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PREFACE

A mathematical model of a physical system provides the engineer with 
the insight and intuitive understanding generally required to make effi­
cient system design changes or other modifications. A simple formula is 
often worth a thousand numerical simulations, and can reveal connec­
tions between different control parameters that might otherwise take 
hours or weeks to deduce from a computational analysis. This book is 
intended to supply the undergraduate engineer with the basic math­
ematical tools for developing and understanding such models. A firm 
grasp of the topics covered will also enable the working engineer (edu­
cated to bachelor’s degree level) to understand, write and otherwise 
make sensible use of technical reports and papers.

The book was orginally written for students taking the Boston 
University senior level, one-semester course in engineering mathematics 
for mechanical and aerospace engineers. This course marks the final 
exposure of these students to formal mathematical training prior to 
graduation, and includes material taken principally from Chapters 1-4. 
The intention is to consolidate earlier courses in ordinary differential 
equations, vector calculus, Fourier series and transforms, and linear 
algebra, and to introduce more advanced topics, including complex vari­
able theory, partial differential equations and elementary generalised 
functions leading to Green’s functions. The book has also formed the 
basis of a review course for first-year engineering graduate students. It 
is not possible to cover in a one-semester class all subjects with which

IX



X Preface

an ‘educated’ engineer might reasonably be expected to be familiar; 
additional topics are included in the text, mainly for reference, on 
conformal transformations, special functions and variational methods. 
However, an overriding objective has been compactness of presentation, 
and to avoid the currently fashionable trend of attempting to achieve 
encyclopaedic coverage with a text that typically runs to a thousand 
or more pages.

M. S. Howe
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1

LINEAR ORDINARY  
DIFFERENTIAL EQUATIONS

1.1 First-Order Equations

General form:
dy dy
—— \-p(x)y = r(x), or y' + p{x)y — r(x), where y' — ——.
dx dx

Homogeneous equation y' +  p(x)y =  0.
Solve by separating the variables:

J —  = —  J p(x)dx +  Ci, C\ = constant 

In у = — J p(x)dx + Ci

The general solution is у — Ce~ $pC)dx;
C = eCl = arbitrary constant

This solution may also be derived by means of an integrating factor, as 
described below for the inhomogeneous equation.
E xam ple Find the general solution of y' +  x 2y = 0.

J ^  =  -  J x 2dx + C i ,

lny  = - i . x 3 +  Cl

X 3
y = C e - ~ .

_^3
If у = 2 when x  =  0, then C  =  2 and у  =  2e з .

1



2 Mathematical Methods for Mechanical Sciences

Inhomogeneous equation y' + p(x)y — r(x).

This is solved by multiplying by the integrating factor f (x)  =  e^p̂ dx

f y '  +  f P V = ^ ,  ( y (x )e fp(x)dx)  =  r ( x ) e f p№  

y(x)efp{x)dx = J r { x ) ^ p[x)dx dx + C

. '.  у = e- f pWdx J r(x)efp(x)dx dx +  Ce~ fp(x)dx

= particular integral

+  solution of the homogeneous equation

E xam ple Find the general solution of y' +  x 2y = x 2.

Integrating factor =  e-f x dx = e^“

/у{х)С3 — I x 2e 3 dx + C

у =  1 +  C e ~ ^
_ £

If у — 2 when x  =  0, then С =  1 and у — 1 +  e з .

Problems 1A
Find the general solution of:

1. y' — Ay = 2x — Ax2. [y — x 2 + Ceix ]

2. xy' + 2y — 4еж2. [у = (C + 2e*2)/ x 2}

3. y' +  2у tan  x  — sin2 x. [у = C  cos2 x  + cos2 x(tan  x  — x)\

4. у' + у cot x  — sin 2x. \y — |  sin2 x  +  Ccoseca;]

5. sinxy ' — у cos a; =  sin2a;. [y = 2 sin x  ln(sin x) +  C  sin x]

6. xlivxy '  +  у — 21nx. [y = In ж +  C/ln.x]

7. yf + %L = ex . [y = С / х 2 + ( l - 2 / x  + 2 / x 2)ex]

8. (x — l )y '  +  2>y = x 2. [(ж — l ) 3y =  С + ж5/5  — x A/2  + x3/3]

9. (x + 1 )y' +  (2ж — 1 )y = e~2x. [e2xy = C (x  + l ) 3 — |]
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10- У '+ х  = 5 s in ( f ) -  [ j / = - c o s f  +  | s i n f  +  f ]
11. (1 — x 2)y' + x(y  — a) =  0. [y — a + C( 1 —х2)з]

12. у' — (1 +  co tx)y  = 0. [y = Cex sin x]

13. (1 +  x 2)y' +  xy  = Зх +  За:3, [у = 1 +  x2 +  С(1 +  ж2)- ?]

14. sin х  cos xy' + у — cot x. [у — (C +  In tan  x) /  tan  x]

Solve:

15.

16.

17.

18.

19.

2 0 . 

2 1 . 

2 2 .

23.
24.

25.

26.

27.

y’ +  2xy  =  4x, y(0) = 3 .  [y — 2 +  е-ж2] 

у1 coth2x =  2y — 2, ?/(0) =  0. [у =  1 — cosh2x] 

y’ +  ky = e~kx, y(0) =  1. [у = (1 +  x)e-fcx] 

y’ = a(y -  g), 2/(0 ) =  b. [y = g + (b -  g)eax]

УУ' =  2a, 2/(0) =  0. [;у2 =  4ax]
yy’ +  x =  0, 2/(0) =  a. [x2 + y2 = a2]

’£  + £  = lyy’ +  =  0, 2/(0 ) =  6.

(x +  I)?/' =  2/ -  3, 2/(0) = 8 .  [2/ =  5x +1

2 x2/ ' +  2/ =  0, 2/(1) =  1- [z?/2 =  1]
(1 +  x 2)y' = ffy,  2/(0 ) = 0 .  [y = ^ (tan -1 x)2]

+ 2>i =  sin2t, г =  0 when t = 0. [г =  {sin(2t — a) +  e_3t s in a } /\ / l3 ,  
where tan a = |]

W ater runs out through a hole in the base of a circular cylindrical tank at speed 
V 2ghft/s, where g =  32 ft/s2 and h is the water depth. If the tank is 2 ft in 
height, 1 ft in diameter and is full at time t  =  0, calculate the time at which 
half the water has run out when the effective area of the hole is 0.25 in2. [47s]

The current г in a circuit satisfies L d i/d t+ R i  = E,  where L, R. E  are constants. 
Show th a t when t is large the current is approximately equal to E /R .

If, instead, E E0 cos cat, where E0, 
E a cos (cut — e) 
V R 2 + uj2L 2~

ш are constants, show tha t when t is large 
coL

■, where tan e =

1.2 Second-Order Equations with Constant Coefficients

Homogeneous equation y" +  ay' + by = 0, a, b — constants. 

Inhomogeneous equation у" + ay' + by = r(x).

General solution:

у = Ayi(x) + By2(x) + yp(x), A, В  = constant
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where у i, y2 are any two linearly independent solutions of the homo­
geneous equation, called basis functions or complementary functions, 
and yp is a particular integral that yields r(x) when substituted into 
the equation.

Solution of the homogeneous equation Because d(eXx)/dx = 
XeXx, у =  eXx will be a solution of the homogeneous equation if Л is 
a solution of the characteristic equation

—п “I- \ / n  ̂ — 4/)
A2 +  aX + b = 0, i.e. for A =  — ---------------=  Ai, A2. (1-2.1)Z

Case 1 Ai ^ A2:
yi = eAlX and y2 =  ex'2X are linearly independent and the general solu­
tion is therefore

у = AeXlX + BeX2X. (1 .2.2)

The values of the constants A , В  are fixed by the boundary conditions. 
E xam ple Solve y"  +  2y' -  8y =  0, y{0) =  1, y'(ff) = 0.

Characteristic equation : A2 +  2Л — 8 =  0

. ' .  A =  - 4 ,  2 

A. y{x) =  Ae~4x +  B e2x.

At x  =  0 : у =  1, and y' =  0 

A. A  + B  = 1 

and —4 A + 2 В  =  0.

е -4ж +  2e2x
• •  y = -------3 ------- '

Case 2 Â  =  A2 =  A;
The two solutions in (1-2.2) are not independent. The differential equa­
tion can now be written in the factored form

y" +av ' + b = { - l - x )  ( s - A) » = a

If z =
dy
dx by, then z! — Xz =  0, i.e. 2: =  BeXx, 

-■- y ' - X y  = BeXx.

В = constant,
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An integrating factor is : e x 

± ( y ( x ) e - ' * ) = B ,

i.e. the general solution is

у = (A + Bx)eXx, A, В  = arbitrary constants. (1.2.3)

Case 3 Complex roots Л of the characteristic equation:

When a and b are real and a2 — 4b < 0 the roots (1.2.1) of the char­
acteristic equation are complex conjugates A = — a/2 ±  i\/4b — a2/ 2 = 
—а /2±Ш , say, where i = \/~ C  and the general solution assumes either 
of the forms

у = e~^  [АегПх + В'е~гПх), Q = ——— — , A ' , B' = constants
2

= e ~ ^  (Acos(flr) +  Bshi(Qx)), A, В = constants, (1-2.4)

E xam ple The two forms of the solution (1.2.4) are related by Euler’s formula

'|4 (ix )b (i x )6 (ix)7= 1 ix
(ix)2 (ix)3

+ 4w- +2! 3! 4! + 5!
+

X2 X4 X6

~ 2 \+ ¥ “ бГ +
=  cos x +  i sin x.

+  г \ x  -
3!

6 !

x5_ 
5!

+
7!

+

x 7 
7! +

(1.2.5)

E xam ple Simple harmonic motion at (a real-valued) radian frequency w is 
described by the equation

d2y— -  + uffy =  0, where t denotes time. 
at2

The roots of the characteristic equation are Л =  ±ica, with the general solution 

у  =  dcos(o;t) +  Bsm(u>t) = A'eluJt +  B'e~lu)t.

Problems IB
Find the general solution of:

1. y" + 10y’ +  25у  =  0. [у = (A + Bx)e~5x)

2. y" +  4y' +  9y — 0. [y = (A cos \/Ex +  В  sin \/Ъх)е~2х]

3. у" — 6у’ +  8y =  0. [у = Ae4x +  B e2x]
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4. y" — 6y' +  25у =  0. [у = (A  cos 4x  + В  sin 4x)e3x]

5. y"  — 4y =  0. [y =  Ae2x +  £ e -2x]

6. y" +  4y = 0. [y =  A  cos 2x + В  sin 2x\

7. y" — y' + y = 0. [y — ( A c o s ^ x  + B s i n ^ Y x ) e i x]

8. y" + 3y' = 0. [y = A  + B e - 3x}

9. Transform the equation у" + x 2 + у + 2 =  0 by making the substitution y(x) = 
z(x) — x 2, and hence find the general solution, [y = —x 2 + A  cos x  + В  sin x]

Solve:
10. 4(y" - y ' )  + y = 0, y(0) =  0, ?/(2) =  2. [у =  хез1" 1]

11. у" -  16y =  0, 7/(0) =  1, т/(0) =  20. [у =  Зе4х -  2e - 4x]

12. у" +  6t/  + 9y = 0, 7/(0) =  —4, t/(0 )  =  14. [y =  (2x — 4)e_3x]

13. у" -  16т, = 0, 7/(0) =  5, y { \ )  =  5e. [y =  5e4x],

14. y" +  9y =  0, y(n) = —2, y'(it) = 3. [y = 2cos3x — sin3x].

15. у" -  2t/  +  2y =  0, 7/(0) =  - 3 ,  т/(тг/2) =  0. [у = - 3 e x cosx].

1.3 Euler’s Homogeneous Equation

The equation

x2y" + axy' + by — r(x), a, (inconstant, 

is equivalent to

(1.3.1)

d
x-

d
x- dy

у A-(a -  4 ^ - ^  +by = r(x),dx \  dx

which is reduced to a constant coefficient equation by the substitution

Thus,

x  = e2, which implies that x —  = — .
dx dz

S+ (a  - 1 ) T z + b y =  r ( e ) -
The homogeneous form of this equation is solved by the method of §1.2 
using the characteristic equation

A2 +  (a — 1)A +  b — 0.
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E xam ple Find the general solution of x 2y"  +  9xy '  +  16y =  0. 
The substitution x  = ez reduces the equation to

—— +  8—— h 16у =  0, with characteristic equation A2 +  8Л +  16 =  0,
dzz dz

A =  - 4 ,  -4 .

у =  (Л +  B z)e~4z =
(A + В  In ж) 

ж4

Problems 1C
Find the general solution of:

1. x 2y" +  Q.2xy' +  6.76?/ =  0. [y = (A + B  In ж)/ж2-6]
2. x 2y" +  xy '  +  у  =  0. [у — A  cos(ln ж) +  В  sin(ln ж)]
3. x 2y"  +  xy '  — 9y = 0. [у = A x 3 + В / x 3]
4. x 2y" — 2xy' + 2y = 0. [у = A x  +  B x 2}
5. (ж +  1 ) V  -  2(ж +  1 )y' -  10y =  0. \y = A (x  +  l ) 5 +  B (x  + 1)“ 2]
6. ж2 у" — Зж у' +  4у = 0. [у = х 2 (А + В  In ж)]
7. ж2 у"  +  ж у' — 4у = 0. [у = А х 2 + В / ж2]
8. х 2у"  — 2жу' — 4у =  0. [у =  Лж4 +  В / ж]
9. х 2у" -  20у =  0. [у = А х 5 + В / х 4}

10. х 2у"  — ху '  +  2у = 0. [у =  х { А  соз(1пж) +  Вв1п(1пж)}]

И - У" + 1 у' =  0. [у = А  + В / ж]
12. ж2у"' +  Ъху" + у' = 0. [у = A  (In ж)2 +  В  In ж +  С)
13. х 2у" +  §ху' +  2Ъу =  0. [у = {Acos(31nx) +  £?8т(31пж)}/ж4]
14. (1 +  2х)2у" -  6(1 +  2х)у' +  16у =  0. [у — (1 +  2ж)2{Л 1п(1 +  2ж) +  В}]
15. (1 +  х)2у" + (1 +  х)у' + у = 0. [у =  Л cos{ln(l +  ж) +  а}]

Solve:
16. 4х2у" + 4жу' -  у =  0, у(4) =  2, у'{4) =  - [у = 4/у/х\
17. х 2у" -  ху ' + 2у = 0, 2/(1) =  - 1 ,  у'{1) = - 1 .  [у =  -жсоз(1пж)]

1.4 M ethod of Reduction of Order

Let у — У\ (ж) be any solution of the homogeneous equation

y" + P(x)y' +  q{x)y = 0. (1-4.1)
The general solution y(x) can be found from y\(x) by the following 
procedure.
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Set y  =  y i ( x ) v ( x ) ,

У ' =  y [v  +  y i v ',
y "  =  y " v  + 2 y [ v ' + y xv " .

Substitute into (1.4.1) and collect terms:

v "  У  г + v' (2 y[ + pyij  +  v  [y" +  py[ + qy1) = 0 .

Because y\ is a solution of (1.4.1) the coefficient of v is zero. Hence,

= —U ( -I- p(x) \  , where U =  v'. 
d x  V 2/1 J

Integrating this first-order equation for U:

dv B e- f p(x)dx
— =  U = ------ 5—— , В  =  constant,dx y{

so that

/
e ~ f  p(x)dx
------2---- dx, A — constant.

Vi

Hence, the general solution у = yxv is

y(x) = Ayi(x) +  B y^x)  J j— f  p(x)dx

УI
d x . (1.4.2)

E xam ple Find the general solution у  =  A yi(x )  +  By A x)  of

(.x 2 — 1 )y" -  2xy' + 2y = 0, given tha t yx = x. 

The equation for U = v' is

i.e. v' — В  [ 1
1 dU _  - 2  2x
U dx x  x 2 — 1 ’

integrating, and setting the constant of integration equal to zero,

1
V  a= В  ( X  +  — ) , i.e. У2 = xv(x)  =  B(1 +  x 2), у = A x  +  B(  1 +  x 2).
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P r o b le m s  I D

Find the general solution у = A y f fx )  +  B y 2(x) given y\{x)\

1. (x + l ) 2y" -  2(x +  l)y '  +  2y =  0, yi = l  + x. [y =  A (l  +  x) +  В (l  +  x )2]

2 . xy"  + 2y' + xy  = 0, yi = s- ^ .  [y = A ŝ  + B c- ^ ]

3. (x +  2)y" — (2x + b)y' +  2y =  0, y\ =  e2x. [y — Ae2x +  B(2x + 5)]

4. x 2y"  — (a:2 +  2x)y' +  (x +  2)y =  0, y\ — x. [y =  x (A  +  B ex)\

5. xy" — 2(x +  l)y '  +  (x +  2)у =  0, y \ = e x . [y = (A + S x 3 )ex]

6 . x 2y"  +  xy'  — 9y = 0, 2/i =  x3. [3/ =  Лх3  +  B /x 3]

7. x (xcosx  — 2 sin x)y"  +  (x2  +  2)y' sinx  — 2y(xsinx  +  cosx) = 0 ,  y\ = x2. 
[у = A x 2 +  В  sin x]

8 . (x +  l)y"  -  2xy' +  (x — l )y  = 0, y i = e x . [y = {A  +  B /(x  +  l)}ex]

9. x 2y"  +  x 2 y' +  (x — 2)y — 0, 2/i =  1/x. [y = A / x  + B { x  + 2 + 2 /x}e~ x]

1 0 . xy" — (2x +  l)y '  +  (x +  l )y  = 0, y\ = ex . [y =  (A + B x 2)ex]

1 1 . x (x +  l )y"  -  2y' -  2y = 0 , 2/1 =  1 / ( 1  +  x). [y =  (Л +  B x 3 ) / ( 1  +  x)]

12. Solve 4.x2y"  +  4xy' + (4x2  — l )y  =  0 by making the substitution у =  z j f f x .
\z" + z = 0 ,y  = {A cos x  + В  sin x )/i/x ]

13. Set у = x nz  in the equation x 2y" + 2x(x +  2)y' +  2(x +  1 )2y =  0 and choose 
n  so th a t the equation for z  has constant coefficients. Hence solve the given 
equation.

[n =  —2 , z" + 2z' + 2z =  0 , у = x ~ 2e~x ( A cosx +  B sinx)]

1 .5  P a r t ic u la r  I n te g r a ls  o f  S e c o n d -O r d e r  E q u a t io n s

Consider the problem of finding a particular integral yp(x) in the general 
solution

of

У = Ayi(x) + By2{x) + yp(x),

y" + ay' +  by = r(x), a, b constant. (1.5.1)

The particular integral can be found in simple form for a certain class 
of functions r(x). When r(x) is a linear combination of the terms in 
the first column of Table 1.1, yp(x) will generally consist of a linear 
combination of the corresponding terms in the second column (see §1.6 
for r(x) of arbitrary functional form).
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Table 1.1 Particular integrals (C, aj, К , M, a, fl 
are constants; m  >  0 is an integer)

r (x ) Ур(х)
eax Ceax
x m ao +  a ix  +  a-ix2 Л-----+  amx m

qQ!X eax(ao + a ix  +  a?x2 -\-----4- omxm)
cos fix К  cos fix +  M  sin fix
sin fix К  cos fix +  M  sin fix

eax cos fix eax \K  cos fix +  M  sin fix]
eax sin fix eax [K cos fix +  M  sin fix]

E xam ple Find the general solution of у" — у =  3e2x.
The solution of the homogeneous equation is у — Acx + В c~x . Set yp = Ce2x, where 
the constant C  is to be found. Substituting into the left-hand side of the equation:

4Ce2x -  Ce2x = Зе2г.

.'. C  =  1

general solution у = Aex + Be~x +  e2x.

E xam ple Find a particular integral of y" +  5y' +  6у — 9x4 — x.

yp = a + bx + cx2 + dx3 +  ex4, 

y'p = b + 2 cx +  3 dx2 +  4ex3, 

y'p = 2c +  6dx -|- 12ex2.

Substitute into the left-hand side of the equation and equate coefficients of x m, 
m  =  0 ,1 , . . . ,  4 on both sides:

6a +  56 +  2c =  0 x°
66 +  10c +  6 d = —1 X1

6 c + 1 5 d + 1 2 e =  0 X2
6 d + 20e =  0 X3

6e =  9 x4.

j „  19 о =  —11, c =  — , d =  —5,

19 о
yP =  6 -  l l x  +  y X “ - 5 x 3 +

E xam ple Find the general solution of y"  +  2y' +  5у =  sin2x. 
Characteristic equation: A2 +  2Л +  5 =  0,

A =  —1 ± 2 г  and у = e~x ( A  sin 2x +  A  cos2x J +  yp,
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where

yp = К  cos 2x  + M  sin 2x 

y'v =  —2 К  sin 2x + 2 M  cos 2x 

y'p =  —4К  cos 2x — 4M  sin 2x.

Substitute into the equation and equate coefficients of sin2ir, cos 2a: on both sides:

M  — 4 K  = 1, Ш  + К  = 0, i.e. К  = — , M =  —
17 17

-  /  \ 4 1у = e x ( A  sin 2x +  A  cos 2 a ; ------ cos 2a; H------sin 2x.
V /  17 17

Resonant forcing occurs when r(x) is proportional to y\(x) or У2 {х).

When r(x) = eXx (where Л is a root of the characteristic equation) there 
are two possibilities:

Case 1 Ai Ф

yp = AxeXx. (1.5.2)

Case 2 Ai =  A2:

yp = Ax2eXx. (1.5.3)

Case 2 arises only for real values of A when a and b are real.
More generally, if r(x) = xmeXx, m > 0, we have:

Case 3 Ax Ф A2:

yp = eXx(a0 + a\X +  a2x2 H------h am+ixm+l). (1.5.4)

Case 4 Ai =  A2:

yp = Axm+2eXx. (1.5.5)

For complex A =  a  ±  Ш and r(x) — eax cos Qx or eax sin Qx, the 
particular integral is given by:

Case 5 A =  a  ±  Ш:

yp = xeax [К  cos Qx + M  sin fix], (1.5.6)
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and more generally, for r(x)  =  xmeaxcosflx  or xmeax sin fix (where 
m >  0) by:

Case 6 Л =  a  ±  ifl:

УР =  е (do +  a\x  +  a2x2 +  • • • +  am+\Xm + l ) cos fix

{Ъ0 + b\X +  а2хг -}-••• + bm+ixm+l) sin fix . (1.5.7)

E xam ple Find the general solution of y"  — 2у' +  у = ex . 
Characteristic equation: A2 — 2Л +  1 =  0, i.e. A =  1, 1.

. ' .  у = {A + Bx)ex + yp, yp = C x 2ex .

C  is found by substituting into the differential equation:

C (2 +  4 x  +  x2  ̂ — 2 c ( ^ 2 x  +  x2j  + C^x2j  =  1, * 4
E xam ple Forced simple harmonic motion: ^  +  f l2y — sin fit.

Roots of the characteristic equation A =  ±Ш

у =  A  sin f i t  +  В  cos f i t  + t (к  cos fi t  +  M  sin f i t^

К  and M  are found by substituting into the differential equation: К  =  — M  =  0,

у = A  sin fit + В  cos fit — —  cos fit.

Problems IE
Find the general solution of:

1. y" + y = 3x2. [y =  A sin a; +  B c o s x  +  3x2 — 6]

2. y" — 4y = e2x. [y = Ae2x + B e~2x +  § e2x]

3. у" + 4y' +  у = 2 sin x  — 4 cos x. [y = e~2x( A e ^ x +  B e ~ ^ x ) — sin ж — |  cos ж]

4. у"  +  9у = cos За:, [у = A  sin Зх + В  cos Зх +  |  sin Зх]

5. у" + 8у' +  16у =  6е~4х. [у =  e~ix (A + В х  +  Зх2)]

6. у" + 4у — s inxsin3x . [у = ^  cos4x +  ^4cos2x +  (В  +  |х )  sin 2х]

7. у"  — 3у' +  18у =  sinh2x. [у =  e i x { A c o s ( ^ - x )  +  B s in (^ ^ x )}  +  i е2х -

8. у"  -  6у' +  8у =  е4ж — cos 2х. [у = Ае2х + {В + \ х)е4ж — ^  (cos 2х — 3 sin 2х)]

9. у" + Зу' + 2у =  е~х sinx. [у =  е- х (Л — |  sinx — |  cosx) +  В е~2х]

10. Зу" -  Ъу' + 2у = х 2ех . [у = ех (А + 18х -  Зх2 +  ±х3) +  B e i x]
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11. y" + 6у' + 9y = (1 +  x)e —3x \y =  e Зж (A + B x  +  \ x 2 +  |:ж3)]

=  e 2 Ж j d  cos ^ ^ ж ^  +  -Bsin } +12. у" +  у' +  у =  ех (х  +  совж). 

еж { | ( х  -  1) + Yjj(2cos:r +  Зэтж )}]
13. у"  — 4у' +  4у — 8ж2е2ж sin2x. [у = е2х{А + В х  + (3 — 2ж2) sin2a; — 4х сов2ж}]
14. у" -  Зу' -  4у — 10cos2x. [у = Ае4х + В е~ х -  4cos2x +  3sin2x)]
15. у" — by' +  6у — 4ж2еж. [у = Ае2х +  Ве3х +  еж(2ж2 +  6ж +  7)]
16. у" — 10у' +  29у = е5ж sin 2ж. [у = е5х {A co s2 x  + B s in 2 x  — \xco s2 x }]

17. х 2у" — 20у =  7ж3. [у =  А х ъ + В х ~ 4 — ^ж3]
18. ж2у" — ху '  +  2у =  ж In ж. [у =  ж{1пж +  ^4сов(1пж) +  _Взт(1пж)}]
19. х 2у" — 2ху' + 2у = ж3 cos(lnx). [у =  А х  +  В х 2 +  ^ ж 3{соз(1пж) +  Зэт(1пж)}]
20. х 2у"' +  Зху"  +  у' = In ж. [у = ^(1пж )4 +  Л (In ж)2 +  В In ж +  С\
21. у " — by' +  6у = ж3е2ж. [у = Ае3х +  е2ж [В  — 6ж — Зж2 — ж3 — ^ж4)]
22. у" — 6у' +  13у =  8е3ж sin2x. [у = e3x(A cos2x  + В  sin2x — 2xcos2x)]

Solve:

23. у" -  у' — 2 у =  10 sin ж, у ( | )  =  - 3 ,  у' ( | )  =  —1. [у = cosx  -  Звтж ]
24. y " -G y '  + 8y = е2ж+ зт 2 ж , у(0) =  0, у'(0) =  0. [у = ^ е 4ж -  ( |  +  \ х )  е2ж +  

^  (3 cos 2ж +  sin 2ж)]

25. 2у" -  by' +  3у = 4е2ж, у(0) =  0, j/'(0) = 0 .  [у =  4(е2ж +  еж -  2е§ж)].
26. у" +  IGy =  соз4ж, у ( f ) =  0. [у = (А + |ж ) вт4ж]

1.6 M ethod of Variation of Parameters

This method enables a particular integral of the equation

y" + p(x)y' + q{x)y = r(x), (1.6.1)

to be found when the basis functions yi(x), У2 (x) are known.
Set yp =  u(x)yi(x) + v(x)y2(x), where the functions u(x) and v(x) 

are assumed to be chosen such that y'p =  uy[ +  vy'2. Then

u'(x)yi{x) +  v'(x)y2(x) =  0 (1 .6.2)

and

Ур = uyi +  vy2 

Ур = uy'i +  vy'2

y'p =  щ/ l + W 2 + u 'y'i + v 'y [2-
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Substituting into (1.6.1) and collecting terms

u(x) y" +  p(x)y[ + q(x)y1

+ v(x) y2 + p{x)y'2 + q(x)y2\ +  u\x)y[ +  v'{x)y'2 = r(x)

u\ x )y'i(x ) +v\x)y '2(x) = r(x), (1.6.3)

because the terms in square brackets are identically zero.
Solving the simultaneous Equations (1.6.2) and (1.6.3) for u' and v':

- y 2(x)r(x)
u'(x) — 

v'(x) =

/  [уЛх )у'2

[yi(z)^(z) -  y[{x)y2(x)\
______ y\{x)r(x)______
[yi(x )y2(x ) - у ' Л х )У2(х)]

y2(x)r(x)dx
[у Л х )У2(Х ) -  У'Лх )У2(х)} 

yi(x)r(x)dx 
)У2 (х) -  y[(x)y2(x)]'"(i )= / r s

so that

f  —y2(x)r(x)dx 
Vp 2 m X J  1уЛх )У2(х ) ~ У[{.х )У2{х))

. . f  yi(x)r(x)dx
+  Vl X J [у Л Х)У2(Х) -  У'Лх )У2(х)} '

(1.6.4)

W ronskian The determinant

Щ У ъ У 2) = yi(x)y'2{x) -  y'1(x)y2(x) =
У\(х) y2(x)
y[(x) y'2{x) (1.6.5)

is called the Wronskian. It is non-zero if and only if y\(x)  and y2(x) form a linearly 
independent set of basis functions. Thus, the particular integral can also be w ritten

/ \ , \ f  - y 2{x)r(x)dx f  y i(x )r(x)dx
ЩУ1{х),У2{х))'
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E xam ple Find the general solution of у" + у =  sec®. 
Because 2/1 =  cos®, у2 = sin®, we set

yp — и cos ® +  v sin x,

y'p = —и  sin x  + v cos ®,

yp =  —и' sin ® — и cos x  + v' cos ® — v sin ®.

Substituting into the differential equation, we find tha t u(x), v{x) are determined by

P r o b le m s  IF

Find the general solutions of:

1. у" — 2y' +  у  =  x i e x . [y = (A +  B x)ex +  l ® ^ 1]

2. y" +  Ay' +  Ay = e~2x/ x 2. [y = (A + B x)e~ 2x -  \n\x\e~2x]

3. x 2y" — 2xy'  +  2у — 5®3 cos ®. [y = A x  +  B x 2 — 5® cos ®]

4. у"  +  У =  tan®. [y =  Asm® +  В  cos® — cos® In | sec® +  tan®|]

5. x 2y"  — 2®t/' +  2y = x 3 In®, [y = A x  + B x 2 +  ®3(^ In® — |) ]
6. y"sin4® — 4y'cos2 2® +  2у =  tan®, [у =  Л +  В cos2® +  ^  (ln |tan ® |+  

cos 2® In I ( l  — ^  sec2 ®) c o t 2®|) ]

7. (1 — x 2)y" — 2xy' =  2®, |®| < 1. [y = A + -Bln{(l +  ® )/(l — ®)} — ®]
8. (1 +  x 2)y" — 2xy' + 2y = x 3 + 3®. [у =  A x  +  B (x 2 — 1) +  ^®3]

9. (® -  1 )y" -  xy '  +  у  =  (® -  l ) 2. [у =  Л® +  Bex — (1 +  x  +  ®2)]
10. (® +  2)y" -  (2® +  5 )2/  +  2t/ =  (® +  l)ex. [2/ =  A{2® +  5) +  Be2x -  ex]

1.7 M ethod of Frobenius

It is possible to derive a series solution

u'(x) cos® +  v'(x) sin® =  0, —u'(x) sin® +  v'{x) cos® =  sec®,

u'(x) = — tan®, v'(x) = 1

integrating: w(®) =  In | cos®|, v(x) = x. 

Hence, Ур{х) = cos ® In | cos ®| +  ® sin ®,

у =  A  sin x  + В  cos ® +  cos ж In | cos ® | +  ® sin ®.

OO

(1,7.1)
7 1 = 0

y + p(x)y' +  y(x)y = 0,

of the equation

(1.7.2)
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whenever p(x) and q(x) can be expanded in the form

OO
/ \ Po 9 k— 1p(x) = ---- h Pi + p2x + p3x H-----=  > pkx ,

«, (1-7.3)
q(x) = Ц  + — + <J2 +  q3x  +  qt x2 H-----= W  <7;V

k=0

These functions become inhnite at ж =  0 if po Ф 0 and g0 or Qi Ф 0. 
They are said to be singular at ж = 0. However, if the series expansions 
converge to finite values for 0 < \x\ < R , the expansion (1.7.1) will also 
converge for the same values of ж, and possibly also for larger values of 
|ж|; it may also remain finite at ж =  0.

The point ж =  0 is called a regular singularity of the differential 
equation whenever at least one of po, qo, (р Ф 0. If they vanish, so that 
p{x) and q(x) are finite at ж = 0, ж =  0 is said to be an ordinary point 
of the equation.

Introduce the shorthand notation

d2 . . d
C = d ^ + p{x)Tx +  « М '

then

£u(  ж, a) — + a)(n + a — 1)a nx ,Tl+t7 — 2
n=0

J2 pkxk 11 f J2 (n' +a)
„n'+cr—l

0
OO

\n '= 0

OO

E  ® * ‘ ‘ 2 E
jn? + <J

,fc=0 4n'=0

To see how the product series in this expression are simplified, con­
sider the final product

Ё ч*1*"2 Ё а„/ж п'+<Т
а = о V,n'=0

5Z 5Z ̂
k=0 n '= 0

/Жfc+n'+er—2
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The coefficient of xn+CJ~2 on the right-hand side is obtained by setting 
к =  n — n! and summing over all n! for which qn- n>an> ф 0. Because 
qn- n' = 0 for n' > n , the coefficient is just En'=o9n-n,fln'i i.e.

£ ® * ‘ 2 1 £ an'X,n'+u

,fc=0 \n '= 0
= J2 ^ - r

7 1 = 0  7 l ' = 0

OO 71

= £ £  Qn—k ^ k X  
n = 0 fc= 0

„n+cr—2

,n+<r—2

The same argument shows that
^ OO \  /  OO

J ( ^ ( n '  + a ) a ^ ' — 1 j = y^y^Pn-fcQfc(^+cr) n+cr—2

4fc= 0

Hence
\n '= 0 n= 0  fe= 0

n=0
£и(ж,cr) = ^  < (n + cr)(n + a — l)a„

0 l
71

^ 2  °fc ((* + ^)Pn-fe + 9n-fe) xn+a~2. (1.7.4)
fe= 0

It can now be seen that u(x , a) will be a solution of equation (1.7.2),
i.e. of Cy = 0, provided the coefficient of each power of x  in this expan­
sion is zero. For n =  0we must have

jF (cr)a0 - 0, (1.7.5)

where

T(o) = a2 + (po -  l)(J + q0. (1.7.6)

For n > 1
71— 1

F(n + a)an =  *22 ~ { i k + a)Pn-k + qn-k)f>k- (1-7.7)
fc=о

This recurrence relation determines an (n >  1) in terms of all preceding
values of an. It is therefore essential to impose the condition aa ф 0, in



18 Mathematical Methods for Mechanical Sciences

which case equation (1.7.5) can be satisfied only if cr is a root of the 
quadratic indicial equation

T(a) = a2 + (p0 - l ) a  + q0 = 0. (1.7.8)

Let the roots be a = a,/3, and suppose that a — /3 =  и > 0 (if the 
roots are complex, let the real part of a be greater than the real part 
of (3). Now

;F(cr) =  (cr -  a)(o -  P),

so that

T{n + /3) =  n{n — (a — /3)} = n(n — v). (1.7.9)

This shows that the coefficient of a„ in the recurrence relation (1.7.7) 
will vanish when a — (3 and и is a positive integer. In general, three 
different cases must be considered:

1. и is not an integer,
2. n =  0,
3. v is a positive integer.

Case 3 includes the important special case when x  = 0 is an ordinary 
point, when the indicial equation reduces to

T(a) = a(a — 1) = 0, i.e. cr =  0, 1. (1.7.10)

Case 1  v — a — (3 Ф an integer:

The recurrence relation (1.7.7) can be solved for a = a  or /3 and the 
expansion (1.7.1) yields two independent solutions of the differential 
equation.

E xam ple Obtain series expansions about x  = 0 of the general solution of the
equation

{2X + x3)dJ
This has a regular singularity at x  =  0.

dy
dx

6 xy  — 0.
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It is usually more convenient to substitute the Frobenius expansion (1.7.1) 
directly into the equation without first determining the series expansions of p(x) 
and q{x). This yields

OO OO
У >  +  o)(2n  +  2cr — 3 )anxn+(T~l +  ^T^[(n +  cr)(n +  a  — 1) — 6 }anxn+<T+1 =  0.
7 1 = 0  7 1 = 0

By replacing the summation variable n in the second sum by n  =  n' — 2 the general 
term  in each series has the same power of x, i.e.

OO OO

У >  +  a)(2n  +  2(7 — 3 )anxn+cr~1 +  ^ ( n  +  a  )(n +  a — 5)an_2Xn+<T_1 =  0.
7 1 = 0  7 1 = 2

The coefficients of successive powers of x are now equated to zero, the coefficient 
for n  =  0 giving the indicial equation:

n =  0 : 
n = 1 :
n >  2 :

(1
<7(2(7 — 3)do — 0 

+  (7) (2(7 — l)a i  =  0

7̂1 —
a„-2(n +  g  -  5) 

(2n +  2cr — 3)

(7 =  0, |
ai = 0

general recurrence relation.

For <7 =  0: u{x, a) =  aoyi(x), where y\ =  1 +  3x2 +  | x 4 — j^x6 +  ^ x 8 H-----.

For <7 =  | :  u (x ,a )  = а'0у2(х), where y2 =  x§ ^l +  | x 2 +  ^ T x 4+  ---- j .

Range of convergence To determine the range of values of x  for 
which the series expansion converges we can make use of the ratio test. 
The infinite series S  = un converges provided

ur,
Un—1

< 1, as n OO.

In the previous example the ratio of successive terms is

a 2 n

a 2n-2x 2 n - 2

((7 + 2n — 5)x2 X2 

(2(7 + 4n -  3) * T ’
as n —> oo,

so that the series converge for

hr < y/2.

This is the same range as for the expansions

-1  _  -1
x(2 + x2) 2x

-6  - 3

p(x) = 

q(x) =
(2 + x2)

1

Ж2 X4 X6
— +  ——— -o’2 22 23
.2 x4 X6x

T  + 22 23a;
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Case 2 и = a — /3 = 0, equal roots:

When a =  /3, J-(n + cr) =  n2 and the recurrence relation (1-7.7) permits 
an (ji > 1) to be calculated in terms of o0, but only one solution u(x, (3) 
of the equation is determined by the resulting expansion. However, 
when the coefficients are assumed to be determined in terms of ao by
(1.7.7) for arbitrary values of cr, equation (1.7.4) becomes

Cu(x, cr) =  Т(а)а0 =  (cr — (3)2a0. (1.7.11)

This not only confirms that u(x. a) is a solution of the differential equa­
tion for arbitrary values of a0 when a = /5, but also that

f  ди \  . d
—  (х,а)  is a solution, because — = L

\ d °  ) a = P  d (J

Thus,

du
~da

(x,a
\  ~  
M — u(x, (3) In x T
/  a=0 n=i

f  ddfi ,  v

X,n+)3 (1.7.12)
<7=0

is a second independent solution of the differential equation.

E xam ple Obtain series expansions about x  — 0 of the general solution of the 
equation

< i “ i 2 ) 5 3  +  ( 1 - 5x>£  - 4 » ' 0 -

This has a regular singularity at x  =  0.
After substituting the Frobenius expansion (1.7.1) into the equation we find

OO OO

y >  +  cr)2anxn+<T~ 1 — ^ ( n  +  a  +  \ ) 2an- i x n+a~1 =  0.
7 1 = 0  7 1 = 1

Hence,

n = 0 :  cr2ao =  0 a = 0, 0
n  > 1 : an = a „ _ i (n +  a + l ) 2/ (n  +  a)2 general recurrence relation.
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Thus,

u(x, <j ) =  a^x
о +  2

x +
a +  1

= “°1‘,Е (1 + 7!Гт)

a +  3
и + 1 x2 + <7 +  4 

(7+1 x3 + ■

n = 0

and
$ 7 2  / \ / \ .  v —> — 2 7 7 - ( t7. “ h  (7 - J -  1 )  _  1—  (Ж, a) =  «(re, a) hr x +  ] T -----— - 3 -----x”+T

П= 1 ' '
Setting a  =  0 we find the two independent solutions

yi = 1 +  22x +  32x2 +  42 x3 H-----+  (n +  l ) 2x" H-------,

2/2 =  Vi{x) In x  — 2 1.2x +  2.3x2 +  3.4x3 +  • • • +  n(n +  l)xn +  . . .

The expansions converge for |x| <  1.

Case 3 p = a — (3 = an integer > 0:

There are two subcases: (i) a„ =  00 for a =  /3, which can happen 
because the coefficient T[n  +  j3) =  n(n — z/) is zero at n = u; (ii) au 
becomes indeterminate for <7 =  /3, because the right-hand side of the 
recurrence formula (1.7.7) is also zero when n — и.

For (i): Set

a0 = a0(a — /3), where a0 /  0, (1.7.13)

then

OO

a0(cr -  (3) +  2 ^ a nxn .
n=  1

u(x , a) = xa

When a = (3 the recurrence relation (1.7.7) now shows that an — 0 for 
1 < n < v. In place of (1.7.11) we find

£u(x, a) = J~[o)(гг — P)a0 = (a — /3)2(cr — a)a0.
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Two independent solutions are therefore:
OO OO

yi{x) — u(x,/3) = xp 'S^anxn = ха У ^ д п+ихп,
n = v  n = 0

Уг(х)
dii
T a {x' a)

— u(x , /3) In ж 4- xd
<T=f3

CXJ ГЧ
. ®a n  ( \ r

“0 + T
Tl= 1 J a=(3

(1.7.14)

The solution у3(ж) = u(x,a)  obtained by using the larger root of the 
indicial equation may be shown to be a multiple of yi(x) (see the 
examples).

For (ii): When a = /3 in the indicial equation (1.7.7) the coefficient of 
an on the left vanishes when n =  и and the right-hand side is also zero. 
In this case au is indeterminate, and may be taken to be an arbitrary 
constant. The recurrence relation for a — (3 then determines two inde­
pendent series solutions, the first starting with aox13 and the second 
with auxa. The latter is a multiple of that obtained by setting a =  a 
in the recurrence relation.
E x am p le  Obtain series expansions about x  =  0 for Bessel’s equation of order 1:

x 2 +  x^r- + (x2 -  1 )y = 0. dxz ax
This has a regular singularity at x  =  0.

Substitute the Frobenius expansion (1.7.1) into the equation to  obtain

y >  + a -  l)(n т  a + 1)(in'E,7l + (7 +  ^ 2  a n - 2 X ,n+a o.
71— 0 71 =  2

Then,

n  =  0 : (cr T  1)(rx — l)uo — 0
n =  1 : cr(cr +  2)ai = 0

n > 2 dn —

67 = 1, -1 
ai = 0

an- 2
[{n +  a  -  l) (n  +  a  +  1)]

general recurrence relation.

Hence, v = 2 and for general a

u(x,  cr) =  aox° 1 +(<7+l)(c7 +  3) (cr +  1)(<T +  3)2(cr +  5) 

+(cr +  l ) (a  +  3)2 (cr +  5)2(cr +  7)
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The coefficient a2 =  oo when a  = (3 = — 1. Therefore, set ao = «o(fx+1), whereupon

u(x,  cr)

= aox (cr +  1) — +
(ct +  3) (cr +  3)2(<r +  5) (a +  3)2(cr +  5)2(cr +  7) +

The root a — (3 — — 1 therefore supplies the two independent solutions (taking 
do =  1)

2/1 = 1 X 2  X 4+ +

У2 = ( ° л \

2.22 3.22 • 42

д°)а=-1

=  уi (x) ln x  H—
x

The expansions converge for |x| <  oo. 
When a  =  a  =  +1 we find

1 X2 (  2 l \ X4 72 2 n X6
X 2 +  ^  + u + 4; 2^4 + l* +  4 +  6У 22.42.6 +

2/3 =  2x
x 2 x 4 

1  -  —  + + -4i/i(x).
2.22 3.22.42

E xam ple Obtain series expansions about x  =  0 for the equation:

i \ d2V , o_rf2/( i - s  );Г2 +2x: r  + y:=0- ax^ ax
x =  0 is an ordinary point of the equation.

Substitute the Frobenius expansion (1.7.1) into the equation to obtain

У ^(п  +  a  )(n +  cr — l ) a nx
7 1 = 0

Hence,

,n+cr—2 -  ^ 2  a„_2[(n +  cr -  2)(n +  a  -  5) -  l]xn+CT 0.
n = 2

n =  0: cr(cr — l)ao=0
гг =  1 : cr(cr +  l ) a i= 0

n >  2 :  (n +  u)(n  +  a  — l)a n = —

cr =  0, 1
a i =  arbitrary for cr =  0

on- 2
[(n + ст)(п + a -  1)]

general recurrence relation.

For cr =  /3 =  0 we obtain the two independent solutions

x2 x4 x6
tfl =  1 ~ T +  T  +  80 +  ” ' ’

x3 x5 3x7
У 2 = Ж ~ Т  +  40 +  560 + " "

The expansions converge for |x| <  1.



24 Mathematical Methods for Mechanical Sciences

When a  =  a  = +1 we find a\ = 0 and 

Уз = x
x 2  x 4  3a;6

" У  +  40 +  560 + 2/2 (ж)-

Sum m ary of th e  Frobenius procedure for y" + p(x)y' + q(x)y — 0, 
where

p(x) = — +pi+p2x+p3x 2-\---- , q(x) = %  + — 3-q2+q3x+qAx 2-\------.
x x1 x

Case 1 a  — /3 — и = non-integer:
OO OO

yi(x) =  х Р у ^ а пхп, y2(x) = ха У^а'пхп, a0 = a'0 = 1 .
тг=0 7 2 = 0

Case 2 a = /3:
OO

u(x, a) =  xa 2 ^  ап(ст)жп, cio =  1,
7 1 = 0

y1(x) = u(xtp),

ш(х)  =  Ш  = йМ * ^ + Е ( ^ )\ / a—p 7i= 1 E

Case 3(i) a — (3 = v = integer > 0, 0  ̂ =  oo:

x
a=0

u(x, a) = x° {a -  (3) +  У '  an(a)xr
7 7 = 1

, an((3) = 0 for n < v,

Vi{x) = u(x,/3) = У ^ а п+„хп+а,
7 2 = 0

y2 (ж) =  =yi(®)lnaH-®/J
n = l  x

X
0-=̂

Case 3(ii) a  — /3 = v =  integer > 0, a„ indeterminate:

The expansion for a = (3 contains the two arbitrary constants ao and 
av and gives two independent solutions

OO OO

yi(x) =  x^^2 anxn, y2{x) = xa a'nxn,
7 1 = 0 7 7 = 0

a0 = a'0 = 1 .
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This includes the case in which x =  0 is an ordinary point, for which
a = 1, /3 = 0, v =  1.

Problems 1G
Find the general solution near x  = 0 by the method of Frobenius; state the range 
of convergence.

si
4 !

1. y” + y  =  0 . [tr =  0 , 1, 7 / i  =  c o s t : ,  7/2 =  sin ж, all x]
2 . Axy" + 2 y' +  у  =  0 . [ct =  0 , 2/1 =  1  -  §  +

x i  ^ 1  — ^  ^ - =  sin yT, all x }

3. xy"  +  y' +  xy  =  0 (Bessel’s equation of order 0).

2 2  4 2  2 2 . 4 2 . 6 2  '  '  ' T o ( * ^ ) 5

2/2 =  2/i(a^) In ж +  -  2# 4^ ( l  +  I )  T  гТЖб5  +  \  +  §) ~  ’

=  cosyT , y2 =

0, 0, ш = 1 -  fr +

all ж1
4. ж(1 -  ж)у" -  Зжу' — у  =  0. [<т =  0, 1, 2/1 =  ж +  2ж2  +  Зж3  Н =  ж/(1 -  ж)2,

2/2 =  2/i (Т) hi ж +  1 +  ж +  ж2 +  ж3 Н-------=  J/ 1 (ж) In ж +  1/(1 -  ж), |ж| < 1]
5. ж2//" +  Ж2/7 +  (ж2 -  \ ) у  =  0. [сг =  A, - ± ,  2/1 =  x i ( l  -  ^ ж  +  +  • • • ) =

ж- 2 sin ж, 2/2 =  ж~2 cos ж, all ж]
6. 4ж(1 - х ) у "  + 2(1 - 2 х ) у '  + у =  0. [а =  0, 7/1 =  , 2/2 =  (1 — ж)4, |ж| <  1]
7. (2ж +  4ж 3 )2/" -  у'  -  24ху =  0. [сг =  0, §, у\ =  1 +  12ж2 +  ж4 -  |§ж6 Н-----,

2/2 =  ж5 (1 +  §ж2 -  ^ ж 4 +  +  •••)> М <  3 ]
8. ж2(1 +  х)у” -  ж(1 +  2х)у' + у  =  0. [сг =  1 ,2 ,2/1 =  ж, 2/2 =  ж2 +  ж In ж, all ж]
9. 2(2 -  х ) х 2у" -  (4 -  х)ху'  + (3 -  ж)// =  0. [а =  5 , 2/1 =  ж5 , ? / 2 =  ж з ( 1  -

^ж)з, ]ж| < 2 ]

10. xy"  +  (1 +  4ж2 )т// +  4ж(1 +  х 2)у = 0. [сг =  0 , 0 , 2/i =  е_а;2 , 2/2 =  е_х2 1пж, all ж]

1.8 Bessel Functions of Integer Order

Bessel’s equation of order n
x 2y" + x y '+ (x2 — n2)y = 0, (1.8.1)

has a regular singularity at x = 0. The coefficients of the Frobenius 
solution

OO

u(x,a)  =  y ^ a kxk+<r,
k= 0

satisfy

Y .  (ik (k  +  a ) 2 -  n 2 x:k+a ^ a fc_2xfe+a =  0.
fc=0 k= 2
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The roots a — n, /3 = —n of the indicial equation a2 =  n2 differ by an 
integer or zero (u =  a — /3 =  2n) when n is an integer. For к — 1

a l (1 + a)2 - n 2 = 0, ai =  0,

and for к > 2

_  _______ —Qfc-2_______
(k + a — n)(k + a + n ) '

which shows that a„ =  й2П =  oo when a = —n, corresponding to 
Case 3(i) of the Frobenius method.

The solution y\(x) that is finite at x = 0 starts with the term of 
order xn. When the coefficient of this term is l /2 nn! the series defines 
the Bessel function of the first kind

fc= 0

The series converges for all real (or complex) values of x. If n is replaced 
by —n in this expansion, the first n terms of the series are zero, because 
(k — n)\ =  oo for к < n (see §5.1). By introducing a new summation 
parameter к' = к — n, we find

W(* +  n)!’
n = 0, 1, 2, ( 1.8 .2)

J_„(x) =  ( - l ) riJn(x).

If (1.8.2) is multiplied by xn and differentiated we obtain

d
dx

(xnJn(x)) = xn3n^i(x). (1.8.3)

The second solution given by the Frobenius method in Case 3(i) 
defines the Bessel function of the second kind

Yn(x) = - J„(i) In -  + 7 -
7Г

x ( H  " { n - k -  1)! f l  2X k
7Г E

k=0 k\
- x
4

1 \ n  oo
( I х )

7Г E
fc= 0

+ ip(k +
k\(n + k)V

(1.8.4)
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where ф( 0) =  0, ф(к) =  l  +  |  +  |  +  -- - +  | , / c > l  and

7 =  lirn
к—юо

1 1 1
1 + 2 + 3 + 4 + +  — — In кК

и  0.57721

is Euler’s constant.

As x —* oo Bessel’s equation approximates to у" +  у = 0, and the 
Bessel functions are found to resemble trigonometric functions of slowly 
varying amplitudes:

J„(x) ~
(2n +  1)7T

~~4

Y n(x) ( * -  (2" + D ^ , a; —» oo.

1.9 The Sturm-Liouville Equation

The Sturm-Liouville equation

~  ( p (x ) ^ )  + ( q(x ) +  Ar (x))?/ =  0, a < x < b, (1.9.1)
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arises when the method of separation of variables is used to solve linear, 
second-order partial differential equations (§4.3). p(x), q(x) and r(x) 
are given functions and Л is a parameter. The solution y(x) typically 
satisfies two-point boundary conditions of the general form

aiy(a) + a2 y'{a) = 0, hy(b) + b2y'(b) =  0, (1.9.2)

where cq, a2, b2 are real constants. These conditions can determine 
y(x) to within an arbitrary multiplicative constant, and can normally 
be satisfied only for certain values

A An, ta — 1,2,3, . . . ,

called eigenvalues.
Let yn(x) and ym(x) be solutions corresponding to different eigen­

values An and Am. These are called eigenfunctions, and they satisfy the 
following orthogonality relation

bj r(^x^yn(x)ym(fc)dx — 0, An Am. (1.9.3)

To prove this, write

(P(®)l/n(*)) + ([q(x) + K r{x)^ jyn =  0 ,

(p(x )y'm(x )) + (?(*) + Amr(x))ym = 0.
Multiply the first equation by ym(x), the second by yn{x), subtract, 
and integrate over a < x < b. The result can be rearranged in the form 

ь

(Am -  Ю  J r(x)yn(x)ym(x)dx

f d / dy-n \  d (  dyrn
|  U rn dx \К dx ) Vndx [ P dx

d /f dyn dym \ dx =dx \ РУт dx PVn dx

dx

P\ УтУ'п -  УпУ'т
i ь
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which vanishes because of the boundary conditions (1.9.2). It also van­
ishes if the functions yn, y'n are merely bounded at x  =  o, b provided 
that p(a) = p(b) = 0, or if p vanishes at either x  = a or x = b and 
one of the conditions (1.9.2) is satisfied at the other end (respectively 
at x = b or x = a).

E xam ple W aves on  a stretched  string Consider small amplitude vibrations 
of a stretched string fixed at its ends x  =  0 and x  = 1. The lateral displacement 
( ( x , t )  of the string is a function of both x  and the time t, and is governed by the 
wave equation

d2C d2C
——-z — 7—  = 0 , 0  <  x  < 1 ; where (  = 0  a t x  — 0 , 1 .
o x 2 a t2

It is assumed in this equation tha t the length and time scales have been adjusted 
to make the ‘wave speed’ equal to 1 .

x = 0 vibrating string x = 1

A plucked string can vibrate at certain discrete frequencies u>n. They can be 
determined by looking for solutions of the form

£ =  y{x) cos wt.

Substituting this into the wave equation and dividing through by cos cut, we find 
tha t y(x)  must satisfy the Sturm-Liouville problem (1.9.1) (with p(x) =  1. q(x) =  0, 
r(x)  =  1 )

y " + u ) 2y = 0 , y(0 ) =  0 , 2/( 1 ) = 0 ,

where u 2 is equivalent to  the eigenvalue param eter A.
The general solution у  = A  cos шх + В  sin l u x  involves three unknown constants 

A, В  and u). The two boundary conditions y(0) =  2/(1) =  0 correspond to the 
Sturm-Liouville conditions (1.9.2), and give

A  =  0, В  sinw =  0.

But, if the string vibrates we cannot have В  — 0, so tha t the admissible frequencies 
u> are solutions of the eigenvalue equation

sinw =  0, i.e. ш =  7Г, 27Г, 3 7 Г,. . . .
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Stretched string eigenfunctions (determined only up to a multiplicative constant) 
are therefore

yn (x) = sin(n 7ra;), and A„ =  (xf =  n 2n 2, n  = 1 ,2 ,----

The most general motion of the string (oc cos u>t) is described by a linear com­
bination of terms of the type sin(n7nr) cos(w„t) =  sin(n7r:r) cos(mrt), i.e.

OO

COM) = J 2 B n sm(mrx) cos(mrt), (1.9.4)
n= l

where the coefficients B n are constants.
The orthogonality condition (1.9.3) can be used to determine the values of the 

B n if the shape of the string is known at some value of the time t. In particular, 
(1.9.4) provides the solution to  the following initial value problem:

C(z,0)=/(*), ( ^ ( x , t ) j  =0, for 0 < ж < 1.

This corresponds to a string which is released from rest when initially displaced into 
the shape of the curve у — f (x ) .

The time derivative of (1.9.4) is zero at t = 0, so tha t the series automatically 
satisfies the second of our initial conditions. For the first, we set t = 0 in (1.9.4) to 
obtain

OO OO

Bn sin(n 7rx) =  ^2 В п У п (х ) =  f{x) ,  0 <  X < 1.
n=l n= 1

The m th  coefficient B m is calculated by multiplying this equation by r(x)yrn (x) =  
sm(mnx)  and integrating over the length (0,1) of the string. Because of the orthog­
onality condition (1.9.3) all members of the series integrate to zero except the one 
for which n = m.

l l
B m J sm2(mjrx)dx = j  f ( x )  sm(rmrx)dx.

о 0

Now sin2 (rm:x)dx = i ,  therefore the solution of the initial value problem can be 
written

OO

C(z,f) =  B n sin(nnx)  cos(n7rt),
n= l

Bn = 2

1
j " f ( x )  sin(n7rx)dx, 
о

t > 0. (1.9.5)

The infinite series can be summed explicitly, but further discussion is postponed 
to S4.3.

Eigenfunction expansions The procedure described above for the 
string can be used to express any function f (x)  defined over the interval 
a < x < b as an eigenfunction expansion in terms of the eigenfunctions
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and eigenvalues of a Sturm-Liouville problem defined over the same 
interval. Set

f (x)  = Y  Anyn(x), a < x < b,
П

where the summation is over all of the eigenfunctions. By multiplying 
both sides by r(x)ym{x) and integrating over (a, b) we find (from [1.9.3])

a a

Hence,

f (x)  = Y  ЛпУп{х), a < x  <b,
П

where
b
J  f(x)r(x)yn(x)dx

An = — b-------------------• (1.9.6)
Jr(x)yl(x)dx
a

When the eigenfunctions yn(x) are normalised to make 
j \ ( x ) y ^ ( x ) d x  = 1, the eigenfunctions are said to be orthonormal.

Problems 1H
Find the eigenvalues and eigenfunctions of:

1 . y" + Xy =  0, i/(0) =  0, y'( 1) =  0. [An =  ( ^ ± ^ ) \  n = 0 ,1 ,2 , . . .  , y n =

2. y" + Xy =  0, y'{0) =  0, y'{n) =  0. [An =  n 2, n  = 0 , 1 , 2 , . . . ,  yn =  cos(na:)]

3. Transform the equation у" + 2y' + (1 — A)y — 0, {y(0) =  0, y (l) =  0) into Sturm - 
Liouville form by multiplying by e2x. Calculate the eigenvalues and eigenfunc­
tions and show th a t J]) e2xyn{x)ym{x)dx = 0 , rn ф n.
[A„ =  —n 2 7T2,n  = 1 ,2 ,3 , . . .  , yn = e~x sin(n 7ra;)]

4. Transform the equation 4y"  — 4у' +  (1 +  A)y =  0, (y(—1) =  0, y{l) — 0) into 
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show 
tha t e~xyn (x)ym (x)dx  =  0 , m  ф n.
[A„ =  n 2 7T2, yn = e%x s in ( ln 7ra;),n =  2 ,4 ,6 , . . .  , y n =  e i x c o s ( ln 7rx), n  =  
1 ,3 ,5 ,...]
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5. Transform the equation y"  +  2у'  +  (1 — Л)y =  0, (y'(0) =  0, t / ( 7r) =  0) into 
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show 
th a t f j  e2xyn (x)ym (x)dx = 0 , m  ф n.
[An =  — n 2, yn = e~x (n cosnx  +  s in nx),  n = 1, 2. 3 , . . . ,  Ao =  1, yo =  1]

6 . Transform the equation x 2y" +  xy '  + Ху = 0, (y(l) =  0, y(a) =  0) into 
Sturm-Liouville form. Calculate the eigenvalues and eigenfunctions and show 
th a t / “ yn(x)ym {x)^ f  = 0 , т ф п .
[An =  (п7г/ In a )2, yn =  sin(n 7r ln a ;/ln a ) , n — 1 , 2 , 3 ,...]

1.10 Fourier Series

Consider the Sturm Liouville problem with periodic boundary 
conditions

The general solution satisfying these conditions is у = Acosnx + 
Bsinnx,  for integer values of n. The eigenvalues are therefore A = 
к2 =  n2 where n  =  0, 1 , 2, 3 , . . and each value of n is associated with 
the eigenfunction pair {cosnrr, sinna;}. The eigenfunctions satisfy the 
orthogonality relations over any interval of length 2ir.

У = 0 ( 1 . 1 0 . 1 )

a-j-2n

I cos nx  sin mx dx =  0, for all n , m ,
a

a+2ir

1
cos nx  cos mx dx =  0, for all n ф m,

a

a+2n

1
sin nx  sin mx dx =  0, for all n Ф m,

a

a+2n

for all n > 1 ,
a

for all n > 1 
for n =  0.
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The series obtained when a function f (x)  of period 27г is expanded 
in terms of these eigenfunctions is called a Fourier series, and is usually 
written

OO
f (x)  = ao +  У д а п cos nx  +  bnsinnx), (1.10.2)

n=l

where the orthogonality conditions supply
7Г

a o  = J f (x )dx ;
— 7Г 

7Г

ап =  ^ У  f ( x )c o sn xd x , (1.10.3)
— 7Г

7Г

1 r
bn = — f(x)  sinnx dx, n > 1 .

