<u>1</u> введение

Тенденции в развитии производства топливноэнергетических ресурсов непосредственно связаны с развитием всего мирового хозяйства и соответственно с ростом численности населения и душевого потребления конечных топливно-энергетических ресурсов (ТЭР). Численность населения в настоящее время достигла 6 млрд. человек, а к 2030 году она составит 8,25 млрд. человек. В то же время душевое потребление конечных ТЭР будет постоянно нарастать практически во всех регионах мира за исключением Северной Америки, Восточной и Северной Азии. В результате суммарное потребление конечной энергии в мире за ближайшие тридцать лет возрастет почти в 1,5 раза.

В свою очередь удовлетворение потребностей в отдельных видах ТЭР определяется их конкурентоспособностью по отношению друг к другу. При этом конкурентоспособность того или иного ресурса на мировом рынке зависит от цен, которые в свою очередь складываются под влиянием затрат, связанных с их добычей, переработкой, транспортом, технологическими и экологическими качествами их использования.

Запасы топливно-энергетических ресурсов обеспечат потребности человечества в них и на следующее столетие. Однако на обеспечение этих потребностей накладываются определенные ограничения экологического и экономического характера. Это прежде всего достаточно жесткие ограничения по эмиссии CO_2 в мире на уровне 1990 г., а также возникшие в последние годы трудности с планированием использования ядерной энергетики. Ужесточение экологических требований приводит к тому, что наиболее конкурентоспособным из всех видов первичных ТЭР является природный газ. Это связано с тем, что эмиссия CO_2 при сжигании газа ниже, чем при сжигании мазута и угля: сжигание газа в расчете на 1 кВт-ч первичной энергии сопровождается эмиссией CO_2 в размере 0,2-0,22 кг, мазута соответственно — 0,26-0,28 кг, каменного

угля – 0,33 кг, бурого угля – 0,4 кг. При этом следует учитывать, что при использовании природного газа на крупных электростанциях с газовыми турбинами КПД превышает 50 %, а отопительные котлы нового поколения имеют КПД свыше 90 %, что соответственно снижает потребление первичного топлива и удельную эмиссию CO_2 на единицу конечной энергии. Если за последние 20 лет мировое потребление энергии увеличивалось на 38 %, то природного газа – на 65 %, в то время как нефти – на 12 % и угля – на 28 %. За это время доля природного газа в балансе первичных энергоресурсов возросла с 17 до 21 %, доля нефти снизилась с 49 до 40 %, а угля с 30 до 27 %.

Таким образом, роль газа, как наиболее экологически чистого вида топлива, заметно возрастает и, по прогнозам экспертов, его доля в энергобалансе мира к середине XXI века может составить 28–30 %.

Россия обладает самыми крупными промышленными запасами природного газа (около 40 % от мировых) и занимает лидирующее положение в мире по его добыче и экспорту. Оценка размеров прогнозных ресурсов газа в Восточной Сибири и Дальнем Востоке, на шельфах северных и восточных морей показывает, что Россия еще долгое время будет лидером в газовой отрасли мира.

В последние десятилетия наблюдается тенденция к постоянному повышению в общем числе месторождений природного газа доли газоконденсатных месторождений со сложным компонентным составом, в состав пластового газа которых входят не только жидкие углеводороды (пентаны и вышекипящие), но и сероводород и серосодержащие соединения, гелий и другие компоненты.

До тех пор пока природный газ добывался только из газовых месторождений (содержание в нем метана составляет 95 % и более) основным технологическим процессом, применяемым в процессе добычи и транспортировки газа потребителям, был процесс осушки. Переход к добыче газа из газоконденсатных месторождений потребовал применения достаточно широкого спектра технологий, призванных решать новые задачи как при подготовке газа и конденсата к транспорту, так и при организации глубокой переработки природного газа.

При этом осушка газа остается наиболее распространенной технологией, необходимой практически на любом месторождении газа и газоперерабатывающем заводе. Второй по распространенности в промысловых и заводских условиях является технология извлечения из пластового газа конденсата, т.е.

жидких углеводородов (пентана и более высококипящих) – низкотемпературная сепарация. Квалифицированная подготовка к транспорту газового конденсата невозможна без применения технологий стабилизации конденсата с использованием процессов ректификации. Ректификация является основным процессом при газофракционировании в производстве индивидуальных газовых компонентов.

На территории России значительная доля газоконденсатных месторождений содержит в составе пластовых газов сероводород и сероорганические соединения, без очистки от которых газ не может быть подан в систему магистральных газопроводов и потребителям. Организация добычи газа на Оренбургском, а затем на Астраханском месторождениях, потребовала использования технологий по очистке газа от сероводорода, производству газовой серы и доочистке хвостовых газов производства серы, а также очистке газа и конденсата от сероорганических соединений. В последние годы появилось множество новых технологических процессов переработки природных газов, в том числе очистка газа физическими абсорбентами, окислительными и микробиологическими методами, термическая и плазмохимическая диссоциация сероводорода, мембранные процессы газоразделения и т.д.

Возникновение газопереработки в бывшем СССР, как самостоятельной подотрасли, можно отнести к концу 60-х - началу 70-х годов, когда вводились в эксплуатацию Мубарекский ГПЗ (Узбекистан) и Оренбургский ГПЗ (Россия). В настоящее время в России в составе газоперерабатывающей подотрасли ОАО "Газпром" кроме Оренбургского ГПЗ действуют Оренбургский гелиевый завод, Астраханский ГПЗ, Сосногорский ГПЗ, Уренгойское Управление подготовки конденсата к транспорту, Сургутский завод стабилизации конденсата. Перспективы дальнейшего развития газопереработки в России связаны с добычей углеводородного сырья на газоконденсатных месторождениях Надым-Пур-Тазовского района Тюменской области, освоением месторождений полуострова Ямал, Восточной Сибири, Якутии, Дальнего Востока, района Прикаспия, Тимано-Печорской нефтегазоносной провинции. Прорабатываемые в настоящее время проекты поставок природного газа в страны Азиатско-Тихоокеанского региона и другим потребителям по трубопроводам и морским путем в сжиженном состоянии потребуют применения широкой гаммы технологических процессов переработки как на вновь сооружаемых ГПЗ, так и непосредственно на промыслах. Поэтому целью настоящего справочника является изложение последних взглядов на техноло-

гию переработки природного газа и газового конденсата, современных методов расчета технологических процессов и их моделирование, технологию и методы охраны окружающей среды при переработке газового сырья, а также перспективы развития газоперерабатывающей подотрасли.

Авторский коллектив выражает глубокую признательность за инициативу, проявленную в постановке задачи по написанию книги, ныне покойному, начальнику Управления ОАО "Газпром", доктору технических наук Владимиру Робертовичу Грунвальду, а также недавно ушедшему из жизни Генеральному директору ООО "ВНИИГАЗ", доктору технических наук Валерию Владимировичу Ремизову, уделявшему большое внимание вопросам глубокой переработки углеводородного сырья и производству газохимической продукции в системе ОАО "Газпром", как одному из перспективных направлений газовой промышленности, и принявшему непосредственное участие в организации создания этой книги.

ОСУШКА ПРИРОДНЫХ ГАЗОВ

Наличие в газе избыточной влаги вызывает ряд серьезных проблем при транспортировании газа. При обработке и транспортировании газа за счет снижения температуры в системе происходит конденсация водяных паров и следовательно образование в ней водного конденсата. Последний с компонентами природного газа образует гидраты. Гидраты, отлагаясь в газопроводах, уменьшают их сечение, а иногда приводят к аварийным остановкам. Кроме того, наличие воды в системе усиливает коррозию оборудования, особенно при содержании в сырьевом газе кислых компонентов. В связи с изложенными природные и нефтяные газы перед подачей в магистральные газопроводы и в цикле переработки подвергаются осушке. Общие вопросы, связанные с осушкой газа и влиянием некачественной подготовки газа на показатели газотранспортных систем описаны в работах [7, 11, 12, 16, 20, 22, 23, 24, 28, 30, 32, 34, 35, 37, 41].

Выбор способа осушки газа зависит от состава сырья. Для осушки тощих газов применяются абсорбционные и адсорбционные процессы. При наличии в газе конденсата переработка газа осуществляется с применением низкотемпературных процессов. При этом на стадии охлаждения газа происходит конденсация водяных паров за счет снижения равновесной влагоемкости газа.

Противоточные абсорбционные процессы, в первую очередь, применяют для осушки тощих газов, т.е. газов, не содержащих тяжелые углеводороды выше пороговой концентрации. Здесь под выражением "пороговая" подразумевается та концентрация углеводородов, которая не служит препятствием для нормальной транспортировки газа.

Противоточные абсорбционные процессы применяют также для осушки кислых газов, газов после установок очистки газа от кислых компонентов с применением водных растворов разных реагентов, при подготовке газов к низкотемпературной переработке и т.д.

Прямоточные абсорбционные процессы используются в основном на нефтяных месторождениях. Осушка газа производится в горизонтальных абсорберах. На месторождениях России (Тюменская область, Томскнефть, Башнефть, Дагнефть и т.д.) применение нашли установки осушки производства бывшей ГДР. Производительность таких установок небольшая и составляет от 0,5 до 2,5 млн. м³/сут. Некоторые характеристики и область применения прямоточных процессов осушки газа приведены в работе [10].

Адсорбционные процессы применяют как для подготовки "тощих" газов к транспортированию, так и для глубокой осушки газа, т.е. перед подачей газа на низкотемпературную переработку газа, например, на установках получения гелия. Эти процессы нашли также широкое применение при осушке сжиженных газов, используемых в качестве моторного топлива или хладагента.

Проектирование установок осушки газа включает в себя: определение необходимой точки росы газа по воде, принятие концентрации исходного и отработанного растворов осушителя, выбор оборудования для блоков осушки и регенерации и т.д.

2.1. ЖИДКИЕ ОСУШИТЕЛИ И ИХ СВОЙСТВА

Для извлечения влаги из природного газа можно применять различные осушители, которые должны иметь:

а) высокую поглотительную способность в широком интервале концентраций, давления и температур;

6) низкие давления насыщенных паров, чтобы потери, связанные с их испарением, были незначительными;

в) температуру кипения, отличающуюся от температуры кипения воды настолько, что отделение поглощенной воды от осушителя могло бы осуществляться простыми методами;

г) плотность, отличающуюся от плотности углеводородного конденсата для обеспечения четкого разделения простыми способами;

д) низкую вязкость в условиях эксплуатации, обеспечивающую хороший контакт с газом в абсорбере, теплообменниках и другом массообменном оборудовании;

е) высокую селективность в отношении компонентов газа, т.е. низкую взаиморастворимость с ними;

ж) нейтральные свойства, т.е. не вступать в химические 10 реакции с ингибиторами, применяемыми в процессе добычи газа;

з) малую коррозионную активность;

и) низкую вспениваемость в условиях контакта с газовой смесью;

к) высокую устойчивость против окисления и термического разложения.

Наличие второго компонента в осушителе, когда смесь готовят непосредственно на газообрабатывающем объекте, требует дополнительных емкостей и насосов для его хранения и закачки. Если из-за необходимости изменения качественных показателей (температуры застывания, вязкости и т.д.) применяют двухкомпонентный осушитель, то второй компонент должен отвечать тем же требованиям, что и все осушители. Желательно, чтобы разница между температурой кипения компонентов абсорбента и воды была как можно больше.

На установках комплексной подготовки газа некоторая часть осушителя попадает в водоемы и на почву, поэтому он должен быть неядовитым и способным к полному биологическому разрушению. Кроме того, осушители должны быть дешевыми и нетоксичными.

Этим требованиям в той или иной степени отвечают гликоли – этиленгликоль (ЭГ), диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ), пропиленгликоль (ПГ), смеси гликолей с их эфирами и т.д.

Некоторые производные ди- и триэтиленгликоля и побочные вещества, получаемые при их производстве (этилкарбитоль, тетраэтиленгликоль), хотя и обладают высокой гигроскопичностью, практически не применяют для осушки природного газа, что объясняется трудностями, связанными с регенерацией их насыщенных растворов и низкой избирательностью в отношении компонентов природного газа.

На практике в схемах установок абсорбционной осушки газа в качестве осушителей применяются высококонцентрированные растворы ДЭГа и ТЭГа.

Водные растворы других гликолей, а в частности этиленгликоля и пропиленгликоля, нашли применение в качестве ингибитора гидратообразования.

Гликоли являются двухатомными спиртами жирного ряда и с водой смешиваются во всех отношениях. Их водные растворы не вызывают коррозию оборудования. Это обстоятельство, по сравнению с другими абсорбентами, дает им дополнительное преимущество, так как позволяет изготовить оборудование из дешевых марок стали.

Важное свойство гликолей – способность понижать температуру замерзания водных растворов, что дает возможность использовать водные растворы гликолей как антигидратный ингибитор при минусовых температурах контакта. Чем ниже дипольный момент гликоля, тем больше его способность к ассоциации, понижению температуры замерзания раствора.

Основные свойства гликолей приведены в табл. 2.1–2.10 и на рис. 2.1–2.20, по данным [6, 11, 12, 26, 28, 30, 31, 32, 34].

По данным табл. 2.2 можно отметить следующее – не приводится расшифровка состава органических примесей, содержащихся в гликолях (в ДЭГе – 1,3 и ТЭГе – 1,9 %). Эти примеси являются побочными продуктами их производства. Представляет интерес их физико-химические свойства с тем, чтобы оценить их термическую стабильность и влияние на надежность эксплуатации блока регенерации.

Указывая на отсутствие расшифровки органических примесей, обращаем внимание на то, чтобы при закупке гликолей Заказчик потребовал от Поставщика состав этих примесей.

T ./	2	
$I an \pi m a$		1
1 00000000	~.	'

Основные физико-химические	свойства чистых	ДЭГа и ТЭГа
----------------------------	-----------------	-------------

Показатели	ДЭГ	ТЭГ
Химическая формула	C ₄ H ₈ (OH) ₂	$C_{6}H_{12}(OH)_{2}$
Относительная молекулярная масса	106,12	150,17
Плотность при 20 °C, г/см ³	1,1184	1,1254
Вязкость при 20 °С, МПа·с	35,7	47,8
Теплоемкость при 20 °С, кДж/кг·К	2,09	2,2
Теплота парообразования (при давлении 0,1 МПа),	629	416
кДж/кг		
Температура, °С:		
начала разложения	164,4	206,7
воспламенения на воздухе	150,5	173,9
вспышки (в открытом тигле)	143,3	165,5
замерзания	-9,0	-7,6
Поверхностное натяжение, 10 ⁻³ м	48,5	45,2
Коэффициент рефракции (преломления) при 20 °С	1,4472	1,4559
Температура кипения, °С:		
при 101,3 кПа	244,8	278,3
при 6,66 кПа	164	198
	128	162
Скрытая теплота парообразования при 101,3 кПа,	628,1	367,0
кДж/кг	424.0	240.0
Геплота растворения воды в гликолях при 90 °С,	134,9	210,0
КДЖ/КГ	0.00001	0.00000
Коэффициент объемного расширения в интервале	0,00064	0,00069
0-50 °C	440	
Критическая температура, °С	410	440
Критическое давление, МПа	5,1	3,72

Таблица 2.2

Основные показатели ДЭГа и ТЭГа, производимых на предприятиях РФ

Показатель	Диэтилен- гликоль по ГОСТ 10136-77 (ТУ)		Триэтиленгликоль по ТУ 6-01-5-88	
	Марка А	Марка Б	Марка А	Марка Б
1. Внешний вид	Бесцвет желтова прозрач	тная или атая аная	Бесцветная товатая жид механических	или жел- кость без с приме-
2. Плотность при 20 °С, г/см ³	жидкост 1,116-	-1,117	1,123-1,124	Не ниже 1.121
3. Массовая доля органических примесей, %, не более,	0,4	1,8	2	_,
в т.ч. моноэтиленгликоля	0,15	1,0	0,1	0,8
4. Массовая доля основного веще-	99,5	98,0	98	90
5. Массовая доля воды, %, не бо-	0,05	0,2	0,1	0,3
6. Массовая доля кислот в пере- счете на уксусную кислоту, %, не	0,005	0,01	0,002	_
оолее 7. Число омыления, мг гидроокиси калия (КОН) на 1 г продукта, не	0,1	0,3	_	_
более				

Таблица 2.3

Соотношения коэффициентов теплопередачи гликолей и воды

Гликоли	ликоли Нагрев или охлаждение На ох		Нагрев или охлаждение паров	Конденсация паров	Кипение жидкости
	R>2100	R<2100	1		
ЭГ ДЭГ ТЭГ	$0,49 \\ 0,50 \\ 0,49$	0,12 0,11 0,09	$0,60 \\ 0,60 \\ 0,60$	0,28 0,17 0,15	0,30 0,30 0,30

Примечание. Предприятиями газовой промышленности рекомендуется приобрести ДЭГ первый сорт и ТЭГ марки А. Возможно также использование ДЭГа второго сорта.

Таблица 2.4

Растворимость природного газа в водных растворах ДЭГа [29]

Концентрация раствора ДЭГа, % мас.	<i>р</i> , МПа	Растворимость газа (м ³ /м ³) при температуре, °С				
100	2,0 4,0 6,0 8,0	$20 \\ 1,84 \\ 3,68 \\ 5,44 \\ 7,0$	$30 \\ 1,60 \\ 3,20 \\ 4,77 \\ 6,40$	$\begin{array}{r} 40 \\ 1,40 \\ 2,80 \\ 4,10 \\ 5,44 \end{array}$	$50 \\ 1,19 \\ 2,30 \\ 3,50 \\ 4,62$	$\begin{array}{c} 60 \\ 1,00 \\ 2,00 \\ 3,0 \\ 3,94 \end{array}$

Продолжение табл. 2.4

Концентрация раствора ДЭГа, % мас.	<i>р</i> , МПа	Растворимость газа (м ³ /м ³) при температуре, °С				
	10,0	8,50	7,90	6,80	5,75	5,00
95	2,0	1,70	1,50	1,30	1,06	0,94
	4,0	3,44	3,12	2,52	2,12	1,86
	6,0	4,80	4,40	3,76	3,20	2,82
	8,0	6,40	5,90	5,00	4,31	3,75
	10,0	7,90	7,30	6,31	5,40	4,69
85	2,0	1,28	1,20	1,00	0,88	0,80
	4,0	2,64	2,40	2,00	1,75	1,62
	6,0	3,70	3,50	3,00	2,70	2,45
	8,0	5,00	4,60	4,06	3,56	3,12
	10,0	6,20	5,70	5,06	4,44	4,00
75	2,0	1,04	0,96	0,81	0,80	0,74
	4,0	2,00	1,82	1,65	1,58	1,44
	6,0	2,90	2,75	2,50	2,25	2,19
	8,00	3,90	3,65	3,31	3,07	2,94
	10,0	4,80	4,60	4,12	3,75	3,20
70	2,0	0,80	0,72	0,75	0,69	0,65
	4,0	1,60	1,62	1,38	1,35	1,19
	6,0	2,40	2,25	2,12	2,00	1,90
	8,0	3,20	3,00	2,82	2,70	2,55
	10,0	4,00	3,75	3,60	3,40	3,13

Таблица 2.5

Максимально допустимые концентрации гликолей в сточных водах

	Потребн лој	юсть в кі рода на 1	ислороде мг глико	, мг кис- оля	Максил концен мг	мальная грация, ∕л	Возможность биологическо-
Гликоли	ХПК	БПК ₅	БПК	$\frac{\frac{5\Pi K_{\pi}}{X\Pi K}}{\frac{\%}{8}},$	MK ₆	$\mathrm{MK}_{\mathrm{foc}}$	го разруше- ния
ЭГ	1,50	0,54	1,26	84,0	1	1000	Поддается
ДЭГ	1,27	0,06	0,18	13,8	200	200	распаду Практически не разруша-
ТЭГ	1,6	0,5	-	31,2	10,0	-	ется Практически не поддается
Ш						1000	распаду Практически не поддается распаду
5514						_	

БПК₅ – биохимическая потребность в кислороде за 5 сут; БПК_п – полная потребность в кислороде (примерно за 20 сут); ХПК – химическая потребность в кислороде; МК₆ – максимальная концентрация, которая не нарушает биохимические процессы за любое время; МК_{60с} – максимальная концентрация вещества, не влияющая на работу би-

ологических очистных сооружений.

Таблица 2.6 ПДК гликолей в водоемах

Гликоли	Гликоли Концентрация, мг/л						
	ППК _{орл}	ППК _{срв} ППК _т		ПДК			
ЭГ	450	1	1	1			
ДЭГ	2050	1	1	1			
ТЭГ	1000	10	200	по БПК			
ПГ	1000	10	200	по БПК			
ППК _{орл} – пороговая концентрация вещества в водоеме, определяемая органолептически;							
ППК _{сов} – то же, определяемая по влиянию на санитарный режим водо-							
ема;							
ППК_ – то же, определяемая по токсологическим характеристикам;							
ПДК' – пр	едельно-допусти	мая концентраци	я вещества в во	доеме.			

Таблица 2.7

Зависимость температуры замерзания (f $_{\rm 3}$) водных растворов ДЭГа от его массовой концентрации

ДЭГ, %	<i>Т</i> ₃ , °С	ДЭГ, %	<i>T</i> ₃ , °С	ДЭГ, %	<i>Т</i> ₃ , °С		
2 10 20	-0,3 -1,9 -5,1	60 62 64	-41,4 -44,9 (-48,3)	80 82 84	(-43) (-41) -39		
30 40 50	-9,9 -16,9 -26,6	66 68 70	(-51,5) (-55,5) (-58)	86 88 90	-37 -34 -30		
52 54	-29,3 -32,3	70 72 74 76	(-62)	92 94 96	-25,5 -21,3		
58	-35,4 -38,4	76 78	_	96 98	-17,0 -12,7		
¹ Цифры в скобках получены экстраполяцией кривых							

Таблица 2.8

Зависимость температуры замерзания водных растворов ТЭГа от его массовой концентрации $^{\rm 1}$

ТЭГ, %	<i>Т</i> ₃ , °С	ТЭГ, %	<i>Т</i> ₃ , °С	ТЭГ, %	<i>Т</i> ₃ , °С
2 6 10 14 18 20 24 28 30 34 38 ¹ Цифры в	-0,2 -0,8 -1,6 -2,4 -3,4 -4,0 -5,2 -6,8 -7,7 -9,9 -12,3 скобках по.	40 44 48 50 54 58 60 70 74 76 78 лучены экстра	-13,7 -16,9 -20,9 -23,6 (-29,5) (-36) (-40) (-48) -46 -45 -43,5	80 82 84 86 88 90 92 94 96 98 -	$\begin{array}{r} -42 \\ -40 \\ -37,4 \\ -34,5 \\ -31,2 \\ -27,5 \\ -23,5 \\ -19,1 \\ -14,5 \\ -9,0 \\ -\end{array}$

Таблица 2.9 Показатели пожарной опасности гликолей

Гликоли	Гликоли Температура, °С ¹ Область воспл Т _{вс} Т _{вос} Т _{самвос} Область воспл менени. об.		Область само- воспла- менения, %	Темпера пределы	атурные воспламе-		
			об.	нени	я, °С		
ЭГ	115	118	380	3,8-6,4	118	124	
ДЭГ	135	143	345	0,62-0,8	143	170	
ТЭГ	158	170	371	0,90-9,2	-	-	
ПГ	107	164	421	2,6-12,6	-	-	
$T_{\rm BC}$ – температура вспышки, °C; $T_{\rm BC}$ – температура воспламенения, °C; $T_{\rm camboc}$ – температура самовоспламенения, °C.							

Таблица 2.10

16

Токсические свойства гликолей

Гликоли	ЛД* ₅₀ при введении через рот (крысы), мл∕кг	Допустимая доза при введе- нии через рот крысы, г/кг	Продолжитель- ность испыта- ний, сут	ЛД** ₅₀ при кожной апли- кации (кролики), мл∕кг				
ЭГ ДЭГ	7,4 28,3	0,28 0,18	$30,0 \\ 30,0$	$20,0 \\ 11,9$				
ТЭГ ПГ	28,3 34,6	0,33	30,0	20,0 20,0				
ЛД* ₅₀ – количество гликоля в мл на 1 кг живой массы, принятое через рот, которое приводит к гибели 50 % животных в пределах до 14 сут. ЛД** ₅₀ – кожно-резорбтивная доза гликоля при контакте с жидкостью в течение 24 ч.								

Поглощение гликолем воды является экзотермическим процессом, то есть сопровождается с выделением тепла.

Коэффициенты теплопередачи гликолей снижаются с ростом их молекулярной массы (см. табл. 2.3). С повышением температуры повышается давление насыщенных паров над раствором (см. рис. 2.1 и 2.2) и снижается теплота испарения ТЭГа, ДЭГа и ЭГа (см. рис. 2.3).

Экспериментальные значения растворимости природного газа в водных растворах ДЭГа приведены в табл. 2.4. С увеличением концентрации воды растворимость природного газа в водных растворах ДЭГа снижается.

Растворимость газа в ТЭГе на 25–30 % выше, чем в ДЭГе. Следовательно ДЭГ обеспечивает более высокий коэффициент избирательности в системе вода – углеводороды. Из-за малых значений растворимости газов в растворах гликолей можно указать, что этот факт при осушке бессернистых газов практически не влияет на показатели работы установки.

Рис. 2.1. Зависимость давления насыщенных паров водных растворов ДЭГа от температуры

Рис. 2.2. Зависимость давления насыщенных паров водных растворов ТЭГа от температуры

Рис. 2.3. Зависимость теплоты испарения ЭГа (1), ДЭГа (2) и ТЭГа (3) от температуры

Исследуемый газ имел следующий мольный состав, (%): CH₄ – 95,42; C₂H₆ – 2,26; C₃H₈ – 0,99; n-C₄H₁₀ – 0,61; C₅H₁₂ – 0,21; C₆H₁₄ – 0,08; CO₂ – 0,42.

Растворимость ароматических углеводородов в гликолях увеличивается по мере роста их молекулярной массы. Например, растворимость бензола в ЭГе и ДЭГе составляет соответственно 5,7 и 31,3 %, а три- и тетроэтиленгликоли полностью смешиваются с бензолом.

Водные растворы ЭГа по сравнению с растворами ДЭГа и ТЭГа имеют более низкую температуру замерзания, большую степень предотвращения гидратообразования при одинаковых концентрациях, меньшую вязкость при рабочих температурах осушки и более низкую растворимость в углеводородном конденсате, что снижает их потери за счет растворимости в конденсате.

ЭГ имеет экологическое преимущество над ДЭГом и ТЭГом: при попадании в водоемы он подвергается полному биологическому разложению в отличии от ДЭГа и ТЭГа (см. табл. 2.5).

Существенным недостатком ЭГа является высокое давление насыщенных паров. Например, при температуре 20 °С этот показатель для 99%-го раствора ЭГа в 2,5 и 7 раза выше, чем упругость паров ТЭГа и ДЭГа соответственно. По этой причине ЭГ не получил применение при противоточной осушке газа, так как его потери с газом были бы в несколько раз больше.

Растворы ЭГа могут быть успешно применены в качестве ингибитора на установках НТС.

Рис. 2.5. Зависимость теплопроводности водных растворов ТЭГа от температуры.

- экстраполированные точки замерзания

Одним из важных свойств гликолей является снижение их температуры замерзания при растворении в них воды. Благодаря этому свойству гликоли находят применение при приготовлении различных теплоносителей. Это качество гликолей имеет важное значение и для транспортировки газа. Дело в том, что газ на выходе из абсорберов обязательно содержит гликоль в паровой фазе, и, как правило, в капельном виде. При снижении температуры газа в газопроводах гликоли поглощают дополнительную влагу из паровой фазы, что снижает его

Рис. 2.6. Зависимость удельной теплоемкости водных растворов ДЭГа от температуры

концентрацию в жидкой фазе. Это приводит к снижению температуры замерзания жидкой фазы, что предотвращает образование твердой фазы в газопроводах.

Температуры замерзания водных растворов ДЭГа и ТЭГа даны в табл. 2.7 и 2.8.

Водные растворы ТЭГа имеют преимущества по сравнению

Рис. 2.7. Зависимость удельной теплоем
кости водных растворов ТЭГа от температуры

с растворами ДЭГа и ЭГа. У триэтиленгликоля давление насыщенных паров меньше, чем у ДЭГа, следовательно, потери ТЭГа за счет уноса с осушенным газом и при регенерации будут меньше. ТЭГ при высокой степени осушки дает более значительное понижение температуры точки росы, чем ДЭГ. Кроме того ТЭГ имеет более высокую температуру начала разложения (206 °C), чем диэтиленгликоль (164 °C).

Рис. 2.8. Зависимость вязкости водных растворов ДЭГа от температуры

Рис. 2.9. Зависимость вязкости водных растворов ТЭГа от температуры

Рис. 2.10. Зависимость удельного веса водных растворов ДЭГа от температуры

Для осушки газа можно применять также изомеры пропиленгликоля: 1,2 – пропиленгликоль CH₃CHOH-CH₂OH и 1,3-пропиленгликоль CH₂OH-CH₂-CH₂OH. Из них наибольший

Рис. 2.11. Зависимость удельного веса водных растворов ТЭГа от температуры

интерес представляет 1,2-пропиленгликоль (ПГ). ПГ имеет очень низкую температуру замерзания – минус 60 °С, что дает возможность использовать его в условиях Крайнего Севера.

Рис. 2.12. Кривые поверхностного натяжения водных растворов гликолей при 25 °C: 1 – ДЭГ; 2 – ЭГ; 3 – ТЭГ; 4 – пропиленгликоль

Рис. 2.13. Фазовая диаграмма растворов ТЭГа при давлении 100 мм рт. ст.

Рис. 2.14. Фазовая диаграмма растворов ТЭГа при давлении 300 мм рт. ст.

Возможно также применение ПГ в смеси с другими гликолями.

Упругость паров ПГ при обычных температурах выше, чем у ЭГа, ДЭГа и ТЭГа. Следовательно, потери ПГа с обрабатываемым газом при одинаковых условиях будут больше, чем остальных гликолей. Подача в абсорбер переохлажденного раствора ПГа позволило бы снизить его потери с осушенным газом.

Вязкость водных растворов гликолей растет с увеличением концентрации растворов и давления, уменьшается с повышением температуры. При вязкости выше 100 сП снижается интенсивность процесса массообмена между водяными парами и растворами, в результате чего не достигается равновесия между фазами.

Для снижения вязкости растворов гликолей к ним можно добавлять органические растворители, которые не должны

Рис. 2.15. Фазовая диаграмма растворов ТЭГа при давлении 600 мм рт. ст.

способствовать образованию пены. Растворители должны быть гидроскопичными и иметь более низкую вязкость, чем гликоли. Растворителями могут служить бензоловый, фенилэтиловые, ароматические и циклические одноатомные спирты, гомологи циклогексана; гетероциклические одноатомные спирты – гомологи тетрагидрофурфуролового спирта; водорастворимые моноэфиры полигидроспиртов и т.д. В качестве разбавителя может использоваться также метанол.

Следует отметить, что перечисленные реагенты не отвечают многим требованиям, предъявляемым к осушителям. Некоторые из них более летучи, что приводит к повышенным потерям реагентов, некоторые плохо регенерируются и т.д. Поэтому их применение на практике носит единичный характер. Добавление к диэтиленгликолю низкомолекулярных гликолей, таких как ЭГ и ПГ, снижает вязкость и температуру застывания его растворов. Согласно данным [31], раствор, состоящий из 50 % **30**

Рис. 2.16. Фазовая диаграмма растворов ТЭГа при давлении 760 мм рт. ст.

ЭГа и 50 % ДЭГа, при температуре -5 °С имеет вязкость 100 сП. Температура застывания такого раствора равна -38 °С. С таким абсорбентом процесс осушки можно вести при низких температурах контакта, что, в свою очередь, позволит снизить унос гликолей с осушенным газом и повысить эффективность использования холода окружающей среды.

Аутоокисление гликолей. Гликоли способны к аутоокислению, т.е. к самопроизвольному окислению кислородом воздуха при невысоких температурах. Самый стойкий к окислению этиленгликоль. ДЭГ и ТЭГ из-за наличия эфирных групп больше склонны к окислению.

Процесс окисления ускоряется в присутствии веществ, способных генерировать радикалы, и замедляется при добавке антиокислителей. Конечный продукт аутоокисления ДЭГа – муравьиная кислота и формальдегид. Кроме того, образуются

Рис. 2.17. Фазовая диаграмма растворов ДЭГа при давлении 100 мм рт. ст.

вода, этиленгликоль, гликолевый альдегид, глиоксаль и диоксалан.

В нейтральной и щелочной средах, а также при pH < 1,5 скорость аутоокисления низкая. При pH = 2,5÷4,5 скорость аутоокисления возрастает в 15–20 раз.

Для снижения аутоокисления можно использовать химические реагенты, например, при добавлении в раствор гидрохинона 0,1 % от массы гликоля его аутоокисление практически прекращается.

Хранение и транспортировка гликолей. Специфические физические свойства гликолей (гигроскопичность, относительно высокая вязкость) и способность их к аутоокислению требуют соблюдения определенных условий при хранении и транспортировании. Длительно хранить гликоли следует при возможно более низкой температуре во избежание их окисле-

Рис. 2.18. Фазовая диаграмма растворов ДЭГа при давлении 300 мм рт. ст.

ния. ЭГ, ДЭГ и ТЭГ рекомендуется хранить при температуре не ниже -4 °C, а тетраэтиленгликоль, пропиленгликоль и дипропиленгликоль – не ниже +2 °C. Сроки хранения, согласно действующим стандартам и техническим условиям, для гликолей, не имеющих добавок антиокислителей, установлены в зависимости от сорта или марки, для ЭГа 5–12 мес, ДЭГа 3– 6 мес и ТЭГа – 6 мес.

Емкости для хранения гликолей должны иметь теплоизоляцию и устройство для обогрева, так как гликоли при низких температурах обладают большой вязкостью, что затрудняет их перекачивание. Эти емкости могут быть изготовлены из обычной стали. При этом стены емкостей должны быть покрыты лаком на основе фенольных или винильных смол.

При длительном хранении гликолей емкости рекомендуется изготавливать из нержавеющей стали или алюминия. Трубо-

Рис. 2.19. Фазовая диаграмма растворов ДЭГа при давлении 600 мм рт. ст.

проводы, арматуру и насосы для перекачивания гликолей выполняют из легированной стали или алюминия и его сплавов.

Гликоли – пожаро- и взрывоопасные вещества. Показатели их пожарной опасности приведены в табл. 2.9.

Физиологические действия. Гликоли относятся к веществам с относительно низкой токсичностью. Вследствие незначительной летучести гликолей при недлительном пребывании человека в среде, насыщенной парами водных растворов гликолей, отравления организма не происходит. Свойства гликолей даны в табл. 2.10.

Длительное пребывание в среде, насыщенной парами этиленгликоля, вызывает раздражение глаз, верхних дыхательных путей, повышенную сонливость, кратковременный наркоз.

С ростом молекулярной массы гликолей их вредное воздействие на организм человека снижается. Смертельная доза 34

Рис. 2.20. Фазовая диаграмма растворов ДЭГа при давлении 760 мм рт. ст.

этиленгликоля при приеме его внутрь составляет около 1,4 г на каждый килограмм массы человека.

Предполагается, что в организме этиленгликоль подвергается окислению по следующей схеме:

этиленгликоль — гликолевый альдегид — гликолевая кислота — глиоксалевая кислота — щавелевая кислота — глиоксаль.

Токсическое действие диэтиленгликоля слабее, чем этиленгликоля. Однако при приеме во внутрь он тоже представляет большую опасность. Смертельная доза для человека составляет 15–100 мл.

Три- и тетраэтиленгликоли менее токсичны, чем диэтиленгликоль, что объясняется весьма низкой летучестью этих веществ.

Пропиленгликоль, в отличие от этиленгликоля, практически не токсичен, не опасен при вдыхании паров и случайном приеме внутрь.

Экспериментальными данными определены следующие предельно допустимые концентрации гликолей в воздухе рабочей зоны: для этиленгликоля – $0,1 \text{ мг/м}^3$, для диэтиленгликоля – $0,2 \text{ мг/m}^3$.

Для три- и тетраэтиленгликолей, а также для пропиленгликолей ПДК не определены, так как считается, что установление норм для них не обязательно в связи с их малой летучестью и низкой токсичностью.

2.2. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ГЛИКОЛЕЙ, ИСПОЛЬЗУЕМЫХ В КАЧЕСТВЕ ОСУШИТЕЛЯ

В настоящее время для осушки природных газов на месторождениях России в основном применяется раствор ДЭГа. Применение ТЭГа носит единичный характер, хотя известно, что за рубежом ТЭГ нашел более широкое применение, благодаря низким потерям его на установках осушки газа и другим технологическим преимуществам.

В настоящее время в России имеется возможность производить для нужд газовой промышленности триэтиленгликоль. Следовательно снимается ограничение в применении ТЭГа изза его дефицитности.

Основными показателями, характеризующими гликоли как осушитель, являются депрессия точки росы газа по влаге, потери с осушенным газом, регенерируемость насыщенного раствора и т.д.

Ниже приводится сравнительная оценка показателей ДЭГа и ТЭГа, необходимых при выборе осушителя для установок осушки газа [20].

Депрессия по точке росы. В табл. 2.11 приведены данные, характеризующие глубину осушки газа водными растворами ДЭГа и ТЭГа, полученные с использованием кривых "точка росы – растворы гликоля – температура контакта", приведенных на рис. 2.21 и 2.22.

Сравнивая данные из табл. 2.11 в контексте с требуемой глубиной осушки газа для северных газопроводов, можно указать, что при пониженных температурах контакта оба гликоля могут быть использованы практически с одинаковой технологической эффективностью. Что касается высоких температур

í ‡∙ ÎË^‡ 2.11

Равновесная точка росы газа по влаге при его осушки растворами ДЭГа и ТЭГа

Температура контакта, °С	98,0		99,0		99,5	
	ДЭГ	ТЭГ	ДЭГ	ТЭГ	ДЭГ	ТЭГ
5	-24,0	-31,5	-31,7	-38,0	-36,0	-44,0
10	-20,6	-27,1	-28,5	-35,3	-34,5	-41.7
20	-14,4	-20,0	-21,7	-28,4	-27,8	-35,0
30	-6,2	-13,3	-15,2	-22,5	-217	-27,8
35	-2,4	-8,0	-11,5	-18,5	-18,8	-25,1
40	+0,7	-5,0	-9,2	-15,8	-15,8	-23,0

контакта и высоких концентраций растворов, то преимущество ТЭГа очевидно. Особенно важное значение это преимущество имеет в летние месяцы, когда не удается охлаждать газ ниже температуры 25-30 °C.

В табл. 2.11 приведены теоретические данные. В условиях УКПГ практически никогда не достигается равновесная осушка газа. Следовательно потребуется раствор более высокой концентрации, получение которого более затруднительно.

В тех случаях, когда не возможно охладить газ ниже температуры 25-30 °C, очень трудно достичь осушки газа до точки росы -10 °C и ниже с использованием растворов ДЭГа. К примеру, при давлении 4,0 МПа и температуре контакта 30 °С для осушки газа до точки росы -16 °С (эквивалент точке росы -10 °С при давлении 7,35 МПа, необходимой по ОСТ 51.40-83), требуется раствор ДЭГа концентрации 99,2 % мас. (с учетом реальных условий процесса не менее 99,5 % мас.). В виду ряда причин (износ оборудования, отсутствие эффективной системы очистки раствора гликоля от ингредиентов, недостаточная степень вакууммирования и т.д.) в условиях производства такая степень регенерации раствора практически трудно достижима. В то же время для осушки газа до такой глубины достаточно использовать раствор ТЭГа концентрации 98,4 % (с учетом реальных условий процесса не менее 98,6 % масс.), что легко достижимо. Требуемый уровень остаточного давления в системе составит не ниже 400 мм рт. ст.

Потери гликолей. Важным преимуществом ТЭГа является низкое давление его насыщенных паров, которое обеспечивает меньшие потери ТЭГа с осушенным газом в паровой фазе. По этой статье снижение потерь ТЭГа может составить 0,2–1,5 г/1000 м³ в интервале температур 10–20 °С, наиболее характерных для установок осушки газов северных месторождений. Эта цифра более существенна при температурах контакта 30 °С и выше и может составить 3–4 г/1000 м³. Равновес-

Рис. 2.21. Точка росы газа по влаге над водными растворами ДЭГа

Рис. 2.22. Точка росы газа по влаге над водными растворами ТЭГа

Рис. 2.23. Номограмма для определения равновесных потерь ДЭГа с осушенным газом

ные потери гликолей могут определяться с помощью номограмм, приведенных на рис. 2.23, 2.24.

Следует отметить, что основные потери гликоля приходятся на долю капельного уноса реагента с осушенным газом. Этот 40

Рис. 2.24. Номограмма для определения равновесных потерь ТЭГа с осушенным газом

показатель может определяться только на основании опыта промышленной эксплуатации абсорбционных установок осушки газа.

Как было уже указано, в отрасли отсутствует промышлен-

ный опыт использования ТЭГа для осушки газа. В литературе [12] описан опыт применения ТЭГа на полупромышленной установке производительностью 3,8–4,0 тыс. м³/ч. Испытания производились на одной из установок Ставропольского края. Эксперименты велись при давлении 4,7–5,3 МПа, температуре контакта 26–34 °C.

Суммарные потери ТЭГа составляли не более 5 г/1000 м³. Эта цифра в 3-4 раза меньше, чем на лучших промышленных установках осушки газа раствором ДЭГа.

Во второй половине 1996 г. на месторождении Тарко-Сале установки осушки газа были переведены от ДЭГа на ТЭГ. Это позволило снизить потери гликоля в 2 раза.

Регенерация насыщенных растворов. ТЭГ имеет более высокую температуру начала разложения (206 °С), чем ДЭГ (164 °С). Благодаря этому фактору возможна регенерация раствора ТЭГа без применения вакуума до концентрации 98,1 % масс. В то же время для ДЭГа этот показатель при регенерации без вакуумирования системы составляет 96,7 % мас. Такими растворами гликолей при температуре контакта 25 °С, в условиях равновесия, газ можно осушить до точки росы –18 и –1 °С растворами ТЭГа и ДЭГа соответственно. Практически точка росы газа будет значительно выше. Отсюда следует, что в случае не эффективности работы системы вакуумирования при осушке газа раствором ДЭГа невозможно будет получить кондиционный газ. В то же время при осушке газа ТЭГом особых проблем не возникнет.

Возможность нагрева ТЭГа до более высоких температур имеет еще одно преимущество, связанное с выделением растворенных углеводородов из раствора. Дело в том, что в газах северных месторождений содержатся конденсаты, имеющие более высокие температуры кипения, нежели температура регенерации гликолей. Поскольку раствор ДЭГа нельзя подогревать выше 164 °С, часть конденсата останется в насыщенном растворе, что будет ухудшать его поглотительную способность. В случае использования ТЭГа, ввиду более высокой температуры регенерации, остаточное количество конденсата в регенерированном растворе будет меньшим.

Наличие конденсата в регенерированном растворе снижает его осушающую способность, усиливает вспенивание гликоля, что может привести к повышенным его потерям.

Температура в испарителе блока регенерации в случае использования ДЭГа и ТЭГа поддерживается равной 160 и 190 °С соответственно (при одинаковом остаточном давлении 200 мм рт. ст.). При регенерации ДЭГа разница между темпе-42

Таблица 2.12 Зависимость температуры кипения гликолей от давления

р, Гликоли		<i>p</i> ,	Гликоли		
мм рт. ст.	ДЭГ	ТЭГ	мм рт. ст.	ДЭГ	ТЭГ
1 5	91,8 120,0	114,0 144,0 458,4	60 100	174,0 187,5	201,5 214,6
10 20 40	133,8 148,0 164,3	158,1 174,0 191,3	200 400 760	207,0 226,5 244,8	235,0 256,6 287,3

ратурой разложения и рабочей температурой системы составляет не более 4 °C. При регенерации ТЭГа этот показатель равен 16 °C. Следовательно, режим регенерации ДЭГа более уязвим по части разложения реагента. Отсюда следует, что потери ДЭГа от термического разложения будут больше, чем ТЭГа (при нарушении технологического режима установки).

Для глубокой регенерации растворов ДЭГа и ТЭГа требуется создать в системе вакуум, уровень которого может определяться по данным табл. 2.12.

Для достижения температуры кипения ДЭГа, не превышающей температуры разложения (164 °C), необходимо в системе создать вакуум на уровне 40 мм рт. ст. В то же время при этом вакууме температура кипения ТЭГа составляет 191 °C, что на 15 градусов ниже температуры его разложения.

2.3. УСТАНОВКИ АБСОРБЦИОННОЙ ОСУШКИ ГАЗА МЕСТОРОЖДЕНИЙ КРАЙНЕГО СЕВЕРА

УСТАНОВКА ОСУШКИ ГАЗА УРЕНГОЙСКОГО МЕСТОРОЖДЕНИЯ

Наиболее крупные установки абсорбционной осушки газа эксплуатируются на месторождениях Медвежье, Уренгой и Ямбург. Различные вопросы, связанные с эксплуатацией этих установок описаны в работах [14, 19, 21, 23, 24, 29, 35, 44].

Принципиальные технологические схемы установок осушки газа Уренойского и Медвежьего месторождений близки, их отличие касается аппаратурного оформления. На этих установках в блоках регенерации теплоносителем служит водяной пар.

Установки абсорбционной осушки газа Уренгойского месторождения состоят из двух блоков: осушки и регенерации насыщенного раствора гликоля.

Блоки осушки газа включают в себя абсорберы и сепараторы. В ряде случаев абсорберы включают в себя сепарационные секции, что обеспечивает компактность УКПГ.

Блоки регенерации включают в себя дегазатор, десорбер, рефлюксную емкость, систему вакууммирования и т.д.

Принципиальная технологическая схема установки осушки газа Уренгойского месторождения на начало эксплуатации приведена на рис. 2.25. (Эта схема в настоящее время дополнена дожимными компрессорными станциями, расположенными до и после установок осушки газа).

Подготовка к транспорту газа сеноманских залежей на месторождении производится на 15 установках комплексной подготовки газа.

В настоящее время на всех установках осушки давление газа значительно ниже, чем в начальный период эксплуатации месторождения, когда давление газа перед входным коллектором УКПГ составляло более 75 кгс/см². В этот период осушка газа производилась при давлении 75 кгс/см².

По этой причине на УКПГ введены в эксплуатацию дожимные компрессорные станции. При этом ступени сжатия газа размещены до и после установок абсорбционной осушки газа.

Рис. 2.25. Принципиальная технологическая схема установки осушки газа Уренгойского месторождения

На первых 4-х (УКПГ-1...4) установлены колонны с колпачковыми тарелками (ГП 252, диаметр 1,6 м). К моменту установки эти аппараты имели производительность 3 млн. м³/сут (по проекту). В дальнейшем после модернизации технологического оборудования, заключающейся в установке в верхней части абсорбера фильтр-патронов, единичная мощность была увеличена до 5 млн. м³/сут газа. Опыт эксплуатации данных аппаратов на четырех УКПГ сеноманской залежи показал надежную и эффективную их работу (потери ДЭГа с осушенным газом меньше, чем на остальных УКПГ, оснащенных многофункциональными абсорберами). То же касается межревизионного срока эксплуатации.

На УКПГ-5 и последующих установлены многофункциональные абсорберы различной модификации, в том числе:

на УКПГ-5...10 (ГП 365) проектной производительностью 5 млн. м³/сут;

на УКПГ 1АС, 11...13 и 15 (ГП 502) производительностью 10 млн. м³/сут.

Многофункциональный аппарат типовой конструкции ГП-365 представляет собой колонну высотой 16 м и диаметром 1,2 м, которая функционально разделена на три секции: сепарации, массообмена и фильтрации и улавливания гликоля. Первая по ходу газа секция сепарации состоит из сепарационной тарелки, оснащенной 86 прямоточными центробежными элементами диаметром 60 мм (типа ГПР-202). Массообменная секция состоит (в проектном варианте) из пяти контактных ступеней, каждая из которых включает в себя ситчатую контактную тарелку и сепарационную с прямоточными сепарационными элементами. Ситчатая тарелка с отверстиями диаметром 6 мм работает в режиме уноса, а сепарационная тарелка предназначена для улавливания уносимого с ситчатой тарелки гликоля и возврата его для обеспечения внутренней циркуляции абсорбента. Верхняя секция аппарата служит для очистки осушенного газа от мелкодисперсных капель гликоля и состоит из 54 фильтр-патронов с намоткой из фильтрующего материала (нетканое лавсановое техническое полотно), армированного с обеих сторон 2-3 слоями металлической рукавной сетки. Слив уловленного в секции фильтрации гликоля осуществляется по наружной переточной трубе на полуглухую тарелку в массообменную секцию.

Другим важным узлом установок осушки газа является блок регенерации насыщенного раствора, который включает в себя десорбер с системой орошения, рекуперативный теплообменник, испаритель, насосы и т.д.

Таблица 2.13

Результаты обработки фактических показателей установки абсорбционной осушки газа УКПГ-4 [23]

Показатель	Номера замеров						
	1	2	3	4	5	6	
Содержание H ₂ O в растворе ДЭГа, % мас.: РДЭГ НДЭГ Расход газа, тыс. м ³ /ч Подача РДЭГ, кг/1000 м ³ Степень насыщения раствора ДЭГа, % Равновесная точка росы, °C	1,79 6,28 1263 3,89 5,68 -19	1,47 5,76 1262 3,89 5,58 -22	1,65 6,28 1219 4,07 5,39 -20,5	1,65 6,59 1305 3,76 5,82 -20,5	1,83 7,09 1305 3,78 5,79 -18	1,83 5,64 1305 3,86 5,92 -18	

Наряду с указанными в состав установок осушки газа входят и вспомогательные аппараты: разделители, отстойники, буферные емкости и т.д.

Из опыта эксплуатации установок абсорбционной осушки газа Уренгойского месторождения значительный интерес представляет возможность достижения более высокой степени насыщения раствора ДЭГа влагой, чем это регламентируется по "Нормам технологического проектирования" ОНТП 1-86.

Согласно этим нормам степень насыщения раствора ДЭГа регламентируется не выше 2,5 %. Здесь и далее степень насыщения раствора указывает на разность массовых концентраций гликоля в регенерированном и насыщенном растворах.

Известно, что степень насыщения раствора определяет удельный расход циркулируемого в системе абсорбента, мощности насосов, размеры емкостей и коммуникаций гликоля, объемы газов выветривания и т.д. Кроме того, этот показатель влияет также на расход энергии в блоке регенерации.

Возможность достижения более высокой степени насыщения абсорбента проиллюстрированы фактическими показателями работы УКПГ-4 Уренгойского месторождения (табл. 2.13).

На основе полученных данных можно сделать однозначный вывод о том, что на установках осушки газа можно достичь более высокую степень разбавления абсорбента, чем это предусмотрено по Нормам технологического проектирования ОНТП 1-86. Благодаря этому можно достичь меньшего удельного расхода циркулирующего абсорбента и снижения расхода электроэнергии на работу насосов и на регенерацию насыщенного раствора. В целом, устанавливая степень насыщения раствора ДЭГа во взаимоувязке с основными параметрами процесса на стадии проектирования, можно достичь снижение затрат на обработку газа.

УСТАНОВКА ОСУШКИ ГАЗА ЯМБУРГСКОГО МЕСТОРОЖДЕНИЯ

Установки осушки газов Ямбургского месторождения от уренгойских установок отличаются компактностью, которая достигнута благодаря примению нового оборудования большой единичной мощностью.

УКПГ и головной участок магистрального газопровода Ямбург – Запад расположены в зоне многолетних мерзлых пород. В связи с этим с целью исключения растепления грунта предусмотрено охлаждение газа до температуры 0 – (–1) °С перед подачей в МГ.

Подготовка газов сеноманских залежей к транспорту ведется на семи УКПГ, имеющих идентичную технологическую схему. УКПГ укомплектованы отечественным оборудованием.

В состав каждой УКПГ входят 9 (8 рабочих, одна резервная) однотипных технологических ниток по осушке газа с проектной производительностью 10 млн. м³/сут каждая.

Принципиальная технологическая схема установки осушки Ямбургского месторождения газа приведена на рис. 2.26. (Эта

Рис. 2.26. Принципиальная технологическая схема УКПГ Ямбургского месторождения

схема в настоящее время дополнена дожимными компрессорными агрегатами, установленными перед блоком осушки газа).

С целью исключения растепления грунтов вдоль трассы газопроводов предусмотрено охлаждение газа до температуры минус 1 °C перед подачей его на транспортировку.

На всех УКПГ сепарация и осушка газа производится в многофункциональных аппаратах (МФА), разработанных ДАО "ЦКБН". МФА включают в себя 3 секции: входную сепарационную, массообменную и фильтрующую.

На УКПГ-1; 2 и 5 смонтированы МФА типа ГП 502. Входная сепарационная секция этих абсорберов состоит из тангенциальной перегородки с сетчатым отбойником и тарелок с центробежными сепарационными элементами ГПР 353 (115 шт.).

Массообменная секция включает четыре сетчатые контактные тарелки, между которыми установлены тарелки с центробежными сепарационными элементами ГПР 202 (по 204 элемента на каждой). Сепарационные тарелки снабжены центробежными элементами ГПР 353 (105 шт.). Массообменная секция от входной сепарационной секции отделена полуглухой тарелкой.

Фильтрующая секция состоит из тарелки с фильтрпатронами (120 шт.) и тарелки с центробежными сепарационными элементами ГПР 353 (92 шт.).

На УКПГ-3; 4; 6 и 7 используются МФА типа ГП 778.

Охлаждение газа. Для охлаждения осушенного газа в состав каждой УКПГ включены 24 аппарата воздушного охлаждения и 9 блочных турбодетандерных агрегатов (БТДА), характеристика которых приведена в табл. 2.14.

В зимний период необходимая температура газа достигается за счет использования ABO. В летний период для охлаждение газа используются ABO и турбодетандерные агрегаты марки БТДА-10/13-УХЛ4 по схеме: коллектор осушенного газа ->

Таблица 2.14

Основные технические данные БТДА

Показатели	Значение
Производительность по газу, млн.м ³ /сут	10
Перепад температуры на турбодетандере, °С	30
Предельное рабочее давление газа на входе в турбину, ата	130
Давление газа на входе в компрессор ТДА, ата	82,4
Степень повышения давления газа в компрессоре	1,31
Степень понижения давления газа в турбине	1,63
Частота вращения ротора, об/мин	9000

компрессор ТДА \rightarrow ABO \rightarrow турбина ТДА – коллектор осушенного газа.

Регенерация ДЭГа. По проекту регенерация ДЭГа на всех установках, за исключением УКПГ-2, производится с применением огневых подогревателей. Отличительной особенностью десорберов блоков регенерации этих УКПГ (кроме УКПГ-2) является наличие в их кубовой части рекуперативного теплообменника "РДЭГ-НДЭГ".

Подогрев гликоля на УКПГ-1; 3; 4; 6 и 7 осуществляется в трубчатых печах. Производительность установок регенерации с трубчатой печью составляет 60 м³/ч.

По проекту печи были двухпоточными. К настоящему времени по рекомендациям ВНИИгаза и ДАО "ЦКБН" печи переведены в однопоточную схему. Кроме того на некоторых УКПГ при реконструкции блоков регенерации гликоля использованы отдельные элементы способа регенерации [28].

Очистка ДЭГа. Очистка раствора ДЭГа от механических примесей производится в блоке гидроциклонов-фильтров. Очистка происходит за счет отделения механических примесей в центробежном поле с последующей фильтрацией гликоля через слой фильтрующей насадки. Очищенный НДЭГ поступает в емкость сбора и далее насосом подается на регенерацию. Мехпримеси накапливаются в бункере в нижней части аппарата, сбрасываются в емкость сбора и далее поступают на горизонтальную факельную установку (ГФУ).

УСТАНОВКА ОСУШКИ ГАЗА ЗАПОЛЯРНОГО МЕСТОРОЖДЕНИЯ

Практика эксплуатации УКПГ показывает, что во входных сепараторах не происходит полного отделения капельной жидкости от газа: часть жидкости с газом поступает в абсорбер, где поглощается раствором гликоля, используемым в качестве абсорбента для извлечения паров воды из газа. Вследствие этого происходит накопление в растворе ДЭГа минеральных солей и механических примесей.

Наличие солей в циркулирующем растворе гликоля оказывает ряд негативных влияний на работу установок осушки газа. В частности, при регенерации насыщенного раствора происходит отложение солей и механических примесей (частиц глины, песка и окалины, смолистых продуктов и т.д.) на поверхностях оборудования и труб теплообменников. В результате совокупного воздействия указанных факторов повышается интенсивность коррозии, ухудшается теплообмен, уве-

Рис. 2.27. Принципиальная технологическая схема установки осушки газа месторождения Заполярное

личиваются энергозатраты, имеет место преждевременный выход из строя аппаратов из-за прогара теплопередающих поверхностей и т.д.

Для сведения к минимуму попадания минеральных солей в раствор гликоля предложено произвести промывку газа во входном сепараторе рефлюксной жидкостью блока регенерации ДЭГа [2].

Такое решение реализовано в проекте установок осушки газа Заполярного месторождения, принципиальная технологическая схема которой приведена на рис. 2.27. Установку условно можно разделить на несколько блоков.

Блок осушки газа. Сырьевой газ проходит входной сепаратор С-1, где из него отделяется капельная жидкость и механические примеси. Отсепарированный газ для осушки поступает в абсорбер А-1.

В отличие от общепринятых схем входной сепаратор С-1 выполнен с массообменными устройствами. Предусматривается подача в противоток к газу рефлюксной жидкости из блока регенерации гликоля. Это обеспечит промывку газа от механических примесей и пластовой капельной воды, содержащей минеральные соли. В случае уноса капельной жидкости с газом, концентрация в ней солей будет значительно меньше, так как произойдет разбавление пластовой воды водой, полученной путем дистилляции в блоке регенерации.

Жидкость с низа сепаратора C-1 поступает в сборник Тр-1, оттуда смесь поступает в разделитель P-1. Из этого разделителя воднометанольная смесь подается в блок регенерации метанола.

Блок регенерации гликоля. Насыщенный раствор гликоля, отводимый с низа абсорбера, дросселируется и поступает в дегазатор Д-1. Предусмотрена возможность разделения насыщенного раствора гликоля на выходе из Д-1 на два потока. Один поток (меньший по количеству) в качестве орошения может подаваться на верхнюю тарелку колонны РД-1. Второй поток проходит рекуперативный теплообменник Т-1 и подается в среднюю часть ректификационной колонны на регенерацию.

С верха колонны смесь паров воды и метанола поступает в воздушный холодильник ВХ-1, охлаждаясь конденсируется и в жидком виде стекает в рефлюксную емкость Р-2. Из емкости Р-2 часть жидкости насосом Н-2 подается на орошение на верхнюю тарелку колонны. Другая часть тем же насосом подается в буферную емкость Е-7. Далее жидкость из емкости Е-7 насосом Н-4 подается в противоток газу в сепаратор С-1.

Емкость P-2 перегородкой разделена на две части, в одной из которых накапливается углеводородная жидкость, выделяемая из насыщенного раствора. Углеводородная фаза из емкости выводится отдельной линией.

Предусмотрена подача рефлюксной жидкости (или ее части) из емкости Р-2 в сборник Тр-1 и ее дальнейшая обработка с жидкой фазой входного сепаратора.

Регенерированный раствор ДЭГа из сборника БРГ насосом H-7 через рекуперативный теплообменник Т-1 подается в буферную емкость Е-1. Затем гликоль насосом H-1 подается на орошение в абсорберы А-1.

Блок вакууммирования. Вакуум в системе создается следующим образом. Пары с верха рефлюксной жидкости поступают в вакуум-насос H-6. В качестве затворной жидкости в насос подается оборотная вода. Водногазовая смесь после насоса поступает в вакуумный сепаратор BC-1, где разделяется на фазы. Паровая фаза с верха сепаратора отводится на факель. Жидкая фаза – гидрозатворная жидкость с низа сепаратора поступает в буферную емкость Е-3. Оттуда вода забирается насосом H-5 и через аппарат воздушного охлаждения BX-2 подается на вакуум-насос H-6 в качестве затворной жидкости.

Потери воды в контуре циркуляции восполняются путем подачи новой порции воды из оборотной системы в буферную емкость Е-3.

2.4. ОСУШКА КИСЛЫХ ГАЗОВ

Эксплуатация систем добычи, сбора и обработки сернистых газов имеет специфические особенности, связанные с наличием в газе сероводорода, двуокиси углерода, меркаптанов и т.д., которые влияют на температуру гидратообразования и влагосодержания газа, скорость коррозии оборудования и труб, выбор материала для их изготовления и т.д.

Влияние кислых компонентов на показатели газовых смесей.

Практически все показатели природных газов имеют свойства аддитивности. Следовательно, содержание в газе любого компонента влияет на его термодинамические параметры.

Из кислых компонентов газа на его термодинамические параметры заметное влияние оказывают сероводород и двуокись углерода, так как концентрация остальных компонентов (сероокись углерода, сероуглерод, меркаптаны и т.д.) незначительна. Эти компоненты не влияют на температуру гидратообразования, влагосодержание, коэффициент сжимаемости, коррозионную активность газа, в то же время они оказывают существенное влияние на качество ингибиторов гидратообразования, абсорбентов и на процесс их регенерации.

С увеличением содержания сероводорода и двуокиси углерода повышается температура гидратообразования газа и понижается его коэффициент сжимаемости.

В присутствии углеводородов токсичность сероводорода и меркаптанов значительно усиливается. Предельно допустимые концентрации этих газов в атмосфере воздуха составляют 0,008 мг/л. При проектировании и обустройстве сероводородсодержащих месторождений проводят специальные мероприятия, исключающие аварийные выбросы газа в атмосферу.

Увеличение содержания H₂S и CO₂ в газе существенно повышает его равновесную влагоемкость.

Наличие сероводорода в газах увеличивает их растворимость в воде и реагентах, применяемых в процессах промысловой и заводской обработки газа, так как растворимость H_2S в этих реагентах выше по сравнению с растворимостью углеводородов.

Предупреждение гидратообразования. При эксплуатации сероводородсодержащих месторождений борьба с гидратообразованием не составляет дополнительной проблемы, так как на забой скважин в насосно-компрессорные трубы и во все промысловые коммуникации постоянно вводят ингибитор коррозии, который хорошо растворяется в ингибиторах гидратооб-52 разования (метаноле, гликолях). Поэтому подают комплексный ингибитор гидратообразования и коррозии (КИГИК).

Так, на Оренбургском газоконденсатном месторождении в целях борьбы с коррозией и предотвращения гидратообразования применяют КИГИК, представляющий собой смесь метанола с ингибитором коррозии (ВИСКО-904, СЕРВО-398, И-1-А) в соотношении 20 г ингибитора на 1 л метанола.

Практикуется применение ингибиторов на основе гликолей.

Некоторые ингибиторы при контакте с поглотителями кислых компонентов, применяемых на установках сероочистки вызывают вспенивание. При выборе ингибиторов необходимо учесть это обстоятельство.

Борьба с коррозией. При добыче сернистых газов большое значение придается вопросам снижения скорости коррозии в системе.

Основные компоненты, вызывающие коррозию труб и оборудования, – сероводород и двуокись углерода.

Содержание меркаптанов в газе гораздо ниже, чем сероводорода и углекислоты, и хотя в некоторой степени они могут быть подвергнуты гидролизу с образованием сероводорода (при условиях щелочной среды), фактически в коррозионных процессах участия не принимают.

Определенную роль в процессе коррозии играют также органические кислоты жирного ряда, содержащиеся в тяжелых фракциях конденсатов и нефтей. Отмечены следующие виды коррозии оборудования:

химическая, вызванная агрессивными компонентами в газообразной форме;

электромеханическая, вызванная действием конденсатов насыщенных агрессивными компонентами;

коррозионное растрескивание сталей, вызываемое насыщением водорода структуры металла.

Механизм коррозии носит смешанный характер, т.е. химический и электрохимический. Причина химической коррозии – химическая реакция между железом и кислотами. Электрохимическая коррозия возникает при прохождении тока между отдельными участками поверхности металла.

Продукция коррозионного процесса – атомы и молекулы водорода и двухвалентные ионы железа, которые вступают в реакцию с ионами гидросульфида и сульфида, они образуют вторичные продукты коррозии – сульфиды железа, обладающие свойством самовоспламенения на воздухе при обычных температурах, что особенно опасно для проведения ремонтных работ при вскрытии аппаратов.

Интенсивность процесса коррозии зависит: от кислотности среды pH, температуры, давления, наличия в системе воды в жидкой фазе.

С повышением давления скорость электрохимической коррозии увеличивается, так как повышается растворимость агрессивных компонентов в жидкой фазе-электролите (например, в воде) и, следовательно, увеличивается их содержание в единице объема, действующего на единицу поверхности металла.

При повышении температуры снижается растворимость H_2S и CO_2 в жидкой фазе, а следовательно, и скорость коррозии, а также ускоряется скорость химических и электрохимических реакций и интенсивность коррозии, особенно при термических процессах.

Скорость сероводородной коррозии зависит также от прочности, химического состава, микроструктуры, способа обработки и т.д. применяемых сталей.

Все углеродистые и низколегированные стали подвергаются во влажных сероводородсодержащих средах растрескиванию под напряжением ниже предела текучести. Допустимая величина этих напряжений зависит от химического состава, термической обработки и структуры металла, остаточных напряжений после горячей или холодной деформации и других факторов. Для предотвращения растрескивания предусматривают специальные мероприятия, такие как изготовление труб и оборудования из специально выбранных сталей, стойких к растрескиванию от наводораживания, ограничение напряжений в металле увеличением толщины стенок, применение ингибиторов коррозии, осушка газа на УКПГ с целью уменьшения воздействия агрессивного газа на внутренние стенки газопроводов, транспортирующих газ до ГПЗ.

Технологическая схема в системе "скважина – УКПГ-ГПЗ" Оренбургского газохимического комплекса позволяет выделить две зоны коррозионной активности газа:

а) зона высокой коррозионной активности среды, к которой относятся технологическое оборудование скважин, шлейфовые газопроводы, сепарационное технологическое оборудование и межблочные коммуникации (кроме замерного пункта УКПГ), работающие в среде влажного газа с содержанием сероводорода;

6) зона низкой коррозионной активности, к ней относятся технологическое оборудование и арматура замерного пункта УКПГ, газоконденсатопроводы от УКПГ до ГПЗ.

Нормативными документами установлены допустимые скоро-54 сти общей коррозии: 0,25 мм/год – для насосно-компрессорных труб и шлейфовых газопроводов; 0,2 мм/год – для технологических аппаратов и межблочных коммуникаций (гарантии фирмы-поставщика); 0,1 мм/год – для газопроводов, транспортирующих осушенный сероводородсодержащий газ.

Материальное оформление трубопроводов и технологического оборудования для зон умеренной и опасной коррозии принимается в основном одинаковым. Это "спокойные" углеродистые стали марки Сталь 20 с дополнительным контролем качества при изготовлении. Для зон опасной коррозии обязательна термическая обработка труб на заводах-изготовителях и сварных швов при монтаже. Кроме того, при расчете толщины стенок труб и аппаратов для этой зоны принимается увеличенная толщина стенок для снижения внутренних напряжений.

В исключительных случаях для наиболее коррозионноопасных сред (фонтанная арматура) допускается применение нержавеющей стали.

Общую коррозию можно снизить до допустимых пределов (0,2–0,1 мм/год) с помощью ингибиторной защиты, качество которой зависит от ряда факторов. Один из основных – возможность применения эффективных методов нанесения ингибиторной пленки.

Эффективность антикоррозионной защиты определяют по формуле

$$A_{3} = \frac{\Pi_{\rm H} - \Pi_{\rm H}}{\Pi_{\rm H}} 100 \%, \tag{2.1}$$

где $\Pi_{\rm H}$ – потери массы неингибированного образца, мг; $\Pi_{\rm H}$ – потери массы ингибированного образца, мг.

Эффективность ингибиторной защиты, определяемая по формуле (2.1), оценивается следующим образом: 90 % и выше – отличная; 75–89 % – хорошая; 50–74 % – слабая; ниже 50 % – неудовлетворительная.

Абсорбционная осушка газов. На установках осушки кислых газов в качестве абсорбента используются водные растворы гликолей, которые инертны по отношению к углеводородным и кислым компонентам газа и не вступают с ними в химические реакции.

Сопоставление данных о растворимости углеводородов и сероводорода в гликолях показывает, что гликоль хорошо растворяет H₂S. Следовательно, на установках осушки кислых газов объем низконапорных газов будет больше, чем на обыч-

ных абсорбционных установках. Растворимость H_2S и CO_2 в гликолях может определяться по рис. 2.28–2.31.

В результате контакта сероводорода и двуокиси углерода с гликолем последний с течением времени становится кислым и усиливает коррозию оборудования и труб. Наиболее интенсивная коррозия происходит в вентилях и изгибах трубопроводов. Возникшая коррозия может носить характер коррозионного износа, язвенной коррозии или коррозионного растрескивания под влиянием водорода. Данные о влиянии кислых компонентов на коррозионную активность приведены в табл. 2.15.

Вспенивание гликоля при обработке высокосернистого газа встречается чаще, чем при обработке нейтрального газа. Это объясняется растворением в гликоле кислых газов, засорением его продуктами коррозии, ингибитором коррозии и растворителем серы, закачиваемым в скважину. Вспенивание гликоля

Рис. 2.28. Растворимость СО₂ в ДЭГе в зависимости от его парциального давления (при 16 °C)

особенно усиливается при повышенных температурах и выделении из него растворенных газов. Предварительное разгазирование гликоля при выветривании способствует снижению его вспениваемости в блоке регенерации.

Применение антивспенивателей не приводит к значительному снижению вспениваемости гликолей в блоке регенерации, поскольку эти вещества быстро теряют свои свойства при высоких температурах.

Наилучшим методом снижения вспениваемости считается очистка гликолей от загрязнителей перед их поступлением в блок регенерации. Фильтрацией гликолевых растворов можно очищать их от загрязнителей. В качестве фильтрующего элемента можно применять активированный уголь. Насыщенный уголь рекомендуется регенерировать с помощью водяного пара.

Для контроля качества гликоля требуется регулярное определение рН среды. Иногда для борьбы с окислением гликолей рекомендуется в раствор добавлять специальные реагенты.

мость СО2 в ТЭГе в зависимости парциального давления (при 16 °С)

Рис. 2.30. Растворимость $\rm H_2S$ в ДЭГе в зависимости от его парциального давления (при 16 $^{\rm o}C)$

При проектировании установок для осушки высокосернистых соединений необходимо предусмотреть также возможность установления емкости для отделения продуктов коррозии.

Следует отметить, что на надежную эксплуатацию установок осушки высокосернистых газов влияет выбор материала для тех частей установки, которые непосредственно контактируют с высокосернистым газом. С увеличением прочности сталей их чувствительность к водородной коррозии растет.

Потоки газа, имеющие скорость свыше 20 м/с, могут вызвать эрозию материала коммуникаций. Поскольку эрозия в несколько раз увеличивает коррозию, необходимо, чтобы скорость не превышала указанный предел.

Установки осушки газа должны отключаться каждые 12– 18 мес для ремонта, очистки и контроля в первую очередь тех узлов, которые контактируют с сероводородсодержащим газом. 58

Рис. 2.31. Растворимость $\mathrm{H}_2 S$ в ТЭГе в зависимости от его парциального давления

Требуемая глубина осушки кислых газов зависит от их дальнейшей переработки. При добыче слабокислых газов их необходимо осущить до точки росы в соответствии с требованиями отраслевого стандарта ОСТ 51.40-83, так как из таких

Таблица 2.15

Гликоли	РН		Содержание поненто	Коррозия,	
	в начале опыта	в конце опыта	в начале опыта	в конце опыта	мкм / год
ДЭГ ДЭГ ДЭГ ДЭГ ТЭГ ТЭГ	8,00 8,00 8,00 4,70 4,70	6,00 7,20 5,50 5,50 5,50 4,80	0,5 0,5 0,5 0,5 0,5 0,5 0,5	$1,0 \\ 1,0 \\ 1,0 \\ 1,0 \\ 1,0 \\ 3,5$	Отсутствует То же 13,2 11,2 17,0 40,6

Коррозионная активность гликолей, содержащих компоненты (сталь углеродистая, продолжительность опыта 40 сут)

газов не извлекают сернистые соединения и подают к потребителям.

Малосернистые, сернистые и высокосернистые газы при транспортировке от промыслов до газоперерабатывающих заводов в присутствии воды вызывают интенсивную коррозию труб. Поэтому перед подачей в продуктопроводы такие газы необходимо осушить.

Глубокая осушка таких газов на промысле нецелесообразна, так как на установках очистки газа от кислых компонентов происходит их повторное увлажнение.

Опыт эксплуатации сероводородсодержащих месторождений показывает, что снижение влагосодержания газа до 60 % его равновесного значения резко уменьшает скорость коррозии труб и обеспечивает надежную работу продуктопровода от промысла до газоперерабатывающего завода.

При определении степени осушки газа на промыслах необходимо учесть возможное снижение температуры газа во время его транспортирования с тем, чтобы исключить конденсацию паров воды в газопроводе, так как наличие воды в жидкой фазе увеличивает скорость коррозии.

Большинство установок, введенных в эксплуатацию до середины 70-х годов, не отвечают требованиям по защите окружающей среды. Растворенные в ингибиторах гидратообразования и конденсате сероводород, меркаптаны и другие сернистые соединения при их обработке часто выделяются в виде низконапорных газов и сжигаются. Наряду с потерями сернистых соединений это приводит также к загрязнению окружающей среды. Иногда на месторождениях кислых газов отсутствует газ, не содержащий сернистые соединения. Поэтому большое значение придается разработке технологических схем, исключающих выброс кислых газов в окружающую среду и обеспечивающих получение бессернистого топливного газа.

Из числа разработанных в последние годы схем осушки кислых газов можно указать схемы с выделением сероводорода из насыщенного раствора гликоля при высоких давлениях и утилизации кислых газов с использованием энергии раствора гликоля [3, 33].

Вариант 1. Отдувка сероводорода из раствора ДЭГа при высоких давлениях (рис. 2.32). Сероводородсодержащий газ поступает в сепарационную часть абсорбера К-1, где от него отделяется капельная жидкость. В абсорбере газ осушается с высококонцентрированным раствором гликоля.

Часть сырьевого газа подается в абсорбер К-2 для очистки от сероводорода, где в качестве поглотителя используется раствор ДЭГа. Очищенный от сероводорода газ, содержащий 0,13 % H_2S , поступает в огневой испаритель, где подогревается до температуры 140 °C за счет тепла ДЭГа и разделяется на два потока. Один поток после дросселирования до давления

Рис. 2.32. Принципиальная схема установки осушки сернистого газа с получением очищенного газа на собственные нужды:

К-1 – абсорбер; К-2 – абсорбер очистки газа от H₂S; К-3 – отдувочная колонна; К-4 – отпарная колонна; К-5, К-6 – десорберы; Е-1 – емкость орошения; Е-2 – буферная емкость; Т-1 – рекуперативный теплообменник; Т-2 – подогреватель; Х-1 – холодильник; Н-1, Н-2, Н-3 – насосы. *I* – сырьевой газ; *II* – осушенный газ; *III* – очищенный от H₂S; *IV* – регенерированный раствор ДЭГа; *V* – очищенный от H₂S раствор ДЭГа; *VI* – насыщенный раствор ДЭГа

0,3 МПа используется в качестве топлива в огневом испарителе и отдувочного газа в отпарной колонне. Другой поток применяется в качестве отдувочного газа в колонне обессеривания насыщенного ДЭГа К-3.

Насыщенный влагой гликоль (97,2 %) с содержанием сероводорода до 33,4 г/л подается насосом из абсорбера в теплообменник, встроенный в блок регенерации, где он подогревается потоком регенерированного ДЭГа до температуры 120–140 °С, после чего направляется для очистки от сероводорода в колонну К-3. В К-3 при давлении, большем на 0,1 МПа, чем в абсорбере, из раствора отдувается сероводород, после чего отдувочный газ, содержащий большое количество H_2S направляется в абсорбер, откуда вместе с основным потоком поступает в газопровод.

Насыщенный ДЭГ, содержащий H_2S после очистки в К-3 направляется в блок дегазации при давлении 0,4 МПа. Затем гликоль проходит доочистку от сероводорода в колонне К-4 при температуре 115 °C отдувочным газом. После доочистки содержание H_2S в гликоле составляет 0,0434 г/л. Для выпаривания из него воды гликоль поступает в десорбер К-5. Из К-5 поступает в огневой испаритель, а затем в отпарную колонну К-6, где гликоль регенерируется и поступает в емкость E-2, а оттуда откачивается насосом в колонну обессеривания газа, где насыщается сероводородом. Затем этот раствор вновь поступает на орошение в абсорбер.

Для циркуляции десорбированного газа и подачи орошения в колонну регенерации в схему включен блок водокольцевого компрессора.

Вариант 2. Рециркуляция кислых газов с использованием раствора гликоля. В этом варианте кислые газы, выделенные при выветривании и регенерации гликоля, поглощаются раствором гликоля и возвращаются повторно в абсорбер (рис. 2.33).

Обе схемы базируются в основном на типовом оборудовании, применяемом для обработки бессернистых газов. Но наличие сероводорода в газе обусловливает использование новых аппаратов. Включение в схемы процесса отдувки сероводорода, компрессии и рециркуляции кислых газов оказывает влияние на их энергетические показатели.

Комбинированная схема осушки сернистого газа и конденсата. Технологическая схема (рис. 2.34) использована на промысле для осушки газа и очистки конденсата от основного количества сероводорода.

Для испарения жидких углеводородов и предотвращения 62

Рис. 2.33. Принципиальная схема установки осушки сернистого газа с рециркуляцией газов дегазации:

А-1 – абсорбер; К-1 – десорбер; В-1 выветриватель; ДК – дожимной компрессор; Х-1, Х-2 – холодильники; Т-1 – рекуперативный теплообменник; И-1 – испаритель. *I* – сырьевой газ; *II* – осушенный газ; *III* – регенерированный раствор гликоля; *IV* – газ выветривания; *V* – кислый газ; *VI* – обессеренный раствор гликоля

гидратообразования перед подачей в абсорбер газ нагревается до 29 °C.

Абсорбер работает под давлением 4,6 МПа. На выходе из абсорбера точка росы газа по воде составляет минус 7 °С. Подача такого газа от промысла до завода исключает интенсивную коррозию газопровода. Для осушки газа используют раствор ДЭГа. Перед десорбцией насыщенный раствор ДЭГа поступает в колонну К-2, где очищается от поглощенных сернистых соединений с применением бессернистого газа, нагретого до 105 °С при давлении 4,67 МПа.

Содержание сероводорода в ДЭГе до очистки составляет 480 г/л. Степень извлечения сернистых соединений из гликоля в колонне К-2 составляет 99 %.

Расход отдувочного газа составляет 11 328 м³/сут.

Конденсат, выводимый из сепаратора, поступает в колонну К-3. Для выделения из конденсата сероводорода в низ колонны подается горячий отдувочный газ в количестве 1,3 м³/л.

При очистке содержание сернистых соединений в конден-

Рис. 2.34. Принципиальная схема обработки конденсатсодержащего сернистого газа:

I – сырьевой газ; II – регенерированный раствор гликоля; III, IV, V – отдувной газ; VI – частично обессеренный конденсат; VII – обессеренный НДЭГ на регенерацию; VIII – сернистый НДЭГ; IX – сернистый газовый конденсат выветривания; X – вода; К-1, К-2, К-3 – десорберы

сате снижается с 20 до 3 %. Одновременно происходит также осушка конденсата, что облегчает его дальнейший транспорт и переработку.

В колоннах К-2 и К-3 значение давления выбирают несколько выше, чем в абсорбере К-1. Это обеспечивает подачу отработанных потоков отдувочного газа в абсорбер без помощи компрессора. При этом более влажный поток отдувочного газа подают в сепарационную секцию абсорбера. Потери ДЭГа на установке составляли 32 г/1000 м³.

2.5. ВЫБОР РЕЖИМА РАБОТЫ УСТАНОВОК ОСУШКИ ГАЗА

Эксплуатационные показатели установок абсорбционной осушки газа зависят от первичных и вторичных факторов.

Первичные факторы – давление, температура, состав сырьевого газа на входе в УКПГ и концентрация осушителя в регенерированном растворе. Эти факторы определяют влагосодержание газа до и после абсорбера. Вторичные факторы установок осушки газа – степень насыщения абсорбента, эффективность работы оборудования, наличие в газе загрязняющих примесей (пыли, механических примесей, минеральных солей и т.д.).

Ниже, на основе публикаций [2, 8, 9, 14, 15, 19, 21, 22, 23, 27] приводятся влияние основных факторов на работу установок осушки газа.

Влияние давления. Давление процесса является основным фактором, определяющим металлоемкость абсорбера, удельный расход осушителя, подаваемого в абсорбер, расход энергии на работу циркуляционного насоса и т.д.

Как правило установки абсорбционной осушки газа проектируются на рабочее давление 7,4 МПа. Со временем из-за снижения давления газа перед УКПГ возникает необходимость ввода ДКС с тем, чтобы обеспечить нормальный гидравлический режим в аппаратах УКПГ и магистральном газопроводе.

В этих условиях вопрос о влиянии давления на процесс осушки газа превращается в вопрос о взаимоувязке показателей работы ДКС и установок осушки. При этом большое значение имеет выбор месторасположения дожимной компрессорной станции ДКС относительно технологических установок: до или после них. Независимо от составов обрабатываемых газов (газы сеноманских или газоконденсатных залежей) это оказывает серьезное влияние на капиталовложения в обустройстве месторождений, эксплуатационные затраты на обработку газа, показатели качества газа и т.д.

При проектировании ДКС, наряду с обеспечением пропускной способности УКПГ, учитываются также влияние давления на точку росы газа по воде, показатели блока регенерации, а также экологические показатели установки.

В общем виде влияние давления на показатели установки абсорбционной осушки газа может характеризоваться данными табл. 2.16.

Показатели получены при следующих исходных данных:

расход газа 417 тыс. м³/ч (10 млн. м³/сут);

концентрация ДЭГа в регенерированном и насыщенным растворах 99 и 96,3 % мас. соответственно;

температура контакта 26 °С;

точки росы осушенного газа минус 20 °С.

Со снижением давления увеличивается равновесная влагоемкость газа. Ввиду этого увеличивается и количество влаги, извлеченной из газа в абсорбере.

Согласно приведенным данным ведение процесса осушки при высоких давлениях, при прочих равных условиях, обеспе-

Таблица 2.16 Влияние давления на показатели установки осушки газа

Показатели ¹	Давление, кгс/см ²					
	75	65	55	45	35	
$\begin{array}{c} G_1 \\ G_2 \\ D \\ V^p \\ Q \\ Q \\ Q \\ Q \\ V^e \\ N \end{array}$	6991 7215 0,68 36,32 379 169 590 3,22 17,2	$7740 \\7984 \\0,74 \\35,30 \\419 \\187 \\654 \\3,60 \\16,5$	8760 9031 0,85 32,40 474 211 740 4,11 15,8	$10233 \\ 10545 \\ 1,04 \\ 31,02 \\ 554 \\ 246 \\ 864 \\ 4,83 \\ 15,3 \\ 1000 \\ 1,000 $	$\begin{array}{c} 12547 \\ 12923 \\ 1,31 \\ 28,26 \\ 679 \\ 302 \\ 1060 \\ 5,96 \\ 15,5 \end{array}$	

¹ G_1 – количество раствора ДЭГа, подаваемого в абсорбер, кг/ч; G_2 – количество насыщенного раствора ДЭГа, кг/ч; D_p – равновесные потери гликоля в блоке осушки газа, кг/ч; V_p – количество газа дегазации, м³/ч; Q – тепловая нагрузка блока регенерации, тыс. ккал/ч; Q_x – тепловая нагрузка блока регенерации, тыс. ккал/ч; Q_x – тепловая нагрузка холодильника, тыс. ккал/ч; V_e – тепловая нагрузка рекуперативного теплообменника, тыс. ккал/ч; V_e – количество газа, отводимого из рефлюксной жидкости, м³/ч; N – мощность насоса для подачи регенерированного раствора ДЭГа в абсорбер, кВт.

чивает снижение затрат на обработку газа, так как уменьшаются затраты энергии на регенерацию насыщенного раствора и подачу раствора гликоля в абсорбер.

При одинаковых значениях концентрации гликоля в регенерированном и насыщенном растворах удельный расход ДЭГа находится практически в линейной зависимости от количества влаги, извлеченной из газа. Одновременно с ростом удельного расхода ДЭГа возрастают также тепловые нагрузки испарителя и воздушного холодильника, расчетная (потребная) мощности насоса для перекачки регенерированного раствора гликоля. То же касается объемов газов низкого давления, отводимых из выветривателя и рефлюксной емкости.

Со снижением давления процесса требуется более глубокая осушка газа с тем, чтобы фактическая точка росы газа соответствовала точке росы газа при заданном давлении (давлении газа на входе в МГ). Зависимость между требуемой глубиной осушки газа и давлением процесса приведена на рис. 2.35 (крайние точки кривых на рисунке соответствуют ОСТовским показателям). Согласно кривым рис. 2.35 – чем ниже давление, тем больше его влияние на разность точек росы газа.

При сохранении объема добычи газа со снижением давления процесса повышается линейная скорость газа в аппаратах, что оказывает отрицательное влияние на работу УКПГ. В частности, увеличивается капельный унос жидкости из входных сепараторов. Как правило капельная жидкость содержит ми-

неральные соли и механические примеси. Эти вещества поглощаются раствором гликоля и, накапливаясь в нем, снижают надежность эксплуатации установок. Если учесть, что до настоящего времени отсутствует промышленное применение процесса очистки гликолей от растворенных солей, то размещение ДКС перед установкой осушки приобретает дополнительное преимущество.

Следует отметить, что расположение ДКС перед установками абсорбционной осушки газа позволяет поддерживать в абсорберах постоянное давление и вести процесс осушки газа в оптимальном гидравлическом режиме в абсорбере (по части скорости газа) и низких удельных расходах осушителя (особенно в зимний период).

Однако размещение ДКС перед установками абсорбционной осушки газа имеет и ряд негативных влияний на показатели УКПГ. Из них можно отметить следующие:

в летние месяцы повышается температура контакта процесса осушки, так как практически невозможно с применением ABO газ охлаждать до температуры сырьевого газа

(температура газа перед УКПГ); ввиду этого потребуется использование более концентрированного раствора гликоля для получения заданной точки росы газа; этот тезис проиллюстрирован графиками рис. 2.36;

при высоких температурах контакта увеличиваются потери ДЭГа как в паровой фазе, так и в капельном виде;

при работе входных сепараторов с низкой эффективностью, вместе с капельной жидкостью на компрессорные агрегаты попадают механические примеси и минеральные соли; отлагаясь на лопастях, они сокращают межремонтный цикл агрегатов;

при размещении всех ступеней ДКС перед УКПГ с каждой установки газ будет отводиться при давлении магистрального газопровода; на каждой УКПГ требуются соответствующие капитальные вложения для обеспечения работы системы и резервирования мощностей ДКС; во избежание этого, в ряде случаев, принимается схема, когда часть мощностей на дожатие газа устанавливается перед каждой УКПГ, а другая часть размещается централизованно перед МГ; осушенные потоки газа со всех УКПГ подаются на единую площадку, где смесь дожимается до требуемого давления и подается в магистральные газопроводы; для сведения, такое решение реализовано на Медвежьем месторождении.

Рис. 2.36. Зависимость между температурой контакта и требуемой концентрацией гликоля в растворе для осушки газа до точки росы минус 20 °C

Следует отметить, что размещение ступеней сжатия газа до и после установок осушки, при сохранении проектных значений добычи газа или ее незначительном сокращении, потребует реконструкции абсорберов (или ввод новых технологических ниток) с тем, чтобы обеспечить их нормальный гидравлический режим.

В целом проектирование ДКС должно быть осуществлено с учетом всех перечисленных факторов.

Выбор температуры. Температура процесса осушки газа – один из основных факторов, определяющих технико-экономические показатели процесса абсорбционной осушки газа. Чем ниже температура газа, при прочих равных условиях, тем меньше его равновесная влагоемкость. Следовательно, для извлечения влаги из газа требуется меньший удельный расход циркулирующего абсорбента. Это, в свою очередь, оказывает существенное влияние на металло- и энергоемкость блока регенерации установок осушки газа. Однако допустимая температура контакта ограничивается вязкостью раствора.

Как было уже указано выше наибольшая депрессия по точке росы получается при осушке газа раствором вязкостью не более 100 сП. При повышении вязкости раствора выше этих значений снижается интенсивность процесса массообмена между газом и осушителем, затрудняется достижение между ними равновесие. С учетом этого положения получена графическая зависимость между температурой контакта и оптимальной концентрацией раствора ДЭГа и ТЭГа (рис. 2.37).

Рис. 2.37. Зависимость оптимальной температуры контакта от концентрации раствора гликоля: $t - T \Im \Gamma$; $2 - Д \Im \Gamma$

При выборе температуры контакта и концентрации раствора необходимо учесть, что за счет поглощения воды и метанола из газовой фазы происходит снижение вязкости раствора. Необходимо иметь в виду, что чем выше температура газа, тем больше расход осушителя. При этом из-за большого количества влаги, извлеченной из газа в абсорбере, резко увеличивается расход энергии в блоке регенерации. Поэтому при повышении температуры газа на входе в абсорбер выше 40 °C рекомендуется газ охлаждать. Это особенно важно, когда осушку газа ведут при низких давлениях.

Температура абсорбента на входе в колонну не должна превышать температуру газа больше чем на 6-8 °C, так как это приводит к увеличению его потерь. Когда температура гликоля ниже температуры газа, происходит охлаждение газа и конденсация части тяжелых углеводородов, что, в свою очередь, может привести к вспениванию абсорбента и, как следствие, к захлебыванию тарелок, увеличению перепада давления в колонне. Если же осушаемый газ имеет низкую температуру, то можно установить теплообменник газ — гликоль для охлаждения регенерированного раствора гликоля сырьевым газом.

В отличие от давления зависимость между температурой газа и его влагосодержанием прямая: чем ниже температура, тем меньше равновесная влагоемкость газа. По этой причине влияние температуры на показатели установок осушки газа аналогично влиянию давления, только в обратной зависимости.

Данные, характеризующие влияние температуры на точку росы газа, приведены в табл. 2.17. Эти показатели получены при давлении 7,5 МПа. Остальные показатели те же, что и при получении данных табл. 2.16. Согласно этим данным, чем

Показатели ¹		Температура, °С					
	30	26	22	18	14		
G_1	8753	6991	6678	4408	3486		
G_2	9032	7215	5758	4552	3600		
D_n^2	0,95	0,67	0,39	0,23	0,18		
$V_{\rm p}^{\rm p}$	43,7	36,3	30,1	25,1	21,1		
ď	474	379	303	240	190		
Õ.,	211	169	135	107	85		
\tilde{O}_{aa}^{x}	739	590	471	372	294		
\tilde{V}_{a}^{pr}	3,89	3,22	2,67	2,12	1,64		
Ň	21,6	17,2	13,8	10.9	8,6		
Ge	249	200	160	128	102		

Таблица 2.17

Влияние температуры на показатели установки осушки газа

ниже температура процесса, тем ниже расчетная концентрация гликоля, используемого для получения заданной точки росы газа (см. рис. 2.36). От значения температуры зависят также равновесные потери гликолей с осушенным газом.

Со снижением температуры уменьшается количество влаги, извлекаемой из газа при его осушке. Соответственно снижается и удельний расход раствора осушителя, подаваемого в абсорбер. Это в свою очередь приводит к уменьшению общего объема растворенного газа в растворе гликоля. Последнее улучшает экологическую характеристику объекта, так как уменьшаются объемы газов, отводимых из выветривателя, и рефлюксной емкости.

Со снижением температуры уменьшаются и потери гликоля с осушенным газом (см. табл. 2.11).

В табл. 2.17 приведены данные только о равновесных потерях. Следует отметить, что снизятся потери гликоля также за счет капельного уноса. Предпосылкой этому служит возможность более высокой степени коагуляции мелкодисперсных капель гликоля со снижением температуры в системе и облегчения условия их отделения от газа.

Снижение температуры контакта приводит также к уменьшению затрат тепла на работу блока регенерации, так как уменьшается количество воды, извлекаемой из газа. В целом влияние снижения температуры контакта близко к влиянию повышения давления на показатели установки осушки газа и объем циркулирующего в системе осушителя.

Выбор качества и количества абсорбента. Показатели процесса осушки газа в значительной степени зависят также от качественных показателей (содержание в абсорбенте основного вещества, вязкости раствора, гигроскопичности и т.д.) и удельного расхода осушителя. Качественные показатели – основные факторы, определяющие точку росы газа на выходе из абсорбера.

При осушке газов до точки росы минус 25 °C в большинстве случаев применяют абсорбционные процессы с использованием водных растворов гликолей с массовым содержанием в нем осушителя 99–99,5 %. Количество раствора, подаваемого в абсорбер, определяют исходя из термодинамических параметров процесса (давление, температура). При этом концентрацию исходного (регенерированного) раствора гликоля выбирают исходя из условия равновесия между упругостью паров воды над раствором гликоля и упругостью паров воды в природном газе при заданной температуре контакта.

При выборе концентрации отработанного раствора осуши-

теля необходимо, чтобы на входе газа в абсорбер давление паров воды над раствором, выводимым из аппарата, было не ниже, чем давление паров воды в газе, поступающем на осушку. Если руководствоваться этим положением, то на выходе из колонны содержание воды в насыщенном растворе можно было бы поддерживать более 10 %. Однако на практике разбавление раствора гликоля допускается всего лишь на несколько процентов.

Обоснование выбора степени насыщения растворов гликоля рассмотрено в работе [30]. Отметим, что степень насыщения осушителя – один из основных показателей установок осушки газа. От значения этого показателя непосредственно зависят количество циркулирующего в системе раствора, расходы энергии на работу насосов, охлаждение и нагрев раствора, циркулирующего в системе. Этот показатель влияет также на размеры коммуникаций и, следовательно, на их металлоемкость.

2.6. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ ПРОЦЕССА АБСОРБЦИОННОЙ ОСУШКИ ГАЗА

Технологический расчет абсорбционного процесса осушки газа включает составление материального баланса абсорбера, определение числа его теоретических ступеней, выбор осушителя и точки росы товарного газа и т.д.

Перед расчетом показателей блока осушки газа определяют способ регенерации насыщенного абсорбента и выбирают параметры блока регенерации.

При составлении материального баланса абсорбера рассчитывают точку росы осушенного газа, а также количество и состав регенерированного и насыщенного растворов абсорбента, применяемого для извлечения из газа влаги.

Точку росы газа устанавливают исходя из требований отраслевого стандарта ОСТ 51.40-83 или других требований, установленных соответствующими ТЭО.

При расчете температуру газа и осушителя по высоте колонны принимают постоянной. Если температуры газа и осушителя при входе в колонну разные, то рекомендуется среднюю температуру процесса определять с учетом теплового баланса абсорбера. Поскольку масса осушаемого газа превышает в десятки раз массу контактируемого с ним абсорбента, среднюю температуру процесса, как правило, принимают равной температуре газа.

Одним из основных элементов расчета процесса осушки газа является определение влагосодержания газа на входе в абсорбер и выходе из него. Для проектных расчетов влагосодержание газа можно определить уравнением Букачека с поправкой на наличие капельной влаги в газе [40].

Влагосодержание газа на входе в абсорбер определяется по уравнению:

$$b_0 = \left(\frac{\mathbf{A}}{p_0} + \mathbf{B}\right) + \Delta b_0, \tag{2.2}$$

где b_0 – влагосодержание газа на входе в абсорбер, кг/1000 м³; p_0 – давление газа, кгс/см²; А и Б – коэффициенты, характеризующие равновесное влагосодержание реального газа (табл. 2.18); Δb_0 – наличие капельной влаги в газе на входе в абсорбер, кг/1000 м³.

Таблица 2.18 Значение коэффициентов А и В для уравнения (2.2)

+ °C	۸	B	t °C	۸	В
<i>i</i> , c	Λ 0.1.1 7 .1	D	ι, τ	Λ	D
-40	0,1451	0,00347	-6	2,9900	0,03035
-39	0,1616	0,00375	-5	3,2350	0,03208
-38	0,1780	0,00402	-4	3,4800	0,03380
-37	0,1985	0,00434	-3	3,7550	0,03575
-36	0,2189	0,00465	-2	4,0300	0,03770
-35	0,2430	0,00502	-1	4,3500	0,03975
-34	0,2670	0,00538	0	4,6700	0,04180
-33	0,2953	0,00581	1	5,0350	0,04410
-32	0,3235	0,00623	2	5,4000	0,04640
-31	0,3573	0,00667	3	5,8125	0,04895
-30	0,3910	0,00710	4	6,2250	0,05150
-29	0,4313	0,00758	5	6,6875	0,05430
-28	0,4715	0,00806	6	7,1500	0,05710
-27	0,5188	0,00864	7	7,6750	0,06005
-26	0,5660	0,00921	8	8,2000	0,06300
-25	0,6218	0,00982	9	8,7950	0,06630
-24	0,6775	0,01043	10	9,3900	0,06960
-23	0,7433	0,01106	14	12,3900	0,08550
-22	0,8090	0,01168	15	13,1650	0,08925
-21	0,8845	0,01254	16	13,9400	0,09300
-20	0,9600	0,01340	17	14,8450	0,09750
-19	1,0520	0,01425	18	15,7500	0,10200
-18	1,1440	0,01510	19	16,8100	0,1070
-17	1,2470	0,01630	20	17,87	0,1120
-16	1.3500	0,01750	21	19,01	0,1174
-15	1.4700	0,01839	22	20,1500	0,1227
-14	1.5900	0,01927	23	21,475	0,1285
-13	1.7290	0,02041	24	22,800	0,1343
-12	1.8680	0,02155	25	24,15	0,1403
-11	2.0280	0,02223	26	25,5000	0,14630
-10	2.1880	0,02290	27	27,1000	0,15290
-9	2,3690	0,02500	28	28,7000	0,15950
-8	2,5500	0,02710	29	30,5000	0,16675
-7	2,7700	0,02873	30	32,3000	0,17400

Продолжение табл. 2.18

74

<i>t</i> , °C	А	В	t, °C	А	В
31	34,2000	0,18175	68	219,0000	0,74100
32	36,1000	0,18950	69	228,7500	0,76700
33	38,3000	0,19825	70	238,5000	0,79300
34	40,5000	0,20700	71	249,2500	0,81700
35	42,8500	0,21550	72	260,0000	0,84100
36	45,2000	0,22400	73	271,5000	0,87150
37	48,0000	0,23325	74	283,0000	0,90200
38	50,8000	0,24250	75	294,5000	0,93350
39	53,5250	0,25275	76	306,0000	0,96500
40	56,2500	0,26300	77	320,5000	0,99400
41	59,4750	0,27400	78	335,0000	1,02300
42	62,7000	0,28500	79	349,0000	1,05300
43	65,9750	0,29750	80	363,0000	1,08300
44	69,2500	0,31000	81	378,5000	1,11550
45	72,9750	0,32250	82	394,0000	1,14800
46	76,7000	0,33500	83	410,5000	1,17650
47	80,9500	0,34900	84	427,00	1,2050
48	85,2000	0,36300	85	445,0000	1,23000
49	89,6000	0,37700	86	462,0000	1,25000
50	94,0000	0,39100	87	481,5000	1,27000
51	98,7500	0,40650	88	501,0000	1,29000
52	103,5000	0,42200	89	519,2500	1,30850
53	108,7500	0,43800	90	537,5000	1,32700
54	114,0000	0,45400	91	560,0000	1,34600
55	120,0000	0,47050	92	582,5000	1,36500
56	126,0000	0,48700	93	603,2500	1,38500
57	132,0000	0,50400	94	624,0000	1,40500
58	138,0000	0,52100	95	648,0000	1,4250
59	145,0000	0,54150	96	672,0000	1,4450
60	152,0000	0,56200	97	698,5000	1,4660
61	159,2500	0,58050	98	725,0000	1,4870
62	166,5000	0,59900	99	750,5000	1,5100
63	174,9000	0,62200	100	776,0000	1,5300
64	183,3000	0,64500	110	1093,00	2,6200
65	191,9000	0,66800	120	1520,00	3,4100
66	200,5000	0,69100	130	2080,00	4,3900
67	209,7500	0,71600			

Как видно из данных табл. 2.18 и уравнения (2.3), равновесное влагосодержание газа, в основном, зависит от давления и температуры. Наряду с этим на этот показатель оказывает влияние также плотность газа и минерализация пластовой воды, с которой газ находится в контакте. С учетом этого фактическое влагосодержание газа может определяться по уравнению

$$b_0 = \left[\left(\frac{A}{p_0} + B \right) \right] \cdot K_1 \cdot K_2 \cdot K_3 + \Delta b_0, \qquad (2.3)$$

где K_1 – поправочный коэффициент, учитывающий влияние низких температур на равновесное влагосодержание газа (рис. 2.38); K_2 – поправочный коэффициент, учитывающий

Рис. 2.38. Зависимость К₁ от температуры системы

минерализации воды, контактируемой с газом (рис. 2.39); K_3 – поправочный коэффициент, учитывающий плотность газа (рис. 2.40).

Исходя из требуемой точки росы осушенного газа и температуры контакта по рис. 2.21 или рис. 2.22 определяют исходную концентрацию раствора осушителя (с некоторым запасом).

Материальный баланс абсорбера по влаге описывается уравнением

$$W = b_1 - b_2, (2.4)$$

где W – количество извлеченной из газа воды, кг/1000 м³; b_1 и b_2 – влагосодержание исходного и осушенного газов соответственно, кг/1000 м³.

Количество регенерированного раствора, необходимого для осушки газа до требуемой точки росы, определяют по уравнению

$$G = \frac{WX_2}{X_1 - X_2},$$
 (2.5)

где G – расход регенерированного абсорбента, кг/1000 м³; X_1 и X_2 – массовая доля осушителя в исходном и насыщенном растворах соответственно.

При расчетах можно также принимать удельный расход абсорбента, затем определить массовую долю осушителя в насыщенном растворе по уравнению

Рис. 2.39. Зависимость К $_2$ от минерализации воды

Рис. 2.40. Зависимость К $_{\rm 3}$ от относительной плотности газа

$$X_2 = \frac{G(1 - X_1) + W}{G - W}.$$
 (2.6)

Общий расход регенерированного раствора определяют по формуле

$$G_{\rm obilit} = GQ, \tag{2.7}$$

где $G_{\text{общ.}}$ – расход абсорбента, кг/ч; Q – расход газа, тыс. м³/ч.

Равновесное влагосодержание газа на входе в абсорбер и на выходе из него в зависимости от температуры и давления определяют по уравнению (2.2).

Опыт эксплуатации установок осушки показывает, что практически точка росы осушенного газа всегда на несколько градусов выше, чем теоретическая, определяемая по графикам (см. рис. 2.23 и 2.24).

Количество насыщенного раствора на выходе из абсорбера рассчитывают по уравнению

$$G_{\rm H} = G + W + Q_{\rm r}G, \qquad (2.8)$$

где $G_{\rm H}$ – количество насыщенного абсорбента, кг/1000 м³; $Q_{\rm r}$ – количество поглощенных компонентов газа (без влаги), кг/кг осушителя.

При определении молярного содержания воды в насыщенном растворе осушителя значением $q_{\rm r}$, как правило, пренебрегают.

Массу влаги и осушителя в исходном растворе обозначим через $q_{\rm B}$ и $q_{\rm o}$ соответственно. Тогда получим

$$q_{\rm B} = G(1 - X_1); \tag{2.9}$$
$$q_0 = GX_1. \tag{2.10}$$

Отсюда число молей воды $n_{\rm B}$ и осушителя $n_{\rm o}$ в исходном растворе будут равны

$$n_{\rm B} = \frac{G(1 - X_1)}{18}; \tag{2.11}$$

$$n_{\rm o} = \frac{GX_1}{M_{\rm o}},\tag{2.12}$$

где 18 — молекулярная масса воды; $M_{\rm o}$ — молекулярная масса осушителя, входящего в состав его раствора.

Следовательно, количество исходного раствора осушителя L_1 (в кмоль/1000 м³) может определяться как сумма $n_{\rm B}$ и $n_{\rm o}$:

$$L_1 = \frac{G[M_0(1 - X_1) + 18X_1]}{18M_0}.$$
 (2.13)

С помощью уравнений (2.11)–(2.13) можно определить молярное содержание воды ($X_{\rm B}$) и осушителя ($X_{\rm 0}$) в исходном растворе, подаваемом в абсорбер:

$$X_{\rm B} = \frac{n_{\rm B}}{L_1} = \frac{M_0(1 - X_2)}{M_0(1 - X_1) + 18X_1};$$
(2.14)

$$X_{\rm o} = \frac{n_{\rm o}}{L_1} = \frac{18X_1}{M_{\rm o}(1 - X_1) + 18X_1}.$$
 (2.15)

Определим число молей и молярное содержание воды и осушителя в насыщенном растворе. Число молей поглощенной из газа воды будет равно W/18. Следовательно, число молей воды в насыщенном растворе $n_{\rm B}$ может определяться как сумма $n_{\rm B} + W/18$ и составит

$$n_{\rm B} = \frac{G(1-X_1) + W}{18} \,. \tag{2.16}$$

Число молей насыщенного раствора L₂ составит

$$L_2 = L_1 + \frac{W}{18} = \frac{M_0 \left[(1 - X_1) + W \right] - 18GX_1}{18M_0}.$$
 (2.17)

Зная число молей воды и осушителя в насыщенном растворе, можно определить их молярную концентрацию на выходе абсорбента из абсорбера:

$$X_{\rm B} = \frac{n_{\rm B}}{L_2} = \frac{M_0 [G(1-X_1) + W]}{M_0 [G(1-X_1) + W] + 18GX_1};$$
(2.18)

$$X_{o} = \frac{n_{o}}{L_{2}} = \frac{18GX_{1}}{M_{o}[G(1 - X_{1}) + W] + 18GX_{1}}.$$
(2.19)

Число молей воды в газе на входе в абсорбер Y_1 и на выходе из него Y_2 рассчитывают по уравнениям

$$Y_1 = \frac{b_1}{18\Pi_{\Gamma}} = \frac{24,05b_1T}{18\cdot1000\cdot293};$$
(2.20)

$$Y_2 = \frac{b_2}{18\Pi_{\rm F}} = \frac{24,05b_2T}{18\cdot1000\cdot293},\tag{2.21}$$

где П_г – количество осушаемого газа, кмоль / 1000 м³,

$$\Pi_{\rm r} = \frac{293 \cdot 1000}{24,05 \, T} \,. \tag{2.22}$$

Определение числа теоретических ступеней контакта в абсорбере. Для достижения равновесия между газом и абсорбентом необходим соответствующий контакт между ними. Этот контакт осуществляется с использованием как тарелок, так и насадок. Число ступеней контакта может определяться графическим методом Мак – Кеба и аналитическим методом Кремсера [12].

Графический метод. Расчетная схема этого метода представлена на рис. 2.41. Точки *А* и *В* соответствуют входу газа и абсорбента в абсорбер. Линия, соединяющая эти две точки, характеризует изменение концентрации воды в газовой и жид-кой фазах и описывается уравнением

$$\Pi_{\rm r}(Y_1 - Y_2) = L_1(X_{\rm B} - X_0). \tag{2.23}$$

Линия *AB* называется рабочей (оперативной) линией и показывает равенство между количеством воды, выделенной из газа, и количеством воды, поглощенной раствором осушителя.

По существу формула (2.23) является уравнением материального баланса абсорбера относительно влаги.

Точки A и B имеют следующие координаты: $A(X_{\scriptscriptstyle B}, Y_1);$ $B(X_{\scriptscriptstyle B}, Y_2).$

После определения координат точек A и B в системе координат X-Y проводят рабочую линию AB. Здесь X – концентрация воды в жидкой фазе, моль/моль; Y – то же в газовой фазе, моль/моль.

Второй этап определения числа теоретических ступеней контакта – построение кривой равновесия, которая характеризует взаимосвязь между молярным содержанием воды в растворе осушителя и равновесным молярным содержанием водя-

Рис. 2.41. Расчетная схема опеределения числа тарелок в абсорбере: *I* – сырьевой газ; *II* – осушенный газ; *III* – РГ; *IV* – МГ

ных паров в газовой фазе. Кривую равновесия строят таким образом:

а) определяют молярное содержание воды в растворах по уравнению (2.23);

б) находят парциальное давление водяных паров над растворами соответствующих концентраций при заданной температуре контакта;

в) находят равновесное содержание водяных паров в газе делением парциальных давлений водяных паров на общее давление процесса.

По полученным данным строят кривую равновесия. При этом на оси X откладывается молярное содержание воды в осушителе, а по оси Y – равновесное молярное содержание водяных паров в газе. Затем построением ломаной линии между рабочей линией и кривой равновесия определяют число теоретических ступеней контакта.

Зная к.п.д. принятой тарелки, вычисляют число практических тарелок n_п по формуле

$$n_{\pi} = \frac{n_{\tau}}{\eta}, \qquad (2.24)$$

где n_{τ} – число теоретических ступеней контакта; η – к.п.д. тарелки, доли единицы.

При использовании насадочных абсорберов для осушки газа высоту слоя насадки *Н* вычисляют по формуле

$$H = h_{\text{\tiny 3KB.}} n_{\text{\tiny T}}, \tag{2.25}$$

где $h_{_{\rm ЭКВ}}$ – высота насадки, эквивалентная высоте одной теоретической тарелки.

Пример расчета по определению числа теоретических ступеней контакта приведен в работах [12, 28].

2.7. ТЕПЛОВОЙ БАЛАНС БЛОКА РЕГЕНЕРАЦИИ НАСЫЩЕННОГО РАСТВОРА ГЛИКОЛЯ

Как было уже указано в системе сбора и подготовки газа, в ряде случаев используются два ингибитора: метанол и диэтиленгликоль. В связи с этим большое практическое значение имеет составление материального и теплового балансов БРГ, где сырьем служит раствор, состоящий из воды, метанола и ДЭГа. Ниже приводятся расчетные уравнения для составления материального и теплового балансов БРГ на основе [13].

Принципиальная расчетная схема блока регенерации абсорбента (насыщенного раствора ДЭГа) дана на рис. 2.42.

Материальный баланс БРГ определяется следующими уравнениями:

$$g_{\rm B} = G_{\rm H} \cdot \alpha_{\rm B}; \tag{2.26}$$

$$g_{\rm r} = G_{\rm H} \cdot \alpha_{\rm r}; \tag{2.27}$$

$$G_{\rm M}=G_{\rm H}\cdot\alpha_{\rm M}; \qquad (2.28)$$

$$G_{\rm p} = \frac{G_{\rm H} \cdot \alpha_{\rm r}}{\alpha_{\rm r}^{\rm I}}; \tag{2.29}$$

$$g_{B}^{I} = G_{p}(1 - \alpha_{r}^{I});$$
 (2.30)

$$g_{B}^{II} = g_{B} - g_{B}^{I},$$
 (2.31)

где $G_{\rm H}$ – количество насыщенного раствора (HP), кг/ч; $G_{\rm p}$ – количество регенерированного раствора (PP), кг/ч; $\alpha_{\rm B}$, $\alpha_{\rm r}$, $\alpha_{\rm M}$ – массовая доля воды, гликоля и метанола в исходном растворе; $g_{\rm B}$, $g_{\rm r}$, $g_{\rm M}$ – количество воды, гликоля и метанола в HP, кг/ч; $g_{\rm B}^{\rm I}$ – количество воды в PP, кг/ч; $g_{\rm B}^{\rm II}$ – количество выделяемой из HP воды, кг/ч; $\alpha_{\rm r}^{\rm r}$ – массовая доля в PP.

Согласно схеме в блоке регенерации абсорбента (БРА) подвод тепла осуществляется в низ колонны – для подогрева смеси, и в холодильник – для охлаждения и конденсации паров, отводимых с верха колонны.

При составлении теплового баланса блока регенерации гликоля по сложившейся практике принималось, что насыщенный раствор (HP) после рекуперативного теплообменника в десорбер поступает в однофазном состоянии, т.е. в жидком виде.

При использовании в качестве абсорбента разбавленных растворов и при содержании в насыщенном растворе метанола такое допущение приводит к неточностям при опреде-

Рис. 2.42. Расчетная схема блока регенерации насыщенного раствора гликоля

лении теплового баланса рекуперативного теплообменника T-1 (см. рис. 2.42). Следовательно, расчет теплового баланса блока регенерации гликоля должен быть произведен с учетом возможности испарения компонентов насыщенного раствора, при прохождении его через рекуперативный теплообменник T-1. Расчет этого аппарата через прямой поток несколько затруднителен, в связи с необходимостью определения равновесных составов образовавшихся фаз. Это связано с тем, что неизвестными являются температура насыщенного раствора на выходе из T-1 и доля паровой фазы в нем. В этих случаях пришлось бы произвести расчет методом последовательных приближений.

Результаты наших проработок по этому вопросу опубликованы в работе [7].

Суммарная тепловая нагрузка испарителя десорбера И-1 и рекуперативного теплообменника Т-1 может определяться по уравнению

$$Q_{\Sigma} = Q_q + Q_{T}, \tag{2.32}$$

где Q_g – тепловая нагрузка десорбера, кДж/ч; $Q_{\rm T}$ – тепловая нагрузка теплообменника Т-1.

Общая тепловая нагрузка блока регенерации определяется по уравнению

$$Q_{\Sigma} = (Q_1 + Q_2 + Q_3) K_{\pi}, \qquad (2.33)$$

где Q_1 – расход тепла на нагрев сырья от температуры t_1 до температуры $t_{\rm H}$, кДж/ч; Q_2 – расход тепла на испарение воды и метанола, выделяемых из НР, кДж/ч; Q_3 – расход тепла на нагрев и испарения флегмы, кДж/ч; $K_{\rm II}$ – коэффициент, учитывающий потери тепла в окружающую среду (принимается по практическим данным).

Значение Q_1, Q_2 и Q_3 определяется по уравнениям

$$Q_1 = Q_{\rm H} \cdot C \ (t_{\rm H} - t_1); \tag{2.34}$$

$$Q_2 = \mathbf{g}_{\mathrm{B}}^{\mathrm{I}} \cdot \mathbf{g}_{\mathrm{B}} + \mathbf{g}_{\mathrm{M}} \cdot \mathbf{g}_{\mathrm{M}}; \tag{2.35}$$

$$Q_3 = [(t_{\scriptscriptstyle B} - t_{\scriptscriptstyle \Phi}) \cdot (g_{\scriptscriptstyle B}^{\scriptscriptstyle I} \cdot C_{\scriptscriptstyle B} + g_{\scriptscriptstyle M} \cdot C_{\scriptscriptstyle M}) + (g_{\scriptscriptstyle B}^{\scriptscriptstyle I} \cdot g_{\scriptscriptstyle B} \cdot g_{\scriptscriptstyle M} \cdot g_{\scriptscriptstyle M})] \cdot K_{\scriptscriptstyle \Pi}.$$
(2.36)

В уравнениях (2.32) – (2.36): С – теплоноситель НР при температуре ($t_1 + t_{\rm H}$)/2, кДж/(кг °С); $G_{\rm B}$ и $G_{\rm M}$ – теплота испарения воды и метанола соответственно, кДж/кг; С_B и С_M – теплоемкость воды и метанола, соответственно, кДж/кг °С; t_1 – температура НР на входе в Т-1, °С; $t_{\rm H}$ – температура низа десорбера, °С; $t_{\rm B}$ – температура флегмы на входе в десорбер, °С.

