		500
	J					

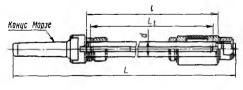
Продолжение табл. 54

Обозна- чение оправки	Конус конусностью 7:24	d	L	L_1	L_2	l																	
6225-0182		40	844	610		630																	
6225-0183			1014	780		800																	
6225-0184]		852	610		630																	
6225-0185	}	50	1022	780		800																	
6225-0186	50																			1222	980	45	1000
6225-0187			857	610		630																	
6225-0188		60	1027	780		800																	
6225-0189	}		1227	980		1000																	

Пример условного обозначения: Оправка 6225-0171 ГОСТ 15068-75

55. Оправки с цилиидрической цапфой и хвостовиком коиус Морзе для горизоитальио-фрезерных стаиков (ГОСТ 15069-75)

Размеры, мм


Обозначе- ние оправки	Конус Морзе	d	d ₁	L	L_1	I
6224-0251	2	13	10	225	85	100
6224-0252				285	140	160
6224-0253		16	13	315	140	
6224-0254				405	230	250
6224-0255	3			320	140	160
6224-0256		22	16	410	230	250
6224-0257				475	300	315

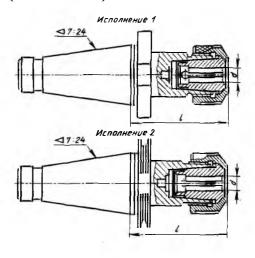
Продолжение табл. 55

Обозначе- ние оправки	Конус Морзе	d	d_1	L	L_1	1
6224-0258	3	27	20	375	180	200
6224-0259				490	300	315
6224-0260		16	13	340	140	160
6224-0271	,			430	230	250
6224-0261	**:	22	16	350	140	160
6224-0262				440	230	250
6224-0263				505	300	315
6224-0264				360	140	160
6224-0265	4	27	20	450	230	250
6224-0266		27	20	520	300	315
6224-0267	4			600	380	400
6224-0268				460	230	250
6224-0269		32	23	525	300	315
6224-0270				610	380	400

Пример условного обозначения: Оправка 6224-0251 ГОСТ 15069-75

56. Оправки с поддерживающей втулкой и хвостовиком коиус Морзе для горизоитально-фрезерных станков (ГОСТ 15070 – 75)

Размеры, мм


Обозначение оправки	Конус Морзе	d	L	L_1	1
6224-0291		16	385	230	250
6224-0292	3		450	300	315

Продолжение	табл.	56
-------------	-------	----

Обозначение оправки	Конус Морзе	d	L	L_1	1	
6224-0293			385	230	250	
6224-0309	3	22	450	300	315	
6224-0294	1		535	380	400	
6224-0295	1	27	460	300	315	
6224-0296			595	430	450	
6224-0297		16	410	230	250	
6224-0298			415	250	250	
6224-0299			22	480	300	315
6224-0300			565	380	400	
6224-0301			485	300	315	
6224-0302		27	570	380	400	
6224-0303	4		670	480	500	
6224-0304			490	300	315	
6224-0305		32	575	380	400	
6224-0306			675	480	500	
6224-0307		40	600	380	400	
6224-0308		, 0	700	480	500	

Пример условного обозначения: Оправка 6224-0291 ГОСТ 15070-75

57. Патроны цанговые с конусом конусностью 7:24 для креплення инструмента с цилиндрическим хвостовиком (ГОСТ 26539-85)

Размеры, мм

Конус конусностью 7:24	d	<i>l</i> , не более
30		
40	2-12	90
50		
30		
40	10-25	100
50		
30		
40	15-40	110
50		

Примечание. Оправки имеют исполнение 1 — для станков с ручным управлением; исполнение 2 — к станкам с ЧПУ.

Пример условного обозначения патрона чисполнения 1, с конусом № 30, размерами d=2 мм, l=90 мм:

Патрон 1-30-2-90 ГОСТ 26539-85

ОРГАНИЗАЦИЯ УЧАСТКА РАЗМЕРНОЙ НАСТРОЙКИ ИНСТРУМЕНТОВ ДЛЯ СТАНКОВ С ЧПУ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Размерная настройка инструментов для металлорежущего оборудования с числовым программным управлением является неотъемлемой частью технологической подготовки производства при организации гибких автоматизированных производств. Размерная настройка инструментов позволяет организовать регламентированное обеспечение инструментами рабочих мест. Регламентированное обеспечение инструментами подразумевает выполнение двух видов работ: принудительную (регламентированную) замену инструментов; внеплановую (экстренную) замену инструментов.

Регламентированное обеспечение инструментами сокращает время простоя дорогостоящего оборудования при наладке, сокращает потери от брака ввиду недопустимого износа инструмента, снижает расход инструментов. Необходимый коэффициент использования высокопроизводительных станков в значительной степени зависит от подготовки, хранения и доставки инструментов.

Для централизованного обеспечения станков с ЧПУ инструментами организуют участок размерной настройки инструментов. Участок подчинен заместителю начальника цеха по технологической подготовке [при централизованной организации производства начальнику инструментального отдела (ИНО)]. Руководит работой участка мастер.

Участок размерной настройки инструментов для станков с ЧПУ содержит зоны обеспечения инструментами станков с ЧПУ и размерной настройки инструментов.

В зоне обеспечения инструментами станков с ЧПУ осуществляются хранение минимальных запасов всей номенклатуры режущего, измерительного, вспомогательного инструментов и технической документации, комплектация технической документации и всех видов инструментов; передача скомплектованных инструментов и технической документации в зону размерной настройки инструментов.

При размерной настройке инструментов вне станка оснастка для станков с ЧПУ должна быть уннверсальной и быстросменной при переналадке. Для этого должно быть обеспечено единство баз крепления инструментальных блоков в револьверных головках, шпинделях и на приборах для размерной настройки режущих инструментов вне станка. Вылет режущих кромок инструментов в радиальном и осевом направлении определяют при проектировании управляющей программы и заносят его в карты настройки. Согласно картам настройки выполняют размерную настройку инструментов.

Для настройки режущих инструментов к станкам токарной группы используют прибор мод. БВ-2026 горизонтального исполнения. На приборе выполняют размерную настройку инструментов по двум координатам с точностью 0,001 мм. Прибор состоит из станины и двух кареток, на которых установлены микроскопы. В качестве визирного устройства применен проектор типа ПН. На станине неподвижно зафиксирован резцедержатель. Настройку инструментов осуществляют совмещением изображения режущей кромки инструмента на экране проектора с координатной сеткой. Установка проектора на заданные координаты проводится по преобразователю ДЛП и устройству цифровой индикации Ф5147/1. Каретки, несущие проекперемещаются по призматнческим направляющим качения.

Характеристика прибора мод. БВ-2026

Увеличение проектора	30×
Поле зрения объектива	
проектора, мм	6,5
Цена деления отсчетных	
устройств, мм	0,001
Расстояние от режущей	
кромки инструмента до	
объектива проектора,	
мм	80 ± 2

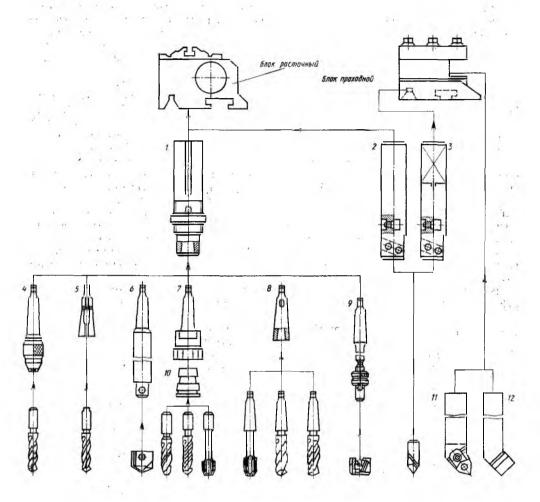


Рис. 1. Схема компоновки инструментальной оснастки для станков с ЧПУ токарной группы:

1 — переходная цилиндрическая регулируемая втулка для креплення инструмента с коническим хвостовиком; 2 и 3 — расточные оправки для косого и прямого креплення резцов; 4 — сверлильный трехкулачковый патрон для сверл с цилиндрическим хвостовиком; 5 — разрезная втулка с наружным конусом Морзе для крепления сверл с цилиндрическим хвостовиком; 6 — оправка для перовых сверл; 7 — цанговый патрон с конусом Морзе для крепления инструмента с цилиндрическим хвостовиком; 8 — переходная втулка с наружным и внутренним конусами Морзе; 9 — оправка с конусом Морзе для крепления насадных зенкеров н разверток; 10 — цанга с внутренним отверстием; 11 — расточный блок; 12 — проходной блок

Расстояние от базовой	
поверхности до режу-	
щей кромки инструмен-	
та, мм	200 ± 2
Рабочее перемещение ка-	
реток. мм:	
продольное	300
поперечное	200
Габаритные размеры, мм	$120 \times 1040 \times 1710$
Масса, кг	640

Для настройки инструментов для станков сверлильно-фрезерно-расточной группы применяют прибор мод. БВ-2027 вертикального исполнения с установкой координат режуших кромок инструмента по преобразователю ДЛП и фиксацией положения режушей кромки инструмента по визирному микроскопу. Прибор позволяет также устанавливать радиальную координату по индикатору. В качестве визирных и отсчетных устройств применены окулярные микроскопы. Больщая разрешающая способность микроскопа позволяет обнаружить микродефекты режущих кромок инструментов.

Характернстика прибора мод. БВ-2027

Диаметр настраиваемого	300
инструмента, мм	300
Вылет настраиваемого ин-	
струмента, мм	70 - 400
Увеличение визирного ми-	
кроскопа	30×
Поле зрения объектива	
микроскона, мм	7
	′
Рабочее расстояние мик-	(0
роскопа, мм	60
Установка координат:	
по радиусу	микроскопом
	MOC21
по вылету	микроскопом
•	MOB
Цена деления индикатора,	
мм	0,001
	0,001
Цена деления отсчетных	
устройств, мм:	
по радиусу	100,0
по вылету	0,01
Погрешность установки	
координат на контроль-	
ной оправке, мм:	
по радиусу	800,0
по вылету	0,05
Габаритные размеры, мм	
Масса, кг	410
171000a, Ni	410

Комплекты вспомогательных инструментов содержат оправки для насадного режущего инструмента, переходные вгулки для инструмента с коническим хвостовиком, патроны для инструмента с цилиндрическим хвостовиком, расточные оправки, резцедержатели.

Схема компоновки режущего и вспомогательного инструментов для станков с ЧПУ токарной группы приведена на рис. 1, а для сверлильно-фрезерно-расточных — на рис. 2. Указанная минимальная номенклатура инструментов в сочетании с приборами для настройки обеспечивает размерную настройку режущих инструментов для выполнения конкретного технологического перехода без дополнительной поднастройки на станке. Настройка осевых инструментов с регулированием вылетов позволяет полностью использовать режущую часть инструментов.

На рис. 3—6 приведены схемы компоновки и настройки инструментов различных типов.

Для сохранения точности размерной настройки и качества режущих кромок необходимо постоянно следить за правильностью хранения и транспортирования настроенных комплектов инструментов.

Технологические комплекты инструментов разового применения содержат режущий, измерительный и вспомогательные инструменты.

Единым документом, регламентирующим объем и последовательность проведения работ по обеспечению рабочих мест инструментом, является сменное задание.

Количество настраиваемого и подаваемого инструмента на каждое рабочее место определяют с учетом обеспечения одной смены, но не менее одной партии запуска деталей.

Время настройки и подачи комплектов инструментов на рабочие места проставляют в заданиях на настройку инструментов согласно сменно-суточному заданию с учетом опережения запуска деталей минимум на полемены.

При автоматизированном управлении произволством с помощью ЭВМ обеспечение станков с ЧПУ инструментами решается подсистемой управления технологической подготовкой производства (АСУТП). Согласованное взаимодействие всех элементов и частей подсистемы обеспечивается системой оперативного управления производством.

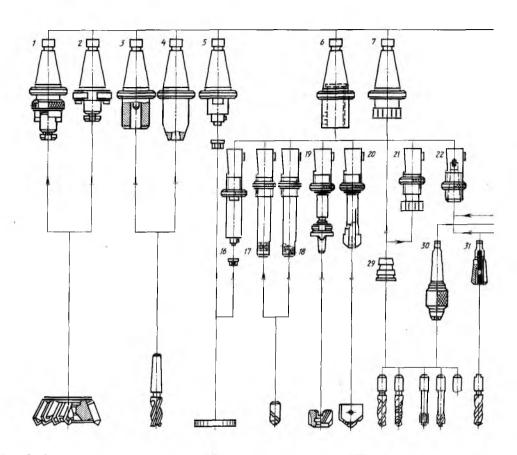
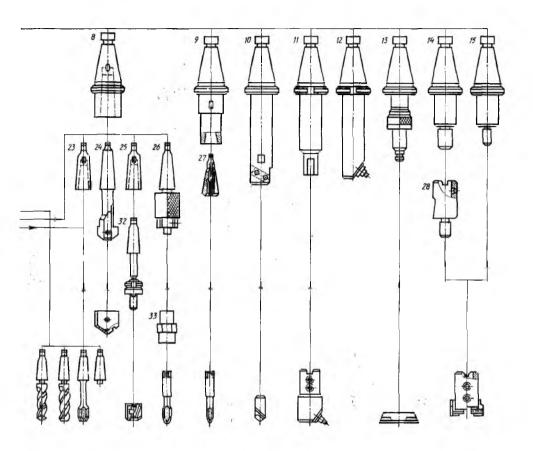



Рис. 2. Схема компоновки ииструментальной оснастки для станков с ЧПУ сверлильно-фрезерно-рас-1 — оправка для насадных торцовых фрез с регулировочной гайкой; 2 — оправка для насадных торцовых переходная державка для крепления инструмента с цилиндрическим хвостовиком; 7 — цанговый патрон инструмента с конусом Морзе; 9 — резьбонарезной патрон; 10 — расточная оправка для прямого и косого ческой регулировкой вылета резца; 13 — регулируемая оправка для крепления пластинчатых резцов; оправка для прямого и косого хрепления резцов; 19 — регулируемая оправка для насадных зенкеров переходная втулка цилиндрическая регулируемая; 23, 25 — переходная втулка с наружным и внутренним втулка с наружным конусом Морзе для крепления инструмента; 28 — удлинитель для расточных оправок; с цилиндрическим хвостовиком; 32 — оправка с конусом Морзе для крепления насадных зенкеров и

точной группы:

фрез; 3, 4— оправки для концевых фрез; 5— оправка с продольной шпонкой для дисковых фрез; 6— для креплення инструмента с инлиндрическим хвостовиком; 8— переходная втулка для крепления крепления рездов; 11— оправка для расточных головок; 12— расточная оправка с микрометри-14, 15— расточная оправка; 16— регулируемая оправка для лисковых фрез; 17, 18— расточная регулируемая оправка для перовых сверл; 21— цанговый регулируемый патрон; 22— коиусами Морзе; 24— оправка для перовых сверл; 26— патрон резьбонарезной; 27, 31— разрезная 29— цанга с внутренним отверстием; 30— сверлильный трехкулачковый патрон для крепления сверл разверток; 33— втулка для метчиков

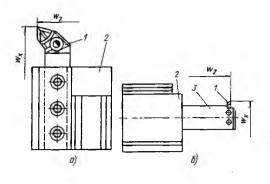
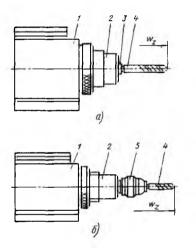



Рис. 3. Схемы (a и $\delta)$ сборки и настройки токарных резцов:

I — резец; 2 — блок; 3 — державка

Рис. 4. Схемы $(a\ u\ \delta)$ сборки и настройки расточных резцов:

1 - оправка; 2 - резец; 3 - винт

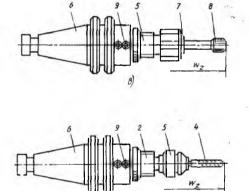
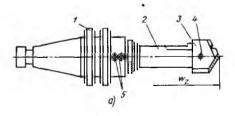



Рис. 5. Схемы (a-г) сборки и настройки осевых инструментов:

l — блок; 2 и 3 — втулки; 4 — сверло; 5 — патрон; 6 — переходная державка; 7 — цанга; 8 — развертка; 9 — винт

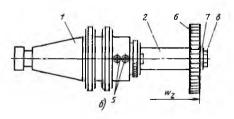


Рис. 6. Схемы (а и б) сборки и настройки насадных инструментов:

I — державка переходная; 2 — регулируемая оправка; 3 — перовое сверло; 4 и 5 — винты; δ — дн**ско**вая фреза; 7 — кольцо; 8 — гайка

Функционирование подсистемы обеспечения инструментами осуществляется через пульт связи участка размерной настройки инструментов с управляющим вычислительным комплексом (УВК).

Подсистема обеспечения инструментами станков с ЧПУ выдает плановые задания на комплектацию, размерную настройку и размешение инструментов в секции хранения инструмента.

Для реализации функционирования подсистемы АСУТП информационная база данных должна содержать следующую информацию: номенклатуру обрабатываемых деталей на участке; программу выпуска деталей; номенклатуру требуемых инструментов; ресурс стойкости режущего инструмента по нормативам; статистическую стойкость инструмента; данные о состоянии инструментов, имеющихся в наличии на участке.

Номенклатура обрабатываемых деталей на участке устанавливается технологическим бюро цеха.

Номенклатуру требуемых инструментов определяют на основании технологических процессов механической обработки деталей, изготовляемых в нехе. Нормативные данные о стойкости режущего инструмента определяют по справочным материалам и уточняют по статистическим данным, полученным в процессе внедрения технологических процессов.

Сменное задание для каждой единицы оборудования необходимо составлять с максимальной концентрацией технологических переходов с применением одного типоразмера режущего инструмента.

В этом случае число подаваемого инструмента определяют пересчетом стойкости инструмента с учетом использования на последующих операциях на данном станке. Это дает возможность составлять наиболее рациональные комплекты инструментов, обеспечивающих выполнение нескольких операций без дополнительных переустановок инструментов.

При решении задач обеспечения инструментами необходимо руковолствоваться «Типовым проектом по полсистеме управления вспомогательным производством (инструментальное обслуживание) АСУ», разработанным харьковским научно-исследовательским институтом автоматизации управления производства (НИИАП).

2. ОРГАНИЗАЦИЯ РАБОТ НА УЧАСТКЕ РАЗМЕРНОЙ НАСТРОЙКИ ИНСТРУМЕНТОВ

Все инструменты, пригодные для эксплуатации, хранят на стеллажах с ложементами и располагают их в порядке возрастания определяющих размеров.

Для каждой группы инструментов выделяют определенное число соответствующих ложементов в зависимости от используемых типоразмеров. Внутри каждой группы инструменты раскладывают по подгруппам, видам и разновидностям.

Система размещения и порядок хранения инструментов должны обеспечивать их качественную и количественную сохранность, быстроту нахождения, позволять рационально использовать площадь стеллажей. Места хранения инструмента проставляют в картах учета или в соответствующем документе ЭВМ.

Комплектацию инструментов осуществляет комплектовщик в соответствии со сменным заданием на подготовку инструментов. Мастер по инструментам подбирает для данной технологической операции комплектовочную карту, схему настройки и другую необходимую технологическую документацию. На основании технологической документации комплектовщик подбирает со стеллажей режушнй и вспомогательный инструменты, укладывает на тележку и вместе с документацией передает их на участок размерной настройки.

Сборку и размерную настройку инструментов осуществляет слесарь-инструментальщик по настройке инструмента согласно картам и схемам настройки инструмента. Получив из зоны обеспечения инструментами выбранный режущий и вспомогательный инструменты, слесарь-инструментальщик собирает их, закрепляет на приборе и настраивает соответствующие координаты вылета режущих кромок.

Настроенные технологические комплекты инструментов размещают в унифицированной таре с ложементами, номера позиций которых соответствуют номерам позиций инструментальных магазинов, револьверных головок и резцедержателей, и возвращают в зону обеспечения инструментами. Получив комплекты настроенных инструментов, комплектовщик доукомплектовывает их измерительными средствами, технологической доку-

ментацией (технологический процесс, программоноситель) и передает их в транспортно-накопительную систему ГПС для отправки к рабочим местам, делая сообщение в УВК о готовности комплекта инструмента для определенной технологической операции. При отсутствии единой автоматизированной транспортно-накопительной системы транспортный рабочий на основании задания на доставку инструментов к рабочим местам доставляет комплекты подготовленных инструментов и технологической документации на рабочие места, за получение которых оператор-наладчик расписывается в задании. Одновременно транспортный рабочий принимает комплект отработавших инструментов и технологической документации и возврашает их на участок подготовки инструментов.

Разборку отработавщих инструментов осуществляет слесарь-инструментальщик по разборке инструментов. Разобраниые инструменты слесарь-инструментальщик протирает, сортирует по степени пригодности и передает по назначению (на контроль, на заточку, ремонт и т. д.).

При незначительных объемах работ и бригадной организации труда возможно совмещение различных функций на участке размерной настройки инструментов и выполнение работ меньшим числом работающих.

3. ВЫПОЛНЕНИЕ РАСЧЕТОВ ДЛЯ ОРГАНИЗАЦИИ УЧАСТКА РАЗМЕРНОЙ НАСТРОЙКИ ИНСТРУМЕНТОВ

Обеспечение участка стандартизованным и специальным инструментами, находящимися на хранении в Центральном инструментальном складе (ЦИС), выполняется через ЦИС завода, а специальными инструментами, не состоящими на хранении в ЦИС, — непосредственно инструментальным цехом. Для образования оборотного фонда инструменты получают по требованиям.

Минимальный оборотный фонд режущих инструментов каждого типоразмера (шт.)

$$H_{\rm th} = H_1 + H_2 + H_3,$$

где H_1 — число комплектов инструментов на рабочем месте, шт.; H_2 — число комплектов инструментов, находящихся на участке размерной настройки, шт.; H_3 — число комплектов инструментов в страховом запасе участка, шт.

Для определения минимального оборотного фонда может быть использована табл. 1, составленная с учетом возможного числа обменов инструментов за смену и одновременно работающих инструментов.

1. Оборотный фонд инструментов

Инструмеиты	а вре- пребы- на за-	Стойкость между пере- точками, ч	Число одновременно работающих инструментов данного номенклатурного номера на одном рабочем месте, шт.					рного
инструменты	Норма мени п вания и точке,	эйк кду кал	1	2	3	4	5	6
	Ho Mel Bat To	C _T Mes	Обо	ротный	фонд	инструк	ментов,	шт.
Резцы, сверла, развертки, зенке-	4,0	1,0	10	10	28	36	45	54
ры, зенковки; фрезы концевые,		1,5	8	15	23	29	36	43
пазовые		2,0	6	11	17	22	27	32
		4,0	5	9	14	18	22	27
		8,0 и	4	7	11	14	18	22
*		более						
Резцы фасонные пластинчатые,	8,0	1,5	14	27	40	50	63	_
тангенциальные, сверла ступен-		2,0	10	19	28	36	45	-
чатые, зенкеры, развертки сбор-		4,0	6	11	17	22	27	_
ные, фрезы цилиндрические двух-		8,0 и	4	7	11	14	_	-
и трехсторонние, угловые отрезные		более						
Блоки расточные, фрезы со встав-	12,0	2,0	14	27	40		-	
иыми ножами диаметром до		4,0	8	15	23	- '	_	
300 мм, головки расточные со		8,0 и	5	9	14	_	_	_
вставными резцами		более						

2. Количество настраиваемого инструмента в смену на один станок (шт.)

чное серийное
4
5 3 2 8 4 18

3. Нормы времени на сборку и настройку инструментов к станкам с ЧПУ

				Лодел рибор		
Инструмент	Размеры инструментов, мм	нат	БВ- 2026	БВ- 2012М	БВ- 2027	
	Размеры	Число координат		редне мя, м		
Резцы:						
проход- ные, под- резные, кана- вочные для рас- тачива- ния на- ружных канавок,	$ 20 \times 16 \\ 32 \times 25 \\ 32 \times 32 \\ 63 \times 40 \\ 6 \times 6 \\ 25 \times 25 $	2 3 2 3 2 3	3,5 4,0 4,0 4,5 4,0 4,5	4,3 4,5 4,5 5,0 4,5 5,0	- - - 5,5 -	
отрезные расточ- ные дер- жавочные	6×6 25×25	2 3	4,0 4,5	4,5 5,0	5,5 —	
прямого и косого крепления расточ- ные, ка- навочные, для рас-	Диаметр раста- чивае- мого	2 3	4,8 5,5	5,5 6,0	-	

Продолжение табл. 3

				Лодел рибор	
Инструмент	азмеры нструментов, мм	инат	БВ -2026	БВ -2012 М	БВ -2027
	Разме	Размеры инструмі число координ		редне мя, м	
точки внутрен- них ка- навок	отвер- стия 28 — 87				50
с регули- ровочны- ми	Диаметр 80-150	2	2,5	3,0	4,5
винтами пластин- чатые	Диаметр 72-200	1	-	_	3,3
Сверла, зенкеры, зенковки,	Диаметр 10-20	1 2	3,0 3,5	4,0 4,5	3,5
развертки с цилиндри- ческим хвостови-	÷ '				
ком Сверла, зенкеры, зенковки, развертки с кониче- ским хвос- товиком	Диаметр 14 — 30 Диаметр 50 — 80	1 2 1 2	3,0 3,4 3,5 4,0	3,5 4,0 4,5 5,0	3,0 - 4,0
Сверла перовые	Диаметр 50 — 80	1	3,5	4,0	3,5
Развертки, зенкеры	Диаметр 35-55	1 2	3,0 3,5	3,5 4,0	3,5
насадные Метчики	Диаметр резьбы 12—27	Ţ	-	-	1,5
Фрезы: концевые	Диаметр 19 63	C S	-	-	3,0
дисковые	Диаметр 80-160	ı	-	-	3,5
торцовые	Диаметр 100-200	1	-	-	4,0

4. Среднее время операций, мии

0707	Модель прибора		
Операции	БВ-2026	БВ-2027	
Основные на настрой-ку одного инструмен-	3,7	3,5	
та Выполнение отдельных элементов, не во- шедших в операции настройки одного ин-	1,28	0,6	
струмента Настройки одного инструмента с учетом элементов, не вошедших в основные операции	4,98	4,1	

5. Нормы времени на разборку инструментов

Инструмент	Время разборки одного инстру- мента, мин	Среднее время, мин
Токарные стаики		
Резпы:		
токарные, проход-	1,6	2,3
ные, подрезные,		
резьбовые, расточ-		
ные, канавочные,		
отрезные)	
расточные держа-	2,4	2,3
вочные	· _ ·	
Сверла, зенкеры, зен-	2,5	2,3
ковки, развертки с		
цилиндрическим и		
коническим хвосто-		
ВИКОМ		2.2
Зенкеры, развертки	2,7	2,3
насадные		

Сверлильио-фрезери	ю-расточные	е стаики
Резцы расточные дер-	l- ,4	1,5
жавочные с микро-		
метрическим регули-		
рованием пластины,		
расточные, фрезы		
концевые		
Сверла, зенкеры, зен-	1,8	1,5
ковки, развертки,		
фрезы дисковые,		
торцовые		
Резьбонарезной	1,3	1,5
инструмент		
		<u> </u>

6. Нормы времени (мин) на комплектацию и раскладку инструментов (с укладкой)

Средняя масса инструментов,	Число инструменто: в партии				
кг, до	15	50			
0,5	0,75	0,64			
1,5	0,80	0,68			
3,0	0,84	0,73			
5,0	0,91	0,80			
10,0	1,09	_			
15,0	1,30	-			

7. Нормы времени (мин) на передвижение ручных тележек с грузом и без груза (туда и обратно)

Расстояние передвижения, м до							
30	40	50	70	100			
1,2	1,61	2,06	2,9	3,95			
1,33	1,79	2,26	3,2	4,4			
		30 40	30 40 50	до 30 40 50 70			

Примечание. Используемая литература: «Отраслевые нормативы времени на размерную настройку режущего инструмента вне станка для станков с ЧПУ» М.: НИИмаш, 1978.

«Отраслевые нормативы времени на погрузочно-разгрузочные, транспортные и складские работы» М.: НИИмаш, 1972 г.

Максимальный оборотный фонд инструментов (шт.)

$$H = H_{\Phi} + H_{M},$$

где $H_{\rm M}$ — среднемесячная норма расхода инструментов, шт.

Оборотный фонд вспомогательных инструментов принимают из расчета двух комплектов в зоне обслуживания и двух комплектов настроенных инструментов на каждый станок с ЧПУ.

Нормативы времени на выполнение основных операций на участке размерной настройки инструмента приведены в табл. 2 – 7.

8. Формулы для расчета количества оборудования

Оборудование	Рабочая документация	Проект (П)
Приборы настройки инструментов для станков токарной группы	$H_{\pi 1} = rac{260 \cdot 2T_{ m HI}}{60 arPhi_{ m oar o}};$ $T_{ m HI} = H_{ m cI} C_{ m HHI} M_{ m c}$	$H_{\rm nl} = 0.07 H_{\rm cl}$
Приборы настройки инструментов для станков сверлильно-фрезерно-расточной группы	$H_{\text{H}2} = \frac{260 \cdot 2T_{\text{H}2}}{60\Phi_{\text{o}6}};$ $T_{\text{H}2} = (H_{\text{c}2}C_{\text{HH}2} + H_{\text{c}3}C_{\text{HH}3} + H_{\text{c}4}C_{\text{HH}4}) M_{\text{c}1}$	С магазином: до 20 инструментов $H_{n2} = 0.05 H_{c2}$; до 50 инструментов $H_{n2} = 0.1 H_{c3}$; св. 50 инструментов $H_{n2} = 0.2 H_{c4}$
Верстаки для разборки инст- рументов	$H_{\rm Bl} = \frac{260 - 2T_{\rm p}}{60\Phi_{\rm o6}};$ $T_{\rm p} = (H_{\rm cl}C_{\rm HMl}M_{\rm p}) + (H_{\rm c2}C_{\rm HM2} + H_{\rm c3}C_{\rm HM3} + H_{\rm c4}C_{\rm HM4})M_{\rm pl}$	$H_{\rm Bl}=1$ (на участок)
Верстаки для сборки инстру- ментов	$H_{\rm B2} = \frac{260 \cdot 2T_{\rm c}}{60 \Phi_{\rm o6}};$ $T_{\rm c} = (H_{\rm c2} C_{\rm Hu2} + H_{\rm c3} C_{\rm Hu3} + H_{\rm c4} C_{\rm Hu4}) M_{\rm c6}$	$H_{ extsf{B2}}=H_{ extsf{D2}}$
Тележки для станков токарной группы Тележки для станков сверлильно-фрезерно-расточной группы	$H_{\tau 1} = \frac{H_{c1}C_1}{C_{p1}} K_{o6}$ $H_{\tau 2} = \frac{H_{c2}C_2 + H_{c3}C_3 + H_{c4}C_4}{C_{p2}} \times K_{o6}$	$H_{\rm T1}=0.4H_{\rm c1}$ С магазином: до 20 инструментов $H_{\rm T2}=0.12H_{\rm c2};$ до 50 инструментов $H_{\rm T2}=0.6H_{\rm c3};$ св. 50 инструментов $H_{\rm T2}=1.2H_{\rm c4}$

Примечание. В таблице приняты следующие обозначения: $H_{\rm n1}$ — число приборов для станков токарной группы; $H_{\rm n2}$ — число приборов для станков сверлильно-фрезерно-расточной группы; $H_{\rm c1}$ — число токарных станков; $H_{\rm c2}$ — число станков сверлильно-фрезерно-расточной группы с магазином до 20 инструментов; $H_{\rm c3}$ — число станков сверлильно-фрезерно-расточной группы с магазином до 50 инструментов; $H_{\rm c4}$ — число станков сверлильно-фрезерно-расточной группы с магазином свыше 50 инструментов; $H_{\rm B1}$ — число верстаков для разборки инструментов; $H_{\rm B2}$ — число верстаков для сборки инструментов; $H_{\rm 11}$ — число тележек для станков сверлильно-фрезерно-расточной группы; $H_{\rm 0}$ — число стеллажей; $C_{\rm Hu1}$ — число настраиваемых (разбираемых) инструментов на станок токарной группы; $C_{\rm Hu2}$ — число настраиваемых

Продолжение табл. 8

(разбираемых) инструментов на станок сверлильно-фрезерно-расточной группы с магазином до 20 инструментов; $C_{\text{ни}3}$ — число настраиваемых (разбираемых) инструментов на станок сверлильно-фрезерно-расточной группы с магазином до 50 инструментов: $C_{\rm HH4}$ число настраиваемых инструментов на станок фрезерно-расточной группы с магазином свыше 50 инструментов; C_1 – число подаваемых инструментов на один станок токарной группы; C_2 – число подаваемых инструментов на один станок сверлильно-фрезернорасточной группы с магазином до 20 инструментов; C_3 – число подаваемых инструментов на один станок сверлильно-фрезерно-расточной группы с магазином до 50 инструментов; C_4 – число подаваемых инструментов на один станок сверлильно-фрезерно-расточной группы с магазином свыше 50 инструментов; Φ_{00} — эффективный фонд времени работы оборудования: $T_{\rm H\,I}$ – трудоемкость настройки инструмента за смену на станки токарной группы, мин; $T_{\rm H2}$ — трудоемкость настройки инструмента за смену на станки сверлильно-фрезерно-расточной группы, мин; $T_{\rm c}$ – трудоемкость сборки инструментов за смену, мин; $T_{\rm p}$ – трудоемкость разборки инструментов за смену, мин; $M_{\rm c}$ – среднее время настройки одного инструмента станков токарной группы, мин; M_{c1} - среднее время настройки одного инструмента станков сверлильно-фрезерно-расточной группы, мин; $M_{\rm p}$ - среднее время разборки одного инструмента станков токарной группы; $M_{\rm pl}$ — среднее время разборки одного инструмента станков сверлильно-фрезерно-расточной группы, мин; $M_{c\bar{b}}$ — среднее время сборки одного инструмента на верстаке, мин; $C_{\rm u}$ – число инструментов на участке; C_0 – число инструментов, размещаемых в одном стеллаже; Π_1 – плошадь зоны обслуживания инструментами станков с ЧПУ, M^2 ; Π_0 – площадь, занимаемая одним стеллажом, M^2 ; C_{nl} – число инструментов, размещаемых в тележке, для станков токарной группы; $C_{\rm p2}$ – число инструментов, размещаемых в тележке, для станков сверлильнофрезерно-расточной группы; K_{00} – коэффициент оборачиваемости; K_{0} – коэффициент заполнения стеллажа.

9. Расчет числа работающих

Рабочая профессия	Рабочая документация	Проект (П)			
Слесарь-инструментальщик по настройке инструмента	$P_{\rm H} = \frac{260 \cdot 2 (T_{\rm H1} + T_{\rm H2})}{60 \Phi_{\rm p}};$ $T_{\rm H1} = H_{\rm c1} C_{\rm HH} M_{\rm c};$ $T_{\rm H2} = (H_{\rm c2} C_{\rm HH2} + H_{\rm c3} C_{\rm HH3} + H_{\rm c4} C_{\rm HH4}) M_{\rm c1}$	$P_{\mathrm{H}} = rac{oldsymbol{arPhi}_{\mathrm{o}6} H_{\mathrm{n}} K_{\mathrm{3}}}{oldsymbol{arPhi}_{\mathrm{p}}}$			

Продолжение табл. 9

Рабочая профессия	Рабочая документация	Проект (П)			
Слесарь-инструментальщик по разборке инструмента	$\begin{split} P_{\rm p} &= \frac{260 \cdot 2T_{\rm p}}{60 \varPhi_{\rm p}} ; \\ T_{\rm p} &= (H_{\rm c1} C_{\rm III} M_{\rm p}) + (H_{\rm c2} C_{\rm HII2} + \\ &+ H_{\rm c3} C_{\rm HII3} + H_{\rm c4} C_{\rm HII4}) M_{\rm p1} \end{split}$	$P_{p} = 0.4 P_{H}$			
Комплектовщик инструмента	$\begin{split} P_{\rm K} &= \frac{260 \cdot 2T_{\rm K}}{60 \varPhi_{\rm p}} ; \\ T_{\rm K} &= (H_{\rm cl} C_{\rm KMI} + H_{\rm c2} C_{\rm KH2} + H_{\rm c3} C_{\rm KH3} + \\ &+ H_{\rm c4} C_{\rm KM4}) M_{\rm K}; \\ C_{\rm KM} &= (2 \div 3) C_{\rm HM} \end{split}$	$P_{\rm K}=0.5P_{\rm H}$			
Транспортный рабочий	$P_{\mathrm{T}} = \frac{260 \cdot 2P \left(M_{\mathrm{T}} M_{\mathrm{o}} \right)}{60 \Phi_{\mathrm{p}}}$	$P_{\mathrm{T}} = 0.06 \ H_{\mathrm{C}}$			

Примечание. В таблице приняты следующие обозначения: $P_{\rm H}$ – число слесарейинструментальщиков по настройке инструментов; $T_{\rm H1}$ – трудоемкость настройки инструментов за смену на станки токарной группы, мин; $T_{\rm H2}$ – трудоемкость настройки инструментов за смену на станки сверлильно-фрезерно-расточной группы, мин; T_{p} — трудоемкость разборки инструментов за смену, мин; T_{κ} — трудоемкость комплектации и раскладки инструментов за смену, мин; $H_{
m c1}$ – число токарных станков; $H_{
m c2}$ – число сверлильнофрезерно-расточных станков с магазином до 20 инструментов; H_{c3} – число сверлильнофрезерно-расточных станков с магазином до 50 инструментов; H_{c4} – число сверлильнофрезерно-расточных станков с магазином свыше 50 инструментов; $C_{\text{ниl}}$ – число настраиваемых (разбираемых) инструментов на один станок токарной группы; $C_{\text{ин}2}$ — число настраиваемых (разбираемых) инструментов на один сверлильно-фрезерно-расточный станок с магазином до 20 инструментов; $C_{\text{ни3}}$ – число настраиваемых (разбираемых) инструментов на один сверлильно-фрезерно-расточный станок с магазином до 50 инструментов; $C_{\text{ни4}}$ – число настраиваемых (разбираемых) инструментов на один сверлильнофрезерно-расточный станок с магазином свыше 50 инструментов; $M_{\rm c}$ — среднее время настройки одного инструмента токарного станка, мин; $M_{
m cl}$ — среднее время настройки одного инструмента сверлильно-фрезерно-расточного станка, мин; $M_{
m p}$ – среднее время разборки одного инструмента токарного станка, мин; $M_{
m pl}$ – среднее время разборки одного инструмента сверлильно-фрезерно-расточного станка, мин; M_{κ} – норма времени на комплектацию и раскладку одного инструмента, мин; $M_{\scriptscriptstyle T}$ – норма времени на один рейс, мин; $M_{
m o}$ – норма времени на прием и сдачу инструментов за один рейс, мин; $arPhi_{
m o\delta}$ – эффективный фонд времени работы оборудования, ч; $\Phi_{\rm p}$ – фонд времени работы рабочего, ч.; $P_{\rm n}$ – число слесарей-инструментальщиков по разборке инструментов; $P_{\rm k}$ – число комплектовщиков инструментов; $P_{\rm T}$ – число транспортных рабочих; $C_{\rm kul}$ – число комплектуемых инструментов на токарный станок; Ски2 — число комплектуемых инструментов на сверлильно-фрезерно-расточный станок с магазином до 20 инструментов; С_{ки}3 — число комплектуемых инструментов на сверлильно-фрезерно-расточный станок с магазином до 50 инструментов; Ски4 — число комплектуемых инструментов на сверлильно-фрезерно-расточный станок с магазином свыше 50 инструментов; K_3 — коэффициент использования оборудования.

10. Нормы площади

	Нормы	площади,	M-2		Нормы площади, м²				
Плошадь	1	один нок	pa60-		на с ста	рабо-			
	Единич- ное произ- водство	Серийное произ- водство	на одно чее место	Плошадь	Единич- ное произ- водство	Серийное произ- водство	на одно чес место		
Рабочего места:				станка с магази-					
по настройке инструмента	_	_	6	ном: до 20 инстру-	1,2	0,7	_		
по разборке инструмента Для хранения инст-		_	7	ментов до 50 инстру- ментов	1,8	1,0	-		
рументов:	1,2	0,7	_	св. 50 инстру- ментов	2,2	1,2	_		
для токарного станка для сверлиль- но-фрезерно-рас- точного	1,2	0,7	_	ментов Для хранения технической документации на один станок	0,3	0,2	-		

Расчет состава и количества оборудования. Участок размерной настройки инструментов должен быть оснащен:

приборами для размерной настройки инструментов;

стеллажами для хранения инструментов и технологической документации;

контрольными плитами;

инструментальными шкафами;

верстаками;

приемными столами;

тележками для транспортирования инструментов внутри участка.

В рабочем проекте рассчитывают число приборов; верстаков; стеллажей; тележек.

В техническом проекте число приборов и тележек определяется процентом от числа обслуживаемых станков; число верстаков — от числа приборов; число стеллажей — отношением общей площади под инструмент к площади под один стеллаж. Формулы для расчета приведены в табл. 8.

Расчет числа работающих при проектировании приведен в табл. 9.

Размещение участка и расчет его площади. Участок размерной настройки инструментов для станков с ЧПУ должен размешаться в непосредственной близости от производственного участка станков с ЧПУ с целью обеспечения нормальных транспортных связей. Плошадь участка

$$\Pi = \Pi_1 + \Pi_2,$$

где площадь зоны обслуживания инструментами станков с ЧПУ

$$\Pi_1 = (H_c A_c) + (H_c A_\pi) + (H_p A_p);$$

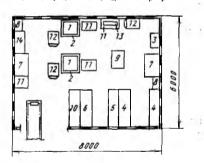


Рис. 7. Пример расположения оборудовании на участке размерной настройки инструментов:

1 – прибор БВ-2026 для настройки инструментов к станкам токарной группы; 2 - стол под прибор мод. БВ-2026; 3 - прибор БВ-2027 для настройки инструментов к станкам сверлильно-фрезернорасточной группы; 4 - стеллаж СМ3723.17 инструментальный (для всех видов инструментов и технической документации); 5 — стеллаж СМ3723.21 для оправок: 6 - стеллаж СМ3723.20 для торцевых фрез; 7 — верстак слесарный CM3743.05; 8 — шкаф СМ3712.20 инструментальный; 9 - контрольная плита; 10 - стеллаж СМ3722.03 для мелких приспособлений (для настроенного инструмента); 11 производственный стол СМ3702.01; 12 - тележка СМ4186.22 с полками; 13 - прибор ПБМ-500 для проверки изделий на биение в центрах; 14 - конторский стол

11. Типовой состав оборудования и оргоснастки участка подготовки инструментов

Наименование оборудования	Обозначение	Габаритные размеры, мм			
Прибор для настройки инструмента к стан-	БВ-2026	875 × 975 × 870			
кам токарной группы					
Стол под прибор модели БВ-2026	_	800×900			
Прибор для настройки инструмента к станкам сверлильно-фрезерно-расточной группы	БВ-2027	$740 \times 440 \times 1530$			
Стеллаж для инструмента	CM3724.01	$1950 \times 388 \times 2055$			
Стеллаж инструментальный	CM3723.17	$2060 \times 555 \times 2650$			
(для всех видов инструмента и технической документации)					
Стеллаж для оправок	CM3723.21	$2050 \times 555 \times 2650$			
Стеллаж для торцовых фрез	CM3723.20	$2060 \times 555 \times 2650$			
Верстак слесарный	CM3743.05	$1600 \times 750 \times 850$			
Шкаф инструментальный	CM3712.20	$630 \times 350 \times 1600$			
Стол для контролера	CM3707.01	1200×600			
Плита контрольная	ΓΟCT 10905-75	1000×630			
Стол под плиту контрольную	СД3702.08	$966 \times 636 \times 560$			
Прибор для проверки деталей на биение в центрах	ПБМ-500	$940 \times 347 \times 448$			
Стеллаж для мелких приспособлений (для настроенного инструмента)	CM3722.03	$2060 \times 555 \times 2650$			
Стол производственный	CM3702.01	$850 \times 630 \times 850$			
Тележка с полками	CM4186.22	$800 \times 630 \times 900$			
Тележка с полками Тележка со сменной оснасткой	CM4186.23	$948 \times 630 \times 1311$			
Стол конторский	Покупной	1200×600			

здесь H_c — число станков с ЧПУ в цехе; A_c — норма площади для хранения инструмента на один станок, M^2 ; A_d — норма площади для хранения технологической документации на один станок, M^2 ; A_p — норма площади на одно рабочее место, M^2 .

Площадь зоны размерной настройки инструментов

$$\Pi_2 = H_{\Pi} A_{\mathrm{p}},$$

где $H_{\rm n}$ — число приборов для настройки инструментов.

Нормы площади приведены в табл. 10. Пример расположения оборудования на участке размерной настройки инструментов приведен на рис. 7.

Типовой состав оборудования и оргоснастки участка подготовки инструментов приведен в табл. 11.

АБРАЗИВНЫЕ ИНСТРУМЕНТЫ

1. ТИПЫ И ОСНОВНЫЕ РАЗМЕРЫ

Форма абразивных инструментов и их типоразмеры определены ГОСТ 2424-83.

1. Характеристика шлифовального материала

Вид	Марка	Зернис- тость		
Электрокорунд:				
нормальный	18A; 15A;	50-4		
•	14A; 13A;			
,	12AP			
белый	25A; 24A;	50 - M10		
,	23A			
хромотитанис-	94A; 93A;	50-6		
тый	92A; 91A			
Монокорунд	45A; 44A;	50 - 5		
	43 A			
Карбид кремния:		-		
зеленый	64 C ; 63C	50 - M10		
черный	55C; 54C;	50-5 .		
	63C			

Круги изготовляют классов точности АА, А и Б.

Зерновой состав шлифовальных материалов — по ГОСТ 3647—80 с индексами: В и П — для кругов класса АА; В, П и Н — для кругов класса А; В, П, Н и Д — для кругов класса Б.

Зернистость: шлифзерно 200; 160; 125; 100; 80; 63; 50; 40; 32; 25; 20; 16; шлифпорошки 12; 10; 8; 6; 5; 4; 3; микропорошки М63; М50; М40; М28; М20; М14; М10; М7; М5.

В зависимости от зернового состава шлифовальных материалов по ГОСТ 3647-80 обозначение зернистости дополняется буквенным индексом, например 200-Н; 12-П; М50-В; М20-Д.

Степени твердости абразивных инструментов по ГОСТ 21323—75: СМ— среднемягкий; С— средний; СТ— среднетвердый; Т—твердый.

Номер структуры:

плотная — 1; 2; 3; 4 — для обработки заготовок из твердых материалов при дово-

дочных и чистовых работах с получением малой шероховатости поверхности;

средняя -5; 6; 7; 8 — для обработки заготовок из металлов с высоким сопротнвлением разрыву:

открытая — 9; 10; 11; 12 — для обработки заготовок из вязких материалов с низким сопротивлением разрыву; дает высокую шероховатость поверхности и большой износ инструмента, обеспечивает лучший отвод снимаемой стружки и лучшие условия для охлаждения при обработке металла.

Вид связки: керамическая К; бакелитовая Б; вулканитовая В.

Круги изготовляют следующих типов: $\Pi\Pi - прямого профиля; 2\Pi - с двусторон$ ним коническим профилем; 3П - с коническим профилем: ПВ – с выточкой: ПВК – с конической выточкой; К - кольцевые: ЧК – чашечные цилиндрические; и 1Т - тарельчатые; ПН - с запрессованными крепежными элементами; ПВДС - с двусторонней выточкой и ступицей; ПВДК - с двусторонней конической выточкой: ПВД - с двусторонней выточкой.

Классы неуравновешенности кругов по ГОСТ 3060-75: 1 — для кругов класса точности AA; 1 и 2 — для кругов класса точности A и аттестованных на государственный Знак качества; 1, 2 и 3 — для кругов класса точности Б.

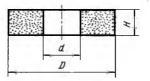
Прочность кругов должна обеспечивать их работу с рабочими скоростями, указанными ниже:

Тип круга	Рабочая скорость, м/с
ПП	30; 35; 40; 50; 60; 80
2П	30; 35; 40; 50; 60
ПН, К	25; 30; 35
ЧЦ, ЧК, Т, 1Т	20; 25; 30
Прочие круги	15; 25; 30; 35; 50

Типы и основные размеры сегментов по Γ OCT 2464-82 (СТ СЭВ 3885-82): СП — прямоугольные; 1С — выпукло-вогнутые; 2С — вогнуто-выпуклые; 3С — выпукло-плоские; 4С — плоско-выпуклые; 5С — трапециевидные; 6С, 7С, 8С, 9С, 10С — специальные.

2. ШЛИФОВАЛЬНЫЕ КРУГИ

2. Эксплуатационные показатели кругов на керамической связке (ГОСТ 2424-83)


		Размеры круга, мм		Марка шлифо-	Зер- Сте	Степень	Струк-	Коэффи- циент	Режущая способ-	Наработ-	Параметр ше- роховатости <i>Ra</i>
Вид шлифования	Тип круга	Наруж- ный	Высота	вального материа- ла	нис- тость	твер- дости		шлифо- вания	ность, мм ³ / (мин · мм)	mosepanoein,	
	диаметр Не ме	Не менее		мкм, не более							
Внутреннее врезанием	пп, пв, пвд	3-5			8-4		7-9	0+0			¥
		6-8	До 16		12-6		'	12			1,25
	in .	10-32	До 32	i		CM1-		6			1,23
		32-63	До 63		25 – 16	CM2					
		63 – 100	До 100				7; 8	5	_	_	
Заточка	пп, пв,	100 – 150	До 40	24A;	40-	М3-СМ1	1	3	1		0,63
ž-	пвд	175 – 200	Αυ ,υ	25A	25						
a e	чц, чк	100 – 300	До 100					2,5			141
	Т	До 200	До 20		İ		6-8	_		200	
Плоское	пп, пв, чк, чц	250 – 450	До 63			CM CM2	7	5			
Круглое наружное вре-		400; 450	До 63]	25-				120		1,25
занием	ПВД	500; 600	До 80]	16				150		
Круглое шлифование	пп	750	До 80		40-	C1-CT1	6; 7	_	100		
шеек коленчатого вала		900; 1060			16			}	120	_	*

шлифовальные круги

6.00	.,	Размеры круга, мм		Марка шлифо-	3ep-	Степень		Коэффи- циент	Режущая способ-	Наработ-	Параметр ше- роховатости
Вид шлифования	Тип круга	Наруж- ный	Высота	вального материа- ла	ьного нис- гериа- тость	нис- твер-				ка, шт.	Ra обра- батываемой поверхности,
49.7		диаметр		L		1			Не менее	мкм, не более	
Бесцентровое напроход	пп	350; 450	До 200		25 – 16	CM2- C1	5; 6		50		0,63
	•	500; 600	До 250			CI			60		
Зубошлифование обкат-кой	Т	Св. 200	До 40		40 – 25	M3 – CM1	7-9			5	1,25
	3П	300	10;		25- 16	÷				10	0,63
Резьбошлифование	2П	250 – 350	До 32		12-4	CT1 – CT3	8-9		_	400	1,25
	_	400 - 500								150	000

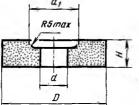
Примечания: 1. Для кругов из хромотитанистого электрокорунда марки 91A значения показателей качества должны быть умножены на 1,2.

- 2. Для кругов, работающих с рабочей скоростью 50 м/с (по отношению к рабочей скорости 35 м/с), значения показателей качества должны быть умножены на 1,25; с рабочей скоростью 60 м/с на 1,6; с рабочей скоростью 80 м/с на 2,2.
- 3. Для кругов, аттестованных на государственный Знак качества, значения эксплуатационных показателей должны быть умножены на 1,2.
- 4. В качестве СОЖ при внутреннем, плоском и бесцентровом шлифовании следует использовать водные растворы, при резьбошлифовании – индустриальное масло марки И-20А по ГОСТ 20799—75.
 - 5. Зубощлифование и заточку осуществляют без применення СОЖ.
- 6. При определении режущей способности значения подачи должны быть увеличены в 1.25 раза при рабочей скорости 50 м/с; в 1,6 раза при рабочей скорости 60 м/с; в 2,2 раза при рабочей скорости 80 м/с.
- 7. При определении коэффициента шлифования значения глубины резания при правке должны быть уменьщены в 1,25 раза при рабочей скорости 50 м/с; в 1,6 раза при рабочей скорости 60 м/с; в 2,2 раза при рабочей скорости 80 м/с.
 - 8. Отношение скоростей кругов и скоростей заготовок должно оставаться постоянным.

Размеры, мм

Разме	ры круга						Ширин	а круга Н							Диаметр
D	d	6	8	10	13	16	20	25	32	40	50	63	80	100	шлифуемого отверстия
6	2	К	к												6-10
10	3	К	К	К	K	K	К								12-17
13	4	К	К, В				К								16-20
16	6		К	К, В	1	К	К								20-22
20	6 8	·					К	К	К	К					22-27
25	6 8						К		К	К					27 – 32
32 i	10 6					К	К	К	К	К	К				35 – 46
40	13 6-10									К		К			45 – 55
50	10 13-16	-			-						к				55 – 70

Размер	ры круга												Ш	ири	на к	руг	a H	ī												Диаметр
D	d	6	8	10			13			16			16	5		25				32			40		5	0	63	80	100	шлифуемого отверстия
63																											к			72 – 85
80	20 32							,																			К	К	К, В	100-130
100						К,	Б,	В		В			К								1				К,	В	К, в	К, В	к, в	130-150
125	32 20-51			К, Б,	В	К,	Б,	В	K	— (, Ι	В	1	К,	Б	К.	, Б	, B		К,	Б,	В	К,	Б,	В	К,	В	К, В	К, В	К, В	150
150	20 32 – 51			К, Б,	В	К,	Б,	В	К,	Б,	В	К,	, Б	, B	К.	, Б	, В		К,	Б,	В	•	К		F	(К	К	К	200
200	32 51 – 76			К, Б,	В	К,	Б,	В	К,	Б,	В	К,	, Б	5, В	K.	, Б	, В		K,	Б,	В		К		ŀ	ζ	К	К	К	250
								- [


Примечания: 1. Размеры кругов, указанные в табл. 3, приняты по ГОСТ 2424-83.

2. Пример обозначения круга типа $\Pi\Pi$ D=80 мм, H=25 мм, d=32 мм из электрокорунда белого марки 25A, зернистостью M10, твердостью CM, структурой 5, на керамической связке:

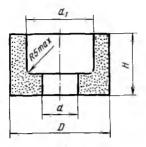
 $\Pi\Pi \ 80 \times 25 \times 32$; 25A CM-5-K FOCT 2424-83

- 3. Для сокращения номенклатуры кругов рекомендуется применять круги с d и связками, указанными жирно.
- 4. При выборе размеров кругов для шлифования отверстий рекомендуется принимать отношение диаметра круга к диаметру отверстия равным 0.6-0.8.
 - 5. Виды связок кругов для шлифования отверстий: К керамическая; Б бакелитовая; В вулканитовая.

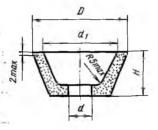
4. Характеристики кругов с выточкой для универсальных и внутришлифовальных станков Тип ПВ

Размеры, мм

Размер	ы, мм												
	Размері круга	PI.				L	Ширина	круга	Н				Диаметр шлифуе- мого от-
D	d	d_1	13	16	20	25	32	40	50	63	80	100	верстия
10	3	5+2	+										12-17
13	4	6+2		+	+								16-20
16	6	6 ⁺² 8 ⁺²			+	+							20-22
20	6	10+2		+	+	+	+	+					22-27
25	6	13+2	+	+	+	+	+						27 – 32
25	10	13+2			+	+	+						27-32
32	10	16+2		+	+	+	+						35-45
32	13	16+2				+	+						35-45
40	13	20+3				+	+_	+	+				45-55
50	13	25+3						+ ;;	+				55 – 70
	16	25 ⁺³ 32 ⁺³	-						+				55 – 70
63	20	32+3							+				72-85
80	20	40+3			+	+	+	+	+	+	+		100 – 130
100	20	50 50 ⁺³						+	+	+			130 – 150
125	32	65+3			+	+			+				150
150	32	85 ⁺³ 100				+	+						200
200	76	125+4					+	+		+	+		250


Примечания: 1. Пример обозначения круга типа ΠB , D=100 мм, H=50 мм, d=50 мм из нормального электрокорунда марки 15A, зернистостью 50, твердостью C, структурой 4, на керамической связке:

 $\Pi B 100 \times 50 \times 50 \text{ C-4K } \Gamma OCT 2424 - 83$


- 2. Для сокращения номенклатуры кругов рекомендуется применять круги размеров, обозначенных **+**.
- 3. При выборе размеров кругов для шлифования отверстий рекомендуется принимать отношение диаметра круга к диаметру отверстия равным 0.6-0.8.
- 4. Знаком «+» отмечена ширина выпускаемых кругов, а жирно наиболее рекомендуемая.

5. Характеристики чашечных цилиндрических и конических кругов для заточиых и плоскошлифовальных станков

Тип ЧЦ

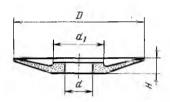
Тин ЧК

Размеры, мм

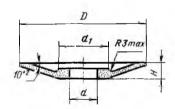
Pas	меры к	эуга	Ī			Шир	ина кру	уга Н				Форма
D	d	d_{l}	25	32	40	50	63	80	100	140	150	круга
40	13	32+3	+									чц
50	13	40+3		+								ЧЦ ЧК
80	20	50 ⁺³ 65 ⁺³		×	+							ЧЦ ЧК
100	20	80+3	×		×	+						ЧЦ ЧК
125	32 51	100+3			×	×	+					ЧЦ ЧК
150	32 51	125+3					+					чц
150	32	120 ⁺⁴ 130 ⁺⁴			×	×						чк
200	32 51 76	165+4			+		+	+				чЦ

Продо іжение табл. 5

Pa	змеры к	руга			Ш	трина к	pyra \overline{H}					Форма
D	d	d_1	25	32	40	50	63	80	100	140	150	круга
250	76 127 150	125 ⁺⁴ 195 ⁺⁴ 200 ⁺⁴							+			чц
250	100	190+4								×		ЧК
300	127	250+4							+			чц
300	150	230+4									+	чк


Примечания: 1. Пример обозначения круга типа ЧЦ D=125 мм, H=50 мм, d=51 мм из белого электрокорунда марки 92A, зернистостью 40, гвердостью СМ, структурой 12, на керамической связке:

ЧЦ 125×50×51 СМ 12 К ГОСТ 2424-83


- 2. Размеры кругов, указанные в табл. 5, приняты по ГОСТ 2424-83.
- 3. Знаком «+» отмечена ширина выпускаемых кругов типа ЧЦ, а знаком « \times » кругов типа ЧК.

6. Характеристики тарельчатых кругов для загочиых и зубошлифовальных стаиков

Тип Т

Tun IT

Размеры, мм

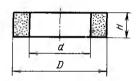
P	азмеры кру	ı a			Шир	ина кру	/га <i>Н</i>			
D	d	$d_{\mathbf{i}}$	8	10	13	16	20	25	40	Тип круга
80	13	30+4	+							Т
100	20	40+4		+						T;lT
125	32	50+4			+					T

13 Обработка металлов резанием

Продолжение табл. 6

F	азмеры кру	та			Шир	ина кру	уга <i>Н</i>			
D	d	d_1	8	10	13	16	20	25	40	Тип круга
150	32	60+4				+				T; 1T
200	32	80+6					+			T; 1T
250	32	100+6						+		T; 1T
300	127	185+6					+	+		1T
350	127	200+6							+	1T

Примечания: 1. Размеры кругов, указанных в табл. 6, приняты по ГОСТ 2424-83.

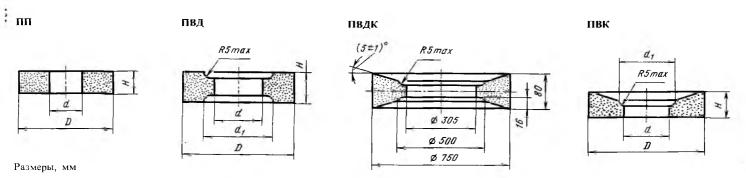

2. Пример обозначения круга типа 1Т $D=200\,\mathrm{Mm},\ H=20\,\mathrm{mm},\ d_1=80\,\mathrm{mm}$ из белого электрокорунда марки 25A, зернистостью 40, твердостью СМ, структурой 4, на бакелитовой связке:

1T 200×20×80 CM 45 ΓΟCT 2424-83

3. Знаком «+» отмечена ширина кругов, имеющих наибольшее применение.

7. Характеристики кольцевых кругов для плоскошлифовальных станков

Тип К


Размеры, мм

D	Н	d	D	Н	d
200	80	76; 125	400	63; 125	305
	100	160	450	125	250; 305; 380
300	80; 100	203	500	100; 125	400; 380
	100	250	600	100	380; 480

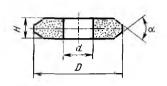
Примечание. Пример обозначения круга К D=300 мм, H=100 мм, d=125 мм из хромотитанового электрокорунда марки 92A, зернистостью 32, твердостью CT, на керамической связке:

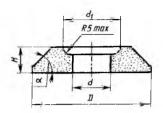
K $300 \times 100 \times 125$ CT FOCT 2424 - 83

8. Характеристики шлифовальных кругов для круглошлифовальных и бесцентрово-шлифовальных станков

	Размеры круга							ľ	Цирина	круга	H					
D	d	<i>d</i> ₁	10	16	20	25	32	40	50	63	80	100	125	160	200	250
			К	руги т	ипа П	Т ирям	иого п	офиля				,				
200	32; 51; 76	_	+	+	+		_	_	_	_	_		_	_	_	_
250	32; 51; 76	_	_		+	+	l +	+	_	l –	-	_	_		-	_
300	32; 76	_	-	-	+	+	+	+	_	_		_	_	_	_	-
350	76	_	_		+	+	+	+	+	_		_	_		_	
400	127	-	_	-	_	+	+	+	+	_		_	_	_	-	_
450	127; 203	_	-	_	_	+	_	+	+	-		_				_
500	203; 305	_	_	-	_	_	_	+	+	+	_	_	0-40	_	_	l _
600	203: 305	_	_	١ _	_	-	_	<u> </u>	+	;	+	_	_	_	_	_
750	305		_	-	_		_	_	+	+	<u> </u>	_			_	_
900	305		_	-	_	_	_	_	+	;	+	+	_	_	_	_
1060	305	_	_		_	_	_	_	+			+		_	_	l _

		Размеры круга							П	Іирина	круга	Н					
	D	d	d_1	10	16	20	25	32	40	50	63	80	100	125	160	200	250
			-														4/4
4	100	203	265+6	-	-	_	-	_	_	+	-		_			-	i.
4	150	203	265+6	_	_		_	_	_	+	_	_	_	_	_		
5	500	203; 305	265+6	_	_	_	_	_	+	- 1	+	+	_	-	_	_	_
6	500	305	375+6	-	-	_	_	_	_	+	+	+	+	_	_	_	_
7	750	305	375^{+6}	-	_	_	_	_	_	+	+	+	+	-	_	_	_
9	900	305	375^{+6}	_	_	_	_	_	_	_	+	+	+	_	_	_	_
		1 !	Кругі	и типа 	пвдк	: с дву	сторон 	ней ко 	ническ 	ой выт	очкой	I	ſ	I	1	ł	ı
7	750	305	500	_	_	_	-	-	_	_	_	+	-	_	_	-	_
			Круг	и типа	пвк	с одно	сторон	ней ко	ническ	ой выт	очкой						
3	300	127	200 + 4	_	_	_	_	_	_	+	_	_	_	_	_	_	_
3	350	127	265+6	_		_	_	_	_	+	_	_	-	_	_	_	-
5	500	203	375+6	-	-	_	_	_	_	+	-	_	-	_	_	_	_
6	500	305	375+6	_	_	-	-	-	-	_	_	+	_	-	_	_	
7	750	305	375+6	-	_	_	-	_	_	_	_	+	_	_	_	_	_
													<u> </u>				


Примечания: 1. Размеры кругов, указанные в табл. 8, приняты по ГОСТ 2424—83.


- 2. Знаком «+» отмечена ширина кругов, имеющих наибольшее применение.
- 3. Рекомендуемые связки кругов: К керамическая; Б бакелитовая; В вулканитовая.
- 4. Круги классов точности АА или А изготовляют на керамической связке.
- 5. Пример обозначения круга типа $\Pi\Pi$, D=300 мм, H=20 мм, d=51 мм из нормального электрокорунда марки 15A, зернистостью 50, твердостью CM2, структурой 10K, на керамической связке:

 $\Pi\Pi \ 300 \times 20 \times 51 \ 15A \ 50 \ CM2 \ 10K \ \Gamma OCT \ 2424-83$

9. Характеристики шлифовальных кругов для зубощлифовальных (обкаткой) и резьбошлифовальных станков (с двусторонним коническим и коническим профилем)

3П

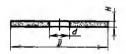
Разме	ры,	MM

2Π

		Разме	ры круг	ra				П	Іирина	круга 1	4			
	D	d	d_1	$\alpha^2 + 2^2$	6	8	10	13	16	20	25	32	40	50
			-	I.C.	- 20						hu			
				Круги ти	ga ZII	с двус	тороня	им коі	нически	ім прос	филем			
2	50	76		40	_		-+	+	+	+	_	_	_	-
3	00	127	_	40	_				_	+	_	_	_	_
3	00	127	_	60	-	-	-	-	_	-	+	+		
3	50	160	!	60	_	+	-	-			_			_
3	50	127	_	40	_	_	-	+	-		+	+		_
4	-00	127	-	40		_	_	-	+	+	-+	+	_	_
4	-00	203	_	60	_	+	+	+				_	-	_
5	00	203	_	40	-	_	_	-	-	–	-	+	_	-
				Круги ти	па ЗП	с кони	чески	и проф	илем					
-	ا د،		1 20			ı		ı	ı	I	1		1	l
	63	10	20	20	_	_	+		_	-	-	_	_	_
	80	20	_	15	+	_	_	_	-	_	E.E.			
	80	20	-	20		+	-		_	_		_	_	
	80	20	-	30	_	_	+			_				_
	80	20	_	35	_	_	_	+		_	-	_	_	
	00	20	_	10	+	_	-	-	ļ —] -		_	_	_
	00	20		15	-	+	-		-	-	and the		_	_
	00	20	(Miles)	20	-	+	-	-	_	_		-	_	_
	00	20	36	25	_	+	_		-		_	_		_
	00	20		20		_	_	+		_	_	_		
	00	20	-	35			_	_	+	_		_	_	_
	00	51	65	35	_	_	+	-		_		_		_
	25	32		10	_	+	-	-	_	_		_		
	25	32	(Market)	35	_	-	+		_	_		_	23	
	50	32	_	10	_	+		-	_	_		_		
	50 50	32 32	_	35 25	_	_	+	_		_	_		_	
			_	b	_	-	_		+					
	50	32		18	_	_	_	_	-	+		_		
	50	51	80	20	_		-	+	_			_		
	00!	32	_	10	-		+	_		-				
	200	51	_	10	-	_		+		_				
	200	51		25		_	_	_	+	ļ -		_		
	200	51	80	20	-		_	-		+		_		
	250	76		45	+	-		_		-	_	-		-
	250 250	76 76	_	45 45	_	+-	-	_	***	-	_		_	-
	.JU	70	l –	1 40	_	-	+-	_		. –		ı —	_	_

Продолжение табл. 9

Размеры круга				Ширина круга Н									
D	d	d_1	α° + 2	6	8	10	13	16	20	25	32	40	50
250	76		15			_	_	+	_	_	_		_
250	76	125	15			_	_	+	_	-	_	_	_
250	76	_	20	_	_		-	_	+	_	l –	_	_
250	76	115	20	l –	i –	-	-	-	_	+	-	-	-
300	76	-	45	+	_		_	-	-		-	-	
300	76	-	45	<u> </u>	+	–	_	-	-	_	_	_	
300	76		45	_	_	+	_	_	_	_	l –	-	_
300	76	115	20	-	_	_		-	_	+	+		_
300	127		15	+] _ ,	-	_] —	-	_]	_
300	127		45	_	+	+	_	-	_	_	_	_	_
300	127	-	15; 45	_	- 1	_	+	_		_	_	-	_
300	127	180	30	-	-		-	- '	+	-		_	_
350	127	_	30	_	_	-	_	-	_	+	_	_	_
350	76	115	20	-		-	_	-	_	_	_	+	_
400	127	-	30	_	_			l – 1	+	+	-	+	_
400	76	115	20	_	_	_		_	_	_	_	_	+
400	76	-	20	_	_	-	_		_				+
450	127	115	115		_		-	-	+	+	+	_	_
500	203	115	30	_	_	-	-			-	+	_	_


Примечания: 1. Размеры кругов, указанные в табл. 9, приняты по ГОСТ 2424-83.

- 2. Знаком «+» отмечена ширина кругов, имеющих наибольшее применение.
- 3. Рекомендуемые связки кругов: К керамическая; Б бакелитовая; В вулканитовая.
- 4. Круги классов точности АА или А изготовляют на керамической связке.
- 5. Пример обозначения круга типа 3Π , D=300 мм, d=127 мм, H=20 мм, $\alpha=30^\circ$ из нормального электрокорунда марки 24 A, зернистостью 125, твердостью CM1, структурой 8, на керамической связке:

 $3\Pi \ 300 \times 127 \times 20 \ \alpha \ 30^{\circ} \ K \ \Gamma OCT \ 2424 - 83$

3. ОТРЕЗНЫЕ КРУГИ

10. Размеры (мм) отрезных кругов (ГОСТ 21963-82)

Круги без упрочняющих элементов			Круги с упрочняющими элементам			
D	Н	d	, D	Н	d	
50	0,3; 0,6; 1,0; 2,0	10	50	2,0; 3,2	10	
63	0,3; 0,6; 1,0; 2,0; (3,0); 3,2		(60); 63; 80	2,0; 2,5; (3,0); 3,2		
80	2,0; 2,5; (3,0); 3,2			3,5		
00						

Продолжение табл. 10

Кр	уги без упрочняющих элемен	Круги с упрочняющими элементами				
D	Н	d	D	Н	d	
80	0,6; 0,8; 1,0; 1,3; 2,5; (3,0); 3,2	20	180	1,0; 2,5; 3,2; 4,0	32; (22)	
100	0,6; 0,8; 1,0; 1,3; 1,6; 2,0; 2,5; (3,0); 3,2		200; 230	2,5; (3,0); 3,2; 4,0	(22)	
125	0,6; 0,8; 1,0; 1,3; 1,6;	20; 32	250		32	
	2,0; 2,5; (3,0); 3,2		300; 400	(3,0); 3,2		
150	0,6; 0,8; 1,0; 1,3; 1,6;	32		4,0		
	2,0; 2,5; (3,0); 3,2; 4,0		500	4,0; 5,0	51	
175; 200	1,0; 1,6; 2,0; 2,5; (3,0);		600	6,0		
,	3,2; 3,0		800	8,0	100; (76)	
250	1,6; 2,0; 2,5; (3,0);		900	8,0; 9,0	100	
	3,2; 4,0		1000 10,0			
300	2,0; 2,5; (3,0); 3,2; 3,2; 3,0		_			
400	(3,0); 3,2; 4,0	51; (32)				
500	4,0; 5,0		13.0			

Примечания: 1. Размеры, заключенные в скобки, применять не рекомендуется.

2. Пример условного обозначения круга с наружным диаметром D=400 мм, высотой H=4 мм, диаметром посадочного отверстия d=51 мм из нормального электрокорунда марки 14A, зернистостью 40-H, степени твердости СТ3 со звуковым индексом 41, на бакелитовой связке Б с упрочняющими элементами У, рабочей скоростью 80 м/с, 2-го класса неуравновешенности:

400×4×51 14A 40-H СТЗ 41 БУ 80 м/с 2 кл. ГОСТ 21963-82

3. Круги следует изготовлять из шлифовальных материалов зернистостей, указанных ниже:

Шлифовальный мате	риал	Зернистость	для связки	
Вид	Марка	бакелитовой	вулканитовой	
Нормальный электрокорунд	15A; 14A; 13A	50-12 125-12	50-6	
Белый электрокорунд	25A; 24A	80-5	_	
Хромотитановый электрокорунд	94A; 93A; 92A; 91A	125 – 16		
Черный карбид кремния	55C; 54C; 53C	160 - 16		

Продолжение табл, 10

Размеры, мм	Предельные отклоне- ния, мм	Размеры, мм	Предельные отклонения, мм		
Наружный диаметр <i>D</i> До 150 Св. 150 до 250 » 250 » 400 » 400 » 600 » 600 » 1200 » 1200 Высота <i>H</i> До 0,8 Св. 0,8 до 3,0	$\begin{array}{c} \pm 2.0; \ \pm 2.0^* \\ \pm 3.0; \ \pm 2.0^* \\ \pm 4.0; \ \pm 3.0^* \\ \pm 6.0; \ \pm 4.0^* \\ \pm 7.0 \ \pm 5.0^* \\ \pm 9.0; \ \pm 7.0^* \\ \end{array}$ $\begin{array}{c} \pm 0.1; \ \pm 0.10^* \\ \pm 0.25; \ \pm 0.15^* \end{array}$	Св. 3,0 до 5,0 » 5,0 » 10,0 » 10,0 Диаметр посадочного отверстня d < 76 для зернистости: до 50 св. 50 d > 76 для зернистости: до 50 св. 50 св. 50	$\begin{array}{l} \pm 0,30; \ \pm 0,20^* \\ \pm 0,40; \ \pm 0,30^* \\ \pm 0,55; \ \pm 0,45^* \end{array}$ $\begin{array}{l} +0,25; \ +0,20^* \\ +0,35; \ +0,30^* \\ +0,40; \ +0,40^* \\ +0,50; \ +0,40^* \end{array}$		

^{*} Для кругов, аттестованных на государственный Знак качества.

Круги на бакелитовой связке $D \le 600$ мм следует изготовлять со звуковыми индексами 25; 27; 29; 31; 33; 35; 37; 39; 41 и 43; круги на вулканитовой связке с $D \le 600$ мм — со звуковыми индексами 27; 29; 31; 33; 35.

Круги следует изготовлять следующих степеней твердости: на бакелитовой связке: СМ2; C1: C2: CT1: CT2: CT3: T1: T2: BT1 и BT2: на вулканитовой связке: СТ и Т.

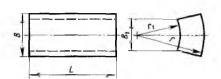
Механическая прочность кругов на вулканитовой и бакелитовой связках должна обеспечивать их работу со скоростями, указанными ниже:

Круги
Без упрочняющих элементов
То же
С упрочняющими элементами

Связка

Вулканитовая 50 и 60 м/с Бакелитовая 50 и 60 м/с 60; 80 и 100 м/с

Допускается изготовлять круги с различными рифлениями торцовых поверхностей или с двусторонним поднутрением, уменьшающим высоту круга от рифлений к его центру в пределах допуска на высоту.

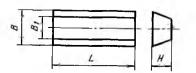

Тип 1С

4. ШЛИФОВАЛЬНЫЕ СЕГМЕНТЫ

11. Размеры (мм) шлифовальных сегментов (ГОСТ 2464-82)

Tan CI

Tun 2C



В	H	L L	В	B_{\parallel}	L	r	r ₁	
Прямо	угольные т	ила СП		Вы	укло-вогн	утые тип:	1C	
45	55	80	60	40	75	85	60	
60	20	125	75	50	125	125	105	
60	25	125	90	55	125	180	140	
75	25	150	110	75	150	180	140	
80	25	100; 160	110	90	150	200	170	
90	36	150	140	100	175	125	105	
90	40	150; 160	150	110	200	300	250	- 1 -
100	40	200		ъ.			200	
120	36	150		Boc	ну го-выпу	клые типа 1	120	
120	4 0	180	80	75	125	170	150	
125	50	200	95	80	175	250	220	
150	50	250	- -					
180	63	250		İ		1		
				l		1	1	

Tun 4C

THE 5C

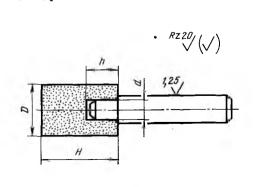
Tun 3C

Продолжение табл. 11

В	<i>B</i> ₁	Н	r	В	B_{\parallel}	Н	L	r
П	лоско-вьту	клые типа	4C		Выпукл	-плоские	типа ЗС	1
100	80	40	220	110	75	40	180	300
190	180	50	40	120 150	80	45 75	150 220	250
7	Гра <i>п</i> ециевид	ные типа :	5C	210	85 140	100	300	200 400
60	46	20	125	380	21	24	1	5
60	50	16	125					ĺ
100	85	40	150; 160; 200					

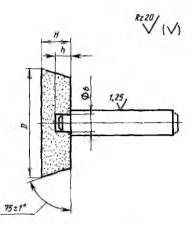
Примечания: 1. Пример условного обозначения шлифовального сегмента типа 5С шириной $B=100\,$ мм, высотой $H=40\,$ мм, длиной $L=200\,$ мм из нормального электрокорунда марки 14А, зернистостью 40-Н, степени твердости C1 со звуковым индексом 33 (при применении акустического контроля), структуры 6, на бакелитовой связке Б, класса точности А:

5C 100×40×200 14A C1-33Б ГОСТ 2464-82


- 2. По заказу потребителя допускается изготовление сегментов из других марок шлифовальных материалов или других зернистостей.
 - 3. Технические требования по ГОСТ 2464-82.
 - 4. Размеры сегментов, указанные в табл. 10, приняты по ГОСТ 2464-82.

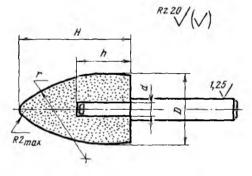
5. ШЛИФОВАЛЬНЫЕ ГОЛОВКИ

Головки (ГОСТ 2447-82) изготовляют следующих типов: AW – цилиндрические; EW – конические; KW – конические с закругленной вершиной; F-2W – шаровые; FW – шаровые с цилиндрической боковой поверхностью; DW – угловые; F-1W – сводчатые

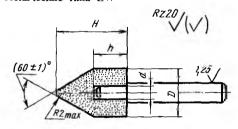

12. Размеры (мм) шлифовальных голонок

Цилиндрические типа AW

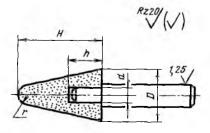
D	Н	d	h	D	Н	d	h
3	6	1,0	3	16	6, 8	6,0	3
4	6	2,0	3	16	20, 25	6,0	8
	10	1,5	6	16	40, 50	6,0	20
4 5 6	10	1,5	6	18	6	6,0	3
6	6	2,0	3	18	20	6,0	8
6	10	2,0	6	20	25, 32	6,0	13
6 8′	10	3,0	6	20	40	6,0	20
8	16	3,0	8	25	25, 32	6,0	13
10	10	3,0	6	30	10	6,0	6
10	25	3,0	13	32	32	6,0	13
13	6	4,0	3	40	40	8,0	20
13	16	4,0	8	40	60	13,0	32
13	20, 25	4,0	10	40	60	13,0	32
	L						Ь


Угловые типа DW

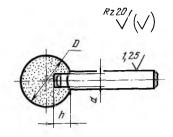
$Hpo\epsilon$	олжение	табл.	12


D	Н	h				
12 16, 20 25, 40	6 8 10	3 6 6				

Сводчатые типа F-1W


D	Н	d	h	r
6	10	2	6	12
10	20	3	10	25
25	40	6	16	45
32	50	6	25	65
35, 38	22	10	10	65

Конические типа EW


D	H	d	h
10	25	3	15
16	25 50	6	15
20	25, 32 50	6	15
32	50	6	20
	1	1	,

Конические с закругленной вершиной типа KW


D	Н	d	h	r
16	16	6	6	2
20	32	6	13	3
32	40	6	13	5
40	60	13	32	5

Шаровые типа F-2W

	Продолжение табл. 12				
D	d	h			
10	3	4			
16	6	6			
20	6	8			
25	6	10			
32	6	13			

Шаровые типа FW с цилиндрической боковой поверхностью

D	Н	h	r
16	20	8	8,0
20	32	13	10,0
25	25	10	12,5

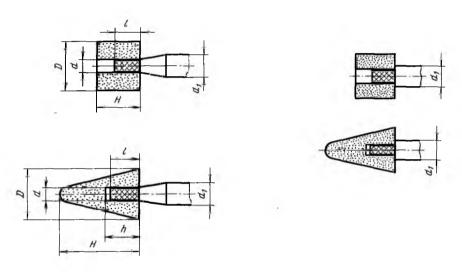
Примечания: 1. Пример условного обозначения головки типа AW диаметром D=8 мм, высотой H=10 из белого электрокорунда марки 24A, зернистостью 25-H, степени твердости CT1, номером структуры 6, на керамической связке K, класса точности A, с рабочей скоростью 35 м/с.

AW 8×10 24A 25-H CT1 6 K A 35 M/c FOCT 2447-82

2. Головки следует изготовлять из плифовальных материалов, указанных ниже.

Вид	Марка	Зернистоеть
Белый электрокорунд	25A; 24A	40 – 6
Карбид кремния зеленый	64C; 63C	40 – 16

- 3. Оправки следует изготовлять из сталей марок 35, 40, 45 по ГОСТ 1050-74 или других с равноценными механическими свойствами.
 - 4. Головки должны изготовляться классов A и Б, степеней твердости C1-CT2.
- 5. Механическая прочность головок и прочность крепления их к оправкам должны обеспечить работу с рабочей скоростью 25, 35, 50 м/с.


6. ЭЛЕМЕНТЫ КРЕПЛЕНИЯ АБРАЗИВНЫХ ИНСТРУМЕНТОВ (ГОСТ 2270-78)

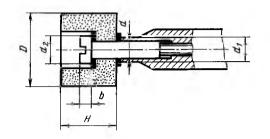
Крепление шлифовальных кругов и головок на оправке наклеиванием

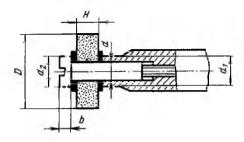
13. Размеры (мм) элементов крепления

Исполнение 1

Исполнение 2

Диаметр	J.	<i>I</i> , не	менее	D	Н
оправки <i>d</i>	d ₁	для головок	для кругов	He (более
1 1,5 1,6	3			3,2 5,0 6,0	10
1,6		0.07	0,5 <i>H</i>	6,3	16
3 4	6	0,9h		12 13	25
6				16, 45*1	40, 70*1
8 10	10			40	40
13	13				60

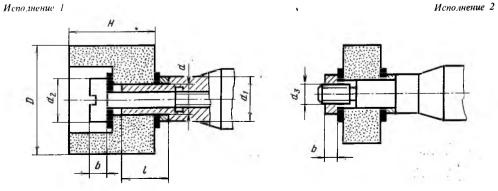

^{*1} Размеры относятся только к креплению шлифовальных головок по ГОСТ 2447-82.


Крепление шлифовальных кругов винтом

14. Размеры (мм) элементов крепления

Исполнение 1

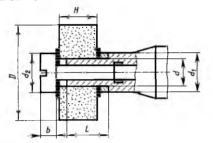
Исполнение 2

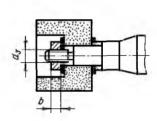


Диаг винт		a	1	а	l_2	<i>b</i> , мен		Į.)	1	Ч
	Исполнение										
1	2	1	2	1	2	1	2	1	2	1	2
6 - - 10 13 16 20	3 4 6 6 6 8 10 13 16 20	- 10 - - - 15 18 22 28	5 6 10 12 12 13 15 18 22 28	 6 10 15 18 22 28	5 6 10 12 12 13 15 18 22 28	 4 6 6 8 8	4 4 4 4 6 6 6 6 8 8	- 20 - - 32 32 32 50 63	13 13 20 40 25 40 40 40 50 63	- 40 - - 32 32 32 50 50	20 20 25 10 40 8 40 40 63 63

Крепление шлифовальных кругов на шпинделе или оправке винтом или гайкой

15. Размеры (мм) элементов кренления кругов чащечной формы и с выточкой

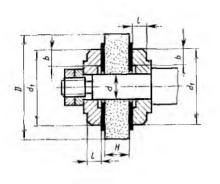

Продолжение табл. 15


Диаметр <i>d</i>	d_1 ,	d ₂ (пред.	do	<i>I</i> (пред.	<i>b</i> , не	D	Н
шпинделя (оправки)	не менее	откл0,4)	<i>d</i> ₃	откл0,4)	менее	He (олее
10	10	15	_	10	6	32	32
13	20	16	M10	15	6	32	32
13	20	18	M10	20	6	40	50
13	25	25	M 10	20	6	50	50
16	20	25	M12	5	8	50	21,5
16	20	25	M12	25	8	50	50
20	30	30	M16	10	8	63	32
20	30	30	M16	25	8	63	50
20	35	35	M16	10	8	80	40
20	35	35	M16	25	8	80	63
20	35	35	M16	40	8	80	80
20	45	45	M16	10	8	100	50
20	45	45	M16	25	8	100	63

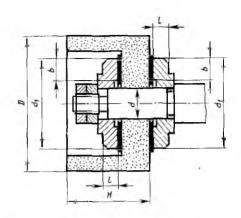
16. Размеры (мм) элементов крепления кругов остальных форм

Исполнение 1

Исполнение 2



	<i>d</i> ₁ , не	d ₂ (пред.	/ d ₃	/ (пред.	<i>b</i> , не	D	Н
(оправки) d	менее	откл. 0,4)	,	откл0,4)	менее	Не более	
10	16	16	_	10	6	32	20
10	16	16		25	6	32	40
13	20	20	M10	25	6	40	25
13	25	25	M10	25	6	50	25
16	25	25	M12	10	8	40	20
16	25	25	M12	25	8	40	50
16	25	25	M12	40	8	40	63
16	25	25	M12	10	8	50	20
16	25	25	M12	25	8	50	40
16	25	25	M12	40	8	50	63
20	30	30	M16	10	8	63	20
20	30	30	M16	25	8	63	40
20	30	30	M16	40	8	63	63
20	35	35	M16	10	8	80	20
20	35	35	M16	25	8	80	40
20	35	35	M16	40	8	80	63
20	45	45	M16	10	8	100	20
20	45	45	M16	25	8	100	40


Проставное кольцо устанавливают при $l \ge H$.

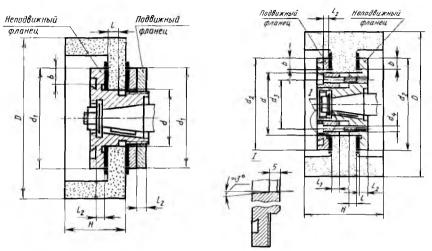
Крепление шлифовальных кругов на шпинделе или оправке фланцами

17. Размеры (мм) элементов крепления кругов чашечной формы и с выточкой

18. Размеры (мм) элементов крепления кругов остальных форм

Диаметр d	d_1	1	h	D	Н		
(оправки)	1	le мен	ee	He (Не более		
10	16	2	2.5	22	40		
10	16 20	3	2,5	32	10		
10		3	3.0	50	8		
10	25 30	3	3.0	63	13		
13	20	3	3.0	40	40		
13	25	3	3.0	50	40		
16	25	3	3.0	50	6.3		
16	30	3	3.0	63	13		
20	30	5	4.0	63	63		
20	35	5	4.0	80	100		
20	40	5	4.0	100	100		
20	60	5	4,0	125	20		
32	50	6	6,0	80	40		
32	50	6	6,0	100	80		
32	60	6	6.0	125	50		
32	65	6	6.0	150	50		
32	65	6	6.0	160	32		
32	80	8	6.0	200	50		
32	100	10	8,0	250	50		
	100	1.0	0,0	230	50		

He vience He Gozi 10	Диаметр шпинделя (оправки)	d_1	1	Ь	D	11		
13 16 3 3,0 32 13 20 3 3,0 40 16 25 3 3,0 50 20 30 5 4,0 63 20 35 5 4,0 80 20 40 5 4,0 100 20 55 6 6,0 125 32 50 6 6,0 100			le vien	ee	Не более			
13 20 3 3,0 40 16 25 3 3,0 50 20 30 5 4,0 63 20 35 5 4,0 80 20 40 5 4,0 100 20 55 6 6,0 125 32 50 6 6,0 100	10	16	.3	2,5	32	32		
13 20 3 3,0 40 16 25 3 3,0 50 20 30 5 4,0 63 20 35 5 4,0 80 20 40 5 4,0 100 20 55 6 6,0 125 32 50 6 6,0 100	13	16	3	3,0	32	32		
16 25 3 3,0 50 20 30 5 4,0 63 20 35 5 4,0 80 20 40 5 4,0 100 20 55 6 6,0 125 32 50 6 6,0 100	13	20		3,0	40	50		
20 35 5 4,0 80 20 40 5 4,0 100 20 55 6 6,0 125 32 50 6 6,0 100		25		3,0	50	50		
20 40 5 4.0 100 20 55 6 6.0 125 32 50 6 6.0 100	20	30	5	4.0	63	50		
20 55 6 6,0 125 32 50 6 6,0 100	20	35	5	4,0	80	80		
32 50 6 6,0 100	20	40	5	4,0	100	63		
	20	55	6	6,0	125	50		
32 60 6 6,0 125	32	50	6	6,0	100	25		
	32	60	6	6,0	125	80		
32 65 6 6,0 150	32	65	6	6,0	150	80		
32 65 6 6,0 160	32	65	6	6,0	160	20		
32 80 8 6.0 200	32	80	8	6.0	200	63		

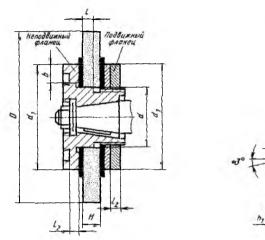

Примечание. Прижимную поверхность фланцев выполнять с поднутрением 0,1-0,3 мм; между фланцами и инструментом устанавливать прокладки по ГОСТ 12,3.028-80

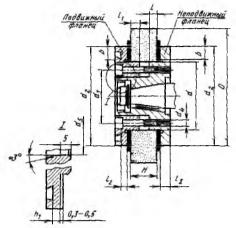
Крепление шлифовальных кругов на переходных фланцах винтами (гайками)

19. Размеры (мм) элементов крепления кругов чашечной формы и с выточкой

Исполнение 1 для кругов с $d \le 51$ мм

Исполнение 2 для кругов $c \ d \ge 51$ мм




Поса-				1	l_1	12	b		D	Н
дочный диаметр фланца	$d_1 = d_2$. не менее	<i>d</i> ₃	d ₄		He	иенсе		Число винтов	He f	более
32	65	_	_	5	_	6	6	_	160	25
32	65	_	_	12	-	6	6	-	160	63
32	65	-	-	25	-	6	6	-	160	80
32	80	_	_	6		6	6	-	200	20
32	80	_	_	12		6	6		200	63
51	75	_	_	5	_	8	6	_	150	25
51	75	_		12	_	8	6	-	150	80
51	75	40	M6	12	-	8	12	6	250	63
76	115	65	M6	5	-	11	12	6	300	20
76	115	65	M6	12	4	11	12	6	300	63
76	115	65	M6	25	4	-11	12	6	300	160
127	165	110	M8	5	-	11	12	6	300	32
127	165	110	M8	12	6	11	12	6	300	63
127	165	110	M8	25	6	11	12	6	300	250
127	175	110	M10	12	6	13	12	6	350	80
127	175	110	M10	25	6	13	16	6	350	250
203	230	180	M12	12	6	16	16	8	350	50
203	230	180	M12	25	6	16	20	8	350	200
203	260	180	M12	12	6	16	20	8	500	63
203	230	180	M12	25	6	16	20	8	500	100
305	365	280	M16	12	6	16	20	8	600	63
305	365	280	M16	25	6	16	20	8	600	100
305	375	280	M16	12	6	19	25	8	750	63
305	375	280	M16	25	6	19	25	8	750	100
305	375	280	M16	25	6	22	25	8	900	63
305	375	280	M16	25	6	22	25	8	900	100

20. Размеры (мм) элементов крепления кругов остальных форм

Исполнение 1 для кругов с d ≤ 51 мм

Исполнение 2 для кругов с д ≥ 51 мм

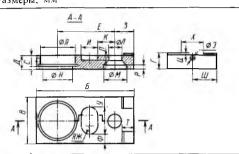
Посадоч-				1	<i>l</i> ₁	12	Ь		D	Н
ный диа- метр <i>d</i> фланца	$d_1 = d_2$, He MeHee	d ₃	d ₄		He M	иенее		Число винтов	Не б	олее
32	65	_	_	5	_	6	6	-	160	10
32	65	_		12	-	6	6	- 1	160	40
32	65	-	_	25	-	6	6	-	160	50
32	80	-		5		6	6		200	10
32	80		-	12	-	6	6	-	200	40
32	80			25	-	6	6	-	200	50
32	[100]		-	5	-	6	8	-	250	10
32	100		-	12	-	6	8	-	250	40
32	100	_	_	25	-	6	8]	250	50
51	75	_	_	5	-	8	6	-	150	10
51	75	-	-	12	-	8	6	-	150	40
51	75	_	-	25	-	8	6	- i	150	100
51	75	40	M6	5	-	8	12	6	250	10
51	75	40	M6	12	-	8	12	6	250	40
76	115	65	M6	5	-	11	12	6	300	10
76	115	65	M6	12	4	11	12	6	200	40
76	115	65	M6	25	4	11	12	6	200	200
76	175	110	M10	12	6	11	12	6	400	40
76	175	110	M10	25	6	11	12	6	400	50
127	165	110	M8	5		11	12	6	300	10
127	165	110	M8	12	6	11	12	6	300	40
127	165	110	M8	25	6	11	12	6	300	200
127	175	110	M10	5		13	16	6	350	10
127	175	011	M10	12	6	13	16	6	350	40
127	175	110	M10	25	6	13	16	6	350	200
127	185	110	M10	5		16	20	8	450	10
127	185	110	M10	12	6	16	20	8	450	40
127	185	110	M10	25	6	16	20	8	450	63
203	260	180	M12	5	-	16	20	8	350	10

Продолжение табл. 20

Посадоч-				1	I_1	1/2	ь		D	Н
ный диа- мегр <i>d</i> фланца	$d_1 = d_2$, не менее	d ₃	d_4		Не	менее		Число винтов	He 6	ол е е
203	260	180	M12	12	6	16	20	8	350	40
203	260	180	M12	25	6	16	20	8	350	200
203	260	180	M12	5	l –	16	20	8	400	10
203	260	180	M12	12	6	16	20	8	400	40
203	260	180	M12	25	6	16	20	8	400	150
203	260	180	M12	5		16	20	8	500	10
203	260	180	M12	12	6	16	20	8	500	40
203	260	180	M12	25	6	16	20	8	500	100
203	260	180	M12	5	-	16	20	8	600	10
203	260	180	M12	12	6	16	20	8	600	40
203	260	180	M12	25	6	16	20	8	600	250
305	365	280	M16	5	_	16	20	8	600	10
305	365	280	M16	12	6	16	20	8	600	40
305	365	280	M16	25	6	16	20	8	600	250
305	380	280	M16	12	6	19	25	8	750	40
305	380	280	M16	25	6	19	25	8	750	250
305	380	280	M16	12	6	22	25	8	900	40
305	380	280	M16	25	6	22	25	8	900	100
305	380	280	M16	25	6	22	25	10	1000	63
508	600	480	M20	25	6	25	32	10	1000	100

Примечания: 1. Для шлифовальных кругов с посадочными диаметрами d=40 и 90 мм, применяемых на зубошлифовальных станках, допускается назначать основные размеры мест крепления соответственно как для кругов с посадочными диаметрами d=51 и 76 мм.

^{2.} Для шлифовальных кругов с посадочным диаметром d=127 мм, применяемых на зубошлифовальных станках, вместо наружного диаметра фланца $d_1=d_2=175$ мм допускается применять $d_1=d_2=200$ мм.


^{3.} Прижимную поверхность фланцев выполнять с поднутрением 0,3-0,5 мм.

^{4.} Между фланцами и инструментом устанавливать прокладки по ГОСТ 12.3.028 – 80.

глава 11

ТИПОВЫЕ ТЕХНОЛОГИЧЕСКИЕ МАРШРУТЫ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ В УСЛОВИЯХ МЕЛКОСЕРИЙНОГО И СРЕДНЕСЕРИЙНОГО ПРОИЗВОДСТВА

1. Типовой маршрут обработки деталей типа планок Размеры, мм



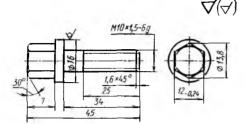
Вид заготовки – полоса. Материал – сталь. Число деталей из заготовки – 1

Опера- ция	Содержание или наименование операций	Станок, оборудование	Оснастка
005	Отрезать заготовку от полосы	Абразивно-отрез- ной автомат 8В262	Тиски
010	Навесить бирку с номером детали на тару		
015	Фрезеровать две широкие поверхности в размер $\mathcal{I}+0.3$ под шлифование и две поверхности в размер \mathcal{B} окончательно	Вертикально-фре- зерный 6Т12	Гидротиски, на ладка двухпозици онная
020	Фрезеровать два торца в размер $\boldsymbol{\mathit{E}}$ окончательно	Горизонтально-фрезерный 6Т82Г	Приспособление универсально-на- ладочное с гидра влическим зажи мом
025	Зачистить заусенцы после фрезерования	Машина для снятия заусенцев	
030	Шлифовать две широкие поверхности в размер \mathcal{J} окончательно	Плоскошлифоваль- ный 3П722ДВ	Магнитная плита
035	Зачистить заусенцы и притупить острые кромки	Машина для снятия заусенцев	
040	Фрезеровать два платика в размер $T \times X$ окончательно. Сверлить, расточить и развернуть одно отверстие $\emptyset \ \mathcal{A}/\emptyset \ \mathcal{H}$ окончательно. Фрезеровать паз $\mathcal{U} \times \mathcal{U}$ окончательно, сверлить и зенковать одно отверстие $\emptyset \ \mathcal{A}/\emptyset \ \mathcal{M}$ окончательно, сверлить и зенковать одно отверстие $\emptyset \ \mathcal{A}/\emptyset \ \mathcal{M}$ окончательно.	Расточно-сверлиль- но-фрезерный с ЧПУ и инструменталь- ным магазином 2254ВМФ4	Наладка УСПС двухпозиционная
045	Сверлить одно отверстие Ø Э	Вертикально-свер- лильный 2H125-1	Кондуктор
050	Зачистить заусенцы	Вибрационная ма-	
055	Промыть деталь	Моечная машина	
060	Технический контроль		
065	Химическое оксидирование		
070	Нанесение антикоррозионного покрытия		

2. Маршрут обработки втулки

Размеры, мм

Вид заготовки — прокат. Материал — A12B. Число деталей из заготовки — 43

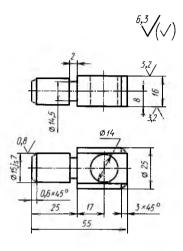

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Править пруток	Пресс И5526	
010	Отрезать групповую заготовку Ø 34 в размер 2000	Абразивно-отрезной 8Б242	Поддерживающее устройство
015	Заправить концы прутка фасками под угол 20°	Токарный ХС-151	
020	Центровать торен под сверление, сверлить и зенкеровать отверстие ⊘16 <i>H</i> 7 до	Токарный автомат 1E140	Наладка
	\emptyset 15,79 + 0,11 под развертывание, точить поверхность \emptyset 28e8 до \emptyset 28,4 - 0,13 под		
	пилифование, проточить канавки $b=3$ и $b=4.7$ H12, фаску окончательно. Отрезать		
	деталь в размер 40,5		
025	Промыть деталь	Моечная машина	i i
030	Навесить бирку с помером детали на тару		ь.
035	Подрезать второй торен в размер 40, точить и расточить фаски. Развернуть отверстие \emptyset 16 <i>H</i> 7(+0.018) окончательно	Токарно-револьвер- ный 1П340ПЦ	Патрон цанговый Вкладыш ∅28
040	Шлифовать поверхность $\emptyset 28e8({}^{-0.040}_{-0.073})$ с подцилифовкой торца окончательно	Круглошлифовальный 3M153E	Оправка, центры, хомутик, прибор активного контро-
045	Промыть деталь	Моечная машина	214
050	Технический контроль	Плита по ГОСТ 10905 – 75	
055	Нанесение покрытия ,		

Неуказанные предслыные отклонения размеров: валов h14, отверстий H14, остальных IT14

+ - 2

3. Маршрут обработки винта

Размеры, мм


Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 51

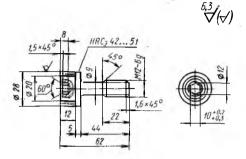
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Рубить пруток Ø16, выдерживая размер 3000	Пресс К9534	
010 015	Править пруток (по мере надобности) Заправить концы прутка фасками под угол 20°	Пресс И5526 Токарный ХС-150	
020	Точить шейку под резьбу $M10 \times 1,5-6g$ до $\emptyset 8,99^{-0.08}$ под накатывание, точить фаски, точить шейку $\emptyset 13,8$ под шестигранник. Отрезать деталь, выдерживая размер $45,5$	Автомат токарный 1Е125П	Цанговый патрон, групповая налад- ка
025	Подрезать второй торец, выдерживая размер 7, точить фаску	Токарный 16Т02П	Цанг овы й патро н
030	Фрезеровать шестигранник, выдерживая размер $S = 12^{-0.24}$ окончательно	Горизонтально-фре- зерный 6Р80Ш	Специальное прис-
035	Зачистить заусенцы	Вибрационная ма-	
040	Накатать резьбу $M10 \times 1,5-6g$, выдерживая размер 25	Резьбонакатный А9518	Нож
045	Промыть деталь	Машина моечная	
050	Навесить бирку с обозначением детали на тару		
055	Технический контроль	Плита по ГОСТ 10905 — 86	
060	Термообработка •		
065	Нанесение покрытия		
	T		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT14}{2}$.

4. Маршрут обработки стопора

Размеры, мм

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 30

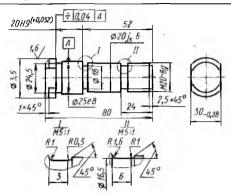

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Рубить пруток Ø26, выдерживая размер 3000	Пресс КБ9534	
010	Править пруток	Пресс И5525	
015	Заправить концы прутка фасками под угол 20°	Токарный ХС-151	
020	Точить шейки $\emptyset 15j_s$ 7($^{+0.046}_{-0.028}$) под шлифование, шейку \emptyset 25, канавку $b = 2$, фаску, отрезать деталь, выдерживая размер 55,5	Токарный автомат 1Е140П	Групповая на- ладка, цанговый патрон
025	Подрезать второй торец, выдерживая размер 55, точить фаску	Токарный 16Т02П	Цанговый патрон
030	Фрезеровать две лыски, выдерживая размер 16	Вертикально-фре- зерный 6T10	Приспособле- ние, наладка
035	Зачистить заусенцы	Вибрационная ма- шина ВМПВ-100	, , , ,
040	Сверлить отверстие Ø14 окончательно	Вертикально-свер- лильный 2H125-1	Кондуктор
045	Притупить острые кромки	Вибрационная ма- шина ВМПВ-100	
050	Шлифовать шейку \emptyset 15 j_s 7 окончательно	Бесцентрово-шлифо- вальный 3M182	
055	Промыть деталь	Машина моечная	TO TO
060	Навесить бирку с обозначением		
065	Технический контроль	Плита	-
070	Нанесение антикоррозионного покрытия		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных

 $\pm \frac{IT14}{2}$

5. Маршрут обработки виита

Размеры, мм

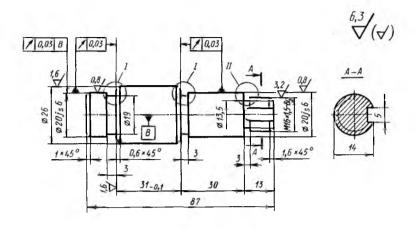

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 43

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Рубить пруток Ø 28, выдерживая размер 3000	Пресс КБ9534	
010	Править пруток	Пресс И5526	
015	Заправить концы прутка фасками под угол 20°	Токарный ХС-151	
020	Точить инейку под резьбу $M12-6g$ до $\emptyset 10.83-0.09$ под накатывание, точить шейки $\emptyset 9$: $\emptyset 20$ и фаски окончательно, отрезать деталь, выдерживая размер 62,5	Автомат гокарный 1Е140П	Групповая налад- ка, цанговый патрон
025	Подрезать второй торец, выдерживая размер 62, сверлить отверстие Ø 12 под шестигранник, выдерживая размер 8. Точить фаски	Токарный 16Т02П	Ц анго вый патрон
030	Прошить шестигранник, выдерживая размер $10^{+0.3}_{-0.3}$ окончательно	Пресс гидравличес- кий	Приспособление
035	Накатать резьбу M12-6g, выдерживая размер 22	Резьбонакатный А9518	Нож
040	Промыть деталь	Машина моечная	
045	Навесить бирку с обозначением детали на тару		ş
050	Технический контроль	Плита по ГОСТ 10905 – 86	34
055	Термическая обработка		
060	Нанесение антикоррозионного покрытия		

Неуказанные предельные огклонения размеров: валов h14, отверстий H14, остальных $\frac{IT14}{2}$.

6. Маршрут обработки оси

Размеры, мм


Вид заготовки – прокат, Материал – сталь 45. Число деталей из заготовки – **34**

Опе- рацня	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Рубить пруток Ø 36, выдерживая размер 3000	Пресс К9534	12 1
010	Править пруток	Пресс И5529	
015	Заправить концы прутка фаски под угол 20°	Токарный ХС-151	3
020	Подрезать и центровать торец, точить	Токарный автомат	r
ļ	шейку под накатывание резьб. M20 – 8g,	2Б240-6К	Н аладка
	точить шейки $\emptyset 20j_s 6$ $\binom{+0.065}{-0.065}$ и		1
	\emptyset 25e8 $\binom{-0.040}{-0.073}$ под шлифование, точить		*1 4
	шейку \emptyset 35, канавки $b = 3$ и канавку $b = 6$,		
	фаски, отрезать детань, выдерживая размер 81		
025	Подрезать второй торец, выдерживая	Токарный	Цанговый
	размер $8,3-0,1$, точить фаску и центро-	16Т02П	патрон
	вать торец		
030	Фрезеровать две лыски, выдерживая раз-	Горизонтально-	Приспособле-
025	мер 30-0,28 оконча гельно	фрезерный 6Р80Ш	ние, наладка
035	Зачистить заусенцы	Вибрационная ма- шина ВМПВ-100	
040	Накатать резьбу М20-8g окончательно	Резьбонакатный	Нож
040	Trakarara pessoy wizo-og okon-archisho	А9518	HOW
045	Термическая	11,310	· ·
050	Шлифовать поверхность $\emptyset 20j_s 6$ ($^{+0.065}_{-0.065}$)	Круглошлифо-	Центры, хомутик
	окончательно	вальный ЗУ10В	
055	Шлифовать поверхность \emptyset 25e8 $\binom{-0.040}{-0.073}$ с	Круглошлифоваль-	Центры, хомутик
	подшлифовкой торца Ø 35/Ø 25е8, выдер-	ный ЗУ10В	
	живая размер $20H9 (+0.052)$ окончательно		
060	Промыть деталь	Моечная машина	
065	Навесить бирку с обозначением детали		(4)
Į	на тару		· ·
070	Технический контроль	Плита	
075	Нанесение покрытия		- "

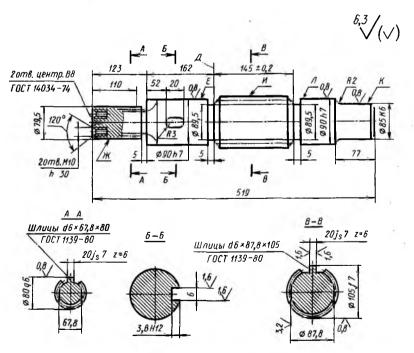
Неуказанные предельные отклонения размеров: валов h14, остальных $\pm \frac{IT14}{2}$

7. Маршрут обработки валика

Размеры, мм

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 31

Опе- рация	Содержанне или наименование операции	Станок, оборудование	Оснастка
005	Рубить пруток Ø 28, выдерживая размер 3000	Прес КБ 934	
010	Править пруток (по мере надобности)	Пресс И5526	
015	Заправить концы прутка фасками под угол 20°	Токарный ХС-151	
020	Подрезать и центровать торец, точить шейку под резьбу $M16 \times 1,5-8g$, шейку $\varnothing 20j_s$ ($^{+0.0065}_{-0.0065}$) под шлифование, $\varnothing 26$, $\varnothing 20j_s$ ($^{+0.0065}_{-0.0065}$) под шлифование, проточить три канавки $b=3$; точить фаски, отрезать деталь, выдерживая размер 88	Токарный автомат 1Б240-6 К	Наладка, цанго- вый патрон
025	Подрезать второй торец, выдерживая размер 12,8 ^{-0,1} , центровать торец и точить фаску	Токарный 16Т02П	Цанговый патрон
030	Фрезеровать шпоночный паз $b = 5$, выдерживая размер 14 окончательно	Шпоночно-фрезер- ный 6930	Станочные тиски
035	Зачистить заусенцы	Вибрационная ма- шина ВМПВ-100	
040	Накатать резьбы M16×1,5-8g	Резьбонакатный А9518	Нож
045	Шлифовать шейку \emptyset 20 j_s 6 ($^{+0,0065}_{-0,0065}$) с под- щлифовкой торца \emptyset 26/ \emptyset 20 j_s 6, выдерживая размер 30 окончательно	Круглошлифоваль- ный ЗУ10В	Центры, хомутик


Продолжение табл. 7

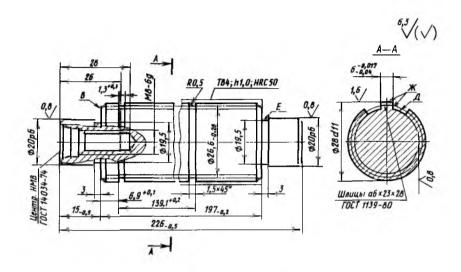
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
050	Шлифовать шейку \emptyset 20 j_s 6 ($^{+0.0065}_{-0.0065}$) с под- шлифовкой торца \emptyset 26/ \emptyset 20 j_s 6, выдерживая размер 13	Круглошлифоваль- ный ЗУ10В	Центры, хомутик
055 060	Промыть деталь Навесить бирку с обозначением детали на тару	Моечная машина	
065	Технический контроль	Плита по ГОСТ 10905—86	
070	Нанесение антикоррозионного покрытия		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\frac{IT14}{2}$.

8. Маршрут обработки шлицевого вала

Размеры, мм

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 1


Продолжение табл. 8

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку	Фрезерно-отрезной	Призматичес- кие тиски
010	Термическая обработка		
015	Фрезеровать торцы в размер 519 ± 0.2 и центровать с двух сторон одновременно	Фрезерно-центро- вальный 2Г942	Приспособление при станке
020	Точить: шейки Ø80g6 до Ø85; Ø90h7 до Ø95 и фаски	Токарный 16К20Ф3	Вращающийся центр, поводко- вый патрон
025	Точить: шейки Ø85k6 до Ø90, Ø90h7 до Ø95 и фаски Точить: щейки Ø80g6 до Ø80; Ø105f7 до Ø105,5h4, фаски, Ø90h6 до Ø90,5h4,	Токарный 16К20Ф3	То же
	проточить две канавки $B=5$	11-1	
030	Точить шейки Ø80g6 до Ø80,5h4; Ø90h6 до Ø90,5h14, фаски, канавки $B=5$	Токарный 16К20Ф3	» ;
035	Фрезеровать шпоночный паз 6	Шпоночно-фрезер- ный 6930	Самоцентрирую- пие тиски
040	Обработать два резьбовых отверстия M10 на глубину 10	Радиально-сверлиль- ный 2A554	Приспособление для сверления на торцах валов
045	Фрезеровать шесть шлицев в размер 20 <i>j</i> , до 87,8	Шлицефрезерный горизонтальный полуавтомат 5A352ПФ2	Центры, поводок
050	Фрезеровать шесть шлицев в размер $20j$, до \emptyset 67,8	То же	То же
055	Зачистить заусенцы	Механизированный верстак	3
060	Шлифовать шейки \varnothing 80g6, \varnothing 90h7, \varnothing 105f7; торец $\mathcal J$	Круглошлифоваль- ный 3М153ДФ2	Центры, поводок
065	Шлифовать шейки ∅85k6 и ∅90h7	То же	То же
070	Промыть деталь	Моечная машина	
075	технический контроль		***
080	Нанесение антикоррозионного покрытия		
		91 11 11	, i

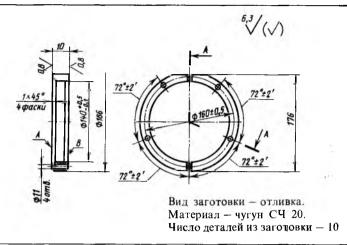
Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных IT14

9. Маршрут обработки шлицевого вала

Размеры, мм

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Править пруток Ø 32 × 6000	Пресс КБ 9534	Ролики, втулоч- ный штамп
010	Отрезать заготовку	Фрезерно-отрез- ной	
015	Фрезеровать торцы в размер 226-0,5 и центровать с двух сторон одновременно	Фрезерно-центро- вальный 2Г942	Приспособление при станке
020	Сверлить отверстия \emptyset 8,4, \emptyset 6,7 + 0,17 под резьбу M8 – 6 g , зенковать фаски, нарезать резьбу M8 – 6 g	Радиально-сверлиль- ный 2A554	Патрон
		1	1

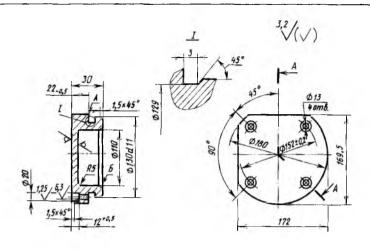

Продолжение табл. 9

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
025	Точить шейки \emptyset 28 dl1 до \emptyset 28,4 d11, \emptyset 20p6 до \emptyset 20,4d11, фаски, проточить канавки $B=3$ окончательно	Токарный 16К20Ф3	Вращающийся центр, поводковый патрон
030	Точить шейки \varnothing 20 $p6$ до \varnothing 20,4 d 11, фаски, проточить канавки $B=3$. Точить две канавки $B=1,3+0,3$	Токарный 16К20Ф3	То же
035	Фрезеровать шесть шлицев в размер $6,3d11$ до \emptyset 23,3 $d11$	Шлицефрезерный горизонтальный полуавтомат 5A352ПФ2	Удлиненный центр, поводко- вый центр
040	Зачистить заусенцы	Механизированный верстак	
045	Термическая	Установка ТВЧ	Индуктор
050	Шлифовать центровые фаски	Центрошлифоваль- ный МВ119	Приспособление при станке
055	Шлифовать шейки $\varnothing 20p6$, $\varnothing 28d$ 11 с подшлифовкой торца B окончательно	Круглошлифоваль- ный 3М153ДФ2	Удлиненный центр, поводок
060	Шлифовать шейку \varnothing 20 p 6 с подшлифовкой торца E окончательно	То же	То же
065	Шлифовать шесть плицев в размер $6^{-0.017}_{-0.04} \times \varnothing 23 \times \varnothing 28d$ 11	Шлицешлифовальный полуавтомат 3B451BФ20	Поводковый центр
070	Промыть деталь	Моечная машина	
075	Технический контроль		
080	Нанесеиие антикоррозионного покрытия •		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT14}{2}$.

10. Маршрут обработки компенсационного кольца

Размеры, мм

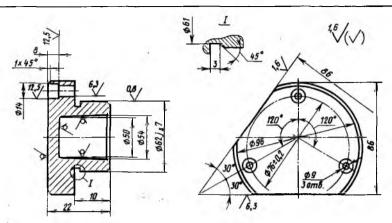


Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Очистка и обрубка отливки		
015	Подрезать торец окончательно, точить поверхность \emptyset 186, расточить отверстие \emptyset 140 $^{+0.5}_{+0.1}$ окончательно на длину 150,	Токарный патрон- ный полуавтомат КТ141	Трехкулачковый патрон
	точить и расточить фаски, отрезать деталь в размер 11		_
020	Подрезать второй торец в размер 10,4 под шлифование и точить фаски	Токарный патрон- ный полуавтомат КТ141	То же
025	Сверлить четыре отверстия \emptyset 11, фрезеровать лыску в размер 176	Многоцелевой вертикальный фрезерно-сверлильный ГФ2171	Наладка универ- сальной сборной переналаживае- мой оснастки (УСПО)
030	Шлифовать два торца в размер 10	Плоскошлифовальный с крестовым столом 3E721BФ3-1	Магнитная плита
035	Разрезать деталь на два полукольца	Горизонтально-фрезерный 6Т82Г	Специализиро- ванное приспособ- ление
040	Зачистить заусенцы	Верстак механизи-	
045	Промыть деталь	Машина моечная	
050	Технический контроль		
055	Нанесение антикоррозионного покрытия		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT}{2}$.

11. Маршрут обработки фланца

Размеры, мм

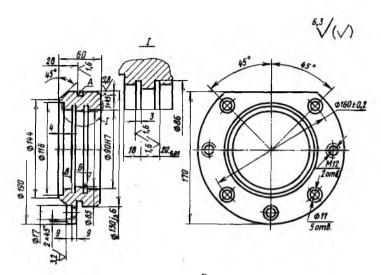

Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из загоговки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обрубка и очистка отливки		
015	Подрезать торцы A и B , точить поверхность $\emptyset 130d11$ окончательно, прогочить канавку $b=3$ и фаску	Токарный патрон- ный полуавтомат КТ141	Трехкулачковый патрон
020	Подрезать торец Ø180 и обточить поверхность по Ø180 окончательио технологически	То же	Трехкулачковый патрон
025	Сверлить и зенковать четыре отверстия \emptyset 13/ \emptyset 20, фрезеровать две лыски в размер 172 и 169,5	Многоцелевой свер- лильно-фрезерный 21105Н7Ф4	Наладка УСПО
030	Опилить острые кромки	Механизироваиный верстак	i
035	Промыть деталь	Моечная машина	
040	Технический контроль		1+1

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных h114.