я- J
— 7Г

Fourier series of arbitrary period The corresponding Fourier 
series expansion for a function of period 2  ̂ is obtained by replacing 
ж in the above formulae by 7гж/Т, so that:

f{x) - a0
OO

£ (71—1

TlTtXan cos + bn sin nnx\

where

a n =

bn

e
1 r r/ 4 TVKX dx, n > 1-  1 f (x)  cos

t
-i

i
ПТГХ

dx.-  1 f (x)  sill
£

(1.10.4)

(1.10.5)
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/

It is frequently required to represent a continuous, non-periodic func­
tion F(x) by a Fourier series over a finite interval — t  < x < t, say, of 
the ж-axis. In this case the series defines a periodic function f (x)  which 
agrees with F(x) for —t < x < t ,  but gives a periodic extension of 
F(x) outside this interval, as illustrated in the figure. This periodic 
extension is often discontinuous at x — — £ + 2n£, n = 0, ± 1 , ± 2, . . . .  
At such a point the Fourier series converges to the mean of the limit­
ing values of f (x)  as x  approaches the discontinuity from either side. 
Thus, at the point labelled A in the figure (at x = £), the Fourier series 
converges to

lim l  W  ~  <0 +  f i t  +  £)] =  ^ [F (-Q  + F(£)].e->0 2  2

E x am p le  Derive the Fourier series expansion of f ( x )  = x  over the interval — i  <
x  < L
Because f ( x )  = x  is an odd function,

xdx =  0 ,
K.

1  f  ( n n x \  
dn = J  xcos  ^ —j—) d x

-e
0 , n > 0 ;

but, integrating by parts,

e (
f  . { П ' К Х \
/ a; sm —— dx =  -

x  c o s ( n n x  /  £)
./ V t  У 
-e

£
К

( —n n / £ )

21 cos(rz7r) | Q ^  2^ n+i
П7Г П7Т V
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E ( ~ i ) r a + i

n
sin

/ П1ТХ\
v ~ )

Half-range series An arbitrary function F(x) defined over the inter­
val 0 < x < l  can be expanded in a Fourier series of the type (1.10.4) 
by replacing l  in (1.10.4) and (1.10.5) by i f 2 and taking the limits 
of integration to be x  =  0 and x  =  l  in the formulae (1.10.5) for the 
Fourier coefficients an and bn. The series then defines a periodic function 
f (x)  of period i. However, expansions of F(x) in 0 < x < £ involving, 
respectively, only cosines or only sines can also be derived by defining 
F(x) = ± F ( —x) in — i  < x < 0.

In the first of these alternatives a periodic function f (x)  is defined 
over one period (—l  < x < t) as the even function

F{—x), — t  < x < 0, 
F(x), 0 < x < £,f{x) =

and we obtain the cosine series
OO

f (x)  = a0 + E an cos

where
7 1 = 1

П7ГХ

~ T '

ao
t i= \ J f(x)dx, an = j  j 777ГТ

f (x )  cos ——  dx, n > 1 . (1 .10.6)

For the second alternative f ( x )  is defined over (—£ <  x  <  i )  as the 
odd function

—F ( —x ) ,  — l  <  x  <  0,
F (x), 0 < x < £,f ( x ) =

leading to the sine series

oo emrx 2 f  . . mxx . .
f (x)  = 2_^bn s m - p ,  where bn — -  / f{x)  sin - y  dx. (1.10.7)

n=  1
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E x am p le  Let F(x)  =  1 for 0 <  x  < i.

(i) When this is extended to all values of ж as a periodic function of period i  the 
coefficients of the Fourier series (1.10.4) (in which t  is replaced by 1/2 and the 
limits of integration by 0  <  x  < 1 ) are

e

о

and the series reduces to one term:

f i x )  = l;

(ii) When extended to  all values of x  as an even periodic function of period 21 the 
coefficients of the Fourier cosine series (1.10.6) are

a о
£  £

^ J d x  = l, an = j  J cos ( J ^ ^ j d x  = 0, n > 0 ;

and again the series becomes
f i x )  =  1;

(iii) When extended to — i  <  x  <  0 as an odd function of period 21 the coefficients 
bn in the Fourier sine series (1.10.7) are

bn | й . ( ™ ) Л с =  A (  l-C O s (m r) )
0  n even 

— n  odd.П7Г

Hence, setting n  =  2 N  +  1, we obtain

/(a;) = i y  _sin[(2Ar + 1W <1
7Г ‘ ^N= 0

2^+1

sin(7ra:/l) ^  sin(3 7 rx /l)  ^  sin(5 7 rx /l)

All of these representations define the same function in 0 <  x  < i.
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Problems II
Verify the following Fourier series expansions for:

1- /(*)

2. f ( x ) = x  = 2

[ 1. |x| < f , 1 2 cos x  cos 3x cos 5x -
— — t- — ------ —  ------- t 1 1

lo . 1*1 > f . 2 7Г [ 1 3 5
-

-7Г < X <  7Г.

sin x  sin 2x sin 3x sin 4x —-------- -----h — --------- :----b X < 7Г.

3 . /(x) = x 2 =  + 4 ^ ]
(—1)" cos nx

, |x| < 7Г.
n = l

4 . /(x) =  |x| =  -  -  -
7Г 4 cos(2n + l)x
2 7Г ^  (2n +  l )2n=0 4 '

, | X | < 7Г.

5 . /(x)
IT — X = E sm nx

2 z—'  nn = 1
0  <  x <  27Г.

OOл 4 , / £\ v—> . N„_iCosnx
6. /(x )  =  In (2C 0S -J =  ^ ( - 1 )  —— , |x| < 7Г.

n = l

_ , 7Г ^  sin(2n -  l)x
7' ( L i !  ■ " < * < ' •

n = l 4 7

„ , ,  . 1 , x ^  cos(2n — l)x
8 . /(x) =  -  111 cot — =  2_̂  — 77----- —— , 0 < X < 7Г.

1
9 - f (x)  =  -  in

2 ^  (2n — 1
71 =  1 v

1
2 \ 2(1 — cosx) n= 1

E cos nx
-------- , 0 < x <  27Г.

n

10. /(x) =  -  In tan

1 1 . / (x )  =  e* =
2sinh7r 1 (—1)"

n = l

i sin(2n — l ) x  . . 7Г
(2n — 1) ' W < 2-

(cos nx — n sin nx) X < 7Г.

. 7Г 4 ^  cos(2n — l)x
12. f  (x) =  X =  -------У  ^ 7;------ 7v> J 0 < X < 7T.

Z 7Г z— 'Й  (2n—l)2

„ . . 2 4 v cos 2nx
13. fix)  =  sm x = ------- > — r— 0 < ж < 7Г.

7Г 7Г 4nz — 1 
n = l
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14. f ( x )
П2Х 7ГХ2 X37 Г Х  X  v

~  + 12 ~ ^
Sill nx

n=  1

2 2 00 
7Г 7ГХ X  C O S 7 2 X

/ w  = t - ?  + t = E , 0
n = l

1.11 Generalised Functions and

0  < x  < 2ix.

< x  < 2тг.

Green’s Function

The delta function 5{x — y) is defined 

ь ✓J 8 { x - y )  dy 1,
0,

by the relations

when a < x < b, 
otherwise,

ьJ F(y)5(x — y)dy =  F(x), when a < x < b.
a

( l . i i . i )

(1.11.2)

No ‘ordinary’ function exhibits properties of this kind, but we can 
regard S(x — y) as the limit as e —> 0 of the ‘epsilon sequence’

8 e (x -y )  = —------ 6,2 21, e > 0 .  (1.11.3)
■k [(x  -  y ) 2 +  e2\

When e is very small this function has a large peak Se(x — y) = 1/ne at 
x = y, and tends to zero as e —> 0 when x У y.

For any positive value of e

which establishes (1.11 .1), because
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Similarly, because Se(x — y) —» 0 as e —> 0 when x ф у, we see that, for 
any ‘smooth’ function F(x),

b

Jim /  F (y)Se(x ~ y d̂y
a

b
= F(x) lim / 8e(x — y)dy = F{x) when a < x < b.e^Oj

In applications we are not actually required to calculate the ‘value’ 
of lime_,0 6f (x) at any particular value of x, but only its contribution 
to an integral, and the limit is taken after the integral is evaluated. 
A mathematical entity defined by this procedure is called a generalised 
function. The 5-function is the particular generalised function defined 
by the e-sequence (1.11.3) with the properties (1.11.1), (1.11.2). Note, 
however, that the defining sequence is by no means unique: for example, 
the following e-sequences also define the 5-function:

6e(x -  y) =
ву/тг

exp (x -  y f sin{(x — y ) /e} H(e — \x — y\)
n(x -  y) 2e
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where Н(ж) is the Heaviside step function

H(x)
0, for x  < 0,
1, for x > 0.

(1.11.4)

An alternative procedure is to define the generalised function f (x)  
by reference to the value of the integral / f (x)F(x)dx , where F(x ) 
is any member of a set of ‘ordinary’ functions (which may, how­
ever, be required to vary in a special way, depending on the appli­
cation), and the integration is over a region relevant to the problem 
at hand. When f (x)  is defined by an e-sequence f e(x), this ‘value’ is 
defined by

J  f (x)F(x)dx  = (1.11.5)

and F(x) is said to be a test function.

E x am p le  5{x — у ) is defined over —сю <  x  < oo by the e-sequence

Se(x-y)= n[{x_ y)2 + e2y

because, for any bounded ‘sm ooth’ test function F(x)  we find by making the change 
of variable у — x  =  eY

j  F(V)S(X -  y)dy  =  lim /
-oo —oo

F{x + eY )d Y
7Г[У2 + 1]

OO

F(x) J d Y
7r[Y2 +  1]

F(x)

E x am p le  Verify tha t 5(x — y) can be defined by the e-sequence

sin{(a' - y ) / e )  
n(x  -  y)

Se(x -y )
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E xam ple
e-sequence

The Heaviside function is the generalised function defined by the

edy
7г(у2 +  б2)

1 1
-  -|—  tan 
2 7Г 4 f)-

E xam ple The Heaviside step function can be defined by
X

H(x) =  J 6{y)dy =  I®’ for x  < 0 , , c. . dH.(x)
, so th a t 5(x) = — -— . (1 .1 1 .6 )
for x  >  0 . w  dx v ’

E xam ple The following argument can also be used to show th a t <5(x) — cffi(x)/dx,  
i.e. that when a <  0 < 6 , F ( x ) ^  dx = F ( 0):

ь

a

dx

b

= [H(x)F(x)]* -  J ffff;(x)dx = F{b) -  [F(x)]q =  F ( 0 ). 
о

E xam ple S(—x) = S(x), because

<5(—x) = lim =  lim
0 7г[(—x ) 2 +  6 2] e— >0 7r[(x) 2  +  6 2]

6{x).
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E xam ple The function sgn(a:) =  2Н(ж) — 1 (=  — 1 for x  < 0, +1 for x  >  0). Then

= ss11̂ ) and = ^ sgn(x) = ^  [2Н(Ж) “ x] = 25W-

E xam ple 5'(x — у ) is defined by the e-sequence

E xam ple Evaluate F(x)S' (x)dx,  where S' (x) =  dS(x)/dx.

oo ooJ F(x)5'  (x)dx = J ^  ( f (x)J(x))  -  F'(x)S(x) dx

F(x)S(x) -  F ' (0) =  -F '(0 ) ,

because <5(ж) =  0  a t x  = ±cx>.

E xam ple 6(ax) = щ £(х ) for real a.  Because for any test function F(x)  we have 
(setting у =  ax)

oo ooJ F (x )6 (a x )d x  = -Ц  J F  ( | )  S(y)dy = j^ F (O ).
— oo —oo



Linear Ordinary Differential Equations 43

E x am p le  Evaluate F(x)S(x2 — a2)dx for real a.

For infinitesimal Д >  0
OOJ F(x)S(x2 — a2)dx

— OO

—a+A a+A
=  J F(x)6(x2 — a2)dx + J F(x)S(x2 — a2)dx

—a—A a—A
— a+A a+A

=  J F(x)5(2a[x + a])dx + J F(x)S(2a[x — a))dx
—a—A a—A

—a+A a+A
=  r p r  /  F(x)S(x  +  a)dx +  ——- / F(x)S(x  -  a)dx 

Z\a\ J  Z\a\ J
—a—A a—A

E x am p le  Evaluate x 26 y(x — 3)(x +  2 ) sjdx .

5 5 5J х 2б(( х  — 3)(ж +  2)^dx  =  J x 2S^5(x — 3)Jdx  =  i  J x 2S(x — 3)dx

E x am p le  The generalised function equal to the principal value of -- is defined by 
the epsilon sequence

P ( -  'l =  lim X
X  J  e—>0 X 2 +  62 ’ (1.11.7)

because, for e >  0 ,
OO OO

/  P (i) = ‘Та J
x f ( x ) d x

=  lime—>0
f  f { x )d x  +  Г f{ x )d x  = f  f { x)dx

J  x  J  x  ) J  x

E x am p le  A constant C  is the generalised function defined by

C =  lim C e-e l+e—»+0
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This can be used to  give meaning to otherwise formally divergent integrals. The 
following Fourier integral (in which C =  1) is particularly important:

OO OO

-  f  eikx dk = lim — /  e~eW+ikx dk 
!7T J  e-*0 2тт J

— o o  — OO

fO ooJ e^+ix)k dk + J e- (£- “ )fe dk

=  lim (  1 =  lim

1
27Г

е^о27г\е +  га; e — i x  J e^o n( x2 +  e2)

OO

J  eikx dk — 5(x). (1.11.8)

G reen’s function Consider the equation

——- +  cj 2G = S(t), —oo < t < oo. (1.11.9)
at2

The particular solution G(t) that vanishes for t < 0 (the causal solution 
when t denotes time) is found by first recalling that the solution of the 
homogeneous equation is A cos cut-\- В  sin cut, where A, В  are arbitrary 
constants. Thus

G(t) = H(f) jAcos cat +  В  sin cut j ,

vanishes for t < 0 and satisfies the equation identically for t > 0. The 
constants A and В  are found by substitution:

dG
dt

d?G 
dt2

c)(t){Acos cut +  В  sin ujt} + H(£)o;j—A sin tut + В  cos ut  

AS(t) +  u;H(£) j  — A sin ut  + В  cos uA j ,

AS'(t) +  u>5(t) { — A sin ujt + В  cos cat

— u;2H (£)|A cos tut + В sin w tj 

A5'{t) + uBS(t) -  lo2G.
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The insertion of this expression for d2G/dt2 into equation (1.11.9) yields 
the identity

A6'(t)+uB6{t) = 6(t)

A = О, В  =  -и

i.e. Git) =  — H(f) sin uit.
LU

It is now obvious that the solution of

+ uj2G = S(t — r), where G = 0 for t < r,<PG 2,
dt2

( 1.11.10)

is

Git — t) =  —H(f — r) sin uj(t — r).
U!

This is called the causal Green’s function.
G(t — т) can be used to obtain the causal solution of

d2ip
dt2 +  f it) ,

where the ‘force’ /(f) is assumed to vanish as t —> — oo. To do this 
multiply both sides of the Green’s function equation (1.11.10) by /( r )  
and integrate over — oo < r  < oo:

OO OO

( 2)  J G(t -  r ) / ( r )d r  = У <5(f -  r ) / ( r ) d r  =  /(f)
— OO 

OO

¥>(*) =  У G(f -  r ) /( r )d i

i.e.

=  — /  H(f — r) sin oj{t — T)f(r)dT
и  J

—  OO

t

Ф )  = ~  J  /(r) sin w(* _r)dr.

(1.11.11)
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The last line shows that the solution ip(t) at time t depends only on 
the behaviour of the forcing function f{t) at earlier times.
E x am p le  Find the causal solution of

+  u 2ip — H(t)e

From (1.11.11)

<p{t) =  — J H(r)e T sin u)(t — r)dr  = ——  Im |  j "  e T+luh T^dr

R(t) (  eiuJt е-* 
Im

w \  1 +  iu  1  +iu> )  =  H(t) (
sin u t  — uj cos u)t e 1 

+w(l +  cu2) ( 1  +  u>2)

Two-point boundary  value problem s A similar procedure can be 
used to solve
d2G - c,
—j~2 +  (jo G = o(x — у), 0 < x, у < a, where G =  0 at x = 0, a.

( 1.11.12)

The respective solutions of the homogeneous equation that vanish 
at x  =  0 < у and x = a > у are

G =  Asintux and G =  f?simu(x — a).

We therefore consider the trial solution

G = AA{y — x) sin tux + B H (i — y) sin tu(x — a)

dG
—j— = —AS(x — y) sintuy + tuAH(y — x) cos tux

d2G
dx2

+ B5(x — y) sin tu(y — a) + шВН(х — у) costu(x — a),

= —A5'(x — y) sin ujy — loA5(x — y) cos cut/

— ш2АН(у — x) sin tux +  B 5 \x  — y) sin ui(y — a)

+ шВ5(х — у) costu(y — a) — tu2BH(x — у) sincu(x — a) 

= 5 \x  — y ) | — Asintuy 4- В  sin u>(y — a) j  

+  tuh(x — y) |  — A cos coy + luB  costu(y — a) |  — tu2G.
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Substituting into the differential equation of (1.11.12)

5'{x — y) { — A  sin шу + В  sin ш(у — a)

+ ш6(х — y)\ — A cos шу +  В cos ш(у — a) \ = S(x — y)

— A  sin шу +  В  sin ш(у — a) =  0 and

— A cos шу + В  cos ш(у — a) = —
Ш

A _  -  a) and B =  s m w
ш sm ша ш sm ша

Hence, 

G(x,y) =
H(y — x) sinш(у — a) sincux H(x — y) sinu;(x — a) sinu;y

ш sin ша
(1.11.13)

ш smwfl

This satisfies the reciprocity principle G(x,y) — G(y,x).

E x am p le  Solve the boundary value problem

+  uj2ip = f ( x ) ,  0  < x  < a, where tp(0) =  <p(a) = 0 . 

Use Green’s function (1.11.13):
a

ip{x) = J G(x, y) f (y )dy

a xf f ( y )  sintj { y  -  a)dy +  smuJ x̂— f  f ( y ) sinujydy.  
J  си sm u ja  J

By using the expansion sin (A — B)  = sin A  cos В  — cos A  sin В  this can be written

ip{x) =
C O S i d a S l U L d X

id sm tda

a

f n y ) sin idy dy

smu r̂
i d

a

J m cos ujy dy —
i d

X

J m sin Loydy. (1.11.14)

This shows th a t if sinwa =  0 (so tha t ш and sinccx are, respectively, an 
eigenvalue and eigenfunction of the homogeneous problem d2ip/dx2 + uj2(p = 0 ,
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</?(0) = ip(a) — 0) a solution exists if and only if / 0" f {y)  sincuydy = 0. But the 
solution is now not unique because any multiple of sinwx can be added.

E x am p le  Solve

+  co2ip =  x,  0  <  x  < a, where y>(0 ) =  tp(a) — 0 .

a

ip(x) = j  G(x, y)ydy
0

a
sineox

J  у  smui(y -  a)dy +
uj sin cud

X

i f sin LUX \
—я- \ X  - a .
u 2 \ sineua J

sin uj(x — a) 
uj sin uja

xJ у  sin bjydy 
0

E x am p le  Solve 
»2

—— +  Tr2ip =  sin27nr, 0 <  x  < 1, where ip(0) =  </j(1) =  0. 
axz

sinTrx is a solution of the homogeneous problem (an eigenfunction), but 
/ J  sin 27ГЖ sin n x  dx — 0. Therefore, (1.11.14) gives

ip(x) = A s in 7rar —
S i n  7ГХ

/■-
sin 2тту cos 7гу dy —

C O S  7TX
X

/ sisin 2iry sin тгу dy

= В  sin 7ГХ —
sin 2irx

where A  and В  are arbitrary constants.

Non-hom ogeneous problem s The Green’s function (1.11.13) for 
the boundary value problem (1.11 .12) can also be used to solve the 
following problem with non-homogeneous boundary conditions:

d2ip
d x 2

+ =  f (x), 0 < x < a, where </?(0) <p0 and <p(a) =  ipa.

To do this recall that G(x,y ) =  G(y,x), so that G also satisfies 
equation (1.11.12) with x and у interchanged. We can therefore rewrite 
our equations with у as the independent variable for a fixed value of x
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in 0 < x < a:
j2

+ = f(y),  о < у < a,

d2G
dy2

+ и?G — 5(x — у), 0 < x, у < a.

Now multiply the first equation by G(x, y) =  G(y, ж), the second equa­
tion by <p(y), subtract the first from the second, and integrate over 
0 < у < a:

d2G d2(p
I  i ^ y ) ' ^ ^ . y ) - G { x , y ) ' ^ { y ) ) d y

a a

j 4>W(X ~ y)dy ~ J G(x,y)f(y)dy.

The integrand on the left is an exact differential, because

d2G d2(f d
v ( y ) - r r ( x i y ) - G (x i y ) - r ^ ( y )  =  T  <Лу ) - г (х 'У)  -  G (x i y ) f f 7 \ y }  ■dy dy dy

dG, d(p
dy dy

Therefore, because J0“ ip(y)5(x — y)dy = ip(x), we hnd

ip(x) = J G(x,y)f(y)dy  
о

+ С ( х - у ф у )
J 0

0 < x < a. (1.11.15)

The final term is known, because G(x, 0) =  G(x, a) =  0 and cp(0) =  <po, 
<p(a) = <Pa, i-e.

<p(x) = J G(x,y)f{y)dy
о

d G , ч dG . ipa-— (x,a) -  tp0 —  {x,Q) 
dy dy

a= J G(x, y)f{y)dy +
ipa sin lux — Lpo sin lu(x  — a) 

sin uua
0
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This solution is seen to satisfy the boundary conditions because the 
integrated term vanishes at x  = 0, a, and the remaining term reduces, 
respectively, to tp0 and <pa at x = 0, a.

In deriving the relation (1.11.15) the condition G(x,y) = G(y,x) is 
used, but no use is made of the conditions that G(x, y) =  0 at x  =  0, a. 
It is easy to show that the reciprocal formula G(x,y) =  G(y,x) is 
satisfied for any ‘self adjoint’ boundary value problem of the form

-j- I p(x)^j-  1 +  q(x)G — 6(x — y), 0 < x, у < a,
dx dx

dC dG
aiG(0) + a2— (0) =  0, biG(a) + b2— (a) =  0, dx dx

where aj, a2, bi, 62 are constants. Therefore, (1.11.15) also represents 
the solution for more general conditions at x = 0, a. For example, if 
the values of dyi/dx instead of are prescribed at x  =  0, a, the solution 
is given by (1.11.15) in terms of the Green’s function that satisfies 
dG/dy =  0 at x  =  0, a, namely,

<p(x) = J  G(x, y)f{y)dy -  <p'aG(x, a) +  (p’0G(x, 0) 
0

where

Problems 1J
Show that:

1 . S ( x - y )  = 6 ( y - x ) .

2 . x6{x) = 0 .

3. If x f ( x )  = 0 for all values of x , then f {x )  =  A5(x),  where A  is an arbi­
trary  constant. [ g(x ) f (x )dx  =  ff°x f ( x )  +  g(0 ) |  dx =

0  +  g(0 ) f { x )d x  = constant x <;(0 ), . ' .  f ( x ) =  constant x 6(x)

4. S(ax) =  j^yd(ar).

5. F{x)S(x — a) = F(a)S(x — a).
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6 . 5(x2 — a2) = — a) + 5(x + a)].

7- £ H ( / ( s ) )  =  dJt 6 ( f ( x ) ) .

8 . V H ( / ( x ) ) = V /( x ) i ( / ( x ) ) .

9. * $ = 2 6 ( x ) .

10. f^°ooxS '(x  — a)dx = — 1.

1 1 . f ^ o  б(пЦх  -  a) f (x )d x  =  (-l)»/<">(«)-

1 2 . limn_*oo ^  =  S(x).

13. lim e _ + 0  ж(~?+*2)2 = d'(x).

14• Р Ш + 7гг<5(2г) = Шпе_ +ог^ Г
15. / Q1() ж3 <5((х -  5)(x2 +  2))<ir =  ( | ) 3  .

16. fy x 26(x2 — 4)dx =  1 .

17. Let In x  be defined by its principal value when x  <  0 . i.e. In x  =  In |x| +  in. 
Deduce that

d . / 1 '
—  In x =  P
dx

in 5(x).

18. The three-dimensional delta function <5(x — y) =  6(x i — yi )S(x2 — yf )5(хз —уз), 
where x  =  (x1, x 2, x 3), у  =  (ylt y2l уз)-

19. A volume V is bounded by the closed surface S: f ( x , y , z )  =  / ( x )  =  0, where 
/(x )  > 0 according x  is within or outside V. The unit outward normal to S is 
n  =  V /(x ) / |V /(x ) | evaluated on S. Show that

OO

^ F ( x ) - n d S =  J F  • V H {yf{n)' )dxdydz.

20. If f ( x )  has simple zeros at x  =  a i, <X2 j a 3, etc., show that
S(x — an)

< № )  = £

21. Find the causal solution of
d2f
~dP

22. Find the causal solution of

\ f ( an)\

= S(t) +  S(t -  t ). £H(f) + (t — r)H (f — r)

(1.11.16)

^  +  2t<p = S(t — t ). |h (£ — т)ет 1

23. Use the Green’s function G(t — r)  — ^H (t — r)  sinw(f -  r )  to show th a t the 
causal solution of

d2ip
dt2

+ u 2ip —oo < t <  oo, is ip
2H(£)simnt e 1*1 
u>( 1 + uj2) 1 + u2
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24. Solve the boundary value problem 

d2G dG
+  uj2G  =  8{x — у), 0 < x, у < a, where —— = 0  a t x  =  0 , a.

dx2 dx
H(y — x) cosuj{y — a) cosujx ^  H(x — у ) cosuj(x — a) cos wy

ujsmuja

25. Use the solution of Problem 24 to solve

uj sin wa

d2p  о dp-7 - 5 - + uj p  = x,  0  < x  < a, where —  =  0  at x  = 0 , a.
dxi dx

x  sinwa; ( 1  — cos wa) cos илг
UJ* UJJ

26. Solve the boundary value problem

d2G
—j~Y ~  = d(x  ~  У)> 0 < x, у < a, where G = 0 at x  =  0 , a.

H (y — x) sinh u>{y — a) sinh ujx H(x — y) sinh uj(x — a) sinh u>y 
u> sinh wa uj sinh u>a

27. Solve the boundary value problem

d2G
-г-x- =  8(x — y), 0 < x, у < a, where G =  0 at x  =  0, a.
dx*
Щу -  x)x(y  -  a) H(x -  y)y(x  -  a)

28. Solve the boundary value problem 

d2G
dx2

=  8(x — y), 0 < x, у < a, where G(0 ) =  0 , dG
dx

(a) =  0.

[ - z H ( y-x)  - yH(x-y) j

29. Use (1.11.15) to solve

d2ip 2
+ u  <p = x,  0  < x  <  a, where ip(0 ) =  po and p(a) — p a.

uj* x  — 12-
sin ujx \  <pa sin ujx — !po sin uj{x — a)
smoia S l l l W f l

30. Use the solution of Problem 24 to solve
d2p
dx2

dp dp
+ uj2p  = x,  0  <  x  < a, where —  (0 ) =  p'0 and — ( a ) = p ' a.

dx
x  sin ujx ( 1  — coswa) cos ujx p'0 cos uj(x — a) — p'a cos ujxI-------- 5—:----------- h -------------- :---------------uj sin uia
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VECTOR CALCULUS

2.1 Elementary Operations with Vectors

A vector a = (a i,a2,a3) will be referred to a right-handed coordi­
nate system (x ,y ,z). Unit vectors along the x-, y- and г-directions are 
respectively denoted by i. j and k, so that

a = (oi, a 2, a 3) =  op + a2j + a 3k.

a has magnitude a =  |a| = у /a\ +  0% + a3, and a = a/|a| = 
а / у/ a\ + a\ +  a3 is a unit vector in the direction of a.

The scalar product a • b of two vectors a and b is defined by

a • b = ab cos в =  a\b\ + a262 + a363,

where в is the angle between the directions of a and b. Hence, i • j =  
j • к = к • i = 0, and |a| = л/а • a.

Two non-parallel vectors a and b define a plane with unit normal n. 
Let 9 be measured from a to b in the positive (or right-handed) sense 
about the direction n (i.e. clockwise when looking along the direction 
of n). Then the vector (or cross) product a x b is defined by

a x b = ab sin 9 n.

53
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к
z A

i

У
j

a x b

The definition does not depend on the choice of the direction n. If the 
direction of n is reversed the angle of rotation is replaced by 27r — 6 
and sind is replaced by sin(27r — 9) = —sin 9, so that magnitude and 
direction of a x b are unchanged.

Note also that

i j к a x a = 0,
axb  = a\ a2 аз , in particular < a x b =  —b x a,

h  b2 b3

"“5II• fHXIIXIIX___У

The triple scalar product of three vectors a, b, c is

a \

a b x c = a x b c = h
a-2 аз
h  h

C\ C2 C3

This is because a x b =  ab sin dn, where n is a unit vector perpendicular 
to a and b, and therefore

a • b x c =  ab sin 9 n • c =  ab sin 9 x c cos ф

=  area of base x perpendicular height.

The following vector identities are frequently encountered:

a x (b x c) =  (a • c)b — (a • b)c (triple vector product) 
(a x b) x (c x d) =  (a • b x d)c — (a • b x c)d.



Vector Calculus 55

E xam ple Solve the vector equation : x  +  x  x a =  b. ( 2 . 1 . 1 )

Take the cross product with a: 
but

To find a • x  take the scalar 
product of (2 .1 .1 ) with a:

Subtract this equation from (2.1.1):

x  x a +  (x x a) x a =  b x a
(x x a) x a =  a(a • x) — a2x  

x  x a — a2x  =  а(а • x) +  b x а

а • x  =  а ■ b
x  x а — a2x  =  —а(а • b) +  b x а 

( 1  +  a2)x =  b +  (a • b)a — b x a

b +  (a b)a — b x a
( 1  +  a2)

Problems 2A
1. Find the value of x  given th a t a =  3i — 2j and b =  4i +  xj are perpendicular. [6]

2. Find the lengths of a =  2i -  j +  2k, b =  5i + 3j k. W hat is the angle between 
the directions of a and b? [3, \/35, cos-  1 (5/3^35]

3. Solve for x  the vector equation x +  a(b ■ x) =  c, where a, b, c are constant 
vectors. W hat happens when a • b =  —1? [x =  c — a(b ■ c ) / ( l  +  a • b)]

4. Solve A x + a x x  =  b, where А  ф 0 is a constant, [x =  {A2 b + a ( a  ■ Ь )+ Л Ь х а } /  
A (A 2 +  a2)}

5. Solve the simultaneous equations x  +  y x p  =  a, y  +  x x p  =  b.

[x =  {(p • a)p +  a -  b x р } / ( 1  + p 2), у  =  {(p ■ b)p +  b -  a x p } /( l  + p 2)\

6 . Calculate r  and r, where the dot denotes differentiation with respect to the 
time t, when r =  (f+  s in f ) i+ ( f  — sin t)j +  \/2 (l — cosf)k. Show that r and r are 
perpendicular and have constant magnitudes, [r =  ( 1  +  cost)i +  ( 1  — cost)j +  
V ^sin tk ; r  =  — sin ti +  sinfj +  \/2cosfk; r  f  =  0 ; |r| =  2; |r| =  y/2]

7. Show tha t (a x b) • (a x c) x d =  (a • d)(a ■ b x c).

8 . If r =  (x, y, z ), show that the equation of the straight line through the point rQ 
in the direction of the unit vector t  is r =  rQ +  At, —oo <  A < oo.

9. If r =  (x , y , z ) lies on the straight line through r Q in the direction of the unit 
vector t, show th a t (r — rQ) x t =  0.

10. Show th a t the equation of the plane whose unit normal is n (so th a t |n| =  1) 
and which passes through the point rQ is (r — rD) • n  =  0. Show that the 
perpendicular from the point iq intersects the plane at r =  rq — n[(iq — rQ) ■ n].
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11. Show th a t the equation to the perpendicular line from the point b to the straight 
line r =  a +  At is

r =  b +  y t  x {(a — b) x t} , — oo <  /r <  oo.

12. Show th a t the straight lines r =  a +  Au and r =  b +  /xv will intersect if 
v b x u  =  v a x u ,  and th a t the point of intersection can be w ritten in either 
of the forms

a • b x v  , a b x u
a H--------------u =  b H-------- v.

v - a x u  v b x u
13. If the straight lines r =  a +  Au and r =  b +  pv do not intersect show tha t 

the length of the common perpendicular joining them is |(b — a)-n|, where 
n =  u x v / |u  x v|.

14. Show th a t the equation of the plane through the points r i , r2, r3 can be written

r • r2 x r3 +  r • r3 x ri +  r • ri x r2 =  ri • r2 x r3.

15. Show th a t the equation of the sphere of radius a and centre rQ is

(r -  rQ) • (r -  rG) =  a2.

16. The foci of an ellipse of m ajor axis 2a are at the points ±b . Show th a t the 
point r lies on the ellipse if

a 1 — a 2(r2 +  b2) + (b • r)2 =  0.

2.2 Scalar and Vector Fields

Single-valued, scalar and vector functions defined over a region of space 
are referred to respectively as scalar and vector fields. The mass density, 
temperature, gravitational and electrical potentials, etc., are examples 
of scalar fields. The velocity of a moving fluid at any instant, and the 
gravitational and electrical force strengths are examples of vector fields. 
In applications scalar and vector fields also depend on time, which may 
be regarded as an independent parameter.

Let <p(x, y, z ) =  <p(x) be a scalar field. The equation

tp(x, y, z) = C = constant,

defines a ‘level-surface’ S. Because ip(x, у , z) is a single-valued function 
of position, two level-surfaces corresponding to different values of C 
cannot intersect.
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ip =  constant

Suppose x and x + hx are two neighbouring points on different level- 
surfaces. The change Sp in the value of p  in moving from x to x + Sx 
is calculated by writing

ip(x + 5x,y + 5y, z + Sz) = p(x, у , z) +  Sx^  +  Sy^  +  8z^  +

= <p(x,y,z)

Sp ~  Sx ■ V<p + • ( 2 .2 . 1)

where the vector
dip dip dip 
dx'  d y 1 dzV>p = vp- =  i

. dip .dp
dx

, dp
( 2 . 2 . 2 )

is the gradient of p  at x (also denoted by grad<^). The operator V is 
pronounced ‘del’ or ‘nabla’, and is written (with respect to rectangular 
coordinates)

f  d  d  d \  . d  . d d
y d x ’ d y ’ d z )  1d x ^ ^ d y ^ ~  dz'

(2.2.3)

Let hx be in the direction of the unit vector a, and put Ss =  |hx|, 
so that a  = Sx/Ss. Then the rate of change of p  at the point x in the 
direction a, called the directional derivative of p, is

= lim\d s  )  k <5s—»o Ss —  ■ V p  =  a • VJp
Ss

(2.2.4)
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When two neighbouring points x and x +  hx he on the same level- 
surface, equation (2.2.1) shows that

Sx— • V(p —> 0 as ox 0 
ds

for all orientations of the vector Sx on S. But in this limit, the vector 
displacement hx lies in the tangent plane to the level-surface through 
x, so that Vy? is normal to the surfaces of constant ip, and the unit 
normal is

n =  -——г, in the direction of increasing ip. (2.2.5)
|VH

This is the direction in which tp changes most rapidly, because according 
to (2.2.4)

=  a • V<p =  |V</?| cos0,

which assumes its maximum value when 0 =  0 (where 9 is the angle 
between n =  V^/|V<^| and the unit vector a).

E x am p le  Evaluate V r, where r — \J x 2 +  у2 + z 2.

x  у. d r  d r  d r  .
Г =  d y ' ~dz ' = у/ж2 + у 2 + Z 2  ’ y / x 2 +  y 2 + Z 2  ’ y / x 2 + y 2 +  Z 2 ,

E x am p le  Calculate the unit outward normal at (x, y, z ) to  the ellipsoid
2 2 2 

_  + У1 + _  = i 
a2 b2 c2

+ ^  — l i s a n  increasing function of x, у  and 2 , so th a t Vy? is directed 
away from the origin, and the required outward unit normal is therefore

n _ ( a2 ’ I? ’ c2 )
|VH

(л. jl «л
V a 2 ’ b 2 ’ c 2 /

/  4ж2 i i y 2 i 4 z2 /  x 2 i y2 , z2
у a4 ' b4 ' с4 у a4 ' b4 ' r4

P r o b le m s  2 B

Calculate the gradients of:

1. <p =  x . [i]

2. ip =  x 3 + y3 + z 3. [3(ж21 +  y 2j +  z2k)]
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3. tp = rn , r  =  xi +  yj + zk. [nr” “ 2 r]

4. p  = a  • r, r  =  xi +  y] + zk.  [a]

5. ip =  r-V (x +  у + z), r  =  xi + yj + zk.  [ i+ j  +  k]

6 . ip = f ( r ) ,  r  = \xi + yj + zk\.

Find the directional derivatives in the direction of a  of:

7. p  = ex cos y, a  = (2 ,3 ,0 ) ,  x  =  (2 , 7r , 0 ). [—2е2 /-\ДЗ]

8 . р  =  xyz ,  a  =  (1 ,-2 ,2 ) ,  x =  ( -1 ,1 ,3 ) .  [7/3]

Find the unit normal to the surfaces:

9. z  =  y /x 2 + y 2 a t x  =  (3,4,5). [(3,4, — 5)/5л/2]

1 0 . ax +  by +  cz +  d =  0  a t any x. [(a, b, c)/ \ /a 2 +  b2 + c2]

11. Show that, for the product of scalar functions ipi, </?2

12. Show th a t the directional derivative of the vector F  in the direction of the unit 
vector a  is given by

2.3 The Divergence and the Divergence Theorem

Let dS denote the area element on a surface S, with unit normal n =  
n(x). Because the surface has two ‘sides’, the vector n can be chosen 
arbitrarily to be directed away from either side. For a closed surface we 
usually take n to be the outward normal.

The flux of a vector field F(x) through the surface S is defined by 
the surface integral

V(cy9icp2) =  Pi V P2 +  ptS p i -

where a  • V

s s

where the dS denotes the vector surface element

dS = n dS =  (n i,n2,n 3)dS,

orientated in the direction of the surface normal n.
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S

The net flux from a dosed surface, with outward normal n, is 
obtained by integrating over the whole of the surface, and this opera­
tion is signified by the notation </>s F •dS. In the case of a fluid with flow 
velocity v(x, t), £ ,  v • dS is equal to the rate of increase of the volume 
V(t) occupied by the fluid in S. Referring to the following figure, in time 
St a surface element of area dS undergoes a vector displacement vSt 
and sweeps out a volume dSn ■ vSt. The net change 5V in the volume 
of the fluid initially in S is therefore SV = ^2 dS ■ vSt, and

SV
St d S n ■v /v • dS.

Therefore, ф f s v • dS is just equal to the rate of expansion of V per 
unit volume,5 V at

n
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With this interpretation in mind, we dehne the divergence of a vector 
field F at x by

div F =  ‘outflux’ per unit volume

where the integration is over the surface S of an infinitesimal volume 
element V containing x. This is a scalar function of position.

The explicit representation of divF in rectangular coordinates is 
derived by taking a volume element in the shape of a rectangular par- 
allelopiped of sides dx, dy, dz aligned with the coordinate axes, and 
volume V =  dxdydz. In the following figure the contribution of the 
faces S_ and S+ to the integral (2.3.1) is

with analogous expressions involving dF2/dy, 8F:i/d z  for the other 
faces. Hence

(2.3.1)
s s

(2.3.2)

s

dz

x

The divergence theorem  Let F(x) be defined on and within the 
interior V of a closed surface S. Then

div F dV = ф n ■ F dS = ф F • dS. (2.3.3)
v s s
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The proof is an immediate consequence of the definition (2.3.1).
11

The volume integral on the left of (2.3.3) is evaluated by dividing V 
into volume elements hVf  with surfaces S/,.. For each element

hVfc(divF)fe n • F dS,
sk

where the divergence is evaluated at some point within hV*,. Then as
SVk ^ 0

[  div F dV = 5Vfc(div F )fc =  ^  i  n • FdS.
v к к s{

The surface integrals over a shared rectangular surface of adjacent vol­
ume elements cTVT are equal and opposite, and the only terms in the final 
summation on the right-hand side that make a non-zero contribution 
correspond to the surface elements that approximate to the boundary 
S as —> 0, which yield <fs F ■ dS as 5V k —> 0, thereby establishing
the theorem.

E x am p le  Show tha t V  = |  f s r d S ,  where V  is the volume bounded by the closed 
surface S and r  =  (x , y, z).

By the divergence theorem: |  j>s r dS = |  f v  div rdV = |  f v  3dV  =  V.

E x am p le  A vector field whose divergence vanishes is called a solenoidal vector. 
The velocity v(x, t) of an incompressible fluid is solenoidal, because the volume 
occupied by a moving fluid element is invariant, i.e. its rate of volumetric expansion 
is zero, although the mean fluid density may vary with position in the fluid.

In an ideal fluid in irrotational motion the velocity v  =  where y(x, t) is a 
velocity potential. When the motion is incompressible div(Vy>) =  0. Now

F)2 fj2
div(V) =  div grad =  V • V =  V 2 =  —  +

oxz oyz OZz
(2.3.4)



Vector Calculus 63

Hence, for incompressible flow ip satisfies Laplace’s equation

2 _ d2<p d2p> d2y>
V ^ = №  + d^2 + lh 2 ~ '

Problems 2C
Find the divergence of:

1. F  =  yi +  zj +  жк. [0]

2. F  =  x. [3]

3. F  =  (x ,y 2, z 3). [l + 2y + 3z2]

4. F  =  4:r2i +  4y2j  — z 1 k. [8 x +  8y — 2z]

5. F  =  xyz(i  + j  +  k). [yz + x z  + xy]

6 . F  =  r / r 3, r  =  x\ + yj +  zk.  [0, r  >  0]

7. F  =  r ( r  - a), r  =  xi  +  yj + zk ,  a  =  constant. [4r • a]

(2.3.5)

Prove that:

8 . V 2 ( l / r )  =  0, r >  0, r — xi + yj + zk.

9. V 2 (rn) =  n(n + l ) r " -2 , r  =  a:i +  yj + zk.

10. For scalar and vector fields </?(x) and a(x), div(y:a) =  </3d iv a  +  Wip ■ a.

11. div ( fV g )  -  div (flV /)  =  / V 2 5  -  5 V 2/ .

12. / g v?n • VipdS = f v (Vip)2 dV, provided V 2 y> =  0.

13. V  = \  <fs n -V (r2 )dS, where r  =  r \  +  y.j +  z k  and V  is the volume enclosed by S.

14. f s (x3i +  y3j  + z 3k)-dS =  where S is a sphere of radius R  with centre at
the origin.

Evaluate <fs n  ■ F d.S when:

15. F  =  ( x ,x 2y, —x 2z) and S is the surface of the tetrahedron with vertices
(0,0,0), (1,0,0), (0,1,0) (0,0,1). [A]

16. F  =  \ ( x 3, y 3, z 3) and S is the surface of the sphere |x| =  2. [1 2 8 7 t/ 5 ]

17. F  =  axi + byj + czk  where a, b, c are constants, and S is the unit sphere |x| =  1. 
[ | 7 t ( o  +  b +  c)]

Divergence theorem in two dimensions For a two-dimensional 
vector field F (x,y) in the жу-plane, the divergence theorem involves 
the line integral §c n • Fds taken around the closed boundary C of an 
area A of the plane, where ds =  yjdx2 +  dy2 and n is the outward



64 Mathematical Methods for Mechanical Sciences

normal to the contour:

dxdy (2.3.6)

The reader can easily show that nds — (dy — dx) when the line 
integral is taken in the positive sense around C (such that the interior 
of the curve is to the left when travelling along C), and thereby deduce 
Green’s theorem

F\dy -  F2dx =  J
A

In the usual statement of this formula (F\, F2) is replaced by (-G , F), 
giving the two-dimensional form of Stokes’ theorem (§2.4):

/ fBG  B F \
( —— -g-Jdxdy. (2.3.7)

C A

+ BF2
By dxdy.

2.4 Stokes’ Theorem and Curl 

Circulation of a vector field The line integral

(j) F ■ dr
c

taken around a closed circuit C (Figure (a)) is called the circulation of 
F around C.
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r a

n

О
(a)

For a given vector field F(x) a new vector field denoted by curlF is 
defined whose value at the point x is obtained by the following limiting 
procedure. Choose a direction defined by the unit vector a, then

a • curlF = circulation around a per unit area =  lim — ф F-dr
A - o A j

c

where C is any closed contour around x lying in the plane containing x 
whose normal is a. C encloses an area A of the plane, and is traversed 
in the positive sense with respect to the direction a (Figure (b)).

To evaluate curl F explicitly the vector line element dr is written in 
the form

where ds =  |dr| > 0 is the arc length on C, and n is the unit outward 
normal to C in the plane. Then

1

(2.4.1)

dr =  (a x n)ds,

a • curl F =  F • (a x  n)ds =  n • (F x  a)ds.
c c

The vector F x a lies in the plane of the curve C. We may therefore apply 
the two-dimensional divergence theorem (2.3.6) to the final integral,
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to obtain

a • c u rlF  =  hrn J div(F x a )dS = div(F x a)
A

=  V • (F x a) =  a  • (V x F).

In rectangular coordinates (x ,y ,z ) we find (using (2.2.3)), taking in 
turn a  = i, j, k:

curl F =  V x F =
i j к
d_

dx
d_
dy dz

F\ F2 F3

4̂
05 CO

 J dF2
dy

dF2

dz 

dFi

i +

dx dy

dF\
dz j

(2.4.2)

Stokes’ theorem  Let C be a closed contour and S an open two- 
sided surface bounded by C. The unit normal n on S is assumed to be 
orientated in the positive sense relative to that in which the contour C 
is described (see Figure (a) below). Then

The theorem is proved by ruling a mesh over S in the manner illus­
trated in Figure (b), and summing the contour integrals taken over all 
of the mesh boundaries in the positive sense. The sum is just equal to 
§o F  * .  because the contributions from a mesh side within C is equal
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and opposite to that of an adjacent mesh. Then, if Cfc, SS*, and щ  
denote the boundary, surface area and unit normal for the fcth mesh, 
the definition (2.4.1), with a  =  п*., gives as SS& —■> 0

F-dr = У ] щ  ■ curlF(5Sfc
к

I  c u rlF  • dS.
s

Problems 2D
1. Calculate cu rl F  for F  =  xi, xi +  y] +  zk,  (xi — y j ) / (x  +  y). [0,0, k /(x  +  y)]

2. Show tha t cu rl {r(a ■ r)} =  a  x r, and cu rl cu rl {r(a  • r)} =  cu rl (a x r) =  2a,
where r  =  xi +  yj +  2:к  and a  is constant.

3. If a  is a constant unit vector, show tha t a-{V(v • a) — cu rl (v x a)} =  divv.

4. Prove th a t (v-V)v =  V (^x2) + c u r l v  x v  where (v-V) =  v \d /d x  + V2d /d y  + 
v^d /d z  and v  =  [v\, V2, U3 ).

5. Use the relation j>c  V<p ■ dr =  0, where C is any simple closed curve (i.e. one 
tha t can be ‘shrunk’ to a point without crossing any boundaries) to deduce that 
cu rl Vtp =  0 .

6 . Show tha t if cu rl v  =  0 where v  =  (xyz)b(xai +  yaj +  zak), then either 6  =  0 
or a =  —1 .

7. Establish the identities:

cu rl (y>F) =  V x (yF) =  <pcurlF +  V<p x F; 
cu rl (curl F) =  V x ('V x F) =  V(div F) -  V 2 F;

div(F x G) =  V (F x G) =  c u r lF  G  -  F  c u r lG ; 

cu rl (F x G) =  V x (F x G) =  (G -V )F -  (F-V )G  +  Fdiv G -  G divF ; 
grad(F ■ G) =  V (F  • G) =  (G -V )F +  (F-V )G  +  G  x c u r lF

4 - F  x cu rl G.
(2.4.4)

8 . Show tha t cu rl (r“ r) =  0, for any a, but d iv(r“ r) =  0 only for a  = —3.

9. Show tha t d iv (cu rlF ) e  0 by applying the divergence theorem to 
<fs n  ■ curlFcLS for a closed surface S. Divide S into two parts Si, S2  by any 
closed curve C drawn once around S. Stokes’ theorem shows tha t the surface 
integrals over Si and S2 are equal and opposite, because they are equal to the 
circulations of F  around C in opposite directions.

10. Prove th a t for a scalar field ip

j  V tpdV  = <j> p  ndS,
v s

where V is the interior of the closed surface S with outward normal n.
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11. By considering the surface integral a - n x Fd5 for an arbitrary unit vector 
a, prove tha t

I  curl FdV =  j)  n x F dS,
V s

where V is the interior of the closed surface S with outward normal n. Hence, 
deduce th a t curl F can be defined by

curl F =  lim — (j n x FdS.
V—>o V ./

s

Questions 10 and 11 of Problems 2D and the divergence theorem 
are all variations of one integral transformation, which is clear from the 
symbolic representations

J  X7ip dV = j) n ip dS, 
v s

J  V • F dV = j  n • FdS,
v sJ V x F d V  = jnx FdS.

V s

2.5 G reen’s Identities

(2.4.5)

Let (pi and 922 be scalar fields. Then

div(</?iV9?2) =  V921 • V 922 + <PiVV2, 

div(</?2V9?i) =  Vy?i • V(p2 + </?2V V i.

The divergence theorem yields for a region V bounded by a closed 
surface S

j  V(/?i • Vy?2 dV = 9?;i V<p2 • dS 9?iV2922 dV
v s V

= ® </22V<pi • dS — / dV. (2.5.1)
v

either of which is known as Green’s first identity.
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The right-hand sides of (2.5.1) supply Green’s second identity

s v
When ipi and (p2 both satisfy the same one of the following equations

Laplace: V2</? =  0,
Helmholtz: V2<̂> +  K2ip = 0,

in V, Green’s second identity reduces to the ‘reciprocity’ relation

j)  |(^ lV (̂ 2 -  ^ V ^ i j
s

• dS = 0.

E x am p le  An infinite region of incompressible fluid is bounded internally by the 
surface S of a rigid body. The body is in motion and causes the fluid to move 
irrotationally with velocity v  =  V y, where <p satisfies Laplace’s equation V 2<p =  0 
in the fluid. This implies tha t |V</?| ~  1 / |x |3 as |x| —» oo in the fluid, and the fluid 
may be assumed to be at rest a t infinity.

Green’s first identity, with tpi =  y>2 =  shows th a t the kinetic energy of the 
fluid is proportional to

Л
V  s

fluid region

where dip/dn = n-S7ip is the normal component of the velocity of S directed into the 
rigid body. If the body is suddenly brought to rest, dip/dn  becomes instantaneously 
zero, and the equation supplies the unphysical prediction tha t motion also ceases 
immediately everywhere in the fluid!

E x am p le  The velocity distribution of the irrotational motion of the previous 
example is uniquely determined by the boundary motion, i.e. if ip and iff are two 
velocity potentials found by different means tha t have the same values of dip/dn  on 
S, then V</?(x) =  Vip'(x ) in V.
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To prove this we set Ф = tp — ip', and note tha t this implies tha t дФ /дп =  0 on 
S and V 2<h — 0 in V. Green’s first identity, with p \ — p 2 — Ф, then gives

дФ
Ф- d S -

on J
Ф\72ФЛУ = 0.

The integrand on the left is non-negative, and we must therefore have УФ =  0 in 
V, i,e. Vcp — V p ' .

E x am p le  The kinetic energy of the irrotational motion of the previous two exam­
ples is smaller than  the kinetic energy of any other motion consistent with the 
boundary conditions.

If p is the fluid density and <p the velocity potential for irrotational motion, the 
kinetic energy is

Го = \ p j  ( V p f d V .  
v

Let v i(x ) be any other (rotational) velocity distribution th a t satisfies n  ■ Vi =
дф/дп  on S, with kinetic energy T\ =  ^p f  v \d V . Then

v

T x - T 0 = l- p J  ( u 2 - ( V v ? ) 2) d V

v

=  \ p  j  (^2Vp • (V] -  V p )  +  (v ! -  V p )  cN
V

=  p J |^div^<p(vi — Vp'j  — <^div(vi — d \  +  ^ p  J ^vi — V p ^  dV
V V

=  p j) p (v  i — V p )  ■ dS — p j  ^div(v i — V p )d V  +  ifP ^  ( v i — cTV.
s v v

On the final line, the first integral is zero because n  • v j =  дф/дп  on S; the second 
integral is zero because the fluid is incompressible (div(vi — V p ) =  0). The final 
integral is non-negative, thereby proving tha t 7 \ >  Tq.

2.6 Orthogonal Curvilinear Coordinates

Consider three scalar fields qi(x), <?2(x), g3(x). Each has a level- 
surface that passes through a given point P (see figure below). It is 
assumed that the functions are such that the three level-surfaces are 
not coincident or meet in a common curve. The values of qi, f/2, g3 
on these surfaces accordingly determine the point P, and constitute
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curvilinear coordinates of P. The three surfaces are the coordinate 
surfaces through P, their lines of intersection are the coordinate lines, 
and the tangents of the coordinate lines at P are the coordinate axes, 
whose directions vary for different points P.

We consider here orthogonal curvilinear coordinates for which, at 
every point P, the coordinate axes are mutually perpendicular. Choose 
the positive directions of the orthogonal coordinate axes of (qi, q2, q3) 
at P to form a right-handed system, with respective unit vectors ai, 
a2, a3 in these directions. Let the coordinate surfaces q\ + dqi, q2 +  dq2, 
Q3 +  dq3 define the coordinates of a neighbouring point P'. Suppose that 
the infinitesimal rectangular parallelopiped, shown in the figure, formed 
by th e s e  su rfaces  a n d  th e  su rfaces  th ro u g h  P h a s  sid es  o f le n g th  h id q x, 
h2dq2, h3dq3 (hi, h2, h3 > 0) respectively parallel to ai, a2, a3. Then the 
volume element dV and line element ds (the distance PP') are given by

dV = hih2h3dqidq2dqs, ds2 = h2dq\ + li2dq2 +  h\dq2, (2.6.1) 

and the gradient Vy? of a scalar field ip by

The corresponding expressions for divF and c u rlF  in orthogonal 
curvilinear coordinates for a vector field

may now be derived from their definitions (2.3.1) and (2.4.1).

D

( 2 .6 .2)

F = Fiai + F2k2 +  F3a3
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The volume of the parallelopiped is dV = h\h2h3dq\dq2dq3. The 
surface integral fPBCD n • F dS over the face PBCD is

-F -a 1h2h3dq2dq3 = -F ih 2h3dq2dq3,

and over the face A'B'P'D'
dFih2h3dq2dq3 +  —  (Flh2h3dq2dq3) dqu

so that the net contribution from the two faces is
d—  (F1h2h3)dq1dq2dq3.

dqi

A similar calculation shows that the contributions from the remaining 
pairs of opposite faces are

д d—  (F2h3hi)dqldq2dq3 and —  (F3hih2)dqidq2dq3. 
dq2 dq3

Hence, by equating the sum of the surface integrals to 
divF h\h2h3dq\dq2dq3 we find

о  о  о

—  ( F \M 3) + —  (.F2h3h ) +  —  ( F ^ h i )  .dqi Oq2 dq3 \
(2.6.3)

To find the component of ai • c u rlF  of cu rlF , the definition (2.4.1) 
is applied to the closed contour PBCD whose normal is a i . The enclosed 
area is h2h3dq2dq3. The contribution of the edge PB to §PBCD F-dr is

div F = 1
h\h2h3

a2 • F h2dq2 = F2h2dq2)

and the contribution from CD is therefore
d

—F2h2dq2 -  —  (F2h2dq2)dq3,
dq3

yielding a net contribution equal to

d_
dq3

(■F2h2)dq2dq3.
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The contribution from the sides DP and BC is similarly found to be

d
—  (F3h3)dq2dq3.
dq2

Equating the contour integral to гр • curl F h2h3dq2dq3 we find

ai ■ curlF — (curlF)i = -----
h2h3

_d_
dq2

(F3h3) A
0q3

(F2h2) .

The corresponding expressions for (curlF)2 and (curlF)3 may be 
obtained from this expression by permuting the subscripts. The final 
result may then be cast in the form

curl F
/?4ai h2a2 h3a3

d d а
dqi 0<?2 дяз

hiFi h2F2 h3F3
(2.6.4)

E x am p le  The cylindrical coordinates (г, в , z) of a point are related to the rectan­
gular coordinates (x , y , z ) by

x  =  r  cos в ,  у

Then

ds2 = dr2 +  r2d62 +  dz2 

hi =  1 , h2 = r , h3 — 1

dV = rdOdrdz
dip „ 1 d p  - d p  „

v,p= * г + ; э в в + эГ'

d i v F  =  l * r F -

c u r lF  =  -
r

d r

d F z
d6

dF
r  d9 d z  

d ( r F e) \  _
r ~

d F r
d z

Щ е + 1- ( Щ р 1 - в4 С
or J r \  or Об J

2 19
V V = TbZr dr \  dr

i 9 V , a V
r 2 <902 d.2 2 '

(2.6.5)



74 Mathematical Methods for Mechanical Sciences

E x am p le  For spherical polar coordinates (г, 9, ф)

x  — r cos ф sin у =  r sin ф sin в, z  = r cos в (0 <  в < 7Г, 0 < ^  <  27г) 

Then

ds2 =  dr2 +  r2d02 + r2 sin2 вdф2 

hi =  1 , h2 =  r, / 13 =  r s i n 0  

dV = r 2 sin 9d9dфdr

d p  л 1  d p  ~ 1  d p  2\7p = тг-гН----д~̂~[Ф

d iv F  =

dr r d9 r sin 9 dф

1 d(r2Fr) 1  d(s'm9Fe) 
r 2  dr  rs in #  d9

1 dF,Ф
r s in 0  dф

cu rl F
1

r  sin 9

+

d(sin 9Рф) d F e \  „ 1  / 9F r d ( r s in 0 .Fh)\
дв дф )  Г r sin 0  \  8ф dr J

1  f djrFe) 9Fr \ ~  
r \  dr 89 J

2 1  д (  2d p \  1  d f  . <9</Л 1  d2p
r2 dr \  dr J r2 sin 9 89 \  89 J r2 sin2 0 8ф2

2.7 Evaluation of Line and Surface Integrals 

Line integrals Consider line (or contour) integrals of the form

b bj F-dr =  J F-dr = J (Fidx + F2dy + F3dz),

(2 .6 .6)

(2.7.1)

along a prescribed path C between the endpoints a and b. Such integrals 
are evaluated by introducing a parametric representation of the vector 
position r on C.

E x am p le  Evaluate f c F-dr along the section C of the helix defined by

r  =  (co st,s in t, 6 f), 0  <  t < 4 7 Г,

when F  =  (у , z, x).
We have dr =  (— sin i, cos t, 6 )dt and F  =  (sinf, 61, cos t)

47Г

J F d r = H  — sin2 t + 6 (f +  1 ) cos t
c 0

dt = —2tt.
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Condition for path independence The line integral (2.7.1) is inde­
pendent of the path between any two points a and b provided F is the 
gradient of a scalar potential <p(x), i.e.

F =  Vip.

For, if F =  V ip, then F-dr is an exact differential, and
b  b  bI F-dr = J V</? ■ dr — j dp = </?(b) — y?(a),

a  a  a

depends only on the values of ip(x) at the endpoints. On the other hand, 
if the integral is independent of the path between any two points in the 
domain V  of definition of F, the function

X

V?(x ) =  J  F-dr,

defines a single valued function of x in T , and
x+<5x

<p(x + fix) — <p(x) =  j  F-dr «  F(x) • 6x, as Sx —» 0.
X

By taking in turn 5x — i&r, jSy, кSz it follows that

n  =  F2 = %  F3 = ^ ,  i.e. that F = VV.ox oy oz
Note that F can always be expressed as a gradient if curl F = 0. 

Indeed, the integrals

F-dr and T2 - /
c2

and C2 between any

: Ф F-dr = /  cur lF
C12 s'12

always equal, because

where C12 is the closed contour formed by Ci traversed from a to b 
and C2 traversed from b to a, and S12 is any open, two-sided surface 
bounded by Ci2 (Stokes’ theorem).
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E x am p le  Show th a t j c  sin xy(ydx  +  xdy) is path  independent and find the cor­
responding potential function.

Path  independence is assured because c u r lF  =  curl(?/sinxj/,a;sina;?/,0) =  0. 
Let

d p  . d p  d p
—  = y s m x y ,  —  =  x  sm xy, —  =  0 -
dx dy dz

The last equation shows tha t p  does not depend on г. Integration of the first 
equation yields p  =  — cos xy  + f ( y)  for arbitrary f (y ) .  Substitution into the second 
equation then implies th a t f ( y)  — constant, which may be discarded, because a 
potential function p  is always undetermined to  within an arbitrary constant.

Problems 2E
Evaluate the line integrals f c F-dr:

1 . F  =  (3x4 ,3y 6 ,0) where C is the curve: x 2 + y 2 = 4, z =  0 from (2,0,0) to
( - 2,0,0). [=Ш]

2. F  =  (z , x , y ) where C is r  =  (co st,s in t , t ) ,  0 <  t < An. [б7г]

3. F  =  (ex ,e4y/x , e2z/ y ) where C is r  =  (t, i 2, f3), 0 <  t < 1. [§e4  +  §e2  +  e -  f  ]

Show tha t the following integrals are path-independent and find the corresponding 
potential functions:
4. f c  [(ey — zex)dx + xeydy — exdz] , [p = xev — zex}.