После определения Q_{Σ} вычисляется тепловая нагрузка рекуперативного теплообменника Т-1. Расчеты выполняются относительно регенерированному раствору:

$$Q_{\rm T} = G_R \cdot (t_2 - t_3) \cdot K_{\rm II},$$
 (2.37)
гле t_2 – температура PP на входе в T-1. °С (как правидо t_2 =

где t_2 – температура PP на входе в T-1, °C (как правило $t_2 = t_{\rm H}$); t_3 – температура PP на выходе из T-1, °C.

После определения Q_{Σ} и Q_{τ} вычисляется количество тепла, необходимое для обеспечения работы десорбера,

$$Q_{\rm A} = Q_{\Sigma} - Q_{\rm T}.\tag{2.38}$$

Подвод тепла в десорбер может осуществляться через огневые подогреватели котельного типа, трубчатые печи или паровые испарители. Способ подвода тепла в каждом конкретном случае решается отдельно, с учетом конкретных условий производства.

Тепловой баланс холодильника X-1. Этот аппарат служит для охлаждения и конденсации паров, выводимых с верха десорбционной колонны. Этот аппарат практически на всех установках работает в режиме полной конденсации дистиллята. Тепловая нагрузка холодильника X-1 определяется уравнением $Q_{\rm x} = (Q_{\rm o} + Q_{\rm k}) \cdot K_{\rm n}$, (2.39)

где $Q_{\rm o}$ – расход тепла на охлаждение потока кДж/ч; $Q_{\rm k}$ – расход тепла на конденсацию потока, кДж/ч.

$$Q_{o} = [(1 + \Phi) \cdot (t_{B} - t_{\phi}) \cdot (g_{B}^{II} \cdot G_{B} + g_{M} \cdot C_{M})]K_{II}; \qquad (2.40)$$

$$Q_{\rm \scriptscriptstyle K} = [(1+\Phi) \cdot (g_{\rm\scriptscriptstyle B}^{\rm II} \cdot g_{\rm\scriptscriptstyle B} \cdot e_{\rm\scriptscriptstyle B} + g_{\rm\scriptscriptstyle M} \cdot e_{\rm\scriptscriptstyle M})]K_{\rm\scriptscriptstyle II}, \qquad (2.41)$$

где Φ – флегмовое число; $e_{\rm B}$ и $e_{\rm M}$ – степень конденсации соответственно воды и метанола.

При работе по схеме с парциальным конденсатором значение $e_{\rm B}$ и $e_{\rm M}$ оказывает существенное влияние на значение $Q_{\rm K}$.

При работе по обычной схеме $e_{\rm B} = e_{\rm M} = 1$. В этом случае необходимо определить объем газа, выделяемого из раствора в десорбере. Этот поток содержит метанол и воду, количество которых определяется по общепринятым способам.

При полной конденсации дистиллята Q_{κ} определяется по уравнению

$$Q_{\rm \scriptscriptstyle K} = [(1 + \Phi) \cdot (g_{\rm \scriptscriptstyle B}^{\rm II} \cdot g_{\rm \scriptscriptstyle B} + g_{\rm \scriptscriptstyle M} \cdot g_{\rm \scriptscriptstyle M})]K_{\rm \scriptscriptstyle II}.$$
(2.42)

2.8. ОЧИСТКА РАСТВОРОВ ГЛИКОЛЕЙ ОТ РАЗЛИЧНЫХ ПРИМЕСЕЙ

Актуальность проблемы. Во входных сепараторах УКПГ не происходит полного отделения капельной жидкости от газа: часть жидкости с газом поступает в абсорбер, где поглощается раствором гликоля, используемым в качестве абсорбента для извлечения паров воды из газа. Вследствие этого происходит накопление в растворе ДЭГа минеральных солей и механических примесей. Одновременно в растворе гликоля накапливаются также продукты, образующиеся при его циркуляции в системе, так называемые вторичные продукты. К ним можно отнести продукты коррозии оборудования установок осушки и разложения и осмоления самих гликолей. Наличие последних в системе связано главным образом с перегревом раствора гликоля.

При осушке газа раствором гликоля поглощается также некоторое количество тяжелых углеводородов, имеющихся в газе. Часть этих углеводородов из раствора выделяется при его регенерации, а часть углеводородов с температурой кипения выше температуры в системе не выделяется из гликоля.

Наличие примесей в циркулирующем растворе гликоля оказывает ряд негативных влияний на работу установок осушки газа. В частности, при регенерации насыщенного раствора происходит отложение солей и механических примесей (частиц глины, песка и окалины, смолистых продуктов и т.д.)

на поверхностях оборудования и труб теплообменников. В результате совокупного воздействия указанных факторов повышается интенсивность коррозии, ухудшается теплообмен, увеличиваются энергозатраты, имеет место преждевременный выход из строя аппаратов из-за прогара теплопередающих поверхностей и т.д.

Практика эксплуатации установок комплексной подготовки газа показывает, что наличие солей и механических примесей в гликоле способствует также эрозии оборудования. Известны случаи аварийной остановки печей подогрева гликолей по этой причине.

Механические примеси и продукты коррозии, попадая в абсорберы, забивают его контактные элементы, в результате чего происходит ухудшение массообмена между фазами, снижается эффективность процессов. Одновременно увеличивается перепад давления на установке.

Забивание механическими примесями сечения контактных устройств приводит к увеличению скорости газа, что, в свою очередь, способствует пенообразованию и уносу гликоля в виде капель. К таким же последствиям приводит загрязнение сепарационных элементов абсорбера.

Накопление примесей в гликолях снижает также их поглотительную способность.

Приведенные факты показывают на актуальность разработки и внедрения процессов очистки растворов гликолей от различных примесей.

Состояние разработок. Несмотря на многочисленные исследования [17, 33, 36] в области очистки растворов гликолей от солей, практически ни одна промышленная установка не была построена и освоена. Отдельные попытки по очистке растворов гликолей на полупромышленных установках на месторождениях Туркмении (ионообменный способ) и Украины (выпарка раствора), на Уренгойском ГКМ (высаливание с ацетоном), Ямбургском (с боковым отводом при температурах 190 °C) не были доведены до логического завершения.

На основе анализа литературных источников нами определены следующие основные причины не внедрения в промышленности разрабатываемых процессов:

а) по причине одновременного растворения многих солей в гликоле (хлориды натрия, кальция, магния, карбонаты кальция и натрия и т.д) процессы очистки раствора с использованием ионообменных и химических реагентов по своей технологической схеме более сложны, чем сам процесс регенерации насыщенного раствора гликоля от воды; 6) существующие методы хозяйствования не стимулировали (и не стимулируют) снижение потерь гликоля из-за его относительно низкой доли в себестоимости добычи газа;

в) отсутствие типового малогабаритного оборудования для установок очистки раствора гликоля от различных примесей;

г) не идентифицированы статьи потерь гликоля на промышленных установках; до сих нет подробных исследований по определению составных частей общих потерь гликоля на установках осушки газа; отметим, что из общих потерь в количестве 15-20 г/1000 м³ равновесными являются не более 10-20 %; остальные потери гликоля приходятся на счет уноса с газом в виде капель, термического разложения, осмоления, окисления, утечек и т.д.

Для всех упомянутых процессов в качестве общего недостатка можно указать большие трудности в достижении испарения раствора.

Следует отметить, что предусмотренная проектами промышленных установок очистка растворов гликолей от механических примесей фильтрацией практически не дает желаемых результатов. Это связано с быстрым загрязнением фильтров. Их регенерация связана с большими трудозатратами.

Нам представляется интересным технология регенерации насыщенных растворов аминов установок переработки сернистых газов. Обязательным элементом технологических схем этих установок является наличие в них блока фильтрации раствора для выделения из него продуктов коррозии и разложения. При этом, учитывая различия свойств примесей в растворе, производится фильтрация раствора в несколько ступеней. На наш взгляд необходимо добиться аналогичного подхода и в отношении блоков регенерации насыщенного раствора гликоля установок абсорбционной осушки газа.

С учетом анализа работ других исследователей нами разработаны новые способы очистки раствора гликоля от различных примесей, отличающихся высокой эффективностью и экологичностью [18].

Принципиальная технологическая схема процесса очистки раствора ДЭГа с использованием вакуумного сепаратора и выносного испарителя приведена на рис. 2.43.

Загрязненный раствор гликоля из емкости Е-1 насосом Н-1а через рекуперативный холодильник Х-1 подается в вакуумный сепаратор ВА-1, в котором поддерживается вакуум до 100 мм рт.ст. и температура 165–170 °С. Подвод тепла в сепаратор осуществляется путем циркуляции частично выпаренного рас-

Рис. 2.43. Принципиальная технологическая схема установки очистки раствора гликоля от различных примесей

твора по схеме аппарат ВА-1 – насос Н-2 – выносной теплообменник (испаритель) И-1 – аппарат ВА-1.

Отложение солей на поверхности труб испарителя И-1 предотвращается поддержанием в них скоростей движения потока, определяемых по разработанной нами методике. Соли из нижней секции выпарного аппарата перепускаются в промежуточную емкость Е-5 и оттуда, по мере накопления, отводятся в сборник-отстойник Е-2. После отстоя и охлаждения солесодержащего раствора в емкости Е-2 происходит разделение кристаллической и жидкой фаз.

Пары воды и гликоля, выходящие с верха ВА-1 охлаждаются в холодильниках Х-1 и ABO-1, конденсируются, и образовавшаяся жидкость стекает в сборник Е-3.

Смесь, накапливаемая в емкости Е-3, является целевым продуктом установки и практически не содержит солей и механических примесей. Очищенный от солей и механических примесей раствор ДЭГа по барометрической трубе из емкости Е-3 стекает в емкость Е-4 и оттуда насосом Н-3 отводится в блок регенерации гликоля установки осушки газа.

Вакуум в системе создается с помощью насоса ВН-1. Для

создания жидкостного кольца в вакуум-насосе ВН-1 используется часть обессоленного раствора гликоля, отбираемая с выкида насоса Н-3.

Газожидкостная смесь после вакуум-насоса ВН-1 поступает в сепаратор С-1, где отделяется от несконденсировавшихся паров. Далее раствор ДЭГа стекает в приемную емкость Е-4.

Отметим ряд преимуществ использования раствора ДЭГа в качестве затворной жидкости в насосе ВН-1.

Известно, что давление насыщенных паров ДЭГа на два порядка меньше, чем тот же показатель для воды, традиционно используемой в качестве затворной жидкости в вакуумных насосах установок регенерации гликоля. По этой причине создаются практически идеальные условия для подсоса паров с верха емкости Е-2 и, следовательно, для создания глубокого вакуума. Кроме того, ввиду циркуляции раствора гликоля в качестве затворной жидкости в системе по замкнутому циклу резко сокращается объем промстоков с установки. Это обеспечивает экологическое преимущество процесса.

Учитывая отсутствие опыта использования в качестве затворной жидкости раствора ДЭГа, в вакуум-насосе необходимо предусмотреть возможность использования воды из существующей системы оборотной воды.

По приведенной схеме можно работать как с принудительной циркуляцией раствора при использовании насоса H-2, так и с естественной циркуляцией. Работа с естественной циркуляцией происходит с байпасированием контура насоса H-2. За счет резкого снижения скорости раствора в расширяющейся части емкости E-5 крупные кристаллы осаждаются из раствора и вместе с упаренным раствором выводятся из аппарата, а более мелкие кристаллы уносятся потоком раствора в греющую камеру, по мере движения они укрупняются, и затем также осаждаются в солеотделителе E-5.

Рекомендуется предусмотреть возможность подачи нагретого газа в выпарной аппарат. Для этого в схему установки включается подогреватель газа.

Необходимо предусмотреть возможность промывки всех аппаратов установки оборотной водой.

Выводимые из отстойника кристаллы солей будут содержать до 20 % вес. маточного раствора ДЭГа. Для снижения потерь ДЭГа эти кристаллы можно подвергнуть фильтрации или центрифугированию с возвратом отжатого раствора в систему для повторной выпарки.

2.9. АДСОРБЦИОННЫЕ СПОСОБЫ ОСУШКИ ПРИРОДНЫХ ГАЗОВ

выбор адсорбента

Для осушки газа в промышленных установках больше всего применяются силикагели и молекулярные сита.

Основные преимущества силикагелей: низкая температура, требуемая для регенерации (до 200 °C) и, как следствие, более низкие энергозатраты, чем при регенерации других промышленных минеральных сорбентов (окись алюминия, цеолиты), низкая себестоимость при крупнотоннажном промышленном производстве.

Для осушки газа на промышленных установках наиболее эффективно применение мелкопористого силикагеля марки КСМ. Он обладает наибольшей адсорбционной емкостью по сравнению с другими марками силикагеля, дает более низкую степень осушки, имеет более высокую механическую прочность как от истирания, так и от раздавливания. Однако следует учитывать, что мелкопористый силикагель быстро измельчается при наличии в газе капельной влаги. Поэтому обычно предусматривают защиту слоя мелкопористого силикагеля слоем инертного к капельной влаге адсорбента.

Адсорбированные углеводороды, начиная с бутанов, легко сорбируются силикагелем, но их частично вытесняет вода. Легкие углеводороды (до бутанов) полностью выделяются при регенерации силикагеля и не влияют на адсорбционную способность силикагеля в последующих циклах. Десорбция влаги из силикагеля заканчивается к 150–160 °С, но присутствие тяжелых углеводородов требует более высокой температуры нагрева слоя сорбента. Тяжелые углеводороды C_5 и выше более прочно удерживаются силикагелем и при регенерации удаляются не полностью. При этом необходимо иметь в виду, что нагрев силикагеля выше 220 °С ведет к деструктивным изменениям поверхности силикагеля, что снижает его адсорбционную емкость, а нагрев выше 250 °С ведет к резкому падению активности силикагеля.

Неполная десорбция тяжелых углеводородов, постепенное измельчение гранул силикагеля и другие неблагоприятные факторы приводят к постоянному снижению адсорбционной активности сорбента. В начальный период загрузки силикагеля он будет иметь высокую активность 15–20 % вес. В этот период адсорберы можно эксплуатировать в более длительном цикле, если ставится задача извлечения только воды из газа,

при этом поглощаемая вода постепенно вытесняет из слоя другие сорбированные компоненты, например, метанол и углеводороды, облегчая условия последующей регенерации силикагеля.

В процессе эксплуатации активность сорбента понижается и к концу эксплуатационного срока ее можно принять, равной 7 % мас. (по практическим данным).

Необходимо отметить, что на динамическую активность силикагеля сильно влияет скорость потока газа: при повышении скорости газа динамическая активность сорбента падает. В эксплуатационных условиях, когда возможно превышение номинальной производительности по газу, это свойство силикагеля отрицательно сказывается на глубине осушки. Кроме того, при осушке силикагелем происходит постоянное увеличение содержания влаги в осушенном газе в течение цикла адсорбции и тем самым не удается получить стабильную глубину осушки потока газа.

Широкое применение в качестве адсорбентов нашли цеолиты природные и синтетические, обладающие молекулярноситовыми свойствами.

Синтетические цеолиты – самый дорогой адсорбент. Они обеспечивают очень низкую точку росы при высокой адсорбционной способности, прочны при контакте с капельной влагой. Эксплуатационные расходы при их использовании наиболее низкие.

Очень важным показателем, который влияет на адсорбционную способность большинства адсорбентов, является относительное насыщение осушаемого газа. Чем выше влажность газа, тем выше поглотительная способность адсорбентов. Но цеолит составляет исключение и практически имеет постоянную адсорбционную способность при любой относительной влажности газа.

В отличие от силикагелей цеолиты имеют высокую активность при низких парциальных давлениях паров воды, следовательно эти адсорбенты могут применяться для осушки газов с низким содержанием воды, при этом показывая высокую активность. Кроме того молекулярные сита сохраняют высокую активность в широком интервале температур. Благодаря этому можно уменьшить продолжительность времени охлаждения адсорбента.

Скорость адсорбции на цеолитах велика, что обусловливает малую длину рабочей зоны слоя сорбента, поэтому цеолиты способны работать при более высоких скоростях газа (до 0,3 м/с) без заметного изменения динамической активности и качества обработки газа.

Если наряду с осушкой газа ставится задача об извлечении из него тяжелых углеводородов (C_{5+}), можно рекомендовать цеолит NaX. Этот адсорбент обладает высокой активностью по воде и углеводородам, причем в течение цикла адсорбции обеспечивает стабильную глубину осушки. Цеолит NaX устойчиво работает при изменениях исходной влажности и скорости потока газа, что немаловажно в промышленных условиях, когда возможны колебания производительности установки по газу.

Цеолит NaX инертен к действию капельной влаги в исходном газе и при регенерации его в процессе нагрева, испарения влаги и ее конденсации при контакте с холодным (еще не нагретым) слоями сорбента.

Цеолит NaX более устойчив к воздействию низких температур, чем силикагель. Опыт эксплуатации адсорбентов в северных условиях (Мессояха, Медвежье), а также научные исследования показывают, что при многократных воздействиях низких температур силикагель растрескивается: обводненный силикагель разрушается на 15–20 %, а регенерированный – на 5–7 %; цеолит же в этих условиях визуально не изменяется и не снижает своих свойств (емкости, прочности и т.д.).

Цеолит NaX требует более высокой температуры регенерации. При этом происходит более глубокая десорбция тяжелых углеводородов, но следует отметить, что нагрев слоя выше 320– 350 °С может вызвать закоксовывание пор цеолита и привести к снижению его активности. Суммарную активность цеолита NaX по воде и другим компонентам к концу эксплуатационного периода можно принять, равной 9 % мас.

Высокая механическая прочность адсорбента NaX позволит колонны эксплуатировать при минимальном перепаде давления, близким к его расчетному значению.

Основные показатели адсорбента NaX следующие:

Кажушаяся плотность, кг/м ³	1080-1160
Насыпная плотность, кг/м ³	680-740
Пористость, %	40
Теплоемкость, ккал/кг.°С	22
Активность по воде, %:	
при 25 °С	32
при 100 °С	16
-	

Срок службы можно принимать 2,5-3 года.

Молекулярные сита NaX изготавливаются Ишимбаевским и Салаватским нефтехимическими заводами.

При принятии в качестве адсорбента цеолита NaX температура регенерации (нагрев адсорбента) составит 320 °С. Благодаря этому, в будущем, при необходимости переход на дру-

гие адсорбенты не потребует реконструкцию систем регенерации.

Если ставится задача только по осушке газа, то целесообразно применение цеолита NaA. Основные показатели адсорбента цеолита NaA близки к значениям, приведенным выше для цеолита NaX. Основное отличие цеолита NaA от NaX в том, что он поглащает компоненты промышленных газов, критический размер молекул которых не превышает 0,4 м, т.е. не сорбирует пропан и органические соединения с числом атомов углерода более 3.

В зависимости от удельного количества извлекаемых компонентов, глубины осушки газа, характеристики применяемого оборудования и свойства адсорбентов на практике могут реализоваться схемы 3-х и 2-х адсорберных установок осушки газа.

Самые крупные промышленные установки адсорбционной осушки газа построены и эксплуатируются на месторождении Медвежье. Всего построены 5 УКПГ. Каждая технологическая нитка этих установок включает в себя двух адсорберов.

Номинальная производительность каждой УКПГ составляет 8 млрд. м³ в год или 24 млн. м³/сут. Каждая УКПГ состоит из 4-х технологических ниток пропускной способностью одной нитки 2 млрд. м³ в год или 6 млн. м³/сут при давлении 7,7 МПа.

Принципиальная схема технологической нитки приведена на рис. 2.44.

Перед поступлением в адсорберы из сырьевого газа в сепараторе С-1 отделяются механические примеси и капельная жидкость. После сепаратора газ сверху вниз проходит через один из адсорберов. Осушенный газ отводится в коллектор сухого газа. Второй адсорбер в это время находится на стадии регенерации (нагрев, охлаждение или ожидание).

Газ регенерации отбирается из потока осушенного газа и компрессором ДК подается в печь подогрева П-1 и с температурой 180–200 °С подается снизу вверх через адсорбер, в котором производится десорбция воды и тяжелых углеводородов. Отработанный газ регенерации охлаждается в воздушном холодильнике ВХ и поступает в сепаратор С-2, где из газа отделяются сконденсировавшиеся углеводороды и вода. После С-2 газ возвращается во входной сепаратор С-1 и повторно проходит весь цикл.

В табл. 2.19 приведены проектные показатели адсорбционной установки осушки газа. По проекту предусматривалась комбинированная загрузка адсорбента: защитный слой – круп-

Рис. 2.44. Принципиальная технологическая схема адсорбционной установки осушки газа месторождения Медвежье: *I* – влажный газ; *II* – осушенный газ; *III* – отработанный газ регенерации; А-1, А-2 – адсорберы; П-1 – печь; С-1, С-2 – сепараторы; ВХ – воздушный холодильник; ДК – дожимной компрессор (газодувка)

нопористый силикагель типа В, а основной осушающий слой мелкопористый силикагель типа А.

Перед защитным слоем устанавливается слой муллита, который представляет собой твердые частицы, близкие по форме к сфере диаметром 7-40 мм. Назначение слоя - обеспечение равномерного распределения газа по сечению аппарата.

Таблица 2.19

Проектные показатели адсорбционной установки Медвежьего месторождения

Показатели	Стадии процесса**						
	Адсорбция	Десорбция	Охлаждение				
Расход газа Давление, ата Температура, °С Длительность цикла, ч Скорость газа в адсорбере м/с	250 77 14-16 12*-35 0.15	8,1 78,5 180–210 8*–20	8,1 78,5 До 50 4 [*] -6				
В конце срока эксплуатации силикагеля (через 2 года). Направление потока сверху вниз.							

Расчетный срок службы загрузки адсорбента при работе в проектных параметрах – 2 года. Динамическая активность адсорбента по воде к концу срока снижается с 20 до 6,8 %.

При наличии избыточного давления сырьевого газа регенерацию можно вести с использованием неосушенного газа. В этом случае перед сепаратором С-1 часть газа отводится в печь, где греется, после чего подается в адсорберы. Отработанный газ после С-2 можно возвращать в поток сырьевого газа.

Газ месторождения Медвежье содержит некоторое количество тяжелых углеводородов (C_{5+}). Последние в цикле адсорбции поглощаются адсорбентом и снижают его динамическую активность по воде за счет отработки части поверхности сорбента.

Первоначально в слое сорбента сорбируются как вода, так и углеводороды. Затем углеводороды вытесняются водой и сорбируются в последующих слоях адсорбента, т.е. происходит вытеснительная десорбция, которая и вызывает в дальнейшем проскок части углеводородов с осушенным газом. Однако наиболее тяжелые углеводороды, особенно ароматические, водой не вытесняются. Следует отметить, что часть тяжелых углеводородов из силикагеля не десорбируется при температуре регенерации 210–230 °C. Ввиду этого факта имеет место снижение активности силикагеля.

Важной характеристикой адсорбентов является также их механическая прочность. Ввиду разрушения адсорбента происходит изменение его гранулометрического состава. В итоге снижается активность сорбента, увеличиваются гидравлические потери в системе. Наряду с этим, необходимо отметить также теплопотери на установке, меньшие единичные мощности адсорберов (по сравнению с абсорберами), дефицитность сорбентов с высокой активностью и т. д.

В качестве проектных недостатков установки можно указать на следующие:

а) отсутствие в схеме установки рекуперативного теплообменника свежий газ регенерации – отработанный газ регенерации; из-за этого имеет место повышенный расход топливного газа на работу печей;

6) отсутствие эффективной фильтрации газа после адсорбции;

в) температура регенерации недостаточна для десорбции тяжелых фракций конденсата; по этой причине снижается динамическая активность адсорбента, что отрицательно влияет на показатели установки;

г) не предусмотрена полная регенерация отработанного адсорбента.

Наряду с этим необходимо отметить, что до настоящего времени не систематизированы данные об изменении потерь давления газа на установке по времени эксплуатации адсорбента, о гранулометрическом составе пыли адсорбента, уносимого с газом и ее количестве, составе и количестве конденсата извлекаемого в адсорбере и выделяемого в сепараторе С-2 и т.д.

В качестве адсорбента по проекту применялся мелкопористый силикагель фирмы BASF (ФРГ). Характеристика силикагеля BASF приведена в табл. 2.20. Поскольку гранулы мелкопористого силикагеля трескаются и измельчаются при соприкосновении с капельной влагой, то в адсорбер в качестве предохранительного слоя засыпается влагостойкий адсорбент – крупнопористый силикагель марки В и слой муллита на входе газа в аппарат.

В адсорбер диаметром 2,6 м и высотой 6,3 м засыпается мелкопористый силикагель марки А в количестве 11 450 кг, высота слоя равна 3,05 м, крупнопористый силикагель марки В – 800 кг, высота слоя 0,35 м и муллит в количестве 350 кг при высоте слоя 0,15 м, который представляет собой твердые частицы, близкие по форме к сфере диаметром 7–40 мм.

Назначение слоя – обеспечение равномерного распределения газа по сечению аппарата. Общая засыпка адсорбера до 15 000 кг. Расчетный срок службы загрузки адсорбента при работе в проектных параметрах 2 года.

Как выяснилось в процессе эксплуатации, свежий силикагель имеет динамическую активность по воде до 21 %, а в конце срока эксплуатации до 5–11 % мас. по разным УКПГ. Длительность фазы адсорбции колеблется от 12 ч до 3–5 сут

T	аблица	2.	20	
	ci o i v v v v v v v v v v v	~.	~ ~	

Характеристика	силикагеля	фирмы	BASF
----------------	------------	-------	------

Показатели	Марка А	Марка В
Объем пор, см ³ /г Удельная поверхность, м ² /кг Удельная теплоемкость, кДж/(кг·К) Теплопроводность, Вт/(м·К) Плотность, кг/м ³ : насыпная кажущаяся действительная Зернистость, мм Потери, % в том числе: от натрева при 200 °C от объчша и 200 °C	$\begin{array}{c} 0.4 \\ 710 \\ 1047 \\ 0.2 \end{array}$ $\begin{array}{c} 700-750 \\ 1200 \\ 2200 \\ 3-6 (95 \%) \\ 1.0 \\ 5-6 \end{array}$	$\begin{array}{c} 0,8\\ (3-3,5) 10\\ 1047\\ 0,2\\ 440-470\\ 800\\ 2200\\ 1,0\\ 4.0\\ \end{array}$

(при малых расходах газа и температурах). Время регенерации адсорбента колеблется от 8 до 16 ч. Охлаждение адсорбера заканчивается за 3–4 ч.

В начале цикла адсорбции 50–75 % времени осушка осуществляется до остаточного содержания влаги 3–15 ppm, что соответствует влагосодержанию газа 0,004–0,01 г/м³, и при давлении 5,5 МПа.

Точка росы газа по воде достигается минус 43–35 °С. В конце цикла иногда точка росы возрастает до минус 5 °С, но благодаря работе адсорберов на различных этапах цикла осушки на УКПГ обеспечивается устойчивая глубина осушки смеси газов до точки росы минус 20 °С.

В процессе эксплуатации силикагеля происходит его растрескивание, распыливание, истирание, что ведет к увеличению перепада давления в адсорберах. К концу срока работы адсорбента перепад давления возрастает до 6-8 кг/см² против проектной цифры 1,68 кг/см². Средний эквивалентный диаметр зерен силикагеля снижается в конце периода эксплуатации с 3,2-3,8 мм (первоначально) до 1 мм.

На практике имеет место также вынос частиц адсорбента с газовыми потоками. Попадая на лопатки компрессора, пыль со временем выводит его из рабочего состояния. По этой причине имеет место регенерация адсорбента при более низких давлениях (с использованием осушенного газа). Газ регенерации после сепарации в С-2 возвращается в поток осушенного газа, для чего необходимо поддерживать соответствующие давления потоков. Ввиду этого точка росы товарного газа по воде и углеводородам несколько повышаются.

Обследования показали, что средний срок службы адсорбента на различных УКПГ разный и отличается иногда в 2 раза. Различия в сроках работы объясняются различной нагрузкой и состоянием технологии. Средний срок службы сорбента можно принять равным 2,5 раза. Количество осушенного газа за время эксплуатации составляет 3,0–3,5 млрд. м³ на один адсорбер.

Расчетная динамическая активность сорбента от 7 до 14,3 % по воде. По истечении 2,5 лет адсорбент перегружается; при отсутствии импортного силикагеля он заменяется отечественным силикагелем марки КСМ.

Как было уже указано, газ месторождения Медвежье содержит некоторое количество тяжелых углеводородов (C_{5+}). Последние в цикле адсорбции поглощаются адсорбентом и снижают его динамическую активность по воде за счет отработки части поверхности сорбента.

Опыты, проведенные В.П. Лакеевым, показали, что наличие конденсата в газе снижает влагоемкость адсорбента в 1,32 раза. Точка росы чистого метана на 18–20 °С ниже, чем при осушке газа, содержащего тяжелые углеводороды. В опытах в качестве адсорбента использовался силикагель КСМ.

Первоначально в слое сорбента сорбируются как вода, метанол, так и углеводороды. При длительном цикле адсорбции до проскока влаги метанол вытесняется молекулами воды почти полностью в осушенный газ и частично вытесняются тяжелые углеводороды, которые сорбируются в последующих слоях адсорбента, т.е. происходит вытеснительная десорбция, которая и вызывает в дальнейшем проскок части углеводородов с осушенным газом. Поэтому в конце фазы осушки точка росы по углеводородам выше, чем точка росы по воде.

Содержание тяжелых углеводородов в газе, прошедшем через адсорберы, изменяется от 0,03 (в начале цикла сорбции) до 0,14 см³/м³ (в конце цикла). Однако наиболее тяжелые углеводороды, особенно ароматические, водой не вытесняются. Следует отметить, что часть тяжелых углеводородов из силикагеля не десорбируется при температуре регенерации 210–230 °C. Ввиду этого факта имеет место снижение активности силикагеля.

Таким образом, чтобы выделить из газа в процессе осушки какие-либо компоненты, например, метанол или углеводороды, необходимо работать на укороченных циклах в фазе адсорбции.

Испытания показали, что емкость силикагеля по $\mathrm{C_7-C_{10}}$ сопоставима с емкостью по воде, а начиная с $\mathrm{C_{11}}$ и выше – резко падает.

В условиях регенерации силикагеля из-за низких температур (до 220 °C) тяжелая часть конденсата частично остается в порах сорбента. Это снижает поглотительную способность силикагеля на 8–12 %.

В табл. 2.21 приведены анализы конденсата из входного сепаратора и сепаратора газа регенерации. Анализ показывает, что при существующих параметрах процесса не обеспечивается глубокая регенерация силикагеля, наиболее тяжелые углеводороды (фракция 303–340 °C) остаются на адсорбенте.

Анализируя данные многоцикловой работы силикагелевой осушки газа на месторождении Медвежье, ориентируясь на худшие условия эксплуатации, можно принять наиболее оптимальный режим процесса: фаза осушки – 12 ч, регенерации – 8 ч, охлаждения – 4 ч; срок службы силикагеля 2,5 года; адсорбционная способность силикагеля, равная 7 % мас.

Таблица 2.21 Температура начала кипения в зависимости от процента выкипания, °С

Процент выкипания	Входной сепаратор	Сепаратор газа реге- нерации	Процент выкипания	Входной сепаратор	Сепаратор газа реге- нерации
HK	206	203	70	278	245
10	233	214	80	288	252
20	243	222	90	305	260
30	251	227	95	320	272
40	255	231	KK	340	303
50	263	235	Выход	98,5	99,1
60	270	240	Плотность	0,8805	0,8744

В настоящее время перед установками осушки производится компримирование газа. Осушенный газ со всех УКПГ подается на головную компрессорную станцию (состоит из 4-х цехов), где дожимается до давления 65–76 ата и подается в магистральный газопровод.

На всех адсорбционных установках обеспечивается осушка газа до требований Отраслевого стандарта ОСТ 51.40-83.

По мере снижения давления газа в настоящее время и в перспективе на газодобывающем комплексе Медвежье обеспечивается по возможности поддержание добычи газа. Снижение давления приводит к значительному изменению других параметров установки:

увеличению суммарной нагрузки по влаге (выше проектной по отдельным установкам до 2000 г.);

увеличению линейных скоростей газа и температур на осушке;

значительному увеличению линейных скоростей в схеме регенерации и оборудовании регенерации;

невозможности обеспечения циркуляции газа регенерации по существующей схеме; в настоящее время отбор газа регенерации осуществляется на выходе из УКПГ и сбрасывается на вход ДКС;

из-за необходимости поддерживать и даже несколько увеличивать расход газа регенерации при снижении давления происходит значительный рост перепадов давления в схеме; в дальнейшем необходимо сделать реконструкцию схемы с отбором сырого газа до ДКС и сбросом его до осушки (с компрессорами).

В целом при эксплуатации адсорбционных установок имеют место следующие проблемы:

увеличение перепада давления по мере "старения" адсор-

бента; путем периодической высыпки адсорбента и его очистки от мелких частиц можно устранить этот недостаток;

трудности в управлении процессом, особенно при переходе с одного цикла на другой;

образование пыли в системе из-за разрушения адсорбента; последнее происходит также ввиду низкой эффективности входного сепаратора: в адсорбер попадает капельная жидкость; наряду с этим, необходимо отметить также теплопотери на установке, меньшие единичные мощности адсорберов (по сравнению с абсорберами), большие не производительные затраты на рециркуляцию отработанного газа регенерации и т.д.

ПЕРЕРАБОТКА ПРИРОДНОГО ГАЗА И КОНДЕНСАТА

3

3.1. МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ ГАЗА И КОНДЕНСАТА

3.1.1. ФАЗОВЫЕ РАВНОВЕСИЯ В МНОГОКОМПОНЕНТНЫХ СМЕСЯХ, СОДЕРЖАЩИХ КОМПОНЕНТЫ ПРИРОДНОГО ГАЗА, ВОДУ, МЕТАНОЛ, ГЛИКОЛИ

При расчетах процессов переработки природного газа наиболее важной и трудной задачей является расчет фазового равновесия жидкость – пар. При этом требуется определить состав фаз и их количество. В смесях, содержащих воду, метанол, гликоли, возможно выделение второй жидкой фазы.

Равновесие жидкость - пар

Запишем уравнения материального баланса для одного моля смеси и каждого компонента:

$$V + L = 1;$$
 (3.1)

$$Vy_i + Lx_i = z_i; (3.2)$$

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} z_i = 1,$$
(3.3)

где V – мольная доля газовой фазы; L – мольная доля жидкой фазы; y_i – мольная доля i компонента в газовой фазе; x_i – мольная доля i компонента в жидкой фазе; z_i – мольная доля i компонента в смеси.

Распределение компонентов между фазами наиболее часто выражают через константы фазового равновесия:

$$K_i = y_i / x_i. \tag{3.4}$$

Комбинируя приведенные уравнения, можно получить

$$y_i = \frac{z_i}{V + (1 - V)/K_i}.$$
(3.5)

Решая эти уравнения методом последовательных приближений, получают составы фаз и доли паровой и жидкой фаз в смеси.

Чтобы избежать лишних вычислений следует сначала убедиться, что смесь при данных условиях находится в двухфазном состоянии. Для этого рекомендуется предварительно вычислить следующие функции:

$$S_1 = \sum z_i K_i; \tag{3.6}$$

$$S_2 = \sum z_i / K_i. \tag{3.7}$$

Если S_1 и S_2 больше единицы, то смесь находится в двухфазном состоянии, если S_1 меньше единицы, то одна жидкая фаза, если S_2 меньше единицы, то одна газовая фаза. Точка росы соответствует $S_2 = 1$, точка начала кипения – $S_1 = 1$.

Константы фазового равновесия зависят от температуры, давления и состава фаз. Современные методы расчета констант фазового равновесия основаны на строгих термодинамических соотношениях и уравнениях состояния.

Условиями фазового равновесия являются равенство температур, давлений и химических потенциалов всех компонентов в каждой из фаз. Для практических расчетов более удобной является функция – летучесть f, эквивалентная химическому потенциалу.

$$f_i^V = f_i^L. \tag{3.8}$$

Разделим летучести *i* компонента в паровой и жидкой фазах на давление и мольную долю компонента:

$$\varphi_i^V = \frac{f_i^V}{py_i};\tag{3.9}$$

$$\varphi_i^L = \frac{f_i^L}{px_i},\tag{3.10}$$

где φ_i^V и φ_i^L – коэффициенты летучести *i* компонента в паровой и жидкой фазах.

Из уравнений (3.8)-(3.10) получим уравнения равновесия компонентов смеси:

$$\varphi_y^V y_i = \varphi_i^L x_i; \tag{3.11}$$

$$K_i = \frac{y_i}{x_i} = \frac{\varphi_i^L}{\varphi_i^V}.$$
(3.12)

Коэффициент летучести *i* компонента в смеси может быть определен по следующему термодинамическому уравнению:

$$RT\ln\varphi_i = \int_{V}^{\infty} \left[\left(\frac{\partial p}{\partial n_i} \right)_{T, V, n_j} - \frac{RT}{V} \right] dV - RT\ln z, \qquad (3.13)$$

где n_i – количество молей i компонента в смеси; z – коэффициент сжимаемости смеси.

Для вычисления коэффициентов летучести по уравнению (3.13) используют уравнения состояния, которые связывают между собой давление, температуру, объем и состав смеси.

В случаях, когда жидкая фаза не может быть описана уравнением состояния, уравнение (3.10) записывают в следующем виде:

$$f_i^L = f_i^\Theta \gamma_i x_i, \tag{3.14}$$

где f_i^{Θ} – летучесть чистой жидкости при данной температуре и стандартном давлении; γ_i – коэффициент активности.

В этом случае вместо уравнений (3.11) и (3.12) получаем

$$\varphi_y^V y_i p = f_i^{\Theta} \gamma_i x_i; \tag{3.15}$$

$$K_i = \frac{y_i}{x_i} = \frac{f_i^{\Theta} \gamma_i}{\varphi_i^V p}.$$
(3.16)

Летучесть чистой жидкости в стандартном состоянии может быть вычислена по корреляциям, основанным на принципе соответственных состояний, или по уравнениям состояния.

Для вычисления коэффициентов активности применяются эмпирические или полуэмпирические уравнения, удовлетворяющие уравнению Гиббса – Дюгема:

$$\sum_{i=1}^{n} x_i d \ln \gamma_i = 0.$$
 (3.17)

К таким уравнениям относятся уравнения Маргулиса, Ван-Лаара, Скетгарда – Хамера, Вооля, Вильсона, NRTL, UNIFAC [6].

Для углеводородов и других компонентов, содержащихся в природном газе, наиболее эффективно применение уравнений состояния для расчета коэффициентов летучести φ_i (в уравнениях (3.11), (3.12)) в паровой и жидкой фазах.

Применение одного уравнения для описания паровой и жидкой фаз позволяет рассчитывать парожидкостное равновесие вплоть до давлений, близких к критическим.

Фазовое равновесие пар - жидкость - жидкость

Природные газы обычно содержат воду и кроме того могут содержать метанол и гликоли, которые добавляются в процессе добычи и подготовки газа. Эти жидкости или их смеси имеют ограниченную растворимость в жидких углеводородах и поэтому может существовать вторая жидкая фаза, которую в общем будем называть водной, но в конкретном случае в зависимости от состава – водной, метанольной или гликолевой.

Для трехфазного равновесия уравнение (3.11) имеет следующий вид:

$$\varphi_i^V y_i = \varphi_i^L x_i = \varphi_i^W x_i^W, \qquad (3.18)$$

где x_i^W – мольная доля *i* компонента в водной фазе; φ_i^W – коэффициент летучести *i* компонента в водной фазе.

Уравнения материального баланса будут иметь вид

$$V + L + W = 1;$$
 (3.19)

$$Vy_i + Lx_i + Wx_i^W = Z_i, (3.20)$$

где W – мольная доля водной фазы.

К уравнению (3.13) добавляется еще одно

$$\sum_{i=1}^{n} x_i^W = 1.$$
(3.21)

Распределение компонентов между фазами может быть выражено через следующие константы фазового равновесия:

$$K_i^{VL} = \frac{y_i}{x_i}; \tag{3.22}$$

$$K_i^{VW} = \frac{y_i}{x_i^W}; \tag{3.23}$$

$$K_i^{LW} = \frac{x_i}{x_i^W}.$$
(3.24)

Комбинируя уравнение (3.20) с любыми двумя из трех (3.22), (3.23), (3.24), могут быть получены выражения для расчета составов фаз:

$$x_{i} = \frac{z_{i}}{VK_{i}^{VL} + L + WK_{i}^{VL} / K_{i}^{VW}};$$
(3.25)

$$x_{i}^{W} = \frac{z_{i}}{VK_{i}^{VW} + LK_{i}^{VW}/K_{i}^{VW} + W};$$
(3.26)

$$y_{i} = \frac{z_{i}}{V + L/K_{i}^{VL} + W/K_{i}^{VW}}.$$
(3.27)

Выражения (3.25), (3.26), (3.27) получены при использовании уравнений (3.22), (3.23), но можно также использовать уравнение (3.24). Это зависит от того, какие константы равновесия определены. Для определения составов всех фаз и их количеств достаточно иметь два любых набора констант фазового равновесия.

В уравнениях (3.25), (3.26), (3.27), используя уравнение (3.19), можно исключить одну из величин V, L или W.

Решение приведенных уравнений с целью определения составов фаз и их числа производится методом последовательных приближений.

Другой способ расчета трехфазного равновесия заключается в последовательном расчете двухфазного равновесия. Например, сначала рассчитывается равновесие пар – углеводородная жидкость, затем пар – водная жидкость, после чего все повторяется. Расчет продолжается до тех пор, пока не установятся постоянные величины V, L, W и составы фаз. Этот способ показал довольно быструю и надежную сходимость.

Из уравнений (3.18), (3.22), (3.23), (3.24) можно получить

$$K_i^{VL} = \varphi_i^L / \varphi_i^V; \qquad (3.28)$$

$$K_i^{VW} = \varphi_i^W / \varphi_i^V; \qquad (3.29)$$

$$K_i^{LW} = \varphi_i^W / \varphi_i^L. \tag{3.30}$$

Для расчета коэффициентов летучести используются уравнения состояния. Наибольшее применение для расчета фазовых равновесий в смесях углеводородов получили уравнения

Бенедикта – Вебба – Рубина (БВР) [7], Старлинга – Хана [11], Соава [14], Пенга – Робинсона [17].

В настоящее время преимущество отдается двум последним, так как они значительно проще, более универсальны, легче поддаются модификации для включения неуглеводородных веществ и расчета трехфазного равновесия.

Все указанные уравнения и их применение для расчета коэффициентов летучести и других свойств достаточно полно описаны в [6, 19].

Далее будет рассмотрено уравнение состояния Пател – Тея [18, 33], которое является обобщающим по отношению к уравнениям Соава и Пенга – Робинсона и за счет дополнительного параметра позволяет более точно предсказывать плотность тяжелых углеводородов и полярных компонентов.

$$p = \frac{RT}{v-b} - \frac{a}{v(v+b) + c(v-b)};$$
(3.31)

$$a = \Omega_a (R^2 T_{\rm kp}^2 / p_{\rm kp}) \cdot \alpha; \qquad (3.32)$$

$$b = \Omega_b (RT_{\rm kp} / p_{\rm kp}); \tag{3.33}$$

$$c = \Omega_c(RT_{\rm kp} / p_{\rm kp}); \qquad (3.34)$$

$$\alpha = (1 + F(1 - \sqrt{T/T_{\rm kp}}))^2. \tag{3.35}$$

Числовые коэффициенты Ω_a, Ω_b, Ω_c определяются из следующих условий для критической точки:

$$\left(\frac{\partial P}{\partial V}\right)_{T_{\rm Kp}} = 0; \qquad (3.36)$$

$$\left(\frac{\partial^2 P}{\partial V^2}\right)_{T_{\rm Kp}} = 0; \qquad (3.37)$$

$$\frac{p_{\rm kp} \cdot V_{\rm kp}}{R \cdot T_{\rm kp}} = \zeta_c \,. \tag{3.38}$$

В результате получаем

$$\Omega_c = 1 - 3\zeta_c; \tag{3.39}$$

$$\Omega_a = 3\zeta_c^2 + 3(1 - 2\zeta_c)\Omega_b + \Omega_b^2 + 1 - 3\zeta_c, \qquad (3.40)$$

где Ω_b – наименьший положительный корень кубического уравнения

$$\Omega_b^3 - (2 - 3\zeta_c)\Omega_b^2 + 3\zeta_c^2 - \zeta_c^3 = 0.$$
(3.41)

Из уравнения (3.38) следует, что параметр ζ_c соответствует коэффициенту сжимаемости в критической точке ($z_{\rm kp}$). Однако в данном случае ζ_c является импирическим параметром, отличным от истинного $z_{\rm kp}$ вещества.

В уравнении Соава величина ζ_c для всех веществ принята равной 0,3333, а в уравнении Пенга – Робинсона $\zeta_c = 0,3074$. Если в уравнения (3.39), (3.40), (3.41) подставить $\zeta_c = 0,3333$, то параметр *с* будет равен нулю, и уравнение (3.31) приводится к уравнению Соава, если $\zeta_c = 0,3074$, то *c* = *b* и уравнение (3.31) приводится к уравнению Пенга – Робинсона.

В уравнении Пател – Тея величины ζ_c для разных веществ разные и определяются совместно с величинами параметра F по экспериментальным значениям плотности и давления насыщенного пара чистых веществ.

Для неполярных веществ эти параметры могут быть рассчитаны из следующих уравнений:

$$F = 0,452413 + 1,30982\omega - 0,295937\omega^{2};$$
(3.42)

$$\zeta_c = 0,329032 - 0,076799\omega - 0,0211947\omega^2, \tag{3.43}$$

где ω – фактор ацентричности.

Для смесей параметры уравнения Пател – Тея вычисляются по тем же правилам, что и уравнений Соава и Пенга – Робинсона:

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{i,j};$$
(3.44)

$$b = \sum_{i=1}^{n} b_i x_i;$$
(3.45)

$$c = \sum_{i=1}^{n} c_i x_i ; (3.46)$$

$$a_{i,j} = (1 - k_{i,j}) \cdot (a_i \cdot a_j)^{0.5}.$$
(3.47)

Здесь x_i – состав любой фазы в мольных долях; $k_{i,j}$ – коэффициент бинарного взаимодействия, который определяется из экспериментальных данных по равновесию жидкость – пар в бинарных смесях.

После подстановки уравнения (3.31) в уравнение (3.13) получено следующее уравнение для расчета коэффициентов летучести в паровой и жидких фазах:

$$\varphi_{i} = \frac{B_{i}}{z - B} - \ln(z - B) - \frac{\sum_{i=1}^{n} x_{i} \cdot d_{i, j}}{RTd} \cdot \ln\left(\frac{Q + d}{Q - d}\right) + \frac{a(b_{i} + c_{i})}{2RT(Q^{2} - d^{2})} + \frac{a}{8RTd^{3}} (b_{i}(b + 3c) + c_{i}(3b + c)) \cdot \ln\left(\frac{Q + d}{Q - d} - \frac{2Qd}{Q^{2} - d^{2}}\right);$$
(3.48)

n

$$z = \frac{RV}{RT}; (3.49)$$

$$B = \frac{bP}{RT}; \tag{3.50}$$

$$B_i = \frac{B_i P}{RT}; \tag{3.51}$$

$$Q = V + \frac{b+c}{2}; (3.52)$$

$$d = \sqrt{bc \frac{(b+c)^2}{4}}.$$
 (3.53)

В работах [18, 33] приведены значения параметров ζ_c и F, а также коэффициентов бинарного взаимодействия $k_{i, j}$ для большого количества углеводородов и некоторых других веществ. Опыт использования уравнения Пател – Тея показал, что по точности расчета фазовых равновесий в смесях углеводородов оно равноценно уравнению Пенга – Робинсона, но превосходит последнее по точности расчета плотности жидкой фазы.

Далее будет рассмотрен наш опыт использования уравнения Пател – Тея для расчета фазовых равновесий в смесях, содержащих воду, метанол, гликоли, сернистые соединения [35, 36].

Наиболее характерные трехфазные системы пар – жидкость – жидкость получаются в смесях углеводородов с водой. Расчет фазовых равновесий в этих смесях имеет большое практическое значение в технологии добычи и переработки газа и нефти, особенно содержащих хорошо растворимые в воде компоненты (сернистые, двуокись углерода).

Для охраны окружающей среды важно знать какое количество веществ растворено в сбрасываемых промышленных водах.

Процедура определения значений параметров уравнения была следующей:

по уравнениям (3.39), (3.40) и (3.41) с помощью экспериментальных данных по давлению насыщенного пара воды и ее плотности при разных температурах находились значения ζ_c , Ω_a , Ω_b , Ω_c и F;

определялись значения коэффициентов бинарного взаимодействия $k_{i,j}$ воды с другими веществами по составу жидкой фазы бинарных систем из следующего условия:

$$\frac{\varphi_1^L}{\varphi_1^V} x_1 + \frac{\varphi_2^L}{\varphi_2^V} x_2 = 1.$$
(3.54)

Усредненные значения коэффициентов бинарного взаимодействия, для серии экспериментальных данных, определялись минимизацией среднего отклонения расчетных давлений начала кипения смеси от экспериментальных:

$$\Delta p = \frac{1}{m} \sum_{k=1}^{m} \left| \frac{p_{k \text{ pac}} - p_{k \text{ skc}}}{p_{k \text{ skc}}} \right|, \tag{3.55}$$

где *т* – число экспериментальных точек.

При трехфазном равновесии значения $k_{i,j}$ в бинарных парах с водой определялись отдельно по каждой жидкой фазе, при этом в уравнение (3.54) подставлялись соответственно составы и коэффициенты летучести конкретной жидкой фазы.

Исследования показали, что значения коэффициентов бинарного взаимодействия вода – углеводород (азот, двуокись углерода, сероводород), вычисленные по углеводородной и водной фазам, значительно отличаются. Для углеводородной фазы значения $k_{i,j}$ вода – углеводород мало чувствительны к изменению температуры и для большинства углеводородов находятся в пределах 0,5±0,05.

Для водной фазы значения этого коэффициента имеют явную зависимость от температуры. График на рис. 3.1 демонстрирует эту зависимость для ряда бинарных пар.

Рис. 3.1. Зависимость от температуры коэффициентов бинарного взаимодействия различных веществ с водой

По указанным причинам коэффициенты взаимодействия бинарных пар с водой для углеводородной фазы определялись как усредненные величины для всего интервала параметров с использованием уравнения (3.55), а для водной фазы для каждой отдельной точки и затем их значения аппроксимировались линейной зависимостью от температуры.

Сравнение результатов расчета составов сосуществующих фаз с экспериментальными данными для большого числа бинарных систем и нескольких многокомпонентных показало достаточно хорошую для инженерных расчетов сходимость.

В таблицах 3.1–3.4 приведены экспериментальные (экс.) [38, 39, 42] и расчетные (рас.) данные по фазовому равновесию в трех бинарных смесях и четырехкомпонентной смеси.

Таблица 3.1

Равновесие жидкость - пар для системы метан - вода [38]

Давление,	Темпера-	Содержан в водной фа	ние метана зе, % мольн.	Содержание воды в газо- вой фазе, % мольн.		
ΜПа	тура, К	Экс.	Pac.	Экс.	Pac.	
$\begin{array}{c} 2,53\\ 10,134\\ 2,53\\ 10,134\\ 2,53\\ 10,134\\ 2,53\\ 10,134\\ 4,903\\ 14,709\\ 4,902\end{array}$	293,15 293,15 313,15 333,15 333,15 373,15 373,15 423,15 423,15	$\begin{array}{c} 0,060\\ 0,195\\ 0,048\\ 0,157\\ 0,039\\ 0,137\\ 0,035\\ 0,124\\ 0,080\\ 0,233\\ 0,006\end{array}$	0,061 0,194 0,048 0,158 0,040 0,138 0,034 0,125 0,082 0,235 0,065	$\begin{array}{c} 0,110\\ -\\ 0,320\\ 0,107\\ 0,86\\ 0,27\\ 4,20\\ 1,30\\ 10,5\\ 4,50\\ 25\\ 5\end{array}$	$\begin{array}{c} 0,106\\ -\\ 0,328\\ 0,106\\ 0,87\\ 0,27\\ 4,30\\ 1,28\\ 10,7\\ 4,20\\ 24.5\end{array}$	
$\begin{array}{r} 4,903 \\ 14,709 \\ 4,903 \\ 14,709 \end{array}$	473,15 473,15 573,15 573,15	0,096 0,354 0,121 0,603	$0,095 \\ 0,340 \\ 0,116 \\ 0,545$	53,5 13,7 90,5 67,8	54,5 13,2 90,9 68,3	

Таблица 3.2

Равновесие жидкость - пар для системы сероводород - вода [38]

Давление, МПа	Темпера- тура, К	Содержание да в водяно до	сероводоро- й фазе, мол. ли	Содержание воды в газо- вой фазе, мол. доли		
		Экс.	Pac.	Экс.	Pac.	
1,010	310,95	0,01223	0,01325	0,0076	0,00754	
2,089	310,95	0,03312	0,02975	0,0040	0,00422	
5,070	344,25	0,03820	0,03870	0,0132	0,01190	
2,030	377,55	0,01144	0,01117	0,0746	0,06850	
5,070	377,55	0,02775	0,02855	0,0365	0,03630	
2,030	410,95	0,00924	0,00863	0,1840	0,18700	
2,030 5,070	444,15 444,15	0,02310 0,00602 0,01947	0,02400 0,00577 0,02017	0,0000 0,4140 0,1885	$0,42600 \\ 0,20250$	

Таблица 3.3

Равновесие жидкость – пар для системы пропан – вода [39]

Давление, МПа	Температура, К	Содержание воды в газовой фазе, мол. доли		мпература, К Содержание воды в кидкой углеводородной фазе, мол. доли доли		Содержание пропана в водной фазе, мол. доли		
		Экс.	Pac.	Экс.	Pac.	Экс.	Pac.	
$\begin{array}{c} 0,567\\ 1,007\\ 1,696\\ 2,682\\ 3,710\\ 4,150\\ 4,392 \end{array}$	$\begin{array}{c} 278,87\\ 299,42\\ 322,04\\ 344,25\\ 360,93\\ 366,48\\ 369,65\end{array}$	$\begin{array}{c} 0,00140\\ 0,00335\\ 0,00625\\ 0,01002\\ 0,01280\\ 0,01237\\ 0,00998 \end{array}$	$\begin{array}{c} 0,00164\\ 0,00333\\ 0,00647\\ 0,01060\\ 0,01330\\ 0,01337^*\\ 0,01052 \end{array}$	$\begin{array}{c} 0,000105\\ 0,000364\\ 0,001090\\ 0,002910\\ 0,005580\\ 0,007230\\ 0,009980 \end{array}$	$\begin{array}{c} 0,000114\\ 0,000363\\ 0,001120\\ 0,003070\\ 0,006630\\ 0,008720\\ 0,010450\\ \end{array}$	$\begin{array}{c} 0,000366\\ 0,000219\\ 0,000195\\ 0,000212\\ 0,000250\\ 0,000264\\ 0,000272\\ \end{array}$	$\begin{array}{c} 0,0003436\\ 0,0002379\\ 0,000185\\ 0,000222\\ 0,000222\\ 0,000273\\ 0,000273\\ 0,000282 \end{array}$	
* Расчет выполнен при давлении 4,11 МПа.								

Таблица 3.4

Равновесие жидкость - пар для системы метан - двуокись углерода - сероводород - вода [42]

Темпера-	Давление,	Состав газовой фазы, % мольн.				Состав жидкой фазы (водной), % мольн.			
тура, К	МПа	CH_4	CO_2	H_2S	H_2O	CH_4	CO_2	H_2S	H_2O
310,95	4,82	$30,40 \\ 30,54$	59,45 59,31	$9,98 \\ 9,94$	$0,191 \\ 0,215$	$0,0276 \\ 0,0326$	$0,930 \\ 0,972$	$0,503 \\ 0,490$	98,54 98,51
	7,60	30,31 30,56	59,70 59,32	9,82 9,93	0,171 0,184	0,0466 0,0527	$1,210 \\ 1,340$	$0,540 \\ 0,640$	98,16 97,96
	12,93	30,29 30,56	59,67 59,30	9,85 9,93	0,187 0,211	0,0796 0,0892	$1,510 \\ 1,630$	0,595 0,693	97,81 97,58
380,35	8,36	29,07 29,29	59,19 58,53	9,67 9,73	2,250 2,440	0,0379 0,0386	$0,698 \\ 0,728$	0,342 0,363	98,94 98,87
	12,93	$29,29 \\ 29,43$	59,20 58,77	9,63 9,77	$1,960 \\ 2,030$	0,0578 0,0601	0,959 1,010	$0,447 \\ 0,480$	$98,54 \\ 98,45$
Примечание. В первой строке приведены экспериментальные данные, во второй – расчетные.									

Для избежания образования гидратов в процессах добычи и подготовки газа часто в них впрыскивают метанол. В этом случае требуется определить распределение метанола по трем фазам: газовой, углеводородной, водометанольной. Метанол, содержащийся в отсепарированных газовой и жидкой углеводородной фазах считается потерянным. Если указанные две фазы поступают на дальнейшую переработку, то необходимо знать, как метанол распределится между продуктами.

Анализ экспериментальных данных по фазовому равновесию в бинарных системах метанола с углеводородами показал, что смеси метанола с углеводородами от пропана до н-декана являются азеотропными растворами. В качестве примера на рис. 3.2 приведена фазовая диаграмма для системы метанол – н-пентан. Из рисунка следует, что разделение смесей углеводородов с метанолом простой ректификацией осуществить невозможно.

Разделение можно осуществить с помощью абсорбции или экстракции веществом, которое хорошо растворяет метанол, но плохо растворяет углеводороды, например, водой, гликолями.

Коэффициенты бинарного взаимодействия метанола с угле-

Рис. 3.2. Равновесная кривая пар – жидкость для смеси н-пентан – метанол при температуре 422,6 К: пунктирная линия – экспериментальные данные [48]; сплошная линия – расчетные данные

Рис. 3.3. Зависимость коэффициента бинарного взаимодействия от состава жид-кой фазы для смеси н-пентан – метанол

водородами имеют явную зависимость от состава, что иллюстрирует график на рис. 3.3.

Коэффициенты бинарного взаимодействия метанола с углеводородами и другими веществами были представлены в виде функции от температуры и состава жидкой фазы, что позволило с удовлетворительной точностью рассчитывать фазовое равновесие в таких смесях. Пример результатов расчета смеси метанол – *н*-пентан представлен на рис. 3.2 в сравнении с экспериментальными данными [48].

Для расчета фазовых равновесий в смесях, содержащих меркаптаны, сероокись углерода, сероуглерод, были определены значения параметров этих веществ, представленные в табл. 3.5.

Таблица 3.5

Значения критических параметров и коэффициентов в уравнениях (3.32-3.35)

Компонент	p_{kp}	$T_{\rm kp}$	Ω_a	Ω_b	Ω_c	F
Сероокись угле-	6,180	378,0	0,44822	0,08040	0,05470	0,560600
рода						
Сероуглерод	7,900	552,0	0,42987	0,08590	0,00640	0,631269
Метилмеркаптан	7,235	470,0	0,44556	0,08118	0,04780	0,648000
Этилмеркаптан	5,492	499,0	0,44811	0,08043	0,05440	0,696000
<i>н</i> -пропилмеркап-	4,620	535,6	0,45300	0,07901	0,06700	0,740000
тан						
<i>н</i> -бутилмеркаптан	3,960	568,0	0,45724	0,07780	0,07780	0,790000
<i>н</i> -амилмеркаптан	3,500	598,0	0,46097	0,07674	0,08725	0,830600

Рис. 3.4. Равновесная кривая пар – жидкость для смеси пропилмеркаптан – гексан при давлении 0,1013 МПа

Все смеси сернистых соединений с углеводородами являются неидеальными и в большинстве случаев имеют азеотропные точки. В качестве иллюстрации на рис. 3.4 приведена равновесная кривая пар – жидкость для смеси пропилмеркаптан – гексан при давлении 0,1013 МПа (1 атм).

Используя опубликованные экспериментальные данные по фазовым равновесиям в бинарных смесях были определены коэффициенты бинарного взаимодействия, представленные в табл. 3.6.

Для системы сероокись углерода – пропан коэффициент бинарного взаимодействия представлен линейной функцией от температуры

$$k_{i,j} = -0,073 + 0,000315 \cdot T. \tag{3.56}$$
Габлица 3.6
Коэффициенты бинарного взаимодействия

Компо-	Сероокись	Cepo-	Метилмер-	Этилмер-	н-пропил-	н-бутил-		
ненты	углерода	углерод	каптан	каптан	меркаптан	меркаптан		
Метан	0,024	-	0,0200	0,0190	-	-		
Этан	-	-	0,0610	-	-	-		
Пропан	уравнение (3,56)	-	0,0670	0,0350	_	_		
<i>и</i> -бутан	-	-	-	-	-	-		
<i>н</i> -бутан	-	-	0,0670	-	-	-		
и-пентан	-	-0,0232	_	0,0400	-	-		
н-пентан	-	-0,0300	-	0,0410	-	-		
Гексан	-	-0,0413	0,0300	-	0,0260	-		
Гептан	-	-	_	$0,0264^{*}$	-	-		
Октан	-	-	-	$0,0496^{*}$	$0,0922^{*}$	-		
Нонан	-	-	-	$0,0519^{*}$	$0,1030^{*}$	-		
Декан	-	-0,0800	-0,0100	$0,0373^{*}$	$0,0927^{*}$	$0,2420^{*}$		
Ундекан	-	-	—	-	-	$0,2124^{*}$		
Додекан	-	-	-	-	-	-		
Тридекан	-	-0,1000	-	-	-	-		
Тетраде-	-	-	—	-	-	$0,1736^{*}$		
кан								
Пентаде-	-	-0,1220	—	-	-	-		
кан								
Гексадекан	-	-0,1400	—	$-0,0146^{*}$	-	-		
Бензол	-	0,0277	0,0060	-	-	-		
Сероводо-	-	-0,1800	—	-	-	-		
род								
Метанол	-	Уравнение	Уравнение	-	-	—		
		(3.57)	(3.58)					
Вода	-	-	0,0741	-0,1061	-0,1153	-0,1337		
Использовались литературные данные по константам Генри								

Для бинарных смесей сероуглерода и метилмеркаптана с метанолом наблюдалась явная зависимость $k_{i, j}$ от состава смеси. Для этих смесей были получены следующие уравнения:

сероуглерод – метанол

$$\begin{aligned} k_{i,j} &= -0,1797 + 0,00085 \cdot T + 0,4867 \cdot X - 1,516 \cdot X^2 + \\ &+ 1,825 \cdot X^3 - 0,6735 \cdot X^4; \end{aligned} \tag{3.57}$$

метилмеркаптан – метанол

 $k_{i,j} = -0,1625 + 0,073X + 0,0353X^2 + 0,00075T.$ (3.58)

Фазовые равновесия в смесях с гликолями

Для осушки природного газа наиболее часто используются гликоли. Была предпринята попытка расчета фазовых равновесий в смесях гликолей с углеводородами и другими компонентами, содержащимися в природных газах, с по-

мощью уравнения Пател – Тея, что позволило бы моделировать на ЭВМ процессы осушки газа и регенерации гликоля [35].

Диэтиленгликоль

Для расчета параметра *F* была выведена следующая зависимость от приведенной температуры:

$$F = 2,03 - 1,69(0,745 - T/T_{кp}) при T/T_{кp} < 0,745;$$
(3.59)

$$F = 2,03 при T/T_{кp} > 0,745.$$

По опубликованным данным были определены коэффициенты бинарного взаимодействия. В ряде случаев были получены зависимости $k_{i, j}$ от температуры и содержания ДЭГа в жидкости.

В таблице 3.7 приведены экспериментальные и расчетные данные по растворимости углеводородов, двуокиси углерода и серодоворода в ДЭГе. Из таблицы видно, что парафиновые углеводороды слабо растворяются в диэтиленгликоле. Высокая растворимость наблюдается для ароматических углеводородов и сероводорода.

В таблице 3.8 приведены данные по растворимости углеводородов в водном растворе ДЭГа.

В таблице 3.9 приведены значения температур точек росы газа по воде для различных концентраций ДЭГа и температур контакта и соответствующие значения содержания воды в газе (экспериментальные и расчетные). Как видно из таблицы, расчетные значения содержания воды в газе, находящемся в контакте с водным раствором ДЭГа, хорошо согласуются с экспериментальными.

Таблица	3.7

Компонент	Темпера-	Давление,	Растворимос мол.	сть в ДЭГе, доли
	тура, К	ΜПа	Эксперимент	Расчет
Метана [49]	298,15 298,15 298,15 313,15 313,15 313,15 313,15	3 5 8 3 5 8	0,00968 0,01685 0,0254 0,00917 0,015 0,0237	$0,01082 \\ 0,01706 \\ 0,0251 \\ 0,00959 \\ 0,0153 \\ 0,0229$
Метана [50]	293,15 313,15 333,15	6 6 6	0,0217 0,0165 0,0121	$0,0205 \\ 0,0186 \\ 0,0174$

Растворимость компонентов природного газа в диэтиленгликоле

Продолжение табл. 3.7

Компонент	Темпера-	Давление.	Растворимо мол.	сть в ДЭГе, доли
	тура, К	МПа	Экспери- мент	Расчет
Гептана [52]	284,15 326,15	0,102 0,102	$0,0057 \\ 0,0083$	$0,0060 \\ 0,0079$
Бензола [52]	298,15 313,15	$0,102 \\ 0,102$	$0,39 \\ 0,417$	$0,40 \\ 0,391$
Диоксида углерода [52]	269,26 269,26 297,04 297,04 338,7 338,7	0,5066 2,0265 0,5066 2,0265 0,5066 2,0265	$\begin{array}{c} 0,0240\\ 0,090\\ 0,0126\\ 0,05\\ 0,0075\\ 0,0265\end{array}$	$\begin{array}{c} 0,0231\\ 0,088\\ 0,013\\ 0,049\\ 0,00718\\ 0,0274\end{array}$
Сероводород [52]	$\begin{array}{c} 310,93\\ 310,93\\ 338,7\\ 338,7\\ 366,48\\ 366,48\\ 422,04\\ 422,04\\ \end{array}$	$\begin{array}{c} 0,1013\\ 2,0265\\ 0,1013\\ 2,0265\\ 1,013\\ 3,04\\ 1,013\\ 4,053\\ \end{array}$	$\begin{array}{c} 0,0265\\ 0,428\\ 0,0165\\ 0,286\\ 0,1135\\ 0,302\\ 0,06365\\ 0,2378\end{array}$	$\begin{array}{c} 0,0262\\ 0,438\\ 0,0167\\ 0,286\\ 0,109\\ 0,295\\ 0,0636\\ 0,2317\end{array}$

Таблица 3.8
Растворимость углеводородов в водном растворе диэтиленгликоля

Растворяемый	Темпера-	Давление,	Состав :	Состав жидкости, мол. доли*			
компонент	тура, К	МПа	Компонент	ДЭГ	Вода		
Гексан	394,26	0,5426	<u>0,0102</u>	<u>0,6670</u>	<u>0,3228</u>		
			0,0102	0,6691	0,3207		
Гептан	394,26	0,3220	<u>0,0071</u>	<u>0,6689</u>	<u>0,3240</u>		
			0,0076	0,6694	0,3230		
Октан	394,26	0,2254	<u>0,0050</u>	0,6704	<u>0,3246</u>		
			0,0050	0,6706	0,3244		
Бензол	394,26	0,5012	<u>0,2658</u>	<u>0,4934</u>	<u>0,2407</u>		
			0,2740	0,4930	0,2330		
Метан	298,15	3,0	<u>0,0080</u>	<u>0,8360</u>	<u>0,1560</u>		
			0,0090	0,8350	0,1560		
	298,15	5,0	<u>0,0133</u>	<u>0,8307</u>	<u>0,1560</u>		
			0,0144	0,8296	0,1560		
	298,15	8,0	<u>0,0200</u>	<u>0,8240</u>	<u>0,1560</u>		
			0,0210	0,8230	0,1560		
	323,15	3,0	<u>0,0073</u>	<u>0,8367</u>	<u>0,1560</u>		
			0,0081	0,8359	0,1560		
	323,15	5,0	<u>0,0120</u>	<u>0,8320</u>	<u>0,1560</u>		
			0,0130	0,8310	0,1560		
	323,15	8,0	<u>0,0188</u>	<u>0,8252</u>	<u>0,1560</u>		
			0,0194	0,8246	0,1560		
* Числитель – эксперимент [49], [52]; знаменатель – расчет.							

Таблица 3.9 Температуры точки росы газа для различной

концентрации водных растворов диэтиленгликоля

Содержание ДЭГа в рас-	Температура контакта,	Температура точки росы	Содержание в <i>p</i> = 5,89 MI	оды в газе при Ia, % мольн.
творе, % вес.	K	газа, К [®] [52]	[54]	Расчет
99,5	283,15 299,15 310,15	237,65 248,15 255,15	0,00110 0,00268 0,00453	0,0010 0,0025 0,0043
98	283,15 299,15	252,15 263,65	0,00433 0,00360 0,00820	0,0043 0,0033 0,0082
95	310,15 283,15 299,15	272,15 259,15 273 15	$0,01500 \\ 0,00610 \\ 0.01600$	$0,0145 \\ 0,0058 \\ 0.0150$
90	310,15 283,15 299,15 310,15	281,15 265,65 280,15 291,15	$\begin{array}{c} 0,02670\\ 0,00960\\ 0,02500\\ 0,04070\end{array}$	$\begin{array}{c} 0,0273\\ 0,0096\\ 0,0250\\ 0,0456\end{array}$

Триэтиленгликоль

Триэтиленгликоль (ТЭГ) имеет ряд преимуществ перед диэтиленгликолем:

высокая термическая устойчивость (температура разложения 206 °C);

возможность проводить регенерацию до более высоких концентраций, что позволяет достигнуть более глубокую осушку;

меньшая летучесть и, следовательно, меньшие потери.

Числовые коэффициенты Ω_a , Ω_b , Ω_c и *F* определялись для ТЭГа по экспериментальным значениям давления насыщенного пара и плотности. Были получены следующие значения для первых трех: 0,47208; 0,07364; 0,115. Для повышения точности расчета давления насыщенного пара коэффициент *F* был представлен в виде функции от приведенной температуры:

$$F = 2,05 - 1,48 (0,776 - T/T_{кр})$$
 при $T/T_{кр} < 0,776;$ (3.60)

F = 2,05 при $T / T_{\rm кр} \ge 0,776$.

В таблице 3.10 приведены значения плотности ТЭГа при различных температурах. Максимальное отклонение расчетных значений от экспериментальных не превышает 3 %.

Для определения $k_{i,j}$ были использованы экспериментальные данные по равновесию жидкость – пар в бинарных системах ТЭГа с водой и углеводородами.

Наиболее ответственным с точки зрения расчета процесса осушки газа является $k_{i,j}$ для системы ТЭГ – вода, поэтому для его определения использованы данные по равновесию жид-

Таблица 3.10
Плотности триэтиленгликоля при давлении 0,1 МПа

Температура,	Плотность, кг/м ³				
K	[55]	Расчет			
293,5 298,15 373,15 413,15 453,15	$1125,400 \\ 1119,000 \\ 1064,000 \\ 1033,000 \\ 1002,000$	$1105,878 \\ 1104,163 \\ 1074,192 \\ 1053,938 \\ 1029,416$			

кость – пар не только в смеси ТЭГа с водой, но и в смеси метан (природный газ) – ТЭГ – вода. Последние представлены в ряде работ [56, 57, 62] в виде графических зависимостей температуры точки росы газа от концентрации ТЭГа и температуры контакта.

В полученных нами корреляциях $k_{i,j}$ для системы ТЭГ – вода был представлен в виде функции от концентрации ТЭГа. В таблице 3.11 приведены результаты расчета температуры точки росы газа при различных концентрациях ТЭГа и двух температурах контакта в сравнении с данными из указанных ранее работ. Рассчетные значения близки к приведенным в работах [57, 62], так как на их основе разрабатывались корреляции. Данные, приведенные в работе [56], имеют некоторые отличия и в тоже время неизвестен источник их получения.

Для углеводородов парафинового ряда была получена зави-

Таблица 3	.11
-----------	-----

Содержание ТЭГ в	Темпера- тура кон-	Температура точки росы, К			
растворе, % мас.	такта, К	[56]	[57]	[62]	Расчет
99,97	299,8	218,9	217,6	214,3	215,7
	327,6	233,7	231,5	229,3	229,8
99,95	299,8	224,1	219,5	219,3	220,3
	327,6	239,8	234,2	234,5	234,7
99,9	299,8 327,6	$230,9 \\ 248,3$	225,9 239,8	$225,9 \\ 242,6$	$226,2 \\ 241,4$
99,8	299,8 327,6	237,3 255,4	230,4 245,3	$230,9 \\ 249,8$	233,9 249,8
99,5	299,8	247,2	241,2	244,3	244,8
	327,6	266,6	257,3	263,7	262,1
99,0	299,8	255,0	249,8	253,2	253,7
	327,6	276,5	266,5	274,3	272,2
98,0	299,8 327,6	263,7 285,9	258,4 278,7	262,3 285,1	263,0 283,0 276,7
93,0	299,8	273,4	274,8	274,8	276,7
	327,6	300,9	296,7	299,8	298,7

Температуры точки росы газа при различной концентрации водных растворов ТЭГ, температура контакта 299,8 K/327,6 K

Рис. 3.5. Зависимость $k_{i,j}$ для смесей парафиновых углеводородов с ТЭГом от молекулярного веса углеводорода å $_{\rm B}$

симость $k_{i,j}$ от молекулярного веса углеводорода, представленная на рис. 3.5.

В таблице 3.12 приведены экспериментальные и расчетные значения растворимости углеводородов, СО₂ и H₂S в ТЭГе.

Необходимо знать не только растворимость углеводородов в ТЭГе, но и растворимость ТЭГа в углеводородной фазе, так как последнее характеризует потери ТЭГа. В таблице 3.13 приведены экспериментальные и расчетные значения растворимости ТЭГа в гептане.

Растворимость углеводородов, СО ₂ и H ₂ S в ТЭГе						
Компонент	Темпера-	Давление,	Х, молн	/ моль		
	тура, К	МПа	Эксперимент	Расчет		
Метан [63]	298,15 298,15 298,15 323,15 323,15 323,15 373,15 373,15 373,15	$\begin{array}{c} 0,1135\\ 4,820\\ 9,2400\\ 0,1107\\ 4,5200\\ 10,190\\ 0,1129\\ 5,1000\\ 10,340 \end{array}$	$\begin{array}{c} 0,00064\\ 0,02028\\ 0,03921\\ 0,00062\\ 0,02198\\ 0,04302\\ 0,00063\\ 0,02557\\ 0,04807\end{array}$	$\begin{array}{c} 0,00062\\ 0,02310\\ 0,03909\\ 0,00059\\ 0,02185\\ 0,04334\\ 0,00061\\ 0,02557\\ 0,04778\end{array}$		
Этан [63]	298,15 298,15 298,15 323,15 323,15 323,15 373,15 373,15 373,15	$\begin{array}{c} 0,3050\\ 4,2600\\ 10,910\\ 0,3970\\ 6,4900\\ 9,8500\\ 0,1120\\ 3,9500\\ 8,9800 \end{array}$	$\begin{array}{c} 0,00773\\ 0,08037\\ 0,09565\\ 0,00838\\ 0,08660\\ 0,09348\\ 0,00183\\ 0,05236\\ 0,09747\\ \end{array}$	$\begin{array}{c} 0,00757\\ 0,07514\\ 0,08314\\ 0,00813\\ 0,08468\\ 0,09336\\ 0,00183\\ 0,05520\\ 0,09890\\ \end{array}$		

Таблица 3.12

Компонент	Темпера-	Давление,	ие, X, моль/моль	
	тура, К	МПа	Экспери- мент	Расчет
Пропан [63]	298,15 298,15 323,15 323,15 323,15 323,15 373,15 373,15 373,15	0,0570 2,2300 6,3500 0,0191 3,7300 6,4500 0,0245 2,2400 6,4500	0,00348 0,05748 0,05902 0,00086 0,07140 0,07281 0,00069 0,05578 0,09929	0,00332 0,05370 0,05545 0,00084 0,06861 0,07059 0,00073 0,05886 0,10037
Гептан [64]	298,15 312,05 324,75	$0,1000 \\ 0,1000 \\ 0,1000$	$0,01910 \\ 0,02720 \\ 0,03730$	$0,01915 \\ 0,02452 \\ 0,03045$
H ₂ S [63]	298,15 298,15 228,15 323,15 323,15 323,15 373,15 373,15 373,15	0,00373 0,96900 1,95800 0,00657 1,94900 3,45200 0,01100 3,47000 6,40000	$\begin{array}{c} 0,00308\\ 0,47010\\ 0,94260\\ 0,00283\\ 0,51220\\ 0,93030\\ 0,00206\\ 0,42270\\ 0,68420 \end{array}$	$\begin{array}{c} 0,00282\\ 0,47230\\ 0,96438\\ 0,00281\\ 0,53355\\ 0,96640\\ 0,00198\\ 0,42365\\ 0,67349 \end{array}$
CO ₂ [63]	298,15 298,15 323,15 323,15 323,15 323,15 373,15 373,15 373,15	0,46700 4,87000 10,4200 0,10500 5,71000 10,7200 0,46400 4,93000 10,9200	0,04084 0,35110 0,45310 0,26110 0,39060 0,01573 0,14710 0,27490	0,03855 0,34848 0,45573 0,00605 0,27329 0,40392 0,01556 0,14805 0,28047
CO ₂ [65]	297,040 297,040 322,040 322,040	2,51600 5,27400 2,51600 5,27400	$0,20500 \\ 0,39500 \\ 0,14400 \\ 0,29200$	0,19851 0,37901 0,13629 0,26013
СО ₂ в ТЭГ-Н ₂ О (3,5 % мас.) [65]	297,04 297,04 322,04 322,04	2,516 5,274 2,516 5,274	$0,153 \\ 0,306 \\ 0,095 \\ 0,201$	0,157 0,302 0,108 0,208
СО ₂ в ТЭГ-Н ₂ О (7,0 % мас.) [65]	297,04 297,04 322,04 322,04	2,516 5,274 2,516 5,274	$0,112 \\ 0,233 \\ 0,08 \\ 0,174$	$0,127 \\ 0,229 \\ 0,108 \\ 0,169$

Продолжение табл. 3.12

Таблица 3.13 Растворимость триэтиленгликоля в гептане [66]

Темпера- тура, К	Растворимость, % мас.		Темпера-	Растворимость, % мас.	
	Экперимент	Расчет	тура, К	Эксперимент	Расчет
321,15 330,15 366,15	0,06 0,08 0,65	0,075 0,115 0,510	389,15 402,15 409,15	1,10 1,66 2,07	1,12 1,67 2,05

Таблица 3.14

Экстракция бензола триэтиленгликолем (состав в % мас.)

		Раствор		Углево	одородн	ая фаза	K*	
Условия	$\mathrm{C_7H_{16}}$	C_6H_6	Раство- ритель	$\mathrm{C_7H_{16}}$	C_6H_6	Раство- ритель	$\mathrm{C_7H_{16}}$	C_6H_6
ТЭГ + 5 % воды, p = 1 МПа, T =	$\frac{1,9}{2,0}$	<u>2,2</u> 2,2	<u>95,9</u> 95,8	<u>90,0</u> 90,3	<u>8,5</u> 8,5	<u>1,5</u> 1,2	$\tfrac{47,4}{45,2}$	<u>3,86</u> 3,86
- 554,05 K	$\frac{1.8}{2.2}$	$\frac{6.3}{6,9}$	<u>91,9</u> 90,9	<u>73,2</u> 74,1	<u>24,2</u> 23,9	$\frac{2.6}{2.0}$	$\tfrac{40,7}{33,7}$	<u>3,84</u> 3,46
	$\frac{2,2}{2,7}$	<u>11,6</u> 13,4	<u>86,2</u> 83,9	<u>55,0</u> 55,9	$\tfrac{41,8}{40,7}$	<u>3,2</u> 3,4	<u>25</u> 20,7	<u>3,6</u> 3,04
ТЭГ + 9 % воды, p = 1 МПа, Т = = 418 15 К	<u>1,9</u> 2,5	<u>10,5</u> 12,3	<u>87,6</u> 85,2	<u>55,4</u> 56,4	$\frac{40,4}{39,4}$	$\frac{4.2}{4.2}$	<u>29,2</u> 22,6	<u>3,85</u> 3,20
- 410,13 K	$\frac{1.7}{1.9}$	$\frac{2.1}{2,0}$	<u>96,2</u> 96,1	<u>89,6</u> 90,0	<u>7,9</u> 8,1	<u>2,5</u> 1,9	$\tfrac{52,7}{47,4}$	$\frac{3,76}{4,05}$
* Константа равновесия углеводородная жидкость – раствор.								
<i>Примечание.</i> В числителе приведены экспериментальные данные [66], в знаменателе – результаты расчета.								

В таблице 3.14 приведены экспериментальные данные и результаты расчета фазового равновесия жидкость – жидкость в системе гептан – бензол – ТЭГ – вода. Как видно из таблицы 3.14 растворимость бензола в ТЭГе на порядок выше чем гептана. Это позволяет организовать

процесс экстракции ароматических углеводородов ТЭГом из смеси углеводородов.

3.1.2. РАСЧЕТ ТЕРМОЛИНАМИЧЕСКИХ И ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ СМЕСЕЙ

Расчет энтальпии и энтропии

При моделировании технологических процессов переработки природного газа кроме расчета фазовых равновесий требуется рассчитывать энтальпию и энтропию паровой и

жидкой фаз. Эти термодинамические функции требуются для определения тепловых нагрузок на аппараты, разности температур между потоками, расчета процессов расширения, сжатия, смешения, ректификации.

Для расчета энтальпии и энтропии обычно используют те же уравнения состояния, что и при расчете фазовых равновесий, для чего используют следующие термодинамические выражения:

$$H_{p,T} = H_T^0 + pV - RT - \int_{\infty}^{V} \left[p - T \left(\frac{\partial p}{\partial T} \right)_V \right] \cdot dV;$$
(3.61)

$$S_{p,T} = S_{p=0,T}^{0} + \int_{\infty}^{V} \left(\frac{\partial p}{\partial T}\right) \cdot dV, \qquad (3.62)$$

где H_T^0 – энтальпия в идеальном газовом состоянии при заданной температуре (от давления не зависит); $S_{p=0,T}^0$ – энтропия в идеальном газовом состоянии при давлении, равном нулю, и заданной температуре.

После подстановки уравнения Пател – Тея в уравнения (3.61) и (3.62) были получены следующие уравнения:

$$H_{p,T} = H_T^0 + RT(z-1) - \left(T\frac{\partial a}{\partial T} - a\right) \frac{1}{2d} \ln \frac{Q-d}{Q+d};$$
(3.63)

$$S_{p,T} = S_{p=1,T}^{0} - R \ln\left(\frac{p}{z-B}\right) - \frac{\partial a}{\partial T} \cdot \frac{1}{2d} \ln\frac{Q-d}{Q+d}; \qquad (3.64)$$

$$T\frac{\partial a}{\partial T} = -\sqrt{T}\sum_{i=1}^{n}\sum_{j=1}^{n}x_{i}x_{j}a_{i,j}F_{j}(\alpha_{j}\cdot T_{\mathrm{kp}\,j})^{-0.5}.$$
(3.65)

Для смеси газов H_T^0 вычисляется по следующему уравнению:

$$H^{0}_{T} = \sum_{i=1}^{n} H^{0}_{T, i} N_{i}, \qquad (3.66)$$

где N_i – состав фазы, для которой ведется расчет энтальпии. Энтропия $S_{p=1,T}^0$ в идеальном газовом состоянии при давлении, равном 1, и заданной температуре для смеси вычисляется по формуле

$$S_{p=1,T}^{0} = \sum_{i=1}^{n} S_{p=1,T,i}^{0} \cdot N_{i} - R \sum_{i=1}^{n} N_{i} \ln N_{i}.$$
(3.67)

Таблица 3.15

Сравнение результатов расчета теплоемкости триэтиленгликоля при разных температурах с литературными данными [55]

Темпера- тура, К	пера- а, К Удельная теплоемкос кДж/(кг·К)		Темпера- тура, К	Удельная теплоемкость, кДж/(кг·К)	
	Эксперимент	Расчет		Эксперимент	Расчет
293,15 333,15 373,15 413,15	2,165 2,324 2,483 2,642	2,184 2,330 2,490 2,630	453,15 493,15 533,15	2,772 2,801 2,835	2,750 2,815 2,820

В уравнении (3.64) давление p является безразмерной величиной, так как подразумевается, что она делится на p = 1.

Для вычисления энтальпии и энтропии чистых веществ в идеальном газовом состоянии обычно используются уравнения в виде полиномов различной степени, как, например, в работе [68].

Приведенные уравнения с достаточной для инженерных расчетов точностью позволяют рассчитывать энтальпию и энтропию смесей углеводородов и ряда других веществ.

Возможность распространения этих корреляций на такие вещества, как гликоли демонстрируется в табл. 3.15, где сравниваются экспериментальные и расчетные теплоемкости ($C_p = \partial H / \partial T$) ТЭГа.

Расчет вязкости и теплопроводности

Рассмотрим метод расчета вязкости и теплопроводности многокомпонентных смесей, предложенный в работах [45, 46]. Основная идея метода достаточно проста и заключается в предположении, что конфигурационные свойства однофазной многокомпонентной смеси совпадают с аналогичными свойствами некоего гипотетического чистого флюида. Свойства последнего, используя принцип соответственных состояний, вычисляются через свойства известного флюида, принятого в качестве базового. Такой метод хорошо теоретически обоснован для компонентов, молекулы которых состоят из однородных атомов. Однако практическое использование метода дало хорошие результаты и для смесей компонентов с полиатомными молекулами. В соответствии с предлагаемым методом вязкость смеси η_{mix} и гипотетического чистого флюида η_r равны: $\eta_{mix} = \eta_r$. На основе принципа соответственных состояний

$$\eta_x = \eta_0(\rho_0, T_0) \cdot F_{\eta}; \tag{3.68}$$

$$F_{\eta} = \left(\frac{M_x^{\eta}}{M_0}\right)^{0.5} \cdot f_{x,0}^{0.5} \cdot h_{x,0}^{-2/3};$$
(3.69)

$$T_0 = T / f_{x,0}; \tag{3.70}$$

$$\rho_0 = \rho \cdot h_{x,0}; \tag{3.71}$$

$$p_0 = p \cdot h_{x, 0} / f_{x, 0}. \tag{3.72}$$

где η_0 – вязкость базового компонента; T, ρ , p – соответственно температура, плотность и давление смеси; T_0 , ρ_0 , p_0 – температура, плотность и давление базового компонента; M_x^{η} , M_0 – молярные массы гипотетического и базового компонентов.

В соответствии с расширенным принципом соответственных состояний для двух чистых флюидов i и 0 [51, 60] функции $F_{i,0}$ и $h_{i,0}$ определяются выражениями:

$$f_{i,0} = (T_i^c / T_0^c) \cdot \theta_{i,0};$$
(3.73)

$$h_{i,0} = (v_i^c / v_0^c) \cdot \gamma_{i,0}, \qquad (3.74)$$

где c – верхний индекс, характеризующий критическое состояние; v – мольный объем; $\theta_{i,0}$ и $\gamma_{i,0}$ – так называемые шейпфакторы, вычисляемые по формулам

$$\theta_{i,0} = (1 + (\omega_i - \omega_0)(a_1 + b_1 \cdot \ln T_i^* + (c_1 + d_1 / T_i^*)(\upsilon_i^* - 0, 5)); (3.75)$$

$$\gamma_{i,0} = (1 + (\omega_i - \omega_0)(a_2 + (\upsilon_i^* + b_2) + c_2(\upsilon_i^* + d_2) \cdot \ln T_i^*)) \cdot z_0^c / z_i^c;$$
(3.76)

$$T_i^* = \min(2, \max(\tau_i, 0, 5));$$
 (3.77)

$$v_i^* = \min(2, \max(v_i, 0, 5)),$$
 (3.78)

где τ_i , υ_i – приведенные параметры; коэффициенты в (3.75) – $a_1 = 0,090569$, $b_1 = -0,862762$, $c_1 = 0,316636$, $d_1 = -0,465684$; коэффициенты в (3.76) – $a_2 = 0,394901$, $b_2 = -1,023545$, $c_2 = -0,932813$, $d_2 = -0,754639$.

Для смесей функции $f_{x,0}$, $h_{x,0}$ вычисляются через функции $f_{i,0}$, $h_{i,0}$ составляющих компонентов смеси:

$$f_{x,0} = h_{x,0}^{-1} \sum_{i} \sum_{j} x_{i} x_{j} \cdot f_{ij,0} \cdot h_{ij,0}; \qquad (3.79)$$

$$h_{x,0} = \sum_{i} \sum_{j} x_{i} x_{j} \cdot h_{ij,0}; \qquad (3.80)$$

$$M_x^{\eta} = \left(\sum_i \sum_j x_i \cdot x_j \cdot h_{ij,\ 0}^{4/3} \cdot f_{ij,\ 0}^{1/2} \cdot M_{ij}^{1/2}\right)^2 \cdot f_{x,\ 0}^{-1} \cdot h_{x,\ 0}^{-8/3}$$
(3.81)

В этих выражениях комбинационные правила задаются формулами

$$f_{ij,0} = (f_{i,0} \cdot f_{j,0})^{1/2} (1 - K_{ij}); \qquad (3.82)$$

$$h_{ij,\ 0} = \frac{1}{8} \left(h_{i,\ 0}^{1/3} + h_{j,\ 0}^{1/3} \right)^3 (1 - I_{ij}); \tag{3.83}$$

$$M_{ij} = 2M_i M_j / (M_i + M_j), \qquad (3.84)$$

где K_{ij} и I_{ij} – параметры бинарного взаимодействия, значения которых близки к нулю.

Расчетные выражения для теплопроводности смеси $\lambda_{\rm mix}$ имеют следующий вид:

$$\lambda_{\rm mix} = \lambda_0'(\rho_0, T_0) \cdot F_\lambda + \lambda_{\rm mix}''(\rho, T); \qquad (3.85)$$

$$F_{\lambda} = \left(\frac{M_0}{M_x^{\lambda}}\right)^{1/2} \cdot f_{x,0}^{1/2} \cdot h_{x,0}^{-2/3};$$
(3.86)

$$M_{x}^{\lambda} = \left(\sum_{i} \sum_{j} x_{i} \cdot x_{j} \cdot h_{ij, 0}^{4/3} \cdot f_{ij, 0}^{1/2} \cdot M_{ij}^{-1/2}\right)^{-2} \cdot f_{x, 0} \cdot h_{x, 0}^{8/3};$$
(3.87)

$$\lambda_{\min}''(\rho, T) = \sum_{i} \sum_{j} x_{i} \cdot x_{j} \cdot \lambda_{ij}''(\rho, T); \qquad (3.88)$$

$$\lambda_{ij}''(\rho, T) = 2\lambda_i''(0, T) \cdot \lambda_j''(0, T) / (\lambda_i''(0, T) + \lambda_j''(0, T)); \qquad (3.89)$$

$$\lambda_i''(0,T) = 1,32(C_i^0(T) - \frac{5}{2}R) \cdot \eta_i^0(T) / M_i, \qquad (3.90)$$

где C_i^0 , η_i^0 – теплоемкость и вязкость компонента в идеальном газовом состоянии

В качестве базового компонента принят метан, поскольку для метана имеются надежные экспериментальные данные по вязкости и теплопроводности в широком диапазоне температур и давлений. Для расчета и экстраполяции указанных свойств метана в область низких температур использованы результаты работ [40, 53, 68]. В конечном итоге расчет вязкости метана определяется следующими выражениями:

$$\eta_0(\rho_0, T_0) = \eta_0^{(1)}(T_0) + \eta_0^{(2)}(T_0) \cdot \rho_0 + \Delta \eta_0(\rho_0, T_0) \cdot x_{\eta};$$
(3.91)
124

$$\eta_0^{(1)} = \sum_{n=1}^9 C_n \cdot T_0^{(n-4)/3};$$
(3.92)

$$\eta_0^{(2)} = b_1 + b_2(b_3 - \ln(T_0 / b_4))^2; \tag{3.93}$$

$$\Delta \eta = \exp(a_1 + a_2 / T_0) \cdot (\exp(a_3 + a_4 / T_0^{3/2}) \rho_0^{0,1} \times \exp(\rho_0 / \rho_0^{0,5} - 1) \rho_0^{0,5} (a_5 + a_6 / T_0 + a_7 / T_0^2) - 1);$$
(3.94)

$$x_{\eta} = \left(\left(1 - 1, 5 \cdot \frac{T}{f_{x, 0}} \left(\frac{\partial f_{x, 0}}{\partial T}\right) \upsilon \right) \cdot \frac{z_{x}^{c}}{z_{0}^{c}} \right)^{1/2};$$
(3.95)

$$z_x^c = \sum_{i} x_i z_i^c \,. \tag{3.96}$$

Значения коэффициентов a_i , b_i , c_i приведены в табл. 3.16. Теплопроводность метана определяется выражениями (3.97)- (3.101):

$$\lambda_0'(\rho_0 T_0) = (\lambda_0^{(1)} \cdot (T_0) + \lambda_0^{(2)}(T_0) \cdot \rho_0 + \Delta \lambda_0(\rho_0, T_0)) \cdot x_\lambda;$$
(3.97)

$$\lambda_0^{(1)}(T_0) = \frac{15 \cdot R}{4M_0} \cdot \eta^{(1)}(T_0); \qquad (3.98)$$

$$\lambda_0^{(2)}(T_0) = b_1 + b_2(b_3 - \ln(T_0 / b_4))^2; \qquad (3.99)$$

$$\Delta\lambda_0(\rho_0, T_0) = \exp(a_1 + a_2 / T_0) \cdot (\exp((a_3 + a_4 / T_0^{3/2}) \cdot \rho_0^{0,1}) \times$$

× exp(
$$(\rho_0 / \rho_0^c - 1)\rho_0^{0.5}(a_5 + a_6 / T_0 + a_7 / T_0^2)$$
) - 1); (3.100)

$$\chi \lambda = \left\{ \left(1 - T / f_{x, 0} \left(\frac{\partial f_{x, 0}}{\partial T} \right)_{v} \right) \cdot \frac{z_{0}^{c}}{z_{x}^{c}} \right\}^{3/2}.$$
(3.101)

Значения коэффициентов a_i и b_i даны в табл. 3.17.

Таблица 3.16

Значения коэффициентов a_i, b_i, c_i

i	a_i	<i>B</i> _i	C _i
1	-1,0239160427E + 1	1,6969859271E + 0	2,907741307E + 6
2	1,7422822961E + 2	-1,3337234608E - 1	-3,312874033E + 6
3	1,7460545674E + 1	1,4	1,608101838E + 6
4	-2,8476328289E + 3	1,68E + 2	-4,331904871E + 5
5	1,3368502192E - 1	· _	7,062481330E + 4
6	1,4207239767E + 2	-	-7,116620750E + 3
7	5,0020669720E + 3	-	4,325174400E + 2
8	, _	-	-1,445911210E + 1
9	-	-	2,037119479 <i>E</i> - 1

Таблица 3.17 Значения коэффициентов a_i и b_i

i	a_i	b_i
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{r} -7,1977082270 \ E+0\\ 8,5678222640 \ E+1\\ 1,2471834689 \ E+1\\ -9,8462522975 \ E+2\\ 3,5946850007 \ E-1\\ 6,9798412538 \ E+1\\ -8,7288332851 \ E+2 \end{array}$	$\begin{array}{c} -0.252762920 \ E + 0 \\ 0.334328590 \ E + 0 \\ 1.12 \\ 0.1680 \ E + 3 \\ - \\ - \\ - \\ \end{array}$

Чтобы завершить изложение методики, ниже приводится уравнение состояния метана:

$$p_{0} = \sum_{n=1}^{9} a_{n}(T_{0})\rho_{0}^{n} + \sum_{n=10}^{15} a_{n}(T_{0})\rho_{0}^{2n-17} \cdot \exp(-0,0096 \cdot \rho_{0}^{2}); \qquad (3.102)$$

$$a_{1} = RT;$$

$$a_{2} = N_{1}T + N_{2}T^{1/2} + N_{3} + N_{4}/T + N_{5}/T^{2};$$

$$a_{3} = N_{6}T + N_{7} + N_{8}/T + N_{9}T^{2};$$

$$a_{4} = N_{10}T + N_{11} + N_{12}/T;$$

$$a_{5} = N_{13};$$

$$a_{6} = N_{14}T + N_{15}/T^{2};$$

$$a_{7} = N_{16}T;$$

$$a_{8} = N_{17}T + N_{18}/T^{2};$$

$$a_{10} = N_{20}T^{2} + N_{21}/T^{3};$$

$$a_{11} = N_{22}T^{2} + N_{23}/T^{4};$$

$$a_{13} = N_{26}T^{2} + N_{27}/T^{4};$$

$$a_{14} = N_{28}T^{2} + N_{29}/T^{3};$$

$$a_{15} = N_{30}T^{2} + N_{31}/T^{3} + N_{32}/T^{4}.$$

Коэффициенты $N_1 - N_{32}$ приведены в табл. 3.18. Таблицы 3.19, 3.20 содержат сравнение экспериментальных и расчетных данных по вязкости при атмосферном давлении соответственно ряда чистых компонентов и смесей [70, 71, 72]. Аналогичные данные по теплопроводности приведены в табл. 3.21 [77].

Таблица 3.18 Значения коэффициентов N_i

i	N_i	i	N_i
1	-1,184347314485 <i>E</i> - 2	17	1,071143181503 <i>E</i> - 5
2	7,540377272657 E - 1	18	-9,290851745353 E - 3
3	-1,225769717554 E+1	19	1,610140169312 E - 4
4	6,260681393432 E+2	20	3,469830970789 E+4
5	-3,490654409121 E+4	21	-1,370878559048 E+6
6	5,301046385532 E - 4	22	1,790105676252 E+2
7	-2,875764479978 E - 1	23	1,615880743238 E+6
8	5,011947936427 E+1	24	6,265306650288 E - 1
9	-2,821562800903 E+4	25	1,820173769533 E+1
10	-2,064957753744 E+5	26	1,449888505811 E - 3
11	1,285951844828 <i>E</i> - 2	27	-3,159999123798 E+1
12	-1,106266656726 E+0	28	-5,290335668451 <i>E</i> - 6
13	3,060813353408 E - 4	29	1,694350244152 E - 3
14	-3,174982181302 E - 3	30	8,612049038886 E - 9
15	5,191608004779 E+0	31	-2,598235689063 E - 6
16	-3,074944210271 E - 4	32	3,153374374912 <i>E</i> - 5

Таблица 3.19 Вязкость при атмосферном давлении чистых компонентов

Компоненты	Температура, К	Вязкость, сП		
	1 51 7	Эксперимент	Расчет	
C ₂	233	0,204	0,182	
nČ,	213	0.403	0.397	
4	273	0,207	0,196	
nC_5	303	0,220	0,210	
C ₆	213	0,888	0,993	
0	303	0,278	0,292	
	326	0,227	0,235	
C_7	293	0,418	0,460	
,	346	0,246	0,255	
C _s	253	0,970	1,010	
0	293	0,546	0,573	
	323	0,392	0,408	
Co	323	0,495	0,513	
C_{10}	253	1,930	1,830	
C_{12}^{10}	300	1,360	1,320	
12	373	0,510	0,530	
C ₁₈	303	3,813	4,179	
10	313	3,060	3,370	
	333	2,060	2,300	
C19	313	3,588	4,043	
15	423	0,719	0,763	
C ₂₀	313	4,072	4,414	
20	373	1,403	1,489	
	473	0,505	0,482	
CH_4S	243	0,396	0,446	
4	278	0,285	0,308	
C_2H_6S	263	0,405	0,435	
2 0	308	0,264	0,279	

Продолжение	тa	абл.	3.19	

Компоненты	Температура, К	Вязкость, сП		
	1 51 7	Эксперимент	Расчет	
nC ₃ H ₈ S	263	0,568	0,621	
0 0	313	0,334	0,363	
$nC_4H_{10}S$	263	0,749	0,765	
	373	0,250	0,256	
$nC_5H_{12}S$	263	0,980	1,000	
0 12	373	0,310	0,310	
C ₁ H ₃ OH	250	1,207	1,145	
1 0	275	0,779	0,772	
	293	0,581	0,605	
	313	0,447	0,475	
H_2O	295	1,007	1,180	

Таблица 3.20 Вязкость смесей при атмосферном давлении

Состав смеси	Мольная доля	Температура,	Вязкость, сП		
	компонентов	K	Эксперимент	Расчет	
$\begin{array}{c} C_{12} \\ C_{16} \end{array}$	0,645 0,355	293	2,071	2,060	
$\begin{smallmatrix} \mathbf{C}_6\\ \mathbf{C}_{12}\\ \mathbf{C}_{16} \end{smallmatrix}$	0,565 0,183 0,252	293	0,866	0,856	
$\begin{smallmatrix} \mathbf{C}_6\\ \mathbf{C}_8\\ \mathbf{C}_{10}\\ \mathbf{C}_{12}\\ \end{smallmatrix}$	$0,487 \\ 0,200 \\ 0,163 \\ 0,150$	293	0,573	0,587	
$\begin{smallmatrix} & C_6 \\ & C_8 \\ & C_{10} \\ & C_{12} \\ & C_{16} \end{smallmatrix}$	$\begin{array}{c} 0,278 \\ 0,225 \\ 0,191 \\ 0,158 \\ 0,148 \end{array}$	293	0,917	0,922	
$\begin{smallmatrix} \mathbf{C}_6\\\mathbf{C}_{14}\\\mathbf{C}_{16}\end{smallmatrix}$	$0,5624 \\ 0,2258 \\ 0,2118$	298	0,949	0,946	
$\begin{smallmatrix} \mathbf{C}_6\\ \mathbf{C}_{14}\\ \mathbf{C}_{16} \end{smallmatrix}$	0,8554 0,0796 0,0650	298	0,463	0,471	
$\begin{smallmatrix} \mathbf{C}_6\\\mathbf{C}_{14}\\\mathbf{C}_{16}\end{smallmatrix}$	0,3575 0,1243 0,5182	298	1,563	1,578	
С ₆ Бензол С ₁₆	0,1849 0,2836 0,5315	298	1,497	1,562	
С ₆ Бензол С ₁₆	$0,1724 \\ 0,7202 \\ 0,1074$	298	0,448	0,611	

Компоненты	Т. К	Теплопроводность				
	,	Эксперимент	Расчет			
nC_{A}	213	0,143	0,152			
	273	0,114	0,118			
nC_5	220	0,146	0,150			
5	293	0,114	0,115			
	303	0,111	0,111			
C	293	0,122	0,118			
0	303	0,118	0,114			
	250	0.139	0.136			
C ₇	293	0.126	0.121			
- /	333	0.113	0.108			
C.	293	0.129	0.124			
- 0	313	0.123	0.118			
	350	0.112	0.106			
Co	293	0.131	0.126			
- 9	350	0.115	0.109			
C ₁₀	293	0.130	0.130			
- 10	314	0.128	0.122			
Cue	300	0.135	0.131			
- 12	400	0.113	0.104			
Бензол	293	0.148	0.150			
	323	0.138	0.137			
	389	0,114	0,112			

Таблица 3.21 Теплопроводность чистых компонентов при атмосферном давлении

В таблице 3.22 представлены данные по теплопроводности смеси гептан – октан при различных давлениях смеси [78].

Рассмотренный метод не пригоден для расчета транспортных свойств гликолей, а также теплопроводности воды, метанола и их смеси.

Вязкость водного раствора ДЭГа в диапазоне температур от 0 до 160 °C с содержанием воды от 0 до 20 % мас. апроксимируется со средней относительной точностью ~10 % следующим выражением:

$$\eta_{\rm D} = \exp(x_{\rm dər}(-7,38742 + 2893 \cdot 717 / (T - 29,23564))) \cdot F_{\rm H_2O},$$
(3.103)

где

$$F_{\rm H_2O} = \exp(x_{\rm H_2O} \cdot (-3,46784 + 489 \cdot 8285 / (T - 151,9335))). (3.104)$$

Таблица 3.22

Теплопроводности смеси гептан-октан (25 % мас. $C_7 + 75$ % мас. C_8) Bt/(м·K)

Давление, МПа	Теплопроводность, экперимент/расчет, при температуре		
	280 K	340 K	
0,1 5 10	0,132/0,128 0,134/0,131 0,136/0,133	$\begin{array}{c} 0,113/0,108\\ 0,116/0,111\\ 0.118/0,114 \end{array}$	

Аналогичное выражение для вязкости водного раствора ТЭГа имеет вид

$$\eta_{\rm T} = \exp(x_{\rm T3F}(-2,78442 + 832,565/({\rm T-168},1547))) \cdot F_{\rm H_2O}.$$
 (3.105)

Теплопроводность водных растворов ДЭГа и ТЭГа мало зависит от температуры. Поэтому в большинстве случаев для апроксимации теплопроводности этих растворов допустимо использовать выражения (3.106), (3.107), учитывающие зависимость теплопроводности только от весовой доли гликоля x:

$$\lambda_{\mathcal{A}\Im\Gamma} = 1,174016 - 1,746907 \cdot x + 0,781286 \cdot x^2; \qquad (3.106)$$

$$\lambda_{\text{TPT}} = 0,477758 - 0,245359 \cdot x - 0,039318 \cdot x^2. \tag{3.107}$$

Погрешность этих уравнений не превышает 5 %, когда x лежит в пределах от 0,7 до 1,0, что практически полностью перекрывает диапазон концентраций водных растворов гликолей, используемых в промысловой и заводской практике обработки природного газа.

Теплопроводность водометанольного раствора апроксимируется выражением:

$$\lambda = (x_{\text{met}} \cdot (8,442 \cdot 10^{-7} \cdot T(T - 1000) + 0,37757)^{0,15} + x_{\text{H}_2\text{O}} \cdot \lambda_{\text{H}_2\text{O}}^{0,15})^{6,667}; \qquad (3.108)$$

$$\lambda_{\rm H_{2}O} = 4,0961 \ (T - 273,15)^3 \ 10^{-8} - 1,8723 \ (T - 273,15)^2 \ 10^{-5} + 0,0028268 \ (T - 273,15) + 0,5581,$$
(3.109)

где $x_{\text{met}}, x_{\text{H}_2\text{O}}$ – соответственно массовые концентрации метанола и воды.

Таблицы (3.23–3.25) иллюстрируют практическую приемлемость приведенных выражений [73, 74, 75, 76, 79, 80].

Таблица 3.23

Вязкость водных растворов ДЭГа и ТЭГа

Температура,	ДЭ	Г, %	ТЭГ, %		
°C	100 80		100	92,5	
5	_	_	119,8/119,7	-	
10	-	27,7/26,2	85,9/86,1	-	
20	$35,7/36,0^{*}$	18,6/17,6	48,2/48,2	-	
30	24,8/24,1	11,9/12,2	29,5/29,3	22,4/22,5	
40	16,6/16,6	8,0/8,7	19,3/19,1	-	
50	11,3/11,7	5,7/6,4	_	11,2/10,4	
60	8,4/8,5	4,2/4,7	9,6/9,6	-	
70	6,3/6,3	3,6/3,3	—	6,0/5,8	

Продолжение табл. 3.23

Температура,	ДЭ	Г, %	ТЭГ, %			
°C	100	80	100	92,5		
80	4,8/4,7	2,7/2,8	5,5/5,5	-		
90	3,7/3,6	2,2/2,2	-	3,5/3,6		
100	-	1,7/1,8	3,5/3,6	2,8/3,0		
110	2,2/2,2	_	_	2,4/2,5		
120	1,8/1,8	-	2,5/2,5	2,0/2,1		
130	1,5/1,4	-	-	_		
140	1,15/1,16	-	1,8/1,8	1,4/1,3		
150	—	0,8/0,7	1,4/1,5	-		
160	1,1/0,80	_	_	-		
* Эксперимент/расчет.						

Таблица 3.24 Теплопроводность ДЭГа и ТЭГа

	λ, вт/(м·К)			λ, вт/(м·К)		
<i>х</i> _{ДЭГ} , мас.	Экспери- мент, 40 °С	Расчет	<i>х</i> _{ТЭГ} , мас.	Экспери- мент, 40 °С	Расчет	
$\begin{array}{c} 1,00\\ 0,96\\ 0,90\\ 0,80\\ 0,70\end{array}$	$\begin{array}{c} 0,205\\ 0,220\\ 0,235\\ 0,266\\ 0,320 \end{array}$	$0,208 \\ 0,217 \\ 0,235 \\ 0,278 \\ 0,334$	1,00 0,97 0,93 0,85 0,68	$\begin{array}{c} 0,196\\ 0,202\\ 0,214\\ 0,236\\ 0,284\end{array}$	$\begin{array}{c} 0,193\\ 0,202\\ 0,217\\ 0,241\\ 0,294 \end{array}$	

Таблица 3.25

Сравнение экспериментальных и вычисленных значений λ водных растворов метанола [6]

Концетрация	Температура, °С					
воды, % мол.	0	20	40	60		
0	$\frac{0.209^{*}}{0.210}$	$\frac{0,202}{0,203}$	0,195	0,188		
20	$0,232 \\ 0,239$	0,203 0,227 0,234	$\frac{0.223}{0.230}$	$\frac{0.216}{0.225}$		
40	$\frac{0.267}{0.278}$	$\frac{0.266}{0.278}$	$\frac{0.265}{0.277}$	$\frac{0.264}{0.274}$		
50	$\frac{0,292}{0,304}$	$\frac{0,294}{0,307}$	<u>0,296</u> 0,308	$\frac{0,298}{0,307}$		
60	$\frac{0.324}{0.334}$	$\frac{0,330}{0,343}$	$\frac{0,334}{0,347}$	$\frac{0.340}{0.348}$		
80	$\frac{0,414}{0,419}$	$\frac{0,430}{0,442}$	$\frac{0,443}{0,456}$	$\frac{0.459}{0.466}$		
90	$\frac{0,479}{0,480}$	$\frac{0.502}{0.513}$	<u>0,523</u> 0,537	$\frac{0.544}{0.552}$		
100	$\frac{0.565}{0,558}$	$\frac{0.599}{0,607}$	$\frac{0.628}{0.644}$	$\frac{0.652}{0,669}$		
* В числителе – эксперимент, в знаменателе – расчет.						

Поверхностное натяжение

Рассмотрим метод расчета поверхностного натяжения смеси на базе метода Брока – Берда – Миллера [27]. В этом случае поверхностное натяжение чистого компонента определяется формулами:

$$\sigma = p_c^{2/3} \cdot T_c^{1/3} \cdot Q \cdot (1 - T_r)^{11/9}; \qquad (3.110)$$

где

$$p_c = \sum x_i \cdot p_{ci}; \tag{3.111}$$

$$T_c = \sum x_i \cdot T_{ci}; \tag{3.112}$$

$$Q = \sum x_i \cdot Q_i; \tag{3.113}$$

$$Q_i = 0,1207 \left(1 + \frac{T_{bi}}{T_{ci}} \cdot \ln(p_{ci}) / \left(1 - \frac{T_{bi}}{T_{ci}} \right) \right) - 0,281;$$
(3.114)

$$T_r = T/T_c, \tag{3.115}$$

где p_{ci} – критическое давление *i*-го компонента; T_{ci} – критическая температура *i*-го компонента; T_{bi} – нормальная температура кипения *i*-го компонента. Таблица 3.26 иллюстрирует применимость метода для рас-

чета поверхностного натяжения чистых углеводородов.

Таблица 3.26

Поверхностное натяжение чистых компонентов, Н/м

Компоненты		Температура, °С						
	-60	-40	-20	0	+20	+30	+40	
C3	$\frac{0.018}{0.015}^{*}$	$\frac{0.018}{0.015}$						
nC4	$\frac{0.022}{0.022}$	-,		$\frac{0.015}{0.015}$	$\frac{0.013}{0.013}$			
nC5	- / -		$\frac{0.021}{0.021}$	- ,	- ,	$\frac{0.015}{0.015}$		
C6			•,•		$\frac{0.018}{0.018}$	$\frac{0.017}{0.017}$	$\frac{0.016}{0.016}$	
C7			$\frac{0.025}{0.024}$		$\frac{0,020}{0,020}$	0,017	0,010	
C8			<u>0,025</u> 0,026		$\frac{0,020}{0,022}$			
C10			$\frac{0,028}{0,027}$		$\frac{0,022}{0,024}$		$\frac{0.022}{0.022}$	
C12			0,027		0,020	$\frac{0.025}{0.024}$	0,022	
C18						0,024	$\frac{0.027}{0.024}$	
* В числителе – эксперимент, в знаменателе – расчет.								

Поверхностное натяжение воды, метанола, ДЭГа, ТЭГа и их водных растворов апроксимируется выражениями:

$$\sigma_{\rm met} = 0,0226 - 0,00008 \ (T - 293,0); \tag{3.116}$$

$$\sigma_{\rm H_{2}O} = 0,0732 - 0,000143 \ (T - 288,0); \tag{3.117}$$

 $\sigma_{\text{APF}} = 0.04521 - 0.000088 \ (T - 293.0); \tag{3.118}$

$$\sigma_{\mathrm{T} \ni \Gamma} = 0,0474 - 0,000088 \ (T - 293,0); \tag{3.119}$$

$$\sigma = 1/(\sum x_i / \sigma_i), \qquad (3.120)$$

где σ измеряется в Н/м, T – в К.

3.1.3. РАСЧЕТ РЕКТИФИКАЦИИ МНОГОКОМПОНЕНТНЫХ СМЕСЕЙ

Рассмотрим алгоритм расчета ректификационной колонны в предположении, что потоки, покидающие любую тарелку, находятся в термодинамическом равновесии. Расчетная схема тарелки представлена на рис. З.6. В соответствии с этой схемой с любой тарелки могут отбираться в качестве боковых погонов часть пара либо жидкости и на любую тарелку может подаваться сырьевой поток. Полный набор уравнений, описывающих процесс ректификации, включает:

а) уравнение материального баланса

$$\upsilon_{ij} + l_{ij} = \upsilon_{i, j+1} (1 - W_{j+1}^V) + l_{i, j-1} (1 - W_{j-1}^L) + f_j; \qquad (3.121)$$

$$\sum_{i=1}^{p} v_{ij} = V_j;$$
(3.122)

$$\sum_{i=1}^{p} l_{ij} = L_j;$$
(3.123)

б) уравнение фазового равновесия

$$\upsilon_{ij}/V_j = K_{ij} \cdot l_{ij}/L_j; \qquad (3.124)$$

в) уравнение теплового баланса

$$V_{j}H_{j} + L_{j}h_{j} = V_{j+1}(1 - W_{j+1}^{V}) \cdot H_{j+1} + L_{j-1}(1 - W_{j-1}^{L}) \cdot h_{j-1} + V_{j}^{f} \cdot H_{j}^{f} + L_{j}^{f} \cdot h_{j}^{f} + Q_{j},$$
(3.125)

где i = 1, 2, ..., p; j = 1, 2, ..., n; V, L, f – верхние индексы, характеризующие пар, жидкость и сырье.