12. Маршрут обработки фланца

Размеры, мм


Вид заготовки — отливка. Материал — СЧ 20. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обработка и очистка отливки		
015	Малярная		
020	Подрезать торец \emptyset 62 j_s 7/ \emptyset 54 и \emptyset 96/ \emptyset 62 j_s 7 окончательно, точить поверхность \emptyset 62 j_s 7 под шлифование, проточить канавку $B=3$ и фаски	Токарный патронный полуавтомат КТ141	Трехкулачковый пневматический патрон
025	Подрезать торец Ø96 и точить поверхность Ø96 (технологически)	Токарный патрон- ный полуавтомат КТ141	Трехкулачковый патрон
030	Сверлить и зенковать четыре отверстия \emptyset 9/ \emptyset 14, фрезеровать две лыски в размер 86	Многоцелевой свер- лильно-фрезерный 21105Н7Ф4	Наладка УСПО
035	Опиливать острые кромки	Верстак механизиро-	
040	Шлифовать поверхность \emptyset 62 j_s 7 с подшлифовкой торца \emptyset 96 j_s 7 окончательно	Универсально-шли- фовальный 3У131ВМ	Трехкулачковый патрон
045	Промыть деталь	Моечная машина	патроп
050	Технический контроль	1.200 man Muzimu	
055	Нанесение антикоррозионного покрытия		
	4		

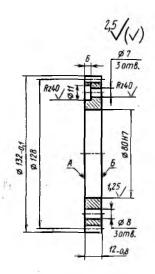
Неуказанные отклонения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT14}{}$.

13. Маршрут обработки стакана

Размеры, мм

Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из заготовки — 1

			_
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обрубка и очистка отливки		
015	Подрезать торцы $\emptyset 130j_56/\emptyset 90H7$ и A ,	Токарный патрон-	Трехкулачковый
	точить поверхность $\emptyset 130j_56$, расточить отверстия $\emptyset 85$ и $\emptyset 90H7$ с подрезкой	ный полуавтомат КТ141	пневматический патрон
	внутреннего торца Ø 90H7/Ø 85		l and post
020	Подрезать торцы Ø190 и Ø144/Ø116, об-	То же	Трехкулачковый
1	точить поверхности Ø 190 и коническую		патрон
	поверхность \emptyset 144 \times 45°		_
025	Термическая обработка	»	То же
030	Подрезать торец $\emptyset 130j_s6/\emptyset 90H7$ оконча-		
Ì	тельно, точить поверхности Ø 130ј₅6 с под-		
	резкой торца А под шлифование, фаски,		
ĺ	канавки окончательно. Расточить отверстие	-1	
- 1	Ø90 <i>H</i> 7 с подрезкой внутреннего торца		100
	\emptyset 90 <i>H</i> 7/ \emptyset 85 и отверстие \emptyset 85 под тонкое		
	растачивание, канавки 3 × Ø 96 оконча-		}
	тельно, притупить острые кромки		
035	Подрезать торец Ø144/Ø116, точить	»	Трехкулачковый
- 1	поверхность Ø 190, коиусную поверхность		пневматический
	\emptyset 144 × 45° окончательно. Расточить от-		патрон
ľ	верстия Ø90H7 с подрезкой внутреннего		
	торца Ø 90Н7/Ø 85 под тонкое растачива-		
ľ	ние выточки ∅116 и канавки 3 × Ø96		


Продолжение табл. 13

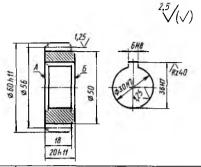
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
040	Сверлить пять отверстий \emptyset 11, два отверстия \emptyset 10,2 под резьбу M12, зенковать пять отверстий \emptyset 11/ \emptyset 17, фаски 2 × 24, нарезать резьбу M12. Фрезеровать лыски в размер 170	Многоцелевой вертикальный фрезерно-сверлильный ГФ2171	Наладка УСПО
045	Зачистить заусенцы	Машииа для снятия заусенцев	
050	Расточить два отверстия Ø90H7 с под- резкой торцов Б и В, отверстия Ø85 до Ø85H9 (технологически)	Алмазно-расточ- ный (специальный)	Установочное приспособление
055	Шлифовать \emptyset 130 j_5 6 с подшлифовкой торца 4	Круглошлифоваль- ный полуавтомат 3У131ВМ	Специальная оправка
060	Промыть деталь	Моечная машина	A
065	Технический контроль		
070	Нанесение антикоррозионного покрытия		

Неуказанные предельные отклоиения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT14}{2}$.

14. Маршрут обработки зубчатого колеса — венца

Размеры, мм

Вид заготовки — штамповка. Материал — сталь 40X. Число деталей из заготовки — 1

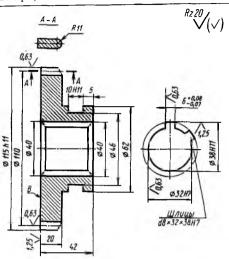

Продолжение табл. 14

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрезной 8В262	Тиски
010	Кузнечная	= 1	-
015	Термическая обработка	-	-
020	Подрезать торец \emptyset 132/ \emptyset 80 H 7, расточить отверстие \emptyset 80 H 7 под шлифование. Расточить фаски и отверстия	Токарно-винторез- ный 16К20	Трехкулачковый патрон
025	Подрезать второй торец \emptyset 132/ \emptyset 80 H 7 под шлифование, обточить наружную поверхность \emptyset 312 — 0,1 окончательно, расточить и обточить фаски	Токарно-винторез- ный 16К20	То же
030	Шлифовать отверстие \emptyset 80 H 7 и торец \emptyset 132/ \emptyset 80 H 7 предварительно	Внутришлифоваль- ный 3М227АФ2	»
035	Шлифовать второй торец \varnothing 132/ \varnothing 80 H 7 предварительно	Плоскошлифовальный 3Б740ВФ2	Магнитный стол
040	Промыть деталь	Моечная машина	1. A 2.
045	Технический контроль		
050	Фрезеровать 64 зуба ($m=2$) (установить по четыре детали)	Зубофрезерный 53A20B	Приспособление и наладка к нему
055	Зачистить заусенцы на торце зубьев	Одношпиндельный полуавтомат для снятия фасок 5Б525	Трехкулачковый патрон
060	Сверлить и зенковать три отверстия \emptyset 7/ \emptyset 11, сверлить три отверстия \emptyset 8 до \emptyset 7,9 под развертывание	Вертикально-свер- лильный с ЧПУ 2Р135Ф2-1	Наладка УСПО
065	Зачистить заусенцы после сверления	Вибробункер ВМПВ-100	
070	Промывать деталь	Моечная машина	
075	Технический контроль		
080	Нанесение антикоррозионного покрытия		

Торцовое биение поверхности A относительно оси отверстия — не более 0,02. Отклонение от параллельности поверхностей A и B — не более 0,02. Степень точности по ГОСТ 1643 — 81 7-X. Неуказанные фаски 0,5 × 45°.

15. Маршрут обработки зубчатого колеса

Размеры, мм


Вид заготовки — прокат. Материал — сталь 40. Число деталей из заготовки — 10

Опе- рация	Содержание или нанменование операции	Станок, оборудование	Оснастка
005 010 015	Отрезать заготовку Термическая обработка Подрезать торец Ø 60h11/Ø 30H7 предварительно. Сверлить и зенкеровать сквозное отверстие Ø 30H7 под протягивание. Точить поверхность Ø 60h11 до Ø 62. Точить и расточить фаски	Токарный полуав- томат с ЧПУ ҚТ141	Трехкулачковый патрон
020 025	Протянуть отверстие $\emptyset 30H7$ до $\emptyset 30$ Подрезать торцы $\emptyset 60h11/\emptyset 30H7$ и $\emptyset 50/\emptyset 30H7$ предварительно под шлифование. Точить поверхности $\emptyset 60h11$ и $\emptyset 50$ окончательно	Протяжной 7512 Токарно-винторез- ный 16Б16	Жесткая опора Специальная оправка
030 035	Технический контроль Долбить 28 зубьев $(m=2)$ предварительно под шлифование	Зубодолбежиый 5122B	То же
040	Зачистить заусенцы по торцам зубьев	Одношпиндельный полуавтомат 56525	»
045	Протянуть шпоночный паз $B=6H8$ окончательно	Протяжной 7512	Направляющая втулка
050	Зачистить заусенцы в шпоночном пазу	Машина для сня- тия заусенцев	-1
055 060 065	Промыть деталь Технический контроль Термическая обработка	Моечная машина	in the same of the same
070	Шлифовать сквозное отверстие \emptyset 30 <i>H</i> 7 и торец \emptyset 60 <i>h</i> 11/ \emptyset 30 <i>H</i> 7 окончательно	Внутришлифоваль- ный 3А227АФ2	,
075	Шлифовать торец \emptyset 50/ \emptyset 30 H 7 окончательно	Плоскошлифо- вальный 3Б740ВФ2	Магнитный стол
080	Шлифовать 28 зубьев ($m=2$) окончательно	Зубошлифовальный 5В833	Оправка
085 090 095	Промыть деталь Технический контроль Нанесение антикоррозионного покрытия	Моечная машина	3 - 5 - 5

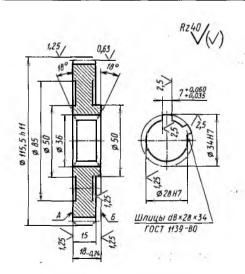
Торцовое биение поверхностей A и B относительно оси отверстия — не более 0,02. Степень точности по ГОСТ 1643—81 7-X. Фаски 1 \times 45°.

16. Маршрут обработки зубчатого колеса со шлицевым отверстием

Размеры, мм

Вид заготовки — штамповка. Материал — сталь 25ХГТ. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрезной 8В262	Тиски
010	Кузнечная		
015	Термическая обработка (отжиг)		
020	Подрезать торцы $\emptyset 115h11/\emptyset 62$ и $\emptyset 62/\emptyset 32H7$ предварительно. Обточить наружную поверхность $\emptyset 62$ предварительно. Обработать отверстие $\emptyset 32H7$ до $\emptyset 30$.	Токарный с ЧПУ КТ141	Трехкулачковый патрон
	Обточить и расточить фаски	İ	ζ. χ.
025	Подрезать торец Ø115h11/Ø32H7 предварительно. Обточить наружную поверхность Ø115h11 предварительно. Обточить и расточить фаски, выточку Ø42	То же	То же
030	• /-	Протаниой 7512	Жесткая опора
030	Протянуть восьмишлицевое отверстие	Протяжной 7512	Тесткая опора
035	\emptyset 32 $H7 \times \emptyset$ 38 $H11 \times$ 6 H под шлифование Подрезать торец \emptyset 115 $h11/\emptyset$ 62 окончательно, торцы \emptyset 62 $/\emptyset$ 32 $H7$ и \emptyset 115 $h11/\emptyset$ 32 $H7$ под шлифование. Обточить наружную поверхность \emptyset 62 окончательно и поверхность \emptyset 115 $h11$ под шлифование. Проточить паз $B = 10H11$ под шлифование. Обточить фаски	Токарный с ЧПУ КТ141	Специальная оправка
040	Технический контроль	-	
045	Фрезеровать 44 зуба ($m = 2,5$) под шлифование (по две детали)	Зубофрезерный 53А20В	Приспособление
050	Закруглить 44 зуба ($m=2,5$) окончательно	Зубозакругловочный полуавтомат 5E580	»
055	Зачистить заусенцы на торцах зубъев	Одношпиндельный	Трехкулачковый
		полуавтомат для	патрон
	4	снятия фасок 5Б525	


Продолжение табл. 16

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
060	Калибровать восьмишлицевое отверстие	Пресс ЛС6-НА	Подставка
065	Термическая обработка		
070	Шлифовать наружную поверхность \emptyset 115 h 11 и торец \emptyset 115 h 11/ \emptyset 32 H 7 окончательно	Круглошлифоваль- ный 3Т161Д	Грибковая оправка
075	Шлифовать отверстие \emptyset 32 H 7 и торец \emptyset 62/ \emptyset 32 H 7 окончательно	Внутришлифоваль- ный 3А227АФ2	Приспособление
080	Шлифовать паз $B = 10H1$ окончательно	Круглошлифоваль- ный 3У131ВМ	Оправка
085	Шлифовать боковые стороны шлицев окончательно	Специальный	Трехкулачковый патрон
090	Шлифовать 44 зуба ($m=2,5$) окончательно	Зубошлифовальный 5В833	Оправка
095	Промывать деталь	Моечная машина	
100	Технический контроль		
105	Нанесение антикоррозионного покрытия		1.0

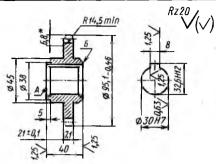
Нитроцементовать на глубину 0,3-0,5 до твердости $HRC_{_{9}}$ 56-60. Степень точности по ГОСТ 1643-81 7-X.

17. Маршрут обработки зубчатого сменного колеса

Размеры, мм

Вид заготовки — штамповка. Материал — сталь $40 X \Phi A$. Число деталей из заготовки — 1

Продолжение табл. 17

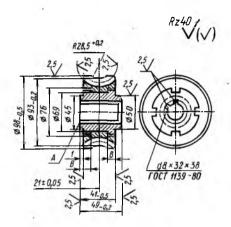

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрезной 8В262	Тиски
010	Кузнечная		: '
015	Термическая обработка	1	
020	Подрезать торцы Ø 50/Ø 28H7; Ø 115,5h11/ Ø 50. Точить поверхность Ø 115,5h11 предварительно. Расточить сквозное отверстие Ø 28H7 предварительно. Точить выточки Ø 85/Ø 50 окончательно. Рас-	Токарный с ЧПУ 1П756ДФ3	Трехкулачковый патрон
	точить фаски		4.0
025	Точить поверхность \emptyset 115,5 h 11 предварительно. Подрезать торец \emptyset 115,5 h 11/ \emptyset 28 H 7 предварительно. Точить и расточить фаски. Точить выточку \emptyset 85/ \emptyset 50	То же	То же
030	окончательно Протянуть шестишлицевое отверстие \emptyset 28 $H7 \times 34 H7 \times 7 \times 34$	Горизонтально-про- тяжной 7512	Жесткая опора
035	Подрезать торцы Ø115,5h11/Ø28H7 и Ø50/Ø28H7 предварительно под шлифование, торец Ø115,5h11/Ø50 окончательно. Точить фаски окончательно	Токарный с ЧПУ 16К20Ф3	Центровая оправка
040	Фрезеровать 64 зуба ($m = 1,75$) предварительно под шлифование	Зубофрезерный 53A20B	Приспособление
045	Зачистить заусенцы на торцах зубьев	Полуавтомат для снятия фасок 5Б525	Оправка
050	Промыть деталь	Моечная машина	
060	Термическая обработка	1	
065	Калибровать шестишлицевое отверстие \emptyset 28 $H7 \times 34 H7 \times 7 M$	Пресс	Подставка
070	Шлифовать поверхность \emptyset 115,5 h 11 и торец \emptyset 115,5 h 11/ \emptyset 50 окончательно	Круглошлифоваль- ный 3Т153	Оправка
075	Шлифовать отверстие Ø 28 <i>H</i> 7 и торец Ø 115,5/Ø 28 <i>H</i> 7 окончательно	Внутришлифоваль- ный 3А227АФ2	Приспособление
080	Шлифовать торец Ø 50/Ø 28 H7 окончательно	Плоскошлифоваль- ный 3Б740ВФ2	Магнитный стол
085	Шлифовать 64 зуба $m=1,75$ предварительно	Зубошлифовальный 5В833	Оправка
090	Шлифовать 64 зуба ($m=1,75$) окончательно	То же	»
095	Промыть деталь •	Моечная машина	"
100	Технический контроль		
105	Нанесение антикоррозионного покрытия		

Зубья обработать ТВЧ на глубину 1-3 до твердости HRC, 45-50. Торцовое биение поверхностей A и E относительно оси шлицевого отверстия—не более 0.02.

Степень точности по ГОСТ 1643-81 6-X. Фаски $0.5 \times 45^{\circ}$.

18. Маршрут обработки звездочки

Размеры, мм


Вид заготовки — штамповка. Материал — сталь 45. Число деталей из заготовки — 1.

Опе- рация	Содержание или наименование операцин	Станок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрез- ной 8Б262	Тиски
010	Кузнечная		
015	Термическая обработка	- 3	
020	Подрезать торцы Ø95,1/Ø45 и Ø45/	Токарный полу-	Трехкулачковый
	Ø 30H7 предварительно. Обточить наруж-	автомат с ЧПУ	патрон
	ную поверхность \emptyset 95,1 – 0,46 и \emptyset 45 пред-	KT141	-
	варительно. Расточить и обточить фаски	-4e 1	
025	Подрезать торцы $\emptyset 38/\emptyset 30H7$ и $\emptyset 95,1/$	То же	То же
	Ø 45 предварительно. Обточить наружные	- 1	
	поверхности Ø 38 и Ø 45 предварительно.		
l	Расточить и обточить фаски		
030	Протянуть отверстие $\emptyset 30H7$	Горизонтально-	Жесткая опора
		протяжной 7512	
035	Протянуть паз $B = 8H9$ окончательно	Горизонтально-	Направляющая
ı		протяжной 7512	втулка
040	Подрезать торцы $\emptyset 38/\emptyset 30H7$ и $\emptyset 95,1/$	Токарный с ЧПУ	Специальная
ł	Ø 45 окончательно. Обточить наружные	16Б16Ф3	оправка
	поверхности \emptyset 38, \emptyset 45, \emptyset 95,1 – 0,46 и		72 Y
	R = 14,5 окончательно. Расточить и обто-	4 4 44	
	чить фаски	The wife a	1 . 2
045	Технический контроль		
050	Фрезеровать 22 зуба ($m = 12,7$) окончатель-	Зубофр е зерн ый	Приспособление
	но	53A20B	
055	Зачистить заусенцы	Вибробункер	
060	Промыть деталь	Моечная машина	
065	Технический контроль		15.
070	Термическая обработка	Установка ТВЧ	Индукто р
075	Шлифовать отверстие Ø30H7	Внутришлифоваль-	Трехкул ачковый
1	окончательно	ный 3А227АФ2	патрон
080	Промыть деталь	Моечная машина	
085	Технический контроль		143.
090	Нанесение антикоррозионного покрытия		

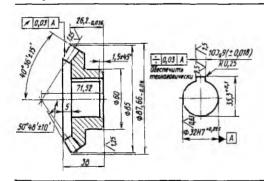
Зубъя обработать ТВЧ на глубину 1-3 до твердости HRC_3 45-50. Торцовое биение поверхностей A и B относительно оси отверстия — не более 0,05. Класс точности — 2-й, шаг сопрягаемой цепи — 12,7, диаметр ролика — 8,51. Фаски $1 \times 45^\circ$.

19. Маршрут обработки червячного колеса из биметалла

Размеры, мм

Вид заготовки — отливка. Материал — бронза А9Ж3А, сталь 45. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Стаиок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрезной 8В262	Тиски
010	Подрезать торцы Ø 45/Ø 32H7, Ø 76/Ø 45 предварительно. Обточить наружные поверхности Ø 76 и Ø 69 окончательно. Сверлить отверстие Ø 32H7 предварительно. Расточить и обточить фаски	Токарный полу- автомат с ЧПУ КТ141	Трехкулачковый патрон
015	Подрезать торцы \emptyset 50/ \emptyset 32 <i>H</i> 7 и \emptyset 76/ \emptyset 50 предварительно. Обточить наружную поверхность \emptyset 76 окончательно. Расточить и обточить фаски	Токарный полуавто- мат с ЧПУ КТ141	То же
020	Фрезеровать четыре паза $B = 8$ на глубину 2 окончательно	Вертикально-фрезер- ный 6Т82Г	Делительная го- ловка, оправка
025	Зачистить заусенцы	Вибробункер	ловка, оправка
030	Залить бронзой	виоробункер	
035			
040	Обрубить и очистить отливку Подрезать торцы и обточить наружный \emptyset 98 — 0,5 предварительно. Расточить отверстие \emptyset 32 H 7 под протягивание. Расточить и обточить фаски	Токарный с ЧПУ КТ141	Трехкулачковый патрон
045	Протянуть восьмишлицевое отверстие \emptyset 32 × 38 × 8 окончательно	Горизонтально- протяжной 7512	Жесткая опора
050	Подрезать торцы \emptyset 45/ \emptyset 32 <i>H</i> 7, \emptyset 50/ \emptyset 32 <i>H</i> 7 предварительно, торцы \emptyset 98 – 0,5/ \emptyset 45 и \emptyset 98 – 0,5/ \emptyset 50 окончательно Обточить наружную поверхность \emptyset 98 – 0,5	Токарный с ЧПУ КТ141	Специальная оправка
	предварительно и наружную поверхность Ø 50 окончательно. Расточить и обточить фаски	÷ ÷	


Продолжение табл. 19

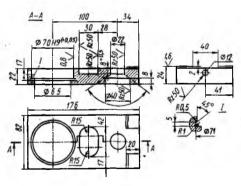
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
055	Подрезать торцы Ø45/Ø32H7 и Ø50/ Ø32H7 окончательно. Обточить наружную поверхность Ø98−0,5 и радиус окончательно	Токарно-винторез- ный с ЧПУ 16К20Ф3	Центровая оправка
060	Технический контроль		
065	Фрезеровать 29 зубьев $(m=3)$ под шевингование	Зубофрезерный 53А20В	Приспособление
070	Зачистить заусенцы	Верстак	
075	Шевинговать 29 зубьев $(m=3)$ окончательно	Шевинговальный 5Б702В	~ »
080	Моечная	Моечная машина	
085	Технический контроль		
090	Нанесение антикоррозионного покрытия		

Стелень точности по ГОСТ 3675-81 7-Х.

20. Маршрут обработки коинческого зубчатого колеса прямозубого

Размеры, мм

Вид заготовки — прокат. Материал — сталь 45. Число деталей из заготовки — 1


Опе- рация	Содержание или наименование операции	Стаиок, оборудоваине	Оснастка
005	Отрезать заготовку	Абразивно-отрезной 8Б262	Тиски
010	Кузнечная		
015	Термическая обработка		
020	Подрезать торцы $\emptyset 60/\emptyset 32H7$ и $\emptyset 87,66/$	Токарный полу-	Трехкулачковый
1	Ø 66 предварительно. Точить поверхность	автомат с ЧПУ	патрон
	Ø 60 предварительно. Сверлить, зенке-	KT141	
	ровать, развернуть отверстие Ø32H7		
	предварительно. Расточить и точить		1.0
	фаски	i	
025	Подрезать торец \emptyset 87,66/ \emptyset 32 <i>H</i> 7. Точить поверхность \emptyset 87,66 предварительно	Токарный полу- автомат с ЧПУ КТ141	Трехкулачковый патрон

Продолжение табл. 20

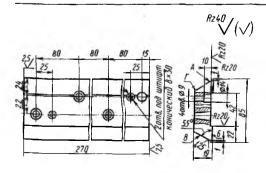
Опе- рация	Содержание илн наименование операции	Станок, оборудоваиие	Осиастка
030	Протянуть шпоночный паз $B=10j_s9$ окончательно	Горизонтально- протяжной 7512	Жесткая опора
035	Опилить заусенцы на шпоночном пазу	Вибробункер	
040	Подрезать торец \emptyset 60/ \emptyset 32 <i>H</i> 7 предварительно, торец \emptyset 87,66/ \emptyset 60 и точить поверхности \emptyset 60, \emptyset 87,66 окончательно	Токарный полу- автомат с ЧПУ КТ141	Трехкулачковый патрон
045	Подрезать торец Ø 87,66/Ø 32 <i>H</i> 7 предварительно	Токарный с ПУ КТ141	Трехкулачковый патрон
050	Контроль		
055	Строгать 35 зубьев ($m = 2,5$) под шлифование	Зубострогальный 5T23B	Оправка
060	Зачистить заусенцы на зубьях	Вибробункер	
065	Шлифовать торец $\emptyset 60/\emptyset 32H7$ окончательно и отверстие $\emptyset 32H7$ окончательно	Внутришлифоваль- ный	Трехкулачковый патрон
· 070	Шлифовать торец \varnothing 87,66/ \varnothing 32 <i>H</i> 7 окончательно	Плоскошлифоваль- ный 3Б740	Магнитный стол
075	Шлифовать 35 зубьев ($m=2,5$) окончательно	Зубошлифовальный 58П70В	Оправка
080	Промыть деталь	Моечная машина	
085	Технический контроль		9.4
090	Нанесение антикоррозионного покрытия	! 	

21. Маршрут обработки плаики

Размеры, мм

Вид заготовки — полоса. Материал — сталь 45. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку из полосы	Абразивно-отрез- ной автомат 8В262	Тиски
010	Навесить бирку с номером детали на тару		


Продолжение табл. 21

Опе- рация	Содержанне или наименование операции	Станок, обо р удование	Оснастка
015	Фрезеровать две широкие поверхности в размер 24,3 под шлифование и две поверхности в размер 82 окончательно	Вертикально-фре- зерный 6Т12	Гидротиски Двухпозиционная наладка
020	Фрезеровать два торца в размер 175 окончательно	Горизонтально фрезерный 6Т82Г	Универсально- наладочное прис- пособление с гид-
7.7	* * **		равлическим за-
025	Зачистить заусенцы после фрезерования	Машина для снятия заусенцев	
030	Шлифовать две широкие поверхности в размер 24 окончательно	Плоскошлифовальный 3П722ДВ	Магнитная плита
035	Зачистить заусенцы и притупить острые кромки	Машина для снятия заусенцев	
040	Фрезеровать два платика в размер $20 \times 40 \times 2$ окончательно. Сверлить, расточить и развернуть одно отверстие $65/271/370$ окончательно, фрезеровать	Расточно-сверлиль- но-фрезерный с ЧПУ и инструмен- тальным магазином	Наладка УСПО двухпозиционная
	паз $B = 30$ и $h = 8 + 0.5$ окончательно, сверлить и зенковать одно отверстие \emptyset 22/ \emptyset 45 окончательно	2254ВМФ4	
045	Сверлить одно отверстие Ø12	Вертикально-свер- лильный 2H125-1	Кондуктор
050	Зачистить заусенцы	Машина для сня- тия заусенцев	- 4
055	Промыть деталь	Моечная машина	12,12,12,12
060	Технический контроль		9 4 44 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
065	Химическое оксидирование		
070	Нанесение антикоррозионного покрытия		

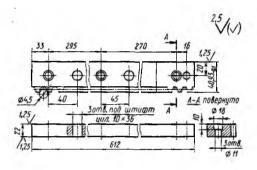
Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\frac{IT14}{2}$.

22. Маршрут обработки направляющей со скосом под углом 55

Размеры, мм

Вид заготовки — поковка. Материал — сталь 45. Число деталей из заготовки — 1

Продолжение табл. 22


Опе- рация	Содержание или наименование операции	Стан о к, оборудование	Оснастка
005	Отрезать заготовку	,	
010	Кузнечная	4:	4.
015	Термическая обработка		, ,
020	Фрезеровать две широкие плоскости в размер 19,5 под шлифование и две боковые плоскости в размер 83 окончательно	Вертикально-фрезерный 6Т12	Универсально-на- ладочное приспо- собление с гид- равлическим за- жимом
025	Фрезеровать занижение $B=42$ в размер 1,25 окончательно	То же	Приспособл е ние
030	Фрезеровать два горца в размер 270 окончательно	Горизонтально- фрезерный 6Т82Г	»
035	Фрезеровать два скоса под углом 55° под шлифование	Горизонтально- фрезерный 6Т82Г	、
040	Сверлить и зенковать четыре отверстия \emptyset 9/ \emptyset 14 и два отверстия \emptyset 8 под конический штифт	Вертикально-свер- лильный с ЧПУ 2Р135Ф2-1	Наладка УСПО
045	Зачистить заусенцы	Машина для зачист- ки заусенцев	.\$
050	Шлифовать две широкие плоскости предварительно	Плоскошлифоваль- ный 3П722ДВ	Магнитная плита
055	Шлифовать два скоса под углом 55°	Плоскошлифоваль- ный 3П722ДВ	Двухпозиционное приспособление
060	Термическая обработка		
065	Шлифовать две широкие плоскости в размер 19 окончательно (непараллельность не более 0,025)	Плоскошлифоваль- ный 3П722ДВ	Магнитная плита
070	Шлифование двух скосов под углом 55° окончательно	Плоскошлифоваль- ный 3П722ДВ	Двухпозиционное приспособление
075	Промывка детали	Моечная машина	
080	Технический контроль		

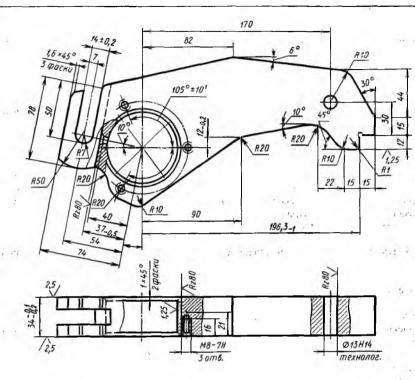
Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных IT14

 $[\]pm \frac{IT14}{2}$

23. Маршрут обработки зубчатой рейки

Размеры, мм

Вид заготовки — поковка. Материал — сталь 45. Число деталей из заготовки — 1


Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Отрезать заготовку	Абразивно-отрез- ной 8В262	Тиски
010	Кузнечная		
015	Термическая	1	
020	Фрезеровать две плоскости заготовки в размеры 27 и 47 предварительно	Вертикально-фре- зерный 6Т12	»
025	Фрезеровать две плоскости в размеры 25 и 44 предварительно	То же	Специализиро- ванное двухпози- ционное приспо- собление с гидра- влическим зажи- мом
030	Фрезеровать два торца предварительно	Горизонтальио-фрезерный 6Т82Г	Универсально-на- ладочное приспо- собление
035	Термическая обработка		v
040	Строгать плоскость 40×612 в размер 26 и плоскость 22×612 в размер 43 под шлифование	Поперечно-стро- гальный 3710Д	Специализированное двухпозиционное приспособление. Смениая наладка
045	Строгать вторую плоскость 40×612 в размер 22,8 и плоскость зубьев в размер 41 под шлифование	То же	
050	Фрезеровать два торца в размер 612 окончательно	Горизонтально-фрезерный 6Т82Г	Универсально- наладочное прис- пособление. Смен- ная наладка
055	Зачистить заусенцы, притупить острые кромки	Машина для снятия заусенцев	

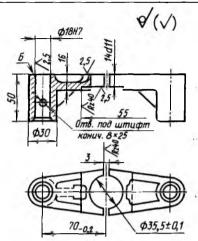
Содержание или наименование операции «	Станок, оборудовани е	Оснастка
Сверлить и зенковать три отверстия Ø 9,8 под штифты и сверлить и зенковать три отверстия Ø 11/Ø 18	Вертикально-свер- лильный с ЧПУ 2Р135Ф2-1	Наладка УСПО
	_	
22,6-0,1 предварит е льно	ный 3П722ДВ	Магнитная плита
размер 22,4 - 0,1 (комплектно со стыкуемой	То же	То же
Шлифовать плоскость 22×612 в размер	»	Приспособление, опорная планка
Шлифовать вторую плоскость 22×612 в размер 40,5-0,1 предварительно	»	Магнитная плита
Зачистить острые кромки	Машина для снятия заусенцев	
Долбить зубья ($m = 2,5$) предварительно	Зубодолбежный ЕЗ-9В	Специализиро- ванное приспособ- ление
Зачистить заусенцы после зубодолбления	Машина для сня- тия заусенцев	
Термическая – старение в масле 24 ч		
Шлифовать боковую плоскость 40×612 в размер 22,2 окончательно	Плоскошлифовальный прецизионный 3E711AФ1	Магнитная плита
Шлифовать вторую боковую плоскость окончательно комплектно со стыкуемой леталью	То же	То же
Шлифовать плоскость, противоположную	»	Приспособление
Шлифовать плоскость со стороны зубьев в размер 40 окончательно комплектно со	»	Магнитная плита
стыкуемой деталью Опилить острые кромки	Машина для снятия	
· ·	заусенцев	
Долбить зубья $(m=2,5)$ окончательно	Зубодолбежный ЕЗ-9В	Приспособление
Зачистить заусенцы после зубодолбления	Машина для снятия заусенцев	٠.,
Промыть деталь) 1-
	William Manning	
Антикоррозионная обработка		
	Операции в Операции в Операции в Операции в Операции в Операции в Операцить и зенковать три отверстия № 9,8 под штифты и сверлить и зенковать три отверстия № 11/№ 18 Термическая обработка Шлифовать плоскость 40 × 612 в размер 22,6 - 0,1 предварительно Шлифовать вторую плоскость 40 × 612 в размер 22,4 - 0,1 (комплектно со стыкуемой деталью) предварительно Шлифовать плоскость 22 × 612 в размер 40,8 - 0,1 предварительно Шлифовать вторую плоскость 22 × 612 в размер 40,5 - 0,1 предварительно Зачистить острые кромки Долбить зубья (т = 2,5) предварительно Зачистить заусенцы после зубодолбления Термическая — старение в масле 24 ч Шлифовать боковую плоскость 40 × 612 в размер 22,2 окончательно Шлифовать вторую боковую плоскость окончательно комплектно со стыкуемой деталью Шлифовать плоскость, противоположную зубьям, в размер 40,2 - 0,01 окончательно Шлифовать плоскость со стороны зубьев в размер 40 окончательно комплектно со стыкуемой деталью Опилить острые кромки Долбить зубья (т = 2,5) окончательно Зачистить заусенцы после зубодолбления Промыть деталь Технический контроль	Операции в оборудование Сверлить и зенковать три отверстия Ø 9,8 под штифты и сверлить и зенковать три отверстия Ø 11/Ø 18 Термическая обработка Шлифовать плоскость 40×612 в размер 22,6−0,1 предварительно Шлифовать вторую плоскость 40×612 в размер 22,4−0,1 (комплектно со стыкуемой дегалью) предварительно Шлифовать плоскость 22×612 в размер 40,8−0,1 предварительно Шлифовать вторую плоскость 22×612 в размер 40,5−0,1 предварительно Зачистить острые кромки Долбить зубья (m = 2,5) предварительно Вачистить заусенцы после зубодолбления Термическая − старение в масле 24 ч Шлифовать боковую плоскость 40×612 в размер 22,2 окончательно Шлифовать вторую боковую плоскость окончательно комплектно со стыкуемой деталью Шлифовать плоскость, противоположную зубьям, в размер 40,2−0,01 окончательно комплектно со стыкуемой деталью Плоскошлифовальный зЕ711АФ1 То же Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев » Машина для снятия заусенцев масичательно комплектно со стыкуемой деталью Опилить острые кромки Долбить зубья (m = 2,5) окончательно Зачистить заусенцы после зубодолбления Промыть деталь Технический контроль

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\frac{IT}{2}$.

24. Маршрут обработки рычага

Размеры, мм

Вид заготовки — лист. Материал — сталь 20X. Число деталей из заготовки — 1


			**
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Вырезать заготовку из листа	Машина с ЧПУ для вырезки	4.5
010	Навесить бирку с номером детали иа тару		
015	Шлифовать две плоскости <i>В</i> в размер 34,5 предварительно	Плоскошлифоваль- ный с круглым выд-	Магнитный стол
		вижным столом и вертикальным шпин- делем повышенной точности 3E756Ф2	sen da
020	Обработать отверстие Ø65H7 до Ø64,5 и отверстие Ø13H14 до Ø13H9 (технологически)	Вертикальный расточно-сверлильно- фрезерный с ЧПУ и инструментальным магазином	Наладка УСПО
	The second control of the second control of	2256ВМФ2	***************************************

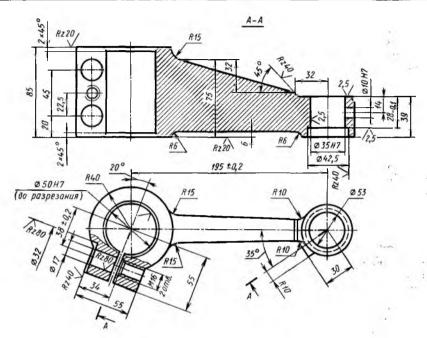
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
025	Фрезеровать контур детали окончательно, паз $B = 14 + 0.2$ окончательно, три фаски $1.6 \times 45^{\circ}$ и паз $B = 18^{+0.4}_{+0.1}$ окончательно. Сверлить отверстие \emptyset 5 под выход круга	Вертикальный кон- сольный фрезерный с ЧПУ и инструмен- тальным магазином ГФ2171	Наладка УСПО
030	Фрезеровать уступ по размерам 15 и 12 под шлифование	Горизонтальный консольно-фрезер- ный 6Т82Г	Приспособление
040	Зачистить заусенцы	Машина для снятия заусенцев	* ,,)
045	Сверлить и нарезать резьбу M8 – 7H в трех отверстиях окоичательно	Вертикальный свер- лильный с ЧПУ 2Р135Ф2-1	Наладка УСПО
050	Сверлить отверстие Ø6, рассверлить отверстие Ø12, зенковать фаску окончательно	Радиально-сверлиль- ный 2К52-1	Кондуктор
055	Термическая обработка		
060	Шлифовать две плоскости в размер $34^{-0.1}_{-0.2}$ окончательно	Плоскошлифовальный с горизонтальным шпинделем и прямоугольным столом 3E711BФ2	Магнитная плита
065	Расточить отверстне Ø 65H7 окончательно	Координатно-расточный 2431С	Нормальный крепеж
070	Шлифовать уступ 15 × 12 предварительно	Плоскошлифовальный с горизонтальным шпинделем и крестовым столом 3E711BФ2	Приспособление
075	Шлифовать уступ 15×12 окончательно	То же	» »
080	Полировать деталь		
085	Промыть деталь	Моечная машина	
090	Технический контроль	2	
095	Нанесение антикоррозиоиного покрытия		

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных IT14

25. Маршрут обработки вилки

Размеры, мм

Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из заготовки — 2


Опера- ция	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье	. San	
010	Очистка и обрубка отливки		
015	Малярная		
020	Навесить бирку с номером детали на тару		
025	В первой позиции: фрезеровать плоскость прилегания с припуском под шлифование. Сверлить, расточить и развернуть два	Вертикально-фре- зерный с ЧПУ и инструментальным	Наладка УСПО двухпозиционная четырехместная
	отверстия \emptyset 18 <i>H</i> 7, расточить отверстие \emptyset 35,5 \pm 0,1 окончательно.	магазином ГФ2171	9.5 mg = 1
	Во второй позиции: фрезеровать щечки в		
	размер 14,2 под шлифование, зенковать		400
00.5	фаски $1 \times 45^{\circ}$ в двух отверстиях $\emptyset 18H7$		**
035	Сверлить одно отверстие Ø8 под штифт	Вертикально-свер- лильный 2H125-1	Кондуктор
040	Притупить острые кромки	Машина для сня-	
	3	тия заусенцев	
045	Термическая обработка		0.57**
050	Шлифовать плоскость прилегания окончательно	Плоскошлифоваль- ный 3П722ДВ	Приспособление
055	Шлифовать вторую сторону щечки в размер $14d11$	То же	Магнитная плита
060	Притупить острые кромки	Машина для сня- тия заусенцев	
065	Промыть деталь	Моечная машина	75
070	Технический контроль		140
075	Антикоррозионная обработка		

Неуказанные предельные отклонения размеров: валов h11, отверстий H14, остальных IT14

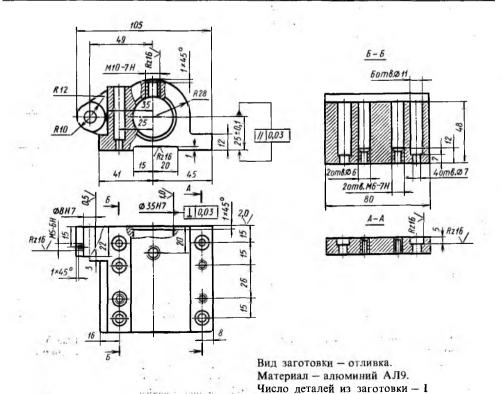
± 1114

26. Маршрут обработки рычага

Размеры, мм

Вид заготовки — отливка. Материал — сталь 45Л. Число деталей из заготовки — 1

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обрубка и очистка отливки		
015	Фрезеровать титники	Вертикально-фрезерный консольный 6T13	Тиски
020	Навесить бирку с номером детали		
025	Фрезеровать нижнюю плоскость с припуском под шлифование	То же	Приспо собление
030	Шлифовать нижнюю плоскость оконча- тельно	Плоскошлифовальный с прямоугольным столом и горизонтальным шпинделем повышенной точности 3П722ДВ	
035	В первой позиции: фрезеровать поверхности бобышек в размер 85 и 39 окончательно, расточить отверстия \emptyset 50 <i>H</i> 7, \emptyset 35 <i>H</i> 7 и фаски окончательно; зенковать выточку \emptyset 42,5 окончательно. Во второй	Многоцелевой (сверлильно-фрезерно-расточный) вертикальный высокой точности 2256ВМФ4	Наладка УСПО двухпозиционная

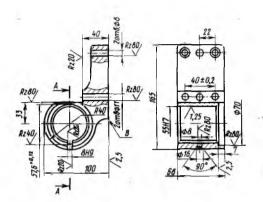

Продолжение табл. 26

Опе- рация	Содержание или на операци		Станок, оборудование	Оснастка
	позиции: обработать дв \emptyset 17/M16 и одно отвер тельно, фрезеровать паз но	стие М12 оконча-	***:	Ì
040	Обработать отверстие тельно	Ø 10 <i>H</i> 7 оконча-	Радиально-свер- лильный 2К52-1	Кондуктор
045	Зачистить заусенцы		Машина для снятия заусенцев	
050 055	Моечная Технический контроль	e w seldern y	Моечная машина	*

Неуказанные предельные отклоиения размеров: валов h14, отверстий H14, остальных $\frac{IT14}{2}$.

27. Маршрут обработки кронштейна

Размеры, мм

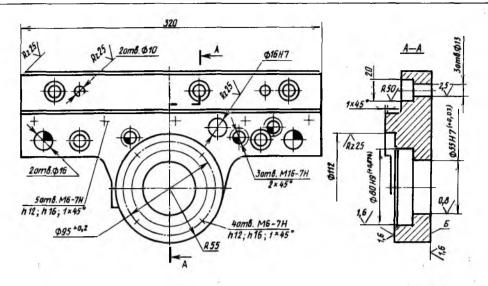

Продолжение табл. 27-

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обрубка и очистка отливки		
015	Навесить бирку с иомером детали		
020	Фрезеровать поверхность прилегания предварительно	Вертикально-фрезер- ный 6Т13	Приспособление
025	Фрезеровать торец отверстия \emptyset 35H7 предварительно, расточить отверстие \emptyset 35H7 предварительно	Многоцелевой с ЧПУ и инструмен- тальным магазином ИР320МФ4	Наладка УСПО двухместная
030	Притупить острые кромки	Машина для снятия заусенцев	
035	Термическая обработка		
040	Фрезеровать торец отверстия \emptyset 35H7 окончательно, расточить и развернуть отверстие \emptyset 35H7 окончательно, сверлить, расточить и развернуть отверстие \emptyset 8H7 окончательно	Многоцелевой с ЧПУ и инструментальным магазином ИР320МФ4	Наладка УСПО
045	В первой позиции: фрезеровать поверхность прилегания и паз $B=35(15+20)$ окончательно, сверлить четыре отверстия \emptyset 7, два отверстия \emptyset 6, сверлить и нарезать резьбу в двух отверстиях $M6-7H$. Во второй позиции: зенковать четыре отверстия \emptyset 7 до \emptyset 11 окончательно, рассверлить два отверстия \emptyset 6 до \emptyset 11 окончательно, зацентровать, сверлить и нарезать резьбу $M10-7H$ окончательно	То же	Наладка УСПО двухпозиционная
050	Притупить острые кромки	Машина для снятия заусеиец	· C ·
055	Технический контроль		4
060	Консервация	, *	

Неуказанные предельные отклонения: валов h14, отверстий H14, остальных IT14

28. Маршрут обработки кронштейна

Размеры, мм


Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из заготовки — 1

Опера- ция	Содержание или наименование операции	Станок, оборудование	Оснастка
005	Литье		
010	Обрубка и очистка отливки		
015	Малярная		
020	Навесить бирку с номером детали на тару		,
025	В первой позиции: фрезеровать плоскость прилегания в размеры 100 и 28 окончательно. Сверлить четыре отверстия Ø11.	Расточно-сверлиль- но-фрезерный с ЧПУ и инструменталь-	Наладка УСПО трехпозиционная
	Сверлить и развернуть два отверстия \emptyset 8 до \emptyset 8 H 7 технологически.	ным магазином 2254 ВМФ 4	- 2
	Во второй позиции: фрезеровать уступ в размере 40 и 73 (R40 + 33) окончательно.		
	Зенковать два отверстия Ø11 до Ø20	* ×	(1)
ł	окончательно. В третьей позиции: расточить отверстие \emptyset 55 H 7, выточку \emptyset 70 с пропиловкой торца \emptyset 55 H 7/ \emptyset 70 окончательно	, in	**
030	Зенковать фаску $1 \times 45^{\circ}$ в отверстии $\varnothing 55H7$	Вертикально-свер-	Подставка
035	Протянуть паз $b = 8H9$ окончательно	Горизонтально-про- тяжной 7512	Приспособление
040	Притупить острые кромки	Машина для снятия заусенцев	7
045	Промыть деталь	Моечная машина	€
050	Технический контроль	IVECCINAN MAIIMINA	
055	Нанесение антикоррозионного покрытия		

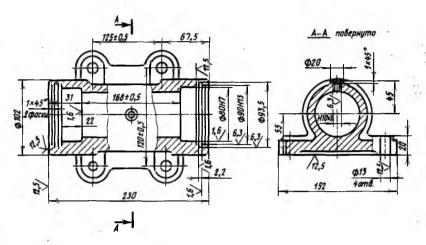
Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных + IT14

29. Маршрут обработки кронштейна

Размеры, мм

Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из заготовки — 1

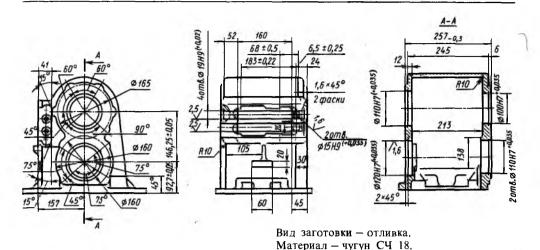
противоположную поверхность в размер 52 предварительно Притупить острые кромки Фрезеровать верхнюю поверхность в размер 84 + 2 (120 – 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно То же противоположную поверхность в размер 324 предварительно приспособление гидравлически зажимом приспособление двухпозиционно с гидравлически зажимом	Опера- ция	Содержание или наименование операции	Станок, оборуд ов ание	Оснастка
010 Обрубка и очистка отливки Малярная О20 Навесить бирку с номером детали на тару О25 Фрезеровать поверхность Б в размер 52 предварительно О30 Притупить острые кромки О35 Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) О40 Фрезеровать два торца в размер 324 предварительно О40 Фрезеровать два торца в размер 324 предварительно О45 Расточить отверстие Ø 55 H7 до Ø 50 О46 Расточить отверстие Ø 55 H7 до Ø 50 О47 Горизонтально Приспособление двухпозиционно с гидравлически зажимом Приспособление двухпозиционно с гидравлически зажимом Приспособление двухпозиционно с гидравлически зажимом Приспособление двухпозиционно с гидравлически зажимом Приспособление двухпозиционно с приспособление		*		
 Малярная Навесить бирку с номером детали на тару Фрезеровать поверхность Б в размер 32 и противоположную поверхность в размер 52 предварительно Притупить острые кромки Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно То же Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом 	005	Литье	_	are.
 Малярная Навесить бирку с номером детали на тару Фрезеровать поверхность Б в размер 32 и противоположную поверхность в размер 52 предварительно Притупить острые кромки Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно То же Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом Приспособление двухпозиционнос гидравлически зажимом 	010	Обрубка и очистка отливки	A Total	
 Тару Фрезеровать поверхность Б в размер 52 и противоположную поверхность в размер 52 предварительно Притупить острые кромки Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать отверстие Ø 55 H7 до Ø 50 Горизонтально- Приспособление двухпозиционное с гидравлически зажимом То же Приспособление двухпозиционное с гидравлически зажимом Приспособление приспособление двухпозиционное с гидравлически зажимом 	015			
противоположную поверхность в размер 52 предварительно Притупить острые кромки Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно Фрезеровать отверстие ∅ 55 H7 до ∅ 50 Притупить острые кромки Машина для снятия заусенцев Горизонтальнофрезерный 6Т82 Г Приспособление пидравлическия зажимом Приспособление двухпозиционно с гидравлически зажимом Приспособление приспособле	020		1.2	
О35 Фрезеровать верхнюю поверхность в размер 84 + 2 (120 − 36) О40 Фрезеровать два торца в размер 324 предварительно О45 Расточить отверстие Ø 55 H7 до Ø 50 О3 заусенцев Горизонтальнофрезерный 6Т82 Г То же Приспособление пидравлическия зажимом Приспособление двухпозиционное с гидравлически зажимом Приспособление Приспособление Приспособление Приспособление	025	противоположную поверхность в размер		с гидравлическим
мер 84 + 2 (120 − 36) Фрезеровать два торца в размер 324 предварительно Фрезеровать два торца в размер 324 предварительно То же То же Приспособление двухпозиционного с гидравлически зажимом Расточить отверстие Ø 55 H7 до Ø 50 Горизонтально- Приспособление	030	Притупить острые кромки	1	
варительно двухпозиционно с гидравлически зажимом 045 Расточить отверстие Ø 55 H7 до Ø 50 Горизонтально- Приспособление	035		l *	1 *
Topisoniumbile	040		То же	Приспособление двухпозиционное с гидравлическим зажимом
ļ ·	045	Расточить отверстие Ø55Н7 до Ø50		Приспособление


Опе-	Содержание или наименование	Станок,	
рация	операции	оборудование	Оснастка
050	Притупить острые кромки	Машина для снятия заусенцев	
055	Искусственно старить деталь		
060	Фрезеровать поверхность <i>Б</i> в размер 30,3 и противоположиую поверхность в размер 48,6 под шлифование	Карусельно-фрезер- ный 6M23C13	Приспособление двухпозиционное четырехместное с гидравлическим
. 065	Притупить острые кромки	Машина для снятия заусенцев	зажимом
070	Фрезеровать верхнюю поверхность в размер 84 (120—36) окончательно	Горизонтально- фрезерный 6Т82Г	Приспособление с гидравлическим зажимом
075	Фрезеровать два торца в размер 320 окончательно	То же	Приспособление двухпозиционное с гидравлическим зажимом
080	Шлифовать поверхность <i>Б</i> в размер 30 и противоположную поверхность в размер 48 окончательно	Плоскошлифовальный 3П722ДВ	Магнитная плита
085	Притупить острые кромки	Машина для снятия заусенцев	
090	Расточить отверстие Ø 55H7, отверстие		Наладка УСПО
	Ø80H9 и выточку Ø112 окончательно.	расточно-сверлиль-	
	Сверлить и зенковать пять отверстий \emptyset 13/ \emptyset 20; сверлить два отверстия \emptyset 16 и два	но-фрезерный с ЧПУ и инструменталь-	
	отверстия Ø10, сверлить, зенковать и развернуть отверстие Ø16H7, сверлить и	ным магазином 2204ВМФ4	/
	нарезать резьбу в одиннадцати отверстиях M6 - 7H, сверлить и нарезать резьбу в		
	трех отверстиях $M16 - 7H$, сверлить, рас-		
	сверлить и нарезать резьбу в отверстии \emptyset 22/M10 \times 1 $-$ 7 <i>H</i>		
095	Притупить острые кромки	Машина для снятия заусенцев	Y .
100	Промыть деталь	Моечная машина	*
105	Технический контроль		
110	Нанесение антикоррозионного покрытия		4.41

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных

 $[\]pm \frac{IT14}{2}$

30. Маршрут обработки корпуса

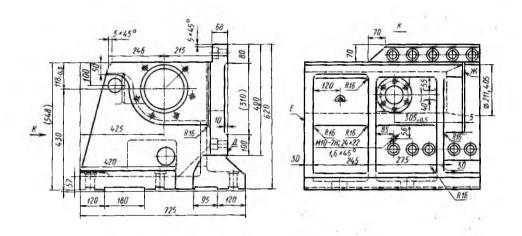

Размеры, мм

Вид заготовки — отливка. Материал — чугун СЧ 18. Число деталей из заготовки — !

Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
005 010 015	Литье Обрубка и очистка отливки Фрезеровать плоскость основания окончательно. Сверлить четыре отверстия Ø13 окончательно. Фрезеровать плоскость бобышки Ø20 окончательно, сверлить и нарезать резьбу М10 × 1 – 7H в одном отверстии окончательно. Фрезеровать торец Ø102, выдерживая размер 230 окончательно. Расточить выточки Ø80H7; Ø90H13 и фаску 1 × 45° окончательно. Повернуть стол на 180°. Расточить выточки Ø80H7; Ø90H13 и фаску 1 × 45°	Многоцелевой с ЧПУ и инструментальным магазином ИР500МФ4	Наладка УСПО
020 025 030	выгочки достт, достта и фаску 1 x 43 окончательно. Фрезеровать канавку 2,2 ± ± 0,5 окончательно Притупить острые кромки Технический контроль Нанесение антикоррозионного покрытия	Верстак	

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $+\frac{IT14}{2}$.

Число леталей из заготовки - 1


Опера-Содержание или наименование Станок, оборудование Оснастка. ция операции 005 Литье 010 Обрубка и очистка отливки 015 Налалка УСПО Фрезеровать левую боковую плоскость Вертикально-фрезерпредварительно и окончательно. Сверлить, ный С ЧПУ зенкеровать и развернуть два отверстия инструментальным \emptyset 15*H*9, сверлить шесть отверстий \emptyset 14.5 магазином ГФ2171 020 Фрезеровать переднюю плоскость окон-Многоцелевой с То же чательно, расточить отверстие Ø110H7 и ЧПУ и инструмен-Ø 120H7 окончательно, сверлить и наретальным магазином ИР500МФ4 зать резьбу М12 – 7Н в десяти отверстиях окончательно. Фрезеровать уступ на лебоковой плоскости окончательно, сверлить и нарезать резьбу М8 - 7Н в восьми отверстиях окончательно, сверлить, зенкеровать и развернуть два отверстия \emptyset 15H9 окончательно. Фрезеровать заднюю плоскость окончательно, расточить отверстия \emptyset 100H7 и \emptyset 110H7 окончательно. Сверлить и нарезать резьбу M8 - 7Hв восьми отверстиях окончательно, сверлить, зенкеровать и развернуть четыре отверстия Ø 19*H*9 окончательно 025 Притупить острые кромки Верстак 030 Технический контроль 035 Малярная 040 Нанесение антикоррозионного покрытия

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\pm \frac{IT14}{}$

2

32. Маршрут обработки корпуса центровой бабки

Размеры, мм

Вид заготовки — отливка. Материал — чугун СЧ 20. Число деталей из заготовки — 1.

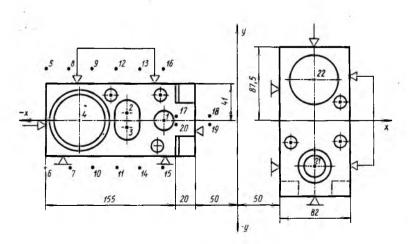
Опера- ция	Содержание или наименование операции	Станок, оборудование	Оснастка	
005	Литье			
010	Обрубка и очистка отливки			
015	Малярная			
020	Фрезеровать верхнюю плоскость, уступ на верхней плоскости и плоскость Д предварительно	Продольно-фрезер- ный 6М610Ф11	Приспособление	
025	Фрезеровать нижнюю плоскость и левую	То же	Наладка УСПО	
	боковую кромку предварительно		114,144	
030	Фрезеровать плоскость Е предварительно,	Многоцелевой с	То же	
	расточить отверстие \emptyset 180 <i>H</i> 7 до \emptyset 168 <i>H</i> 9,	ЧПУ и инструмен-		
	фрезеровать торец Ж и торцовые выступы,	тальным магазином		
	противоположные плоскости Е, с припус-	ИР800МФ4	a 3	
	ком 2 мм под старение. Расточить от-			
	верстие \emptyset 90 <i>H</i> 7 до \emptyset 85 и <i>R</i> 78, выдержи-		. 17	
	вая размер 164(162 + 2)		. 6.	
035	Фрезеровать наклонную плоскость с при-	Продольно-фрезер-	»	
-	пуском 2 мм под старение	ный 6М610Ф11	141	
040	Притупить острые кромки	Верстак		
045	Термическая обработка			
050	Малярная			
055	Фрезеровать нижнюю плоскость под	Многоцелевой с	»	
- 1	шлифование, три занижения $36 \times 2 \times 755$,	ЧПУ и инструмен-	2	
ļ	одно занижение 95 × 2,5 × 755, одно заниже-	тальным магазином		
i	ние $180 \times 2.5 \times 755$ окончательно. Сверлить	ИР800МФ4	No. 6444 4 5	

			проволяетие тавя. 32
Опе- рация	Содержание или наименование операции	Станок, оборудование	Оснастка
	и расточить пять отверстий Ø 32/Ø 60 (два отверстия до Ø 32H7 технологически) и два отверстия Ø 80, фрезеровать платик на левой боковой поверхности в размер 725 окончательно. Фрезеровать наклонную плоскость окончательно, две фаски 5 × 45° окончательно. Фрезеровать верхнюю плоскость окончательно		v
060	Шлифовать нижиюю плоскость оконча- тельно	Плоскошлифоваль- ный 3П722ДВ	Приспособление
065	Фрезеровать торцы передних выступов окончательно, плоскость \mathcal{H} окончательно. Расточить отверстие \emptyset 180 H 7 до \emptyset 178, сверлить и нарезать резьбу M12—7 H в шести отверстиях. Фрезеровать плоскость \mathcal{H} окончательно, расточить отверстие \emptyset 90 H 7 окончательно. Сверлить и нарезать резьбу M10—7 H в шести отверстиях окончательно. Расточить отверстиях окончательно. Расточить выточку R 78, выдерживая размер 162, окончательно	Многоцелевой с ЧПУ и инструментальным магазином иР800МФ4	Наладка УСПО
070	Расточить конус \emptyset 211, 405 \triangleleft 5° окончательно, расточить отверстие \emptyset 180 <i>H</i> 7 до \emptyset 179,9 <i>H</i> 7	Токарно-карусельный с ЧПУ 1К512ПФ3	Приспособление
07 5	Хонинговать отверстие $\varnothing 180 H7$ окончательно	Хонинговальный 3A845Ф1	Нормальн ый крепеж
080	Притупить острые кромки	Верстак	
085	Технический контроль	*	
090	Нанесение антикоррозионного покрытия		
	4		- i

Неуказанные предельные отклонения размеров: валов h14, отверстий H14, остальных $\frac{IT14}{}$

СХЕМЫ БАЗИРОВАНИЯ И ОБРАБОТКИ ДЕТАЛЕЙ НА СТАНКАХ С ЧИСЛОВЫМ ПРОГРАММНЫМ УПРАВЛЕНИЕМ

В среднесерийном производстве технологический процесс изготовления деталей на станках с числовым программным управлением предусматривает высокую концентрацию операций, применение групповых методов обработки с использованием многоместных и многопозиционных приспособлений, позволяющих обрабатывать детали без разметочных операций, значительно сократить время на установку, крепление и снятие деталий.

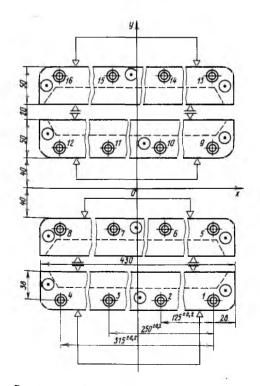

На рис. 1—9 приведены схемы обработки и базирования заготовок на станках с числовым программным управлением типа «обрабатывающий центр» и в табл. к рис. 1—9 приведен расчет координат опорных точек с нулем отсчета координат от центра стола.

1. Схема обработки детали «планка» № 06-01 на многоцелевом (сверлильно-фрезерно-расточном) вертикальном станке высокой точности мод. 2254ВМФ4.

Содержание операции: фрезеровать занижение в размер 22* и 20 окончательно, сверлить, рассверлить и расточить отверстие \emptyset 65/ \emptyset 71/ \emptyset 70 H9, фрезеровать паз B=30 на h=8+0.5 окончательно, сверлить и зенковать одно отверстие \emptyset 22/ \emptyset 40 окончательно.

Приспособление – наладка двухпозиционная из универсально-сборной переналаживаемой оснастки (УСПО).

^{*} Здесь и далее в гл. 12 размеры даны в миллиметрах.


№ точки	x	у	№ точки	х	у
1 2 3 4 5 6 7 8 9 10	-84 -127 -127 -100 -225 -225 -197 -197 -169 -169	0 7,5 -7,5 0 56 -56 -56 56 56 -56	12 13 14 15 16 17 18 19 20 21 22	-141 -113 -113 -85 -85 -70 -35 -70 91	56 56 -56 -56 56 5 -5 -5 -5 -53,5 49

2. Схема обработки детали «планка» № 06-03 на вертикально-сверлильном станке с револьверной головкой, крестовым столом и ЧПУ мод. $2P135\Phi2-1$.

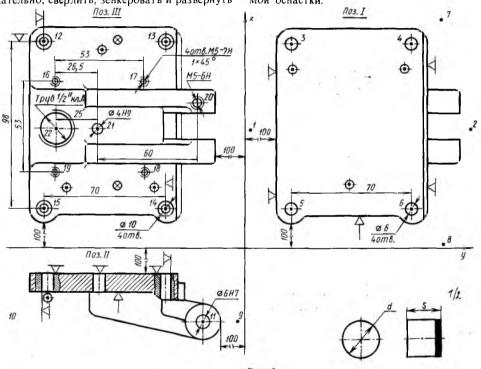
Содержание операции: сверлить и зен-

ковать четыре отверстия \emptyset 9/ \emptyset 15 окончательно.

Приспособление — наладка четырехместная из универсально-сборной переналаживаемой оснастки.

№ точки	х	у
1	187	-148
2	62	148
3	-63	-148
4	-128	-148
5	187	-52
6	62	-52
7	-63	-52
8	-128	-52
9	187	52
10	62	52
11	-63	52
12	-128	52
13	187	148
14	62	148
15	-63	148
16	-128	148

3. Схема обработки детали «кронштейн» на многооперационном (сверлильно-фрезерно-расточном) вертикальном станке высокой точности мод. 2256ВМФ4.

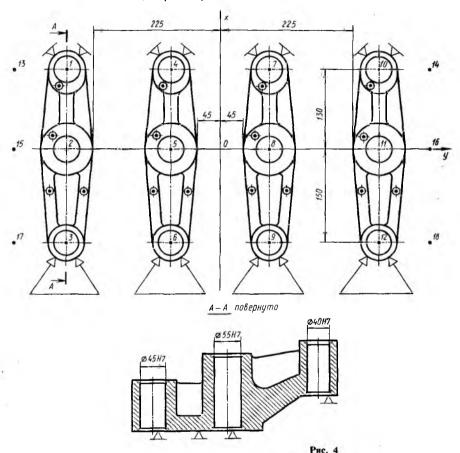

Содержание операции: в поз. 1 (рис. 3) фрезеровать поверхность прилегания окончательно, сверлить два отверстия Ø 6, сверлить и развернуть два отверстия \emptyset 6/ \emptyset 6*H*9 технологически; фрезеровать боковую поверхность окончательно;

в поз. II — фрезеровать паз B = 16H9 окончательно, сверлить, зенкеровать и развернуть два отверстия $\emptyset 6H7$ окончательно;

в поз. III - зенковать четыре отверстия Ø6 до Ø10 окончательно, сверлить и нарезать резьбу М5 – 7Н в четырех отверстиях и М5 – 6Н в одном отверстии.

Сверлить и развернуть одно отверстие Ø 4H9 окончательно, сверлить, зенковать фаску и нарезать резьбу Труб. 1/2" кл. А в одном отверстии окончательно.

Приспособление - наладка трехпозиционная из универсально-сборной переналаживаемой оснастки.



№ точки	x	у	№ точки	x	y
1	158	15	12	208	-200
2	158	295	13	208	130
3	208	110	14	110	-130
4	208	180	15	110	-200
5	110	110	16	184,5	- 196,5
6	110	180	17	184,5	-143,5
7	246	211	18	131,5	-143,5
8	70	211	19	131,5	- 196,5
9	-128	-32,5	20	173	-110
10	-128	-277,5	21	158	-170
11	-128	-110	22	158	195

4. Схема обработки детали «рычаг» № 07-01 на многоцелевом (сверлильно-фрезерно-расточном) вертикальном станке мод. 2256ВМФ2.

Содержание операции: фрезеровать плоскости бобышек окончательно, сверлить, расточить и развернуть отверстия \emptyset 45H7, \emptyset 40H7 и \emptyset 55H7 окончательно. Расточить фаски.

Приспособление — наладка четырехместная из универсально-сборной переналаживаемой оснастки.

№ точки	х	<i>)</i> .	№ точки	x	y
1	130	-270	10	130	270
2	0	-270	11	0	270
3	-150	-270	12	-150	270
4	130	-90	13	130	- 360
5	0	-90	14	130	360
6	-150	90	15	0	-370
7	130	90	16	0	370
8	0	90	17	-150	-360
Q	-150	9	18	-150	360

5. Схема обработки детали «направляющая планка» № 06-07 на многоцелевом сверлильно-фрезерном станке с крестовым столом и ЧПУ мод. 21105Н7Ф4.

Содержание операции: в поз. I (рис. 5) — сверлить, зенкеровать и расточить одно отверстие \emptyset 6H7;

в поз. II — сверлить два отверстия \emptyset 15 на h=2,5, четыре отверстия \emptyset 17 и два отверстия \emptyset 5. Фрезеровать канавку b=5 на h=2+0,5 и канавку b=4 на h=1 окончательно.

Приспособление — наладка двухпозиционная, четырехместная из универсально-сборной переналаживаемой оснастки.

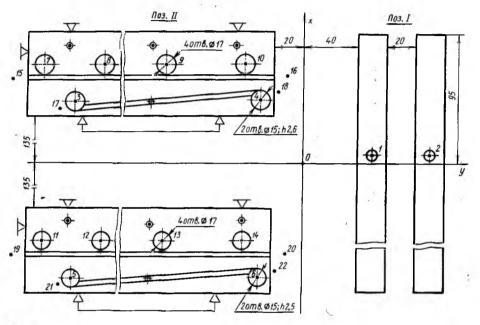
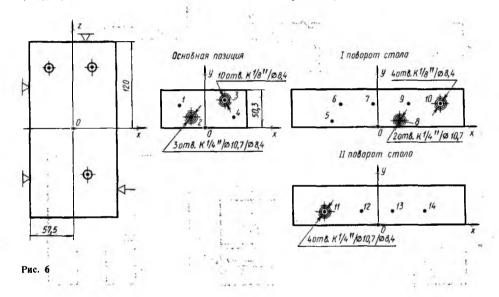


Рис. 5

№ точки	х	y	№ точки	x	у
1 2 3 4 5 6 7 8 9 10	5 5 145,5 145,5 -184,5 -184,5 169 169 169 -161	50 90 -185,5 -35,5 -185,5 -35,5 -232 -162 -92 -40 -232	12 13 14 15 16 17 18 19 20 21 22	-161 -161 -161 158 158 140 151 -172 -172 -179	-162 -92 -40 -264 -10 -195,5 -25,5 -264 -10 -195,5 -25,5

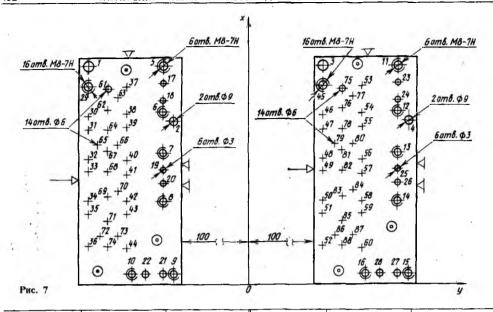

6. Схема обработки детали «плита гидравлики» № 11-02 на многоцелевом сверлильно-фрезерном горизонтальном станке с крестовым перемещением шпиндельной бабки мод. 21004Н7Ф4.

Содержание операции: со стороны передней поверхности сверлить, рассверлить, развернуть и нарезать резьбу в трех отверстиях К $1/4''/\varnothing$ 10, $7/\varnothing$ 8,4 и в одном отверстии К $1.8''/\varnothing$ 8,4;

со стороны левого торца сверлить, рассверлить, развернуть и нарезать резьбу в четырех отверстиях К $1/4''/\varnothing 10.7/\varnothing 8.4$;

со стороны правого торца сверлить, развернуть и нарезать резьбу в двух отверстиях $K = 1,4''/\varnothing 10,7$ и в четырех отверстиях $K = 1,8''/\varnothing 8,4$.

Приспособление — наладка из универсально-сборной переналаживаемой оснастки.



№ точки	х	y	№ точки	Х	y
1 2 3 4 5 6	-17 -10 15 20 -30 -54 -7	15 8,3 17 8,3 10,3 30,3 30,3	8 9 10 11 12 13 14	29 40 87 -35 -10 25 60	10,3 30,3 30,3 10,3 10,3 10,3 10,3

7. Схема обработки детали «плита гидравлики» № 11-02 на многооперационном сверлильно-фрезерном вертикальном станке с крестовым столом мод. 21105Н7Ф4.

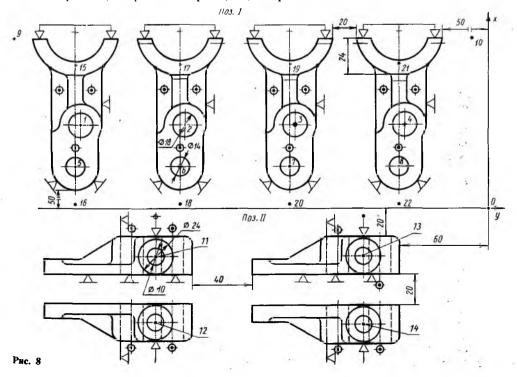
Содержание операции: сверлить и нарезать резьбу М5-7Н в шестнадцати отверстиях, сверлить четырнадцать отверстий Ø6, шесть отверстий Ø3 и два отверстия Ø9. Сверлить и нарезать резьбу в шести отверстиях M8-7H.

Приспособление — наладка двухпозиционная из универсально-сборной переналаживаемой оснастки.

№ точки	x	у	№ точки	х	y
1	230	-200	31	160	-200
2	165	-110	32	130	-200
3	230	115	33	110	-200
3 4 .	165	205	34	80	-200
5	231	-120	35	60	-200
6	184	-120	36	30	-200
7	137	120	37	210	-160
8	90	-120	38	180	160
9	14	-110	39	160	-160
10	14	- 160	40	130	-160
11	231	195	41	110	-160
12	184	195	42	80	-160
13	137	195	43	60	-160
. 14	90	195	44	30	-160
15	14	205	45	210	115
16	14	155	46	180	115
17	210	-120	47	160	115
18	195	-120	48	[130	115
19	120	-120	49	110	115
20	105	-120	50	80	115
21	14	-120	5 <i>1</i>	60	115
22	14	140	52	30	115
<i>23</i>	210	195	53	210	155
24	195	195	54	180	155
<i>25</i>	120	195	55	160	155
26	105	195	56	130	155
27	14	195	57	110	155
28	14	175	58	80	155
29	210	-200	59	60	155
30	180	-200	60	30	155

Продолжение табл. к рис. 7

№ точки	x	у	№ точки	x x	y
61	210	-180	75 '	210	135
62	190	-180	76	190	135
63	200	-170	77	200	145
64	160	-180	78 :	160	135
65	150	-190	79	150	125
66	150	-170	80	150	145
67	140	-180	81	140	135
68	110	180	82	110	135
69	90	-180	83	90	135
70	100	-110	84 :	100	145
7 1	60	-180	85	60	135
72	50 •	-190	86	50	125
<i>73</i>	50	-170	87	50	- 145
74	40	-180	88	40	135


8. Схема обработки детали «вилка» № 09-01 на вертикально-фрезерном консольном станке с ЧПУ и инструментальным магазином мод. ГФ2171.

Содержание операции: в поз. I — фрезеровать нижнюю поверхность по размеру 25 технологически, уступ B = 24 в размер 10,6 под шлифование, сверлить отверстие \emptyset 18,

сверлить, расточить и развернуть отверстие \emptyset 14H9;

в поз. II — сверлить, расточить и развернуть отверстие \varnothing 10H9, зенковать отверстия \varnothing 10H9 до \varnothing 24 окончательно.

Приспособление — наладка двухпозиционная, восьмиместная из универсально-сборной переналаживаемой оснастки.

Продолжение табл, к рис. 8

№ точки	х	у	№ точки	х	y	№ точки	x	у
1 2 3 4 5 6 7	91,8 91,8 91,8 91,8 65 65	-302,3 -226,3 -150,3 -74,3 -306 -230 -154	8 9 10 11 12 13 14	65 151,9 151,9 -32,5 -77,5 -32,5 -77,5	-78 -364 -20 -225,9 -225,9 -85 -85	15 16 17 18 19 20 21 22	135,8 20 135,8 20 135,8 20 135,8 20	- 306 - 306 - 230 - 230 - 154 - 154 - 78 - 78

9. Схема обработки детали «вилка» № 09-01 на вертикально-фрезерном консольном станке с ЧПУ и инструментальным магазином мод. ГФ2171.

Содержание операции: фрезеровать правый торец в размер $85,9(90,0^{-0.2}-5)$,

скос в размер 12 под угол 30° окончательно, фрезеровать выточки \emptyset 38 окончательно.

Приспособление — наладка трехместная из универсально-сборной переналаживаемой оснастки.

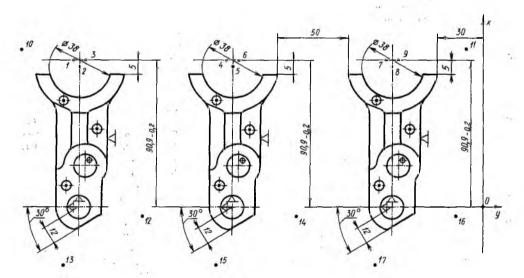


Рис. 9

№ точки	х	l y	№ точки	х	у	№ точки	х	у
1 2 3 4 5 6	90,9 86,9 90,9 90,9 86,9 90,9	-274 -270 -266 -168 -164 -160	7 8 9 10 11 12	90,9 86,9 90,9 100,9 100,9 -5,4	-62 -58 -54 -318 -10 -228,6	13 14 15 16 17	-36,5 -5,4 -36,5 -5,4 -36,5	-281,5 -122,6 -175,5 -16,6 -69,5

ОБРАБОТКА ДЕТАЛЕЙ ИНСТРУМЕНТАМИ ИЗ СВЕРХТВЕРДЫХ МАТЕРИАЛОВ И МИНЕРАЛОКЕРАМИКИ

1. ЛЕЗВИЙНЫЙ ИНСТРУМЕНТ ИЗ СВЕРХТВЕРДЫХ МАТЕРИАЛОВ

МАРКИ КОМПОЗИТА

Наиболее широкое применение в машиностроении нашли композиты следующих марок: эльбор-Р (композит 01); белбор (композит 02); композит 05; гексанит-Р (композит 10). Каждая марка СТМ имеет область применения, которая определяется условиями резания, обрабатываемым материалом, себестоимостью операции и т. п.

Резцы из композита марок 01 и 02 практически не отличаются по эксплуатационным свойствам и размерам заготовок композита. Диаметр и высота цилиндра заготовок колеблются в пределах 3,5-4,5 мм, масса поликристаллов 0,8 карат.

Резцы из композита марок 01 и 02 применяют в основном для непрерывной тонкой и чистовой обработки деталей из закаленной стали твердостью HRC_3 , 55-70, высокопрочных, закаленных и отбеленных чугунов твердостью до HB 500-600, твердых сплавов марок BK15, BK20 и BK25 твердостью HRA 89-90. Глубина резания, как правило, составляет 0.1-0.3 мм и не превышает 0.8-1.0 мм.

Из заготовок композита 05 диаметром до 8 мм, высотой около 6 мм и массой около 4 карат изготовляют резцы, которые применяются для непрерывной обработки сталей средней твердости (до HRC, 55-58) и чугунов (серых и высокопрочных) твердостью до HB 300. Преимущество этого материала состоит в том, что размеры поликристаллов позволяют вести не только чистовую и тонкую, но и получистовую обработку с глубинами резания до 2,5-3,0 мм, что значительно расширяет возможности замены твердосплавных резцов резцами из композита 05

Резцы из заготовок композита 10 диаметром около 6 мм, высотой 4-5 мм и массой 1,5 карат применяют для обработки де-

талей с прерывистой поверхностью из закаленной стали (твердостью не выше HRC_3 58-60) и из чугунов различной прочности, а также для обработки твердосплавных материалов штампов и пресс-форм. Эти инструменты позволяют осуществлять резание с глубиной до 1,5-2,0 мм.

В торцовых фрезах наибольшее применение находят эльбор-Р и гексанит-Р.

КОНСТРУКЦИИ ИНСТРУМЕНТА ЦЕНТРАЛИЗОВАННОГО ИЗГОТОВЛЕНИЯ

Из перечисленных выше марок композита заводами Минстанкопрома выпускаются более ста типоразмеров цельных и сборных конструкций лезвийного инструмента.

В цельных инструментах поликристаллы композита крепятся неразъемно в тело инструмента. Цельные конструкции инструмента применяют: для резцов расточных державочных круглого и квадратного сечения с креплением в борштанги, регулируемые оправки и шпиндели горизонтально-расточных, координатно-расточных, координатно-расточных станков; для резцов с открытыми поверхностями (канавочные, галтельные, копирные, резьбовые, для обработки отверстий диаметром не менее 10 мм); для многолезвийных инструментов (концевые фрезы, специнструмент и т. п.).

Сборные инструменты изготовляют двух типов; тип I — поликристаллы композита неразъемно крепятся в переходной вставке, которая механически закрепляется в корпусе инструмента; тип II — поликристаллы композита в внде многогранных или круглых пластин механически закрепляются в корпусе инструмента.

Сборные конструкции инструмента применяют: для резцов токарных прямых проходных, подрезных, упорных, расточных, фасочных и др.; для фрез торцовых насадных и хвостовых диаметром более 20 мм при обработке открытых, закрытых поверхностей и уступов; для фрез дисковых при обработке

пазов и концевых диаметром более 30 мм и т. п.; для комбинированного инструмента (например, резец-зенкер).

Генеральным направлением развития конструкций инструмента из СТМ является создание резцов и фрез с механическим креплением цельных и двухслойных, круглых и многогранных режущих пластин.

Перетачиваемый инструмент, оснащенный СТМ, рекомендуется лишь в тех случаях, когда конструкция с механическим креплением пластин технически невозможна (по виду инструмента либо его габаритам, геометрии и т. п.).

Выпускают токарные и расточные резпы с пластинами круглой формы из композита 01, с пластинами круглой, ромбической, квадратной и трехгранной формы из композита 05, а также с двухслойными пластинами круглой и ромбической формы из композита 10Д. Круглая пластина наиболее технологична и особенно эффективна при обработке заготовок из чугуна, так как обеспечивает малую шероховатость обработанной поверхности и повышенную прочность режущей кромки.

Основные направления конструирования торцовых фрез из композита определяются теми технологическими задачами, которые должны эффективно решаться с их применением.

1. Торцовые сборные фрезы диаметром 80-250 мм со вставными перетачиваемыми оснащенными поликристаллами композита 01 или 10 с регулируемым в пределах 2-7 мкм торцовым биением. Для снижения шероховатости обработанной поверхности при работе на повышенных подачах вершины ножей выполняют с большим радиусом (порядка 50 мм). Область применения: финишная обработка открытых и закрытых поверхностей на продольно-шлифовальных и плоскошлифовальных станках, а также на станках с ЧПУ и обрабатываюцентрах, взамен предварительного ших и окончательного шлифования и частично взамен шабрения. Глубина резания не более 0,5 MM продольных при подачах 5-10 м/мин. Скорость резания чугунов до 3000 м/мин.

2. Торцовые сборные фрезы диаметром 100-800 мм с механическим креплением высокоточных неперетачиваемых пластин круглой формы из композита 01, 05 и 10Д с регулируемым в пределах 0,01-0,02 мм торцовым биением. Область применения: чисто-

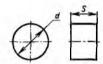
вая обработка взамен фрезерования твердосплавными инструментами и взамен шлифования на фрезерных автоматах и полуавтоматах, на станках с ЧПУ и обрабатывающих центрах, на продольно-фрезерных, горизонтально-расточных, координатно-расточных, универсальных вертикально-фрезерных станках. Глубина резания не более 1,5 мм. Продольные подачи до 2,5 м/мин.

3. Торцовые сборные фрезы диаметром 100 ÷ 800 мм с механическим креплением прецизионных неперетачиваемых круглой формы из композита 05 и 10Д, нерегулируемые и с регулируемым торцовым биением, одно- и двухступенчатые. Область применения: обработка чугунов, в том числе по литейной корке, на фрезерных автоматах и полуавтоматах, на станках с ЧПУ и обрабатывающих центрах, на продольно-фревертикально-фрезерных, горизонтально-расточных станках взамен обработки твердосплавными фрезами. Глубина резания ло 3 мм – одноступенчатой, до 6 мм – ступенчатой фрезой при продольной подаче до Скорость резания чугунов 2 м/мин. 2000 м/мин.

Виды, типоразмеры и основная номенклатура инструмента из композита даны в табл. 1.

Расшифровка условных обозначений резцов по стандарту ISO 5608 и режущих пластин по стандарту ISO 1832 дана на рис. 1, 2.

ЗАТОЧКА И ПЕРЕТОЧКА ИНСТРУМЕНТА


Для эффективной заточки резпов из композита следует применять круги из синтетических алмазов АСР (АСК, АСВ) зернистостью 80/63 на связке Б1 (БП, ТО2) 100%-ной концентрации при заточке всухую и ACP (ACK, ACB) 80/65 MB1 100% — при заточке с охлаждением. В качестве СОЖ можно использовать водный растьор 0,3%ного триэтаноламина и 0,3%-ного нитрида натрия. Режим заточки: скорость круга $v_{\kappa} =$ = 12 ÷ 20 м/с; глубина шлифования t = $= 0.02 \div 0.04$ мм/дв. S =ход; полача $= 1.5 \div 3.0$ м/мин.

Заточку резцов осуществляют в трехповоротных тисках на универсально-заточных станках мод. 3Б642, 3В642 или на спепиализированных станках для заточки резцов. Оборудование должно отвечать техническим требованиям, предъявляемым к станкам для алмазной обработки.

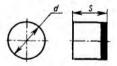
1. Номенклатура режущего инструмента из сверхтвердых материалов на основе нитрида бора разных марок

по пор. Наименование, размеры и обозначение инструмента по ИСО 200

Пластины режушие цельные сменные неперетачиваемые круглой формы из композита 01 по ТУ 2-035-808-81 *1

 $d \times S$, MM 3.60×3.18 Обозначение по ИСО: RNUN 03 03 00 F/T RNXN 03 03 00 F/T

 3.60×2.38


RNUN 03 02 00 F/T Пластины режущие цельные сменные неперетачиваемые круглой формы из ком-

позита 05

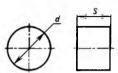
$d \times S$, MM	Обозначение по ИСО
$7,0 \times 5,0$	RNUN 07 05 00 F/T
	RNXN 07 05 00 F/T
7.0×3.18	RNUN 07 03 00 F/T
$8,0 \times 3,18$	RNUN 08 03 00 F/T
9.52×3.18	RNUN 09 03 00 E/T

 9.52×3.97 RNUN 09 T3 00 F/T 12.7×3.97 RNUN 12 T3 00 F/T

Пластины режущие двухслойные сменные неперетачиваемые круглой формы из композита 10Д

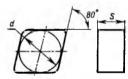
 $d \times S$, MM 5.56×3.97

 $5,56 \times 3,18$

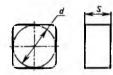

RNXN 05 T3 00 F/T RNUN 05 03 00 F/T

Обозначение по ИСО: RNUN 05 T3 00 F/T

Продолжение табл. 1


по пор. Наименование, размеры и обозначение инструмента по ИСО 2

Пластины режущие цельные сменные неперетачиваемые круглой формы композита 10


 $d \times S$, MM Обозначение по ИСО: RNUN 08 T3 00 F/T 8.0×3.97 Пластины режущие цельные сменные

неперетачиваемые ромбической формы из композита 05

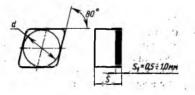
Обозначение по ИСО: $d \times S$, MM CNUN 05 03 08 F/T 5.56×3.18 5.56×3.97 CNUN 05 T3 08 F/T $5,56 \times 3,18$ CNUN 05 03 12 F/T 5.56×3.97 CNUN 05 T3 12 F/T 4.76×3.97 CNUN 04 T3 08 F/T 4.76×3.97 CNUN 04 T3 12 F/T

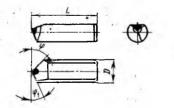
Пластины режушие пельные сменные неперетачиваемые квадратной формы из композита 05

Обозначение по ИСО: $d \times S$, MM 5.56×3.18 SNUN 05 03 08 F/T SNUN 05 T3 08 F/T 5.56×3.97 $5,56 \times 3,18$ SNUN 05 03 12 F/T 5.56×3.97 SNUN 05 T3 12 F/T 4.76×3.97 SNUN 04 T3 08 F/T $4,76 \times 3,97$ SNUN 04 T3 12 F/T

Пластины режущие цельные сменные неперетачиваемые трехгранной формы из композита 05

Продолжение табл. 1


№ по пор.	Наименование, размеры и обозначение инструмента по ИСО
-----------	--


$d \times S$, mm	Обозначение по ИСО
$5,56 \times 3,97$	TNUN 09 T3 08 F/T
$5,56 \times 3,97$	TNUN 09 T3 12 F/T
$5,56 \times 3,97$	TNUN 09 T3 16 F/T
$4,76 \times 3,18$	TNUN 08 03 08 F/T
$4,76 \times 3,18$	TNUN 08 03 12 F/T
$3,97 \times 3,97$	TNUN 06 T3 08 F/T
$3,97 \times 3,97$	TNUN 06 T3 12 F/T
Ппастины	newvillie apricación le chen

Пластины режущие двухслойные сменные неперетачиваемые ромбической формы из композита 10Д

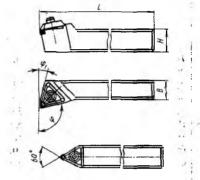
$d \times S$, MM	Обозначение по ИСО
$3,97 \times 3,18$	CNUN 04 03 08 F/T
$3,97 \times 3,18$	CNUN 04 03 12 F/T
$3,97 \times 3,97$	CNUN 04 T3 08 F/T
$3,97 \times 3,97$	CNUN 04 T3 12 F/T

Вставки перетачиваемые к токарным резцам (см. № 14—16) с неразъемно закрепленными поликристаллами композита 01 или 10, с углами $\phi = 10$, 15, 35, 45, 60° (правые и левые)

$D \times L$,	мм
8×16	
8×18	
8×20	

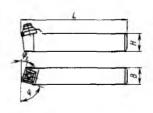
2 Резцы токарные сборные проходные с механическим креплением пластин трехгранной формы из композита 05 с углом $\phi = 93$ °, правые и левые

 $H \times B \times L$, MM $20 \times 20 \times 125$


 $25 \times 25 \times 150$

 $32 \times 25 \times 170$

 $32 \times 32 \times 170$


Наименование, размеры и обозначение инструмента по ИСО

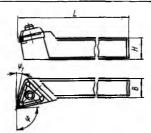
10 Резцы токарные сборные проходные с механическим креплением пластин круглой формы из композита марок 01, 05, 10, 10Д, правые и левые по ТУ 2-035-811 – 81 * 3

Обозначение по ИСО:
CRGNR/L/N 2020 K
CRGNR/L/N 2520 M
CRGNR/L/N 3225 P
CRGNR/L/N 3232 P

 Резцы токарные сборные проходные с механическим креплением пластин квадратной формы из композита 05 с углами φ = 75 и 45°, правые и левые

Обозначение по ИСО:

CSB/SNR/L 2020 K


CSB/SNR/L 2525 M

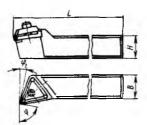
CSB/SNR/L 3225 P CSB/SNR/L 3232 P

Продолжение табл. 1

№. по пор.

Наименование, размеры и обозначение инструмента по ИСО

 H×B×L, мм
 Обозначение по ИСО:


 20×20×125
 CTINR/L 2020 K

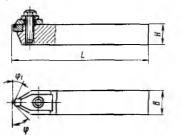
 25×25×150
 CTINR/L 2525 M

 32×25×170
 CTINR/L 3225 P

 32×32×170
 CTINR/L 3232 P

13 Резпы токарные сборные проходные с механическим креплением пластин ромбической формы из композита 05 и 10Д с углами $\phi = 95$ и 75°, правые и левые

 H×B×L, мм
 Обозначение по ИСО:


 20×20×125
 CCL/BNR/L 2020 K

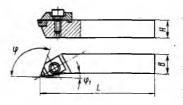
 25×25×150
 CCL/BNR/L 2525 M

 32×25×170
 CCL/BNR/L 3225 P

 32×32×170
 CCL/BNR/L 3232 P

Резцы токарные сборные проходные с механическим креплением перетачиваемой цилиндрической вставки с режущим элементом из композита 01 и 10 с углом $\phi = 45^{\circ}$

№ по пор.

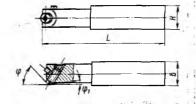

Наименование, размеры и обозначение инструмента по ИСО

 $H \times B \times L$, MM

 $16 \times 16 \times 100$

20 × 20 × 125

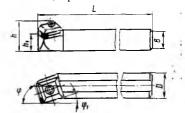
Резцы токарные сборные подрезные с механическим креплением перетачиваемой цилиндрической вставки с режушим элементом из композита 01 или 10 с углом $\phi = 93$ °


 $H \times B \times L$, MM

 $16\times16\times100$

16

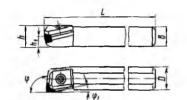
 $20 \times 20 \times 125$


Резцы токарные сборные расточные для сквозных отверстий с механическим креплением перетачиваемой цилиндрической вставки с режущим элементом из композита 01 или 10; φ = 45°

 $H \times B \times L$, MM $16 \times 16 \times 125$

 $25 \times 20 \times 170$

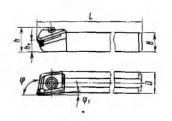
17 Резцы токарные сборные расточные с механическим креплением пластин квадратной формы из композита 05 с углами φ = 75 и 45°, правые и левые



Продолжение т	т а бл.	Ι
---------------	----------------	---

Наименование, размеры и обозначение инструмента по ИСО $B \times L \times h \times h_1 \times D_{\min}$ Обозначение п

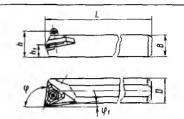
 $B \times L \times h \times h_1 \times D_{\min}$ Обозначение по ИСО: $20 \times 200 \times 18 \times 9 \times 25$ S20SCSK/SNR/L $25 \times 250 \times 23 \times 11,5 \times 32$ S25TCSK/SNR/L $32 \times 300 \times 30 \times 15 \times 40$ S32RCSK/SNR/L


8 Резцы токарные сборные расточные с механическим креплением пластин трехгранной формы из композита 05 с углом φ = 93°, правые и левые

 $B \times L \times h \times h_1 \times D_{\min}$ Обозначение по иСО:

20 × 200 × 18 × 9 × 25 25 × 250 × 23 × 11,5 × 32 32 × 300 × 30 × 15 × 40 S25 CTUNR/L S32T CTUNR/L

Резцы токарные сборные расточные с механическим креплением пластин ромбической формы из композита 05 и 10Д с углом $\phi = 95$ °, правые и левые


 $B \times L \times h \times h_1 \times D_{\min}$ Обозначение по ИСО:

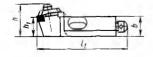
20 × 200 × 18 × 9 × 25 25 × 250 × 23 × 11,5 × 32 32 × 300 × 30 × 15 × 40 20 × 200 × 18 × 9 × 25 S20R CCLNR/L S25S CCLNR/L S32T CCLNR/L

Резцы токарные сборные расточные с механическим креплением пластин круглой формы из композита 01, 05, 10Д, правые и левые

Продолжение табл. 1

Наименование, размеры и обозначение инструмента по ИСО

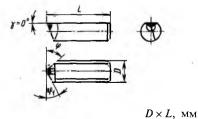
 $B \times L \times h \times h_1 \times D_{\min}$ Обозначение по ИСО:


20 × 200 × 18 × 9 × 25 25 × 250 × 23 × 11,5 × 32 32 × 300 × 30 × 15 × 40 25 × 25T CRFNR/L 25 × 25T CRFNR/L

Вставки резцовые с механическим креплением пластин ромбической формы из композита 05 с углами $\phi = 45$ и 60°

 $H \times B \times L$, MM Обозначение по ИСО: $10 \times 10 \times 50$ CCD/EPL 1010 C $12 \times 12 \times 40$ CCD/EPL 1212 B $12 \times 12 \times 50$ CCD/EPL 1212 C $12 \times 12 \times 63$ CCD/EPL 1212 Д $16 \times 16 \times 63$ CCD/EPL 1616 Д $20 \times 20 \times 80$ CCD/EPL 2020 F $25 \times 25 \times 80$ CCD/EPL 2525 F

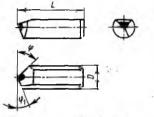
22 Вставки резцовые согласно ISO типа T-MAXS с механическим креплением круглых пластин из композита 01 и ромбических пластин из композита 05 (Ф = 95°)



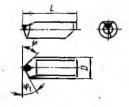
 $h \times b \times h_1 \times l_1$, мм Обозначение по ИСО: $12 \times 11 \times 10 \times 50$ CRSNR/L 10CA-03 $16 \times 16 \times 12 \times 55$ CRSNR/L 12CA-03 $20 \times 20 \times 16 \times 63$ CRSNR/L 16CA-03 $12 \times 11 \times 10 \times 50$ CRSNR/L 10CA-08

	Продолжение табл. 1
№ по пор.	Наименование, размеры и обозначение инструмента по ИСО
:3	$16 \times 16 \times 12 \times 55$ CRSNR/L 12CA-08 $20 \times 20 \times 16 \times 63$ CRSNR/L 16CA-08 Резцы токарные прямоугольного сечения перетачиваемые, оснащенные композитом 01 или 10, с углами $\phi = 45$, 60, 30, 15°
:4	$H \times B \times L$, мм $8 \times 8 \times 32$ $10 \times 10 \times 40$ $10 \times 10 \times 65$ $12 \times 12 \times 70$ Резцы токарные отогнутые с напайной двухслойной пластиной из композита 05 с углом $\phi = 90^{\circ}$
	$H \vee R \vee I$ MM

 $H \times B \times L$, MM 20 × 12 × 125 25 × 16 × 140


25 Резцы расточные державочные перетачиваемые круглого сечения, оснащенные композитом 01 и 10, с углами $\Phi=45$, 35, 20, 60°, правые и левые

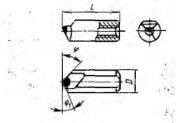
Вставки к токарным резцам


don on the	Наименование, размеры и обозначение инструмента по ИСО
	16×30
	16×34
	16×60
	16×80

Резцы расточные державочные перетачиваемые круглого сечения, оснащенные композитом 01 или 10, с углами $\phi = 10$, 15, 35, 40, 50° (правые и левые)

$D \times L$, MM		$D \times L$, M	м .
16×30		8×16)	Вставки к
16 × 34	s 3	8×18 }	токарным
16×60		8×20	резцам
16×80		10×25	•
		12×25	

27 Резцы расточные державочные перетачиваемые круглого сечения, оснащенные композитом 01 или 10, с углами $\phi = 10$, 15, 35, 40, 50° (правые и левые)

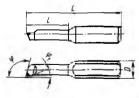


 $D \times L$, MM 8×16 8×18 8×20 10×25

8 Резцы расточные регулируемые перетачиваемые державочные круглого сечения, оснащенные композитом 01 и 10, с углами $\phi = 10$, 15, 35, 40, 50° (правые и левые)

Продолжение табл. 1

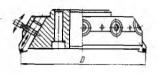
Ne no nob.	Наименование, размеры и обозначение инструмента по ИСО					


 $D \times L$, мм 16 × 30

Резцы расточные перетачиваемые круглого сечения для сквозных отверстий, в том числе к координатно-расточным станкам, с режущим элементом из композита 01 или 10, с углами $\phi = 45$ и 75°

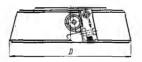
 $D \times L$, MM 8×40 10×40 8×50 10×50 12×50 14×50

30 Резцы расточные перетачиваемые круглого сечения для глухих отверстий, в том числе к координатно-расточным станкам, с режущим элементом из композита 01 и 10, с углом φ = 93°



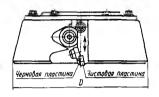
 $D \times L$, MM 8×40 10×40 8×50 10×50

по пор.	Наименование, размеры и обозначение инструмента по ИСО
ž	


12 × 50 14 × 50 31 Фрезы т

Фрезы торцовые насадные с регулируемым торцовым биением зубьев, с перетачиваемыми ножами, оснащенными композитом 01 или 10, по ТУ 2-035-918-83

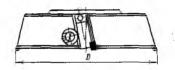
Диаметр *D*, мм . 100 125 160 200 Число зубъев . . 8 10 12 14 Торцовое биение, мм, не более . . 0,007


12 Фрезы торцовые насадные с регулируемым торцовым биением зубьев, с механическим креплением пластин круглой формы точности X из композита 05, 10 или 10Д по ТУ 2-035-757-80*4

Диаметр <i>D</i> , мм	Число зубьев	Торцовое биение, мм
100	8	
125	10	≤0,007
160	14	
200	16	
250	20	
315	24	≤0,010
400	30	
500	38	
630	48	≤0,015
800	60	ŕ

-	
0	
lou	**
-	Наименование, размеры и обозначение
011	инструмента по ИСО
-	and pymonta no reco
.01	

Фрезы торцовые насадные ступенчатые с регулируемым торцовым биением зубьев, с механическим креплением пластин круглой формы точности X из композита 05, 10 или 10Д по ТУ 2-035-757—80


Диаметр <i>D</i> , мм	Число зубъев	Торцовое биение (чистовой ступе- ни), мм
100	8	
125	10	≤0,007
160	14	
200	16	
		
250	20	
315	24	≤0,010
400	30	· ·
100		
500	38	
630	48	≤ 0,015
800	60	1 -,
		<u> </u>

Фрезы торцовые насадные ступенчатые нерегулируемые с механическим креплением пластин круглой формы точности χ из композита 05 по TV 2-035-713-80

Наименование, размеры и обозначение инструмента по ИСО		
Диаметр <i>D</i> , мм	Число зубьев	Торцовое биение (чистовой ступени), мм
100 125 160 200	10 14 18 22	≤ 0,04
250 315 400	26 32 42	≤0,05
	Диаметр D, мм 100 125 160 200 250 315	Диаметр D, мм Число зубьев 100 10 125 14 160 18 200 22 250 26 315 32

35 Фрезы торцовые насадные нерегулируемые с механическим креплением пластин круглой формы точности X из композита 01, 05 или 10Д по ТУ 2-035-757-80

Диаметр <i>D</i> , мм	Число зубьев	Торцовое биение, мм
100 125 160 200	8 10 16 20	≤ 0,03
250 315 400	24 30 39	≤ 0,05

- *1 Все режущие пластины из композита выпускают по ТУ 2-035-808 81.
- $*^2$ Пластины поставляют как с острой режущей кромкой (F), так и с защитной фаской (T).
- *3 Все резцы, оснащенные композитом, выпускают по ТУ 2-035-811-81.
- *4 Присоединительные размеры фрез соответствуют стандартам СЭВ и ИСО.

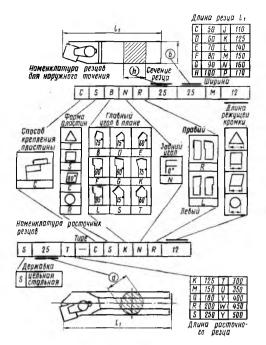


Рис. 1. Расшифровка условных обозначений резцов по стандарту ISO 5608

Одним из достоинств регулируемых фрез является возможность заточки (переточки) режущих вставок вне корпусов фрез. В результате значительно упрощается вся система подготовки фрез к работе, уменьшается потребное число корпусов фрез.

Заточку (переточку) режущих вставок проводят на универсально-заточных станках алмазными кругами типа $12A2-45^{\circ}$ или 6A2 диаметром 125-150 мм.

Следует применять круги из алмазов высокой и повышенной прочности марок АСР, АСВ или АСК; возможно также применение кругов из алмазов АСО. Рекомендуются алмазыые круги зернистостью 80/63-125/100, 100%-ной концентрации. С уменьшением номера зерна и концентрации алмаза в круге снижается производительность заточки. С увеличением концентрации и зернистости заметного повышения производительности не наблюдается, в то же время значительно увеличивается расход алмазов.

При работе всухую рекомендуется применять алмазные круги на связке Б1, а при работе с охлаждением — на связках ТО2, М5, М1. Это позволяет снизить расход алмаза.

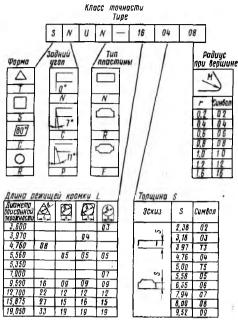


Рис. 2. Расшифровка условных обозначений режущих пластин по стандарту ISO 1832

В качестве СОЖ может быть применен 2-3%-ный содовый раствор.

Скорость вращения алмазного круга 20-30 м/с. Увеличение скорости вращения круга повышает опасность возникновения дефектов на синтетических сверхтвердых материалах (СТМ), а ее снижение сопровождается потерей производительности и увеличением шероховатости поверхностей граней.

Продольная подача 1-3 м/мин и снижается до 0.5 м/мин в конце операции.

Поперечную подачу рекомендуется назначать равной 0,01 – 0,04 мм/дв. ход.

После заточки режущие вставки рекомендуется доводить алмазными кругами ACM 40/28-20/14 на связках Б1, Б3 или БР, 100%-ной концентрации при скорости вращения круга 20-30 м/с, продольной подаче 0.5-1 м/мин и поперечной подаче 0.002-0.01 мм.

Заточку режущих вставок выполняют в такой последовательности: предварительная заточка по главной и вспомогательной задним поверхностям, предварительная и окончательная заточка по главной задней

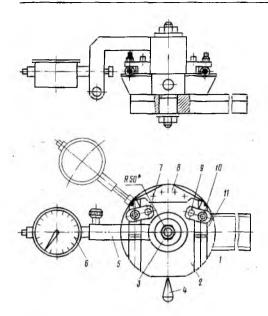


Рис. 3. Приспособление для заточки регулируемых режущих вставок к фрезам, позволяющим обрабатывать поверхность типа «ласточкии хвост»:

I— основание; 2— корпус; 3— шайба; 4— рукоятка; 5— державка; 6— индикатор; 7— прижимная планка; 8— упорная планка; 9— винт; 10— специальный винт; 11— резцовая вставка

поверхности, заточка по зачистной кромке, окончательная заточка по вспомогательной задней поверхности.

Заточку зачистной кромки выполняют в специальном приспособлении. На рис. 3 представлено такое приспособление для вставок, позволяющих обрабатывать поверхности типа «ласточкин хвост». Вставки, предназначенные для обработки полузакрытых поверхностей, затачивают в аналогичном приспособлении, отличающемся от представленного на рисунке лишь меньшим расстоянием между пазами, в которых закрепляются вставки. Каждое из этих приспособлений пригодио для заточки зачистной режущей кромки как у левых, так и у правых режущих вставок.

В результате выполнения данной операции достигается не только требуемый радиальный размер зачистной режущей кромки, но и достаточно высокая взаимозаменяемость режущих вставок. Колебания величины радиального биения ножей во фрезах, обусловленные погрешностями заточки режущих вставок, не превышают 0,02 мм.

Такая взаимозаменяемость режущих вставок обеспечивается благодаря тому, что при закреплении вставок в приспособлении они прижимаются окончательно заточенной главной режущей кромкой к постоянному упору, а заточка зачистной режущей кромки по радиусу осуществляется с малыми отклонениями, контролируемыми индикатором, настроенным на заданный размер. Благодаря взаимозаменяемости режущих вставок отпадает необходимость в заточке их комплектами, переточке всех вставок фрезы при поломке одного или нескольких зубьев. В результате упрощается организация централизованной заточки и переточки режущих вставок.

РЕЖИМЫ РЕЗАНИЯ ИНСТРУМЕНТОМ ИЗ КОМПОЗИТА

Выбор режима резания инструментом из композита, обеспечивающего наименьшие затраты при необходимом качестве обработки, состоит в определении наиболее выгодного сочетания скорости резания, глубины и подачи. Рекомендуемые режимы резания инструментом из композита при точении и растачивании приведены в табл. 2.

При окончательной обработке материалов высокой твердости за один проход рекомендуется снимать припуск не более 0,1-0,2 мм, а при обработке чугунов твердостью НВ 150-260 не более 0,1-0,4 мм. Все рекомендации (см. табл. 2) даны для резцов с типовой «отрицательной» геометрией: передний угол $\gamma = -6 \div -18^\circ$; задний угол $\alpha = 8 \div 25^\circ$, угол при вершине $\varepsilon = 120 \div 140^\circ$; радиус вершины $r_{\rm B} = 0,4 \div 0,8$ мм. При увеличении главного угла в плане ϕ и, следовательно, уменьшении угла при вершине ε , а также при увеличении глубины резания, нужно уменьшить величину подачи.

При обработке материалов с повышенной вязкостью, в частности на основе никеля, приходится прибегать к обеспечению геометрии с $\gamma = 0 \div 6^\circ$. В таких случаях следует по возможности увеличить радиус вершины резца до $r_{\rm B} = 2 \div 4$ мм. Уменьшение радиуса до значений менее 0.2 - 0.4 мм нецелесообразно, так как это резко повышает опасность выхода инструмента из строя из-за скола или выкрашивания, тогда как уменьшение радиальной составляющей силы резания при этом незначительно. Кроме того, та-

2. Рекомендуемые режимы резация инструментом из композита при точении и растачивании

	Характер		F	ежимы резани	я
Обрабатываемый материал	процесса резания	Марка композита	Скорость резания, м/мин	Подача, мм/об	Глубина резания, мм
Стали конструкционные и легированные, инструментальные и подшилни-	Без удара	05; 01	50 – 180	0,03-0,20	0,05-3,0
ковые, закаленные до твердости HRC, 40-58	С ударом	10; 10Д	40 – 120	0,03-0,10	0,05-1,0
Стали быстрорежущие,	Без удара	01	50 - 120	0.03 - 0.1	0.05 - 0.8
инструментальные, це-	С ударом	10; 10Д	40 - 100	0.03 - 0.07	0.05 - 0.4
ментуемые, закаленные до твердости HRC, 58—70					
Чугуны серые и высоко-	Без удара	05; 01	40 - 1000	0.03 - 0.5	0,05-3,0
прочные твердостью НВ 150-300	С ударом	10; 10Д; 05; 01	300 - 800	0,03-0,2	0,05-2,0
Чугуны отбеленные, за-	Без удара	0,5; 01	50 - 200	0.03 - 0.5	0.05 - 2.0
каленные НВ 400-600	С ударом	10; 10Д	40 - 90	0.03 - 0.10	0.05 - 1.0
Твердые сплавы с со- держанием кобальта не менее 15% твердостью	Без удара	10; о́1; іо̀д	5-20	0,03-0,1	0,05 – 1,0
HRA 80-86					100
Износостойкие покрытия	По корке	01; 10; 10Д	40 - 100	0,03-0,15	0,1-0,5
иа основе никеля (плаз-	lio kopke	от, то, тод	70 - 100	0,05 -0,15	0,1 -0,5
менное нанесение) HRC, $47-57$		10.			

кое уменьшение *г* приводит к существенному увеличению шероховатости обработанной поверхности.

При точении с ударом, особенно сталей высокой твердости, наличие радиуса при вершине величиной не менее 0.8-1.0 мм является необходимым условием надежной работы резцов из композита. Например, достаточно высокую работоспособность в таких условиях имеют круглые неперетачиваемые пластины из композита 01 (диаметром 3.6 мм) с r=1.8 мм, хотя эта марка композита для точения с ударом в общем не предназначена.

В тяжелых условиях резания (с ударом, по корке и т. п.) рекомендуется придать режущей кромке инструмента радиусную форму с $\rho=40\div50$ мкм, либо сделать стандартную защитную фаску шириной 0,05-0,20 мм на передней поверхности под углом $\gamma=-20^\circ$.

Если обрабатываемые детали при установке на станок в случае токарной обработки имеют биение, то глубина резания на первом проходе рекомендуется минимум на 0,05 мм больше величины биения. В табл. 3 представлены рекомендуемые режимы резания инструментом из композита при фрезеровании.

Указанные значения являются ориентировочными и требуют уточнения во многих случаях, ибо получить высокую износостойкость фрез, оснащенных композитом, часто можно лишь в узком скоростном диапазоне вследствие экстремальности зависимости стойкости от скорости резания.

Например, при обработке фрезами, оснащенными гексанитом-Р, стали 40X (HRC) 36-40) оптимальная скорость составляет 40X 150-200 м/мин, стали (HRC, 48-50) 100-150 м/мин; стали XBГ (HRC₂ 62-64) -50-80 м/мин. При фрезеровании серого чугуна экстремум выражен слабее. Длина пути резания до затупления практически не изменяется и в области низких скоростей (200-400 м/мин), и в области высоких (800-1000 м/мин). Увеличение скорости резания в диапазоне 400-800 м/мин значительно повышает износостойкость инструмента.

При чистовой обработке однорядными фрезами с регулируемыми режущими встав-

3.	Рекомендуемые	режимы	резання	инструментом	нз	композита	прн	фрезеровании
J.	1 CROMENIALLY COMBIC	D C MELTINATED	beautiliu.	mic i py mentom	11.3	RUMINOSHIA	upn	фрезерования

		Режимы	торцового фре	зерования
Обрабатываемый материал	Марка композита	Скорость резания, м/мин	Подача, мм/зуб	Глубина резания, мм
Стали конструкционные и легированные нетермообработанные HRC ₃ ≤ 30 (в состоянии поставки)	10; 01; 10Д	400 – 900	0,01-0,1	0,05-1,5
Стали конструкционные, легированные инструментальные закаленные HRC, 35-55	10; 01; 10Д	200 – 600	0,01-0,1	0,05-1,2
Стали закаленные цементуемые HRC, $55-70$	10; 01; 10Д	80-300	0,01-0,05	0,05-0,8
Стали быстрорежущие HRC_3 $60-70$ Чугуны серые и высокопрочные HB $150-300$ (в том числе по литей-	01 05; 10; 10Д; 01	20 40 300 3000	$\begin{array}{c} 0,01-0,05 \\ 0,01-0,1 \end{array}$	0,05-0,6 0,05-6,0
ной корке) Чугуны отбеленные, закаленные НВ 400-600	10; 01; 10Д; 05	200 – 800	0,01-0,1	0,05-4,0

ками, оснащенными композитом, закаленных сталей и чугунов рекомендуемая глубина резания составляет до 0,1-0,2 мм, при фрезеровании сталей и чугунов, не прошедших термообработку, — до 0,3-0,5 мм. При работе многорядными фрезами съем припуска за проход соответственно больше.

При использовании фрез с торновым биением зубьев, превышающим высоту неровностей, которую необходимо достичь при обработке, подача на оборот назначается исходя из работоспособности зубьев, участвующих в формировании микрорельефа (обычно это один, реже — несколько зубьев), обеспечить заданные параметры шероховатости.

При работе фрезами с регулируемыми высокой точности режущими вставками все зубья фрезы участвуют в формировании требуемого микрорельефа; заданные его параметры $Ra = 0.6 \div 1.25$ мкм могут быть достигнуты в широком диапазоне подач (2.0-10.0 м/мин). В этом случае лимитирующим фактором при выборе подачи на зуб является стойкость режущих вставок.

Максимально допустимое значение S_z составляет: для стали с $HRC_3 \le 50$ 0,1-0,15 мм/зуб, для стали с $HRC_3 > 50$ 0,06-0,08 мм/зуб, для отбеленного и закаленного чугуна 0,15-0,3 мм/зуб.

При обработке фрезами с регулируемыми режущими вставками, оснащенными композитом, нетермообработанных чугунов значение S_z может быть равно 0,5 мм/зуб.

ОБЛАСТИ ЭФФЕКТИВНОГО ПРИМЕНЕНИЯ ЛЕЗВИЙНОГО ИНСТРУМЕНТА ИЗ КОМПОЗИТА

Анализ опыта внедрения лезвийного инструмента из композита при обработке деталей из различных материалов на предприятиях машиностроения позволил определить эффективные области его применения взамен обработки инструментом из твердого сплава и режущей керамики или взамен шлифования.

Замена инструмента из твердого сплава лезвийным инструментом из композита легко осуществляется в существующей технологии, так как он применяется на том же оборудовании. Однако обеспечение более высоких скоростей резания и получения более высокого качества обработки приводит в ряде случаев к изменению и упрощению технологического процесса обработки: исключаются операции доводки, притирки или шабрения, сокращается необходимое число хонинговальных операций, т. е. в этих случаях существующий процесс обработки претерпевает некоторые изменения.

В случае замены операций шлифования технологический процесс обработки деталей претерпевает значительные изменения. Лезвийный инструмент из композита позволяет сконцентрировать операции обработки деталей на одном станке с ЧПУ. Использование фрез из композита на продольно-шлифовальных станках обеспечивает стабильное

получение высокого качества изделий и значительное повышение производительности обработки по сравнению со шлифованием.

Анализ технологических процессов обработки деталей на заводах показывает, что в производственной практике предприятия в основном применяют режимы резания, соответствующие рекомендуемым в данной главе.

На предприятиях эффективно используют серийно выпускаемые резцы и фрезы из композита различных марок.

ТОЧЕНИЕ И РАСТАЧИВАНИЕ

Точение наружных поверхностей многоступенчатых деталей типа шпинделей, осей, валов, калибров-пробок с подрезанием торцов, снятием фасок. Такие детали шлифуют, как правило, кругами небольшой ширины, а шлифование торцов и фасок в этих деталях затруднено. Поэтому замена шлифования точением повышает производительность обработки в 1,5-2,5 раза.

Чистовое точение и растачивание деталей из чугуна различной твердости (НВ 170-600). В случае обработки резцами из композита повышается производительность благодаря применению более высоких скоростей резания (в 5-10 раз) и благодаря большей стойкости композита по сравнению с резцами из твердого сплава и режущей керамики.

Растачивание отверстий с подрезанием наружных и внутренних торцов с одного установа в деталях из закаленной стали (детали пресс-форм, ролики, долбяки). В этом случае эффективность применения резцов из композита достигается благодаря замене операции внутреннего шлифования отверстий и шлифования торцов, которые совместить при точении значительно проще, чем при шлифовании. При этом производительность обработки повышается в 2-3 раза.

Полная токарная обработка деталей из закаленных сталей и чугуна. Достигается концентрация операций, повышение производительности и точности обработки. Особенно эффективна на станках с ЧПУ и на автоматических линиях.

Точение спиралей, канавок, пазов и снятие фасок в деталях типа плунжеров, поршней, гидросистем, дисков токарных патронов и тому подобных деталей из чугуна. Невысокая скорость резания (v = 35 м/мин) объясняется ограниченными техническими харак-

теристиками оборудования. Стойкость резцов между переточками составляет не менее 40 мин, производительность обработки увеличивается почти в 4 раза.

Точение и растачивание деталей из твердых сплавов. При изготовлении деталей пресс-форм, армированных твердыми сплавами ВК15, ВК20, ВК25 и др., возникает проблема снятия значительных припусков (до 3—5 мм), что объясняется неточностью расчета коэффициентов усадки, не позволяющей при спекании получать заготовки с размерами, близкими к окончательным размерам деталей, и сложностью форм рабочей части изделий.

Несмотря на более низкую стойкость, точение резцами из композитов 01 и 10 выгоднее, чем резцами из алмазов типа карбонадо и алмазного шлифования твердых сплавов. В результате применения точения и растачивания резцами из композита 10 взамен шлипроизводительность обработки твердого сплава BK20 увеличивается в 4-5 раз, при этом полностью отсутствуют прижоги. К тому же отсутствие абразивной пыли улучшает труд станочников. Резцы из композита 10 эффективны и при точении твердых сплавов типа Т15К6.

При точении и растачивании твердых сплавов напроход возможны обширные сколы материала детали по периметру обрабатываемого диаметра. В этих случаях следует вести обработку за два прохода — предварительный и окончательный, при этом желательно предварительно выполнять фаску и несколько снизить скорость резания. Примеры точения и растачивания деталей из различных материалов резцами из СТМ на токарных станках приведены в табл. 4.

Точение резцами из эльбора-Р по сравнению со шлифованием снижает машинное время обработки деталей в 3-8 раз с обеспечением точности обработки в пределах 6-7-го квалитета, шероховатости обработанных поверхностей $Ra=0.25\div0.60$ мкм.

Применение обработки шаблонов из стали 30ХМЮА цельными резцами из эльбора-Р позволило упростить технологический процесс, заменив процессы азотирования, шлифования и доводки изготовлением шаблонов из стали ХГ с большими припусками на закалку с последующим растачиванием. В результате выполненного комплекса работ трудоемкость изготовления шаблонов снизилась в 2 раза.

