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PREFACE

A mathematical model of a physical system provides the engineer with
the insight and intuitive understanding generally required to make effi-
cient system design changes or other modifications. A simple formula is
often worth a thousand numerical simulations, and can reveal connec-
tions between different control parameters that might otherwise take
hours or weeks to deduce from a computational analysis. This book is
intended to supply the undergraduate engineer with the basic math-
ematical tools for developing and understanding such models. A firm
grasp of the topics covered will also enable the working engineer (edu-
cated to bachelor’s degree level) to understand, write and otherwise
make sensible use of technical reports and papers.

The book was orginally written for students taking the Boston
University senior level, one-semester course in engineering mathematics
for mechanical and aerospace engineers. This course marks the final
exposure of these students to formal mathematical training prior to
graduation, and includes material taken principally from Chapters 1-4.
The intention is to consolidate earlier courses in ordinary differential
equations, vector calculus, Fourier series and transforms, and linear
algebra, and to introduce more advanced topics, including complex vari-
able theory, partial differential equations and elementary generalised
functions leading to Green’s functions. The book has also formed the
basis of a review course for first-year engineering graduate students. It
is not possible to cover in a one-semester class all subjects with which

IX



X Preface

an ‘educated’ engineer might reasonably be expected to be familiar;
additional topics are included in the text, mainly for reference, on
conformal transformations, special functions and variational methods.
However, an overriding objective has been compactness of presentation,
and to avoid the currently fashionable trend of attempting to achieve
encyclopaedic coverage with a text that typically runs to a thousand
or more pages.

M. S. Howe
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LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

1.1 First-Order Equations

General form:

dy _ : . dy
o POy = (%), or y'+ piX)y —r(x), where y" — -
Homogeneous equation y'+ p(x)y = 0.
Solve by separating the variables:
\J — =_ \]p(x)dx + Ci, C\ = constant

Iny = —J p(x)dx + Ci
The general solution is y —Ce~ $pC)dx;

C = ed = arbitrary constant

This solution may also be derived by means of an integrating factor, as
described below for the inhomogeneous equation.

Example Find the general solution of y' + x2y = 0.

\]A - \]x2dx+Ci,

Iny = -i.x3+ ClI

«3
y=Ce-~.
"3
Ify=2when x = 0,then C=2andy = 2e" 3.

1



2 Mathematical Methods for Mechanical Sciences

Inhomogeneous equation y' +p(x)y —r(x).

This is solved by multiplying by the integrating factor f(x) = e”p* &
fy'+ fPV =", (y(x)efp(x)dx) = r(x)efpNe

y(x)efp{X)dx = J r{x)"p[Xdxdx + C

Sy =e-f dexJ r(x)efp)dx dx + Ce~ fp(x)dx

= particular integral

+ solution of the homogeneous equation

Example Find the general solution of y' + x2y = x2.

Integrating factor = e-fx dx = en“

y{x)C3 —/I x2e 3 dx + C

y=1+Ce~"

Ify —2whenx =0,then C=1landy —1+ e 3.

Problems 1A

Find the general solution of:

1 y'—Ay = 2x —Ax2. [y—x2+ Ceix]

2. xy' +2y —dex2. [y= (C + 2e*2)/x2}
.y + 2ytanx —sin2x. [y = Ccos2x + cos2x(tan x —x)\
.y +ycotx —sin2x. \y —| sin2x + Ccoseca;]

. sinxy' —ycosa = sin2a;. [y = 2sinxIn(sinx) + C sinx]

Lyf+ % =ex. [y=C/x2+ (1-2/x + 2/x2)ex]
(X =Dy + 2y=x2. [(k—I1)3y = C + »b5/5 —xA2 + x3/3]

3

4

5

6. xlivxy' + y —21nx. [y = Inx+ C/In.x]

7

8

9. (x+ Ly'+ 2k—1)y =e~2x. [e2xy = C(x + 1)3—]]
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Y'+x = 5sin(f)- [j/=-cosf + |sinf + f]
1—x2)y'+x(y —a) =0 [y—a+ C(1—x2)3]

y'—(@ + cotx)y = 0. [y= Cexsinx]

1+x2)y'+xy =3x+ 33, [y=1+x2+ C(1+ x2)-7]

sinx cosxy' +y —cotx. [y—(C + Intanx)/ tan x]

Solve:

15.
16.
17.
18.
19.
20.
21.

22
23.
24.
25.

26.

27.

1.2

y’'+ 2xy = 4x, y(0) =3. [y—2+ e-x2]
ylcoth2x = 2y —2, ?/(0) = 0. [y = 1—cosh2x]
y'+ ky = e~kx, y(0) = 1. [y= (1 + x)e-fcx]
y’=a(y-9), 40)=b [y=g+ (b- g)eax]
YY = 2a, 2/(0) = 0. [y2= 4ax]
yy’+x =0, 2/0) = a. [x2+y2=a?]
yy'+ =0 2(0)=6. £ +£ =1
(x+ D2 =2- 3 2/(0)=8. [J=5x+1
IxY'+ =0, 2(0)= - [222=1]]
1+ x2)y' = ffy, (0)=0. [y= "(tan-1x)2]
+ 24 = sin2t, r = 0 whent = 0. [r = {sin(2t —a) + e_3tsina}/\/I3,
where tana = |]
Water runs out through a hole in the base ofa circular cylindrical tank at speed
V2ghft/s, where g = 32ft/s2 and h is the water depth. If the tank is 2ft in

height, 1ft in diameter and is full at time t = 0O, calculate the time at which
half the water has run out when the effective area of the hole is 0.25in2. [47s]

The current rin a circuit satisfies Ldi/dt+Ri = E, where L, R. E are constants.
Show that when t is large the current is approximately equal to E/R.

If, instead, E EOcoscat, where EO, w are constants, show that when t is large

Eacos(cut —e)
® where tane=
VR2+ uj2L 2~

Second-Order Equations with Constant Coefficients

Homogeneous equation y"+ ay' +by =0, a, b— constants.

Inhomogeneous equation y" + ay' + by = r(x).

General solution:

y = Ayi(x) + By2(x) + yp(x), A, B = constant
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where yi, y2 are any two linearly independent solutions of the homo-
geneous equation, called basis functions or complementary functions,
and yp is a particular integral that yields r(x) when substituted into
the equation.

Solution of the homogeneous equation Because d(exXx)/dx =
XeXx y = eXx will be a solution of the homogeneous equation if J1is
a solution of the characteristic equation

“b\/nA—4f)

A2+ aX+Db=0, ie for A= —11 A = A, A2 (1-21)

Case 1 A ™ A2

yi = eAXand y2 = ex2X are linearly independent and the general solu-
tion is therefore

y = AeXIX+ BeX2X (1.2.2)

The values of the constants A, B are fixed by the boundary conditions.
Example Solvey" + 2y'- 8y =0, y{0) =1, y'(ff) = 0.
Characteristic equation : A2+ 21—8 =0
A= -4, 2
A, y{x) = Ae~4x + Be2x.
Atx=0:y=1 andy =0
A. A+B =1

and —4A +2B = 0.
e-4K + 2e2x
y = - .
Case 2 A= A2= A

The two solutions in (1-2.2) are not independent. The differential equa-
tion can now be written in the factored form

y"+av'+b={-1-x) (s - A»=a

If z= gi by, thenz! —Xz=0, ie 2= BeXx B = constant,

2 y'-Xy =BeXx
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An integrating factoris: e x
+(y(x)e-"*)=B,
i.e. the general solution is

y = (A +Bx)eXx A, B = arbitrary constants. (1.2.3)

Case 3 Complex roots J1of the characteristic equation:

When a and b are real and a2 —4b < 0 the roots (1.2.1) of the char-
acteristic equation are complex conjugates A= —a/2 + i\/4b —a2/2 =
—a/2+LU, say, where i = \/~C and the general solution assumes either
of the forms

y =e~" [Aek+ B'e~rTK), Q= —, A', B' = constants

2
e~" (Acos(flr) + Bshi(Qx)), A, B = constants, (1-2.9)

Example The two forms of the solution (1.2.4) are related by Euler’s formula

“1 i (i;)z . ﬂgvs L W, 0b ()8 (07

4 5! 6! 7
X2 X4 X6 . r\x X5 x7
~2\+¥ “ ad+ 3 5 7+
= cosX + isinx. (1.2.5)

Example Simple harmonic motion at (a real-valued) radian frequency w is
described by the equation

d_2y + uffy = 0, where t denotes time.
at2

The roots of the characteristic equation are J1= zica, with the general solution

y = dcos(o;t) + Bsm(u>t) = A'eluk + B'e~Ilu)t.

Problems IB
Find the general solution of:

1 y"+10y’+ 25y = 0. [y= (A + Bx)e~5x)

2. y"+4y'+ 9y —0. [y= (Acos\VEx + B sin\/bx)e~2x]
3. y"—6y’+ 8y = 0. [y= Aedx + Be2x]
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4, y" —6y'+ 25y = 0. [y = (Acosdx + B sin4x)e3x]

5. y" —4y = 0. [y = Ae2x + £e-2x]

6. y'+ 4y =0. [y= Acos2x + B sin2x\

7.y —y'+y=0. [y—(Acos”x + Bsin*Yx)eix]

8. y"+3y'=0. [y=A+Be-3x}

9. Transform the equation y" +x2+y + 2 = 0 by making the substitution y(x) =
z(x) —x2, and hence find the general solution, [y = —x2+ A cosx + B sinx]

Solve:

10. 4(y" -y') +y =0, y(0) =0, 22) = 2. [y=xe3l"]]

11. y" - 16y = 0, 7/(0) = 1, 7/(0) = 20. [y = 3edx - 2e-4x]

12. y"+ 6¢ +9y =0, 7/(0) = —4, ¥(0) = 14. [y= (2x —4)e_3x]

13. y" - 161, =0, 7/(0) = 5 y{\) = 5e. [y= 5e4x]

14, y" + 9y =0, y(n) = =2, y'(it) = 3. [y= 2cos3x —sin3x].

15, y" - 2¢ +2y =0, 7/0) = -3, 1/(7r/2) = 0. [y = -3excosx].

1.3 Euler’s Homogeneous Equation

The equation

x2y" + axy' + by —r(x), a, (inconstant, (1.3.1)

is equivalent to

dy
- - - - A + =
xdX \de yA-(a- 4 by = r(x),

which is reduced to a constant coefficient equation by the substitution

=e2 hich implies that x— = —.
X = e2, which implies axdX &

Thus,

S+(a - 1)Tz+by=r(e)-

The homogeneous form of this equation is solved by the method of 81.2
using the characteristic equation

MR+ (a—1DA+ b—0.



Linear Ordinary Differential Equations 7

Example Find the general solution of x2y" + 9xy' + 16y = 0.
The substitution x = ez reduces the equation to

d?+ SdTh 16y = 0, with characteristic equation A2+ 8/1+ 16 = 0,

A= -4, -4.
(A+BInx

y= (1+ Bz)e~4z = wl

Problems 1C

Find the general solution of:

1 x2y" + Q.2xy' + 6.762/ = 0. [y = (A + B Inx)/ k2-6]

2. x2y" +xy'+y=0. [y—Acos(lnx) + B sin(Inx)]

3 x2y" +xy' —9y =0. [y=Ax3+ B/x3]

4. x2y"—2xy'+2y=0. [y=Ax+ Bx2}

5 0k+ 1)V - 20k+ 1)y' - 10y=0. \y=A(x+ 1)5+ B(x + 1)“2]
6. xy" —3xky' + 4y = 0.[y = x2(A + B Inx)]

7. w2y + oy —4y = 0. [y=Ax2+ B/x2]

8. x2y" —2ky' —4y = 0. [y= Jixd+ B/

9. x2y" - 20y = 0. [y=Ax5+ B/x4}
10. x2y" —xy' + 2y = 0. [y = x{A co3(1mx) + Beln(1mk)}]
M- ¥+ 1y'=0. [y=A +B/¥Y
12. x2y™' + bxy" +y' = 0. [y=A(nx)2+ B Inx+ C)

13. x2y" + 8xy' + 2by = 0. [y = {Acos(31nx) + £?78T(31nx)}/ k4]
14, 1+ 2x)2y" - 6(1L + 2x)y' + 16y = 0. [y — (@1 + 2x)2{N1 1n(l + 2x) + B}]
15, A+x)2y" + 1+ x)y'+y=0. [y= Ncos{In(l + x) + a}]
Solve:
16. 4x2y" +dxy' - y= 0, y(4) = 2, y'{4) = - [y = 4ly/x\
17. x2y" - xy'+2y =0, 2/(1) = -1, y{1) =-1. [y= -xco3(lnx)]

1.4 Method of Reduction of Order

Let y —Y(K) be any solution of the homogeneous equation

y" + P(xX)y' + gq{x)y = 0. (1-4.2)
The general solution y(x) can be found from y\(x) by the following
procedure.
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Set y = yi)v(x),
y'=yl[v + yiv',
y' =y H2y[vi Fyw.

Substitute into (1.4.1) and collect terms:

viyr+ v (2y[ + pyij + v [y" + py[ +ayl) =0.

Because y\ is a solution of (1.4.1) the coefficient of v is zero. Hence,

= U ( +p(x)\, where U=v"
dx V 21 J

Integrating this first-order equation for U:

dv Be- f p(x)dx
— =U= - y §‘ , B = constant,

dx
so that
e~ f p(x)dx
------ 2--—-dx, A —constant.
Vi
Hence, the general solution y = yxv is
J J—F p()dx
y(x) = Ayi(x) + By”*x) y dx. (1.4.2)

Example Find the general solution y = Ayi(x) + ByAx) of
x2—1)y" - 2xy' + 2y =0, given that yx=x.
The equation for U = v' is

1du _ -2 2X

ie.v i —B [1
U dx X x2—1’ € [

integrating, and setting the constant of integration equal to zero,

Va:B(x+£), ie. Y2 =xv(x) = B(1 + x2), y = Ax + B(1+ x2).
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Problems ID
Find the general solution y = Ayffx) + By2(x) given y\{x)\
L (x+D2y"-2x+ Ny +2y=0, yi=I1+x. [y=A({l+x)+B( +x)2]
Xy" +2y'+xy =0, yi=s". [y=A8 +Be"]
(x+ 2)y" —(2x +b)y'+ 2y = 0, y\ = e2x. [y—Ae2x+ B(2x + 5)]
x2y" —@2+ 2x)y' + (x+ 2)y =0, y\ —x. [y = x(A + Bex)\
xy" —2(x+ y'+ (x+ 2)y =0, y\=ex. [y=(A+ Sx3)ex]
X2yt + xy' —9y =0, 2i=x3. p=/x3+ B/x3]

N oo w0 >

X(xcosx —2sinx)y" + (x2 + 2)y'sinx —2y(xsinx + cosx) =0, y\ = x2.
[y = Ax2+ B sinX]

D Dyt - 2xy'+ (x—Dy =0, yi=ex. [y={A+ B/(x + D}ex]

9. x2y" + x2y'+ (x —2)y —0, 2i = 1/x. [y=Alx+B{x+ 2+ 2/x}e~x]

10, xy" —@2x+ )y'+ (x+ )y =0, y\ = ex. [y= (A + Bx2)ex]

o x(x+ Dy" - 2y - 2y =0, =1/l +x). [y= 1+ Bx3)/(l +x)]

12. Solve 4.x2y" + 4xy' + (4x2 —I1)y = 0 by making the substitution y=  zjffx.
\z" +z =0,y = {Acosx + B sinx)/i/x]

(=<}

13. Set y = xnz in the equation x2y" + 2x(x + 2)y' + 2(x + 1)2y = 0 and choose
n so that the equation for z has constant coefficients. Hence solve the given
equation.

[n=—,z"+22+2z=10, y =x~2~x(Acosx + Bsinx)]

1.5 Particular Integrals of Second-Order Equations

Consider the problem of finding a particular integral yp(x) in the general
solution

Y= Ayi(x) + By2{x) + yp(x),

of
y"+ ay'+ by = r(x), a bconstant. (1.5.1)

The particular integral can be found in simple form for a certain class
of functions r(x). When r(x) is a linear combination of the terms in
the first column of Table 1.1, yp(x) will generally consist of a linear
combination of the corresponding terms in the second column (see 81.6
for r(x) of arbitrary functional form).
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Table 1.1 Particular integrals (C, aj, K, M, a, fl
are constants; m > 0 is an integer)

r(x) Yp(x)
eax Ceax
Xxm ao + aix + a-ix2 -—--+ amxm
aQx eax(ao + aix + a?x2 \----4-omxm)
cos fix K cosfix + M sin fix
sin fix K cosfix + M sin fix
eax cos fix eax\K cos fix + M sin fix]
eax sin fix eax [K cos fix + M sin fix]

Example Find the general solution of y" —y = 3e2x.
The solution of the homogeneous equation isy — Acx+ B c~x. Set yp = Ce2x, where
the constant C is to be found. Substituting into the left-hand side of the equation:

4Ce2x - Ce2x = 3e2r.
c=1

general solution y = Aex + Be~Xx + e2x.

Example Find a particular integral of y" + 5y' + 6y —9x4 —x.
yp = a + bx + cx2 + dx3 + ex4,
yp = b+ 2cx + 3dx2 + 4ex3,
yp = 2c + 6dx - 12ex2.

Substitute into the left-hand side of the equation and equate coefficients of xm,
m =20,1,..., 4 on both sides:
6a+ 56+ 2c= 0 x°
66+ 10c+ 6d = —1 X1
6c+15d+12e= 0 X2
6d+20e= 0 X3
6e = 9 x4.
b=—1m ¢=2 4= s
yP=6- lIx + )}%(9-5x3+

Example Find the general solution of y" + 2y' + 5y = sin2x.
Characteristic equation: A2+ 2/1+ 5= 0,

A= —1+2r and y =e~x(Asin2x+ Acos2xJ + yp,
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where
yp = K cos 2x + M sin 2x
yv = —2K sin 2x + 2M cos 2x
yp = —4K cos 2x —4M sin 2x.

Substitute into the equation and equate coefficients of sin2ir, cos 2a: on both sides:

M—4K=1 W +K =0 ie.K=—, M= —
17 17
e x/A sin 2x + A cos 2 ) '-——4——-cos 23 H——%--sin 2X
y ¢ 7 Y '
Resonant forcing occurs when r(x) is proportional to y\(x) or ¥%2{x).

When r(x) = eXx (where J1is a root of the characteristic equation) there
are two possibilities:

Casel AD

yp = AxeXx. (1.5.2)

Case 2 A= A2
yp = AX2eXx. (1.5.3)

Case 2 arises only for real values of Awhen a and b are real.
More generally, if r(x) = xmeXx, m > 0, we have:

Case 3 AXD A2

yp = eXx(@a0+ a\X + a2 H-----ham+ixm+l). (1.5.4)

Case 4 A= A2
yp = Axm2eXx. (1.5.5)

For complex A= a = LW and r(x) — eaxcos Qx or eaxsin Qx, the
particular integral is given by:

Case 5 A= azt LW:

yp = xeax [K cos Qx + M sin fix], (1.5.6)
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and more generally, for r(x) = xmeaxcosflx or xmeaxsin fix (where
m > 0) by:

Case 6 J1= a = ifl:

yp=¢ (do+ a\x + a2x2+ eee+ am+\Xm+1) COS fix

{10 + D\X + axXr -}-see + brHixm+l)sinfix . (L5.7)

Example Find the general solution of y" —2y' + y = ex.
Characteristic equation;: A2—2/1+ 1=10, ie. A= 1, 1

y = {A + Bx)ex +yp, yp = Cx2ex.

C is found by substituting into the differential equation:

C(2+ ax+ x2n —2¢c(r2x + X2j + C~x2j = 1, * 4

Example Forced simple harmonic motion: ~ + fl2y —sin fit.
Roots of the characteristic equation A= +Ll

y = Asinfit + B cosfit + t (K cos fit + M sin fit~
K and M are found by substituting into the differential equation: K = — M = 0,

y = Assinfit + B cos fit —— cosfit.

Problems IE

Find the general solution of:
1 y"+y=3x2. [y= Asing+ Bcosx + 3x2—6]

"—4y = e2x. [y = Ae2x + Be~2x + §e2X]

"+4y'+y = 2sinx —4cosx. [y=e~2x(Ae”x+ Be~"x)—sinXx—| cosx

"+ 9y =cos3a, [y=Asin3x+ Bcos3x+ | sin3x]

"+ 8y' + 16y = 6e~4x. [y = e~ix(A + Bx + 3x2)]

"+ 4y —sinxsin3x. [y= " cos4x + Mcos2x + (B + |x) sin 2X]

N o ok~ W N
< K <K < < < <

' —3y' + 18y = sinh2x. [y = eix{Acos("-x) + Bsin(*"x)} + i e -

8. y" - 6y + 8y = edk—cos2x. [y = Aex+ {B + \x)edk—" (cos2x —3sin 2x)]
9. y" +3y' + 2y = e~xsinx. [y= e-x(J1 —| sinx —| cosx) + Be~2x]

10. 3y" - by' +2y = x2ex. [y=ex(A + 18x- 3x2+ £x3) + Beix]
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1Ly + 6y + 9y = (L+9e = \y=e 3(A+Bx+\x2+ [x3)]
12.y" +y +y = ex(x + coBX). =€ DKd cos k™ + -Bsin

ex{|(x - 1) + Yjj(2cos:r + 33Tx)}]

13

T+

13, y" —4y' + 4y —8x2e2ksin2x. [y = e2x{A + Bx + (3 —2x2) sin2a; —4x coB2x}]

14, y" - 3y' - 4y —10cos2x. [y = Aedx + Be~x -  4c0s2x + 3sin2x)]

15. y" —by' + 6y —4x2ex. [y = Ae2x + Be3x + ex(2Kk2 + 6K+ 7)]

16. y" —10y' + 29y = eBksin2k. [y = ebx {Acos2x + Bsin2x —\xco0s2x}]

17. x2y" —20y = 7™%3. [y = Axb+ Bx~4 —"x3]
18. »wy" —xy' + 2y = xInx [y = w{lmk + cos(1mk) + _B3T(1mx)}]

19, x2y" —2xy'+2y = x3cos(Inx). [y = Ax + Bx2+ "x 3{co3(1mk) + 337(1nx)}]

20. x2y"" + 3xy" +y' ' =Inx [y="1nx)4+ N(Inx)2+ B Inx+ C\
21. y" —by' + 6y = ¥3e2k [y = Ae3x + e2k[B —6K —3K2 —x3 —"k4)]

22. y" —6y' + 13y = 8e3ksin2x. [y = e3x(Aco0s2x + B sin2x —2xc0s2x)]

Solve:

23. y" - y'—2y= 10sinx y(|) = -3, y' ()

24. y"-Gy'+8y = e2x+3T72x, y(0) = 0, y'(0)
A (3cos 2K + sin 2K)]

25. 2y" - by'+ 3y = 4e2x y(0) = 0, j/'(0) =0. [y = 4(e2xk+ ex- 2e8xX)].

26. y" + IGy = co34x, y(f)= 0. [y = (A + x) BT4X]

1.6 Method of Variation of Parameters

This method enables a particular integral of the equation

y" +p()y" +a{x)y = r(x),
to be found when the basis functions yi(x), ¥ (x) are known.

—1. [y =cosx - 3BTX]
0. [y="edk- (] +\x) e2x+

(1.6.1)

Set yp = u(x)yi(x) + v(x)y2(x), where the functions u(x) and v(x)

are assumed to be chosen such that yp= uy[ + w'2. Then

u'(x)yi{x) + v'(x)y2(x) = O
and

Yo=uyi +vy2

Y=y + w2

yp= W/l +W2+uyi +v'yp-

(1.6.2)
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Substituting into (1.6.1) and collecting terms

u(x) y" + px)y[ +a(x)yl
+v(x) y2+p{xX)y'2+ q(x)y2d + u\x)y[ + v{X)y'2= r(x)
u\ X)Y'i(x) +vix)y'2(x) = r(x), (1.6.3)

because the terms in square brackets are identically zero.
Solving the simultaneous Equations (1.6.2) and (1.6.3) for u* and v':

ey 200r(0)

") = yi)n() - yrpoy2n

00 - WOOr()_

[yi(x)y2(x) -y'JTIx)Y2(x)]
y2(x)r(x)dx

[ WAX)YZX) - Y'x)Y2(x)}
yi(x)r(x)dx
"1)=/ r 9%X - yl(xy2()]

so that

f —y2(x)r(x)dx
W2 mXJ YAx)Y2x) ~ Y{xX)Y2x))
. f yi(x)r(x)dx
1.6.4
+ \‘ XJ FAX)Y2(X) - Y X)Y2(x)} ( )

Wronskian The determinant
L ivire) _ N y2()
W YsY2) = yi(x)y'2{x) - yLx)y2(x) VIO y2() (1.6.5)

is called the Wronskian. It is non-zero if and only if y\(x) and y2(x) form a linearly
independent set of basis functions. Thus, the particular integral can also be written

I\ Vo —y2{)r(x)dx fooyi(x)r(x)dx

LLY1{x),Y2{x))
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Example Find the general solution of y" +y = sec®.
Because 2/l = cos®, y2 = sin®, we set

yp — 1 cos ®+ v sinx,
yp = —#sinx + v cos®,

yp = —#'sin®—un cosx + v' cos®—v sin ®

Substituting into the differential equation, we find that u(x), v{x) are determined by

u'(x) cos® + v'(x) sin® = 0, —u'(X)sin® + v'{x) cos® = sec®,
u'(x) = —tan®, v'(x) = 1

integrating: w(®) = In|cos®|, Vv(Xx) = x.

Hence, Yp{x) = cos®lIn |cos ® + ®sin @

y = Asinx + B cos®+ cosxIn|cos®| + ®sin ®.

Problems IF

Find the general solutions of:

10.

1.7

y" —2y'+y = xiex. [y=(A+ Bx)ex+ I® "1]

y" + Ay'+ Ay = e~2x/x2. [y= (A + Bx)e~2x - \n\x\e~2x]
X2y" —2xy' + 2y —5®@3cos® [y = Ax + Bx2 —5®co0s §

y"+ Y= tan®. [y= Asm® + B cos® —cos® In |sec® + tan®|]
X2y" —2@®t/' + 2y = x3In®, [y=Ax +Bx2+ &B(" In® —|)]

y"sind® —4y'cos22® + 2y = tan®, [y = J1 + Bcos2® + ~ (In|tan® |+
cos2®In I (I —~" sec2®) cot 2®]) ]

1 —x2y" —2xy'=2®, |® < 1L [y=A+-BIn{(l + ®)/(l —®)} —§
1+ x2y" —2xy'+ 2y = x3+ 3®. [y= Ax + B(x2—1) + "®3]
®- 1)y"- xy'+y= ®- 1)2. [y=/1®+ Bex—(1 + x + @2)]
@®+ 2)y"- 2®+5)Y +2/= ®+ l)ex. = A{2®+ 5) + Be2x - ex]

Method of Frobenius

It is possible to derive a series solution

) (1,7.1)

71=0

of the equation

(1.7.2)

1
o

¥ Py + y(X)y
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whenever p(x) and q(x) can be expanded in the form

@
plx) = B Pt -+ p2 -+ p3C Hom > phc
« (1-7.3)
q(x) = U + —+ 2+ gX + gqx2H---=W gV
k=0

These functions become inhnite at x)x = 0 ifpo ® 0 and g0or Q @ 0.
They are said to be singular at »x= 0. However, if the series expansions
converge to finite values for 0 < \X\\ < R, the expansion (1.7.1) will also
converge for the same values of X and possibly also for larger values of
bKl; it may also remain finite at »= O.

The point »x = 0 is called a regular singularity of the differential
equation whenever at least one of po, go, (p ® 0. If they vanish, so that
p{x) and q(x) are finite at x)x= 0, = 0O s said to be an ordinary point
of the equation.

Introduce the shorthand notation

d2 .. d
C=d?*+p{X)Tx + «<M"

then

£u( a) — +a)(n +a —1)any' T2

n=0

J2pek 11132 (i +a) e

\n'=0
jn?+<
E ®*2 E
fc=0 InN=0
To see how the product series in this expression are simplified, con-
sider the final product

SN 47

a=o0 k=0 n'=0
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The coefficient of xnC}2 on the right-hand side is obtained by setting
K = n —n! and summing over all n! for which gn-n>n>¢ 0. Because
gn-n' = Ofor n' > n, the coefficient is just En'=09M-n fIn'i i.e.

ny,n'+u ,,n+cr—2
E@=* 21 g anX =J2 oy
fc=0 \n'=0 71=0 71'=0
00 71
J<r—2
= £ £ OQn—=k"kX
n=0 f=0
The same argument shows that
~ 00 \ ! 00
J(~M(n'+a)ar'— 1j = y APn-feQfc(r+cr) M2
4fc=0 \n'=0 n=0 fe=0
Hence

Enek,an =" <(n+cnin+a—»>Dha,
n=0 |
A2 fe((* + MPn-fe + On-fe) xn+a~2. (1.7.4)
fe-o
It can now be seen that u(x,a) will be a solution of equation (1.7.2),
i.e. of Cy = 0, provided the coefficient of each power of x in this expan-
sion is zero. For n = Owe must have

jF(cr)a0 - 0, (1.7.5)
where
T(o) = a2+ (po- I)(J +q0. (1.7.6)
Forn>1
F(n +a)an= *22~{ik + a)Pn-k + gn-k)f>k- (1-7.7)

fc=o
This recurrence relation determines an (n > 1) in terms of all preceding
values of an. It is therefore essential to impose the condition aad O, in
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which case equation (1.7.5) can be satisfied only if o is a root of the
quadratic indicial equation

T(a) = a2+ (p0-1)a +q0=0. (1.7.8)

Let the roots be a = a,/3, and suppose that a —/3= un > 0 (if the
roots are complex, let the real part of a be greater than the real part
of (3). Now

;F(cr) = (cr- a)(o - P),
so that
T{n +/3) = n{n —(a —/3)} = n(n —v). (1.7.9

This shows that the coefficient of a,, in the recurrence relation (1.7.7)
will vanish when a — (3 and u is a positive integer. In general, three
different cases must be considered:

1. nis not an integer,
2. n=0,
3. v is a positive integer.

Case 3 includes the important special case when x = 0 is an ordinary
point, when the indicial equation reduces to

T(a) =a(a—1) =0 ie a=0 1 (1.7.10)

Case 1 v —a —(@® an integer:

The recurrence relation (1.7.7) can be solved for a = a or /3 and the
expansion (1.7.1) yields two independent solutions of the differential
equation.

Example Obtain series expansions about x = 0 of the general solution of the
equation

dy
PH3dl o 0

This has a regular singularity at x = 0.
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It is usually more convenient to substitute the Frobenius expansion (1.7.1)
directly into the equation without first determining the series expansions of p(x)
and g{x). This yields

()] @

Y > +0)(2n + 2cr —3)anxnHT~1 + ~TA[(n + cr)(n + a —1) —6}anxn<T+1 = 0.
71=0 71=0
By replacing the summation variable n in the second sum by n = n' —2 the general
term in each series has the same power of X, i.e.

(e]e] 0o

Y > +a)(2n + 27 —3)anxn+cr~1+ N (n + a)(n + a —5)an_2Xm<T 1 = 0.

71=0 71=2
The coefficients of successive powers of x are now equated to zero, the coefficient
for n = 0 giving the indicial equation:

n=0: </(2(7 —3)do —0 (7=0, |
n=1: @+ ®OE7—hai=0 a=0
n>2: Nl— a,2(n+g- 5 general recurrence relation.

(2n + 2cr —3)

For <= 0: u{x,a) = aoyi(x), where y\ = 1+ 3x2+ [x4—j”"x6+ "X 8H----.
For <= |: u(x,a) = a0y2(x), where y2= x8 M+ |x 2+ "T x4+ —].

Range of convergence To determine the range of values of x for
which the series expansion converges we can make use of the ratio test.

The infinite series S = un converges provided
ur- 1, asn oo
U
In the previous example the ratio of successive terms is
2n + 2n —5)x2 X2
a @ ) , asn —o00,
az2n-2x°""? 7+4n-3) *T
so that the series converge for
hr < y/2.
This is the same range as for the expansions
-1 -1 X X4 X6
p(x) = Lt o
X(2 + x2) 2x 2 22 2
-6 -3 x2 x4 X6
q(x) =

= 1
2+ x2) a T+ 2 23
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Case 2 un=a—/3=0, equal roots:

When a = /3 J-(n+a) = n2and the recurrence relation (1-7.7) permits
an (ji > 1) to be calculated in terms of 00, but only one solution u(x, (3
of the equation is determined by the resulting expansion. However,
when the coefficients are assumed to be determined in terms of ao by
(1.7.7) for arbitrary values of a, equation (1.7.4) becomes

Cu(x,cr) = T(a)a0= (or—(3)2a0. (2.7.11)

This not only confirms that u(x. a) is a solution of the differential equa-
tion for arbitrary values of aOwhen a = /5, but also that

f \ , . d
A (x,a) IS a solution, because — =L
\de ya=P d(J
Thus,
\ ~ .
WUigaM —ux @inxT T4 s (1712
~da [ a=0 n=i <7=0

is a second independent solution of the differential equation.

Example Obtain series expansions about x — 0 of the general solution of the
equation

<i*i2)53 + (1- 5x>£ - 4» '0-
This has a regular singularity at x = 0.
After substituting the Frobenius expansion (1.7.1) into the equation we find

[e]e] 0o
y > +cn2anxm<i~1—" (n + a + \)2an-ixn+a~1= 0.

71=0 71=1

Hence,

=0: cr2a0 =0 a=00
>1: an=a, _i(n+a+1)2/(n + a)2 general recurrence relation.
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Thus,
o n 0+ 2 N a+3 ot I+ 4
u(x, §) = ax a+ 1 X N+ 1 X (7+1 X3+ m
=1k (1+717)
and
2 Ka) = «(re,a) hrx + ]r";:l -._..2.7'1'“7 " '7 D

Setting a = 0 we find the two independent solutions

yi = 1+ 22+ 322+ 42x3 Ho+ (N + 1)2X" Hewremr,

22 = Vi{x) Inx —2 1.2x + 2.3x2+ 3.4x3+ e + n(n + I)xn + ...
The expansions converge for [x| < 1.
Case 3 p=a—(3= an integer > O

There are two subcases: (i) a, = 00 for a = /3, which can happen
because the coefficient T[n + j3) = n(n —2Z) is zero at n = u; (ii) au
becomes indeterminate for < = /3, because the right-hand side of the
recurrence formula (1.7.7) is also zero when n —u.

For (i): Set

a0= a0(a —/3), where a0/ 0, (1.7.13)

then

u(x,a) =xa a0cr- + 2”anxn .

n=1

When a = (3the recurrence relation (1.7.7) now shows that an —O0 for
1< n <v. In place of (1.7.11) we find

£u(x, a) = J~[o)(m —P)a0 = (a —/3)2(r —a)a0.
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Two independent solutions are therefore:

® @
yi{x) —u(x,/3) = xp'Stanxn = xa ¥ g+,
n=v n=0
dii X ™
Yr(x ' —u(x,/3) Inx4-xd «nq. ®an (\ r
() Ta{x'a) 0+ 1 -
(1.7.14)

The solution y30K) = u(x,a) obtained by using the larger root of the
indicial equation may be shown to be a multiple of yi(x) (see the
examples).

For (i) When a = /3 in the indicial equation (1.7.7) the coefficient of
an on the left vanishes when n = u and the right-hand side is also zero.
In this case au is indeterminate, and may be taken to be an arbitrary
constant. The recurrence relation for a — (3 then determines two inde-
pendent series solutions, the first starting with aoxB and the second
with auxa. The latter is a multiple of that obtained by setting a = a
in the recurrence relation.

Example Obtain series expansions about x = 0 for Bessel’s equation of order 1:

Ar- - =
X2dxz X+ (x2- )y=0.
This has a regular singularity at x = 0.

Substitute the Frobenius expansion (1.7.1) into the equation to obtain

y > +a- )(nTa+)AEMC. 2 an2x™?® 0

71—0 =2

Then,
n=0: (orT 1)(x—I)uo —0 =1, -1
n=1: cr(cr + 2)ai =0 ai=0
n>2 dn an-2

T [Hn+a- I)(n+a+ 1)
general recurrence relation.

Hence, v = 2 and for general a

u(x, o) = aox® 1 (<747 + 3) T (or+ DET+ 3)2(cr + 5)

(cr+ D(a + 3)2(cr+ 5)2(cr+ 7) ¥
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The coefficient a2 = 0o when a = (3= —1. Therefore, set ao = «o(fx+1), whereupon
u(x, cr)

—aox (cr+ 1)— + +
(x+3)  (cr+ 3)2(r+5 (a+ 3)2(r+ 5)2cr+ 7)

The root a — (3 — —1 therefore supplies the two independent solutions (taking
do = 1)

X2 X4
A= L 222 T 320000
Y= (°n\
A’)a=-1

. 1 X2 (2 1\ X4 72 2 n X6
=yix)Inx H= o4 A 4
X u+ 4; 2" + |* + 4+ 6y 22426 +

The expansions converge for |x| < oo.
When a = a = +1 we find

X2 x4

_ Xl + _4ili(x).
B=2X 1= 555" 39042 40

Example Obtain series expansions about x = 0 for the equation:

.1 , 0 1f2
(i-s VP8 +8% +y:=o0-
x = 0is an ordinary point of the equation.
Substitute the Frobenius expansion (1.7.1) into the equation to obtain

yA(nm + a)(n + cr—l)anX’n+Cr_2- A2 a, 2[(n+c- 2)(n+a- 5)- I]xmCT 0}

71=0 n=2
Hence,
n=0: crior—l)ao=0 o=20 1
m=1: crior+ ai=0 ai = arbitrary for o= 0

on-2
> 2: + +a—l)an= —
n (n+u)(n+a )an [(h+cnn+a- 1)
general recurrence relation.

For cr= /3= 0 we obtain the two independent solutions

X2 X4 X6
tl=1~-T+ T +80+ 7"
x3 x5 3x7

Y2=X~T + 40+ 560+ " "

The expansions converge for |x| < 1.
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When a = a = +1 we find a\ = 0 and

X2 x4 3a6

BEX iy 4 40+ 560 + 212 (%)-

Summary of the Frobenius procedure for y" +p(x)y' +q(x)y —0,
where

p(x) = ?+pi+p2x+p3x2-\-———, ax) = 0/;)(ik—X3-q2+q3x+q,09<2-\r ----- :

Case 1 a —/3—wu = non-integer:

yi(x) = xPy”*anxn, y2(x) =xaY”?a'nxn, a0=d0=1.
=0 72=0

Case 2 a=1/3

u(x,a) = xa2”" an(cnn, do= 1,

71=0

y1(x) = u(xtp),

—_ X
wx) = W ap =AM * M EE(N) o9
Case 3(i) a —(@B3=v =integer> 0, 0" = o0:

u(x,a) =x° {a- @+ Y an(a)xr , an(@ =O0forn <y,

77=1

Vi{x) = u(x,/3) = ¥YMan+,xn+a,

72=0

y20K) = =yi(®)InaH-®/ X

—/\
n=1 x 0=

Case 3(ii) a —/3=v = integer > 0, a,, indeterminate:

The expansion for a = (3 contains the two arbitrary constants ao and
av and gives two independent solutions
yi(x) = x™M2 anxn, y2{x) = xa ahxn, a0=4d0= 1.

71=0 77=0
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This includes the case in which x = 0 is an ordinary point, for which
a=11/~3=0 v=1.

Problems 1G

Find the general solution near x = 0 by the method of Frobenius; state the range
of convergence.

1L y?"+y=0Jtr=0, 1, 7 = cost:, 72 = Sinx all X]

2. Axy" + 2y +y =0. [x=0, u = 1-8§ + 8! = cosyT,y2 =

Xi M —n N - = sinyT, all x}

3. xy" +y' + xy = 0(Bessel’s equation of order 0). O0w=1- fr+
22 42 22.42.62 ' To(*™)5
W = Ui@) Ink+ - WAL+ 1) T rTKES  +\ + §) ~ allx
4. %(1- K)y"- xy'—y =0 [@=0, 1, 2= x+ 2k + M3 H = x/(1- %2,
02 = 2i(T) hix+ 1+ X+ x2+ x3 H--—-- = JIOK) Inxk+ 1/(1 - x), < 1
5 "+ M7+ (k2- \)y = 0. Jo= A -x, Ul = xi(l - "x + + eee) =
X- 2sinx, 22 = x~2cosx, all )q

6. K(1-x)y" +2(1-2x)y'+y=10. [a=0, M=, M=0Q—x4 <1
7. (DK+ 4dysyel" - y' - 24xy = 0. [o=10, § y\ =1+ 12k2+ x4- |8K6H--,
W =501+ 8K2- "x 4+ + eee)> M < 3]
8. M1+ xX)y”- kAL + 2xX)y' +y =0. [Jo= 1,2,01 = x22 =2+ xInx all)q
9. 2(2- x)x2y" - (4- X)xy'+ @3- /=10 [a= 5,01 = 5212 = x3(! -
)3, M < 2]

10 xy"+ @+ )+ k(1 +x2)y =0. [o=10,0,% =e_a2,22 = e_x21nx, all

1.8 Bessel Functions of Integer Order

Bessel’s equation of order n
X2y" + xy'+ (x2—n2)y = 0O, (1.8.1)

has a regular singularity at x = 0. The coefficients of the Frobenius
solution

u(x,a) = y”™akxk,
k=0
satisfy

Y . (ik (k+ a)2- n2 X2k+a N a ftxfeta= 0.
f-0 k=2
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The roots a —n, /3= —n of the indicial equation a2 = n2differ by an
integer or zero (u = a —/3= 2n) when n is an integer. For Kk —1

al 1+a)2-n2 =0, ai = 0,
and for k > 2
B —fc2
(k+a—n)(k+a+n)'
which shows that a,, = d1= 0o when a = —n, corresponding to

Case 3(i) of the Frobenius method.

The solution y\(x) that is finite at x = 0 starts with the term of
order xn. When the coefficient of this term is 1/2nn! the series defines
the Bessel function of the first kind

n=2o01,2, (18.2)

oo WC+ )L

The series converges for all real (or complex) values of x. If n is replaced
by —n in this expansion, the first n terms of the series are zero, because
(k —n)\ = oo for k < n (see 85.1). By introducing a new summation
parameter k' = K —n, we find

J_,(X) = (-1)rIn(x).
If (1.8.2) is multiplied by xn and differentiated we obtain
d?( (xnIn(x)) = xn3n™i(x). (1.8.3)

The second solution given by the Frobenius method in Case 3(i)
defines the Bessel function of the second kind

Yn() = - 3.() In Xe7 . (H7r " {n-::\- )1 fIZ]rXZXk
k=0
1 \n o0
(Ix) .
T E Hipkt s v (1.8.4)

-0
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where (0) = 0,p(K) = I + | + | + - -+ |,/c>1 and

] 1 1 1
— + — .
7 KI|rn0 142+ 34+4+ K In k n 057721

is Euler’s constant.

As x —* 00 Bessel’s equation approximates to y" + y = 0, and the
Bessel functions are found to resemble trigonometric functions of slowly
varying amplitudes:

2n + T
J,,(X) ~ —
Y n(x) (- (2+D ", a—so0.

1.9 The Sturm-Liouville Equation

The Sturm-Liouville equation

~ (p(X) ™) + (q)+ A(X))?/ =0, a<x<h (1.9.1)
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arises when the method of separation of variables is used to solve linear,
second-order partial differential equations (84.3). p(x), q(x) and r(x)
are given functions and J1is a parameter. The solution y(x) typically
satisfies two-point boundary conditions of the general form

aiy(a) + azy'{a) = 0, hy(b) + bzy'(b) = 0, (1.9.2)

where cg, a2, b2 are real constants. These conditions can determine
y(x) to within an arbitrary multiplicative constant, and can normally
be satisfied only for certain values

A Ay ta—1,2,3,...,

called eigenvalues.

Let yn(x) and ym(x) be solutions corresponding to different eigen-
values An and Am. These are called eigenfunctions, and they satisfy the
following orthogonality relation

b
J r(>yn(x)ym(fc)dx —0, An Am. (1.9.3)

To prove this, write
(RBIA)) + (alX) +Krponiyn = o,
(peymx)) + (2(*) + Am(X))ym=o.

Multiply the first equation by ym(x), the second by yn{x), subtract,
and integrate over a < x < hb. The result can be rearranged in the form

(Am- O \T r(x)yn(x)ym(x)dx

f d / dyn\ d ( dym

'Y dx \K dx ) Vndx [P dx x

d /' dyn dym\ . _ ib
dx \PdeX PVh dx dx = P\ ¥1¥n - MYt
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which vanishes because of the boundary conditions (1.9.2). It also van-
ishes if the functions yn, yn are merely bounded at x = o, b provided
that p(a) = p(b) = O, or if p vanishes at either x = a or x = b and
one of the conditions (1.9.2) is satisfied at the other end (respectively
at x = bor x = a).

Example Waves on a stretched string Consider small amplitude vibrations
of a stretched string fixed at its ends x = 0 and x = 1 The lateral displacement
((x,t) of the string is a function of both x and the time t, and is governed by the
wave equation

gg—cz:—gc= , 0<x<1l; where (=0 atx —0,L!.
0x2 at2

It is assumed in this equation that the length and time scales have been adjusted
to make the ‘wave speed’equal to !.

x=0 vibrating string x=1

A plucked string can vibrate at certain discrete frequencies wn. They can be
determined by looking for solutions of the form

£ = y{x) coswt.

Substituting this into the wave equation and dividing through by coscut, we find
that y(x) must satisfy the Sturm-Liouville problem (1.9.1) (with p(x) = L.q(x) = 0,

rx) = 1)
y"+u)2y =0, y0)=0, 2(1)=0,
where u 2 is equivalent to the eigenvalue parameter A
The general solution y = A coswx + B siniux involves three unknown constants

A, B and u). The two boundary conditions y(0) = 2/(1) = 0 correspond to the
Sturm-Liouville conditions (1.9.2), and give

A=0Bsinw=0.

But, if the string vibrates we cannot have B —0, so that the admissible frequencies
w=are solutions of the eigenvalue equation

sinw =10, ie w=IL2m3Il,....
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Stretched string eigenfunctions (determined only up to a multiplicative constant)
are therefore

yn(x) = sin(nlra;), and A,= (xf=n2n2, n=1,2,—

The most general motion of the string (oc cosu>t) is described by a linear com-
bination of terms of the type sin(n7nr) cos(w,t) = sin(n7r:r) cos(mrt), i.e.

00

COM) = J 2 Bnsm(mrx) cos(mrt), (1.9.4)
n=I
where the coefficients Bn are constants.
The orthogonality condition (1.9.3) can be used to determine the values of the
Bn if the shape of the string is known at some value of the time t. In particular,
(1.9.4) provides the solution to the following initial value problem:

CzO)=/(*), (~(x,t)j =0, for O<»>< 1

This corresponds to a string which is released from rest when initially displaced into
the shape of the curve y —f(x).

The time derivative of (1.9.4) is zero at t = 0, so that the series automatically
satisfies the second of our initial conditions. For the first, we sett = 0 in (1.9.4) to
obtain

00 00
Bnsin(nirx) = "2 Bnyn(x) = f{x), 0< X< 1
n=l n=1

The mth coefficient Bm is calculated by multiplying this equation by r(x)ym(x) =
sm(mnx) and integrating over the length (0,1) of the string. Because of the orthog-
onality condition (1.9.3) all members of the series integrate to zero except the one
for which n = m.

I I
BmdJ sm2(mjrx)dx = J f(x) sm(rmrx)dx.

0 0
Now  sin2(rm:x)dx = i, therefore the solution of the initial value problem can be
written
(e]e) 1
C(zf) = Bnsin(nnx) cos(nirt), Bn =2 j"f(x) sin(n7rx)dx, t=>0. (1.9.5)
n=I
0]

The infinite series can be summed explicitly, but further discussion is postponed
to S4.3.

Eigenfunction expansions The procedure described above for the
string can be used to express any function f(x) defined over the interval
a <x < bas an eigenfunction expansion in terms of the eigenfunctions



Linear Ordinary Differential Equations 3

and eigenvalues of a Sturm-Liouville problem defined over the same
interval. Set

f(x) =Y Anyn(x), a<x<Hhb

where the summation is over all of the eigenfunctions. By multiplying
both sides by r(x)ym{x) and integrating over (a, b) we find (from [1.9.3])

a a
Hence,
f(x) =Y JNnyn{x), a<x <b,
I
where
b
J f(x)r(x)yn(x)dx
An = — B--mmmmmme - . (1.9.6)

Jr(x)yl(x)dx

When the eigenfunctions yn(x) are normalised to make
J\(x)y*(x)dx = 1, the eigenfunctions are said to be orthonormal.

Problems 1H

Find the eigenvalues and eigenfunctions of:

L.y +Xy =0i/0) =0 y(1) =0 [f=("t")\ n=012,..,yn=

2. y"+Xy=0,y{0)=0,y{n) =0. [/m=n2,n=0,,2,..., yn = cos(na:)]

3. Transform the equation y" +2y' + (1 —A)y —0, {y(0) = 0, y(l) = 0) into Sturm-
Liouville form by multiplying by e2x. Calculate the eigenvalues and eigenfunc-
tions and show that J]) e2xyn{x)ym{x)dx =0,rm ¢ n.

[A,= —n2IR2,n = 1,2,3,... ,yn = e~xsin(nTra))]

4. Transform the equation 4y" —4y' + (1 + Ay = 0, (y(—1) = 0,y{l) — 0) into
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show
that e~xyn(x)ym(x)dx =0, m ¢ n.

[A, = n2TR, yn = e¥%xsin(InTra;),n = 2,4,6,...,yn = eixcos(Inirx),n =
1,3,5,...]
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5. Transform the equation y" + 2y' + (1 —/My = 0, (y'(0) = 0, t/(r) = 0) into
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show
that fj e2xyn(x)ym(x)dx =0, m ¢ n.

[APn = —n2, yn = e~x(ncosnx + sinnx), n =1, 2. 3,..., Ao=1 yo=1]]

6. Transform the equation x2y" + xy' + Xy = 0, (y(I) = 0, y(a) = 0) into
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show
that / “yn(xX)ym{x)*f =0, T dn.

[An = (nir/Ina)2, yn = sin(nTrlna;/Ina), n —1, 2, 3,...]

1.10 Fourier Series

Consider the Sturm Liouville problem with periodic boundary
conditions

Y=0 (1.10.1)

The general solution satisfying these conditions is y = Acosnx +
Bsinnx, for integer values of n. The eigenvalues are therefore A =
K2= n2where n = 0,1,2, 3, .. and each value of n is associated with
the eigenfunction pair {cosnrr, sinna;}. The eigenfunctions satisfy the
orthogonality relations over any interval of length 2ir.

a-j-2n

I cosnxsinmx dx = 0, forall n, m,

a

a+2ir

O, forallnd m,

€OoSNX cos mx dx

a

a+2n

sinnxsinmx dx =0, foralln ®m,

—_

a+2n

foralln> 1,

foralln>1
forn=0.
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The series obtained when a function f(x) of period 27 is expanded
in terms of these eigenfunctions is called a Fourier series, and is usually
written

®
f(x) = a0+ Y gancosnx + bnsinnx), (1.10.2)
n=I

where the orthogonality conditions supply

a0 = Jf(x)dx;

T

an="Y f(x)cosnxdx, (1.10.3)

—1r

i

1r
bn=—_f(x) sinnxdx, n>1.
fJ

—r

Fourier series of arbitrary period The corresponding Fourier
series expansion for a function of period 2" is obtained by replacing
X in the above formulae by 7n«/T, so that:

f{x) - a0 %_1( an cos ﬂT[X+ bnsin nnx (1.10.9)
where
1 ; 4  TWKX
2 P eos "k n > 1 (1.10.5)

i
m - 1 f(x) sill rrgxdx.
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It is frequently required to represent a continuous, non-periodic func-
tion F(x) by a Fourier series over a finite interval —+ < x <'t, say, of
the »axis. In this case the series defines a periodic function f(x) which
agrees with F(x) for -t < x <t, but gives a periodic extension of
F(x) outside this interval, as illustrated in the figure. This periodic
extension is often discontinuous at x ——£+ 2nE, n = 0,£1,+2,....
At such a point the Fourier series converges to the mean of the limit-
ing values of f(x) as x approaches the discontinuity from either side.
Thus, at the point labelled A in the figure (at x = £), the Fourier series
converges to

liml W ~ <0+ fit+ 8] = 2 [F(-Q + F(E)].