Рис. 3.6. Расчетная схема колонны

Подставляя равенства (3.124) в уравнения (3.121), мы можем последние переписать в матричной форме

$$A_{(i)} \cdot Y_{(i)} = F_{(i)}, \qquad (3.126)$$

где $Y_{(i)}$ – вектор-столбец из концентраций *i*-го компонента в паре на тарелках колонны; $F_{(i)}$ – вектор-столбец из мольных количеств *i*-го компонента в сырьевых потоках; $A_{(i)}$ – тридиа-гональная матрица, элементы которой определяются выражениями:

$$a_{11} = V_{1} + L_{1} / K_{i1};$$

$$a_{12} = -V_{2}(1 - W_{2}^{V});$$

$$\dots \dots \dots$$

$$a_{j-1, j} = -L_{j-1}(1 - W_{j-1}^{L}) / K_{i, j-1};$$

$$a_{jj} = V_{j} + L_{j} / K_{ij};$$

$$a_{j+1, j} = -V_{j+1}(1 - W_{j+1}^{V});$$

$$\dots \dots \dots$$

$$a_{n-1, n} = -L_{n-1} \cdot (1 - W_{n-1}^{L}) / K_{i, n-1};$$
134

 $a_{n,n} = V_n + L_n / K_{in}.$

Решения систем линейных уравнений (3.126) позволяют вычислить функции δ_j :

$$\delta_j = \sum_{i=1}^p y_{ij} - 1, \qquad (3.128)$$

где *j* = 1, ... *n*.

Для заданного профиля потоков V_j будем решать систему уравнений

$$\delta_j = 0; \ j = 1, \dots, n$$
 (3.129)

относительно температур на тарелках колонны. Воспользуемся методом Ньютона, в соответствии с которым представим эту систему в следующем виде:

$$\delta_{j}(\overline{T}) + \sum_{k=1}^{n} \frac{\partial \delta_{j}}{\partial T_{k}} \Delta T_{k} = 0; \qquad (3.130)$$

где $j = 1, 2 \dots n$, вектор T – профиль температур. Нетрудно видеть, что значения частных производных $\frac{\partial \delta_j}{\partial T_k}$ вычисляются

на базе уравнений (3.126). При этом выражения производных констант фазового равновесия по температурам зависят от конкретного вида уравнения состояния, используемого для расчета фазового равновесия.

Линейная система уравнений (3.130) позволяет вычислить профиль температур для следующей (q + 1) итерации:

$$\overline{T}^{(q+1)} = \overline{T}^{(q)} + \lambda \Delta \overline{T}, \qquad (3.131)$$

где λ – демпфирующий множитель, значение которого лежит между 0 и 1.

В изложенной последовательности уравнения (3.126)- (3.131) решаются до тех пор, когда выполнится условие

$$\max_{j} \left| \delta_{j} \right| < \varepsilon, \tag{3.132}$$

где є – заданная степень точности.

Из вышеизложенного непосредственно следует, что вычисленные температуры обеспечивают выполнение уравнений материального баланса и фазового равновесия.

На следующем этапе корректируются значения профиля потоков V. Для этого (внешнего) итеративного цикла исполь-

Таблица 3.27

Компоненты	Состав, % моль.	Условия процесса
Метан Этан Пропан <i>п</i> -Бутан <i>п</i> -Пентан Фр. С ₆₊	$11,161 \\ 13,740 \\ 15,987 \\ 16,426 \\ 9,308 \\ 33,378$	Давление 23,1 ата Расход сырья 1000 кмоль/ч Расход холодного орошения 320 кмоль/ч Температура сырья 63 °C Температура холодного орошения 11,8 °C Число теоретических тарелок 15

зуются уравнения теплового баланса (3.129). На базе метода простых итераций имеем

$$V_{j}^{(m+1)} = (V_{j+1}^{(m)}(1 - V_{j+1}^{V})H_{j+1} + L_{j-1}^{(m)}(1 - W_{j-1}^{L}) \cdot h_{j-1} + V_{j}^{f} \cdot H_{j}^{f} + L_{j}^{f} \cdot h_{j}^{f} + Q_{j} - L_{j}^{(m)} \cdot h_{j})/H_{j}, \qquad (3.133)$$

где *m* – текущий номер итерации во внешнем итеративном цикле.

Новый профиль потоков позволяет вернуться к начальному этапу алгоритма. В такой последовательности расчет продолжается до тех пор, пока уравнения теплового баланса будут выполняться с требуемой степенью точности.

Рассмотренный алгоритм допускает обобщение на случай расчета ректификации с двумя жидкими фазами: углеводородной и водной. Такая задача возникает, в частности, при расчете процесса стабилизации нестабильного конденсата, поступающего с промысловых установок и содержащего метанольную воду. В результате в отдельных зонах колонны могут реализовываться условия образования двух жидких фаз. Важно уметь предсказывать расположение этих зон, чтобы посредством боковых отборов осуществлять наиболее полный вывод воды. Кроме того, расчет колонны без учета воды может привести к значительным ошибкам в оценке температурного профиля и нагрузки на печь. В качестве иллюстрации рассмотрим расчет процесса деэтанизации нестабильного конденсата на Уренгойском газоконденсатном месторождении. Исходные данные для расчета приведены в табл. 3.27.

Расчеты на различное содержание воды в нестабильном конденсате (0; 0,5; 1 и 2 % моль.) выявили существенное влияние содержания воды на температуру в кубе деэтанизатора и нагрузку на печь:

Содержание воды в сырье, % моль	0	0,5	1,0	2,0
Температура куба, °С	156	151	146	137
Нагрузка на печь, млн. кДж/ч	22,0	20,5	19,5	17,8

3.1.4. МОДЕЛИРУЮЩИЕ ПРОГРАММЫ

Разработка современных технологических процессов переработки природного углеводородного сырья и оптимальная эксплуатация действующих производств невозможна без применения моделирующих программ, имеющих высокую точность описания параметров технологических процессов и позволяющих без значительных материальных и временных затрат производить исследования этих процессов. Такие модельные исследования имеют огромное значение не только для проектирования, но для функционирования существующих производств, так как позволяет учесть влияние внешних факторов (изменение состава сырья, изменение требований к конечным и промежуточным продуктам и т.д.) на показатели действующих производств. В настоящее время инженерам-технологам доступно большое число программных средств моделирования химико-технологических процессов. Эти средства в основном разработаны фирмами США и Канады. По оценкам "Сhemputers", рынок программных средств для моделирования химикотехнологических процессов и инженерных расчетов, включая программы для тренировки персонала и средства автоматизации производств, составляет в настоящее время 487 млн. дол., а в 2001 г. достигнет млрд. дол. Рынок собственно программ моделирования химико-технологических процессов в 1996 г. составлял 150 млн. дол. и в текущем году вырос на 10,9 %. В настоящее время одно рабочее место инженера-технолога или разработчика, оборудованное специальными средствами моделирования, обходится в США в среднем в 20 000 тыс. дол. в год.

В данном разделе рассматриваются основные принципы моделирования, заложенные в эти системы и их основные характеристики, позволяющие оценить пригодность различных инструментов для решения широкого круга задач, встающих перед инженерным персоналом газовой и нефтяной промышленности.

В основу всех средств моделирования заложены общие принципы расчетов материально-тепловых балансов химических производств (т.е. производств, связанных с изменением агрегатного состояния, компонентного и химического состава материальных потоков). Как правило, любое производство состоит из стадий (элементов), на каждой из которых производится определенное воздействие на материальные потоки и превращение энергии. Последовательность стадий обычно описывается с помощью технологической схемы, каждый эле-

мент которой соответствует определенному технологическому процессу (или группе совместно протекающих процессов). Соединения между элементами технологической схемы соответствуют материальным и энергетическим потокам, протекающим в системе. В целом моделирование технологической схемы основано на применении общих принципов термодинамики к отдельным элементам схемы и к системе в целом.

Любая система моделирования включает набор следующих основных подсистем, обеспечивающих решение задачи моделирования химико-технологических процессов:

набор термодинамических данных по чистым компонентам (база данных) и средства, позволяющие выбирать определенные компоненты для описания качественного состава рабочих смесей;

средства представления свойств природных углеводородных смесей, главным образом – нефтей и газоконденсатов, в виде, приемлемом для описания качественного состава рабочих смесей, по данным лабораторного анализа;

различные методы расчета термодинамических свойств, таких как коэффициента фазового равновесия, энтальпии, энтропии, плотности, растворимости газов и твердых веществ в жидкостях и фугитивности паров;

набор моделей для расчета отдельных элементов технологических схем – процессов;

средства для формирования технологических схем из отдельных элементов;

средства для расчета технологических схем, состоящих из большого числа элементов, определенным образом соединенных между собой.

Термодинамические данные по чистым компонентам

Эти данные необходимы для расчета термодинамических свойств, таких как коэффициента фазового равновесия, энтальпии, энтропии, плотности, растворимости газов и твердых веществ в жидкостях и фугитивности паров. Они включают:

критические параметры и фактор ацентричности;

молекулярная масса;

плотность в точке кипения или при стандартных условиях; температура кипения при атмосферном давлении;

константы для расчета идеально-газовой теплоемкости или идеально-газовой энтальпии, энергии Гиббса, теплот обра-

¦ Menu Name Cl	Comp	nponent Number 1 ;
Print Name Methane	Comp	mponent Type HC Std HYSIM {
UNIFAC : <<< :	no structure availab	able >>> ¦
¦ Formula : CH4		1
;======================================		
Boiling Point	111.63 Kelvin	Ideal Enthalpy Coefficients
Liquid Density	299.39 Kg/m3	(KJ/kg at 0 K, ideal gas)
¦ Molecular Weight	16.04	Hideal = -1.29800E+01
ł		+ 2.36459E+00 * T
¦ Critical Temp.	190.70 Kelvin	¦ + −2.13247E-03 * T^2 ¦
Critical Press.	46.41 Bar	¦ + 5.66180E-06 * T^3 ¦
¦ Critical Volume	0.0990 M3/kgmol	1 ¦ + -3.72476E-09 * T^4 ¦
Acentric Factor	0.0115	¦ + 8.60896E-13 * T^5 ¦
Acentric Wsrk	0.0074	Entropy Coeff 1.00000E+00
¦ Charact. Volume	0.0994 M3/kgmol	l ¦ Cavett Parameter 0.2937 ¦
Dipole Moment	0.0 Debye	
Vapour Pressure [p:	ress(Kpa),temp(K)]	Ideal Gas Gibbs Free Energy
ANTA 3.1350E+01	ANTD -3.2613E+00	0 ¦ Gibbs = -7.5261E+04
ANTB -1.3075E+03	ANTE 2.9418E-05	5 + 7.5925E+01 * T
ANTC 0.0000E+00	ANTF 2.0000E+00	0 ¦ + 1.8699E-02 * T^2 ¦
; TMIN 91.00 Ke	TMAX 190.40 Ke	e ¦ Heat of Form -7.4900E+04 KJ/kgmol;
¦ Viscosity Theta A	-0.0020	Heat of Comb -8.0270E+05 KJ/kgmol
¦ Viscosity Theta B	0.0255	Radius of Gyration 1.12 Ang

Рис. 3.7. Данные по термодинамическим свойствам чистого компонента в HYSIM зования и сгорания, вязкости, поверхностного натяжения, и т.п.

Например, в системе моделирования "HYSIM" данные по термодинамическим свойствам чистого компонента (в данном случае – метана) выглядят так, как изображено на рис. 3.7.

Обычно моделирующие системы имеют встроенные базы данных свойств чистых компонентов. Число чистых компонентов обычно превышает 1000, что дает возможность использовать программу практически для любых случаев. На практике при решении задач, характерных для газовой и нефтяной промышленности, используются не более 50 компонентов.

Средства представления и анализа свойств нефтей и газовых конденсатов

Эти средства необходимы, чтобы на основе данных лабораторных исследований свойств нефтей, газоконденсатов и нефтепродуктов получить необходимые данные для адекватного представления этих смесей в моделирующей системе. Потоки углеводородов могут быть определены (заданы) с помощью лабораторных данных разгонки. Обычно эти данные состоят из собственно данных разгонки (ИТК, ASTM D86, ASTM D1160 или ASTM D2887), данных по удельному весу (средний удельный вес и, возможно, кривая удельного веса) и, может быть, данных по молекулярному весу, содержанию легких компонентов, а также данных по специальным товарным свойствам, таким как температура застывания и содержание серы. Эта информация используется для генерации набора дискретных псевдокомпонентов, которые потом применяются для представления состава каждого потока, характеризуемого кривой разгонки.

Методы расчета термодинамических свойств

Обычно моделирующая система включает различные методы расчета термодинамических свойств, таких как коэффициента фазового равновесия, энтальпии, энтропии, плотности, растворимости газов и твердых веществ в жидкостях и фугитивности паров. Данные методы включают в себя:

обобщенные корреляции, такие как метод расчета коэффициентов фазового равновесия Чао – Сидера и метод расчета плотности жидкости API;

уравнения состояния, такие как метод расчета Соава –

Редлиха – Квонга для коэффициента фазового равновесия, энтальпий, энтропий и плотностей;

методы коэффициентов активности жидкости, такие как метод NRTL (Non-Random Two-Liquid – неслучайное двужидкостное) для расчета коэффициента фазового равновесия;

методы фугитивности паров, такие как метод Хайдена – О'Коннела для димеризующихся веществ;

специальные методы расчета свойств специфических систем компонентов, таких как спирты, амины, гликоли и системы кислой воды.

Большинство из этих методов подробно описаны в монографии [58]. Наиболее часто для моделирования процессов обработки природного газа и нефти используются уравнения состояния Пенга – Робинсона [56] и Соава – Редлиха – Квонга [61] и их модификации. Вопросы применения этих уравнений состояния при моделировании термодинамических свойств газоконденсатных флюидов очень подробно описаны в монографии [8]. Эти методы позволяют решить большую часть технологических проблем, возникающих при моделировании задач газопереработки.

Средства моделирования процессов

Как правило, от состава средств моделирования отдельных процессов зависят функциональные возможности всей моделирующей системы. Как правило, все моделирующие системы включают средства для моделирования следующего набора процессов:

сепарация газа и жидкости (2-х несмешивающихся жидкостей);

однократное испарение и конденсация;

дросселирование;

адиабатическое сжатие и расширение в компрессорах и детандерах;

теплообмен двух потоков;

нагрев или охлаждение потока;

ветвление и смешение потоков;

процессы ректификации с возможностью подачи и отбора боковых материальных и тепловых потоков, осуществляемые в абсорберах, конденсационных (укрепляющих) колоннах, отпарных (исчерпывающих) колоннах, дистилляционных колоннах.

Все программы позволяют моделировать сложные дистилляционные системы со стриппингами, боковыми орошениями, подогревателями и т.д., т.е. решать наиболее сложные задачи

первичной переработки нефти. Большинство задач дистилляции применительно к процессам переработки природного газа и конденсата, имеющимся на действующих производствах, с помощью рассматриваемых пакетов решаются успешно и с высокой скоростью.

Такого набора процессов достаточно для моделирования основного круга задач газопереработки. Системы моделирования могут содержать также средства для моделирования процессов, расширяющих сферу их использования на химическую и нефтехимическую промышленность:

теплообмен в многопоточных теплообменниках;

химические процессы в реакторах (в том числе стехиометрический, с минимизацией энергии Гиббса, равновесный, полного вытеснения и смешения);

процессы в экстракторах жидкость - жидкость;

процессы с твердой фазой (кристаллизаторы, центрифуги, фильтры, сушилки и т.д.).

Часто в моделирующих системах имеются средства для написания несложных программ для моделей пользователями. При этом используется достаточно простой макроязык.

Построение технологических схем из отдельных элементов

По способу построения технологических схем из отдельных элементов моделирующие программы можно разделить на системы с визуальным интерфейсом и системы с табличным кодированием. Первые позволяют формировать схемы непосредственно на экране компьютера, выбирая элементы из списка и соединяя их в определенном порядке (рис. 3.8). Табличное кодирование предусматривает последовательный выбор элементов и назначение входным и выходным потокам адресов из общего списка потоков моделируемой схемы. Естественно, первый способ наиболее удобен. И в первом, и во втором случае интерфейс пользователя во всех пакетах позволяет работать с графом потоков и агрегатов посредством обращения и редактирования специальной таблицы, содержащей заданные пользователем алфавитно-цифровые идентификаторы потоков и их характеристики (рис. 3.9).

Расчет технологических схем

Любая задача моделирования эквивалентна большой системе нелинейных одновременно решаемых уравнений. Эта

GIBBS pro	cess simulator					_ 🗆 ×
Auto	a		A			
Num	ns	201 108.8	(Ввод данных	> Чет	верг 26/ 3	3/98 17:08:02
Коннектор	N =					
👝 КОЛОННА	ДИСТИЛЛЯЦИ	онная ———	Компонент	кМоли	И мольные	Энтальп,кДж
Номера	ОТБОР	продуктов:	Nitrogen	0.000	0.0000	-5569
тарелок	номер	поток.[Фаза]	C02	0.000	0.00000	Отн.энтальп
питания	тарелки	КМоли отб.	Methane	0.000	0.00000	к Дж/к Моль
	-1>		Ethane	0.225	1.48450	-367.05
	ذل_		Pronane	6.190	40.79653	Энтоп.кПж/К
			i-Butane	2.353	15.50875	739
<-	N	0.00 Tas	n-Butane	4_040	26.62712	Отн.энтроп.
	——————————————————————————————————————	0.00 ж илк	i-Pentane	1.263	8.32476	кОж/К/кМоль
∩		oroo neigit	n-Pentane	m 819	5 39594	48 68
l ñ í	<		n-Hevane	0 174	1 14495	Мольн поля
۲ - K	` n	0 00 Fag	n-Octane	ດັດດດ	0.00000	милкости У
	Ň	0 00 ¥unv	H20	0.000	0.00000	95 5972
5		0.00 AMAR	Methanol	0.002	0.01131	Плотность :
			ne chano r		0.10014	
۵ ۲-۱	` n	0 00 Taa				515 9867
	\ \ Ö	0.00 Ias				
\ □		о.оо лидк				94 M340
l ő í	/					
U U		unquesters F				90/ 0000
	Cotul_DuCo-	Decision There are a second se				MDaa T/Mag
симмо	4E 49 T	гасчет гранс	220 22 V C		1 100 MD-	
H Dowowy 2T	19.17 1	ermeparypa 	ја7.22 М. Ц Ија смула	авление	1.105 MPa	
TLIOLOGIC 21	едипицэгеди	пицтиноли эт	n onnye	roopue or	IONU DNU 1 DNU	т/потерыход

Рис. 3.8. Графический интерфейс ProVision

Рис. 3.9. Бланк для задания спецификаций ректификационной колонны в GIBBS система включает расчет всех необходимых термодинамических свойств для всех потоков, расходов и составов с применением выбранных моделей расчета свойств и процессов. В принципе, возможно решение всех этих уравнений одновременно, но в моделирующих системах обычно используется другой подход: каждый элемент схемы решается с применением наиболее эффективных алгоритмов, разработанных для каждого случая. При расчете системы взаимосвязанных аппаратов последовательность расчета элементов определяется автоматически (или может быть задана пользователем). При наличии рециклов создается итерационная схема, в которой рецикловые потоки разрываются и создается последовательность сходящихся оценочных значений. Эти значения получаются замещением величин, рассчитанных при предыдущем просчете схемы (Метод Простого Замещения) или путем применения специальных методов ускорения расчета рециклов - Вегштейна (Wegstein) и Бройдена (Broyden).

Динамическое моделирование

Возможность проводить расчеты в динамическом режиме позволяет гораздо лучше понять сущность моделируемых процессов. Можно собрать и испытать схему регулирования, исследовать пусковые режимы, получить представление о реально работающем процессе и поведении объекта в нештатных ситуациях, о влиянии изменения рабочих параметров на качество продуктов.

Конструкция аппаратов

Многие моделирующие программы позволяют после выполнения стадии расчета технологической схемы или отдельного аппарата выполнять расчеты гидравлических и основных конструктивных характеристик сепарационного оборудования, емкостей, теплообменной аппаратуры, тарельчатых и насадочных ректификационных колонн, а также выполнять оценку стоимости изготовления каждого аппарата. Это очень важно для выполнения стадии как для проектных работ, так и предпроектных исследований, так как позволяет оптимизировать капиталоемкость разрабатываемой технологии.

Системы моделирования

В настоящее время лидирующие позиции на Американском рынке (а Американский рынок программных продуктов

наиболее развит) занимают продукты трех компаний – Simulation Sciences (SimSci), Aspen Technologies и Hyprotech.

Hysys и Hysim. Продукты канадской компании Hyprotech Ltd. Hysim является продуктом для платформы PC/DOS. Позволяет выполнять статическое моделирование практически всех основных процессов газопереработки, нефтепереработки и нефтехимии. Особый акцент сделан на работу с уравнением состояния Пенга - Робинсона. Программа имеет расширенный набор модификаций уравнения состояния Пенга – Робинсона, включающих работу с несимметричными коэффициентами бинарного взаимодействия и различными правилами смещения, модификации для работы с водой, гликолями и аминами. Пакет имеет оригинальный, весьма совершенный алгоритм расчета ректификационных колонн, практически не имеет ограничений в отношении набора задаваемых спецификаций и сложности колонны. Программа имеет табличный ввод данных, по которому затем строится изображение схемы в формате AUTOCAD. Дополнительный пакет Нургор позволяет эффективно обрабатывать экспериментальные данные по свойствам чистых компонентов и затем использовать полученные корреляции в расчетах. В 1996 г. фирма представила новую программу - Hysys, разработанную специально для 32 разрядных платформ PC/Windows. В настоящее время вышла вторая версия программы. Программа, наряду с возможностью статического моделирования технологических схем, позволяет в той же среде производить динамическое моделирование отдельных процессов и всей технологической цепочки, а также разрабатывать и отлаживать схемы регулирования процессов. Имеется возможность выполнять расчеты основных конструктивных характеристик сепарационного оборудования, емкостей, теплообменной аппаратуры, тарельчатых и насадочных ректификационных колонн и оценку стоимости оборудования. Программа имеет развитый графический интерфейс, поддерживает технологию OLE-2 и хорошо интегрирована с офисными приложениями Microsoft. Подробную информацию по этим продуктам можно получить по Internet на сайте компании по адресу: http://www.hyprotech.com.

Aspen Plus и Speed UP. Продукты американской компании Aspen Technologies Inc. Эти системы широко известны в США, в том числе среди студентов химико-технологических специальностей. Эти пакеты разработаны для Unix-платформ DECalpha и Solaris. Являясь таким образом, высокопроизводительными приложениями для рабочих станций, продукты малоизвестны в России. Aspen Plus – система для статического мо-

делирования процессов, основанных на химическом и фазовом превращении; имеет широкий набор алгоритмов, который постоянно расширяется, благодаря тому, что Aspen Plus является системой с открытыми стандартами. Система имеет развитый графический интерфейс. Имеется возможность выполнять расчеты основных конструктивных характеристик и оценку стоимости оборудования. Speed UP – система динамического моделирования технологических процессов, совместимая на уровне данных с платформой Aspen Plus. Обе программы пакета сейчас объединены в новейшем интегрированном пакете Dyna Plus. Более подробную информацию о продуктах можно получить на сайтах по адресам: http://www.che.com и http:// www.eos.ncsu.edu /software/software index /aspen.html.

Pro II и ProVision. Эти широко известные программные продукты разработаны американской фирмой Simulation Sciences, Inc. Система Pro II была первоначально перенесена на платформу DOS/PC с мэйнфреймов. В этой реализации она не имела удобного пользовательского интерфейса. В 1995 г. фирма анонсировала новый графический интерфейс для 32 разрядных платформ PC/Windows с поддержкой OLE-2 и выпустила пакет ProVision. Одновременно разрабатывалась реализация и для Unix-платформ (AIX и Solaris). Практически, в Pro II/ProVision заложены возможности моделирования почти всех химических и нефтехимических производств. Также имеются широкие возможности для работы с растворами электролитов. Имеется возможность проведения гидравлических расчетов сепарационного оборудования, реакторов, насадочных и тарельчатых ректификационных колонн. Фирма имеет в своем арсенале также пакет динамического моделирования - Protiss, который сейчас также доступен через интерфейс ProVision. Кроме этого, фирма предлагает пакет моделирования гидравлики нефтегазовых месторождений, систем сбора и транспорта нефти и газа - Pipeface. Фирма имеет еще ряд продуктов, в том числе ROM (Rigorous Online Modeling), системы анализа данных по месторождениям нефти и газа. В кооперации с Shell Development Co. разработан онлайновый симулятор Romeo. Более подробную информацию о продуктах можно получить на сайте компании по адресу: http:// www.simsci.com.

Кроме продуктов "первого эшелона" на рынке программных средств для инженерного моделирования присутствуют продукты, предоставляющие пользователю значительно меньше возможностей, но достаточно, чтобы решать основной круг задач инженера-технолога.

СНЕМСАD III. Программный пакет СНЕМСАD разработан фирмой ChemStations, Inc. Пакет включает средства статического моделирования основных процессов, основанных на фазовых и химических превращениях, а также средства для расчета геометрических размеров и конструктивных характеристик основных аппаратов, и оценки стоимости оборудования. Программа разработана для платформы DOS/PC, имеет графический интерфейс. В настоящее время разрабатывается Windows-версия программы. Подробную информацию по программе можно получить на сайте по адресу: http://www. chemcad.com

PROSYM. Продукт компании Bryan Research & Engineering, Inc (рис. 3.10). Пакет включает средства статического моделирования основных процессов газопереработки (включая гликолевую осушку, аминовую очистку, фракционирование), нефтепереработки (атмосферно-вакуумная перегонка). Имеются средства для расчета геометрических размеров и конструктивных характеристик аппаратов. Программа разработана для платформы DOS/PC, имеет удобный графический интерфейс. Подробную информацию по программе можно получить на сайте по адресу: http://www.bre.com.

Среди Российских программ следует отметить две разработки: КОМФОРТ и GIBBS.

КОМФОРТ. Эта система моделирования представляет собой инструментальное средство для выполнения поверочных и проектных расчетов материально-тепловых балансов различных химических производств. КОМФОРТ состоит из управляющей программы и модулей расчета аппаратов. Управляющая программа с конкретным набором технологических модулей образует предметно-ориентированную моделирующую программу, позволяющую выполнять расчеты для конкретного класса химико-технологических схем (ХТС). Программа имеет средства для расчета всех основных процессов фракционирования для газопереработки. Интерфейс представляет собой систему с табличным кодированием данных. Программа разработана для платформы DOS/PC. С программой можно ознакомиться во ВНИИГАЗе.

GIBBS. Этот моделирующий пакет разработан фирмой "Топэнергобизнес" в 1992 г. Пакет включает средства для моделирования процессов промысловой подготовки природных газов, включая обычные установки низкотемпературной сепарации и низкотемпературные детандерные заводы с частичным или полным фракционированием жидких углеводородов, процессы обработки газа с впрыском, сбором и регенерацией ин-

Рис. 3.10. Моделирование турбодетандерной установки с помощью пакета PROSIM гибиторов гидратообразования, промысловой и заводской подготовки и переработки газоконденсата и нефти, включая деэтанизацию, стабилизацию и фракционирование по топливному варианту, газофракционирование. Программа имеет средства для синтеза нефтяной смеси по данным лабораторных анализов, расчета товарных свойств фракций моторных топлив, условий образования и ингибирования газовых гидратов, расчета дифференциальной конденсации пластовых смесей, расчета условий образования твердой фазы CO₂ и другие утилиты инженерного применения. Программа разработана для платформы DOS / PC, имеет удобный псевдографический интерфейс.

Обычно стадия проектирования (т.е. изготовления рабочих чертежей) выполняется с помощью специализированного программного обеспечения (CAD/CAM приложений). Однако стадии проектирования предшествует исследование проекта, на которой выполняются отдельные общие стадии проектирования (планирование размещения объекта, снабжение энергией, теплом, водой и т.п.), оценка стоимости отдельных стадий и проекта в целом и составление сметы проекта, разработка сетевого графика выполнения проекта, анализ финансовой эффективности проекта. Хотя исследование проекта не относится к задачам моделирования химико-технологических процессов, существует специальное программное обеспечение, позволяющее выполнять такие исследования и использующее в качестве исходных данные, полученные с помощью перечисленных выше программных продуктов. К таким программам относится ICARUS PROCESS EVALUATOR (IPE), использующий в качестве исходных данные, полученные с помощью HYSYM, Aspen Plus, ProVision и CHEMCAD III. Программа позволяет выбрать наиболее прибыльный проект из различных вариантов, чтобы обеспечить надежный возврат инвестиций после осуществления проекта. Для этого выполняется полный анализ стоимости проекта на основе данных о стоимостях оборудования, труда, транспортировки, различных типов установок, зданий, сооружений и т.д. (для условий США, Великобритании и Японии). При этом может быть выполнен подробный расчет размеров оборудования по стандартам ASME, API, ANSI, ТЕМА, NEMA, BS5500, JIS. На основе общих характеристик проекта и сметных расчетов может быть разработан сетевой график производства работ, и далее – выполнен подробный финансовый анализ.

Современные средства моделирования, которые могут быть использованы для разработки, анализа и проектирования новых производств, и для анализа работы существующих, весьма

многообразны. Они позволяют автоматизировать практически все стадии инженерного труда и свести к минимуму затраты рабочего времени, трудовых ресурсов и денежных средств. При этом поставленная задача решается оптимально, с учетом накопленного опыта и данных. Совершенно очевидно, что кон-курентное развитие техники и технологии невозможно без широкомасштабного использования таких средств моделирования как в проектных и исследовательских организациях, так и на производстве.

HYSIM, **HYSYS** – торговые марки Hyprotech Ltd.

Pro II, ProVision, PipeFace, Protiss – торговые марки Simulation Sciences, Inc.

Aspen Plus, Speed UP, Dyna Plus – торговые марки AspenTechnologies, Inc.

СНЕМСАD – торговая марка ChemStations, Inc.

PROSYS – торговая марка Bryan Research & Engineering, Inc. **GIBBS** – торговая марка ООО "Топэнергобизнес".

3.2. ТРЕБОВАНИЯ К ОСУШКЕ И ОЧИСТКЕ ГАЗА ПЕРЕД ПОДАЧЕЙ ЕГО НА НИЗКОТЕМПЕРАТУРНОЕ РАЗДЕЛЕНИЕ

Условия низкотемпературной переработки газа, а также требования к качеству получаемых продуктов требуют очистки газа от диоксида углерода, сероводорода и осушки газа.

Очистку газа от кислых компонентов производят либо абсорбцией аминами (при высокой концентрации H_2S и CO_2), либо адсорбцией на твердых поглотителях.

Наиболее часто очистку от H_2S производят аминами до остаточного содержания 0,001 %, при этом обычно производится очистка и от CO_2 до 0,02 %. Такая степень очистки вполне удовлетворяет требуемой для любых процессов переработки газа.

Для бессернистых газов необходимость очистки от CO₂ зависит от его содержания в сырьевом газе, технологии и параметров процесса.

Сказанное выше относится также и к требуемой степени осушки.

Для избежания образования гидратов необходимо осушать газ до точки росы, соответствующей минимальной температуре процесса. Однако, если минимальная температура процесса ниже минус 70 °C, то, как показал опыт эксплуатации крио-

генных установок, достаточно осушить газ до температуры точки росы -65 °C $\div -75$ °C (давление осушаемого газа 2 МПа и выше). Указанной температуре точки росы соответствует остаточное содержание воды в газе менее 1 ррт и при этом обычно обеспечивается непрерывная работа установок в течение 8000 ч, после чего проводят отогрев и продувку установок.

В качестве примера осушки газа гликолями приводятся графические зависимости температуры точки росы газа по воде от концентрации ТЭГа, числа теоретических тарелок в абсорбере и количества орошения (рис. 3.11). Графики были построены по результатам расчетов, выполненных методом, указанным в разделе 3.1.1.

Температура газа принималась равной 303 К, орошения – 308 К, давление в абсорбере – 6 МПа. Газ насыщен водой.

Из графиков видно, что при концентрации ТЭГа 99,9 % мас. возможно достигнуть температуры точки росы газа 229 К (понизить на 74 К). Для получения, например, температуры точки росы 230 К при 6 теоретических тарелках требуется кратность орошения 15 кг ТЭГа на 1 кг воды, а при 4 теоретических тарелках - 25. При 2 теоретических тарелках такая температура точки росы может быть получена при кратности орошения на порядок выше. Для достижения температуры точки росы газа ниже 229 К требуется более высокая концентрация ТЭГа. При концентрации ТЭГа 99 % максимально достижимая температура точки росы газа 256 К, а при концентрации ТЭГа 99,97 % мас. возможно достигнуть точку росы газа порядка 216 К (-57 °C). Поэтому, когда требуется осушка газа температуры до точки росы минус 70 °С обычно применяют осушку твердыми поглотителями, из которых наиболее эффективными являются цеолиты.

В то же время в зарубежной литературе появились сообщения о возможности осушки газа гликолями до температуры точек росы минус 70 °C и ниже. Так в работе [30] утверждается, что на установке Семинол фирмы Amerada Hess достигалась концентрация гликоля 99,99÷99,999 % мас., что позволило достигать температуры точки росы осушаемого газа от -73 °C до -95 °C. Отмечается, что данный процесс может быть конкурентноспособен с осушкой на цеолитах, при этом вчетверо снижаются затраты энергии и вдвое капиталовложения.

Альтернативным способом предотвращения образования гидратов является впрыск метанола в поток газа. Обычно это используется в установках подготовки газа к транспорту, где минимальная температура не ниже минус 30 °C. За рубежом имеются установки низкотемпературного разделения газа,

Рис. 3.11. Зависимость температуры точки росы газа по воде от концентрации ТЭГа (t = 99,9% мас., $\cdot = 99$ % мас.) числа теоретических тарелок и количества орошения (на 1 кг воды в сырьевом газе)

работающие с впрыском метанола, однако в 99 случаях из 100 применяется адсорбционная осушка или (в меньшей степени) абсорбция триэтиленгликолем. Применение метанола приводит к загрязнению им продуктов газоразделения. При поставке сжиженных газов на экспорт содержание метанола не должно превышать 0,005 % мас. согласно ГОСТу 21443–75 (изм. № 5 от 1995 г.).

Нет достоверных данных о влиянии водометанольного раствора на надежность работы турбодетандеров. Зарубежные фирмы, производящие турбодетандеры, рекомендуют подачу на них осушенного газа.

Как уже отмечалось, необходимость очистки сырьевого газа от СО₂ определяется технологическим процессом и его параметрами. В процессе охлаждения природного газа, содержащего CO₂, последний конденсируется совместно с другими углеводородами и растворяется в них. Однако для СО₂ существует предельная растворимость в жидких углеводородах, выше которой он раствориться не может, поэтому при дальнейшем охлаждении лишний СО₂ образует твердую фазу. Предельная растворимость СО₂ в жидких углеводородах зависит от температуры, причем с понижением температуры она уменьшается. В разных углеводородах она несколько отличается, в смеси она немного выше, чем в индивидуальных углеводородах. На рис. 3.12 приведены графические зависимости растворимости твердого СО₂ в жидких углеводородах от температуры [37, 47]. При данной температуре концентрация CO₂ в жидкой фазе во всех точках технологической схемы должна быть не выше указанной на графике, в противном случае возможно выпадение твердой фазы в аппаратах и арматуре.

Наибольшая вероятность выпадения твердого CO₂ может иметь место на верхних тарелках деметанизатора, при дросселировании жидкости и расширении газа в детандере.

При охлаждении природного газа возможно выпадение твердого CO_2 непосредственно из газа. Это характерно для бедного природного газа, состоящего в основном из метана. На рис. 3.13 приведены изотермы фазового равновесия газ – твердый CO_2 для системы метан – диоксид углерода [43]. Точки на этих кривых показывают, какое максимальное содержание CO_2 может содержаться в газе при данных температуре и давлении.

Приведенные графики позволяют оценить возможность выпадения твердой углекислоты в узлах и аппаратах технологических схем и выбрать параметры процесса для исключения такой возможности. Например, чтобы отделить CO₂ от метана в ректификационной колонне необходимо выбрать параметры процесса выше кривой 1 на рис. 3.13.

При извлечении из природного газа этана содержание диоксида углерода обычно допускается 0,1+1 % в сыром газе в зависимости от следующих факторов:

1. Чем выше степень извлечения этана, тем более низкие температуры в верхней секции деметанизатора и других узлах

Рис. 3.12. Зависимость растворимости твердого диоксида углерода в жидких углеводородах от температуры [37, 47, 43]: 1 – в жидком метане; 2 – в жидком этане; 3 – в жидком пропане

технологической схемы и, следовательно, большая вероятность образования твердой CO₂.

2. Чем ниже давление процесса разделения, тем ниже будут температуры в аппаратах при одинаковой глубине извлечения этана.

этана. 3. Чем выше содержание в газе углеводородов С_{2+ВЫС}, тем выше температура и выше растворимость СО₂ в жидкости. Наибольшая вероятность выпадения твердой фазы СО₂ при разделении бедного газа.

На последнем факторе основывается основной способ, пре-

Рис. 3.13. Фазовая диаграмма системы метан – диоксид углерода: 1 – тройные точки; 2 – изотермы газ – твердая фаза

дотвращающий образование твердого диоксида углерода. К орошению деметанизатора добавляют углеводороды C_{3+BbIC} или C_{4+BbIC} , причем, чем больше CO_2 поступает в колонну с потоками, тем больше требуется добавка углеводородов. В предельном случае верхняя секция колонны превращается в абсорбционную.

В процессе выделения из газа гелия температуры значительно более низкие, чем в процессе выделения этана, и газ в основной стадии процесса почти не содержит углеводородов C_{2+BblC} . Поэтому требования по содержанию CO_2 здесь более жесткие. Обычно требуется очистка газа до 0,02 % CO_2 , что, как показал опыт, позволяет работать без забивки аппаратов и арматуры твердым CO_2 .

При необходимости очистки сырьевого газа, содержащего CO_2 менее 1 %, ее обычно производят совместно с осушкой на цеолитах.

Кроме очистки газа от CO₂ аминами или адсорбционным способом применяют очистку ректификацией при высоком давлении 4÷4,3 МПа.

3.3. СПОСОБЫ РАЗДЕЛЕНИЯ ПРИРОДНОГО ГАЗА И ИСПОЛЬЗУЕМЫЕ ХОЛОДИЛЬНЫЕ ЦИКЛЫ

Основными способами извлечения этана и более тяжелых углеводородов из природного газа являются абсорбционный и низкотемпературной конденсации.

В абсорбционном методе в качестве абсорбента используют обычно стабильный конденсат или различные фракции углеводородов. Этот способ получил ранее большое распространение, но затем был вытеснен способом низкотемпературной конденсации, который характеризуется более высокой степенью извлечения углеводородов и меньшими эксплуатационными и капитальными затратами. По данным фирмы "Мицубиси Хэви Индастриз" все ГПЗ, построенные в США с 1973 г., работают на турбодетандерах, ряд установок низкотемпературной абсорбции (HTA) реконструирован на детандерные.

Для охлаждения природного газа применяют холодильные циклы, основанные на использовании джоуль-томсоновского эффекта дросселирования газа, изоэнтропийного расширения газа, испарения жидкостей [31].

Принцип охлаждения – отвод тепла от какого-либо тела на температурном уровне ниже температуры окружающей среды и передача его в окружающую среду. При этом, согласно второму началу термодинамики, требуется затратить работу, которая для цикла будет равна:

$$L = Q_1 - Q_2, \tag{3.134}$$

где L – работа, затрачиваемая на сжатие газа в адиабатном процессе (отсутствует теплообмен с окружающей средой); Q₁ – отвод тепла от системы на верхнем температурном уровне (в окружающую среду); Q₂ – подвод тепла на нижнем температурном уровне – холодопроизводительность цикла. Из уравнения (3.134) следует, что количество тепла, отво-

Из уравнения (3.134) следует, что количество тепла, отводимое на высоком температурном уровне, равно сумме холодопроизводительности и затраченной работы.

Коэффициент полезного действия холодильного цикла

$$\eta = Q_2 / L.$$

(3.135)

3.3.1. ХОЛОДИЛЬНЫЕ ЦИКЛЫ, ОСНОВАННЫЕ НА ИСПОЛЬЗОВАНИИ ДЖОУЛЬ-ТОМСОНОВСКОГО ЭФФЕКТА ДРОССЕЛИРОВАНИЯ ГАЗА

Дросселирование – это процесс снижения давления газа или жидкости при прохождении через суженное отверстие (вентиль, клапан) и отсутствии теплообмена с окружающей средой. Процесс характеризуется постоянством энтальпии: $H_1 = H_2$. Дросселирование реального газа сопровождается понижением (для некоторых газов повышением) температуры потока. Этот эффект получил название джоуль-томсоновского.

Простейший вариант технологической схемы холодильного цикла с дросселированием газа, использующий этот эффект, приведен на рис. 3.14. Для данного цикла холодопроизводительность равна:

$$Q_2 = H_4 - H_5 = H_1 - H_3, \tag{3.136}$$

где $H_1 - H_5$ – энтальпии потоков; Q_2 – отвод тепла от какоголибо тела; Q_1 – передача тепла посредством водяного или воздушного теплообменного аппарата в окружающую среду.

Из уравнения (3.136) следует, что холодопроизводительность цикла зависит только от разности энтальпий прямого и обратного потоков газа на теплом конце теплообменника.

Наиболее часто эффект Джоуля – Томсона используется, когда в качестве холодильного агента выступает непосредственно газ (например, природный), подвергающийся сжижению или разделению. При этом, в случае разделения газа цикл разомкнутый, при сжижении газа цикл может быть и замкнутым и разомкнутым. Пример такого цикла приведен на рис. 3.15. В процессе дросселирования газа понижается температура и появляется жидкая фаза, которая, в случае охлаждения природного газа, обогащена высококипящими компонентами.

Рис. 3.14. Схема холодильного цикла с однократным дросселированием

Рис. 3.15. Схема испољзования эффекта Джоуля – Томсона при разделении (сжижении) природного газа

Холодопроизводительность цикла на рис. 3.15 равна:

$$Q_2 = H_1' - H_3,$$
 (3.137)

где H'_i – энтальпия газа, по количеству и составу соответствующего точке 3, а по температуре и давлению – точке 1.

3.3.2. ДРОССЕЛЬНЫЕ ХОЛОДИЛЬНЫЕ ЦИКЛЫ, ОСНОВАННЫЕ НА ИСПАРЕНИИ ЖИДКОСТИ

Принцип охлаждения основан на разнице температуры кипения вещества при разных давлениях.

Отвод тепла от конденсируемого хладоагента производится при высоком давлении на высоком температурном уровне, а подвод – при его испарении под низким давлением.

Принципиальная технологическая схема одноступенчатой холодильной установки, использующей испарение холодильного агента, приведена на рис. 3.16. Сжатый хладоагент конденсируется в водяном или воздушном теплообменнике и поступает в емкость, переохлаждается в змеевике частью сдросселированного хладоагента, затем дросселируется и поступает в испаритель, где производится охлаждение какого-либо вещества.

Холодопроизводительность такого цикла, так же как и предыдущих, определяется разностью энтальпий потоков в точках 1 и 3. Часто эти циклы имеют две или три ступени охлаждения и сжатия.

Циклы, основанные на испарении жидкости, часто используются для предварительного охлаждения в циклах, использующих эффект Джоуля – Томсона или изоэнтропийное расширение.

Для получения низких температур может быть использован каскадный холодильный цикл, который состоит из нескольких

Рис. 3.16. Схема одноступенчатой холодильной установки, основанной на испарении ходильного агента

циклов, изображенных на рис. 3.16, с разными веществами в качестве хладоагентов. В первом цикле хладоагентом обычно является пропан или аммиак. Во втором – этилен (этан), который конденсируется в пропановом испарителе. Этилен, испаряясь при 173 К, конденсирует в третьем цикле метан, и так далее.

Каскадные холодильные циклы являются довольно эффективными с точки зрения затрат энергии, однако они требуют большого количества оборудования и высоких капитальных и эксплуатационных затрат.

3.3.3. ЦИКЛЫ, ОСНОВАННЫЕ НА ИСПОЛЬЗОВАНИИ ИЗОЭНТРОПИЙНОГО РАСШИРЕНИЯ ГАЗА

(3.38)

Изоэнтропийное (адиабатное) расширение газа является процессом с отводом работы на сторону при отсутствии теплообмена. Близкий к изоэнтропийному процесс осуществляется в детандерах. Отклонение от изоэнтропийного процесса характеризуется так называемым адиабатическим к.п.д.:

$$\eta_{\rm ag} = \frac{\Delta H_{\rm g}}{\Delta H_{\rm ag}},$$

где $\Delta \varsigma_{\rm g}$ – изменение энтальпии в действительном процессе в детандере; $\Delta \varsigma_{\rm ag}$ – изменение энтальпии в изоэнтропийном процессе.

В современных турбодетандерах $\eta_{\mbox{\tiny ad}}$ достигает 0,85÷0,87.

Один из вариантов технологической схемы с детандером приведен на рис. 3.17. В данной схеме работа, получаемая при расширении газа в турбодетандере, передается турбокомпрес-

Рис. 3.17. Схема холодильного цикла с турбодетандером

сору, находящемуся на одном валу с турбодетандером (турбодетандерный агрегат), сжимающему газ низкого давления.

Холодопроизводительность такого цикла равна

$$Q_2 = H'_1 - H_3 + \Delta H_{TZ}, \qquad (3.139)$$

где $\Delta \boldsymbol{\varsigma}_{\scriptscriptstyle TA}$ – разность энтальпий потока на входе и выходе турбодетандера.

Из уравнения (3.139) следует, что холодопроизводительность детандерного цикла выше, чем у дроссельного на $\Delta g_{\tau_{\text{Td}}}$.

Кроме того, затраты работы в детандерном цикле ниже на величину, вырабатываемую турбодетандером.

Для предварительного охлаждения газа в циклах с дросселированием или с детандерами часто используются циклы с испарением жидкости (чаще всего пропановые).

Затраты энергии в холодильных циклах, использующих эффект Джоуля – Томсона или изоэнтропийное расширение перерабатываемого газа, значительно зависят от давления сырьевого газа и давления отбензиненного (товарного) газа.

В ряде случаев давление сырьевого газа достаточно высокое и его не требуется сжимать перед подачей на переработку, но товарный газ требуется дожимать для подачи в магистральный газопровод. В этом случае затрачиваемая работа будет зависеть от перепада давлений в дожимном компрессоре, а отвод тепла в окружающую среду (Q_1) будет производиться в концевом (после компрессора) холодильнике.

В случаях, когда имеется свободный перепад давлений между сырьевым и товарным газом (не требуется дожатие последнего, так как он используется в близлежащем регионе), применение турбодетандерных и дроссельных циклов наиболее эффективно.

3.3.4. ХОЛОДИЛЬНЫЙ ЦИКЛ НА МНОГОКОМПОНЕНТНОМ ХОЛОДИЛЬНОМ АГЕНТЕ

В последние 15–20 лет для сжижения природного газа получил применение холодильный цикл на многокомпонентном холодильном агенте.

Принцип охлаждения такой же, как при испарении индивидуальных веществ, отличие в переменной температуре кипения.

Холодопроизводительность данного цикла определяется по уравнению (3.136).

Затраты энергии в холодильных циклах на смешанном холодильном агенте примерно такие же, как и в каскадном холодильном цикле, но он отличается от последнего простотой, значительно меньшим количеством оборудования (один компрессор) и соответственно меньшими капитальными вложениями.

Холодильный агент представляет собой смесь углеводородов и азота. Отдельные фракции смеси, испаряющейся на различных температурных уровнях, позволяют получать холод в широком диапазоне температур.

Холодильный цикл на смеси имеет много модификаций. Наиболее простым в аппаратурном оформлении является цикл с одноступенчатым дросселированием хладоагента (Prico), представленный на рис. 3.18 [41].

Холодильный агент после сжатия в компрессоре охлаждается и частично конденсируется в водяном или воздушном холодильнике и затем поступает в сепаратор. Далее хладоагент охлаждается, конденсируется и переохлаждается одновременно с природным газом в основном теплообменнике. Сжиженный хладоагент дросселируется до низкого давления и после испа-

Рис. 3.18. Схема холодильного цикла на многокомпонентном холодильном агенте с однократным дросселированием (Prico)

рения в основном теплообменнике поступает на сжатие в компрессор.

Многоступенчатый цикл на смешанном агенте может иметь две, три и более ступеней дросселирования хладоагента. Холодильный агент после водяного охлаждения поступает в сепаратор, где производится разделение газообразной и жидкой фракций хладоагента. Жидкая фракция переохлаждается в теплообменнике, дросселируется до низкого давления и, испаряясь, отдает свой холод в этом же теплообменнике. Паровая фаза из сепаратора охлаждается и частично конденсируется в том же теплообменнике и поступает на разделение во второй сепаратор. Далее процесс повторяется на более низких температурных уровнях. Вырабатываемый в отдельных ступенях холод может быть использован одним потребителем, проходящим последовательно все теплообменники, или различными потребителями.

Холодильный цикл на смеси может иметь два и более уровня давления испарения хладоагента.

Широко используется холодильный цикл на смеси с предварительным охлаждением. Этот цикл имеет некоторое преимущество в энергетических затратах перед описанными выше циклами.

Холодильные циклы на смеси углеводородов наиболее эффективны в случаях, когда требуется получать холод в широком диапазоне температур, например, при сжижении природного газа, однако в случаях, когда требуется холод в узком диапазоне температур, например в технологических схемах извлечения этана, эти циклы по эффективности часто уступают каскадным холодильным циклам пропан – этилен (этан) и детандерным холодильным циклам.

Расчетные исследования различных технологических схем в установках разделения и сжижения природного газа с использованием холодильных циклов на смеси позволили получить некоторые обобщающие зависимости по удельным затратам энергии и КПД используемых циклов [5].

На рис. 3.19 приведена зависимость удельных энергозатрат в установках разделения и сжижения природного газа с применением цикла на смеси от конечной температуры охлаждения газа \mathbf{i}_{κ} . Зависимость справедлива с точностью до 10 % для природного газа, содержащего от 80 до 100 % метана, при давлениях газа 4,5–5,5 МПа.

Кривая, приведенная на графике, отражает рост затрат энергии на получение единицы холода с понижением конечной температуры охлаждаемого газа. График может быть использо-

Рис. 3.19. Зависимость удельных энергозатрат от конечной температуры охлаждения газа і $_{\kappa}$

ван для оценки затрат энергии в установках извлечения из природного газа гелия, этана, пропана и более тяжелых углеводородов, а также и в установках сжижения газа. Непосредственно по графику можно определить затраты энергии на охлаждение природного газа при условии, что газ охлаждается смесью от начальной температуры 30–35 °C.

Удельные энергозатраты не могут служить мерой термодинамического совершенства цикла. Для более полной характеристики совершенства протекания реальных процессов используется эксергетический метод и, в частности, эксергетический КПД.

Эксергетический КПД холодильных установок представляет собой отношение эксергии, отводимой от охлаждаемого объекта, к подведенной электрической или механической энергии:

$$\eta_{_{3K}} = \frac{L_{\min}}{L_{_{\mathcal{I}}}}, \qquad (3.140)$$

где L_{min} — минимальная работа охлаждения или сжижения природного газа в обратимом процессе (эксергия); L_{π} — действительная работа охлаждения или сжижения газа в реальном процессе.

Минимальная работа определяется по следующему уравнению:

Рис. 3.20. Значение эксергетического КПД установок разделения и сжижения с холодильными циклами на смеси углеводородов и азота

$$L_{\min} = T_0 \Delta S - Q, \qquad (3.141)$$

где i_0 – температура окружающей среды; ΔS – изменение энтропии охлаждаемого объекта; Q – количество тепла, отводимого от охлаждаемого объекта.

На графике рис. 3.20 нанесены значения эксергетического КПД, полученные при расчете различных установок охлаждения и сжижения природного газа с холодильными циклами на смешанном холодильном агенте.

При построении кривой на рис. 3.20 температура i_0 принималась равной температуре хладоагента после охлаждения его в водяном или воздушном холодильнике.

Полученные значения эксергетических КПД отражают довольно высокие термодинамические показатели рассмотренных установок с холодильными циклами на многокомпонентных смесях.

Вряд ли существует какая-либо закономерность в изменении η от температуры охлаждения, которая наблюдается на графике рис. 3.20. По-видимому, при расчете технологических схем отдельных установок, параметры процесса и состав хладоагента были подобраны с большей или меньшей эффективностью. Значения η , приведенные на графике, могут быть использованы для быстрой оценки затрат энергии на охлаждение или сжижение природного газа. Для этого требуется только вычислить энтальпию и энтропию газа при начальных и конечных параметрах охлаждаемого газа. Затем по уравнению (3.141) вычислить минимальную работу и, приняв η равным 0,35+0,4, вычислить действительную работу.

График, представленный на рис. 3.20, в отличие от графика на рис. 3.19, справедлив для любых начальных температур охлаждаемого газа.

3.4. УСТАНОВКИ ИЗВЛЕЧЕНИЯ ПРОПАНА И ВЫСШИХ УГЛЕВОДОРОДОВ

На рис. 3.21 приведена технологическая схема получения сжиженных газов, в которой используется эффект Джоуля – Томсона.

Для предотвращения образования гидратов в поток газа перед его охлаждением впрыскивается 80%-ный метанол. Газ, пройдя входной сепаратор, поступает в рекуперативный теплообменник Т1, в котором охлаждается обратным потоком газа. Далее газ дросселируется до давления, необходимого для транспорта газа потребителю и, охладившись, поступает в трехфазный сепаратор Сн1 для отделения выпавшей жидкости. Газ из сепаратора, отдав свой холод в рекуперативном теплообменнике, поступает потребителю. Выпавший водно-метанольный раствор дросселируется и поступает в отпарную колонну Км1. Пары метанола из Км1 конденсируются и поступают в сборную емкость. Из емкости метанол подается насосом в систему распределения метанола по установке. Выпавшая в Сн1 углеводородная жидкость поступает на орошение деэтанизатора К1. В К1 происходит отделение фракции С3+ от метанэтановой фракции. Последняя смешивается с основным пото-ком газа из низкотемпературного сепаратора. Фракция С₃₊ поступает в среднюю часть колонны К2, в которой разделяется на пропан-бутановую фракцию и ШФЛУ (или стабильный конденсат).

Конденсацию паров, выходящих из К2, а также охлаждение полученного нижнего продукта, осуществляют отсепарированным газом.

По данной технологической схеме фирмой TDE были построены установки в г. Якутске производительностью 315 млн. м³/год перерабатываемого газа. В данном случае имелся свободный перепад давлений между поступающим на переработку газом (3,5 МПа) и товарным газом, подаваемым на TЭЦ и в город (1,2 МПа). На этом перепаде давлений и был реализован процесс. В результате после дросселирования была достигнута температура минус 63 °С, при этом извлечение из газа фракции С₃₊ составляло около 40 % (пропана – 25 %).

Данная технология отличается простотой и практически не имеет затрат энергии. При увеличении перепада давлений между поступающим на установку газом и выходящим будет соответственно увеличиваться и коэффициент извлечения С₃₊.

Недостатками этой установки являются загрязнение продуктов метанолом и трудности с утилизацией метанольной воды.

Рис. 3.21. Схема получения сжиженных газов с впрыском метанола

Более глубокое извлечение фракции С₃₊ позволяет технологическая схема, представленная на рис. 3.22. В отличие от предыдущей схемы здесь применена твердая осушка газа, что дает возможность получать осушенные продукты, не содержащие метанол. Использование детандер-компрессорного агрегата (ТДА) при прочих равных условиях (т.е. одинаковых входных и выходных параметрах газа) позволяет проводить процесс сепарации при более низких температурах и давлениях, что благоприятно сказывается на процессе разделения. ТДА также позволяет максимально сохранить входное давление газа. Использование холода отсепарированнного газа в дефлегматоре деэтанизатора К1 позволяет уменьшить унос пропана. Сырьевой газ поступает в трехфазный сепаратор С1. Отсепарированный газ подается в блок осушки, где осушается до точки росы минус 70 °C. Сухой газ подается на охлаждение двумя потоками: в теплообменник Т1, Т2, Т3, и затем в сепаратор С2. Расширенный в детандере газ подается в сепаратор СЗ. Жидкость из сепаратора дросселируется, нагревается в теплообменнике ТЗ и подается в качестве питания в среднюю часть деэтанизатора К1. Газ из сепаратора СЗ поступает в качестве хладоагента в дефлегматор деэтанизатора и затем в теплообменник Т1. Кубовая жидкость из деэтанизатора дросселируется

и подается в качестве питания в колонну К2. Углеводородная жидкость из трехфазного сепаратора С1 дросселируется и подается в разделитель Р1. Газ и углеводородная жидкость из разделителя подаются в деэтанизатор. Выходящий из деэтанизатора газ после рекуперации холода дожимается компрессором турбодетандерного агрегата, объединяется с основным потоком, выходящим из теплообменника Т1, и поступает потребителю.

Данная технологическая схема может работать в широком диапазоне давлений газа. Коэффициент извлечения пропана зависит от перепада давлений на детандере.

Схема была рассчитана на следующие параметры:

давление сырьевого газа, поступающего с промысла, было 10,8 МПа;

давление товарного газа – 4,2 МПа;

содержание пропана в газе было 1,67 % мольн., бутанов – 0,7 % мольн.

Параметры процесса были подобраны таким образом, чтобы исключить необходимость в дожатии выходящих с установки потоков газа. Газ расширялся в детандере с 10,5 МПа до 4,3 МПа. Газ, выходящий сверху деэтанизатора К1 при давлении 2,5 МПа, сжимался компрессором турбодетандерного агрегата до 4,2 МПа.

Коэффициент извлечения пропана при работе установки на данных параметрах составляет 83 %.

Для осушки газа использовались цеолиты NaA.

Коэффициент извлечения пропана 95 % и выше может быть получен при переработке газа по технологической схеме, представленной на рис. 3.23. Данная технологическая схема разрабатывалась с учетом возможности работы установки в двух режимах:

с извлечением углеводородов С₃₊;

с извлечением углеводородов С₂₊.

Вариант с извлечением этана показан на схеме пунктирными линиями, далее он будет рассмотрен отдельно.

В установку поступает осушенный природный газ при давлении 5,6 МПа и температуре 30 °С. Газ разделяется на два потока: один охлаждается в теплообменнике Т5 газом, выходящим сверху колонны К2, другой – в теплообменнике Т1 метановой фракцией из колонны К1. Охлажденный в Т1 газ делится на два потока: один поступает в теплообменник Т3, другой – в Т2. Потоки охлажденного газа из теплообменников Т2, Т3 и Т5 объединяются в один, который поступает на охлаждение в теплообменник Т4. В сепаратор С1 поступает поток

Рис. 3.23. Технологическая схема установки газоразделения без выделения этана: I – природный газ; II – пропан автомобильный; III – СПБТ; IV – фракция С₅; V – метановая фракция в газопровод; VI – метановая фракция в блок подготовки газа

газа, охлажденный до температуры минус 45 °С. Газ, выходящий из сепаратора С1, делится на два потока. Основная часть газа расширяется в турбодетандере до 2 МПа, объединяется с дросселированной жидкостью из С1 и общий поток подается в кубовую часть колонны К1. Другая часть газа охлаждается в теплообменнике Т6, дросселируется до 2 МПа и подается в колонну К1 в качестве орошения.

Колонна К1 рассчитана на 4 теоретические тарелки. Жидкость из куба К1 подается в качестве хладоагента в дефлегматор Т7 и затем в теплообменник Т2, после чего подается в качестве питания под седьмую (теоретическую) тарелку колонны К2. Колонна К2 рассчитана на 18 теоретических тарелок. Из куба колонны К2 отводится фракция С₃₊, которая подается на фракционирование в колонны К3 и К5. Продуктом колонны К3 является пропан автомобильный. Из колонны К5 сверху выводится СПБТ, снизу – фракция С₅.

В кипятильники T8, T12, T15 подается углеводородный теплоноситель.

Выходящий из колонны К2 газ рекуперирует свой холод в теплообменнике T5, подается в блок подготовки газа для регенерации и охлаждения адсорберов и затем направляется на ГРС или местные нужды.

Газ, отводимый сверху колонны К1, направляется на рекуперацию холода в теплообменники Т6, Т4, Т3, Т1, затем поступает на всас компрессора турбодетандерного агрегата и после охлаждения в аппаратах воздушного охлаждения поступает в компрессорный цех, где дожимается до давления магистрального газопровода. Часть этого газа после выхода из Т1 может добавляться к газу, поступающему в блок подготовки.

Высокое извлечение пропана достигается за счет промывки газа в колонне К1 сжиженным природным газом и организации орошения в колонне К2 с помощью встроенного дефлегматора Т7, хладоагентом в котором является жидкость из куба колонны К1.

Данная технологическая схема рассчитывалась для условий Сосногорского ГПЗ.

Давление сырьевого газа было 3,5 МПа, отбензиненный (товарный) газ подается в газопровод под давлением 3,5 МПа. Сырьевой газ сжимался компрессором с 3,5 МПа до 5,8 МПа и проходил в блок осушки (цеолиты марки NaA) и с давлением 5,6 МПа подавался в блок газоразделения. Товарный газ дожимался до 3,5 МПа.

Большое значение имеет выбор оптимального перепада давлений в турбодетандере. Чем ниже давление на выходе из де-

Рис. 3.24. Зависимость степени извлечения пропана от давления на выходе из турбодетандера

тандера, тем более высокого извлечения углеводородов можно достичь, но при этом возрастают затраты энергии на сжатие выходящего с установки газа.

Для данной технологической схемы были проведены расчеты при разных выходных давлениях газа из турбодетандера. Результаты расчета приведены на графиках рис. 3.24 и рис. 3.25. Из графиков следует, что оптимальное давление газа на выхо-

Рис. 3.25. Зависимость удельного расхода электроэнергии (на 1 т пропана) от давления на выходе из турбодетандера

де из турбодетандера около 2 МПа. С ростом давления резко увеличиваются затраты энергии на единицу продукции, при более низком давлении резко падает коэффициент извлечения пропана при практически одинаковых удельных затратах энергии.

В таблицах 3.28 и 3.29 приведены материальный баланс и

Таблица 3.28

Показатель	Сырьевой газ	Метановая фракция на ГРС	Метановая фракция в газопровод	Пропан автомо- бильный	СПБТ	Фракция С ₅₊
Давление, МПа	5,6	1,7	3,5	1,7	1,0	1,0
Температу- ра, К Состав,	303,0	297,0	303,0	318,0	317,8	318,0
моль/моль:						
N ₂	0,026350	0,003111	0,030251	0,000000	0,000000	0,000000
C ₁ H ₄	0,856370	0,564585	0,930031	0,000000	0,000000	0,000000
$C_{2}^{1}H_{6}^{4}$	0,074780	0,425452	0,037301	0,033044	0,000741	0,000000
CÔ2	0,001390	0,003870	0,001171	0,000000	0,000000	0,000000
C ₂ H.	0,028400	0,002982	0,001222	0,874265	0,512684	0,000049
<i>i</i> -C, H ₁₀	0.003810	0,000000	0.000014	0.045860	0.160919	0.002362
$n - C_4 H_{10}^{10}$	0.006550	0.000000	0.000005	0.045690	0.312721	0.029209
$i - C_{5} H_{12}^{10}$	0,001050	0,000000	0,000000	0,000864	0,010916	0,387198
$n - C_{z} H_{12}^{12}$	0,000860	0,000000	0.000000	0.000274	0.002016	0.378046
$C_c H_{14}^{12}$	0.000400	0.000000	0.000000	0.000002	0.000002	0.184666
$C_{7}^{0}H_{16}^{14}$	0,000040	0,000000	0,000000	0,000000	0,000000	0,018470
Итого	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
V, м ³ /ч	312500	30750	269147	,	,	,
<i>G</i> , т/ч				11,98	11,74	2,1

Материальный баланс установки газоразделения с выделением \mathbf{C}_{3^+}

Таблица 3.29

Расходные показатели установки газоразделения с выделением С3+

Показатели	Значения	
Количество перерабатываемого газа, млрд. м ³ /год/м ³ /ч	2,500/312500	
Продукты:		
метановая фракция в магистральный газопровод,	2,153/269150	
p = 3,5 МПа, млрд. м ³ /год/м ³ /ч	0.040 (00750	
метановая фракция на ГРС или собственные нужды,	0,246/30750	
p = 1,5 MIIIa, MAPA. M°/ FOA/ M°/ Ч	05 84 /11 08	
пропан автомооильный (ПА), тыс. $T/TOD/T/Ч$	93,04/11,90	
смесь пропана и оутана технических (СПБТ),	95,92/11,74	
тыс.т/тод/т/ч	100/04	
фракция С ₅ , тыс.т/год/т/ч	16,8/2,1	
Коэффициент извлечения пропана, %	95	
Потребность в тепловой энергии (углеводородный теплоно-	8100	
ситель), кВт		
Потребляемая мощность, кВт:		
на сжатие сырьевого газа с 3,5 МПа до 5,8 МПа	5964	
на сжатие метановой фракции с 2,32 МПа до 3,5 МПа	4290	

показатели установки на производительность 2,5 млрд. м³/год. Коэффициент извлечения пропана составил 95 %.

В патенте [23] предложена технологическая схема извлечения пропана и более тяжелых углеводородов из природного газа с каскадным холодильным циклом на чистых углеводородах пропан – этилен (этан). Схема приведена на рис. 3.26.

Газ поступает на установку при давлении 4 МПа и температуре 32 °С, охлаждается в теплообменнике T1 до минус 40 °С и парожидкостная смесь поступает в сепаратор С1. Газ из сепаратора подается в противоточный конденсатор ПК, где конденсирующаяся жидкость стекает вниз, контактируя с поднимающимся паром. Жидкость возвращается в сепаратор С1. Газ, выходящий сверху противоточного конденсатора, имеет температуру около – 73 °С и содержит мало пропана и более тяжелых углеводородов. Этот газ нагревается в нижней (теплой) секции противоточного конденсатора и в теплообменнике T1.

Жидкость из сепаратора С1 подается насосом через теплообменник Т1 в отпарную колонну К1, отпаренный газ при температуре около 35 °С подается в линию сырьевого газа. Выводимая из колонны фракция жидких углеводородов имеет температуру около 95 °С.

Рис. 3.26. Технологическая схема выделения C_{3+} с каскадным холодильным циклом (пропан — этилен)

Дополнительным хладоагентом в теплообменнике T1 является кипящий пропан. Хладоагентом в верхней секции противоточного конденсатора ПК является кипящий этилен. Для этих целей использовался каскадный холодильный цикл, состоящий из двух замкнутых контуров: пропанового и этиленового. В последнем контуре конденсация этилена производится пропаном.

Расчет схемы выполнен на следующий состав газа (% мольн.): 90,3 – метан; 6,4 – этан; 3,3 – пропан плюс высшие углеводороды. Давление на входе в установку – 4 МПа. Выходящий отбензиненный газ дожимался до давления сырьевого газа. Продуктом являлась фракция углеводородов, содержащая 15 % этана и 85 % C_{3+} . Коэффициент извлечения C_{3+} составлял 94 %.

Авторы утверждают, что затраты энергии по данной технологической схеме на 60 % меньше, чем по детандерной.

Следует отметить, что для полной деэтанизации фракции C_{3+} необходима еще одна колонна и, следовательно, возрастут затраты энергии.

Был выполнен расчет технологической схемы, подобной описанной выше (см. рис. 3.26), на состав газа и параметры на входе и выходе из установки, соответствующие Сосногорскому ГПЗ, для сравнения с детандерной схемой (см. рис. 3.23). Технологическая схема приведена на рис. 3.27. Принципиальное отличие этой схемы от схемы с каскадным холодильным циклом на рис. 3.26 в дополнительной деэтанизации хладоагента в колонне К2. Сверху колонны К2 отводится этановая фракция, которая используется для пополнения потерь этана в каскадном холодильном цикле пропан – этан. При дальнейшем разделении фракции С₃₊ может быть получен второй хладоагент – фракция пропановая. Использование цикла пропан – этилен потребовало бы дополнительных затрат на привоз и хранение этилена.

В используемом холодильном цикле этан сжимается в двухступенчатом компрессоре от 0,175 МПа до 2,2 МПа, охлаждается пропаном, кипящим на изотермах -5 °C и -36 °C. Жидкий этан дросселируется до 0,63 МПа и подается в разделительную емкость. Газ из емкости подается во вторую ступень компрессора. Жидкость дросселируется до 0,175 МПа и отдает свой холод в испарителе-конденсаторе T5, после чего поступает в первую ступень компрессора. Пропановый холод используется также в теплообменнике T3 (изотерма кипения -5 °C). Сырьевой газ поступал с давлением 3,5 МПа и после осушки при 3,3 МПа подавался в теплообменник T1. Отбензиненный

Рис. 3.27. Технологическая схема установки выделения С₃₊ с каскадным холодильным циклом (пропан – этан): I – природный газ из блока подготовки газа; II – этановая фракция – хладоагент холодильного цикла; III – фракция С₃₊; IV – метановая фракция в газопровод

газ выходил из Т1 при 3,05 МПа и дожимался до 3,5 МПа. Коэффициент извлечения пропана был получен 93,1 %, фракции C_{3+} – 95,4 %.

В результате удельные затраты энергии на единицу продукции (фракция C_{3+}) получились на 9 % меньше, чем по схеме на рис. 3.23. При такой небольшой разнице в затратах энергии решающими при выборе технологической схемы будут стоимость оборудования и технологические требования. Например, при разработке технологической схемы установки переработки газа для Сосногорского ГПЗ ставилась задача возможности работы в двух режимах: с извлечением C_{3+} или C_{2+} . Последнее легче осуществить по схеме с детандерным циклом.

3.5. Éãì ÅéäÄü èÖêÖêÄÅéí äÄ ÉÄáÄ ë àáÇãÖóÖçàÖà ùí ÄçÄ

В последнее время для извлечения этана предпочтение отдается технологическим схемам с детандерыв могодильным циклом. Раньше считалось, что детандеры выгодно использовать в том случае, если сырьевой газ имеет высокое давление, однако дальнейшее совершенствование детандеров и технологических схем показало эффективность их применения и при низком давлении сырьевого газа. В этом случае сырьевой газ дожимается до 4–7 МПа. Часто технологические схемы с детандером для предварительного охлаждения газа включают пропановые холодильные циклы, а иногда и циклы на смеси углеводородов.

На рис. 3.28 приведена технологическая схема извлечения этана и высших углеводородов из природного газа. Пунктиром показана обвязка аппаратов при работе установки в режиме извлечения C_{3+} в соответствии со схемой на рис. 3.23. В режиме извлечения этана добавляется теплообменник T10, в котором хладоагентом является пропан, кипящий при температуре минус 36 °C, промежуточные кипятильники T9 и T11 и колонна К4 – деэтанизатор с дефлегматором, охлаждаемым пропаном с изотермой кипения минус 5 °C. В T9 конденсируется этановая фракция, в T11 охлаждается природный газ. Аппараты T9 и T11 позволяют существенно уменьшить затраты энергии.

Поступающий на установку осушенный газ разделяется на три потока: первый поток подается в теплообменник Т1, второй – в Т5, третий – в кипятильник (колонны К2) Т8. Потоки газа, выходящие из Т1 и Т8, объединяются в один, который

Рис. 3.28. Технологическая схема установки газоразделения с выделением этана: I – природный газ; II – пропан автомобильный; V – метановая фракция в газопровод; VI – метановая фракция в блок подготовки газа; VII – этановая фракция

охлаждается в ТЗ. После теплообменника ТЗ газ разделяется на два потока, один из которых охлаждается в теплообменнике Т10 пропаном, кипящим при температуре минус 36 °C, другой – в теплообменнике Т2 жидкими углеводородами, отделенными в сепараторе C2.

Поток газа, выходящий из теплообменника T10, разделяется на два. Первый охлаждается в теплообменнике T4, второй – в промежуточном кипятильнике (колонны K2) T11. Потоки газа, охлажденные в теплообменниках T2, T4, T5, T11, объединяются в один, который подается в сепаратор C1.

Газ, выходящий из сепаратора С1, делится на два потока. Основная часть газа расширяется в турбодетандере до 2 МПа и подается в кубовую часть колонны К1. Другая часть газа охлаждается в теплообменнике Т6, дросселируется до 2 МПа и подается в колонну К1 в качестве орошения.

Жидкость из сепаратора С1 дросселируется до 2 МПа и подается в емкость дегазации С2. Газ из емкости С2 добавляется к парожидкостной смеси, подаваемой в куб колонны К1. Жидкость из емкости С2 нагревается в теплообменнике Т2 и подается в качестве питания в колонну К2 под седьмую (теоретическую) тарелку. Жидкость из куба колонны К1 подается в качестве орошения в колонну К2.

В кипятильник T11 жидкость подается с шестой (теоретической) тарелки, в T9 – с шестнадцатой и в T8 – с семнадцатой (всего 18 теоретических тарелок, включая кипятильник T8).

Из куба колонны К2 отводится фракция C_{2^+} , которая насосом под давлением 3 МПа подается в колонну К4. Газ из деэтанизатора К4 подается на охлаждение и конденсацию в теплообменники Т9 и Т13. Образовавшаяся жидкость отделяется в сепараторе С4 и подается на орошение в К4, газ – это продукт колонны К4 – этановая фракция. Снизу К4 отводится фракция C_{3^+} , которая перерабатывается по той же схеме и в тех же аппаратах, что и в варианте работы установки без извлечения этановой фракции.

Технологическая схема на рис. 3.28 рассчитывалась на тот же состав и параметры сырьевого газа, что и технологическая схема на рис. 3.23 (применительно к Сосногорскому ГПЗ). Сырьевой газ также дожимался с 3,5 МПа до 5,8 МПа, а выходящий отбензиненный газ до 3,5 МПа.

На рис. 3.29 приведена зависимость коэффициента извлечения этана от давления газа после турбодетандера (перепада давлений в турбодетандере). Из графика следует, что при снижении давления в диапазоне ниже 2 МПа коэффициент

Рис. 3.29. Зависимость коэффициента извлечения этана от давления газа после турбодетандера

Рис. 3.30. Зависимость удельного расхода электроэнергии от давления газа после турбодетандера

извлечения этана растет незначительно, в то же время, как видно из графика на рис. 3.30, увеличиваются затраты энергии на единицу продукции. Оптимальное давление газа на выходе из турбодетандера для данной схемы находится где-то между 2–2,1 МПа.

В таблицах 3.30 и 3.31 приведены материальный баланс ус-

í ‡∙ ÎЁ^‡ 3.30 Материальный ба.

-	-					
Матери	иальный	баланс	установки	газоразделени	ия с выделением	г С ₂₊

Показатель	Сырьевой газ	Метановая фракция на ГРС	Метановая фракция в газопровод	Этановая фракция	Пропан авто- мобильный	СПБТ	Фракция С ₅
Давление, МПа	5,60	1,70	3,50	2,80	1,70	1,0	1,0
Температура, К	303,0	297,0	303,0	278,6	318,0	318,0	318,0
Состав							
моль/моль:	0.00050	0.00/015	0.000/140	0.000000	0.000000	0.000000	0.000000
N_2	0,026350	0,004815	0,033416	0,000000	0,000000	0,000000	0,000000
C_1H_4	0,856370	0,966511	0,960605	0,022887	0,000000	0,000000	0,000000
C_2H_6	0,074780	0,026545	0,005287	0,958258	0,023190	0,000427	0,000000
CO_2°	0,001390	0,001427	0,000559	0,011303	0,000001	0,000000	0,000000
C3Ĥ _s	0,028400	0,000682	0,000129	0,007550	0.889837	0,490482	0,000038
i-C ₄ H ₁₀	0,003810	0,000011	0,000002	0,000001	0,044895	0,165489	0,001947
n-C ₄ H ₁₀	0,006550	0,000008	0,000002	0,000000	0,041315	0,327689	0,024473
$i-C_{5}H_{12}^{10}$	0.001050	0.000000	0.000000	0,000000	0.000585	0.013390	0.382408
n-C ₅ H ₁₂	0.000860	0.000000	0.000000	0,000000	0.000175	0.002521	0.383634
C.H.	0.000400	0.000000	0.000000	0,000000	0.000001	0.000002	0.188635
$C_{7}H_{4}^{14}$	0.000040	0.000000	0.000000	0.000000	0.000000	0.000000	0.018866
Итого	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
V. м ³ /ч	312500	36719	241122	-			
G, т/ч	_	_		27,31	12,69	11,43	2,07

Таблица 3.31

Расходные показатели установки газоразделения с выделением \mathbf{C}_{2+}

Показатели	Значения	
Количество перерабатываемого газа, млрд. м ³ /год/м ³ /ч	2.5 / 312500	
Продукты:		
метановая фракция в магистральный газопровод,	1,929 / 241122	
p = 5,5 MIIIa, M/pd. M [*] / IOd/ M [*] / 4	0.004 / 00740	
метановая фракция на ГРС или сооственные нужды, $n = 1.5 \text{ MID}_{2}$ тыс т/гол/т/ч	0,294 / 36/19	
р 1,5 гипа, пас. 1/10д/1/1 этановая фракция, $p = 2,8$ МПа, тыс. т/год/т/ч	218,48 / 27,31	
пропан автомобильный (ПА), тыс. т/год/т/ч	101,52 / 12,69	
смесь пропана и бутана технических (СПБТ),	91,44 / 11,43	
тыс. т/год/ т/ч		
фракция С ₅ , тыс. т/год/т/ч	16,56 / 2,07	
Коэффициенты извлечения, %:		
этана	90,4	
пропана	99,4	
Потребность в тепловой энергии	10 700	
(углеводородный теплоноситель), кВт	12586	
Потребность в пропановом холоде, кВт:	0007	
на изотерме – 5 °C;	2935	
на изотерме – 36 °C	2569	
Потребляемая мощность, кВт	5004	
на сжатие сырьевого газа с 3,5 МПа до 5,8 МПа;	5964	
на сжатие метановои фракции с 2,32 МПа до 3,5 МПа	4354	
на сжатие пропана	2843	

тановки и показатели установки при давлении газа на выходе из турбодетандера 2 МПа.

Для установки, работающей только в режиме извлечения C_{2+} , можно использовать более простую технологическую схему, в которой колонны K1 и K2 объединены в один аппарат (рис. 3.31, колонна K2) и исключен дегазатор C2.

По схеме на рис. 3.31 можно добиться более высокого извлечения этана, чем по схеме на рис. 3.28, но при этом возрастают затраты энергии. Так, при увеличении коэффициента извлечения этана на 3 % затраты энергии на единицу продукции возросли на 6,5 %. Данная технологическая схема позволяет работать и в режиме извлечения фракции C_{3+} , но извлечение пропана будет ниже (на 6–10 %). Выходящий сверху колонны газ имеет недостаточно низкую температуру, чтобы сконденсировать газ высокого давления в теплообменнике T6, следовательно отсутствует орошение в верхней (расширенной) части колонны К2 (превращается фактически в сепаратор).

Максимального извлечения этана вплоть до 99 % можно достигнуть в колонне с дефлегматором. От способа охлаждения газа в дефлегматоре значительно зависят затраты энергии. Например, газ, выходя сверху деметанизатора (колонна К2, см. рис. 3.31), расширяют во втором детандере, сепарируют,

Рис. 3.31. Технологическая схема установки газоразделения с выделением этана: I – природный газ из блока подготовки газа; II – пропан автомобильный; V – метановая фракция в газопровод; VI – метановая фракция в блок подготовки газа; VII – этановая фракция

жидкость подают на верхнюю тарелку деметанизатора, а холодный газ низкого давления подают в теплообменник для охлаждения выходящего из колонны газа (перед турбодетандером). Этот вариант является эффективным только в случае, когда не требуется дожимать выходящий из установки газ. В противном случае значительно возрастают затраты энергии на единицу продукции.

В патенте США № 4.889.545 [25] приведено несколько вариантов схем организации орошения деметанизатора. Три из них будут рассмотрены ниже. Сравнение этих схем проведено со схемой на рис. 3.32. Первая часть этой схемы, включая деметанизатор, принципиально такая же как на рис. 3.31.

Наиболее эффективный вариант схемы с холодным компрессором приведен на рис. 3.33. В этом варианте часть выходящего из деметанизатора газа подается в компрессор К2, охлаждается в теплообменнике Т6, дросселируется и подается на верхнюю тарелку деметанизатора. Добавка этого рецикла с холодным компрессором, как отмечают авторы патента, позволила повысить коэффициент извлечения этана с 90 % до 99,3 % при увеличении затрат энергии всего на 1 %.

Второй вариант организации орошения, изображенный на рис. 3.34, с таким же рециклом, но с компрессором на теплом газе. В рецикл добавлены рекуперативный теплообменник Т7 и

Рис. 3.32. Технологическая схема установки газоразделения с выделением С₂₊ (базовый вариант):

Ì – природный га́з; II – фракция С₂₊; III – товарный газ в газопровод

Рис. 3.33. Технологическая схема установки газоразделения с выделением С₂₊ [25] с рециклом на холодном компрессоре: — природный газ; II – фракция С₂₊; III – товарный газ в газопровод

Рис. 3.34. Технологическая схема установки газоразделения с выделением С₂₊ с рециклом на теплом компрессоре: I – природный газ; II – фракция С₂₊; III – товарный газ в газопровод

Рис. 3.35. Технологическая схема установки газоразделения с выделением С₂₊ с двумя турбодетандерными агрегатами: I – природный газ; II – фракция С₂₊; III – товарный газ в газопровод

аппарат воздушного охлаждения. В этом варианте извлечение этана такое же, как и в предыдущем, а затраты энергии на 4 % выше, чем в базовом (см. рис. 3.32).

В третьем варианте (рис. 3.35) нет дополнительного компрессора, но добавлен еще один турбодетандерный агрегат. Часть товарного газа охлаждается в рекуперативном теплообменнике Т5, расширяется в дополнительном турбодетандере и подается в качестве верхнего орошения. Затраты энергии в последнем варианте (при коэффициенте извлечения этана 99 %) на 33 % выше, чем в базовом варианте и, следовательно, внесенные изменения в схему экономически не оправданы.

В таблице 3.32 приведены результаты выполненных во

í ‡∙ ÎË^‡ 3.32

Результаты	расчета	схемы	на	рис.	3.32	и	3.33
------------	---------	-------	----	------	------	---	------

Показатель	Схема, рис. 3.32	Схема с рецик- лом, рис. 3.33
Количество перерабатываемого газа, кмоль/ч Коэффициент извлечения этана, % Количество фракции С. т/ч/тыс т/гол	12450 90,2 30 4 / 243 4	12450 96,8 32 1 / 256 8
Расход электроэнергии, кВт: дожатие товарного газа до 7,2 МПа на компрессор рецикла	10788,4 	10788,4 194,4 10982 8
Удельный расход электроэнергии (на 1 т фракции C_{2^+})	0,044	0,043

ВНИИГАЗе расчетов технологической схемы (см. рис. 3.33) с учетом потерь холода в окружающую среду и потерь давления в аппаратах и схемы (см. рис. 3.32). Расчет выполнялся на состав и параметры сырьевого газа такие же, как в патенте. Состав газа (% мольн.): метан – 93,24, этан – 4,23, пропан – 1,32, С₄₊ – 1,21. Давление сырьевого газа – 7,2 МПа, температура – 49 °С. Товарный газ дожимается до 7,2 МПа.

Как следует из табл. 3.32, коэффициент извлечения этана по схеме с холодным компрессором рецикла был достигнут около 97 % (ниже, чем в патенте). Затраты энергии на единицу продукции (C_{2+}) даже чуть ниже, чем по базовой схеме.

Как уже отмечалось, присутствие в природном газе диоксида углерода может приводить к образованию твердой углекислоты на верхних тарелках деметанизатора. Кроме того, смесь диоксид углерода – этан имеет азеотропную точку и поэтому не может быть разделена простой ректификацией.

Добавка жидкости из сепаратора в поток, поступающий на орошение колонны (как показано пунктиром на рис. 3.31) позволяет исключить образование твердой фазы при содержании до 1 % диоксида углерода в исходном газе. При более высоком содержании диоксида углерода в газе может быть применена технология "Райан – Холмс", которая позволяет путем рециркуляции жидкой углеводородной фракции избежать образование твердой углекислоты и разрушить азеотропную смесь диоксид углерода – этан, что дает возможность разделить смесь на фракции с требуемым составом. Жидкую фракцию углеводородов подают на верхнюю тарелку деметанизатора. Циркулирующая фракция может быть бутановой или содержать более тяжелые углеводороды. Получается она в процессе фракционирования выходящей из деэтанизатора фракции С₃₊.

Фирма "Семиноле" Техас применила технологию "Райан – Холмс" [60] для извлечения из газа диоксида углерода и закачки его в пласт для вытеснения нефти. Одновременно извлекались этан и более тяжелые углеводороды. Содержание диоксида углерода в газе изменялось от 21 % до 77 %. Технологическая схема приведена на рис. 3.36.

Осушенный газ под давлением около 28 кг/см² подается в первую колонну, где отделяются в кубовый продукт этан и более тяжелые углеводороды и направляются в четвертую колонну. Выходящий сверху первой колонны газ сжимается компрессором до давления выше 38 кг/см², охлаждается и подается во вторую колонну. Во второй колонне в кубовый продукт отделяется жидкий диоксид углерода и направляется на закачку в пласт. Газ, выходящий сверху второй колонны, содержит

Рис. 3.36. Технологическая схема установки разделения газа с высоким содержанием диоксида углерода

около 30 % диоксида углерода и метан. Этот газ поступает в деметанизатор КЗ, где с помощью циркулирующей фракции из газа отделяется диоксид углерода. Верхним продуктом колонны КЗ является метан с остаточным содержанием диоксида углерода (менее 2 %). Кубовая жидкость четвертой колонны содержит фракцию C_{4+} . Часть этого продукта направляется в цикл для подачи в первую и третью колонны. В дефлегматорах первых трех колонн в качестве хладоагента используется пропилен, в четвертой – вода (воздух).

В таблице 3.33 приведены состав сырья и коэффициенты извлечения продуктов при работе установки в октябре 1985 г.

í ‡∙ ÎË^‡ 3.33

Компоненты	Сырьевой газ, % мольн.	Коэффициент извлече- ния, % мольн.
Диоксид углерода	38,9	98,26
Сероводород	3,3	100,00
Метан	36,5	99,96
Этан _{+В}	21,3	97,89

3.6. ПОЛУЧЕНИЕ ГЕЛИЯ

Гелий – инертный газ с уникальными свойствами. Плотность гелия по отношению к воздуху составляет 0,138. Гелий почти не растворим в жидкостях и меньше, чем любой другой газ, склонен к адсорбции; хорошо диффундирует через твердые тела и любые узкие щели. Гелий - хороший проводник теплоты, теплопроводность его в 6 раз выше, чем у воздуха, но несколько ниже, чем у водорода. По электропроводности гелию нет равных среди газов. Он слабо диамагнитен, с низкой скоростью ионизации, является самым прочным атомным и молекулярным веществом. Гелий имеет самую низкую температуру сжижения (0,71 – 4,16 К) и критическую температуру (5,2 К). Поверхностное натяжение жидкого гелия в десятки и сотни раз меньше, чем у других сжиженных газов. Ниже температуры 2,2 К происходит скачкообразное изменение свойств жидкого гелия, при этом он становится сверхтекучим и обладает сверхтеплопроводностью.

Применение гелия в промышленности и науке многообразно [9, 2]. Гелий используется во многих отраслях машиностроения и металлургии. Крупными потребителями являются ракето- и самолетостроение, атомная, морская и космическая техника. В атмосфере гелия производят сварку, наплавку и резку нержавеющей стали, алюминия, магния, вольфрама, меди, серебра, свинца, берилиевой и кремнистой бронзы. Гелий используется при извлечении из руд и изготовлении изделий из титана, циркония, ниобия, тантала, германия, кремния и их сплавов. Он применяется в ракетах и управляемых снарядах в качестве двигательной силы для подачи топлива в камеру сгорания.

Гелий используется в качестве высокотемпературного теплоносителя в ядерных реакторах, при испытании сварных швов на газопроницаемость, определении герметичности аппаратов, работающих под давлением и вакуумом. Он применяется при создании искусственных атмосфер при подводных и кесонных работах, в авиации, медицине. Весьма перспективен гелий для применения в искусственной атмосфере космических кораблей вследствие устойчивости к различным радиационным излучениям и высокой теплопроводности, благодаря которой температура комфортной зоны увеличивается до 24,5–27,5 °C.

Атмосфера гелия – превосходная среда для консервирования пищевых продуктов, безопасной сушки и хранения взрывчатых веществ. Гелием заполняют метеорологические, разведывательные, рекламные и детские шары, наблюдательные

аэростаты и дирижабли. Для условий транспортировки крупнотоннажных грузов, особенно в труднодоступные районы, применение дирижаблей экономически выгодно.

Кроме того, гелий используется в хроматографии, лазерной технике, геологии и т.д.

Особое место занимает использование жидкого гелия в связи с радикальным изменением свойств веществ при сверхнизких температурах. Необходимостью использования гелия как низкотемпературного хладоагента при развитии исследовательских работ в областях прикладной сверхпроводимости было обусловлено резкое расширение производства гелия и формирование мощной гелиевой промышленности.

К настоящему времени в мире достигнуты поистине фантастические результаты во многих направлениях развития гелиевой промышленности. С помощью жидкого гелия решаются вопросы создания перспективных установок и машин для выработки электроэнергии: токомаков, криотурбогенераторов, МГД-генераторов. Считается, что в перспективе мощность подобных генераторов может достигнуть 5000 МВт.

Гелий участвует в создании уникальных электродвигателей со сверхпроводящими обмотками для тихоходного высоконагруженного привода, например, прокатных станов, морских судов, ледоколов. Подобные двигатели имеют мощность около 20 МВт.

С участием гелия происходит накопление и консервация электроэнергии, а также передача ее на большие расстояния с помощью сверхпроводящих кабелей.

Уникально значение гелия и сверхпроводящих магнитов в ускорителях, синхрофазотронах и коллайдерах.

Сверхпроводники используются в радиотехнике для создания приемных устройств высокой чувствительности, в вычислительной технике – для создания компактных криотронов, в химии – для создания новых технологических процессов и материалов с особыми свойствами.

Большие количества жидкого гелия необходимы в крупных имитаторах космических условий. В Подмосковье построена самая крупная в Европе криогенно-вакуумная камера вместимостью 10000 м³. В ней был испытан в натуральную величину космический корабль "Буран". Поверхность гелиевого конденсационного крионасоса составляет 400 м².

Небольшие количества жидкого гелия необходимы сегодня для обеспечения работы новых уникальных приборов и инструментов: магнитных томографов, обеспечивающих тончайшую диагностику живых органов человека; сверхпроводящих кван-

товых интерферометров, обеспечивающих измерение экстремально малых величин, например, силы тока до 10^{-6} А, напряжений до 10^{-15} В, магнитных полей до 10^{-14} Тл; болометров – высокочувствительных приборов для измерения излучений.

Наконец, самые низкие температуры в стационарном режиме, достигающие 1 K, реализуются с помощью рефрижераторов растворения He^3 в He^4 .

Гелий достаточно широко распространен в природе. Он один из основных элементов космоса, содержится в атмосферном воздухе, морской воде и отдельных минералах. Промышленными источниками получения гелия являются природный и попутный нефтяной газы.

Процесс производства гелия проводится в две стадии: получение гелиевого концентрата, содержащего 80–95 % об. гелия и очистка его от примесей (азота, кислорода, водорода, аргона, неона).

Получение гелиевого концентрата

Получение гелиевого концентрата осуществляется главным образом способом фракционированной конденсации сопутствующих гелию компонентов при глубоком охлаждении. Сжижение газа производится в аппаратах прямоточной и противоточной конденсации. В процессе конденсации газа происходит растворение гелия в жидких углеводородах, причем чем выше давление процесса, тем больше его растворяется. Поэтому для уменьшения потерь гелия одновременно с конденсацией углеводородов требуется производить отпарку гелия во всех ступенях отделения жидких углеводородов. При высоком давлении после аппаратов прямоточной конденсации отделение гелия от сконденсированной смеси углеводородов производят в отпарных колоннах; при низком давлении (1-2 МПа) можно ограничиться простой сепарацией. При использовании противоточных конденсаторов отделение гелия происходит непрерывно в процессе контакта движущихся потоков и поэтому не требуется дополнительной отпарки его в колонне.

Из-за низких скоростей газа в противоточных конденсаторах их применение для установок большой мощности ограничено, так как значительно увеличиваются габариты аппаратов. В установках большой производительности на 1-х ступенях обогащения газа гелием применяют аппараты прямоточной конденсации. На конечных ступенях разделения, где расход газа снижается в несколько десятков раз, применяется противоточная конденсация.

На рис. 3.37 приведена принципиальная схема процесса низкотемпературной конденсации газа с низким содержанием гелия. Схема включает предварительное охлаждение газа 1, две ступени прямоточной конденсации с отпаркой гелия 2, 3, 4, 5 и две ступени противоточной конденсации 6, 7. В первой ступени происходит обогащение газа гелием в 10 раз, во второй ступени - в 100 раз. После первого противоточного конденсатора 6 в газе содержится практически гелий и азот. Во втором противоточном конденсаторе 7 происходит почти полная конденсация азота. Остаточная концентрация азота зависит от температуры и давления выходящего гелия. При давлении 3 МПа снижение температуры от минус 180 °С до минус 200 °С позволяет понизить содержание азота в газообразном гелии с 20 до 3 %. Увеличение давления от 3 до 14 МПа при температуре минус 180 °С позволяет уменьшить содержание азота до 6 %. В то же время влияние давления на содержание азота в газообразном гелии уменьшается со снижением температуры.

В отпарных колоннах производится отпарка легколетучих компонентов и главным образом гелия из жидкости, сконденсировавшейся в прямоточных конденсаторах. Степень отпарки гелия при данных условиях (температуре, давлении, составе) зависит от количества отпариваемого газа и числа тарелок в колонне. Степень обогащения газа гелием определяется количеством суммарного пара на выходе из отпарной колонны, состоящего из отпаренного газа и газа, поступающего с потоком питания колонны.

При расчете отпарных колонн необходимо определить оптимальные соотношения между количеством отпаренного газа, потерями гелия с жидкостью и размером колонны. Зависимость между этими величинами дают уравнения, полученные

Рис. 3.37. Принципиальная схема процесса низкотемпературной конденсации газа с низким содержанием гелия

192

из потарелочного расчета отпарной колонны при условии постоянной температуры жидкости по высоте колонны. В отпарных колоннах, предназначенных для отпарки гелия, температура жидкости по высоте колонны меняется в пределах от 2 до 5 °C, что позволяет пренебречь этим изменением и вести расчет по средней температуре колонны.

В результате расчетных исследований [4] получены количественные соотношения между числом теоретических тарелок, количеством отпаренного газа и потерями гелия с жидкостью, выходящей из куба отпарной колонны.

По результатам расчетов построена номограмма, приведенная на рис. 3.38. Кривые на рис. 3.38, ‡ характеризуют зависимость числа теоретических тарелок колонны от количества отпаренного газа при потерях гелия с кубовой жидкостью, равных 1 %. Для определения числа теоретических тарелок при других значениях потерь используются кривые, приведенные на рис. 3.38, ·.

Из номограммы следует, что при одних и тех же количествах отпаренного газа число тарелок в значительной степени зависит от константы равновесия гелия. Поэтому существенным является вопрос выбора давления в колонне. Понижение давления в колонне и температуры поступающей в колонну жидкости приводит к значительному увеличению константы равновесия гелия и, следовательно, к уменьшению габаритов колонны. Однако снижение давления приводит к возрастанию энергетических затрат установки. С увеличением количества отпаренного газа уменьшается высота колонны, но это приводит к увеличению габаритов последующих аппаратов и расхода низкотемпературного холода в противоточных конденсаторах. Номограмма позволяет находить оптимальные соотношения между количеством отпаренного газа, потерями гелия и габаритами колонны, а также проводить анализ режимов работы отпарных колонн.

В результате анализа работы прямоточных конденсаторов и отпарных колонн могут быть рекомендованы следующие оптимальные условия ведения процесса: в отпарную колонну подается насыщенная жидкость; давление в отпарной колонне не должно превышать 4 МПа (при более высоком давлении резко возрастает растворимость гелия в жидких углеводородах); количество отпаренного газа 10–12 %.

В установках выделения гелия из природного газа способом низкотемпературной конденсации потребность в холоде обычно покрывается за счет дросселирования газа. Основная часть жидкости из первой отпарной колонны дросселируется до

Рис. 3.38. Номограмма для определения числа теоретических тарелок гелиевых отпарных колонн

давления, которое определяется из теплового баланса установки и обеспечения требуемой разности температур между прямым и обратным потоками. Эта часть обратного потока используется для охлаждения и конденсации газа в первом прямоточном конденсаторе 2 (см. рис. 3.37). Кубовая жидкость из второй отпарной колонны дросселируется до более низкого давления для обеспечения конденсации газа во втором прямоточном конденсаторе 4. В качестве дополнительного источника холода для предварительного охлаждения газа могут использоваться пропановый или аммиачный холодильные циклы. В качестве хладоагента в первом противоточном конденсаторе 6 используется метановая фракция, сдросселированная до низкого давления, во втором противоточном конденсаторе 7 – жидкий азот, кипящий при температуре минус 194 – минус 203 °C и получаемый в азотном холодильном цикле.

Технологические схемы установок получения гелиевого концентрата

Принципиальная схема получения гелиевого концентрата на заводе в Кейесе приведена на рис. 3.39 [9]. Завод состоит из трех технологических линий производительностью по 6,5·10⁵ м³ газа в сутки. Очищенный и осушенный природный газ, содержащий 2 % гелия, под давлением 3,2 МПа поступает в теплообменник 1, где охлаждается до минус 50 °C, после чего вводится в сепаратор 2. Сконденсировавшиеся тяжелые углеводороды выводятся из нижней части сепаратора 2 и присоединяются к обратному потоку газа, выходящему из установки после извлечения гелия. Удаление тяжелых углеводородов необходимо во избежание вымерзания их при дальнейшем охлаждении газа и возможных забивок аппаратов. Температурный уровень, на котором производится отделение углеводородов в сепараторе, зависит от состава и давления газа.

Газ из сепаратора 2 при давлении 2,8 МПа охлаждается до температуры минус 157 °С, при этом конденсируется 94 % газа. Смесь газа и конденсата дросселируется до 1,6 МПа. Газ, отделяющийся от конденсата в сепараторе 3, содержит около 35 % гелия, 54 % азота и 11 % углеводородов. Из сепаратора 3 газ поступает в противоточный конденсатор 4, охлаждаемый жидким азотом, где конденсируются углеводороды и частично азот. Конденсат из сепаратора 3 и дефлегматора 4 направляется в теплообменник 1, где охлаждает природный газ и под давлением 1,35 МПа выводится из установки. Из верхней части дефлегматора 4 выводится гелиевый концентрат, содержа-

Рис. 3.39. Схема установки получения сырого гелия на заводе в Кейесе

щий около 79 % гелия, 20,8 % азота, 0,1 % водорода и менее 0,1 % углеводородов, который при температуре минус 185 °C поступает в теплообменник 1, где нагревается и под давлением 0,4–1,2 МПа выводится из установки для дальнейшей очистки. Жидкий азот, используемый для охлаждения газа в дефлегматоре и компенсации потерь холода в установке, получают в замкнутом цикле.

На рис. 3.40 приведена принципиальная технологическая схема гелиевого производства в Либерале (штат Канзас, США). Извлечение гелия около 95 %. Содержание гелия в исходном газе составляет 0,4 %.

Очищенный и осушенный газ подается на установку под давлением 4,3 МПа, охлаждается обратными потоками газа и пропаном до температуры минус 46 °C и поступает в сепаратор 1, где отделяется смесь тяжелых углеводородов. Из сепаратора 1 несконденсировавшийся газ (93 % мас. поступившего на переработку природного газа) распределяется между теплообменниками 2 и 3. В теплообменнике 2 газ охлаждается гелиевым концентратом, а в теплообменнике 3 – потоком остаточного газа. После смешения газ поступает в метановый холодильник 4, где охлаждается до минус 102 °C и при этом частично конденсируется, а затем поступает в отпарную колонну 5, заполненную кольцами Палля. Выходящий из колонны газ обогащен гелием до 3 %.

Рис. 3.40. Принципиальная схема завода в Либерале

При давлении 4 МПа газ охлаждается в рекуперативном теплообменнике 6, а затем в метановом теплообменнике 7, где температура газа снижается до минус 120 °C, после чего через дроссельный вентиль поступает в дистилляционную колонну 8 с ситчатыми тарелками. Конденсатор колонны охлаждается азотом, кипящим при минус 173 °C. Верхний продукт колонны 3 – гелиевый концентрат, содержащий 65 % гелия, который нагревается в рекуперативных теплообменниках, а затем сжимается до давления 12,5 МПа и поступает в гелиевый трубопровод. В нижнем продукте колонны 8 содержится около 0,001 % гелия. Нижний продукт колонны 8 и 5 проходит рекуперативные теплообменники, дожимаются в компрессорах и возвращаются в магистральный газопровод; 9 и 10 – компрессора метанового и азотного холодильных циклов.

На рис. 3.41 изображена принципиальная схема установки низкого давления с многократным дросселированием газа, что позволяет уменьшить потери гелия. Способ реализован на заводе Северной компании природного газа в штате Техас (США), перерабатывающем 13,4·10⁶ м³ в сутки природного газа, содержащего 0,45 % гелия [26].

В теплообменник 1 природный газ поступает после выделения тяжелых углеводородов и осушки до температуры точки

Рис. 3.41. Принципиальная схема установки с многократным дросселированием

росы минус 51 °C. В теплообменнике 1 сжижается 86 % мол. поступающего газа; образовавшийся конденсат отделяется в первой ступени семисекционной колонны 2, где давление составляет 3,7 МПа, а температура минус 102 °С. Из первой ступени конденсат дросселируется во вторую, отделившийся здесь конденсат дросселируется в третью ступень и т.д. Давление в ступенях изменяется от 3,7 до 2,99 МПа, а температура от минус 102 до минус 106 °С. Из последней ступени конденсат направляется в теплообменники 1, где испаряется, нагревается, дожимается компрессором до давления 3,7 МПа и возвращается в газовую магистраль. Этот поток составляет около 78 % мол. всего объема газа, поступающего на установку. Конденсат, который выводится из последней секции колонны 2, содержит около 0,017 % гелия. Газ, отделенный в первой секции и образующийся при дросселировании конденсата в последующих ступенях, после смешивания содержит 2,11 % гелия. Благодаря многоступенчатому дросселированию в колонне 2 потери гелия с конденсатом уменьшаются на 32 % по сравнению с одноступенчатым дросселированием.

Газ из колонны 2 поступает в теплообменник 3, где охлаждается до температуры минус 144 °С и при давлении 2,88 МПа

поступает в первую ступень трехсекционной колонны 4. Конденсат отделяется в первой ступени и дросселируется во вторую ступень, а затем в третью. Давление в третьей ступени 1,24 МПа, а температура минус 147 °C.

Конденсат из третьей ступени направляется в теплообменники 3 и 1, а затем дожимается компрессором до давления 3,7 МПа и возвращается в магистраль. Содержание гелия в конденсате 0,012 %. Газовая смесь, образовавшаяся в результате дросселирования конденсата во второй и третьей ступенях колонны 4, нагревается в теплообменнике 5, сжимается компрессором до давления З МПа, вновь охлаждается и смешивается с газовой смесью, идущей из первой секции колонны 4. После смешения газ содержит 20,08 % гелия, 56,12 % азота, 23,8 % метана и следы этана и пропана. Благодаря трехступенчатому дросселированию конденсата в колонне 4 потери гелия с ним уменьшаются на 17 % по сравнению с одноступенчатым дросселированием. В теплообменнике 6 газ указанного состава охлаждается и конденсируется конденсатом, отделенным в сборнике 7. Несконденсировавшийся газ содержит 83,0 % гелия, 0,14 % водорода, 16,44 % азота и 0,42 % метана. Гелиевый концентрат указанного состава после рекуперации холода выводится с установки.

На рис. 3.42 приведена технологическая схема установки для извлечения гелия из природного газа на заводе в Польше [1]. Проектная мощность завода по поступающему газу составляет 3,5 млн. м³/сут. Состав перерабатываемого газа следующий (% мольн.): He – 0,4; H₂ – 0,01; N₂ – 42,75; CH₄ – 56,01; C₂H₆ – 0,44; C₃H₈ – 0,02; C₄H₁₀ – 0,01; C₅₊ – 0,06; CO₂ – 0,3; сернистых соединений – 0,0006. Неочищенный природный газ поступает на установку с давлением 5,5 МПа и при температуре 278–288 К.

Предварительное разделение природного газа осуществляется в три стадии. Первая стадия включает в себя моноэтаноламиновую очистку от CO_2 и H_2S . Природный газ подается в абсорбер 1, орошаемый раствором МЭА, который абсорбирует основное количество диоксида углерода и сероводород, содержащихся в исходном газе. Остаточный диоксид углерода и сероводород удаляют на второй стадии очистки адсорбцией на синтетических цеолитах в адсорберах 2. Одновременно в адсорберах 2 из природного газа поглощается влага. Третья стадия окончательная очистка природного газа от примесей, имеющих высокую температуру затвердевания и кристаллизации в адсорбере 3, заполненном активированным углем, где адсорбируются тяжелые углеводороды. Далее газ поступает в

Рис. 3.42. Технологическая схема установки извлечения гелия из природного газа на заводе в Польше

криогенный блок, где охлаждается в пластинчато-ребристых теплообменниках 4 до 160 К обратными потоками метана и азота, а затем дросселируется до давления 2,6 МПа, и двухфазная смесь поступает в кубовую часть нижней колонны 20, аппарата, совмещающего две колонны – высокого (нижняя колонна) и низкого (верхняя колонна) давления.

В нижней колонне происходит предварительное разделение смеси CH₄ - N₂ и первая стадия обогащения гелия. Процесс ректификации в нижней колонне приводит к образованию в верхней части трубного пространства конденсатора-испарителя пара, состоящего в основном из гелия и азота с молярной долей гелия приблизительно 10 %. Дальнейшее охлаждение этой смеси с обогащением до 88 % гелия и с конденсацией значительной части азота происходит в конденсаторе 6. Сконденсированный азот с незначительным количеством растворенного гелия возвращается в колонну 20, что позволяет уменьшить потери гелия при разделении. Метановая фракция из куба нижней колонны после прохождения через переохладитель 22 дросселируется и подается для окончательного разделения в верхнюю колонну 5. Жидкий азот, отводимый из верхней части нижней колонны, распределяется на три потока. Основной поток дросселируется на верхнюю тарелку колонны низкого давления 5, обеспечивая укрепляющую часть этой колонны необходимым количеством флегмы, второй поток направляется в конденсатор 6 для охлаждения смеси N₂ – Не и конденсации из этой смеси азота, и третий поток поступает в сборник жидкого азота 19.

Продукционный метан, отводимый в жидком виде из межтрубного пространства конденсатора-испарителя, с помощью жидкостного насоса 21 подается в переохладитель 22, а затем в теплообменник 4, где испаряется и подогревается до температуры, близкой к температуре окружающей среды. Состав продукционного метана и других продуктов разделения, выводимых

í ‡∙ ÎË^‡ 3.34

Материальный баланс установки извлечения гелия

Показатель	Сырьевой газ	ьевой газ Продукционный метан		Гелий
Давление, МПа	5,35-5,7	2,2	0,103	0,117
Состав, мол. доли:				
гелий	0,0040	-	0,0009	1,0000
азот	0,4275	0,0400	0,9895	-
метан	0,5602	0,9509	0,0096	-
этан	0,0053	0,0091	_	-
диоксид углерода	0,0030	´ —	_	-
Итого	1,0000	1,0000	1,0000	1,0000
Расход, тыс. м ³ /сут	3483	2045	1405	12

из установки, приведен в табл. 3.34. Гелиевый концентрат, выходящий из конденсатора 6, подается на очистку от примесей.

Для эксплуатируемых в странах СНГ месторождений природного газа характерно низкое содержание гелия.

Принципиальная технологическая схема процесса одновременного извлечения гелия, этана и широкой фракции углеводородов из бедного гелиеносного газа Оренбургского ГКМ [9] приведена на рис. 3.43. Более подробная схема дана в работе [28].

В установку низкотемпературного газоразделения поступает природный газ, очищенный от H_2S , CO_2 и осушенный под давлением 5 МПа. Схема включает две ступени прямоточной конденсации с отпаркой растворенного гелия в отпарных колоннах, заполненных насадкой из колец Палля и двух ступеней противоточной конденсации. Этан и широкая фракция углеводородов извлекаются из обратного потока газа после извлечения из него гелия. Установка может работать как в режиме получения только гелия, так и в режиме одновременного получения гелия, этана и ШФЛУ.

Основное количество холода, обеспечивающее извлечение гелия, получают при дросселировании большей части обратного потока газа до 3,8–3,6 МПа, 20 % – до 1,8–1,6 МПа, 1,5 % обратного потока дросселируется до давления 0,3 МПа.

При одновременном извлечении гелия, этана и ШФЛУ дополнительный холод получают детандированием обратного потока газа с 3,8–3,6 МПа до 1,8–1,6 МПа. В этом случае весь обратный поток выходит с установки под давлением 1,5 МПа, дожимается в компрессорах до исходного давления и поступает в газопровод для транспортирования.

Технологическая схема включает пропановые холодильные установки. Пропаном, кипящим при изотерме минус 36 °С, производят предварительное охлаждение газа. Пропаном, кипящим при минус 5 °С, конденсируют флегму в дефлегматоре деэтанизатора.

Азотный холодильный цикл обеспечивает холодом вторую ступень противоточной конденсации, а также установку очистки гелиевого концентрата от примесей.

В витых многопоточных теплообменниках T1 и T2 природный газ при давлении 4,5 МПа охлаждается, конденсируется и переохлаждается. После дросселирования до 4 МПа при температуре минус 93 °C в состоянии насыщенной жидкости поток подается на верх отпарной колонны К1. В куб колонны К1 подводится теплота для отпарки растворенного гелия. В качестве теплоносителя используется поток охлаждаемого природного газа. Количество газа, отпаренного в колонне К1, составляет

Рис. 3.43. Принципиальная технологическая схема установки выделения гелиевого концентрата, этана и широкой фракции углеводородов из природного газа

10 % от поступающего потока. Содержание гелия в жидкости, выходящей из куба колонны, составляет < 0,001 %. Температура верха и низа колонны минус 93 °С и минус 91 °С соответственно. В колонне К1 происходит десятикратное обогащение гелием выходящего сверху колонны газа.

Основное количество этана, содержащегося в газе, концентрируется в кубовой жидкости колонны К1, которая поступает на разделение в узел деэтанизации. Часть кубовой жидкости дросселируется до 3,8 МПа, проходит теплообменник Т2 и поступает в сепаратор С1. Конденсат, выделенный в сепараторе С1, подогревается в теплообменнике Т1 и подается в деметанизатор К3 при температуре минус 40 °C в качестве питания. Другая часть кубовой жидкости колонны К1 дросселируется до 3,8 МПа и подается в деметанизатор К3 в качестве орошения при температуре –93 °C.

Пар из колонны К1 охлаждается и конденсируется в прямоточном теплообменнике ТЗ, а затем подается при давлении 3,9 МПа и температуре минус 108 °С в отпарную колонну К2. В качестве теплоносителя в кубе колонны К2 используется природный газ. Отпарка в колонне К2 составляет около 10 % от поступающего потока. Содержание гелия в кубовой жидкости колонны К2 составляет <0,001 %. Концентрация гелия, выходящего из верхней части колонны К2, в 100 раз выше его концентрации в исходном газе. Температура верха колонны К2 минус 107 °C; температура куба минус 103 °C. Кубовая жид-кость колонны K2, содержащая около 15 % азота, 85 % метана и незначительное количество более тяжелых углеводородов, дросселируется до 18 МПа и поступает в качестве хладоагента в прямоточный конденсатор ТЗ. Пар, выходящий из колонны К2 и содержащий 5,5 % гелия, дросселируется до давления 1,8 МПа и поступает для дальнейшего обогащения в колонну КЗ. Колонна КЗ, состоит из противоточного конденсатора, насадочной и кубовой части. Противоточный конденсатор имеет две ступени. В первой ступени хладоагентом является кубовая жидкость колонны КЗ, содержащая около 30 % азота и 70 % метана, сдросселированная до 0,3 МПа. Во второй ступени противоточного конденсатора хладоагентом является жидкий азот, кипящий при температуре минус 194 °С. Из верхней части колонны КЗ выходит гелиевый концентрат, содержащий 85-90 % гелия, который направляется затем на очистку от примесей.

В колонну К4 на деметанизацию поступает поток, составляющий около 30 % от исходного количества газа. Давление в колонне 3,6 МПа. Соотношение потоков, подаваемых в качестве

орошения и питания, 1:1. Извлечение этана с нижним продуктом составляет около 85 %. Теплоносителями в кипятильнике колонны К4 являются водяной пар и широкая фракция углеводородов, отводимая из куба деэтанизатора К5.

Метановая фракция, выходящая из верхней части деметанизатора К4, объединяется с паром, выходящим из сепаратора С1 и поступает в детандер Д, где расширяется до 1,8 МПа. С температурой минус 103 °С поток поступает в качестве хладоагента в конденсатор Т2, а затем в теплообменник Т1.

Деметанизированная в колонне К4 смесь углеводородов поступает затем в деэтанизатор К5, работающий при давлении 3 МПа. Деэтанизатор оснащен дефлегматором и кипятильником. Теплоноситель в кипятильнике – водяной пар. Сверху колонны отбирается этановая фракция с содержанием 95 % этана, а снизу – широкая фракция углеводородов, содержащая около 60 % пропана.

На рис. 3.44 представлена технологическая схема извлечения из природного газа гелия с одновременным выделением фракции C₂₊ и азота [32].

Предварительно очищенный природный газ сжимается в компрессоре 1 с приводом от турбодетандера до 5 МПа и охлаждается до 230 К обратными потоками газа и пропаном. Конденсирующиеся углеводороды отделяются в сепараторе 3, подогреваются и подаются в метановую колонну 2, работающую под давлением 0,9 МПа. Газ, уходящий из сепаратора 3, после охлаждения и конденсации подается в колонну обогащения азота 5, работающую под давлением 3,1 МПа. Жидкий продукт с низа этой колонны подается насосом под давлением 4 МПа в теплообменник, где частично испаряется и поступает в сепаратор 6, установленный на всасывающей линии турбодетандера. Жидкие продукты из сепаратора 6 после подогрева поступают в метановую колонну для выделения из них фракции С₂₊. Пары из сепаратора расширяются в турбодетандере и поступают в метановую колонну. При этом образующаяся при расширении газа жидкость служит орошением колонны. Продукт с низа метановой колонны (фракция С₂₊) уходит с установки при давлении 0,9 МПа. Продукт с верха метановой колонны нагревается и отводится с установки при давлении 0,8 МПа, как товарный газ.