Растачивание отверстий диаметром

4. Примеры эффективного использования резцов из СТМ при точении и растачивании на токарных станках

			Разм	еры		Per	кимы	обрабо	тки	
Деталь	Материал, твердость	Станок	обраб ваем пове ностей	њх :px- í, мм	Марка композита	Глубина резания, мм	Число	Подача, мм/об	Скорость резания, м/мин	Приме- чания
			D	L	Z ox	- S	T di	ΕŽ	Q 8 3	
Вал сцеплени	Сталь 45, HRC, 50	Токарно-	40,3	38	01	0,15	I	0,07	200	Без ох- лаждения
		резный станок мод. 16Б16П	60,5	80	10	0,25	2	$\frac{0,10}{0,03}$	120	Обработ- ка по на- плавке
		1	60,3	44	10	0,15	1	0,07	228	То же
	,		60,5	80	10	0,25	2	$\frac{0,10}{0,03}$	120	» · .
Втулка- пробка конуса Морзе	Сталь ШХ15, HRC₃ 58—64	То же, мод. 16К20П	25	81,5	10	$\frac{0,3}{0,1}$	2	0,07	75	<u>=</u>
Конус зо-	Чугун СЧ 20, НВ 200-	То же, мод. 1К62	65	95	01	$\begin{array}{c} 0,3\\ \overline{0,1} \end{array}$	2	$\frac{0,20}{0,07}$	330	Без ох- лаждения
Маховик	Чугун СЧ 25, НВ 190— 240	Автома- тическая линия «Morando»	205 264	20	01 01	0,5 0,5	1	0,18 0,18	322 415	Охлаждение 3%-ным раст-
			1-2							вором Укринол-1
Диск на- жимной	Чугун СЧ 18, НВ 171— 241	Токарновинторамино резный станок повышен-	363	50	10	$\begin{array}{ c c }\hline 0,4\\\hline 0,1\end{array}$	2	$\frac{0,12}{0,05}$	359	у кринол-1
	12	ной точности 16К20П				}		ì		
Втулка	Чугун СЧ 15,	Токарно-	250	140	01	$\frac{0,4}{0,1}$	2	$\frac{0,10}{0,03}$	491	Без ох- лаждения
	HB 180— 220	ный ста- нок мод. 1 К62	290	20	01	0,3	1	0,1	574	То же
Втулка- калибр конуса Морзе	Сталь ШХ15, HRC 58—	Токарно- винторез- ный ста- нок мод. 16К20П	24	80,5	01	0,3	2	0,07	75	÷=0

Продолжение табл. 4

			Режимы обработки					ние таол. 4		
Деталь	Материал, твердость	Станок	Разм обраб ваем пове	аты- њіх :px-	зита	MM				Приме- чания
			ностей	i, MM	Марка композита	Глубина резания,	число проходов	Подача, мм/об	Скорость резания, м/мин	
Червяк	Сталь 40 X, HRC 45 – 48	Токарно- винто- резный станок	28	60	Эль- бо р-Р	0,3	2	0,10	88	Охлажде- ние эмуль- сией
		повышен- ной точ- ности мод, 16Б16П	<u></u>	T.		5				
Фреза дисковая дерево- режущая	Сталь 40X, HRC 23-25	Токарновинторезный станок мод.	32	10	10	0,25	1	0,06	100	Без ох- лаждения
Втулка велосипед- ного колеса	Сталь 20X, HRC 55-65	Токарный полуав- томат мод. ЕМС 250	41	12,2	01	0,5	1	0,12	120	Охлаж- дение воздухом
Гайка	Сталь 40X, HRC	Токарно- винторез- ный ста-	58	10	01	$\frac{0,3}{0,1}$	2	$\frac{0,10}{0,05}$	115	Охлажде- ние эмуль- сией
	45 – 50	нок мод. 16К20П	62	6	01	$\begin{array}{c c} 0,3\\ \hline 0,1 \end{array}$	2	$\frac{0,10}{0,05}$	123	То же
Гильза	Сталь 18XГТ, HRC 53-57	Токарно- винторез- ный ста- нок мод. 16Б16П	100	23	01	$\frac{0,3}{0,1}$	2	0,08	80	»
Ролик	Сталь ШХ15, HRC	То же	22 22	35	01 01	$\begin{array}{ c c } \hline 0,3 \\ \hline 0,1 \\ 0,3 \\ \end{array}$	2	$\begin{array}{c} 0.08 \\ \hline 0.04 \\ 0.08 \end{array}$	69 110	» »
Долбяк зуборезны й	60-64 · Сталь Р6М5,	Токарно- винто-	32	8	01	$\frac{0,20}{0,05}$	2	$\frac{0,08}{0,02}$	80	»
	HRC 63-65	резный станок мод. 16Б16А	32	14	01	$\frac{0,20}{0,05}$	2	$\frac{0.08}{0.02}$	94	»
Кольцо привода	Сталь ШХ15,	Токарно- винторез-	120	25	01	$\frac{0,3}{0,1}$	2	$\frac{0,07}{0,02}$	133	»
•	HRC 58-64	ный ста- нок мод. 16К20П	160	20	01	$\frac{0,3}{0,1}$	2	$\frac{0,07}{0,02}$	160	»

Продолжение табл. 4

	Проволжен										
		1	Разм	еры		Pex	кимы	обрабо	тки		
Деталь	Материал, твердость	Станок	обра тывае пове ностей	мых рх-	Марка композита	Глубина резания, мм	Число проходов	Подача, мм/об	Скорость резания, м/мин	Приме- чания	
			D	L	K ₀	7 8	구 다	Ε̈́Σ	Q 8 3		
Муфта- шестерня	Сталь 20X, HRC 58-60	Токарно- винто- резный станок мод.	84	21	01	0,3	2	0,08	84	Охлажде- ние эмуль- сией	
		16Б16М						0.00			
Диск	Сталь ШХ15,	Токарно- винто-	165	16,1	01	0,3	1	0,08	106	То же	
делитель- ный	HRC 54-58	резный станок	75	70	01	$\begin{array}{c c} 0,3 \\ \hline 0,1 \end{array}$	2	$\frac{0,08}{0,03}$	79	»	
		мод. 16К20П								4.5	
Втулка	Чугун СЧ 15,	Токарно- винто-	270	94	01	$\frac{0,3}{0,1}$	2	0,06	534	Без ох- лаждения	
	HB 180- 220	резный станок мод.			-			ь,		1	
10 400		1K62				0,4		0,15		1.4	
Обойма	Чугун СЧ 15,	То же	115	28	01	$\frac{0,4}{0,1}$	2	$\frac{0,13}{0,07}$	361	Тоже	
. 1	HB 170- 240		115	4	01	$\frac{0,3}{0,1}$	2	$\frac{0,15}{0,07}$	361	, 1 x ₂ .	
Букса	Чугун СЧ 20, НВ 180-	Токарно- винто- резный	185	35	01	$\begin{array}{ c c }\hline 0,6\\\hline 0,1\\ \end{array}$	2	$\frac{0,07}{0,03}$	465	Подрезка торца	
	240	станок мод. 16Б16А	185	28	01	$\begin{array}{ c c }\hline 0,5\\\hline 0,1\\ \end{array}$	2	$\frac{0,07}{0,03}$	465	Без ох-	
Ступица	Чугун СЧ 20, НВ 180-	Токарно- винто- резный	1310	120	05	$\begin{array}{ c c }\hline 1,2\\\hline 0,1\end{array}$	2	$\frac{0,3}{0,12}$	14	Охлажде- ние эмуль- сией	
	220	станок мод.	1215	7.5	0.5	1,2	2	0,3	60	Поправия	
		КЖ1631	1310	75	05	0,20	4	0,12	00	Подрезка торца	
Матрица	Сталь ХВГ, НКС	Токарный полуавто- мат с ЧПУ	71	45	01	$\frac{0,3}{0,1}$	1	$\frac{0,08}{0,02}$	88	Охлажде- ние эмуль- сией	
	56 – 60	мод. 1П717Ф3	!		+						
	I	1			-7	I	1	i	1	1	

Продолжение табл. 4

			Dans			Pex	кимы	обрабо	тки			
Деталь	Материал, твердость	Станок	Разм обра тывае пове ностей	юа- :мых (:рх-	Марка композита	Глубива резания, мм	Число проходов	Подача, мм/об	Скорость резания, м/мин	Приме- чания		
					D	L	X M	E ac	T di	O M	Q g Z	
Пуансон	Сталь ХВГ, HRC 56—60	Токарный полуав- томат с ЧПУ мод. 1П717Ф3	105	50	01	0,4	1	0,08 0,02	50 - 100 50 - 100	Охлажде- ние эмуль- сией		
Ролик	Сталь ШХ15, HRC 62-64	Токарный полуав- томат мод. 1734Ф3	100 190	42 47	01 01	0,35	1	0,08 0,08	70 70 – 190	То же		
Барабан тормозной задний	Чугун СЧ 25, НВ 190— 240	Автома- тическая линия «Morando»	250	57	01	0.25	1	0,29	396	Охлаждение 3%-ным раствором Укринол-1		
Установоч- ная мера	Сталь У12, HRC 58-60	Станок специаль- ный	6	0,5	01	-	1	0,08	38	Два резца одно- временно		
Вставка прессфор- мы	Твердый сплав ВК20, НRA	Токарно- винто- резный станок	10	33	01	0,4	2	0,08	14	Охлажде- ние эмуль- сией		
4	88-90	мод. 16Б16П	26	35	01	0,4	1	$\frac{0,10}{0,04}$	17	То же		

 Π р и м е ч а н и е. В числителе приведены рекомендуемые режимы для чернового прохода, в знаменателе — для чистового.

5. Примеры растачивания отверстий резцами из СТМ на расточных станках

			Разм	еры		Pe	кимы	обрабо	тки	
Деталь	Материал, твердость	Станок	обратывае пове ностей	ьба- емых ерх-	Марка композита	Глубина резания, мм	Число проходов	Подача, мм/об	Скорость резания м/мин	Приме- чания
Гильза цилиндра	Чугун СЧ 25, НВ 170— 214	Алмазно- расточный мод. ОС6352	92	155	01	0,35	2	0,08 0,05	404	Охлаждение 10%-ным раствором Укринол-1
Полуось внутренняя	Сталь 12X2H4Д, HRC 56 – 62	То же, мод. ADW-4	46	80	01	0,3	1	0,15	80	Охлажде- ние эмульсией
Гильза цилиндра	Чугун СЧ 20, НВ 170-	То же, мод. 2A78	120	265	01	0,15	1	0,08	471	Без ох- лаждения
Шатун в сборе	Сталь 40X, HRC 48-52	То же	83	50	10	0,25	1	0,05	208	То же
Плита кондуктор- ная	Сталь ХВГ, HRC 60 — 62	Коорди- натно- расточ- ный мод. 2455AФ2	26	65	01	$\frac{0.2}{0.1}$	2	$\frac{0.08}{0.02}$	81,6	Охлаждение эмульсией
Корпус подшипника	Чугун СЧ 18, НВ 187— 220	Алмазно- расточный мод. ОС5489	140	41	05	$\begin{array}{ c c }\hline 0,6\\\hline 0,1\\ \end{array}$	2	$\frac{0,10}{0,02}$	439	Без охлаж- дения
То же	Чугун СЧ 15, НВ 170— 240	То же, мод. ОС3356	180	86	01	$\begin{array}{ c c }\hline 0,4\\\hline 0,1\end{array}$	2	$\frac{0,1}{0,03}$	396	То же
Корпус шпиндель- ной бабки станка	Чугун СЧ 20, НВ 170-	То же, мод. ОС315	140 210	92 37	01	$ \begin{array}{c c} 0,25 \\ \hline 0,05 \\ 0,25 \end{array} $	2	$ \begin{array}{c c} 0,10 \\ \hline 0,03 \\ 0,2 \end{array} $	350 138	» »
Блок цилиндров	Чугун специаль- ный, НВ 170- 241	Горизон- тально- расточный «Ex-Gell-o»	250	500	01	$\frac{0,3}{0,10}$	2	0,10 0,05	471	»
		I	l .			I	1		1	

Продолжение табл. 5

			Разм	еры		Pex	кимы	обрабо	тки	4
Деталь	Материал, твердость	Станок	обра тывае пове ностей	ба- мых рх-	Марка композита	Глубина резания, мм	Число проходов	Подача, мм/об	Скорость резания, м/мии	Приме- чания
			D	L	KO _N	Ead (Ir.J	ди пр	Помм	M/N P CK	
Корпус	Чугун СЧ 15, НВ 170— 240	Отделочно- тонко- расточ- ный полуав- томат ОС-1449	32	49	01	0,4	2	0,10 0,04	201	Без ох- лаждения
Картер	Чугун СЧ 15, НВ 163— 229	Горизон- тальио- алмазно- расточный	62	126	01	0,40	1	0,045	311	***
14 v		мод. OC-5521	e.		-4-				£	3

30-1000 мм в чугунных корпусных деталях типа станин, коробок, бабок на расточных станках. При растачивании посадочных отверстий и отверстий под гильзы в корпусных деталях станков из чугуна марок СЧ 20 и СЧ 25 НВ 180-220 требуется обеспечить размеров 6 - 7 - 100квалитета Ra =шероховатость поверхности = 0.32 ÷ 1,25 мкм. Применение инструмента из композита взамен резцов из твердых сплавов значительно повысило эффективность растачивания, причем в некоторых случаях отпала необходимость доводочных

Примеры растачивания отверстий резцами из СТМ на расточных стаиках приведены в табл. 5.

ФРЕЗЕРОВАНИЕ

Тонкое чистовое фрезерование плоскостей деталей из закаленных сталей и чугуна на фрезерных, плоскошлифорасточных и Эффективность вальных станках. обработки взамен фрезерования инструментом, оснащенным твердым сплавом, или взамен шлифования достигается благодаря повышению производительности и качества обработки вследствие малого размерного износа фрез из композита, незначительного нагрева изделия, отсутствия шаржирования и т. п.

Для чистового фрезерования рекомендуется использовать однорядные насадиые фрезы по ТУ 2-035-713-80, оснащенные неперетачиваемыми пластинами из композита 05. В редких случаях, когда невозможно использовать насадные фрезы (при обработке узких «утопленных» плоскостей), следует применять концевые фрезы по ТУ 2-035-714-80. Рекомендуется обрабатывать детали из незакаленного чугуна любых марок, в том числе из высокопрочного, фрезами из композита следующих режимах: $= 500 \div 1500$ m/muh; $t = 0.02 \div 0.3$ mm; S_0 выбирают в зависимости от требуемой шероховатости обработанной поверхности:

Ra, MKM . .
$$0.5-0.8$$
 $0.8-1.25$ $1.25-2.5$ S_0 , MM/06 . . $0.25-0.33$ $0.33-0.4$ $0.4-0.52$

Чистовое фрезерование с использованием режущих пластин из композита 05 целесообразно применять на следующих видах оборудования:

многопелевых сверлильно-фрезерно-расточных горизонтальных станках 22К04ПМФ4. мод. 2202ВМФ4, 2202ПМФ2, 22К04ВМ2Ф4, 2204BMΦ2. 2204BMΦ4, ИР500МФ4. 22К05ПМФ4. «Модуль-500», 22К06ВМ2Ф4, 2206BMΦ4. **ИР**800МФ4. 22К08ПМФ4, 22К16ПМФ4. 22K20MΦ4, 24К58АМФ4, 24К68МФ4 и др.;

многоцелевых сверлильно-фрезерно-ра-

вертикальных сточных станках мод. 2252ВМФ4. 2254ВМФ4. 65К50ПМФ4. 24K40AMΦ4. 2E450AMΦ4. 2256ВМФ4. 24K50AMΦ4. 24456A MΦ4. 24K60AMΦ4. 24К65АМФ4. 24К70АМФ4. 24К80АМФ4 и др.;

многоцелевых вертикально-фрезерных консольных станках мод. 6Т13МФ4-1 и др.; миогоцелевых фрезерно-сверлильно-расточных станках с продольным столом мод. 66К06МФ4, 66К12МФ4, 66К16МФ4, 66К20МФ4, 66К25МФ4 и др.;

координатно-расточиых и координатных сверлильно-фрезерных расточных кальных станках с ЧПУ или с предварительным набором координат и цифровой инмод. 24К30СФ1, 24К30СФ4. дикапией 34К40СФ1, 24К40СФ4, 2E450AΦ1-1. 24K50AΦ1, 2E450AΦ4, 24K50AΦ1, 2455AΦ1, 24K55CΦ1, 2455AΦ2, 24K55CΦ4, 24K56CΦ1, 24К56СФ4. 25К60АФ4. 24К60СФ4. 24К65АФ4, 24К70АФ4, 24К80АФ4 и др.;

координатно-расточных и координатных сверлильно-фрезерно-расточных горизонтальных станках с ЧПУ или с предварительным набором и цифровой индикацией мод. 24К58АФ1, 24К58АФ4, 2A459АФ1, 24К69АФ1, 2A459АФ4, 24К68АФ4, 2A59МФ4 и др.;

горизонтально-фрезерных консольных станках с ЧПУ мод. $6781\Gamma\Phi 3$, $6781\Gamma\Phi 20$, $6P811M\Phi 3$ -1, $6781\Gamma M\Phi 3$, $6781\Pi\Phi 20$, $6782\Gamma\Phi 20$, $6783\Gamma\Phi 20$ и др.;

вертикально-фрезерных консольных станках с ЧПУ мод. 6Р11Ф3-1, 6Т11Ф3, 6Т11Ф20, 6Р11МФ3-1, 6Т11МФ3, 6Т12Ф20, 6Р13Ф3-37, 6Р13Ф3-01, 6Т13Ф20, 6Р13РФ3, 6Т13Ф3-1 и др.;

вертикально-фрезериых станках с крестовым столом с ЧПУ, предварительным набором координат и цифровой индикацией мод. 6520МФЗ, 6520ФЗ, 65К40ПФЗ0, 6560Ф1, 654ФЗ, 6560ФЗ, 6560МФЗ-4, 6A56Ф1, 63К08Ф4, 6A59Ф1, 6A59Ф3, 53К10Ф4 и др.;

продольных фрезерно-расточных станках с ЧПУ, предварительным набором координат и цифровой индикацией мод. $6304M\Phi4$, $6505\Phi1$, $6606\Phi1$, $1\Phi1860$, $6\Gamma608\Phi1$, $6M608\Phi1$, $6M610\Phi1$, $6M610M\Phi4$, $6M310\Phi1$, $6620M\Phi4$ и др.;

координатно-расточных станках вертикальных мод. 2421, 24210, 2431, 24310, 2E440A, 2E460A, 2E470A и др.;

горизонтальио-расточных станках мод. 2М614, 2М615, 2А620-1, 2620В, 2А622-1, 2622В, 2636, 2Е656Р, 2Е656 и др.;

горизонтально-фрезерных консольных станках мод. 6Г804Г, 6Т80Г, 6Т80Ш, 6Т81Г, 6Д82Г, 6Р81Ш, 6Т822Ф1, 6Т82Ш-1, 6Т83Г-1, 6Р83Ш, 6Г83Ш1 и др.;

горизонтальио-фрезерных консольных уииверсальных станках (с поворотным столом) мод. 6Г80, 6Т81, 6Т82-1, 6Т83-1 и др.;

вертикально-фрезерных консольных станках мод. 6T104, 6T10, 6T11-6T12-1, 6T13-1, 6T13Ц-1 и др.;

продольно-фрезерно-расточных и сверлильно-фрезерно-расточных станках с ручным управлением и др.

Обработку можно проводить и на импортных станках аналогичных групп.

При фрезеровании на координатно-расточных станках рекомендуются пониженные глубины резаиия ($t = 0.02 \div 0.015$ мм) и скорости резания ($v = 250 \div 400$ м/мин).

В случае обработки на нежестких станках, а также при использовании концевых фрез скорости резания допускается понижать до 250—400 м/мин.

В отдельных случаях на одном и том же оборудовании одними и теми же фрезами с одного установа деталей целесообразно осуществлять их получистовое и чистовое фрезерование. При получистовом фрезеровании рекомендуются следующие режимы резания: $v = 400 \div 800$ м/мин; $t \le 2,5$ мм; $S_0 = 0.5 \div 1.0$ мм/об.

При замене шлифования и шабрения фрезерованием используют многозубые и однозубые фрезы, оснащенные композитом.

Характерной особенностью режущей части наиболее широко применяемых однозубых фрез является наличие прямолинейной зачистной режущей кромки, располагаемой параллельно обрабатываемой поверхности. Эти фрезы позволяют получить заданное значение щероховатости обрабатываемой поверхности при довольно высоких значениях подачи. Например, при обработке чугунных поверхностей однозубой фрезой с зачистной режущей кромкой может быть достигнут требуемый параметр шероховатости поверхности $Ra \le 0.63$ мкм при подаче 0,6 мм/зуб и $Ra \le 1,25$ мкм при подаче до 1 мм/зуб, причем чем длиннее зачистная кромка, тем выше значение подачи, при которой достигается требуемый параметр шероховатости поверхности [3].

Однако возможность повышения производительности обработки за счет увеличения длины зачистной режущей кромки имеет свои пределы, так как, во-первых, длина зачистной кромки лимитируется размерами поликристалла СТМ, во-вторых, и это самое главное, увеличение длины кромки даже в возможных пределах вызывает рост усилия резания, особенно значительный при обработке закаленных материалов, что, в свою очередь, может привести к погрешностям обработки вследствие значительных отжатий системе станок - приспособление - инструмент – деталь (СПИД) и к вибрациям, снижающим чистоту и стойкость инструмента. Поэтому дальнейшее значительное повышение производительности обработки возиспользованию можно лишь благодаря многозубых фрез.

В большинстве случаев, когда фрезерование применяют взамен шлифования, и во всех случаях его применения вместо шабрения припуск, оставляемый на обработку, может быть снят, как правило, за один или несколько проходов без деления глубины резания между зубьями фрезы. Поэтому в таких случаях наиболее эффективным является применение фрез, работающих по методу деления подачи, в которых вставки располагаются на одинаковом расстоянии как от оси вращения фрезы, так и от обрабатываемой поверхности. Конструкции фрез с регулируемыми режущими вставками, оснащенными композитом, позволяют достигать торцового биения 1-2 мкм. Если фрезерование выполняется взамен окончательного шлифования ($Ra \le 1,25$ мкм), то при регулировке положения режущих вставок в корпусе фрезы вне станка величина торцового биения зубьев должна быть не более 1-2 мкм, при регулировке непосредственно на станке - не более 2-3 мкм. При замене предварительного шлифования величина торцового биения зубьев может быть больше, однако биение зубьев фрез (особенно торцовое), оснащенных СТМ, оказывает влияние не только на шероховатость обрабатываемой поверхности, но и на стойкость фрез.

Помимо перечисленных выше станков для обработки фрезами, оснащенными СТМ, могут быть использованы карусельно- и плоскошлифовальные станки, «обрабатывающие центры».

В связи с тем, что поликристаллическим СТМ свойственна хрупкость и они чувствительны к вибрациям, обработку фрезами из композита необходимо проводить на относительно жестких станках. Для этого пригодны станки классов П, В, А и С.

При эксплуатации фрез, оснащенных ком-

позитом, с целью защиты оператора и окружающих от раскаленной стружки (при фрезеровании закаленной стали) или быстролетящей сыпучей стружки (при фрезеровании чугуна) рекомендуется фрезу закрывать кожухом, а зоны обработки ограждать шитками таким образом, чтобы верхняя кромка щитков была на 150—200 мм выше уровня обрабатываемой поверхности.

Фрезы из эльбора-Р можно применять для обработки:

поверхностей чугунных корпусных, базовых деталей станков, в том числе закаленных до твердости HRC_7 48 – 50 (вместо шлифования):

поверхностей неразъемных и разъемных деталей станков (вместо шабрения);

поверхностей корпусных деталей для исключения последующих операций шлифования, шабрения, притирки или доводки.

Режимы обработки: $v = 500 \div 800$ м/мин; $S_z = 0.01 \div 0.03$ мм/зуб; $t = 0.2 \div 0.3$ мм.

Обработку проводят на фрезерных, а также на плоскошлифовальных станках. В результате исключаются операции шлифования, вся обработка осуществляется на одном станке. Значительно повышается производительность обработки. Шероховатость обработанной поверхности находится в пределах $Ra = 0.32 \div 1.25$ мкм при радиальном и торновом биении ножей не более 0,005 мм [1].

Фрезами с ножами из эльбора-Р можно обрабатывать поверхности деталей из закаленной стали X12 твердостью HRC_3 58-60 с режимами резания v=240 м/мин; S=0,078 мм/зуб ($S_{\text{мин}}=500$ мм/мин); $t=0,3\div0,4$ мм. В этих условиях обработки стойкость фрез составляет T=109 мин. Достигается значительное повышение производительности и качества обработки [12].

Фрезерование деталей значительной длины из закаленной стали и чугуна. Фрезерование используется взамен предварительного или окончательного шлифования и шабрения при обработке плоских, призматических, прямоугольных направляющих, направляющих типа «ласточкин хвост», опорных и привалочных поверхностей корпусных и базовых деталей металлорежущих станков.

Обработка фрезами с регулируемыми режущими вставками выполняется в основном на продольно-шлифовальных станках (ПШС) и станках типа «обрабатывающий центр».

Рекомендациями по использованию ПШС для обработки чугунных деталей фрезами, оснащенными СТМ, разработанными ЭНИМСом, предусматривается следующее.

- 1. Фрезерование инструментом, оснащенным СТМ, взамен шлифования рекомендуется проводить на станках, приведенных в табл. 6, а также на других ПШС класса точности П по ГОСТ 13135—80. По усмотрению заводов, эксплуатирующих ПШС, можно применять фрезерование и на станках класса точности В, но на ПШС этого класса выполнять фрезерование с режимами, при которых двигатель привода шпинделя шлифовальной бабки работает с нагрузкой, близкой к номинальной, нежелательно. Соблюдение этого правила позволит сохранить точность станков более длительное время.
- 2. Диаметр торцовых фрез целесообразно назначать близким к диаметру чашечных шлифовальных кругов, с которыми работают на ПШС.
- 3. С целью уменьшения ударной нагрузки на шпиндель ПШС рекомендуется работать многозубыми фрезами. При этом фрезы должны быть отбалансированы.
- 4. Рекомендуемая глубина резания при фрезеровании на ПШС -- не более 0,5 мм. Остальные параметры режима резания могут назначаться в широком диапазоне значений, но при этом необходимо следить, чтобы нагрузка на электродвигатель привода шпинделя шлифовальной бабки не превышала его номинальной мощности. Для этого шлифовальные бабки ПШС должны быть оснащены измерительным прибором (указателем нагрузки или силы тока). Характеристика измерительного прибора должна соответствовать номинальной мощности электродвигателя привода шпинделя.

Эффективность замены шлифования фрезерованием может быть проиллюстрирована на примере обработки плоской направляющей салазок координатно-расточного станка. Длина направляющей 2200 мм, ширина 45 мм. Припуск на обработку на ПШС 0,3 мм.

Для достижения требуемой точности и шероховатости (отклонение от прямолинейности 4 мкм на 1 м, параметр шероховатости Ra=0,63 мкм) при обработке направляющей фрезерованием машинное время должно составлять 0,75 мин: три прохода при $S_{\text{прод}}=10$ м/мин, из них два выхаживающих; при обработке шлифованием периферией круга — 10,4 мин: 100 проходов при $S_{\text{прод}}=25$ м/мии (25 двойных ходов с подачей на глубину t=0,01 мм на двойной хол стола

при предварительном шлифовании и 25 двойных ходов с подачей на глубину 0,002 мм на двойной ход стола при окончательном шлифовании).

С увеличением припуска, оставляемого на чистовую обработку, эффективность замены шлифования фрезерованием значительно повышается. Особенно высока эффективность такой замены, когда шлифование выполняется торцом круга.

Внедрение процесса фрезерования при обработке станины станка мод. МК6021 (материал СЧ 25, HRC₃ 48-55) на продольношлифовальном станке «Вальдрих Кобург» с режимами резания $v=600 \div 700$ м/мин; $S=4\div 6$ м/мин; $t\leqslant 0,2$ мм обеспечило повышение производительности в 2 раза.

Фрезерование пазов, уступов, поверхностей типа «ласточкин хвост» в деталях из закаленных сталей и чугуна. Ранее паз шириной 14Н9 в столе шлифовали на продольно-шлифовальном станке модели 2А530 кругом формы 1А1 за 10-12 двойных ходов с большим износом круга и его неоднократной правкой. Фрезерование паза шириной 14Н9 дисковой ступенчатой фрезой проводят за олии проход при v = 360M/MИH (n = $= 800 \text{ мин}^{-1}$); S = 0.5 м/мин; t = 0.25 мм. При этом значительно улучшаются показатели качества и точности, а производительность повышается в 5 раз.

Фрезой, оснащенной ножами из композита 01, фрезеруют закрытые верхние направляющие консоли на продольно-шлифовальном станке мод. 3A530 взамен предварительного шлифования. Снимаемый припуск — 0,3 мм за проход; v = 360 м/мин; S = 0,5 м/мин. Достигнуто снижение трудоемкости обработки направляющих в 3 раза.

Закрытые и открытые направляющие типа «ласточкин хвост» можно фрезеровать одиозубой фрезой «летучкой», оснащенной вставкой (ножом) из эльбора-Р. Направляющие фрезеруют на плоскошлифовальных станках, шлифовальные головки которых позволяют проводить обработку со скоростями резания $v \ge 1000$ м/мин и подачей $S \le 1$ м/мин. Так, например, на станке мод. МШ-123 направляющие детали суппортной группы станка мод. 16К20 обрабатывают однозубыми фрезами с v = 1100 м/мин, $S_{\rm M} = 0.5$ мм/зуб и t == 0.1 ÷ 0.3 мм. При фрезеровании взамен шлифования достигается значительное повышение (до 2-3 раз) производительности обработки. Параметр шероховатости обработанной поверхности Ra = 1,25 мкм.

6. Основные данные продольно-шлифональных станков, рекомендованных ЭНИМСом к использованию для обработки деталей из чугуна фрезами, оснащенными СТМ

		разі	ольшие меры	льного эла		Товоротн	ая шлифовал	ьная бабка
Модель станка	Завод- изготовитель		ываемого ия, мм	нродольн ения стола мм		гь при- га,	0 ×	×
		Ширина	Длина	Скорость продольного перемещения стола (стойки), мм	Тип	Мощность г вода круга, кВт	Диаметр чашечного круга, мм	Частога вращения илинделя, мин
		0,	дностоечн	ые станк	И			
3A530	Воронежский	800	2000	1,5-15	-	3,0	75 – 175	2850
	станкозавод им. 50-летия Ленинского							. 1
3A544	комсомола То же	1150	4000	1-12	_	2,2	150 – 175	2900
3Д544	» »	1250	4000	2,5-20		5,5	150-175	2790
IOFS-4	Фирма	1000	3200	1 - 25		2,2	50-150	1000 - 5000
	«Шнейдер» (ФРГ)				П	3,0	50-200	1000 - 4500
IOWFS-4	То же	1200	5000	1-12	I II III	3,0 3,7 5,5	50-150 50-200 50-300	1000 - 5000 1000 - 4500 1000 - 4000
TH110	Фирма «Биллитер» (ФРГ)	1100	5000	1-10	-	3,0	50 – 150	2850
FBR-1250	Станкострои- тельный комбииат	1250	4000 - 10 000	1,5-25	_	2,9/3,9	50 – 200	1500/3000
4	им. Ф. Гек-		-				0.10	
	керта (ГДР)]				
	1		1				7	
		Ди	ух ст оечи	ые стаик	И			
3535	Воронежский станкозавод	630	2500	1-30	-	4,7/5,5	150	1450/2900
*	им. 50-летия Ленинского комсомола							
3508	Минский станкозавод им. Октябрь-	710	3000	2-25	-	4	150	2880
	ской револю- ции						1	
3510	То же	900	4000	2-25	_	2,8	150	3000
МС51 0Ф1	»	1000	3150	1-50		15	150	970 - 2500
Серия	Станкострои-	800 —	3000 —	2-50	I	3,0/3,5	63 - 200	1500/3000
SZ	тельный	1000	10 000	, 50	**	_	(2 200	1000 2000
,	комбинат им. Ф. Геккерта (ГДР)	1250 — 1800 2000 —	4000 10 000 6000	1-50	II	7 16	63 – 200	1000 - 3000 $1000 - 3000$
-	(- 🗛)	3150	12 000	1-40	111	10	_	1000 - 5000

Продолжение табл. 6

		Наибольшие		ъиого 12		Поворотная шлифовальная бабка						
Модель станка	Завод-	разм обрабать	иеры ываемого ия, мм	продольиого ния стола мм		ъ круга,	_					
Claina	nsi o toba tenb	Ширина	Длина	Скорость пр перемещения (стойки), мм	Тип	Мошность привода кј кВт	Диаметр чашечиого круга, мм	Частота вращения шпинделя, мин				
2525	Фирма «Вальдрих Кобург»	1250	6000	1-45	S10 S15	7,5 11	- ~	600 – 2800 500 – 2500				
3030	(ФРГ) То же	1500	6000	1-45	S10 S15	7,5 11	-	600 - 2800 500 - 2500				

7. Примеры фрезерования деталей инструментом, оснащенным СТМ, на фрезерных, расточных, плоскошлифовальных я продольно-шлифовальных станках

			Размо обраба	аты-	8	Pex	кимі	ы обра	ботки	31173
Деталь	Материал, твердость		ваемых поверх-		МПОЗИТ			и		Примечания
	твердоств	Стаиок	Ширииа	Дина	Марка композита	I, MM	i	$S_{\rm M}$, мм/мин	в, м/мин	
Головка блока	Чугун СЧ 20,	Верти- кально-	224	658	01	0,5	2	600	500	Без ох- лаждения
цилиндров двигателя трактора	HB 187— 255	фрезер- ный мод. 6М13П	- 1				_			
Картер в сборе	Чугун СЧ 15, НВ 165— 229	Карусель- но-фрезер- ный мод. 6M23	120	164	01	0,4	-1	600	314	То же
Станина	Чугун СЧ 20, НВ 179— 220	Продольно-шлифовальный «Waldrich Coburg»	320	8030	05	1,8	2	1120	550	Без ох- лаждения. Масса дета- ли 13 750 кг. Два про- хода по ширине
Стойка	Чугун СЧ 20, НВ 250—	Продоль- но-шлифо- вальный	50	3100	01	0,8	2	800	500	Без ох- лаждения
	280	«Billeter»	1							

Продолжение табл. 7

										,
	Материал,		Разме обраба ваемі повер ностей,	ТЫ- ЫХ)Х-	зита	Pex	ким	ы обра	ботки	
Деталь	твердость	Станок		·VIVI	композита			мм/мин	ин	Примечания
			Ширина	Длина	Марка	I, MM	j	S _M , MM	г, м/мин	*
Консоль	Чугун	Горизон-	14	450	01	0,25	1	625	500	Без охлаж-
фрезерного станка	СЧ 20, НВ 180-	тально- фрезер-	-		-8-					дения
	220	ный мод. 6Р82Г								
Направляю- щая	Чугун СЧ 20, НВ 170- 241	Плоско- шлифо- вальный мод.	20	550	Эль- бо р-Р	0,4	2	600	1300	То же
Корпус	Чугун	МШ-123 Коорди-	Ø 125	205	0,1	0,25	2	0,10	314	_
. ,	СЧ 20, НВ 179-	натно- расточный	ï		(резец рас-	0,1		0,02		
	220	мод. 2457			T04-					
4.5			300	440	ный) 01	0,4	2	630	400	

Фрезерование и растачивание деталей из закаленных сталей и высокопрочных чугунов с высокими требованиями к взаимному расположению отверстий и плоскостей. В этих случаях обработка отверстий и плоскостей осуществляется за один установ летали на координатно-расточных и горизонтально-расточных станках.

Примеры фрезерования деталей инструментом, оснащенным СТМ, на фрезерных, расточных, плоскошлифовальных и пролольно-шлифовальных станках приведены в табл. 7.

2. ИНСТРУМЕНТ, ОСНАЩЕННЫЙ МИНЕРАЛОКЕРАМИКОЙ НОВЫХ МАРОК

Применение инструмента с режущими сменными пластинами из керамики, облалающей высокой теплостойкостью ($T=1200 \div 1400\,^{\circ}\mathrm{C}$), твердостью (HV 3000), износостойкостью, химической устойчивостью, обеспечивает обработку деталей из стали

и чугуна с большими (в 1,5—5 раз) скоростями резания по сравнению с ииструментом, оснащенным пластинами из тьердых сплавов.

Реализация высоких скоростей резания при внедрении инструмента из керамики позволяет:

уменьшить с 1,5 до 5 раз основное машинное время обработки деталей;

заменить (сэкономить) дефицитные вольфрамосодержащие твердые сплавы;

высвободить рабочих-станочников, станки и производственные площади;

уменьшить шероховатость поверхности нетермообработанных и термоулучшенных сталей;

повысить качество обработки поверхностного слоя закаленных сталей по сравнению со шлифованием и улучшить условия работы станочников.

МАРКИ РЕЖУЩЕЙ КЕРАМИКИ

Интенсивное развитие производства и применения керамики в нашей стране и за рубежом (особенно в Японии, США, ФРГ) приве-

ло к созданию керамических материалов следующих основных групп.

- 1. Окисная (белая) керамика, которая состоит из окиси алюминия Al_2O_3 ($\sim 99\%$) с незначительными добавками окиси магния (MgO) или других элементов. К этому типу керамики относят отечественные марки BO13 (по ТУ 48-19-4204-2-79) ЦМ332 и ВШ75 (по ТУ 2-036-768-82). Пластины из окисной керамики изготовляют методом холодного прессования, а затем подвергают спеканию. Основной областью применения окисной керамики является обработка серых чугунов и нетермообработанных сталей.
- 2. Окисно-карбидная (черная) керамика, которая состоит из окиси алюминия Al_2O_3 (60 $80\,\%$), карбидов тугоплавких металлов (TiC) и окислов металлов. К этому типу от-

носят керамику марок ВОК60 и В3 по ГОСТ 25003—81. Пластины из окисно-карбидной керамики получают методом горячего прессования в графитовых пресс-формах, чем объясняется более высокая стоимость этих пластин. Окисно-карбидная керамика предназначена в основном для обработки отбеленных чугунов, закаленных, цементуемых и термоулучшенных сталей.

Режущие пластины из окисно-карбидной керамики имеют более мелкую зернистость по сравнению с пластинами из окисной керамики, обладают несколько большими твердостью и износостойкостью и менее восприимчивы к термохимическим нагрузкам. Однако по сравнению с пластинами из твердого сплава прочность и сопротивление термоциклическим нагрузкам у пластин из керамики значительно меньше, что предопреде-

8. Основные физико-механические свойства пластин из керамики

Марка режущей керамики	Изготовитель	Состав, %	Предел прочности ов, МПа	Твердость НRA	Плотность, г/см³	Цвет материала пласти ны
ЦМ332	СССР, ТУ 2-036-768 – 82	$A1_2O_3 \approx 99$; MgO	300 – 350	91-93	3,97	
BO13	СССР, ТУ 48-19-4204-2-79	_	450 – 500	92	3,91 — 3,97	Белый
SN-60	ФРГ, фирма	$Al_{2}O_{3} > 90$ $ZrO_{2} < 10$	440	93	3,97	
SN-80	Фельдмюлле	$Al_2O_3 > 80$ $ZrO_2 < 20$	500	92	4,16	
Cl	Япония	$Al_2O_3 \ge 99$	400 – 500	93 – 94	3,94	
В3	СССР, ГОСТ	Al ₂ O ₃ ≥ 60; карбиды ≈ 40	550 – 650	93	4,5-4,6	
BOK60	25003 – 81	_	600 – 700	94	4,2-4,3	
SH-1	ФРГ, фирма	$Al_{3}O_{3} > 60$ TiC < 40	380	94	4,3	Черн ый
SH-20	Фельдмюлле	$Al_3O_3 > 80$ $TiC < 20$	400	94	4,28	
HC2	Япония	$\mathrm{Al_2O_3}$ + карбиды	700 – 800	44,5	4,30	

ляет их использование для чистовой и, частично, для получистовой обработки стали

и чугуна.

3. Окисно-нитридная, которая состоит из нитридов кремния и тугоплавких материалов с включением оксида алюминия и некоторых других компонентов. К этой группе отномарки: кортинит OHT20 (по TV ТУ 2-P36-087-82силинит-Р (no И 06-339 - 78). Кортинит предназначен для обработки закаленных сталей НКС, 30-55, ковких, модифицированных и отбеленных чугунов НВ 300-650, термоулучшенных сталей.

Основные физико-механические свойства и состав пластин из наиболее применяемых отечественных и зарубежных марок керамики приведены в табл. 8.

ПЛАСТИНЫ ИЗ КЕРАМИКИ

Для токарных сборных резцов применяют пластины правильной, трехгранной, квадратной, круглой и ромбической форм по ГОСТ 25003-81. Пластины изготовляют двух классов:

U — шлифованные по опорным и задним поверхностям;

G — шлифованные по опорным и задним поверхностям с более жесткими припусками.

Параметры шероховатости пластин не должны превышать:

задних и опорных поверхностей Ra = 0.32 мкм:

фасок режущих кромок Ra = 0.63 мкм.

На поверхности пластин не допускаются трещины, сколы и налипания.

ГОСТ 25003 – 81 в зависимости от классов пластин, величины и зоны расположения на

режущих кромках микровыкрашиваний допускает их наличие, но не более трех, в том числе на радиусе при вершине — не более олного.

Пластины из керамики марок ВОК60 и В3 выпускают толщиной s=4,78 мм, а марки ВО13 — толщиной 7,93 мм. Пластины изготовляют с упрочняющими фасками шириной f=0,2 мм под углом $\gamma_{\Phi}=20^{\circ}$ по периметру с двух сторон пластины.

при вершине Раличс пластины $= 0.4 \div 1.2$ мм в случае отсутствия малой величины биения обрабатываемых поверхностей заготовки (менее 0.15 мм) почти не влияет на стойкость инструмента, так как в этих условиях прочность привершинного клина вполне достаточна. С увеличением биения обрабатываемых поверхностей (свыше 0.15 мм) увеличение радиуса более 1,2 мм приводит к снижению интенсивности износа (сколов и выкрашиваний инструмента) и положительно влияет на его стойкость. Однако большие значения радиуса ($r \ge 2.5$ мм) вызывают рост радиальных усилий и появление вибраций.

Износ резцов из керамики носит в основном характер абразивно-механического истирания и происходит по задним поверхностям с образованием площади износа и по передней поверхности — с образованием небольшой лунки. Превалирующим является износ по задним поверхностям.

За критерий затупления резцов принимают наибольшую линейную величину площади износа по задним поверхностям $[h_3]$, мм. При чистовой обработке $[h_3] = 0.4$ мм, при получистовой обработке $[h_3] = 0.8$ мм.

Форморазмеры выполненных в соответ-

9. Номенклатура режущих многограниых керамических пластии

Размеры, мм

Форма пластины*	Буквенно-цифровое обозначение	Длина режущей кромки	Диаметр вписанной окружности	Толщина	Радиус закруг- ления
Трехгранная	TNCN-160408 TNUN-160408 TNCN-160812 TNUN-160812	16,5	9,525	4,76 4,76 8,0 8,0	0,8 0,8 1,2 1,2

Продолжение табл. 9

Форма пластины*	Буквенно-цифровое обозначение	Длина режущей кромки	Диаметр вписанной окружности	Толщина	Радиус закруг- ления
Квадратная	SNUN-120412 SNGN-120412 SNUN-120416 SNGN-120416	12,7	12,7	4,76	1,2 1,2 1,6 1,6
Круглая	RNGN-070500 RNUN-070500	-	7,0 7,0	5,0 5,0	=
Ромбическая	CNGN-120812 CNUN-120812	12,9 12,9	12,7 12,7	8	1,2 1,2
5			11.		

^{*} Форма и размеры пластин марок ВОК60 и В3 по ГОСТ 25003-81.

ствии со стандартами СЭВ и ИСО трехгранных, квадратных, ромбических и круглых пластин из керамики марок ВШ75 и кортинита приведены в табл. 9.

КОНСТРУКЦИИ ИНСТРУМЕНТА ЦЕНТРАЛИЗОВАННОГО ИЗГОТОВЛЕНИЯ, ОСНАЩЕННОГО РЕЖУЩЕЙ КЕРАМИКОЙ

Для обработки на токарных, токарно-винторезных станках и станках с ЧПУ разработана единая гамма унифицированных конструкций токарных, проходных, подрезных, упорных и расточных резцов с механическим креплением керамических пластин. В комплект резца входят державка, 20—50 шт. режущих пластин, опорная пластина, прихват, винты и стружколом (рис. 4).

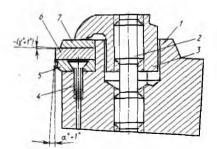
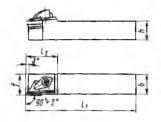


Рис. 4. Схема крепления пластин без отверстий в корпусе резца:

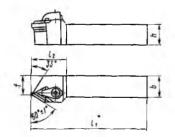

I — державка; 2 — винт с разнонаправленной резьбой; 3 — прихват; 4 — винт; 5 — пластина опорная; 6 — пластина режущая; 7 — стружколом

Номенклатура, типоразмеры, обозначение по ИСО, назначение резцов, выпускаемых заводами Минстанкопрома, приведены в табл. 10.

10. Номенклатура режущего инструмента с механическим креплением пластин из режущей керамики

Наименование, размеры инструмента, обозначение по ИСО

Резцы токарные проходные с механическим креплением трехгранных пластин из керамики, угол $\phi = 90^\circ$, правые и левые



 $h \times b \times l_1 \times l_2 \times f$

Обозначение резпа по станларту ИСО* 5608:

20×20×125×32×20,5 CTFNR 2020K16 25×25×150×32×25,5 CTFNR 2525M16 32×25×170×32×25,5 CTFNR 3225P16

 $32 \times 32 \times 170 \times 32 \times 33$ CTFNR 3232P16 Резцы токарные проходные отогнутые с механическим креплением трехгранных пластин из керамики, угол $\phi = 90^{\circ}$, правые и левые

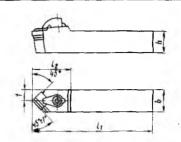
 $h \times b \times l_1 \times l_{2\max} \times f$

Обозначение резца по стандарту ИСО 5608:

 $20 \times 20 \times 125 \times 32 \times 25$ $25 \times 25 \times 150 \times 32 \times 32$

CTGNR/L 2020K16 CTGNR/L 2525M16

 $25 \times 25 \times 150 \times 32 \times 32$ $32 \times 25 \times 170 \times 32 \times 32$ CTGNR/L 2525M16 CTGNR/L 3225P16

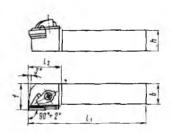

 $32 \times 32 \times 170 \times 32 \times 40$

CTGNR/L 3232P16

Резцы токарные проходные с механическим креплением трехгранных пластин из керамики, угол $\phi=60^\circ$, правые и левые

Продолжение табл. 10

Наименование, размеры инструмента, обозначение по ИСО

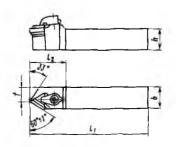


 $h \times b \times l_1 \times l_{2\text{max}} \times f$

Обозначение резца по стандарту ИСО 5608:

 $20 \times 20 \times 125 \times 32 \times 13$ $25 \times 25 \times 150 \times 32 \times 17$ CTENR/L 2020K16 CTENR/L 2525M16

Резпы токарные проходные отогнутые с механическим креплением трехгранных пластин из керамики, угол $\phi = 60^{\circ}$, правые и левые


 $h \times b \times l_1 \times l_{2\text{max}} \times f$

Обозначение резца по стандарту ИСО 5608:

 $20 \times 20 \times 125 \times 32 \times 17$ $25 \times 25 \times 150 \times 32 \times 32$

CTTNR/L 2020K16 CTTNR/L 2525M16

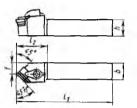
Резцы токарные проходные с механическим креплением квадратных пластин из керамики, угол $\phi = 45^{\circ}$

Продолжение табл. 10

Продолжение табл. 10

Наименование, размеры инструмента, обозначение по ИСО

Наименование, размеры инструмента, обозначение по ИСО


 $h \times b \times l_1 \times l_{2\text{max}} \times f$ Обозначение резца по стандарту ИСО 5608:

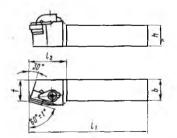
20 × 20 × 125 × 36 × 10 CSDNN 2020K12

 $25 \times 25 \times 150 \times 36 \times 12.5$ CSDNN 2525M12 $32 \times 25 \times 170 \times 36 \times 12.5$ CSDNN 3225P12

 $32 \times 23 \times 170 \times 36 \times 12,3$ CSDNN 3225F12 $32 \times 32 \times 170 \times 36 \times 12,5$ CSDNN 3232P12

Резцы токарные проходные отогнутые с механическим креплением квадратных пластин из керамики, угол $\phi = 45^{\circ}$, правые и левые

 $h \times b \times l_1 \times l_{2\text{max}} \times f$ O

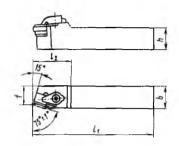

 $32 \times 32 \times 170 \times 36 \times 40$

Обозначение резца по стандарту ИСО 5608:

CSSNR/L 3232P12

20 × 20 × 125 × 36 × 25 25 × 25 × 150 × 36 × 32 32 × 25 × 170 × 36 × 32 CSSNR/L 2020K12 CSSNR/L 2525M12 CSSNR/L 3225P12

Резцы токарные проходные отогнутые с механическим креплением квадратных пластин из керамики, угол $\Phi = 60^{\circ}$, правые и левые


 $h \times b \times l_1 \times l_{2\max} \times f$

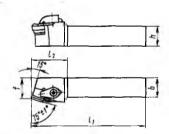
Обозначение резца по стандарту ИСО 5608:

20 × 20 × 125 × 36 × 22 CSTNR/L 2020K12 25 × 25 × 150 × 36 × 27 CSTNR/L 2525M12 32 × 25 × 170 × 36 × 27 CSTNR/L 3225P12

32×25×170×36×27 CSTNR/L 3225P12 32×32×170×36×36 CSTNR/L 3232P12

Резцы токарные проходные с механическим креплением квадратных пластин из керамики, угол $\phi = 75^{\circ}$, правые и левые

 $h \times b \times l_1 \times l_{2\max} \times f$

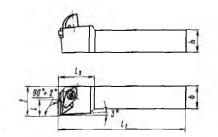

 $32 \times 32 \times 170 \times 36 \times 27$

Обозначение резца по стандарту ИСО 5608:

CSBNR/L 3232P12

20 × 20 × 125 × 36 × 17 CSBNR/L 2020K12 25 × 25 × 150 × 36 × 22 CSBNR/L 2525M12 32 × 25 × 170 × 36 × 22 CSBNR/L 3225P12

Резцы токарные проходные отогнутые с механическим креплением квадратных пластин из керамики, угол $\phi = 75^{\circ}$



 $h \times b \times l_1 \times l_{2\max} \times f$

Обозначение резца по стандарту ИСО 5608:

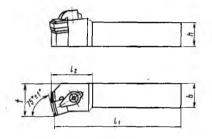
20 × 20 × 125 × 36 × 22 CSRNŘ/L 2020K12 25 × 25 × 150 × 36 × 27 CSRNR/L 2525M12

Резцы токарные подрезные отогнутые с механическим креплением трехгранных пластин из керамики, угол $\phi = 90^{\circ}$, правые и левые

Продолжение табл, 10

Продолжение табл. 10

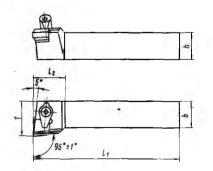
Наименование, размеры инструмента, обозначение по ИСО


Наименование, размеры инструмента, обозначение по ИСО

Обозначение резца по стандарту ИСО 5608:

 $20 \times 20 \times 125 \times 32 \times 25$ $25 \times 25 \times 150 \times 32 \times 32$ CTFNR/L 2020K16 CTFNR/L 2525M16

Резцы токарные подрезные отогнутые с механическим креплением квадратных пластин из керамнки, угол $\phi = 75^\circ$, правые и левые

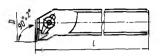

 $h \times b \times l_1 \times l_{2\max} \times f$

Обозначение резца по стандарту ИСО 5608: CSKNR/L 2020K12

 $20 \times 20 \times 125 \times 36 \times 25$ $25 \times 25 \times 150 \times 36 \times 32$ $32 \times 32 \times 170 \times 36 \times 40$

CSKNR/L 2525M12 CSKNR/L 3232P12

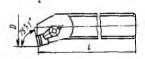
Резцы токарные проходные отогнутые с механическим креплением ромбических пластин с углом $\epsilon=80^\circ$ из керамики, угол $\phi=95^\circ$, правые и левые


 $h \times b \times l_1 \times l_{2\max} \times f$

 $25 \times 25 \times 150 \times 36 \times 32$

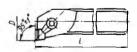
 $32 \times 32 \times 170 \times 45 \times 40$

Обозначение резца по стандарту ИСО 5608: CCLNR/L 2525M12 CCLNR/L 3232P12


Резцы токарные расточные с механическим креплением трехгранных пластин из керамики, угол $\phi = 90^{\circ}$, правые и левые

 $l \times D_{\min}$

 200×45 250×45 250×63 Обозначение резца по стандарту ИСО 5608: S32R-CTFNR/L 16 S32S-CTFNR/L 16 S50S-CTFNR/L 16


Резцы токарные расточные с механическим креплением квадратных пластин из керамики, угол $\phi = 75^\circ$, правые и левые

 $l \times D_{min}$

Обозначение резца по стандарту ИСО 5608: S32R-CSKNR/L 12 S32S-CSKNR/L 12 S50S-CSKNR/L 12 S50U-CSKNR/L 12

Резцы токарные расточные с механическим креплением ромбических пластин с углом $\epsilon = 80^\circ$ из керамики, угол $\phi = 95^\circ$, правые и левые

 $l \times D_{\min}$

 250×45 250×63

Обозначение резца по стандарту ИСО 5608: S32S-CCNR/L 12 S50S-CCNR/L 12

* Расшифровку условных обозначений резцов и режущих пластин см. рис. 1 и 2.

РЕКОМЕНДУЕМЫЕ РЕЖИМЫ РЕЗАНИЯ

Эффективное применение инструмента с пластинами из керамики в первую очередь возможно на автоматизированном оборудовании, станках с ЧПУ или на универсальных станках в условиях жесткой системы СПИД.

Следует использовать мощные, высокооборотные токарные станки, обеспечивающие при наружном точении деталей скорости резания до $v=800\,\pm\,1000\,$ м/мин, а при растачивании — до $400\,-\,600\,$ м/мин.

Поэтому в первую очередь эффективно обрабатывать детали с диаметрами $d = 100 \div 300$ мм и более, что обеспечивает достижение больших скоростей резания при относительно невысоких частотах вращения шпинделя, которыми обладает большинство современных отечествениых токарных станков,

Рекомендуемые режимы резания резцами, оснащенными керамикой, даны в табл. 11.

Их следует корректировать с учетом технического состояния, мощности конкретного оборудования и условий обработки.

При скоростной и сверхскоростной обработке деталей керамикой изменяется структура штучного времени, вспомогательное время начинает превышать основное — снижается эффективность внедрения. Во избежание этого следует применять быстросменные, быстрозажимные пневмо- и гидроустройства, манипуляторы или роботы.

При точении инструментом, оснащенным пластинами из керамики, потребная эффективная мощность на резание больше, чем при резании инструментом с твердосплавными пластинами. Поэтому на практике режимы резания следует корректировать в зависимости от имеющегося в наличии оборудования.

На рис. 5 даны ориентировочные зависимости между режимами резания и мощностью, которые позволяют оценить назначенные параметры режимов резания и мощность станка.

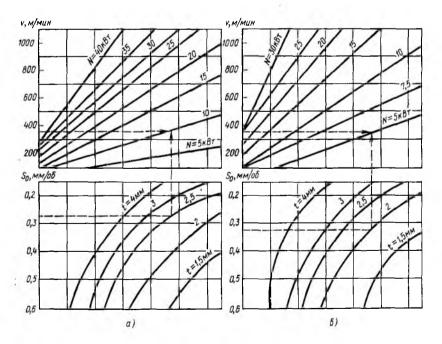


Рис. 5. Зависимость мощности на шпинделе станка от параметров точении резцами с пластинами из режушей керамики ($\phi = 75^\circ$; $\gamma = -7^\circ$; $\alpha = 7^\circ$; r = 1.2 мм; $t = 0.2 \times 20^\circ$; $[h_3] = 0.4$ мм): $a - \text{стали } \sigma_B = 700 - 800$ МПа; 6 - серого чугуна HB 180 - 200

11. Рекомендуемые режимы резания резцами, оснащенными керамикой

Обрабаты-	Твердость	P	ежимы резания		Рекомен- дуемая	Параметр шерохова- тости
ваемый материал	твердость	υ, м/мин	S, мм/об	<i>t</i> , mm	марка керамики	обработанной поверхности <i>Ra</i> , мкм
Чугун: серый	HB 163-241*	300 – 800* 200 – 500	$ \begin{array}{c c} 0,10-0,20* \\ \hline 0,20-0,50 \end{array} $	$\frac{0.3 - 1.0^*}{1.0 - 4.0}$	BO13, BШ75 (BOK60)	<u>≤ 2,0</u> ≤ 10,0
ковкий	HB 160-270	200 – 400 150 – 250	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{0,3-0,8}{1,0-2,0}$	ВОК60, кортинит (В3), силинит-Р	<u>≤ 2,0</u> ≤ 20,0
отбеленный	HB 400-650	40 – 150 15 – 40	$\begin{array}{c} 0.08 - 0.15 \\ \hline 0.12 - 0.30 \end{array}$	$\begin{array}{c} 0.3 - 0.8 \\ \hline 1.0 - 2.0 \end{array}$	ВОК60, кортинит (ВОК63), силинит-Р	≤ 2,0 ≤ 10,0
Сталь: конструк- ционная	НВ 229	$\frac{300 - 700}{150 - 300}$	$\begin{array}{c c} 0,15-0,20\\ \hline 0,20-0,50 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ВО13, ВШ75 (ВОК60)	<u>≤ 2,0</u> ≤ 10,0
улучшен- ная	HB 229-380	$\frac{300 - 800}{200 - 350}$	$\frac{0,10-0,20}{0,15-0,30}$	$\begin{array}{c} 0.3 - 0.8 \\ 1.0 - 2.0 \end{array}$	ВШ75, кортинит (ВОК60), силинит-Р	≤ 1,5 ≤ 5,0
закален- ная	HRC ₃ 36-48	$\frac{100 - 300}{70 - 180}$	$\frac{0,10-0,15}{0,10-0,12}$	$\frac{0,1-0,5}{0,2-1,0}$	ВОК60, силинит-Р, кортинит (В3)	≤ 1,25 ≤ 2,5
A.	HRC ₃ 48-57	60 – 150	$\frac{0.05 - 0.15}{0.08 - 0.15}$	$\frac{0,1-0,5}{0,1-1,0}$	ВОК20, силинит-Р, кортинит (В3)	≤ 1,25
	HRC ₃ 57-64	50 – 120	$\frac{0,02-0,08}{0,04-0,12}$	$\frac{0,1-0,5}{0,2-1,0}$	ВОК60, кортинит (В3)	0,32 1,25

^{*} В числителе приведены данные для чистовой обработки, в знаменателе — для получистовой.

Примечания: 1. Указанные условия эксплуатации резцов рассчитаны на среднюю стойкость 15 мин. 2. В скобках приведены марки керамики, которые можно применять взамен рекомендуемых.

ОБЛАСТИ ЭФФЕКТИВНОГО ИСПОЛЬЗОВАНИЯ ИНСТРУМЕНТА, ОСНАЩЕННОГО РЕЖУЩЕЙ КЕРАМИКОЙ

Инструмент, оснащенный режущей керамикой, применяют в основном для обработки деталей из нетермообработанных или термоулучшенных конструкционных и легированных сталей и чугунов различных марок. Так, резцы из керамики марок ВО13, ВШ75 следует применять при чистовом и получистовом точении нетермообработанных или термоулучшенных конструкционных и легированных сталей и серых чугунов взамен резцов из твердого сплава марок Т15К6, Т14К8 или ВК3, ВК8, ТТ8К6.

Резцы из керамики марок ВОК60, ВЗ следует применять при обработке закаленных сталей (HRC, 30-60), ковких, модифицированных и отбеленных чугунов (HB 300-650).

Инструментом с пластинами из кортинита эффективно обрабатывать закаленные стали (HRC, 30-55), ковкие, модифицированные и отбеленные чугуны (HB 300-650), термоулучшенные стали. В этом случае применение резцов заменяет как операции шлифования, так и обработку резцами, оснащенными твердыми сплавами марок Т30К4, ВК8, ВК6М и т. п.

Точение и растачивание резцами, оснащенными режущей керамикой, взамен шлифования. Такая обработка используется при изготовлении самых разнообразных деталей: зубчатых колес, фланцев, втулок, шпинделей, валов и т. п.

Целесообразность точения керамическими резцами взамен окончательного круглого наружного шлифования определяется величиной припуска на обработку и характером производства. Чем больше припуск, подлежащий съему на финишной операции, тем больше вероятность того, что лезвийная обработка окажется эффективнее абразивной.

Эффективность обработки керамическими резцами взамен круглого наружного шлифования (так же, как и в случае замены внутреннего шлифования) больше, если точение выполняется с одновременной подрезкой торца или снятием фаски.

Замена шлифования точением или растачиванием керамическими резцами часто позволяют повысить не только производительность, но и качество обработки, особенно в тех случаях, когда наряду с обработкой

внутренних или наружных цилиндрических поверхностей необходимо выполнять обработку торцовых поверхностей или фасок, ибо шлифование торцов (особенно внутренних) и фасок часто затруднительно или невозможно.

Так как лезвийная обработка по сравнению с абразивной улучшает микрорельеф обработанной поверхности и физико-механические свойства поверхностного слоя (в нем образуются сжимающие напряжения, отсутствуют прижоги, трещины, шаржирование абразивом), замена шлифования точением или растачиванием керамическими резцами при обработке многих деталей способствует повышению их долговечности.

Обработка деталей керамическими резцами весьма эффективна взамен предварительного шлифования, так как обработку деталей (в том числе и из закаленных сталей высокой твердости) резцами, оснащенными керамикой, можно проводить, не опасаясь прижогов, с глубиной резания, в десятки раз превышающей глубину резания при шлифовании. Эффективность замены предварительного шлифования точением или растачиванием керамическими резцами тем выше, чем больше величина припуска, снимаемого на данной операции. Эффективность от замены точением или растачиванием керамическими резцами может быть столь значительна, что во многих случаях, когда точностные параметры станков не позволяют полностью исабразивную обработку, сообразно вместо одной действующей шлифовальной операции выполнять две: предварительно детали обрабатывать на токарном или расточном станке, а затем окончательно на шлифовальном станке.

Использование керамических резцов во многих случаях позволяет за один установ обтачивать или растачивать несколько поверхностей деталей, совместить обработку которых при шлифовании либо значительно сложнее, либо невозможно.

Таким образом, несколько шлифовальных операций удается заменить одной токарной.

Возможность концентрации операции вследствие замены абразивной обработки лезвийной во многом способствует использованию станков с ЧПУ для чистовой обработки деталей сложной формы с фасонной или ступенчатой поверхностью.

Точение и растачивание керамическими резцами взамен твердосплавных. При замене твердосплавных резцов керамическими эф-

фективность достигается за счет повышения скорости резания, точности и чистоты обработки, повышения стойкости инструментов.

Например, керамические резцы используются взамен твердосилавных при обработке шпинделей токарных станков, представляющих собой многоступенчатые валы из стали 45 с центральным отверстием диаметром 70—80 мм, с количеством ступеней 10—15, перепадом диаметров 95—208 мм, общей длиной 1100—1400 мм и массой 70—200 кг, заготовка — поковка свободной ковки. Наружная обработка всех ступеней шпинделя выполняется на токарном станке с ЧПУ мод. МDW -13 фирмы Гильдемайстер (ФРГ) в два прохода. Первый проход — получистовое точение резцом из твердого

сплава с оставлением припуска на чистовой проход 1.5-3 мм.

При чистовом проходе без применения СОЖ обрабатываются керамикой все наружные поверхности. В процессе выполнения этой токарной операции необходимо выдерживать радиальное биение всех наружных поверхностей относительно оси конических отверстий в пределах $0.1\,$ мм, параметр шероховатости обработанных поверхностей $Ra=2.5\,$ мкм. До внедрения режущей керамики чистовой проход выполнялся резцом с пластиной из сплава T15K6. Сравнительные данные по режимам резания до и после внедрения керамики марки $BOK60\,$ приведены в $Ta6\pi$. $Ta6\pi$.

В результате применения керамических резцов достигается значительное снижение

12. Режимы резання до и после внедрення режущей керамики

	Тверд	ый сплав Т1:	K6		Режуща	я керамика В	OK60	
Номер шпинделя	Частота вращения шпинделя, мин	Скорость резания, м/мин	Подача, мм/об	Машинное время, мин	Частота вращения шпинделя, мин	Скорость резания, м/мин	Подача, мм/об	Машинное время, мин
1M63.21Э.358	250	95 – 155	0,48	12	315-630	210 – 270	0,3	5
1A64.02.834	250	118-116	0,4	15	630	236 - 320	0,25	6
165.02.362	160 – 125	150 - 208	0,48	20	250 - 500	240 - 270	0,3	6
1M63.02.319	250	95 – 155	0,48	12	315-630	210-270	0,3	5

13. Время (мин) обработки шпинделей до и после внедрения режущей керамики

Номер шпинделя	Обработка твердым сплавом	Обработка режущей керамикой
IM63.02.319	66	58
1A64.02.834	85	75
165.02.362	91	75

14. Примеры точения и растачивания деталей резцами, оснащенными керамикой ВОК60

				Реж	кимы обрабо	тки	Параметр
Обраба- тываемая деталь	Марка стали	Диаметр обра- ботки, мкм	Операция, которая заменяется	Скорость резания, м/мин	Подача, мм/об	Глубина резания, мм	шерохова- тости поверхности Ra, мкм
Зубчатые колеса	40X	72 <i>H</i> 7; 135 <i>H</i> 7	Оконча- тельное шлифование	400 – 500	0,15-0,25	0,1-0,3	1,25
Муфты	20X, HRC, 56-62	110 <i>j_s</i> 6	То же	200	0,07	0,2	0,63

Продолжение табл. 14

				Pex	кимы обрабо	тки	Параметр
Обраба- тываемая деталь	Марка стали	Диаметр обра- ботки, мкм	Операция, которая заменяется	Скорость резания, м/мин	Подача, мм/об	Глубина резания, мм	шерохова- тости поверхности <i>Ra</i> , мкм
Шпиндели	45, HRC ₃ 45-50	80; 85; 170	Предвари- тельное шлифова- ние	150 – 300	0,3	0,2-0,3	1,25
Фрикционные чашки	45	90 ^{+0,011} _{-0,011} ; 125 ^{+0,0125} _{-0,0125}	То же	200 – 300	0,15-0,22	0,2-0,3	1,25
Валы	45	95 – 208	Чистовое точение	210 – 300	0,3	1,5-3	2,5
4 4 1	V 3444	4.4	твердо-	4	1		1
		1 1	сплавными резцами	*			.23
Корпус	Серый	140±	Чистовое	270	0,03	0,25	1,25
передней	чугун	$\pm 0,009;$	растачива-	i.			
бабки	CY 21	$150 \pm 0,009$	ние твердо- сплавными		- 2 - 1ei		
Шпиндель	20X,	- 1	резцами	90 120	0.1	0.1 0.2	1.25
собранного	HRC ₂		Чистовая проточка	80-120	0,1	0,1-0,3	1,25
станка	60-62	,	торца				
			твердо-				441 4 44
	2.60	ĺ	силавными			-545-	
8 96	1,1		резцами	(1)			9
		1775			7		

15. Режимы резания фрезами, оснащенными режущей керамикой

Марка		Режимы резания					
режущей керамики	Обрабатываемый материал	Скорость резания, м/мин	Подача, мм/об	Глубина резания, мм			
ВОК60	Закаленная сталь, HRC, 35 – 45 Чугун	150 – 180 300 – 340	1 2	0.08 - 0.10 $0.12 - 0.15$			
В3	Закаленная сталь, HRC, 35—45 Чугун	150 – 180 300 – 340	1 2	$0.06 - 0.08 \\ 0.10 - 0.12$			

штучно-калькуляционного времени обработки шпинделей (табл. 13).

Примеры точения и растачивания деталей керамическими резцами взамен шлифования и обработки твердосплавными резцами приведены в табл. 14.

Обработка фрезами, оснащенными режущей керамикой. Выпускаются фрезы торцовые $d=100\div200\,$ мм с квадратными и круглыми пластинами из кортинита и других марок ке-

рамики. Обработку фрезами, оснащенными режущей керамикой, рекомендуется вести с режимами резания, представленными в табл. 15. Ширина фрезерования при симметричной установке фрезы должна быть в пределах 0,4—0,6 диаметра фрезы.

При торцовом чистовом фрезеровании углеродистой стали рекомендуются следующие режимы резания: $v = 300 \div 500$ м/мин; $S_z \le 0.035$ мм/зуб.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Боровский Г. В.** Режущ**нй** инструмент из сверхтвердых материалов: Обзор. М.: НИИмаш, 1984. 200 с.
- 2. Боровский Г. В., Молодых С. У. Современные технологические процессы обработки деталей режущим инструментом из сверхтвердых материалов; Обзор. М.: НИИмаш, 1984, 210 с.
- 3. Высокопроизводительиая обработка корпусных деталей торцовыми фрезами с регулируемыми режущими вставками, оснащенными СТМ: Методические рекомендации MP-040-69—84. М.: НПО «Оргстанкинпром», 1985. 45 с.
- 4. Использование продольно-шлифовальных станков для обработки чугунных корпусных деталей фрезами со вставками из сверхтвердых материалов: Методические рекомендации. М.: НИИмаш, 1983. 12 с.
- 5. Номенклатура режущего инструмента из минералокерамики и сверхтвердых материалов на основе нитрида бора, выпускаемого заводами Минстанкопрома. М.: НИИмаш, 1984. 47 с.

- 6. Обработка деталей станков с применением минералокерамики новых марок: Методические рекомендации MP-04-26 80. М.: НПО «Оргстанкинпром», 1980. 55 с.
- 7. Общемашипостроительные нормативы режимов резания резцами с механическим креплением минералокерамических пластин. Обработка на станках с ручным управлением и ЧПУ. М.: НИИмаш, 1983. 45 с.
- 8. Типовые технологические процессы обработки деталей лезвийным инструментом из композита: Методические рекомендации. М.: НИИмаш, 1980. 180 с.
- 9. Чистовая обработка плоскостей корпусных и базовых деталей металлорежущих станков инструментом, оснащенным сверхтвердыми материалами: Методические рекомендации МР-040-37—81. М.: НПО «Оргстанкинпром», 1984. 112 с.
- 10. Эффективное применение режушего инструмента, оснащенного синтетическими сверхтвердыми материалами и керамикой, в машиностроении: Методические рекомендации. М.: ВНИИТЭМР, 1986. 207 с.

ТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ДОСТИЖЕНИЯ ТОЧНОСТНЫХ ПАРАМЕТРОВ ДЕТАЛЕЙ ПРЕЦИЗИОННЫХ СТАНКОВ

Технологические методы представлены ниже в виде регламентов, разработанных на основе технологических регламентов НПО «Оргстанкинпром», определяющих принципиальные схемы обработки, технологические условия проведения регламентируемых операций механической обработки и контроля их ответственных параметров в условиях серийного и мелкосерийного производства.

1. ТЕХНОЛОГИЧЕСКИЙ РЕГЛАМЕНТ НА ОБРАБОТКУ БАЗОВЫХ И КОРПУСНЫХ ДЕТАЛЕЙ

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ НА ОБРАБОТКУ ТИПОВЫХ ДЕТАЛЕЙ

Станина № 1 (рис. 1).

- 1. Материал чугун СЧ 30 по ГОСТ 1412 85.
- 2. Допуск плоскостности поверхностей A и Γ 0.01 мм.
- 3. Допуск прямолинейности плоской направляющей 0,007 мм.
- 4. Допуск прямолинейности призматической направляющей в горизонтальной и вертикальной плоскости 0,007 мм.
- 5. Допуск параллельности плоской и призматической направляющих в пространстве на всей длине направляющих 0,025 мм.

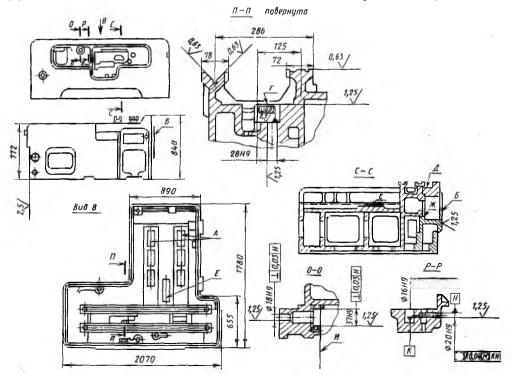


Рис. 1. Эскиз станнны резьбошлифовального станка

- 6. Допуск параллельности поверхности *А* относительно направляющих поверхностей при контроле относительно траектории движения образцового мостика по направляющим 0,03 мм на длине 500 мм.
- 7. Допуск параллельности поверхности \mathcal{K} относительно поверхности \mathcal{E} 0,02 мм.
- 8. Допуск параллельности поверхности Г относительно направляющих поверхностей при контроле относительно траектории движения образцового мостика по направляющим 0,02 мм на длине 340 мм.
- 9. Допуск параллельности поверхности Д относительно направляющих поверхностей при контроле относительно траектории движения образцового мостика по направляющим 0.02 мм.
- 10. Допуск параллельности поверхности E относительно близлежащего участка поверхности A 0,02 мм.
- 11. Допуск параллельности поверхности Б относительно направляющих поверхностей при контроле относительно траектории движения образцового мостика по направляющим 0,03 мм.
- 12. Допуск перпендикулярности поверхности E относительно поверхности A на высоте поверхности E 0,02 мм.

Станина № 2 (рис. 2).

- 1. Материал чугун СЧ 30 по ГОСТ 1412—85.
 - 2. Допуск формы профиля направляющих

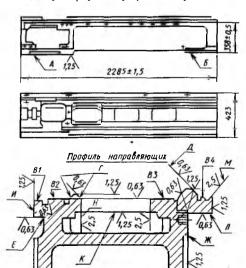


Рис. 2. Эскиз станины токариого станка

- поверхностей *В1*, *В3*, Г и Д 0,04 мм при проверке щупом по образцовому шаблону шириной 100 мм.
- 3. Допуск плоскостности поверхностей A и B 0.03 мм.
- 4. Допуск прямолинейности поверхностей В1, В2, В3, В4 относительно общей прилегающей прямой 0,03 мм.
- 5. Допуск прямолинейности поверхности Γ в вертикальной плоскости 0,012 мм на длине 1000 мм (допускается только выпуклость).
- 6. Допуск прямолинейности поверхности Γ в горизонтальной плоскости 0,006 мм на длине 1000 мм (допускается только вогнутость).
- 7. Допуск прямолннейности поверхности направляющей B1-0.012 мм на длине 1000 мм.
- 8. Допуск параллельности поверхностей B1 и Γ в пространстве на всей длине направляющих 0,025 мм.
- 9. Допуск прямолинейности поверхностей A и B относительно общей прилегающей прямой -0.05 мм.
- 10. Допуск параллельности направляющих поверхностей B3 и \mathcal{I} относительно направляющих поверхностей B1, Γ при проверке образцовыми мостиками относительно траектории их движения по направляющим $B3 \mathcal{I}$ и $B1 \Gamma$:
- в вертикальной плоскости 0,015 мм на длине 1000 мм:
- в горизонтальной плоскости 0.01 мм на длине 1000 мм.
- 11. Допуск параллельности поверхностей E и M относительно направляющих поверхностей $BI-\Gamma$ 0,015 мм на длине 1000 мм при проверке образцовым мостиком относительно траектории его движения по направляющим $BI-\Gamma$.
- 12. Допуск параллельности поверхности K относительно направляющих $B3-\mathcal{I}$ 0,01 мм на длине 600 мм при проверке образцовым мостиком относительно траектории его движения по направляющим $B3-\mathcal{I}$.
- 13. Допуск параллельности поверхности \mathcal{K} относительно направляющих $B1-\Gamma$ 0,025 мм на длине 600 мм при проверке образцовым мостиком относительно траектории его движения по направляющим $B1-\Gamma$.
- 14. Допуск перпендикулярности поверхности Ж относительно общей прилегающей поверхности В1, В3 0,03 мм на длине 250 мм.

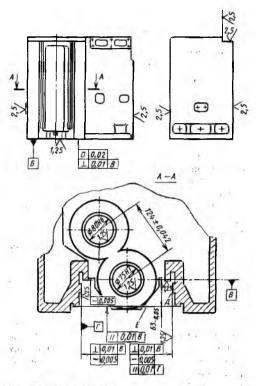


Рис. 3. Эскиз колонки

Колонка (рис. 3).

- 1. Материал чугун СЧ 20 по ГОСТ 1412 85.
- 2. Овальность отверстий Ø 80H6 и Ø 75H7 0,0025 мм.
- 3. Конусообразность отверстий \emptyset 80*H*6 и \emptyset 75*H*7 не более 0,005 мм.
- 4. Допуск прямолинейности направляющих *В* относительно общей прилегающей прямой не более 0,005 мм.
- 5. Допуск параллельности направляющих **В** в пространстве не более 0,008 мм.
- 6. Допуск параллельности осей отверстий \emptyset 80H6 и \emptyset 75H7 относительно направляющих B, Γ и Π не более 0,01 мм на длине 300 мм.

ТИПОВАЯ СХЕМА ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ

- 1. Отливка заготовок.
- 2. Обрубка и очистка отливок.
- 3. Грунтование отливок.
- 4. Проверка и разметка заготовок.

- 5. Черновая обработка основания, направляющих, передней, боковых поверхностей, неответственных конструктивных элементов типа окон, отверстий, выемок и окончательная обработка контуров платиков под сопрягаемые детали.
- 6. Очистка деталей от стружки. Маркирование деталей (порядковыми номерами).
 - 7. Контроль твердости.
- 8. Искусственное старение (низкотемпературный отжиг).
- 9. Очистка деталей после искусственного старения.
 - 10. Контроль твердости.
 - 11. Грунтование и окраска деталей.
- 12. Получистовая обработка основания, направляющих, передней, боковых поверхностей и прочих ответственных конструктивных элементов. Притупление острых кромок.

Примечание. При наличии технологической оснастки для получистовой и чистовой обработки направляющих, передней, боковых и прочих поверхностей основание станины обрабатывается окончательно.

- 13. Очистка деталей от стружки.
- 14. Консервация деталей и регистрация даты закладки для проведения естественного старения.
 - 15. Естественное старение.
- 16. Расконсервация деталей. Очистка деталей после естественного старения.
- 17. Окончательная обработка основания, боковых поверхностей, пазов, окон, отверстий и прочих конструктивных элементов, относительное положение которых связано нежесткими размерными цепями с направляющими, другими точными поверхностями и отверстиями. Предварительная обработка направляющих и других точных поверхностей (под стойку, линейку, кронштейны, коробку подач и т. п.). Притупление острых кромок.
 - 18. Очистка деталей от стружки.
- 19. Окончательная обработка направляющих, точных поверхностей (под стойку, линейку, кронштейны, коробку подач и т. п.), отверстий и других конструктивных элементов, геометрическая точность которых оговорена техническими требованиями, а относительное положение связано жесткими размерными цепями с направляющими и другими точными поверхностями.
 - 20. Моечные работы.
 - 21. Контроль.
 - 22. Малярные работы.

ТЕХНОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОВЕДЕНИЯ РЕГЛАМЕНТИРУЕМЫХ ОПЕРАЦИЙ

Общие требования. Число деталей, проходящих полную контрольную проверку разметкой или размеченных под механическую обработку, а также число и порядок разметочных операций и операций по снятию заусенцев, притуплению острых кромок, очистке деталей от стружки, кроме оговоренных особо, не регламентируются и устанавливаются технологами завода.

Детали средней жесткости без значительных уступов, выемок, пазов, прорезей могут проходить операции 14, 15, 16 (см. с. 495) непосредственно после искусственного старения, грунтования и окраски, т.е. после операции 11. С деталями больщой конструктивной жесткости, в которых не вознижает значительных напряжений под действием внешних нагрузок, операции 14, 15, 16 (см. с. 495) можно не проводить. Операции 12 и 13 могут быть опущены и припуски для дальнейшей обработки в черновой операции 5 должны быть соответственно уменьшены.

Выбор методов и режимов старения в зависимости от конструкции, технологии обработки и требуемой точности детали определяется ведущим конструктором и ведущим технологом по РТМ 2 МТ20-3—76 «Старение чугунных станочных деталей».

Очистку наружных окрашиваемых поверхностей детали после искусственного старения проводить до металлического блеска по эталонам очищенной поверхности.

Черновую и получистовую обработку всех поверхностей, окон, выемок, отверстий и других конструктивных элементов, подлежащих обработке, проводить на продольнофрезерных, продольно-строгальных или на соответствующих специальных и специализированных станках, в том числе на станках с ЧПУ.

Величина припуска в каждом конкретном случае и в каждой операции зависит от габаритных размеров детали, ее конфигурации и жесткости, технических требований чертежа, а также от методов обработки.

На всех операциях при установке и закреплении деталей строго соблюдать правила постоянства и сохранения основных или технологических баз.

Выбор СОЖ, способа ввода в зону резания, контроля и очистки проводить согласно соответствующим рекомендациям. Регламентируемые операции. 7,10 (см. с. 495). Контроль твердости. Контроль твердости направляющих и других поверхностей проводить по техническим требованиям чертежа.

17. (см. с. 495). Окончательная обработка основания, боковых поверхностей, пазов, окон, отверстий и других конструктивных элементов, относительное положение которых связано нежесткими размерными целями с направляющими, другими точными поверхностями и отверстиями. Предварительная обработка направляющих и других точных поверхностей (под стойку, линейку, кронштейны, коробку подач и т. п.). Притупление острых кромок.

Обработку проводить на продольно-строгальных, продольно-фрезерных, продольно-шлифовальных или других универсальных, специальных или специализированных станках нормальной точности, в том числе на станках с ЧПУ с установкой детали на столе станка или в специальном приспособлении. Окончательное строгание поверхностей выполнять чистовыми широкими резцами, оснащенными пластинами из тверлого сплава, не менее чем за два прохода. Окончательный проход выполнять при глубине резания $t \le 0.05$ мм, скорости резания $v \le 15$ м/мин и подаче на двойной ход стола станка $S_{2x} < 0.6$ b, где b — ширина резца, мм.

Направляющие шириной до 60 мм обрабатывать резцами, оснащенными пластинами из твердого сплава, свыше 60 мм — резцами, оснащенными пластинами из быстрорежущей стали.

При обработке направляющих шириной до 60 мм резцами с пластинами из твердого сплава окончательный проход выполнять при вертикальной подаче $S_{2x} \leqslant 0.15$ мм/дв. ход стола и скорости резания $\upsilon \leqslant 18$ м/мин.

При обработке направляющих шириной от 60 до 100 мм резцами с пластинами из быстрорежущей стали окончательный проход выполнять при вертикальной подаче $S_{2x} \leqslant 0,08$ мм/дв. ход стола и скорости резания $v \leqslant 8$ м/мин.

При строгании направляющих шириной >100 мм резцами с пластинами из быстрорежущей стали окончательный проход выполнять при вертикальной подаче $S_{2x} \leqslant 0,08$ мм/дв. ход стола и скорости резания $v \leqslant 6$ м/мин.

Доводку резцов, оснащенных пластинами из твердого сплава, выполнять алмазными

кругами. Прямолинейный участок режущей кромки резцов довести до параметра шероховатости поверхности Ra = 0.05 мкм.

Резцы на станках устанавливать по специальным шаблонам.

Отклонение от прямолинейности, параллельности направляющих в пространстве не более 0,015 мм на длине 1000 мм.

Отклонение от плоскостности точных поверхностей – не более 0,02 мм.

Отклонение от параллельности и перпендикулярности точных поверхностей (под стойку, линейку и т. п.) относительно направляющих — не более 0,03 мм на длине 500 мм.

Тонкое фрезерование поверхности основания выполнять торцовыми насадными фрезами, оснащенными пластинами из твердого сплава, за один проход.

Для уменьшения шероховатости обрабатываемой поверхности необходимо, чтобы диаметр фрезы был не менее 1,25 ширины фрезерования и при работе создавал на обрабатываемой поверхности сетку.

Зубья фрезы должны быть установлены ступенчато. Чистовой (зачистной) зуб фрезы должен снимать припуск не более 0,1 мм, причем ширина лезвия зачистного зуба у фрезы должна быть не менее утроенной величины подачи на оборот фрезы.

Обработку торцовыми фрезами из сверхтвердых материалов (СТМ) проводить на продольно-шлифовальных станках (ПШС) в основном взамен получистового шлифования столов, плоских и призматических на-

правляющих, а также направляющих типа «ласточкин хвост» и других плоскостей. Диаметр торцовых фрез целесообразно назначать по размерам, близким к диаметрам чашечных кругов, которые применяют при работе на ПШС. Режимы резания приведены в табл. 1.

19 (см. с. 495). Окончательная обработка направляющих, точных поверхностей (под стойку, линейку, кронштейн, коробку подач и т. п.), отверстий и других конструктивных элементов, геометрическая точность которых оговорена техническими требованиями, а относительное положение связано жесткими размерными цепями с направляющими и другими точными поверхностями.

Обработку указанных поверхностей проводить на продольно-щлифовальных станках. Базой для установки детали является поверхность основания, обработанная окончательно. Установку и крепление детали проводить в специальных приспособлениях или на столе станка с выверкой в продольном направлении по ходу стола станка с точностью не более 0,2 от припуска на окончательную обработку.

Шлифование направляющих и других поверхностей в зависимости от технических требований проводить периферией или торцом абразивных кругов или кругами из эльбора.

Шлифование открытых направляющих предпочтительнее проводить периферией круга, призматических направляющих — профильным кругом с тщательной правкой их по профилю направляющих.

1. Рекомендуемые режимы резаиия чугуна фрезами из СТМ

		Параметр ціероховатости		
Фрезерование	U, М/МИН	t, MM	$S_{ m o}$, мм/об	<i>Ra</i> , мкм
Получистовое Чистовое Тонкое	600 - 800 800 - 1000 1000 - 1200	$0,5-1 \\ 0,25-0,5 \\ 0,05-0,25$	1-2 0,4-1 До 0,4	2,5 1,25 0,63

2. Характеристика шлифовальных кругов

Параметр шероховатости	Шлифование				
поверхности Ra, мкм	периферией круга	торцом круга			
2,5	53C 32H C1 5K 8	53С 63Н М2 7Б1			
1,25	54C 25H C2 6K 8	54С 50Н СМ2 8Б1			
0,63	54C 16H C2 6K 8	54С 40Н СМ2 9Б1			

3. Режимы резания при шлифовании плоскостей направляющих иа продольно-шлифовальных стаиках, работающих чашечными и профильными абразивными шлифовальными кругами, методом врезания

	Скорость движения стола при шлифовании, м/мин,			Подача $S_{\mathbf{x}}$, мм/ход							
				0,008	0,010	0,015	0,020	0,025	0,030	0,030	
			0,002	0,003	0,003	0,004	0,004	0,005	0,005	0,005	
П	предварительном окончательном			Ширина шлифуемой поверхности, мм							
	6,0	3,0	110	88	71	57	45	36	29	23	
	6,7	3,3	88	71	57	45	36	29	23	18	
	7,4	3,7	81	57	45	36	29	23	18	14	
	8,2	4,0	57	45	36	29	23	18	14	_	
	9,0	4,5	45	36	29	23	18	14			
	10,0	5,0	36	29	23	18	14	_	_		
	11,2	5,6	29	23	18	14	_	_	_		
	12,5	6,2	23	18	14		_	_	_		
		<u> </u>	l	L			<u></u>	l			

Примечание. Значения подачи $S_{\mathbf{x}}$ при предварительном шлифовании (в числителе) приведены только при работе чашечными кругами; при обработке профильными кругами применять коэффициент K=2. В знаменателе приведены значения подачи при окончательном шлифовании.

Характеристики шлифовальных кругов и режимы резания приведены в табл. 2-7. Шлифовальные круги (см. табл. 2) рекомендуется применять при скорости $v_{\rm KR}=35\,$ м/с.

Шлифовальные круги, изготовленные из эльбора, по своим эксплуатационным качествам превосходят круги из обычных абразивных материалов: повышается стойкость

4. Поперечиая подача при шлифовании на продольно-шлифовальных станках периферией круга

Ширина шлифовального круга, мм	25	40	63	100
Поперечная подача на ход стола $S_{\mathbf{x}}$, мм/ход	2,0-4,0	3,0-6,0	5,0-10,0	8,0-16,0

5. Подача на глубину шлифования S_{tx} при шлифовании на продольно-шлифовальных станках периферией круга

Скорость движения детали		Ι	Топеречная	подача на	ход стола	S_{x} , mm/xo	д	
v, м/мин	2,0	2,5	3,5	5,0	7,0	9,0	12,0	16,0
5	0,0070	0,0065	0,0060	0,0055	0,0050	0,0045	0,0040	0,0035
6	0,0065	0,0060	0,0055	0,0050	0,0045	0,0040	0,0035	0,0030
8	0,0060	0,0055	0,0050	0,0045	0,0040	0,0035	0,0030	0,002
10	0,0055	0,0050	0,0045	0,0040	0,0035	0,0030	0,0025	'-
12	0,0050	0,0045	0,0040	0,0035	0,0030	0,0025	_	- 1
16	0,0045	0,0040	0.0035	0,0030	0,0025	_	_	-

6. Характеристики шлифовальных кругов из эльбора дли обработки чугуна

Шлифование	Характеристика круга					
шифование	Тип	Связка	Зернистостн			
Торцовое	12 A2 — 4 5°	Органическая	ЛО12, ЛО16			
Направляющих типа «ласточкин хвост»	12B2					
Периферийное	1A1	Органическая, керамическая				

7. Режимы обработки кругами из эльбора

Шлифование Ско кр	F	Поперечная подача, мм/ход	Глубина шлифования, мм/дв. ход
----------------------	---	---------------------------------	--------------------------------------

Для кругов на керамической связке

Плоское периферией круга Торцовое	30-40 $20-30$	0,8 -2,0 5,0 -7,0	0,3-0,6	0,005-0,03 $0,005-0,010$
		1 1		

Для кругов на органической связке

Плоское	· IR	Sy or	30 – 35	2,0-5,0	0,5-1,0	0,04-0,06
		4				

круга в 40-50 раз и производительность обработки в 2-4 раза. Эти круги позволяют получать поверхности с отклонением от плоскостности до 0,005 мм на 1000 мм длины и параметром шероховатости $Ra=0.63 \div 0.16$ мм.

При необходимости шлифования поверхностей с припуском более 0,15 мм целесообразно разделить операцию на предварительную и окончательную, осуществляя первую обычными абразивными кругами, а вторую — кругами из эльбора с одного установа деталей со сменой шлифовальных кругов. Характеристика шлифовальных кругов из эльбора и режимы резания приведены в табл. 6, 7.

Обработку отверстий и других конструктивных элементов, геометрическая точность которых оговорена техническими требованиями, а относительное положение связано

жесткими размерными цепями с направляющими и другими точными поверхностями, следует проводить окончательно согласно техническим требованиям чертежа на горизонтально-расточных, координатно-расточных, отделочио-расточных станках, в том числе на станках с ЧПУ с установкой детали в специальном приспособлении или на столе станка.

Базой для установки детали являются направляющие, основание или боковая поверхность, обработанные окончательно.

Геометрические параметры и режимы резания расточными резцами из эльбора марки P- см. табл. 1 гл. 13.

Для уменьшения шероховатости обрабатываемой поверхности на резце вместо радиуса вершины следует выполнить переходную режущую кромку длиной 0,3—0,5 мм параллельно обрабатываемой детали.

8. Контроль ответственных параметров станины № 1

№ повер- ки	Параметры (см. рис. 1) Твердость поверхностей	№ опера- ции	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
1			\	
	направляющих	7, 10	HB 180-200	Переносной твердомер типа ТБП по ГОСТ 9030—75; максимальная разница в твердости между любыми контролируемыми точками не должна быть более 20 единиц, кроме случаев, оговоренных особо
. 2	Шероховатость обработанных	17	Ra = 2,5 MKM	Образцы шероховатости поверхности по ГОСТ 9378 — 75.
	поверхностей	19	Ra = 1,25 MKM; Ra = 0,63 MKM	Метод визуального сравнения
3	Отклонение от плоскост-	17	0,02	Оптический плоскомер ОП-1
	ности поверхностей А и Г	19	0,01	или специальный (рис. 4). Цена деления головок 0,002 мм. Настройка по плите с допуском плоскостности 0,003 мм
	Отклонение от прямоли- нейности плоской направ- ляющей	17	$\frac{0.015}{1000}$	Вариант I 1. Специальные башмаки 2. Брусковый уровень 200— 0,02 по ГОСТ 9392—75 или уровень электронный мод. 128 ТУ 2-574854—81 (для опера-
	(S-4) 	19	0,007 на всей дли- не	ции 19) 3. Специальная подставка под уровень. Метод контроля шаговый (рис. 5) с построением графика. Перед контролем провести грубую выверку в пределах шкалы уровня по краям проверяемой поверхности
	3		,	Вариант II 1. Специальные бащмаки 2. Автоколлиматор АК-0,5 по ГОСТ 11899 — 77 или автоколлиматор ТА-57 фирмы Hilger-
			·£·	Watts (Англия) (для операции 19). Метод контроля шаговый с построением графика

Продолжение табл. 8

				Прооблжение табл. 8
№ повер- ки	Параметр (см. рис. 1)	№ опера- ции	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
4	Отклонение от прямоли- нейности плоской направ- ляющей	17	0,015 1000 0,007 на всей длине	Вариант III 1. Специальные башмаки 2. Специальный мостик индикаторный. Мегод контроля шаговый с построением графика
5	Отклонение от прямоли- нейности призматической направляющей в плоскос- ти: вертикальной горизонтальной	17 19 17 19	0,015/1000 0,007 на всей дли- не 0,015/1000 0,007 на всей длине	См. варианты контроля I, II, III, поверка 4 См. вариант II (поверка 4) или по схеме контроля (рис. 6) 1. Перед контролем линейку выставить по краям на «нуль» по индикатору мостика 2. Мостик прокатить вдоль всей направляющей и отметить максимальное отклонение 3. Линейку выставить параллельно оси призматической направляющей. Отклонение параллельности — не более 0,002 мм, отклонение от плоскостности рабочей поверхности линейки для операции 17— 0,01 мм, для операции 19— 0,002 мм
6	Отклонение от параллельности направляющих поверхностей в пространстве	17	0,015/1000 0,025 на всей длине	Специальный мостик (рис. 7, поз. 1)
7	Отклонение от параллельности поверхностей A , E , Γ и \mathcal{I} относительно направляющих поверхностей при контроле относительно траектории движения мостика по направляющим	17	$ \begin{array}{c cccc} & A & B & \hline & 0.06/500 & \\ \hline & \Gamma & \\ \hline & 0.04/340 & \\ \hline & D.004 & \\ \hline \end{array} $	Специальный мостик (см. рис. 7); поз. 2 — для поверхности A ; поз. 6 и 7 — для поверхности $\mathbf{\mathcal{E}}$; поз. 3 и 4 — для поверхности Γ ; поз. 5 — для поверхности $\mathcal{\mathcal{L}}$

				Проболжение тиол. в
№ повер- ки	Параметры (см. рис. 1)	№ опера- ции	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
7	См. с. 501	19	$ \begin{array}{c cccc} A & M & E \\ \hline 0,03/500 \\ \hline \Gamma \\ \hline 0,02/340 \\ \hline \frac{\mathcal{H}}{0,02} \end{array} $	См. с. 501
8	Отклонение от параллельности поверхности Ж относительно близлежащего участка поверхности Б	17 19	0,04 0,02	Специальное приспособление (рис. 8). Головка индикаторная с ценой деления 0,01 мм
9	Отклонение от параллельности поверхности <i>E</i> относительно близлежащего участка поверхности <i>A</i>	17 19	0,04 0,02	Специальный мостик (рис. 9)
10	Отклонение от перпенди- кулярности поверхности <i>Б</i> относительно поверхности <i>A</i> на высоте поверхности <i>Б</i>	17 19	0,04 0,02	1. Специальные башмаки 2. Рамный уровень 200-0,02 по ГОСТ 9392-75 3. Специальные подставки под уровни (рис. 10). Деталь выставить в горизонтальное положение по рамному уровню (положение I). Показания снимаются по рамному уровню (положение II)
11	Отклонение от соосности отверстий \emptyset 20 $H9$ и \emptyset 16 $H9$ относительно их общей оси	17	0,04	Специальный калибр для проверки соосности. Метод контроля — напроход. Расчет исполнительных размеров калибра проводить по ГОСТ 16085—80
12	Отклонение от перпендикулярности оси отверстия относительно поверхности торца Ø 32 H9 Ø 28 H9 Ø 18 H9	17	0,03 0,05 0,03	Специальное устройство (рис. 11). Цена деления отсчетного устройства 0,01 мм

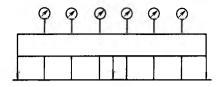


Рис. 4. Схема контроля отклонений от плоскостности специальным плоскомером

Рис. 5. Схема шагового метода контроля

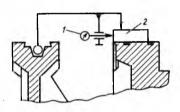


Рис. 6. Схема контроля отклонений от прямолинейности призматической направляющей в горизонтальной плоскости:

I- измерительная головка с ценой деления 0,01 мм для операции 17 и 0,002 мм для операции 19; 2- линейка

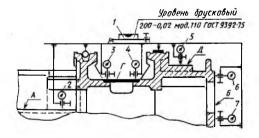


Рис. 7. Схема контроля отклонений (к поверкам 6, 7):

I — от параллельности направляющих поверхностей в пространстве; 2 — от параллельности поверхности I и направляющих; I и I — от параллельности поверхности I и направляющих; I — от параллельности поверхности I и направляющих; I — от параллельности поверхности I и направляющих; I — от параллельности поверхности I и направляющих; I — от параллельности поверхности I и направляющих; I — от параллельности от счетных устройств I0,01 мм

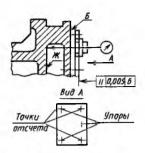


Рис. 8. Схема контроля специальным приспособлением

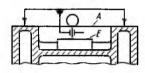


Рис. 9. Схема контроля специальным мостиком

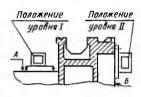


Рис. 10. Схема контроля отклонения от периевдикулярности двух плоскостей

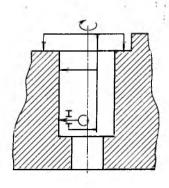


Рис. 11. Схема контроля отклонений от перисидикулярности оси отверстия относительно торда

2. ТЕХНОЛОГИЧЕСКИЙ РЕГЛАМЕНТ НА ОБРАБОТКУ ПИНОЛЕЙ, ГИЛЬЗ, ШПИНДЕЛЕЙ И ХОДОВЫХ ВИНТОВ

Общие требования. 1. От каждого прутка (трубы) отрезать два (один) образца длиной 10-12 мм. Заклеймить образцы и пруток одним порядковым номером. В заводской лаборатории провести анализ микро- и макроструктуры, химического состава металла, а также получить разрешение на выдачу прутка в заготовительный цех.

- 2. Число операций и порядок обработки тех или иных поверхностей, отверстий, уступов и прочих конструктивных элементов, входящих в черновые, получистовые и чистовые операции, число и порядок слесарных операций по зачистке заусендев и притуплению острых кромок не регламентируются и устанавливаются применительно к каждому типу деталей при условии обеспечения безопасности работ, а также для улучшения условий выполнения последующих операций.
- 3. Величина припуска для всех операций, кроме регламентированных, зависит от габаритных размеров деталей и от технических требований чертежа. Крепление деталей не должно вызывать деформаций и дополнительных внутренних напряжений.
- 4. Черновую обработку наружных и внутренних поверхностей проводить на токарновинторезных, токарных станках с числовым и оперативным программным управлением (ЧПУ и ОПУ) с припуском 4—6 мм на диаметр. Если центральное отверстие имеет предельные отклонения по 12-му квалитету и грубее, то его обработку следует проводить окончательно на специализированных станках для глубокого сверления и растачивания типа 2805П, ОС-4000, РТ-601 или на токарно-винторезных станках.
- 5. Выбор СОЖ, способа ввода в зону резания, контроля и очистки проводить согласно соответствующим рекомендациям.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ НА ОБРАБОТКУ ТИПОВЫХ ДЕТАЛЕЙ ПИНОЛЕЙ И ГИЛЬЗ (из сталей 40ХФА, 18ХГТ, 30ХЗМФ, 38Х2МЮА, упрочняемых азотированием)

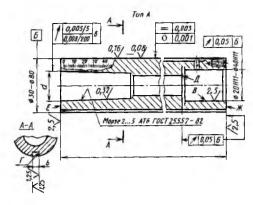


Рис. 12. Эскиз пинолн

- 1. Азотировать поверхности согласно чертежу, кроме резьб.
- 2. Допуск перекоса паза Γ относительно поверхности E 0,05 мм.
- 3. Допуск симметричности паза Γ относительно общей плоскости симметрии поверхности E и паза Γ 0,03 мм. Допуск зависимый.
- 4. Поверхность *Б* обработать по фактическому замеру сопряженной поверхности, обеспечив гарантированный зазор.
- 5. Допуск шпоночного паза Г по ГОСТ 23360 78

Гильза (рис. 13).

- 1. Азотировать поверхности согласно чертежу, кроме резьб.
- 2. Поверхность A обработать по фактическому замеру сопряженной поверхности, обеспечив гарантированный зазор.
- 3. Допуск круглости поверхностей *Б* и *В* 0.001 мм.

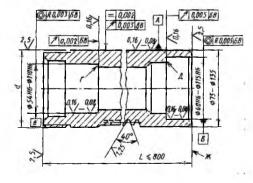


Рис. 13. Эскиз гильзы

- 4. Конусообразность поверхностей *Б* и *В* 0.002 мм.
- 5. Допуск радиального биения поверхностей B и B относительно поверхности A 0,008 мм.
- 6. d диаметр метрической резьбы, поле допуска 6q по ГОСТ 16093-81.
- 7. Параметры рейки: модуль $m = 2,5 \div 5$; степень точности 6B, 7B, 8B по ГОСТ 10242 81.

ТИПОВАЯ СХЕМА ИЗГОТОВЛЕНИЯ ПИНОЛЕЙ И ГИЛЬЗ

- 1. Отрезка образцов-свидетелей.
- 2. Контроль исходного металла.
- 3. Отрезка заготовок и образцов-свидетелей.
- 4. Термическая обработка. Выполняется по заключению центральной лаборатории.
- 5. Черновая обработка торцов и центровых отверстий.
- 6. Черновая обработка наружных и внутренних поверхностей.
- 7. Черновая обработка образцов-свидетелей.
- 8. Термическая обработка. Закалка с высоким отпуском или нормализация с высоким отпуском (вместе с образцами-свидетелями).
- 9. Обработка точных наружных поверхностей под шлифование, поверхностей под резьбу, окончательная обработка остальных поверхностей.
- 10. Обработка точных внутренних поверхностей, центровых (базовых) фасок и торцов под шлифование, окончательная обработка прочих внутренних поверхностей.
- 11. Технологическое шлифование базовой наружной поверхности.
- 12. Обработка зубьев рейки (см. рис. 13) и продольного паза (см. рис. 12) под шлифование, окончательная обработка крепежных отверстий и других аналогичных элементов.
- 13. Обработка образцов-свидетелей под шлифование.
- 14. Предварительное шлифование точных внутренних поверхностей и торцов.
- 15. Термическая обработка. Отпуск стабилизирующий (вместе с образцами-свидетелями).
- 16. Шлифование центровых (базовых) фасок.
- 17. Предварительное шлифование наружной поверхности.
 - 18. Получистовое шлифование коническо-

- го отверстия (см. рис. 12) или базовых отверстий (см. рис. 13) и предварительное шлифование зубьев рейки (см. рис. 13).
- 19. Термическая обработка. Отпуск стабилизирующий (вместе с образцами-свидетелями).
- 20. Шлифование центровых (базовых) фасок.
- 21. Шлифование наружной поверхности под азотирование.
- 22. Шлифование под азотирование конического отверстня и торцов (см. рис. 12), базовых отверстий и зубьев рейки (см. рис. 13).
- 23. Шлифование торцов образцов-свидетелей.
- 24. Термическая обработка. Азотирование (вместе с образцами-свидетелями).
- 25. Контроль качества азотированного слоя.
- 26. Шлифование центровых (базовых) фасок.
- 27. Окончательное шлифование продольного паза (см. рис. 12). Шлифование поверхностей под резьбу для удаления азотированного слоя, шлифование (нарезание) метрической резьбы и окончательное шлифование зубьев рейки (см. рис. 13).
- 28. Окончательное шлифование наружной поверхности.
- 29. Окончательное щлифование базовых цилиндрических и конических отверстий и торцов.
- Суперфиниширование наружной поверхности.
- Примечания: 1. Операции 17, 18, 20 выполнять только для деталей малой жест-кости.
- 2. Операцию 26 и последующие выполнять в термоконстантном помещении для деталей станков классов точности В, А, С.
- 3. Операцию 30 выполнять для получения параметра шероховатости $Ra \le 0,15$ мкм.

ТЕХНОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОВЕДЕНИЯ РЕГЛАМЕНТИРУЕМЫХ ОПЕРАЦИЙ ИЗГОТОВЛЕНИЯ ПИНОЛЕЙ И ГИЛЬЗ

9. Обработка точных наружных поверхностей под шлифование, поверхностей под резьбу, окончательная обработка остальных поверхностей.

Обработку точных наружных поверхностей проводить с припуском 0.6-0.9 мм в зависимости от размеров деталей и требуемых точностных параметров, поверхно-

стей под резьбу — с припуском, учитывающим толщину азотированного слоя плюс 0,2 мм; обработку остальных поверхностей проводить окончательно на токарно-винторезных и токарных станках с ЧПУ и ОПУ.

Овальность и конусообразность поверхностей, обработанных под шлифование, не более 0,025 мм.

Параметр шероховатости $Rz \leq 20$ мкм.

10. Обработка точных внутренних поверхностей, центровых (базовых) фасок и торцов под шлифование, окончательная обработка прочих внутренних поверхностей.

Обработку точных внутренних поверхностей проводить с припуском 0,5—0,7 мм в зависимости от размеров детали и требуемых точностных параметров на токарновинторезных, токарно-винторезных с гидросуппортом и токарных станках с ЧПУ и ОПУ при установе детали в патроне и люнете.

Радиальное биение обработанных внутренних поверхностей относительно оси базовой поверхности — не более 0,08 мм.

Параметр шероховатости обработанных под шлифование поверхностей $Ra \le 2,5$ мкм.

11. Технологическое шлифование базовой наружной поверхности.

Обработку проводить с припуском 0,3—0,5 мм в зависимости от размеров детали с целью создания промежуточной технологической базы на круглошлифовальных станках типа 3M153, 3M151, 3M152 при установе детали на центровых (базовых) фасках или специальных центровых оправках, с охлаждением.

Овальность и конусообразность обработанной поверхности — не более 0,01 мм.

Параметр шероховатости $Ra \le 1,25$ мкм. 12. Обработка зубьев рейки (см. рис. 13), продольного паза (см. рис. 12) под шлифование, отверстий под крепежные детали и других аналогичных - элементов — окончательно.

Обработку зубьев рейки проводить с припуском 0,3—0,4 мм на толщину зуба в зависимости от размеров и требуемых точностных параметров на рейкофрезерных и рейкодолбежных полуавтоматах типа 5412E3-9В или модернизированных горизонтально-фрезерных станках.

Обработку продольного паза проводить с припуском 0,3—0,4 мм на размер по ширине паза на горизонтально-фрезерных станках. Дно паза обработать окончательно.

Допуск перекоса паза относительно базовой поверхности — 0,1 мм.

Симметричность паза относительно базовой поверхности – не более 0,05 мм.

Резьбовые и другие отверстия, пазы обработать окончательно.

14. Предварительное шлифование точных внутренних поверхностей и торцов.

Обработку проводить с припуском 0,25 – 0,35 мм на специализированных внутришлифовальных станках типа СШ-141, СШ-148, универсальных круглошлифовальных станках типа ЗУ132 и др. с применением специальных приспособлений или в патроне и люнете с охлаждением.

Овальность и конусообразность цилиндрических поверхностей не более 0,01 мм.

Радиальное и торцовое биение обработанных поверхностей относительно оси базовой поверхности — не более 0,02 мм.

Параметр шероховатости обработанных поверхностей $Ra \le 1,25$ мкм.

Коническое отверстие обработать с точностью АТ8 по ГОСТ 25557-82.

16. Шлифование центровых (базовых) фасок

Обработку проводить на специальных центрошлифовальных станках типа 3922P, ZSM фирмы Техника (Швейцария) с планетарным и осциллирующим движениями режушего инструмента, которые обеспечивают необходимую геометрию и соосность центровых (базовых) фасок, или на специализированных внутришлифовальных, универсальных круглошлифовальных станках.

Допускается замена шлифования центровых фасок на притирку, выполняемую на токарных станках.

Параметр шероховатости обработанных поверхностей $Ra \le 1,25$ мкм на операции 16 и $Ra \le 0,32$ мкм — на операциях 20 и 26.

Предварительное шлифование наружной поверхности.

Обработку проводить с припуском 0,15-0,2 мм на круглошлифовальных станках типа 3М153, 3М151, 3М152 при установке детали на центровых фасках, специальной центровой оправке или технологических пробках с обильным охлаждением.

Овальность и конусообразность обработанных поверхностей – не более 0,005 мм.

Радиальное биение относительно общей оси базовых поверхностей — не более 0,016 мм.

Параметр шероховатости $Ra \le 0.63$ мкм. 18. Получистовое идлифование коническо-

го отверстия (см. рис. 12) или базовых отверстий (см. рис. 13) и предварительное шлифование зубьев рейки (см. рис. 13).

Обработку отверстий проводить с припуском 0,15—0,2 мм на специализированных внутришлифовальных станках типа СШ-141, СШ-148, универсальных круглошлифовальных станках типа ЗУ131, ЗУ142В с применением специальных приспособлений или в патроне и люнете, с обильным охлаждением.

Овальность и конусообразиость цилиндрических поверхностей не более 0,005 мм. Биение относительно оси базовой поверхности не более 0.016 мм.

Биение конического отверстия относительно оси базовой поверхности — не более 0,016 мм на расстоянии 5 мм от торца и не более 0,02 мм на расстоянии 200 мм.

Коническое отверстие обработать с точностью АТ7 по ГОСТ 25557-82.

Параметр шероховатости обработанных поверхностей $Ra \le 0.63$ мкм.

Предварительное шлифование зубьев рейки проводить с припуском 0,1-0,15 мм на толщину зуба на специальных рейкошлифовальных станках типа МШ-245 и др. с применением универсальных или специальных

установочных приспособлений с обильным охлаждением.

Параметр шероховатости обработанных поверхностей $Ra \le 1,25$ мкм.

Характеристики шлифовальных кругов и режимы обработки выбирать по табл. 9,10.

21. Шлифование наружной поверхности под азотирование.

Обработку проводить с припуском 0,05 – 0,08 мм на круглошлифовальных станках высокой точности типа 3E153, 3M151B, 3M152B при установе детали на центровых фасках, специальной центровой оправке или технологических пробках с обильным охлаждением.

Овальность и конусообразность обработанной поверхности — не более 0,0025 мм.

Параметр шероховатости обработанной поверхности $Ra \le 0.32$ мкм.

Припуски на обработку - см. гл. 16.

22. Шлифование под азотирование конического отверстия и торцов (см. рис. 12) и базовых отверстий, зубьев рейки (см. рис. 13).

Обработку проводить с припуском 0,05 — 0,08 мм на специализированных внутришлифовальных станках типа СШ-141, СШ-148, универсальных круглошлифовальных станках типа ЗУ131В, ЗУ142В и др. с примене-

9. Рекомендуемые характернстики шлифовальных кругов для шлифования зубьев рейки методом копирования профильным кругом

	Параметр шерохо-	Твердость обрабатываемого материала				
Модуль т, мм		атости поверхности		HV > 550 (HRC > 50)		
< 3	2,5	24A16C16K	24A16CM26K	24A16CM16K		
	1,25	24A12C17K	24A12CM27K	24A12CM17K		
	0,63	25A10C18K	25A10CM28K	25A10CM18K		
≥ 3	2,5	24A25C16K	24A40CM26K	24A40CM16K		
	1,25	24A25C17K	24A25CM27K	24A25CM17K		
	0,63	25A25C18K	25A25CM28K	25A25CM18K		

10. Рекомендуемые режимы обработки при шлифовании зубьев рейки

Модуль зуба	Припуск на толщину зуба по	на толщину ползуна, м/мин, при		Общее число	Подача на глубину шлифования на ход ползуна S_{tx} , мм/ход, при обработке				
	<i>m</i> , мм	делитель- ной линии, мм	предвари- тельной	получис- товой	чистовой	про- ходов	предвари- тельной	получисто- вой	чистовой
	≤ 4	0,25 0,03	7-10	5 6 -	3-4	5	0,08-0,12		- 0,01-0,02
	≥4	0,35 0,04	7-10 -	5-6 -	3-4	6 4	0,08-0,12	0,02-0,03	- 0,01-0,02

нием специальных приспособлений или в патроне и люнете с обильным охлаждением.

Овальность и конусообразность цилиндрических базовых поверхностей — не более 0,003 мм.

Соосность не более 0,005 мм.

Радиальное биение внутренних цилиндрических поверхностей относительно оси базовой поверхности — не более 0,008 мм.

Биение конического отверстия относительно оси базовой поверхности— не более 0,008 мм и торца пиноли— не более 0,01 мм на расстоянии 200 мм.

Коническое отверстие обработать с точностью AT6 по ГОСТ 25557 – 82.

Параметр шероховатости обработанных поверхностей $Ra \le 0.32$ мкм.

Припуски на окончательную обработку отверстий — см. гл. 16.

Шлифование под азотирование зубьев 6-й степени точности проводить с припуском 0,03 — 0,04 мм на толщину зуба, 7-й степени точности — окончательно на специальных рейкошлифовальных станках типа МШ-245 и др. с применением универсальных или специальных установочных приспособлений до получения заданных параметров шероховатости и точности согласно техническим требованиям чертежа с обильным охлаждением.

Характеристики шлифовальных кругов и режимы обработки — см. табл. 9, 10.

27. Окончательное шлифование продольного паза (см. рис. 12), шлифование поверхностей под резьбу для удаления азотированного слоя, шлифование (нарезание) метрической резьбы и окончательное шлифование зубьев рейки (см. рис. 13).

Шлифование продольного паза проводить на шлицешлифовальных станках типа 3Б451 и др., обеспечивающих необходимую точность обработки, с обильным охлаждением до получения заданных параметров точности и шероховатости согласно техническим требованиям чертежа.

Шлифование (нарезание) метрической резьбы проводить на резьбошлифовальных станках высокой точности типа 5К823В, 5К822В или токарных типа 16К20П и др. при установке детали на центровых фасках, специальной центровой оправке или технологических пробках при обильном охлаждении до получения заданных параметров шероховатости и точности согласно техническим требованиям чертежа.

Режимы шлифования:

скорость вращения детали $v_{\rm A} \le 0.8$ м/мин; глубина резания $t \le 0.3$ мм/ход стола.

Зубья рейки шлифовать на специальных рейкошлифовальных станках типа МШ-245 и др. с применением универсальных или специальных установочных приспособлений до получения заданных параметров шероховатости и точности согласно техническим требованиям чертежа с обильным охлаждением.

Характеристики щлифовальных кругов и режимы обработки — см. табл. 9. 10.

28. Окончательное шлифование наружной поверхности.

Обработку проводить на специальных станках для сопряженного шлифования типа ХШ1-03 или круглошлифовальных станках высокой и особо высокой точности типа 3М151В, 3М152В, 3Е153, 3Н163С и других, обеспечивающих необходимую точность обработки, при установке детали на центровых фасках. специальной центровой оправке или технологических пробках при обильном охлаждении до получения заданных параметров шероховатости и точности согласно техническим требованиям чер-

Предпочтительнее шлифование кругами из эльбора.

Характеристики шлифовальных кругов из эльбора и режимы обработки — см. табл. 11, 12

Правку кругов из эльбора проводить алмазными карандашами исполнения С.

29. Окончательное шлифование базовых цилиндрических и конических отверстий и торцов.

Обработку отверстий и торцов предпочтительнее проводить кругами из эльбора на специализированных внутришлифовальных станках типа СШ-141, СШ-148 или универсальных круглошлифовальных станках высокой и особо высокой точности типа 3У142В,

11. Рекомендуемые характеристики шлифовальных кругов из эльбора для круглого иаружиого шлифования

Параметр шероховатости поверхности <i>Ra</i> , мм	Характеристика шлифоваль- ного круга
0,32-0,15	ЛО Л10-Л20 CM2-C2 K7
0,08-0,04	100%; ЛО Л10-Л20 Б1, Б156 100% ЛО ЛМ40-Л4 КБ 100%

12. Рекомендуемые режимы обработки при круглом наружном шлифовании кругами из эльбора

Параметры	Числовые значения
Скорость круга $v_{\rm kp}$, м/с Скорость вращения детали $v_{\rm n}$, м/мин	30 – 50 15 – 30
Продольная подача S, м/мин	0,25-0,5
Π одача S_{2x} , мм/дв. ход $COЖ$	0,002-0,005 3%-ный раствор эмульсола НГЛ-205

3У121С и других, обеспечивающих необходимую точность обработки, с применением специальных приспособлений, с обильным охлаждением до получения заданных параметров точности и шероховатости согласно техническим требованиям чертежа.