5. f c \y cos xy  dx +  x  cos xy  dy — dz] , \p = sin xy  — z].

6. fc [xe2zdx + x 2e2zdz] , [ p = ^ x 2e2z].
7. Show th a t if r  =  r(t) on C, the length of arc between t — a and t  =  b is given 

ЬУ t  = fa \*(t)\dt.
8 . r  =  i +  tj +  t 2k on C. Show tha t the length of arc between t =  0, T  is

i  =  ^ Т \ / 1  + 4 T 2 +  i  ln{2 T +  V/T T 4 T 2}.

9. r  =  (a cos в, a sin в, a 0 ta n a )  on a helix, where o, a  are constants. Show that 
the length of arc measured from в = 0  is given by £ = adseca.

Surface integrals Integrals of the form

I  F -d S F ■ n dS = (Firii + F2n2 +  F3n3)dS ,
s s s

(2.7.2)

over an open or closed surface S, can be evaluated by introducing a 
representation of a point r on S of the type

r =  x(u, v)i + y(u, t>)j +  z(u, u)k, (2.7.3)
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where и , v are suitable parametric variables.

The point r(u,v) on S and the two neighbouring points

r +  r Udu =  r + du,
(u,v)

and r + r Vdv =  r +

define adjacent sides of a small parallelogram lying on S. The area dS 
of the parallelogram is |(ru x rv)dudv\, and the unit normal at r is

_  ±  (гц x r V)dudv _  ru x r„
\(ru x rv)dudv\ |ru x r„|5

where the ±  sign appears because of the ambiguity in the direction 
of n. Hence, the vector surface element on S can be written

dS = ndS =  ± (ru x r V)dudv, (2.7.4)

and the surface integral (2.7.2) becomes

J F • n dS = ±  J F-ru x r„ dudv. (2.7.5)
s s

In applications of this formula the correct sign must be determined 
from the conditions of the problem.
E x am p le  Determine the surface element for a sphere of radius R.

Using spherical polar coordinates (г, в , ф):

г =  R (sin 9 cos ф, sin 9 sin ф, cos 9)

г в = R  (cos 9 cos ф, cos 9 sin ф, — sin 9)

гф = R (—sin 9 sin ф, sin 9 cos ф, 0)

r j x r ф = R? (sin2 9 cos ф, sin2 9 sin ф, sin 9 cos 9)

— R? sin 0(sin 9 cos ф, sin 9 sin ф, cos 9) = R 2 sin 9 r.
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Hence,

n dS = dS = re x Гф dOdcj) = r R 2 sin 6d6d(f).

E x am p le  Evaluate f s F  ■ n d S  when F  =  z3(k — i) and S is the surface of the 
section of the cone

r  = и cos v i +  и sin v j +  и к , 0 <  u <  5, 0 < r  <  2тг,

with outward normal n.

s o o

E x am p le  Evaluate j>c  F-dr when F  =  (—4y3 ,4 x 3, z 3) and C is the contour defined 
by x 2+ y 2+ z 2 = R 2, z  = h (|/i| <  R)  traversed in the positive direction with respect 
to the positive z-axis.

Apply Stokes’ theorem f c F-dr =  Jg n-V  x F dS, where S is the circular surface 
x 2 + y2 < R 2 — h2, z = h. Then

V x F

i j к
_d_ d_
dx dy dz

-4 y3 4x3 z 3

(0 , 0 , 1 2 ж2 +  1 2  у 2),

and the unit normal n  =  (0,0,1) is parallel to the positive г-axis. Transforming to 
polar coordinates (x, y) — (r cos 0 , r sin 9) to evaluate the surface integral:

n-V x F d S  = J (0 , 0 , 1 ) • (0 , 0 , 1 2 x 2  +  1 2 y 2)rdrd9
s

P r o b le m s  2 F

( R 2 - h 2 ) 2

= 24тr /
2\2r3dr = 6ir(R2 -  h2)

Evaluate f s F-dS:

1. F  =  (2x,2y,0) where S is the surface: z = 2x + 3y, 0 <  x <  2, — 1 <  у < 1 . 
[±16]
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2. F  =  (ev , —ez ,ex) where S is x 2 +  y2 =  9, x > 0, у > 0, 0 <  г <  2.
[±(2e3  -  3e2 +  1)]

3. F  =  (1, x 2, xyz)  where S is z = xy, 0 < x  < у, 0 < у < 1. [±

4. F  =  (z, —xz, у ) where S is x 2 +  9у2 +  4г2  =  36, 0 < x, 0  <  у, 0  <  г. [±  4^]

5. F  =  (2xy, x 2 ,0) where S is r  =  (coshu, sinhu, v), 0 <  и <  2, —3 < v < 3 .  
[±(2 cosh3  2  — 2 )]

6 . F  =  (x3 , 0, z 3) where S is the surface of the cube |x| <  1, \y\ <  1, \z\ <  1. [±16]

7. F  =  (y2, z 2, x 2z) where S is the surface bounding the region x 2 + y 2 <  4, x  > 0,
У>  0 , \z\ <  1 . [± 2 tt]

Use Stokes’ theorem to evaluate <fc  F-dr:

8 . F  =  xyi — (2x — y)k where C is the triangle with vertices (0 ,0,0), (1,1,0), 
( 1 , 0 , 0 ), traversed in this order. [ |]

9. F  =  x 2yzj  where C is the quadrilateral with vertices (0,1, 0), (1,1, 0), (1,0,1), 
(0 , 0 , 1 ) traversed in this order. [ — |]

10. F  =  x2zj where C is the triangle with vertices (1 ,—1,0), (1 ,1,0), (0,0,1), 
traversed in this order. [ ~  g]

11. F  =  xyz j  where C is the triangle with vertices (1 ,0,0), (0,1, 0), (0, 0,1). [0]

12. F  =  (2y, z , 3y) where C is the circle x 2 + y2 + z 2 = 6z: z = x + 3. [±187Г\/2]

13. F  =  (—3y, 3x, z) where C is x 2 +  y2 =  4, 2  =  1. [±247r]

14. F  =  x 2z i +  xy2j  +  z 2k  where C is x 2  +  y2  =  9, x  + у + z =  1, orientated 
anticlockwise when viewed from above. [ ^ 7r]

15. F  =  2zi +  4xj +  5yk where C is x 2 +  y2  =  4, z — x  =  4, orientated anticlockwise
when viewed from above. [—4 7 t]

2.8 Suffix N otation

Sum m ation convention Algebraic manipulations of vectorial expres­
sions can often be simplified by adopting an explicit suffix notation 
F =  (Fi, F2, Fs) for all vectors, including the position vector x. Instead 
of writing x = (x , y, z ) we write x =  (x i,x 2, x3). The components of x 
are then хг, where i = 1, 2 or 3, and we can talk about the vector x, 
instead of x.

The usual expansion of the scalar product of two vectors a* and b,

a\b\ +  a2b2 +
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is the sum )T̂ =1 a&  over all possible values of the suffix i. In this and 
more complicated formulae involving summations the expression to be 
summed is always found to contain the suffix to be summed twice. We 
therefore dispense with the summation sign and adopt the convention 
that whenever a repeated suffix occurs in a formula it is to be given in 
turn all possible values (i =  1, 2, 3) and the terms are to be added. 
The shorthand representation of the scalar product is then simply а ^ .

Differentiation The partial derivative of the j th component of the 
vector field F(x) with respect to the zth component of x is written 
dF j/dxi. When j  = i our convention gives

9F1 = dFi dF1 dF1 =
dxi дх\ дх2 дхз V (2 .8 .1 )

Similarly, for a scalar field </?(x) the derivative dip/dxi is just the ith 
component of V<£>. The directional derivative a • V</? of </? in the direction 
of the unit vector a  can therefore be written

a • V<p

Kronecker delta Sy When F = x the partial derivative dFj/dxi = 
dxj/dxi, which is equal to 1 when i =  j  and 0 if г ф j .  The Kronecker 
delta symbol is defined to have this property:

— $22 — $зз — 1 ,

$12 — $13 — $21 — $23 —  ^31 — $32 — 0,

so that

dxj _  дхг 
dxi dxj 4 ( 2 .8 . 2 )

A quantity like $ц with two independent suffixes has 3 x 3  =  9 
different components. It is an example of a second-order tensor (The 
properties of tensors are not considered in this book, but it should 
be noted that an arbitrary set of nine numbers represented, say, by
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the symbol Ay must satisfy certain well-defined conditions in order to 
qualify as a tensor.) A vector F) is a one-dimensional tensor.

Alternating tensor ецк Consider the three unit vectors

ei =  (1,0,0), ёа =  (0,1,0), e3 =  (0,0,1).

The determinant ву*, formed by the triple scalar product e, • ё? x ek 
defines the three-dimensional alternating tensor with 27 components 
that satisfy:

1 . eijk — 0 if any two of i. j , к are equal;
2. e^k =  1 if г, j , к are all different and in cyclic order, i.e. е^з =

2̂31 =  6312 = 1;
3. e ĵk =  — 1 if i, j ,  к are all different and not in cyclic order, i.e.

e 213 =  6132 =  вз21 =  — 1.

For any two vectors ai: bi the quantity
з з

6 у k Q>j bk - E E  eijkdjbk
j=i fc=i

is a double sum, because there are two repeated suffixes. For each value 
of г there are nine terms on the right-hand side. But only two of these 
are non-zero; for example, when i =  1 only the terms j  = 2, к =  3 and 
j  — 3, к = 2 are non-zero (for which ei23 =  1, ei32 = —1), so that

eijkCtjbk =  0 2 ^ 3  —  а з& 2 -

Similarly

62jk ^ jb k  =  a.3 î — О’Ф з  and езjkO jbk —  0162 — a^bx-

But these are just the three components of the vector product a x b, 
which therefore becomes in suffix notation

(a x b)i =  eijkajbk. (2.8.3)

We can derive this useful formula directly by putting a =  (oq, <22, аз) = 
Oj&j and b =  (61, b2, b3) = bkek. Then

(a x b)j — e, ■ (cij&j x Ьк&к )̂ ĵ x ^k'jttjbk бу/̂ а̂ б̂ .
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P r o b le m s  2G
Establish the following formulae:

1 . V V = a g f e  =  S f -

2 . (cu rl F )j =  (V x F )j III ?r dFk
dxj

a\ d2 аз
3. э. • b  x c — eijk&ibjCk = bi Ъз

Cl C2 Сз
4. Su =  3.

5. — b.
6 . Cijk^-ipq =  f i jp ^ k q  OjqOkp ■

7. ~  2(5Ц.

8. Cijk&ijk = b.
9. (a  x (b x c ) ) . =  Cjjp« ,ekjtqbpCq — bi(ijCj C)cijbj =  bfa  • c ci<x • b.

10. If n  is the unit outward normal to the surface S of a sphere of unit radius, 
show tha t

/
47Г Г 47Г

n i T l j d S   ̂ i Ф  'H 'iT ljT lk T lid S   ̂  ̂ “I- H-
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COMPLEX VARIABLES

3.1 Complex Numbers

A complex number has the form

z = x + iy, where i — V —1 ;

x  and у are real numbers, respectively called the real and imaginary 
parts of z, and sometimes denoted by x  =  Re г, у =  Im г. The complex 
conjugate of г is

z* — x — iy.

Algebraic manipulations with complex numbers generally obey the 
usual rules of algebra with the addition of г x г = г2 =  — 1 .
E x am p les  Express in the form x  4- iy:

1. (3 -  2 i)(l +  i) = 3 +  i -  2i2 =  5 +  i. 
о (! +  * ) _  (1+*) (3 +  2г) 1 +  5г 1 5г

' (3 -  2г) =  (3 -  2г)(3 +  2г) “  9 +  4 “  13 +  13'

Im z

83
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The complex number z — x + iy can be represented by a point in 
the complex plane or Argand diagram, the real and imaginary parts of 
г being plotted respectively along the conventional x- and y-directions. 
Thus, 2 may also be interpreted as a vector whose magnitude and 
direction are specified by polar coordinates (r, 9), in terms of which the 
polar form  of 2 is

z = x + iy = r(cos в +  i sin 9) =  re10,

where r = \z\ — y/x2 +  у2 (= у/zz*) is the modulus of г, and 9 — 
arctan (I) is the argument. Because 9 is undefined to within a multiple 
of 27Г, we introduce a principal value for the argument denoted by argz 
which satisfies

—7Г < arg z < л.

E xam ples

1. ,г=  1+гл / 3  =  2 е ^ + 2шг>; r  =  2, a r g 2 = § .

2. ;г =  3 - З г  =  ЗУ2е*(-7+2тг); r  =  3\/2, a r gz  =  - f .

Complex numbers obey the vector parallelogram law of addition

Z\ +  z 2 =  (xi +  iyi) +  (x2 +  M/2) =  (X1 +  Ж2) +  i(y 1 +  yf)-

In the complex plane addition is accomplished by completing the par­
allelogram whose adjacent sides are represented by z\ and z2. This 
geometrical construction shows that addition satisfies the triangle 
inequality

\zi +  z21 < |^iI +  \z2\- (3.1.1)

z, +z2

The triangle inequality
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E xam ple All complex numbers z  satisfying \z — z0\ = R  > 0, where zQ = a +  ib, 
lie on the circle (x — a)2 + (y — b)2 = R 2, with centre at z = z0.

The multiplication and division of complex numbers assumes a 
particularly simple representation in polar form. If

Z\ = T\ (cos 6*1 +  i sin 6\ ) =  г\егв1, z2 =  r2(cos 02 +  i sin 02) =  г2егв2, 

then

Z1Z2 = r ir 2[cos(6*i +  6*2) + zsin(6*i +  6*2)] =  r 1r2el(f?1+6’2),

£1
2:2

П '
Г2 ■

COS(01 — 62) +  isin(0i H eH0 i-e2) 
Г2

(3.1.2)

These results may be derived from the expansion formulae for trigono­
metric functions, cos(^4 ±  B) = cos A cos В  =F sin A sin В , sin(A ±  B) = 
sin A cos В  ±  cos A sin В , or otherwise be regarded as obvious from the 
properties of the exponential function. Repeated application of the mul­
tiplication formula for Г\ = r2 =  1 and 6\ — в2 =  в supplies De Moivre’s 
formula

(cos в + г sin 9)n = cos n6 +  i sin n6.

The nth root of a complex number For a positive integer n and 
complex number z, the equation

w =

defines n distinct roots w.
Let w = Re^  and suppose that г =  гегв, where в =  arg г, i.e. 

—it < в <ir. Then, because wn =  z,

Кпетф =  гегв

R  — r™,

=  ге^в+2кп\  к 
в 2 к

Ф =  -  -t------- 7Г.П П

0, ± 1, ± 2, . . 1

There are п different values of the argument ф that correspond to n 
distinct nth roots of z, obtained by taking к = 0,1, 2 , . . . ,  n — 1. The 
principal value of the nth root is obtained by taking к = 0.



86 Mathematical Methods for Mechanical Sciences

E xam ple Find all the values of z i  =  7 l  +  i\J3. 

z =  1  +  гл/З =  2 e ~

z* = = 2u fee5 A: =  0 ,1 ,2 ,3 .

E xam ple The cube roots of unity.

я — f02fc7rit 3 = e°(1)з = (. )
2 тгг 47Г г 1 , 7 3e 3 , e 3 =  1, — -  ±  г-—.

In all cases the sum of the roots, w\ + W2 +  -\----- h wn, vanishes. This is because
the equation wn — z  =  0  is equivalent to (w — w\)(w — W2) . . .  (w — wn ) =  0 , and the 
sum of the roots is the coefficient of — wn~ l when the terms are multiplied out. The 
vectors w\,  W2, ■ ■ ■ wn may therefore be regarded as representing a system of forces 
in equilibrium.

Cube roots of unity

P r o b le m s  ЗА

1 . Express in the form a + ib:
(i) (2 +  г) 2  +  (2 -  г)2; (ii) f ± g  -  g f * .  [6 , 4ia(3/(a* + /32)]

2. Show th a t
(2 — 3г)(3 +  4г) 5

( 6  +  4г)(15 — 8 г) ~  34‘

3. Find the modulus and principal value of the argument of: z =  —1, г, 3 +  4г, 
- г - 7 3.
[1,7т; 1, | ; 5,0.927 radians; 2 , - ^ L]

4. Find arg z for: z =  -1 0  -  t, 2 +  2i, 3 -  3i. [9 = -3 .042, f , - f ]

5. Express y/5 +  12г, \J—5 +  12г, \f i  in the form a +  ib. [±(3 +  2г), ± (2  +
3»), ± ^ ( 1 +*)]
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6 . If (x  + i y ) 4  — (a +  ib), show tha t a 2 +  b2 =  (x2 +  y2)4.

7. Find two real numbers a, b such that ( l+ i )o + 2 ( l  —2i)6—3 =  0. [a =  2, b =  |]

8 . If z =  x+iy ,  express z2, 1 /z ,  (z2 +  l ) / z  in the form X + i Y ,  where X,  F a r e  real 
functions of x, у. [X = x 2 — y2, Y  = 2xy, X  =  x / { x 2 + y 2), Y  = —y /  (x2 + y 2); 
X  = x { l +  l / ( x 2  +  j/2)}, Y  = y{  1 -  l / ( x 2  +  y 2)}]

9. If z i ,Z2, Z3 are complex numbers, show that

(i) \zi +  Zi]2 +  \zi — .2 2 12 =  2 |z i |2 +  2 1 ̂ 2 12
(ii) 1 2 2 1  -  Z2  -  2 3 |2 +  |2z2 -  2 3 -  2 i |2 +  |2 Z3 -  2 i -  Z2 |2 =  3{|z2 -  2 3 |2  +

|23  -  2 i |2 +  |zi -  Z2|2}.

10. Show tha t when a quadratic equation with real coefficients has a complex root 
z = a + ib, then the other root is the complex conjugate z* — a —ib. If z = l  + 3i 
is a root of x 4 + 16x2 +100 =  0, find all the roots. [1 +  3г, 1 — Зг, — 1 +  Зг, 1 —Зг]

11. Show that

Evaluate the roots:
1 2 . s fC&. [± 2 ( 1  — г)]

13. ^T. [±1, ±г, ±(1 ±  г)/л/2]
14. f / l T i .  р б етт1, k =  1,9,17]

15. z 2 -  (5 +  i)z + 8  +  i = 0. [z = 3 +  2i, 2 -  i]
16. If w — 4 /z  and the point representing z in the complex plane describes a circle 

of unit radius whose centre is a t 1  +  г, show th a t the point representing w in 
the complex ги-plane describes a circle of radius 4.

17. The point z =  x +  iy  moves along a curve in the complex z-plane defined by 
the equation / (z )  =  constant. W hat curves are represented by the equations: 
|z — 1| =  2, |z T  1| — |z — 1| — 0, Re(z2) =  1? [Circle of radius 2 with centre at 
(1 ,0 ); straight line x =  0 ; hyperbola x2 — у 2  =  1 ].

3.2 Functions of a  Com plex Variable

A complex valued function f ( z ) of the complex variable 2 associates a
complex number

w =  f(z),

with each given value of 2. The function relates corresponding points in
the complex 2- and гс-planes, and is said to provide a transformation
(or map) between the planes.



88 Mathematical Methods for Mechanical Sciences

г-plane vv-plane

As the point г varies over the whole of the г-plane its image will 
vary over a certain region of the ic-plane that may or may not include 
all possible points of the w-plane. Alternatively, the function /(г )  may 
be defined only over a certain region (its range or domain of defini­
tion) of the г-plane, and then defines a mapping of that region onto a 
corresponding image domain in the tc-plane.

It is frequently useful to split /(г )  into its real and imaginary parts:

w =  f (z)  = u{x, у) +  iv(x, у ).

If u(x,y)  and v{x,y) are continuous functions of x and у in the usual 
sense, then /(г )  will be a continuous function of г.
E xam ple

w = z 3 = (x +  гг/ ) 3  =  x 3 — 3 x y 2 +  i(3x2y — y3), 

u(x ,y)  =  x 3 -  3xy2, v(x ,y)  = 3x2y -  y3 (3.2.1)

D ifferentiation /(г )  is said to be differentiable at г with derivative 
/ '(г ) if the following limit exists

f '(z) = Jim 
0 2 —>0

f ( z  + 5z) -  /(г) 
5z

(3.2.2)

where the complex number г + 6z may approach г along any path 
as Sz —» 0.

The condition that the limit should exist independently of the path 
by which Sz —> 0 imposes a severe restriction on the class of functions 
that are differentiable. Generally speaking ordinary (real or complex 
valued) differentiable functions f (x)  of the real variable x  are differ­
entiable when regarded as a function of the complex variable г. But 
any combination of the form f (x ,  y) = u(x, y) + iv(x , y), where the real
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functions u(x ,y ) and v(x,y)  are differentiable with respect x  and у , is 
not necessarily differentiable with respect to г.

E xam ple f ( z )  =  z 2 = x 2 — y2 + 2ixy  is differentiable for all z, because

(z + Sz)2 -  z 2 (2z + 6z)Sz
--------  --------- = -------- ------------ ► 2 z, as Sz —+ 0 ,

Sz Sz

but f ( z )  = (z * ) 2  = x 2 — y2 — 2 ixy  is not differentiable: 

f ( z  + Sz) — f ( z )  (2 z* + Sz*)Sz*
5z Sz

=  (2z* +  Sz*)e~2ie -> 2z*e“ 2i0, where 0 = arg tfz, 

depends on the direction в at which the point 2  is approached.
Im z

z  + 8z

Re ;

R egular function f ( z ) is said to be regular (or analytic) in a domain 
V  of the complex plane if f ( z )  exists at all points of V. A point where 
f ( z ) is not regular is called a singularity.
E xam ple /(z )  =  ^ is regular everywhere except for a singularity at z =  0, where 
it is undefined.

The Cauchy—R iem ann equations Suppose that f ( z ) =  u(x,y)  + 
iv(x, у) is regular. Introduce the shorthand notation

^X
du
dx' u y

du
dy

and vx
dv dv
d x ’ 1 y d y ’

then, because Sz — Sx + iSy,

j. {ux + ivx)Sx +  (uy +  ivy)Sy 
8x,Sy—>0 (Sx + iSy)

According to the definition (3.2.2) this limiting operation should not 
depend on the manner in which Sz =  Sx +  iSy —► 0. In particular, we
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can let Sz —> 0 along a direction parallel to the real axis, in which case 
Sy = 0 and Sz = Sx; similarly, 8z can tend to zero along a direction 
parallel to the imaginary axis, so that Sx =  0 and Sz — iSy. These 
limits give the following alternative representations of f '(z)

. . du dv du dv 
n *) = d x + t d x = - %  + d y ’

Equating the real and imaginary parts of these formulae supplies the 
Cauchy—Riemann equations:

du dv du dv
dx dy' dy dx'

These compatibility conditions must be satisfied by the functions 
u(x, y) and v(x, y) when f ( z )  = u(x, y) + iv(x, y) is regular.

The converse is also true, namely: If u(x,y),v(x,y)  satisfy the 
Cauchy-Riemann equations then f(z)  — u(x, y) + iv(x, y) is regular.

To prove this we must show that f ' ( z ) =  Игщ*-^ Sf/Sz exists inde­
pendently of the way in which Sz 0. Indeed, when equations (3.2.3) 
are satisfied

/'(*)

Sf  =  (ux + ivx)5x +  (uy +  ivy)8y
= [ux + ivx)5x +  (~vx +  iux)Sy (using (3.2.3)) 
=  (ux + ivx)5x +  i(ux + ivx)8y 
=  (ux +  ivx)(8x +  iSy) = (ux + ivx)Sz,

Um j -o SzSz
^x T tvx exists.

When f ( z ) =  u(x,y)  +  iv(x ,y ) is regular, the real and imaginary 
parts satisfy the Cauchy-Riemann equations (3.2.3). By eliminating in 
turn v and и between these equations it follows that u(x, y) and v(x, y) 
are each solutions of Laplace’s equation:

d2u d2u d2v d2v
dx2 dy2 ’ dx2 dy2

and that the real and imaginary parts of an analytic function are nec­
essarily solutions of the Laplace equation in two dimensions.
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E xam ple w = z3 is regular because (see (3.2.1))

ux = vy = 3x2 — 3 y2 and u y = —vx = —Qxy, 

where ux =  du /dx ,  etc.

E xam ple The exponential function w =  ez = ехегу = ex [cos у +  i sin y) is an entire 
function, i.e. it is regular for all values of z.

E xam ple The complex sine and cosines

eiz +  e~iz eiz -  e~iz
cos г -  ------------- , sin г =  ------------- ,

2  2  г
are entire functions, but t&nz = sin z /  cos z is regular except at z  =  (2 n +  l) - | where 
cos 2  =  0 .

E xam ple The complex hyperbolic sine and cosines

are entire.

cosh 2  =
e2 +  e

sinh 2  = e* — e

E xam ple The logarithmic function w =  и + iv = Ln 2  is defined by the equation 
ew =  2 . If 2  =  reif>, then ew =  eueiv = re i(e+2"7r), n =  0 ,± 1 ,± 2 , . . . .  Hence 
Ln 2  =  ln r  +  i(9 + 2п7г). If в = arg 2  (the principal value of the argument of 2 ), the 
principal value of Ln 2  is denoted by ln 2  and defined by

ln 2  =  In r  +  iarg 2 .

By writing и = I; 1п(ж2  +  у2), v = arctan (^) +  2mr we can verify tha t и and v 
satisfy the Cauchy—Riemann equations except at 2  =  0, and that

d 1
—  h i 2  =  - ,  z ф 0 .
dz z

E xam ple We define the complex power az by az = ez<ln a+2nrri) ; n =  0, ±1, 
± 2 , . . . ,  so tha t there are infinitely many values when a is a complex number not 
equal to an integer or a rational fraction. The principal value of az is defined to be

In a

Problems 3B
Express the principal values in the form x  + i y :

1. г*. [(1 +  г)/у/2]

2. (5 — 2г)(3+7Г*>. [-276.2-436.0*]

3. г*, [е- ]̂



92 Mathematical Methods for Mechanical Sciences

3.3 Integration in the Complex Plane

Integration in the complex plane between two points z — a and z = b 
along a contour C joining the points is defined by the limiting operation

/ П
f{z)dz = lim y ^ f j S z j ,  (3.3.1)

c ^
where a =  Zo, Z\ , . . . ,  Zj,. . . ,  zn =  b is an ordered sequence of points 
along the contour from a to b, fj  is the value of f ( z ) at an arbitrary 
point z on C within the segment (zj_i, Zj), and the limit is taken in 
such a manner that 5zj — Zj — Zj~\ -> 0 a s n ^ o o .

By setting /  =  и +  iv and dz = dx +  idy, the real and imaginary 
parts of the integral can be represented as conventional line integrals 
in the жу-plane:

If C is defined parametrically by г =  z(t) = x(t) +  iy(t), ta < t < tb, 
then

tbj f (z)dz  = j  { (u[t)x{t) -  v(t)y(t)j +i(u(t)y(t)  +  v(t)x(t)^j j  dt,
C ta

(3.3.3)
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where u(t) =  u(x(t),y(t)),v(t) =  v(x(t),y(t)) and x(t) = dx/dt , 
y(t) = dy/dt.

Evidently, when the direction of integration is reversed: f ° f ( z ) d z  = 
— fa  f ( z )dz- The precise value of f (z)dz  generally depends on the 
route followed by the path of integration between a and b.

E x am p le  f ( z )  =  Im г =  у is not an analytic function (it does not satisfy the 
Cauchy-Riemann equations). Consider the integral along the curve у — Y(x )  over 
the interval 0 <  x  < X ,  and put Z  = X  +  iY (X ):

z z

iY (0) iY (0)

ydx  +  iydy

X

1 Y{x)dx+0

i Y  (x ) 2 X X
I  Y ( x ) d x + l- [ Y ( X ) 2 - Y (  0)2] .  
0

The imaginary part |  [ Y ( X ) 2 -  T (0)2] does not depend on the integration path, 
but the remaining integral does because it is just equal to the area between the 
curve у =  Y(x )  and the ж-axis.

Im z

E x am p le  Evaluate fc z 2dz  along the circular arc \z\ =  Ii over (i) 0 <  arg 2  < 
(ii) 0  <  arg z  < 27Г.

Set г =  Re10, dz = iRe^dd,  then
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Integrals of analytic functions A regular function f ( z ) always 
possesses an indefinite integral F(z) which is also regular and satisfies 
F'(z) =  f ( z )  (see §3.4). In the summation of (3.3.1) we can therefore set

fjSzj = F(zj) — F(zj-i)  as 6zj —> 0, 

so that the integral becomes

J f (z)dz = (F(zi) -  F (a)) +  ( f (z2) -  F (zi))
c

+  • • • +  (F ( ^ _ 0  -  F(zn_2)) + ( f (6) -  F(zn_x))

=  F(b) -  F(a).
It is evident that the arguments of Zj and Zj-i of adjacent points on 
the integration contour C must ultimately be equal as 8zj —> 0. Thus, 
when a definite integral is expressed in the form 

bJ f (z)dz = F(b) -  F(a), where F'(z) =  f(z),  (3.3.4)
a

it is implicitly understood that when F(a) has been calculated, the 
appropriate value of F(b) is determined by taking argfr to be equal to 
arga plus the smooth increase obtained when the point z translates 
along C from a to b. This precaution will ensure that the same ‘branch’ 
of the function F(z) is used at each end of C.
E x am p le  Evaluate f \  along the contours C+ and C ...

Г rl-y
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B ranch cuts In order to avoid ‘ambiguous’ results of the kind illus­
trated by the two previous examples it is often convenient to draw 
‘barriers’ in the complex plane across which the complex variable г can­
not pass. For example, the principal values of In г and yfz are defined 
by the condition that —7r < arg z < n, and for these functions it is 
usual to make the negative real axis into a barrier. The complex plane 
is then said to be ‘cut’ along the negative real axis. In the cut plane 
arg г cannot wander outside the range — 7Г < arg г < 7Г, where yfz is a 
single-valued function of position. The difficulty with y f z .  for example, 
is that it is really a two-valued function of г, namely yfz — ± y / r e ^ , 
—it < в < ir. These values are called the two branches of yfz, each of 
which is one-valued in the cut plane. We can, however, consider two 
separate complex planes Pi and P2, each of which is cut along the neg­
ative real axis, with the first branch of yfz defined on Pi and the second 
branch on P2. We can then imagine that the planes are superposed, and 
that the upper edge (в = tt) of the cut on Pi is joined to the lower edge 
of the cut on P2, and the lower edge (d =  —7r) of the cut on Pi is joined 
to the upper edge of the cut on P2. Starting on P i; a complex number 
г can then be made to follow a continuous closed path encircling the 
origin twice in, say, the anticlockwise direction. When г first crosses 
the cut it passes from Pi onto P2; the second crossing of the cut brings 
г back onto Pi and to its starting point. The double surface formed by 
joining the two planes along the cut is called a two-sheeted Riemann 
surface, on which both branches of y f z  define y f z  as a single-valued 
function, being equal to its first branch on Pi and to the second branch 
on P2. The point г =  0 is called a branch point; it is only by going 
around this point that the two branches of y f z  can be realised.

The logarithmic function Lnz  =  ln r + г0, (0  =  arg г +  2птт, n = 
0, ±1, ±2, . . . )  has infinitely many branches; the nth branch is obtained 
by using the cut to restrict 0  to the range (2n — l)7r < 0  < (2n + l)7r. 
The Riemann surface for this function has infinitely many sheets; a 
point encircling in one direction the branch point at г =  0 can never 
return to its starting point.

When a cut is taken along the negative real axis it is not possible to 
integrate along the contour C_ in the previous figure except by passing 
onto another sheet of the Riemann surface. This is often undesirable,
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and the integration contour must then be deformed to pass a ro u n d  the 
branch cut in order to stay on the original Riemann surface and with 
the original branch of the function; the path C_ is then replaced by C'_ 
(see the figure below) which passes around the branch point at 2 = 0 in 
the anticlockwise direction; In г and 1 / \ fz  are defined by their principal 
values on C'_. Of course, the corresponding integrals along C+ and C'_ 
are equal, because the net change in argz along each contour is the same.

U pper bound for a contour integral (the ‘ML theorem’): Let M  be 
a constant such that |/(z)| < M  along an integration contour. Then, 
because \fjSzj\ =  |/j||(Uj|, repeated application of the triangle inequal­
ity (3.1.1) shows that

Im z

-/

П П

3=1

where L is the length of the contour, i.e.

(3.3.5)

E x am p le  Find an upper bound for | f c  z 4dz  | where C is the arc of the quarter 
circle \z\ =  R,  0 <  argz <
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On C |z |4  =  R 4 and L = ^

M ttR  7Г R 5
< ------ = ------.
~  2 2

The exact value of | f c z Adz\ =  ~^д <

Problems 3C
Evaluate the integrals (closed contours are traversed in the anticlockwise direction):

1 . f c (az +  b)dz\ a, b are constants and C is the straight line from —(г +  г) to
+ ( 1  +  г). [25(1 +  j)]

2 . Jc  (З2 3  +  pr) dz; C is the unit circle \z\ = 1. [0]

3. Jc  Re{z2}dz; C is the square with corners 0 , 1 , 1  +  i, i. [ 1  +  г]

4. fc ( z ^2 +  (z- 2 )3 )  dz; C is the circle \z\ =  3. [б7тг]

5. f Q° sinh3^d^. [^-]

6 . cos2  г dz. [ли +  |  sinh 27t]

Let C\ be the straight line path  z = (1 +  i)t. 0 <  t < 1 ; C? the quarter circle 
z =  1  — cost +  is in t,  0  <  t < and C3  the path z — t, ( 0  <  t < 1 ), l  + i ( t — 1 ) ( 1  < 
t < 2). Show that:

7. f c  z dz = f c  z dz = f Ct z dz = i.

8. f Ci z* dz = 1, f C3z d z  = l  + i ( l - % ) ,  f C3z d z  = l  + i.
z  z9. From (3.3.4) show th a t for every path from z  = 0 to z = Z: f(j dz = Z, f Q zdz  = 

\ Z 2, f f  ezdz  =  ez — 1. In each case verify the upper bound formula (3.3.5) for 
a straight line path of integration by taking M  =  max \f{z)\  on the path.

10. Show tha t f c  d z / z  taken along a semi-circular arc from —1 to +1 has the value 
—m  or +7ri  according as the arc lies above or below the real axis.

3.4 C auchy’s Theorem

Let C be a simple closed contour, i.e. a closed loop that does not inter­
sect itself. We adopt the convention, that as C is traversed in the positive 
direction the interior region S is to the left. Cauchy’s theorem con­
cerns the integration of a regular function in the positive sense around 
a closed contour, and it will henceforth be assumed that all curves are 
to be traversed in this sense unless otherwise indicated.
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C auchy’s theorem  Let f ( z )  he continuous on a simple closed 
curve C and regular (analytic) within C, then

f (z)dz = 0, (3.4.1)

where the notation f  implies that the integration is taken around the 
whole of C.

This is proved by putting ds = \dz\ > 0, the element of arc length 
on C, and introducing the outward unit normal n on C. Then

n ds — (dy, —dx),

and the integral is transformed by means of the two-dimensional diver­
gence theorem (2.3.6) to yield

£  f{z)dz  =  j  f (z)  (dx  +  idy^j =  £  (if{z),  - / ( г ) )  • (dy, - dx)
c c c

= j> ( i f { z ), - / ( * ) )  • nds = J ~ dxdy.
c s

The final surface integral vanishes because f ' ( z ) =  d f( z ) /d x  =  
df(z) / idy  for a regular function.

This proof depends on the assumption (implicit in the divergence 
theorem) that the partial derivatives uXluy,vX:vy are piecewise contin­
uous within C. This is the case for most functions that arise in appli­
cations, but Goursat has shown that it is actually sufficient to assume 
that f (z)  is differentiable everywhere within and on C.
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P a th  independence and deform ation The contour integrals 
f c f(z)dz, f c f (z)dz  along two different paths Ci ,C2 between two 
points a and b are equal provided Ci can be continuously deformed 
onto C2 without encountering any singularities of f(z).  This is because 
Cauchy’s theorem implies that the integral

j) f(z)dz  
c

=  J f (z)dz -  J f(z)dz = 0, 
Ci c 2

where C is the closed contour formed by Ci traversed in the positive 
direction and C2 in the negative direction. Similarly, if f (z)  is regular 
within the annular region formed when a simple closed curve C2 is

Im z Im z

enclosed by a ‘larger’ simple closed curve Ci, then

j> f{z)dz = j  f ( z )dz , (3.4.2)
Ci c 2

because Cauchy’s theorem implies that the integral §c f(z)dz  =  0, 
where C is the simple closed curve formed by Ci traversed in the posi­
tive direction, C2 and traversed in the negative direction, and the two 
sides of the ‘cut’ between Ci and C2 illustrated in the figure. The two 
contributions from the cut are equal and opposite as the width of the 
cut tends to zero.

In the more general case where Ci encloses several closed, non­
overlapping contours C2, C3, . . . ,  etc, the integral around Ci is clearly 
equal to the sum of the integrals around the interior contours.



100 Mathematical Methods for Mechanical Sciences

E xam ple §c ~- = 0 ,  where C is any closed curve not enclosing the origin z  =  0.

E xam ple Evaluate §и=2  ■

The integrand is regular within the circle \z\ = 2 except at z = 1. By (3.4.2), the 
integration contour may therefore be collapsed onto a small circle of radius S that 
just encloses this point. On this circle z = 1 + 6eie, dz = i6eied6, and

(z 7  + 3 z -  2)dz _  J  [(1 +  6eie)7 +  3(1 +  Seie) -  2}i6eie dO
( z -  l ) ( 7 - z )

|z |= 2  0
/ <5ег0[7 — (1 +  (5ег0)]

27Г

E xam ple Show tha t

Set z — zQ = 5e™, then

f  2i dO 27тг
- о  в = ~ Y ’

as 6 —>
0

IIe01

1 °\27гг
п ф — 1  
n = — 1

zo | > 0
where n  is an integer.

(3.4.3)

\ z - Z o \ > 0

j  ( z -  z0)ndz = I  i5n+1 ei(n+1 êdO 
0

27Г

=  iSn+1 J [cos(n +  1)9 + i sin(n +  1  )6\d6 =  | 0 n / - 1
27гг n — — 1

Problems 3D
Evaluate:

^|z|=2 z+i
О x cos z dz  X cos z dz mi 

J |z |= 3  г J\z\ = l  z ■ LUJ

/ с  г2-Z  where C is the square with corners ± ( 1  ±  i). [0 ]

5. f. , sin 2 dz 

dz

[2i]

6. [01«/ г =£ a 2—a L J
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T dz 
J |z | =  § |a | z —a * [27ri]

Г dz
J |* + l |= l  1 + г 3 '

Г 27гг 1
1 3 J

X (2z—3)dz 
J \z \= l  z 2—3z [27тг]

X (2z—3)dz 
J \ z —3 |= 1  z2 — 3z ■
r (2z—3)dz 

J \z \= 9 z2—3z [47гг]

12. Let f ( z )  be regular in the region bounded by a simple closed contour C. Show 
th a t j>c f ( z ) d z / ( z  — a) = 2 m f (a )  or =  0 according as a is in the interior of C 
or outside C.

Indefinite integral of a regular function Let f (z)  be regular 
within a region V  bounded by a simple closed curve (a ‘simply con­
nected region’). The integral

Z

F(z) = [  /(C) dC,

along any contour in V  from a fixed point a in V  to an arbitrary point 
г in V  defines a function F(z) that is regular (analytic) in V, and 
F'(z) = f(z).

Cauchy’s theorem (3.4.1) shows that F(z) is a single-valued function 
of г in V. because the integral is the same for any path in V  between 
a and г. Also,

' z+5z z
F { z  +  dz )  — F ( z )  1

Sz Sz J ж к  -  /  ж  к
a

z+8z

= / ( 0 d(  f(z),  as Sz 0,

i.e. F \z )  =  f(z).

3.5 Cauchy’s Integral Formula

Suppose f (z)  is continuous on a simple closed contour C and regular 
within C. Then for г within C

=  2S
Ж Ж (3.5.1)
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Indeed, /(C)/(C ~  z ) is regular (as a function of Q in C except 
at (  — z, so that the contour may be collapsed onto a small circle 
(  — z = 8егв, and the integration becomes equivalent to

2tt
1 Г f ( z  +  8егв) i8eldd6 

2m /  8егв

2тг
= ± f

2m J
—  I i f ( z  + 8eie) d6 m

2tv

2 7Г

d9 = f ( z ), as 8 —* 0.

Cauchy’s integral formula shows that the value of f (z)  at any point 
z is determined by its values on any boundary within which f (z)  is 
regular. It also shows that a regular function f ( z ) is infinitely differen­
tiable inside C, because

f ( z  + 8 z ) - f ( z )  1 f  /(C) f  1 1 \
8z 2m J  8z \£  — г — 8z (  — z )

c
i  /  / ( C K

2m J  (£ — z — Sz)(C — z)

i I  № < K
2m J  (( — z)2 

c
as 8z —> 0.

f \ z )  =  ——: (f £  for г inside C,
2m J  (C — z)2

c

and by repeated application of this procedure we deduce

/ Н ( г) = for г inside C.
v '  2ттг J (C -  z)n+1 (3.5.2)

E xam ple M orera’a T heorem  If f ( z )  is continuous in a certain region V  and 
§c f { z )d z  =  0 for any closed curve C in T>, then f ( z )  is regular in V.  Because,
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F(z)  = f *  for some fixed zo, is independent of the path of integration, and

z-\-6z
F{z  + Sz) — F(z)  1 f  ct \ s n
— -------j~z--------- - = JZ Ж Ж  f ( z )  as Sz -> 0.

Z

Thus F(z)  is regular, and so therefore is its derivative f ( z ) .

E x am p le  L iouv ille ’s T h e o re m  If f ( z )  is regular and \f(z)\  < M  — constant 
for all z, then f ( z )  = constant.

Suppose z\  and z2 are two points inside the circle C: \z\ = R.  Then

f ( z i )  ~  f ( z 2) f ( z ) d z

and

\ f ( z i ) - f { z 2 )\ 2tt /
{Zi -  z2) f ( z )dz  
(z - z 1) (z - z2)

1 \ z i  — z 2 \ M 2 tcR  
2 tt ( R  — \z i \ ) ( R  —  \ z 2 \ )

as R oo.

Hence, f ( z i )  — f ( z 2), i.e. f ( z )  is constant.
If \ f ( z )\ <  A\z\k as \z\ —> oo {A = constant, к > 0 ), apply the same argument 

using (3.5.2) with n =  the largest integer < к to show tha t f ( z )  is a polynomial of 
degree <  k.

3.6 Taylor’s Theorem

Suppose f ( z ) is regular inside the circle \z — zq\ < R  (and continuous 
on \z — Zo| =  R), then

°° °° f(m)/. \
f (z) =  a™(z ~ z°)m =  "22 — m \ 0 (z ~  z°)m’ for \z -  z° \ < R -

m — 0  m = 0

(3.6.1)
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This follows from (3.5.1) and the exact formula

1 x n
----- -- = 1 +  X + X 2 +  X 3 +  -- - +  I й- 1 +  — —
1 — A  1 — A

by setting X  = ( z -  z q ) / ( (  -  z0) in

1 1 1

C - * (C -  zo) ~ { z -  Zo) (C -  Zn)  I~1 -05 OJ £_Zq

Substituting into (3.5.1) and using the formula (3.5.2) (with z replaced 
by zo) we find

where |/(C)| < M  on C, r  =  \z — z0\ < |C — z0\ = R , and R — r is the 
smallest value of |£ — z\. This proves Taylor’s theorem, because Rn 0 
as n —> oo.

This calculation shows that the radius of convergence R of Taylor’s 
series (3.6.1) is equal to the distance from z0 to the nearest singularity.
E xam ple The radius of convergence of the Taylor expansion

71—1

where Rn is the remainder after n terms, given by

c

is R  — 1, the singularities being at z  — ± i.

3.7 L au ren t’s Expansion

This is a generalisation of Taylor’s theorem to situations where f ( z ) 
has singularities within the circle of integration C.
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Suppose that f (z)  is regular within the annular region between the 
concentric circles C of radius R , and C' of radius R' < R , with centre z0. 
Then

f ( z) =  ^  am(z -  z0)m for R! < \z -  z0\ < R,

№ d C

m=—oo
l

2iri J  (C- -2o)m+1’
(3.7.1)

where the integration is around any simple closed contour within the 
annulus enclosing C.

If г lies within the annulus, then / ( C ) / ( C ~  z ) is regular as a function 
of £ in the annulus except at (  = z. Thus

1 / Л С К
2m J  C, — z

c
/(*) j _  / д а

2 m  J  C — z  ’
v

where the right-hand side is obtained by shrinking the contour C onto 
a small circle enclosing the singularity at C = z and onto the inner 
contour C.  Hence,

/ «
j _  г т < к  i r n o d c
2m J  C — z 2m J  (  — z 

c C'
(3.7.2)

The denominators in the integrands are now expanded as in the deriva­
tion of Taylor’s theorem. For the integration around C (on which 
\z — zqI < |£ — z01), we write (as in (3.6.2)) 1

1 =  1 ( z - z o )  (z - Z qT
C -  z  C -  z0 (C -  z0)2 (C -  z0)n+1
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and for the integration around C' (on which |£ — z q \ < \z — Zq \),  we 
write

1 ( C ~ * > )  « - % ) "
C -  Z z ~ z 0 (z -  z0)2 (z -  3o)n+1

By substituting these expansions respectively into the first and second 
integrals on the right of (3.7.2) we obtain the first line of (3.7.1), but 
with

J _  /  f (Q d (
2m J  (C -  zQ)m+1 ’ 

c
JL /  П С Ж
2 m  J  (C -  Z o) m+1 ’

C'

for m > 0

for m < — 1.

However, the integrands are regular in R' < \z — Zo\ < R, which means 
that any path encircling C' within the annulus may be used to evaluate 
the coefficients am, and (3.7.1) is therefore proved.

3.8 Poles and Essential Singularities

A point where f (z)  is not regular is called a singularity. If f (z)  is reg­
ular near a point zo, but singular at zq) then z0 is called an isolated 
singularity. If f (z)  is regular in a region T> except at an isolated sin­
gularity zq, we can draw two concentric circles centred on zq of radii 
r i , r 2(ri < r2) both lying within V. In rx < \z — Zq\ < r 2 f (z)  has the 
Laurent expansion

OO OO T

f (z)  = £  an(z -  z0)n + 7-z - _ \  )n- (3-8-1)

This series converges for 0 < \z — z0\ < R, where R  is the largest value 
of r2 for which the larger circle lies entirely within V. The second term 
on the right of (3.8.1) is called the principal part of f (z)  at z0. If bm ф Q,
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but bm+1 =  bm+2 =  ■ • • =  0, there are m  terms in the principal part

b\ b2 bm
z -  z0 + (z -  z0y  +  +  (z -  z0)m ’

and the isolated singularity is called a pole of order m of f(z). A pole of 
order one is called a simple pole. The coefficient b\ plays a particularly 
important role in applications of contour integration, and is called the 
residue of f ( z ) at z0. For a simple pole, the residue

bi =  hm(z -  zo)f(z); (3.8.2)
z —>zo

at a pole of order m  the residue is

W =  (ТТЛ )! ( I ^ { (2 “  2°Г / ( г ) } ) _ 0 ' (3'8'3)

In applications, however, the use of these general formulae is not nec­
essarily the best way to proceed.

The point z = z0 is called an essential singularity when the principal 
part contains an infinite number of terms.

E xam ple e* =  1 +  ^4 - 5 1 7 2  +  3 1 7 3  +  jrpr +  ■ • ■ , has an essential singularity at 
z  =  0 , with residue bi = 1 .

E x am p le  f ( z )  =  =  {z- i p  + +  10 +  10(z -  1) +  5(z -  l ) 2 +  (z -  l ) 3
is regular everywhere except for a double pole at z  =  1  with residue 5.

3.9 C auchy’s Residue Theorem

Let f (z)  be continuous on a simple closed contour C and regular inside 
C except for a finite number of singularities at Zi, z2, . . . ,  zn. Then

/ П

f(z)dz — 2m 7Zm, (3.9.1)

c  m=1

where 7Zm is the residue of f (z)  at z = zm (i.e. Ylm=1 ^ t h e  sum 
all the residues inside C).
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The proof follows from the principle of path deformation deduced 
from Cauchy’s theorem in §3.4. Let 71,72, , 7n be small, non­
overlapping circles of radius 8 with centres Zi, z2, . . . ,  zn contained 
entirely within C. Then f ( z ) is regular in the region between C and 
the circles, so that the integration contour may be collapsed onto the 
circles to obtain

f(z)dz = ® f (z)dz + ® f (z)dz  +  • • • + ® f(z)dz.
71 72 In

On the mth circle f(z) is given by a Laurent expansion of the form
(3.8.1)

№
OO

E
fc= 0

zni) ' T ^  ^
k = 1

b k

(Z ~ ZmY

Therefore, integrating around j m, making use of equation (3.4.3), we 
see that <f f{z)dz  =  2mbi =  2mlZrn. This proves the theorem.

C alculation of residues

(i) Direct calculation from the Laurent expansion. 
Example Find the residue of zbe i  at z =  0.

z e*
2 22 23 24 25 

+ z + 2h2 + 3h3 + 4!D + 5h3
26 27 

6L6 + №  + '"

= z 5 + 2  2:4  +
2 2 z 3

2!

, 26  4
residue =  — =  — .

6 ! 45

23z 2
3!

24z 25 2 6  2 7

7 Г  +  5! +  6\z + T\z? +

Example j)  z 5e ‘ dz — 2жгх ^Residue at z =  0^ =  27гг

l*l=i

8тгг

45"'
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E x am p le  Find the residue of г 3/ ( г  — l ) 2 at г =  1.
Set (  =  z — 1, then

(1 +  C)3 _  1 +  зс +  зс2 +  С3 _  1 3
c2 c(z -  l ) 2 C2 

1
c2

- 7 I  +  7 + 3  +  C

- ( г -1)2 (г-1)
residue =  3.

+  ----- pr +  3 +  (г — 1)

E x am p le
3dz

( г - 1)2 =  27Гi x I Residue a t г =  1) =  б7тг= 1) =
| z - l | > 0

(iia) Residue at a simple pole when

m
P{z)

( z  -  Zq) ’

where P(z) is regular at z = zq:

Residue at zq  —  P ( z q ) , (3.9.2)

(cf. formula (3.8.2)).
(iib) Residue at a simple pole when

/(*)
P(z)
Q(z)’

where P(z) and Q(z) are regular at z — zo, such that Q(z) has a simple 
zero there but P(z0) Ф 0, so that f (z)  has a simple pole at г = z0. This 
means that near г =  z q , Q(z) =  (z — z0)Q'(z0) +  ^ ( z  — z0)2Q"(zo) +  • • • 
where Q ' ( zq) ф  0. Hence, using (3.8.2)

Residue at zq
( z - zo )P (z )

bin -----zzrf-,-----z-»zo Q\z)
(z — Zq) [ P ( z q ) +  (z — Zq) P ' ( Z q) +  • ■ '] 

(z-  zo)Q’(zo) + ( +  • • •

H*>)
Q'(z0)'

(3.9.3)
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E x am p le  Find the residue of cot z at z  = nn,  n  =  0, ±1, ± 2 ,__
cos г

cot г =

residue =

sm г 

/  cos г
d(sin z) 

dz

has a simple pole at z = птт

/  cos z \
V C O S  Z  / z=mr

= l.

E x am p le cot z  dz = 2m.
:|=1

(iii) Residue at a double pole when

f ( z )  =
P(z)

(z -  Z0 ) 2 ’

where P(z) is regular at г =  z0.
Use equation (3.8.3) with m = 2:

residue at z0 =  ( (z ~ zo)2f i z) j \  = p \ zo)-
/  Z = Z Q

E x am p le  Find the residues of f ( z ) =  1 / { z 2 +  l ) 2. 
This has double poles at z = ±i.

1Write

At z = i:

/(*) = (z — i)2(z +  г) 2

d
residue =  ( g ^ { ( z ~  *)2 /U )}

Ц  1 1
dz  \ ( z  + i)2 i

At z =  —i: residue

(z +  i)

A (  1 1
d z \ ( z - i ) 2 J

- 2
(z +  г) 3

E x am p le

N>i
Problems 3E

dz
(z2 +  l ) 2

=  0 ;

\z—г| < 1

dz  7Г
(z2 +  l ) 2  =  2 '

Evaluate the residues of:
1. 2 cosh(3 / 2:). [ |  at z = 0]

2. (z + 2) /{z2 — 3z). [— |  a t z = 0; |  a t z  =  3]

3. z 4/ { z 2 +  1). [— |  a t z  =  i; % a t z  =  —г]
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4. l / z 3 (z -- I ) 2 [3 at z == 0 ; —3 at z =  i]
5. sin г

H at z =  0 ]

6 . 1
z4 +1 ■ [=Fje± i 7 r / 4  at z =  ± e ±”r/4]

7. z 2e i . [ |  a t z =  0 ]

8 . e * / ( z  — I)2- [e at z == 0 ; — e at z == 1 ]
9. (cosh 2  z ) /z 5. [§ at z =  0 ]

1 0 . z j  sin z. [( — l ) n 7Z7T at Z — П7Г, Tl = ±1, ±2, ±3,
Evaluate by the residue theorem (contours are traversed in the anticlockwise sense):
1 1 . 4 ,= i [—7m]

1 2 . , e _ ; 2 dz.•/|.z| = l sin 2z [ттг]

13. i i = i  f ^ - [тгг sin (4)]

14. 4 i - i  4 ^ * - [0 ]

15. И

16. i)z |= 2 0  ^ [ттг/З]

17. I  1 dz. [б7тг]“ | z - J |  =  l  *3( z - l ) a '

18. 1 )2 dz. [27гге]

19. f\z M e i / ( z - l ) 2 dz. [0 ]

2 0 . X sinh г 
J |z |= 2  (1+г2)5 az ' [7 ri(s in  1 —

2 1 . '̂|2|> |a|(z — a)n dz, n  is an integer. [2тгг, n = —1 ; 0 , n ф — 1 ]

2 2 - i | * | > 0  “ F  dz. [2 тг*]

23- ijz|>l (z+i)(W 1 ) dz- [°]

24- / | 2 l > 0  ^  dz. [0 ]

25. m

3.10 Applications of the Residue Theorem to Evaluate 
Real Integrals

Type I: Integration around the unit circle

Consider

I

2tt

j  F(cos в, sin 6)d6, 
о

(3.10.1)



112 Mathematical Methods for Mechanical Sciences

where F (cos 0, sin 0) is a rational function (i.e. a ratio of polynomials 
in sin# and cos#).

Set z — егв, then

N=1

where ^  1Z denotes the sum of the residues inside the unit circle \z\ =  1.
E x am p le

2tt

/
d,9

|  4 - cos в
dz

1*1=1 * 2 [ f  +  | ( * + l ) ]

— 2  i dz

l*l=i

=  2ni x ^residue at z

(z +  5 ) (z +  2 ) 

—2i= 27гг
z 2 /  z=_i

8tt 
3 '

Type II
OO

— OO

2т V  7?.+ (3.10.2)

where f ( z )  has only isolated singularities in the upper half-plane, 
zf(z)  —» 0 (‘uniformly’) as |z| —» сю, and ^ + is the sum of the 
residues of f (z)  in the upper half-plane.

Consider the semi-circular contour of radius R shown in the figure, 
where R is large enough that all the singularities are within the
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contour. Then
Rj f (x)dx + J f (z)dz = 2Tri^^ 1Z+.

- R  7

As R —■» oo the LMU upper bound (3.3.5) shows that J^f(z)dz —> 0, 
because

[  f(z)dz =
j  z f(z)dz

7 7

< M  x 7iR
R

7Г M  —> 0 as R oo,

where M  is the maximum value of \zf(z)\ on 7 , which —► 0 as \z\ —* 0 0 . 
This proves (3.10.2).

E xam ple Evaluate J0°° The integrand has simple poles where 2  4  =  еш , i.e. 
a t z  = ± e T ; ie ^ T  and M  w 1 / R 3 —> 0 as R —* 0 0 . The poles at 2  =  eT  and е т  
are in the upper half-plane, so tha t (evaluating the residues by (3.9.3))

OO OO
1 dx t

1 f  dx — -  x 2m (residues at 2  =  e ’4 , e 84 ^! 1 + ж4 2 J 1 + X 4 2 V ’ )
0 —00

7Г1 /  _3t7r _9гл~ \  7Г /  __i7r i n  \  7Г

= t T ' + e ■) = i ( e + e , J = i ^ -

E xam ple Evaluate / 0°° ypfy- The procedure of the previous example does not 
work because the integrand is not an even function. However, setting 2  =  relf>, 
let us choose в in the range 0 <  в < tx such tha t 1 +  2 3  =  1 +  r 3. This requires 
3в =  2 -7Г, i.e. в = —  . We now consider the integral around the contour shown in the 
figure
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Also f- dz
7  1+z3 —» 0 as R  —> oo. There is one pole within the contour at

z  =  e з , with residue з . Hence
OO OO

/ l l W i T F - O - * ) /
dx 2tc ie з

OO

h
dx -2 г т г27гге з

1 + х 3 3

2пг 2тт
+  х л 3 ^ 1 —е 2з”  ̂ З^е 'з — е з"^ 3 s i n ( 3 ) 3\/3

Type III: Fourier integrals
OO

I =  j  f (x)e±lkx dx =  ±27ri 7 к > 0, (3.10.3)

where f ( z ) has only isolated singularities in the upper/lower half-plane, 
f ( z ) —* 0 (‘uniformly’) as \z\ —> oo, and ^  7 ^  is the sum of the 
residues of f (z)e±lkz in the upper/lower half-plane. Observe that (for 
к > 0) e±tkz —> 0 as 1т (г )  —> ±oo.

Consider the '+ ’ case. Because e+lkz —* 0 as Im(z) —» +oo, we 
integrate around a large semi-circular contour in the upper half-plane 
of radius R (as for the Type II integral). Then, by the usual procedure

/f (z)eikz j  f (z)eikz dz = 2t t K +.
7

(3.10.3) will be true provided the integral around 7 tends to zero as 
R —> 00. The fact that this is so is a consequence of Jordan’s lemma, 
which is proved as follows. On 7 , where z =  Rel6{0 < в < 7г),

7Г

[  f (z)e ikz dz = f  f (z)eikz Reieid6
J
7

J
0

7Г 2

о о
е~кЯ8твШ в,< М

'
—k R  sin в RdO =  2М /
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where \f(z)\ < M  on 7 (and M  —> 0 as R —>■ 00). But

— < sin#
7Г

Q—k R s in 6  ^  ^—2kRe/iT

for 0 < в < —.
~ ~  2

Thus,

J f (z)eikz dz < 2 M
2J е-2кМ/пШв

0
7ГМ

(1 -  e“fcK) < 7Г M
0, as R  —> 00,

because M  —> 0 in this limit. This proves the lemma and (3.10.3) for 
the ‘+ ’ case.

The argument is easily modified for the ‘ — ’ case, by taking 7 to be 
a sem i-c irc le  in th e  low er half-plane. This tim e , how ever, the c o n to u r  is 
traversed in the ‘negative’ direction, so the sign of the residues must be 
reversed. Note that Jordan’s lemma is not required if |/(z)| ~  1 / R 1+cr 
on 7 , where a > 0, because the simpler ‘ML’ method used for Type II 
integrals is then applicable.

, _  , [  cos(ax)dx f  eiaxdx
E x am p le  Evaluate / — ----- j— =  /  -------j ,  a  > 0.

J 1 +  £ J l  + x
— OO — OO

Integrate around a large semi-circular contour in the upper half-plane, noting that 
11/(1 +  л4) I ~  l / R 4 —► 0 as R —> 0 0  on 7 . There are simple poles within the contour 
at z\ =  e 2?  =  ( 1  +  г)/л /2 , =  ( — 1  +  i ) / \ /2 ,  with residues

eiazi z ieiazi —
- 4 4
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and

eiaZ2 Z2eiaz2
П2 =  1 =  ~ ^ 4 ~  = 4

Hence,
OO

|  C O ^ £  = 2rj(Ki+R2)
— OO

2
/ а  7Г 

=  7Г Sin -7= +  —
V\/2 4

— a
e ^5.

Type IV: Integrals of many-valued functions
OO

1 =
2m £  7г
J _ 027тга 5

0
where |г“/(г ) | —■» 0 as \z\ —> oo and \z\ —>■ 0, (3.10.4)

and f (z)  is a rational function with no poles on the positive real axis, 
a  > 0 is not an integer, and ^  7?. is the sum of the residues of za~1f(z)  
in the complex plane cut along the positive real axis.

When a  is not an integer, za is a many-valued function, whose argu­
ment increases by 27m when 2 traverses a closed contour encircling the 
origin. Integrals of this kind can be evaluated by ‘cutting’ the complex 
plane along the positive real axis, from x — 0 to x = oo, and considering 
the integral around the contour C shown in the figure, which includes 
a large circle 7 of radius R, a small circle Г of radius <5 enclosing the 
origin, and the upper and lower ‘sides’ of the positive real axis. Then 
za is regular and single valued within C, and the residue theorem is 
applicable. The contribution from 7 vanishes as R —> 00 in the usual
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way (as for Type II integrals). Similarly, on Г, |za 1f(z)\ < M/5  where 
M —*• 0 as \z\ —> 0. Hence

J z a- 1f{z)dz 
г

2nSM
0 as S —> 0.