Газ из колонны обогащения азота 5 охлаждают и подают в колонну высокого давления 9 (2,7 МПа). С верха этой колонны уходит газ, обогащенный гелием, и жидкий азот с растворенным в нем гелием, которые поступают в гелиевую колонну 7 (2,7 МПа).

Рис. 3.44. Технологическая схема установки извлечения из природного газа гелия
с одновременным выделением фракции С ₂₊ и азота:
I – очищенный газ (сырье); 11 – пропановый хладоагент; 111 – топливный
газ; IV – сырой гелий; V – азот; VI – товарный газ; VII – фракция С ₂₄

Продукт с низа колонны высокого давления поступает в колонну низкого давления 8 (0,2 МПа). В этой колонне выделяется чистый газообразный азот и жидкая смесь азота и метана. Продукт с низа колонны сжимается до 0,9 МПа и после испарения выводится с установки в качестве топливного газа. Для орошения колонны обогащения азота используется система открытой циркуляции товарного газа 4.

В таблице 3.35 приведен материальный баланс описанной установки извлечения гелия.

В работе [13] предложена технологическая схема извлечения гелия из газа Братского газоконденсатного месторождения.

Близкое расположение потребителей газа от Братского газоконденсатного месторождения и высокая его гелиеносность позволяют организовать экономичную переработку газа и при небольших объемах добычи (порядка 440 млн. м³/год) получать ежегодно более 1 млн. м³ товарного газа, до 3 тыс. т сжиженных газов, 16,4 тыс. т бензиновой фракции 35 тыс. т дизельного топлива и 2,5 тыс. т котельного топлива.

Пластовый газ содержит (% по объему): 0,27 гелия; 0,12 водорода; 0,24 диоксида углерода; более 86 метана; 1,7 пропана и бутана; 2,4 конденсата, а также этан и азот.

На рис. 3.45 представлена технологическая схема установки выделения гелиевого концентрата с азотным холодильным циклом. Последовательное охлаждение, сжижение газа и ректификационное его разделение в установке производятся за счет рекуперации холода сдросселированных сжиженных фракций.

í ‡• ÎË^‡ 3.35

Показатель	Сырье- вой газ	Фрак- ция С ₂₊	Товар- ный газ	Топлив- ный газ	Гелий	Азот
Давление, МПа	4,4	0,9	0,8	0,8	2,7	0,1
Температура,К	311	262	306	306	306	306
Состав, мол. доли:						
гелий	0,0050	-	0,0001	-	0,5694	0,0017
азот	0,1020	-	0,0299	0,2348	0,4299	0,9955
метан	0,7302	0,0070	0,9652	0,7651	0,0007	0,0028
этан	0,0694	0,4121	0,0047	0,0001	· —	· –
пропан	0,0516	0,3207	0,0001	_	-	-
C_{4+}	0,0418	0,2602	-	-	-	-
Итого	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Расход, кмоль/ч	2988	480,1	2019,4	299,1	25,4	164

Рис. 3.45. Технологическая схема установки выделения гелиевого концентрата: I – осушенный газ в установки: II – переработанный газ в газопровод; III – топливный газ; IV – жидкие углеводороды; V – гелиевый концентрат; VI – жидкий азот в установку очистки гелия

Рис. 3.45. Технологическая схема установки выделения гелиевого концентрата: I – осушенный газ в установки: II – переработанный газ в газопровод; III – топливный газ; IV – жидкие углеводороды; V – гелиевый концентрат; VI – жидкий азот в установку очистки гелия

Рис. 3.46. Технологическая схема выделения гелия, этана и фракции С_{3+в} из природного газа: I – сырьевой газ; II – газ на очистку и сушку; III – осушенный газ; IV – осушенный и очищенный от CO₂ газ; V – то-варный газ; VI – метановая фракция низкого давления (p = 0,3 МПа); VII – газ на регенерацию адсорберов; VIII – газ регенерации; IX – этановая фракция; X – гелиевый концентрат; XI – фракция С_{3+в}; XII – метановая фракция низкого давления (p = 0,12 МПа)

подготовку на промысле, с давлением 6,5 МПа. Состав газа, % (мольн.): 0,26 гелия; 0,04 водорода; 1,59 азота; 0,16 диоксида углерода; 91,82 метана; 4,57 этана; 1,05 пропана; 0,4 бутана; 0,12 C_{5+} .

Газ охлаждается до температуры 10-15 °C и подается в адсорберы, заполненные цеолитом. Весь газ осушается до температуры точки росы (не выше минус 60 °C) и часть газа (в данном случае 25 %) очищается от CO₂.

Основной поток газа охлаждается пропаном в рекуперативных теплообменниках до температуры порядка минус 50°С и подается в сепаратор С1. Отсепарированный газ расширяется в турбодетандере ТД до давления 2 МПа и подается в абсорбер К1. На верхнюю тарелку абсорбера подается сжиженный газ, очищенный от CO_2 на цеолитах. Выходящий из абсорбера газ подается (для выделения гелия) в прямоточные конденсаторы и отпарные колонны К4 и К5. Из сепаратора С4 выходит газ с содержанием гелия около 60 %.

Деметанизация в колонне К2 производится при давлении 1,8 МПа. Для более эффективного использования холода потоков колонна К2 оснащена двумя прямоточными кипятильниками T20 и T10. В первом охлаждается природный газ, во втором конденсируется этан. Снизу колонны отводится фракция С₂₊, которая насосом подается в деэтанизатор К3, работающий при давлении 3 МПа. Такое давление требовалось для организации транспорта этановой фракции, которая отводится сверху колонны K3, снизу отводится фракция С₃₊.

Жидкость из колонны К4 испаряется и нагревается в рекуперативных теплообменниках и дожимается компрессором турбодетандерного агрегата до 1,4 МПа. Газ, поступающий из колонны К2, нагревается в рекуперативных теплообменниках и используется для регенерации адсорберов блока осушки и очистки газа, после чего смешивается с указанным выше потоком. Суммарный поток – товарный газ при давлении 1,4 МПа направляется потребителю.

Жидкость из колонны К5 дросселируется до 0,4 МПа и испаряется в конденсаторе Т. Этот поток газа выходит из установки при давлении 0,3 МПа в количестве 3,8 % от сырьевого газа. Он может быть использован для собственных нужд или добавляться к товарному газу после дожатия.

Расчетный коэффициент извлечения этана составляет 90– 92 %, пропана – 99 %, гелия – 99 %.

Для предварительного охлаждения газа и конденсации этана в дефлегматоре колонны КЗ используется пропановая холодильная установка с изотермой кипения пропана минус 5 °С.

Использованный в данной технологической схеме комбинированный способ очистки газа от CO₂ позволил более чем в 2 раза сократить число адсорберов по сравнению с вариантом очистки всего газа адсорбцией на цеолитах.

Были проведены расчетные исследования зависимости степени очистки газа от CO_2 в абсорбционной колонне K1 от содержания CO_2 в сырьевом газе, орошения (доли газа, очищенного от CO_2 на цеолитах) и числа теоретических тарелок. На рис. 3.47 приведены полученные зависимости при пяти теоретических тарелках в абсорбере. Расчеты показали, что если в газе, выходящем из абсорбера, содержание CO_2 не будет превышать 0,02 %, то при дальнейшем его разделении (по данной схеме) твердая фаза не образуется. Из рисунка следует, что при переработке газа указанного состава (молярная доля CO_2 0,16%) достаточно очистить от CO_2 22–25 % сырьевого газа.

Содержание CO_2 в газе может быть уменьшено увеличением числа тарелок в абсорбере. Так увеличение их с пяти до восьми снижает содержание CO_2 в газе в 2 раза.

Рис. 3.47. Зависимость степени очистки газа от CO_2 в абсорбере от количества орошения (доли очищенного от CO_2 газа) при различном содержании CO_2 в исходном газе: 1 – 0,1 %; 2 – 0,2 %; 3 – 0,3 %; 4 – 0,5 %; 5 – 1,0 %

Подача на орошение очищенной от CO_2 жидкости позволяет избежать образования твердой фазы в колонне К1. Наиболее вероятно выпадение твердой фазы CO_2 в верхней секции деметанизатора К2. Были рассмотрены два варианта: жидкость из колонны К1 подается на верхнюю тарелку колонны К2; колонна К2 имеет дефлегматор, а жидкость из колонны К1 подается на третью теоретическую тарелку.

На рис. 3.48 нанесены расчетные значения содержания СО₂

в жидкости на четырех верхних тарелках деметанизатора K2 при разном содержании CO_2 в сырьевом газе. Кривая 1 характеризует содержание CO_2 в жидком метане, равновесное с твердым CO_2 при данной температуре. Штриховые линии ниже кривой 1 нанесены условно, по ним можно только судить, какова степень вероятности образования твердого CO_2 и в каком случае твердой фазы будет больше или меньше.

Из рис. 3.48 следует, что при наличии дефлегматора только при молярной доле CO_2 до 0,2 % гарантируется работа колонны без выпадения твердой фазы на тарелках. Наиболее вероятно образование твердой фазы на первой и второй тарелках.

Для колонны без дефлегматора наблюдается несколько другая картина. Наибольшая вероятность выпадения твердого CO_2 на третьей тарелке, что связано с резким увеличением концентрации CO_2 при небольшом увеличении температуры. В область образования твердого CO_2 не попадают только кривые 2 и 3, соответствующие молярному содержанию CO_2 в исходном газе до 0,3 %.

Отметим, что зависимости на рис. 3.48 соответствуют конкретным условиям работы колонны К2: давление 1,8 МПа, коэффициент извлечения этана 92 % (в варианте с дефлегматором) и 90 % (в варианте без дефлегматора). Например, при коэффициенте извлечения этана 85 % твердая фаза не выпадает на тарелках до содержания CO_2 в сырьевом газе порядка 0,5 %.

3.7. ОЧИСТКА ГЕЛИЯ ОТ ПРИМЕСЕЙ

Выделенный в процессе низкотемпературного фракционирования гелиевый концентрат обычно содержит следующие примеси: азот (5–15 % об.), водород, кислород, аргон, неон, диоксид углерода, а также следы углеводородов. Содержание водорода может меняться от десятых долей процента до нескольких процентов.

Очистку гелия от водорода обычно проводят окислением водорода с помощью активной окиси меди (79 % окиси меди, 1 % окиси железа, и 20 % каолина) или непосредственно кислородом на платиновом или палладиевом катализаторе [9, 10]. Процесс окисления водорода активной окисью меди является периодическим. Установка (блок) состоит из нескольких линий, включающих рекуперативные теплообменники, обеспечивающие подогрев газа перед реакторами и охлаждение после них, подогреватели для нагрева газа до температуры начала реакции (400–450 °C) и реакторы с активной окисью меди. Реакция окисления идет с выделением тепла, продуктами окисления являются вода, а в случае присутствия в газе углеводородов и диоксида углерода. Температура газа, прошедшего реактор, повышается примерно на 40 градусов на каждый процент окисленного водорода.

По окончании процесса очистки осуществляется регенерация – окисление восстановленной контактной массы путем подачи в реактор азота с 2–3 % об. кислорода. Процесс окисления меди (с выделением тепла) проводится примерно при той же температуре, что и восстановление.

Достоинством этого метода очистки гелия от водорода является то, что степень очистки не зависит от колебаний концентрации водорода в сырье, недостатком – периодичность процесса. Периодичность увеличивает количество оборудования, усложняет эксплуатацию, увеличивает потери гелия. Недостатками также являются низкая механическая прочность катализатора, что обусловливает его частую замену.

В настоящее время наибольшее применение получил метод окисления водорода на палладиевом или платиновом катализаторе [16, 15]. Этот способ обеспечивает высокую степень очистки гелия от водорода, непрерывность процесса, высокую скорость реакции, требует обеспечения стехиометрического соотношения между водородом и подаваемым в поток газа кислородом. Продуктом окисления является водяной пар. Часто вместо кислорода в поток газа подается воздух, количество которого регулируется автоматически. После очистки гелия от водорода его охлаждают, сепарируют от воды и затем осушают. Осушку обычно проводят адсорбцией на цеолитах.

Окончательную очистку гелия от примесей проводят адсорбцией на активированном угле. При этом возможны различные варианты технологии и параметры процесса. На отечественных заводах адсорбционную очистку гелия проводят при высоких давлениях 6-18 МПа, при этом предварительно производят конденсацию из него азота при температурах 73-80 К. Для охлаждения используют жидкий азот. Например, на Оренбургском гелиевом заводе после осушки газа при давлении 1,5 МПа, он сжимается до 17,5 МПа, проходит вторичную осушку и подается в низкотемпературный блок. Гелий охлаждается в рекуперативных теплообменниках и двух конденсаторах, в первом из которых жидким азотом, кипящим под небольшим избыточным давлением (температура кипения 80 К), во втором – азотом, кипящим под вакуумом (температура кипения 70 К). При этом конденсируется азот и затем отделяется от газа. Остаточное содержание азота в гелии около 1 %. Окончательная очистка гелия от азота и других примесей производится в адсорберах, заполненных активированным углем марки СКТ-6. Охлаждение адсорберов производится жидким азотом, кипящим при температуре 80 К. Регенерация угля производится горячим потоком гелиевого концентрата. При этом в рубашку адсорберов подается горячий азот (предварительно сливается жидкий азот). Гелий после адсорберов подогревается в рекуперативных теплообменниках и подается в цех наполнения баллонов. Давление процесса 17,5 МПа было выбрано для заполнения баллонов. Технико-

экономические расчеты показали, что более эффективно проводить процесс при 6 МПа, а затем заполнять баллоны компрессором.

Если товарной продукцией является жидкий гелий, то очистка гелия производится без повышения давления, хотя при этом значительно повышается нагрузка на адсорберы, так как в газе, поступающем в адсорберы, содержание азота может составлять 2,5–3,5 % об.

Рассмотрим несколько схем очистки гелия.

По схеме (см. рис. 3.42) сырой гелий, выходящий из конденсатора 6, кроме азота содержит в качестве примеси водород. Поэтому последующие стадии очистки гелия заключаются в удалении из смеси N₂ - H₂ - Не водорода и азота. Для удаления водорода сырой гелий подогревают в теплообменнике 7, затем к нему добавляют некоторое количество воздуха и смесь подогревают в аппаратах 9 и 11 до 420 К, далее направляя ее в реактор 10. В реакторе, где процесс идет в присутствии платинового катализатора, водород выделяют, связывая его с кислородом воздуха. При прохождении сырого гелия через реактор молярная доля водорода в нем уменьшается от 2 % до значения менее 0,0002 %. Перед окончательной очисткой сырого гелия от азота гелий очищается от капельной влаги во влагоотделителе 17, сконденсировавшейся после охлаждения в аппаратах 9 и 12, а затем в абсорбере 8, заполненном цеолитом, удаляется остаточное количество H₂O и CO₂. Следующая стадия очистки, на которой происходит удаление основного количества азота, производится в аппаратах 18 и 16. В первом из них осуществляется конденсация азота, содержащегося в сыром гелии, за счет охлаждения жидким азотом, кипящим при давлении ниже атмосферного. Во втором – отделение сконденсированного азота. При этом молярная доля азота в смеси N₂ – Не снижается до 1,5 %. Пары азота из конденсатора 18 после прохождения через подогреватель 13 откачиваются вакуумнасосом 14. Полное удаление примесей завершается в низкотемпературном адсорбере 15. Полученный чистый гелий затем подается на установку сжижения гелия.

В работе [10] описана технологическая схема установки очистки гелиевого концентрата под высоким давлением на Оренбургском гелиевом заводе.

В установку тонкой очистки гелиевый концентрат (рис. 3.49) поступает при температуре 83 К и давлении 1,5–1,8 МПа. В рекуперативном теплообменнике 1 гелиевый концентрат нагревается до температуры 293–303 К и поступает в блок очистки от водорода.

êÊÒ. 3.49. EI ÂÏ ‡ ÛÙÚ‡Ì Ó, Í Ĕ ÚÓÌ Í ÓÈ Ó~ËÙÚÍ Ĕ "ÂĨ ËFI

Блок очистки от водорода состоит из нескольких (например, трех) попеременно работающих линий, включающих в себя рекуперативные теплообменники 2, обеспечивающие подогрев газа перед реакторами и охлаждение после них; подогреватели 3, нагревающие газ до температуры начала реакции (673-723 К), и реакторы 4 с активной окисью меди (в настоящее время реакторы с активной окисью меди заменены на реакторы прямого окисления в присутствии алюмоплатинового катализатора). После очистки от водорода газ охлаждается в водяном холодильнике 5, сепарируется от воды в сепараторе, осушается в адсорберах 7, заполненных цеолитами, дожимается мембранными компрессорами 8 до 17,5 МПа, проходит фильтр и отделитель масла и доосушается в адсорберах высокого давления 9. Далее гелиевый концентрат охлаждается в рекуперативном теплообменнике 1 и поступает в конденсаторы азота 10 и 11. Окончательную очистку от примесей осуществляют в адсорберах, заполненных активированным углем. В адсорберах 12 (при температуре 83 К) производится очистка гелия от примесей азота и водорода, в адсорберах 14 - от неона. Хладоагентом в адсорберах является жидкий азот, 13, 15 или поступает в баллоны 16.

На рис. 3.50 приведена технологическая схема очистки гелиевого концентрата, который будет выделяться на установке Братского ГПЗ (см. рис. 3.45) [12]. Этот концентрат отличается высоким содержанием водорода – 26,7 %, содержание в нем азота – 13,8 %.

На установку поступает 249 м³/ч гелиевого концентрата при давлении 2,9 МПа и температуре 87 К, который после подогрева в теплообменнике 1 до 290 К подают в узел очистки от водорода. В реакторе 7 осуществляют окисление водорода кислородом воздуха на алюмоплатиновом катализаторе АП-64. Из-за очень высокого содержания водорода в гелиевом концентрате применена схема с 9-кратной циркуляцией очищенного потока в реактор (с помощью газодувки 2), что позволяет снизить содержание водорода в потоке перед реактором до 2,5–3 % и проводить одноступенчатую очистку.

Разбавленный гелиевый концентрат перед реактором смешивают с воздухом и подогревают до 370–390 К в рекуперативном теплообменнике 3. Расход воздуха, циркулирующего гелиевого концентрата и подогрев реакционной смеси регулируется автоматически, чтобы на выходе из реактора остаточное содержание водорода и кислорода в гелиевом концентрате не превышало соответственно 0,003 и 0,2 %, а температура его экзотермического разогрева не превышала 700 К.

ÉËQ 3.50. i Âxl OÎ Ó, Ё⁻ÃOÎ ‡q ÒxÂI ‡ ÔOÎ ‡l ÔOÎ Î⁻ÂI Ёq ⁻ĔOOÔ, Ó, "ÂÎ Ёq : I – вход гелиевого концентрата; II, IX – азот на регенерацию адсорберов; III – воздух, IV – теплоноситель; V – водный конденсат; VI – сброс вакуумного азота; VII – жидкий азот из холодильного цикла; VIII – холодный азот (газ) в холодильный цикл; ї – гелиевые сдувки в газгольдер; XI – выход чистого гелия
Горячий гелиевый концентрат из реактора отдает часть своего тепла в теплообменниках 3, 5, 6 (подогревая реакционную смесь и азот для регенерации осушителей 11 и угольных адсорберов 15) и охлаждается водой до 350 К в конденсаторе 8. После отделения водного конденсата в влагоотделителе 9 большую часть гелиевого концентрата возвращают в реактор, а расходную его часть осушают на цеолитах в адсорберах 11. Осушенный концентрат охлаждают до 103 К в рекуперативных теплообменниках 1, 12, 16 и до 74 К в конденсаторе 13 за счет использования холода сдросселированных до 0,04 МПа потоков жидкого азота, сконденсированного из гелиевого концентрата и подаваемого из азотного холодильного цикла. Оставшиеся в гелии примеси азота, кислорода и водорода удаляют (до остаточного содержания 0,001-0,005 %) в угольных адсорберах 15 при температурах 75-90 К. В технологическую схему включены также следующие аппараты: подогреватель газа в период запуска установки 4, вакуум-насосы 10, 17, отделитель жидкого азота 14.

Чистый гелий из адсорберов после нагрева в теплообменнике 16 до 280 К при давлении 2,7 МПа подают в установку сжижения (где имеется адсорбер для очистки от неона) и транспортные емкости жидкого гелия.

В установке очистки для получения 146 м³/ч чистого гелия расход электроэнергии составляет 51 кВт, жидкого азота из холодильного цикла – 170 кг/ч, газообразного азота – 220 м³/ч, воздуха – 183 м³/ч, циркулирует 1,7 т/ч оборотной воды, расходуется 450 кг/год цеолитов, 710 кг/год активированного угля, 100 кг/год алюмоплатинового катализатора.

í ‡∙ ÎË^‡ 3.36

Динамическая активность угля СКТ-6 Φ по азоту, водороду и неону (T = 77 K, давление 17,5 МПа) при адсорбции их смеси из гелия

Компонент смеси	Концетрация примеси в очищаемом гелии, % об.	Динамическая активность, см ³ /г
Азот	1,15	320 340
	1,49	365
Водород	0,0094	370 1,90
	$0,0124 \\ 0,0260$	2,19 5,04
Неон	0,0727	10,60
iicon	0,010	0,30
	0,016	0,42 0,50
	0,024	0,63

В таблице 3.36 приведены экспериментальные значения динамической активности угля СКТ-6А при температуре 77 К и давлении 17,5 МПа по азоту, водороду и неону [10, 21, 22, 20]. Эти данные могут быть использованы при определении необходимого количества адсорбента.

Наибольшую трудность вызывает очистка от неона. Из таблицы следует, что активность угля по неону на порядок ниже, чем по водороду. Это приводит к значительному увеличению количества адсорбента (адсорберов).

В патенте № 3616602 [24] рекомендуется проводить адсорбционную очистку гелия от примесей при температуре ниже температуры замерзания данной примеси (в чистом виде). Это иллюстрируется на примере адсорбции неона из смеси с гелием. В таблице 3.37 приведены данные динамической активности угля по неону при различных температурах. Начальное содержание неона в смеси с гелием 0,0028 % об. Из таблицы следует, что при температурах ниже температуры замерзания неона (24,66 К) адсорбционная способность угля по неону возрастает на порядок. Поэтому для получения гелия высокой чистоты часто проводят окончательную его очистку адсорбцией при температурах 15-20 К. Если продуктом является газообразный гелий, то для охлаждения до указанных выше температур используют холодильные гелиевые установки. Если продуктом является жидкий гелий, то окончательная очистка от примесей производится в адсорбере, установленном в установке сжижения гелия. Например, такая установка предлагается в работе [34] для получения жидкого гелия из газа Братского ГКМ.

Для очистки гелия от азота может быть также использован метод короткоцикловой адсорбции при температуре окружаю-

í ‡∙ ÎË^‡ 3.37

Динамическая адсорбционная	способность	угля по	неону.
Начальное содержание неона	в гелии 0,112	28 %	

Номер опыта	Температура, К	Давление абсолютное, МПа	Адсорбционная способность, г неона/г угля	Адсорбционная способность, см ³ неона/г угля
1	38,7	1,035	0,014	15,5
2	33,5	0,304	0,042	46,5
3	33,15	0,414	0,059	65
4	33,15	0,621	0,084	93
5	33,15	0,828	0,063	70
6	33,15	1,035	0,055	61
7	33,15	1,035	0,053	59
8	33,15	1,035	0,067	74
9	33,15	1,035	0,051	56
10	22,05	1,035	0,330	366
11	10,95	1,035	0,598	664

щей среды. Такой метод очистки описан в работах [9, 29]. В этих работах процесс очистки производится при давлении 2–3 МПа в трех попеременно работающих адсорберах. Регенерация насыщенного адсорбента производится сбросом давления. В работе [9] после сброса давления производилась промывка адсорбера чистым гелием. В качестве адсорбента использовался активированный уголь СКТ-6.

Для управления процессом использовался микропроцессорный блок, осуществляющий циклическое открытие и закрытие клапанов с различным временем цикла.

Рабочий цикл [29] состоял из следующих стадий: перепуск газа и набор давления в адсорбере; адсорбция; перепуск газа в отрегенерированный адсорбер; сброс давления (регенерация). Общее время цикла составляло 150–210 с. Содержание примесей (азота, кислорода) было от 7 до 20 % об. Чистота получаемого гелия составляла 99,9–99,98 %.

В работе [9] остаточное содержание азота в гелии составляло 0,004–0,02 % об. В этой же работе отмечается, что короткоцикловая адсорбция экономически более эффективна по сравнению с низкотемпературной адсорбцией.

Для получения чистого гелия требуется его доочистка адсорбцией при низких температурах. Существенным недостатком метода очистки гелия короткоцикловой адсорбцией являются повышенные потери гелия с сбросными газами. Так в работе [29] извлечение гелия составляло 75–85 %. Однако потери гелия могут быть значительно уменьшены, если сбросные газы сжижать компрессором и возвращать в блок получения гелиевого концентрата.

3.8. ПОЛУЧЕНИЕ ИНДИВИДУАЛЬНЫХ КОМПОНЕНТОВ ПРИРОДНОГО ГАЗА ИЗ ГАЗОВОГО КОНДЕНСАТА

Фракционирование газового конденсата обеспечивает производство индивидуальных стандартных продуктов, которые могут быть использованы как сырье для получения основных промежуточных компонентов органического синтеза – этилена, пропилена, бутадиена, изопрена и т.д. Этан, пропан, бутаны также могут быть использованы в качестве сырья производства поверхостно-активных веществ (ПАВ), синтетических моющих средств, растворителей, белково-витаминных концентратов (БВК), высокооктановых компонентов (например – МТБЭ) и т.д. Получение перечисленных индивидуальных

сжиженных газов из жидкого углеводородного сырья производится на газофракционирующих установках (ГФУ). Традиционно, газофракционирующие установки входят в состав нефтеперерабатывающих производств. Соответственно, к ним приурочены как мощности по выпуску индивидуальных сжиженных газов, так и продуктов химического синтеза на их основе.

Валовое производство сжиженных газов и рефлюксов на НПЗ России в 1993 г.

Валовое производство, всего, тыс. т	2263,5
В том числе:	
Пропановая фракция	110,0
Изобутановая фракция	182,9
Фракция нормального бутана	614,9
Пропан-пропиленовая фракция	126,0
Бутан-бутиленовая фракция	418,6
Пропан-бутановая фракция для быта	414,8
Прочие сжиженные газы	396,3
Рефлюксы	761,9

Индивидуальные компоненты сжиженных газов могут быть получены также из газового конденсата при его переработке. Их получение может производиться на установках, аналогичных ГФУ НПЗ. На фракционирование может подаваться как деметанизированный, так и деэтанизированный конденсат. Первое более предпочтительно, поскольку может быть получено дополнительное сырье для химического синтеза. Рассмотрим стандартное техническое решение по фракционированию конденсата, позволяющее получить следующий широкий спектр товарной продукции как сырья для процессов пиролиза:

Фракция этановая по ТУ 38.101489. Фракция пропановая по ТУ 38.101490. Фракция изобутановая по ТУ 38.101492.

Рис. 3.52. Принципиальная технологическая схема газофракционирующей установки деметанизированного конденсата

Фракция нормального бутана по ТУ 38.101497.

Сырьем для установки служит деметанизированный газовый конденсат, содержащий двуокись углерода. Установка газофракционирования деметанизированного конденсата (ГФУ) в этом случае должна состоять из отдельных блоков, каждый из которых несет определенную функциональную нагрузку.

Блок низкотемпературной ректификации включает оборудование для охлаждения и частичной конденсации природного газа и выделения из него этановой фракции и фракции С_{3+в}.

Блок очистки от двуокиси углерода предназначен для получения товарной этановой фракции, соответствующей требованиям ТУ 38-101489–79 по содержанию двуокиси углерода.

Блок газофракционирования предназначен для разделения фракции C_{3+в} на товарные продукты. Блок-схема установки приведена на рис. 3.51.

Принципиальная технологическая схема установки низкотемпературной ректификации и фракционирования деметанизированного конденсата представлена на рис. 3.52.

Блок низкотемпературной ректификации

Деметанизированный конденсат из входного сепаратора С-1 насосом Н-5 подается на питание в среднюю часть этановой колонны К-1 (см. рис. 3.52). Рабочее давление в этановой колонне – 2,5–3,0 МПа и поддерживается отбором верхнего продукта колонны. Пар с верхней тарелки колонны поступает в трубное пространство дефлегматора Т-1, установленного на рефлюксной емкости Е-1. Хладагентом в дефлегматоре Т-1 является пропан с температурой кипения минус 10 минус 5 К, подаваемый из пропановой холодильной установки (ПХУ). Необходимый расход жидкого пропана из ПХУ поддерживается клапаном, установленным на входе в емкость Е-1. Уровень жидкости в рефлюксной емкости Е-1 регулируется соответствующей подачей холода в дефлегматор Т-1. Конденсат из емкости Е-1 насосом Н-1 подается в колонну К-1 в качестве флегмы.

Отбор флегмы осуществляется по заданному расходу с коррекцией по температуре отводимого из колонны пара, что обеспечивает заданную чистоту продукта. Верхний продукт этановой колонны К-1 отводится из дефлегматора Т-1 в виде пара и направляется в блок очистки от двуокиси углерода с целью получения кондиционного продукта – этановой фракции. Теплоносителем в кипятильнике этановой колонны, встроенном в куб колонны, является насыщенный водяной пар

с давлением 0,7 МПа. Подача пара в кипятильник регулируется по заданию датчика температуры на контрольной тарелке колонны К-1 соответствующим отводом конденсата водяного пара из сборника. Регулятор уровня конденсата в емкости обеспечивает блокировку по минимальному уровню, что предотвращает проскок пара с конденсатом. Далее паровой конденсат объединяется с конденсатом такого же давления, полученным после использования пара в других блоках установки и после охлаждения в АВО до 60-70 °С выводится в заводской коллектор. Кубовый продукт колонны К-1 – фракция С3+в используется в качестве сырья для получения целого ряда продуктов и направляется в блок газофракционирования. Для обеспечения устойчивой работы колонн блока газофракционирования поддерживается постоянный расход фракция С_{3+в} на входе в блок соответствующим открытием клапана, через который выводится кубовая жидкость колонны К-1. В данном случае уровень жидкости в кубе колонны не поддерживается, а только при достижении минимально- или максимально допустимого значения уровня вносится коррекция на отбор кубового продукта.

Блок газофракционирования

Блок состоит из трех колонн, принцип управления которыми идентичен. Давление в колоннах поддерживается регуляторами, установленными непосредственно на шлемовых трубах на участках между колоннами К-2, К-3 и К-4 и воздушными конденсаторами X-2, X-3 и X-4 соответственно. Давление в рефлюксных емкостях Е-2, Е-3 и Е-4 на 0,1-0,2 МПа ниже, чем в соответствующих колоннах и поддерживается клапанами, установленными на линиях сброса неконденсирующегося газа из паровой зоны. Температура верха колонн поддерживается регуляторами, установленные на трубопроводах подачи флегмы в колонны. Температура флегмы может корректироваться воздействием на работу аппаратов воздушного охлаждения путем изменения числа включенных вентиляторов или частоты вращения двигателей вентиляторов. Теплоносителем во встроенных в кубы колонн кипятильниках является насыщенный водяной пар, подаваемый по заданному расходу с коррекцией по температуре куба. Клапаны регуляторов расхода пара установлены на трубопроводах отвода конденсата из соответствующих сборников, что обеспечивает мягкое регулирование режима.

Фракция С_{3+в}, поступающая в блок из куба колонны К-1, подается в пропановую колонну К-2, работающую под давлени-

ем 1,3 МПа. Пар, отводимый с верха колонны, охлаждается и полностью конденсируется в дефлегматоре X-2 и стекает в рефлюксную емкость E-2, откуда откачивается насосом H-2 и распределяется на флегму и выводимый из установки продукт – пропановую фракцию. Отбор продукта ведется клапаном, поддерживающим заданный уровень жидкости в емкости E-2. Перед выводом из установки в хранилище пропановая фракция охдаждается до температуры 303 К в воздушном холодильнике X-5. Кубовый продукт колонны дросселируется до давления 0,5 МПа клапаном, поддерживающим заданный уровень в кубе колонны, и поступает в качестве питания в колонну K-3.

Температура в кубе колонны К-3 поддерживается регулятором, корректирующим заданный расход пара в кипятильник стабилизатора. Кубовый продукт колонны К-3 – стабильный газовый конденсат отбирается клапаном, поддерживающим заданный уровень в кубе колонны, и после охлаждения в холодильнике X-6 до температуры 30–40 °С выводится из установки в хранилище. Пар с верхней тарелки колонны после охлаждения и конденсации в дефлегматоре X-3 поступает в рефлюксную емкость, откуда часть жидкости насосом Н-3 подается на верхнюю тарелку в качестве флегмы. Заданный уровень жидкости в емкости поддерживается клапаном, отбирающим жидкость на питание изобутановой колонны К-4.

Процесс разделения бутановой фракции ведется в колонне К-4 под давлением 0,4 МПа. Отводимый из куба колонны н-бутан после охлаждени в холодильнике X-7 до температуры 30-40 °C выводится из установки в хранилище. Пар с верхней тарелки колонны отбирается и после конденсации дефлегматоре X-4 поступает в рефлюксную емкость E-4, откуда насосом H-4 откачивается и распределяется на флегму и продукт – изобутановую фракцию, выводимую из установки в хранилище через клапан, поддерживающий заданный уровень жидкости в емкости E-4.

В случае подъема давления в рефлюксных емкостях неконденсирующиеся газы отводятся из емкостей Е-2, Е-3 или Е-4 в топливную (или факельную) систему завода.

Конденсат водяного пара, отбираемый из сборников парового конденсата объединяется с конденсатом, поступающим из блока HTP и очистки, и подается на охлаждение до температуры 60–70 °C в воздушный холодильник, после чего выводится из установки в заводской коллектор.

При работе блока ГФУ в режиме стабилизации фракция C_{3+в}, отбираемая из куба колонны К-З блока НТР, дросселиру-228 ется клапаном до давления 1,6 МПа и поступает в коллону К-3 в качестве питания.

Пар с верхней тарелки колонны отбирается клапаном, поддерживающим заданное давление процесса ректификации в колонне, охлаждается и полностью конденсируется в воздушном дефлегматоре Х-З и собирается в рефлюксной емкости Е-З. Давление в емкости поддерживается клапаном, через который в случае повышения давления в емкости неконденсирующиеся газы сбрасываются в коллектор топливного (или факельного газа).

Жидкость из емкости Е-З отбирается насосом и направляется частично на флегму, остальная подается на охлаждение в АВО до температуры 303 К. После охлаждения жидкость поступает в товарный парк СПБТ. Теплоносителем во встроенный куб колонны является насыщенный пар высокого давления (1,3 МПа). Подача пара осуществляется по заданному расходу с коррекцией по температуре куба. Затем конденсат охдаждается в АВО (X-6) и выводится в заводской коллектор.

Температура продукции на выходе из установки – не боле
е $40\ ^{\circ}\mathrm{C}.$

Блок очистки от двуокиси углерода

Этановая фракция, поступающая из блока низкотемпературной ректификации под давлением 3,0 МПа, направляется на очистку от двуокиси углерода в установку аминовой очистки. После поглощения CO₂ раствором моноэтаноламина очищенный газ выводится с верха абсорбера и после отделения унесенных капель раствора выводится из установки.

Экономическая целесообразность внедрения газофракционирования

Как было уже указано, наличие ГФУ в составе НПЗ и их состав связаны с производством конкретных химических продуктов. Поэтому, внедрение установок газофракционирования на предприятиях, перерабатывающих газовый конденсат, не является однозначно экономически выгодным с точки зрения непосредственной реализации продуктов фракционирования. Это обусловлено общей структурой цен на сжиженные продукты переработки природного газа (табл. 3.38). Учитывая значительные капитальные, эксплуатационные и транспортные издержки, может оказаться, что выпуск и реализация индивидуальных сжиженных газов является менее рентабельным, чем

í ‡·*ÎË*[↑]*‡ 3.38* Средние мировые цены на начало 1996 г.

Продукт	\$/gal	\$/т
Этан Пропан Изобутан Бутан Пентан+	$\begin{array}{c} 0,13\\ 0,30\\ 0,42\\ 0,37\\ 0,43 \end{array}$	95 140 160 150 165

простая стабилизация конденсата и реализация сырья (конденсата, ШФЛУ и пропан-бутановой фракции).

В случае интеграции с производствами химического синтеза (полиэтилена, полипропилена, бутадиена, высокооктановых компонентов и др.), внедрение установок газофракционирования может быть экономически оправдано и рентабельно. Однако, в каждом конкретном случае, обоснование глубокого фракционирования конденсата с целью получения индивидуальных продуктов, требует тщательного технико-экономического анализа.

ПЕРЕРАБОТКА СЕРОВОДОРОДСОДЕРЖАЩИХ ПРИРОДНЫХ ГАЗОВ

4

4.1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СЕРНИСТЫХ ПРИМЕСЕЙ ПРИРОДНОГО ГАЗА

В настоящее время добыча сероводородсодержащего природного газа составляет существенную часть всего объема потребляемого газа. При этом содержание сероводорода H₂S в газах колеблется в широких пределах от нескольких долей до нескольких десятков процентов. Такой газ перед подачей потребителю подвергают очистке ввиду ядовитости сероводорода и его коррозионной активности. Он является также ядом для катализаторов, применяемых в различных химических процессах переработки газа.

Характер воздействия сероводорода на человека зависит от концентрации и экспозиции (табл. 4.1).

В связи с ядовитостью сероводорода ограничивается его содержание в газе, подаваемом потребителю, в воздухе населенных мест (табл. 4.2), а также устанавливаются нормативы на его содержание в воздухе рабочей зоны (табл. 4.3).

Сероводород – кислота, вызывающая химическую и электрохимическую (в присутствии воды) коррозию металлов. При определенных условиях протекает сульфидное растрескивание металлов. Вместе с тем сероводород является сырьем для производства так называемой "газовой" серы.

Кроме сероводорода в газе могут присутствовать и другие сернистые компоненты (меркаптаны, сероокись углерода, сероуглерод), которые являются причиной коррозии оборудования, отравления катализаторов (в процессе синтеза). При сгорании они образуют диоксид серы.

Содержание сернистых соединений в очищенном газе нормируется.

Физико-химические свойства сернистых соединений газа, а также диоксида серы, представлены в табл. 4.4.

í ‡. ÎЁ^‡ 4.1 Воздействие Н₂Ѕ на человека [113]

Объемная доля H_2S в воздухе, % 10^4	Физиологический эффект
0,13	Минимально ощутимый запах
1	Четкий запах
10	Пороговое предельное значение. Максимальная концен-
	трация, которой может подвергаться человек в течение 8 ч без вредных последствий
100	Кашель раздражение глаз и горла, потеря обоняния че- рез 3–5 мин
500	При 15-минутном воздействии останавливается дыхание
1000	Мгновенно теряется сознание, смерть

í ‡∙ÎË^‡ 4.2

í ‡∙ ÎË^‡ 4.3

Нормативы качества воздуха населенных мест H_2S и SO_2 [12]

12]	(1	Содержание вр рабочей зоны, г	едных мг / м ³	веще [12]	ств в во	здухе
<i>c</i>						0

Оксиды азота (NO)

9

 C_1 –

Страна	ПДК ¹ Н ₂ S, мг/м ³	ПДК SO ₂ , мг/м ³	Страна	H_2S	SO_2	Этил- мер- каптан
Россия	0.008	0,05				
Канада	0.002	03	Россия	10^{*}	10	1
Итолия	0,004	0,25	CIIIA	1/	5	1
Иналия	0,004	0,25	E E	45	, P	4
Нидерлан-	0,0025	0,25	термания	15	Э	1
ды		,	Великобрита-	14	5	1
ĈIIIA	_	0.38	ния			
ошп	-	0,00	Нидерданды	15	13	1
¹ ПЛК –	предельно	-лопусти-	тидернанды	10	10	-
мая концент		PIHECVTON-	* B awaan	0 W		000 70 101
мая концент	рация, сро	Juncey 10 1	В смеси	C yi	леводо	эродами
ная.			$C_5 = 3 \text{ мг} / \text{м}^3.$			

í ‡∙ ÎË^‡ 4.4

Физико-химические свойства основных сернистых примесей природного газа и диоксида серы [80]

Показатели	H_2S	COS	CS_2	CH_3SH	C_2H_5SH	SO_2
Молекулярная	34,08	60,07	76,13	48,1	62,13	64,06
масса Температура, °С:						
плавления	-85,6	-138,9	-112	-123	-147,9	-75,5
кипения	-60,4	-50,3	46,2	6 107	35	-10
Давление крити-	8,82	5,8	7,8	7,14	5,42	7,78
ческое, МПа Объем критичес-	98,5	140	170	145	207	122
кий, см ³⁷ /моль Критический коэффициент	0,284	0,26	0,293	0,268	0,274	0,268
сжимаемости Теплота парооб- разования при	18,66	_	62,73	24,56	26,77	24,91
нормальной тем- пературе кипе- ния, кДж/моль						

Продолжение табл. 4.4

Показатели	H_2S	COS	CS_2	CH ₃ SH	C_2H_5SH	SO_2	
Упругость паров, Па [*] : А В С Идеальная га- зовая теплоем-	16,104 1768,69 -26,06	143,686 530,22 -13,15	159,844 2690,85 -31,62	161,909 2338,38 -34,44	16,077 2497,23 -41,77	167,680 2302,35 -35,97	
кость, Дж/(моль-К)** А В С D	7,629 3,431 E-4 5,809 E-6 -2,81 E-9	5,629 1,907 E-2 -1,676 E-5 5,86 E-9	6,555 1,941 E-2 -1,831 E-5 6,384 E-9	3,169 3,479 E-2 -2,041 E-5 4,956 E-9	3,564 5,615 E-2 -3,239 E-5 7,552 E-9	6,713 -0,879 E-6 4,17 E-6 -2,544 E-9	
в странатор и слов 2-3 странатор 10,000 2-3 странатор 10,0000 2-3 странатор 10,0000 2-3 странатор 10,000 2-3 стр							

4.1.1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СЕРОВОДОРОДА

Сероводород – газ, плотность которого при нормальных условиях равна 1,5392 кг/м³, относительная плотность жидкого H_2S (по воде) $d_4^{-60} = 0,94$.

Физико-химические свойства представлены в табл. 4.5–4.19. Равновесное давление пара H_2S (мм рт. ст.) в интервале температур 108–178 К может быть рассчитано по уравнению

$$\lg p = 21,86635 - \frac{1180,0}{T} - 0,196476 \quad T + 0,0006636 \quad T^2;$$

в интервале 128-142 К по уравнению

 $\lg p = 7,5058 - \frac{1175,3}{T};$

в интервале 142 – 187,5 К по уравнению

 $lg \ p = 7,2246 - \frac{1174,4}{T} + 0,0031632 \ T - 0,91716 \cdot 10^{-5} \ T^2.$

Равновесное давление пара над жидким сероводородом при низких температурах

 Температура, К
 190
 200
 210
 220

 Давление, мм рт. ст.
 201,6
 376,6
 653,6
 1062,0

Таблица 4.5

Равновесное давление пара над твердым сероводородом [93]

Темпера- тура, К	Давление, мм рт. ст.	Темпера- тура, К	Давление, мм рт. ст.	Темпера- тура, К	Давление, мм рт. ст.
110	0,059	140	1,26	170	38,8
130	0,313	160	4,00 14,30	185	93,7 140,0

Таблица 4.6

Давление насыщенного пара H_2S при температурах выше 0 °C [93]

Темпера-	Давление,	Темпера-	Давление,	Темпера-	Давление,
тура, °С	атм	тура, °С	атм	тура, °С	атм
0	10,8	30	23,6	60	$44,5 \\ 64,0 \\ 88,7$
10	14,1	40	29,7	80	
20	18,5	50	36,5	100	

Свойства насыщенного пара H_2S [93]

Темпера-	$p_{ m a6c}$, атм	Удельнь	ий объем	Температура испарения,	Энтальпия пара,
тура, °С		жидкости, л/кг	пара, м³∕кг	ккал/кг	ккал/кг
-60,4	1,0	1,095	0,518	130,8	130,8
-45,6	1,9	1,11	0,275	128,8	135,0
-34,4	3,1	1,18	0,175	125,5	136,4
-23,3	4,7	1,158	0,116	122,0	138,0
-12,2	6,8	1,18	0,0807	117,5	139,0
-1,1	9,7	1,11	0,059	113,0	140,0
+10,0	13,3	1,249	0,043	108,5	140,3
+21,1	18,0	1,295	0,0323	103,9	140,7
+32,2	23,7	1,340	0,0247	98,2	140,8
+43,3	30,6	1,390	0,0190	91,8	140,8

Таблица 4.8

Теплоемкость сероводорода [93]

<i>Т</i> , К	$C_{p},$ кал/(моль-град)*	<i>Т</i> , К	<i>С_p</i> , кал∕(моль∙град)
298,16400500600	8,14 8,48 8,81 9,14	700 800 1000	9,47 9,81 10,47
* $C_p = 7,15 + 0,0$	0332 T.		

Таблица 4.9

Энтальпия* перегретого сероводорода [93]

Темпера-	Энтальпия (в ккал/кг), при давлении, атм.						
тура, °С	1	10	20	30	40		
26,67	152,0	147,5	-	-	-		
48,89	157,0	153,0	148,7	-	-		
71,11	161,2	159,0	154,9	-	-		
93,33	167,8	165,0	160,8	157,5	153,7		
115,56	173,3	170,6	167,0	164,0	160,6		
137,78	179,0	176,7	173,0	170,3	163,7		
160,00	184,5	182,4	179,2	177,0	173,6		
182,22	190,1	188,3	185,3	183,0	181,0		
204,44	195,8	194,0	191,6	190,1	187,0		

Продолжение табл. 4.9

Темпера-	Эі	нтальпия (в н	альпия (в ккал/кг), при давлении, атм			
тура, °С	1	10	20	30	40	
248,89 293,33 337,78 382,22 426,67 471,10	207,5 219,3 231,2 243,0 255,0 267,8	206,0 218,0 230,0 242,6 255,0 267,7	$\begin{array}{c} 204,0\\ 216,2\\ 229,0\\ 241,3\\ 254,2\\ 266,2\\ \end{array}$	202,0 214,8 227,5 240,3 253,7 266,2	200,0 213,5 226,6 239,5 252,2 266,0	
* Энталь ной нулю.	лия жидкост	и при темпе	ратуре кипен	ия и 1 атм г	іринята рав-	

Коэффициент сжимаемости сероводорода [93]

T, ℃	Коэффициент при давлении, атм										
	1,033	2,4	3,51	5,62	7,03	10,545	14,06	21,09	28,12	35,15	42,18
37,78	0,9927	0,9852	0,9752	0,9603	0,9503	0,9248	0,8985	0,8403	0,0487	0,0607	0,0726
71,40	0,9949	0,9895	0,9826	0,9720	0,9650	0,9971	0,9290	0,8912	0,8505	0,8041	0,7518
137,78	0,9972	0,9942	0,9904	0,9846	0,9742	0,9710	0,9612	0,9415	0,9213	0,9005	0,8790

Таблица 4.11

Константа термической диссоциации H₂S при различной температуре [93]

Темпера- тура, К	lg K	Степень дис- социации	Темпера- тура, К	lg K	Степень дис- социации
$298,1 \\ 400 \\ 600$	$-12,680 \\ -8,920 \\ -5,190$	$\substack{4,44\cdot10^{-9}\\1,43\cdot10^{-6}\\4,37\cdot10^{-4}}$	800 1000 1200	-3,290 -2,147 -1,362	${}^{8,07\cdot10^{-3}}_{0,0474}_{0,129}$

Таблица 4.12

Мольная теплота $\Delta \heartsuit$ и свободная энергия $\Delta \digamma$ образования H_2S в идеальном состоянии из H_2 и S_2 (газ) [93]

Температу-	$-\Delta H$,	$-\Delta F$,	Температу-	$-\Delta H$,	$-\Delta F$,
ра, К	ккал/моль	ккал/моль	ра, К	ккал/моль	ккал/моль
$298,16 \\ 400 \\ 500 \\ 600$	$20,24 \\ 20,50 \\ 20,74 \\ 20,95$	$17,47 \\ 16,48 \\ 15,44 \\ 14,36$	700 800 900 1000	21,13 21,27 21,38 21,45	13,25 12,11 10,97 9,80

В интервале температур 187,5-207,5 К равновесное давление (в мм рт. ст.) рассчитывают по уравнению

$$\lg p = 5,57509 - \frac{1031,1}{T} + 0,0118677 \ T - 3,043 \cdot 10^{-5} \ T^2.$$

В интервале от -90 до -50 °C

$$\lg p = 7,823 - \frac{1048}{T}.$$

Таблица 4.13		
Термодинамические свойства газообразного	H_2S	[93]

Темпера-	Молі ка	ыая теплоеми ал∕(моль∙гра,	Энтальпия,	Энтропия, ккал/	
тура, °С	Исти	нная	Средняя –	кал / моль	(моль град)
	C_p	$C_{\rm v}$	$(\hat{0} - t) C_p$		
0 100 200 300 400 500	8,07 8,34 8,70 9,12 9,55 9,97	6,08 6,35 6,71 7,13 7,56 7,98	8,07 8,20 8,36 8,54 8,74 8,74	$ \begin{array}{r} 0\\ 820\\ 1672\\ 2562\\ 3496\\ 4470 \end{array} $	0 2,51 4,53 6,23 7,73 9,09
600 800 1000	10,37 11,08 11,65	8,38 9,09 9,66	9,15 9,55 9,91	5490 7640 9910	10,33 12,54 14,48

Растворимость сероводорода в воде [93]

Темпера-	Раствори	мость H ₂ S	Темпера-	Растворимость H ₂ S	
тура, °С	см 3 / см 3 H $_2$ O	г/100 г $\rm H_2O$	тура, °С	cm^3/cm^3 H ₂ O	г/100 г H ₂ O
0 5 10 15 20 25 30 35	4,670 3,977 3,399 2,945 2,582 2,282 2,037 1,831	$\begin{array}{c} 0,7066\\ 0,6001\\ 0,5112\\ 0,4411\\ 0,3846\\ 0,3375\\ 0,2983\\ 0,2661\end{array}$	$ \begin{array}{r} 40 \\ 45 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \end{array} $	1,660 1,516 1,392 1,190 1,022 0,917 0,84 0,81	$\begin{array}{c} 0,2361\\ 0,2110\\ 0,1883\\ 0,1480\\ 0,1101\\ 0,0765\\ 0,041\\ 0,040\end{array}$
Парци приведен	юнальное давл к нормальным	ение газа 760 условиям (76	мм рт. ст. 0 мм рт. ст	Здесь и дале с. и 0 °C).	е объем газа

Таблица 4.15			
Равновесный состав	фаз [93	В] (система	H_2S-H_2O

Темпера- тура, °С	$p_{\rm a6c}$, атм	Концентрация H ₂ S, мол. доли		Отношение равновесных концентраций газ:жидкость		
		в газе	в жидкости	H_2S	H_2O	
37,78	$\begin{array}{c} 7,03\\ 10,56\\ 14,06\\ 17,58\\ 21,09\\ 27,42\\ 7,03\\ 10,85\\ 14,06\\ 17,58\\ 21,09\\ 28,12\\ 35,15\\ 42,18\\ 49,22\end{array}$	$\begin{array}{c} 0.9894\\ 0.9925\\ 0.9940\\ 0.9949\\ 0.9954\\ 0.9960\\ 0.9493\\ 0.9643\\ 0.9726\\ 0.9771\\ 0.9801\\ 0.9837\\ 0.9856\\ 0.9865\\ 0.9865\\ 0.9868\end{array}$	$\begin{array}{c} 0.0082\\ 0.0123\\ 0.0165\\ 0.0207\\ 0.0250\\ 0.0333\\ 0.0050\\ 0.0076\\ 0.0102\\ 0.0128\\ 0.0154\\ 0.0206\\ 0.0258\\ 0.0310\\ 0.0364\end{array}$	120,6 80,69 60,24 48,06 39,82 26,62 189,90 126,88 95,35 76,34 63,64 47,75 38,20 31,82 27,11	$\begin{array}{c} 0.0107\\ 0.0076\\ 0.0061\\ 0.0052\\ 0.0047\\ 0.00510\\ 0.0360\\ 0.0277\\ 0.0232\\ 0.0202\\ 0.0166\\ 0.0150\\ 0.0139\\ 0.0136\end{array}$	
	49,22	0,9000	0,0504	27,11	0,0150	

Продолжение табл. 4.15

Темпера- тура, °С	$p_{ m a 6 c}$, атм	Концентрация H ₂ S, мол. доли		Отношение равновесных концентраций газ:жидкость		
		в газе	в жидкости	H_2S	H_2O	
104,44	$\begin{array}{c} 14,06\\ 28,12\\ 42,18\\ 56,25\\ 70,31\\ 14,05\\ 28,12\\ 42,18\\ 56,25\\ 70,31\\ \end{array}$	$\begin{array}{c} 0,9046\\ 0,9477\\ 0,9597\\ 0,9664\\ 0,7375\\ 0,8589\\ 0,8984\\ 0,9155\\ 0,9248\\ \end{array}$	$\begin{array}{c} 0,0077\\ 0,0156\\ 0,0230\\ 0,0301\\ 0,0371\\ 0,0057\\ 0,0127\\ 0,0191\\ 0,0250\\ 0,0308 \end{array}$	$\begin{array}{c} 117,47\\ 60,75\\ 41,73\\ 32,05\\ 25,97\\ 129,40\\ 67,63\\ 47,04\\ 36,63\\ 30,03\\ \end{array}$	$\begin{array}{c} 0,0961\\ 0,0531\\ 0,0412\\ 0,0364\\ 0,0349\\ 0,2640\\ 0,1429\\ 0,1036\\ 0,0867\\ 0,0776\\ \end{array}$	
* Трехфазный равновесный (две жидкие фазы и газ).						

Растворимость сероводорода в воде [93]

Темпера- тура, °С	Раствори- мость, г/100 г H ₂ O	Темпера- тура, °С	Раствори- мость г/100 г H ₂ O	Темпера- тура, °С	Раствори- мость г/100 г H ² O
126 141 150 158	0,057 0,067 0,088 0,117	175 202 233 273	$0,139 \\ 0,160 \\ 0,177 \\ 0,179$	$300 \\ 350 \\ 400 \\ 440$	$0,190 \\ 0,189 \\ 0,171 \\ 0,098$

Таблица 4.17

Коэффициент распределения
К * сероводорода между жидкими углеводородами и водо
й [93]

Температура	Коэффициент распределения К			
°C	для газолина	для керосина		
15 25 35	5,65 6,30 7,0	3,70 3,20 3,20		
* K – содержание $\mathrm{H_2S}$ в углеводородах/содержание $\mathrm{H_2S}$ в воде.				

Таблица 4.18

Растворимость сероводорода в метаноле (см³/г) [93]

Равновесное давле-	Растворимость при температуре, °С				
ние H ₂ S мм рт. ст.	0	-25,6	-50,0	-78,5	
50	2,4	5,7	16,8	76,4	
100	4,8	11,2	32,8	155,0	
150	7,2	16,5	48,0	249,2	
200	9,7	21,8	65,6	-	
300	14,8	33,0	99,6	-	
400	20,0	45,8	135,2	-	

Таблица 4.19 Растворимость сероводорода в ацетоне^{*}

Равновесное давление	Температура, °С				
H ₂ S, мм рт. ст.	-45	-30	-10		
200	87	44	20		
400	179	82	38		
600	281	115	53		
760	375	139	66		
* Объем H_2S/объем ацетона. По данным С.Ф. Шаховой и Ю.П. Зубченко.					

Теплота испарения – ΔH сероводорода при температуре кипения и 1 атм равна 4524 кал/моль.

Теплота плавления H₂S в тройной точке 620 кал/моль.

Соотношение C_p / C_v для \dot{H}_2S при различных температурах следующее:

Температура, °С	10	25	50	75
C_p/C_v	1,322	1,321	1,313	1,301

Термическая диссоциация сероводорода происходит по реакции:

 $H_2S \stackrel{\sim}{=} H_2 + \frac{1}{2}S_2.$

Константа диссоциации

$$\lg K = \lg \frac{p_{\mathrm{H}_2} \sqrt{p_{\mathrm{S}_2}}}{p_{\mathrm{H}_2\mathrm{S}}}$$

где $p_{\rm H_2},\,p_{\rm S_2}$ и $p_{\rm H_2S}$ – равновесные давления водорода, паров серы и сероводорода.

Вязкость сероводорода при 1 атм

Температура, °С	0	20	100
Вязкость, мП	117	124	159

Температура самовоспламенения сероводорода равна 290 °С. Пределы взрываемости смесей H_2S с воздухом – от 4,3 до 45,5 %. Теплотворная способность сероводорода составляет 6070 ккал/м³.

Теплота растворения сероводорода в воде 4500 кал/моль.

Константы электрической диссоциации $\rm H_2S$ в водном растворе при 18 °C:

$$K_1 = 9, 1 \cdot 10^{-8}; \quad K_2 = 1, 2 \cdot 10^{-15}.$$

Растворимость S сероводорода в метаноле (в см 3 /г) при общем давлении p можно вычислить по уравнению 238

$$S = \frac{692 - p}{1, \, 9p_0 - p} \,,$$

где p_0 – давление пара жидкого сероводорода

$$\lg p_0 = 7,453 - \frac{973,5}{T}.$$

Погрешность измерения 3 %.

Теплота растворения H₂S в ацетоне – 5200 кал/моль.

Для селективного извлечения H_2S из газов, содержащих CO_2 , способом низкотемпературной абсорбции может применяться также толуол.

Коэффициент селективности

$$C = \frac{S_{\rm H_2S}}{S_{\rm CO_2}},$$

где $S_{\text{H}_2\text{S}}$ и S_{CO_2} – растворимость H_2S и CO_2 .

При минус 45 °C коэффициент селективности метанола составляет примерно 6, толуола 14,2. С понижением температуры коэффициент селективности увеличивается.

Растворимость сероводорода в толуоле в интервале температур от 0 до минус 60 °С можно вычислить по уравнению

$$\lg S = \lg p + \frac{1020}{T} - 5,21,$$

где S – растворимость, см³/г; p – давление, мм рт. ст.

4.1.2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СЕРОУГЛЕРОДА, СЕРООКИСИ УГЛЕРОДА, ТИОФЕНА

Физико-химические свойства CS_2 , COS, C_4H_4S приведены в таблицах 4.20–4.26.

Физико-химические свойства сероуглерода CS₂

Молекулярный вес	76,14
Критические константы: температура, °С давление, атм	273,05 72,87
Температура, °С:	10.05
кипения (при 1 атм) плавления	46,25 111,9
Относительная плотность жидкого сероуглерода d_4^t :	
при 0 °Спри 15 °Спри 29 °Спри 25 °Спри 30 °С.	1,2927 1,27055 1,2632 1,25585 1,24817

Показатель преломления жидкого сероуглерода n_D^t :	
при 15 °С	1,63189
при 20 °С	1,62803
Теплота испарения при $t_{\kappa u \pi}$, кал/моль	7200
Теплота образования из простых веществ, при 25 °С, кал/моль	3440
Теплота сгорания, кал/моль	265 800
Теплоемкость жидкого CS ₂ при 25 °C, кал/(г-град)	0,2387
Вязкость сероуглерода η ·10 ³ , сП:	
жидкого при 0 °С	4,36
при 15 °С	3,8
при 20 °С	3,63
газообразного при 0 °С	8,9
при 150 °С	14,3
Поверхностное натяжение, дин/см ² :	
при 15 °С	33,07
при 20 °С	32,25
при 30 °С	30,79
Температура, °С:	
вспышки	25
самовоспламенения	105-156

Давление насыщенного пара сероуглерода [93]

Темпера-	Давление,	Темпера-	Давление,	Темпера-	Давление $p_{ m a6c}$, атм
тура, °С	мм рт. ст.	тура, °С	мм рт. ст.	тура, °С	
-70 -60 -50 -40 -30 -20	1,63,57,114,026,246,5	$ \begin{array}{c} -10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array} $	78,8 127,3 198,0 297,5 432,7 616,7	50 60 70 80 100	1,31 1,54 2,05 2,69 4,42

Таблица 4.21

Термодинамические свойства пара сероуглерода

Темпера-	Мольная теплоемкость, кал/(моль·град)			Энтальпия	Энтропия ккал/
тура, °С	исти	нная	средняя	кал/моль	(моль град)
	C_p	C _v	$C_p(0-t)$		
0	10,63	8,64	10,63	0	0
100	11,62	9,63	11,15	1115	3,45
200	12,35	10,36	11,58	2316	6,31
300	12,87	10,88	11,92	3576	8,73
400	13,27	11,28	12,21	4884	10,82
500	13,57	11,58	12,45	6225	12,69
600	13,80	11,81	12,66	7596	14,35
800	14,11	12,12	12,99	10390	17,22
1000	14,82	12,33	13,23	13230	19,66

Таблица 4.22

Растворимость сероуглерода в воде [93]

Температура, °С	Растворимость, г/л	Температура, °С	Растворимость, г/л
0	2,04	25	1,69
5	1,99	30	1,55
10	1,94	35	1,37
15	1,87	40	1,11
20	1,79	45	0,70

Давление насыщенного пара сероокиси углерода [93]

Темпера-	Давление,	Темпера-	Давление,	Темпера-	Давление,
тура, °С	мм рт. ст.	тура, °С	мм рт. ст.	тура, °С	атм
-133 -166 -106 -91 -86	1 7,5 19 68 100	-75 -66 -58 -52 -50,2	210 345 515 690 760	-6 17 45	5 10 20

Таблица 4.24

Термодинамические свойства пара сероокиси углерода [93]

Темпера-	Молн ка	ьная теплоемн ал/(моль·град	Энтальпия,	Энтропия, ккал/	
тура, °С	исти	нная	средняя	кал / моль	(моль•град)
	C_p	C_v	$C_p(0-t)$		
0	9,62	7,63	9,62	0	0
100	10,70	8,71	10,18	1018	3,17
200	11,49	9,50	10,65	2130	5,80
300	12,06	10,07	11,03	3309	8,06
400	12,53	10,54	11,35	4540	10,05
500	12,87	10,88	11,62	5810	11,81
600	13,17	11,18	11,85	7110	13639
800	13,62	11,63	12,24	9792	16,14
1000	13,93	11,94	12,55	12550	18,51

Таблица 4.25

Давление насыщенного пара тиофена

Темпера- тура, °С	Давление, мм рт. ст.	Темпера- тура, °С	Давление, мм рт. ст.	Темпера- тура, °С	Давление, мм рт. ст.
-80,96	0,007	-12,96	9,5	35	125,50
-75,96	0,015	0	21,39	40	155,47
-60,16	0,140	15	48,68	50	232,98
-40,96	0,80	20	62,60	60	339,27
-35,16	1,98	25	79,68	70	514,75
-23,16	5,15	30	100,45		

Таблица 4.26

Мольные теплоты ${\rm A} \varsigma$ и свободная энергия ${\rm A} F^0$ образования тиофена в идеальном состоянии из H_2S и CS_2 (газ) [93]

Темпера- тура, <i>К</i>	ΔH , ккал/моль	ΔF^{0} , ккал/моль	Темпера- тура, <i>К</i>	ΔH , ккал/моль	ΔF^0 , ккал/моль
$273,16 \\ 300 \\ 400 \\ 500 \\ 600$	12,28 12,06 11,31 10,77 10,36	19,86 20,62 23,53 26,72 29,95	700 800 900 1000	10,07 9,87 9,76 9,74	$33,24 \\ 36,56 \\ 38,90 \\ 43,26$

Растворимость воды в сероуглероде (в вес. %):

Растворимость жидкого сероуглерода в метаноле (в вес. %):

при 13 °С	46,58
при 24,8 °С	52,55
при 40,6 °С	80,5

Реакции, в которых принимает участие сероуглерод, и константы равновесия этих реакций при различных температурах

$C + S_2(ra3) \stackrel{\rightarrow}{\underset{\leftarrow}{\leftarrow}} CS_2(ra3); K_{p1} = \frac{p_{CS_2}}{p_{S_2}};$
$CS_2 + H_2O$ (ras) $\stackrel{\sim}{=} COS + H_2S; K_{p2} = \frac{p_{COS}p_{H_2S}}{p_{CS_2}p_{H_2O}};$
$CS_2 + 2H_2O$ (ras) $= CO_2 + 2H_2O;$ $K_{p3} = \frac{p_{CO_2}p_{H_2S}^2}{p_{H_2O}p_{CS_2}};$
$CS_2 + SO_2 \stackrel{\sim}{=} CO_2 + 3/2S_2; K_{p4} = \frac{p_{CO_2} p_{S_2}^{3/2}}{p_{SO_2} p_{CS_2}};$
$CS_2 + 4H_2 \gtrsim 2H_2S + CH_4; K_{p5} = \frac{p_{CH_4}p_{H_2S}^2}{p_{CS_2}p_{H_2}^4}.$
Зависимость констант равновесия от температуры
Температура, °С 200 300 400 500 Константы равновесия:

емпература, °С	200	300	400	500	600
онстанты равновесия:					
K_{p1}	71,5	38,1	24,8	18,4	15,5
K_{p2}	$36 \cdot 10^3$	69.10^{2}	$22,2.10^{2}$	955 490	
K_{p3}	$55,8.10^{6}$	$29,7.10^{5}$	$35,5.10^4$	$80,2.10^{3}$	$23,0.10^{3}$
\vec{K}_{p4}	-	$19,5.10^{5}$	$83,2.10^{4}$	$38,0.10^4$	-
$\vec{K_{p5}}$	$2,18 \cdot 10^{16}$	7,08.1011	$3,72 \cdot 10^8$	$6,46 \cdot 10^5$	-

Физико-химические	свойства	сероокиси	углерода	COS	
Физико-химические	своиства	сероокиси	углерода	CUS	

Молекулярный вес:	60,07
Критические константы:	
температура, °С	105
давление, атм	58
Температура, °С:	
кипения (при 1 атм)	-50,3
плавления	-138,0
Плотность газообразной COS при нормальных усло-	
виях, кг/м ³	2,721
Плотность жидкой COS при –87 °С, г/л	1,25
Теплота, ккал/моль:	
испарения при 1 атм	4,423±0,004
образования из простых веществ – $\Delta H^0_{298,1} \dots \dots$	34,07
образования из СО	22,84
1	(калориметрическая)
Теплоемкость жидкой COS при 220 K,	
кал/(моль град)	22,67 (спектроскопи- ческая) 17,07

Теплоемкость COS в интервале 298-1000 К определяют по уравнению

 $C_p = 6,554 + 13,880 \cdot 10^{-3} T - 88,18 \cdot 10^{-7} T^2 + 1,964 \cdot 10^{-9} T^3.$

Пределы взрываемости смесей сероокиси углерода с воздухом 11,9–28,5 % COS.

Давление насыщенного пара в интервале температур 162– 224 К можно рассчитать по уравнению

$$\lg p = -\frac{1318,260}{T} + 10,15309 - 0,0147784 T + 0,000018838 T^2,$$

где p – давление, мм рт. ст.

Растворимость COS в воде при давлении 760 мм рт. ст., (см³/см³)

Температура, °С Растворимость	0 1,333	5 1,056	10 0,836	15 0,677	20 0,561	$25\\0,468$	30 0,403
Растворимость при	и 22°C	С (в см	³ /см ³)):			
В этило В толус	овом спи оле	арте			8 15		
Растворимость сер	роокис	и угле	рода в	метал	ноле в	в инте	рвале

Растворимость сероокиси углерода в метаноле в интервале температур от 0 до -78,5 °С при малом парциальном давлении СОЅ вычисляется по уравнению

$$\lg S = \lg p + \frac{908}{T} - 4,74,$$

где S – растворимость, см 3 /г; p – давление, мм рт. ст.

Уравнения реакций, в которых принимает участие сероокись углерода, и константы равновесия этих реакций при различных температурах

$$CO + \frac{1}{2} S_2 (ras) \stackrel{\sim}{=} COS; \quad K_{p1} = \frac{p_{COS}}{p_{CO} \sqrt{p_{S_2}}};$$

2COS
$$\neq$$
 CO₂ + CS₂; $K_{p2} = \frac{p_{CO_2}p_{CS_2}}{p_{COS}^2}$;
COS + H₂O \neq CO₂ + H₂S; $K_{p3} = \frac{p_{H_2S}p_{CO_2}}{p_{COS}p_{H_2O}}$;

$$COS + H_2S \rightleftharpoons CS_2 + H_2O; \quad K_{p4} = \frac{p_{CS}p_{H_2O}}{p_{CO_3}p_{H_3S}}$$

Зависимость констант равновесия от температуры

Температура, °С Константы равновесия:	200	300	400	500	600
K_{p1} K_{p2} K_{r3}	$21{\cdot}10^{-5} \\ 4,34{\cdot}10^{-2} \\ 1,55{\cdot}10^{3}$	$31 \cdot 10^3$ 6,24 \cdot 10^{-2} 0,43 · 10 ³	$\begin{array}{c} 1,56{\cdot}10^3 \\ 7,2{\cdot}10^{-2} \\ 0,16{\cdot}10^3 \end{array}$	$\begin{array}{c} 1,72{\cdot}10^2\\ 8,82{\cdot}10^{-2}\\ 0,84{\cdot}10^2\end{array}$	31,4 9,58·10 ⁻² 47
K_{p4}^{p3}	$28 \cdot 10^{-6}$	14,5·10 ⁻⁵	45·10 ⁻⁵	$10,5.10^{-4}$	20,4.10-4

Физико-химические свойства тиофена C4H4S

Молекулярный вес	84,14
Критические константы:	
температура, °С	317
давление, атм	48
Температура, °С:	
кипения	84,16
плавления	-38,2
Плотность жидкого тиофена, г/мл:	
при 0 °С	1,0884
при 11,8 °С	1,07387
при 15 [°] °С	1.0705
при 20 °С	1.0644
при 25 °С	1,05883
Показатель преломления n_D^t :	
при 20 °C	1.5287
при 25 °С	1.5256
Вязкость жилкого тиофена. $n \cdot 10^3$. <i>сп</i> .	-,
при 20 °C	6 62
при 25 °С	6,21
при 20 °С	5.84
при оо с	0,01

Давление пара тиофена (в мм рт. ст.) в интервале температур 0–120 °С может быть вычислено по уравнению

 $\lg p = 6,95926 - \frac{1246,038}{221,354+t}.$

Теплота испарения C4H4S при $t_{\rm кнп}$ равна 7522 кал/моль. 244

Для расчета теплот испарения служит уравнение:

 $\Delta H_{\text{HCH.}} = 9543 + 2,740 \ T - 0,02349 \ T^2.$

Теплоемкость парообразного тиофена [в кал/(моль-град)] рассчитывают по формуле

 $C_p = 7,017 + 0,10045 T - 6,325 \cdot 10^{-5} T^2.$

4.1.3. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА МЕРКАПТАНОВ

Присутствующие в сероводородсодержащих газах и конденсатах меркаптаны в основном относятся к типу алкантиолов. Свойства их приведены в табл. 4.27–4.30.

Давление пара метилмеркаптана [93] в зависимости от температуры

Температура, °С	90,7	75,3	-67,5	-58,8	-49,2	-43,1	-34,8
Давление, мм рт. ст	1	5	10	20	40	60	100
Температура, [°] С	-51,28	-23,87	-9,47	-0,03	5,98		
Давление мм рт. ст	41,13	201,46	399,30	599,40	760,64		

Давление насыщенного пара этилмеркаптана [93]

Температура, °С	0,405	5,236	10,111	15,017	19,954	24,933	29,944
Давление мм рт. ст	187,57	233,72	289,13	355,22	433,56	525,86	633,99
Температура, °С	40,092	45,221	50,390	55,604	60,838	66,115	
Давление мм рт. ст	906,06	1074,6	1268,0	1489,1	1740,8	2026,0	

В интервале температур 0-66 °С давление насыщенного пара (в мм рт. ст.) рассчитывают по уравнению

$$\lg p = 6,95206 - \frac{1084,531}{231,385+t}.$$

Теплота испарения этилмеркаптана (в кал/моль):

при 25 °С	6526±2
при 35 °С	6401±2

В интервале 7-35 °C теплота испарения рассчитывается по уравнению

 $\Delta H_{\text{HCIL}} = 815 + 1,369 \ T - 0,02288 \ T^2.$

Мольные теплоты ΔH и свободная энергия ΔF образования этилмеркаптана в идеальном газовом состоянии из H₂, C (графит) и S₂ (газ) [93]

Температура, К	273,16	300	400	500	600	700	800	900	1000
ΔH , ккал/моль	23,16	26,47	27,52	28,39	29,09	29,63	30,03	30,29	30,47
ΔF , ккал/моль	12,00	10,60	5.14	0.56	6.14	12,37	18.39	24,48	30,55

Физико-химические свойства меркаптанов (алкантиолов) [3]

Вещество	Формул	Ia	M	Элемен	тарный % вес.	состав,	g_4^{20}	n_{D}^{20}	MRD	Τ _{пл.} ,	<i>Т</i> _{кип} ,	р _{Ткип} ,
	Углеродного скелета	Эмпири- ческая		С	Н	S			(экс.)	°C	°C	мм рт. ст.
Метантиол	C-S-H	CH4S	48,109	24,97	8,38	66,65	$0,8665^{*}$		-	-123,02	5,95	760
Этантиол	C-C-SH	C2H6S	62,136	38,66	9,73	51,61	0,83914	1,43105	19,24	-147,90	35,00	760
Пропантиол-1	C-C-C-SH	C3H8S	76,163	47,31	10,59	42,10	0,8411	1,4380	23,77	-113,06	67,6	760
Пропантиол-2	C-C-(SH)-C	C3H8	76,163	47,61	10,59	42,10	0,81431	1,42554	23,94	-30,54	52,56	760
Бутантиол-1	C-C-C-SH	C4H10S	90,190	53,27	11,18	35,55	0,84161	1,44298	28,40	-115,67	98,46	760
2-метил-пропан- тиол-1	C-C-C-SH	C4H10S	90,190	53,27	11,18	35,55	0,8339	1,4387	28,32	-	88,72	760
Бутантиол-2	SH	C4H10S	90,190	53,27	11,18	35,55	0,82947	1,43663	28,46	-140,2	84,98	
	C-C-C-C											
2-метил-пропан-	SH	C4H10S	90,190	53,27	11,18	35,55	0,80020	1,42320	28,71	1,11	64,22	760
110,1-2	C-C-C											
	Ċ											

Продолжение	табл.	4.27
-------------	-------	------

Вещество	Формула		М	Элементарный со- став, % вес			g_4^{20}	n_{D}^{20}	MRD	T_{nn}	T_{rmr} ,	р _{Ткип} , мм
	Углеродного скелета	Эмпири- ческая		С	Н	S			(экс.)	°Č	°C	рт. ст.
Пентантиол-1	C-C-C-C-SH	C5H12S	104,217	57,62	11,61	30,77	0,84209	1,44692	33,06	-75,70	126,64	760
2-метил- бутантиол-1	C-C-C-C-SH C	C5H12S	104,217	57,62	11,61	30,77	0,842	1,4445	32,90	-	118,2	760
3-метил- бутантиол-1	C-C-C-C-SH C	C5H12S	104,217	57,62	11,61	30,77	0,8350	1,4415	33,00	_	118	760
Пентантиол-2	SH	C5H12S	104,217	57,62	11,61	30,77	0,83268	1,4412	33,06	-112,8	112,9	760
	C-C-C-C-C											
2-метил- бутантиол-2	C-C-C-C HS C	C5H12S	104,217	57,62	11,61	30,77	0,812	1,4379	33,68	-	99,0	760
3-метил- бутантиол-2	C-C-C-C C SH	C5H12S	104,217	57,62	11,61	30,77	0,8409	1,4446	32,96	_	-	_
Пентантиол-З	C-C-C-C-C	C5H12S	104,217	57,62	11,61	30,77	0,8410	1,4447	32,59	-110,8	105	760
Гексантиол-1	C-C-C-C-C-SH	C6H14S	118,244	60,95	11,93	27,12	0,8424	1,4496	37,69	-80,0	151,5 60 - 70	760 10
* Под давлени	ем.											

Теплоемкость С_р алкантиолов при постоянном давлении

Вещество	Теплоемкость (в кал/(градмоль)) при температуре, К									
	273,16	298,16	300	400	500	600	700	800	900	1000
Метантиол	11,54	12,01	12,05	14,04	15,91	17,57	19,03	20,32	21,46	22,48
Этантиол	16,46	17,37	17,44	21,08	24,36	27,21	29,68	31,83	33,71	35,38
Пропантиол-1	21,39	22,65	22,75	27,86	32,56	36,72	40,37	43,60	46,47	49,01
Бутантиол-1	26,63	28,24	28,37	34,95	41,07	46,54	51,37	55,68	59,24	62,95
Пентантиол-1	31,78	33,75	33,91	41,93	49,36	55,92	61,69	66,78	71,33	75,32
Гексантиол-1	36,89	39,21	39,40	48,87	57,60	65,26	71,96	77,84	83,07	87,65
Гептантиол-1	42,00	44,68	44,90	55,81	65,85	74,60	82,24	88,91	94,82	99,98
Октантиол-1	47,11	50,15	50,40	62,75	74,10	83,94	92,52	99,98	106,57	112,31
Нонантиол-1	52,22	55,62	55,90	69,69	82,35	93,28	102,80	11,05	118,32	124,64
Декантиол-1	57,33	61,09	61,40	76,63	90,60	102,62	113,08	122,12	130,07	136,97
Ундекантиол-1	62,44	66,56	66,90	83,57	98,85	111,96	123,36	133,19	141,82	149,30
Додекантиол-1	67,55	72,03	72,40	90,51	107,10	121,30	133,64	144,26	153,57	161,63
Тридекантиол-1	72,66	77,50	77,90	97,45	115,35	130,64	143,93	155,33	165,32	173,96
Тетрадекантиол-1	77,77	82,97	83,40	104,39	123,60	139,98	154,20	166,40	177,07	186,29
Пентадекантиол-1	82,88	88,44	88,90	111,33	131,85	149,32	164,48	177,47	188,82	198,62
Гексадекантиол-1	87,99	93,91	94,40	118,27	140,10	158,66	174,76	188,54	200,57	210,95
Гептадекантиол-1	93,10	99,38	99,90	125,21	148,35	168,00	185,04	199,61	212,32	223,28
Октадекантиол-1	98,21	104,85	105,40	132,15	156,60	177,34	195,32	21,68	224,07	235,61
Нонадекантиол-1	103,32	110,31	110,90	139,09	164,85	186,68	205,60	221,65	235,82	247,94
Эйкозантиол-1	108,43	115,77	116,40	146,03	173,10	196,02	215,88	232,82	247,57	260,27

Таблица 4.29 Растворимость тиолов в воде и щелочи при 20-30 °C, г/л [151]

Вещество	Растворимость, г/л				
·	в воде	в 1 N NaOH			
Метантиол Этантиол Пропантиол-1 Бутантиол-1 Пентантиол-1 Гексантиол-1	23,3 6,76 1,96 0,57 0,164 0.047	Высокая То же " 328,0 94.0			
Гентантиол-1 Октантиол-1 Монантиол-1	0,0138 0,0040 0,00115	27,6 8,0 2,3			

Азеотропы тиолов с углеводородами [151]

Тиоль	I	Углеводородн	ы	A	Ізеотроп
Наимено- вание	$T_{\text{кип}}, ^{\text{кип}}, ^{\text{с}}$	Вещество	<i>Т</i> _{кип} , °С	$T_{\text{KHIII}},$ °C	Содержание RSH, % мас.
Метантиол	660	изо-Бутан	-11,70	-13,0	14,9
Этантиол	35,04	изо-Пентан н-Пентан 2-Метил-2-Бутан Циклопентан Неогексан	27,90 36,15 37,20 49,35 49,70	25,72 30,46 33,0 34,95 34,41	$20,0 \\ 51,0 \\ 60,0 \\ 89,0 \\ 83,0$
Пропантиол-1	67,82	изо-Гексан н-Гексан Метилциклопентан Циклогексан	60,40 68,75 71,85 80,85	59,20 64,35 66,45 67,77	23,9 53,6 64,2 97,2
Пропантиол-2	67,82	изо-Гексан н-Гексан Метилциклопентан Циклогексан	60,40 68,75 71,85 80,85	59,20 64,35 66,45 67,77	23,9 52,6 64,2 97,6
Бутантиол-1	98,58	2,3-Диметилпентан изо-Гептан н-Гептан	89,90 90,10 98,40	89,50 89,74 95,45	15,1 15,4 49,4

4.2. ОЧИСТКА ПРИРОДНОГО ГАЗА ЭТАНОЛАМИНАМИ

В настоящее время добыча сероводородсодержащего природного газа в странах СНГ составляет около 10 % от всего объема потребляемого газа. Такой газ перед подачей в магистральный газопровод должен быть очищен от сернистых соединений в целях защиты трубопроводов и оборудования от коррозии, охраны населения от токсического воздействия, предохранения от отравления многих промышленных катализато-

ров, а также в связи с требованиями охраны окружающей среды. Вместе с тем получаемый при очистке газа сероводород перерабатывается в серу, что уменьшает затраты на очистку газа и дает ценное сырье для народного хозяйства.

Кроме сероводорода в газе могут присутствовать и другие сернистые соединения (меркаптаны, сероокись углерода, сероуглерод), которые являются причиной коррозии оборудования и отравления катализаторов (в процессах синтеза). При сгорании они образуют диоксид серы.

Диоксид углерода является балластом и увеличивает затраты на транспортировку газа. В ряде случаев наличие CO_2 в газе затрудняет дальнейшую его переработку (выделение этана, гелия и другие процессы, связанные с глубоким охлаждением газа).

В настоящее время для очистки газа применяются различные процессы, которые условно можно разбить на следующие группы:

хемосорбционные процессы, основанные на химическом взаимодействии H₂S и CO₂ с активной частью абсорбента;

процессы физической абсорбции, в которых извлечение кислых компонентов происходит за счет их растворимости в органических поглотителях;

комбинированные процессы, использующие одновременно химические и физические поглотители;

окислительные процессы, основанные на необратимом превращении поглощенного сероводорода в серу;

адсорбционные процессы, основанные на извлечении компонентов газа твердыми поглотителями – адсорбентами (молекулярные сита, природные цеолиты, активированные угли и др.).

Выбор процесса очистки газа от сернистых соединений определяется экономикой и зависит от многих факторов, основными из которых являются: состав и параметры сырьевого газа, требуемая степень очистки и область использования товарного газа, наличие и параметры энергоресурсов, отходы производства и др.

Анализ мировой практики, накопленный в области очистки газов, показывает, что основными процессами, применяемыми для обработки больших потоков газа, являются абсорбционные с использованием химических и физических абсорбентов и их комбинации. Окислительные и адсорбционные процессы применяют, как правило, для очистки небольших потоков газа, либо для тонкой очистки газа.

К абсорбентам, используемым в промышленности, предъяв-250 ляются следующие требования: недефицитность, высокая поглотительная способность, низкая упругость паров, химическая и термическая стабильность в условиях эксплуатации, низкая вязкость, низкая теплоемкость и теплота взаимодействия с H_2S и CO_2 , некоррозионность, нетоксичность, селективность (при селективной абсорбции).

Поглотительная способность и вязкость определяют затраты электроэнергии на циркуляцию абсорбента. Чем стабильнее абсорбент и чем ниже упругость его паров, тем меньше потери абсорбента. Коррозионные свойства определяют требования к материальному оформлению оборудования установок очистки газа.

Из хемосорбентов применяют едкий натрий и калий, углекислые соли щелочных металлов (карбонаты натрия и калия) и наиболее широко – алканоламины. Использование химических растворителей основано на химической реакции между активной частью хемосорбента и кислыми компонентами. Образующиеся соли при нагревании разлагаются. Максимальная поглотительная способность водных растворов химических абсорбентов ограничена стехиометрией.

Основным преимуществом хемосорбционных процессов, и в частности процессов с использованием водных растворов алканоламинов, является высокая и надежная степень очистки газа независимо от парциального давления кислых компонентов, а также низкая абсорбция углеводородных компонентов сырьевого газа, что гарантирует высокое качество товарной серы, получаемой из кислых газов, выделяемых при регенерации абсорбента.

В физических процессах извлечение кислых компонентов из газа происходит за счет физического растворения их в применяемом абсорбенте. Из физических абсорбентов промышленное применение для очистки газов нашли такие, как метанол, N-метилпирролидон, диалкиловые эфиры полиэтиленгликоля, пропиленкарбонат и др.

При физической абсорбции необходимое количество абсорбента практически не зависит от процентного содержания примесей в исходном газе (по закону Генри). В то же время при химической абсорбции количество поглотителя пропорционально содержанию примесей. Указанные закономерности и определяют принципиальное различие между химической и физической абсорбцией (рис. 4.1).

Преимущество физических абсорбентов – способность удалять из газа одновременно с H_2S и CO_2 сероорганические соединения – меркаптаны, COS, CS_2 и др. Низкая теплоемкость

Рис. 4.1. Характерные зависимости поглотительной способности различных абсорбентов от парциального давления примесей в исходном газе:

1 – химический абсорбент;
 2 – физико-химический абсорбент;
 3 – физический абсорбент

физических поглотителей в сочетании с более низкой теплотой абсорбции кислых компонентов сокращают энергетические затраты на процесс очистки по сравнению с обычными химическими растворителями.

Физические абсорбенты по сравнению с хемосорбентами имеют сродство с углеводородными компонентами газа и хорошо растворяют их (особенно высшие и ароматические). Растворенные в абсорбенте углеводороды попадают в кислые газы, выделяемые при регенерации абсорбента, и вместе с ними на установку получения серы, вызывая преждевременную дезактивацию катализатора и понижая качество получаемой серы. Поэтому на практике физические абсорбенты используют либо для очистки "тощих" газов, либо после предварительного удаления из газа углеводородов $C_{3+вс}$.

В связи с тем, что хемосорбенты образуют с кислыми компонентами химические соединения, парциальное давление их над регенерированным раствором значительно ниже, чем при физической абсорбции. Поэтому при использовании физических растворителей труднее достичь тонкой очистки газа, что требует усложнения технологической схемы установки сероочистки (двух-, трехступенчатая регенерация насыщенного абсорбента, увеличение числа тарелок в абсорбере, дополнительная доочистка химическим абсорбентом и др.).

Для смешанных абсорбентов (комбинация хемосорбента и физического растворителя) свойственны промежуточные значения растворимости кислых компонентов. Они обладают преимуществами и недостатками как физических, так и химических абсорбентов.

В табл. 4.31 приведен перечень основных процессов, применяемых для очистки различных газов за рубежом, и число действующих установок по состоянию на 01.01.1997 г.

Ведущее место в мировой практике в области очистки природного газа от кислых компонентов занимают аминовые процессы. Они применяются для очистки природного газа уже несколько десятилетий, но до настоящего времени остаются основными – примерно 70 % от общего числа установок.

Наиболее известными этаноламинами, используемыми в процессах очистки газа от H_2S и CO_2 , являются: моноэтаноламин (МЭА), диэтаноламин (ДЭА), триэтаноламин (ТЭА), дигликольамин (ДГА), диизопропаноламин (ДИПА), метилдиэтаноламин (МДЭА).

Таблица 4.31

Основные процессы очистки природного газа, синтез – газа нефтезаводских газов (по состоянию на 1997 г.)

Процесс	Абсорбент	Число устанок						
1. Про	цессы с химическими абсорбентами							
Аминовые, в том числе: амин-гард	Алканоламин + вода Диэтаноламин (моноэтаноламин) + вода	Более 1000 375						
адип	Диизопропаноамин (метил- диэтаноламин) + вода	370						
экономин	Дигликольамин + вода	30						
Бенфилд	Карбонат калия+ вода+ добавки бенфилд	600						
Катакарб	Раствор поташа+ингибитор кор- розии+катализатор	100						
2. Процессы с физическими абсорбентами								
Ректизол	Холодный метанол	70						
Пуризол	N-мети лиирро ли дон	5						
Флюор	Пропиленкарбонат	12						
Селексол	Лиметиловый эфир полиэтилен-	50						
	гликоля	~ ~						
Сепасолв-МПЕ	Диалкиловый эфир полиэтилен- гликоля	4						
3. Процессы с фи	зико-химическими и смешанными або	сорбентами						
Сульфинол	Диизопропаноламин (или ме- тил-диэтаноламин) + сульфо- лан + вола	180						
Оптизол	Амин + физический раствори- тель + вода	6						
Флексорб	Пространственно затрудненный амин + (физический раствори- тель) + вода	30						
Укарсол	Вторичный или третичный амин + физический раствори- тель + вода	6						

Из указанных аминов наибольшее практическое применение получили моно- и диэтаноламин. Применение ДЭА особенно целесообразно в тех случаях, когда в исходном газе наряду с H_2S и CO₂ содержится COS и CS₂, которые вступают в необратимую реакцию с МЭА, вызывая его значительные потери. ДЭА с указанными примесями образует легкодиссоциируемые на стадии десорбции соединения. Очистка газа растворами ТЭА не получила широкого распостранения из-за его низких поглотительной способности и стабильности. Для селективного извлечения H_2S в присутствии CO₂ широко используется третичный амин-метилдиэтаноламин. В зависимости от конкретных условий применяются также смеси этаноламинов.

Процессы аминовой сероочистки газов растворами ДЭА, МДЭА и их смесями применены на крупнейших в отечественной газовой отрасли Оренбургском и Астраханском ГПЗ. Поэтому этим абсорбентам в дальнейшем уделяется повышенное внимание.

4.2.1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ЭТАНОЛАМИНОВ И ИХ ВОДНЫХ РАСТВОРОВ

Алканоламины (аминоспирты, оксиамины) можно рассматривать как производные аммиака, в котором один или несколько атомов водорода замещены на спиртовой радикал или спиртовой и углеводородный:

$$\mathrm{NH}_3 \rightarrow N - R_3,$$

аммиак R_2 алканоламин

где R_1 – спиртовой радикал, например C₂H₄OH; R_2 , R_3 – либо спиртовой, либо углеводородный радикал, либо H⁺.

По степени замещения центрального атома азота алкильными радикалами амины делятся на первичные, вторичные и третичные.

Первичные амины

Н N — CH_2 — CH_2 — OH Моноэтаноламин (МЭА); H

$$H$$

N-CH₂-CH₂-O-CH₂-OH Дигликольамин (ДГА).
H

Вторичные амины

Третичные амины

$$OH-CH_2-CH_2-N-CH-CH_2-OH$$
 Триэтаноламин (ТЭА);
 $|_{CH_2CH_2OH}$

$$OH-CH_2-CH_2-N-CH_2-CH_2-OH$$
 Метилдиэтанол амин
| (МДЭА).
 CH_3

Амины содержат по крайней мере одну гидроксильную группу (— OH) и одну аминогруппу N-. Присутствие гидроксильной группы снижает давление насыщенных паров и повышает растворимость амина в воде, а аминогруппа придает водным растворам щелочность, необходимую для взаимодействия с H_2S и CO₂, которые в водной среде диссоциируют с образованием слабых кислот.

Этаноламины – это бесцветные, вязкие, гигроскопические жидкости, смешивающиеся с водой и низшими спиртами во всех отношениях, они почти нерастворимы в неполярных растворителях.

Физико-химические свойства безводных этаноламинов приведены в табл. 4.32.

Хемосорбенты применяют, как правило, в виде водных растворов. Концентрация амина в растворе может изменяться в широких пределах, ее выбирают на основании опыта работы и по соображениям борьбы с коррозией (см. далее). Массовая концентрация алканоламинов в воде составляет 10–60 %.

Чистые амины – вязкие жидкости с высокой температурой

Физико-химические свойства алканоламинов (массовое содержание основного вещества не менее 99 %)

Показатели	МЭА	ДГА	ДЭА	ДИПА	ТЭА	МДЭА			
Молекулярная мас-	61,1	105,1	105,1	133,2	149,2	119,2			
са Плотность, г/см ³ (при Т, °С) Температура (при атмосферном давле-	1,015 (20)	1,085 (20)	1,011 (25)	0,992 (40)	1,119 (25)	1,030 (20)			
кипения застывания Давление паров	$170,3 \\ 10,3 \\ 860$	221 -9,5 33	$268,4 \\ 27,5 \\ 4,7$	$248,7 \\ 32,4 \\ 4,0$	$338,8 \\ 20,4 \\ 0,1$	231 -21,0 27			
Динамическая вяз- кость, ×10 ³ Па·с (при Т. °С)	18,9 (25)	26 (25)	352 (30)	870 (30)	590 (25)	101 (20)			
Удельная теплоем- кость, кДж / (кг.°С) (при Т, °С) Теплота реакции	2,72 (30)	3,4 (80)	2,47 (30)	2,51 (30)	2,34 (30)	1,71 (30)			
кДж/кг: c H ₂ S c CO ₂	1511 1909	1566 1976	1147 1511	1218 1628	930 1465	1047 1340			
<i>Примечание.</i> Удельная теплоемкость воды при 30 °C равна 4,18 кДж/(кг.°С).									

замерзания (за исключением ДГА и МДЭА). Однако водные растворы этаноламинов менее вязкие и замерзают при низких температурах (ниже минус 10 °C), что делает возможным их применение в промышленности.

Основные физико-химические свойства водных растворов приведены на рис. 4.2-4.16.

Рис. 4.4. Кривые давления паров аминов (содержание основного вещества не менее 99 %): 1 – МЭА; 2 – МДЭА; 3 – ДИПА; 4 – ДЭА; 5 – ТЭА

Рис. 4.6. График температуры кипения водных растворов аминов при давлении 101,333 кПа: 1 – ДЭА; 2 – МДЭА

Рис. 4.7. Зависимость плотности р водного раствора ДЭА от температуры: 1-4 – экспериментальные данные; 5-8 – расчетные данные соответственно для массовой доли ДЭА 0, 30, 60, 100 % ($\rho = 998 - 0,00403 \cdot t^2 + C$ (3,4 – – 0,00025 $t^{1,45}$) – $C^{1,19}$, где t – температура, °С, C – массовая доля ДЭА, %)

Рис. 4.8. Зависимость вязкости μ водного раствора ДЭА от температуры ln μ = = (0,067666С - 6,820867)/(l - 0,004395С) - (t (0,014066 + 0,000105С)//(1 - 0,004965С)) (условные обозначения см. рис. 4.7)

Рис. 4.9. Зависимость теплоемкости C_p водного раствора ДЭА от температуры ($C_p = 4,176 + 0,00046t - t - 0,018337C + 0,000054C \cdot t$) (условные обозначения см. рис. 4.7)

Рис. 4.10. Зависимость теплопроводности λ водного раствора ДЭА от температуры ($\lambda = 0,4675 - 0,0062C^{0,8538}$) · $t^{0,08}$ (условные обозначения см. рис. 4.7)

Рис. 4.11. Зависимость плотности водных растворов МДЭА от температуры при различной массовой доле МДЭА, %: t = 60; 2 = 40; 3 = 20

Рис. 4.12. Зависимость вязкости водных растворов МДЭА от температуры при различной массовой доле МДЭА, %: 1 – 100; 2 – 80; 3 – 60; 4 – 40; 5 – 20

Экспериментальные данные по зависимости плотности вязкости и теплоемкости водных растворов ДЭА и МДЭА обобщены следующими уравнениями [123, 116, 53]:

плотность (в кг/м³)

$$\rho = a_1 - a_2 T^2 + C(a_3 - a_4 T^{m_1}) - C^{m_2}; \qquad (4.1)$$

вязкость (в Па-с)

$$\mu = \exp \frac{a_1 C - a_2}{1 - a_3 C} - \frac{T(a_4 + a_5 C)}{1 - a_6 C};$$
(4.2)

Рис. 4.13. Зависимость теплоемкости водных растворов МДЭА от температуры при различной массовой доле МДЭА, %: 1 – 25; 2 – 50; 3 – 75; 4 – 100

Рис. 4.14. Зависимость теплопроводности растворов МДЭА от массовой доли МДЭА при температуре 40 $^\circ C$

Рис. 4.15. Зависимость поверхностного натяжения растворов ДЭА (I) и МДЭА (II) от температуры и массовой доли ДЭА и МДЭА, %: $t - 25; \ 2 - 50; \ 3 - 75; \ 4 - 35; \ 5 - 50; \ 6 - 75$

удельная теплоемкость (в Дж/(г·°С))

$$C_p = a_1 + a_2 T - a_3 C + a_4 C T, (4.3)$$

где T – температура, °C; C – концентрация амина, % мас.; a_i – коэффициенты; m_i – показатели степени.

Значения *a_i* и *m_i* представлены в табл. 4.33.

Плотность, вязкость и теплоемкость водных растворов смеси МДЭА и ДЭА с ошибкой не более 15 % могут быть рассчитаны по закону аддитивности пропорционально молярной доли каждого амина в смеси (см. рис. 4.16)

Зависимость давления паров воды над растворами аминов с достаточной точностью описывается законом Рауля [58]:

 $p_{\mathrm{H}_{2}\mathrm{O}} = X_{\mathrm{H}_{2}\mathrm{O}} \cdot p_{0},$

где $-X_{\rm H_{2O}}$ – мольная доля воды в растворе, p_0 – давление насыщенных паров чистой воды.

В пределах точности измерения наличие кислых газов в растворе мало сказывается на величине $p_{\rm H_2O}$.

Рис. 4.16. Зависимость вязкости (*a*), теплоемкости (*б*) и плотности (*b*) водных растворов МДЭА+ДЭА от температуры: о, • – доля ДЭА в смешанном абсорбенте (о – 30 % мас., • – 50 % мас.); *1* – общая концентрация амина в растворе 20 % мас.; *2* – 30 % мас.; *3* – 40 % мас.

Давление паров ДЭА и МДЭА в зависимости от температуры определяется уравнениями (мм рт. ст.): для МДЭА

$$\ln p = 17,229 - \frac{4344,226}{T-110}; \tag{4.4}$$

Рис. 4.16. Продолжение

Габлица 4.33	

Значения	a_i	И	m_i	B	уравнениях	(4	.1))-((4.3))
----------	-------	---	-------	---	------------	----	-----	-----	-------	---

Физи- ческие свойст- ва	<i>a</i> ₁	$a_2 \cdot 10^3$	$a_3 \cdot 10^3$	$a_4 \cdot 10^4$	$a_5 \cdot 10^4$	$a_6 \cdot 10^3$	m_1	m_2
				ДЭА				
$ ho \ \mu \ C_p$	998 0,0677 4,176	4,03 6821 0,46	$3400 \\ 4,4 \\ 18,4$	$2,5 \\ 141 \\ 0,54$	1,05	4,97	1,45	1,19
	МДЭА							
$egin{array}{c} \rho \ \mu \ C_p \end{array}$	987,75 0,0545 4,103	4,05 6400 1,05	3900 1,8 15.5	3.1 115 1,26	1,9	4,3	1,67	1,257

266

T .

Рис. 4.16. Продолжение

$$\ln p = 18,704 - \frac{5331,543}{T - 99,7},\tag{4.5}$$

где T = t + 273, t °C.

4.2.2. МЕХАНИЗМ ПОГЛОЩЕНИЯ H₂S, CO₂ И ДРУГИХ СЕРНИСТЫХ КОМПОНЕНТОВ ВОДНЫМИ РАСТВОРАМИ АМИНОВ

Механизм поглощения H_2S и CO_2 водными растворами аминов рассмотрен в работах [121, 40, 103, 99]. Алканоламины, будучи щелочами, легко вступают в реакцию с кислыми газами H_2S (CO_2), образуя водорастворимые соли. При этом протекают следующие реакции:

 $H_2S + [AMUH] \stackrel{\sim}{\underset{\sim}{\leftarrow}} [AMUH \cdot H]^+ + HS^- (MTHOBEHHO);$

 $CO_2 + 2 \cdot [Amuh] \stackrel{\sim}{\underset{\sim}{\leftarrow}} [Amuh \cdot H]^+ + [Amuh \cdot COO]^-$ (быстро);

СО₂ + H₂O , H₂CO₃ (медленно);

 $H_2CO_3 \stackrel{\sim}{\underset{\sim}{\sim}} H^+ + HCO_3^-$ (быстро);

НСО - _ _ Н⁺ + СО₃ (быстро);

[Амин] + Н⁺ ╤ [Амин·Н]⁺ (быстро).

Все амины реагируют с H_2S одинаковым образом с образованием гидросульфида или сульфида амина, причем реакция классифицируется как мгновенная. Первичные и вторичные амины могут реагировать с CO_2 с образованием карбамата (соли замещенной карбаминовой кислоты – амин· $COO^-·H^+$), которая трактуется как быстрая реакция второго порядка. Кроме того, с CO_2 образуются карбонаты и бикарбонаты аминов, но образованию их предшествует медленная реакция растворения CO_2 в воде с образованием угольной кислоты H_2CO_3 . Считается, что при умеренных степенях карбонизации амина (до 0,5 моль $CO_2/$ моль амина) преимущественно протекает реакция образования карбамата. Карбаматы аминов – нестой-кие соединения и в слабощелочной среде они медленно разлагаются с образованием бикарбоната (на примере вторичного амина):

 $R_2NCOOR_2NH_2 + H_2O \rightleftharpoons R_2NH + R_2NH_2HCO_3$,

где R – $HOCH_2CH_2^-$.

У третичного алканоламина нет подвижного атома H^+ в аминовой группе, поэтому становится невозможным протекание прямой и быстрой реакции с CO_2 по карбаматному типу, а взаимодействие осуществляется через предварительную и медленную стадию образования и диссоциации угольной кислоты:

 $CO_2 + H_2O \stackrel{\rightarrow}{\leftarrow} H_2CO_3;$

 $H_2CO_3 \gtrsim H^+ + HCO_3;$

 $[\mathsf{AMUH}] + \mathsf{H}^{+} + \mathsf{HCO}_{3}^{-} \rightleftharpoons [\mathsf{AMUH} \cdot \mathsf{H}]^{+} \cdot \mathsf{HCO}_{3}^{-}.$

Конечными продуктами реакции являются бикарбонат и карбонат. Таким образом, разница в скоростях реакций тре-268 тичных аминов с H_2S (мгновенная реакция) и CO_2 (медленная реакция) гораздо значительнее, чем для первичных и вторичных аминов. Это позволяет использовать на практике третичные амины для селективного извлечения H_2S из смесей его с CO_2 .

В соответствии с приведенными химическими реакциями H_2S и CO_2 с аминами концентрация активного (свободного) амина в растворе может быть рассчитана по уравнению

$$C_{\mathfrak{m}} = C_{\mathfrak{m}_{\alpha}} \left(1 - \alpha_A - n\alpha_B \right), \tag{4.6}$$

где C_{π} – концентрация свободного амина, моль/л; C_{π_0} – исходная концентрация амина, моль/л; α_A , α_B – насыщение амина, соответственно, H₂S (*A*) и CO₂ (*B*), моль/моль; *n* – стехиометрический коэффициент (для первичных и вторичных аминов *n* = 2, для третичных *n* = 1).

Литературные данные [58, 121, 103, 166] о зависимости константы скорости взаимодействия CO₂ с этаноламинами от температуры обобщены в виде следующих уравнений:

$$\lg r_B = 11,070 - 2140/T; \tag{4.7}$$

для ДЭА

$$\lg r_B = 10,046 - 2050/T; \tag{4.8}$$

для МДЭА

$$\lg r_B = 8,932 - 2426/T, \tag{4.9}$$

где r_B измеряется в л/(моль·с).

Реакционная способность алканоламинов изменяется в ряду: первичные > вторичные > третичные и коррелируется с их щелочностью.

Диоксид углерода образует с алканоламинами различные побочные продукты. Механизм их образования изучен не полностью. Часть из них на стадии регенерации абсорбента разрушается и снова выделяет алканоламин, другая часть – не регенерируется, вызывая потери амина. Наибольшее количество нерегенерируемых соединений характерно для первичных алканоламинов.

Меркаптаны, будучи кислотами, обратимо реагируют с алканоламинами с образованием водорастворимых меркаптидов:

 $[AMUH] + RSH \stackrel{\rightarrow}{\underset{}{\leftarrow}} [AMUH \cdot H]^{+} \cdot RS^{-},$

где R – углеводородный радикал (CH₃; C₂H₅; C₃H₇ и т.д.).

Указанной реакции предшествует растворение меркаптанов в абсорбенте и диссоциация на ионы:

 $RSH \stackrel{\rm H_2O}{\sim} RS^- + H^+.$

Кислотность меркаптанов значительно ниже, чем H_2S и CO_2 , вследствие чего последние вытесняют меркаптаны из их соединений с аминами. Меркаптиды – нестойкие соединения, легко разрушающиеся при нагревании.

Сероокись углерода в водных растворах аминов гидролизуется

$COS + H_2O \rightleftharpoons CO_2 + H_2S.$

Образовавшиеся H_2S и CO_2 реагируют с аминами. Однако, ввиду того, что в исходном газе концентрация COS по сравнению с H_2S и CO_2 невелика, прямая реакция никогда не доходит до конца. Лимитирующая стадия процесса – растворение COS в абсорбенте. Сероокись углерода может непосредственно вступать в реакции с первичными и вторичными аминами с образованием тиокарбаматов (аналогично CO₂). COS способна вступать также в другие реакции с аминами, механизм которых изучен не до конца. При этом с первичными аминами образуются нерегенерируемые продукты; вторичные и третичные амины реагируют с COS обратимо.

Аналогичным образом реагирует с алканоламинами и сероуглерод. Побочные продукты он образует и с первичными и с вторичными аминами. Сульфиды и дисульфиды с алканоламинами не взаимодействуют.

4.2.3. РАСТВОРИМОСТЬ H₂S И CO₂ В ВОДНЫХ РАСТВОРАХ ЭТАНОЛАМИНОВ

Многочисленные данные по растворимости H_2S и CO_2 в водных растворах ДЭА [58, 40, 146, 142, 143] обобщены в виде номограмм [124], которые приведены на рис. 4.17 и 4.18. Номограммы разработаны для определения равновесного давления кислых компонентов над системой $H_2S - CO_2 - ДЭА$ в широком диапазоне изменения степени насыщения амина, температуры и концентрации амина в растворе. Однако их можно использовать также для решения обратной задачи – определить емкость раствора, исходя из парциальных давлений H_2S и CO_2 в исходном газе. Для повышения точности

Рис. 4.17. Равновесное парциальное давление H_2S над системой ДЭА – H_2S – $CO_2(p_{H_2S}^{\pi} = 7,10^3 p_{H_2S}^{0}, \Pi a)$:

 $p_{\rm H_2S}^0$ – равновесное парциальное давление ${\rm H_2S};~p_{\rm H_2S}^0$ – значение, полученное из номограммы; t – температура раствора; C – массовая доля ДЭА; $R_1,~R_2$ – вспомогательные оси; цифры на кривых – концентрация CO₂ в растворе, моль / моль ДЭА

Рис. 4.18. Равновесное парциальное давление CO_2 над системой ДЭА – $H_2S - CO_2(p_{CO_2}^0 = 7 \cdot 10^3 \cdot p_{CO_2}^{\pi}, \Pi a)$:

 $p_{\rm CO_2}^{\rm II}$ – равновесное парциальное давление CO₂; $p_{\rm CO_2}^0$ – значение, полученное из номограммы; t – температура раствора; C – массовая доля ДЭА; R_1 , R_2 – вспомогательные оси; цифры на кривых – концентрация H_2S в растворе, моль / моль ДЭА

Рис. 4.19. Кривые поправочных коэффициентов f_c и f_t для уточнения равновесного парциального давления H₂S над системой ДЭА – H₂S – CO₂ по формулам, приведенным в тексте: цифры на кривых – концентрация СО₂ в растворе, моль/моль ДЭА

значений (особенно при степени насыщения амина кислыми газами > 0,5 моль/моль) даны кривые корреляции (рис. 4.19, 4.20), позволяющие найти поправочные коэффициенты.

Рис. 4.20. Кривые поправочных коэффициентов f_c и f_t для уточнения равновесного парциального давления СО₂ над системой ДЭА – H₂S – CO₂ по формулам, приведенным в тексте: цифры на кривых – концентрация СО₂ в растворе, моль/моль ДЭА

Порядок пользования номограммами:

соединить заданную температуру и концентрацию амина и получить точку на оси R_1 ;

провести горизонтальную прямую через точку, соответствующую заданной степени насыщения амина H_2S и CO_2 , и получить точку на оси R_2 ;

соединить точки на осях R_1 и R_2 и определить первоначальное значение равновесных давлений H_2S и CO_2 ;

найти поправочные коэффициенты для H₂S и CO₂ на соответствующих корреляционных кривых;

определить уточненные значения равновесных давлений H_2S и CO_2 над раствором амина по следующим выражениям:

$$p_{\rm H_{2}S}^{\rm p} = p_{\rm H_{2}S}^{0} \cdot f_{t}^{(t_{\rm H}-48,9)/5,56} \cdot \left(\frac{C_{\rm m}}{20}\right)^{f_{c}}; \qquad (4.10)$$

$$p_{\rm CO_2}^{\rm p} = p_{\rm CO_2}^{\rm 0} \cdot f_t^{(t_{\rm H} - 48,9)/5,56} \cdot \left(\frac{\ln C_{\rm x}}{3}\right)^{l_c}, \tag{4.11}$$

где $p_{\rm H_2S}^{\rm p}$, $p_{\rm CO_2}^{\rm p}$ – уточненное равновесное давление H₂S и CO₂, Па; $p_{\rm H_2S}^{\rm 0}$, $p_{\rm CO_2}^{\rm 0}$ – полученное из номограммы равновесное давление для H₂S и CO₂, Па; $t_{\rm *}$ – температура раствора, °C; $C_{\rm *}$ – концентрация амина, % мас; f_t и f_c – поправочные коэффициенты.

Наличие в газе второго компонента (H_2S или CO_2) снижает растворимость другого (соответственно увеличивается равновесное давление компонента над раствором).

В литературе отсутствуют аналогичные номограммы или аналитические зависимости для определения равновесного давления кислых компонентов над системой $MД\Im A-H_2S-CO_2$.

Имеющиеся данные по равновесию в двойных системах $MД \ni A - H_2S$ и $MД \ni A - CO_2$ [129], приведенные на рис. 4.21–4.25, носят оценочный характер, т.к. присутствие третьего компонента значительно повышает равновесное давление в системе, что следует из данных, полученных в НПО ГИПХ, по равновесию в тройных системах (рис. 4.26, 4.27).

В работах [53, 54] изучена совместная растворимость H_2S и CO_2 в водных растворах МДЭА и на базе экспериментальных данных (табл. 4.34) разработана математическая модель равновесия в системе МДЭА– H_2S – CO_2 , в основу которой положено представление о едином механизме равновесия кислых компо-

Рис. 4.21. Равновесная растворимость H_2S в растворе МДЭА, молярной концентрацией 1 моль/л при различной температуре, °C: t - 120; 2 - 100; 3 - 70; 4 - 50; 5 - 25

нентов. При этом рассматривался как аддитивный характер обеих форм равновесия, так и перекрестные эффекты, включая эффект конкурентности, т.е. взаимного вытеснения кислых компонентов.

В модели использована система уравнений, вполне точно описывающая равновесие газ – жидкость как в области низких насыщений, когда поглощенные компоненты находятся практически полностью в химически связанном состоянии, так и в области средних насыщений, когда физическая растворимость и хемосорбция компонентов соизмеримы; и в области высоких насыщений, когда доля физически растворимых компонентов является преобладающей.

В модели учтены также перекрестные случаи, когда один компонент растворен в основном химически, а другой – физически.

Совместная растворимость H_2S (инд. 1) и CO_2 (инд. 2) в водных растворах МДЭА описывается системой алгебраических уравнений.

$$\alpha_1(\alpha_1 + \alpha_2) + B_1(\alpha_1 + \alpha_2) - B_1 = 0; \qquad (4.12)$$

$$\alpha_2(\alpha_1 + \alpha_2) + B_2(\alpha_1 + \alpha_2) - B_2 = 0, \qquad (4.13)$$

где α_1 , α_2 – степень насыщения (химического связывания) амина кислыми компонентами, моль/моль амина; B_1 , B_2 – константы, которые рассчитываются по закону действующих масс для реакций взаимодействия H_2S и CO_2 с алканоламином, предполагая, что концентрация компонента в жидкой фазе пропорциональна парциальному давлению:

 $[C_i] = H_i P_i.$

Рис. 4.23. Равновесная растворимость H_2S в растворе МДЭА молярной концентрацией 4, 28 моль/л при различной температуре, °С: 1 – 120; 2 – 100; 3 – 70; 4 – 40; 5 – 25

Таблица 4.34
Совместная растворимости H_2S и CO_2 в 30 % мас. водными растворами МДЭА при 20 °C

Парциальное дав- ление, МПа		Содержание в растворе, моль/л					
H ₂ S	CO_2	H_2S (расч.)	СО ₂ (расч.)		Н₂S (эксп.)	СО ₂ (эксп.)
2	-	физич. раствор.	химич. связан.	физич. раствор.	химич. связан.	общее	общее
0,064	0,036	0,05	0,78	0,015	0,44	0,86	0,45
0,340	0,060	0,09	1,20	0,110	0,50	1,32	0,60
0,810	0,190	0,57	1,17	0,040	0,45	1,70	0,49
0,260	0,290	0,12	0,80	0,037	1,92	0,85	2,10
0,100	0,480	0,12	0,32	0,160	0,79	0,42	1,06
0,012	0,190	0,05	0,25	0,150	1,06	0,35	1,12
0,320	2,270	0,41	0,68	0,530	2,10	1,19	2,50
0,070	0,980	0,16	0,37	0,300	1,70	0,49	2,00
$0,090 \\ 0,280$	$1,640 \\ 3,100$	0,12 0,57	$0,28 \\ 0,49$	$0,620 \\ 0,720$	$2,00 \\ 2,10$	$0,37 \\ 1,17$	2,75 2,85

Значение эффективных коэффициентов активности, необходимых для определения B_1 и B_2 , были найдены путем обработки экспериментальных равновесных данных в зависимости от ионной силы раствора и температуры.

Полная (физическая и химическая) растворимость H_2S и CO_2 равна

$$x_1 = H_1 P_1 + m\alpha_1; (4.14)$$

$$x_2 = H_2 P_2 + m\alpha_2, \tag{4.15}$$

где *т* – молярная концентрация амина.

Используя предполагающую математическую модель, разработана программа для ЭВМ. Последовательность расчета системы уравнений зависит от постановки задачи.

Наиболее типичными случаями являются следующие: по известным парциальным давлениям обоих компонентов требу-

Рис. 4.25. Равновесная растворимость CO_2 в растворе МДЭА молярной концентрацией 4,28 моль/л при различной температуре, °C: 1 – 120; 2 – 100; 3 – 70; 4 – 50; 5 – 25

ется найти полные растворимости в растворе амина, или по заданным концентрациям компонентов в растворе определить их равновесные парциальные давления.