Example Derive the Fourier series expansion of f(x) = x over the interval — <
X <L
Because f(x) = x is an odd function,

l fK nnx\
xdx =0, dn=J xcos ;‘—j—)dx 0, n>0;
-e
but, integrating by parts,
(
{n K x\ x cos(nnx/£)

dx = -
Vit Yy £ (—n/£)
K

/

i asm

-e

2lcos(rzlr) | Q ~ 2~ n+i
e M
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[ TITA
n

(~i)ra+i
E ey,

Half-range series An arbitrary function F(x) defined over the inter-
val 0 < x <| can be expanded in a Fourier series of the type (1.10.4)
by replacing | in (1.10.4) and (1.10.5) by if2 and taking the limits
of integration to be x = 0 and x = | in the formulae (1.10.5) for the
Fourier coefficients an and bn. The series then defines a periodic function
f(x) of period i. However, expansions of F(x) in 0 < x < £ involving,
respectively, only cosines or only sines can also be derived by defining
F(x) =xF(—x) in =+ <x <0.

In the first of these alternatives a periodic function f(x) is defined
over one period (< < x <) as the even function

_ F{=), —<x<0,
H{x) = F(x), 0<x <§
and we obtain the cosine series

n7rx

f(x) = a0+ E ancos~_|_,

71=1

where
i
—\ ' mT
a0 = W f(x)dx, an=j J f(x) cos— dx, n > 1. (1.10.6)

For the second alternative f(x) is defined over (— < x < i) as the
odd function

—F(—x), —l < x < 0
tx) =" F), 0<x<§
leading to the sine series

a

2 f | .

f(x) = 2_rbnsm'op,  where bn — f Hx)sin 1Y dx. (1.10.7)
n=1
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Example LetF(x) =1for0O<x <i.

0]

(i)

(iii)

When this is extended to all values of x as a periodic function of period i the
coefficients of the Fourier series (1.10.4) (in which t is replaced by 1/2 and the
limits of integration by 0 < x <1) are

e

0]
and the series reduces to one term:
fix) = 1;
When extended to all values of x as an even periodic function of period 21 the

coefficients of the Fourier cosine series (1.10.6) are

£

ao ~*Jdx =1, an:j\Jcos(J""jdx=O, n>0;

and again the series becomes

fix) = 1,
When extended to — < x < 0 as an odd function of period 21 the coefficients
bn in the Fourier sine series (1.10.7) are

0 neven

— n odd.

nmr

bn [h. (™M )YNc= A (I-COs(mr))

Hence, setting n = 2N + 1, we obtain

(&) =i sinfRAr + 1W 4
@) =1y e
sin(fra:/l) ~ sin(37rx/1) ~ sin(57rx/1)

All of these representations define the same function in 0 < x < i.
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Problems 11

Verify the following Fourier series expansions for:

1. M<f, 1 2 cosx cos3x _ cos5x )
1- /(™) ——t= T - t 11 T<X<T

lo. 11> f. 2 T[1 3 3

sin x sin 2x sin 3x sin 4x
2 f(x)=x =2 h=— b X < T

(—1)" cos nx
3. /(x) =x2= + 4N , X<

n=I

™ 4 cos(2n + 1)x

4./(x)=|x|=-2--7|_/\ Qf.n+|)2’ X< T
5. /(x) —E S ) < x < am
g. /(x)4: In {ZCOSE:} = \’/‘O_O(>-'1 )N'—I%]X, x| < T
n=I

_ , T~ sin(2n - I)x
T , gLi!7 B<*< e
8. /{x) = - ]:Ilcot—— /?:_’\COE ?—rl——_i( , 0< X< T.

1 1 E cosnx
9- f(X) = »iN 0w o e , 0<x< 2T

27\ 21 —cosx) =1 n

isinzh—hHhx .. T

10. /(x) = - Intan h—1) ' W< 2-

11, /(x) = e*= 2sinh ¥ 1 =b” (cos nx —n sin nx) X < T.
n=I
12. f(x) = X = Z—-----Aiy LGN =X oax <

z T (2n—|)

e 2 4 V COS 2nX
13. fix) = smx = —— > —r— 0< x<T.
T 7I'n:I dnz —1
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nz2x a2 X3 v Sill nx

~ + ~ N
12 n=1

14. f(x) 0 <x < 2ix

2 2 00
m mX X COSs72X

/Iw=t -? +t = E , O<x<2m
n=I

1.11 Generalised Functions and Green’s Function

The delta function 5{x —y) is defined by the relations

1, whena<x <h
0, otherwise,

\TS{X-y) dy

JF(y)S(x —y)dy = F(x), whena<x <h

a

(1.ii.i)

(1.11.2)

No ‘ordinary’ function exhibits properties of this kind, but we can

regard S(x —y) as the limit as e —0 of the ‘epsilon sequence’

8e(x-y) = k_[-(-x___._%%+ 62%, e>0.

(1.11.3)

When e is very small this function has a large peak Se(x —y) = 1/ne at

X =Y, and tends to zero as e —=0when x Y y.
For any positive value of e

which establishes (1.11.1), because
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Similarly, because Se(x —y) —»0 as e —0 when x ¢y, we see that, for
any ‘smooth’ function F(x),

b
Jm/ F(y)Se(x ~ ydy

a

b
= F(x) zlainbjj 8e(x —y)dy = F{x) whena<x <h

In applications we are not actually required to calculate the ‘value’
of lime_,06f(x) at any particular value of x, but only its contribution
to an integral, and the limit is taken after the integral is evaluated.
A mathematical entity defined by this procedure is called a generalised
function. The 5-function is the particular generalised function defined
by the e-sequence (1.11.3) with the properties (1.11.1), (1.11.2). Note,
however, that the defining sequence is by no means unique: for example,
the following e-sequences also define the 5-function:

(x - yf sin{(x —y)/e} H(e —\x —y\)

Gex - y) = n(x - y) 2e

s exp
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where H(X) is the Heaviside step function

0, forx < O,
H(x) (1.11.4)
1, for x > O.

An alternative procedure is to define the generalised function f(x)
by reference to the value of the integral /f(x)F(x)dx, where F(x)
is any member of a set of ‘ordinary’ functions (which may, how-
ever, be required to vary in a special way, depending on the appli-
cation), and the integration is over a region relevant to the problem
at hand. When f(x) is defined by an e-sequence fe(x), this ‘value’ is
defined by

J f(X)F(x)dx = (1.11.5)

and F(x) is said to be a test function.

Example 5{x —y) is defined over —€t0 < x < 00 by the e-sequence

Se(x-y)= n[{x_y)2 +ey
because, for any bounded ‘smooth’test function F(x) we find by making the change

of variable y —x = eY

i F(\V)S(X- y)dy = lim /

-00 —00

F{x +eY)dY jD dy
e+ OV gy g T

Example Verify that 5(x —y) can be defined by the e-sequence

i "-y)/
S(x-y) smﬁ((ax _yi/)e)
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Example The Heaviside function is the generalised function defined by the
e-sequence

edy 11

r(y2+ 62) 2 Ftan 4 f)-

Example The Heaviside step function can be defined by

. c, . dH.(x)
so that 5\(/\)/() = =i Q/.ll.G),

forx <0,

Hx) = J S{y)dy = 1®” forx > 0.

Example The following argument can also be used to show that <5(x) — cffi(x)/dx,
i.e. that whena< 0<§, F(x)" dx = F(0):

b
dx

a

= [H)F(X)]* - \Tffff;(x)dx = F{b) - [F(x)]la= F(0).
0]

Example S(—x) = S(x), because

H—x) = lim

07r[(—x)2 + 62] = el_'gd 72 + 62] 6{x).
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Example The function sgn(a:) = 2H(k) —1 (= —1 for x < 0, +1 for x > 0). Then
=sslt) and =N sgn(x) =N [2HOK” X = 25W-

Example 5'(x —y) is defined by the e-sequence

Example Evaluate F(x)S'(x)dx, where S'(x) = dS(x)/dx.
\TF(X)5'(X)dX = \T ~ (F()I(X) - F'(x)S(x) dx

F(x)S(x) - F'(0) = -F'(0),
because 5K = 0 at x = +cx>.
Example 6(ax) = w£(x) for real a. Because for any test function F(x) we have

(setting y = ax)

00
\jo F(x)6(ax)dx = - & F ([) S(y)dy = j*F(O).

—00 —00
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Example Evaluate F(x)S(x2 —a2)dx for real a.

For infinitesimal 4 > 0

j F(x)S(x2—a2)dx

—00

Al aT
= j F(x)6(x2—a2)dx + F(x)S(x2 —a2)dx
—a—A a—A

itA ajA
j F(x)5(2a[x + a])dx + F(x)S(2a[x —a))dx

—a—~A a—A
—at+A atA
= EPa{ J/ F(x)S(x + a)dx +Z\§_J I F(x)S(x - a)dx
—a a

Example Evaluate x26y(x —3)(x + 2)§dx.

jx26((x —3)(k + 2)Mdx = ijS"S(x —3)Jdx = i ijS(x —3)dx

Example The generalised function equal to the principal value of — is defined by
the epsilon sequence

PGBy, Xe (1.18.7)
because, for e > 0,

0o 0o

xf(x)dx

| PG)  =Tad

f f{x)dx + [f{x)dx = f f{x)dx
J X J X ) J X

Example A constant C is the generalised function defined by

C= IimOCe-eH
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This can be used to give meaning to otherwise formally divergent integrals. The
following Fourier integral (in which C = 1) is particularly important:

- f eikkdk = Ii;%— [ e~e\WHkx dk
vt J e~ 2mrJ

'ﬁ eMHxk dk + \T e- & “edk

= li li
(IeIWOZ?r(e -i-1 B e—ixJ el’r\% n(x2+ e2)

0o

L3 eike dk —5(x). (1.11.8)

27
Green’s function Consider the equation

—+ §2G = S(t), —o0 <t < 00. 1.11.9
5+ 326 =5() (1.11.9)

The particular solution G(t) that vanishes for t < 0 (the causal solution
when t denotes time) is found by first recalling that the solution of the
homogeneous equation is A cos cut-\- B sin cut, where A, B are arbitrary
constants. Thus

G(t) = H(f) jAcos cat + B sin cutj,

vanishes for t < 0 and satisfies the equation identically for t > 0. The
constants A and B are found by substitution:

ddct; c)(t){Acos cut + B sin ujt} + H(E)o;j—Asin tut + B cos ut
AS(t) + u;H(E)j —Asin ut + B cos UAj,

d?G : o

dt2 AS'(t) + us5(t) { —Asin ujt + B cos cat

—U2H (£)|Acos tut + B sin wtj

A5'{t) + uBS(t) - 1G.
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The insertion of this expression for d2G/dt2into equation (1.11.9) yields
the identity
A6'(t)+uB6{t) = 6(1)

A=Q B=-
n

i.e. Git) = ﬂ—l(f) sin uit.
It is now obvious that the solution of

(::;G+ qﬁe =S(t—r), where G=0fort<r, (1.11.10)

Git —t) = UH(f —) sin uj(t —r).

This is called the causal Green’ function.

G(t —T) can be used to obtain the causal solution of
d2ip
di2 ¥

where the “force’ /(f) is assumed to vanish as t — —e0. To do this
multiply both sides of the Green’s function equation (1.11.10) by /(r)
and integrate over —e0 < r < 00:

fit),

[e]e]

( 2) \] G(t- r)/(r)dr = Y &f- r)/(r)dr = I(f)

—00

W) = yG(f - 1)/(r)di

= — | H(f —) sin ojft —T)f(r)dT
nJ

t -
e ®) =~ J (M rdr.

(1.11.11)
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The last line shows that the solution ip(t) at time t depends only on
the behaviour of the forcing function f{t) at earlier times.

Example Find the causal solution of

+ u2ip—H(t)e
From (1.11.11)
<ft) = —\J H(r)e Tsinu)(t —r)dr = — Im | j* e T+luh TAdr
R(t) Im ( eiuk e-* sinut —ugjcosu)t el

w Tat+rin 4w T POC Gavae T e

Two-point boundary value problems A similar procedure can be
used to solve

d2G - c
+2 +§oG=o0ox—y), 0<x,y<a whereG=0 at x=0, a

1.11.12
The respective solutions of the homogeneous equation tha(t vanisk)l
atx =0<yand x=a>yare
G = Asintux and G = f?simu(x —a).
We therefore consider the trial solution
G = AA{y —x) sintux + BH (i —y) sintu(x —a)

Elei: —AS(x —Y) sintuy + tuAH(y —X) cos tux

+ B5(x —y) sintu(y —a) + wBH(x —y) costu(x —a),

d2G

o = —A5'(x —Y) sinujy —bA5(x —Y) cos cu/

—W2AH(y —x) sintux + B5\x —y) sinui(y —a)
+ WB5(x —y) costu(y —a) —tu2BH(x —y) sincu(x —a)
= 5\x —y)| —Asintuy 4-B sinuxy —a) j

+ tuh(x —y) | —A coscoy + IB costu(y —a) | —tu2G.
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Substituting into the differential equation of (1.11.12)
5{x —y) { —Assinwy + B sin w(y —a)

+ w6(x —y)\ —A cosuy + B cosw(y —a) \ = S(x —y)
—Asinwy + Bsinw(y —a) = 0 and

—Acoswy + B cosw(y —a) = m

A _ -a and B= smw
LIsm wa LIsm wa
Hence,
H(y —x) sinw(y —a) sincux  H(x —y) sinu;(x —a) sinu;y
G(x,y) = :

wsmwfl wsin wa
(1.11.13)

This satisfies the reciprocity principle G(x,y) —G(y,X).
Example Solve the boundary value problem
+ u2ip= f(x), 0 <x <a, wheretp(0) = <p@@ =0.
Use Green’s function (1.11.13):
ip{x) = \]G(x, y)f(y)dy

X

ff(y) sintj{y - a)dy + smuJ’x— f f(y)sinujydy.
J arSMuja J

By using the expansion sin(A —B) = sin A cos B —cos A sin B this can be written

a
CoOSidasSluLdX

ip{x) = idsm tda fny) sin idy dy
a X
smur .
J m cosujydy — J m sinLoydy. (1.11.14)
id id
This shows that if sinwa = 0 (so that w and sinccx are, respectively, an

eigenvalue and eigenfunction of the homogeneous problem d2ip/dx2 + uj2(p = 0,
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<0) = ip(a) —0) a solution exists if and only if /0 f{y) sincuydy = 0. But the
solution is now not unique because any multiple of sinwx can be added.

Example Solve

+o2ip=x, 0<x<a, wherey()= tp@a —0.

A
ip) = ] G(x, y)ydy
0
- a - ( )
sineox . sinuj(x —a .
J - a)dy +
i sin cud y smuily - a)dy u sin uja y sin bjydy
X
i { sin LLX\

X-a,
i sineua J

Example Solve

2
m+ TRip = sin27nr, 0< x <1, where ip(0) = 4(1) = 0.

sinTrx is a solution of the homogeneous problem (an eigenfunction), but
/J sin ZMKsin nx dx —0. Therefore, (1.11.14) gives

ip(x) = Asinlrar s / sin 2T1ycos Try dy o / §'n 2iry sin Trydy
-

. sin 2irx
B sin MX—

where A and B are arbitrary constants.

Non-homogeneous problems The Green’s function (1.11.13) for
the boundary value problem (1.11.12) can also be used to solve the
following problem with non-homogeneous boundary conditions:

d2ip

i) + = f(x), O0<x<a, where 0) <0 and <P@E) = ipa.
X

To do this recall that G(x,y) = G(y,x), so that G also satisfies
equation (1.11.12) with x and y interchanged. We can therefore rewrite
our equations with y as the independent variable for a fixed value of x
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in0<x <a
j2
+  =f(y), 0<y<a,
142G + G —5(x —y), 0<x, y<a
dy2

Now multiply the first equation by G(x, y) = G(y,X), the second equa-
tion by <p(y), subtract the first from the second, and integrate over
O<y<a

Ciny) %R vy e o0 )y dy

J W Gxy)F(y)dy.

The integrand on the left is an exact differential, because

d2G d(f d dG, d(p
V(y)dg,r(xiy)-G(xiy)-dy“(y) = fy IWgy <) - Gxiy)fggly} =

Therefore, because JO ip(y)5(x —y)dy = ip(x), we hnd
ip(x) = J G(x,y)f(y)dy
0
+ _ 0O<x<a (111.15)
C(x-ydy)
The final term is known, because G(x, 0) = G(x, @) = 0 and cp(0) = 9u

@) = <A i

<D(X) :\] G(x,y)f{y)dy ipa%—f (x,2) - tpo%i {x.Q
0

:J G(x, y){y)dy + ipasin 1ux —Lpsin 1(x —a)

sin wa
0
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This solution is seen to satisfy the boundary conditions because the
integrated term vanishes at x = O, a, and the remaining term reduces,
respectively, to tp0and qmat x = 0, a

In deriving the relation (1.11.15) the condition G(x,y) = G(y,X) is
used, but no use is made of the conditions that G(x,y) = Oatx = 0, a
It is easy to show that the reciprocal formula G(x,y) = G(y,x) is
satisfied for any ‘self adjoint’ boundary value problem of the form

g PR 1+ a(x)G —6(x —y), 0<x, y<a

iG(0 € 0 = biG bZdG =0
ai ()+a2&(0)—0, iIG(a) + o (a) = 0,

where aj, a2, bi, 62are constants. Therefore, (1.11.15) also represents
the solution for more general conditions at x = 0, a. For example, if
the values of dyi/dx instead of are prescribed at x = 0, a, the solution
is given by (1.11.15) in terms of the Green’s function that satisfies
dG/dy = 0 at x = 0, a, namely,

x) = \] G(x, y)H{y)dy - <aG(x, a) + (H0G(x, 0)

0

where

Problems 1J

Show that:

1. S(x-y) =6(y-x).

2. x6{x) =0.

3. If xf(x) = 0 for all values of x, then f{x) = A5(x), where A is an arbi-
trary constant. [ g)f(x)dx = ffex f(x) +90)]dx =
0+ g(0) f{x)dx = constant x (), .. f(x) = constant x 6(x)

4. S(ax) = j*yd(ar).
5 F{x)S(x —a) = F(a)S(x —a).
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18.

19.

20.

21.

22.

23.

Linear Ordinary Differential Equations 51

5(x2 —a2) = —a) + 5(x + a)].
EH (/(s)) = dt6 (f(x)).

CVH ()= V I(x)i(/(x)).

*$=26(x).
freooxS'(x —a)dx = —L.

. fro 6(nbx - a)f(x)dx = (-)»/<">(«)-

. limn_*oo » = S(x).

lime_ +0 »(~?+*2)2 = d'(x).

P LU + #rER) = LLhe_+or™ I

T QO B((x - 5)(x2+ 2))<ir= (])3.
. fy x26(x2 —4)dx = 1.
Let Inx be defined by its principal value when x < 0. ie. Inx = In|x| + in.
Deduce that
d Inx = PHI in5(x)
dx N '

The three-dimensional delta function <G(x—y) = 6(xi —yi)S(x2 —yf)5(x3 —y3),
where x = (x1,x2,x3), y = (ylty2l y3)-

A volume V is bounded by the closed surface S: f(x,y,z) = /(x) = 0, where
/(x) > 0 according x is within or outside V. The unit outward normal to S is
n = V/(x)/|V/(x)| evaluated on S. Show that

AF(x)-ndS= \T F eVH{f{n)")dxdydz.

If f(x) has simple zeros at x = ai, <%j a3, etc., show that
S(x —an)

< No ) =f \F(an) (1.11.16)
Find the causal solution of
Elczl; =S() + S(t- t). EHE + (t —r)H((f —r)

Find the causal solution of

N+ 2A<p=S(t—t). |[h(E—T)eT 1

Use the Green’s function G(t —r) — "H (t —r) sinw(f - r) to show that the
causal solution of

d2ip + u2ip o0 <t< 00, is ip 2H(£)simnt e M

dt2 ’ WHWl+y2) 1+u2
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24.

25.

26.

217.

28.

29.

30.
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Solve the boundary value problem

d2G
dx2

+ui2G = 8{x —y), 0<X y<a, Wwhere ‘;%:o at x=10, a

H(y —x) cosuj{y —a) cosUx" H(x —y)cosl.j(x—a) COS WYy

Use th

ujsmuja ysinwa

e solution of Problem 24 to solve

2 0 dp _ _
-?j)-([a:-+gp—x, 0 <x <a, Where&—Oatx—O,a.
X sinwa; (I —coswa) cos wir

- D

Solve the boundary value problem

d2G
—4=Y

~ =dix~¥Y> 0<x, y<a where G=0 at x=10, a

H(y —x) sinh u>fy —a) sinh Ux H(x —y) sinh lj(x—a) sinh iy

v>sinh wa ysinh u=a

Solve the boundary value problem

d2G B _
-Jx-gg-— 8(x—y), 0<x, y<a, where G=0 at x =0, a

Wy - x)x(y - a  H(x - y)y(x - a)

Solve the boundary value problem

d2G
dx2

[-zH(y-x) -yH(x-y)]

=8(x—y), 0<x, y<a, where G(0)=0, ((jj(;(a)=0.

Use (1.11.15) to solve

d2ip

=

y

2
+u 9P=%, 0<x<a, where ip(0)= po and p(a) —pa.

< —1 sin UX\ asin YX—bo sin Lj@(—a)

smoia SHIW fl

Use the solution of Problem 24 to solve

d2p
dx2
X

d
+Uj2p =x, 0<x<a where —p(O) = p'0 and %F:(a):p'a.

sinUx (I —cp@swa) cos LJX h p'0 cos Lj(X —a) —p'a cos YX
) o ysin uia




VECTOR CALCULUS

2.1 Elementary Operations with Vectors

A vector a = (ai,a2,a3) will be referred to a right-handed coordi-
nate system (x,y,z). Unit vectors along the x-, y- and r-directions are
respectively denoted by i. j and k, so that

a= (oi,a2,a3) = op + aj + a3k.

a has magnitude a = Ja| = y/a\+ ®+a3 and a = alla] =
alyla\ + a\ + a3is a unit vector in the direction of a.
The scalar product a <b of two vectors a and b is defined by

ae*b = abcosB = a\b\ + a262+ a363,

where B is the angle between the directions of a and b. Hence, i¢j =
J*K=Kei=0,and |a] = n/a ea.

Two non-parallel vectors a and b define a plane with unit normal n.
Let 9 be measured from a to b in the positive (or right-handed) sense
about the direction n (i.e. clockwise when looking along the direction
of n). Then the vector (or cross) product a x b is defined by

axb=absin9n.

53
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7 A axb

The definition does not depend on the choice of the direction n. If the
direction of n is reversed the angle of rotation is replaced by 2ir —6
and sind is replaced by sin(27r —9) = —sin 9, so that magnitude and
direction of a x b are unchanged.

Note also that

I J K axa=0,
axb = a\ a a3, in particular < axb=-—bxa
The triple scalar product of three vectors a, b, ¢ is
2y &2 a3
abxc=axbc= h h n
Q C @

This is because a x b = absin dn, where n is a unit vector perpendicular
to a and b, and therefore

ae*b xc=absin9n ec = absin9 x ccos
= area of base x perpendicular height.
The following vector identities are frequently encountered:

ax (bxc)=(asc)b —(a<b)c (triple vector product)
(@axb) x(cxd)=(asb x d)c—(a+b x c)d.
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Example  Solve the vector equation : x + x x a = b. (2.1.1)
Take the cross product with a: xXxa+ (xxa) xa=bxa
but (x xa) xa = a(a *x) —a2x

Xx xa—a2x = a(a*x)+bxa
To find a *x take the scalar

product of (2.1.1) with a: aex = amb

X xa—a2x = —a(ab)+bxa

Subtract this equation from (2.1.1): (l+a2)x=b+ (a*b)a—b x a

b+ (a b)a—b xa
(1 + a2

Problems 2A

10.

Find the value of x given that a = 3i—2j and b = 4i+ xj are perpendicular. [6]

Find the lengths ofa = 2i- j+ 2k, b = 5i + 3] k. What is the angle between
the directions of a and b? [3, \/35, cos-1(5/3735]

Solve for x the vector equation x + a(b =) = c, where a, b, c are constant
vectors. What happens when a «b = —1? [x = ¢ —a(b mx)/(l + a *b)]

Solve A x+axx = b, where A ¢ 0is a constant, [x = {Alb+a(a mb)+/1bxa}/
A(A2+ a2)}

Solve the simultaneous equations x + yxp =a,y + xxp = h.

[x={(pea)p+a- bxp}/(l +p2), y={(pm)p+b-axp}/(l+p2)\

. Calculate r and r, where the dot denotes differentiation with respect to the

time t, when r = (f+ sinf)i+ (f —sint)j + \/2(l —cosf)k. Show that r and r are
perpendicular and have constant magnitudes, [r = (Il + cost)i + (I —cost)j +
VAsintk; r = —sinti + sinfj + \/2cosfk; r f = 0;|r] = 2 |r| = y/2]

Show that (ax b) *(axc) xd= (a+d)(a m x c).

. Ifr = (x,y, z), show that the equation of the straight line through the point rQ

in the direction of the unit vector t is r = rQ+ At, —o0 < A< oo0.

If r = (x,y,z) lies on the straight line through rQin the direction of the unit
vector t, show that (r —r@Q x t = 0.

Show that the equation of the plane whose unit normal is n (so that |n| = 1)
and which passes through the point rQis (r —rD en = 0. Show that the
perpendicular from the point iq intersects the plane at r = rq—n[(ig —Q m].
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11. Show that the equation to the perpendicular line from the point b to the straight
line r=a+ Atis

r=b+ytx{(a—b) xt}, —o0</r< oo

12. Show that the straight lines r = a+ Au and r = b + /xv will intersect if
vbxu =vaxu, and that the point of intersection can be written in either

of the forms
asbxv abxu

= | - Y,
vbxu

aH
v-axu

13. If the straight lines r = a+ Auand r = b + pv do not intersect show that
the length of the common perpendicular joining them is |(b —a)-n|, where
n=uxv/u xvl|.

14. Show that the equation ofthe plane through the points ri, r2, r3can be written

rer2xr3+ rer3Xri+reri Xr2=ri-er2xr3.

15. Show that the equation of the sphere of radius a and centre rQis
(r- rQe(r- rg = a2.

16. The foci of an ellipse of major axis 2a are at the points £b. Show that the
point r lies on the ellipse if

al—a2(r2+ b2) + (b er)2= 0.

2.2 Scalar and Vector Fields

Single-valued, scalar and vector functions defined over a region of space
are referred to respectively as scalar and vector fields. The mass density,
temperature, gravitational and electrical potentials, etc., are examples
of scalar fields. The velocity of a moving fluid at any instant, and the
gravitational and electrical force strengths are examples of vector fields.
In applications scalar and vector fields also depend on time, which may
be regarded as an independent parameter.
Let <(x Yy, z) = <p(x) be a scalar field. The equation

tp(x, y, z) = C = constant,

defines a ‘level-surface’ S. Because ip(X, y,z) is a single-valued function
of position, two level-surfaces corresponding to different values of C
cannot intersect.
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ip = constant

Suppose x and x + hx are two neighbouring points on different level-
surfaces. The change Sp in the value of p in moving from x to x + Sx
is calculated by writing

ip(x + 5x,y +5y,z + Sz) = p(x,y,z) + Sx» + Sy + 8z +

= <p(x.y.2)

Sp~ SxmV<p+ e (2.2.1)
where the vector

_dip dip dip  .dip .dp , dp
Ktk dx' dyl\c/ﬁ_ = lx (2.2.2)
is the gradient of p at x (also denoted by grad<”). The operator V is

pronounced ‘del’ or ‘nabla’, and is written (with respect to rectangular
coordinates)

fd d d\ . d .d d

ydx’dy’dz) ldx~~dy~~  dz! (223)

Let hx be in the direction of the unit vector a, and put Ss = |hx]|,
so that a = Sx/Ss. Then the rate of change of p at the point x in the
direction a, called the directional derivative of p, is

ds) k-4 s 5 WP acVb (224)
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When two neighbouring points x and x + hx he on the same level-
surface, equation (2.2.1) shows that

Sx
— *V(p —0 0
& (p as ox

for all orientations of the vector Sx on S. But in this limit, the vector
displacement hx lies in the tangent plane to the level-surface through
X, so that W? is normal to the surfaces of constant ip, and the unit
normal is

n= lw in the direction of increasing ip. (2.2.5)

This is the direction in which tp changes most rapidly, because according
to (2.2.4)

= a *V<p = |\« cosO,
which assumes its maximum value when 0 = 0 (where 9 is the angle

between n = VA/|V<?| and the unit vector a).

Example Evaluate Vr, where r —\Jx2+ y2 + z2.

.dr dr dr . X y
r= dy' ~z ' = yhK2+ y2+ z27 yIX2+ y2+ z27 yIX2+y2+ z2,

Example Calculate the unit outward normal at (x,y, z) to the ellipsoid

2 2 2 .
_ + YL+ =
a2 W @
+ " —lisan increasing function of x, y and 2, so that Vy? is directed
away from the origin, and the required outward unit normal is therefore
] n. jli n
n _ (a2 1? 02) \(/az : %2 : c(Z/
|VH I4x@ i iy2 i 422 X2 iy2 . 72
y a4 'oc4 yad ''bd " ora

Problems 2B
Calculate the gradients of:

L p=x [
2. ip=x3+y3+1z3 [30Kk21+ y2 + z2K)]



Vector Calculus 59

tp=rn,r=xi+yj+zk. [nr“2r]

p=aecer,r=xi+y]+zk. [q

o M~ w

ip=r-V(x+y+2),r=xi+yj+zk. [i+j+K]

6. ip=1f(r), r = \xi +yj+ zk\.

Find the directional derivatives in the direction of a of:

7. p =excosy, a =(2,3,0), x= (2,7r,0). [2e2/-°\43]

8. p=xyz, a=(1,-2,2), x= (-1,1,3). [7/3]

Find the unit normal to the surfaces:

9. z=y/x2+y2at x = (3,4,5). [(3,4, —5)/5n/2]
10. ax+ by+cz+d=0atanyx. [(a b,c)/\/a2+ b2+ c2]

11. Show that, for the product of scalar functions ipi, <2
V(cyQicp2) = PiVP2 + ptS pii-

12. Show that the directional derivative of the vector F in the direction of the unit
vector a is given by

where a *V

2.3 The Divergence and the Divergence Theorem

Let dS denote the area element on a surface S, with unit normal n =
n(x). Because the surface has two ‘sides’, the vector n can be chosen
arbitrarily to be directed away from either side. For a closed surface we
usually take n to be the outward normal.

The flux of a vector field F(x) through the surface S is defined by
the surface integral

S S

where the dS denotes the vector surface element
dS = ndS = (ni,n2,n3)dS,

orientated in the direction of the surface normal n.
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S

The net flux from a dosed surface, with outward normal n, is
obtained by integrating over the whole of the surface, and this opera-
tion is signified by the notation 4 F «dS. In the case of a fluid with flow
velocity v(x, t), £, v «dS is equal to the rate of increase of the volume
V(t) occupied by the fluid in S. Referring to the following figure, in time
St a surface element of area dS undergoes a vector displacement vSt
and sweeps out a volume dSn mvSt. The net change 5V in the volume
of the fluid initially in S is therefore SV = 72 dS wSt, and

Y
St dSnw /v dS.

Therefore, qofs v «dS is just equal to the rate of expansion of V per

unit volume5 V at
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With this interpretation in mind, we dehne the divergence of a vector
field F at x by

divF = ‘outflux’ per unit volume

(2.3.1)
S S
where the integration is over the surface S of an infinitesimal volume
element V containing x. This is a scalar function of position.

The explicit representation of divF in rectangular coordinates is
derived by taking a volume element in the shape of a rectangular par-
allelopiped of sides dx, dy, dz aligned with the coordinate axes, and
volume V = dxdydz. In the following figure the contribution of the
faces S_ and S+ to the integral (2.3.1) is

with analogous expressions involving dF2/dy, 8F:/dz for the other
faces. Hence

(2.3.2)

dz

The divergence theorem Let F(x) be defined on and within the
interior V of a closed surface S. Then

divF dV = thn mFdS = o F «dS. (2.3.3)
\) S S
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The proof is an immediate consequence of the definition (2.3.1).
1

The volume integral on the left of (2.3.3) is evaluated by dividing V
into volume elements hVf with surfaces S,. For each element

hviddivF)e n «FdS,
sk
where the divergence is evaluated at some point within hv*. Then as
SVk~ 0

[ divFdV = 5ViddivF)t= " i n *FdS.
vV K K s{

The surface integrals over a shared rectangular surface of adjacent vol-
ume elements CIVT are equal and opposite, and the only terms in the final
summation on the right-hand side that make a non-zero contribution
correspond to the surface elements that approximate to the boundary
S as —>0, which yield € F mdS as 5Vk —0, thereby establishing
the theorem.

Example ShowthatV = | fsrdS, where V is the volume bounded by the closed
surface Sand r = (x,y, z).
By the divergence theorem: | psrdS = | fvdivrdV = | fv 3dV = V.

Example A vector field whose divergence vanishes is called a solenoidal vector.
The velocity v(x, t) of an incompressible fluid is solenoidal, because the volume
occupied by a moving fluid element is invariant, i.e. its rate of volumetric expansion
is zero, although the mean fluid density may vary with position in the fluid.

In an ideal fluid in irrotational motion the velocity v = where y(x, 1) is a
velocity potential. When the motion is incompressible div(Vy>) = 0. Now

div(V) = divgrad = V «V = V! = —

+ 234
oxz oyz Oz ( )
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Hence, for incompressible flow ip satisfies Laplace’s equation

2 _d29 d2»> d2
VA=Ne +d?2+1h2~ " (2.3.5)

Problems 2C

Find the divergence of:

L F=yi+zj+xk [0

2. F=x. [

3. F=(x,¥y2,z3). [l +2y +3z2]

4, F = 4r2i + 4y —z1k. [Bx + 8y —27]

5. F =xyz(i+j + k). [yz+xz+xy]

6. F=r/r3, r=x\+yj+zk. [0 r>(

7. F=r(r-a), r =xi+yj+zk, a = constant. [4red]
Prove that:

8. V2(l/r) =0, r> 0, r —xi +yj + zk.

9. V2(rn) = n(n + Dr"-2, r = ai+ yj + zk.

10. For scalar and vector fields </2x) and a(x), div(y:a) = $diva + Wip ma.

11. div (fvg) - div(flIv/) = /V 25 - 5V2/.

12. /gvn«VipdS = fv (Vip)2dV, provided V2y= 0.

13. V =\ $n-V(r2)dS, wherer = r\ + yj+ zk and V is the volume enclosed by S.

14. fs(x3i+y3 + z3k)-dS = where S is a sphere of radius R with centre at
the origin.

Evaluate € n =Fd.S when:

15. F = (x,x2y,—x2z) and S is the surface of the tetrahedron with vertices
(0,00, (1,00, (01,00 (00DH. A
16. F = \(x3,y3,z3) and S is the surface of the sphere |x| = 2. [l1287¢5]

17. F = axi+byj+czk where @, b, c are constants, and S is the unit sphere |x| = L
[17t(o + b+ C)]

Divergence theorem in two dimensions For a two-dimensional
vector field F(x,y) in the »xy-plane, the divergence theorem involves
the line integral 8c n «Fds taken around the closed boundary C of an
area A of the plane, where ds = yjdx2+ dy2 and n is the outward
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normal to the contour:

dxdy (2.3.6)

The reader can easily show that nds — (dy —dx) when the line
integral is taken in the positive sense around C (such that the interior
of the curve is to the left when travelling along C), and thereby deduce
Green’ theorem

F\dy - F2dx = J + BBFy2 dxdy.
A

In the usual statement of this formula (F\, F2) is replaced by (-G, F),
giving the two-dimensional form of Stokes’ theorem (82.4):

fBG BF\
(—— -g-Jdxdy. (2.3.7)

C A
2.4 Stokes’ Theorem and Curl
Circulation of a vector field The line integral

() F mdr
c

taken around a closed circuit C (Figure (a)) is called the circulation of
F around C.
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(a)

For a given vector field F(x) a new vector field denoted by curlF is
defined whose value at the point x is obtained by the following limiting
procedure. Choose a direction defined by the unit vector a, then

. . . .1
a ecurlF = circulation around a per unit area = Rmoi?b F-dr

C

(2.4.1)

where C is any closed contour around x lying in the plane containing x
whose normal is a. C encloses an area A of the plane, and is traversed
in the positive sense with respect to the direction a (Figure (b)).

To evaluate curl F explicitly the vector line element dr is written in
the form

dr = (a x n)ds,

where ds = |dr| > O is the arc length on C, and n is the unit outward
normal to C in the plane. Then

ascurlF = Fe(ax n)ds= ne(F «x a)ds.

C c

The vector F x a lies in the plane of the curve C. We may therefore apply
the two-dimensional divergence theorem (2.3.6) to the final integral,
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to obtain

hrn \J div(F x a)dS = div(F x a)
A
=Ve(F xa=ae+(VxF).

asecurlF

In rectangular coordinates (x,y,z) we find (using (2.2.3)), taking in
turna =1, J, k

i j K
culF=vxr= 4 &
P F2 F3
*sg dF2 . dR\
dy dz ' dz J
ddiz ddFy' 2.4.2)

Stokes’ theorem Let C be a closed contour and S an open two-
sided surface bounded by C. The unit normal n on S is assumed to be
orientated in the positive sense relative to that in which the contour C
is described (see Figure (a) below). Then

The theorem is proved by ruling a mesh over S in the manner illus-
trated in Figure (b), and summing the contour integrals taken over all
of the mesh boundaries in the positive sense. The sum is just equal to
80 F *. because the contributions from a mesh side within C is equal
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and opposite to that of an adjacent mesh. Then, if Cfic, SSY and w
denote the boundary, surface area and unit normal for the fcth mesh,
the definition (2.4.1), with a = r*, gives as SS& —=0

F-dr = ¥] w, murlF(5Sfc | curlF «dS.
K s

Problems 2D

10.

Calculate curl F for F = xi, xi + y] + zk, (xi —yj)/(x +y). [0,0, k/(x + y)]

Show that curl {r(a m)} = a xr, and curlcurl {r(a *r)} = curl (axr) = 2a,
where r = xi + yj + 2k and a is constant.

If a is a constant unit vector, show that a-{V (v *a) —curl (v x a)} = divv.

Prove that (v-V)v = V(*x2) +curlv x v where (v-V) = v\id/dx + Vad/dy +
vAd/dz and v = [V, V2, W)

Use the relation je¢ V<pmdr = 0, where C is any simple closed curve (i.e. one
that can be ‘shrunk’to a point without crossing any boundaries) to deduce that
curlVtp=0.

. Show that if curlv = 0 where v = (xyz)b(xai + yaj + zak), then either 6 = 0

ora=—.
Establish the identities:
curl y>F) = V x (yF) = <pcurlF + V<p x F;
curl (curlF) = V x (V xF) = V(divF) - VIF;
div(F x G) V (FxG) =curlF G- F curlG;
curl (F xG) = Vx((F xG) = (G-V)F- (F-V)G + FdivG - GdivF;
grad(F mG) = V(F G) = (G-V)F + (F-V)G + G x curlF
4-F x curl G.

(2.4.4)

. Show that curl (r“r) = 0, for any a, but div(r“r) = 0 only fora = —3.

Show that div(curlF) . 0 by applying the divergence theorem to
€ n mcurlFcLS for a closed surface S. Divide S into two parts Si, S2 by any
closed curve C drawn once around S. Stokes’ theorem shows that the surface
integrals over Si and S2 are equal and opposite, because they are equal to the
circulations of F around C in opposite directions.

Prove that for a scalar field ip
i VtpdV = <>p ndS,

Vv S
where V is the interior of the closed surface S with outward normal n.
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11. By considering the surface integral a-n x Fd5 for an arbitrary unit vector
a, prove that

I curlFdV = j) n x FdS,

Vv S
where V is the interior of the closed surface S with outward normal n. Hence,
deduce that curl F can be defined by

curl F = Ijm §| n x FdS.
s

Questions 10 and 11 of Problems 2D and the divergence theorem
are all variations of one integral transformation, which is clear from the
symbolic representations

J XdpdV = j) nipdS,
v s

J V eFdVv :j n <Fds, (245)

v %
\] VxFdV :JmFdS.
\Y S

2.5 Green’s Identities
Let (pi and 92 be scalar fields. Then

div(</?iV9?72) = VRl <V 2+ <PiVV?2,
div(<?22V i) = Wi «V(p2+ 42V V.

The divergence theorem yields for a region V bounded by a closed
surface S

i V(P ew2dV = @ivap2edS iV dV

\) S Vv
= @VqiedS —/ dV. (2.5.1)
Vv

either of which is known as Greens first identity.
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The right-hand sides of (2.5.1) supply Green’ second identity

S \Y

When ipi and (e both satisfy the same one of the following equations

Laplace: V2= 0,
Helmholtz: V2&+ K2ip = 0,

in V, Green’s second identity reduces to the ‘reciprocity’ relation

D) I("IVER- AV Aj edS =0,
S

Example An infinite region of incompressible fluid is bounded internally by the
surface S of a rigid body. The body is in motion and causes the fluid to move
irrotationally with velocity v = Vy, where <psatisfies Laplace’s equation V29p= 0
in the fluid. This implies that [V</7 ~ 1/|x|3 as |x| — oo in the fluid, and the fluid
may be assumed to be at rest at infinity.

Green’s first identity, with tpi = y>2 =  shows that the kinetic energy of the
fluid is proportional to

fluid region

where dip/dn = n-S7ip is the normal component of the velocity of S directed into the
rigid body. If the body is suddenly brought to rest, dip/dn becomes instantaneously
zero, and the equation supplies the unphysical prediction that motion also ceases
immediately everywhere in the fluid!

Example The velocity distribution of the irrotational motion of the previous
example is uniquely determined by the boundary motion, i.e. if ip and iff are two
velocity potentials found by different means that have the same values of dip/dn on
S, then V</?(x) = Vip'(x) in V.
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To prove this we set ® = tp—ip', and note that this implies that g®/gn = 0 on
Sand V2 —0 in V. Green’s first identity, with p \—p2 — ®, then gives
d
o4 s - D2y =0
on J
The integrand on the left is non-negative, and we must therefore have Y& = 0 in

V,ie Vcp—Vp'.

Example The Kinetic energy of the irrotational motion of the previous two exam-
ples is smaller than the kinetic energy of any other motion consistent with the
boundary conditions.

If p is the fluid density and spthe velocity potential for irrotational motion, the
kinetic energy is

fo=\pj (VpfdV.
\%

Let vi(x) be any other (rotational) velocity distribution that satisfies n mvVi =
ad/an on S, with kinetic energy T\ = *pf v\dV. Then
\

Tx-TO

bpd (u2-(Vv?)2)dV
\

\pj ("2Vpe(V] - Vp) + (v! - Vp) cN

\
= p\] [Mivi<p(vi —Vp'j —<Adiv(vi — d\ + "p\] Avi—Vph dV
\Y A%
=pj)p(vi—Vp) S —p j ~div(vi —Vp)dV + ifP* (vi — cTV.
S \" \"

On the final line, the first integral is zero because n evj = ad/an on S; the second
integral is zero because the fluid is incompressible (div(vi —Vp) = 0). The final
integral is non-negative, thereby proving that 7\ > Tq.

2.6 Orthogonal Curvilinear Coordinates

Consider three scalar fields qi(x), <(x), g3(x). Each has a level-
surface that passes through a given point P (see figure below). It is
assumed that the functions are such that the three level-surfaces are
not coincident or meet in a common curve. The values of qgi, 2, g3
on these surfaces accordingly determine the point P, and constitute
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curvilinear coordinates of P. The three surfaces are the coordinate
surfaces through P, their lines of intersection are the coordinate lines,
and the tangents of the coordinate lines at P are the coordinate axes,
whose directions vary for different points P.

We consider here orthogonal curvilinear coordinates for which, at
every point P, the coordinate axes are mutually perpendicular. Choose
the positive directions of the orthogonal coordinate axes of (qgi, g2, g3)
at P to form a right-handed system, with respective unit vectors ali,
a2,a3in these directions. Let the coordinate surfaces q\ + dqi, g2+ dg2,
@ + dg3 define the coordinates of a neighbouring point P'. Suppose that
the infinitesimal rectangular parallelopiped, shown in the figure, formed
by these surfaces and the surfaces through P has sides of length hidgx,
h2dg2, h3dg3 (hi, h2, h3 > 0) respectively parallel to ai, a2,a3. Then the
volume element dV and line element ds (the distance PP') are given by

dV = hihzh3dgidg2dgs, ds2= h2dq\ + li2dg2+ h\dqg2, (2.6.1)
and the gradient \WW? of a scalar field ip by

(2.6.2)

The corresponding expressions for divF and curlF in orthogonal
curvilinear coordinates for a vector field

F = Fiai + FX2+ F33

may now be derived from their definitions (2.3.1) and (2.4.1).
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The volume of the parallelopiped is dV = h\hzh3dg\dg2dg3. The
surface integral fPBCDn <FdS over the face PBCD is

-F-a1h2h3dg2dg3 = - F ih 2h3dg2dg3,
and over the face A'B'P'D’
Fih2h3dg2dg3 + —d (FIh2h3dg2dg3) dqu
so that the net contribution from the two faces is
d_((jqi (F1h2h3)dgldg2dgs.

A similar calculation shows that the contributions from the remaining
pairs of opposite faces are

a . d . .
— (F2h3h I — (F3hih2 .
dq2( 3hi)dgldg2dg3 and dq3( 3hih2)dqgidg2dg3

Hence, by equating the sum of the surface integrals to
divF h\h2h3dg\dg2dg3 we find

. 1 o o 0o
= — — — ANi
divF h\h2h3 g (F\M 3)+OqZ (F2h3nh )+dq3 F hl)\ :

(2.6.3)

To find the component of ai scurlF of curlF, the definition (2.4.1)
is applied to the closed contour PBCD whose normal is ai. The enclosed
area is h2n3dqg2dg3. The contribution of the edge PB to 8PBCD F-dr is

a2+Fh2dg2 = F2h2dqg2)

and the contribution from CD is therefore
—F2h2dg2 - d_(;S (F2h2dg2)dqg3,

yielding a net contribution equal to

d
— @#2h2)dg2dg3.
g 2 Dot
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The contribution from the sides DP and BC is similarly found to be
d (F3h3)dg2dg3
dg2 '

Equating the contour integral to rp ecurl F h2h3dg2dg3 we find

The corresponding expressions for (curlF)2 and (curlF)3 may be
obtained from this expression by permuting the subscripts. The final
result may then be cast in the form

Mai  h2a2 h3a3
a
curl F w2 s (2.6.4)
hiFi  h2F2 h3F3

Example The cylindrical coordinates (r,B,z) of a point are related to the rectan-
gular coordinates (x,y,z) by

X = rcoss, Yy

Then
ds2 = dr2+ r2d62 + dz2
hi =1, h2=r, h3—1I
dV = rdOdrdz
dip,, ldp - dp,,
V,p= * r+;3sB+al’
, dF
divkF = | * rF-
dr r do dz
dFz d(rFe)\ dFr
curlF = - — e +1 1-4 C
r dé r-~ dz L(I)_!‘ J r (I'Ll'orp 06 J

2 19 ioVv,aVv
VV=TRZ\ ¢r 1w d2° (2:6:5)



74

Example For spherical polar coordinates

X — 1T cos (psin y = rsingsing, z
Then
ds2 = dr2 + r2d02 + r2sin? sdp2

hi=1,h2=r, /13=rsinl

Mathematical Methods for Mechanical Sciences

(r, 9, &)

=rcosB 0<B<T 0<" <27

dV = r2sin 9d9dddr
_d ldp I dp2
\p = E‘Lr)ﬂ_l“;_é:g‘l\{q)r sin 9 ddp
divE = 1 d(r2Fr) 1 d(s'm9Fe) 1 dFg
YET o dr rsin#  do9 rsin0 do
LE 1 d(sin9Pd) dFe\ ,, 1 /9Fr d(rsin0.Fh)\
eur rsin9 il ab) I rsin0 \ 8 dr J
1 fdjrFe) 9Fr\~
r\ dr 89 J
2 I o ( 2dp\ I df. <N [ d2p 266
r2dr\ drJ r2sin989 \ 89J  r2sin208412 (£9:2)
2.7 Evaluation of Line and Surface Integrals
Line integrals Consider line (or contour) integrals of the form
J F-dr = J F-dr = J (Fidx + F2dy + F3dz), (2.7.1)

along a prescribed path C between the endpoints a and b. Such integrals
are evaluated by introducing a parametric representation of the vector

position r on C.

Example
r = (cost,sint, 6f),

when F = (y,z, x).

Evaluate fc F-dr along the section C of the helix defined by

0 <t <\dr,

We have dr = (—sini, cost, 6)dt and F = (sinf, 61, cost)

47r

J Fdr= H —sin2t+6(f+ [)cost dt = =2t

C 0
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Condition for path independence The line integral (2.7.1) is inde-
pendent of the path between any two points a and b provided F is the
gradient of a scalar potential <p(x), i.e.

F = Vip.

For, if F = Vip, then F-dr is an exact differential, and

I F-dr = J \&? mdr —J dp = <) —y?(a),
a a a

depends only on the values of ip(x) at the endpoints. On the other hand,

if the integral is independent of the path between any two points in the

domain V of definition of F, the function

V(X ) = \] F-dr,

defines a single valued function of x in T, and
X+<5x
<p(x+ fix) —p(x) = j F-dr « F(x) *6%x, as Sx —»0.

By taking in turn 5x —i&r, jSy, KSz it follows that
n = F2="% F3=7_, ie that F=VW
0X oy 0z
Note that F can always be expressed as a gradient if curl F = 0.
Indeed, the integrals

F-dr and T2_/

c2
and C2 between any
always equal, because

@ F-dr= [/ curlF

C12 S|]2
where C12 is the closed contour formed by Ci traversed from a to b
and C2traversed from b to a, and S12 is any open, two-sided surface
bounded by Ci2 (Stokes’ theorem).
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Example Show that jc sinxy(ydx + xdy) is path independent and find the cor-
responding potential function.

Path independence is assured because curlF = curl(?/sinxj/,a;sina;?/,0) = 0.
Let

dp _ . dp _ dp _
A =ysmxy, ay X sm Xy, e =0

The last equation shows that p does not depend on r. Integration of the first
equation yields p = —cosxy + f(y) for arbitrary f(y). Substitution into the second
equation then implies that f(y) — constant, which may be discarded, because a
potential function p is always undetermined to within an arbitrary constant.

Problems 2E
Evaluate the line integrals fc F-dr:

1. F = (3x4,3y6,0) where C is the curve: x2+y2 =4, z = 0 from (2,0,0) to
(-200). [=

2. F = (z,x,y) where C isr = (cost,sint,t), 0 <t <An. [6i]

3. F = (ex,edy/x,e2zly) where Cisr = (t,i2,f3), 0<t<1l [8ed+ 8Sel+e- ]

Show that the following integrals are path-independent and find the corresponding
potential functions:

4. fc [(ey —zex)dx + xeydy —exdz], [p = xev —zex}.
5. fc \ycosxy dx + x cosxy dy —dz], \p =sinxy —z].
6. fC [xe2zdx + x2e2zdz], [p="x2e2z]
7

. Show that if r = r(t) on C, the length of arc between t —a and t = b is given
bYt = fa \*(t)\dt.
§. r=1+tj+t2k on C. Show that the length of arc betweent =0, T is

i= "A"T\/l +4T2+ i In{QT + VITT4T2}.