Taking the principal value of г" within and on C, we now have respec­
tively from the upper and lower sides of the positive real axis (as 
R —► oo)

OO

J ^ m d x + e ^ >
о

0

oo

xa 1f(x)dx 27гг V"1 1Z.

The formula (3.10.4) is now obtained by reversing the sign of the second 
integral after interchanging the limits of integration.

E xam ple Evaluate the Type IV integral: / 0°° where — 1 < p < 1.
There are two simple poles at г =  —1, —2 with residues еш^ and —2А‘еИГМ, 

respectively. Hence, (3.10.4) supplies

/
Xм dx

(x +  l)(x  +  2 )
2m Q / i ̂_ 027гг/х у 2^ei7r̂ тг(2̂  -  1) 

sin(7тц)
(3.10.5)

The value of the integral when /r =  0 is easily evaluated by elementary means, using 
partial fractions, and must coincide with the limit /r —> 0 of (3.10.5),

/
dx

(x +  l)(x  +  2 )
lim
fj,—>0

7r(eM ln2 -  1) , tt и ln 2lim -------
p —> 0  7Г/Х

ln2.

Type V: Principal value integrals

OO

/  =  j -  —  =  ±27гг 7?.̂  ±  7Г i f  (a), (3.10.6)
— OO

where a is real, and f ( z ) / ( z  — a) is a Type II or Type III integrand. The 
‘upper’ and ‘lower’ signs go together, and ^  7l± are residues respec­
tively in the upper and lower half-planes, the choice being determined
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for Type III integrals by the sign in the exponential on the left of
(3.10.3). There is a pole on the real axis, and the notation f  implies 
that the contribution to the integral from the neighbourhood of this 
pole is to be interpreted as a ‘principal value’,

OO
f(x)dx  
x — a

— OO

lime—>+0

a —e oo

The principal value integral can be converted to a Type II or Type III 
integral by indenting the contour to pass above or below the pole at 
z — a, by adjoining a semi-circular arc Г of radius e connecting the two 
halves (—00, a — e) and (a +  e, 00) of the real axis. The choice of arc 
is a matter of convenience. When a closed integration contour C is to 
be formed by introducing a large semi-circle 7 (radius R) in the upper 
half-plane, it is convenient to take Г to pass above the pole at a.

= 2m fZ+,

where the residues are from poles in the upper half-plane inside C. By 
the usual argument, J  ~ ~  —* 0 as R  —> 00. On Г, 2 =  a +  еегв, and

J  f (z)dz = J f(a  +  еегв)геегв d9
еегв —7гг/(а) as e —> 0.

Hence, as e —> 0

f (z)dz
z — a

f(x)dx - m
x — a

i f  (a) =  2ттг ^ 7 г +,
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which proves (3.10.6) for the case in which the contour is closed in the 
upper half-plane.

E xam ple =  7risgn(k)e*feo, where к is real,

because the semi-circular contour must be taken in the upper half-plane for к > 0 
and the lower half-plane for к < 0.

E xam ple Consider j>c  z z_ 1dz, — 1 < a  < 0, about the Type IV integration con­
tour. The pole at z  =  1 is avoided by the integration paths along the upper and 
lower positive x-axis by semi-circular indentations, respectively into the upper and 
lower half-planes. Hence, because there are no poles within C,

oo
Г x “ - 1  dx

0

- " + /J  x - 1
0 oo
oo
Г x “ _ 1  dx 7гг(1 + 1

.1 x - 1 1  — e:
0

^iria^a—1 
X  —  1

тле2™0 = 0,

>27гга\
2 -7гга =  — 7rcot(7ra).

E xam ple Consider I n = n  =  0 , 1 ,2 , . . . .  Using the substitution
г =  егв (as for a Type I integral) and setting £ =  e*  ̂we find

/„  =  Re <
~2if

z n dz

N=i C ) ( * - 1 / C )

where the principal value contour integral is taken around the unit circle \z\ — 1 in 
the positive sense. A ‘closed’ contour C can be constructed (with the poles at z  — C 
and z  =  1/C outside C) from the sectional principal value path of integration by 
adding small semi-circular arcs (on which \z\ < 1 ) centred on each of the poles at 
z  — C and z =  1/C- Then

/
z n dz

( z - 0 ( * - i / C )
z n dz

(z  — C) (z ~  1 /C)
7гг c

C - 1 / C
C ~ "  

1/C -  c

I n
2tt sin пф 

sin ф

because §c  =  °-
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Problems 3F
Evaluate by the residue theorem:

1- So
2*- d6

1+a sin в , |a | <  1. 2тГ
Vl~a2 J

a \ / l + a 22- f o i r i b n  «>0-
о (-27Г cos 26 d6 I I ^  1 [ 2этр2

JO l - 2p c o s 0+ p 2 1 U 'l U - p 2

4. / / c o s 6 0d0. [§f]

5. r s i s i ^  a > l.JO a+cos У ’ 7Г ( | a  — a 3

6- fo

7- fc

2w sin2 0 rf0 
2+ c o s  0

dx
0 ( l+ x 2 )(4+ x2) *

f ° °  d x

a
[2tt (2 -  /3 ) ]

ЙЗ
r

Jo l+ x 4 ‘ 2л/2
d xQ fc

JO l + x 2ri ‘

1 П f°° 3:0:1 dx 
1U- JO l+ x

i i Г°° d x  Г 7г 1
JO (1+ x2)2 ’ L 4 J

1 9  Г°° ____d^____
JO ч/ж(1+ж+ж2) '

i  о Г ° °  d x
JO 1+ x3/ 2 '

14  J '00 sin  x  d x

2nsin(^r)

0 < a < 1. sin(a7r)

л/з
47Г

3\/3

- o o  X

i с Г°° ж sin 2x dx1D* Jo l + x 2 L 2e2

(a2- Г ) ’

16- П о Р т а ’ (fcrea1)- [fcosfce-2lfcl]
17. f Z o  (a, к real, fc >  0 ).

18- П  (« > 0).

[—7Г sin fca]

\ / 3a_

19- Гос т а и -  (a>°). [f]
20 - С ^ £ - ф- [277 COS 0]

о 1 Г°° lnxdx Г7г1п21
Zi- Jo ~4+^r- L 4 J

22- 1+ X 5 5 s in (7r / 5)
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23. /о

24- fo

25- fo
26- fo l+x:

s- ^ d x .X

sĴ d x .

s- ^ d x .Х г

cosxdx.

[ j .  Use the formula 4 sin3  ж =  3 sin x  — sin Зж]

m
[f]
ш

9 7  f ° °  sin(a4 - l ) s in ( a ; - l ) ^
J —oo x 2 — l

sin2 x 
x 2( l + x 2)

[f  sin 2]

28- [ f  ( l  +  e-2 )]

3.11 Contour Integration Applied to the Summation 
of Series

Consider the evaluation of
OC

s =
n = —oo

where f (z)  is regular except for simple poles at a hnite number of points 
z = ax, a2, . . . ,  am where the residues are 62, . . . ,  bm (a ‘meromorphic’ 
function), and \zf(z)\ —► 0 as \z\ —> oo.

The function 7rcot7rz has simple poles on the real axis at z =  
0, ± 1 , ± 2 , e a c h  of residue 1. Hence, by integrating F(z) = 
7Г cot 7Гz f (z)  around a contour C/v that includes all the poles of f (z)  
and the poles of 7rcot nz  at z =  0, ±1, ± 2 , . . . ,  ±iV we hnd

/ ДГ m

F(z)dz = 2ni ^  /(re) +  2m bkn cot 7rafc. (3.11.1)
n  n = —N  k = l

As A increases the contour Сдг must increase in size. If Сдг can be 
chosen such that \zF(z)\ —> 0 on Сдг as N  —> oo, the usual argument 
(see §3.10) implies that the contour integral —> 0, so that

oo m

Y .  f ( n ) = _7г X /  ^  cot 7rafc'
k=1n = —oo

(3.11.2)
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The square contour Cn with corners at ± (N  + |)(1 ±г) satisfies our 
requirements, because on Сдт

,2 cos2 nx  +  sinh2 Tty 3
COt ItZ\ =  ---- 2---------------- 2-----  <  nisin Ttx +  sinh тгу 2

for N  > 0, (z = x + iy).

E x am p le  Take

/0 )  = ~~2 1 2’ ® Геа1’ z 2 +  a2
with simple poles at z =  ±a i  with residues ±1/2аг. Then

1 1

Hence,

тг=1
n2 +  a2

cot(7rai) cot(—7таг)\ 7rcoth7ra
2 аг

oo 1
V  —' r? 2 4-
n= 1

1 f 7Г coth 7ra 
n 2  +  a2 2

2ai

?}■

i ^ - s Hn=l 4

a a*

7Г coth 7га 1
a a*

7Г
~6~

E x am p le  Evaluate

The function 7r / s in 7rz has simple poles with residues (—1)” at z = n n ,n  =  0, ±1, 
± 2 , . . . ,  and

1 ■ \2 —■ 2 T Г 2  ^  ^ C jV -| sm 7rz p sm 7rx +  smh тту

E
n = 0

(-1)" 
7i2 +  a 2
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We therefore consider fr dz to obtain
S i n  7Г2

A  (-1)" _ 1 f TO 1 A  ^ я-2
n 2 +  a2 2a2 l sinh7ral n 2 12n= 0 n = 1

Problems 3G
Evaluate by the residue theorem:

i- E oo
n= — oo

1
n4 +1 '

7Г sinh(7ry /̂ )+ s in (7 r \ /^ )  
\/2  cosh(7T\/2)—cos(7r\/2)

2. E

3. E

4. E

5. E  

6- E

n=1 n4 —a4 * [2 ^ 4 { l — (co th 7ra +  co t 7ra)}]

OO 1 [ 2^2 {1 — 7та c o t  7га}]n=  1 n 2—a2 ’

00
71=1

( - p n+i 
n 2—a2

Г i  ( i  ™  'llL 2a2 l sin 7ra J J

OO ( - i ) n Г 7Г r 1 | 1
71= —00 n 4— a4 ‘ L 2a3 l sin 7ra 1 s in h 7ra

OO 1 Г 7Г2 11=—00 (n+a)2 '

7. By taking F(z) = *з'?п 2г and considering the integral j>c ^ F(z)dz,  show that

EOO ( — 1 ) П   7Г3
71=0 (2n+ l)3 ~  32 •

8 . By taking F(z) — ‘ and considering the integral F(z)dz,  show that
V̂ 00 (— 1)П   7Г
z ^ n = 0 (2 n + l)  4 ‘

3.12 Conform al R epresentation

It has already been pointed out that a complex function f (z)  defines a 
transformation between points in the г-plane and points Z = X  + iY  — 
f (z)  in the Z-plane. We now consider the geometrical properties of this 
transformation when /(г )  is regular in a region V  of the г-plane.

Consider three neighbouring points z0, z i , z2 in V  and their corre­
sponding images Zq,Z \ ,Z 2 in the Z-plane. When гь г2 are very close 
to го we can write

Z , - Z n  = f ' ( zn ) ( z i - zn). Z ‘>-Zn = f ' (zn)(z?-zn). provided f ' (zn) Ф 0.
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Thus, from the first of equations (3.1.2),

\Z\ — Zq\ =  | | \%1 — Zq I, |Z2 — Zq\ = \f'{z0)\\z2 — Z0 1,

which shows that small distances between points in the г-plane in the 
vicinity of Zo are all magnified by a factor \f(zo)\ in the Z-plane. Also,

arg(Zi -  Z0) = arg{ / /(г0)(г1 -  г0)} =  arg{/'(20)} + arg^i -  z0)

arg(Z2 -  Zq) =  а ^ { / '( г 0)(г2 -  г0)} = arg{f'(z0)} + arg(г2 -  г0)

which means that the angle between the rays Z\ — Zo and Z2 — Zo has 
the same magnitude and sense as the angle between the rays Z\ — z0 
and г2 — zq.

The effect of the transformation is to rotate all small straight lines in 
the neighbourhood of z0 (such as the sides of the triangle in the figure) 
through the same angle arg{/'(2o)} (in the anticlockwise or clockwise 
direction according as arg{/'(zo)} < 0), and to change their lengths by 
a factor |/'(го)|. The area of the triangle is therefore increased by this 
factor squared: | / ,(г0)|2. It is also clear that when two curves intersect 
in the г-plane, their images in the Z-plane will intersect at the same 
angle. A transformation with this property is said to be ‘conformal’.

The transformation is not conformal at г =  z0 if f ' ( z0) =  0. The 
point г = 2q is then called a critical point of the transformation, about 
which the Taylor series expansion of /(г )  has the form

/(г )  =  / ( г 0) +  a(z -  z0)n H-----, a ^ O , n > 2.

When \zi — z0\ and |г2 — zo\ are small

Zi -  Z0 =  a(zi -  г0)п, arg(Zi -  Z0) =  arg a +  n a r g ^  -  г0)

Zo — Zn =  a(zo  — Zn)n . a red Zo — Z rd  =  arp- n 4- n  ятр-j2o — 7,n\-------
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Hence, the angle between the rays is n times larger in the Z-plane, and 
the magnification factor is zero.

It can also be shown, that if f ( z ) is regular and single valued in V , 
and the boundary C of V  is a simple closed curve, then the image V  
of V  in the Z-plane is bounded by the image C  of C. When г moves 
along C in the positive direction relative to V  (with the ‘interior’ of V  
on the ‘left’) the image Z  moves along C  also in the positive direction 
relative to V . The result remains true when one or more sections of 
the boundaries С, C  are at infinity.

E x am p le  1 Show tha t the transformation Z  =  f ( z )  = z 2 maps the first quadrant 
V(x > 0, у > 0) of the z-plane onto the upper half (Im Z  = Y  > 0) of the Z-plane.

Let Z  = Rel<̂ , then

Z  = R eirp = r2e2ie, 0 <  в <

R  = r2, ф = 29, 0 < ф < п .

Because 0 <  ф <  7Г, the image of every point in T> lies in the upper half of the 
Z-plane. The transformation is conformal except at z  = 0 where f ' ( z )  =  2z =  0. 
Each ‘ray’ inclined at angle в to the ж-axis is rotated to an image ray in the Z-plane 
inclined at angle 2в to the ж-axis. The positive ж-axis transforms into the posi­
tive ж-axis, and the imaginary axis OBqo (0 =  in the z-plane maps onto the 
negative ж-axis.

E x am p le  2 Show tha t the transformation Z  = f ( z )  = i \ /z ,  where the square 
root is the principal value уТе*^ (z — re!0. — тг < 9 < тг), maps the infinite region 
V  consisting of the z-plane cut along the negative real axis onto the upper half 
(Im Z  =  Y  > 0) of the Z-plane.

z I
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Let Z  = Re^ , then

Z  = Яегф =  v ^ e i(^+ 5), -тг <  в <  тг,
О 7Г

R  = V r, ф = -  + 0  < ф < п .

Because 0 <  ф < 7Г, the image of every point in V  lies in the upper half of the 
Z-plane. The transformation is conformal except at z =  0 where f ( z )  ceases to  be 
regular. The cut is necessary to ensure th a t each point of V  corresponds to  precisely 
one image point in the Z-plane. Thus, any path in V  connecting any two points z\ 
and Z2 cannot cross the negative real axis, thereby forcing в = arg 2  to lie in the 
range (—7Г, 7г). The ‘lower’ side A ^ O  of the cut (where в —► —7r) is transformed into 
the positive real axis in the Z-plane; the upper side O A ^ (6 —> тг) is mapped into 
the negative real axis, and the positive real axis (в = 0) transforms into the positive 
imaginary axis.

It is im portant to  note th a t different domains T> correspond to different orienta­
tions of the cut in the z-plane. For example, if the cut were taken along the positive 
imaginary axis, the argument в would be restricted to the range (— | ), and the 
image points Z  =  Re":’ would occupy — j  < ф <  i.e. the cut plane would be 
mapped onto the half-plane consisting of all points to the right of the line Y  = —X  
in the Z-plane. In the absence of a cut the argument в of г is unrestricted, and 
because any complex number has two square roots, each point in the г-plane would 
correspond to two image points Z  =  i ^ / r e ^ s + f ) .

E x am p le  3 Show tha t the transformation Z  = ez maps the ‘strip ’ V: — 0 0  < 
x  < 0 0 , 0 <  у < 7Г of the z = x  + iy  plane onto the half-plane Im Z  >  0.

The real axis in the г-plane (the lower boundary of the strip) transforms into the 
positive real axis, and the upper boundary (у = ir) maps onto Z  = cln+x — —ex , 
the negative real axis. Straight lines у  =  0  =  constant (0 <  0  <  7r) map into 
rays Z  =  e*e+x radiating from the origin in the Z-plane; the image of the line 
x  =  C  =  constant ( — 0 0  < C < 0 0 ) is the semi-circular arc Z =  ес+гу,0 < у < 7Г. 
The rays cut the circles at right angles because the mapping is conformal and the 
original curves у — constant, x  = constant are orthogonal. Corresponding points 
are illustrated in the figure.

у r

z-plane Z-plane

E x am p le  4 Show tha t the transformation Z  = z + \Jz2 — 1 maps the г-plane cut 
along the ж-axis between x  =  — 1 and x  = +1 onto the exterior of the circle |Z | =  1. 
The square root is defined to be real and positive when x  > 1 on the real axis.
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Referring to the figure

\J  z 2 — 1 =  \Jz — 1 y/z +  1 =  у/г1Г2ег^ +^ \  (3.12.1)

Z-plane

The angles 9\ and O2 both increase by 2tt when z  makes one complete traverse 
around any simple closed path  surrounding the cut, and therefore V  z2 — 1 is 
unchanged in value after this traverse. This ensures tha t each point in the cut 
z-plane corresponds to  a unique image point in the Z-plane. When 0  moves along 
the ‘upper’ side of the cut (where в\ =  it. 0-2 =  0) from x  = 1  to x =  — I we can set 
0  =  cos d, 0 <  < 7г; the image Z . =  cos $ +  i sin t? =  eli> accordingly travels along
the semi-circular arc \Z\ =  1 from right to left in the upper Z-plane. The ‘lower’ 
side of the cut (в\ = тг, В2 =  27г) is traversed from left to right when $ increases 
from 7Г to 2-7Г (or equivalently from — ir to 7r). In this case Z travels along the arc of 
the semi-circle in the lower Z-plane from left to right.

Thus the upper and lower edges of the cut map onto the circle |Z| =  1. Also 
Z  ~  2 0  as \z\ —> 0 0 ; this means tha t distant parts of the 0 - and Z-planes correspond 
and therefore that the image of an arbitrary point in the cut z-plane lies in the region
|Z| >  1.

Problems 3H
Verify that:

1. The transformation Z = eiaz (a  real) rotates all points of the 0 -plane through 
an angle a  about the origin.

2. Z  = iz  maps the region x  > 0 onto Y  >  0.

3. Z  =  0 2 maps the half-plane Im 0  >  0 onto the Z-plane cut along the positive 
real axis.

4. Z  =  i z 3 maps the wedge 0 <  argz < onto the left half-plane X  < 0.

5. Z  =  0 » (0 <  a  < 7t) maps the infinite wedge shaped region 0 <  a rg 0  <  a  onto 
the upper half of the Z-plane.
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6 .

7.

9.

1 0 .

11.

12.

13.

14.

15.

16.

17.

18.

19.

2 0 .

Z  = z + 1 /z  maps points on the circle \z\ = с ф 1 onto the ellipse

X2 + Y 2

(с + 1 /с У  ( с - 1 / с У
1, Z  = X  + iY.

Z  = z 2 + 1 / z 2 maps the region V: \z\ > 1, x  > 0, у  >  0 (in the first quadrant) 
onto the upper half of the Z-plane. Where in T> does the transformation cease 
to be conformal? [z = l,i]

Z  = In z  maps the wedge a  <  arg z < /3 onto the infinite strip: — oo <  X  <  oo, 
a  < Y  < P-

The region 2 <  \z\ <  3, j  < arg г <  f  is mapped onto the rectangle In 2 <  X  < 
ln3, <  Y  < j  by the transformation Z  =  lnz.

The transform ation Z  = z — Vz 2 — 1, where s/z1 — l  is defined as in Example 4, 
maps the 2 -plane cut along the x-axis between x  =  ±1  onto the interior of the 
circle \Z\ = 1.

The rectangular region 0 < x < l , 0 < y < | i s  mapped onto 1 <  \Z\ < e, 
0 <  arg Z  < ^ by the transform ation Z  =  ez .

Z  =  e5z maps the strip 0 <  у < |  onto Y  >  0.

Z  =  e2 maps the semi-infinite strip x <  0. 0 < у <  7Г onto \Z\ < 1, Im Z  > 0.

Z  =  1 /z  maps \z\ < R  onto \Z\ > 1/R.

The transform ation defined for real and positive c by =  ielZ maps the strip 
0 <  X  <  7Г, —oo < Y  <  oo into the circle \z\ <  c.

Z  — z +  a 2/ z  (a  real and positive) maps the region |z| > a  in the upper 
half-plane onto the upper half of the Z-plane.

Z  — coshz  maps the semi-infinite strip x  > 0,0 < у < n onto the upper half of 
the Z-plane.

Z  = — cos 7Г z  maps the semi-infinite strip 0 < x <  1. у  >  0 onto У >  0.

Z  = sin 2  maps the semi-infinite strip 0 < x <  fj, у > 0 onto the first quadrant 
X  > 0 ,У  > 0 .

Find the points where the mapping Z  = s inz is not conformal, [z =  ± ( n +  |)7r, 
n =  0 , l ,2 , . . . ]

3.13 Laplace’s Equation in Two Dimensions

If

w(z) = y(x,y) +  iip{x,y), z = x + iy,
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is regular in a region T> of the г-plane, the real and imaginary parts 
<p(x,y) and tp(x,y) satisfy Laplace’s equation in T>, i.e.

d2ip d2ip 
dx2 ^  dy2

d2ip д2гф 
dx2 dy2

in V. (3.13.1)

Now z = x + iy and z* = x — iy, so that

d dz d dz* d d d
dx dx dz dx dz* dz dz*
d dz d dz* d . f  d d \

dy dy dz dy dz* 1 \  dz dz* J  7

and

d d . d d d . d
^ dz dx 1 d y 1 dz* dx ^  ' dy

Hence,

d2 d2 _  f  d ,d_\  (  d_ _  . d_\ _  d2
dx2 dy2 1 d y )  1 dy )  dz*dz

and equations (3.13.1) can also be written

d V  =  n d2̂  _
dz*dz 7 dz*dz

Therefore the most general solution of Laplace’s equation in two 
dimensions is

/ 1(2) + / 2(2*) =  f i (x  + iy) + f 2(x -  iy),

where /1 and / 2 are arbitrary functions. The most general real solution 
is F(z) +  F*{z*) =  F(z) + {F(z)}*, for an arbitrary function F.

The function w(z) cannot depend on г* if it is regular, but it also 
satisfies Laplace’s equation because

2dw(z)
dz* \  dx + 1 dy )dz

w(x +  iy) = (1 — 1) w\z)  =  0. (3.13.2)
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Now let f ( z )  be regular in V , and define a conformal transformation 
Z = f(z)  of V  into a region Д in the Z-plane. Let W(Z) be regular in 
Д with real and imaginary parts Ф(Д, Y), Ф(Х, Y). Then

д2Ф д2Ф д2Ф д2Ф _
Ъ х 2 + W 2 ~  °’ д х 2 +  W 2 ~ 0, 1П ‘

The transformation Z  =  f (z )  permits us to define a corresponding 
function w(z) = p(x,y) + iip(x,y) = W(f(z ))  which is regular in V , 
with derivative w'(z) =  f '{z)W'(f(z)) .  For corresponding points in V  
and Д we have

4>(x,y) =  Ф (X{x ,y ) ,Y (x ,y ) ) ,  if>(x:y) = Ф (X (x ,y ) ,Y (x ,y ) ) .

In other words: The solutions Ф and Ф of Laplace’s equation in Д are 
also solutions of Laplace’s equation in V.

The explicit transformation of Laplace’s equation from Д to V  is 
effected as follows:
д2Ф 
d X 2

д2Ф л д2Ф 
d Y 2 ~  AdZ*dZ

4 d 
{/'(г)}* dz*

1 d
f'(z) dz Ф (X(x ,y) ,Y(x ,y))

4
\f'(z)\2dz*dz

1
U W 2

"av a y
dx2 dy2

(3.13.3)

where, in passing from the first to the second line, we have used (3.13.2)

a Г 1
dz* f '(z) = 0,

which is valid because 1 /  f { z )  is regular provided f ( z )  Ф 0 in V.
These results have the following significance: The solution of 

Laplace’s equation within a given two-dimensional bounded region V  is 
equivalent to the solution of Laplace’s equation within the transformed 
region Д. If it is possible to solve the latter problem, the solution to 
the original problem in V  can be found by transforming back to the z- 
plane. Problems may arise at isolated points where f ' ( z ) =  0 or if there 
are points where f (z)  ceases to be regular, but these can usually be 
dealt with by considering the detailed behaviour of the transformation 
near these points.
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3.14 A pplications to  H ydrodynam ics

Irrotational motion of an ideal, incompressible fluid in two dimensions 
(in planes parallel to the жу-plane) can be investigated by introducing 
the complex potential w(z) = p(x,y)  +  iip(x,y), which is a regular 
function of г =  x  + iy. The fluid velocity v is determined in terms 
of the velocity potential p(x,y) by v =  V p  = (dp/dx,dp/dy)  at the 
point (x,y). The function ip is called the stream function. For steady 
motion the velocity at any fixed point (x, y) does not change with time, 
and the fluid particles travel along a fixed system of streamlines each 
of which is a member of the family of curves ip(x, y) = constant.

Both p(x,y) and ip(x,y) are solutions of Laplace’s equation that 
satisfy the Cauchy-Riemann equations (3.2.3):

dip dip dp dip
dx dy dy dx '

which imply that V p  ■ Vip =  0, i.e. that the streamlines intersect the 
‘equipotentials’ p — constant at right angles. In the usual notation of 
theoretical fluid mechanics we write v =  (u,v). The complex velocity

w \ z )
dp .dp 
dx dy

=  и — iv

is also regular, with Cauchy-Riemann equations
du d v _  dv d u _  
dx ^  dy ’ dx dy '

the first of which is just the equation of continuity div v =  0 for incom­
pressible flow. The expression on the left of the second equation is the 
vorticity (in the к-direction) which vanishes for irrotational flow.

The fact that w(z) is a regular function of г can greatly simplify the 
solution of many problems. This will be illustrated by consideration of 
two methods based on the theory of complex variables.

M ethod 1 The real and imaginary parts of every regular function 
w(z) determine the velocity potential and stream function of a possible 
flow. A catalogue of flows can therefore be constructed by studying the 
properties of arbitrarily selected w(z).
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E xam ple w = Uz, U =  real constant:

ip — Ux, ip = Uy, v =  ([/, 0).

The motion is uniform at speed U along streamlines parallel to the ж-direction. 

E xam ple

(3.14.1)w = U \ z  Л— \ , U =  real constant, \z\ > 1.

At large distances from the origin w —*• Uz, and the motion becomes uniform at 
speed U parallel to the ж-axis. In terms of the polar form 2  =  re  ,

^—гв N
w =  U I гегв + — U cos 9 yr  + -  ).

у
A

The radial component of velocity

dip
dr

U cos в 1 -

vanishes at r = 1. The motion therefore represents steady flow in the ж-direction 
past a rigid cylinder of unit radius with centre at the origin. (This problem is treated 
by the method of separation of variables in §4.4.)

E xam ple

U = real constant, \z\ > 1, U sin# ,

(3.14.2)

describes potential flow in the y-direction past a rigid cylinder of unit radius with 
centre at the origin.

E xam ple The function

ip : 2тг lnr, ip 9_
2тг’



Complex Variables 133

is regular except at z =  0. The flow is radially outwards from the origin along 
streamlines в =  constant, a t speed dip/dr =  l/2irr. The origin is a singularity of 
the flow where fluid is created a t a rate equal to j>c Vip- n ds, where C  is any simple 
closed curve enclosing the origin with outward normal n, and ds is the element of 
arc length on C. In particular, taking C  to be a circle of radius r,

Vip ■ n ds =

The origin is therefore a simple source of unit strength. 
When the source situated at zq = xq +  iyo

w = - ! - l n ( z -  z0),
Z7T

( v  =  ^  In \z -  zol =  ~  In y /(x  -  x 0)2 + (y -  y0)2 ĵ

E x am p le  The function

w =  ~  (ln(z -  z0) +  ln(z -  Zq)) , \ V =  (ln r i  +  ln r2)J ,

represents the flow produced by two unit point sources located at zq = %o +  Wo and 
Zq = xq — iyo. The motion is symmetric with respect to the ж-axis, and дф /ду  =  0 
on у =  0. Therefore, in the region у > 0 the potential also describes the flow pro­
duced by a point source at zq adjacent to a rigid wall at у = 0 (the presence of the 
wall is said to be accounted for by an ‘image’ source).

M ethod 2 The flow past a system of rigid boundaries in the г-plane 
is represented by means of a conformal transformation Z  = f{z)  by an 
equivalent flow in the Z-plane. The transformation is usually chosen to 
simplify the boundary conditions, thereby permitting the solution in 
the Z-plane to be found in a relatively straightforward manner. Point 
source singularities of the flow are prese rved  under the transformation. 
Indeed, if Z = Z0 is the image of a unit point source at z — z0, the
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complex potential in the neighbourhood of Z0 is determined by

W(Z) =  w(z) — —  In (г — го) +  terms finite at го
Z7T

=  — In ( ———r” | +  terms finite at Zq
2?r V № o) J

= — ln(Z — Zq) +  terms finite at Zq.
Z7T

The point source in the г-plane therefore maps onto an equal point 
source at the image point in the Z-plane.

E x am p le  Derive the following formula for the velocity potential of irrotational 
flow around the edge of the rigid half-plane x  <  0, у =  0 in terms of polar coordi­
nates (г, в):

<p = a.\/r a  =  a real constant,

and make a plot of the streamlines.
The transformation Z  =  i \ f z  maps the г-plane cut along the negative real axis 

onto the upper half of the Z-plane (see §3.12, Example 2). The complex potential 
of flow in the positive X-direction parallel to the boundary Y  =  0 in Z-plane 
corresponds to flow around the edge of the half-plane in the clockwise sense, and 
has the general representation W  = UZ,  where U is real. In the г-plane this becomes

w — iU \ fz ■ iU \ fr  cos — 7Г <  9 < 7Г.

The polar representation of the velocity is therefore

v = {vr,ve) f  dip 1 <9уЛ
\dr'r~d0 J

- U
sm - ,  cos -  

2 ’ 2

This satisfies the rigid wall condition on the half-plane (where 9 = ±7r) because 
the component of velocity normal to  the wall is vg, which vanishes at в =  ±7г. The 
streamlines of the flow are the parabolas

y/r cos =  constant, i.e. У =  ±2/3

where x  < (3, /3 being a positive constant.

When U > 0 fluid particles travel along the parabolic streamlines around the edge 
in the clockwise direction. The streamline for (3 = 0 corresponds to  the upper and
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lower surfaces of the half-plane, which maps into the streamline Y  =  0 on the surface 
of the wall in the Z-plane. The flow velocity becomes infinite like 1 / 1J r  as r  —> 0 at 
the sharp edge.

E x am p le  Calculate the irrotational flow past a flat rigid plate tha t lies on the 
ж-axis between x  =  ±1, given tha t the flow at large distances from the plate is at 
speed U in the «/-direction.

The transformation Z  = z  +  \J z 2 — 1 maps the г-plane cut along the ж-axis 
between ж =  ±1 onto the region of the Z -plane outside the circular cylinder \Z\ =  1 
(§3.12, Example 4, \Лг2 — 1 being defined as in (3.12.1)), with the plate mapping 
onto the cylinder. At large distances from the plate Z  ~  2z, so th a t the distant 
parts of the г- and Z-planes have the same orientations. From (3.14.2), the complex 
potential

W (Z) =  - i U ' U' =  real constant,

represents flow past the cylinder tha t ultimately has speed U' in the У-direction at 
large distances. Hence, the required potential in the г-plane has the form

w(z) = W (Z (z ) )  = - i U '  ( z  + y / z * - l ---------- 7 = z = f )
\  z + y / z * - 1 /

=  — iU' l z + \Jг 2 — 1 —
г — \ /  z 2 — 1

(z + Vz2 — 1 )(z — V z 2 — 1)
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= —iU 1 [z  +  \ J z 2 -  1 -  (z — V 'z 2 -  1) j  

=  -2iU'y/z2 -  1.

This implies th a t w ss —2iU'z = 2.U'у  — 2iU'x  as |г| —*• oo, and we must therefore 
take V  =  ^ U to  have the correct flow speed at infinity.

Thus, in the notation of Example 4, §3.12,

and

w = —iU \ /  z 2 — 1

Tj /-----  • , 6*1+02=  U \/r \ r 2 sin

The streamlines are shown in the figure, and 
correspond to the family of curves 

' 0\ + 02
i f  =  — U \ fr \ T 2 cos =  constant,

which is equivalent to 

x  = ±/3^11 + /3 =  constant >  0./J2 _|_ у 2

streamlines

Problems 31
1. Show th a t the complex potential w{z) = Ue laz represents uniform flow at 

speed U in a direction making an angle a  with the ж-axis.

2. According to (3.14.1), the complex potential W (Z )  — U (Z  +  1 /Z )  describes 
flow at speed U in the X-direction past a cylinder of unit radius with centre 
at Z  = 0. Use the rotational mapping Z  = еГгаг to deduce th a t the velocity 
potential of flow past the cylinder in a direction making an angle a  with the 
ж-axis is given by

if =  U cos (в — a) r H—  
r

3. Two sources of unit strength are placed at the points г =  ± a . Show th a t the 
complex potential of the induced flow is

w(z) = {z2^ a 2}.
Deduce th a t the maximum flow speed on the plane of symmetry x  =  0 is 1/2тта.

4. Derive the following expression for the complex potential of the flow past a 
rigid plate \x\ < 1 ,  у  =  0,

w{z) U z  cos a  — г sin a sfz 1
given th a t the flow at large distances from the plate is at speed U in a direction 
making an angle a  with the ж-axis.
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5. Verify tha t the complex potential

describes the flow produced by a unit point source located at z  = R  in the 
presence of a rigid cylinder of radius a with centre at the origin, where R  > a.

6. By using the transformation Z  = iyfz  (§3.12, Example 2), show tha t the com­
plex potential of the flow produced by a point source at z = zq in the presence 
of the rigid half-plane x  <  0, у = 0 can be taken in the form

w{z) = ~  [in [yfz -  v'So) +  In {yfz +  {V ^}*)] ,

where the square roots are principal values (i.e. yfz =  y f r e ^ , —-к < в < тг).

7. Show tha t the velocity potential w = U у/z 2 + a2 represents the flow parallel to 
a rigid wall at у = 0 in the presence of a thin obstacle of length a projecting 
perpendicularly from the wall at x  — 0.

8. Show tha t the transformation Z  =  e^ z i  maps the region — j <  a rg z < n  onto 
the upper half of the Z-plane. Hence deduce th a t the streamlines of potential 
flow over the right-angled step with top x  <  0, у — 0 and vertical face x  — 
0, у < 0 are given by the polar equation

(3 7Г
r  = ----5---------- , 0 <  в  = c o n s t a n t , ----- <  в <  7Г.

sinf (2<?±2L) ’ ’ 2

ln(z -  R) +  In ( z —
R

— In z

9.

10.

A unit point source is placed at the point z = Щ- within the infinite, rigid duct: 
—oo <  x  < oo, 0 <  у < 7г of §3.12, Example 3. Under the transformation 
Z  =  ez the source maps onto an equal point source at Z  = i. One half of 
the fluid created by this source must be absorbed by a ‘sink’ (negative source) 
placed at the origin A'A in the Z-plane, because this point corresponds to the 
left-hand end of the duct A ^ A ^  in the г-plane, and the flow must be symmetric 
with respect to x  = 0. Deduce tha t the complex potential can be taken in the 
form ^

w(z) = —  ln{coshz}.
27Г

The transformation Z  =  cosh г maps the interior of the semi-infinite duct: 
£ > 0 ,  0 < у < tt onto the upper half of the Z-plane. Deduce that the velocity 
potential of the motion generated by a unit point source at the corner x  =  0, 
у = 0 is given by
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PARTIAL DIFFERENTIAL  
EQUATIONS

4.1 Classification of Second-Order Equations

The principal second-order, linear partial differential equations are:

Laplace’s equation: V2n =  0
1 O^u

Wave equation: V2« ----— — 0 c — constant > 0
c2, at-

1 du
Diffusion equation: V2n ------— =  0 к =  constant > 0

4  к dt
T h e  L ap la ce  e q u a tio n  o cc u rs  in  th e  th e o ry  o f tim e - in d e p e n d e n t elec­

trical and thermal phenomena, and of irrotational motion of an ‘ideal’ 
fluid. The wave equation governs the propagation of ‘non-dispersive’ 
waves (at speed c), such as sound waves in still air, electromagnetic 
waves in free space, and flexural waves on strings and membranes. Heat 
conduction in a homogeneous body and ‘vorticity’ diffusion in fluid at 
low Reynolds number satisfy the diffusion equation.

The equations are also encountered in inhomogeneous form, with 
‘sources’ on the right-hand side. The inhomogeneous Laplace equation

V2m =  /(x ,t)

is also called the Poisson equation.

139
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The two-dimensional equation, with independent variables x, y, has 
the general form

auxx +  2buxy +  cuyy = f (x ,  y, ux, uy), (4.1.1)

where uxx — d2u/dx2, etc, and a, b, c are real coefficients that generally 
depend on x, у and possibly also on ux,uy. Historically, second-order 
partial differential equations of this type are classified by consideration 
of Cauchy’s problem, in which a solution is to be deduced when the 
values of u(x ,y ) and its normal derivative du(x,y) jdn  are prescribed 
on a curve Г in the xy-plane.

When u(x ,y ) is known on Г we can calculate du(x,y)/ds,  where s 
denotes arc length along Г. Then ux, uy can be determined at all points 
on Г by using also the prescribed value of du(x,y) /dn , and we shall 
denote them by

ux =p{s), uy = q(s). (4.1.2)

We can now attempt to solve the differential equation at a point (x,y) 
close to Г by developing u(x, y) in a Taylor series expansion about a 
nearby point xo, yo on Г:

u(x, y) =  u(x0, y0) +  ux(x -  x0) +  uy(y -  y0)

+  2 {uXx(x ~ Xq)2 +  2uxy(y -  y0)(x -  Xo)

+  u y y ( v  ~~ l / o ) 2 |  +  • • • ) ( 4 . 1 . 3 )

where ux,uy,uxx,uxy,uyy, etc., on the right-hand side are evaluated at 
(x0,y0). The first three terms on the right-hand side are known from 
the initial data. The differential equation (4.1.1) and equations (4.1.2)
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can be used to work out the coefficients uxx,uxy,uyy of the quadratic 
terms in the expansion. To do this, differentiate equations (4.1.2) along 
Г to obtain

dx dy dp dx dy dq
T tlxy , , ) tlxy— T Uyy .ds ds ds ds ds ds

(4.1.4)

The three linear equations (4.1.1) and (4.1.4) determine uxx,uxy, uyy 
uniquely except when the determinant of the coefficients vanishes, i.e. 
when

a 2 b
dx dy 
ds ds

0 âs

C

о
dy
ds

-  I dy \  nudxdV , ( dx \ n
=  a | s )  - 2k b * + c U )  = 0

on Г.

The curves that satisfy this condition are called characteristics. By 
writing the condition in the form

ady2 — 2 bdxdy +  cdx2 = 0, (4.1.5)

it can be seen that there are generally two families of characteristics 
with slopes

dy b ±  \/b2 - ac 
dx a

The characteristics are straight lines when a, b, c are constants; more 
generally a, b, c are functions of x and у and the characteristics are 
curved; if a,b,c are also functions of ux, uy, the characteristics depend 
on the solution of the differential equation. When b2 — ac < 0 they have 
complex conjugate slopes.

By drawing an analogy between (4.1.5) and the equation for the 
asymptotes of a conic section, three classes of equations (4.1.1) can be 
identified:

b2 — ac > 0 hyperbolic type e.g. the wave equation uxx — uyy = 0 
b2 — ac =  0 parabolic type e.g. the diffusion equation uxx — uy = 0 
b2 — ac < 0 elliptic type e.g. Laplace’s equation uxx +  uyy =  0.
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It may be verified that the higher-order terms in the expansion
(4.1.3) can also be found by the above procedure provided Г is not 
a characteristic. Thus, in particular, it can be asserted that Cauchy’s 
problem is always soluble by this method for an elliptic equation, which 
has complex characteristics. Hyperbolic and parabolic equations have 
respectively two families and one family of real characteristics, and a 
unique solution cannot normally be derived from data specified on a 
characteristic. If the coefficients a, b, c vary with position or depend on 
the first derivatives ux,uy, the differential equation may be of different 
type in different parts of the xy-plane.

E x am p le  When equations (4.1.1) and (4.1.4) are solved for uxy in the homoge­
neous case ( /  =  0) the result may be written

uxy[ady2 — 2 bdxdy +  cdx2] =  adpdy — cdqdx, (4.1.6)

where the differentials represent changes along Г. This is valid for any solution of
(4.1.1), not just one specified by initial conditions on Г. In this general case uxy is a 
well-defined quantity, even on a characteristic, and (4.1.6) can therefore be satisfied 
only if the right-hand side also vanishes on a characteristic, i.e.

adpdy — cdqdx =  0 on Г. (4.1.7)

For the wave equation uxx — uyy =  0 (a =  1, Ь =  0, c = — 1) the characteristics are 
the straight lines x  ±  у  = constant on which dx = ^fdy , and we therefore have

dp — dq =  0 . ' .  p — q = 2$ '(x  — y) on x  — у = constant

dp + dq = 0 . ' .  p  +  q =  2Ф,(а; + у )  on x  +  у  =  constant.

for some functions Ф and Ф, where the primes denote differentiation with respect 
to  the argument. Hence, solving for p = ux and q = uy , we find

u x = Ф \х  - y )  + Ф'{х + у ), uy = -Ф '(х  - y )  + Ф \ х  + у),

which together imply tha t the solution of the wave equation has the general form

u(x ,y)  =  Ф(ж -  у) +  Ф(ж +  у). (4.1.8)

E x am p le  The general solution (4.1.8) of the wave equation uxx — u yy =  0 can 
also be derived by first transforming to the characteristic coordinates

€ = x - y ,  r/ = x  + y,
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in terms of which
d = di d dr/ d d d—— , and

d x d x dt, d x  dr/ d t dr)
Then
d 2u d 2u ( d , d '\ 2 f  3 dI
d x 2 d y 2 \ d t  +  d V ) - V d t d y

d d t  d dr) d
dy dy d t  dy dr)

4 d2u 
4d£dr) = 0.

d_ d_ 
d t ^  dy '

. du
integrating with respect to t  : —

dr)

and integrating next with respect to rj : и

* Ы

ф(0 + ф(ч).
i.e. и = Ф(ж — у) +  Ф(х +  у).

D ’A lem bert’s solution of th e  wave equation This is the solution 
of the initial value (Cauchy) problem:

d2u 
dx2

1 d2u 
c2 dt2

= 0, —oo < x  < oo, t > 0,

when и — f(x)  and
du
dt

g[x) at t 0.

From (4.1.8) u(x, t ) =  Ф(ж — ct) +  Ф(ж +  ct), 

at t =  0 : Ф(ж) +  Ф(х) =  f (x)

and — сФ'(х) + c4f'(x) = g(x).
JL.

— Ф(ж) +  Ф(ж) = -  Jg(r))dr] + 2C (C =  constant).

Hence, solving for Ф and Ф:

Ф(ж) =  \f(x) ~Yc f  9(v) dv -  c,

Ф(П = \ s ( x )  + h g(jl) drj + C

u(x, t) = Ф(х — ct) +  Ф(ж +  ct) 

f ( x  -  ct) +  f ( x  + ct)1 г
2

1
2c

x - \ - c t

g(v) dV- (4.1.9)
x — c t



144 Mathematical Methods for Mechanical Sciences

t

The solution consists of ‘waves’ propagating at speed c in the positive 
and negative ж-directions. The solution at the point C:(x, t ) in the figure 
is determined entirely by the initial conditions within the interval AB of 
the ж-axis between the points of intersection of the ж-axis with the two 
characteristics through С. AB is called the domain of dependence of C.

4.2 Boundary Conditions for Well-Posed Problems

Cauchy’s problem is always soluble when the initial data are not given 
on a characteristic, but this does not guarantee that the solution is 
acceptable physically. The Taylor series expansion (4.1.3) is valid only 
for \J{x — x0)2 +  (y — yo)2 < R , where R  is the distance from (x0, yo) to 
the nearest singularity of u, which may be complex and very close to Г. 
In  ap p lica tio n s  to  physical p rob lem s C auchy-type  d a ta  a re  n o t u sually  
associated with elliptic equations like the Laplace equation, because the 
problem turns out not to be well posed. A boundary value problem is 
said to be well posed provided (i) the solution is unique and (ii) the 
solution changes smoothly with correspondingly smooth changes in the 
boundary conditions. The latter condition requires that small changes 
in the boundary data should produce small changes in the solution. This 
is a vital consideration when a problem is to be solved numerically: a 
mathematical model of a physical system would have to be rejected if 
small numerical errors in the boundary data produced large changes in 
the solution.

E x am p le  Dirichlet’s problem for the circle.

The real and imaginary parts of a regular function f ( z )  = и + iv  of z  — x  +  iy  are 
solutions of Laplace’s equation (§3.2). It might therefore be expected from Cauchy’s 
integral formula (3.5.1) th a t a well-posed problem for the Laplace equation requires 
the imposition of only one condition on the boundary. To determine и — Re f ( z )
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within a bounded domain D, for example, the value of и can be prescribed on 
the boundary; this is known as Dirichlet’s problem. However, we could also pre­
scribe d u /d n  on the boundary. Both of these problems are well posed (the Cauchy- 
Riemann equations show (i) tha t specifying d u /d n  on the boundary is equivalent 
to specifying v, so tha t the solution in this case determines v =  Im f ( z )  and, (ii) 
th a t consistency requires j>c (du/dn)ds  =  0 where C is the boundary of V).

Suppose tha t u(x, у ) satisfies Laplace’s equation in the circle x 2 + y2 < f?2, and 
is given by и = щ(0),О < в < 2n , a t (R ,0 ) on the boundary C. For z  inside C, 
Cauchy’s integral formula, with C =  He‘° and <1/ =  i f  d9, gives

/ C - z

The point R 2/ z* (the ‘inverse point’ of 2  with respect to the circle) lies on the same 
ray from the origin, but outside C.

The Cauchy integral is zero at this point, i.e.
2tt

10 J_ f  Л
2 n J C -

№Cd6
R 2/ z * '

Now (* =  R 2/ (  when (  lies on C, and therefore

C 2*
Q — R 2/z* z * —R 2/C, (* — z*

Subtracting the two integrals:
2тг 2-7Г

f ( z ) s / « o { f
C — 2 ( *  — Z*

dO h  /  ло
R f  -  \z\ 
IC -  z\2

dB.

(4.2.1)

The term  in the large brackets in the final integral is real. Hence, setting 2  =  reu\  
we find |C — 2 |2 =  R 2 — 2rRcos(6 — ф) + r 2, and by taking the real part we deduce
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Poisson’s formula for the solution of Dirichlet’s problem for the circle
2tt

u( 1_ [  (Д * -  r > 0 ( 8 )  de
2тг J R 2 — 2rR  cos(9 — ф) +  r 2 о

(4.2.2)

E x am p le  The Cauchy problem for Laplace’s equation in the half-plane у > 0:

uxx +  Uyy =  0, given и = x 3 and uy =  0 at у — 0, (4.2.3)

has the exact solution и =  x 3 — 3xy2 (i.e. и = Re(z3), z = x  + iy), but is not well 
posed. Consider a small change in the boundary conditions to

x° T  e sin (!)• — 0, on у = 0,

where e is an arbitrarily small param eter. The solution now becomes

и = Re z + e sin 0 ]  =  x3 -  3xy2 +  esin 0  cosh 0 .

As e —> 0 the boundary data  for this problem are the same as for (4.2.3), but 
|u| —*• oo for any value of у >  0. If the condition uy = 0 at у  =  0 is removed the 
problem becomes well posed with solution и  =  x3 — 3x y 2 +  esin (^) e ~ ^ .

Four principal kinds of boundary value problems occur frequently 
in well-posed models of physical systems, with data specified on a 
boundary S as in Table 4.1.

Table 4.1 Boundary value problems

Problem D ata on S Equation type

D irich le t u Elliptic, parabolic

N e u m a n n
du
dn

Elliptic, parabolic

M ix ed . du  
и  and —  

on
given on different parts of S

Elliptic, parabolic

C au ch y
. du  

и  and —— 
dn

Hyperbolic

When an equation is to be solved in an unbounded region it is usually 
necessary to impose additional conditions ‘at infinity’ to make the solu­
tion unique. For example, to solve the wave equation for the sound gen­
erated in an infinite fluid by a vibrating body, a ‘radiation condition’ is
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applied that requires waves at large distances from the body to be prop­
agating away from the body. In practice, the appropriate conditions at 
infinity are usually clear from the physics of the problem. Thus, when 
calculating the diffusion of heat from a hot body into an unbounded 
medium one would require the solution to be bounded or to tend to 
zero at large distances from the body.

4.3 M ethod of Separation of Variables

Henceforth attention is confined principally to homogeneous partial 
differential equations that are linear in the dependent variable and all 
of its derivatives. These satisfy the principle of superposition, i.e. that a 
solution can be formed by a linear combination of particular solutions. 
In the method of separation of variables, particular solutions, eigenfunc­
tions, are found by assuming the dependent variable to be a product 
of functions each of which is only dependent on one of the independent 
variables. A linear combination of the eigenfunctions is then posited as 
the general solution of the boundary value problem governed by the 
differential equation. The procedure and the general problem of eigen­
functions and eigenfunction expansions were considered briefly in §1.9. 
That discussion is extended here by a consideration of several exam­
ples. In particular, the partial analysis in §1.9 of waves on a stretched 
string will be completed.

Oscillations of a hanging chain Small ampli­
tude oscillations about the vertical of a hanging 
chain of length £ satisfy the equation

A h A l
dx \  d x ) Ш  = 0gd f i  '

0 < x < £,

where £(x,t) is the horizontal displacement of the 
chain at distance x above the undisturbed equilib­
rium position of the free end, and g is the accel- 
eration due to gravity. Let us solve this equation

gravity |
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subject to the initial conditions

dC
C =  f(x) ,  —  = 0, at t = 0.

To derive a particular solution, we set

c = X(x)T(t),

where X(x)  and T(t) are, respectively, functions of x  and t alone. Sub­
stitute into the differential equation, and divide through by X{x)T{t)

J __d_ /  d X \  _  1 d2T  
X  dx \  dx )  gT dt2

The left-hand side of this equation is a function of x  alone, and the 
right-hand side is a function of t alone. This is only possible if both 
sides are constant. This constant must be negative if the solution is to 
be oscillatory in time, i.e.

1 d (  d X \  1 d2T  2
x  Tx(y l i )  = jT  = constanL

Hence, T  = Acos(ky/gt) + В sin(ky/gt)i

where A, В  are constants. The function X  satisfies the Sturm-Liouville 
problem:

d dX
T A x 7 ^ ] + k x  = 0-

where X(£) — 0 and X(0) is finite.

(4.3.1)

Because p(x) =  x = 0 at x  =  0, where p(x) is the function in the general 
Sturm- Liouville equation (1.9.1), the eigenfunctions X n(x), say, satisfy 
the orthogonality relation f* X n(x)Xm(x)dx = 0, n ^  m. Equation
(4.3.1) can be solved by making the substitution

л 2k2 dx  =  —- which gives = 4 k2 dx d z ’
and transforms (4.3.1) into Bessel’s equation of zero order (§1.8)

d2X  1 dX
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so that X  = CJo(2k\/x) + D Yf>(2k^/x),

where C, D are constants. However, we must set D = 0 to ensure that 
the motion remains finite at x — 0 (where Y0(2ky/x) —» —oo). The 
condition that the chain is fixed at its upper end x — i  then yields the 
eigenvalue equation satisfied by admissible values of к

Jo(2/c\/£) =  0, к — kn, n = 1 ,2 ,.. . ,

where 2kn\Ti is the nth positive zero of J0(>z) (an even function of z), 
and we can therefore take X n =  30(2kny/x).

The most general solution of the hanging chain equation is therefore
OO

C =  ^ 2  j A i cos(kny/gt) + Bn sm(kny/gt)}j0(2kn^/x), 0  <  x < i.
n =  1

(4.3.2)

By setting Bn = 0, we satisfy the initial condition d(,/dt =  0 at 
t — 0. The coefficients An are determined by the initial shape of the 
chain from the equation

O O

^  AnJ0(2kny/x) =  f(x),  0 < x < t. (4.3.3)
n=  1

To do this we use the orthogonality relations between the eigenfunctions 
X n — Jo(2kny/x), namely (see §1.9 and the following example):

t ,
f  г- г- I 0, n Ф m.

Jo(2kn^ ) J o ( 2 k m^x )d x  = \  (4.3.4)
J  ̂ (2kny£), n = m

The method described in detail in §1.9 (see equation (1.9.6)) now gives
00

C =  ^ 2  An cos{kn^gt)J0(2knVx), о  <  x < i.
71= 1

1 t
f  f (x )J0(2knX/x)dx f  f (x )J0{2kny/x)dx

f  J^(2knyfx)dx  
о

where
&J?(2 кпуД)
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It is sometimes convenient to replace the eigenfunctions J0(2kny/x) 
by the orthonormal set

Jo(2fcjj\/x) _ Jq(2 kn- x̂̂ j
<fn(x) =

/  J l(2kny/x)dx
V Ih (2 knV t y

which satisfy

J (pn(x)(fim{x)dx = 0, n Ф m,
1, n = m,

in which case the solution assumes the compact form
t

(4.3.5)

CAJ /»

C = ^ 2 A 'n cos(kny/gt)(pn(x), where A'n =  / f(x)ipn(x)dx.
n = l  {

The characteristic frequencies of the chain are given by

шn kn^fg ^

where zn is the nth positive zero of Jo(z) (~  2.4048, 5.5201, 8.6537, 
11.7915,...). These are not harmonically related (multiples of uh), in 
contrast to the eigenfrequencies of the simple stretched string consid­
ered in §1.9.

E xam ple Derive the orthogonality formula (4.3.4) for the hanging chain.

This is a special kind of Sturm-Liouville problem, because at the lower end x  — 0 
of the chain it is merely required th a t (  should be bounded, rather than  satisfy a 
condition of the form (1.9.2). However, the eigenfunctions are still orthogonal. To 
show this, set фп {х ) =  Jo(2kn y/x), then, according to  (4.3.1)

3“ ( x ~ r~  ) +  knipn =  0, -f- I x
diptn
dx + k^lpm = 0.dx \  dx J  n dx

Multiply these equations respectively by ’фт ,'фп , subtract, and integrate over the 
length of the chain to obtain

e(kn - km) J Mm dx = J d (  dipm
Vn~r x - r -  dx \  dx ■ Фг>

d_
dx

difn
dx

dx

t
[ —

J dx
xipi d'lfrri

dx
, difn

Xtpm dx
dx
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xip,
dip, , dipn-  Xlpm ——
ax ax (4.3.6)

J о

=  0 , for п ф  m.

This proves the first case of (4.3.4).
To obtain the result for n  =  m,  we first note th a t the relation (4.3.6) is valid 

for any values of kn, k m. whether or not they are eigenvalues. Thus, let us take 
km = kn + e where e <C 1  and kn is an eigenvalue, then

£{фп+е^)гр'п (£) -  ipn {£)ip'n+e(£)]
(4.3.7)

where the prime denotes differentiation with respect to x. But, ipn {£) = 0 because 
kn is an eigenvalue. Also

грп+е{£) =  Jo (2 (kn + e)VPj и  J 0 ( 2 kn V~£) + 2 e V l j ,0(2kn V i )  = 2eV£J'0{2kn V£) 

and

Ф М  =  ( — Jo ( 2  kn s/x) kn T/
x=£ V£

y0(2knV£).

Hence, (4.3.7) becomes 

e

/ ipp. dx =  —— lim 
" 2kn e~>0

1 £2е^£У0(2кп^£)(кп/^£)Уо^кп^£)

£ ^ 0{2кп^£)У =al(2knVi),

where the relation Jg(a:) =  — Ji(x ) has been used (§1.8). This proves the second of 
(4.3.4).

E x am p le  Apply the method of separation of variables to derive the solution 
(1.9.5) of the wave equation

<92C
d x 2

0  < x  < 1 ; where £ =  0  a t x  =  0 , 1 ,

with the initial conditions (  = f (x ) ,  d(p/dt =  0 a t f  =  0 fo r 0 < x < l .  
Set £ =  X(x )T [ t )  and substitute into the wave equation to obtain

1 d2X 1 d2T
= —к2 =  constant,

where the constant — k2 is taken to be negative to ensure th a t the solution is oscil­
latory in time. Hence X  is the solution of the Sturm-Liouville problem:

X "  +  k2X  =  0, where X  = 0 at x  =  0, 1.
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Therefore X ( x )  — A  cos k x + B  sin kx,

and the conditions at x  =  0 , 1  give

A  =  0, sin(fc) =  0 (for В  ф 0), 

к = птг, n = 0 , 1 , 2 , etc.

The eigenfunctions of the Sturm-Liouville problem are therefore

{0 , n ф m,  

n — m.

Next,

T"  + k2T  =  0 (к — птт) . ' .  T  = C  cos(mrt) +  D  sin(n7rf), C, D = constant,

We can now form the general solution by combining the different separable 
solutions C =  X ( x ) T ( t )  for all n > 1. To do this first set Cn = B C , D n — B D  in 
the n th  separable solution, then

OO

£ =  (C„ cos(n7rt) +  D n sin(mrf)) sin(n 7rx).
П— 1

The initial conditions yield D n =  0 , n >  1, and th e  values of Cn are found by using 
the orthogonality relation for the eigenfunctions. Hence,

l
OO »

(  =  ^  Cn cos(n7rt) sin(n 7nr), where Cn — 2 f(x)sm(n-Kx)dx,  n  > 1, t > 0. 
n = l  о

By using the trigonometric formula 2 sin A  cos В  = sin(H +  B) + sin(H — B),  this 
result can be written

-y OO  ̂ OO ^

C = 2 Cn sin[n7r(x + *)] + 2 X] Cn sin[n7r(x -  t)] = 2 _ *)) >
П=1 71—  1

which expresses the result in D ’Alembert’s form (4.1.9). It shows th a t the displace­
ment of the string consists of two equal waves propagating respectively to  the left 
and right whose waveforms are identical in shape but of half the amplitude of the 
initial displacement of the string. The two waves may be regarded as propagating 
along an infinite string (in — со < x  < oo), whose initial displacement has period 2  
in x,  such th a t C(x ;0) =  f {x) in 0  <  x  < 1  and C(x >0) =  ~ f { ~ x ) in ~  1  <  x  < 0 ,
i.e. f {x )  is imagined to be extended as an odd function of x  with respect to both 
ends x  =  0  and x  — 1  of the original, finite string.

X n (x) =  sin(n 7rx), n > 1, and

I

/
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>  X

/(ж) extended as an odd function of ж of period 2

E x am p le  Solve by the method of separation of variables the boundary value 
problem

0  < x  < £, (4.3.8)д 2и 1  du
dx2 к dt ’

where и =  0  at x  =  0 , £, and и  satisfies the initial condition и = /(ж) at t =  0  for
0  < x < £.

This problem represents the diffusion of heat from the ends ж =  0, £ of a bar 
of thermal diffusivity к and length £ whose sides are thermally insulated, when the 
initial distribution of tem perature is specified by the function /(ж). There is only 
one initial condition at t = 0  because the diffusion equation is first order in the time 
derivative.

Set и = X ( x ) T { t ) and substitute into the differential equation to obtain

1 d2X  _  J _ d T  
X  dx2 kT  dt

—k2 = constant,

where the constant — k2 is taken to be negative to ensure tha t the solution T  =  
Ce~k Kt (C =  constant) is bounded for t  > 0. Then,

X "  + k2X  = 0, 0 < ж <  £,
where X  =  0 at x  = 0 and x  =  £

This is a Sturm-Liouville problem, where

X ( x ) = A  cos kx  +  В  sin kx,

and the conditions at ж =  0 , £ give

A = 0, sin(fc£) =  0 (for В  ф 0),

Ы  =  7Т7Г, i.e. n = 0 , 1 , 2 , etc.

The eigenfunctions of the Sturm-Liouville problem are therefore

X n (x) = sin
/ ПТТХ \

n > 1 , and

e

/ / 'n n x \  . i ттгх\ , f 0 ,
»m(— ) sm(,— ) *с = { ф

n ф m,  
n = m.