Метод решения обеих задач итерационный, что связано с нелинейной взаимосвязью между переменными. Во всех случаях все сводится к решению уравнений (4.4)–(4.5) относительно пары переменных (P_1 , P_2 или X_1 , X_2). Обработка экспериментальных данных, используя разработанную математическую модель (см. табл. 4.34), показала удовлетворительное соответствие расчетных и опытных данных.

Как было уже отмечено, МДЭА применяется в основном для селективной очистки от H_2S в присутствии CO_2 . Однако, когда требуется одновременное извлечение H_2S и CO_2 , необходимо нивелировать фактор селективности. Для этого было предложено применять водные растворы МДЭА и ДЭА. Добавкой ДЭА к раствору МДЭА в различных соотношениях можно

Рис. 4.26. Равновесная растворимость CO₂ в системе CO₂ – H₂S – МДЭА молярной концентрацией 4,28 моль/л при температуре 20 °C: цифры на кривых -концентрация H₂S в растворе, моль/моль МДЭА

Рис. 4.27. Равновесная растворимость СО₂ в системе СО₂ – H₂S – МДЭА молярной концентрацией 4,28 моль/л при температуре 50 °С: цифры на кривых – концентрация H₂S в растворе, моль/моль МДЭА

регулировать степень извлечения CO_2 при практически полном удалении H_2S .

Исследование индивидуальной и совместной растворимости H_2S и CO_2 в водных растворах смеси МДЭА и ДЭА [53, 118, 139] показали, что растворимость H_2S и CO_2 в смешанных поглотителях можно рассчитать (погрешность не превышает 20 %, что приемлемо для инженерных расчетов), как сумму растворимостей в индивидуальных аминах той же концентрации при постоянном парциальном давлении компонента:

$$\alpha_{\rm cm} = \alpha_1 N_1 + \alpha_2 N_2, \tag{4.16}$$

где N₁, N₂ - мольные доли аминов в смеси.

4.2.4. РАСТВОРИМОСТЬ УГЛЕВОДОРОДОВ В ВОДНЫХ РАСТВОРАХ ЭТАНОЛАМИНОВ

Зависимость растворимости метана и этана в водных растворах ДЭА и МЭА при 65,6 °С приведена на рис. 4.28 [143]. Растворимость углеводородов возрастает с увеличением концентрации амина в растворе, причем растворимость C_2H_6 зависит от концентрации сильнее, чем для CH_4 .

Присутствие H_2S и CO_2 в растворе в количестве 0,25 моль/ моль понижает растворимость метана примерно на 10–20 %. Присутствие этана мало влияет на растворимость метана; в то же время CH_4 на 10–15 % понижает растворимость C_2H_6 .

Зависимость растворимости метана в растворе амина от температуры имеет минимум (рис. 4.29). Для 40 % мас. водного раствора ДЭА этот минимум в зависимости от парциального давления CH_4 находится в пределах 70–90 °C.

Приведенные данные показывают, что растворимость CH_4 и C_2H_6 в водных растворах ДЭА (в пределах рабочих концентраций) при парциальных давлениях их в газе, имеющих место в большинстве практических случаев, близка к растворимости их в воде. Поэтому в инженерных расчетах аминовых установок могут быть использованы данные о растворимости углеводородов в воде.

На рис. 4.30 приведена зависимость константы фазового равновесия для водных растворов газов от температуры [78].

Константы фазового равновесия для физически растворимых углеводородных компонентов газа могут быть рассчитаны по следующим уравнениям:

$$\lg H_{\rm CH_4} = 4,70 - \frac{300}{T - 273}; \tag{4.17}$$

Рис. 4.28. Растворимость метана (*a*) и этана (*б*) в растворах МЭА и ДЭА при 65,6 °С: 1 - H₂O; 2 - 5 % ДЭА; 3 - 25 % ДЭА; 4 - 40 % ДЭА; 5 - 15 % МДЭА; 6 - 40 % МЭА

$$\lg H_{C_2H_6} = 5,25 - \frac{500}{t - 273}; \tag{4.18}$$

$$\lg H_{C_3H_8} = 4,80 - \frac{340}{t+273}; \tag{4.19}$$

Рис. 4.29. Растворимость метана в 40 % растворе ДЭА от температуры: цифры на линиях – парциальное давление СН₄ (атм): *1* – 36; *2* – 50; *3* – 63

$$\lg H_{\rm N_3} = 4,74 - \frac{340}{t+273},\tag{4.20}$$

где *H*, МПа; *t*, °С.

Приведенные выражения аппроксимируют экспериментальные данные для системы газ – вода [70, 93, 94]. Присутствие этаноламина в растворе до 15 % мас. не сказывается существенно на изменении растворимости газа. При более высокой концентрации амина в растворе [144]

$$\lg H_i = \lg_w H_i - 0.07 J/2; \tag{4.21}$$

 $J = C_{\mathfrak{K}} (\alpha_A + \alpha_B),$

где J – ионная сила раствора; C_{*} – концентрация амина, моль/л; α_A , α_B – степень насыщения амина $H_2S(A)$ и $CO_2(B)$, моль/моль.

Растворимость углеводородов в МДЭА исследована в работе [53]. Полученные экспериментальные данные приведены на рис. 4.31.

Растворимость углеводородов в водных растворах МДЭА (S, моль. дол.) увеличивается пропорционально парциальному давлению компонента (p, кПа) S = Kp. Исключение составляет метан при p > 5 МПа.

Рис. 4.30. Зависимость константы фазового равновесия для водных растворов газов от температуры

В этом случае более точную корреляцию опытных данных дает уравнение Кричевского – Ильинской. Константы растворимости K, определенные из экспериментальных изотерм, приведены в табл. 4.35. На основании зависимости K от температуры ($K = K_0 \exp(-\Delta H / RT)$) рассчитаны теплоты растворения, используя которые производится температурная интерполяция констант растворимости.

Полученные термодинамические данные позволяют сделать ряд практических выводов. Во-первых, растворимость углеводородов в водных растворах МДЭА ниже, чем в растворах МЭА и ДЭА при одинаковых концентрациях. Это является

Рис. 4.31. Изотермы растворимости в воде и в водных растворах МДЭА: *a* – метана; *1*, *2* – H₂O; *3* – 50 % мас. МДЭА; *4*, 5, 6 – 33 % мас. МДЭА; *1* – 20 °C; *2* – 40 °C; *3* – 20 °C; *4* – 20 °C; *5* – 40 °C; 6 – 60 °C; 6 – пропана; *1* – H₂O; *2*, *3*, *4* – 33 % МДЭА; *1* – 20 °C; *2* – 20 °C; *3* – 40 °C; *4* – 60 °C

Таблица 4.35

Константы растворимости и теплоты растворения компонентов природного газа в различных абсорбентах (в первой строке приводится K, кПа/мол. доли, во второй ΔH , кДж/моль)

Компоненты	50 % р-р МДЭА	Тетраглим	Раствор А*	Раствор В*	
CH2	16000	330	5800	1600	
0112	5.7	6.2	5.8	6	
C2H6	3720	76.2	1200	380	
	7.5	8.1	7.7	7.9	
C3H8	1040	21,4	320	110	
	9,4	10,3	9,6	9,8	
nC4H10	350	7,2	110	40	
	14,2	15	14,5	14,9	
nC6H14	87	1,8	25	8,1	
	20,4	22,5	21	21,3	
C6H6	_	1,65	16,0	5,6	
	_	24,6	22,8	23,6	
H2S	_	4,22	_	_	
	_	18,8	_	_	
CO2	_	30	_	_	
	_	11,4	-	-	
COS	—	17,5	310	68,7	
GIIGGII	—	23,8	21,7	22,3	
CH3SH	-	2,5	31,9	10,6	
COLLECT	50	28,3	30,0	39,1	
C2H5SH	50	1,8	24,0	6,2	
	24,5	33,0	33,7	34,0	
* Раствор А* – 35 % мол МДЭА+ 35 % мол эфирнолизтиленгликоля +					
+30% Mor H-O Pactrop B [*] - 45% Mor M/J $2A$ + 45% Mor administration					
этиленгликоля + 10 % мол. H_2O .					

преимуществом МДЭА, благодаря которому снижаются потери продукционного газа. Растворимость углеводородов в растворах МДЭА возрастает с увеличением концентрации МДЭА ($C_{MДЭA}$, % мас.). Эта зависимость для 25 °C с коэффициентом корреляции R > 0,9 описывает уравнение:

$$K/K_0 = 0,983 - 0,01267 C_{MJOA},$$
 (4.22)

где K_0 – константа Генри для воды.

Константы растворимости парафиновых углеводородов в 50%-ном мас. растворе МДЭА при 25 °С могут быть рассчитаны (R > 0,9) по уравнению

$$\ln K = 4,605 + 11,184 \exp(-0,15572), \tag{4.23}$$

где *n* – число атомов углерода в молекуле углеводорода.

В гомологическом ряду парафинов, начиная с пропана, отношение теплоты растворения к теплоте конденсации примерно постоянно.

4.2.5. РАСТВОРИМОСТЬ МЕРКАПТАНОВ В ВОДНЫХ РАСТВОРАХ ЭТАНОЛАМИНОВ

Растворимость индивидуальных меркаптанов в растворах аминов экспериментально определена Н.И. Подлегаевым. Основные результаты приведены на рис. 4.32, 4.33 и табл. 4.36. Растворимость метил-, этил- и изопропилмеркаптана в растворах аминов при содержании их в исходном газе в пределах от 0,5 до 15 г/м³ (в пересчете на меркаптановую

Рис. 4.33. Зависимость растворимости C_3H_5SH от концентрации ДЭА в растворе при температуре 20 °С (содержание RSH в газе – 5 г/м³)

Таблица 4.36

Равновесная растворимость C_2H_5SH в водных растворах алканоламинов (t = 20 °C, содержание в газе – 5 г/м³)

Массовая доля	Содержание RSH в растворе, мг/л				
амина, %	МЭА	ДЭА	ТЭА		
20 30 40 95	288,1 291	123 180 202,4 230	80,4 85,8 92,9		

серу) подчиняется закону Генри; причем указанные меркаптаны расположены в следующем порядке: $CH_3SH > C_2H_5SH >$ > изо- C_3H_7SH , а алканоламины – МЭА–ДЭА–ТЭА. Такой порядок обусловлен кислотно-основным механизмом взаимодействия меркаптанов с органическими щелочами-аминами. Растворимость меркаптанов растет с увеличением концентрации амина в растворе.

Константы растворимости меркаптанов в МДЭА приведены в табл. 4.35. Изотермы растворимости C_2H_5SH в водных растворах МДЭА даны на рис. 4.34.

На растворимость меркаптанов в алканоламинах значительное влияние оказывает наличие CO_2 в растворе. Равновесная растворимость C_2H_5SH в аминах при наличии CO_2 в растворе в количестве 2 г/л (глубокая регенерация) снижается в 2,5–4 раза. С увеличением содержания CO_2 в растворе растворимость C_2H_5SH приближается к растворимости его в воде, при

этом характер изменения растворимости соответствует изменению рН раствора.

Таким образом, на промышленных установках аминовой очистки газа от H_2S и CO_2 не представляет возможным одновременно полностью очистить газ от меркаптанов. Анализ работы установок сероочистки газа на Оренбургском ГПЗ показывает, что при очистке газа 25 % ДЭА степень извлечения меркаптанов при удельном орошении 1–1,5 л абсорбента на 1 м³ газа не превышает 10 % при содержании их в исходном газе примерно 500 мг/м³.

4.2.6. РАСТВОРИМОСТЬ СЕРООКИСИ УГЛЕРОДА В ВОДНЫХ РАСТВОРАХ ЭТАНОЛАМИНОВ

Процесс поглощения сероокиси углерода (COS) аминами определяется как физической растворимостью, так и химическим взаимодействием растворенной COS с аминами.

На рис. 4.35 приведена зависимость растворимости COS в воде от температуры; с повышением температуры она уменьшается.

Хемосорбция СОЅ водным раствором ДЭА сопровождается образованием тиокарбаминовой кислоты, которая диссоциирует в растворе и взаимодействует с ДЭА с образованием тиокарбамата амина. Тиокарбамат в водной среде гидролизуется, в результате чего образуется H_2S и CO₂, которые легко связываются с ДЭА. Общая кинетика взаимодействия СОЅ с ДЭА определяется медленной реакцией образования тиокарбаминовой кислоты.

Рис. 4.35. Зависимость растворимости COS в воде от температуры при давлении 101,333 кПа

В табл. 4.37 приведены значения константы скорости реакции образования тиокарбаминовой кислоты при различных температурах и значения констант фазового равновесия при физической растворимости COS в водном растворе ДЭА, экспериментально определенные К.И. Макаровым и С.П. Малютиным [100].

Константа скорости образования тиокарбаминовой кислоты возрастает с увеличением температуры. Но одновременно растет константа фазового равновесия (в связи с падением физической растворимости COS в амине). Таким образом, в условиях одновременного протекания химической реакции и физической растворимости количество извлеченной COS из газа определяется скоростью поступления ее в раствор в результате массообмена с газовой фазой.

i i i i i i i i i i i i i i i i i i i					
Температура, °C	Константа фазового равновесия, кПа/моль- ная доля 10 ³	Константа скорости реакции, л/(моль·с)			
40	414	47			
50	560	75			
60	754	117,5			
70	1082	190			
80	1658	302			

Основные константы, определяющие кинетику поглощения COS раствором ДЭА

290

Таблица 4.37

При создании в абсорбере аминовой очистки газа зоны гидролиза COS, состоящей из 6–10 практических тарелок, при температуре 60–80 °С можно извлечь из газа значительную (до 80 %) часть сероокиси углерода.

4.2.7. РАСТВОРИМОСТЬ СЕРОВОДОРОДА, ДИОКСИДА УГЛЕРОДА, СЕРООКИСИ УГЛЕРОДА, МЕРКАПТАНОВ И УГЛЕРОДОВ В ВОДНО-НЕВОДНЫХ РАСТВОРАХ АЛКАНОЛАМИНОВ

Для комплексной очистки природных и нефтяных газов от сероводорода, диоксида углерода и сероорганических соединений применяются процессы, в которых используют водно-неводные поглотители, включающие алканоламины (для хемосорбции H_2S и CO_2) и различные органические растворители (для физической абсорбции COS, RSH и др.). Основные требования к органическим растворителям в композициях с алканоламинами: термохимическая устойчивость, низкая упругость паров, сохранение гомогенности во всем диапазоне степеней насыщения, высокая поглотительная способность и избирательность по отношению к сернистым соединениям по сравнению с углеводородами и CO_2 (при необходимости).

Согласно принятой модели растворимости [53, 54] оптимальными абсорбционными свойствами по отношению к сернистым соединениям обладают слабоассоциированные растворители основного или нейтрального характера с высокой диэлектрической постоянной (выше 23) и имеющие дипольный момент более 2 дебая. К таким растворителям относятся эфиры гликолей.

Из данных табл. 4.35 следует, что растворимость меркаптанов в диметиловом эфире тетраэтиленгликоля (условносокращенное наименование – тетраглим) почти в 30 раз выше, чем в водном растворе МДЭА. В связи с этим очевидна перспективность использования органических соединений данного класса при разработке рецептур водно-неводных поглотителей.

Установлено повышение поглотительной способности эфиров гликолей с увеличением числа гликолевых групп в молекуле (n_r) .Эта зависимость с коэффициентом корреляции R > 0.9 для t = 25 °C описывается уравнениями:

H₂S $K = \exp(10.85 - 1.078 n_r);$ (4.24)

$$CO_2 K = \exp(17,34 - 0,408 n_r);$$
 (4.25)

COS
$$K = \exp(15,93 - 0,645 n_r);$$
 (4.26)

CH₃SH
$$K = \exp(9,146 - 1,276 n_r);$$
 (4.27)

$$C_2H_5SH \quad K = \exp((8,243 - 1,218 n_r)).$$
 (4.28)

Растворимость парафиновых углеводородов и алифатических меркаптанов в тетраглиме с увеличением числа углеродных атомов в молекуле *n* возрастает согласно уравнениям:

$$C_n H_{n+2} = K = \exp(28.7 + 393.84/(n+6.108));$$
 (4.29)

RSH
$$K = \exp(356 - 1,218 n).$$
 (4.30)

При наличии примесей воды поглотительная способность эфиров гликолей достаточно резко снижается, особенно по отношению к углеводородам:

$$K/K_0 = \exp(-0.055 + 0.061 \,\mathrm{C}_{\mathrm{H,O}}),$$
 (4.31)

где K_0 – константа растворимости углеводорода в безводном эфире гликоля; $C_{H_{2}O}$ – содержание воды в поглотителе, % мол. доли.

С учетом установленных закономерностей составлен ряд композиций водно-неводных поглотителей, составы которых и константы растворимости в них компонентов природного газа представлены в табл. 4.35. Из этих данных следует, что водноневодные растворы МДЭА благодаря наличию органической добавки эффективно абсорбируют сероорганические соединения, особенно меркаптаны, константа растворимости которых увеличивается с возрастанием молекулярной массы меркаптана:

раствор
$$A = \exp(17,04 - 1,17 n);$$
 (4.32)

раствор
$$B = K = \exp(12,71 - 2,001 n).$$
 (4.33)

Зависимость константы растворимости углеводородов от их молекулярной массы:

раствор
$$A$$
 ln $K = 4,605 + 10,63 \exp(-0,204 n);$ (4.34)

раствор
$$B$$
 ln $K = 4,605 + 9,5782 \exp(-0,242 n)$. (4.35)

Влияние органической добавки на абсорбцию сероводорода и диоксида углерода проявляется главным образом в области высоких степеней насыщения алканоламинами, когда концентрации растворенного и химически связанного компонентов становятся соизмеримыми (рис. 4.36). Аналогично теплота растворения сероводорода и диоксида углерода в неводных
Рис. 4.36. Зависимость парциального давления *p* сероводорода (1, 2) и диоксида углерода (3, 4) от степени насыщения а для 40 % мол. водного и водно-неводного раствора МДЭА при 30 °С: 1, 3 – водный раствор МДЭА; 2, 4 – водноневодный раствор МДЭА, содержащий 40 % мол. полиэтиленгликоля

растворах МДЭА при малых насыщениях выше, а при высоких насыщениях ниже, чем в водных растворах МДЭА, поскольку теплота физического растворения существенно меньше теплоты химической реакции. В связи с этим в аспекте минимизации удельных энергозатрат применение водно-неводных абсорбентов наиболее перспективно для очистки высокосернистых газов.

4.2.8. СХЕМЫ ПРОЦЕССА ОЧИСТКИ ГАЗА ВОДНЫМИ РАСТВОРАМИ АМИНОВ

На рис. 4.37 показана основная однопоточная схема абсорбционной очистки газа растворами этаноламинов. Поступающий на очистку газ проходит восходящим потоком через абсорбер навстречу потоку раствора. Насыщенный кислыми газами раствор, выходящий с низа абсорбера, подогревается в теплообменнике регенерированным раствором из десорбера и подается на верх его. После частичного охлаждения в теплообменнике регенерированный раствор дополнительно охлаждается водой или воздухом и подается на верх абсорбера; этим завершается цикл.

Тепло, необходимое для регенерации насыщенного раствора, сообщается раствору в рибойлерах, обогреваемых глухим паром низкого давления. Кислый газ из десорбера охлаждает-

Рис. 4.37. Схема однопоточной очистки газа растворами этаноламинов: I – газ на очистку; II – очищенный газ; III – экспанзерный газ; IV – кислый газ; V – водяной пар; 1 – абсорбер; 2, 9 – насосы; 3, 7 – холодильники; 4 – экспанзер; 5 – теплообменник; 6 – десорбер; 8 – сепаратор; 10 – кипятильник; 11 – емкость регенерированного амина

ся для конденсации большей части содержащихся в нем водяных паров. Этот конденсат-флегма непрерывно возвращается обратно в систему, чтобы предотвратить увеличение концентрации раствора амина. Обычно эту флегму подают на верх десорбера, несколько выше входа насыщенного раствора для конденсации паров амина из потока кислого газа.

В схеме предусмотрен экспанзер (выветриватель), где за счет снижения давления насыщенного раствора выделяются физически растворенные в абсорбенте углеводороды и частично сероводород и диоксид углерода. Экспанзерный газ после очистки используется на собственные нужды в качестве топливного газа или компримируется и подается в поток исходного газа. В ряде случаев экспанзер смонтирован с колонкой для очистки выделяемого газа.

Широкое распространение в промышленности получила схема с разделенными потоками регенерированного раствора одинаковой степени регенерации (рис. 4.38). Основное количество регенерированного раствора (70–80 %) с повышенной температурой подается в среднюю часть абсорбера – это улучшает кинетику поглощения кислых компонентов и способствует гидролизу COS на H₂S и CO₂. С целью получения тон-

Рис. 4.38. Схема аминовой очистки газа с разделенными потоками подачи регенерированного раствора с обычным абсорбером (*a*) и абсорбером переменного сечения (б):

I – газ на очистку; II – очищенный газ; III – насыщенный раствор; IV – регенерированный раствор; 1 – абсорбер; 2 – холодильники

кой очистки газа остальное количество раствора (20–30 %) дополнительно охлаждается в воздушном или водяном холодильнике и подается на верх абсорбера. Указанная схема с двумя потоками регенерированного раствора реализована на Оренбургском ГПЗ. Такая схема позволяет снизить эксплуатационные затраты, поскольку глубокому охлаждению подвергается только часть раствора.

В схеме с разделенными потоками регенерированного раствора применяются также абсорбер переменного сечения. Это обусловлено следующими обстоятельствами. Абсорбция кислых компонентов происходит очень быстро и практически осуществляется на 10–15 нижних тарелках, а на остальных тарелках происходит доулавливание кислых компонентов до требуемых норм, предусмотренных на транспортируемый газ. В этом случае на верх абсорбера, где происходит доочистка газа, подается значительно меньшая часть общего количества раствора. В связи с этим диаметр верхней части абсорбционной колонны может быть уменьшен, что обусловливает снижение металлоемкости аппаратов и капитальных затрат на установку.

Наиболее рациональная и экономичная схема аминовой очистки газа с большим содержанием кислых компонентов приведена на рис. 4.39. В данной схеме, как и в схеме на рис. 4.38, подача раствора в абсорбер осуществляется двумя потоками, но разной степени регенерации. Частично (грубо) регенерированный раствор амина отбирается сбоку десорбера и подается в среднюю секцию абсорбера. Глубокой регенерации подверга-

Рис. 4.39. Схема аминовой очистки газа с разветвленными потоками раствора разной степени регенерации:

разной степени регенерации: I = газ на очистку; II = очищенный газ; III = кислый газ; IV = тонко регенерированный амин; V = грубо регенерированный амин; VI = насыщенныйамин; VII, VIII = экспанзерные газы; IX = водяной пар;<math>1 = абсорбер; 2, 5, 13 = холодильник; 3, 4 = экспанзеры; 6, 8, 9, 15 = насосы; 7, 11 = теплообменники; 10 = емкость регенерированного амина; 12 = десорбер; 14 = рефлюксная емкость; 16 = кипятильник

ется только часть раствора, которая подается на верх абсорбера для обеспечения тонкой очистки газа. Такая схема, при некотором увеличении кратности циркуляции абсорбента, позволяет по сравнению с обычной схемой такого типа до 10-15 % снизить расход пара на регенерацию раствора при незначительных капитальных дополнительных затратах на обвязку второго потока регенерированного раствора.

При очистке газа с высоким содержанием кислых компонентов, когда необходимо большое количество абсорбента, целесообразно осуществить двойное расширение (выветривание) насыщенного амина при разном давлении. На I ступени при давлении 1,5–2,0 МПа из раствора выделяется основное количество растворенных углеводородов, что обеспечивает в дальнейшем низкое содержание их в кислом газе (<2 % об.) – это гарантирует высокое качество получаемой серы. Этот поток экспанзерного газа либо используется на собственные нужды в виде топливного газа, либо после грубой очистки от сероводорода (или без нее) компримируется и смешивается с основным потоком сырого газа, поступающего на очистку. На II ступени при давлении, близком к атмосферному, без тепловой регенерации выделяется из раствора поток кислого газа, который после выделения из него воды и охлаждения может быть непосредственно направлен на установку получения серы. За счет этого сокращается до 10 % расход пара на регенерацию насыщенных растворов аминов.

В схеме дополнительно устанавливается насос для подачи насыщенного раствора из второго выветривателя в десорбер, который работает в крайне неблагоприятных условиях (высокая степень насыщения амина кислыми газами и относительно высокая температура раствора) – это недостаток схемы.

При очистке газа, содержащего наряду с H_2S и CO_2 , сероокись углерода в абсорбере может быть предусмотрена зона поглощения и гидролиза COS, состоящая из 5–8 тарелок, куда подается регенерированный раствор амина с повышенной температурой 60–80 °C. При этом для эффективного ведения процесса осуществляется переток раствора из верхней зоны абсорбера в нижнюю часть зоны гидролиза.

В отличие от стандартной схемы в указанной схеме охлаждение и конденсация парогазовой смеси, выделяющейся из десорбера, проводится в верхней части колонны путем непосредственного контакта с флегмой, циркулирующей в замкнутом цикле. Такая схема позволяет снизить коррозию технологического оборудования и сократить число аппаратов (конденсаторхолодильник, сепаратор и др.).

В производственных схемах аминовой очистки газа предусматривается также система фильтрации раствора и ввода антивспенивателя в систему.

По схеме, приведенной на рис. 4.39, работают большинство установок очистки газа от кислых компонентов в Канаде, Франции, США. Аналогичная схема применена для очистки газа водными растворами ДЭА на Астраханском ГПЗ.

4.2.9. ВЫБОР РАБОЧЕГО РАСТВОРА

При выборе рабочего раствора для очистки газа, кроме доступности и цены алканоламина, руководствуются следующими положениями:

1) первичные алканоламины более реакционноспособны и их применение предпочтительнее; кроме того, МЭА имеет более низкую молекулярную массу и при одинаковой концентрации в растворе содержится больше молей МЭА, чем у других аминов;

2) наличие COS в газе исключает применение первичных алканоламинов из-за образования нерегенерируемых побочных продуктов и больших потерь амина; в этом случае предпочтителен ДЭА; при выборе амина необходимо также учитывать и другие продукты деградации амина;

3) для селективного извлечения H₂S рекомендуют применять третичные амины и, в частности, МДЭА;

4) для одновременной очистки газа от H_2S , CO_2 и сероорганических соединений применяют комбинированные поглотители, состоящие из амина и органического растворителя (в частности эфиры полигликолей).

Обычные массовые концентрации аминов: МЭА – 15–20 %, ДЭА – 20–30 %; МДЭА – 30–50 %. Использование амина с более высокой концентрацией дает возможность снизить кратность циркуляции раствора и, как следствие этого, снизить тепловые и энергетические затраты на нагрев и перекачку раствора. При этом можно также уменьшить габариты применяемого оборудования. Однако при этом повышается температура насыщенного раствора в результате абсорбции кислых газов. За счет этого также увеличивается давление кислых газов над раствором, что приводит к снижению движущей силы процесса массопереноса (разность между парциальным давлением извлекаемого компонента в газовой фазе и равновесным давлением его над раствором), в результате чего ухудшаются условия очистки газа.

При выборе концентрации амина следует также учитывать, что с увеличением содержания амина в растворе:

уменьшается удельная теплоемкость и, вследствие этого, уменьшается количество теплоты, необходимое для нагрева раствора до заданной температуры;

повышается температура кипения раствора, а, следовательно, расход пара на регенерацию раствора;

увеличивается вязкость раствора, что повышает энергозатраты на циркуляцию раствора; более вязкие растворы аминов проявляют большую склонность к вспениванию; кроме того, повышение вязкости раствора приводит к снижению коэффициентов массо- и теплопередачи;

увеличивается упругость его паров, что приводит к увеличению потерь за счет испарения;

концентрированные растворы алканоламинов имеют большую растворяющую способность по отношению к углеводородным компонентам газа.

4.2.10. КОРРОЗИОННЫЕ СВОЙСТВА АЛКАНОЛАМИНОВ

Проблема, с которой сталкиваются при эксплуатации аминовых установок очистки газа, – это коррозия технологического оборудования. Механизм коррозии на установках аминовой очистки весьма сложен и недостаточно изучен. Коррозия зависит от многих факторов: от концентрации H_2S и CO_2 в очищенном газе, степени насыщения амина кислыми газами, температуры и концентрации амина, качества поглотительного раствора и т.д.

Основными агрессивными веществами являются сами кислые газы. Сероводород действует на сталь как кислота и ведет к образованию нерастворимого сернистого железа. Диоксид углерода в присутствии воды вступает в реакцию с металлическим железом с образованием бикарбоната железа, который при нагревании раствора переходит в нерастворимый карбонат железа, который осаждается на стенках аппаратов и трубопроводов. Коррозия ускоряется под действием продуктов деградации амина, которые взаимодействуют с металлом.

Коррозии оборудования также способствует накопление в растворе твердых частиц, которые разрушают защитные пленки, вызывают эрозию металла. Такими твердыми частицами являются сульфид железа, окись железа, пыль, песок, прокатная окалина, которые попадают в абсорбер вместе с потоком газа.

Интенсивность коррозии возрастает в ряду: первичные алканоламины > вторичные > третичные, так как более реакционноспособные первичные и вторичные амины требуют более высоких температур для десорбции кислых газов; остаточное содержание кислых газов в регенерированных растворах таких аминов также выше.

Оборудование установок аминовой очистки газов помимо общей коррозии подвергается и другому виду разрушения – коррозионному растрескиванию. Зарегистрированы случаи появления коррозионных трещин в абсорберах, десорберах, теплообменниках, трубопроводах.

В литературе неоднозначно оценивается влияние на коррозионную агрессивность аминовых растворов, увеличение их концентрации. В основном проводятся данные по усилению коррозии с увеличением концентрации растворов первичных аминов.

Специалисты ГПЗ месторождения Лак (Франция) утверждают, что возможно использование ДЭА концентрации до 40 % мас. без ингибитора коррозии с приемлемой степенью коррозии оборудования.

Исследования, проведенные в институте ВНИИНефтемаш, показали, что при увеличении концентрации ДЭА с 20 до 50 % мас. при степени насыщения амина кислыми газами 0,5 моль/моль (H_2S /CO₂ – 1/1) скорость коррозии углеродистой стали снижается. Для 50 % мас. раствора ДЭА она составляет 0,1 мм/год, что дает возможность при прибавке на коррозию 3 мм (стандарт) прогнозировать длительный срок эксплуатации оборудования. Было также установлено, что при увеличении концентрации ДЭА в растворе, склонность сталей к коррозионному растрескиванию уменьшается.

Оценка коррозионной агрессивности различных абсорбентов, насыщенных H_2S и CO_2 , проведенная в автоклавах под давлением на Опытном заводе ВНИИГАЗа в условиях, близких к промышленным, показала (табл. 4.38), что скорость коррозии (сталь 20) в водных растворах МДЭА и смеси МДЭА+ДЭА (соотношение МДЭА/ДЭА = 50/50 %) не намного превышает значения для одного стандартного ДЭА одинаковой концентрации. Коррозионная агрессивность абсорбентов физико-химического действия – "Укарсол-702" ниже, чем для ДЭА. Скорость коррозии стали 20 для всех испытываемых растворов в данных условиях не превышает 0,1 мм/год, что ниже допустимой – 0,3 мм/год.

При очистке газа водными растворами аминов коррозия происходит по всему тракту поглотительного раствора. Наиболее интенсивная коррозия наблюдается в зонах с максимальной концентрацией кислых газов и максимальной температурой, поэтому в промышленных условиях наиболее интенсивной коррозии обычно подвержены теплообменники, кипятильники, конденсаторы, десорберы.

Обычно основное оборудование установок очистки газа изготавливается из углеродистой стали и лишь наиболее подверженные коррозии узлы (трубные пучки теплообменников, кипятильников, холодильников) из нержавеющей стали, скорость коррозии которой в 10–100 раз ниже, чем углеродистой стали.

Таблица 4.38

Скорость коррозии стали 20 в различных абсорбентах (p = 50 МПа, t = 90 °C, $\Sigma \alpha = 0.5$ моль/моль, $H_2S/CO_2 = 2:1$)

Абсорбент, % мас.	Скорость коррозии, мм/ год
ДЭА (40 %)	0,06
МДЭА (40 %)	0,074
МДЭА + ДЭА (40 %)	0,09
Укарсол-702 (70 %)	0,05

Абсорберы обычно не корродируют, хотя бывают случаи коррозионного растрескивания при определенных условиях. Одним из средств борьбы с растрескиванием является отжиг сварных швов.

Термообработке подвергаются и сами колонны. Срок службы абсорберов и десорберов поддерживается увеличением толщины стенок при их изготовлении.

В теплообменниках трубные пучки корродируют как со стороны насыщенного, так и регенерированного раствора, что объясняется высоким содержанием кислых газов в растворе и неполной их отпаркой из раствора. При этом особенно интенсивная коррозия происходит в высокотемпературной секции теплообменников, в которых раствор перегревается выше температуры кипения и происходит десорбция кислых газов. Кожухи из углеродистой стали обычно корродируют значительно слабее.

Особенно агрессивны условия работы кипятильников (рибойлеров), что связано с тем, что в них зачастую происходит отпарка значительного количества CO_2 при температуре около 130 °C, и образуются застойные зоны, содержащие CO_2 и продукты деструкции амина.

Подвержены коррозии и конденсаторы-холодильники парогазовой смеси, выходящей из десорбера. Добавление этаноламина (до 1 %) в газообразную систему $H_2O - H_2S - CO_2$ приводит к значительному ослаблению коррозии углеродистой стали. Поэтому, в последнее время охлаждение парогазовой смеси проводится в верхней части десорбера путем непосредственного контакта с флегмой, циркулирующей в замкнутом контуре (см. рис. 4.39).

Ниже приведены мероприятия по борьбе с коррозией на аминовых установках очистки газа.

На стадии эксплуатации:

поддержание низких скоростей в теплообменниках амин//амин;

циркуляция насыщенного раствора амина по трубам теплообменника, а регенерированного раствора – в межтрубном пространстве;

поддержание повышенного давления в теплообменниках с целью предотвращения выделения из раствора кислых газов при снижении давления и повышении температуры насыщенного раствора;

применение ингибиторов коррозии, особенно при высокой степени насыщения амина кислыми газами (>0,5 моль / моль).

На стадии проектирования и изготовления:

правильный выбор рабочего раствора и конструкции оборудования;

правильный выбор металла для изготовления оборудования и трубопроводов;

термообработка сварных соединений.

Главным требованием для ослабления коррозии является хорошее качество поглотительного раствора (снижение содержания в растворе продуктов побочных реакций – не более 0,2 %, а также солей жесткости и механических примесей) – это достигается путем непрерывного вывода примесей из раствора на фильтрацию.

4.2.11. ВСПЕНИВАНИЕ РАСТВОРОВ АЛКАНОЛАМИНОВ

Вспенивание растворов аминов – одна из серьезных проблем при эксплуатации установок очистки газа. Вспенивание приводит к нарушению режима работы установок, ухудшению качества очищенного газа и, как следствие этого, к необходимости снижения производительности установок по газу. При вспенивании возрастают потери дорогостоящих аминов в результате уноса с газом [40, 45].

Вспенивание возникает, как правило, в абсорберах. Но бывают случаи, когда начавшееся вспенивание раствора переносится в десорбер. Вспенивание чаще возникает в аппаратах с высокими нагрузками по газу и раствору. Признаком вспенивания является увеличение объема пены на контактных тарелках, резкое увеличение перепада давления в аппарате, появление значительного уровня жидкости в сепараторах очищенного (абсорбер) и кислого (десорбер) газов.

Основная причина вспенивания – это примеси, поступающие вместе с сырым газом и попадающие в абсорбент (жидкие углеводороды, пластовая вода, механические примеси, ингибиторы коррозии, различные ПАВ, смолистые вещества и др.). Пенообразователями являются также сульфид железа, смазочные масла, продукты коррозии и деградации амина. Указанные продукты накапливаются в растворе до определенной концентрации, при которой начинается его вспенивание.

На рис. 4.40 приведены результаты испытаний по вспениванию 25%-ного мас. ДЭА при 20 °С в присутствии различных примесей [6]. Эти данные показывают, что практически все вещества, присутствующие в поступающем с промысла газе, способны вызывать вспенивание аминовых растворов. Наибольшее пенообразование вызывают углеводороды, имею-

Рис. 4.40. График влияния различных добавок на пенообразующую способность 25%-ного раствора ДЭА: *I* – парафины; *II* – нафтены; *III* – фракции конденсата; *IV* – спирты; *1* –

I – парафины; II – нафтены; III – фракции конденсата; IV – спирты; 1 – пентаны; 2 – октан; 3 – нонан; 4 – ундекан; 5 – циклогексан; 6 – циклопентан; 7 – конденсат, фракция 150 °C; 8 – конденсат ОГКМ НК-КК; 9 – метанол (технический); 10 – остаток (10 %) от перегонки технического метанола; 11 – чистый раствор ДЭА

щие начало кипения выше 100 °С (конденсат, нефть), ПАВ, некоторые ингибиторы коррозии.

Для предотвращения вспенивания необходима реализация следующих основных мероприятий:

1. Сведение к допустимому минимуму содержания в поступающем на очистку газе примесей, вызывающих или способствующих вспениванию. Это достигается эффективной работой входных сепараторов и промывкой газа каким-либо абсорбентом, например, водой или углеводородной фракцией стабильного конденсата.

2. Подача регенерированного амина на 2–5 °C выше температуры уходящего из абсорбера газа для предупреждения конденсации углеводородов.

3. Периодическая промывка и очистка аппаратов от шлама.

4. Наиболее эффективное средство – вывод примесей из системы путем непрерывной фильтрации раствора амина. На фильтрацию направляют небольшую часть циркулирующего

раствора (от 5 до 20 %). Как правило, фильтрации подвергается регенерированный раствор амина.

Вначале раствор прокачивается через листовой фильтр для вывода из раствора механических и взвешенных частиц. На листовой фильтр предварительно наносится фильтрующая смесь. На отечественных установках сероочистки в качестве фильтрующей смеси используется порошок "Перлит", древесный осветляющий уголь и фильтр-волокно.

Отфильтрированный от механических примесей раствор подается в адсорбер с активированным углем для улавливания углеводородов, продуктов деградации амина и других примесей. После угольного фильтра устанавливается патронный фильтр для улавливания частиц угля, уносимых раствором из адсорбера. Рекомендуется на угольный фильтр подавать 5– 20 % раствора, а на механический – максимальное количество, вплоть до 100 %.

При фильтрации рекомендуется поддерживать скорость раствора около 10 л/(мин·м²), хотя в ряде случаев может достигать величины 20–60 л/(мин·м²). Высота фильтрующего слоя в одном адсорбере составляет 3-4 м.

По практическим данным для нормального ведения технологического процесса содержание примесей в растворе не должно превышать 2 г/л.

5. Эффективное средство против вспенивания – применение антивспенивателей (пеногасителей). В качестве антипенных добавок используются различные силиконовые вещества и высококипящие спирты при концентрации их в растворе 0,001–0,01 % мас. [40, 99].

Пеногасители используют в виде 2–5%-ных растворов в амине или воде и подают в систему либо постоянно небольшими порциями, либо осуществляют кратковременную быструю подачу их в момент вспенивания раствора. Второй путь является более предпочтительным, так как иногда чрезмерное количество антивспенивателя может привести к обратному явлению – к стабилизации пены.

4.2.12. ПОТЕРИ АБСОРБЕНТОВ

Расход аминов – один из важных показателей работы установок очистки газов, поскольку стоимость абсорбентов высока и затраты на абсорбент составляют существенную часть эксплуатационных затрат.

Основные составляющие потерь аминов на установках: унос

с газом, термохимическая деструкция аминов, механические потери [99, 100].

Унос с газом. Общий унос амина с газом определяется уносом в паровой фазе и в капельном виде. Величина первого определяется давлением паров амина над водными растворами и зависит от температуры, типа и концентрации амина в растворе. Хотя давление паров аминов относительно невелико, потери их из-за испарения значительны, вследствие больших объемов очищаемого газа.

Потери амина за счет уноса в капельном состоянии зависят от нагрузок по газу и раствору, от эффективности работы сепарирующих устройств на газовых потоках, от вида применяемых контактных элементов в колонных аппаратах. Капельный унос резко возрастает при вспенивании поглотительного раствора. Эта величина потерь амина при нормальной работе заводских установок составляет 20–30 мг/м³ газа и возрастает до 100 мг/м³ при вспенивании раствора.

Термическое разложение аминов без углекислоты протекает в малой степени и усиливается с повышением температуры и степени насыщения аминов CO_2 . Потери ДЭА под действием CO_2 незначительны при температуре 100 °C и давлении 1,2 МПа и достигают более 90 % при температуре 175 °C и давлении 4,1 МПа. Насыщенный CO_2 водный 20%-ный раствор ДЭА в течение 8 ч при давлении 1,7 МПа и температуре 125 °C разлагается на 22 %. При нагревании раствора ДЭА без CO_2 в атмосфере азота в течение 8 ч при давлении 4,1 МПа и температуре 205 °C не наблюдается значительных изменений концентрации ДЭА или образования продуктов деструкции амина [116, 39].

Механизм взаимодействия CO₂ с аминами с образованием побочных нерегенерируемых или труднорегенерируемых соединений изучен не полностью. Считают [39], что на первой стадии карбонаты или карбаматы, образовавшиеся в результате взаимодействия CO₂ с аминами, превращаются в оксазолидон-2, который затем образует оксиэтилимидазолидон-2. Замещенный имидазолидон гидролизуется до оксиэтилэтилендиамина. В растворах ДЭА оксазолидон при повышенных температурах может превратиться в другое термически стойкое соединение – оксиэтилпиперазин. Оксазолидон-2 может образовываться и при обычных температурах, если в газе имеется сероокись углерода. В растворах амина были обнаружены и другие содержащие азот и имеющие сложную структуру не идентифицированные продукты разложения.

Скорости побочных реакций обычно низки. Однако при

длительной циркуляции поглотительного раствора происходит накопление труднорегенерируемых продуктов в системе. Это приводит к снижению концентрации активного амина, повышению вязкости раствора и в целом к уменьшению эффективности процесса абсорбции. Кроме того, наличие продуктов деградации аминов вызывает вспенивание и усиливает коррозионную агрессивность раствора.

Установлено [39], что продукты превращения ДЭА несколько тормозят реакции его разложения; сероводород тормозит деструкцию ДЭА под воздействием СО₂.

Сложность происходящих в растворе процессов деструкции аминов и отсутствие в литературе представительных данных по кинетике и механизму побочных реакций CO_2 с ДЭА и МДЭА затрудняют количественную оценку этой статьи потерь аминов.

В связи с этим в работе [53] было проведено экспериментальное исследование термохимической деструкции ДЭА и МДЭА под действием CO_2 в автоклавах при температуре до 250 °C и парциальном давлении CO_2 до 5 МПа.

Было установлено, что процесс деградации аминов подчиняется кинетическому уравнению первого порядка:

 $d[A]/d\tau = -K[A].$ (4.36)

Зависимость константы K скорости деструкции аминов под действием CO₂ от температуры приведена на рис. 4.41. Пред-

Рис. 4.41. Зависимость константы скорости процесса термохимической деструкции алканоламинов от температуры при $p_{\rm CO_2}$ > > 0,1 МПа

ставленные данные свидетельствуют о значительно более высокой термохимической стабильности МДЭА по сравнению с ДЭА, причем это различие с ростом температуры проявляется все сильнее.

Экспериментальные данные по зависимости константы скорости процесса деструкции аминов (K, моль/(л·ч) от парциального давления CO₂ (p_{CO_2} , МПа) и температуры (°C) описываются следующими критериальными уравнениями:

Для МДЭА при $p_{CO_2} > 4$ МПа:

$$t = 185 \,^{\circ}\mathrm{C};$$
 (4.37)

 $K = \exp(-15,1335 + 0,0749 \cdot t),$

$$100 \ ^{\circ}\mathrm{C} < t < 165 \ ^{\circ}\mathrm{C}; \tag{4.38}$$

 $K = -0,8505 + 5,5 \cdot 10^{-3} - 3t,$

 $K = -0.0846 + 0.169 \cdot \ln p_{\rm CO}$

$$165 \,^{\circ}\text{C} < t < 205 \,^{\circ}\text{C}. \tag{4.39}$$

Для МДЭА (при *p*_{CO₂} > 2 МПа):

$$K = \exp\left(-12,05 + 0,03856 \cdot t\right). \tag{4.40}$$

По уравнениям (4.37–4.40) можно рассчитать примерный расход аминов с учетом технологических режимов работы установок сероочистки газа и состава перерабатываемого сырья.

Следует отметить, что в промышленных условиях наибольшую деструкцию амина следует ожидать в зонах с повышенной температурой и степенью насыщения CO₂. Такой зоной, по-видимому, является линия насыщенного раствора в интервале температур 80–110 °C.

Основным способом снижения потерь аминов в результате термохимического разложения является вывод продуктов деструкции из системы путем фильтрации и сорбционной очистки (активные угли, цеолиты и др.) раствора.

Добавление к амину небольшого количества водного раствора соды или щелочи ускоряет гидролиз первичного продукта деструкции аминов – оксазолидона-2, что приводит к снижению количества продуктов разложения в растворе.

Немаловажное значение имеет также поддержание температуры регенерации насыщенного амина – не выше 130 °С.

Механические потери происходят от разливов и утечек через неплотности аппаратуры в системе хранения и перекачки раствора. Эти потери характеризуют культуру производства и не должны превышать 10 % от общих потерь аминов.

Прочие потери вызываются химическим взаимодействием амина с другими компонентами газа (COS, CS₂, RSH и др.), кислородом воздуха.

Продукт взаимодействия ДЭА с COS при регенерации легко диссоциируется, выделяя амин. Содержание CS₂ в природных газах, как правило, незначительно – до 20 мг/м³ и продукты реакции CS₂ с ДЭА при нагревании регенерируются на 80 % и более. МДЭА с COS и CS₂ не реагирует. Меркаптаны, дисульфиды и тиофены не вступают в реакцию с аминами и поэтому не вызывают потерь поглотителей.

Этаноламины подвержены окислительному разложению. В присутствии кислорода сероводород реагирует с аминами с образованием устойчивых соединений (тиосульфат, соли дитиокарбаминовой кислоты, тиомочевина и другие продукты), которые не удается разложить при нагревании. Для предотвращения потерь амина от окислительного разложения необходимо исключить контакт амина с воздухом (инертная "подушка" в емкостях с амином).

Прочие потери амина с примесями газа и раствора рассчитать практически невозможно, так как очень много веществ может участвовать в этом процессе. Указанные потери принимаются в размере 5–10 мг/м³ сырьевого газа [14].

4.2.13. РАСЧЕТ ОСНОВНЫХ УЗЛОВ И ПАРАМЕТРОВ УСТАНОВОК ОЧИСТКИ ГАЗА

Для осуществления комплексной интенсификации процесса аминовой очистки необходима разработка общей математической модели, на базе которой на ЭВМ выполняются расчеты в целях поиска оптимальных решений на стадии проектирования и управления. Оптимальным следует считать режим, при котором обеспечиваются минимальные эксплуатационные затраты на проведение процесса очистки газа.

К настоящему времени проведены исследования [58, 103, 99, 18], позволяющие разработать обобщенную модель процесса абсорбции – десорбции H₂S и CO₂ водными растворами этаноламинов.

Кратность циркуляции абсорбента является одним из самых важных показателей работы установок очистки газа, так **308**

как на ее долю приходится примерно 60 % энергетических затрат на процесс очистки.

Расход абсорбента должен быть таким, чтобы обеспечить требуемую степень очистки газа от кислых компонентов при минимальных затратах на процесс. Более высокий расход поглотителя по сравнению с требуемым приведет к увеличению себестоимости очистки, а более низкий – не обеспечит заданную степень очистки газа. В свою очередь, требуемый расход абсорбента определяется рабочей степенью насыщения раствора кислыми компонентами, которая принимается на основании данных о предельной равновесной степени насыщения амина.

Общая емкость равняется сумме химической и физической емкости:

$$\alpha_i = \alpha_{ix} + \alpha_{i\phi}. \tag{4.41}$$

Предельная химическая емкость в соответствии с приведенными уравнениями реакций H₂S и CO₂ с аминами равна:

$$1 - \alpha_{ax} - n \cdot \alpha_{Bx} = 0, \qquad (4.42)$$

где α_{ax} , α_{bx} – химическая емкость по H_2S и CO_2 , моль/моль.

В интервале температур 10–100 °C и парциальных давлений до 2 МПа физическая емкость амина может быть определена по данным о растворимости H_2S и CO₂ в воде:

$$\alpha_{a\phi} = y_a \cdot K / m_a \cdot C_{xo}; \qquad (4.43)$$

$$\alpha_{\rm B\phi} = y_{\rm B} \cdot K / m_{\rm B} \cdot C_{\rm mo}, \qquad (4.44)$$

где y – молярная доля компонента в газе; $C_{\text{жо}}$ – концентрация амина в растворе, моль/л; m_{a} , $m_{\text{в}}$ – константа фазового равновесия H_2S и CO₂ в воде, (кмоль/м³)/(кмоль/м³):

$$m_{\rm H_2S} = 0.257 + 0.00716 \cdot t;$$
 (4.45)

$$m_{\rm CO_2} = 0.6 + 0.028 \cdot t, \tag{4.46}$$

где К – коэффициент перевода к нормальным условиям

$$K = 10 \cdot p \cdot 273/22.4 \cdot (273 + t), \tag{4.47}$$

где p – общее давление абсорбции, МПа; t – температура раствора, °С.

Предельная степень насыщения амина связана с удельным расходом абсорбента (q_p , M^3/M^3 исходного газа) и концентрацией этаноламина в растворе следующей зависимости:

$$\alpha_{i\mathrm{H}} = \alpha_{i\mathrm{x}} + \alpha_{i\mathrm{\Phi}} = y_i/22.4 \cdot q_\mathrm{p} \cdot C_\mathrm{mo} + \alpha_{i\mathrm{p}}, \qquad (4.48)$$

где α_{ip} – содержание H_2S (CO₂) в регенерированном абсорбенте, моль/моль.

Совместное решение этих уравнений позволяет найти выражение для определения минимального удельного расхода поглотителя [99]:

$$q_{\rm p} = \frac{0,0446 \cdot [y_{\rm H_2S} + \frac{1}{C \cdot [1 + K/C_{\rm sc}(y_{\rm H_2S} / m_{\rm H_2S} + \frac{1}{C \cdot [1 - \varphi) \cdot n \cdot y_{\rm H_2S}]}}{\frac{1}{F[(1 - \varphi) \cdot n \cdot y_{\rm CO_2}] / m_{\rm CO_2} - (\alpha_{\rm H_2S_p} - n \cdot \alpha_{\rm CO_2})_{\rm p}]},$$
(4.49)

где φ – селективность абсорбции H₂S из смесей его с CO₂ φ = = ($C_{y_{X} CO_{2}} / C_{BX CO_{2}}$). Для ДЭА – n = 2, для МДЭА – n = 1.

Приведенное уравнение справедливо только при одновременной абсорбции H_2S и CO_2 водными растворами аминов при высоком давлении газа (*p* более 2 МПа) и высоком содержании кислых компонентов.

В промышленных условиях равновесное насыщение амина кислыми газами не достигается из-за ограниченного времени контакта газа и поглотителя. Поэтому практическая кратность циркуляции абсорбента в зависимости от параметров процесса очистки равна:

$$q_{\rm p \ npak} = q_{\rm p \ MHH} / (0.7 \div 0.9). \tag{4.50}$$

Температурный режим в абсорбере определяется температурой регенерированного раствора и выделяющейся теплотой реакции взаимодействия H₂S и CO₂ с амином.

Температура регенерированного раствора должна быть такой, чтобы при оптимальном содержании удаляемых компонентов в нем обеспечивать требуемую степень очистки газа, т.е. равновесное давление H_2S и CO_2 над регенерированным раствором должно быть ниже парциального давления их в очищенном газе. В то же время температура регенерированного раствора должна быть на 2–5 °C выше температуры выходящего из абсорбера газа – для предотвращения конденсации тяжелых углеводородов, содержащихся в газе. В зависимости от применяемого на установках очистки газа холодильного оборудования температура регенерированного з0 °C.

При высоком содержании кислых компонентов в поступающем на очистку газе (более 2 % об.) требуется большая интен-310 сивность циркуляции раствора, поэтому в верхней части абсорбера очищенный газ будет охлаждаться регенерированным раствором до температуры, примерно равной температуре этого раствора. В таких случаях практически вся выделяющаяся теплота реакции отводится с раствором, уходящим из абсорбера. Температуру насыщенного раствора на выходе из абсорбера находят из теплового баланса по уравнению

$$t_{\text{Hac}} = t_{\text{p}} + \frac{G_{\text{H}_{\mathcal{S}}} \cdot r_{\text{H}_{\mathcal{S}}} + G_{\text{CO}_{2}} \cdot r_{\text{CO}_{2}}}{L_{\text{m}} \cdot \rho_{\text{m}} \cdot C_{\text{m}}} - \frac{G_{\text{r}} \cdot \rho_{\text{r}} \cdot C_{\text{r}} \cdot (t_{2\text{r}} - t_{1\text{r}})}{L_{\text{m}} \cdot \rho_{\text{m}} \cdot C_{\text{m}}}, \qquad (4.51)$$

где $t_{\rm p}$ – температура регенерированного раствора, °C; $G_{\rm H_2S}$, $G_{\rm CO_2}$ – количество поглощенных H₂S и CO₂, кг/ч; $r_{\rm H_2S}$, $r_{\rm CO_2}$ – теплота абсорбции H₂S и CO₂, кДж/кг; $L_{\rm m}$ – количество раствора, м³/ч; $\rho_{\rm r}$, $\rho_{\rm m}$ – плотность газа и раствора, кг/м³; $G_{\rm r}$ – объем сырого газа, м³/ч; $C_{\rm r}$, $C_{\rm m}$ – теплоемкость газа и раствора, Дж/(г · °C); $t_{\rm 1r}$, $t_{\rm 2r}$ – температура газа на входе и выходе из абсорбера, °C;

Увеличение температуры мало сказывается на скорости поглощения H_2S , а при извлечении CO_2 – это влияние существенно. Поэтому для достижения избирательного извлечения H_2S из смеси с CO_2 температуру абсорбции следует поддерживать на минимальном уровне. При тонкой очистке от обоих примесей температура абсорбции должна определяться из условий равновесия распределяемых компонентов в газовой и жидкой фазе.

Расчет процесса абсорбции кислых компонентов. В настоящее время разработан ряд моделей расчета процесса одновременной абсорбции H₂S и CO₂ водными растворами аминов. Ниже дана рекомендуемая последовательность расчета на ЭВМ узла абсорбции кислых компонентов для общего случая.

Проводится анализ исходных данных (количество газа, подлежащее очистке от H_2S и CO_2 , и его параметры – состав, давление, температура, а также степень очистки газа от кислых компонентов).

Выбирают тип и концентрацию амина в рабочем растворе. Рассчитывают кратность циркуляции абсорбента по уравнению (4.49) и температуру насыщенного раствора по уравнению (4.51) (блок-схема расчета приведена на рис. 4.42).

По рекомендованным в литературе [78, 4] зависимостям определяют предельную и рабочую скорость газа (рабочую скорость газа рекомендуется принимать равной 0,7–0,9 от предельной), а затем – диаметр абсорбера.

Рис. 4.42. Блок-схема расчета количества поглотительного раствора амина

Выполняют гидравлический расчет аппарата и находят необходимые параметры контактных устройств.

Определяют коэффициенты массоотдачи в жидкой (β_{*}) и газовой (β_{r}) фазах по уравнениям, рекомендуемым в работах [78, 4].

Из материального и теплового баланса аппарата определяют по уравнению (4.51) температуру насыщенного раствора, выходящего из абсорбера. Рассчитывают физико-химические константы системы.

Расчет числа контактных устройств ведут методом "от тарелки к тарелке", начиная с низа аппарата.

По найденным параметрам системы находят коэффициенты ускорения (χ) при хемосорбции H₂S и CO₂ на контактной ступени по уравнениям [110, 5], а затем коэффициенты массопередачи.

По уравнениям материального и теплового баланса (с учетом уравнений массо- и теплопереноса) находят скачок концентраций и температур на выходе из ступени.

Найденные параметры принимают за исходные для расчета следующей (вышерасположенной) тарелки и осуществляют аналогичный расчет этой тарелки и т.д.

Расчет числа контактных ступеней продолжают до тех пор, пока на его ординате не будет обеспечена заданная степень извлечения того или иного компонента. Упрощенная блоксхема ступенчатого расчета абсорбера приведена на рис. 4.43.

В процессе абсорбции H_2S и CO_2 растворами аминов происходит резкое изменение концентрации H_2S в газе, что связано с быстрой (мгновенной) реакцией H_2S с аминами. Поэтому в большинстве практических случаев скорость абсорбции H_2S на большей высоте абсорбера контролируется диффузионным сопротивлением в газовой фазе, т.е. $K_{ra}^1 = \beta_r$.

Ввиду этого, ориентировочное число тарелок в абсорбере, необходимое для обеспечения требуемой степени извлечения по ключевому компоненту (сероводороду), может быть рассчитано по приближенному уравнению:

$$\frac{y_{a1}}{y_{a2}} = e^{-\frac{\beta_{\Gamma} \cdot a \cdot H_{\Pi} \cdot n}{\omega_{\Gamma}}}, \qquad (4.52)$$

где y_{a1} , y_{a2} – содержание H_2S в газе на входе и выходе из абсорбера, % об.; β_r – коэффициент массопередачи в газовой фазе, м/ч; a – удельная поверхность контакта фаз на тарелке, м²/м²; H_{π} – высота газожидкостного слоя на тарелке, м; n – число тарелок, шт; ω_r – скорость газа в свободном сечении абсорбера, м/ч.

Приведенное уравнение предусматривает равенство среднего коэффициента извлечения на каждой тарелке и не учитывает равновесное давление H_2S над раствором ($p_{\rm H,S}$, МПа).

Изменение концентрации CO_2 в газе по высоте абсорбера происходит плавно и скорость массопередачи определяется сопротивлением в обеих фазах. Коэффициент ускорения при хемосорбции CO_2 (χ_B) рассчитывается в этом случае последовательно от тарелки к тарелке по уравнению для однокомпонентной хемосорбции [58] с учетом снижения концентрации свободного амина на реакцию с H_2S .

Рис. 4.43. Блок-схема ступенчатого расчета профиля концентраций $\rm H_2S$ и $\rm CO_2$ в газе по высоте тарельчатого абсорбера

При незначительном изменении коэффициента ускорения $\chi_{\text{в}}$ по высоте аппарата извлечение CO₂ может быть определено по приведенному выше для H₂S уравнению (4.52) при среднем (между верхом и низом абсорбера) коэффициенте массопередачи:

$$K_{\rm fb} = \frac{1}{\frac{1}{\beta_{\rm f}} + \frac{m_{\rm b}}{\beta_{\rm gc} \cdot \chi_{\rm b}}}$$

(4.53)

По практическим данным в зависимости от содержания кислых компонентов в исходном газе и требуемой степени очистки газа в абсорбере устанавливают 25–30 шт. контактных тарелок с расстоянием между ними 500–600 мм. При этом применяют клапанные, ситчатые, S-образные и другие виды тарелок.

Расчет процесса экспанзии насыщенного раствора амина. При абсорбции H₂S и CO₂ из углеводородных газов растворами этаноламинов растворяется некоторое количество углеводородов и других компонентов газовой смеси. Для вывода из насыщенного раствора основной массы физически растворенных углеводородов раствор подвергают экспанзии (выветриванию) с целью обеспечения концентрации углеводородов в потоке кислого газа, поступающего на установку получения серы по методу Клауса, менее 2 % об. При невысоком насыщении раствора кислыми газами (α ≤ 0,5 моль/моль) эта цель достигается при одноступенчатой экспанзии. Газы экспанзии, состоящие в основном из углеводородов, либо сжигаются на факеле, либо после предварительной очистки от сероводорода направляют в топливную сеть завода. С увеличением насыщения раствора кислыми компонентами в первом случае возрастают потери сероводорода с газами экспанзии, а во втором - непроизводительные затраты на их очистку. Поэтому при высоком насыщении раствора амина (α > 0,5 моль/моль) рациональной является схема двухступенчатой экспанзии.

Расчет процесса экспанзии насыщенного раствора основан на равновесной растворимости компонентов газа и сводится к определению давления экспанзии, состава газовой и жидкой фазы после дросселирования, а также температуры частично десорбированного раствора амина.

Выбор оптимального давления на I и II ступенях экспанзии проводится по методике, изложенной в работе [99]. В практике при очистке природного газа при высоком давлении (5,0–7,0 МПа) и высоком насыщении амина кислыми газами, давление раствора на I ступени экспанзии снижается до

1,5–2,0 МПа, а на II ступени и при одноступенчатом дросселировании – 0,2–1,0 МПа.

Математическая модель и метод расчета процесса экспанзии насыщенного амина подробно описаны в работе [111].

Расчет процесса десорбции кислых компонентов. Концентрация удаляемых компонентов в регенерированном абсорбенте обычно бывает задана условиями очистки в абсорбере. Достижение нужных концентраций кислых компонентов в очищенном газе возможно путем эффективной регенерации абсорбента, обеспечивающей необходимую положительную величину движущей силы абсорбции.

Расход теплоты на регенерацию насыщенных растворов аминов равен [58]:

$$Q = Q_{\rm H} + Q_{\rm dec} + Q_{\rm org}, \qquad (4.54)$$

где $Q_{\rm H}$ – теплота, необходимая на нагрев насыщенного раствора; $Q_{\rm дес}$ – теплота, необходимая для десорбции кислых компонентов из раствора; $Q_{\rm отд}$ – теплота, затрачиваемая на образование отдувочного пара.

$$Q_{\rm H} = L_{\rm p} \cdot C_{\rm p} \cdot \rho_{\rm p} \cdot \Delta t; \qquad (4.55)$$

$$Q_{\text{aec}} = \Delta H_{\text{H},\text{S}} \cdot G_{\text{H},\text{S}} + \Delta H_{\text{CO}_2} \cdot G_{\text{CO}_2}; \qquad (4.56)$$

$$Q_{\text{otg}} = r \cdot \Phi \cdot (G_{\text{H},S} + G_{\text{CO}_2}), \qquad (4.57)$$

где $L_{\rm p}$ – количество циркулирующего абсорбента, м³/ч; $C_{\rm p}$ – теплоемкость раствора, кДж/(кг · °С); $\rho_{\rm p}$ – плотность раствора, кг/м³; Δt – разность температур регенерированного и насыщенного раствора на холодном конце теплообменника, °С; ΔH – теплота десорбции, равная по абсолютной величине интегральной теплоте абсорбции, кДж/м³; $G_{\rm H_2S}$, $G_{\rm CO_2}$ – количество десорбированных H₂S и CO₂, м³/ч; *r* – теплота парообразования воды, кДж/м³; Φ – "флегмовое число" – отношение парциальных давлений паров воды и кислых газов в верху десорбера.

При расчете теплоты необходимо учитывать также тепловые потери, которые, как правило, не превышает 5 % от общего расхода пара.

Вся теплота, которая необходима для десорбции насыщенного раствора амина, подводится в кипятильнике и отводится в холодильнике регенерированного раствора и конденсаторе – холодильнике парогазовой смеси, выходящей из десорбера.

Для расчета $Q_{\rm H}$ необходимо знать Δt . Обычно недорекуперация Δt на действующих установках очистки газа колеблется

от 10 до 20 °C. При плохом состоянии теплообменных поверхностей указанная величина может быть значительно выше.

При расчете $Q_{\text{дес}}$ необходимо знать теплоты реакции H_2S и CO_2 с амином. Приближенные значения этих величин приведены в табл. 4.32.

Расчет $Q_{\text{отд}}$ сводится к определению "флегмового числа" в верху десорбера. Эта величина зависит в первую очередь от требуемой степени регенерации раствора, а следовательно, от требуемой степени очистки газа. Расчет "флегмового числа" зависит от температуры насыщенного раствора, поступающего в десорбер, а также от температуры кипения раствора [58]. Температура кипения насыщенного раствора в свою очередь зависит от степени насыщения амина кислыми газами. Эту зависимость находят после построения графика функции

$$p_{\rm obil} = p_{\rm H_2S} + p_{\rm CO_2} + p_{\rm H_2O},$$

от содержания H_2S и CO_2 в растворе при различных температурах с последующем снятием с этих графиков изобар $T - \alpha_{\text{нас}}$ при $p_{\text{общ}} = \text{const.}$

При $t_{\text{нас}} > t_{\text{кип}}$ расчет Ф находят по $t_{\text{нас}}$ после дросселирования раствора. В общем случае "флегмовое число" может быть рассчитано по следующему уравнению [58]:

$$\Phi = \frac{X_{\rm H_2O} \cdot p_{\rm H_2O}}{p_{\rm ofem} - X_{\rm H_2O} \cdot p_{\rm H_2O}},$$
(4.58)

где $X_{\rm H_{2O}}$ – мольная доля воды в растворе; $p_{\rm oбщ}$, $p_{\rm H_{2O}}$ – соответственно общее давление над раствором (давление в десорбере) и давление насыщенных паров над водой при заданной температуре, МПа.

"Флегмовое число" может колебаться в широком интервале от 0,4 до 4,0. На рис. 4.44 приведена зависимость этого показателя от содержания H₂S в регенерированном растворе ДЭА. На рис. 4.45 показана зависимость расхода пара от глубины регенерации для растворов ДЭА и МДЭА.

Наличие CO_2 в насыщенном растворе аминов облегчает десорбцию ключевого компонента – сероводорода за счет дополнительной отдувки H_2S под действием CO_2 и позволяет повысить степень десорбции сероводорода или уменьшить "флегмовое число" (и, соответственно, расход пара на регенерацию). На рис. 4.46 приведена зависимость расхода пара на регенерацию насыщенных растворов ДЭА от соотношения H_2S / CO_2 в сыром газе, построенная на основании опыта эксплуатации ряда промышленных установок очистки газа.

Рис. 4.44. Зависимость флегмового числа от содержания H₂S в регенерированном растворе ДЭА

При расчете одновременной десорбции H_2S и CO₂ из растворов аминов принимают [18], что на каждой контактной ступени устанавливается равновесие по удаляемым компонентам в паровой и жидкой фазах, т.е. кинетика массообмена не лимитирует процесс десорбции. В остальном расчет десорбции ведут аналогично расчету абсорбции кислых компонентов.

Диаметр десорбера определяется исходя из нагрузки колонны по объему паровой фазы (выделяемые кислые газы + + отдувочный водяной пар) и насыщенному раствору внизу колонны.

Обычно на установках очистки газа водными растворами аминов применяют десорберы, снабженные 20–22 тарелками ниже и 2–4 тарелки выше точки ввода насыщенного раствора. Верхние тарелки служат для извлечения испарившегося амина. В эту зону аппарата подают сконденсированную флегму. В последнее время применяются десорберы с 30–35 тарелками, где 10–15 тарелок в верхней части колонны служат для конденсации и охлаждения парогазовой смеси путем непосредственного контакта с водой или флегмой, циркулирующей в замкнутом цикле (см. рис. 4.39).

Зависимость равновесного давления H_2S и CO_2 над растворами аминов от температуры при одинаковых условиях раз-318

лична. Поэтому, по мере прохождения насыщенного раствора сверху вниз десорбера через разные температурные зоны, наблюдается неравномерность регенерации его от H_2S и CO_2 – снижение концентрации H_2S в растворе происходит быстрее, чем CO_2 , т.е. наблюдается "селективность" десорбции растворов аминов. Регенерация амина от H_2S в основном происходит вверху десорбера при температуре 100–105 °C. В этой зоне десорбера выделяется значительное количество CO_2 из раствора. По мере прохождения раствора в нижнюю зону десорбера при температуре 120–130 °C осуществляется глубокая регенерация раствора по H_2S (в целях получения тонкой очистки

Рис. 4.46. Зависимость минимального расхода пара на регенерацию насыщенных растворов ДЭА от отношения H_2S/CO_2 в сыром газе

газа в абсорбере), при этом одновременно из раствора десорбируется основное количество диоксида углерода.

Увеличение температуры регенерации способствует более полной десорбции CO₂ и незначительно сказывается на глубине регенерации по сероводороду.

Недостатком аминовых процессов являются относительно высокие энергетические затраты, в основном в виде пара, на регенерацию насыщенных растворов.

Одним из мероприятий, направленных на сокращение энергетического потребления при аминовой очистке газа, является использование *пара вторичного вскипания* регенерированного амина [103]. Данный процесс заключается в получении парового потока при дросселировании регенерированного амина на выходе из десорбера в испарительных аппаратах и рекомпрессия его в нижнюю часть десорбера (рис. 4.47). Таким образом, имеющаяся теплота раствора регенерируется и используется для отпаривания кислых газов. Подобная схема регенерации намного эффективнее обычной схемы, при которой рекуперированная в теплообменнике амин/амин теплота

Рис. 4.47. Принципиальная схема использования пара вторичного вскипания регенерированного амина:

I – регенерированный амин; II – насыщенный амин; III – пар; 1 – теплообменник амин/амин; 2 – десорбер; 3 – рибойлер; 4 – дросселирующие устройства; 5 – сепараторы-расширители; 6 – компрессоры; 7 – насос

(особенно при $t_{\text{нас}} > t_{\text{кип}}$ раствора) уносится из верхней части десорбера вместе с парами воды и кислыми газами. Кроме того, в данном процессе значительно снижается тепловая нагрузка конденсатора-холодильника кислых газов. В схеме регенерации с узлом вторичного вскипания регенерированного амина необходима установка дополнительного насоса для перекачки раствора через теплообменник амин/амин.

При двухступенчатом испарении потребление пара на десорбер снижается до 30 %. При этом расход электроэнергии на компримирование пара составляет всего 10–15 % от извлекаемой энергии. На первой ступени дросселирования раствора с 0,22–0,23 МПа (низ десорбера) до промежуточного давления 0,15–0,16 МПа выделяется до 70 % от общего количества получаемого пара при двухступенчатом дросселировании регенерированного раствора амина.

Ниже приведен пример процесса дросселирования регенерированного раствора амина (одна ступень) с рекомпрессией образующего парового потока: $p_1 = 0,22$ МПА, $t_1 = 125$ °C, $p_2 = 0,16$ МПа, $t_2 = 114$ °C.

Количество пара, выделяемое при снижении давления раствора, определяется из теплового баланса. Расчет проводим на 1 кг исходного регенерированного раствора.

Энтальпия потоков $(i, \kappa \exists m / \kappa r)$:

$$i_{\rm sc}^{125\ {\rm °C}}=491,9,\ \ i_{\rm sc}^{114\ {\rm °C}}=446,2,\ \ i_{\rm sc}^{114\ {\rm °C}}=2698,3.$$

Принимаем количество образовавшегося при дросселировании пара *X*. Тогда баланс по теплу:

$$Q_{*}^{_{125}\circ_{\mathrm{C}}} = Q_{*}^{^{114}\circ_{\mathrm{C}}} + Q_{*}^{^{114}\circ_{\mathrm{C}}} 491, 9 \cdot 1 = 446, 2(1 - X) + 2698, 3 \cdot X,$$

отсюда *X* = 0,0203 кг или с 1 м³ (примерно 1000 кг) регенерированного амина получается 20,3 кг пара.

При сжатии насыщенного водяного пара с 0,16 до 0,26 МПа он перегревается до 160 °С (i = 2804,6 кДж/кг). Тепло, вносимое в десорбер этим паром (с учетом теплопотерь), составит 20,3 · 2804,6 · 0,95 = 54086,7 кДж.

Чтобы компенсировать такое тепло, необходимо подать в рибойлер извне 25,6 кг пара низкого давления (p = 0,5 МПа, t = 150 °C, теплота испарения – 2113,9 кДж/кг).

При среднем удельном расходе пара на установках ДЭА аминовой очистки примерно 100 кг/м³ раствора экономия пара при применении узла вторичного вскипания регенерированного амина составит 20,3 %.

Расход электроэнергии на компримирование пара вторичного вскипания, получаемого из 1 м³ раствора амина

 $N_{\text{KOM}} = G_{\pi} \cdot \Delta i / 3600 \cdot \eta = [20,3(2804,6 - 2698,3)] /$

 $/3600 \cdot 0.6 = 1 \text{ kBt-4},$

322

где G_{π} – количество пара; Δi – разность между энтальпией исходного и сжатого пара (Δi = 106,3 кДж/кг); η – к.п.д. компрессора.

Дополнительный расход электроэнергии на перекачку 1 м³ раствора:

$$N_{\text{\tiny Hac.}} = L_{\text{\tiny W}} \cdot \rho_{\text{\tiny W}} \cdot g \cdot \text{H} / 1000 \cdot \eta = 1 \cdot 1000 \cdot 9,81 \cdot 55 /$$

 $/(3600 \cdot 1000 \cdot 0.75) = 0.2$ кДж · ч,

где L_{π} – количество раствора, м³/ч; ρ_{π} – плотность раствора кг/м³; g – ускорение свободного падения, м/с²; η – к.п.д. насоса; H – напор, м;

$$N_{\text{обш.}} = N_{\text{ком}} + N_{\text{нас}} = 1 + 0,2 = 1,2 \text{ кBT-ч}$$

или в пересчете на водяной пар p = 0.5 МПа – это соответствует примерно 2 кг пара.

Для второй ступени дросселирования регенерированного амина проводят аналогичный расчет.

Расчет теплообменных аппаратов сводится к определению необходимой поверхности теплообмена. При этом в уравнениях теплообмена принимаются следующие коэффициенты теплопередачи (исходя из практических данных), Вт/(м².°C): теплообменник амин/амин – 350–450; кипятильник (рибойлер) – 900–1200; водяной холодильник – 200–350; воздушный холодильник – 15–25.

4.2.14. НОВЫЕ ТЕХНОЛОГИИ ОЧИСТКИ ПРИРОДНОГО ГАЗА АБСОРБЕНТАМИ НА ОСНОВЕ ЭТАНОЛАМИНА

Сырье крупных месторождений нефти и газа, освоенных в Волго-Уральском регионе (Оренбургское, Астраханское, Карачаганакское, Тенгизское и Жанажольское), характеризуется высоким содержанием кислых компонентов (H₂S и CO₂) и сероорганических соединений. Применение в данном случае традиционных процессов очистки сопряжено с большими удельными капитальными и эксплуатационными затратами. Это поставило проблему разработки и промышленного освоения новых, экономичных и безотходных технологий, обеспечивающих полное и квалифицированное использование всех компонентов перерабатываемого сырья с учетом возрастающих требований по экологической безопасности и энергоресурсосбережению.

Основным направлением интенсификации процессов очистки природного газа от H_2S и CO_2 и сероорганических соединений является применение водно-неводных абсорбентов на основе диэтаноламина и метилдиэтаноламина. Это позволяет в зависимости от конкретных условий решать различные задачи: селективное извлечение сероводорода из смеси с диоксидом углерода, комплексная очистка газа от кислых компонентов и сероорганических соединений и др.

В результате был разработан ряд новых эффективных и экономических процессов:

процесс сероочистки газа высококонцентрированными растворами диэтаноламина (40 % мас.);

процесс селективной очистки газа от сероводорода с использованием растворов МДЭА;

процесс очистки газа с применением водных растворов смеси МДЭА и ДЭА;

процесс одновременной очистки газа от кислых компонентов и сероорганических соединений абсорбентом физико-химического действия.

Апробация новых технологий проводилась на Оренбургском ГПЗ, состоящем из трех очередей с номинальной производительностью по 15 млрд. м³ газа в год каждая. Одна очередь включает три установки аминовой очистки газа. Технологическая схема и аппаратурное оформление установок на каждой очереди примерно одинаковы.

Сырьевой базой ОГПЗ является сероводородосодержащий газ и конденсат Оренбургского (ОГКМ) и Карачаганакского (КГКМ) месторождений. Сырье КГКМ начали подавать на ОГПЗ с 1984 г. Содержание кислых компонентов в газе ОГКМ составляет 1,6–2,0 % мол. H_2S и 0,4–0,6 % мол. CO_2 ; в газе КГКМ – 8+10 % мол. (в том числе 3–4 % мол. H_2S); меркаптанов в обоих газах – 400+600 мг/м³ (в пересчете на серу); серооксида углерода в газе ОГКМ – 20+30 мг/м³, в газе КГКМ – до 100 мг/м³.

4.2.15. ОЧИСТКА ГАЗА ВЫСОКОКОНЦЕНТРИРОВАННЫМИ РАСТВОРАМИ ДИЭТАНОЛАМИНА

Повышение концентрации амина позволяет снизить количество циркулирующего раствора при сохранении нагрузки по сырому газу, и, следовательно, сократить затраты теп-

Таблица 4.39

Объем сырого газа, тыс. м ³ /ч		Содержание кислых компонентов в ис- ходном газе, % об.		Коли- чество	Плотность орошения,	Концен- трация ДЭА в	Темпера- туре на- сыщения	Степень насыщения ами- на кислыми газами, моль/моль			Расход пара на	
	Bcero	В том числе газ, КГКМ	H_2S	CO_2	раствора, м ³ ∕ч	л/м ³	растворе, % мас.	раствора, °С	H_2S	CO_2	Сумма	регенера- цию, т/ч
	293	_	1,82	0,47	300	1,02	25,0	57	0,34	0,11	0,45	25,1
	302	-	1,84	0,46	238	0,79	37,5	59	0,30	0,07	0,37	23,0
	300	-	1,99	0,41	200	0,67	40,0	61	0,34	0,09	0,43	21,7
	302	70	2,18	1,69	352	1,17	30,0	66	0,30	0,25	0,55	38,2
	300	75	2,18	1,70	300	1,00	38,0	66	0,28	0,22	0,50	36,3
	290	80	2,27	1,93	320	1,10	32,2	69	0,27	0,22	0,49	38,7
	303	100	2,36	2,19	300	0,99	40,0	72	0,28	0,27	0,55	40,6
	309	110	2,38	2,26	310	1,00	40,0	72	0,28	0,27	0,55	41,9
	Примечания: 1. Содержание H_2S в очищенном газе – менее 20 мг/м ³ ; $CO_2 < 0.02 \%$ об. 2. Содержание H_2S в регенерированном растворе – $0.6\div0.8$ г/л; $CO_2 - 2\div3$ г/л. 3. Температура регенерированного раствора, подаваемого на верх (25 тарелка) и в середину (15 тарелка) абсорбера равнялась соответственно 40 и 60 °С.											

Основные результаты испытаний ДЭА различной концентрации при очистке газа ОГКМ на Оренбургском ГПЗ (одна нитка)

лоты на регенерацию насыщенных растворов, а также потребление электроэнергии на перекачку раствора амина.

Испытания проводили на одной установке III очереди ОГПЗ. Установка состоит из двух идентичных параллельно работающих ниток, каждая из которых включает один абсорбер с диаметром $\tilde{N}_{\rm H} = 3,8$ м и один десорбер переменного сечения $\tilde{N}_{\rm H} = 2,7/3,7$ м (верх/низ) с соответствующим теплообменным и холодильным оборудованием.

Абсорбер и десорбер оснащены ситчатыми тарелками провального типа. В абсорбере установлено 25 тарелок, в десорбере – 33 тарелки (в отпарной – нижней части – 22 тарелки, в верхней – кондиционно-охладительной – 10 тарелок). Питание абсорбера – двухпоточное с одинаковой степенью регенерации раствора на 15 и 25 тарелки с соотношением потоков – 40/60 % от общего количества циркулирующего раствора.

Испытания проводились при соблюдении основных норм, заложенных в технологическом регламенте на эксплуатацию установок сероочистки газа.

Основные результаты испытаний приведены в табл. 4.39.

Из полученных данных следует, что повышение концентрации ДЭА с проектного значения 25 % мас. до 40 % мас. позволило примерно в 1,5 раза сократить кратность циркуляции абсорбента при одновременном сокращении расхода пара на регенерацию более 10 %. Кроме того, это дает возможность увеличить долю более крепкого по H₂S и CO₂ газа КГКМ в смеси с газом ОГКМ с 70 до 110 тыс. м³/ч при сохранении общей загрузке абсорбера сырым газом на уровне 300 тыс. м³/ч.

Технология очистки газа ДЭА повышенной концентрации (до 40 % мас.) внедрена на Оренбургском ГПЗ.

4.2.16. ëÖãÖäí àÇçÄü éóàëí äÄ ÉÄáÄ éí ëÖêéÇéÑéêéÑÄ êÄëíÇéêÄàà àÖí àãÑàùíÄçéãÄààçÄ

Одним из путей интенсификации процесса очистки газа, когда содержание CO_2 в очищенном газе не регламентируется, является проведение селективной абсорбции H_2S с использованием третичных аминов. Из опробированных в промышленном масштабе третичных аминов наилучшие характеристики имеет метилдиэтаноламин. В России на Дзержинском ПО "СИНТЕЗ" организовано промышленное производство МДЭА по ТУ 301-02-66–90, не уступающего по своим характеристикам зарубежным образцам.

МДЭА относится к тому же классу абсорбентов, что и ДЭА, и имеет близкие к ДЭА физико-химические характеристики. Токсикологические свойства МДЭА такие же, как и у ДЭА. Из литературных данных и экспериментально (см. табл. 4.38) было установлено, что коррозионная агрессивность растворов МДЭА такая же или меньше, чем растворов ДЭА. Пенообразующие характеристики МДЭА идентичны ДЭА.

МДЭА имеет ряд важных преимуществ по сравнению с ДЭА. Он обладает меньшей реакционной способностью по отношению к CO_2 и меньшей теплотой реакции с H_2S и CO_2 , что позволяет за счет неполного извлечения CO_2 повысить мощность установок сероочистки газа и/или снизить затраты тепла на регенерацию абсорбента. Кроме того, селективная очистка дает возможность увеличить содержание H_2S в кислых газах, что облегчает последующую переработку их с получением серы.

До последнего времени в мировой практике МДЭА – процесс использовался исключительно для очистки малосернистых газов. На Оренбургском ГПЗ он впервые был испытан и реализован в промышленном масштабе для очистки высокосернистых газов типа ОГКМ и КГКМ.

Испытания МДЭА проводили на одной установке III оч. ОГПЗ. Сырьем установки служил газ КГКМ и смешанный газ ОГКМ+КГКМ. Предварительно проводился контрольный пробег установки на ДЭА.

Селективность характеризовали величиной $\gamma = (\ddot{e}_{BMX} / \ddot{e}_{BX}) \times 100, \%$ – доля непоглощенного диоксида углерода (проскок CO₂ в очищенном газе) при практически полном извлечении H₂S из газа.

Показатели работы установки сероочистки приведены в табл. 4.40. Установлено [97, 98], что при использовании ДЭА для получения кондиционного по H₂S очищенного газа нагрузка абсорбера по сырьевому газу КГКМ составляет не более 160–165 тыс. м³/ч или 50 % от номинальной производительности.

В случае использования МДЭА расход газа КГКМ на абсорбер достигал 250 тыс. м³/ч (80 % номинальной производительности). Сохранение проектной номинальной производительности было достигнуто при селективной очистке МДЭА смешанного газа ОГКМ и КГКМ. При этом доля газа КГКМ в смешанном потоке была примерно на 25 % больше, чем для ДЭА. Содержание CO_2 в очищенном газе было на уровне 20 % от исходного при очистке от H_2S не более 20 мг/м³. Вследствие этого увеличилось содержание H_2S в кислых газах регене-

Таблица 4.40

Результаты промышленных испытаний процесса очистки природного газа растворами ДЭА и МДЭА

Расход очища- емого газа,	Объем цирку- лирую- щего аб- сорбен-	Концен- трация амина в раст- воре,	Содержание кисль нентов в газе, 9 До очистки		ых компо- % мол. После очистки	Селек- тивность очистки, %	Степень насыщения амина, кислыми газами моль/моль			Состав кислых газов регенера- ции, % мол.		Расход пара на регенера- цию, кг/м кислотно-
м ³ ∕ч	та, м ³ /ч	% мас.	H_2S	CO_2	CO_2		H_2S	CO_2	Общая	H_2S	CO_2	го газа
Диэтаноламин												
150 160 270 370 360	$\begin{array}{c} 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \end{array}$	28 28 28 26 30	3,9 3,8 2,0 2,1 2,3	5,1 5,0 1,3 1,6 2,0	$\begin{array}{c} 0,02\\ 0,03\\ 0,03\\ 0,03\\ 0,03\\ 0,03\end{array}$	$0,4 \\ 0,6 \\ 2,3 \\ 1,3 \\ 1,5$	$0,22 \\ 0,23 \\ 0,30 \\ 0,31 \\ 0,28$	$\begin{array}{c} 0,30 \\ 0,31 \\ 0,22 \\ 0,24 \\ 0,26 \end{array}$	$0,52 \\ 0,54 \\ 0,52 \\ 0,55 \\ 0,54$	40,2 39,6 55,7 53,2 49,5	51,8 36.0 39,4 42,3	3,2 3,3 3,7 3,5 3,4
Метилдиэтанололамин												
220 240 260 360 360 375 370	$\begin{array}{c} 440 \\ 440 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \\ 460 \end{array}$	$\begin{array}{c c} 36,4 \\ 40,4 \\ 41,8 \\ 31,0 \\ 32,0 \\ 36,0 \\ 40,0 \end{array}$	$ \begin{array}{c} 4,0\\ 4,0\\ 3,7\\ 2,1\\ 2,3\\ 2,2\\ 2,4\\ \end{array} $	5,2 5,1 4,2 1,6 1,9 3,0 2,3	$1,08 \\ 1,05 \\ 0,88 \\ 0,33 \\ 0,40 \\ 0,41 \\ 0,47$	20,8 20,6 20,9 20,6 21,0 20,5 20,4	0,27 0,26 0,26 0,30 0,30 0,27 0,26	$\begin{array}{c} 0,33\\ 0,3\\ 0,28\\ 0,20\\ 0,22\\ 0,21\\ 0,21\\ 0,21\\ \end{array}$	$\begin{array}{c} 0,60\\ 0,56\\ 0,54\\ 0,50\\ 0,52\\ 0,48\\ 0,47\end{array}$	$\begin{array}{c} 45,2\\ 45,7\\ 47,3\\ 57,8\\ 55,3\\ 53,4\\ 56,7 \end{array}$	47,0 45,8 45,2 34,8 37,3 41,9 43,3	2,5 2,4 2,3 3,2 3,1 3,0 2,9
<i>Примечание</i> . Содержание H ₂ S в очищенном газе – менее 20 мг/м ³ .												

рации абсорбента на 5–10 % по сравнению с ДЭА – очисткой, что привело к повышению степени конверсии H_2S в серу на установках Клауса.

В результате промышленных испытаний получены данные о влиянии удельного орошения, концентрации МДЭА в растворе, степени насыщения амина кислыми газами и температуры абсорбции на селективность процесса очистки газа. Показано, что селективность снижается с увеличением удельного орошения и возрастает при уменьшении концентрации МДЭА в растворе и при увеличении насыщения амина кислыми газами. Наибольшее влияние на селективность МДЭА оказывает температура регенерированного раствора, подаваемого в абсорбер. Повышение температуры регенерированного амина на 10–15 °С приводит к снижению в 1,3–1,5 раза селективности МДЭА.

Новая технология селективной очистки газа от H₂S водными растворами МДЭА внедрена на Оренбургском ГПЗ.

Возможно увеличить селективность МДЭА за счет ввода в раствор различных органических добавок. В качестве таких добавок рекомендованы, например, моно- или диэтиленгликоль [53]. Экспериментально было установлено, что использование таких абсорбентов позволяет в 1,2–1,4 раза снизить скорость поглощения CO_2 по сравнению с водным раствором МДЭА, в результате чего в промышленных условиях содержание CO_2 в очищенном газе (проскок CO_2) может быть увеличено до 30 % от исходной величины.

4.2.17. éóàëí äÄ ÉÄáÄ ëåÖòÄççõå ÄÅëéêÅÖçíéà àÑùÄ+ÑùÄ

Применяемый в настоящее время на Оренбургском ГПЗ для очистки газа ДЭА не выпускается отечественной промышленностью и закупается по импорту. В то же время МДЭА производится на Дзержинском ПО "Синтез".

В тех случаях, когда требуется одновременное извлечение H_2S и CO_2 (где селективность МДЭА по технологическим причинам не целесообразна) применяют модифицированный МДЭА, активированный различными добавками. В качестве добавки ВНИИГАЗом было предложено использовать диэтаноламин. В результате был разработан поглотитель неселективного действия, состоящий из смеси МДЭА+ДЭА с общей концентрацией амина до 50 % мас. Добавкой ДЭА к раствору МДЭА в различных соотношениях можно регулировать степень извлечения CO_2 при практически полном удалении H_2S .

Таблица 4.41

Количест	гво исходн тыс. м ³ /ч	юго газа, I	Содержан СО ₂ в г газе,	ние H ₂ S и исходном % об.	Общее количе- ство	Удельное ороше-	Общая кон- центрация	Для ДЭА в смеси,	Содержа СО ₂ в о га	ние H ₂ S и чищенном 13е	Расход пара,
ОГКМ	КГКМ	Всего	H_2S	CO ₂	раствора, м ³ /ч	ние, л/м ³	амина, % мас.	%	Н₂S мг∕м³	CO ₂ % об	Т/Ч
254 281 276 219 158 - 237 253	 20 70 140 	254 281 276 239 228 140 237 253	$1,72 \\ 1,59 \\ 1,63 \\ 1,88 \\ 2,33 \\ 3,72 \\ 1,78 \\ 1,67$	$\begin{array}{c} 0,58\\ 0,49\\ 0,48\\ 0,88\\ 2,00\\ 5,26\\ 0,55\\ 0,52\\ \end{array}$	272 290 275 285 295 320 170 126	$1,07 \\ 1,03 \\ 1,00 \\ 1,19 \\ 1,28 \\ 2,29 \\ 0,72 \\ 0,50$	25 25 26 28 34 35 30 50	100 25 30 35 40 50 40 50	$ \begin{array}{c} 6\\ 12\\ 10\\ 13\\ 12\\ 14\\ 15\\ 11\\ \end{array} $	$\begin{array}{c} 0,01\\ 0,03\\ 0,02\\ 0,02\\ 0,03\\ 0,03\\ 0,03\\ 0,02\\ 0,03\\ 0,03\\ \end{array}$	21,5 21,4 20,8 23,0 31,7 37,2 16,4 14,7
<i>Прил</i> температ	<i>Примечание.</i> Соотношение потоков регенерированного раствора, подаваемого в абсорбер на 25 и 11 тарелки – 25/75 % температура соответственно 45 и 50 °C.								25/75%;		

Основные результаты опытно-промышленных испытаний смешанного абсорбента (МДЭА+ДЭА) на установке сероочистки газа I очереди (IY-70) Оренбургского ГПЗ (одна нитка)

Опытно-промышленные испытания смешанного абсорбента МДЭА+ДЭА проводили на одной установке I очереди Оренбургского ГПЗ. В отличие от III очереди абсорбер оснащен 25-клапанными тарелками, а регенерированный раствор подается в абсорбер двумя потоками (на 25 и 11 тарелки) в соотношении 25/75 %. Главной целью испытаний было установить минимальную долю ДЭА в смешанном абсорбенте в реальных условиях для получения требуемого качества очищенного газа по CO_2 – не более 0,03 % об. при тонкой очистке газа от H_2S – менее 20 мг/м³ в зависимости от различных технологических параметров процесса очистки газа. Основные результаты экспериментов приведены в табл. 4.41.

В результате испытаний установлено, что технология процесса очистки газа смешанным абсорбентом не отличается, от проектного ДЭА – процесса. Переход на смешанный абсорбент не требует изменения технологической схемы и режима очистки газа.

Полученные данные позволяют в зависимости от конкретной задачи определить необходимое соотношение МДЭА/ДЭА в поглотительном растворе. Так, если наряду с H_2S требуется полное извлечение CO_2 , то мольное соотношение МДЭА/ДЭА должно быть примерно в два раза ниже, чем мольное соотношение H_2S/CO_2 в исходном газе.

В настоящее время смешанный абсорбент (МДЭА+ДЭА) применяется на всех установках сероочистки газа Оренбургского и Астраханского ГПЗ. Оптимальное содержание ДЭА в смеси составляет около 30 % при общей концентрации аминов 40 % мас. Повышение общей концентрации аминов в растворе до 50 % позволяет сократить кратность циркуляции абсорбента без ухудшения качества очистки и этим улучшить экономические показатели процесса.

Применение смешанного абсорбента (МДЭА+ДЭА) взамен ДЭА позволяет повысить эффективность процесса сероочистки газа за счет сокращения эксплуатационных затрат.

4.2.18. ОЧИСТКА ГАЗА АБСОРБЕНТОМ ФИЗИКО-ХИМИЧЕСКОГО ДЕЙСТВИЯ ТИПА "УКАРСОЛ"

В последнее время в мировой практике для комплексной очистки природного газа от сероводорода и сероорганических соединений разработан ряд новых абсорбентов физико-химического действия, состоящий из алканоламинов (для хемосорбции H₂S и CO₂) и физического растворителя (для абсорбции меркаптанов, COS и др.). К таким поглотителям относятся абсорбенты типа "Укарсол" (фирма Юнион Карбайд, США).

Абсорбент "Укарсол-702" был рекомендован для одновременной очистки газа от H_2S , CO_2 и сероорганических соединений на Оренбургском ГПЗ. Промышленная апробация абсорбента, поставленного фирмой "Юнион Карбайд", производилась на одной установке I очереди завода.

В качестве сырого газа использовался газ ОГКМ. Во время испытаний варьировали концентрацию абсорбента от 50 до 90 % мас. (при постоянном (1:1) соотношении амина и органического компонента) и плотность орошения от 0,4 до 1,6 π/m^3 газа. Давление в экспанзере составляло 0,8–0,9 МПа.

Полученные результаты длительных промышленных испытаний "Укарсол-702" приведены в табл. 4.42 и на рис. 4.48, 4.49 и 4.50.

Установлена технологичность процесса в пределах норм, заложенных в технической документации для проектного ДЭА-процесса. При этом обеспечивается требуемая очистка газа от кислых компонентов (H_2S – менее 20 мг/м³ и CO₂ – не более 0,03 % об.). Степень извлечения RSH возрастает с увеличением удельного орошения (см. рис. 4.48) и концентрации абсорбента (см. рис. 4.49), достигая 70 % при концентрации "Укарсола" в растворе 90 % мас. Однако в этом случае увели-

Таблица 4.42

Основные показатели работы установки очистки газа абсорбентом "Укарсол-702"

Объем газа, тыс. м ³ /ч	Количест- во раст- вора, м ³ /ч	Удельное орошение, л/м ³	Концент- рация аб- сорбента в раство- ре, % мас.	Степень извлечения RSH из газа, %	Содержание угле- вод в кис- лом газе, % об.	Расход пара на регенера- цию, т/ч
165	230	1,39	72,0	50,2	5,6	20
212	171	0,81	74,5	30,9		17
190	95	0,50	73,9	28,2		12
175	232	1,33	70,1	39,9	4,5	20
162	228	1,41	75,8	45,1	6,4	19
168	225	1,34	79,9	55,0	8,2	19
171	231	1,35	85,2	60,9	9,8	20
165	227	1,38	89,9	70,0	11,2	19
230	144	0,63	75,0	25,1		17
173	228	1,32	53,8	25,2	1,8	19
169	232	1,37	61,5	33,0	2,9	19
172	239	1,39	66,8	38,1	4,0	20
<i>Прим</i> СО ₂ – не	ечание. Со е более 0,03	держание 3 % об.	H ₂ S в очи	щенном газ	е – менее	20 мг/м ³ ,

Рис. 4.48. Зависимость степени извлечения RSH от удельного орошения абсорбента. Концентрация "Укарсола" - 70-75 % мас.

чивается содержание углеводородов в кислом газе с 2 до 11 % об. (см. рис. 4.50).

Практически было показано, что содержание углеводородов в кислом газе 5-6 % об. не оказывает отрицательного воздействия на процесс получения серы по методу Клауса при поддержании правильного соотношения кислый газ/воздух.

В результате был установлен оптимальный режим очистки газа абсорбентом "Укарсол-702":

концентрация абсорбента 70-75 %;

удельное орошение 1,3-1,4 л/м³.

В этих условиях степень извлечения меркаптанов составляет 45–50 %, а содержание углеводородов в кислом газе – не более 6,0 % об. при давлении в экспанзере 0,8–0,9 МПа.

Распределение меркаптанов в газовых потоках приведено в табл. 4.43.

Рис. 4.49. Зависимость степени извлечения RSH из газа от концентрации "Укарсол" в растворе. Удельное орошение 1,3-1,4 л/м³

По действующей на ОГПЗ схеме природный газ после аминовой обработки подвергается очистке от меркаптанов в адсорбционных блоках, загруженных синтетическим цеолитом NaX.

Как было уже показано, в случае замены ДЭА на "Укарсол-702" совместно с H₂S и CO₂ из газа удаляется примерно 50 % меркаптанов. Оценка взаимного влияния основных технологических факторов адсорбционного процесса (динамическая активность адсорбента, скорость его дезактивации, время

Таблица 4.43

"Укарсолом-	702", мг/м ³ (в пересчете н	a cepy)	•	
Компонент	Сырой газ	Обессерен- ный газ	Степень извлечения %	Экспанзер- ный газ	Кислый газ
C ₁ SH	156	70	55	520	2864
C ₂ SH	123	75	40	318	2004
i-Č₃SH	75	57	24	205	1306
н-C ₃ SH	35	20	43	79	941
н-ВтČ₄SН	37	24	37	84	957
Сумма	426	246	43	1216	8072
<i>Примеча</i> орошение 1	<i>иния:</i> 1. Кони ,3−1,4 л∕м ³ и	центрация аб газа.	бсорбента 70-	-75 % мас. 2	2. Удельное

Усредненный состав меркаптанов в газовых потоках при очистке газа

Рис. 4.50. Зависимость содержания углеводородов в кислом газе от концентрации "Укарсола" в растворе. Удельное орошение – 1,3–1,4 л/м

адсорбции и регенерациии и др.) показала, что применительно к условиям ОГПЗ при уменьшении концентрации меркаптанов в газе перед цеолитовой установкой пропорционально увеличивается срок службы цеолита. При сроке службы цеолита 2 года (вместо 1 года по установленным нормам) и общей загрузке адсорберов 650 т расход цеолита снижается на 650 т в год, что дает экономию в размере (650×2500) 1 625 000 дол. США в год. Кроме того, за счет увеличения продолжительности стадии адсорбции в 1,6 раза снижается часовой расход газов регенерации, что обеспечивает дополнительный экономический и экологический эффект, благодаря сокращению затрат на переработку газов регенерации и уменьшению выбросов оксидов серы в атмосферу при использовании газов регенерации в качестве топлива.

В качестве альтернативного варианта может быть предложено использование "Укарсола-702" при низкой циркуляции абсорбента. Проведенные эксперименты (см. табл. 4.42) показали, что при применении "Укарсола" кратность циркуляции раствора может быть сокращена до 0,4–0,5 л/м³ без ухудшения качества очищенного газа по H₂S и CO₂. Это обусловлено более высокой концентрацией "Укарсола" в растворе (70–75 % мас.) по сравнению с обычным ДЭА (25–30 % мас.), более низкой теплотой реакции с H₂S и CO₂ и тем, что в процессе абсорбции часть кислых компонентов поглощается физичес-

ким компонентом раствора. В случае ДЭА снижение удельного количества раствора в аналогичных условиях ниже 0,8 π/m^3 приводит к получению некондиционного очищенного газа (H₂S более 20 мг/m³).

Другим не менее перспективным направлением применения "Укарсола" на заводе является использование его вместо ДЭА или смеси МДЭА+ДЭА для очистки газов регенерации цеолитов.

По существующей в настоящее время на заводе схеме на одной установке III очереди (одна полунитка) производится очистка газов регенерации цеолитов под собственным давлением 3,5–3,8 МПа смешанным абсорбентом МДЭА + ДЭА, обеспечивая требуемое качество товарного газа и пропан-бутановой фракции (ПБФ).

В связи с увеличением содержания RSH в исходном газе, по сравнению с проектом, "узким" местом указанной технологии является блок щелочной очистки ПБФ от меркаптанов (возможности блока определяет объем загрузки установок сероочистки газа исходным сырьевым газом).

Для разгрузки блока щелочной очистки ПБФ от RSH было рекомендовано заменить на установке аминовой очистки газов регенерации цеолитов от кислых компонентов проектный поглотитель – ДЭА (или существующий смешанный поглотитель МДЭА+ДЭА) на абсорбент физико-химического действия "Укарсол-702".

Промышленная проверка показала, что использование "Укарсола-702" позволяет при тонкой очистке газа от H_2S и CO₂ одновременно извлечь 40–50 % RSH, что значительно снижает нагрузку по RSH последующих установок низкотемпературной масляной доочистки газа от меркаптанов и щелочной очистки ПБФ от RSH.

Содержание RSH в товарном газе соответствовало норме – менее 36 мг/м³ (ОСТ 51.40–83), а качество очищенной ПБФ требованиям ГОСТ 20448–90:RSH – менее 0,013 % мас. и H_2S – менее 0,003 % мас. Экономия щелочи при этом составила до 30 % по сравнению с абсорбентом МДЭА+ДЭА при одинаковой загрузке III очереди завода сырьевым газом.

Технология очистка газа абсорбентом физико-химического действия принята в промышленную эксплуатацию на Оренбургском ГПЗ.

4.3. ОЧИСТКА ГАЗА ФИЗИЧЕСКИМИ АБСОРБЕНТАМИ

В отличие от этаноламинов физические абсорбенты позволяют извлечь из газа одновременно с H_2S и CO_2 сероорганические примеси – меркаптаны, сероокись углерода, сероуглерод, а в ряде случаев и осушить газ. Кроме того, затраты энергии на регенерацию абсорбентов значительно ниже, вследствии непрочности соединений абсорбент/примесь. Поэтому на практике иногда экономичнее использовать физические абсорбенты для очистки газа, хотя они и значительно дороже этаноламинов [86, 163, 127].

Ограничением их широкого применения (помимо стоимости) является повышенная растворимость углеводородных компонентов газа в абсорбенте, что усложняет технологическую схему процесса и ухудшает качество получаемых кислых газов – сырья для получения серы, а также невозможность получить глубокую степень очистки.

В качестве физических абсорбентов для очистки газов применяются различные классы соединений: алифатические спирты, эфиры гликолей, гетероциклические соединения и др. [27].

В промышленности наибольшее распространение получили моно- и диалкиловые эфиры полиэтиленгликолей (ПЭГ), имеющие фирменное название "Селексол" и "Сепасолв".

4.3.1. ОСНОВЫ РАСТВОРИМОСТИ ГАЗОВ В ФИЗИЧЕСКИХ АБСОРБЕНТАХ

Процессы с использованием физических абсорбентов основаны на установлении равновесия извлекаемых компонентов между жидкой и газовой фазами. Равновесие характеризуется константой фазового равновесия, представляющей отношение концентраций компонента в газовой и жидкой фазах:

$$K_i = \frac{y_i}{x_i}.\tag{4.59}$$

Межфазное равновесие определяется равенством температур, давлений и фугитивностей отдельных компонентов в любой точке системы, т.е. для компонента *i* можно записать

$$T_L = T_G; \quad p_L = p_G; \quad f_{Li} = f_{Gi}.$$
 (4.60)

При небольших давлениях, для случая идеального газа, растворимость газа в жидкости определяется законом Генри

$$p_i = K_{{}_{\mathrm{H}_i}} x_i,$$

где $K_{{}_{\mathrm{H}_i}}$ – константа Генри; x_i – мольная доля компонента в жидкости.

С учетом влияния давления на растворимость компонентов в физических абсорбентах условие фазового равновесия можно выразить зависимостью

$$\varphi_i y_i p = \gamma_i x_i f_i^{0Z} e^{\overline{V}_i p / RT}, \qquad (4.61)$$

где φ_i – коэффициент активности *i*-го компонента в газовой фазе; γ_i – коэффициент активности *i*-го компонента в жидкой фазе; x_i , y_i – мольная доля *i*-го компонента в газовой и жид-кой фазе соответственно; f_i^{0Z} – фугитивность чистой жидкости *i*-го компонента при температуре T и нормальном давлении; $\overline{V_i}$ – парциальный мольный объем *i*-го компонента.

Коэффициент активности *i*-го компонента в газовой фазе можно определить на основании уравнения Редлиха – Квонга, модифицированного Барсуком С.Д. [11]:

$$\ln \varphi_i = \frac{b_i m}{b} (Z - m) - \ln (Z - m) - d_i \ln (1 + m / Z) - \frac{b_i dm}{b(Z + m)}, \qquad (4.62)$$

где Z – коэффициент сжимаемости смеси,

$$Z^{3} - Z^{2} - Z(m^{3} + m - dm) - m^{2} = 0; \qquad (4.63)$$

$$m = pb/RT; (4.64)$$

$$b = \sum y_i b_i; \tag{4.65}$$

$$b_i = 0,0867 \ RT_{ci}/p_{ci}; \tag{4.66}$$

$$d_i = A_i + B_i (T_{ci}/T - 1) + C_i (T_{ci}/T - 1)^2.$$
(4.67)

Значения коэффициентов A_i , B_i , C_i для углеводородов приведены в литературе [11]. Коэффициент активности компонента в жидкой фазе можно определить на основании двухчленного уравнения Маргулиса для бинарной смеси:

$$\ln\gamma_i = \frac{A_{21}}{RT} x_2^2, \tag{4.68}$$

где A_{21} – константа; x_2 – концентрация растворителя.

При $x_i \rightarrow 0, \gamma_i \rightarrow \tilde{\gamma}_i^-$ коэффициент активности при бесконечном разбавлении,

$${\stackrel{\circ}{\gamma}}_{i} = \lim_{x_{1} \to 0} \gamma_{i} = \frac{K_{\text{H1}}}{f_{0L1}},$$
(4.69)

где $K_{\rm H1}$ – константа Генри компонента. Исходя из условия $x_1 \rightarrow 0$, получаем

Исходя из условия $x_1 \rightarrow 0$, получаем $\ln \tilde{y} = A_{11} / RT$

$$\frac{A_{21}}{RT} = \ln \frac{K_{\rm H1}}{f_{0L1}}.$$
(4.70)

Для бинарной смеси $x_2 = 1 - x_1$, получаем

$$\varphi_i y_1 p = x_1 f_{0L} e^{(1-x_1)^2} \ln \frac{K_{\text{H}1}}{f_{0L}^1} e^{\overline{V}_1 p / RT}.$$
(4.71)

Фугитивность чистой жидкости компонента *i* [105]:

$$f_{0Li} = 7,224 - 7534(T_{ci}/T) - 2,598\ln(T/T_{ci}), \qquad (4.72)$$

где T_{ci} – критическая температура компонента.

Таким образом, по имеющимся данным по растворимости компонентов в абсорбенте, определенным константой Генри, по уравнению (4.71) при заданных температурах, давлении и исходном содержании компонента в одной из фаз можно рассчитать содержание компонента во второй фазе и определить константу фазового равновесия.

4.3.2. ОСНОВНЫЕ ПРОЦЕССЫ С ИСПОЛЬЗОВАНИЕМ ФИЗИЧЕСКИХ АБСОРБЕНТОВ

В качестве физических абсорбентов кислых компонентов предложено большое количество веществ различных классов соединений: алифатических спиртов, простых и сложных эфиров, гетероциклических соединений [27].

В промышленности наибольшее распространение получили процессы с использованием метанола, N-метилпирролидона, пропиленкарбоната, диметиловых эфиров ПЭГ.

В табл. 4.44 приведены данные о распространении процессов с использованием физических поглотителей для очистки газа [92, 91].

Физико-химические свойства абсорбентов приведены в табл. 4.45 [92, 91].

Таблица 4.44

Основные процессы с использованием физических поглотителей

Процесс	Поглотитель	Фирма-разработчик (страна)	Число устано- вок
Ректизол Пуризол Флюор Селексол	Метанол N-метилпирролидон Пропиленкарбонат Смесь диметиловых эфиров полиэтилен-	Лурги(ФРГ) Лурги(ФРГ) Флюор(США) Норнтон(США)	65 5 11 35
Сепасолв-МПЕ	гликоля Смесь метилизопро- пиловых эфиров по- лиэтиленгликолей	БАСФ(ФРГ)	4

Таблица 4.45

Основные физико-химические свойства органических поглотителей

Показатель	Пропи- ленкар- бонат	N-метил- пирро- лидон	Метанол	Диметило- вый эфир полиэти- ленгликоля	"Сепасолв- МПЕ"
Молекулярный вес	102	99	32	280-310	120
кипения (при <i>р.</i> кПа)	242 (4)	205 (100)	64,7 (100)	140 (1,3)	104 (0,125)
плавления (при $p = 0.1 \text{ MIIa}$)	-49	-24	-97,8	-2229	-25
Плотность при 20 °С г /см ³	1,2	1,03	0,79	1,03 (при 25 °С)	1,002
Вязкость, Па·с, (при <i>T</i> . °С)	$6,64 \cdot 10^{-3}$	$1,84 \cdot 10^{-3}$	$0, 6 \cdot 10^{-3}$	$5,8.10^{-3}$ (25)	-
Теплоемкость при	2,59	1,67	2,59	2,05	2,117 (при
Давление насыщен- ных паров, Па (при T , °C)	13 (27)	133 (40)	73 (10)	0,13 (25)	1,3 (60)
ния, кДж/моль:			10.00		
H_2S	15,49	23,86	19,26	442 (кДж∕кг)	21
CO_2	14,65	14,11	16,96	372 (кЛж/кг)	16,5
Растворимость при температуре 25 °С и давлении $p =$ = 0,1 МПа, м ³ /м ³ :					
H ₂ S	10,4	48,8	80 (при -25.6 °С)	29 (при -21 °C)	28 36
CO_2	3,1	3,95	16,7 (при -25,2 °C)	4 (при 21 °C)	00

В таблице 4.46 приведена растворимость H_2S , CO_2 и пропана в некоторых физических абсорбентах при парциальном давлении компонентов 1 ата и температуре контакта 300 K [44].

Показатель	Растворитель				
	H ₂ S	CO_2	C ₃ H ₈		
Вода	2,5	0,8	0,05		
Пропиленкарбонат	13,2	3,5	1,8-3,5		
Селексол	26,0	3,6	4,7		
Метанол при температуре, °C:	,		,		
-10	41,0	8,0	-		
-30	_	15,0	-		
N-метилпирролидон	49,0	3,9	-		
Сульфолан	15,9	2,9	1,1		
Метилцианацетат	10,7	3,2	1,3		
Метилкапролактам	37,8	3,0	3,8		

Таблица 4.46 Растворимость (дм³/дм³) H_2S , CO₂ и C₃H₈ в органических растворителях

Растворимость кислых компонентов в физических растворителях при различных температурах описывается уравнением [117]:

$$\ln K_{\rm H} = D_1 + D_2 T + \frac{D_3}{T} + D_4 \ln T, \qquad (4.73)$$

где $K_{\rm H}$ – константа Генри, атм/мол. доли; D_1 – D_4 – коэффициенты (табл. 4.47); T – температура контакта, K.

Таблица 4.47

Значения коэффициентов $D_{1'}$, $D_{2'}$, $D_{3'}$, D_4

Вещество	Температур- ная область, °С	D_1	D_2	D_3	D_4
		Мет	анол		
H_2S	-50,56-6,53	-3397,628	-1,18	76929,474	613,507
$C\tilde{O}_2$	-80,3-72,5	-95,381	-0,034	619,929	19,125
	, ,	Пропилен	нкарбонат		
$H_{2}S$	-10-100	-363,035	0,088	-11973,508	-60,692
$C\tilde{O}_2$	-10-100	-153,742	-0,056	2124,752	29,423
	, ,	N-метил-п	ирролидон		
$H_{2}S$	10-60	-5497,082	-1,555	145346,333	960,973
-	71,11-167,67	-413,436	-0,111	9245,006	73,242
	10-167,67	-325,303	-0,089	6675,05	58,170
CO_2	10-60	-2350,771	-0,659	62245,557	411,198
	71,11-167,67	-195,025	-0,038	5840,518	33,573
	10-167,67	204,578	-0,0428	-7735,222	-32,842
COS	10-48,89	-3096,739	0,877	-84494,871	-539,069
	71,11-167,67	52,272	0,0068	-3405,706	-6,957
	10-167,67	-23,568	-0,0081	-790,176	5,608
		Селе	ексол		
H_2S	55-140	478,368	0,113	-16501,839	-79,989
2	0-50	-3516,25	-1,071	87704,298	621,717
	0-140	-165,776	-0,0435	2611,478	30,007
CO_2	0-45	-7132,428	-2,162	181108,658	1258,857
2	50-120	-5671,782	-1,332	172115,462	964,532
	100-120	445,630	0,119	-13856,91	-75,774

Наиболее эффективными абсорбентами для очистки природных газов от H_2S , CO_2 и других сероорганических соединений являются абсорбенты на основе алкиловых эфиров полиэтиленгликолей.

Абсорбент "Селексол", разработанный фирмой "Allied Chemical Corparation" (США), представляет собой смесь диметиловых эфиров полиэтиленгликолей со средней молекулярной массой 280–310 [148]. Преимуществами процесса являются: селективное удаление кислых компонентов из газа, низкая коррозионная активность раствора, низкая температура замерзания раствора, низкое давление насыщенных паров абсорбента, абсорбент не разлагается при регенерации (разложение абсорбента наблюдается при температуре выше 155 °С). Высокая гигроскопичность абсорбента позволяет одновременно осушить газ.

К недостаткам абсорбента следует отнести большую растворимость углеводородов тяжелее этана.

Показатели работы одного из заводов в Германии, эксплуатирующего процесс "Селексол" для очистки природного газа, приведены в табл. 4.48 [148].

Эффективность применения абсорбента "Селексол" иллюстрируется расчетом из трех вариантов селективного выделения H_2S из газа [46]. Расчеты проведены для очистки 5,34 млн. м³/сут газа. Молярная доля компонентов газа, %: азот – 8,1, метан – 22, углекислота – 65,4, сероводород – 4,5.

Таблица	4.48
---------	------

Показатель	Сырой газ	Очищенный газ
Производительность установки, м ³ /ч	75000	64500
Температура, °С	20	29
Давление абсорбции, МПа	7,5	7,45
Объемная доля компонента в газе, %:		
H ₂ S	9	0,0002
CÔ ₂	9,5	8
CH ₄	76,8	86,6
$C_2 H_6$	0,2	0,2
N_2^2	4,5	5,2
CÕS	0,013	0,007
RSH	0,01	Отсутствует
Точка росы по воде, °С	-	-8
Циркуляция абсорбента, м ³ /ч	1	50
Температура абсорбента, °С	2	26
Температура абсорбента на выходе из абсорбе-	4	11
pa, °C		
Расход пара с давлением 0,35МПа, т/ч	1	10
Расход пара с давлением 2,6 МПа, т/ч	1	1
Расход электроэнергии, кВт	2	00

Показатели процесса	очистки	природного	газа м	етодом	"Селексол'
---------------------	---------	------------	--------	--------	------------

Давление абсорбции 7,2 МПа. Процесс переработки осуществляется следующим образом: вначале из газа извлекается сероводород, затем на другой установке – CO₂. Выделенная углекислота, содержащая 99 % CO₂, около 1 % метана и менее 0,00001 % сероводорода, компримируется до 13,8 МПа для закачки в пласт. На рис. 4.51 представлены схемы процесса выделения H₂S и CO₂ из газа [152].