9. r = (acoss, asing, aOtana) on a helix, where o, a are constants. Show that
the length of arc measured from B = 0 is given by £ = adseca.

Surface integrals Integrals of the form
| F-dS FmedS = (Firii + F2n2+ F3n3)dS, (2.7.2)

S S S

over an open or closed surface S, can be evaluated by introducing a
representation of a point r on S of the type

r = x(u, v)i +y(u, ) + z(u, u)k, (2.7.3)
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where un, v are suitable parametric variables.

The point r(u,v) on S and the two neighbouring points

r+rlu=r+ du, and r+r\Wv=r+
(u,v)

define adjacent sides of a small parallelogram lying on S. The area dS
of the parallelogram is |(ru x rv)dudv\, and the unit normal at r is
_x (ruxrVWdudv _ ruxr,,
\(ru x rv)dudw [rux r,,|5

where the £ sign appears because of the ambiguity in the direction
of n. Hence, the vector surface element on S can be written

dS = ndS = = (ru x r\V)dudy, (2.7.4)
and the surface integral (2.7.2) becomes
J FendS =4 J F-ru x r,, dudv. (2.7.5)
S S

In applications of this formula the correct sign must be determined
from the conditions of the problem.

Example Determine the surface element for a sphere of radius R.
Using spherical polar coordinates (r, B, ¢):

r = R(sin9cos d, sin 9sin ¢y, cos 9)
re8 = R (cos 9 cos ¢y, cos 9sin ¢y, —sin 9)
rp= R (—sin 9sin ¢ sin 9cos b, 0)
rjxrdg= R?(sin2 9cos®,sin2 9sin d sin 9 cos 9)
— R?sin 0(sin 9cos ¢, sin 9sin &, cos9) = R2sin9r.



78 Mathematical Methods for Mechanical Sciences

Hence,

ndS = dS = re x IpdOdg) = rR 2sin 6d6d(f).

Example Evaluate fsF mdS when F = z3(k —i) and S is the surface of the
section of the cone

r=wucosvi+usinvj +unk, 0<u<b5 0<r<2m,

with outward normal n.

S 0 0

Example Evaluate pe F-dr when F = (—4y3,4x3,23) and C is the contour defined
by x2+y2+z2=R2, z = h (J/i] < R) traversed in the positive direction with respect
to the positive z-axis.

Apply Stokes’theorem fc F-dr = Jgn-V x F dS, where S is the circular surface
x2+y2< R2—h2, z =h. Then

i i K
i
V xF ax aF da 0,0,12K+ 12y2),
-4y3 4x3 23

and the unit normal n = (0,0,1) is parallel to the positive r-axis. Transforming to
polar coordinates (x,y) — (rcos0,rsin9) to evaluate the surface integral:
n-V x FdS = J (0,0,1)«(0,0,12x2 + 12y2)rdrd9
S
(R2-h2)2

2417 / r3dr = 6ir(R2- h3)?

Problems 2F

Evaluate fs F-dS:

1. F = (2x,2y,0) where S is the surface: z = 2x +3y, 0 < x < 2, <y <1,
[x16]
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2. F = (ev,—ez,ex) where Sisx2+y2=9, x>0, y>0 0<r<2
[£(2e3 - 3e2 + 1)]

w

. F = (1,x2,xyz) where Sisz=xy, 0<x<y, 0<y<1l [&

I

. F = (z, —xz,y) where Sis x2+ 9y2+ 4r2 =36, 0<x, 0 <y, 0 <r. [+ 4"

ol

. F = (2xy,x2,0) where Sis r = (coshu, sinhu,v), 0 < n < 2, 3<v<3.
[£(2 cosh3 2 —2)]

6. F = (x3,0,z3) where Sis the surface of the cube |x| < 1, W\ < 1, \2\ <1 [+16]

7. F = (y2,22,x2z) where S is the surface bounding the region x2+y2 <4, x > 0,
Y>0,\0<1. [£l4]
Use Stokes’ theorem to evaluate € F-dr:

8. F = xyi —(2x —y)k where C is the triangle with vertices (0,0,0), (1,1,0),
(1,0,0), traversed in this order. T[]

9. F = x2yzj where C is the quadrilateral with vertices (0,1, 0), (1,1, 0), (1,0,1),
(0,0,1) traversed in this order. [—|]

10. F = x2zj where C is the triangle with vertices (1,—,0), (1,1,0), (0,0,1),
traversed in this order. [~ g]

11. F = xyzj where C is the triangle with vertices (1,0,0), (0,1,0), (0,0,1). [q
12. F = (2y, z,3y) where C is the circle x2+y2+2z2=6z:z =x + 3. [£187T'V2]
13. F = (—3y,3x,z) where Cis x2+y2 =4, 2 = 1. [£2471]

14, F = x2zi + xyg + z2k where C is x2 + y2 = 9, x +y + z = 1, orientated
anticlockwise when viewed from above. [" 7]

15. F = 2zi + 4xj + 5yk where C is x2+ y2 = 4, z —x = 4, orientated anticlockwise
when viewed from above. [474

2.8 Suffix Notation

Summation convention Algebraic manipulations of vectorial expres-
sions can often be simplified by adopting an explicit suffix notation
F = (Fi, F2,Fs) for all vectors, including the position vector Xx. Instead
of writing x = (X,y, z) we write x = (xi,x2,x3). The components of x
are then xr, where i = 1, 2 or 3, and we can talk about the vector X,
instead of x.

The usual expansion of the scalar product of two vectors a* and b

a\b\ + a2b2 +
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is the sum )T=1 a& over all possible values of the suffix i. In this and
more complicated formulae involving summations the expression to be
summed is always found to contain the suffix to be summed twice. We
therefore dispense with the summation sign and adopt the convention
that whenever a repeated suffix occurs in a formula it is to be given in
turn all possible values (i = 1, 2, 3) and the terms are to be added.
The shorthand representation of the scalar product is then simply a”.

Differentiation The partial derivative of the jth component of the
vector field F(x) with respect to the zth component of x is written
dFj/dxi. When j =i our convention gives

9F1 = dFi dF1 dF1 =

dxi  ax\  Ax2 4x3 \% (28.1)

Similarly, for a scalar field <2x) the derivative dip/dxi is just the ith
component of \¥& The directional derivative a *\&? of €in the direction
of the unit vector a can therefore be written

a * V4

Kronecker delta Sy When F = x the partial derivative dFj/dxi =
dxj/dxi, which is equal to 1wheni=j and Oifrdj. The Kronecker
delta symbol is defined to have this property:

—8&2 —$3 —1,

$12 — $13 — $21 — $23 — ~31 — $32 —0,

so that

dxj _ axr

dxi  dxj 4 (2.8.2)

A quantity like $u with two independent suffixes has 3x3 = 9
different components. It is an example of a second-order tensor (The
properties of tensors are not considered in this book, but it should
be noted that an arbitrary set of nine numbers represented, say, by
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the symbol Ay must satisfy certain well-defined conditions in order to
qualify as a tensor.) A vector F) is a one-dimensional tensor.

Alternating tensor euk Consider the three unit vectors
ei = (1,0,0), éa= (0,1,0), e3= (0,0,1).

The determinant By*, formed by the triple scalar product e, <€? x ek
defines the three-dimensional alternating tensor with 27 components
that satisfy:

1. eijk —0 if any two of i. j, k are equal,

2. e’k = 1ifr, j, k are all different and in cyclic order, i.e. e’3 =
"3 = 6312 = 1;

3. eNk = —ifi, j, k are all different and not in cyclic order, i.e.
e213 = 6132 = B321 = —1.

For any two vectors ai: bi the quantity
3 3
6 WGk = EE eijkdjbk
j=i fa
is a double sum, because there are two repeated suffixes. For each value
of r there are nine terms on the right-hand side. But only two of these

are non-zero; for example, when i = 1only the termsj =2, k = 3 and
] —3, kK =2 are non-zero (for which eiZ3= 1, ei®= —1), so that

eijkCtjbk = 0273 — as&2-
Similarly
62ik~jbk = a3l — ooz and e3jkojbk — 0162 — a~bx-

But these are just the three components of the vector product a x b,
which therefore becomes in suffix notation

(a x b)i = eijkajbk. (2.8.3)

We can derive this useful formula directly by putting a = (og, €, a3) =
0&j and b = (61, b2, b3) = bkek. Then

(@ x b)j —e, W(Cij& x &) N X AKjttiok  Byree’



82 Mathematical Methods for Mechanical Sciences

Problems 2G

Establish the following formulae:

L. VV=agfe = Sf-

2o(curl F)j = (VxF)j = &K
a\ d2 a3
3. 3.*b x ¢ —eijk&ibjCk = bij B
c o2 G
4. Su = 3.
—b
6. Cijk*-ipg = fijp”kq OjqOkp m
7. ~ 20
8. Ojk&ijk = b.
9. (ax (b xc)).= Cjjp«,ekjitgbpCqg —bi(ijCj C)cijbj = bfa ec  c<xeb.

10. If n is the unit outward normal to the surface S of a sphere of unit radius,
show that

ar r ar

| niTijds n i ® 'HAUTTIKTIidS AN ‘+ H



COMPLEX VARIABLES

3.1 Complex Numbers

A complex number has the form
z=Xx+1iy, where i —V—I;

x and y are real numbers, respectively called the real and imaginary
parts of z, and sometimes denoted by x = Rer, y = Imr. The complex
conjugate of r is

Z* —Xx —Iy.
Algebraic manipulations with complex numbers generally obey the
usual rules of algebra with the addition of r x r = 2= —.
Examples Express in the form x 4-iy:
1L (3-2i)(I+i)=3+i-2i2=5+1.

o (I+*)_ (1+*)(3+2n 1+5r 1 5r
"(B-2Nn=G@B-2nN@B+ 2N 9+ 4 “ 13+ 13"

ImZ
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The complex number z —x + iy can be represented by a point in
the complex plane or Argand diagram, the real and imaginary parts of
r being plotted respectively along the conventional x- and y-directions.
Thus, 2 may also be interpreted as a vector whose magnitude and
direction are specified by polar coordinates (r, 9), in terms of which the
polar form of 2 is

z=x+1iy =r(cosB+ isin9) = rel

where r = \2\ — y/x2+ y2 (= y/zz*) is the modulus of r, and 9 —
arctan (1) is the argument. Because 9 is undefined to within a multiple
of Zm, we introduce a principal value for the argument denoted by argz
which satisfies

—A<argz<n.

Examples
1 ,r= 1+4rn/3 = 2e™+2r3 r = 2,arg2=8§.

2. ;7= 3-3r = 3Y2e*(-7+21r); r = 3\/2, argz=-f.

Complex numbers obey the vector parallelogram law of addition
A+ 2= (XI+0yi) + (X2 + M2) = (X1+ XR) + i(y: + yf)-

In the complex plane addition is accomplished by completing the par-
allelogram whose adjacent sides are represented by z\ and z2. This
geometrical construction shows that addition satisfies the triangle
inequality

i + z21< il + 22 (3.1.1)

z, +22

The triangle inequality
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Example All complex numbers z satisfying \z —z0\= R > 0, where zQ= a + ib,
lie on the circle (x —a)2+ (y —b)2 = R2, with centre at z = z0.

The multiplication and division of complex numbers assumes a
particularly simple representation in polar form. If

2 = T\(cosBL+ isin6\) = r\ersl, z2= r2(cosO2+ isin02) = r2ere2
then

2722 = rir2[cos(6*i + 62 + zsin(6*i + 62)] = rlr2el(f?1+62),

, 3.1.2

£ T cos(o1 — 62) + isin(0i H eHli-e2 12

2 2nm [
These results may be derived from the expansion formulae for trigono-
metric functions, cos(™4 + B) = cos A cosB FsinAsinB,sin(A £ B) =
sin A cos B £ cos A sin B, or otherwise be regarded as obvious from the
properties of the exponential function. Repeated application of the mul-
tiplication formula for N\ = r2= 1and 6\ —B2 = B supplies De Moivre%
formula

(cosB + rsin9)n = cosn6 + isin né.

The nth root of a complex number For a positive integer n and
complex number z, the equation

W =

defines n distinct roots w.
Let w = Re” and suppose that r = rers, where B = argr, i.e.
—it < B <ir. Then, because wn = z,

KneTh = rem _ re'st2«l K 0,x1,%2,.. 1
B 2K

R—r™ o-= n -t-----I-_-I (e

There are n different values of the argument ¢ that correspond to n
distinct nth roots of z, obtained by taking k = 0,1, 2,..., n —1. The
principal value of the nth root is obtained by taking k = O.



86 Mathematical Methods for Mechanical Sciences

Example Find all the values of zi = 71 + i\J3.
z = 1+rn/3=2e~
z* = =2ulE5 A=012,3.

Example The cube roots of unity.
(D)s =0t 3= e° T o = 1 BT

In all cases the sum of the roots, w\ + W2 + A--—--hwn, vanishes. This is because
the equation wn —z = 0 is equivalent to (w —w\)(w —W2) ... (w—wn) = 0, and the
sum of the roots is the coefficient of —wn~I| when the terms are multiplied out. The
vectors w\, W2, mmvn may therefore be regarded as representing a system of forces
in equilibrium.

Cube roots of unity

Problems 3A
1. Express in the form a + ib:
i 2+n)2+ (2-r)2; (i) ftg - gf*. B, 4ia(3/(a* + /32)]
2. Show that
(2 —3r)(3 + 4r) 5
(6 + 4r)(15 —8r) ~ 34°
3. Find the modulus and principal value of the argument of: z = —,r,3 + 4r,
-r- 13
[1,7%; 1] ;5,0.927 radians; 2 ,-" 1
4. Find argz for: z=-10- 1t 2+ 2i, 3- 3i. [9=-3.042, f, -f]
5. Express y/5+ 12r, \J—5+ 12r, \fi in the form a+ ib. [£(3 + 2r), (2 +
), £~ (1 +%)]
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6. If (x +iy)d —(a + ib), show that a2 + b2 = (x2 + y2)4.
7. Find two real numbers a, bsuch that (I+i)o+2(1 —=2i)6—3=0. [a= 2, b=]]

8. Ifz = x+iy, express z2, 1/z, (z2+1)/z inthe form X+iY, where X, Fare real
functions ofx, y. [X =x2—y2, Y = 2xy, X = x/{x2+y2), Y = —y/(x2+y?2);
X =x{l + 1/(x2+j2)}, Y =y{1- l/(x2 +y2)}]

9. If zi,Z2,23 are complex numbers, show that
(i) \zi + Zi]2+ \zi —2202 = 2|zi|2 + 21M 12
@iy 1220 - 22 - 232 + |222 - 23 - 2i|2 + |2z - 2i - 2|2 = 3{z2 - 232 +

|23 - 2i|2 + |zi - 22|2}.
10. Show that when a quadratic equation with real coefficients has a complex root

z = a+ib, then the other root is the complex conjugate z* —a—ib. If z = | + 3i
is a root of x4+ 16x2+100 = 0, find all the roots. [1+ 3r, 1—3r, —1+ 3r, 1—3r]

11. Show that

Evaluate the roots:

12. sfC&. [£2(1 —T1)]

13, AT,  [#1, #r, (1 = n)/n/2]

14, f/1Ti. pbetTtl k= 1,9,17]

15. 22- G+ 1)z+8+1=0 [z=3+2i, 2- 1]

16. If w —4/z and the point representing z in the complex plane describes a circle

of unit radius whose centre is at | + r, show that the point representing w in
the complex mplane describes a circle of radius 4.

17. The point z = x + iy moves along a curve in the complex z-plane defined by
the equation /(z) = constant. What curves are represented by the equations:
|z —1 = 2,|zT 1] —|z —1] —0, Re(z2) = 1? [Circle of radius 2 with centre at
(1,0); straight line x = 0; hyperbola x2 —y2 = 1].

3.2 Functions of a Complex Variable
A complex valued function f(z) of the complex variable 2 associates a
complex number

w = f(2),

with each given value of 2. The function relates corresponding points in
the complex 2- and rc-planes, and is said to provide a transformation
(or map) between the planes.
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r-plane w-plane

As the point r varies over the whole of the r-plane its image will
vary over a certain region of the ic-plane that may or may not include
all possible points of the w-plane. Alternatively, the function /(r) may
be defined only over a certain region (its range or domain of defini-
tion) of the r-plane, and then defines a mapping of that region onto a
corresponding image domain in the tc-plane.

It is frequently useful to split /(r) into its real and imaginary parts:

w = f(z) = u{x,y)+ iv(x, y).

If u(x,y) and v{x,y) are continuous functions of x and y in the usual
sense, then /(r) will be a continuous function of r.

Example
w=123= (x+ m)3 = x3—=3xy2+ i(3x2y —y3),
u(x,y) = x3- 3xy2, v(x,y) =3x2y - y3 (3.2.1)

Differentiation /(r) is said to be differentiable at r with derivative
['(r) if the following limit exists

F(2) = Jim f(z +5z) - /(r)

3.2.2
02—>0 5z ( )

where the complex number r + 6z may approach r along any path
as Sz —»0.

The condition that the limit should exist independently of the path
by which Sz —0 imposes a severe restriction on the class of functions
that are differentiable. Generally speaking ordinary (real or complex
valued) differentiable functions f(x) of the real variable x are differ-
entiable when regarded as a function of the complex variable r. But
any combination of the form f(x, y) = u(x, y) +iv(Xx,y), where the real
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functions u(x,y) and v(x,y) are differentiable with respect x and vy, is
not necessarily differentiable with respect to r.

Example f(z) = z2=x2—y2+ 2ixy is differentiable for all z, because

(z+Sz)2- z2 (22 + 62)Sz
Sz - Sz

but f(z) = (z*)2 = x2—y2—2ixy is not differentiable:

»z, as Sz —0,

f(z + Sz) —f(2) (2z* + Sz*)Sz*
5z Sz
= (2z*+ Sz*)e~2ie -> 2z*e“2i0, where 0 = arg tfz,

depends on the direction B at which the point 2 is approached.

Im Z

7+ 82

Regular function f(z) is said to be regular (or analytic) in a domain
V of the complex plane if f(z) exists at all points of V. A point where
f(z) is not regular is called a singularity.

Example /(z) = ~ isregular everywhere except for a singularity at z = 0, where
it is undefined.

The Cauchy—Riemann equations Suppose that f(z) = u(x,y) +
iv(x, y) is regular. Introduce the shorthand notation
du du dv dv

dx' 'Y dy and - vx dx’ 1y dy’

D
then, because Sz —Sx + iSy,

J. {ux + ivx)Sx + (uy + ivy)Sy
8X,Sy—0 (Sx + 1Sy)

According to the definition (3.2.2) this limiting operation should not
depend on the manner in which Sz = Sx + iSy —»0. In particular, we
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can let Sz —0 along a direction parallel to the real axis, in which case
Sy = O0and Sz = Sx; similarly, 8z can tend to zero along a direction
parallel to the imaginary axis, so that Sx = 0 and Sz — iSy. These
limits give the following alternative representations of f'(z)

. . du dv du dv
n *=dx+tdx=-% +dy’
Equating the real and imaginary parts of these formulae supplies the
Cauchy—Riemann equations:

du dv du dv
dx dy' dy dx'
These compatibility conditions must be satisfied by the functions
u(x, y) and v(x, y) when f(z) = u(x,y) + iv(x, y) is regular.
The converse is also true, namely: If u(x,y),v(x,y) satisfy the
Cauchy-Riemann equations then f(z) —u(x, y) +iv(x,y) is regular.
To prove this we must show that f'(z) = Urw*-" Sf/Sz exists inde-
pendently of the way in which Sz 0. Indeed, when equations (3.2.3)
are satisfied

Sf = (ux + ivx)5x + (uy + ivy)8y
= [ux + ivx)5x + (~vx + iux)Sy (using (3.2.3))
= (ux + ivx)5x + i(ux + ivx)8y
= (ux+ ivx)(8x + iSy) = (ux +ivx)Sz,

I(*)  Umj- X Ttvx exists.
Sz 092

When f(z) = u(x,y) + iv(x,y) is regular, the real and imaginary
parts satisfy the Cauchy-Riemann equations (3.2.3). By eliminating in
turn v and n between these equations it follows that u(x, y) and v(x, y)
are each solutions of Laplace’s equation:

du da dv  da
dx2 dy2 > dx2  dy2

and that the real and imaginary parts of an analytic function are nec-
essarily solutions of the Laplace equation in two dimensions.
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Example w = z3is regular because (see (3.2.1))
ux = vy = 3x2—3y2 and uy = —vx = —QXxy,
where ux = du/dx, etc.

Example The exponential function w = ez = exery = ex[cosy +isiny) is an entire
function, i.e. it is regular for all values of z.

Example The complex sine and cosines

eiz + e~iz . eiz - e~iz
sinr =

are entire functions, but t&nz = sinz/ cosz is regular exceptat z = (2n+ I)-| where
cos?2 = 0.

Example The complex hyperbolic sine and cosines

T3
coshZ:e2+e sinh2 = & —°

are entire.

Example The logarithmic function w = n + iv = Ln?2 is defined by the equation
ew = 2. If 2 = reifs then ew = eueiv = rei(e+2'®, n = 0,+£1,£2,.... Hence
Ln2 = Inr+i(9+2n#). IfB = arg? (the principal value of the argument of 2), the
principal value of Ln?2 is denoted by In2 and defined by

In2 = Inr + iarg?.

By writing u = [I; In(x2 + y2), v = arctan (*) + 2mr we can verify that n and v
satisfy the Cauchy—Riemann equations except at 2 = 0, and that

d . 1
EhIZ—Z-, Z(*)O

Example We define the complex power az by az = ezdna+2nrri);n = 0, £1,
+2,..., so that there are infinitely many values when a is a complex number not

equal to an integer or a rational fraction. The principal value of az is defined to be
Ina

Problems 3B

Express the principal values in the form x + iy:
L. [(1+ nlyl/2]

2. (5—2r)(3m> [-276.2-436.0*]

3. [e-1]
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3.3 Integration in the Complex Plane

Integration in the complex plane between two points z —aand z = b
along a contour C joining the points is defined by the limiting operation

.
/f{z)dz = lim y~fjSzj, (3.3.1)
C

N

where a = 20, 4\,..., Zj,..., zn = b is an ordered sequence of points
along the contour from a to b, fj is the value of f(z) at an arbitrary
point z on C within the segment (zj_i, Zj), and the limit is taken in
such a manner that 5z — —Zj~\ ->0asn”o0o0.

By setting / = n + iv and dz = dx + idy, the real and imaginary
parts of the integral can be represented as conventional line integrals
in the >xy-plane:

If C is defined parametrically by r = z(t) = x(t) + iy(t), ta<t < tb,
then

- b
J f(z)dz :J { (u[t)x{t) - v(t)y(t)] +i(u(t)y(t) + v()x(t)"j; dt,
C ta

(3.3.3)
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where u(t) = u(x(t),y(t)),v(t) = v(x(t),y(t)) and x(t) = dx/dt,
y(t) = dy/dt.

Evidently, when the direction of integration is reversed: f°f(z)dz =
—ra f(z)dz- The precise value of f(z)dz generally depends on the
route followed by the path of integration between a and b

Example f(z) = Imr = y is not an analytic function (it does not satisfy the
Cauchy-Riemann equations). Consider the integral along the curve y —Y(x) over
the interval 0 < x < X, and put Z = X + iY(X):

Z z
ydx + iydy
iY (0) iY (0)
X o x X
X LY (x)dx+[Y(X)2-Y (0)2].
6Y{X)d>(+ 5 (x)dx+H[Y(X) (0)2]

The imaginary part | [Y(X)2- T(0)2] does not depend on the integration path,
but the remaining integral does because it is just equal to the area between the
curve y = Y(x) and the xaxis.

Imz

Example Evaluate fCz2dz along the circular arc \2\ = li over (i) 0 < arg? <
(i) 0 < argz < 2.
Set r = Rel0, dz = iRe”dd, then
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Integrals of analytic functions A regular function f(z) always
possesses an indefinite integral F(z) which is also regular and satisfies
F'(z) = f(z) (see 83.4). In the summation of (3.3.1) we can therefore set

fjiSzj = F(zj) —F(zj-i) as 6zj —0,
so that the integral becomes
vJ f(z)dz = (F(zi) - F(a)) + (f (z2) - F(zi))
C
+ eeet+ (F("_ 0 - F(zn 2) + (f(6) - F(zn X))
F(b) - F(a).
It is evident that the arguments of Zj and Zj-i of adjacent points on

the integration contour C must ultimately be equal as 8zj —0. Thus,
when a definite integral is expressed in the form

Jf(z)dz = F(b) - F(a), where F'(z) = f(2), (3.3.4)
a
it is implicitly understood that when F(a) has been calculated, the
appropriate value of F(b) is determined by taking argfr to be equal to
arga plus the smooth increase obtained when the point z translates
along C from a to b This precaution will ensure that the same ‘branch’
of the function F(z) is used at each end of C.

Example Evaluate f\  along the contours C+ and C...

I dv
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Branch cuts In order to avoid ‘ambiguous’ results of the kind illus-
trated by the two previous examples it is often convenient to draw
‘barriers’ in the complex plane across which the complex variable r can-
not pass. For example, the principal values of Inr and yfz are defined
by the condition that — < arg z < n, and for these functions it is
usual to make the negative real axis into a barrier. The complex plane
is then said to be ‘cut’ along the negative real axis. In the cut plane
arg r cannot wander outside the range — < arg r < T, where yfz is a
single-valued function of position. The difficulty with yfz. for example,
is that it is really a two-valued function of r, namely yfz —xy/re”,
—it < B < ir. These values are called the two branches of yfz, each of
which is one-valued in the cut plane. We can, however, consider two
separate complex planes Pi and P2, each of which is cut along the neg-
ative real axis, with the first branch of yfz defined on Pi and the second
branch on P2. We can then imagine that the planes are superposed, and
that the upper edge (s = w) of the cut on Pi isjoined to the lower edge
of the cut on P2, and the lower edge (d = —r) of the cut on Pi is joined
to the upper edge of the cut on P2. Starting on Pi; a complex number
r can then be made to follow a continuous closed path encircling the
origin twice in, say, the anticlockwise direction. When r first crosses
the cut it passes from Pi onto P2; the second crossing of the cut brings
r back onto Pi and to its starting point. The double surface formed by
joining the two planes along the cut is called a two-sheeted Riemann
surface, on which both branches of yfz define yfz as a single-valued
function, being equal to its first branch on Pi and to the second branch
on P2 The point r = 0 is called a branch point; it is only by going
around this point that the two branches of yfz can be realised.

The logarithmic function Lnz = Inr + 10, (0 = argr + 21T, n =
0,+1, £2,...) has infinitely many branches; the nth branch is obtained
by using the cut to restrict O to the range (2n —I)7r < 0 < (2n+ I)7r.
The Riemann surface for this function has infinitely many sheets; a
point encircling in one direction the branch point at r = 0 can never
return to its starting point.

When a cut is taken along the negative real axis it is not possible to
integrate along the contour C_ in the previous figure except by passing
onto another sheet of the Riemann surface. This is often undesirable,
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and the integration contour must then be deformed to pass around the
branch cut in order to stay on the original Riemann surface and with
the original branch of the function; the path C_ is then replaced by C_
(see the figure below) which passes around the branch point at 2= 0in
the anticlockwise direction; Int and 1/\fz are defined by their principal
values on C'_. Of course, the corresponding integrals along C+ and C_
are equal, because the net change in argz along each contour is the same.
Imz

Upper bound for a contour integral (the ‘ML theorem’): Let M be
a constant such that |/(z)| < M along an integration contour. Then,
because \fjSzj\ = |/j||(Uj|, repeated application of the triangle inequal-
ity (3.1.1) shows that

I n

3=1
where L is the length of the contour, i.e.

(3.3.5)

Example Find an upper bound for |fc z4dz| where C is the arc of the quarter
circle \2A = R, 0 < argz <
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OnC |zl4=R4and L =~

The exact value of |fc zAdz\ = ~"g <

Problems 3C

Evaluate the integrals (closed contours are traversed in the anticlockwise direction):

L.

5.

6.

Let
Z:
t <

7.
8.

9.

10.

3.4

fc(az + b)dz\ a, b are constants and C is the straight line from —r + r) to
L+ [251+]))]

. Jc (323 + pr) dz; C is the unit circle \2A = 1. [(]

Jc Re{z2}dz; C is the square with corners 0,1,1 + i,i. [l +1]
fc (z~2 + (z-2)3) dz; C is the circle \2\ = 3. [6/T]
f@ sinh3rd™. [M-]

cosl rdz. [m+ | sinh 27

C\ be the straight line path z = (1 + i)t. 0 < t < 1; C? the quarter circle
l —cost+isint, 0 <t< and C3thepathz —t, (0 <t<l), I+i(t—1) (Il <
2). Show that:

fc zdz=fc zdz=fCtzdz =i.
fCiz¢dz =1 fC3zdz=1+i(l-%), fC3zdz=1+1.

From (3.3.4) show that for every path fromz = 0toz = Z: f(|Z dz = Z, fé zdz =

\Z 2,ff ezdz = ez —L1. In each case verify the upper bound formula (3.3.5) for
a straight line path of integration by taking M = max \f{z)\ on the path.

Show that fc dz/z taken along a semi-circular arc from —1to +1 has the value
—m or +7ri according as the arc lies above or below the real axis.

Cauchy’s Theorem

Let C be a simple closed contour, i.e. a closed loop that does not inter-
sect itself. We adopt the convention, that as C is traversed in the positive
direction the interior region S is to the left. Cauchy’ theorem con-
cerns the integration of a regular function in the positive sense around
a closed contour, and it will henceforth be assumed that all curves are
to be traversed in this sense unless otherwise indicated.
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Cauchy’s theorem Let f(z) he continuous on a simple closed
curve C and regular (analytic) within C, then

f(z)dz = 0, (3.4.1)

where the notation f implies that the integration is taken around the
whole of C.

This is proved by putting ds = \dz2\ > 0, the element of arc length
on C, and introducing the outward unit normal n on C. Then

nds — (dy, —€x),

and the integral is transformed by means of the two-dimensional diver-
gence theorem (2.3.6) to yield

£ f{z)dz = j f(z) (dx +idyj = £ (if{z), -/(r)) = (dy, - dx)

C C C
(i) ends =~ auay.
C S
The final surface integral vanishes because f'(z) = df(z)/dx =

df(z)/idy for a regular function.

This proof depends on the assumption (implicit in the divergence
theorem) that the partial derivatives uXluy,vX:vy are piecewise contin-
uous within C. This is the case for most functions that arise in appli-
cations, but Goursat has shown that it is actually sufficient to assume
that f(z) is differentiable everywhere within and on C.
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Path independence and deformation The contour integrals
fc f(z)dz, fc f(z)dz along two different paths Ci,C2 between two
points a and b are equal provided Ci can be continuously deformed
onto C2without encountering any singularities of f(z). This is because
Cauchy’s theorem implies that the integral

j) f(z)dz - \]f(z)dz - Jf(z)dz =0,

C Ci c2

where C is the closed contour formed by Ci traversed in the positive
direction and C2 in the negative direction. Similarly, if f(z) is regular
within the annular region formed when a simple closed curve C2is

Imz Imz

enclosed by a ‘larger’ simple closed curve Ci, then

i>Hz2)dz =j f(z2)dz, (3.4.2)

Ci c2

because Cauchy’s theorem implies that the integral 8c f(z)dz = 0,
where C is the simple closed curve formed by Ci traversed in the posi-
tive direction, C2and traversed in the negative direction, and the two
sides of the ‘cut’ between Ci and C2illustrated in the figure. The two
contributions from the cut are equal and opposite as the width of the
cut tends to zero.

In the more general case where Ci encloses several closed, non-
overlapping contours C2,C3,..., etc, the integral around Ci is clearly
equal to the sum of the integrals around the interior contours.
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Example 8c ~- =0, where C is any closed curve not enclosing the origin z = 0.

Example Evaluate §n=2 [ ]

The integrand is regular within the circle \A = 2 except at Z = 1 By (3.4.2), the
integration contour may therefore be collapsed onto a small circle of radius S that
just encloses this point. On this circle Z = 1+ 6ele, dz = i6eied6, and

(z1 +3z- 2)dz _ J [(1 + 6eie)7+ 3(1 + Seie) - 2}i6eie dO

(z- 1)(7-2) / <Sr0[7 —(L + (5r0)]
|z|=2 0
21r
f 2id0 2nr
, as6—
-0 B = = Y
0
ndop-—
Example Show that — ® m i i
p o 7 n=-1 where n is an integer.
20[>0
(3.4.3)
Set z —zQ= 5e™ then
j (z- zO0)ndz = | i5n+1lei(n+1%edO
\z-Zo\>0 0
21
= isnJ [oos(n+ 19+ isinn+ )ege = O N/-1
2imr n —-1
Problems 3D
Evaluate:
Nz|=2 z+i
O x cosz dz X cosz dz mi
J|z|=3 r Nz\=1 z W

/c r2-Z where C is the square with corners 1 (1 £1i). []

5. f , sin 2 dz [2|]

6. ¢r=£a 2a [y
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T dz .
Jz|=§la] z—a* [27M]
r dz r2mr1
JI*+1]=1 1+r3" 13
X (2z3)dz

Nz\=l z2-3z [27m]
X (2z3)dz
JN\z—3|=1 z2-3z ™=

r (2z—3)dz

J\z\=9 z2-3z [47rr]

12. Let f(z) be regular in the region bounded by a simple closed contour C. Show
that jpe f(z)dz/(z —a) = 2mf(a) or = 0 according as a is in the interior of C
or outside C.
Indefinite integral of a regular function Let f(z) be regular
within a region V bounded by a simple closed curve (a ‘simply con-
nected region’). The integral
z

F(z) = [/(C)dC

along any contour in V from a fixed point a in V to an arbitrary point
r in V defines a function F(z) that is regular (analytic) in V, and
F'(z) = 1(2).

Cauchy’s theorem (3.4.1) shows that F(z) is a single-valued function
of r in V. because the integral is the same for any path in V between
a and r. Also,

F{z + dz) —F(2) 1 ij i
Sz Sz X K -/ X K

a

z+8z

= /(0d( f(z), aaSz O,

ie. F\z) = f(2).

3.5 Cauchy’s Integral Formula

Suppose f(z) is continuous on a simple closed contour C and regular
within C. Then for r within C

KK (3.5.1)

25
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Indeed, /(C)/(C ~ z) is regular (as a function of Q in C except
at ( — z, so that the contour may be collapsed onto a small circle
( —z = 8ers, and the integration becomes equivalent to

2t
1 T f(z + 8ers)i8eldd6
2m / 8ers

2r 2r
=% fl i i m = _*(,
= JI if(z + 8eie) d6 . d9 = f(z), as8—=*0

Cauchy’s integral formula shows that the value of f(z) at any point
z is determined by its values on any boundary within which f(z) is
regular. It also shows that a regular function f(z) is infinitely differen-
tiable inside C, because

f(z+82)-f(z) 1 f/C) f 1 1\
8z 2mJ 8z \£ —r—8 (—z2)
C
i/ /(CK

2mJ (E—z —Sz)(C—2z)

i | Ne<K
—_— .
2m 3 ((—2)2 as 8z —0
c
f\z) = — (f for r inside C,
) 2mJ( (C—z§2
C

and by repeated application of this procedure we deduce

/H = f inside C. 5.
(/r) ol (C- 2)ni or r inside (3.5.2)

Example Morera’a Theorem If f(z) is continuous in a certain region V and
8c f{z)dz = 0 for any closed curve C in T3 then f(z) is regular in V. Because,
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F(z) = f* for some fixed zo, is independent of the path of integration, and
z-\-6z
F{z + Sz) —F(2) 1 f ct \ S n
— - JZ-mmmmmm - =JZ XK f(z) asSz->0.

z

Thus F(z) is regular, and so therefore is its derivative f(z).

Example Liouville’s Theorem If f(z) is regular and \f(z)\ < M — constant
for all z, then f(z) = constant.
Suppose z\ and z2 are two points inside the circle C: \2A\ = R. Then

f(zi) ~ f(22) f(z)dz

and

{zi - z2)f(z)dz 1 \zi —z22\M2tR

WED-H220 24 [ 2-20)(2-22) 26 (R —V iR = 122 askR 00

Hence, f(zi) —f(z2), i.e. f(z) is constant.

If \f(z)\ < A\z\k as \2\ —o00 {A = constant, k > (), apply the same argument
using (3.5.2) with n = the largest integer < k to show that f(z) is a polynomial of
degree < k.

3.6 Taylor’s Theorem

Suppose f(z) is regular inside the circle \z —zq\ < R (and continuous
on \z —Zo| = R), then

*° ° f(m)/. \
f(z) = a™Mz ~z°)m= "22—m\O0 (z ~z°)m’ for \z - z°\<R-
m-—0 m=o
(3.6.1)
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This follows from (3.5.1) and the exact formula

1
= 14 X+ X24 X34 -k |l =
1—A 1—A
by setting X = (z- zq)/(( - z0) in
1 1 1

C-* (C-120~{z-20 (F-zyH- ¢ 7z

Substituting into (3.5.1) and using the formula (3.5.2) (with z replaced
by zo) we find

1

where Rn is the remainder after n terms, given by

c

where |[/(C)] <M on C, r = \z—z0\< [C—z0\= R, and R —r is the
smallest value of |E—z\. This proves Taylor’s theorem, because Rn 0
as n —>00.

This calculation shows that the radius of convergence R of Taylor’
series (3.6.1) is equal to the distance from z0 to the nearest singularity.

Example The radius of convergence of the Taylor expansion

is R —1, the singularities being at z — #i.

3.7 Laurent’s Expansion

This is a generalisation of Taylor’s theorem to situations where f(z)
has singularities within the circle of integration C.
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Suppose that f(z) is regular within the annular region between the
concentric circles C of radius R, and C' of radius R' < R, with centre z0.
Then

f(z)= ~ am(z - zO)m for Rl <\z- zO\<R,
m=—e0

I
L NedC 3.7.1)
2 J (C--2)m+1’
where the integration is around any simple closed contour within the
annulus enclosing C.

If r lies within the annulus, then /(C)/(C~ z) is regular as a function
of £ in the annulus except at ( = z. Thus

1 /NCK (% j_Ip a
2m J C_Z ( ) 2m J C— -
C v
where the right-hand side is obtained by shrinking the contour C onto
a small circle enclosing the singularity at C = z and onto the inner

contour C. Hence,

j_ rT<K I rnodc

1.2
2mJ C—z 2mJ (—z (3.7.2)
c C

| «

The denominators in the integrands are now expanded as in the deriva-
tion of Taylor’s theorem. For the integration around C (on which
\z —zql < |E —201), we write (as in (3.6.2))1

1 = 1 (z-z0) (z-Zdl
C-z C-120 (Cc- z002 (C- z0)n+l
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and for the integration around C' (on which [£ —zq\ < \z —2zq\), We
write

1 (C~*>) «-% )"
C- z z ~z0(z - 20)2 (z - 30)n+1

By substituting these expansions respectively into the first and second
integrals on the right of (3.7.2) we obtain the first line of (3.7.1), but
with

J f(Qd(

2mJ (C- zQmH’ form >0
C

JL/ ncx form < 1.

2m J  (C- zo)ym+1’
s

However, the integrands are regular in R' < \z —Z0\ < R, which means
that any path encircling C' within the annulus may be used to evaluate
the coefficients am, and (3.7.1) is therefore proved.

3.8 Poles and Essential Singularities

A point where f(z) is not regular is called a singularity. If f(z) is reg-
ular near a point zo, but singular at zqg) then z0 is called an isolated
singularity. If f(z) is regular in a region T>except at an isolated sin-
gularity zqg, we can draw two concentric circles centred on zq of radii
ri,r2(ri < r2) both lying within V. In rx < \z —Zg\ < r2f(z) has the
Laurent expansion

0o 0o T

f(z) =£ an(z- z0)n+ - _\)n- (3-8-1)

This series converges for 0 < \z —z0\ < R, where R is the largest value
of r2 for which the larger circle lies entirely within V. The second term
on the right of (3.8.1) is called the principal part of f(z) at zO. Ifbm ¢ Q
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but b+l = b2 = me= O, there are m terms in the principal part

b\ b2 bm
z- 20+ (z- z0y + + (z- zO)m’

and the isolated singularity is called a pole of order m of f(z). A pole of
order one is called a simple pole. The coefficient b\ plays a particularly
important role in applications of contour integration, and is called the
residue of f(z) at z0. For a simple pole, the residue

bi = zh_r)r;lo(z - 20)f(2); (3.8.2)

at a pole of order m the residue is

W= (TTm! (1~ { @*“2ri/(r)})_»~o (3'8'3)

In applications, however, the use of these general formulae is not nec-
essarily the best way to proceed.

The point z = z0is called an essential singularity when the principal
part contains an infinite number of terms.

Example e* = 1+ ~4-5172 + 31713 + jrpr + wm, has an essential singularity at
z = 0, with residue bi = 1.

Example f(z) = = {z-ip + + 10+ 10(z- )+ 5(z- 1)2+ (z- 1)3
is regular everywhere except for a double pole at z = | with residue 5.

3.9 Cauchy’s Residue Theorem

Let f(z) be continuous on a simple closed contour C and regular inside
C except for a finite number of singularities at Zi, z2, ..., zn. Then

n

/ f(z)dz —2m Zm, (3.9.1)
c m=1

where 7Zm is the residue of f(z) at z = zm (i.e. YIm=1" th e sum
all the residues inside C).
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The proof follows from the principle of path deformation deduced
from Cauchy’s theorem in 834. Let 71,72, ,7n be small, non-
overlapping circles of radius 8 with centres Zi,z2,..., zn contained
entirely within C. Then f(z) is regular in the region between C and
the circles, so that the integration contour may be collapsed onto the
circles to obtain

f(z)dz = ®f(z)dz + ®f(z)dz + eee+ ®f(z)dz.
n 72 In

On the mth circle f(z) is given by a Laurent expansion of the form
(3.8.1)

(e]e]

No i)' TAN
,!; (2~ zmy

Therefore, integrating around jm, making use of equation (3.4.3), we
see that € f{z)dz = 2mbi = 2mlZm. This proves the theorem.
Calculation of residues

(i) Direct calculation from the Laurent expansion.

Example Find the residue of zbei at z = 0.
2 22 23 24 25 26 27

*
‘e +7+2h2 + 3h3+ 41D + 5h3  6L6+ Ne +'™
2023 2%2 22 B . 27
=1z25+1224 +
2! 3l 77 + 51 + 6\z + T\z? +

. 26 4

residue = — = —.
6! 45

Example j) z5e“dz —2>krx “Residue at z = 0" = 27 e

45™
[SE]
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Example Find the residue of r3/(r —I)2 atr = 1
Set ( = z —1, then

(1+C3_ 1+3c+3c2+C3_ 1 3

(Z- |)2 o c2 -7C|2+ E+3 + C
1
) (r_1)2+ (_F-“]Br + 3+ (r—1)
residue = 3.
E | Hz 2mMix IResidue at r = = oI
xample (r-12° =f =
|z-11>0
(ila) Residue at a simple pole when
P{z)
m (z - Za)’
where P(z) is regular at z = zq:
Residue at zq — P (zq), (3.9.2)

(cf. formula (3.8.2)).
(iilb) Residue at a simple pole when

P(2)
Q(z)

where P(z) and Q(z) are regular at z —zo, such that Q(z) has a simple
zero there but P(z0) ® 0O, so that f(z) has a simple pole at r = z0. This
means that nearr = ... Q(z) = (z—z0)Q'(z0) + *(z —z0)2Q"(z0) + o+
where Q' (zq) & 0. Hence, using (3.8.2)

1(*)

Residue at zq ?igo & _____
> )’
(Z —za)[P(za) + (Z —2Za)P'(Za) + *H]

é ZO)Q (ZO) + (+ ceeo

H*>) 393
Q'(z0)' (9.3
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Example Find the residue of cotz atz=nn,n=0,%£1,+2,

cosr .
cotr = has a simple pole at z = mr
smr
residue = / cosr /cosz\ —
d(sclig 2) Veos z [ z=mr '
Example cotzdz = 2m.

=1

(iif) Residue at a double pole when

P(2)
fz) = (z - z0)2°

where P(z) is regular at r = z0.

Use equation (3.8.3) with m = 2

residue at z0 = ( (z ~ zo)2fiz)j\ = p\ zo)-
/ 7=1Q

Example Find the residues of f(z) = 1/{z2+ 1)2.

This has double poles at z = #i.

. 1
Write )= @ —iy2 + m2

_ . d
Atz =i residue = (g”"{(z ~ *2/U)}
-2
Id_i\((z-lrli)Zi1 (z+1)3
Atz = —i residue Ag 1 1
dz\(z-i)2J
Example az = 0; dz T
P 2+ 12 (2+1)2 = 2
N>i \z—|<!

Problems 3E

Evaluate the residues of:

1. 2cosh(3/2:). [| atz =10Q]

2. (z+2)/{z2—3z). [+ atz=0;] atz =3
3. z4/{z2+ 1). [ atz=1i; %atz = —
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4 1z3(z-- 1) Batz=0;=3atz=j
5 SNt H o atz= 0]

6. Z4l+1. [=FjetiTr/4 at z = xex”r/4]

7. z2ei. [| at z = 0]

§.e*/(z—n2- [eatz==0;—eatz=y)
9. (cosh2z)/z5. [§atz=10]

10. zj sinz. [(—n7zmat z— = £1,+2, 3,
Evaluate by the residue theorem (contours are traversed in the anticlockwise sense):

. 4 7m]

1. =1 §ap 42 [

13 jizif A~ - [mrsin (4)]
B yisianx. DI

15. iy

16. i)2|=20 A [TTr/3]

17 L, 5 =1 wakiyadz. [o7]

18. 1 )2 dz. [27rre]

19. \zM ei/(z-1)2dz. D]

20, Xep SN a7 D7riGsin 1—

21. M2|>Jal(z—a)n dz, n is an integer.  [2mm, n = —;0, n ¢ —]
20- i[O F dz. R

23- ijz|>l (z+i)(Wl)dz- [

24 20~ dz. P]

25. m

3.10 Applications of the Residue Theorem to Evaluate
Real Integrals

Type I. Integration around the unit circle

Consider
2

1 J F(cos B, sin 6)d6, (3.10.2)
0
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where F (cos 0, sin0) is a rational function (i.e. a ratio of polynomials
in sin# and cos#).
Set z —ers, then

N=1

where A 1Zdenotes the sum of the residues inside the unit circle \2A = 1

Example
At
d9 dz -2idz
/|4-cosB * ¥ z+5)(z+2
pmg 21O+ g @F D@D
= 2ni x “residue at z = 2 . B
z 2/ z=_i 3
Type Il
2TV T+ (3.10.2)

—00

where f(z) has only isolated singularities in the upper half-plane,
zf(z) — O (‘uniformly’) as |z] —» a0, and " + is the sum of the
residues of f(z) in the upper half-plane.

Consider the semi-circular contour of radius R shown in the figure,
where R is large enough that all the singularities are within the
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contour. Then

R
J f(x)dx + vJ f(z)dz = 2Tri™ 17+,

-R 7

As R —mo00 the IMU upper bound (3.3.5) shows that J*(z)dz —0,
because

j zf(z)dz < M x iR

R ™ —0 asR 00,

[ f(z)dz -

7 7

where M is the maximum value of \zf(z)\ on 7, which —»0 as \2\ —*oo.
This proves (3.10.2).

Example Evaluate JO° The integrand has simple poles where 24 = ew, i.e.

atz=zeT;ie”T and M w 1/R3—-=0as R —*00. The polesat2 = eT andeT
are in the upper half-plane, so that (evaluating the residues by (3.9.3))

() ()

Lt ux . o, A
Iolld)%& 2_b1+x4—-2x2m(ye5|duesat2—e4,eg4)

w3t 9\ T

=t T '+em)=i(e +eJ=i”-

Example Evaluate /0° ypfy- The procedure of the previous example does not
work because the integrand is not an even function. However, setting 2 = relf3
let us choose B in the range 0 < B < txsuch that 1+ 23 = 1+ r3. This requires
3B = 29I, i.e. B = — . We now consider the integral around the contour shown in the
figure



114 Mathematical Methods for Mechanical Sciences

Also f, 1d+223 —» 0 as R —o00. There is one pole within the contour at
z = e 3, with residue 3 . Hence

00 00 i
dx 2twe 3

JIIW iTF-0-%)/1exs 3

0o

dx 2”3’ 2nr 2T
h +xn 37r1—e~r 373 —e 3"~ 3sin(3) 3V3

Type Ill: Fourier integrals

0o

= j f(x)etkxdx = 227ri 7 k>0, (3.10.3)

where f(z) has only isolated singularities in the upper/lower half-plane,
f(z) —* O (‘uniformly’) as \2\ — 00, and » 7/ is the sum of the
residues of f(z)etlkz in the upper/lower half-plane. Observe that (for
K > 0) ettkz —0 as 1t(r) —=oo0.

Consider the '+’ case. Because eHkz —* 0 as Im(z) —» +00, we
integrate around a large semi-circular contour in the upper half-plane
of radius R (as for the Type Il integral). Then, by the usual procedure

/f(z)eikz j f(z)eikkdz =2t t K+

7

(3.210.3) will be true provided the integral around 7 tends to zero as
R —00. The fact that this is so is a consequence of Jordans lemma,
which is proved as follows. On 7, where z = Rel6{0 < B < ),

[ f(z)eikedz = f f(z)eike Reieids
: )
m 2
<M '_kRSi”BRdO: 2M /e~KF|8TBLLIB,
0 0
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where \f(z)\ <M on 7 (and M —0 as R —=00). But

— < sin#
-
Q—kRsin6 ™ ~—2kRe/iT
for0<B < —
~ ~ 2
Thus,
\J f(z)eike dz < 2M J eZM”E
0
M
™ (1- e“fK < " 0, as R —00,

because M —0 in this limit. This proves the lemma and (3.10.3) for
the “+’ case.

The argument is easily modified for the ‘—’ case, by taking 7 to be
a semi-circle In the lower half-plane. This time, however, the contour is
traversed in the ‘negative’ direction, so the sign of the residues must be
reversed. Note that Jordan’s lemma is not required if |/(z)| ~ /R e
on 7, where a > 0, because the simpler ‘ML’ method used for Type Il
integrals is then applicable.

cos(ax)dx _f eiaxdx

Example Evaluate = | I . a>0.
P J 1+ £ J 1+ xJ
—00 —00

Integrate around a large semi-circular contour in the upper half-plane, noting that
n/(1+nd)l~ 1/R4—»0as R —00 on 7. There are simple poles within the contour
atz\ =e2 = (1L + )/n/2, = (-1 + 0)/\/2, with residues

eiazi zieiazi —
-4 4
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and
gia2 2eiaz2
m=1 = ~N~ = 4

Hence,

00

| COME =2rj(Ki+R2)

/ a T —a
= TSin -7=+ — e"b,
2 V\/2 4

Type IV: Integrals of many-valued functions

[e]e)

_ 2mE£ 7r
1= ] (rma5
0
where |r“/(r)| —m=0 as \2\ —o00 and \2A\ —=0, (3.10.4)

and f(z) is a rational function with no poles on the positive real axis,
a > 0is not an integer, and ™ 72 is the sum of the residues of za~1f(z)
in the complex plane cut along the positive real axis.

When a is not an integer, za is a many-valued function, whose argu-
ment increases by 27m when 2 traverses a closed contour encircling the
origin. Integrals of this kind can be evaluated by ‘cutting’ the complex
plane along the positive real axis, from x —0to x = 00, and considering
the integral around the contour C shown in the figure, which includes
a large circle 7 of radius R, a small circle I' of radius $enclosing the
origin, and the upper and lower ‘sides’ of the positive real axis. Then
za is regular and single valued within C, and the residue theorem is
applicable. The contribution from 7 vanishes as R —>o0 in the usual
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way (as for Type Il integrals). Similarly, on I', [za 1f(z)\ < M/5 where
M —%0 as \2A\ —0. Hence

2nSM
J z a- 1f{z)dz 0 as S—0.

r
Taking the principal value of r"" within and on C, we now have respec-
tively from the upper and lower sides of the positive real axis (as
R —»00)

[e]e) 0

J " mdx+e” > xa If(x)dx 2wrV"1Z

0 00

The formula (3.10.4) is now obtained by reversing the sign of the second
integral after interchanging the limits of integration.