(4.3.9)
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We can now form the general solution by combining the different separable 
solutions и = X ( x ) T ( t ) for all n > 1. To do this first set A n =  B C  in the n th  
separable solution, then

i(x, t)  = ^ 2  A n sin e ("") Kt.

To satisfy the initial condition at t =  0 the coefficients A n must be chosen to  ensure 
that

i(x, 0 )  е е  f ( x ) = J 2 An sin
7 1 = 1

Hence, using the orthogonality relations (4.3.9) we obtain the solution of the bound­
ary value problem in the form

и  =  A n s in f ~ ) e ~ ( ^ )  Kt, t > 0, where A n =  j  I  f ( x ) s m ( ^ ^ - ^ d x .
n=i l

As t —> oo the tem perature u —> 0 as the bar tends to therm al equilibrium with its 
surroundings.

Problems 4A
1. If

\ x , 0 < x  <  i / 2 ,
[ i  — x,  i / 2  <  x  <  £,

in the boundary value problem for the diffusion equation (4.3.8), show that

/ 0) =

M  ( - 1) ” 
и =  > —----- —5- sin7Г2 4—/ (2n +  l ) 2

71 =  0  '

( 2  n  +  1 )7ГЖ
£ exp

— (2 n +  l ) 2n 2Kt
I2 t > 0 .

2. When the boundary conditions for the heat equation (4.3.8) are
du
dx

=  0  a t x  = 0 , £, t  >  0 ,

and и  =  f ( x )  a t t  =  0 , show tha t
OO

u = 2 > c o s ( ^ ) e - W 4  t> 0 ,
71 =  0

t l
where A 0 = j  j  f ( x) dx ,  A n = j J  f ( x )  cos j d x  (n >  1).

The final equilibrium tem perature is и = Ao-

3. When f ( x )  = x  in problem 2, deduce tha t

1 U
U = -----------7Г >

2  7Г2

C O S
exp ( — ( 2 7 l + l ) 2 7T2 « t  £2

7 1 = 0
(2n+l)2 t > 0 .
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4. The displacement £(x , t ) of a stretched string of unit length satisfies the wave 
equation

d2C d 2C
^ =  0 , 0  <  x  < 1 ; where (  = 0 at x  = 0 , 1 .

o x 2 a t2
Show th a t if the string is pulled aside a distance h at its midpoint and released 
from rest, the displacement after time t is given by

° °  O h / _1 \n

C(x,  t )  =  <2n  + l V n 2 sinK2n + 1>)nx} cost(2n + 1)7rtl-
n = 0 '  '

5. Show tha t the solution of the Dirichlet problem for и :
d 2u d2u 
d x 2 dy2

in the rectangular domain 0 < x  < a,0 < у < b, where и — 0  on each side of 
the rectangle except th a t along the x-axis, where и =  f ( x )  ( 0  <  x  < a , у — 0 ), 
can be expressed in the form

where A n

a
2  /' f {x )  sm(mrx/ a)dx
a J  sinh(n 7rh/a) 

о
6 . Show tha t if u (x , y) satisfies

d 2u d 2u ,
^ - 2  +  ^  =  0 , 0  <  x < a, 0 < у < b,
o x 2 ay2

where u(0 , у ) = u(a, y) =  0 , u(x,  0 ) =  u(x, b) = 2x{x — a), then

' (2n + 1)7TXN
и = ’̂ 2  A n sin

71= 0

X j 5inh ^ (2n +  l M > - K ) ^  +  sinl,

— 16a2
" 7г3(2п +  l ) 3 sinh[(2n +  l)7r6/a]

7. Obtain all solutions of
d2u du  
d x 2 dy

of the form u ( x , y ) =  (A cos Лх +  В sin Xx)f(y),  where A , B ,  A are constants. 
Show tha t the particular solution th a t satisfies u(0, у) — 0, u(ж, у) =  0, u(x,  1) — 
x  (0 <  x  <  7г) is given by

OO

-  = - 2E
7 1 = 1

( ^  c ( l+ n 2 ) ( l - y )
n

sin nx.
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8 . Show that

u\x, t =t) = {A cos f i t  + В  sin fit)  ̂ /— sin j  j—— In ^ j  | ,

fl =
' n27T2 1
(In 2) 2 +  42 + 7 , n =  1 ,2 ,3 , . . . ,

is a particular solution of the problem 

, 8 2u d2

9. Show that

satisfies

x d ^ 2 = -gj2 ' u (a,t) =  0 , u(2a,t)  =  0 .

i(t со8{(2п+1)7гаг/а} t[(2n+1)n/a?
i\xA) — 2а . г г .  (2n + l)2

n = 0 x

d2u du d u ,
= -ft’ f a '(±a’ 0 = °> “(*. °) = 1*1. 1*1 < a-

10. By noting th a t it =  x  is a particular solution of

d 2u du  
d x 2 dt  ’

show th a t the solution u(x , t )  tha t satisfies the conditions (i) u(0,t)  =  0  and 
u( 1 , t) =  1  for t > 0 , (ii) u(x,  0 ) =  0  for 0  <  x  < 1 , can be written

. , 2  (—1 )" sin типе _„2 _2 t
u(x , t )  = x + - >  ----- ------------- e ” .

7Г Z — '  П
71=  1

11. Show tha t when the conditions of Problem 10 are replaced by (i) tt(0, £) =  1  
and u (l, t) =  0  for t > 0 , (ii) u(x,  0 ) =  cos(^x)  for 0  <  x  < 1 ,

i(x, t) =  1  — x  4 —
7Г '  ^

Sin T17VX -П  7Г t

7Г n(4n 2  — 1)
7 1 = 1

12. Show tha t

2 4 ^  cos{2nnx/£) t /^/ ч -6 ^—‘Vt(x,f) = ------ >
7Г  7Г ^ J7Г 7Г ' 4n 2 — 1n = l

, 0 < ж < t > 0,

satisfies 
d 2u du
&• = * ’ where I -(du \  / 7ГЖ \

—  ) = 0 , and it(a;,0 ) =  sin I —  I, 0  <  x  < l.
Vх  J x=o, e \  t  s

13. Show tha t the solution u(x, у ) of

d 2u d2u 
d x 2 d y2

d 2u d 2u
Я̂ 2 +  ^~2 = 0 ’ 0< ^ < 7T , 0 < у < 7Г,
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where д и / д х  — 0 at x  == 0 and x  =  7Г, и(х,ж) =  0, and м(ж, 0) =  /(ж), is 
given by

и — A 0 (tt -  y) 
2tt

cos n x  sinh n(n  — y) 
sinh П7Г 5 --n = l j  № cos n x  dx.

14. If и =  0 for у >  0 and ж =  0 and x  = t, and и = 1 when у =  0 and 0 <  ж <  £, 
and if

d 2u d 2u
~Б~2 +  0  <  ж <  £, у > 0 ,d x z d yz

show that

u(x,y) = i g Sinl(2"n++1| 'rl/q {cosh -  sinh

15. If u(x , t )  satisfies
d 2u du 
d x 2 dt

du

, 0  <  ж <  a, t > 0 , subject to u(0,t) = 0 ,

o u , , „ , . /тгх\
—  (a, t) -  0 , u(ж, 0 ) =  s i r  ( —  ,
dx V2  a )

show that

«(x, i) =  5 s in ( H )  e - W  _  1 8inf  Ц *
v ’ ’ 4 \ 2 a J  4 \  2a J

4.4 Problems with Cylindrical Boundaries

Laplace’s equation in polar coordinates (г, 9) 
д2и 1 du 1 d2u

V 'u  = + + =  0, 0 < в < 2тг,
d r2 r dr r 2 d02

has separable solutions и = R(r)Q{9) that satisfy
1 d20r2 d?R + r dR _ = constant.

R dr2 R d r  0  d92 
The solution will be single valued provided 0(0) has period 2n. The 
constant must therefore be zero or equal to ri2,n  =  1 ,2 ,.. . ,  in which
case

C
© = Acos(n0) +  Bsm(n9), R — ---- l-Dr", n > 1,

0  =  A, R = C + D\nr, n = 0,

where А, В, C, D are constants.



158 Mathematical Methods for Mechanical Sciences

Thus, when a bounded solution is required in the interior of a circle 
r < a, say, the general solution is

OO
и =  ^  (^An cos(n$) +  Bn sin(n0)^rn, r < a. (4-4.1)

71=0

The bounded solution in an exterior domain is, similarly,
OO ^

и =  i^An cos (пв) +  Bn sin r > a. (4.4.2)

However, a bounded solution in an annular region a < r < b may 
include all terms oc rn and r -n , and also the term in In r.

Velocity potential of flow past a cylinder The velocity potential 
of incompressible, ideal steady flow at speed U in the ж-direction past 
a stationary, rigid circular cylinder of radius a (with boundary r = a 
in polar coordinates) is given by

<p =  Ux +  и (r, 6) =  Ur cos в +  u(r, 9),

where и satisfies Laplace’s equation and tends to zero as r  oc.
и has the general representation (4.4.2). The normal component of 

velocity must vanish on the cylinder

This gives the equation for the Fourier coefficients An, Bn:
O O

^An cos (пв) +  Bn sin (nQ)j =  U cos в, 0 <  9 <  2n,
71=0

which implies that all of coefficients vanish except A\ — Ua2. Hence,
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E x am p le  Solve the Neumann boundary value problem in a < r < b:

2 д2и 1  dr  1  d2u 
V 2it =  +  -  —  +  = °- a < r <b,o r z r or r z oaz

f 17(f) cos 9, r =  a,du
dr  [ 0 , r = b.

This determines the velocity potential produced by an inner cylinder oscillating 
back and forth with velocity U (t ). Although the velocity depends on time (produced 
by an external agency th a t may be assumed to force the motion), time does not 
appear explicitly in the equation for the velocity potential because the fluid is 
incompressible. Note tha t the boundary condition on the inner cylinder satisfies the 
compatibility condition

' ( ' a , . : - - -

Z7T

/
Clearly

+  B r  cos в ,

where the constants A  and В  are determined from the 
boundary conditions on r  =  a, b, i.e. by

Hence,

и =

A A
B - -  = U, B -  -w =  0. 

az bl

- U a i2  . _ .
7 7 5 ----- 5 T ------b r  COS0, a < r  <  b.(.bz — or) V r

The radially symmetric solution of Laplace’s equation

и — C + D In r

is unbounded both at r  = 0 and r  = oo. It represents the velocity 
potential of a two-dimensional (‘line’) source at r  =  0 (see §3.14). When 
there is no source we must take D = 0 for the solution to be bounded, 
unless r = 0 is outside the physical region where Laplace’s equation is 
to be solved, for example, when a solution is required in the annular 
region a < r < b (see Question 5 of Problems 4B).
E x am p le  Poisson’s integral of the Dirichlet problem for the circle (see §4.2):

1 1 fftn
V 2u = ^  ~  + V 2 W  =  0 , 0 < г <  R,  where и(Я,в)  = f{9).

The bounded solution in 0 <  r <  R  can be written
OO

и =  Aq +  î An cos(пв) +  B n sin(n^) j  rn,
n= 1
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where

A 0 +  ^  ^A n cos(пв) +  B n sin(nO)'j R n = f(9),  0 < в < 2n.
n = 1 2tt

(see §1 .1 0 ) A o = l j f ( 0 > ) d 0 ' ,
0

2tt

(■A n , B n) =  J f  (9') (cos пв ' , sin nQ')de\ n >  1 .

Hence,
2tt

U = i) [cos пв  cos n#' +  sin пв  sin n 0 '] ] de'
о
2tt

^ / / Ю и  + Ё ( ^ ) ' 1СО8п(^0') de'

2tt

n \  n —1

em(0-0') ] det

2tt

=4 /
1 7 r/7,/4 7 1 (г/К)е^в~в''>Д0' 2 1 -  (г/Д)е^-0') dfi'

2ttRe ^  J  m  i " 1 i <#.Д — ге*(в~в'
Extraction of the real part leads to Poisson’s formula

2tt
(r 2 - r 2)f(e')de'

t(r'e)=h j R 2 - 2 r R c o s ( 9  - 9 ’) + r2 '

This is identical with the solution (4.2.2) derived using Cauchy’s integral formula
(3.5.1).

Problems 4B
1. If u(r, 9) satisfies

д 2и I d  и 1  d 2u
д^2 + гд^ + г2дв2=0, 0 < r < a >

and u(a, 9) = в, —it < 9  < n, show that

и = —2Ш )
r \ n s in n9

n = l a / n
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For the exterior problem, where the same equation is to be solved in the infinite 
region r > a, subject to the same condition at r  =  a, show tha t

и =  — 2
a \ n s in П0

n = l

2. Establish the solution

= E AC (
r \ 2 n + l
- J  sin(2n +  1)0

' 7г(2п +  1) \a
n= 0 4 7

of the boundary value problem

д2и 1  ди  1  d 2u
+  -  7Г +  -n -^ 2  =  ° ’ 0  <  Г < a > 0 <  0 < 7Г,

r  or r2 овл
where u{a,9) =  C  (constant) for 0 <  0 < 7r, and u(r, 0) =  0 for 0 =  0 and 
0 =  7Г.

3. Show that the solution of the cylindrically symmetric diffusion problem

д 2и 1  ди  1  du
t t w  H—  тг~ =  — t tt j 0 <  r  <  a,dr2 r or  к at

Ka2t

where u(a, t) =  0 , t  >  0 , and u(r, 0 ) =  f ( r ) ,  0  <  r  <  a, is
OO

и - ^ 2  exP
n= 1

where a n is the n th  positive zero of Jo(x), and

I Гf  (r)Jo ( ^ )  dr 2 / r / ( r ) J o ( ^ )  dr
A n = S— ---------------------=  -  "

a2 J i(a „ )

4. Radially symmetric oscillations of a circular membrane of unit radius are gov­
erned by the equation

д 2и 1  du d 2u 
W 2 +  ~r~d~r ~ d f f = ’ < r < > 

where u(r , t) =  0 at r  =  1 for all time t. Show that, if

du
и = f (r ) ,  and —  =  0  at £ =  0 , 0  < r  <  1 ,

then

= £
n = 1

2J0 (a nr) cos(ara£) J r f { r )J0(anr) dr J , £ > 0 ,

where a n is the n th  positive zero of Jo (ж).
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Show further that, when f {r )  =  1 — r 2,

dJ2(an)do{anr) cos(ant)- E aV i (an)
, t> 0.

=  0 , a < r < b, — 7Г < 6 < tt,

5. и(г,в)  satisfies

д2и 1 ди  1  9 2u
dr2 r dr г2 дв2

where u(a, в) =  0, u(b, в) = 1, — тт < в < тг. Deduce tha t

ln (r/a )и = , . ' , -тг<в<п.
In (о/a )

Where does и = A? [r =  a (6 /a ) i ] .

6 . Show tha t the solution u(r, x ) of the boundary value problem

д2и 1  du d 2u
WT +  _ W  +  r  <  1 , 0  <  x  < a,o r* r or o x *

where u ( l, x) =  0 , u(r, a) =  0 , u(r, 0 ) =  f ( r ) ,  is given by
OO

и = ^ 2  ^nJo(A „r) sinh{A„(a -  ж)},
П= 1

A n =
sinh(A„a)

1J f { r ) r Jo (A„r)dr,

An =  n th  positive zero of J 0 (A) =  0.

7. Find u{r, x) in r  <  1,0 <  x  < a when 

д2и 1  du d 2u
7 T  +  _ F  + F ^ = 0 > r  <  1 , 0  <  x  < a,or* r or ox*

and u (l, x)  =  0 , u(r, 0 ) =  f ( r ) ,  u(r, a) = g(r).
OO

=  [-^n sinh{An (a — x)} +  B n sinh A„a;}] J 0 (Anr),
n= 1

(̂ -n l Bn) —
I

Jj(A,,)sinh(A,,s) /  ( M M r ) ) r U K r ) d r ,

An =  n th  positive zero of J 0 (A) =  0

8 . When f {r )  =  1 and g(r) =  0 in Problem 7, show that

2 sinh{An(a — a:)}Jo(Anr)= E—J A„sinh(A„a)Ji(A„o)
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9. Let Afe be the fcth positive zero of Jo (ж). Show th a t if u(r, t) satisfies

д2и 1  ди  1  du  .
-x~2 +  --ЕГ = - - к г ,  0 <  r  <  1, t >  0, u (r,0 ) =  u 0 J 0 (Afcr),
o r1 r or к ot

then u(r, t) = иоИо(\кг)е~кХ& for t > 0 .

10. Show tha t the solution of
д 2и  1  ди  1  du
w w  +  - w -  =  - w 7 , 0  <  r  < 1 ,orz r or к at

where u( 1 , t ) =  щ ,  t >  0 , and u(r, 0 ) =  0 , 0  <  r  <  1 , is

и = u0 1 1 -  2 ]T j AJ °j(y } е х р (-к А ^ ) | , t  >  0, 

where An is the n th  positive zero of Jo (ж).

4.5 Application of Green’s Second Identity: 
Green’s Function

The Laplace operator V2 in spherical polar coordinates (г, в , ф) is given 
by (2.6.6). Spherically symmetric solutions of Laplace’s equation there­
fore satisfy

l_d_
r2 dr \  dr J

— 0, i.e. =  A  +
В

1Г
r > 0, (4.5.1)

where A and В  are constants.
By temporarily shifting the coordinate origin to a given, fixed point 

Xo, so that r  =  |x —x0|, and taking A = 0 and В  =  — 1/4-7Г, we see that

G (x,x0) =  — — ---- j, (4.5.2)47ГI x — x0|

satisfies

V2G =  0 for |x — x0| > 0. (4.5.3)

G is called the free space Green’s function for the Laplace equation, 
and can be used to write down a formal representation of the solution 
of the inhomogeneous Laplace equation (Poisson’s equation)

V V  = /(x ), (4.5.4)
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where the ‘source’ term /(x ) is non-zero only within a finite region of 
space, and ip —* 0 as |x| —> oo.

To do this, let V be the volume bounded by the surface £ 0 of a 
small sphere of radius e with centre at xo and a large closed surface £ 
enclosing £ 0 and the region of space in which /(x ) ^  0. Multiply (4.5.3) 
by <^(x), (4.5.4) by G(x, x0), subtract the equations, and integrate over 
the volume V. Green’s second identity (2.5.2) enables the result to be 
written

S+So

=  J G (x,x0)/(x ) dV(x), (4.5.5)
v

where d/dn  denotes differentiation in the direction of the outward nor­
mal from V.

As the surface £  recedes to infinity, G ~  l / |x | and dG/dn  l / |x |2. 
Let us tentatively assume that <p(x) tends to zero sufficiently fast that 
the integrand on £  goes to zero faster than l / |x |2. Then §^{Gd<p/dn — 
<pdG/ dn)dS —*• 0, and this integral over £  may be discarded.

G(x,x„
dn dn dS(x.)

n

On £ 0
d_

dn
d_
d r 1 r = |x — x0|, so that

G =
-1

4 7 Г б  ’

dG
dn

-1
4 7 Г б 2

, and dS — б2 sin 9d6d(f),
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where (г, в, ф) are local spherical polar coordinates with origin at xo. 
Hence, (4.5.5) becomes

^ 77—- dS +  — (f cp(x) sin 6d9d(j) — [  G(x, x 0)/(x ) dVCx). 
dr An J  J

So So V

The first integral on the left vanishes identically by the divergence the­
orem (because V2<p =  0). In the second integral p(x) can be replaced 
by <p(x0) as e —> 0, and sin 6d6d(p = An. The formula therefore 
reduces to

V’(xo) = /  G(x,xo)/(x) ^V(x) =  — 11 /  ^  (4.5.6)J An J |x -  x0|

where the volume integral on the right is taken over the region where
/(x ) Ф 0-

This formula determines p  in terms of the source distribution /(x ) 
at an arbitrary (‘observation’) point x0. It shows that, as |x0| —> oo,

^ ~ S R  / /(x)[iv(x) “  S R F ' /  x /(x)dv(x) +■■■.

i.e. that ip decreases at least as fast as l / |x c| with increasing distance 
~  |xG| from the source distribution. This justifies our neglect of the 
surface integration over S.

When equation (4.5.4) is to be solved in the presence of an arbitrary
distribution of boundaries S, the integral on the left of (4.5.5) includes
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a contribution from S, and we obtain instead of (4.5.6)

<йЫ =  J G(x, x0)/(x ) dV(x)

S
= -1  Г /(x ) dV(x)

An J | x  x 01

+ i - / [ , 1 few -  y(x)_g.
An J  L |x -x o | dn on

s
(4.5.7)

Note In a well-posed boundary value problem for Laplace’s equation 
when, for example, the value of p> is specified on the boundaries, the 
solution actually determines the value of dip/dn everywhere on S. This 
means that tp and dip/dn cannot both be prescribed independently in 
the surface integral of (4.5.7).

x0
dS(x).

4.6 The Dirac Delta Function in Three Dimensions

The integral (4.5.6), which determines the ‘free space’ solution of 
Poisson’s equation V2y> =  /(x ), converges for all well-behaved ‘source’ 
distributions /(x ) that decrease sufficiently fast as |x| —> oo. The 
integrand becomes infinitely large as x  -> x0, but the infinity is can­
celled because the volume element dV(x) enclosing x0 is proportional 
to |x — x0|3. However, it is often convenient to avoid even ‘harmless’ 
infinities of this kind by observing that

-1 f  /(x ) dV(:x) -  lim _1
f  f (x)  dV(x)

47Г J |x -  x0| e—>+0 47Г J 71|x -  Xq||2 + e2

When e ^  0 the integrand remains finite everywhere, and the result is 
obviously equivalent to replacing Green’s function (4.5.2) by

Ge(x ,x0) -1
47Гу/|х -  x0|2 + e2

(4.6.1)
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Although Ge(x ,x0) —> G(x,xo) as e —> 0, this modihed Green’s 
function G £( x , x 0 ) does not satisfy Laplace’s equation. In fact, a simple 
calculation shows that

v 2a  =  h£(X -  x0), (4.6.2)

where

4 ( x  -  Xo)
Зб2

47t( |x  — X0|2 +  62) t
(4.6.3)

The calculation described in §4.5 (using Green’s second identity) may 
be repeated using equations (4.6.2) and (4.5.4) instead of (4.5.2) and
(4.5.4). In this case Ge is finite everywhere, so that the small spherical 
surface Eq is not required; the integration over the surface E again gives 
no contribution as E recedes to infinity. Instead of (4.5.5) we now find

0 = J G£(x ,x0)/(x ) dV(x) -  J he(x — x0)(p(x) dV(x). (4.6.4)

As e —> 0 the integrand involving 5£(x — x0) vanishes except at x =  x0, 
where it becomes infinite like 3/47re3, i.e. for small e

Se(x -  x0)<p(x) dV(x) <p(x0) / 5e(x -  xq) dV(x)

OO
= <̂ (x0) x 3e2 J r2dr

( r 2 +  е 2 ) г
U

Hence, we recover the solution (4.5.6):

=  v?(xq).

-1  f  f  (x) dV(x)
¥>(xo) =  lim [ G£(x , x0) / ( x ) dV(x) =  fe-^Oj 47Г J | x - x 0|

Generalised functions in three-dimensions The e-sequence

3 e 2
< Ц х -у ) =

47t( |x  — y |2 +  e2)a
(4.6.5)

defines the 5-function in space of three-dimensions (cf. §1.11). This is
the three-dimensional generalised function, denoted by S(x — y), with
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the fundamental properties

j  5(x — y)dV(y)
V

f  1, when x is in V, (4.6.6)
= {o. when x is not in V,

/  / ( y)tf(x -  y)dV(y) =  /(x ), when x is in V. (4.6.7)
J
V

It follows from this and (4.6.2) that we can formally define Green’s 
function for the Laplace equation as the solution of

V2G(x, x0) =  h(x — x0) (4.6.8)

that decays like l / |x  — x0| as |x — x0| —> oo.
There are an infinite number of different e-sequences of the type on 

the right of (4.6.5) that can be used to define the three-dimensional 
delta function. Any of the following would suffice, for example,

2 тг |х -у |( |х  —y| +  e)3’
exp [ - ( х - у ) У б 2] 3H(e — |x — y|)

7Г§ e3 ’ 47Гб3

where H(x) is the Heaviside step function (1.11.4).

E xam ple If x  =  (xx, x2, x3), у  = (уг , y2, y3) , then

£(x ~  У) =  S(xi  -  yi)S{x2 -  V2)S(x3 -  y3). (4.6.9)

4.7 The M ethod of Images

Let us consider again the method based on Green’s second identity for 
solving Poisson’s equation V 2ip = /(x ) in a three-dimensional region 
V with boundaries S. Green’s function is now taken to be a particular 
solution for /(x ) =  h(x — x0), so that

V V  = /(x )

V 2G(x, x0) =  6(x -  x0).

(4.7.1)

(4.7.2)
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Multiply (4.7.1) by G (x,x0), (4.7.2) by <£>(x), subtract and integrate 
over V. Use Green’s second identity (2.5.2) to obtain (as in §4.5)

<?(xo) =  J G(x, x0)/(x ) dV(x)
v

+ dS(x). (4.7.3)
s

It will be assumed that in the particular case in which the region V 
extends to infinity, the functions (/?(x) and G(x, x0) decay sufficiently 
fast that there are no contributions from the integration over the ‘sur­
face at infinity’ (S in §4.5).

The representation (4.7.3) is valid for any G(x, x0) satisfying (4.7.2), 
and not just the free space Green’s function (4.5.2). Put

G(x, x0) — — :— ----r + u(x,x0). (4.7.4)
47t|x  — x 0|

By substituting this expression into (4.7.2), and interpreting 
— 1/47t|x  —x0| as the generalised function defined by the e-sequence 
(4.6.1), we see that v(x, x0) is a solution of Laplace’s equation

V2n(x,x0) =  0.

Any well-behaved (‘regular’) solution of this equation (that decays 
at least as fast as l / |x | at infinity) can be used in our definition (4.7.4) 
of Green’s function. Because boundary value problems involving elliptic 
equations of the Laplace type are ‘well posed’ when the value of either 
cp or d<p/dn (but not both) is prescribed on the boundaries S, it is 
often useful to choose v(x, xo) such that in these respective situations 
G =  0 or dG/dn  =  0 on S. For example, when dG/dn  =  0 on S, 
equation (4.7.3) becomes

<p(xo) =  J G (x,x0)/(x ) dV(x) -  j) G(x, x0) dS(x). (4.7.5)
V s

If the boundary condition on S is dip/dn =  0, for example, in cases
where ip is the velocity potential of a fluid and S is a fixed rigid
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surface, then
dG

<p(x0) =  / G (x,x0)/(x ) dV(x), provided h— =  0 on S.
J on

The point source Integrate equation (4.7.2) over the volume V' of
a sphere whose centre is at x0:

J V2G'(x, xo )dV (x ) =  J 5 (x  — X o)dV(x) =  1.

V' V '

Applying the divergence theorem (§2.3) to the integral on the left:

j) VG ■ ndS = 1,
S'

where S' is the surface of the sphere and n is the outward normal.
Thus the ‘flux’ through S' is independent of the radius of the sphere; 

indeed the same result is obtained for the flux through any closed sur­
face enclosing x0. In the case in which G represents the velocity poten­
tial of an incompressible fluid, the result states that the net rate at 
which fluid is flowing out of V' is 1, i.e. that the 5-function 5(x — x0) is 
equivalent to a point source of fluid of unit strength located at Xo. This 
simple interpretation is the basis of the method of images for determin­
ing the function n(x, x0) for Green’s function (4.7.4).
G reen’s function for a half- г
space Let us determine G(x, x0) source 

• xo U
for Laplace’s equation when V is
the half-space z > 0, subject to dG/d̂ _ Q Z = 0
the condition OG/dn =  —OG/dz =
0 on the boundary z = 0. The
motion produced by a point source •  x 'o
at xo =  (xo, Уо, zq) is entirely radial image

in the absence of boundaries. Evi-
dently, the component of motion normal to the boundary will vanish 
at г =  0 if the source field is augmented by that produced by an equal 
‘image’ source at Xq =  (x0, Уо, — z<f), he. by taking

-1
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This function is singular at x =  Xq, but this lies in г < 0, so that

is regular in V apart from the point source singularity at xo, and can 
therefore be used to solve the Neumann problem for Laplace’s equation 
in V.

Similarly, to solve the Dirichlet problem, in which the boundary 
value of ip is prescribed, Green’s function must be chosen to satisfy 
G(x, xo) =  0 on z =  0. This is achieved by using an equal and opposite 
image source (a ‘sink’), in which case

Problems 4 C

1. Let V 2ip = 0 in z  > 0 and dip/dz = u(x, y) on z  =  0. If ip —> 0 as z  —» oo, show

(4.7.6)

(4.7.7)

that
OO

— OO

2. In Problem  1 let

и
uo — constant for x 2 +  y 2 < R 2, 
0  for x 2 + y2 > R 2,

Show that

3. Let V 2^  =  0 in z  >  0 and ip =  u(x, y) on г =  0. If p  —> 0 as z -+ oo, show that
OO

4. In Problem 3 let

. . f щ  = constant for x 2 + y2 < R 2,
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Show that

cp(0,0,zo) =  z0u0
1
zo

1
y]R2 + zl z0 >  0.

4.8 Green’s Function for the Wave Equation

In an unbounded medium, and in the absence of waves ‘arriving from 
infinity’, the solution of the inhomogeneous three-dimensional wave 
equation

1 d2(p 
c2 dt2 v y  = /(x , t) (48.1)

represents a system of ‘waves’ radiating away from a source region 
where /(x , t) ф 0. We define Green’s function G (x,x0,f,fo) for this 
problem to be the particular solution of

1 82G
~  V2G =  h (x -x o )5 ( t- to ) , (4.8.2)

that permits the solution of (4.8.1) at any given observer position and 
time (x0,to) to be expressed in the form

<^(xo,to) J /(x , t)G{x, Xo, t, to) dV(x)dt ,
—  O O

(4.8.3)

the integrations being over the whole of space and all times t.
A unique G can be found which accords with physical intuition by 

imposing the following condition:

G(x, xo, t, t0) = 0 for t > t0 and for all values of x.

This is an expression of the causality principle, that waves arriving at 
x0 at time to must have been generated by the sources /(x , t) at earlier 
times t < t0■

The ‘source’ on the right of (4.8.2) is impulsive; it exists only for 
one instant t = t0 and is concentrated at x0. Symmetry demands that 
G(x, x 0,t, t0) consists of an incoming spherically symmetric wave that 
converges onto the point x  = x a and becomes evanescent at time t = ta.
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Its amplitude must therefore depend on r = |x  — x 0| alone, and its 
dependence on time must be as a function of t — to +  |x  — xo|.

For r > 0 equation (4.8.2) can be written in the spherically symmet­
ric form

1 d2G _ l_d_ /  2d G \
c2 dt2 r2 dr \  dr )

0, r  =  |x  — Xq

This is transformed into the one-dimensional wave equation

h w {TG)- ^ {rG)=0’ (r>0)’ (48'4)
by means of the identity =  \  jj^{rG), with the general
solution (§4.1, (4.1.8))

G  _  Ф ( t  -  t o -  |x  -  Xq| / c) 4 /(t — f0 +  |x  — x 0| / c)
47t |x  — X 0 | 47t |x  — x0|

where Ф and Ф are arbitrary functions. The terms on the right represent 
spherical waves respectively radiating in the directions of increasing and 
decreasing values of r = |x — xc|. Therefore Ф =  0, because only the 
incoming wave can vanish after collapsing onto x =  xD at t =  t0.

The functional form of Ф is determined by substitution into equation
(4.8.2). Because the term on the right of (4.8.2) is a generalised function 
we first introduce the following e-sequence for G, which is bounded for 
all values of x,

G' = <Ht-tv  + r, /c) ' where Г( = ^ | X _ Xo|2 + E2.
47ГГе

Then,
1 d2G о Зе2Ф Зе2Ф7 е2Ф"

(4-8-5)

where Ф' =  d^f /dt, etc. As e —> 0 the right-hand side of this identity 
must reduce to the right-hand side S(x — x 0)S(t — t0) of (4.8.2).

From §4.6, equation (4.6.5),

Зе2Ф
47ГГ®

5(x

= h(x

Х0)Ф(t -  to + \x -  Xo|/c) 

х0)Ф(t — to) as e —> 0.
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The remaining e-sequences on the right of (4.8.5) tend to zero as e —» 0. 
For example, for the second term and a test function /(x )

—3e2
OO/ /(x) гФ' [ t  -  to

yj  (x x0)2 + e2
47tc J  [(x — xo)2 +  e2]2

—  O O

-3 e2/ ( x 0)T '( f - to )  f  r2dr

| dV(x)

(r2 +  e2)2

-Зтгe /(x0)T/(f -  f0) 
4c

0 as e —» 0.

Thus, equating the limit as e —> 0 of the right-hand side of (4.8.5) 
to the right-hand side of (4.8.2), we find

T(t -  t0) = 5(t -  t0),

and therefore that

G(x, x0, t, t0) = -----— \---------i-----• (4.8.6)
47t|x  — x 0|

The re ta rd ed  po ten tia l The explicit form of the solution (4.8.3) is 
now derived by a simple modification of the procedure used in §4.5 for 
Poisson’s equation. Multiply (4.8.1) by G(x, x0, t, t0), (4.8.2) by ip(x, t), 
subtract and integrate over all values of x and over — oo < t < oo to 
obtain

O O

—  O O

O O

= ip(x0, t0) -  JJ f G  dV(x)dt.
— O O

div(y>VG -  GV</?] dt

(4.8.7)

In the absence of boundaries, the integral on the left is zero. The integral 
of the first term in the brace brackets involves [ipdG/dt — Gd(p/dt]'£L_00, 
which vanishes because G =  0 at t =  Too and ip =  0 at t =  —oo 
(before the sources start radiating waves). The divergence term can be 
transformed into a surface integral over a distant surface E enclosing
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the source region, on which tp and its derivatives are zero because no 
waves have arrived at any finite time t. Hence

^(xo

OO

’ to) =  / /
/(x , t)G(x, x0, t, t0)dV(:x)dt

—  O O

/ ( M )
47t|x  — x0

— to + dV(x)dt.

Performing the integration with respect to time
O O

< p ( x 0, f 0) =  J f  x, t0 | x - X 0 | dV(x)

47t|x  — Xq I
(4.8.8)

This integral is known as a retarded potential. It is formally very sim­
ilar to the solution (4.5.6) of Poisson’s equation, except that now 
the solution <p(x0, t0) at position xo and time to is given as an inte­
gral over the source distribution /(x , t) evaluated at the earlier time 
t =  t0 — |x — x0|/c. The delay |x — x0|/c is precisely the time required 
for a wave received at xD to travel at speed c from a source at x; 
to — |x — x0|/c is called the retarded time.

Solution of the wave equation in a bounded medium The inte­
gral relation (4.8.7) is applicable for any Green’s function. In the pres­
ence of boundaries S in the medium, the divergence term on the left 
is transformed by the divergence theorem to a surface integral over S, 
and the solution becomes (compare (4.7.3) for the Laplace equation)

¥>(xo,t0)
O O

= . f d t I  G (x,x0, t , t 0) /(x ,t)  dV(x)
—oo V

f  ^  I  fro  * ^ < 9 < p ( x , t )  ^ d G (x ,x 0,t ,t0)\+ / dt (b IG (x,x0,f,to)——------ v>(x,i)------ -------- 1“3(х),
-oo S

(4.8.9)

where V is the region occupied by the sources, and the normal on S is
directed out of V.
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For specialized boundary conditions we can use a modified form of G 
that satisfies suitable conditions on S (e.g. dG/dn — 0 or G =  0 on S), 
by taking

G{x., x0, t, t0)
s ( t - i„ +  l ^ l )

47t |x  — x0| +  u ( x , x 0 , M o ) , (4.8.10)

where u(x, x0, t, t0) is a regular, causal solution of the homogeneous 
wave equation

1 d2v 
c2 dt2 V2u 0.

Problems 4D
1. Use the method of images to show that, for the half-space z  >  0, Green’s function 

for the wave equation is given by

G (x ,xo ,M o) =
*(*-*0 + ^ )  , S ( t - t 0 + ^ )

47t |x - X 0 | 47t |x  — X q I
(4.8.11)

where xf, =  (ж0, yo, —zq) is the image of x 0 in the plane z  =  0 , and the ±  sign is 
taken according as d G / d z  =  0 or G =  0 on z =  0.

2. A circular piston of radius R  flush with the plane rigid wall z =  0 oscillates at 
frequency cu with uniform normal velocity dip/dz — uocosut .  If dip/dz =  0 on 
the rigid part of the wall and

1  д 2ю 2
V 2<p =  0  for z > 0 ,c2 dt2

show that

<7>(xo,to) =
-Щ
2tt /

C O S  UJ (t —(<
yj ( х - х 0)2+ (у - у 0)2+г1 ^Jdxdy

piston V ( x ~  x 0) 2 +  {у -  Уо) 2 +  z l
z0 > 0.

Deduce th a t on the axis of symmetry Xq = yo = 0,

if = U 0 C . /sm a; ( t ------
c /

— Sin UJ 1

The m ethod  of descent Let us integrate both sides of equation
(4.8.2) for the three-dimensional Green’s function in an unbounded
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medium with respect to г over —oo < z < oo. Because
OO

dz

exj
= 0 and / S(x — x 0)dz — 5{x — Xo)6(y — yo),

— oo J

we find
Г1 d2 /  a2 32 \1
c2 <9f2 \<Tr2 0i/V .

G(x,y ,x0,y0, t , t 0)

= 5 ( x - x 0) 6 ( y - y o ) 6 ( t - t 0), (4.8.12)

where

G(x
O O

5 У-, жо> Voi t, to) — /  G(x,Xo,t,t0)dz, (4.8.13)

is Green’s function for the wave equation in two space dimensions. This 
procedure for deriving results for lower-dimensional spaces from one of 
higher dimension is called the method of descent.

To evaluate the integral (4.8.13) we use the formula (4.8.6) for 
G{x,Xo,t,to) as follows:

G(x,y ,x0,yo,t,to) =
OO

/

5 [t — to T | x - X p | dz

47t|x  — Xo|

OO

/

S t - h +  I  Ь г

47Гд/ ( X  -  X q )2 +  ( y ~  У 0 )2 +  ( Z ~  Z o f

~ <И t -  to + E E ^ E B E

4 {x -  x0)2 + {y -  yo)2 + p2

As p varies over —oo < p < oo, the argument of the fi-function can 
vanish only if

to л „ V ( x -  xo)2 + (y -  yo)2t >  j
C
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and it does so at p — p±, where

P± = ± \  (t -  t0)2 _  ( X  ~  X p ) 2 +  ( y ~  Уо ) 2

Hence, using (1.11.16)

_ \ / (x-XQ)2+(у~У0)2+р26 ( t — to + dp

47Гy j (x  -  X 0 ) 2 + ( y -  V o ) 2 + P 2

y/(x ~ xq)2 +  (y -  УоУ 1 1
+

J p + / Cl |p - / c |

Green’s function for the wave equation in two space dimensions is 
therefore given by

G(x,y ,x0,y0, t , t0) =
H to —

_  y/(x-XQ)2+(y-yo¥

2n\ (t0 -  t )2 -2  _  (x - x 0)2+(y-yo)2
(4.8.14)

Problems 4E
1. Show tha t the solution with outgoing wave behavior of

<P =  f ( x , y , t )
I d 2 /  д 2 d 2

c2  dt2 \  d x 2 +  Oy2 J
is given by

to-

р(х o ,2/o, to) =  [  dxdy f  ----- f G ’ lht fd t
-L  -L  27ry (g — t)2 Г2 72

where r =  \ / ( x  — xo)2 + (y — j/o)2-

2. Green’s function for the one-dimensional wave equation satisfies 

1 <92 d2
G =  <5(ж — ico)<5(t — to),c2 dt2 d x 2 

Use the method of descent to  show that

-oo <  x  <  oo.

G ( x , x 0, t , t 0) -H to — t — \x -  X o \

Verify this formula by direct substitution into the equation.

(4.8.15)
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3. Show tha t the solution with outgoing wave behaviour of

1 d2 _ df_
c2 df 1 d x 2

d F
<p = ( x , t), —oo <  x  < oo, where F - » O a s  |x|

is
OO

¥>(zo,*o) = |  J F (x,t0 \ X  -  X0|
dx.

4. If F{x, t )  = 0 for |x| > a and 

1 d2 <92 3f , . — OO <  X  <  oo, axc2 dx 2

show tha t the solution with outgoing wave behaviour is
OO

/ ч 1 f  , s T /  lx — Xol<p(x0,to) = -  / sgn(x -  x0)F  I x , t o ------------- dx.

4.9 Fourier Transform s

Suppose f (x)  is defined for —oo < x < oo. The Fourier transform f (k)  
of f ( x ) is defined by

m  = (4.9.1)

In applications we frequently know f (k)  and are required to deter­
mine the corresponding function f (x).  This is done by means of the 
inversion formula which is derived by making use of equation (1.11.8) 
in the form ^  elk x̂~y">dk = S(x — y), as follows

OO

f{x) = j f{y)6(x -  y)dy
— OO

—  OO

eikxdk
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Hence, f (k)  and f (x)  satisfy the reciprocal relations

m f{x)t
- i k x

dx’ f ( x ) = i r J
f(k)eikx dk ,

(4.9.2)

where the second equation is called the inversion formula. 

Example Find the Fourier transform of f ( x )  = e_ FI.

№
oo

= J _  /'
y/Ъг J

i k x - \ x I J  1 /  f - ik x + x dx +  e/ '
- i k x —x dx

1 + 1\  1 — г/с 1 +  ik

m  = J ~ ,  17Г 1 + /с2

The integral in (4.9.2) defining f (k)  converges only under the restric­
tive condition that \f(x)\ —► 0 as x —> ±oo, so that powers of x and 
constants do not strictly possess Fourier transforms. However, in these 
circumstances we can always ‘force’ convergence by interpreting f (x)  as 
a generalised function (§§1.11, 4.6), provided f (x)  does not grow ‘too 
rapidly’ at infinity. In practice this means that f ( x ) should not grow 
exponentially fast, so that it can be defined as a generalised function 
by means of the e-sequence

l , ( x )  =  Д х ) е - ‘К

In this case we have the reciprocal formulae

/ > )  =  lim - L  [  f ( x ) e - W ~ ik* dx, f ( x )  = l i m - L  [  f ( k )  
«-►0 V^TT J  e ''O V27T J

A e - i \ k \ + ik x  d k _

To prove the inversion formula, we write

e\k\+ikxlim ~ ^ =  [  f ( k ) e - W +ikx dk =  lim —  f f  f (y )e~e^ - ^ +ik^ - y'>dydk 
г—о y/2n J г—>o, «-.о 27Г J J

OO

lim [г-о, £-o J / ( y ) e ' 7г(б2 + (X — y)2) dy
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=  Hm / f {y)e e{vl5 ( x - y ) d ye—>0

=  l i m . / ( * ) e “ e|e| = / ( * ) •  
€—>0

E xam ple Consider f  (x) = C — constant and the corresponding e-sequence 
f e(x) =  Ce-e 1*1. Then f ( k )  — lime _ 0 f e(k), where

OO

f e(k) — —)L= f С е - ^ ~ гкх dx = C V b :  6 -  -> Сл/2п 6{k) as e -> 0 .
V 27Г J  7r(e2 +  k z)

—  OO

The original function /(ж) =  C  is obviously recovered when this result (involving 
the 5-function) is substituted into the inversion formula of (4.9.2).

E xam ple For f ( x )  =  x , we take f e{x) = xe_elxL Then
OO

f j k )  = —L= J xe~eW - ikx dx

OO

( i - L  [  Q-e\x\~ikxdx  -» V2^ iS ' ( k)  
\  ok  J  V27T J

as e —» 0 .

E xam ple For f ( x )  = x n , where n  is a positive integer, / 6 (ж) =  x ne е1ж1. Then

Ш  =
y/2n

OO

/
n 00f —L f e ~ ^ - ikxdx  -> V 2 ^ i n 5(n){k) a s  e - f  0.

V J

E xam ple For /(ж) =  Н(ж), / е(ж) =  Н(ж)е ех. Then

ш  = л/2тт

ОО

/ '
— ех—гкх dx =

—i 1
v ^ 7T к — ге 

к
2д{к) v ^ P (fc2 7г(е2  +  fc2) е2 +  fc2

E xam ple For f ( x )  — sgn(z), f e(x) = sgn(ir)e е1ж1. Then

as e —> 0 .

Ш  =
—2 ik

\/2тт(е2 +  к2)
-г\1 — P Г— ) as б —> 0.
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E xam ple For f ( x )  =  cosax,
OO

f {k )  = ~ ^ =  f  i  f eix(a~k) + е Г гх(а + к )\ d x
v27r J 2 V J— OO

=  [J(fc — a ) +  5(k + a)] =  v^7r|a|i5(A;2 — a 2).

E xam ple The Fourier transform and its inversion formula may be interpreted in 
terms of the limiting behaviour of the Fourier series representation of a function 
defined in — £ <  x  < £ as £ —► oo. To see this, note tha t De Moivre’s formula

cos пв + i sin пв = егпв 

enables the Fourier series (1.10.4)
OO

f ( x )  =  flo +  (
П7ТХ . Т17ГХ

an cos — 7--- 1- bn sin
n= 1 )■£  £

for a function of period 2 £ to be expressed in the complex form
OO

/(* )=  X] ^ e ” 1/'

—£ < x  < l.

(4.9.3)

The complex eigenfunctions егП7ГЖ/^ form an orthogonal set over any interval of 
length 2 £, and

/ •
so that

i/t

Cn 2£

•/t dn. = / °  m Ф n,
2 £ m  = n,

ft / /<a:)e‘'
-i

innx/ e dx.

(4.9.4)

(4.9.5)

Let us now consider the behaviour of these formulae as £ —> oo. Set 

kn = ~  and 5 k = j ,

and define f ( k n) by 

Then (4.9.3) and (4.9.5) become

-  6k in ,Cn. — /-- J ( КпVbf

J oo

/(*) = -^=  £  К к у кпХ sk,
n= — oo 

£

f ( k n e~iknX dx.
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As £ —> oo the interval 5k between successive values of kn tends to zero, and the 
summation becomes an integral over the range — oo < к < oo. Then, f {k)  and f {x)  
are seen to  satisfy the reciprocal relations (4.9.2).

Half-range transforms The Fourier transform of a function f ( x ) 
that is prescribed only over the range 0 < x < oo is determined by the 
first of equations (4.9.2) by setting f (x)  = 0 for x < 0. However, it is 
also possible to define half-range transforms for such functions, in sit­
uations where the actual behaviour of /  in the range — oo < x < 0 
is of no interest to the problem at hand. We do this by formally 
defining f (x)  for negative x by taking f (x)  to be an even or odd 
function of x.

у

When f ( x ) is an even function

is an even function of A;, so that the inversion formula gives
OO .-----  OO

f (x)  — — J f(k)e lkx dk =  у  — J f ( k ) cos kx dk.
—oo 0

The Fourier transform of an even function f (x)  will be denoted by 
f c(k), and will be called its Fourier cosine transform. For an arbitrary 
function f (x)  defined over 0 < x < сю, the Fourier cosine transform
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and inversion formula are given by

Ш  = f{x)  cos kx dx, f (x)  = \l — I f c(k) cos kx dk.

(4.9.6)

When f (x)  is an odd function, or is extended to —сю < x < 0 as an 
odd function (so that f ( —x ) = —f(x))

fs{k) = i f (k)  = f (x)e lkx dx = \ l  — I f (x)  sin kx dx
\[Ък 7Г

is an odd function of k , and the inversion formula of (4.9.2) yields

П х )  =  Ш  
—со

I---  00

= V ; / i/Wsi

dk

sin kx dk = У т sin kx dk.

Hence, for a function defined over 0 < x < oo, we can define the 
Fourier sine transform and inversion formula by

.-----  o o  -----  OO

fs(k) =  у  — J f (x)  sin kx dx, f (x)  =  — J f s(k) sin kx dk. (4.9.7)

E x am p le  Calculate the sine transform of f ( x )  — x / ( l  +  x 2).

Using the residue theorem (closing the contour using a semicircular arc in the upper 
half-plane for k > 0 ):

— OO
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Fourier transform of a derivative To use the Fourier transform 
to solve a partial differential equation it is necessary to express the 
transform of a derivative f bd (x ) in terms of the transform of the original 
function f(x).

From the inversion formula of (4.9.2)
OO

— OO

Repeated application of this formula gives the rule:

Fourier transform of f^n\ x )  = {ik)n f(k).  (4.9.8)

Provided f (k)  does not grow exponentially fast as к —> ±oo con­
vergence of the integrals involved in these definitions can always be 
assured by interpreting f (k)  as a generalised function defined by the 
e-sequence, f e(k) = f(k)e~ê ,  say.

Problems 4F
Verify the following Fourier transform pairs: 

1. f ( x ) = e ~ W ,  f ( k )  = V2

2 . f ( x )  = В Д е -fy f ( k )  =

v ^ ( l  +  k2) ’ 

1
%/27t(1 +  i k )

3. f ( x ) = e ~ ax\  f ( k )  = - ^ = e - fc2/ 4fy a >  0.
v Z a

4. f ( x ) =_ f X’
U

0  <  x  < a, i. . _  ( 1  + ika )e  lka -  1  
elsewhere, ' \ /2пк2

5. f ( x )  = S(x), f ( k ) =
1

y/2n'

6- /(*) = Y T ^2’ Ш  = 2 6
—k
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7- f ( x )  

8 . f ( x )

x, 0  < x < a, ~ /1Л / 2  [kas in ka + coska — 1 ]
0 , x  > a, /c( fc2  '

/  __ -jy
cos(7rx/2) J V ^ c o s k, 0 < k <  —, 2 m  = ,

l - x 2 |o , к > 2 '

9. f i x )  = e x , f s(k) =  

1 0 . f ( x

2  к
TT 1 + к2

e 0  <  x  < а, с / 2  [ 1  — cosfca]
0 , x  >  a, M  ) - ) J  ~  ~

1 1 . f {x )  --

Ш

1 2 . f i x ) =

13. f i x )  ~-

14. f i x )  --

15. f i x )  --

16. f i x )

17. f i x )

18. f i x )

19. f i x )

2 0 . f i x )

x ne ax, n =  positive integer, a >  0 ,

'2 n!
7Г (A:2  +  a 2 ) ” ! - 1  

cos(ax)

Im (a +  ifc)7 1 + 1

/ ч P / I \ и / 7 \ Г—  (a>0), /.(*)= t> o

e - “ ( o > 0) ,  Ш “7Г a 2 +  k2 '

i o n“̂_
xe~ax (a > 0 ), / с(*) =  л / - -ir (a2 4- A2)2 '

e “ ~ ( a > 0 ) ,  / , ( * )  =  W - t a n - 1 ( -
£ V 7Г V a

=  e** +  /c(A) =  —p ( l  +  г)е гк / 2 (take a =  —г /2 in Problem 3).
V 2

=  c o s (x 2/2 ), / c (A) =  —p  ( c os(A2/2 ) +  s in(fc2/ 2 ) ) .
V 2

=  s i n ( x 2 / 2 ) ,  / с (A) =  ^ ( c o s (/c2/ 2 )  -  s in (fc2/ 2 ) ) .
V 2

i .  /.(*> = +

x(x 2  +  a 2) : «*>
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4.10 Application of Fourier Transforms to the Solution 
of Partial Differential Equations

Fourier transforms can be applied to solve partial differential equations 
(usually with constant coefficients) defined over one or more infinite 
or semi-infinite domains. The general procedure will be illustrated by 
several examples.

E x am p le  1: T h e  d iffusion  e q u a tio n  in  — oo < x  < oo

Solve the initial value problem

d 2u
d x 2

— — , for t >  0 , —o o < x < o o ,  given th a t и 
к at

f ( x )  at t  = 0 .

This defines the diffusion of heat (temperature) or of a solvent in a one-dimensional 
infinite medium when the initial distribution (/(a;)) is prescribed at time t =  0. The 
diffusivity к  > 0  is assumed to be constant.

Introduce the Fourier transform u{k, t)  = u(x, t )e~tkx dx , and take
the Fourier transform of the diffusion equation by multiplying by an(l
integrating over —oo <  x  < oo. By making use of the rule (4.9.8), and interchanging 
the order of integration and differentiation in

OO

J t J
du{x, t) n_ikx dx = d I 1

dt dt  \ ^/27г

OOJ u ( x , t )€ - ikx dx

we thereby derive the ordinary differential equation

- k 2u ( k , t ) = (M ),к dt
which has the general solution

u(k, t) = A(k)e -k к-t

where A{k)  remains to  be determined. The inversion formula of (4.9.2) then gives 
the following representation of the solution:

„ ( М )  =  ^  /  А Ю * - ^  Л  (4.10.1)
— oo —oo

By setting t — 0 and applying the initial condition u{x, 0) =  f (x ) ,  —oo <  x  < oo 
we find th a t A(k)  is the solution of the integral equation

OO

f ( x )  =  - L  j A(k)e ikx dk.
—  OO
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But this merely states th a t A{k)  is the Fourier transform of f ( x ) ,  and therefore 
that OO

A(k)  = - ^ =  [  f ( x ) e~ ikxdx.  (4.10.2)
V27T J

— OO

Equations (4.10.1) and (4.10.2) constitute the formal solution of the initial value 
problem. To illustrate the behaviour of the solution take the special case in which 
the initial distribution of heat or solvent is concentrated with infinite density at 
x  = 0 , i.e.

f ( x )  =  u0S(x).

Then, A(k)  =  uo/ \ /2n ,  and
OO 2

u(x , t )  = lp- [  e~k2Kt+ikx dk = U°e * - l — , f > 0 .  (4.10.3)
27Г J 2v 7TKt

— oo

This is the fundamental solution of the diffusion equation. Thermodynamic equilib­
rium is established in the infinite medium as t —> +oo, i.e. u(x, t) —> 0 , as indicated 
in the figure.

u(x,t)

The solution for a general initial distribution u(x,  0) =  J'(x) can be expressed as 
a convolution integral involving the fundamental solution by substituting for A{k)  
in (4.10.1) from (4.10.2) and performing the integration with respect to к :

OO OO

U{x' t) = 1t  /  fim J e“ fc2'Ct+tfc(x_€) dk
— o o  — OO

oo

=  f  /(C )e-^-« )2/4KtdC.
2\/irKt J
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E xam ple 2: G reen’s function  for th e one-d im ensional wave equation

Find G(x, xo, t , to)  satisfying

1 d2 d2
c2 dt2 d x 2

G =  <5(t  — To)<5(t — to), — oo <  x  <  oo, G =  0 for t > to.

Take the Fourier transform with respect to  x:

1  d 2G
+ k2G = 6 ( t - t 0)-

~̂—гкх о

c2 dt2 ' ~ "u'  y/bt

where G =  G{k,t)  =  0 for t  >  to- Thus, we can write

(4.10.4)

G =  H(t0 -  t) ^ e icfc(t-to) _|_ g e ~ i c k ( t - t 0)

where H is the Heaviside step function (1.11.4). Substituting into the left-hand side 
of (4.10.4), and recalling th a t ^H (to  — t) =  — 6{t — to), we find

S \ t  -  to)
{ A P B )

-  6{t - 1 0)
ik (A  -  B)

= S(t - 10)-
-ikxo

sfiж ’
which is satisfied provided that

A  + В  = 0, A -  В  =
—c e—гскх о

\/27r г A:

Hence A = —В  =  —се гскх° / { 2 y / 2 n ik) and G =  cH(t0  — t) sin[cfc(to — t)]e гкх° /  
{у/Ътк).

OO

G{ x ,x0, t, to)  =  ^ H(t0  -  t) J sin[c/c(to — t)]elfĉ x Жо̂ dk

This integral vanishes identically when \x — xo\ > c(to — t), because the contour 
can then be displaced to к — sgn(x —жо)гоо without encountering any singularities. 
When c(to — t) >  |ж — .To | the integration contour is first shifted to  a line running 
just below the real fc-axis (without crossing any singularities). Then

c
G{x ,x 0, t , t 0) =  — H (t0  - t - \ x -  x 0\/c)

00 —  26

X /
— 00 — 26

Gik[c(t0- t )  + ( x - x o)] e - ik[c ( t0—t ) - ( x - x  o )] ' dk 
. 2 ik

The second term  in the square brackets is zero for c(to —t) > \x — Tq|. The first has 
a contribution from the pole at к = 0 , so tha t finally

c
G {x ,x 0, t , t 0) = -H

in agreement with (4.8.15) obtained by the method of descent.

to — t —
|T — To I
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E x am p le  3: L ap la ce ’s e q u a tio n  in  у > 0

Find u(x, y) in у  >  0 when

д 2и д 2и  1
+  тг~о = 0 ;  У >  0, -o o  <  x  <  oo, and и = —----- r- on у =  0.o x 2- a y 2 1 + x J

(4.10.5)

Take the Fourier transform with respect to x  to find tha t u(k, y) satisfies the 
ordinary differential equation

dfu 
dy2 — k 2u = 0 ,

whose general solution can be written

u = A (k )e ~Wy + B { k ) e ^ y , у > 0.

We must set B(k) =  0 to ensure th a t the solution is bounded as у —> +oo. The 
inversion formula (4.9.2) then gives

OO

u(x ,y)  =  - ^ =  [  A{k)eikx~Wydk.
v 27T J

— oo

The condition at у — 0 is satisfied provided

OO

w J  л(к)°,к' Лк = т Ь -
— OO

Therefore A(k)  is the Fourier transform of 1/(1 +  x 2), so tha t

A{k)
1
2̂тг

OO

and u (x ,y) =  i  I

r -
ikxdx = Ы - \ к\

sikx-\k\(l+y) rffc 1 +  У
(1 +  у)2 +  X 2 '

у > 0 , —OO < X < oo.

The boundary value problem (4.10.5) determines, for example, the steady tem­
perature distribution in the half-space у > 0  when the boundary у =  0  is maintained 
at tem perature 1/(1 +  ж2). Heat flows in to/out of the half-space at those points on 
у = 0  where

du x 2 — 1— = ----------sc о
dy  ( l + x 2)2 >
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heat flux

When the boundary condition on у = 0 is given more generally as u(x.  0) =  
f (x ) ,  —oo <  x  < oo, the above procedure yields

OO

~ W *  /  Я5)е"“ ^

and the solution becomes

w(a;,y) =  - ^ =  J  Л{к)егkx~W ydk =
OO

HIm e - \ к \ у + г к ( х  — €)d£dfc.

But,
OO

/ ;-|fc| y + ik(X-£) dk = 2y
y2 + ( x -  £ ) 2 ’

— OO

and therefore the general solution can be expressed as the convolution integral
OO

y f ( №
H,y) = \  j p, —oo <  x  < oo, у > 0 .y2 + (x -£ )2'

— OO

This satisfies the boundary condition u ( x , y) —+ f ( x )  as у —> 0, because

/ 2 , f ------ г ^ - -м 5 (х -£ )  as у —> 0.
n(y2 + ( x - 0 2)

E x am p le  4: T h e  d iffusion  eq u a tio n

Find the steady state solution of

d 2u
d x 2

1  du
-  —  , 0  <  x  < oo,
к at

и =  uae~int, x  — 0 , where ua = constant and О >  0 , 
и —► О

given
as x oo.
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The solution represents the tem perature fluctuations in a semi-infinite slab when 
the tem perature of the exposed face of the slab at x  =  0  fluctuates at radian 
frequency Cl. In the ‘steady sta te’ the tem perature everywhere in the medium varies 
at the same frequency, i.e. all ‘transients’ associated with the initial introduction of 
the surface heat source have decayed to zero.

Let u(x , t )  =  U(x)e~l(lt, then U(x)  satisfies the ordinary differential equation

d2U iCl TT
i у  H----- U =  0, 0 <  x  < oo.

ахг к
Therefore

U = Aei{in/K)ix + B e - W " ) * 1, where A  and В  are constants 

and (Ш /к ) 5  =  ( 1  + г )

В  = 0 to ensure tha t и  —♦ 0 as x  —* oo,

. •. u{x, t) =

The condition и =  м0 е~гШ at x  — 0 implies th a t A = u0,

. ' .  u(x, t) = Uoe- m - x/ V b ^ ) - xV n J ^ ,  x >  0. (4.10.6)

Thus the tem perature fluctuations within the slab decay exponentially fast with 
distance x  from the surface, and become insensible when x  exceeds the (frequency 
dependent) therm al penetration depth к/Cl. At any point x  within the slab the
time delay x / \ / 2 kCI produces a ‘lag’ between the phase of the tem perature at x  and 
the surface tem perature.

Application of Fourier sine and cosine transforms Consider the 
Fourier sine transform of d2u (x ,t)/d x2. By integration by parts, and 
by noting that и and ди/дх = 0 at x  =  oo, we find:

I---  00Л/d2u 
dx2

sin kx dx

du OO
—  sin kx
dx 0

du oo

dx J 0

OO

- * /
du
dx

cos kx dx

— [ku cos kx]^1 > — k2its(k,t)

— \ — ku(0,t) — k2us(k,t).
7Г

(4.10.7)
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Similarly, taking the Fourier cosine transform of d2u (x ,t)/d x2:

d2u
dx2

cos kx dx

-i ooau
—— cos kx 
ox J 0

^  sin f a  fa  
ox

du
—  cos kx
Ox

+ [ku sin kx] k2uc(k, t)

n \ d x j x=о
k2uc(k , t). (4.10.8)

These results dictate the choice of half-range transform to be used in 
solving certain second-order partial differential equations defined over 
the semi-infinite range 0 < x < oo, because they reveal the information 
required at x  = 0 in order to express the transform of d2u /dx2 in terms 
of the corresponding transform of u(x,t).