Исходный газ во всех трех вариантах (1 – базовый, 2 – с частичным извлечением CO₂, 3 - с полным извлечением CO₂) очищается абсорбентом, насыщенным СО2 для увеличения селективности извлечения H₂S. В табл. 4.49 приведены данные по затратам энергоресурсов и выработки продуктов по 2-му и 3-му вариантам по сравнению с базовым 1-м вариантом. При стоимости комплекса по базовому варианту в 200 млн. дол. дополнительные капитальные вложения для 2-го варианта около 2 %, для 3-го варианта – около 6 %. При этом прибыль выпуска дополнительной продукции возрастает OT на 2 млн. дол/год для 2-го варианта. Для 3-го варианта существенно увеличиваются капитальные вложения и энергозатраты, но при этом прибыль возрастает до 9 млн. дол/год за счет увеличения дополнительной продукции (СО₂).

Таблица 4.49

Изменение расхода энергоресурсов и выработки продуктов по 2-му и 3-му вариантам в сравнении с базовым 1-м вариантом при селективном извлечении H_2S из газа абсорбентом "Селексол"

Показатель	Вариант работы		
	2-й	3-й	
Расход электроэнергии, кВт/ч:			
стадия "Селексол"			
извлечение H ₂ S	-3485	-1316	
извлечение СО ₂	+697	+3203	
осушка	0	+2	
выделение азота	0	+302	
получение серы			
очистка хвостовых газов	-63	-281	
Всего	-2851	+4542	
Расход пара при давлении 0,69 МПа,			
кг/ч:			
стадия "Селексол"			
извлечение H ₂ S	+16747,4	+26699,4	
извлечение CO ₂	+55,3	+254	
получение серы			
очистка хвостовых газов	-3981,7	-18294,1	
Всего	+12821	+8659,3	
Расход топливного газа, м ³ /ч: осушка	0	+0,5	
Выработка, кмоль/ч:			
CO_2	+149,12	+685,21	
CH_4	+0,2	-1,85	
	1	1	

Рис. 4.51. Принципиальная технологическая схема селективной очистки газа от сероводорода методом "Селексол": ‡ – базовый вариант 1; · – вариант 2; , – вариант 3; I – исходный газ; III – очищенный газ; III – Клаус-газ; IV – вода на подпитку; V – пар; VI – азот; 1 – абсорбер H₂S; 2 – десорбер H₂S; 3 – газосепаратор высокого давления; 4 – газосепаратор низкого давления; 5 – десорбер CO₂

Рис. 4.52. График растворимо-сти компонентов в абсорбенте "Сепасолв-МПЕ"

÷.	11	+	4.50		

Показатели процесса очистки газа а	абсорбентом	"Сепасолв-МПЕ"	[169]

		ПОТОК	
Показатель	Исходный	Очищенный	Клаус-газ
	газ	газ	renaye ras
Количество газа, м ³ /ч	50000	45250	4897
Давление (избыточное), МПа	7	6,9	0,06
Температура °С	10	3	32
Объемная доля компонента, %:			
Не	0,05	0,05	-
N_2	3,9	4,24	0,64
CO_2	8,73	7,08	23,71
CH ₄	80,81	88,45	7,79
C_2H_6	0,19	0,19	0,18
H_2S	6,32	0,0003	64,53
H ₂ O	-	-	3
Содержание в газе, мг/м ³ :	110	25	0.04
	110	25	961
KSH	91	< 1	993
циркуляция аосороента, кг/ч	86000	-	_
Температура регенерированного	-1	_	—
	5600		
Расход пара, кг/ч	0000	_	—

Рис. 4.53. График давления насыщенного пара некоторых физических поглотителей

Другой разновидностью абсорбента на основе диалкиловых эфиров полиэтиленгликолей является смесь метилизопропиловых эфиров ПЭГ – "Сепасолв-МПЕ" (см. табл. 4.48, рис. 4.52, 4.53) [170]. По растворимости H_2S и CO_2 абсорбенты "Селексол" и "Сепасолв-МПЕ" практически идентичны. "Сепасолв-МПЕ" обладает меньшей вязкостью при аналогичной температуре и меньшим давлением насыщенных паров (табл. 4.50). Регенерация абсорбента осуществляется при температуре около 140 °C с подачей отдувочного газа или без него. В случае регенерации без подачи отдувочного газа раствор должен содержать 3–5 % воды. Абсорбенту "Сепасолв-МПЕ" присуще те же недостатки, что и "Селексолу".

4.3.3. РАСТВОРИМОСТЬ МЕРКАПТАНОВ В МОНО-И ДИАЛКИЛОВЫХ ЭФИРАХ ПОЛИЭТИЛЕНГЛИКОЛЕЙ

Для очистки газов могут быть использованы диалкиловые эфиры полиэтиленгликолей с числом углеродных атомов в алкильном радикале до 6–7 [61].

Общая формула моно- и диалкиловых эфиров полиэтиленгликолей имеет вид

$$R(CH_2CH_2)_nOR',$$

(4.74)

где R – алкильный радикал, CH₃-, C₂H₅-; R' – алкильный радикал в случае диэфира или H – в случае моноэфира.

Основные физико-химические свойства индивидуальных абсорбентов приведены в табл. 4.51.

Растворимость индивидуальных меркаптанов в абсорбентах определяли методом газожидкостной хроматографии в интервале температур контакта от -20 до 20 °C. Температурная зависимость констант Генри аппроксимируется выражением

í ‡∙ ÎË^‡ 4.51

Основные физико-химические свойства сорбентов – алкиловых эфиров гликолей

Поглотитель	Молеку- лярная масса	Плот- ность, кг/м ³	Вязкость при темпе- ратуре 20 °C, 10 ⁻⁶ ,	Температура, °С	
			м ² /с	кипения	застывания
Диэтиленгликоль (ДЭГ)	106	1116	35	245	-10
Монометиловый эфир	164	1049	8,72	241	-40
триэтиленгликоля (ММЭТЭГ)					
Диметиловый эфир диэ-	134	951	2	161	-
тиленгликоля (ДМЭДЭГ)					
Диметиловый эфир тет-	222	1030	4,66	119^{*}	-
раэтиленгликоля (ДМЭТетраЭГ)					
Моноэтиловый эфир	178	1020	9,62	254	-40
триэтиленгликоля (ММЭТЭГ)					
Монометиловый эфир	208	1042	13,9	162**	-41
тетраэтиленгликоля (ММЭТетраЭГ)					
Метилкарбитол (МК)	120	1027	4,5	193	-76
Этилкарбитол (ЭК)	134	933	4,5	201	-76
Диэтиловый эфир триэ-	206	956	3,4	_	-21
тиленгиколя (ДЭЭГЭГ)	450	1030	28.8	_	6
ПЭГИОО (ЛЭЭПЭГИОО)	430	1050	20,0		0
$CH_3(CH_2CH_2O)_7iC_3H_70$	427	1050	35,5	-	14
* 226 Па. ** 666 Па.					

ln K_H = A + B/T,

(4.75)

где К_н – константа Генри; *Ä*, *Ç* – коэффициенты индивидуальных меркаптанов (табл. 4.52); *Ç* = $-\Delta H / R$; ΔH – теплота абсорбции компонента; R – универсальная газовая постоянная; *i* – температура контакта.

В таблице 4.53 представлены данные о растворимости этилмеркаптана, рассчитанные на основании полученных констант Генри при следующих условиях: температура сорбции 20 °C; парциальное давление этилмеркаптана 1,333 КПа.

Зависимость растворимости этилмеркаптана от его парциального давления при температуре контакта 20 °С в некоторых алкиловых эфирах этиленгликолей приведена на рис. 4.52.

Значения констант Генри индивидуальных меркаптанов в алкиловых эфирах этиленгликолей рассчитывали по уравнению следующего вида:

í ‡∙ ÎË^‡ 4.52

Значение коэффициентов А и В индивидуальных меркаптанов в уравнении (4.75)

Абсорбент	Абсорбат	Ä	Ç	−Δ ҫ , кДж∕кмоль
ДЭГ	C ₂ H ₅ SH	8,9251	2895,7	24075
	Ę-C₃H ₇ SH	10,4869	3442,1	28620
	Į-C ₃ H ₇ SH	10,5343	3647,1	30320
	1. вт. С ₄ Н ₉ SH	10,9231	3835,6	31890
ММЭТЭГ	C_2H_5SH	9,8038	3601,5	29940
	E-C ₃ H ₇ SH	10,2641	3815,3	31720
	I-C ₃ H ₇ SH	10,5085	4088,4	33990
	1. вт. С ₄ Н ₉ SH	10,7104	4258,2	35400
ДМЭДЭГ	CH ₃ SH	8,8265	3167,3	26330
	C_2H_5SH	9,1909	3484	28970
	E-C ₃ H ₇ SH	10,1348	3900,6	32430
	I-C ₃ H ₇ SH	10,254	4122,2	34270
	1. вт. С ₄ Н ₉ SH	10,2426	4270,6	35510
ДМЭТетра-ЭГ	CH ₃ SH	9,0892	3412,2	28370
	C ₂ H ₅ SH	8,4477	3400,6	28270
	E-C ₃ H ₇ SH	9,0143	3668,7	30500
	I-C ₃ H ₇ SH	7,888	3515,1	29220
	1. вт. С ₄ Н ₉ SH	9,7192	4177,8	34730
МЭЭТЭГ	C ₂ H ₅ SH	8,5419	3259,7	27090
	E-C ₃ H ₇ SH	8,8867	3471,8	28860
	I-C ₃ H ₇ SH	8,896	3662,9	30450
	1. вт. С ₄ Н ₉ SH	9,2551	3926,2	32290
ММЭТетра-ЭГ	C ₂ H ₅ SH	8,5306	3306,8	27490
	E-C ₃ H ₇ SH	8,6459	3432,5	28540
	I-C ₃ H ₇ SH	8,9561	3710,3	30850
	1. вт. С ₄ Н ₉ SH	9,3592	3926,2	32640
ДЭЭПЭГ	C_2H_5SH	8,2849	3596,6	29900
	Ę-C₃H ₇ SH	8,5759	3786,6	31480
	I-C ₃ H ₇ SH	9,8131	4330,1	36000
	I. вт. С ₄ Н ₉ SH	8,8819	4185,4	34800

í ‡∙ ÎË^‡ 4.53

Растворимость C_2H_5SH в простых алкиловых эфирах полиэтиленгликолей при температуре 20 $^\circ C$

Абсорбент	К _н , МПа	Растворимость $C_2H_5SH, \ \kappa \Gamma / M^3$
Диэтиленгликоль	0,3907	2,33
Монометиловый эфир триэтилен-	0,0792	6,728
ГЛИКОЛЯ	0 1766	4.019
метилкароитол	0,1700	4,018
Этилкароитол	0,0978	6,389
Диметиловый эфир диэтиленг-	0,0672	8,821
ликоля		
Диметиловый эфир тетраэтилен-	0,041	9,582
гликоля		
Моноэтиловый эфир триэтилен-	0.0655	6.417
гликоля	- ,	- , - ,
Лиэтиловый эфир триэтиленгли-	0.0356	11.05
коля	0,0000	11,00
Лиэтиловый эфир П.ЭГ400	0.0185	10 893
CH(CHO) iCHO	0.0292	7 333
$C_{11_3}(C_2 \Pi_4 O)_7 C_3 \Pi_7 O$	0,0232	7,000

í ‡∙ ÎË^‡ 4.54

Значение коэффициентов в уравнении (4.76)

Коэффи- циенты	ДЭГ	ММЭТЭГ	дмэдэг	ДМЭ- ТетраЭГ	МЭЭТЭГ	ММЭ- ТетраЭГ
К _н , МПа: расчетный эксперимен тальный а ₀ а ₁ а ₂ а ₃ а ₄	$\begin{array}{c} 0,4127\\ -0,3907\\ -119,553\\ 0,09674\\ 8,2357\\ -51,8593\\ 6,9512\end{array}$	0,0818 0,0792 22,6186 -0,09534 -9,6433 48,9401 -12,9315	0,0639 0,0672 11,6075 -0,03752 -3,94271 17,77014 -7,2619	$\begin{array}{c} 0,0394\\ 0,041\\ 7,3233\\ -0,00326\\ -1,3454\\ -2,94135\\ -1,6935\end{array}$	$\begin{array}{c} 0,0767\\ 0,0738\\ \hline 7,8206\\ -0,01003\\ -1,4277\\ 0,79427\\ -2,9522\\ \end{array}$	0,0666 0,0655 3,2172 0,01663 0,7482 -12,8202 -0,1133

 $\ln K_{H_{i}} = a_{0} + a_{1}T_{b_{i}} + 1000 \ a_{2} / T + a_{3}T_{b_{i}} / T + a_{4}(T_{b_{i}} / T)^{2}, \quad (4.76)$

где а₀ – а₄ – коэффициенты (табл. 4.54); Т_ы – температура кипения меркаптана.

4.3.4. РАСТВОРИМОСТЬ СЕРОВОДОРОДА И ДИОКСИДА УГЛЕРОДА В МОНО- И ДИАЛКИЛОВЫХ ЭФИРАХ ПОЛИЭТИЛЕНГЛИКОЛЕЙ

Константа Генри сероводорода и диоксида углерода в простых моно- и диалкиловых эфирах полиэтиленгликолей в интервале температур контакта от -20 до 20 °C рассчитывают по уравнению:

 $\ln K_{\rm H} = A - B/T$,

где *Ä*, *Ç* – константы для сероводорода и диоксида углерода (табл. 4.55).

Равновесная растворимость сероводорода и диоксида углерода при температуре контакта 20 °C и парциальном давлении H_2S и CO₂, равном 0,1013 МПа приведены в табл. 4.56.

Одной из важных характеристик абсорбента для очистки природного газа от сероводорода и углекислоты является его селективность, характеризующаяся отношением растворимости H_2S и CO_2 при идентичных условиях (температура контакта, парциальное давление абсорбата).

На рис. 4.54 представлены зависимости растворимости сероводорода и двуокиси углерода для некоторых из исследованных эфиров полиэтиленгликолей при температуре контакта *i* = 293 K.

í ‡∙ ÎË^‡ 4.55

Значение констант.	АиВ	для H ₂ S	и CO ₂ в	уравнении	(4.77)
--------------------	-----	----------------------	---------------------	-----------	--------

Абсорбент	А		В	
-	H_2S	CO_2	H_2S	CO_2
ДЭГ	8,035	9,3651	2136,3	1944,06
ММЭТЭГ	8,2372	6,4819	2538	1451,9
ДМЭДЭГ	7,8357	7,8964	2393,5	1825,6
ДМЭТетраЭГ	8,0076	8,0871	2605,5	2050,98
МЭЭТЭГ	8,8466	7,8267	2712,9	1840,7
ММЭТЭГ	9,1424	8,7673	2864,9	2152,2
ДЭЭТЭГ	8,7199	6,2592	2744,6	1514,3

í ‡∙ ÎË^‡ 4.56

Растворимость H_2S и CO_2 в простых алкиловых эфирах этиленгликолей при температуре 20 $^\circ C$

Абсорбент	Константа Генри К _н , МПа/мол. доли		Растворим	юсть, м ³ /м ³
	H_2S	CO_2	H_2S	CO_2
ДЭГ	2,1536	15,388	11,16	1,56
ММЭТЭГ	0,6657	4,517	24,53	3,24
ДМЭДЭГ	0,71	5,179	25,58	3,16
ДМЭТетраЭГ	0,4323	2,813	30,57	3,86
МЭЭТЭГ	0,6614	4,633	22,45	2,85
ММЭТетраЭГ	0,5109	3,91	26,67	2,97
ДЭЭТЭГ	0,4931	2,855	25,78	3,79
МК	0,9088	5,686	23,19	3,45
ЭК	0,806	5,266	21,51	3,04
$CH_3(C_2H_4O)_7iC_3H_7O$	0,2312	1,925	38,6	3,05

(4.77)

Рис. 4.54. Графики растворимости С₂H₅SH, H₂S и СО₂ в алкиловых эфирах этиленгликолей при і = 293 К: 1 – ТБФ; 2 – ДМЭТетраЭГ; 3 – лапрол; 4 – ММЭТЭГ; 5 – ЭТ-1; 6 – ДЭГ; 7 – ПК

Accorcout	Температура. °С				
Лосороент	20	10	0	-10	-20
ДЭГ	7,182	7,93	7,1	8,159	_
ММЭТЭГ	6,785	8,722	8,831	10,511	12,848
ДМЭДЭГ	7,295	8,228	8,128	9,38	10,015
ДМЭТетраЭГ	6,508	8,622	8,356	9,036	9,302
МЭЭТЭГ	7,007	8,1	8,906	9,252	11,782
ММЭТЭГ	7,652	9,086	8,928	10,284	11,64
ДЭЭТЭГ	5,789	6,788	7,074	9,404	_
МК	6,25	—	-	-	-
ЭК	6,533	-	—	—	_
$H_3(C_2H_4O)_7iC_3H_7O$	8,327	_	_	_	_

Коэффициенты селективности алкиловых эфиров этиленгликолей

Коэффициент селективности (табл. 4.57) может быть определен как отношение констант Генри диоксида углерода и сероводорода:

 $c = K_{H_{CO_2}} / K_{H_{H_2S}}$.

í ‡∙ ÎË^‡ 4.57

(4.78)

4.3.5. РАСТВОРИМОСТЬ УГЛЕВОДОРОДОВ В ПРОСТЫХ АЛКИЛОВЫХ ЭФИРАХ ЭТИЛЕНГЛИКОЛЕЙ

Высокая растворимость углеводородов в физических абсорбентах (табл. 4.58) является одним из существенных факторов, затрудняющих использование физических абсорбентов для очистки от H_2S и CO_2 "жирного" углеводородного газа.

í ‡∙ ÎË^‡ 4.58

Растворимость газов в эфирах ПЭГ (в нормальных объемах газа на объем растворителя)[44]

Диэфиры с простыми	Средняя молекуляр-	Растворимость				
концевыми группами	ная масса	H_2S	CO_2	C_3H_8	CH_4	
ДЭ150 (ДЭЭТЭГ)	206	24	2,7	-	-	
ДЭ280 (ДЭЭПЭГ)	336	$25/14,5^{*}$	2,9	4,2	-	
ДЭ400 (ДЭЭПЭГ)	456	25	2,6	4,2	0,2-0,25	
ДП400 (дипропиловый эфир ПЭГ)	478	22	2,8	3,8	0,2-0,25	
МП500 (метилпропило- вый эфир ПЭГ)	514	23/14*	2,8	4,3	0,2-0,25	
*Данные для 40 °С.						

Абсорбент	Абсорбат	Температура, °С				
1	1	20	10	0	-10	
ДЭГ	CH_4	139,81	131,67	120,34	108,9	
	C_2H_6	27,95	25,54	21,55	18,92	
	C_3H_8	10,26	8,58	6,55	5,25	
	i C ₄ H ₁₀	5,156	4,072	3,255	2,495	
	$n C_4 H_{10}$	3,897	3,288	2,411	1,878	
ММЭТЭГ	CH_4	66,04	55,72	49,92	45,62	
	C_2H_6	11,03	9,21	7,24	6,69	
	$C_{3}H_{8}$	3,49	2,27	1,7	1,11	
	i C ₄ H ₁₀	1,31	1,116	0,458	0,375	
	$n C_4 H_{10}$	0,867	0,581	0,336	0,283	
МЭЭТЭГ	CH_4	38,87	36,24	34,13	30,88	
	C_2H_6	8,86	7,92	6,92	6,22	
	C_3H_8	3,46	3,01	2,34	2,01	
	i C ₄ H ₁₀	1,817	1,454	1,088	0,884	
	n C_4H_{10}	1,184	0,935	0,682	0,534	

і ‡·*ÎË*⁺*‡* 4.59Значение констант Генри углеводородов, МПа/мольные доли

		<u>~···</u>			
-	-	TT	~ -		00
- 7	Т.	IH	T	1	611
	<i>T</i> .	115	-	÷.	<i>UU</i>
_					

Значение констант a_0 , a_1 , a_2 , a_3 в уравнении (4.79)

Абсорбент	a_0	a ₁	a_2	a ₃	Коэффи- циент мно- жественной корреляции
ДЭГ	0,55567 -2,42914 0,08284	0,00104	7,56541	-1,07552	0,999
ММЭТЭГ		0,00534	11,68114	-3,24165	0,999
МЭЭТЭГ		-0,00133	7,34642	-2,20393	0,99

Константы Генри углеводородов в диэтиленгликоле, монометиловом и моноэтиловом эфирах триэтиленгликоля приведены в табл. 4.59.

Зависимость константы Генри от температуры контакта и температуры кипения углеводорода имеет вид:

$$\ln K_{\rm Hi} = a_0 + a_1 T_{\rm bi} + a_2 (1 - T_{\rm b} / T) + a_3 (1 - T_{\rm bi} / T)^2, \qquad (4.79)$$

где K_{Hi} — константа Генри, a_0 , a_1 , a_2 , a_3 — константы (табл. 4.60); T_{bi} — нормальная температура кипения углеводорода; *і* — температура контакта.

На рис. 4.55 видно, что уравнение (4.79) достаточно хорошо описывает экспериментальные значения растворимости углеводородов в исследованных абсорбентах и позво-

Рис. 4.55. Зависимость In $K_{\rm H}$ углеводородов от (1 – $T_{\rm b}/T$) для различных абсорбентов: 1 – ДЭГ; 2 – ЭТ-1; 3 – Лапрол 201-2-100; 4 – МЭЭТЭГ; 5 – ММЭТЭГ

ляет использовать его для расчета растворимости углеводородов $C_1\mathchar`-C_4$ в широком диапазоне температур контакта.

4.3.6. ВЛИЯНИЕ ПРИРОДЫ АЛКИЛЬНОГО РАДИКАЛА НА АБСОРБЦИОННЫЕ СВОЙСТВА ДИАЛКИЛОВЫХ ЭФИРОВ ДИЭТИЛЕНГЛИКОЛЯ

Основные физико-химические свойства простых диалкиловых эфиров оксиэтиленгликолей (табл. 4.61) определяются числом оксиэтиленовых групп в молекуле, а также природой концевых алкильных радикалов.

Константы Генри абсорбатов (табл. 4.62, 4.63) в интервале температур контакта от -20 до 30 °С описываются уравнением: для сероводорода, диоксида углерода и этилмеркаптана

$$\ln K_{\rm H} = A - B / \mathsf{T}; \tag{4.80}$$

для углеводородов

$$\ln K_{\rm H} = a_0 + a_1 T_{\rm bi} + a_2 (1 - T_{\rm bi} / T) + a_3 (1 - T_{\rm bi} / T)^2.$$
(4.81)

Растворимость сероводорода, диоксида углерода и этилмеркаптана, н-бутана и н-пентана в диалкиловых эфирах ДЭГа приведена в табл. 4.64, 4.65 и на рис. 4.56. Растворимость дана

í ‡∙ ÎË^‡ 4.61

Физико-химические свойства диалкиловых эфиров ДЭГа при температуре 20 °С

Показатель	Эфир R (CH ₂ CH ₂ O) ₂ OR, R							
	-H	$-CH_3$	$-C_2H_5$	$-C_3H_7$	-ì C ₃ H ₇	−Ì C ₄ H ₉		
Молекулярная мас-	106	134	162	190	190	218		
са Плотность, кг/м ³ Вязкость, 10^{-6} м ² /с Температура кипе- ния, °С	1115 35 245	951 1,16 162	905,6 1,53 189	884,8 1,76 220	892,3 2,08 243	888,8 2,79 256		
Показатель пре-	1,4472	1,4097	1,4115	1,4130	1,4170	1,4233		
ломления Растворимость в воде, % по массе	8	8	8	_	_	0,3		

í ‡∙ ÎË^‡ 4.62

Значение констант Ä Ë Ç в уравнении (4.80)

Абсорбент	Ä			$ar{C}$		
1	H_2S	CO_2	C_2H_5SH	H_2S	CO_2	C_2H_5SH
ДМЭДЭГ ДЭЭДЭГ ДИПЭДЭГ ДНПЭДЭГ ДНБЭДЭГ	7,8353 7,4014 7,0214 7,1372 8,5301	7,8964 8,4071 6,9053 7,987 8,4426	9,1909 10,8104 9,1664 10,3582 8,7960	2393,5 2288,1 2205 2264,7 2679,4	1825,6 2089,7 1647,6 2019,9 2136,3	3484 4005,9 3480,8 3942,9 3543,5

 $i \ddagger \cdot \hat{I} E \hat{T} \ddagger 4.63$ Значения констант a_0, a_1, a_2, a_3 в уравнении (4.81)

Рис. 4.56. Зависимость растворимости компонентов в диалкиловых эфирах диэтиленгликоля от природы алкильного радикала: 1 – H_2S ; 2 – CO_2 ; 3 – C_2H_5SH ; 4 – C_4H_{10} ; 5 – C_5H_{12}

í ‡∙ ÎË^‡ 4.64

Растворимость сероводорода и диоксида углерода в диалкиловых эфирах ДЭГа

Абсорбент	К _н , МПа	мол. доли	Растворимость, м ³ /м ³		
Ĩ	H_2S	CO_2	H_2S	CO_2	
ДЭГ ДМЭДЭГ ДЭЭДЭГ ДИПЭДЭГ ДНПЭДЭГ ДНБЭДЭГ	$2,13 \\ 0,71 \\ 0,665 \\ 0,604 \\ 0,553 \\ 0,542$	$ \begin{array}{r} 15,38\\5,179\\3,394\\3,604\\3,109\\3,163\end{array} $	11,1625,4622,1820,9223,0120,74	1,56 3,16 3,89 3,08 3,55 3,06	

í ‡∙ ÎË^‡ 4.65

Растворимость C₂H₅SH, C₄H₁₀, C₅H₁₂ в диалкиловых эфирах ДЭГа

Абсорбент	K_{H} , M	МПа∕мол.	доли	Растворимость, м ³ /м ³		
1	C_2H_5SH	C_4H_{10}	C_5H_{12}	C_2H_5SH	C_4H_{10}	C_5H_{12}
ДЭГ	0,3907	2,9	1,264	2,33	0,28	0,445
ДМЭДЭГ	0,0672	_	_	8,821	_	-
ДЭЭДЭГ	0,057	0,4146	0,1807	8,392	1,045	2,543
дипэдэг	0,0646	0,5422	0,1793	6,214	0,667	2,525
днпэдэг	0,0444	0,342	0,1193	9,024	1,055	3,77
ДНБЭДЭГ	0,0363	0,249	0,073	9,726	1,266	5,4

при следующих условиях: температура контакта 20 °C, парциальное давление $C_2H_5SH,\ l-C_4H_{10}$ и $l-C_5H_{12}$ 1,33 кПа, парциальное давление H_2S и CO $_2$ 0,1013 МПа.

4.3.7. РАСТВОРИМОСТЬ МЕРКАПТАНОВ, СЕРОВОДОРОДА, ДИОКСИДА УГЛЕРОДА В АБСОРБЕНТАХ НА ОСНОВЕ МОНОМЕТИЛОВОГО И МОНОЭТИЛОВОГО ЭФИРОВ ТРИЭТИЛЕНГЛИКОЛЯ

В промышленном масштабе возможно получение абсорбентов на основе монометиловых и моноэтиловых эфиров триэтиленгликоля в процессе получения метил- и этилкарбитолов. При этом из-за проявления межмолекулярных водородных связей и образования азеотропов возможно получение продукта с различным соотношением моноэфир триэтиленгликоля – диэтиленгликоль [25].

С целью выяснения влияния состава абсорбента на его сорбционные свойства по отношению к сернистым соединениям и двуокиси углерода исследованы модельные системы монометиловый эфир триэтиленгликоля – диэтиленгликоль (ММЭТЭГ – ДЭГ) и моноэтиловый эфир триэтиленгликоля – диэтиленгликоль (МЭЭТЭГ – ДЭГ) различного состава [71].

Основные физико-химические свойства абсорбентов на основе эфиров ТЭГа приведены в табл. 4.66.

 $i \not : \hat{l} \ddot{E}^{\uparrow} \not : 4.66$ Основные физико-химические свойства системы ММЭТЭГ – ДЭГ
и МЭЭТЭГ – ДЭГ

Массовая доля ДЭГ, %	Плотность при температуре 20 °С, кг/м ³	Вязкость при температуре 20 °C, 10 ⁻⁶ м ² /с	Показатель преломления	Температура застывания, °С			
	Систем	а ММЭТЭГ – ДЗ	ЭГ				
0 20 40 60 80	1050 1064 1077 1092 1108	8,454 9,356 13,29 18,348 24,795	$\begin{array}{c} 1,4355\\ 1,4402\\ 1,442\\ 1,4443\\ 1,4445\end{array}$	$-42 \\ -50 \\ -70 \\ -60 \\ -25$			
Система МЭЭТЭГ – ДЭГ							
0 20 40 60 80 100 % ДЭГ	1023 1038 1059 1081 1100 1116	8,331 10,315 15,141 19,836 24,916 35	$1,4395 \\ 1,44 \\ 1,4427 \\ 1,4435 \\ 1,4455 \\ -$	-29 -23 -70 -60 -53 -10			

На рис. 4.57, 4.58 представлены зависимости растворимости компонентов природного газа в абсорбентах различного состава. Равновесная растворимость компонентов рассчитана при условиях: температура контакта 20 °C, парциальное давление H₂S и CO₂ 0,1013 МПа, парциальное давление этилмеркаптана 1,333 кПа.

Как монометиловый, так и моноэтиловый эфир триэтиленгликоля обладают высокой растворимостью сероводорода и этилмеркаптана. Наличие диэтиленгликоля в абсорбентах снижает растворимость сернистых компонентов.

Зависимость растворимости индивидуальных меркаптанов, сероводорода и углекислоты описывается уравнением

$$\ln K_{\rm H} = a_0 + a_1 x + 1000 / T(a_2 + a_3 x) + a_4 x, \qquad (4.82)$$

где a_0 , a_1 , a_2 , a_3 , a_4 – коэффициенты уравнения (табл. 4.67); I – мольная доля моноалкилового эфира в абсорбенте; i – температура контакта.

Высокое значение коэффициента множественной корреляции свидетельствует о хорошем соответствии уравнения (4.82) экспериментальным значениям. Средняя погрешность между экспериментальными и расчетными значениями констант Генри по меркаптанам не превышает 15 %, по сероводороду и двуокиси углерода – 8 %.

Зависимость растворимости меркаптанов от их температуры кипения и состава абсорбента описывается уравнением (табл. 4.68):

Рис. 4.57. Зависимость растворимости H_2S и C_2H_5SH от молекулярной массы моноалкиловых эфиров этилентликолей: 1 – метиловый эфир – C_2H_5SH ; 2 – этиловый эфир – C_2H_5SH ; 3 – метиловый эфир – H_2S ; 4 – этиловый эфир – H_2S

í‡∙Ì	Ë^‡	4.67
------	-----	------

1 + 12 + 1.07				
Значения коэффициентов	a _o ,	a ₁ , a ₂ , a ₃ ,	a_4	в уравнении (4.82)*

						Коэффици-
Компонент	a	A ₁	a ₂	a ₃	a,	ент множест-
	0	•	-	0	•	венной корре-
						ляции
C ₂ H ₅ SH	9,38121	0,40197	-3,02445	-0,6509	0,25555	0,996
	10,1523	-1,627	-3,23707	-0,21583	0,72957	0,994
i-C ₃ H ₇ SH	10,78939	-1,47842	-3,52969	-0,2091	0,67118	0,99
· ·	10,54123	-1,60115	-3,43909	0,22665	0,63092	0,99
n-C ₃ H ₇ SH	11,07226	-0,78215	-3,78874	-0,36701	0,50966	0,99
Ŭ .	11,3724	-1,12624	-3,8627	-0,25513	0,28321	0,991
n. sC ₄ H ₉ SH	12,12723	-0,45785	-4,17499	-0,35042	-0,05404	0,994
	11,59124	-2,52174	-4,00491	-0,04777	0,43953	0,994
H ₂ S	8,40292	-0,53225	-2,23886	-0,29514	0,34682	0,997
-	9,13529	-1,1030	-2,42492	-0,08966	0,09514	0,992
CO_2	9,21162	-2,49998	-1,89025	0,2752	0,4028	0,997
_	8,78485	-0,73334	-1,7614	-0,04927	-0,34639	0,993
* В верхней строке указаны танные тля ММЭТЭГ в нижней – тля						
МЭЭТЭГ	inch cipo	ке указані	л данные	ANA MIMO	тот, в п	импен для
1100101.						

í ‡· $\hat{I}\ddot{E}$ ^‡ 4.68 Значение коэффициентов в уравнении регрессии (4.83)

Коэффициент	ММЭТЭГ	МЭЭТЭГ
а ₀ а ₁ а ₂ а ₃ а ₄ а ₅ а ₆ Коэффициент множест- венной корреляции	$\begin{array}{c} -3,48212\\ -0,45291\\ 0,04287\\ 3,105287\\ -0,4298\\ -20,19405\\ 0,3469\\ 0,99\end{array}$	$\begin{array}{c} 3,13756\\ -1,68239\\ 0,02347\\ 1,29283\\ -0,17473\\ -14,81658\\ 0,53228\\ 0,991 \end{array}$

$$\ln K_{\rm H} = a_0 + a_1 x + a_2 T_{\rm b} + \frac{1000}{T} \left(a_3 + a_4 x + \frac{a_5 T_{\rm b}}{1000} \right) + a_6 x.$$
(4.83)

Все эфиры полиоксиэтиленгликолей обладают высокой поглотительной способностью по отношению к сероводороду и меркаптанам, которая составляет для сероводорода 20–30 м³/м³ раствора, для этилмеркаптана 6–11 кг/м³ при указанных ранее условиях.

На рис. 4.54 приведены равновесные данные для сероводорода, углекислоты и этилмеркаптана в некоторых алкиловых

Рис. 4.58. Зависимость растворимости H₂S и C₂H₅SH от молекулярной массы моно- и диалкиловых эфиров этиленгликолей: 1 – монометиловый эфир – C₂H₅SH; 2 – моно- и диметиловый эфир – H₂S; 3 – диметиловый эфир – C₂H₅SH

эфирах оксиэтиленгликолей и таких широко известных абсорбентах, как трибутилфосфат, пропиленкарбонат. Сопоставление приведенных данных показывает, что растворимость сернистых соединений в алкиловых эфирах этиленгликолей достаточно высока и соизмерима с растворимостью сернистых соединений в таких физических абсорбентах как "Селексол", ТБФ.

Растворимость компонентов в абсорбентах уменьшается с увеличением температуры контакта. Увеличение молекулярной массы меркаптана приводит к возрастанию его растворимости в абсорбентах.

Высокая поглотительная способность и селективность алкиловых эфиров оксиэтиленгликолей по отношению к H_2S делает возможным применение данных абсорбентов для селективной очистки природных газов от сероводорода в присутствии углекислоты. Причем, уменьшение температуры абсорбции увеличивает селективность абсорбентов.

Физико-химические и абсорбционные свойства алкиловых эфиров оксиэтиленгиколей зависят от числа оксиэтиленовых групп в молекуле, степени замещения гидроксила и природы алкильного радикала.

На рис. 4.57 и рис. 4.58 приведены зависимости растворимости этилмеркаптана и сероводорода от молекулярной массы алкиловых эфиров этиленгликолей. Рост числа оксиэтиленовых групп в эфирах приводит к увеличению растворимости в них этилмеркаптана и сероводорода, а также к возрастанию вязкости и температуры застывания абсорбента.

Замещение водорода одной гидроксильной группы диэтиленгликоля на метильный или этильный радикал увеличивает растворимость этилмеркаптана в эфире на 1,7 и 4 кг/м³, сероводорода на 12 и 10 м³/м³. Замещение второго гидроксила в молекуле монометилового эфира на метильный радикал приводит к дальнейшему возрастанию растворимости этилмеркаптана на 4 кг/м³, сероводорода на 2 м³/м³ раствора (рис. 4.59, 4.60).

Переход от гликоля к моно-, а затем к диалкиловому эфиру этиленгликолей снижает вязкость и температуру застывания.

Увеличение молекулярной массы алкильного радикала приводит к уменьшению растворимости H_2S и CO_2 в диэфире диэтиленгликоля.

При этом наличие в молекуле двух изопропильных радикалов оказывает еще большее отрицательное влияние. Растворимость C_2H_5SH и углеводородов C_4H_{10} и C_5H_{12} увеличивается с ростом алкильного радикала. Наибольшее влияние длины алкильного радикала сказывается на растворимости тяжелых углеводородов.

Рис. 4.59. Влияние состава поглотителя на растворимость компонентов при і = 293 K, P_{H_2S} , P_{CO_2} = 0,1013 МПа, $p_{C_2H_2SH}$ = 1,33 кПа: 1 – H_2S ; 2 – CO_2 ; 3 – C_2H_5SH

Переход от диметилового к дибутиловому эфиру ДЭГа приводит к двухкратному увеличению растворимости пентана в эфире при прочих равных условиях. Растворимость воды в эфирах и соответственно эфиров в воде падает с увеличением молекулярной массы алкильного радикала.

С точки зрения технологичности использования абсорбента, особенно при пониженных температурах контакта, предпочтительными являются диалкиловые эфиры этиленгликолей. Од-

Рис. 4.60. Влияние состава поглотителя на растворимость компонентов при i = 293 K, p_{H_2S} , $p_{CO_2} = 0,1013$ МПа, $p_{C_2H_3SH} = 1,33$ кПа: 1 – H_2S ; 2 – CO_2 ; 3 – C_2H_5SH

нако высокая поглотительная способность моноалкиловых эфиров по отношению к сернистым соединениям, высокая селективность по отношению к H_2S и возможность одновременно с очисткой осуществлять осушку обрабатываемого газа делают их эффективными абсорбентами для процессов удаления сернистых соединений из природного газа.

Наиболее предпочтительными абсорбентами являются метил- и этиловые эфиры три- и тетраэтиленгликолей. Данные эфиры имеют достаточно низкие температуру замерзания и вязкость, что позволяет использовать их для обработки газа при пониженных температурах контакта (-10-0 °C).

4.3.8. ОЧИСТКА ГАЗА ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ АБСОРБЕНТОМ НА ОСНОВЕ МОНОМЕТИЛОВЫХ ЭФИРОВ ЭТИЛЕНГЛИКОЛЕЙ Л-201-2-100

Институтом ВНИИСС совместно с ВНИИГАЗом разработан абсорбент на основе монометиловых эфиров полиэтиленгликолей. Синтез данного абсорбента протекает по следующей схеме:

 $CH_3OH + KOH \Leftrightarrow CH_3OH + H_2O;$

 $CH_3OK + n(OCH_2CH_2) \rightarrow CH_3(OCH_2CH_2)_nOK;$

 $CH_3(OCH_2CH_2)_nOK + CH_3(OCH_2CH_2)_mOK \Leftrightarrow$

 $CH_3(OCH_2CH_2)_nOH + CH_3(OCH_2CH_2)_mOK;$

 $CH_3(OCH_2CH_2)_nOK + (H_2O) + H_3PO_4 \rightarrow$

 \rightarrow CH₃(OCH₂CH₂)_nOH + (H₂O) + KH₂PO₄.

После очистки получается абсорбент со следующим физикохимическим составом:

Плотность, при 293 К, кг/м ³	1066 ÷ 1070
Вязкость, при 293 К, м ² /с 10 ⁻⁶	13 ÷ 56
Температура замерзания, К	233
Температура кипения, К	>513
Показатель преломления при 293 К	1,4450
Молекулярная масса	190 ÷ 210

Абсорбент Л-201-2-100 представляет собой прозрачную жидкость, слегка желтоватого цвета, растворим в воде в любых соотношениях; хорошо растворяет алкиламины, что позволяет использовать его в качестве компонента для смешанного физико-химического абсорбента для обработки природного газа.

Наличие в молекуле эфиров незамещенной гидроксильной группы обусловливает высокую гигроскопичность данного абсорбента. Это позволяет одновременно с очисткой газа от сернистых соединений осушать газ.

Абсорбент стабилен при условиях регенерации. Низкая температура замерзания абсорбента позволяет использовать данный абсорбент при пониженных температурах контакта.

На рис. 4.61 приведено влияние концентрации абсорбента

Рис. 4.61. Влияние воды на вязкость раствора Л-201-2-100

на температуру кипения при нормальном давлении и вязкость при различных температурах.

1	емпература	кипения	абсорбента	JI-201-2-100	при	давлении 0	,1 MIIa	

Температура кипения, К	513	397÷398	398÷390	383÷384	380
Концентрация воды в аосороенте, % мас	0	6,0	10,0	15,0	20,0

4.3.9. РАСТВОРИМОСТЬ КОМПОНЕНТОВ ПРИРОДНОГО ГАЗА В АБСОРБЕНТЕ Л-201-2-100

Растворимость меркаптанов, сероводорода, углекислоты в абсорбенте Л-201-2-100 определялась хроматографическим методом.

Константы Генри абсорбатов в Л-201-2-100 в интервале температур контакта от 253 до 293 К приведены в табл. 4.69.
í ‡
· $I\ddot{E}^{+}$ 4.69 Константы Генри RSH, H2S и CO2 в абсорбенте
Л-201-2-100 (МПа/мольные доли)

Абсорбат	Температура, К					
1	293	283	273	263	253	
C ₂ H ₅ SH	0,0719	0,0486	0,0315	0,0165	0,0098	
i ⁻ C ₃ H ₇ SH	0,053	0,0349	0,0223	0,0111	0,0071	
n-C ₃ H ₇ SH	0,0279	0,0177	0,0108	0,0053	0,0032	
n. sC ₄ H ₉ SH	0,0196	0,0123	0,0076	0,0036	0,0021	
H ₂ S	0,5600	0,3962	0,2843	0,1984	0,1265	
CŌ ₂	4,3712	3,4947	2,7185	2,0364	1,5572	

Растворимость COS и CS₂ в абсорбенте Л-201-2-100 (МПа/мольные доли) определена при температурах контакта 283–313 К:

Температура, К	313	293	283
COS CS_2	$2,2325 \\ 0,1879$	$1,1775 \\ 0,1023$	$1,5530 \\ 0,0744$

Зависимость растворимости компонента природного газа от температуры описывается уравнением вида:

 $\ln K_{\rm H} = A - B/T.$ (4.84)

Значение констант Ä, Ç, а также теплоты абсорбции приведены в табл. 4.70.

Зависимость растворимости меркаптанов от их температур кипения и температур контакта для абсорбента Л-202-100 описывается уравнением:

$$\ln K_{\rm Hi} = 13,178 - 0,02588 T_{\rm bi} - \frac{3521,45}{T} + 8,05783 - \frac{T_{\rm bi}}{T} - 3,83385 \left(\frac{T_{\rm bi}}{T}\right)^2,$$
(4.85)

где $K_{\rm Hi}$ – константа Генри меркаптана, МПа/мол. доли; $T_{\rm bi}$ –

í ‡∙ ÎË^‡ 4.70

Значение констант Ä, Ç и теплоты абсорбции компонентов в абсорбенте Л-201-2-100

Абсорбат	Ä	Ç	-Δç,кДж∕мол.
C ₂ H ₅ SH	10,05227	3707,614	30,82
I-C ₃ H ₇ SH	10,11317	3816,926	31,79
n-C ₃ H ₇ SH	10,40821	4092,815	34,02
H_{1} S $C_4H_9SH_{1}$	10,30403	4222,109	35,10
Π_2 S	0,09470	2710,330	22,00
COS	5,7099	1494,974	12,43
CS_2	7,1093	2748,92	22,85

Рис. 4.62. Графики растворимости компонентов в абсорбенте Л-201-2-100:

 \ddagger – зависимость ln Kⁱ_H от температуры кипения RSH (линия – расчет, точки – эксперимент); · – растворимость RSH в Л-201-2-100 при 293 К: 1 – С₂H₅SH; 2 – i-C₃H₇SH; 3 – n.sec.C₄H₉SH; , – растворимость H₂S и CO₂ в Л-201-2-100 и "Сепасолв–МПЕ": 1 – H₂S – Л-201-2-100; 2 – H₂S "Сепасолв–МПЕ"; 3 – CO₂ – Л-201-2-100; 4 – CO₂ – "Сепасолв–МПЕ"

температура кипения меркаптана при давлении 0,1013 МПа; Т – температура контакта, К.

Сравнение рассчетных и экспериментальных значений констант Генри индивидуальных меркаптанов приведено на рис. 4.62, а, б.

На рис 4.62, в приведена растворимость сероводорода и двуокиси углерода при температуре контакта 293 К для абсорбента Л-201-2-100 и абсорбента "Сепасолв-МПЕ" [170, 169]. Анализ равновесных данных показывает, что абсорбент Л-201-2-100 обладает большой сорбционной емкостью по сероводороду и меркаптанам, сравнимой с сорбционной емкостью такого абсорбента, как "Сепасолв-МПЕ".

Селективность абсорбента Л-201-2-100 увеличивается с уменьшением температуры контакта (рис. 4.63). Наличие воды в абсорбенте сильно сказывается на свойствах раствора. Наглядно это проявляется на увеличение вязкости раствора при увеличении концентрации воды (см. рис. 4.61). Одновременно

 $r_{\rm HC}$ 4.04. Блияни сор держания воды в абсор-бенте Л-201-2-100 на рас-творимость C₂H₅SH при i = 293 К

Рис. 4.65. Константа фазового равновесия углеводородов при различных давлениях для системы углеводород – Лапрол 201-2-100: t=273 K; 2=283 K; 3=293 K; 4=303 K; 5=313 K

Таблица 4.71				
Константы Генр	и (МПа/мол. до	ли) углеводород	ов в абсорбенте	Л-201-2-100
Абсорбат	Температура, К			
Hocopour	293	283	273	263

Метан Этан Пропан и-бутан н-бутан	$\begin{array}{r} 40,058\\12,719\\4,31\\2,01\\1,35\end{array}$	$\begin{array}{r} 34,135 \\ 10,808 \\ 3,23 \\ 1,54 \\ 1,07 \end{array}$	$28,798 \\ 8,67 \\ 2,56 \\ 1,09 \\ 0,77$	25,798 7,31 2,01 0,83 0,55
	40 30 20			

Рис. 4.66. Константа фазового равновесия углеводородов при различных давлениях для системы углеводород – Лапрол 201-2-100: $t=273~{\rm K};~2=283~{\rm K};~3=293~{\rm K};~4=303~{\rm K};~5=313~{\rm K}$

наличие воды в абсорбенте сказывается на его сорбционных характеристиках. Влияние воды на растворимость этилмеркаптана при 293 К показано на рис. 4.64. Полученные данные показывают, что увеличение концентрации воды в абсорбенте резко уменьшает растворимость этилмеркаптана. Поэтому содержание воды в абсорбенте должно быть минимальным.

Растворимость углеводородов в Л-201-2-100 определялась при атмосферном давлении хроматографическим методом и при повышенном давлении в бомбе равновесия, описанной в работе [44]. Константы Генри углеводородов приведена в табл. 4.71.

Растворимость углеводородов хорошо описывается уравнением

$$\ln K_{\rm Hi} = -0.62489 + 0.00120 T_{bi} + 8.91492 \left(1 - \frac{T_b}{T}\right) - 2.37526 \left(1 - \frac{T_{bi}}{T}\right).$$
(4.86)

Константы фазового равновесия углеводородов при давлении до 6 МПа приведены на рис. 4.65 и 4.66.

Очистка природного газа от сероводорода и этилмеркаптана абсорбентом Л-201-2-100 на опытной установке

Исследование процесса очистки природного газа от сероводорода и этилмеркаптана проводились на опытной установке. Принципиальная схема установки описана в работе [21].

Очистка природного газа от H_2S и CO_2 проводилась при следующих условиях:

Давление абсорбции, МПа	5,9
Температура контакта, К	270-273
Расход газа, м ³ /ч	6-12
Расход абсорбента, л/ч	6-20
Содержание в газе:	
Н₂Ѕ, г∕ м ³	3-9
CO ₂ , % об	0,5-2,0
Температура низа десорбера, К	402-404

Данные по очистке газа от H_2S и CO_2 приведены на рис. 4.67, 4.68. На очистку природного газа от сероводорода и дву-

окиси углерода оказывает влияние удельный расход абсорбента, высота слоя насадки, остаточное содержание сероводорода в растворе.

Анализ влияния удельного расхода абсорбента на очистку газа от H_2S и CO_2 при высоте слоя насадки 4 м (см. рис. 4.67) показывает, что требуемая степень очистки газа от сероводорода (содержание H_2S менее 20 мг/м³) достигается при кратности орошения $L/G \ge 2,0$ л/м³.

Степень извлечения CO₂ при этом составляет 50–65 %. Селективность извлечения H_2S рассчитывается как ϕ_{H_2S}/ϕ_{CO_2} , уменьшается с увеличением кратности орошения, составляя 2,5–1,5.

На рис. 4.68 представлено влияние высоты слоя насадки на процесс очистки газа от сероводорода и двуокиси углерода при кратности орошения равной 2 л/м³. Увеличение высоты слоя насадки увеличивает извлечение H_2S и CO_2 и уменьшает се-

Рис. 4.68. Влияние высоты насадки на очистку газа от H_2S и CO_2 (L/G = = 2 π/m^3): $t = H_2S$; 2 – CO₂; 3 – селективность

лективность процесса. Процесс очистки природного газа от этилмеркаптана проводился на опытной установке при следующих режимах.

Давление абсорбции, МПа	1,96; 3,92; 5,9
Температура абсорбции, К	273, 298-313
Расход газа, м ³ /ч	6-12
Кратность орошения, л/м ³	0,5-1,0
Содержание этилмеркаптана в газе, г/м ³	1,0-5,0
Количество отдувочного газа, м ³ /ч	0,2
Температура низа десорбера, К	398-402

Обобщенные результаты процесса очистки газа от C_2H_5SH приведены на рис. 4.69. Как видно из рисунка, практически полная очистка газа от этилмеркаптана достигается при кратности орошения 0,5–1,0 л/м³. Точка росы очищенного газа при этом составляла минус 20 – минус 35 °C. На степень очистки газа от меркаптана оказывает высота слоя насадки, исходное содержание меркаптана в газе, давление в абсорбере (рис. 4.70).

Одним из основных факторов, влияющих на процесс очистки газа от меркаптанов, является качество регенерации поглотительного раствора (остаточное содержание RSH в растворе). Влияние остаточного содержания RSH в регенерированном абсорбенте на процесс очистки приведено на рис. 4.71.

Регенерация абсорбента может проводиться с подачей или без подачи отдувочного газа в низ десорбера. В качестве отдувочного газа может быть использован очищенный природный или инертный газ. При регенерации абсорбента в десорбере с температурой низа T = 400-403 К практически полная регенерация раствора достигается в случае подачи около 20 л отдувочного газа на литр раствора.

Рис. 4.72. Влияние содержания воды в абсорбенте на регенерацию абсорбента и очистку газа от C₂H₃SH ($L/G = 1,0 \ \pi/m^3$; $T = 402 \div 404 \ K$)

Для регенерации раствора без подачи отдувочного газа раствор должен содержать до 10 % мас. воды. Влияние содержания воды в регенерированном абсорбенте на остаточное содержание RSH и очистку газа показано на рис. 4.72.

4.3.10. ОЧИСТКА ГАЗА ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ АБСОРБЕНТОМ НА ОСНОВЕ ГЛИКОЛЕЙ И ИХ ЭТИЛОВЫХ ЭФИРОВ – ЭТ-1

Для очистки природного газа от сернистых соединений предложен абсорбент на основе гликолей и их этиловых эфиров [1], который может быть синтезирован на основе окиси этилена и этанола, либо может быть выделен из кубового остатка производства этилкарбитола. Одним из вариантов предложенного поглотителя является абсорбент ЭТ-1. Абсорбент ЭТ-1 производится отечественной промышленностью и предложен для осушки газа [34].

В соответствии с ТУ-6-01-11-77 данный поглотитель имеет следующую характеристику.

Температура кипения при давлении 0,1013 МПа	
(не менее), К	508
Плотность, при 293 К, кг/м ³	1040 ÷ 1090
Вязкость при 293 К, 0 ⁻⁶ , м ² /с	12 ÷ 20
Температура застывания, К (не менее)	223
Кислотность в пересчете на уксусную кислоту, %	
(не более)	0,02

Таблица 4.72 Состав абсорбента ЭТ-1

Компонент	Содержание, % мас.
Моноэтиленгликоль Этилкарбитол Диэтиленгликоль Моноэтиловый эфир ТЭГ ТЭГ Моноэтиловый эфир ТетраЭГ	$\begin{array}{c} 1,39\\ 1,64\\ 22,46\\ 61,81\\ 7,19\\ 5,52\end{array}$

По составу ЭТ-1 представляет собой смесь гликолей (в основном диэтиленгликоля) и моноэтиловых эфиров гликолей. В зависимости от условий получения компонентный состав может незначительно меняться. Типичный состав ЭТ-1 приведен в табл. 4.72.

Абсорбент ЭТ-1 смешивается с водой и алканоламинами в любых соотношениях; ограниченно растворим в углеводородах,

Рис. 4.73. Зависимость точки росы природного газа равновесного с раствором ЭТ-1 от их конденцентрации С при давлении контакта 5,5 МПа: сплошная линия – осушка ЭТ-1; пунктирная линия – осушка ДЭГ термически стабилен при нагреве до 503–513 К; химически инертен в отношении извлекаемых компонентов природного газа.

Высокая гигроскопичность ЭТ-1 и его низкая температура замерзания обусловили применение его в качестве осушителя газов. Сравнение ЭТ-1 с диэтиленгликолем для установки, условия осушки газа при различных температурах приведено в работе [36]. Зависимость равновесного влагосодержания газов для ЭТ-1 и ДЭГа приведено на рис. 4.73. Коэффициент активности воды в бинарном растворе определяется уравнением [36]:

$$\gamma = \exp \frac{2,303}{0,04x/(1-x)+0,345(t+273,15)}.$$
(4.87)

Растворимость H₂S, CO₂, меркаптанов в абсорбенте ЭТ-1

Для расчета процесса очистки от сернистых соединений необходимы равновесные данные всех компонентов, входящих в состав природного газа. В связи с этим определялась равновесная растворимость меркаптанов, сероводорода, двуокиси углерода, углеводородов, COS, CS₂ в абсорбенте.

Растворимость компонентов в абсорбенте при атмосферном давлении определялась хроматографическим методом.

Константы Генри индивидуальных меркаптанов, сероводорода и двуокиси углерода приведены в табл. 4.73.

Растворимость компонентов в абсорбенте ЭТ-1 описывается уравнением

$$K_{\rm H} = A - B/T. \tag{4.88}$$

Значение коэффициентов *А* и *В* и теплоты абсорбции компонентов в ЭТ-1 приведены в табл. 4.74.

Таблица 4.73

Константы Генри (МПа/мол. доли) меркаптанов, H_2S и CO₂ в абсорбенте ЭТ-1

Абсорбат	Температура, К					
1	293	283	273	263	253	
CH ₃ SH	0,1939	0,1362	0,0941	0,0618	0,0422	
C ₂ H ₅ SH	0,1354	0,0707	0,0475	0,0289	0,0184	
<i>i</i> -C ₃ H ₇ SH	0,1006	0,0505	0,0344	0,0203	0,0122	
n-C ₃ H ₇ SH	0,0534	0,0254	0,0164	0,0090	0,0056	
$n. sC_4H_9SH$	0,0382	0,0173	0,0113	0,0068	0,0033	
H ₂ S	0,9733	0,7999	0,4533	0,3332	0,2399	
$C\tilde{O}_2$	6,3994	5,0510	3,0964	3,0488	-	

Таблица 4.74 Коэффициенты Ä Ë Ç и теплоты абсорбции

Абсорбат	A	В	-∆Н, кДж∕кмол.
CH ₃ SH	8,0626	2845,6	23660
C ₂ H ₅ SH	10,1963	3605,4	29980
i-C ₃ H ₇ SH	10,5377	3792,3	31530
$n - C_3 H_7 SH$	10,9044	4090,2	34010
$n.sC_{4}H_{9}SH$	11,2873	4297,6	35730
H ₂ S	9,2839	2721,9	22630
CO_2	8,9122	2076,6	17260
COŠ	7,9712	2084,4	17330
CS_2	7,6308	2787,4	23170

Зависимость растворимости меркаптанов от их нормальной температуры кипения и температуры контакта аппроксимируется уравнением:

$$\ln K_{\rm Hi} = 1,28 + 0,0068T_{bi} - 696,36/T + + 2,49158 - T_{bi}/T - 5,04287(T_{bi}/T)^2.$$
(4.89)

Максимальное расхождение между экспериментальными и рассчитанными по данному уравнению констант Генри не превышает 20 %. Сравнение расчетных и экспериментальных значений $K_{\rm H}$ приведено на рис. 4.74.

Рассчитанная на основании экспериментальных значений

Рис. 4.74. Зависимость константы Генри RSH в ЭТ-1 от температуры кипения RSH (сплошные линии – расчет, точки – эксперимент) констант Генри равновесная растворимость сероводорода и этилмеркаптана при температуре 293 К составляет для сероводорода 20,4 м³/м³ раствора при $p_{\rm H_2S} = 0,1013$ МПа, для этилмеркаптана – 4,29 кг/м³ при $p_{\rm C_2H_3SH} = 1,333$ кПа. Сопоставление абсорбционных свойств ЭТ-1 с другими абсорбентами приводится на рис. 4.54.

Представленные в табл. 4.73 константы определены для безводного растворителя. Наличие воды в абсорбенте сильно сказывается на растворимость компонентов в сторону ее уменьшения. В работе [95] определена растворимость сероводорода и двуокиси углерода в ЭТ-1 (г/л) при 293 К и парциальном давлении сероводорода, равном 0,1 МПа, при различном содержании воды в абсорбенте.

Содержание воды, % мас	0	2,5	5,0	7,5	10,0
Aocopoar: H ₂ S CO ₂	$^{18,2}_{4,4}$	$17,9\\4,3$	$\substack{17,3\\4,0}$	16,0 3,3	$^{14,5}_{2,4}$

Зависимость абсорбционной емкости ЭТ-1 от содержания воды в поглотителе по отношению к этилмеркаптану опреде-

Рис. 4.75. Влияние воды на растворимость С₂H₅SH в ЭТ-1: *t* - *K*_{HC₂H₅SH} при *T* = 265 K; *2* - *K*_{HC₂H₅SH} при *T* = 273 K; *3* - растворимость С₂H₅SH при *T* = 265 K, *P*C₂H₅SH = 1,33 кПа **378**

лена хроматографически при температурах 273 К и 263 К. Концентрация воды в ЭТ-1 варьировалась от 0 до 12 % мас. Растворимость этилмеркаптана как функция содержания воды в абсорбенте представлена на рис. 4.75.

Анализируя данные по растворимости компонентов можно отметить, что наличие воды в абсорбенте сильно сказывается на сорбционной способности ЭТ-1. Увеличение воды до 10 % мас. снижает растворимость сероводорода в 1,25 раз, углекислоты – в 1,8 раз, этилмеркаптана – в 1,8 раз.

Растворимость углеводородов в абсорбенте ЭТ-1

Равновесие между абсорбентом ЭТ-1 и углеводородами определялась хроматографическим методом при атмосферном давлении и в бомбе равновесия при давлении до 6,0 МПа.

Константы Генри индивидуальных углеводородов, определенные в температурном интервале от 293 К до 263 К, приведены в табл. 4.75.

Константы фазового равновесия углеводородов при давлении до 6 МПа и температурах контакта от 273 К до 313 К представлены на рис. 4.76, 4.77.

Аналитическая зависимость растворимости углеводородов от их нормальной температуры кипения и температуры контакта для абсорбента ЭТ-1 имеет вид

$$\ln K_{\rm Hi} = -2,40757 + 0,00877 T_{bi} + 8,84384 \left(1 - \frac{T_{bi}}{T}\right) + 0,23885 \left(1 - \frac{T_{bi}}{T}\right)^2.$$
(4.90)

Сравнение экспериментальных и расчетных значений констант Генри углеводородов показано на рис. 4.55.

Таблица 4.75 Константы Генри (МПа/мол. доли) углеводородов в ЭТ-1

Абсорбат	Температура, К						
-	293	283	273	263			
Метан	33,457	29,597	25,949	22,524			
Этан	11,114	9,733	7,994	7,408			
Пропан	4,354	3,585	2,634	1,946			
<i>и</i> -Бутан	2,486	1,929	1,664	0,638			
<i>н</i> -Бутан	1,470	1,454	1,344	0,659			

Рис. 4.76. Константа фазового равновесия углеводородов ($E-C_4H_{10}$, $l-C_4H_{10}$) при различных давлениях для системы углеводород- ∂ T-1: t = 273 K; 2 = 283 K; 3 = 293 K; 4 = 303 K; 5 = 313 K

Рис. 4.77. Константа фазового равновесия углеводородов (СН₄, C₂H₆, C₃H₈) при различных давлениях для системы углеводород – ЭТ-1: $t=273~{\rm K};~2=283~{\rm K};~3=293~{\rm K};~4=303~{\rm K};~5=313~{\rm K}$

Очистка природного газа от сернистых соединений абсорбентом ЭТ-1

Приведенные абсорбционые свойства ЭТ-1 показывают перспективность использования его для очистки природного газа от сернистых соединений. Детально процессы с использованием ЭТ-1 изучены на опытных установках и в опытно-промышленном масштабе на Оренбургском ГПЗ.

На пилотной установке, модулирующей промышленный процесс, включающий в себя абсорбер, выветриватель, регенератор исследовалось влияние кратности орошения, высоты насадки, степени регенерации растворителя на очистку природного газа от сероводорода селективность по отношению к углекислоте [96].

Установлено, что степень очистки газа зависит от кратности циркуляции, давления в абсорбере, высоты насадки и качества регенерации раствора. Так, при высоте насадки 9 м, что соответствовало 25 практическим тарелкам, требуемая степень очистки газа от H₂S при давлении абсорбции 3,0 МПа, достигается при кратности орошения 3,3 – 3,4 л/м³.

Селективность извлечения H_2S в присутствии CO_2 проверялась при кратности орошения 3,3 – 3,4 л/м³, высоте слоя насадки 9 м и давлении 3,0 МПа. Результаты приведены в табл. 4.76.

Опытно-промышленные испытания абсорбента ЭТ-1 для очистки обессеренного газа (после ДЭА-очистки) от меркаптанов проводились на пилотной установк ОГПЗ. В качестве

Таблица 4.76

Результаты опытов по определению избирательной способности абсорбента ЭТ-1 (по отношению к H₂S в присутствии CO₂) (р = 3,0 МПа, ς = 9 м, L/G = 3,3 ÷ 3,4 л/м³)

Расход		Удельный рас- ход абсор-	Содержа		иевга	зе	Степе: влечен	нь из- ния, %
газа,	абсорбен-	бента, л/м ³	H_2S ,	Γ / M^3	CO ₂ ,	% об.	H ₂ S	CO_2
м ³ ∕ч	та, л/ч		исх.	очищ.	исх.	очищ.	-	-
4,7	16,0	3,40	1,68	0,015	1,51	1,17	99,1	22,5
4,8	16,0	3,34	1,62	0,016	1,60	1,26	99,0	21,3
4,9	16,5	3,37	1,85	0,016	1,44	1,13	99,1	21,5
5,0	16,5	3,30	1,41	0,018	1,53	1,19	98,7	22,2
5,0	16,5	3,30	1,33	0,013	1,59	1,24	99,0	22,0
4,9	16,3	3,33	1,72	0,016	1,74	1,36	99,1	22,4
4,8	16,3	3,40	1,39	0,012	1,63	1,27	99,1	22,1
4,8	16,2	3,38	1,61	0,015	1,52	1,18	99,1	22,4
4,9	16,2	3,31	1,58	0,013	1,83	1,43	99,1	21,9

Количест- Расх во раство- газа		Расход газа,	L/G, л/м ³	Содер	ожание RS	Н в газе,	мг∕ м ³	Содержан в раство	ние RSH ppe, г/л	Степень извлече- ния	Количест- во экс- пандер-	Расход отдувоч- ного газа,
	ра, л⁄ч	М⁰∕Ч		исход- ном	очищен- ном	экспан- дерном	кислом	регенери- рованном	насыщен- ном	RSH, %	ных га- зов, м ³ /ч	м³∕ч
	100 75 75 75 75	100 85 75 100	1,0 0.87 1,0 0,75 0.75	240,9 210,7 333,6 360,9 301 5	35,9 33,7 41,6 62,7 60,4	$240,0 \\ 374,0 \\ 239,8 \\ 541,8 \\ 401,9$	11,3 6,36 - 7,5 5 4	0,07 0,03 0,04 0,03 0,03	$0,3 \\ 0,24 \\ 0,21 \\ 0,25 \\ 0,21$	85,3 84,0 87,6 83,0 80,0	2,0 2,2 1,5 1,8 2,2	0,75 1,5 1,5 2,5 2,9
	75 75 75 75 75 75 75	100 125 125 125 125 125 150	$\begin{array}{c} 0,75\\ 0,75\\ 0,60\\ 0,60\\ 0,60\\ 0,60\\ 0,50\end{array}$	$\begin{array}{c} 301,3\\421,3\\355,6\\416,4\\446,2\\239,7\\334,1\end{array}$	69,9 65,6 65,2 65,3 48,7 74,1	401,3 421,3 393,2 446,2 - 359,3 548,3	5,3 7,5 7,0 7,1 - 6,8	$\begin{array}{c} 0,03\\ 0,03\\ 0,02\\ 0,02\\ 0,02\\ 0,01\\ 0,01 \end{array}$	$\begin{array}{c} 0,21\\ 0,24\\ 0,28\\ 0,25\\ 0,26\\ 0,021\\ 0,24 \end{array}$	83,3 81,6 84,4 85,4 79,7 81,0	1,5 1,8 2,0 1,5 1,8 1,8 1,4	3,0 3,5 3,4 3,4 4,5 4,5

í ‡·ÎË^‡ 4.77 Результаты испытаний абсорбента ЭТ-1 по очистке товарного газа от меркаптанов на ОГПЗ на опытной установке

í ‡∙ ÎË^‡ 4.78

Результаты опытно-промышленного испытания процесса доочистки товарного газа от меркаптанов поглотителем на основе гликолей и их этиловых эфиров ЭТ-1

Pac	ход	Температура, °С					Содержание RSH					
газа,	раст- вора,	перед пропа- новым	после про- паново-	загруз- ка в ре-	верх реге-	низ регене-	в газе,	мг / м ³	в раство	оре, г/л	Степень очист-	Примечание
тм ³ /ч	м ³ /ч	испа- рителем	го испа- рителя	гене- ратор	нера- тора	ратора	вход	выход	насы- щенном	регене- риро- ванным	ки, %	
370 385	4 4	$\begin{array}{c} 0 \div -1 \\ 0 \div -1 \end{array}$	-17 -10	85 89	102 101	132 138	367,1 512,5	355,4 503,0	0,46 1,29	0,04 0,03	3,05 1,85	Включены все форсунки на теп- лообменник и пропановом испа- рителе
392 345 345 318	8 8 8 8	$ \begin{array}{r} 0 \div -1 \\ 0 \div -1 \\ 0 \div -1 \\ 0 \div -1 \\ 0 \div -1 \end{array} $	-12 -12 -12 -12	80 78 78 81	106 105 105 109	130 134 134 131	445,6 454,2 459,3 398,5	405,6 411,8 429,2 362,2	$0,43 \\ 0,70 \\ 0,48$	сл. сл. сл.	9,0 9,4 8,5 9,1	Включены фор- сунки на тепло- обменнике и 2-я дополнительная форсунка на про- пановом испари- теле
355 323 345 355 360 360	8 8 8 8 8 8 8	-2 -1 -2 -2 -2 -2 -2	-15 -13 -15 -15 -15 -15 -15	84 81 85 85 85 85	$ 104 \\ 106 \\ 104 \\ 104 \\ 104 \\ 104 \\ 104 $	135 131 135 135 134 134	333,5 362,2 491,7 461,0 415,9 448,5	274,8 278,0 331,7 218,0 268,6 326,1	$0,50 \\ 0,45 \\ 0,60 \\ 0,60$	Сл. Сл. Сл. Сл.	17,7 23,2 32,5 30,9 35,5 27,2	Включены фор- сунки на тепло- обменнике 1 и 2 дополнительные форсунки на пропановом испарителе

абсорбера на установке применялась насадочная колонна диаметром 0,1 м и высотой насадки равной 4 м. Результаты исследования приведены в табл. 4.77.

Абсорбент ЭТ-1 является гигроскопичной жидкостью и предложен ЮжНИИгипрогазом для осушки газа. Высокая растворимость меркаптанов, особенно при пониженных температурах контакта, делает перспективным применение ЭТ-1 для одновременной осушки и очистки газа от меркаптанов [72, 2]. На промышленной установке осушки газа I очереди ОГПЗ ВНИИГАЗом, ЮжНИИгипрогазом и ОГПЗ проведены длительные испытания по использованию абсорбента ЭТ-1 вместо моноэтиленгликоля.

На ОГПЗ предусмотрена низкотемпературная осушка товарного газа с использованием пропанового холода. Для предотвращения гидратообразования в теплообменники и пропановый испаритель впрыскивается 80 % раствор моноэтиленгликоля. Эксперименты по применению ЭТ-1 вместо моноэтиленгликоля проводились как по существующей схеме, так и с подключением дополнительных форсунок до и после пропанового испарителя. Некоторые результаты опытно-промышленных испытаний ЭТ-1 приведены в табл. 4.78.

4.4. АДСОРБЦИОННАЯ ОЧИСТКА ПРИРОДНОГО ГАЗА ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ

4.4.1. АДСОРБЦИЯ ЦЕОЛИТАМИ

Синтетические цеолиты обладают рядом уникальных свойств, отличающих их от адсорбентов других типов, из которых для целей сероочистки первостепенное значение имеют следующие:

ярко выраженная избирательность адсорбции и полярных молекул;

высокая адсорбционная емкость при повышенных температурах (до 100 °C) и малых парциальных давлениях извлекаемого компонента;

близкость диаметров входных окон в полости цеолита к размерам молекул, что позволяет осуществить селективную адсорбцию.

В табл. 4.79 собрана информация о емкости различных адсорбентов по отношению к сульфиду водорода, которая пока-

Таблица 4.79 Емкость различных адсорбентов по сульфиду водорода (t = 30 °C, $p_{\rm H2S} = 50$ мм рт. ст.)

Адсорбент	Удельная поверх-	Количество адсорбированного H_2S			
	hoctb, M^2 / Γ	$M\Gamma/M^2$	мг / г		
Магниевый силикат	428,6	0,0553	23,65		
$(SiO_2/MgO = 1,62)$	204 5	0.0654	21.22		
$(SiO_2/MgO = 2,28)$	524,5	0,0034	21,20		
Силикагель	313,2	0,0245	7,67		
Активный уголь	1285,5	0,0229	29,28		
-	1209,0	0,0319	38,60		
	495,0	0,07807	38,75		
Цеолит F-9	-	-	102,35		
Цеолит 13Х	-	-	91,10		
Цеолит 5А	-	_	91,54		

зывает, что наибольшей емкостью по H_2S обладают цеолиты. Аналогичный вывод можно сделать также при сравнении активности различных видов сорбентов по отношению к меркаптанам.

Высокая емкость цеолитов по серосодержащим компонентам обусловлена наличием сильного электростатического поля в адсорбционных полостях.

В работах [19, 43, 20] изучен механизм адсорбции сульфида водорода и сероорганических соединений на цеолитах и показано, что при адсорбции имеет место взаимодействие атома серы с обменными катионами и протонами $R_2S(H_2S, RSH) \rightarrow$ $\rightarrow Me^{n+}(H^+)$, сила которого определяется, с одной стороны, электронодонорными свойствами атома серы в молекулах адсорбатов, с другой – акцепторными свойствами катионов на поверхности цеолитов.

Донорная способность атомов серы возрастает с увеличением степени метилирования органических молекул: (CH₃)₂S>C₂H₅SH>CH₃SH>H₂S>COS. В такой же последовательности изменяется адсорбционная емкость цеолитов по сернистым соединениям. Влияние типа цеолита и основности обменного катиона на адсорбционную емкость иллюстрирует табл. 4.80 [172].

Замена части катионов натрия катионами калия с большей основностью приводит к увеличению емкости цеолитов [172, 13, 37]. Причиной повышенной емкости цеолитов типа X по сравнению с цеолитами типа Y является более высокая концентрация катионов в первых.

Таблица 4.80

Адсорбционная емкость различных цеолитов по сульфиду водорода в динамических условиях (скорость газа 0,03 м/с, концентрация $\rm H_2S$ 0,01 % об., газ-носитель – азот)

Цеолит	Емкость по сульфиду водорода (г/100 г цеолита) при различной температуре						
	25 °C	70 °C	180 °C				
LiNaX NaX KNaX LiNaX	11,6 11,9 13,6 2 4	5,0 5,3 6,8 0.8	1,6 1,8 2,1 0,5				
NaY KNaY	2,4 3,0 3,3	1,3 1,5	0,8 0,9				

Для сероочистки природного газа применяются цеолиты типа NaA (4A), CaA (5A), NaX (13X). Как следует из рис. 4.78, наибольшей адсорбционной емкостью почти во всем интервале парциальных давлений сульфида водорода и этилмеркаптана обладает цеолит NaX. При давлениях до 1 мм рт. ст. величина адсорбции на цеолитах CaA и NaX примерно одинакова. Следует, однако, отметить, что несмотря на лучшие адсорбционные характеристики цеолита NaX по индивидуальным сернистым соединениям, целесообразность выбора того или иного цеолита рис. 4.78 для решения конкретных задач во многом определяется составом природного газа. В отличие от

Рис. 4.78. Изотермы адсорбции сульфида водорода (сплошные линии) и этилмеркаптана (пунктирные линии) на различных цеолитах

цеолитов с меньшим размером входных окон в адсорбционные полости (NaA, CaA) цеолиты NaX поглощают все молекулы с эффективным диаметром менее 9Å. Наличие в газе высоких концентраций тяжелых алифатических или ароматических углеводородов и других соединений, хорошо сорбируемых цеолитом, может оказать значительное влияние на величину адсорбционной емкости цеолита по сернистым соединениям.

Табл. 4.81 иллюстрирует принципиальную способность различных типов цеолитов адсорбировать молекулы соединений, входящих в состав природного газа.

Наибольшее влияние на емкость цеолитов по сернистым соединениям оказывают пары воды. В случае очистки влажных углеводородных газов вода сорбируется в лобовых слоях цеолита, практически полностью вытесняя из пор сернистые соединения. Присутствие в газе диоксида углерода, особенно в больших количествах, обусловливает возникновение совместной адсорбции, которая снижает емкость цеолитов по сульфиду водорода и меркаптанам [122, 137, 135, 126]. Изменение адсорбционной емкости цеолита NaY по сульфиду водорода при различных соотношениях CO₂:H₂S в газе приведено в табл. 4.82.

Распределение соединений в слое цеолита СаА при совместной адсорбции воды, диоксида углерода и сульфида водорода показано на рис. 4.79 [126]. В процессе очистки природных газов, когда происходит и совместная адсорбция различных углеводородов, распределение компонентов в слое становится более сложным, и, кроме того, меняющимся во времени. По сорбируемости на цеолитах соединения, входящие в состав природного газа, могут быть расположены в ряд

Таблица 4.81

Способность	компонентов	природного	газа ад	цсорбирова	аться р	различными '	гипами
цеолитов							

Молекула	Критический диаметр	Цеолит				
5	молекулы, А	NaA	CaA	NaX		
H_2O	2,6	х	х	х		
CO_2	2,8	Х	х	Х		
H_2S	3,6	Х	х	Х		
CH_4	4,0	Х	х	Х		
C_2H_2	3,0	Х	х	Х		
$\tilde{C_2H_4}$	4,3	Х	х	Х		
C_3H_6	5,0	Х	х	Х		
C_2H_6	4,4	Х	х	Х		
$C_4 H_8$	5,1	-	х	Х		
Бензол	6,7	-	-	Х		
Толуол	6,7	_	_	х		

Таблица 4.82

Адсорбционная емкость цеолита NaY по сульфиду водорода при различных соотношениях сО2:H2S в газе (концентрация H2S в газе 0,1 % об., температура 25 °C, скорость потока 4 см/с)

Концентрация СО ₂	Отношение концентра-	Емкость цеолита
в газе, % об.	ций СО ₂ :H ₂ S	по H ₂ S, г/100 г
0,1	1	6,05
0,5	5	6,00
1,0	10	5,88
2,0	20	5,36
5,0	50	4,96
10,0	100	4,75

H₂O>RSH>H₂S>COS>CO₂. Сорбируемость углеводородов возрастает по мере увеличения их молекулярного веса.

Факт соадсорбции компонентов природного газа, изменения его состава во времени должны быть учтены на стадии проектирования. Анализ возможного влияния соадсорбции компонентов позволит правильно рассчитать размеры аппаратуры, продолжительность стадии очистки, условия проведения процессов адсорбции и регенерации, правильно выбрать тип цеолита в зависимости от поставленной цели.

Практический интерес представляет изучение характера изменения углеводородного состава природного газа во времени. К процессам, чувствительным к колебаниям состава сырьевого газа, относится, например, процесс низкотемпературного извлечения гелия, включающий стадии сжижения и газофракционирования. Изменение концентрации углеводородов в очищенном газе во времени в процессе очистки природного газа Оренбургского месторождения от меркаптанов цеолитами 13Х фирмы "Union Carbide" приведено на рис. 4.80.

Анализ изменений состава очищенного газа во времени позволил авторам установить некоторые закономерности, которые легли в основу выработанной методики расчета адсорбционной емкости цеолита по меркаптанам в зависимости от содержания в природном газе воды и тяжелых углеводородов.

Было установлено следующее:

к моменту появления за слоем цеолита какого-либо углево-

Рис. 4.79. Распределение соединений в слое цеолита %: *a* – реальное; *б* – модель

Рис. 4.80. Изменение во времени τ относительной концентрации различных углеводородных компонентов природного газа (C_{rek}/C_{ucx}) на выходе из абсорбера:

(– этан; 2 – пропан; 3 – бутан; 4 – пентан; 5 – гексан

дорода (например, пентана) содержание в адсорбенте углеводорода, имеющего на две метильные группы меньше (например, пропана), практически равно нулю;

к моменту появления за слоем меркаптанов в адсорбенте кроме них содержатся углеводороды C₆₊, сульфид водорода и вода;

углеводороды С₆₊ на 90 % представлены гексаном;

влага адсорбируется полностью;

количество адсорбированного сульфида водорода составляет около 50 % от количества его, поступившего в слой на стадии очистки.

Учитывая тот факт, что концентрация сульфида водорода $(2-4 \text{ мг}/\text{м}^3)$, в природном газе, поступающем на очистку, было много меньше концентрации меркаптанов $(400-500 \text{ мг}/\text{m}^3)$, тяжелых углеводородов $(9,84 \text{ г}/\text{M}^3)$ и воды $(66 \text{ мг}/\text{M}^3)$, влияние сульфида водорода на емкость цеолита не учитывалось.

В основу методики расчета были положены концепции теории объемного заполнения микропор. Суммарная величина адсорбции меркаптанов, воды и гексана соответствует предельному объему адсорбционного пространства цеолита W_0 , см³/г. Учитывая тот факт, что вода полностью сорбируется цеолитом, занимая при этом объем адсорбционного пространства:

$$W_0'' = \frac{a_{\rm B}}{\rho_{\rm h} 100} \,, \tag{4.91}$$

где $a_{\rm b}$ – емкость цеолита по воде, г/100 г; $\rho_{\rm b}$ – плотность воды

в адсорбционной фазе, г/м³; меркаптаны и гексан при адсорбции занимают объем адсорбционного пространства

$$W_0'' = W_0 - W_0'. ag{4.92}$$

Для вывода корреляционного уравнения, количественно описывающего значение динамической активности цеолита по меркаптанам в зависимости от содержания в очищаемом газе гексанов, было введено понятие "динамического" коэффициента разделения K_p :

$$K_{\rm p} = \frac{a_{\rm M}C_{\rm r}}{C_{\rm M}a_{\rm r}},\tag{4.93}$$

где $a_{\rm M}$ – максимальная динамическая активность цеолита по меркаптанам, % мас.; $C_{\rm M}$ – концентрация меркаптанов в очищаемом газе, г/м³; $C_{\rm r}$ – концентрация гексана в очищаемом газе, г/м³; $a_{\rm r}$ – величина адсорбции гексана цеолитом во времени выравнивания концентрации меркаптанов в газе до и после адсорбера, % мас.

Предполагая постоянство K_p в относительно узком интервале концентраций меркаптанов и гексана в очищаемом газе, можно записать:

$$a_{\rm r} = \frac{a_{\rm M} C_{\rm r}}{K_{\rm p} C_{\rm M}}.$$
(4.94)

Тогда объем адсорбционного пространства цеолита, занимаемый гексаном и меркаптаном, составит

$$W_0'' = W_0 - W_0' = \frac{a_{\rm M}}{100_{\rm \rho M}} + \frac{a_{\rm r}}{100_{\rm \rho r}} = \frac{a_{\rm M}}{100_{\rm \rho M}} + \frac{a_{\rm M}C_{\rm r}}{100_{\rm \rho M}K_{\rm \rho}C_{\rm M}}.$$
(4.95)

Обобщая уравнения (4.91) и (4.95), получим уравнение, позволяющее рассчитать адсорбционную емкость цеолита 13X по меркаптанам при различном содержании в газе гексана и воды:

$$a_{\rm M} = \frac{K_{\rm p}C_{\rm M}\rho_{\rm M}\rho_{\rm r}\left(100W_0 - \frac{a_{\rm B}}{\rho_{\rm B}}\right)}{C100\rho_{\rm M} + K_{\rm p}C_{\rm M}\rho_{\rm r}} = \frac{K_{\rm p}C_{\rm M}\rho_{\rm M}\rho_{\rm r}\left(100W_0 - \frac{C_{\rm B}v_{\rm \tau}}{G}\right)}{C_{\rm r}\rho_{\rm M} + K_{\rm p}C_{\rm M}\rho_{\rm r}},$$
(4.96)

где $C_{\rm B}$ – концентрация воды в газе, г/м³; V – расход газа, м³/ч; τ – продолжительность адсорбции, ч; G – масса цеолита в адсорбере, г; $\rho_{\rm r}$ и $\rho_{\rm M}$ – соответственно плотность гексана и меркаптана, г/см³.

Вопросам правильного расчета промышленных процессов очистки газов от сернистых соединений уделяется в литерату-

ре большое внимание [122, 137, 135, 126]. В работе [126] на основании изучения процесса очистки метана от сульфида водорода в присутствии CO_2 предложены данные для расчета размеров адсорберов для широкого интервала отношений $CO_2:H_2S$ в газе. Авторами был изучен процесс очистки метана цеолитом 5A в следующем диапазоне рабочих параметров: давление от 34 до 68 ата, температура 25+48 °C, линейная скорость 0,05–0,15 м/с, концентрация сульфида водорода 15–1000 млн.⁻¹, диоксида углерода 1–5 об. %, воды – 100 %, насыщение при 25 °C.

Как следует из рис. 4.79, при совместной адсорбции воды, диоксида углерода и сульфида водорода слой цеолита условно может быть разбит на три основные зоны: зона равновесной адсорбции воды ($L_{\rm H_{2}O}$), зона совместной адсорбции сульфида водорода и диоксида углерода ($L_{\rm H_{2}S}$, $_{\rm CO_{2}}$) и зона массопереноса сульфида водорода ($L_{\rm H_{2}S}$), где имеет место вытеснение диоксида углерода сульфидом водорода. Высота слоя, используемая для адсорбции воды, может быть рассчитана по формуле

$$L_{\rm H_2O} = \frac{(F_{\rm w}) {\rm H_2O} \cdot \tau}{a_{\rm H_2O} \rho_{\rm ag} \cdot S} \cdot 10^2,$$
(4.97)

где $F_{\rm w}$ – массовый расход газа, г/м³; $a_{\rm H_{2O}}$ – адсорбционная емкость цеолита 5А по воде, г/100 г; $\rho_{\rm ag}$ – плотность адсорбента, г/см³; *S* – площадь поперечного сечения адсорбера, см².

При этом авторы предположили, что величина динамической активности цеолита по воде составляет 60 % от статической при данном парциальном давлении.

Высота зоны совместной адсорбции сульфида водорода и диоксида углерода $L_{\rm H_2S,CO_2}$ рассчитывалась по аналогичной формуле. Как следует из рис. 4.81, динамическая емкость цеолита по сульфиду водорода существенно зависит от его содержания в смеси.

Высота зоны массопередачи сульфида водорода $L_{\rm H_2S}$ в значительной мере определяется отношением CO₂ :H₂S в газе и массовым расходом сульфида водорода (рис. 4.82). Помимо указанных зависимостей на размеры всех зон оказывают влияние продолжительность адсорбции, температура процесса, размер пор цеолита, полнота десорбции всех компонентов на стадии регенерации, углеводородный состав очищаемого газа.

Следует отметить, что от температурных условий будет зависеть также селективность цеолитов по отношению к сернистым соединениям. В работах Кельцева, Серпинского и других,

Рис. 4.81. Изменение равновесной емкости $a_{\rm H_2S}$ цеолита 5А по сульфиду водорода (в динамических условиях) в зависимости от мольной доли $y_{\rm H_2S}$ для смеси сульфид водорода – диоксид углерода

Рис. 4.82. Зависимость высоты L зоны массопередачи сульфида водорода от соотношения парциальных давлений диоксида углерода и сульфида водорода $p_{\rm CO_2} \,/\, p_{\rm H_2O}$

посвященных изучению адсорбционного равновесия для смеси сульфида водорода с пропаном и бутаном на цеолитах NaX и СаА при различных температурах, получено резкое уменьшение коэффициента разделения по сульфиду водорода с ростом температуры. При адсорбции смеси н-бутана с сульфидом водорода на цеолите СаА при температурах 0-25 °С преимущественно сорбируется сульфид (отношение водорода H₂S:C₄H₁₀ в адсорбционной фазе составляет 2,38:1,5). При температурах выше 75 °С имеет место обращение равновесия: на цеолитах начинает предпочтительно адсорбироваться бутан (отношение H₂S:C₄H₁₀ в адсорбционной фазе составляет 0,33). Это обстоятельство объясняется различным влиянием температуры на характер взаимодействия неполярных молекул пропана и бутана и полярных молекул сульфида водорода с поверхностью цеолита. Неспецифическое взаимодействие молекул углеводородов с поверхностью цеолита, обязанное проявлению дисперсионных сил, мало чувствительно к изменению температуры, в то время как энергия специфического взаимодействия молекул сульфида водорода с катионами каркаса цеолита резко падает при повышении температуры.

Интересной представляется информация, посвященная влиянию основного компонента природных газов – метана на адсорбцию сернистых соединений. В работе [52] в динамических условиях была изучена адсорбция этилмеркаптана на цеолите NaX при повышенных давлениях, характерных для промышленной газопереработки. Условия экспериментов были следующими.

Концентрация меркаптанов в газе, г/м ³	0, 1 - 1, 5
Давление газа, МПа	0,49-6,0
Расход газа, м ³ /ч	2,5-10
Температура, °С	20-110
Высота слоя цеолита, м	0,3-0,8
Диаметр слоя цеолита, см	4,4

В качестве газа-носителя использовали природный газ, содержащий 99,6 % об. метана, 0,5 % этана и осушенный до точки росы минус 60 °С.

В работе было показано, что равновесная адсорбционная емкость a_0 цеолита NaX при всех давлениях газа определяется лишь температурой проведения процесса t (°C) и парциальным давлением меркаптана p (мм рт. ст.):

$$a_0 = \frac{4.8 \cdot 10^4 t^{-2.06} p_{\rm M}}{t + 355 t^{-1.82} p_{\rm M}}.$$
(4.98)

Высота работающего слоя L_0 зависит также от гидродинамического режима в адсорбере:

$$L_0 = \frac{1, 2 \cdot 10^4 \, p_{\rm M}}{t + 1, 3 \, p_{\rm M}} \, \mathrm{Re}^{0,17} (273 \, + \, t)^{2,14}, \tag{4.99}$$

где Re – критерий Рейнольдса.

Присутствие газа-разбавителя (метана) не оказывает влияния на адсорбцию меркаптана.

В то же время в работах [122, 137, 135] сделан вывод о влиянии метана на адсорбционную емкость цеолита 5А по сульфиду водорода. При этом снижение емкости цеолита в значительной степени зависит от концентрации сульфида водорода в газе и общего давления в смеси. Например, снижение емкости цеолита по сульфиду водорода при $p_{\rm H_2S}$ = 10^{-2} ата составляет 40 % при общем давлении смеси CH₄/H₂S 20 ата и 70 % при общем давлении смеси 100 ата. Соответствующие величины для $p_{\rm H,S}$ > 0,4 ата равны 8 и 19 % [122]. Опыты, проведенные в динамических условиях [137, 135], показали, что с ростом общего давления газа линейно увеличивается высота работающего слоя и так называемой "мертвой зоны" (рис. 4.83). Предложенная в работе [122] методика расчета промышленных адсорберов, используемых для очистки природного газа от сульфида водорода, предусматривает учет совместной адсорбции всех компонентов природного газа.

Ожидаемое время проскока сульфида водорода au_{np} (мин) в адсорбере

Рис. 4.83. Влияние давления газа p на высоту работающего L_0 (кривая 1) и "мертвого" $L_{\rm n}$ (кривая 2) слоев адсорбента при очистке смеси СН₄/H₂S от сульфида водорода (концетрация H₂S 0,1 % мол., скорость газа 0,15 см/с)

$$\tau_{\rm np} = \frac{m_{\rm ad_{\rm H_{2S}}}}{m_{\rm o_{\rm H_{2S}}}},$$
(4.100)

где $m_{_{\rm NJ_{H_2S}}}$ – адсорбционная емкость слоя цеолита по H₂S, г; $m_{_{\rm O_{H_2S}}}$ – скорость поступления H₂S в слой цеолита, г/мин;

$$m_{\rm ad_{HS}} = \rho_{\rm II} A L_{\rm ad} \, a_{\rm o_{HS}}, \qquad (4.101)$$

 $ρ_{\rm q}$ – плотность цеолита, г∕см³; *А* – площадь поперечного сечения адсорбера, см²; *L*_{эф} – эффективная длина слоя адсорбента, см; *a*_{0H2}s – емкость единицы массы цеолита, равновесная с входной концентрацией H₂S, г∕г цеолита;

$$m_{0_{\rm H_2S}} = V_n C_{0_{\rm H_2S}} p_{\rm H_2S}, \qquad (4.102)$$

где V_n – расход газа, поступающего в адсорбер при нормальных условиях (0 °C, 1 ата), см³/мин; $C_{O_{H_{2}S}}$ – входная концентрация H₂S в газе, % об.; $\rho_{H_{2}S}$ – плотность сульфида водорода при нормальных условиях, г/см³.

В случае совместного присутствия CO_2 и H_2S в очищаемом на цеолитах природном газе было обнаружено, что количество COS на выходе из адсорбера превышает его количество в сырьевом газе. Это говорит о том, что применяемые для очистки природного газа молекулярно-ситовые адсорбенты выступают как катализаторы в реакции

$$CO_2 + H_2S \rightarrow COS + H_2O. \tag{4.103}$$

Образовавшийся COS вследствие низкой полярности молекул и невысокой температуры кипения слабо поглощается в слое цеолита. Указанный фактор является нежелательным, поскольку приводит к фактическому ухудшению качества получаемого товарного газа, а также к потере части газовой серы. В тех случаях, когда присутствие COS допускается в газе (учитывается его низкая коррозионная активность), реакция (4.103) может быть использована для того, чтобы уменьшить количество адсорбированного H₂S, продлевая таким образом время цикла или уменьшая необходимое для сероочистки количество цеолита.

Константа равновесия реакции (4.103) равна $K_{p(298\,\mathrm{K})} = 6,6\cdot10^{-6}$. Однако вследствие адсорбции на цеолитах образующейся воды равновесие смещается вправо [81]. В табл. 4.83 приведены сравнительные данные по образованию COS в природном газе с различной исходной концентрацией H₂S и содержании CO₂, равном 2,2 % мол. при давлении 52,5 ата на

Таблица 4.83
Сранительная характеристика различных цеолитов при очистке природного газа
от сульфида водорода до $C_{\text{проек}}^{\text{H}_2\text{S}} = 1$ млн. ⁻¹

Цеолит (номер	$C_{H_2S}^{\text{HCK}}$,	t, °C	Адсорбцион по H ₂ S,	ная емкость г/100 г	Степень конверсии
образца)	млн. ⁻¹		Кажущаяся*	Истинная**	H ₂ S, %
	Цеолиты (с низкой стег	іенью превра	щения H ₂ S	
5A-1	40	24,5	0,16	0,15	5
5A-II	40	24,5	0,18	0,15	17
I	Цеолиты с пр	омежуточной	степенью пре	евращения Н	S
4A-1	33	15,5	0,93	0,42	55
4A-II	33	15,5	1,30	0,45	64
	Цеолиты с	высокой сте	пенью превра	щения H ₂ S	
13X-1	33	15,5	1,07	0,13	88
[*] Включ вертирован ^{**} В отли в COS.	- пает H ₂ S как ный в COS. 1чие от кажу1	физически ад цейся емкості	сорбированне и не включает	ый, так и хим ² H ₂ S, конвер	ически кон- тированного

цеолитах 5A с преимущественным содержанием катионов Ca^{2+} и на цеолитах 4A и 13X с преобладанием катионов Na^+ .

Представленные в табл. 4.83 данные показывают, что каталитическая активность цеолитов в реакции (4.103) повышается при наличии в их составе катионов Na⁺. Наибольшую каталитическую активность проявляет цеолит 13Х, а наибольшей адсорбционной емкостью по сульфиду водорода (в том числе истинной) обладает цеолит 4А-II. Было установлено также, что скорость образования COS на цеолите 4А-II при постоянстве концентрации CO₂ пропорциональна концентрации H₂S в степени 0,4, а эффективность превращения H₂S на указанном адсорбенте пропорциональна концентрации сульфида водорода в степени (-0,6). Таким образом, влияние реакции (4.103) на протекание процесса адсорбции H₂S уменьшается с увеличением концентрации данного компонента.

Так, при увеличении содержания H₂S в сырьевом газе от 30 до 160 млн.⁻¹ кажущаяся емкость по данному компоненту адсорбента 4А-II уменьшается примерно на 25 %. Следовательно, применение для расчета газоочистных адсорберов равновесных результатов, полученных при поглощении чистого H₂S, может привести в указанном случае к существенной конструктивной ошибке.

С целью подавления образования COS при очистке газообразных углеводородных потоков в качестве адсорбента используют кристаллический цеолит с диаметром пор $\geq 5 \text{ Å}$, в котором, по крайней мере, 45 % атомов алюминия ассоциированы с

катионом щелочноземельного металла с атомной массой < 56. Кроме того, на стадии десорбционной продувки цеолита в углеводородный поток перед его пропусканием через адсорбционный слой рекомендуется инжектировать водяной пар в количестве, достаточном для равномерной адсорбции слоем 0,7– 3,0 % воды.

Таким образом, перед началом стадии адсорбции цеолит содержит предварительно адсорбированную воду, которая "блокирует" адсорбцию вновь образовавшихся по реакции (4.103) молекул воды и, следовательно, препятствует сдвигу рассматриваемой равновесной реакции в сторону образования COS.

4.4.2. РЕГЕНЕРАЦИЯ ЦЕОЛИТОВ В ПРОЦЕССЕ СЕРООЧИСТКИ ПРИРОДНОГО ГАЗА

Процессы адсорбционной очистки углеводородных газов от сернистых соединений являются периодическими. После появления за слоем адсорбента сернистых соединений в количестве, определяемом требованиями потребителя, сорбент подвергают регенерации. Регенерацию цеолитов проводят путем продувки слоя нагретым очищенным газом или путем снижения давления в системе. Первый способ является более распространенным. Температурный режим регенерации выбирают исходя из условий десорбции наиболее сильно адсорбируемого компонента, входящего в состав очищаемого газа. Таким компонентом, как правило, являются пары воды. Сильное взаимодействие между полярными молекулами воды и элементами кристаллической структуры цеолита требует применения на стадии регенерации более высоких температур, чем это необходимо для удаления сернистых соединений. Обычно регенерацию цеолитов с целью их подготовки к следующему циклу адсорбции проводят при температурах 300-320 °C.

На рис. 4.84 представлены типичные зависимости, полученные авторами при изучении стадии регенерации цеолитов в процессе очистки природного газа Оренбургского месторождения от меркаптанов. В качестве продувочного газа использовали очищенный природный газ. Максимум концентрации соединений, десорбированных из цеолита, соответствовал определенной температуре газа на выходе из адсорбера в период регенерации: для сульфида водорода 90 °С, для меркаптанов 200 °С, для воды 300 °С. В момент интенсивного выделения примесей наблюдалось замедление скоростей подъема темпе-

Рис. 4.84. График изменения во времени τ температуры газа t (кривая 4) и выходные кривые регенерации для меркаптанов (кривая 1), сульфида водорода (кривая 2) и воды (кривая 3)

ратуры слоя цеолита, что обусловлено повышенным расходом тепла на покрытие теплоты адсорбции компонентов.

Концентрация компонентов в газах регенерации в момент, отвечающий максимуму C_{max}^i и время десорбции основной массы компонента $\Delta \tau_i$ зависели от содержания этих компонентов в адсорбенте к началу регенерации, размера гранул, скорости диффузии молекул в порах, температуры и расхода газа, используемого для регенерации, его теплоемкости. При постоянстве условий регенерации отношение $C_{\text{max}}^i / C_{\text{ср}}^i$ ($C_{\text{ср}}^i$ – средняя концентрация *i*-го компонента в газах регенерации, равная отношению содержания *i*-го компонента в адсорбенте в начале регенерации к объему газов регенерации) и $\Delta \tau_i / \tau$ (τ – продолжительность стадии регенерации) для одного и того же размера гранул адсорбента являются характеристиками пары адсорбент – адсорбат. На основании опыта эксплуатации промышленной установки очистки природного газа от меркаптанов на Оренбургском газоперерабатывающем заводе было установ-

лено, что отношение C_{\max}^i / C_{cp}^i падает, а отношение $\Delta \tau_i / \tau$ растет с повышением адсорбируемости компонентов. При температуре подогревающего газа 320 °С, диаметре гранул цеолита NaX, равном 1,6 мм, отношение C_{\max}/C_{cp} составляло: для сульфида водорода и гексана 6,0; для меркаптанов 2,0; для воды 1,7; отношение $\Delta \tau_i / \tau$ составляло 0,13; 0,37; 0,40.

С увеличением диаметра гранул при тех же условиях регенерации время появления максимальной концентрации компонентов практически сохранялось, однако вследствие уменьшения коэффициентов внутренней диффузии и замедления теплопередачи внутри гранул цеолита происходило размытие пиков. Влияние размера гранул адсорбента проявлялось тем сильнее, чем выше сорбируемость компонента. Так, при использовании цеолита NaX с размером гранул 3,2 мм вместо 1,6 мм отношение $C^i_{\rm max} / C^i_{\rm cp}$ для сульфида водорода уменьшилось

в 1,2 раза, для меркаптанов в 1,35 раза, для воды в 1,5 раза.

На кинетических кривых регенерации можно заметить наличие второго максимума концентрации сульфида водорода, положение которого совпадает с максимумом концентрации меркаптанов. Появление сульфида водорода при температурах выше 200 °C связано с разложением меркаптанов на поверхности цеолита, который ведет себя как активный дегидросульфирующий катализатор.

Каталитическая активность цеолитов в реакции крекинга меркаптанов меняется в соответствии с их положением в ряду NaX > NaY > NaA. Низкая каталитическая активность цеолита NaA объясняется недоступностью активных центров для молекул меркаптанов из-за малого размера входных окон. Замена ионов натрия другими ионами щелочных металлов для одного и того же типа цеолитов не приводит к заметному изменению степени разложения меркаптана (табл. 4.84).

Состав продуктов крекинга зависит от взаимного расположения катионов в структуре цеолита, от соотношения

Таблица 4.84

Каталитическая активность щелочных форм цеолита типа Y в реакции разложения этантиола (температура реакции 400 °C, объемная скорость газа 12000 ч⁻¹)

Показатель		Катализатор			
	NaY	LiY	KY	PbY	CsY
Коэффициент обмена ионов	-	70,3	91,8	70,5	63,5
Степень превращения, %	29,9	26,7	32,7	29,6	30,8
SiO₂/Al₂O₃. Основными продуктами крекинга на цеолите NaY являются сульфид водорода и олефин. Более частое чередование катионов в структуре цеолита NaX делает возможным также взаимодействие соседних фрагментов молекул с образованием сульфидов:

Соотношение между продуктами разложения в значительной степени зависит от времени контакта меркаптана с поверхностью катализатора, как это наглядно иллюстрирует рис. 4.85. Степень превращения меркаптанов на цеолитах зависит от температуры, строения и молекулярного веса меркаптанов. С увеличением температуры, ростом молекулярного веса отщепление сульфогидридной группы происходит легче, так же как и при переходе от меркаптанов нормального строения к меркаптанам *изо*-строения. Так, степень разложения 2-пропандиола для всех цеолитов Na – формы выше, чем степень разложения этантиола в аналогичных условиях.

Сравнение реакционной способности этантиола и 2-пропантиола в реакции дегидросульфуризации на цеолитах Na-формы (температура реакции 400 °C, время контакта 0,3 с).

Катализатор	NaX	NaY	NaA
этантиола 2-пропантиола	$44,3 \\ 84,9$	$16,4 \\ 65,1$	$^{6,7}_{1,3}$

По характеру изменения крекирующей способности в работе [160] цеолиты были разделены на две группы: цеолиты, активность которых почти не меняется от продолжительности работы (Zn, Cd, Mn, Ca, Na, Mg, Fe-формы) и цеолиты, активность которых постепенно снижается (Cu, Pb, Ag, Cr, Ni,

Рис. 4.85. Влияние времени контакта τ на степень конверсии α этилмеркаптана (кривая 3) и выход продуктов разложения: этилена (кривая 2) и диэтилсульфида (кривая 1) (цеолит NaX, температура 400 °C)

Со-формы). Так, никелевые и кобальтовые формы цеолитов обладают очень высокой начальной активностью, но с увеличением продолжительности работы активность их снижается почти до нуля. Снижение активности авторы объясняют сульфированием ионов металла сульфидом водорода – продуктом крекинга меркаптанов.

Следует, однако, отметить, что выводы авторов работы [160] о том, что каталитическая активность цеолитов NaX не изменяется, не согласуются с данными других работ, что объясняется, возможно, малым временем воздействия продуктов разложения на катализатор.

Крекинг меркаптанов сопровождается полимеризацией образующихся непредельных соединений и постепенным закоксовыванием поверхности, блокировкой активных центров. Как следствие этого, каталитическая активность цеолита NaX постепенно снижается.

Блокировка активных центров углеродистыми отложениями, образующимися на стадии регенерации за счет разложения сероорганических соединений, является причиной быстрого снижения адсорбционной емкости цеолитов в процессах промышленной сероочистки природного газа [41, 22].

В работе [41] была изучена кинетика закоксовывания цеолита NaX за счет разложения этилмеркаптана при температурах 300–320 °С и проведена оценка связанного с закоксовыванием падения адсорбционной емкости цеолита. Закоксовывание цеолита проводили, пропуская через слой, разогретый до 320 °С, поток азота, содержащего этилмеркаптан в количестве 80–100 г/м³. Время контакта газа с цеолитом варьировали в пределах от 1 до 90 с. При всех условиях опыта меркаптаны в газе после цеолита отсутствовали, т.е. степень его разложения

составляла 100 %. Из серосодержащих продуктов разложения были обнаружены сульфид водорода и диэтилсульфид, соотношение между которыми зависило от времени контакта и содержания кокса в цеолите. Изменение состава продуктов разложения в зависимости от содержания кокса в цеолите NaX представлено на рис. 4.86.

Как следует из рисунка, при содержании в цеолите углеродистых отложений в количестве более 12 % мас. каталитическая активность цеолита снижается, количество сульфида водорода в продуктах разложения уменьшается, диэтилсульфида нарастает, степень разложения этилмеркаптана снижается. Крекинг этилмеркаптана сопровождается закоксовыванием цеолита, скорость которого наиболее велика в начальный период, и замедляется по мере отравления активных центров. При содержании в цеолите отложений в количестве 15 % мас. дальнейшее их накопление прекращается.

В работе [41] приведена зависимость, позволяющая определить содержание коксовых отложений *С* (% мас.), накапливающихся в цеолите за счет разложения определенных количеств этилмеркаптана *G* (г/г цеолита) при различных временах контакта τ (c):

$$C = 15 \ (1 - e^{-0.047\tau^{0.55} G}).$$

Увеличение содержания кокса в цеолите приводило к снижению адсорбционной емкости, которое проявлялось тем значительнее, чем крупнее молекула адсорбата (рис. 4.87). Это свидетельствует о том, что зауглероживание сопровождается уменьшением объема пор и блокировкой входных окон в адсорбционные полости.

Исходя из зависимостей, представленных на рис. 4.87, было выведено уравнение, позволяющее рассчитать адсорбцион-

Рис. 4.86. Соотношение серосодержащих компонентов α в зависимости от содержания кокса на цеолите NaX в процессе разложения этиленмеркаптана при температуре 300 °C и времени контакта 40 с: 1 - C.H.SH: 2 - H.S.

$$\begin{array}{rcl} 1 & - & C_2H_5SH; & 2 & - & H_2S; \\ 3 & - & (C_2H_5)_2S \end{array}$$

ную емкость частично закоксованного цеолита NaX по отношению к молекулам различных размеров:

 $a = a_0 e^{(0,078-0,046r)G}$

(4.104)

где a – адсорбционная емкость закоксованного цеолита; a_0 – адсорбционная емкость незакоксованного цеолита, % мас.; G – содержание коксовых отложений в цеолите, % мас.; r – размер молекул адсорбата, Å.

Уравнение (4.104) было использовано авторами [41] для оценки количества коксовых отложений, которое может накопиться на цеолите NaX в течение различных сроков эксплуатации промышленной установки очистки природного газа от меркаптанов на Оренбургском газоперерабатывающем заводе. Полученные значения хорошо совпадали с результатами определения количества коксовых отложений в пробах цеолита, отобранных в различное время из адсорберов промышленной установки. Следует отметить, что крекинг сероорганических соединений является не единственной причиной закоксовывания цеолитов в процессах сероочистки газов. Паразитарная каталитическая активность цеолитов при повышенных температурах проявляется и по отношению к тяжелым алифатическим и ароматическим углеводородам, входящим в состав природного газа, и по отношению к примесям диэтаноламина и этиленгликоля, которые могут попадать на цеолит при нарушении технологического режима на ступенях подготовки газа, предшествующих цеолитовой очистке [158, 115, 42, 109]. При этом анализ работ показывает, что особенно быстрое накопление углеродистых отложений на цеолитах происходит за счет крекинга диэтаноламина.

Авторами обзора были проведены исследования, позволяю-

щие оценить стабильность диэтаноламина (ДЭА) и этиленгликоля (ЭГ), адсорбированных цеолитами 13Х, 5А, SG-80 фирмы "Union Carbide" при температурах регенерации. С этой целью определенные количества ДЭА и ЭГ наносили на цеолиты и проводили регенерацию при постепенном подъеме температуры от 20 до 320 °С в течение трех часов с последующей выдержкой при 320 °С в течение часа. Интенсивная десорбция ЭГ с цеолитов наблюдается в интервале температур 150-200 °С, интенсивная десорбция ДЭА - в интервале температур 200-250 °C. При этом как ЭГ, так и ДЭА претерпевают разложение, продуктами которого являются как газообразные соединения, так и нерегенерируемые отложения. Наиболее сильно каталитическая активность цеолитов проявляется в первые циклы адсорбции – регенерации. Далее наблюдается область равномерного накопления коксовых отложений, которой соответствует мало изменяющийся состав продуктов разложения. При полной дезактивации активных центров крекинг ДЭА и ЭГ прекращается, нарастания количества коксовых отложений не происходит.

Накопление коксовых отложений при крекинге ДЭА при температурах регенерации на цеолитах 13Х, 5А, SG-80 иллюстрирует рис. 4.88, из которого следует, что коксованию продуктами крекинга ДЭА наиболее подвержен цеолит 13Х.

Механизм коксообразования весьма сложен и отобразить

Рис. 4.88. Зависимость накопления коксовых от-ложений С за счет разложения диэтанол амина от отношения массы ДЭА к массе цеолита $m_{\rm дЭA}/m_{
m q}$ при регенерации различных цеолитов: 13X; 2 - 5A; 3 -

1 – 1 SG-80

химизм всех превращений, происходящих на поверхности цеолитов, не представляется возможным. Состав и свойства кокса зависят от условий крекинга, природы исходных веществ, структуры самого цеолита.

Закоксовывание цеолитов на стадии регенерации в процессах очистки газов приводит к негативным последствиям. Снижение адсорбционной емкости вызывает необходимость изменять режим эксплуатации промышленных установок, сокращать продолжительность стадии очистки, чаще проводить регенерацию.

Для увеличения срока службы адсорбента до замены в производственных условиях предпринимают различные меры: заведомо увеличивают количество адсорбента в адсорберах, устанавливают запасные адсорберы, проводят регенерацию цеолита в две ступени с удалением основной массы меркаптанов без разложения при температурах до 200 °C на первой ступени и десорбцией остаточного количества меркаптанов и воды при повышении температуры до 300–320 °C на второй.

При промышленной реализации адсорбционных процессов сероочистки приходится решать вопрос утилизации газов регенерации, в которых концентрируются сернистые соединения. Выбор рациональной схемы обработки газов регенерации во многом определяет экономику процесса в целом.

Газы регенерации от адсорбционных установок небольшой производительности обычно используют в качестве топлива в технологических печах, например, в процессах получения газовой серы.

В установках адсорбционной сероочистки большой мощности газы регенерации подвергаются обработке с целью выделения из них сернистых соединений. Способ обработки зависит от состава сернистых соединений и их концентрации.

Если в газах регенерации содержится, в основном, сульфид водорода и небольшие количества сероорганических соединений, применяются, в основном, аминовые процессы или процесс "Сульфинол". Кислые газы регенерации абсорбентов перерабатываются в элементарную серу по методу Клауса.

Определенную трудность представляет утилизация газов регенерации в процессах очистки от меркаптанов. Использование для извлечения меркаптанов растворов гидроксидов натрия или калия в общем случае оказывается нерентабельным вследствие большого расхода щелочи, обусловленного присутствием в газах регенерации сульфида водорода и диоксида углерода.

В [57] рассмотрена схема, в которой сернистые соединения, 406 содержащиеся в газах регенерации, гидрируют в алюмокобальтовом катализаторе при $t = 350 \div 400$ °C. Образующийся сульфид водорода извлекают в блоке гликольаминовой очистки. Однако, как показано в [35], значительные колебания концентрации сернистых соединений в газах регенерации, а также наличие в них паров воды и тяжелых углеводородов затрудняют проведение процесса конверсии сероорганических соединений в сульфид водорода.

В [81] предложен процесс каталитического крекинга меркаптанов из газов регенерации цеолитов на высококремнеземном цеолите ИК-28-11. Процесс разложения меркаптанов на катализаторе протекает в соответствии с последовательностью стадий, общей для соединений типа C_nH_{2n+1}X [82].

В результате разложения меркаптанов кроме сульфида водорода и низших парафинов, отходящих вместе с газовым потоком, получается смесь жидких углеводородов, могущая служить топливом.

Технология утилизации меркаптанов, основанная на их взаимодействии с элементарной серой в присутствии основного катализатора, описана в [48].

В работе показано, что лимитирующей стадией является образование полисульфидов по реакции

 $2RSH + S_{Kat} \rightarrow RS_nR + H_2S,$

где R – $C_{n'}H_{2n'+1}$; n' = 1÷5; n = 2÷9; определены энергия активации и константа скорости реакции.

4.4.3. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ И АППАРАТУРНОЕ ОФОРМЛЕНИЕ

Условия эксплуатации адсорбционных установок очистки природного газа определяются, главным образом, параметрами обрабатываемого газа (температурой, давлением), его компонентным составом, а также целевым назначением очищенного газа (конверсия, низкотемпературное разделение, транспорт по магистральным газопроводам и др.).

Несмотря на многообразие таких условий имеются общие принципы, на которых основано проектирование адсорбционных установок и конструирование оборудования. Правильный учет всех факторов, влияющих на технологические показатели адсорбционного процесса в их взаимном влиянии друг на друга, гарантирует максимальный эффект при минимальных затратах.

Адсорбционный процесс в стационарном слое адсорбента является периодическим процессом. После того, как адсорбционная емкость цеолита по извлекаемым компонентам будет исчерпана, необходимо проводить их регенерацию. Поэтому для обеспечения непрерывной работы адсорбционной установки необходимо иметь в системе более одного адсорбера с тем, чтобы по меньшей мере один из них все время работал в режиме адсорбции, а другой (или другие) проходил подготовку к следующему адсорбционному циклу (регенерация, охлаждение). Регенерацию цеолитов чаще всего осуществляют путем продувки слоя частью очищенного газа, нагретого до требуемой температуры, причем, как правило, один и тот же поток газа используется для охлаждения цеолита и его регенерации. Таким образом, адсорбционную систему следует рассматривать как "концентратор", в котором отделяется примесь (или примеси) из одного потока и возвращается в другой, но уже с более высокой концентрацией. Исходя из современных требований по рациональному использованию природных ресурсов и охране окружающей среды от загрязнений, извлеченные из природного газа сернистые соединения должны быть превращены в какие-либо товарные продукты.

В связи с этим при проектировании промышленных адсорбционных установок необходимо решить важный вопрос выбора рациональной технологии обработки газов регенерации. По практическим данным капитальные и эксплуатационные затраты на эту операцию, как правило, соизмеримы с затратами в адсорбционном процессе. Поэтому технологический режим работы адсорбционной установки должен быть задан таким образом, чтобы объем газов регенерации был, по возможности, минимальным, а концентрация сернистых соединений, десорбированных из цеолита, в газах регенерации была максимальной.

Затраты тепла на регенерацию цеолита рассчитываются по тепловому балансу. Основными статьями затрат тепла являются: Q_1 и Q_2 – тепло на нагрев адсорбера и адсорбента до температуры регенерации; Q_3 – тепло на десорбцию поглотившихся компонентов; Q_4 – тепло, уносимое с регенерационным газом.

Температура регенерационного газа в процессе очистки природного газа от сернистых соединений обычно составляет 300-350 °C. Применение более высоких температур при давлениях выше 3 МПа с точки зрения сокращения объема газорегенерации является нецелесообразным несмотря на то, что при этом повышается эффективность десорбции поглощенных цеолитом компонентов. Это объясняется тем, что одновременно

увеличивается расчетная величина толщины стенки адсорбера и возрастает составляющая тепловых затрат Q_1 .