Example Evaluate the Type IV integral: /0° where 1< p <1
There are two simple poles at r = —1, —2 with residues ew” and —2AeUM
respectively. Hence, (3.10.4) supplies
XM dx /i m2r- 1)
2eim™ 3.105
| x+ Dx+2) "_2@175(9 sin(i) (3.10.5)

The value of the integral when /r = 0 is easily evaluated by elementary means, using
partial fractions, and must coincide with the limit /r —0 of (3.10.5),

dx _TreMn2- 1)  In2
| o+ nx+2) 1% fim==oes 2
Type V: Principal value integrals
/ =j- — = 227t 7PN+ Tif (a), (3.10.6)

—00

where ais real, and f(z)/(z —a) is a Type Il or Type Il integrand. The
‘upper’ and ‘lower’ signs go together, and ~ 7l are residues respec-
tively in the upper and lower half-planes, the choice being determined
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for Type Il integrals by the sign in the exponential on the left of
(3.10.3). There is a pole on the real axis, and the notation f implies
that the contribution to the integral from the neighbourhood of this
pole is to be interpreted as a ‘principal value’,

a—e 00

@
f(x)dx
X —a

— 00

The principal value integral can be converted to a Type Il or Type Il
integral by indenting the contour to pass above or below the pole at
z —a, by adjoining a semi-circular arc I of radius e connecting the two
halves (—00,a —e) and (a + e 00) of the real axis. The choice of arc
iIs a matter of convenience. When a closed integration contour C is to
be formed by introducing a large semi-circle 7 (radius R) in the upper
half-plane, it is convenient to take I to pass above the pole at a

=2m fZ+,

where the residues are from poles in the upper half-plane inside C. By
the usual argument, J ~ ~ —2*0asR —00.0On T, 2= a+ eers, and

J f(z)dz =J f(a + eer)reem d9

—fr/(a) ase—0.
ee’s

Hence, as e —=0

f(z)dz f(x)dx

- mif(a) = 2 7 1 +,
z—a X —a
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which proves (3.10.6) for the case in which the contour is closed in the
upper half-plane.

Example = 7risgn(k)e*feo, Where K is real,

because the semi-circular contour must be taken in the upper half-plane for k > 0
and the lower half-plane for k < 0.

Example Consider pe zz_Hz,—1 < a < 0, about the Type IV integration con-
tour. The pole at z = 1 is avoided by the integration paths along the upper and
lower positive x-axis by semi-circular indentations, respectively into the upper and
lower half-planes. Hence, because there are no poles within C,

00 0 YA
. Ina*a—%
Fxt-1dx e2™0 = 0,
S X — 1
00
00
Pt bde s S = —Jrcot(7ra)
4ox-1 | —eTra '
Example Consider In = n = 0,1,2,.... Using the substitution

r = em (as for a Type I integral) and setting £ = ¢** we find

zndz

/,, = Re < . "
2. C)(*-Lic)

where the principal value contour integral is taken around the unit circle \z\ — 1 in
the positive sense. A ‘closed’ contour C can be constructed (with the poles at z —C
and z = 1/C outside C) from the sectional principal value path of integration by
adding small semi-circular arcs (on which \z\ < 1) centred on each of the poles at
z —Cand z= 1/C- Then

zndz zndz I c c~"
[ (z-0(*-ilC) 2 —0) ( ~ 1/C) C-1/C  vC-c
2ttsin ng
sin ¢

because &c = °-
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Problems 3F

Evaluate by the residue theorem:

dé

- A
1- 85 1+asing: &l < 1. Vi~a2J

2 foiribn «>0- aVll+az
o (-2 cos 26 d6 1~ [ 2atp2
JO I-2pcos0o+p21 Ul U-p2

4 Ilcos60d0. [5f]
5 JBS!&gsAy' a>l 7F§‘a —al  (@2-r )’

6 fOZ\NsinZOrtO [211(2- /3)]

2+cos 0

d o
7- fo (I+x2))((4+x2)* n3

foo X

Jo I-Ex4r‘ 22
Q ch |+d)2(2ri ‘ 2,]S|n(/\r)
%lIJ-I Jic:) 3:9J:r1xd( O<a<l1 sin(a7r)
iioree dx rm

JO (1+x2)2°  L4]
19 e a

JO  URTHKFRZ)' m
io ree dx

JO  1+x3/2' 3\/3
14 J'00 sinx dx

-00 X
1B o TR e
16- T o P Ta’ (fceal)} [fcosfce-2d]
17. fZo (a, kreal, £>0). [sin fca]
13T («>0). \/3a_

19 Toctan- (a>°). [f]
20- C N £ - - [217C0S0]

-6 wR [E%

22- 1+X5 5sin(#/5)
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2. /o shdx. [i- Use the formula 4sind x = 3sinx —sin 3]
2% fo $'dx. m

x5 fo spdx. [f]
2% fo pesxdx. 1

97  f°° sin(aa-l)sin(a;-1)"
J—o0 x2—

[fsin2]
28 ollery [f (I + e-2)]

3.11 Contour Integration Applied to the Summation
of Series

Consider the evaluation of

oc

n=—o00

where f(z) is regular except for simple poles at a hnite number of points
Z = axaz, ..., amwhere the residues are  62,..., bm (a ‘meromorphic’
function), and \zf(z)\ —»0 as \2\ —>00.

The function 7rcot7rz has simple poles on the real axis at z =
0,x1,+£2,each of residue 1 Hence, by integrating F(z) =
Tcot Az f(z) around a contour C/v that includes all the poles of f(z)
and the poles of 7rcotnz at z = 0,1, £2,..., £iV we hnd

a m
F(z)dz =2ni ~ [(re) + 2m bkn cot 7rafc. (3.11.2)

n n=—N k=1

As A increases the contour Cgr must increase in size. If Cor can be
chosen such that \zF(z)\ —0 on Cgr as N — 00, the usual argument
(see 83.10) implies that the contour integral —0, so that

00 m
3.11.2)
Y. f(n)=
=1

)="_TrX/"c
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The square contour Cn with corners at £(N + |)(1 £r) satisfies our
requirements, because on Car

2 cos2nx + sinh2Tty 3 .
= Do i forN > =X+ .
COt It2\ sinZTtx+ sinh21Ty < g or 0, (z=x+1iy)

Example Take

10) =731,3 Ol

with simple poles at z = tai with residues +1/2ar. Then

1 1 cot(7rai)  cot(—7Tan)\ 7rcoth7ra
_ N2+ al 2ar 2ai
Tr=1
Hence,
\(;0 1 1 fTcoth 7ra
7z e
o fPéaz 2 a a2 }I
. Tcoth7ra 1 T
A:’I\ = S H 4 a Efk ~6~
Example Evaluate ('1)"
P rEo Ti2 + a?

The function Tr/sinTrz has simple poles with residues (—1)” at z = nn,n = 0, 1,
+2,..., and

Yshirzp S’ irx+ s iy ™ ° civ-
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We therefore consider fr 7 to obtain
A (D" 1 f TO 1 A N g2
- n2+a2 2a2l sinh7ral _ n2 12
n=0 n=1

Problems 3G

Evaluate by the residue theorem:

. 00 n41 . T sinh(7ry/)+sin(7r\/")
I- En=—00 nd+1 \12 cosh(7TV2)—e0s(7r\/2)

2 En=1mn4-ad* [ {I — (cothlra+ cotira)}]

3 E SPl n21—a2’ [2~2 {1 —T7T1acot ra}]
00 (-pn+i : : ™
4. E 71=1 n2—a2 [ 2."52 E ! sin ma 5
E @ (.in r Tr 1l 1
5. 71=—p0 n4—a4* L 2a3 Isinma 1 sinhwa

6 ELapnhy ™!

7. By taking F(z) = *3'n2r and considering the integral je” F(z)dz, show that

00  (—1)n T3
71=0 (2n+1)3 ~ 32 -

8. By taking F(z) — ° and considering the integral F(z)dz, show that
n T

z"n=0 (2n+l) 4

3.12 Conformal Representation

It has already been pointed out that a complex function f(z) defines a
transformation between points in the r-plane and points Z = X +iY —
f(z) inthe Z-plane. We now consider the geometrical properties of this
transformation when /(r) is regular in a region V of the r-plane.

Consider three neighbouring points z0,zi,z2 in V and their corre-
sponding images Zqg,Z\,Z2 in the Z-plane. When rb r2 are very close
to ro we can write

Z -Zn = f'(zn)(zi-zn). Z>-Zn= f'(zn)(z?-zn). provided f'(zn) ® 0.
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Thus, from the first of equations (3.1.2),
\Z\ —Zq\= | [va —Zql, |Z2—Zq\ = \f'{z0)\\z2—=z01

which shows that small distances between points in the r-plane in the
vicinity of Zo are all magnified by a factor \f(zo)\ in the Z-plane. Also,

arg(Zi - Z0) = arg{//(r0)(r1- r0)} = arg{/'(20)} + arg”i - z0)
arg(Z2- Zq) = a™{/'(r0)(r2- r0)} = arg{f'(z0)} + arg(r2- r0)

which means that the angle between the rays Z\ —Zo and Z2—Z0 has
the same magnitude and sense as the angle between the rays 2A —z0
and r2—zaq.

The effect of the transformation is to rotate all small straight lines in
the neighbourhood of z0 (such as the sides of the triangle in the figure)
through the same angle arg{/'(20)} (in the anticlockwise or clockwise
direction according as arg{/'(zo)} < 0), and to change their lengths by
a factor |/'(ro)|. The area of the triangle is therefore increased by this
factor squared: |/,(r0)|2. It is also clear that when two curves intersect
in the r-plane, their images in the Z-plane will intersect at the same
angle. A transformation with this property is said to be ‘conformal’.

The transformation is not conformal at r = z0 if f'(z0) = 0. The
point r = 2qis then called a critical point of the transformation, about
which the Taylor series expansion of /(r) has the form

/(r) = /(r0)+ a(z - zO)nH----, a”"O, n> 2
When \zi —z0\ and |r2—zo\ are small

Zi - Z0= a(zi - rO)n, arg(Zi- Z0)=arga+narg” - r0)

Z0 —7Zn = a(zo —Zn)n. aredzo — Zrd arp- n 4- n 4Tp-j20 — 7N\--—--
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Hence, the angle between the rays is n times larger in the Z-plane, and
the magnification factor is zero.

It can also be shown, that if f(z) is regular and single valued in V,
and the boundary C of V is a simple closed curve, then the image V
of V in the Z-plane is bounded by the image C of C. When r moves
along C in the positive direction relative to V (with the ‘interior’ of V
on the ‘left’) the image Z moves along C also in the positive direction
relative to V . The result remains true when one or more sections of
the boundaries C, C are at infinity.

Example 1 Show that the transformation Z = f(z) = z2 maps the first quadrant
V(x > 0,y > 0) of the z-plane onto the upper half (ImZ =Y > 0) of the Z-plane.

Let Z = Rek, then

z

Reip=r2e2ie, 0<B<
R=r2 ¢=29 0<d¢<n.

Because 0 < ¢ < T, the image of every point in 1> lies in the upper half of the
Z-plane. The transformation is conformal except at z = 0 where f'(z) = 2z=0.
Each ‘ray’inclined at angle B to the »x-axis is rotated to an image ray in the Z-plane
inclined at angle 2B to the »xaxis. The positive »xaxis transforms into the posi-
tive »xaxis, and the imaginary axis OBg (0 = in the z-plane maps onto the
negative »axis.

Example 2 Show that the transformation Z = f(z) = i\/z, where the square
root is the principal value yTe*” (z —re!0.—r < 9 < 1), maps the infinite region
V consisting of the z-plane cut along the negative real axis onto the upper half
(ImZz =Y > 0) of the Z-plane.
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Let Z = Re” , then
Z

Aerp= v™ei("+5), -Tr < B < T,
O m
R =Vr, =-+ 0 <d<n.

Because 0 < ¢ < T, the image of every point in V lies in the upper half of the
Z-plane. The transformation is conformal except at z = 0 where f(z) ceases to be
regular. The cut is necessary to ensure that each point of V corresponds to precisely
one image point in the Z-plane. Thus, any path in V connecting any two points z\
and Z2 cannot cross the negative real axis, thereby forcing 8 = arg? to lie in the
range (—, 7r). The ‘lower’side A*O of the cut (where B8 —»—r) is transformed into
the positive real axis in the Z-plane; the upper side OA” (6 —T) is mapped into
the negative real axis, and the positive real axis (8 = 0) transforms into the positive
imaginary axis.

It is important to note that different domains T>correspond to different orienta-
tions of the cut in the z-plane. For example, if the cut were taken along the positive
imaginary axis, the argument 8 would be restricted to the range (— | ), and the
image points Z = Re"? would occupy — < ¢ < i.e. the cut plane would be
mapped onto the half-plane consisting of all points to the right of the line Y = —X
in the Z-plane. In the absence of a cut the argument 8 of r is unrestricted, and
because any complex number has two square roots, each point in the r-plane would
correspond to two image points Z = i*/re~s+f).

Example 3 Show that the transformation Z = ez maps the ‘strip’ V: —00 <
x <00,0<y < Tofthe z=x + iy plane onto the half-plane Im Z > 0.

The real axis in the r-plane (the lower boundary of the strip) transforms into the
positive real axis, and the upper boundary (y = ir) maps onto Z = cln+x — —ex,
the negative real axis. Straight linesy = 0 = constant (0 < 0 < 7) map into
rays Z = e*e+x radiating from the origin in the Z-plane; the image of the line
x = C = constant (-00 < C < 00) is the semi-circular arc Z = ec+ry,0 <y < ™.
The rays cut the circles at right angles because the mapping is conformal and the
original curves y — constant, x = constant are orthogonal. Corresponding points
are illustrated in the figure.

y r

z-plane Z-plane

Example 4 Show that the transformation Z = z + \Jz2 —1 maps the r-plane cut
along the x-axis between x = —l and x = +1 onto the exterior of the circle |Z| = 1.
The square root is defined to be real and positive when x > 1 on the real axis.



Complex Variables 127

Referring to the figure

\Jz2—1=\Jz —1ly/z + 1= y/rilfzer® +"\ (3.12.1)

Z-plane

The angles 9\ and @ both increase by 2« when z makes one complete traverse
around any simple closed path surrounding the cut, and therefore Vz2—1 is
unchanged in value after this traverse. This ensures that each point in the cut
z-plane corresponds to a unique image point in the Z-plane. When 0 moves along
the ‘upper’ side of the cut (where B\ = it.o2 = 0) from x =1 to x = —I we can set
0 =cosd,0< < T the image Z.= cos$ + isint? = eli>accordingly travels along
the semi-circular arc \Z\ = 1 from right to left in the upper Z-plane. The ‘lower
side of the cut (8\ = m, B2 = 27r) is traversed from left to right when $ increases
from T to 27 (or equivalently from —ir to 7r). In this case Z travels along the arc of
the semi-circle in the lower Z-plane from left to right.

Thus the upper and lower edges of the cut map onto the circle |Z| = 1. Also
Z ~ 20 as \2\ —00; this means that distant parts ofthe 0- and Z-planes correspond
and therefore that the image of an arbitrary point in the cut z-plane lies in the region
|Z] > 1.

Problems 3H
Verify that:

1. The transformation Z = eiaz (a real) rotates all points of the 0-plane through
an angle a about the origin.

2. Z =iz maps the region x > 0onto Y > 0.

3. Z = 02 maps the half-plane Im 0 > 0 onto the Z-plane cut along the positive
real axis.

4. Z = iz3 maps the wedge 0 < argz < onto the left half-plane X < Q.

5. Z=0» (0 < a <7 maps the infinite wedge shaped region 0 < arg0 < a onto
the upper half of the Z-plane.
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10.

11.

12.
13.
14.
15.

16.

17.

18.
19.

20.
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. Z =z + 1/z maps points on the circle \z2\ = ¢ ¢ 1 onto the ellipse

X2 Y?2
+

Z =X +iY.
(c+1l/cy (c-1/cy L

Z = z2+ 1/z2 maps the region V: \z2\ > 1,x > 0,y > 0 (in the first quadrant)
onto the upper half of the Z-plane. Where in T>does the transformation cease
to be conformal? [z = 1,i]

Z = Inz maps the wedge a < argz < /3 onto the infinite strip;: —60 < X < 00,
a<yY <P-

The region 2 < \2\ < 3,j <argr < f ismapped onto the rectangle In2< X <
In3, <Y < j by the transformation Z = Inz.

The transformation Z = z—Vz2—1, where s/z1 —1 is defined as in Example 4,
maps the 2-plane cut along the x-axis between x = +1 onto the interior of the
circle \2\ = 1

The rectangular region 0 < x <1, 0 <y <|is mapped onto 1< \Z\ < ¢,
0 < argZ < ™ by the transformation Z = ez.

Z = e5z maps the strip0<y < | ontoY > 0.

Z = e2 maps the semi-infinite strip x < 0.0 <y < Tonto \Z\ < 1,ImZ > 0.
Z = 1/z maps \2\ <R onto \Z\ > 1/R.

The transformation defined for real and positive Cby = ielZ maps the strip
0< X < T,—00< Y < 00into the circle \2\ < c.

Z — z+ a2/z (a real and positive) maps the region |z] > a in the upper
half-plane onto the upper half of the Z-plane.

Z —coshz maps the semi-infinite strip x > 0,0 <y < n onto the upper half of
the Z-plane.

= —cos 1z maps the semi-infinite strip 0 <x< 1y > 0onto Y > 0.

Z = sin2 maps the semi-infinite strip 0 < x < fj,y > 0 onto the first quadrant
X >0,Y >0.

Find the points where the mapping Z = sinz is not conformal, [z= £(n+ |)7r,
n=0,,2,..]

3.13 Laplace’s Equation in Two Dimensions

If

w(z) = y(x,y) +iip{xy), z = x+1ly,
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is regular in a region T>of the r-plane, the real and imaginary parts
<p(x,y) and tp(x,y) satisfy Laplace’s equation in T i.e.

d2ip d2ip d2ip azth in Vv (3.13.1)
dx2 A dy2 dx2 dy2 '

Now z = x + iy and z* = x —y, so that

d dzd dzx d d d
dx dxdz dx dz*x dz dz*
d dzd dzxd .fd d, \
dy dydz dy dzx 1\dz dz*\] 7

and
d d .d d d .d
Adz  dx 1dyl dzx dx M 'dy
Hence,
d2 d2 _fd d\ (d _ .d\ _ d2
dx2 dy2 1dy) 1dy) dz*dz

and equations (3.13.1) can also be written

dv =n da»
dz*dz 7 dz*dz

Therefore the most general solution of Laplace’s equation in two
dimensions is

11(2) + 12(2%) = fi(x +iy) + f2(x - iy),

where /1 and /2 are arbitrary functions. The most general real solution
is F(z) + F*{z*) = F(2) + {F(2)}*, for an arbitrary function F.

The function w(z) cannot depend on r* if it is regular, but it also
satisfies Laplace’s equation because

2dw(z)

7 \dx +1dy) VXTI = A —Dwiz) =0 (3132)
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Now let f(z) be regular in V, and define a conformal transformation
Z =1f(z) of V into a region [ in the Z-plane. Let W(Z) be regular in
[ with real and imaginary parts ®(4, Y), ®(X,Y). Then

A2 a2 A2 p2¢ _
bx2+w 2~ ° gx2+w2~0 T1°

The transformation Z = f(z) permits us to define a corresponding
function w(z) = p(x,y) + iip(x,y) = W(f(z)) which is regular in V,
with derivative w'(z) = f'{z)W"(f(z)). For corresponding points in V
and 1 we have

a>(xy) = ®(X{x,y),Y(x,y)), i>xy) = ®(X(x,y),Y(X,)y)).

In other words: The solutions ® and @ of Laplace’s equation in [ are
also solutions of Laplace’s equation in V.

The explicit transformation of Laplace’s equation from [ to V is
effected as follows:

420 p2® 0 p2e 4 d 1 (% y
dX2 dY2~ AdZ*dz  {/O* d* f(z) dz ROV (X))
4 1 |Ia.V ay

\f(2)\2dz*dz U \W 2 dx2  dy2 (3.13.3)

where, in passing from the first to the second line, we have used (3.13.2)

all
i ) O

which is valid because 1/f{z) is regular provided f(z) ®0in V.

These results have the following significance: The solution of
Laplace’s equation within a given two-dimensional bounded region V is
equivalent to the solution of Laplace’s equation within the transformed
region . If it is possible to solve the latter problem, the solution to
the original problem in V can be found by transforming back to the z-
plane. Problems may arise at isolated points where f'(z) = 0 or if there
are points where f(z) ceases to be regular, but these can usually be
dealt with by considering the detailed behaviour of the transformation
near these points.
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3.14 Applications to Hydrodynamics

Irrotational motion of an ideal, incompressible fluid in two dimensions
(in planes parallel to the >»y-plane) can be investigated by introducing
the complex potential w(z) = p(x,y) + 1ip(x,y), which is a regular
function of r = x + i1y. The fluid velocity v is determined in terms
of the velocity potential p(x,y) by v = Vp = (dp/dx,dp/dy) at the
point (x,y). The function ip is called the stream function. For steady
motion the velocity at any fixed point (x, y) does not change with time,
and the fluid particles travel along a fixed system of streamlines each
of which is a member of the family of curves ip(x, y) = constant.

Both p(x,y) and ip(x,y) are solutions of Laplace’s equation that
satisfy the Cauchy-Riemann equations (3.2.3):

dip dip dp dip
dx dy dy dx'

which imply that Vp sVip = 0, i.e. that the streamlines intersect the
‘equipotentials’ p — constant at right angles. In the usual notation of
theoretical fluid mechanics we write v = (u,v). The complex velocity

dp .dp

w\z) dx dy =un—v
is also regular, with Cauchy-Riemann equations

du dv_ dvv du_

dx ~ dy > dx  dy

the first of which is just the equation of continuity divv = 0 for incom-
pressible flow. The expression on the left of the second equation is the
vorticity (in the k-direction) which vanishes for irrotational flow.

The fact that w(z) is a regular function of r can greatly simplify the
solution of many problems. This will be illustrated by consideration of
two methods based on the theory of complex variables.

Method 1 The real and imaginary parts of every regular function
w(z) determine the velocity potential and stream function of a possible
flow. A catalogue of flows can therefore be constructed by studying the
properties of arbitrarily selected w(z).
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Example w = Uz, U = real constant:
ip—Ux, ip=Uy, v=(/D0).
The motion is uniform at speed U along streamlines parallel to the xdirection.

Example

w=U\z/3— \, U= real constant, \2\ > 1. (3.14.1)

At large distances from the origin w —% Uz, and the motion becomes uniform at
speed U parallel to the »x-axis. In terms of the polar form 2 = re

~BN
w=Ulrems+ —Ucos9yr + - ).
)/
A
The radial component of velocity
di
P Ucoss 1-
dr

vanishes at r = 1. The motion therefore represents steady flow in the »-direction
past a rigid cylinder of unit radius with centre at the origin. (This problem is treated
by the method of separation of variables in 84.4.)

Example

U = real constant, \z2\ > 1, U sin# ,
(3.14.2)

describes potential flow in the y-direction past a rigid cylinder of unit radius with
centre at the origin.

Example The function

ip: 2rrlnr, ip Zgr_r
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is regular except at z = 0. The flow is radially outwards from the origin along
streamlines B = constant, at speed dip/dr = |/2irr. The origin is a singularity of
the flow where fluid is created at a rate equal to e Vip- nds, where C is any simple
closed curve enclosing the origin with outward normal n, and ds is the element of
arc length on C. In particular, taking C to be a circle of radius r,

Vip mnds =

The origin is therefore a simple source of unit strength.
When the source situated at zg = xq + iyo

w=-!-In(z-20), (v =" In\z- zol= ~ Iny/(x - x0)2+ (y - y0)29
zZiT

Example The function

w=~ (In(z- z0)+ In(z - Zq)), \V= (Inri + Inr2)J ,

represents the flow produced by two unit point sources located at zg = %+ Wo and
Zq = xq —iyo. The motion is symmetric with respect to the xaxis, and ggp/gy = 0
on y = 0. Therefore, in the region y > 0 the potential also describes the flow pro-
duced by a point source at zq adjacent to a rigid wall at y = 0 (the presence of the
wall is said to be accounted for by an ‘image’ source).

Method 2 The flow past a system of rigid boundaries in the r-plane
is represented by means of a conformal transformation Z = f{z) by an
equivalent flow in the Z-plane. The transformation is usually chosen to
simplify the boundary conditions, thereby permitting the solution in
the Z-plane to be found in a relatively straightforward manner. Point
source singularities of the flow are preserved under the transformation.
Indeed, if Z = Z0 is the image of a unit point source at z — z0, the
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complex potential in the neighbourhood of Z0 is determined by

W(Z) = w(2) — In(r —ro) + terms finite at ro

—In( r’ | + terms finite at Zq
2r VN o) J

— In(Z —Zq) + terms finite at Zqg.
ZrT

The point source in the r-plane therefore maps onto an equal point
source at the image point in the Z-plane.

Example Derive the following formula for the velocity potential of irrotational
flow around the edge of the rigid half-plane x < 0, y = 0 in terms of polar coordi-
nates (r, B):

$p=al\lr a = a real constant,

and make a plot of the streamlines.

The transformation Z = i\fz maps the r-plane cut along the negative real axis
onto the upper half of the Z-plane (see §3.12, Example 2). The complex potential
of flow in the positive X-direction parallel to the boundary Y = 0 in Z-plane
corresponds to flow around the edge of the half-plane in the clockwise sense, and
has the general representation W = UZ, where U is real. In the r-plane this becomes

w —iU\fz miU\fr cos <9<

The polar representation of the velocity is therefore

_ fdip 1<y -U
v=Ve) \grrado g S 5. €0 5

This satisfies the rigid wall condition on the half-plane (where 9 = +7r) because
the component of velocity normal to the wall is vg, which vanishes at 8 = £7r. The
streamlines of the flow are the parabolas

y/r cos = constant, i.e. y= +2/3
where x < (3, /3 being a positive constant.

When U > 0 fluid particles travel along the parabolic streamlines around the edge
in the clockwise direction. The streamline for (3= 0 corresponds to the upper and
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lower surfaces of the half-plane, which maps into the streamline Y = 0 on the surface
of the wall in the Z-plane. The flow velocity becomes infinite like 1/1Jr as r —0 at
the sharp edge.

Example Calculate the irrotational flow past a flat rigid plate that lies on the
M»eaxis between x = +1, given that the flow at large distances from the plate is at
speed U in the «/-direction.

The transformation Z = z + \Jz2—1 maps the r-plane cut along the »3axis
between = +1 onto the region of the Z-plane outside the circular cylinder \2\ = 1
(83.12, Example 4, JIr2—1 being defined as in (3.12.1)), with the plate mapping
onto the cylinder. At large distances from the plate Z ~ 2z, so that the distant
parts of the r- and Z-planes have the same orientations. From (3.14.2), the complex
potential

wW(z) = -iu" U' = real constant,

represents flow past the cylinder that ultimately has speed U' in the Y-direction at
large distances. Hence, the required potential in the r-plane has the form

w(z) = W(Z(z)) = -iU"’ %z +ylz* -I---—Z——_-'_--§/72=*z_:1f)
r—\/z2—1

—U'lz+\Jr2—1—
(z+Vz2—1)(z —Vz2—1)
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= —Ul[z+ \Jz2- 1- (z—V'z2- 1)j

-2iU'y/z2- 1

This implies that w ss —2iU'z = 2.U'y —2iU'x as |r| —% 00, and we must therefore
take V = ~U to have the correct flow speed at infinity.
Thus, in the notation of Example 4, §3.12,

w=—U\/z2—1 streamlines

and

The streamlines are shown in the figure, and
correspond to the family of curves

"0N+@
if = —U\fr\T2CO0S = constant,

which is equivalent to

X = /371 + 2 | y2 /3= constant > 0.

Problems 31
1. Show that the complex potential w{z) = Ue laz represents uniform flow at
speed U in a direction making an angle a with the >axis.

2. According to (3.14.1), the complex potential W(Z) — U(Z + 1/Z) describes
flow at speed U in the X-direction past a cylinder of unit radius with centre
at Z = 0. Use the rotational mapping Z = elrar to deduce that the velocity
potential of flow past the cylinder in a direction making an angle a with the
X-axis is given by

if= Ucos(B—a) r H—r

3. Two sources of unit strength are placed at the points r = +a. Show that the
complex potential of the induced flow is

wW(z) = {z2"a 2}.

Deduce that the maximum flow speed on the plane of symmetry x = 0is /2112

4. Derive the following expression for the complex potential of the flow past a
rigid plate W\ <1, y = 0,

w{z) U zcosa —rsina 1

given that the flow at large distances from the plate is at speed U in a direction
making an angle a with the »-axis.
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Verify that the complex potential
In(z- R) + In (z—R —Inz

describes the flow produced by a unit point source located at z = R in the
presence of a rigid cylinder of radius a with centre at the origin, where R > a.

By using the transformation Z = iyfz (§3.12, Example 2), show that the com-
plex potential of the flow produced by a point source at z = zq in the presence
of the rigid half-plane x < 0, y = 0 can be taken in the form

w{z) = ~ [in[yfz - v'So) + In{yfz + {V~}*)],

where the square roots are principal values (i.e. yfz = yfre”®, —k<g < ™).

Show that the velocity potential w = Uy/z2 + a2 represents the flow parallel to
a rigid wall at y = 0 in the presence of a thin obstacle of length a projecting
perpendicularly from the wall at x —0.

Show that the transformation Z = e® zi maps the region —j < argz < n onto
the upper half of the Z-plane. Hence deduce that the streamlines of potential
flow over the right-angled step with top x < 0, y — 0 and vertical face x —
0, y < 0 are given by the polar equation

r
R e g avies <B = constan,t,—————2< B< 1.

A unit point source is placed at the point Z = LHwithin the infinite, rigid duct:
—00 < X < 00, 0 < y < T of §3.12, Example 3. Under the transformation
Z = ez the source maps onto an equal point source at Z = i. One half of
the fluid created by this source must be absorbed by a ‘sink’ (negative source)
placed at the origin A'A in the Z-plane, because this point corresponds to the
left-hand end of the duct A*A” in the r-plane, and the flow must be symmetric
with respect to x = 0. Deduce that the complex potential can be taken in the
form A

w(z) = Z—H_In{coshz}.

The transformation Z = coshr maps the interior of the semi-infinite duct:
£>0, 0 <y < wonto the upper half of the Z-plane. Deduce that the velocity
potential of the motion generated by a unit point source at the corner x = 0,
y = 0 is given by






4

PARTIAL DIFFERENTIAL
EQUATIONS

4.1 Classification of Second-Order Equations

The principal second-order, linear partial differential equations are:

Laplace’s equation: V2n=20
i 10w
Wave equation: V2 --—-—-——0 c—constant > 0
Cc2 at-
: : i 1du
Diffusion eguatlon: V2 prrTe =0 K= constant > 0

The Laplace equation occurs in the theory of time-independent elec-
trical and thermal phenomena, and of irrotational motion of an ‘ideal’
fluid. The wave equation governs the propagation of ‘non-dispersive’
waves (at speed c), such as sound waves in still air, electromagnetic
waves in free space, and flexural waves on strings and membranes. Heat
conduction in a homogeneous body and ‘vorticity’ diffusion in fluid at
low Reynolds number satisfy the diffusion equation.

The equations are also encountered in inhomogeneous form, with
‘sources’ on the right-hand side. The inhomogeneous Laplace equation

V2m= /(x,1)

is also called the Poisson equation.

139
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The two-dimensional equation, with independent variables x, y, has
the general form

auxx + 2buxy + cuyy = f(x, y, ux,uy), (4.1.1)

where uxx —d2u/dx2, etc, and a, b, c are real coefficients that generally
depend on x,y and possibly also on ux,uy. Historically, second-order
partial differential equations of this type are classified by consideration
of Cauchys problem, in which a solution is to be deduced when the
values of u(x,y) and its normal derivative du(x,y)jdn are prescribed
on a curve I in the xy-plane.

When u(x,y) is known on I" we can calculate du(x,y)/ds, where s
denotes arc length along I'. Then ux,uy can be determined at all points
on I by using also the prescribed value of du(x,y)/dn, and we shall
denote them by

ux =p{s), uy=q(s). (4.1.2)

We can now attempt to solve the differential equation at a point (x,y)
close to I by developing u(x, y) in a Taylor series expansion about a
nearby point xo,yoon I:

u(x, y) = u(x0,y0) + ux(x - x0) + uy(y - y0)
+ 2{uX(x ~ Xg)2+ 2uxy(y - y0)(x - Xo)
touyy(v —10)2] + ev) (4.1.3)

where ux,uy,uxx,uxy,uyy, etc., on the right-hand side are evaluated at
(x0,y0). The first three terms on the right-hand side are known from
the initial data. The differential equation (4.1.1) and equations (4.1.2)
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can be used to work out the coefficients uxx,uxy,uyy of the quadratic
terms in the expansion. To do this, differentiate equations (4.1.2) along
" to obtain

dx dy dp dx dy dg
ds T tIxde " ) tIxy(E T U’lyds ds (4.1.4)

The three linear equations (4.1.1) and (4.1.4) determine uxx,uxy, uyy
uniquely except when the determinant of the coefficients vanishes, i.e.
when

a 2b ¢
dc dy 5 - ldy) nudxdV , (dx \ n r.
d & =a|s) -2kb*+cU) =0 on
o ~ y

as ds

The curves that satisfy this condition are called characteristics. By
writing the condition in the form

ady2 —2bdxdy + cdx2 = 0, (4.1.5)

it can be seen that there are generally two families of characteristics
with slopes

dy b+ \/b2 - ac
dx a

The characteristics are straight lines when a, b,c are constants; more
generally a, b, c are functions of x and y and the characteristics are
curved; if a,b,c are also functions of ux,uy, the characteristics depend
on the solution of the differential equation. When b2—ac < 0 they have
complex conjugate slopes.

By drawing an analogy between (4.1.5) and the equation for the
asymptotes of a conic section, three classes of equations (4.1.1) can be
identified:

b2—ac > 0 hyperbolic type e.g. the wave equation uxx —uyy = 0
b2 —ac = 0 parabolic type e.g. the diffusion equation uxx —uy =0
b2—ac < 0 elliptic type e.g. Laplace’s equation uxx + uyy = 0.
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It may be verified that the higher-order terms in the expansion
(4.2.3) can also be found by the above procedure provided I is not
a characteristic. Thus, in particular, it can be asserted that Cauchy’s
problem is always soluble by this method for an elliptic equation, which
has complex characteristics. Hyperbolic and parabolic equations have
respectively two families and one family of real characteristics, and a
unique solution cannot normally be derived from data specified on a
characteristic. If the coefficients a, b, ¢ vary with position or depend on
the first derivatives ux,uy, the differential equation may be of different
type in different parts of the xy-plane.

Example When equations (4.1.1) and (4.1.4) are solved for uxy in the homoge-
neous case (/ = 0) the result may be written
uxy[ady2 —2bdxdy + cdx2] = adpdy —cdqdx, (4.1.6)

where the differentials represent changes along I'. This is valid for any solution of
(4.1.1), not just one specified by initial conditions on I". In this general case uxy is a
well-defined quantity, even on a characteristic, and (4.1.6) can therefore be satisfied
only if the right-hand side also vanishes on a characteristic, i.e.

adpdy —cdgqdx = 0 on . (4.1.7)

For the wave equation uxx —uyy = 0 (a = 1,b= 0,c = —1) the characteristics are
the straight lines x £ y = constant on which dx = ~fdy, and we therefore have

dp—dg=0 .. p—qg=2%'(x—y) on x —y = constant

dp+dg=0 .. p+qg=2d,&+y) on x+,y = constant.

for some functions ® and @, where the primes denote differentiation with respect
to the argument. Hence, solving for p = ux and q = uy, we find

ux = ®\x -y) + d'{x +y), uy=-®'(x-y) +d\x +y),
which together imply that the solution of the wave equation has the general form
u(x,y) = d0k- y) + OOk + y). (4.1.8)
Example The general solution (4.1.8) of the wave equation uxx —uyy = 0 can
also be derived by first transforming to the characteristic coordinates

€=x-y, rH=x+y,
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in terms of which

d =di d drd d 4 d dtd d)d d d
dx dxd, dxd/ gt d)’ dy dydt dydr) dt~ dy'
Then
d2u d2u ( d , d\2 .I: 3 | d 4 d2u =0
dx2 dy2 \dt +dVv)- V 4t dy AdEdr)

. d
integrating with respect to t :d_:J) *b|

and integrating next with respect to rj : u d(0 + d(u).
ie. n=00kK—y) + dX+Yy).

D’Alembert’s solution of the wave equation This is the solution
of the initial value (Cauchy) problem:

dau ld2u_0 —00<x<o00 t>0
dx2 c2dt2 ’ !
d
when n —f(x) and stJ g[x) att O

From (4.1.8) u(x, t) = dOK —ct) + POk + ct),
att=20: DOK) + P(x) = f(x)
and —c®'(x) + caf'(x) = g(x).

—®(K) + ®OK) = - Jg(r))dr] + 2C (C = constant).

Hence, solving for @ and &:
dex) = \f(x)~Yc f 9(v)dv- c,

®(M=\s(x) +h 9Ghdj+C

u(x, t) = d(x —ct) + POk + ct)

x-\-ct

- e fxcre) o g v (419)

X —ct
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t

The solution consists of ‘waves’ propagating at speed c in the positive
and negative »directions. The solution at the point C:(x, t) in the figure
is determined entirely by the initial conditions within the interval AB of
the »xeaxis between the points of intersection of the »axis with the two
characteristics through C. AB is called the domain of dependence of C.

4.2 Boundary Conditions for Well-Posed Problems

Cauchy’s problem is always soluble when the initial data are not given
on a characteristic, but this does not guarantee that the solution is
acceptable physically. The Taylor series expansion (4.1.3) is valid only
for \J{x —x0)2+ (y —y0)2 < R, where R is the distance from (x0, yo) to
the nearest singularity of u, which may be complex and very close to T".
In applications to physical problems Cauchy-type data are not usually
associated with elliptic equations like the Laplace equation, because the
problem turns out not to be well posed. A boundary value problem is
said to be well posed provided (i) the solution is unique and (ii) the
solution changes smoothly with correspondingly smooth changes in the
boundary conditions. The latter condition requires that small changes
in the boundary data should produce small changes in the solution. This
is a vital consideration when a problem is to be solved numerically: a
mathematical model of a physical system would have to be rejected if
small numerical errors in the boundary data produced large changes in
the solution.

Example Dirichlets problem for the circle.

The real and imaginary parts of a regular function f(z) = n +iv ofz —x + iy are
solutions of Laplace’s equation (§3.2). It might therefore be expected from Cauchy’s
integral formula (3.5.1) that a well-posed problem for the Laplace equation requires
the imposition of only one condition on the boundary. To determine n — Re f(z)
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within a bounded domain D, for example, the value of n can be prescribed on
the boundary; this is known as Dirichlet’s problem. However, we could also pre-
scribe du/dn on the boundary. Both of these problems are well posed (the Cauchy-
Riemann equations show (i) that specifying du/dn on the boundary is equivalent
to specifying v, so that the solution in this case determines v = Im f(z) and, (ii)
that consistency requires pe (du/dn)ds = 0 where C is the boundary of V).

Suppose that u(x, y) satisfies Laplace’s equation in the circle x2+ y2 < ?2, and
is given by n = 14(0),0 < B < 2n, at (R,0) on the boundary C. For z inside C,
Cauchy’s integral formula, with C= He* and <V = if d9, gives

/ C-z

The point R2/z* (the ‘inverse point’ of 2 with respect to the circle) lies on the same
ray from the origin, but outside C.

The Cauchy integral is zero at this point, i.e.

2t
F f /MeCd6
2nJC- R2z*
Now (* = R2/( when ( lies on C, and therefore
C 2*
Q—R2/z* z*—R2/C * —z*
Subtracting the two integrals:
2w ar

© Rf - \z2\
@ sj«o{cts ¢-2 h/Nno i

(4.2.1)

The term in the large brackets in the final integral is real. Hence, setting 2 = reu\
we find [C—212= R2—2rRcos(6 —d) + r2, and by taking the real part we deduce
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Poisson’s formula for the solution of Dirichlet’s problem for the circle

2
u( L[ (4*-r>0(8) de

21T~(]) R2—2rR cos(9 —) + r2 (4.2.2)

Example The Cauchy problem for Laplace’s equation in the half-plane y > 0O:
uxx + Uyy = 0, given m=x3 and uy=0 at y —0, (4.2.3)

has the exact solution u = x3 —3xy2 (i.e. » = Re(z3),z = x + iy), but is not well
posed. Consider a small change in the boundary conditions to

x° T esin (|). —0, ony=0,
where e is an arbitrarily small parameter. The solution now becomes
M=Re z +esin0 ] = x3- 3xy2+ esin0 coshO

As e —>0 the boundary data for this problem are the same as for (4.2.3), but
|[u| —% o0 for any value of y > 0. If the condition uy = 0 at y = 0 is removed the
problem becomes well posed with solution n = x3 —3xy2+ esin () e~".

Four principal kinds of boundary value problems occur frequently
in well-posed models of physical systems, with data specified on a
boundary S as in Table 4.1.

Table 4.1 Boundary value problems

Problem Data on S Equation type
Dirichlet u Elliptic, parabolic
du _— .
Neumann dn Elliptic, parabolic
Mixed n and du
on

Elliptic, boli
given on different parts of S pHIC, parabolic

Cauchy u and o Hyperbolic

When an equation is to be solved in an unbounded region it is usually
necessary to impose additional conditions ‘at infinity’ to make the solu-
tion unique. For example, to solve the wave equation for the sound gen-
erated in an infinite fluid by a vibrating body, a ‘radiation condition’ is
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applied that requires waves at large distances from the body to be prop-
agating away from the body. In practice, the appropriate conditions at
infinity are usually clear from the physics of the problem. Thus, when
calculating the diffusion of heat from a hot body into an unbounded
medium one would require the solution to be bounded or to tend to
zero at large distances from the body.

4.3 Method of Separation of Variables

Henceforth attention is confined principally to homogeneous partial
differential equations that are linear in the dependent variable and all
of its derivatives. These satisfy the principle of superposition, i.e. that a
solution can be formed by a linear combination of particular solutions.
In the method of separation of variables, particular solutions, eigenfunc-
tions, are found by assuming the dependent variable to be a product
of functions each of which is only dependent on one of the independent
variables. A linear combination of the eigenfunctions is then posited as
the general solution of the boundary value problem governed by the
differential equation. The procedure and the general problem of eigen-
functions and eigenfunction expansions were considered briefly in §1.9.
That discussion is extended here by a consideration of several exam-
ples. In particular, the partial analysis in 81.9 of waves on a stretched
string will be completed.

Oscillations of a hanging chain Small ampli-
tude oscillations about the vertical of a hanging
chain of length £ satisfy the equation

ADA| =0 cxce e

where £(x,t) is the horizontal displacement of the
chain at distance x above the undisturbed equilib-
rium position of the free end, and g is the accel-
eration due to gravity. Let us solve this equation
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subject to the initial conditions

dc
C=1f(x), — =0 att=0.
To derive a particular solution, we set
C=X()T(1),
where X(x) and T(t) are, respectively, functions of x and t alone. Sub-
stitute into the differential equation, and divide through by X{x)T{t)
J_d / dX\ _ 1dzr
X dx \ dx) gT dt2

The left-hand side of this equation is a function of x alone, and the
right-hand side is a function of t alone. This is only possible if both
sides are constant. This constant must be negative if the solution is to
be oscillatory in time, i.e.

1d ( dX\ 1 d2T 2
x £y iy = g =asal
Hence, T = Acos(ky/gt) + B sin(ky/gt)i

where A, B are constants. The function X satisfies the Sturm-Liouville
problem:

d dX e
TAXTA]+kx =0- where X(£) —0 and X(0) is finite.

(4.3.1)

Because p(x) = x = 0at x = 0, where p(x) is the function in the general
Sturm- Liouville equation (1.9.1), the eigenfunctions X n(x), say, satisfy
the orthogonality relation f* Xn(x)Xm(x)dx = 0, n » m. Equation
(4.3.1) can be solved by making the substitution

X = —-  which gives no_ 2ke2d
k2 MV T 4z

and transforms (4.3.1) into Bessel’s equation of zero order (81.8)
d2X  1dX
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so that X = CJo(2k\/x) + DY £2kx),

where C,D are constants. However, we must set D = 0 to ensure that
the motion remains finite at x — 0 (where YO(2ky/x) —» —o0). The
condition that the chain is fixed at its upper end x —i then yields the
eigenvalue equation satisfied by admissible values of k

Jo(2/cVE) = 0, K—kn,n=1,2,...,

where 2kn\Ti is the nth positive zero of JO(2 (an even function of z),
and we can therefore take X n = 30(2kny/x).
The most general solution of the hanging chain equation is therefore
C= ~2jA icos(kny/gt) + Bnsm(kny/gt)}j0(2kn*/x), 0 < x <.

n=1

(4.3.2)

By setting Bn = 0, we satisfy the initial condition d(,/dt = 0 at
t — 0. The coefficients An are determined by the initial shape of the
chain from the equation

N AnJO(2kny/x) = f(x), 0<x <t. (4.3.3)
n=1
To do this we use the orthogonality relations between the eigenfunctions
X'n—Jo(2kny/x), namely (see 81.9 and the following example):

t

Jf JO(anA{jo(ka/\)E_)dX — >!0, no®m.

(4.3.49)
(2kny£), n=m

The method described in detail in 81.9 (see equation (1.9.6)) now gives
@
= ~2 An cos{kn™gt)JO(2knVx), 0 < X <.
1 t
f f(x)J0(2knX/x)dx  f f(x)JO{2kny/x)dx
where

f IN2knyfx)dx &ix2knyll)
0
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It is sometimes convenient to replace the eigenfunctions JO(2kny/x)
by the orthonormal set

Jo2fcjjVx)  _ Jakn-
VIh(2knV ty

<fn(x) =
[ J1(2kny/x)dx

— 0, n®dm,

which satisfy

in which case the solution assumes the compact form

o4 9»
= A2A'ncos(kny/gt)(pn(x), where An = [ f(x)ipn(x)dx.
n=I {

The characteristic frequencies of the chain are given by
un kn~g A

where zn is the nth positive zero of Jo(z) (~ 2.4048, 5.5201, 8.6537,
11.7915,...). These are not harmonically related (multiples of uh), in
contrast to the eigenfrequencies of the simple stretched string consid-
ered in 81.9.

Example Derive the orthogonality formula (4.3.4) for the hanging chain.

This is a special kind of Sturm-Liouville problem, because at the lower end x —0
of the chain it is merely required that ( should be bounded, rather than satisfy a
condition of the form (1.9.2). However, the eigenfunctions are still orthogonal. To
show this, set dn{x) = Jo(2kny/x), then, according to (4.3.1)

3 (X~fc P+ knipn = 0, - ded[i)l(n + kNpm =0.
Multiply these equations respectively by tT,'dn, subtract, and integrate over the
length of the chain to obtain

d ( dipm d difn
G{J'kﬁMTI*:\] Vna—)(\x-gx- l11>OIX dx dx
t -

[ - le dlﬁ" ﬁm d|fn dx
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dip, dipn
ax j,

'XIFm

=0, for ngp m.

Xip, (4.3.6)

This proves the first case of (4.3.4).

To obtain the result for n = m, we first note that the relation (4.3.6) is valid
for any values of kn,km. whether or not they are eigenvalues. Thus, let us take
km = kn + e where e <C! and kn is an eigenvalue, then

g{dn+eMrp'n(£) - ipn{bipn+e(®)] (4.3.7)

where the prime denotes differentiation with respect to x. But, ipn{£) = 0 because
kn is an eigenvalue. Also
rpn+e{f) = Jo (2(kn + €)VPj n J0(2kn\~£) + 2eVI1jO(2knVi) = 2eVEJ'0{2knVE)

and
®M = (—Jo2kns/x) \k/E%(anVE).

Hence, (4.3.7) becomes
e

/ i dx = ?%&%Q%W(ZmAE)(KH/AE)yOAKﬂA£)

£/r0{2xn N E)Y =al(2knVi),

where the relation Jg(a:) = —Ji(x) has been used (§1.8). This proves the second of
(4.3.4).

Example Apply the method of separation of variables to derive the solution
(1.9.5) of the wave equation

<C
dx2

with the initial conditions ( = f(x), d(p/dt = 0 atf = 0 for0 <x<1.
Set £ = X(x)T[t) and substitute into the wave equation to obtain

0<x<1!;where£=0atx=0,1,

1 d2Xx 1d2T
= —K2 = constant,

where the constant —k2 is taken to be negative to ensure that the solution is oscil-
latory in time. Hence X is the solution of the Sturm-Liouville problem:

X" + k2X =0, where X =0atx =0, L
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Therefore X(x) —A coskx+B sinkx,

and the conditions at x = 0,1 give

A =0, sin(fc)= 0 (for B ¢ 0),

k=mm, n=20,1,2,etc.

The eigenfunctions of the Sturm-Liouville problem are therefore

! ndm,
Xn(x) = sin(nirx), n>1 and /
n—m.
Next,
T"+k2T =0 (k—mm .. T =Ccos(mrt) + Dsin(nirf), C, D = constant,

We can now form the general solution by combining the different separable
solutions C= X(x)T(t) for all n > 1. To do this first set Ch = BC, Dn —BD in
the nth separable solution, then

(ele)
£= (C,, cos(nirt) + Dnsin(mrf)) sin(nTrx).
M—1

The initial conditions yield Dn = 0,n> 1, and the values of Cn are found by using
the orthogonality relation for the eigenfunctions. Hence,

00 »
(=" Cncos(nirt) sin(nnr), where Cn—2 f(x)sm(n-Kx)dx, n>1 t>0.
n=1 0

By using the trigonometric formula 2sin A cosB = sin(H + B) +sin(H —B), this
result can be written

Y oo N oo n
C=2__ casrfitx+9]+2)] cn sirfitx- o = 2 _)>

which expresses the result in D’Alembert’s form (4.1.9). It shows that the displace-
ment of the string consists of two equal waves propagating respectively to the left
and right whose waveforms are identical in shape but of half the amplitude of the
initial displacement of the string. The two waves may be regarded as propagating
along an infinite string (in —eo0 < x < 00), whose initial displacement has period 2
in x, such that C(x;0) = f{) in0 <x <! and C(x>0) = ~f{~x)in ~1 < x <0,
i.e. f{x) is imagined to be extended as an odd function of x with respect to both
ends x =0 and x — ! of the original, finite string.
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/() extended as an odd function of x of period 2

Example Solve by the method of separation of variables the boundary value
problem
a2n 1du
dx2 kdt’
where n = 0 at x = 0, £ and w satisfies the initial condition n = /() at t = 0 for
0 <x<£&

This problem represents the diffusion of heat from the ends »x = 0, £ of a bar
of thermal diffusivity k and length £ whose sides are thermally insulated, when the
initial distribution of temperature is specified by the function /(k). There is only
one initial condition at t = 0 because the diffusion equation is first order in the time
derivative.

Set n = X(x)T{t) and substitute into the differential equation to obtain

0 <x <fg (4.3.8)

1d2X _ J_ dT

—k2 = constant,
X dx2 kT dt

where the constant —k2 is taken to be negative to ensure that the solution T =
Ce~k Kt (C = constant) is bounded for t > 0. Then,

X" +k2X =0, 0< X< £
where X =0 atx =0 and x= £

This is a Sturm-Liouville problem, where
X (x) = Acoskx + B sinkx,
and the conditions at xx= 0,£ give

A =0, sin(fcE) = 0 (for B & 0),

o o= 710, i.e. n=o, 1, 2, etc.