Характеристики шлифовальных кругов из эльбора и режимы обработки — см. табл. 13, 14.

Правку кругов проводить алмазными карандашами типа H2-H3.

Режимы правки:

подача на глубину -0.0025 мм/дв. ход. скорость круга $v_{\rm kp}=25\div 30$ м/с; продольная подача $S=0.1\div 0.2$ м/мин.

30. Суперфиниширование наружной поверхности.

Обработку проводить на суперфинишных станках типа 3Д871Б и др. при установке детали на центровых фасках при обильном охлаждении до получения заданных параметров шероховатости согласно техническим требованиям чертежа.

13. Рекомендуемые характеристики шлифовальных кругов из эльбора для внутреннего шлифования

Параметр шероховатости поверхности <i>Ra</i> , мкм	Характеристика шлифовального круга
0,32-0,15	ЛО Л10-Л12 СТ1-СТ2 К7
0.08 - 0.04	100% ЛО ЛМ40-Л6 КБ, Б1 100%

14. Рекомендуемые режимы обработки при внутреннем шлифовании кругами из эльбора

Диаметр шлифоваиия, мм	Скорость круга v _{кр} , м/с	Скорость вращения детали $v_{\rm d}$, м/мин
≤ 20	8 - 17	8-15
50	17 - 21	15 - 25
80	21 - 35	20 - 30

Примечание. Продольная подача в долях ширины круга H равна $(0.25 \div 0.4) H$; продольная подача 0.2 - 0.5 м/мин; подача $S_{2x} = 0.002 \div 0.005$ мм/дв. ход.

Режимы обработки: скорость колебательного движения брусков $v_{\text{кол}} = 8 \div 15$ м/мин; амплитуда колебания брусков $l \le 6$ мм; скорость вращения детали:

- а) для абразивных брусков: в начале цикла $v_{\rm вp} = (2 \div 4) \, v_{\rm кол};$ в конце шикла $v_{\rm вp} = (8 \div 16) \, v_{\rm кол};$
- б) для эльборовых брусков $v_{\rm Bp} \geqslant 20 v_{\rm KOR}$, но не более 30-40 м/мин.

Давление брусков $p = 200 \div 400$ кПа при минимальном давлении в конце цикла.

Выбор характеристики брусков для суперфиниширования — см. табл. 15.

15. Рекомендуемые характеристики брусков дли суперфиницирования

Параметр шероховатости <i>Ra*</i> , мкм	Характеристики брусков	Параметр шероховатости <i>Ra*</i> , мкм	Характеристики брусков
0,15	63C M28-M20 M1-M2 K; 91A 25-20 M1-M2 K;	0,08	91A 16-25 M1-M2 K; ЛБС ЛОЛ M20-ЛМ14
	ЛБС ЛО ЛМО 40 CT2 К 100%		63C M14 M1-M2 K;
0,08	63C M20-M14 M1-M2 K;	0,04	91A 16 M1-M2 K; CT2 K 100%

^{*} Исходный параметр шероховатости Ra = 0.32 мкм.

16. Контроль ответственных параметров гильз и пинолей

№ по- верки	Параметры (см. рис. 12, 13)	№ опе- рацин	Значения параметра,	Средства, метод контроля,
-cpm	(em. pno. 12, 10)	Padin	допуск, мм	технические требования
1	Параметр шероховатости поверхности	9	Rz = 20 MKM	Контроль органолептический методом сравнения с образцами шероховатости
	2,0	10, 18 11, 14 16, 27	Ra = 2.5 MKM Ra = 1.25 MKM	То же
		17, 18, 21, 22,28 – 30	$Ra = 0.63 \div 0.08$ MKM	Профилометр мод. 283 по ГОСТ 19300-86
4.3				
2	Отклонение формы поверхности центровых (базовых) фасок	16, 20, 26	Площадь пятна контакта не менее 90% площа-	Калибр-втулка конусная спе- циальная. Контроль методом «по краске»: краска красная
	i.		ди контактируе- мой поверхности	типографская 2913-22 по ТУ 29.747-77. Эталон толщины слоя краски (рис. 14):
	1 * ,			а) меры длины концевые плоскопараллельные № 4-7, ГОСТ 9038-83;
	2			б) линейка поверочная лекальная ЛД-0-125 по ГОСТ 8026 – 75;
	2			в) пластина плоская стеклян- ная ПИ-120Н по ГОСТ 292375.
	(Q.)			Толщина слоя краски 0,006 мм (для операции 16); 0,004 мм (для опреации 20, 26)
3	Овальность и конусооб-	9	0,025	Скоба СР по ГОСТ 11098-75
	разность наружных поверхностей	11 17	0,01 0,005	То же Специальная скоба
		21	0,0025	1. Скоба должна включать пружинную головку по ГОСТ 14712—79 и иметь теплоизоля-
	è			цию, погрешность измерения при $t = 20 \pm 5$ °C 0,001 мм.
				2. Специальный стенд (рис. 15, поз. 6, 7). 3. Специальный стенд (рис. 16, поз. 3, 4)
	Отклонение от кругло- сти наружных поверх- ностей	28	0,001	Кругломеры по ГОСТ 17353— 80 (контроль 5% из партии)
ļ	Овальность наружных поверхностей		0,0008	Специальный стенд (см. рис. 15, поз. 6, 7)

				Продолжение табл. 16
№ по- верки	Параметры (см. рис. 12, 13)	№ опе- рации	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
4	Диаметр наружных по- верхностей	28	По фактическому замеру сопряженной поверхности, точность аттестации ~ 0,1 допуска	 Скоба СР по ГОСТ 11098-75. Меры длины концевые плоскопараллельные № 4-7 по ГОСТ 9038-83
5	Отклонение профиля продольного сечения на- ружной поверхности: пиноли гильзы	28	0,003 0,002	Специальный стенд (рис. 17)
6	Овальность и конусообразность внутренних поверхностей E и B (см. рис. 13)	14 18 22	0,01 0,005 0,003	Нутрометр мод. 154 по ГОСТ 9244—75. 1. Пробка пневматическая мод. 347 по ГОСТ 14864—78 2. Длиномер пневматический мод. 320 по ГОСТ 14866—76
	Отклонение от кругло- сти внутренних поверх- ностей <i>Б</i> и <i>В</i> (см. рис. 13)	29	0,001	Кругломеры по ГОСТ 17353— 80 (контроль 5% из партии).
	Овальность внутренних поверхностей <i>Б</i> и <i>В</i>		0,0008	Пневматическая пробка мод. 347 по ГОСТ 14864—78 Длиномер мод. 320 по ГОСТ 14866—76
	Конусообразность внутренних поверхностей Б и В		0,002	То же
7	Отклонение от соосности внутренних поверхностей <i>Б</i> и <i>В</i> (см. рис. 13)	22 29	R = 0,005 R = 0,003	Специальный стенд (см. рис. 18, поз. 7, 8)
. 8	Конус Морзе (см. рис. 12) Комплексный контроль:			
No.	1) размер	14	2-5AT8, FOCT 25557-82	Калибр по FOCT 2849-77
¢	4	18	2-5AT7 2-5AT6	Калибр должен быть выполнен на две степени точнее контролируемой им конической по-
£	2) форма	22		верхности Контроль методом «по краске» и «по риске», краска красная типографская 2913-22 ТУ 29.02.747-77

				
№ по- верки	Параметр (см. рис. 12, 13)	№ опе- рации	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
	2) форма		Площадь пятна контакта не менее 90% площади контактируемых поверхностей	Эталон толщины слоя краски (см. поверку 2). Толщина слоя краски: 0,008 мм для АТ8, АТ7; 0,005 мм для АТ6
	Поэлементный контроль 5% из			
8	партии): 1) угол конуса	22	0,016′	Прибор БВ-6165 (пневматиче-
	2) отклонение от прямолинейности образую-		0,004	ская конусная пробка) Прибор типа БВ-7320 (пнев- матическая пробка)
	лей конуса 3) отклонение от круглости поперечного сечения		0,016	Кругломеры по ГОСТ 17353— 80
	Радиальное биение ко-	18	0,016/5; 0,02/200	Специальный стенд (см. рис.
	нуса Морзе относительно оси поверхности F (см. рис. 12)			15, поз. 9, 10). Оправка коническая специальная с цилиндрическим хвостовиком
		22	0,008/5; 0,01/200	Проверка методом пятикратного введения оправки в конусное отверстие в двух взаимно перпендикулярных сечениях.
		29	0,005/5; 0,008/200	Коническая часть оправки должна быть выполнена на две степени точнее конуса проверяемого конического отверстия
9.	Радиальное биение обработанных внутренних поверхностей относительно оси наружной поверхности	10 14	0,08 0,03	1. Плита поверочная 0-1000 × × 630 по ГОСТ 10905 – 86. 2. Призма 1-4-1 по ГОСТ 5641 – 82. 3. Штатив Ш-ПН по ГОСТ 10197 – 70. 4. Индикатор ИРБ по ГОСТ
		18 22	0,016	5584 – 75. Специальный стенд (см. рис. 15,
	_		0,008	поз. 8, 9, 10; см. рис. 18, поз. 9)
	Радиальное биение на- ружной поверхности от- носительно общей оси внутренних поверхно- стей	29	0,003	Специальный стенд (см. рис. 18, поз. 9)

				Продолжение табл. 16
№ по- верки	Параметры (см. рис. 12, 13)	№ опе- рации	Значения параметра, допуск, мм	Средства, метод контроля, технические требования
10	Торцовое биение рабочих поверхностей относительно оси наружной поверхности (см. рис. 12)	14	0,03	1. Плита поверочная 0-1000 × 630 по ГОСТ 10905 – 86. 2. Призма 1-4-1 по ГОСТ 5641 – 82. 3. Штатив Ш-ПН по ГОСТ 10197 – 70.
7=	Торцовое биение рабочих поверхностей: Г Д относительно общей оси внутренних поверхностей Б и В (см. рис. 13)	29	0,002 0,005	4. Индикатор ИЧ02 по ГОСТ 577—68 или индикатор ИЧ25 по ТУ 2-034-611—74. Стенд специальный (см. рис. 15, поз. 4, 5). Специальный стенд (см. рис. 18, поз. 5, 6)
11	Диаметр <i>d</i> метрической резьбы	27	6g	Кольца резьбовые по ГОСТ 17765 – 72 и ГОСТ 11766 – 72
12	Шпоночный паз Г (см. рис. 12). Размер паза b	27	По ГОСТ 23360 — 78	Калибр пазовый по ГОСТ 24121—80
	Перекос паза Γ относительно поверхности E	12 27	0,1	1. Плита 0-1000 × 630 по ГОСТ 10905 – 86. 2. Линейка ШД1-630 по ГОСТ
	9.			8026—75. 3. Плита П1 ТУ 2.034.01—75. 4. Индикатор ИРБ по ГОСТ 5584—75. 5. Штатив Ш-ИН по ГОСТ 10197—70. Схема контроля—см. рис. 19
	Отклонение от симметричности паза Γ относительно общей плоскости симметрии паза Γ и поверхности \mathcal{E}	12 27	0,05 0,03	Калибр-призма шпоночный по ГОСТ 24113—80, ГОСТ 24114—80
13	3убчатая рейка (см. рис. 13) Отклонение шага f_{ptr}	18	Степени точности 8В; 7В; 6В по ГОСТ 10242-81	Универсальная длинномерная машина 24-231 фирмы Карл Цейс (ГДР), универсальный измерительный микроскоп УИМ-23, УИМ-24 или прибор для контроля реек типа НZР1600 фирмы Хефлер (ФРГ).

№ по-	Параметры	№ опе-	Значения параметра, допуск, мм	Средства, метод контроля,
верки	(см. рис. 12, 13)	рации		технические требования
13	Погрешность направления зуба $F_{\beta r}$ Наименьшее утоняющее смещение зуба $A_{\rm H}$ Колебания утоняющего смещения зуба R_{rkr} Накопленная погрешность шага зубчатой рейки F_{pr} и погрешность профиля зуба f_{fr}	22, 27	Степени точности 8B; 7B; 6B по ГОСТ 10242-81 То же Степень точности 8B по ГОСТ 10242-81 Степень точности 7B; 6B по ГОСТ 10242-81	Прибор для контроля реек типа НZР1600 фирмы Хефлер (ФРГ) То же Универсальная длинномерная

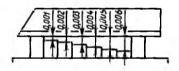


Рис. 14. Схема определения эталона толщины слоя краски

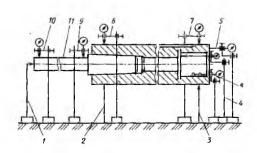


Рис. 15. Схема стенда для коитроля овальности, радиального и торцового биения пииоли:

I — центральный упор; 2, 3 — ножевидные призмы; 4, 5 — контроль торцового биения; 6, 7 — средства измерения овальности; 8-10 — средства измерения радиального биения; 11 — оправка

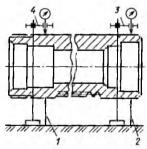


Рис. 16. Схема стенда для коитроля овальности гильзы:

1, 2 — ножевидные призмы; 3, 4 — средства измерения овальности

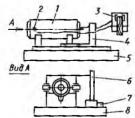


Рис. 17. Схема контроля отклонения профиля продольного сечения наружной поверхности:

I — деталь; 2 — датчики; 3 — самописец; 4 — каретка; 5 — основание; 6 — каретка; 7 — линейка; 8 — основание

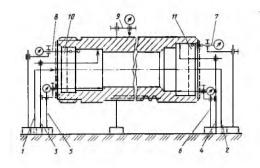


Рис. 18. Схема стенда для контроля соосности, радиального и торпового биения:

1, 2 — центральные упоры; 3, 4 — внутренние призмы; 5, 6 — средства контроля торцового биения; 7, 8 — средства контроля соосности; 9 — средства контроля радиального биения; 10, 11 — заглушки под центральные упоры

Рис. 19. Схема контроля перекоса паза относительно наружного диаметра:

I — плита П-1; 2 — плита; 3 — линейка; 4 — штатив; 5 — индикатор

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ НА ОБРАБОТКУ ТИПОВЫХ ДЕТАЛЕЙ ШПИНДЕЛЕЙ (из сталей 20Х, 18ХГТ, 12НЗА, упрочняемых науглероживанием)

Шпиндель (рис. 20).

- 1. Допуск круглости поверхностей A и B 0,0012 мм.
- 2. Конусообразность поверхностей *А* и *Б* 0,0016 мм.
- 3. Допуск торцового биения рабочей (сопрягаемой) гайки, навернутой на резьбовую поверхность, относительно общей оси поверхностей *A* и *Б* 0,02 мм.
- 4. Площадь пятна контакта конуса при толщине слоя краски 0,005 мм должна быть не менее 90% полной площади контактируемых поверхностей.

Шпиидель (рис. 21).

- 1. Цементовать поверхности h 1,2-1,4, HRC 58-62, кроме резьб и поверхности E.
- 2. Конусообразность поверхностей *А* и *Б* 0,001 мм.
- 3. Допуск торцового биения рабочей (сопрягаемой) гайки, навернутой на резьбовую поверхность, относительно общей оси поверхности A и E 0,02 мм.
- 4. Поверхности *А* и *Б* обработать по фактическим размерам колец подшипников с учетом натяга, указанного в технических требованиях чертежа.

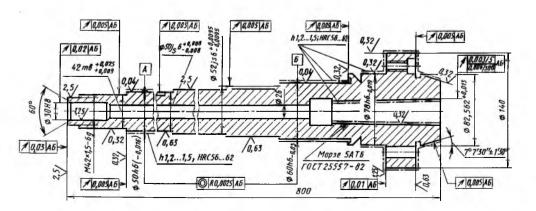
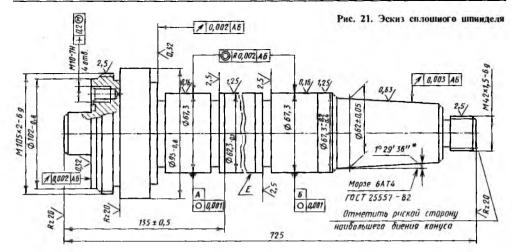



Рис. 20. Эскиз полого шпинделя

ТИПОВАЯ СХЕМА ИЗГОТОВЛЕНИЯ ШПИНДЕЛЕЙ

- 1. Отрезка образцов-свидетелей.
- 2. Контроль исходного металла.
- 3. Отрезка заготовок и образцов-свидетелей (для деталей из проката).
 - 4. Кузнечная обработка.

Одну заготовку из партии изготовить с учетом образцов-свидетелей.

- 5. Термическая обработка. Нормализация
- для поковок или проката.
- 6. Черновая обработка торцов, центровых отверстий, наружных и внутренних поверхностей. Отрезка образцов-свидетелей (в случае применения поковок).
- 7. Черновая обработка образцов-свидетелей (для деталей из проката).
- 8. Термическая обработка. Отжиг стабилизирующий (с образцами-свидетелями).
- 9. Обработка наружных поверхностей, граней уступов и внутренних поверхностей (см. рис. 20); обработка поверхностей, подвергаемых науглероживанию и закалке центровых (базовых) фасок под шлифование.
- 10. Обработка образцов-свидетелей под шлифование.
- 11. Термическая обработка. Науглероживание деталей (вместе с образцами-свидетелями).
- 12. Шлифование центровых (базовых) фасок.
- 13. Обработка резьбовых, других точных наружных и внутренних поверхностей под шлифование, окончательная обработка остальных поверхностей, в том числе шпо-

ночных пазов, отверстий, не подвергающихся науглероживанию и закалке (удаление науглероженного слоя).

- 14. Шлифование торцов образцов-свидетелей.
- 15. Термическая обработка. Закалка (вместе с образцами-свидетелями).
- 16. Контроль качества науглероженного слоя.
- 17. Шлифование центровых (базовых) фасок.
- 18. Предварительное точение (шлифование) наружных и внутренних рабочих поверхностей
- 19. Термическая обработка. Отпуск стабилизирующий.
- 20. Шлифование центровых (базовых) фасок.
- 21. Шлифование (точение) поверхностей под резьбу и предварительное шлифование рабочих поверхностей и торцов.
- 22. Предварительное шлифование внутренних рабочих поверхностей (см. рис. 20).
- 23. Термическая обработка. Отпуск стабилизирующий.
- 24. Шлифование центровых (базовых) фасок.
- 25. Получистовое шлифование наружных рабочих поверхностей и торцов. Окончательное шлифование прочих поверхностей.
 - 26. Шлифование метрической резьбы.
- 27. Получистовое шлифование внутренних рабочих поверхностей и окончательное шлифование прочих внутренних поверхностей (см. рис. 20).
 - 28. Окончательное шлифование наружных

рабочих поверхностей и торцов.

- 29. Окончательное шлифование внутренних рабочих поверхностей (см. рис. 20).
- 30. Суперфиниширование наружных рабочих поверхностей (только для получения параметра шероховатости поверхности $Ra \le 0.15$ мкм).
- 31. Окончательный контроль. Составление паспорта ответственных параметров.

ТЕХНОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОВЕДЕНИЯ РЕГЛАМЕНТИРУЕМЫХ ОПЕРАЦИЙ ИЗГОТОВЛЕНИЯ ШПИНДЕЛЕЙ

9. Обработка наружных поверхностей, граней, уступов и внутренних поверхностей (см. рис. 20), подвергаемых науглероживанию и закалке, центровых (базовых) фасок под шлифование.

Поверхности обрабатывать с припуском 0,5-0,8 мм в зависимости от размеров деталей и требуемых точностных параметров на токарно-копировальных станках, токарных станках с ЧПУ.

Внутренние поверхности обрабатывать при установе детали в патроне и люнете.

Овальность и конусообразность наружных поверхностей, обработанных под шлифование,— не более 0,025 мм. Параметр шероховатости $Rz \le 20$ мкм.

Радиальное биение обработанных поверхностей относительно общей оси базовых внутренних поверхностей — не более $0,1\,$ мм. Параметр шероховатости $Ra\leqslant 2,5\,$ мкм.

Поверхности, не подвергающиеся науглероживанию и закалке, не обрабатывать, если предохранение от науглероживания производится путем оставления дополнительного припуска. Если предохранение от науглероживания осуществляется другими методами, указанные поверхности обрабатывать с припуском под шлифование (см. операцию 13) или окончательно в зависимости от требуемых точностных параметров.

12, 17, 20, 24. Шлифование центровых (базовых) фасок.

Обработку проводить на специальных центрошлифовальных станках типа МВ119, 3922Р, ZSM фирмы Техника (Швейцария) с планетарным и осциллирующими движениями режущего инструмента, которые обеспечивают необходимую геометрию и соосность центровых фасок.

При отсутствии станков указанных моделей обработку проводить на специализиро-

ванных внутришлифовальных или универсальных круглошлифовальных станках (см. рис. 20).

Допускается замена шлифования центровых фасок притиркой, выполняемой на токарных станках.

Параметр шероховатости обработанных поверхностей $Ra \leqslant 1,25$ мкм на операциях 12 и 17 и $Ra \leqslant 0,32$ мкм на остальных операциях

13. Обработка резьбовых, точных наружных и внутренних поверхностей под шлифование, окончательная обработка, остальных поверхностей, в том числе шпоночных назов, отверстий, не подвергающихся науглероживанию и закалке (удаление науглероженного слоя).

Обработку поверхности под шлифование проводить с припуском 0.4-0.6 мм на токарно-винторезных станках и станках с ЧПУ.

Радиальное биение поверхностей, обработанных под шлифование, относительно общей оси базовых поверхностей — не более 0,08 мм. Параметр шероховатости $Rz \leqslant 20$ мкм.

18. Предварительное точение (шлифование) наружных и внутренних рабочих поверхностей.

Обработку проводить с припуском 0.25-0.3 мм на токарных станках мод. $16K20\Phi 3$, $16K20\Pi$.

Точение и растачивание закаленных поверхностей проводить резцами из гексанита-Р (прерывистые поверхности), эльбора-Р, минералокерамики ВОК60, нетермообработанных поверхностей — из минералокерамики ВОК60.

Наружные поверхности обрабатывать при установке детали на центровые фаски или специальную центровую оправку с охлаждением.

Шлифование внутренних поверхностей проводить при установке детали в патроне и люнете с охлаждением.

Овальность и конусообразность обработанных поверхностей – не более 0,01 мм.

Биение относительно общей оси базовых поверхностей – не более 0,03 мм. Параметр шероховатости $Ra \le 1,25$ мкм.

Режимы обработки резцами — см. гл. 13. В случае отсутствия оборудования, обеспечивающего получение заданных режимов резания, обработку проводить на круглошлифовальных, специализированных внутришлифовальных или универсальных круглошли-

фовальных станках с обильным охлаждением.

21. Шлифование (точение) поверхностей под резьбу и предварительное шлифование наружных рабочих поверхностей и торцов.

Шлифование (точение) поверхностей под резьбу проводить до получения размеров в соответствии с требованиями ГОСТ 19258—73. с охлаждением.

Режимы обработки резцами с применением минералокерамики приведены в гл. 13.

Предварительное шлифование проводить с припуском 0,15 мм на круглошлифовальных станках типа 3M153, 3M151, 3M151Ф2, 3M152, 3M163Ф2H1В при базировании детали на центровые фаски, применяя специальные центровые оправки или технологические пробки (с обильным охлаждением).

Овальность и конусообразность обработанных (базовых) поверхностей — не более 0,005 мм.

Биение обработанных поверхностей относительно общей оси базовых поверхностей — не более 0,016 мм. Параметр шероховатости $Ra \le 0.63$ мкм.

22. Предварительное шлифование внутренних рабочих поверхностей (см. рис. 20).

Обработку проводить с припуском 0,1—0,15 мм на специализированных внутришлифовальных станках типа 3Д227В, универсальных круглошлифовальных станках типа 3У142В с применением специальных приспособлений или в патроне и люнете с обильным охлаждением.

Овальность и конусообразность цилиндрических поверхностей — не более 0,005 мм.

Биение цилиндрических поверхностей относительно общей оси базовых поверхностей — не более $0,016\,$ мм.

Биение конусного отверстия относительно общей оси базовых поверхностей — не более 0,016 мм на расстоянии 5 мм от торца и не более 0,02 мм на расстоянии 300 мм.

Параметр шероховатости обработанных поверхностей $Ra \le 1.25 \div 0.63$ мкм.

25. Получистовое шлифование наружных рабочих поверхностей и торцов.

Окончательное шлифование прочих поверхностей.

Обработку рабочих поверхностей проводить с припуском 0,05—0,08 мм, прочих — окончательно на круглошлифовальных станках высокой точности мод. 3E153, 3M151B, 3M152B, 3M163Ф2H1B при базировании детали на центровые фаски, специальные цент

тровые оправки или технологические пробки (с обильным охлаждением).

Овальность и конусообразность обрабоганных базовых поверхностей — не более 0,0025 мм.

Параметр шероховатости $Ra \le 0,63$ мкм. Припуски на окончательную обработку рабочих поверхностей см. гл. 16.

26. Шлифование метрической резьбы.

Обработку проводить на резьбошлифовальных станках типа 5К823В, 5К822В при установке детали на центровых фасках, специальной центровой оправке или технологических пробках (с обильным охлаждением) до получения заданных параметров шероховатости и точности согласно техническим требованиям чертежа.

27. Получистовое шлифование внутренних рабочих поверхностей и окончательное шлифование прочих внутренних поверхностей (см. рис. 20).

Обработку рабочих поверхностей проводить с припуском 0,05 – 0,08 мм, прочих точных поверхностей — окончательно на специализированных внутришлифовальных станках типа 3Д227В, универсальных круглошлифовальных станках типа 3У142В с применением специальных приспособлений или в патроне и люнете, с обильным охлажлением.

Биение конусного отверстия относительно общей оси базовых поверхностей — не более 0,008 мм на расстоянии 5 мм от торца и не более 0,012 мм на расстоянии 300 мм.

Параметр шероховатости $Ra \le 0,63$ мкм. Припуски на окончательную обработку рабочих поверхностей — см. гл. 16.

28. Окончательное шлифование наружных рабочих поверхностей и торцов.

Обработку проводить на круглошлифовальных станках высокой и особо высокой точности мод. 3E153, 3M151B, 3M152B, 3H163C и др., обеспечивающих необходимую точность обработки при установке детали на центровых фасках, специальной центровой оправке или технологических пробках с обильным охлаждением до получения заданных параметров точности и шероховатости ($Ra \leq 0.15$ мкм) согласно техническим требованиям чертежа.

Предпочтительнее проводить шлифование кругами из эльбора.

Характеристики шлифования кругов из эльбора и режимы обработки — см. табл. 11, 12. Правку кругов из эльбора проводить алмазными карандашами.

29. Окончательное шлифование внутренних рабочих поверхностей (см. рис. 20).

Обработку отверстий и торцов предпочтительнее проводить кругами из эльбора на специализированных внутришлифовальных станках высокой и особо высокой точности типа 3Д227В, универсальных круглошлифовальных станках типа 3У142В, 3У121С, обеспечивающих необходимую точность обработки, с применением специальных приспособлений или в патроне и люнете (с обильным охлаждением) до получения заданных параметров точности и шероховатости согласно требованиям чертежа.

Характеристики шлифовальных кругов из эльбора и режимы обработки — см. табл. 13, 14. Правку кругов проводить алмазными ка-

рандашами.

Режимы правки: подача на глубину -0,0025 мм/дв. ход; скорость шлифовального круга 25-30 м/с; продольная подача 0,1-0,2 м/мин.

30. Суперфиниширование наружных рабочих поверхностей.

Обработку проводить на суперфинишных станках мод. 3Д871 и др. при установке детали на центровых фасках (с обильным охлаждением) до получения заданных параметров шероховатости согласно техническим требованиям чертежа.

Режимы обработки: скорость колебательного движения брусков $v_{\text{кол}} = 8 \div 15 \text{ м/мин}$; амплитуда колебания брусков $I \leqslant 6 \text{ мм}$; скорость вращения детали:

- а) для абразивных брусков: в начале цикла $v_{\rm Bp}=(2\div 4)\,v_{\rm KOR};$ в конце цикла $v_{\rm Bp}=(8\div 12)\,v_{\rm KOR};$
- 6) для эльборовых брусков $v_{\text{вр}} \ge 20 \, v_{\text{кол}},$ но не более $30-40\,$ м/мин.

Давление брусков $p = 0.2 \div 0.4$ МПа (максимальное давление — в начале цикла, минимальное давление — в конце цикла).

Характеристики брусков -- см. табл. 15.

17. Контроль ответственных параметров шпинделей

№ по- верки	Параметры (см. рис. 20)	№ операции	Значение параметра, допуск, мм	Средства, метод контроля, технические требования
1	Шероховатость новерхности	9, 13	Rz = 20 MKM	Контроль органолептический методом сравнения с образцами шероховатости
		9	Ra = 2.5 MKM	Тоже
		12, 17, 18 21, 22, 25,	Ra = 1,25 MKM	»
		27	Ra = 0.63 MKM	Профилометр мод. 283 по ГОСТ 19300 – 86
		20, 24	Ra = 0.32 MKM	То же
		28	Ra = 0.15 MKM	»
		30	Ra = 0.04 MKM	»
2	Отклонение фор-	12, 17, 20,	Площадь пятна	Калибр-втулка конусная спе-
	мы поверхности	24	контакта не ме-	циальная. Контроль - методом
	центровых фасок		нее 90 % площади	«по краске», краска — красная ти-
			контактируемых	пографская 2913-22 по ТУ
		ļ	поверхностей	29.02.747 – 77. Эталон толщины
				слоя краски (см. рис. 14):
			``	 а) меры длииы концевые плос- копараллельные № 4 — 7 по
				ΓΟCT 9038-83;
				б) линейка поверочная лекальная ЛД-0-125 по ГОСТ 8026 — 75;
				в) пластина плоская стеклян- ная ПИ-120Н по ГОСТ 2923—75
				Толщина слоя краски:
i i		-		0,006 мм — для операций 12; 17:
				0,004 мм — для операций 20; 24

№ по- верки	Параметры (см. рис. 20)	№ операции	Значение параметра, допуск, мм	Средства, метод контроля, технические требования
3	Овальность и конусообразность наружных поверхностей	9 18 21	0,025 0,01 0,005	Скоба СР ГОСТ 11098—75 То же Скоба специальная, которая должна включать головку ГИПМ по ГОСТ 14712—79 и иметь тепло- изоляцию. Погрешность измере-
	Отклонение от круглости наруж-	25 28	0,0025 0,0012	ния при $t = (20 \pm 5)$ °C 0,001 мм То же Кругломеры по ГОСТ 17353 – 80 (контроль 5% из партии)
!	ных поверхностей Овальность на- ружных поверх- ностей		0,001	Скоба СР по ГОСТ 11098 – 75 или специальная (см. операцию 21)
	Конусообраз- ность наружных поверхностей		0,00016	То же
	Отклонение от со- осности базовых поверхностей А и Б огносительно их общей оси		R = 0,0025	Стенд специальный (рис. 22, поз. 2, 9)
	Диаметр поверх- ностей		$50h 6(-0.016);$ $60h 6(-0.019);$ $50j_s 6(\pm 0.0095);$ $82.562 \pm 0.013;$ $78h 6(-0.019)$	1. Скоба СР по ГОСТ 11098—75. 2. Меры длины концевые плоско- параллельные кл. точности 3 по ГОСТ 9038—83
	Диаметр отвер- стия	29	30 <i>H</i> 8(+0,039)	Пробка 8133-1031 по ГОСТ 14811-69
4	Конус Морзе Комплексный контроль:			
*	1) размер	18	5AT8 по ГОСТ 25557 — 82	Калибр по ГОСТ 2849—77
		21, 22	5AT7	Калибр должен быть выполнен на две степени точнее контроли-
		27, 29	5AT6	руемой или конической поверх- ности
	2) форма		Площадь пятна контакта не менее 90% полной площади контактируемых поверхностей	Контроль методом «по краске» и «по риске», краска — типографская 2913-22, ТУ 29.02.747—77. Эталон толщины слоя краски — см. рис. 14. Толщина слоя краски: 0,01 мм для 5AT8; 0,008 мм для 5AT7; 0,005 мм для 5AT6

				Продолжение табл. 17
№ по- верки	Параметры (см. рис. 20)	№ операции	Значение параметра, допуска, мм	Средства, метод контроля, технические требования
1	Поэлементный контроль: 1) угол конуса	29	0,016′	Прибор БВ-6165 (пневматическая пробка)
	2) отклонение от прямолиней- ности образую-		0,004	Прибор типа БВ-7320 (пневматическая пробка)
4	шей конуса 3) отклонение от круглости поперечного се- чения		0,006	Кругломеры по ГОСТ 17353-80
	Радиальное бие-	22	0,016/5	Стенд специальный (см. рис. 22,
	ние конуса Морзе	27	0,02/300	поз. 14, 15). Оправка коническая
	относительно общей оси поверх-	27	0,008/5 0,012/300	с цилиндрическим хвостовиком специальная. Проверка методом
	ностей А и Б	29	0,003/5	пятикратного введения оправки в
			0,006/300	конусное отверстие в двух взаим-
ļ				но перпендикулярных сечениях. Коническая часть оправки долж-
		ı	1 ,	на быть выполнена на две степени точнее конуса проверяемого отверстия
5	Радиальное бие-	9	0,1	1. Плита поверочная по ГОСТ
i	ние внутренних цилиндрических поверхностей от-	13	80,0	10905 – 86. 2. Призма по ГОСТ 5641 – 82. 3. Индикатор ИРБ по ГОСТ 5584 – 75.
	носительно об- щей оси поверх- ностей A и B			4. Штатив Ш-ПН по ГОСТ 10197—70
		18	0,03	Специальный стенд (см. рис. 22, поз. 6)
		27	0,02	То же
	Радиальное бие-	13	0,08	1. Плита поверочная по ГОСТ
	ние наружных по- верхностей от- носительно об- щей оси поверх- ностей А и Б		,	10905 86. 2. Призма 1-3-2 по ГОСТ 5641 82. 3. Индикатор ИЧ02 по ГОСТ 577 68. 4. Штатив Ш-ПН по ГОСТ
,				10197 — 70
4.45		18	0,03	Специальный стенд (см. рис. 22, поз. 8, 10, 11, 13)
1.4.4	* 4v %	21 28	0,016 0,005	То же »

№ по- верки	Параметры (см. рис. 20)	№ операции	Значение параметра, допуска, мм	Средства, метод контроля, технические требования
6	Торцовое биение наружных поверхностей относительно общей оси поверхностей А и Б	21 28	0,01 0,005	Специальный стенд (см. рис. 22, поз. 7, 12)
7	Параметры резь- бы: 1) диаметр	26	$M42 \times 1,5 - 6g$	1. Кольцо ПР8211-0142 по ГОСТ 17763 – 72. 2. Кольцо НЕ8211-1142 по ГОСТ 17764 – 72
	2) торцовое биение сопряженной гайки, навернутой на резьбу и находящейся в рабочей позицин относительно общей оси поверхностей А и В		0,02	17704—72 Специальный стенд. Шпиндель и гайка попарно клеймятся (рис. 23)

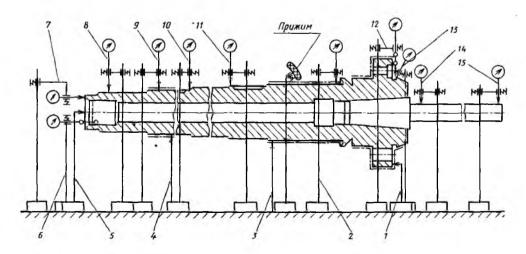


Рис. 22. Схема стеида для контроля соосности, радиального и торцового биения:

I, 5 — упоры (торцовый — I вариант, центральный — II вариант); 2, 9 — контроль соосности; 3, 4 — ножевидные призмы; 6, 8. 10, 11, 13 — 15 — контроль радиального биения; 7, 12 — контроль торцового биения

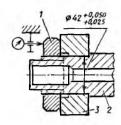


Рис. 23. Схема контроля торцового биения гайки относительно общей оси шпинделя:

1 — гайка; 2 — деталь; 3 — проставка

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ НА ОБРАБОТКУ ТИПОВЫХ ДЕТАЛЕЙ – ХОДОВЫХ ВИНТОВ СКОЛЬЖЕНИЯ

Ходовой винт (рис. 24).

- 1. Ходовые винты 0-2-го классов точности. Технические требования на резьбу по ОСТ 2 H33-2-74.
- 2. Параметр шероховатости поверхности трапецеидальной резьбы $Ra = 1,25 \div 0,32$ мкм.
- 3. Угол профиля резьбы $\alpha = 15$ или $\alpha = 30^{\circ}$.
- 4. Овальность поверхностей A н B 0,001 0,004 мм, допуск среднего диаметра трапецеидальной резьбы 0,0015 0,015 мм.
- 5. Конусообразность поверхностей A и B 0,003 0,008 мм, допуск среднего диаметра трапецеидальной резьбы 0,005 0,03 мм.
- 6. Допуск радиального биения среднего диаметра трапецендальной резьбы относительно общей оси поверхностей A и E 0,005 0,02 мм.
- 7. Резьба на шейке диаметром d метрическая, поле допуска 6g.
- 8. HRC 52-56, кроме мест, обозначенных особо.

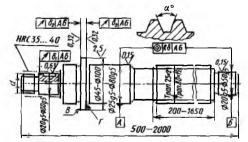


Рис. 24. Эскиз ходового винта из стали XBI или 7XГ2ВМ:

 $\delta = 0.002 \div 0.01$ MM; $\delta_1 = 0.03 \div 0.05$ MM; $\delta_2 = 0.002 \div 0.01$ MM

ТИПОВАЯ СХЕМА ИЗГОТОВЛЕНИЯ ХОЛОВЫХ ВИНТОВ

- 1. Отрезка образцов-свидетелей.
- 2. Контроль исходного металла.
- 3. Отрезка заготовок и образцов-свидетелей.
 - 4. Термическая обработка.
- 5. Обработка торцов и центровых отверстий.
- 6. Предварительная обработка наружных поверхностей.
- 7. Термическая обработка. Отжиг стабилизирующий (вместе с образцами-свидетелями).
- 8. Обработка торцов и центровых отверстий.
- 9. Обработка наружных поверхностей под шлифование.
- 10. Обработка пазов, отверстий и других конструктивных элементов.
- 11. Термическая обработка. Закалка. Отпуск (вместе с образцами-свидетелями).
- 12. Шлифование центровых (базовых) фасок
- 13. Предварительное точение (шлифование) точных наружных поверхностей и торцов.
- 14. Предварительная обработка трапецеидальной резьбы.
 - 15. Шлифование заходов резьбы.
 - 16. Контроль на отсутствие трещин.
- 17. Термическая обработка. Стабилизирующий отпуск.
- 18. Шлифование центровых (базовых) фасок.
- 19. Предварительное шлифование точных наружных поверхностей и торцов, окончательное шлифование поверхностей под метрическую резьбу.
- 20. Предварительное шлифование трапецеидальной резьбы.
- 21. Термическая обработка. Стабилизирующий отпуск.
- Шлифование центровых (базовых) фасок.
- 23. Получистовое шлифование точных наружных поверхностей и торцов.
- 24. Получистовое шлифование трапецеидальной резьбы.
- 25. Термическая обработка. Стабнлизирующий отпуск.
- 26. Шлифование центровых (базовых) фасок.
 - 27. Шлифование метрической резьбы.

- 28. Окончательное шлифование наружного диаметра трапецеидальной резьбы.
- 29. Окончательное шлифование трапецеидальной резьбы.
- 30. Шлифование фасок на вершинах витков.
- 31. Окончательное шлифование базовых наружных поверхностей и торцов.
- 32. Окончательный контроль, составление паспорта контроля ответственных параметров винта.

Примечания: 1. Операции 21-24 выполняют для винтов средней и малой геометрической жесткости 0-го и 1-го классов точности резьбы и для винтов малой жесткости 2-го класса точности.

- 2. Операции 25, 26 выполняют для винтов малой геометрической жесткости 0-го и 1-го классов точности резьбы.
- 3. Операцию 26 и последующие выполнять в термоконстантном помещении.

ТЕХНОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОВЕДЕНИЯ РЕГЛАМЕНТИРУЕМЫХ ОПЕРАЦИЙ ИЗГОТОВЛЕНИЯ ХОДОВЫХ ВИНТОВ

3. Отрезка заготовок и образцов-свидетелей. Допустимое значение кривизны заготовок ходовых винтов не должно превышать 1 мм на 1 м длины заготовки. Заготовки с большей кривизной подвергаются правке поперечным изгибом с последующим стабилизирующим отжигом по ОСТ 2 H51-1 — 74. Если после этого кривизна продолжает превышать допустимый предел, операции правки и стабилизирующей обработки повторяются. Правка заготовок без стабилизирующего отжига недопустима.

Правка заготовок в процессе механической обработки не допускается.

Для контроля структуры изделия при термической обработке отрезать один-два образца длиной не менее явух диаметров ходового винта на партию заготовок.

Образцы-свидетели проходят все операции механической и термической обработки вместе с. партией заготовок.

5, 8. Обработка торцов и пентровых отверстий. Подрезку торцов и зацентровку отверстий проводить на токарных станках при установке детали в патроне и люнете (при необходимости с вращающимися роликами) с переустановкой и обязательной выверкой заготовки.

- В операции 8 центровые отверстия срезаются полностью.
- 6. Предварительная обработка наружных поверхностей. Предварительную обработку наружных поверхностей проводить с припуском 4—6 мм* на токарно-винторезных станках с подвижным люнетом и на токарных станках с ЧПУ с подводным программируемым люнетом при установке детали в центрах, с обильным охлаждением.
- 9. Обработка наружных поверхностей под шлифование. Обработку поверхностей под трапецеидальную резьбу проводить с припуском 1,2-1,5 мм в зависимости от жесткости и размеров випта, посадочных поверхностей с припуском 0,5-0,8 мм, прочих неответственных поверхностей с припуском 0,3-0,4 мм на токарно-винторезных станках с подвижным люнетом и на токарных станках с ЧПУ с подводным программируемым люнетом при установке детали в центрах, с обильным охлаждением.

Овальность и конусообразиость обработанных поверхностей – не более 0,05 мм.

Радиальное биение обработанных поверхностей относительно оси центров — не более 0,16 мм.

Параметр шероховатости поверхностей, обработанных под шлифование. $Rz \le 20$ мкм.

12, 18, 22, 26. Шлифование центровых (базовых) фасок. Шлифование проводить на центрошлифовальных станках типа МВ-119, ZSM-150 фирмы Техника (Швейцария) с планетарным и осциллирующим движениями режущего инструмента, которые обеспечивают необходимую соосность и геометрическую точность центровых фасок.

Параметр шероховатости обработанных поверхностей $Ra \le 1,25$ мкм в операции 12; Ra = 0,32 мкм и Ra = 0,16 мкм (соответственно для 2-го и для 0-1-го классов точности) — в операциях 18, 22 и 26.

Допускается замена шлифования центровых фасок на притирку, выполняемую на токарных станках.

Режущий инструмент для притирки — твердосплавные центры повышенной точности по ГОСТ 13214 – 79 или специальные.

В качестве притирочного материала применять смесь из веретенного масла, олеиновой кислоты и микропорошка М6-М4, разведенных до жидкой консистенции.

^{*} Здесь и далее припуски указаны на диаметр.

18. Рекомендуемые характеристики шлифовальных кругов для шлифовання трапецеидальной резьбы

Pes	вьбошлифование	Характеристика шлифовального круга 44A 8-16 MI-M2 8-12 K	
Многониточное			
Однониточное	предварительное	44A 8-16 BM1-BM2 8-12 K	
	окончательное		
Многониточное		ЛО Л12-Л25 CM1-CM2 8K 100%	
Однониточное	предварительное	ЛО Л8-Л16 CM1-CM2 8K 100%	
	окончательное		

13. Предварительное точение (шлифование) точных наружных поверхностей и торцов. Обработку поверхности под трапецеидальную резьбу проводить с припуском 0,6—1,0 мм, посадочных поверхностей—с припуском 0,3—0,5 мм на токарных станках типа 16К20П резцами из эльбора-Р, гексанита-Р (прерывистые поверхности), минералокерамики ВОК 60—при установке детали в центрах с подвижным люиетом, с охлаждением.

Овальность и конусообразность обработанных поверхностей – не более 0,016 мм.

Радиальное биение обработанных поверхностей относительно оси центров — не более 0.05 мм.

Параметр шероховатости $Ra \le 1,25$ мкм. Режимы обработки резцами – см. гл. 13. В случае отсутствия оборудования, обеспечивающего получение заданных режимов резания, обработку проводить на круглощлифовальных станках типа 3M151, 3M152, 3M164 и др. с обильным охлаждением, при установке детали в центрах с подлерживающими люнетами.

14. Предварительная обработка трапецеидальной резьбы. Предварительную обработку трапецеидальной резьбы проводить на резьбошлифовальных станках типа 5Д822В, МВ140 многониточными абразивными кругами из монокорунда или кругами из эльбора: с припуском $(0,05 \div 0,06)P$ на толщину витка для винтов высокой геометрической жесткости и $(0,08 \div 0,12)P$ для винтов средней и малой геометрической жесткости (P — шаг резьбы). Обработку проводить при установке детали в центрах с поддерживающими люнетами при обильном охлаждении.

Радиальное биение среднего диаметра резьбы относительно оси центров для деталей длиной до 1000 мм — не более 0,1 мм, св. 1000 мм — не более 0,3 мм. Овальность и конусообразность среднего диаметра резьбы для деталей длиной до 1000 мм — не более 0,03 мм, св. 1000 мм — не более 0,1 мм.

Параметр шероховатости обработанных поверхностей $Ra \le 2.5$ мкм.

Допустимые отклонения контролируемых параметров трапецеидальной резьбы не более чем на два класса ниже окончательной точности ходового винта по ОСТ 2 Н33-2 – 74.

Характеристики шлифовальных кругов и режимы резания — см. табл. 18, 19.

19. Предварительное шлифование точных наружных поверхностей и торцов, окончательное шлифование поверхностей под метрическую резьбу. Обработку наружной поверхности трапецеидальной резьбы проводить с припуском 0,3 – 0,4 мм, посадочных размеров – с припуском 0,2 – 0,3 мм на круглошлифовальных станках типа 3М151, 3М152, 3М164 и др. при установке детали

19. Режимы резьбошлифования предварительной обработки трапецендальной резьбы многониточным кругом

Режимы обработки	Шлифовальный материал		
гежимы образотки	Моно- корунд	Эльбор	
Скорость круга, $v_{\rm kp}$, м/с Скорость вращения заготовки v , м/мин	30 - 35 $0,5 - 0.8$	30 - 35 0,5 - 1,0	
Число проходов	2-6	2-5	

в центрах с поддерживающими люнетами, при обильном охлаждении.

Овальность наружной поверхности трапецеидальной резьбы 0,007-0,016 мм, конусообразность 0,016-0,02 мм. Интервал значений указан соответственно для винтов 0-2-го классов точности.

Овальность и конусообразность остальных точных (посадочных) поверхностей — не более 0,01 мм.

Радиальное биение обработанных поверхностей относительно оси центров — не более 0.03 мм.

Параметр шероховатости точных поверхностей $Ra \le 0.63$ мкм.

20. Предварительное шлифование трапецеидальной резьбы. Обработку резьбы проводить с припуском (0,04—0,08) Р на толщину витка на резьбошлифовальных станках типа 5Д822В, МВ140 и др. кругами из эльбора при установке детали в центрах с поддерживающими люнетами, с обильным охлаждением,

Радиальное биение среднего диаметра резьбы относительно оси центров 0.01-0.02 мм.

Овальность среднего диаметра резьбы 0,005-0,01 мм, конусообразность на всей длине винта — не более 0,015 мм.

Параметр шероховатости обработанной поверхности $Ra \le 0.63$ мкм.

Характеристика шлифовальных кругов и режимы обработки — см. табл. 18, 20.

20. Режимы обработки трапецендальной резьбы однониточными кругами из эльбора

	Резьбошлифование			
Режимы обработки	предвари- тельное	окончатель- ное		
Скорость круга, м/с Частота врашения	30 - 35 $4 - 5$	30 – 35 5		
детали, об/мин Глубина шлифования, мм	v,i −0,15	0,05-0,07		
число проходов	2-4	1-3		

Примечания: 1. Резьбопплифование проводится с применением СОЖ — масло индустриальное И-20А с присадкой «Волжская-100» (20%).

2. При обработке ходовых винтов 2-го класса точности режимы резания можно корректировать в сторону увеличения.

23. Получистовое шлифование точных наружных поверхностей и торнов. Обработку проводить с припуском 0,15—0,2 мм на круглошлифовальных станках типа 3M151B, 3M152B, 3M174B, на станках фирмы Джон Шипман (Великобритания) и др. при установке детали в центрах с поддерживающими люнетами, при обильном охлажденин.

Овальность обработанных поверхностей 0.003 – 0.007 мм.

Конусообразность наружной поверхности трапецеидальной резьбы 0.005 - 0.01 мм.

Радиальное биение обработанных поверхностей относительно оси центров 0.007 — 0.016 мм.

Параметр шероховатости $Ra \leq 0,63$ мкм. 24. Получистовое шлифование трапецеидальной резьбы. Обработку проводить с припуском (0,02-0,04)P на толщину витка на станках типа 5Д822B, MB140, на станках фирмы Матрикс (Великобритания) и др. кругами из эльбора при установке детали в центрах с поддерживающими люнетами, при обильном охлаждении.

Радиальное биение среднего диаметра резьбы относительно центров 0,008 – 0,012 мм.

Овальность среднего диаметра резьбы 0,003 – 0,008 мм, конусообразность на всей длине винта — не более 0,008 мм.

Параметр шероховатости обработанной поверхности $Ra \le 0.63$ мкм.

Характеристики шлифовальных кругов и режимы обработки — см. табл. 18, 20.

27. Шлифование метрической резьбы. Обработку проводить на резьбошлифовальных станках мод. 5Д822В, МВ140 при установке детали в центрах с поддерживающими люнетами до получения заданных параметров шероховатости и точности согласно техническим требованиям чертежа, при обильном охлаждении.

Шлифование проводить на следующих режимах: скорость вращения детали v_{π} — не более 0,8 м/мин; глубина резания t — не более 0,3 мм/ход стола.

28. Окончательное шлифование наружной поверхности трапецеидальной резьбы. Обработку проводить на круглошлифовальных станках высокой точности типа 3M151B, 3M152B, 3M174B, станках фирмы Джон Шипман (Великобритания) и др. при установке детали в центрах с поддерживающими люнетами, при обильном охлаждении.

Наружную поверхность трапецеидальной резьбы следует обработать окончательно по посадкам:

для винтов 0-1-го классов точности -h5; для винтов 2-го класса точности -h6.

Обработку предпочтительнее проводить шлифовальными кругами из эльбора (см. табл. 11, 12).

29. Окончательное шлифование трапедеидальной резьбы. Обработку проводить на станках высокой и особо высокой точности типа 5Д822В, МВ140, станках фирмы Матрикс и др. при установке детали в центрах с поддерживающими люнетами, при обильном охлаждении.

Параметры шероховатости и точности должны быть выдержаны в пределах техинческих требований чертежа.

До начала обработки станков необходимо «прогреть» на вспомогательном ходу не менее 1 ч.

Обработку проводить однониточными шлифовальными кругами из эльбора.

Характеристики шлифовальных кругов и режимы резания — см. табл. 18, 20.

Правку кругов из эльбора следует прово-

дить алмазными карандашами.

Режимы правки: скорость круга 30-35 м/с; скорость продольной подачн карандаша 0.03-0.05 мм/мин; подача на глубину 0.005-0.01 мм/ход.

31. Окончательное шлифование базовых наружных поверхностей и торцов. Обработку проводить на станках высокой и особо высокой точности типа 3M151B, 3M152B, 3M174B, станках фирмы Джон Шипман и др. при установке детали в центрах с поддерживающими люнетами, при обильном охлаждении.

Шлифование предпочтительнее выполнять кругами из эльбора.

Правку кругов из эльбора проводить алмазными карандащами.

Выхаживание осуществлять до получения требуемых параметров шероховатости и точности согласно техническим требованиям чертежа.

Характеристики шлифовальных кругов и режимы обработки — см. табл. 11, 12.

21. Контроль ответственных параметров ходовых винтов

№ по- верки	Параметры (см. рис. 24)	№ операции	Значение параметра, мм	Средства, метод контроля, технические требования
1	Шероховатость поверхности	9 12-14 18-20 22-24 26, 28, 29, 31	Rz = 20 MKM $Ra = 2.5 \div 1.25$ MKM $Ra = 0.63 \div$ 0.16 MKM	Контроль органолептический, методом сравнения с образцами шероховатости Профилометр мод. 283 по ГОСТ 19300 – 86
2	Отклонения формы поверхности центровых (базовых) фасок	12, 18, 22, 26	Площадь пятна контакта не менее 90% площади контактируемых поверхностей	Калибр-втулка конусный. Контроль методом «по краске», краска — красная типографская 2913-22 по ТУ 29.02.747 — 77. Эталон толщины слоя краски (см. рис. 14): а) меры длины концевые плоскопараллельные № 4—7 класса точности 1 по ГОСТ 9038 — 83; б) линейка поверочная лекальная ЛД-0-125 по ГОСТ 8026 — 75; в) пластина плоская стеклянная ПИ-120Н по ГОСТ 2923 — 75 Толшина слоя краски — 0,006 мм (для операций 12, 18); 0,004 мм (для операций 22, 26)

№ по- верки	Параметры (см. рис. 24)	№ операции	Значение параметра, мм	Средства, метод контроля, технические требования
3	Овальность и ко- нусообразность наружной поверхности	9	0,05 0,016	
	Овальность Конусообраз- ность	19	$0,007 - 0,016 \\ 0,016 - 0,02$	Скоба СИ по ГОСТ 11098-75
	Овальность Конусообраз- ность	23	$0,003 - 0,007 \\ 0,005 - 0,01$	
* 1	Овальность Конусообраз- ность	31	0,001 - 0,004 0,003 - 0,008	Специальная скоба. Скоба должна быть с головкой 1-ИПМ по ГОСТ 14712 – 79 и теплоизоляцией. При $t = (20 \pm 5)$ °C в интервале $0-80$ мм погрешность измерения 0,001 мм. Скоба СР по ГОСТ 11098 – 75
4	Отклонение от соосности базовых поверхностей <i>А</i> и <i>Б</i> относительно их общей оси	31	0,002 0,01	Призма ножевидная специальная — 2 пит. Штатив ШМ-1 по ГОСТ 10197 — 70. Головка 1-ИПМ по ГОСТ 14712 — 79
5	Диамстры на- ружных поверх- ностей	31	20g5 - 80g5; 15h6 - 25h6	 Скоба СР по ГОСТ 11098 – 75. Меры длины концевые плоскопараллельные, набор № 1 по ГОСТ 9038 – 83
6	Радиальное биение наружных поверхностей отно-	9 13	0,16 0,05	Проверку проводить на станке. 1. Индикатор ИЧ02 класса точности 1 ГОСТ 577-68.
	сительно оси центров	19 23	0,03 0,007 – 0,016	2. Штатив по ГОСТ 10197 – 70 i. Головка 1-ИПМ ГОСТ 14712 – 79. 2. Штатив ШМ-1 по ГОСТ 10197 – 70
7	Радиальное биение наружной поверхности относительно общей оси поверхностей A и E	31	0.002-0,01	Призма ножевидная специальная — 2 шт. Головка 1-ИПМ по ГОСТ 14712 — 79. Штатив ШМ-1 ГОСТ 10197 — 70

	,			Продолжение табл. 21
№ по- верки	Параметры (см. рис. 24)	№ операции	Значение параметра, мм	Средства, метод контроля, технические требования
8	Торцовое биение поверхностей B и Γ относительно общей оси поверхностей A и B	31	0,002-0,01	То же, что и в поверке 7, Центральный специальный упор
9	Диаметр метри- ческой резьбы	27	6 <i>g</i>	1. Кольцо ПР по ГОСТ 17763—72. 2. Кольцо НЕ по ГОСТ 17764—72
10	Наружный диа- метр трапецеи- дальной резьбы (проверку прово- дить на станке)	28	25h5 - 80h5 25h6 - 80h6	Скоба СР по ГОСТ 11098—75. Специальные губки шириной 20 мм. Меры длины концевые плоско-параллельные 1—0 по ГОСТ
	Овальность на- ружной поверх- ности резьбы	19	0,007-0,016	9038 – 83. То же
-	ности резвова	23	0,003 0,007	Скоба с отсчетным устройством специальная (см. поверку з операции 31). Губки специальные шириной 20 мм
	Конусообраз- ность наружной поверхности	19	0,016-0,02	1. Скоба СР по ГОСТ 11098 – 75. 2. Губки специальные шириной 20 мм
	резьбы	23	0,005 - 0,01	Скоба с отсчетным устройством специальная (см. поверку з операции 31). Губки специальные шириной 20 мм
	Средний диаметр резьбы	31	Перенос размера на метчик с точ- ностью 0,002	Устройство для контроля среднего диаметра трапецеидальной резьбы (рис. 25). Для допустимых зазоров с сопрягаемой гайкой менее 0,006 мм по усредненным результатам трех измерений
	Отклонение среднего диаметра резьбы	29	По ГОСТ 9562—81	См. рис. 26. 1. Скоба СР по ГОСТ 11098-75. 2. Набор из трех проволочек по ГОСТ 2475-62.
	Ť	4		3. Меры длины концевые плоско- параллельные 1-0 ГОСТ 9038-83 (меру подкладывают
	10.25	* **		под неподвижную пятку скобы к двум проволочкам)

Продолжение табл. 21

№ по- верки	Параметры (см. рис. 24)	№ операции	Значение параметра, мм	Средства, метод контроля, технические требования
10	Овальность среднего диаметра резьбы	14	0,03 для винтов длиной до 1000 мм: 0,1 — св. 1000 мм	То же
i		20	0.005 - 0.01	»
		24	0.003 - 0.008	»
		29	0,0015 - 0,015	»
:	Конусообраз- ность среднего диаметра резьбы	14	0,03 для винтов длиной до 1000 мм; 0,1 – св. 1000 мм	»
		20	0,015	»
Ì		24	0,008	»
	,	29	0,005-0,03	»
	Радиальное биение среднего диаметра резьбы относительно оси центров	20 24 29	0,1 для винтов длиной до 1000 мм; 0,3 для винтов длиной свыше 1000 мм 0,01-0,02 0,008-0,012 0,005-0,02	Проверку проводить на станке. Устройство специальное (рис. 27) Проверить на станке первую де таль из партии 0,02
	Радиальное биение среднего диаметра резьбы относительно общей оси поверхностей A и E	31	0,005-0,02	 Призма ножевидная — 2 шт. Устройство специальное (рис 28)

Для контроля соосности 0,002-0,01 мкм (поверка 4, операция 31), радиального биения 0,002-0,05 мкм (поверка 6, операция 31), торцового биения 0,002-0,01 мкм (поверка 8, операция 31), радиального биения 0,005-0,02 мкм (поверка 10, операция 29) винт установить на одну из машин:

измерительную МС-14 ЭНИМС;

универсальную длинномерную с полным комплектом принадлежностей 24-231a-8 фирмы Карл Цейс (ГДР);

универсальную измерительную с полным комплектом принадлежностей МИL-300 фирмы СИП (Швейцария)

Параметры трапецеидальной резьбы:	По ОСТ 2H33.2-74	
отклонение шага вин-		на приборе мод. 3136 (ОКБ МСиИП) или по образ-
та ΔP		цовым ходовым винтам 0-2-го классов точности на
		измерительной машине или станке
погрешность шага в пределах одного оборота винта ΔP_1		То же. Проверка проводится на трех участках (по

накопленная погрешность шага в пределах заданной длины винта ΔP_{Σ}	По ОСТ 2H33.2 — 74	То же
погрешность профиля	По ОСТ	Микроскоп УИМ-200 с призматическими опорами
винта <i>∆f</i>	2H33.2 – 74	(для винтов длиной до 1200 мм). Машина измерительная МС-14 (для винтов длиной свыше 1200 мм) со спепиальными приспособлениями или машина универсальная длинномерная с полным комплектом принадлежностей фирмы Карл Цейс (ГДР). Машина универсальная измерительная с полным комплектом принадлежностей МИС-4000 фирмы СИП (Швейцария) или специальное устройство для контроля профиля трапецеидальной резьбы (рис. 29)

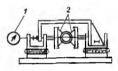


Рис. 25. Схема контроля среднего диаметра трапецеидальной резьбы:

I — измерительная головка; 2 — специальные наконечники

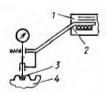


Рис. 27. Схема контроля радиального биения среднего диаметра резьбы относительно центров: I — суппорт станка; 2 — плавающая державка; 3 — специальный наконечник; 4 — проверяемый винт

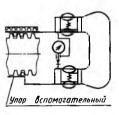


Рис. 26. Схема контроля отклоиения средиего диаметра трапецеидальной резьбы

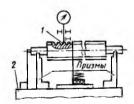


Рис. 28. Схема контроля радиального бнеим средиего диаметра резьбы отиосительно оси винта: l — специальный наконечник; 2 — измерительная машина

Рис. 29. Схема контроля профиля резьбы

методы и средства измерения

1. МЕТОДЫ ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

В табл. 1 приведены рекомендуемые значения погрешностей, допускаемых при измерении отклонений формы и расположения поверхностей, а в табл. 2—8 приведен перечень основных методов измеречия некоторых видов отклонений формы и расположения.

Приведенные методы измерения применимы в производственных условиях и рекомендуются для приемки изделий, отладки и контроля стабильности и точности технологических процессов механической обработки.

По степени соответствия стандартным определениям отклонений формы и расположения поверхностей методы измерений подразделяются на следующие:

методы полного измерения, которые соответствуют стандартному определению отклонения:

методы упрощенного измерения, которые не соответствуют стандартному определению отклонения: измерение проводится не во всех точках (сечениях или направлениях) поверхности или профиля, базирование отличается от базирования, соответствующего стандартному определению, не исключается влияние отклонений других геометрических параметров.

Прямое измерение отклонений формы и расположения, ограниченных в конструкторской документации комплексными допусками, можно заменять измерениями составляющих отклонений. Например: измерение отклонения от цилиндричности (см. табл. 5) на измерение отклонения от круглости и профиля продольного сечения; измерение отклонения от параллельности осей в пространстве — на измерение отклонения от параллельности осей в общей плоскости и перекос осей (табл. 8) и т. д. Годность детали в этом случае может быть определена двумя способами:

1. Рекомендуемые значения погрешностей, допускаемых при измерении отклонений формы и расположения поверхностей

Размеры, мкм

Допуск формы или расположения измеряемой детали	Погреш- ность изме- рения	Допуск формы или расположения измеряемой детали	Погреш- ность измере- ния
0,1	0.04	50	15
0,12	0,04	60	18
0,16	0,06	80	20
0.2	0.07	100	25
0,25	0,09	120	30
0,3	0,1	160	40
0,4	0,14	200	50
0,5	0,18	250	50
0,6	0,2	300	60
0,8	0,3	400	80
1	0,35	500	100
1,2	0,4	600	120
1,6	0,6	800	160
2	0,7	1000	200
2,5	0,9	1200	240
3	1	1600	320
4	1,4	2000	400
5	1,8	2500	500
6	2 3 3,5	3000	600
8	3	4000	800
10	3,5	5000	1000
12	4	6000	1200
16	6	8000	1600
20	7	10 000	2000
25	9	12 000	2400
30	9	16 000	3200
40	12		

Примечания: 1. Числовые значения допусков соосности, симметричности, пересечения осей, позиционных допусков, допусков формы заданного профиля или заданной поверхности приведены в радиусном выражении.

2. Указанные погрешности измерения в обоснованных случаях могут быть увеличены, но не более чем до 35% от допуска измеряемой детали.

2. Методы измерения отклонения от прямолинейностн (EFL)

-

№ по пор.	Метод измерения	Схема измерения
j	Прибором с прецизионным прямолинейным перемещением (прямомером) с измерительной головкой*!	
2	Устройством с прямолинейным перемещением методом исключения отклонения от прямолинейности перемещения его подвижного узла и измерительной головкой *1	The Cool of the Co
3	Координатно-измерительным прибором — двухкоординатным или трехкоординатным или трехкоординатной измерительной машиной)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4	Поверочной линейкой или поверочной плитой: 1) измерительной головкой *2; 2) измерительной головкой методом исключения от прямолинейности поверочной линейки (поворотом ее на 180°) *3	(180°)
	3) концевыми мерами длины *2 4) набором щупов*2 5) «на краску»	2/9L 2/9L
*	6) на просвет	

		Продолжение табл. 2
№ по пор.	Метод измерения	Схема измерения
	7) измерительной головкой или концевыми мерами длины поверхностей большей длины L_1 , чем длина L поверочной линейки	Точки измерения 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 - V — положения поверочной линейки
5	Линейным компаратором: 1) с несколькими измерительными головками и неподвижными опорами; 2) с несколькими измерительными головками, уровнем (поз. 1) и регулируемыми опорами с микрометрическими головками (поз. 2);	
	3) поверхностей большей длины, чем длина компаратора (путем его перестановки)	Положения компаратора те же, что и при аналогичном измерении с применением поверочной линейки (см. № 4, п. 7)
6	Двухопорным измерительным мости- ком и измерительной головкой	And Andrews of the Section of the Se
7	Измерение относительно натянутой струны с применением микроскопа	
1		$a, \ \delta, \ s$ — форма измерительного мостика в зависимости от формы контролируемой поверхности
8	Измерение относительно луча света: визирной трубой и маркой	
	лазером и фотоэлектрическим пре- образователем	<u>4: 000</u> <u>4: 000</u> <u>11</u>

		Продолжение табл.
№ по пор.	Метод измерения	Схема измерения
8	оптической линейкой	
	оптической линейкой поверхностей большей длины, чем диапазон ее измерения	Положения оптической линейки те же, что и при аналогичном измерении с примене нием поверочной линейки (см. № 4, п. 7)
9	Измерение относительно уровня жидкости с применением: 1) гидростатических уровней, подключенных дифференциально; 2) одного или нескольких гидростатических уровней, подключенных к уравнительному сосуду	
10	Двухопорным измерительным мостиком и: 1) уровнем (жидкостным или электронным) 2) электронным уровнем с ЭВМ	thuntandundy
	3) автоколлиматором4) фотоэлектрическим автоколлиматором с ЭВМ	######################################
	5) лазерным интерферометром с отражателями для угловых измерений6) то же, с ЭВМ	(Assert Assertion Assertio

*1 Для проведения записи вместо измерительной головки применяют измерительный преобразователь, а прибор (устройство) должен иметь мотопривод.

*2 Вариант I: поз. I — поверочная линейка; поз. 2 — деталь; вариант II: поз. I — деталь; поз. 2 — поверочная линейка или поверочная плита; поз. 3 — измерение снизу; поз. 4 — измерение сверху.

*3 поз. I — поверочная линейка; поз. 2 — деталь; поз. 3 — измерение до поворота поверочной линейки на $180\,^\circ$; поз. 4 — измерение после поворота поверочной линейки на $180\,^\circ$.

3. Методы измерения отклонений от плоскостности (EFE)

Метод измерения	Схема измерения
Методами измерения отклонений от прямолинейности*1: 1) приведением измеренных отклонений к базовой плоскости; 2) по наибольшему отклонению в одном из сечений	Расположение измеряемых сечений
Двухопорным измерительным мостиком*2 и: 1) уровнем с ЭВМ; 2) автоколлиматором с ЭВМ: 3) лазерным интерферометром с ЭВМ и отражателями для угловых измерений	Схемы измерений те же, что и по соответствующим методам измерения отклонений от прямолинейности (см. табл. 2)
Координатно-измерительным прибором (трехкоординатной измерительной машиной)	x:000 y:000 z:000 z:000
Поверочной плитой и измерительной головкой	
Поверочной плитой с отверстием и измерительной головкой	
Поверочной линейкой и: 1) измерительной головкой (поз. <i>I</i>); 2) концевыми мерами длины (поз. 2)	

	Продолжение табл. 3
Метод измерения	Схема измерения
Тремя поверочными линейками, измери- тельной головкой и уровнем	
Интерференционная проверка с применением: 1) плоскопараллельной стеклянной пластины; 2) прибора для проверки плоскостности, основанного на интерференционном методе	ramanananananananananananananananananana
Поверочной плитой «на краску»	
Линейным компаратором с несколькими измерительными головками и уровнем	
Плоскостным компаратором с несколькими измерительными головками	
Плоскостным компаратором с аэростатическими опорными элементами с несколькими измерительными преобразователями или головками	
Карусельным плоскомером	

Метод измерения	Схема измерения
Оптическим плоскомером с визирной труб-кой и марками	
Гидростатическими уровнями, подключенными к уравнительному сосуду	

 $^{^{*1}}$ Используются методы 1, 4 (пп. 1-3), 5, 8, 9 (п. 1), 10 (кроме приборов с ЭВМ), приведенные в табл. 2.

*2 Используются методы 10 (пп. 2, 4, 6), приведенные в табл. 2.

4. Методы измерения отклоиений от круглости (EFK)

ſ	$\overline{\bigcirc}$	1
١	\cup	ı

	
Метод измерения	Схема измерения
Прибором с прецизионным вращением (кругломером)	
Координатно-измерительным прибором — двух- или трехкоординатным (трехкоординатной измерительной машиной)	x:000 y:000 2:000
Измерительным преобразователем с базированием измеряемой детали: в центрах	

	Продолжение табл. 4
Мегод измерения	Схема измерения
в патроне с прецизионным вращением	
на поворотном столе с прецизионным вращением	
Двухточечным измерительным стационарным*1 или накладным*2 приборами для измерения диаметров	
Двухточечное измерение с применением измерительной головки и поверочной плиты	
Трехточечное измерение с применением измерительной головки и базированием измеряемой детали в призме: 1) симметричная схема измерения (головка — поз. 2): 2) несимметричная схема измерения (головка — поз. 1)	ор 3 д. А. О побернуто
Комбинированное измерение (двухточечное и трехточечное) с применением двух измерительных головок (поз. 1 и 3) и базированием измеряемой детали в призме	vindudindounina
Седлообразной призмой («наездником») с жесткими гранями или с самоустанавливающимися опорами	
Образцом круглости и измерительной головкой	⊘ 1

	Метод измерения	Схема измерения
стройством порным элег ателем или г	с аэростатическим центрирующим иентом и измерительным преобразо- оловкой	
		and tend
*	# 3· T	
	3200	
*	3+4-3 3+4-3 3-5-1-1-1-1-1	

- *1 См. сноску *2 к табл. 5.
- *2 Cм. сноску *3 к табл. 5.

5. Методы измерения отклоиений от цилиндричности (EFZ)

Метод измерения	Схема измерения
Прибором с прецизионным вращением и прямо- линейным перемещением (цилиндромером)	
Координатно-измерительным прибором (трехкоординатной измерительной машиной)	x:000 y:000 zz:000
Измерение с базированием измеряемой детали в центрах: измерительной головкой и поверочной пли- той*	
несколькими измерительными головками	

	прооблосение таки. 3
Метод измерения	Схема измерения
измерительным преобразователем и устройством с прецизионным прямолинейным перемещением (с мотоприводом)	
Двухточечным измерительным прибором для измерения диаметров (стационарным*2 или накладным*3)	O I I I I I I I I I I I I I I I I I I I
Устройством с аэростатическим центрирующим опорным элементом и несколькими измерительными преобразователями или головками	
Измерение и суммирование составляющих отклонения от цилиндричности: вариант 1.	
измерение: отклонения от круглости EFK — см. табл. 4	См. табл. 4
отклонения от прямолинейности образующих EFL – см. табл. 2	См. табл. 2
отклонения от параллельности образующих EPA — см. табл. 8 суммирование: $EFZ = EFK + \sqrt{EFL^2 + \frac{1}{4} EPA^2}$	См. табл. 8
вариант II: 4	
измерение:	
отклонения от круглости EFK – см. табл. 4 отклонения профиля продольного сечения EFP – см. табл. 6	См. табл. 4 См. табл. 6
суммирование: EFZ = EFK + EFP	*

^{*1} Измерительная головка в штативе с упором перемещается вдоль прямолинейной направляющей, образованной, например, поверочной плитой и поверочной линейкой.

^{*2} Например, для валов — измерительная машина; для отверстий — горизонтальный длинномер.

^{*3} Например, для валов — рычажная скобка, для отверстий — двухточечный нутромер с измерительной головкой.

6. Методы измерения отклонения профиля продольного сечения (ЕFР)

Метод измерения	Схема измерения
Прибором с прецизионным прямолинейным перемещением и вращением (цилиндромером, кругломером с прецизионным прямолинейным перемещением или прямомером с применением поворотного стола)	
Координатно-измерительным прибором – двух- или трехкоординатным (трехкоординатной измери- тельной машиной)	x:000 y:000 z:000
Измерение с базированием измеряемой детали в центрах: измерительной головкой и поверочной плитой*	
несколькими измерительными головками	
измерительным преобразователем и устройством с прецизионным прямолинейным перемещением (с мотоприводом)	
Измерение с базированием измеряемой детали в призме: измерительной головкой и поверочной плитой* ¹	А-А (побернуто) Домонитор

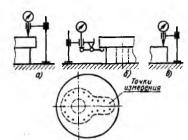
	Прообложение тибя. О
Метод измерения	Схема измерения
несколькими измерительными головками	<u>А-А</u> (повернуто) ———————————————————————————————————
измерительным преобразователем и устройством с прецизионным прямолинейным перемещением (с мотоприводом)	A (nodephymo)
Измерительной головкой и поверочной плитой*1	
Двухточечным измерительным прибором для измерения диаметров (стационарным *2 или накладным *3)	© I I
Устройством с аэростатическим центрирующим опорным элементом с несколькими измерительными преобразователями или головками	
Измерение и суммирование составляющих отклонения профиля продольного сечения: измерение: отклонения от прямолинейности образующих EFL — см. табл. 2 отклонения от параллельности образующих EPA — см. табл. 8	См. табл. 2 См. т аб л. 8
суммирование: $EFP = \sqrt{EFL^2 + \frac{1}{2}EPA^2}$ *1 См. сноску *1 к табл. 5.	No.
*2 См. сноску *2 к табл. 5.	

*3 См. сноску *3 к табл. 5.

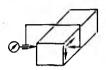
7. Методы измерения радиального биения (ECR)

Метод измерения	Схема измерения
Прибором с прецизионным вращением (кругломером)	
С базированием измеряемой детали в центрах измерительной головкой*1	
С базированием измеряемой детали в патроне, имеющем прецизионное вращение, измерительной головкой*!	
С базированием измеряемой детали на поворотном столе, имеющем прецизионное вращение, измерительной головкой*1	
С базированием измеряемой детали в призме измерительной головкой	A-A ON

Метод измерения	Схема измерения
С базированием детали на наклонной плите и призме измерительной головкой	
	Ø ■ O
С базированием детали на поверочной плите измерительной головкой	
Накладной призмой с измерительной голов- кой	


*1 Для записи вместо измерительной головки применяют измерительный преобразователь с самописцем, а центры, патрон, поворотный стол должны иметь мотопривод для вращения детали.

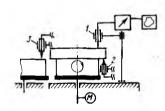
8. Методы измерения отклонения от параллельности (ЕРА)



Метод измерения	Схема измерения	
1. Измерение отклонения от параллельности плоскостей		
Координатно-измерительным прибором (трех- координатной измерительной машиной)		

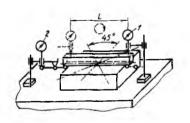
Схема измерения Метод измерения По разности расстояний измерительной головкой и поверочной плитой: плоскопараллельной пластиной (а); плоской пластнной (δ) : без пластины (в)

По разности расстояний двухточечным измерительным прибором для измерения диаметров*1

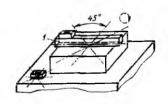


По углу наклона плоскопараллельной пластиной (поз. 1), плоской пластиной (поз. 2), без пластины (поз. 3):

кругломером

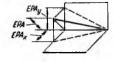

измерительной головкой и поворотным столом с прецизионным вращением

измерительной головкой и поверочной плитой



По углу наклона плоскопараллельной планкой (поз. 1) или плоской планкой (поз. 2):

измерительной головкой и поверочной плитой


уровнем и поверочной плитой

	Продолжение табл. 8
Метод измерения	Схема измерения
2. Измерение отклонения от параллел	льности прямых в плоскости
Координатно-измерительным прибором — двухили трехкоординатным (трехкоординатной измерительной машиной)	#:000 y:000
Приборами с прецизионным прямолинейным перемещением: кругломером или цилиндромером; прямомером с измерительной головкой*2 для измерения в вертикальной плоскости и поворотным столом или поверочной плитой	
прямомером с измерительной головкой *2 для измерения в горизонтальной плоскости и поверочной плитой	Sudanda da da da da da da da da da da da da d
Измерительной головкой и поверочной плитой: плоскопараллельной планкой (поз. 1); плоской плаикой (поз. 2)	
без планки	
Уровнем и поверочной плитой: плоскопараллельной планкой	annimin .
без плоскопараллельной планки двухопорным измерительным мостиком	and the same of th

Метод измерения	Схема измерения
Двухточечным измерительным прибором для измерения диаметров*!	<u>∞</u> <u> </u>
3. Измерение отклонения от параллельнос	пи оси (или прямой) и плоскости
Координатно-измерительным прибором (трех-координатной измерительной машиной)	
Поверочной плитой и измерительной головкой (поз. 1) или концевыми мерами длины (поз. 2) и оправкой *3	2-
Поверочной плитой и измерительной головкой без оправки	
Поверочной плитой, уровнем и оправкой *3	
Визирной трубой и визирными марками	* * * * * * * * * * * * * * * * * * *
4. Измерение отклонения от параллельности ос-	ей (прямых) в пространстве (ЕРА)

 $EPA = \sqrt{EPA_x^2 + EPA_y^2}$, где EPA — отклонение от параллельности осей (прямых) в пространстве; EPA_x — отклонение от параллельности осей (прямых) в общей плоскости; EPA_y — перекос осей (прямых)

			Гродолжение табл. 8
Метод измерения		Схема измо	ерения
Координатно-измерительным приборо ординатной измерительной машиной)	м (трехко-		x · 000 y · 000 z · 000
4.1. Измерение отклонения от паралла	ельности осе	й (прямых) в общей	плоскости (ЕРАх)
Измерительной головкой, поверочной оправками* ³	плитой и		
		0	2
	2 **		7
	•		
Уровнем и оправками*3	÷ .	· /	7
Индикаторной скобой (поз. <i>I</i>) или	концевыми		
мерами длины (поз. 2) и оправками		Q 4.4	D-7
		1 2 2	<u> </u>
		0 16	7
4.2. Измерение п	ерекоса осей	(прямых) (ЕРАу)	
Измерительной головкой, поверочной оправками* ³	плитой и	Ž	
	14 4 4	0/0	1
		15 14	1)//
	4.4	16/6/2	//
		(+ + =	()

Метод измерення	Схема измерения
Уровнем и оправками* ³	
Уровнем, плоскопараллельной планкой и оправ- ками *3	
Накладным устройством с измерительной голов- кой и оправками* ³	90° 100 100 100 100 100 100 100 100 100 1

*1 Например, для наружных поверхностей — рычажная скоба; для внутренних поверхностей — нутромер с измерительной головкой.

*2 Для проведения записи вместо измерительной головки применяют измерительный преобразователь с самописцем, а поворотный стол или прямомер должен иметь мотопривод.

*3 Оправки служат для материализации осей отверстий. Применяют, например, комплект оправок с разбитым полем допуска, оправки с втулками (гладкими, ступенчатыми или коническими), шариковые оправки и др.

1) расчетом комплексного отклонения формы или расположения путем соответствующего суммирования измеренных составляющих отклонений и сопоставлением этого расчетного отклонения с заданным комплексным допуском формы или расположения;

 установлением в технологической документации дифференцированных допусков на составляющие отклонения.

Выбор метода и средств измерения следует проводить с учетом допускаемой погрешностн измерения, конфигурации и размеров измеряемой детали, особенностей, стабильности и точности технологического процесса механической обработки деталей, серийности производства, стоимости средств измерений и других конструкторских, технологических и экономических факторов.

Применение приведенных в табл. 2-8 методов измерений, особенно упрощенных, должно сопровождаться оценкой погрешностей метода измерения. При этом следует учитывать, что погрешность метода измерения зависит не только от схемы и особенностей метода измерения, но и от действительного характера и величины измеряемых отклонений формы или расположения и их стабильности. Поэтому выбор оптимальной схемы метода измерений и уменьшение погрешности метода измерения должны осуществляться на основании предварительного изучения характера и стабильности измеряемых отклонений формы и расположения.

Погрешность измерений отклонений формы и расположения в общем случае с учетом основных составляющих может

определяться по формулам, приведенным ниже.

Суммарная погрешность измерения

$$U_{\Sigma} = \sqrt{U_1^2 + U_2^2 + U_3^2 + U_4^2 + U_5^2 + U_6^2},$$

где U_1 – погрешность средств измерений; $U_1 = \sqrt{U_{1.1}^2 + U_{1.2} + U_{1.3} + \ldots + U_{1.n}^2};$ здесь $U_{1,1}, U_{1,2}, \dots, U_{1,n}$ - основные погрешности средств измерений: мер, измерительных приборов, измерительных преобразователей, используемых в рассматриваемой измерительной установке для реализации выбранного метода; U_2 — погрешность метода измерения, $U_2 = \sqrt{U_{1,2}^2 + U_{2,2}^2 + U_{2,3}^2 + U_{2,4}^2 + U_{2,5}^2 + U_{2,6}^2};$ здесь $U_{2,1}$ – погрещность базирования; $U_{2,2}$ - погрешность от неполноты ощупывания измеряемой поверхности (профиля) или от ограниченного числа точек измерения; $U_{2,3}$ — погрешность от неисключенного влияния шероховатости измеряемой поверхности; $U_{2,4}$ — погрешность от неисключенного влияния отклонений формы измеряемой поверхности; $U_{2.5}$ — погрешность от нестабильности характера измеряемого отклонения формы или расположения; $U_{2.6}$ — прочие составляюшие погрешности метода измерения; U_3 – температурная погрешность (возникает в основном из-за колебания температуры окружающей среды за цикл измерения); U_4 – погрешность от измерительного усилия (возникает в основном из-за перепада измерительного усилия и вызванного им прогиба стоек или штативов); U_5 – субъективные погрешности оператора (зависят от опыта и квалификации контролера); U_6 – прочие погрешности измерения (индивидуальны для каждого метода).

2. СРЕДСТВА ИЗМЕРЕНИЯ

КООРДИНАТНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И МАШИНЫ

Для измерения массивных деталей очень сложной пространственной формы: прессформ, блок-цилиндров двигателей, коробок передач, коллекторов, задних мостов автомобилей, корпусных деталей, арматуры, штампов и др. наиболее экономичным является применение координатно-измерительных машин (КИМ).

Выпускают КИМ с ручным управлением и автоматизированной обработкой результатов измерений, а также КИМ, в которых пол-

ностью автоматизированы процессы управления, измерения и обработки результатов измерения. Последние можно встраивать в гибкие производственные системы, обеспечивающие безлюдную технологию.

В комплект КИМ входят ЭВМ, алфавитно-цифровой дисплей, алфавитно-цифровое устройство, самопишущее печатающее устройство, пульт дистанционного управления и программирования, многоточечные измерительные щупы, сигнальная (сканирующая) головка, поворотный стол для угловых измерений, набор программ математического обеспечения для решения комплексных задач измерения, микроскопы, приспособления для закрепления деталей, магазины со сменными измерительными головками. устройства для ввода программ и т. д.

На рис. 1 представлена одна из типовых схем КИМ. На массивном основании 10 закреплены измерительный стол 11 и направляющая 5, по которой в продольном направлении перемещается арка 4. По перекладине 2 арки в поперечном направлении перемещается каретка 3, в которую вмонтирована пиноль 7, движущаяся по вертикали. На пиноли закреплена измерительная головка 6 с многоточечным щупом 8.

Значение измеряемого параметра фиксируется по каждой координате на пифровом табло дисплея 1, а также на цифропечатающем 13 или самопишущем устройстве 14. Алгоритм измерительной и вычислительной задач задается программирующим устройством 12. Ручное управление осуществляют с пульта 9.

Технические характеристики координатноизмерительных приборов и машин приведены в табл. 9.

Координатно-измерительные приборы типа УИМ-29, ДИП созданы на базе универ-

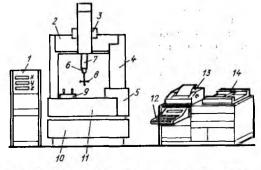


Рис. 1. Схема координатно-измерительной машины

9. Координатно-измерительные машины и приборы

Прибор	Тип или модель	Диапазон измерений по координатам, мм			Дискретность отсчета,	Допускаемая погрешность *1,	Габаритные размеры, мм (без электронных
		X	у	3	MKM	МКМ	блоков)
Универсальный измерительный микроскоп (с цифровым отсчетом)	УИМ-29				o o	et : : : : : : : : : : : : : : : : : : :	er jyrak Karana e
цифровым отсчетом)	дип-1	200	001	-	0,5	$\pm (1+10L)$	1400 × 1170 × 595
Двухкоординатный из- мерительный прибор	дип-3 дип-4			o in	0,5	±1	417 F
Трехкоординатный из-	тип-1	315	160	160	0,5	±(1,9+2L)	1720 × 1540 × 1550
мерительный прибор	тип-2	630	315	315	0,5	$\pm (2,5+1,4L)$	_
	КД-M090605P*2(HMM965)	900	600	500	1; 0,5; 0,2	4 + 6 <i>L</i>	3700 × 2700 × 2200
Координатно-измери-	КД-М090605А*2	900	600	500	1; 0,5; 0,2	4+6 <i>L</i>	3700 × 2700 × 2200
тельная машина (КИМ)	BE-M101004A(BE200)	1000 (800)	1	400	1; 0,5: 0,2	2,5+3,5 L	1900 × 1330 × 2200

Координатно-измери- тельная машина (КИМ)	КД-М101006А(ВЕ201)	1000 (800)	1000	600	1; 0,5; 0,2	2,5+3,5 <i>L</i>	_
1.0	B3-M121608A	1250	1600	800	1; 0,5	5+6L	(14) (14)
	B3-M121610A	1250	1600	1000	1; 0,5	6+7 <i>L</i>	_
	ЛР-M402010А	4000	2000	1000	2; 1	по x 14+14L по y 10+13L по z 10+40L	-
÷ .					1; 0,5	по x 7+7L по y 5+5L по z 4+4L	_
	ЛР-М402014А	4000	2000	1400	2; 1	по x 17+17L по y 12+16L по z 10+10L	_

 $^{*^{1}}$ Для КИМ координатная погрешность определяется измерением среднего размера концевых мер длины вдоль координатных осей; L – измеряемый размер, м.

Примечание. При поставке в комплект координатно-измерительных машин может быть включен поворотный стол с механизированным управлением для ручных КИМ или управляемый от ЭВМ для автоматических КИМ с погрешностью позиционирования $\pm 1,5$ ". Диаметр планшайбы наклонно-поворотного стола 320 мм, диаметр стола с вертикальной осью 800 мм.

 $^{^{*2}}$ P — ручное и механизированное управление с обработкой данных на ЭВМ; A — автоматическое управление с обработкой данных на ЭВМ.

сальных измерительных микроскопов. На них проводят измерение по двум координатам. Результаты измерений представляются в цифровой форме с их фиксацией на цифропечатающей машине.

КИМ имеют высокий уровень математического обеспечения, позволяющий на основании измерения координат точек поверхностей проводить вычисления размеров, отклонений формы и расположения и представлять результаты измерений формы и расположения непосредственно в виде отклонений, регламентируемых ГОСТ 24642—81.

Сочетание КИМ, оснащенной магазином сменных измерительных щупов, с роботом-манипулятором, транспортно-складской системой дает возможность создать гибкие измерительные участки, позволяющие проводить измерения без участия человека.

ПРИБОРЫ, УПРАВЛЯЮЩИЕ ПРОЦЕССОМ ОБРАБОТКИ

Приборы управляющие процессом обработки, можно применять только в том случае, если исполнительные органы технологического оборудования могут воспринимать и осуществлять с заданной точностью принятые команды. Контроль проводится до обработки детали на технологическом оборудовании, в процессе обработки и после нее (при шлифовании, хонинговании, токарных, фрезерных, доводочных и ряде других технологических операций).

Челябинский инструментальный завод выпускает следующие управляющие приборы:

для центровых и патронных круглошлифо-БВ-4270, ХШ-9М-31. вальных станков: БВ-П3156. БВ-4274 (широкодиапазонный), БВ-4267. БВ-4185. БВ-4180, БВ-4275. **БВ-П60**60 с ценой деления 0,001-0,01 мм и диапазоном измерения от 2,5 до 200 мм; ддя бесцентрово-шлифовальных БВ-4100:

для внутришлифовальных станков БВ-4251, БВ-4257, БВ-4177, БВ-4173, БВ-4274 (широкодиапазонный) с ценой деления 0,001 и 0,005 мм и диапазоном измерения от 10 до 500 мм:

для плоскошлифовальных станков БВ-4102, БВ-4066;

для хонинговальных станков БВ-4217;

для шлицешлифовальных станков БВ-4277.

В последние годы станки с ЧПУ оснащаются встроенными измерительными головками (индикаторами контакта), обеспечивающими исходное координирование инструмента, контроль размеров в ходе обработки по завершении перехода или полной обработки. Получаемая информация служит для управления станком и оценки качества обработки.

Ленинградский инструментальный завод выпускает по ТУ 2-034-213 – 85 индикаторы контакта БВ-4271 для токарных и БВ-4272 для сверлильно-фрезерно-расточных обрабатывающих центров с ЧПУ. Предел допускаемого размаха срабатывания управляющей команды — 0,002 мм, измерительное усилие — до 500 ± 200 сН. Расстояние между подвижной и неподвижной частями приемнопередающего устройства 2 м у БВ-4271 и 1 м у БВ-4272.

Соединение головки с электронным блоком кабельное или бескабельное. Размеры головки индикатора контакта с хвостовиком \emptyset 100 \times 420 mm. электронного блока -- $350 \times 232 \times 102$ MM, приемного устройства $235 \times 80 \times 35$ мм. На некоторых многооперационных станках измерительная головка выполнена в виде автономного узла, находящегося в магазине инструментов станка, а в рабочем положении вставляемого в пиноль или шпиндель станка. Во время измерения станок работает в режиме координатно-измерительной машины. При контроле инструмента головка крепится на столе.

КОНТРОЛЬ ТОЧНОСТНЫХ ПАРАМЕТРОВ ЗУБЧАТЫХ КОЛЕС

Контроль точностных параметров зубчатых колес см. табл. 10.

ЛАЗЕРНЫЕ ПРИБОРЫ

Лазерные приборы (табл. 11) предназначены для высокоточного измерения линейных перемещений, например координатных перемещений (позиционирования) в станках с числовым программным управлением, координатно-измерительных машинах и других устройствах, воспроизводящих точные линейные перемещения.

Кроме того, лазерные приборы позволяют проводить высокоточные измерения угловых перемещений, измерение прямолинейности поверхностей. Принцип действия прибора основан на лазерной интерферометрии.

В качестве источника светового излучения служит HI-Ne-лазер. Применение лазерных приборов обусловливает жесткие требования к внешним условиям окружающей среды: температуре, влажности, скорости воздушного потока, вибрации в процессе измерений, что ограничивает их широкое использование.

, P	Зубчатые колеса					,		
Прибор	Тип или модель	Контроли- руемые параметры	Модуль, мм	Диаметр делительной окружности, мм	Сте- пень точ- ности	Цена деления, мм	Допускаемая погрешность, мм	Габаригные размеры (без электронного блока), мм
	Прибо	ры для изме	рения кинема	тической пог	решнос	ти зубчатых	колес	
Для контроля кине-	БВ-5058	$F_{\mathbf{ir}}'; f_{\mathbf{ir}}'$	1 - 8	20-300;	3-8	1,5 – 96′′	0,004-0,012	1560-× 1225 × 1360
матической погрешности зубчатых колес и пары	БВ-5094	1.		$ \begin{array}{r} 60 - 160^{*1} \\ 20 - 320; \\ 60 - 250^{*1} \end{array} $			planta de la composición dela composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composició	
Для измерения кинематической погрешности (без измерительных колес)		$F'_{tr}; f_{tr}$ $f_{fr}; F_{pr};$ $f_{ptr}; f_{rhr}$	До 8	20 – 320	3 – 8	0,001		-
Комплекс для контроля кинематической погрешности крупногабаритных зубчатых колес (пары)	БВ-5102	$F'_{ir}; f'_{ir}$	От 1 н более	Не огра- ничивается	-	0,5"; 0,75" <i>K</i> , где <i>K</i> = 1; 2; 4; 8; 16; 32; 64	(2+0,1 <i>D</i>)'' <i>D</i> — диапазон измерения	ф 280 × 180*²
			Me	ежосемеры				
Межосемер по ГОСТ 10387-81, ТУ 2-034-515-80	МЦ-160М,	$F_{ir}^{"}; f_{ir}^{"}; + E_{as}^{"}; - E_{as}^{"}$	$0.15 - 1 \\ 0.3 - 1*1$	5-200 40-150*i	5-8	0,001	****	800 × 400 × 620
Межосемер по ТУ 2-034-403 — 84	МЦ-400У	$F_{ir}^{"}; f_{ir}^{"}; + E_{as}^{"};$	1-10	20-320; 60-250*1	5-8	0,002		1320 × 400 × 1130
- 8		$-E_{as}^{\prime\prime}$				1		
. k				± 1		ev Vi		

			Зубчатые в	юлеса				
Прибор Тип или модель	Контроли- руемые параметры	Модуль, мм	Днаметр делительной окружности, мм	Сте- пень точ- ности	Цена деления, мм	Допускаемая погрешность, мм	Габаритные размеры (без электронного блока), мм	
			Эво.	пьвентомеры				H 1
Универсальный эвольвентомер	КЭУМ	f_{fr}	I — 10	20-320; 60-250*1	7-12	0,0010	0,002	700 × 862 × 1170
Универсальный эвольвентомер с устройством для контроля винтовой линии (с ходомером)	БВ-5062	$f_{fr}; F_{gr}$	4-12	20-340; 60-250*1	3-8	0,0001; 0,0020	0,001 (для f_{fr}); 0,002 (для $F_{\beta r}$)	1350 × 1025 × 1730
Универсальный автоматический для по-	27501	Универсальн $ \begin{array}{c c} F_{pr}; F_{pkr}; \\ F_{rr}; f_{ptr}; \end{array} $	лые приборы 0,2—18	для измерені 20-400; 60-250*1	ия зубч 1 ³⁻⁸	латых колес 0,0005; 0.001	0,001	1000 × 1300 × 1850 (без электронного
элементного контро- ля по ТУ 2-034-362 — 81		f pbr; f vptr; F vwr; Ewr		200		0,001		блока)
Для автоматического контроля шага и на- копленной погрешности по ГОСТ 5368-81	БВ-5090 (27700)	F _{pr} ; F _{pkr} ;	1-8	20-320	3-8	Г′′ и 0,0005	0,0015 0,004	1080×1010×1505
Для контроля круп- ногабаритных зубча- тых колес по ГОСТ 5368—81, ТУ 2-034-542—80	БВ-5077	$F_{rr}^{"}; f_{ir}^{"}; +E_{as}^{"}; -E_{as}^{"}; F_{rr}; f_{optr}; F_{\beta r}$	2 – 16	320 – 1250; 500 – 1000* ¹	≥ 4	0,001; 0,002; 0,01	0,005	1750 × 2190 × 1230
				T			† ·	1

Для автоматического измерения шага зубчатых колес по ГОСТ 5368 – 81	-	$F_{pr};\;F_{pkr};\;$	≤ 16	200 – 800	3-8	0,001	-	-	
Для контроля зуб- чатых колес по ТУ 2-034-544-81	3ип-1	$f_{vp,tr}; F_{vvr}; E_{wr}; E_{wr}; F_{rr}$	1-8	20 – 320	≥ 6	100,0	0,0035 0,010	800 × 560 × 990	
		ш	агомеры (на	I кладные)			-y-	·	
Шагомер по ГОСТ 5368-81, ГОСТ 3883-81, ТУ 2-034-340-84	БВ-5070	fpbr; fvpur	2-28	≥ 20	≥ 5	100,0	0,0025	190 × 60 × 140	СРЕДСТВА 1
Шагомер по ТУ 2-034-203 — 83	21704	fpbr; fupir	10 50	-	7—12	0,001	$0,0060$ (для f_{pbr}); $0,0090$ (для f_{vptr})	240 × 186 × 45	ИЗМЕРЕНИЯ
Шагомер по ТУ 2-034-296 — 84	21802*	f_{pbr}	2-10	≥ 200	5-8	0,001	0,0025	150 × 139 × 60	
Шагомер полуавтоматический переносной ТУ-2-022-1197-011 — 84	БВ-5118*	$f_{ptr}; F_{pr}$	1 – 40	Не огра- ничивается	3-12	0,0005		550 × 340 × 250 (без электронного блока)	

	*	Бие	ениемеры	-	
Биениемер по ГОСТ 5368-81, . ГОСТ 8137-81	$F_{rr}; F\beta_r^{*1}$	I — 10	20-400; 60-250*1	7-12 0,010; 0,001	,

 $900 \times 550 \times 420$

0,006

558

Прнбор	Гип или модель	Контроли- руемые параметры	Молуль, мм	Днаметр делительной окружности, мм	Сте- пень точ- ности	Цена деления, мм	Допускаемая погрешность, мм	Габаритные размеры (без электронного блока), мм
Биениемер автомати- ческий переносной		F_{rr}	1-10	≥ 20; ≥ 60* ¹	3-8		_	7 1 <u>25</u> 3.
15	4 2			Вубомеры				
Зубомер смещения по ГОСТ 4446-81	M1(23500)	$E_{Hr};$ $-E_{Hs}$	2-10	Не ограни-	5-12	0,01	0,009	145 × 143 × 27
÷	M2(23600)		4-16				0,010	
	M3(23700)		10 – 28				0,016	145 × 153 × 27
	M4(23800)		22 – 50				0,022	145 × 177 × 27
Зубомер смещения для колес внутреннего зацепления по ТУ 2-034-201 — 83	23900	E _{Hr} ; + E _{Hi}	1-16	≥ 105	7-12	10,0	0,008	66 × 102 × 38
Зубомер хордовый индикаторно-микро-метрический по ТУ 2-034-601 – 80	БВ-5085	$egin{aligned} m{E_{cr}}; \ m{E_{cs}} \end{aligned}$	1-16; 16-32	Не огра-	7-12	0,01	±0,010-0,030	200 × 128 × 35

Зубчатые колеса

Штангензубомер с нониусом по ТУ 2-034-773 — 84	Ш3-18	$E_{cr};$ E_{cs}	1-18	Не огра- ничивается	11, 12	0,05	-	135×135×10
	Ш3-36		5 – 36	41.74		1(+)		165 × 165 × 10
Application of the second		(F. F) (12 / F)	•					. *
			Ho	рмалемеры				
Нормалемер по	М1(БВ-5045)	Ewr; For	≥ 1	0-120		0,002	0,008	$326 \times 72 \times 50$
ΓΟCT 5368-81,	М2(БВ-5046)	$E_{wmr};$	> 2	50 - 300	≥ 7	44	0,010	$455 \times 72 \times 50$
ΓΟCT 7760 – 81	M3(22202)	$-E_{wsi};$ $-E_{wms}$	≥ 2,5	150 – 700			0,012	915 × 155 × 55
Нормалемер для ко-		$E_{wr}; F_{vwr};$	≥ 3	20-120			0,010	39×94×316
лес внутрениего за- цепления по ТУ 2-034-361-81	БВ-508.1	E_{wmr} ; $+E_{wi}$; $+E_{wmi}$	-A-+0	50 – 300	. ≥ 7	0,002	0,012	39 × 100 × 459
Микрометр зубомер-	M325	$E_{wr}; F_{Dwr};$	≥ 0,5	0-25		0,010	±0,005	$186 \times 78 \times 30$
ный по ГОСТ 6507—78	M350	$E_{wmr};$ $-E_{vs};$		25-50	} > 7		1.01	210 × 92 × 30
	M375	$-E_{wms}$		50 – 75]	4 3		240 × 108 × 30
	M3100			75-100			1446	265 × 147 × 30

^{*1} Для колес внутреннего зацепления. *2 Габаритные размеры датчиков (2 шт.).

11. Основные параметры лазерного измерителя перемещений типа ИПЛ-30К1 по ТУ 3-326-82

Параметры	Численные значения	Параметры	Численные значения
ных перемещений, мкм	0-30 1; 0,1; 0,01 4,5 (Ha 1 M) 10 ±5 0,1	Габариты, мм: преобразователя интерферометра отражателя блока автоматики нормирующего преобразователя блока индикации Ф5074 Условия эксплуатации: температура помещения, °С максимальная скорость изменения температуры в рабочем пространстве максимальная относительная влажность воздуха, % наибольшая скорость воздуха в рабочем пространстве, м/с допускаемая амплитуда вибрации, мкм допускаемая частота вибрации, Гц	140 × 255 × 165 85 × 62 × 56 98 × 74 × 122 380 × 480 × 133 490 × 380 × 140 490 × 420 × 275 15 – 25 0,05° за 30 мин; 0,20° за 8 ч 80 0,1 0,5 – 50 10 – 1000

СРЕДСТВА ИЗМЕРЕНИЙ ЛИНЕЙНЫХ РАЗМЕРОВ

12. Контактиые интерферометры

Интерферометр	Модель	Диапазон измерения, мм	Цена деления шкалы, мкм	Измерительное усилие (регулируемое), сН	Колебание из- мерительного усилия, сН	Допускаемая погрешность, мкм, не более	Габаритные размеры, мм
Вертикальный (окулярный), ТУ 2-034-100 – 78	264	0,05-150	0,05-0,2	75 — 275	2	$\pm 0.04 \div \pm 0.1$	$300 \times 760 \times 600$
Горизонтальный (окулярный), ТУ 2-034-101 78	273	0,1-500 (наружные размеры); 12-150 (внутрен- ние размеры)	0,05-0,2	10 - 210	2	$\pm 0.04 \div \pm 0.2$	340 × 650 × 1160

13. Измерительные электронные преобразователи для линейных измерений

Посбол	Тип.	ту	Цена деления (шаг	Диапазон	С одним преобразо- вателем	С двумя преобразо- вателями	Измери- тельное	Габаритные	размеры, мм
Прибор	модель	1 y	дискрет- ности), мкм	измерения, мкм	Допускаемая погрешность, мкм		усили с, сН	преобразо- вателя	электронного блока
Показывающий	212	2-034-119-81	0,1; 0,2;	6; 12; 30:		0,2-4	60	=	139 × 190 × 270
с индуктивными преобразова- телями	214		0,5; 1,0; 2,0	60; 120	0,1-2	_			
, ·	213	_	0,02; 0,05; 0.1; 0,2; 0,5	2; 5; 10; 20; 50°	0,02-0,5	0,04-1	_	Ø 28×98	140 × 183 × 325
1	217	2-034-119 81	0.5; 1; 5: 10; 50	30; 60; 300; 600; 3000	0,5-50	1-100	120	Ø 28×156	139×190×270
, 1	276	2-034-2 82	0.1; 0,5; 1; 5; 10	6; 30; 60; 300; 600	0,1; 0,5; 1; 5; 10	0,2; 1; 2; 10; 20	60	Ø 8×105	$140 \times 200 \times 330$
	76502	2-034-200 - 83	0,01; 0,1	20; 200			50 – 70	Ø 12×160	230 × 250 × 100
	76503	2-034-210 - 84	0,01; 0,1;	40; 400; 2000	0, 1-5, 0	0,4-10	100		
Система цифровая растровая	19000 19001 19002	2-034-206 — 83	1	10 000 30 000 60 000	$ \begin{array}{c c} 2 \\ 2-3 \\ 2-4,5 \end{array} $	_	120	$80 \times 35 \times 140$ $80 \times 35 \times 180$ $80 \times 40 \times 320$	270 × 300 × 85

 Π р и м е ч а н и е. Присоединительный диаметр преобразователей мод. 213 и 217 — 28h7, остальных — 8h7.

14. Головки измерительные

Прибор	Тип, модель	ГОСТ или ТУ	Цена деле- ния	Диапа- зон изме- рения	Допус- каемая погреш- ность	Измеритель- ное усилие	Колебания измеритель-	Габаритные размеры, мм
				MKM		c	Н	
		Головки из	мерител	ьиые пр	ужиниые			
Микрока- тор	01ИГП*1·*2 02ИГП*1·*2 05ИГП*1·*2 1ИГП*1·*2·*3 2ИГП*2·*3 5ИГП*2·*3 10ИГП*2·*3	ГОСТ 6933—81	0,10 0,20 0,50 1,0 2,0 5,0 10,0	8,0 12 30 60 120 300 600	0,15 0,20 0,40 0,60 1,20 3,00 5,00	150 150 150 200 200 300 300	20 20 30 30 50 100 150	217×92×58
Микатор	02-ИПМ*4 05-ИПМ*4 1-ИПМ*4 2-ИПМ	ГОСТ 14712—85	0,2 0,5 1,0 2,0	20 50 100 200	0,30 0,50 1,00 2,00	100 150 150 150	25 30 30 30	105 × 64 × 52
Миникатор	10302*2 30*5	ГОСТ	1,0	80	1,00	20	12	100 × 46 × 40
m r	72*5	14711 — 69	2,0	160	2,00	Не менее 3	_	
Оптикатор	01Π*1 02Π*1 05Π*1	ГОСТ 10593 — 74	0,1 0,2 0,5	24 50 100	$\pm 0.10 \pm 0.20 \pm 0.40$	150 150 150	50 50 50	346 × 180 × 72

Головки измерительные рычажно-зубчатые

i	(e - i-			ММ				
Головка измеритель-	INL	ГОСТ 18833 — 73	0,001	±0,05	$\pm 0,0007$	150	40	$60 \times 95 \times 20$
ная рычажно- зубчатая	2ИГ	FOCT 18833 – 73	0,002	± 0.10	±0,0012	150	40	$60 \times 95 \times 20$
Индикатор многообо- ротный	1МИГП 2МИГП	ГОСТ 9696 – 82 ГОСТ 9696 – 82	,	$0-1 \\ 0-2$	0,0018 0,0035	200 200	50 70	$70 \times 106 \times 20$ $70 \times 106 \times 20$
Индикатор многообо-	05205	TY 2-034-317 - 77	0,002	0-5	0,0050	150	70	132 × 82 × 22
ротный (с расширен- ным диапа- зоном из- мерения)	05305	TY 2-034-355 – 80	0,001	0-5	0,0040	200	70	132 × 82 × 22

Прибор	Тип, модель	ГОСТ или ТУ	Цена деления Диапа- зон изме- рения		Допус- каемая погреш- ность	Измеритель- ное усилие	Колебания измеритель-	Габаритные размеры, мм
				МКМ			Н	
Индикатор часового типа	ИЧ02 ИЧ10	FOCT 577-68	0,01	$0-2 \\ 0-10$	0,012 0,020	150	40 80	$75 \times 42 \times 21$ $108 \times 56 \times 24$
Индикатор рычажно- зубчатый	ИРБ, ИРТ	ГОСТ 5584 — 75	0,01	0,08	0,005 — 0,010	40	_	82 × 29 × 24

- *1 Исполнение (P) с регулируемым измерительным усилием 0-150 (200) сH.
- *2 Исполнение (В) виброустойчивое.
- *3 Исполнение (Γ) герметизированное. *4 Исполнение (Y) с уменьшенным измерительным усилнем 50 сH.
- *5 Длина измерительного наконечника, мм.

Примечания: 1. Присоединительный диаметр микрокаторов и оптикаторов --28h.7, остальных головок — 8h7.

- 2. Головки 10302, ИРБ, ИРТ бокового действия.
- 3. В таблице указаны пружинные головки нормального исполнения.

15. Оптико-механические измерительные машины по ГОСТ 10875-76

Тип	Цена деления шкалы отсчетного	Диапазон и	Диапазон измерения внутренних	
	устройства, мм	наружных	внутренних	диаметров, мм
ИЗМ-1		0-1000	13,5-900	
ИЗМ-2	0,001	0-2000	13,5-1900	13,5-150
ИЗМ-4		0-4000	13,5 — 3900	

	Допус	Допускаемая погрешность, мкм, при измерении								
Тип методом непо- средственной оценки при введении попра- вок по шкалам	средственной оценки при	относительным использовании разр	образцовых мер	внутренних размеров	Габаритные размеры, мм					
	3-го	4-го								
И3М-1					$2000 \times 500 \times 650$					
ИЗМ -2	$\pm (0.4 + 4L^*)$	$\pm (0.2 + 2.5L^*)$	$\pm (0,4+4L^*)$	$\pm (1+4L^*)$	$3000 \times 500 \times 700$					
И3М-4					5000 × 500 × 800					

^{*} L – измеряемая величина, м.

16. Меры высоты, высотомеры

1							каемая иность	
Прибор	Модель	Класс точности	Цена деления (дискретность отсчета), мм	Предел измерения, мм	Рабочий ход каретки, мм	в пределах рабочего хода, мм	блока специаль- ных концевых мер длины, мм	Габаритные размеры, мм
Мера высоты сту-	БВ-6106	0	0,001	0-300;	20	0,001	0,0015	$150 \times 470 \times 150$
пенчатая по ТУ 2-034-602-80		l		5-310		0,0025	0,002	
Мера высоты сту-	БВ-6151	0	0,001	5-320;	40	0,001	0,0015	157 × 486 × 180
пенчатая с цифровым отсчетом по ТУ 2-034-613 — 82		1		5-330		0,0025	0,002	320 × 210 × 490 (электронного блока)
Высотомер с цифровым отсчетом (перемешение по	БВ-6238	1	0,0005	0-390; 180-570	390	0,015	-	=
(перемещение по базовой плоскости на воздушной по- душке)								

Примечание. Назначение меры высоты — настройка различных измерительных и разметочных средств при выполнении контрольно-измерительных и разметочных работ на поверочных и разметочных плитах. Назначение высотомера — измерение высоты и отклонения от прямолинейности вертикальных поверхностей.

17. Приборы для измерения внутрениих размеров (стационарные)

			Диапа	зон			
Прибор	Тип, модель	Цена деления,	измеряемых диаметров, мм	показаний, мкм	Допускаемая погрешность, мкм	Габаритные размеры, мм	
Для измерения линейных размеров	БВ-2029	0,02; 0,05; 0,1· 0,2; 0,3	4-200	2-50	0,2+2L*	1080 × 550 × 770	
Для измерения диаметров отверстий по ТУ 2-034-211 – 84	09601	0,5; 1,0	6-20	30; 60	±0,5; ±1,0	230 × 240 × 270	
Нутромер интерференционный по ТУ 3-3-1396 — 76	ИЗК-61 ИЗК-63	0,02	9-30 5-15	0,02	0,1 + L*	840 × 520 × 400	

Продолжение табл. 17

	Тип, модель	Цена деления, мкм	Диапазон				
Прибор			измеряемых диаметров, мм	показаний, мкм	Допускаемая погрешность, мкм	Габаритные размеры, мм	
Компаратор фотоэлектрический	ИЗА-8	0,1	1-200	_	0,5+0,5 <i>L</i> *	930 × 690 × 700	

^{*} L – измеряемый диаметр, м.

18. Нутромеры

			 . i		k		
Нутромер	Тип, модель	Диапазон измерения, мм	Цена деления, мм	Допускаемая погрешность, мм	Наибольшая 1 лубина измерения, мм	Измери- тельное усилие, Н	
С измерительной головкой	116 103	$\begin{array}{c} 2-3 \\ 3-6 \end{array}$	0,001 0,001	±0,0018	12 20	3	
по ГОСТ 9244 — 75	104	6-10	0,001		50	3,5	
- ±-	1 06 109	10-18 18-50	0,002 0,002	±0,0035	100 150	4 4,5	
	154	50-100	0,002	±0,004	200	7	
300 - 11	155 156	100 - 160 $160 - 260$	0,002 0,002		300	9	
Индикаторный	НИ-10	6-10		±0,008(1 кл.);	100	2,5~4	
по ГОСТ 868-82	НИ-18	10-18		±0,012(2 кл.)	130		
	НИ-50М	18-50		± 0.012 (1 кл.); ± 0.015 (2 кл.)	150		
	ни-100м	5-100	0,01		200	4,7	
ā, a. ā	НИ-160М НИ-250М	100 – 160 160 – 250		$\pm 0.015(1$ кл.); $\pm 0.018(2$ кл.)	300 400	5-9	
* 1	НИ-450	250-450	ž.	±0,022(2 кл.)	500		
4.	НИ-700 НИ-1000	450 – 700 700 – 1000			Не огра- ничива- ется		
A SHALL BE AND A PROPERTY OF			FPR 1	1, 129	··		

Нутромер	Тип, модель	Диапазон измерения, мм	Цена деления, мм	Допускаемая погрешность, мм	Наибольшая глубина измерения, мм	Измери- тельнос усилие, Н
Микрометрический по ГОСТ 10-75	НМ-75 НМ-175 НМ-600 НМ-1250 НМ-2500 НМИ-4000	50-75 75-175 75-600 150-1250 600-2500 1250-4000 2500-6000	0,01	$\begin{array}{c} \pm 0,004 \\ \pm 0,006 \\ \pm 0,015 \\ \pm 0,020 \\ \pm 0,040 \\ \pm 0,060 \\ \pm 0,090 \end{array}$	Не огра- ничива- ется	-

19. Скобы с отсчетным устройством

				Диапазон, м	М			
Скоба	Тип	гост, ту	Цена деле- ния, измерения		показаний отсчетного устройства	Допускаемая погрешность, мм	Измери- тельное усилие, сН	
Рычажн а я	СРП	TY 2-044-366-82	0,001	0-100 через 25 мм	0,14	±0,0007*1; ±0,0014	800	
	СР	ΓΟCT 11098-75	0,002	0-150 через 25 мм	0,28	± 0,001*1; ± 0,002	$600 \pm 100;$ 800 ± 200	
Индикатор- ная	СИ	ΓΟCT 11098-75		0-50; 50-100		$\pm 0.005 - \\ - \pm 0.007*2$	600 ± 100	
- 4), A.,	0,01	100-500 через 100 мм	3	±0,008 - -±0,015	800±200	
4.		••	1	500-600		±0,015		
			16	600 – 700				
	+			700 – 850 850 – 1000	5	± 0,020	1000 ± 200	

^{*1} На участке ± 10 делений. *2 На нормируемом участке 0,1 мм.

20. Микрометрические приборы

20. Микрометрические присог	-		
Микрометр	Цена деления, мм	Диапазон измерения, мм	Допускаемая погрешность, мм
Гладкий МК по ГОСТ 6507—78	0,01	0-300 через 25 мм; 300-600 через 100 мм	±0,002 — ±0,006 (1 кл.); ±0,004 — ±0,010 (2 кл.)
Гладкий с цифровым от- счетным устройством мод. 123	0,001*1	0-100 через 25 мм	0,003 - 0,004
Ручной с цифровым растровым устройством мод. 19006	0,001*1	0-25	_
Настольный с цифровым растровым отсчетным устройством мод. 19005	0,001*1	0-10	±0,002
Рычажный МР по ГОСТ 4381—80	0,002	0-100 через 25 мм	$\pm 0,001 - \pm 0,002$
Рычажный МРП по ТУ 2-034-207—83	0,001	0-100 через 25 мм	$\pm 0,0007 - \pm 0,0014$
Рычажный МРИ по ГОСТ 4381 — 80	0,002	100-125; 125-150; 150-300 через 50 мм; 300-400; 400-500	$\pm 0,004 - \pm 0,007$
	0,01	300-600 через 100 мм	$\pm 0,007 - \pm 0,010$
		600-1000 через 100 мм	$\pm 0,012 - \pm 0,018$
Резьбовой МВМ по ГОСТ 4380-86	0,01	0-350 через 25 мм	$\pm 0,010 - \pm 0,035$
Резьбовой МВТ по ГОСТ 4380—86	0,01	0-20; 20-435 через 25 мм	$\pm 0.010 - \pm 0.035$
Глубиномер микроскопический ГМ по ГОСТ 7470 — 78	0,01	0-100	$\pm 0,002 - \pm 0,004$ (1 кл.); $\pm 0,004 - \pm 0,006$ (2 кл.)

^{*1} Дискретность отсчета.

21. Штангенприборы (штангенинструмент)

Прибор	Предел измерения, мм	Величина от- счета по но- ниусу, цена деления, мм	Вылет измери- тельных губок, мм	Допускаемая погрешность, мм
Штангенциркуль со стрелочным отсчетом мод. 124 по ТУ 2-034-3011-83	0-150	0,1	40	± 0,08
Штангенциркуль с цифровым от- счетом мод. 197	0-150	0,01	_	_
Штангенрейсмас (с отсчетом по	0 - 250	0,05	50*1	± 0,05
нониусу) ШР по ГОСТ 164-80	40-400	0,05	80*1	± 0,05
	60-630	0,1	80*1	± 0,1
0	100-1000	0,1	125*1	± 0,1
· ·	600 - 1600	,		_ ,
	1500-2500	0,1	160*1	± 0,1
Штангенрейсмас с цифровым от- счетом мод. БВ-6265 То же, мод. БВ-6265-01	0-250 40-400	0,01 0,01	50*1 80*1	± 0,03 ± 0,04
Штангенглубиномер (с отсчетом по нониусу) ШГ по ГОСТ 162-80	0-160 0-250 0-400	0,05	_	± 0,05
Штангенглубиномер со стрелочным отсчетом мод. БВ-6232 по ТУ 2-034-620 – 84	0-250	0,05		± 0,05

^{*1} Вылет измерительных ножек, мм.