Исходя из общих затрат тепла на регенерацию $\sum Q$ и теплосодержания регенерационного газа, рассчитывается объем газов регенерации $V_{\rm harp}$. Для определения общего расхода газа регенерации важно также учитывать объем газа $V_{\rm ord}$, необходимый для удаления из слоя десорбированных примесей.

Таким образом, общий объем газа V_{гр} = V_{нагр} + V_{отд}. При понижении давления на стадии регенерации объем газа регенерации сокращается за счет уменьшения составляющей $V_{\rm org}$ вследствие возрастания движущей силы процесса и коэффициентов диффузии десорбируемых компонентов в порах цеолита. Однако, как правило, регенерацию проводят при том же давлении, при котором газ поступает на очистку, т.е. при 4-7 МПа. Это обусловлено следующими причинами. При снижении давления газа регенерации усложняется система его последующей обработки. Кроме того, для постоянного сброса и подъема давления в адсорберах в циклограмме работы установки необходимо резервировать непроизводительное время, что сокращает пропускную способность установки по очищаемому газу. Скорость операции "сброс - подъем" давления в адсорбере во избежание механического разрушения цеолита обычно не превышает 0,1 МПа/мин. При увеличении продолжительности стадии регенерации происходит сокращение относительного (в процентах от очищаемого) количества газов регенерации за счет снижения потерь тепла с регенерационным газом Q_4 . Кроме того, уменьшается составляющая $V_{\text{отд}}$ благодаря тому, что создаются условия для установления в каждом сечении адсорбера состояния, приближающегося к термодинамическому равновесию в системе "газ - адсорбент".

Однако увеличение времени регенерации равнозначно увеличению габаритов адсорберов и их массы. Оптимальное время регенерации в процессе очистки природного газа от сернистых соединений цеолитами для установок производительностью более 200–300 м³/ч составляет:

для адсорберов с внутренней теплоизоляцией 2+4 ч;

для адсорберов с внешней теплоизоляцией 4+8 ч.

Затраты тепла на нагрев адсорбера Q_1 зависят от конструктивных особенностей адсорбера (материальное исполнение, диаметр, высота и др.), которые характеризуют его металлоемкость. При этом важным фактором, влияющим на вклад составляющей Q_1 в общие затраты тепла на регенерацию ΣQ , является максимальное использование объема адсорбера под загрузку адсорбента. По практическим данным в процессах

сероочистки при давлении 5–7 МПа отношение весовой загрузки цеолита к весу адсорбера находится в пределах 0,3–0,5. В этом случае затраты тепла на нагрев адсорбера Q_1 составляют 40–60 % от общего расхода тепла на регенерацию. Применение внутренней теплоизоляции адсорберов позволяет практически вдвое сократить объем газов регенерации, который является функцией адсорбционных характеристик системы $V_{\rm rp} = f(C_0/a_{\rm g})$, где C_0 – содержание сернистых соединений в очищаемом газе; $a_{\rm g}$ – динамическая активность цеолита по сернистым соединениям. При проектировании адсорбционных установок технология процесса должна быть задана таким образом, чтобы обеспечить высокое значение $a_{\rm g}$.

По законам массопередачи в слое адсорбента имеется зона, в которой концентрация извлекаемой примеси в газовой фазе изменяется от входной до значения, близкого к нулю. В процессе адсорбции эта зона называется высотой работающего слоя L_0 . Количество поглощенной в работающем слое примеси, отнесенное к единице веса или объема адсорбента, составляет примерно 50 % от максимальной (равновесной) адсорбции примеси для заданных условий. Поэтому степень полезного использования адсорбционной емкости адсорбента определяется соотношением $\eta = (L - 0,5 L_0)/L$, где L – высота слоя адсорбента.

Величина высоты работающего слоя зависит от многих факторов: концентрации адсорбтива и его природы, наличия в очищаемом газе конкурентно адсорбирующихся или мешающих молекул, скорости газового потока, температуры, давления, характера макро- и микропористой структуры адсорбента, размера гранул адсорбента и др. Для процессов сероочистки природного газа при повышенных давлениях высота работающего слоя возрастает примерно пропорционально увеличению концентрации адсорбтива и давления, что обусловлено высокой крутизной изотерм адсорбции сернистых соединений на цеолитах. Аналогичное влияние оказывает скорость газового потока, что характерно для процессов адсорбции, протекающих во внутридиффузионной области. С ростом температуры и увеличением размера гранул цеолита также повышается L₀. Данные зависимости имеют степенной характер, специфичный для каждого типа цеолита. Взаимный учет всех отмеченных факторов при решении конкретной практической задачи должен быть направлен на достижение степени полезного использования адсорбционной емкости адсорбента не ниже 0,75. При этом, однако, необходимо учитывать, что снижение скорости газа в адсорбере равнозначно увеличению капитальных за-

трат. Уменьшение размера гранул цеолита и увеличение высоты слоя приводит к возрастанию гидравлического сопротивления слоя и значительным потерям давления очищаемого газа, что является нежелательным, особенно в случае транспортировки очищенного газа на далекие расстояния, а также при переработке его в криогенных установках. Промышленные образцы синтетических цеолитов имеют размер гранул 1,6 и 3,2 мм. Для очистки природного газа от сероводорода предпочтительно использовать гранулы 1,6 мм, для извлечения меркаптанов – гранулы 3,2 мм. Минимальная высота слоя должна составлять 3–4 м в первом случае и 5–6 м во втором.

На равновесную и динамическую активность цеолитов по сульфиду водорода сильное влияние оказывает температура. По практическим данным увеличение температуры природного газа на каждые 10 °C при постоянном объеме газов регенерации приводит к снижению производительности адсорбционной установки примерно на 20 %. Поэтому в процессе очистки природного газа от сульфида водорода цеолитами стремятся поддерживать температуру на стадии адсорбции не выше 30–35 °C. При извлечении меркаптанов влияние температуры не проявляется столь резко. В связи с этим для меркаптанов температура на стадии адсорбции 45–50 °C считается вполне приемлемой.

Важным фактором для поддержания динамической активности цеолитов на высоком уровне является полнота десорбции поглощенных компонентов. Она регулируется режимом регенерации (температура, давление, расход газа регенерации, время регенерации). Имеет значение также влажность газа регенерации и содержание в нем сернистых соединений. Режим регенерации должен выбираться таким образом, чтобы полнота десорбции целевого компонента составляла не менее 90 %. В процессах очистки природного газа от сернистых соединений для регенерации цеолитов обычно используют очищенный газ с точкой росы по влаге минус 60 °C при рабочем давлении. Направление подачи газа регенерации в адсорбере - противотоком к очищаемому газу. Это требование является обязательным и направлено на то, чтобы исключить попадание влаги в зону адсорбции сернистых соединений. Установлено, что даже минимальное содержание влаги в цеолите существенно снижает адсорбцию сернистых соединений. Наиболее резко это проявляется для сульфида водорода, в меньшей степени – для меркаптанов. При охлаждении цеолитов очищенным газом направление его подачи в адсорбер особого значения не имеет. В ряде случаев на установках сероочистки

небольшой мощности регенерацию цеолитов проводят неочищенным газом. Это, однако, снижает технико-экономические показатели процесса по причинам, обсужденным ранее. Одной из основных составляющих эксплуатационных затрат в адсорбционном процессе является расход адсорбента на 1000 м³ очищенного газа. Расход адсорбента включает два показателя: потерю адсорбента за счет механического разрушения и уноса из адсорбера в виде пыли, а также дезактивацию адсорбента, в результате которой его поглотительная способность снижается до такого уровня, что оказывается недостаточной для обеспечения проектной производительности установки. Механическое разрушение адсорбента происходит вследствие раздавливания под воздействием веса слоя, а также за счет эрозии в потоке газа. Сведение к минимуму механического разрушения адсорбента достигается регулированием высоты слоя адсорбента и фиктивной скорости газа в адсорбере. Для синтетических цеолитов высота слоя не должна превышать 8-10 м. Допустимая фиктивная скорость газа, рассчитанная на рабочие условия, выбирается в зависимости от давления природного газа (рис. 4.89).

Дезактивация цеолитов в процессе очистки природного газа от сернистых соединений происходит вследствие аморфизации кристаллической структуры под воздействием температуры паров воды и примесей кислотного характера (CO₂, H₂S, RSH), а также в результате закоксовывания, при котором блокируются активные центры адсорбции. Причины образования "кокса" подробно рассмотрены в предыдущей главе.

Снижение скорости дезактивации цеолитов и увеличение срока их службы достигается правильным выбором режима регенерации. Положительно, в частности, влияет увеличение времени регенерации, снижение температуры, применение ступенчатого подъема температуры слоя и др.

При квалифицированном учете всех факторов, являющихся причиной дезактивации цеолитов, срок их службы в процессах обессеривания природного газа составляет не менее 1000 циклов.

Простейшим вариантом адсорбционной установки является двухадсорберная установка, которая применяется для обработки небольших (до 100 тыс. м³/ч) объемов природного газа при содержании сернистых соединений до 200 мг/м³. Один из адсорберов работает в режиме очистки, другой находится на стадии подготовки к новому циклу (регенерация, охлаждение). Продолжительность адсорбции должна быть не менее суммарного времени регенерации и охлаждения. При трехадсорбер-

ной схеме один адсорбер находится на стадии очистки, второй – на регенерации, третий – на охлаждении. Для регенерации и охлаждения используется один и тот же поток газа. Время адсорбции, регенерации и охлаждения одинаковое.

При необходимости время адсорбции и регенерации можно увеличить за счет сокращения времени охлаждения, подключая адсорбер после охлаждения на очистку параллельно работающему в данный момент.

Широкое распространение в установках адсорбционной очистки природного газа большой производительности получила четырехадсорберная схема, при которой два адсорбера используются для очистки, третий находится на регенерации, четвертый – на охлаждении. Адсорберы переключаются на очистку со сдвигом времени, равным половине времени адсорбции. Продолжительность регенерации варьируется в пределах 1/2–5/8 времени адсорбции. Продолжительность стадии охлаждения составляет 3/5÷1/2 времени адсорбции. Не-

смотря на некоторое увеличение капитальных затрат, четырехадсорберная схема имеет ряд преимуществ перед трехадсорберной схемой. Прежде всего за счет снижения скорости газа в адсорберах уменьшается гидравлическое сопротивление слоя и увеличивается динамическая активность адсорбента по сернистым соединениям. Увеличение динамической активности в свою очередь позволяет при постоянстве объема газов регенерации повысить производительность установки, либо при постоянстве производительности – сократить объем газов регенерации.

четырехадсорбционной установки приведена на Схема рис. 4.90. Природный газ, содержащий сернистые соединения, подается по трубопроводу через два входных сепаратора С1 и С2 в распределительный коллектор адсорберов. Сепараторы предназначены для отделения из потока сырьевого газа капельной жидкости, уносимой с газом из предшествующих отделений сероочистки и осушки газа. Из коллектора газ поступает в два параллельно работающих адсорбера, находящихся на стадии очистки сверху вниз. Для охлаждения и регенерации используется один и тот же поток газа, который отбирается из коллектора очищенного газа. Газ охлаждения после адсорбера с температурой 40-300 °С подается в трубное пространство теплообменников Т1, Т2 типа "газ – газ" и затем с температурой 170 °С - в печи подогрева П1, П2. Теплообменники Т1, Т2 предназначены для частичной рекуперации тепла газов регенерации, а также для поддержания постоянной температуры газа перед печами подогрева и воздушными холодильниками BX1, BX2. Из печи нагретый газ поступает снизу вверх в адсорбер, подлежащий регенерации, затем с температурой 40-320 °C направляется в трубное пространство теплообменников Т1, Т2, где охлаждается до температуры ~170 °С, откуда подается в аэрохолодильники ВХ1, ВХ2, сепараторы С1, С2 газов регенерации и далее в коллектор газов регенерации.

По методу утилизации газов регенерации промышленные установки сероочистки можно разделить на три типа:

установки с открытым циклом, когда газ регенерации используется в качестве топливного газа или, пройдя систему очистки и осушки, подается в газопровод очищенного газа;

установки с закрытым циклом, когда газ регенерации подвергается очистке и затем возвращается в поток очищаемого газа;

установки с замкнутым контуром газов регенерации, когда газ регенерации после очистки и осушки вновь используется для регенерации цеолитов.

Рис. 4.90. Принципиальная схема промышленной адсорбционной установки по очистке газа от сернистых соединений цеолитами

Адсорбционная установка с открытым циклом для очистки природного газа от меркаптанов сооружена компанией "El Paso Natural Gas". Производительность установки 5,7 млн. м³ газа в сутки. Содержание меркаптанов в газе до и после очистки 137 мг/м³ и 1,37 мг/м³ соответственно. Газ поступает на очистку с давлением 5,27 МПа, температура адсорбции 40 °C, регенерации 320°C, длительность стадий: адсорбции 12 ч, регенерации 8 ч, охлаждения 4 ч. Используются два горизонтальных аппарата диаметром 1,83 м и длиной 14 м. Газ регенерации используется в качестве технологического топлива.

Установка подобного типа работает на ПО "Куйбышевбурмаш". Она предназначена для очистки природного газа от сернистых соединений перед использованием природного газа для приготовления контролируемых атмосфер. Производительность установки 3000 м³/ч, концентрация сульфида водорода в очищаемом газе 5-7 мг/м³, меркаптанов 20-36 мг/м³, содержание сернистых соединений в очищенном газе не более 1 мг/м³. Газ поступает на очистку с давлением 3-6 атм, температура адсорбции 40 °С, регенерации 320 °С. Длительность стадий: адсорбции 24 ч, регенерации 16 ч, охлаждения 8 ч. Используются два вертикальных адсорбера диаметром 1,4 м и высотой 4 м. Третий адсорбер – резервный. Газ регенерации в количестве 200 м³/ч с помощью эжектора подмешивается в поток природного газа, поступающего на заводскую ТЭЦ. В работе [107] приведена схема адсорбционной установки, в которой газ регенерации, пройдя установку аминовой очистки и гликолевой осушки, подается в магистральный газопровод.

В промышленных адсорбционных установках с закрытым циклом система жидкостной очистки газов регенерации рассчитывается с учетом пиковых концентраций сернистых соединений (см. предыдущую главу). Для сглаживания пиков обычно сооружают несколько технологических ниток адсорбционной очистки газа, которые работают в параллельном режиме со сдвигом во времени.

В качестве примера установки с закрытым циклом можно привести установку, разработанную компанией "Engineers and Fabricator". Производительность установки 2,8 млн. м³ газа в сутки. В схему включен дополнительный скруббер, орошаемый абсорбционным маслом. Стоимость установки, включая 53 т цеолитов, составляет 1 млн. дол. Расчетная стоимость аминовой установки аналогичной мощности оценивается на уровне 1,5 млн. дол. без учета стоимости осушающей установки, которая сопутствует мокрой очистке. Технико-экономические расчеты приведены применительно к газу, содержащему 60 % CO₂ и 0,5-0,7 г/м³ сульфида водорода и меркаптанов.

Для адсорбционных установок небольшой мощности применяется полуоткрытый цикл регенерации. Этот вариант характеризуется тем, что в период регенерации часть газа с пиковыми концентрациями сернистых соединений сжигают на факеле, а остальной газ регенерации возвращают в поток очищаемого газа.

Потери газа в таких системах могут быть сведены до уровня 5 % от объема перерабатываемого газа. Используется также следующая последовательность операций на стадии регенерации. Регенерационный газ постоянно циркулирует через адсорбер до тех пор, пока слой адсорбента не нагреется до требуемой температуры. Затем осуществляется конечная продувка адсорбента газом для удаления основной массы серы и охлаждения.

Для того, чтобы в замкнутом контуре не накапливались водяные пары, предусматривается дополнительный блок осушки цеолитами. Потери газа в этом случае составляют менее 5 % от объема переработки. По такой технологии на Волжском автомобильном заводе эксплуатируется установка, состоящая из трех адсорберов: один находится на адсорбции, второй – на регенерации и охлаждении, третий – резервный. Циркуляция газа регенерации осуществляется путем эжектирования азотом.

Основные технологические параметры работы установки

Производительность, м ³ /ч	2000
Давление газа на входе в установку, мм рт. ст	1700-1800
Температура газа, °С	20-25
Количество цеолита, загруженного в один адсорбер, кг	1000
Расход технического азота на регенерацию, м ³ /ч	25-30
Кратность циркуляции азота	5-6
Продолжительность стадии, ч:	
адсорбции	24
регенерации	12
охлаждения	12

Диапазон рабочих условий, в котором могут эксплуатироваться адсорбционные установки сероочистки

Производительность, тыс. м ³ /сут	25-25000
Избыточное давление, атм	5 - 84
Температура, °С	20 - 50
Содержание сульфида водорода, мг/м ³	20 - 6650
Содержание меркаптанов, мг/м ³	15 - 1000
Содержание диоксида углерода, % мол	1 - 50
Отношение CO_2/H_2S в газе	До 1000

Технологические особенности адсорбционных установок очистки природного газа от сернистых соединений помимо собственно адсорбционной системы проявляются также в спо-

собе очистки газов регенерации цеолитов, который выбирается с учетом состава сернистых соединений (табл. 4.85).

Во всех случаях после очистки газов регенерации от сернистых соединений требуется его осушка. Чаще всего для этого применяется промывка гликолями.

Технико-экономические показатели процесса очистки газов регенерации цеолитов во многом зависят от условий производства, где эксплуатируется адсорбционная установка. Например, на нефтехимических и азотно-туковых заводах для извлечения из газов регенерации сероорганических соединений целесообразно применять способ их гидрирования с последующим удалением образовавшегося сульфида водорода жидкостным хемосорбционным способом [57]. Процесс гидрирования проводят на алюмокобальт-молибденовом катализаторе при t = $350 \div 400$ °C и объемной скорости газа $800-1000 \ y^{-1}$.

Для повышения скорости реакции гидрирования необходим двойной – тройной избыток водорода по сравнению со стехиометрическим количеством. После очистки газы регенерации направляются на конверсию для получения водорода, т.е. установка сероочистки органично вписывается в общий производственный цикл. Расход водорода в таком процессе определяется по реакциям гидрирования сероорганических соединений в зависимости от их концентрации и состава.

í ‡∙ ÎË^‡ **4.8**5

Способы очистки газов регенерации цеолитов

Извлекаемые примеси	Способ очистки, сорбенты, катализаторы
H ₂ S, CO ₂	Абсорбция водными растворами хемосорбентов: алка- ноламинов, карбонатов и фосфатов щелочных метал- лов и др.
H ₂ S, CO ₂ с приме- сями COS и RSH	Абсорбция смешанными поглотителями, включающими алканоламин, физический растворитель и воду (на- пример, процесс "Сульфинол")
RSN с примесями H ₂ S, CO ₂ , COS	Абсорбция физическим растворителем (например, процесс "Селексол") с последующей ректификацией кислых газов
	Абсорбция H ₂ S, CO ₂ водным раствором амина с по- следующим извлечением COS и меркаптанов водным раствором щелочи (возможно с органическими добав- ками)
	Гидрирование COS и RSH на алюмокобальтмолибденовом катализаторе с последующим извлечением $\rm H_2S$ и CO_2 водным раствором амина
	Гидролиз COS и термическое разложение RSH на алюмосиликатных катализаторах с последующим извлечением $\rm H_2S$ и CO_2 водным раствором амина

Для газоперерабатывающих заводов метод гидрирования неприемлем в связи с необходимостью строительства установки получения водорода и большим его расходом.

Для очистки газов регенерации цеолитов от меркаптанов применительно к условиям газоперерабатывающих заводов предложено [81, 48] два метода. Первый основан на термокаталитическом разложении меркаптанов до сульфида водорода на высококремнеземистых цеолитовых катализаторах. Во втором методе используется реакция меркаптанов с элементарной серой с образованием полисульфидов и сульфида водорода. Оба способа находятся в стадии опытной проверки на ПО "Оренбурггаззавод".

Для очистки газов регенерации от сульфида водорода представляет интерес процесс прямого окисления [7]. В газы регенерации подмешивается воздух в количестве, необходимом для окисления сульфида водорода до элементарной серы:

 $2H_2S + O_2 = 2H_2O + 2S.$

Затем паровоздушная смесь проходит через слой катализатора при t = 250 °C. После охлаждения газов образовавшаяся сера отделяется в сероуловителе.

4.4.4. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ЦЕОЛИТОВОГО СПОСОБА ОЧИСТКИ ПРИРОДНОГО ГАЗА

Целесообразность того или иного способа очистки природного газа от сернистых соединений зависит от многих факторов и определяется производительностью установки, составом газа, концентрацией сернистых соединений и других примесей, требованиями потребителя к очищенному газу.

При решении конкретных практических задач, связанных с очисткой газа от сернистых соединений и частичным (или полным) удалением диоксида углерода, необходимо учитывать основные преимущества адсорбционных процессов перед жидкостными методами:

способность обеспечить очистку от всех компонентов в одной системе;

избирательность к сернистым соединениям при наличии в газах диоксида углерода;

обеспечение глубокой осушки газа;

простота в эксплуатации и возможность автоматизации.

По состоянию развития адсорбционной техники на сегодняшний день область применения адсорбционных процессов

для очистки углеводородных газов от сернистых соединений определена в общих чертах так: это очистка малосернистых природных газов от сульфида водорода при высоком мольном соотношении CO_2/H_2S , подготовка газа перед криогенными установками, очистка природного газа, а также газообразных и жидких фракций переработки нефти от меркаптанов. Данная оценка произведена с учетом затрат на дополнительную обработку газов регенерации. Следует, кроме того, отметить, что при необходимости адсорбционные процессы, включая систему очистки газов регенерации, могут быть реализованы без применения технологического пара. Указанное обстоятельство имеет важное значение при проектировании установок газоочистки для отдаленных газовых и нефтяных промыслов.

В связи с тем, что рабочие условия в процессах с применением цеолитов могут меняться в широких пределах, а методы утилизации газов регенерации разнообразны, дать всеобъемлющую оценку технико-экономических показателей, действенную во всех случаях, практически невозможно. Однако сравнение цеолитового метода с другими процессами для ряда отдельных случаев позволяет установить некоторые общие закономерности.

В [107] приведено сравнение экономических показателей моноэтаноламинового и цеолитового способов очистки природного газа от сульфида водорода для объема очищаемого газа 5,67 млн. м³/сут. Газ после цеолитовой очистки содержал 6 % об. СО₂, меньше 6 мг/нм³ сульфида водорода. Газы регенерации цеолитов очищали амином. Основные экономические показатели следующие (тыс. дол.):

Вещества	Цеолиты и амин	Амин
Капитальные вложения, включая стоимость перво-		
начальной загрузки реагентов	2300	2800
Годовые эксплуатационные расходы:		
Средства обеспечения:		
топливо	270	403
энергия	234	369
Другие затраты:		
поставки	56	93
химические вещества	34	22
потери углеводорода	57	92
Постоянные затраты:		
амортизация	164	200
налоги и страхование	92	112
техническое обслуживание	76	112
Общие эксплуатационные затраты	983	1403
Затраты на очистку 1 млн. фут ³	0,13 дол.	0,19 дол

Проведено технико-экономическое сравнение процессов извлечения меркаптанов из природного газа Оренбургского месторождения три-н-бутилфосфатом (ТБФ) и цеолитами NaX. Рабочие параметры процесса следующие:

Вещества	Цеолиты NaX	ТБФ
Производительность, млрд. м ³ /год	9,0	9,0
Содержание меркаптанов в газе, мг/м ³ :		
исходном	350 - 400	350-400
очищенном	20-36	10-20
Расход газов регенерации (выветривание), тыс. м ³ /год	360,0	3,15
Количество очищенного газа, млрд. м ³ /год	8,640	8,997
Температура регенерации, °С	300-320	120
Число основных аппаратов (адсорберы, абсорберы)	4	3
Загрузка химреагента, т	166	350
Потери химреагента, т/год	166	63
Расход топливного газа, млн. м ³ /год	14,1	-
Установленная мощность электроприемников, кВт	910	3000
Капиталовложения, млн. руб.	6,995	5,554
Себестоимость очищенного газа, руб/1000 м ³	0,20	0,19

При сравнении учитывался вариант очистки газа, отвечающего требованиям на газ, подаваемый в магистральные газопроводы. С учетом этих требований затраты оказались сопоставимы: себестоимость очистки ТБФ составляет 0,19 руб., а цеолитом 0,2 руб. Следует, однако, отметить, что в представленной работе сравнивались данные промышленной эксплуатации цеолитового процесса с ожидаемыми для ТБФ-процесса. В связи с этим результаты сопоставления нельзя считать в полной мере объективными.

Сравнительные показатели экономической эффективности цеолитового и ТБФ-процесса изменятся, если к качеству товарного газа предъявляются требования по глубокой осушке до точки росы -60 °C. В этом случае после очистки газа ТБФ потребуется дополнительная ступень осушки газа цеолитами.

Двухступенчатая обработка газа, естественно, потребует значительно больших затрат. Например, только капитальные вложения на установку осушки природного газа от точки росы –10 °С до точки росы –60 °С при давлении 5,5 МПа производительностью З млрд. м³/год составляет около 2 млн. руб.

В [7] проведено технико-экономическое сравнение адсорбционно-каталитического процесса очистки природного газа от сульфида водорода цеолитами с получением элементарной се-

ры с аминовым процессом. Рабочие параметры процесса следующие:

Аминовый Адсорб-

Процесс

Произволительность по сырьевому гозу млрл м ³ /год	5	ционно- катали- тический 5
Давление газа на входе в установку, МПа	5,5-6,0	5,5-6,0
на входе на выходе регенерации	20–25 25–30 170	20–25 25–30 300–320
Содержание сульфида водорода: на входе, % об на выходе, мг/м ³ Точка росы очищенного газа, °С	0,05 18–20 Не осуш.	0,05 Не более 5 40 ÷ -45
топливного газа, м ³ /1000 м ³ воды, м ³ /1000 м ³ пара, т/1000 м ³ электроэнергии, кВт-ч/1000 м ³	14 0,8 0,096 5,5	3,3 0,25 - 2,1
Товарный газ, млрд. м ³ /год Товарная сера, тыс. т/год Капиталовложения, млн. руб. Годовые эксплуатационные расходы, млн. руб.	4,83 2,82 20,67 7,3	4,93 3,61 12,32 3,9
приведенные заграты на т руб. товарной продукции, коп/руб.	41,5	23,1

Резюмируя изложенное, можно сделать следующие выводы:

как правило, адсорбционные процессы очистки природного газа сульфида водорода требуют несколько более высоких капитальных вложений, чем жидкостные методы;

эксплуатационные затраты в адсорбционных процессах значительно ниже, чем в жидкостных, особенно это относится к энергозатратам;

в адсорбционных процессах с закрытым циклом основная доля эксплуатационных затрат приходится на очистку газов регенерации цеолитов и утилизацию сернистых соединений. В связи с этим применение адсорбционного процесса очистки природного газа от сернистых соединений нецелесообразно в тех случаях, когда объем газов регенерации составляет более 20 % от объема обрабатываемого газа.

Представленная информация показывает, что в силу своих специфических особенностей адсорбционные процессы способны обеспечить наибольшую глубину извлечения сернистых соединений из природного газа, нежели любой из жидкостных процессов. Высокое сродство цеолитовых адсорбентов к полярным молекулам, таким как сульфид водорода, меркаптаны, позволяет избирательно извлекать их из смесей с диоксидом углерода. Этот фактор имеет большое практическое значение при очистке малосернистого природного газа, когда соотношение мольных концентраций $CO_2/H_2S>10$.

Наряду с очисткой газов от сернистых соединений, процессы с применением цеолитов обеспечивают осушку газа до остаточного содержания паров воды по точке росы –60 °С и ниже. Столь глубокая осушка необходима при последующем низкотемпературном разделении природного газа для получения гелия, этана и др.

При промышленной реализации адсорбционных процессов сероочистки приходится решать вопрос утилизации газов регенерации, в которых концентрируются сернистые соединения. Выбор способа обработки газов регенерации зависит от состава сернистых соединений и их концентрации. Как правило, сернистые соединения извлекаются из газов регенерации жидкими поглотителями и затем направляются на установки Клауса для переработки. Необходимость дополнительной обработки газов регенерации является существенным недостатком адсорбционного метода сероочистки. Указанный фактор регулирует экономику процесса в целом. Поэтому адсорбционные методы сероочистки для установок большой производительности не применяют в тех случаях, когда количество газов регенерации превышает 20 % от объема очищаемого газа. Эта область для давлений на стадии адсорбции 4 МПа и выше при внешней теплоизоляции адсорберов ограничена концентрациями сульфида водорода и меркаптанов в природном газе 1,5-2,0 г/м³.

Важной составляющей технико-экономических показателей адсорбционного процесса является срок службы адсорбента. Основным фактором, вызывающим дезактивацию адсорбента в процессах сероочистки природного газа, является отложение углеродистых соединений ("кокса") на поверхности адсорбента. Образование "кокса" является результатом крекинга тяжелых углеводородов, меркаптанов и других соединений на стадии регенерации при повышенных температурах, причем цеолитовые адсорбенты катализируют этот процесс. Скорость закоксовывания адсорбента возрастает с увеличением температуры и давления.

Таким образом, главный резерв в развитии адсорбционных методов сероочистки с точки зрения снижения капитальных и эксплуатационных затрат и расширения области применения заключается в усовершенствовании технологии регенерации адсорбента с целью сокращения количества газов регенерации и продления срока службы адсорбентов. Это достигается

личными способами: применением внутренней теплоизоляции адсорберов, осуществлением регенерации в замкнутом цикле, использованием ступенчатого подъема температуры на стадии регенерации, периодическим выжигом "кокса" путем продувки слоя кислородсодержащим газом и др.

Необходимым условием повышения эффективности адсорбционных процессов сероочистки, кроме того, является использование гибких схем автоматического регулирования, позволяющих минимизировать количество циклов "адсорбции – регенерации" и уменьшить затраты во всех операциях.

4.5. ОЧИСТКА ГАЗА ОТ СЕРООРГАНИЧЕСКИХ ПРИМЕСЕЙ

Одной из трудноудаляемых примесей сероводородсодержащих природных газов является сероорганические соединения – меркаптаны RSH, сероокись углерода COS, сероуглерод CS₂. В процессе аминовой очистки, которая применяется в основном для извлечения H_2S и CO₂ (см. раздел 4.2), сероорганика извлекается частично. Для полной очистки газов применяют специальные процессы – адсорбция молекулярными ситами (см. раздел 4.3), абсорбция физическими абсорбентами, химические процессы и др.

Процессы абсорбционной очистки физическими абсорбентами (метанол, эфиры полигликолей и др.) рассмотрены в разделе 4.3. Между тем в практике применяются такие процессы, как низкотемпературная масляная абсорбция, где абсорбентом является фракция углеводородного конденсата (HTMA), процессы низкотемпературной конденсации (HTK), щелочные процессы и т.д. Далее рассмотрены основные особенности этих процессов.

4.5.1. ФИЗИЧЕСКИЕ ПРОЦЕССЫ ОЧИСТКИ ГАЗОВ ОТ RSH

4.5.1.1. НИЗКОТЕМПЕРАТУРНАЯ МАСЛЯНАЯ АБСОРБЦИЯ

Теория масляной абсорбции изложена в главе 4.3. Технологическая схема процесса в упрощенном виде представлена на рис. 4.91. Газ контактирует в абсорбере 1 с холодным углеводородным абсорбентом III. Насыщенный абсорбент IV

Рис. 4.91. Схема абсорбционного блока ГПЗ: 1 – абсорбер; 2 – десорбер; 1 –

газ на очистку; II – очищенный газ; III – тощий абсорбент; IV – насыщенный абсорбент; V – извлеченные из газа компоненты

поступает в десорбер 2, где из абсорбента выделяются поглощенные компоненты газа V, а регенерированный абсорбент после охлаждения снова подается в абсорбер.

Принципиальная технологическая схема промышленного процесса очистки газа от RSH, реализованного на Оренбургском ГПЗ, изображена на рис. 4.92. Компонентный состав основных потоков, их число и технологические параметры даны в табл. 4.86, 4.87.

Газ I, очищенный предварительно от H_2S и CO_2 диэтаноламином, охлаждается в пропановом испарителе 3 до минус 30 °С и подается в абсорбер 6. Туда же противотоком поступает охлажденный абсорбент – фракция 130-КК углеводородного конденсата, получаемая в виде нижнего продукта регенератора 15. Очищенный от RSH и тяжелых углеводородов газ II подается в газопровод, а насыщенный абсорбент последовательно проходит выветриватель 24, деэтанизатор 7, дебутанизатор 8 и регенератор 15. При этом RSH и COS переходят в пропанбутановую фракцию, которая затем подвергается очистке NaOH на отдельной установке.

В регенератор подается также постоянно свежий конденсат. Верхний поток регенератора (фракция НК-130) выводится на установку стабилизации конденсата, а нижний используется в качестве абсорбента VIII. Часть регенерированного абсорбента в количестве 2 % постоянно выводится с установки, чтобы избежать накопления в нем нежелательных примесей – продуктов разложения меркаптанов, гликоля, амина, попадающих в систему с газом.

Для предотвращения образования гидратов при охлаждении газа до -30 °C в поток газа перед испарителем 3 впрыски-

Рис. 4.92. Принципиальная технологическая схема установки очистки газа от

Рис. 4.92. Принципиальная технологическая схема установки очистки газа от меркаптанов методом HTA: 1 – сепаратор; 2, 21, 23, 25 – теплообменники; 3, 26 – пропановый испари-тель; 4, 5 – компрессоры; 6 – абсорбер; 7 – деэтанизатор; 8 – дебутанизатор; 9, 12 – воздушные холодильники; 10, 13 – емкости орошения; 11, 14, 17, 18, 20 – насосы; 15 – регенератор; 16, 19 – печи огневого нагрева; 22 – кипятильник; 24 – выветриватель; 27, 28 – отстойники; І – газ после очистки от H₂S; II – очищенный газ; III – газ выветривания; IV – газ деэтанизации; V – пропан-бутановая фракция; VI – стабильный конденсат; VII – фракция нк-130 кон-денсата; VIII – абсорбент регенерированный; IX – пар; X – водогликолевый раствор на регенерацию; XI – гликоль (цифры в кружках – номер тарелок)

вается ингибитор гидратообразования - этиленгликоль. Водный гликоль выводят на регенерацию и используют повторно.

При подаче абсорбента 0,17 л/м³ из газа извлекается около 99 % RSH, 54 % C_3 и 97 % C_4 . В процессе эксплуатации некоторые сложности возникают при попадании солей в систему вместе с конденсатом. Отлагаясь на стенках труб печей, они могут быть причиной аварийных ситуаций - прогара змеевиков. Поэтому вопросу качества абсорбента должно быть уделено серьезное внимание.

Методом НТМА возможно одновременно с меркаптанами удалить COS. Однако в этом случае удельная подача абсорбента возрастает в несколько раз, так как абсорбционный фактор для COS такой же, как у пропана, а парциальное давление

2 # TE*	·	00
11.18	1 /1	xn
1 # 11	+ T .	$\omega \omega$

Материальный баланс и составы потоков установки НТМА

Показатели	Сырьевой газ I	Товарный газ II	Тощее масло VIII	Газ верха деэтани- затора IV	Пропан- бутановая фракция V
Давление, МПа (изб)	5,6	5,5	6,0	1,35	1,7
Температура, °С	35	30	-30	16	50
Молекулярная масса	19,07	17,72	139,90	24,18	51,38
весовой расход, кг/ч:			44480	_	38701
жидкость	293643	266463	44403	28/90	
Объемный расход.	200040	200400		20450	
$M^3/4ac$					
жидкость			60,1	_	70,7
пар	348127	336758	_	26378	_
Состав, кг-моли/ч:					
C_1	13291,34	13291,34		617,47	
C_2	869,94	864,50		440,60	5,44
C_3	320,80	145,80		109,45	1/5,0
$^{\text{H30-C}_4}$	132.10	4,97		4,10 1,72	30,32 130,36
$H-C_4$	50.00	1,65		1,72	130,30
изо-С5	49 16	_		_	0.93
C_{1}	24 16	_		_	0,55
\widetilde{C}_{7}^{6}	0.18	_		_	
Č.	0.05	0.07	6.49	0.03	
$\tilde{C}_{\alpha}^{\circ}$	0,01	0,09	137,98	0,24	
C_{10}^{3}	_	0,08	47,67	0,03	
C_{11}^{10}		_	0,08	110,41	0,03
Ароматические соеди-	8,020	-	-	-	
нения:					
N_2	724,32	724,32		4,06	
CO_2	0,17	0,17		0,08	-
H_2S	0,05	0,04		0,04	0,02
RSH	7,63	0,11	15,5	0,07	8,22
Итого	15541,40	15034,39	318,05	1178	427,43

í ‡∙ ÎË^‡ **4.8**7

Условия работы и характеристика основных аппаратов

Аппараты	Темпера	тура, °С	Давление, МПа (изб)	Число тарелок	Диаметр, м (верх/низ)
1	Bepx	Низ		1	i i i
Абсорбер Выветриватель Деэтанизатор Дебутанизатор Регенератор	-30 -30 16 65 90	-28 - 136 190 200	5,6 3 1,35 1,07 0,08	25 - 44 35 35	$\begin{array}{r} 3\\-\\1,5/2,7\\2,7\\2,4/3,2\end{array}$

много ниже. Так, при содержании COS в газе 1 г/м³ удельное орошение требуется поднять до 1 л/м³ газа, при этом извлечение COS и пропана составит около 96 % от потенциала.

В настоящее время для расчета НТМА широко применяется

ЭВМ, существуют различные программы, дающие хорошее приближение к реальным результатам, такие, например, как "HYSIM", фирмы Гипротех, Канада [149] и др.

Для приближенных расчетов с целью определения количества тощего масла, степени извлечения отдельных компонентов может быть использовано уравнение Кремсера – Брауна [38]:

$$\ddot{A}_{\mathrm{s}\Phi} = \frac{\mathrm{L}_{0}}{\mathrm{K}\mathrm{V}_{\mathrm{N}+1}},$$

где $\ddot{A}_{_{3\varphi}}$ – эффективный, или средний коэффициент абсорбции; L_0/V_{N+1} – число молей абсорбента, подаваемых в абсорбер на 1 моль газа; К – константа равновесия ключевого компонента при средних давлении и температуре в колонне.

 $\dot{A}_{3\phi}$ определяется по графику Кремсера (рис. 4.93) при заданной степени извлечения компонента φ и числе теоретических тарелок п в абсорбере. Константа равновесия К определяется известными методами [79]. Зная $\ddot{A}_{3\phi}$, К и V_{N+1}, расчитывают L₀.

4.5.1.2. НИЗКОТЕМПЕРАТУРНАЯ КОНДЕНСАЦИЯ

Суть метода низкотемпературной конденсации (HTK) заключается в том, что весь газ методом охлаждения до минус 100 °С переводят в жидкое состояние. Затем низкотемпературной ректификацией из конденсата выделяют пропанбутановую фракцию вместе с RSH и COS. Очистку ПБФ осуществляют на специальной установке. Для охлаждения газа используют холод, полученный в турбодетандере при расширении газа. Газ требует предварительной очистки от H_2S , CO₂ и влаги. Считается, что метод НТК по эксплуатационным затратам примерно на 20 % дешевле, чем метод НТМА. Кроме того возможно получение этановой фракции в качестве товарного продукта.

Принципиальная технологическая схема одного из промышленных вариантов НТК приведена на рис. 4.94 (Астраханский ГПЗ). Назначение установки – извлечение RSH и углеводородов С₃₊, COS из газа.

Режим работы основных аппаратов и состав основных потоков промышленной установки представлены в табл. 4.88, 4.89.

Сырьем установки является газ I, прошедший предварительно очистку от H_2S и CO_2 на установках аминовой очистки

Рис. 4.94. Принципиальная технологическая схема промышленной установки НТК Астраханского ГПЗ (цифры внутри аппаратов – номера тарелок): E01-E06 – теплообменники; B01, B02, B04 – сепараторы; B05 – осушитель; C01 – абсорбер; C02 – деэтанизатор; ТК – турбодетандер; К – компрессор; I – обессеренный газ на очистку; II – товарный газ; III – головная фракция деэтанизатора; IV – фракция С_{3+выше}, RSH, COS; V – конденсат абсорбера; VI – водяной конденсат

и промывку водой для извлечения амина. Газ осушается молекулярными ситами в абсорбере ВО5 и после рекуперативных теплообменников с температурой минус 50 °С поступает в турбодетандер ТК. В ТК газ расширяется, охлаждаясь до минус 100 °С; давление при этом срабатывается с 6,3 МПа до 1,85 МПа. Газожидкостная смесь разделяется в абсорбере СО1. Абсорбер имеет семь клапанных тарелок; на верх колонны подается этановый конденсат с температурой минус 71 °С. Сверху СО1 уходит очищенный газ, который отдает холод в рекуперативных теплообменниках, компримируется компрессо-

í ‡∙ ÎË^‡ 4.88

Условия работы и характеристика основных аппаратов

Показатель	Абсорбер	Деэтанизатор
Температура, °C: верх	-100	-46
низ	-100	75
Давление, МПа (изб.)	1,85	1,80
Число тарелок	7	24
Диаметр, м	3,5	2,27

í ‡∙ IE^‡ 4.89	í ‡.	ÎË^‡	4.89
----------------	------	------	------

материальный оаланс и составы потоков установки птк Атт	баланс и составы потоков установки Н	ТК АГПЗ
---	--------------------------------------	---------

	Обессерен-	Очищенный	Нижний	Верхний	Нижний
Показатель	ный газ на	товарный	продукт аб-	продукт деэ-	продукт деэ-
	установку	газ	сорбера	танизатора	танизатора
	I	II	V	III	IV
Давление,	6,3	5,7	1,85	1,8	2,7
МПа (изб.)					
Температу-	49	40	-100	-46	75
pa, °C					
Молекуляр-	18,3	17	24,3	21,2	54,6
ная масса	0.40500			00.400	
Весовой рас-	246592	209093	25444	38423	22787
ход, кг/ч					
Состав, кг-					
моли/ч:	20.72				
	29,72	0.04	0.02	0.08	
Γ_{2}	2 56	0,04	0,02	1 22	_
N_{-}	593 42	560 36	5 71	11 1/	_
\mathbf{C}^2	12051 62	11378 87	657 01	1136.28	_
\tilde{C}_{1}^{1}	389.68	352 59	213 56	659.22	15 178
\tilde{C}_{2}^{2}	232.94	0.10	133.63	0.03	219.49
изо-С,	27,62	-	10,31	-	25,99
н-С, 4	54,28	-	15,69	—	51,02
изо-C ₅	34,04	-	5,23	-	31,83
н-С5	32,96	-	3,56	-	30,74
C_6	22,16	-	0,79	-	20,24
C_7	18,78	-	0,21	-	15,19
COS	3,10	0,12	1,83	-	2,79
CH ₃ SH	1,19	-	0,35	-	1,10
C_2H_5SH	4,05	400075	0,62	-	3,82
Итого	13498,16	12294,5	1049,2	1808,0	417,4

ром, совмещенным с турбодетандером ТК до 2,1 МПа, затем компрессором с паровой турбиной К до 5,9 МПа и выводится с установки как товарный газ 11. Содержание RSH в товарном газе 10–20 мг/м³; в исходном – 400+600 мг/м³. Конденсат V снизу СО1 поступает в деэтанизатор СО2,

Конденсат V снизу СО1 поступает в деэтанизатор СО2, сверху которого выводится этановая фракция III; часть ее сбрасывается в очищенный газ, а часть используется для орошения СО1 и СО2. СО2 содержит 24 клапанных тарелки. Снизу СО2 выводится ШФЛУ (широкая фракция легких углеводородов) IV, которая откачивается на специальную установку очистки от RSH и COS и далее потребителю.

4.5.2. ХИМИЧЕСКИЕ ПРОЦЕССЫ ОЧИСТКИ ГАЗОВ

4.5.2.1. ОЧИСТКА ГАЗОВ ЩЕЛОЧНЫМИ РАСТВОРАМИ

Очистка газов от RSH щелочными растворами, в частности NaOH, является одним из первых процессов, примененных для этих целей. В основе способа лежит химическая реакция RSH, являющихся слабыми кислотами, с щелочью:

$RSH + NaOH \gtrsim RSNa + H_2O.$

Реакция обратима и при повышении температуры сдвигается влево, что позволяет регенерировать щелочь и использовать ее повторно.

Изучение кинетики абсорбции RSH (этилмеркаптан) щелочью показало, что скорость абсорбции практически полностью лимитируется сопротивлением в газовой фазе. Изменение температуры, концентрации щелочи и плотности орошения не влияет на коэффициент массопередачи [86].

Наличие в газе, кроме RSH, CO₂ и H₂S приводит к тому, что абсорбция RSH существенно уменьшается. Это происходит изза того, что H₂S и CO₂, являясь более сильными кислотами, чем RSH, вытесняют меркаптаны из их соединений с NaOH. Кроме того уменьшается концентрация свободной щелочи в растворе за счет ее взаимодействия с H₂S и CO₂ и образования нерегенерируемых NaHS, NaHCO₃, Na₂CO₃. Поэтому щелочная очистка рекомендуется для очистки от RSH природных газов, содержащих не более 0,1-0,2 % CO₂. В противном случае применяется двухступенчатая очистка: на первой – очистка газа от H₂S и CO₂ аминами, на второй – очистка газа от RSH щелочью.

Типичные результаты при двухступенчатой очистке газа МЭА (14 %-ный раствор) и NaOH (1–3%-ный раствор) на установке производительностью 420 тыс. м³/сут [168] следующие:

Газ	Исходный	Очищенный
Н ₂ S	2,1 % об.	2 мг∕м ³
CÔ ₂	1,4 %об.	2 мг/м ³
RSĤ	600 мг/м ³	7 мг/м ³

Кратность орошения в абсорбере второй ступени с двенадцатью колпачковыми тарелками – 0,1 л/м³ газа, расход сухой щелочи 0,3–0,13 кг/1000 м³ газа.

Данные по растворимости RSH в щелочи в зависимости от ее концентрации, температуры, степени карбонизации щелочи представлены в [86, 89].

В настоящее время щелочные процессы для очистки природных газов от RSH практически не применяются, так как существуют более прогрессивные технологии такие, как очистка физическими абсорбентами, химико-физическими абсорбентами, адсорбцией цеолитами.

4.5.2.2. ОКИСЛИТЕЛЬНЫЕ И ДРУГИЕ ПРОЦЕССЫ ОЧИСТКИ ГАЗОВ

Одним из старейших окислительных процессов удаления сернистых соединений из промышленных газов является процесс очистки гидроксидом железа $Fe(OH)_3$. Он был введен в Великобритании в середине прошлого столетия. В основе процесса лежит реакция сернистых компонентов газа с гидроксидом железа, содержащемся в поглотительной массе:

 $H_2S + Fe(OH)_3 \rightarrow Fe_2S_3 + H_2O;$

 $RSH + Fe(OH)_3 \rightarrow Fe(RS)_3 + H_2O.$

При этом поглотительная масса теряет активность.

На стадии регенерации через поглотительную массу продувают воздух, в результате чего сульфид железа Fe_2S_3 и меркаптид железа $Fe(RS)_3$ окисляются, образуя гидроксид железа, серу и дисульфиды:

 $\operatorname{Fe}_2S_3 + O_2 \xrightarrow{\operatorname{H}_2O} \operatorname{Fe}(OH)_3 + S\downarrow;$

$$Fe(RS)_3 + O_2 \xrightarrow{H_2O} Fe(OH)_3 + R-S-S-R.$$

В процессе эксплуатации поглотительная масса постепенно теряет активность из-за неполной регенерации, частично разрушается и ее заменяют новой.

Известна промышленная установка очистки природного газа от меркаптанов оксидом железа на древесной стружке, построенная в США в 1963 г. Мощность ее по газу 850 тыс. м³/сут. Расчетный срок службы очистной массы – 170 дн.

В настоящее время существует множество окислительных процессов очистки, но применяются они в основном для очистки газов от H_2S и для очистки жидких продуктов от RSH. Среди них такие как "Стретфорд", "Сульфолин", "Ло-Кэт" – для очистки газов от H_2S , и "Мерокс" – для очистки сжиженных газов и бензиновых фракций [132]. Более детально окислительные процессы очистки рассмотрены в разделе 4.6.

Для небольших потоков газов применяют нерегенеративный

процесс, основанный на химическом взаимодействии сернистых соединений газа с поглотителем, например, "Кемсвит" [131]. Поглотитель представляет собой суспензию мелкодисперсного оксида цинка в растворе ацетата цинка. H₂S, RSH и COS реагируют с ZnO мгновенно с образованием нерастворимых сульфида цинка и меркаптида цинка, которые также поддерживаются в суспендированном виде:

 $H_2S + ZnO \rightarrow ZnS + H_2O;$

434

 $RSH + ZnO \rightarrow ZnRS + H_2O;$

СО₂ с поглотителем не реагирует.

По мере отработки поглотителя часть его выводится из абсорбера в отвал и вводится свежий. Срок жизни поглотителя зависит от состава газа и составляет 30–180 дн. Сырой газ должен быть водонасыщенным и не содержать жидких углеводородов.

Затраты на очистку газа составляют около 11 дол. США на килограмм извлеченной серы. По такой технологии эксплуатируется 150 установок [131].

4.6. ОЧИСТКА ГАЗА ОКИСЛИТЕЛЬНЫМИ И МИКРОБИОЛОГИЧЕСКИМИ МЕТОДАМИ

Жидкофазно-окислительные процессы обычно применяются для очистки малосернистых газов и газов малых месторождений с небольшим количеством получаемой серы (до 5–10 т в сутки). Эти методы основаны на поглощении сероводорода раствором какого-либо окислителя с образованием элементарной серы и последующей регенерацией раствора кислородом воздуха.

Наибольшее распространение за рубежом среди промышленных процессов получили следующие: мышьяково-содовый, Стретфорд, поташный метод с использованием хелатных комплексов железа. Имеются и другие подобные системы: процесс Таћапакх (Япония) – с использованием окислительновосстановительных (OBC) систем на основе хинолина или антрахинона, Xiperion – с использованием OBC Fe-нафтохинон, с использованием OBC на основе фталоцианинов. В России и странах СНГ в настоящее время используются, в основном, процессы на базе комплексных соединений железа и фталоцианинов кобальта. Степень извлечения и утилизации сероводорода во всех окислительных процессах составляет более 98 %. Сера получаемая в процессах окислительной очистки, получается в мелкодисперсной форме со средним размером частиц 5–10 мк. Для выделения дисперсной серы из раствора применяют гравитационное осаждение, фильтрацию на фильтре или центрифуге. Для получения товарного продукта применяют также автоклавную плавку дисперсной серы. Дисперсная сера также пригодна в качестве сырья для приготовления коллоидной серы.

4.6.1. ПРОЦЕСС СТРЕТФОРДА

В процессе Стретфорда используется водный щелочной раствор солей ванадия в качестве активной части. Реакции, происходящие при очистке газа, следующие:

$$\begin{split} \mathrm{H}_{2}\mathrm{S} + \mathrm{CO}_{3}^{2^{-}} &\rightleftharpoons \mathrm{HS}^{-} + \mathrm{HCO}_{3}^{-}; \\ \mathrm{HS}^{-} + 2\mathrm{V}^{5^{+}} &\rightarrow 2\mathrm{V}^{4^{+}} + \mathrm{S}^{0} + \mathrm{H}^{+}; \end{split}$$

 $2 V^{4+} + 1/2O_2 \rightarrow 2V^{5+} + O^{2-}.$

Для ускорения процесса окисления ванадиевой соли применяют различные азотсодержащие соединения, такие как антрахиноны, амины [165].

Технологическая схема процесса Стретфорда приведена на рис. 4.95. После абсорбции раствор выдерживается 8–10 мин в промежуточной емкости для завершения реакции с образованием серы, затем подается на регенерацию кислородом воздуха. Сера отделяется от раствора в отстойнике, декантируется на центрифуге и переплавляется в автоклаве. Абсорбционная жидкость полностью возвращается в процесс [102].

Процесс, разработанный фирмой Бритиш Газ, включает кроме традиционных блоков абсорбции – регенерации и фильтрации серы, еще и установку по выведению солей из поглотительного раствора, что позволяет применять технологию для извлечения сравнительно больших объемов серы. Технология применяется как для очистки природного газа, так и других технологических газов (рис. 4.96).

В мировой зарубежной практике работает около 30 установок. Капитальные затраты составляют ориентировочно – 0,8 млн. дол. на тонну серы, а эксплуатационные ориентировочно – 80 дол. на тонну [119]. Абсорбционный раствор представляет собой водный щелочной раствор ванадата натрия, карбоната натрия, натриевых солей антрахинонов [167].

В последние годы разработана модификация Стретфорд-

Рис. 4.95. Схема процесса Стретфорд очистки природного газа от сероводо-рода: 1 – абсорбер; 2 – реакционная емкость; 3 – регенератор; 4 – сборник серы; 5 – центрифуга; 6 – автоклав; 7 – сборник раствора; 8 – насосы; 9 – воздухоотдувка

Рис. 4.96. Схема процесса Стретфорд фирмы Бритиш Газ: 1 – абсорбционная колонна; 2 – реакционная емкость; 3 – окислитель; 4 – блок обессоливания; 5 – блок производства серы; 6 – сборник серы

Рис. 4.97. Схема процесса Сульфолин фирмы Линде: 1 – абсорбер; 2 – реакционная емкость; 3 – окислитель; 4 – сборник серы; 5 – центрифуга; 6 – автоклав; 7 – емкость по-глотительного раствора; 8 – насос; 9 – воздухоотдувка

процесса под названием Сульфолин или "P-S" процесса, лицензиар – фирма Линде. Сущность процесса заключается в замене антрахинона на комплексные соединения железа, действующие в качестве катализатора окисления соли ванадия и дополнительном введение в состав соли бора. Примерный состав раствора следующий, г/л: ванадат натрия 3,68; борная кислота 3,76; комплекс железа 2,85; карбонат натрия 28,6.

Окисление сульфид-иона ванадатом происходит по реакции $V(OH)^{4+} + H^+ + HS^- \rightarrow 2VO^{2+} + 6H_2O + S.$

Регенерация раствора осуществляется окислением кислородом

 $4\text{VO}^{2+} + 10\text{H}_2\text{O} + \text{O}_2 \rightarrow 4 \text{ (VOH)}^{4+} + 4\text{H}^+.$

Соединения бора уменьшают скорость образования кислородных соединений серы, которые являются побочным продуктом, ускоряя процесс образования серы:

$2V(OH)_2(BO_2)^{2+} + 3H^+ + HS^- \rightarrow 2V(BO_2)^{2+} + 4H_2O + S.$

Технологическая схема процесса приведена на рис. 4.97. Первая установка по этому процессу была построена в ЮАР в 1985 г. по очистке 275 000 м³/ч газа, содержащего 12 г/м³ сероводорода. Основные показатели процесса Сульфолин следующие (на тонну серы) [138].

асход энергии, кВт/ч	1
Эхлаждающая вода, м ³	10
Іар низкого давления, т	0,3
Іар высокого давления, т	0,5
Симреагенты, кг	2

Процессы Стретфорд и Сульфолин применяются, как правило, при невысоких парциальных давлениях CO_2 , до 0,5 атм, так как конкурентная абсорбция CO_2 уменьшает поглотительную способность раствора по сероводороду, снижает pH раствора и ухудшает очистку газа. К недостаткам технологии следует отнести токсичность соединений ванадия, что требует специальных мер при очистке сточных вод.

4.6.2. ПОТАШНЫЙ МЕТОД

Метод применяется для очистки газов, содержащих углекислоту, которая необходима для создания обратимости процесса при регенерации абсорбента. В основе метода лежат обратимые реакции:

 $H_2S + CO_2 + Na_2CO_3 \rightleftharpoons NaHCO_3 + NaHS.$

Десорбция поглощенного кислого газа осуществляется при 60–70 °C, с использованием вакуума или без него, но при более высокой температуре. Конденсирующаяся вода возвращается в десорбер.

Процесс имеет ограничение в применении по парциальному давлению углекислоты в исходном газе, которое определяет остаточное содержание сероводорода в очищенном газе. Наиболее крупная установка очистки природного газа сооружена по проекту фирмы Интеграл Инжиниринг в Абу-Даби, производительностью 112 000 м³/ч, [77]. Потребление энергии составляет 3 кВт/1000 м³ сырого газа, затраты на охлаждение – 55 кВт/1000 м³ сырого газа. В промышленной эксплуатации находится около 20 установок общей производительностью по газу 1 млн м³/ч. Разработчиком процесса является компания Krupp Koppers Gmbh.

4.6.3. МЫШЬЯКОВО-СОДОВЫЙ ПРОЦЕСС

На старых установках используется содовый раствор с добавками соединений мышьяка, в качестве катализатора окисления поглощенного сероводорода. Сера выделяется из раствора на стадии регенерации поглотителя кислородом воздуха, затем отделяется на центрифуге или на фильтре. На новых установках мышьяк заменяется на глицин, в этом случае абсорбент становится активированным поташом и регенерация раствора осуществляется при помощи тепла, с получением кислого газа, который требует дальнейшей утилизации. Химические реакции, происходящие при очистке газа, следующие:

 $2Na_2AsO_3 + 3H_2S \rightarrow Na_3AsS_3 + 3H_2O;$

 $Na_3AsS_3 + 3Na_3AsO_4 \rightarrow 3Na_3AsO_3S + Na_3AsO_3;$

 $Na_3AsO_3S \rightarrow Na_3AsO_3 + S;$

 $Na_3AsO_3 + 0.5O_2 \rightarrow Na_3AsO_4$.

Эксплуатационные затраты существенно зависят от концентрации и количества извлекаемого кислого газа. В промышленной эксплуатации находится более 20 установок, 18 из них работают на абсорбенте с использованием соединений мышьяка, с получением элементарной серы за счет жидкофазного окисления, большинство же других установок работают по способу активированного поташа с различными химическими добавками. Капитальные затраты для установки производи-

тельностью 2,8 млн. м³ газа в сутки составляет 2 млн. дол. На установке удаляется сероводород с 600 ppm до 0,5 ppm [30]. Существенным недостатком процесса является высокая токсичность соединений мышьяка, что требует специальной технологии для извлечения мышьяка из сточных производственных вод.

В СНГ работает 2 установки для очистки коксового газа: на Московском и Мариупольском коксогазовых заводах, аналогичная установка работает также в Эстонии (Кохтла-Эрве).

4.6.4. ОЧИСТКА ВЗВЕСЯМИ ГИДРООКСИДА ЖЕЛЕЗА

Процесс известен под названием Ферокс и основан на применении водной щелочной взвеси гидроокиси железа, которая является активным поглотителем растворенного сероводорода, [147]. Химизм процесса следующий:

 $H_2S + Na_2CO_3 = NaHS + NaHCO_3;$

 $Fe(OH)_3 + Na_2CO_3 + NaHS + 3NaHCO_3 =$

 $= \text{FeS} \cdot 3\text{H}_2\text{O} + 3\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O};$

 $2\text{FeS}\cdot3\text{H}_2\text{O} + 3\text{O}_2 = 2\text{Fe(OH)}_3 + 6\text{S}.$

При регенерации раствора кислородом воздуха образуются также побочные кислородсодержащие соединения серы в виде тиосульфата; сера флотируется воздухом и удаляется из раствора в виде шлама, который не находит применения, так как содержит до 15-20 % мас. гидроксида железа. Серьезным недостатком абсорбента является его абразивность, приводящая к износу технологического оборудования, а также "старение" активной гидроокиси железа, выражающейся в кристаллизации аморфной фазы гидроксида железа, снижении его активности в реакции поглощения сероводорода и окисления кислородом, в результате чего необходима постоянная подпитка свежими реагентами для поддержания требуемой степени очистки газа. На большинстве установок процесс Ферокс вытеснен более эффективными процессами и в настоящее время потерял свое значение, однако в США, Японии, еще сохранилось несколько действующих установок небольшой производительности.

4.6.5. ОЧИСТКА ГАЗОВ РАСТВОРАМИ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ЖЕЛЕЗА

Процесс основан на окислении сероводорода водным щелочным раствором с растворимыми комплексами железа. В

качестве лигандов, поддерживающих железо в растворенном состоянии используются аминокарбоновые кислоты и их натриевые соли. Наиболее распространенным комплексоном является этилендиаминтетраацетат (ЭДТА). Процесс селективен по отношению к сероводороду в присутствии СО₂. Технология может применяться для очистки газов с высоким парциальным давлением углекислоты. Регенерация раствора абсорбента осуществляется кислородом воздуха. Основные химические реакции, происходящие при очистке газа следующие:

 $H_2S + H_2O \rightarrow HS^- + H^+ \rightarrow S^{2-} + H^{+-};$

2 $Fe^{3+}EDTA + S^{2-} \rightarrow 2Fe^{2+}EDTA + S;$

 $2Fe^{2+}EDTA + 0.5 O_2 + 2H^+ \rightarrow 2Fe^{3+}EDTA + H_2O.$

Процесс имеет несколько разновидностей, разрабатываемых фирмами ARI Tech.Inst. (США), под названием Lo-Cat, процесс Sulfint фирмы Integral Engineering (Австрия) [136, 133, 120, 64], процесс Sulferox фирмы Shell Oil и фирмы Dow Chemical (США) [68, 65, 67, 76].

По технологии Ло-Кэт действует около 30 промышленных установок (рис. 4.98). Наиболее крупная из них работает в США производительностью 12 т серы в сутки. В перерабатываемом кислом газе регенерации амина содержится 61 % углекислоты, 30 % H₂S, остальное – сульфиды и меркаптаны. Во избежание запаха дисульфидов отходящий с установки воздух сжигается в печи. Получаемая на установке дисперсная сера промывается водой и плавится в автоклаве.

Рис. 4.98. Схема процесса Ло-Кэт для очистки газов от сероводорода: 1 – эжектор; 2 – абсорбер; 3, 5 – теплообменники; 4 – окислительный аппарат; 6 – автоклав; 7 – паровой подогреватель; 8 – насосы; 9 –воздухоотдувка

Процесс Салферокс, разработанный фирмой Шелл использует реагент фирмы Дау-Кемикал, отличающийся повышенной стабильностью, низкими капитальными и эксплуатационными затратами. Затраты по реагентам составляют 80–100 дол. на 1 т сероводорода. Имеющиеся данные показывают, что в процессе очистки газа может быть удалено до 50–80 % метилмеркаптана и 30–60 % сероокиси углерода от исходного содержания.

Процесс Салферокс отличается применением нового состава комплексона, который аналогичен EDTA (этилендиаминтетраацетат), но концентрация применяемого абсорбента по железу существенно выше (до 3 % мас.), чем в процессе Ло-Кэт (до 0,5 % мас.), рис. 4.99, [76]. Первая установка была запущена в эксплуатацию по очистке водородсодержащего газа производительностью 120 тыс. $m^3/$ сут, содержащего 4,5 % сероводорода и 57 % углекислоты при давлении 20 атм. Наиболее крупная установка запущена в 1992 г. в Denver City, Teхас. На этой установке очищается углекислота, содержащая 1500 ррм сероводорода при давлении 20 атм, на выходе установки остается 20 ррм H₂S. Процесс Sulferox в настоящее время является наиболее динамично развивающимся. С 1990 по 1995 год фирмой Шелл запроектировано и построено свыше 20 установок по очистке различных технологических газов.

Экономические показатели установок следующие. Для процесса Ло-Кэт, очищающего газ состава 50 % CO₂, 50 % H₂S при

Рис. 4.99. Схема очистки газа по методу Салферокс: 1 – абсорбер; 2 – сепаратор; 3 – выветриватель; 4 – регенератор; 5 – отстойник; 6 – фильтр; 7 – холодильник; 8, 9 – насосы

Таблица 4.90

Капитальные и эксплуатационные затраты установок очистки газа от сероводорода на НПЗ в Техасе

Процесс	Капитальные затраты, тыс. дол.	Эксплуатационные затра- ты, тыс. дол/год
МДЭА* Гидроксид железа Ло-Кэт	1,08 300 700	224 269 65
* Процесс аминовой о стоимость установки дож	очистки включает стоимост хигания кислого газа.	ть установки МДЭА плюс

атмосферном давлении и производительности по сере 0,5 и 2 т серы в сутки, капитальные вложения составят соответственно 0,1 и 0,45 млн. дол. Эксплуатационные затраты в расчете на 1 т извлекаемой серы составят, соответственно, 70 и 100 дол.

Сравнительные данные по процессам очистки газа от сероводорода различными методами (взвесь гидроокиси железа, Ло-Кэт аминового) при условиях очистки 140 000 м³/ч природного газа с концентрацией 0,07 % сероводорода на нефтеперерабатывающем заводе в Техасе (США) приведены в табл. 4.90.

Во ВНИИГАЗе разработана технология с использованием растворов комплексных соединений железа (рис. 4.100) [47, 49, 50], отличающаяся следующим:

1 – входной сепаратор; 2 – смеситель; 3 – расширенная камера; 4 – сепаратор раствора; 5, 6 – регенераторы; 7 – воздухоотдувка; 8 – центрифуга; 9 – отстойник; 10, 11 – блок приготовления раствора; 12, 13, 14 – насосы; 15 – сборник серы, 16 – сборник фугата

Таблица 4.91

Характеристика работы установок очистки по технологии ВНИИГАЗа

Страна	Год пуска	Очищаемый газ	Давление, МПа	H ₂ S, %	Расход газа, тыс. м ³ /ч
Россия	1985	Природный	3,5–4,5	0,1	20-25
Таджикистан	1985	Нефтяной	2,0–2,5	0,05	3-5
Туркмения	1991	Природный	5,5–6,5	0,19	10-15

снижением химической деструкции органического лиганда и уменьшением расхода химреагентов;

уменьшением адсорбционной способности дисперсной серы на стенках оборудования путем применения ПАВ;

ингибированием коррозии, позволяющим применять оборудование из обычных углеродистых сталей.

Распределение затрат в процессе при очистке природного газа (p = 5 МПа, 0,1 % H₂S, 100 кг/ч H₂S) следующее, %: химреагенты – 55; электроэнергия – 24; зарплата – 21. Стоимость химреагентов составляет 80–100 дол. на 1 т извлекаемого сероводорода. Удельная доля электроэнергии зависит от давления очищаемого газа и концентрации сероводорода в газе.

В СНГ находятся в эксплуатации три промышленные установки по технологии ВНИИГАЗ: в России, в Туркмении, Таджикистане. Характеристика данных установок приведена в табл. 4.91.

ВНИИГАЗом совместно с объединением "Кубаньгазпром" за 1,5 года спроектирована и построена "под ключ" установка очистки и осушки природного газа в Болгарии, которая была запущена в эксплуатацию в августе 1992 г.

Для сооружения установки используется отечественное оборудование, часть из которого изготавливается на месте монтажа по конструкторской документации ВНИИГАЗа. Технология может применяться для очистки различных газов от сероводорода с парциальным давлением углекислоты до 2 МПа.

4.6.6. МИКРОБИОЛОГИЧЕСКИЕ МЕТОДЫ

Метод очистки основан на контактировании сероводородсодержащего газа с водным раствором соли железа с образованием серы и последующим окислением раствора кислородом воздуха в присутствии микроорганизмов.

Химизм процесса следующий:

 $H_2S + Fe_2(SO_4)_3 \rightarrow S + FeSO_4 + H_2SO_4;$ 2FeSO₄+ H₂SO₄ + 1/2O₂ → Fe₂(SO₄)₃ + H₂O. 444 Окисление двухвалентного железа происходит в 500 000 раз быстрее в присутствии бактерий, чем без них. Процесс проводится при pH 2,2–2,0 и при температуре 25–30 °C.

Первая промышленная установка по данному методу сооружена в Японии, в городе Косака. Параметры установки следующие [106]: расход газа – 200 м³/ч; содержание сероводорода в газе – 70 %, 20 % CO₂; содержание сероводорода в очищенном газе – 0,001 %.

Все аппараты установки изготавливаются из углеродистой стали с резиновым покрытием, трубопроводы – из пластика. Нагрузка биологического реактора может изменяться в соответствии с количеством перерабатываемого газа и сероводорода, так как количество бактерий автоматически увеличивается или уменьшается. В настоящее время действует 2 промышленных установки.

Удельные показатели процесса следующие: расход сульфата железа – 170 кг на 1 т серы; затраты электроэнергии – 40,8 кВт·ч 1 т серы; капитальные затраты, – 0,34 млн. дол.; себестоимость 1 кг серы – 0,45 дол.

Известно также применение метода биологической очистки, проводимой в насадочном реакторе с иммобилизированными микроорганизмами из семейства Тиобацилл, поддерживаемыми постоянно во влажном состоянии. Продуктами окисления сероводорода является элементарная сера и сульфаты, которые выводят из системы в виде CaSO₄ [29].

Достоинством биологической очистки газа является гибкость технологии, отсутствие отходов, минимум затрат на химреагенты. Недостатки: невысокая удельная производительность установок, высококоррозионные свойства абсорбента.

4.6.7. МЕТОДЫ ОЧИСТКИ БЕЗ РЕГЕНЕРАЦИИ СОРБЕНТА

Безрегенерационные методы очистки включают методы связывания сероводорода или сероорганических соединений с использованием для утилизации жидких или твердых поглотителей.

Безрегенерационный метод очистки целесообразно использовать для месторождений с суточным количеством извлекаемого сероводорода примерно до 50 кг и концентрацией сернистых соединений до 100 ррм. Необходимым условием применения таких процессов является безопасность с точки зрения токсичности продукта, получаемого при нейтрализации сероводорода.

К известным реагентам, используемых в таких случаях,

можно отнести водную взвесь или твердую массу гидроокиси железа, нитрит натрия, гипохлорит, окись цинка, нерегенерируемый амин – триазин и др.

Очистка газа раствором нитрита основана на реакции солей азотистой кислоты с ионами сульфида в водной среде:

 $NO_2^- + 3H_2S \rightarrow 3S + NH_3 + OH^- + H_2O.$

Реакция нитрита и сероводорода на начальной стадии протекает с невысокой скоростью, но после определенного индукционного периода, связанного, очевидно с накоплением в растворе политионатов, протекает достаточно эффективно. Известно применение нитрита на малых установках по очистке газа за рубежом, причем сообщается о возможности сброса отработанного раствора без нанесения ущерба окружающей среде.

Окисление сероводорода раствором гипохлорита происходит с образованием солей серной кислоты:

 $4\text{HClO} + \text{H}_2\text{S} \rightarrow \text{H}_2\text{SO}_4 + \text{H}_2\text{O}.$

Получаемая серная кислота нейтрализуется аммиаком с получением сульфата аммония, который используется в качестве удобрения. Раствор гипохлорита может быть получен на установке путем электролиза разбавленного раствора хлорида натрия в щелочной среде в бездиафрагменном электролизере.

Наибольшее распространение получили поглотители на основе соединений железа [66, 62, 63, 69]. В США используется как взвесь, так и твердый поглотитель на основе окислов Fe₃O₄, Fe₂O₃, известный под названием Салфатрит. Сорбент содержит небольшое количество влаги для ускорения сорбции сероводорода. Отработанный поглотитель смывается водой и вывозится с установки (рис. 4.101). Аналогичный поглотитель выпускает фирма ICI Chemicals – PURASPEC.

Химизм процесса аналогичен процессу с использованием водной взвеси гидроксида железа:

$$Fe_2O_3 + 3H_2S \rightarrow Fe_2S_3 + 3H_2O.$$

Сульфид железа может быть подвергнут окислению кислородом воздуха с получением серы, однако такая сера содержит значительное количество гидроксида железа и в дальнейшем не может быть использована. Полученный в результате реакции с сероводородом отход был проанализирован по методике Агенства по охране окружающей среды США на горючесть, коррозионность, реакционную способность и наличие тяжелых металлов. По результатам исследований было сделано заклю-

Рис. 4.101. Схема двухадсорберной установки сероочистки газа с использованием химических поглотителей:

1 – сепаратор; 2 – адсорбер

чение о безопасности реагента и продукта его взаимодействия с H_2S для персонала и окружающей среды.

Для удаления небольших количеств сероводорода из газа применяют также абсорбцию водной суспензией солей цинка, в результате образуется сульфиц цинка, являющийся нерастворимым в воде соединением. В состав суспензии входят диспергаторы на основе фосфатов, ПАВ, полиакрилаты и их сополимеры, [28].

4.6.8. СРАВНИТЕЛЬНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ПРОЦЕССОВ

Сравнительная характеристика процессов на основе жидкофазного окисления и свойств получаемой серы приведены в табл. 4.92, 4.93.

Таблица 4.92

0				1	
Спавните льн	ая хапакте	пистика по	опессов жил	кофазного	окис ления
Cpublinicabi	un hapanie	pine rinna inp	оцессов жид	no quonoi o	onnesicini

		=		
Процесс	Содержание Fe, %	Размер частиц, мк	S_2O_3	SO_4
Ло-Кэт	500-3000 ррм 500-2000 ррм	25-30	<2 %	<0,1 %
Ло-Кэт 2 Ло-Кэт*	250-2000 ррм 250-500 ррм	25-30	<5 %	<0,03 %
Салферокс	23 %	75-150	<0,1 %	<0,1 %
Bio-SR	Нет данных	10-20	0	0
* Автоцирку хом.	иляционный процесс	доочистки кислого	газа в смес	и с возду-

Таблица 4.93

Сравнительные свойства получаемой серы для различных процессов жидкофазного окисления

Показатели	Амин/клаус	Ло-Кэт	Салферокс	Bio-SR
Cepa, %	> 99,9	99.9^{*}	99.5^{*}	99,7
Растворимость Н ₂ S	Дa	нет	Нет	Нет
Углерод, ррм	До 500	До 100	До 1000	Нет
Аs, ррм	До 30	До 200	До 50	До 2000
Fe, ррм	Нет	До 50	До 5	До 20
Хлориды, ррм	До 10	нет	Нет	Нет
Цвет	Светло-желтый	Желтый	Желтый	-
* При оптимал	њной системе фи	ильтрации.		

Таблица 4.94

Технико-технологические показатели процессов жидкофазного окисления

Показатели	Амин / Клаус	Ло-Кэт	Салферокс	Bio-SR
Энергия, кВт: насос циркуляци-	8,2	60-80	102	63
воздух, компреми- рование	10,1	50-80	20	26
Общие затраты Пар, тыс. ккал/ч Топливний газ, тыс.	21,6 53 155	150–200 79,6 756	146 126 713	110 85 520
ккал/ч Химикаты, дол/ч	0,21	11,1	15,93	2,31

Сравнение технологических показателей процессов проводилось для установки с расчетными параметрами по очистке 56000 м³/сут, извлечения серы до 80 кг/ч серы, давлении очищаемого газа – 70 атм. Сравнительные данные по затратам приведены в табл. 4.94.

4.7. ОЧИСТКА ГАЗА НЕТРАДИЦИОННЫМИ МЕТОДАМИ

4.7.1. НОВАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ КИСЛОГО ГАЗА ЭЛЕКТРОДУГОВЫМ МЕТОДОМ С ПОЛУЧЕНИЕМ ВОДОРОДА И СЕРЫ

В значительной части месторождений природного газа и нефти содержится сероводород, переработка которого сопряжена со значительными трудностями. Вместе с тем, сероводород является одним из наиболее перспективных источников производства серы и водорода. Это обусловлено большими природными запасами сероводорода и тем, что термоди-

намически водород в молекуле сероводорода сравнительно слабо связан:

 $H_2S \rightarrow H_2 + S_{TB}; \Delta H_{298}^0 = 0.25 \text{ kBt/y/m}^3.$

Традиционные процессы получения серы из сероводорода, в том числе наиболее распространенный процесс Клауса, представляют собой различные исполнения процесса неполного окисления, описываемого реакцией:

$$2H_2S + O_2 \rightarrow \frac{2}{r}S_r + 2H_2O.$$

~

Принципиальным недостатком этих методов является то, что в качестве целевого продукта получается только элементарная сера, а водород превращается в воду, где он связан гораздо сильнее. Так, на предприятиях газовой промышленности в 1991 г. из сероводорода было произведено около 3,3 млн. т серы, при этом 2,4 млрд. м³ водорода превратилось в воду.

Водород – это экологически чистое топливо и энергоноситель.

По данным 1991 г. мировое производство водорода превышало 40 млн. т в год. Из них 70 % использовалось в химической промышленности, около 25 % – в процессах нефтепереработки и нефтехимии, около 6 % – в металлургии, пищевой, электронной и других отраслях промышленности.

Оценка потребления водорода в бывшем СССР, по данным авторов [112], приведена в табл. 4.95. Данные приведены в миллионах тонн в пересчете на условное топливо (по низшей теплоте сгорания – 1 т H_2 эквивалентна в пересчете на условное топливо – 4,1 т у.т.).

В настоящее время возрастает потребность в целевом производстве водорода как в связи с существенным углублением переработки нефти, так и в связи с расширением ее добычи. Потребность НПЗ в водороде удовлетворяется за счет произ-

Таблица 4.95

Оценка потребления водорода в бывшем СССР

Потребность, млн. т	1975 г.	1980 г.
Производство аммиака Производство метанола В том числе для газовой промышленности Прочие химические производства Нефтепереработка В том числе целевое производство Всего	12,0 1,2 0,08 0,3 3,0 -	$ \begin{array}{r} 17,0\\2,3\\0,12\\0,4\\4,0\\0,5\\23,7\end{array} $

водства его как побочного продукта в процессах каталитического риформинга бензина на 50–55 % [90].

Процесс полного разложения сероводорода на водород и серу является эндотермическим (энтальпия реакции при комнатной температуре составляет 0,25 кВт ч/м³ H₂S) и для эффективного разложения H₂S требуются температуры 1500÷ \div 2000 К. Такой нагрев возможен лишь в плазменных реакторах. Важнейшей характерной чертой и одновременно преимуществом плазмохимических систем является их высокая энергонапряженность и удельная производительность, т.е. мощность и производительность на единицу реакционного объема.

Мощность современных генераторов плазмы – плазмотронов при сравнительно небольших габаритах достигает 10 МВт. При этом удельная производительность газофазных плазмохимических процессов может составлять до 10 м³/ч газа – продукта на 1 см³ активного объема плазмы, что значительно превышает соответствующий показатель традиционных химико-технологических процессов. Так для процесса аминовой очистки на 1 см³ объема абсорбера расход газа составляет 0,3–0,5 м³/ч.

При практической реализации плазмохимических методов на первый план выступает проблема минимизации энергозатрат на получение полезного продукта, т.е. оптимизация процесса в целях достижения высокой энергетической эффективности.

Под энергетической эффективностью (КПД) понимают отношение термодинамически минимальных энергозатрат процесса к реальным затратам энергии, вкладываемой в разряд для получения продукта. Эта задача является, в настоящее время, одной из важнейших и наиболее общих задач плазмохимии [83].

На базе плазмохимического разложения сероводорода возможно создание безотходной экологически чистой технологии его переработки. Твердые и жидкие отходы в процессе переработки не образуются. После разложения в продуктах присутствуют сера в жидком или газообразном состоянии, водород и остатки неразложившегося сероводорода. Сера отделяется конденсацией.

Водород легко может быть выделен из газообразных продуктов как традиционными методами, например, аминовым, так и с применением полимерных мембран, а оставшийся сероводород возвращают на вход установки.

Анализ современного состояния процессов получения водорода и серы из сероводорода

Сероводород является потенциальным источником двух продуктов с высокими потребительскими качествами – водорода и серы. Действующие технологии переработки сероводорода нацелены, в основном, на производство серы, а водород в них безвозвратно теряется, превращаясь в воду.

В последние два – три десятилетия в мире возник интерес к процессу диссоциации сероводорода, позволяющему получать наряду с серой и водород. При производстве 1 т серы методом диссоциации сероводорода образуется 690 м³ водорода стоимостью 62 дол. США в мировых ценах (в 1991 г. стоимость 1000 нм³ водорода составляла 70 дол. США). Уже такая оценка показывает перспективность переработки сероводорода методом разложения. В литературе представлен широкий спектр методов разложения сероводорода, среди которых такие, как термические, радиационно-химические, электрохимические, фотохимические и плазмохимические.

Рассмотрим подробнее эти методы.

4.7.1.1. РАДИОЛИЗ СЕРОВОДОРОДА

Радиолиз сероводорода экспериментально изучался в работе [23].

При температуре 250 °С и Y-облучении – 1,5 Мрад (радиационно-химический способ) выход водорода составил 47,3 молекул/100 эВ при плотности H_2S 60 мг/см³. Более высокий выход водорода в присутствии катализатора Al_2O_3 составил 67,8 молекул/100 эВ. Степень разложения сероводорода – 7+9 %. Хотя удельные энергозатраты составили 1,8 кВт·ч/м³ H_2S , тем не менее, низкое значение степени разложения, а также обеспечение радиационной безопасности делают радиолиз мало пригодным для промышленности.

4.7.1.2. ЭЛЕКТРОЛИЗ СЕРОВОДОРОДА

При электролизе водных растворов сероводорода или электролизе в жидком сероводороде на катоде выделяется водород, а сера – в анодном пространстве.

Сероводород в жидком состоянии можно разложить при комнатной температуре и повышенном давлении. Для увеличения степени электролиза к сероводороду добавляют пиридин [134]. Выход водорода практически достигает 100 %, а выход

серы – 84 %. Остальная часть серы вступает в соединения с другими элементами.

В работах Kalina D.W., Maas E.T. [140, 141] изучались электрохимические методы непрямой конверсии сероводорода путем пропускания газообразного H₂S через растворы иодистых соединений с различным рН. В кислой среде КПД процесса наиболее высокий, однако сера образуется в необычной липкой пластической форме, трудно отделяемой от электродов и конструкции электролизера. В щелочной среде КПД снижается, однако сера образуется высокого качества и не липнет. В работе нет данных об удельных энергозатратах.

Недостаток метода – низкая удельная производительность, а также необходимость вспомогательных реагентов для проведения процесса.

4.7.1.3. ФОТОХИМИЧЕСКОЕ РАЗЛОЖЕНИЕ СЕРОВОДОРОДА

В работах В.Д. Русанова, Е.И. Гуцевича, В.В. Василевского [16, 17] описан метод, основанный на высокой поглощающей способности молекулами сероводорода излучения, соответствующего ультрафиолетовой области спектра.

Особенность метода – высокая селективность по сероводороду при фотолизе смесей, так как спектры поглощения сероводорода и других компонентов (CH₄, CO₂, H₂) не совпадают.

При квантовом выходе 1 $\frac{\text{молекула}}{\text{фотон}}(0,16 \text{ мол/эB})$ в экспериментах достигалась степень разложения $H_2S - 99,9$ %. Расчеты, выполненные по данным этих работ показали, что энергозатраты на разложение 1 м³ сероводорода составляют 7,5 кВт·ч. Учитывая, что КПД УФ-лампы около 20 %, удельные энергозатраты повышаются до 35÷38 кВт·ч/м³ H₂S.

Недостаток метода – высокие энергозатраты и низкая единичная мощность УФ-ламп. В связи с этим область применения УФ-метода ограничивается процессами тонкой доочистки кислого газа с содержанием H_2S не более 1 % объемных.

4.7.1.4. ТЕРМИЧЕСКАЯ ДИССОЦИАЦИЯ СЕРОВОДОРОДА

Одна из серьезных проблем термической диссоциации сероводорода – низкий выход водорода – 30÷40 % при температуре до 1400 К. Увеличение выхода водорода путем отвода продуктов реакции из реакционной зоны изучено в работе [130]. Авторы удаляли серу непрерывной конденсацией в охлаждаемом теплообменнике, а водород – периодическим охлаждением реакционной смеси жидким азотом, либо метанолом, либо моноэтаноламином (в промышленных условиях). Поиск катализаторов для процесса термической диссоциации H_2S показал, что лучшие результаты дает дисульфид молибдена, спеченный с оксидом алюминия. В качестве сульфида металлов предлагаются сульфиды железа, кобальта, никеля. Общий недостаток таких процессов – высокий расход катализатора, обусловленный протеканием побочных реакций с образованием нестехиометрических сульфидов: Fe_7S_8 , COS, $NiS_{1,20}$ и т.д.

Существуют различные способы нагрева сероводорода: сероводород нагревается в реакторе циклического действия с твердым теплоносителем AL_2O_3 ; сероводород нагревается в трубчатой печи с горящим топливом; получение водорода, серы и сероуглерода в процессе термической конверсии смеси сероводорода с метаном на катализаторе MoS_2 при температурах 980–1060 К. Получение сероуглерода оправдано тем, что стоимость его на мировом рынке в 4 раза выше, чем серы и конверсия H_2S в этом процессе всего 30 %.

Экономические оценки показали, что процесс каталитического подогрева смеси, получение при этом серы, сероуглерода и водорода с рециклом непрореагировавшей смеси является рентабельным.

Недостатки термической диссоциации: необходимость большой кратности циркуляции сероводорода и постоянного удаления водорода и серы из реакционной смеси, что связано с низкой конверсией сероводорода за один проход; применение дорогостоящих катализаторов, необходимых для ускорения процесса конверсии. Эти недостатки возникают в связи с проведением процесса диссоциации при низких температурах. Для увеличения степени конверсии сероводорода необходимо повышение температуры, что в свою очередь увеличивает скорость реакции и тогда отпадает необходимость в использовании катализатора.

Однако при традиционных способах нагрева температура не может превышать 1400 К, так как с одной стороны, температура процессов горения с дальнейшей теплопередачей ограничена, а с другой при теплопередаче через стенку или твердым теплоносителем более высокие температуры вызывают недопустимые тепловые нагрузки на материалы. Кроме того, возникают кинетические проблемы, связанные с недостаточной скоростью теплопередачи.

4.7.1.5. ПЛАЗМОХИМИЧЕСКАЯ ДИССОЦИАЦИЯ СЕРОВОДОРОДА

Большой вклад в развитие исследований по плазмохимической диссоциации сероводорода внесли работы В.Д. Русанова и сотрудников [83].

Впервые процесс диссоциации сероводорода в СВЧ-разряде был изучен в работе [15] на экспериментальной установке стандартного СВЧ-генератора "Парус" мощностью излучения 2 кВт и частотой излучения 2400 МГц. Разряд зажигался в кварцевой трубе, расположенной перпендикулярно к широкой стенке волновода. Сероводород подавался в реактор через ротаметр РС-5, позволяющий измерять его расход. Газ с помощью газораспределителя подавался в разрядную зону тангенциально. За разрядной зоной устанавливался теплообменник с водяным охлаждением, где происходила конденсация серы. Газообразные продукты реакции пропускались через систему азотных ловушек, в которых происходило вымораживание непродиссоциированного сероводорода.

Исследование диссоциации сероводорода проводилось при давлении 100 ГПа. Мощность W_n , поглощаемая плазмой равнялось 1,2 кВт. Полученные результаты показали, что минимальные энергозатраты на образование молекулы водорода составляют 0,85 кВт·ч/м³ H₂ при степени диссоциации сероводорода $\alpha = 45$ %.

Авторы объясняют полученные значения диссоциации сероводорода тем, что при тангенциальной подаче газа часть плазмообразующего газа проходит мимо разрядной зоны и не участвует в процессе диссоциации.

В ряде работ [9, 8] было исследовано разложение сероводорода в закрученном потоке в СВЧ и ВЧЕ-плазмохимических реакторах.

Эксперименты с СВЧ-разрядом проводились на частоте 2,45 ГГц при мощности генератора до 2 кВт. Тангенциальная составляющая скорости газа, поступающего в разрядную зону, $v_{\varphi} \sim 3 \cdot 10^4$ см/с. Средняя мощность, поглощаемая разрядом 1,2 кВт, давление в плазмотроне – 50–100 ГПа, расход сероводорода 0,15–0,5 л/с. Степень диссоциации сероводорода определялась с помощью газоанализатора. При минимальных энергозатратах 0,7 эВ/мол степень диссоциации сероводорода 45%.

Эксперименты с СВЧ-разрядом проводились в аналогичных условиях.

Мощность генератора составляла 4 кВт, частота – 40 МГц, расход плазмообразующего газа был 0,15–0,4 л/с при давлении 100 ГПа. Сероводород подавался в разряд тангенциально со скоростью вращения, близкой к скорости звука. Достигнутая максимальная величина энергозатрат составляла 1 эВ/мол, максимальная степень конверсии близка к 100 %.

Для объяснения механизма процесса авторы предполагают, что если процесс квазиравновесный, т.е. имеет место установление химического равновесия при данной температуре на первой стадии и стабилизация продуктов при охлаждении – на второй, то энергетические параметры процесса можно охарактеризовать с помощью понятий абсолютной и идеальной закалки. Абсолютная закалка предполагает сохранение количества продукта при охлаждении. Идеальная закалка предполагает сохранение степени разложения. Идеальная закалка лучше, чем абсолютная отражает особенности процесса. Однако различие степени конверсии и энергозатрат, рассчитанных для случаев абсолютной и идеальной закалки, невелико, так как мала концентрация радикалов (H, S, HS).

Основные потери энергии в квазиравновесном процессе с последующей абсолютной или идеальной закалкой заключаются в нагреве газа и в энергии, выделяющейся при рекомбинации молекул S₂ до S₈ и конденсации в твердую серу. Осуществлением "сверхидеальной" закалки, полезно ис-

Осуществлением "сверхидеальной" закалки, полезно использующей вышеупомянутую энергию, и отсутствием равновесия при нагреве сероводорода авторы и объясняют полученные экспериментальные результаты.

Был предложен механизм неравновесности, обусловленный быстрым выносом тяжелых молекул и зародышей конденсированной фазы (кластеров) из активной зоны на периферию. Такой вынос эффективно происходит в поле центробежных сил благодаря тангенциальной подаче газа при условии

$$\frac{m \cdot v_{\varphi}^2}{T} > \frac{R^2}{\lambda \cdot L} M_z^{1/2},$$

где m – масса S_2 ; v_{φ} – тангенциальная составляющая скорость потока H_2S по радиусу реактора; T – средняя температура высокотемпературной зоны; R и L – радиус и длина активной зоны; M_z – число Маха для продольного движения газа; λ – длина свободного пробега молекулы.

Доля серы, выносимая к стенке за время пребывания газа в высокотемпературной зоне, равна

 $\beta = 1 - \exp\left(-\frac{D}{T}\frac{L}{R \cdot v_z}\frac{dT}{dr}\right),$

где D – коэффициент температуропроводности; v_z – продольная скорость газа, снижается по мере увеличения расхода газа.

Таким образом, по мнению авторов [9, 8], центробежный эффект повышает устойчивость продуктов по отношению к обратным реакциям и снижает затраты энергии на получение продукта.

Важным фактором, влияющим на степень разложения сероводорода, является время охлаждения газовой смеси.

Авторы работы [114] экспериментально исследовали термическое разложение сероводорода в проточном реакторе при температурах от 600 до 1300 °C. Результаты опытов показали, что разложение сероводорода начинается при температуре 600 °C, однако, заметно сероводород разлагается при температуре свыше 800 °C. Вследствие обратимости реакции разложения сероводорода степень разложения представляет собой суммарный результат двух противоположно направленных процессов. В целях уменьшения протекания обратной реакции была увеличена скорость охлаждения газовой смеси, что позволило увеличить степень разложения сероводорода.

Таким образом, на основании полученных экспериментальных данных авторы заключают, что наиболее важным фактором, определяющим степень разложения сероводорода, является время охлаждения газовой смеси после реакционной зоны.

Кинетика разложения сероводорода при высоких температурах охлаждения (закалки), необходимая для стабилизации продуктов диссоциации, была изучена авторами работы [74].

Численно исследована диссоциация сероводорода в термической плазме на основе полного детального механизма этого процесса, включающего в себя как прямые, так и обратные реакции. В работе определены скорости охлаждения (закалки), необходимые для стабилизации продуктов диссоциации, и энергозатраты на получение водорода в термических плазмохимических системах. Были получены кинетические кривые, описывающие изменение концентраций реагентов в процессе разогрева со скоростью $V = 10^8 \cdot \text{K} \cdot \text{c}^{-1}$ и установления термодинамического равновесия при конечной температуре T = 1700 К. Найдено, что характерное время диссоциации при 1700 К равно 5·10⁻³ с. Причем, указанное время значительно меньше характерного времени пребывания газа в плазмохимическом реакторе.

Получена зависимость удельных энергозатрат A на получение водорода от удельного энерговклада E (и температуры разогрева) на основе термодинамического расчета [73].

Из графика на рис. 4.102 видно, что при скоростях охлаждения $10^7 \text{ K} \cdot \text{c}^{-1}$ во всем рассматриваемом диапазоне температур действительно наблюдается идеальная закалка, т.е. радикалы, полученные в процессе разогрева, рекомбинируют в продукты, повышая при этом выход водорода. Причем, при температурах, соответствующих минимальной величине энергозатрат (A == 1,8 эВ, T = 1700 K), охлаждение со сравнительно невысокими скоростями $V = 10^4 - 10^5 \text{ K} \cdot \text{c}^{-1}$ достаточно для полной стабилизации продуктов диссоциации. Авторы работы [73] считают, что именно в этом характерное отличие процесса разложения сероводорода от других процессов разложения, например, воды или углекислого газа, так как значительно облегчается эффективность организации этого процесса в плазме.

Влияние малых добавок кислорода на кинетику разложения сероводорода в плазме исследовано в работе [55]. Кинетическая схема процесса дисоциации сероводорода представлена следующим образом:

)5	5)	-						I.)	((Ĺ	1	1	1	1	1	Ĺ	Ĺ	l	Ĺ	l	Ĺ	l	L	L	l	l	l	l	Ĺ	l	l	l	Ĺ	l	Ĺ	l	l	l	Ĺ	Ĺ	Ĺ	l	l	l	l	l	l	l	l	1	1	l	l	l	l	l	l	l	l	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•	•	1	1						•	,	•														•			1	1	1	1	1			•	•	•	
J)).5).)))))]	((Ĺ	1	1	1	1	1	Ĺ	Ĺ	l	Ĺ	l	Ĺ	l	L	L	l	l	l	l	Ĺ	l	l	l	Ĺ	l	Ĺ	l	l	l	Ĺ	Ĺ	Ĺ	l	l	l	l	l	l	l	l	1	1	l	l	l	l	l	l	l	l	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•	•	1	1						•	,	•														•			1	1	1	1	1			•	•	•	

$$H + H_2 S \rightarrow H_2 + HS + 0.55 \ B;$$
 (4.106)

Рис. 4.102. Зависимость удельных энергозатрат на получение водорода от удельного энерговклада (температуры разогрева) при скорости охлаждения: $t - v = 10^1 \text{ K} \cdot \text{c}^{-1}$; $2 - 10^2$; $3 - 10^3$; $4 - 10^4$; $5 - 10^5$; $6 - 10^6$; $7 - 10^7 \text{ K} \cdot \text{c}^{-1}$

 $HS + HS \rightarrow H_2S + S + 0,39_{\vartheta}B; \qquad (4.107)$

$$S + H_2 S \rightarrow H_2 + S_2 + 1,83 \partial B.$$
 (4.108)

Вторичные реакции (4.106)–(4.108) являются быстрыми экзотермическими процессами с малыми энергиями активации, поэтому скорость процесса определяется лимитирующей стадией (4.105) с константой

 $K_{\rm I} = 10^{25,9} T^{-2} \exp (-46000 / T) \, {\rm cm}^3 \cdot {\rm MOJ}{\rm b}^{-1} {\rm c}.$

Обратные эндотермические реакции имеют высокие активационные барьеры, а скорость рекомбинации мала из-за малой концентрации радикалов. Для того, чтобы компенсировать затраты энергии на эндотермическую реакцию (4.105) авторы предлагают проводить процесс с малыми добавками кислорода. При введении добавок кислорода в системе будут идти реакции наработки радикалов и продуктов. Суммарный процесс диссоциации сероводорода с малыми добавками кислорода представлен в виде

 $H_2S + xO_2 \rightarrow (1 - 2x) H_2 + 2xH_2O + S_m;$

 $\Delta H_{298 \text{ K}} = 0,21 - 5,01x, \ \exists B,$

где *x* – количество молей кислорода, приходящихся на 1 моль H₂S.

Проведен термодинамический расчет и получены зависимости энергозатрат от энерговклада при равных количествах кислорода для случая сверхидеальной закалки. По полученным результатам расчета энергозатраты на получение продукта понижаются с повышением количества добавляемого кислорода, причем эта зависимость имеет вид

A = 0.51 - 4.81x, 3B,

где x – количество молей кислорода, приходящихся на 1 моль H_2S ($x \le 0.05$).

В работе [55] экспериментально изучена кинетика реакции термического разложения сероводорода в интервале температур 600–1200 °С в кварцевых трубках диаметром от 2,4 до 15,8 мм.

На основе проведенных экспериментов рассчитаны константы скорости диссоциации сероводорода: для гомогенной реакции – энергия активации 278,46 ± 14,28 кДж/моль, предэкспонента (1,76 ± 0,11)·10¹⁶ м³·моль⁻¹·с⁻¹; для гетерогенной реакции – энергия активации 202,86 ± 12,18 кДж/моль, предэкспонента (2,4 ± 0,21)·10⁷ м·с⁻¹. В работе приняты для гомогенной и гетерогенной реакций соответственно порядки 2 и 1.

Хотя рабочие температуры в плазмохимических реакторах существенно выше, полученные данные представляют несомненный интерес и могут использоваться для тестирования кинетических расчетов, выполненных на основе данных о кинетике элементарных стадий процесса диссоциации сероводорода с участием радикалов HS, S, H.

В работе [101] представлены результаты исследования процесса разложения сероводорода в смеси, содержащей 20 % пропана. Пробные эксперименты в ВЧ- и СВЧ-разрядах умеренного и атмосферного давления показали отсутствие серы в продуктах. Был проведен также расчет термодинамически равновесного состава для смеси с различным содержанием сероводорода и пропана. Результаты расчетов показали, что сероводород практически весь разлагается при температурах 1600 К и выше. Углерод полностью переходит в CS₂, связывая серу. Однако при малых концентрациях пропана в системе остается также сера. При повышении температуры свыше 2500 К, CS₂ полностью диссоциирует до CS.

При расчете энергозатрат на получение полезного продукта в зависимости от мольной доли пропана в смеси были выявлены следующие закономерности. Минимальные энергозатраты на получение одной молекулы водорода с повышением содержания пропана в смеси уменьшаются от 1,8 эВ для чистого сероводорода до 0,7 эВ при мольной доле пропана 15 %. Энергозатраты на получение одного атома серы при повышении содержания в смеси пропана увеличиваются от 1,8 эВ до 15 эВ при мольной доле пропана 15 %. При этом область минимума энергозатрат как функции энерговклада смещается в область больших энерговкладов от 1,5 до 2 эВ соответственно.

Таким образом, авторы [101] делают вывод, что повышение доли пропана в смеси ухудшает выход серы в процессе, т.е. сера уходит в соединения с углеродом, образуя CS₂ и CS.

Для повышения выхода серы предлагается добавлять кислород в исходную смесь. Расчет показал, что при температуре выше 900 К вся кислородная добавка расходуется на образование монооксида углерода, препятствуя тем самым образованию сероуглеродных комплексов.

Добавление кислорода позволяет также добиться снижения энергозатрат на получение продукта. Так, при мольной доле пропана в смеси 15 %, введение добавки кислорода 15 % позволяет в три раза снизить энергозатраты на получение водорода и в два раза в расчете на атомарную серу с учетом потерь серы в сероуглеродных соединениях.

Плазмохимическое разложение сероводорода в дуговом

плазмотроне исследовано Л.А. Черниховским с сотрудниками [10, 125]. Так, в [10] приведены результаты экспериментов по разложению H_2S в смеси с двуокисью углерода, где газомтеплоносителем является аргон. Смесь газов ($H_2S + CO_2$) вводилась в плазменную струю через сопла, которые заканчивались за анодом, поддерживающим горение дежурной дуги. Второй анод находился на расстоянии 20 мм от первого. Газообразные продукты выходили в водоохлаждаемую камеру, где охлаждались до температуры 140 °С и после отделения жидкой серы анализировались на газовом хроматографе (рис. 4.103).

Было проведено несколько вариантов экспериментов: при мощностях 2 кВт, 3 кВт и 4 кВт, при различных соотношениях сероводорода и двуокиси углерода, при различных добавках метана.

Процесс SULFAKC описан двумя последовательными реакциями:

Рис. 4.103. Схема экспериментального реактора лабораторного масштаба:

1 – факел; 2 – ввод газа;
 3 – факел; 4 – катод; 5 –
 плазмотрон; 6 – анод
 плазменного факела; 7 –
 система инжектирования;
 8 – ввод газа; 9 – реакци онная камера; 10 – анод
 для перемещаемой контро лируемой дуги; 11 – водо охлаждающая камера

Таблица 4.96

Результаты экспериментов для мощности управляемой дуги

Параметры	Но	мер экспериме	ента
	4	5	6
Мольное отношение CO ₂ /H ₂ , (вход)	0,44	0,87	1,75
Общий расход газа, л/мин	12,5	12,5	13,8
Конверсия $H_2S \ B H_2 + CO, / {}_{0}$ Мольное отношение CO/H_2 , (выход)	04,4 0,46	1,67	17,5

 $H_2S + CO_2 \rightarrow H_2O + S + CO;$

 $CO + H_2O \rightarrow CO_2 + H_2.$

Первая реакция легко проводится в дуговом реакторе, а что касается второй реакции, полученные газы CO_2 и H_2 разделяются путем сжатия и разложения или извлечением карбонатными растворами.

Определенные результаты этих экспериментов для мощности управляемой дуги 3 кВт представлены в табл. 4.96.

Оценки, выполненные по данным табл. 4.96, дают величину энергозатрат для эксперимента № 6 Е \approx 6 кВт·ч / м³ (H₂ + CO), которая существенно выше оптимальных энергозатрат для данной смеси, рассчитанных в предположении идеальной закалки продуктов.

В случае присутствия в смеси метана происходят три параллельные реакции:

 $H_2S \rightarrow H_2 + S;$

 $H_2S + CO_2 \rightarrow H_2O + CO + S;$

 $CH_4 + CO_2 \rightarrow 2H_2 + 2CO.$

Конечный состав продуктов во всех трех реакциях зависит от начальных соотношений потоков. Так, при соотношении $H_2S:CH_4:CO_2 = 1,2:1,7:1$ степень конверсии $H_2S - 73$ %, а метана – только 10%. Однако при избытке CO_2 происходит почти полное разложение сероводорода и метана.

Авторы провели эксперименты и без применения газатеплоносителя аргона, при соотношении CO_2 : $H_2S = 1,75$, расходе газа, равном 13,8 л/мин (0,83 м³/ч), конверсия сероводорода составила 99,1 %, $CO_2 - 100$ % при энергозатратах, равных ~ 6 кВт·ч/м³ смеси.

В работе [10] приведен энтальпийный баланс при температуре 298 К и атмосферном давлении следующих реакций:

$H_2S \rightarrow H_2 + 1/2S (T)$	– 0,25 кВт·ч/м ³ H ₂ S;
$H_2S + CO_2 \rightarrow H_2O(\mathcal{K}) + S(\mathcal{T}) + CO_2$	– 0,76 кВт/м ³ H_2S ;
$CH_4 + CO_2 \rightarrow 2H_2 + 2CO$	– 3,07 кВт·ч/м ³ СН ₄ ;
$\mathrm{CO} + \mathrm{H}_{2}\mathrm{O} (\mathfrak{K}) \rightarrow \mathrm{CO}_{2} + \mathrm{H}_{2}$	+ 0,51 кВт·ч/м ³ СО;
$\mathrm{CH}_4 + \mathrm{H}_2\mathrm{S} \twoheadrightarrow \mathrm{CS}_2 + 3\mathrm{H}_2$	– 2,27 кВт·ч/м ³ H_2S .

Фактически реальные энергозатраты при проведении лабораторных экспериментов составили ~ 7 кВт·ч/м³ смеси H_2S + + CO₂.

Авторы процесса SULFAKC провели также эксперименты в новом типе реактора при различных соотношениях H_2S и CO_2 при атмосферном давлении и мощностях, близких к промышленным. При мощности 8 кВт был проведен ряд экспериментов в смеси H_2S и CO_2 , где была получена высокая степень разложения сероводорода (~99,8 %) при меньших энергозатратах (ниже 4 кВт·ч/м³ H₂S) [125]. Процесс SULFAKC предлагается промышленности для замены процесса Клауса в том случае, когда концентрация CO_2 в газе равна или более 60 % об., что ведет к отравлению катализатора Клауса.

Кроме того, авторы [125] считают, что предложенный ими процесс плазмохимического разложения смеси H_2S и CO₂ в дуговом реакторе имеет ряд преимуществ перед существующими в настоящее время процессами разложения сероводорода. К основным преимуществам предложенного процесса относится проведение процесса при атмосферном или повышенном давлении; нет необходимости в разделении полученных продуктов (при степени разложения ~100 %), а также в отличие от других плазмотронов дуговые плазмотроны выпускаются для промышленных нужд.

Расчет процесса диссоциации сероводорода

Теоретическое описание химического процесса, осуществляемого в газоразрядной системе, требует учета всего многообразия атомно-молекулярных, энергетических превращений, происходящих в системе. Математически это сводится к решению обширной системы нелинейных дифференциальных уравнений в частных производных, включающей баланс энергии, материальный баланс заряженных и нейтральных частиц, уравнения газовой электродинамики. Аналитически она может быть решена только для сравнительно простых случаев.

При практической реализации плазмохимических процессов на первый план выступает проблема минимизации энергозатрат на получение полезного продукта. Для химических процессов в газоразрядных системах, в которых на начальной стадии – при разогреве реагирующих веществ – не развиваются процессы, ведущие к созданию сильной неравновесности, существует возможность сравнительно простого анализа энергобаланса системы на основе термодинамического расчета степени конверсии (степени превращения реагентов в продукты), а также равновесного состава компонентов системы в зависимости от энергии.

В настоящей работе описанный подход был использован для анализа процесса диссоциации сероводорода и его смесей с водородом и азотом, что имеет практический интерес в случае проведения диссоциации в электродуговой плазмохимической системе. Расчеты выполнялись по известной методике [171, 87]. Эффективное разложение сероводорода происходит при температуре выше 1500 К, столь высокая температура достигается при плазменном нагреве газа. Преимущества проведения процесса диссоциации сероводорода в плазмохимической системе – высокая скорость осуществления процесса и, следовательно, высокая удельная производительность такой системы (рис. 4.104). Все дальнейшие результаты приведены в предположении идеальной закалки (рис. 4.105).

Рассмотрим зависимость степени конверсии чистого сероводорода и удельных энергозатрат Е на получение водорода от удельного энерговклада J в исходный сероводород и давления (рис. 4.105). Левая ветвь кривых энергозатрат соответствует низким температурам, при которых термодинамическое равновесие смещено в направлении исходного сероводорода и диссоциация незначительна. Поскольку водород и сера являются конечными продуктами реакции разложения в области правой ветви степень конверсии стремится к 100 %, а энергозатраты – к прямой E = J, при этом происходит неэффективный разогрев продуктов реакции и их диссоциация на атомы (см. рис. 4.104). Оптимальной организации процесса соответствует область минимальных энергозатрат. Повышение давления приводит к снижению степени конверсии и росту энергозатрат, что соответствует качественному термодинамическому выводу для реакции, идущей с увеличением объема. Минимум энергозатрат составил для давления 10⁴, 10⁵ и 4·10⁵ Па соответственно 2,18 кВт·ч, 2,45 кВт·ч и 2,76 кВт·ч на 1 м³ образовавшегося водорода при удельных энерговкладах в 1 м³ исходного сероводорода соответственно 1,6 кВт-ч, 1,76 кВт-ч и

Рис. 4.104. Зависимость равновесной концентрации продуктов разложения сероводорода от температуры $\acute{\mathsf{I}}$ и удельного энерговклада J

1,90 кВт·ч. В исследованном интервале давлений степень конверсии при минимуме энергозатрат близка к 70 %.

При осуществлении процесса диссоциации в электродуговой плазмохимической системе сероводород не нагревается непосредственно в газовом разряде, а смешивается с предварительно нагретым в разряде газом – теплоносителем. Выполнены расчеты для случая использования в качестве газа – теплоносителя водорода и азота. Выбор водорода в качестве теплоносителя предствляется логичным, так как отпадает необходимость в его дальнейшем удалении из продуктов реакции. Однако, с другой стороны, водород представляет собой продукт реакции диссоциации и, как следует из термодинамики, смещает равновесие в направлении исходного сероводорода. Влияние разбавления сероводорода водородом видно из сравнения

Рис. 4.105. Зависимость удельных энергозатрат Е от удельного энерговклада J для случаев абсолютной (1) н идеальной (2) закалки (Чистый сероводород при $\hat{e} = 10^5$ Па)

рис. 4.107 и 4.108. На рис. 4.107 представлены результаты расчета разложения сероводорода в присутствии водорода при соотношении H_2S : $H_2 = 2$: 1 и давлениях 10^4 и 10^5 Па. По сравнению с чистым сероводородом происходит повышение минимума энергозатрат, который составляет 2,64 ч/м³ H_2 при $p = 10^4$ Па и 3,14 кВт·ч/м³ H_2 при $p = 10^5$ Па. При давлениях 10^4 и 10^5 Па степень разложения при минимуме энергозатрат составляет соответственно 78 и 70 %.

Были проведены расчеты разложения сероводорода при разбавлении последнего азотом. Проведение процесса в азотной плазменной струе позволит получать на выходе азотоводородную смесь – сырье для синтеза аммиака. Таким образом, и в случае использования в качестве теплоносителя азота нет необходимости отделять азот от продуктов реакции. Кроме того, азот является инертным по отношению к реакции разложения сероводорода, т.е. разбавление азотом смещает равновесие реакции в направлении продуктов (см. рис. 4.108).

Рис. 4.106. Зависимость степени конверсии чистого сероводорода α и энергозатрат $\ddot{\pmb{\textit{U}}}$ на получение водорода от энерговклада Ј

Рис. 4.107. Зависимость степени конверсии α и энергозатрат $\ddot{\pmb{0}}$ от энерговклада J для смеси $H_2S:H_2=2:1$

Разбавление азотом также приводит к росту минимума энергозатрат, однако не столь значительному как в случае с водородом. Уменьшение концентрации азота снижает минимум энергозатрат и повышает степень разложения. Для случая $H_2S: N_2 = 2: 1$ минимум энергозатрат составляет 2,48 и 466

Рис. 4.108. Зависимость степени конверсии α и энергозатрат $\ddot{\boldsymbol{0}}$ от энерговклада Ј для смеси $H_2S: N_2 = 4: 1$

2,88 кВт·ч/м³ H₂ для давлений 10⁴ и 10⁵ Па соответственно, для отношения концентрация H₂S : N₂ = 4 : 1 минимум энергозатрат составляет 2,34 и 2,68 кВт·ч/м³ H₂ при тех же давлениях.

Таким образом, термодинамические расчеты показывают, что повышение давления с 0,01 до 0,1 МПа приводит к росту минимума энергозатрат на 0,3–0,5 кВт·ч/м³ H₂ или на 15–25 %. Любое разбавление сероводорода также ведет к росту энергозатрат, причем при разбавлении азотом увеличение менее значительное, чем при разбавлении водородом. Оптимальной организации процесса соответствует область энерговкладов 1,5–2,5 кВт·ч/м³ H₂S, при этом концентрация сероводорода достигает 90 %.

Результаты экспериментального исследования процесса разложения сероводорода в дуговом разряде

Для проведения исследований по разложению сероводорода в электродуговом плазмохимическом реакторе создана экспериментальная установка, схема которой представлена на рис. 4.109 [24].

В качестве электродугового нагревателя газа использован серийный плазмотрон ПУН-3, модифицированный под работу

Рис. 4.109. Схема экспериментальной электродуговой плазмохимической установки:

1 – ротаметры; 2 – плазмотрон; 3 – узел подачи сероводорода; 4 – реактор;
 5 – закалочное устройство; 6 – серосборник; 7 – азотные ловушки; 8 – система измерения расхода отходящих газов

на водороде и азоте с расходом $1-5 \text{ м}^3/\text{ч}$. Электропитание плазмотрона осуществлялось от источника питания АПР-403 мощностью до 30 кВт, ток 50–200 А, напряжение холостого хода 320 В, рабочее напряжение 50–200 В.

Подача газа обеспечивается от газовых баллонов вместимостью 40 л. Газ из баллона поступает в ротаметр с входным и выходным регулированными вентилями и далее подается в плазмотрон. Подача газа в разрядную зону осуществляется через тангенциальный завихритель для стабилизации дуги на оси анода и теплоизоляции анода. Электрическая дуга под действием динамического напора газового потока растягивается и обеспечивает интенсивный нагрев газа. На выходе из сопла анода плазмотрона образуется высокотемпературный газовый

факел со среднемассовой температурой 2000–5000 К. К фланцу плазмотрона крепится узел ввода сероводорода. Конструкция узла ввода сероводорода позволяет осуществлять подачу газа как радиальными сталкивающимися струями, так и тангенциально-плазменной струей.

В узле ввода сероводорода происходит смещение газатеплоносителя и сероводорода, которое продолжается в реакторе, где при температуре смеси газов 1500–2500 К происходит диссоциация сероводорода. На выходе из реактора образуется смесь, состоящая из газа-теплоносителя, водорода, паров серы и непродиссоциировавшего сероводорода.

Эта смесь после охлаждения с температурой 500-700 К проходит серосборник, где происходит конденсация паров серы. Далее газ проходит через фильтр для улавливания мелкодисперсной серы и поступает в систему азотных ловушек, где происходит конденсация непродиссоциировавшего сероводорода. Затем газовая смесь, пройдя вакуум-насос, поступает в систему измерения расхода газа, позволяющую при известном расходе газов на выходе вычислять конверсию сероводорода. В установке предусмотрен отбор газа для проведения газового анализа на хроматографе. Так как вдув сероводорода непосредственно в область горения дуги приводит к интенсивному разрушению материала анода (меди), возникла необходимость применения газа-теплоносителя, нагреваемого в плазмотроне. В качестве газа-теплоносителя был применен водород или азот.

При проведении экспериментальных исследований по разложению сероводорода в плазменной струе первоначально была поставлена цель – квазиравновесной организации процесса и достижения выхода водорода, близкого к рассчитанному по термодинамике при данной температуре или энерговкладе. При этом из-за высокой скорости диссоциации при рабочих температурах (1500–2000 К) выход водорода находится в прямой зависимости от скорости смешения сероводорода с плазменной струей. Наиболее широкое применение в технике нашли смесители, в которых один из смешивающихся компонентов дробится на струи и подается в поток другого под углом, близким к 90°.

В экспериментах в качестве плазмообразующего газа использовался водород с расходом 1,9 м³/ч, который подавался от реактора в смеситель. Сероводород с расходом 2,5 м³/ч дробился в смесителе на восемь симметричных радиальных струй и под углом 90° подавался в плазменную струю. Площадь сечения отверстий для ввода сероводорода составляла

3,5 мм², диаметр смесителя и реактора 50 мм, длина реактора 175 мм. Результаты экспериментов представлены на рис. 4.110.