The eigenfunctions of the Sturm-Liouville problem are therefore
e
. /OTTXA I'nnx\ . i7T7TrX\ , f0, ndm,
Xn(x) = sin n>1, and /»m(_)sm(’_ )*C:{(*) n=m.

(4.3.9)
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We can now form the general solution by combining the different separable
solutions u = X(x)T(t) for all n > 1. To do this first set An = BC in the nth
separable solution, then

i(x,t) = "2 Ansin e ("") Kt

To satisfy the initial condition at t = 0 the coefficients An must be chosen to ensure
that

i(x,0) ce f(x)=J2 Ansin
71=1
Hence, using the orthogonality relations (4.3.9) we obtain the solution of the bound-
ary value problem in the form

n= Ansinf~ )e~(") K, t>0, where An=j | f(x)sm(-"dx.
n= I

As t —>00 the temperature u —0 as the bar tends to thermal equilibrium with its
surroundings.

Problems 4A
1 If
\X, O<x <il2,
10 = [ —x, /2 <x <&
in the boundary value problem for the diffusion equation (4.3.8), show that
M (-1 . (2n+ 1)IDK —(2n + 1)2n2Kt
n= W?gi—(f(—Zﬁ':Uﬁsm £ exp 12 t>0.
2. When the boundary conditions for the heat equation (4.3.8) are
du=0 at x=0,£ t>0,
dx

and n = f(x) att = 0, show that

u=2>cos(™)e-W 4 t>0,

71=0
t I
where AO0=j j f(x)dx, An=jJ f(x)cos jd x (n> 1.

The final equilibrium temperature is n = Ao-
3. When f(x) = x in problem 2, deduce that

1 U cos exp (7(27|+ 272 «t
U= T> t>0.

2 2 (2n+|)2
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4. The displacement £(x,t) of a stretched string of unit length satisfies the wave
equation
d2Cc d2§: 0
ox2 at2
Show that if the string is pulled aside a distance h at its midpoint and released
from rest, the displacement after time t is given by

, 0<x<l!l;where(=0atx=0,1.

oh/_1\n

C(x, t) = <2n + 1vn2 SINK2n + 1>)nx; cost(2n + 1) 7t
. .

5. Show that the solution of the Dirichlet problem for u:
d2u d2u
dx2 dy2
in the rectangular domain 0 < x < a,0 <y < b, where 1 —0 on each side of
the rectangle except that along the x-axis, where u = f(x) (0 < x <a,y —0),
can be expressed in the form

a
[ £{x) sm(mrx/a)dx

where An a % sinh(nTrh/a)

6. Show that if u(x,y) satisfies

d2u d2u
RS 4 A =0, 0<x<a O0<yc<h

0x2 ay2
where u(0,y) = u(a,y) =0, u(x,0) = u(x, b) = 2x{x —a), then
"@2n + DTN

n="2 Ansin

71=0

Xj5inh~(2n+ IM >-K )™ + sinl,

—l16a2
73(2n + 1)3sinh[(2n + 1)7r6/a]

7. Obtain all solutions of
d2u du
dx2 dy

of the form u(x,y) = (Acos/Jix + Bsin Xx)f(y), where A,B, A are constants.
Show that the particular solution that satisfies u(0, y) —0, u(>ky) = 0, u(x, 1) —
x (0 < x < 7Tr) is given by

00
(. ~ c(+n2)(1-y) ginnx.

S=-2E ',

71=1
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8. Show that
u\x, t) = {Acosfit + B sin fit) */—sin; —In " j |,
= MB Ll h-123
B (In2)%+4’ N=2eS

is a particular solution of the problem

,82u  d2
x d*2 = -gj2" u(a,t) =0, u(a,t) = 0.

9. Show that

i(t co8{(2n+1)7rar/fa} t[(2n+)n/a?
:\xA) —2a .rr. EZn +1)2

satisfies
d2u  du du,
=-ft’ fa®a’0=> “(*°) =M M<a-
10. By noting that it = x is a particular solution of
d2u du
dx2 dt’
show that the solution u(x,t) that satisfies the conditions (i) u(0,t) = 0 and
u(l,t) =1 fort >0, (ii) u(x,0) =0 for 0 < x <1, can be written

2 (—4)" sin Tvmee 22t

—_r s

11. Show that when the conditions of Problem 10 are replaced by (i) tt(0, £) = !
and u(l,t) =0 fort >0, (ii) u(x,0) = cos(*x) for0 < x <1,

Sin Tirvx JE—

(6, 1) = 1 —x 4—
.9 T n(an2 —)

12. Show that

M N
t(X,f)LI: _2_____4>”\—‘I\/cos{2nnx/£) t/  0<x< >0,
ir 7F;:JI 4n2 —1
satisfies
d2u du u . A
&e = * 7 \where T\ =0, and it(a,0)=sinl— 1, 0<x <l
Vx J x=o0, e \'ts

13. Show that the solution u(x, y) of

&I%g+ﬂ-§—g:0’ 0<n<7T, O0<y<T,
dx2 dy2
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where an/px — 0 at x =0 and x = @, u(x,>x) = 0, and mQk, 0) = /(X), is
given by

(- y) cosnx sinhn(n —y) .
n—AOQ0 ot sinh - 5 _:| J NQ cos nx dx.

14, fn=0fory>0and x=0and x =t, and m = 1wheny = 0and 0 < X< £
and if
d2u d2u
aE~2+ 0 < X< £ y>0,
xz dyz

show that
uxy)=1Q Sin@m+1'rl/q {cosh - sinh

15. If u(x,t) satisfies
d2u  du
dx2 dt’

ﬂu(a,t) -0, u(x0)=sir Cz—rax)\

0 <x<a t>0, subjecttou(0,t) =0,

dx
show that

«(x,i) = 5sin(H ) e- W 1 8inf L *
S/) 4 \(2a3 4 \Léa.]

4.4 Problems with Cylindrical Boundaries

Laplace’s equation in polar coordinates (r, 9)

,q2/|+ 1du N ld2u _
dr2 rdr r2d02
has separable solutions n = R(r)Q{9) that satisfy

r2d?R+ rdR _ 1d20

R dr2 Rdr 0 do2
The solution will be single valued provided 0(0) has period 2n. The
constant must therefore be zero or equal to ri2n = 1,2,..., in which
case

V'u = 0, 0<B<2Zm,

= constant.

© = Acos(n0) + Bsm(n9), R __C_:__ I-Dr", n>1

0 =A, R=C+D\nr, n=0,

where A, B, C,D are constants.
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Thus, when a bounded solution is required in the interior of a circle
r < a, say, the general solution is

®
n=~n" (Mncos(n$) + Bnsin(n0)*rn, r <a (4-4.1)
71=0
The bounded solution in an exterior domain is, similarly,
@ AN
n= i"An cos(ne) + Bnsin r>a (4.4.2)

However, a bounded solution in an annular region a < r < b may
include all terms oc rn and r-n, and also the term in In r.

Velocity potential of flow past a cylinder The velocity potential
of incompressible, ideal steady flow at speed U in the »direction past
a stationary, rigid circular cylinder of radius a (with boundary r = a
in polar coordinates) is given by

$= Ux + u(r,6) = Urcoss + u(r, 9),

where 1 satisfies Laplace’s equation and tends to zero asr  oc.
n has the general representation (4.4.2). The normal component of
velocity must vanish on the cylinder

This gives the equation for the Fourier coefficients An, Bn:

~Ancos(ne) + Bnsin(nQ)j = Ucoss, 0< 9< 2n,
71=0

which implies that all of coefficients vanish except A\ —Ua2. Hence,
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Example Solve the Neumann boundary value problem ina<r <k

d =
,c|,2|/|+ 1dr+ 1d2u:o_ a<r<b u f17(f) cos9, r = a,

2
VZIt_orz ror rzoaz dr [0, r=h

This determines the velocity potential produced by an inner cylinder oscillating
back and forth with velocity U (t). Although the velocity depends on time (produced
by an external agency that may be assumed to force the motion), time does not
appear explicitly in the equation for the velocity potential because the fluid is
incompressible. Note that the boundary condition on the inner cylinder satisfies the
compatibility condition

v/(l

f(a,.:---
Clearly
+ Br coss,

where the constants A and B are determined from the
boundary conditions on r = a, b, i.e. by

A A
B --=U B--w=0.
az bl

Hence,

5 T, = br C€0S0, a<r <h

The radially symmetric solution of Laplace’s equation
mn—C+Dlinr

is unbounded both at - = 0 and + = o0o0. It represents the velocity
potential of a two-dimensional (‘line’) source at - = 0 (see §3.14). When
there is no source we must take D = 0O for the solution to be bounded,
unless r = 0 is outside the physical region where Laplace’s equation is
to be solved, for example, when a solution is required in the annular
region a <r < b (see Question 5 of Problems 4B).

Example Poisson’s integral of the Dirichlet problem for the circle (see §4.2):

1 1 fftn
Vau=~n ~ +V2W =0, 0<r <R, where u(d,s) = f{9).

The bounded solution in 0 < r < R can be written
00

n= Aqg+ i“Ancos(nB) + Bnsin(n™)j rn,
n=1
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where
A0+ ~ "Ancos(ne) + Bnsin(nO)'jRn = f(9), 0< B <2n
n=1 2“:
(see 81.10) Ao=1jf(0>)d0",
0
@\n,Bn) = j:(9')(cos ne',sinnQ")de\ n> 1.
Hence,
2
U= |) [cosnB cosn#' + sinnBsinn07] ] de'
0
2

AIIKO um +E (2)'1C08N(M0) de

7%
em(0-0) ] det

n \ n—1

2
1771 (IK)eress>
—4 "/ 2 1-(r(r/)ﬁ,)?eAB-0) dft

Re 54d M |.'£'II ire*(B~B' I <#.

Extraction of the real part leads to Poisson’s formula
] (r2-r 2f(e')de'
t(r‘e):h J R2-2rRcos(9-9")+r2'

This is identical with the solution (4.2.2) derived using Cauchy’s integral formula
(3.5.1).

Problems 4B

1. If u(r, 9) satisfies
a2n Ildun | d2u
o2 +rph +12082=0, O<r<a>

and u(a, 9) = B, —it <9 < n, show that

r\nsinn9

|/|:—2rL|rl {)/ ]
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For the exterior problem, where the same equation is to be solved in the infinite
region r > a, subject to the same condition at r = a, show that

a\nsinll
n=-12
n=I
. Establish the solution
r\ 2n+l
:E- AC (-3 sin(2n + 1)0

7r£2n + 1} \a

n=0
of the boundary value problem

a2un an 1 d2u

!
Bt = U<T<ax 0<0<T
where u{a,9) = C (constant) for 0 < 0 < Ir, and u(r,0) = 0 for 0 = 0 and
0=T
. Show that the solution of the cylindrically symmetric diffusion problem

a2v  lgn 1du

W oy Tkate °sre@

where u(a, t) = 0,t > 0,and u(r,0) = f(r),0 <r<a is
00

n-n"2 exP
n=1

Ka2t

where an is the nth positive zero of Jo(x), and

I Tf(r)Jo(”) dr 2/r/i(r)Jo(~) dr

AN = S— = -
a2li(a,,)

. Radially symmetric oscillations of a circular membrane of unit radius are gov-
erned by the equation

a2n ldu d2u
W2+ v+~tvr~dff= ~ <r< >

where u(r,t) = 0 at r = 1 for all time t. Show that, if
d
n=f(r), and —U:O at £=0,0<r <1,
then

230 (anr) cos(are) Jrf{r)JO(anr) drJ, £>0,

n=1

where an is the nth positive zero of Jo (k).
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Show further that, when f{r) = 1—r2,
dJ2(an)do{anr) cos(ant)

-E avian O C

5. u(r,B) satisfies
ﬂf‘; :ﬂ? izgﬂz:z =0, a<r<b -Ir<6<t
where u(a, B) = 0, u(b,B) = 1, —mw< B < T. Deduce that
In(r/a)
= In{o/a) ’ -Tr<s<n.
Where does n = A? [r = a(6/a)i].
6. Show that the solution u(r, x) of the boundary value problem
2n  ldu du
or]’—‘+rg¥+ox* r<1, 0<x<a,
where u(l, x) = 0,u(r,a) = 0,u(r,0) = f(r), is given by
[e]e]

n="2"nJo(A,r)sinh{A,(a- X},
=N

An = sinh(A, ) \Jlf{r)rJo (A,,ndr,

An = nth positive zero of J0(A) = 0.

7. Find u{r,x) inr < 1,0 < x < a when

7ch|/| 1du d2u
0;[*+|=gr+(;:x*A:O> r<l, 0<x<a

and u(l,x) = 0,u(r, 0) = f(r), u(r, a) = g(r).
= [*nsinh{An(a —x)} + Bnsinh A,a}]J0(Anr),
n=1

"nIBN) —jj(A, )sinh(A,8) / (MM r))ruKr)dr,

An = nth positive zero of J0O(A) = 0

8. When f{r) = 1land g(r) = 0 in Problem 7, show that

_ 2sinh{An(a —a:)}Jo(Anr)
- E.] A,sinh(A,a)Ji(A,0)
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9. Let AR be the fcth positive zero of Jo (k). Show that if u(r, t) satisfies

-x~2 + --EF = --Kr 0<r<1 t>0 u(r,0) = ull0(Afr),
orl r or

then u(r,t) = noMo(\kr)e~kX& fort > 0.
10. Show that the solution of

a1 am | du
ww+-w-:w7 0<r<l,
orz ror K at '

where u(l,t) = w,t>0,and u(r,0)=0,0 <r<1,is
m=u011- 2]Tj A%y }exp(-kA™)|, t>0,
where An is the nth positive zero of Jo (X).

4.5 Application of Green’s Second ldentity:
Green’s Function

The Laplace operator V2in spherical polar coordinates (r, B, ) is given
by (2.6.6). Spherically symmetric solutions of Laplace’ equation there-
fore satisfy

I_d_

B
—0, ie. =A+ >0 45.1
r2dr \ drJ 1€ Fl ' ’ ( )

where A and B are constants.
By temporarily shifting the coordinate origin to a given, fixed point
Xo, so that r = |x —x0|, and taking A = 0 and B = —/4 T, we see that

G(x,x0) = ——_——-—', (4.5.2)

satisfies
V2G =0 for |[x —x0| > 0. (4.5.3)

G is called the free space Green’s function for the Laplace equation,
and can be used to write down a formal representation of the solution
of the inhomogeneous Laplace equation (Poisson’% equation)

VV = /(x), (4.5.4)
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where the ‘source’ term /(x) is non-zero only within a finite region of
space, and ip—*0 as |x| —0o0.

To do this, let V be the volume bounded by the surface £0 of a
small sphere of radius e with centre at xo and a large closed surface £
enclosing £ 0 and the region of space in which /(x) ~ 0. Multiply (4.5.3)
by <\(x), (4.5.4) by G(x, x0), subtract the equations, and integrate over
the volume V. Green’s second identity (2.5.2) enables the result to be
written

G(X,X,, dn dn dS(x.)
S+So
- \J G (x,x0)/(x) dV(x), (4.5.5)
v

where d/dn denotes differentiation in the direction of the outward nor-
mal from V.

As the surface £ recedes to infinity, G ~ |/|x| and dG/dn  |/|x]|2
Let us tentatively assume that <p(x) tends to zero sufficiently fast that
the integrand on £ goes to zero faster than 1/|x|2. Then 8"{Gd<p/dn —
<pdG/ dn)dS —*0, and this integral over £ may be discarded.

On £0

B d  _
dn dri r = |[x —x0|, so that

-1 -
G = dG L , and dS —@62sin 9ded(f),

4160 dn 47762
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where (r, B, ¢) are local spherical polar coordinates with origin at xo.
Hence, (4.5.5) becomes

N T—dS + - (f ep() sin 69d() — [ G(x, xO/(x) dVCx).

So So \Y

The first integral on the left vanishes identically by the divergence the-
orem (because V29 = 0). In the second integral p(x) can be replaced
by <p(x0) as e — 0, and sin6déd(p = An. The formula therefore
reduces to

V(x0) = f G(x,x0)/(x) "V(x) = Kn]l\]/ X -Ax0| (4.5.6)

where the volume integral on the right is taken over the region where
/(X)) ®0-

This formula determines p in terms of the source distribution /(x)
at an arbitrary (‘observation’) point x0. It shows that, as |x0] —o00,

A~ SR [ IX[IV(X) “ SR F'I x/(x)dv(x) +mmm.

i.e. that ip decreases at least as fast as I/|xc| with increasing distance
~ |X@ from the source distribution. This justifies our neglect of the
surface integration over S.

When equation (4.5.4) is to be solved in the presence of an arbitrary
distribution of boundaries S, the integral on the left of (4.5.5) includes
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a contribution from S, and we obtain instead of (4.5.6)

\] G(x, x0)/(x) dV(x)

<nbl

S
-1 /(x) dV(x)
An x x01

+,|An-J/ [L|x %o| fedxv ) y(x)ﬁg x0 45().

(4.5.7)

Note In awell-posed boundary value problem for Laplace’s equation
when, for example, the value of p>is specified on the boundaries, the
solution actually determines the value of dip/dn everywhere on S. This
means that tp and dip/dn cannot both be prescribed independently in
the surface integral of (4.5.7).

46 The Dirac Delta Function in Three Dimensions

The integral (4.5.6), which determines the “ree space’ solution of
Poisson’s equation V2»= /(x), converges for all well-behaved ‘source’
distributions /(x) that decrease sufficiently fast as |x] —> 0o. The
integrand becomes infinitely large as x -> x0, but the infinity is can-
celled because the volume element dV(x) enclosing x0 is proportional
to |[x —x0|3. However, it is often convenient to avoid even ‘harmless’
infinities of this kind by observing that

/(x) dV f f(x) dV(x
(x) (f() Jimo (x) dV(x)
- x0 71/ - Xof2+ €2
When e ” 0 the integrand remains finite everywhere, and the result is
obviously equivalent to replacing Green’s function (4.5.2) by

-1
Ge(x,x0) (4.6.1)
47Tyl)x - x0|2+ €2
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Although Ge(x,x0) —G(x,x0) as e —>0, this modihed Green’s
function G £(x , x 0) does not satisfy Laplace’s equation. In fact, a simple
calculation shows that

v2a = hgX- x0), (4.6.2)

where

4(x - Xo) 362 (4.6.3)

47t(|x —X0|2 + 62)t
The calculation described in 84.5 (using Green’s second identity) may
be repeated using equations (4.6.2) and (4.5.4) instead of (4.5.2) and
(4.5.4). In this case Ge s finite everywhere, so that the small spherical
surface Eqis not required; the integration over the surface E again gives
no contribution as E recedes to infinity. Instead of (4.5.5) we now find

0= \J GE(x,x0)/(x) dV(X) - \] he(x —x0)(p(x) d@ (4.6.4)

As e —0 the integrand involving 5£(x —x0) vanishes except at x = x0,
where it becomes infinite like 3/47re3, i.e. for small e

Se(x - x0)<p(x) dV(x)  <p(x0) / 5e(x - xq) dV(x)

radr
= <\(x0) x 382\jD = V(xq).
v (r2 + e2)r

Hence, we recover the solution (4.5.6):

-1 ff(x)dv
¥>(x0) = Li_rpq.[GB(x,xO)/(x)dV(x) = 47rJf (|>)<()_X é)l()

Generalised functions in three-dimensions The e-sequence

3e2
<Ux-y) = 4.6.5
Hx-y) 47t(|x —Y |2+ e2)a ( )
defines the 5-function in space of three-dimensions (cf. §1.11). This is
the three-dimensional generalised function, denoted by S(x —y), with
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the fundamental properties

f1 whenxisinV,

J 5k —=y)dvily) = {o. Wwhen x is not inV, (4.6.6)
J/ [(YtF(x - y)dV(y) = /(x), Wwhen X isin V. (4.6.7)

\%
It follows from this and (4.6.2) that we can formally define Green’s
function for the Laplace equation as the solution of

V2G(x, x0) = h(x —x0) (4.6.8)

that decays like 1/|x —x0| as |[x —x0] —00.

There are an infinite number of different e-sequences of the type on
the right of (4.6.5) that can be used to define the three-dimensional
delta function. Any of the following would suffice, for example,

27r[X-y|(Ix —y| + )3’

exp [-(x-y)¥ 62  3H(Ee—x —yl)
T8e3 ’ 463

where H(x) is the Heaviside step function (1.11.4).

Example [Ifx = (xx,x2,x3), y = (yr,y2,y3), then
E(x ~ YY) = S(xi - yi)S{x2- V2)S(x3- y3). (4.6.9)

4.7 The Method of Images

Let us consider again the method based on Green’s second identity for
solving Poisson’s equation V 2ip = /(x) in a three-dimensional region
V with boundaries S. Green’s function is now taken to be a particular
solution for /(x) = h(x —xQ0), so that

VV = /(x) (4.7.1)
V 2G(x, x0) = 6(x - x0). (4.7.2)
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Multiply (4.7.1) by G(x,x0), (4.7.2) by <€), subtract and integrate
over V. Use Green’ second identity (2.5.2) to obtain (as in §4.5)

<?x0) = \J G(x, x0)/(x) dV(x)
%

+ dS(x). (4.7.3)
S

It will be assumed that in the particular case in which the region V
extends to infinity, the functions (/2(x) and G(x, x0) decay sufficiently
fast that there are no contributions from the integration over the ‘sur-
face at infinity’ (S in §4.5).

The representation (4.7.3) is valid for any G(x, x0) satisfying (4.7.2),
and not just the free space Green’s function (4.5.2). Put

G(x, x0) —— +— -1+ ,X0). 4.7.4

(x, x0) 4Tt|x —x 0| u(x.x0) ( )

By substituting this expression into (4.7.2), and interpreting

—1/47¢)x —XO0| as the generalised function defined by the e-sequence
(4.6.1), we see that v(x, x0) is a solution of Laplace’s equation

V2n(x,x0) = 0.

Any well-behaved (‘regular’) solution of this equation (that decays
at least as fast as |/|x| at infinity) can be used in our definition (4.7.4)
of Green’s function. Because boundary value problems involving elliptic
equations of the Laplace type are ‘well posed’ when the value of either
@ or d<p/dn (but not both) is prescribed on the boundaries S, it is
often useful to choose v(x, x0) such that in these respective situations
G = 0or dG/dn = 0 on S. For example, when dG/dn = 0 on S
equation (4.7.3) becomes

<p(xo0) = JG(X,XO)/(X) dv(x) - j)G(x, x0) dS(x). (4.7.5)
v S

If the boundary condition on S is dip/dn = 0, for example, in cases
where ip is the velocity potential of a fluid and S is a fixed rigid
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surface, then
_ , AG _
<Pp(x0) = J/ G (x,x0)/(x) dV(x), provided =0 onS
on

The point source Integrate equation (4.7.2) over the volume V' of
a sphere whose centre is at x0:

V2G'(X, x0)dV (x) = \J5(X —Xo)dV(x) = L
\A A
Applying the divergence theorem (82.3) to the integral on the left:

) VG mdS = 1,

S
where S' is the surface of the sphere and n is the outward normal.

Thus the flux’through S'is independent of the radius of the sphere;

indeed the same result is obtained for the flux through any closed sur-
face enclosing x0. In the case in which G represents the velocity poten-
tial of an incompressible fluid, the result states that the net rate at
which fluid is flowing out of V' is 1, i.e. that the 5-function 5(x —x0) is
equivalent to a point source of fluid of unit strength located at Xo. This
simple interpretation is the basis of the method of images for determin-
ing the function n(x, x0) for Green’s function (4.7.4).

Green’s function for a half- r
space Let us determine G(x, x0) P .
for Laplace’s equation when V is
the half-space z > 0, subject to d3d* Q -0
the condition OG/dn = —OG/dz =
0 on the boundary z = 0. The
motion produced by a point source . o
at xo = (xo, Yo, zq) is entirely radial image
in the absence of boundaries. Evi-
dently, the component of motion normal to the boundary will vanish
at r = 0 if the source field is augmented by that produced by an equal
‘image’ source at Xg= (X0, Yo, —z<f), he. by taking

-1
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This function is singular at x = Xq, but this lies in r < 0, so that

(4.7.6)

is regular in V apart from the point source singularity at xo, and can
therefore be used to solve the Neumann problem for Laplace’s equation
in V.

Similarly, to solve the Dirichlet problem, in which the boundary
value of ip is prescribed, Green’s function must be chosen to satisfy
G(x,x0) = 0on z = 0. This is achieved by using an equal and opposite
image source (a ‘sink’), in which case

4.7.7)

Problems 4c

1. Let V2ip=0inz >0 and dip/dz = u(x,y) on z = 0. If ip—0 as z — 00, show
that

00

—00

2. In Problem 1 let

uo —constant for x2+ y2 < R2,
0 forx2+y2>R2,

Show that

3. LetV22 =0inz > 0andip= u(x,y) onr = 0. If p —0 as z -+ oo, show that

00

4. In Problem 3 let

fu, = constant for x2 + y2 < R2,
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Show that

1 1
cp(0,0,z0) = z0uO 0 yJR2+ 1l z0> 0.

4.8 Green’s Function for the Wave Equation

In an unbounded medium, and in the absence of waves ‘arriving from
infinity’, the solution of the inhomogeneous three-dimensional wave
equation

1d2p

c2 dt2
represents a system of ‘waves’ radiating away from a source region
where /(x, t) ¢ 0. We define Green’s function G(x,x0,f,fo) for this
problem to be the particular solution of

182G
~ V2G = h(x-x0)5(t-to), (4.8.2)

vy =/(x, 1) (48.1)

that permits the solution of (4.8.1) at any given observer position and
time (x0,to) to be expressed in the form

<Nx0,10) J I(x, )G{x, X0, 1, to) dV(x)dt, (4.8.3)

— 00

the integrations being over the whole of space and all times t.
A unique G can be found which accords with physical intuition by
imposing the following condition:

G(x, xo0,t,t0) =0 fort >t0and for all values of x.

This is an expression of the causality principle, that waves arriving at
x0 at time to must have been generated by the sources /(x, t) at earlier
times t < tOm

The ‘source’ on the right of (4.8.2) is impulsive; it exists only for
one instant t = t0 and is concentrated at x0. Symmetry demands that
G(x, x0,t, t0) consists of an incoming spherically symmetric wave that
converges onto the point x = xaand becomes evanescent at time t = ta.
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Its amplitude must therefore depend on r = |x —x0| alone, and its
dependence on time must be as a function of t —to + |x —xao].
For r > 0 equation (4.8.2) can be written in the spherically symmet-
ric form
1d2G _ 1.d_/ 2dG\
c2dt2 r2dr \ dr)

This is transformed into the one-dimensional wave equation

0, r=|x —Xq

hw {TG)- ~ {rG)=0' (r>0)’ (484
by means of the identity = \JjMrG), with the general
solution (84.1, (4.1.8))

G Pt - to- |[x- Xqgl/lc) 4/(t—Tf0+ |[x —x0|/c)

47t|x — XO0| 47¢lx — X0
where ®and ® are arbitrary functions. The terms on the right represent
spherical waves respectively radiating in the directions of increasing and
decreasing values of r = |x —xc|. Therefore ® = 0, because only the
incoming wave can vanish after collapsing onto x = xDat t = t0.

The functional form of ® is determined by substitution into equation
(4.8.2). Because the term on the right of (4.8.2) is a generalised function
we first introduce the following e-sequence for G, which is bounded for
all values of x,

G' = <Ht-tv +r,/c)" where (= " |X_ X2+ E
4Te

Then,
1d2G 0 3e2d  3e2d7 20"
(4-85)

where @' = d*/dt, etc. As e —0 the right-hand side of this identity
must reduce to the right-hand side S(x —x0)S(t —t0) of (4.8.2).
From 84.6, equation (4.6.5),

3e2d

5(x XO)®(t- to+ \x - Xol/c)

= h(x x0)®(t—o) ase—0.
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The remaining e-sequences on the right of (4.8.5) tend to zero as e —0.
For example, for the second term and a test function /(x)

—3e2 | /(X) , yj(x x0)2+ e2
e J [(x —x0)2+ e2]£cD [t- 1o V)
-3e2/(x0)T'(f-to) f ra2dr
(r2+ e2)2

-31re/(x0)T/(f - f0)
4c

Thus, equating the limit as e —0 of the right-hand side of (4.8.5)
to the right-hand side of (4.8.2), we find

0 ase—»0.

T(t- t0) = 5(t - t0),

and therefore that

G(X, X0t 10) = ~rrrrpmherfoeeee (4.8.6)

The retarded potential The explicit form of the solution (4.8.3) is
now derived by a simple modification of the procedure used in 84.5 for
Poisson’s equation. Multiply (4.8.1) by G(x, x0,t, t0), (4.8.2) by ip(x, t),
subtract and integrate over all values of x and over —e0 < t < 00 to
obtain

oo

div(y>VG - GV7] dt

— 00

= ip(x0,t0) - JJ fG dv(x)dt. (4.8.7)

—00

In the absence of boundaries, the integral on the left is zero. The integral
of the first term in the brace brackets involves [ipdG/dt —Gd(p/dt]'£L_00,
which vanishes because G = Oatt = Too and ip= O att = —e0
(before the sources start radiating waves). The divergence term can be
transformed into a surface integral over a distant surface E enclosing
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the source region, on which tp and its derivatives are zero because no
waves have arrived at any finite time t. Hence

()]
N 1(x, 1)G(X, x0,t, t0O)dV (x)dt
(xo. _,, 1006 )dV (x)
(M) .
St —X0 to + dVv(x)dt.

— 00

Performing the integration with respect to time

jof x,t0 "N dV(x)
p(x0,f0)

47t|x —Xql (4.8.8)

This integral is known as a retarded potential. It is formally very sim-
ilar to the solution (4.5.6) of Poisson’s equation, except that now
the solution <p(x0,t0) at position xo and time to is given as an inte-
gral over the source distribution /(x, t) evaluated at the earlier time
t = t0—|x —xO0J/c. The delay |x —x0|/c is precisely the time required
for a wave received at xDto travel at speed ¢ from a source at X;
to —|x —xO0|/c is called the retarded time.

Solution of the wave equation in a bounded medium The inte-
gral relation (4.8.7) is applicable for any Green’s function. In the pres-
ence of boundaries S in the medium, the divergence term on the left
is transformed by the divergence theorem to a surface integral over S,
and the solution becomes (compare (4.7.3) for the Laplace equation)

oo

¥>(xot0) = . fdtl G(x,x0,t,t0)/(x,t) dV(x)

—00 \Y

+ Far b T80 x0f,t0) PNy f S X X 0L 1D heg gy
S

-00

(4.8.9)

where V is the region occupied by the sources, and the normal on S is
directed out of V.
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For specialized boundary conditions we can use a modified form of G
that satisfies suitable conditions on S (e.g. dG/dn —0or G=0o0nYS),
by taking

s(t-i,+171)

. t 8.
G{X,XO,t, 0) “Teix —X0| + Uu(x,x0,Mo), (4810)

where u(x, x0,t, t0) is a regular, causal solution of the homogeneous
wave equation

1da

c2dt2 var o

Problems 4D

1. Use the method of images to show that, for the half-space z > 0, Green’s function
for the wave equation is given by

*(*F0+A ), S(t-t0+A )
G(x,x0,M0) = (4.8.11)
47t|x - X 0] 47t]x — Xql

where xf, = (k0,yo, —zq) is the image of x0 in the plane z = 0, and the £ sign is
taken according as dG/dz = 0orG=0onz = 0.

2. A circular piston of radius R flush with the plane rigid wall z = 0 oscillates at
frequency as with uniform normal velocity dip/dz —uocosut. If dip/dz = 0 on
the rigid part of the wall and

show that

cos UEL_yj(X "x0)2+(y-y 02+l ~AJdxdy

V(x ~x0)2+ {y- Yo + zl

<7>(x0,t0) = -ZLIT-II; /

piston

20>0

Deduce that on the axis of symmetry Xq = yo = 0,

The method of descent Let us integrate both sides of equation
(4.8.2) for the three-dimensional Green’s function in an unbounded
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medium with respect to r over —e0 < z < 00. Because
@®

=0 and / S(x —x0)dz —5{x —Xo0)6(y —y0),

—00 J

&
dz

we find

rndz /a2 32\1
c2<2  \<Tr2 oi/v.

=5(x-x0)6(y-yo)6(t-t0), (4.8.12)

G(x,y,x0,y0,t,t0)

where

[e]e]

G(xa¥ x>\t to) —/  G(x,Xo,t,t0)dz, (4.8.13)

is Green’s function for the wave equation in two space dimensions. This
procedure for deriving results for lower-dimensional spaces from one of
higher dimension is called the method of descent.

To evaluate the integral (4.8.13) we use the formula (4.8.6) for
G{x,Xo,t,to) as follows:

“5[t—toT "7 dz

Glxyxoyotto) = 0

o St-h+ Ibr
/ 47Tg (X - Xq)2+ (y~ Y0)2+ (Z~ Zof
~It- ot EEAEBE

4 {x- x0)2+ {y - y0)2+ p2

As p varies over —o0 < p < 00, the argument of the fi-function can
vanish only if

fo V(X- xo)2c+ (y - yo)2j

to
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and it does so at p —pz, where

P+ :i\ (t- '[0)2_ (X ~ Xp)2+ (y~ Yo)2

Hence, using (1.11.16)

\/ (x-XQ)2+(y~Y0)2-+p2

6 (t=to+ dp

AMyj(x - x0)2 + (y - Vo)2 +p2

ylI(X ~ xg)2+ (y - Yo¥ 1 N 1

Jp+/Cl p-/c|
Green’s function for the wave equation in two space dimensions is
therefore given by

H to— - vyl (X-XQ)2+(y-yo¥

G(x,y,x0,y0,t,t0) = (4.814)
2n\ (t0- t)2- ®-x0)2*+(y-yo)2

Problems 4E

1. Show that the solution with outgoing wave behavior of

ld2 /a2 d?

c2dt2 \dx2 + Oy2J P= 10y,
is given by
to-

p(xo,2o,t0) = [ dxdy f -—- f G ’Ihtfdt
-L -L 2y (g —¥)2

where r = \/(x —x0)2 + (y —j/0)2-

2. Green’s function for the one-dimensional wave equation satisfies

1@ d2
c2 dt2 dx2

Use the method of descent to show that

G = H—ico)<5B(t —to), -00 < X < 0o0.

\X - Xo\
G(x,x0,1,t0) -H to—t—"""° (4.8.15)

Verify this formula by direct substitution into the equation.
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3. Show that the solution with outgoing wave behaviour of
1d2 _ df_  dF

(x.1), —00< Xx <00, Wwhere F-»0as [x|
c2 dfl  dx?

w - XO|

¥>(2070) = | jF (x,t0 dx.
4. If F{x,t) =0 for |x| > a and

1d2 @ 3f,
c? dx? ax

show that the solution with outgoing wave behaviour is

—0< x < 00,

00
<r4(x0,to)l-|:-1 f sgn(x - xO?II /Ix,to ------- Sl dx

4.9 Fourier Transforms

Suppose f(x) is defined for —e0 < x < 00. The Fourier transform f(k)
of f(x) is defined by

m = (4.9.1)

In applications we frequently know f(k) and are required to deter-
mine the corresponding function f(x). This is done by means of the
inversion formula which is derived by making use of equation (1.11.8)
in the form » elk’x~y">k = S(x —y), as follows

00 = | Hy)eex - yay

—00

eikxdk

— 00
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Hence, f(k) and f(x) satisfy the reciprocal relations

) ) .
Tk f(k)eikx dk,
m f{x)t dx f(x)=ir J
(4.9.2)
where the second equation is called the inversion formula.
Example Find the Fourier transform of f(x) = e_Fl.
@
No = J [ ikx-\x1J Lo f ikxEx gy g le-ikx—x dx
T ybrJ
! \'1—rlc M 1+1ik
m =J~T +1/C2

The integral in (4.9.2) defining f(k) converges only under the restric-
tive condition that \f(x)\ —»0 as x —+00, so that powers of x and
constants do not strictly possess Fourier transforms. However, in these
circumstances we can always ‘force’ convergence by interpreting f(x) as
a generalised function (881.11, 4.6), provided f(x) does not grow ‘too
rapidly’ at infinity. In practice this means that f(x) should not grow
exponentially fast, so that it can be defined as a generalised function
by means of the e-sequence

1,(x) = Ax)e-‘K

In this case we have the reciprocal formulae

/>) = lim - L f(x)e-W~ik*dx, f(x) =1lim -L f(kAe-i\k\+ikx dk_
) «p0 VNTT J[ ( ) ( ) e "OV27T J[ (

To prove the inversion formula, we write

lim~A= [ f(k)e-WHkkdk = lim  — ff f(y)e~er - * +ik? - y'>dydk
r@oy/Zn J[ (k)e r—>q|r<p-.o 2mJJ (y)e~e I y>dy

00

r-dfnk-oj et e+ (X—y)2)dy
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= Hy / f{y)e e{vi5(x-y)dy

= Limy./()e" elel = /(*)e

Example Consider f (x) = C — constant and the corresponding e-sequence
fe(x) = Ce-eTL Then f(k) —Ilime_ 0 fe(k), where

- > Cn/2n6{k) ase->0.

[e]
fe(k) — L= fc A~mexdx = CVb: _
o) — bt 1 C et mdx e+ k2)

— 00

The original function /(>x) = C is obviously recovered when this result (involving
the 5-function) is substituted into the inversion formula of (4.9.2).

Example For f(x) = x, we take fe{x) = xe_elxL Then
fjk) = —L= \Txe~eW-ikx dx

0o

i -L -e\~ikxdx -» V22iS'(k as e —»0.
< ok J V27TJ[Q 7 (k) -

Example For f(x) = xn, where n is a positive integer, /6(k) = xne el Then

0o

- y/2n /

n
f —L $e~"-ikxdx -> V272in5(n){k) ase-fo.
V J

Example For /(k) = H(K), /e(x) = H(k)e ex. Then

00

LIJ - —eX—TKX - _i- 1
/! VATT K —re
: as e —0.
27r(e + f2) el + f 2{K) v MNP (fc

Example For f(x) —sgn(z), fe(x) = sgn(ir)e el Then
—2k

= -N1—+P r—) as6—0.
V21T1(e2 + k2)

LLI



182 Mathematical Methods for Mechanical Sciences

Example For f(x) = cosax,

()
f{k) = ~*= f i feix(a~k) + elrx(a+«k)\ dx
rJ J
<)
= [J(fc —a) + 5(k + a)] = vA7r]ali5(A;2 —a 2).

Example The Fourier transform and its inversion formula may be interpreted in
terms of the limiting behaviour of the Fourier series representation of a function
defined in —£ < x < £ as £ —»00. To see this, note that De Moivre’s formula

cosnB + isinnB = errs

enables the Fourier series (1.10.4)

® X X

f(x) = flo+ (ancos - I—*k bnsin —£<x <l
n=1 ‘ e )m

for a function of period 2£ to be expressed in the complex form

0o

[(*)= X] "e” U (4.9.3)

The complex eigenfunctions ed " form an orthogonal set over any interval of
length 2£, and

i/t /ftdn=/° m Pn,
e 2£ m =n, (4.9.4)
so that
mnx/e dx. 9.
o i) (4.95)
Let us now consider the behaviour of these formulae as £ —00. Set
kn = ~ and 5k=j,

and define f(kn) by

@ — FJta

Then (4.9.3) and (4.9.5) become

J 00
I(*) =-"= £ KKy HKXsk,
n=—o00
£

f(kn e~iknX dx.
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As £ —o00 the interval 5k between successive values of kn tends to zero, and the
summation becomes an integral over the range —eo < K < oo. Then, f{k) and f{x)
are seen to satisfy the reciprocal relations (4.9.2).

Half-range transforms The Fourier transform of a function f(x)
that is prescribed only over the range 0 < x < oo is determined by the
first of equations (4.9.2) by setting f(x) = 0 for x < 0. However, it is
also possible to define half-range transforms for such functions, in sit-
uations where the actual behaviour of / in the range —60 < x < 0
is of no interest to the problem at hand. We do this by formally
defining f(x) for negative x by taking f(x) to be an even or odd
function of x.

When f(x) is an even function

is an even function of A so that the inversion formula gives

f(x) —— Jf(k)elkx dk = vy f(k) cos kx dk.
The Fourier transform of an even function f(x) will be denoted by

fc(k), and will be called its Fourier cosine transform. For an arbitrary
function f(x) defined over 0 < x < a0, the Fourier cosine transform
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and inversion formula are given by

= f{x) coskx dx, f(x) =\l — I fc(k) coskx dk.

(4.9.6)

When f(x) is an odd function, or is extended to —et0 < x < 0 as an
odd function (so that f(—x) = —(x))

fsfk) = if(k) = | f(x)e tlocdx =\l — I f(x) sinkx dx

[bK

is an odd function of k, and the inversion formula of (4.9.2) yields

dk

nx) = L

I--- 00

=V ./i/WSsi'nkxdk: Y T sinkxdk.

Hence, for a function defined over 0 < x < 00, we can define the
Fourier sine transform and inversion formula by

fs(k) = vy f(x) sinkxdx, f(x) = —uJ fs(k)sinkx dk. (4.9.7)

Example Calculate the sine transform of f(x) —x/(I + x2).

Using the residue theorem (closing the contour using a semicircular arc in the upper
half-plane for k > 0):

—00
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Fourier transform of a derivative To use the Fourier transform
to solve a partial differential equation it is necessary to express the
transform of a derivative f bd (x) in terms of the transform of the original
function f(x).
From the inversion formula of (4.9.2)
@®

s )
Repeated application of this formula gives the rule:

Fourier transform of fAn\x) = {ik)nf(k). (4.9.8)

Provided f(k) does not grow exponentially fast as kK — 00 con-
vergence of the integrals involved in these definitions can always be
assured by interpreting f(k) as a generalised function defined by the
e-sequence, fe(k) = f(k)e~¢", say.

Problems 4F

Verify the following Fourier transform pairs:

V2
vA(l + k2)’

1
2. f(x) =B fe-fy f(k) = L+ 0

1 f(x)=e~W, f(k) =

3. f(x)=e~ax\ f(k) = -"=e-f4fy a>0.
V Za

4 t(x)=1%X 0<x<a, i ._ (l+ika)e lka- I
' U elsewnhere, ' \/2nK2

5. f(X) = S(X), f(k) = y/2nl

&
6-/(*)=YT A2 W = 26
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- X, 0 <x<a, ~/n /2 [kasinka + coska —1]
S0y xsa e( 0
7rx/ IVAcosk 0<k<
cos(7rx cosk, <k< —
8. f(x) l( ) m =,
- X lo, K> o
2 K

9. fix) =e x, fs(k) = 1+ K2

l<x<a ¢ /2 [l —cosfca]
10, f(x epa, M Y-y - ~

positive integer, a > 0,

1. f{x) - xne ax, n

‘2 nl e rien
L @+ ag) g M@
2= ) (o T T
13. fix) = ¢ (1> 0), 7ra2‘+ o
io nf_

14. fix) - ~ *) = -
) - xe~ax (a>0), /c(*) n/ir(a24rA2)2'

15. fix) - e£“~(a>0), 1,(*) = \Q//il_tan-lva
16. fix) = e~ +  [c(A) = vaz(l +r)e rk/2 (take a= —/2in Problem 3).

17. fiX) = cos(x2/2), /c(A) = T/pz(cos(Azlz) + sin(fc2/2)).

18. fix) = sin(x2/2), Jc(A) = ~ ( cos(/2/2) - sin(fc2/2)).
V2
19. fix) i L(>=+

20. fix) x(x2 + a2): >
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4.10 Application of Fourier Transforms to the Solution
of Partial Differential Equations

Fourier transforms can be applied to solve partial differential equations
(usually with constant coefficients) defined over one or more infinite
or semi-infinite domains. The general procedure will be illustrated by
several examples.

Example 1: The diffusion equation in —60 < x < 00
Solve the initial value problem

d2u

dx2 kat'
This defines the diffusion of heat (temperature) or of a solvent in a one-dimensional
infinite medium when the initial distribution (/(a;)) is prescribed at time t = 0. The
diffusivity k > 0 is assumed to be constant.

Introduce the Fourier transform u{k,t) = u(x, t)e~tkx dx, and take

for t>0, —eoo0<x<o0o0, giventhatu f(x) att=0.

the Fourier transform of the diffusion equation by multiplying by an(l
integrating over —o0 < x < 00. By making use of the rule (4.9.8), and interchanging
the order of integration and differentiation in

0
du{x, ) n_ikxdx = d | ! \T _ikx
d
JtJ dt gt \ e ¥ U ODE "

o]

we thereby derive the ordinary differential equation

- k2u(k,t) = (M),

K dt
which has the general solution

uck, t) = A(k)e K *t

where A{k) remains to be determined. The inversion formula of (4.9.2) then gives
the following representation of the solution:

(M) = A /I A * -~ (4.10.1)
—00 —00
By setting t — 0 and applying the initial condition u{x, 0) = f(x), —00 < x < 00
we find that A(k) is the solution of the integral equation
00
) =-L ] Akeikedk

— 00
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But this merely states that A{k) is the Fourier transform of f(x), and therefore

that )
— _A— i
A(k) = 7T J[ f(x)e~ikxdx. (4.10.2)
—00
Equations (4.10.1) and (4.10.2) constitute the formal solution of the initial value
problem. To illustrate the behaviour of the solution take the special case in which
the initial distribution of heat or solvent is concentrated with infinite density at
x=0,ie.

f(x) = u0S(x).

Then, A(k) = uo/\/2n, and

00 2
u(x,t) = Ip- e~k2Kt+ikx dk = Ue *-1—, f>0. 4.10.3
1) £I'J[ 2v TIKt ( )
—00

This is the fundamental solution of the diffusion equation. Thermodynamic equilib-
rium is established in the infinite medium as t —+o0, i.e. u(x, t) —0, as indicated
in the figure.

uex,t)

The solution for a general initial distribution u(x, 0) = J'(x) can be expressed as
a convolution integral involving the fundamental solution by substituting for A{k)
in (4.10.1) from (4.10.2) and performing the integration with respect to k:

U{x't) q / ﬁnﬂ e f2Ct+tfe(x_€) dk

0o

= A
\irkt Jf /(C)e-"-«)2/ 4KidC.
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Example 2: Green’s function for the one-dimensional wave equation

Find G(x, xo,t,to) satisfying

c]2- (izz 332 G = &t —To)<B(t—to), —o0< x < 00, G = 0 for t > to.
Take the Fourier transform with respect to x:
1 A-TKX0
o dtg T KRG ZO(AQ- (4.104)

where G = G{k,t) = 0 for t > to- Thus, we can write

G = H(t0 _ t) N eicfe(t-to) | g e~ick(t-t0)

where H is the Heaviside step function (1.11.4). Substituting into the left-hand side
of (4.10.4), and recalling that *"H (to —t) = —6{t —to), we find

{APB) ik(A - B) -ikxo

S\t - to) 6{t - 10) = S(t - 10)- sfisk’

which is satisfied provided that

_¢ eTCKXO
A+B=0, A-B-=

V27r  TA
Hence A = —B = —ee rckx®/{2y/2nik) and G = cH(t0 —t) sin[cfc(to —t)]e rkx°/
{y/bTK).

G{x,x0,t,to) = A H(t0 - t) \T sin[c/c(to —t)]elicx Ho*dk

This integral vanishes identically when \x —xo\ > c(to —t), because the contour
can then be displaced to kK —sgn(x —ko)roo without encountering any singularities.
When c(to —t) > pk—.To| the integration contour is first shifted to a line running
just below the real fc-axis (without crossing any singularities). Then

C
G{x,x0,t,t0) = — H(t0 - t - \ x - x0V/c)

X GIK[C(t0-t) +(x-x0)]  e-ik[c(to—t)-(x-x oy 0K
. 2ik
26
The second term in the square brackets is zero for c(to —t) > \x —Tq|. The first has
a contribution from the pole at k = 0, so that finally

C T —Tol
G{x,x0,t,t0) = -H to—t —

in agreement with (4.8.15) obtained by the method of descent.
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Example 3: Laplace’s equation iny >0

Find u(x,y) iny > 0 when

,q2m+,u,2|/|_0_ v> 0 < d _ 1 - o
ox2 'éTﬁ—, , -00 <X <00, an M_l_;"iﬁ_ ony = 0.

(4.10.5)

Take the Fourier transform with respect to x to find that u(k, y) satisfies the
ordinary differential equation

dfu
dy2

whose general solution can be written

—k2u =10,

u=A(k)e~Wy +B{k)ery, y=>0.

We must set B(k) = 0 to ensure that the solution is bounded as y —+00. The
inversion formula (4.9.2) then gives
00
u(x,y) = -~= A{k)eikx~Wydk.
(x.y) v27TJ[ {k) y
—00
The condition at y —O0 is satisfied provided

0o

w J A(K)°KJK=T b -

—00

Therefore A(k) is the Fourier transform of 1/(1 + x2), so that

1 i = B}
A{K) N ikxdx bl -\ K\
00
and u(x,y) =i | sikx-\K\(I+y) rffc " +1‘;2{ y>0, —00<X< o0
y X2

The boundary value problem (4.10.5) determines, for example, the steady tem-
perature distribution in the half-space y > 0 when the boundary y = 0 is maintained
at temperature 1/(1 + x2). Heat flows into/out of the half-space at those points on
y =0 where

d_u _ x2—l

dy  (1+x2)2>
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heat flux

When the boundary condition on y = 0 is given more generally as u(x. 0) =
f(x), —00 < x < oo, the above procedure yields

~W* [ #5)e"“A

and the solution becomes

0o

way) = -*= J N{k)erkx~Wydk = H Im e '\K\V”K(X—g)dfdfc

But,

00

- i = Zy
/ Afdly k(£ dk y2+ (x- £)2°

—00

and therefore the general solution can be expressed as the convolution integral

0o

) y f(Ne
H,y) :\J y2+(x-£)f' —o00<Xx<o00 y>0.

This satisfies the boundary condition u(x,y) —+f(x) as y —0, because

2, f-—-- r’--m5(x-£) asy—0.
Sl Mo(x-E) asy
Example 4: The diffusion equation
Find the steady state solution of

d2u 1 du
dx2 kat’
n = uae~int, x —0, where ua= constant and O > 0,
n —»0 as X 00.

0 < x < o0,

given
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The solution represents the temperature fluctuations in a semi-infinite slab when
the temperature of the exposed face of the slab at x = 0 fluctuates at radian
frequency Q. In the ‘steady state’the temperature everywhere in the medium varies
at the same frequency, i.e. all transients’ associated with the initial introduction of
the surface heat source have decayed to zero.

Let u(x,t) = U(x)e~I(It, then U(x) satisfies the ordinary differential equation

d2u idTr
i2¥ H---U=0, 0<x < oo.
ax K
Therefore
U = Aei{in/K)ix + Be-W ")*1, where A and B are constants
and (L /k)5 = (1 +1)
B = 0 to ensure that n —0 as x —* 00,
ooooufx t) =

The condition n = mle~rll at x —O0 implies that A = u0,
u(x,t) = Uoe- m - x/Vb*)-xVnJ», x> 0. (4.10.6)

Thus the temperature fluctuations within the slab decay exponentially fast with
distance x from the surface, and become insensible when x exceeds the (frequency
dependent) thermal penetration depth K/Cl. At any point x within the slab the
time delay x/\/2kQ produces a ‘lag’ between the phase of the temperature at x and
the surface temperature.