Примечание. По ГОСТ 166-80 выпускают штангенциркули типа ШЦ-1, ШЦТ-I, ШЦ-II, ШЦ-III, у которых величина отсчета по нониусу 0,1 и 0,05 мм (ШЦ-II) и пределы измерения от 0-125 до 800-2000 мм.

22. Стойки и штативы по ГОСТ 10197-70

Размеры, мм

Прибор	Тип, модель	Цена деления устанавливаемой головки	Диапазон измереиия по высоте	Вылет головки	Диаметр за- жимного от- верстия	Прогиб*!	Габаритн ые размеры
Стойка	C-I (07201)	0,00005 - 0,0005	160	75	28	0,0001	435 × 150 × 270
	C-II (07101)	0,001-0,005		i i		0,0005	
	C-III	0,001 -0,01	100	55	8	0,0005	167 × 147 × 260
X .	C-IV	0,01	250	160		0,004	234 × 156 × 361

Прибор	Тип, модель	Цена деления устанавливаемой Головки	Диапазон измерения по высоте	Вылет головки	Диаметр за- жимного от- верстия	Прогиб*1	Габаритные размеры
Штатив	Ш-ІІН	0,01	250	200		0,005	294 × 128 × 50
(- *	Ш-III Ш-IIВ	$\frac{0.01}{0.01}$	630 200	500 160	8; 4	0,008	$\frac{612 \times 150 \times 630}{230 \times 50 \times 200}$
Штатив с	шм-ин	0,01	250	200	8	0,005	250 × 100 × 252
магнитным основанием	шм-ив	0,01	630	500		0,008	190 × 52 × 200

^{*1} При усилии: для стоек — 200 сН, для штативов — 100 сН. Примечание. Погрешность измерительных головок, приведенных в табл. 14, см. [1].

СРЕДСТВА ИЗМЕРЕНИЙ УГЛОВ И КОНУСОВ

23. Делительные головки

Головка делительная	Тип	Допускаемая погрешность,	Наибольшее расстояние между центрами, мм	Габаритные размеры, мм
Оптическая (с проекционным экраном) по ТУ 3-3.199—80	ОДГЭ-1	$\pm (1+\sin\frac{\alpha^{*1}}{2})$	600 (с малой станиной);	1320 × 395 × 480 (с малой станиной);
19 3-3.199 - 60	одгэ-2	$\pm (2 + 2\sin\frac{\alpha^{*1}}{2})$	1100 (с боль-	nanon),
4 4 4	ОДГЭ-5	$\pm (5 + 5\sin\frac{\alpha^{*1}}{2})$	шой стани- иой)	1825 × 395 × 525
- E	ОДГЭ-20	± 20	-4-	(с большой станиной)
Оптическая цифровая по АЛ2.787.059 ТУ	одгц	_	1.0	
Индуктивная цифровая	ЭДГ-4ЦИ	±3	600	1100 × 700 × 710

^{*1} α — измеряемый угол.

Примечание. Диапазон измерения делительных головок $0-360n^\circ$, где n=1, 2, 3, ..., m; цена деления шкалы 1"; наибольший диаметр измеряемого изделия — 300 мм.

24. Автоколлиматоры по ГОСТ 11899-77

Автоколлиматор	Тип	Диапазон измерення,"	Цена деления шкалы,'	Однокоор- потрешния потрешния	іность,	Габаритные размеры, мм
Унифицированный	AK-0,2Y AK-0,5Y AK-1,0Y	10 20 40	0,2 0,5 1,0	±1,5 ±3 ±6	±3 ±6 ±12	530 × 175 × 185 545 × 175 × 185 488 × 175 × 185
Фотоэлектрический	АФ-1Ц	10	0,1	±2	±3	580 × 340 × 190 (без электрон- ного блока)

25. Уровни

Уровень	Мо- дель	Цена деления шкалы, мм/м	Допускаемая погрешность, мм/м	Диапазон измерения, мм/м (")	Размеры опорной поверхности, мм
Брусковый по	108	0,15	0,1		100
ΓΟCT 9392-75	118	0,02; 0,05; 0,10; 0,15	_	_	200 × 45
Рамный по ГОСТ 9392-75	122	0,02; 0,05; 0,10; 0,15	-A	310	200 × 45
С микрометрической подачей ампулы по	110	0,01	$\pm 0.01*1;$ $\pm 0.02*2$	± 10	150 × 45
ΓΟCT 11196-74	120	0,10	±0,1	± 30	200 × 45
Электронный по ТУ 2-034-3 — 83	128	Дискретность отсчета 1", 2", 5"	$\begin{array}{l} \pm (1'' + 0.01 \alpha^{*3}); \\ \pm (2'' + 0.01 \alpha); \\ \pm (5'' + 0.010 \alpha) \end{array}$	(±1000); (±2000); (±5000)	150 × 50

^{*1} Для диапазона ± 1 мм/м. *2 Для диапазона ± 10 мм/м. *3 α — измеряемый угол, ..."

26. Приборы для измерения углов и примолинейности образующих конусов

; Прибор	Контролируемые конусы	Наибольшая длина образующей конуса,	Цена деления шкалы	Диапазон показаний	Допускаемая погрешность	Габаритные размеры
		мм			ММ	1
Для измереиия угла конуса и прямолинейности образующих иаружных и внутренних конусов, мод. БВ-6166	Морзе, 7:24 и другие с наибольшим углом конуса 30°	275	0,0001-0,01	0,006-0,6	$ \begin{array}{c} 0,1\sqrt{L^{*1}} \\ (0,2+\\ +0,0025L^{*2}) \end{array} $	1015 × 640 × 930
Пневматический для контроля внугреиних конусов, мод. 307	35, 40, 45, 50, 55, 60*3 (AT4, AT5)	57 – 163	0,0002	0,020	0,0005	Ø 32 × 161 − Ø 108 × 274 (измерительной оснастки); 387 × 72 × 280 (отсчетного устройства)
Пневматический для контроля наружиых конусов, мод. 307	35, 40, 45, 50, 55, 60*3 (AT4, AT5)	57	0,0002	0,020	0,0005	187 × 52 – 391 × 168 (измерительной оснастки); 387 × 72 × 280 (отсчетного устройства)
Для контроля прямолиней- ности наружных конусов, мод. БВ-7312	35, 40, 50, 55*3	130	0,001; 0,0002	0,006; 0,012	0,001; 0,0002	800 × 384 × 300
Для контроля прямолиней- ности внутренних коиусов, мод. БВ-7313	Морзе, метрический, 7:24	150	0,0002	0,020	0,3 мкм	448 × 250 × 445
Для контроля угла конуса, мод. БВ-7319	Mopse № 1, 2, 3, 4, 5, 6	52-174	0,001	0,050	_	
Для контроля прямолиней- ности образующих конуса, мод. БВ-7320	Морзе № 1, 2, 3, 4	≥ 52	0,001	0,050	<u> </u>	_

 ^{*1} L – длина образующей конуса, мм, при измерении угла.
 *2 Длина образующей конуса, мм, при измерении прямолинейности.
 *3 Обозначение конусов с конусностью 7:24.

СРЕДСТВА ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ФОРМЫ, РАСПОЛОЖЕНИЯ И ШЕРОХОВАТОСТИ ПОВЕРХНОСТЕЙ

27. Кругломеры

			іазон измер размеров, м			CTb,	Fo Sa pursu va
Кругломер	Тип, модель	Диаметр			Увеличение, крат.	(%)	Габаритные размеры,
		внут- ренний	наруж- ный	Высота		Погрешность, мкм (%)	ММ
Накладной для измерения наруж- ных поверхностей по	16000 16100 16200	-	80 - 160 160 - 250 250 - 400	-	(0,1-2)*	(20)	1100 × 560 × 500
TY 2-034-354-80					1	Ġ.	
С унифицирован- ной электронной системой по ГОСТ 17353 – 80	(КД) 290	3-250	0,5-250	До 250	100-10000	0,12(5)	600 × 1180 × 800
С унифицированной электронной системой и полуавтоматическим центрированием по ГОСТ 17353—80	(КД) 298	3 – 360	0,5 – 360	До 400	100-20000	-	1
Автоматизированный с использованием информационно-вычислительного блока на базе микроЭВМ по ГОСТ 17353 — 80	299	-	0,5-250	До 100	100-10000	0,12	-
Накладной для измерения отверстий по ГОСТ 17353 – 80	BE-37	65-125	Î	18-120	500 – 5000	0,2 (5)	270 × 165 × 145

^{*} Цена деления, мкм.

28. Приборы для измерения отклонений от прямолинейности

Прибор	Цена деления, мкм	Допускаемая погрешность, мкм	Длина образцового перемещения, мкм	Габаритные размеры, мм (без электронных блоков)
Для контроля перпендикулярности и прямолинейности поверхностей, мод. БВ-6129	1,0	2,5; 5,0 (при измерении перпендику- лярности)	450	470 × 172 × 735
Для измерения отклонений от прямолинейности вертикальных поверхностей, мод. БВ-6273	0,1-10	2	500	490 × 200 × 800
Для контроля отклонений от прямолинейности образующих, мод. БВ-6065	0,1-0,2	0,2	150	470 × 172 × 735
Для измерения отклонений от прямолинейности, оснащенной унифицированной измерительной системой и микроЭВМ, мод. БВ-6251	0,05-1,0	0,2	150	970 × 260 × 985
Прямомер с унифицированной из- мерительной системой, мод. БВ-6249	0,05-1,0	0,2	200	615 × 422 × 585
Прямомер автоматизированный с использованием информационно-вычислительного блока на базе микроЭВМ, мод. БВ-6250	0,05-1,0	0,2	200	438 × 590 × 368

29. Оптические линейки

Линейка	Тип (модель)	ГОСТ, ТУ	Длина контроли- руемого участка поверхности, мм	Цена деления устройства	
				отсчетного, мкм	регистри- рующего, мкм/мм
Оптическая контактная с визуальной системой отсчета	ОЛ-800 (ИС-43)	ГОСТ 2470381	150 – 800	0,5	1,0
	ОЛ-1600 (ИС-36M)	FOCT 24703-81	200 – 1600	1,0	2,0
Оптическая контакт- ная с автоматической регистрацией	ОЛА-1600 (ИС-49)	TY 3-3.1363 - 76	400 – 1600	-	0,5-4,0

T ×		изон измеряемых й, мм, с устройством	Допускаемая	Габаритны е		
Линейка	отсч е т- ным	регистри- рующим	погрешность, мкм	размеры, мм		
1 - 1 - 2		±0,05 ±0,1	$\pm (0.5 + 3h^*)$ $\pm (1.0 + 10h^*)$	1230 × 155 × 37 2180 × 155 × 37		
Оптическая контакт- ная с автоматической регистрацией	-	±0,025-±0,2	±(2+10h*)	2450 × 180 × 160 (линейка); 260 × 90 × 300 (датчик); 510 × 305 × 185 (самописец)		

^{*} h — измеряемое отклонение, мм.

30. Визирные измерительные трубы

Назначение: измерение отклонений от соосности, прямолинейности, параллельности и перпендикулярности поверхностей изделий методом визирования

Модель	ТУ	Диапазон длин изме- ряемых поверхнос- тей, м	Цена деления, мм	Диапазон изме- рения, мм	Допускаемая погрешность, мкм	Габаритные размеры, мм
ППС-7	3-3.370 - 71	0,65-6	0,01	±0,5	15 <i>L</i> *	330 × 75 × 138 (трубы); 300 × 95 × 95 (коллиматора)
ППС-11	3-3.1045 – 75	0,1-30	0,01	0-2	$\pm (20 + 5L^*)$	515 × 130 × 120 (трубы); 300 × 260 × 200 (установочного устройства)

^{*} L — расстояние до объекта визирования, м.

31. Измерительные проекторы (с цифровым отсчетом) по ГОСТ 19795-82

тип Размер экрана		Пределы мм,	Габаритные				
IMI	мм		попе- речном	верти- кальном	размеры, мм		
ПИ-150ЦВ* ПИ-360ЦВ ПИ-600ЦВ	Ø 150 370×480 600×700	100 40 100	50 25 50	- 85 90	700 × 555 × 617 1290 × 1160 × 1825 1800 × 1400 × 2100		

^{*} Проектор настольный.

 $[\]Pi$ римечание. Дискретность отсчета проекторов 0,001 мм; допускаемая погрешность при измерении длин $\pm 0,003$ мм.

32. Пластины плоскопараллельные стеклянные по ГОСТ 2923-75

Тип	Допускаемое откло- нение от плоскост- ности рабочих по- верхностей, мкм, для классов		Диаметр пластины, мм		нение от ности ра верхност	мое откло- плоскост- бочих по- гей, мкм, лассов	Диаметр шастины, мм
	1	2			1	2	
ПИ-60	0,03	0,09	60 ± 2	ПИ-80	0,03	0,09	80 ± 2
ПИ-60	0,	09	60 ± 2	ПИ-100	0,03	0,09	100 ± 2
(верхняя)				ПИ-120	0,06	0,12	120 ± 2

33. Плоскомеры оптические

Тип	ТУ	Диапазон размеров измеряемых поверхностей, мм	Допускаемая погрешность, мкм	Габаритные размеры, мм
ИС-41M ОП-1M	АЛ2.787.036 3-3.1428 — 76	5000 × 5000 500 × 5000 ÷ 5000 × 5000	$\pm (5 + 12L^{*1})$ $\pm (5 + 5L^{*1})$	280 × 280 × 520 (визирной трубы); 100 × 150 × 150 (марки) 330 × 295 × 435 (визирной трубы); 100 × 150 × 185 (марки)

^{*1} L – расстояние от прибора до марки, м.

Примечание. Цена деления плоскомеров 0,001 мм; число марок – 4.

34. Уровни гидростатические по ТУ 2-034-7-84

Назначение: измерение разновысотности горизонтально расположенных поверхностей, а также измерение прямолинейности и плоскостности поверхностей

		-	- 0 - Σ	Чи	сло				Me- 110-	Чи	сло
Модель	Цена деле- ния, м	Допускаемая погрешность, мм	Длина измеряемой поверхности, м	измери- тельных головок	баков	Модель	Цена деле- ния, мм	Допускаемая погрешность. мкм		измери- тельных головок	баков
114	0,01	0,03	≤ 12	2	_	114-02	0,01	30 + 7 H*	≤ 24	1	1
114-01	0,10	0,1				114-03	0,10	100 + 7H*			
							l				

^{*} H – измеряемая разность высот, мм.

 Π римечание. Габаритные размеры измерительной головки уровней всех моделей $320 \times 160 \times 140$ мм, диапазон измерений — 70 мм.

35. Лииейки поверочные

Линейки	Тип		змер, им	Допуск прямолинейности (плоскост- ности) рабочих поверхностей, мкм, для классов точности				
				0	1	2		
Линейки повер	очные мета.	ілически	е по ГО	CT 8026-	- 75			
Лекальные четырехгранные	лч		0 × 20 0 × 25	1,2	2,0 2,5	1		
Лекальные трехгранные	ЛТ	1	0×26 0×30	1,2 1,6	2,0 2,5			
Лекальные с двусторонним скосом	лд	125 200	0×6 0×6 0×8 0×8	0,6 0,6 1,2 1,6	1,2 1,6 2,0 2,5	- 		
С широкой рабочей поверхностью прямоугольного сечения	шп	400	250 × 5 400 × 6 630 × 10		5 6 10	8 10 16		
С широкой рабочей поверхностью двугаврового сечения	ШД*¹	630 × 14 1000 × 16		4	10	16		
; r		2000 2500 3000	0×18 0×18 0×20 0×20 0×30	- - - -	16 20 25 30 40	25 30 40 50 60		
С широкой рабочей поверхностью (мостик)	ШМ	1000 1600 2000 2500	0 × 50 0 × 50 0 × 60 0 × 80 0 × 90 0 × 100 0 × 110	2,5 4 4 6 —	6 10 10 16 20 25 30	10 16 16 25 30 40 50		
Угловые трехгранные	УТ*1	400	$\alpha^{*2} = 45^{\circ};$	2,5	6	10		
•		630 1000	55°; 60°;	4.0 4,0	10 10	16 16		
Линейки поверочные из	твердокаме	нных по	род по Т	· ГУ 2-034-8	816 – 81			
Из тве рдокаме нных пород (мостики)	ШМТК	10	630 000 600 000 500	3,0 4,0 5,0 7,0 10,0	8,0 10,0 12,0 14,0 16,0	_		

Линейки	Тип	1	мер, ім	Допуск прямолинейности (плоскостности) рабочих поверхностей. мкм, для классов точности				
				0	1	2		
Прямоугольного сечения из твердокаменных пород	ШПТК*≀	2	100	2,0	5,0	_		
Угловые трехгранные из твердо-каменных пород	УТТК*!	400	$\begin{vmatrix} \alpha *^2 = \\ = 55^{\circ} \end{vmatrix}$	2,0	5,0	-		
* **		630 1000		3,0 4,0	8,0 10,0			

^{*!} Линейки 0-го класса точности выпускают по заказам.

36. Плиты поверочные и разметочные по ГОСТ 10905-86

Размер плит.		Допу		скостно сов точ	сти, мк ности	м, для		Сосредо- точенная	плит. м	иий прогиб икм, под г сосредото-	
ММ		L	угупны	х		грані	итных	нагрузка. Н		нагрузки	
	00	0	1	2	3	00	0		чугунных	гранитных	
160×160	2	4	8	16	30	2*	4*	30	0,25	0.2	
250×250	2.5	5	10	20	40	2,5	5	78	0,5	0,4	
400×400	3	6	12	25	50	3	6	196	1,0	0,8	
630×400	4	8	16	30	60	4	8	490	2,0	1,8	
1000×630	5	10	20	40	80	5	10	980	4,0	3,5	
1600×1000	6*	12	25	50	100	6	12	2450	10,0	8,0	
2000×1000	8*	16	30	60	120	8	16	2450	10,0	8,0	
2500×1600	8*	16	30	60	120	8*	16*	4900	20,0	16,0	

^{*} Изготовляют по специальному заказу.

37. Угольиики поверочиые

				Отклонения, мкм							
У1 ольник	Тип	Размер сторон, мм	от периендикуляр- ности			от прямолинейности измерительных поверхностей					
					К	лассы	гочнос	ги			
7			0	1		2	0	1	2		

Угольники поверочные металлические по ГОСТ 3749-77

Лекальный, плитки	УЛ		2,5	4 ′	į.	0,1 0,1	2,0 2,0	-
-------------------	----	--	-----	-----	----	------------	------------	---

^{*2} x – угол между гранями.

Отклонения, мкм								
	пендин но с тн	суляр-	изм	молине ерители верхнос	ных			
Классы точности								
)	1	2	0	I	2			
,5 ,0	5,0 6,0	_	1,0	2,0	-			
,5 ,5	7.0 9.0		1,5	3,0				
- 1	5,0 6,0	13,0 15,0	1 = b	2,0	4,0			
- 1	7, 0 9,0	18,0 22,0 30,0		3,0 3,0 —	6,0 6,0 10			
5*1)*1	5,0 6,0	13,0 15,0	1,0*1	2,0	4,0			
5*1 5*1)*1 -	7,0 9,0 12,0 16,0 24,0	18,0 22,0 30,0 40,0 60,0 90,0	1,5*1 1,5*1 2,5*1 —	3,0 3,0 5,0 6,0 10,0	6,0 6,0 10.0 12,0 20,0			
5	7,0 9,0 12.0		1,5	3,0	30,0			
		7,0 9,0 12,0 16,0	9,0 -	$\begin{vmatrix} 9,0 \\ 12,0 \end{vmatrix} - \begin{vmatrix} 1,5 \\ 2,5 \end{vmatrix}$	$\begin{vmatrix} 9,0 \\ 12,0 \end{vmatrix} - \begin{vmatrix} 1,3 \\ 2,5 \end{vmatrix} \begin{vmatrix} 3,0 \\ 5,0 \end{vmatrix}$			

Угольники поверочные из твердокаменных пород по ТУ 2-034-804 - 82

			00	0	1	00	0	1
Брусковый	УБТК	400×125 630×160 1000×320	2,5 4,0 6,0	5,0 7,0 10,0	11,0 14,0 20,0	1,0 1,5 2,0	2,0 3,0 4,0	4,0 6,0 8,0
С широким основанием	УШТК	250 × 160 400 × 250 630 × 400 1000 × 630	2,5 4,0 6,0	3,0 5,0 7,0 10,0	8,0 11,0 14,0 20,0	1,0 1,5 2,0	1,2 2,0 3,0 4,0	3,0 4,0 6,0 8,0

^{*1} Выпускают по заказам. *2 Диаметр.

38. Приборы для проверки изделий на бнение в центрах по ТУ 2-034-543-81

Размеры, мм

Модель	Расстояние между цептрами	Высота центров	Цена деления отсчетного устройства	Допус- каемая погрещ- ность*	Габаритные размеры
ПБ-250	250	80		0,015	$500 \times 290 \times 330$
ПБ-500М	500	160	0,002; 0,01	0,015	925 × 375 × 504
ПБ-1600	1600	250		0,020	2230 × 545 × 825

^{*} С измерительной головкой 2МИГ по ГОСТ 9696-82.

39. Приборы для измерения параметров шероховатости поверхности

				изме	1азои эений, км	,= =	
Прибор	Тип, модель	гост, ту	Увеличение, крат.	профил о- 1 рафа	профило- профило- метра Минимальный диаметр измержемого		Габаритные размеры, мм
Профилограф- профилометр		ГОСТ 19299 — 73; ГОСТ 19300 — 73; ТУ 2-034-105 — 78	(9 ступе-	0,02 – 250	0.02 - 100	3 (на глу- бине до 5 мм)	422 × 325 × 570 (стойки); 338 × 366 × 480 (электронных блоков); 318 × 188 × 302 (самописца)
Профилограф- профилометр с выходом на ЭВМ, с рас- ширенными возможностя- ми, в том чи- сле для изме- рения криволи- нейных поверх- ностей		FOCT 19299 - 73; FOCT 19300 - 86		0,02 500	0,02 – 100	3	-

				измеј	1азон Эений, км	7 2%	
Прибор	Тин, модель	ГОСТ, ТУ	Увеличение, крат.	профило- графа	профило- метра	Минимальный Диаметр измеряемого отверстия, мм	Габаритные размеры, мм
Профилометр цеховой с цифровым отсчетом и индуктивным преобразователем	AII, 296	ГОСТ 19300 — 86; ТУ 2-034-4 — 83	0,001*		0,02 - 10	6 (на глубине до 20 мм); 16 (на глубине до 130 мм)	(датчика); 340 × 320 × 180 (электронного

^{*}Наименьшая дисперсность отсчета, мкм.

СПИСОК ЛИТЕРАТУРЫ

- 1. Единая система допусков и посадок СЭВ в машиностроении и приборостроении. Контроль деталей: Справочник. М.: Изд-во стандартов, 1987. 200 с.
 - 2. Средства контроля, управления и из-

мерения линейных и угловых размеров в машиносгроении: Каталог. М.: ВНИИТЭМР, 1985. 303 с.

3. Точность и производственный контроль в машиностроении: Справочник/Под общей ред. А. К. Кутая, Б. Л. Сорокина. М.: Машиностроение, 1983, 367 с.

МЕЖОПЕРАЦИОННЫЕ ПРИПУСКИ НА ОБРАБОТКУ ДЕТАЛЕЙ МАШИНОСТРОЕНИЯ

1. Классы точности размеров и масс и ряды припусков на механическую обработку отливок для различных способов литья (по ГОСТ 26645-85)

			Металлы	и сплавы
Литье	Наибольшие габаритные размеры отливки, мм	цветные с темпера- турой плавления ниже 700°С	иветные с темпера- турой плавлеиия выше 700°С, серый чугун	ковкий, высоко- прочный и леги- рованный чугун, сталь
Под давлением в металлические формы	До 100	3T-5	3-6	4-7 _T
	Св. 100	3-6	$\frac{4-7\tau}{1}$	5T – 7
В керамические формы и по выплавляемым и выжитаемым мо-	До 100	$\frac{3-6}{1}$	$\frac{4-7\tau}{1-2}$	$\frac{5\tau-7}{1-2}$
делям	Св. 100	$\frac{4-7}{1-2}$	$\frac{5\tau-7}{1-2}$	$\frac{5-8}{1-2}$
В кокиль и под низким давлением в металлические формы с	До 100	$\frac{4-9}{1-2}$	$\frac{5\tau-10}{1-3}$	$\frac{5-11\tau}{1-3}$
песчаными стержнями и без них, литье в песчаные формы, отверж- даемые в контакте с оснасткой	Св. 100 до 630	$\frac{5T-10}{1-3}$	$\frac{5-11}{1-3}$	$\frac{6-11}{2-4}$
Ademie e Kontakte e Genderkon	Св. 630	$\frac{5-11T}{1-3}$	$\frac{6-11}{2-4}$	$\frac{7\tau - 12}{2 - 5}$
В песчаные формы, отверждаемые вне контакта с оснасткой, центро-	До 630	$\frac{6-11}{2-4}$	$\frac{7\tau - 12}{2 - 4}$	$\frac{7-13\tau}{2-5}$
бежное, в сварные и сухие песчано-глинистые формы	Св. 630 до 4000	$\frac{7-12}{2-4}$	$\frac{8-13\tau}{3-5}$	$\frac{9T-13}{3-6}$
	Св. 4000	$\frac{8-13T}{3-5}$	$\frac{9T-13}{3-6}$	$\frac{9-14}{4-6}$

Примечания: 1. В числителе указаны классы точности размеров и масс, в знаменателе — ряды припусков. Меньшие их значения относятся к простым отливкам и условиям массового автоматизированного производства; большие значения — к сложным, мелкосерийно и индивидуально изготовленным отливкам; средние значения — к отливкам средней сложности и условиям механизированного серийного производства.

2. Классы точности масс следует принимать соответствующими классам точности отливок.

2. Допуски линевных размеров отливок (мм, не более) по ГОСТ 26645-85

Интервалы номинальных						-		Кл	асс т	эчнос	ги раз	змеро	в отл	ивок								_
размеров, мм	l	2	3т	3	4	5 T	5	6	7r	7	8	9т	9	10	11т	11	12	13т	13	14	15	16
До 4	0,0	6 0,08	0,1	0,12	0,16	0,2	0,24	0,32	0,4	0,5	0,64	0,8	1,0	1,2	1,6	2,0	-	_	_		_	_
Св. 4 до 6	0,0	7 0,09	0,11	0,14	0,18	0,22	0,28	0,36	0,44	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8		-	_		_
» 6 » 10.	0,0	8 0,1	0,12	0,16	0.2	0,24	0,32	0,4	0,5	0,64	0,8	1,0	1,2	1,6	2,0	2,4	3,2	4,0	5,0	_	-	_
" 10 » 16	0.0	9 0,11	0,14	0,18	0,22	0,28	0,36	0,44	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8		4,4	5,6	7,0	_	-
» 16 » 25	0,1		0,16	0,2	0,24	0,32	0,4	0,5	0,64	0,8	1,0	1,2	1,6	2,0	2,4	3,2	4,0	5,0	6,4	8,0	10	12
» 25 » 40	0,1	1 0,14	0,18	0,22	0,28	0,36	0,44	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8	3,6	4,4	5,6	7,0	9	11	14
» 40 » 63	0,1	2 0,16	0,2	0,24	0,32	0,4	0,5	0,64	0,8	1,0	1,2	1,6	2,0	2,4	3,2	4,0	5,0	6,4	8,0	10	12	16
» 63 » 100	0,1	4 0,18	0,22	0,28	0,36	0,44	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8	3,6	4,4	5,6	7,0	9,0	11	14	18
» 100 » 160	0,1	6 0,2	0,24	0,32	0,4	0,5	0,64	0,8	1,0	1,2	1,6	2,0	2,4	3.2	4,0	5,0	6,4	8,0	10,0	12	16	20
» 160 » 250	-	1 -	0,28	0,36	0,44	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8	3,6	4,4	5,6	7,0	9,0	11,0	14	18	22
» 250 » 400	-	-	0,32	0,4	0,5	0,64	0.8	1,0	1,2	1,6	2,0	2,4	3,2	4,0	5,0	6,4	8,0	10,0	12,0	16	20	24
» 400 » 630		-	-	-	0,56	0,7	0,9	1,1	1,4	1,8	2,2	2,8	3,6	4,4	5,6	7,0	9,0	11,0	14,0	18	22	28
» 630 » 1000	_	-	_		_	0,8	1,0	1,2	1,6	2,0	2,4	3,2	4.0	5,0	6,4	8,0	10,0	12,0	16,0	20	24	32
» 1000 » 1600	-	1 -	-	-	-	-	–	1,4	1,8	2,2	2,8	3,6	4,4	5,6	7,0	9,0	11,0	14,0	18,0	22	28	36
» 1600 » 2500	-	-	-	-	-		-	-	2,0	2,4	3,2	4,0	5,0	6,4	8,0	10,0	12,0	16,0	20	24	32	40
» 2500 » 4000	-		-	_	-	_	_		-	3,2	3,6	4,4	5,6	7,0	9,0	11,0	14,0	18,0	22	28	36	44
» 4000 » 6300	\ -	\ -	\	-	-		-	_	-	-	- '	5,0	6,4	8,0	10,0	12,0	16,0	20	24	32	40	50
» 6300 » 10000	-		-	-] -	_	-	-	_		-		8,0	10,0	12,0	16,0	20,0	24	32	40	50	64

Примечания: 1. Классы точности размеров отливок -- см. табл. 1.

2. Допуски размеров, указанные в табл. 1, не учитывают смещение и коробление отливок.

3. Допуски угловых размеров в пересчете на линейные не должны превышать значений, установленных в табл. 1.

4. Допуски размеров элементов отливки, образованных двумя полуформами, перпендикулярными к плоскости разъема, следует устанавливать соответствующими классу точности размеров отливки. Допуски размеров элементов отливки, образованных одной частью формы или одним стержнем, устанавливают на 1-2 класса точнее. Допуски размеров элементов, образованных тремя частями формы и более, несколькими стержнями или подвижными элементами формы, а также толщины стенок, ребер и фланцев устанавливают на 1-2 класса грубее.

5. Допуски размеров от предварительно обработанной поверхности, используемой в качестве базы, до литой поверхности следует устанавливать на 2 класса точнее.

6. Допускается устанавливать симметричные и несимметричные предельные отклонения, при этом предпочтительно следующее расположение полей допусков:

несимметричные односторонние «в тело» – для размеров элементов отливки (кроме толщин стенок), расположенных в одной части формы и не подвергаемых механической обработке, при этом для охватывающих элементов (отверстие) поле допуска располагают «в плюс», а для охватываемых элементов (вал) – «в минус»;

симметричные — для размеров всех остальных элементов отливок, как не подвергаемых, так и подвергаемых механической обработке.

3. Основные припуски на механическую обработку отливок (по ГОСТ 26645-85)

Допуск		Основной п	рипуск на стој	рону для рядо	в, мм, не боле	e
размеров отливок, мм	1	2	3	4	5	6
До 0,12	0,2; 0,4	1,-00	C=	_	-	
Св. 0,12 до 0,16	0,3; 0,5	0,6; 0,8	_	-		-
» 0,16 » 0,20	0,4, 0,6	0,7; 1,0	1,0; 1,4	-	-	_
» 0,20 » 0,24	0,5; 0,7	0,8; 1,1	1,1; 1,5			
» 0,24 » 0,30	0,6; 0,8	0,9; 1,2	1,2; 1,6	1,8; 2,2	2,6; 3,0	_
» 0,30 » 0,40	0,7; 0,9	1,0; 1,3	1,4; 1,8	1,9; 2,4	2,8; 3,2	-
» 0,40 » 0,50	0,8; 1,0	1,1; 1,4	1,5; 2,0	2.0; 2,6	3,0; 3,4	_
» 0,50 » 0,60	0,9; 1,2	1,2; 1,6	1,6; 2,2	2,2; 2,8	3,2; 3,6	-
» 0,60 » 0,80	1.0; 1,4	1,3; 1,8	1,8; 2,4	2,4; 3,0	3,4; 3,8	4,4; 5,0
» 0,80 » 1,0	1,1; 1,6	1,4; 2,0	2,0; 2,8	2,6; 3,2	3,6; 4,0	4,6; 5,5
» 1,0 » 1,2	1,2; 2,0	1,6; 2,4	2,2; 3,0	2,8; 3,4	3,8; 4,2	4,8; 6,0
» 1,2 » 1,6	1,6; 2,4	2,0; 2,8	2,4; 3,2	3,0; 3,8	4,0; 4,6	5,0; 6,5
» 1,6 » 2,0	2,0; 2,8	2,4; 3,2	2,8; 3,6	3,4; 4,2	4,2; 5,0	5,5; 7,0
» 2,0 » 2,4	2,4; 3,2	2,8; 3,6	3,2; 4,0	3,8; 4,6	4,6; 5,5	6,0; 7,5
» 2,4 » 3,0	2,8; 3,6	3,2; 4,0	3,6; 4,5	4,2; 5,0	5,0; 6,5	6,5; 8,0
» 3,0 » 4,0	3,4; 4,5	3,8; 5,0	4,2; 5,5	5,0; 6,5	5,5, 7,0	7,0; 9,0
» 4,0 » 5,0	4,0; 5,5	4,4; 6,0	5,0; 6,5	5,5; 7,5	6,0; 8,0	8,0; 10,0
» 5,0 » 6,0	5,0; 7,0	5,5; 7,5	6,0; 8,0	6,5; 8,5	7,0; 9,5	9,0; 11,0
» 6,0 » 8,0	_	6,5; 9,5	7,0; 10,0	7,5; 11,0	8,5; 12,0	10,0; 13,0
» 8,0 » 10,0	-	-	9,0; 12,0	10,0; 13,0	11,0;14,0	12,0; 15,0
» 10,0 » 12,0	. ~	-	10,0; 13,0	11,0; 14,0	12,0; 15,0	13,0; 16,0
» 12,0 » 16,0	-	-	13,0; 15,0	14,0; 16,0	15,0; 17,0	16,0; 19,0
» 16,0 » 20,0	-	_	-	17,0; 20,0	18,0; 21,0	19,0; 22,0
» 20,0 » 24,0	_		_	20,0; 23,0	21,0; 24,0	22,0; 25,0
» 24,0 » 30,0	_	-	_	-	26,0; 29,0	27,0; 30,0
» 30,0 » 40,0	-		_	_	_	34,0; 37,0
» 40,0 » 50,0	1	1,-	_	_		42,0
» 50,0 » 60,0	_	-	-	_	-	50,0

Примечания: 1. Для каждого интервала значений допусков размеров отливки в каждом ряду припусков предусмотрены два значения основного припуска.

2. Меньшие значения припуска устанавливают при более грубых квалитетах точности обработки деталей, большие значения припуска устанавливают при более точных квалитетах согласно следующим данным:

Класс точности размеров отливок	1 — 3т	3 – 5 _T	5-7	7—9т	9-16
Квалитет точности размеров деталей, получаемых	IТ9 и грубее	IT10 и грубее	IT11 и грубее	IT12 и грубее	НТ13 и грубее
механической обработкой отливок	IT8 и точнее	IT8-IT9	IT9-IT10	IT9-IT11	IT10-IT12

3. При более высоких требованиях к точности размеров обрабатываемых деталей допускается увеличение основного припуска до ближайшего большего значения из того же ряда.

4. Выбор диаметра заготовки для деталей, изготовлиемых из круглого сортового проката по ГОСТ 2590-71*

Размеры, мм

Номиналь- ный диаметр детали				симос	аготов ти от ли <i>L</i>				Номиналь- ный диаметр детали	Днаметр загоговки D в зависимости ог длины дегали L							
Номин ный ди дегали	L/D	≤ 4	L/D	≤ 8	L/D	≤ 12	L/D	≤ 20	Номина ный диа детали	L/L) ≤ 4	L/D	≤ 8	L/D	≤ 12	L/D	≤ 20
Ho He He	L	D	L	D	L	D	L	D	H H H	L	D	L	D	L	D	L	D
5	20	7	40	7	60	7	100	8	46	184	50	368	50	552	52	920	52
6	24	8	48	8	72	8	120	8	48	192	52	384	52	576	54	960	54
7	28	9	56	9	84	9	140	9	50	200	54	400	54	600	55	1000	55
8	32	10	64	10	96	10	160	11	52	208	55	416	55	624	56	1040	56
9	36	11	72	11	108	11	180	12	54	216	58	432	60	648	60	1080	62
10	40	12	80	12	120	13	200	13	55	220	60	440	60	660	62	1100	65
11	44	13	88	13	132	13	220	13	58	232	62	461	62	696	65	1160	68
12	48	14	96	14	144	15	240	15	60	240	65	480	65	720	68	1200	70
13	52	15	104	15	156	16	260	16	62	248	68	496	68	744	70	1240	72
14	56	16	112	16	168	17	280	17	65	260	70	520	70	780	72	1300	75
15	60	17	120	17	180	18	300	18	68	272	72	544	72	816	72	1360	78
16	64	18	128	18	192	18	320	19	70	280	75	560	75	840	78	1400	80
17	68	19	136	19	204	20	340	20	72	288	78	576	78	864	80	1440	85
18	72	20	144	20	216	21	360	21	75	300	80	600	80	900	80	1500	90
19	76	21	152	21	228	22	380	22	78	312	85	624	85	936	90	1560	90
20	80	22	160	22	240	23	400	24	80	320	85	640	90	960	95	1600	95
21	84	24	168	24	252	24	420	25	82	328	90	656	95	984	95	1640	95
23	92	26	184	26	276	26	460	27	85	340	90	680	95	1020	95	1700	100
24	96	27	192	27	288	27	480	28	88	352	95	704	100	1056	100	1760	105
25	100	28	200	28	300	28	500	30	90	360	95	720	100	1080	105	1800	105
26	104	30	208	30	312	30	520	30	92	368	100	736	100	1104	105	1840	110
27	108	30	216	30	324	32	540	32	95	380	100	760	105	1140	110	1900	110
28	112	32	224	32	336	32	560	32	98	392	105	784	110	1176	110	1960	115
30	120	33	240	33	360	34	600	34	100	400	105	800	110	1200	115	2000	115
32	128	35	256	35	384	36	640	36	105	420	110	840	115	1260	120	2100	120
34	132	38	264	38	396	38	680	38	110	440	115	880	120	1320	125	2200	125
35	140	38	280	38	420	39	700	39	115	460	120	920	125	1380	130	2300	130
36	144	39	288	40	432	40	720	40	120	480	125	960	130	1440	130	2400	135
38	152	42	304	42	456	42	760	43	125	500	130	1000	130	1500	135	2500	140
40	160	43	320	45	480	45	800	48	130	520	135	1040	140	1560		2600	1
42	168	45	336	45	504	48	840	48	135	540	140	1080	140	1620		2700	150
44	176	48	352	48	528	50	880	50	140	560	150	1120	150	1680	160	2800	160
45	180	48	360	48	540	50	900	50									

Примечания: 1. Диаметры заготовок определены с учетом черновой, получистовой и чистовой обработки деталей типа тел вращения. В зависимости от конфигурации деталей диаметры заготовок могут быть уточнены.

^{2.} Диаметры заготовок для ступенчатых валов выбирают по максимальному диаметру ступени. В тех случаях, когда эту ступень не требуется обрабатывать с высокой точностью, диаметр заготовки может быть уменьшен.

^{3.} Предусмотрена правка заготовок диаметром до 30 мм.

5. Припуски на обработку отверстий в сплошном материале по 7-му и 8-му квалитетам Размеры, мм

Диа	амегры отве	рстий	Свер	ление	Чис	товое		_
	Дог	пуск			растач	ивание	Зенкерова-	Предвари- гельное
Номи- нал	по <i>H</i> 7	по <i>Н</i> 8	Первое сверло	Второе сверло	Номи- нал	Допуск по <i>Н</i> 11	ние	разверты- вание
3	+0,01	+0,014	2,9	_	_	_	_	
4 5 6	+0,012	+0,018	3,9 4,8 5,8	_	_	_	_	_
7 8 9 10	+0,015	+0,022	6,8 7,8 8,8 9,8	~	_	_	_	- 7,96 8,96 9,96
11 12 13 14 15 16 18	+0,018	+0,027	10 11 12 13 14 15	_		_	10,79 11,79 12,79 13,79 14,79 15,79 17,79	10,95 11,95 12,95 13,95 14,95 15,95 17,94
20 22 24 25 26 28 30	+0,021	+0,033	18 20 22 23 24 26 15	- - - - - - 28	19,8 21,8 23,8 24,8 25,8 27,8 29,8	+0,13	19,75 21,75 23,75 24,75 25,75 27,75 29,75	19,94 21,94 23,94 24,94 25,94 27,94 29,93
32 34 35 36 37 38 40 42 45 47 48 50	+0,025	+0,039	15 15 20 20 20 20 25 25 25 25 25 25 25 25	30 32 33 34 35 36 38 40 43 45 46 48	31,7 33,7 34,7 35,7 36,7 37,7 39,7 41,7 44,7 46,7 47,7 49,7	+0,16	31,71 33,71 34,71 35,71 36,71 37,71 39,71 41,71 44,71 46,71 47,71	31,93 33,93 34,93 35,93 36,93 37,93 39,93 41,93 44,93 46,93 47,93

Примечания: 1. При сверлении отверстий в чугуне применять одно сверло для диаметров 30 и 32 (для отверстия \varnothing 30 применять сверло \varnothing 28, для отверстия \varnothing 32 — сверло \varnothing 30).

сверло Ø 30). 2. Выбор перехода «растачивание» или «зенкерование» определяется технологическим процессом.

^{3.} Для обработки отверстий диаметром свыше 30 мм вместо разверток можно применять расточные оправки типа «микробор».

^{4.} Диаметр чистовой развертки выбирают в соответствии с номинальным диаметром отверстия с допусками по H7 или H8.

6. Припуски на обработку прошитых или полученных литьем отверстий по 7-му н 8-му квалитетам

Размеры, мм

	Диаметр отве	рстия		новое	чи	стовое	Развертывание, тонкое растачива-
	До	нуск	растач	ивание	раст	вчивание	ние пластинами
Номи- нал	H7	Н8	первое	второе	Номи- нал	Допуск по <i>Н</i> 11	или оправками типа «микробор» (первое)
30	0,021	+0,033	_	28	29,8	0,13	29,93
32 34 35 36 37 38 40 42 45 47 48 50	+0,025	+0,039	45	30 32 33 34 35 36 38 40 43 45 46 48	31,7 33,7 34,7 35,7 36,7 37,7 39,7 41,7 44,7 46,7 47,7	+0,16	31,93 33,93 34,93 35,93 36,93 37,93 39,93 41,93 44,93 46,93 47,93 49,93
52 55	. 4.4	-	47 50	50 53	51,5 54,5		51,92 54,92
58 60 62	4		53 55 57	56 58 60	57,5 59,5 61,5		57,92 59,92 61,92
63 65 68 70	+0,03	+0,046	58 60 63 65	61 63 66 68	62,5 64.5 67,5 69,5	+0,19	62,92 64,92 67,9 69,9
72 75 78 80		. t	67 70 73 75	70 73 76 78	71,5 74.5 77,5 79,5	3 7 7	71,9 74,9 77,9 79,9
85 90 95		en en	80 85 90	83 88 93	84,3 89,3 94,3		84,85 89,85 94,85
100 105 110 115 120	+0,035	+0,054	95 100 105 110 115	98 103 108 113 118	99,3 104,3 109,3 114,3 119,3	+0,22	99,85 104,8 109,8 114,8 119,8
125 130 135 140		¥	120 125 130 135	123 128 133 138	124,3 129,3 134,3 139,3		124,8 129,8 134,8 139,8
145 150 155 160 165	+0,04	+0,063	140 145 150 155 160	143 148 153 158 163	144,3 149,3 154,3 159,3 164,3	+0,25	144,8 149,8 154,8 159,8 164,8

Продолжение табл. 6

	Диаметр отверстия			новое		стовое	Развертывание,	
	Допуск		растач	ивание	раста	чивание	тонкое растачива-	
Номи- нал <i>Н</i> 7	H8	первое	второе	Номи- нал	Допуск по <i>H</i> 11	или оправками типа «микробор» (первое)		
170 175 180	+0,04	+0,063	165 170 175	168 173 178	169,3 174,3 179,3	+0,25	169,8 174,8 179,8	
190 195 200	+0,046	+0,072	185 190 194	188 193 197	189,3 194,3 199,3	+0,29	189,8 194,8 199,8	

 Π р и м е ч а н и е. Окончательное развертывание и тонкое растачивание отверстий выполняют по номинальным диаметрам отверстий с допусками по H7 или H8.

7. Припуски на обработку отверстий в сплонном материале по 9-му и 11-му квалитетам Размеры, мм

Диа	метр отв	ерстия	Обра	ботка	отверст	ий с до	пусками	no <i>H</i> 9	Обработка отверстий			
	Дог	гуск	Свер	ление	Чистов	oe pac-			С	допуск	ами по .	<i>H</i> 11
Номи-						зание	Зенке-	Развер- тыва-	Свер.	ление	Зеике-	Развер-
нал	по <i>Н</i> 9	по <i>Н</i> 11	первое	второе	Номи- нал	До- пуск по H11	ние	ние	первое	второе	рова- ние	тыва- ние
3	+0,025	+0,06	2,9					3 <i>H</i> 9	2,9	_	_	3 <i>H</i> 11
4 5 6	+0,03	+0,075	3,9 4,8 5,8	_	_	_	_	4 <i>H</i> 9 5 <i>H</i> 9 6 <i>H</i> 9	3,9 4,9 5,9	_	_	4 <i>H</i> 11 5 <i>H</i> 11 6 <i>H</i> 11
7 8 9 10	+0,036	+0,09	6,8 7,8 8,8 9,8	_	_	_	_	7 <i>H</i> 9 8 <i>H</i> 9 9 <i>H</i> 9 10 <i>H</i> 9	6,8 7,8 8,8 9,8		·)(-	7 <i>H</i> 11 8 <i>H</i> 11 9 <i>H</i> 11 10 <i>H</i> 11
11 12 13 14 15 16 18	+0,043	+0,11	10 11 12 13 14 15	_	_	-	10,9 11,9 12,9 13.9 14,9 15,9 17,9	11 H9 12 H9 13 H9 14 H9 15 H9 16 H9 18 H9	10,8 11,8 11,7 12,7 13,7 14,3 16,3		- 13 <i>H</i> 11 14 <i>H</i> 11 15 <i>H</i> 11 16 <i>H</i> 11	11 <i>H</i> 11 12 <i>H</i> 11 - - - - -
20 22 24 25 26 28 30	+0,052	+0,13	18 20 22 23 24 26 15	28	19,8 21,8 23,8 24,8 25,8 27,8 29,8	+0,13	19,88 21,88 23,88 24,88 25,88 27,88 29,88	20 <i>H</i> 9 22 <i>H</i> 9 24 <i>H</i> 9 25 <i>H</i> 9 26 <i>H</i> 9 28 <i>H</i> 9 30 <i>H</i> 9	17,5 19,5 21,5 22,5 23,5 25,5 20	27,5	20 <i>H</i> 11 22 <i>H</i> 11 24 <i>H</i> 11 25 <i>H</i> 11 26 <i>H</i> 11 28 <i>H</i> 11 30 <i>H</i> 11	·

Продолжение табл. 7

Диа	метр отв	ерстия	Обра	аботка	отверс	гий с до	пусками	no <i>H</i> 9	Обработка отверстий			
	Дог	туск	Свер	ление	Чистовое рас-				c	допуск	ами по	H11
Номи-					тачивание		Зенке-	Развер-	Свер.	ление	Зенке-	Donnen
нал	по <i>Н</i> 9	по Н11	нерво е	второе	Номи- нал	До- пуск по <i>H</i>] I	рова-	тыва- ние	первое	второе	рова-	Развер- тыва- ние
32 34 35 36 37 38 40 42 45 47	+0,062	+0,16	15 15 20 20 20 20 25 25 25 25	30 32 33 34 35 36 38 40 43 45	31,7 33,7 34,7 35,7 36,7 37,7 39,7 41,7 44,7	+0,16	31,85 33,85 34,85 35,85 36,85 37,85 39,85 41,85 44,85 46,85	32 H9 34 H9 35 H9 36 H9 37 H9 38 H9 40 H9 42 H9 45 H9 47 H9	20 20 20 20 20 20 20 25 25 25 25 25	29 31 32 33 34 35 38 40 43 45	32 <i>H</i> 11 34 <i>H</i> 11 35 <i>H</i> 11 36 <i>H</i> 11 37 <i>H</i> 11 38 <i>H</i> 11 40 <i>H</i> 11 42 <i>H</i> 11 45 <i>H</i> 11 47 <i>H</i> 11	
48 50			25 25	46 48	47,7 49,7		47,85 49,85	48 <i>H</i> 9 50 <i>H</i> 9	25 25	46 48	48 <i>H</i> 11 50 <i>H</i> 11	1

Примечания: 1. При сверлении отверстий в чугуне применять одно сверло для диаметров 30 и 32 (для отверстия \varnothing 30 применять сверло \varnothing 28, для отверстия \varnothing 32 – сверло \varnothing 30).

- 2. Выбор перехода «растачивание» или «зенкерование» определяется технологическим процессом.
- 3. Для обработки отверстий диаметром свыше 30 мм вместо разверток можно применять расточные оправки типа «Микробор».

8. Припуски иа обработку прошитых или полученных литьем отверстий по 9-му и 11-му квалитетам

Размеры, мм

Į	Циамегр от	гверстия		Обра	ботка отв	ерстий с д	юпуском <i>Н</i>	9		вание или чивание
	Дог	уск		новое	Чис	говое		ъвание,	î по <i>H</i> 11	
Номи-				иие	растачивание		пластинам	стачивание или оп-		
нал	H 9	H11	Папрое	второе	Номи-	Допуск	равками «1	Микробор»	первое	второе
			первос	1 10,000	нал	но Й11	первое	второе	Í	
30	+0,052	+0,13		28	29,8	+0,13	29,93	30 <i>H</i> 9	28	30 <i>H</i> 11
32				30	31,7		31,93	32 <i>H</i> 9	30	32 <i>H</i> 11
34			•	32	33,7		33,93	34 <i>H</i> 9	32	34 <i>H</i> 11
35			1	33	34,7		34,93	35 <i>H</i> 9	32	35 <i>H</i> 11
36				34	35,7		35,93	36 <i>H</i> 9	34	36 <i>H</i> 11
37				35	36,7		36,93	37 <i>H</i> 9	34	37 <i>H</i> 11
38	+0,062	+0,16	_	36	37,7	+0,16	37,93	38 <i>H</i> 9	36	38 <i>H</i> 11
40				38	39,7		39,93	40 <i>H</i> 9	38	40 <i>H</i> 11
42			-	40	41,7		41,93	42 <i>H</i> 9	40	42 <i>H</i> 11
45			1	43	44,7		44,93	45 <i>H</i> 9	42	45 <i>H</i> 11
47				45	46,7		46,93	47 <i>H</i> 9	43	47 <i>H</i> 11
48				46	47,7		47,93	48 <i>H</i> 9	46	48 <i>H</i> 11
50			45	48	49,7		49,93	50 H 9	48	50 <i>H</i> 11

Продолжение табл. 8

Ди	Диаметр отверстия Допуск		Обработка о			верстий с Д	опуском Н	Зенкерование или растачивание		
Номи-	Дог	іуск	pac1	новое гачи- пие		товое ивание	тонкое ра			H11
нал	Н9	H 11	-	второс	Номи-	Допуск	пластинам равками «!	и или оп- Микробор»	первое	второе
			первос	второс	нал	по Й11	первое	второе		
52			47	50	51,5		51,92	52 <i>H</i> 9	50	52 <i>H</i> 11
55			50	53	54,5		54,92	55 <i>H</i> 9	52	<i>55H</i> 11
58		ž	53	56	57,5		57,92	58 <i>H</i> 9	55	58 H 11
60			55	58	59,5		59,92	60 <i>H</i> 9	58	60 <i>H</i> 11
62			57	60	61,5		61,92	62 <i>H</i> 9	60	62 <i>H</i> 11
63			58	61	62,5		62,92	63 <i>H</i> 9	60	63 <i>H</i> 11
65			60	63	64,5		64,92	65 <i>H</i> 9	62	65 H 11
68	+0.074	+0,19	63	66	67,5	+0,19	67,9	68 <i>H</i> 9	65	68 <i>H</i> 11
70			65	68	69,5	1	69,9	70 <i>H</i> 9	68	70 <i>H</i> 11
72			67	70	71,5		71,9	72 <i>H</i> 9	70	72 <i>H</i> 11
75			70	73	74,5		74,9	75 <i>H</i> 9	72	75 H 11
78			73	76	77,5	1	77,9	78 <i>H</i> 9	75	78 H 11
80			75	78	79,5	L	79,9	80 <i>H</i> 9	78	80 <i>H</i> 11
85			80	83	84,3		84,85	85 <i>H</i> 9	82	85 <i>H</i> 11
90			85	88	89,3	}	89,85	90 <i>H</i> 9	88	90 <i>H</i> 11
95			90	93	94,3		94.85	95 <i>H</i> 9	92	95 <i>H</i> 11
100	+0.087	+0.22	95	98	99,3	+0.22	99,85	100 H 9	98	100H11
105	·		100	103	104,3	1	104,8	105 <i>H</i> 9	102	105 <i>H</i> 11
110			105	108	109,3	1	109,8	110 <i>H</i> 9	107	110 <i>H</i> 11
115			110	113	114,3		114,8	115 H 9	112	115 <i>H</i> 11
120			115	118	119,3		119,8	120 <i>H</i> 9	117	120 <i>H</i> 11
125			120	123	124,3	l	124,8	125 <i>H</i> 9	122	125 <i>H</i> 11
130			125	128	129,3		129,8	130 <i>H</i> 9	127	130 <i>H</i> 11
135			130	133	134,3	ł	134,8	135 <i>H</i> 9	132	135 <i>H</i> 11
140			135	138	139,3	}	139,8	140 <i>H</i> 9	137	140 <i>H</i> 11
145			140	143	144,3		144,8	145 <i>H</i> 9	142	145 <i>H</i> 11
150	+0,1	+0,25	145	148	149,3	+0,25	149,8	150 H 9	147	150 <i>H</i> 11
155			150	153	154,3		154,8	155 <i>H</i> 9	152	155 <i>H</i> 11
160			155	158	159,3	0	159,8	160 <i>H</i> 9	157	160 <i>H</i> 11
165			160	163	164,3		164,8	165 <i>H</i> 9	162	165 H 11
170			165	168	169.3		169,8	170 <i>H</i> 9	177	170 H 11
175			170	173	174,3		174,8	175 <i>H</i> 9	172	175 H 11
180	_		175	178	179,3		179,8	180 <i>H</i> 9	177	180 <i>H</i> 11
190			185	188	189,3		189,9	190 <i>H</i> 9	187	190 H 11
195	+0,115	+0,29	190	193	194,3	+0,29	194,8	195 H 9	192	195 <i>H</i> 11
200		·	194	197	199,3	1	199,8	200 <i>H</i> 9	197	200 <i>H</i> 11

Примечание. При обработке сквозных отверстий по *H*9 диаметром свыше 80 мм рекомендуется применять двухрезцовые оправки для совмещения первого и второго чернового растачивания.

9. Размеры протягиваемых отверстий (по ГОСТ 20364-74, ГОСТ 20365-74) Размеры, мм

	іметр ерстия	Длина про для дет	- отягивания галей из		метр рстия		отягивания галей из	
номи- нальный	до протяги- вания	сталей и алюминиевых сплавов	чугуна, бронзы. латуни и меди	поми- нальный	до протя- гивания	сталей и алюминиевых сплавов	чугуна, бронзы, латуни и меди	
10	9,4	10,5-21;	10,5 – 30;	22	20,9	19-53;	19-63;	
9,76	9,15	20-26	20-40	21,72	20,6	40-85	40-100	
11	10,4	11,5-15,5;	11,5-21;	24	22,9	21-53;	21-63;	
10,76	10,1	16-32	16-41	23.72	22,6	40-75	40-110	
12	11,4	11,5-15,5;	11,5-21;	25	23,9	21-53;	21-63;	
11,76	11,1	16 – 27	16-34	24,72	23,6	40-110	40-135	
13	12,4	11,5 – 15,5;	11,5-21;	26	24,9	21-53;	21-63;	
12,76	12,1	16-34	16 – 34	25,72	24,6	40-110	40-135	
14	13,4	15-34;	15-34;	(27)	25,9	21-46;	21-63;	
13,76	13,1	26 – 44	26-44	26,72	25,6	40-120	40 – 135	
15	14,4	15-34;	15-34;	28	26,9	21-46;	21-63;	
14,76	14,1	22 53	22 – 53	27,72	26,6	40 120	40 – 135	
16	15,4	15-40:	15-48;	30	28,9	21-46;	21-63;	
15,76	15,1	22-63	22-75	29,72	28,6	40 – 95 21 – 46;	40-135	
17	16,4	15-40;	15-48;	32	30,8		21-63;	
16,76	16,1	22-63	22-75	31,66	30,5	40 – 105	40-135	
18	17,4	15-40:	15-40;	34	32,8	21-46;	21-63;	
17,76	17,1	24 67	24-67	33.66	32,5	40 – 115	40 – 135	
(19)	18,1	17-40;	17-40;	(35)	33,8	21 - 46;	21-63;	
18,72	17,8	22-67	50 – 100	34,66	33,5	40-115	40-115	
20	19,1	19-53;	19-63;	36	34,8	21-46;	21-63	
19,72	8,81	30-90	30-100	35,66	34,5	40 – 115	40-145	
(21)	19,9	19-53;	19-63;	(37)	35,8	21-46;	21-63;	
20,72	19,6	19-53; 40-90	40 – 100	` ′	ĺ	40 – 100	40 – 145	
, . –		*				8 3	200 A	

Продолжение табл. 9

		, ,			Tipoodiatemie maom 5			
	метр рстия		отягивания галей из		метр эстия		отягивания галей из	
номи- нальный	до протяги- вания	сталей и алюминиевых сплавов	чугуна, бронзы, латуни и меди	номи- нальный	до протя- гивания	сталей и алюминиевых сплавов	чугуна, бронзы, латуни и мед и	
38	36,8	21-46; 40-100	21-63; 40-145	(58)	56,6	24 – 58; 40 – 118	24-85; 40-160	
37,66	36,5	40-100	40**143	57,6	56,2	40-116	40 100	
40	38,8	24-58: 40-130	24-85; 40-160	60	58,6	24-58; 40-125	24-58; 40170	
39,66	38,5	40-130	40-100	59,6	58,2	40-123	40 170	
42	40,7	24 – 58; 40 – 118	24-85; 40-160	63	61,6	24-58; 40-125	24-85; 40-170	
41,66	40,4	40116	40-100	62,6	61,2	40-123	40-170	
45	43,7	24 – 58; 40 – 118	24-85: 40-160	65	63,6	24-58; 40-130	24-85; 40-185	
44,66	43,4	40116	40100	64,6	63,2	40130	40-163	
(47)	45,7	24-58;	24-85; 40-160	70	68,6	2663; 42170	26-95; 42-215	
		40-118	40-160	69,6	68,2	42-170	42-213	
48	46,7	24-58;	24-85; 40-160	71	69,6	26-63; 42-170	26-95; 42-215	
47,66	46,4	40-118	40100	70,6	69,2	42-170	42-213	
50	48,7	24 58; 40 118	24 – 85; 40 – 160	75	73,5	26-63; 42-150	26-95; 42-215	
49,66	48,4	40-116	40-100	74,6	73,1	42-130	42-213	
52	50,6	24-58;	24-85;	80	78,5	26-63;	26-95; 42-215	
51,6	50,2	40-118	40-160	79,6	78,1	42-160	42-213	
53	51,6	24-58; 40-118	24-85; 40-160	85	83,5	30-90; 42-190	30-125 42-230	
52,6	51,2	1 40-116	40-100	84,54	83,0	42-190	42-230	
55	53,6	24-58;	24-85;	90	88,5	42 – 120; 45 – 220	40-175; 45-250	
54,6	53,2	40-118	40-160	89,54	88,0	45 – 220	45-230	
56	54,6	24-58;	24-85;					
55,6	54,2	40-118	40160					

Примечание. До протягивания поле допуска для отверстий диаметром до 30 мм (включительно) по H11, свыше 30 мм — по H12.

10. Размеры протягиваемых шлицевых отверстий с прямобочиым профилем по ГОСТ 25969—83, ГОСТ 25974—83

Размеры, мм

Центрирование по наружному диаметру

Центрирование по внутреннему диаметру

	Ді		гверстия вания d ₀	до	11	Диаметр отверстия до протягивация d_0				
Номинальный размер шлицевого отверстия	по нар	рование ужному иетру	Центрирование по внутреннему диаметру		Номинальный размер придевого отверстия		рование ужному истру	Центрирование по внутреннему диаметру		
$z \times \hat{d} \times D$	Размер	Допуск (+) по <i>H</i> 12	Размер	Допуск (+) по <i>H</i> 11	$z \times \dot{d} \times D$	Размер	Допуск (+) по <i>H</i> 12	Размер	Допуск (+) по ИП	
$ 6 \times 16 \times 20 \\ 6 \times 18 \times 22 $	15,4 17,4	0,18	15,4 17,4	0,11	8 × 42 × 46 8 × 42 × 48	41,4	0,25	41,1	0,16	
6 × 21 × 25	20,65		20,2		8 × 46 × 50 8 × 46 × 54	45.4		45,1		
$ 6 \times 23 \times 26 \\ 6 \times 23 \times 28 $	22,65		23,2	- 4 -	8 × 52 × 58	51,4		51		
$ 6 \times 26 \times 30 \\ 6 \times 26 \times 32 $	25,4	0,21	25,2	0,13	$8 \times 52 \times 60$ $8 \times 56 \times 62$	55,4	0,3	55	0,19	
$6 \times 28 \times 32$ $6 \times 28 \times 34$	27,4	- ,	27,2		$8 \times 56 \times 65$ $8 \times 62 \times 68$	61,4	,,-	61	,	
8 × 32 × 36 8 × 32 × 38	31,4		31,1		$8 \times 62 \times 72$ $10 \times 72 \times 78$					
$8 \times 36 \times 40$		0,25		0,16	$10 \times 72 \times 78$ $10 \times 72 \times 82$	71,4		71		
$8 \times 36 \times 42$	35,4		35,1		$10 \times 82 \times 88$	81,4	0,35	81	0,22	

11. Припуски точные (ПТ) и припуски точные увеличенные (ПТУ) на обработку отверстий Размеры. мм

иналь- диаметр эстия		метр с припуском	Допуск после пред-	миналь- й диамегр ерстия	Диаметр с при	Допуск носле пред- варительной	
Номиналь ный диаме отверстия	мынрог	точным увеличенным	варительной обработки по <i>H</i> 7 (+)	Номина. ный диа отверстк	точным	точным увсличенным	обработки по <i>H</i> 7 (+)
10	9,76	9,65	0,015	20	19,72	19,55	0,021
11	10,76	10,65	810,0	21	20,72	20,55	0,021
12	11,76	11,65	0,018	22	21,72	21,55	0,021
13	12,76	12,65	0,018	24	23,72	23,55	0,021
14	13,76	13,65	0,018	25	24,72	24,55	0,021
15	14,76	14,65	0,018	26	25,72	25,55	0,021
16	15,76	15,65	0,018	27	26.72	26,55	0,021
17	16,76	16,65	0,018	28	27,72	27,55	0,021
18	17,76	17.65	0,018	30	29,72	29,55	0,021
19	18,72	18,55	0,021	32	31,66	31,5	0,025

Продолжение табл. 11

иналь- лиаметр рстия		аметр с припуском	Допуск после пред-	иналь- диаметр рстия	Диаметр с при	Допуск после пред- варительной		
Номиналь ный диаме отверстия	точным	гочным увеличенным	варительной об работк и по <i>H</i> 7 (+)	Номиналь ный диаме отверстия	точным	точным увеличенным	обработки по <i>H</i> 7 (+)	
34	33,66	33,5	0,025	55	54,6	54,4	0,03	
35	34,66	34,5	0,025	58	57,6	57,4	0,03	
36	35,66	35,5	0,025	60	59,6	59,4	0,03	
38	37,66	37,5	0,025	63	62,6	62,4	0,03	
40	39,66	39,5	0,025	65	64,6	64,4	0,03	
42	41,66	41,5	0,025	70	69,6	69,4	0,03	
45	44,66	44,5	0,025	75	74,6	74,4	0,03	
48	47,66	47,5	0,025	80	79,6	79,4	0,03	
50	49,66	49,5	0,025	85	84,54	84,25	0,035	
52	51,6	51,4	0,03	90	89,54	89,25	0,035	

Примечания: 1. Припуск точный увеличенный применяют для тонкостенных втулок и других деталей, значительно деформирующихся при термической обработке.

2. Таблица составлена на основании государственных стандартов на протяжки (ГОСТ 20364 - 74, ГОСТ 20365 - 74).

12. Диаметры стержней под нарезание метрической резьбы (по ГОСТ 19258 – 73) Размеры, мм

					По.	не допуска	резьбы			
Номи- напьный диа-	Шаг резьбы Р	4ħ. 6h	6 <i>g</i>	6е	6 <i>d</i>	4 <i>h</i>	6h; 6g; 6e; 6d	8 <i>h</i>	8g	8h; 8g
метр резьоы			Но	лин.		Пред.	01 K.I.	Ноз	лин.	Пред. откл.
			•	C	крупным	1 шагом				
5	0,8	4,94	4,92	4,88	_	-0,07	-0.1	4,94	4,92	-0.18
6	1	5,92	5,89	5,86	5,83	-0.07	-0,1	5,92	5,89	-0.20
8	1,25	7,9	7,87	7,84	7,8	-0.08	-0.11	7,90	7,87	-0.24
10	1,5	9,88	9,85	9,81	9,78	-0,09	-0.12	9,88	9,85	-0.26
12	1,75	11,86	11,83	11,8	11,76	-0.1	-0.13	11,86	11,83	-0.29
14	2	13,84	13,8	13,77	13,74	-0.1	-0.13	13,84	13,8	-0.29
16	2	15,84	15,8	15,77	15,74	0,1	-0,13	15,84	15,8	-0,29
18	2,5	17,84	17,8	17,76	17,73	-0.13	-0.18	17,84	17,8	-0.37
20	2,5	19,84	19,8	19,76	19,73	-0,13	0,18	19,84	19,8	-0.37
22	2,5	21,84	21,8	21,76	21,73	-0,13	0,18	21,84	21,8	0,37
24	3	23,84	23,79	23,75	23,73	-0.16	-0,22	23,84	23,79	-0,44
27	3	26,84	26,79	26,75	26,73	-0,16	0,22	26,84	26,79	0,44
30	3,5	29,84	29,79	29,75	29,72	-0.18	-0,27	29,84	29,79	-0,51
33	3,5	32,84	32,79	32,75	32,72	-0.18	0,27	32,84	32,79	0,51
36	4	35,84	35,78	35,74	35,71	-0,22	-0.32	35,84	35,78	-0.59
39	4	38,84	38,78	38,74	38,71	-0,22	0,32	38,84	38,78	0,59
42	4,5	41.84	41,78	41,74	41,71	-0.24	-0.34	41,84	41,78	-0,64
45	4,5	44,84	44,78	44,74	44,71	-0.24	0,34	44,84	44,78	0,64
48	5	47,84	47,77	47,73	47,71	-0,26	-0,37	47,84	47,77	-0,69
52	5	51,84	51,77	51,73	51,71	-0.26	0,37	51,84	51,77	-0,69
56	5,5	55,84	55,76	55,73	55,7	-0,28	-0,4	55,84	55,76	-0,74
60	5,5	59,84	59,76	59,73	59,7	-0,28	0,4	59,84	59,76	0,74

		Поле допуска резьбы												
Номи- нальный диа-	Шаг резьбы	4h; 6h	6 <i>g</i>	6 e	6 <i>d</i>	4h	6h; 6g 6e; 6d	8 <i>h</i>	8g	8h; 8g				
метр резьбы	P		Ho	мин.		Пред	откл.	Ном	лин.	Пред. откл.				

С мелким шагом

6	0,5 0,75	5,94	5,92	5,89 5,88	. –	$ \begin{array}{c c} -0.04 \\ -0.06 \end{array} $	$ \begin{array}{c c} -0.06 \\ -0.09 \end{array} $	_	-	1
8	0,5 0,75 1	7,94 7,94 7,92	7,92 7,92 7,89	7,89 7,88 7,86	- - 7,83	-0,04 -0,06 -0,07	-0,06 -0,09 -0,1	- 7,92	- - 7,89	- - -0,2
10	0,5 0,75 1 1,25	9,94 9,94 9,92 9,90	9,92 9,92 9,89 9,87	9,89 9,88 9,86 9,84	- 9,83 9,80	-0,04 -0,06 -0,07 -0,08	-0,06 -0,09 -0,1 -0,11	- 9,92 9,90	- 9,89 9,87	- -0,2 -0,24
12	0,5 0,75 1 1,25 1,5	11,94 11,94 11,92 11,90 11,88	11,92 11,92 11,89 11,87 11,85	11,89 11,88 11,86 11,84 11,81	- 11,83 11,80 11,78	-0,04 -0,06 -0,07 -0,08 -0,09	-0,06 -0,09 -0,1 -0,11 -0,12	- 11,92 11,90 11,88	- 11,89 11,87 11,85	-0,2 -0,24 -0,26
14	0,5 0,75 1 1,25 1,5	13,94 13,94 13,92 13,90 13,88	13,92 13,92 13,89 13,87 13,85	13,89 13,88 13,86 13,84 13,81	13,83 13.80 13,78	$ \begin{array}{r} -0.04 \\ -0.06 \\ -0.07 \\ -0.08 \\ -0.09 \end{array} $	-0,06 -0,09 -0,1 -0,11 -0,2	13,92 13,90 13,88	13,89 13,87 13,85	-0,2 -0,24 -0,26
16	0,5 0,75 1 1,5	15,94 15,94 15,92 15,88	15,92 15,92 15,89 15,85	15,89 15,88 15,86 15,81	- 15,83 15,78	-0,04 -0,06 -0,07 -0,09	$ \begin{array}{r} -0.06 \\ -0.09 \\ -0.1 \\ -0.12 \end{array} $	- 15,92 15,88	- 15,89 15,85	-0,2 $-0,26$
18	0,5 0,75 1 1,5 2	17,94 17,94 17,92 17,88 17,84	17,92 17,92 17,89 17,85 17,80	17,89 17,88 17,86 17,81 17,77	- 17,83 17,78 17,74	-0,04 -0,06 -0,07 -0,09 -0,1	-0,06 -0,09 -0,1 -0,12 -0,13	17,92 17,88 17,84	- 17,89 17,85 17,80	$ \begin{array}{c c} -0,2 \\ -0,26 \\ -0,29 \end{array} $
20	0,5 0,75 1 1,5 2	19,94 19,94 19,92 19,88 19,84	19,92 19,92 19,89 19,85 19,80	19,89 19,88 19,86 19,81 19,77	- 19,83 19,78 19,74	$ \begin{array}{r} -0.04 \\ -0.06 \\ -0.07 \\ -0.09 \\ -0.1 \end{array} $	-0,06 -0,09 -0,1 -0,12 -0,13	- 19,92 19,89 19,84	19,89 19,85 19,80	-0,2 -0,26 -0,29
22	0,5 0,75 1 1,5 2	21,94 21,94 21,92 21,88 21,84	21,92 21,92 21,89 21,85 21,80	21,89 21,88 21,86 21,81 21,77	21,83 21,78 21,74	-0.04 -0.06 -0.07 -0.09 -0.1	-0,06 -0,09, -0,1 -0,12 -0,13	21,92 21,88 21,84	21,89 21,85 21,80	$ \begin{array}{c} -0.2 \\ -0.26 \\ -0.29 \end{array} $

Продолжение табл. 12

		Theorem Mach. 1								
					Пол	пе допуска	резьбы			
Номи- нальный диа-	Шаг резьбы	4h; 6h	6.g	6e	6 <i>d</i>	4h	6h; 6g; 6e; 6d	8 <i>h</i>	8g	8h; 8g
метр резьбы	P		Hon	иин.		Пред.	Откл.	Ног	мин.	Пред. откл.
	0,75	23,94	23,92	23,88	_	-0,06	-0,09			
24	1	23,92	23,89	23,86	23,83	-0,07	-0.09	23,92	23,89	-0,2
24	1,5	23,88	23,85	23,81	23,78	-0.09	-0,12	23,88	23,85	-0,26
	2	23,84	23,80	23,77	23,74	-0,1	-0.13	23,84	23,80	-0,29
	0,75	26,94	26,92	26,88		-0,06	0.00			
	1	26,92	26,89	26,86	26,83	-0,00 -0,07	-0,09	26.02	26.90	0.2
27	1,5	26,88	26,85	26,81	26,78	-0,09	$ \begin{array}{c c} -0,1 \\ -0,12 \end{array} $	26,92 26,88	26,89 26,85	-0.2 -0.26
	2	26,84	26,80	26,77	26,74	-0,1	-0.12 -0.13	26,84	26,80	-0,20
	0.75		20.02					20,01	20,00	0,25
	0,75 1	29,94 29,92	29,92 29,89	29,88 29,86	29,83	-0.06 -0.07	-0,09	-	-	-
30	1,5	29,88	29,85	29,80	29,78	-0,09	-0,1	29,92	29,89	-0,2
- 50	2	29.84	29,80	29,77	29,74	-0,1	-0.12 -0.13	29,88 29,84	29,85 29,80	-0.26 -0.29
	3	29,84	29,79	29,75	29,73	-0,16	-0,13 -0,22	29,84	29,79	-0.29
	0.75	22.04	22.02							
	0,75 1	32,94 32,92	32,92 32,89	32,88	20.02	-0.06	-0,09		22.00	0.2
33	1,5	32,88	32,85	32,86	32,83	-0.07	-0,1	32,92	32,89 32,85	-0,2
55	2	32,84	32,80	32,81 32,77	32,78 32,74	-0.09 -0.1	-0.12 -0.13	32,88 32.84	32,83	-0.26 -0.29
	3	32,84	32,79	32,77	32,73	-0,1 -0,16	-0,13 -0,22	32,84	32,79	-0,29 -0,44
	1	35,92	35,89	35,86	35,83	-0.07	-0,1	35,92	35,89	-0,2
	1,5	35,88	35,85	35,80	35,78	-0,09	-0,1	35,88	35,85	-0,26
36	2	35,84	35,80	35,77	35,74	-0,1	-0,13	35,84	35,80	-0,29
	3	35,84	35,79	35,75	35,73	-0,16	-0,22	35,84	35,79	-0,44
	1	38,92	38,89	38,86	38,83	-0,07	-0,1	38,92	38,89	-0,2
20	1,5	38,88	38,85	38,81	38,78	-0,09	-0,12	38,88	38,85	-0,26
39	2	38,84	38,80	38,77	38,74	0,1	-0,13	38,84	38,80	-0,29
	3	38,84	38,79	38,75	38,73	-0,16	-0,22	38,84	38,79	-0,44
	1	41,92	41,89	41,86	41,83	-0,07	-0,1	41,92	41,89	-0,2
	1,5	41,88	41,85	41,81	41,78	-0,09	-0,12	41,88	41,85	-0,26
42	2	41,84	41,80	41,77	41,74	-0,1	-0,13	41,84	41,80	-0,29
i	3	41,84	41,79	41,75	41,73	-0,16	-0.22	41,84	41,79	-0,44
	4	41,84	41,78	41,74	41,71	-0,22	-0,32	41,84	41,78	0,59
	1	44,92	44,89	44,86	44,83	0,07	0,1	44,92	44,89	-0,2
	1,5	44,88	44,85	44,81	44,78	-0,09	-0.12	44,88	44,85	-0,26
45	2	44,84	44,80	44,77	44,74	-0,1	-0,13	44,84	44,80	-0,29
i	3	44,84	44,79	44,75	44,73	-0,16	0,22	44,84	44,79	-0,44
	4	44,84	44,78	44,74	44,71	-0,22	-0,32	44,84	44,78	-0,59
	l	47,92	47,89	47,86	47,83	-0,07	-0,1	47,92	47,89	-0,2
ĺ	1,5	47,88	47,85	47,81	47,78	-0,09	-0,12	47,88	47,85	-0,26
48	2	47,84	47,77	47,77	47,74	0,1	0,13	47,84	47,80	-0,29
	3	47.84	47,79	47,75	47,73	-0.16	-0.22	47,84	47,79	-0,44
	4	47,84	47,78	47,74	47,71	-0,22	-0,32	47,84	47,78	-0,59

13. Диаметры стержней под накатывание метрической резьбы (по ГОСТ 19256 ~ 73)

Размеры, мм

С крупным шагом Вода (др. др. др. др. др. др. др. др. др. др.	Номин. Пред. откл. 4,45 4,42 -0,1 5,32 5,29 -0,11 7,15 7,12 -0,11 8,99 8,96 -0,12 10,82 10,79 -0,13 12,66 12,62 -0,13 14,66 14,62 -0,14 16,34 16,29 -0,14 18,34 18,29 -0,14 20,34 20,29 -0,14 22,0 21,95 -0,18
C крувным шагом 5 0,8	10,000 OTK31. 4,45
5 0,8 4,48 -0,04 4,47 4,45 4,41 - -0.06 4,45 4,6 6 1 5,36 -0.05 5,34 5,32 5,28 5,25 -0.07 5,32 5, 8 1,25 7,20 -0.05 7,18 7,12 7,12 7,08 -0.07 7,15 7, 10 1,5 9,04 -0.06 9,02 8,99 8,96 8,93 -0.08 8,99 8,9 12 1,75 10,88 -0,07 10,86 10,83 10,80 10,76 -0.09 10,82 10, 14 2 12,72 -0.07 12,70 12,66 12,63 12,60 -0.1 12,66 12,1 16 2 14,72 -0.07 14,30 14,66 14,63 14,60 -0.1 12,66 12,1 16 2 14,72 -0.07 18,38 18,34 18,30 18,27 -0.1 18,3	5,32 5,29 -0,11 7,15 7,12 -0,11 8,99 8,96 -0,12 10,82 10,79 -0,13 12,66 12,62 -0,13 14,66 14,62 -0,14 16,34 16,29 -0,14 18,34 18,29 -0,14 20,34 20,29 -0,14 22,0 21,95 -0,18
6 1 5,36 -0,05 5,34 5,32 5,28 5,25 -0,07 5,32 5,8 1,25 7,20 -0,05 7,18 7,12 7,12 7,08 -0,07 7,15 7,10 1,5 9,04 -0,06 9,02 8,99 8,96 8,93 -0,08 8,99 8,96 8,93 -0,08 8,99 8,96 8,93 -0,08 8,99 8,12 1,75 10,88 -0,07 10,86 10,83 10,80 10,76 -0.09 10,82 10,14 2 12,72 -0,07 12,70 12,66 12,63 12,60 -0,1 12,66 12,16 2 14,72 -0,07 14,70 14,66 14,63 14,60 -0,1 14,66 14,18 2,5 16,40 -0,07 16,38 16,34 16,30 16,27 -0,1 16,34 16,20 2,5 18,40 -0,07 18,38 18,34 18,30 18,27 -0,1 18,34 18,22 2,5 20,40 -0,07 20,38 20,34 20,30 20,27 -0,1 20,34 20,24 3 22,08 -0,09 22,05 22,00 21,96 21,94 -0,13 22,0 21,27 3 25,08 -0,09 25,05 25,00 24,96 24,94 -0,13 22,0 24,30 3,5 27,76 -0,09 27,73 27,68 27,64 27,61 -0,13 30,68 30,36 4 33,44 -0,09 33,41 33,35 33,31 33,28 -0,13 33,35 33,39 4 36,44 -0,09 36,41 36,35 36,31 36,28 -0,13 33,35 33,39 4 36,44 -0,09 36,41 36,35 36,31 36,28 -0,13 33,35 33,39 4 36,44 -0,09 36,41 36,35 36,31 36,28 -0,13 36,35 36,42 4,5 39,42 -0,1 42,09 42,03 41,99 41,96 -0,14 42,03 41,48 5 44,80 -0,1 44,77 44,70 44,66 44,64 -0,15 44,77 44,70 44,66 44,64 -0,15 44,77 44,70 44,66 44,64 -0,15 44,77 44,70 44,66 44,64 -0,15 44,77 44,70 44,66 44,64 -0,15 44,70 48,66 66,17 -0,12 60,13 60,05 60,01 59,98 -0,17 60,05 59,68 6 64,17 -0,12 64,13 64,05 64,01 63,98 -0,17 64,05 63,70 66 0,5 5,51 -0,04 5,50 5,48 5,450,007 5,50 -0,07 5,50 -0,07 5,50 -0,07 5,51 -0,004 7,50 7,48 7,450,007 7,50 -0,007 5,50 -0,007 7,50 -0,007 5,50 -0,007 7,32 7,28 7,28 7,25 7,25 7,25 7,32 7,32 7,32 7,32 7,32 7,32 7,32 7,32	5,32 5,29 -0,11 7,15 7,12 -0,11 8,99 8,96 -0,12 10,82 10,79 -0,13 12,66 12,62 -0,13 14,66 14,62 -0,14 16,34 16,29 -0,14 18,34 18,29 -0,14 20,34 20,29 -0,14 22,0 21,95 -0,18
С мелким шагом 5 0,5 4,67 -0,03 4,66 4,65 4,62 - -0,05 4,66 - 6 0,5 5,67 0,75 5,51 -0,04 5,66 5,65 5,48 5,45 - -0,06 5,66 - 8 0,75 7,51 -0,04 7,50 7,48 7,45 - -0,07 7,50 7,32 7,32 7,28 7,25 - 1 7,36 -0,05 7,34 7,32 7,28 7,25 - -0,07 7,50 7,32 7,32 7,32 7,32 7,34 7,32 7,34 7,35 -	27,68 27,62 -0,19 30,68 30,62 -0,19 33,35 33,29 -0,19 36,35 36,29 -0,19 39,03 38,96 -0,20 42,03 41.96 -0,20 44,7 44.63 -0,21 48,70 48,63 -0,21 60,05 59,97 -0,24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64,05 63,97 -0,24
6 0,75 5,51 -0,04 5,50 5,48 5,45 -0,07 5,50 8 0,75 7,51 -0,04 7,50 7,48 7,45 -0,07 7,50 7,32 1 7,36 -0,05 7,34 7,32 7,28 7,25 -0,07 7,32 7,32	4,66 - -0,09
1 7,36 -0,05 7,34 7,32 7,28 7,25 7,32 7,32 7,32 7,32	
0,75 9,51 -0,04 9,50 9,48 9,45 - 9,50 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,32 9.29 $-0,11$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1/1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

í 6ы	b					Поле до	пуска рез	ьбы			не таол. 15
Номинальный пиаметр резьбы	резьбы /		4 <i>h</i>	6 <i>h</i>	6g	6e	6 <i>d</i>	6h; 6g; 6e; 6d	8ħ	8g	8h; 8g
Номинал лиаметр	Шагр	Но- мин.	Пред, откл.		Hov	лин.		Пред. откл.	Hor	мин.	Пред. откл.
16	0,75 1 1,5	15,51 15,35 15,03	-0.05 -0.06 -0.06	15,50 15,33 15,01	15,48 15.31 14,98	15,45 15,27 14,95	15,24 14,92	-0.08 -0.08 -0.09	15,50 15,31 14,98	15,28 14,95	$ \begin{array}{r} -0.14 \\ -0.12 \\ -0.14 \end{array} $
18	0,75 1 1,5 2	17,51 17,35 17,03 16,72	$\begin{array}{c c} -0.05 \\ -0.06 \\ -0.06 \\ -0.07 \end{array}$	17,50 17,33 17,01 16,70	17,48 17,31 16,98 16,66	17,45 17,27 16,95 16,63	17,24 16,92 16,60	$ \begin{array}{r} -0.08 \\ -0.08 \\ -0.09 \\ -0.1 \end{array} $	17,50 17,31 16,98 16,66	17,28 16,95 16,62	$ \begin{array}{c c} -0,14 \\ -0,12 \\ -0,14 \\ -0,15 \end{array} $
20	1 1,5 2	19,35 19,03 18,72	$ \begin{array}{c c} -0.06 \\ -0.06 \\ -0.07 \end{array} $	19,33 19,01 18,70	19,31 18,98 18,66	19,27 18,95 18,63	19,24 18,92 18,60	$ \begin{array}{r} -0.08 \\ -0.09 \\ -0.1 \end{array} $	19,31 18,98 18,66	19.28 18,95 18,62	$ \begin{array}{r r} -0.12 \\ -0.14 \\ -0.15 \end{array} $
22	1 1,5 2	21,35 21,03 20,72	$ \begin{array}{r} -0.06 \\ -0.06 \\ -0.07 \end{array} $	21,33 21,01 20,70	21,31 20,98 20,66	21,27 20,95 20,63	21,24 20,92 20,60	-0,08 -0,09 -0,1	21,31 20,98 20,66	21,28 20,95 20,62	$ \begin{array}{r r} -0.12 \\ -0.14 \\ -0.15 \end{array} $
24	1 1,5 2	23,35 23,02 22,71	-0,06 -0,07 -0,08	23,33 23,00 22,69	23,31 22,97 22,65	23,27 22,94 22,62	23,24 22,91 22,59	-0,09 -0,1 -0,11	23,31 22,97 22,65	23,28 22,94 22,61	$ \begin{array}{r} -0.13 \\ -0.15 \\ -0.17 \end{array} $
27	1 1.5 2	26,35 26,02 25,71	-0.06 -0.07 -0.08	26,33 26,00 25,69	26,31 25,97 25,65	26,27 25,94 25,62	26,24 25,91 25,59	$ \begin{array}{r} -0.09 \\ -0.1 \\ -0.11 \end{array} $	26,31 25,97 25,65	26,28 25,94 25,61	$ \begin{array}{r} -0.13 \\ -0.15 \\ -0.17 \end{array} $
30	1 1,5 2	29,35 29,02 28,71	$ \begin{array}{r} -0.06 \\ -0.07 \\ -0.08 \end{array} $	29,33 29,00 28,69	29,31 28,97 28,65	29,27 28,94 28,62	29,24 28,91 28,59	$ \begin{array}{r r} -0.09 \\ -0.1 \\ -0.11 \end{array} $	29,31 28,97 28,65	29,28 28,94 28,61	$ \begin{array}{r r} -0.13 \\ -0.15 \\ -0.17 \end{array} $
33	1,5	32,02 31,71	-0.07 -0.08	32,00 31,69	31,97 31,65	31,94 31,62	31,91 31,59	-0.1 -0.11	31,97 31,65	31,94 31,61	-0.15 -0.17
36	1,5 2 3	35,02 34,71 34,08	$ \begin{array}{r} -0.07 \\ -0.08 \\ -0.09 \end{array} $	35,00 34,69 34,05	34,97 34,65 34,00	34,94 34,62 33,96	34,91 34,59 33,94	$ \begin{array}{r} -0,1 \\ -0,11 \\ -0,13 \end{array} $	34,97 34,65 34,00	34,94 34,61 33,95	$ \begin{array}{r} -0.15 \\ -0.17 \\ -0.18 \end{array} $
39	1,5 2 3	38,602 37,71 37,08	-0.07 -0.08 -0.09	38,00 37,69 37,05	37,97 37,65 37,00	37,94 37,62 36,96	37,91 37,59 36,94	-0.1 -0.11 -0.13	37,97 37,65 37,00	37,94 37,61 36,95	-0.13 -0.17 -0.18
42	2 3 4	40,71 40,08 39,44	-0.08 -0.09 -0.09	40,69 40,05 39,41	40,65 40,00 39,35	40,62 39,96 39,31	40,59 39,94 39,28	-0,11 -0,13 -0,13	40,65 40,00 39,35	40,61 39,95 39,29	-0.17 -0.18 -0.19
45	2 3 4	43,71 43,08 42,44	-0,08 -0,09 -0,09	43,69 43,05 42,41	43,65 43,00 42,35	43,62 42,96 42,31	43,59 42,94 42,28	-0,11 -0,13 -0,13	43,65 43,00 42,35	43,61 42,95 42,28	-0,17 -0,18 -0,19

14. Стержин под нарезание трубной цилиидрической резьбы (по ГОСТ 21347-75)

Размеры, мм

BLIÄ 35 Obi,	Число			Диаметр стержня под резьбу ДО Числ						етр стера од резьбу	
Номинальиый размер резьбы, дюймы	ниток на 1"	Шаг Р	Но-	Пред. для ка точн	тассов	Номинальный размер резьбы, дюймы	ниток Шаг на 1" Р		Номин.	Пред. для к точн	тассов
Ном Диой			мин.	A	В	Но раз дю				A	В
1/8	28	0,907	9,67	-0,21	-0,32	2			59,56	-0,28	0,46
1/4		1 22-	13,10	0.00	0.25	2 1/4			65,66		
3/8	19	1,337	16,61	-0,23	-0,35	2 1/2			75,13		
1/2			20,90	·		2 3/4			81,48		
5/8		1 014	22,86	0.24	0.20	3			87,83		
3/4	14	1,814	26,39	-0,24	-0,38	3 1/4	11	2 200	93,93		
7/8			30,15			3 1/2	11	2,309	100,28	-0,32	-0,53
1			33,19			3 3/4			106,63		(i)
1 1/8			37,84		9	4			112,98	ļ	
1 1/4			41,86			4 1/2			125,68		
1 3/8	11	2,309	44,27	-0,28	-0,46	5			138,38		
1 1/2			47,75			5 1/2			151,08		
1 3/4			53,69			6			163,78		

Примечание. В таблице указаны диаметры стержней под нарезание трубной цилиндрической резьбы по ГОСТ 6357-81, изготовляемых из сталей по ГОСТ 380-71*, ГОСТ 4543-71*, ГОСТ 1050-74**, ГОСТ 5632-72* (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78*.

15. Стержни под нарезание трубной конической резьбы (по ГОСТ 21349-75)

Размеры, мм

Номи- нальный	Число ниток	Шаг Р	Диаметр под р		Номи- нальный	Число ниток	IIIar <i>P</i>	Днаметр под р	
размер резьбы, дюймы	на 1″		Номин.	Пред. откл.	ред. резьбы, на 1"			Номин.	Пред. откл.
1/8	28	0,907	9,67		1		2 200	33,11	
1/4			13,08		1 1/4	11	2,309	41,77	
3/8	19	1,337	16,55	0.10	1 1/2			47,66	
1/2			20,85	-0,10	2	11	2,309	59,47	-0,10
3/4	14	1,814	26,33		2 1/2			74,97	

Продолжение табл. 15

размер	Число	ш в	Диаметр под р		Номи- нальный	Число	War P		стержня езьбу
	ниток на 1″	Шаг Р	Номин,	Пред. откл.	размер резьбы, дюймы	ниток на 1″	mar P	Номин.	Пред. откл.
3	11	2,309	87,67	-0.10	5	11	2,309	138,22	-0,10
4		,	112,82	,	6	_	,	163,62	

Примечание. В таблице указаны диаметры стержней под нарезание трубной конической резьбы по ГОСТ 6211-81, изготовляемых из сталей по ГОСТ 380-71*, ГОСТ 4543-71*, ГОСТ 1050-74** и ГОСТ 5632-72* (кроме сплавов на никелевой основе) и мели по ГОСТ 859-78*.

16. Диаметры отверстий под нарезание метрической резьбы (по ГОСТ 19257-73)

				Поле допус	ка		
Номи- нальный днаметр резьбы	Шаг резьбы Р	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4 <i>H</i> 5 <i>H</i> ; 5 <i>H</i>	5H6H; 6H; 6G	7H; 7G	Диаметр сверла под резьбу
резьоы		Ном	ин.		Пред. откл.		резвоу
			Ск	—— рупиым шаго)M		
5	0,8	4,20	4,23	+0,09	+0,13	+0.18	4,2
6	1	4,95	5,0	+0,17	+0,20	+0,26	5,0
8	1,25	6,7	6,75	+0,17	+0,20	+0,26	6,8
10	1,5	8,43	8,5	+0,19	+0,22	+0,3	8,5
12	1,75	10,2	10,25	+0,21	+0,27	+0,36	10,2
14	2	11,9	11,95	+0,24	+0,30	+0,40	12,0
16	2	13,9	13,95	+0,24	+0,30	+0,40	14,0
18	2,5	15,35	15,40	+0,30	+0,40	+0,53	15,5
20	2,5	17,35	17,40	+0,30	+0.40	+0,53	17,5
22	2,5	19,35	19,40	+0,30	+0,40	+0,53	19,5
24	3	20,85	20,90	+0,30	+0,40	+0,53	21,0
27	3	23,85	23,90	+0,30	+0,40	+0,53	24,0
30	3,5	26,30	26,35	+0,36	+0,48	+0,62	26,5
33	3,5	29,30	29,35	+0,36	+0,48	+0,62	29,5
36	4	31,80	31,85	+0,36	+0,48	+0,62	32,0
39	4	34,80	34,85	+0,36	+0,48	+0,62	35,0
42	4,5	37,25	37,30	+0,41	+0,55	+0,73	37,5
45	4,5	40,25	40,30	+0,41	+0,55	+0,73	40,5
48	5	42,70	42,80	+0,45	+0,60	+0.80	43,0
52	5	46,70	46,80	+0,45	+0,60	+0,80	47,0
			См	елким шаго	м		
6	0,5 0,75	5,5 5,2	5,52 5,23	+0.08 +0.11	+0,10 +0,17	+0.14 + 0.22	5,5 5,25
8	0,5 0,75 1,0	7,5 7,2 6,95	7,52 7,23 7,0	+0,08 +0,11 +0,17	+0,1 +0,17 +0,2	+0,14 +0,22 +0,26	7,5 7,25 7,0

Продолжение табл. 16

				Поле допус	ка		жение таол. 16
Номи- нальный диаметр	Шаг резьбы <i>Р</i>	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4H5H; 5H	5H6H; 6H; 6G	7H; 7G	Диаметр сверла под
резьбы		Ном	ин.		Пред. откл.		резьбу
10	0,5 0,75 1 1,25	9,5 9,2 8,95 8,7	9,52 9,23 9,0 8,75	+0,08 +0,11 +0,17 +0,17	+0,1 +0,17 +0,2 +0,2	+0.14 $+0.22$ $+0.26$ $+0.26$	9,5 9,25 9,0 8,8
12	0,5 0,75 1 1,25 1,5	11,5 11,2 10,95 10,7 10,43	11,52 11,23 11,0 10,75 10,5	+0,08 +0,11 +0,17 +0,17 +0,19	+0,1 +0,17 +0,2 +0,2 +0,22	+0.14 $+0.22$ $+0.26$ $+0.26$ $+0.3$	11,5 11,25 11,0 10,8 10,5
14	0.5 0,75 1 1,25 1,5	13,5 13,2 12,95 12,7 12,43	13,52 13,23 13,0 12,75 12,5	$ \begin{array}{r} +0.08 \\ +0.11 \\ +0.17 \\ +0.17 \\ +0.19 \end{array} $	+0,1 +0,17 +0,2 +0,2 +0,22	+0.14 $+0.22$ $+0.26$ $+0.26$ $+0.3$	13,5 13,25 13,0 12,8 12,5
16	0,5 0,75 1 t,5	15,5 15,2 14,95 14,43	15,52 15,23 15,0 14,5	+0,08 +0,11 +0,17 +0,19	+0,1 +0,17 +0,2 +0,22	+0,14 +0,22 +0,26 +0,3	15,5 15.25 15,0 14,5
18	0,5 0,75 1 1,5 2	17,5 17,2 16,95 16,43 15,9	17,52 17,23 17,0 16,5 15,95	+0,08 +0,11 +0,17 +0,19 +0,24	+0,1 +0,17 +0,2 +0,22 +0,3	+0,14 +0,22 +0,26 +0,3 +0,4	17.5 17.25 17,0 16,5 16,0
20	0,5 0,75 1 1,5 2,0	19,5 19,2 18,95 18,43 17,9	19,52 19,23 19,0 18,5 17,95	+0,08 +0,11 +0,17 +0,19 +0,24	+0,1 +0,17 +0,2 +0,22 +0,3	+0.14 $+0.22$ $+0.26$ $+0.3$ $+0.4$	19,5 19,25 19,0 18,5 18,0
22	0,5 0,75 1 1,5 2	21,5 21,2 20,95 20,43 19,9	21,52 21,23 21,0 20,5 19,95	+0,08 +0,11 +0,17 +0,19 +0,24	+0,1 +0,17 +0,2 +0,22 +0,3	+0,14 +0,22 +0,26 +0,3 +0,4	21,5 21,25 21,0 20,5 20,0
24	0,75 1 1,5 2	23,2 22,95 22,43 21,9	23,23 23,0 22,5 21,95	+0,11 +0,17 +0,19 +0,24	+0,17 +0,20 +0,22 +0,3	+0.22 +0.26 +0.3 +0.4	23,25 23,0 22,5 22,0
27	0,75 1 1,5 2	26,2 25,95 25,43 24,9	26,23 26,0 25,5 24,95	+0,11 +0,17 +0,19 +0,24	+0,17 +0,20 +0,22 +0,3	+0,22 +0,26 +0,3 +0,4	26,25 26,0 25,5 25,0

Продолжение табл. 16

				Поле допус	ка		
Номи- нальный диаметр резьбы	Шаг резьбы Р	4 <i>H</i> 5 <i>H</i> ; 5 <i>H</i> ; 5 <i>H</i> 6 <i>H</i> ; 6 <i>H</i> ; 7 <i>H</i>	6G; 7G	4 <i>H</i> 5 <i>H</i> ; 5 <i>H</i>	5H6H; 6H; 6G	7H; 7G	Диаметр сверла под резьбу
	<u></u>	Номи	IH.		Пред. откл.		резвоу
	0,75	29,2	29,23	+0,11	+0,17	+0,22	29,25
	1	28,95	29,00	+0,17	+0,2	+0,26	29,0
30	1,5	28,43	28,5	+0,19	+0,22	+0,3	28,5
	2	27,9	27,95	+0,24	+0,3	+0,4	28,0
	3	26,85	26,9	+0,3	+0,4	+0,53	27,0
	0,75	32,2	32,23	+0,11	+0,17	+0,22	32,25
	1	31,95	32,0	+0.17	+0,2	+0,26	32,0
33	1,5	31,43	31,5	+0,19	+0,22	+0,3	31,5
	2	30 ,9	30,95	+0,24	+0,3	+0.4	31,0
	3	29,85	29,9	+0,3	+0,4	+0,53	30,0
	1	34,95	35,0	+0,17	+0,20	+0,26	35,0
27	1.5	34,43	34,0	+0.19	+0,22	+0.3	34,5
36	2	33,9	33,95	+0.24	+0,3	+0.4	34,0
	3	32,85	32,9	+0,3	+0,4	+0,53	33,0
	l ı l	37,95	38,0	+0,17	+0,20	+0,26	38,0
39	1,5	37,43	37,5	+0.19	+0,22	+0.3	37,5
.19	2	36,9	36,95	+0.24	+0,3	+0.4	37,0
	3	35,85	36,9	+0,3	+0,4	+0,53	36,0
	J	40,95	41.0	+0,17	+0,2	+0,26	41,0
	1,5	40,43	40,5	+0.19	+0,22	+0,3	40,5
42	2	39,9	39,95	+0.24	+0,3	+0.4	40,0
	3	38,85	38,9	+0.3	+0,4	+0,53	39,0
	4	37,8	37,85	+0.36	+0,48	+0,62	38,0
	1	43.95	44,0	+0,17	+0,20	+0,26	44,0
	1,5	43,43	43,5	+0,19	+0,22	+0.3	43,5
45	2	42,9	42,95	+0.24	+0,3	+0.4	43,0
	3	41,85	41,9	+0,3	+0,4	+0.53	42,0
_	4	40,8	40,85	+0,36	+0,48	+0,62	41,0
	I	46,95	47,0	+0,17	+0,2	+0,26	47,0
	1,5	46,43	46,5	+0,19	+0,22	+0,3	46,5
48	2	45,9	45,95	+0,24	+0,3	+0,4	46,0
	3	44,85	44,9	+0,3	+0,4	+0,53	45,0
111	4	43,8	43,85	+0,36	+0,48	+0,62	44,0

Примечания: 1. Диаметры отверстий указаны для нарезания метрической резьбы по ГОСТ 9150-81 с допусками по ГОСТ 16093-81, в сером чугуне по ГОСТ 1412-85, в сталях по ГОСТ 380-71*, ГОСТ 1050-74**, ГОСТ 4543-71*, ГОСТ 10702-78, ГОСТ 5632-72* (кроме сплавов на никелевой основе), в алюминиевых сплавах по ГОСТ 2685-75*, в меди по ГОСТ 859-78*.

^{2.} Определение диаметров отверстий под нарезание резьбы для материалов повышенной вязкости производится согласно приложению № 2 к ГОСТ 19257—73.

^{3.} К группе материалов повышенной вязкости относят: сплавы магния по ГОСТ 804—72*; алюминиевые сплавы по ГОСТ 4784—74; латуни по ГОСТ 15527—70*; титановые сплавы; стали и сплавы высоколегированные, коррозионно-стойкие, жапрочные (на никелевой основе) по ГОСТ 5632—72*.

17. Днаметры отверстий нод нарезание трубной цилнидрической резьбы (но ГОСТ 21348-75)

Размеры, мм

Номи-			Диамет	р отверстия п	од резьбу	Диаметр с	сверла для
нальный размер резьбы,	Число ниток на 1 "	Шаг Р	. Номин.		. для классов ности	классов точн	юсти резьбь
дюймы				A	В	A	В
1/8	28	0,907	8,62	+0,10	+0,20	_	8,7
1/4	10		11,50	0.10	0.05	11,5	11,50
3/8	19	1,337	15,0	+0,12	+0,25	15,0	15,00
1/2			18,68			-	18,75
5/8]		20,64		. 0.20	_	20,75
3/4	14	1,814	24,17	+0,14	+0,28	_	24,25
7/8]	,	27,93			_	28,00
1			30,34			_	30,50
1 1/8]		35,00	0.40		35,0	35,00
1 1/4	11	2,309	39,00	+0,18	+0,36	39,00	39,00
1 3/8		**	41,41			_	41,50
1 1/2			44,90			_	45
1 3/4			50,84		0.36		51
2		4.	56,70	+0,18	+0,36		
2 1/4	-		62,80				
2 1/2	-	2.5	72,27		100		
2 3/4		1	78,62		242	F	
3	11	2,309	84,97				
3 1/4	- 50		91,07	40		Растач	ивание
3 1/2			97,42	+0,22	+0,43		44,
3 3/4			103,77			*	
4		•	110,12	_			0.5
4 1/2			122,82		Y-	140	
5			135,52			340	
5 1/2			148,22				
6			160,92				

Примечание. В таблице указаны диаметры отверстий под нарезание трубной цилиндрической резьбы по ГОСТ 6357-81 в изделнях из сталей по ГОСТ 380-71*, ГОСТ 4543-71*, ГОСТ 1050-74** и ГОСТ 5632-72* (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78.

18. Отверстия под нарезание трубной конической резьбы (но ГОСТ 21350-75)

С развертыванием на конус

Без развертывания на конус

Размеры, мм

i pa3-			(Отверстия	с развер на конус		М		тия без ния на к		Глу-
ыный бы,	Число ниток	Шаг <i>Р</i>	a	l_c	a	6	етр			crp	бина свер-
Номинальный мер резьбы, дюймы	Номинал мер резь дюймы ен на		Номин.	Пред. откл.	Номин.	Пред. откл.	Рекомендуе- мый диаметр сверла	Номин.	Пред. откл.	Рекоменлуе- мый диамстр сверла	ления <i>l</i>
1/8	28	0,907	8,10	+0,20	8,57		8,1	8,25	+0,20	8,3	15
1/4	10	1 227	10,80	1024	11,45		10,8	11,05	. 0.24	11,1	20
3/8	19	1,337	14,30	+0,24	14,95		14,3	14,50	+0,24	14,5	24
1/2	14	1,814	17,90		18,63		17,9	18,10		18,1	29
3/4	14	1,014	23,25	. 0.20	24,12	+0,10	23,3	23,60	+0,28	23,6	31
			29,35	+0,28	30,29		29,3	29,65		29,6	37
1 1/4	,,	2 200	37,80	. 0.24	38,95	.1	37,8	38,30	. 0.24	38,3	40
1 1/2	11	2,309	43,70	+0,34	44,85		43,7	44,20	+0,34	44,2	42
2			55,25	+0,40	56,66		55,3	56,00	+0,40	56	44

19. Припуски на круглое шлифование деталей в центрах (иа диаметр) Размеры, мм

			Длин	а детали			Допуск (-) на
Диам е тр детали	До 100	Св. 100 до 300	Св. 300 до 500	Св. 500 до 700	Св. 700 до 1300	Св. 1300 до 2000	предваритель- ную обработ- ку по h11
6-10	$\frac{0,25}{0,3}$	$\frac{0,3}{0,35}$	$\frac{0,35}{0,4}$		=	2	0,09
Св. 10 до 18	$\frac{0,3}{0,35}$	$\frac{0,35}{0,4}$	$\frac{0.4}{0.45}$	1. - .	_	1 1 5	0,11
» 18 » 30	$\frac{0,35}{0,4}$	$\frac{0,4}{0,45}$	$\frac{0,45}{0,5}$	-	-	-	0,13
» 30 » 50	$\frac{0,4}{0,4}$	$\frac{0,45}{0,45}$	$\frac{0,5}{0,5}$	$\frac{0,55}{0,55}$	$\frac{0.6}{0.6}$	-	0,16
» 50 » 80	$\frac{0,45}{0,45}$	$\frac{0.5}{0.55}$	0,55 0,55	$\frac{0,6}{0,6}$	$\frac{0,65}{0,7}$	$\frac{0.7}{0.75}$	0,19
» 80 » 120	$\frac{0,5}{0,6}$	$\frac{0,55}{0,65}$	$\frac{0,6}{0,7}$	$\frac{0,65}{0,75}$	$\frac{0,7}{0,8}$	$\frac{0,75}{0,85}$	0,22

			Допуск (–) на					
	Диаметр детали	До 100	Св. 100 до 300	Св. 300 до 500	Св. 500 до 700	Св. 700 до 1300	Св. 1300 до 2000	предваритель- ную обработ- ку по h11
Св.	120 до 180	0,6	$\frac{0,6}{0,7}$	$\frac{0,65}{0,75}$	$\frac{0.7}{0.8}$	$\frac{0.75}{0.85}$	$\frac{0.8}{0.9}$	0,25
»	180 » 260	$\frac{0.7}{0.8}$	$\frac{0.7}{0.8}$	$\frac{0.7}{0.85}$	$\frac{0,75}{0,85}$	$\frac{0.8}{0.9}$	$\frac{0.85}{0.95}$	0,29
>>	260 » 360	0,8 0,85	$\frac{0.8}{0.85}$	$\frac{0,8}{0,9}$	$\frac{0,85}{0,95}$	$\frac{0.9}{1.0}$	0,95 1,05	0,32

Примечание. В числителе приведены припуски на детали без гермообработки, в знаменателе — после термообработки.

20. Припуски на бесцентровое шлифование наружных цилиндрических поверхностей (на диаметр) Размеры, мм

			Допуск () на			
Диамегр детали		До 100	100 – 250	250 – 500	500 – 1000	предварительную обработку по h11, мм
6-10	4	$\frac{0,2}{0,3}$	$\frac{0,3}{0,3}$	$\frac{-}{0,4}$	-	0,09
Св. 10 до 18		$\frac{0.3}{0.3}$	$\frac{0,3}{0,4}$	$\frac{0,3}{0,4}$	0,5	0,11
» 18 » 30		$\frac{0,3}{0,4}$	$\frac{0,4}{0,4}$	$\frac{0,4}{0,5}$	$\frac{0.4}{0.5}$	0,13
» 30 » 50	¥.,,,	$\frac{0,3}{0,4}$	$\frac{0,4}{0,5}$	$\frac{0,5}{0,6}$	$\frac{0.5}{0.6}$	0,16
» 50 » 80		$\frac{0,4}{0,5}$	$\frac{0,4}{0,5}$	$\frac{0.5}{0.6}$	$\frac{0.5}{0.6}$	0,19
» 80 » 120		$\frac{0.5}{0.5}$	$\frac{0.5}{0.6}$	$\frac{0,6}{0,7}$	$\frac{0.6}{0.7}$	0,22
» 120 » 180	1861-2	$\frac{0.5}{0.6}$	$\frac{0.5}{0.6}$	$\frac{0.6}{0.7}$	$\frac{0.7}{0.8}$	0,25

Примечание. См. примечание к табл. 19.

21. Припуски на шлифование отверстий (на диаметр)

Размеры, мм

		Допуск (+) на				
Днаметр отверстия	До 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 300	Св. 300 до 500	предваритель- ную обработку по Н1
До 10	0,2	_				0,09
Св. 10 до 18	$\frac{0.2}{0.3}$	$\frac{0,3}{0,4}$	=-	=		0,11

Продолжение табл. 22

		Д.	лина отверст	`ия		Допуск (+) на
Диаметр отверстия	До 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 300	Св. 300 до 500	предваритель- ную обработку по <i>H</i> 11
Св. 18 до 30	$\frac{0.2}{0.3}$	$\frac{0,3}{0,4}$	$\frac{0,4}{0,4}$		33	0,13
» 30 » 50	$\frac{0,3}{0,4}$	$\frac{0,3}{0,4}$	$\frac{0,4}{0,4}$	$\frac{0,4}{0,5}$		0,16
» 50 » 80	$\frac{0,3}{0,4}$	$\frac{0,4}{0,5}$	$\frac{0.5}{0.5}$	$\frac{0,4}{0,5}$		0,19
» 80 » 120	$\frac{0.5}{0.5}$	$\frac{0,4}{0,5}$	$\frac{0.5}{0.6}$	$\frac{0,6}{0,6}$	$\frac{0,6}{0,7}$	0,22
» 120 » 180	$\frac{0,6}{0,6}$	$\frac{0,6}{0,6}$	$\frac{0.6}{0.6}$	$\frac{0,6}{0,6}$	$\frac{0.6}{0.7}$	0,25
» 180 » 260	$\frac{0,6}{0,7}$	$\frac{0.6}{0.7}$	$\frac{0.7}{0.7}$	$\frac{0,7}{0,7}$	$\frac{0.8}{0.8}$	0,29
» 260 » 360	$\frac{0,6}{0,7}$	$\frac{0,7}{0,8}$	$\frac{0.7}{0.8}$	$\frac{0,8}{0,8}$	$\frac{0.8}{0.9}$	0,32
» 360 » 500	$\frac{0.8}{0.8}$	$\frac{0.8}{0.8}$	$\frac{0.8}{0.8}$	$\frac{0.9}{0.9}$	$\frac{0.9}{0.9}$	0,36
Фиин	шное шлиф	' ование отв	' ерстий в за	' калеииых д	еталях	1
До 10 Св. 10 до 18 » 18 » 30 » 30 » 50 » 50 » 80 » 80 » 120 » 120 » 180 » 180 » 260 » 260 » 360 » 360 » 500	0,04 0,05 0,05 0,06 0,06 0,08 0,10 0,12 0,12 0,12	- 0,06 0,06 0,06 0,06 0,08 0,10 0,12 0,14	- 0,06 0,06 0,08 0,10 0,10 0,12 0,14 0,14	0,08 0,08 0,08 0,10 0,10 0,12 0,14 0,16	0,12 0,12 0,14 0,16 0,18	Допуск (+) по <i>H</i> 7

Примечание. См. примечание к табл. 19.

22. Припуски на тонкое (алмазное) растачивание отверстий

Размеры, мм

		Долуск			
Диаметр обрабатываемого отверстия d, мм	Легкие сплавы	Баббит	Бронза и чугун	Сталь	(+), на предвари- тельную обработку по <i>H</i> 9
До 30	0,2/0,1	0,3/0,1	0,2/0,1	0,2/0,1	0,052
Св. 30 до 50	0,3/0,1	0,4/0,1	0,3/0,1	0,2/0,1	0,062
» 50 » 80	0,4/0,1	0,5/0,1	0,3/0,1	0,2/0,1	0,074
» 80 » 120	0,4/0,1	0,5/0,1	0,3/0,1	0,3/0,1	0,087
» 120 » 180	0,5/0,1	0,6/0,2	0,4/0,1	0,3/0,1	0,1
» 180 » 250	0,5/0,1	0,6/0,2	0,4/0,1	0,3/0,1	0,115

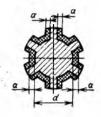
		Обрабатываемый материал					
Диамегр обрабатываемого отверстия d, мм	Легкие сплавы	Баббит	Бронза и чугун	Сталь	(+), на предвари- тельную обработку по Н9		
Св. 250 до 360 » 360 » 400 » 400 » 500	0,5/0,1 0,5/0,1 0,5/0,1	0,6/0,2 0,6/0,2 0,6/0,2	0,4/0,1 0,5/0,2 0,5/0,2	0,3/0,1 0,4/0,1 0,4/0,1	0,13 0,14 0,155		

Примечания: 1. В числителе приведены припуски на предварительную обработку, в знаменателе — на окончательную.

2. В случае применения одного растачивания припуск определяется как сумма припусков на предварительное и окончательное растачивание.

23. Припуски на хонингование отверстий

Размеры, мм


Диаметр отверстия	После тонкого растачивания	После чистового развертывания	После внутреннего шлифования	Допуск (+) на предварительную обработку по <i>H</i> 7
До 50	0,09/0,06	0,09/0,07	0,08/0,05	0,025
Св. 50 до 80	0,1/0,07	0,1/0,08	0,09/0,05	0,03
» 80 » 120	0,11/0,08	0,11/0,09	0,1/0,06	0,035
» 120 » 180	0,12/0,09	0,12/-	0,11/0,07	0,04
» 180 » 250	0,12/0,09		0,12/0,08	0,046

Примечание. В числителе приведены припуски для чугуна, в знаменателе — для стади.

24. Припуски на хониигование отверстий в зависимости от исходной погрешности формы и шероховатости поверхности

Отклонение ф	ормы, мкм	Исходные			После х	онингования
исходное	допускае-	параметры шероховатости поверхности, мкм	Переход	Принуск на диаметр. мкм	Отклонение формы, мкм	Параметр шеро- ховатости по- верхности <i>Ra</i>
100 – 150	4-5	$Rz = 40 \div 20$	Первый Второй Третий	150 - 200 20 - 30 12 - 15	15-20 6-10 4-5	2,5-0,63 0,63-0,16 0,32-0,08
50 – 90	3 – 4	$Rz = 40 \div 20$	Первый Второй Третий	80-120 15-25 8-12	10-18 5-9 3-4	2,5-0,63 0,63-0,16 0,32-0,08
25-40	2-3	$Rz = 20$ $Ra = 2,5 \div 1,25$	Первый Второй Третий	50 - 70 12 - 15 6 - 12	8-12 4-6 2-3	1,25-0,32 0,63-0,16 0,32-0,08
12-15	2-3	$Ra = 2,5 \div 0,63$	Первый Второй	20-35 10-12	5-9 2-3	1,25-0,16 $0,32-0,08$
6-12	1-2	$Ra = 2,5 \div 0,63$	Первый Второй	15-20 4-6	2-4 1-2	0,63-0,16 $0,32-0,08$

25. Припуски на чистовую обработку шлицев

Размеры, мм

Номинальный	Длина шлица							
диаметр	До 100	Св. 100 до 200	Св. 200 до 350	Св. 350 до 500				
вала	П	рипуск 2a на толщиг	ту плица и на лиамет	р				
10 – 18	$\frac{0,4-0,6}{0,1-0,2}$	$\frac{0,5-0,7}{0,2-0,3}$	r=1	72				
18 – 30	$\frac{0.5 - 0.7}{0.1 - 0.2}$	$ \begin{array}{c c} 0.6 - 0.8 \\ \hline 0.2 - 0.3 \end{array} $	$\frac{0,7-0,9}{0,2-0,4}$	-				
30 - 50	$\frac{0,6-0,8}{0,2-0,3}$	$\frac{0.7 - 0.9}{0.2 - 0.4}$	$\frac{0.8 - 1.0}{0.3 - 0.5}$	-				
Св. 50	$\frac{0.7 - 0.9}{0.2 - 0.4}$	$\frac{0.7 - 1.0}{0.3 - 0.5}$	$ \begin{array}{c} 0.9 - 1.2 \\ \hline 0.3 - 0.5 \end{array} $	$\frac{1,2-1,5}{0,4-0,6}$				
		· ·	1					

Примечание. В числителе приведены припуски на чистовое фрезерование, в знаменателе — на шлифование.

26. Припуски иа чистовую обработку зуба цилиндрических зубчатых колес

Размеры, мм

газмеры, м	м						
	Диаметр колеса						
Модуль	≤ 100	100-200	200 – 500				
На чистово	е зубофрезе	рование и зуб	одолблени е				
3-5 $5-10$	$\begin{array}{c c} 0,6-0,9 \\ 0,8-1,0 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 1,0-1,2 \\ 1,1-1,6 \end{array}$				
	Под шев	ингование					
До 3 3-5	$\begin{vmatrix} 0.06 - 0.10 \\ 0.08 - 0.12 \end{vmatrix}$	0.08 - 0.12	0,10-0,15				

Под шлифование

До 3	0,15-0,20	0,15 - 0,25	0,18-0,30
3-5	0,18-0,25	0,18 - 0,30	0,20-0,35
5-10	0,25-0,40	0,30 - 0,50	0,35-0,60

5-7 7-10 | 0,10-0,14 | 0,12-0,16 | 0,15-0,18 0,12-0,16 | 0,15-0,18 | 0,18-0,20

Продолжение табл. 26

Допуски на припуск, мкм

Последующая	Диамегр колеса						
обработка	До 50	50 - 100	100 – 200	200 – 500			
Чистовое нарезание	150	180	220	260			
Шевингова-	40	50	60	70			
ние Шлифование	65	80	100	120			

При мечание. При зубофрезеровании, зубодолблении и шевинговании прямозубых колес припуск допускается уменьшать на 10-25%, а для колес с углом наклона зубьев более 15° — увеличивать на 10-15% отиосительно значений в табл. 26.