Удельный энерговклад *J*, удельные энергозатраты *E* и степень конверсии а определяется как

$$J = rac{W_p}{Q_{
m H_2S}}; \quad E = rac{W_p}{Q_{
m H_2}} = rac{z}{lpha}; \quad lpha = rac{Q_{
m H_2}}{Q_{
m H_2S}},$$

где W_p – мощность, вносимая в реактор плазмообразующим газом; $Q_{\rm H_2S}$ – расход исходного сероводорода; $Q_{\rm H_2}$ – расход водорода, полученного в результате разложения сероводорода.

Из рис. 4.110 видно, что экспериментальные точки ложатся значительно выше кривой, рассчитанной по термодинамике, что, по-видимому, связано с плохим смешением сероводорода и водорода. Действительно, расчеты показали, что в экспериментах было реализовано смешение по принципу равномерного распределения, при котором струи сероводорода равномерно заполняли поперечное сечение смесителя. Такой режим характеризуется следующими соотношениями:

$$\frac{H}{d_c} = 2,84q^{0.48}; \tag{4.109}$$

$$q = \frac{\rho_1^2 v_1^2}{\rho_2^1 v_2^2}; \tag{4.110}$$

Рис. 4.110. Зависимость степени разложения сероводорода α и энергозатрат $\ddot{\pmb{o}}$ от энерговклада $\, \mathsf{J}$

 $H = 0.2 \div 0.3 D_{\rm cm}$

где H – дальнобойность, т.е. глубина проникновения поперечных струй в сносящий поток; d_c – диаметр сопел для ввода поперечных струй; q – гидродинамический параметр, представляющий собой соотношение потоков импульсов смешивающихся газов; ρ – плотность газов; v_1 , v_2 – скорости; $D_{\rm см}$ – диаметр смесителя; 1 – струя; 2 – поток.

Траектория струи холодного реагента в сносящем плазменном потоке апроксимируется зависимостью

$$\frac{y}{d_c} = q^{0.48} \left(\frac{\chi}{d_c}\right)^{0.65},$$
(4.111)

где χ – координата вдоль оси реактора; y – вдоль радиуса.

Из (4.111) следует, что кривизна струи в плазменном потоке вблизи сопла значительно выше, чем в центральной части плазменного потока, т.е. в центральной части струя практически не подвергается динамическому воздействию сносящего потока. Следовательно, в области значений дальнобойности (0,2–0,3 $D_{\rm см}$), необходимых для равномерного распределения струй, дальнобойность сильно зависит от гидродинамического параметра q, т.е. небольшие изменения q будут приводить к неустойчивому характеру течения: струи будут либо омывать стенки реактора, либо проникать в центральную часть смесительного объема. Указанные обстоятельства сильно затрудняют смешение по принципу равномерного распределения ввиду неизбежных колебаний входных параметров, что и повлияло на результаты эксперимента.

В работе [60] показано, что наиболее рациональна такая организация процесса смешения реагентов с плазменным теплоносителем, при которой поперечные струи сталкиваются между собой, образуя турбулизованную зону в центральной части реактора. При этом следует исходить из условий, обеспечивающих проникновение невозмущенного ядра струи до центра сносящего потока.

Из исследований свободных струй известно, что длину невозмущенного ядра струи можно определить из выражения [10]

$$\frac{KZ_0}{d_c} = 0,335,\tag{4.112}$$

где K – коэффициент структуры струи (для холодных струй $K = 0.06 \div 0.08$); Z_0 – длина невозмущенного ядра струи; d_c – диаметр сопла.

Полагая $Z_o = 0,5 D_{\rm cm}$ и подставляя в (4.131), получим $\frac{D_{\rm cm}}{d_c} = 8 \div 10.$ (4.113)

С учетом (4.109) величина гидродинамического параметра определяется как

 $q \ge 3. \tag{4.114}$

Была проведена серия экспериментов со смешением реагентов по принципу интенсивного соударения струй. По выражениям (4.410), (4.412), (4.414) были определены расходные геометрические характеристики процесса. Сероводород в количестве 4 м³/ч подавался в смеситель диаметром 30 мм радиальными струями через четыре сопла диаметром 3 мм. По оси реактора подавалась плазменная струя азота с расходом 1,4 м³/ч. Среднемассовая температура азотной струи регулировалась в диапазоне 4500-6000 К. Как видно из рис. 4.411 экспериментальные точки практически легли на кривую, рассчитанную по термодинамике для условий эксперимента, что объясняется хорошим смешением сероводорода с плазменным потоком. На это же указывает снятый в одном из режимов профиль температуры в реакторе, который оказался близким к турбулентному. Отклонение температуры от среднемассовой температуры смеси азот-сероводород по всему сечению не превышало 10 % и изменялось в диапазоне температур

Рис. 4.111. Зависимость степени конверсии сероводорода α и энергозатрат $\ddot{\pmb{0}}$ от энерговклада Ј
1000–1200 К. Закалочное устройство на выходе из реактора обеспечивало скорость закалки, не превышающую по оценкам 10⁵ К/с. Этот экспериментальный факт говорит о заторможенности обратных реакций, ведущих к образованию сероводорода, и возможности сохранения степени разложения сероводорода, достигнутой в высокотемпературной зоне.

На основании проведенных экспериментов можно заключить, что при осуществлении плазмохимической диссоциации сероводорода в равновесных условиях в электродуговой системе оптимальная организация процесса реализуется при подаче сероводорода симметрическими радиальными сталкивающимися струями в поток плазменного теплоносителя.

Минимальные энергозатраты на получение водорода в равновесных условиях составили 2,4 кВт·ч/м³ H_2 при степени разложения сероводорода 85 %.

Снижение энергозатрат в рамках равновесного разложения сероводорода возможно путем рекуперации около 1,5 кВт·ч/ $\rm M^3\,H_2.$

Отметим, что основные потери энергии в равновесном процессе заключаются в нагреве газа и в энергии, выделяющейся при рекомбинации молекул S_2 до S_8 и конденсации в твердую серу $S_{\rm r}$. Действительно, при энтальпии реакции

$$\mathrm{H}_{2}\mathrm{S}=\mathrm{H}_{2}+\mathrm{S}_{\mathrm{T}},$$

составляющей 0,25 кВт·ч /м³ H₂, минимальные энергозатраты в равновесных условиях при давлении 10⁴ Па равны 2,2 кВт·ч /м³ H₂. Таким образом, при получении каждого 1 м³ H₂ образуется 1,95 кВт·ч тепловой энергии.

Авторами были проведены эксперименты с тангенциальной подачей сероводорода в реактор, по оси которого подавалась азотная плазменная струя. Диаметр реактора составлял 50 мм, длина 180 мм, расход сероводорода 4,2 м³/ч, азота 1,4 м³/ч, тангенциальная скорость сероводорода на входе в реактор $V_{\rm p} \cong 300 \, {\rm m/c}$. Реактор заканчивался закалочным устройством — водоохлаждаемой шайбой.

На рис. 4.112 (точки 1) представлены результаты эксперимента. Минимальные энергозатраты E составили 2,6 кВт·ч/м³ H₂. Полученная степень конверсии сероводорода на уровне 70 % говорит о существовании в реакторе проскока газа, т.е. часть газа проходит по периферии реактора в пристенной области без разогрева, не претерпевая химического превращения. Проскок газа характерен для вихревых камер, в которых имеют место сложные радиальные профили скорости, плотности и температуры. В наших экспериментах доля непрореаги-

Рис. 4.112. Зависимость удельных энергозатрат $\ddot{\boldsymbol{0}}$ и степени конверсии α от удельного энерговклада J:

1 – в реакторе с тангенциальной подачей газа; 2 – в диафрагмированном реакторе; 3 – в реакторе с направляющим кольцом

ровавшего сероводорода составила 30 %. Из определения энерговклада, энергозатрат и степени конверсии (см. выше) ясно, что описанный эффект может привести к снижению степени конверсии, но не влияет на величину удельных энергозатрат на получение водорода, которые определяются исключительно

мощностью, вложенной в систему, и количеством полученного водорода, но не зависят от количества исходного сероводорода.

Как следует из условий осуществления центробежного эффекта, в приосевой области реактора должна существовать высокотемпературная зона. В случае СВЧ-реактора такой зоной является непосредственно СВЧ-разряд. При вдуве в реактор плазменной струи следует принять меры, исключающие быстрое перемешивание плазменной струи с сероводородом в начальных сечениях реактора, т.е. осуществить стабилизацию плазменной струи на оси.

Эксперименты проводились в цилиндрическом реакторе, в котором имелась возможность установки диафрагмы на выходе из реактора, а также применения как бокового, так и торцевого вдува сероводорода. Использование диафрагмы на выходе из реактора позволяет перемещать границу зоны квазитвердого и потенциального вращения, т.е. положения максимума тангенциальной составляющей скорости (v_{φ}) потока сероводорода по радиусу реактора. Тем самым использование диафрагмы открывает возможность оптимизации условий для реализации центробежного эффекта. Применение торцевого вдува делает возможным устранение нежелательного, с точки зрения реализации центробежного эффекта, перемешивания сероводорода с плазменной струей за счет течения в торцевом пограничном слое.

Экспериментальные результаты по определению зависимости энергозатрат на получение водорода от энерговклада приведены на рис. 4.113. Точки 2 соответствуют цилиндрическому реактору без диафрагмы с боковым вдувом H₂S. Диаметр реактора составлял 50 мм, длина 150 мм, расход сероводорода $4,2 \text{ м}^3/\text{ч}$, азота $1,4 \text{ м}^3/\text{ч}$, тангенциальная скорость H_2S на выходе из закручивающего устройства составила по расчету около 300 м/с. Видно, что по сравнению с реактором с радиальным вдувом характер зависимости энергозатрат от энерговклада изменяется: в области малых энерговкладов энергозатраты не зависят от мощности, вкладываемой в плазменную струю. Это означает, что диссоциация почти всех молекул сероводорода осуществляется при сравнительно небольшом разбросе температуры, т.е. энерговклад самосогласованно определяется в процессе диссоциации (фактически это является примером самоорганизации в плазмохимических системах) и не зависит от параметров плазменной струи. Это объясняется тем, что в системах с вихревой подачей газа за счет высокого уровня турбулентности на границе газ – плазма, стационарность

Рис. 4.113. Зависимость энергозатрат на получение водорода 0 и степени раз-ложения сероводорода α от удельного энерговклада J: 1 - в реакторе с интенсивно соударяющимися радиальными струями; 2 - вреакторе с тангенциальной подачей газа; 3 - в диафрагмированном реакторе; 4 - в реакторе с направляющим кольцом; 5 - термодинамический расчет для условий эксперимента; 6 - термодинамический расчет для условий экспери-мента с учетом различия коэффициентов переноса водорода и остальных реа-гентов

профиля температур обеспечивается, по-видимому, за счет кондуктивного теплоотвода на периферию реактора. При этом продукты диссоциации могут выноситься из зоны реакции на периферию разряда, не попадая в зону высоких температур на оси плазменной струи.

Точки 3 соответствуют реактору с диафрагмой на выходе. В этом случае расход азота составлял $0,5 \text{ м}^3/\text{ч}$, сероводорода $4,2 \text{ м}^3/\text{ч}$, диаметр диафрагмы 8 мм. Видно, что при сохранении общего вида кривой энергозатрат их абсолютная величина снижается. Это снижение объясняется тем, что диафрагмирование приводит к увеличению значения тангенциальной скорости в максимуме и перемещению его положения от пристеночной зоны, в случае реактора без диафрагмы, к границе контакта газ – плазма при диафрагмировании. Кроме того, диафрагмирование приводит к подавлению радиальной компоненты скорости сероводорода на границе газ – плазма, что также способствует проявлению влияния эффекта преимущественного выноса.

Дальнейшее снижение энергозатрат было получено за счет подавления быстрого конвективного смешения сероводорода с плазмой в начальном сечении реактора за счет перетекания газа по торцевому пограничному слою.

Это достигалось установкой в завихрителе кольцевой вставки, направляющей закрученный поток вдоль боковой поверхности реактора. Как видно из рис. 4.113 (точки 4), величина энергозатрат оказывается ниже, чем минимально возможная для термической диссоциации H_2S без учета центробежного эффекта. Это обстоятельство, а также характер зависимости энергетической эффективности от тангенциальной скорости в зоне реакции, оцениваемой величиной около 300 м/с, позволяет сделать вывод о реализации центробежного эффекта при диссоциации сероводорода в реакторе с тангенциальной подачей газового потока.

Таким образом, в результате экспериментальных исследований установлена возможность высокоэффективного разложения H₂S на водород и элементарную серу в электродуговом плазмохимическом реакторе с энергозатратами, близкими к достигнутым в СВЧ- и ВЧ-разрядах. Показано также, что снижение почти в два раза величины энергозатрат на получение водорода по сравнению с квазиравновесными плазмохимическими системами происходит за счет реализации центробежного эффекта.

В результате проведенных НИР разработана и запатентована технология переработки кислого газа электродуговым методом [60].

Исследование потенциального рынка плазмохимической технологии позволило установить область ее применения – это нефтеперерабатывающие заводы. На НПЗ для получения экологически чистой продукции (моторных топлив, масел, мазутов) при переработке сернистых нефтей в схему переработки нефти включаются процессы гидроочистки нефтепродуктов, протекающих на катализаторах в присутствии водорода. В результате гидроочистки этих продуктов образуются углеводородные газы с сероводородом, которые подвергают аминовой очистке для удаления последнего. Образующийся сероводород с концентрацией 95+99 % об. направляется на производство серы на установках Клауса или на получение серной кислоты.

На многих заводах производства серы и серной кислоты находятся в эксплуатации много лет, являются технически и морально устаревшими и требуют замены на новые технологии. Возможность быстрого включения разработанной технологии в нефтезаводские схемы обусловлена следующими причинами:

1. Переработка сероводорода на НПЗ может быть обеспечена одним – двумя дуговыми плазмотронами, причем выпуск таких плазмотронов и источников питания к ним освоен отечественной промышленностью.

2. НПЗ являются мощным потребителем водорода и получение его из сероводорода – либо снизит, либо полностью снимет потребность завода в специальных процесса производства водорода.

Принципиально процесс переработки кислого газа электродуговым методом заключается в следующем (рис. 4.114).

В электродуговом реакторе при температурах около 2000 К и атмосферном давлении сероводород разлагается на водород и серу. Продукты разложения охлаждаются с высокой скоростью, не позволяющей пройти обратным реакциям. Сера конденсируется и отводится как товарный продукт. Сероводород-содержащий газ после подогрева до 300 °С поступает в реактор гидрирования, где все сероводородсодержащие соединения превращаются в сероводород. Далее газ, содержащий до 80 % водорода и 20 % сероводорода, охлаждаясь во второй секции конденсатора серы, подается в аминовый абсорбер для получения водорода, который поступает потребителю, а сероводород рециркулирует на вход в дуговой реактор. Таким образом, обеспечивается безотходность процесса.

Тепловые расчеты показали, что в случае применения системы рекуперации тепла (например, рекуперативных теплообменников с твердым носителем) удельные энергозатраты могут

Рис. 4.114. Принципиальная технологическая схема переработки сероводородсодержащего газа

быть снижены до уровня 1,0 кВт·ч/м³ перерабатываемого сероводорода при сохранении высокой степени конверсии. Согласно экономическим оценкам при удельных энергозатратах в 1 кВт·ч/м³ технология разложения сероводорода, включающая электродуговой реактор, узел выделения серы, узел выделения водорода и рециркуляцию неразложившегося сероводорода оказывается предпочтительнее процесса Клауса.

4.7.2. НОВАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ НИЗКОПОТЕНЦИАЛЬНОГО КИСЛОГО ГАЗА ЭЛЕКТРОДУГОВЫМ МЕТОДОМ С ПОЛУЧЕНИЕМ СЕРЫ

Исследования по диссоциации кислого низкопотенциального газа проводились на экспериментальном стенде, созданном нами совместно с институтом атомной энергии им. И.В. Курчатова (рис. 4.109).

Целесообразность проведения этих работ объясняется тем, что при переработке низкопотенциального кислого газа, т.е. когда концентрация сероводорода меньше, чем двуокиси углерода, традиционный процесс Клауса затруднен или неработо-способен. Так как плазмохимические системы требуют заметных затрат электроэнергии, то экономически выгодно внедрение новой технологии на малых месторождениях РФ. К таким месторождениям можно отнести малые месторождения Саратовской и Оренбургской областей, а также некоторые месторождения Иркутской и Архангельской областей. В исходном газе этих месторождений содержится от 0,1 до 2,5 % об. сероводорода и от 1,0 до 3,3 % об. СО₂. При этом объем кислого газа колеблется от 100 до 500 м³/ч с количеством извлекаемой серы от 1,5 до ~ 4 т/сут.

Эксперименты проводились с различными смесями кислого газа в различном соотношении компонентов $CO_2:H_2S - 1$) 50:50; 2) 70:30; 3) 80:20; 4) 90:10.

При проведении процесса диссоциации кислого низкопотенциального газа в дуговом плазмотроне образуется сера, как товарный продукт, и смесь отходящих газов, состоящая из водорода, окиси и двуокиси углерода и SO₂. Конверсия сероводорода при этом может быть 99 %, удельный энерговклад колеблется от 1,0 до 1,4 кВт·ч/м³ кислого газа (в зависимости от концентрации сероводорода в кислом газе).

Однако в соответствии с международными нормами допустимых выбросов SO_2 в атмосферу при малых объемах перерабатываемого газа с количеством извлекаемой серы до 5 т/сут конверсию сероводорода можно уменьшить до 75 % об. Это даст

возможность экономии электроэнергии при проведении процесса диссоциации кислого газа в электродуговом плазмотроне.

В ходе исследований определялись: удельный энерговклад, удельные энергозатраты, степень конверсии сероводорода, а также хроматографический анализ газа после диссоциации [32].

В настоящей работе приводятся результаты экспериментальных исследований диссоциации кислого газа с соотношением компонентов CO_2 ; H_2S = 70:30, т.е. CO_2/H_2S = 2,33. Общий расход смеси $Q = 3,08 \text{ м}^3/\text{ч}$ или 5,075 кг/ч. Состав смеси: CO₂ = 1,435 м³/ч; H₂S = 0,615 м³/ч:

 $N_2 = 1,03 \text{ м}^3/\text{ч}.$

Так как вдув кислого газа непосредственно в область горения дуги приводит к интенсивному разрушению материала анода, возникла необходимость применения газа-теплоносителя. В качестве газа-теплоносителя был применен азот.

Эксперименты проводились при 2-х энерговкладах: J_1 = $= 1,06 \text{ kBt} \cdot \text{y} / \text{m}^3 \text{ m} J_2 = 1,93 \text{ kBt} \cdot \text{y} / \text{m}^3.$

Для всех энерговкладов была рассчитана температура в реакционной зоне и значение энтальпий. Результаты экспериментальных исследований представлены в табл. 4.97.

Для сравнения экспериментов с расчетом были выполнены термодинамические расчеты для двух энтальпий и энерговкладов по программе "Астра", результаты которых представлены в табл. 4.98.

Таблица 4.97

Результаты экспериментальных исследований диссоциации кислого газа при соотношении СО₂:H₂S = 70:30

Компоненты	Состав	для J_1	Состав для J_2	
	%	кг/ч	%	кг/ч
H_2S	5,145	0,243	0,07	0,003
CO_{2}	26,05	1,588	20,05	1,222
SO ₂	-	-	1,70	0,153
N ₂	39,61	1,517	34,01	1,347
CŐS	0,16	0,013	0,32	0,026
СО	17,85	0,687	34,70	1,381
H_{2}	4,61	0,013	4,16	0,011
$H_2\tilde{O}$	6,575	0,162	4,99	0,123
$\tilde{\Sigma}$	100,0	4,223	100,0	4,266
\tilde{S}_2	_	0,70	-	0,80
Примечані	ие. J ₁ , J ₂ – энер	оговклад, кВт·ч⊅	[/] м ³ .	

Параметры реакции: для $J_1 = 1,06$ температура $T_1 = 1253$ К, энтальпия $H_1 = 3590$ кДж/кг, конверсия $L_1 = 74$ %: для $J_2 = 1,93$ температура $T_2 = 1817$ К, энтальпия $H_2 = -2342$ кДж/кг, конверсия $L_2 = 90$ %. При всех энерговкладах было исследовано по три пробы, усредненные значения ко-торых приведены в таблице. Количество серы было найдено расчетным путем.

Таблица 4.98

Результаты термодинамического расчета диссоциации кислого газа при соотношении $CO_2:H_2S$ = 70:30

Компоненты	C	Состав для .	J_1	Состав для J_2			
	моль / кг	%	кг/ч	моль / кг	%	кг/ч	
H ₂ S	0,222	0,74	0,038	1,665	5,74	0,288	
$C\tilde{O}_{2}$	5,610	18,65	1,252	9,421	32,50	2,105	
SO ₂	1,148	3,82	0,373	0,062	0,21	0,020	
N_2	9,118	30,31	1,295	9,118	31,44	1,296	
COS	0,052	0,17	0,016	0,339	1,17	0,103	
СО	7,040	23,40	1,000	2,941	10,14	0,418	
H_2	1,259	4,19	0,012	0,619	2,13	0,006	
H_2O	3,929	13,06	0,359	3,157	10,90	0,288	
Š ₂	1,702	5,66	0,553	1,674	5,77	0,544	
$\tilde{\Sigma}$	30,08	100,0	4,898	28,996	100,0	5,067	
Примечан	- Примечание. J_1, J_2 – энерговклад, кВт ч/м ³ .						
Параметр	ы реакции	: для J ₁ =	1,06 темпе	ратура T ₁ =	= 1253 K, a	нтальпия	
$H_1 = -3590 $ к/	кДж/кг, конверсия L_1 = 61,8 %; для J_2 = 1,93 температура T_2 :					rypa $T_2 =$	
= 1817 К, эн	, энтальпия $ m H_2$ = 2342 кДж/кг, конверсия L_2 = 70,5 %. При всех						
энерговклада	х было исс	следовано і	ю три про	бы, усредн	енные зна	чения ко-	
торых приве	рых приведены в таблице. Количество серы было найдено расчетных					асчетным	
путем.							

Сравнение экспериментальных исследований и термодинамического расчета показало, что эксперимент можно провести так, что при высоких энерговкладах сероводород в оставшемся газе практически отсутствует, а такого нежелательного компонента как SO_2 в отходящем газе будет в 2 раза меньше. Так, при энерговкладе 1,93 кВт·ч/м³ сероводорода остается в газе 0,003 кг/ч 0,07 %, тогда когда по расчету его должно было остаться 0,038 кг/ч (0,74 %), т.е. на порядок больше.

По содержанию водорода в оставшемся газе эксперимент практически совпадает с расчетом: по экспериментальным данным количество водорода равно 0,011 кг/ч или 4,16 % об., а по расчету 0,012 кг/ч или 4,19 % об.

Количество SO₂ в эксперименте практически отсутствует, а COS – на порядок меньше, чем показал расчет. Конверсия при этом энерговкладе выше расчетной, однако в сравнении с конверсией при энерговкладе 1,93 кВт·ч/м³ она намного ниже: так при энерговкладе 1,93 кВт·ч/м³ конверсия по сере равна 90 %, а при энерговкладе 1,06 кВт·ч/м³ – 73,6 %.

Серы в эксперименте также получилось больше, чем по расчету, и соответственно конверсия в пересчете на серу выше:

эксперимент – сера – 0,8 кг/ч, конверсия – 90 %;

расчет – сера – 0,553 кг/ч, конверсия – 70,5 %.

Все это относится к энерговкладу – 1,93 кВтч/м³.

При более низком энерговкладе $J = 1,06 \text{ кВт·ч}/\text{м}^3$ содержа-482 ние сероводорода в неразложившемся газе по экспериментным данным почти совпадают с расчетом.

Однако серы и водорода в эксперименте получилось больше, чем это показал расчет:

эксперимент – сера – 0,7 кг/ч, водород – 0,013 кг/ч;

расчет – сера – 0,544 кг/ч, водород – 0,006 кг/ч.

Такое различие эксперимента и расчета в образовании продуктов диссоциации кислого газа можно объяснить кинетикой процесса, т.е. скоростью охлаждения или скоростью закалки продуктов. В институте им. И.В. Курчатова была исследована кинетика процесса диссоциации сероводорода в смеси с CO_2 в термической плазме [75]. Изучая кинетику диссоциации H₂S в смеси с CO_2 , установлено, что, измеряя температуру в зоне реакции, можно подобрать такую скорость охлаждения, при которой полностью сохраняя необходимый продукт, удается уменьшить выход SO₂. Так, при скорости охлаждения v == 10^5 K/с выход SO₂ уменьшается на 10 %, снижение же эффективности закалки до $v = 10^4$ K/с позволяет уменьшить выход SO₂ на 50 %.

Пользуясь графиком зависимости удельных энергозатрат от температуры нагрева и энерговклада [75], находим, что для условий нашего эксперимента, при J = 1,93 кВт·ч/м³ и T = 1817 К скорость закалки равна 10^4 К/сек.

Технологическая схема переработки кислого газа электродуговым методом приведена на рис. 4.115.

Кислый газ подается в плазмотрон через узел ввода, конструкция которого позволяет осуществлять подачу газа как радиальными струями, так и тангенциально-плазменной струей. Диссоциация кислого газа происходит в реакторе при температурах 1500+1600 К. На выходе из реактора образуется смесь, состоящая из двуокиси углерода, водорода, окиси углерода, непрореагировавшего сероводорода и SO₂. Выходящий из реактора технологический газ поступает на охлаждение в теплообменник, где охлаждается водой до температуры 1000 К. Охлаждение ведется методом впрыска воды, температура которой должна быть 20+30 °C. Затем, вся смесь направляется в конденсатор, где охлаждается до температуры конденсации серы. Охлажденный технологический газ обезвреживается в печи дожига за счет тепла сгорания топливного газа.

Затем продукты сгорания сбрасываются в дымовую трубу. Плазмообразующий газ – азот, применяется для того, чтобы защитить электроды от коррозии [31].

Для понимания процессов, происходящих на электроде (аноде), рассмотрим особенности привязки к нему электрической

дуги. Ток, протекающий через дугу, замыкается не по всей поверхности анода, а в локальной области, называемой анодным пятном дуги. Плотность тока и плотность потока энергии в анодном пятне составляет огромные величины. При стационарном положении анодного пятна столь высокий тепловой поток невозможно отвести, анод в области анодного пятна будет плавиться и разрушаться. Во избежание этого анодную привязку дуги вращают, подавая плазмообразующий газ закрученным потоком и накладывая на анод магнитное поле, дополнительно подкручивающее радиальный участок дуги. В этом случае тепловой поток распределяется по всей поверхности анода, плотность теплового потока значительно снижается, и может быть обеспечен нормальный теплоотвод.

Средняя температура рабочей поверхности наиболее распространенных медных анодов при нормальной работе плазмотрона за счет высокой теплопроводности меди близка к температуре охлаждающей жидкости. Напротив, в качестве материала катода обычно используют тугоплавкие материалы, такие как вольфрам, уголь для обеспечения термоэмиссии электронов, а температура рабочей области катода близка к температуре плавления соответствующего материала.

При работе плазмотрона непосредственно на кислом газе было выявлено, что в то время, как вольфрамовый катод не претерпевает видимых изменений, анод, изготовленный из меди, разрушается в течение нескольких минут.

Разрушение анода, изготовленного из латуни также наблюдалось, если плазмотрон работал на кислом газе. Однако при подаче на анод плазмообразующего газа – азота, после часа работы видимых изменений анода не происходило.

Была испытана конструкция анода, когда весь канал анода был защищен вольфрамовой вставкой. В этом случае плазмотрон устойчиво работал в обоих режимах: на азоте с подачей кислого газа в плазменную струю азота и на чистом кислом газе. При визуальном осмотре анода после часа работы никаких изменений в теле анода не наблюдалось. Однако, если в первом режиме сера была желтая, то во втором режиме она имела коричневую окраску (вероятнее всего, образовывались сульфиды серы).

Процессы эррозии и коррозии электродов в дуговых плазмотронах при нагреве химически активных сред практически не исследовались.

В связи с этим нами были проведены испытания электродов, изготовленных из термо- и коррозионностойких материалов на кислом сероводородсодержащем газе. Испытания элект-

родов проводились на установке, представленной в разделе 4.7.1 (см. рис. 4.109).

В ходе экспериментов определялась степень эрозии электродов методом взвешивания до и после испытаний, а также сила тока, напряжение, мощность плазмотрона и время работы дуги.

Результаты исследований приведены в табл. 4.99. Как показано в таблице, по результатам проведенных экспериментов для опытной установки диссоциации кислого газа электродуговым методом можно рекомендовать электроды, изготовленные из тантала и композиции вольфрама с медью – "Эльконайт". Все данные об этих двух электродах будут использованы при проектировании опытной установки на одном из малых месторождений РФ, а также для изготовления электродов плазмотрона при создании опытной установки.

Для того, чтобы убедиться в преимуществах процесса диссоциации кислого газа в электродуговом плазмотроне без азота, были проведены термодинамические расчеты смеси кислого газа с азотом и без него.

Для проведения расчетов брались различные составы кислого газа (различное соотношение компонентов CO_2/H_2S от 1 до 9) и определялся энерговклад и конверсия H_2S .

На рис. 4.116 представлена расчетная зависимость удельного энерговклада смеси от соотношения компонентов в кислом газе. Как показывает график, на проведение процесса диссоциации кислого газа в электродуговом плазмотроне без применения плазмообразующего газа затрачивается меньше электроэнергии, чем при тех же условиях в смеси с азотом. Так, например, для смеси кислого газа с соотношением компонентов $CO_2/H_2S = 2,5$ при конверсии сероводорода 75 % (в пересчете на серу) энерговклад смеси с азотом равен 1,5 кВт·ч/м³, в то

Таблица 4.99

Результаты экспериментальных исследований новых электродов для работы плазмотрона на кислом газе

Параметры	А	Б	В	Г
Сила тока, А	253	200	165	200
Напряжение, В	150	94	120	150
Давление газа в плазмотроне, ата	0,1	0,2	0,1	0,1
Мощность плазмотрона, кВт	38	18,8	19,8	30
Время работы дуги, мин	25	20	15	20
Степень эрозии, г/кулон	$4,3.10^{-10}$	$1,5.10^{-8}$	$2,5.10^{-8}$	$2,5 \cdot 10^{-11}$

Примечание. А – танталовый анод (после трехразового запуска); Б – титановый анод (четырехразовый запуск); В – анод из нержавеющей стали 12Х18Н9Т (двухразовый запуск); Г – композиция "эльконайт"; расход газа в эксперименте 0,85 л/с.

Рис. 4.116. Зависимость удельного энерговклада (1) от соотношения компонентов CO_2/H_2S в кислом газе при конверсиях сероводорода 75 % и 90 %: $1 - \alpha_{H_2S} - 90$ %; $2 - \alpha_{H_2S} - 75$ % (с азотом); $3 - \alpha_{H_2S} - 75$ % (без азота); 4 -экспериментальные точки

время, как без азота такую же конверсию можно получить при энерговкладе 1,0 кВт·ч/м³ смеси. Другими словами, на проведение процесса диссоциации кислого газа в электродуговом плазмотроне без азота затрачивается электроэнергии на 30 % меньше, чем при тех же условиях с азотом. Применение такого плазмотрона в промышленных условиях без плазмообразующего газа позволит снизить эксплуатационные затраты на азот примерно на 15 %.

В настоящее время разработан технологический регламент на проектирование опытно-промышленной установки переработки кислого газа электродуговым методом для Павловского месторождения Саратовской области. В регламенте рассмотрена установка с производительностью кислого газа 350 м³/ч, состав газа, % об.: $H_2S - 25,01$; $CO_2 - 68,03$; $CH_4 - 0,86$; $H_2O - 6,1$.

Исходя из производительности установки и удельного энерговклада – 1,0 кВт·ч/м³, мощность установки соответствует 350 кВт.

При конверсии сероводорода 75 %, годовое производство серы равно 730 т.

Эксплуатационные затраты в данном процессе состоят, в основном, из расходов на электроэнергию, и расход электроэнергии на тонну серы составит 3,7 тыс. кВт·ч. Годовой расход электроэнергии при мощности установки 350 кВт – 2,8 млн. кВт.

Капитальные затраты при этом, ориентировочно, составляют 350-400 млн. руб. в ценах 1991 г.

Основные преимущества процесса переработки кислого

низкопотенциального газа электродуговым методом в сравнении с традиционными методами очистки газа следующие:

упрощение технологической схемы и в связи с этим уменьшение капитальных затрат в 1,5-2 раза;

отсутствие каких-либо химических реагентов и катализаторов;

компактность используемого оборудования, достигаемая применением высоких температур, в связи с чем большая объемная скорость процесса;

все дуговое оборудование выпускается отечественной промышленностью.

4.7.3. МЕМБРАННЫЕ ПРОЦЕССЫ РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ

Мембранные процессы разделения газовых смесей основаны на различной способности газов проникать через полупроницаемые перегородки – мембраны под действием перепада давления. Обычно, полупроницаемая мембрана имеет асимметричную структуру. Верхний диффузионный слой является полупроницаемой перегородкой и покоится на пористой подложке, отвечающей за механические свойства мембраны.

Теория массопереноса газов в мембранах разработана достаточно детально и может быть практически использована для описания реальных процессов мембранного газоразделения. Наиболее полно основы теории представлены в [56, 108, 26, 104].

Процесс мембранного разделения включает в себя несколько последовательных стадий:

1) перенос компонентов исходного потока к мембране;

2) сорбция этих компонентов в мембране;

3) транспорт их через мембрану;

4) десорбция из мембраны;

5) отвод продуктов разделения с противоположной стороны мембраны.

На каждой стадии процесса перенос вещества встречает определенное сопротивление. В случае газофазного проницания стадии 1) и 5) исключаются, а сопротивление на стадиях 2) и 4) довольно незначительно. Транспорт вещества через полимерную мембрану связан с диффундированием и растворением его в мембране, т.е. является результатом сложных молекулярных взаимодействий. Принято говорить о диффузионной растворимости газа.

Основными интегральными характеристиками мембраны являются коэффициент проницаемости K и коэффициент разделения или селективность α .

В настоящее время известны плоские и спирально скрученные мембраны, а также мембранные полые волокна.

В настоящее время за рубежом (главным образом – в США) использование мембранных процессов в нефтяной и газовой промышленности является устойчивым развивающимся рынком. Поставки мембранного оборудования осуществляют такие известные фирмы, как Dow Chemical, Air Products, Air Liquid, DuPont, Union Carbide, UOP, Monsanto с годовым оборотом по мембранной техники в США и ее внедрение в нефтегазодобывающей промышленности было вызвано распространением Enhanced Oil Recovery (EOR) – повышением нефтеотдачи закачкой CO₂. В России практически отсутствует практика использования CO₂ для увеличения нефте- и конденсатоотдачи. В связи с этим мембранные процессы в Российской газовой и нефтяной промышленности пока не нашли широкого применения.

Мембранный процесс имеет ряд особенностей, требующих специальных условий для его применения [26]:

один из продуктов разделения имеет пониженное давление; организация многостадийного/противоточного процесса связана со значительными затратами энергии для компрессии потоков проникшего низконапорного газа;

ограниченная пропускная способность мембранных аппаратов при больших расходах требует секционирования установки, что снижает ее надежность и требует использования специальных систем контроля;

наличие в природных газах примесей, ухудшающих работу мембран (ингибиторы коррозии и гидратообразования, влага, тяжелые углеводороды), требует дополнительной очистки газа перед подачей на мембраны и использования мембранных материалов повышенной химической стойкости.

При этом, мембранный процесс имеет, как правило, большую селективность, чем однократное равновесное испарение, не требует охлаждения до низких температур и циркуляции абсорбентов, что снижает до минимума издержки эксплуатации. Поэтому, если мембранный процесс способен обеспечить необходимое качество продукта при нужном его давлении, процесс следует использовать. Использовать комбинированные (гибридные) процессы целесообразно при соблюдении следующих условий:

1. Имеются традиционные установки. Мембранные установки включаются в технологическую цепочку и улучшают работу традиционных установок.

2. Использование мембран как вспомогательного процесса, при минимальном риске и небольших издержках позволяет получить максимум прибыли.

3. Исходные газы содержат примеси, ухудшающие работу мембран. Существующие установки позволяют очистить газ и улучшить работу мембран.

Если мембранный процесс удовлетворяет этим условиям требования, а его внедрение позволяет сократить издержки производства или сократить планируемые капитальные затраты, процесс следует использовать. Рассмотрим перспективные области применения, удовлетворяющие перечисленным требованиям.

Технология мембранного выделения диоксида углерода и сероводорода

Широкое внедрение мембранных процессов разделения большой производительности в промышленности обусловлено, главным образом, развитием в США технологии добычи нефти и газа с закачкой в нефтяные пласты СО₂ для поддержания пластового давления и повышения нефтеотдачи (технология Enhanced Oil Recovery – EOR).

Внедрение мембранного процесса выделения CO₂ из природного газа позволяет интенсифицировать традиционные процессы физической и химической абсорбции в целях снижения энергоемкости, потерь реагентов, загрязнения окружающей среды и обеспечивает высокую рентабельность установок.

Использование мембран для выделения CO₂ из углеводородных газов было бы невозможным без разработки мембранных материалов с соответствующими селективностью и производительностью. Промышленные образцы таких мембран были созданы в США к концу шестидесятых годов. В настоящее время на рынке технологий в области выделения CO₂ ведущее место занимают мембраны с характеристиками, представленными в табл. 4.100, составленной по материалам [159, 85, 88].

Следует отметить, что лидирующее положение занимают фирмы США, причем большая часть продаж осуществляется в США и экономически развитых странах [159]. Большая часть предложений на рынке мембран для выделения СО₂ приходится на спиральные мембранные аппараты с плоскими асиммет-

Таблица 4.100 Характеристика мебран¹

Параметры	Ацетат целлюлозы	Ацетат целлюлозы	Полисульфон с ПСН покрытием			
Тип	Плоская асиммет- ричная	Асимметричное полое волокно	Композиционное полое волокно			
CO ₂	¹ 123	30	29,2			
H_2S	204	51	_			
CH ₄	4,3	0,94	1,8			
$C_2 H_6$	2,1	0,47	-			
N_{2}^{2}	4	0,9	5,2			
Тип мембранной	Спиральные	Половолоконные	Половолоконные			
аппаратуры Компания постав- щик мембранной аппаратуры ²	1, 2, 4, 5	3, 5	6			
 Производительность Q = 10 м³/м²·с·МПа. 1. А/G Technology. 2. Air Products (Separex). 3. Cynara (Dow Chemical). 4. Grace Membrane Systems. 5. International Permeation. 6. Monsanto. 						

ричными мембранами на основе ацетатов целлюлозы (в отличие от рынка мембран для выделения водорода, где лидирующее положение занимают половолоконные технологии на основе полисульфоновых композиционных мембран фирмы "Monsanto", мембран на основе полиимида фирмы "UBE Industries" и полиакриламида "Medal" фирмы "L'Air Liquid").

Технологии мембранного выделения диоксида углерода из природных и попутных нефтяных газов можно классифицировать следующим образом:

1. Собственно мембранные процессы, позволяющие непосредственно на мембранных установках получать концентрированный поток CO_2 и природный газ необходимых потребительских качеств. Как правило, основой такого технологического решения являются мембранные каскады с двумя – тремя ступенями. Во всех случаях газ перед подачей на мембраны подвергается тщательной подготовке, включающей сепарацию конденсирующихся углеводородов, отделение механических примесей и осушку газа, так как наличие капельной влаги (даже если не учитывать химическую стойкость мембраны) приводит к резкому снижению эффективности массообмена. Что касается ацетатцеллюлозных мембран, то капельная влага разрушает массообменный слой. Принципиальная схема организации такого технологического процесса для переработки нефтяного и природного газа с получением CO_2 для закачки и

товарного газа изображено на рис. 4.117, *a* [88]. Технология разработана фирмой "Grace System". Число ступеней мембранного разделения и схема каскада может изменяться в зависимости от содержания CO₂ в пластовой смеси.

2. Комбинированные технологии, включающие мембранную ступень или каскад для концентрирования CO_2 и абсорбционную установку для получения газа с заданными потребительскими качествами. В такой технологии могут быть использованы процессы хемосорбции (поглощение CO_2 растворами аминов), физической сорбции (поглощение CO_2 растворами органических растворителей диметиловым эфиром полиэтиленгликоля – процесс "Selexol", н-метилпирролидоном – процесс "Purisol", метанолом – процесс "Rectisol" и др. [156, 153]. Принципиальная схема мембранно-абсорбционной технологии изображена на рис. 4.117, δ .

Другим вариантом комбинированного процесса с использованием мембран является метод "Fluor" усовершенствования процесса "Rian Holms" – экстрактивной криогенной ректификации, используемом для выделения CO₂ из природного и нефтяного газа.

В процессе "Rian-Holms" [155] деметанизация природного газа на уровне давлений 3–5 МПа реализуется в присутствии CO_2 , причем для подавления вымерзания CO_2 деметанизатор и колонна выделения CO_2 промываются смесью сжиженных углеводородов. По методу "Fluor" (схема процесса представлена на рис. 4.118) вместо процесса аминовой абсорбции для выделения CO_2 из смеси сжиженных углеводородов и этана используется мембранная установка [164].

Следует отметить, что процесс мембранного выделения CO₂ организован таким образом, чтобы эффективность его была максимальной. В случае выделения CO₂ из азеотропной смеси с этаном селективность ацетатцеллюлозной мембраны достигает 44–52 против 22–26 при концентрировании CO₂ из исходной смеси. Использование такой технологии вместо традиционного процесса "Rian-Holms" – экстрактивной дистилляции – абсорбции – позволяет снизить капитальные вложения на 25 и эксплуатационные расходы на 20 % [161].

Представляет интерес технология, разработанная "Delta Engineering" в режиме увеличения нефтеотдачи путем закачки CO₂ [128, 154]. Мембранная установка "Delsep" представляет каскад из двух ступеней. Принципиальная схема технологического процесса представлена на рис. 4.119.

С целью более полного извлечения углеводородной компоненты и повышения концентрации CO₂ в потоке для закачки 492

Рис. 4.117. Принципиальная схема использования мембранных процессов в технологии обработки попутного газа при добыче нефти в режиме закачки CO₂ (EOR):

a – трехступенчатая мембранная установка для получения CO₂ на закачку и подготовки газа к трубопроводному транспорту; δ – комбинация мембранного и абсорбционного процессов для получения CO₂ на закачку и подготовки газа к трубопроводному транспорту

трубопроводному транспорту 1 – нефтяной попутный газ; 2 – сепарация жидких углеводородов и осушка; 3 – мембранный аппарат, 4 – конденсатор, 5 – компрессор, 6 – CO₂ на закачку, 7 – товарный природный газ; 8 – углеводородный конденсат, 9 – установка абсорбционного выделения CO₂

пермеат второй ступени может быть скомпремирован и направлен на вход первой ступени. В случае повышения концентрации CO_2 в исходной смеси более 20 %, что особенно благоприятно, вторая ступень может быть отключена.

Практическое использование мембранного процесса для выделения CO_2 из углеводородной смеси осложняется рядом эффектов, связанных с термодинамическими свойствами многокомпонентных смесей углеводородов.

В процессе выделения CO₂ на мембране происходит значительное снижение температуры потоков пермеата и апермеата вследствие эффекта дросселирования [128, 154]. В процессе

Рис. 4.118. Комбинированная технология "Fluor", сочетающая низкотемпературную экстрактивную дистилляцию и мембранное выделение CO₂: *1* – природный газ; *2* – деметанизатор; *3* – деэтанизатор; *4* – мембранная ступень; *5* – колонна отгонки азеотропа; *6* – этан; *7* – сжиженный газ; *8* – товарный газ; *9* – диоксид углерода на закачку; *10* – циркуляционный компрессор

разделения в охлаждаемом потоке высокого давления накапливаются легкоконденсирующиеся примеси, что способствует образованию жидкости и снижению производительности мембраны. Падение температуры по потоку высокого давления составляет 7 К при температуре сырья 323 К. Этот эффект усиливается с повышением концентрации CO₂ в разделяемом газе. Так, при разделении газа, содержащего более 60 % об. CO₂ температура пермеата и апермеата снижается более чем на 23 К. Аналогичные эффекты зафиксированы и при эксплуатации пилотной установки [145].

Поэтому в рассмотренной ранее технологии "Delsep" разделение проводят не в одном, а в нескольких последовательно расположенных мембранных разделителях, между которыми установлены подогреватели газа. В этих аппаратах пермеат отбирается в общий коллектор и обеспечивается общая степень отбора, удовлетворяющая условиям разделения. Чтобы избежать образования конденсата в разделяемом потоке, исходный газовый поток должен быть нагрет до температуры, которая ограничивается, с одной стороны, максимальной рабочей тем-

Рис. 4.119. Процесс "Delsep" извлечения СО₂ из нефтяного попутного газа для закачки в пласт:

4 – нефтяной попутный газ; 2 – сепаратор; 3 – компрессор; 4 – холодильник;
 5 – осушка; 6 – теплообменник; 7 – деэтанизатор; 8 – мембранный аппарат;
 9 – нагреватель; 10 – жидкие углеводороды; 11 – товарный природный газ;
 12 – СО₂ на закачку

пературой мембраны, и, с другой стороны, температурой точки росы апермеата.

Ввиду того, что исходный углеводородный поток, поступающий на мембрану, имеет точку росы по углеводородам порядка 20–70 °С при 3,0–7,0 МПа, во всех случаях требуется предварительная обработка газа конденсацией и охлаждением с целью снижения содержания легкоконденсирующихся компонентов.

В большинстве случаев применение мембранного процесса выделения CO₂ вместо или в комбинации с традиционным процессом оказывается экономически эффективным.

В таблице 4.101 дано сравнение экономических показателей традиционных процессов и процессов, использующих мембранное разделение в технологии подготовки природного и попутного газов в режиме увеличения нефтеотдачи пласта путем закачки СО₂. Таблица составлена по данным обзора [159].

Таблица 4.101

	Технология						
Показатели	из природного газа; 1·10 ⁶ м ³ /сут при 5 МПа, 15 % СО ₂		из природного и попутного газов для закачки CO ₂ в пласт; 4·10 ⁶ м ³ /сут, 90 % CO ₂				
Процесс	ДЭА ненчатая мембран- ная очистка		ДЭА	Крио- генный	Комбини- рованные мембра- ны+ДЭА	ТЭА	
Капитальные вложе- 5,45 3,87		103,6	73,5	47,0	65,0		
ния, млн. дол. Эксплуатационные за-	2,33	0,97	35,8	28,4	20,4	22,9	
В том числе потери	0,07	0,93	0,1	2,6	0,9	0,1	
метана млн. дол/год Общие (приведенные) затраты, млн. дол/год	3,45	2,02	68,2	48,2	33,1	40,4	

Сравнение экономических показателей процессов для извлечения CO₂ из природных и попутных газов

Таким образом, даже беглый обзор опыта и перспектив использования мембранных процессов для выделения CO_2 из углеводородных смесей приводит к выводу, что такие решения являются технически и экономически обоснованными. Наиболее экономично применение комбинированных технологий при способах добычи нефти и газа, предусматривающих использование CO_2 для повышения нефтегазоотдачи пласта.

Что касается процессов концентрирования кислых компонентов из природного газа, содержащего значительные количества сероводорода, следует отметить работу [150], где такой процесс описан для газа, состав которого весьма близок к Астраханскому. Схема и рабочие параметры комбинированного метода (мембранное разделение и абсорбция) очистки газа с высоким содержанием CO_2 и H_2S даны на рис. 4.120 и в табл. 4.102.

Рис. 4.120. Схема очистки природного газа с высоким содержанием СО₂ и H₂S: *I* – мембранные аппараты "Separex", *II* – установка ДЭА – очистки газа, *III* – компрессор

Таблица 4.102

Номер по- тока (см.	Расход,	Давление,		Co	став, % м	юл.	
рис. 4.120	м ³ ∕ч	МПа	CO_2	CH_4	C_2H_6	H_2S	H_2O
1 2 3 4 5 6	17110 29830 12625 16872 12742 4130	6,65 6,65 1,82 1,72 0,14	$10,00 \\ 11,50 \\ 2,00 \\ 16,00 \\ 13,70 \\ 23,00$	$\begin{array}{c} 64,90\\ 64,20\\ 84,49\\ 48,80\\ 63,19\\ 4,80\end{array}$	5,00 4,20 8,60 2,40 3,10 0,10	$\begin{array}{c} 20,00\\ 20,00\\ 3,00\\ 32,70\\ 20,00\\ 71,60\end{array}$	$\begin{array}{c} 0,10\\ 0,10\\ 0,01\\ 0,10\\ 0,01\\ 0,01\\ 0,50 \end{array}$

Параметры очистки природного газа с высоким содержанием CO_2 и H_2S

Следует отметить, что описанные процессы не предусматривают получение CO₂ потребительского качества.

В установке использованы спиральные мембранные аппараты "Separex" (Air Products Co). Установка рассчитана на производительность 140 млн. м³, сырого газа в год (т.е. ее масштаб почти в 40 раз меньше такой же установки для одной очереди АГПЗ), тем не менее она показала свою работоспособность.

Все описанные технологические процессы с использованием мембранного газоразделения реализованы на западе в нефте- и газопереработке в промышленном или демонстрационноммасштабе в 1976–1990 гг. Значительный положительный опыт применения мембранных процессов в промышленности свидетельствует об экономической и технологической целесообразности таких технических решений.

В связи с разработкой новых мембранных материалов, характеризующихся повышенной химической стойкостью и высокими разделительными характеристиками, эти процессы могут занять свое место в отечественной газоперерабатывающей промышленности. УДК 622.279.23 ББК 26.34 T 38

РЕДАКЦИОННАЯ КОЛЛЕГИЯ: действительный член Академии горных наук, канд. техн. наук В.И. МУРИН, канд. техн. наук Н.Н. КИСЛЕНКО, канд. техн. наук Ю.В. СУРКОВ

Авторы: канд. техн. наук В.И. МУРИН, канд. техн. наук Н.Н. КИСЛЕНКО, канд. техн. наук Ю.В. СУРКОВ, канд. техн. наук А.И. АФАНАСЬЕВ, канд. техн. наук Ю.М. АФАНАСЬЕВ, доктор техн. наук Т.М. БЕКИРОВ, канд. техн. наук С.Д. БАРСУК, канд. техн. наук В.В. БЛИНОВ, доктор техн. наук В.Р. ГРУНВАЛЬД, канд. техн. наук Х.И. ИСМАЙЛОВА, канд. техн. наук С.В. НАБОКОВ, канд. техн. наук Х.И. ИСМАЙЛОВА, H.И. ПОДЛЕГАЕВ, канд. техн. наук В.М. СТРЮЧКОВ, канд. техн. наук Л.Л. ФИШМАН

í ÂxÌÓÎÓ,Ёа переработки природного газа и конденсата: Т 38 Справочник: В 2 ч. – М.: ООО "Недра-Бизнесцентр", 2002. – **í ÂxÌÓÎÓ,,Ë**ü Ч. 1. – 517 с.: ил.

ISBN 5-8365-0107-6

Изложены последние взгляды на технологии переработки природного газа и га-зового конденсата. Приведены данные, накопленные в ходе развития и становления газоперерабатывающей подотрасли по современным методам расчета технологичеснаюцерерасовывающен подограсти по современным астодам рерочистки пасон и се ких процессов, выбору и использованию технологий осушки и серочистки газа его последующего газопроводного транспорта, технологий ректификации газа с по-лучением индивидуальных углеводородов. Содержит современный анализ и пути повышения эффективности работы производства газовой серы и снижения выбросов вредных веществ в окружающую среду, а также данные по особенностям переработ-ки газового конденсата с получением моторных топлив. Рассмотрены вопросы перспективного развития газопереработки и газохимии, решение которых позволит реализовывать не сырье, а товарную продукцию как на внутреннем, так и на внешнем рынках.

Для специалистов предприятий газовой и смежных с нею отраслей, а также для студентов технических вузов

EDITORIAL BOARD: V.V MURIN, Member of the Academy of Mining Sciencies, Cand. Sci. (Tech), N.N. KISLENKO, Cand. Sci.(Tech), Yu. V. SURCOV, Cand. Sci. (Tech). Authors: V.I. MURIN, N.N. KISLENKO, Yu.V. SYRKOV, A.I. AFANAS'EV, Yu.M. AFANAS'EV, T.M. BEKIROV, S.D. BARSUK, V.V. BLINOV, V.R. QRUNVALD, Kh.I. ISMAYLOVA, S.V. NABOKOV, Z.A. NABUTOVSKIY, N.I. PODLEGAEV, B.M. STRYUCHKOV, L.L.FISHMAN

Technology for processing natural gas and condensate: Handbook: 2 vols.

DOOK: 2 VOIS. The last view at the technology of processing natural gas and gas condensate is given. The data present are collected during the growth and formation os gas processing industry, which reflect modern methods for calculating technological processes, selec-tion and implementation of gas drying and sulphur purification technologies for gas pipeline transport, the technologies for gas rectification with obtaining separate hydro-carbons. The book considers the present-day analysis together with the prospects for rising the operational efficiency of gas sulphur production and decreasing harmful agents wasted in the environment, as well as the data on the specific features of gas con-densate processing with fuel yield. Attention is given to the prospects of future devel-opment of gas processing and gas chemictry that will help to realize in the domestic and foreidn markets not onli raw materials but also commercial products.

ISBN 5-8365-0107-6

© Коллектив авторов, 2002 C

Оформление. ООО "Недра-Бизнесцентр", 2002

ОГЛАВЛЕНИЕ

1. Введение	5
2. Осушка природных газов	9 10 36
 2.4. Осушка кислых газов 2.5. Выбор режима работы установок осушки газа 2.6. Технологический расчет процесса абсорбционной осушки газа 2.7. Тепловой баланс блока регенерации насыщенного раствора гли- 	43 52 64 72
коля. 2.8. Очистка растворов гликолей от различных примесей 2.9. Адсорбционные способы осушки природных газов	80 83 88
3. Переработка природного газа и конденсата	99 99
щих компоненты природного газа, воду, метанол, гликоли 3.1.2. Расчет термодинамических и теплофизических свойств смесей 3.1.3. Расчет ректификации многокомпонентных смесей 3.1.4. Моделирующие программы.	99 120 133 137
3.2. Гребования к осушке и очистке газа перед подачеи его на низко- температурное разделение	151 157
3.3.1. Холодильные циклы, основанные на использовании джоультомсоновского эффекта дросселирования газа	158
нии жидкости. 3.3.3. Циклы, основанные на использовании изоэнтропийного расширения газа	159 160
3.3.4. Холодильный цикл на многокомпонентном холодильном агенте. 3.4. Установки извлечения пропана и высших углеводородов. 3.5. Глубокая переработка газа с извлечением этана 3.6. Получение гелия. 3.7. Очистка гелия от примесей. 3.8. Получение индивидуальных компонентов природного газа из газового конденсата	162 166 177 189 215 223
4. Переработка сероводородсодержащих природных газов	231 231

4.1.1. Физико-химические свойства сероводорода	233
рода, тиофена	239
4.1.3. Физико-химические свойства меркаптанов	245
4.2. Очистка природного газа этаноламинами 4.2.1. Физико-химические свойства этаноламинов и их волных	249
растворов	254
4.2.2 Механизм поглошения H ₂ S CO ₂ и других сернистых компо-	
нентов водными растворами аминов	267
4.2.3. Растворимость H ₂ S и CO ₂ в водных растворах этаноламинов 4.2.4 Растворимость уляводородов в водных растворах этаноламинов	270
HOB	282
4.2.3. Гастворимость меркаптанов в водных растворах этанолами-	287
4.2.6. Растворимость сероокиси углерода в водных растворах эта- ноламинов	289
4.2.7. Растворимость сероводорода, диоксида углерода, сероокиси углерода, меркаптанов и углеродов в водно-неводных растворах ал-	
каноламинов	291
4.2.8. Схемы процесса очистки газа водными растворами аминов	293
4.2.9. Выбор рабочего раствора	297
4.2.10. Коррозионные свойства алканоламинов	299
4.2.11. Вспенивание растворов алканоламинов	302
4.2.12. Потери абсорбентов.	304
4.2.13. Расчет основных узлов и параметров установок очистки газа 4.2.14. Новые технологии очистки природного газа абсорбентами	308
на основе этаноламина	322
этаноламина	323
тиллиэтаноламина	325
4.2.17. Очистка газа смешанным абсорбентом МДЭА+ДЭА 4.2.18. Очистка газа абсорбентом физико-химического действия ти-	328
па "Укарсол"	330
3. Очистка газа физическими абсорбентами	336
 4.3.1. Основы растворимости газов в физических абсорбентах 4.3.2. Основные процессы с использованием физических абсор- 	336
бентов	338
полиэтиленгликолей.	346
4.5.4. гастворимость сероводорода и диоксида углерода в моно- и диалкиловых эфирах полиэтиленгликолей	348
этиленгликолей	351
4.3.3. Блияние природы алкильного радикала на ассороднонные свойства диалкиловых эфиров диэтиленгликоля	354
триэтиленгликоля	356
ве монометиловых эфиров этиленгликолей Л-201-2-100 4.3.9. Растворимость компонентов природного газа в абсорбенте	363
Л-201-2-100 4.3.10. Очистка газа от сернистых соединений абсорбентом на ос-	364
нове гликолей и их этиловых эфиров - ЭТ-1	3/4
4. Адсорбционная очистка природного газа от сернистых соединений.	385
4.4.1. Адсорбция цеолитами 4.4.2. Регенерация цеолитов в процессе сероочистки природного	385
газа	398
4.4.3. Технологические схемы и аппаратурное оформление	407

4.4.4. Технико-экономические показатели цеолитового способа очи-
стки природного газа 419
4.5. Очистка газа от сероорганических примесей 424
4.5.1. Физические процессы очистки газов от RSH 424
4.5.2. Химические процессы очистки газов
4.6. Очистка газа окислительными и микробиологическими методами 434
4.6.1. Процесс Стретфорда 435
4.6.2. Поташный метод
4.6.3. Мышьяково-содовый процесс 439
4.6.4. Очистка взвесями гидрооксида железа 440
4.6.5. Очистка газов растворами комплексных соединений железа
4.6.6. Микробиологические методы 444
4.6.7. Методы очистки без регенерации сорбента 445
4.6.8. Сравнительные технологические показатели процессов 447
4.7. Очистка газа нетрадиционными методами 448
4.7.1. Новая технология переработки кислого газа электродуговым
методом с получением водорода и серы 448
4.7.2. Новая технология переработки низкопотенциального кислого
газа электродуговым методом с получением серы
4.7.3. Мембранные процессы разделения газовых смесей 488
• • •
Список литературы

СПИСОК ЛИТЕРАТУРЫ

К главе 2

1. СССР № 502647, БИ № 6. Способ осушки сероводородсодержащего природного газа/А.Е. Юдин, А.Л. Халиф, И.А. Александров и др. -1974.

А. с. СССР № 965486, БИ № 38. Способ осушки газа/Г.К. Зиберт, 2. С.И. Кузьмин, А.М. Сиротин, А.М. Сун. - 1982.

3. А. с. СССР № 1112203, БИ № 33. Способ осушки сероводородсодержащего природного газа/Т.М. Бекиров, Е.Н. Туревский, А.Л. Халиф и др. -1984.

4. А. с. СССР № 1509394, БИ № 35. Способ регенерации насыщенного раствора диэтиленгликоля/Т.М. Бекиров, В.И. Елистратов, Е.Я. Кац. -1989

5. А. с. СССР № 1622362, БИ № 3. Способ регенерации насыщенного раствора гликоля / Т.М. Бекиров, А.Л. Халиф, В.И. Елистратов - 1991.

6. А. с. Байков И.М., Сайфеев Т. и др. - Гликоли и опыт их применения в нефтяной и газовой промышленности. - М.: ВНИИОЭНГ, 1970.

7. Бекиров Т.М. Влияние уноса гликоля с установки осушки на показатели работы газотранспортных систем / Подготовка, переработка и использование газа. - М.: ВНИИЭгазпром, 1980. - № 11. - С. 9-11.

8. Бекиров Т.М. Некоторые вопросы повышения эффективности работы технологических установок в заключительный период эксплуатации газоконденсатных месторождений//Подготовка, переработка и использование газа: Науч.-техн. сборник. – М.: ВНИИЭгазпром. – 1990. – № 4. – С. 4–7. 9. *Бекиров Т.М.* О размещении ДКС на газовых месторождени-

ях / / Газовая промышленность. - 1988. - № 11. - С. 26-28.

10. Бекиров Т.М. Область применения противо- и прямоточных процессов осушки газа / / Нефтепромысловое дело. - М.: ВНИИОЭНГ. - 1982. -№ 7. - C. 40-41.

11. Бекиров Т.М. Первичная переработка природных газов. - М.: Химия, 1987. – 256 c.

12. Бекиров Т.М. Промысловая и заводская обработка природных и нефтяных газов. - М.: Недра, 1980. - 193 с.

13. Бекиров Т.М. Расчет теплового баланса установки регенерации гликоля / /Подготовка, переработка и использование газа. – М.: ВНИИЭгазпром. -1988. - № 2. - C. 1-4.

14. Бекиров Т.М. Системный подход к установлению показателей качества

товарного газа//Анализ работы модернизированного оборудования на действующих промыслах и использование современных технологий и оборудования на новых месторождениях Западно-Сибирского региона. – М.: ИРЦ Газпром. – 1996. – С. 74–88.

15. Бекиров Т.М., Бекирова Г.К. Подготовка газа к транспорту при высоких давлениях / / Подготовка и переработка газа и газового конденсата: Реф. с6. – М.: ВНИИЭгазпром. – 1980. – № 7. – С. 3–8.

16. Бекиров Т.М., Берго Б.Г. Пересмотреть значение точки росы газа//Газовая промышленность. – 1984. – № 8. – С. 41–42.

17. Бекиров Т.М., Брагин В.В., Тюрина В.И. и др. Современное состояние проблемы очистки гликолей от примесей: Обз. информация – Сер. Подготовка и переработка газа и газового конденсата. – М.: ИРЦ Газпром. – 1997. – 57 с.

18. Бекиров Т.М., Кабанов Н.И., Брагин В.В. и др. Очистка раствора гликоля от минеральных солей / Природный газ в качестве моторного топлива, подготовка, переработка и использование газа: Научно-техн. сборник. М.: ИРЦ Газпром. – 1996. – № 2–6. – С. 111–118.

19. Бекиров Т.М., Кабанов Н.И., Бурмистров А.Г. и др. О повышении эффективности работы УКПГ Ямбургского месторождения в компрессорный период разработки / / Природный газ в качестве моторного топлива, подготовка, переработка и использование газа.: Науч.-техн. сборник. – М.: ИРЦ Газпром. – 1997. – № 2–3. – С. 8–14.

20. Бекиров Т.М., Кабанов Н.И., Кузьмина А.С. и др. О возможности использования триэтиленгликоля на установках осушки газа//Экспрессинформация. Природный газ в качестве моторного топлива. – Сер. Подготовка, переработка и использование газа. – М.: ИРЦ Газпром. – 1995. – № 9– 10. – С. 17–29.

21. Бекиров Т.М., Кабанов Н.И., Сафаров А.А. и др. Прогнозирование показателей работы УКПГ в компрессорный период эксплуатации месторождения / / Природный газ в качестве моторного топлива, подготовка, переработка и использование газа: Сб. – М.: ИРЦ Газпром. – 1997. – № 1. – С. 8–14.

22. Бекиров Т.М., Кузьмина А.С., Туревский Е.Н., Халиф А.Л. Исследование процесса осушки газа при низких температурах контакта//Газовая промышленность. – 1988. – № 3. – С. 49–50.

23. Бекиров Т.М., Кузьмина А.С., Фролочкин Н.Г. и др. Повышение эффективности работы установок осушки газа//Передовой производственный и научно-технический опыт, рекомендуемый для внедрения в газовой промышленности: Инф. сб. – М.: ВНИИЭгазпром. – 1989. – № 4. – С. 30–33.

24. Бекиров Т.М., Мурин В.И., Губяк В.Е. и др Комплексный подход к сбору, подготовке и транспортированию газа в районах крайнего севера: Обз. инф. – Сер. Подготовка и переработка газа и газового конденсата. – М.: ВНИИЭгазпром. – 1991. – 60 с.

25. Бекиров Т.М., Попов В.И., Халиф А.Л. и др. Новые технические решения в технологии осушки природных газов: Обз. инф. Сер. Подготовка и переработка газа и газового конденсата. – М.: ВНИИЭгазпром. – 1982. – С. 2–17.33.

26. Бекиров Т.М., Халиф А.Л., Куликов Ю.А., Сурков Ю.В. Техничес-

кий прогресс в технологии осушки природного газа: Науч.-техн. обз./ Сер. Переработка газа и газового конденсата. – М.: ВНИИЭгазпром, 1975. – 53 с.

27. *Бекиров Т.М., Шаталов А.С.* Влияние размещения ДКС на показатели УКПГ//Газовая промышленность. – 1985. – № 4. – С. 16–17.

28. *Бекиров Т.М., Шаталов А.Т.* Сбор и подготовка к транспорту природных газов. – М.: Недра, 1986.

29. Бородина И.И. и др. Растворимость природного газа в диэтиленгликоле и его водных растворах//Геология, разведка и разработка газовых и газоконденсатных месторождений Северного Кавказа. – М.: ВНИИЭгазпром. – 1976. – Вып. 1/10.

30. *Гухман Л.М.* Подготовка газа Северных газовых месторождений к дальнему транспорту. – Л.: Недра, 1980.

31. Дымент О.Н., Мирошников и др. Гликоли и другие производные окисей этилена и пропилена. – М.: Химия, 1976.

32. *Жданова Н.В., Халиф А.Л.* Осушка природных газов. – М.: Недра, 1975.

33. Иващенко В.Ф., Босов Г.П., Тодорова П.А., Гребенюк В.Д. Обессоливание растворов диэтиленгликоля на объектах газовой промышленности: Обзор. информация//Сер. Подготовка и переработка газа и газового конденсата. Вып. 3. – М.: ВНИИЭГазпром. – 1986.

34. *Кемпбел Д.М.* Очистка и переработка природных газов. – М.: Недра, 1977.

35. Клюсов В.А. и др. Опыт эксплуатации многофункциональных аппаратов на Уренгойском месторождении. – Сер. Подготовка и переработка газа и газового конденсата, Вып. 4. – М.: ВНИИЭгазпром. – 1987.

36. *Ключева* Э.С. Регенерация абсорбентов: Науч.-техн. обзор/Сер. Подготовка и переработка газа и газового конденсата. М.: ВНИИЭгазпром. – 1985. – Вып. 3–28 с.

37. *Крамер Д.Л., Кук У.Р.* Осушка газа: оптимизация работы действующих установок//Нефть, газ и нефтехимия за рубежом. – 1981. – № 1. – С. 21–24; 1981. – № 2. – С. 16–21.

38. Ланчаков Г.А., Дудов А.Н., Ставицкий В.А. и др. Анализ работы основного технологического оборудования Уренгойского ГКМ//Анализ работы модернизированного оборудования на действующих промыслах и использование современных технологий и оборудования на новых месторождениях Западно-Сибирского региона/Материалы НТС РАО "ГАЗПРОМ". – М.: ИРЦ Газпром. – 1996.

39. Минигулов Р.М., Щербак А.И. Обессоливание растворов диэтиленгликоля методом высаливания: Обз. информ. – Сер. Подготовка и переработка газа и газового конденсата. – М.: ИРЦ Газпром. – 1995. – 43 с.

40. Михайлов Н.П. Анализ данных по влагосодержанию природного газа//Молодые специалисты газовой промышленности: Сб. – М.: Гостоптехиздат. – 1963. – С. 56–65.

41. Рассоловская С. Г. Технология подготовки газа в период компрессорной эксплуатации Уренгойского газоконденсатного месторождения / Анализ работы модернизированного оборудования на действующих промыслах и использование современных технологий и оборудования на новых месторожде-

ниях Западно-Сибирского региона/Материалы НТС РАО Газпрома. – М.: ИРЦ Газпром, 1996.

42. Сайкин В.В., Туревский Е.Н. О выборе адсорбента для установок осушки газа АГНКС//Природный газ в качестве моторного топлива: Науч.-техн. сборник. – М.: ИРЦ Газпром. – 1997. – № 9–10. – С. 3–7.

43. Чугунов Л.С., Зайнуллин В.Ф., Ремизов В.В. и. др. Анализ изменения технологических параметров работы адсорбционных установок подготовки газа в период подающей добычи / Природный газ в качестве моторного топлива, подготовка, переработка и использование газа: науч.-техн. сборник. – М.: ИРЦ Газпром. – 1996. – № 7–8. – С. 100–108.

44. Щипачев В.Б. Анализ модернизованного оборудования подготовки газа на месторождениях севера Тюменской области / Анализ работы модернизированного оборудования на действующих промыслах и использование современных технологий и оборудования на новых месторождениях Западно-Сибирского региона / Материалы НТС РАО "Газпром". – М.: ИРЦ Газпром. – 1996. – С. 9–16.

К главе 3

1. *Акулов Л.А.* Установки для разделения газовых смесей. – Л.: Машиностроение, 1983.

2. Архаров А.М. Гелий: история открытия, технологии ожижения, области применения / / Химическое и нефтяное машиностроение. – 1995. – № 2. – С. 2–8.

3. Барсук С.Д. Исследование технологии извлечения гелия и этана из газа, содержащего диоксид углерода / / Химическое и нефтяное машиностроение. – 1995. – № 2. – С. 24.

4. Барсук С.Д., Бажанова Т.А., Загребина В.И. Расчет отпарных колонн в гелиевом производстве / Переработка газа и газового конденсата. – М.: ВНИИЭгазпром. – 1977. – Вып. 12. – С. 6–9.

5. Барсук С.Д., Бажанова Т.А., Загребина В.И. Характеристика холодильных циклов на смеси при разделении и сжижении природных газов//Подготовка и переработка газа и газового конденсата. – М.: ВНИИЭгазпром. – 1980. – Вып. 4. – С. 5–8.

6. Барсук С.Д., Фишман Л.Л. Расчет фазовых равновесий в смесях, содержащих воду, углеводород, двуокись углерода и сероводород с использованием уравнения состояния Пател-Тея//Фазовые превращения углеводородных систем: Сборник научных трудов. – М.: ВНИИГАЗ, 1992. – 123 с.

7. Барсук С.Д., Фишман Л.Л. Расчет фазовых равновесий в смесях углеводородов с водой и диэтиленгликолем (ДЭГ) / /Повышение эффективности процессов переработки газа и газового конденсата: Сборник научных трудов ВНИИГАЗ, ч. 1. – М.: 1995.

8. Баталин О.Ю., Брусиловский А.И., Захаров М.Ю. Фазовые равновесия в системах природных углеводородов. – М.: Недра, 1992. – 272 с.

9. Берго Б.Г. и др. Производство гелия / Подготовка и переработка газа и газового конденсата. – М.: ВНИИЭгазпром. – 1983. – Вып. 8. – 82 с.

10. Берго Б.Г., Никитина И.Е., Барсук С.Д. и др. Анализ работы установок получения гелия и этана Оренбургского гелиевого завода и пути повыше-

ния их эффективности / Подготовка и переработка газа и газового конденсата – М., 1987. – Вып. 10. – С. 1–42.

11. Бикачек Р.Ф. Равновесное содержание влаги в природных газах: Пер. с англ. – М.: ВНИИГАЗ, 1959.

12. Блинов В.В. Получение чистого гелия из гелиевого концентрата с высоким содержанием водорода / Повышение эффективности процессов переработки газа и газового конденсата: Сборник научных трудов. – М.: 1995. – С. 20–23.

13. Блинов В.В. Технология извлечения гелия из газа Братского газоконденсатного месторождения / /Химическое и нефтяное машиностроение. – 1995. – № 2. – С. 23.

14. Бородина И.И., Алиев А.Г., Нам Н.К. и др. Растворимость природного газа в диэтиленгликоле и его водных растворах//Геология, разведка и разработка газовых месторождений Северного Кавказа. – М.: ВНИИЭгазпром. – 1976. – Вып. 1/10.

15. Голод Л.П. Очистка гелиевого концентрата на платиновых и палладиевых катализаторах/Подготовка и переработка газа и газового конденсата. – М.: 1981. – Вып. 8. – С. 11–15.

16. Голод Л.П., Берго Б.Г., Никитина И.Е. Выбор катализатора для процесса очистки гелиевого концентрата от водорода //Подготовка и переработка газа и газового конденсата. – М.: 1981. – Вып. 6. – С. 5–10.

17. Гуревич Г.Р., Брусиловский А.И. Справочное пособие по расчету фазового состояния и свойств газоконденсатных смесей. – М.: Недра, 1984. – 262 с.

18. Намиот А.Ю. Растворимость газов в воде: Справ. пособие. – М.: Недра, 1991. – 167 с.

19. Намиот А.Ю. Фазовые равновесия в добыче нефти. – М.: Недра, 1976. – 183 с.

20. Никитина И.Е., Берго Б.Г., Кубанов А.Н. и др. Адсорбционная очистка гелия от неона в промышленных условиях//Борьба с технологическими осложнениями и совершенствование процессов подготовки и переработки газа: Сборник научных трудов. – Баку, 1985. – С. 113–118.

21. Никитина И.Е., Блинов В.В., Чернышова В.М. и др. Адсорбционная очистка гелия в промышленных условиях//Газовая промышленность. – 1980. – № 12. – С. 36–38.

22. Никитина И.Е., Николаев В.В., Исмагилов Ф.Р. Адсорбционная очистка гелия в условиях I установки Оренбургского гелиевого завода/ Особенности разработки и эксплуатации газовых месторождений Прикаспийской впадины: Сборник научных трудов. – М.: 1982. – С. 143–152.

23. Патент GB № 2146751 А, МКИ F 25 J 3/02. Separation of hydrocarbon mixtures/T.R. Tomlinson, D.R. Cummings. Заявлено 31.07.84. Опубл. 24.04.85. Приоритет 30.09.83 № 8325069 GB. – 6 р.: ил.

24. Патент США № 3616602, кл. В01В 53/02. Low-Temperature Purificftion of Fluids/G.F. Flays, М.А. Albright. Заявл. 29.01.1970. Опубл. 2.11.1971; 3 р.

25. Патент США № 4889545, МКИ F 25 J 3/02. Hydrocarbon Gas Processing/R.E. Campbell, J.D. Wilkinson, Н.М. Hudson. Заявлено 21.11.88. Опубл. 26.12.89; - 42 р.: ил.

26. Патент Японин № 56-111005, кл. В01Д 13/00, В01Д 53/22. Опубл. 2.09.1981.

27. Рид Р., Праузниц Дж., Шервуд Т. Свойства газов и жидкостей. – Л.: Химия, 1982. – 518 с.

28. Семикин В.А. Разработка и изготовление комплексной технологической установки по извлечению гелия из природного газа//Химическое и нефтяное машиностроение. – 1995, № 2. – С. 36–37.

29. Сиротин С.А., Берго Б.Г. Технология вторичной очистки гелия методом короткоцикловой безнагревной адсорбции / / Химическое и нефтяное машиностроение. – 1995. – № 2. – С. 39–40.

30. Смит Р.С. Усовершенствованный процесс осушки газа//Нефть, газ и нефтехимия за рубежом. – 1990. – № 2. – С. 97–99.

31. Справочник по физико-химическим основам глубокого охлаждения/М.П. Малков, И.Б. Данилов, Ф.Г. Зельдович, Ф.Б. Фрадков. Под ред. М.П. Малкова. – М., Л.: Государственное энергетическое изд-во, 1963. – 416 с.

32. Справочник современных процессов переработки газов//Нефть, газ и нефтехимия за рубежом. – 1984. – № 4. – С. 65–87.

33. Уэйлес С. Фазовые равновесия в химической технологии, в 2-х частях. – М.: Мир, 1989. – 663 с.

34. Шубин Г.С., Краковский Б.Д., Попов О.М. Проект станции ожижения гелия для Братского газоконденсатного месторождения / Химическое и нефтяное машиностроение. – 1995. – № 2. – С. 14–15.

35. Benedict M., Webb G.B., Rubin L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures: Fugacities and liquid-vapor equilibria / Chem. Eng. Progress. – 1951. – v. 47, No 8. – p. 419; 1951. – v. 47, No 9. – p. 449–454.

36. Campbell J.M. Gas Conditioning and Processing, v. 2/ /The Equipment Modules, Section 18. – 1992. – September (in U.S.A.).

37. Davis J.A., Rodewald N., Kurata F. Solid-Liquid-Vapor Phase Behavior of the Vethane-Carbon Dioxide System//A.I.Ch.E. Journal. – 1962. – V. 8, $N \ge 4$. – P. 537–539.

38. Engineering Data Book. – Tulsa, Oklahoma: Gas Processing Association, 1987. – Section 20.

39. Gas conditionning Fact Book. – Michigan: The Dow Chemical Company Midland, 1962.

40. Goodwin R.D. Thermophysical Properties of Methana from 90 to 500K at Pressures to 700 Bar//Natl. Bur. Stand. (U.S.) – 1974. – Technical Note No 653.

41. Howard M.A., et al. Liquefaction Process has low Life-Cycle Cost.// Oil & Gas Journal. – 1980. – V. 19, Sept. – P. 118.

42. Hughes Michael A., Yu Haoran. Liquid-liquid Equilibria for Separation of Toluene from Heptane by Bensyl Alcohol Tri(ethylene glycol) Mixtures//J. Chem. Eng. Data. - 1990. - V. 35, N 4. - P. 467-471.

43. Hwang Sh.-Ch., Lin Ho-mu, Chappelear P.S., Kobayashi R. Dew Point Study in the Vapor-Liquid Region of the Methane-Carbon Dioxide System// J. Chem. Eng. Data. – 1976. – V. 21, N 4. – P. 493–497.

44. Jacobsen R.T., Stewart R.B. Thermodynamic Properties of Iucluding Liq-

uid and Vapor Phases from 63K to 2000K with Pressures to 10000 Bar//Journal of Physical Chemical Reference Data. – 1973. – V. 2. – P. 757–922.

45. James F. Ely, H.J.M. Hanley. Prediction of Transport Properties. 1. Viscosity of Fluids and Mixtures //Industrial Engineering of Chemical Fundamentals. – 1981. – N 20. – P. 323–332.

46. James F.Ely, H.J.M. Handey. Prediction of Transport Properties. 2. Thermal Conductivity of Pure Fluids and Mixtures //Industrial Engineering of Chemical Fundamentals. – 1983. – N 22. – P. 90–97.

47. Jensen R.H., Kurata F. Heterogeneous Phase Behavior of Solid Carbon Dioxide in Light Hydrocarbons at Cryogenic Temperatures//A.I.Ch.E. Journal. – 1971. – V. 17, N 2. – P. 357-364.

48. Jokoyama C., Wakana S., Kaminishi, et al.//J. Chem. Eng. Data. - 1988. - V. 33. - P. 274-276.

49. Jou F.-Y., Deshmukh R.D., Otto F.D., Mather A.E. Vapor-Liquid Equilibria for acid Gases and lower Alkanes in Triethylene Glycol//Fluid Phase Equilibria. – 1987. – V. 36, N 4. – P. 121–140.

50. Kobayashi R., Katz D.L.//Industrial and Engineering Chemistry. – 1953. – V. 45, N2. – P. 440.

51. Leland T.W., Rowlinson J.S., Sather G.A. Statistical Thermodynamics of Mixtures of Molecules of Different Sizes//Transaction of Farady Society. – 1968. – N 64. – P. 1447–1459.

52. *Manning W.P., Wood H.S.* Guidelines for glycol dehydrator design//Hydrocarbon Processing. – 1993. – V. 72, N 2. – P. 87–90.

53. Mc Carty R.D. / / Cryogenics. - 1974. - V.14, N 5 - P. 276-80.

54. Passut Charles A., Danner Ronald P. Correkation of ideal Gas Enthalhy, Heat Capacity, and Entropy//Ind. Eng. Chem. Process Des. Develop. – 1972. – V. 11, N 4. – P. 543–546.

55. Patel N.C., Teja A.S. A new cubic equation of state for fluids and fluid mixtures / / Chem. Eng. Science. - 1982. - V. 37, N 3. - P. 463-473.

56. Peng D.-Y., Robinson D.B. A new Two-Constant equation of state / Ind. Eng. Chem. Fundamen. - 1976. - V. 15. - P. 59-64.

57. Peng D., Robinson D.B. A New Two-Constant Equation of State//Ind. Eng. Chem., Fundam., 1976. – Vol. 15, N 1. – P. 59–64.

58. Rawat B.S., Prasad G.//J. Chem. Eng. Data. - 1980. - V. 25, N 3. - P. 227-230.

59. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids/3rd Edition. – McGraw Hill Book Company, 1981.

60. Rowlinson J.S., Watson I.D. The Prediction of Thermadynamic Properties of Fluids and Fluid Mixtures. The Principle of Corresponding States and its Extension / / Chemistry Industrial Science. – 1969. – N 24. – P. 1565– 1574.

61. Schaffert F.W., Wood N.V., O'Dricn J.V. The seminole san andres unit CO_2 recovery plant-meeting the challenges of EOR Gas Proctssing, 65 th Annual GPA Convention, San Antonio. Texas, 1986.

62. Soave G. Improvement of the Van Der Waals Equation of State//Chem. Eng. Sci. - 1984. - Vol. 39, N 2. - P. 357-369.

63. Soave G.S. Equilibrium constants from a modified Redlich-Kwong equation of state//Chem. Eng. Science. – 1972. – V. 27. – P. 1197–1203.
64. Starling K.E., Han M.S.//Hydrocarbon Processing. – 1972. – V. 51, N 5. – P. 129.

65. Stephens Meta A, Tamplin W.S. Saturated Liquid Specific Heats of Ethylene Glycol Homoloques//J. Chem. Eng. Data. - 1979. - V. 24, - N 2. -P. 81-82.

66. Takahashi Shinji, Song K.Y., Kobayashi R. Experimental Vapor-liquid Equilibria in the CO_2 -Diethylene Glycol-H₂O and CO_2 -Triethylene Glycol-H₂O Systems at Feasible Absorption Temperatures and Pressures//J. Chem. Eng. Data. – 1984. – V. 29, N 1. – P. 23–28.

67. Tenn F.G., Missen R.W. / / Can. J. Chem. Eng., 1963, V. 41, N 12.

68. Trappeniers N.J., Wassenaar T., Abels J.C. / Physica. - 1979. - N 98A. - P. 289-298.

69. Willman B.T., Teja A.S. Continuous Thermodynamics of Phase Equilibria Usign a Multivariate Distribution Function and an Equation of State//AIChE Journal. – 1986. – V. 32, N 12. – P. 2067–2078.

70. *Физико*-химические свойства индивидуальных углеводородов. – М., 1960. – С. 136–150.

71. TRS Thermodinamic Tables. – V. 2, Thermodinamic Research Center, Texas, April 30, 1990.

72. Pandey J.D., Agrawal N. Prediction of Viscosity of Multicomponent Liquid Mixtures, Indian Jurnal of Chemistry. – V. 29A, February 1990, p.p. 113–123.

73. Gallant R.W. Physical Propertyes of Hydrocarbons, Hybrocarbon Processing. – V. 46, № 4, p.p. 183–196.

74. Lee R.J., Teja A.S. Viscosities of Polyethyleneglycols, J. Chem. Eng. Data. – 1990. – V. 35, № 4, p.p. 385–387.

75. Дымент О.Н., Казанский К.С., Мирошников А.М. Гликоли и другие производные окисей этилена и пропилена. – М.; 1976, С. 150.

76. *Марусина Н.Б., Гайле А.А., Семенов Л.В.* Экстракция ароматических углеводородов смесями триэтиленгликоля с сульфоланом//Прикладная химия. – 1994. – Т. 67, в. 8. – С. 1311–1315.

77. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. – Л. – 1982. – 451 с.

78. *Назиев Я.М., Алиев А.М., Назиев Д.Я.* Теплопроводность бинарных смесей п-гептан – п-октан при высоких давлениях / /Известия вузов. Нефть и газ. – 1991. – № 7. – С. 54–57.

79. San Karshana, M. Bhagavanth Rao. Thermal Conductivity of Liquid Mixtures, Indian Chem. Eng. – 1989. – V. 31. 1.

80. Расторгуев Ю.Л., Ганиев Ю.А. Теплопроводность растворов неэлектролитов / /ЖКХ. – 1967. – Т. XLI, 11. – С. 2901–2907.

К главе 4

1. *А. с. 581618*, Б.И. № 35. Абсорбент для осушки и очистки углеводородных газов от сернистых соединений / А.А. Анисонян, А.К. Карпов, Л.А. Жарова и др. 1978.

2. А. с. 655410, Б.И. № 13. Абсорбент для осушки и очистки от сернис-

тых соединений/А.А. Анисонян, В.М. Стрючков, Н.З. Винникова и др., 1979.

3. Айвазов Б.В., Петров С.М. и др. Физико-химические константы сероорганических соединений. – М.: Химия, 1964. – 280 с.

4. Александров И.А. Ректификационные и абсорбционные аппараты // Методы расчета и основы конструирования. – М.: Химия, 1978. – 280 с.

5. Астарита Дж. Массопередача с химической реакцией. – Л.: Химия, 1971. – 224 с.

6. Афанасьев А.И., Малютин С.П., Кисленко Н.Н., Подлегаев Н.И. Влияние технологических добавок на пенообразующую способность ДЭА//Газовая промышленность. – 1984. – № 9. – С. 30–31.

7. Багиров Р.А.//Вопросы совершенствования технологии подготовки и переработки природного газа: Тр. ВНИПИгаза. – Баку, 1983. – С. 8–17.

8. Балебанов А.В., Бутылкин Б.А., Животов В.К. Разложение сероводорода в СВ и ВЧ-разрядах //Вопросы атомной науки и техники. Сер.: Атомно-водородная энергетика и технология. – 1985. – Вып. 3. – С. 46–48.

9. Балебанов А.В., Бутылкин Б.А., Животов В.К. и др. Диссоциация сероводорода в плазме / /ДАН СССР. – 1985. – Т. 283, N 3. – С. 657–660.

10. Балебанов А.В., Животов В.К., Крашенников Е.П. и др. Диссоциация сероводорода в смеси с пропаном в СВЧ-разряде//Химия высоких энергий. – 1989. – Т. 23. N 5. – С. 440–443.

11. Берлин М.А., Гореченков В.Г., Волков Н.П. Переработка нефтяных и природных газов. – М.: Химия, 1981. – С. 47–48.

12. Белов Н.С., Куцын П.В. Рассеивание газовых выбросов в районах месторождений высокосернистого природного газа и оценка воздействия на биосферу / /Экспресс-информация ВНИИЭгазпрома. Сер. Техника безопасности и охрана труда. – М.: 1989. – Вып. 4. – 35 с.

13. Белов П.С., Ясьян Ю.П., Гриценко А.И. / / Газовая промышленность. – 1981. – № 6. – С. 29–30.

14. *Бухгалтер Э.Б., Зуйкова Г.А., Слуцкая Т.И.* н др. Методические указания по нормированию расхода аминов в процессе сероочистки газа. М.: ВНИИЭгазпром. – 1990. – 72 с.

15. Вакар А.К., Животов В.К. и др. Исследование диссоциации сероводорода в СВЧ-разряде//Вопросы атомной науки и техники. Сер.: Атомно-водородная энергетика и технология. – 1981. – Вып. 2 (9). – С. 43–45.

16. Василевский В.В., Гуцевич Е.И., Русанов В.Д. н др. Селективная диссоциация сероводорода в газовых смесях с помощью ультрафиолетового излучения / Химия высоких энергий – 1989. – Т. 23, N 6. – С. 555–557.

17. Василевский В.В., Гуцевич Е.И., Русанов В.Д. Селективная диссоциация сероводорода в газовых смесях при сильном поглощении интенсивных потоков ультрафиолетового излучения / / Химия высоких энергий. – 1990. – Т. 24, N 1. – С. 41–45.

18. Володин Н.И., Бранд Б.Б. Математическая модель процесса десорбции СО₂ из водного раствора МЭА//Теоретичекие основы химической технологии. – 1982. – Т. XVI, № 6. – С. 12–15.

19. Вольцов А.А., Лыгин В.И., Лятина Н.К. и др.//Кинетика и катализ. – 1979. – Т. 20, № 1. – С. 253–256.

20. Вольцов А.А., Лыгин В.И., Ляпина Н.К. и др.//Журнал физической химии. – 1983. – Т. 57, № 12. – С. 3022–3024.

21. Грипас Л.В., Набутовский З.А., Туревский Е.Н., Афанасьев А.И. Очистка природного газа от сероводорода трибутилфосфатом / Новое оборудование и технология подготовки и переработки газа и конденсат: Реф. сборник. – М.: 1981. – С. 82–89.

22. Гимадеев Л.Н., Окружнов А.И., Архиереева И.А. и др. / Газовая промышленность. – 1985. – № 9. – С. 34.

23. Гришин С.П., Калинников А.А., Краснолитанов В.Ф. и др. Экспериментальное исследование радиолиза сероводорода//Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология. – 1987. Вып. 2. – С. 43–44.

24. Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ: Справочник. Т. 1, кн. 2. – М.: Наука, 1984.

25. Дымент О.Н., Казанский К.С., Мирошников А.И. Гликоли и другие производные окиси этилена и ропилена / Химия. – 1976. – С. 376.

26. Дытнерский Ю.И., Брыков В.П., Каграманов Г.Г. Мембранное разделение газов. – М.: – 1991. – 344 с.

27. Заваки Т.С., Данкен Т.А., Макрис Р.А. Очистка газов при высоком давлении / Нефть, газ и нефтехимия за рубежом. – 1981. – № 4. – С. 111–116.

28. Заявка Великобритании, № 1594855. Кл. С 1А, B1L Усовершенствования, касающиеся очистки газов/Heinz Holter. Заявлено 21.10.77. Опубл. 05.08.81.

29. Заявка ЕПВ № 0312958 В1, кл. В 01Д 53/34. Способ удаления сероводорода из отходящего газа/Веггасгу Ludvig. Заявлено 17.10.88. Опубл. 26.04.89.

30. Заявка Японии № 55-39233, кл. В 01Д 53/00. Процесс утилизации сероводорода из газов. Заявлено 11.09.78. Опубл. 19.03.80.

31. Исмайлова Х.И., Мурин В.И. Технология переработки кислого газа электродуговым методом//Сборник трудов ВНИИГАЗа. Сер. Повышение эффективности процессов переработки газа и газового конденсата. – М.: 1995. – ч. 1. – С. 35–39.

32. Исмайлова Х.И., Мурин В.И., Хрикулов В.В. Исследование процесса диссоциации кислого низкопотенциального газа электродуговым методом / /Сборник трудов ВНИИГАЗа. Сер. Повышение эффективности процессов переработки газа и газового конденсата. – М.: – 1995. – Ч. 1. – С. 27–34.

33. Исмайлова Х.И., Хрикулов В.В. Плазмохимическая технология переработки сероводородсодержащих газов / Подготовка, переработка и использование газа. – М.: ВНИИЭгазпром. – 1990. – Вып. 1. – С. 6–9.

34. *Кравец П.Д.* Осушка и очистка природного газа от тяжелых углеводородов абсорбентом ЭТ-1 / / Подготовка и переработка газа и газового конденсат: Сборник. – М.: 1978. – № 12 – С. 25–29.

35. Карамуллина Ф.З., Гимадеев Л.Н., Окружнов А.М. / / Химич. технология переработки нефти и газа. – Казань: 1983. – С. 23–25.

36. *Касперович А.Г., Титусов В.А.* Осушка газа высококонцентрированным абсорбентом ЭТ-1//Подготовка, переработка и использование газа: Сборник. – М.: – 1987. – № 1.

37. Кельцев Н.В. Основы адсорбционной техники. – М.: Химия, 1976. – 512 с.

38. *Кембел Д.* Очистка и переработка природных газов. – М.: Недра, 1977. – 133 с.

39. Кеннард М.Л., Мейсен А. Борьба с потерями диэтаноламина / / Нефть, газ и нефтехимия за рубежом. – 1980. – № 4. – С. 63–67.

40. Коуль А.Л., Ризенфельд Ф.С. Очистка газа. – М.: Недра. 1968. – 392 с. 41. Кузьменко Н.М. Афанасьев Ю.М., Будкина М.И. и др.//Журнал прикладной химии. – 1985. – Т. 58, № 9. – С. 2130–2132.

42. *Кузьменко Н.М.* и др.//Транспорт, переработка и использование газа в народном хозяйстве: Экспресс информация – М.: ВНИИЭгазпром, 1985. – Вып. 7. – С. 18–24.

43. Ляпина Н.К., Лыгин В.И., Улендеева А.Д.//Успехи химии. – 1980. – Т. 49, № 6. – С. 998–1000.

44. Макаров К.И., Малютин С.П., Сушкова Т.В. Растворимость сероводорода, углекислоты, метана и пропана в эфирах полиэтиленгликолей / Совершенствование техники и технологии промысловой и заводской обработки газа и конденсата на месторождениях со сложным составом газа: Сборник. – М.: 1980. – С. 106–115.

45. Мишин В.М., Афанасьев А.И. Оператор по переработке сернистого природного газа. – М.: Недра, 1987. – 132 с.

46. Мортко Р.А. Селективное выделение сероводорода из газа//Нефть, газ и нефтехимия за рубежом. – 1984. – № 6. – С. 61–64.

47. *Мурин В.И., Набоков С.В., Петличенко Н.В.* Технология окислительной очистки газов от сероводорода //Газовая промышленность. – 1991. – № 10. – С. 10–11.

48. Мухтаров М.М. и др.//Перспективы расширения производства попутной серы: Тез. докл. третьего Всесоюзн. совещания. – Черкассы, 1986. – С. 23.

49. Набоков С.В. Очистка газов окислительными и микробиологическими методами / / Технология переработки сернистого природного газа: Справочник / Под ред. А.И. Афанасьева. – М.: Недра, 1993. – С. 72–79.

50. Набоков С.В., Басарыгин Ю.М. Очистка газов малых месторождений от сероводорода с использованием соединений железа / Повышение эффективности процессов переработки газа и газового конденсата. – М.: ВНИИ-ГАЗ. – 1995. – С. 40–46.

51. Набоков С.В., Мурин В.И., Петличенко Н.В. Развитие технологии очистки газов малых месторождений от сероводорода / Химия, технология и экология переработки природного газа: тез. докл. – М.: ГАНГ. – 1996. – С. 98–99.

52. Набутовский З.А., Афанасьев Ю.М. Подготовка и переработка газа и газового конденсата: Реф. сборник. – М.: ВНИИЭгазпром, 1980. – Вып. 9. – С. 10–15.

53. Настека В.И. Научные основы и технология очистки высокосернистых природных газов и газовых конденсатов жидкими поглотителями: Дис. д-ра технических наук. – М.: 1995. – 57 с.: ил.

54. *Настека В.И.* Новые технологии очистки высокосернистых природных газов и газовых конденсатов. – М.: Недра, 1996. – 108 с.

55. *Нестер С.А., Русанов В.Д., Фридман А.А.* Диссоциация сероводорода в плазме с малыми добавками кислорода / Химия высоких энергий. – 1988. – Т. 22, N 5 – С. 461–463.

56. Николаев И. Диффузия в мембранах. - М.: 1980. - 232 с.

57. Окружнов А.М. и др. Совершенствование процессов сероочистки углеводородного сырья и газофракционирования: Обзорн. информация – М.: ЦНИИТЭнефтехим, 1980. – 25 с.

58. Очистка технологических газов/Под ред. Т.А. Семеновой и И.Л. Лейтеса. – М.: Химия, 1977. – 488 с.

59. Патент России № 2036699, ВО1D53/14. Абсорбент для очистки углеводородного газа от сероводорода/А.И. Афанасьев, Н.М. Салтыкова, Н.И. Подлегаев и др. Заявлено 04.03.1991 г., опубл. 09.06.95. Бюл. № 16.

60. Патент России № 2075431, С01 ВЗ/04, 17/04. Способ получения водорода и серы/Исмайлова Х.И., В.В. Хрикулов, Р.Л. Шкляр. Заявлено 26.10.94. Опубл. 20.03.97, приоритет 26.10.94. – 6 с.

61. Патент США № 3533732, 3824766, В01D 53/14,1975.

62. Патент США № 4276271, кл 423-226. Процесс для удаления сероводорода из газовых смесей/William P., Manning et.al. Заявлено 03.12.79. Опубл. 30.06.81.

63. Патент США № 4310497. кл. 423–230. Процесс очистки сероводородосодержащего газа/Deschamps et.al. Заявлено 30.01.81. Опубл. 12.01.82.

64. Патент США № 4348368. Метод удаления сероводорода из газа/ G.G. Blytas. кл. 423/226. Заявлено 26.05.81. Опубл. 07.09.82.

65. Патент США № 4400368, кл 423/573 R. H₂S Removal process/ D. Zaida. Заявл. 25.9.92. Опубл. 29.6.93.

66. Патент США № 4476027, кл. 210-695. Использование магнитной сепарации в процессе утилизации сероводорода/Irvin Fox. Заявлено 09.08.82. Опубл. 09.10.84.

67. Патент США № 5149459, НКИ 252/191. Композиции для удаления сероводорода/D. Olson. Заявлено 18.09.91. Опубл. 21.09.93.

68. Патент США № 5167940, кл. 423/244.09. Способ и установка для очистки технологического газа от H₂S/D. Мс.Мапиз D. Заявлено 20.12.90. Опубл. 1.12.92.

69. Патент Японии № 50-103943, кл. В 01Д 53/34. Способ очистки газа от сероводорода/авторы. Заявлено 29.08.75. Опубл. 03.09.80.

70. Перельман В.И. Краткий справочник химика. – М., Л.: Химия, 1964. – 624 с.

71. Подлегаев Н.И., Петкина Н.П. Исследование абсорбентов на основе моноалкиловых эфиров триэтиленгликоля для очистки природного газа от сернистых соединений//Подготовка, переработка и использование газа: Реф. сборник. – М.: 1987. – № 5. – С. 10–15.

72. Подлегаев Н.И., Туревский Е.Н., Петкина Н.П. и др. О возможности частичного удаления меркаптанов на установке осушки І очереди Оренбургского ГПЗ//Подготовка и переработка газа и газового конденсата: Реф. сборник. – М.: 1979. – № 10. – С. 27–32.

73. Потапкин Б.В. и др. / / Тезисы докл. IV Всесоюзн. симпозиума по плазмохимии. – Днепропетровск, 1984. – Т. 214. – С. 320.

74. Потапкин Б.В., Русанов В.Д., Стрелкова М.М., Фридман А.А. Кинетика диссоциации сероводорода в термической плазме / / Химия высоких энергий. – 1988. – Т. 22, № 6. – С. 537–540.

75. Потапкин Б.В., Стрелкова М.И., Фридман. А.А. Исследование кинетики и энергетики процесса диссоциации H₂S в смеси с CO₂ в термической плазме / Химия высоких энергий. – М.: РАН, 1992. – Т. 26, № 1. – С. 63–68.

76. Проспекты фирмы Dow Chemical Co., 1995.

77. Проспекты фирмы Integral Engineering, 1989.

78. Рамм В.М. Абсорбция газов. - М.: Химия, 1978. - 280 с.

79. *Расчеты* основных процессов и аппаратов нефтепереработки: Справочник/Под ред. Е.М. Судакова М.: Химия, 1979. – С. 159–223.

80. Рид Р., Праусниц ДЖ., Шервудт. Свойства газов и жидкостей. – Л.: Химия, 1982. – 592 с.

81. Романников В.Н. и др.//Способы и аппараты очистки отходящих промышленных газов от сернистых соединений: Тез. докл. Всесоюзн. научно-технич. семинара. – М.: ЦИНТИхимнефтемаш, 1986. – С. 36.

82. Романников В.Н., Ионе К.Г. / Кинетика и катализ. – 1984. – Т. 25, № 1. – С. 92–98.

83. *Русанов В.Д., Фридман А.А.* Физика химически активной плазмы. – М.: Наука, 1984. – 415 с.

84. *Русанов В.Д., Фридман А.А., Шолин Г.В.* Физика химически активной плазмы с неравновесным колебательным возбуждением молекул//Успехи физических наук. – 1981. – Т. 134, Вып. 2. – С. 185–188.

85. Сапрыкин В.Л., Пятничко А.И. Промышленные газоразделительные мебраны / / Обз. инф. Сер. Подготовка и переработка газа и газового конденсата. – ВНИИЭгазпром. – 1988. – Вып. 1. – 44 с.

86. Семенова Т.А., Лейтес И.Л. Очистка технологических газов. – М.: Химия, 1977. – 488 с.

87. Синярев Г.Б. и др. Применение ЭВМ для термодинамических расчетов металлургических процессов. – М.: Наука, 1982. – 327 с.

88. Сиротин С. А., Берго Б.Г. Современное состояние мембранной технологии разделения газов //Подготовка и перереботка газа и газового конденсата: Обзор. информация ВНИИЭгазпром. Вып. 3. – М.: 1987. – 27 с.

89. Соколина Л.Ф. Разработка циклического процесса очистки жидких и газообразных углеводородных фракций от меркаптанов щелочными растворами. Автореферат диссертация на соискание ученой степени кандидата технических наук: М.: МХТИ. – 1983. – 57 с.

90. Сорокин Я.Г. – Особенности переработки сернистых нефтей и охрана окружающей среды. – М.: Химия, 1975. – 296 с.

91. Справочник современных процессов переработки газов//Нефть, газ и нефтехимия за рубежом. – 1984. – № 4. – с. 65.

92. Справочник современных процессов переработки газов//Нефть, газ и нефтехимия за рубежом. – 1986. – № 7. – 77 с.

93. Справочник азотчика/Под ред. Е.Я. Мельникова – 2-е изд., перераб. – М.: Химия, 1986 – 511 с.

94. Справочник по растворимости / Под ред. В.В. Кафарова. – Т. 1, кн.1 – М., Л. Академия наук СССР, 1961. – 960 с.

95. Стрючков В.М. Исследование и интенсификация процессов сероочи-

стки природного газа с использованием аминов и поглотителей на основе гликолей и их эфиров. Автореферат диссертации на соискание ученой степени кандидата технических наук. – М.: 1980. – 23 с.

96. Стрючков В.М., Афанасьев А.И., Подлегаев Н.И. и др. Исследование процесса очистки природного газа от кислых компонентов абсорбентом, состоящим из смеси гликолей и их эфиров //Совершенствование техники и технологии промысловой и заводской обработки газа и конденсата на месторождениях со сложным составом газа. – М.: 1980. – С. 116–125.

97. Стрючков В.М., Афанасьев А.И., Вышеславцев Ю.Ф. и др. Научнотехнические достижения в области сероочистки газа//Подготовка и переработка газа и газового конденсата: обз. инф. – М.: ВНИИЭгазпром. – 1988. – № 6. – 30 с.

98. Стрючков В.М., Афанасьев А.И., Настека В.И., Латюк В.И. Применение МДЭА для очистки Карачаганакского газа на ОГПЗ//Подготовка и переработка газа и газового конденсата: обз. инф. – М.: ВНИИЭгазпром. – 1988. – С. 7–10.

99. Стрючков В.М., Афанасьев А.И., Шкляр Р.Л. Интенсификация процесса очистки природного газа от кислых компонентов / / Подготовка и переработка газа и газового конденсата: обз. информация – М.: ВНИИЭгазпром. – 1984. – № 6. – 60 с.

100. Стюарт Э.Дж., Ланнинг Р.А. Сокращение потерь реагента на установках очистки аминами//Нефтегазовые технологии – 1995. – № 2. – С. 53–56.

101. Теснер П.А., Немировский М.С., Мотыль Н.Д. Кинетика реакции термического разложения сероводорода при температуре 600-1200 °C//Кинетика и катализ. – 1990. – Т. 31. – № 5. – С. 305-309.

102. *Технология* очистки кислых газов//Коbe steel Eng. Repts. 1993. – V. 43, № 2. – Р. 48–50, РЖ Химия, 20И423, 1993.

103. *Технология* переработки сернистого природного газа: Справочник/А.И. Афанасьев, В.М. Стрючков, Н.Н. Подлегаев и др. Под ред. А.И. Афанасьева. – М.: Недра, 1993. – 152 С.

104. *Тимашев С.Ф.* Физико-химия мембранных процессов. – М.: 1988. – 240 с.

105. *Уэйлес С.* Фазовые равновесия в химической технологии. Ч. 2. – М.: Мир, 1989. – 360 с.

106. *Сато Дж.* и др. Бактериологическое обессеривание газа//Нефть, газ, нефтехимия за рубежом. – 1988. – № 5. – С. 116–118.

107. Харри Т.Б. / / Инженер-нефтяник. - 1972. - № 6. - С. 9-76.

108. *Хванг С.Т., Каммермейер К.* Мембранные процессы разделения. Пер. с англ. – М.: 1981. – 465 с.

109. *Черномырдина Н.А., Кузьменко Н.М., Шумяцкий Ю.И.* / / Газовая промышленность. – 1986. – № 8. – 23 с.

110. Шкляр Р.Л., Аксельрод Ю.В., Соколинский Ю.А. Абсорбция двух газов, параллельными необратимыми реакциями второго порядка// Теоретические основы химической технологии. – 1976. – № 4. – С. 531–539.

111. Шкляр Р.Л., Бобрик Г.С., Стрючков В.М. Метод расчета экспанзии раствора амина при очистке газов от H₂S и CO₂//Экспресс-информация

ВНИИЭгазпрома. Сер. Подготовка, переработка и использование газа. – М.: 1990. – № 1. – С. 1–6.

112. Шпильрайн Э.Э., Мальшенко С.В., Кулешов Г.Г. Введение в водородную энергетику/Под ред. В.А. Легасова – М.: Энергоатомиздат, 1984. – 264 с.

113. Экспресс-информация ВНИИЭгазпрома. Сер. Транспорт, переработка и использование газа в зарубежных странах. – М.: 1988. – № 12. – 14 с.

114. Яворский В.Т., Колымон Л.А., Кроквенко В.И. К вопросу о термическом разложении сероводорода / / Тезисы докл. II Всесоюзн. совещания "Перспективы расширения производства попутной серы", сентябрь, 1982. Черкасы. – С. 57–58.

115. *Ященко В.Л., Лысикова Т.И./* Повышение эффективности подготовки и комплексной переработки газа. – Баку, 1983. – С. 114–119.

116. Al-Chawas N.A., Hagewiesche D.P., Ruir-Ibanex G., Sandall O.C.// Journal Engineering. – 1989. – V. 34. – P. 385–391.

117. Astarita G., Savage D., Bisio A. Gas treating wiht chemical solvents. – New York, 1983.

118. Austgen D.M., Rochelle G.T. / / Journal Chemical Engineers. - 1991. - V. 30, N 3. - P. 543-555.

119. Beavon D.K., King R.F. New Process cuts air pollution from sulfur plants.//Oil and gas Intern. - 1971. - V. 11, N 3 - P. 68.

120. Beddel S.A., Kirby L.H. Helates' role in gas treating//Hydrocarbon Processing. – 1988. – Jan/ – P. 63–66.

121. Blauwhoff P.M.M., Versteeg G.F., Swaaij V.P.M.//Chemical Engineering Science. - 1983. - V. 38, N 9. - P. 1411-1436.

122. Burkert J., Bush M., Hedden K., Rao R.//GWF. Gas/Erdgas. - 1984. - V. 125, N 4. - P. 202-208.

123. Chakma A., Maisen A.//Hydrocarbon Processing. - 1984. - V. 63, N 6. - P. 21-26.

124. Chen. Chyuan-Chung and Hg Andreu. //Hydrocarbon Processing. - 1980. - V. 59, N 4. - P. 122-126.

125. Chernichowski L.A., Jorgensen P., Chapell J., Meguernes K.//9th International Symposium in Plasma Chemistry. September 4–8, 1989, Italy. – P. 687–692.

126. Chi C.W., Lee H.//AIChe Symp. Ser. – 1979. – V. 69, N 134. – P. 95–99.

127. Donald R. Raney, Removal carbon dioxide with Selexol//Hydro carbon Processing. – 1976, April. – P. 73–76.

128. Enstar Engineering Co. DELSEP Membranes//Hydrocarbon Processing. – 1984. V. 63, – N 4, – P. 65.

129. Fang-Yuan You, Mather A.E., Otto F.D.//Industrial Engineering Chemical Process Dessining Division. – 1982. – V. 21, N 1. – P. 539–544.

130. Fukuda K., Dokiya M., Kameyama T., Kotera Y. Catalytic Decomposition of Hydrogen Sulfide//Industrial and Engineering chemistry fundamentals, Washington. – 1978. – V. 17, N 4 – P. 243–248.

Gas Process, Handbook//Hydrocarbon processing. – 1992. – April. – 94 p.
Gas Process, Handbook//Hydrocarbon processing. – 1996. – April. – P. 103–150.

133. George S. Price. $\rm H_2S$ removal process enhances Texas $\rm CO_2$ injection operations//Oil and Gas Journal. – 1987. – May 25. – P. 44–54.

134. Gregory T.D., Feke D.Z., Angus J.C. Electrolysis of Jiquit Hydrogen Sulphide//Journal of Applied Electrochemistry. – 1980. – N 10. – P. 405–408.

135. Groninger G., Hedden K., Rao R.//Chem. - Ing. - Techn. - 1985. - V. 57, N 9. - P. 794-797.

136. Hardison L.C. Catalutic gas sweetening process selectively converts $\rm H_2S$ to sulfur.//Oil and Gas Journal. – 1984. – June 4.

137. Hedden K., Rao R.//GWF. Gas/Erdas. - 1982. - V. 123, N 1. - P. 1-6.

138. Helsel M.P., Marold F.G. New gas scrubber removes H₂S.//Hydrocarbon Processing. – 1987. – April. – P. 35–37.

139. Jou F.Y., Otto F.D., Mather A.E//Journal Chemical Engineers. – 1994. – V. 33, N 1. – P. 2002–2005.

140. Kalina D.W., Maas E.T. Jndirect Hydrogen sulfide conversion//An acidic electrochemical process. – 1985. – V. 10, N 3. – P. 157–162.

141. *Kalina D.W.*, *Maas E.T.* Jndirect Hydrogen sulfide conversion.// A. basis electrochemical process//Jnt. Journal of Hydrogen Energy. – 1985 – V. 10. – N 3. – P. 163–167.

V. 10. – N 5. – P. 105–107.

142. Kennard M.L., Melsen A.//Journal Chemical and Engineering Data, 1984, V. 29, N 4 – P. 304–312.

143. Lavson I.D., Garst A.W. / Journal Chemical and Engineering Data. – 1976. – V. 21, N 1 – P. 304–312.

144. Lawoon J.D., Carat A.W.//Journal Chemical Engineers. - 1976. - V. 28, N 1. - P. 20-32.

145. Lee A.L. Membrane process for CO_2 removal tested at Texas plant. //Oil & Gas Journal, - 1994. V. 92. - N 5. - P. 90-92.

146. Lee Y.I., Otto F.D., Mather A.E.//Journal Chemical and Engineering Data - 1972. - V. 59, N 4 - P. 122-126.

147. Mackinger. H., Rossati F. Sulfint process//Hydrocarbon Proctssing. – 1982 – March. – P. 169–172.

148. Michaeli V. W., Stein W. H., Unhand H. Das Selexol Ver fahren Ein Beinrag. Zur Selectiven Aufbereitung Von Saurem Edgas//Erdoel-Erdgas Zeitschrift. - 91. - 1975. - P. 341-347.

149. Process design and optimization//Hydrocarbon processing. – 1996. – June. – 82 p.

150. Rautenbach R.//Membrane phenomena and processes. Wroclaw, 1986. P. 275–340.

151. Reid E. Emmet//Organie chemistry of bivalent suefur. – N.Y., 1958. – V. 1. – P. 54–75.

152. Ronald T. Clare, Joun P. Valentine. Acid Gas Removal Using Selexol Process//Energy Processing. Canada. – 1975. – July-August. – P. 38–43.

153. Russel F.G. Application of the DELSEP membran system//Chem. Eng. Progress, - 1984. - V. 80, N 10, P. 48-52.

154. Russel F.G. Field Tests of DELSEP Permeators // Hydrocarbon Processing., - 1983, V. 62, - N 8. - P. 55-56.

155. Ryan J.M., Schaffet F.W. The Ryan/Holms Technology - An Eco-

nomical Route for CO_2 and Liquid Recovery//AIChE Winter National Meeting, March 11–14, 1984. – Atlanta, – 1984. Paper N 336.

156. Schendel R. Membranes can efficiently separate CO_2 from mixture//Oil & Gas Journal. – 1983. – V. 81, N 33. – P. 52–56.

157. Schendel R., Seymour J. Take can picking Membrans to Combine with other Process for CO_2 removal//Oil & Gas Journal. – 1985. – V. 83, N 7. – P. 84–86.

158. Shiring F.J., Venkatadri R., Goodwin J.G. / / Canad. J. Chem. Eng. – 1983. – N 61. – P. 218–223.

159. Spillman R.W. Economics of Gas Separation Membranes//Chem. Eng. Progr. - 1989. - V. 85, N 5. - P. 41-62.

160. Sugioka M., Aomura K.//Bull Jap. Petrol. Just. – 1973. – V.15, N 2. – P. 136–138.

161. Schendel R. Process efficiently treat gases associated with CO_2 miscibleslaad//Oil & Gas Journal. – 1983. – V. 81, N 29. – P. 82–86.

162. Tannerhill C., Embry L., Issacs M. H_2S , SO_2 pollution problems abated through chelated catalyst usage during natural gas Sweetening//Chemical Processing. – 1985. – August – P. 82–84.

163. Tennyson R.N., Schaaf R.P.//Oil and Gas J. - 1977. - V. 75, N 2. - P. 78-80, 85-86.

164. US Patent N 4.374.657 B01D 59/12. Process of separating acid gases from hydrocarbons/R.L Schendel, F.T. Selleck (US). – 11 c.

165. Vermair S., Haan R. Influence of sodium/vanadium rations on the reoxidation of V(4+)//Ind. Eng. Chem/Res. - 1988. - 27. - P. 1242-1245.

166. Vesteeg G.F., Swaaij V.P.M. Journal Chemical and Engineering Data – 1988. – V. 43, No2 – P. 33–35.

167. Weber G. Сульфолин-процесс очистки газа от сероводорода / / Erdol und Kohle. Bd. 39, Heft 8. August 1986. – Р. 371–374.

168. Williams W.W.//Hydrocarbon processing and petrolium refiner. – 1964. – V. 43, N 7. – P. 121–124.

169. Wolfer W. Helpful hints for physical solvent, absorption//Hydrocarbon Processing. – 1982. – N 11. – P. 193–197.

170. Wolfer W., Schwarts, Vodrazka W., Volkamer K. Solvent shows greater efficiency in sweetening of gas//Oil and Gas Jurnal. – 1980. – Jan, 21. – P. 66–70.

171. Zesueur H., Chernichowski A., Chapelle J. Electro-bruleurs a arcs glissants//Colloque de Physique Universite d'Orleans/15 september 1990. – V. 51, N 18 – P. 57–64.

172. Ziolek M.//Bull. Pol. Acad. Sci.: Chem. – 1984. – V. 32, N 7–8. – P. 285–291.