Application of Fourier sine and cosine transforms Consider the
Fourier sine transform of d2u(x,t)/dx2. By integration by parts, and
by noting that n and gu/gx = 0 at x = 00, we find:

— ()
dau .
n/dX23|nkxdx

()]
du . © du
— sin kx cos kx dx
dx 0-*/ dx
du ©

— [ku cos kx]*1>—k2its(k,t)
dx o

—\ —ku(0,t) —kaus(k,p). (4.10.7)
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Similarly, taking the Fourier cosine transform of d2u(x,t)/dx2:

d
dx2COS kx dx
=)

—¢0s kx N sinfa fa

0X Jo 0oX

du )

> coskx  + [kusinkx] k2uc(k, t)

X

n\dxjxs k2uc(k,t). (4.10.8)

These results dictate the choice of half-range transform to be used in
solving certain second-order partial differential equations defined over
the semi-infinite range 0 < x < 00, because they reveal the information
required at x = 0 in order to express the transform of d2u/dx2in terms
of the corresponding transform of u(x,t).

Example 5: The diffusion equation in 0 < x < 00

Derive a Fourier integral representation of the solution of the initial value problem

d2u ! du (n=0, x —0, for t >0,
dx2 ke or >0 Dex<oo \u=f(x), 0<x<oo, att=0.
Obtain explicit formulae for the special case f(x) =T g= constant.

This is a one-dimensional heat diffusion problem for a semi-infinite conductor
whose temperature distribution at time t = 0 is u = f{x) when the end x = 0
is maintained at constant temperature 1 = 0 for t > 0. Because we are given the
value of u(x, t) (= 0) at x = 0, we take the Fourier sine transform of the equation,
obtaining in the usual way from (4.10.7):

ku(0,t) —k2us(k,t) = :( ddutS(Mb

Hence,
1 diis

—k2us, and = A(k)e ALKt
K dt
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and the inversion formula for the sine transform then yields the formal solution

0o

u{x,t) I A(k)i: k Ktsinkx dk.

The initial condition n = f{x) at t = 0 is applied by setting t = 0 in this formula,
to obtain

0o

/ Oe) I 1{x) sin kx dk,

A(k) = \j —/ f(x) sin kxdx.
Thus, the required solution of the boundary value problem is

A i
u(x,t) = /(£) sin kf dE sinkxdk, 0<x<o00, t>0.
o Lo
When f(x) = To = constant, the temperature of the conductor is uniform at
t —0. However, the integral in the formula
- @
sin kx dx

dm =TVi/

does not converge. We therefore replace the constant temperature To by the
6-sequence Toe_ex,e > 0, and consider the limiting form of the solution as e —0.
Then

oc

. _ . 2 To
A(k) = To /e exsinkx dx =\ Te) + k2
and
2T0 f ksinkx
1) = m2Kidk
ux.1 T 8 el + k26
OfO
2T i
0 sin kx —KI-de, as e =0,
TI] K C
TO erf | !
Kyfnt)'

where erf(x) is the error function (see 85.4 and Question 13 of Problems 5C).
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The following plot of u(x, t)/To against the non-dimensional ‘similarity’ variable
x/sfifft (k having the dimensions of m2/s) indicates how the temperature changes
as a function of both x and t.

Example 6: The diffusion equation in 0 < x < 00

Solve the initial value problem

dou 1 du
——, for t>0, 0 < x <oo,
dx2 « at
. =u0, x —0, for t>0,
given

mn=0, 0<x<o00 att=0.

The solution determines the temperature distribution in a semi-infinite rod which
is initially of uniform temperature u = 0, when the end x = 0 is suddenly raised
and maintained at the constant temperature n = w fort > 0.

Because u is specified at x — 0 we take the Fourier sine transform of the equation,
as in Example 5, to obtain

= \frkuO- k2 (M) = \%+/1(*)<?-*Y
K at \ﬂ'u us, n.(M) V7/FI2r ()<
Att=0,u(x,t) =0, 0< x <00
us(k,t)y = 0 att =10
Ak) = and us(k,t) =2~ -[1-e~ kaKi].

Hence, using the inversion formula of (4.9.7)

[e]e]
2 f 1 _ e-fe2KA sinfca dk

uq nd Vv J k
0]

| —erf K/f\%f:f))’ 0 <x<o0o0, t>0.
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K

Example 7: The diffusion equation in 0 < x < 00

Solve the initial value problem

a2u 1 du

£h? = k~dt’ N> 0 < x < o0,
. u/dx = —a, x =0, for t>0,
given

= 0, 0 <x<o0 att=0.

The solution determines the temperature distribution in a semi-infinite rod which
is initially of uniform temperature n = 0, when heat is supplied at the end x = 0
at a constant rate a fort > 0.

Because du/dx is prescribed at x —0 we use the Fourier cosine transform, and
the relation (4.10.8) to deduce that

2 G
T2’

where *4(fc) is determined from the temperature distribution att = 0 to be

uc(k, t) —A(k)e 2Kt

O°)=-1/73z

so that

u(x,t) 2 —k2nt\ cos kx dk
—e .

a T ) jﬁ? ’

The solution is plotted in non-dimensional form @(x,t)/ay/Kt against x/yffti, a
having the dimensions of u/x). The constant rate at which heat is supplied causes
the temperature to rise indefinitely everywhere within the rod with increasing time,
including the end x = 0.

0 <x<o0o t>0.
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Example 8: Laplace’s equation in the quadrant x > 0,y >0

Calculate the steady temperature distribution u(x,y) inx >0,y >0 where

d2u  d2u _ jn=M, x=0, 0<y<oo,
dx2 dy2 ! =0, 0<x<o00 y=0.

Because 1 = «0 at x = 0 we take the Fourier sine transform with respect to x
(using (4.10.7)), to obtain

das .
dy2 k2i
us(k,y) = A{k)e~ky + B{k)eky +

Only positive values of k occur in the inversion integral. Thus, the solution is
bounded only if B(k) = 0. Then, because iis(k,y) = 0aty =0,

~2U0
A(k) [7r K
kxdk 2
ux.y) } (I —e bn §_|_r_1__z<_____ —ar tan( ) x>0, y>0.
uo 6 K s
This is equivalent to u(x,y)/uQ= ~Im(Inz) = ~,z = (x2 +y2)2¢e*, where Inz is

regular in the first quadrant except a r = 0. The isotherms, u(x,y)/uo = constant,
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are the straight lines B — constant:

Example 9: The diffusion equation in 0 < x < 00
Solve the initial value problem

a2un 1 du =uno, x=0, for t>0,
&r2 = K0t tor *> 0 < x <o00, given 0 0<x<o00 att=0.

by taking the Fourier transform with respect to time.

This is the same as Example 6 . The method to be described will work even when
the boundary condition at x = 0 is ‘mixed’, i.e. consists of a linear relation of the
form

du
+ = (3t = tant.
dx au = (3{t) a = constan
Let
oo
n(x,w) = v%:r J/ u(x,t)e~tultdt, where u(x,t) =0 fort <0O0. (4.10.9)

This implies that ii(x,w) is a regular function of n in the region Im(w) < 0. Then,
= DJ, & u-¥>< ,uj)\ = Muj}e-x X > 0,
Kj

where a bounded solution is obtained by requiring the real part of y/iuj/k to be
positive for —o0 < 4 < 00. This can be achieved by defining the square root as the
principal value of

C/X

1
/e {w—ie)\

where e > 0 and is subsequently allowed to tend to zero.
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To determine A(uj) we impose the condition n = ugat x = 0 for allt > 0

0o 0o

where to secure convergence it is necessary to replace the constant w by the
e-sequence noe~et, i.e. to regard no as a generalised function.
Hence, using the inversion theorem for the Fourier transform

00
ux,t) -i r exp —Xx(e"(w-
ewldu
w0 2T W&
—00
00—i0
- f ewl~x
,as 6 —0.
Va LN | LJ
—00—0
Im®o

integration path
fort <0

The contour in the final integral runs just below the real w-axis. When t < 0
it can be displaced to > — —ioo without encountering any singularities, so that
u{x,t) = 0 fort < 0, as required. For t > 0 the integration contour is deformed
onto the path shown in the figure. The residue contribution from the pole at w= 0
is equal to 1. The substitution w = ik2K in the remaining integral along both sides
of the imaginary axis then transforms the result into that obtained in Example 6
using the Fourier sine transform.

Example 10: One-dimensional wave equation

Use the Fourier time transform to solve the initial value problem
l'1& _
VY dt2  dx2

wherea>0andun=0,f(t) =0 fort<0.

Anm=6(x —a)f(t), —eo<x<o0 t>0,
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Take the Fourier time transform (defined as in (4.10.9)) of the equation:

~ + klu=-6(x-a)(w), =17 (4.10.10)

where, because f(t) = 0 fort <0,

00

to -1is %*&-***

is regular in the lower half of the complex w-plane, and f(u>) —0 as w ——io0 .
We solve (4.10.10) by the method of Example 2. For x ¢ a the general solution
of (4.10.10) is

u{x,uo0) = Ae~ik°x + Beik°x,

where A and B are arbitrary functions of co. However, because all of the motion
is generated by the ‘source’ at x = a, the solution must also satisfy a ‘radiation
condition’. This requires that, for x > a, u(x,t) consists of ‘waves’ propagating
away from x = a towards x — +00, i.e. u(x, t) must be a function of x —ct. This is
possible only if B = 0 for x > a, because the inversion theorem gives

@0
u{x,t) = -j= J (AeM “- x/c>+ BeMt+x/c)™ dul

—00

Similarly, we must take A = 0 when x < a.
We therefore write the solution of (4.10.10) in the form

n(x,w) = AW X - a)e-ik°{x~a) + BLLa - x)eiko(x- a\ (4.10.11)
where H is the Heaviside step function (1.11.4). Substitute into (4.10.10):
S'(x —a)[A —B] —ika6(x —a)[A + B] = —6{x —a)/(w),
(A-B =0,
\ikO(A + B) - f(u).

Thus, A = B, and

Au{x,u) =/(w)e-f*-e|.

It has been implicitly assumed that wis real. In that case, when ii(x, co) is found by
dividing both sides of this equation by 2ico/c, it follows from Question 3 of Problems
1J (81.11) that
f —ikQ\x—a\
u(x,co) ci{w)e + CS(co) ,

2i
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where ‘P’ denotes the principal value, and C is arbitrary. Hence,

wey = /K3 £ CS(1j) /(Wje* A -1*- @/c) d.

The coefficient C is determined from the condition that u(x, t) = 0 for t < 0. From
Question 14 of Problems 1J (81.11)

P (W) = —i6(w) + lim

e—>0 Ul — ie

so that

u(x,t) —lim

£ 2i\/2n I g—tg HIC—¥I5(u) /(w)efa(*-[*_e|/" dm

When t < 0 the part of the integral involving I/(u>—ie) is zero, because /(w) is reg-
ular in the lower half-plane and tends to zero at .= —ioo, so that the integration
contour can be displaced to w = —ioo (on which the integral vanishes) without cross-
ing any singularities. The remaining part of the integral will also vanish provided
C = in. The solution is therefore given finally by

000
u(x, t) = d) (4.10.12)
) 1 L
00—iO
where the integration contour runs from —eo to oo just below the real axis.
This formula implies that
[ele)
| fat) = | deo = °-f(t -\ x - a\lc)

—00

t—\e-al/c
u(x,t) =~ J f(r)dT, where/(r) =0 forr <0. (4.10.13)

Problems 4G

1. The steady temperature distribution u(x, y) in x > 0,y > 0 is governed by
d2u d2u " . =0, x=0, 0<y<oo,
dx2 dy? laon/py ——ab(x —a), (@a>10), 0<x<oo y=0.

Use the sine transform to show that
0

A= 0 Y  amx)2

= = >0,y>0.
2 y2+ (a—x)2 X y
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2. By taking the Fourier transform with respect to time, derive the solution of the
boundary value problem

a2u 1 du
dx2 «k dt

where u(x,t), f{t) =0 fort <to, in the form

+ S(x)f(t), —o0o < x <o00, t>to,

go—r0

" own Wh

—00—0

where /(w) = -"= J.@m

3. Show that the bounded solution of the boundary value problem

a1 o2m fu=0 a=0Q 0<y<oo,
ax2 ay2 nox/(1 +x2), 0<a<oo y=0

. nox _ ( mo\ .
nx'Y) = Tygyb b5 = Re\=; 7 z=x+1iy.

4. Derive the solution (4.10.13) of Example 10 by making use of Green’s function
(4.8.15) for the one-dimensional wave equation.

5. Solve Example 10 in the region 0 < x < oo when u satisfies the condition

du

Z-— =un ata; =0, Z = constant.
[0)4

Express the solution as the sum of the infinite medium solution (4.10.12) plus
a reflected ‘wave’ mr(x,t), where

®H="=§° A el

—00—0

17 = reflection coefficient = —(-1—+ |E62~ J), k, = c

6. Find the function u(x, y) that is bounded in y > 0 and satisfies

d2u d2u
ax2 dy?

m=5x—£) ony=0. I/I: Y

mx - 02+ Y2

y>0, —o00<Xx <o00 and



7.

10.

11.
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If u(x, y) is bounded in y > 0 and satisfies

g2u Q2
—+ —=0, y>0, -00<x<00 and u=f(x) ony=0,
ctar oyz

show that

/(0 de
Y k- 02+ 1"

. IfVu(x,y) is bounded iny > 0 and

du  du du o
+ M2 = y>° “°°<z<oo and A =o(x-i) ony="T,
show that
Vu= A =-1-1 - 02+ Y2} + tant > 0.
u - £)r 4 y2\’ " i n[(x }+ constant, y
. If Vu(x,y) is bounded iny > 0 and
d2u d2u du .
+~Qr="° Y¥Y>0' “°° <x <00, and — =/(x) onl/=0,
show that

00

. I /(E) In[(x —£)2 + y2]dE + constant, y > 0.

Use the cosine transform to show that, if u(x,y) is bounded in y > 0 and
satisfies

d2u d2u
T0+ ttw =0 Y>0, -00 <Xx <o00, and
0Xxz ayz

m=H@—x|), a=>0 ony=0,

then

i (a+x a —X
f tan

y>0

I f
n=—<tan-—

)jm

Show that the solution u(x,y) of

Im A
tww + =0, x>0, 0<y<a,
axz oyz

u{x,0) = /(x), 0 < x < oo,
u(x,a) =0, 0 < x < oo,
u(0,y) =0, 0<y<a,

is given by
@ @
sinhfHa —y)I

K= \ / /« K / ----- S I-E]-H-k'a- ----- sin kx sin k£ dk.
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12. If u(x,t) is bounded and satisfies

d2u du
Ih?=~di" >X>0, t>0,

u(x,0) = xe~x /4, wu(0,t) =0,

show that wu (1 _:_( t):-e'/\f(l"'t)
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SPECIAL FUNCTIONS

51 The Gamma Function I ()

The gamma function is defined for positive values of x by
()
rw =/ tV ‘d, x>0 (5.1.1)
0

It is positive for x >0, and I'(1) = J@e~rdt = 1

205
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Integration by parts shows that

(O]
ra +)9:t< redt
0

so that ' (k) satisfies the recurrence relation
M+ x) = xrex). (5.1.2)

In particular, T'(2) = 1x (1) = 1 Similarly, repeated application of
the recurrence relation for x = n = a positive integer yields F(1 + n) =
n(in —)(n —2)... 2.1, i.e.

n\ = (1 4-n).

The recurrence relation (5.1.2) is used to extend the definition of
M(K) to negative values of x. For example, the formula

r(x) =

permits (k) to be calculated in the range — < x < 0 in terms of the
known values of I'(1 + x) in the interval 0 < 1+ X< 1 It also shows
that

oK) ~ o when x is small,

because IN'(1 + x) —I(1) = 1as x —0. In the same way, F(x) can be
calculated for negative values of x in the range —N < x < 0 from

(N +x)

T (K) :)K()K+ DO+ 2).. &ZT— iv—1)

iv'= plgsitive' integgr.
(5.1.3)

This implies that |F(x)| is infinite at )= 0, —, —2,... (i.e. "\ = 00
forn = —, —2, —3,...) and that (k) alternates in sign for »x< 0 (see
preceding graph). The integral (5.1.1) converges also when Xis replaced
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by 2 = x+iy, provided x > 0, where it defines I'(*) as a regular function
of r. We shall see below that I'(r) is regular for all complex values of z
except for simple poles at z = 0,-1, —2,..., on the negative real axis.

Example TI(™) = ydr. J0O°t%~le~tdt = JO° dt = 2J0°e_fi dy = yiaT
Example T(]) =1|F(1) =1|0r.
Example (%) =Etii= ,rd>, =, . r

2 (-DH) DD
Example Evaluate JO° x6e X3 dx. Set t = x3, then JO° x6e 1J dx
5Jtl le = 5I ()

Example Sett=t2in (5.1.1), then
0o
r@) =2 2N o x>0 (5.1.4)

Stirling’s formula
MrML+x = thxe~I dt ~ y/2'kxxxe~x, X  +00. (5.1.5)

This asymptotic formula can be derived by noting that for a fixed
and large positive value of x, the function y = Bie“* = has a
large maximum at t —x, as illustrated in the figure for x — 10. The
value of the integral as x —>00 is therefore dominated by contributions
from values of t near t = x.
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Let £ =t —x, then

xInt—t=x1n0k+ £) —(x + £)

xInx+xIn”~l+ 2 —(x + £)

XInx + x < (2.|-I£3 f4_-f...1>
\'x 2x2 3x3 4w4 /

—(x + £), x —0cC

— 00

By making the substitution p = £/n/2x in this integral:

(5.1.6)

This gives Stirling’s formula (5.1.5) when the terms involving x in the
integrand are neglected (as x —> 00) and the remaining integral is
evaluated using the formula f™ el1dft — yfm.

A more accurate approximation, which is useful for calculating n\ =
T( + n) when x = n —a large positive integer, is (see Problems 5A,
Question 18)

n\ ~ \VV2T7Tnne n n> 1

The error is smaller than about 0.1% for n as small as one.
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Example The integral definition of T(z) is extended to all complex z / 0,-1,
—2,..., by means of the formula

1.7
1@ 2i sin Tz d(. G.L.7)
where C is the contour shown in the figure enclosing the positive real axis.

imaginary axis

real axis

When z has a positive real part the integration contour can be collapsed down
onto the real axis, where £ = t (0 < t < o00) on the upper side of the axis and
£ = te2nl (0 < t < 00) on the lower side. Hence, provided z ® 1,2,3,...,

00 JI
eim = f / dt + e2ni /r 2 1le td
_A . t t tdt >
2 sin % /<p& le-~dC g < ezniz _le_

c foo 0 J

0o

J f-'e-* dt = T(2).
0]

When z = n a positive integer the integral around C is zero. But also sin tz

sinn.7r = 0. In this case

" = — i- Cz-le-cd
2i sinttz G _le"cdC 2i(4; sin7tz)z_n \Idz @ e-cd(

INCC-1e-CdC

2ni

0 00

M I \nttn- le~tdt + J(2ni + Int)f" xe Idt

= thn~1e~tdt =r(m), n=12.3,...
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5.2 The Beta Function

The Beta function B(x,y) is defined by

B(x,y) = jtx~\| - ty=ldt, x, y>0 (5.2.1)
=fix- dt
= B(y,x).

By making the change of integration variable t = cos29, we also have

B(x,y) = 2\] c0s2x_ 19 sin2¥'-19 do. (5.2.2)
Also by setting t = r/(l + r) in (5.2.1), we find

x |
B(x,y) = J (1t+ T‘;):er, (5.2.3)

The Beta and Gamma functions are related by

_ Fery)

BOY) = Ly

(5.2.4)

Proof From (5.1.4), FT(OK)I(y) = 4ff£° £2x~1y2y~1e~"2+,2)dEdr]. If we set (£,y) =
r(cos#,sin$) the integral becomes 4/0° r2x+y"~le~12dr f02 cos2x | 0 sin2y~10dd =
2ok + y) f02 cos2x_1 B sin2*-1 8d9 = I'(a; + y)B(X, Y).
Example Show that
T+
ro)rl —x) = —-—-, ® int .
o) ( X) P x @ integer

Suppose first 0 < x < 1. Then (5.2.3) and (5.2.4) (with I'(1) = 1) and Question 10

of Problems 3F, give
tx dt T
! 7+7 sin IX
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The formula is extended to all real x by means of the recurrence relation (1 + x) =

X (x).

. .
Example Evaluate JQ2 tané 9 do.
T T

Jtan"ng:J sin5_10 c o s 9d9
0 0

IR(L N _r(Hr() _ m
2 N '3 2I(8+8)  2sin(])

Problems 5A

Evaluate:

Lor(-i), °(), r(f)/r(]). [ 2Vw |V5F, il

2. JO°x*e~*3dx. [|IF'(1)1

3. S0 tanAxdx- [13]

4, /@ tx~1le~kt dt, a;> 0, Kk > 0. [[(X)]

5 e(xt"et) dt, x > 0. [F(X)]

6- /fo°° dx- [™]

7. 1@ ylxe~xdx. [ ()=

8. /02 cots xdx. ["]

9. fg x(Inx)5 dx. [y]

10. fS cos2"+1 x dx, f02sin2rl+l x dx, n = positive integer.

(@2nH2/ (2n+ D]

H-'fo*° dx>a > P> °- [~cosec?‘]

13. /0°e-3x(l - e_x)5dx. [[(6)I(3)/T(9)
14. /0°x_"e l/x2dx, n> 1 [Tr (ITN)]
15. If n is a positive integer, show that F'(n + |) =

16. Show that M(x)I(—x) =

17. Use the formula T(xX)I(x)/T(2x)

~MA~T(x) Mx+ ).

2f02cos2*-1 x sin2;r_1xdx
21 2x f02sin2x_1 2xdx to derive the Lagrange duplication formula I'(2x)

y/3'

[both equal to
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18. Derive the following extension of Stirling’s formula by retaining all of the terms
involving x in the integrand of (5.1.6)

M1+ x) « V2irxxxe~x ~1 + , X —»+00.

The error in this approximation is less than 0.008% when x > 6 and only about
0.1% whenx = 1.

19. Show that the integral representation (5.1.7) of T(z) satisfies the recurrence
relation F'(1 + z) = zT(2).

20. Show that if n is a positive integer, T(z) has a simple pole at z = — with
residue (—)"/nl!.

Setr = — + £, then using (5.1.7)

e _ (-)"eifr s DA,
D) =T+ = e gy Jx 7T
C
1 1 1 1 + (- 1y d( t | I
2rr|£C/ VO¥l o 2nl nig nig

21. Show that $\z\=i I'(r) cos? dz = 27, where the contour is traversed in the
anticlockwise direction.

22. Show that Njz+n|_i T(z) cosiTzdz = where n is a positive integer, and
the contour is traversed in the anticlockwise direction.

23. Use Stirling’s formula to show that

lim —+ "2+ =1 forfixedz ®0,—,—2,__
n—oo  n\nz

Hence deduce Gauss’ formula

T(2) = i n\z
@) = ImCOZ(Z+l)(Z+2)°I'(Z+n)'

24. Show that

B(x,y)B(x +vy,z) = B(y, z)B(y + z,X)

1
21 ZxB - ,x

B(x,x)

B(x,x)B (x+ \,x+ ™) 2x=h
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25. Verify that the volume of the n-dimensional sphere of unit radius is

m2

re+1

\% dxidx" mmdxn =
Vxfx|H---<1
Set xi = cosipi, X = sin”i cos(/?2, £3 = sin”i sin"2 cosi/?3,...,

xn = sint"i sin/>2 w-sin”*n-i cosy,,,0 <ft < r=1,2,...,n,
and show that

dx\dxi... dxn = sin" ipi sin"-1 <2 mesin ipnd<pid<pz mmd(pn  (see 8§6.7),

and that V = 2" \fsin" g=>\dy\ \fsin"-l @dy? -I-jsintpndipn, etc.

5.3 Legendre Polynomials

The Legendre polynomial of degree n > 0 is defined by the Rodrigues
formula

Pn{x) = 21~ N ~ D% P°(X) =L (53'1)
Thus:

Pioxo= X P2(x) = | %2- i, P3(x) = | XB- ~x,

. 354 152 3
K()K)= -g-z - — X2+ etc.
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Pn(x) is an even or odd function of x according as n is even or odd.
Also, (x2—1)” = (k—)n(x+ 1)" ~ 2n(x —I)nwhen x is close to x = 1,
so that

/1 dn \
(2ng/>|< -I)n)J e -

Pn\(/l)z \ 2nn\dxn V

Similarly, P,,(-1) = (-1)n.

In applications we are usually interested in the behaviour of the
Legendre polynomials within the interval — < x < 1. The equation
Pn(x) = 0 has n real roots, all of which satisfy pg < 1 This is obviously
true for the cases illustrated in the figure. The following argument shows
that it is true also for larger values of n. When p < 1 the function
(2 —I)n has a single maximum or minimum at x = 0, and all of its
derivatives of order up to and including the (n —)st vanish at x —+1.
Therefore, successive derivatives £ (x2 —1)n, 0 < nn < n can only
vanish in X\ < 1, and the nth derivative only in X\ < 1

Legendre’s equation Let y = (& —I)n. Then dy/dx =
2nX(xz2 —1)71-1, and therefore

(>K2—I)~d)r( —2nxy —0.

When this is differentiated n + 1 times we find

dn+2y dn+ly
2X

HTn+2

oe- 1) 21+ 24 3+ eeer ) I = g

Now 1+ 2+ 34------ bn = |n(n + 1), and according to (5.3.1) dny/dxn =
2nn\Pn(x). Thus the polynomial Pn(x) satisfies Legendre’s equation of
order n:

(1- a”m’ xﬁ?+nm+1wn—o (5.32)

Pn{x) is a bounded solution of this equation for finite values of x A sec-
ond independent solution derived by the method of §1.4 is found to be
unbounded at »x= 1.
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By writing Legendre’s equation in the Sturm-Liouville form (1.9.1)

s((2-12™ ) (n+DYp’=0 ~1<x<1'

(where p(x) = 1—x2 vanishes at x = £1), it follows that

an(x)Pm(x)dx =0, ngT.
-1

To deal with the case n = m we first use the Rodrigues formula (5.3.1)
in the more general integral

f{x)Pn(x)dx = f{x)"-{x2- 1)ndx.
J N
-1 -1

Integrating by parts

In—Il MI

fOPNEIdx =, HX)=— - (xe - I)rj ]

o f df dn 1

' J dxy dXi E(Xz 1) ax.

The first term on the right vanishes identically provided f(x) is finite
at x = 1. Repeating this process we find

] H{x)Pn(x)dx = J(x2- )nM(x)dx. (5.3.3)
-1

If f(x) = Pn(x) then

dnf 1 dn .2 ir _ Nom

dxr(x) 2nn! dxmi ~2nn\
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D that

1 I
J{P n(x)32dx
-i

0
@n\ r(x)r(n+1 2
22n(nh2 r(n+|) “ 2n+1

Hence we obtain the orthogonality relation for Legendre poly-
nomials:

JI Pn(x)Pm(x)dx = ’ (5-3.4)

-1 n ®m.

Example Show that x4= ~PO{% + jP2(x) 4+ "P 4(a).
Because x4 is an even function it can depend only on P(), P2, P4. Now the
definition equations

1:ﬂ>,
3 o 1_
2x ~ 2 = P2
35
+1 =p4,

may be regarded as a system of linear equations for 1 = %0, x2, x4. The required
expansion is therefore obtained by solving the equations for x4.

Example Show that P2n(0) = ~2in*)2*,n =0,1,2,-—-
The coefficient of x2n in the expansion of (x2—I1)2" = (1 —r2)2nis ~ Q 2"/,
1 dxn
opP2 = 22n(2n)! dx2' ~ N 2)%=0

1 d2n /(-l)n@n)b2riv  (=)"(2n)!

5.3.5
22n(2n)! dx2n- v M 2 J ~ 22ra(n!)2 ( )
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Example Show that xmPn{x)dx = 0 ifm <n.
Using (5.3.3): O xmPn(x)dx = J'\(x2- I)nE mrxmdx = 0.

Example Show that J'\ xn+2mPn{x)dx = 2'!4 r(n¢w+[|)Im = 0,1,2,....
Using (5.3.3):

(n + 2m)!
2" 1n1(2m)! 0cos2ms d9
0
(n+2m)t / 1\ (n+27)Ir(r +\)
2"n1(2m)! \ ’ 2) 2n(2m)!IF(n + m + |)

Series expansion The orthogonality relation (5.3.4) permits an arbi-
trary function f(x) to be expanded in the form

v AnPn(x), W\ <1,
n=0
(5.3.6)
f f(x)Pn(x)dx
where An n+ f(x)P n(x)dx.
H-PU®)}2 -1

If we set x = cosB, 0 < 9 < T, these formulae become (with f(x)
replaced by an arbitrary function /(d) of d)

"

/Pn(cos 9)Pm(cos9)sin9d9 = ] (n=m), O0(ndm)
2
®
f{0) = "2 Anpn(coss), 0< 9< T, >
71=0
An= \] f (@pn{cos9) sind d9.

0
(5.3.7)
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Application to the axisymmetric Laplace equation When
Laplace’s equation is expressed in terms of spherical polar coordinates
@®.B,(b), as in (2.6.6), a solution p = p(r,9) that does not depend on
the azimuthal angle ¢vis said to be axisymmetric (see the figure accom-
panying (2.6.6)). In this case p is a solution of

A separable solution

p = R(r)0(9)
must satisfy

1£f2d_R
Rdr\/dr

where J1is the separation constant. Hence, R, 0 are determined by

(5.3.9
O0<B<it

On setting x = cos 9 in the second equation, we find

4 +/10=0, —dA<x<L1l

dx
We already know that this has the bounded solution Pn(x) provided
N = n(n + 1) for positive integral n. Furthermore, this is likely to be
a sensible choice for J/1because an arbitrary function defined in X\ < 1
can be expanded as an infinite series of Legendre polynomials. In this
case the first of equations (5.3.9) gives R = Anrn+ Bn/rn+l, so that
the general solution of (5.3.8) may be taken in the form

0<9<m (5.3.10)
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We must take An —0, n > 0 ifthe solution is required to be bounded
as r —>00; for a bounded solution in a region including r = 0 we must
take Bn=0, n > 0.

Example Find the solution of the axisymmetric Laplace equation (5.3.8) in the
region r > a that vanishes as r —00, and satisfies ip= f(9) onr = a
The expansion (5.3.10) —0 as r —>o00 provided An = 0. Then

(D 7

<p(r,6) = ANfrP"(cos6l)’ 0<O0<m
n—0

The boundary condition on r = a yields

0
S "Pn(coaB) =T , 0<pg<T,
n=0

from which the coefficients Bn are determined using the relations (5.3.7):

Bn=an+l fn 17 ~ Jf(9)Pn(cose)sin#<]O
0

Example Find the velocity potential of uniform flow at speed U in the z-direction
past a rigid sphere of radius a whose centre is at the coordinate origin.

The potential satisfies the axisymmetric equation (5.3.8) and V<p —(0,0, U) as
r —00. Because r = rcos# = rPi (cos#) we can put

P = UrP\(cosB) + y: ~ Pn(cosB).
n=0

The normal component of velocity dip/dr = 0 on the surface r = a of the sphere

y (na—llan_ 0) = UPI(cos#), O<#<Tr.

{=0
This shows that all of the Bn = 0 except for B\ = [7a3/2, i.e.

3

H
ip=Urcos6 (I + "3 )e

The generating function for Legendre polynomials The func-
tion ip — 1/r is a solution of Laplace’s equation representing a ‘point
source’ at r = 0 (84.7). When the source is placed at (0,0, h) on the



220 Mathematical Methods for Mechanical Sciences

r-axis, the solution obviously becomes

1 1
r=rcos9

which satisfies the axisymmetric form (5.3.8) of Laplace’s equation.

A

R = (r2-2r/rcos0 + h2)h

X

We can expand tp in ascending or descending powers of r/h depend-
ing on whether r < h or r > h. Let the expansions be written

n

1 \
J ) Vn{cOSe) r <h,

x—/r
1 IYT (h

53.11
yjr2—2rh cos 9 + hz ( )

h \A
- ) Pracos9) h <r,

where symmetry requires the expansion coefficients Pn(cosB) to be the
same in both series. Substitution into equation (5.3.8) shows that each
term in these series must separately satisfy Laplace’s equation. There-
fore, Vn(cos9) = a,,Pn(cos9), where an is a constant.

Now, when 0 = 0 the expansions become

which can only be true if P,,(I) = 1. Thus, because Pn(l) = 1 we must
have an= 1, i.e. Vn(x) = Pn(x).
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By setting t —r/h and p = cos# in the first expansion of (5.3.11),
we see that we have shown that
: @®
- = = = li|< 1. (5.3.12)
\'t +1 n0
The term on the left of this equation is called the generating function
of the Legendre polynomials.

Recurrence relations The following important relations can be
deduced from (5.3.12)

(n+ DPn+tM  ~ (2n + I)/iP,M + nPn-i(n) = 0, (5.3.13)

o P«-M)= (2n+ 1)BJ. (5.3.14)

Proof Take the logarithm of both sides of (5.3.12) and differentiate with respect
to t:

P~t = E(T=o ntn~IPn{p)
t2-2tp + 1 En=otnpn(p)
By cross multiplication, this becomes
[e]e] 0o
tnPn(p) = (t2- 2tp + 1) 2 ntn~1Pn{p).
n=0 i=0

The coefficients of each power of t must be the same on both sides, so that
pPn(p) - Pn-i{p) = (n- DP,,_i(p) - 2pnPri(p) + (n+ NPn+iM ,

which gives (5.3.13).
Next, take the logarithmic derivative with respect to /i of both sides of (5.3.12):

tnP!(u\ _ dPn(p)
Q-2tp+|l £~ 0t"P,M’ \_/_\pg_rg_mP'an)

and proceed as before to obtain
pn{p) - K-M + 2/xp;m - P'n+tM = 0

The relation (5.3.14) is obtained by eliminating Pn(p) between this and the equation
obtained by differentiating (5.3.13) with respect to p.

Example Show that

-D"(2n)!(4n + 3) n [« .
Sgn(aO XI 22"+1ni(n + W pan+l(x), bl < 1
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We use the expansion (5.3.6), where

An = 0 / sgn(x)Pn(x)dx.
-1

This vanishes for even values of n. When n is odd equation (5.3.14) gives:

An = (2n + l)J Pn(x)dx

0

!ﬂ {Pn+i(x) - P, i(x)} dx

= [P,+i(x) - P,_i(x)]Jo = P,,_i(0) - P,+i(0),

because when n il iseven Pn_i(l) = P,+i(l) = 1. The final result is now obtained
by using formula (5.3.5).

Problems 5B

Verify the following results:

1. f* cosOs\nePn(cose)d9 = |,0 accordingasn= 1 nd¢ 1

2. f* cosmBsin 9Pn(cosi)d6 = Ewhen m <n.
(n+27Tr)IT(1+4) _
3. 21(27T)! M (Nn+T1+]) m = 0'1’2'—

4e fAXP II(X)Pn(x)dx = 22T, n=0,1,2,....

G Tl Pn{x)dx _ 2tn - n 10
J-1 4/1-2*t+t2 2n+l> N e

6. fg xP4(x)dx =

7- fg P2,(x)dx =0, n=0,1,2,....
8. x2=iPO(x) i [P 2(x).

9. x3= |Pi(x) + |P 3(x).

10. x4= "Po(x) i fP2(x)i &P4(x).

22" (4nil)(min)!P 2(x)

11 x> @1V
N @2m+ 2n+1)!(m-n)!

n=0
22n+1(4ni 3)(min i D!'P2n+1(x)

12. x2m+l = 2m + Dljr . .
@2mi 2ni 3)I(m —n)!

n=0
(~=1@nj 1)(@2n —2)1P2n(x)

13. .
22n(ni DH!'(n —1)

IXI < 1.
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14, Jt‘lJ Pn{x?;j(x _2n2 = 0, 12’

2n+ 1’

TON(ES)H s (9N ) =0 05(N r<
show that:
15. <(r,0) = | + | ()2 P2(cos0) when </~@a 0) = cos2B.

16. <r,0) = — + |(a ) 2Pr(cos0) when ip(a,9) = cos 20.
17. <31, 0) = 3+ f ()2P2(cos0) + ~ (~)4P4(cos0) when </?(a,0) = cosd 0.
_ - N i N =

18- If b U280 * Onofo (3I0O50Y =Qp 0<QR<3. r<a

and ip(a,0) = (jgi 0 <0< f, <H,>42) = 0, 0 < r < a, show that

4re + 3\ 2n)! /r\2n+i (cosh)
Tver T n+1y 22n+1{n‘(); M 2+l '
d ( 2d<p\ 1 d .90
. 0 0, 0<0<T, > 3,

19 Ifdr\ drg  sino< 50 r-e

and —0as r-700,

2

show that when <23, 0) = | —cos20: # 3? P2{cosQ) /, r > a.

20. If I, (Gr 3 d dip R , o
ar\ sin em\BTBAE) =0 r<
show that when <p{a, 0) = H(0 —0), where 0 < 0 < Tr;
o= "<l-c¢°s0 - ~ [Pn+iCcos©) - P,-i(c°s0)] (~) Pn(cos0) , r >a
=1
N + H _ -

2l K dr v dlr( idoholsi®o— )=0, 0<0<T r<a

show that when p{a, 0) = oH(0 — + (LU(~—0), where a and /3 are constants:

V=\(a+0)+ Q- 0) (") ~i(cos0) + ~(a - (3 P3(cos0) H----

22. Find the solution of Laplace’s equation V2p = 0 inside the unit spherer = 1

when =1 + cos0—3cos? 0 on the surface. ‘= rP\ (cos0) —2r2P2(cos 0)]
23. Show that when < = sin40 on the surface of the unit sphere and V2+ = 0

inside the sphere, then

ip= + —r2 (I —3cos20) + ~r4(3—30cos2 0+ 35cos40), r < L
15 21 35
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5.4 The Error Function erf(x)

This is defined by

erf(k) = —= dt.
() o %[
The principal properties of erf (k) for real values of x are evident from
the figure:

erf(—K) = —erf(x), erf(K) —+1 as x—>*oo0.

X erf(x
0.5 0.5205
1.0 0.8427
15 0.9661
2.0 0.9953

- 2 - 1 0 1 2

The complementary error function is defined by
00

£/m®

Example Show that erf(x) sa 1—e X /yTrx as >x —a00.
By integration by parts:

encOk) = 1—erf(K) = dt.

erf(k) = 1-—f e *dt
Vn3<]
1- n/ (|7| (»_) dt

1- _E'*ZX _jjgze 1dt

2 04]
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The final integral may be neglected as x —+00 because it gives a contribution of
order e~x /3.

Example Show that f erf(x)dx = ¥eT(PK + e X / I/ IF+ constant.

\]erf(x)dx = werfOK) — x-eri(x) dx +C

xevt(x) e dx + C  xerf(x) H—\]n:_e +C.
Example Find the solution u(x,t) of the initial value problem
Qu 1ldu )
, for t >0, —B0 < x< oo, giventhat n = «oH(1 —k|) at t =0,
0x2 K at

where w, = constant.
Using the general solution of §4.10, Example 1:

1 (92yid
uo NI = Ad = (£- x)/2V~t
2y/irKl%J e & VIT } ¢ Pole=E-x) )
] —(1+x)/72y/Kd

~ 2{6efGvid) +» Gv~t)}’ t>0'
Fresnel integrals These are special cases of the error function of com-

plex argument, defined by
2

C(x) = \]cos S(x) = Jsin Njdt.
The reader can verify that C(x), S(x) —»f as x —>+ 00, and that

— erf (X\/LL <d - isw-

C(x),S(x) are odd functions whose behaviors for x > 0 are shown in
the figure.
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Problems 5C
1. Evaluate erfc(O), erfc(—o0). [1, 2]

Verify the following results:

2. f*xe dt = Mnerf(x).

3. [ e-(at2+20t+*dt =\ -onr)/« erfc ,a>0.

noree e~ot_dt y/~ea0 erfc (Vafi), a, /3> 0.

*JO sft-Vfi
/X e \idt = e~x2/x - AT7rerfc(a:).
/0°e_“t t2/4df = Ore°2ZrYo).
/0° e~aterf(f) dt = ie a2/ derfc (f), a > 0.
fQ@erf(t) dt = xerf(x) + (e_x2 —
f* e{erf(t) dt = exerf(x) —e* {erf (x — + erf (M)} .
10. /0°cost2dt = JN sint2dt = |
. 110° cos(x2 + y2) dxdj/ = 0.

]Z,DJ_SIF()Q+)® =re

13. /-sine-“2t2rft= ferf(").

© © N O ¢

14. Show that the solution u(x, f) of the initial value problem

where uo = constant, can be expressed in the form
t>0.
15. Using the solution of Problem 14, show that for a fixed value of x >t > 0,

u(x, t) attains its maximum value at t = £x/[k In (fiif) J*Takingi = 1, Kk = 1,
sketch the graph of u(x, i) as a function of t for x = 0 and x = 8.
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MATRIX ALGEBRA AND LINEAR
EQUATIONS

6.1 Definitions

A matrix A of order m xn is arectangular array of elements ar] arranged
in m rows and n columns

fan a2 (Lin N
A - m (@ ~2n
ang e (Lmn J

We also use the notation A = [a*]. Two matrices A and B = \b"] are
equal only if they have the same order and corresponding elements are
equal: =hij,l<r<T101<j <n.

A matrix x of order 1x n is called a row vector: x = (ag, X2,..., xn).

(XA
X2
A matrix X of order m x 1is called a column vector: x =

\ /m)

A square matrix of order n has n rows and n columns. The elements
an, a2, e+ ann are called the diagonal elements of a square matrix.

227
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The matrix is symmetric when = a3r; it is skew-symmetric when
cij = —aji (in which case the diagonal elements an = o022 = eee =
ttnn = 0).

The transpose A1l of the m x n matrix A is obtained by inter-
changing the rows and columns of A, i.e. AT is the matrix of order
n x m defined by

[ajj], where a

A symmetric square matrix satisfies A 1= A.
A symmetric matrix whose non-diagonal elements are all zero is
called a diagonal matrix. A particular case is the unit matrix

/l 0O o\
0 1 e 0
Ve 0 eee V

where Sij is the Kronecker delta (equal to 1 when i —j and zero when
i ®j) introduced in §2.8.

6.2 Algebra of Matrices

Scalar multiplication J1A = N[a\] = [Aay], where Ais a real or
complex number.

Matrix addition (defined only for matrices of the same order)
A+ B = [ap] T \bij] N T hij].
Matrix multiplication AB is defined only when the
number of columns of A —number of rows of B,

i.e. if A is of order m x qthen B must be of order g x n, where m and
n can be arbitrary. Then the product matrix C = AB has order m xn
and

AB = C = [cy], where
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The element ¢*- is equal to the scalar product of the zth row vector
of A and the yth column vector of B. In general AB ¢ BA; matrix
multiplication is not commutative.

The multiplication rule is derived from the concept of a matrix as an operator.
For example, the linear simultaneous equations

Xx+y+z=5 1
2X —y + 7 —1, are equivalent to
3x +y—5z = 13,

We also write

AX = b, where A =

The algebra of real and complex numbers satisfies the postulates:

1 Commutative law of addition at+b=Db+a

2. Associative law of addition (@+b+c=a+ (b+c
3. Commutative law of multiplication ab = ba

4. Associative law of multiplication (ab)c —a{bc)

5. Distributive law of multiplication (a+ b)c=ac+ bc

6. Nonfactorability of zero ab —O0 implies a = 0, or

b=0, ora—b=0.
All of these laws except 3 and 6 are satisfied in matrix algebra.

Example Verify that AB = 0 but BA ~ 0 when

1 1 !/ 3 4 2\ ( 21 21 21
A= 5 2 8 = -2 -1 BA = A9 -9 -9
\5 5 5/ \-1 -3 _qy Vv-12 -12 -12

Thus we have to distinguish between AB and BA. In AB, B is said
to be premultiplied by A; in BA. B is said to be postmultiplied by A.
For an m x n matrix A

A= 1A = Al,

where the unit matrix has order m x m in the first product, and order
nxnin the second.
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Transpose of a product

(AB)T= " (aifefg)T=" ajkbki = =bTaT
Problems 6A
3 -2 -1
-1 -1

2 0 5\ 2
-1 45= 4 -16
3 1 2/ \9 3

6.3 Linear Equations
The system of m linear, inhomogeneous equations in the n unknowns xn:
CLuXi + Qiz2r2 + '

21«h + «2272 +
“2Le (6.3.1)

amlch + «marz + o

) the matrix equation

<au «12 «1n (XM\ (w
«21 «22 «2n %2 2 (6.3.2)

y «m?2 \%n) \hmJ
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which in turn can be expressed in the shortened form
Ax = b, (6.3.3)

where A is the m x n matrix [ar3}, X is the n x 1 column vector of
unknowns on the left of (6.3.2) and b is the prescribed m x 1 column
vector on the right-hand side. When b = 0 the equations (6.3.1) form
a homogenous system.

The possibility of solving equations (6.3.1) for x is a well-defined
problem only if the equations are consistent, i.e. are not in some way
self-contradictory. When m = n there are n equations in n unknowns
and it appears that there is just enough information to determine x.
If the number of equations is less than n (m < n) it is obvious that
the equations cannot supply enough information to give a unique solu-
tion, and the system is said to be underdetermined. If, however, m >n
the system is apparently overdetermined, and there is a strong likeli-
hood that the additional equations will make the system incompatible.
We shall see, however, that the question of the system being over or
underdetermined is distinct from the question of the compatibility of
the equations. If the equations are incompatible no solution will exist,
but one or many solutions are possible for m * n provided the system
is compatible.

In simple cases the question of compatibility can be resolved directly
by application of a procedure known as Gauss elimination-.

Example 1 Solve the equations:

X\ + 272 4+ 3%3 + 3x4 = 1

2Xi + 5x2 + HOx3 + 7x4 = 4

2Xi + 5x2 + 9x3 + 5x4 =1

Xi+22+ 33+4d=2
Start by eliminating Xi from all equations except the first. Thus, subtract the first
equation from the fourth, twice the first equation from the third, and twice the first
equation from the second:

Xi+2X +3x3+3X4= 1

X2+ 4X3 + X4 = 2
Xo+ 3x3- Xa=-1
Xa — 1

Next use the second of these equations to eliminate X2 from the third and the
fourth equation. Because X2 has already disappeared from the fourth equation, we
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merely need to subtract the second equation from the third. If we then multiply the
resulting third equation by - 1 we obtain:

X\ + 2X2 + 3x3 + 3x4 = 1
Xo + 43 + X4 = 2 (6.3.4)

X3+ 2Xa =3

Xa = 1.

The system of equations is now said to be in row echelon form, and xi, xr, x3, X4
are easily found by working backwards from the last equation, a procedure known
as back substitution. From the last equation X{ — 1; substitute this into the third
equation, to get X3 = | ; these values for X4 , X3 are next substituted into the second
equation, and so on. In this way we find the unique solution

Xi=1 X=-3 X3=1 X=1

Example 2 Solve the equations

X+ 2+ I3+3H=1
2Xi + 5x2 + FOx3 + 7x4 = 4 /g 3 55
2Xi + 5x2 + 9x3 + Sx4 =1
Xi +2x2+ 3x3+ 3x4=1.

This system differs from that in Example 1in that the coefficient of X4 in the fourth
equation has been changed from 4 to 3. This makes the left-hand side of the fourth
equation identical to the left-hand side of the first. When the system is reduced to
row echelon form (by the same operations used in Example 1) we find

Xi+2X + 3X3 + 3X4=1
X+ 4x3 + x4 =2
X3+ 2x4 =3

0= 1.

The logical contradiction contained in the last of these equations reveals that there
is no solution to the original system of equations.

Example 3 Solve the equations

X\ + 2X2 + 3X3 + 3X4 = 1
2Xi + 5x2 + Ox3 + 7x4 = 4
Xi+52+ 3+ 6x4=1
Xi+2X + 3x3+ 3X4=1

(6.3.6)

In this case the first and last equations are identical. At the outset we could dis-
card the last equation as being redundant. We should then have three equations in
four unknowns, i.e. an underdetermined system. However, in general it will not be
obvious that two or more equations in a system are equivalent, so we shall there-
fore proceed as before by retaining the fourth equation. The row echelon form then
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becomes
Xi + 2x2+ 3x3 + 3Xa =11
XR+43+ X4=21

Q)

Xi =12 —11:1, X2=-10 + 7xd4, X3 = 3—2*4,where X4 is arbitrary.

(6.3.7)

By back substitution we find

This is the general solution of the system of underdetermined equations.

Note Ifthe fourth ofequations (6.3.6) had been discarded at the outset the Gauss
elimination procedure would have been applied to a system of three equations in
four unknowns. We should then have arrived at (6.3.7) but without the last equation
0- 0

The augmented matrix The row operations applied to the simul-
taneous equations in Examples 1 to 3 to reduce the equations to row
echelon form are equivalent to applying the same operations to the
matrix of the array of coefficients of X\ —X4 and to the coefficients
bi —&4 on the right-hand sides, i.e. in the general case, to

Nalx  q @n (v N
@ "z @n and b2
V'ml @2 @umj \bmj

The procedure can therefore be formalized by applying these row
operations to the so-called augmented matrix

Aol M2 tin  h\
Az & & an b2

«m2 ° Om b

Thus, in Example 1

/1 2 3 31\
,_ 2 510 74
2 5 951"
L 2 3 42/
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Successive row operations reduce this as follows:

no2 3 3 A n 233
14 1 2 01412
o 1 3 -1 -1 00123
w o o 1 1) v 001 v

The final matrix is equivalent to equations (6.3.4), and the solution is now obtained,
as in Example 1, by back substitution.

Linear dependence and independence The vectors cl5c2,..., cm
are linearly dependent if there exist scalar constants ag, «2, ¢ee, otm not
all equal to zero such that

QCi + 22+ eee + amcm —AO0. (6.3.8)

When this is satisfied only for ag = Q2= e<em = am = 0, the vectors
Ci,c2,..., cmare said to be linearly independent.

Let ci be the vector formed by the ith row of the matrix of coefficients
(6.3.2) of the system of equations (6.3.1). In Example 2 the matrix A
for equations (6.3.5) is

/12 3 3\
3 5 10 7
A -

3 59 5
yl 2 3 3

The rows are obviously linearly dependent, because the final row is
identical to the first. The row echelon form of A is

2 3 3\
0 14 1
0 0 12

vo 0 0 0/

Now the linear dependence or independence of the rows cannot be
altered by adding multiples of one row to another. This means the
rows of A are linearly dependent if at least one row of the row echelon
form contains nothing but zeros. When the rows containing nothing
but zero are ignored, the remaining rows are linearly independent.
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The rank of a matrix is the number of linearly independent rows. In
the above example A is of rank 3.
Consider now the final forms of A and A in Examples 1to 3 above:

(r 2 3 3\ (r 2 3 3 I\
014 1 A 014 12
Example 1: A - 00 1 2 A= 00 1 2 3
00 V 1° 0 0 1 V

rank A = 4, rank A =4

Xi =1 =-3 =1 xs=1

(1 2 3 3\ (1 2 3 3 i\
. 014 1 A_ 014 1 2
Example 2: A= 00 1 2 ° A= 00 1 2 3
0 0 v 1° 0 0O V

rank A = 3, rank A =4

No solution.

/1 2 3 3) /1 2 3 3 1\
0141 A 014 12
Example 3: A= oo 12 A= 00 1 2 3
0o WV 000

rank A = 3, rank A =3

X\ = 12— 11X4, 22= —10+ 7x4, xs — 3 —2x4, where »d4 is arbitrary.

These results can be formalised into the Fundamental theorem.