27. Припуски (мм) на чистовую обработку зубчатых колес

Модуль	Припуск	Модуль	Припуск
Спирально-з	убые и гипс	мдные зубча	тые колеса
$ \begin{array}{c} 1,25 - 1,75 \\ 2 - 2,75 \\ 3 - 4,5 \end{array} $	0,5 0,6 0,8	8-11 12-19	1,2 1,6
5-7 Ko i	1,0 нические зу	20 – 30 бчатые кол	2,0 eca
3 4 5 6	0,5 0.57 0,65 0,72 0.8	8 9 10 11 12	0,87 0,93 1,0 1,07 1,5
′	0,0	12	1,5

28. Припуски (мм) на чистовую обработку червяков

	Припуск 2а на голщину витка		
Модуль	на чистовое нарезание после предварительного фрезерования	на шлифова- ние закален- ных червяков	
До 2 Св. 2 до 3 » 3 » 5 » 5 » 7 » 7 » 10 » 10 » 12	0.7-0,8 1-1,2 1,2-1,4 1,4-1.6 1,6-1,8 1,8-2,0	0.2-0.3 0,3-0.4 0,4-0.5 0,5-0,6 0,6-0.7 0,7-0.8	

ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ ОСНОВНОГО (ТЕХНОЛОГИЧЕСКОГО) ВРЕМЕНИ ОБРАБОТКИ ДЕТАЛЕЙ НА МЕТАЛЛОРЕЖУЩИХ СТАНКАХ

Основные условные обозначения

Размеры обрабатываемой детали и инструмента

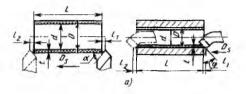
- D, d диаметр обрабатываемой поверхности нли диаметр режущего инструмента, мм;
- длина обрабатываемой новерхности, мм;
- I_1 величина врезания инструмента, мм (см. табл. 2);
- величина перебега инструмента, мм (см. табл. 2);
- расчетная длина рабочего хода инструмента, принимаемая для определения основного (технологического) времени, мм;
- L₁ длина хода в направлении главного движения на станках с механизмами возвратно-поступательного движения, мм;
- В расчетная ширина обрабатываемой поверхности, мм;
- ширина резца или фрезы, мм;
- D_{κ} диаметр шлифовального круга, мм;
- $D_{\text{вк}}$ диаметр ведущего круга при бесцентровом шлифовании, мм;
- В ширина шлифовального круга, мм;
- $B_{\rm BK}$ ширина ведущего круга при бесцентровом шлифовании, мм;
- $D_{\rm cp}$ средний диаметр рабочей зоны круглого стола, мм;
- число зубьев зубчатого колеса или число шлицев.

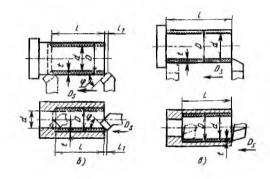
Режимы обработки

- скорость резания, м/мин;
- S_0 подача на оборот шпинделя, мм/об:
- **S**_z подача на зуб фрезы, мм;
- $S_{\rm M}$ подача в минуту (минугная подача) $S_{\rm M} = S_z z n, \,\, {\rm MM/Muh};$
- $S_{\text{рад}}$ радиальная подача инструмента на оборот детали, мм/об;
- S_B продольная или поперечная подача на двойной ход изделия в долях ширины шлифовального круга;
- S_{поп} поперечная подача на оборот детали, мм/об;

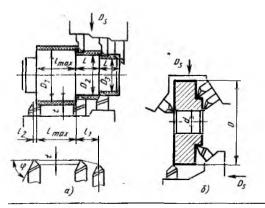
- $S_{\text{прод}}$ продольная подача на оборот детали. мм/об:
- S_{2х} подача на двойной ход стола или круговая подача на двойной ход долбяка, мм/дв. ход;
- $S_{\text{верт}}$ подача на глубину шлифования за оборот стола, детали, мм/об;
- t глубина резания, мм;
- и частота вращения шпинделя, об/мин;
- n_д частота вращения изделия, об/мин (на ишифовальных станках);
- n_{2x} число двойных ходов стола в минуту;
- и_{2хпред} число двойных ходов при предварительном и получистовом шлифовании в минуту;
- $n_{\text{всп}}$ частота вращения шпинделя при вспомогательных ходах, мм/об;
- $n_{2x \text{ чист}}$ число двойных ходов при чистовом шлифовании в минуту;
- $n_{\text{обк}}$ число двойных ходов или обкатов в минуту (зубощлифование).

Прочие условные обозначения

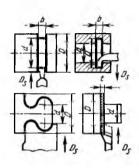

- Q число одновременно обрабатываемых деталей;
- P шаг нарезаемой резьбы, мм;
 - число проходов инструмента;
- і число проходов при предварительном шлифовании;
- i_2 число проходов при получистовом шлифовании;
- із число проходов при чистовом шлифовании;
- а принуск на обработку на сторону, мм;
- $t_{\rm дс.t}$ время переключения и деление на один проход, мин;
- K коэффициент, учитывающий выхаживание и доводку при шлифовании ($K = 1, 2 \div 1, 5$);
- q чнсло заходов резьбы, число заходов фрезы;
 - $T_{\rm o}$ основное время на операцию, мин;
- T_z время обработки одного зуба, устанавливаемое кинематической настройкой станка, с.

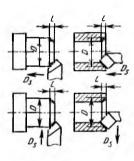

1. Схемы обработки и расчетиые формулы

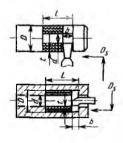
Токарные работы


$$T_0 = \frac{L}{nS_0}i$$
; $a = \frac{D-d}{2}$; $L = l + l_1 + l_2$

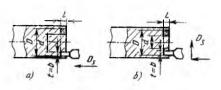
1. Обтачивание и растачивание цилиндрических поверхностей: a — напроход; δ , s — в унор (до уступа)



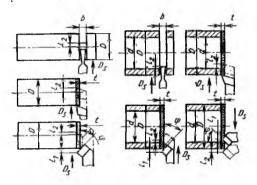

2. Многорезцовая токарная обработка деталей типа: a — ступенчатых валов; δ — дисков и фланцев


3. Точение канавок, фасонное точение, точение торцовых поверхностей

4. Снятие фасок



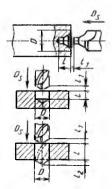
5. Точение паружных и внутренних выточек поперечной и продольной подачей («в разгон»)



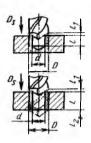
$$T_0 = \left(-\frac{L_{\rm n}}{nS_{\rm n}} + -\frac{L_{\rm np}}{nS_{\rm np}}\right)i$$

6. Точение торцовых канавок с осевой подачей (a) и с осевой и радиальной подачами $(\vec{\theta})$

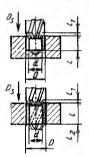
7. Точение торцовых поверхностей и отрезание деталей

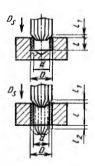


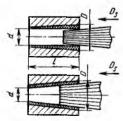
Сверлильные и расточные работы

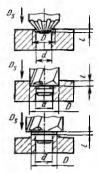

(см. табл. 3 и 4)

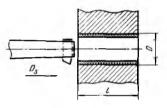
$$T_{o} = \frac{L}{nS_{o}}; \ L = l + l_{1} + l_{2}$$

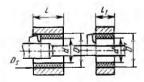

8. Центрование, сверление в упор и напроход


9. Рассверливание в упор и напроход

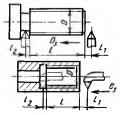

10. Зенкерование в упор и напроход


11. Развертывание в упор и напроход

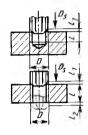

12. Развертывание конических отверстий


13. Зенкование фасок, уступов, бобышек

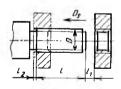
 Растачивание отверстий однорезновой борштангой (оправкой)


15. Одновременное растачивание соосных отверстий многорезцовой борштангой

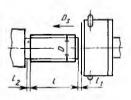
$$T_{o} = \frac{L_{\text{max}}}{nS_{e}}i$$


Резьбонарезные и резьбофрезерные работы (см. табл. 5)

16. Нарезные резьбы резцом

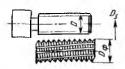

$$T_{\rm o} = \left(rac{L}{nP} + rac{L}{n_{
m BCR}P}
ight)$$
і, где P — шаг резьбы. При нарезании резьбы на станках с автоматическим циклом $T_{
m o} - rac{L}{nP}(i+0.5)$

17. Нарезание резьбы машинными метчиками


$$T_{
m o}=rac{L+L_{
m BC\Pi}}{nP}$$
 , где $L_{
m BC\Pi}-$ длина вспомогательного хода метчика

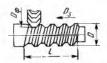
18. Нарезание резьбы:

ппашками:


$$T_{o} = \frac{L + L_{BCII}}{nP}$$

самооткрывающимися головками:

$$T_{o} = \frac{L}{nP}$$


19. Фрезсрование резьбы гребенчатой (групповой) фрезой

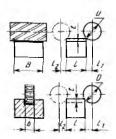
 $S_{\rm M}$ — подача, мм/мин; $T_{\rm O} = \frac{L}{S_{\rm M}}$; $L = 1.2\pi D$;

 $S_{\rm M}=n_{
m dp}z_{
m dp}S_{
m z}$, где $n_{
m dp}$ – частота вращения фрезы, об/мин; $z_{
m dp}$ – число зубьев фрезы; S_z — подача на зуб

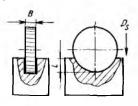
20. Фрезерование резьбы дисковой фрезой

$$T_{0} = \frac{L}{n_{1}P} i;$$

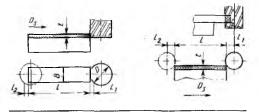
$$L = (l + l_{1} + l_{2})q;$$

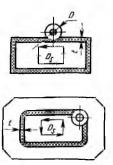

$$n_{A} = \frac{S_{M}}{\pi d_{2}} = -\frac{S_{2}c_{\phi}p^{n}c_{\phi}p}{\pi d_{2}},$$

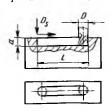
где n_{\perp} — частота вращения детали, об/мин; d_2 — средний диаметр резьбы; S_r — подача на зуб; $z_{\rm dp}$ — число зубьев фрезы; $n_{\rm dp}$ — число оборотов фрезы


Фрезерные работы (см. табл. 6-8)

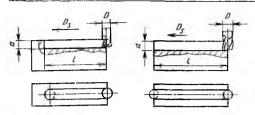
$$T_0 = -\frac{L}{S_M}$$


 Фрезерование цилиндрическими, дисковыми, фасонными и прорезными фрезами


22. **Фрезерование** дисковыми фрезами методом врезания

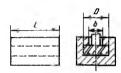

23. Фрезерование торцовыми и концевыми фрезами

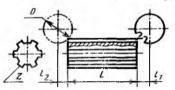
24. Фрезерование концевыми фрезами в обход по контуру



25. Фрезерование шпоночных назов

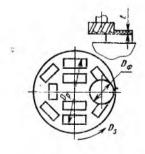
При маятниковой полаче


$$T_{\rm o} = -\frac{L}{S_{\rm u}}i$$

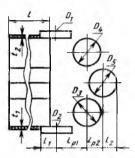

При глубинном способе фрезерования

$$T_0 = \frac{L}{S_{\rm M}}$$

26. Фрезерование Т-образных пазов



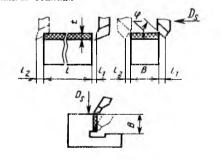
27. Фрезерование цилицев червячной фрезой


$$T_{\rm o} = \frac{Lz}{nS_{\rm M}}$$
, где z — число пілиц

28. Круговое фрезерование на станках непрерывного действия

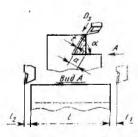
$$T_{\rm o} = \frac{L}{S_{\rm M}} - \; ; \; L = \frac{\pi D_{\rm dp}}{Q} - \; , \;$$
где $D_{\rm dp} - \;$ диаметр наибольшей окружности, описанной по габаритам фрезеруемых деталей; $Q - \;$ число деталей, размещаемых на столе

29. Многошпиндельное продольное фрезерование на станке с вертикальными и горизонтальными шпинделями

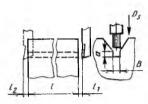


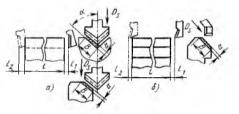
$$T_{\rm o} = \frac{L}{S_{\rm M}}; \ L = l + l_1 + l_{\rm p1} + l_{\rm p2} + l_2;$$

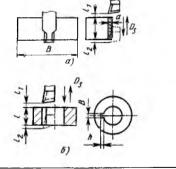
 $l_1 = 0.5D_1; \ l_2 = 0.5D_5$


Строгальные и долбежные работы (см. табл. 9)

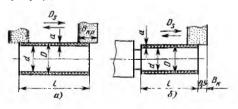
$$T_{\rm o} = \frac{L}{n_{\rm 2x} S_{\rm 2x}} i; \ L = l + l_1 + l_2$$


30. Строгание плоскостей на поперечнострогальных, продольно-строгальных и долбежных станках

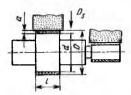

31. Строгание направляющих типа «ласточкин хвост»


32. Строгание пазов и канавок мерным резцом

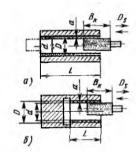
33. Строгание призматических направляющих профильным (a) и проходным (б) резцами



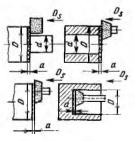
34. Долбление плоскостей (a) и шпоночных пазов (δ)


Шлифовальные работы

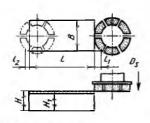
35. Наружное круглое шлифование методом продольной подачи напроход (a) и в упор (δ)


$$T_{o} = \frac{L}{S_{B}B_{K}n_{A}}iK; \quad i = \frac{a}{S_{2x}}$$

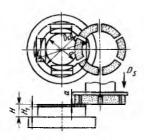
36. Наружное врезное щлифование


$$T_0 = \frac{L}{n_a S_{\text{paa}}} K; L = a = \frac{D-d}{2}$$

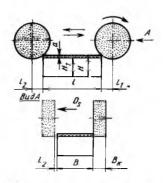
37. Шлифование отверстий методом продольной подачи: a — сквозных; δ — в упор


$$T_{o} = \frac{L}{S_{B}B_{\kappa}n_{\alpha}}iK; \ i = \frac{a}{S_{2x}}$$

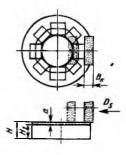
38. Врезное шлифование торцов


$$T_{o} = \frac{L}{n_{n}S_{o}} - K; \quad L = a$$

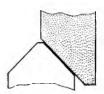
39. Плоское шлифование торцом круга на станках с прямоугольным столом


$$T_{\rm o} = \frac{LK}{n_{\rm 2x} S_{\rm 2x} Q}$$
; $L = a = -H_1$

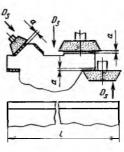
40. Плоское шлифование торцом круга на станках с круглым столом


$$T_{o} = \frac{LK}{nS_{o}Q} \; ; \; L = a = H - H_{1}$$

41. Плоское шлифование периферией круга на станках с прямоугольным столом

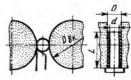

$$T_0 = \frac{LK}{S_B B_{\kappa} n_{2\kappa} Q} i; i = \frac{a}{S_{2\kappa}}; L = B + B_{\kappa} + 10$$

42. Плоское шлифование периферией круга на станках с круглым столом

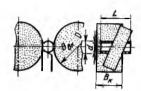


$$T_{o} = \frac{LK}{n_{\Lambda}S_{B}B_{\kappa}Q} i; i = \frac{a}{S_{o}}$$

43. Шлифование направляющих методом продольной подачи

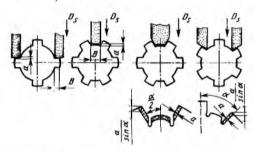


44. Врезное шлифование направляющих



$$T_{\rm o} = \frac{LK}{n_{\rm 2x}S_{\rm 2x}} \; ; \; L = a$$

45. Бесцентровое наружное шлифование: врезное

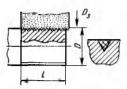


$$T_{
m o}=rac{LK}{n_{
m H}S_{
m pag}}$$
; $n_{
m H}=rac{n_{
m BK}D_{
m BK}}{D}$; $L=a=rac{D-d}{2}$, где $D_{
m BK}$ – диаметр ведущего круга методом продольной подачи

$$T_{\rm o} = \frac{Li}{S_{\rm M}}$$


46. Шлифование шлицевых валов (см. табл. 10)

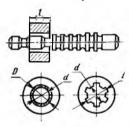
$$T_{\rm o} = \frac{2Liz}{1000v} \; ; \; i = \frac{a}{\sin \alpha S_{2x}} \; ;$$


при шести шлицах $\alpha = 60^\circ$; $\sin 60^\circ = 0.87$; при восьми шлицах $\alpha = 45^\circ$; $\sin 45^\circ = 0.7$

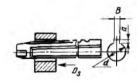
47. Резьбошлифование: a — абразивное резьбонарезание; δ — однопрофильное.

 $T_{\rm o} = \frac{1.3 Li}{nP}$, где 1,3 — коэффициент, учитывающий вспомогательный ход

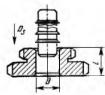
48. Многопрофильное резьбошлифование



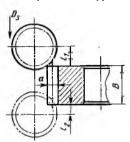
 $T_{\rm o} = rac{1,5L}{n_{\pi}}$, где 1,5- коэффициент, учитывающий выхаживание; L=a


Протягивание отверстий и пазов

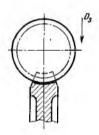
$$T_{\rm o} = \left(\frac{L}{1000v_{\rm mp}} + -\frac{L}{1000v_{\rm BCH}}\right)i,$$
 где $v_{\rm mp}$ – скорость протягивания; $v_{\rm BCH}$ – скорость вспомогательного хода протяжки


49. Протягивание: гладких и шлицевых отверстий

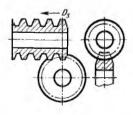
шпоночных пазов


50. Калибрование отверстий прошивкой

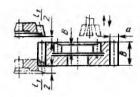
$$T_{\rm o} = \frac{L}{1000v_{\rm npom}} \; ; \; L = l_{\rm npom} + l_1 \; ; \ l_1 = 30 \div 50 \; {\rm MM}$$


Зуборезные работы (см. табл. 11-12)

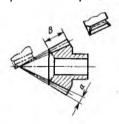
51. Зубофрезерование цилиндрических зубчатых колес червячными фрезами


$$T_{0}=rac{Liz}{nS_{0}q}$$
 ; для прямозубых колес $L=B+l_{1}+l_{2}$; для косозубых колес $L=rac{B}{\cos 6}+(l_{1}+l_{2})K$

52. Зубофрезерование червячных колес методом радиальной подачи


 $T_{\rm o} = \frac{L}{nS_{{
m pa},q}}$; L=3mz, где 3m- длина прохода на один зуб; q- число заходов фрезы

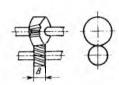
53. Зубофрезерование червячных колес мегодом тангенциальной подачи


$$T_{\rm o} = -\frac{L}{nS_{\rm o}q}$$
 ; $L = 3mz\sqrt{z}$, где q — число заходов фрезы; $3m\sqrt{z}$ — длина прохода на один зуб

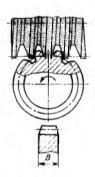
54. Зубодолбление методом обкатки

$$T_{\rm o}=rac{Li}{n_{2{\rm x}}S_{2{
m x}}}$$
; $L=\pi mz1,1$; $n_{2{
m x}}-$ число двойных ходов долбяка; $L==l+l_1+l_2$; при модуле до $3\ l_1=4$ мм; при $m=4\div 5\ l_1=5$ мм; при $m=6\div 7\ l_1=6$ мм; при $m=8\div 9\ l_1=8$ мм; при $m=10\div 12\ l_1=10$ мм

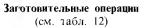
55. Зубострогание конических зубчатых колес зубострогальными резцами


$$T_{\rm o} = -\frac{T_{z}^{Z}}{60}$$
; T_{z} — время обработки одного зуба

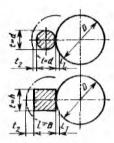
56. Зубозакругление цилиндрических колес


 $T_{\rm o}=T_zLi;\;L=z+K,\;$ где K- поправочный коэффициент, зависящий от модуля: при $m=1,25\div2,5$ $K=3;\;$ при $m=2,75\div4,0$ $K=4;\;$ при $m=5\div6$ K=5

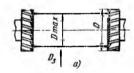
57. Шевингование зубьев цилиндрических колее

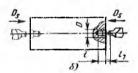


 $T_{\rm o} = -\frac{Li}{S_{\rm M}}$, где $S_{\rm M} = -\frac{S_{\rm z}z_{\rm m}n}{z_{\rm K}}$; здесь $z_{\rm m} = -\frac{1}{2}$ число зубьев шевера; $z_{\rm K} = -\frac{1}{2}$ число зубьев конса; $L = B + l_1$; $l_1 = 3$ мм


58. Зубошлифование цилиндрических колсс методом обкатки червячным цілифовальным кругом

$$T_{\rm o}=rac{Li}{S_{
m M}}$$
 , где
$$S_{
m M}=rac{nS_{
m o}}{z_{
m K}}\;;\;i=-rac{aK}{S_{
m pan}}\;;$$
 при $lpha=20^\circ$ $K=1.462$; при $lpha=15^\circ$ $K=1.932$; $L=B+6\,$ мм




59. Отрезка заготовок сегментными пилами

$$T_{\rm o} = \frac{L}{S_{\rm o}}$$
; $L = l + l_1 + l_2$

60. Фрезерование торцов (а) и центрование заготовок (б) на двусторонних фрезурно-цен гровальных полуавтоматах

при фрезеровании

при центровании

$$T_{\rm o} = \frac{L}{S_{\rm M}} \qquad \qquad \int T_{\rm o} = \frac{L}{nS_{\rm M}}$$

Примечание. В табл. 1. снимаемый принуск условно показан штриховкой вида

2. Величина врезания / при работе резцами

Размеры, мм

Проход- ные и расточ- ные с углом в илане Ф						Γ.	тубина	резания	A /			~	
Резці	Je	ı	2	3	4	5	6	7	8	10	12	14	16
						Be	ичина	врезани	я /1				
Проход-	15	5	9	13	16	20	24	28	31	39			_
	30	3	5	7	8	10	12	14	15	19	22	26	29
ные с	45	2	3	4	5	6	7	8	9	12	14	16	18
ные и расточ- ные с углом в илане Ф	60	1	2	3	3	4	4	5	5	6	7	9	11
Проход- ные и расточ- ные с углом в илане ф	75′		1	2	2	2	3	3	3	4	4	4	5
Проход- ные и расточ- ные с углом в плане Ф	90 ′						3	•	-				5
ные и расточ- ные с углом в илане ф	e					При	заботе	в упо	n – 3				L
							аботе			i			
ные с углом в плане Ф Подрезны Отрезные	e												
Фасонные					_			3					

Примечание. Величина перебега l_2 при работе напроход вне зависимости от величины ϕ : при глубине резапня $t=1\div 2$ мм; $l_2=1$ мм; при $t=3\div 7$ мм $l_2=2$ мм; при $t=8\div 16$ мм $l_2=3$ мм.

3. Суммарная величина врезания l_1 и перебега l_2 при работе сверлами, зенкерами и развертками

Размеры, мм

					Диам	иетр ин	струмен	та <i>D</i>			
Вид работь	ı	3	5	10	15	20	25	30	40.	50	6() и бо- лее
					Bpe	ание /1	⊣ переб	l_2			
Сверление напро-	одинар- ной	2	2,5	5	6	8	10	12	15	18	23
ке сверл	двойной		_	6	8	10	15	17	18	22	27
Сверление в упор		1,5	2	4	6	7	9	11	14	17	21
Рассверливание	5	_	_	_		4		5			6
при глубине резания	10	1	-		_	7		8			9
	15	1	_	_	_	_	_	1	1		12
	20	_	_	_	_	_	_	-	14		15
	30	_	-	_	_	_		_	_		18
Зенкерование на-	ı	_	_	_		3		2	4		5
проход при глу- бине резания	3	_	_			5		(5		7

					Диам	иетр ин	струмен	та <i>D</i>			
Вид работь	ı	3	5	10	15	20	25	30	40	50	60 и бо- ле е
				•	Bpe	зание /	+ пере	бет <i>I</i> ₂			
Зенкерование напроход при глуби-	5	_	_	_	-		7		8	Ī	9
не резания	10	_	_	<u> </u>			12	13		14	15
Зенкерование в упо	p		_	_		2			3		4
Развертывание цилиндрических от-	напро- ход	_	8	9	15	18	1	9	24	25	26
верстий	в упор		2			3			4	•	5
Центрование отвер	стий	1-2	2	_	_	_	_	_		_	-

Примечание. При обработке в упор в табл. 3 дана величина врезания l_1 .

4. Расчетная длина хода конических разверток l_{pacq}

Конус-	Угол при	i			Припус	к на д	иаметр	под ко	нус, мы	ſ		
ность	верциие конуса	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0	3,0
1:0,5	90"	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,5
1:0,86	60°	0,17	0,35	0,5	0,7	0,9	1,0	1,2	1,4	1,6	1,7	2,6
1:1,81	30°	0,37	0,8	1,1	1,5	1,9	2,2	2,6	3,0	3,4	3,7	5,6
1:3	18°56′	0,6	1,2	1,8	2,4	3,0	3,6	4,2	4,8	5,4	6,0	9
1:5	11°25′	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10	15
1:7	8°10′	1,4	2,8	4,2	5,6	7,0	8,4	9,8	11,2	12,6	14	21
1:10	5°44′	2,0	4,0	6,0	8,0	10	12	14	16	18	20	30
1:15	3°49′	3,0	6,0	9,0	12	15	18	21	24	27	30	45
1:20	2°52′	4,0	8,0	12	16	20	24	28				
1:30	1°54′	6,0	12	18	24	30	36					
1:50	1~08′	10,1	20,3	30,3	40,4	50,5						

5. Суммарная величина врезания и перебега при резьбонарезании Размеры, мм

Режуший инструмент	Обработка	Врезание + перебег, мм	
Резцы резьбовые	Напроход при шаге резьбы P	≤ 6 ≤ 10 ≤ 10	4P 3P 2P
сэцы резвоовые	В упор	3 <i>P</i>	
	Вихревым методом	3 <i>P</i>	
Метчики машинные	Напроход		6 <i>P</i>
or man walliminible	В упор		3 <i>P</i>

Режущий инструмент	Обработка	Врезание + перебег, мм	
Метчики гаечные	Напроход	131	Длина режу- щей части мет- чика
Плашки круглые, самооткрывающиеся головки	_		2 <i>P</i>
Плашки тангенциальные	_		2 <i>P</i>
Резьбонарезные круглые гребенки для винторезных головок	_		3 <i>P</i>
Фрезы резьбовые дисковые	Резьбофрезерование при шаге резьбы Р	≤ 6 ≤ 10 ≤ 10	3 <i>P</i> 2 <i>P</i> 1,5 <i>P</i>

6. Суммарная величииа врезания l_1 и перебега l_2 при фрезеровании цилиидрическими, дисковыми, прорезиыми и фасонными фрезами

Размеры, мм

Глубина					Д	иаметр фре	2 ы D			
резания <i>t</i>	32	40	50	63	80	100	125	160	200	250
1	7	8	9	10	11	13	15	16	18	20
2 3	9	11	12	14	15	17	19	21	24	26
	11	13	14	16	18	20	22	25	27	31
4	12	14	16	18	20	23	26	29	32	35
5	13	15	17	20	22	25	28	31	35	39
6	14	16	18	21	24	27	30	34	38	42
7	15	17	19	22	25	29	32	36	41	45
8	15	18	20	24	27	30	34	38	43	48
9	16	19	21	25	28	32	35	40	46	51
10	16	19	22	26	29	33	38	42	48	53
12		20	23	27	31	25	40	46	52	58
14	1		24	29	33	38	43	49	55	62
16			25	30	35	40	45	52	58	65
18				31	36	42	47	54	61	69
20				-32	38	43	50	57	64	72
22				33	39	44	51	59	67	75
25					40	46	54	62	70	78
28					41	48	56	65	74	83
30						49	57	66	76	85
35	}					51	60	70	80	91
40							62	73	84	96

 Π р и мечание. При чистовой обработке величину врезания и перебега для дисковых фрез следует брать вдвое больше приведенной в табл. 6.

7. Суммарная величина врезаиия l_1 и перебега l_2 при работе концевыми фрезами Размеры, мм

Диамегр					Г	лубина рез	ания /			
фрезы <i>D</i>	0.5	1	2	3	4	5	6	7	8	10
12				\ _ [_]			_	_	_	_
14	4	5	6	7	8	9		_	_	
16			7			10		_	-	_
18				8	9	10	11		-	
20	5	6		9	10	11	12	_	-	-
22		ļ	8		11	12	13	14	_	
25				10	12	13	14	15	-	
28			9	11	13	14	15	16	17	
30	6	7		12	14	15	16	17	18	_
35			10	13	15	16	17	18	19	_
40	7	8	11	14	16	17	18	19	20	21
45	8	9	13	15	17	18	19	20	21	22
50	8	11	14	16	18	19	20	21	22	24

8. Суммарная величина врезания l_1 и перебега l_2 при фрезеровании пілицев червячными фрезами Размеры. $_{ m MM}$

Глубина						Диа	метр ф	резы				
прица	50	55	60	65	70	75	80	85	90	100	110	120
1,5	ı	2	1	3		14			15		1	6
2,0	1	3		4		15		1	6	17	1	8
3,0	15	16	16	17	17	18	18	1	9	20	21	22
4,0 5,0 6,0 7,0 8,0	17 18 19 20 21	17 19 20 21 22	18 20 21 22 23	19 20 22 23 24	19 21 23 24 25	20 22 23 25 26	20 22 24 26 27	21 23 25 26	22 24 26 27	23 25 27 29 30	24 26 28 30 32	25 27 29 31 33

9. Величина перебега стола при строгании в направлении главиого движения Размеры, _{мм}

Станок	Длина обработки I, не более	Величина перебега стола или резца 12
Продольно-строгальный	2000	200
	4000	325
	6000	400
	> 6000	500
Поперечно-строгальный, долбеж-	100	35
ный	200	50
	300	60
	> 300	75

10. Величина врезания I_1 , мм, при шлицешлифовани	10.	Величина	врезания	1,,	MM,	при	шлицешлифовани
--	-----	----------	----------	-----	-----	-----	----------------

Время на деле-		Скорость	движения сто	ола v , м/мин,	не более	
ние т, с	5	6,5	8	10	12,5	16
0,50	30	40	50	60	70	90
0,65	40	50	60	70	90	110
0,80	50	60	80	90	110	140
1,00	60	80	100	110	140	180
1,25	80	100	125	140	180	220
1,60	100	125	160	180	220	280
2,00	120	160	180	220	280	360

 Π р и м е ч а н и я: 1. Величина врезания I_1 дана с округлением.

2. Величина перебега при шлифовании в упор $l_2 = 0$, при шлифовании напроход $l_2 = 5 \div 10$ мм.

11. Суммарная величина врезания и перебега при зубофрезеровании червяными фрезами прямозубых пилиндрических зубчатых колес

Размеры, мм

Модуль	Диа-		ание I _I + п при обрабо		Модуль	Диа- метр фрезы		ание <i>l</i> ₁ + п при обрабо	
нарезаемого	метр фрезы	В	в два г	трохода	нарезаемого		В	в два прохода	
колеса т	D	один про- ход	Первый проход	Второй проход	колеса т	D	один про- ход	Первый проход	Второй проход
1	63	15	-	_	3-3,5	112	32	28	14
	70	16	_	_	4-4.5	100	34	31	14
1,25 1,5	63	17	_		' ',5	125	36	34	15
.,	80	21	_		5	112	42	35	15
1,75 – 2	70	21		_		140	49	38	16
.,	90	24		_	6	125	46	39	16
2,252,5	80	27	_			160	55	43	17
,,	100	29	=	-	8	140	50	48	18
3-3,5	90 29 ,24 13		13	3	180	66	55	20	

П р и м е ч а н и я. 1. При зубофрезеровании прямозубых цилиндрических колес фрезами другого диаметра расчет величины врезания l_1 проводят по формуле $l_1 = \sqrt[3]{a(D_{\phi} - a)}$; величину перебега l_2 принимают равной 3-5 мм.

2. При зубофрезеровании косозубых цилиндрических колес величина врезания $l_1 = K \sqrt{a \, (D_{\varphi} - a)}$, где K – коэффициент, принимаемый в зависимости от угла наклона зуба β ; при $\beta = 15^\circ$ K = 1,25; при $\beta = 30^\circ$ K = 1,5; при $\beta = 45^\circ$ K = 2,1.

12. Суммарная величина врезания I_1 перебега I_2 при фрезеровании (отрезке) сегментиыми пилами материала прямоугольного и квадратного сечения

Размеры, мм

Высота		Диа	іметр п	илы D		Высота	Диамстр пилы D					
пропила <i>b</i>	350	510	710	1010	1430	пропила <i>b</i>	350	510	710	1010	1430	
25	5		_	-	-	175	_	22	17	16	13	
50	6	7	7	-	i –	200	_	_	20	18	15	
75	9	9	8	_	_	250	_	_	28	24	19	
100	12	11	10	10	10	300	_	-		31	24	
125	16	14	12	12	11	350	_	-		39	30	
150	-	18	14	14	12							

Определение основного времени при обработке деталей на одноштиндельных и многопшиидельных токарных автоматах, станках с ЧПУ, многооперационных станках. Основное (машинное) время обработки детали на токарных автоматах определяется как сумма времени на все несовмещаемые технологические переходы и вспомогательные (холостые) холы:

$$T_{\rm o} = T_{\rm texh} + T_{\rm bch}$$

где $T_{\rm техн}$ — время на технологические переходы; $T_{\rm BC\Pi}$ — время на вспомогательные ходы.

Время на технологические переходы $T_{\text{техн.}}$ с, при обработке на одношпиндельных автоматах

$$T_{\text{Texh}} = 60 \frac{\sum n_{\text{nep}}}{n},$$

где $\sum n_{\text{пер}}$ — суммарное число оборотов шпинделя на все несовмещаемые технологические переходы; n — частота вращения шпинделя, об/мин.

На многошпиндельных токарных автоматах, где обработка проводится параллельно в четырех, шести или восьми позициях (четырех-, шести- или восьмишпиндельные автоматы), время, с, на технологические переходы определяется по наиболее продолжительному технологическому переходу:

$$T_{\text{техн}} = 60 \, \frac{n_{\text{пер}}}{n}.$$

Время на вспомогательные ходы $T_{\rm всп}$

определяется на основании схемы обработки детали и паспортных данных автомата:

при обработке на одношпиндельных автоматах $T_{\rm BCH}$ включает время на подачу и зажим прутка, время на несовмещаемые повороты револьверной головки и другие вспомогательные ходы.

При обработке на многошпиндельных автоматах $T_{\rm Bcn}$ включает время на поворот шпиндельного блока (барабана), подход и отход суппортов.

При обработке на одношпиндельных и многошпиндельных автоматах основное время равно продолжительности цикла обработки, т. е. $T_{\rm o} = T_{\rm цикла}$. В тех случаях, когда схема обработки предусматривает изготовление за время цикла двух, трех или более деталей, основное время $T_{\rm o} = T_{\rm пикла}/Q$, где Q — число обрабатываемых деталей.

При обработке деталей на станках с ЧПУ, многооперационных станках типа «обрабатывающий центр» и робототехнических комплексах (модулях) основное время определяется как сумма времени на все несовмещаемые технологические переходы и времени на вспомогательные ходы станка, в том числе подвод и отвод суппортов, автоматическую смену инструмента, переключение частоты врашения шпинделя:

$$T_{o} = \frac{L_{1}}{n_{1}S_{01}} + T'_{BC\Pi} + \frac{L_{2}}{n_{2}S_{02}} + T''_{BC\Pi}$$

и т. д. по числу переходов.

Время обработки детали на станках с ЧПУ определяется при разработке управляющей программы.

глава 18 РЕКОМЕНДАЦИИ ПО ВЫБОРУ РЕЖИМОВ РЕЗАНИЯ

1. РЕЖИМЫ РЕЗАНИЯ ПРИ ШЛИФОВАНИИ ВЫСОКОТОЧНЫХ ДЕТАЛЕЙ

1. Шлифование валов (шеек и их торцов) из закрепленной стали иа круглошлифовальных станках

Группы материалов, обрабатываемых шлифованием

Обрабатываемый материал	Марка материала	Группа обрабаты- ваемого материала
Сталь конструкционная углеродистая и легированная хромом, марганцем, никелем и инструментальная углеродистая	20, 40, 50Г, 20Х, 40Х, 12ХН3А, У8, У10	ı
Сталь, легированная вольфрамом, титаном, кремнием, молибденом	38Х2МЮА, 12ХМФ, ХВГ, ШХ15, 9ХС, 35ХМ	11
Сталь жаропрочная и коррозионно-сгойкая	40X13, 20X13, 14X17H2, 15X17 и др.	111
Сталь жаропрочная и коррозионно-стойкая с содержанием титана, быстрорежущая	12X18H10T, XH38BT, P18, P9K5, P6M5	1V
Чугун	СЧ 10, СЧ 15, СЧ 20, СЧ 25	V

Рекомендации по выбору шлифовального круга (по ГОСТ 2424-83)

	Параметр	Сталь конст	рукционная углеро	одистая и легированная
Метод шлифования	пероховатости обрабатываемой поверхности <i>Ra</i> , мкм	HRC ₃ < 30	HRC ₃ 30 – 50	HRC ₃ > 50
	0,8	14A40CT16K 23A40CT16K	14A40CT16K 23A40CT16K	14A40CM26K 23A40CM26K
С продольной	0,4	23A25CT16K 23A16CT16K	23A16C26K	23A25C16K
подачей	0,2 0,1	_	23A16C25K 23A25C25K	24A40CM1 – CM27K5 23A25CM1 – CM26K5
	0,05	_		23A25CM26K
С радиальной по- дачей	0,8	14A40CT16K	14A40CT16K	14A40C16K

Продолжение табл. 1

	Параметр	Сталь конст	рукционная углер	одистая и легированная
Метод пипфования	шероховатости обрабатываемой поверхности Ra, мкм	HRC ₃ < 30	HRC ₃ 30-50	HRC ₃ > 50
С радиальной	0,4	23A40CT16K 23A25CT25K	23A40C16K 23A25C25K	23A40C16K 23A25C15K 23A16C15K
подачей	0,2 0,1 0,05	-	_ *,	23A40M2K 23A25CM26K 23A16CM26K 23A25C26K5 23A16C26K5

Примечание. Пример обозначения шлифовального круга из белого электрокорунда марки 23A, зернистости 40, степени твердости СТ1, номером структуры 6, на керамической связке К: 23A40CT16K.

Продолжение табл. 1

Припуски н	а-ш.піфоватіе	торцов шеек	валов*1, мм
------------	---------------	-------------	-------------

						Дли	на вала	, MM					
Диаметр шейки вала, мм	100	250	500	800	1200	2000	Допуск (-), мм	100	250	500	800	1200	2000
		Общ	ий приг	туск на	плифо	вание		Вгом	и числе	на фи	нишное	шлифс	вание
30	0,3	0,4	0,4	0,5	0,6	_	0,13	0,02	0.03	0,04	0.05	0,06	
50	0,4]	0,5	0,6	0,7	0,7	0,16	0,02	0,00	3,0	0,05	3,00	
80		0,5			0,8	0,9	0,19	0.03	0,04	0.05	0.06	0.07	80,0
120	0,5		0,6		,	,,,	0,22	,	_	,		,	0,1
180		0,6	0,7	0,8	0,9	1,0	0,25	0.04	0.05	0.06	0.07	0.08	
260	0,6	0,7	1			1,1	0,29	, , , ,		,		,	0,12
360	0,7	, , , , , , , , , , , , , , , , , , ,	0,8	0.9	1,0	ļ , ,	0,32	_	_	0,07	0,08	0,1	
500	8,0	8,0	0,9	,.	,	1,2	0,36			_		,	0,14

^{*} При обработке многоступенчатых валов припуск принимают на каждую ступень отдельно, исходя из диаметра ступени и общей длины вала.

Припуски на шлифование торцов шеек валов, мм

		Длина вала, мм											
шейки вала, мм,	18	50	120	250	500	Св. 500	18	50	120	250	500	Св. 500	
не более		Общий	припус	ск на п	ілифова	ние	Вт	ом числ	іе на ф	инищно	е шлиф	ование	
30	0,2	0,3	0,3	0,4	0,5		0,03	0,03	0,04	0,04	0,05	0,06	
50	0,3	0,5	0,4	-,.	-,-	0,6		0,04	, L	0,05	0,06		
120	0,5	0,4	٥,,	0,5	0,6		0,04	_	0,05			0,07	
250	0,4	0,5	0,5	0,5	, 0,0	0,7	0,05	0,05	0,06	0,06	0,07	0,08	
500	0,5	0,6	0,6	0,6	0,7	0,8	0,06	0,06	0,07	0,07	0,08	0,1	
Допуск на дли- ну (-), мм	0,11	0,16	0,22	0,29	0,4	0,5	-	-	-	_	-		

Режимы резапия при шлифовании деталей методом продольной подачи Продольная подача $S_{\cal B}$ в долях ширины шлифовального круга

Параметр шероховатости поверхности <i>Ra</i> , мкм	S_B
0,8	0,16-0,25
0,4	0,14-0,2
0,2	0,12-0,16
0,1	0,1-0,14
0,05	0,1-0,12

Подача на глубину S_{tx} , мм/ход

Диаметр	$v_{_{I\!I}}$,		$S_0 = S_B B^*$, mm/o6									
шейки вала, мм	м/мин	3	4	5	6	8	10	12	16			
25	8 10	0,005 0,004	0,004 0,0035	0,0035 0,003	0,003 0,0025	0,0025 0,002	_					
40	9 12	0,0045 0,004	0,004 0,0035	0,0035 0,003	0,003 0,0025	0,0025 0,002		_	_			
63	10 12 15	- 0,004 0,0035	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,002 0,0015 0,001					
100	12 15 18	0,005 0,004	0,005 0,004 0,035	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,002 0,0015 0,001	0,0015 0,001 -			

Продолжение табл. 1

Диамегр	υ	r_{ii} , $S_0 = S_B B^*$, MM/o δ								
шейки вала, мм	м/мин	3	4	5	6	8	10	12	16	
160	15 18 20	0,005 0,004	0,005 0,004 0,0035	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,002 0,0015 0,001	0,0015 0,001 —	
250	18 20 22		0,005 0,004 0,0035	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,002 0,0015 0,001	0,001 0,001 —	
320	20 22 25 28	-		0,0045 0,004 0,0035 0,003	0,004 0,0035 0,003 0,0025	0,0035 0,003 0,0025 0,002	0,003 0,0025 0,002 0,0015	0,0025 0,002 0,0015 0,001	0,002 0,0015 0,001 -	

^{*} B — ширина круга.

Режимы резания при инфовании деталей методом радиальной подачи

Скорость вращения детали $v_{\rm д}$

Диаметр шлифуе- мой поверхности, мм, не более		40	63	80	100	125	160	200
$v_{\rm д}, $ м/мин	12 – 16	14-18	16 – 20	20 – 22	20 – 24	22 – 24	24 – 26	26 – 28

Минимальная подача на глубины $S_{t\mathrm{M}}$, мм, мин

Диаметр плифуе-		Длина пілифования, мм									
мой поверхности, мм, не более	15	20	25	32	40	50					
25	0,58	0,50	0,44	_	_	_					
40	0,46	0,40	0,35	0,30	_						
63 .	0,37	0,32	0,28	0,24	0,21						
80		0,28	0,24	0,21	0,18	0,16					
100	_	_	0,21	0,18	0,16	0,15					
125	_		_	0,16	0,14	0,13					
160	_	_	_	0,14	0,13	0,11					
200	=	-	-	0,13	0,11	0,10					
			l								

Режимы резания при шлифовании торцов на круглошлифовальных станках Скорость вращения детали $v_{\rm d}$

D, мм, не более	25	40	63	80	001	125	160	200	300
v_{H} , м/мин	18	20	24	28	32	36	42	48	56

Минутная подача на глубину $S_{l,u}$, мм/мин

Наибольший диа-	Длина шлифования, мм, не более									
метр шлифуемо- го торца, мм	5	8	12	20	32	50				
25	0,82	0,68		~	_	_				
40	0,74	0,64	0,56	_	_	_				
63	0,67	0,58	0,52	0,46	_	_				
80	0,64	0,56	0,49	0,43	0,40	_				
100	0,61	0,53	0,46	0,42	0,38	_				
125	0,58	0,51	0,44	0,39	0,36	0,34				
160	0,53	0,49	0,43	0,38	0,35	0.32				
200	0,51	0,47	0,42	0,37	0,34	0,31				
300	0,47	0,43	0,37	0,34	0,31	0,28				

Поправочные коэффициенты на S_{IX} , S_{IM}

Коэффициент K_1 в зависимости от диаметра и скорости вращения шлифовального круга

Скорость	Диаметр круга D_{kp} , мм							
вращения круга _{Vкр} , м/с	400	500	600	750 и более				
35	0,85	0,9	1,0	1,1				
50	1,0	1,15	1,3	1,4				

Коэффициент K_2 в зависимости от группы обрабатываемого материала и квалитета

Группа	Квалитет								
обрабатываемого материала	0	I	2	3	4				
I	0,7	0,75	0,85	0,9	1,0				
11	0,6	0,65	0.75	0.85	0,9				
111	0,4	0,45	0,5	0,55	0,6				
lV	0,16	0,18	0,20	0,22	0,24				

Коэффициент K_3 в зависимости от формы поверхности и жесткости летали

	Жесткость детали						
Шлифуемая поверхность	$\frac{L}{D} \le 7$	$\frac{L}{D} > 7$					
Цилиндрическая Шлицевая	1 0,9	0,85 0,75					

Коэффициент K_4 в зависимости от шероховатости поверхности и степени твердости круга

Папамет	р шероховат	ости	Степень гвердости круга						
поверх	ности <i>Ra</i> , мк	м	CM1, CM	12		C1, C2	CT1, CT2		
-	0,4		1,3			1,2	1,0		
	0,2	. 1	1,1			1,0	0,85		
	0,1	5	0,8		545-	0,7	0,6		
	0,05		0,65		3	0,5	_		

2. Шлифование деталей из закаленной стали и серого чугуна на внутришлифовальных станках

Рекомендации по выбору шлифовального круга

Параметр шеро-		ионная углеродиста	я и легированная	Серый
ховатости поверх- ности <i>Ra</i> , мкм	HRC ₃ 30	HRC ₃ 30-50	HRC ₃ 50	чугун
0,8 0,4	23A, 24A25C26K 23A, 24A16CT15K	23A, 24A16C25K	23A, 24A16C25K	14A/23A25CM26K 14A/23A16C15K
0,2		23A, 24A16CM17K	63C40CM29K	
0,1 0,05	_	_	63C40M2K 63C40M2K	-
	l			

Режимы резанил при финишном и нифовании отверстий Продольная подача S_B в долях ширины круга

Параметр шероховатости поверхности <i>Ra</i> , мкм	Сталь закаленная	Серый чугун			
0,8	0,2-0,3	0,25-0,35			
0,4	0,15-0,2	0,15-0,25			
0,2	0,10-0,15	0,10-0,15			
0,1	0,1 - 0,12	- (-)			
0,05	0,1	_			

Подача на глубину S_{t2x} , мм/дв. ход

Диаметр	$v_{\rm A}$.		Стал	ь закал	енная				Ce	рый чу	гун	
отверстия, мм	м/мин	3	5	7	9	12	15	5	7	9	12	15
16	10 15	0,002 0,0015	0,0015 0,001	0,001	-	_	_		0,002 0,0015	0,0015 0,001	0,001	
20	12 15 18	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,002 0,0015 0,001	0,0015 0,001	0,001	_	0,003	0,0025	0,0024 0,002 0,0015	0,0015	0,015 0,001 —
32	15 18 22	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,0015			0,0035	0,003	0,003 0,0025 0,002	0,002	0,001
50	15 20 25	0,0035 0,003 0,0025	0,003 0,0025 0,002	0,0025 0,002 0,0015	0,0015			0,0035	0.003	0,003 0,0025 0,002	0,002	0,001:
80	18 22 25	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,0025		0,0015	0,001	0,0045 0,004 0,0035	0,0035	0,003	0,0025	0,002
120	18 25 32	0,0045 0,004 0,0035	0,004 0,0035 0,003	0,0035 0,003 0,0025	0,0025	0,002	0,0015	0,005 0,0045 0,004	0,004	0.0035	0,003	0,002:

Диаметр	$v_{\rm A}$,		Сталь	Серый чугун								
отверстия, м/	м/мин	3	5	7	9	12	15	5	7	9	12	15
	20	0.0055	0,005	0,0045	0,004	0,0035	0,003	0,005	0,0045	0,004	0,0035	0,003
200	25	0,005	0,0045	0,004	0,0035	0,003	0,0025	0,0045	0,004	0,0035	0,003	0,0025
	28	0,0045	0,004	0,0035	0,003	0,0025	0,002	0,004	0,0035	0,003	0,0025	0,002
	32	0,004	0,0035	0,003	0,0025	0,002	0,001	0,0035	0,003	0,0025	0,002	0,0015
	20	0,006	0,0055	0,005	0,004	0,003	0,002	0,006	0,0055	0,005	0,004	0,003
260	25	0,0055	0,005	0,004	0,003	0,002	0.001	0,0055	0,005	0,004	0,003	0,002
	30	0,005	0,0045	0,003	0,002	0,001		0,005	0,004	0,003	0,002	0,001
	35	0,0045	0,004	0,002	0,001	_	_	0,004	0,003	0,002	0,001	
	_			<u> </u>			L	<u> </u>				

Режимы резания при инифовании торцов на внутришлифовальных станках

Скорость вращения детали $v_{\rm д}$

Наибольший диа- метр торца, мм, не более	50	63	80	100	125	160	200
_д , м/мин	16	18	20	24	28	32	36

Минутная подача на глубину S_{IM} , мм/мин

Наибольший	Длина шлифования, мм, не более										
диаметр шлифуе- мой поверхности, мм, не более	5	8	12	20	32	50					
50	0,42	0,37	0,32	_	=						
63	0,38	0,33	0,28	0,25	_						
80	0,34	0,30	0,25	0,20		_					
100	0,29	0,24	0,19	0,16	0.14	_					
125	0,24	0,19	0,16	0,13	0,11	_					
160	0,20	0,16	0,13	0,11	0,09	0,07					
200	0,17	0,13	0,11	0,09	0,07	0,05					

Продолжение табл. 2

Поправочные коэффициенты на S_{t2x} и S_{tM}

Кээффициент	K ₁	В	3a Br	1CH N	AUC.	ти	01	от	HOL	пен	ИЯ	Д	ам	етра	круга	D_{KP} K	диаметру	отверстия	D_{OTB} :
$D_{ m \kappa p}/D_{ m orm}$															0,4	-	0.4 - 0.6	5	0.7 - 0.9
Коэффициент	K_1						•								0,65		0,8		1.0

Коэффициент K_2 в зависимости от обрабатываемого материала и диаметра круга

Группа		Диаметр круг	а <i>D</i> _{кр} , мм	
обрабатываемого материала	10	20	50	> 50
I	0,8	0,9	1,0	1,1
11	0.6	0,7	0,8	0,9
III	0,4	0,5	0,6	0,7
IV	0,25	0,3	0,35	0,4
V	1,2	1,3	1,5	1,7

Коэффициент K_0 на основное (технологическое) время для выхаживания

Параметр шерохо-			Квалитеты		
ватости поверхности — Ra, мкм	0	1	2	3	4
0,8	1,8	1,6	1,4	1,2	1.0
0,4	2,0	1,8	1,6	1.4	1,2
0,2	2,3	2,1	1,9	1.7	1.5
1,0	2,6	2,4	2,2	2,0	1,8
0,05	3,0	2,8	2,6	2,4	2.2

3. Шлифование плоскостей деталей из закаленной стали и серого чугуна на плоскошлифовальных станках

Рекомендации по выбору шлифовального круга

Шлифование	Параметр шероховатос- ти поверх-	Стали угл	Чугуны		
	ности <i>Ra</i> , мкм	HRC ₂ < 30	HRC ₃ 30 – 50	HRC ₃ > 50	
Периферией	1,6	14A40CM27K	14A40CM17K	14A40M37K	53C, 14A40CM28K
круга	0,8	14A25CM16K	14A25CM26K	24A25CM17K	53C, 14A25CM18K
	0,4	14A16C16K	14A16CM26K	24A20CM17K	53C, 14A16C17K
	0,2	14A16C16K	14A16CM26K	24A16CM16K	53C, 14A16C16K
Торцом	1,6	14A40СМ17Б	14А40СМ17Б	14А40М27Б	53С, 14А40СМ27Б
круга	0,8	14А25СМ26Б	14А25СМ16Б	14А25М36Б	53C, 14A25С17Б
	0,4	14А25СМ25Б	14А25СМ16Б	14А25М36Б	53C, 14A25С15Б
	0,2	14А25СМ25Б	14А25СМ15Б	14А20М35Б	53C, 14A25C15Б

Припуски на шлифование плоскоетей

_	Общий припуск на сторону, мм В том числе на финишное нали								
Длина обрабатываемой поверхности, мм, не более	Ширина	илоскости не более	<i>В</i> , мм,	Допуск,	Ширина	плоскости не болсе	<i>В</i> , мм,	Допуск,	
	100	300	1000		100	300	1000	, MM (+)	
300 1000 1000 – 2000	0,2 0,25 0,3	0,25 0,3 0,4	0,4 0,4	0,10 0,12 0,15	0,02 0,03 0,04	0,03 0,04 0,05	0,05 0,06	0,01 0,015 0,02	

Режимы резаимя при шлифовании периферией круга на станках с прямоугольным столом Поперечная подача $S_{\lambda},$ мм/ход

Параметр шеро-	Ширина пілифовального круга, мм										
коватости поверх- ности <i>Ra</i> , мкм	20	32	40	50	63	80					
1,6	2,5	3,2	6,0	9,0	12,0	16,0					
0,8	1,8	2,5	4,0	6,0	8,0	12,0					
0,4	1,2	1,8	2,5	4,0	5,0	8,0					
0,2	0,8	1,2	1,7	2,5	3,2	5,0					

Продолжение табл. 3

Подача на глубину S_{tx} , мм/ход

Скорость	Сталь											
детали $v_{\rm д}$, мм/мин,	Поперечная подача S_{x} , мм/ход, не более											
не более	0,8	1,5	2,5	4,0	6,0	9,0						
5	0,006	0,0055	0,005	0,0045	0,004	0,0035						
6,3	0,0055	0,05	0,0045	0,004	0,0035	0,003						
8	0,005	0,0045	0,0045	0,004	0,0035	0,003						
10	0,0045	0,004	0,0035	0,003	0,0025	0,002						
12,5	0,004	0,0035	0,003	0,0025	0,002	_						
16	0,0035	0,003	0,0025	0,002	_							
20	0,003	0,0025	0,002	-		_						

Скорость	Cr	аль	Чугун							
детали $v_{\rm д}$, мм/мин,	Поперечная подача S_{x} , мм/ход, не более									
ие более	12,0	16,0	1,5	2,5	4,0	6,0	0,01			
5	0,003	0,0025	0,007	0,006	0,0055	0,005	0.0045			
6,3	0,0025	0,002	0,0065	0,0055	0,005	0,0045	0.004			
8	0,0025	0,002	0,006	0,005	0,0045	0,004	0,0035			
10	-	· —	0,0055	0,0045	0,004	0,0035	0,003			
12,5		_	0,005	0,004	0,0035	0,003	0,0025			
16	-	_	0,0045	0,0035	0,003	0,0025				
20	-	_	0,004	0,003	0,0025	-	_			

Режимы резания при шлифовании периферий круга на станках с круглым столом Поперечная подача на оборот стола S_0 , мм/об

Ширина шлифовального круга, мм										
20	32	40	50	63	80					
3,2	4,5	6,5	9,0	12,0	16,0					
2,5	3,0	4,5	6,0	9,0	12,0					
1,8	2,5	3,2	5,0	6,5	8,0					
1,2	1,7	2,5	3,2	5,0	6,5					
	3,2 2,5 1,8	20 32 3,2 4,5 2,5 3,0 1,8 2,5 1,2 1,7	20 32 40 3,2 4,5 6,5 2,5 3,0 4,5 1,8 2,5 3,2 1,2 1,7 2,5	20 32 40 50 3,2 4,5 6,5 9,0 2,5 3,0 4,5 6,0 1,8 2,5 3,2 5,0 1,2 1,7 2,5 3,2 3,2 3,2 3,2	20 32 40 50 63 3,2 4,5 6,5 9,0 12,0 2,5 3,0 4,5 6,0 9,0 1,8 2,5 3,2 5,0 6,5					

Подача на глубину на ход стола S_{tx} , мм/ход

Скорость			Сталь					_		Чугун						
детали v_{A} , мм/мин		Поперечная подача на оборот стола S								о, мм/об, не более						
не болсе	1,2	1,8	3,2	5	7,5	11	16	1,8	3,2	5	7,5	11				
6,3	0,007	0,006	0,005	0,0045	0,004	0,0035	0.003	0,012	0,009	0,007	0,006	0,005				
8	0,006	0,005	0,0045	0,004	0,0035	0,003	0,0025	0,01	0,008	0,006	0,005	0,0045				
10	0,005	0,0045	0,004	0,0035					0,007	0,005	0,0045	0,004				
12	0,0045	0,004	0,0035	0,003	0,0025	-	- 1	0,007	0,006	0,0045	0,004	0,003				
16	0.004	0,0035	0,003	0,0025				0,006	0,005	0,004	0,003					
20	0,0035	0.003	0,0025	· –	l –			0,005	0,004	0,003	_	_				

Продолжение табл. 3

Режимы резаим при шлифовании торцом на станках с прямоугольным столом Подача на глубину шлифования на ход стола S_{Ix} , мм/ход

Скорость			Сталь					Чугун		
детали v_n , м/мин,			Ц	Іирина ш	лифовани	я, мм, н	е болсе			
не более	32	50	80	125	200	32	50	80	125	200
3,2	_	_	_	_		0,004	0,0035	0,003	0,0025	0,002
4	_	_	_	-	_	0,0035	0,003	0,0025	0,002	0,0015
5	0,0035	0,003	0,0025	0,002	0,0015	0,003	0,0025	0,002	0,0015	_
6,3	0,003	0,0025	0,002	0,0015	0,001	0,0025	0,002	0,0015		
8	0,0025	0,002	0,0015	0,001	_	0,002	0,0015	_	_	-
10	0,002	0,0015	0,001	_	_	0,0015	_	_	-3	_
12,5	0,0015	0,001	-	_	_	_	_	_		_
16	0,001			_	_	_	_	_	_	_
16	0,001	_		_	_	_	_	_	_	

Режимы резания при инифовании деталей из закаленной стали и серого чугуна кругами из эльбора

	• • • • • • • • • • • • • • • • • • • •			
Параметры		Предварительное шлифование	Окончательное плифование	
Припуск на обработку, мм Скорость круга $v_{\rm kp}$, м/с Скорость детали $v_{\rm n}$, м/мин	(i) :	0,1 - 0,15 28 6 - 8	0.01 - 0.015 28 $3 - 4$	
Подача на глубину $S_{\rm rx}$, мм/ход	igan. La	0,006 - 0,008	0,003-0,004	

Поправочные коэффициенты на подачу S_{tx}

Коэффициент K_3 в зависимости от твердости круга и группы обрабатываемого материала

 Группа	Стенень твердости круга						
батываемого па гериала	M2, M3 CM1,CM		C1, C2				
I	1,1	0,1	0,85				
II	1,0	0,9	0,8				
 Ш	0,8	0,75	0,7				
IV	0,6	0,55	0,5				
v	1,5	1,3	1,2				
			4				

Коэффициент K_{0} на основное (технологическое) время для выхаживания

Параметр шероховатос- ти поверхнос- ти Ra, мкм		Квалитеты						
		1	2	3	4	5		
	1,6	2,2	1,9	1,7	1,6	1,5		
	0,8	2,8	2,4	2,0	1,7	1,6		
	0,4	3,2	2,8	2,4	2,0	1,7		
	0,2	4,0	3,2	2,8	2,4	2,0		

4. Шлифование зубьев высокоточных зубчатых колес на зубошлифовальных станках

Рекомендации по выбору шлифовального круга

М етод шлифования	Модуль	Параметр шерохо-	Стали конструкционные углеродистые и легированные		
зубьев	шестерни <i>т</i> ,	ватости поверхности, Ra, мкм	HRC < 30		
	< 3	3,2 1,6 0,8	24A25C1 8-9K* 44A16C1 8-9K* 44A12C1 8-9K*		
Обкатка	≥ 3	3,2 1,6 0,8	24A40C1 8-9K* 44A25C1 8-9K* 44A25C1 8-9K*		
Копирование профильным кругом	< 3	3,2 1,6 0,8	24A16C1 8-9K 44A12C1 8-9K 44A10C1 8-9K		
	≥ 3	3,2 1,6 0,8	24A40 – 25CM2 8-9K 44A25CM2 8-9K 44A25CM2 8-9K		

^{*} Рекомендуется пропитка бакелитом.

Ме тод шлифования зубьев	Стали кон	Стали жаропрочные	
	HRC 30 – 50	HRC > 50	и коррозионно-стойкис
<u>.</u>	24A25CM2 8-9K	24A25CM2 8-9K	24A25CM1 8-9K*
	44A16CM2 8-9K	44A16CM2 8-9K	44A16CM1 8-9K*
Обкатка	44A12CM2 8-9K	44A12CM2 8-9K	44A12CM1 8-9K*
O O NET NE	24A40CM2 8-9K	24A40CM1 8-9K	24A40CM1 8-9K*
1	44A25CM2 8-9K	44A25CM1 8-9K	24A25CM1 8-9K*
	44A25CM2 8-9K	44A25CM1 8-9K	44A25CM1 8-9K*
Копирование	24A16CM2 8-9K	24A16CM1 8-9K	24A16CM1 8-9K
профильным	44A12CM2 8-9K	44A12CM1 8-9K	44A16CM1 8-9K
кругом	44A10CM2 8-9K	44A10CM1 8-9K	44A10CM1 8-9K
5	24A40CM2 8-9K	25A40CM1 8-9K	24A40M3 8-9K
	44A25CM2 8-9K	44A25CM1 8-9K	44A25M3 8-9K
	44A25CM2 8-9K	44A25CM1 8-9K	44A25M3 8-9K

^{*} Рекомендуется пропитка бакелитом.

Продолжение табл. 4

Шлифование зубьев методом обкатки дисковым коническим кругом

Число проходов i, глубина шлифования t, подача на двойной ход S_{2x}

	_			Глубина	Число зубьев колеса				
Модуль	Модуль на сторону по дели- мм, пе более окружности, мм		Ииспо	шлифования	25	40	60	80	> 80
мм,		Проходы про- ходов				Подача на двойной ход S_{2x} . мм/дв. ход			
2	0,12-0,16	Черновые i_1 Получистовые i_2 Чистовые i_3	1 1 1	0.07 - 0.10 $0.03 - 0.04$ 0.02	1,35 1,35 0,6	1,46 1,46 0,65	1,58 1,58 0,7	1,8 1,8 0,8	2,03 2,03 0,9
4	0,16 – 0,20	Черновые i_1 Получистовые i_2 Чистовые i_3	1 1 1	0,07-0,10 0,04-0,05 0,02	1,69 1,69 0,75	1,69 1,69 0,75	1,8 1,8 0,8	2,03 2,03 0,9	2,25 2,25 1,0
6	0,20 – 0,25	Черновые i_1 Получистовые i_2 Чистовые i_3	2 1 1	0,07 - 0,09 0,04 - 0,05 0,02	1,90 1,90 0,85	1,90 1,90 0,85	2,03 2,03 0,90	2,25 2,25 1,0	2,48 2,48 1,1
8	0,25 – 0,30	Черновые i_1 Получистовые i_2 Чистовые i_3	3 1 1	0,07-0,08 0,04-0,05 0,02	2,25 2,25 1,05	2,36 2,36 1,05	2,48 2,48 1,1	2,6 2,6 1,15	2,7 2,7 1,2

При мечания: 1. При повышенных требованиях к точности зуба рекомендуется производить один дополнительный проход с режимами чистового шлифования без подачи круга на глубину.

2. При шлифовании колес из легированных или цементованных сталей, закаленных до твердости HRC > 55, приведенные подачи обкатки следует принимать с коэффициентом 0.8.

Длина хода каретки $L_{\rm px}$, мм

		-					
	Число зубьев колеса						
Модуль зубьев, мм	15	20	30	40	60	100	Св. 100
2	14	15	15,5	16	16,6	17	17,5
3	20	21	22	23	23,5	24	25
4	27	28	29	30	31	32	33
5	34	25	36	37	38	39,5	41
6	40	42	43	44,5	46	47,5	49
7	46	48	50	51,5	53	54,5	56
8	53	55	57	58	60	62	64

Длина хода каретки $L_{\rm px}$ для косозубых колес

β°	L px
15 20 30 45	$L_{ m px. Ta6_H} + 0.28b$ $L_{ m px. Ta6_H} + 0.37b$ $L_{ m px. Ta6_H} + 0.5b$ $L_{ m px. Ta6_H} + 1.05b$

 Π римечание. β — угол наклона линии зуба колеса; b — ширина венца зубчатого колеса, мм.

Длина хода ползуна $B_{\mathbf{p},\mathbf{x}}$ и число двойных ходов n

Длина хода ползуна $B_{ m px},$ мм	≤ 20	20-30	31 – 50	51 – 70	71 – 90	> 90
Число двойных ходов ползуна <i>n</i> , дв. ход/мин	280	200	140	100	70	50

Длина хода ползуиа B_{px}

Для прямозубых колес	0	$B_{\rm p,x} = b + (5 \div 10)$
Для косозубых колес ($m=2\div 8$) с углом наклона линии зуба β	20° 30° 45°	$B_{p,x} = b1,06 + (10 \div 20)$ $B_{p,x} = b1,16 + (10 \div 25)$ $B_{p,x} = b1,41 + (15 \div 30)$

b — ширина венца зубчатого колеса, мм.

Шлифование зубьев методом обкатки двумя тарельчатыми кругами

Число проходов, глубина шлифования t, подача на двойной ход S_{2x}

Модуль зубьев т, мм, не более	Припуск на сторону по делительной окружности, мм	Проходы	Число проходов	Глубина плифования по делительной окружности г, мм	Подача на двойной ход S_{2x} , мм/дв. ход
		Черновые	1	0,07	
	0,125	Получистовые	1	0,04	4,7
3		Чистовые	2	0,02	1,33
		Черновые		0,08	
	0,16	Получистовые	1	0,04	4,7
6	1	Чистовые	2	0,02	1,33

Продолжение табл. 4

Модуль зубьев <i>т</i> , мм, не более	Припуск на сторону по делительной окружности, мм	Проходы	Число проходов	Глубина шлифования по делительной окружности, 1, мм	Подача на двойной ход S_{2x} , мм/дв. ход
	0,20	Черновые Получистовые	1 1	0,075 0,04	4,7
6		Чистовые	2	0,02	1,33
	0,25	Черновые Получистовые	2	0,07 0,04	4,7
		Чистовые	2	0,02	1,33
7 и более	0,30	Черновые Получистовые	3 1	0,08 0,04	4,7
-1		Чистовые	2	0,02	1,33

Примечания: 1. Для черновых проходов глубина шлифования задается на один ход, для получистовых и чистовых проходов — на двойной ход.

- 2. Подача приводится для параметра шероховатости поверхности $Ra=3,2\div1,6$ мкм; при повышенных требованиях к шероховатости поверхности $Ra=0,8\div0,4$ мкм; подачу S_{2x} на чистовых проходах следуег уменьшать до 1,0 мм.
- 3. При повышенных требованиях к точности зуба рекомендуется осуществлять один дополнительный проход с режимами чистового шлифования без подачи круга на глубину.
- 4. При шлифовании зубьев колес из легированной или цементованной стали, закаленной до твердости HRC > 55, приведенные значения подачи S_{2x} следует принимать с коэффициентом 0,8 и при шлифовании инструментальных сталей – с коэффициентом 0,5.

Длина перебега круга у

7		Модуль зубьев m , мм								
Диамстр пілифовального	2	3	4	5	6	7	8	9	10	12
круга, м		Длина перебсів круга у, мм								
1.50		72	0.0	0.0	06	100	106			
150	60	72	80	88	96	100	106	112	116	124
200	68	82	92	102	110	116	124	130	136	140
225	72	86	97	107	116	123	130	138	144	15
250	76	90	102	112	122	130	138	146	152	16
275	80	94	108	117	128	136	146	152	160	17

Шлифование зубьев методом копирования

Скорость движения стола $v_{\rm g}$, число проходов и подача на глубину иллифования $S_{2{\rm x}}$

зубьев на по де.		<u></u>			Проходы	
	Припуск на сторону	Скорость движения	Общее число	черновые	получистовые	чистовые
	по делительной окружности, мм	стола $v_{\rm д}, \\ { m M}/{ m M}{ m u}{ m H}$	про- ходов*	Подача на глубину шлифования $S_{2\chi}$, мм/дв. ход		
≤ 44-6> 6	0,125 0,2 0,3	7 – 10	7 9 11	0,03 - 0,04	0,015-0,02	0,005 - 0,01

^{*} Число чистовых проходов -1-2.

Примечания: 1. При повышенных требованиях к точности рекомендуется один-лва дополнительных прохода без подачи круга на глубину.

- 2. При повышенных требованиях к шероховатости поверхности рекомендуется уменьшать скорость движения стола на 20%.
- 3. При шлифовании зубьев колес из легированных или цементованных сталей, закаленных до твердости HRC > 55, приведенные значения скорости движения стола следует уменьшать на $20\,\%$.

Длина перебега круга у, мм

Диаметр	Модуль зубьев т, мм								
шлифовального $p_{\rm kp}$, мм	2	3	4	5	6	7	8	9	10
100	31	35	38	41	44	46	48	50	52
150	35	41	45	49	53	55	58	61	6.
200	39	46	51	56	60	63	67	70	7:
250	43	50	56	61	66	70	74	78	8
300	46	54	61	66	72	76	18	85	88
400	50	61	69	75	81	87	92	97	101

5. Шлифование резьбы ходовых винтов и червяков из закалениой стали на резьбошлифовальных станках

Режимы резания при черновой прорезке в сплошном металле

	Однониточным кругом			Многониточным кругом					
Шат			S, мм при		сд, м/мин, при		T		
резьбы <i>P</i> ,	<i>S</i> , мм	υ _д , м/мин	i	первом проходе	после- дующих проходах	первом проходе	после- дующих проходах] i	
4	0,32	0.9 - 1.1	8-12	1,5	0,5	0.6 - 0.7	0,9-1,1	3	
6	0,36	0,9 1,1	10-15	2,0	0,6	0.6 - 0.7	0,9-1,1	4	
8	0,42	0.9 - 1.0	12 - 18	2,3	0,65	0.6 - 0.7	0,8-1,0	5	
10	0,45	0,7-0,9	14 - 22	2,5	0,68	0.5 - 0.6	0,7-0,8	6	
12	0,48	0,7-0,9	16 - 30	2,7	0,72	0.5 - 0.6	0,7-0,8	17	

 Π р и м е ч а н и е. S — подача на глубину; i — число проходов.

Режимы резания при шлифовании резьб после чернового нарезания

Получистовое шлифование			Чистовое плифование				
				i			
S, MM	ľ	<i>v_д</i> м/мин	S, MM	с подачей на глубину	без подачи	<i>v_д,</i> м/мин	
		Резьб	ы транецеид	пленые		A Space Specialists (1987) Property Sp	
0,08	6		0,03	8			
0,1	8	0,6-0,7	0,035	01	2		
0,12	12		0,04	12	3	0.4-0.6	
0,15	16	0,5-0,6	0,045	14			
0,18	20		0,05	16	4		
		Pe	вьбы модуль	шье			
0,2	8		0.04	8			
100	10	0,5-0,6	0,045	10	2		
0,23	12		0,05	12	2	$0,4 \cdot \cdot 0,6$	
0.3	16	7.4.5.5	0,055	14			
	20	0,4-0,5	0,06	16	4		
0,35	25		0,065	18			
	0,08 0,1 0,12 0,15 0,18	0,08 6 8 0,1 8 0,12 12 0,15 16 0,18 20 0,2 8 10 12 12 0,3 20	Резьб 0,08 0,1 0,12 12 0,15 16 0,18 20	S, мм i v _д м/мин S, мм Резьбы траненсили 0,08 0,1 8 0,1 8 0,12 12 0,12 12 0,04 0,6-0,7 0,035 0,04 0,15 16 0,5-0,6 0,045 0,05 0,045 0,05 0,18 20 0,5-0,6 0,045 0,05 0,05 0,05 0,05 0,06 0,045 0,05 0,05 0,06	S, мм i ед м/мин S, мм с подачей на плубину Резьбы транецеидальные 0,08 6 0,6 - 0,7 0,03 8 0,12 12 0,04 12 0,15 16 0,5 - 0,6 0,045 14 0,18 20 0,05 16 Резьбы модуныные Резьбы модуныные 0,2 8 0,04 8 0,25 12 0,05 12 0,3 16 0,05 12 0,3 20 0,4 - 0,5 0,06 16	I I <th colspan<="" td=""></th>	

Дополнительное число проходов I при изменении отношения длины I, к диаметру D нарезаемой резьбы

1.5	Число проходов			
L:D	получистовых	чистовых		
От 16 до 20	0	2		
Св. 20 до 30	2	4		
Св. 30	4	6		

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО НОРМИРОВАНИЮ ОСНОВНОГО ВРЕМЕНИ И РЕЖИМЫ РЕЗАНИЯ НА МНОГОИНСТРУМЕНТАЛЬНЫХ СТАНКАХ

6. Методические указания но нормированию основного технологического времени

№ Этапа	Последовательность и содержание элементов расчета	Источник и расчетная формула

Одношпиндельные многорезиовые токарные станки

1	Определение рабочего хода для каждого	$L_{p,x} = l_{pe1} + l_1 + l_2,$
	суппорта $L_{p.x}$. В расчет принимают на-	где I_1 — величина врезания;
		12 величина перебега инструмента
2	Назначение подачи суппортов на оборот	Табл. 7
	детали S_0 , об/мин	

21 Обработка металлов резанием

№ этапа	Последовательность и содержание элементов расчета	Источник и расчетная формула
3	Уменьшение подачи нелимитирующих суппортов. Увязка полученных данных с данными паспорта станка	Паспорт станка
4	Установление периода стойкости для лимитирующего инструмента $T_{\rm M}$ в минутах резания	Табл. 7
5	Расчет скорости резания <i>v</i> , м/мин, для лимитирующего инструмента	Табл. 7
6	Расчет частоты вращения <i>n</i> , об/мин, по принятой скорости резания и увязка полученных данных с данными паспорта станка	$n = -\frac{1000 v}{\pi D}$; паспорт станка
7	Расчет основного (машинного) времени обработки	При неперекрывающихся временах $T_{\rm o} = \Sigma T_{\rm oi};$ при перекрывающихся временах
		$T_{o} = \frac{L_{p,x}}{nS_{o}}$
8	Определение мощности резания для каждого инструмента и суммарной для всех инструментов. Сопоставление полученных данных с мощностью электродвигателя главного привода станка и	Табл. 7; паспорт станка; $N_{\rm pes} \leqslant N_{\rm ph. дв} \eta$
	в случае необходимости корректирование принятых режимов резания	1

Многошпиндельные токарные полуавтоматы последнего действия

1 - 6	Последовательность и расчетные форм	тулы по определению режимов резания
	аналогичны приведенным выше для одн	ношпиндельных многорезцовых токарных
	станков	
7	Расчет основного (машинного) времени	$L_{p,x}$
	по каждой позиции и определение ли-	$T_{o} = \frac{L_{p.x}}{nS_{o}}.$
	митирующей позиции. Сопоставление	Карта вспомогательного времени на ус-
	продолжительности лимитирующей по-	тановку и снятие детали (нормативы
	знции с продолжительностью вспомога-	вспомогательного времени)
	тельного времени на установку деталей	1
	в загрузочной позиции	44
8	Корректировка режимов резания на не-	При обработке стальных деталей инст-
72	лимитирующих позициях с учетом уста-	рументом из твердого сплава не следует
	новленного машинного времени работы	понижать скорости резания меньше, чем
	станка целесообразно осуществлять в	до 45-50 м/мин
	основном за счет снижения числа обо-	
0	ротов	
9	Определение мощности резания по каж-	Табл. 7;
	дой позиции, затем суммирование мощ-	паспорт станка;
	ности и сопоставление с мошностью	$N_{\text{pe}_3} \leqslant N_{\text{эл. ив}} \eta,$
Ì	электродвигателя станка. В случае не-	где КПД η ≈ 0,75 ÷ 0,8
	обходимости корректирование режимов	, and 3
	резания	

№ этапа	Последовательность и содержание элементов расчета	Источник и расчетная формула
Много	инструментальные одношпиндельные фрезы (обработка набором фрез, установл	
1	Расчет длины рабочего хода $L_{\text{p.x}}$	$L_{\rm p,x} = l_{\rm per} + l_1 + l_2,$ где l_1 — величина врезания и l_2 — величина перебега инструмента
2	Назначение расчетной подачи на зуб каждой фрезы, установленной на общей оправке или шпинделе станка. Расчет подачи на оборот шпинделя по лимитирующей фрезе и уточнение подачи на зуб	Табл. 7; тип фрезы и число зубьев z ; $S_0 = S_2 z$; паспорт станка
3 4	Определение стойкости инструмента Определение скорости резания для каж- дого инструмента в отдельности и ус- тановление общей для всех инстру- ментов частоты вращения согласно пас-	Табл. 7 Табл. 7; паспорт станка; $n = \frac{1000v}{\pi D}$,
5	порту станка По принятым величинам частоты вра- щения и подачи на один оборот ли- митирующей фрезы определение минут- ной подачи, общей для всех фрез. Увязка принятой минутной подачи с данными паспорта станка	где D — максимальный диаметр фрезы $S_{\rm M} = S_{\rm 0} n$; паспорт станка
6	Определение мощности резания для каждого инструмента и суммарной для всех инструментов. Сопоставление с мощностью электродвигателя главного движения станка. Корректирование в случае необходимости режимов резания	Табл. 7; паспорт станка; $N_{\rm pes} \leq N_{\rm эл.дв} \eta$

Многоштиндельные фрезерные станки с прямолинейной подачей

1	Расчет длины рабочего хода $L_{ m p,x}$ и определение ширипы $B_{ m dp}$ и глубины фрезерования	$L_{\text{p.x}} = l_{\text{pe3}} + l_1 + l_2 + l_3,$ где l_1 и l_2 – длины врезания и перебега для первой и последней фрез, участвующих в обработке; l_3 – сумма расстояний между осями шпинделей станка
2	Назначение расчетной подачи на зуб для каждой фрезы, участвующей в обработке S_2 . Если несколько фрез связаны установкой на одной оправке,	Табл. 7; тип фрезы и число зубьев;
3	подачу на один оборот принимают по наименышему значению Определение периода стойкости <i>Т</i> для лимитирующего инструмента	Табл. 7

№ этапа	Последовательность и содержание элементов расчета	Источник и расчетная формула
4	Определение рекомендуемых скоростей резания, скорректированных с помощью коэффициентов и установление согласованной с данными наспорта станка частоты вращения каждого шпинделя станка	Табл. 7; поправочные коэффициенты на <i>v</i> (см. табл. 7); $n = \frac{1000 v}{r}$;
		$\pi D_{\phi p}$
5	По принятому числу оборотов и подач на оборот лимитирующей фрезы определение минутной подачи $S_{\rm M}$, общей для всех фрез, и увязка ее с данными паспорта станка	наснорт станка; $n_{\text{насн}}$ (но паснорту) Паспорт станка; $S_{\text{м}} = n_{\text{насн}} S_{\text{o}}$
6	В целях выравнивания и в соответствии с принятой минутной подачей $S_{\rm M}$ корректирование частоты вращения и подачи на зуб для нелимитирующих фрез	
7	По принятым режимам резания проверочный расчег мощности резания по каждому шпинделю. В случае необходимости корректирование принятых режимов резания	Табл. 7; паспорт стапка; $N_{\rm pes} \leq N_{\rm 30, 100} \eta$, где КПД $\eta \approx 0.75 \div 0.8$

Многошпиндельные фрезерные станки с круговой подачей

1	Определение средней ширины фрезерования $B_{\rm cp}$, глубины резания и среднего диаметра расположения деталей на столе станка $D_{\rm cp}$	L_{per}
2	Определение подачи на зуб фрезы S_z	Табл. 7
3 4	Определение стойкости инструмента Т	Табл. 7
4	Определение скорости резания v , м/мин,	Табл. 7;
	определение скорости резания <i>v</i> , м/мин, для каждой фрезы и частоты вращения <i>n</i> , об/мин, для каждого шпинделя и увязка их с данными паспорта станка	$n=rac{1000v}{\piD_{ m dpp}}$; паспорт станка
5	Определение подачи на оборот для лимитирующей фрезы	$S_{\rm o}=S_{\rm c}z$ лимитирующей фрезы
6	митирующей фрезы Определение частоты вращения стола $n_{\rm c1}$ и минутной подачи $S_{\rm M}$	$n_{\rm c_1} = -\frac{S_{\rm M}}{\pi D_{ m cp}}$; $S_{ m M} = S_{ m o} n$ лимитирующей фрезы, где $D_{ m cp}$ — средний диаметр расположения деталей на столе
7	Проверочный расчет мощности резания	Паспорт станка;
Yes	н сопоставление с данными паспорта	табл. 7;
	станка	$N_{\rm pes} \leqslant N_{\rm DR,AB} \eta$

№ этана	Последовательность и содержание элементов расчета	Источник и расчетная формула
	Сверлильные станки с одной мно	гошпиндельной головкой
(1)	Определение длины рабочего хода головки $L_{\rm p,x}$ по инструменту, имеющему максимальную длину перемещения	$L_{\rm p,x} = l_{\rm pesmax} + l_1 + l_2 + l_{\rm gon},$ где l_1 и l_2 - длина врезания и перегиба; $l_{\rm gon}$ - дополнительная длина перемещения (назначается по данным наладки)
2	Назначение подачи на оборот $S_{\rm o}$ для каждого инструмента	Табл. 7
3	Определение периодов стойкости Г для каждого инструмента	$T = T_{\rm M}\lambda$, где $T_{\rm M}$ — стойкость инструментов наладки; λ — коэффициент времени резания; габл. 7
4	Назначение скорости резания и расчет частоты вращения шпинделя <i>n</i> , об/мин, по предположительно лимитирующему инструменту по стойкости и подаче	Табл. 7; $n = \frac{1000 v}{\pi D}$
5	Расчет минутной подачи головки $S_{\rm M}$, мм/мин, по принятой частоте вращения ппинделя n , об/мин, и подаче $S_{\rm O}$, мм/об, лимитирующего инструмента. Увязка полученных данных с данными	$S_{\rm M}=S_{\rm O} n$
6	паспорта станка Уточпение частоты вращения и подачи на оборот для всех остальных не-	
7	лимитирующих инструментов Проверочный расчет осевых сил резания $P_{\rm o}$ для каждого инструмента. Сопоставление суммарной силы резания $\Sigma P_{\rm o}$ с допускаемым усилием подачи станка	Зпачение P_{o} — см. табл. 7; паспорт станка
8	Определение мощности резания $N_{\rm pes}$ для каждого инструмента. Сопоставление суммарной мощности резания всех одповременно работающих инструментов $\Sigma N_{\rm pes}$ с мощностью электродвигателя станка	Таби. 7; паспорт станка; $N_{\rm per} \leq N_{\rm MLAB} \eta$
9	Проверка прочности привода на первых трех-четырех ступенях частот вращения иппинделя станка. Если прочность привода не ограничивает выбранных режимов резания, следует проверить двитагель на пиковую нагрузку	Паспорт станка; $\Sigma N_{\rm pes} \le N_{\rm up};$ $N_{\rm pes} = \frac{M_{\rm KP} n}{9750} \ {\rm \kappa Br}$

№ этапа	Последовательность и содержание элементов расчета	Источник и расчетная формула						
10	Время работы с пиковой нагрузкой, ми	Н	≤ 2	2,1-3	3,1-5			
10	Коэффициент k_{Π}	· · · · · · · · · · · · · · · · · · ·	2	1,75	1,5			
	Агрегатно-сверлильные станки с нескольки.	ми многошти	ндельным	и головкал	ıu			
1-6	Последовательность и расчетные форм для каждой головки аналогичны прив			-	в резания			
7	Установление основного (технологического) времени работы, исходя из рассчитанного времени работы каждой головки	При последки $T_0 = T_{01}$ при паралля $T_0 = T_{0 \text{ max}}$, гле $T_0 - \text{осн}$ время обра основное вр $T_{0 \text{ max}} - \text{мак}$ одной из го	+ T _{o2} + ельном м новное (то ботки; Т емя рабог симально	$+T_{on};$ етоде обрежинологич $\hat{r}_{ol},\ T_{o2},\ \hat{r}_{ol}$ каждой	або гки еское) , <i>Т</i> _{оп} —			

7. Режимы резания на многоинструментальных станках

Токарные стаики

 H_0 дача S_0^* , мм/об, при черновом точении

Обрабатываемый материал	Суммарная	Суммарная глубина (ширина) резания резцами, установленными на одном суппорте, мм									
	3	5	10	20	40						
Сталь Чугун	0,6 0,8	0,4 0,6	0,3 0,45	0,25 0,35	0,2 0,3						

^{*} При высоких требованиях к точности обработки подачу устанавливать в пределах $0.2-0.3\,$ мм/об. При обработке деталей жесткой системы станок — деталь — инструмент подачу увеличивать на 50%, а нежесткой системы — снижать на 30%.

Подача S_0 , мм/ $o\bar{o}$, при чистовом точении

		F	M	Ra=3,2 MKN		
Обрабатываемый материал	v, м/мин, не более		Радиус	при верши	іне угла	
		0,5	1,0	2,0	1,0	2,0
Сталь, $\sigma_{\rm B} = 0.59 \ \div$ 0.74 ГПа	50	0,25	0,3	0,4	0,15	0,2
7,74 I I I I	80	0,3	0,35	0.45	0,2	0,25
* 10	100	0,35	0,4] -,	0,25	,,,,,

Продолжение табл. 7

		i	Ra = 6,3 MK	Ra = 3.2 MKI		
Обрабатываемый материал	υ, м/мин, не более		Радиус	при верши	ине угла	
		0,5	1,0	2,0	1,0	2,0
Сталь, $\sigma_{\rm B} = 0.59 \div 0.74$ ГПа	120	0,35	0.4			0,3
Чугун	Весь диапазон скоростей	_		0,5	0,3	0,35

Подачи S_0^{-*} , мм/об, для прорезных, фасонных и широких резцов и расточных головок с плавающими ножами

Обрабатываемый материал		ые для канавок мм и глубиной	Резцы ф	асонные	Расточные головки для обработки
	до 3 мм	св. 3 мм	сложные	простые	отверстий
Сталь	0,15	0,08		0,12	0,3-0,35
Чугун	0,2	0,12	0,1	0,2	0,4-0,5

* При чистовой обработке расточными головками с плавающими ножами подачи устанавливать в пределах 0.15-0.2 мм/об. При черновом точении алюминиевых сплавов подачи устанавливать такими же, как и при обработке стали.

Периоды стойкости инструмента $T_{\rm M}^{*1}$, мин

	Чнело инструментов в наладке										
Наладка	I	3	5	8	10	15	20	20			
С равномерной загрузкой инструмента *2 То же *3 С большой разницей загрузки инструмента *4	50 - -	150 100 70	200 120 90	300 150 110	350 180 130	400 230 150	260 170	300 180			

^{**} При параллельной работе нескольких суппортов период стойкости определяется только по лимитирующим позициям. Период стойкости $T_{\rm M}$, по которому проводится расчет скорости резания, равен $T_{\rm M}\lambda$, где λ — кожффициент времени резания. Если λ > 0,7, то в расчетах этот коэффициент принимают за единицу. Общая формула определения коэффициента резания λ — $\frac{L_{\rm pea}}{L_{\rm max}}$ где $L_{\rm max}$ в дания резания λ — прииз разболего хода

фициента резания $\lambda = \frac{L_{\rm pes}}{L_{\rm p.x}}$, где $L_{\rm pes}$ – длина резания; $L_{\rm p.x}$ – длина рабочего хода.

 *2 Разница диаметров обрабатываемых поверхностей не более 20%. Число фасонных и прорезных резцов — в пределах 20% общего числа инструментов в наладке.

*3 Диаметры обтачиваемых поверхностей различаются меньше чем в 2 раза; число фасонных и прорезных резпов — не более 50% от общего числа инструментов в наладке.

 *4 Диаметры обтачиваемых поверхностей различаются более чсм в 2 раза. Число фасонных и прорезных резцов — более 50% общего числа инструментов в наладке.

Продолжение табл, 7

Скорость резания v*, м/мин, при точении проходными, подрезными и расточными резцами

					06	рабаты	ваемый	матер	иал			
				Cr	аль				Ч угун		ние	оми- вые авы
	S/26			Матер	риал ра	бочей ч	асти ре	жущего	инстр	умента		
i, MM	S_0 , MM/06	Быс	трорежј сталь	ущая	Твердый сплав							
					Главе	ный уго	ол в ил	ане ф°	резца			•
		45	60	90	45	60	90	45	60	90	45	- 90
	0,2		48	•		140			135	·	530	225
11	0,3		41			130			130		460	190
- 5	0,4		36			125			120		400	170
1	0,5		34			120			115		360	155
	0,6		31		1	110		,	110		330	140
	0,8		28			105			100		290	125
	0,2	42	39	37	130	120	110	115	105	100	460	190
	0,3	35	31	30	120	110	100	100	95	90	380	160
4.0	0,4	30	27	26	110	100	90	95	85	80	330	140
2,5	0,5	27	24	23	100	95	85	90	80	75	300	130
	0,6	25	22	21	95	90	80	85	75	70	270	115
	0,8	22	19	17	90	84	72	75	70	65	240	100
											<u> </u>	<u> </u>
					<u>O</u> 6	рабаты	ваемый	матері	иал		Ι Α	22414
				Cr	аль				Чугун		нис	оми- выс авы
t, MM	S ₀ , мм/об			Marep	иал раб	бочей ч	асти ре	жущего	инстр	умента		
		Быс	грорежу сталь	/пцая			Тве	рдый сі	шав			Быстро-
	l i				Главі	ый уго	ហា ម ដោ	ане ф	резца			
		45	60	90	45	60	90	45	60	90	45	- 90 -
	0,2	42	37	29	115	110	93	110	100	90	410	170
	0,3	33	29	23	105	100	86	100	90	80	340	145
5	0,4	28	25	20	96	90	80	90	85	75	300	125
	0,5	24	22	18	90	83	73	85	80	70	270	110
	0,6	22	19	16	80	76	66	77	73	63	240	100
	0,8	19	17	14	68	62	55	70	65	56	210	90

^{*} Скорости резания для растачивания огверстий головками с плавающими ножами устанавливать в пределах $4-8\,$ м/мин.

Продолжение табл. 7 Скорость резания v, м/мин, при точении прорезными, фасонными, широкими и отрезными резцами

D	Материал рабочей	Обраба-				S	о, мм/с	об				
Резцы	части режущего инструмента	тываемый материал	0,03	0,04	0,06	0,08	1,0	0,15	0,2	0,3	0,4	0,5
Фасонный Быстро- режущая сталь		Сталь	53	50	42	35	32	27		_	_	_
1		Чугун	_	_	44	40	36	30	28	23	20	18
• '	Твердый сплав	Сталь			_	100	92	85	77	65	57	52
широкие		Чугун	_	_	-	90	82	72	62	56	49	45
· ·	Быстро- режущая сталь	Алюми- ниевые сплавы	_	_		_	160	130	120	107	92	88

Примечание. Скорости резания для растачивания отверстий головками с плаватощими ножами устанавливать в пределах 4-8 м/мип.

Поправочные коэффициенты на скорость резиния

Коэффициент k_4 в зависимости от обрабатываемого материала

		-				Обра	батыв	аемы	й мат	ериал	ı				
Матания				(Ггаль	маро	к								
Материал рабочей части режущего	30; 35; 45		5	35X; 38XA; 40X		20X	40 X		TT;	Чугун		Алюминиевые сплавы			
режущего инструмента	НВ												σ _B , I IIa		
	229	269	229	269	207	255	179	269	187	197	229 270	270	0,2	0,3	0,4
Быстрорежущая сталь	1,0	8,0	1,0	0,8	1,0	0,7	1,3	0,7	1,0	0,7		men.	1,4	1,0	0,9
Твердый сплав		0,9	1 .,0	0,9		0,9	1,2	0,8		0,9	1,0	0,8		1,5	1,2

Продолжение табл. 7

Коэффициент k_5 в зависимости от периода стойкости режущего инструмента

Обраба-		Материал рабочей						T _м , ми	1			
тываемый материал	Резны	части режущего инструмента	30	60	100	150	200	300	400	600	800	1000
Сталь	Проход- ные, подрез- ные,	P6M5 T15K6 T30K4 T5K10	1,0 1,7 1,3 1,1	0,9 1,5 1,2 0,9	0,8 1,2 1,0 0,8	0,7 1,0 0,8 0,65	0,65 0,9 0,7 0,55	0,6 0,8 0,65 0,4	0,55 0,7 - -	0,4	0,35	0,3
Чугун	расточ- ные, и про- резные	BK4 BK6 BK8	1,5 1,3 1,1	1,3 1,15 0,9	1,2 1,0 0,85	1,1 0,9 0,75	1.0 0,85 0,7	0,9 0,75 0,65	0,85 0,7 0,6	0,7 0,6 0,5.	0,6 0,55 0,45	0,55 0,45 0,4
Алюми-		P6M5	1,1	0,9	0,8	0,7	0,65	0,6	_	_	-	-
ниевые сплавы		ВК6	1,5	1,2	1,8	0,9	0,85	0,7	_	-	_	_
Сталь	Фасон- ные	P6M5	1,1	0,85	0,7	0,5	0,45	0,4	0,4	_	_	

Коэффициент А в зависимости от вида обработки

Растач	Растачивание		оперечное точе	ние	Фасонное гочение				
<i>D</i> ≤ 75 mm	D > 75 mm	При от	ношении $D_{\rm Hall}$	Профиль					
		До 0,4	0,5-0,7	0,8-1,0	простой	сложный			
1,0	0,85	1,3	1,2	1,0	1,0	0,7			

^{*} Для продольного точения $k_6 = 1,0.$

 $_{136n}$, $_{136n}$

S_{0}	Глубина резания t^{*2} , мм											
мм/об	0,5	1,0	1,5	2,0	2,5	3,0	4,0	5,0	6,0	8,0	10,0	
0,06	0,25	0,5	0,75	1,0	1,25	1,5	2,0	2,5	3,0	4,0	5,0	
0,08	0,27	0,55	0,8	1,1	1,3	1,6	2,2	2,7	3,2	4,3	5,4	
0,1	0,3	0,6	0,9	1,2	1,5	1,8	2,3	3,0	3,6	4,7	5,8	
0,12	0,35	0,7	1,1	1,4	1,8	2,1	2,8	3,5	4,2	5,6	7,1	
0,16	0,4	0,8	1,4	1,6	2,1	2,5	3,4	4,2	5,1	6,7	8,4	
0,2	0,5	0,9	1,5	1,8	2,5	3,0	4,0	4,9	5,9	7,8	9,8	
0,25	0,6	1,2	1,8	2,4	2,9	3,5	4,7	5,8	7,0	9,3	11,6	
0,3	0,7	1,3	2,0	2,6	3,3	4,0	5,3	6,7	8,0	10,6	13,6	
0,4	0,8	1,7	2,5	3,4	4,2	5,0	6,6	8,3	10,0	13,2	16,6	
0,5	1,0	2,0	3,0	4,0	4,9	5,9	7,8	9,8	12,0	15,6	19,5	

So.		Глубина резания 1*2, мм											
мм/об	0,5	1,0	1,5	2,0	2,5	3,0	4,0	5,0	6,0	8,0	10,0		
0,6	1,1	2,2	3,4	4,5	5,6	6,7	8,9	11,0	13,4	18,8	22,3		
0,8	1,4	2,8	4,2	5,6	6,9	8,3	11,0	14,0	16,6	22,5	27,7		
1,0	1,6	3,3	5,0	6,6	8,2	10,0	13,2	16.5	19,7	26,0	33,0		
1,2	1,9	3,8	5,6	7,5	9,4	11,0	15,0	19	22,6	30,2	37,8		

*1 При работе отрезными, прорезными и фасонными резцами $N_{\rm ra6.n}$, принятую для глубины резания 1 мм, умножать на ширину резца и на коэффициент k=1,3.

*2 При одновременной обработке несколькими резцами глубина резания t суммируется.

Примечание. Мощность резания (кВт) $N_{\rm pes}=N_{\rm Ta6\pi}-\frac{v}{100}\,k_7$, где $N_{\rm Ta6\pi}-$ условная расчетная мощность, приведенная в таблице; v- скорость резания, м/мин; k_7- коэффициент, характеризующий обрабатываемый материал.

Коэффициент k_7 на мощность резания в зависимости от обрабатываемого материала

		Обрабатываемый материал										
Материал рабочей части		Сталь							Чугун			
режущего инструмента						НВ						
	156	207	229	269	285	302	321	229	241	295	_	
Быстрорежущая сталь	0,75	0,9	1,0	1,15	1,2	1,3	1,4	0.45	0.5	0.55	0.2	
Твердый сплав	0,6	0,7	0,75	0,8	0,8	0,85	0,9	0,45	0,5	0,55	0.3	

Фрезерные станки

Подача на зуб фрезы S_z , мм/об, при обработке плоскостей

	Обрабатываемый материал							
Твердость обрабаты- ваемого		Сталь			Чугун		Алюми- ниевые сплавы	
материала НВ				f, MM				
	≤ 3	≤ 5	> 5	≤ 3	≤ 5	> 5	≤ 12	

Торцовые фрезы из быстрорежущей стали

$$\stackrel{\leqslant}{\underset{230-287}{\otimes}} 229 \qquad \begin{vmatrix} 0.2-0.3 \\ 0.15-0.25 \\ 0.12-0.2 \end{vmatrix} \begin{vmatrix} 0.15-0.25 \\ 0.12-0.2 \\ 0.1-0.15 \\ 0.07-0.1 \end{vmatrix} \begin{vmatrix} 0.12-0.2 \\ 0.1-0.15 \\ 0.07-0.1 \end{vmatrix} = 0.25-0.3$$

Торцовые фрезы с пластинами из твердого сплава

	Обрабатываемый материал								
Твердость обрабаты- ваемого материала НВ		Сталь			Чугун		Алюми- ниевые сплавы		
	t, MM								
	≤ 3	≼ 5	> 5	€ 3	≤ 5	> 5	≤ 12		

Дисковые фрезы из быстрорежущей сгали

Дисковые фрезы с пластинами из твердого сплава

Цилиндрические крупнозубые фрезы из быстрорежущей стали

	0,2 - 0,3 0,15 - 0,2			-	0,2-0,25
287	0,1 0,15	0,08 - 0,1	0,06 - 0,08	- 3'	

Примечание. При пистовой обработке для достижения параметра шероховатости поверхности Ra=3,2 мкм S_z пе должна превышать 0,1 мм. Большие значения подач принимать для жестких систем деталь—станок—инструмент.

Подачи на зуб фрезы S2, мм/зуб, при обработке пазов

	1.13			Обрабат	ываемый ма	гериал		
<i>B</i> . мм	пость батывае- материа		Сталь	Чугуп				Алюми- ниевый вилов
	pa				1. MM			
	T. O. O. M.	≤ 3	≤ 5	> 5	≤ 3	≤ 5	> 5	≤ 12

Дисковые фрезы из быстрорежущей стали

≤ 229	0,070,12	0,07 - 0,12	
230 — 287	0,05-0,10	0,06-0,1	0,12-
287	0.03 (-0.06	0,04 0,08	0,18

Дисковые фрезы с пластинами из твердого сплава

≤ 229 230 - 287	0,06 - 0,10 0,04 - 0,08	0,07 - 0,12 0,06 - 0,1	0,1-0,12
287	0,03 - 0,06	0,04 - 0,08	1

	113										
В, мм	эсть атывае- материа		Сталь			Ч угун		Алюми- ниевый сплав			
	epa pa6				I, MM						
	T 00 N	≤ 3	≤ 5	> 5	€ 3	≤ 5	> 5	≤ 12			

Прорезные фрезы из быстрорежущей стали

Угловые фрезы с пластинами из твердого сплава для пазов гипа «ласточкии хвост»

Радиусные фрезы из быстрорежущей стали

$$- \left[\begin{array}{c|c} 230 - \left[0.04 - 0.06 \right] 0.03 - 0.05 \right] 0.02 - 0.04 \left[0.06 - 0.08 \right] 0.04 - 0.06 \left[0.03 - 0.05 \right] - 0.04 - 0.06 \left[0.03 - 0.05 \right] \right]$$

Примечания: 1. Большие значения подач принимать для жестких систем дегаль-станок - инструмент.

2. При фрезеровании пазов дисковыми фрезами меньшие значения подач принимать

при t > 2 **В.** где $\hat{B} =$ ширина паза.

.

Продолжение табл. 7

Период стойкости инструмента

Период стойкости каждого инструмента Т, мин, по которому приводятся в нормативных картах скорости резания г, м/мин,

 $T=k_{\rm R}(T_{\rm M1}+T_{\rm M2}+...+T_{\rm M2})\lambda,$ гле $T_{\rm M1}$: $T_{\rm M2}$: $T_{\rm M3}$ — периоды стойкости первого, второго и г. д. инструментов; λ — коэффициент времени резапия каждого инсгрумента; $\lambda = -\frac{I_{\text{pe}3}}{2}$; $k_8 - \text{коэффициент}$, учитывающий число инструментов в паладке. При $\lambda > 0.7$ эту величину принимают за единицу.

3начения k_8

Число инсгрументов в наладке	l	2	4	8
k_8	1	0,85	0,7	0,5

Период стойкости	инструмента	$T_{\rm M}$	мин
------------------	-------------	-------------	-----

			Лия	метр ф	резы Д	ММ		
Фрезы	50	75	100	150	200	300	400	500
Быстр	орежсу.	щая сп	паль	1				
Торцовые и дисковые	100	120	130	170	250	300	400	500
Прорезные	80	90	100	110	120			
Цилиндрические	100	170	280	400		_		
Радиусные	60	80	100					
Te	вердый	сплав		•				
Торцовые		90	120	200	300	500	600	800
Дисковые трехсторонние		130	160				-	_
Угловые для пазов типа «ласточкин хвост»		50	120	180	240	400	500	_
Скорость резания v, м/мин, при обработ	ке дет	алей и	з стал	ıu				
Материал рабочей части	1,				S_z , M	м/зуб		
режущего исиструмента	ММ	0,02	0,04	0,06	0,1	0,15	0,2	0,3
Тор	оцовые	фрезы	1					
Быстрорежущая сталь	1	i	70	65	60	50	0,2	40
9	3 6		50 42	47 40	42 36	37 30		27 22
		-		40			23	
Твердый сплав	1		440 4 0 0	400	360	300 270	280	230
	3 6		350	360 310	310 290	240	240 210	180
Дисковые фрезы	для об	і Бработі	ки пло	скосте	L й			
Auchouse gopesu		,	1 70	65	60	50	45	40
	1 1		/ V				33	27
	1 3		50	47	42	37		
	1 3 6	_	50 42	47 40	42 36	30	25	
Быстрорежущая сталь	3	-			. –			22
Быстрорежущая сталь Твердый сплав	3 6	-	42	40	36	30	25	22

Дисковые фрезы для обработки пазов

Быстрорежущая сталь	. 5	60	55	50	40	30	25	ı
	10	50	45	40	30	25	20	_
	20	38	35	33	25	20	18	

Материал рабочей части	t,			S	z, MM/3	уб		
режущего инструмента	ММ	0,02	0,04	0,06	0,1	0,15	0,2	0,3
Твердый сплав	5	420	340	310	280	220	140	
	10	350	310	280	220	160	120	_
	20	280	250	220	180	140	100	

Прорезные фрезы

Быстрорежущая сталь	1 3 1	1	44	42 1	35	ı	I
	6	_	37	35	30	-	-
	12		30	27	25		
	1 25 1		24	22	30		

Цилиндрические крупнозубые фрезы

Быстрорежущая сталь	40* 60* > 60*	-	44 42 40	42 40 38	38 34 30	34 30 26	22 20 18	20 18 16
		İ	ĺ					

Радиусные фрезы

Быстрорежущая сталь	20* > 20*	-	40 38	36 32	32 28	_	
		1			i		

^{*} Ширина фрезерования В, мм.

Скорость резания v, м/мин, при обработке деталей из чугуна и алюминиевых сплавов

Материал рабочей	J.					гун м/зуб				Алюми- ниевые
части режущего инструмента	MM	0,02	0,04	0,06	0,1	0,15	0,2	0,3	0,4	сплавы (весь диапазон подач)

Торцовые фрезы

Быстрорежущая сталь	3 6			4-					320
Твердый силав	1 3 6	-	175 150 130	155 130 110	130 120 90	120 110 80	110 100 70	100 90 60	900

Продолжение таба, 7

					Чу	/r yrı				Алюми-
Материал рабочей	1.				S_, N	ім/зуб				ниевые сплавы
части режущего инструмента	MM	0,02 0,04		0.06 0.1 0.		0.15	0,2	0,3	0,4	(весь диапазов подач)
	Диск	овые д	брезы	д 19-00	рабо т	ки плос	косте	й		-
Быс грорежущая сталь	1 3 6	-		75 70 67	67 63 58	56 50 47	50 45 40	40 36 32	32 28 26	300
Твердый сплав	1 3 6	-	-	160 140 130	130 120 110	110 100 90	90 80 70	80 7 0 60	60 55 50	700
	Л	исковь	ie fipe:	вы для	ούραδ	отки г	1а зов			
Быстрорежущая сталь	5 10 20	85 60 45	70 50 40	65 45 35	55 40 30	45 35 25	40 30 20	30 25 18		100
Твердый сплав	5 10 20	200 160 140	180 140 120	160 120 100	140 110 90	110 100 80	110 90 70	100 80 60	-	500
	. ,	·	Про	резиые	фрези	o!		, ,	'	
Бысгрорежущая сталь	2 6 12 25		40 30 22 15	35 22 18 12	25 18 13 9			5		.4
	i	Ци нинд	рическі	не круг	ппозуба	ые фре	361			
Быстр оре жущая сталь	40* 60* > 60*	3	42 40 38	36 34 32	34 32 30	30 25 20	25 20 18	22 18 16		-
3	г товые	фрезь	г для г	1 0306 n	nuna «	.tacmov	кин хв	ocm»		
Твердый сплав	50* >50*			96 88	82 76	76 68	70 62	64 56	-	-
			Paði	усные	фрезь	,				
Быс грорежущая сталь	20* > 20*	-	34 32	30 26	26 22	22 20		-	· ·	*

^{*} Ширина фрезерования В. мм.

Поправочные комффициенты на скорость резания

Коэффициент k_{q} в зависимости от отношения диаметра фрезы к глубине или ширине фрезерования

Материал рабочей части	Отно <i>D</i> В итп	шение <i>D</i>	вае	баты- мый ериал	Материал рабочей	Отног <i>D</i>	пение <i>D</i>	вает	багы- мый риал
режущего	В	1	Сталь	Чугун	части режущего	В	1	Сталь	Чугун
инструмента			A	49	инструмента]		k	9
	Торцові	ые фрез	bl		П	илиндрич	еские ф	резы	
Быстрорежу- шая сталь Твердый сплав	$\frac{D}{B}$	1,25 2 5 1,25 2 5	1,0 1,1 1,25 1,0 1,1 1,3	1,0 1,1 1,3	Бысгроре- жунцая сталь и твердый сплав	р 1	10 20 30 ые фрез	1,0 1,2 1,3	0,8 1,0 1,2
Дисковыг		оронние ики пазо)ля	Быстроре- жущая сталь	D B	15 40 75	1,0 1,2 1,5	1,1 1,2 1,4
Быстроре- жущая сталь	D	3 10 20	1,0 1,2 1,3	1,0 1,1 1,2	6	ие фрезы сласточк	ин хвос		
Твердый сплав	$\frac{D}{B}$	4 6 12	1,1 1,2 1,3	1,0 1,15 1,25	Тверды й спла в	$\frac{D}{B}$	> 10	Ī	1,0 0,8

Коэффициент k_{10} в зависимости от характеристики обрабатываемого материала

Обрабатываемый материал												
Сталь												
		4	5	35	5X	20X	40X					
-		НВ										
229	269	229	269	207	255	179	269					
1,1	0,8	1.0	0,8	1.0	0,7	1,3	0,7					
1,0	0,9	1,0	0,9	1,0	0,9	1,2	0,8					
	229	1,1 0,8	30; 35; 40 4 229 269 229 1,1 0,8 1,0	30; 35; 40 45 229 269 229 269 1,1 0,8 0,8	Сталь 30; 35; 45 35 HB 229 269 229 269 207 1,1 0,8 0,8 1,0 1,0	Сталь 30; 35; 45 35X HB 229 269 229 269 207 255 1,1 0,8 0,8 0,7 1,0 1,0	Сталь 30; 35; 45 35X 20X HB 229 269 229 269 207 255 179 1,1 0,8 0,8 0,8 0,7 1,3					

						Обр	брабатываемый материал									
			Стал	ТЬ							Ч	угун				
Материал рабочей части режущего	35ХГС	Į:	8XIT		302	кгт		верхі	юсть рки						ерхность соркой	
инструмента								H	3							
	241	321		187	1	97	22	9	241		295	22	.9	241		295
Быстроре- жущая сталь	0,6	0,5		1,1	C	,7	_				-	-	-	_		_
Твердый сплав	0,8	0,7		1,0	C),9	1,	0	0,8		0,7	0,	8	0,7		0,6
Коэффициент /	k ₁₁ в зап	висимс	сти (т пер	риода	стой	кости	инст	умеи	та						
Мате	риал						O6	рабат	ываем	иый м	иатер	иал				
рабо час	эчей		_			Сталь					_		Чугун			
режу	части режущего инструмента				1	1.00		·	стойк				400	(00	1,000	1.500
			100	150	200	400	600	1000	1500	100	150	200	400	600	1000	1300
			Тор	уовы	е, ди	сковь	ie u i	проре	зные	фрез	зы					
Быстрорежуц	цая ста	ль	1,0	0,9	0,85	0,75	0,7	0,6	0,55				÷			
Твердый спл	ав		1,0	0,85	0,80	0,65			_			0,8	0,7	0,6	0,55	0,5
					Цил	- индри	чески	е фр	езы							
Быстрорежуы	цая ста	ль	1,0	0,85	0,80	-		-		1,0	0,9			_		
	7			y	' ′глові	ые ф _і	резы	для	пазов		•					
Твердый спл	ав					-	-							0,45		

Продолжение табл. 7

К определению мощности резания

Мощность резания для торцовых и дисковых двусторонних фрез $N_{\rm pes} = E - \frac{vtz}{1000} \cdot k_{10}$; для осталь-

ных фрез $N_{\rm pc3} = E - \frac{vBz}{1000} k_{10}$, где E – величина, указанная в таблице; t – глубина резания, мм; z – число зубьев фрезы; B — ширина фрезерования (максимальная); k_{10} – коэффициент, зависящий от обрабатываемого материала и материала инструмента.

Продолжение табл. 7

Значения Е

					и Диск								
S_2 , mm		(Этношени	е диа	метра	фре	зы к ш	ирин	е фр	езеров	ания		
	40	20		2	8		5			3		2	1,5
				Дл	я стал	И							
0,04	0,02	0,0	4 , 0,	08	0,1		0,1	7	0	,3	n	,5	0,7
0,06	0,03	0,0		09	0,1	5	0,2		0,			,7	0,9
0,10	0,04	0,0		14	0,2		0,3		0,			,0	1,4
0,12	0,05	0,0		16	0,2		0,4		0,			,0	1,4
0,16	0,06	0,1			0,3		0,5		0,			,4	1,9
0,20	0,07	0,1		24	0,4		0,6		1,			,7	2,3
0,30	0.09	0,2			0,5		0,8	5	1,			,,, ,4	3,2
0,40	0.13	0,3			0,8		1,0		ĺ,				
0,50	0,15	0,33			0,9		1,2		2,		3	,9 ,4	4,1 4,7
	1	ı	l	Для	+ Н чугун	ıa	ı			,		••	.,.
0,04	0,01	0,03	3 0,	05	0,08		0,13	3	0,	2	0,	4 1	0,5
0.06	0,02	0,04		06	0.1		0,10		0,		0,		0,6
0,10	0,02	0,03		0,08		3	0,22			35	0,		0,9
0,12		0,02 0,03 0,04 0,07 0,08		0,09		5				,4		76	1,0
0,16							0,3		0,5		0,8		1,2
0,20				13	1 /			0,35		6			1,3
0,30	0,05	0,09		17	0,25		0,4		0,8		1,3		1,7
0,40	0,06	0,1			0,3		0,5		0,		1,	1	2,0
0,50	0,07	0,13		22	0,3	5	0,6		1,		ĺ,		2,3
=			Прорез	ные и	——— 1 Цилин	υίри	ческие	фрез	ы				
C MM		Отнош	ение диа	метра	фрезы	. к ј	лубине	фр	зеро	вания			
S-, MM	100	60	40		20		12		8	5		3	2
				Для	я сталі	и							
0,04	0,02	0,03	0,05		80,0		0,12	۱۵	,2	0,2	5	0,4	0,6
0,04	0,02	0,03	0,05		0,08		0,12		25	0,3		0,4	0,8
0,00	0,03	0,04	0,00		0,11		0,25		35	0,5	1	0,8	1,0
0,10	0,05	0,00	0,0		0.18		0,23	0.		0,6		0,9	1,3
0,12	0,05	0,07	0,13		0,23		0,35	0.		0,8		1,1	1,6
0,10	0,00	0,09	0,15		0,26		0,33	0,		0,9		1,3	1,9
0,20	0,07	0,13	0,13		0,26		0,5	0,		1,2		1,7	2,4
0,30	0,09	0,13	0,24		0,33		0,3 0,7	0,		1,5		2,1	3,0
0,50	0,12	0,10	0,24		0,42		0,7 0,8	1,		1,7		2,4	3,4
0,50	1 0,12	0,17	0,27	•	∨,∍ чугун		,,,	1 -	.0	1 -,,	'	2, .	, 5,.
0,04	1 000	0.02	0,03	1	• •	1	n ne	0,	t	0,18	. I	0,25	0,3
0,04	0,02	0,02	0,03		0,05 0,07		0,08 0.1		15	0,10		0,23	0,5
0,06	0,02	0,03 0,04	0,04		0,07		0,1 0,14	0,		0,22	·	0,33	0,5
0,10			0,03				0,14 0,16		22	0,3		0,43	0,0
	0,03	0,05			0,1						']		
0,16	0,04	0,05	0,07		0,13		9,18		26	0,4		0,6	0,8
0,20	0,04	0,06	0,08		0,15		0,22	0,		0,5		0,7	1,0
0,30	0,05	80,0	0,1		0,2		0,28	0,		0,6		0,9	1,2
0,40 0,50	0,06	0,09 0,1	0,12 0,14		0,22 0,25		0,35		45 5	0,7		1,1 1,2	1,3
0,50	1 0,07	0,1	0,14	1 '	0,23	١ '	0,4	0,	,	0,0		1,4	1./

Значения k_{10}

Материал				Об	рабаты	ваемый	матер	иал			
рабочей				Cr	аль					Чугун	
части режущето						HB			•		
инструмента	156	207	229	269	285	302	321	375	229	241	295
Быстрорежущая сталь	0,7	0,9	1,0	1,15	1,2	1,3	1,4	1,6	1,0	1,1	1,2
Твердый сплав	0,75	1,2	1,3	1,35	1,4	1,45	1,5	1,6	1,2	1,3	1,4

Сверлильные стаики

Рекомендуемые группы подач при обработке отверстий в зависимости от условий обработки

Вид обработки	Условия обработки	Группа подач
	Сверление сверлами из быстрорежущей стали с точностью не выше 12-го квалитета	I
Сверление	Сверление сверлами из быстрорежущей стали пониженной жест- кости системы приспособление — деталь, сверление твердосплав- ными сверлами с точностью не выше 12-го квалитета	I1
	Сверление под чистовое зенкерование или развертывание, под нарезание резьбы, наклонных отверстий и т. и.	111
	Черновое зенкерование	I
Зенкерова- ние	Зенкерование с точностью не выше 12-го квалитета под нарезание резьбы и под следующее развертывание черновой разверткой	11
	Зенкерование с точностью по 11-му квалитету и под чистовое развертывание	III
Разверты- вание	Черновое развертывание под чистовое	I
	Однократное развертывание или после чернового развертывания	П

Продолжение табл. 7

			·											
Вил обработки	Группа							d, мм						
Вид обработки	подач	2,5	4	6	10	12	16	20	25	32	40	60	80	100

При обработке отверстий в стальных деталях

Сверление	≤ 3	1	0,04	0,08	0,12	0,16	0,22	0,28	0,32	0,4	0,45				
при отно- шении	4 - 8		0,03	0,06	0,1	0,14	0,18	0,22	0,28	0,32	0,36		-	-	
$L_{\rm pe}$	> 8	11			0,09	0,12	0,15	0,18	0,22	0,25	0,3			,	: X
d		111	0,03	0.04	0,06	0.08	0,11	0,14	0,16	0,18	0,2				
Зенкерование		I II III					0,45 0,32 0,27	0,35		0,65 0,45 0,4		0,8 0,6 0,5	0,9 0,7 0,6	1,0 0,8 0,7	1,2 0,9 0,8
Развергыван	ие	1 11		1100		0,5 0,35	0,6 0,45	1	0,9 0,6	1,0 0,7	1,1 0,8	1,3 1,0	1,5 1,1	1,8	2,0 1,6
Цекование	5					-	-	0,2	0,25	0,28	0,3	0,35	0,4	0,45	0,5
при раз- ности	10						- C-	-		0,25	0,27	0,3	0,32	0,38	0,42
диаметров, мм	20	1		_				-	=			0,2	0,25	0,3	0,32
	30											_	0,12	0,18	0,2
Зенкование							0,06	0,08	0,1	0,13	0,15	0,18	0,25	0,3	0,35

При обработке отверстий в чугунных деталях

Сверление при отно- шении	≤ 3 48	I	0,06 0,05	0,12		0,24			0,45 0,35		0,55 0,45		T.		
$L_{\rm pes}$	≤ 8	H	0,04	0,08	0,1	0,12	0,16	0,18	0,22	0,25	0,3				
\overline{d}	< 8	Ш	0,03	0,06	0,08	0.09	0,12	0,15	0,16	0,18	0,22		_	-	
Зенкерование	:	 				0,4 0,3 0,25	0,45 0,35 0,28	0,4	0,55 0,45 0,35	0,5	0,7 0,55 0,45	0,6	0,9 0,65 0,55	0,7	1,1 0,8 0,7
Развертыван	ие	I II					1,0 0,6	1,1 0,7		1,3 0,9	1,5 1,0	1,8 1,2	2,1 1,4	2,4 1,6	3,6 2,3
Цекование Зенкование				-			0,23 0,1	0,25 0,15	0,28 0,2		0,33 0,3			,	0,55 0,55
				15	2.										