E x am p le  5: T h e  d iffusion  e q u a tio n  in  0 < x  < oo

Derive a Fourier integral representation of the solution of the initial value problem

d2u 
dx2

1  du 
к dt  ’

for t > 0 , 0  <  x  < oo,
( и = 0 , x  — 0 , for t > 0 ,
\ u  = f ( x ) ,  0  <  x  < oo, at t  =  0 .

Obtain explicit formulae for the special case f (x)  = T q = constant.
This is a one-dimensional heat diffusion problem for a semi-infinite conductor 

whose tem perature distribution at time t  =  0  is и =  f {x)  when the end x = 0  
is maintained at constant tem perature и = 0 for t > 0. Because we are given the 
value of u(x, t) (=  0) at x =  0, we take the Fourier sine transform of the equation, 
obtaining in the usual way from (4.10.7):

Hence,

ku(  0 , t) — k2us(k , t) =
1  dus 
к dt (Mb

1  diis 
к dt

—k 2us, and =  A(k)e -At  Kt
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and the inversion formula for the sine transform then yields the formal solution

u {x , t )

OO

I  A(k)i : k Kt sin kx  dk.

The initial condition и = f{ x )  a t t = 0 is applied by setting t = 0 in this formula, 
to obtain

/ 0е)
OO

I  Л{к) sin kx  dk,

A(k)  = \j  — / f ( x )  sin kx d x .

Thus, the required solution of the boundary value problem is
OO OO

u(x , t )  = Ĵ J /(£ ) sin k f  d£
о Lo

- k 2Kt sin kx  dk, 0  <  x  <  oo, t  > 0 .

When f ( x )  =  To =  constant, the tem perature of the conductor is uniform at 
t — 0. However, the integral in the formula

j--- OC

•4m = T”V i / sin kx dx

does not converge. We therefore replace the constant tem perature To by the 
6-sequence Тое_еж,е >  0, and consider the limiting form of the solution as e —> 0. 
Then

A(k) =  To
OC

/ e ex sin kx  dx = \ —
2 T0fc 
7Г e2  +  k2 ’

and

u(x , t )  =
2  T0  f к sin kx
7Г J  

0
e2  +  k 2 6

OO

2T0 f sin kx  _
ТГ J  

0
к C

T0 erf |
' X \
K2 y fn t ) '

■~k2Ktdk

кг Ktdk, as e —> 0 ,

where erf (ж) is the error function (see §5.4 and Question 13 of Problems 5C).
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The following plot of u(x, t)/To against the non-dimensional ‘similarity’ variable 
x/sfifft (к having the dimensions of m 2 /s) indicates how the tem perature changes 
as a function of both x  and t.

E x am p le  6 : T h e  d iffusion  e q u a tio n  in  0 <  x  < oo

Solve the initial value problem

d2u 
dx2

1 du
— — , for t > 0 , 0  <  x  < oo,
к at

given и = u0, 
и =  0 ,

x  — 0 , for t > 0 ,
0  < x  < oo, a t t = 0 .

The solution determines the tem perature distribution in a semi-infinite rod which 
is initially of uniform tem perature и = 0 , when the end x  = 0  is suddenly raised 
and maintained at the constant tem perature и = щ  for t > 0 .

Because и is specified at x  — 0 we take the Fourier sine transform of the equation, 
as in Example 5, to obtain

= \ f ^ k u 0 -  k2us, й .(М )  =  \ / % + Л ( * ) < ? - * Ч
к at \ 7г V 7Г k

At t  = 0, u(x, t) = 0, 0 <  x  < oo

us(k, t) =  0  at t = 0

A (k ) = and us(k, t ) = ^ ^ - [ l - e ~ k2Kt].

Hence, using the inversion formula of (4.9.7)
OO

=  2  f  /  _  e-fe2KA s in fca: dk
uq n J V J k

о

=  1  — erf ( —%= ), 0 < ж < о о ,  t > 0 .V2\Arf )
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0 1 2 3 4 5x!\[(Kt)

E x am p le  7: T h e  d iffusion  e q u a tio n  in  0 <  x  < oo

Solve the initial value problem

д 2и  1  du
£h? = ~k ~dt ’  ̂ >  0  <  x  <  oo,

given {d u / d x  = —a,
u  =  0,

x  =  0 , for t > 0 ,
0  <  x  < oo, at t =  0 .

The solution determines the tem perature distribution in a semi-infinite rod which 
is initially of uniform tem perature и =  0 , when heat is supplied at the end x  =  0  
at a constant rate a  for t  > 0 .

Because d u / d x  is prescribed at x  — 0 we use the Fourier cosine transform, and 
the relation (4.10.8) to deduce th a t

uc(k, t) — A(k)e — k2K,t 2 G_

7Г к2 ’
where *4(fc) is determined from the tem perature distribution at t  =  0  to  be

7Г к2 ’Д ‘) = - | / г з .
so tha t

u(x , t )  2
а 7Г

1  — e—k2nt\  cos kx  dk 
) jfc2 ’ 0  <  x  < oo, t  > 0 .

The solution is plotted in non-dimensional form (■u(x , t ) /ay /Kt  against x/yff t i ,  a 
having the dimensions of u/x) .  The constant ra te at which heat is supplied causes 
the tem perature to rise indefinitely everywhere within the rod with increasing time, 
including the end x  =  0 .
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E x am p le  8 : L ap lace ’s e q u a tio n  in  th e  q u a d ra n t  x  >  0, у >  0

Calculate the steady tem perature distribution u(x, y) in x  > 0 , у > 0  where

d2u d2u  _  j и =  Mo, ж =  0 , 0  <  у < oo,
d x 2 dy2 ' =  0 , 0  <  x  < oo, у =  0 .

Because и =  «о at x  =  0 we take the Fourier sine transform with respect to x  
(using (4.10.7)), to  obtain

d2us
dy2 k2i

us(k, y) =  A{k)e~ky + B{k)eky +

Only positive values of к occur in the inversion integral. Thus, the solution is 
bounded only if B(k) =  0. Then, because йs(k, y) = 0 at у = 0,

A(k)

u{x,y)
u0

[~2uo 
V 7Г к

OO

2  f  . _ ь л  s in k x d k  2  f y \
— /  ( l  — e y) ----- ------ =  — arctan ( — ), x  >  0 , у > 0 .
7Г J ' к 7Г \ x j0

This is equivalent to u ( x , y ) / u Q =  ^ lm (lnz) =  ~ , z  =  (x2  + y 2 ) 2 e*e, where In z  is 
regular in the first quadrant except а г =  0. The isotherms, u (x ,y) /uo =  constant,
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are the straight lines в — constant:

X

E x am p le  9: T h e  d iffusion  e q u a tio n  in  0 < x  < oo
Solve the initial value problem

= и  о, x  =  0 , for t > 0 ,д 2и 1  du
<9 r 2 = ~K~0t' tor * > 0  < x  < oo, given 0 , 0  <  x  <  oo, a t t = 0 .

by taking the Fourier transform with respect to time.
This is the same as Example 6 . The method to be described will work even when 

the boundary condition at x  =  0  is ‘mixed’, i.e. consists of a linear relation of the 
form

du
dx

+  au  = (3{t) a  =  constant.

Let
OO

й(х,ш)  =  —j =  / u(x , t )e~ tultdt, where u(x, t) = 0 for t < 0. (4.
\/27Г J

10.9)

This implies tha t й(х,ш)  is a regular function of и  in the region Im(w) <  0. Then,

x  > 0 ,ioj - ■ -t \ м \ -X=  — u, i.e. u { x , u j )  = A{uj)e
С/Х Kj

where a bounded solution is obtained by requiring the real part of y /iuj/ к  to  be 
positive for —oo <  uj < oo. This can be achieved by defining the square root as the 
principal value of

1
/  e {w — ie) \

where e >  0  and is subsequently allowed to tend to zero.
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To determine A ( uj) we impose the condition и =  uq at x  =  0 for all t > 0
OO OO

where to secure convergence it is necessary to replace the constant щ  by the 
e-sequence и oe~et, i.e. to  regard и о as a generalised function.

Hence, using the inversion theorem for the Fourier transform

u(x, t)
U0

OO

- i  r  exP — X ( e ^ ( w -

2 тг . / vu•<s>13
— OO

oo—iO
- i  f  е ш 1~ х

2тг J LJ
—oo—гО

Im со

еш1 du

, as 6  —> 0 .

integration path 
for t < 0

The contour in the final integral runs just below the real w-axis. When t <  0 
it can be displaced to u> — —ioo without encountering any singularities, so that 
u{x , t) = 0 for t <  0, as required. For t > 0 the integration contour is deformed 
onto the path shown in the figure. The residue contribution from the pole at ш =  0 
is equal to 1. The substitution ш = ik 2K in the remaining integral along both sides 
of the imaginary axis then transforms the result into th a t obtained in Example 6  
using the Fourier sine transform.

E xam ple 10: O ne-dim ensional wave equation
Use the Fourier time transform to solve the initial value problem

^ и = 6(x — a)f ( t ) ,  —oo <  x  < oo, t > 0 ,

where a > 0  and и  =  0 , f ( t )  = 0  for t < 0 .

/  ]_&_ _

V̂ c2  dt2 d x 2
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Take the Fourier time transform (defined as in (4.10.9)) of the equation:

~  +  k lu  =  - 6 ( x  -  a )/(w ), fc0  =  ^ ,  (4.10.10)

where, because f ( t )  =  0  for t < 0 ,
OO

t o - i s  } * & - * * *
0

is regular in the lower half of the complex w-plane, and f(u>) —> 0  as w —> — ioo .
We solve (4.10.10) by the method of Example 2. For x  ф a the general solution 

of (4.10.10) is

u{x,uo) = Ae~ik°x + B e ik°x ,

where A  and В  are arbitrary functions of со. However, because all of the motion 
is generated by the ‘source’ at x  =  a, the solution must also satisfy a ‘radiation 
condition’. This requires that, for x  > a, u(x , t )  consists of ‘waves’ propagating 
away from x  = a towards x  — +oo, i.e. u(x, t) must be a function of x  — ct. This is 
possible only if В  = 0 for x  > a, because the inversion theorem gives

OO

u{x, t )  =  - j =  j  ( А е М ‘- ж/с:> +  B e M t + x / c ) ^  duJ

— OO

Similarly, we must take A  =  0 when x  <  a.
We therefore write the solution of (4.10.10) in the form

й(х,ш)  =  А Щ х  -  a)e - ik°{x~a) +  ВЩ а -  x)eiko(-x- a\  (4.10.11)

where H is the Heaviside step function (1.11.4). Substitute into (4.10.10):

S'(x — a)[A — B] — ika6(x — a)[A +  B] =  —6{x — a)/(w ),

( A - B  = 0 ,

\ i k 0(A  +  B) -  f (u ) .

Thus, A = B,  and

^ u { x , u )  =  /(w )e -<feo,* -e|.

It has been implicitly assumed th a t us is real. In tha t case, when й(х, со) is found by 
dividing both sides of this equation by 2ico/c, it follows from Question 3 of Problems 
1J (§1.11) that

u(x,co)
cf{w)e —ik Q\x—a\

+ CS(co) ,
2  i
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where ‘P ’ denotes the principal value, and C  is arbitrary. Hence,

u(x, t) =
2i\/2/K

OO

/КЗ-  +  C S (lj) /(w je* ^ -1*- ®\/c) dco.

The coefficient C  is determined from the condition th a t u(x, t) =  0 for t < 0. From 
Question 14 of Problems 1J (§1.11)

P ( — ) =  —ni6(w) +  limw
1

e —>0 U! —  i e

so that

u(x , t )  — lim —
£_ +0 2i\/2n

OO

I CJ — l€-— I- [C — 'ki]5(uj) /(w )efa,(* -|*_e|/^  du>.

When t < 0 the part of the integral involving l/(u> — ie) is zero, because /(w ) is reg­
ular in the lower half-plane and tends to zero at u> =  —ioo, so tha t the integration 
contour can be displaced to w =  —ioo (on which the integral vanishes) without cross­
ing any singularities. The remaining part of the integral will also vanish provided 
C = in. The solution is therefore given finally by

u(X, t) =

oo—i0

1
oo—iO

du)
LJ

(4.10.12)

where the integration contour runs from —oo to oo just below the real axis.
This formula implies that

OO

| f a t )  =  I  dco = °-f(t  - \ x -  a\/c)
— OO

t —\x—a\/c

u(x , t )  = ^  J f ( r )d T , w h e re /( r )  =  0  for r  < 0 . (4.10.13)

Problems 4G
1. The steady tem perature distribution u(x, y) in x  > 0, у > 0 is governed by 

d2u d2u „ . =  0 , x  =  0 , 0  <  у < oo,
d x 2 dy 2 1 д и /д у  — — a6(x — a), (a >  0 ), 0  <  x  < oo, у =  0 .

Use the sine transform to show that
„2о ,и = —  In 2тг
У a ■ x ) 2
у 2 + (a — x )2

x > 0 , у > 0 .
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2. By taking the Fourier transform with respect to  time, derive the solution of the 
boundary value problem

д 2и  1  du
d x 2  к dt

+ S(x) f( t) ,  — OO < X  < 0 0 ,  t > t o ,

where u(x ,t ) ,  f { t ) =  0  for t < to, in the form

g o — гО

u(x ,t] 2v/2  ̂ /
/ Н\/iu/h

— o o —гО

oo

where /(w ) =  - ^ =  J f{t)i
to

e~iutdt.
3. Show tha t the bounded solution of the boundary value problem

д 2и д 2и  f и =  0, a; =  О, 0 <  у < oo,
д х 2 ду2 =  иох/(1 +  х 2), 0  < а: <  оо, у =  О

is

, \ и0х  _  (  и0 \
и (х ’У) = ТГ~,--- \ 2  I— 2 = Re — Г“  ’ z = x  + iy.( 1  + у)2 + х2 \Z + l j

4. Derive the solution (4.10.13) of Example 10 by making use of Green’s function 
(4.8.15) for the one-dimensional wave equation.

5. Solve Example 10 in the region 0 <  x  < oo when и  satisfies the condition

du
Z-— = и a ta ; =  0, Z  =  constant. 

ox

Express the solution as the sum of the infinite medium solution (4.10.12) plus 
a reflected ‘wave’ mr(x , t), where

o o —гОUR(x,t) = ̂ = j ^ x>0̂
—o o —гО

1Z = reflection coefficient =  — ( - — ' ~r~  ), k,, =
\  1 +  ik0Z  J c

6 . Find the function u(x, y) th a t is bounded in у > 0 and satisfies

d 2u d 2u 
д х 2 dy 2

у > 0 , —oo <  x  < oo and

У
■к[(х -  О 2 + У2}

и =  5(x — £) on у =  0 . и =
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7. If u(x, у ) is bounded in у > 0 and satisfies 
g2u Q2u
—— +  —— =  0, у  > 0, -0 0  < X  < 00, and и = f ( x )  on у = 0,
ctar o yz

show that
OO

/
/(0  de

У [(ж -  О2 + г/2]'

8 . If Vu(x, у) is bounded in у  >  0 and

d 2u d2u „ , du  , . _
+  ^ 2  =  У >  °> “ °° < z  < oo. and ^  =  o(x -  i )  on у =  0 ,

show that

V u =  ^  , и = - ! -  ln[(x -  О 2 + У2} + constant, у > 0.
тг[{х -  £)г + y z\ 27г

9. If Vu(x, у) is bounded in у > 0 and

d 2u d 2u , du .
+  ~Qy2 =  ° ’ У >  0 ’ “ °° < x  <oo,  and —  =  /(x )  on 1/ =  0 ,

show that

27Г

oo

I  /(£ ) ln[(x — £ ) 2 +  y2] d£ +  constant, у > 0 .

10. Use the cosine transform to show that, if u(x ,y)  is bounded in у > 0 and 
satisfies

d2u d 2u
тго +  ttw =  О- У >  0, -o o  <  x  < oo, and
o x z a y z

и =  H(a — |x|), a > 0, on у = 0,

then

11. Show tha t the solution u ( x , y ) of

I f  _i ( a + x  и = — < tan  1 tan
a — x

)}■ у > 0.

<92m <92u
tww +  =  0 , x > 0 ,  0 < у < a,
a x z o y z

u{x, 0 ) =  /(x ) , 0  <  x <  oo,

u(x, a) =  0 , 0  <  x <  oo, 

u(0 ,y) =  0 , 0  <  у <  a,

is given by
OO OO

« = \ /  / « к  /
sinhfHa — y)l . , . , . „----- ------------- sin kx  sin k£ dk.

sinh ka
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12. If u ( x , t ) is bounded and satisfies

show th a t и

d 2u du
lh ? = ~di' Ж>0, t>0,

u(x,  0 ) =  xe~x / 4, u (0 , t) =  0 ,
x

(1 + t):
-^(1+t)-e 4



5

SPECIAL FUNCTIONS

5.1

The

It is

The G am m a Function Г (ж)

gamma function is defined for positive values of x  by
OO

r W  =  / t- V ‘ d(, x > 0. 
0

positive for x > 0, and Г(1) = JQ°° е~г dt = 1.

X

(5.1.1)

205
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Integration by parts shows that
OO

Г(1 + x) = Ie<r‘
0

dt

so that Г (ж) satisfies the recurrence relation

Г(1 +  x) = жГ(ж). (5.1.2)

In particular, Г(2) =  1 x Г(1) =  1. Similarly, repeated application of 
the recurrence relation for x = n =  a positive integer yields F(1 +  n) =  
n(n — l)(n  — 2) . . .  2.1, i.e.

n\ =  Г(1 4- n ).

The recurrence relation (5.1.2) is used to extend the definition of 
Г(ж) to negative values of x. For example, the formula

r (x) =
x

permits Г(ж) to be calculated in the range — 1 < x < 0 in terms of the 
known values of Г(1 +  x) in the interval 0 < 1 +  ж < 1. It also shows 
that

Г(ж) ~  —, when x  is small,
x

because Г(1 +  x) —> Г(1) =  1 as x —> 0. In the same way, F(x) can be 
calculated for negative values of x in the range — N  < x < 0 from

t v  ,  Г(N  + x) A T  . . .1 (ж) =  —----—----- —-----7---- —— iv =  positive integer.ж(ж +  1)(ж +  2) . . .  (ж +  iV — 1) F &
(5.1.3)

This implies that |Г(ж)| is infinite at ж = 0, —1, —2, . . .  (i.e. n\ = oo 
for n =  — 1, —2, —3,. . . )  and that Г(ж) alternates in sign for ж < 0 (see 
preceding graph). The integral (5.1.1) converges also when ж is replaced
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by 2 =  x+iy, provided x > 0, where it defines Г(^) as a regular function 
of г. We shall see below that Г(г) is regular for all complex values of z 
except for simple poles at z = 0, -1,  —2, . . . ,  on the negative real axis.

E xam ple Г(^) =  ydr. J0°° t%~1e~t dt = J0°° dt = 2 J0°° e_fi dy = у/тт

E xam ple Г ( |)  =  |Г (1 ) =  | 0 r .

E xam ple Г ( ^ )  =  E t i i  =  rH >  = r ( i )

2 ' ( - l )H )  (-i)(-i)(-i)

E xam ple Evaluate J0°° ж6е х3 dx. Set t = x 3, then J0°° ,x6e lJ dx

5 Jo°° t l  le  =  5Г (I )

E xam ple Set t  = t 2 in (5.1.1), then

OO

r(i) = 2 J  t2x~h dr, x  >  0. (5.1.4)

Stirling’s form ula

OO
Г(1 +  ж) =  J txe~l dt ~  у/2'кхххе~х, x + 00. (5.1.5)

This asymptotic formula can be derived by noting that for a fixed 
and large positive value of x, the function у =  £же“‘ =  has a
large maximum at t — x, as illustrated in the figure for x — 10. The 
value of the integral as x  —-> 00 is therefore dominated by contributions 
from values of t near t =  x.

0 4 8 I 12 16 20
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Let £ =  t — x, then

x  In t — t =  x 1п(ж +  £) — (x +  £)

=  x  In x  +  x  In ^1 +  — ̂  — (x +  £)

( 2 £3 f 4 1=  x In x  +  x < ---------- H------------- - -f • • • >
\  x 2x2 3x3 4ж4 /

— (x + £), x —> oc

—  O O

By making the substitution p =  £/л/2ж in this integral:

(5.1.6)

This gives Stirling’s formula (5.1.5) when the terms involving x in the 
integrand are neglected (as x —> oo) and the remaining integral is 
evaluated using the formula f™ еГ'1 dft — у/тг.

A more accurate approximation, which is useful for calculating n\ =  
T(1 +  n) when x  =  n — a large positive integer, is (see Problems 5A, 
Question 18)

n\ ~  \/2ттппе n n >  1.

The error is smaller than about 0.1% for n as small as one.
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E xam ple The integral definition of T(z) is extended to all complex z  /  0 ,- 1 ,  
—2, . . . ,  by means of the formula

T(z) 2i  sin 7t z
d(, (5.1.7)

where C  is the contour shown in the figure enclosing the positive real axis.

imaginary axis

real axis

When z  has a positive real part the integration contour can be collapsed down 
onto the real axis, where £ =  t (0 <  t  <  oo) on the upper side of the axis and 
£ =  te2nl (0 <  t < oo) on the lower side. Hence, provided z Ф 1 , 2 , 3 , . . . ,

e_i7rz 
2 i  sin 7t z

Г е*—гтг z f °r
00 Л r

<p Cz_ 1 e-  ̂dC = 7— ------</ 2 г sm nz
/ dt + e2niz / t2_1e_t dt >

c  1[0 0 0 J
OO

J  f - ' e - *  dt = T(z).
о

When z  =  n  a positive integer the integral around C  is zero. But also sin ttz 
sinn.7r =  0. In this case

2i  sin t t z
Cz_1e"c dC = —

2i ( 4 -  sin 7tz) \ dz\ d z  ) z —n \
i -  ф Cz-1e - c d(

1
2 n i

lnCC- 1e -CdC

MI
0 oo

\ n t t n- 1e~tdt + J ( 2 n i  +  ln t)f"  xe ldt

OO
= J tn~1e~tdt =  Г(п), n =  1 , 2 , 3 , . . . .
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5.2 The Beta Function

The Beta function B(x,y)  is defined by
1

B(x,y)  = J tx~ \ l  -  t)y~l dt, x, у > 0 (5.2.1)

I
= f i x - dt

= B(y,x).

By making the change of integration variable t =  cos2 9, we also have

2

B(x,y)  =  2 J cos2х_1 9 sin2*'-1 9 d9. (5.2.2)

Also by setting t =  r / ( l  +  r) in (5.2.1), we find
OO

B(x,y)  = J tx ldr 
(1 + т )х+у' (5.2.3)

The Beta and Gamma functions are related by

Г(х)Г(у)
B(x,y)  =

Г(x + y) ’
(5.2.4)

P ro o f  From (5.1.4), Г(ж)Г(у) =  4 f f £ °  £2x~1y 2y~1e ~ ^ 2+r,2)d£dr]. If we set (£, y) =  
r(cos# ,sin$) the integral becomes 4 / 0°° r2 x̂+y^~1e~1'2 dr f 02 cos2 x _ 1  0 sin2y~1 Odd = 
2Г(ж +  у) f 02 cos2 x _ 1  в sin2 * '- 1  в d9 = Г(а; +  y)B(x,  y).

E x am p le  Show th a t
7Г

Г(ж)Г(1 — x) = —------ , x  Ф integer.
sin т а

Suppose first 0 <  x  < 1. Then (5.2.3) and (5.2.4) (with Г(1) =  1 ) and Question 10 
of Problems 3F, give

/ tx dt
7 + 7

0

7Г
sin 7ГХ ’
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The formula is extended to all real x by means of the recurrence relation Г(1 +  x) =  
хГ(х).

7Г j

E x am p le  Evaluate JQ2 tans 9 d9.
7Г 7Г
2  2J  ta n  ̂ 9 dO = j  sin5_ 1 0 c o s 9 d9 

о 0

1  R ( l  Л  _  Г ( ! ) Г ( 1 )  _  TT
2 ^ ’ З^  2 Г ( § + § )  2 sin ( | )  у/з'

Problems 5A
Evaluate:

1. r ( - i ) ,  Г ( |) ,  r ( f  ) / r ( | ) .  [ 2Vtt, |V5F, i l

2 . J0°°x*e~*3dx. [|Г(1)1

3. So ta n  ̂x  dx- [7 3 ]

4. / Q°° tx~1e~kt dt , a; >  0, к > 0. [Г(х)]

5- e(xt" et) dt, x  > 0. [Г(х)]

6- /o°° d x - [ ^ ]

7. / Q°° y/xe~x dx. [Г ( |) =

8 . / 0 2 cots x dx. [ ^ ]

9. fg x (ln x ) 5 dx. [—|у]

1 0 . f S  cos2 " + 1  x dx, f 02 sin2 r l + 1  x dx, n  =  positive integer. [both equal to
(2nn!)2/ (2n + 1)!]

H  -' /o°° dx> a >  P >  °- [^cosec2̂ ]

13. / 0°° e - 3x(l -  е_ ж ) 5 dx. [Г(6)Г(3)/Г(9) =

14. / 0°° х _”е_ 1 / ж2 dx, n  >  1. [5 Г (IT^)]

15. If n  is a positive integer, show tha t Г(п +  | )  =

16. Show th a t Г(х)Г(—x) =

17. Use the formula Г(х)Г(х)/Г(2х) =  2 f 02 cos2 * - 1  x sin2;r_1x dx  =
21_2x f 02 sin2 x _ 1  2x d x  to derive the Lagrange duplication formula Г(2х) =  
~75Г~Г(х) Г(х + ±).
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18. Derive the following extension of Stirling’s formula by retaining all of the terms 
involving x  in the integrand of (5.1.6)

Г(1 +  x)  «  V2irxxxe~x ^1 +  , x  —► +oo.

The error in this approximation is less than  0.008% when x  >  6  and only about 
0 .1 % when x  =  1 .

19. Show th a t the integral representation (5.1.7) of T(z) satisfies the recurrence 
relation Г(1 +  z) = zT(z).

20. Show th a t if n  is a positive integer, T(z) has a simple pole at z =  —n  with 
residue (—l)" /n ! .

Set г =  —n  +  £, then using (5.1.7)

T{z) = T { - n  + f )  = - l
( - l ) " e i7r«

2  i sin(—П7Г +  £7t) /<*- ( « + 1) 0 - Ce  ̂ df

c

1

c

1 1 1
2тгг£ / VCn+1 Cn 2!Cn_1

+ ( - 1У
n!£ d( t i l

n!£

21. Show th a t $\z\=i  Г(г) cos 2  dz =  27тг, where the contour is traversed in the 
anticlockwise direction.

22. Show th a t ^jz+n|_ i T(z) cos7T.z dz = where n  is a positive integer, and 
the contour is traversed in the anticlockwise direction.

23. Use Stirling’s formula to show tha t

lim ——+  ̂ +  = 1  for fixed z  Ф 0 , —1 , —2 , ___
n—oo n\nz

Hence deduce Gauss’ formula

T(z) =  lim
\nzn\n

OO z(z  +  1  )(z +  2 ) • ■ • (z +  n ) '

24. Show tha t

B ( x , y ) B (x  + y , z )  = B(y,  z )B (y  +  z, x)

1
B ( x , x )  =  21  ZxB  - , x

B( x , x ) B  ( x +  \ , x +  ^ ) = 24x~h
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25. Verify tha t the volume of the n-dimensional sphere of unit radius is

7Г 2
V II -  / dxidx^ ■■■ dxn =

\/xf+x|H---<1 Г(§ + 1)

Set x i =  cosipi, X2  =  s in ^ i cos(/?2 , £з =  s in ^ i s in ^ 2  cosi/?3,. . . ,

x n =  sint^i sin</>2 ■ • -s in ^ n - i  co sy „ ,0  < f t  < 7г, г =  1 ,2 ,. . .  , n, 
and show that

d x \ d x i . . .  dxn = sin" ipi sin"-1 <p2 ■ ■ • sin ipnd<pid<p2 ■ ■ ■ d(pn (see §6.7), 
~2 ~2 2

and tha t V  =  2" J sin" g>\dy\ J sin"-1 <p2dy 2  • ■ • J sin tpndipn , etc.

5.3 Legendre Polynomials

The Legendre polynomial of degree n > 0 is defined by the Rodrigues 
formula

Pn{x) =  2 ^ !  ^  ^  ~  1)?i’ P°(X) =  L (5-3'1)

Thus:

Pi  0*0 =  X, P2(x) =  | ж2 -  i ,  P3(x) =  | X3 -  ^ж ,

_ , . 35 4 15 2 3
А  (ж) =  -g -z  -  —  X2 +  e tc .
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Pn(x) is an even or odd function of x  according as n is even or odd. 
Also, (x2 — 1)” =  (ж — l)n(x + 1)" ~  2n(x — l )n when x  is close to x = 1, 
so that

/  1 dn \
Pn( l)=  (2п( ж - l)n) = 1 .v ’ \ 2 nn\dxn v v ' J X=1  

Similarly, P „ (- l)  = ( - l ) n.
In applications we are usually interested in the behaviour of the 

Legendre polynomials within the interval — 1 < x < 1. The equation 
Pn(x) = 0 has n real roots, all of which satisfy |ж| < 1. This is obviously 
true for the cases illustrated in the figure. The following argument shows 
that it is true also for larger values of n. When |ж| < 1 the function 
(ж2 — l)n has a single maximum or minimum at x  =  0, and all of its 
derivatives of order up to and including the (n — l)st vanish at x — ±1. 
Therefore, successive derivatives £ ^ ( x 2 — l)n, 0 < nn < n can only 
vanish in \x\ < 1, and the nth derivative only in \x\ < 1.

Legendre’s equation Let у = (ж2 — l)n. Then dy/dx =
2 nx(x2 — l)71-1, and therefore

(ж2 — l)~ r  — 2 nxy — 0. dx
When this is differentiated n +  1 times we find

(ж2 -  1)
dn+2y dn+1y
HT n+ 2 + 2 x

dnv
-  2(1 +  2 +  3 +  • • • +  n)—^ =  0

Now 1 +  2 +  34------bn =  |n (n  + 1), and according to (5.3.1) dny/dxn =
2nn\Pn(x). Thus the polynomial Pn(x) satisfies Legendre’s equation of 
order n:

( 1 - ж 2)d2Pn
dx2

2 x-dPn
dx

+ n(n +  1 )Pn = 0. (5.3.2)

Pn{x) is a bounded solution of this equation for finite values of ж. A sec­
ond independent solution derived by the method of §1.4 is found to be 
unbounded at ж =  ±1.
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By writing Legendre’s equation in the Sturm-Liouville form (1.9.1)

s ( (1- l2)^ ) +n(n + 1)p” = 0- ~1<x<1'
(where p(x) =  1 — x 2 vanishes at x = ±1), it follows that

1J Pn(x)Pm(x)dx =  0, п ф т .
- l

To deal with the case n = m  we first use the Rodrigues formula (5.3.1) 
in the more general integral

l l
J f{x)P n(x)dx = ^  J f { x ) ^ - {X2 -  1 )ndx.
- l

Integrating by parts

-l

f(x)P n(x)dx =
2 "n!

Jn—l

f {x)~---- - (x2 -  l) r
v ’ dxn~x 4

и l

j - i

1  f  df dn 1 2
— i ---- Г (x2 ~  1) dx.nn\ J d x y dxn 1

The first term on the right vanishes identically provided f (x)  is finite 
at x =  ±1. Repeating this process we find

j  f{x)P n(x)dx = J ( x 2 -  l)n^ ( x ) d x . (5.3.3)
-l

If f (x)  =  Pn(x) then

dn f
dxr

(x) 1 d2n , 2  i r  _  №)'■
2nn! dx2n 1 2nn\
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SO that

1
J { P n(x ) } 2 dx
- i

l

0
(2 n)\ Г (±)Г (п  +  1) 2

22n(n!)2 Г (n + | )  “  2n+ 1

Hence we obtain the orthogonality relation for Legendre poly­
nomials:

l
J Pn(x)Pm(x)dx =
- l

n = m, 

n Ф m.
(5-3.4)

E x am p le  Show th a t x 4 =  ~ P 0{̂ x) +  j P 2(x) -t- ^ P 4(a;).
Because x 4 is an even function it can depend only on P (), P2, P4. Now the 

definition equations

1

35

3 о 1 
2 X ~  2

+ l

= fl>, 

= p2,

= p4,

may be regarded as a system of linear equations for 1 =  ж0, x 2, x 4. The required 
expansion is therefore obtained by solving the equations for x 4.

E xam ple Show th a t P2n(0) =  ̂2in^f)2^ , n  =  0 ,1 ,2 ,----
The coefficient of x 2n in the expansion of (x 2 — l ) 2” =  (1 — :r2)2n is ^ Q 2”^ .

1 d2n
' ' P2n̂  = 22n(2n)! dx2" ~ ^ 2")x=o

1 d2n / ( - l ) n (2 n )b 2ri\  (—l)"(2n)!
~ V M 2 J  ~~ 22ra(n!)222n(2n)! dx2n (5.3.5)
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E x am p le  Show tha t x mPn {x)dx =  0 if m  < n.
Using (5.3.3): Д  x mPn(x)dx  =  J ' \ ( x 2 -  l )n £ rr x m dx =  0.

E x am p le  Show tha t J ' \  x n+2mPn{x)dx =  2!Д ^ г (п (+ ш + |)1 m =  0 ,1 ,2 , . . . .  
Using (5.3.3):

(n +  2m)! 
2"_1n!(2m)!

2

0
0 cos2m в d9

(n +  2m)! /  1 \  (п +  2 т ) ! Г ( т  +  \ )
2"n!(2m)! \  ’ 2 )  2n (2m)!F(n +  m  + | )

Series expansion The orthogonality relation (5.3.4) permits an arbi­
trary function f ( x ) to be expanded in the form

/ И

where An

AnPn(x), \x\ < 1,
n = 0

f  f(x )P n(x)dx
- l

/{-РЦ®)}2̂-i

(5.3.6)

n + f(x )P n(x)dx.
-1

If we set x = cos в, 0 < 9 < 7r, these formulae become (with f ( x ) 
replaced by an arbitrary function /(d) of d)

7Г >

/Pn(cos 9) Pm(cos 9) sin 9 d9 = -------- (n = m), 0 (n Ф m)
2 n +  1 

о OO
f{0) =  ^ 2  A n p n (cos в ), 0 <  9 <  7Г, >

71=0
7Г

A n=  J f  (@)pn{cos 9) sind d9.
о

(5.3.7)
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Application to the axisymmetric Laplace equation When 
Laplace’s equation is expressed in terms of spherical polar coordinates 
(■г,в,ф ), as in (2.6.6), a solution p = p(r,9) that does not depend on 
the azimuthal angle ф is said to be axisymmetric (see the figure accom­
panying (2.6.6)). In this case p  is a solution of

where Л is the separation constant. Hence, R , 0  are determined by

We already know that this has the bounded solution Pn(x) provided 
Л =  n(n +  1) for positive integral n. Furthermore, this is likely to be 
a sensible choice for Л because an arbitrary function defined in \x\ < 1 
can be expanded as an infinite series of Legendre polynomials. In this 
case the first of equations (5.3.9) gives R = Anrn +  Bn/r n+l, so that 
the general solution of (5.3.8) may be taken in the form

A separable solution

p  =  R ( r ) 0 ( 9 )

must satisfy

R dr  V dr
1 d f  2dR

—  r ——

(5.3.9)
0 < в < it.

On setting x = cos 9 in the second equation, we find

d_
dx + Л0 =  0, — 1 < x < 1.

n = 0

0 < 9 < 7Г. (5.3.10)
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We must take An — 0, n > 0 if the solution is required to be bounded 
as r  —> oo; for a bounded solution in a region including r = 0 we must 
take Bn = 0, n > 0.

E x am p le  Find the solution of the axisymmetric Laplace equation (5.3.8) in the 
region r > a tha t vanishes as r  —> oo, and satisfies ip = f(9 )  on r =  a.

The expansion (5.3.10) —> 0 as r  —> oo provided A n =  0. Then

oo „
<p(r,6) =  ^ f r P" (cos61)’ 0 <  0 <  гг.

n —0

The boundary condition on r =  a yields

°o „
S  ^ Р п ( с о а в )  =  т ,  0 < д < 7г, 
n=0

from which the coefficients B n are determined using the relations (5.3.7):

7Г

B n = an+l f n  T  ^  J f (9 )P n (cose) sin# <10. 
о

E x am p le  Find the velocity potential of uniform flow at speed U in the z-direction 
past a rigid sphere of radius a whose centre is a t the coordinate origin.

The potential satisfies the axisymmetric equation (5.3.8) and V<p —> (0,0, U) as 
r  —> oo. Because г =  rco s#  = r  P i (cos#) we can put

P =  Ur P\ (cos в) +  у :  ~ Pn (cos в ).
n = 0

The normal component of velocity dip/dr =  0 on the surface r =  a of the sphere 

. у  (n + 1 ) Bn_ 0) = U P l(cos#), 0 < # < т г .
( (Jj ' ^
n = 0

This shows tha t all of the B n = 0 except for B\  =  [7a3/2 , i.e.

„3
i p = U r c o s 6  ( l  +  ^ з  )•

The generating function for Legendre polynomials The func­
tion ip — 1 /r is a solution of Laplace’s equation representing a ‘point 
source’ at r = 0 (§4.7). When the source is placed at (0,0, h) on the
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г-axis, the solution obviously becomes

1 1
г =  r cos 9

which satisfies the axisymmetric form (5.3.8) of Laplace’s equation.

A

R  =  (r2 - 2r/rcos0 +  h2) h

X

We can expand tp in ascending or descending powers of r /h  depend­
ing on whether r < h or r > h. Let the expansions be written

where symmetry requires the expansion coefficients Pn(cos в) to be the 
same in both series. Substitution into equation (5.3.8) shows that each 
term in these series must separately satisfy Laplace’s equation. There­
fore, Vn(cos9) =  a„Pn(cos 9), where an is a constant.

Now, when 0 =  0 the expansions become

which can only be true if P„(l) = 1. Thus, because Pn(l) = 1 we must 
have an =  1, i.e. Vn(x) =  Pn(x).

1 x—> / r \ n
J lY l  ( h )  Vn{cOSe) r < h ,

1
(5.3.11)

yj r 2 — 2 rh cos 9 + h2 h \ n
-  ) P ra(cos 9) h < r,

П

r < h,

h < r,
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By setting t — r /h  and p = cos# in the first expansion of (5.3.11), 
we see that we have shown that

. OO
- = =  =  | i |< l .  (5.3.12)
\ t  + 1  n=0

The term on the left of this equation is called the generating function 
of the Legendre polynomials.

R ecurrence relations The following important relations can be 
deduced from (5.3.12)

(n + l)Pn+M  ~  (2n + l)/iP„M  +  nPn-i(n)  =  0, (5.3.13)

f  {P„+M-  P « - M )  =  (2n+  1 ) В Д . (5.3.14)

P ro o f  Take the logarithm of both sides of (5.3.12) and differentiate with respect 
to t:

P ~ t  =  E(T=o n tn~ l Pn {p) 
t2 - 2 t p  + l  E n = o tnpn(p)

By cross multiplication, this becomes
OO OO

tnPn (p) =  (t2 -  2 tp  +  1) ^ 2  n tn~ l Pn {p).
n=0 i= 0

The coefficients of each power of t must be the same on both sides, so that 

pPn(p) -  Pn-i{p)  =  (n -  l)P „_ i(p ) -  2pnPrl(p) +  (n +  l)P n+i M ,  

which gives (5.3.13).
Next, take the logarithmic derivative with respect to  /i of both sides of (5.3.12):

tnP'(u\
”  " ■ where P'niP) = dPn(p)

<2 - 2 t p + l  £ ~ 0 t " P „ M ’ ..............dp  ’

and proceed as before to obtain

pn{p) -  K - M  +  2/xp; m  -  P'n+M  =  0-

The relation (5.3.14) is obtained by eliminating P'n (p) between this and the equation 
obtained by differentiating (5.3.13) with respect to p.

E x am p le  Show th a t

, . ^  (- l)" (2 n )!(4 n  +  3) n / •. . I  .
Sgn(aO =  X l  , 1 M p 2n+l(x), Ы <  1-

71=0
22”+1n!(n + 1)!



We use the expansion (5.3.6), where

A n =  0  / sgn(x)Pn (x)dx.
-l

This vanishes for even values of n. When n  is odd equation (5.3.14) gives:
l

A n = (2n  +  1) J Pn (x)dx 
о

l

/ d
—  {Pn+i(x) -  P„_i(x)} dx

0
=  [P„+i(x) -  P„_i(x)]o =  P„_i(0) -  P„+i(0),

because when n i l  is even Pn_ i( l )  =  P„+i ( l )  =  1. The final result is now obtained 
by using formula (5.3.5).
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Problems 5B
Verify the following results:

1. f *  cosO s\nePn (cose)d9 =  | , 0  according as n =  1, n ф 1.

2. f *  cosm в sin 9Pn (cos 0)d6 =  0 when m  < n.
(п + 2 т тг ) !Г (т+ 4 )

2тг( 2 т ) ! Г ( п + т + | )з. f*cosn+2meSmepn(cose)de
4• f \ x P l l (x)Pn (x)dx  =  2^ T ,  n = 0 ,1 ,2 , . . . .
с; Г 1 P n { x ) d x  _  2 tn -------n  1 О

J - l  4 / 1 - 2 * t + t 2 2 n + l >  П  ------

6. fg xP4(x)dx  =

7- fg P2„(x)dx =  0, n =  0 ,1 ,2 , . . . .

8. x2 =  i P 0(x) i  | P 2(x).

9. x3 =  |P i( x )  +  | P 3(x).

10. x4 =  ^ P o (x ) i  f  P2(x) i  & P 4(x).

m =  0 ,1 ,2 ,___

11. x 2m (2 т)! V 22" ( 4 n i l ) ( m i n ) ! P 2»(x) 
^  (2m +  2 n + l ) ! ( m - n ) !n = 0

12. x 2m+1 =  (2m +  1)! j r 22n+1(4n i  3)(m i n i  l)!P2n+1(x)

+ £

n = 0 

\ n —1

(2m i  2n i  3)!(m — n)!

n = l

( ~ l ) Tt~1(4n j  l)(2n  — 2)!P2n(x) 
22n(n i  l)!(n  — 1)!

Ixl <  1.13.
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14. JU1 Pn {x)dx  _  2л/2 _71 = 0, 1.2,-ж 2n + l ’

If ^  I r 2^ ( r2S ) +i s ( sl”̂ ) =0' 05(^' r<“-
show that:

15. </з(г, 0) =  |  +  |  ( ^ ) 2 P 2 (cos0) when </>(a, 0) = cos2 в.

16. </?(r, 0) =  —|  +  | ( a ) 2 Рг( cos0) when ip(a,9) = cos 20.

17. </з(г, 0) =  3^ +  f  ( ^ ) 2 P 2 (cos0) +  ^  ( ^ ) 4 P4(cos0) when </?(a,0) =  cos4 0.

18- If I -  ( r 2^  +  Л 4  ( s i n 0 ^ 1  = 0 ,  0 <  0 < +  , r  <  a,dr  V dr J  sin 0 30 y”‘“ " 90 J U’ ^ 2
and ip(a, 0) =  (/jqi 0 <  0 <  f , </>(r, ж/2) =  0, 0 <  r  <  a, show that

=  ¥ > o  £ ( - ! ) '
n = 0

4те +  3 \  (2n)! / r \2n+i
n + 1 J  22n+1{n\)- f - V! ) 2  \ a J 2n+l (cos0 ).

19. If
d (  2d<p\ 1  d
dr \  dr J  sin 0 <90 

and —> 0 as r — 7 0 0 ,

s in 0
9</J
50 0, 0 <  0 <  7Г, r > a,

show that when </?(a, 0 ) =  1  — cos2 0 : </?
2  a
3 r

P‘2 {cos 0) / , r >  a.

20 . I f  l  ( r ^  J  d
.dip

э г \  's in  е м \ втвдё) = 0' r < “'
show that when <p{a, 0) =  H(0 — 0 ) , where 0 <  0  < 7r:

=  ^ < 1 -  c°s 0  -  ^  [Pn+iCcos©) -  P „ - i(c ° s0 )]  ( ^ )  Pn (cos0) , r > a.<P
71= 1

21. к l ( ^ ) +  1 эdr  V dr sin 0  90
sin0—  ) = 0 ,  0 <  0 <  7Г, r < a,

show th a t when p{a, 0) =  oH(0 — + (Ш( ~ — 0), where a  and /3 are constants:

V =  \ ( a  + 0) +  ^ (Q -  0) ( ^ )  ^i(cos0) +  ^ ( a  -  (3) P 3 (cos0) H-----

22. Find the solution of Laplace’s equation V 2p  =  0 inside the unit sphere r  =  1 
when </3 = 1  +  cos 0 — 3 cos2 0 on the surface. \<p =  rP\ (cos 0) — 2r 2 P 2 (cos 0)]

23. Show tha t when <p =  sin4 0 on the surface of the unit sphere and V 2+ =  0 
inside the sphere, then

ip =  +  — r 2  ( l — 3 cos2 0) +  ~ r 4 (3 — 30 cos2 0 +  35 cos4  0 ) , r  <  1.
15 21 35
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5.4 The Error Function erf (ж)

This is defined by
X

erf (ж) =  —-= [  dt.
V7T J

0
The principal properties of erf (ж) for real values of ж are evident from 
the figure:

erf (—ж) =  —erf (ж), erf (ж) —> ±1 as ж —> ±oo.

ж erf(ж) 
0.5 0.5205
1.0 0.8427 
1.5 0.9661
2.0 0.9953

- 2 - 1 0 1 2

The complementary error function is defined by

ейс(ж) =  1 — erf (ж) =
oo

£ / ■ e dt.

E x am p le  Show th a t erf (ж) sa 1 — e x /  y/тгх as ж —>■ +oo. 
By integration by parts:

erf (ж) =  1 ---- f  e * dt
V n J

X

л / " ( й ( » - )1 - dt

1 - — le -* 2 21
_ 7 j_  

J 212X  J
e 1 dt

2 00
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The final integral may be neglected as ж —> +oo because it gives a contribution of 
order e~x /ж3.

E xam ple Show tha t f  erf(x)dx  =  жегГ(ж) + e x /  1/ 7F+ constant. 

J erf(x)dx  =  жегГ(ж) — x - e r i ( x )  dx + C

xevt(x) же dx + C xerf(x) H— z=e V7T + c.

E xam ple Find the solution u(x ,t)  of the initial value problem 
Q^u 1 du

, for t > 0, — 0 0  <  ж <  oo, given th a t и =  «оН(1 — |ж|) a t t = 0,
o x 2 к at 
where щ  =  constant.

Using the general solution of §4.10, Example 1:
1 (1—х)/2у/к1

U0

2y/irKt
z [  e (x ?)2/4k<ĉ  =  [  e ^  dp (p = (£ -  ж )/2V ^t)
t J V7T J

—1 — ( l + x ) /2у/к1

~ 2° {6rf G v id )  + ^  G v ^ t)  } ’ t> 0 '
Fresnel integrals These are special cases of the error function of com­
plex argument, defined by

x  x  2

C(x) =  J cos S(x) =  J sin ^jdt.

T h e  re a d e r  ca n  v e rify  t h a t  C (x ) , S (x ) —► f  a s  x  —> + 0 0 , a n d  th a t

— erf (Х\/Щ c<d -  iSW-

C(x),S(x) are odd functions whose behaviors for x > 0 are shown in 
the figure.
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Problems 5C
1. Evaluate erfc(O), erfc(—oo). [1, 2] 

Verify the following results:

2. f * x e dt = ^/nerf(x).

3. Г  e - (at2+20t+^ d t  = \  -onr)/« erfc , a  > 0.

5- / x°° e \ i dt = e~x2/ x  -  x/7rerfc(a:).

6. /0°° e_“t_t2/4 df = 0ге°2ег (̂о:).
7. / 0°° e~a terf(f) dt =  i e a2/,4erfc ( f ) ,  a  >  0.

8. f Qr erf(t) dt = xerf(x) +  (e_x2 —

9. f *  e{ erf (t) dt =  ex erf(x) — e* {erf (x — +  erf (^ )}  .

10. / 0°° cos t2 dt = J^  sin t2 dt =  I  .

11. / / 0°° cos(x2 +  y2) dxdj/ =  0.

12- ДГ sin(x2 + y2) = f •
13. / - s i ^ e - “2t2rft =  f e r f ( ^ ) .

14. Show tha t the solution u(x, f) of the initial value problem

where uo =  constant, can be expressed in the form

15. Using the solution of Problem 14, show tha t for a fixed value of x  > t  >  0, 
u(x, t) attains its maximum value at t = £x / [ k In ( f i i f )  ] • Taking i  =  1, к  =  1, 
sketch the graph of u(x, i) as a function of t for x  = 0 and x  = §.

л Г°° e ~ ot dt 
' JO  s f t -V fi y / ^ e a0 erfc ( V a f i ) , a, /3 > 0.

t > 0.

о
о 2 4 6 10
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MATRIX ALGEBRA AND LINEAR  
EQUATIONS

6.1 Definitions

A matrix A of order m x n  is a rectangular array of elements аг] arranged 
in m  rows and n columns

f  an ai2 (Lin  ^

A = &21 «22 ^ 2  n

am2 • (Lmn J

We also use the notation A = [a^]. Two matrices A and В = \Ь ]̂ are 
equal only if they have the same order and corresponding elements are 
equal: = bij, 1 < г < то, 1 < j  < n.

A matrix x  of order 1 x n is called a row vector: x =  (aq, x2, . . . ,  xn).

A matrix x  of order m  x 1 is called a colum n vector: x =

( Xx ^
X2

\  -̂ m )

A square matrix of order n has n rows and n columns. The elements 
an, a22, • • •, ann are called the diagonal elements of a square matrix.

227
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The matrix is symmetric when = азг; it is skew-symmetric when 
ctij = —aji (in which case the diagonal elements an  =  0,22 =  • • • = 
ttnn =  0).

The transpose A 1 of the m  x n matrix A is obtained by inter­
changing the rows and columns of A, i.e. AT is the matrix of order 
n x m  defined by

A symmetric square matrix satisfies A 1 = A.
A symmetric matrix whose non-diagonal elements are all zero is 

called a diagonal matrix. A particular case is the unit matrix

where Sij is the Kronecker delta (equal to 1 when i — j  and zero when 
i Ф j)  introduced in §2.8.

6.2 Algebra of Matrices

Scalar multiplication ЛА =  Л [â -] =  [Aay], where A is a real or 
complex number.

Matrix addition (defined only for matrices of the same order)

A + В =  [ap- ] T \bij ] \t̂ ij T bij ].

Matrix multiplication AB is defined only when the

number of columns of A — number of rows of B,

i.e. if A is of order m  x q then В must be of order q x n, where m  and 
n can be arbitrary. Then the product matrix C = AB has order m x n  
and

[ajj], where a

/l 0 o\
0 1 ••• 0

V° 0 ••• V

AB = C =  [cy], where
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The element c*,- is equal to the scalar product of the zth row vector 
of A and the yth column vector of B. In general AB ф BA; matrix 
multiplication is not commutative.

The multiplication rule is derived from the concept of a m atrix as an operator. 
For example, the linear simultaneous equations

x  + y + z = 5, I
2x — у + z — 7, > are equivalent to 

Зх + у — 5z = 13, J
We also write

A x =  b, where A =

The algebra of real and complex numbers satisfies the postulates:

1.
2 .

3.
4.
5.
6 .

Commutative law of addition 
Associative law of addition 
Commutative law of multiplication 
Associative law of multiplication 
Distributive law of multiplication 
Nonfactorability of zero

a + b = b +  a 
(a + b) + c = a + (b + c) 

ab = ba 
(ab)c — a{bc)

(a +  b)c =  ac + bc 
ab — 0 implies a =  0, or 

b = 0, or a — b =  0.

All of these laws except 3 and 6 are satisfied in matrix algebra.

E x am p le  Verify tha t A B  =  0 but B A  ^  0 when

A =
/1 1 1\ /

2 2 IIДCM

\5 5 5 /  \

3 4 2\ (  21 21 21
- 2 - 1 B A  = ^9 - 9 - 9
-1 - 3 - 1 / V-12 -1 2 -1 2

Thus we have to distinguish between AB and BA. In AB, В is said 
to be premultiplied by A; in BA. В is said to be postmultiplied by A. 
For an m  x n matrix A

A =  IA =  AI,

where the unit matrix has order m  x m  in the first product, and order
n x n i n  the second.
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Transpose of a product

(AB)T = ^ ( a ifc6fcj)T = ^ ajkbki = = bTaT

Problems 6A

3 - 2  - 1  
-1  -1

2 0 5 \ 2
- 1  4 5 =  4 -1 6

3 1 2 /  \9  3

6.3 Linear Equations

The system of m  linear, inhomogeneous equations in the n unknowns xn:

(6.3.1)

C L u X i +  O i 2 ^ 2 +  ' •

« 2 1 « h +  « 2 2 ^ 2 +  ' '

«ml«h +  « m 2 ^ 2 +  • '

)  the matrix equation

< au « 1 2 « 1  n

« 2 1 « 2 2 « 2  n

у « m 2

( Хл \X\

%2

( ъ Л>\
t>2 (6.3.2)

\%n ) \hm J
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which in turn can be expressed in the shortened form

Ax =  b, (6.3.3)

where A is the m  x n matrix [агз}, x is the n x 1 column vector of 
unknowns on the left of (6.3.2) and b is the prescribed m  x 1 column 
vector on the right-hand side. When b =  0 the equations (6.3.1) form 
a homogenous system.

The possibility of solving equations (6.3.1) for x is a well-defined 
problem only if the equations are consistent, i.e. are not in some way 
self-contradictory. When m = n there are n equations in n unknowns 
and it appears that there is just enough information to determine x. 
If the number of equations is less than n (m < n) it is obvious that 
the equations cannot supply enough information to give a unique solu­
tion, and the system is said to be underdetermined. If, however, m > n 
the system is apparently overdetermined, and there is a strong likeli­
hood that the additional equations will make the system incompatible. 
We shall see, however, that the question of the system being over or 
underdetermined is distinct from the question of the compatibility of 
the equations. If the equations are incompatible no solution will exist, 
but one or many solutions are possible for m ^  n provided the system 
is compatible.

In simple cases the question of compatibility can be resolved directly 
by application of a procedure known as Gauss elimination-.

Example 1 Solve the equations:
X \  +  2 ^ 2  +  З ж з  +  3 x 4  =  1

2xi +  5x2 +  Юхз +  7x4 =  4
2xi +  5x2 +  9хз +  5x4 =  1 
xi + 2x2 + Зхз + 4x4 = 2.

Start by eliminating Xi from all equations except the first. Thus, subtract the first 
equation from the fourth, twice the first equation from the third, and twice the first 
equation from the second:

Xi +  2 X2 +  Зхз +  3X4 =  1
X2 +  4x3 +  x 4 =  2
X2 +  3x3 -  X4 =  - 1

X4 — 1.
Next use the second of these equations to eliminate X2 from the third and the 

fourth equation. Because X2 has already disappeared from the fourth equation, we
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merely need to subtract the second equation from the third. If we then multiply the 
resulting third equation by — 1  we obtain:

X \  +  2 x 2  +  З х з  +  3 x 4  =  1

X2 +  4хз +  X4 =  2 
Хз +  2 X4 =  3

X4 =  1.

(6.3.4)

The system of equations is now said to  be in row echelon form, and x i, хг, хз, X4  
are easily found by working backwards from the last equation, a procedure known 
as back substitution. From the last equation X4  — 1; substitute this into the third 
equation, to get X3  =  1 ; these values for Х4 ,Хз are next substituted into the second 
equation, and so on. In this way we find the unique solution

Xi =  1, X2 =  —3, X3 =  1, X4 =  1.

E x am p le  2  Solve the equations

Xi + 2X2 + ЗХ3 + 3X4 = 1
2xi +  5x2 +  Юхз +  7x4  =  4 /g 3  5-,
2 xi +  5x2 +  9хз +  5 x 4  =  1  

xi +  2 x 2 +  Зхз +  3x4 =  2 .

This system differs from tha t in Example 1 in tha t the coefficient of X4  in the fourth 
equation has been changed from 4 to 3. This makes the left-hand side of the fourth 
equation identical to the left-hand side of the first. When the system is reduced to 
row echelon form (by the same operations used in Example 1) we find

Xi +  2 X2 +  ЗХ3  +  3X4 =  1
X2 +  4x3  +  x 4  =  2 

X3  +  2 x 4  =  3 
0 =  1.

The logical contradiction contained in the last of these 
is no solution to the original system of equations.

E x am p le  3 Solve the equations

X \  +  2 X 2  +  З Х 3  +  З Х 4  =  1

2xi +  5x2 +  Юхз +  7x4 =  4 
2xi + 5x2 + 9хз + 6x4 = 1 

Xi +  2 X2  +  Зхз +  3X4 =  1

In this case the first and last equations are identical. At the outset we could dis­
card the last equation as being redundant. We should then have three equations in 
four unknowns, i.e. an underdetermined system. However, in general it will not be 
obvious th a t two or more equations in a system are equivalent, so we shall there­
fore proceed as before by retaining the fourth equation. The row echelon form then

equations reveals th a t there

(6.3.6)
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becomes
Xi +  2x 2 +  3x3 +  ЗХ4 =  1 'l 

X2 + 4̂ 3 + X4 = 2 I 
х з  +  2 x 4 =  3 [0 = 0 J

By back substitution we find

(6.3.7)

Xi = 12  — 1 1 :Г4 , X2 =  — 1 0  +  7ж4, ж3 =  3 — 2 *4 , where X4 is arbitrary.

This is the general solution of the system of underdetermined equations.

N o te  If the fourth of equations (6.3.6) had been discarded at the outset the Gauss 
elimination procedure would have been applied to a system of three equations in 
four unknowns. We should then have arrived at (6.3.7) but without the last equation 
0 =  0 .

The augm ented m atrix  The row operations applied to the simul­
taneous equations in Examples 1 to 3 to reduce the equations to row 
echelon form are equivalent to applying the same operations to the 
matrix of the array of coefficients of x\ — X4 and to the coefficients 
bi — 64 on the right-hand sides, i.e. in the general case, to

 ̂alx Я12 @1 n (ъ Л
@21 2̂2 @2n and i>2

\^ml ®m.2 @"17171 j \bmj

The procedure can therefore be formalized by applying these row 
operations to the so-called augmented matrix

 ̂0-11 Й12 (tin h \

A = O21 «22 a2n b2

«m2 ‘ Omn Ьщ J

Thus, in Example 1

/1  2 3 3 1\
, _  2 5 10 7 4

2 5 9 5 1 '
\1  2 3 4 2 /
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Successive row operations reduce this as follows:

/ 1 2 3 3 A n 2 3 3
0 1 4 1 2 0 1 4 1 2
0 1 3 - 1 -1 0 0 1 2 3

\ 0 0 0 1 1) \o 0 0 1 1/
The final m atrix is equivalent to equations (6.3.4), and the solution is now obtained, 
as in Example 1, by back substitution.

Linear dependence and independence The vectors cl5 c2, . . . ,  cm
are linearly dependent if there exist scalar constants aq, «2, • • •, otm not 
all equal to zero such that

QqCi +  CT2C2 + • • • + amcm — 0. (6.3.8)

When this is satisfied only for aq =  Q2 =  • • ■ =  am =  0, the vectors 
Ci, c2, . . . ,  cm are said to be linearly independent.

Let ci be the vector formed by the ith row of the matrix of coefficients
(6.3.2) of the system of equations (6.3.1). In Example 2 the matrix A 
for equations (6.3.5) is

/ l  2 3 3 \
. 3 5 10 7A -

3 5 9 5
yl 2 3 3y

The rows are obviously linearly dependent, because the final row is 
identical to the first. The row echelon form of A is

/ l  2 3 3 \
л 0 1 4  1A =

0 0 1 2  
v0 0 0 0 /

Now the linear dependence or independence of the rows cannot be 
altered by adding multiples of one row to another. This means the 
rows of A are linearly dependent if at least one row of the row echelon 
form contains nothing but zeros. When the rows containing nothing 
but zero are ignored, the remaining rows are linearly independent.
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The rank of a matrix is the number of linearly independent rows. In 
the above example A is of rank 3.

Consider now the final forms of A and A in Examples 1 to 3 above:

( l 2 3 3\ ( l 2 3 3 l \
0 1 4 1 A 0 1 4 1 2

Example 1 : A -
0 0 1 2 , A = 0 0 1 2 3

0 0 V 1° 0 0 1 V
rank A = 4, rank A = 4

X i  = 1, = -3 ж3 =  1, X 4  = 1.

(1 2 3 з \ ( 1 2 3 3 i \
0 1 4 1 A 0 1 4 1 2

Example 2 : A =
0 0 1 2 , A = 0 0 1 2 3

0 0 V 1° 0 0 0 V
rank A = 3, rank A = 4

No solution.