Fundamental theorem The m x n linear system of equations

has a solution if and only if rank A = rank A. When a solution exists,
all solutions can be expressed in terms of n —71 arbitrary parameters,
where 17 = rank A.
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Problems 6B

Solve by Gauss elimination:

Xi - Xt X3=-4 (-A 1
1 x\ +sx2+2x3= 12 * —
2xi +3x2+ X3 = o | Q/J
X\ o+ X2 + X3 - 3
B — IR+ XB+24=1 0
4xi — 17x2+ 8x3 —hxd4 = 1 1
5223+ X=1 wW
4xi + 3x2+ 2x3 — X = 4 / 1. xan
2 5xi + 4x2 + 3x3 — x4 = 4 2+ 3X4
X - ) i .
Cxi —Ix2 — X3+ Ixd - —3 _g gy 7= 3% - arbitrary
IIxi + 6x2+ 4x3+ X = 11 \V/ Y
X+ 20—33+ X =0 /-

4, 3Xj — X2+ 5x3 —Xa =0 X= i ! , IXx = arbitrary

XN+ X +X4=0 1
V 0)

) X3
SRR S Y
( 2+ 1=\
x= S -J-cll 12 =2, N, /x= arbitrary
Xo
6.
X3
\X j
no solution: rank A = 2, rank A = 3
(1 I\
2 3 (-1
7 3 2 = 1 X:&/ M,7r =2
1 { \ X2j 9 L -V J
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- 2 N /*p Mo\
8 2 i 1 1 X2 4
' 1 2 -1 -2 X3 5
vi 0 1 o wxa |y
( L-A"
2 + A+ .
X = JIr =2, Am =arbitrary
A i)
| 4
/3 -2 0\ Ixn (N 10\
0 2 2 1 X2 5 -1
I -2 -3 -2 X3 -1 T
Vo I 2 17 \xj \ ej -35/
{XNn /°\
2 3 4\ x2 0
10.
837 x3 0
\X4) w
| A+ 2N
x = _2A_3£ TZ—2, Ay = arbitrary
V Y

6.4 Further Discussion of Compatibility
A systematic method for determining the compatibility of the m x n
system of equations

AX = b, (6.4.1)

is obtained by considering the solution y of the homogeneous adjoint
equation

where AT is the transpose of A.
In equation (6.4.2) y is an m x 1 column vector. Its transpose y T is
a 1 x m row vector, which therefore satisfies
yTA = 0.

Suppose there are u distinct non-trivial solutions of this equation.
Because the right-hand side vanishes the solution will have the general
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form

YT = *er,
=1
where the coefficients A are arbitrary constants, and the e* are constant,
linearly independent row vectors. It follows from this that rank A =
m —v, because e*A = 0 for 1 < i < p, i.e. there are precisely u
linear relations between the rows of A. Thus, we can conclude that
the augmented matrix also has rank m —u, thereby making equations
(6.4.1) compatible, if it is also true that

erebh=0 1<i<w. (6.4.3)

This is the required compatibility condition.

In words: the equations Ax = b form a compatible system pro-
vided every solution of the homogeneous adjoint equation ATy = 0 is
orthogonal to b.

In the case where n —0, rank A = rank A and the system of equa-
tions (6.4.1) always has n solutions.

Example Let A be the matrix of Problems 6B, Question 6. Then

/1 3 Ui + 3y2 + 2y3 =0/
3 -2 ! 3rfi - 2y2 + 23 =10 |

AT 7,5,-11).
2 -5 -1 22i -522- 2a3=0 | ( )
\5 4 5 52/1 + 4y2 + 5y3=0J

Then ei-b = (7,5, —11) «(10, —5,5) = —10 ¢ 0, so that the equations of Question
6 are incompatible.

Example Let A be the matrix of Problems 6 B, Question 7. Then

n 23 1 3\ . fol + 2y2+ 3y3 + y4+ 3y5=10
\1 3 2 -1 5/ ' \yi + by2 + 2y3- yA+ byb=0"

These equations have v = 3 independent solutions

ei (-5,1,1,0,0), e2=(-5,2,0,1,0), e3=(1,-2,0,0,1).

AT

Hence
ei b = (-5,1,1,0,0) w0, -1,1,2, -2) =0
em = (-5,2,0,1,0)m0,-1,1,2, -2) =0
eJeb= (1,-2,0,0,1)m0,-1,1,2,-2)=0
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which confirms that the equations of Question 7 are compatible. Further, because
rank A = 5—v = 2, there is a single and unique solution.

Example Let A be the matrix of Problems 6B, Question 9. Then

13 0 Loy 3/l + 23 =0
-7 -2 —2jli + 222. 23+ 2a= 0
0 2 -3 2 272 - 3rk+ 2/4=0
v-i 1 -2 211 + 22- 223+ 24= 0.

These equations are linearly independent and have only the trivial solution y = O.
Hence the equations of Question 9 are compatible and possess a single and unique
solution.

Problems 6C
1. Use the method of this section to verify that the following system of equations
is compatible:
X\ + 3x2 — 2xs3 = n
2xi - 5x2 + 7x3 =-11 _ ei = (1,5,11,0)
—Xi + 2x2 - 3x3= 4 \Y *e2=(9,1,0,-11)_
Xi +2x2 — x3= 8§

2. Show that the following equations are incompatible:

Xi+ X+ Xz3=1 _ . _
IXi + 2x2 + 2Xx3 = 38 [v=1 ei=(21)]

3. Show that the following equations are incompatible:
XN—22- 3x3+4=1
4xi — x2 - 5x3 + 6x4d =2 \y—1, ei=(2,—1,1)]
2xi + 3x2 + X3 —2x4 = 2

4. Show that the following equations are incompatible:
Xi + x2+ 3X3=6

i - x2+ x3=2 [Jil=l, ei=(-3,-2,1)]
5Xi + X2 + Mx3 =5

6.5 Determinants

Simple second- and third-order determinants have been used with-
out formal definition in previous chapters. We now consider their
generalisations to higher orders.
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A determinant is a scalar defined for a square array (or matrix) of
numbers A = [@], 1< i,j < n. For n = 2 we know that

OU. «12
det A = — _ -
M «11«22 —«12<21:
For a 3 x 3 array
an 0]2 «13
det A= 021 o022 «23
«31 032 <IB

— «n «22033 — Oua23032 + 012023031 — 012021033

+ 013021032 — 013022031~ (6.5.1)

Here, the determinant may be regarded as a notation for the sum of all
the signed products of triplets of the form a\i«g« 3t where the suffixes
I,J, K are a permutation of 1,2,3. The meaning of ‘signed’ product is
as follows: the natural order 1,2,3 for i,j, K is taken to be positive;
the signs of all other products is positive or negative according as the
number of interchanges of i, j, K required to return to the natural order
is respectively even or odd. Thus, «130203l requires one interchange
of 3 and 1, so the sign of this term is negative; «13(221082 requires two
interchanges, so the sign is positive, etc. Note also that the same result is
obtained when the sum is regarded as consisting of the signed products
of the form au«j4c3- Therefore

det A —det AT,

The definition (6.5.1) can also be written

«11 «12 «13
det A = «21 «22 «23

«31 «32 «33

3
«22 «23 «21 Q3 «21 «22 .. .
—«ll —012 + «13 / ].OI]A-I],
«32 «33 «31 033 «31 «32
2=1



Matrix Algebra and Linear Equations 241

where A™- is called the cofactor of a”, which is equal to (—1)1+ times
the 2x2 determinant formed from A by deleting the first row and jth
column. This is just a special case of the more general formula

Qil «12 ol3 3 3
A21 022 023 = Y “taijAij = & taijAij, (6.5.2)
«31 032 033 3=1 i=1

where the cofactor A™ is (—)I+) times the determinant formed by
deleting row i and column j from det A. The two cases are respectively
said to give the expansion of det A by the ith row and by the jth
column.

All of these results can be extended to the general n xn determinant

Oil o012 Oln
021 022 02n .

— vy - diciiQd23eee ont/ y " Azaaiap2
Onl 042 onn

(6.5.3)

where the summations are over the n\ possible permutations of the n
subscripts a, /3,...,v of the integers 1,2, ,n, and the £ sign is taken
according as an even or odd number of interchanges of a,@,...,v IS
required to restore them to the natural order 1,2,... ,n.

Similarly, we have the expansion of det A by rows or by columns,
given by

Oil  0I2 An
n

021 022 "Ly tanal = 2 (6.5.4)
3=1 i=1

Onl  On2 &N

where the cofactor A” of ay is (—)I+ times the determinant formed
by deleting row i and column j from A.
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Properties of determinants The following general conclusions can
be drawn from these definitions:

1 detA =detAl

2. When two rows or columns are interchanged, the absolute value of
det A is unchanged but the sign is changed.

3. det A = 0 when two rows or columns are the same.

4. If every element of a given row (or column) is multiplied by the same
factor, the value of det A is multiplied by that factor.

5. det A is unchanged when a multiple of one row (or column) is added
to another row (or column).

6. det AB = det A «det B.

Problems 6D

Evaluate the determinants
1 1 1
1. 10 12 16 [-4]

14 17 2!
1215 18
2. 11 14 17 Pl
10 13 16
b+c o b
3. c a+c a [4a6c]
b a
! ! !
4. tana; tany tanz where x +y+z=n. []

sinla sinly sin2”
5. If no two of a, b, ¢ are equal and
1 be+ax a2
I ca+bx b2 -0, showthat x=a+b+c.
' ab+cx

6.6 Inverse of a Square Matrix

The effect of Gauss elimination (86.3) on the mxn matrix of coefficients
A of the system of m equations in n unknowns X\, Xz, s xn

AX = b.
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is to reduce A to row echelon form B, say. The matrix B has the
properties:

1 The first JT rows are non-zero and all remaining rows (if any) are
zero, where 1Z = rank A.

2. The first non-zero element in the ith row (1 < i < J1) is unity and
occurs in column g, where ¢\ < < mm< cU-

Example Verify that the following matrix is in row echelon form

/1 12 3 45 6 7\
0 01 9 75 0 2
0 00 1 3§ 9 1.
0 00 0 001 5

\0O 00 0O 00 O 0/

The rank 1Z= 4and c\ = 1,cr = 3,c3 = 4,a = 7.

A square matrix A of order nxn whose rank J1 = n is said to be non-
singular. The main diagonal of its row echelon form consists entirely of
ones, and all elements below the main diagonal are zero (ie.q =r,1<
I < n). A is reduced to row echelon form by a finite sequence of row
operations. Once this is done, however, it is obvious that the application
of a further sequence of row operations will eventually reduce it to the

n xn unit matrix I.

Each of these row operations can be represented by an elementary
matrix E. say. It is convenient to consider three basic row operations
(which are not, however, independent) represented by the following
elementary matrices:

/1 OO-‘ (1 Oa---O\ ,010--.0\
0. 0.., o 1 o oo O 1 00 oo

00...0., 0, ~0, 00, .. 0
00..v 00 -1 1200

Premultiplication of A by the first of these matrices causes the second
row of A to be multiplied by a; the second elementary matrix adds a
multiple a of the third row to the first row of A; and the third causes
the first and second rows of A to be interchanged.
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Now let the sequence ELZE2, ..., Er of elementary matrices reduce
A to the unit matrix I, i.e.

EreeeE2EJA = I

This means that A-1 = Eree*EZ2Ei is the inverse of A, i.e. A-1A = 1.
Also,
A=Al=A(A_1A) = (AA_ DA
AA 1=A"1A = 1.
Construction of A-1 The practical determination of A-1 can be
accomplished by first noting that
Eree«E2EJA = Er... E2E|IA = (Eree<E2Ejl)A,
A-1=Er---E2E.
Thus A-1 can be constructed in a step-by-step manner by applying

the elementary row operations to the unit matrix I at the same time
as they are applied to A.

T 2 N
Example Find A-l when A= (2 3 4
k3 4 6y

The solution is set out starting with the two arrays for A and | and applying
identical row operations to each:

A =

Row 2 —2x Row 1 | 0 Ejl

Row3 3xRow 1l (0 -1 -2 EZXEil



Matrix Algebra and Linear Equations 245

Row 3 —2 x Row 2: = E3xEZXA4

n 2 1 09
Row 2 + 2x Row 3: -1 .0l i %/ = B4AEEZEI1
VW 0p V-
.I-I 2 8 .I-I 0 0\
—IxRow 22 .O ; O o 8 -~ —FESFE4AEFXFEI
\0 o 2 1,
A 2
Row 1 —3xRow 3 (0 1 O — EGES5E4E3E2E1I
W01
/1 00
Row 1—2xRow2 |0 1 O = E7E(;E3E4E3E2E11
\0 0 1 = A"l
Problems 6E
Evaluate A-1 for
7 13 19>
1. A= A'l=f13 24 35
19 35 52;
3 /1 2
2. A= | ?\ A 1= -1 3
2 12 5/ I VO -2
/3 2 0 /] 1 -2 —4\"
0 2 2 _ 0 0 -1
3 A I -2 -3 A-1= -1 3 6
\b 1 2 1/ 2 -6 - 10/.

4. Show that elementary column operations on a matrix A can be performed by
postmultiplication by an elementary matrix E.

5. Prove that det (EA) = det E «det A and det (AE) = det A mdet E.

6. Deduce the formula det (AB) = det A «det B from questions 4 and 5.
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Column rank Elementary m x m matrices can be applied to an
arbitrary matrix A of order mxnto reduce it to row echelon form.
The number of zero rows in the row echelon representation is called the
nullity of A. Because row operations do not affect the rank TZ of A
we know that

rank A = m —nullity.

The maximum number of linearly independent columns of A is called
the column rank. It is easy to verify that the column rank of a row
echelon matrix is the same as its row rank TZ But, it can also be
verified that elementary row operations do not affect the column rank
of a matrix. Hence, for any matrix A

Column rank of A = Row rank of A.

6.7 Cramer’s Rule

A formal representation of the solution of n linearly independent equa-
tions in n unknowns

/Gl 02 e On /agq\ JUI

82 a2 e a2 @ e Ax=b (671

yonl «®2 “** tnd \xnj  \bnJ

is obtained by premultiplying both sides of the equation by A * to
obtain

x = A-1b.

For large systems of equations the use of this formula is frequently
impracticable compared, say, to the direct computation of x by Gauss
elimination. However, the method is in principle sufficiently simple and
of sufficiently wide application to warrant detailed discussion.

According to equation (6.5.4) the determinant of the coefficients [ai3\
of A can be expanded ‘by columns’ in the form

1

det A = A2 akiAki,
k=1
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where Aki is the cofactor of akil which is equal to (—)*+c times the
determinant formed by deleting row k and column i from A.
Now

akiAlg =0 whenrzj,
because it represents a determinant in which columns r and j are iden-
tical. Hence

(An A Al
1 Ar M2 - A
A-l 1[4 1T _ ' 6.7.2
A ~detA det A ( )
A n -AmJ

and the solution of (6.7.1) becomes

1 n
i - <i<
Xi det A ) 1<i<n
The sum on the right of this equation is just the determinant [* say,
obtained when the zth column of A is replaced by b. This observation

gives Cramer’s rule for solving (6.7.1)

X = 0=detA, 1<i<n. (6.7.3)

Cramer’s formula for the solution of a linear system of equations is
useful in practice only for n < 4. It is evident that difficulties will arise
when A is singular, i.e. when [ = det A = 0. Then the n linear equa-
tions are not linearly independent, and A-1 does not exist. On the other
hand Cramer’s formula shows that the solution of a system of homo-
geneous equations (for which b = 0) is x = 0 unless [, = det A = 0.
Non-zero solutions exist only when [, = Q.

Problems 6F

Use Cramer’s rule to solve:
X\ + X2+ x3 — 5

1L 2®i- *2 + ®= 7 |[x=(4,1,0;Ai=88,02=22.03=0,0=27
3Xi +X2 —bx3 = 13
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4Xi —3x2 + 2x3 =

2. 6xi + 2x2 —3x3 — 33  [x= (|,3, 4]
xR —XR3==3

3. Show that the three straight lines

a\x +biy + ci = 0, ai  bi ci
a2X+ Y+ @= 0> intersect provided a2 & a =0
asa; + b3y + ¢3 =0 a3 B G

4. Show that the three equations

—JIx+ y+ 2z —0O!
X + Xy + 3z —0 > are consistent when A= 3.
x+3y +Xz—0J

-A
1 0 when A= 3
1

w > —
> w ™

Change of variable in multiple integrals The evaluation of a
multiple integral of the form

\] f(Xi, ar2, «*m zn)dah dar2 eeed xn,

is often simplified by means of a judicious transformation in the inte-
gration variables, from Xi (r = 1,2,..., n) to £i(x\, x2,..., xn).

When n — 3 it is usual to proceed as follows. Let a, b, ¢, be unit
vectors at x respectively in the directions of increasing £6£2,£3- These
vectors are not necessarily mutually perpendicular, but form the three
edges (of unit length) through x of a parallelopiped, whose volume is
just equal to a *bxc (82.1). The volume dV of an elementary parallelop-
iped with edges ads\, bds2,cds3, respectively of lengths dsi, ds2,ds3, is
therefore given by

dV —a *b x c dsi ds2ds3.
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But xi = £i(6,6,6), so that

adsi =

hds2 =

a3 =

Hence,

where

is the Jacobian of x\,x2,x3 with respect to 6,6 ,6 -

dxi, dx2. p4x3

+ — 96
56 ' Zer 56
<gd_+_gx2.+ 5x3 96
o6 sek T <o
5xi 5x2. 5x3

“ K )96-
ne 569F 56 <)
dxi dx2 5x3
56 56 56
dv dxi dx2
56 56 56
dxx ©5x2 5x3
56 56 56
dx2dx3
<Y(xi, &2 1 3)
5(6,6,6)d
dx\ 5x2 5x3
56 56 56

d(x1,x2,x3) <O 5x2 5x3
5(6,6,6) 56 56 56

chx 5x2 5x3
56 56 56

3
96 96 96-

249

We have implicitly assumed that the unit vectors a, b, ¢ form a skew
but right-handed system, so that a *b x ¢ > 0. In general this will not
be true, and the formula for the change of variable when 96,96,96
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are regarded as positive is more properly written
f(xi,x2,x3)dxi dx2dx3

d(xi,x2,x3)
9(6,6,6)

Geometrical arguments are not easily used to extend this formula
to higher dimensions {n > 3). A formal analytical procedure based on
Cramer’s rule will now be outlined for n = 3. We proceed in a step-by-
step manner, first eliminating the integration variable X\ in favour of
6, then x2 in favour of 6, etc.

Consider first the small changes d6 in 6 (r = 1,2, 3) produced by a
small increase dxi in x\ when x2,x 3 are held fixed. These changes can
be calculated from the simultaneous equations

F{XI,X2,X3) #i#2#3 (6.7.4)

9xi#_+ dxi dxi# oo
| =
96 96 96 ">
dx2# ) d)/(\ZA 6 9x2# 0
i + + 3 =
96 Y5 96
dx3# 1+ d/>\<3d/\2 N 9a'3/\6 0
9 96" <" 86 °
Solving for ¢?6 by Cramer’s rule (6.7.3)
dxi dx3
Qil
dxi dx3 d(x2,x3)
db 0& H
dx\ dx2 AX3 N d(xi,X2,X3) dxi
o~ Oil ol o(ii,i2,i3)
dx\ dxi Ox3
dii  di2  Oii

dx\ dxi Ox3
dis dis Qi3

If we regard this equation as defining a change in variable from aq
to 6 then

f{xi, x2,x3)dxi dx2dx3

d(xi,x2,x3) / d(x2,x3)

f(x1,x2,x3
X233 906,6,6) 7 9(6.,6)

d"3.
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Next consider the changes produced when x2 increases by dx2 with
£l and x3 held constant. Then

+erns =de
<& = dX2,
A o
(39 L 93T - &

and therefore
f(x 1 z2,x3)dx1<H2d"3

a(kb M2,a;3) /pa*
0(£i»6>6)/ <

Finally, the change d£3 produced by the variation (IL.c3with 6, £2held
constant, is just

I’r{xi,xz,x?s d5d&dxs.

_dx3
3 ox3p&

f(xi,x2,x3)dxi dx2dx3

f(xr,x2x3)t 1 d" d&dt3

as before.
In general, therefore, we arrive at the transformation formula for

7Tdimensional integrals
f(x1,x2,..., xn)dxidx2...

aPk! K2, ... ,xn)

f(xi,x2, mmxn) . d(,id& mmmgifn.
d(£i,
(6.7.5)
Example
d(xj) = a(xr,x2, 5(6) = 5(6 ,£2,--.,61)
5(6) — 5(6 ,£2,. «+,£«) * a{w) ~ d(r]",ri2,...,vn)
show that
d{xj) _ d(xj) 5(6) . d(xi,x2, mm xn)  d{xx,x2, mmx,) 56 ,6  mm6»)
dini)  5(6) d(rji)* b6' 5(771,12,...,rin) 56,6, 5(771,772,..., ?h)

(6.7.6)
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This is true because

d(xj) _ det dxt: ~ det dxi dgk  _ det dxi det

d(vi) [toll\ [ h dr drb\ =M\

Problems 6G

Evaluate the Jacobians of the following transformations:

X
1. Polar coordinates x = rcos0,y = rsin#. AX)Y) =r
[d(r,6)
Xy,

2. Cylindrical polar coordinates X —rcosB,y =rsinB, z = z. D)y Z)-

_d{r,6,2)

3. Spherical polar coordinates x = rsinBcosd,y = rsin9sind¢,r = r cos9.
~d(x,y,2) 2 .
a v =r sinB
[a(r.B,0) J

4. Use the substitution £ = x +y,y = y/x to show that

I =Jdy J (I + e’X ~y M Xdx = e4 —5.
0 y

The region of integration is the shaded area of the figure.

In the (£, 7)-plane the limits of integration are 0 <£<4,0 <77< 1, and
9 4 1 4
X,
(x,y) d‘t:f

HET) il V)2 1%

5. By making the change of variable £ = xy, rj = y —x show that

- 1)dE=el- 5
v

Jj x2y2(y2- x2)dxdy = 84,

D
where D is the region in x > 0,y > 0 between the hyperbolae xy = 1and xy
and the straight linesy = x + I,y = x + 3.
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6. Use the transformation £ = x/a,r\ —y/bX = z/c to show that the volume of

the ellipsoid
X z2
—2F+ + 2<1

is ~irabc.

6.8 Eigenvalue Problems

Set b = X' in the n x n matrix equation (6.7.1) and write the equation
in the reversed order:

X' = AX. (6.8.1

The matrix operator A in this equation can be regarded as effect-
ing a linear transformation of the n-dimensional vector x to a new
n-dimensional vector x'. This is a familiar procedure in two- and three-
dimensional coordinate geometry. Thus, the transformation defined by

| cos9 —sin9 X"= xc0os9—ysin9

. , . (6.8.2)
I sin9 COSB y' =xsin9 +ycos9.

rotates the point x = (z,y) about the origin through an angle 9 onto
the image point x' = (x1Yy"). It can also be regarded as defining the new
coordinates of x when the coordinate axes are rotated through angle 9
in the negative direction; both cases are illustrated in the figure.

Similarly, in three dimensions, let the coordinate axes be rotated
about the origin such that the new coordinate unit vectors i'.j'jk" are
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given in terms of the original coordinate unit vectors i,j, K by

i'—Ni + mj + njk (h  mi nJi
j'=/2i+ m3 +nk > then A= pH m2 n2
k' =13i + + n3k* V3 m3 n3

and x' = Ax defines the coordinates in the new reference frame in
terms of the original coordinates X.

The rotational transformations (6.8.2) and (6.8.3) are very special.
A general matrix transformation (6.8.1) does not normally exhibit such
a simple geometrical interpretation. It often happens that there exist
one or more vectors x that are parallel to their respective image vectors
X'. Then X7is proportional to X, and therefore

AX = AX, (6.8.4)

anxx + aix2 + eee + a\nxn = Ay
a2lod T A2X2 '"T ' + a2wxn ~ AXR

QniTI T ®22 T *** T annxn — Xxn,

where the magnification factor Ais called the eigenvalue for the vector
X, which is called an eigenvector. These n homogeneous equations would
normally be written

(flH — A)xj + Ct\2x 2 + oo o+ Ct\nXn= 0
U2ITI +@2 —X)x2 + '* o+ aznXn= o
an\Xi + anx2+ eeet(ann- X)xn = 07
or (A —Al)x= 0. (6.8.5)

Now the solution of a system of n homogeneous equations of this
sort is x = 0 unless the determinant of the coefficients vanishes, i.e.
unless

au —X a\2 n
det (A —A)) = 34 aZ—A @ -0 (686

ffill tin2 + An A
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This is called the characteristic equation which (expanding the deter-
minant) is equivalent to the nth order algebraic equation

(6.8.7)

The polynomial on the left is called the characteristic polynomial. The
eigenvalues of A are the roots /1= Ai, A2, ..., An of the characteristic
equation. Because the constant term on the left of (6.8.7) is just the
product of the roots, we see that

det A = AlA2... A, (6.8.8)

Hence, the vanishing of an eigenvalue implies that A is singular. Note
also that, because det (A 1—Al) = det (A —Al), the matrix A and its
transpose A 1have the same eigenvalues.

For every root A= A-of the characteristic equation (6.8.6), a solution
X = u,, say, of the homogeneous equations (6.8.5) can be found. In
general there are

n distinct eigenvalues: Ai, A2, ..., A,
and n corresponding eigenvectors: ulu2,..., u,,.

Because the eigenvectors are solutions of the homogeneous system
(6.8.6) they are undetermined to within a multiplicative factor, i.e. their
orientations are uniquely determined, but their lengths are arbitrary.

Example Calculate the eigenvectors and eigenvalues of

The characteristic equation is
A —bA+ 11A—-6=0
with roots
Al=1, A=2, A=3

For A= Ai = 1the eigenvector equations (6.8.5) become
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where y is arbitrary. (The system isofrank TZ= 2, and the general solution therefore
involves 3 —1Z = 1 arbitrary parameter; see 8§6.3.)

Similar calculations performed for /1= Ar, A reveal that the eigenvectors U2, 113
are also one parameter vectors (in each case 1Z = 2). The results can be summarised
as follows

where values of the three arbitrary parameters have been chosen to eliminate frac-
tional components of the eigenvectors.

Example Calculate the eigenvectors and eigenvalues of

(' 2 -2
= . -
\ 1

characteristic equation is

A

A —A) —21A + 45 = (, A —5 A2 —A3 -3

In this case we find
N —AN —3, U —

In the second example the eigenvalue A= 3 is said to have algebraic
multiplicity 2. For this case, however, the eigenvector equation (A —
3I)x = 0 turns out to have rank 7Z = 1, so there are two linearly
independent solutions, i.e. the geometric multiplicity of the eigenvalue
A= 3is also 2

When a square matrix has q distinct eigenvalues the corresponding
eigenvectors are linearly independent because if, on the contrary, at
most m of the eigenvectors ui,u2, were independent (where
m < @) then there must exist constants aq,..., am (not all zero) such
that

um+i —oqui + ct2u2+ eee+ amum. (6.8.9)
However, by premultiplication by A, this means that

Am+iUm+i = QfiAiUi + ct2A2u2 + eee+ amXmum



Matrix Algebra and Linear Equations 257

and therefore, eliminating um+i, that
OdATG-i —Ai)uj + g2(Actrti —A2)u2 + eem+ o;m(Am+i —Am)um = 0.
But this is only possible if, in fact, ¢fi = «2 = eee= ctm = 0, contrary

to our assumption that uTO+ can be expressed in the form (6.8.9) with
at least some non-zero a*.

Problems 6H

Find the eigenvalues and eigenvectors of:

1. A= 2.4 Al=-2,ui=(_j); A=17 u2
5 3
2 3 -P
2. A=1]0 -4 2
<0 -5 3y
'P
A= 2 ui=(—=2j; A2=1 u2—f—=2]: A3—2 13—
e’
2 1 2
33.A=10 2 3
0 5;
. . p\ r
Al= A2=2 ui=u2= I0OIl; A3=5 u3=11
/| 6 4 4>
4. A= ( 2 8 2
L4 -8 -2)
"-P
Ai = 2, ui = 0 ; A=4 u2= -1 ; A3=6, u3=
A 2 -P
5 A= 11 0 1
a -4 5>
I_P II4I
Ai=1 ui= 1 ; A2=2 u2= 1 ; A3= 3, ul
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6.9 Real Symmetric Matrices

If the square matrix A is real and symmetric we can easily show that
the eigenvalues are real and that eigenvectors corresponding to different
eigenvalues are orthogonal. In the first place we have (denoting complex
conjugate by an asterisk)

Ax = AX, AX* = AXX* X*TAX = AlX|2, XTAX* = A*[x|2.

But x*1Ax = XTAXx*. so that A = Jland Ais therefore real.

Next, for Al @ Xj and respective eigenvectors u,. uy

A& —Xjutmuj = ujAu, —uj Auj = 0,
u, *Up —0 when A @ X].

The magnitudes of these orthogonal eigenvectors can be chosen arbi-
trarily, and it is frequently convenient to normalise them to have unit
length, such that

igeu, =1

The u, are then said to be orthonormal.

For a non-singular matrix A. that has n distinct orthonormal eigen-
vectors Ui, u2,...,un corresponding to the eigenvalues Ab A2,..., An,
we can define the n x n matrix

T = (6.9.1)

whose columns are the orthonormal eigenvectors of A, in which case

(1 0 s 0\

0 1 <« 0
TtT = (6.9.2)

1 [e] 0 ° 4
A matrix satisfying this condition is said to be orthogonal. Also, because
det T = det TT, it is clear that

det T = +1.
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Matrices such as (6.8.2) and (6.8.3) are orthogonal; they represent rota-
tional transformations (as opposed to a rotation plus a refection in the
origin) and are distinguished by det T = +1.

Next,
AT = 1AiIUI AR Anun 1,
(XI O (11} o A
2
and therefore TtAT = 0 a 0 (6.9.3)

Vo 0 (X1} An)

The matrix operation in (6.9.3) is said to diagonalise the symmetric
matrix A.

Example Let Ai,A2,..., A n be the eigenvalues of TT. By (6.8.8), these are all
non-zero because det T = det TT ¢ O (because, respectively, the columns and rows
of T and TT are linearly independent). Let Uj denote an eigenvector associated
with Aj, then

T1U, = AjUj, andalso TUj = —A,
A
because T T 1 = I. Hence, by (6.8.8),

detT = AjA2... A, = -—— —, also (detT)2=1, e detT = %I.
N1N12 meeAn

Diagonalisation of quadratic forms The general Cartesian equa-
tion for a central quadric

ax2+ by2+ cz2+ 2dxy + 2exz + 2fyz = 1,

where a, b, c,d,e,/ are real constants can be written in the form

(a d e) \
(xy,z) d b f
ve f Q)

where the matrix is symmetric. More generally, if A = [ay] is a real,
n X n symmetric matrix, the equation

XTAX = 1,
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represents the central quadric JT .arxx3 = 1 in n-dimensional
space.
Let A have n orthonormal eigenvectors ui,..., un and associated

eigenvalues Ail,..., An and define T as in (6.9.1), then
(xtT)(TtAT)(Tex) = 1,

i.e. by (6.9.3), the central quadric

is transformed into the principal axis form

+ NN ANAYN = 1) (694)

under the change of variable defined by

where Uj (tqi, tq2?eeej  )e

In the particular case in which two (or more) eigenvalues of the sym-
metric matrix A become equal, the rank of the corresponding eigenvec-
tor equation is reduced such that two (or more) mutually perpendicular
eigenvectors can be chosen. Thus, there will still exist, in total, n mutu-
ally perpendicular eigenvectors, but the directions of two (or more) of
them can be chosen arbitrarily. Geometrically, this would correspond
to an ellipsoid that is axisymmetric about one of its principal axes.

Example The transformation y = TTx represents a rotation of the coordinate
system, or a rotation plus a reflection. This must preserve the length |x| of any
vector and, indeed,

Example Find a linear transformation that reduces

to principal axis form.
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In matrix notation the equation is

[t 0 0\
3 1 ax\
_ 0
XTAx = (Xi,X2,X3) 22 (g =1
1 3 \x3
te 2 2/

The eigenvalues are /1= 2,1,1, and a possible system of normalised eigenvectors is

(+ \

(on ! ? ! s/3

1

SN —1, ul — DA —l, B —
72 71 1
1 1 |
V71/ V 71/

\ 75/

Now u su2 = 0, Ui U3 = 0, but the vectors u2 and U3 corresponding to the double
eigenvalue A= 1 are not orthogonal. However, any linear combination u2 + qu'sis
also an eigenvector for A= 1, and can be used instead of u3. We therefore choose
the value of a to make u? «(u2 + oujj) = 0, i.e. we take a = --*/3/2. The new
normalised eigenvector is then

u2+ (I3
ju2+QUA
Hence the required transformation is
/0 0 I\
|
: 0

Xx =Ty, where T= 71 71
1 1
V7l “71

and the principal axes form is
2yi + y\+ 203 —1-

Note that the transformation represents a rotation of the axes, because the deter-
minant of the transformation det T = +1.

A symmetric matrix A whose eigenvalues are all positive is said to
be positive definite. In that case the principal axis form (6.9.4) can be
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written

0  \Ar 0
0/1, 3/2, lyn)
L0 0 y/At)
JIAN 0 = 0\ N
0 hand 0 i
[ [
© © 3 \Yn)

where all of the square roots are taken to be positive, which means that
the additional transformation

an NAT 0 s« 0\ f/N
2 °© je) o 2
| . a
\ Zn) = ° < \¥Yn)
reduces the quadric to the n-dimensional sphere
2,2, i 2 1
Z1+ Z2'+ e \-zn — 1.

Because of this, if at least one of the symmetric matrices A, B defining
the two central quadrics

X1Ax =1 x1Bx =1

is positive definite, it is always possible to reduce both quadrics simul-
taneously to principal axis form.

We proceed as follows. Suppose A is positive definite with eigenvalues

AXx,X2,..., Xn, and let T' be the n xn matrix whose columns are the corresponding
orthonormal eigenvectors u'x, ul,,..., of A. Then the n x n matrix
/. 0 \
0 8

(\A[ud, -/Vpi'a,..., \4>'T)
Vo o VkJ

converts A to the unit matrix, i.e.

QTAQ = I.
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while at the same time transforming the symmetric matrix B to another symmetric
matrix

C = QTBQ.

Now let C have the eigenvalues and respective orthonormal eigenvectors
AiA2,...,A,; ui,u2,..., u,, and let

P = (ui,u2,...,u,,)
be the n x n matrix whose columns are the eigenvectors. Then
/Al 0 - .o\
PTQTAQP =PTIP =1, and PTCP = PTQTBQP = 0 a2 -0

VO 0O mm aJ

In other words

/M0 °\
TtAT=1 TtBT= © al 0
\o 0 An/

where T = QP = f L, VAM2). .

The eigenvalues Ai, A2,..., An, which are the roots of the characteristic equation
det (C —AlI) = 0, can be calculated directly from A and B without going through
a detailed evaluation of the transformations, because

C- Al= QTBQ - AQTAQ = QT(B - AA)Q

det (C - Al) = det [QT(B - AA)Q] = (det QT)(det Q)[det (B - AA)] = 0.
Hence the eigenvalues A*are the n roots of
det (B - AA) = 0, (6.9.5)
because det Q 1 x det Q = (det Q)2 = AXX ... Xn ¢ 0.

Problems 61
0 3 . . .
LIfA=T |)andB 3 0 , show that A is positive definite. Use (6.9.5)
to reduce the matrices simultaneously respectively to f~ and " (‘U

2. Find a linear transformation that simultaneously puts the two central quadrics
4x2 + 9r2 =1, IxX\X2 =1

into principal axis form.
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In matrix notation we have

. 4 0
x5 AS)-E < S 1)&

=1

The first is already in principal axis form with positive eigenvalues Ai = 4. A = 9.
The eigenvalues of the second matrix are A= £1, and it is not, therefore, positive

definite.

The first quadric becomes a circle under the transformation

\/Al
0

so that the quadrics are now

10

(Ybbl 01

.o

o

1
1° -

=1 @b22 1

The first ofthese (being a circle) will be unaffected by any subsequent orthogonal
transformation. The eigenvalues and eigenvectors of the second are

/ 1\ ( 1\
Ai = 1 u! 0 A | 924 V2
6 6’ 1
\V2j VvV 71/
and the appropriate orthogonal transformation is
1N (%/2 \/12\
fit V2 /N
1 1 U2 %_ 1 1
\71 ’7]) ws " 71/
" a
ve -J
I\ (1 1\
[\ V2. V2o 2 272
1 1 W 1 1
Ve W2 V2] \3[2 3/2
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Collecting together all of these results: The transformation

1 1

Xi = 2
22T o
1 1
T 3A2 3R

reduces the quadrics to the principal axes forms

d+2e=1 2 2 1

3. Show that the central quadric
2x\Xi + 2xrx3+ 2x3Xi = 1

is a hyperboloid of two sheets, and is reduced to

2\-yW\-2/1=1
by means of the orthogonal transformation
/1 1
13 71 Te
I i 1
707171
i 2
\73 71/
(1. \ (J_\
7 J_\ 7e
1 72 1
Ai = 2,A2=A3= ; ui — 71 u2 = ' 1 w3 71
1 71 2
Vo/
V71/ 17171

4. Show that the eigenvalue equation Ax = Ax for a symmetric matrix A expresses
the fact that the principal axes of the central quadric XxTAx = 1 intersect the
surface at right angles.
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5. Show that
()]
-n/2
Jlmm] e~ aijXixj dx\dx2 « mmlx,, y
. Y det [Oij}
—€4

where [a»j] is an n x n positive definite symmetric matrix.

6. An n x n matrix B is said to be similar to a second n x n matrix A if there
exists a non-singular matrix X such that

B = X"1AX
Show that B and A have the same eigenvalues, and that if u is an eigenvector
of A then X 1u is an eigenvector of B corresponding to the same eigenvalue.
7. Let A be an arbitrary n x n matrix with distinct eigenvalues Ai,A?,...,An

with corresponding (not necessarily normalised) eigenvectors uj,u2,..., u,,.
Show that

/Al 0 - °\

X “1AX = 0 a?

Vo o An/

where
X="i u2 « U,
is the matrix whose columns are w, u2,..., un.
8. Diagonalise the matrix
/2 3 -1
A=10 -4 2
VO -5 3

(2 0 wy
, X 'AX 0 -2 oo

100

9. Let A be a positive definite n x n symmetric matrix. Show that the volume
bounded by the n-dimensional ellipsoid x TAXx < | is equal to

JJmm J dxidx2mmdxn=JJ ... J dyidy2m . dyn
xXTAXx < £":i *JV]<1
N/ 2 rm/2

r(f+ 1 viAiA...An T (] + 1)MTA
[Use the result of Question 25 of Problems 5A.]
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6.10 The Cayley-Hamilton Equation

Let the n x n matrix A = J[ay] have the distinct eigenvalues
Ai, J12, .. «, A, Consider the equation

(A - Ail)(A - A2)(A - A3l) see(A - A,Ix = 0. (6.10.1)

The matrix factors can be taken in any order, so that the equation is
satisfied by any linear combination

X —cqUi + 02u2+ eee+ a,,un,

of the eigenvectors Ui, u2, ..., un. But the eigenvectors are linearly inde-
pendent, and therefore can be used to represent any n-dimensional vec-
tor x. This means that (6.10.1) is satisfied by an arbitrary vector X,
which is possible only if A satisfies the Cayley-Hamilton equation

(A - AD)(A - A)(A - A3l) see(A - Al = 0. (6.10.2)

By comparing this with (6.8.7) and expanding the left-hand side, this
can be seen to be equivalent to the characteristic equation with A
replaced by A

(6.10.3)

Thus, every square matrix satisfies identically its own characteristic
equation.
Note that, whereas the algebraic equation

(A — Ai)(A — A2)(A — A3) s+ (A — An) — 0,

implies the vanishing of a root factor on the left, this is not necessarily
the case in (6.10.2). The expanded form (6.10.3) actually shows that
any power Amof A, where m > n —1, can always be expressed as a
linear combination of A, A2,..., A'1-1. Our derivation of the Cayley-
Hamilton equation depended on the eigenvalues being distinct. How-
ever, a limiting argument can be used to show that the equation remains
valid when there are repeated eigenvalues.
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Example Verify that
12
A 3
satisfies the Cayley-Hamilton equation
Al - 4A - 51 =0,
and use this formula to evaluate A-1.

1 2\/1 2 9 ¢

First Al
4 3/U 3 16 17)°
9 8 12 10 0 0\
Al - 4A - 51= -
> 16 17 43 ° 01 VO 0j
Next,
(A I\
5 5
A'1(A2- 4A-51) =0, .". A-1 —_(A- 41) =
5 4
\ 5 5/

An n x n matrix with n different eigenvalues always has n linearly
independent eigenvectors. In the case of a symmetric matrix with one or
more equal eigenvalues, we have seen that it is still possible to find a set
of n orthogonal eigenvectors, and that they are related geometrically to
the principal axes of a central quadric. By contrast, for a non-symmetric
matrix it is possible that the number of linearly independent eigenvec-
tors becomes smaller than n when two or more eigenvalues become
equal. When this happens the matrix is said to be defective. Lanzcos
has illustrated the situation in terms of the following 3x3 matrices, all
of which have the eigenvalue /1= 1 with multiplicity 3:

(I oo\ /m (o /o)
Casel A= 0 1 0, 3 eigenvectors: 0 g 1 0

1° 0V W w w

120 (I ( o\
Case Il A= 0 1 0 , 2eigenvectors: ( |, -2

0 ol v
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(1 -1 3) (I\
CaseUl A= 0 1 2, 1eigenvector: 0
1 0D W

All three matrices satisfy the same Cayley Hamilton equation
(A-1)3=0.

In the symmetric Case I, however (which corresponds geometrically
to a sphere) A actually satisfies a reduced-order equation (called the
minimal equation)

that contains the multiple root J1= 1 only once. This is an indication
that, although the directions of the three eigenvectors are not unique,
it is still possible to find three that are independent.

In Case Il. A —I &0, but

(AN (R

A—2= 000 000

v 09 1o 0oy
The minimal equation satisfied by A now involves the multiple root
A = 1 twice. This indicates the loss of one space dimension in the
domain spanned by the eigenvectors, and indeed there are only two

independent eigenvectors.
Finally, in Case lll. A —I ¢ 0 and (A —I1)2® 0, but

o -1 \/0 -1 a\ L -1 »
A—)3= 0 02 0 02 0 o0 2
10 0 of v° 0 oy o 0 oy

AN 0 -2\ M0 -1 3\
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Now the multiple root /1= 1 enters the minimal equation satisfied by
A three times, and two dimensions are lost by the space spanned by
the eigenvectors, i.e. there exists only one independent eigenvector.

In general, the degree of defectiveness of a non-symmetric matrix
can always be found by determining the number of times the defective
eigenvalue occurs in the minimal equation satisfied by the matrix.



VARIATIONAL CALCULUS

7.1 Taylor’s Theorem for Several Variables

Taylor’s theorem for a function f(x) of a single independent variable x
provides the expansion

f(x +h) = f(x) +hf'(x) +~ f"(X)+ Jy f"\x)+ "eet+ (*) + mm'e

This is valid for \h\ < R, where R is the distance from x to the ‘nearest
singularity’ of f(x). We have seen (83.6) that this singularity may occur
at a complex value of x. The special case in which the expansion is about
x=0

is called Maclaurin’s theorem.

The Maclaurin expansion can be used to extend Taylor’s theorem to
two and higher dimensions. To expand f(x + h,y + k) in powers of h
and Kk we first write down the Maclaurin expansion of f(x + ht,y + kt)
regarded as afunction of t. We use the formula

d

= h”-(x + ht,y + kt) + k*-(x + ht,y + kt)
dt 0X oy

271
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and, for general integer n > 1
N (/Or + ht,y + fci)) = ("h~ + A f(x + ht,y + kt).
Then, the Maclaurin expansion of f(x + ht, y + kt) with respect to t is

/Or+ ht,y+ AY) = f(x,y)+1”*h + fc 10K, y)

t2( 4 o\2
fra _I_Oi \
+#\ B4
By setting t = 1 this becomes Taylor’s theorem in two dimensions

f(x + h,y +k) =/Or,y) + + k-7 f(x,y)

+h (ht +k8y)

+b.{hm+kb) {x'v)+ " (7U)
In vector notation h = (h, k) this assumes the compact form
I(x +h)y=/(x)+(h.V)I/(x)+ (heV)2/(x)

+ "=+ [ (h-=v)“/(X)+ ..- (7.1.2)

The extension of Taylor’s theorem to an arbitrary number of m
dimensions is now obvious. We can use (7.1.2) with

a a d "

oz IV a2 dxn
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or the following generalisation of (7.1.1)

d
fo1"f AL mixm b 7)) f (@ eeei-Tm) P | A Anjqn JfOTj---)Am)

d(i>s)

tbl (2> &
\r=1

f(xi,...,Xm)+
(7.1.3)

The following second-order approximation will be used in §7.2

et j et
(N fo i, T hm) ~ f (xi,..., ) + A Afihi T —~ Afijhihj
i= ij'=I
(7.1.4)
where

. a/ B B a2/
fi = fffT@Y,...,xr), [jj [/jj Qxdx M) 4

Example Use Taylor’s theorem to expand f(x,y) = 2(x2- y2) —(K + y2)2 to
second order about (1,0).
Using the suffix notation /x = df/gx, etc., to denote partial derivatives, we find

[* = Kl - K +y2)], fy= —dy[l+ (K + /2)]
Ixx = 41 - 3x2- y2), [x/= lyx = -8x, fyy=-4(1+ w + 3y2).

Then, at x= 1, y=0:/ =1 fx =fy =0) /xx —=8, fxy = lyx = 0, fyy = —8.
Hence

/(L + /r,fc)m /(1,0) + (hfx + kfy) + —(ft2/xx + 2hkfxy + k2fyy)
(1 + ft,joo 1- 4(/i2 + f72).
The term 57"j=i fijhihj in (7.1.4) is a quadratic form in h (86.9),

and the second-order approximation may also be written

/(x + h) « I(x) + hf + _ 1Ah (7.1.5)
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where
~Nhi A (h\ (fn /12 o flm A~
h = h2 . h A= 28 22 /2m
\hmj \fmj (/ml /m2 fmmJ

The matrix A = [[,] is symmetric.

7.2 Maxima and Minima

A smoothly varying function f(x) of a single variable attains a local
maximum at x = a if /(a) > f(x) for all values of x close to a Near
this point

f(x) = f(a)+ (x- a)f\a) + x - a)2f"(a) + mm. (7.2.1)

If f(a) is a maximum, f(x) must start to decrease as X moves away
from a, which is possible only if /'(a) = 0 (if /'(a) ¢ 0, f(x) would
initially increase as x moves away from a on one side and decrease on
the other). The point x —a where f'(x) = 0 is called a stationary point.
If this is also a maximum and /"(a) ® 0 then we must have /"(a) < 0.

Similarly, /'(a) = 0 at a minimum, but if f"(a) is non-zero it must
now be positive. If /"(a) = 0 the local behaviour of f(x) is governed
by higher-order terms not shown explicitly in the Taylor series (7.2.1).
Thus, the behaviour of a smooth function at a stationary point x = a
is characterised by:

1 /'(a) =0, /"(a) < 0atamaximum
2. /'(a) —0, /"(a) > 0 at a minimum > (7.2.2)
3. I'(a) = 0, /"(a) = 0 further investigation requiredJ

A stationary point that is also a maximum or a minimum is called an
extremal.

Example 1 f(x) = e ~ 2)2 has a maximum at x = 2, where /'(2) = O,
1"(2) = -2.
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Example 2 f(x) = e has a maximum at x = 2, where /'(2) = 0,
["(2) = 0,/"(2) = 0,/<4)(2) = -24.

Example 3 The non-smooth function /(x) = e— 2l has a maximum at x = 2,
but
f'(x) = —sgn(x —2)e 'x 24s not defined at x = a.

Example 3 shows that when investigating extremals attention must be
given to the possible existence of values of x where /() ceases to be
analytic, where either /'(>x) becomes undefined or infinite. An extremal
can also occur at a boundary point x = a if x is restricted to lie within
a certain region of the »axis. Then > —a can assume one sign only,
and the usual condition f'(a) = 0 for a stationary point does not apply.
Thus, / = e~x takes its maximum value at >x= 1where /'(1) ¢ O when
X is restricted to the domain x> 1

Stationary points in two dimensions A function z = f(x,y) of
two independent variables has a local maximum at xx=4a, y = bif at
all points sufficiently close to (a, b) f(x,y) < f(a,b). Similarly, in the
neighbourhood of a minimum f(x,y) > f(a,b). The figure shows that
when f(x,y) is a smoothly varying function the normal to the surface

f df

X r\
00X

becomes parallel to the z-axis at the maximum. The point (a,b) at
which fx = fy = 0 is called a stationary point. At this point the rate of
change of / in every possible direction from (a, b) vanishes.

Mb)
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As in the case of a function of one variable, an extremal can occur
on a boundary or at points where f{x,y) is not analytic. Thus

A — f(X, y) = 29-3>/(*"8.)8.+(V\,'b)2,

iIs smoothly varying everywhere except at (X,y) = (a, b) where it
assumes its maximum value of 2, and where the partial derivatives

f= ~aXx~Q caymaa

y/(x - a)2+ (y- b)2

f = ~o(tl - &) c-34/(x-a)at(/-b)a

Y d(x- a)2+ (y- 6)2
are undefined. Their limiting values at (a, b) depend on the path in the
(%, y)-plane along which x —pa, y —h

z

It is necessary to undertake a special investigation of the behaviour
of a function at points where it ceases to be differentiable. However,
general rules can be formulated for classifying the stationary points of
smooth functions. To do this we use (7.1.5) to approximate f(x,y) in
the neighbourhood of any point (a, b). Then for an infinitesimal dis-
placement h = (8%, Sy) = (x —a,y —b) from (a, b)

[(*,»)« [I(a, b)+ fxSx+ f,,Sy + i (

(7.2.3)

where the derivatives fx, fy, etc. are evaluated at (a, b).
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The quantity
8f = fxSx + fySy = V[ «Sx, (7.2.4)

is called the first variation of /. An extremal can occur at (a, b) only
if ST vanishes for arbitrary orientations of the displacement 5x, which
then implies that fx = fy —0. However, the vanishing of the first varia-
tion is not sufficient to ensure that the stationary point is an extremal.
When V/ = 0 the local behaviour of f{x,y) near (a,b) is governed
by the final term on the right of (7.2.3), that is, by the quadratic
form

This is called the second variation of /. An extremal occurs at (a, b) if
82f is either positive definite or negative definite for all possible direc-
tions of the displacement 8x: it is respectively a maximum or a mini-
mum according as S2f * 0.

To determine the sign of S2f we recall that the symmetric matrix

can be diagonalised (86.9) by means of an orthogonal transformation
represented by a 2 x 2 matrix T. such that

The quantities Ai and A2 are the real valued eigenvalues of A, and are
the solutions of the characteristic equation

det (A- Al)= fxx A Jx. =0. (7.2.6)

by fyy
The columns of T are the orthonormal eigenvectors associated with
Ai ,A2. The transformation from (Sx,Sy) to (Sx',Sy') replaces the
(8%, Sy) variables relative to local (x, y)-coordinate axes centred on
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(a, b) with new coordinates (Sxf Sy') measured along axes parallel to
the eigenvectors (T represents a rotation of the local axes, or a rotation
plus reflection in (a,b) according as det T = +1). In terms of the new
coordinates (7.2.3) becomes

f(x, Y)- f(a,b) "6 2 = A (a ¥2+ J2<V2) m (7.2.7)

Evidently the point (a, b) is a maximum or minimum of /(, y) if the
eigenvalues are either both negative or both positive.

On the other hand if, for example, Al > 0 and A2 < 0, then the
value of /(k,y) will increase as we move away from (a, b) along the
Ax-axis, but it will decrease as we move away along the Ay'-axis. Thus,
although the surface 2 = /(k, y) becomes ‘horizontal’ at (a, b) (where
n = (0,0,1)), this point is neither a maximum nor a minimum; it is
called a saddle point.