		Группа				•			<i>d</i> , мм						
Вид обрабо	тки	подач	2,5	4	6	10	12	16	20	25	32	40	60	80	100
	При об	раб отк е	01B	рсти	в в д	етал	ях из	алн	миии	евых	спла	авов			
Сверление, при отно- шении	$\begin{vmatrix} \leq 3 \\ 4-8 \end{vmatrix}$	I II	0,1 0,08	0,2 0,25	0,3	0,4	0,5 0,4	0,6 0,45	0,7	0,8 0,6	0,85 0,65	1,0 0,75		_	
$\frac{L_{ m pes}}{d}$	< 8	III	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5			
Зенкерование		III III		-	_		_	0,6 0,5 0,3	0,8 0,6 0,4	1,1 0,9 0,6	1,3 1,0 0,7	1,5 1,1 0,8	1,7 1,3 0,9	2,2 1,6 1,1	2,6 1,9 1,3
Развертывание		I II		-			0,6 0,4		0,8 0,5	0,9 0,6	1,0 0,65	1,1 0,7	1,3 0,9	1,6 1,1	1,8 1,2

*1 При НВ < 229 для стали и НВ 200 для чугуна табличную подачу на оборот инструмента принимать с коэффициентом 1,2, а при НВ > 229 для стали и НВ > 240 для чугуна — 0,8. При зенкеровании и развертывании глухих отверстий принимать S_0 не более 0,5 мм/об. Для отверстий с точностью по 7-му квалитету и Ra=1,6 мкм подачи уменьшать на 50% по сравнению с указанными в таблице. Для твердосплавных разверток подачу принимать с коэффициентом 0,7.

Продолжение табл. 7

Период стойкости при сверлении, расверливании и зенкеровании

Период стойкости режущего инструмента (мин), входящего в наладку, по которому ведется расчет скорости резания v, м/мин, $T = T_{\rm M} \lambda$.

Для многоинструментальных работ $T_{\rm M}$ относится к лимитирующему по стойкости инструменту, входящему в наладку; λ – коэффициент времени резания каждого инструмента наладки, равный отношению

длины резания $L_{\rm pes}$ каждого инструмента к длине рабочего хода $L_{\rm p,x}$, т е. $\frac{L_{\rm pes}}{L_{\rm p,x}}$. В случае, когда $\lambda >$

> 0,7, его не учитывают и принимают $T=T_{\mathrm{M}}$

Период стойкости $T_{\rm M}^{\ *}$, мин, при сверлении и зенкеровании

Период стойкости T_{M} , мин, при рассверливании

Наибольший диаметр обраба-		Чи	сло и В Н	нстру Іаладі		В	Наибольший диаметр обраба-		Числ		т р ум ладке	ентов	
тываемого отверстия, мм	1	3	5	6	10	> 10	тываемого отверстия, мм	1	3	5	6	10	> 10
10	20	50	80	100	120	140	30	50	120	160	200	220	250
15	30	80	110	140	150	170	40	55	135	180	220	240	280
20	40	100	130	170	180	200	50	60	150	200	240	260	300
30	50	120	160	200	220	250	60	75	180	220	260	300	350
50	60	150	200	240	260	300							

^{*} При применении зенкеров и резцовых головок диаметром более 60 мм период стойкости $T_{\rm M}$ в зависимости от сложности наладки принимать в пределах 150-300 мин.

Продолжение табл. 7

Скорость резания v, м/мин, при обработке отверстий в стальных деталях

				Сверл	ение			
S ₀ , мм/об, до				d, мм, н	е более		-	
202000000	2,4	4	6	8	3	10	12	16
0,06	17/39	22/54 17/44	26/68	30,	/75	33/86	36/98	42/115
0,1		1 //44	20/50	5 23,	/62 2	26/74	28/82	32/96
0,15			18/48	3 20,	/52 2	22/60	24/72	27/80
0,2		_	15/42	2 17,	/46	8/50	20/56	23/64
0,3				14,	/37 1	6/42	17/46	19/51
0,4					-		14/37	16/42
~		Сверле	ение			Зенкерован	ие	Цекова-
S ₀ , мм/об, до			d, N	им, не бол	ee			ние и зенкова-
	20	25	32	40	20	40	> 40	пие
0,06	_	_	-		_			22/54
0,1	38/112				46/116		-	22/52
0,15	30/92	33/98	35/105	40/110	38/92			20/50
0,2 0,3 0,4 0,6	25/72 21/56 18/46 14/37	27/78 23/62 19/52 15/40	30/84 25/68 21/56 17/45	33/92 28/74 22/62 19/50	33/78 26/68 23/60 20/54	38/92 30/78 26/68 22/60	43/104 35/88 30/78 24/65	18/48 17/45 16/42 14/40
0,8 1,0				15/40	16/45	19/52	21/58	7
.,.	-	-	_			17/45	19/50	

Примечание. В числителе приведены скорости резания при обработке инструментом из быстрорежущей стали, в знаменателе — из твердого сплава.

Поправочные коэффициенты на скорость резания

Коэффициент k_{13} в зависимости от характеристики обрабатываемого материала

Ма р ка обраб	атываемой стали	15	30,	35,	40	4	5, 5	0	30X,	35X,	40X	20X	18XFT	30XFT	357	KΓC
	НВ	156	207	229	259	229	269	302	207	255	332	179	187	197	241	321
Материал	Быстрорежу-		1,3	1,1	0.9	1.0	0.9	0,7	1.0	0,8	0,6	1,3	1,1	0,7	0,6	0,5
рабочей части режу- щего инст-	шая сталь Твердый сплав	1,2	1,2	1,0	1 '	.,.	'	8,0		0,9	0,7	1,2	1,0	0,95	0,8	0,7
румента															ŀ	

Коэффициент k_{11} в зависимости от периода стойкости инструмента

14	Материал рабочей			Пе	ериод с	тойкос	ги Т, м	ин		
Инструмент	части режущего инструмента	≤ 15	30	60	100	150	200	250	300	400
Сверла, зенке- ры, цековки	Быстрорежущая сталь	1,5	1,3	1,1	1,0	0,9	0,85	0,8	0,75	0,65
Сверла, зен- керы	Твердый сплав	1,6	1,35	1,15						!

Коэффициент k_{12} в зависимости от глубины обработки

Инструмент		Отно	шение длины	резания к диа	метру	
инструмент	≤ 3	4	5	6	8	10
Сверла Зенкеры	1	0,85 0,9	0,75 0,85	0,7 0,8	0,8 0,75	0,5 0,7

^{*} При сверлении инсгрументом с двойной заточкой табличные значения скорости резания увеличивать на 10-15~%.

Скорость резапия у. м/мин, при обработке отверстий в чугунных деталях

S_0 , mm/oб.					C	верле	ние					3ei	нкерова	ние	Цекова-
не более	2,5	4	6	8	10	12	16	20	25	32	40	20	40	> 40	ние и зен- кование
0,06	21	24	27	30	32			_			_	-	-		23
0,1		21	23	25	26	28	30	31	33			45		_	23
0,15		17	19	20	22	23	25	26	28	30	32	39	43	}	22
0,2			17	18	19	20	22	23	24	26	28	35	38	41	21
0,3			15	16	17	18	20	21	22	24	25	31	24	36	20
0,4					15	16	17	18	19	21	22	27	30	32	19
0,6			-	-			15	16	17	18	20	23	25	27	18
8,0	l							_		15	16	21	23	24	_

Примечание. При сверлении и зенкеровании твердосплавным инструментом скорости резания увеличивать в 2,5 раза, при цековании — в 2 раза.

Поправочные коэффициенты на скорость резания

Коэффициент k_{13} в зависимости от характеристики обрабатываемого металла

НВ	143 – 207	163 – 229	170 – 241	Св. 241
k ₁₃	1,15	1,0	0,9	0,8

Коэффициент k_{14} в зависимости от периода стойкости инструмента $T_{\rm M}$

M	Материал рабочей						T_{M} , N	мин					
Инструмент	части режущего инструмента	≤ 15	30	60	100	150	200	250	300	400	600	800	1000
Сверла и зен-	Быстрорежущая сталь	1,3	1.2	1,1		0,95	0,95	0,9	0,85	0,8	0,7	0,6	0,5
керы	Твердый сплав	2,15	1,65	1,25	1,0	0,85	0,75	0,7	0,65	0,55	0,5	0,45	0,4
Цековки и зен-	Быстрорежущая	1,6	1,4	1,15		0,9	0,85	0,8	0,75	0,7	0,65	0,6	0,55
керы	сталь Твердый сплав	1,9	1,5	1,2		0,9	0,8	0,75	0,7	0,65	0,55	0,5	0,45

Коэффициент k_{15} в зависимости от глубины обработки

Иматричант	Отношение длины резания к диаметру												
Инструмент	≤ 3	4	5	6	8	10							
Сверла Зенкеры	1,0	0,85 0,9	0,75 0,85	0,7 0,8	0,6 0,75	0,5 0,7							

Скорость резания v, м/мин, при обработке отверстий в деталях из алюминиевых сплавов

C					Свер.	пение						Зен	керова	ние	Цекова-
S_0 , MM/06,		d, мм, не более											ние и зенкова-		
не более	2,5	4	6	8	10	12	16	20	25	32	40	20	40	> 40	ние
0,1	53	70	81	92	100		-	0)	_	_	_	_	_
0,15	39	53	62	69	75	81	90		_	_	_	110	130		
0,2	_	43	50	56	62	67	74	82	_	_	_	98	110	120	
0,3	_	_	42	48	52	56	62	68	75	_	-	79	90	96	
0,4	-	_	_	40	45	48	53	59	64	69	75	68	78	85	80 - 100
0,6	-	_	-	_	37	39	44	48	52	56	63	57	64	70	
0,8	–	_	i -	_	_	_	38	42	46	49	54	50	54	58	
1,0		-	_	_	_	-	-	_	_	43	48	44	49	52	

Примечание. При обработке твердосплавным инструментом табличные значения скорости резания увеличивать в 1.5-2 раза. При работе с охлаждением табличные значения скорости резания умножать на 0.8.

Поправочные коэффициенты на скорость резания

Коэффициент k_{16} в зависимости от стойкости инструмента T

U.			,		7	¬ , мин,	не боле	ee				
Инструмент	15	30	60	100	150	200	250	300	400	600	800	1000
Сверла	1,45	1,25	1,1	1,0	0,9	0,8	0,75	0,75	0,7	0,6	0,55	0,5
. Зенкеры	1,7	1,4	1,15	1,1		0,85	0.	,8	0,75	0,7	0,65	0,6

Коэффициент k₁₇ в зависимости от глубины обработки

Иматрилант			L_{pe}	3 : d		
Инструмент	≤ 3	4	5	6	8	10
Сверла Зенкеры	1,0	0,85 0,9	0,75 0,85	0,7 0,8	0,6 0,7	0,5 0,6

Скорость резания при развертывании и нарезании резьбы

Развертывание		1	Нареза	ние рез	ьбы ма	шинны	ми мет	чиками					
Параметр		<i>S</i> ₀ , мм/об											
шероховатости поверхности	v, м/мин	<i>d</i> , мм	0,5	0,75	1,0	1,5	2,0	2,5	3,0				
<i>Ra</i> , мкм					l	, м/ми	Ħ						
3,2-1,6	25 - 50	6	8	9	10	_							
		14	11	12	13	14	-						
		20	12	13	14	16	17	18	_				
3,2-1,6	1520	30		15		18	20	21	1				
1,6-0,8	8-12	60		60	_	23	24	24	24				
	Параметр шероховатости поверхности <i>Ra</i> , мкм 3,2-1,6	Параметр шероховатости поверхности <i>Ra</i> , мкм	Параметр шероховатости поверхности <i>Ra</i> , мкм	Параметр шероховатости поверхности <i>Ra</i> , мкм	Параметр шероховатости поверхности Ra, мкм v, м/мин d, мм 0,5 0,75 3,2-1,6 25-50 6 8 9 14 11 12 20 12 13 3,2-1,6 15-20 30 _	Параметр шероховатости поверхности Ra, мкм v, м/мин d, мм 0,5 0,75 1,0 3,2-1,6 25-50 6 8 9 10 14 11 12 13 20 12 13 14 3,2-1,6 15-20 30 _ 15	Параметр шероховатости поверхности Ra, мкм v, м/мин d, мм 0,5 0,75 1,0 1,5 3,2-1,6 25-50 6 8 9 10 — 14 11 12 13 14 16 3,2-1,6 15-20 30 — 15 — 18	Параметр шероховатости поверхности Ra, мкм v, м/мин d, мм 0,5 0,75 1,0 1,5 2,0 3,2-1,6 25-50 6 8 9 10 - 14 11 12 13 14 - 20 12 13 14 16 17 3,2-1,6 15-20 30 - 15 18 20	Параметр шероховатости поверхности Ra, мкм v, м/мин d, мм 0,5 0,75 1,0 1,5 2,0 2,5 3,2-1,6 25-50 6 8 9 10 — — 14 11 12 13 14 — — 3,2-1,6 15-20 30 — 15 — 18 20 21				

При нарезании резьбы в глухих отверстиях табличные значения скорости резания уменьшать на 20 %.

Режимы резания при рассверливании деталей из стали, алюминиевых сплавов и чугуна Подача S_0 , мм/об

	Диаметр			Матери	іал деталей		
Диаметр	просвер-	Сталь и	алюминиев	не сплавы		Чугуны	
рассвер- ливания,	ленного отверстия,			Груп	па подач		
мм	мм	I	I1	III	I	II	III
30	10	0,4-0,65	0,3-0,4	0,2-0,3	0,5-0,65	0,4-0,5	0,25-0,35
	15 20	0,45-0.7	0.35 0.45	0,3-0.4	0,6-0,7 0,65-0,75	0,45-0,55	0,35-0,45
40	15		0,3-0,4	0,2-0,3	0,6-0,7	0,35-0,45	0,25-0,35
	20 30	0,5-0,75 0,6-0,8	0,35-0,45 0,4-0,5		0,65-0,75	0,4-0,55 0,45-0,6	
50	20 30		0,35-0,45	0,3-0,4		0,4-0,5	0,35-0,45
	40	$0,5-0,7 \\ 0,6-0,8$	$\begin{bmatrix} 0,4-0,5 \\ 0,45-0,55 \end{bmatrix}$	0,4-0,5	0,6-0,7 0,7-0,8	0,45-0,55 0,5-0,6	0,45-0,6
· · · · · ·	30	0,45-0,65	0,4-0,5	0.3 - 0.4	0,7-0,8 0,6-0,7	0,45-0,6	0,35-0,45
60	40	0.5 - 0.7	0.45 - 0.55	0,5 0,4	0,8-0,9	0.55 - 0.65	0,4-0,5
	50	0,5 0,7	0,15 0,55	0,4-0,5	0,9-1,0	0,55 0,05	0,5-0,6

I группа подач применяется при рассверливании отверстий в жестких деталях с точностью до 12-го квалитета; II группа — соответственно в нежестких деталях под последующую обработку несколькими инструментами; III группа — под последующую обработку одним зенкером или одной разверткой.

Продолжение табл. 7

Скорость резания в, м/мин

										Матери	ал дета	ілей				
Диаметр	Диаметр			Ст	аль					Серь	ый чугуг	Н			оминие сплавы	вые
рассвер- ливания <i>D</i> , мм	просвер- леиного отверстия								1	S _o , мм/	об, не (б оле е				
D, WIM	<i>d</i> , мм	0,2	0,3	0,4	0,5	0,6	0,8	0,2	0,3	0,4	0,6	0,8	1,0	0,3	0,5	0,8
30	10 15 20	40 43 46	33 35 38	31	26 27 30	25	20 22 23	39	32 33 35	29 30 31	24 25 27	22 23 24		132 140 160	78 81 90	60 65 70
40	15 20 30	38 42 49			24 27 31	22 25 28	19 21 24		32 34 36	30 31 32	25 26 27	22 23 25		95 105 120	72 80 93	57 63 72
50	20 30 40	37 41 47		1.	24 26 30	23	19 20 23		31 32 34	27 29 31	23 24 26	21 22 24		90 100 112	72 78 90	57 60 70
60	30 40 50	_	32 35 39	28 30 33		24	19 21 24		_	28 29 31	24 25 26	21 22 24	20 21	95 105 120	75 82 95	57 63 72

Примечание. При рассверливании отверстий твердосплавными сверлами скорость резания увеличивать в 2 раза.

Поправочные коэффициенты на скорость резания Коэффициент k_{18} в зависимости от стойкости инструмента

Материал				Пе	Период стойкости T_{M} , мин													
инструмента	30	60	100	150	200	250	300	400	600	800	1000							
Быстрорежущая сталь	1,2	1,1	1,0	0,95	0,95	0,9	0,85	0,8	0,7	0,6	0,5							
Твердый сплав	1,65	1,25		0,85	0,75	0,7	0,65	0,55	0,5	0,45	0,4							

Коэффициент k_{19} в зависимости от характеристики обрабатываемого металла

НВ	143 – 207	163 – 229	170 – 241	>241
k ₁₉	1,15	1,0	0,9	0,8

Скорость резачия при развертывании отверстий в стальных деталях

Квалитет	Параметр шерохова гос- ти, <i>Ra</i> , мкм	р, м/мин
7 – 8	1,6 3,2	2-4 4-6
9-10	3,2 6,3	4-8 9-16

Скорость резания \mathbf{r} , м/мин, при нарезании резьбы в стальных деталях

Диаметр	Шаг резьбы, мм											
резьбы d, мм	0,5	0,75	1,0	1,25	1,5	2	3					
3-6	6	7	8									
8-10	7	8	9	9	10		-					
12 - 16		9	10	10		11	1					
18 – 24 27 и более	-	=	11 12		13 14	12	12 13					

Примечание. В таблице приведены значения скорости для нарезания резьбы по классу точности 6g, 6H. При нарезании неответственных резьб скорости резания увеличивать на 10-15~%. При парезании резьбы в глухих отверстиях скорости резания уменьшать на 20~%.

Поправочный коэффициент k_{20} на скорость резания в зависимости от обрабатываемого металла

	Сталь угле	Сталь легированная			
30, 4	40, 45				
нормали- зованная	улучшен- ная	A12, A20	15, 20	нормализо- ванная	улучин сы- ная
1,0	0,85	1,15	0,9	0,85	0,7

Режимы резания при развертывании отверстий в чугунных деталях

Квалитет	Параметры шерохо- ватости поверх- ности Ra, мкм	₽*. м/мин	Квалитег	Параметры шерохо- ватости новерх- ности <i>Ra</i> , мкм	<i>Е</i> *, м/мин
7-8	1,6 3,2	7 9 9 – 11	9 10	3,2 6,3	12-14 14-16

* Для твердосплавных разверток принимать скорость резания 30-40 м/мин.

Скорость резания v*, м/мин, при нарезании резьбы в чугунных деталях

Диаметр d , —	Шан резьбы, мм										
резьоы <i>и</i> , мм	0,5	- 0,75	1,0	1,25	1,5	2,0	3,0				
3-6	7	8	9		_	_					
8-10	8	9	10		11						
12-16	7	10]	1	J	2	-				
18 – 24			12		1	4	13				
27 и более		-	13		15	1	4				

^{*} При нарезании резьбы в глухих отверстиях скорости резания уменьшать на 20%. При нарезании неответственных резьб скорости резания увеличивать на 10-15%.

Продолжение табл. 7

Осевые силы резания Ро. Н. при сверлении отверстий в деталях из стали, чугуна и алюминиевых сплавов

Диаметр обрабатываемого			(Сталь	•						Чугун	
обрабатываемого отверстия, мм,						S_0 ,	мм/об					
не более	0,1	0,16	0,2		0,3		0,4	C),5	0,1	0,16	0,3
3	1		_				_		_	250		
4	200	_	_		-				_	350	-	
6	1080	1500			_		_	,		550	800	_
8	1450	2000	2350		_		_		_	700	1100	1700
10	1800	2500	2900		3900		_		_	900	1300	2100
12	2100	3000	3500		4600				_	1100	1500	2600
16	2800	4000	4700	1 (6200	1	7500		- !	1400	2100	3400
20	3500	5000	5800	'	7700	9	9500	11	000	1800	2600	4300
25	4500	6200	7300	1 9	9700	1	1 800	13	700	2200	3200	5400
32	5700	8000	9200	1	2 400	1:	5 000	17	700	2900	4200	6900
Диаметр		Чугу	н				Α.	нюм	иниен	вые спл	авы	
обрабатываемого отверстия, мм,					S	0. M	- ім/об					
не более	0,4	0,5	0,	6	0,1		0,2		0.	,4	0,6	8,0
3					170							
4	_		_		230		350	,	_	_	_	_
6		_		_	350		550		_	_	1-0	-
8	_	_	_		500		800	- 1	12	00	7.0	
10	2700	-	_		650		1000	- 1		00	2000	-

Примечание. При сверлении твердосплавными сверлами табличные значения осевых сил резания принимать с коэффициентом 1,3.

Осевые силы резания P_0 , H, при зенкеровании стали и чугуна

Глубина		·		Ст	аль							чу	гун			
резания 1. мм.		S_0 , мм/об, не более														
не более	0,2	0,3	0,4	0,6	1,0	1,5	2,0	2,5	0,2	0.3	0,4	0,6	1,0	1,5	2	2,5
0,5	150	190	240	300	440	570	690	790	130	180	200	260	370	500	590	680
1,0	360	460	560	720	1020	1330	1600	1850	300	400	480	630	860	1140	1380	1600
2,0	820	1050	1280	1660	2340	3040	3670	4200	700	900	1100	1430	2000	2620	3140	3640
4,0	1800	2400	2950	3800	5360	6980	8430	9700	1630	2100	2550	3300	4640	5060	7250	8400
		l	l			L									l	

Поправочные коэффициенты k_{21} на осевую силу резания в зависимости от обрабатываемого металла

	Сталь			чy	гун		Алюминиевые сплавы				
	σ₀, ГПа			Н							
< 0,59	0.59 - 0.74	0.59 - 0.74	0.59 - 0.74	0.59 - 0.74	> 0,74	229	269	302	321	229	285
0,75	1,0	1,2	1,0	1,1	1,25	1,3	1,1	1,25			

Продолжение табл. 7

Осевые силы резания P_0 , H, при рассверливании стали и чугуна

					Сталь					Ce	рый чу	гун	
Диа- метр сверла	Диаметр просвер- ленного отверстия						S_0 , M	им/об					
<i>D</i> , мм		0,2	0,25	0,32	0,4	0,5	0,63	0,8	0,4	0,5	0,63	0,8	1,0
30	10	2450	2850	3350	3950	4650	5400	6400	2600	2800	3100	3400	3700
	15	1680	1980	2300	2700	3200	3750	4400	1820	2000	2200	2400	2650
	20	990	1160	1370	1600	1800	2200	2600	1120	1230	1350	1480	1620
40	15	3250	3850	4500	5300	6200	7360	8600	3400	3700	4050	4450	4900
	20	2450	2850	3350	3950	4650	5400	6400	2600	2800	3100	3400	3700
	30	990	1160	1360	1600	1880	2200	2600	1120	1220	1350	1480	1620
50	20	4150	4850	5700	6700	7900	9300	10900	4200	4600	5000	5500	6000
	30	2450	2850	3350	3950	4650	5400	6400	2600	2800	3100	3400	3700
	40	990	1160	1360	1600	1880	2200	2500	1120	1220	1350	1480	1620
60	30	4150	4850	5700	6700	7900	9300	10 000	4200	4600	5000	5500	6000
	40	2450	2850	3350	3960	4650	5400	6400	2600	2800	3100	3400	3620
	50	990	1160	1360	1600	1880	2200	2500	1120	1220	1350	1480	1620

Поправочный коэффициент k_{22} на осевую силу резания в зависимости от характеристики обрабатываемого материала

Обрабатываемый материал		Сталь		Серый чугун					
σ _в , ГПа	< 0,59	0,59-0,74	> 0,74	НВ	<220	220 – 260	> 260		
k ₂₂	0,7	1,0	1,2	k ₂₂	0,85	1,0	1,2		

Мощность резания N, кВт, при сверлении стали

Диаметр					υ,	м/мин			
обрабатывае- мого отверс- тия, мм	<i>S</i> _o , мм/об∤	13	15	17	20	23	26	30	35
4	0,06	0,06	0,07	0,08	0,10	0,11	0,12	0,14	0,17
	0,10	0,09	0,11	0,12	0,14	0,16	0,19	0,21	0,25
6	0,06		0,1				0,18		0,24
	0,10	0,14	0,16	0,18	0,21	0,24	0,28	0,32	0,37
	0,16	0,2	0,23	0,26	0,31	0,35	0,4	0,46	0,54
	0,06	0,11	0,13	0,15	0,17	0,2	0,23	0,26	0,31
8	0,1	0,18	0,21	0,24	0,28	0,32	0,36	0,42	0,49
	0,16	0,27	0,31	0,35	0,41	0,48	0,54	0,62	0,72
	0,2	0,31	0,36	0,4	0,48	0,55	0,62	0,72	0,83
	0,06	0,14	0,17	0,19	0,22	0,26	0,29	0,33	0,39
10	0,1	0,23	0,26	0,3	0,35	0,4	0,46	0,52	0,61
10	0,16	0,33	0,38	0,43	0,51	0,58	0,66	0,76	0,89
	0,2	0,39	0,45	0,51	0,6	0,69	0,78	0,9	1,05

Продолжение табл. 7

								<i>F</i> • · · · · · · · · · · ·	
Диаметр				υ,	м/мин				
обрабатывае- мого от- верстия, мм	<i>S</i> ₀, мм/об	13	15	17	20	23	26	30	35
12	0,1 0,16 0,2 0,3 0,16 0,2 0,3	0,27 0,41 0,48 0,66 0,54 0,62 0,88	0,32 0,48 0,56 0,76 0,63 0,72 1,0	0,36 0,54 0,63 0,86 0,71 0,81 1,15	0,42 0,64 0,74 1,0 0,84 0,96 1,36	0,49 0,73 0,85 1,16 0,96 1,1 1,56	0,62 0,83 0,97 1,3 1,1 1,25	0,64 0,96 1,1 1,5 1,37 1,57 2,2	0,74 1,1 1,3 1,76 1,46 1,67 2,4
20	0,4 0,16 0,2 0,3 0,4	1,1 0,66 0,79 1,1 1,39	1,3 0,77 0,91 1,27 1,6	1,45 0,87 1,0 1,44 1,81	1,7 1,0 1,21 1,68 2,13	1,97 1,17 1,39 1,94 2,46	2,2 1,32 1,57 2,2 2,78	2,8 1,53 1,8 2,5 3,2	3,0 1,8 2,1 2,95 3,74
25	0,16 0,2 0,3 0,4	0,83 0,98 1,38 1,75	0,96 1,1 1,58 2,0	1,1 1,28 1,8 2,28	1,28 1,5 2,1 2,7	1,46 1,72 2,42 3,1	1,66 1,95 2,75 3,5	1,92 2,28 3,2 4,0	2,23 2,63 3,7 4,7
32	0,16 0,2 0,3 0,4	1,06 1,28 1,68 2,24	1,24 1,48 1,94 2,56	1,39 1,67 2,2 2,9	1,63 1,97 2,6 3,4	1,88 2,28 3,0 4,0	2,1 2,56 3,37 4,45	2,45 3,0 3,9 5,15	2,86 3,45 4,5 6,0

Поправочный коэффициент k_{23} на мощность резания в зависимости от характеристики обрабатываемого материала

НВ	156	207	229	269	285	302	321	375
k ₂₃	0,75	0,9	1,0	1,1	1,2	1,25	1,3	1,45

Мощность резания N, кВт, при сверлении чугуна

Диаметр	<i>S</i> ₀, мм/ о б				<i>v</i> , м/мин				
обрабатываемого отверстия, мм	мм/об	10	13	15	17	20	26	30	40
4	0,06	0,02	0,03	0,04	0,04	0,05	0,06	0,07	0,1
	0,1	0,04	0,05	0,06	0,07	0,08	0,1	0,12	0,16
6	0,06	0,04	0,06	0,06	0,07	0,08	0,11	0,13	0,17
	0,1	0,06	0,08	0,1	0,11	0,13	0,17	0,19	0,25
	0,20	0,11	0,14	0,17	0,19	0,22	0,29	0,33	0,45
8	0,06	0,06	0,07	0,08	0,1	0,11	0,14	0,17	0,22
	0,1	0,09	0,11	0,13	0,15	0,18	0,23	0,26	0,35
	0,2	0,15	0,19	0,22	0,25	0,29	0,38	0,44	0,59
	0,3	0,2	0,26	0,3	0,34	0,4	0,52	0,6	0,8

Диаметр	S_0 ,	<u> </u>			U, N	1/мин			
обрабатываемого отверстия, мм	мм∕об	10	13	15	17	20	26	30	40
	0,06	0,07	0,09	1,0	0,11	0,13	0,17	0,2	0,27
10	0,1	0,11	0,14	0,16	0,18	0,22	0,24	0,32	0,43
	0,2	0,18	0,24	0,28	0,31	0,37	0,48	0,55	0,74
	0,3	0,25	0,33	0,38	0,43	0,51	0,66	0,76	1,0
	0,1	0,13	0,17	0,20	0,22	0,26	0,34	0,39	0,52
12	0,2	0,22	0,29	0,33	0,38	0,44	0,57	0,66	0,88
	0,3	0,32	0,41	0,48	0,54	0,64	0,83	0,95	1,27
	0,4	0,4	0,52	0,6	0,68	0,8	1,0	1,2	1,6
	0,1	0,17	0,22	0,26	0,29	0,34	0,45	0,51	0,68
16	0,2	0,3	0,39	0,45	0,51	0,6	0,78	0,9	1,2
	0,3	0,42	0,54	0,63	0,71	0,84	1,1	1,25	1,67
	0,4	0,52	0,67	0,78	0,88	1,0	1,35	1,55	2,07
	0,1	0,22	0,29	0,33	0,38	0,45	0,58	0,67	0,9
20	0,2	0,37	0,48	0,55	0,62	0,73	0,95	1,1	1,47
	0,3	0,53	0,68	0,79	0,9	1,05	1,37	1,58	2,1
	0,4	0,65	0,85	0,98	1,1	1,3	1,67	1,95	2,6
	0,1	0,27	0,35	0,4	0,46	0,53	0,7	0,8	1,1
25	0,2	0,46	0,6	0,7	0,78	0,92	1,2	1,38	1,83
	0,3	0,65	0,85	0,97	1,1	1,3	1,7	1,95	2,6
	0,4	0,82	1,1	1,22	1,4	1,63	2,1	2,45	3,26
	0,1	0,34	0,44	0,51	0,58	0,68	0,88	1,0	1,35
32	0,2	0,6	0,76	0,88	1,0	1,18	1,53	1,77	2,35
	0,3	0,82	1,1	1,22	1,4	1,63	2,12	2,44	3,25
	0,4	1,0	1,36	1,56	1,78	2,1	2,72	3,15	4,2
	I		I .	I	1	1000	l		

Поправочный коэффициент k_{24} на монность резания в зависимости от хар-иктеристики обрабатываемого материала

НВ до	207	229	295
k ₂₄	0,9	1,1	1,25

Мощность резания N, кВт, при сверлении а номинневых сплавов

Диаметр	S	₽, м/мин										
обрабатываемого отверстия, мм	S ₀ , мм/об	17	23	26	30	35	40	46	53			
4	0,1	0,05	0,07	0,08	0,1	0,11	0,13	0,15	0,17			
	0,1	0,08	0,11	0,13	0,15	0,17	0,19	0,22	0,25			
6	0,2	0.14	0,2	0.22	0,26	0,3	0,34	0,39	0,45			
	0,1	0,1	0,14	0,16	0,18	0,21	0,24	0,27	0,32			
8	0,2	0,18	0,25	0,28	0,32	0.38	0,43	0,5	0,57			
	0,3	0,24	0,32	0,36	0,42	0,49	0,56	0,64	0,74			
	0,1	0.12	0.17	0.19	0,22	0.26	0,3	0,34	0,39			
	0,2	0,22	0,29	0,33	0,38	0.45	0,51	0,59	0,68			
10	0,3	0,29	0,39	0,44	0,55	0,59	0,68	0,78	0,9			
	0,4	0,36	0,49	0,55	0,63	0,74	0,84	1,0	1,1			

Продолжение табл. 7

Диаметр обрабатываемого	S_{0} ,	L			<i>v</i> , м	/мин			
отверстия, мм	мм/об	17	23	26	30	35	40	46	53
	0,2	0,24	0,33	0,37	0,43	0,5	0,57	0,66	0,76
	0,3	0,34	0,46	0,52	0,6	0,7	0,8	0,92	1,05
12	0,4	0,41	0,56	0,64	0,73	0,86	0,98	1,1	1,3
	0,6	0,59	0,8	0,9	1,0	1,2	1,38	1,59	1,83
	0,2	0,3	0,41	0,47	0,54	0,63	0,72	0,82	0,95
1.6	0,3	0,44	0,6	0,67	0,72	0,9	1,0	1,2	1,37
16 . , ,	0,4	0,54	0,73	0,83	0,96	1,1	1,27	1,47	1,69
V	0,6	0,71	0,96	1,1	1,26	1,46	1,67	1,92	2,2
1	0,2	0,38	0,51	0,58	0,67	0,78	0,9	1,0	1,18
20	0,3	0,52	0,7	0,79	0,91	1,1	1,21	1,4	1,6
20	0,4	0,62	0,84	0,95	1,1	1,28	1,47	1,7	1,94
	0,6	0,84	1,14	1,28	1,48	1,73	1,98	2,26	2,6
	0,2	0,43	0,59	0,67	0,77	0,9	1,0	1,17	1,35
25	0,3	0,54	0,74	0,83	0,96	1,12	1,27	1,47	1,7
	0,4	0,65	0,88	0,98	1,15	1,35	1,53	1,75	1,98
	0,6	1,0	1,38	1,59	1,84	2,1	2,4	2,76	3,2
	0,2	0,54	0,73	0,83	0,96	1,1	1,27	1,46	1,69
32	0,3	0,73	1,0	1,1	1,29	1,5	1,71	1,97	2,26
	0,4	0,92	1,23	1,4	1,61	1,88	2,14	2,5	2,86
	0,6	1,23	1,67	1,9	2,2	2,54	2,9	3,34	3,86

Мощность резания N, кВт, при рассверливании стали

Разнос		S₀, мм/об,					υ, м	/мин				
диамет $(D-d)$,		мм/оо, не более	11,5	13,2	15,1	17,4	20	23	26	30	35	40
		0,3			_	_	0,8	0,9	1,1	1,2	1,4	1,6
		0,4	à.	_		0,8	0,9	1,1	1,2	1,4	1,6	1,9
10	3	0,5	,· <u>.</u> .		0,8	0,9	1,1	1,2	1,4	1,6	1,9	2,2
10	, i	0,6	1	0,8	0,9	1,1	1,2	1,4	1,6	1,9	2,2	2,5
	20	0,7 0,85	0,8 0,9	0,9 1,1	1,1	1,2 1,4	1,4 1,6	1,6 1,9	1,9 2,2	2,2 2,5	2,5 2,9	2,9 3,3
11.1	1	0,3			_	0,8	0,9	1,1	1,2	1,4	1,6	1,9
1		0,4	0		0,8	0,9	1,1	1,2	1,4	1,6	1.9	2,2
15		0,5	_	0,8	0,9	1,1	1,2	1,4	1,6	1,9	2,2	2,5
1 * .		0,6 0,7 0,85	0,8 0,9 1,1	0,9 1,1 1,2	1,1 1,2 1,4	1,2 1,4 1,6	1,4 1,6 1,9	1,6 1,9 2,2	1,9 2,2 2,5	2,2 2,5 2,9	2,5 2,9 3,3	2,9 3,3 4,3
20		0,3 0,4 0,5 0,6 0,7 0,85	0,8 0,9 1,1 1,2 1,4 1,6	0,9 1,1 1,2 1,4 1,6 1,9	1,1 1,2 1,4 1,6 1,9 2,2	1,2 1,4 1,6 1,9 2,2 2,5	1,4 1,6 1,9 2,2 2,5 2,9	1,6 1,9 2,2 2,5 2,9 3,3	1,9 2,2 2,5 2,9 3,3 3,8	2,2 2,5 2,9 3,3 3,8 4,3	2,5 2,9 3,3 3,8 4,3 5,0	2,9 3,3 3,8 4,3 5,0 5,7

Продолжение табл. 7

Разность	S ₀ ,	υ, м/мин										
диаметров $(D-d)$, мм	мм/об, не более	11,5	13,2	15,1	17,4	20	23	26	30	35	40	
30	0,3 0,4 0,5 0,6 0,7 0,85	1,2 1,4 1,6 1,9 2,2 2,5	1,4 1,6 1,9 2,2 2,5 2,9	1,6 1,9 2,2 2,5 2,9 3,3	1,9 2,2 2,5 2,9 3,3 3,8	2,2 2,5 2,9 3,3 3,8 4,3	2,5 2,9 3,3 3,8 4,3 5,0	2,9 3,3 3,8 4,3 5,0 5,7	3,3 3,8 4,3 5,0 5,7 6,5	3,8 4,3 5,0 5,7 6,5 7,5	4,3 5,0 5,7 6,5 7,5 8,6	

Поправочный коэффициент k_{25} на мощность резания в зависимости от характеристики обрабатываемой стали

НВ	109	129	158	194	234	285	343
k ₂₅	0,65	0,72	0,85	1,0	1,15	1,35	1,5

Разность диаметров	<i>S</i> _o , мм/об,					<i>v</i> , м/м	ии до				
(D-d), MM	не более	11,5	13,2	15,1	17,4	20	23	26	30	35	40
	0,4				_	_	8,0	1,0	1,1	1,3	1,5
	0,5	!		_		0,8	1,0	1,1	1,3	1,5	1,7
	0,6	_			0,8	1,0	1,1	1,3	1,5	1,7	1,9
10	0,7			0,8	1,0	1,1	1,3	1,5	1,7	1,9	2,2
	0,84		0,8	1,0	1,1	1.3	1,5	1,7	1,9	2,2	2,
	1,0	0,8	1,0	1,1	1,3	1,5	1,7	1,9	2,2	2,5	2,9
	0,4			_	0,8	1,0	1,1	1,3	1,5	1,7	1,
	0,5	_		0,8	1,0	1,1	1,3	1.5	1.7	1,9	2,3
15	0,6		0,8	1,0	1,1	1,3	1,5	1,7	1,9	2,2	2,
	0,7	0,8	1,0	1,1	1,1	1,5	1,0		-,-	,_	
÷	0,84 1,0	1,0 1,1	1,1 1,3	1,3 1,5	1,5 1,7	1,7 1,9	1,9 2,2	2,2 2,5	2,5 2,9	2,9 3,3	3,: 3,:
	0,4] _	1,0	1.1	1,3	1,5	1,7	1.9	2,2	2,5	2,9
20	0,5 0,6	1,0	1,1 1,3	1,3 1,5	1,5 1,7	1,7 1,9	1,9 2,2	2,2 2,5	2,5 2,9	2,9 3,3	3,
20	0,7	1,4	1,5	1,7	1,9	2,2	2,5	2,9	3,3	3.8	4,
f	0,84 1,0	1,5 1,7	1,7 1,9	1.9 2,2	2,2 2,5	2,5 2,9	2,9 3,3	3,3 3,8	3,8 4,4	4,4 5,0	5, 5,
	0,4	1,0	1,1	1.3	1,5	1,7	1,9	2,2	2,5	2,9	3,
30	0,5	1,1	1,3	1,5 1,7	1,7 1,9	1,9 2,2	2,2 2,5	2,5 2,9	2,9 3,3	3,3	3,
	0,7	1,5	1,7	1,9	2,2	2,5	2,9	3,3	3,8	4,4	5,
	0,84	1,6 1,9	1,9 2,2	2,2 2,5	2,5 2,9	2,9	3,3 3,8	3,8 4,0	4,4 5,0	5,0 5,8	5, 6,

Продолжение табл. 7

Поправочный коэффициент k_{26} на мощность резания в зависимости от характеристики обрабатываемого чугуна

НВ	< 180	180-230	> 230
k ₂₆	0,84	1,0	1,2

Мощность резания N, кВт. при зенкеровании стали и чугуна

F				Ст	аль					Чу	гун		
Глубина резания, мм	<i>S</i> _o , мм/об			_			<i>v</i> , м	/мии					
MM	мм/оо	16	20	25	32	40	50	16	20	25	32	40	50
0,5	0,2	0,18	0,22	0,27	0,35	0,44	0,55	0,11	0,13	0,17	0,21	0,27	0,34
	0,4	0,29	0,36	0,45	0,52	0,72	0,9	0,18	0,22	0,27	0,35	0,44	0,55
	0,6	0,4	0,5	0,62	0,8	1,0	1,25	0,24	0,3	0,38	0,48	0,6	0,75
	1,0	0,56	0,7	0,87	1,12	1,4	1,75	0,4	0,5	0,63	0,8	1,0	1,25
	1,5	0,75	0,94	1,17	1,5	1,88	2,35	0,45	0,56	0,7	0,9	1,12	1,4
	2,0	0,91	1,14	1,42	1,82	2,3	2,85	0,55	0,66	0,85	1,1	1,36	1,7
1,0	0,2	0,32	0,4	0,5	0,64	0,8	1,0	0,19	0,24	0,3	0,38	0,48	0,6
	0,4	0,51	0,64	0,8	1,0	1,28	1,6	0,3	0,38	0,48	0,6	0,76	0,95
	0,6	0,67	0,84	1,0	1,35	1,68	2,1	0,4	0,5	0,63	0,8	1,0	1,25
	1,0	1,0	1,24	1,55	2,0	2,5	3,1	0,6	0,74	0,93	1,18	1,48	1,85
	1,5	1,28	1,6	2,0	2,58	3,2	4,0	0,77	0,96	1,2	1,5	1,9	2,4
	2,0	1,6	2,0	2,5	3,2	4,0	5,0	0,94	1,2	1,5	1,9	2,4	3,0
2,0	0,2	0,53	0,66	0,82	1,0	1,32	1,65	0,32	0,4	0,5	0,64	0,8	1,0
	0,4	0,88	1,1	1,37	1,76	2,62	2,75	0,53	0,66	0,82	1,0	1,32	1,65
	0,6	1,17	1,46	1,83	2,34	2,9	3,65	0,7	0,88	1,1	1,4	1,76	2,2
	1,0	1,71	2,14	2,68	3,4	4,3	5,35	1,0	1,28	1,6	2,0	2,6	3,2
	1,5	2,24	2,8	3,5	4,5	5,6	7,0	1,3	1,7	2,1	2,7	3,4	4,2
	2,0	2,77	3,46	4,3	5,5	6,9	8,7	1,7	2,1	2,6	3,3	4,2	5,2
4,0	0,2	0,96	1,1	1,5	1,92	2,4	3,0	0,6	0,7	0,9	1,15	1,4	1,8
	0,4	1,55	1,94	2,42	3,1	3,9	4,9	0,93	1,2	1,4	1,9	2,3	2,9
	0,6	2,0	2,56	3,2	4,1	5,1	6,4	1,2	1,5	1,9	2,5	3,1	3,8
	1,0	3,0	3,74	4,7	6,0	7,5	9,4	1,8	2,2	2,8	3,6	4,5	5,6
	1,5	3,9	4,9	6,2	7,9	9,9	12,3	2,5	3,0	3,7	4,8	6,0	7,4
	2,0	4,8	6,0	7,5	9,6	12,0	15,0	2,9	3,6	4,5	5,8	7,2	9,0

Поправочный коэффициент k_{27} на мощность резания в зависимости от характеристики обрабатываемого металла

Сталь									Чугун			
					НВ							
156	207	229	269	285	302	321	375	207	229	295		
0,75	0,9	1,0	1,1	1,2	1,25	1,3	1,45	0,9	1,1	1,25		

Продолжение табл. 7

Мошность резания N, кВт, при зенкеровании алюминиевых сплавов

Глубина	S ₀ ,	Ţ	υ, м/мин										
резания; мм	мм/об	16	20	25	32	40	50						
0,4	0,2	0,03	0,04	0,05	0,06	0,08	0,1						
	0,4	0,06	0.07	0,09	0,11	0,14	0,18						
	0,6	0,08	0,1	0,12	0,16	0,2	0,25						
	1,0	0,12	0,15	0,19	0,24	0,3	0,38						
	1.5	0,16	0,2	0,25	0,32	0,4	0,5						
	2,0	0,2	0,26	0,32	0,41	0,52	0,65						
0,6	0,2	0.04	0,06	0,07	0,09	0,11	0,14						
,	0,4	0,08	0,1	0,12	0.16	0,2	0,25						
	0,6	0,11	0,14	0,17	0,22	0,27	0,34						
10 0	1,0	0,16	0,2	0,25	0,32	0,4	0,5						
1	1,5	0,23	0,28	0,35	0,45	0,56	0,7						
	2,0	0,29	0,36	0,45	0,58	0,72	0,9						
0,75	0,2	0,05	0,07	0,08	0,11	0,13	0,17						
,	0,4	0,09	0,12	0,15	0,19	0,23	0,29						
	0,6	0,13	0,16	0,2	0,26	0,32	0,4						
	1,0	0,19	0,24	0,3	0,38	0,48	0,6						
	1,5	0,26	0,32	0,4	0,51	0,65	0,8						
	2,0	0,35	0,42	0,52	0,67	0,84	1,1						
	0,2	0,06	0,08	0,1	0,13	0,16	0,2						
	0,4	0,11	0,14	0,18	0,23	0,29	0,36						
1,0	0,6	0,16	0,2	0,25	0,32	0,4	0,5						
	1,0	0,24	0,3	0,38	0,48	0,6	0,75						
	1,5	0,34	0,42	0,53	0,67	0,84	1,1						
	2,0	0,42	0,52	0,65	0,83	1,0	1,3						
	1	1	I	1	1	i	1						

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ О ПОРЯДКЕ НОРМИРОВАНИЯ РАБОТ, ВЫПОЛНЯЕМЫХ НА СТАНКАХ С ЧПУ И СТАНКАХ ТИПА «ОБРАБАТЫВАЮЩИЙ ЦЕНТР» (ОПЫТ ОРГСТАНКИНПРОМА)

Учитывая специфику станков с ЧПУ и необходимость увеличения их отдачи в единицу времени, целесообразно в ряде случаев повышать скорость резания путем снижения периода стойкости режущего инструмента. Повышению уровня нормативных скоростей резания способствуют также внестаночная заточка, доводка и настройка инструмента с высокой точностью при соблюдении заданных геометрических параметров, наличие быстрозажимных устройств для крепления инструмента, возможность автоматической

смены чисел оборотов в соответствии с заданной программой и повышенная жесткость системы станок – приспособление – инструмент – деталь, свойственная большинству моделей станков с ЧПУ.

Период стойкости, мин

$$T_{\rm o} = \left(\frac{1}{m} - 1\right) \left(T_{\rm cM} + \frac{Q_{\rm t} + Q_{\rm K}}{E}\right),\tag{1}$$

где m — показатель относительной стойкости инструмента; $T_{\rm cm}$ — время смены инструмента на станке, мин; $Q_{\rm l}$ — затраты, связапные с работой инструмента в течение одного периода стойкости, коп.; $Q_{\rm h}$ — затраты на разборку, сборку и настройку инструмента, подготовляемого для работы на станках с ЧПУ, коп.; E — стоимость одной станко-минуты работы станка, включая заработную плату рабочего с начислениями [1].

 $Q_{\rm f}, Q_{\rm H}$ и E рассчитывают на каждом предприятии, эксплуатирующем станки с ЧПУ.

8. Последовательность нормирования работ, выполняемых на станках с ЧПУ и станках типа «обрабатывающий центр»

№ по пор.	Последовательность расчета	Исходные данные	Источиик или расчетные формулы
1	Определение глубины резания t, мм	Припуск на обработку. Тре- буемая шероховатость и точ- ность обрабатываемой по- верхности	Технологический процесс
2	Назначение подач S_0 , м/об, S_z , мм/зуб	1. Диаметр заготовки (инструмента). 2. Обрабатываемый материал. 3. Вид и характер обработки (черновая, чистовая). 4. Глубина (ширина) резания <i>t</i> (<i>B</i>) 5. Наименование инструмента и материал рабочей части режущего инструмента	Режимы резания на работы, выполняемые на металлорежущих станках с программным управлением. Нормативные карты
3	Расчет принятого периода стойкости режущих инструментов T_3 , применяемых в данной технологической операции	m, T_{CM}, Q_I, Q_H, E	См. формулу (1)
4	Определение скорости главного движения резания v , м/мин	1. Наименование инструмента и материал режущей части. 2. Обрабатываемый материал и его твердость. 3. Толщина и ширина срезаемого слоя. 4. Подача S. 5. Угол в плане (в рабочем положении инструмента) ф	Нормативные карты
5	Корректирование скорости главного движения резания и определения величины принятой скорости v_n , м/мин	Значение скорости главного движения резания v , м/мин. Значение поправочного коэффициента на скорость главного движения резания K_{Te} (см. табл. 9, 11. 13)	Нормативные карты. $v_{\rm n}=vK_{Tv}$

		*	Продолжение табл. 8			
№ по пор.	Последовательность расчета	Исхь, ные данные	Источиик или расчетные формулы			
6	Расчет частоты вращения шпинделя <i>п</i> , об/мин, уточнение частоты вращения шпинделя по паспорту станка	Значение $v_{\rm H}$. Диаметр обработки	$n = \frac{1000v_n}{\pi D}$ об/мин; $n_{\text{пасп}}$ (уточняется по паспорту станка)			
7	Определение фактической скорости v_{ϕ} , м/мин, по принятой частоте вращения шпинделя	Значение ппасп	$v_{\Phi} = \frac{\pi D n_{\text{nacn}}}{1000}$			
8	Расчет минутной подачи $S_{\rm M}$ м/мин, по принятой частоте вращения и подаче на оборот (или на зуб фрезы при фрезеровании)	Принятые значения S и S _t . Число зубьев z (при презеровании)	$S_{\rm M} = S_{\rm c} N_{\rm Hacm};$ $S_{\rm M} = S_{\rm z} z r_{\rm Hacm}$ (при фрезеровании)			
9	Проверочные расчеты по мощности резания $N_{\rm pes}$ (кВт) (производятся только для черновых переходов). 1. Определение мощности резания $N_{\rm pes}$ (кВт) для каждого инструмента 2. Расчет наибольшей за период работы станка суммарной мощности резания $\Sigma N_{\rm pes}$ (сумма мощностей одновременно работающих инструментов). 3. Проверка по мощности двигателя	 Глубина резания t. Принятая подача S. Фактическая скорость v_φ. Обрабатываемый материал и его твердость. Мощность двигателя главного движения N_{дв}. Коэффициент полезного действия станка η 	Нормативиые м технологические карты. Паспорт с: анка. $\Sigma N_{\rm pe3} \leqslant N_{\rm дв} \eta$			
10	Расчет осиовного (технологического) времени, мин, на каждый переход $T_{o(nep)}$ и на операцию $T_{o(onep)}$	1. Длина обработки $L = l + l_1 + l_2$; $l - д$ лина обрабатываемой поверхности; l_1 , l_2 — врезание и перебег инструмента: 2. Заданное число проходов i . 3. $n_{\text{пасп}}$. 4. S_0 или $S_z z$	$T_{\text{o(nep)}} = \Sigma T_{\text{o(nep)}};$ $T_{\text{o(nep)}} = \frac{Li}{S_{\text{M}}}$			

9. Поправочный коэффициент $K_{T^{c}}$ на скорость резания для резнов при обработке на станках с ЧПУ и станках типа «Обрабатывающий центр»

	Материал рабочей	Обраба-	Отношение экономического периода стойкости инструмента к нормативному $T_{ m 2}/T_{ m H}$										
Резцы	части режущего инструмента	тываемый материал	0,25	0,5	0,75	1,0	1,5	2	2,5	3	4		
Подрезные, расточные, проходные с углом в плане $\phi > 0$	T5K10; T15K6	Сталь конст- рукци- онная, углеро-	1,2	1,15	1,05	1	0,9	0,85	0,8	0,75	0,7		
Проходные с углом в плане $\phi = 0$		дистая и леги- роваи- ная	1,15	1,1	1,05	1	0,95	0,9	0,85	0,8	0,7		
Подрезные, расточные, проходные	P6M5		1,1	1,05	1,02	1	0,9	0,82	0,75	0,68	0,6		
Подрезные, расточные, проходные с углом в плане $\phi > 0$	BK6; BK8	Чугун	1,2	1,15	1,05	1	0,95	0,9	0,85	0,8	0,75		
Проходные с с углом в плане $\phi = 0$			1,3	1,20	1,1	1	0,9	0,80	0,72	0,65	0,58		
Подрезные, расточные, проходиые	P6M5	Медные сплавы	1,25	1,15	1,05	I	0,95	0,92	0,9	0,87	0,85		
	T5K10; T15K6	Сталь конст- рукци-	1,2	1,15	1,05	1	0,9	0,85	0,8	0,78	0,75		
Прорезные и отрезные	P6M5	оиная, углеро- дистая и леги- рован- ная	1,1	1,05	1,02	1	0,90	0,82	0,74	0,65	0,58		
	вк6; вк8	Чугун	1,2	1,15	1,05	1	0,9	0,85	0,8	0,78	0,7		
	P6M5	Медные сплавы	1,1	1,05	1,02	1	0 ,90	0,82	0,74	0,65	0,58		
Резьбовые	T15K6 BK6	Сталь Чугун	1,15 1,2	1,1 1,15	1,05 1,08	1 1	0,95 0,9	0,9 0,85	0,85 0,8	0,8 0,75	0,75 0,7		

10. Нормативные периоды стойкости $T_{\rm II}^*$ для резцов

Резцы	Материал рабочей части режущего инструмента	Обрабатыв аемы й материал	Нормативный период стойкости $T_{ m H}^*$, мин	Показатель относитель- пой стойкости	
Прорезные, расточные, про- ходные с углом в плане $\phi > 0$	Testalo		60	0,2	
Проходные с углом в плане $\phi = 0$	T5K10; T15K6	Сталь конструк- ционная, углеродис- тая и легированная	45	0,18	
Подрезные, расточные, проходные	P6M5		45	0,12	
Подрезные, расточные, проходные с углом в плане $\phi > 0$	ВК6	Чугун	60	0,2	
Проходные с углом в плане $\phi = 0$	ВК8	ě	30	0,18	
Подрезные, расточные, проходные	P6M5	Медные сплавы	60	0,1	
	T5K10; T15K6	Сталь конструкци-	60	0,2	
Прорезные и отрезные	P6M5	онная углеродистая и легированная	45	0,12	
	вк6, вк8	Чугун	60	0,2	
	P6M5	Медные сплавы	60	0,15	
Резьбовые	T15 K 6	Сталь	30	0,2	
•	ВК6	Чугун		0,33	

^{*} При применении режущего инструмента с износостойким покрытием нормативную скорость $T_{\rm H}$ увеличивать в 1,5 раза.

11. Поправочный коэффициент на скорость резания $K_{T^{v,}}$ для сверл, зенкеров и разверток

Инструмент	Материал рабочей	Обрабаты-	Отношение принятого периода стойкости к нормативному $T_{\Pi}/T_{ m H}$										
Инструмент	части режущего инструмента	вааемый материал	0,25	0,5	1,0	1,5	2,0	2,5	3,0	4,0			
		Сталь	1,30	1,15	1	0,95	0,90	0,85	0,8	0,75			
Сверло	P6M5	Чугун	1,15	1,05	1	0,95	0,90	0,85	0,82	0,80			
	ВК8	<u> </u>	1,30	1,15	1	0,95	0,90	0,85	0,8	0,75			

Инструмент	Материал рабочей части	Обрабаты- ваемый	Отношение принятого периода стойкости к нормативному $T_{\Pi}/T_{ m H}$										
	режущего инструмента	материал	0,25	0,5	1,0	1,5	2,0	2,5	3,0	4,0			
	P6M5	Сталь	1,50	1,20	1	0,9	0,85	0,75	0,70	0,65			
		Чугун	1,15	1,05	1	0,95	0,90	0,85	0,82	0,80			
Зенкер	T15K6	Сталь	1,40	1,20	1	0,9	0,85	0,80	0,75	0,70			
	ВК8	Чугун	1,70	1,30	1	0,85	0,75	0,70	0,65	0,60			
		Сталь	1,50	1,20	1	0,9	0,85	0,75	0,70	0,65			
	P6M5	Чугун	1,15	1,05	1	0,95	0,90	0,85	0,82	0,80			
Развертка	T1516	Сталь	1,40	1,20	1	0,9	0,85	0,80	0,75	0,70			
	ВК	Чугун	1,70	1,3	1	0,85	0,75	0,7	0,65	0,6			

12. Нормативные периоды стойкости $T_{\rm H}{}^*$ инструмента для обработки отверстий, мии

Режу- щий инст- румент	Материал рабочей части	Обрабаты- ваемый материал	Диаметр инструмента $D,$ мм не более											Показатель относительной стойкости т
	режущего инструмента	, and opinion	5	10	15	20	25	30	40	50	60	70	80	Показ: относи стойко
3-1	P6M5	Сталь конструкционная углеродистая и легированная	10	20	25	30	40	50	60	75	90			0,2
Сверло		Hamara	15	25	30	40	50	60	70	85	100			0,125
	вк8	Чугун	25	40	50	70	80	90	_	_	_			0,2
	P6M5	Сталь				30	35	40	50	60	75	90	100	0,3
-4-	T15K6	конструк- ционная углеро- дистая и легиро- ванная	4		1	40	50	65	80	95	110	130	150	0,25
	P6M5	Чугун				30	35	40	50	60	75	90	100	0,125
÷ :	вк8				ļ	40	50	65	80	95	110	130	150	0,25

Продолжение табл. 12

Режу- щий инст-	Материал рабочей части	Обрабаты- ваемый		Диаметр инструмента D, мм не более								Показатель относительной стойкости т		
румент	режущего ииструмента	материал	5	10	15	20	25	30	40	50	60	70	80	Показатель относитель стойкости
	P6M5	Сталь	15	20	30	40	55	70	85	100	120	140	160	0,2
	T15K6	конструк- ционная углеро- дистая и легн- рованная	20	30	45	-60	75	90	110	130	150	165	180	0,125
Раз-	P6M5	Чугун	15	20	30	35	45	60	75	90	110	130	150	0,3
вертка	ВК8		20	30	40	55	70	85	100	120	140	160	180	0,2

^{*} При применении режущего инструмента с износостойким покрытием нормативную стойкость $T_{\rm H}$ увеличивать в 1,5 раза.

13. Поправочный коэффициент K_{Te} на скорость резания для фрез

A	Материал рабочей	Обрабаты-	Отношение принятого периода стойкости к нормативному $T_{\Pi}/T_{ m H}$							
Фрезы	части режущего инструмента	ваемый материал	0,25	0,5	0,75	1,0	1,5	2	3	
Торцовые	Твердый сплав	Сталь	1,3	1,15	1,08	1,0	0,9	0,85	0,8	
	Быстрорежущая сталь		1,20	1,1	1,05	1,0	0,85	0,8	0,75	
	Твердый сплав	Чугун	1,5	1,25	1,1	1,0	0,85	0,8	0,75	
	Быстрорежущая сталь		1,3	1,15	1,05	1,0	0,8	0,75	0,7	
Концевые	Твердый сплав	Сталь	1,6	1,3	1,1	1,0	0,9	0,8	0,7	
	Быстрорежущая сталь	Чугун	1,25	1,1	1,05	1,0	0,85	0,75	0,65	
	Твердый сплав	Чугун	1,3	1,2	1,1	1,0	0,9	0,85	0,75	
Фасонные, угловые	Быстрорежущая	Сталь	1,2	1,1	1,05	1,0	0,9	0,85	0,8	
	сталь	Чугун	1,15	1,08	1,05	1,0	0,95	0,9	0,85	
	. !	1	I	1	ı	I	ı	i	ı	

14. Нормативиые периоды стойкости фрез $T_{\rm H}$, мпп

			Реж						
_	Диаметр	T15K6; T5K10	BK6; BK8	P6M5; P6M3	Композит 10; 01		Показатель относительной стойкости		
Фрезы	фрезы D, мм		Обрабат	гываемый м	иатериал		т, для		
		Сталь	Чугун	Сталь, чугун	Сталь	Чугун	стали	чу гуна	
Торцовые		180 240 240 240 300 420	150 180 180 240 300 420	120 120 150 180 —	360 360 480 480 —	240 360 360 480 —	0,2	0,33	
Концевые	$\begin{vmatrix} 12 - 25 \\ 32 - 40 \\ > 40 \end{vmatrix}$	120 120 180	120 120 120	60 60 60	_	_	0,37	0,33	
Фасонные, угловые	≤ 80 100 125 160	_	120 180 180 240	60 90 120 120	_	-	0,2	0,15	

СПИСОК ЛИТЕРАТУРЫ

- 1. Методика определения экономической эффективности металлорежущих станков. М.: ЭНИМС, 1971, 120 с.
- 2. Общемащиностроительные нормативы режимов резания для технического нормирования работ на металлорежущих станках. ч. І. М.: Машиностроение, 1974. 412 с.
- 3. Определение трудоемкости изготовления новой продукции. М.: НИИтруда. 1979, 136 с.
- 4. Планирование снижения трудоемкости и разработка нормативов трудовых затрат на производство продукции: Методические рекомендации. М.: НИИтруда, 1981. 208 с.
- 5. Учет трудоемкости производства промышленной продукции. М.: НИИтруда, 1980. 136 с.
- 6. Укрупненные нормативы времени для пормирования работ, выполняемых на кругло-, плоско- и внутришлифовальных станках. М.; ВНИИТЭМР, 1985. 124 с.

ОПРЕДЕЛЕНИЕ ТЕХНОЛОГИЧЕСКОЙ (ПРОЕКТНОЙ) И ПОЛНОЙ (ПЛАНОВОЙ) ТРУДОЕМКОСТИ НА ПРОИЗВОДСТВО ПРОДУКЦИИ МАШИНОСТРОЕНИЯ

1. ОСНОВНЫЕ ПОНЯТИЯ ТРУДОЕМКОСТИ И НОРМАТИВОВ ТРУДОВЫХ ЗАТРАТ НА ПРОИЗВОДСТВО ПРОДУКЦИИ

Под трудоемкостью изготовления продукции (трудоемкостью продукции) понимаются затраты живого труда на производство натуральной единицы продукции. Трудоемкость измеряется в нормо-часах (нормо-ч) или в человеко-часах (чел.-ч).

В зависимости от состава трудовых затрат, их роли в процессе производства необходимо учитывать следующие виды трудоемкости, которые являются составными частями полной трудоемкости.

1. Технологическая трудоемкость $(T_{\rm T})$ — затраты труда рабочих (независимо от формы оплаты), осуществляющих технологическое воздействие на предметы труда (целесообразное изменение формы, состояния, положения, физических, химических и других свойств), учитываемые в товарной (валовой) продукции предприятия:

$$T_{\rm T} = T_{\rm CH} + T_{\rm HOB}$$

где $T_{\rm cn}$ – затраты труда основных рабочих-сдельщиков; $T_{\rm nos}$ – затраты труда основных рабочих-повременщиков.

- 2. Трудоемкость обслуживания производства ($T_{\rm of}$) затраты труда вспомогательных рабочих основных и всех рабочих вспомогательных цехов и служб, занятых обслуживанием производства.
- 3. Производственная трудоемкость $(T_{\rm np})$ затраты труда всех рабочих (основных и вспомогательных цехов):

$$T_{\mathsf{np}} = T_{\mathsf{\tau}} + T_{\mathsf{o}\mathsf{o}\mathsf{o}\mathsf{o}}.$$

4. Трудоемкость управления производством (T_y) — затраты труда всех других категорий промышленно-производственного персонала (ИТР, служащих, МОП, работников охраны).

5. Полная трудоемкость продукции $(T_{\rm II})$ – затраты труда всех категорий промышленно-производственного персонала:

$$T_{\rm ff} = T_{\rm ff} + T_{\rm of} + T_{\rm y} = T_{\rm fip} + T_{\rm y}.$$

Трудовые затраты учеников следует относить к различным видам трудоемкости (технологической, обслуживания, управления производством) в зависимости от профессий, которым они обучаются.

Трудовые затраты по обслуживанию производства включают следующие функции:

- 1) организационно-технологическую (T_{or}) ;
- 2) подсобно-технологическую $(T_{\text{пт}})$;
- 3) поддержание в рабочем состоянии оборудования, механизмов и аппаратуры $(T_{\rm M})$;
- 4) изготовление и поддержание в рабочем состоянии технологической оснастки (T_{oc});
- 5) поддержание в рабочем состоянии зданий и сооружений (T_{32});
 - 6) контрольную (T_{κ}) ;
- 7) транспортную и погрузочно-разгрузочную ($T_{\text{погр}}$);
- 8) приемку, хранение и выдачу материальных ценностей (T_x) ;
 - энергоснабжение (T₃);
- 10) обеспечение охраны труда, техники безопасности и промсанитарии ($T_{\rm r6}$);
- 11) подготовку будущего производства (*Ts*).

По характеру и назначению затрат различают трудоемкость:

нормированную — нормируемые затраты труда на изготовление изделия либо выполнение определенного объема работ, устанавливаемые для всех видов трудоемкости (технологической, обслуживания и управления), исходя из действующих норм времени (выработки), норм обслуживания и нормативов численности, штатных расписаний и планового фонда рабочего времени в соответствии с режимом работы предприятия;

фактическую – действительные затраты труда на изготовление единицы изделия, объема работы;

плановую — затраты труда на изготовление изделия либо выполнение определенного

объема работы, установленные с учетом их снижения в планируемом периоде;

технологическую (проектную) — затраты труда основных производственных рабочих, установленные с учетом достижения запроектированных объектов выпуска изделий и условий производства: внедрение предусмотренных проектом прогрессивных технологических процессов, оборудования, средств оснащения, форм организации производства и труда.

Порядок изменения во времени технологической трудоемкости изделия от своего первоначального значения до величины проектной трудоемкости планируется с учетом следующих факторов:

уровня прогрессивности технологических процессов, оборудования, форм организации производства и труда на действующем предприятии и плановой динамики его изменения (план технического перевооружения завода);

периода освоения нового изделия с установленной динамикой нарастания объемов выпуска до величины серийного производства (план освоения новых изделий);

плановых заданий по снижению трудоем-кости выпускаемой продукции.

Установленная величина технологической трудоемкости изделия на каждый год освоения и последующего серийного выпуска представляет собой плановую технологическую трудоемкость изделия.

Плановые значения технологической трудоемкости отражают динамику снижения трудоемкости изделия во времени до ее проектной величины.

2. ОСНОВНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕХНОЛОГИЧЕСКОЙ (ПРОЕКТНОЙ) ТРУ ДОЕМКОСТИ

Расчет технологической (проектной) трудоемкости изготовления изделий выполняют для условий установившегося серийного производства. Этот расчет проводят на стадии законченной разработки рабочей документации при известной трудоемкости изготовления опытного образца.

Методы определения проектной трудоемкости обусловлены наличием исходных ланных.

Изделия, на которые нет разработанной

проектно-технологической документации и расчета трудоемкости. Для определения проектной трудоемкости модернизированного изделия на планируемую программу проводят анализ нового изделия и изделия-аналога с учетом количества деталей и узлов, весовых показателей по видам производства.

Проектная трудоемкость такого изделия

$$T_{\text{пр. пл. M}} = \sum_{i=1}^{n_i} t_{y\text{3.aH}} Q_i K_c K_{\text{1.o}},$$
 (1)

где $t_{\rm VII, \, ah}$ — показатель удельной трудоемкости изделий-аналогов [берется по изделиям, на которые разработана и угверждена проектная трудоемкость и определены удельные нормативные показатели по видам изводства в нормо-часах на 1 т изделия или на 1 м² (гальваника, малярные работы)]: Q_i — масса (т) или поверхность покрытия (м⁴) заготовок, деталей, изделий, подвергающихся обработке в определенном виде производ n_i — число видов производства; K_c — коэффициент серийности, учитывающий изменение трудоемкости в зависимости от соотношения программ выпуска Гвеличину $K_{\rm c}$ выбирают в зависимости от отношения A/A_1 (табл. 1); A — программа выпуска изделия-аналога, на которое определена проектная трудоемкость; A_1 — программа выпуска изделия, на которое определяется проектная трудоемкость].

 $K_{\text{п.o}}$ – коэффициент, учитывающий изменение трудоемкости в зависимости от степени внедрения прогрессивного оборудования, предусмотренного проектной технологией в планируемом периоде;

$$K_{\text{II. O}} = \frac{J_{\text{IIMO}}}{J_{\text{DMO}}},$$
 (2)

где $J_{\text{пио}}$ — уровень прогрессивности парка используемого оборудования по проектной технологии аналога, разработанной на заданную программу выпуска; $J_{\text{пио}_1}$ — уровень прогрессивности парка используемого оборудования, который может быть достигнут в планируемом периоде для нового изделия;

$$J_{\text{TRAO 1}} = \frac{K_{\text{TP}} T_{\text{TP}}}{T_{\text{of we}}},\tag{3}$$

где $K_{\rm rp}$ — коэффициент прогрессивности (производительности) группы оборудования (основные значения коэффициента приведены в табл. 2); $T_{\rm rp}$ — трудоемкость обработки на данном оборудовании; $T_{\rm общ}$ — общая трудоемкость по всем группам оборудования.

1,6

1.8

A/A_1	K _c	A/A_1	K _c	A/A_1	Кc
0,5	0,97	2,0	1,125	6,5	1,3
0,75	0,99	2,2	1,13	7,0	1,31
1,0	1,0	2,5	1,15	7,5	1,32
1.1	1,03	3,0	1,17	8,0	1,33
1,2	1,05	3,5	1,20	8,5	1,34
1,3	1,06	4,0	1,22	9,0	1,35
1,4	1,07	4,5	1,23	9,5	1,36
1.5	1.08	50	1.25	10.0	1 37

1. Зависимость коэффициента серийности K_c от отношения A/A_1

2. Значения коэффициента прогрессивности $K_{\rm rp}$ (производительности) группы технологического оборудования

1,27

1.28

5,5

6.0

Металлорежущее оборудование	$K_{\rm rp}$
Универсальные металлорежущие станки (без учета оснастки)	0,6-1,6
Станки с ЧПУ	2,4-2,8
Револьверные станки	1,3-1,6
Расточные станки	2,3-2,7
Зубообрабатывающие станки	1,3-1,6
Шлифовальные станки	1,2-1,5
Полуавтоматы и автоматы	2,8-4,0
Резбонарезные станки	3,2-3,8
Резьбонакатные станки	5,5-6,0
Специальные и специализированные станки	3,5-4,2
Обрабатывающие центры	2,5-3,2
Автоматические линии	4,0-4,5

При отсутствии показателей по отдельным видам производства проектная трудоемкость изделия определяется методом сравнения изделия с аналогом по формуле

1,10

1.12

$$T_{\text{пр. пл. M}} = T_{\text{пр. an}} K_1 K K_c K_{\text{п. o.}} \tag{4}$$

где $T_{\rm пр.\,an}$ — проектная трудоемкость изделия-аналога; $K_{\rm i}$ — коэффициент конструкторско-технологической сложности изделия,

$$Q_1/Q$$
 0,50 0,75 1,0 K 0,63 0,82 1,0

Изделия, на которые имеются проектнотехиологическая документация и расчет трудоемкости. Проектная трудоемкость на планируемую программу

$$T_{\rm пр. пл. 3} = T_{\rm пр} K_{\rm c} K_{\rm n.o}, \tag{6}$$

который не должен превышать 1,3 по сравнению с аналогом; K – коэффициент, зависящий от отношения масс изделия и его аналога;

11.0

12,0

1.38

1.4

$$K = \sqrt[3]{(Q_1/Q)^2},\tag{5}$$

где Q_1 — масса изделия; Q — масса изделияаналога.

Значения коэффициента *К* можно принимать следующие:

где $T_{\rm пр}$ — проектная трудоемкость на данное изделие, утвержденная на определенную программу выпуска; $K_{\rm c}$ — коэффициент серийности, учитывающий изменения трудоемкости в зависимости от соотношения программ выпуска; $K_{\rm c}$ — см. табл. 1; $K_{\rm п.o}$ —

3.	Пример	расчета	$K_{\text{m.o.}}$	Исходные	данные	для	расчета	$K_{\text{m.o}}$
----	--------	---------	-------------------	----------	--------	-----	---------	------------------

Группа	$K_{\rm rp}$	По проектног анал		В планируемый период		
оборудования	Тър	<i>Т_{гр},</i> нормо-ч	$K_{\rm rp}T_{\rm rp}$	<i>Т</i> _{гр} , нормо-ч	$K_{\rm rp}T_{\rm rp}$	
Автоматические линии	4,3	25	107,5	30	129	
Станки:						
с ЧПУ	2,5	15	37,5	2 0	50	
зубообрабатывающие	1,5	10	15	10	15	
шлифовальные	1,3	20	26	20	26	
полуавтоматические	4,0	12	48	,15	60	
и автоматические резьбоиакатные	6,0	3	18	[†] 10	60	
специальные	4,0	10	40	- 12	48	
универсальные	1,0	50	50	60	60	
Итого		145	342	177	448	

Решение.
$$J_{\text{пио}} = \frac{342}{145} = 2,36$$
; $J_{\text{пио}1} = \frac{448}{177} = 2,53$; $K_{\text{п.о}} = \frac{J_{\text{пио}}}{J_{\text{пио}1}} = \frac{2,36}{2,53} = 0,93$.

коэффициент, учитывающий изменение трудоемкости [определяется по формуле (2)]. Пример расчета $K_{n,o}$ приведен в табл. 3.

Изделия, для которых ранее установленная проектиая трудоемкость достнгиута. Проектная трудоемкость на планируемый период

$$T_{\rm np, nn} = T_{\rm A} \frac{K_{\rm c} K_{\rm n. o} K_{\rm M}}{K_{\rm nep}}, \tag{7}$$

где $T_{\rm A}$ — действующая трудоемкость, нормо-ч; $K_{\rm M}$ — коэффициент, учитывающий снижение трудоемкости изделия по разработанным на планируемый период мероприятиям, не учтенным коэффициентами $K_{\rm C}$ и $K_{\rm H,O}$,

$$K_{\rm M} = 1 - \frac{C_{\rm T}}{T_{\rm A}};\tag{8}$$

здесь $C_{\rm T}$ — планируемое снижение трудоемкости от внедрения организационно-технических мероприятий, не учтенных коэффициентами $K_{\rm C}$ и $K_{\rm R,O}$, нормо-ч; $K_{\rm nep}$ — коэффициент, учитывающий выполнение действующих норм выработки (времени);

$$K_{\text{nep}} = \frac{\Pi}{100},\tag{9}$$

где Π — выполнение норм выработки, %. На вновь осванваемые изделия, иа которые отсутствуют аналоги, находящиеся в про-изводстве, проектную трудоемкость рассчитывают исходя из состава изделия или отдельных его частей (узлов). Состав изделия или отдельных его частей разбивается на группы в зависимости от показателя про-изводственной новизны (Π_n) .

Показатель производственной новизны частей (узлов) изделия

$$\Pi_{\rm H} = \frac{N_{\rm o}}{N_{\rm offu}},\tag{10}$$

где $N_{\rm o}$ — число оригинальных деталей в изделии (составной части); $N_{\rm ofut}$ — общее число деталей в изделии (составной части) (покупные и крепежные дстали не учитываются).

В соответствии со значениями показателя производственной новизны части (узлы) изделия делят на составные части:

полностью заимствованные из состава других изделий, находящихся в производстве $(\Pi_{\rm H} < 0.3);$

модернизированные или новые, имеющие соответствующие аналоги, находящиеся в производстве $(0.3 < \Pi_{\rm H} \le 0.8)$;

новые, не имеющие аналогов ($\Pi_{\rm H} > 0.8$). В целом проектная трудоемкость изделия

$$T_{\text{пр.пл.}} = \sum_{i=1}^{m} T_{\text{пр.пл.},3} + \sum_{j=1}^{n} T_{\text{пр.пл.м}} + \sum_{q=1}^{p} T_{\text{пр.пл.н}},$$
(11)

где $T_{\text{пр. пл. 3}}$ — суммарная проектная трудоемкость i-х частей, полностью заимствованных из состава других изделий, находящихся в производстве, нормо-ч, определяют по формуле (6); $T_{\text{пр. нл. м}}$ — суммарная проектная трудоемкость модернизированных или новых j-х частей, имеющих соответствующие аналоги, находящиеся в производстве, нормо-ч, определяют по формуле (1) или (4); $T_{\text{пр. пл. н}}$ — суммарная трудоемкость q-х новых частей, не имеющих аналогов, нормо-ч; m, n, p — повторяемость составных частей.

Проектную трудоемкость изделий (составных частей), не имеющих аналогов, определяют по формуле

$$T_{\text{пр. пл. H}} = T_{\text{o}} K_2 K_3,$$
 (12)

где $T_{\rm o}$ — фактическая трудоемкость изготовления опытного образца нового изделия (составной части), нормо-ч; K_2 – коэффиусловного приведения трудоемциент кости изготовления опытного изделия (составной части) к трудоемкости его изготовления в опытной партии (табл. 4); K_3 – коэффициент, учитывающий снижение трудоемкости изготовления изделия в опытной партии и в установившемся серийном производстве.

Значения коэффициента K_3 определяют по табл. 5 в зависимости от условной расчетной величины M:

$$M = \frac{CN_1}{N_2}, \qquad (13)$$

где N_1 — проектируемый максимальный годовой выпуск изделий в период серийного производства, шт.; N_2 — число изделий в опытной партии, шт.; C — коэффициент, значение которого определяется в зависимости от срока достижения проектной трудоем-кости изделия (новой составной части):

3. ПРИМЕР РАСЧЕТА ПРОЕКТНОЙ ТРУДОЕМКОСТИ ИЗДЕЛИЙ

Требустся определить проектную трудоемкость изделия С.

Изделие С состоит из частей: 1-С; 2-С; 3-С. Часть 1-С является заимствованной из находящегося в производстве изделия А ($\Pi_{\rm H}=0,2$). Часть 2-С является модернизированной, аналогом для нее послужила часть, входящая в состав изделия Б, находящегося в производстве ($\Pi_{\rm H}=0,7$). Часть 3-С является новой, не имеющей аналога ($\Pi_{\rm H}=0,9$). Исходные данные изделий приведены в табл, 6, 7.

Определение нроектной трудоемкости оцениваемого изделия С. Проектную трудоемкость заимствованной составной части 1-С определяем по формуле (6) и данным табл. 7:

$$T_{\text{пр}} = 380$$
 нормо-ч; $A/A_1 = 1000/500 =$ = 2; $K_c = 1,125$ (см. табл. 1);

4. Значения коэффициента K_{2} условиого приведения трудоемкости язготовления опытного образца изделия к трудоемкости его изготовления в опытной партии

Уровень технически	Производство								
обосиованных норм изготовления опытного образца, %	мелкосерийное	серийное	крупносерийное, массовое						
До 15	0,59-0,58	0,54-0,47	0,47-0,37						
Св. 15 до 25	0,67-0,64	0,60-0,53	0,52-0,41						
» 25 » 35	0.75 - 0.72	0,68-0,59	0,57-0,45						
» 35 » 45	0,83 - 0,79	0,75-0,66	0,65-0,49						
Св. 45	0,92-0,89	0,83-0,73	0,77-0,56						

5. Значения коэффициента K_3 , учитывающего снижение трудоемкости изготовления изделия в опытной партии и в установившемся серийном производстве

M*	· K3	M*	K3	М*	K_3
		8,0	0,67	55,0	0,34
1,5	0,96	9,0	0,65	60,0	0,33
2,0	0,93	10,0	0,63	65,0	0,32
2,5	0,89	15,0	0,56	70,0	0,31
3,0	0,85	20,0	0,50	75,0	0,31
3,5	0,82	25,0	0,46	80,0	0,30
4,0	0,79	30,0	0,42	90,0	0,29
4,5	0,77	35,0	0,40	100,0	0,28
5,0	0,75	40,0	0,38	150,0	0,24
6,0	0,73	45,0	0,37	200,0	0.22
7,0	0,68	50,0	0,35	250,0	0,20

^{*} Условная расчетная величина.

6. Исходиые даниые оцениваемого изделия С

Показатель	Численное значение	•
Производственная новизна $H_{\rm H}$ изделия в целом Фактическая трудоемкость из-	0,63	
готовления опытного образца нового изделия (составной части) T_0 , нормо-ч Уровень технически обоснован-	3000	١.
ных норм изгоговления опытного образца, % Уровень механизации и авго-	16	,
матизации производства на предприятии-изготовителе в год расчета проектной трудо-		
емкости, %	50	
тии-изготовителе в год расчета проектной трудоемкости, % Проектируемый максимальный	70	
годовой выпуск изделия в период серийного производства.	500	
Число изделий, намечаемое к производству в установочной партии	10	

7. Исходиые данные и	зделий А и	Б
Показатель	Обозна- чение	Численное значение
Издел	пие А	
Проектная трудоем-	$T_{\rm np}$	380
кость на данное из-	- np	
делие, утвержденная		
на определенную		
программу выпуска,		4
нормо-ч		
Программа выпуска	A	1000
изделия-аналога, на		
которую определена		1 10
проектная трудоем-	14.1	ei
кость, шт.	4	20 4 1 1 1 1 L
Программа выпуска	\boldsymbol{A}	500
изделия, на которую		A
определяется проект-	5.	1
ная трудоемкость,		
шт,		
Уровень прогрессив-	$J_{ m nuo}$	1,5
ности парка исполь-		V
зуемого оборудо-	ļ	2.1
вания по проектной		
технологии аналога,	1	
разработанной на за-	3.0	.0.
данную программу		
выпуска		
Уровень прогрессив-	$J_{ m tinol}$	1,6
ности используемого		
оборудования, кото-		
рый может быть до-		
стигнут в планируе-	1.0	
мом периоде для но-	2.0	
вого изделия		72.4
	**	4.6
Издел	пие Б	
Проектная трудоем-	$T_{\rm np,am}$	300
кость изделия-ана-	прав	
лога, нормо-ч		
Коэффициент конст-	K_{1}	1,2
рукторско-техноло-	1 850	
гической сложности	< 1	1.5
изделия		
Масса определяемо-	Q_1	0,3
го изделия, т		
Масса изделия-ана-	Q_2	0,4
лога, т		
Программа выпуска	A	700 ·
изделия-аналога, на		
которую определена		0.40
проектная трудоем-		
кость, шт.	1	
		·

Продолжение	табл.	7

Показатель	Обозна- чение	Численное значение
Программа выпуска изделия, на которую определяется проектная трудоемкость, шт.	A	500
Уровень прогрессив- ности парка исполь- зуемого оборудова- ния по проектной	$J_{_{ m IIIO}}$	1,4
технологии аналога, разработанной на за- данную программу выпуска	· · · · · · · · · · · · · · · · · · ·	e way and base and and
Уровень прогрессив- ности используемого оборудования, кото- рый может быть до- стигнут в планируе- мом периоде для но- вого изделия	J_{nuol}	1,5

$$K_{\text{1D}} = \frac{J_{\text{11HO}}}{J_{\text{TMO}1}} = \frac{1.5}{1.6} = 0.94;$$

 $T_{\text{пр. пл. 3}} = 380 \cdot 1.125 \cdot 0.94 = 402$ нормо-ч.

Проектную трудоемкость модернизированной составной части 2-С определяем по формуле (4) и данным табл. 7:

$$T_{\rm пр.\, aH} = 300\,$$
 нормо-ч; $K_1 = 1,2$; $Q_1/Q_2 = 0,3/0,4 = 0,75$; $K = 0,82\,$ (см. с. 686); $A/A_1 = 700/500 = 1,4$; $K_{\rm c} = 1,07\,$ (см. табл. 1); $K_{\rm nl.\, o} = 1,4/1,5 = 0,93.$ $T_{\rm np.\, nn.\, M} = 300\cdot 1,2\cdot 0,82\cdot 1,07\cdot 0,93 = 293\,$ нормо-ч.

Проектную трудоемкость новой, не имеющей аналога сборочной единицы 3-С определяем по формуле (12):

$$T_{\text{пр. пл. H}} = T_{\text{o}} K_2 K_3;$$
 $T_{\text{o}} = 3000 \text{ нормо-ч};$
 $K_2 = 0.5.$

Срок достижения проектной трудоемкости принимаем 3 года:

$$C = 1.82$$
 (cm. c. 688); $M = \frac{CN_1}{N_2} =$

$$=\frac{1,82\cdot 500}{10}=91;\ K_3=0,29\ (\text{см. табл. 5});$$

$$T_{\text{пр. пл. H}} = 3000 \cdot 0.5 \cdot 0.29 = 435$$
 нормо-ч.

Проектную трудоемкость оцениваемого изделия С в целом ($T_{\text{пр. цл}}$) определяем по формуле (11):

$$T_{\text{пр.пл}} = 402 + 293 + 435 = 1130$$
 нормо-ч.

4. ОПРЕДЕЛЕНИЕ ПОЛНОЙ (ПЛАНОВОЙ) ТРУДОЕМКОСТИ

Определение планоиовой трудоемкости продукции. Плановая трудоемкость продукции $(T_{\rm inf})$ представляет собой разность между величиной трудоемкости в базисном периоде (T_6) и резервами ее снижения, запланированными к использованию в плановом периоде:

$$T_{nn} = T_6 - \Im_{nn},$$

где $9_{\rm nn}$ – экономия от снижения трудоемкости продукции в плановом периоде на плановый объем работ.

При определении плановой трудоемкости выпуска продукции в расчет должна приниматься величина экономии, установленная с учетом сроков внедрения организационнотехнических мероприятий в плановом периоде:

$$\Im_{\rm nn} = \Im Q,$$

где 3 — экономия затрат труда на произволство единицы продукции, или выполнение единицы объема работ от внедрения мероприятий, чел.-ч; Q — объем выпуска продукции, или объем работ с момента внедрения мероприятий до конца планируемого периола.

При равномерном распределении объема выпуска продукции в плановом периоде экономию затрат труда от внедрения организационно-технических мероприятий подсчитывают по формуле

$$\Im_{nn} = \Im Q_{nn} K_n$$

где $Q_{\rm пл}$ — объем выпуска продукции в плановом периоде; $K_{\rm п}$ — коэффициент, учитывающий срок действия мероприятий в плановом периоде (определяется отношением времени действия внедренного мероприятия к общему времени планового периода).

Расчет плановой технологической трудоем-кости продукции. Расчет плановой технологи-

ческой трудоемкости проводят по всей продукции, включая новые изделия. По сравнимой продукции исходными данными для определения плановой трудоемкости является уровень фактических затрат труда на ее изготовление, достигнутый предприятием в конце базисного периода. По новым изделиям исходными данными должна служить проектная трудоемкость с учетом достигнутого уровня прогрессивности технологических процессов, оборудования, оснащенности, форм организации производства и труда и периода освоения нового изделия.

Для определения плановой технологической трудоемкости продукции необходимо базисную трудоемкость t_{16} скорректировать с учетом изменения в плановом периоде:

- а) удельного веса кооперированных поставок;
 - б) объема выпуска продукции;
- в) условий ее производства (внедрение организационно-технических мероприятий).

При изменении в плановом периоде удельного веса кооперированных поставок расчет изменения технологической трудоемкости Δt_{TK} должен проводиться дифференцированно по тем технологическим видам работ, деталям, узлам, полуфабрикатам, по которым в плановом периоде изменяются условия кооперации:

$$\Delta t_{\rm TK} = \pm \Delta q_{\rm K} t_{16}$$

где $\Delta q_{\rm K}$ — изменение объема кооперированных поставок в плановом периоде; $t_{\rm T6}$ — базисная технологическая трудоемкость изделия по тем технологическим видам работ или трудоемкость изготовления комплекта деталей, входящих в изделие, по которым в плановом периоде изменяется объем кооперированных поставок.

Если изменение объема кооперированных поставок в плановом периоде одновременно распространяется на несколько изделий, расчет изменения технологической трудоемкости по каждому из них проводят по формуле

$$\Delta t_{\rm TK} = t_{\rm TS} (K_{\rm K} - 1),$$

где K_{κ} — коэффициент изменения базисной технологической трудоемкости изделия на предприятии, зависящий от изменения удельного веса кооперированных поставок в плановом периоде;

$$K_{\rm K} = \frac{100 - a_{\rm II}}{100 - a_{\rm 6}},$$

здесь $a_{\rm II}$, $a_{\rm 6}$ — удельный вес кооперированных поставок в общем объеме соответственно в плановом и базисном периодах, %.

Базисная технологическая трудоемкость изделия с учетом изменения в плановом периоде удельного веса кооперированных поставок t_{76k} определяется как разность между технологической трудоемкостью его изготовления в базисном периоде t_{16} и изменением базисных затрат труда в связи с изменением условий кооперации Δt_{7k} :

$$t_{\text{TSK}} = t_{\text{TS}} \pm \Delta t_{\text{TK}}.$$

Технологическая трудоемкость планового выпуска изделий по базисным затратам труда $T_{\rm r6}$, скорректированным с учетом изменения условий кооперации в плановом периоде $T_{\rm r6k}$, определяется как произведение фактической трудоемкости единицы изделия $t_{\rm r6k}$ и планового объема его выпуска $Q_{\rm nn}$:

$$T_{\text{T6}} = t_{\text{T6}} Q_{\text{пл}};$$
$$T_{\text{T6}\kappa} = t_{\text{T6}\kappa} Q_{\text{пя}}.$$

Технологическая трудоемкость всего планового выпуска продукции определяется суммированием полученных величин технологической трудоемкости выпуска отдельных изделий.

Экономия затрат труда благодаря внедрению организационно-технических мероприятий определяется на единицу и весь плановый объем выпуска продукции в плановом периоде. Если мероприятия влекут за собой изменение условий производства отдельных видов продукции, экономия от их внедрения (Э.) должна учитываться при определении плановой трудоемкости этих видов изделий продукции. Если мероприятия направлены на изменение условий производства всей выпускаемой продукции, экономия от их внедрения (Э2) должна распространяться на весь объем продукции и пропорционально технологической трудоемкости – на отдельные ее виды.

Плановая технологическая трудоемкость изделия определяется как разность между трудоемкостью базисного периода, скорректированной с учетом изменения удельного веса кооперированных поставок в плановом периоде t_{76} х, и экономией трудовых затрат от внедрения в плановом периоде организационно-технических мероприятий;

$$t_{\text{т. пл}} = t_{\text{тбк}} - (\Im_1 + \Im_2);$$

на плановый объем выпуска по отдельному изделию

$$T_{\text{т. пл}} = t_{\text{т. пл}} Q_{\text{пл}}.$$

На весь объем выпуска продукции плановая технологическая трудоемкость определяется суммированием плановых технологических трудоемкостей отдельных изделий.

Расчет илановой трудоемкости обслуживания и управления производством. Плановую трудоемкость обслуживания производства определяют на весь объем работ планового периода, а затем — на конкретные виды продукции. Ее рассчитывают отдельно по каждому основному и вспомогательному цеху в соответствии с отраслевой методикой расчета трудоемкости единицы продукции.

В основных цехах и по предприятию в целом плановые затраты труда на обслуживание производства распределяются на все изделия, учитываемые в выпуске товарной продукции пеха (предприятия). Во вспомогательных цехах и общезаводских службах плановая трудоемкость обслуживания производства определяется на единицу продукции цеха (службы), по которой ведется учет затрат труда и их списание на основное производство.

Для определения плановой трудоемкости обслуживания производства по всему выпуску продукции и на единицу каждого изделия рассчитывают изменения затрат труда в плановом периоде по сравнению с базисным в зависимости от следующих факторов:

объема выпуска продукции;

удельного веса кооперированных поставок и услуг, получаемых предприятием со стороны;

изменения условий производства вследствие внедрения организационно-технических мероприятий.

Эти расчеты выполняют отдельно по каждому виду намечаемых изменений условий производства, а именно:

увеличение (уменьшение) объема выпуска продукции K_1 ;

относительное изменение величин затрат труда на обслуживание производства на единицу прироста объема выпуска продукции K_2 ;

изменение удельного веса кооперированных поставок и услуг, получаемых предприятием со стороны, K_{κ} .

Коэффициент прироста объема выпуска продукции в плановом периоде по сравнению с базисным

$$K_1 = \frac{Q_{\text{nn}} - Q_6}{Q_6},$$

где $Q_{\rm пл}$ и Q_6 — объемы выпуска продукции в плаповом и базисном периодах при базисной трудоемкости.

Коэффициент изменения затрат труда на обслуживание производства определяется на основании анализа фактических данных предприятия:

$$K_2 = \frac{\Delta T_{o6}}{\Delta O},$$

где $\Delta T_{\rm of}$ — изменение затрат труда на обслуживание производства в плановом периоде, %; ΔQ — изменение объема выпуска продукции, %.

Коэффициент изменения затрат труда на обслуживание производства в плановом периоде в связи с изменением удельного веса кооперированных поставок и услуг, получаемых предприятием со стороны, определяют по формуле

$$K_{\rm K} = \frac{100 - a_{\rm n}}{100 - a_{\rm f}},$$

где $a_{\rm n}$ и $a_{\rm 6}$ — удельный вес услуг в обидем объеме работ по обслуживанию производства, получаемых предприятием со стороны, соответственно в плановом и базисном периолах, %.

Затраты труда на обслуживание произволства на предприятии в плановом периоде по базисной трудоемкости с учетом изменения объема выпуска продукции и удельного веса кооперированных поставок и услуг, получаемых со стороны, определяют по формуле

$$T_{\text{of. fig. (T6)}} = (T_{\text{of.6}} \pm T_{\text{of.6}} K_1 K_2) K_K$$

гле $T_{\rm o6.6}$ — трудоемкость обслуживания производства в базисном периоде; K_1 — коэффилиент увеличения (уменьшения) объема выпуска продукции; K_2 — коэффициент изменения затрат труда на обслуживание производства.

Экономия затрат труда на обслуживание производства от внедрения организационнотехнических мероприятий (\mathfrak{I}_0) определяется путем сопоставления величины этих затрат на плановый объем работ до и после внедрения мероприятий:

$$\Theta_{\rm o} = T_{\rm o6}' - T_{\rm o6}'', \quad \cdots$$

где T'_{o6} и T''_{o6} — затраты труда на плановый объем работ по обслуживанию производства

соответственно до и после внедрения мероприятий.

Затраты труда на весь объем работ по обслуживанию производства в плановом периоде

$$T_{\text{OO, IIA}} = T_{\text{OO, IIA}}(\text{TO}) - \sum_{1}^{m} 3_{0},$$

где $T_{\text{об.пл(т6)}}$ — базисная трудоемкость планового объема работ; $\sum_{t}^{m} \mathcal{O}_{0}$ — экономия от внедрения организационно-технических мероприятий, направленных на снижение трудоемкости обслуживания производства; m — число организационно-технических мероприятий, направленных на снижение трудоемкости обслуживания производства.

Определение величины затрат труда на обслуживание производства в плановом периоде можно осуществлять с помощью коэффициентов изменения базисных затрат труда за счет внедрения намеченных организационно-технических мероприятий (K_3). Эти коэффициенты определяют по каждому мероприятию в пределах отдельных функций обслуживания производства.

Отнесение плановых затрат труда на обслуживание производства в основных цехах большинства отраслей промышленности может быть осуществлено путем пропорционального их распределения в соответствии с технологической трудоемкостью:

$$t_{ ext{o6. пл}} = \frac{T_{ ext{o6. пл}}}{T_{ ext{т. пл}}} t_{ ext{т. пл}}.$$

При распределении плановых затрат труда работников вспомогательных цехов и служб по основным цехам можно использовать коэффициент распределения, установленный на основании фактических данных базисного периода:

$$K_4 = f/F$$
,

где f — объем работ (услуг) вспомогательного цеха, отнесенный на основной цех в базисном периоде; F — общий объем услуг основным цехам, оказанных вспомогательными цехами в базисном периоде.

При значительных изменениях в структуре производства на предприятии в плановом периоде эти изменения должны быть учтены при расчете коэффициентов распределения затрат труда рабочих вспомогательных цехов и служб на основное производство.

Трудоемкость управления производством определяется пропорционально величинам производственной трудоемкости на весь объем выпуска и единицу каждого изделия. Изменения затрат управления производством в плановом периоде по сравнению с базисным рассчитывают с учетом изменения:

объема выпуска продукции;

удельного веса кооперированных поставок и услуг, получаемых предприятием со стороны;

условий управления производством за счет внедрения организационно-технических мероприятий.

Трудоемкость управления производством в плановом периоде на весь объем работ $(T_{y,n,n})$ и на единицу продукции $(t_{y,n,n})$ определяется аналогично трудоемкости обслуживания производства.

Расчет плановой цеховой и заводской полиой трудоемкости продукции. Цеховая полная трудоемкость изготовления единицы изделия определяется в основных цехах суммированием плановых затрат ее структурных составляющих:

$$t_{\text{п. нл. цо}} = t_{\text{т. пл. ц}} + t_{\text{об. пл. ц}} + t_{\text{у. нл. ц}}$$

Если затраты труда работников вспомогательных цехов и общезаводских служб распределяются по основным цехам, то цеховая полная трудоемкость изготовления единицы изделия определяется с учетом услуг вспомогательных цехов и общезаводских служб. Помимо собственных цеховых затрат, она включает затраты труда работников вспомогательных цехов и служб в той части, в какой они первоначально отнесены на основной цех, а затем на единицу изделия:

$$t_{\text{п. п.п. u}} = t_{\text{т. п.п. u}} + (t_{\text{06. п.п. u} + \Delta t_{\text{06. п.п.}}}) +$$

$$+ (t_{\text{у. п.п. u}} + \Delta t_{\text{у. п.л.}}).$$

Заводская полная трудоемкость изготовления единицы изделия в плановом периоде $t_{\rm п. \ пл. \ 3}$ определяется в зависимости от принятой схемы распределения затрат труда работников вспомогательных цехов и общезаводских служб.

При организации цехов (участков) по предметному признаку заводская полная трудоемкость изготовления единицы изделия может определяться:

а) при распределении по основным цехам

затрат труда работников вспомогательных цехов и служб

$$t_{\Pi, \Pi \Pi, 3} = t_{\Pi, \Pi \Pi, \Pi}$$
.

б) при отнесении затрат труда работников вспомогательных цехов и общезаводских служб на изделие, минуя предварительное распределение затрат по основным цехам,

$$t_{\text{п. пл. 3}} = t_{\text{п.пл.ц}} + \Delta t_{\text{об. пл}} + \Delta t_{\text{у.пл.}}$$

При организации цехов (участков) по технологическому признаку плановая полная заводская трудоемкость продукции складывается из затрат труда на производство изделия по всем основным цехам (участкам) предприятия, принимающим участие в его изготовлении.

В зависимости от принятой схемы распределения затрат труда расчет можно проводить по следующим формулам:

1. При распределении по основным цехам затрат труда работников вспомогательных цехов и служб

$$t_{\rm II, III, II} = \sum_{i=1}^{n} t_{\rm II, III, II}.$$

2. При отнесении затрат труда работников вспомогательных пехов и общезаволских

служб на изделие, минуя предварительное их распределение по основным цехам.

$$t_{\text{II. II.I. 3}} = \sum_{t=1}^{n} t_{\text{II. III. II}} + \Delta t_{\text{OS. III}} + \Delta t_{\text{y. III.}}$$

Снижение в плановом периоде полной трудоемкости, отдельно технологической трудоемкости, трудоемкости обслуживания и управления производством по каждому изделию, по сравниваемой продукции, по новым изделиям и по всей товарной продукции, а также снижение трудоемкости единицы работы (услуг) по каждой функции обслуживания определяют на основании расчетов по цехам и службам предприятия.

Общую экономию труда в плановом периоде O_{nn} определяют суммированием экономии по цехам и службам предприятия:

$$9_{nn} = 9_{r, nn} + 9_{o6, nn} + 9_{v, nn}$$

где $9_{\text{т. пл}}$ — экономия от снижения технологической трудоемкости в плановом периоде, чел.-ч; $9_{\text{об. пл}}$ — экономия от снижения трудоемкости обслуживания производства в плановом периоде, чел.-ч; $9_{\text{у. пл}}$ — экономия от снижения грудоемкости управления производством в плановом периоде, чел.-ч.

ОПРЕДЕЛЕНИЕ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ТЕХНОЛОГИИ ОБРАБОТКИ ДЕТАЛЕЙ МАШИНОСТРОЕНИЯ

1. ОСНОВНАЯ ТЕРМИНОЛОГИЯ

Экономия - уменьшение затрат производственных ресурсов на производство готовой продукции или работы. Бережливость при расходовании материальных, трудовых, денежных, природных и других ресурсов употребляется также в смысле выгоды, эффекта, полученных в результате бережного, ранионального использования различных видов ресурсов, сокращения непроизводственных ресурсов, потерь, совершенствования техники, технологии, организации производства. нормирования и т. п. Экономия ресурсов позволяет достичь более высокого конечного результата при сокращении их расхода. Величина сэкономленных ресурсов может быть определена в натуральном, трудовом или денежном выражении в соответствующих единицах измерения. Например, количество сэкономленных материалов выражается в килограммах, тоннах, метрах, литрах или в рублях. Экономия трудовых ресурсов может быть выражена числом высвобожденных работников или количеством сбереженных человеко- или нормо-часов,

Годовой экономический эффект - годовая экономия приведенных затрат, т. е. текущих и капитальных, приведенных к одной размерности в соответствии с нормативным коэффициентом экономической эффективности. В производстве различают экономический и социальный эффекты. Экономический эффект характеризует создаваемые потребительские стоимости и произведенные для этого затраты; социальный эффект выражает развитие рабочей силы, повыщение ее творческого характера непосредственно в процесее труда. Экономический эффект является одним из важных показателей, применяемых при анализе и оценке экономической эффективности различных вариантов внедрения новой техники, технологии, прогрессивных видов продукции, организации труда и производства. На основании данных о годовом экономическом эффекте оценивается эффективность сравниваемых вариантов и принимается решение о целесообразности внедрения того или иного варианта техники, технологии, осуществления различных организационно-технических мероприятий.

Экономический эффект характеризуется величиной достигнутой экономии материальных, трудовых, денежных и других ресурсов, экономией времени (снижением трудоемкости, уменьшением потерь времени, ускорением оборачиваемости средств), улучшением качества, надежности, ростом объема производства продукции, работ, услуг и другими результатами. Экономический эффект может быть выражен с помощью натуральных, трудовых, стоимостных и других количественных и качественных показателей.

Экономическая эффективность - соотношение между получаемыми результатами производства - продукцией и материальными услугами, с одной стороны, и затратами труда и средств производства - с другой. Различают народнохозяйственную и хозрасчетную эффективность. Каждая из них классифицируется на абсолютную (общую) и сравнительную. Народнохозяйственная эффективность оценивается отношением конечного народнохозяйственного эффекта и обусловивших его народнохозяйственных затрат. В основу ее оценки берутся, как правило, интересы государства. Общая (абсолютная) экономическая эффективность - отношение эффекта ко всей сумме затрат. Сравнительная экономическая эффективность - разность между сравниваемыми общими величинами экономического эффекта, исчисляемыми при различных вариантах (вновь ваемый вариант и базовый).

Капитальные вложения — единовременные затраты на создание производственных фонлов.

Удельные капитальные вложения — отношение объема капитальных вложений за данный период к сумме прироста товарной (чистой) продукции (работ) за тот же период.

Себестоимость продукции — денежное выражение текущих затрат на производство и реализацию продукции. Себестоимость продукции — часть стоимости, включающая

затраты на потребление средств производства и оплату труда.

Срок окупаемости капитальных вложений— период, в течение которого капитальные вложения соизмеряются с экономией от внедрения.

Прибыль – разница между объемом реализации продукции и затратами на ее производство.

Рентабельность производства — доходность, прибыльность, измеряется отношением суммы полученной прибыли к стоимости основных производственных фондов и оборотных средств. Если применяется показатель «нормативная чистая продукция», рентабельность рассчитывается как отношение суммы прибыли к себестоимости, из которой вычтены материальные затраты. Этот показатель свидетельствует об отдаче вложенного в производство рубля и об общей экономической эффективности использования выделенных ресурсов.

Ресурсосберегающая техиология — технология, обеспечивающая получение конечного результата с меньшими затратами, чем прежде, всех видов ресурсов. Она предусматривает проведение единой технической политики и проектирование машиностроительных цехов с высокими показателями эффективности капиталовложений, производительности труда и качества выпускаемой продукции.

Основное внимание уделяется малоотходной и безотходной технологии, внедрению замкнутых автоматизированных технологических процессов, использованию промышленных роботов, повышению степени механизации и автоматизации труда, использованию вторичных материальных и энергоресурсов, прогрессивных конструктивных решений.

2. ОПРЕДЕЛЕНИЕ ГОДОВОГО ЭКОНОМИЧЕСКОГО ЭФФЕКТА

Расчеты экономической эффективности технологии обработки деталей при выполнении научно-исследовательских или проектных работ проводятся на следующих стадиях:

при разработке технического задания (расчет предварительной экономической эффективности);

при разработке технологического процесса (уточненный расчет экономической эффективности);

при внедрении процесса (расчет фактической экономической эффективности).

Определение годового экономического эффекта основывается на сопоставлении приведенных затрат по базовому и проектному вариантам новой техники (технологии). Приведенные затраты представляют собой сумму текущих затрат (себестоимости) и капитальных вложений, приведенных к одинаковой годовой размерности в соответствии с нормативом сравнительной эффективности.

$$3_{\text{пр}(i)} = C_i + E_{\text{H}} K_i \rightarrow \text{минимум},$$
 (1)

где $3_{\rm np}$ (i) — привеленные затраты по i-му варианту технических решеннй; C_i — текущие затраты (себестоимость) по i-му варианту; $E_{\rm H}$ — нормативный коэффициент эффективности капитальных вложений, принимаемый равным 0,15; K_i — капитальные вложения по i-му варианту.

Головой экономический эффект (Э) от внедрения на предприятиях и объединениях новых технологических процессов, средств механизации и автоматизации производства, использования новых материалов и оборудования, способов организации произволства и труда определяют по формуле

$$\Im = [(C_1 + E_H K_1) - (C_2 + E_H K_2)] A_2, \quad (2)$$

где C_1 и C_2 — себестоимость единицы продукции или затраты на 1000 р. стоимости выпуска продукции, производимой с помощью базовой и новой техники, руб.; K_1 и K_2 — капитальные вложения по базовой и новой технике, приходящиеся на единицу продукции или на 1000 р. стоимости выпуска, руб.; A_2 — годовой объем продукции, производимой с помощью новой техники в расчетном году, в патуральных единицах или в стоимостном выражении.

Если внедрение новых технологических процессов обеспечивает повышение качества выпускаемой продукции (например, за счет новышения долговечности отдельных деталей, узлов или конечной продукции — станки, прессы и др.), то экономический эффект

$$O = \left[(C_1 + E_H K_1) \frac{\frac{1}{T_1} + E_H}{\frac{1}{T_2} + E_H} - \frac{1}{T_2} + \frac{1$$

где C_1 и C_2 – себестоимость единицы продукции, производимой но действующему и новому технологическим процессам, руб.; K_1 и K_2 — капитальные вложения (фондоемкость), приходящиеся на единицу продукции, производимой соответственно по действующему и новому технологическим процессам, руб.; T_1 и T_2 — сроки службы и деталей (изделий), лет; A_2 – годовой объем продукции, производимой по новому технологическому процессу в расчетном году в натуральных единицах, шт.; $C_1 + E_H K_1$ и $C_2 + E_H K_2$ приведенные затраты на производство единицы продукции, производимой соответственно по действующему и новому технологическим процессам, руб.

В отдельных случаях, когда трудно определить фондоемкость продукции, вместо приведенных затрат допускается применение цен на продукцию, производимую по действующему и новому технологическим пронессам.

Цены на отдельные детали, узлы (при их отсутствии) определяются на основании себестоимости и принятых в отрасли нормативов рентабильности.

При расчете экономического эффекта от применения нового оборудования, обеспечивающего получение повышенной точности деталей (или конечной продукции – станки, прессы и др.) в случае возможного получения такой же точности деталей и при базовой технике (путем введения дополнительных операций), в себестоимости продукции и капиталовложений базового варианта должны быть учтены дополнительные затраты, необходимые для доведения детали до той степени точности, которая достигается применением нового оборудования. Увеличение затрат возможно на последующих операциях технологического процесса (на станках, производящих финишные операции, при узловой сборке) и на предыдущих операциях (разметка и пр).

При производстве новой продукции или продукции повышенного качества (с более высокой ценой) для удовлетворения нужд населения, а также новой продукции и продукции повышенного качества на основе изобретений и рационализаторских предложений экономический эффект рассчитывают по формуле

$$\mathfrak{I} = (\Pi - E_{\mathrm{H}} K_{\mathrm{y}}) A_{\mathrm{2}}, \tag{4}$$

где 3 – годовой экономический эффект от производства новой продукции или продук-

ции повышенного качества для удовлетворения нужд населения; Π — прибыль от реализации новой продукции, или прирост прибыли ($H_2 - H_1$) от реализации продукции повышенного и прежнего качества; K_y — удельные капитальные вложения на производство новой продукции или удельные дополнительные капитальные вложения, связанные с повышением качества продукции, руб.

Дополнительными показателями, раскрывающими сущность мероприятия, служат удельные затраты сырья, материалов, топлива, электроэнергии, инструмента, снижение брака. Кроме того, при экономической оценке необходимо учитывать ряд показателей, которые не всегда поддаются расчету, но, будучи направлены на совершенствование производственного процесса, могут иметь решающее значение. К ним относятся улучшение условий труда, повышение безопасности работы, устранение тяжелых условий труда и т. л.

3. ОПРЕДЕЛЕНИЕ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ

Капитальные вложения *K*, учитываемые при определении эффективности, включают следующие затраты:

$$K = K_{\text{of}} + K_{\text{och}} + K_{3\pi} + K_{6\text{hr}} + K_{\pi} + K_{\text{Hc}3} + K_{\pi},$$
 (5)

где K_{06} — стоимость оборудования, включая транспортно-заготовительные расходы и монтаж, руб.; $K_{\rm och}$ — стоимость оснастки: приспособлений, режущего и мерительного инструмента; $K_{\rm 3J}$ — стоимость производственной площади, занимаемой оборудованием, руб.; $K_{\rm 6hit}$ — стоимость служебно-бытовых помещений, руб.; $K_{\rm w}$ — стоимость жилищного и культурно-бытового строительства, 'руб.; $K_{\rm He3}$ — стоимость оборотных средств в незавершенном производстве, руб.; $K_{\rm H}$ — стоимость проектных работ, руб.

Стоимость оборудования принимается в расчете по ее оценке на балансе.

Суммарная балансовая стоимость оборулования

$$K_{\text{o6}} = \sum_{i=1}^{n} I l j R_{\text{np}}, \tag{6}$$

гле U — оптовая цена станка, руб.; j — коэффициент, учитывающий затраты на доставку

и установку станка $(j=1,1); R_{np}$ — принятое число станков.

При наличии заводских данных о балансовой стоимости оборудования (по базовому или проектному варианту) в расчет принимаются отчетные данные бухгалтерского учета, при этом балансовая стоимость расчетным путем не определяется.

Если механическая обработка деталей проводится на станках с ЧПУ, управляемых от ЭВМ, то ее стоимость, а также численность персонала ЭВМ учитываются не полностью, а в доле занятости ЭВМ в обслуживании данного участка, модуля или отдельного станка и определяются отношением удельного веса машинного времени, затраченного на обслуживание оборудования, к годовому фонду машинного времени ЭВМ. Стоимость комплекта управляющих программ учитывается в общих капитальных вложениях, и ее рассчитывают по специальной методике.

Стоимость оснастки $K_{\text{осн}}$ (приспособлений, режущего, мерительного инструмента и т. д.) определяют по формуле

$$K_{\text{OCH}} = \sum_{i=1}^{n} \sum_{d=1}^{h} K_{\text{OCH}} d\Pi_{id} \mu_{\text{OCH}}_{id}, \qquad (7)$$

где n — число операций изготовления продукции; h — число типоразмеров оснастки, необходимой для выполнения i-й операции; $K_{\text{осн }d}$ — стоимость одного экземпляра оснастки d-го типоразмера, руб.; Π_{id} — число экземпляров оснастки d-го типоразмера, необходимое для бесперебойного выполнения i-й операции; $\mu_{\text{осн }id}$ — коэффициент занятости технологической оснастки d-го типоразмера при выполнении i-й операции, который выражает долю полезного фонда времени работы оборудования за год, прихолящуюся на обработку данных деталей.

При использовании специальной оснастки $\mu_{\text{осн}\,id}=1,0.$

Стоимость единицы новой оснастки $K_{\rm осн} d$ складывается из затрат на ее приобретение по оптовой цене или из стоимости ее проек-

тирования и изготовления силами завода и возможных затрат на транспортирование, монтаж и освоение.

Оптовая цена оснастки, изготовленной предприятием, находится как сумма полной себестоимости и плановой прибыли. Себестоимость единицы оснастки складывается из затрат на ее проектирование и изготовление. Данные о себестоимости приспособлений в зависимости от их сложности и укрупненные нормативы стоимости специальных приспособлений приведены в табл. 1, 2.

Стоимость производственной площади K_{3d} , занимаемой оборудованием, рассчитывают по формуле

$$K_{3A} = \sum_{i=1}^{n} \mathcal{U}_{\text{n.n.}3A}(S + S_{y}) \gamma R_{\text{n.p.}},$$
 (8)

где $H_{\Pi \Sigma, 3\Pi}$ — стоимость 1 м² площади механического цеха, руб.; S — площадь, занимаемая станком, по габаритам, м²; S_y — площадь, занимаемая выносными, вспомогательными устройствами (устройством ЧПУ, электрошкафом и т. п.), м²; γ — коэффициент, учитывающий дополнительную площадь.

В общей площади механического цеха учитывается территория цеха, отведенная под производственное оборудование, включая рабочее место рабочего, место для хранения деталей и заготовок, технического контроля, средств наземного межоперационного транспорта, проходы и проезды между оборудованием и рабочими местами внутри производственных отделений и участков, а также прочая вспомогательная площадь неха.

Площадь механического цеха, приходящаяся на один станок, определяется произведением $S\gamma$ (табл. 3). Для металлорежущих станков величина $S\gamma$ должна быть такой, чтобы общая площадь, занимаемая станком и принятая к расчету, была не менее 6 м².

Стоимость 1 м² площади механического цеха и служебно-бытовых помещений соста-

1. Себестоимость приспособлений в зависимости от нх сложиости

T and a second		Группа	спожност	и приспосо	блений	
Показатели	I	II	111	IV	v	Vl
Число оригинальных деталей в приспособлении	1-10	5 – 20	10-30	20-60	30 - 90	60-120
Себестоимость приспособления, руб.	До 10	10-25	20-50	50 – 150	100 – 300	220 – 460

2. Укрупненные иормативы стоимости специальных приспособ,	блений	приспособ.	альных п	специал	стоимости	иормативы	рупнеиные	У	2.
---	--------	------------	----------	---------	-----------	-----------	-----------	---	----

Группа сложности приспособ-	Число наименований деталей	Стоимость приспособления, руб.	Группа сложности приспособ- лений	Число наименований деталей	Стоимость приспособления, руб.
	Менее 5	До 8,5		35-40	300 – 335
II	3-5 5-10 10-15	8,5-17 17-30 30-45	. V	40-45 45-50 50-55	335 - 360 360 - 390 390 - 415
111	10-15 15-20 20-25 20-25 25-30 30-35 35-40	45-62 62-80 80-95 125-145 145-175 175-190 190-215	VI :>	50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95	610 - 640 640 - 690 690 - 735 735 - 765 765 - 810 810 - 850 850 - 880 880 - 925 925 - 965

3. Значения коэффициента γ , учитывающего дополнительную площадь, приходящуюся на один металлорежущий станок

Площадь станка по габаритам (длина × ширина) S, м ²	Коэффициент ү	Площадь станка по габари- там (длина × ширина) S, м ²	Коэффициент ү				
€2,5	5,0	14,1-20	3,0				
2,6-5	4,5	20,1-40	2,5				
5,1-9	4,0	40,1-75	2,0				
9,1-14	3,5	> 75	1,5				

вляет (с учетом лимитированных и непредвиденных затрат): для станков нормальной и повышенной точности и автоматических линий 140—180 р., для станков высокой точности и особо точных, тяжелых и уникальных 170—200 р.