/1 2 3 З) /1 2 3 3 l \
0 1 4 l A 0 1 4 1 2

Example 3 : A = 0 0 1 2 , A = 0 0 1 2 3
0 0 v° 0 0 0 V

rank A = 3, rank A = 3

x\ =  12 — IIX4, 2-2 = —10 +  7x 4, xs — 3 — 2x 4, where ж4 is arbitrary.

These results can be formalised into the Fundamental theorem. 

Fundam ental theorem  The m  x n linear system of equations

Ax =  b,

has a solution if and only if rank A =  rank A. When a solution exists, 
all solutions can be expressed in terms of n — 71 arbitrary parameters, 
where 1Z =  rank A.
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Problems 6B
Solve by Gauss elimination:

3xi -  X2 + X3 = - 4 ( - A 1
1. x \  + 5 x 2 + 2 хз = 1 2 * = 0

2 xi + 3x2 + X3 = 0 l  8 / J

X \  +  X 2  +  X 3 =  3
—3xi — 17X2 + Хз + 2X4, = 1 

4xi — 17x2 +  8 x 3  — 5 x4  =  1
—5x2 — 2хз + X4 = 1

4xi +  3x2 +  2хз — X4  =  4 /  1 -  X 4 \

2  5xi +  4x2 +  3x3  — x4  =  4 2  +  ЗХ4
— 2 xi — 2 x 2  — X3  +  2 x4  =  —3

X =
—3 — 2 x4

, 1Z  =  3, X4  =  arbitrary

l l x i  +  6 x 2  +  4хз +  X4  =  1 1 V x 4 /

Xi + 2X2 — ЗХ3 + X4 = 0
4. 3xj — X2 +  5хз — X4 =  0

2xi + X2 + X4 = 0

/ -

X =  /i 2
1

, /x =  arbitrary

V 0)

0X —
1

w

5.
1 3 5 —2 \ ( ХЛ
3 - 2 - 7 5 ]

x 2

2 1 0 1 J
хз

\ x 4/

( 2  +  Л — \i\

X = 3 — 2Л -j- /i 
Л , 1Z = 2, Л, /x =  arbitrary

l J

6 .
X2

X3

\ x j
no solution: rank A =  2, rank A =  3

7.

( l  l \
2 3
3 2 M  =

(
- 1

1 X = (  M , 7г =  2
1  - 1  

\ 3  5 /

\ X2 j 2
\ —2 /

L V-V J
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8.

10.

/ 1 - i 2 1 \ / * л м \
2 i 1 - 1 X2 4
1 2 - 1 - 2 X3 5

Vi 0 1 0  / \X 4J l l )

( 1 - A '\
2  + A -I~ i-i

x =
A

,7г = 2 , А,м == arbitrary

l 7»//

/3 - 2 0 —! \ / х Л (  Л 1 0 \
0 2 2 1 X2 5 - l
1 - 2 - 3 - 2 Хз - 1

X  —
2 1

Vo 1 2 1 / \ x j \  e j - 3 5 /

{ X l \ / ° \
2 3 4 \ X2 0b-ЮCO

X3 0
\X 4J W

/ A +  2дЛ

X  =
-2A — 3/r 

A
,TZ — 2, А, ц = arbitrary

V М/

6.4 F urther Discussion of C om patibility

A systematic method for determining the compatibility of the m x n 
system of equations

Ax = b, (6.4.1)

is obtained by considering the solution у of the homogeneous adjoint 
equation

ATy = 0, (6.4.2)

where AT is the transpose of A.
In equation (6.4.2) у is an m  x 1 column vector. Its transpose yT is 

a 1 x m  row vector, which therefore satisfies

yTA =  0.

Suppose there are и distinct поп-trivial solutions of this equation. 
Because the right-hand side vanishes the solution will have the general
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form

УТ =  *ег,
i = 1

where the coefficients A* are arbitrary constants, and the e* are constant, 
linearly independent row vectors. It follows from this that rank A = 
m — v, because e*A =  0 for 1 < i < p, i.e. there are precisely и 
linear relations between the rows of A. Thus, we can conclude that 
the augmented matrix also has rank m — u, thereby making equations 
(6.4.1) compatible, if it is also true that

ег • b =  0, 1 < i < v. (6.4.3)

This is the required compatibility condition.
In words: the equations Ax =  b form a compatible system pro­

vided every solution of the homogeneous adjoint equation ATy =  0 is 
orthogonal to b.

In the case where и — 0, rank A =  rank A and the system of equa­
tions (6.4.1) always has n solutions.

E x am p le  Let A  be the  m atrix  of Problem s 6B, Q uestion 6. T hen

A T

/ 1 3 2/i +  3y2 +  2 y3 =  0  Л
3 - 2 1 Зг/i -  2y2  +  2/3 =  0 |
2 - 5 - 1 2 2/i - 5 2/2 -  2/3 =  0  I

\5 4 5 ) 5 2 / 1  +  4y2 + 5y3 =  0  J
(7 ,5 ,-1 1 ).

Then ei- b  =  (7,5, —11) • (10, —5, 5) =  —10 ф 0, so th a t the equations of Question 
6  are incompatible.

E x am p le  Let A  be the m atrix of Problems 6 B, Question 7. Then

A T Л  2 3 1 3 \  . f 2/1 +  2y2 +  Зуз +  y4 + 3y5 =  0
\1  3  2 - 1  5 /  ' '  \ y i  +  Ъу2 + 2y3 -  yA +  Ъуъ = 0 '

These equations have v =  3 independent solutions

ei ( -5 ,1 ,1 ,0 ,0 ) ,  e 2 =  ( -5 ,2 ,0 ,1 ,0 ) , e 3  =  ( 1 , - 2 , 0 , 0 , 1 ).

e i • b  =  ( -5 ,1 ,1 ,0 ,0 )  ■ (0, -1 ,1 ,2 ,  - 2 )  =  0

e 2 ■ b  =  ( -5 ,2 ,0 ,1 ,0 )  ■ (0, -1 ,1 ,2 ,  - 2 )  =  0

e 3  • b  =  (1 , - 2 , 0 , 0 , 1 ) ■ (0 , - 1 , 1 , 2 , - 2 ) =  0

Hence
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which confirms tha t the equations of Question 7 are compatible. Further, because 
rank A  =  5 — v =  2, there is a single and unique solution.

E x am p le  Let A  be the matrix of Problems 6 B, Question 9. Then

1 3
0 1 ° \

- 2 2 - 2 1
0 2 - 3 2

V - i 1 - 2 1 /

3//i + 2/3 = 0
— 2j/i +  2?/2 -  2//3 +  2/4 =  0

22/2 -  Зг/з +  22/4 =  0
-2/1 +  2/2 -  22/з +  2/4 =  0.

These equations are linearly independent and have only the trivial solution у  =  0. 
Hence the equations of Question 9 are compatible and possess a single and unique 
solution.

Problems 6C
1. Use the method of this section to verify th a t the following system of equations 

is compatible:

X \  +  3 x 2  —  2 ж з  =  И

2xi -  5x2 +  7x3  = - 1 1  _  e i =  (1,5,11,0)
—xi +  2 x 2  -  3x3  =  4 V ’ e2 =  (9 ,1 ,0 ,-11)_

xi +  2 x 2  — хз =  8

2 . Show tha t the following equations are incompatible:

Xi +  X2 +  Хз =  1
2 xi +  2x 2 +  2 хз =  3 3 4

[v = 1, ei = (-2,1)]

3. Show that the following equations are incompatible:

Xi — 2x2 -  Зхз + 4X4 = 1
4xi — x 2 -  5x3  +  6 x4  =  2 \y — 1, e i =  (2, —1,1)] 
2xi +  3x2  +  X3  — 2 x4  =  2

4. Show tha t the following equations are incompatible:

X i  +  x 2 +  Зхз =  6
x i  -  x 2 +  x 3  =  2  [ i / = l ,  e i =  ( - 3 , - 2 ,1 ) ]

5xi +  X2 +  П хз =  5

6.5 D eterm inants

Simple second- and third-order determinants have been used with­
out formal definition in previous chapters. We now consider their 
generalisations to higher orders.
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A determinant is a scalar defined for a square array (or matrix) of 
numbers A =  [a^], 1 < i, j  < n. For n = 2 we know that

det A = Оц
2̂1

«12

«22 — «11«22 — «12«21-

For a 3 x 3 array

det A =
an
0-21
« 3 1

012 
022  

032

«13

«23

<233
— «п « 22O33 — Оца2зОз2 +  012023031 — 012021033

+  O13O21O32 — 013022031- (6.5.1)

Here, the determinant may be regarded as a notation for the sum of all 
the signed products of triplets of the form a\ i«2j«3fc where the suffixes 
i, j, к are a permutation of 1,2,3. The meaning of ‘signed’ product is 
as follows: the natural order 1,2,3 for i , j,  к is taken to be positive; 
the signs of all other products is positive or negative according as the 
number of interchanges of i, j, к required to return to the natural order 
is respectively even or odd. Thus, «130.220.31 requires one interchange 
of 3 and 1, so the sign of this term is negative; «13(221032 requires two 
interchanges, so the sign is positive, etc. Note also that the same result is 
obtained when the sum is regarded as consisting of the signed products 
of the form au«j2«fc3- Therefore

det A — det A T,

The definition (6.5.1) can also be written

«11 «12 «13

d e t  A = «21 «22 «23

«31 «32 «33

« 2 1

«31
— «11

«22 «23

«32 «33
— 012

O23

0 3 3
+  «13

«21

«31

«22

«32

3

/  1 OijA-ij,
2 = 1
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where A^- is called the cofactor of a^ , which is equal to (—1)1+J times 
the 2 x 2  determinant formed from A by deleting the first row and jth  
column. This is just a special case of the more general formula

O il «12 O l3 3 3

^21 022 023 =  У   ̂ a i j  A i j =  ^  ^ a i j  A i j , (6 .5 .2 )
«31 032 033 3= 1 i=  1

where the cofactor A^ is ( —l)l+J times the determinant formed by 
deleting row i and column j  from det A. The two cases are respectively 
said to give the expansion of det A by the ith row and by the j th  
column.

All of these results can be extended to the general n x n  determinant

O il 012 O ln

021 022 02 n — У  ' diciiQci2/3 • • • o nt/ У   ̂ A zaa i a p 2

On 1 Otj2 o nn
(6 .5 .3 )

where the summations are over the n\ possible permutations of the n 
subscripts a, /3,. . . , v of the integers 1,2, ,n,  and the ±  sign is taken 
according as an even or odd number of interchanges of a,@, . . . , v  is 
required to restore them to the natural order 1 ,2 ,... ,n.

Similarly, we have the expansion of det A by rows or by columns, 
given by

O il
0 2 1

Ol2
022

^1 n 

n
n

=  У  '  a ^  A i j

<II (6 .5 .4 )

Onl On2 &ПП
3= 1 i=  1

where the cofactor A ^  of aу is ( —l)l+J times the determinant formed 
by deleting row i and column j  from A.
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Properties of determinants The following general conclusions can 
be drawn from these definitions:

1. det A =  det A 1.
2. When two rows or columns are interchanged, the absolute value of 

det A is unchanged but the sign is changed.
3. det A =  0 when two rows or columns are the same.
4. If every element of a given row (or column) is multiplied by the same 

factor, the value of det A is multiplied by that factor.
5. det A is unchanged when a multiple of one row (or column) is added 

to another row (or column).
6. det AB =  det A • det B.

Problems 6D
Evaluate the determinants

1 1 1
1 . 1 0 1 2 16 [-4]

14 17 2 1

1 2 15 18
2 . 1 1 14 17 [0 ]

1 0 13 16

b + c c b
3. c a + c a

b a CL H- b
1 1 1

4. tana; tan  у tan  z
sin 2 a: sin 2  у s in 2 ^

[4a6c]

where x  + у + z = n. [0 ]

5. If no two of a, b, c are equal and 
1  be + ax a2 
1  ca + bx b2
1  ab + cx

- 0 , show th a t x  = a + b + c.

6.6 Inverse of a Square Matrix

The effect of Gauss elimination (§6.3) on the m x n  matrix of coefficients
A  of the system of m  equations in n unknowns X\,X2 , ■ ■ ■ , xn

A x  =  b.
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is to reduce A to row echelon form B, say. The matrix В has the 
properties:

1. The first Л  rows are non-zero and all remaining rows (if any) are 
zero, where 1Z = rank A.

2. The first non-zero element in the ith row (1 < i < Л) is unity and
occurs in column q, where c\ < < ■ ■ ■ < сц-

E x am p le  Verify th a t the following m atrix is in row echelon form

/1  1 2 3 4 5 6  7 \
0 0 1 9 7 5 0 2
0 0 0 1 3 8  9 1 .
0 0 0 0 0 0 1 5

\0  0 0 0 0 0 0 0 /
The rank 1Z =  4 and c\ =  1, сг =  3, сз =  4, а  = 7.

A square matrix A of order n x n  whose rank Л  =  n is said to be non­
singular. The main diagonal of its row echelon form consists entirely of 
ones, and all elements below the main diagonal are zero (i.e. q  = г, 1 < 
i < n). A is reduced to row echelon form by a finite sequence of row 
operations. Once this is done, however, it is obvious that the application 
of a further sequence of row operations will eventually reduce it to the 
n x n  unit matrix I.

Each of these row operations can be represented by an elementary 
matrix E. say. It is convenient to consider three basic row operations 
(which are not, however, independent) represented by the following 
elementary matrices:

/ 1 0 0 •
‘ (1 0 a • •• o\ / 0 1 0 • •• o\

0 a 0 • • 0 0 1 0 ... о 1 0 0 ... 0

0 0 1  • • 0 5 0 0 1 ... о 5 0 0 1 ... 0

0 0 • • V 0 0 ... ij 1° 0 0 . . .  l )

Premultiplication of A by the first of these matrices causes the second 
row of A to be multiplied by a ; the second elementary matrix adds a 
multiple a  of the third row to the first row of A; and the third causes 
the first and second rows of A to be interchanged.
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Now let the sequence E 1} E 2, . . . ,  E r of elementary matrices reduce 
A to the unit matrix I, i.e.

Er • • • E 2E jA = I.

This means that A -1 =  E r • • • E 2Ei is the inverse of A, i.e. A -1 A = I. 
Also,

A =  AI = A (A _1A) = (AA_1)A

. . A A _1= A " 1A =  I.

C onstruction  of A -1 The practical determination of A -1 can be 
accomplished by first noting that

Er • • • E2E j A =  Er .. .  E2E|IA  =  (Er • • • E2E jI)A,

A -1 =  E r ---E 2E 1I.

Thus A -1 can be constructed in a step-by-step manner by applying 
the elementary row operations to the unit matrix I at the same time 
as they are applied to A.

E x am p le
T  2  3N

Find A - 1  when A =  ( 2 3 4
k3 4 6 y

The solution is set out starting with the two arrays for A  and I  and applying 
identical row operations to each:

A =

Row 2 — 2 x Row 1: | 0 
k3

Ejl

Row 3 3 x Row 1: ( 0  
<0

2 3>
- 1  - 2 E2EiI
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Row 3 — 2 x Row 2:

Row 2 +  2 x Row 3:
л 2 3V /1 0 °\

0
- 1 o 1 0 - 3 2\0 0 l) Vi -2 1/

— lxR ow  2:
Л 2 C

O Л 0 0 \

° 1 ° °
C

O 1 toVo 0 1 Vi - 2 1 /

A 2
Row 1 — 3 x Row 3: ( 0 1 0

vO 0 1

/1 0 0
Row 1 — 2 x Row 2: | 0 1 0

\0 0 1

P r o b le m s  6 E

Evaluate A -1 for

1. A  =

2. A =

3. A

7 13 19> 
A ’ 1 =  f 13 24 35 

19 35 52;

3 2 6\ /  1 2
1 1

2  '
A 1 =  - 1 3

2 2 5 / l V 0 - 2

/ 3 - 2 0
0 2 2
1 - 2 - 3

Vo 1 2 1/

A -1 =
/  1 

0 
-1 

2

= E3E2E4I

= E4E3E2E1I

— E5E4E3E2E1I

— E6E5E4E3E2E1I

=  Е7Е(;ЕзЕ4ЕзЕ2Е11
=  A " 1.

-2 —4 \ "
0 -1 
3 6

- 6  - 1 0 / .

4. Show that elementary column operations on a m atrix A  can be performed by 
postmultiplication by an elementary m atrix E.

5. Prove tha t det (EA) =  det E • det A and det (AE) =  det A ■ det E.

6 . Deduce the formula det (AB) =  det A  • det В from questions 4 and 5.
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Column rank Elementary m  x m  matrices can be applied to an 
arbitrary matrix A of order m x n t o  reduce it to row echelon form. 
The number of zero rows in the row echelon representation is called the 
nullity of A. Because row operations do not affect the rank TZ of A 
we know that

rank A = m — nullity.

The maximum number of linearly independent columns of A is called 
the column rank. It is easy to verify that the column rank of a row 
echelon matrix is the same as its row rank TZ. But, it can also be 
verified that elementary row operations do not affect the column rank 
of a matrix. Hence, for any matrix A

Column rank of A =  Row rank of A.

6.7 Cramer’s Rule

A formal representation of the solution of n linearly independent equa­
tions in n unknowns

/  Oil Ol2 • • • Oln
a2i a22 • • • a2n

yOnl «n'2 ‘ ‘ ‘ tlnn J

/  aq \
^2

\ x nj

ЛЛ
b2

\ b nJ

, i.e. Ax =  b, (6.7.1)

is obtained by premultiplying both sides of the equation by A *, to 
obtain

x =  A -1b.

For large systems of equations the use of this formula is frequently 
impracticable compared, say, to the direct computation of x by Gauss 
elimination. However, the method is in principle sufficiently simple and 
of sufficiently wide application to warrant detailed discussion.

According to equation (6.5.4) the determinant of the coefficients [ai3\ 
of A can be expanded ‘by columns’ in the form

71

det A = ^ 2  akiAki,
k= 1
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where A ki is the cofactor of akil which is equal to ( —l)*+fc times the 
determinant formed by deleting row к and column i from A.

Now
П

akiA kj = 0 when г ±  j,
к =  1

because it represents a determinant in which columns г and j  are iden­
tical. Hence

(  An A l A l ^

A - l  1 [ 4 ]T _ 1 А г 4̂-22 ’ A i2

A ~~ det A det A
A  n -A m  J

and the solution of (6.7.1) becomes

Xi -
1

det A

П

k = 1

1 < i < П.

(6.7.2)

The sum on the right of this equation is just the determinant Д*, say, 
obtained when the zth column of A is replaced by b. This observation 
gives Cramer’s rule for solving (6.7.1)

X{ =  Д =  det A, 1 < i < n. (6.7.3)

Cramer’s formula for the solution of a linear system of equations is 
useful in practice only for n < 4. It is evident that difficulties will arise 
when A is singular, i.e. when Д =  det A =  0. Then the n linear equa­
tions are not linearly independent, and A -1 does not exist. On the other 
hand Cramer’s formula shows that the solution of a system of homo­
geneous equations (for which b =  0) is x =  0 unless Д =  det A =  0. 
Non-zero solutions exist only when Д =  0.

Problems 6F
Use Cram er’s rule to solve:

X \  +  X2 +  х з  — 5
1. 2®i -  * 2  +  ®з =  7 [x =  (4 ,1,0); Ai =  8 8 , Д 2  =  22, Д 3  =  0 , Д  =  22] 

3xi + X2 — 5хз = 13.
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4xi — 3x2 +  2хз =  — 7
2. 6 xi +  2 x 2  — Зхз — 33 [x =  ( | ,3 ,  —4)] 

2xi — 4x2 — X3 = —3.
3. Show th a t the three straight lines

a\x + biy + ci = 0 
a2X +  Ь2У +  C2 =  0 
аза; +  b3y  +  c3  =  0

1 ai bi Cl
> intersect provided a 2 &2 C2
J аз Ьз C3

= 0.

4. Show tha t the three equations 

—Лх + у + 2z — O'!
x +  Xy +  3z — 0 > are consistent when A =  3. 
x + 3y + Xz — 0  J

-A 1 2
1 A 3 =  0 when A =  3
1 3 A

Change of variable in multiple integrals The evaluation of a 
multiple integral of the form

J f ( x i ,  ar2 , • • ■, z n ) d a h  dar2 • • • d x n ,

is often simplified by means of a judicious transformation in the inte­
gration variables, from Xi (г = 1 ,2 ,. . . ,  n) to £i(x\, x2, . . . ,  xn).

When n — 3 it is usual to proceed as follows. Let a, b, c, be unit 
vectors at x  respectively in the directions of increasing £ь£2,£з- These 
vectors are not necessarily mutually perpendicular, but form the three 
edges (of unit length) through x of a parallelopiped, whose volume is 
just equal to a • b xc (§2.1). The volume dV  of an elementary parallelop­
iped with edges ads\, bds2, cds3, respectively of lengths dsi, ds2, ds3, is 
therefore given by

dV — a • b x c dsi ds2 ds3.
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But X i  = £ i ( 6 ,6 ,6 ) ,  so that 

ads i = 

hds2 =

d x i . dx2.
i +  —  J

5 6
<9xi

a e r

Cfl!,S3 =

<96
5xi

dx2.
i + ^ j  +

56*
5x2.

“J +

дхз
56
5x3
<96
5x3

^ 6  5 6  5 6

96 

96  

к ) 96-

dV

Hence,

where

d(x1,x 2,x 3)
5 ( 6 ,6 ,6 )

dxi dx2 5x3
56 56 5 6
dxi dx2 5x3
5 6 5 6 5 6
dxx 5x2 5x3
5 6 5 6 5 6

dx 2dx3

<9(xi, a?2,^ 3)
5 ( 6 ,6 , 6 ) d

dx\ 5x2 5x3
56 56 56
<9xi 5x2 5x3
5 6 5 6 5 6
chx 5x2 5x3
5 6 5 6 5 6

96 96  96-

is the Jacobian of x \ ,x 2,x 3 with respect to 6 , 6 , 6 -
We have implicitly assumed that the unit vectors a, b, c form a skew 

but right-handed system, so that a • b x c > 0. In general this will not 
be true, and the formula for the change of variable when 9 6 ,9 6 ,9 6
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are regarded as positive is more properly written

f ( x i , x 2, x3)dxi dx2 dx3

d(x i ,x2,x 3)f{Xl,X 2,X3) # i # 2 # 3. (6.7.4)9(6,6,6)
Geometrical arguments are not easily used to extend this formula 

to higher dimensions {n > 3). A formal analytical procedure based on 
Cramer’s rule will now be outlined for n =  3. We proceed in a step-by- 
step manner, first eliminating the integration variable X\ in favour of 
6 ,  then x2 in favour of 6 ,  etc.

Consider first the small changes d6 in 6  (г =  1, 2, 3) produced by a 
small increase dxi in x\ when x2,x 3 are held fixed. These changes can 
be calculated from the simultaneous equations

dx i9xi dxi
#  i +

96
dx2
96
dx3
96

9 6
dx2

# i  + т ^ ^ б  +
9 6
dx3

9 6
9x2
9 6
9а:з

# з  =  cfofi

# з  =  0

#  1 + ~^rd^2 +  w r ^ 6  — 0.96 96
Solving for c?6 by Cramer’s rule (6.7.3)

d x i d x 3
O il
d x i d x 3

— d b 0&
d (x2,x3)

d x \ d x  2 д хз  ̂ d (x i,X 2 ,X3)
0 ^ Oil oil o(ii,i2,i3)
d x \ d x i Охз
dii di 2 Oii
d x \ d x i Охз
d i з d i  з Oi 3

dx i.

If we regard this equation as defining a change in variable from aq 
to 6  then

f { x i, x2, x3)dxi dx2 dx3

d(x i ,x2,x 3) /  d(x2,x3)f ( x 1, x 2,x  3)
9(6,6,6) / 9(6,6) G?6 d^3.
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Next consider the changes produced when x2 increases by dx2 with 
£1 and x3 held constant. Then

+  ё г ^ з  =  d/X2 

^ 3j<b , &r3 7r n
x r ^ 2  +  V ^ 3  =  0.

<& =
дхз
9£з

Э(Д2,жз) 
3(̂ 2 ,?з)

dx2,

and therefore

f ( x  1, z2, x3)dx 1 <Fr2 d^3

r , з а(жь ж2,а;з) /д а*  ,c ,c ,f { x i ,x 2,x 3) —  d^d&dxs.
0(£ i»6> 6)/ <9£з

Finally, the change d£3 produced by the variation (I.c3 with 6 ,  £2 held 
constant, is just

_  dx 3
3 дх3/д &  

f ( x i ,x 2, x3)dxi dx2 dx3

f ( x  r, x2, ж3) t 1 ’ d^ d&dt  3.

as before.
In general, therefore, we arrive at the transformation formula for 

77-dimensional integrals

I I
f ( x 1,x 2, . . . ,  xn)dxidx2 . ..

а(ж!,ж2, . . .  ,x n)
f ( x i ,x 2, • ■ ■ ,x n)

d(£i,
d(,id& ■ ■ ■ d£n.

(6.7.5)

E x am p le
d(xj) =  д(хг, х2, 5(6 ) =  5 (6 , £2,--. ,61)
5(6 ) ~~ 5 (6 , £2,. ••,£«) ’ д{щ) ~  d(r]!,ri2,.. . ,vn)

show that
d{xj) _  d(xj) 5 (6 ) . d(xi ,x2, ■ ■ ■ , xn) _  d{xx,x2, ■ ■ ■ ,x„) 5 (6 , 6 , ■ ■ ■ ,6»)
d(r)i) 5 (6 ) d(rji) ’ b6' 5(771, rj2, . . . , r in) 5 (6 , 6 , 5(771,772,..., ?7n)

(6.7.6)



252 Mathematical Methods for Mechanical Sciences

This is true because

d(xj)
d(Vi)

=  det
d x t:

=  det dxi d£,k =  det dxi
• det

[toll \ [ h d^  drb \ [<>Vj \

P r o b le m s  6 G

Evaluate the Jacobians of the following transformations:
д(Х) у )

1. Polar coordinates x  = r cos0 , у = r sin#. = r
[ d(r,6)

D(X) у , z )
2 . Cylindrical polar coordinates x  — r cos в, у = r sin в, z = z. -

_d{r,6,z)
3. Spherical polar coordinates x  = r  sin в cos ф,у = r sin 9 sin ф,г = r  cos 9.

~d(x,y,z)  2  . ‘
a , v = r  s in  в

[ д(г,в,ф)  J
4. Use the substitution £ = x  + y , y  = y / x  to  show tha t

I  = J d y  J  ( l  +  e x̂ ~y ^ Xdx =  e4  — 5.
О у

The region of integration is the shaded area of the figure.

In the (£, ?7)-plane the limits of integration are 0 < £ < 4 , 0 < 7 7 < 1 , and
4 1 4

9(x ,y)
1д(£,т)) il + v)2’

5. By making the change of variable £ =  xy,  rj = у  — x  show that

d£
о о

drt =
- f v - v

-  1) d£ =  e4  -  5

J j  x 2y2(y2 -  x 2)dx dy = 84,
D

where D  is the region in x  >  0, у >  0 between the hyperbolae xy  = 1 and xy  
and the straight lines у = x  + l , y  = x  + 3.
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6 . Use the transformation £ =  x/a,r\  — y / b X  =  z /c  to show tha t the volume of 
the ellipsoid

is ^irabc.

x 2 у2 z 2
—T + TT + <b2 „2 - 1

6.8 Eigenvalue Problem s

Set b =  x' in the n x n matrix equation (6.7.1) and write the equation 
in the reversed order:

x' =  Ax. (6.8.1)

The matrix operator A in this equation can be regarded as effect­
ing a linear transformation of the n-dimensional vector x  to a new 
n-dimensional vector x '. This is a familiar procedure in two- and three- 
dimensional coordinate geometry. Thus, the transformation defined by

| cos 9 — sin 9
l sin 9 cos в

rotates the point x  = (z, у ) about the origin through an angle 9 onto 
the image point x ' = (x1, y'). It can also be regarded as defining the new 
coordinates of x  when the coordinate axes are rotated through angle 9 
in the negative direction; both cases are illustrated in the figure.

x' = x  cos 9 — у sin 9 
y' = x sin 9 + у cos 9.

( 6 .8 . 2 )

Similarly, in three dimensions, let the coordinate axes be rotated
about the origin such that the new coordinate unit vectors i '.j 'jk ' are
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given in terms of the original coordinate unit vectors i, j, к by

i' — l\i +  m j +  njk (h mi п Л
j' =  /2i +  m 2 j +  n2k > then A = h m 2 n2
k' = l3 i +  +  n3k̂ V3 m 3 n3j

and x' =  Ax defines the coordinates in the new reference frame in 
terms of the original coordinates x.

The rotational transformations (6.8.2) and (6.8.3) are very special. 
A general matrix transformation (6.8.1) does not normally exhibit such 
a simple geometrical interpretation. It often happens that there exist 
one or more vectors x that are parallel to their respective image vectors 
x'. Then x7 is proportional to x, and therefore

Ax =  Ax, (6.8.4)

i.e.
ап хх +  a i2x2 +  • • • + a\nxn = Aaq 
а21%1 T Cl22x2 "T • ' ‘ +  a2nxn ~  AX2

Q'nlTl T  ®n2-̂ 2 T  * * * T  annxn — Xxn, 
where the magnification factor A is called the eigenvalue for the vector 
x, which is called an eigenvector. These n homogeneous equations would 
normally be written

( f l l l  — A ) x j  +  Ct\2x 2 +  • • • +  Ct\n X n  =  0

U2lTl +  (c*22 — X)x2 +  ' ‘ • +  a2nXn =  o

an\Xi + an2x2 + • • • +  (ann -  X)xn = 0 ^

or (A — AI)x = 0. (6.8.5)

Now the solution of a system of n homogeneous equations of this 
sort is x =  0 unless the determinant of the coefficients vanishes, i.e. 
unless

det (A — AI) =

au — X a\2 
a21 a22 — A

n

®2 n = 0. ( 6 . 8 .6 )

ffill tln2 + Ann A
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This is called the characteristic equation which (expanding the deter­
minant) is equivalent to the nth order algebraic equation

The polynomial on the left is called the characteristic polynomial. The 
eigenvalues of A are the roots Л =  Ai, A2, . . . ,  An of the characteristic 
equation. Because the constant term on the left of (6.8.7) is just the 
product of the roots, we see that

Hence, the vanishing of an eigenvalue implies that A is singular. Note 
also that, because det (A 1 — AI) =  det (A — AI), the matrix A and its 
transpose A 1 have the same eigenvalues.

For every root A =  A* of the characteristic equation (6.8.6), a solution 
x =  u,, say, of the homogeneous equations (6.8.5) can be found. In 
general there are

Because the eigenvectors are solutions of the homogeneous system
(6.8.6) they are undetermined to within a multiplicative factor, i.e. their 
orientations are uniquely determined, but their lengths are arbitrary.

Exam ple Calculate the eigenvectors and eigenvalues of

The characteristic equation is

A3  — 6 A2 +  11A — 6  =  0

with roots

Ai =  1 , A2 =  2 , A3 =  3-

For A =  Ai =  1 the eigenvector equations (6.8.5) become

(6.8.7)

det A = A1A2 . . .  A„. ( 6 .8 .8 )

n distinct eigenvalues: Ai, A2, . . . ,  A„ 
and n corresponding eigenvectors: u 1: u2, . . . ,  u„.
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where ц  is arbitrary. (The system is of rank TZ = 2, and the general solution therefore 
involves 3 — 1Z =  1 arbitrary parameter; see §6.3.)

Similar calculations performed for Л =  Аг, A3  reveal th a t the eigenvectors U2 , 1 1 3  
are also one param eter vectors (in each case 1Z = 2). The results can be summarised 
as follows

where values of the three arbitrary parameters have been chosen to eliminate frac­
tional components of the eigenvectors.

E x am p le  Calculate the eigenvectors and eigenvalues of

( ' 2 - 2
A  = - 2 - 1

\ 1 2

characteristic equation is

A3  — A2  — 21A +  45 =  0, AAj — —5, A2 — A3 — 3.

In this case we find

A2  — A3  — 3, U2 —

In the second example the eigenvalue A =  3 is said to have algebraic 
multiplicity 2. For this case, however, the eigenvector equation (A — 
3I)x =  0 turns out to have rank 7Z = 1, so there are two linearly 
independent solutions, i.e. the geometric multiplicity of the eigenvalue 
A = 3 is also 2.

When a square matrix has q distinct eigenvalues the corresponding 
eigenvectors are linearly independent because if, on the contrary, at 
most m  of the eigenvectors u i , u 2, were independent (where
m < q) then there must exist constants aq ,. . . ,  am (not all zero) such 
that

u m+i — o q u i  +  ct2u 2 +  • • • +  a m u m . (6.8.9)

However, by premultiplication by A, this means that

Am+ iU m+i =  QfiAiUi +  ct2 A2u 2 +  • • • +  amXmum
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and therefore, eliminating u m+i, that

Od(ATO+i — Ai )uj +  q;2(Aot+ i — A2)u 2 +  • • ■ +  o;m(Am+i — Am)u m =  0.

But this is only possible if, in fact, c*i =  «2 =  • • • =  ctm = 0, contrary 
to our assumption that u TO+i can be expressed in the form (6.8.9) with 
at least some non-zero a*.

P r o b le m s  6 H

Find the eigenvalues and eigenvectors of:

1. A  =
2 4 
5 3

Ai =  - 2 ,  ui =  ( _ j  ) ; A2 =  7, u2

(2 3 - P
2. A  =  | 0 - 4  2

<0 - 5  3y

Ai =  —2, ui =  ( —2 j  ; A2 =  1, u2 — f —2 ] : A3 — 2, 113 —
'P

vOy

'2 1 2'i
3. A  =  I 0 2 3 

0 5;

(l\ r
Ai =  A2 =  2. ui =  u2 =  I 0 I ; A3 =  5, u3 =  I 1

/  6 4 4>
4. A =  ( 2 8 2

V—4 -8 -2)
' - P

Ai =  2, u i  =  0 ; A2 =  4, u2 =  - 1  ; A3 =  6, u3 =

A 2 - P
5. A =  I 1 0 1

a  - 4  5>

' - P ''—2''
Ai =  1, ui =  1 ; A2 =  2, u2 =  1 ; A3 =  3, u3
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6.9 Real Sym m etric M atrices

If the square matrix A is real and symmetric we can easily show that 
the eigenvalues are real and that eigenvectors corresponding to different 
eigenvalues are orthogonal. In the first place we have (denoting complex 
conjugate by an asterisk)

Ax =  Ax, Ax* =  A*x* x*TAx =  A|x|2, xTAx* =  A*|x|2.

But x*1 Ax =  xTAx*. so that A* =  Л and A is therefore real.
Next, for Ai Ф Xj and respective eigenvectors u,. uy

(A* — Xj)ut ■ uj = u j  Au, — uj Auj =  0, 

u, • Uj — 0 when Aj Ф Xj.

The magnitudes of these orthogonal eigenvectors can be chosen arbi­
trarily, and it is frequently convenient to normalise them to have unit 
length, such that

iq • u, =  1.

The u, are then said to be orthonormal.
For a non-singular matrix A. that has n distinct orthonormal eigen­

vectors Ui, u2, . . . , un corresponding to the eigenvalues Ab A2, . . . ,  An, 
we can define the n x n matrix

T = (6.9.1)

whose columns are the orthonormal eigenvectors of A, in which case

( l 0 • • 0 \

T t T = 0 1 • • 0

1 ° 0 • • 4

(6.9.2)

A matrix satisfying this condition is said to be orthogonal. Also, because 
det T  =  det T T, it is clear that

det T =  ±1.
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Matrices such as (6.8.2) and (6.8.3) are orthogonal; they represent rota­
tional transformations (as opposed to a rotation plus a refection in the
origin) and are

Next,
distinguished by det T  = +1.

AT = 1AiUi A2U2 Anu n 1,

(X i 0 •••
° ^

and therefore T t AT = 0 a2 0 (6.9.3)

V ° 0 ••• An )

The matrix operation in (6.9.3) is said to diagonalise the symmetric 
matrix A.

E x am p le  Let A i,A 2, . . . , A n be the eigenvalues of T T . By (6 .8.8), these are all 
non-zero because det T  =  det Т т  ф 0 (because, respectively, the columns and rows 
of T  and T T are linearly independent). Let U j denote an eigenvector associated 
with Aj ,  then

T 1 U , =  A jU j, and also T U j =  —A,
Aj

because T T 1 =  I. Hence, by (6.8.8),

det T  =  AjA2 . . .  A„ =  - ——-— — , also (d e tT )2 =  l, i.e. d e tT  =  ± l .  
Л 1 Л2 ■ • • A n

D iagonalisation of quadratic  forms The general Cartesian equa­
tion for a central quadric

ax2 +  by2 + cz2 +  2 dxy +  2 exz +  2 f y z  = 1,

where a, b, c, d, e, /  are real constants can be written in the form

(a d e ) (  x \
(x ,y ,z) d b f [y

\ e f c) \ZJ
where the matrix is symmetric. More generally, if A =  [ay] is a real, 
n x n symmetric matrix, the equation

xTAx = 1,
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represents the central quadric JT  . аг]хгх3 =  1 in n-dimensional 
space.

Let A have n orthonormal eigenvectors ui , . . . ,  un and associated 
eigenvalues Ai,. . . ,  An and define T  as in (6.9.1), then

where Uj (tqi, tq2? • • • j ) •
In the particular case in which two (or more) eigenvalues of the sym­

metric matrix A become equal, the rank of the corresponding eigenvec­
tor equation is reduced such that two (or more) mutually perpendicular 
eigenvectors can be chosen. Thus, there will still exist, in total, n mutu­
ally perpendicular eigenvectors, but the directions of two (or more) of 
them can be chosen arbitrarily. Geometrically, this would correspond 
to an ellipsoid that is axisymmetric about one of its principal axes.

E x am p le  The transformation у  =  Т т х  represents a rotation of the coordinate 
system, or a rotation plus a reflection. This must preserve the length |x| of any 
vector and, indeed,

(x t T ) ( T t A T ) ( T t x ) =  1,

i.e. by (6.9.3), the central quadric

is transformed into the principal axis form

+ ^2^2 + -----  ̂^пУп =  1) (6.9.4)

under the change of variable defined by
П

E x am p le  Find a linear transformation tha t reduces

to principal axis form.
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In matrix notation the equation is

XTA x =  (Xi ,X2 ,X3)

/ 1 0 0 \

0
3 1 ! x \
2 2 ( %2

1 °
1 3 \ х з

2 2 /

= 1.

The eigenvalues are Л =  2 ,1 ,1 , and a possible system of normalised eigenvectors is

( 0  ^
/  0  \ (  ±  \

s/3
1 1 1

7 17 2 ; A2 — 1, u 2  — 7 1 ; A3  — l, U3  —

1 1 1

\  7 5 /
V 7 1 / V 7 1 /

Now щ  • u 2 =  0, Ui U3 =  0, but the vectors u 2 and U3  corresponding to the double 
eigenvalue A =  1 are not orthogonal. However, any linear combination u 2  +  qu 's is 
also an eigenvector for A =  1, and can be used instead of u 3. We therefore choose 
the value of a  to make u 2  • (u 2  +  о ujj) =  0, i.e. we take a  =  --^ /3 /2 . The new 
normalised eigenvector is then

u2 + (IU3 
U3 1 . /1|u2 +QU |̂

Hence the required transformation is

x  =  Т у, where T  =

/  0 0
1 1

7 1 7 1
1 1

V 71 “ 7 1

and the principal axes form is

2 y i +  y \ +  2/3 — 1-

- l \

0

Note tha t the transformation represents a rotation of the axes, because the deter­
minant of the transformation det T  =  +1.

A symmetric matrix A whose eigenvalues are all positive is said to
be positive definite. In that case the principal axis form (6.9.4) can be
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written

0 /1 , 3/2,

( V Т г 0 ••• 0 \

1 У п )
0 \ А г 0

l 0 0 у /  A t  J

Л/АГ 0 ••• 0 \ Л/Л
0 ••• 0 У2г?■ 

о

■ 
о

\Уп)

where all of the square roots are taken to be positive, which means that 
the additional transformation

Л Л Л А Г  0 ••• 0 \ Л / Л
^2 =

о ь Ю 
|

О У2

\ Zn) о
 

■ 

о
 

•

h
 '■

\ У п )

reduces the quadric to the n-dimensional sphere
2 , 2 ,  i 2 1

Z 1 +  Z2 + ------- \- Zn  —  1.

Because of this, if at least one of the symmetric matrices A, В defining 
the two central quadrics

x 1 Ax =  1, x 1 Bx =  1

is positive definite, it is always possible to reduce both quadrics simul­
taneously to principal axis form.

We proceed as follows. Suppose A  is positive definite with eigenvalues 
Ax, X'2, . . . ,  X'n, and let T ' be the n x n  m atrix whose columns are the corresponding 
orthonormal eigenvectors u'x, ul , , . . . ,  of A. Then the n x n  matrix

(у/Ц. 0
0

V  о о

0 \  0

Vk J
(\A[uJ, -/Vpi'a,..., \Д > 'П)

converts A  to the unit matrix, i.e.

Q TAQ =  I.
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while at the same time transforming the symmetric m atrix В to another symmetric 
matrix

C =  Q TBQ.

Now let C have the eigenvalues and respective orthonormal eigenvectors 
Ai ,A2 , . . . , A„ ;  u i , u 2, . . . , u „ ,  and let

P  =  (u i ,u 2, . . . , u „ )

be the n  x n  matrix whose columns are the eigenvectors. Then

/ A i 0 •
■ ° \

P TQ TA Q P  =  P TIP  =  I, and P TC P  =  P TQ TB Q P  = 0 a 2 • 0

VO 0 ■ ■ a  J
In other words

/ М 0 ° \

T t AT =  I, T t B T  = 0 a2 0

\ o 0 An/

where T  =  Q P  =  f Щ, \/А ^ и 2 ) .  .  .  ,

The eigenvalues Ai, A2, . . . ,  An , which are the roots of the characteristic equation 
det (C — AI) =  0, can be calculated directly from A  and В  without going through 
a detailed evaluation of the transformations, because

C -  AI =  Q TB Q  -  AQTA Q  =  Q T(B -  AA)Q

. ' .  det (C -  AI) =  det [QT(B -  AA)Q] =  (det Q T)(det Q)[det (В -  AA)] =  0. 

Hence the eigenvalues A * are the n  roots of

det (В -  AA) =  0, (6.9.5)

because det Q 1 x det Q =  (det Q ) 2 =  A'XA2  . . .  X'n ф 0.

Problems 61

1. If A  =  Г  |  ) and В
0 3 
3 0

, show th a t A  is positive definite. Use (6.9.5)

(U
to reduce the matrices simultaneously respectively to f ^ and ^  ^

2. Find a linear transformation tha t simultaneously puts the two central quadrics

4x2  +  9 r 2 =  1, lx\X2  =  1

into principal axis form.
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In m atrix notation we have

(xi ,x2)
4 0

,0 .A S ) - 1- <— >'(! l ) &
The first is already in principal axis form with positive eigenvalues Ai =  4. A2 =  9. 
The eigenvalues of the second m atrix are A =  ±1, and it is not, therefore, positive 
definite.
The first quadric becomes a circle under the transformation 

\ /  A1 O''
0

= 1.

Xl
X2j

(\ o\
) - 2) - 11° -J

so tha t the quadrics are now

(УъЫ 1 0 
0 1 = 1, (z/Ъ 2/2) 1.

The first of these (being a circle) will be unaffected by any subsequent orthogonal 
transformation. The eigenvalues and eigenvectors of the second are

/ 1 \ (  1 \
, 1Ai =  U ! 6 A2

I
6’

■4/2
1

\V 2 j
and the appropriate orthogonal transformation is

U2
V2

1
V 71/

f i t
1 N

V2 Л/Л . ( уЛ  _
(1
V2

1 \
V2

1 1 U2J 42/2/ 1 1
\71 ” 71) W 5 ” 71/

/ I
2

o\

v° -J

[ \
( ± 1 \ (  1 1 \

V2 V2 ( zA 2s/2 2/2

V°
1 1 W 1 1

Vv/2 V 2 j \зТ2 3/2)
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Collecting together all of these results: The transformation
1 1xi =

2\/2
1

Z\ + 2л/2
1

22

Z2 =
З ^ ' 21 Зл/2

reduces the quadrics to the principal axes forms

22

zf + Z% = 1,
, 2  7 2Z1 z2
6 6

1.

3. Show th a t the central quadric

2x\Xi  +  2хгх3 +  2x3Xi =  1 

is a hyperboloid of two sheets, and is reduced to

2y\ -  y\ -2/1 = 1
by means of the orthogonal transformation

/ 1 1
7 1
i

7 1
-2 -  0

7з
l

7 !
i

\7з

7e
1

7 1
2

71/

Ai =  2, A2 =  A3 =  —1; ui —

( 1 _\
73
1

7 !
1

V 7I/

U 2 =

J _ \
72

1
' 7 1  

V 0 /

U3

( J _ \
7e
1

7 1
2

7 7 1 /  J
4. Show tha t the eigenvalue equation A x  =  Ax for a symmetric matrix A  expresses 

the fact th a t the principal axes of the central quadric x TA x  =  1 intersect the 
surface at right angles.
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5. Show th a t OO
J J  ■■■ J  e~ aijXiXj dx\dx2 • ■ ■ dx„

- n / 2

У det [Oij}— c_xj
where [a»j] is ап n  x n  positive definite symmetric matrix.

6 . An n  x n  matrix В is said to be similar to  a second n  x n  m atrix A  if there 
exists a non-singular m atrix X  such that

В =  X ' !A X
Show th a t В and A have the same eigenvalues, and tha t if u is an eigenvector 
of A  then X 1 u is an eigenvector of В corresponding to the same eigenvalue.

7. Let A  be an arbitrary n  x n  m atrix with distinct eigenvalues Ai,A2 , . . . , A n 
with corresponding (not necessarily normalised) eigenvectors u j, u 2, . . . ,  u„. 
Show th a t

/ A i  0 •

X “ 1A X  = 0  a2

V о о

° \
0

An/
where

X  =  ^ui u2 • 

is the m atrix whose columns are щ , u2, . . . ,  u n.
8 . Diagonalise the matrix

/2  3 - 1
A =  I 0 - 4  2

VO - 5  3

u„J

( 2 0 "V
0 -2 о •1°

0 l )

, X  'A X

9. Let A  be a positive definite n  x n  symmetric matrix. Show tha t the volume 
bounded by the n-dimensional ellipsoid x TA x  <  1  is equal to

J J  ■■■ J  dxidx2 ■ ■ ■ dxn =  J J  • • •  J  dyidy2 ■ ■  ■  dyn

£"=i *jv]<1x T A x < l

ТП / 2 rn/2

r ( f +  1) v/AiA2 . . . An Г ( |  +  1 ) ^ ^ Г А  
[Use the result of Question 25 of Problems 5A.]
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6.10 The C ayley-H am ilton E quation

Let the n x n matrix A =  [ay-] have the distinct eigenvalues
Ai, Л2, .. •, A„. Consider the equation

(A -  AiI)(A -  A2I)(A -  A3I) • • • (A -  A„I)x = 0. (6.10.1)

The matrix factors can be taken in any order, so that the equation is 
satisfied by any linear combination

of the eigenvectors Ui, u 2, . . . ,  un. But the eigenvectors are linearly inde­
pendent, and therefore can be used to represent any n-dimensional vec­
tor x. This means that (6.10.1) is satisfied by an arbitrary vector x, 
which is possible only if A satisfies the Cayley-Hamilton equation

(A -  AXI)(A -  A2I)(A -  A3I) • • • (A -  A„I) = 0. (6.10.2)

By comparing this with (6.8.7) and expanding the left-hand side, this 
can be seen to be equivalent to the characteristic equation with A 
replaced by A

Thus, every square matrix satisfies identically its own characteristic 
equation.

Note that, whereas the algebraic equation

implies the vanishing of a root factor on the left, this is not necessarily 
the case in (6.10.2). The expanded form (6.10.3) actually shows that 
any power Am of A, where m > n — 1, can always be expressed as a 
linear combination of A, A2, . . . ,  A'1-1. Our derivation of the Cayley- 
Hamilton equation depended on the eigenvalues being distinct. How­
ever, a limiting argument can be used to show that the equation remains 
valid when there are repeated eigenvalues.

x — cqUi +  o2u2 +  • • • +  a„un,

(6.10.3)

(A — Ai)(A — A2)(A — A3) • • • (A — An) — 0,
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E xam ple Verify tha t

1 2
А з

satisfies the Cayley -Hamilton equation

A 2 -  4A -  51 =  0,

and use this formula to evaluate A -1 .

A 2First 1 2\ /1 2 
4 3 /  U  3

9 8 '
16 1 7 ) ’

A 2 -  4A -  51 = 9 8
16 17

1 2
4 3 - 5

1 0 
0 1

Next,

A ' 1 (A 2 -  4A -  51) =  0, . '. A -1 — -  (A -  41) =5

0 0 \
VO o j

( A l \
5 5

4 1
\  5 5 /

An n x n matrix with n different eigenvalues always has n linearly 
independent eigenvectors. In the case of a symmetric matrix with one or 
more equal eigenvalues, we have seen that it is still possible to find a set 
of n orthogonal eigenvectors, and that they are related geometrically to 
the principal axes of a central quadric. By contrast, for a non-symmetric 
matrix it is possible that the number of linearly independent eigenvec­
tors becomes smaller than n when two or more eigenvalues become 
equal. When this happens the matrix is said to be defective. Lanzcos 
has illustrated the situation in terms of the following 3 x 3  matrices, all 
of which have the eigenvalue Л =  1 with multiplicity 3:

Case I
(l о o\ / Л ( o\

A = 0 1 0 , 3  eigenvectors:

1 °  0 V
0

W
5 1

W

( \  1 2^ 
0 1 0 , 2 eigenvectors:

( l \
0 ,

(  o \
-2

О о I—1 V0/ l  V

/ o \
о

W

Case II A  =
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( l -1  з ) ( l \
CaseUI A = 0 1 2 , 1 eigenvector: 0

1° 0 l ) w
All three matrices satisfy the same Cayley Hamilton equation

( A - I ) 3 =  0.

In the symmetric Case I, however (which corresponds geometrically 
to a sphere) A actually satisfies a reduced-order equation (called the 
minimal equation)

A - 1  = 0,

that contains the multiple root Л = 1 only once. This is an indication 
that, although the directions of the three eigenvectors are not unique, 
it is still possible to find three that are independent.

In Case II. A — I Ф 0, but

(A — I)2 =
( 0 1 2^ ( 0 1 2^

0 0 0 0 0 0
v ° 0 °) 1 ° 0 ° У

The minimal equation satisfied by A now involves the multiple root 
A =  1 twice. This indicates the loss of one space dimension in the 
domain spanned by the eigenvectors, and indeed there are only two 
independent eigenvectors.

Finally, in Case III. A — I ф 0 and (A — I)2 Ф 0, but

(o -1 з\ /0 -1 з\ /о -1 3̂
(A — I)3 = 0 0 2 0 0 2 0 0 2

1° 0 ° / v° 0 ° У v° 0 °y

^0 0 - 2 \ ^0 - 1 3 \
0 0 0 0 0 2

v ° 0 ° y v ° 0 ° y

=  0.
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Now the multiple root Л =  1 enters the minimal equation satisfied by 
A three times, and two dimensions are lost by the space spanned by 
the eigenvectors, i.e. there exists only one independent eigenvector.

In general, the degree of defectiveness of a non-symmetric matrix 
can always be found by determining the number of times the defective 
eigenvalue occurs in the minimal equation satisfied by the matrix.



7

VARIATIONAL CALCULUS

7.1 Taylor’s Theorem for Several Variables

Taylor’s theorem for a function f(x )  of a single independent variable x 
provides the expansion

This is valid for \h\ < R, where R is the distance from x  to the ‘nearest 
singularity’ of f(x ). We have seen (§3.6) that this singularity may occur 
at a complex value of x. The special case in which the expansion is about 
x =  0

is called Maclaurin’s theorem.
The Maclaurin expansion can be used to extend Taylor’s theorem to 

two and higher dimensions. To expand f ( x  + h ,y  + k) in powers of h 
and к we first write down the Maclaurin expansion of f ( x  + ht, у + kt) 
regarded as a function of t. We use the formula

f ( x  + h) = f(x )  + h f'(x) + ^  f" (x ) +  ]-y f " \ x ) +  ’ • • +  (*) +  ■■'•

d
dt

= h ^ - ( x  +  ht,y  + kt) + k^f-(x  + h t,y  + kt)
ox oy

271
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and, for general integer n > 1

^  (/Or + ht, у + fci)) =  (^ h ~  +  A: f ( x  + h t,y  + kt).

Then, the Maclaurin expansion of f ( x  + ht, у +  kt) with respect to t is

/Or +  ht, у +  Art) =  f(x , у ) + 1  ̂h + fc /(ж, у)

t2 (  д д \ 2

tn f  д d \ n+̂ .Ы+%)
By setting t =  1 this becomes Taylor’s theorem in two dimensions 

f ( x  + h ,y  + k) = /Or, y) + +  k - ^ j  f(x , y)

+ h ( ht +k§y)

+ b.{hm + kb )  !{x'v)+ " (71Л)
In vector notation h =  (h, к) this assumes the compact form

/( x  + h) =  /(x )  + (h . V) /(x )  +  (h • V)2 /(x )

+  " -  +  / ( h -v ) “ / ( x ) +  . .- (7.1.2)

The extension of Taylor’s theorem to an arbitrary number of m  
dimensions is now obvious. We can use (7.1.2) with

д  д  d  ^
h  (h i, h2, • • •, hm), V

dx\ ’ dx2 ’ ’ dxm
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or the following generalisation of (7.1.1)

d
f  1 " f  Л.11 . ■ . i X m  “I- h‘7n) f  (?С 1: • • • i -T-m) “I” | ^   ̂ h j  q  ^ J f  ÔT j • • • ) ^m)

. i=l

d(i>s)
1 / А ,  c

+ ы  ( z > &
\  г=1

f ( x

f ( x  i , . . . ,Xm) +

(7.1.3)

The following second-order approximation will be used in §7.2
771 j  771

/ ( ^ i  f  / i i , . . . ,  T  hm) ~  f  (xi , . . . ,  жт ) +  ^   ̂fihi T  — ^   ̂ fijhihj
i = l ij'=l

(7.1.4)
where

a /  a2/
fi =  fffT (3̂1, . . . ,  жт ), /jj /jj Qx dx ’ ' ' ' ’ '̂ m)4

Exam ple Use Taylor’s theorem to expand f ( x , y )  = 2(x2 -  у2) — (ж2  +  у2 ) 2 to 
second order about ( 1 , 0 ).

Using the suffix notation / x =  d f  /д х ,  etc., to denote partial derivatives, we find

/* =  4ж[1 -  (ж2  +  у2)], f y =  —4y[l +  (ж2  +  г/2)]

/хх =  4(1 -  Зж2 -  у2), / хг/ =  /ух =  - 8 жу, f yy = -4 (1  +  ж2 +  3у2).

Then, at ж =  1, у =  0: /  =  1, fx  = fy = 0) /хх — —8 , fxy =  /ух =  0, f yy =  —8 . 
Hence

/ (1  +  /г, fc) и  / ( 1 ,0 )  +  (h fx + k f y) + — (ft2/хх  +  2hkfxy +  к2f yy)

/(1  +  ft, jfc) ю 1 -  4(/i2  +  fc2).

The term 5 ^ " j= i fijhihj in (7.1.4) is a quadratic form in h (§6.9), 
and the second-order approximation may also be written

/ ( x  + h) «  /(x ) + h • f' +  1 Ah
£

(7.1.5)
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where

 ̂hi ^ ( h \ ( f n /l2 • flm ^

h = h2
, f' = h , A = /21 /22 / 2m

\h m j \ fmj (/ml /m2 fmm J

The matrix A =  [Д,] is symmetric.

7.2 M axim a and M inim a

A smoothly varying function f (x)  of a single variable attains a local 
maximum at x  =  a if /(a ) > f (x)  for all values of x  close to a. Near 
this point

f (x)  = f ( a ) + ( x -  a) f \a)  +  x  -  a)2f"(a) + ■■■ . (7.2.1)

If f(a)  is a maximum, f (x)  must start to decrease as x  moves away 
from a, which is possible only if / '(a ) =  0 (if /'(a ) ф 0, f (x)  would 
initially increase as x moves away from a on one side and decrease on 
the other). The point x — a where f ' ( x ) =  0 is called a stationary point. 
If this is also a maximum and /"(а) Ф 0 then we must have /"(a) < 0.

Similarly, / '(a ) =  0 at a minimum, but if f"(a) is non-zero it must 
now be positive. If /" (a ) =  0 the local behaviour of f (x)  is governed 
by higher-order terms not shown explicitly in the Taylor series (7.2.1). 
Thus, the behaviour of a smooth function at a stationary point x = a 
is characterised by:

1. / '(a ) =  0, /"(a) < 0 at a maximum

2. / '(a )  — 0, /"(a) > 0 at a minimum > (7.2.2)

3. / '(a ) =  0, /"(a) = 0 further investigation required J
A stationary point that is also a maximum or a minimum is called an 
extremal.

Example 1 f ( x )  = e ^  2 ) 2 has a maximum at x  = 2, where / ' ( 2) =  0, 
/"(2) = -2.
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E x am p le  2 f ( x )  = e has a maximum at x  =  2, where / '(2 )  =  0,
/" (2 )  =  0, /" '(2 )  =  0, /<4) (2) =  -2 4 .

E x am p le  3 The non-smooth function / ( x) =  e— 2I has a maximum at x  = 2, 
but

f ' ( x )  =  —sgn(x — 2)e 'x 2 îs not defined a t x  = a.

Example 3 shows that when investigating extremals attention must be 
given to the possible existence of values of ж where /(ж) ceases to be 
analytic, where either /'(ж) becomes undefined or infinite. An extremal 
can also occur at a boundary point x =  a if x is restricted to lie within 
a certain region of the ж-axis. Then ж — a can assume one sign only, 
and the usual condition f '(a) = 0 for a stationary point does not apply. 
Thus, /  =  e~x takes its maximum value at ж =  1 where /'(1) ф 0 when 
ж is restricted to the domain ж > 1.

Stationary points in two dimensions A function z = f ( x , y ) of 
two independent variables has a local maximum at ж = a, у = b if at 
all points sufficiently close to (a, b) f (x , y)  < f(a,b).  Similarly, in the 
neighbourhood of a minimum f ( x , y ) > f(a,b).  The figure shows that 
when f (x, y)  is a smoothly varying function the normal to the surface

becomes parallel to the z-axis at the maximum. The point (a,b) at 
which f x = f y = 0 is called a stationary point. At this point the rate of 
change of /  in every possible direction from (a, b) vanishes.

f _ d f
X  r\o x

Mb) „
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As in the case of a function of one variable, an extremal can occur 
on a boundary or at points where f {x,y)  is not analytic. Thus

^ =  f (x,  у ) =  2e-3>/(*"a)a+(w"b)2,

is smoothly varying everywhere except at (x, y) =  (a, b) where it 
assumes its maximum value of 2, and where the partial derivatives

f = ~6(x ~Q) с-эума+(»-иа
y/(x -  a)2 + ( y -  b)2

f  =  ~ 6 (r/ -  6 ) с- з ч/(х -а)а+(|/-Ь)а
У a/ ( x -  a)2 +  (y -  6)2

are undefined. Their limiting values at (a, b) depend on the path in the 
(x, y)-plane along which x  —► а, у —> b.

Z

It is necessary to undertake a special investigation of the behaviour 
of a function at points where it ceases to be differentiable. However, 
general rules can be formulated for classifying the stationary points of 
smooth functions. To do this we use (7.1.5) to approximate f ( x , y)  in 
the neighbourhood of any point (a, b). Then for an infinitesimal dis­
placement h = (8x, Sy) =  (x — a, у — b) from (a, b)

/ ( * ,» ) «  /(a , b) + f xSx +  f„Sy +  i  (fa , j  ^ ,

where the derivatives f x, f y, etc. are evaluated at (a, b).

(7.2.3)



Variational Calculus 277

The quantity

8 f = fxSx +  fySy =  V /  • Sx, (7.2.4)

is called the first variation of / .  An extremal can occur at (a, b) only 
if S f  vanishes for arbitrary orientations of the displacement 5x, which 
then implies that f x = f y — 0. However, the vanishing of the first varia­
tion is not sufficient to ensure that the stationary point is an extremal. 
When V / =  0 the local behaviour of f{x ,y )  near (a,b) is governed 
by the final term on the right of (7.2.3), that is, by the quadratic 
form

This is called the second variation of / .  An extremal occurs at (a, b) if

tions of the displacement 8x: it is respectively a maximum or a mini­
mum according as S2f  ^  0.

To determine the sign of S2f  we recall that the symmetric matrix

ca n  b e  diagonalised  (§6.9) b y  m e a n s  o f a n  o r th o g o n a l tra n s fo rm a tio n  

represented by a 2 x 2 matrix T. such that

The quantities Ai and A2 are the real valued eigenvalues of A, and are 
the solutions of the characteristic equation

82f  is either positive definite or negative definite for all possible direc­

det (A -  AI) =  fxx A J xv_ .  = 0 .
.1X11 . m ifxy fyy

(7.2.6)

The columns of T are the orthonormal eigenvectors associated with
Ai ,A2. The transformation from (Sx,Sy) to (Sx',Sy') replaces the
(8x, Sy) variables relative to local (x, y)-coordinate axes centred on
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(a, b) with new coordinates (Sxf Sy') measured along axes parallel to 
the eigenvectors (T represents a rotation of the local axes, or a rotation 
plus reflection in (a,b) according as det T = ±1). In terms of the new 
coordinates (7.2.3) becomes

f (x,  У) -  f(a , b) ^ 6 2f  = ^ ( а^ ж'2 + Л2<V2) ■ (7.2.7)

Evidently the point (a, b) is a maximum or minimum of /(ж, y) if the 
eigenvalues are either both negative or both positive.