Now, because det A —fxxfyy —fly — AiA2 (86.8), a sufficient con-
dition for either a maximum or a minimum at (a, b) is that det A =
fxxfyy —fly > 0. When this is satisfied, the actual behaviour of /(, y)
near (a, b) can be deduced by considering its behaviour as a func-
tion of x alone, by applying rules (1) and (2) of (7.2.2) to fxx{a,b):
f(a,b) is @ minimum or a maximum according as fxx(a,b) < 0. When
fxxfyy —fly = AiA2 < 0, (a,b) is a saddle point. If, however, either or
both of the eigenvalues vanishes, so that fxxfyy ~ fly —0, then 52f —0
and the second-order expansion (7.2.3) is not accurate enough to define
properly the behaviour of /(, y) near the stationary point. The issue
must then be decided by the consideration of higher-order terms of the
Taylor series (7.1.2). In summary, we can say that for a stationary point
(a, b) of a smooth function:

1- fx =fy= 0,fxx < 0, fxxfyy ~ fly > 0 at a maximum

2. fx fy 0,fxx AQ, fxxfyy fxy 6 fd a minimum

3. fx —fy— o, fxxfyy ~fly <0 at a saddle point

4. fx = fy= o, fxxfyy - fly = 0 further investigation required *
(7.2.8)
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Example Find the stationary points of r = x3 + y3 —3xy + 1
We have
fx = 3x2 - 3y, fy=3y2- 3x, fxx=6x, fxy=-3, fyy==50y.
The stationary points are the solutions of
x2-y =0, y2-x =0, ie. (x,y)=(0,0)or (I,1).
At (0,0) fxxfyy ~ fly = -9 < 0 « « (0,0) isa saddle point

At (1,1) fxx= 6 >0, fxxfyy~fxy =36 - 9> 0 .m (I,1) isa minimum

Problems 7A

Find the stationary points of the following functions and determine their natures.

—

.z —(x2+y2)2 —2(x2 —y2). [(0,0), saddle point; (x!1,0), minima]
f(x,y) = x4 +y4- 4x2. [(0,0), saddle point; (1,1), (—L. - 1) minima]

w ™

f{x,y) = x4 +y3 —3x2y. [(0,0), saddle point; (x|, |) minima]

o~

.2 = x3 —x2y —x2 + y2. [(0,0), saddle point; ({,]), minimum; (2,2), saddle
point]

5.2 = xyl(x- 12+ (y—I)2 [(],1), saddle point; (1,!), non-analytic
minimum]

6. /(x,y)=2x3- 2y3+xy- 1. [(0,0), saddle point; (g, —g), minimum]
7. 1(x,y) = 3x2 - 6xy + 2y3. [(0,0), saddle point; (1,1), minimum]
8. 2 = 3x2—12y2+2x3+£3x2y2. [(-2,1), (0,0), saddle points; (-1,0), maximum]

9. The function /(x) of the n independent variables xi, x2,. .. ,xn is stationary at
x = aif

Suppose that /(x) has a minimum at a. Then, according to (7.1.4), near X = a

where the quadratic form

(7.2.9)

is positive definite.
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10.

11.

12.
13.
14.

15.
16.
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By observing that the quadratic form Qm (1 < m < n), obtained by deleting
from Qn the terms involving xm+\ - am+i,xm+2 - am+2,... ,xn —an, must
also be positive definite (and must therefore have positive eigenvalues, see §6.9),
deduce that

/11 /12 fin
/]1 /11 /12 /13 /2n
111 > 0, 21 122 23 >0, rer fz2 >0
/21
/31 /32 /33
fill  fn2 fn
(7.2.10)
The function /(x), x = {x\,x2,...,xn) is stationary at x = a. Show that the

conditions (7.2.10) are sufficient to ensure that /(x) has a minimum at a.
[Consider in turn the quadratic forms Qm, 1 < m < n. The first of conditions
(7.2.10) implies that /(x) has a minimum at a with respect to variations in
x\ alone. This and the second of (7.2.10) then imply that the eigenvalues of
Q? are both positive, and therefore that Q2 is also positive definite. Hence,
the third of (7.2.10) necessarily implies that the three eigenvalues of Q3 are
positive, etc.].

If/(x), x = (xi,X2,... ,xn) is stationary at x = a, show that /(a) isa maximum
if
/11 /12 /13 /14
/11 /12 /13
/ /12 /21 /122 /23 /24
111 < 0, v >0, /21 /22 /23 <O, etc.
/21 /122 /31 /32 /33 /34

/31 /32 /33
/41 /42 /43 /44

Show that /(a;, 2, z) = a4 + jl4 + z4 —4xyz has a minimum at (1,1,1).

Show that f(x,y, z) —xyz{1—x —y —z) has a maximum at (j, |).
Calculate the eigenvalues of the quadratic form f(x, y. z) = w + 3xy +z2. Hence
deduce that (0,0,0) is a saddle point of f(x,y,z). [T=2, | £ n/l0]

Show that f(x, vy, z) = 1n(K + y2+ z2 + 1) has a minimum at (0,0,0).
Maximum principle Deduce from (7.2.8) that the solution ip(x,y) of

Laplace’s equation ipxx + y3yy = 0 within a region V cannot attain maximum
or minimum values in T= Extend this conclusion to the '«-dimensional equation

fix 1X2 4™ Y'Krxr 4--———- 4" gpxnXr» — O.

7.3 Constrained Maxima and Minima:

Lagrange Multipliers

Consider the problem of locating the extremals of /(x) when the posi-
tion vector x is constrained to lie within some fixed region.
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Example 1 Find the maximum value of
f{x,y) = 1- (x2+ 2y2)
when (x,y) lies on the straight line
X+y+3=0.

Obviously, /(x,y) attains its maximum value at (0, 0) when (O y) can
vary freely over the whole of the xy-plane. It assumes the constant value
/0K, y) = 1—C when (x,y) lies on the ellipse

X2+ 2y2= C = constant > 0.

The ellipse grows in size as C increases, causing the value of /X, y)
on the ellipse to become progressively smaller. The required maximum
will therefore correspond to the smallest value of C for which the ellipse
(called the maximal ellipse) just touches the line x+ y + 3= 0.

To determine the position (a, b) of the maximum in a systematic
manner, let Sx = x—a, Sy = y —6, and consider the vanishing of the
first variation Sf = fx5x + fy6y at (a, b):

fx6x + fy6y = 0. (7.3.1)

In the absence of any constraints on the admissible orientation of the
displacement (8x,5y), the stationary values of / would be determined
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by setting fx —fy —0. But this is only permissible when Sx and 6y are
independent, whereas the constraint x + y + 3 = 0 implies that

6x + 6y = 0. (7.3.2)

However, we can use this equation to eliminate 5y, say, from (7.3.1). To
do this multiply (7.3.2) by a quantity J1and add the result to (7.3.1)
to obtain

(fx + A)&r + (fy+ ASy = 0. (7.3.3)

The term in 8y is now removed by choosing Ato make fy+ A= 0.
We are then left with (fx+ X)8x and, because 8x can vary freely along
the line x + y + 3 = 0, the condition for a stationary point must be
fx + A= 0.

Collecting together these results, we see that the value of Aand the
stationary point (a, b) = (x,y) are determined by solution of the three
equations

fx+ A—0, fy+ A—0, x+y+ 3—0. (7.3.4)
Now fx = —2x, fy = —Ay, and therefore

—2XTA=0, —-Ay+ A=0, x+y+3=0,
oo x==2 y=-4 A=-4

Hence, (a,b) = (-2,-1) and f(a,b) = —5, so that the maximal
ellipse corresponds to C = 6.

Equations (7.3.4) possess the following very simple geometrical inter-
pretation. Admissible values of (x, y) for which f(x, y) isa maximum are
required to lie on the line x +y + 3 = 0, and 8x = (8%, 8y) must there-
fore represent a displacement along this line. Equation (7.3.1) states
that V/ «(5x = 0 at the stationary point, i.e. at (a, b) the normal to the
maximal ellipse f(x,y) = f(a, b) (i.e. x2+ 2y2 = 6) is parallel to the
normal (1,1) of the straight line x +y + 3= 0. Thus, V/ = —A(l, 1)
on x + y+ 3= 0 for a suitable value of the constant of proportionality
—A which corresponds precisely to (7.3.4).
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The factor /1in (7.3.4) is called a Lagrange multiplier. The geomet-
rical argument makes it clear why the apparently noil-symmetrical for-
mal procedure, whereby J1is introduced to eliminate Sy rather than Sx,
leads, nonetheless, to a system of equations (7.3.4) for the stationary
point that is symmetric in fx,fy.

The following remarkable conclusion should also be noted. Equations
(7.3.4) are precisely those that would be obtained if, instead of consid-
ering the stationarity condition for f(x,y) subject to the constraint
x+y+ 3 = 0 we had considered the symmetrical unconstrained
condition for the function

F(x,y, A = f(x,y) + X(x +y + 3),

where x, y and Aare regarded as independent variables. The vanishing
of the first variation of F

SF = Fx5x + FySy + F\5X = 0
when Sx, Sy and SX vary independently then implies that
Fx=1fx+ X=0, Fy=fy+X=0, F\=x+y+3=0,
i.e. Equation (7.3.4).

Maxima and minima subject to one constraint Let us now
repeat the above argument for the more general problem of determining
the extremals of f(x,y, z) when x = (x,y, z) is constrained to lie on
the surface

g(z,y, )y =o. (7.3.5)

Let a = (a, b c) be a stationary point, at which the first variation
must vanish:

+ fySy + fz&z = 0. (7.3.6)

Only two components of the infinitesimal displacement Sx = x —a,
Sy = y—b,Sz = z—c may be regarded as independent, because both x
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and a lie on the two-dimensional surface (7.3.5). We therefore eliminate
5z by the JFmethod of Example 1
Because x lieson g(x,y,z) = 0

gxSx + gySy + gzSz = 0, (7.3.7)

where the derivatives gx = dg/dx, etc, are evaluated at the station-
ary point. Multiply (7.3.7) by the Lagrange multiplier /1 and add to
equation (7.3.6):

{fx + + (fy+ Agy)sy + (fz+ \gz)5z —0.

The coefficient of 8z is made to vanish by requiring /1 to satisfy
fz+ Ag2= 0 at a. The remaining displacements 8x and 8y on
a(x, vy, z) —0 are independent, and therefore fx+ Xgx = 0, fy+\gy = 0.
Collecting results, the stationary point a = x and the multiplier J1are
seen to be determined by the symmetric system of equations

fx+ Agx=0, fy+Agy=0 fz+ Xgz=0, g(x,y,z)=0.
(7.3.8)

Once again, the symmetry of these equations becomes obvious from
a simple geometrical argument. When x and therefore Ax both lie on
g(x) = 0, equation (7.3.6) states that V/(x) is parallel to the normal
Vg(x) of the constraint surface at the stationary point, and therefore,
for some suitable constant of proportionality —],

V/+Avg=0 at x=a on gx) =0. (7.3.9)

Evidently the maximal surface /(x) = /(a) and the surface of con-
straint g(x.) = 0 touch one another at the stationary point.

Furthermore, equations (7.3.8) or (7.3.9) are equivalent to the uncon-
strained stationary condition for

F(x,A) = /(x) + ANX), (7.3.10)

where x and A can vary independently. At the outset, therefore, the
original constrained problem for /(x) can be replaced by the uncon-
strained problem for F = f + Xg.
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Example 2 Use the method of the Lagrange multiplier to find the maximum
value of

/(X) = 1—(x2 + 2y2+4z2) on the plane x +y+z+7=0.

The stationarity conditions for F(x, A) = /(x) + APk+ y + z + 7), where x and Jl
vary independently, are

—2XTN—0, —4yTN—0, —8zTA=0, x-\~y~\~z~\~7~ 0.
Hence the stationary point is at a = (—4, —2, —1) where / assumes the maximum

value /(a) = —27. The maximal ellipsoid x2 + 2y2 + 4z2 = 28 (i.e. /(x) = /(a))
touches the plane x + y+ 2 + 7= 0 at a.

The extremal problem for /(x) = /(, y, 2) can be solved in a similar
fashion when x is required to satisfy the two conditions of constraint:

pabl)= 0, /(x) = 0. (7.3.11)

The stationary point a = (a, b,c) lies on the curve I, say, defined by
the intersection of these surfaces, and the stationarity condition at a
requires that the first variation Sf = V/ «<&= 0 for an infinitesimal
displacement <5x= x —a along I'. But, ga = gB= 0 on I, so that we
must actually satisfy the following conditions:

V/ «fix=0, Vga-Sx =0, Vg/3-Sx=0, onT.

Thus, at the stationary point each of the vectors V/, Vga,Vg&is nor-
mal to the direction of I, and there must therefore exist constants
Ag, A such that

VI + AVgQ+ AgVgh = 0,
da(x) =0, &(x) =0 at the stationary point. (7.3.12)

The constants Aa, Xy are the Lagrange multipliers of the problem, and
equations (7.3.12) are precisely the stationarity conditions that would
be obtained by application of the Lagrange elimination procedure. They
can also be derived, just as before, by formally considering the uncon-
strained extremal problem for

F(x, Ag,Xp) = /(x) + Aaga{x) + A3 (x), (7.3.13)

where x.,XQXp are regarded as independently varying quantities.
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Example 3 Find the maximum and minimum distances from the origin to the
curve defined by the intersection of

X2+ 2y2+z2=5 2= 1

The extremals of the distance |x| from the origin correspond to the extremals
of /(x) = x2 + y2+ z2. We can therefore consider the unconstrained extremal
problem for

F=x2ty2+z2+ Aj(X2 £ 2y2+ z2—5)+ A (2 —1).
The Lagrange equations (7.3.12) are
2x+2Aix =0, 2y+4X\y=Q 2z+2Xiz+A =0, x2+2y2+z2=5 12=1,
with the two sets of solutions

X =2, y=0, 2=1 A1=-1, A2=0, Xl = x/5,

X =0, y=\/2, 2=1 A

I

>
>
N

I
=

Xl = /3.

Problems 7B

Solve by the method of Lagrange multipliers:

1. Find the maximum and minimum distances from the origin to the curve
3x2+ 3y2 + Axy = 2. [y/2; y/2/5]

2. Find the stationary points of f{x,y) = x2 + y2 + 2 when x2 —z2 = 1.
[(x#.0,-D]

3. Find the minimum distance in x >0, y > 0 from the origin to the curve xy = 1.

I
=

4. Find the minimum value of f(x,y, 2) = x2+4y2+ 1622 on the surface xyz
[12]

5. Find the maximum and minimum distances from the origin to the curve defined
by the equations x +y —1 =0, x2+ 2y2+z2—1 = 0. [#; !]

6. Find the coordinates of the point on the surface x2yz = 1in x,y. z > 0 closest
to the origin.
[(2i,2-i,2-0)]

7. Find the minimum value of /(x) = x £ y3+ 23 in x,y,z > 0 on the surface
Ux £ 1/ly+ 1/2 = 1 [81 at (3,3,3)]

8. Show that when x lies on the surface 1/x2 £ 1/y2+ 2/z2=4inx, y, 2 >0,
the function /(x) = z(x +y) has a minimum at (1,1,1).

9. Find the stationary point of the function /(x) = x2 —y2 + z2 —2x when
xty-2 =0, xzx2y=1.[(, f)
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10. Find the point on the circle (x —I)2 + (y —I)2 = 1that is closest to the origin.
KL 75'1-
11. The hypotenuse of a right-angled triangle has unit length. If the lengths of the

other sides are denoted by x and y. for what values of these variables is the
area of the triangle a maximum? [x =y = A=\

7.4 Stationary Definite Integrals

Let the curve y = /() join the two points A and B which have the
coordinates (a,ya), (b,yb) in the xt/-plane, and suppose

£=£ (ry, =E£XVY)

is a given function of x y —f(x) and y' = f'(x). Then the value of
the integral

I = \TE(x,y,y')dx, (7-4.1)

a

generally changes as the shape of the curve y = f(x) between A and
B is changed. The fundamental problem of the Calculus of Variations
is to find the curve between A and B that makes the value of the
integral stationary. This curve will correspond to a definite functional
form of /(x), that may make the value of the integral a maximum or a
minimum relative to the values computed for neighbouring curves, or
merely stationary.
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Probably the simplest such problem occurs when C = y/I + y'2, for
which

| = J V iT F * = distance along the cutve between A and B.
a

(7.4.2)

The stationary value of the integral is then a minimum, corresponding
to the shortest distance between A and B, and the obvious solution
y = f(x) of the minimisation problem is the straight line

Y= Ya+ (x~a) (7.4.3)

This result can be derived by considering the variation of the inte-
gral, in a manner similar to that described at the beginning of §7.2
for locating the stationary point x = a of a function f(x). The quan-
tity / defined by the integral (7.4.1) is called a functional, whose value
depends on the choice of the function y = f(x) over the complete range
a < x <MD, rather than at just a single point.

Suppose that y = f(x) gives the required stationary value of the
integral (7.4.1). We calculate the value of / for a ‘neighbouring’ function
(illustrated by the broken line curve in the figure) by considering the
value of the integral for

fe(x) =y + ed(x),
where e is a small positive quantity that can be made to tend to zero,
and the function ¢p{x) is arbitrary, except that it must vanish at x = a
and b, where the values of y are fixed (respectively equal to ya and yf).

The difference between fe(x) and y = f(x) defines the variation Sy of
y: it is the variation in y at a fixed value of x, i.e.

Sy = fE(x) - y = fe(x) - f(xX) = edp{x).

This is an infinitesimal quantity of order e. The corresponding dif-
ference in the values of I is

J)(C(X, y + ed(x), y' + ed'(x)) - C(x, y,y)jdx,
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which can be expanded in powers of e by first using Taylor’s theorem
to write:

C
COx,y + eb(x).y" + edW)) = Cx, ¥, y) + ) X + ey I 4,
where aC/apy and nC/gy' are evaluated for the stationary function

{X’y’yl)_
We therefore obtain the variation 51 of /

61= C(xy+edp(x),y +ed{x) - C(x,y,y))dx

—e food +op0ffy o+ (7.4.4)

The ‘rate of change’ of the integral is now obtained by dividing by e
and letting e —0

51 f( , % U .dc\
7 =1

This must vanish ify = f(x) makes the integral stationary for arbitrary
functions g{x). But to apply this condition it is first necessary to elim-
inate the derivative ¢'(x) from under the integral sign by integration
by parts:

DC

The first term on the right makes no contribution because ¢p(x) = 0 at
the end-points a and b, and therefore the rate of change of the integral
becomes

61 dc  d_di Idx, (7.4.5)
e dx dy’



290 Mathematical Methods for Mechanical Sciences

which is zero for arbitrary rp(x) only if
dC ddC

ay axoy'

=0 forallxina<x<h (7.4.6)

This is because it is always possible to choose a differentiable function d(x)
which is non-zero only within an interval of length [ enclosing any given value of
X = X4 in a < x < h By multiplying ¢(x) by a suitable scale factor we can make
its mean value in the interval @ — 1. When [ is small the integral (7.4.5) can then
be approximated by

fdC _ ddC _ _
\dy dwdy'g O sothat dXdy oy, =0

for any value of xp in a < xp < b.

Al

Equation (7.4.6) is the Euler-Lagrange differential equation, whose
solution determines the function y = f(x) that makes the integral
(7.4.1) stationary.

Example We may now verify the intuitive straight line solution (7.4.3) for the
curve of minimum length joining two points A and B. The distance is given by the
integral (7.4.2), so that

C(x,y,y'") = s/l +y'2,
which does not depend explicitly on x or y. The Euler- Lagrange equation (7.4.6) is

therefore
dC d dC _ d ( y'

dy dxdy' ~ dx “yj\+y<

Hence, the stationary curve y = f(x) is given by

d
ay = A = constant
dx
y = Ax + B, B = constant.

This straight line reduces to (7.4.3) when the values of the arbitrary constants
are chosen to make the line pass through A and B. (Strictly speaking an additional
calculation should be performed to determine the second variation S21 ofthe integral
I in order to verify that the stationary value of the integral furnished by the straight
line actually represents a minimum. This is often very difficult to do in practice, and
we must then appeal, as here, to geometrical intuition to confirm that the derived
stationary value does correspond to an extremal.)

Example Find the function y —f(x) that satisfies /(0) = 0, /(f) = 1 for which
| = foe(y2 —y'2 + 4yex)dx is stationary.
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Take C=y2 —y'r + 4yex in the Euler Lagrange equation. Then

ix::9y+4e%, @ = -2y
dy dy’

the Euler-Lagrange equation becomes
y" +y = 2ex
y = Acosx + Bsinx +ex. where A, B are constant

Apply the boundary conditions,

0=A+1 1= X%+e"

y = f(x) = —cosx + (I —e”) sina + el.

Special cases

1 £ = C(x,y') (no dependence on y). The Euler-Lagrange equation
becomes

NdC
= constant.
dx dy' 0,

This equation can be solved for y' in terms of x and A,y is then
found by integrating
0, -
% -FfrA)
where F(x, A) is known.
2. £ = C(y,y") (no dependence on x). The Euler-Lagrange equation is

dC ddC =dC _ ,d2C _ ,d2C
dy dxdy' dy Ady'dy ~dy'2

Multiply by y':

,dC 2 d2C , ,,d2C d (r_jo9cC
dy Y EWW - Y dy2 dx \ Y dy'

Hence, a first integral of the Euler-Lagrange equation is

£ —y’(;%: constant, when £ = £(?/,y"). (7.4.7)



292 Mathematical Methods for Mechanical Sciences

3. C—£,(x,y) (no dependence on y'). The Euler-Lagrange equation is

This is not a differential equation, but may be solved immediately
to givey = f(x).

Example Find the curve y = f(x) through the points (0,1), (1,0) for which
I
I V1+y?2,,

is stationary.
This is a Case ! problem, for which dC/dy' = constant:

Yy — A
xy/ITy2
dy AX
dx  yT- A2x2
y—B ~ —-\/1—A2x2, B = constant
x2+ (y-B)z=

A2
- . 1
The end conditions give (1 —B)2 = 1+ B2=
A2 T~ A2
A=1 and B =0,
and the stationary curve is the circle x2+ y2 = 1.

Example Find the curve through the points (a,ya), (b,yb) that generates the
surface of minimum area when rotated about the »caxis.

The surface area is the integral | = 211\.] y/ I + y2dx.

Thus, we have an example of Case 2, because C = y\J! + y’2 does not depend on
x. The first integral (7.4.7) of the Euler-Lagrange equation gives

y = A\/1+y12 A = constant,

y2 —A2

that yf =
so that vy As
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Ady
Vy2—A2'

dx =

<
1

A cosh ( N\ ) B = constant

The surface of rotation for this curve is called a catenoid. The values of A and B
are calculated from the condition that the curve must pass through the end points
(a, ya), (b,yb). For some pairs of points, however, it is not possible to find A and B
to satisfy this condition. In that case there is no smooth surface that minimises the
surface area.

Problems 7C

1. Show that I = f* y/y(1+ y'2)dx where y = 1 at x = %1 is stationary when
Y~ 5(l + x2).

2. Find the function y = /(x) which satisfies /(0) = 0, /(1) = 1 for which

I = fg(y2+y- 4ye~x)dx is stationary. [/(x) = + xe~x)
3. Show that I — f* 2jS~dx where (0) = 0, y(lI) = 1 is stationary when
y = sinh ~xIn[l + y/2]j .
b 2
4. Show that y — A + BxA. where A, B are constant, makes | — fa *3-dx
stationary.
5. Verify that y = \coshx is a stationary curve for the functional
I — 3~ (R2—j/2—2y cosh x)dx, where y(0) = 0, y(|) = Scosh
6. Find the curve in the (x, y)-plane for which I = f(J y/E —y2y/l + y'2dx is

stationary, where E > 1, given that y(0) = 0, y( = 0. [y= \/E —\sinx].

7. Show that the Euler-Lagrange equation for | = f**C(x. y,y\ y")dx is

dC_z=(dC\ d2 f 3C\
dy dx \dy') dx2 \dy")

8. By using polar coordinates to write / = f \Ux2+y2\Jl +y'2dx =
fryl | + rzpadr, p = dd/dr, show that the integral is stationary for the family
of curves

x2sina —2xy cosa —y2sina —/3, a, /3= constant.

9. Principle of least action. The position x = x(t) at time t of a particle of mass
m in one-dimensional motion along the x-axis subject to a conservative force
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field with potential V (x) satisfies the variational condition

:dx
dt’

BfC(t, x, x)dt =0, X
n

where £ = -m i2 —V(x) called the Lagrangian of the system.

Deduce the equation of motion mx = —dV/dx.

10. Calculate the stationary value of | = f(y12 + 2xy —y2)dx where y(0) = 0,
) = f- \y=x, 1=f (i+)]

11. Find the curve in the (x, y)-plane for which I —  y'2(l + y,2)dx is stationary,
given that y(0) =0, y{l1)= 2. [y = 2x\.

12. Show that A+y?dx is stationary when y = sinh (ax + (3), where a,p are
constants.

13. Show that the Euler-Lagrange equation
I

for y2 + 2xy - xy2)dx i s +Xxy =X

A solution of the differential equation is required that satisfies y(0) = y{\) = 0.
By making the ‘guess’y = ax(l —x), calculate the constant a by evaluating |
and applying the stationarity condition in the form dl/da = 0. [a = —j,).

7.5 Isoperimetric Problems

A stationary problem in which the function y = f(x) is required to
satisfy

b
6 v.] H(x,y,y)dx = 0,
a
together with the integral constraint
b
j Q(x,y,y")dx = Q0 = constant, (7.5.1)
a

is called an isoperimetric problem. The original problem of this name
(the problem of Dido of Carthage, 814 BC) was to find the shape of
the closed curve of given length that encloses the maximum area.
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Suppose y = f(x) is required to pass through the endpoints
(a,ya), (b,yb), then according to (7.4.5) y must satisfy
b
(7.5.2)
for an arbitrary function 'p(x). Furthermore, because the value of the
integral (7.5.1) must be unchanged by this variation, we must also have
b
(7.5.3)
Now divide the integration range into n equal intervals of width An,
and let Xi be the midpoint of the ith interval. Equations (7.5.2) and
(7.5.3) are then the limiting forms (as n —00) of

n n

n2 An =0, "22 Nn =

where

and the subscript r denotes evaluation at x —xt. Thus, the arbitrary
n-dimensional vector 0 = (0i, 02, me«, 0n) is simultaneously orthogonal
to E = (5i,£2>ee>fn) and F = (J7,1B,..., f n). The components
of 0 are not independent and there must therefore exist a constant of
proportionality /1such that E = —AF, provided F ¢ 0. This condition
leads to the following modified Euler- Lagrange equation

forall x ina<x <h
(7.5.4)

The constant J1is just the Lagrange multiplier of 87.3. If we set
b

L=c+\(g- Gy), h = Lx,y,y) + X[G(X Y,y - Cbh)dx,
(

/

(7.5.5)
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where Q0 = Q0/ (b—a), and consider the variational problem in which we
vary the fnnction y and J1 independently, then corresponding to (7.4.4)
we have

SIr Wx)di +7 (x)*  dx +SX \ / Qfx,y,y)dx -Q 0\ —O0.
a \a /

The vanishing of the first integral leads to (7.5.4) and the vanishing of
the coefficient of SX yields the constraint equation (7.5.1).

Example Find the curve of length £iny > 0 with endpoints (£1,0) that encloses
the maximum area between itself and the »xcaxis.
We have to minimise | = f~ydx subject to f 11y/l +y'2dx = |. We consider

|
4-f (A

Then (cf. Case 2 of §7.4) the Euler-Lagrange equations are
I

y - -j= —A {A=constant), [/ \/l +y2dx=£
: J

The first of these is easily integrated, and gives the portion of the circle
(x—B)2+ (y—n)2 = A ofradius Ainy > 0.
The condition that the circle passes through (+£1,0) then yields
B=0 1+/2=A2
Finally, the constraint \/l +y'2dx — dx = £, gives the equation
i_ . (e
A  Sm\2A

for the radius A When £ = n the radius A= 1and A = 0 and the curve is the
semi-circle x2 +y2=1.

Problems 7D

1. Find the curve y = f(x) between (0,0) and (1,0) such that JOy2dx = £ and
foy'2dx is stationary.

00 00
A= —2R,n=1,2,...,y =" Ansin(mrx), where ~ 2 = 2£

71=1 71=1
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. Find the curve y = /() between (0,0) and (1,0) such that JOy2dx
fo(y'2+ x2)dx is a minimum.

I and

A= —22, n = 1,2,.... Minimum value = — r2* forn = 1,
y= VAEsin(7tx)

. Show that, if y(0) = 0, y{1) = 1 and fo ydx = 1, then the minimum value of
fo y'2dx is |, and that it occurs when y = x2. [A= 4].

. The potential energy of a chain hanging between two fixed points is represented

by / = yy/l +y'2dx, where y(x) is the height of the chain at x. The shape
assumed by the chain makes | a minimum subject to the condition that its total
length | = \/l + y'2dx is fixed. Show that y = —A+ a cosh , Where the

values of the constants a,/3, A depend on i and the positions of the ends of the
chain.

. Show that the function y — \Aﬂre-)KZ/Z maximizes the integral
I = —J*ylnydXjy > 0, provided / ~ydx = f_oox2ydx = 1. [Use two
Lagrange multipliers.]

. Show that the method of Lagrange multipliers applied to the variational problem
| ]

SJy'2dx =0, y@)=0, j/()=1, \Jl +y,2dx =5

0 0

yields the solution y = x, but that this does not satisfy the integral con-
straint. dey = X, Jqgyj\d-y,2dx = \/2 ¢ 5 The curve y = x also makes

lg —fg \/l +y2dx stationary, i.e. the ‘vector’ F used in the proof of the
multiplier method is null, so that it cannot be asserted that E = —AF.

. 1M " ay2dx

the ;r-axis S 2w f"ayy/l + y'2dx is a minimum, show that a = R and that
the surface is the sphere obtained by rotating x2 + y2 = R2 about the xaxis.

. Find the curve in the (x, y)-plane for which | 3 fo y'§y' + 2xy)dx is stationary,
given that j/(0) =0, y(|) = 1 and /(Rydx = \

| 'R 3, where y(xa) = 0 and the surface area of revolution about

—€0BX].






USEFUL FORMULAE

Trigonometric

sin(x £ y)

cos(x = )

2 sinxcosy

2 COSX COSY

2 sinxsiny

sin 2x

€OS 2X

sin 3x

€0Ss 3X

sinx

COSX

Hyperbolic

sinXxcosy £ cosxsiny
COSX COSY sinxsiny

sin(x + y) + sin(x —y)
cos(x + y) + cos(x —y)
cos(x —y) —cos(x + y)

2sin X cos X

cos2 X —sin2x = 2cos? X —I = | —2sin2 x

3sinx —4sin3x

4 c0s3 x —3cosx

o™ _ 0 BX

2i = 31+ ¥
gix _|_e-rx N X2 1 X4
) = 1 _ [ +¥

sinh(x £ y) = sinhxcoshy + coshxsinhy

cosh(x £ y) = cosh x coshy £ sinh xsinhy

2 sinh xcoshy = sinh(x + y) + sinh(x —y)

2 coshx coshy = cosh(x + y) + cosh(x —y)

2 sinh xsinhy = cosh(x —y) —cosh(x + y)
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sinh2x = 2 sinh x cosh x

cosh?2x = cosh? x + sinh2 x = 2cosh? x —!1 = 1 + 2 sinh2 x
sinh 3a: = 3sinhx + 4sinhj x

cosh 3a: = 4 coshd x —3coshx

sinh(ix) = isinx

cosh(ix) = cosg

Definite integrals

; e" —e X3 X5 X7
sinha = X+ — H— -
3 5
ex + e“ X4 Xb
cosha = 1+ X -+ —
21 41 61
oG
e ax dx =\ a>0
/ 2Va

By differentiation with respect to a:

I x 26 ™Ma2dx=-A" . q>0

0o

e axsin Ax dx = , a>>0
6 a2+ A2
@

e axcosAx dx = , a=>0
6 a2+ A2

00
e~ax . A
/ ------ sinAx dx = tan-1 —, a>0
X a

[e]e]
J e~ax l,ln(a2+{A+B)2

sin Ax sin Bx dx , a>10
4 \az2+(A-B)2

0o

/ e ax cosAxdxz-\[\;‘-e n2/4a, a>0
2V a

00

xe~ax2 SinAx dx = 4 \/~ e -A2/4a, a >0
/ 4V dé



Useful Formulae

64 sin Ax dx = §erf(2 A_)|,, a>0
(00]

2A2
in2 A = , >
6 e aksinl Ax dx 4A2) a
00 .
e ax cos? Ax dx = a T2A~2 , a>0
/ a(al + 412)
00
, a>0
6- 2Va V4 4a
00
. 2 t m . (ar A2\
n ax cos,&lx dx = - \/[—sm ———  a>0
/¥ Va4 dal

Example: Differentiation under the integral sign

0o

To evaluate: sin Jhx dx
|1 2?2

Observe that 7 = 0 when A = 0 and differentiate with respect to J/1:

&IAP:}JOQ ax cos Ax dx

a
a2+ A2

I = \] 2N n2 @ C (C = constant)

tan | (— + C.
a

301
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But, / = 0when A =0, . C=0
ie. | = tan =M
Series
1-xn
L% l + X+ x2+x3+ mm+ xn, (n+ 1 terms)
1
Ly T X FXx2+x3Hemhxn ., X <1
(infinite geometric series)
(i+xr =i+" +2<7i>x!+2fclhfcli)l3+ ..
, <H<E- D(e* - 2)eee(a-n+1) n,
n! g Aeee
bl <1,an0,1,2,... (infinite binomial series)
n n(n—) , nn- 1 —2
(t+x)n="T+ + (2, {/ + - g(p- ----- ;X30+ eeet X1,
n = (positive integer)
2,3 L4
Nl +x)=X-y +y - — - bl<1

X2 X3 X4
e ~1+X+2\+3\+4\+"" +n\

n(n +1) ‘n

nin+ H(2n+1)

6 = 12+ 22+ 32+ 42+ eee+ n2

Vector analysis
ax(bxc)=(am)b—(a-b)c (triple vector product)

(axb)yx(cxd)= (amb x d)c—(a-b xc)d

Taylor’s theorem in three dimensions

I(x + hy = /(x) + (h*V)/(X) + ;!(h "V)2/(x) + sest oy (h W)n/(x) +

The divergence theorem
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If F(x) is defined on and within the interior V of a closed surface S:

div F dv n +FdS = j) F «dS.

\Y S
Stokes’ theorem
j K
8 d d
IF = VXF= — - =
eur X dx dy dz
F\ F2 Fi

lapg
\ ay az J \ oz ox J \ ox Oy J

C is a closed contour and S an open, two-sided surface bounded by C; n is
orientated in the positive sense with respect to C:

/ F-dr / curl F «dS = j necurl FdS.

S
Vector identities
curl(<?F) =V x (<pF) = ipcurl F + V<p x F;
curl(curl F) = V x (V xF) =V(ivF)- V2F;
div(F x G) = V-(FxG) =curlF G - F curl G;
curl(F xG) = Vx (FxG) = (G-V)F - (F-V)G + Fdiv G - Gdiv F;
grad(F «G) = V(F-G) = (G-V)F + (F-V)G + Gxcurl F + F xcu

Integral transformations

j VtpdV = j) n<pdS,
V S

V mF dV = j) n FdS,
S

/VdeV:j)andS.
\% S

Surface integrals
FmdS—j (F\ni+ F2n2+ F3713) dS
S S S
r = x(u,n)i+ y(u, wj + z(u, n)k

(rMx rV)dudv _ £ r,, X,
[(ru x r,)dudn| [r,Xxr,
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dS = ndS = #£(rux rv)dudv

| FendS = + X rv dudv.

S

Cauchy—Riemann equations
If f(z) = u(x,y)+ iv(x, y) is regular:
du dv du dv
dx dy’ dy dx'

Upper bound for a contour integral
I/(*)I < M on C. L —Ilength of contour:

< ML.

Cauchy’s theorem
If f(z) is continuous on a simple closed contour C and regular within C:

=0

Poles .
()] m
f(z) = £ an(z- z0)n+ (z_M)n
has a pole of order m at zo with residue b\.

Residue theorem

If f(z) is continuous on a simple closed contour C and regular within C except for
isolated singularities at zi, 22,..., zn:

<1f{z)dz = 2m » Km
c el
7Zm = residue at z = zm.

Residue at a simple pole

If /(*) = P{Z) has a simple pole at r = ro then residue P bl
Q(2) Q'(z0) '
Residue at a double pole
. f(2) PH then at ro residue (" {(r-ro)2/")}) = P'(z0).
(z - zo0)2 \ ) ez
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D’Alembert’s solution of the wave equation

(Fn 1d2u

If of2 -~ 5~ =°° withu=f(x) and g(x) att=0

u
dt
x+ct

I f | 1 f
then: u{x,t) = - |/(x - ct) +f(x +ct)j + — [ g{rf)dr].

One-dimensional delta function

0]
d 1, whena<x <bh,
‘]S(X Y) dy 0, otherwise,

0
J t#y)stx - yydy = f(x), whena<x <5,

Sx—) — “To 7riok —Y)2 + 62]

Fourier transform

00 00

m f(k)elkx dk,
-w J m =w?*

Fourier transform of a derivative

Fourier transform of x) = (ik)nf(k).

Fourier transform of unity

00

J= 1 e-icdx = V 27 6{K).

Fourier sine transform

- ¢
fs{k) =\l - 1 f(x) sin kx dx, f(x)=y ~ [ /N §in kx dk.
0
Fourier cosine transform
00

fe{k) =\ ~ f(x)coskx dx, f(x) = J LI coskx dk.
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INDEX

adjoint, linear equations, 237
self, 50
alternating tensor, defined, 81
used to represent cross product,
8l
Argand diagram, 83
basis function, 4

Bessel’s equation, general integer
order, 25
order 0, 148
order 1, 22
Bessel function, first and second
kinds, 26
Beta function, defined, 210
relation to Gamma function, 210
branch, cut, 9%
point, 95
of complex function, 95
boundary conditions,
accommodated by Green’s
function, 46
for well-posed problems, 146
ordinary differential equation, 4
periodic, 32
Sturm-Liouville problem, 28
two-point, 28, 46

boundary value problem, for partial
differential equations, 146
self adjoint, 50
wave equation, 175

calculus of variations, 287
integral constraint, 294
catenoid, 293
Cauchy, problem for a partial
differential equation, 140, 143,
146
residue theorem, 107
theorem, 97
Cauchy’s integral formula, 101
Dirichlet’s problem, 144
Laurent’s expansion, 104
Cauchy-Riemann equations, 89, 131
causal solution, 44
causality, principle, 172
Cayley-Hamilton equation, 267
central quadric, 259
principal axis form, 260
characteristic equation, linear
system of equations, 255
ordinary differential equation, 4,
7, 10
square matrix, 255
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characteristic, partial differential
equation, 141
polynomial, 255
circle, complex equation, 85
circulation, 64
compatibility, linear equations, 237
complementary, error function,
224
function, 4
complex number, 83
argument, 84
conjugate, 83
imaginary part, 83
modulus, 84
multiplication and division in
polar form, 85
nth root, 85
parallelogram law, 84
polar form, 84
principal value, 84
real part, 83
triangle inequality, 84
complex, differentiation, 88
equation of a circle, 85
function, 87
integration, 92
map, 87
plane, 83
potential, 131
transformation, 87
velocity, 131
complex function, differentiation,
88
branch, 95
exponential, 91
logarithmic, 91
meromorphic, 121
poles, 106
power, 91

Index

regular, 89
singularities, 89, 106
trigonometric, 91
conformal transformation/map,
defined, 123
critical points, 124
infinite strip into a half-plane,
126
plane with finite cut into \2\ > 1,
126
plane with semi-infinite cut into
a half-plane, 125
quadrant into a half-plane, 125
solution of Laplace equation, 130
et seq.
contour integral, along the real
axis, 112, 114
around unit circle, 111
for Gamma function, 209
Jordan’s lemma, 144
of many valued functions, 116
principal value, 117
real valued integrals, 111 et seq.
to sum series, 121
convergence, Fourier series, 34
ratio test, 19
convolution integral, diffusion
equation, 183
cosine, half-range series, 35
half-range transform, 184
Cramer’s rule, 246
critical points, of a conformal
transformation, 124
cross product, 53
cube roots of unity, 86
curl, defined, 65
cylindrical coordinates, 73
orthogonal curvilinear
coordinates, 73



Index

rectangular coordinates, 66
spherical polar coordinates, 74
curvilinear coordinates, general
orthogonal, 70
cut, branch, 95, 134
plane, 95, 135
cylindrical coordinates, 73

D’Alembert’s solution, 143, 152
De Moivre’s formula, 85
delta function, epsilon-sequence, 38,
167
one-dimension, 38
three dimensions, 168
derivative, directional, 57
generalised function, 42
descent, method, 176
determinant, defined, 239
cofactor, 241
Cramer’s rule, 246
inverse of square matrix, 247
Jacobian, 249
properties, 242
Dido of Carthage, 2%
differential equation, boundary
conditions, 4, 28
characteristic equation, 4, 7, 10
first order ordinary, 1
Frobenius method, 15
indicial equation, 18
reduction of order, 7
second order ordinary, 3 et seq.
series solution, 15
singular and ordinary points, 16
Sturm-Liouville, 28
variation of parameters, 13
see also, partial differential
equations

313

differentiation, complex function,
88
under integral sign, 301
diffusion equation, convolution
integral, 188
fundamental solution, 188
Fourier transformation, 187, 191,
193, 195, 196, 198
separation of variables, 153
directional derivative, 57
Dirichlet’s problem, 144, 146
Green’s function, 171
divergence, defined, 61
cylindrical coordinates, 73
orthogonal curvilinear
coordinates, 72
rectangular coordinates, 61
spherical polar coordinates, 74
theorem, 61
theorem in two dimensions, 63
domain of dependence, wave
equation, 144

eigenfunction, for hanging chain,
149
orthogonality relation, 28
orthonormal, 31
periodic, 32
series expansion, 30
Sturm-Liouville problem, 28
eigenvalue, characteristic equation,
255
linear system of equations, 254
square matrix, 254
Sturm-Liouville problem, 28
eigenvector, 254
epsilon sequence, delta function, 38,
167
for a constant, 43
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Green’s function, 166, 173
Heaviside step function, 41
principal value function, 43

equation

Bessel’s, 22, 25, 148

Cauchy- Riemann, 89, 131

Cayley-Hamillon, 267

characteristic, 4, 7, 10, 255

complex form for a circle, 85

diffusion, 153, 187, 191, 193, 195,
196, 198

Euler’s homogeneous, 6

Helmholtz, 69

indicial, 18

Laplace, 63, 90, 128, 144, 157,
163, 190, 197, 218

Legendre, 214

linear, 230, 254

matrix, 230

ordinary differential, 1 et seq.

partial differential, 139 et seq.,
187

Poisson, 139, 163, 166, 168, 175

self adjoint, 50

simple harmonic motion, 5, 12

Sturm- Liouville, 27

wave, 29, 142, 143, 151, 172, 189,
199

error function, 194, 224
Euler, constant, xi, 27

formula, 5
homogeneous equation, 6

Euler Lagrange equation, 290

special cases, 291

extremal, 274

functional constraint, 283, 285

integral constraint, 294

maxima, minima, saddle point,
278

Index

field, scalar and vector, 56
flux of a vector field, 60
Fourier integral, by residue
theorem, 114
generalised function, 44
Fourier series, 32 et seq.
arbitrary period, 33
convergence at end-points, 34
half-range, 35
non-periodic functions, 34
Fourier transform, defined, 179
applied to partial differential
equations, 187 et seq.
half-range, 183
inversion formula, 180
of a derivative, 185
of constants and powers, 181
sine and cosine, 184
Fresnel integrals, 225
Frobenius method, 15 et seq.,
summary, 24
functional, 288

Gamma function, defined, 205
contour integral representation,
209
duplication formula, 211
Gauss’ formula, 212
recurrence relation, 206
residues, 206, 212
Stirling’ formula, 207
Gauss, elimination, 231, 242
formula for Gamma function,
212
general solution, second order
differential equation, 3
Laplace equation, 129
wave equation, 142



Index

generalised function, introduced,
38
delta function, 38, 168
derivative, 42
epsilon-sequence, 38
principal value function, 43
Goursat, E., proof of Cauchy’s
theorem, 93
gradient, defined, 57
cylindrical coordinates, 73
operator, 57
orthogonal curvilinear
coordinates, 71
rectangular coordinates, 57
spherical polar coordinates, 74
Greek alphabet, xi
Green’s function, causal, 45, 172
Dirichlet problem, 171
epsilon-sequence, 166, 173
found by Fourier transformation,
189
Laplace equation, 163
method of descent, 176
Neumann problem, 171
non-homogeneous problems, 48
simple harmonic motion, 44
two-point boundary value
problems, 46
wave equation, 172, 176, 178
Green’s, theorem, 64
first identity, 68
second identity, 69, 164

half-range, sine and cosine series, 35
sine and cosine transforms, 184
half-range transform, sine and
cosine, 184
applied to partial differential
equations, 192, 193, 195-198

315

hanging chain, eigenfunction
expansion, 149
potential energy, 297
oscillations, 147

Heaviside step function, defined, 40
epsilon-sequence, 41

Helmholtz equation, 69

hydrodynamics, complex potential,
131
complex velocity, 131
flow around an edge, 134
flow past a cylinder, 132, 158
flow past a finite plate, 135
point source, 133, 170
point source near plane, 133
two-dimensional, 131

image source, 133, 170
incompressible motion, 62, 69, 70
indicial equation, Frobenius

method, 18

equal roots, 20

general roots, 18

roots differing by an integer, 21
integrating factor, 1, 5
integration, by residue theorem,

107 et seq.

Cauchy’s theorem, 97

complex, 92

in the complex plane, 92

indefinite, 101

ML theorem, 96

of analytic functions, %4

path deformation, 99

path independence, 99
inverse, matrix, 242, 247

point, 145
irrotational, 62, 69, 70, 131
isoperimetric problem, 294
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Jacobian, defined, 249

transformation of integrals, 249,

251
Jordan’s lemma, 114

kinetic energy, 69, 70
Kronecker delta, 80

Lagrange, duplication formula,
211
integral constraint, 294
multiplier, 280, 295

Laplace equation, cylindrical
coordinates, 157 et seq.
general solution, 129
Green’s function, 163 et seq.
Green’s second identity, 69
irrotational flow, 63
Poisson’s solution, 144, 159
satisfied by a regular function,

0
separable solution, 218
solution at large distances, 165
solved by Fourier
transformation, 190, 197

two dimensions, 128 et seq.

Lanzcos, C., 268

Laurent’s expansion, 104
principal part, 106

Legendre polynomial, defined, 213
equation, 214
generating function, 219, 221
orthogonality relation, 216
recurrence relations, 221
Rodrigues formula, 213
series expansion, 217
to solve Laplace equation, 218

level surface, defined, 56
unit normal, 58

Index

line integral, complex, 92
evaluation, 74
path independence, 75
linear equations, defined, 230
adjoint system, 237
compatibility, 237
Cramer’s rule, 246
fundamental theorem, 235
Gauss elimination, 231
row echelon form, 232
Liouville’s theorem, 103
ML theorem, 96, 113
Maclaurin’s theorem, 271
mapping, 88, 123
matrix, definition, 227
algebra, 228
augmented, 233
Cayley-Hamilton equation, 267
characteristic equation, 255
defective, 268
diagonalisation, 259
eigenvalues and eigenvectors,
24
elementary, 243
equations, 230 et seq.
Gauss elimination, 242
inverse, 242, 247
minimal equation, 269
non-singular, 243, 258
orthogonal, 258
positive definite, 261
rank, 235, 246
real symmetric, 258 et seq.
row, column, square, 227
simultaneous diagonalisation,
262
symmetric, skew-symmetric,
transpose, diagonal, unit,
228



Index

maxima and minima, 274
constrained, 280
two dimensions, 278
meromorphic function, 121
method of images, Poisson/Laplace
equations, 133, 168, 170
Morera’s theorem, 102

Neumann problem, 146, 159
Green’s function, 171

orthogonal curvilinear coordinates,
defined, 70
curl, 73
divergence, 72
gradient, 71
line element, 71
volume element, 71
orthogonality relation, Legendre
polynomials, 216
Sturm-Liouville problem, 28
orthonormal, eigenfunctions, 31
eigenvectors, 258

parallelopiped, volume, 54
partial differential equations,
Cauchy’s problem, 140, 146
characteristic, 141
classification, 141
diffusion equation, 139
Dirichlet problem, 144, 146
Laplace and Poisson equations,
139
Neumann problem, 146
second order linear, 139
separation of variables, 147
solved by Fourier transforms, 187
wave equation, 139, 172
well posed problems, 144, 146

317

particular integral, ordinary
differential equation, 2, 9 et seq.
point source, impulsive, 172
three dimensions, 170
two dimensions, 133
Poisson, Dirichlet’s problem, 144,
159
equation, 139, 163, 166, 168, 175
pole, arbitrary order, 107
complex function, 106
simple, 107
potential, energy, 297
retarded, 174
see also velocity potential
principal, part of complex function,
106
value integral, 43, 117
Principle of least action, 293

quadratic form, central quadric, 259
diagonalisation, 260

radiation condition, 146, 172, 200
ratio test, 19
reciprocity principle, 47
recurrence relation, Gamma
function, 206
Legendre polynomials, 221
method of Frobenius, 17
reflection coefficient, 202
regular function, 89
residue, calculation, 108 et seq,
double pole, 110
Gamma function, 206, 212
Laurent’s expansion, 108
simple pole, 107, 109
theorem, 107
residue theorem applied, along the
real axis, 112, 114
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around unit circle, 111
many valued functions, 116
principal value integrals, 117
real integrals, 111 et seq.
resonant forcing, 11
retarded, potential, 174
time, 175
Reynolds number, 139
Riemann surface, 95
Rodrigues formula, 213

saddle point, 278
scalar, product, 53
field, 56
second variation, 277, 290
separation of variables, introduced,
28
diffusion equation, 153
Laplace equation, 157
second order partial differential
equations, 147
wave equation, 151
series, eigenfunction, 31
Fourier, 32
Legendre polynomials, 217
ratio text, 19
series solution, differential
equation, 15
convergence, 19
simple harmonic motion, equation,
5 12
Green’s function, 44
simple closed contour, 97
sine, half-range series, 35
half-range transform, 184
singularity, essential, 107
isolated, 106
ordinary differential equation, 16
pole, 106

Index

source, distributed, 139, 163, 172
impulsive, 172
point, 133, 170
spherical polar coordinates, 74
stationary point
extremal, 274
integral constraint, 294
integral, 287, 290
maxima and minima, 274
saddle point, 278
second variation, 277
two dimensions, 278
stream function, 131
Stirling’s formula, 207
Stokes’ theorem, 64
proof, 66
Sturm-Liouville equation, applied
to partial differential equations,
148 et seq.
eigenfunctions, 28
eigenvalues, 28
for Legendre polynomials, 215
general form, 27
orthogonality relation, 28
periodic boundary conditions, 32
suffix notation, vectors and tensors,
79 et seq.
summation, convention, 79
of series, 121
surface element, defined, 59
for a sphere, 77
parametric representation, 77
vector, 59, 77
surface integral, evaluation, 76
parametric representation, 77

tangent plane, 58
Taylor’s series, in the complex
plane, 103



radius of convergence, 104

second order approximation, 273

several variables, 271
tensor, 80
test function, 40
triangle inequality, 84
triple scalar product, 54
triple vector product, 54

upper bound, contour integral, 9%

variation, definite integral, 289
parameters, 13
second, 277, 290
vector, field, 56
operator identities, 67, 303
product, 53
solenoidal, 62
velocity potential, defined, 62
determining the kinetic energy,
69, 70
flow past, cylinder, 132, 158
edge, 134
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finite plate, 133
sphere, 219
in three dimensions, 169
uniqueness, 69

wave equation, characteristic

coordinates, 142
D’Alembert’s solution, 143
eigenfunction expansion, 151
Green’s function, 174, 176, 178
in bounded medium, 175
one space dimension, 142
separation of variables, 151
solved by Fourier
transformation, 189, 199
stretched string, 29
three space dimensions, 172 et
seq.

well posed problems, 144, 146, 166
Wronskian, 14