При расчете фактической экономической эффективности стоимость 1 м² производственной площади принимают по фактическим данным завода.

Стоимость служебно-бытовых помещений

$$K_{6\text{MT}} = \mathcal{L}_{\text{пл. 6}} S_6 (N_{\text{осн}} + N_{\text{всп}}),$$
 (9)

где $U_{\text{пл.6}}$ — стоимость 1 м² служебно-бытовых помещений; S_6 — площадь служебно-бытовых помещений, приходящаяся на одного рабочего; $N_{\text{осн}}$ и $N_{\text{всп}}$ — число основных и вспомогательных рабочих.

Стоимость служебно-бытовых помещений в расчете на 1 m^2 площади составляет 200 р.; площадь служебно-бытовых помещений, приходящаяся на одного рабочего (а не на одно рабочее место), равна 7 m^2 .

Стоимость жилищного и культурно-бытового строительства $K_{\mathbf{x}}$ рассчитывают по формуле

$$K_{\mathbf{x}} = \mathcal{L}_{\mathbf{x}} N_{\mathbf{p}},\tag{10}$$

где $H_{\mathbf{x}}$ — стоимость жилищного и культурно-бытового строительства, приходящаяся на одного работающего;

$$\mathcal{L}_{\mathsf{w}} = \mathcal{L}_{\mathsf{w}3} S_{\mathsf{o}} K_{\mathsf{cem}} K_{\mathsf{o}6} K_{\mathsf{k}6};$$

здесь $H_{\text{ж}3}$ — стоимость 1 м² площади жилых зданий, руб.; $H_{\text{ж}3}$ = 200 р.; S_{o} — норма общей площади на 1 чел., м²; S_{o} = 13 м²; $K_{\text{сем}}$ — коэффициент семейности; $K_{\text{сем}}$ = 2,8; $K_{\text{o}6}$ — коэффициент обеспеченности; $K_{\text{о}6}$ = 0,7; $K_{\text{к}6}$ — коэффициент, учитывающий затраты на культурно-бытовое строительство; $K_{\text{к}6}$ = 1,3.

Таким образом, $\mathcal{U}_{*}=6625$ р.; $N_{\rm p}-$ число работающих.

Стоимость оборотных средств в незавершенном производстве

$$K_{\text{nes}} = C_{3}n, \qquad \dots \qquad (11)$$

где n — общее число деталей в незавершенном производстве (рассчитывают отдельно по базовому и проектному вариантам); C_{π} — себестоимость одной детали в незавершенном производстве;

$$C_{\rm g} = C_{\rm sar} + \frac{C}{A_2}$$
 0,5;

здесь $C_{\text{заг}}$ – стоимость заготовки (масса заготовки, кг, умноженная на цену 1 кг заготовки, руб.), руб.; C – себестоимость обработки годового выпуска деталей по операциям, учтенным в расчете эффективности (определяют по результатам расчета себестоимости механической обработки деталей, руб.) [см. формулу (12)]; A_2 — приведенная годовая программа выпуска деталей, шт.; 0.5 — коэффициент нарастания затрат.

Стоимость проектных работ $K_{\rm пр}$ включает затраты на работы, учитываемые в смете затрат на проектирование [полбор номенклатуры деталей, разработка технологии механической обработки, определение количества и состава оборудования, планировка участка (цеха), проведения расчетов экономической эффективности и др.] и затраты при внедрении технологического процесса, оборудования, средств механизации и автоматизации (изготовление нестандартного оборудования, пусконаладочные работы и др.).

4. ОПРЕДЕЛЕНИЕ СЕБЕСТОИМОСТИ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВКИ

Себестоимость годового выпуска деталей определяют по формуле

$$C = 3_{ct} + 3_{H} + 3_{n} + 3_{o6} + 3_{p} + 3_{n2} + 3_{cit},$$
 (12)

где $3_{\rm cr}$ — годовая заработная плата станочников (основная и дополнительная), включая отчисления на социальное страхование, руб.; $3_{\rm H}$ — годовая заработная плата наладчиков (основная и дополнительная); $3_{\rm H}$ — годовая заработная плата рабочих-повременщиков и других категорий работающих со всеми начислениями, руб.; $3_{\rm ob}$ — годовые амортизационные отчисления на полное восстановление оборудования, руб.; $3_{\rm p}$ — годовые затраты на ремонт, включая капитальный, и гехническое обслуживание оборудования, руб.; $3_{\rm nл}$ — годовые затраты на амортизацию и содержание площади, занимаемой оборудованием, руб.; $3_{\rm cn}$ — годовые затраты на ровением, руб.; $3_{\rm cn}$ — годовые затраты на гехническое оборудованием, руб.; $3_{\rm cn}$ — годовые затраты на затраты на

амортизацию и содержание служебно-бытовых помещений, руб.

Годовая заработная плата станочников (основная и дополнительная)

$$3_{c_1} = \frac{3_{c_1} T_{ur}}{K_{mo}}. (13)$$

где $3_{
m cu}$ — среднечасовая заработная плата станочников со всеми начислениями, руб.; $T_{
m mr}$ — годовое штучное время обработки деталей, ч; $K_{
m mo}$ — коэффициент многостаночного обслуживания.

Среднечасовую заработную плату станочников (со всеми начислениями) определяют путем умножения часовой тарифной ставки соответствующего разряда на коэффиниенты, учитывающие увеличение сдельных расценок за работу по технически обоснованным нормам выработки, премии, донолнительную заработную плату, отчисления на социальное страхование (соцстрах) (табл. 4).

При расчете экономической эффективности основную и дополнительную заработную плату производственных рабочих по сравниваемым вариантам определяют с учетом выплат из общественных фондов потребления с коэффициентом 1,35.

При укрупненных расчетах рекомендуется пользоваться нормативами средпечасовой заработной платы станочников (табл. 5), в которых учтены выплаты из общественных фондов потребления.

Если необходимы более точные расчеты, то при определении фактической экономической эффективности среднечасовая заработная плата станочников должна быть рассчитана с учетом фактически сложившегося уровня перечисленных выше коэффициентов.

Годовая заработная плата наладчиков

$$3_{\mathrm{H}} = 3_{\mathrm{H}, \mathrm{H}} T_{\mathrm{H}}, \tag{14}$$

где $3_{\rm H,\, q}$ — среднечасовая заработная плата наладчиков и рабочих нестаночных профессий (сдельщиков) со всеми начислениями (при приближенных расчетах принимают по табл. 5); $T_{\rm H}$ — годовое время наладки оборудования, ч.

При необходимости более точных расчетов фактической экономической эффективности заработную плату наладчиков определяют исходя из формы оплаты труда (сдельной или повременной) по фактическим данным предприятия с учетом коэффициентов, перечисленных в табл. 5.

4. Часовые тарифные ставки для оплаты труда рабочих предприятий машиностроения

		Часовые тарифные ставки, коп. на рабогах с условиями труда											
Р абочие	Разряд	норма	льными		ыми и ными	особо тяжелыми и особо вредными							
a		сдель- щиков	повремен- щиков	сдель- щиков	повремен- щиков	сдель- іциков	повремен- щиков						
Станочники	I	50,3	47,1	53,0	49,5		_						
1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	II	54,8	51,2	57,6	53,9	_	-						
0.1986 at 51	Ш	60,6	56,6	63,7	59,6	_	_						
the property of	IV	67,0	62,7	70,5	65,9		_						
	V	75,4	70,5	79,4	74,2	-	_						
G (1870.05)	VI	86,3	80,7	90,8	84,9								
Другие категории рабо-	ī	44,7	41,8	50,3	47,1	55,7	52,1						
ANX , TRUERC	П	48,7	45,5	54,8	51,2	60,6	56,6						
PE VEDELE	Ш	53,9	50,3	60,6	56,6	67,0	62,7						
s. disē. Ofi	IV	59,6	55,7	67.0	62,7	74,2	69,3						
ា នាង នេះសិស្តា	V	67,0	62,7	75,4	70,5	83,5	78,0						
4 107	VI	76,7	71,7	86,3	80,7	95,5	89,3						

Примечания: 1. Часовые тарифные ставки приведены для рабочих-станочников, занятых обработкой металла или других материалов на металлорежущих станках.

2. Министерствам и ведомствам СССР, Советам Министров союзных республик предоставляется право разрешать руководителям машиностроительных предприятий (по согласованию с профсоюзными организациями на работах с технически обоснованными нормами выработки, рассчитанными на основе общемашиностроительных или других более прогрессивных нормативов) увеличивать сдельные расценки до 20%.

5. Нормативы заработной платы рабочих со всеми видами начислений

- 201			Заработная	плата, руб.						
Тарифный разряд	станоч	ников	нестаночны	и рабочих х профессий щиков)	рабочих нестаночных профессий (повременшиков)					
Ta	среднечасовая	среднегодовая	среднечасовая	среднегодовая	среднечасовая	среднегодовая				
, I	1,34 2492	1,19	2213	0,99	., 1841					
H	1,46	2716	1,29	2399	1,09	2027				
III	1,61	2995	1,43	2660	1,20	2232				
IV	1,78	3311	1,58	2939	1,33	2474				
V	2,00	3720	1,78	3311	1,50	2790				
VI	2,29	4259	2,04	3794	1,71	3181				

Примечания: 1. Среднегодовая заработная плата (со всеми видами начислений) определена умножением среднечасовой заработной платы соответствующей категории рабочих на эффективный (расчетный) годовой фонд времени, равный 1860 ч.

2. Среднечасовая заработная плата (со всеми видами начислений) определена умножением часовой тарифной ставки соответствующего разряда (см. табл. 4) на коэффициенты, учитывающие виды доплат и отчислений.

Продолжение табл. 5

	Коэффициент по видам доплат и отчислений						
Виды доплат и отчислений	Станочники, на- ладчики и рабо- чие нестаночных профессий						
Увеличение сдельных расценок при работе по технически обоснованным нормам выработки	1,2	_					
Премни	1,3	1,4					
Выплаты из общественных фондов потребления (с учетом на соцстрах)	1,43	1,43					
Всего (произведение)	2,23	2,0					

6. Годоной фонд времени станочиика

Продол	жительность	Годовой фонд вр			
рабочей недели, ч	41 15 2070 41 18 2070 41 24 2070	эффективный (расчетный), ч	Потери номиналь- ного фонда, %		
41 15 2070		2070	1860	10	
41	18	2070	1840	11	
41	24	2070	1820	12	
36	24	1830	1610	12	
36	36	1830	1520	17	

Примечания: І. В графе «Потери номинального фонда» учитываются потери рабочего времени, связанные с ежегодными отпусками, отпусками по учебе, болезнями, беременностью и родами и прочнмн неявками (по данным ЦСУ).

2. Указанный эффективный годовой фонд времени не распространяется на рабочих, работающих в районах Крайнего Севера и в других местах и условиях, приравненных к этим районам.

Годовая заработная плата рабочих-повременщиков и других категорий работающих (рабочих, занятых на погрузочно-разгрузочных и транспортно-складских работах, ИТР, служащих)

$$3_{\Pi} = 1,14 \cdot 3_{p_{\perp} \Psi};$$
 (15)

$$3_{p, u} = \Phi_{pa6} H_u K_{np} K_o.$$
 (15a)

где 3_{р.ч} - среднечасовая заработная плата рабочего (или других категорий работающих), включая дополнительную заработную (см. табл. 5); 1,14 - коэффициент, учитывающий отчисления на соцстрах; $\Phi_{\rm pa6}$ – годовой фонд времени станочника (табл. 6); И, - часовая тарифная ставка расоответствующего бочего (см. табл. 4), руб.; $K_{\rm np}$ – коэффициент, учитывающий премии (см. табл. 5); $K_{\rm o}$ – коэффициент, учитывающий дополнительную заработную плату и отчисления на соцстрах (см. табл. 5).

Годовые амортизационные отчислення на полное восстановление оборудования 3_{o6} рассчитывают неходя из балансовой стонмости оборудования и норм амортизационных отчислений:

$$3_{\rm o6} = \frac{K_{\rm o6}H_{\rm a,B}}{100},\tag{16}$$

где K_{06} — см, формулу (6); $H_{\text{а.в}}$ — норма амортизационных отчислений на полное восстановление оборудования, % [принимают по нормам амортизационных отчислений по основным фондам народного хозяйства СССР (табл. 7)].

Годовые затраты на ремонт, включая капитальный, и техническое обслуживание обо-

7. Нормы амортизационных отчислений по основным фондам народного хозийства СССР (и % к балансовой стоимости)

(и % к балансовой стоимости)			
	Норма ам	ортизационных	о гчислений
Группа и вид основ ных фондов	обицая	на полное восстанов- ление	на капиталь- ный ремонт
Металлорежущее оборудование механических и механо серийного производства предприятий отраслей мапи	сборочных і иностроения	цехов массов и металлооб	ого и крупно- работки
Универсальные и специализированные станки массой	•	1]
до 10 т, работающие инструментом:			
металлическим	14,1*	6,7	7,4
абразивным	12,5*	7,1	5,4
Агрегатные, специальные станки и автоматические			,
линии	12,7 *	9,1	3,6
Металлорежущее оборудование цехов серийного, производстна и служб предприятий отраслей маши	мелкосерния		цинидуального
производстна и служо предприятии отраслен маши Универсальные и специализированные станки массой	ностроения з	і мегаллооор: 	аоотки
универсальные и специализированные станки массои до 1 т. работающие инструментом:			
металлическим	11.6*	5,3	6,3
	10,3 *	5,6	4,7
абразивным	10,5	3,0	7,7
Универсальные и специализированные станки массой			
10—100 т, работающие инструментом: металлическим	7.5*	4.0	3.5
_ '	7,3 7.4*	4,2	3,3
абразивным	4.4*	2,9	1,5
Особо тяжелые станки массой более 100 т	4,4	2,9	1,5
Агрегатные, специальные станки и автоматические	10.3*	7,1	3,2
пинии	,-	'	
Подъемио-транспортные и погрузочно-разгрузоч	іные машии	ы и оборудов ⊥	ание
Краны:			7.
козловые грузоподъемностью, т:	10.4	0.2	4,2
до 15	12,4	8,2 6,9	4,2
15-50	11,0	1 '	3,9
более 50	10,3	6,4	
консольные и шлюзовые	6,8	4,8	2,0
мостовые	8,4	5,5	2,9
Конвейеры ленточные:	21.0	160	5,9
сборно-разборные	21,9	16,0	
передвижные	24,9	19,2	5,7
стационарные	16,3	11,1	9,6
Автопогрузчики	25,6	16,0	
Электропогрузчики	22,7	16,0	6,7
Погрузчики механические	22,0	10,0	12,0
Подъемные машины	7,9	6,9	1,0
Стеглажи	4,0	4,0	_
Другие виды машин и обог			
Стенды, контрольно-испытальные для обработки, ре-	16,2	12,3	3,9
гулировки и испытания машин, узлов и агрегатов,			12
гидравлические и пневматические установки;		14.90	
стенды и приспособления для запрессовочно-выпрес-		2,	
совочных и клепальных работ при сборке и ремонте			3 4
машин, узлов и агрегатов			·
		-4	· · · · · · · · · · · · · · · · · · ·

Продолжение табл. 7

		Прообл	тение тиол.
	Норма амо	ртизационных	отчислений
Группа и вид основных фондов	общая	на полное восстанов- ление	на капи- тальный ремонт
Приспособления и ремонтные стенды с набором инструментов для разборки, сборки, ремонта машин, узлов и агрегатов и восстановления деталей	24,0	19,8	4,2
Моечные и окрасочные машины и установки	18.3*	13,9	4,4
Измерительные и регулирующие приборы, устрой	ства, лабора	торное оборуд	цование
Измерительные приборы, аппаратура, устройства МГА	12,8	10,0	2,8
Контрольно-измерительное и испытательное оборудование	10,7	8,2	2,5
Приборы для контроля и регулирования технологи- ческих процессов (за исключением приборов, изме- ряющих температуру)	15,5	13,0	2,5
Аппаратура диспетчерского управления	22 ,2	22,2	-
Электроизмерительные приборы и устройства общего и специального назначения	13,4	11,6	1,8
Вычислительная техн	ика		
Машииы электронные цифровые вычислительные с программным управлением общего назначения, специализированные и управляющие	12,0	10,0	2,0
Аналоговые и клавишные электронные вычислительные машины	0,11	10,0	1,0
Перфорационные и клавишные электромеханические вычислительные машины	11,0	7,0	4,0
Производственный тран	епорт		
Электротягачи, электрокары	16,6	12,5	4,1
Инструмент и п ро чий инг	вентарь		
Инструмент	20,0	20,0	
Производственный и хозяйственный инвентарь и принадлежности	12,5	8,0	4,5

* Нормы амортизационных отчислений на металлорежущие станки, моечные и окрасочные машины принимаются исходя из двухсменного режима работы. При трехсменном режиме указанные нормы амортизационных отчислений на капитальный ремонт умножают на коэффициент 1,2, а при односменном — на 0,8.

Примечание. Нормы амортизационных отчислений на капитальный ремонт определены с учетом на модернизацию, а также затрат на средний ремонт, проводимый с периодичностью свыше одного года.

рудования 3_p определяют в зависимости от количества единиц ремонтной стоимости и среднегодовых затрат на ремонт и межремонтное обслуживание:

$$3_{\rm p} = (3_{\rm M} P_{\rm M} + 3_{\rm 3} P_{\rm 3}) \mu,$$
 (17)

где 3_{M} и 3_{3} — затраты на одну единицу ремонтосложности соответственно механиче-

ской и электротехнической частей, руб. (табл. 8); $P_{\rm M}$ и $P_{\rm 7}$ — ремонтосложность соответственно механической и электротехнической частей (табл. 9); μ — коэффициент, учитывающий класс точности оборудования.

При отсутствии по некоторым видам оборудования данных о категории ремонтосложности затраты на текущий ремонт и техниче-

8. Нормативы затрат на ремонт и техническое обслуживание металлорежущих станков (кроме электронных устройств ПУ)

		-	Годовые затраты на единицу ремонтосложности, руб., при продолжительности ремонтного цикла, лет																
Металлореж	ущие станки	Ремонт	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Массой до 10 т	Механическая	Капитальный	26,2	21,0	17,5	15,0	13,1	11,6	10,5	9,5	8,7	8,1	7,5	7,0	6,6	6,2	5,8	5,5	5,2
с ручным уп- равлением	часть	Текущий	7,5	6,0	5,0	4,3	3,8	3,3	3,0	2,7	2,5	2,3	2,1	2,0	1,9	1,8	1,7	1,6	1,5
		Техобслуживание	17,5	17,2	17,0	16,8	16,7	16,6	16,5	16,4	16,4	16,4	16,4	16,3	16,3	16,3	16,3	16,2	16,2
		Итого	51,2	44,2	39,5	36,1	33,6	31,5	30,1	28,7	27,6	26,8	26,0	25,3	24,8	24,3	23,8	23,3	22,9
	Электротехни-	Капитальный	6,2	5,0	4,1	3,6	3,1	2,8	2,5	2,3	2,1	1,9	1,8	1,7	1,6	1,5	1,4	1,3	1,2
Ţ	ческая часть	Текущий	1,6	1,3	1,1	0,9	0,8	0,7	0,6	0,6	0,5	0,5	0,4	0,4	0,4	0,4	0,4	0,3	0,3
		Техобслуживание	4,8	4,7	4,6	4,5	4,4	4,4	4,3	4,3	4,2	4,2	4,2	4,2	4,2	4,2	4,2	4,2	4,1
		Итого	12,6	11,0	9,8	9,0	8,3	7,9	7,4	7,2	6,9	6,6	6,4	6,3	6,2	6,1	6,0	5,8	5,6
Массой до 10 т	Механическая	Капитальный	27,4	21,9	18,2	15,6	13,7	12,2	11,0	10,0	9,1	8,4	7,8	7,3	6,8	6,4	6,1	5,8	5,5
с ЧПУ	часть	Текущий	7,8	6,2	5,2	4,4	3,9	3,4	3,1	2,8	2,6	2,4	2,2	2,1	1,9	1,8	1,7	1,6	1,6
		Техобслуживание	17,2	16,8	16,6	16,4	16,3	16,2	16,2	16,1	16,0	16,0	16,0	15,9	15,9	15,9	15,8	15,8	15,8
		Итого	52,4	44,9	40,0	36,4	33,9	31,8	30,3	28,9	27,7	26,8	26,0	25,3	24,6	24,1	23,7	23,2	22,9
	Электротехни-	Капитальный	6,2	5,0	4,1	3,6	3,1	2,8	2,5	2,3	2,1	1,9	1,8	1,7	1,6	1,5	1,4	1,3	1,2
	ческая часть	Текущий	1,6	1,3	1,4	0,9	0,8	0,7	0,6	0,6	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,3
		Техобслуживание	5,2	5,0	4,8	4,8	4,7	4,6	4,6	4,6	4,5	4,5	4,5	4,5	4,4	4,4	4,4	4,4	4,4
		Итого	13,0	11,3	10,0	9,3	8,6	8,1	7,7	7,5	7,1	6,9	6,8	6,6	6,4	6,3	6,2	6,0	5,9

	Металлорежущие станки			Годо	вые з	атрат	ы на	едини		емонт онтно				., прі	и про	лжкод	ит ель і	юсти	
Металлореж	ущие станки	Ремонт	4	5	6	7	8	9	10	11	12	13	14	15	16	17	2,8 17,4 26,8 1,4 0,4 4,5 6,3 8,2 5,5 17,9 31,1 0,5 4,5	19	20
Массой 10- Механическая	Капитальный	30,0	24,0	20,0	17,1	15,0	13,3	12,0	10,9	10,0	9,2	8,6	8,0	7,5	7,0	6,6	6,3	6,0	
100 т, вклю-	часть	Текущий	12,7	10,1	8,4	7,2	6,3	5,6	5,1	4,6	4,2	3,9	3,6	3,4	3,2	3,0	2,8	2,7	2,5
Электротехническая часть	Техобслуживание	19,3	18,8	18,5	18,3	18,1	18,0	17,8	17,8	17,8	17,7	17,6	17,5	17,5	17,4	17,4	17,4	17,4	
	Итого	62,0	52,9	4 6,9	42,6	39,4	36,9	34,9	33,3	21,9	30,7	29,8	28,9	28,2	27,4	26,8	26,4	25,9	
	Капитальный	6,5	5,2	4,3	3,7	3,2	2,9	2,6	2,4	2,2	2,0	1,8	1,7	1,6	1,5	1,4	1,4	1,3	
	ческая часть	Текуций	2,0	1,6	1,4	1,2	1,0	0,9	0,8	0,7	0,6	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4
		Техобслуживание	5,3	5,1	5,0	4,8	4,8	4,7	4,7	4,6	4,6	4,6	4,5	4,5	4,5	4,5	4,5	4,4	4,4
		Итого	13,8	11,9	10,7	9,7	9,0	8,5	8,1	7,7	7,5	7,2	6,9	6,7	6,6	6,5	6,3	6,2	6,1
Массой свыше	Механическая	Капитальный	36,9	29,6	24,6	21,1	18,5	16,4	14,8	13,4	12,3	11,4	10,6	9,8	9,2	8,7	8,2	7,8	6,4
100 т, включая станки с ЧПУ	часть	Текущий	24,9	19,9	16,6	14,2	12,4	11,1	10,0	9,0	8,3	7,7	7,1	6,6	6,2	5,9	5,5	5,2	5,0
10.20		Техобслуживание	21,5	20,6	20,0	19,5	19,2	18,9	18,7	18,6	18,4	18,3	18,2	18,1	18,0	18,0	17,9	17,9	17,8
11		Итого	83,3	70,1	61,2	54,8	50,1	46,4	43,5	41,0	39,0	36,4	35,9	34,5	33,4	32,6	31,1	30,9	29,2
	Электротехни-	Капитальный	6,5	5,2	4,3	3,7	3,2	2,9	2,6	2,4	2,2	2,0	1,8	1,7	1,6	1,5	1,4	1,4	1,3
ческая часть	ческая часть	Текущий	2,4	2,0	1,6	1,4	1,2	1,1	1,0	0,9	0,8	0,7	0,6	0,6	0,6	0,5	0,5	0,5	0,5
4,0		Техобслуживание	5,6	5,3	5,1	5,0	4,9	4,8	4,7	4,7	4,6	4,6	4,6	4,6	4,5	4,5	4,5	4,5	4,5
		Итого	14,5	12,5	11,0	10,1	9,3	8,8	8,3	8,0	7,6	7,3	7,0	6,9	6,7	6,5	6,4	6,4	6,3

23*

Примечания: 1. Затраты определены при условии двухсменной работы и коэффициенте загрузки 0,85; для металлорежущего оборудования, работающего в трехсменном режиме, принимают коэффициент 1,2.

^{2.} Нормативы составлены для станков нормальной точности; для станков класса П, В, А, и С принимают коэффициент µ, равный соответственно 1,2; 1,5; 1,8 и 2,2.

^{3.} Нормативы разработаны на основе исходных данных по трудоемкости, материалоемкости, продолжительности ремонтного цикла и квалификации ремонтных рабочих, выданных лабораторией ремонта, модернизации и эксплуатации оборудования ЭНИМС.

9. Ремонтосложиость станков с устройством ЧПУ

				Наибольшие нара-		ложность
	Модель станка Масса станка, т Высота Диаметр Ской часты (включая гидравдику) 1512Ф1041 17,0 1000 1250 38 1512Ф2 16,85 1000 1250 35 1512Ф3271 15,5 1000 1250 39 1516Ф1041 21,0 1000 1600 41 1516Ф2 21,0 1000 1600 41 1516Ф2 21,0 1000 1600 41 1516Ф3271 19,0 1000 1600 34 1525Ф1041 36,0 1600 2500 50 1525Ф2 36,5 1600 2500 46 1540Ф1 103,29 2000 4000 93 1A616Ф3 2,0 710 320 9					
Станок	Модель станка	1	Высота	Диаметр	(включая гидрав-	электро- техниче- ской части
Токарно-карусельный:						
одностоечный	1512Ф1041	17,0	1000	1250	38	x
	1512Ф2	16,85	1000	1250	35	48
	1512Ф3271	15,5	1000	1250	39	x
	1516Ф1041	21,0	1000	1600	41	x
	1516Ф2	21,0	1000	1600	41	48
	1516Ф3271	19,0	1000	1600	34	x
	1525Ф1041	36,0	1600	2500	50	x
двухстоечный	1525Ф2	36,5	1600	2500	46	51
	1540Ф1	103,29	2000	4000	93	_
	1А616Ф3	2,0	710	320	9	11,5
	1А616Ф3С2	2,0	710	320	9	x
	16Б16Ф3	2,79	710	320	13	27

Продолжение табл. 9

				Наи-	Ремонтосложность		
Станок	Модель станка	Масса станка, т	Расстоя- ние между центрами, мм	больший диаметр обрабаты- ваемой заготовки, мм	механиче- ской части (включая гидрав- лику)	электро- техниче- ской части	
Токарный патронно-цен-	1К62ПУ	2,7	1000	400	10,5	17	
тровой	16К20Ф3С2	4,0	1000	400	14	21	
	16К 2 0Ф3С5С13	5,09	1000	400	17	21	
	16 К2 0РФ3С5	5,4		400	18	_	
	1К62Ф3С1	3,47	1000	400	Ш	17	
	1К62Ф3С4	3,47	1000	400	11	22	
Токарный	16К30Ф3	6,95	1400	630	13,5	39	
	1M63Ф1-01	5,6	2800	630	14,5	Х	
	1М63Ф3	5,0	710	630	13,5	21	
Токарно-винторезный	1А660200Ф1	45,8	6000	1250	50		
•	1А665100Ф1	57,3	8000	1600	55	_	
	1А670Ф1	111,7	10000	2000	87	_	
Токарный многорезцо-	1713Ф3	5,33	710	250	13	х	
вый полуавтомат	1713МФ3	4,8	710	250	15	46	
Токарный патронный	1П717Ф3	3,0	100	200	12,5	26	
Токарный вертикальный патронный полуавтомат	1723Ф3	6,0	_	200	20,5	55	
Токарный полуавтомат с инструментальным магазином	1725МФ3	6,5	1000	250	20,5	46	

Продолжение табл. 9

			Расстоя- ние между центрами, мм	Наи- больший диаметр обрабаты- ваемой заготов- ки, мм	Ремонтосложность		
Станок	Модель станка	Масса станка, т			(включая	электро- техниче- ской части	
Токарный центровой полуавтомат	16732Ф3	10,0 11,5 13,0	1000 1400 2000	320 над суп- портом	32 33 34	x 40 x	

Продолжение табл. 9

					Ремонтосложность		
Станок	Модель станка	Масса станка, т	Наи- больший диаметр заготов- ки, мм	Длина заготовки, мм	механиче- ской части (включая гидрав- лику)	электро- техниче- ской части	
Токарный центровой полуавтомат Лоботокарный патронный полуавтомат повышенной точности	РТ705Ф312 РТ706Ф312 1690Ф3 (РТ725Ф3)	5, 0 5,5 8,0	630 630 630	710 1400 150	14,5 15 18,5	31 31 33	
Токарный вертикальный патронный	1734Ф3 175 1 Ф3	10,73 10,0	320 500	_	32 32	55 55	
Токарный вертикальный патронный полуавтомат с инструментальным магазином	1П752МФ3 1П752МФ305	9,2 9,2	250 250	250 250	28 28	40 40	

Продолжение табл. 9

				Ремонтосложность		
Станок	Модель станка	Масса станка, т	Наи- больший диаметр сверления, мм	механиче- ской части (включая гидрав- лику)	электро- техниче- ской части	
Вертикально-сверлильный	2Е118Ф2	1,72	18	11,5	47	
Вертикально-сверлильный с револь- верной головкой, крестовым столом Вертикально-сверлильный с кресто- вым столом	2Р118Ф2 2Р135Ф2 2Р135Ф2-1 2Н135Ф2	2,5 5,0 5,63 2,6	18 35 35 35 35	13 21 21 14	31 31 x 17	
Радиально-сверлильный с накладным крестовым столом	2Н55Ф2	7,0	50	16	21	

Продолжение табл. 9

				Прооолжен	ше табл. 9
				Ремонто	ложиость
Станок	Модель станка	Масса станка, т	Размеры стола, мм	механиче- ской части (включая гидрав- лику)	электро- техниче- ской части
Горизонтально-расточный	2611Ф2 2636ГФ1 2A620Ф1	12,8 32,5 15,0	800 × 900 1600 × 1800 1120 ×	33 49 49	16,5
	2A620Ф1-1 2A620Ф2-1 2A622Ф1-1 2A622Ф2-1 2623ПФ4	17,5 18,0 16,5 17,0 23,5	1250	54 56 51 53 73	x x x 55
Горизонтально-фрезерный сверлильно-расточный	6904ВМФ2 6306ВМФ2	6,5 10,0	400 × 500 630 × 800		62 -
			Диаметр шпинде- ля, мм		
Горизонтально-расточный	2H636ГФ1 2H637ГФ1 2Б550Ф2	34,6 33,5 152,0	125 160 220	53 51 148	-
in a second seco			Наиболь- ший диа- метр ус- танавли- ваемого изде- лия × длина, мм		
Круглошлифовальный полуавтомат	3М151Ф2	6,5	400 × 2800	20	
Электрохимический: профилешлифовальный плоскошлифовальный	3370ВФ2 3Е711ВФ1 3Е711АФ1 3Е721ВФ1-1	3,3 3,58 3,8 4,3	160 × 400 200 × 630 200 × 630 320 × 630	21 30 36 33	- - -
		1	Размеры обраба- тывае- мой плоскос- ти, мм		
Профилешлифовальный	3Г95 Ф3	2,4	200 × 80	10,5	

Продолжение табл. 9

				Продолжен	ие табл. 9
			Размеры	Ремонтос	ложность
Станок	Модель станка	Масса станка, т	стола,	механиче- ской части (включая гидрав- лику)	электро- техниче- ской части
Вертикально-контурно-шлифовальный полуавтомат	МА396Ф3	9,0	500 × × 1000	35	40
Вертикально-фрезерный	6Р13Ф3	5,8	400 × × 1600	115	21
	6Р13Ф3	6,9	400 × × 1600	20	x
	ФП4С2	4,5	400 × × 1600	ской части (включая гидрав- лику) 35 115 20 15 00 14 30 15 47 84 84 11,5 12 25 13 64 69	19
Вертикально-фрезерный полуавтомат	ЛФ66Ф3 6520Ф3 6520Ф3-36	3,0 3,7 4,0	320 × 800 250 × 630 250 × 630	12	7,5 - -
Горизонтально-фрезерный для объемной обработки	6Б443ГФ3	10,5	630 × × 1250	47	-
	6 Б444Ф 3	20,0	1000 × × 2000	84	
	6Б445Ф3	41,0	1600 × × 3150	20 15 0 14 0 12 0 15 47 84 84 11,5 12 25	-
Вертикально-фрезерный консольный	6Р11Ф3	3,03	250 × × 1000	11,5	20
	6Р11Ф3-1	3,9	250 × × 1000	12	11
	6550Ф3	10,5	500 × × 1000	части (включая гидрав-лику) 35 115 20 15 0 14 0 12 0 15 47 84 84 84 11,5 12 25 4 64 69	J
			Ширина стола, мм	ŧ	į.
Продольно-фрезерно-расточный	6М608Ф1 6М610Ф2	39,0 35,8	800 1000		0.1
•			Диаметр рабочей поверх- ности стола, мм		· ·
Продольно-фрезерио-расточный одностоечный	6М310Ф1	46,5	1000	71	Ü

Продолжение табл. 9

		,			ие таол. >
			Наиболь- шая ши-	Ремонтос	ложность
Станок	Модель станка	Масса станка, г	шая ши- рина де- тали × длина ра- бочей по- верхнос- ти стола, мм	механи- ческой части (включая гидрав- лику)	электро- техни- ческой части
Строгально-фрезерный (комбинированный)	7Б220М6Ф1	113,5	2000 × × 6300	157	-
			Ширина стола, мм		
Многооперационный (сверлильно- фрезерно-расточный)	ИР-500МФ4	11,23	500	33	_
		121	Наиболь- шие раз- меры об- рабаты- ваемой детали, мм		=£
Электроэрозионный вырезной	4532Ф3	1,5	200 × ×125 × 80	9	_
* - *			Размеры стола, мм		
Электроэрозионный копировально- прошивочный	4Д722АФ1 4Д722АФ3	4,4 4,4	400 × 630 400 × 630	21 21	=

Примечание. Знаком х отмечены модели станков, ремонтосложность электротехнической части которых может быть принята равной ремонтосложности станка, имеющейся в табл. 9, если цифровая часть моделей сравниваемых станков одинакова.

ское обслуживание можно принимать укрупненно в процентном отношении от балансовой стоимости. Затраты на капитальный ремонт в этом случае по данной группе оборудования учитываются в общей норме амортизационных отчислений.

Годовые затраты на амортизацию и содержание площади, занимаемой оборудованием,

$$3_{nn} = H_{nn}S, \tag{18}$$

где $H_{\rm ил}$ — затраты на амортизацию и содержание 1 м² площади (затраты на освещение, отопление, вентиляцию, ремонт и уборку), руб.; S — площадь, занимаемая оборудованием, м².

Стоимость амортизации и содержание 1 м^2 площади механического цеха и служебно-бытовых помещений составляет для станков нормальной и повышенной точности 14-18 р., для станков высокой, особо высокой точности, особо точных, тяжелых и уникальных 17-20 р.

Годовые затраты на амортизацию и содержание служебно-бытовых помещений

$$3_{\rm cn} = H_{\rm nn} S_6 (N_{\rm och} + N_{\rm BCH}) \tag{19}$$

[см. расчет по формулам (9) и (18)].

5. ВЫБОР НАИБОЛЕЕ ЭКОНОМИЧЕСКИ ЭФФЕКТИВНОГО ВАРИАНТА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОБРАБОТКИ ЗАГОТОВКИ

Выбор наилучшего варианта технологического процесса из всех возможных может быть осуществлен разными способами. Если из всех возможных вариантов имеется такой, на внедрение которого требуются наименьшие удельные капитальные вложения и который обеспечивает самую низкую себестоимость единицы продукции, этот вариант является наилучшим. Однако на практике чаще варианты с большими удельными капитальными вложениями обеспечивают при внедрении меньшую себестоимость единицы продукции, В этих случаях технологический вариант определяется с помощью нормативного коэффициента эффективности или приведенных затрат.

При определении рациональности замены лействующего варианта техники, технологии, способа организации производства новым

рассчитывают коэффициент сравнительной эффективности

$$E = \frac{C_1 - C_2}{K_2 - K_1}.$$

Этот коэффициент представляет собой отношение разности себестоимости годового выпуска продукции к разности капитальных вложений сравниваемых вариантов.

В том случае, если $E \geqslant E_{\rm H}$ $(E_{\rm H}-$ нормативный коэффициент эффективности; $E_{\rm H}=0,15$), эффективнее новый вариант, заменяющий действующий. При $E < < E_{\rm H}$ выгоднее действующий вариант.

Выбор лучшего варианта из двух можно вести также по сроку окупаемости дополнительных капитальных вложений экономией на себестоимости. Он показывает время, в течение которого дополнительные капитальные вложения более капиталоемкого варианта будут перекрыты экономией, получаемой за счет более низкой себестоимости продукции. Срок окупаемости является величиной, обратной коэффициенту сравнительной экономической эффективности,

$$T_0 = \frac{K_2 - K_1}{C_1 - C_2}$$

Новый вариант лучше, если расчетный срок окупаемости меньше нормативного или равен ему. Если расчетный срок окупаемости больше нормативного, эффективнее действующий вариант.

Удельные капитальные вложения (k) представляют собой отношение общего объема капитальных вложений K к годовой производственной мощности $M_{\rm o}$, вводимой на их основе, или к годовому выпуску (приросту) $A_{\rm r}$ готовой продукции в натуральном или стоимостном выражении, обеспеченному производственными капитальными вложениями:

$$k = \frac{K}{M_0}$$
 или $k = \frac{K}{A_\Gamma}$

Разные технологии производства станочной продукции, одинаковые по своим техническим результатам, которые определяют требуемое качество изготовляемой продукции, могут быть различными по затратам труда, времени, материалов и энергии. В связи с этим возникает необходимость не только сравнительной стоимостной оцепки равноценных по конечному результату технологических процессов, но и технико-экономиче-

ского анализа условий их осуществления и получаемых экономических результатов. Цель такого анализа — это прежде всего выявление причин экономических различий сравниваемых процессов получения готовой детали, установление степени соответствия полученных результатов требованиям и условиям поставленной задачи и комплексная обоснованная оценка конечного результата.

Так как должны сравниваться ценность и пригодность каждого из вариантов в конкретных условиях поставленной задачи в отношении объема производства, рационального использования производственных ресурсов и всех эксплуатационных требований, предъявляемых к продукции, то такой анализ должен носить комплексно-целевой характер.

Выбирая в каждом отдельном случае наилучшее в техническом и экономическом отношении инженерное решение, технолог должен провести стоимостную оценку в соответствии с методикой и технологической спецификой каждого варианта.

Необходимо проведение более широкого, развернутого анализа по всем элементам процесса и технико-экономическим характеристикам изготовляемых деталей, после которого может быть дана комплексная оценка получаемого результата — определение общей экономической эффективности. Комплексная оценка включает не только экономическую эффективность от внедрения нового, более прогрессивного технологического процесса, но и уменьшение затрат времени, труда, материала, повышение качества изготовляемой продукции (износостойкости, размерной точности и точности по массе, внешнего вида и др.).

Методической основой оценки сравнительной экономической эффективности прогрессивных технологических процессов является проведение сравниваемых вариантов в сопоставимый вид.

Простейшим методом корректирования вариантов по объему производимой продукции является применение удельных показателей эксплуатационных и капитальных затрат (себестоимости единицы продукции и удельных капитальных вложений). Удельные показатели себестоимости и капитальных затрат по сравниваемым вариантам, умноженные на увеличенный в результате применения техники или технологии объема производства, позволяют рассчитать экономиче-

ский эффект, минуя корректировку показателей.

Метод определения экономической эффективности по удельным показателям широко применяется в практике проектирования и планирования. Его использование целесообразно при наличии самостоятельных научно-технических решений, не привязанных к конкретному производству.

Сопоставить сравниваемые варианты на конкретном предприятии по этому методу можно лишь в случае, когда рост объемов производства является непосредственным результатом внедрения новой техники. Если объем производства увеличивается также за счет его расширения (или повышения загрузки на базе имеющейся техники), то дополнительную экономию, образующуюся за счет условно-постоянных расходов, из экономического эффекта следует вычесть.

Эта экономия может быть определена по формуле

$$\Im_{y, \pi} = \left(\frac{H_{y, \pi}}{A_1} - \frac{H_{y, \pi}}{A_2}\right) A_2,$$

где $9_{y. \pi}$ — экономия, образующаяся за счет условно-постоянных расходов; $H_{y. \pi}$ — величина условно-постоянных расходов; A_1 и A_2 — объем производства до и после внедрения новой техники.

При расчете эффективности по удельным показателям базовая себестоимость должна корректироваться по формуле

$$C_1 = C_1' - \frac{H_{y,\pi}}{B_1} + \frac{H_{y,\pi}}{B_2},$$

где C_1 — скорректированная базовая себестоимость единицы продукции (работы); C_1' — базовая себестоимость единицы продукции (работы) до корректировки.

В случае возникновения затруднения при определении абсолютной величины условно-постоянных расходов корректировка может быть проведена по формулам

$$C_1 = C_1' K_{\kappa};$$

$$K_{\kappa} = K_{\text{nep}} + \frac{K_{y. \pi}}{K_{o}},$$

где $K_{\rm K}$ — коэффициент корректировки базовой себестоимости; $K_{\rm пер}$ — коэффициент (удельный вес) переменных затрат; $K_{\rm y, n}$ — коэффициент (удельный вес) условнопостоянных затрат; $K_{\rm o}$ — коэффициент увеличения объемов производства.

Этот метод корректировки базовой се-

бестоимости удобен для расчетов, так как удельный вес условно-постоянных расходов — величина более или менее стабильная и нет необходимости его ежегодно пересчитывать. Величина условно-постоянных расходов определяется путем анализа затрат отдельных цехов и предприятий в целом.

Как показывает практика, на машиностроительных предприятиях удельный вес условно-постоянных расходов колеблется в среднем в пределах 30-40%, а в автоматизированных производствах в ряде случаев достигает 40-50%.

Для приведения результатов в сопоставимый вид следует применять корректирующие показатели (массу, трудоемкость обработки, площадь обрабатываемой поверхности и т. д.). Выбор показателей и методы корректировок должны предопределяться спецификой конкретного производства.

В основе сопоставительных технико-экономических расчетов при выборе оптимального технологического варианта лежит определение технологической себестоимости, которая представляет собой сумму годовых затрат на изготовление (обработку, сборку) продукции по тем статьям затрат, по которым один вариант отличается от другого.

Для механической обработки формула технологической себестоимости имеет следующий вид:

$$C_{\text{T}} = aA_{\text{r}} + b = (M_{\text{o}} + 3_{\text{HI}} + P_{\text{o}} + P_{\text{H}}) \Pi_{\text{r}} + (3_{\text{HS}} + C_{\text{oc}}^{\text{T}}),$$

где a — затраты, определяемые прямым расчетом на одну деталь (изделие); $A_{\rm r}$ — годовая производственная программа; b - годовые затраты, связанные с изготовлением данной детали (изделия), которые могут определяться лишь на всю годовую программу; M_0 - стоимость основных материалов, расходуемых на одну деталь Гопределяется как произведение стоимости 1 кг материала C_{M} на норму его расхода $H_{\rm M}$ за вычетом стоимости реализуемых отходов $C_{\rm p.o.}$ ($M_{\rm o}=$ $= C_{\rm M}H_{\rm M} - C_{\rm p,o}$]; $3_{\rm III} - 3$ производственных рабочих за одну деталь, равная часовой основной и дополнительной (с отчислениями на соцстрах) зарплате рабочего 3, умноженной на норму штучного времени $H_{\rm M}$ по всем операциям; $3_{\rm HI} =$ $=\sum 3_{\rm m}^{\rm q}H_{\rm m};$ $P_{\rm H}$ – расходы на эксплуатацию инструмента, приходящиеся на одну деталь и равные произведению часовых затрат на содержание инструмента Ри на норму машинного времени $H_{\text{маш}}$ ($P_{\text{н}} = \sum P_{\text{н}}^{\text{ч}} H_{\text{маш}}$); $3_{\text{п3}}$ — оплата наладчиков (или рабочих) по подготовительно-заключительному времени, равная произведению числа партий (переналадок) за год n на часовую (основную и дополнительную с отчислениями на социальное страхование) зарплату наладчиков $3_{\text{п}}^{\text{ч}}$ и норму подготовительно-заключительного времени $H_{\text{п3}}$ ($3_{\text{п3}} = n \sum 3_{\text{н}}^{\text{ч}} H_{\text{п3}}$); $C_{\text{ос}}^{\text{г}}$ — годовые расходы на оснастку, определяемые произведением стоимости оснастки $C_{\text{ос}}$ по всем операциям, где она применяется, на коэффициент K ее амортизации и эксплуатации, величина которого зависит от срока службы оснастки: $C_{\text{ос}}^{\text{г}} = K C_{\text{ос}}$.

При проведении сопоставительных расчетов, в частности связанных с определением технологической себестоимости, в расчет должны приниматься все изменяющиеся элементы себестоимости и не вводиться те, которые не изменяются.

В тех случаях, когда сопоставляется несколько технологических процессов или когда сравниваемые технические варианты требуют для своего осуществления значительно разнящихся между собой капитальных вложений, сопоставление следует вести на основе формулы приведенных затрат:

$$3_{\rm np}=C_{\rm T}+E_{\rm H}K.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. **Барташев Л. В.** Справочник конструктора и технолога по технико-экономическим расчетам. М.: Машиностроение, 1979. 221 с.
- 2. Воскресенский Б. В., Паламарчук А. С. Справочник экономиста-машиностроителя. 2-е изд., перераб. и доп. М.: Машиностроение. 1977. 304 с.
- 3. Ииструкция по оценке экономической эффективности создания и использования автоматических манипуляторов с программным управлением (промышленных роботов). М.: НПО «ЭНИМС», 1984. 101 с.
- 4. Методика (основные положения) определения экономической эффективности использования в народном хозяйстве новой техники, изобретений и рационализаторских предложений. М.: Экономика, 1977. 45 с.
- 5. Методические рекомендации. Определение экономической эффективности разработки и внедрения автоматизированных технологических комплексов. М.: НИИмаш, 1983. 52 с.

- 6. Методика определения экономической эффективности использования металлорежущих станков и автоматических линий. М.: ЭНИМС, 1977. 84 с.
- 7. Методические рекомендации. Определение экономической эффективности от внедрения на предприятиях и производственных объединениях. Минстанкопрома новых технологических процессов, средств механизации и автоматизации производства, использования новых материалов и оборудования, способов организации производства и труда. М.: НИИмаш, 1980. 300 с.
- 8. Методические указания ЕСТПП. Методы расчетов экономической эффективности РД 50-269-81. М.: Изд-во стандартов, 1982. 48 с.
- 9. Общесоюзные нормы технологического проектирования предприятий машиностроения, приборостроения и металлообработки.

- Фонды времени работы оборудования и рабочих (пересмотр действующих). М.: ВНИИ-ТЭМР, 1986. 46 с.
- 10. Смирницкий Е. К. Экономия и бережливость: Словарь-справочник. М.: Политиздат, 1983. 207 с.
- 11. Справочинк проектировщика АСУ ТП/Г. Л. Смилянский, Л. 3. Амминский, В. Я. Баронов и др.; Под ред. Г. Л. Смилянского. М.: Машиностроение, 1983. 527 с.
- 12. Экономика и организация производства: Словарь М.: Экономика, 1983. 272 с.
- 13. Экономическая эффективность управленческих и хозяйственных решений: Справочник/Е. Г. Яковенко, В. Ф. Гапоненко, Ю. С. Карабасов, А. В. Горбунов. М.: Знание, 1984. 240 с.
- 14. Эффективиость капитальных вложений: Сборник утвержденных методик. М.: Экономика, 1983. 128 с.

ОЦЕНКА ИНТЕНСИВНОГО ИСПОЛЬЗОВАНИЯ И ОБНОВЛЕНИЯ ПАРКА МЕТАЛЛОРЕЖУЩЕГО ОБОРУДОВАНИЯ

1. ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ МЕТАЛЛОРЕЖУЩЕГО ОБОРУДОВАНИЯ

Для оценки использования оборудования по рекомендациям НПО Оргстанкинпрома имеются два основных показателя:

коэффициент интенсивного использования обрудования, который характеризуется уровнем его использования по производительности, мощности, габаритам, массе обрабатываемых деталей и другим параметрам;

коэффициент экстенсивной загрузки оборудования, который характеризуется отношением времени его фактической работы (в смену, сутки, месяц, год) к плановому фонду времени работы за этот же период.

Одним из наиболее важных показателей интенсивной работы оборудования является коэффициент сменности работы оборудования. Поэтому повышение этого коэффициента — одна из насущных задач в области лучшего использования активной части основных производственных фондов.

В соответствии с методическими указаниями ЦСУ СССР различают следующие коэффициенты сменности работы оборудования:
1) нормативный (проектный), 2) фактический, 3) принятый в расчете производственной мощности.

Нормативный (проектный) коэффициент сменности работы оборудования для предприятий (производств) устанавливается министерством на основании проектов или на уровне принятого в проектах на строительство аналогичных предприятий отрасли.

Фактический коэффициент сменности работы оборудования определяется путем деления количества отработанных станко(машипо)-смен в среднем за сутки на среднюю численность установленного оборудования по данным единовременных наблюдений.

Коэффициент сменности, принятый в расчете производственной мощности, опредеявется отношением трудоемкости (в станкочасах) продукции к годовому (расчетному) фонду времени работы установленного оборудования основных производственных цехов в одну смену.

Фактический коэффициент сменности работы оборудования

$$K_{\rm cm}^{\phi} = \frac{C_{\phi}}{N_{\phi}},\tag{1}$$

где C_{Φ} — отработанные станко(машино)-смены, причем за отработанную станко-смену принимают работу станка, машины или линии в целом в одну из смен, независимо от того, какое время отработано: вся смена или ее часть; N_{Φ} — количество установленного оборудования.

К установленному относится оборудование, находящееся в эксплуатации в цехах предприятий, а также пребывающее в плановом ремонте и модернизации (включая снятое с фундамента), в резерве (кроме складского резерва неустановленного оборудования) и консервации. К неустановленному не относится оборудование, закрепленное за участками для производственного обучения, а также не закрепленное за рабочим и используемое для вспомогательных операций оборудование технологических и конструкторских лабораторий.

Формула (1) действительна для определения коэффициента сменности работы оборудования в единичном, мелко-, средне- и крупносерийном производстве.

Коэффициент сменности работы металлорежущего оборудования определяется в целом по предприятию, раздельно по основному и вспомогательному производствам, а также по всем основным и вспомогательным цехам и участкам, причем величина его для основных и вспомогательных цехов подсчитывается и показывается раздельно.

Общий фактический коэффициент сменности по предприятию ($K_{\text{см.обы}}^{\varphi}$) является отношением суммарного количества отработанных станко-смен по всем основным и вспомогательным цехам и участкам к количеству металлообрабатывающего оборудования цехов и участков, включенному в расчет.

Фактические коэффициенты сменности по производственному объединению (ПО) определяются как в целом по ПО, так и раздельно по основному и вспомогательному производствам.

Коэффициент сменности работы оборудования ПО

$$K_{\rm CM}^{\rm no} = \sum_{i=1}^{n} C_i / \sum_{i=1}^{n} N_i$$

где i — количество предприятий или производств, входящих в состав ПО (i = 1, 2, 3, ...); C_i — отработанные оборудованием станко(машино)-смены на i-м предприятии; N_i — установленное оборудование i-го предприятия, принятое для расчета.

При определении коэффициентов сменности работы оборудования в основном и вспомогательных производствах необходимо учитывать следующие факторы.

Металлообрабатывающее оборудование, установленное в инструментальных и ремонтных цехах, а также оборудование, установленное на ремонтных участках основных цехов, учитывается при расчете коэффициента сменности вспомогательных производств.

Если часть станков инструментального цеха занята выпуском инструментов и технологической оснастки на сторону, то она относится к основному производству и учитывается при расчете коэффициента сменности по цехам основного производства.

Ремонтные цехи, занятые централизованным ремонтом оборудования (на сторону), относятся к основному производству, и установленное в них оборудование также включается в расчет по цехам основного производства.

Коэффициент $K_{e_M}^{\phi}$ определяют:

1) по данным суточного наблюдения за использованием производственного оборудования, проводимого ЦСУ СССР 1 раз в 2 года по формуле (1);

2) на основе данных текущего учета отработанных станко(машино)-смен за месяц, квартал, год по формуле (1);

2) косвенным методом (при отсутствии текущего учета отработанных станко-смен) с помощью обработки данных табельного учета явочной численности рабочих станочных специальностей во всех сменах по формуле (1), с ее последующим преобразованием:

$$K_{\rm cM}^{\,\Phi} = \frac{C_{\Phi}}{N_{\Phi}} = \frac{Y_{\Phi}}{N_{\Phi}} =$$

$$= \frac{Y_0 + Y_M K_M + Y_6 K_6 + Y_K K_K + Y_c K_c}{N_{\Phi}}$$

или

$$K_{\text{CM}}^{\Phi} = \frac{Y_{\text{o}} + Y_{\text{M}} K_{\text{M}} + Y_{\text{6}} K_{\text{6}} + Y_{\text{R}} K_{\text{K}} + Y_{\text{c}} K_{\text{c}}}{N_{\Phi}},$$

где ${\cal U}_{\rm o}, {\cal U}_{\rm m}, {\cal U}_{\rm f}, {\cal U}_{\rm K}, {\cal U}_{\rm c}, {\cal U}_{\rm d}$ — соответственно явочная численность: станочников, обслуживающих один станок; многостаночников, обслуживающих два станка и более; работающих в бригадах по обслуживанию нескольких станков; работающих коллективно по обслуживанию одного станка; совместителей профессий; всех станочников; ${\cal K}_{\rm m}, {\cal K}_{\rm G}$ — соответственно коэффициенты многостаночного, бригадного, коллективного обслуживания и совмещения профессий.

Использование данного метода косвенного учета $K_{\rm cm}$ осиовано на предпосылке, что отработанная человеко-смена на станках, обслуживаемых одним станочником ($Y_{\rm o}$), эквивалентна станко-смене. При многостаночном, бригадном, коллективном обслуживании и совмещении профессий такого соответствия нет. Поэтому в данных случаях необходимо преобразовать человеко-смену в станко-смену. Для этой цели применяют коэффициенты многостаночного, бригадного, коллективного обслуживания и совмещения профессий.

Усредненный $K_{\rm M}$ определяется для всей группы многостаночников как отношение отсъботанных ими станко-смен к численности многостаночников; аналогично определяются и усредненные K_6 , $K_{\rm K}$, $K_{\rm C}$, т. е.

$$K_{\rm M} = \frac{C_{\rm \varphi M}}{q_{\rm M}}; \ K_6 = \frac{C_{\rm \varphi 6}}{q_6};$$
$$K_{\rm K} = \frac{C_{\rm \varphi K}}{q_{\rm K}} \ \ \text{if} \ K_{\rm c} = \frac{C_{\rm \varphi c}}{q_{\rm C}},$$

где $C_{\varphi M}$, $C_{\varphi G}$, $C_{\varphi \kappa}$ и $C_{\varphi c}$ — соответственно отработанные многостаночниками, бригадами, коллективами и совместителями профессий станко-смены.

ПО и предприятиям следует определять фактический коэффициент сменности по второму методу, а при отсутствии текущего учета количества отработанных станко-смен разрешается применять третий метод.

Повышение коэффициента сменности можно обеспечить либо путем увеличения коли-

чества станко-смен, отработанных установленным оборудованием, либо вывода излишнего, прежде всего морально устаревшего и физически изношенного оборудования, либо одновременного увеличения количества отработанных станко-смен и уменьшения установленного оборудования.

Основные направления повышения коэффициента сменности работы металлорежущего оборудования:

- 1) сокращение парка металлообрабатывающего оборудования вследствие улучшения структуры парка, а именно: внедрения высокопроизводительного прогрессивного оборудования взамен морально устаревшего и физически изношенного; внедрения автоматизированных участков, заготовительных и роботизированных комплексов, в том числе управляемых ЭВМ; модернизации оборудования; вывода излишнего оборудования:
- 2) значительное расширение сферы и повышение норм многостаночного обслуживания в результате применения прогрессивного оборудования, овладения смежными профессиями, сокращения численности рабочих при бригадном и коллективном обслуживании и мероприятий по научной организации труда (НОТ);
- 3) увеличение численности рабочих, занятых работой на оборудовании, вследствие привлечения рабочих, высвобождаемых в результате механизации и автоматизации тех операций, которые выполняются вручную или недостаточно механизированным способом:
- 4) улучшение использования парка оборудования сокращением всех видов простоев: целосуточных, целосменных и внутрисменных.

При определении факторов, обеспечивающих повышение $K_{\text{см}}$ предприятий ПО, в качестве исходных принимают данные суточного наблюдения ЦСУ СССР по использованию производственного оборудования:

- 1) число отработанных станко-смен в основном производстве;
- 2) количество установленного металлорежущего оборудования в целом по предприятию, в том числе в основном и вспомогательном производствах с указанием количества оборудования, обслуживаемого многостаночниками, бригадами, коллективно и совместителями профессий;
- 3) численность рабочих, занятых работой на металлорежущем оборудовании (всего),

- в том числе в основном и вспомогательном производствах, с указанием рабочих: многостаночников, в бригадах по обслуживанию нескольких станков, коллективно обслуживающих один станок, совмещающих профессии;
- 4) целосуточные простои оборудования в основном производстве по причинам: планового ремонта и модернизации; резерва и консервации; излишнего оборудования; неисправности и внепланового ремонта оборудования; отсутствия производственного задания; неукомплектованности рабочими; отсутствия рабочих с разрешения администрации, в связи с заболеваниями и т. п.; прогулов; отсутствия сырья, материалов, заготовок, деталей; отсутствия инструментов, приспособлений, технической документации, электро- и тепловой энергии, сжатого воздуха, подъемно-транспортных средств; отсутствия программы-носителя; прочих потерь:
- 5) целосменные простои оборудования в основном производстве по причинам: внережимного времени; планового ремонта и модернизации; неисправности и внепланового ремонта оборудования; отсутствия производственного задания; неукомплектованности рабочими; отсутствия рабочих с разрешения администрации, в связи с заболеваниями и т. п.; прогулов; отсутствия сырья, материалов, заготовок, деталей; отсутствия инструментов, приспособлений, технической документации, электро- и тепловой энергии, подъемно-транспортных сжатого воздуха, средств; прочих потерь;
- 6) внутрисменные простои оборудования в основном производстве по причинам: неисправности и внепланового ремонта оборудования; наладки и подналадки оборудования, отсутствия производимой наладчиком; сырья, материалов, заготовок, деталей; отсутствия инструментов, приспособлений, технической документации, электро- и тепловой энергии, сжатого воздуха, подъемно-транспортных средств, ожидания инструктажа; отсутствия производственного задания; ухода с работы с разрешения администрации; отсутствия рабочих в связи с нарушением трудовой дисциплины; прочих внутрисменных потерь (отсутствие рабочих в связи с заболеванием и отвлечением на общественную работу и др.).
- В основном производстве, как правило, сосредоточено 75-80% металлообрабатывающего оборудования, поэтому особое внима-

ние необходимо уделять определению факторов, обеспечивающих повышение $K_{\text{см}}$ в основном производстве.

Для определения номенклатуры факторов K_{cm} можно представить в следующем виде:

$$K_{\text{cM}} = \frac{C_{\text{n}}}{N_{\text{n}}} = \frac{C_{\phi} + \Delta C}{N_{\phi} - \Delta N} =$$

$$= \frac{C_{\phi} + \Delta U_{\phi} + \Delta C_{\text{cyr}} + \Delta C_{\text{cM}}}{N_{\phi} - \Delta N}, \quad (2)$$

где $C_{\rm n}$ - среднее число потребных станкосмен в сутки в расчетном N_{π} — потребное количество оборудования в расчетном году: ΔC - средний прирост станко-смен в сутки в расчетном году за счет всех факторов; ΔN — уменьшение количества оборудования в расчетном году; $\Delta Y_{ab} =$ $= \Delta Y_0 + \Delta Y_M K_M + \Delta Y_6 K_6 + \Delta Y_K K_K +$ $+ \Delta Y_c K_c -$ увеличение станко-смен вследствие прироста численности работающих на оборудовании, в том числе ΔY_0 , ΔY_M , ΔY_6 , ΔY_{κ} и ΔY_{c} – в результате соответствующего прироста численности рабочих, обслуживающих один станок, многостаночников и совместителей профессий и уменьшения численности рабочих, занятых коллективным обслуживанием одного станка и бригадным обслуживанием нескольких станков; ΔC_{cvt} и $\Delta C_{\rm cm}$ — средний прирост станко-смен в расчетном году из-за сокращения соответственно целосуточных и целосменных простоев оборудования.

Формулу (2) можно преобразовать следующим образом:

$$K_{\text{CM}} = \frac{C_{\phi} + \Delta Y_{\text{o}} + \Delta Y_{\text{M}} K_{\text{M}} +}{N_{\phi} - \Delta N}$$

$$\leftarrow \frac{+ \Delta Y_{\text{6}} K_{\text{6}} + \Delta Y_{\text{K}} K_{\text{K}} +}{N_{\phi} - \Delta N}$$

$$\leftarrow \frac{+ \Delta Y_{\text{c}} K_{\text{c}} + \Delta C_{\text{cyt}} + \Delta C_{\text{cM}}}{N_{\phi} - \Delta N} .$$
(3)

Формула (3) позволяет определить $K_{\text{см}}$ на любой планируемый период времени.

Численность станочников можно повысить без увеличения численности работающих на заводе в результате:

1) снижения трудоемкости изготовления продукции по всем переделам, высвобождения рабочих других переделов для работы на оборудовании; 2) высвобождения рабочих, занятых ручным трудом на основных и вспо-

могательных работах и работах с тяжелыми и вредными условиями труда.

После выявления потребной численности рабочих, обслуживающих оборудование, многостаночников, занятых бригадным обслуживанием нескольких станков, коллективным обслуживанием одного станка, и совместителей профессий можно определить число рабочих, обслуживающих одинстанок.

Численность многостаночников, совместителей профессий, рабочих, занятых бригадным обслуживанием нескольких станков (бригада должна быть по численности меньше числа единиц обслуживаемого оборудования), необходимо увеличить путем внедрения автоматизированных участков, заготовительных и роботизированных комплексов, в том числе управляемых ЭВМ, автоматов, полуавтоматов, оборудования с ЧПУ, агрегатных станков и т. п.; совершенствования технологии и организации производства на основе НОТ.

Парк металлообрабатывающего оборудования необходимо сокращать вследствие улучшения структуры парка оборудования на основе применения высокопроизводительного оборудования; внедрения автоматизированных участков, заготовительных и роботизированных комплексов, в том числе управляемых ЭВМ; модернизации оборудования; вывода излишнего оборудования.

Прирост станко-смен необходимо получить с помощью сокращения простоев оборудования и разработки необходимых организационных и технических мероприятий.

По всей номенклатуре определенных выше факторов, обеспечивающих повышение $K_{\rm cm}$, разрабатывают организационно-технические мероприятия, на основе которых определяют значения каждого фактора, затем эти значения подставляют в формулу (3).

Если полученный результат не соответствует установленному значению коэффициента сменности, разрабатывают дополнительные мероприятия, обеспечивающие его достижение.

Повышение коэффициента сменности работы оборудования — сложная проблема, решение которой предполагает разработку и реализацию не только организационно-технических мероприятий, но и комплекса социально-экономических мероприятий.

Комплекс социально-экономических мероприятий необходимо разрабатывать применительно к местным условиям.

2. РАСЧЕТ ПОТРЕБНОСТИ И КОЭФФИЦИЕНТА ВОСПРОИЗВОДСТВА И ПОПОЛНЕНИЯ ПАРКА МЕТАЛЛОРЕЖУЩЕГО ОБОРУДОВАНИЯ

Расчет основан на изменении станкоемкости для машиностроительной отрасли в целом или по отдельным технологическим группам, подгруппам и типоразмерам металлорежущих станков.

В первом приближении вместо станкоем-кости может быть использована норматив-но-чистая продукция.

Для расчета принимаем следующие обозначения:

 Π_{o} – начальный парк оборудования; $\rho =$ $= P P_0^{-1} -$ коэффициент *1 роста продукции 3a планируемый $(P_{0} - \text{станкоемкость или выпуск продукции})$ на начало периода; Р - станкоемкость или выпуск продукции на конец периода); q – коэффициент роста выработки единицы парка за планируемый период вследствие совершенствования заготовок, инструментов, типизации технологических процессов, применения материалов с лучшей обрабатываемостью и других технологических мероприя- $K = K_1/K_{10} \cdot K_2/K_{20}$ — коэффициент улучшения использования парка станков; отражает комплекс мероприятий, вленных на сокращение простоев по организационным причинам; повышение коэффициента сменности и коэффициента внутрисменного использования $*^2$, связанных с улучшением организации производства (K_1 и K_{10} – коэффициенты сменности соответственно на конец и начало планируемого периода; K_2 и K_{20} – коэффициенты использования станков в течение смены соответственно на конец и начало планируемого периода); r – коэффициент роста производительности нового станка по сравнению со средней производительностью станка в парке или данной технологической группы; b – коэффициент списания станков из парка,

установленный для отрасли; $a = \frac{1}{r} \left(\frac{\rho}{qK} - \frac{1}{qK} \right)$

(b-1+b) — коэффициент пополнения (воспроизводства) парка; $C=b\Pi_0$ — объем списания, шт.; $A=a\Pi_0$ — объем пополнения, шт.

Коэффициенты определяются следующим образом: ρ — задает Госплан СССР в целом, а по технологическим группам, подгруппам и типоразмерам — ведомство (в случае необходимости); q — разрабатывает ведомство, исходя из наиболее эффективного использования имеющихся мощностей и резервов производства; K — определяет ведомство и согласовывает с Госпланом СССР; r — рассчитывают согласно табл. 1 и 2, а также структурам заказываемых новых станков

1. Темп изменения производительности нового станка

Уровень автомати- зации	Периодичность смены вновь создаваемой модели, лет	Повышение производитель- ности новой модели по сравнению с за- меняемой, раз	Среднегодовой темп прироста производительности, %	Темп роста производитель- ности за пяги- летку, раз	Коэффициент повышения производительно- сти по сравнению со станком с РУ
РУ	12	1,2	1,55	1,08	1,0
ПУ	7	1,3	3,7	1,2	1,5-2,5
ПАиА	10	1,3	2,7	1,14	2,0-3,0
АЛ	10	1,4	3,4	1,18	4,0-7,0
ОЦ и СМ	6	1,5	7,0	1,4	2,5-4,0
ГПС	6	1,6	8,15	1,48	2,5-5,0

Притмечание. Здесь и далее: РУ—станки с ручным управлением; ПУ—станки с программным управлением; ПА и A—полуавтоматы и автоматы; AЛ—автоматические линии; ОЦ и CM—многоцелевые станки (обрабатывающие центры) и станочные модули; $\Gamma\Pi C$ —гибкие производственные системы.

^{*1} Здесь и далее все коэффициенты даны в относительных единицах.

^{*2} Коэффициент представляет собой отношение отработанных станко-часов на единицу установленного оборудования за сутки к числу часов при двух- или трехсменной работе.

Возраст	Уровень автоматизации										
станка парка, лет	РУ	ПУ	CM	ГПС	ПАиА	АЛ					
5	0,92	0,84	0,72	0,68	0,88	0,85					
10	0,83	0,71	0,53	_	0,77	0,72					
15	0,76	0,61	-	_	0,68	0,61					
20	0,69	0,53	1 –	_	0,59	0,52					
25	0,63			-	0,52	-					
30	0,58		_	_	0,45	_					
35	0,55	_	-		0,40	_					
40	0,52	_	_	1 –	0,35	_					

2. Средняя производительность станка в парке базового года выпуска *!

*1 Производительность новых станков по всем уровням автоматизации принята за единицу.

и существующего в ведомстве парка металлорежущих станков с учетом его возрастного состава и уровня автоматизации; *b* устанавливает Госплан СССР или ведомство и согласовывает с Госпланом СССР.

Выработка на одну единицу парка стан-ков:

в начале периода

$$m_0 = \frac{P_0}{\Pi_0 K_{10} K_{20}}$$

в конце периода

$$m = m_0 q = \frac{\rho P_0}{(\Pi_0 - \Delta \Pi) K_1 K_2}$$

или

$$\frac{P_0}{\Pi_0 K_{10} K_{20}} = \frac{\rho P_0}{q(\Pi_0 + \Delta \Pi) K_1 K_2},$$

где $\Delta \Pi$ — прирост парка станков к концу периода.

Отсюда

$$\rho = qK \frac{\Pi_0 - \Delta \Pi}{\bar{\Pi}_0}.$$
 (4)

В свою очередь,

$$\Delta \Pi = \delta + 3 - C, \tag{5}$$

где δ — пополнение парка станков для роста выпуска продукции; 3 — пополнение парка станков для замены изношенных.

С учетом более высокой производительности новых станков их фактическое количество

$$r\Delta\Pi_{\Phi} = \delta + 3. \tag{6}$$

Число списанных станков

$$C = b\Pi_0. (7)$$

Из формулы (4) с учетом формул (5) — (7) получим

$$\rho = qK \frac{\Pi_0 + r\Delta\Pi_{\phi} - b\Pi_0}{\Pi_0}.$$
 (8)

Обозначим

$$a = \frac{\Delta \Pi_{\phi}}{\Pi_{\phi}}.$$
 (9)

Из формулы (8), подставив формулу (9), получим

$$\frac{\rho}{qK} = 1 + ar - b.$$

Коэффициент пополнения парка станков

$$a = \frac{1}{r} \left(\frac{\rho}{qK} - 1 + b \right).$$

Для сохранения парка станков неизменным необходимо, чтобы b=a (списание равно пополнению).

В этом случае

$$a=\frac{\rho(qK)^{-1}-1}{r-1}.$$

Если p = qK, то a = 0, и пополнять парк нет необходимости.

Если r=1 (производительность нового станка равна производительности среднего станка парка), то $a \to \infty$, и решить задачу без расширения парка при замене станками той же производительности нельзя.

При
$$\rho = 1,25$$
; $K = 1,13$; $q = 1,04$; $r = 1,5$

$$a = b = \frac{1,25(1,13 \cdot 1,04)^{-1} - 1}{1,5 - 1} = \frac{0,063}{0.5} = 0, 126,$$

т. е. списание и поступление в парк за 5 лет должно быть 12,6% или 2.5% в год.

При $\rho = 1,25$; K = 1,13; q = 1,04; r = 1,5; b = 4,6% или за 5 лет $b = 0,046 \cdot 5 = 0,23$

$$a = \frac{1}{1.5} \left(\frac{1.25}{1.13 \cdot 1.04} + 0.23 - 1 \right) = 0.195.$$

Среднегодовое поступление оборудования в парк составит: $0,195 \times 100:5 = 3,9\%$, и парк оборудования начнет сокращаться.

Примеры*¹. Определим коэффициент *а* воспроизводства парка машиностроения и металлообработки в целом.

Среднегодовое выбытие 4,6% (табл. 3); коэффициенты сменности на начало и конец планируемого периода $K_{10}=1,46$ и $K_1=1,53$ (табл. 4); коэффициенты использования станков в течение смены на начало и конец планируемого периода $K_{20}=0,53$ и $K_2=0,58$ (табл. 5).

Списание оборудования из парка составит: $b = 4.6:100 \times 5 = 0.23$.

Коэффициент улучшения использования

$$K = \frac{K_1}{K_{10}} \cdot \frac{K_2}{K_{20}} = \frac{1,53}{1,46} \cdot \frac{0,58}{0,53} = 1,13.$$

Рост производительности станка в парке за 5 лет в результате совершенствования заготовок, инструментов и технологических мероприятий q=1,04.

Задаемся ростом объема производства на планируемую пятилетку (условно) $\rho = 1,25$.

Коэффициент роста производительности нового станка по сравнению со средней производительностью станка в парке $r = \pm 1.5$;

$$a = \left(\frac{1,25}{1,13 \cdot 1,04} + 0,23 - 1\right) \cdot \frac{1}{1,5} = 0,195.$$

Среднегодовое поступление станков в парк составит: $0.195 \times 100:5 = 3.9\%$ (табл. 6).

При определении *r* за единицу была принята производительность станка с ручным управлением базового года выпуска на начало пятилетки

$$r=\frac{r_{\mathrm{H}}}{r_{\mathrm{m}}},$$

3. Выбытие из парка металлорежущих стаиков

	Выбытие (среднегодовое), %						
		В том числе					
Отрасль, тип производства	Bcero	станков с РУ (без прогрессивных категорий)	станков прогрессивных категорий				
Машиностроение и металлообработка В том числе:	4,6 *1	6,2	2,6				
основное производство вспомогательное производство	4,4 5,0	7,5 5,4	2,6 2,6				

^{*1} Для машиностроительных министерств 5-8%.

4. Коэффициент сменности работы металлорежущих станков

	Коэффициент сменности (начало пятилетки/конец пятилетки)					
Отрасль, тип производства		В том числе				
	Всего	для станков с РУ (без прогрессивиых категорий)	для станков прогрессивных категорий			
Машиностроение и металлообработка В том числе:	1,46/1,53	1,38/1,42	1,67/1,73			
основное производство вспомогательное производство	1,51/1,57 1,36/1,40	1,40/1,44 1,35/1,38	1,70/1,75 1,46/1,56			

^{*1} По данным «Методика и справочные нормативы определения потребности отраслей народного хозяйства в металлорежущем оборудовании». М.: ВНИИТЭМР, 1986, 19 с.

5. Коэффициент внутрисменного использования металлорежущих стаиков

	Коэффициент внутрисменного использования (начало пятилетки/конец пятилетки)						
Отрасль, тип производства		В том числе					
	Всего	для станков с РУ (без прогрессивных категорий)	для станков прогрессивных категорий				
Машиностроение и металлообработка В том числе:	0,53/0,58	0,47/0,51	0,59/0,65				
основное производство вспомогательное производство	0,56/0,62 0,47/0,50	0,50/0,54 0,45/0,48	0,60/0,65 0,55/0,59				

Примечание. Перечень станков прогрессивных категорий приведен в табл. 12.

6. Коэффициент воспроизводства металлорежущих станков в планируемой пятилетке

	Коэффициент воспроизводства, %, (среднегодовой показатель)					
Отрасль, тип производства		В том числе				
	Всего	для станков с РУ (без прогрессивных категорий)	для станков прогрессивных категорий			
Машиностроение и металлообработка В том числе:	3,9	1,3	6,6			
основное производство вспомогательное произволство	4,6 2,2	1,2 1,4	6,6 6,2			

7. Темп изменения производительности новых станков

		В					
Показатели	РУ	ПУ	ОЦ	ГПС	ПАиА	ΑЛ	среднем
Производительность нового стан- ка базового года выпуска	1,0	2,0	4,0	5,0	2,0	6,0	1,34
Средняя производительность стан-	0,75	1,51	2,73	3,4	1,45	4,17	1,04
ка в парке Средний возраст станка в парке базового года выпуска	14,3	6,0	3,6	2,5	10,4	9,1	13,1

где $r_{\rm H}$ — средняя производительность нового станка, определяемая исходя из темпа изменения производительности нового станка и структуры заказываемых станков.

$$r_{\Pi} = \sum r_{aj} \gamma_{ij} r_{\delta ij},$$

где r_{aj} — коэффициент роста производительности новых станков с различным уровнем автоматизации по сравнению с производительностью станка с ручным управлением базового года выпуска; γ_{ij} — удельный вес станков і-й возрастной группы с j-м уровнем автоматизации в парке базового года выпуска (определяется ведомством);

 $r_{\delta ij}$ — коэффициент изменения производительности станка в парке по сравнению с базовым годом выпуска станков *i*-й возрастной группы с *j*-м уровнем автоматизации.

Темп изменения произволительности в ретроспективе по каждому уровню автоматизации лля пятилетнего периода приведен в табл. 7.

Рост производительности нового станка по сравнению со средней производительностью станка в парке составит 1,34:1,04==1,29.

К концу пятилетки средняя производительность нового станка увеличится в 1,6

раза, а средняя производительность станка парка машиностроения и металлообработки — только в 1,1 раза. Производительность нового станка увеличится в 1,5 раза в среднем за пятилетку (в 1,8 раза на конец периода).

Рост средней производительности нового станка по сравнению с производительностью станка с РУ базового года выпуска $1,34 \times 1,6 = 2,14$.

Рост средней производительности нового станка в парке по сравнению с производительностью станка с РУ базового года выпуска $1.04 \times 1.1 = 1.14$.

Рост средней производительности нового станка по сравнению со средней производительностью нового станка в парке 2,14:1,14 = 1.88.

Определим коэффициент воспроизводства станков с РУ в парке машиностроения и металлообработки.

По табл. 3 – 6 определяем:

среднегодовое выбытие 6,2%; $b=6,2:100\times 5=0,31$; $K_{10}=1,38$; $K_{1}=1,42$; $K_{20}=0,47$; $K_{2}=0,51$.

$$K = \frac{1,42}{1,38} \cdot \frac{0.51}{0.47} = 1,11.$$

Рост производительности станка в парке за 5 лет в результате совершенствования заготовок, инструмента и технологических мероприятий q=1,04.

Изменение объема работы, выполняемой на станках с РУ, $\rho = 0.9$.

Производительность нового станка с РУ в базовом году $r_{\rm H}=1.0$, к концу пятилетки $r_{\rm H}=1.08$, среднегодовая $r_{\rm H}=1.04$.

Производительность среднего станка с РУ равна 0,75

$$r = \frac{r_{\rm H}}{r_{\rm B}} = \frac{1.04}{0.75} = 1.39.$$

Тогда коэффициент пополнения парка станков

$$a = \frac{1}{1,39} \left(\frac{0.9}{1,04 \cdot 1,11} - 1 + 0.31 \right) = 0.065.$$

Среднегодовое поступление в парк составит: $0.065 \times 100:5 = 1.3\%$ (табл. 6).

Определим коэффициент воспроизводства станков с ПУ в парке машиностроения и металлообработки.

По табл. 8-10 определяем:

среднегодовое выбытие 1,1%; $b=1,1:100\times 5=0,055;$ $K_{10}=1,51;$ $K_{1}=1,54;$ $K_{20}=0,58;$ $K_{2}=0,61.$

$$K = \frac{1.54}{1.51} \cdot \frac{0.61}{0.58} = 1.07.$$

Рост производительности станка в парке за 5 лет в результате совершенствования заготовок, инструмента и технологических мероприятий q = 1,04.

Рост объема работы, выполняемой станками с ПУ к концу пятилетки по сравнению с базовым годом выпуска, $\rho = 2$.

Производительность нового станка с ПУ в базовом году $r_{\rm H}=2.0$, к концу пятилетки $r_{\rm H}=2.0\times1.2=2.4$, в среднем за пятилетку $r_{\rm h}=2.2$.

Средняя производительность станка с ПУ в парке в базовом году $r_{\rm H} = 1,51.$

$$r = \frac{2,2}{1,51} = 1,46.$$

8. Выбытие из парка прогрессивного металлорежущего оборудования в планируемой пятилетке

	Выбытие (среднегодовое), %											
			В том числе									
Отрасль, тип производства	Всего	с ПУ	СМ	гпс	ПА и А	АЛ	специального и специализирован- ного неавтомати- зированного	тяжелого, уни- кального, уни- версального	высокой и особо высокой точно- сти универсаль- ного			
Машиностроение и ме- таллообработка	2,6	1,1	0,3	0,3	2,3	4,1	3,5	2,5	3,0			
В том числе: основное производство вспомогательное производство	2,6 2,7	1,1	0,3 0,4	0,3	2,2 3,1	4,1	3,6 3,4	2,6 2,3	3,1 2,9			

Тогда коэффициент пополнения

$$a = \frac{1}{1,46} \left(\frac{2}{1,04 \cdot 1,07} - 1 + 0,055 \right) = 0,585.$$

Среднегодовое поступление станков в парк составит $0.585 \times 100:5 = 11.7\%$ (табл. 11).

Определим коэффициент воспроизводства станков парка в условной машиностроительной отрасли.

Среднегодовое выбытие 5,1%; b =

= 5,1:100 × 5 = 0,26. K_{10} = 1,26; K_1 = 1,30; K_{20} = 0,41; K_2 = 0,45.

Коэффициент улучшения использования парка станков

$$K = \frac{1,30}{1,26} \cdot \frac{0,45}{0,41} = 1,13.$$

Рост производительности станка парка за пять лет в результате совершенствования заготовок, инструмента и технологических мероприятий q=1,04.

9. Коэффициент сменности работы станков прогрессивных категорий в планируемой пятилетке

	Коэфф	оициент см	енно	сти	работы ст	анко	в (начало	пятилетки/	конец пяти	летки)
Отрасль, тип производства	Всего	с пу	CM	гпс	ПА и А	АЛ	специальных и спе- циализированных неавтоматизиро- ванных	тяжелых, уникаль-	ных, универсальных	высокой и особо высокой точности универсальных
Машино- строение и ме- таллообра- ботка	1,67/1,73	1,51/1,54	2,7	2,7	1,61/1,64	2,7	1,50/1,53	1,51/1,58	2,14/2,21	1,40/1,43
В том числе:	. 2011 75	1.52/1.55	2.7	2.7	. (2/1 (/		. 50/1 53	1.54.11.42	2 15/2 22	1 40/1 42
основное производ- ство	1,/0/1,/3	1,52/1,55	2,7	2,7	1,63/1,66	2,/	1,50/1,53	1,56/1,62	2,15/2,22	1,40/1,43
вспомога- тельное производ- ство	1.46/1,56	1,45/1,48	2,7	2,7	1,45/1,48	4	1,50/1,53	1,41/1,45	2,05/2,10	1,40/1,43
Число смен	-	2	3	3	2	3	2	2	3	2

10. Коэффициент внутрисменного использования станков прогрессивных категорий в планируемой пятилетке

пятилетке													
v 3 5	Коэф	Коэффициент внутрисменного использования станков (начало иятилетки/ конец пятилетки)											
Отрасль, тип производства	Всего	с ПУ	CM	ГПС	ПА и А	АЛ	специальных и специализирован- ных неавтоматизы-	тяжелых, уникаль- ных, универсаль- ных	высокой и особо высокой точности универсаль-				
Машиностроение и металлообработка	0,59/0,65	0,58/0,61	0,70/0,74	0,80/0,84	0,71/0,74	0,80/0,84	0,60/0,63	0,58/0,65	0,50/0,53				
В том числе: основное производ- ство	0,60/0,66	,					i .						
вспомогательное производство	0,55/0,59	0,55/0,58	0,70/0,74	0,80/0,84	0,55/0,58	-/-	0,60/0,63	0,50/0,55	0,50/0,53				

11. Коэффициент восп	роизи	10Д	ства ста	нков пр	огрессив	ных кат	егорий в	пла	ниру	уемой і	пятилетке	
		Коэффициент воспроизводства (среднегодовой), %										
Отрасль, тип производства	Всего		с пУ	СМ	гпс	ПА и А	АЛ	специальных и специа-	쑱	тяжелых, уникальных, универсальных	высокой и особо высо- кой точности универ- сальных	
Машиностроение и металлообработка	6,6	<u>,</u>	11,7	19,8	22,5	6,4	7,0	4,	8	3,3	7,8	
В том числе: основное произ- водство	6,6	6	11,5	18,6	22,6	6,5	7,0	4,	4	3,6	9,1	
вспомогательное производство	6,2	?	12,7	26,5	21,7	5,6	_	4,	9	1,7	3,5	
12. Прогрессивное ме	галло	pe	кущее о	борудова	ание							
Тип оборудования		Примеры типов оборудования							Приме	чание		
гических групп вальные, п				ые прутковые, резьбонарезные, шлифо- е, полировальные, суперфинишные, зу- батывающие, фрезерные для изготов-						оме с	танков с	
Полуавтоматы всех	гех-			грумент: патроні		арные і	многоре	зцо-	To	же		

производство		<u>L</u> _		
12. Прогрессивное металл	орежущее оборудование			
Тип оборудования	Примеры типов оборудования	Примечание		
Автоматы всех технологических групп	Токарные прутковые, резьбонарезные, шлифовальные, полировальные, суперфинишные, зубообрабатывающие, фрезерные для изготовления инструмента и др.	Кроме станков с ЧПУ		
Полуавтоматы всех технологических групп	Токарные патронные, токарные многорезцовые, копировальные, токарно-револьверные, фрезерно-центровальные, зубообрабатывающие и др.	То же		
Станки с ЧПУ	Станки токарной, фрезерной, шлифовальной и другой технологических групп	Кроме многоцелевых станков с ЧПУ и ГПМ		
Многоцелевые станки с ЧПУ	Сверлильно-фрезерно-расточные с автоматической сменой инструмента, токарные с возможностью фрезерования и сверления и др.			
Гибкие производственные модули (ГПМ)	Токарные, сверлильно-фрезерно-расточные, шлифовальные, заточные, зубообрабатывающие, фрезерные, сборочные			
Робототехнические комплексы	Токарные многорезцовые, копировальные и др.	В составе станок без ЧПУ и про-мышленный робот		
Специальные, специализированные и агрегатные станки	Вальцетокарные, отделочно-расточные, жело- бошлифовальные, зубопротяжные, агрегат- ные и др.	Станки с ручным управлением		
Тяжелые и уникальные станки	Токарные, токарно-карусельные, горизонтально-расточные, продольно-обрабатывающие, зубофрезерные и др.	Универсальные станки с ручным управлением массой выше 30 т		
Прецизионные станки классов то лости В, А, С	Станки всех основных технологических групп — токарные, координатно-расточные, шлифовальные, зубообрабатывающие и др.	Универсальные станки с ручным управлением		
Автоматические линии для механообработки	АЛ для обработки деталей типа валов, фланцев, корпусных деталей, плоских деталей, зубчатых колес и др., в том числе пере-			
	зуочатых колес и др., в том числе пере-			

налаживаемые

Рост объема работы, выполняемой станками с ПУ в парке в конце пятилетки по сравнению с началом пятилетки, $\rho = 1.15$.

Производительность нового станка, поступившего в парк за пятилетку, $r_{\rm H} = 1,02$.

Средняя производительность станка с ПУ в парке в начале пятилетки $r_{\rm H} = 0,77$.

$$r = \frac{1,02}{0.77} = 1,32.$$

Тогда коэффициент пополнения

$$a = \frac{1}{1,32} \left(\frac{1,15}{1,04 \cdot 1,13} - 1 + 0,26 \right) = 0,181.$$

Среднегодовое поступление станков в парк составит 0.181×100 : 5 = 3.62 %.

3. ПОРЯДОК ПРОВЕДЕНИЯ ЭКСПЕРТИЗЫ СОСТАВА МЕТАЛЛОРЕЖУЩЕГО ОБОРУДОВАНИЯ В ПРОЕКТАХ

Данные рекомендации могут быть использованы для составления экспертных заключений по составу металлообрабатывающего оборудования, предумотренного в проектах действующих предприятий и организаций машиностроения и металлообработки.

Рекомендуемый порядок проведения экспертизы состава металлорежущего оборудования, предусматриваемого в проектах на строительство новых, реконструкцию, расширение и техническое перевооружение действующих предприятий машиностроения и металообработки следующий:

- 1) экспертиза проектов проводится организациями-экспертами, назначаемыми по каждому конкретному проекту;
- 2) экспертное заключение выполняют на основании пояснительной записки (технологические решения); спецификации на металлообрабатывающее оборудование; заключения на проект отраслевого отдела экспертизы (при наличии);
- материалы для проведения экспертизы организации-эксперты получают непосредственно от министерств-разработчиков;
- сроки проведения экспертизы определяются заданием;
- 5) к проведению экспертизы привлекаются высококвалифицированные специалисты предприятий и организаций.

Экспертное заключение на металлообра-

батывающее оборудование, заложенное в проекте, должно включать:

перечень технической документации, представленной на экспертизу;

краткую характеристику предприятия (завода):

краткое содержание проекта, вида производства и основные технико-экономические показатели данного вида производства по проекту;

краткую характеристику и анализ принятых проектных решений по составу металлообрабатывающего оборудования;

оценку экспертного заключения отраслевого отдела экспертизы на состав оборудования, предусмотренного проектом;

выводы и рекомендации.

В разделе «Краткая характеристика предприятия (завода)» дается краткая характеристика действующего производства: год ввода в эксплуатацию, специализация, годовой выпуск продукции, номенклатура выпускаемой продукции, серийность, число работающих и т. п.

Раздел «Краткое содержание проекта, вида производства и основные технико-экономические показатели данного вида производства по проекту» включает следующие подразделы:

основание для проектирования; перечень основных документов, на основании которых разработан проект (постановление правительства, приказ министерства и т. д.);

краткое содержание проекта;

состав вида производства; структура вида производства — наименование цехов, участков;

специализация вида производства; краткие данные о специализации цехов, участков; производственная программа по каждому цеху, участку в штуках и тоннах;

характеристика кооперации между цехами, участками;

технико-экономические показатели и оценка: правильности определения количества оборудования, исходя из станкоемкости и фонда времени работы оборудования; сокоэффициентов ответствия использования и сменности работы оборудования нормативным; соответствия коэффициента многостаночного обслуживания и серийности производства (экспертно); выработки на единицу металлообрабатывающего оборудования и сравнение ее с отчетными данными завода и проектами-аналогами (при наличии данных в проекте).

В разделе «Краткая характеристика и анализ принятых проектных решений по составу металлообрабатывающего оборудования» на основании спецификации оборудования основного и вспомогательного производства заполняют форму сводных данных прогрессивности оборудования (см. приложение), подсчитывают процент прогрессивного металлообрабатывающего оборудования и дают его сравнение с перспективным парком оборудования на год внедрения проекта.

При отсутствии данных о перспективном парке металлообрабатывающего оборудования экспертно оценивается соответствие прогрессивности состава оборудования этого вида производотва его серийности.

При наличии в проекте металлообрабатывающего оббрудования, получаемого по импорту, дается оценка обоснованности его применения в проекте, возможность замены его отечественным оборудованием.

В экспертном заключении отраслевого отдела экспертизы изучают: замечания, сде-

Руководитель группы экспертизы

ланные по составу металлообрабатывающего оборудования в проекте; уровень этих замечаний; реализацию предложений отдела экспертизы в проекте. Дают также оценку замечаний по уровню состава металлообрабатывающего оборудования в проекте.

В разделе «Выводы и рекомендации» дают оценки соответствия прогрессивности металлообрабатывающего оборудования, заложенного в проекте, характеру производства и достижениям отечественного станкостроения. При наличии в проекте металлообрабатывающего оборудования, получаемого по импорту, дают оценку обоснованности его применения и возможности замены отечественным оборудованием. Представляют рекомендации по повышению доли прогрессивного оборудования в проекте. Дают оценку уровня экспертного заключения отраслевого отдела экспертизы на состав металлообрабатывающего оборудования в проекте.

Экспертные заключения оформляют по приведенной ниже форме.

УТВЕРЖДАЮ:

ф.и.о.

ф.и.о.

Генеральный директор (директор)

(подпись)

(подпись)

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ

на с	остав	(указы:	вается	вид обс	рудова	ния)			_ 000	рудова	ания	проекта	
			(указ	ывается	наиме	нован	ие проек	та)					
разраб	ботанного <u> </u>												
2. 3. ские г	Перечень техн Краткая харан Краткое соде юказатели данн 3.1. Основание 3.2. Краткое с 3.3. Состав ви 3.4. Специализ 3.5. Производо 3.6. Коопераци 3.7. Технико-эн Краткая хара	ктеристи ржание ного ви с для пр одержан да промация вы ственная кономич	ика проек да проектировктировенти ние призводет ида программенти	едприя та, ви ризводо ровани оекта гва оизвод рамма показа	тия (3) пда пр ства по я ства ства тели лиз п	авода оизво о про	і) Эдства і екту. гых про	оектн	новны	ые тех		ономиче-	
	(указывает	е вил о	боруло			'	оборудо	вания	A				
ъ	(указывает езультаты анал												
рудова 6. П обору	Оценка экспе ания, предусмо Выводы и рев риложение. Фо дования по про кключение соста	тренног соменда орма сво оекту.	о прос ции	ектом.			ивности				оборудов		
	(должность эксперта)					(подпись)				Ф.И.О. эксперта			
прогресс	ивности металлореж	ущих стан	ков осно	вного н		тельно			10 прос		менование		
		y. mr.		- - -	1	Специальные			ſ	- 1	 Итого прогрессив- ного оборудования, 		
					PIC	и специальные рованные				В, А,	шт. (% от общего количества)		
№ по пор.	Группа станков	Всего по проекту.	Станки с ЧПУ	Многоцелевые станки	Роботизированные комплексы	Beero	В том числе агрегатные	Автоматы	Полуавтоматы	Станки классов	Основное	Вспомога- тельное произ- водство	
1	2	3	4	5	6	7	8	9	10	11	12	13	

- Токарные
- Сверлильные Расточные
- 4 5 Шлифовальные
- Зубообрабатывающие
-
- 12 Отрезные
- 13 Прочие
- 14 Автоматические линин

шт.

станков

П ри меча ни я: 1. В графах 3-11 данные указываются дробью: в числителе – количество MPC в основном производстве, в знаменателе – количество MPC во вспомогательном производстве.

2. В графе 3 в итоговое число включается количество станков, входящих

в автоматические линии, 3. В графе 11 указываются станки классов В, А, С, не вошедшие в графы 4-10.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Автоколлиматоры 570

Автоматы токарно-револьверные одношпиндельные прутковые — Габариты рабочего пространства и установочные базы 65—67—Параметры 25, 26

Автоматы токарные многошпиндельные горизонтальные прутковые — Габариты рабочего пространства и установочные базы 71—75 — Параметры 29—31

Бабка станка центровая — Технологический маршрут обработки корпуса 444, 445 База данных информационная 369

двойная направляющая 8

измерительная 8

– опорная 7

установочная 7

Валик — Технологический маршрут обработки 410, 411

Вал шлицевый — Технологический маршрут обработки 411—414

Вилка – Технологический маршрут обработки 435

Винт — Технологический маршрут обработ-ки 406, 408

Врезание и перебег при зубофрезеровании 624

- при резьбонарезании 621

при фрезеровании 622, 623, 625

Врезание при работе резцами 620

при работе сверлами, зенкерами и развертками 620, 621

– при шлифовании 624

Время основное технологическое — Методические указания но нормированию 641-646 Время основное (технологическое) обработки деталей на металлорежущих станках — Заготовительные операции 619

- зуборезные работы 618, 619

Протягивание отверстий и пазов 617

 Резьбонарезные и резьбофрезерные работы 612, 613

Сверлильные и расточные работы 611, 612
 Строгальные и долбежные работы 614,

615 — Токарные автоматы, станки с ЧПУ 625

Токарные работы 610, 611

— Фрезерные работы 613, 614— Шлифовальные работы 615—617

Втулки — Технологический маршрут обработки 405

- для метчиков к патронам для нарезания резьбы 316
- для плашек к патронам для нарезания резьбы 315
- зажимные с буртиком для инструмента с цилиндрическим хвостовиком 324, 325
- к выдвижным патронам для плашек 327, 328
- к патронам для метчиков 321к патронам для плашек 323, 324

Втулки переходные быстросменные жесткие

для инструмента с коническим хвостови-ком 342

для метчиков 343

Втулки переходные для крепления инструмента с коническим хвостовиком 328-331

- с буртиком и внутренним конусом Морзе 316, 317

- с пазом для крепления инструмента клином 332-334

Втулки переходные с хвостовиком конусностью 7:24 н внутренним конусом Морзе к станкам с ЧПУ 334— для инструмента с резьбовым отверстием 335

Втулки переходные с цилиндрическим хвостовиком и внутренним конусом Морзе к станкам с ЧПУ 312 и цилиндрическим отверстием 312

Втулки регулируемые с внутренним конусом Морзе к станкам с ЧПУ 336 Высотомер 564

Гидропилиидры двустороннего действия укороченные 235-237

Гидропилиндры одностороннего действия на номинальное давление 10 МПа 232 – 234

- со сплошным штоком 230

с полым штоком 231
 Головки делительные 259

измерительные 562, 563

- шлифовальные - Размеры 394-396

Державки для регулируемых втулок и оправок к станкам с ЧПУ 335

Детали — Примеры схем базирования 11—19 — типа планок — Технологический маршрут обработки 404

Долбяки зуборезные чистовые дисковые прямозубые 304, 305

- хвостовые прямозубые 306

Дороги подвесные одиорельсовые — Основные технические характеристики 168

Заготовки для деталей, изготовляемых из круглого сортового проката — Выбор диаметра 584

Задание на настройку инструментов 365

- сменное 365, 369

Зажимы — Обозначение 8 – 10 — Устройства 9 Закрепление — Понятие 8

Звездочка — Технологический маршрут обработки 425

Индикатор многооборотный 562

Инструменты для станков с ЧПУ – Нормы времени на сборку и настройку 371

- из композита Применение при точении и растачивании 468—474 Применение при фрезеровании 474—480 Режимы резания 465—467
- лезвийные из сверхтвердых материалов Заточка и переточка 456, 464, 465 — Конструк-

ции инструмента централизованного изготовления 455—464

- оснащенные режущей керамикой Конструкции 483—486 Марки режущей керамики 480—482 Номенклатура 484—486 Области использования 489—491 Пластины из керамики 482, 483 Режимы резания 487, 488
- режущие из сверхтвердых материалов на основе нитрида бора Номенклатура 457 463

Интерферометры контактные 560

Керамика режущая — см. Инструменты, оснащенные режущей керамикой

Колесо зубчатое — Технологический маршрут обработки 419 — 421

коническое прямозубое — Технологический маршрут обработки 427, 428

- сменное - Технологический маршрут обработки 423, 424

со шлицевым отверстием – Технологический маршрут обработки 422, 423

Колесо червячное из биметалла — Технологический маршрут обработки 426, 427

Кольцо компенсационное — Технологический маршрут обработки 415

Компаратор фотоэлектрический 565

Комплекс управляющий вычислительный 176,

Комплексы роботизнрованные технологические 110, 112, 113 — Исходные данные для расчета 138 — Классификация обрабатываемых деталей 138—140 — Расчет количества ПР 142 — Станкоемкость обработки 138, 140—142 — Экономическая эффективность 143—147

различных моделей 126—137

Композиты — Марки 455 Конвейеры грузонесущие 167

для транспортирования стружки – винтовые 171 — пластинчатые 171 — скребковые 171

– роликовые 162

цепные 162
 Кондукторы скальчатые консольные с конусным зажимом 215, 216

- с пневматическим зажимом 217, 218

Кондукторы скальчатые портальные с конусным зажимом 222

с пневматическим зажимом 223

Коробка подач — Технологический маршрут обработки корпуса 443

Корпус — Технологический маршрут обработки 442

Краны-штабелеры 159, 160

Кронштейн – Технологический маршрут обработки 437 – 441

Круги — Типы 378

- для зубошлифовальных и резьбошлифовальных станков 389, 390
- для круглошлифовальных и бесцентровошлифовальных станков 387, 388

- для плоскошлифовальных станков пальцевые 386
- на керамической связке 379, 380
- отрезные Размеры 390—392
- прямого профиля для универсальных и внутришлифовальных станков 381, 382

 с выточкой для универсальных и внутришлифовальных станков 383

- тарельчатые для заточных и зубошлифовальных станков 385, 386
- чашечные цилиндрические и конические для заточных и плоскошлифовальных станков 384, 385

Кругломеры 572

Линейки оптические 573, 574 — поверочные 576, 577

Линия гибкая автоматизированная 148

- роботизированная технологическая 110

Манипуляторы для ATCC 168, 169 Маршруты технологические механической обработки деталей в условиях мелкосерийного и среднесерийного производства — см. под названиями деталей, например: Винт, Колесо зубчатое, Вал шлицевый

Материал шлифовальный 378

Машины координатно-измерительные 551,

554 — Характеристики 552, 553

оптико-механические измерительные 563
 Меры высоты 564

Методы измерения отклонений от круглости 538 – 540

- от параллельности 545 550
- от плоскостности 536 539
- от прямолинейности 533 535
- от цилиндричности 540, 541
- профиля продольного сечения 542, 543

Методы измерения радиального биения 544, 545

Метчики гаечные 309, 310 - для конической резьбы 299, 300

Микатор 562

Микрокаторы 562

Миникатор 562

Микрометры 567

Моделирование имитационное 151, 152

Модуль гибкий производственный 149

Мощность резания при зенкеровании алюминиевых сплавов 676

- при зенкеровании стали и чугуна 675
- при рассверливании стали 673, 674
- при рассверливании чугуна 674, 675
- при сверлении алюминиевых сплавов 672,
 673
- при сверлении стали 670, 671
- при сверлении чугуна 671, 672

Накатывание метрической резьбы — Диаметры стержней 596, 597

Направляющая со скосом под углом 55 — Технологический маршрут обработки 429, 430 **Нарезание резьбы** метрической — Диаметры отверстий 599—601 — Диаметры стержней 593—595

- трубной копической - Диаметры отверстий 603 - Диаметры стержней 598, 599

трубной цилиндрической – Диаметры отверстий 602 – Диаметры стержней 598

Номенклатура инструментов 369

Нормирование работ, выполняемых на станках с ЧПУ и станках гипа «обрабатывающий центр» — Методические указания 676—683

Нутромер индикаторный 565

интерференционный 564микрометрический 566

с измерительной головкой 565

Оборудование металлорежущее в парке базового года выпуска — Средняя производительпость 721, 722

Оборудование металлорежущее — Выбытие из парка в планируемой пятилетке 725 Коэффициент внугрисменного использования станков прогрессивной категории в планируемой пятилетке 725, 726 — Коэффициент воспроизводства станков прогрессивной категории в планируемой пятилетке 723, 724, 726, 727 - Коэффициент интенсивного использования оборудования 717 — Коэффициент экстенсивной загрузки оборудования 717 — Коэффициент нормативный (проектный) сменности работы оборудования 717 — Коэффициент сменности, принятый в расчете производственной мощности 717 – 719 – Темп изменения производительности новых станков 721, 724, 725

Оборудование участка подготовки инструментов 377

Опоры — Обозначения 8 - 10

Оправки для насадных зепкеров и разверток 340, 341

Оправки зубчатые (шлиневые) центровые 206 — 208 — конические 203 — 206 — прямобочные 206 — 212

Оправки качающиеся для насадных разверток 338 — 340

конические цептровые 196 – 199

- расточные консольные 344 355
- с конусом 7:24 для насадных торцовых фрез 356
- с поддерживающей втулкой и хвостовиком 360-362
- с продольной пшонкой и коническим хвостовиком с лапкой для торцовых фрез 358, 359
- с разрезными цангами для точных работ 189—191
- с торцовой шпонкой и коническим хвостовиком с лапкой для торцовых фрез 357, 358

Оправки с хвостовиком конусностью 7: 24 для пасадных горцовых фрез к станкам с ЧПУ 338 — для получистого растачивания к станкам с • ЧПУ 337

 для чистового растачивания к станкам с ЧПУ 337

Оправки с цилиндрической цапфой и хвостовиком конусиостью 7:24 для горизонтально-фрезерных станков 359-361

Оправки цилиндрические центровые 200 – 202 – ступенчатые 192 – 195

Оптикатор 562

Оргоснастка участка подготовки инструментов 377

Оснастка для станков с ЧПУ при размерной настройке инструментов 363

Ось – Технологический маршрут обработки 409

Отверстия протягиваемые шлицевые с прямобочным профилем — Размеры 592

Отклонения формы и расположения поверхностей — Методы измерения — см. *Методы измерения отклонений* — Формулы для определения погрешностей измерения 551

Отливки – Допуски размеров 582 – Классы гочности размеров и масе 581 – Основные припуски на механическую обработку 583

Ряды припусков 581

Патроны выдвижные для плашек 326

- для быстросменного инструмента 341, 342
- для метчиков 320, 321
- для парезания резьбы 315

для плашек 322

Патроны поводковые для качающихся оправок 320

- для резьбовых концов шпинделей 188
- токарные 187
- самоцентрирующие токарные трех- и двухкулачковые и рычажно-клиновые 184, 185
- цанговые 318, 362
- четырехкулачковые с независимым перемещением кулачков 186

Планка — Технологический маршрут обработки 428, 429

Пластины из керамики — Номенклатура 482, 483 — Физико-механические свойства 481

- плоскопараллельные стеклянные 575
- режущие Расшифровка условных обозначений по стандарту ISO 1832 464

Плашки круглые для конической дюймовой резьбы 301

для метрической резьбы 311

Плиты к скальчатым кондукторам 219—221, 224

поверочные и разметочные 577

прямоугольные магнитные 226
 Плоскомеры оптические 575

Пневмоцилиндры вращающиеся с воздухопроводящей муфтой 237, 238

Поводки к оправкам для фрез с торцовой шпонкой к станкам с ЧПУ 338

Погрешность базирования 8 — установки 8 Подсистема управления технологической подготовкой производства 365, 369

Полуавтоматы вертикально-фрезерные с крестовым столом 61, 62

Полуавтоматы токарные вертикальные патронные 84-87

многошпиндельные 27, 28, 76 – 78

 револьверные одношпиндельные патронные 67 — 70

Преобразователи измерительные электронные для линейных измерений 561

Приборы для измерения внутренних размеров

и контроля зубчатых колес 555 — 559

отклонений от прямолинейности 573

 параметров шероховатости поверхности 579, 580

 углов и прямолинейности образующих конусов 571

Приборы для поверки изделий на биение 579 для размерной настройки инструментов 363, 365, 372

– лазерные 554, 560

 управляющие прессом обработки 554 Припуски на обработку отверстий в сплошном матернале по 7-му и 8-му квалитетам 585

по 9-му и 11-му квалитетам 587, 588 Припуски на обработку отверстий точные

592, 593 — увеличенные 592, 593 Припуски на обработку прошитых или полученных лигьем отверстий по 7-му и 8-му квалитетам 586, 587

по 9-му и 11-му квалитетам 588, 589 Припуски на тонкое (алмазное) растачивание отверстий 605, 606

- на хонингование отверстий 606

Припуски на чистовую обработку зуба цилиндрических зубчатых колес 607

зубчатых колес 608

червяков 608 — шлицев 607

Припуски на шлифование бесцентровое наружных цилиндрических поверхностей (на диаметр) 604

круглое деталей в центрах (на диаметр)

отверстий (на диаметр) 604, 605

Проекторы измерительные (с цифровым отсчетом) 574

Протягивание отверстий — Размеры 590, 591 Профилограф-профилометр 579

Профилометр цеховой 580

Прямомеры 573

Развертки конические — Расчетная плина хола 621

Растачивание — Применение лезвийного инструмента из композита 468 – 474 – Режимы резания инструментом из композита 466 Режимы резания на многоинструментальных станках — см. Станки сверлильные. Станки токарные, Станки фрезерные

Резцедержатели с базирующей призмой с открытым перпендикулярным пазом к станкам с ЧПУ 314

Резцедержатели с цилиндрическям хвостовиком несимметричные с перпендикулярным открытым пазом к станкам с ЧПУ 313

- с параллельным открытым пазом удлиненные к станкам с ЧПУ 314

 с перпендикулярным открытым назом к станкам с ЧПУ 313

Резцы – Расшифровка условных обозначений по стандарту ISO 5608 464

 оснащенные керамикой — Режимы ния 487, 488

 расточные державочные из твердого сплава 239 — 243

строгальные 257—263

Резцы токарные для контурного точения с механическим креплением многогранных твердосплавных пластин 267, 268

подрезные 247, 248

 проходные отогнутые из быстрорежущей стали и с пластинками из твердого сплава 244 проходные прямые из быстрорежущей стали 245 — с пластинами из твердого сплава 246 — упорные 247 — 249

– расточные 250 – 252

резьбовые 253—256

сборные 264 – 266

Резьба – Режимы резания при шлифовании 640, 641

 метрическая — Диаметры отверстий под нарезание 599-601 - Диаметры стержней под накатывание 596, 597 — Диаметры стержней под нарезание 593 - 595

 трубная коническая — Диаметры стержней под нарезание 598. 599 - Отверстия пол нарезание 603

цилиндрическая - Диаметры — трубная стержней под нарезание 598 – Диаметры • отверстий под нарезание 602

Резьбонарезание — Суммарная величина врезания и перебега 621, 622

Рейка зубчатая — Технологический маршрут обработки 431, 432

Ремонтосложность станков с устройством **ЧПУ** 708-712

Робокары фирмы «Интрансмаш» 169

Робот промышленный 110 — Классификация 111, 112

Роботы промышленные различных моделей 114 - 125

Роботы транспортные-перегрузочные наполь**ные** 168 — рельсовые 168 Рычаг — Технологический обра-

маршрут ботки 433, 434, 436, 437

Сверла спиральные 269-276 Сегменты шлифовальные 393, 394

Система автоматизированная инструментального обеспечения 149

149, 154 - 158 -- транспортно-складская Компоновка 155-158 - Структура 155

Система автоматического контроля 150 гибкая производственная 152—154, 180, 181

обеспечения функционирования ГПС 149

– операционная – Выбор 178, 179

стружкоудаления 169—171

Система управления автоматизированная 171— 180

Скобы с отсчетным устройством 566

Средства вычислительной техники для ACV 176, 177

Стакан – Технологический маршрут обработки 418, 419

Станки — Группы 20—22 — Классы точности 23 — Перечень ГОСТов на нормы точности 23, 24 — Формулы для определения основного (технологического) времени обработки деталей — см. Время основное (технологическое) обработки деталей на металлорежущих станках

Станки вертикально-фрезерные с крестовым столом 63, 64

- консольно-фрезерные 55-61, 98-105

координатно-расточные 50 – 53

- координатно-сверлильные с ЧПУ 54, 55

многоцелевые 44 – 49, 88 – 98
 прецизионные – Технологический регламент на обработку деталей – см. Технологи-

ческий регламент на обработку базовых и корпусных деталей, Технологический регламент на обработку пинолей, гильз, шпинделей и ходовых винтов

 продольно-строгально-фрезерные и комбинированные продольно-обрабатывающие 105—109

Станки сверлильные — Мощность резания — см. *Мощность резания*

Осевые силы резания при зенкеровании
 669

Осевые силы резания при рассверливании
 670

Осевые силы резания при сверлении отверстий 669

Период стойкости инструмента 662

Подачи 661, 662

Режимы резания 666, 667

Рекомендуемые группы подач 660

 Скорость резания при обработке отверстий в деталях из алюминиевых сплавов 665, 666

- Скорость резания при обработке огверстий в стальных деталях 663, 668

Скорость резания при обработке отверстий в чугунных деталях 664, 665, 668

Станки токарно-винторезные 35—43

- токарно-револьверные 31-34, 79-83

Станки токарные – Периоды стойкости инструмента 647

CIPYMENTA 047

- Подачи для прорезных, фасонных и широких резцов и расточных головок с плавающими ножами 647
- Подачи при черновом и чистовом точении 646, 647
- Скорость резания при точении различными резцами 648 650
- Условная расчетная мощность резания 650,
 651

Станки фрезерные — Мощность резания 658 — 660

Период стойкости инструмента 653

 Подача на зуб фрезы при обработке пазов 652, 653

 Подача на зуб фрезы при обработке плоскостей 651, 652

Скорость резания при обработке деталей из стали 654, 655

— Скорость резания при обработке деталей из чугуна и алюминиевых сплавов 655—658

Станки с числовым программным управлением — Схемы базирования и обработки деталей — см. Схемы базирования и обработки на станках с ЧПУ

Стеллажи АТСС 165, 166

Стойки 568

Столы поворотные 164, 225

Стопор — Технологический маршрут обработки 407

Строгание — Величина перебега стола 623 Схемы базирования обработки на станках с ЧПУ детали «планка» 446, 447

- вилки 453, 454

кронштейна 448

направляющей планки 450

– плиты гидравлики 451 – 453

рычага 449

Схемы компоновки инструментов 364-368

Тара для АТСС 166

Тележки передаточные для АТСС 161

– ручные 372

Технологический регламент на обработку базовых и корпусных деталей — Контроль ответственных параметров станины 500-503

— Технические требования на обработку типовых деталей 493—495

типовых деталей 493—493

— Технологические условия проведения регламентируемых операций 496—498

— Типовая схема изготовления деталей 495 Технологический регламент на обработку пинолей, гильз, шпинделей и ходовых винтов — Контроль параметров гильз и пинолей 510— 515

Контроль параметров ходовых винтов 527 – 531

Контроль параметров шпинделей 519— 523

Общие требования 504

 Технические требования на обработку типовых деталей 504, 505, 515, 516, 523

- Технологические условия проведения регламентируемых операций 505-509, 517-519, 524-527

Типовая схема изготовления 505, 516, 517, 523, 524

Тиски станочные винтовые 227, 228

для точных работ 215

с ручным и механизированным приводом 213 – 215

Точение - Применение лезвийного инстру-

мента из композита 468—472— Режимы резания инструментом из композита 466 Трубы визирные измерительные 574

Трудоемкость полная (плановая) — Определение 690—694

- продукции Основные понятия 684, 685
- технологическая (проектная) Основные методы определения 685—688 Пример расчета 688—690

Угольники поверочные 577, 578 Уровни 570

- гидростатические 575

Установка — Понятие 8 Устройства для контроля габаритных размеров тары 163

массы груза 164

Устройства перегрузочные 163

- приемные 165

- установочные - Обозначение 9, 10

Участок гибкий автоматнзированный 148 — размерной настройки инструментов 369,

370, 376, 377 — роботизированный технологический 110

Фланец — Технологический маршрут обработки 416, 417

Фрезерование — Применение лезвийного инструмента из композита 474—480 — Режимы резания инструментом из композита 467 — Суммарная величина врезания и перебега 622, 623, 625

Фрезы дисковые двусторонние со вставными ножами, оснащенными твердым сплавом 284, 285

— трехсторонние 280, 281 — со вставными ножами, оснащенными твердым сплавом 286—288

Фрезы для обработки Т-образных пазов 297

для пазов сегментных шпонок 295
 концевые обдирочные с затылованными

— концевые оодирочные с затылованным зубьями и коническим хвостовиком 279

пазовые затылованные 292

- полукруглые вогнутые и выпуклые 293,
 294
- резьбовые гребенчатые с коническим хвостовиком 302, 303
- с напайными твердосплавными пластинами для обработки Т-образных пазов 294 Фрезы торцовые насадные мелкозубые со вставными ножами, оснащенными пластинами из быстрорежущей стали 289

из твердого сплава 291

Фрезы торцовые насадные с креплением на шпонке 290

- трехсторонние со вставными ножами из быстрорежущей стали 282, 283
- цилиндрические 278 оснащенные пластинами из твердого сплава 277
- червячные чистовые для шлицевых валов с прямобочным профилем 298

- шпоночные 296

Хомутики поводковые для токарных и фрезерных работ 229

- для шлифовальных работ 229, 230

Цанги зажимные для инструмента с цилиндрическим хвостовиком 319

- станочные вращающиеся 227

Цех гибкий автоматизированный 148, 149

Шеверы дисковые 307, 308

Шлифование валов из закаленной стали на круглошлифовальных станках — Группа материалов, обрабатываемых шлифованием 626

- Припуски на диаметр при шлифовании шеек валов 627
- Припуски на шлифование торцов шеек валов 628

Режимы резания 628 – 630

Шлифование деталей из закаленной стали и серого чугуна на внутрвилифовальных станках — Выбор шлифовального круга 631

Режимы резания 631 – 633

Шлифования зубьев высокоточных зубчатых колес на зубошлифовальных станках — Выбор шлифовального круга 636

- методом копирования 640

 методом обкатки двумя тарельчатыми кругами 638, 639

методом обкатки днековым коническим кругом 637, 638

Шлифование плоскостей деталей из закаленной. стали и серого чугуна на плоскошлифовальных станках — Выбор шлифовального круга 633

Припуски 633

Режимы резания 633-635Штангенглубиномеры 568

Штангенрейсмасы 568

Штангенциркули **568** Штативы 569

винтом 398

Экспертиза состава металлорежущего оборудования в проектах 728, 729 Элементы крепления шлифовальных кругов

- на оправке наклеиванием 397

на переходных фланцах винтами (гайками)
 401

 на шпинделе или оправке винтом или гайкой 398, 399 — фланцами 400

Эффективность экономическая технологии обработки деталей машиностроения — Выбор наиболее экономически эффективного варианта технологического процесса обработки заготовки 713 — 715

- Определение капитальных вложений 697—
 700
- Основная терминология 695, 696
- Себестоимость механической обработки заготовки — Определение 700 – 713
- Эффект годовой экономический Определение 696, 697