On the other hand if, for example, Ai > 0 and A2 < 0, then the 
value of /(ж, у) will increase as we move away from (a, b) along the 
Аж'-axis, but it will decrease as we move away along the Ay'-axis. Thus, 
although the surface 2 =  /(ж, у) becomes ‘horizontal’ at (a, b) (where 
n = (0,0,1)), this point is neither a maximum nor a minimum; it is 
called a saddle point.

Now, because det A — f xxf yy — f l y — AiA2 (§6.8), a sufficient con­
dition for either a maximum or a minimum at (a, b) is that det A = 
fxxfyy — fly  > 0. When this is satisfied, the actual behaviour of /(ж, у) 
near (a, b) can be deduced by considering its behaviour as a func­
tion of x  alone, by applying rules (1) and (2) of (7.2.2) to f xx{a,b): 
f(a,b) is a minimum or a maximum according as f xx(a,b) < 0. When 
fxxfyy — fly  =  Ai A2 < 0, (a,b) is a saddle point. If, however, either or 
both of the eigenvalues vanishes, so that f xxfyy ~ f l y — 0, then 52f  — 0 
and the second-order expansion (7.2.3) is not accurate enough to define 
properly the behaviour of /(ж, у) near the stationary point. The issue 
must then be decided by the consideration of higher-order terms of the 
Taylor series (7.1.2). In summary, we can say that for a stationary point 
(a, b) of a smooth function:

1- fx = fy =  o, f xx < 0, fxxfyy ~ fly > 0 at a maximum
2. f x fy 0, fxx A 0, fxxfyy fxy 6 fd a minimum
3. f x — fy — o, fxxfyy ~ fly < 0 at a saddle point
4. fx =  fy =  o, fxxfyy -  fly = 0 further investigation required ̂

(7.2.8)
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E x am p le  Find the stationary points of г =  x 3  + y3  — 3xy + 1.

We have

fx  =  3x2  -  3y, f y = 3y2 -  3x, f xx =  6 x, f xy =  - 3 ,  f yy = 6 y.

The stationary points are the solutions of

x 2 - y  =  0 , y2 - x  =  0 , i.e. (x,y) =  (0 , 0 ) or ( 1 , 1 ).

At (0,0) fxx fyy ~  f l y  =  - 9  <  0 • • (0,0) is a saddle point

At (1,1) f xx =  6  >  0, fxx f y y ~  fxy =  3 6  -  9 >  0 . ■. (1 ,1) is a minimum

Problems 7A
Find the stationary points of the following functions and determine their natures.

1 . z — (x2 +  y2 ) 2 — 2 (x2  — y2). [(0 , 0 ), saddle point; ( ± 1 , 0 ), minima]

2. f ( x ,  y) = x4  +  y4  -  4x2. [(0,0), saddle point; (1,1), (—1. -  1) minima]

3. f { x , y )  =  x4  +  y3  — 3x 2 y. [(0,0), saddle point; ( ± | ,  | )  minima]

4 . 2  =  x 3  — x2y — x 2 +  y2. [(0 , 0 ), saddle point; ( 1 , | ) ,  minimum; (2 , 2 ), saddle

5 . 2  =  x y / ( x  -  l ) 2  +  (у — l ) 2. [ ( | , 1 ), saddle point; (1 , 1 ), non-analytic
minimum]

6 . / (x ,  y) =  2 x3  -  2 у3  +  xy -  1 . [(0 , 0 ), saddle point; (g, — g), minimum]

7. /(x ,y )  =  3x2 -  6 xy +  2y3. [(0,0), saddle point; (1,1), minimum]

8 . 2  =  3x2  — 12y2 +2x 3 ±3x 2 y2. [(-2 ,1 ), (0,0), saddle points; ( -1 ,0 ) ,  maximum]

9. The function / (x )  of the n  independent variables X i ,  X 2, . . . , x n is stationary at

Suppose th a t / (x )  has a minimum at a. Then, according to (7.1.4), near x = a

point]

x = a if

where the quadratic form
71

(7.2.9)

is positive definite.
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By observing th a t the quadratic form Qm (1 <  m  < n), obtained by deleting 
from Qn the terms involving x m+\ -  am+i , x m+ 2 -  am+2, . . .  , x n — an , must 
also be positive definite (and must therefore have positive eigenvalues, see §6.9), 
deduce tha t

/1 1  >  0 ,
/11
/2 1

/1 1

/2 1

/3 1

/1 2

/2 2

/3 2

/1 3

/2 3

/3 3

> 0 , . .

/1 1 /1 2

/2 1 /2 2

f i l l f n 2

f i n

/2n

f n

> 0.

(7.2.10)

10. The function /(x ) ,  x  =  { x \ , x 2 , . . . , x n) is stationary at x  =  a. Show tha t the 
conditions (7.2.10) are sufficient to ensure th a t / (x )  has a minimum at a. 
[Consider in tu rn  the quadratic forms Qm, 1 <  m <  n. The first of conditions 
(7.2.10) implies th a t / (x )  has a minimum at a  with respect to variations in 
x \  alone. This and the second of (7.2.10) then imply tha t the eigenvalues of 
Q 2  are both positive, and therefore tha t Q2 is also positive definite. Hence, 
the third of (7.2.10) necessarily implies th a t the three eigenvalues of Q3 are 
positive, etc.].

11. I f / ( x ) ,  x  =  ( x i , x2, . . .  , x n) is stationary at x  =  a, show tha t / ( a )  is a maximum 
if

/1 1  <  0 ,
/1 1

/2 1

/1 2

/2 2
>0,

/1 1  /1 2  /1 3  

/2 1  /2 2  /2 3  

/3 1  /3 2  /3 3

<0,
/1 1  /1 2  /1 3  /1 4  

/2 1  /2 2  /2 3  /2 4  

/3 1  /3 2  /3 3  /3 4  

/4 1  /4 2  /4 3  /4 4

etc.

12. Show tha t /(a;, 2/, z) =  я 4  +  j/4  +  z4  — 4xyz has a minimum at (1 ,1,1).

13. Show th a t f ( x , y ,  z) — xyz{  1 — x  — у — z) has a maximum at ( j ,  | ) .

14. Calculate the eigenvalues of the quadratic form f ( x ,  y. z) =  ж2  +  3xy  + z 2. Hence 
deduce th a t (0 , 0 , 0 ) is a saddle point of f ( x ,  y, z). [ Л =  2 , 1  ±  л/1 0 ]

15. Show th a t f ( x ,  y, z) =  1п(ж2  + y2 + z 2 + 1) has a minimum at (0 ,0,0).

16. M axim um  principle Deduce from (7.2.8) th a t the solution ip(x,y) of 
Laplace’s equation ipxx + узуу =  0 within a region V  cannot atta in  maximum 
or minimum values in T>. Extend this conclusion to  the '«-dimensional equation
“f i x  1 X 2 4" У ’ж гхг 4------ 4" ф х п Х г ъ  —  0 .

7.3 Constrained Maxima and Minima:
Lagrange Multipliers

Consider the problem of locating the extremals of /(x ) when the posi­
tion vector x is constrained to lie within some fixed region.
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Exam ple 1 Find the maximum value of

f{x ,y )  =  1 -  (ж2 + 2y2) 

when (x , y) lies on the straight line

x + у + 3 = 0.

Obviously, /(ж , y) attains its maximum value at (0, 0) when (ж, у) can 
vary freely over the whole of the жу-plane. It assumes the constant value 
/(ж, у) = 1 — C when (x , y) lies on the ellipse

x2 +  2у2 = C = constant > 0.

The ellipse grows in size as C increases, causing the value of /(ж, у) 
on the ellipse to become progressively smaller. The required maximum 
will therefore correspond to the smallest value of C for which the ellipse 
(called the maximal ellipse) just touches the line ж +  у + 3 =  0.

To determine the position (a, b) of the maximum in a systematic 
manner, let Sx =  ж — a, Sy = у — 6, and consider the vanishing of the 
first variation S f = f x5x +  f y6y at (a, b):

f x6x + f y6y = 0. (7.3.1)

In the absence of any constraints on the admissible orientation of the
displacement (8x,5y), the stationary values of /  would be determined
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by setting fx — fy — 0. But this is only permissible when Sx and 6y are 
independent, whereas the constraint x  + у + 3 =  0 implies that

6x + 6y = 0. (7.3.2)

However, we can use this equation to eliminate 5y, say, from (7.3.1). To 
do this multiply (7.3.2) by a quantity Л and add the result to (7.3.1) 
to obtain

(.fx + A)&r +  (fy + A )Sy =  0. (7.3.3)

The term in 8y is now removed by choosing A to make f y + A = 0. 
We are then left with (fx + X)8x and, because 8x can vary freely along 
the line x + у + 3 =  0, the condition for a stationary point must be
fx +  A =  0.

Collecting together these results, we see that the value of A and the 
stationary point (a, b) =  (x , y) are determined by solution of the three 
equations

f x +  A — 0, f y +  A — 0, x  + у +  3 — 0. (7.3.4)

Now f x = —2x, f y = —Ay, and therefore

—2x T A =  0, —Ay +  A =  0, x +  у +  3 = 0,

. '.  x  =  —2, у =  —1, A =  —4.

Hence, (a,b) = ( - 2 ,- 1 )  and f(a,b) = —5, so that the maximal 
ellipse corresponds to C =  6.

Equations (7.3.4) possess the following very simple geometrical inter­
pretation. Admissible values of (x, y) for which f(x , y) is a maximum are 
required to lie on the line x + у + 3 =  0, and 8x = (8x, 8y) must there­
fore represent a displacement along this line. Equation (7.3.1) states 
that V /  • (5x =  0 at the stationary point, i.e. at (a, b) the normal to the 
maximal ellipse f(x , y) =  f(a , b) (i.e. x 2 + 2y2 = 6) is parallel to the 
normal (1,1) of the straight line x + у + 3 =  0. Thus, V /  =  —A(l, 1) 
on x  +  у +  3 =  0 for a suitable value of the constant of proportionality 
—A, which corresponds precisely to (7.3.4).
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The factor Л in (7.3.4) is called a Lagrange multiplier. The geomet­
rical argument makes it clear why the apparently noil-symmetrical for­
mal procedure, whereby Л is introduced to eliminate Sy rather than Sx, 
leads, nonetheless, to a system of equations (7.3.4) for the stationary 
point that is symmetric in f x, f y.

The following remarkable conclusion should also be noted. Equations
(7.3.4) are precisely those that would be obtained if, instead of consid­
ering the stationarity condition for f ( x ,y ) subject to the constraint 
x  + у + 3 =  0, we had considered the symmetrical unconstrained 
condition for the function

F(x, у, A) =  f(x , y) + X(x + y + 3),

where x, у and A are regarded as independent variables. The vanishing 
of the first variation of F

SF = Fx5x + FySy + F\5X = 0

when Sx, Sy and SX vary independently then implies that

Fx =  fx +  X =  0, Fy = f y + X = 0, F\ = x + у + 3 = 0,

i.e. Equation (7.3.4).

M axim a and m inim a subject to  one constrain t Let us now
repeat the above argument for the more general problem of determining 
the extremals of f(x , y, z) when x = (x , y, z) is constrained to lie on 
the surface

g ( z , y ,  г )  = 0 . (7.3.5)

Let a  =  (a, b, c) be a stationary point, at which the first variation 
must vanish:

+ fySy + fz&z = 0. (7.3.6)

Only two components of the infinitesimal displacement Sx = x — a,
Sy = у — b,Sz = z — c may be regarded as independent, because both x
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and a lie on the two-dimensional surface (7.3.5). We therefore eliminate 
5z by the Л-method of Example 1.

Because x lies on g(x , y, z) =  0

gxSx +  gySy +  gzSz = 0, (7.3.7)

where the derivatives gx = dg/dx, etc, are evaluated at the station­
ary point. Multiply (7.3.7) by the Lagrange multiplier Л and add to 
equation (7.3.6):

{fx + +  (f y + A gy)5y + ( fz +  \g z)5z — 0.

The coefficient of 8z is made to vanish by requiring Л to satisfy 
f z +  Ag2 =  0 at a. The remaining displacements 8x and 8y on 
g(x, y, z) — 0 are independent, and therefore f x + Xgx =  0, f y + \g y =  0. 
Collecting results, the stationary point a  = x and the multiplier Л are 
seen to be determined by the symmetric system of equations

fx +  Agx =  0, f y + Agy =  0, f z +  Xgz =  0, g(x, y, z ) =  0.
(7.3.8)

Once again, the symmetry of these equations becomes obvious from 
a simple geometrical argument. When x and therefore Ax both lie on 
g(x) = 0, equation (7.3.6) states that V /(x) is parallel to the normal 
Vg(x) of the constraint surface at the stationary point, and therefore, 
for some suitable constant of proportionality —Л,

V / +  AVg = 0 at x =  a on д(х) =  0. (7.3.9)

Evidently the maximal surface /(x ) =  /(a )  and the surface of con­
straint g(x.) =  0 touch one another at the stationary point.

Furthermore, equations (7.3.8) or (7.3.9) are equivalent to the uncon­
strained stationary condition for

F(x,A) =  /(x ) +  A^(x), (7.3.10)

where x and A can vary independently. At the outset, therefore, the 
original constrained problem for /(x ) can be replaced by the uncon­
strained problem for F = f  + Xg.
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E xam ple 2 Use the method of the Lagrange multiplier to  find the maximum 
value of

/ (x )  =  1 — (x 2 +  2y 2 + 4z 2) on the plane x  + у + z + 7 =  0.

The stationarity conditions for F (x , А) =  / (x )  +  А (ж +  у +  z  +  7), where x  and Л 
vary independently, are

—2x T  Л — 0, —4 у T  Л — 0, —8 z T A =  0, x~\~y~\~z~\~r7 ~  0.

Hence the stationary point is a t a =  (—4, —2, —1) where /  assumes the maximum 
value / ( a )  =  —27. The m axim al ellipsoid x 2 +  2y 2 +  4z 2 =  28 (i.e. / (x )  =  /(a ) )  
touches the plane x +  у +  2  +  7 =  0 at a.

The extremal problem for /(x ) =  /(ж, у , 2) can be solved in a similar 
fashion when x is required to satisfy the two conditions of constraint:

даЫ) =  0, / ( x )  =  0. (7.3.11)

The stationary point a  =  (a, b, c) lies on the curve Г, say, defined by 
the intersection of these surfaces, and the stationarity condition at a 
requires that the first variation S f  =  V / • <5x =  0 for an infinitesimal 
displacement <5x =  x — a along Г. But, ga = g13 = 0 on Г, so that we 
must actually satisfy the following conditions:

V / • fix = 0, Vga -Sx = 0, Vg/3-Sx = 0 , on Г.

Thus, at the stationary point each of the vectors V /, Vga, Vg& is nor­
mal to the direction of Г, and there must therefore exist constants 
Aq, A# such that

V / + AaVgQ + A gV g^ =  0,

<7a(x) =  0, <7̂ (x) =  0 at the stationary point. (7.3.12)

The constants Aa , Xy are the Lagrange multipliers of the problem, and 
equations (7.3.12) are precisely the stationarity conditions that would 
be obtained by application of the Lagrange elimination procedure. They 
can also be derived, just as before, by formally considering the uncon­
strained extremal problem for

F(x, Aq, Xp) =  /(x ) +  Aaga{x) + A/3/ ( x ) ,  (7.3.13)

where x.,XQ,Xp are regarded as independently varying quantities.
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E xam ple 3 Find the maximum and minimum distances from the origin to the 
curve defined by the intersection of

x 2  +  2 y 2 + z 2 =  5, 2  =  1.

The extremals of the distance |x| from the origin correspond to the extremals 
of / (x )  =  x 2 + y2 + z 2. We can therefore consider the unconstrained extremal 
problem for

F  =  x 2 ±  y 2 ±  z 2 ±  Aj (x2  ±  2 y2 ±  z 2 — 5) ±  A2  ( 2  — 1).

The Lagrange equations (7.3.12) are

2 x ± 2 A ix  =  0, 2y + 4X\y = Q, 2z + 2Xiz + A2  =  0, x 2 + 2y2 +  z 2 =  5, 2  =  1,

with the two sets of solutions

x  =  ±2, у =  0, 2  =  1, A

x  =  0, у  =  ± \/2 , 2  =  1, A

Problems 7B
Solve by the method of Lagrange multipliers:

1. Find the maximum and minimum distances from the origin to the curve 
3x2 ±  3y 2 + 4xy  = 2. [y/2; y/2/5]

2. Find the stationary points of f { x , y )  =  x 2 +  y2 + 2  when x 2 — z 2 =  1 . 
[ ( ± # , 0 , - | ) ]

3. Find the minimum distance in x  > 0, у > 0 from the origin to the curve xy  =  I.

4. Find the minimum value of f ( x , y, 2 ) =  x 2 + 4y2 +  I 622 on the surface x y z  =  1.
[1 2 ]

5. Find the maximum and minimum distances from the origin to the curve defined 
by the equations x  + y — 1 = 0 , x2 ±  2 y2 + z 2 — 1 = 0 . [ # ;  1 ]

6 . Find the coordinates of the point on the surface x 2yz  =  1 in x ,y .  z  > 0 closest 
to the origin.
[(2i,2-i,2-i)]

7. Find the minimum value of / (x )  =  ж3  ±  у 3 ±  2 3  in x, y, z > 0 on the surface 
1 / x  ±  1/y  +  1 / 2  =  1. [81 at (3,3,3)]

8 . Show th a t when x  lies on the surface 1 /x 2  ±  1/y2 ±  2 / z 2 =  4 in x, y, 2  >  0 , 
the function / (x )  =  z(x  + y) has a minimum at (1 , 1 , 1 ).

9. Find the stationary point of the function / ( x )  =  x 2 — y 2 ±  z 2 — 2x when
x ± y - 2  =  0 , x  ±  2y  =  1 . [( i, f )]

1 =  -1 ,  A2 =  0, . ' .  |x| =  x/5,

1 =  - ^ ,  A2 = - 1 ,  |x| =  л/З.
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10. Find the point on the circle (x  — l ) 2  +  (у — l ) 2 =  1 th a t is closest to the origin.

K1 _ 75’1 -
11. The hypotenuse of a right-angled triangle has unit length. If the lengths of the 

other sides are denoted by x  and y. for what values of these variables is the 
area of the triangle a maximum? [x = у = A=\.

7.4 Stationary Definite Integrals

Let the curve у = /(ж) join the two points A and В which have the 
coordinates (a,ya), (Ь,уь) in the xt/-plane, and suppose

£  =  £  (jr, y, ^  =  £(x, y, y')

is a given function of ж, у — f(x )  and y' = f '( x ). Then the value of 
the integral

b
I  = J £ (x ,y ,y')dx, (7-4.1)

a

generally changes as the shape of the curve у =  f(x )  between A and 
В is changed. The fundamental problem of the Calculus of Variations 
is to find the curve between A and В that makes the value of the 
integral stationary. This curve will correspond to a definite functional 
form of /(ж), that may make the value of the integral a maximum or a 
minimum relative to the values computed for neighbouring curves, or 
merely stationary.
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Probably the simplest such problem occurs when C = y/ l  + y'2, for 
which

/  =  j V i T F *  =  distance along the cutve between A and B.
a

(7.4.2)

The stationary value of the integral is then a minimum, corresponding 
to the shortest distance between A and B, and the obvious solution 
у = f(x)  of the minimisation problem is the straight line

У = Уа+ (x ~ a)• (7.4.3)

This result can be derived by considering the variation of the inte­
gral, in a manner similar to that described at the beginning of §7.2 
for locating the stationary point x = a of a function f(x).  The quan­
tity /  defined by the integral (7.4.1) is called a functional, whose value 
depends on the choice of the function у = f(x)  over the complete range 
a < x < b, rather than at just a single point.

Suppose that у = f(x)  gives the required stationary value of the 
integral (7.4.1). We calculate the value of /  for a ‘neighbouring’ function 
(illustrated by the broken line curve in the figure) by considering the 
value of the integral for

fe(x) =  у +  еф(х),

where e is a small positive quantity that can be made to tend to zero, 
and the function ф{х) is arbitrary, except that it must vanish at x =  a 
and b, where the values of у are fixed (respectively equal to ya and yf). 
The difference between f e(x) and у = f(x)  defines the variation Sy of 
y: it is the variation in у at a fixed value of x, i.e.

Sy =  f£(x) -  y =  f e(x) -  f(x)  =  еф{х).

This is an infinitesimal quantity of order e. The corresponding dif­
ference in the values of I  is

bJ (C(x, у +  еф(х), у' +  еф'(х)) -  С(х, у , y')jdx,
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which can be expanded in powers of e by first using Taylor’s theorem 
to write:

c) jO* d jO/
C(x, у +  еф(х),у' +  еф\х)) =  C(x, у, у') +  еф(х) —  + е ф \ х ) ~  4---- ,

where дС/ду and дС/ду' are evaluated for the stationary function
{x,y,y')-

We therefore obtain the variation 51 of /

61 = C(x, у +  еф(х), у' + еф'{х)) -  С(х, у , у') )dx

= € Л ,  Ж  , д £ \  J[Ф(Х)- + Ф(Х)- у х + (7.4.4)

The ‘rate of change’ of the integral is now obtained by dividing by e 
and letting e —> 0

51 f  (  , ж  lU . d c \  ,
7  =  /

This must vanish if у = f ( x ) makes the integral stationary for arbitrary 
functions ф{х). But to apply this condition it is first necessary to elim­
inate the derivative ф'(х) from under the integral sign by integration 
by parts:

dx Ф(х)
DC
dy'

The first term on the right makes no contribution because ф(х) =  0 at 
the end-points a and b, and therefore the rate of change of the integral 
becomes

61 dC d_d£' 
dx dy’

I dx,
e

(7.4.5)
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which is zero for arbitrary гр(х) only if

dC d dC . .
—------ ——— =  0 for all x in a < x < b. (7.4.6)
ay ax oy'

This is because it is always possible to choose a differentiable function ф(х) 
which is non-zero only within an interval of length Д enclosing any given value of 
x  =  x д in a < x < b. By multiplying ф(х) by a suitable scale factor we can make 
its mean value in the interval ф — 1. When Д is small the integral (7.4.5) can then 
be approximated by

Аф
fdC _ d^dC
\ d y  dx dy'  J

= 0, so that
dx dy'

= 0
Х = Х д

for any value of жд in a < жд <  b.

Equation (7.4.6) is the Euler-Lagrange differential equation, whose 
solution determines the function у = f(x )  that makes the integral 
(7.4.1) stationary.

E x am p le  We may now verify the intuitive straight line solution (7.4.3) for the 
curve of minimum length joining two points A and B. The distance is given by the 
integral (7.4.2), so that

C ( x , y , y ' )  =  s / l  + y ' 2,

which does not depend explicitly on x  or y. The Euler- Lagrange equation (7.4.6) is 
therefore

dC d dC _  d (  y'
dy  dx dy'  ~  dx ^  y j \  +  y <2

Hence, the stationary curve у =  f ( x )  is given by

dy
—  =  A = constant 
dx

у =  A x  + В,  В  = constant.

This straight line reduces to  (7.4.3) when the values of the arbitrary  constants 
are chosen to  make the line pass through A and B. (Strictly speaking an additional 
calculation should be performed to determine the second variation S21  of the integral 
I  in order to verify th a t the stationary value of the integral furnished by the straight 
line actually represents a minimum. This is often very difficult to do in practice, and 
we must then appeal, as here, to geometrical intuition to confirm th a t the derived 
stationary value does correspond to an extremal.)

E x am p le  Find the function у — f ( x )  th a t satisfies /(0 ) =  0, / ( f )  =  1 for which 
I  =  f 02 (y2 — y '2 +  4yex)dx is stationary.
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Take jC = у2 — у'г + 4yex in the Euler Lagrange equation. Then

DC o , x dc
—  = 2y + 4ex , -—  = - 2 y  
dy dy'

the Euler-Lagrange equation becomes 

y" + y = 2ex
у  =  A  cos x  + В  sin x  + ex . where A, В  are constant

Apply the boundary conditions,

0 =  A +  1, 1 =  J5 +  e^
у =  f ( x )  = — cosx  +  (l — e^ ) sin a: +  e1.

Special cases

1. £  =  C(x,y') (no dependence on у ). The Euler-Lagrange equation 
becomes

^ d C
dx dy'

= 0, constant.

This equation can be solved for y' in terms of x  and A , у is then 
found by integrating

% - F f r A )dx

where F(x, A) is known.
2. £  =  С(у,у') (no dependence on x). The Euler-Lagrange equation is

dC d dC = dC _ , d2C _  ,,d2C
dy dx dy' dy ^ dy'dy  ̂ dy'2

Multiply by y':

,dC ,2 d2C , ,,d2C 
У t t f t  -  УУ

d
dx

( r _ j 9 C
\  У dy'dy * dy'dy ’’ '' dy’2 

Hence, a first integral of the Euler-Lagrange equation is

0.

„ ,dC£  — у —— = constant, 
dy'

when £  = £(?/, y'). (7.4.7)
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3. C — £,(x,y) (no dependence on y'). The Euler-Lagrange equation is

dC
dy = 0.

This is not a differential equation, but may be solved immediately 
to give у =  f(x ).

E x am p le  Find the curve у = f ( x )  through the points (0,1), (1,0) for which
l

- I
V 1 + y'2dx

is stationary.
This is a Case 1  problem, for which dC/dy '  =  constant:

= AУ
xy/lТ у72

dy Ax
dx yT -  A 2 x 2

у — В  ~  —-- \ / 1 — A 2x 2, В  =  constant

x 2 + ( y - B )2 = 

The end conditions give (1 — B )2 =

A 2 ' 
1

1 +  B 2 =
A 2 ’ ‘ ~  A 2

A =  1 and В  =  0,

and the stationary curve is the circle x 2 +  у 2 =  1 .

E x am p le  Find the curve through the points (a ,ya), (Ь,уь) tha t generates the 
surface of minimum area when rotated about the ж-axis.

The surface area is the integral I  ==  2 tt J ул/ l +  y '2 dx.

Thus, we have an example of Case 2, because C = y \ J  1  +  y ’ 2 does not depend on 
x. The first integral (7.4.7) of the Euler-Lagrange equation gives

у = А \ / 1 +  y12, A  =  constant, 

so tha t yf =
y 2 — A 2

A 2
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dx =
Ady

y/у2 — A2’

у =  A  cosh ( ^ ) В  =  constant

The surface of rotation for this curve is called a catenoid. The values of A  and В  
are calculated from the condition th a t the curve must pass through the end points 
(a, ya), (b, уь). For some pairs of points, however, it is not possible to  find A  and В  
to satisfy this condition. In th a t case there is no smooth surface tha t minimises the 
surface area.

Problems 7C
1. Show th a t I  = f*  y / y ( 1 +  y'2)dx where у =  1 at x  =  ±1 is stationary when 

У ~  5 ( 1  +  x 2).

2. Find the function у = / ( x ) which satisfies /(0 ) =  0, /(1 )  =  1 for which
I  = f g ( y 2 + у 12 -  4ye~x)dx is stationary. [/(x) =  +  xe~x)

3. Show that I  — f *  ^jS~dx  where ?y(0) =  0, y (l) =  1 is stationary when 

у =  sinh ^x ln[l +  y/2] j .

b /2
4. Show th a t у — A  +  B x A. where A, В  are constant, makes I  — f a ^ 3-dx 

stationary.

5. Verify tha t у = \  cosh x  is a stationary curve for the functional 
I  — J ^  (?/2 — j//2 — 2y cosh x)dx ,  where y (0) =  0, y(  | )  =  5 cosh

6 . Find the curve in the (x, y)-plane for which I  = f ()J y / E  — y2 y / l  +  y'2dx  is 
stationary, where E  > 1, given tha t y( 0) =  0, у (тс) =  0. [у =  \ /  E  — \ sin x].

7. Show that the Euler-Lagrange equation for I  = f*‘ C(x. y, y \  y")dx  is

d C _ ± ( d C \  d2 f  ЭС \
dy  dx \ d y ' )  dx 2 \ d y " )

8 . By using polar coordinates to write /  =  f  \J x 2 + y 2 \ J 1  +  y'2dx =  
f  гу/ 1  +  r 2p2dr, p = dd/dr,  show tha t the integral is stationary for the family 
of curves

x 2 sin a  — 2xy  cos a  — y2 sin a  — /3, a, /3 =  constant.

9. Principle of least action. The position x  = x(t)  a t time t of a particle of mass 
m  in one-dimensional motion along the x-axis subject to  a conservative force
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field with potential V  (x ) satisfies the variational condition

6
<2J C(t, x, x)dt  = 0 ,

11
x = dx 

d t’

where £  =  - m i 2 — V (x ) called the Lagrangian  of the system.

Deduce the equation of motion m x  =  —dV/dx.

10. Calculate the stationary value of I  = f Q2 (у12 +  2xy  — y 2)dx where y(0) =  0,

У(f) = f- \y = x, 1= f  ( i + Й )]
11. Find the curve in the (x, y)-plane for which I  — y'2(l +  y ,2)dx is stationary,

given tha t y(0 ) =  0 , y{ 1 ) =  2 . [y =  2x\.

12. Show tha t ^+y?dx  is stationary when у = sinh (ax  +  (3), where a , p  are 
constants.

13. Show tha t the Euler-Lagrange equation
l

for / £̂2 у
(у12 +  2xy  -  x y 2)dx i s + xy  = x. 

о
A solution of the differential equation is required th a t satisfies y(0) =  y{\) = 0. 
By making the ‘guess’ у  =  a x ( l  — x ), calculate the constant a  by evaluating I  
and applying the stationarity condition in the form d l / d a  =  0 . [a =  — yj,].

7.5 Isoperim etric  Problem s

A stationary problem in which the function у = f(x )  is required to 
satisfy

b

6 J H(x,y,y')dx  =  0,
a

together with the integral constraint 
ь

j  Q(x,y,y')dx = Q0 = constant, (7.5.1)
a

is called an isoperimetric problem. The original problem of this name
(the problem of Dido of Carthage, 814 BC) was to find the shape of
the closed curve of given length that encloses the maximum area.
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Suppose у = f(x )  is required to pass through the endpoints 
(a,ya), (Ь,уь), then according to (7.4.5) у must satisfy

b

for an arbitrary function 'ф(х). Furthermore, because the value of the 
integral (7.5.1) must be unchanged by this variation, we must also have

Now divide the integration range into n equal intervals of width An, 
and let Xi be the midpoint of the ith interval. Equations (7.5.2) and
(7.5.3) are then the limiting forms (as n —> oo) of

and the subscript г denotes evaluation at x — xt. Thus, the arbitrary 
n-dimensional vector 0  =  ( 0 i ,  0 2, ■ • •, 0 n) is sim u ltan eou sly  orthogonal 
to E = (5i ,£2> • • • > £n) and F =  (J7!, 1Е2, . . . ,  f n). The components 
of 0  are not independent and there must therefore exist a constant of 
proportionality Л such that E = — AF, provided F ф 0. This condition 
leads to the following modified Euler- Lagrange equation

The constant Л is just the Lagrange multiplier of §7.3. If we set

(7.5.2)
a

b

(7.5.3)
a

n n

^ 2  An =  0, "22 Лп =

where

for all x  in a < x < b.

(7.5.4)

b

L = c  + \ ( g -  Go), h  =
/ (

Ц х, y, y )  + X[G(x, y, y') -  Go] dx,J)
a

(7.5.5)
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where Q0 =  Q0/ (b—a), and consider the variational problem in which we 
vary the fnnction у and Л independently, then corresponding to (7.4.4) 
we have

SI r W x ) dJ i  + ^ (x)^ dx +SX \ /  Q{x, у , y')dx - Q 0 \ — 0.
a \ a  /

The vanishing of the first integral leads to (7.5.4) and the vanishing of 
the coefficient of SX yields the constraint equation (7.5.1).

E x am p le  Find the curve of length £ in у > 0 with endpoints (±1 ,0) tha t encloses 
the maximum area between itself and the ж-axis.

We have to minimise I  = f ^ y d x  subject to f 1 1 y / l  + y '2 dx  =  l. We consider

l

4-/(»+A-l
Then (cf. Case 2 of §7.4) the Euler-Lagrange equations are

l
у ----- - j =  — A  {A = constant), /  \ / l  +  y '2 dx =  £.

д/ l  + y ' 2 J

The first of these is easily integrated, and gives the portion of the circle 

(x — .В) 2 +  (у — Л ) 2  =  A2  of radius A in у > 0.

The condition th a t the circle passes through (±1 ,0) then yields

B  = 0, 1 ±  Л 2  =  A2.

Finally, the constraint \ / l  + y'2dx — dx = £, gives the equation

i _  . ( e
A Sm \2A

for the radius A. When £ = n  the radius A =  1 and A = 0 and the curve is the 
semi-circle x 2 + y 2 =  1 .

Problems 7D
1. Find the curve у = f ( x )  between (0,0) and (1,0) such tha t J0' y 2dx = £ and 

f 0 y ' 2 dx is stationary.
OO OO

A =  —n 2 7T2, n =  1 ,2 , . . . ,  у = ^  A n sin(mrx),  where ^  Л 2  =  2£
7 1 = 1  7 1 = 1
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2. Find the curve у = /(ж) between (0,0) and (1,0) such tha t J0' y 2dx = l  and 
f o ( y '2 + x 2) d x  is a minimum.

A =  —n 2 7Г2, n  =  1 ,2 , . . . .  Minimum value =  — +  7r2  ̂ for n  =  1, 

у =  V ^ £ s i n ( 7 t x )

3. Show that, if y(0) =  0, y{ 1) =  1 and f 0 ydx =  1, then the minimum value of 
fo y'2dx  is | ,  and th a t it occurs when у =  x 2. [A =  4].

4. The potential energy of a chain hanging between two fixed points is represented
by /  =  y y / l  + y'2dx, where y(x) is the height of the chain at x. The shape 
assumed by the chain makes I  a minimum subject to the condition tha t its total 
length l  =  \ / l  + y'2dx is fixed. Show tha t у =  —A +  a  cosh , where the
values of the constants a , /3, A depend on i  and the positions of the ends of the 
chain.

5. Show tha t the function у — -А=е- ж 2 / 2 maximizes the integral\ 27Г
I  =  — J ^ y l n y d X j y  > 0, provided /  ^  ydx = f _ oox 2ydx = 1. [Use two 
Lagrange multipliers.]

6 . Show that the method of Lagrange multipliers applied to the variational problem
l l

S J y ' 2dx = 0 , y(0 ) =  0 , j/(l) =  1 , J \J  1 +  y ,2dx = 5 
о о

yields the solution у  =  x,  but th a t this does not satisfy the integral con­
straint. jVor у =  x, Jq y j \  4 - y ,2dx =  \/2 ф 5- The curve у  =  x  also makes

Ig — fg \ / l  + y '2 d.x stationary, i.e. the ‘vector’ F  used in the proof of the 
multiplier method is null, so tha t it cannot be asserted th a t E  =  —AF.

7. If 7Г j " a y2dx = | 7rR 3, where y(±a) =  0 and the surface area of revolution about 
the ;r-axis S  = 2тг f " a y y / l  + y'2dx  is a minimum, show tha t a =  R  and that 
the surface is the sphere obtained by rotating x 2 + y 2 =  R 2 about the ж-axis.

[*=*]■
7Г

8 . Find the curve in the (ж, y)-plane for which I  =  f 02 y'{y'  +  2xy)dx  is stationary, 
given tha t j/(0) = 0 , y(|) = 1, and / ()2 ydx  = \ — 1. [у = 1 — совж].





USEFUL FORMULAE

T rigonom etric

sin(x ±  у) 

cos(x ±  y) 

2  sin x cos у 

2  cos x cos у 

2  sin x  sin у 

sin 2x  

cos 2x  

sin 3x 

cos 3x

sinx

cosx

sin x cos у  ±  cos x sin у 

cos x  cos у sin x sin у 

sin(x +  y) +  sin(x — y) 

cos(x +  y) +  cos(x — y) 

cos(x — y) — cos(x +  y)

2 sin x cos x

cos2 x — sin2 x =  2  cos2 x — 1  =  1  — 2  sin2 x

3 sin x  — 4 sin3 x

4 cos3  x — 3 cos x
0 ^  _ 0  ъх

2i =  3! + ¥ "  7! + "'
g i x  _|_ е - г х   ̂ X 2  1 X 4  X 6

“ “ 2  =  1 _ 2 [  +  ¥ _ б[ +  ’ "

H yperbolic

sinh(x ±  y) =  sinh x cosh у ±  cosh x sinh у 

cosh(x ±  y) =  cosh x cosh у ±  sinh x sinh у 

2  sinh x cosh у =  sinh(x +  y) +  sinh(x — y)

2  cosh x cosh у =  cosh(x +  y) +  cosh(x — y)

2  sinh x sinh у =  cosh(x — y) — cosh(x +  y)
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sinh 2 x =  2  sinh x cosh x

cosh 2 x = cosh2 x  +  sinh2 x  = 2 cosh2 x  — 1  =  1  +  2  sinh2 x  

sinh 3a: =  3 sinh x +  4 sinh3  x  

cosh 3a: =  4 cosh3  x  — 3 cosh x  

sinh(ix) =  i sin x  

cosh(ix) =  cos a;

sinh a; =

cosh a; =

e" — e

ex +  e“

X3 X5 X7
X +  — H—— -j- ~fZ7

3! 5! 7!
x 2 X4 X6

1  +  —Г ■f* —~r +  —t
2 ! 4! 6 !

D efin ite  integrals
OG

/ e ax dx =  \  a  > 0
2 V a

By differentiation with respect to a:

I x 2e ™2d x = - A ^ .  q > 0

e ax sin A x  dx  =
OO

/0
oo

/0
oo

/ e~ax A
------ sin A x  dx =  tan - 1  —, a > 0

x  a

e ax cos A x  dx =

a 2 + A 2

a 2 + A 2

, a  > 0

, a > 0

OO

J  e~ax
sin A x  sin B x  dx = -  In

1 , ( a 2 + {A + B )‘2

4 \ a 2 + ( A - B )2
, a  > 0

OO

/ e ax cosA x d x = - \ [ ^ - e  л2/4а, a > 0
2 V ol

oo

/ xe ~ ax2 sin A x  dx = 4 \ / ^ e - A2/4a, 
4 V ol6

a  > 0
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/ 40
oo

/0
oo

/

sin A x  dx =  —erf (  „ _  | , a  > 0 2 \ 2 ^ ) '

e аж sin2 Ax dx =
2 A 2

a‘

4 A 2)

+ 2 A 2

, a  > 0

e ax cos2 A x  dx  =  . ' ~ , a > 0
a ( a 2  +  4Л2)

OO

/-0
oo

/ si

2 V a  V 4 4a
, a  > 0

2  л 1 [тг . (тг A 2 \
sin a x  cos A x  dx = -  \ / — sin — — — , a  >  0

2 V a V 4 4a /

Exam ple: D ifferentiation  under th e integral sign

To evaluate:
OO

- I 2?
sin Лж dx

Observe that 7 =  0 when A  =  0 and differentiate with respect to  Л:

OO

dl  f
dA~ J 'e ax cos Ax dx

a
2 + A 2a

I  =  J 2 ^ ^ 2  dA +  С (C =  constant)

tan 1 ( —^ +  C.
a
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But, /  =  0 when A = 0, . ' .  C  =  0

i.e. I  =  tan ■iM '

Series
1 - x n
1 — X 

1
1 — X

1  +  x  +  x 2 + x 3 + ■ ■ ■ +  x n , (n +  1  terms)

=  1  +  x  + x 2 + x 3 H-------h x n ■ ■ , |x| < 1

(infinite geometric series)

(i + x r  = i + ^  +  2 < ^ i> x ! +  2 f c l h f c l i ) I 3 +  ...

, <*(<* -  l)(c* -  2 ) • • • (a  -  n  +  1 ) _n ,
n! a- +••• ,

|ж| < 1 , a  ^  0 , 1 , 2 , . . .  (infinite binomial series)

„ n n(n— 1 ) ,  n(n -  l) (n  — 2 ) о 
( 1  +  x )n =  1  +  + 2, V  +  ^ ------ £ ------->-X3  +  • • • +  x n,

t-2 „ 3  „4
1п( 1 + ж ) = Ж - у  +  у -  —  -

n = (positive integer)

Ы < 1

x 2 x 3  x 4

e ~ 1 + X + 2 \+ 3 \+ 4 \+ '"  + n\
n(n + 1 )

+  n

n(n  +  l ) ( 2 n +  1 ) 
_ 6 =  l 2 +  22 +  32 +  42 +  • • • +  n 2

V ector analysis

a  x (b x c) =  (a ■ c)b — (a • b)c (triple vector product) 

(a x b) x (c x d) =  (a ■ b x d)c — (a • b x c)d

Taylor’s th eorem  in three d im ensions

/ ( x  +  h) =  / (x )  +  (h • V) / (x )  +  1 (h • V )2 / (x )  +  • • • +  -  (h ■ V )n / (x )  +z! n!

T he d ivergence theorem



Useful Formulae 303

If F (x) is defined on and within the interior V of a closed surface S:

J div F  dV
v

n  • Fd S  =  j )  F  • dS.
s

S to k e s’ th e o re m

cu rl F  =  V x F  = 8_
dx

j
d_

dy

к

d_
dz

F\ F‘2 F:i

/ а д
\  ay  az  J \  oz  ox  J \  ox  Oy J 

C is a closed contour and S an open, two-sided surface bounded by C; n  is 
orientated in the positive sense with respect to C:

/ F-dr / cu rl F  • dS = j  n  • cu rl FdS.
s

V ecto r id en titie s

curl(</?F) =  V x (<pF) =  ipcurl F  +  V<p x F;
cu rl(cu rl F) =  V x (V x F) =  V(div F) -  V 2F;

div(F x G) =  V - ( F x G )  =  cu rl F  G  -  F  cu rl G;
cu r l(F  x G) =  V x (F x G) =  (G -V )F -  (F-V )G  +  Fdiv G -  Gdiv F;

grad(F • G) =  V (F -G )  =  (G -V )F +  (F-V )G  +  G  x cu rl F  +  F  x cu rl G.

In te g ra l tra n s fo rm a tio n s

j  VtpdV =  j) n<p dS, 
V s

. /V

/

V ■ F  dV = j) n FdS,
v s

V x F  dV =  j)  n  x FdS.
v s

S urface  in teg ra ls

F  ■ n  dS — j  (F\ni  +  F2n 2 +  F 3 7 1 3 ) dS
s s s

r  =  x ( u , n)i +  y(u,  w)j +  z(u,  n)k 

_  (rM x r V)dudv _  ±  r„  x r„
|(ru x r„)dudn| | r „ x r „ |
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dS = n dS  =  ± (r u x rv)dudv

I F ■ n dS  =  ±
s

x rv dudv.

C auchy—R iem ann  equations
If f ( z ) =  u(x, у ) +  iv(x, у ) is regular:

du dv du
dx  dy  ’ dy

dv
d x '

U pper bound for a contour integral
l/(*)l <  M  on C. L — length of contour:

<  M L .

C auchy’s theorem
If f ( z )  is continuous on a simple closed contour C and regular within C:

= 0.

P oles OO ГП j
f ( z )  =  £  an (z -  z0)n + (z _ П )n

has a pole of order m  a t zo with residue b\.

R esid u e theorem
If f ( z )  is continuous on a simple closed contour C and regular within C except for 
isolated singularities at z i,  22, . . . ,  zn:

<1 f {z )d z  = 2m  ^  Km  
c m=1

7Zm = residue at z = zm.

R esid u e at a  sim ple pole

If /(*) = P{z)
Q(z)

has a simple pole at г =  го then residue Р Ы  
Q'(zo) '

R esidue at a double pole

I f  f ( z) P H
(z -  Zo)2

then at го residue ( ^ { ( г - г о ) 2/ ^ ) } )  =  P'(z0).
\ /  Z = Z q
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D ’A lem b ert’s so lution  o f th e wave equation

(F и 1 d 2u
If o f .2 - ^ 5 ^  =  ° ’ with u = f ( x )  and

du
dt

g(x) a t t =  0:

x+ct
I f  I 1 f

then: u{x, t)  =  -  | / ( x  -  ct) + f ( x  + ct)j +  — / g{rf)dr].

O ne-dim ensional d elta  function
О

J s(x У) dy
1, when a < x  < b, 
0, otherwise,

О
j f {y)S{x  -  y)dy =  f (x ) ,  when a < x  < 6,

S(x — y) — lim
+o 7г[(ж — у )2 +  б2]

Fourier transform

m
oo  oo

- w J  m = w *
f ( k ) e lkx dk ,

Fourier transform  o f a derivative

Fourier transform of x ) =  (ik )nf ( k ).

Fourier transform  o f unity
OO

J= J  e - ikx dx =  V 2^ 6{k).

Fourier sine transform

fs{k) = \ l  -  I f ( x )  sin kx  dx, 
о

j--  (-*~l

f (x ) =  y ~ /  /^(fc) sisin kx dk.

Fourier cosine transform

fc{k) = \ ~  f ( x ) cos kx  dx, f ( x )  =

OO

j  Ш cos kx  dk.
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INDEX

adjoint, linear equations, 237 
self, 50

alternating tensor, defined, 81 
used to represent cross product, 

81
Argand diagram, 83 
basis function, 4

Bessel’s equation, general integer 
order, 25 
order 0, 148 
order 1, 22

Bessel function, first and second 
kinds, 26

Beta function, defined, 210
relation to Gamma function, 210 

branch, cut, 95 
point, 95
of complex function, 95 

boundary conditions,
accommodated by Green’s 
function, 46
for well-posed problems, 146 
ordinary differential equation, 4 
periodic, 32
Sturm-Liouville problem, 28 
two-point, 28, 46

boundary value problem, for partial 
differential equations, 146 
self adjoint, 50 
wave equation, 175

calculus of variations, 287 
integral constraint, 294 

catenoid, 293
Cauchy, problem for a partial 

differential equation, 140, 143,
146
residue theorem, 107 
theorem, 97

Cauchy’s integral formula, 101 
Dirichlet’s problem, 144 
Laurent’s expansion, 104 

Cauchy-Riemann equations, 89, 131 
causal solution, 44 
causality, principle, 172 
Cayley-Hamilton equation, 267 
central quadric, 259

principal axis form, 260 
characteristic equation, linear 

system of equations, 255 
ordinary differential equation, 4, 

7, 10
square matrix, 255

311
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characteristic, partial differential 
equation, 141 
polynomial, 255 

circle, complex equation, 85 
circulation, 64
compatibility, linear equations, 237 
complementary, error function,

224
function, 4 

complex number, 83 
argument, 84 
conjugate, 83 
imaginary part, 83 
modulus, 84
multiplication and division in 

polar form, 85 
nth root, 85 
parallelogram law, 84 
polar form, 84 
principal value, 84 
real part, 83 
triangle inequality, 84 

complex, differentiation, 88 
equation of a circle, 85 
function, 87 
integration, 92 
map, 87 
plane, 83 
potential, 131 
transformation, 87 
velocity, 131

complex function, differentiation, 
88
branch, 95 
exponential, 91 
logarithmic, 91 
meromorphic, 121 
poles, 106 
power, 91

regular, 89 
singularities, 89, 106 
trigonometric, 91 

conformal transformation/map, 
defined, 123 
critical points, 124 
infinite strip into a half-plane, 

126
plane with finite cut into \z\ > 1, 

126
plane with semi-infinite cut into 

a half-plane, 125 
quadrant into a half-plane, 125 
solution of Laplace equation, 130 

et seq.
contour integral, along the real 

axis, 112, 114 
around unit circle, 111 
for Gamma function, 209 
Jordan’s lemma, 144 
of many valued functions, 116 
principal value, 117 
real valued integrals, 111 et seq. 
to sum series, 121 

convergence, Fourier series, 34 
ratio test, 19

convolution integral, diffusion 
equation, 188

cosine, half-range series, 35 
half-range transform, 184 

Cramer’s rule, 246 
critical points, of a conformal 

transformation, 124 
cross product, 53 
cube roots of unity, 86 
curl, defined, 65

cylindrical coordinates, 73 
orthogonal curvilinear 

coordinates, 73
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rectangular coordinates, 66 
spherical polar coordinates, 74 

curvilinear coordinates, general 
orthogonal, 70 

cut, branch, 95, 134 
plane, 95, 135 

cylindrical coordinates, 73

D’Alembert’s solution, 143, 152 
De Moivre’s formula, 85 
delta function, epsilon-sequence, 38, 

167
one-dimension, 38 
three dimensions, 168 

derivative, directional, 57 
generalised function, 42 

descent, method, 176 
determinant, defined, 239 

cofactor, 241 
Cramer’s rule, 246 
inverse of square matrix, 247 
Jacobian, 249 
properties, 242 

Dido of Carthage, 294 
differential equation, boundary 

conditions, 4, 28 
characteristic equation, 4, 7, 10 
first order ordinary, 1 
Frobenius method, 15 
indicial equation, 18 
reduction of order, 7 
second order ordinary, 3 et seq. 
series solution, 15 
singular and ordinary points, 16 
Sturm-Liouville, 28 
variation of parameters, 13 
see also, partial differential 

equations

differentiation, complex function,
88
under integral sign, 301 

diffusion equation, convolution 
integral, 188
fundamental solution, 188 
Fourier transformation, 187, 191, 

193, 195, 196, 198 
separation of variables, 153 

directional derivative, 57 
Dirichlet’s problem, 144, 146 

Green’s function, 171 
divergence, defined, 61

cylindrical coordinates, 73 
orthogonal curvilinear 

coordinates, 72 
rectangular coordinates, 61 
spherical polar coordinates, 74 
theorem, 61
theorem in two dimensions, 63 

domain of dependence, wave 
equation, 144

eigenfunction, for hanging chain,
149
orthogonality relation, 28 
orthonormal, 31 
periodic, 32 
series expansion, 30 
Sturm-Liouville problem, 28 

eigenvalue, characteristic equation, 
255
linear system of equations, 254 
square matrix, 254 
Sturm-Liouville problem, 28 

eigenvector, 254
epsilon sequence, delta function, 38, 

167
for a constant, 43
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Green’s function, 166, 173 
Heaviside step function, 41 
principal value function, 43 

equation
Bessel’s, 22, 25, 148 
Cauchy- Riemann, 89, 131 
Cayley-Hamil1on, 267 
characteristic, 4, 7, 10, 255 
complex form for a circle, 85 
diffusion, 153, 187, 191, 193, 195, 

196, 198
Euler’s homogeneous, 6 
Helmholtz, 69 
indicial, 18
Laplace, 63, 90, 128, 144, 157, 

163, 190, 197, 218 
Legendre, 214 
linear, 230, 254 
matrix, 230
ordinary differential, 1 et seq. 
partial differential, 139 et seq., 

187
Poisson, 139, 163, 166, 168, 175 
self adjoint, 50
simple harmonic motion, 5, 12 
Sturm- Liouville, 27 
wave, 29, 142, 143, 151, 172, 189, 

199
error function, 194, 224 
Euler, constant, xi, 27 

formula, 5
homogeneous equation, 6 

Euler Lagrange equation, 290 
special cases, 291 

extremal, 274
functional constraint, 283, 285 
integral constraint, 294 
maxima, minima, saddle point, 

278

field, scalar and vector, 56 
flux of a vector field, 60 
Fourier integral, by residue 

theorem, 114 
generalised function, 44 

Fourier series, 32 et seq. 
arbitrary period, 33 
convergence at end-points, 34 
half-range, 35 
non-periodic functions, 34 

Fourier transform, defined, 179 
applied to partial differential 

equations, 187 et seq. 
half-range, 183 
inversion formula, 180 
of a derivative, 185 
of constants and powers, 181 
sine and cosine, 184 

Fresnel integrals, 225 
Frobenius method, 15 et seq., 

summary, 24 
functional, 288

Gamma function, defined, 205 
contour integral representation, 

209
duplication formula, 211 
Gauss’ formula, 212 
recurrence relation, 206 
residues, 206, 212 
Stirling’s formula, 207 

Gauss, elimination, 231, 242 
formula for Gamma function, 

212
general solution, second order 

differential equation, 3 
Laplace equation, 129 
wave equation, 142
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generalised function, introduced,
38
delta function, 38, 168 
derivative, 42 
epsilon-sequence, 38 
principal value function, 43 

Goursat, E., proof of Cauchy’s 
theorem, 98 

gradient, defined, 57
cylindrical coordinates, 73 
operator, 57 
orthogonal curvilinear 

coordinates, 71 
rectangular coordinates, 57 
spherical polar coordinates, 74 

Greek alphabet, xi 
Green’s function, causal, 45, 172 

Dirichlet problem, 171 
epsilon-sequence, 166, 173 
found by Fourier transformation, 

189
Laplace equation, 163 
method of descent, 176 
Neumann problem, 171 
non-homogeneous problems, 48 
simple harmonic motion, 44 
two-point boundary value 

problems, 46
wave equation, 172, 176, 178 

Green’s, theorem, 64 
first identity, 68 
second identity, 69, 164

half-range, sine and cosine series, 35 
sine and cosine transforms, 184 

half-range transform, sine and 
cosine, 184
applied to partial differential 

equations, 192, 193, 195-198

hanging chain, eigenfunction 
expansion, 149 
potential energy, 297 
oscillations, 147

Heaviside step function, defined, 40 
epsilon-sequence, 41 

Helmholtz equation, 69 
hydrodynamics, complex potential, 

131
complex velocity, 131 
flow around an edge, 134 
flow past a cylinder, 132, 158 
flow past a finite plate, 135 
point source, 133, 170 
point source near plane, 133 
two-dimensional, 131

image source, 133, 170 
incompressible motion, 62, 69, 70 
indicial equation, Frobenius 

method, 18 
equal roots, 20 
general roots, 18 
roots differing by an integer, 21 

integrating factor, 1, 5 
integration, by residue theorem,

107 et seq.
Cauchy’s theorem, 97 
complex, 92
in the complex plane, 92 
indefinite, 101 
ML theorem, 96 
of analytic functions, 94 
path deformation, 99 
path independence, 99 

inverse, matrix, 242, 247 
point, 145

irrotational, 62, 69, 70, 131 
isoperimetric problem, 294
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Jacobian, defined, 249
transformation of integrals, 249, 

251
Jordan’s lemma, 114

kinetic energy, 69, 70 
Kronecker delta, 80

Lagrange, duplication formula,
211
integral constraint, 294 
multiplier, 280, 295 

Laplace equation, cylindrical 
coordinates, 157 et seq. 
general solution, 129 
Green’s function, 163 et seq. 
Green’s second identity, 69 
irrotational flow, 63 
Poisson’s solution, 144, 159 
satisfied by a regular function, 

90
separable solution, 218 
solution at large distances, 165 
solved by Fourier

transformation, 190, 197 
two dimensions, 128 et seq. 

Lanzcos, C., 268 
Laurent’s expansion, 104 

principal part, 106 
Legendre polynomial, defined, 213 

equation, 214
generating function, 219, 221 
orthogonality relation, 216 
recurrence relations, 221 
Rodrigues formula, 213 
series expansion, 217 
to solve Laplace equation, 218 

level surface, defined, 56 
unit normal, 58

line integral, complex, 92 
evaluation, 74 
path independence, 75 

linear equations, defined, 230 
adjoint system, 237 
compatibility, 237 
Cramer’s rule, 246 
fundamental theorem, 235 
Gauss elimination, 231 
row echelon form, 232 

Liouville’s theorem, 103 
ML theorem, 96, 113 
Maclaurin’s theorem, 271 
mapping, 88, 123 
matrix, definition, 227 

algebra, 228 
augmented, 233
Cayley-Hamilton equation, 267 
characteristic equation, 255 
defective, 268 
diagonalisation, 259 
eigenvalues and eigenvectors, 

254
elementary, 243 
equations, 230 et seq.
Gauss elimination, 242 
inverse, 242, 247 
minimal equation, 269 
non-singular, 243, 258 
orthogonal, 258 
positive definite, 261 
rank, 235, 246 
real symmetric, 258 et seq. 
row, column, square, 227 
simultaneous diagonalisation, 

262
symmetric, skew-symmetric, 

transpose, diagonal, unit,
228
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maxima and minima, 274 
constrained, 280 
two dimensions, 278 

meromorphic function, 121 
method of images, Poisson/Laplace 

equations, 133, 168, 170 
Morera’s theorem, 102

Neumann problem, 146, 159 
Green’s function, 171

orthogonal curvilinear coordinates, 
defined, 70 
curl, 73 
divergence, 72 
gradient, 71 
line element, 71 
volume element, 71 

orthogonality relation, Legendre 
polynomials, 216 
Sturm-Liouville problem, 28 

orthonormal, eigenfunctions, 31 
eigenvectors, 258

parallelopiped, volume, 54 
partial differential equations, 

Cauchy’s problem, 140, 146 
characteristic, 141 
classification, 141 
diffusion equation, 139 
Dirichlet problem, 144, 146 
Laplace and Poisson equations, 

139
Neumann problem, 146 
second order linear, 139 
separation of variables, 147 
solved by Fourier transforms, 187 
wave equation, 139, 172 
well posed problems, 144, 146

particular integral, ordinary
differential equation, 2, 9 et seq. 

point source, impulsive, 172 
three dimensions, 170 
two dimensions, 133 

Poisson, Dirichlet’s problem, 144, 
159
equation, 139, 163, 166, 168, 175 

pole, arbitrary order, 107 
complex function, 106 
simple, 107 

potential, energy, 297 
retarded, 174 
see also velocity potential 

principal, part of complex function, 
106
value integral, 43, 117 

Principle of least action, 293

quadratic form, central quadric, 259 
diagonalisation, 260

radiation condition, 146, 172, 200 
ratio test, 19 
reciprocity principle, 47 
recurrence relation, Gamma 

function, 206
Legendre polynomials, 221 
method of Frobenius, 17 

reflection coefficient, 202 
regular function, 89 
residue, calculation, 108 et seq, 

double pole, 110 
Gamma function, 206, 212 
Laurent’s expansion, 108 
simple pole, 107, 109 
theorem, 107

residue theorem applied, along the 
real axis, 112, 114
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around unit circle, 111 
many valued functions, 116 
principal value integrals, 117 
real integrals, 111 et seq. 

resonant forcing, 11 
retarded, potential, 174 

time, 175
Reynolds number, 139 
Riemann surface, 95 
Rodrigues formula, 213

saddle point, 278 
scalar, product, 53 

field, 56
second variation, 277, 290 
separation of variables, introduced, 

28
diffusion equation, 153 
Laplace equation, 157 
second order partial differential 

equations, 147 
wave equation, 151 

series, eigenfunction, 31 
Fourier, 32
Legendre polynomials, 217 
ratio text, 19 

series solution, differential 
equation, 15 
convergence, 19

simple harmonic motion, equation, 
5, 12
Green’s function, 44 

simple closed contour, 97 
sine, half-range series, 35 

half-range transform, 184 
singularity, essential, 107 

isolated, 106
ordinary differential equation, 16 
pole, 106

source, distributed, 139, 163, 172 
impulsive, 172 
point, 133, 170

spherical polar coordinates, 74 
stationary point 

extremal, 274 
integral constraint, 294 
integral, 287, 290 
maxima and minima, 274 
saddle point, 278 
second variation, 277 
two dimensions, 278 

stream function, 131 
Stirling’s formula, 207 
Stokes’ theorem, 64 

proof, 66
Sturm-Liouville equation, applied 

to partial differential equations, 
148 et seq. 
eigenfunctions, 28 
eigenvalues, 28
for Legendre polynomials, 215 
general form, 27 
orthogonality relation, 28 
periodic boundary conditions, 32 

suffix notation, vectors and tensors, 
79 et seq.

summation, convention, 79 
of series, 121

surface element, defined, 59 
for a sphere, 77 
parametric representation, 77 
vector, 59, 77

surface integral, evaluation, 76 
parametric representation, 77

tangent plane, 58 
Taylor’s series, in the complex 

plane, 103
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radius of convergence, 104 
second order approximation, 273 
several variables, 271 

tensor, 80 
test function, 40 
triangle inequality, 84 
triple scalar product, 54 
triple vector product, 54

upper bound, contour integral, 96

variation, definite integral, 289 
parameters, 13 
second, 277, 290 

vector, field, 56
operator identities, 67, 303 
product, 53 
solenoidal, 62

velocity potential, defined, 62 
determining the kinetic energy, 

69, 70
flow past, cylinder, 132, 158 

edge, 134

finite plate, 133 
sphere, 219

in three dimensions, 169 
uniqueness, 69

wave equation, characteristic 
coordinates, 142 
D’Alembert’s solution, 143 
eigenfunction expansion, 151 
Green’s function, 174, 176, 178 
in bounded medium, 175 
one space dimension, 142 
separation of variables, 151 
solved by Fourier

transformation, 189, 199 
stretched string, 29 
three space dimensions, 172 et 

seq.
well posed problems, 144, 146, 166
Wronskian, 14
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